Joyful View Subdivision Traffic Impact Study (LSC \#S214050)
 July 19, 2021

Add PCD File SF2231

Traffic Engineer's Statement

This traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Developer's Statement

1, the Developer, have read and will comply with all commitments made on my behalf within this report.

Joyful View Subdivision

Traffic Impact Study

Prepared for:
William Guman \& Associates, Ltd.
731 North Weber Street
Colorado Springs, CO 80903
Contact: Mr. Bill Guman, PLA, ASLA

JULY 19, 2021

LSC Transportation Consultants
Prepared by: Colleen Guillotte, P.E., PTOE, RSP
Reviewed by: Jeffrey C. Hodsdon, P.E.
Add PCD File \#
LSC \#S214050

CONTENTS
REPORT CONTENTS 1
RECENT TRAFFIC REPORTS 2
LAND USE 2
ACCESS PLAN 2
SIGHT DISTANCE. 2
Joyful View/Peyton Highway 2
EXISTING ROAD AND TRAFFIC CONDITIONS 2
Existing Traffic Volumes 3
Crash History 3
Pedestrian, Bicycle, and Public Transit Access 3
FUTURE BACKGROUND CONDITIONS 3
TRIP GENERATION 4
TRIP DISTRIBUTION AND ASSIGNMENT 4
TOTAL TRAFFIC 4
Short-Term Total Traffic Volumes 4
2040 Total Traffic Volumes 5
LEVEL OF SERVICE ANALYSIS 5
AUXILIARY LANES 6
COUNTY ROAD IMPROVEMENT FEE PROGRAM 6
CONCLUSIONS AND RECOMMENDATIONS 6
Trip Generation 6
Level of Service 6
Auxiliary Turn Lanes 6
Enclosures: 7

Table 3
Figures 1-7
Traffic Count Reports
Level of Service Reports

LSC TRANSPORTATION CONSULTANTS, INC.
2504 East Pikes Peak Avenue, Suite 304
Colorado Springs, CO 80909
(719) 633-2868

FAX (719) 633-5430
E-mail: Isc@lsctrans.com
Website: http://www.Isctrans.com

July 19, 2021

Bill Guman, PLA, ASLA
William Guman \& Associates, Ltd.
731 North Weber Street
Colorado Springs, CO 80903

RE: Joyful View Subdivision
Traffic Impact Study
El Paso County, Colorado
LSC \#S214050

Dear Mr. Guman:

In response to your request, LSC Transportation Consultants, Inc. has prepared this traffic impact study (TIS) for the proposed Joyful View residential development in El Paso County. As shown in Figure 1, the site is located east of Peyton Highway approximately two miles north of State Highway (SH) 94 in El Paso County, Colorado (El Paso County parcel nos. 3300000466 and 3300000467).

REPORT CONTENTS

The preparation of this report included the following:

- An inventory of existing roadway and traffic conditions on the adjacent and nearby roadway system, including surface conditions, functional classification, widths, pavement markings, traffic-control signs, posted speed limits, intersection and access spacing, roadway and intersection alignments, roadway grades, and auxiliary turn lanes;
- Weekday traffic counts on Peyton Highway adjacent to the property;
- Estimated current average weekday traffic (AWT) volumes;
- Projections of 20-year background traffic volumes;
- The proposed site land use and access points;
- Estimates of average weekday and weekday peak-hour trip generation for the proposed development;
- Assignment of the site-generated traffic to the roadway network;
- Projected resulting total peak-hour traffic volumes at the access point intersections with Peyton Highway;
- Projected total daily (AWT) volumes;
- Intersection level of service analysis at the study intersections for both background and total traffic scenarios;
- Auxiliary-lane needs analysis at the site-access points; and
- Findings and recommendations;

RECENT TRAFFIC REPORTS

LSC is not aware of any traffic studies completed Identify whether or not Joyful View rd meetings the required intersection spacing as well as joyful view circle

Figure 1 shows the site location relative to the adjacent and nearby roadways. As shown, the development is located approximately 600 feet east of Peyton Highway, south of the future extension of Joyful Viedr, approximately two miles north SH 94 in El Paso County, Colorado. The land is currently vagant and is proposed to have 9 single-family dwelling units. The site plan is shown in Figure 2.

ACCESS PLAN

> State road classifications i.e local road

As shown in Figure 2, one access is proposed off an extension to the existing Joyful View (a private
 proposed to be a public, gravel roadway. Additionally, the access is proposed to be designed as a public, gravel roadway.

SIGHT DISTANCE

Waiver has private roadways

The required sight distance, per the El Paso County Engineering Criteria Manual (ECM) and extrapolating from Table 2-21, is 665 feet for Joyful View. There is sufficient line of sight at the intersection. The intersection line of sight "triangles" will need to be kept free of site improvements and landscaping (that vould limit the line of sight needed to maintain ECM prescribed sight distance).

EXISTING ROAD AND TRAFFIC CONDITIONS

Please analysis the stopping sight distance and indicate whether it meets criteria

Figure 1 shows the streets adjacent to and in the vicinity of the site. Adjacent streets serving the site are identified below followed by a brief description of each:

Peyton Highway is a two-lane major collector, per the 2019 Road Report. The 2016 Major Transportation Corridor Plan (MTCP) shows Peyton Highway as a minor arterial in 2040. The roadway runs north/south from Hanover Road to the south to Falcon Highway to the north. At

Falcon Highway, the roadway shifts one mile to the west and continues north to the County Line. The posted speed limit is 55 miles per hour (mph) adjacent to the site.

Joyful View is a proposed private road that would extend east of Peyton Highway. The intersection of Peyton Highway/Joyful View is stop-controlled. The roadway is unpaved.

Existing Traffic Volumes

A daily-traffic-volume machine count was conducted in February 2021 on Payton Highway adjacent to the site. Peyton Highway has a daily traffic volume of 750 vehicles per day (vpd) on an average weekday. There are 64 vehicles per hour (vph) during the morning peak and 74 vph during the evening peak. Please refer to the attached count data sheet for additional detail.

Crash History

As of February 2021, there were no reported crashes along Peyton Highway in the vicinity of the site in the previous three years.

Pedestrian, Bicycle, and Public Transit Access

There are no sidewalks along Peyton Highway. In the El Paso County Major Transportation Corridors Plan Update, it is shown that Peyton Highway is planned to have multi-modal improvements, including a proposed bicycle route.

There are no Mountain Metropolitan Transit routes in the vicinity of the site.

FUTURE BACKGROUND CONDITIONS

Background traffic is traffic that is anticipated to occur without the addition of the proposed development. Figure 3 shows the estimated short-term background traffic volumes that include development of the proposed adjacent single-family homes. These include estimates of peakhour intersection turning movements, based on ITE trip-generation rates.

Long-term background volumes on Peyton Highway were projected using the Pikes Peak Area Council of Government (PPACG) travel demand model. Based on the model, it is estimated that the roadway will experience a growth rate of approximately 9.1 percent per year. This results in Peyton Highway having a long-term volume of $4,350 \mathrm{vpd}$. Figure 4 shows the daily and peak-hour projected long-term background traffic volumes.

TRIP GENERATION

The estimates of vehicle trips expected to be generated by the proposed development have been made using the nationally-published trip-generation rates found in Trip Generation, $10^{\text {th }}$ Edition, 2017 by the Institute of Transportation Engineers (ITE).

Table 1 provides a summary of the site-generated traffic for the development. As shown, the development is anticipated to generate approximately 113 total daily trips on the average weekday. During the morning peak hour, approximately 2 vehicles would enter, and 7 vehicles would exit the site. During the evening peak hour, approximately 7 vehicles would enter, and 4 vehicles would exit.

Table 1: Site Vehicle-Trip Generation

Analysis Period	Weekday		
	In	Out	Total
Morning Peak Hour	2	7	9
Afternoon Peak Hour	7	4	11
Daily	57	57	113

A detailed trip-generation estimate for the development, including calculated trip-generation rates, is presented in Table 3 (attached).

TRIP DISTRIBUTION AND ASSIGNMENT

Estimating the directional distribution of site-generated vehicle trips to the study-area roads and intersections is a necessary component in determining the site's traffic impacts. Figure 5 shows the percentages of the site-generated vehicle trips projected to be oriented to/from each approach to the site. The directional-distribution estimates have been based on the following factors: the location of the site with respect to employment, commercial, schools, and activity centers; the land use proposed for the site; the proposed access system for the site-access points; the roadway system serving the site; and the traffic counts.

Site-generated traffic volumes have been estimated at the study intersections, as shown in Figure 5. These volumes have been calculated by applying the directional-distribution percentages to the trip-generation estimates (from Table 3).

TOTAL TRAFFIC

Short-Term Total Traffic Volumes

Figure 6 shows the sum of the short-term background traffic volumes (from Figure 3) and site-generated peak-hour traffic volumes (shown in Figure 5). These volumes represent the
projected short-term total traffic following completion of the development. Laneage and traffic control at the study intersections are also shown in this figure.

2040 Total Traffic Volumes

2040 traffic volume should include development for the parcels to the east along and north of Joyful View or state why they are not being included in the 2040 traffic volumes.
Figure 7 shows the sum of the long-term background tratfic volumes (from Figure 4) and the site-generated peak-hour traffic volumes (shown in Figure 5). These volumes represent the projected long-term total traffic following completion of the development. Laneage and traffic control at the study-area intersections are also shown in this figure.

LEVEL OF SERVICE ANALYSIS

The following intersection has been analyzed to determine the projected intersection levels of service for short- and long-term background and total traffic scenarios for the morning and afternoon peak-hour periods:

- Peyton Highway/Joyful View

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection and is indicated on a scale from "A" to "F." LOS A is indicative of little congestion or delay. LOS F indicates a high level of congestion or delay. Table 2 shows the level of service delay ranges for signalized and unsignalized intersections.

Table 2: Intersection Levels of Service Delay Ranges

Level of Service	Signalized Intersections	Unsignalized Intersections
	Average Control Delay (seconds per vehicle)	Average Control Delay (seconds per vehicle) ${ }^{(1)}$
A	10.0 sec or less	10.0 sec or less
B	$10.1-20.0 \mathrm{sec}$	$10.1-15.0 \mathrm{sec}$
C	$20.1-35.0 \mathrm{sec}$	$15.1-25.0 \mathrm{sec}$
D	$35.1-55.0 \mathrm{sec}$	$25.1-35.0 \mathrm{sec}$
E	$55.1-80.0 \mathrm{sec}$	$35.1-50.0 \mathrm{sec}$
F	80.1 sec or more	50.1 sec or more
(1) For unsignalized intersections, if V/C ratio is greater than 1.0 the level of service is LOS F, regardless of the projected average control delay per vehicle.		

All turning movements at the intersection of Joyful View/Peyton Highway are forecast to operate at LOS B or better in all future scenarios during all peak hours.

AUXILIARY LANES

Due to the low volume of turning traffic at the intersection of Joyful View/Peyton Highway, no auxiliary lanes are required. The volumes do not exceed the thresholds in the El Paso County Engineering Criteria Manual.

COUNTY ROAD IMPROVEMENT FEE PROGRAM

The Joyful View Subdivision will be required to participate in the Countywide Road Impact Fee program. The specific PID option (or opt-out option), as well as the specific calculated fee amount, will be provided prior to recording of the plat. The fee per residential dwelling unit will be payable at the time of the building permit.

CONCLUSIONS AND RECOMMENDATIONS

Trip Generation

- The development is anticipated to generate the following trips.
- Approximately 113 total daily trips on the average weekday.
- About 9 new morning peak-hour trips, with 2 inbound and 7 outbound.
- About 11 new afternoon peak-hour trips, with 7 inbound and 4 outbound.

Level of Service

- All individual turning movements at the unsignalized intersection of Joyful View/Peyton Highway are projected to operate at LOS B or better in all future scenarios during both peak hours.

Auxiliary Turn Lanes

- Due to the low volume of turning traffic at the intersection of Joyful View/Peyton Highway, no auxiliary lanes are required. The volumes do not exceed the thresholds in the El Paso County Engineering Criteria Manual.

Specfically address all deviations requested (separate form(s) required)

For final plats, state definitively what improvements the developer will be constructing with the project.

State whether the MTCP or other approved corridor study calls for construction of improvements in the immediate area

Please contact me if you have any questions regarding this report.
Sincerely,

LSC TRANSPORTATION CONSULTANTS, INC.

By
Colleen Guillotte, P.E.
Project Manager

CRG:JCH:jas

Enclosures: Table 3
Figures 1-7
Traffic Count Reports
Level of Service Reports

Tables

Table 3: Detailed Trip-Generation Estimate

Land Land Use Use Code Description	Trip Generation Units	Trip Generation Rates ${ }^{(1)}$					Total Trips Generated				
		Average Weekday					Average Weekday				
		Traffic ${ }^{(2)}$	In	Out	In	Out	Traffic	In	Out	In	Out
210 Single Family Housing	$9 \mathrm{DU}{ }^{(2)}$	12.61	0.26	0.73	0.77	0.43	113	2	7	7	4
Notes: (1) Source: "Trip Generation, 10th Edition, (2) $D U=$ dwelling unit	of Transporta	n Engineers									
Source:LSC Transportation Consultants, Inc											

Figures

LEGEND:

$$
\begin{aligned}
\frac{X X}{X X} & =\frac{A M \text { Peak-Hour Traffic (veh/hr) }}{\text { PM Peak-Hour Traffic (veh/hr) }} \quad p=\text { Stop Sign } \\
X X X & =\text { Average Weekday Traffic (vehicles per day) } \\
\frac{\mathrm{A}}{\mathrm{~B}} & =\frac{\mathrm{AM} \text { Individual Movement Peak-Hour Level of Service }}{\mathrm{PM} \text { Individual Movement Peak-Hour Level of Service }}
\end{aligned}
$$

Figure 3

LEGEND:

$$
\begin{aligned}
& \frac{X X}{X X}=\frac{A M \text { Peak-Hour Traffic (veh } / \mathrm{hr})}{P M \text { Peak-Hour Traffic (veh/hr) }} \\
& X X X=\text { Average Weekday Traffic (vehicles per day) } \\
& \overrightarrow{X X \%}=\text { Percent Directional Distribution }
\end{aligned}
$$

Figure 5

LEGEND:

$$
\begin{aligned}
\frac{\mathrm{XX}}{\mathrm{XX}} & =\frac{\mathrm{AM} \text { Peak-Hour Traffic (veh/hr) }}{\text { PM Peak-Hour Traffic (veh/hr) }} \quad p=\text { Stop Sign } \\
X X X & =\text { Average Weekday Traffic (vehicles per day) } \\
\frac{\mathrm{A}}{\mathrm{~B}} & =\frac{\mathrm{AM} \text { Individual Movement Peak-Hour Level of Service }}{\mathrm{PM} \text { Individual Movement Peak-Hour Level of Service }}
\end{aligned}
$$

Figure 6
Short-Term Total Conditions
LEGEND:

$$
\begin{aligned}
\frac{\mathrm{XX}}{\mathrm{XX}} & =\frac{\mathrm{AM} \text { Peak-Hour Traffic (veh/hr) }}{\mathrm{PM} \text { Peak-Hour Traffic (veh/hr) }} \quad \downarrow=\text { Stop Sign } \\
X X X & =\text { Average Weekday Traffic (vehicles per day) } \\
\frac{\mathrm{A}}{\mathrm{~B}} & =\frac{\mathrm{AM} \text { Individual Movement Peak-Hour Level of Service }}{\mathrm{PM} \text { Individual Movement Peak-Hour Level of Service }}
\end{aligned}
$$

Figure 7

Traffic Counts

Page 1
Location: PEYTON HIGHWAY N-O SR 94
City: PEYTON
County: EL PASO
Direction: NORTH/SOUTH

COUNTER MEASURES INC.
1889 YORK STREET
DENVER,COLORADO 80206
Site Code: 21290
303-333-7409

Start Time	$\begin{gathered} 02-\mathrm{Feb}-21 \\ \text { Tue } \\ \hline \end{gathered}$	NORTHBOU	SOUTHBOU							Total
12:00 AM		1	1							2
01:00		1	1							2
02:00		0	1							1
03:00		0	0							0
04:00		3	4							7
05:00		5	9							14
06:00		37	20							57
07:00		39	25							64
08:00		23	25							48
09:00		27	23							50
10:00		17	24							41
11:00		17	18							35
12:00 PM		33	13							46
01:00		26	10							36
02:00		17	28							45
03:00		28	40							68
04:00		33	35							68
05:00		32	42							74
06:00		17	28							45
07:00		13	14							27
08:00		4	4							8
09:00		5	4							9
10:00		1	4							5
11:00		0	0							0
Total		379	373							752
Percent		50.4\%	49.6\%							
AM Peak	-	07:00	07:00	-	-	-	-	-	-	07:00
Vol.	-	39	25	-	-	-	-	-	-	64
PM Peak	-	12:00	17:00	-	-	-	-	-	-	17:00
Vol.	-	33	42	-	-	-	-	-	-	74
Grand Total		379	373							752
Percent		50.4\%	49.6\%							
ADT		ADT 752								

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			$\neq 1$
Traffic Vol, veh/h	2	1	39	1	1	25
Future Vol, veh/h	2	1	39	1	1	25
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	1	46	1	1	29

5: Peyton Highway \& South Access

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	1	1	40	0	0	27
Future Vol, veh/h	1	1	40	0	0	27
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	1	47	0	0	32

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	79	47	0	0	47	0
Stage 1	47	-	-	-	-	-
Stage 2	32	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	924	1022	-	-	1560	-
Stage 1	975	-	-	-	-	-
Stage 2	991	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	924	1022	-	-	1560	-
Mov Cap-2 Maneuver	924	-	-	-	-	-
Stage 1	975	-	-	-	-	-
Stage 2	991	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.7		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	971	1560	-
HCM Lane V/C Ratio		-	-	0.002	-	-
HCM Control Delay (s)		-	-	8.7	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	F		\uparrow			\uparrow
Traffic Vol, veh/h	1	1	32	2	1	42
Future Vol, veh/h	1	1	32	2	1	42
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	1	38	2	1	49

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	0	0	33	1	1	43
Future Vol, veh/h	0	0	33	1	1	43
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	0	39	1	1	51

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\neq
Traffic Vol, veh/h	2	1	229	1	1	153
Future Vol, veh/h	2	1	229	1	1	153
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	1	269	1	1	180

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\mathbf{F}			\uparrow
Traffic Vol, veh/h	1	1	230	0	0	155
Future Vol, veh/h	1	1	230	0	0	155
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	1	271	0	0	182

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		个			*
Traffic Vol, veh/h	1	1	188	2	1	249
Future Vol, veh/h	1	1	188	2	1	249
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	1	221	2	1	293

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	517	222	0	0	223	0
Stage 1	222	-	-	-	-	-
Stage 2	295	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	518	818	-	-	1346	-
Stage 1	815	-	-	-	-	-
Stage 2	755	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	517	818	-	-	1346	-
Mov Cap-2 Maneuver	517	-	-	-	-	-
Stage 1	815	-	-	-	-	-
Stage 2	754	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.7		0		0	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	634	1346	-
HCM Lane V/C Ratio		-	-	0.004	0.001	-
HCM Control Delay (s)		-	-	10.7	7.7	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		F			\uparrow
Traffic Vol, veh/h	0	0	190	1	1	250
Future Vol, veh/h	0	0	190	1	1	250
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	0	224	1	1	294

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	521	225	0	0	225	0
Stage 1	225	-	-	-	-	-
Stage 2	296	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	516	814	-	-	1344	-
Stage 1	812	-	-	-	-	-
Stage 2	755	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	515	814	-	-	1344	-
Mov Cap-2 Maneuver	515	-	-	-	-	-
Stage 1	812	-	-	-	-	-
Stage 2	754	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		1 SBL	SBT
Capacity (veh/h)		-	-	-	1344	-
HCM Lane V/C Ratio		-	-	-	0.001	-
HCM Control Delay (s)		-	-	0	7.7	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	-	0	-

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		\uparrow			\neq
Traffic Vol, veh/h	6	3	39	2	1	25
Future Vol, veh/h	6	3	39	2	1	25
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	7	4	46	2	1	29

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	2	1	41	1	0	31
Future Vol, veh/h	2	1	41	1	0	31
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	1	48	1	0	36

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	85	49	0	0	49	0
Stage 1	49	-	-	-	-	-
Stage 2	36	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	916	1020	-	-	1558	-
Stage 1	973	-	-	-	-	-
Stage 2	986	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	916	1020	-	-	1558	-
Mov Cap-2 Maneuver	916	-	-	-	-	-
Stage 1	973	-	-	-	-	-
Stage 2	986	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.8		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	948	1558	-
HCM Lane V/C Ratio		-	-	0.004	-	-
HCM Control Delay (s)		-	-	8.8	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	0.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		F			-1
Traffic Vol, veh/h	3	2	32	6	3	43
Future Vol, veh/h	3	2	32	6	3	43
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	4	2	38	7	4	51

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	101	42	0	0	45	0
Stage 1	42	-	-	-	-	-
Stage 2	59	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	898	1029	-	-	1563	-
Stage 1	980	-	-	-	-	-
Stage 2	964	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	895	1029	-	-	1563	-
Mov Cap-2 Maneuver	895	-	-	-	-	-
Stage 1	980	-	-	-	-	-
Stage 2	961	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.8		0		0.5	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	944	1563	-
HCM Lane V/C Ratio		-	-	0.006	0.002	-
HCM Control Delay (s)		-	-	8.8	7.3	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			-1
Traffic Vol, veh/h	1	0	37	2	1	45
Future Vol, veh/h	1	0	37	2	1	45
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	0	44	2	1	53

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		\uparrow			\uparrow
Traffic Vol, veh/h	6	3	229	2	1	153
Future Vol, veh/h	6	3	229	2	1	153
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	7	4	269	2	1	180

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	452	270	0	0	271	0
Stage 1	270	-	-	-	-	-
Stage 2	182	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	565	769	-	-	1292	-
Stage 1	775	-	-	-	-	-
Stage 2	849	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	564	769	-	-	1292	-
Mov Cap-2 Maneuver	564	-	-	-	-	-
Stage 1	775	-	-	-	-	-
Stage 2	848	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.9		0		0.1	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	619	1292	-
HCM Lane V/C Ratio		-	-	0.017	0.001	-
HCM Control Delay (s)		-	-	10.9	7.8	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.1	0	-

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		\uparrow			\uparrow
Traffic Vol, veh/h	2	1	231	1	0	159
Future Vol, veh/h	2	1	231	1	0	159
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	1	272	1	0	187

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	460	273	0	0	273	0
Stage 1	273	-	-	-	-	-
Stage 2	187	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	559	766	-	-	1290	-
Stage 1	773	-	-	-	-	-
Stage 2	845	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	559	766	-	-	1290	-
Mov Cap-2 Maneuver	559	-	-	-	-	-
Stage 1	773	-	-	-	-	-
Stage 2	845	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.9		0		0	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	614	1290	-
HCM Lane V/C Ratio		-	-	0.006	-	-
HCM Control Delay (s)		-	-	10.9	0	-
HCM Lane LOS		-	-	B	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		\uparrow			-
Traffic Vol, veh/h	3	2	188	6	3	250
Future Vol, veh/h	3	2	188	6	3	250
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	4	2	221	7	4	294

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	527	225	0	0	228	0
Stage 1	225	-	-	-	-	-
Stage 2	302	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	512	814	-	-	1340	-
Stage 1	812	-	-	-	-	-
Stage 2	750	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	510	814	-	-	1340	-
Mov Cap-2 Maneuver	510	-	-	-	-	-
Stage 1	812	-	-	-	-	-
Stage 2	747	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11.1		0		0.1	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	600	1340	-
HCM Lane V/C Ratio		-	-	0.01	0.003	-
HCM Control Delay (s)		-	-	11.1	7.7	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	0					
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		个			\uparrow
Traffic Vol, veh/h	1	0	194	2	1	252
Future Vol, veh/h	1	0	194	2	1	252
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control S		Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	0	228	2	1	296

