FINAL DRAINAGE REPORT
FOR
ABTR STORAGE
UNPLATTED
415 N FRANCEVILLE COAL MINE ROAD COLORADO SPRINGS, COLORADO

MARCH 2023

Prepared For:
FLYING HORSE REALTY
2748 North Gate Blvd
Colorado Springs, CO 80921
719.235.8195

Prepared By:
TERRA NOVA ENGINEERING, INC.
721 S. $23^{\text {RD }}$ Street
Colorado Springs, CO 80904
719.635.6422

TNE Job No. 2309.00
County Job No. \#\#\#

FINAL DRAINAGE REPORT FOR
 ABTR STORAGE

TABLE OF CONTENTS

Engineer's Statement	Page 3
Purpose	Page 4
General Description	Page 4
Existing Drainage Conditions	Page 5
Proposed Drainage Conditions	Page 6
Hydrologic Calculations	Page 9
Hydraulic Calculations	Page 9
Floodplain Statement	Page 10
Water Quality	Page 10
Construction Cost Opinion	Page 10
Drainage Fees	Page 10
Maintenance	Page 10
Summary	Page 11
Bibliography	Page 11

APPENDICIES
VICINITY MAP
S.C.S. SOILS MAP
FEMA FIRM MAP
HYDROLOGIC CALCULATIONS
HYDRAULIC CALCULATIONS
DETENTION CALCULATIONS
DRAINAGE PLAN

FINAL DRAINAGE REPORT
 FOR
 ABTR STORAGE

DESIGN ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Dane Frank, P.E. 50207
Date
On behalf of Terra Nova Engineering, Inc.

OWNER/DEVELOPER'S STATEMENT:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

Authorized Signature
Date

Printed Name, Title

Business Name

Address

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

FINAL DRAINAGE REPORT FOR
 ABTR STORAGE

PURPOSE

The purpose of this Final Drainage Report (FDR) is to identify and analyze the proposed drainage patterns, determine proposed runoff quantities, size drainage structures for conveyance of developed runoff, and present solutions to drainage impacts on-site and off-site resulting from this development. The site has not been previously platted or studied.

GENERAL DESCRIPTION

This FDR is an analysis of approximately 38.5 acres of undeveloped land located at 415 n Franceville Coal Mine Road. A portion of this site is being developed as vehicle/trailer parking. The site is in the northeast quarter of Section 18, Township 14 South, Range 65 West and the northwest quarter of Section 17, Township 14 South, Range 65 West of the $6^{\text {th }}$ Principal Meridian within El Paso County. The parcel is bounded to the north by Highway 94, to the east and south by unplatted land, and to the west by North Franceville Coal Mine Road (See vicinity map in appendix).

The site lies within the Jimmy Camp Creek Basin, with storm runoff surface draining from the east to the west, with most of the runoff flowing onto North Franceville Coal Mine Road and some runoff flowing off the site to the south. There is one culvert on the west side of the site that crosses North Franceville Coal Mine Road and drains to the neighboring property to the west.

Soils for this project are delineated by the map in the appendix as Nelson-Tassel fine sandy loams, 3 to 18 percent slopes (56). Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area" and contains soils of Hydrologic Group B.

The site is largely undeveloped with mostly grass and dirt surfaces, and occasional shrubs/trees. There is one building with a fence and gravel yard in the northwest corner that is owned by Cherokee Metro District. The site drains to the southeast, with an average slope of 3.8%.

EXISTING DRAINAGE CONDITIONS

There are six drainage basins, three of which are offsite. See attached Existing Drainage Map (in appendix).

Basin OS-X is 7.12 acres and drains to Design Point X on the east side of the site. This basin is offsite and runoff from this basin flows onto the site and into basin EX-A. Basin OS-X has flows of $\mathrm{Q}_{5}=2.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=13.4 \mathrm{cfs}$.

Basin OS-Y is 21.4 acres and drains to Design Point Y at the east side of the site. This basin is offsite and runoff from this basin flows onto the site and into basin EX-C. Basin OS-Y has flows of $\mathrm{Q}_{5}=7.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=34.5 \mathrm{cfs}$.

Basin OS-Z is 1.84 acres and drains to Design Point Z at the north side of the site. This basin is offsite and runoff from this basin flows onto the site and into basin EX-C. Basin OS-Z has flows of $\mathrm{Q}_{5}=3.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=7.8 \mathrm{cfs}$.

Basin EX-A is 13.4 acres and drains to Design Point A near the southwest corner of the site. Runoff flows off the site and onto the adjacent property. Basin EX-A has flows of $\mathrm{Q}_{5}=3.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=19.1 \mathrm{cfs}$. Design Point A has combined flows of $\mathrm{Q}_{5}=5.2 \mathrm{cfs}$ and $\mathrm{Q}_{100}=32.5 \mathrm{cfs}$ from basins OS-X and EX-A.

Basin EX-B is 1.96 acres and drains to Design Point B at the west side of the site. Runoff flows off the site and onto North Franceville Coal Mine Road. Basin EX-B has flows of $\mathrm{Q}_{5}=0.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=4.0 \mathrm{cfs}$.

Basin EX-C is 23.2 acres and drains to Design Point C at the west side of the site. Runoff flows into a 54" CMP culvert, under North Franceville Coal Mine Road, and onto the neighboring property to the west. Basin EX-C has flows of $\mathrm{Q}_{5}=5.0 \mathrm{cfs}$ and $\mathrm{Q}_{100}=30.2 \mathrm{cfs}$. Design Point C has combined flows of $\mathrm{Q}_{5}=15.8 \mathrm{cfs}$ and $\mathrm{Q}_{100}=72.5 \mathrm{cfs}$ from basins OS-z, OS-Y, and EX-C.

Note: After the culvert crosses the road and ends, there is a retaining wall that appears to have a RCP pipe opening of similar size that continues west. No plans or reports containing this pipe have been found and the discharge point is not known. Based on historic aerial photos, this pipe may discharge approximately 500 feet west-southwest of the retaining wall, but this has not been | confirmed. | Discuss/state suitability (hydrologically and hydraulically |
| :--- | :--- | adequate) of the existing culvert under Franceville Rd to convey flows to west based on analysis completed.

PROPOSED DRAINAGE CONDITIUNS

Runoff in the developed conditions consists of 11 basins; one existing basin, seven onsite basins, and three offsite basins. Below is a description of the runoff in the developed conditions and how it will be safely routed, treated and detained. See appendix for calculations.

Existing Basins

Basin EX-B is 1.96 acres and drains to Design Point B at the west side of the site. Runoff flows off the site and onto North Franceville Coal Mine Road. Basin EX-B has flows of $\mathrm{Q}_{5}=0.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=4.0 \mathrm{cfs}$.

Offsite Basins

Basin OS-X is 7.12 acres and drains to Design Point X on the east side of the site. This basin is offsite and runoff from this basin flows onto the site and into basin EX-A. Basin OS-X has flows of $\mathrm{Q}_{5}=2.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=13.4 \mathrm{cfs}$.

Basin OS-Y is 21.4 acres and drains to Design Point Y at the east side of the site. This basin is offsite and runoff from this basin flows onto the site and into basin EX-C. Basin OS-Y has flows of $\mathrm{Q}_{5}=7.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=34.5 \mathrm{cfs}$.

Basin OS-Z is 1.84 acres and drains to Design Point Z at the north side of the site. This basin is offsite and runoff from this basin flows onto the site and into basin EX-C. Basin OS-Z has flows of $\mathrm{Q}_{5}=3.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=7.8 \mathrm{cfs}$.

Onsite Basins

Basin PR-1 is 9.92 acres and drains to Design Point 1 at the southwest EDB. Basin PR-1 is the
southern portion of the asphalt millings parking area. Basin PR-1 has flows of $\mathrm{Q}_{5}=11.4 \mathrm{cfs}$ and $\mathrm{Q}_{100}=27.3 \mathrm{cfs}$.

Basin PR-2 is 9.30 acres and drains to Design Point 2 at the northeast corner of the asphalt millings parking area. Basin PR-2 has flows of $\mathrm{Q}_{5}=10.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=25.6 \mathrm{cfs}$.

Basin PR-3 is 8.78 acres and drains to Design Point 3 at the west end of the basin. Basin PR-3 has flows of $\mathrm{Q}_{5}=32.9$ cfs and $\mathrm{Q}_{100}=62.8 \mathrm{cfs}$. This basin has been calculated with the future commercial development runoff, which has also been used to determine the volume of the northwest EDB.

Basin PR-4 is 3.27 acres and drains to Design Point 4 at the northwest EDB. Basin PR-4 has flows of $\mathrm{Q}_{5}=1.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=7.1 \mathrm{cfs}$. Design Point 4 has combined flows of $\mathrm{Q}_{5}=44.7 \mathrm{cfs}$ and Q_{100} $=95.5 \mathrm{cfs}$ from basins PR-4, PR-3, and PR-2.

Basin PR-5 is 1.78 acres and drains to Design Point 5 at the west edge of the site. This basin is mostly undeveloped area, plus the Cherokee Metro District facility, that includes the culvert that drains the north portion of the site across N Franceville Coal Mine Road. Basin PR-5 has flows of $\mathrm{Q}_{5}=1.0 \mathrm{cfs}$ and $\mathrm{Q}_{100}=4.5 \mathrm{cfs}$. Design Point 5 has combined flows of $\mathrm{Q}_{5}=4.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=$ 34.4 cfs from basins PR-5 and the pond outlet. $\leftarrow \quad$ Since there is grading proposed in Basin PR-5, WQ treatment or an applicable exclusion must be discussed in this section.

Basin PR-6 is 0.42 acres and drains to Design Point 6 on the south edge of the site. This basin is a landscaping area that flows offsite to the south. Basin PR-6 has flows of $\mathrm{Q}_{5}=0.2$ cfs and Q_{100} $=1.1 \mathrm{cfs}$.

Basin PR-7 is 3.03 acres and drains to Design Point 7 at the south edge of the site. This basin is landscaping area, driveway, and the portion of the asphalt millings parking area that is below the southwest EDB. Basin PR-7 has flows of $\mathrm{Q}_{5}=1.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=8.1 \mathrm{cfs}$. Water quality treatment for this basin is provided by the landscaping area south of the driveway and parking area (runoff reduction by grass buffer).

At Design Point 1 the runoff from basih PR-1 will be captured in a 0.794 acre-foot Southwest EDB. Runoff sheet flows into the EDB ffom three sides. Two 117 cu - ft concrete lined forebays with 1.5 feet high concrete cutoff walls have been placed in the east corners of the EDB where most of the flow will enter. A 3 inch notch in the wall drains the flow to a 1^{\prime} concrete trickle channel, then the runoff is routed to the 3.0 ' depep micropool which has a" deep initial surcharge area. The 9.92 acres tributary to the EDB are 40% impervious. Based upon this we need a WQCV of $0.149 \mathrm{ac}-\mathrm{ft}$, an EURV volume of $0.268 \mathrm{ac}-\mathrm{ft}$ and 100 -year volume of $0.377 \mathrm{ac}-\mathrm{ft}$, for a total volume needed of $0.794 \mathrm{ac}-\mathrm{ft}$. The bottom of the micropool elevation is at 6233.00 while the top of the ISV elevation is at 6236.00 . The WQCV orifice plate has four rows of 1 inch diameter holes spaced irregularly. A 4'x4' outlet structure is set at 6238.75 . The 100 -year elevation tops out at 6239.63. A 18 " HDPE outlet with a restrictor plate will release $\mathrm{Q}_{5}=1.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=14.2 \mathrm{cfs}$ discharge south, to a riprap settling basin near that south property line that will provide energy dissipation and allow smaller flows to infiltrate. Larger flows will overtop the settling basin and follow the existing drainage path south of the site.

At Design Point 4 the runoff from basins PR-2, PR-3, and PR-4 will be captured in a 2.293 acrefoot Northwest EDB. This EDB has been sized for the volume from the future commercial development of basing PR-3, while the proposed structures (such as forebay and outlet structure) have been sized based on the currently proposed design. Runoff sheet flows into the EDB from three sides. A 300 cu-ft concrete lined forebay with 1.5 feet high concrete cutoff walls has been placed in the southeast corner of the EDB where most of the proposed flow will enter (another forebay will be required for the future commercial development). A 3 inch notch in the wall drains the flow to a 2 ' concrete trickle channel, then the runoff is routed to the 3.0^{\prime} deep micropool which has a 6 " deep initial surcharge area. The 21.4 acres tributary to the EDB are 20\% impervious (not including the future commercial development). Based upon this we need a WQCV of $0.206 \mathrm{ac}-\mathrm{ft}$, an EURV volume of $0.219 \mathrm{ac}-\mathrm{ft}$ and 100-year volume of $0.697 \mathrm{ac}-\mathrm{ft}$, for a total volume needed of $1.122 \mathrm{ac}-\mathrm{ft}$. The bottom of the micropool elevation is at 6219.00 while the top of the ISV elevation is at 6222.00 . The WQCV orifice plate has three rows of $15 / 16$ inch diameter holes spaced irregularly. A 4'x5' outlet structure is set at 6224.05 . The 100 -year elevation tops out at 6225.19 . A 24" HDPE outlet with a restrictor plate will release $\mathrm{Q}_{5}=4.8 \mathrm{cfs}$ and $\mathrm{Q}_{100}=27.0 \mathrm{cfs}$ discharge west, to an outfall point near the existing culvert under N Franceville Coal Mine Road.

In an effort to protect receiving water and as part of the "four-step process to minimize adverse impacts of urbanization" this site was analyzed in the following manner:

1. Reduce Runoff- The proposed impervious areas on the site are surrounded by landscaping and green space areas. Also, the proposed parking area is being surface with asphalt millings, which slow runoff and allow for infiltration compared to pavement. Additionally, the new improvements and impervious areas on the site are being routed to proposed EDBs. These items will reduce the volume of runoff using ponding and infiltration.
2. Stabilize Drainageways- There are no existing drainageways onsite. The proposed swales have been designed to be stable.
3. Provide Water Quality Capture Volume (WQCV)- The EDBs has been sized and designed to sufficiently capture the required WQCV and slowly release it though the orifice plate, thereby allowing solids and contaminants to settle out.
4. Consider Need for Industrial and Commercial BMPs- The proposed development is a vehicle/trailer parking lot; therefore, no Industrial and Commercial BMPs have been proposed.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County Storm Drainage Design Criteria Manual - Volumes 1 \& 2, latest editions. The Rational Method was used to estimate storm water runoff anticipated from design storms with 5 -year and 100-year recurrence intervals. The Urban Drainage Criteria Manual was used to calculate the detention and water quality volume.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County Storm Drainage Design Criteria Manual - Volumes $1 \& 2$, latest editions. The pertinent data sheets are included in the appendix of this report.

The existing culvert under N Franceville Coal Mine Road has been evaluated for capacity. The calculation have been inclưded in the appendix.

Explain if offsite flows from HWY 94 and Franceville Coal Mine contribute to the culvert from the ditch adjacent to the site.

Revise to include any recommendations for culvert. Include whether it meets criteria for
overtopping per DCM table 6-1. Per
ECM 3.2.4 a suitable outfall is
required for developed flows.

FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain, as determined by Flood Insurance Rate Map No. 08041 C 0780 G, dated December 7, 2018 (see appendix).

Public Non-Reimbursable

None

Private Non-Reimbursable

1. $18 "$ HDPE	120 LF	$\$ 60$	$\$ 7,200$
2. 24 " HDPE	1605 LF	$\$ 70$	$\$ 112,350$
3. CDOT Type C Area Inlet	2 EA	$\$ 5,000$	$\$ 10,000$
4. 5' Manhole	2 EA	$\$ 7,700$	$\$ 15,400$
5. EDB	2 EA	$\$ 75,000$	$\$ 150,000$
			Total $\$ \mathbf{2 9 4 , 9 5 0}$

DRAINAGE FEES

This drainage report is part of a site development application; therefore, no drainage fees are due.

MAINTENANCE
Add: "and runoff reduction RPA's"

The Extended Detention Basins are private and will be maintained by the property owner. The proposed storm sewers and swales are private and will be maintained by the property owner.

SUMMARY

Development of this site will not adversely affect the surrounding development. This report is in general conformance with the previous reports which included this site. Site runoff and storm drain appurtenances from the development will not adversely affect the downstream and surrounding developments and will be safely routed to the proposed extended detention basins and runoff reduced to the allowable pre-developed rates while slowly treating the water quality capture volume. Runoff leaving the proposed extended detention basins is then routed to the existing drainage paths.

PREPARED BY:

TERRA NOVA ENGINE

Revise to include how much runoff increases by with the addition of the development flows.
Dane Frank, P.E.
Project Engineer

Jobs/2309.00/Drainage/230900 FDR.doc

BIBLIOGRAPHY

El Paso County Drainage Criteria Manual-Volumes $1 \& 2$, latest edition
El Paso County Board Resolution No 15-042 (Adoption of Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, Hydrology and Full Spectrum Detention)

VICINITY MAP

El Paso County - Community: Property Search

2309.00 ABTR Storage

Vicinity Map
Schedule Number: 4400000565

ABTR - Storage - Location Map

Image Dated Oct 2019

S.C.S. SOILS MAP

MAP LEGEND

Area of Interest (AOI)	
Area of Interest (AOI)	
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(0) Blowout

Borrow Pit
喓 Clay Spot
\diamond Closed Depression
Qhe Gravel Pit
$\therefore \quad$ Gravelly Spot
(5) Landfill
A. Lava Flow

Marsh or swamp
感 Mine or Quarry
(-) Miscellaneous Water
C Perennial Water

- Rock Outcrop
\uparrow Saline Spot
\because Sandy Spot
ㄹS. Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 20, Sep 2, 2022
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 11, 2018—Oct 20, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	38.7	100.0\%
Totals for Area of Interest		38.7	100.0\%

El Paso County Area, Colorado

56-Nelson-Tassel fine sandy loams, 3 to 18 percent slopes

Map Unit Setting
National map unit symbol: 3690
Elevation: 5,600 to 6,400 feet
Mean annual precipitation: 12 to 14 inches
Mean annual air temperature: 48 to 52 degrees F
Frost-free period: 135 to 155 days
Farmland classification: Not prime farmland
\section*{Map Unit Composition}
Nelson and similar soils: 55 percent
Tassel and similar soils: 40 percent
Minor components: 5 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
\section*{Description of Nelson}
\section*{Setting}
Landform: Hills
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Calcareous residuum weathered from interbedded sedimentary rock
\section*{Typical profile}
A - 0 to 5 inches: fine sandy loam
Ck-5 to 23 inches: fine sandy loam
$\mathrm{Cr}-23$ to 27 inches: weathered bedrock
\section*{Properties and qualities}
Slope: 3 to 12 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water
(Ksat): Moderately low to high (0.06 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0
mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 2.8 inches)
\section*{Interpretive groups}
Land capability classification (irrigated): 4e
Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B
Ecological site: R067BY045CO - Shaly Plains
Other vegetative classification: SHALY PLAINS (069AY046CO)
Hydric soil rating: No

Description of Tassel

Setting

Landform: Hills
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Calcareous slope alluvium over residuum
weathered from sandstone

Typical profile

A - 0 to 4 inches: fine sandy loam
C-4 to 10 inches: fine sandy loam
$\mathrm{Cr}-10$ to 14 inches: weathered bedrock

Properties and qualities

Slope: 3 to 18 percent
Depth to restrictive feature: 6 to 20 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water
(Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Available water supply, 0 to 60 inches: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6s
Hydrologic Soil Group: D
Ecological site: R067BY045CO - Shaly Plains
Other vegetative classification: SHALY PLAINS (069AY046CO)
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent
Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent
Landform: Depressions

Natural Resources

Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 20, Sep 2, 2022

FEMA FIRM MAP

\square OTHER FIOOO AREAS

$\underset{\sim}{\sim} \sim$.

（23－－－（23）Tresestime

－M1．5

200	$\stackrel{\square}{00}$
Widum	PANEL 0780 G
	FIRM
（9）	FLOOd insurance rate map
\％	EL PASO COUNTY，
运	COLORADO
砛	and incorporated areas
（5）	PANEL 780 OF 1300
－\％	
\％	comen
Z	
冎	

HYDROLOGIC CALCULATIONS

ABTR STORAGE
AREA RUNOFF COEFFICIENT (C) SUMMARY

EXISTING

		DEVELOPED / IMPERVIOUS			UNDEVELOPED / NON-IMPERVIOUS			WEIGHTED		WEIGHTED CA	
BASIN	TOTAL AREA	AREA	C5	C100	AREA	C5	C100	C5	C100	CA5	CA100
	(Acres)	(Acres)			(Acres)						
OS-X	7.12	0.14	0.90	0.96	6.98	0.08	0.35	0.10	0.36	0.68	2.58
OS-Y	21.40	1.71	0.90	0.96	19.69	0.08	0.35	0.15	0.40	3.11	8.53
OS-Z	1.84	0.74	0.90	0.96	1.10	0.08	0.35	0.41	0.60	0.75	1.10
EX-A	13.40	0.27	0.90	0.96	13.13	0.08	0.35	0.10	0.36	1.29	4.85
EX-B	1.96	0.04	0.90	0.96	1.92	0.08	0.35	0.10	0.36	0.19	0.71
EX-C	23.20	0.46	0.90	0.96	22.74	0.08	0.35	0.10	0.36	2.23	8.40

DEVELOPED

		DEVELOPED / IMPERVIOUS			UNDEVELOPED / NON-IMPERVIOUS			WEIGHTED		WEIGHTED CA	
BASIN	$\begin{gathered} \hline \text { TOTAL } \\ \text { AREA } \end{gathered}$	AREA	C5	C100	AREA	C5	C100	C5	C100	CA5	CA100
	(Acres)	(Acres)			(Acres)						
EX-B	1.96	0.04	0.90	0.96	1.92	0.08	0.35	0.10	0.36	0.19	0.71
PR-1	9.92	3.97	0.90	0.96	5.95	0.08	0.35	0.41	0.59	4.05	5.89
PR-2	9.30	3.72	0.90	0.96	5.58	0.08	0.35	0.41	0.59	3.79	5.52
PR-3	8.78	8.34	0.90	0.96	0.44	0.08	0.35	0.86	0.93	7.54	8.16
PR-4	3.27	0.07	0.90	0.96	3.20	0.08	0.35	0.10	0.36	0.32	1.19
PR-5	1.78	0.18	0.9	0.96	1.60	0.08	0.35	0.16	0.41	0.29	0.73
PR-6	0.42	0.01	$0.90>$	0.96	0.41	0.08	0.35	0.10	0.36	0.04	0.15
PR-7	3.03	0.30	- 0.90	0.96	2.73	0.08	0.35	0.16	0.41	0.49	1.24
Calculated by: DLF											
Revise. It appears that almost the entire										Date: \qquad Checked by:	

Revise. PR-2 appears to be 100% impervious covered by asphalt millings. Weighted coefficients should be higher.

ABTR STORAGE
RUNOFF SUMMARY

EXISTING

BASIN	$\begin{gathered} \hline \text { AREA } \\ \text { TOTAL } \\ \text { (Acres) } \\ \hline \end{gathered}$	WEIGHTED		OVERLAND				STREET / CHANNEL FLOW				T_{C}	INTENSITY		TOTAL FLOWS	
		C_{5}	C_{100}	C_{5}	Length	Slope	T_{t}	Length	Slope	Velocity	T_{t}	TOTAL	I_{5}	I_{100}	Q_{5}	\mathbf{Q}_{100}
		* For Cales Se er Rumof Summary			(ft)	(ft/ft)	(min)	(ft)	(\%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
OS-X	7.12	0.10	0.36	0.10	300	0.08	15.8	300	8\%	1.4	3.5	19.3	3.1	5.2	2.1	13.4
OS-Y	21.40	0.15	0.40	0.15	300	0.06	16.5	1000	6\%	1.2	13.6	30.1	2.5	4.0	7.7	34.5
OS-Z	1.84	0.41	0.60	0.41	30	0.10	3.2	400	4\%	1.0	6.7	9.9	4.1	7.1	3.1	7.8
EX-A	13.40	0.10	0.36	0.10	300	0.04	19.9	700	4\%	1.0	11.7	31.5	2.4	3.9	3.1	19.1
EX-B	1.96	0.10	0.36	0.10	300	0.07	16.5	0	7\%	1.3	0.0	16.5	3.3	5.6	0.6	4.0
EX-C	23.20	0.10	0.36	0.10	300	0.04	19.9	1000	4\%	1.0	16.7	36.5	2.2	3.6	5.0	30.2

DEVELOPED

BASIN	$\begin{aligned} & \hline \text { AREA } \\ & \text { TOTAL } \\ & \text { (Acres) } \\ & \hline \end{aligned}$	WEIG	TED	OVERLAND				STREET / CHANNEL FLOW				T_{C}	INTENSITY		TOTAL FLOWS	
		C_{5}	C_{100}	C_{5}	Length	Slope	T_{t}	Length	Slope	Velocity	T_{t}	TOTAL	\mathbf{I}_{5}	I_{100}	Q_{5}	\mathbf{Q}_{100}
		${ }_{\text {* For Calss Sce Renuoff Summary }}$			(ft)	(ft/ft)	(min)	(ft)	(\%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
OS-X	7.12	0.10	0.36	0.10	300	0.08	15.8	300	8\%	1.4	3.5	19.3	3.1	5.2	2.1	13.4
OS-Y	21.40	0.15	0.40	0.15	300	0.06	16.5	1000	6\%	1.2	13.6	30.1	2.5	4.0	7.7	34.5
OS-Z	1.84	0.41	0.60	0.41	30	0.10	3.2	400	4\%	1.0	6.7	9.9	4.1	7.1	3.1	7.8
EX-B	1.96	0.10	0.36	0.10	300	0.07	16.5	0	7\%	1.3	0.0	16.5	3.3	5.6	0.6	4.0
PR-1	9.92	0.41	0.59	0.41	300	0.04	13.7	600	4.0\%	1.0	10.0	23.7	2.8	4.6	11.4	27.3
PR-2	9.30	0.41	0.59	0.41	300	0.04	13.7	600	4.0\%	1.0	10.0	23.7	2.8	4.6	10.6	25.6
PR-3	8.78	0.86	0.93	0.86	300	0.04	4.8	800	4.0\%	4.0	3.3	8.1	4.4	7.7	32.9	62.8
PR-4	3.27	0.10	0.36	0.10	300	0.10	14.7	0	10.0\%	1.6	0.0	14.7	3.5	6.0	1.1	7.1
PR-5	1.78	0.16	0.41	0.16	300	0.10	13.7	0	10.0\%	1.6	0.0	13.7	3.6	6.2	1.0	4.5
PR-6	0.42	0.10	0.36	0.10	20	0.05	4.7	400	5.0\%	1.1	6.0	10.7	4.0	6.9	0.2	1.1
PR-7	3.03	0.16	0.41	0.16	200	0.08	12.1	0	8.0\%	1.4	0.0	12.1	3.8	6.5	1.9	8.1

Note: Basin PR-3 is shown for the future commercial conditions.
Calculated by \qquad DLF
Date: 2/20/2023
Checked by: \qquad

ABTR STORAGE

SURFACE ROUTING SUMMARY

Design Point (\boldsymbol{s})	Contributing Basins	Area $(\boldsymbol{a c})$	\boldsymbol{Q}_{5}	\boldsymbol{Q}_{100}
	EX-A, OS-X		5.2	32.4
	EX-B	1.96	0.6	4.0
C	EX-C, OS-Y	44.60	12.7	64.7
1	PR-1	9.92	11.4	27.3
2	PR-2	9.30	10.6	25.6
3	PR-3	8.78	32.9	62.8
4	PR-4, PR-3, PR-2	21.35	44.7	95.5
5	PR-5, NW EDB Outfall	1.78	4.6	34.4
6	PR-6	0.42	0.2	1.1
7	PR-7	3.03	1.9	8.1
51	PR-5, NW EDB Outfall, OS-Y, OS-Z	25.02	15.4	76.7
52	PR-6, OS-X	7.54	2.3	14.4

HYDRAULIC CALCULATIONS

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: ABTR Storage
Pipe ID: Existing Road Culvert

Design Information (Input)			
Pipe Invert Slope	So $=$	0.0270	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0220	*
Pipe Diameter	$\mathrm{D}=$	54.00	inches
Design discharge	Q =	68.90	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	$\mathrm{Af}=$	15.90	sq ft
Full-flow wetted perimeter	$\mathrm{Pf}=$	14.14	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	191.45	cfs
Calculation of Normal Flow Condition			
Half Central Angle ($0<T h e t a<3.14$)	Theta $=$	1.40	radians
Flow area	An $=$	6.23	sq ft
Top width	$\mathrm{Tn}=$	4.43	ft
Wetted perimeter	$\mathrm{Pn}=$	6.30	ft
Flow depth	$\mathrm{Yn}=$	1.87	ft
Flow velocity	$\mathrm{Vn}=$	11.05	$f p s$
Discharge	Qn =	68.90	cfs
Percent of Full Flow	Flow $=$	36.0\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.64	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta- $\mathrm{c}=$	1.65	radians
Critical flow area	$\mathrm{Ac}=$	8.71	sq ft
Critical top width	Tc $=$	4.49	ft
Critical flow depth	$\mathrm{Yc}=$	2.42	ft
Critical flow velocity	$\mathrm{Vc}=$	7.91	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

[^0]
CULVERT SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

Project: ABTR Storage

ID: Existing Road Culvert

Calculations of Culvert Capacity (output): Backwater calculations required to obtain Outlet Control Flowrate when HWo < 0.75 * Culvert Ris

Headwater Surface Elevation (ft)	Tailwater Surface Elevation (ft)	Inlet Control Equation Used	Inlet Control Flowrate (cfs)	Outlet Control Flowrate (cfs)	Controlling Culvert Flowrate (cfs)	Flow Control Used
6218.00		No Flow (WS < inlet)	0.00	0.00	0.00	N/A
6218.25		Min. Energy. Eqn.	0.41	\#N/A	\#N/A	\#N/A
6218.50		Min. Energy. Eqn.	1.52	\#N/A	\#N/A	\#N/A
6218.75		Min. Energy. Eqn.	3.55	\#N/A	\#N/A	\#N/A
6219.00		Min. Energy. Eqn.	7.24	\#N/A	\#N/A	\#N/A
6219.25		Min. Energy. Eqn.	11.16	\#N/A	\#N/A	\#N/A
6219.50		Min. Energy. Eqn.	15.84	\#N/A	\#N/A	\#N/A
6219.75		Min. Energy. Eqn.	21.23	\#N/A	\#N/A	\#N/A
6220.00		Min. Energy. Eqn.	27.31	\#N/A	\#N/A	\#N/A
6220.25		Min. Energy. Eqn.	34.02	\#N/A	\#N/A	\#N/A
6220.50		Regression Eqn.	40.41	\#N/A	\#N/A	\#N/A
6220.75		Regression Eqn.	47.34	\#N/A	\#N/A	\#N/A
6221.00		Regression Eqn.	54.87	\#N/A	\#N/A	\#N/A
6221.25		Regression Eqn.	62.98	\#N/A	\#N/A	\#N/A
6221.50		Regression Eqn.	71.61	114.16	71.61	INLET
6221.75		Regression Eqn.	80.56	120.86	80.56	INLET
6222.00		Regression Eqn.	89.71	127.33	89.71	INLET
6222.25		Regression Eqn.	98.82	133.62	98.82	INLET
6222.50		Regression Eqn.	107.74	139.65	107.74	INLET
6222.75		Regression Eqn.	116.35	145.52	116.35	INLET
6223.00		Regression Eqn.	124.61	151.24	124.61	INLET
6223.25		Regression Eqn.	132.42	156.80	132.42	INLET
6223.50		Regression Eqn.	139.91	162.22	139.91	INLET
6223.75		Regression Eqn.	147.01	167.47	147.01	INLET
6224.00		Regression Eqn.	153.74	172.63	153.74	INLET
6224.25		Regression Eqn.	160.21	177.69	160.21	INLET
6224.50		Regression Eqn.	166.41	182.59	166.41	INLET
6224.75		Regression Eqn.	172.33	187.45	172.33	INLET
6225.00		Regression Eqn.	178.05	192.20	178.05	INLET
6225.25		Regression Eqn.	183.57	196.82	183.57	INLET
				Processing Ti	00.30 Seconds	

ID: Existing Road Culvert

Project $=$ ABTR Storage

ID = Existing Road Culvert

Culvert Information (Input)			inches ft
Barrel Diameter or Height	D or $\mathrm{H}=$	54.00	
Barrel Length	L =	75.00	
Barrel Invert Slope	So =	0.0270	$\mathrm{ft} / \mathrm{ft}$
Downstream Invert Elevation	EDI $=$	6216.00	ft
Downstream Top Embankment Elevation	EDT $=$	6225.00	ft
Upstream Top Embankment Elevation	EUT $=$	6225.00	ft
Design Headwater Depth (not elev.)	$\mathrm{Hw}=$	4.00	ft
Tailwater Depth (not elev.)	Yt =	1.40	ft
Culvert Hydraulics (Calculated)			
Available Headwater Depth	HW-a =	6.98	ft
Design Hw/D ratio	$\mathrm{Hw} / \mathrm{D}=$	0.89	
Culvert Vertical Profile			
Upstream Invert Elevation	EUI =	6218.03	ft
Upstream Crown Elevation	EUC =	6222.53	ft
Upstream Soil Cover Depth	Upsoil =	2.48	ft
Downstream Crown Elevation	EDC =	6220.50	ft
Downstream Soil Cover Depth	Dnsoil =	4.50	ft

Created by: Mike O'Shea

Created by: Mike O'Shea

Created by: Mike O'Shea

DETENTION CALCULATIONS

Notes about Runoff Reduction:

- The runoff reduction RPA is considered a WQ Facility and requires a signed Maintenance Agreement - All RPA/SPA areas will need to be within a no build/drainage easement (or tract) and discussed in the maintenance agreement and O\&M manual.
- RPA/SPA limits must be shown on GEC Plans (not just FDR) so our SW inspectors and the QSM know
that these areas are to remain pervious. Our SW inspectors do not look at drainage reports.
- Provide a figure showing all proposed UIA, RPA and SPA areas to be utilized for runoff reduction. Provide a detail for the UIA:RPA interface that shows the recommended vertical drop of 4".

Project: ABTR Storage
Basin ID: Northwet EDB - North half of parking area + future commercial development along HWY 94

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Under	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter $=$	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	N/A	$\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
	N/A			N/A	
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Centroid of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	$1.208 \mathrm{E}-02$	ft^{2}
Depth at top of Zone using Orifice Plate $=$	5.04	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing $=$	N/A	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	1.74	sq. inches (diameter $=1-1 / 2$ inches)	Elliptical Slot Area =	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional)

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice	
	Not Selected	Not Selected			Not Selected	Not Selected
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A
Vertical Orifice Diameter $=$	N/A	N/A				

Routed Hydrograph Results Design Storm Return Period =	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.00
CUHP Runoff Volume (acre-ft) =	0.421	1.393	1.262	1.743	2.156	2.680	3.122	3.666	4.535
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	1.262	1.743	2.156	2.680	3.122	3.666	4.535
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	2.6	7.2	10.9	19.2	24.2	30.2	39.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cff/acre) =	N/A	N/A	0.12	0.34	0.51	0.90	1.13	1.41	1.84
Peak Inflow Q (cfs) =	N/A	N/A	23.1	32.2	38.6	48.9	56.9	67.7	83.1
Peak Outflow Q (cfs) =	0.2	0.5	0.5	3.6	8.3	19.0	26.4	29.9	43.7
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.5	0.8	1.0	1.1	1.0	1.1
Structure Controlling Flow =	Plate	Overflow Weir 1	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	0.00	N/A	0.2	0.5	1.2	1.6	1.9	1.9
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	38	67	65	69	68	66	64	63	60
Time to Drain 99\% of Inflow Volume (hours) =	40	72	70	75	74	73	72	71	70
Maximum Ponding Depth (ft) =	2.54	5.05	4.58	5.26	5.45	5.76	5.95	6.36	6.84
Area at Maximum Ponding Depth (acres) $=$	0.33	0.45	0.43	0.46	0.47	0.49	0.50	0.52	0.54
Maximum Volume Stored (acre-ft) =	0.424	1.397	1.192	1.492	1.576	1.729	1.818	2.025	2.285

Project: ABTR Storage

Watershed Information		
Selected BMP Type = Watershed Area =	EDB	acres
	21.40	
Watershed Length $=$ Watershed Length to Centroid =	1,400	ft
	700	
Watershed Slope $=$	0.037	f / ft
Watershed Imperviousness = Percentage Hydrologic Soil Group A =	20.00\%	
	0.0\%	ercent
Percentage Hydrologic Soil Group B =	100.0\%	
	0.0\%	
Percentage Hydrologic Soil Groups C/D = Target WQCV Drain Time $=$	40.0	
Location for $1-$ hr Rainfall Depths $=$ Denver - Capitol β		
After providing required inputs above including 1 -hour rain depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.		
Water Quality Capture Volume (WQCV) = Excess Urban Runoff Volume (EURV) = 2 -yr Runoff Volume (P1 = 1.19 in .) = 5 -yr Runoff Volume ($\mathrm{P} 1=1.5 \mathrm{in}$.) =	0.206	acre-feet
	0.425	acre-feet
	0.467	acre-feet
	0.851	acre-feet
$10-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=1.75 \mathrm{in}$.) $=$ $25-\mathrm{yr}$ Runoff Volume (P1 = 2 in .) =	1.216	acre-feet
	1.811	et
$50-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.25 \mathrm{in}$.) $=$	2.237	acre-feet
$100-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$.) =	2.828	cre-feet
$500-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=3 \mathrm{in}$.) =	3.681	et
Approximate $2-\mathrm{yr}$ Detention Volume $=$ Approximate 5 -yr Detention Volume $=$	0.292	acre-feet
	0.432	
Approximate 10-yr Detention Volume $=$	0.698	et
Approximate $25-\mathrm{yr}$ Detention Volume $=$ Approximate $50-\mathrm{yr}$ Detention Volume $=$	0.864	cre-feet
	0.913	-feet
Approximate $100-\mathrm{yr}$ Detention Volume $=$	1.122	-fet

Define Zones and Basin Geometry
Zone 1 Volume (WQCV) Zone 2 Volume (EURV - Zone 1) $=$ Zone 3 Volume (100 -year - Zones $1 \& 2$) Total Detention Basin Volume $=$
Initial Surcharge Volume (ISV) $=$ Initial Surcharge Depth (ISD) Total Available Detention Depth $\left(\mathrm{H}_{\text {total }}\right)=$ Depth of Trickle Channel $\left(\mathrm{H}_{\mathrm{TC}}\right)=$
Slope of Trickle Channel $\left(\mathrm{S}_{\mathrm{TC}}\right)=$ Slopes of Main Basin Sides $\left(\mathrm{S}_{\text {main }}\right)=$ Basin Length-to-Width Ratio $\left(R_{L / W}\right)=$

0.206	acre-feet acre-feet
0.219	
0.697	acre-feet
1.122	acre-feet
user	ft^{3}
user	ft
user	ft
user	ft
user	f / ft
user	H:V
user	

Watershed
imperviousness
should be higher
based on land
coverage draining to
pond. Revise and
provide calculation
for how impervious
value was
determined.

Project: ABTR Storage
Basin ID: Northwet EDB - North half of parking area (no future commercial)

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Under	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter $=$	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	N/A	$\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
	N/A			N/A	
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Centroid of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	4.931E-03	ft^{2}
Depth at top of Zone using Orifice Plate $=$	2.55	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	0.71	sq. inches (diameter $=15 / 16$ inch)	Elliptical Slot Area $=$	N/A	ft^{2}

$15 / 16$ in diameter is actually $\mathrm{A}=0.69 \mathrm{sq} \mathrm{in}$. Revise calcs and plans accordingly.

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)
	Row 8 (optional)						
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	0.00	0.50	1.00				

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=\widetilde{\text {. }} .}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.00
CUHP Runoff Volume (acre-ft) =	0.206	0.425	0.467	0.851	1.216	1.811	2.237	2.828	3.681
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.467	0.851	1.216	1.811	2.237	2.828	3.681
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	2.6	7.2	10.9	19.2	24.2	30.2	39.4
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.12	0.34	0.51	0.90	1.13	1.41	1.84
Peak Inflow Q (cfs) =	N/A	N/A	6.3	11.4	15.3	23.9	29.1	35.4	45.2
Peak Outflow Q (cfs) $=$	0.1	0.1	0.3	4.8	8.8	17.7	22.9	27.0	30.1
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.7	0.8	0.9	0.9	0.9	0.8
Structure Controlling Flow =	Plate	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1					
Max Velocity through Grate 1 (fps) =	N/A	N/A	0.02	0.3	0.6	1.1	1.4	1.7	1.9
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	38	65	68	65	63	59	56	53	49
Time to Drain 99\% of Inflow Volume (hours) =	40	68	72	71	69	68	66	65	63
Maximum Ponding Depth (ft) =	1.85	2.55	2.59	2.84	2.99	3.25	3.38	3.69	4.47
Area at Maximum Ponding Depth (acres) $=$	0.30	0.33	0.33	0.34	0.35	0.36	0.37	0.38	0.42
Maximum Volume Stored (acre-ft) =	0.207	0.427	0.437	0.525	0.573	0.669	0.716	0.829	1.141

DETENTION BASIN STAGE-STORAGE TABLE BUILDER													
MHFD-Detention, Version 4.06 (July 2022)													
Project:	TR Storage												
Basin ID: Southwest EDB (south half of parking area)													
Depth Increment $=$ \square 0.25 ft													
PROAMANENT- Example Zone	nfiguration (Retent	n Pond)	Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area $\begin{gathered}\text { Area } \\ \left(\mathrm{t}^{2}\right)\end{gathered}$	Optional Override Area (ft^{2})	$\begin{gathered} \text { Area } \\ \text { (acre) } \end{gathered}$	Volume (ft ${ }^{3}$)	Volume (ac-ft)	
Watershed InformationSelected BMP Type $=\square$ EDB			Top of Micropool	--	0.00	--	--	--	100	0.002			
				-	0.25	-	-	--	100	0.002	25	0.001	
Watershed Area $=$	9.92	Correct value to 97\%			0.50	--	-	--	100	0.002	50	0.001	
					0.75	--	--	--	1,981	0.045	310	0.007	
		Recalculate			1.00	--	-	--	3,862	0.089	1,040	0.024	
Watershed SIDe = Watershed Imperviousne	0				1.25	-	-	--	5,742	0.132	2,241	0.051	
	40.00\% percen.				1.50	-	-	-	7,623	0.175	3,911	0.090	
Percentage Hydrologic Soil Group (A = Percentage Hydrologic Soil Group Percentage Hydrologic Soil Groups C/D $=$ Target WQCV Drain Time =	$0^{0.0 \%}$ pegent			-	1.75	\cdots	-	--	8,007	0.184	5,865	0.135	
	00.0\% percent			-	2.00	--	-	-	8,391	0.193	7,915	0.182	
	0.0\% percent			-	2.25	--	-	-	8,775	0.201	10,061	0.231	
	40.0 hours		6238	-	2.50	--	-	-	9,159	0.210	12,302	0.282	
Location for 1 -hr Rainfall Depths $=$ Denver - Capitol Building				-	2.75	-	-	--	9,575	0.220	14,644	0.336	
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.		Optional User Overrides		-	3.00	--	-	-	9,991	0.229	17,090	0.392	
			-	3.25	-	-	\cdots	10,407	0.239	19,640	0.451		
		6239	-	3.50	-	-	--	10,823	0.248	22,293	0.512		
Water Quality Capture Volume (WQCV) =	0.149 acre-feet		acre-feet		-	3.75	--	-	--	11,271	0.259	25,055	0.575
Excess Urban Runoff Volume (EURV) =	0.417 acre-feet		acre-feet		-	4.00	-	-	-	11,719	0.269	27,929	0.641
$2-\mathrm{yr}$ Runoff Volume (P1 = 1.19 in .) $=$ $5-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=1.5 \mathrm{in}$.) $=$	0.400 acr-feet	1.19 inches		--	4.25	--	--	-	12,167	0.279	30,915	0.710	
	0.598 acre-feet	1.50 inches	6240	-	4.50	--	-	--	12,615	0.290	34,012	0.781	
10 -yr Runoff Volume (P1 $=1.75$ in.) $=$	0.775 acre-feet	1.75 inches		-	4.75	--	-	-	13,095	0.301	37,226	0.855	
25 -yr Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}$.) $=$	1.031 acre-feet	2.00 inches		-	5.00	--	--	--	13,575	0.312	40,560	0.931	
$\begin{array}{r} 50-\mathrm{yr} \text { Runoff Volume }(\mathrm{P} 1=2.25 \mathrm{in} .)= \\ 100-\mathrm{yr} \text { Runoff Volume }(\mathrm{P} 1=2.52 \mathrm{in} .)= \end{array}$	1.229 acre-feet	2.25 inches		-	5.25	--	-	-	14,055	0.323	44,014	1.010	
	1.489 acre-feet	2.52 inches	6241	-	5.50	--	-	--	14,535	0.334	47,587	1.092	
$\begin{aligned} & \text { 100-yr Runoff Volume (}(11=2.52 \mathrm{iin})= \\ & \text { 50-yr Runoff Volume (}(\mathrm{P} 1=3 \mathrm{in} \text {.) })\end{aligned}$	1.886 acre-feet	3.00 inches		-	5.75	--	-	-	15,047	0.345	51,285	1.177	
Approximate 2-yr Detention Volume $=$ Approximate $5-\mathrm{yr}$ Detention Volume $=$	0.307 acre-feet			-	6.00	--	-	-	15,559	0.357	55,111	1.265	
	0.429 acre-feet			-	6.25	-	-	-	16,071	0.369	59,065	1.356	
Approximate 10-yr Detention Volume $=$	0.590 acre-feet		6242	-	6.50	--	-	-	16,583	0.381	63,146	1.450	
Approximate $25-\mathrm{yr}$ Detention Volume $=$	0.660 acr-feet			--		--	--	--					
$\begin{aligned} \text { Approximate } 50-y \mathrm{yr} \text { Detention Volume } & = \\ \text { Approximate 10-yr Detention Volume } & =\end{aligned}$	0.693 acre-feet			-		--	-	-					
Approximate 100 -yr Detention Volume $=$	0.794 acre-feet			-		--	-	--					
				-		-	-	-					
Define Zones and Basin Geometry				-		\cdots	\cdots	\cdots					
Zone 1 Volume (Wecv) $=$	0.149 acre-feet			\cdots		--	\cdots	\cdots					
Zone 2 Volume (EURV - Zone 1) $=$	0.268 acre-feet			-		--	-	--					
Zone 3 Volume (100-year-Zones $1 \& 2)=$	0.377 acre-feet			-		--	-	--					
Total Detention Basin Volume $=$	0.794 acre-feet			-		--	-	-					
Initial Surcharge Volume (ISV) $=$ Initial Surcharge Depth (ISD) =	user ft^{3}			-		--	-	-					
	user ${ }^{\text {ft }}$			\cdots		\cdots	\cdots	\cdots					
Total Available Detention Depth ($\mathrm{H}_{\text {total }}$) $=$	user ft			-		--	-	--					
Depth of Trickle Channel $\left(\mathrm{H}_{\text {TC }}\right)=$ Slope of Trickle Channel $\left(\mathrm{S}_{\mathrm{TC}}\right)=$ Slopes of Main Basin Sides $\left(S_{\text {main }}\right)=$ Basin Length-to-Width Ratio $\left(R_{L / w}\right)=$	user ft			-		--	-	-					
	user $\mathrm{f} / \mathrm{/t}$			-		--	-	-					
	user H:V			-		--	--	--					
	user			-		--	-	--					
Initial Surcharge Area $\left(\mathrm{A}_{\text {ISV }}\right)=$				-		--	-	--					
	user ft^{2}			-		-	-	-					
Surcharge Volume Length ($\mathrm{Lsss}^{\text {s }}$) $=$	user ft			-		--	-	--					
Surcharge volume Width ($W_{\text {LSV }}$) $=$	user ft			-		--	-	--					
Depth of Basin Floor (HFiLoor) $=$	user ft			-		-	-	-					
Length of Basin Floor (LLiook) =	user ft			-		-	-	-					
Width of Basin Floor $\left(\mathrm{W}_{\text {FLOOR }}\right)=$ Area of Basin Floor $\left(\mathrm{A}_{\text {FLOOR }}\right)=$	user ft			-		-	-	-					
	user ft^{2}			-		--	--	--					
Volume of Basin Floor ($\left.\mathrm{V}_{\text {Flook }}\right)=$	user ft^{3}			-		--	-	-					
Depth of Main Basin $\left(\mathrm{H}_{\text {MAIN }}\right)=$ Length of Main Basin $\left(L_{\text {main }}\right)=$	user $^{\text {ft }}$			-		-	-	-					
	user ft			--		--	-	--					
Width of Main Basin $\left(\mathrm{W}_{\text {MAIN }}\right)=$	user ft			-		-	-	-					
$\text { Area of Main Basin }\left(A_{\text {MAIN }}\right)=$	user t^{2}			\cdots		\cdots	\cdots	\cdots					
Volume of Main Basin $\left(V_{\text {Mant }}\right)=$Calculated Total Basin Volume (Vtoata $=$	user ft^{3}			\cdots		--	-	-					
	Calculated Total Basin Volume ((Vtota) $=$ user acre-feet			\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					

	Estimated Stage (ft)		Estimated Volume (ac-ft)		Outlet Type

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Underd	
Underdrain Orifice Invert Depth $=$ Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	N/A	$\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
	N/A			N/A	
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Centroid of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	5.903E-03	ft^{2}
Depth at top of Zone using Orifice Plate $=$	3.11	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing $=$	N/A	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row $=$	0.85	sq. inches (diameter = 1 inch)	Elliptical Slot Area =	N/A	t^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.00	2.00 V	2.50				
Orifice Area (sq. inches)	0.85	0.85	0.85	0.85				

Routed Hydrograph Results Design Storm Return Period $=$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.00
CUHP Runoff Volume (acre-ft) =	0.149	0.417	0.400	0.598	0.775	1.031	1.229	1.489	1.886
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.400	0.598	0.775	1.031	1.229	1.489	1.886
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	1.2	3.4	5.1	9.1	11.4	14.3	18.6
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.12	0.34	0.52	0.92	1.15	1.44	1.87
Peak Inflow Q (cfs) =	N/A	N/A	6.4	10.0	12.5	17.0	20.3	24.4	30.6
Peak Outflow Q (cfs) $=$	0.1	0.1	0.1	1.7	4.3	9.2	12.5	14.2	15.3
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.5	0.8	1.0	1.1	1.0	0.8
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.1	0.3	0.7	1.0	1.1	1.2
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	39	68	67	71	69	66	64	62	59
Time to Drain 99\% of Inflow Volume (hours) =	40	72	71	77	76	75	74	73	71
Maximum Ponding Depth (ft) =	1.83	3.11	2.94	3.40	3.54	3.74	3.85	4.13	4.76
Area at Maximum Ponding Depth (acres) $=$	0.19	0.23	0.23	0.24	0.25	0.26	0.26	0.27	0.30
Maximum Volume Stored (acre-ft) =	0.149	0.418	0.379	0.487	0.519	0.570	0.599	0.674	0.858

No matching calc page provided for the NE Forebay. Make this page for both or have a separate page for each.
3% is for forebays with 5-20ac of impervious area tributary to them. Clarify that this is why 3% was used here. And clarify why half was used (because flows split between two forebays). But make sure that flows are split 50/50.

Half of 3% of $W Q C V=\quad 275$ cu-ft

ELEV	AREA	AREA AVG.	DELTA ELEV.	VOLUME	VOLUME TOTAL
6223.00	200	200	1.50	300	
6224.50	200				300

Include calcs that show sizing of Forebay notch.
See EDB tab of UD-BMP spreadsheet.

Created by: Mike O'Shea

Created by: Mike O'Shea

Created by: Mike O'Shea

DRAINAGE MAPS

ABTR STORAGE
 SITE DEVELOPMENT PLAN PROPOSED DRAINAGE MAP

MARCH 2023

$$
\begin{aligned}
& \text { LEGEND } \\
& \text { (1) } \\
& 0 \text { desion pont } \\
& \text { - } \text { - basw bownarky } \\
& \text { ExSTINE 2' contour } \\
& \begin{array}{l}
\text { Ground Suracef flow orecton } \\
\text { road and otrch flow orecton }
\end{array} \\
& \text { =ax fence }
\end{aligned}
$$

v1_Drainage Report - Final_Comments.pdf Markup Summary

Area Measurement (1)

	Subject: Area Measurement Page Label: [1] 230900 SDP-PR DRAIN Author: eschoenheit Date: 6/14/2023 4:13:24 PM Status: Color: Space:	0.25 ac

Callout (18)

	Subject: Callout Page Label: 3 Author: lpackman Date: $6 / 13 / 2023$ 9:08:08 AM Status: color: Laye: Space:	Revise to Joshua Palmer, PE

Subject: Callout

Page Label: 9
Author: Ipackman
Date: 6/13/2023 1:25:24 PM
Status:
Revise to include any recommendations for

Color:
Layer:
Space: culvert. Include whether it meets criteria for overtopping per DCM table 6-1. Per ECM 3.2.4 a suitable outfall is required for developed flows.

Subject: Callout
Page Label: [1] 230900 SDP-PR DRAIN DET
Author: lpackman
Date: 6/14/2023 5:09:03 PM
Status:
Color:
Layer:
Space:

Provide recommendation for armoring on ditch since velocities are erosive per critera.
Cloud+ (3)

	Subject: Cloud+ Page Label: 4 Author: eschoenheit Date: 6/14/2023 2:15:22 PM Status: Color: Layer: Space:	Please confirm, previous statements imply drainage of the site to west and south.
	Subject: Cloud+ Page Label: [1] 230900 SDP-PR DRAIN Author: eschoenheit Date: 6/14/2023 2:41:17 PM Status: Color: Layer: Space:	Provide culvert sizing detail
	Subject: Cloud+ Page Label: 46 Author: eschoenheit Date: 6/14/2023 4:18:43 PM Status: Color: Layer: Space:	Correct value to 97% Recalculate

File Attachment (1)

Subject: File Attachment
Page Label: [1] 230900 SDP-PR DRAIN
Author: Glenn Reese - EPC Stormwater
Date: 6/14/2023 8:18:33 AM
Status:
Color:
Layer:
Space:

Highlight (11)

	Subject: Highlight
-	Page Label: 4
=	Author: eschoenheit
边	Date: 6/14/2023 2:15:28 PM
	Status:
	Color:
	Layer:
	Space:

	Subject: Highlight Page Label: 4 Author: eschoenheit Date: 6/14/2023 2:15:36 PM Status: Color: Layer: Space:
	Subject: Highlight Page Label: 4 Author: eschoenheit Date: 6/14/2023 2:15:38 PM Status: Color: Layer: Space:
	Subject: Highlight Page Label: 9 Author: eschoenheit Date: 6/14/2023 2:19:26 PM Status: Color: Layer: Space:
ied.	Subject: Highlight Page Label: 4 Author: eschoenheit Date: 6/14/2023 2:28:00 PM Status: Color: Layer: Space:
	Subject: Highlight Page Label: [1] 230900 SDP-PR DRAIN Author: eschoenheit Date: 6/14/2023 4:15:58 PM Status: Color: Layer: Space:
	Subject: Highlight Page Label: 46 Author: eschoenheit Date: 6/14/2023 4:17:55 PM Status: Color: Layer: Space:

	Subject: Highlight Page Label: 8 Author: dsdlaforce Date: 6/14/2023 4:28:35 PM Status: Color: Layer: Space:	40\%
	Subject: Highlight Page Label: [1] 230900 SDP-PR DRAIN Author: dsdlaforce Date: 6/14/2023 4:39:13 PM Status: Color: Layer: Space:	
	Subject: Highlight Page Label: [1] 230900 SDP-PR DRAIN Author: dsdlaforce Date: 6/14/2023 4:40:14 PM Status: Color: Layer: Space:	
	Subject: Highlight Page Label: [1] 230900 SDP-PR DRAIN Author: dsdlaforce Date: 6/14/2023 4:47:57 PM Status: Color: Layer: Space:	
Image (1)		
	Subject: Image Page Label: [1] 230900 SDP-PR DRAIN Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 8:14:50 AM Status: Color: Layer: Space:	
SW - Rectangle (4)		
	Subject: SW - Rectangle Page Label: 47 Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 12:33:41 PM Status: Color: Layer: Space:	

$=-2=$ $=0$	Subject: SW - Rectangle Page Label: 47 Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 12:33:38 PM Status: Color: Layer: Space:	
	Subject: SW - Rectangle Page Label: 44 Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 12:36:41 PM Status: Color: Layer: Space:	
	Subject: SW - Rectangle Page Label: 44 Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 12:36:47 PM Status: Color: Layer: Space:	
SW - Textbox (7)		
	Subject: SW - Textbox Page Label: [1] 230900 SDP-PR DRAIN Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 7:59:01 AM Status: Color: Layer: Space:	We need to know how much disturbed area is untreated and if there are any exclusions that apply to those areas. So please create a basic overview map (or modify an existing drainage map) with color shading/hatching that shows areas tributary to each PBMP (pond, runoff reduction, etc.) and those disturbed areas that are not treated by a PBMP, with the applicable exclusion labeled (ex: 20% up to 1 ac of development can be excluded per ECM App I.7.1.C.1 and exclusions listed in ECM App I.7.1.B.\#). An accompanying summary table on this map (or in the report text above) would also be very helpful (example provided):
	Subject: SW - Textbox Page Label: 39 Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 10:39:52 AM Status: Color: Layer: Space:	Notes about Runoff Reduction: - The runoff reduction RPA is considered a WQ Facility and requires a signed Maintenance Agreement - All RPA/SPA areas will need to be within a no build/drainage easement (or tract) and discussed in the maintenance agreement and O\&M manual. - RPA/SPA limits must be shown on GEC Plans (not just FDR) so our SW inspectors and the QSM know that these areas are to remain pervious. Our SW inspectors do not look at drainage reports. - Provide a figure showing all proposed UIA, RPA and SPA areas to be utilized for runoff reduction. - Provide a detail for the UIA:RPA interface that shows the recommended vertical drop of 4".

$6224.50 \mid$ 200 \mid \mid Design Volume: 	Subject: SW - Textbox Page Label: 49 Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 12:02:25 PM Status: Color: Layer: Space:	Include calcs that show sizing of Forebay notch. See EDB tab of UD-BMP spreadsheet.
6238.50 157 \mid Design Volume: 	Subject: SW - Textbox Page Label: 50 Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 12:02:33 PM Status: Color: Layer: Space:	Include calcs that show sizing of Forebay notch. See EDB tab of UD-BMP spreadsheet.
	Subject: SW - Textbox Page Label: 10 Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 12:28:42 PM Status: Color: Layer: Space:	Headwalls and Wingwalls: Given the erodible soils onsite, provide a headwall and/or wingwall for the inlet and outlet of culverts/piping as necessary given flowrate, slope, and length (per MHFD USDCM Vol 2, Chapter 9, Section 3.0). Or based on engineering judgement, state that based on the site conditions, they are not necessary.
	Subject: SW - Textbox Page Label: 11 Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 12:28:57 PM Status: Color: Layer: Space:	Per DCMv2 - Chap 4.2, trickle channel should at a minimum provide capacity equal to twice the release capacity at the upstream forebay outlet. Provide these calcs in the drainage report and revise plans as needed.
	Subject: SW - Textbox Page Label: 7 Author: Glenn Reese - EPC Stormwater Date: 6/14/2023 3:11:35 PM Status: Color: Layer: Space:	Since there is grading proposed in Basin PR-5, WQ treatment or an applicable exclusion must be discussed in this section.
SW - Textbox with Arrow (7)		
PPR2319	Subject: SW - Textbox with Arrow Page Label: 1 Author: Glenn Reese - EPC Stormwater Date: 6/8/2023 6:49:08 PM Status: Color: Layer: Space:	PPR2319

Text Box (5)

	Subject: Text Box Page Label: [1] 230900 SDP-EX DRAIN Author: Ipackman Date: 6/13/2023 9:38:27 AM Status: Color: Layer: Space:	Provide a summary table for the design points shown on the drainage map.
	Subject: Text Box Page Label: 6 Author: eschoenheit Date: 6/14/2023 5:29:39 PM Status: Color: Layer: Space:	Discuss/state suitability (hydrologically and hydraulically adequate) of the existing culvert under Franceville Rd to convey flows to west based on analysis completed.
$\begin{aligned} & \text { Page \#4 say site has } \\ & \text { not been studied } \\ & \text { before } \end{aligned}$	Subject: Text Box Page Label: 11 Author: eschoenheit Date: 6/14/2023 2:27:23 PM Status: Color: Layer: Space:	Page \#4 say site has not been studied before
	Subject: Text Box Page Label: [1] 230900 SDP-PR DRAIN Author: eschoenheit Date: 6/14/2023 4:16:58 PM Status: Color: Layer: Space:	Impervious value should be higher around 97\%
	Subject: Text Box Page Label: [1] 230900 SDP-PR DRAIN Author: eschoenheit Date: 6/14/2023 4:17:34 PM Status: Color: Layer: Space:	Impervious value should be higher around 100\%

[^0]: * Unexpected value for Manning's n

