

Storm Water Management Plan

Table Rock Homesteads

PCD File Number: Project No. 61223

January 8, 2025

prepared for

Ted Jarosz 8550 Kenosha Drive, Colorado Springs, CO 80908 (719) 201-4515, tjarosz99@msn.com

prepared by

MVE, Inc.
1903 Lelaray Street, Suite 200
Colorado Springs, CO 80909
719.635.5736

Qualified Stormwater Manager

Name:	_
-------	---

Address: _____

Phone:

Contractor

Name:

Address: ____

Phone:

Copyright © MVE, Inc., 2025

Storm Water Management Plan

for

Table Rock HomesteadsPCD File Number:

Project No. 61223

January 8, 2025

prepared for

Ted Jarouz 8550 Kenosha Drive Colorado Springs, CO 80908

prepared by

MVE, Inc. 1903 Lelaray Street, Suite 200 Colorado Springs, CO 80909 719.635.5736

Copyright © MVE, Inc., 2025

Contents

1	Site Description	1
	1.1 Site Overview	1
	1.2 Construction Activities	2
	1.3 Activities Sequence	2
	1.4 Area & Volume Estimates	3
	1.5 Existing Soil	3
	1.6 Existing Vegetation	3
	1.7 Potential Stormwater Pollution Sources	3
	1.8 Potential Non-Stormwater Runoff	4
	1.9 Receiving Waters	4
2	Site Map	4
3	Control Measures for Stormwater Pollution Prevention	4
	3.1 Structural Erosion and Sediment Controls	5
	3.2 Nonstructural Erosion and Sediment Controls	6
	3.3 Materials Handling and Spill Prevention	7
4	Final Stabilization and Long-Term Storm Water Management	8
5	Other Stormwater Pollution Controls	8
6	Construction Scheduling	8
7	Inspection and Maintenance	8
8	SWMP Revision Procedure	9
9	Batch Plants, Wetlands, and Control Measures by other Entities	10
Re	ferences	11
A	ppendix	A1

Storm Water Management Plan

This Storm Water Management Plan (SWMP) is required for certification under the Colorado Discharge Permit System – General Permit for Stormwater Discharges Associated with Construction (Stormwater Construction Permit), and has been produced according to the guidelines provided in the *State of Colorado Stormwater Management Plan Guidance for Stormwater Discharges Associated with Construction Activity General Permit Application and Stormwater Management Plan Preparation Guidance*. The goal of this SWMP is to "...identify possible pollutant sources that may contribute pollutants to stormwater, and identify Control Measures (CMs) that, when implemented, will reduce or eliminate any possible water quality impacts."¹ A current copy of this SWMP must be maintained on the project site for the duration of the construction and stabilization period.

The Permit Holder or their agent will designate a SWMP Administrator for this project. The SWMP Administrator may be the Construction Project Manager, Owner, Construction Site Superintendent or other party so designated by the Permit Holder or their agent. The SWMP Administrator is responsible for implementing, maintaining, and revising the SWMP. The SWMP Administrator is the contact for all SWMP related issues. The SWMP Administrator will have specific site knowledge and authority to adequately manage and direct day-to-day stormwater quality management activities at the site.²

1 Site Description

1.1 Site Overview

The Table Rock Homesteads site is located within the Southeast ¼ of the Northeast ¼ of Section 6, Township 12 South, Range 65 West, of the 6th Principal Meridian in El Paso County, Colorado. The site is situated approximately 0.60 miles to the west of Black Forest Road and approximately 0.25 miles to the east of E. Thunder Road. E. Palmer Divide Road is about ½ mile to the north of the site. Access for this undeveloped area is an existing road named Gambler Place. The site is made up of two unplatted properties having El Paso County Tax Assessor's Schedule Numbers: 510000012, 5100000026 and the address is to be determined. A Vicinity Map is included in the **Appendix**.

The Table Rock Homesteads site encompasses approximately 106.364± acres. The site is to be platted as Table Rock Homesteads.

This parcel(s) are undeveloped. The storm runoff from the site and the offsite basins generally drain from the north to the southeast and south. There are two distinct gullies located within the site boundary that convey drainage to the southeast. The drainage channels within the property as described in the Drainage Report as "gullies", will be improved upon to protect these areas from erosion. Areas where "creep" may occur and excessive velocities were identified, will be armored to stabilize these areas.

^{1 [}CDPHE], App. A, Section A

^{2 [}CDPHE], App. A, Section C.4 (a)

No known irrigation facilities are located on the site.

A rural residential development is proposed for the site that will include ten (10) single family residential lots ranging in size from 5 acres to 20 acres. The lots are sized per the following grouping: (5) +5 acre lots, (3) +10 acre lots and (2) +20 acre lots. Public roads will be constructed to access the proposed lots and will be dedicated to El Paso County.

According to the Federal Emergency Management Agency's Flood Insurance Rate Map (FIRM) Community Panel Number(s) 08041C0305G, effective December 7, 2018, for El Paso County and unincorporated areas. No portion of the site is located within a Federal Emergency Management Agency (FEMA) designated Special Flood Hazard Area (SFHA)³.

1.2 Construction Activities

Clearing and grubbing necessary for perimeter controls. Install perimeter controls, including silt fence, or sediment control logs along the down sloped side of the disturbed areas and around down sloped areas of any designated stockpile area as well as erosion control blankets where necessary. Silt fence/sediment control logs to be maintained during entire construction sequence. Install Vehicle Traffic Control at the west edge of the site. Notify El Paso County for initial inspection. After receiving notice to proceed from EPC, complete remaining clearing and grubbing. Install stormwater culverts. Intall additional CMs, as outlined in the SWMP. Rough grading site. Install additional CMs, as outlined in the SWMP. Final grading of site. Removal of temporary CMs. Installation of road base. On-site stabilization to reduce erosion of disturbed soil. Achieve Final Stabilization, as outlined in SWMP.

Due to the limited size and nature of the project, all work will be done from start to finish and phasing of the project is not anticipated.

1.3 Activities Sequence

Activities will commence with Site Preparation and the installation of Initial Control Measures (CMs) including a Vehicle Tracking Control (Initial CM) at the west edge of the site, which will be used as construction access. Silt Fence (Initial CM) will be placed along the sides of the construction activities. General site grading will then begin with removal of topsoil only from those areas that will be regraded. Topsoil, if it is to be stockpiled on the site, requires silt fence (Interim CM) to be installed on the downstream side of the storage area. General site grading, creation of road profile and roadside ditches will then commence. Following the general grading, the electric and gas lines will be installed within the finished sub-grade. During this time, additional interior erosion controls as determined by the Stormwater Manager may be added along roadside ditches. Then, drainage culverts will be installed, followed immediately by installation of Culvert Inlet Protection (Interim CM), and Outlet Protection (Interim BP / Permanent Protection) at culverts. Following completion of the installation of drainage culverts, the water quality facilities will be constructed. Then redistribution of topsoil, mulching and seeding (Final CM) will be applied to all disturbed areas that will not be paved or further disturbed by road surfacing operations. Prior to the redistribution of topsoil along the roadway, the gully or channel protection will take place. Following the placement of topsoil, seeding and mulch, and immediately following removal of Vehicle Tracking Control, Aggregate Base Course road surface will be placed. Following the construction of these items, final "touch up" grading and redistribution of topsoil will be done for all remaining disturbed unpaved areas on the site. Then, seeding and mulching (Final CM) will be applied to all remaining disturbed areas. Following completion of these construction activities, all remaining interior mulching and seeding will be applied to the resulting disturbed areas. The site will then be ready for initial close out. The perimeter Silt Fence will remain until site stabilization. At the time of final stabilization, all remaining construction CM's will be removed, and seeding and mulching will be placed over the resulting disturbed area.

^{3 [}FIRM]

Project closeout will be established at final stabilization, as defined in the UDFCD⁴. Construction Scheduling is as defined in Section 6. below.

1.4 Area & Volume Estimates

The Table Rock Homesteads site encompasses approximately 106.364 ± acres. Within that total area, approximately 8.3 acres are expected to undergo clearing, excavation, grading or other disturbance due to the construction activities of the Table Rock Homesteads project. Earthwork activities will comprise of more than 8348 cubic yards of soil, assuming compacted soils will have about 15% higher density than natural embankment densities. The earthwork on the site is expected to balance. No import or export of earth is anticipated.

1.5 Existing Soil

According to the National Resource Conservation Service, there are two soil types identified at the Table Rock Homesteads site. Brusset Loam, 3 to 5 percent slopes (map unit 15), makes up the majority of the site and is contained in Hydrologic Soil Group B. This soil is deep and is well drained. permeability is moderate, surface runoff is medium to rapid, and the hazard of erosion is moderate.

The secondary soil group is: Peyton-Pring complex, 8 to 15 percent slopes (map unit 69). This soil is contained in Hydrologic Soil Group B. This soil is shallow to deep and well drained, permeability is moderate, surface runoff is medium to rapid, and the hazard of erosion is moderate to high. A portion of the Soil Map and data tables from the National Cooperative Soil Survey and relevant Official Soil Series Descriptions (OSD) are included in the Appendix.^{5 6}

A portion of the National Cooperative Soil Survey Map is included with this Storm Water Management Plan .7 8

The impervious area on the site will not be significantly increased by the development of the site due to the low residential density. The drainage patterns on and off site will not be significantly altered as a result of the proposed construction activities.

1.6 Existing Vegetation

The existing ground cover on the site consists mostly of grasses in fair to good condition. The existing vegetative ground cover is approximately 85% for the entire site as determined by visual observation. This will service as a basis for determining final stabilization at the conclusion of the project. Existing vegetation should be documented in photographs prior to any disturbance.

1.7 Potential Stormwater Pollution Sources

The primary potential stormwater pollution source from the Table Rock Homesteads site is sediment resulting from erosion. There is potential for sediment carrying stormwater to originate from nearly anywhere within the site, and such runoff might deposit sediment onto any of the downstream properties or into the downstream receiving waters. Erosion control and sediment reduction measures will be implemented to mitigate potential pollution from sediment. Such measures are described in the below section **Control Measures for Stormwater Pollution Prevention**.

No significant storage of chemicals will occur on site Small amounts of vehicle and equipment fuel and maintenance chemicals (oil, antifreeze, hydraulic fluid, etc.) may be stored on site, but all such materials will be stored in appropriately contained and managed facilities. Storage of materials is described in the below section Control Measures for Stormwater Pollution Prevention. Chemicals released from vehicles and equipment may also be a source of stormwater pollution.

5 6 7 wss

8 [OSD]

⁴ [UDFCD], Ch. 7, 3.1

[[]WSSI [OSD]

4 Storm Water Management Plan

Appropriate procedures will be taken to limit the potential of stormwater pollution from spills and leaks. No significant maintenance of vehicles and equipment and no vehicle and equipment washing may be performed on site "Rinsing of construction vehicles carrying concrete may only be performed in designated concrete rinse facilities." Proper handling of vehicles and equipment is described in the below section **Control Measures for Stormwater Pollution Prevention**.

1.8 Potential Non-Stormwater Runoff

In addition to being a potential stormwater pollution source, water from the rinsing of construction vehicles carrying concrete may be a potential source of non-stormwater runoff. This non-stormwater runoff is not permitted under the Stormwater Construction Permit. The installation of concrete rinse facilities will mitigate the potential of such rinse water becoming a non-stormwater runoff source.

Temporary irrigation for the establishment and/or maintenance of ground cover may also be a source of non-stormwater runoff from the site. This non-stormwater runoff is permitted under the Stormwater Construction Permit; however, appropriate irrigation practices will be used to limit the potential of runoff, and any runoff that does occur will be treated with the same control measures applied to stormwater runoff. Proper management of the irrigation schedules and duration will minimize excess irrigation runoff. The construction CM's described below which are to remain in place until ground cover is established, as well as the permanent CM's described below will mitigate the potential of such irrigation water becoming a non-stormwater runoff source.

1.9 Receiving Waters

Discharge from this site flows south-easterly into an unnamed tributary of East Cherry Creek. The ultimate receiving waters are East Cherry Creek.

2 Site Map

A **Site Map** is included with this SWMP for the Table Rock Homesteads project. The **Site Map** consists of the Table Rock Homesteads Erosion Control Plan as submitted and approved by El Paso County. The **Site Map** includes construction site boundaries, areas of ground surface disturbance, areas of cut and fill, areas used for storage of building materials, equipment, soil, and waste, the locations of structural and non-structural Control Measures, the locations of the existing water courses (if any exist), the soil type areas, existing and proposed contours, proposed structures and improvements, an explanation of the existing vegetation on the site, locations of existing water courses, locations of existing 100-year floodplains (if any exist) and a vicinity map. The are no asphalt or concrete batch plants planned and therefore are not shown on the **Site Map**.

3 Control Measures for Stormwater Pollution Prevention

"Control Measures (CMs) encompass a wide range of erosion and sediment control practices, both structural and non-structural in nature, that are intended to reduce or eliminate any possible water quality impacts from stormwater leaving a construction site."⁹ "Structural CMs" traditionally refers to any physical process, but in this SWMP "structural CMs" refers only to practices involving the installation of a specific, definable object or structure. "Nonstructural CMs" traditionally refers to definitions of operational and managerial techniques, but in this SWMP "nonstructural CMs" also includes any physical process not involving the installation of a specific, definable object or reduce erosion, while "sediment control CMs" remove or reduce sediment from runoff. Because sediment resulting from erosion is typically the primary pollutant of stormwater pollution prevention in this SWMP, while sediment control practices are not possible or are not fully effective. Prevention of stormwater pollutants other than sediment are addressed under an additional set of materials handling and spill prevention CMs.¹⁰

^{9 [}CDPHE], App. A, Section B

^{10 [}CDPHE], App. A, Section C.1 (4)

3.1 Structural Erosion and Sediment Controls

Inlet protection will be installed around all storm drain inlets, culvert inlets, and other drainage structure inlets installed on the site immediately after the installation of the inlet. Inlet protection reduces sediment deposition in storm drains and culverts and reduces sediment pollution in stormwater by "filtering" out some of the sediment carried by runoff flowing through the inlet protection. The locations of inlet protection are identified on the **Site Map**, and details for the installation and maintenance of the inlet protection are included in the **Appendix**. In addition to the inlet protection indicated on the **Site Map**, inlet protection will be installed wherever the contractor deems them to be necessary or helpful. Inlet protection installed at the contractor's discretion might not be shown on the **Site Map**.¹¹

Before any other construction activities commence on the site, **vehicle tracking controls** will be installed at all site access points. Vehicle tracking control helps reduce the deposition of sediment, dirt, mud, and debris by vehicles exiting the site onto the streets adjacent to the site. The locations of site entrance vehicle tracking controls are identified on the **Site Map**, and details for the installation and maintenance of the controls are included in the **Appendix**.¹²

Before any grading or other significant disturbance occurs on site, **silt fence** will be installed along any edge of an area to be disturbed where runoff would otherwise go untreated. Silt fence will be also installed along those portions of the site perimeter where potentially sediment ladened runoff may flow into adjacent properties. Silt fence will also be installed along the downstream edges of the topsoil stockpile. Silt fences help reduce pollution of stormwater by "filtering" out some of the sediment carried by runoff flowing through the fences and by facilitating deposition of sediment by slowing the runoff. Silt fences can also help reduce erosion by slowing and distributing runoff. The locations of silt fences are identified on the **Site Map**, and details for the installation and maintenance of silt fences will be installed wherever the contractor deems them to be necessary or helpful. Silt fences installed at the contractor's discretion might not be shown on the **Site Map**.¹³

Rock Check Dams will be installed within the two major channels as identified on the **Site Map.** Check dams are temporary grade control structures placed in drainage channels to limit the erosivity of stormwater by reducing flow velocity. Check dams are typically constructed from rock, gravel bags, sand bags, or sometimes, proprietary devices. Reinforced check dams are typically constructed from rock and wire gabion. Although the primary function of check dams is to reduce the velocity of concentrated flows, a secondary benefit is sediment trapping upstream of the structure.

Sediment Control Logs may be installed at locations during construction should a purpose for them arise. Sediment control logs help reduce pollution of stormwater by "filtering" out much of the sediment carried by runoff flowing through the barriers and by facilitating deposition of sediment by slowing the runoff. Sediment control logs also help reduce erosion by slowing and distributing runoff. Sediment control logs should not be installed across significant concentrated flow paths. The details for the installation and maintenance of straw bale barriers which are included in the **Appendix** can also be generally applied to the installation and maintenance of sediment control logs.

A **Stabilized Staging Area** is a clearly designated area where construction equipment and vehicles, stockpiles, waste bins, and other construction-related materials are stored. The **stabilized staging area** will be sized appropriately to provide space for loading/unloading operations as well as parking. The surface of the stabilized staging area is to be covered with 3-inch diameter aggregate or larger. Perimeter controls will be installed at the down slope sides of the **Stabilized staging Area** to reduce runoff from the area. Construction fencing will be utilized to prevent unauthorized access to construction materials. The location of the Stabilized Staging Area is identified on the **Site Map**, and details for the installation and maintenance of the Stabilized Staging Area are included in the **Appendix**.

^{11 [}UDFCD], SC-6

^{12 [}UDFCD], SM-4 13 [UDFCD], SC-1

⁶¹²²³⁻SWMP.odt

6 Storm Water Management Plan

Stockpile Management is an important practice that is used to minimize erosion and sediment transport from stockpiles. Any stockpile located on-site is to be located away from all drainage system components. The stockpile is to be stabilized with surface roughening, temporary seeding and mulching, or erosion control blankets as deemed necessary. Soils stockpiled for an extended period (more than 60 days) should be seeded and mulched within 14 days. Perimeter controls such as silt fence will be installed around the stockpile as necessary to minimize sediment transport from the stockpile. When the stockpile is no longer needed, excess materials are to be properly disposed of and the area will be revegetated. The location of the stockpile is identified on the **Site Map**, and details for the management of the Stockpile are included in the **Appendix**.

Following the installation of the initial CM's described above, grading and utility construction on the site may commence.

3.2 Nonstructural Erosion and Sediment Controls

In order to minimize the total amount of soil exposed at any given time to "reduce the period of accelerated soil erosion"¹⁴ the construction activities of the Table Rock Homesteads project will be phased scheduled as described in the above section **Activities Sequence**. In addition to the schedule described in the above section **Activities Sequence**, many of the details and specifications included in the index provide specific scheduling information.

An undisturbed "buffer" will be preserved around as much of the site as possible to help control erosive run-on and sediment laden runoff. The locations of undisturbed buffer areas are identified on the **Site Map**.

Before construction activities commence in any area of the site, the full layer of topsoil will be stripped only from the portions of that area that are to be disturbed and will be stockpiled in location identified on the **Site Map**. Rather than stripping topsoil from the entire site at once, as has been the traditional practice in some cases, topsoil will be stripped from particular areas of the site only as construction work progresses to that area as described in the above section **Activities Sequence**. Soils stockpiled for more than 60 days will be seeded and mulched within 14 days of completion of stockpiling activities.¹⁵

Before construction activities commence in any area of the site, the construction vehicle traffic areas to and around that area – including all construction roads, parking areas, loading and unloading zones, storage areas, and staging areas – will be stabilized through proper grading, compaction, and surfacing. Stabilization of traffic areas reduces erosion and vehicle tracking thus helping to eliminate potential pollution of stormwater by sediment. To prevent vehicle tracking of soil into the surrounding roadways, construction related traffic will be limited to entering the site at the designated construction entrance(s). The construction entrance will have a Vehicle Tracking Control as described above. Should significant soil still be deposited on the surrounding roadways, street sweeping will be utilized to remove the soil from the roadways immediately following deposition. The locations of areas to receive traffic area stabilization are identified on the **Site Map**, and specifications for the installation and maintenance of surface stabilization are included in the **Appendix**.¹⁶

When seasonally appropriate, seed will be applied to all disturbed areas (not otherwise stabilized) immediately if possible or within 14 days of completion of final grading. Additionally, seed will be applied to all disturbed areas that are not at final grade but will remain dormant (undisturbed) for longer than 1 year. When the season is inappropriate for seed application, surface roughening and mulch will be applied within 14 days and seed will be applied as soon as seasonally appropriate. Specifications for re vegetation are included in the **Appendix**.

3.3 Materials Handling and Spill Prevention

A vigorous program of "good housekeeping" will be implemented on the Table Rock Homesteads site in an effort to prevent stormwater pollution by materials used and stored on-site.

^{14 [}UDFCD], Ch 7, 2.3

^{15 [}UDFCD], MM-2 16 [UDFCD], SM-6

No significant storage of chemicals and other potentially pollutive materials will be allowed on site Only those chemicals and materials necessary for the described construction activities may be stored on site, and then only in the smallest amounts reasonable and for the shortest time possible. The location of a storage area for toxic, hazardous, and potentially pollutive materials is identified on the **Site Map** as the Stabilized Staging Area and a specification for on site materials handling is provided in the **Appendix**.

Portable toilets will be located away from direct traffic routes and will be situated out of the potential path of any potential stormwater runoff. Any grading necessary to achieve such a situation will be completed before the portable toilets are delivered to the site. The locations of portable toilets shall be determined by the Contracter and identified on the **Site Map.** They shall be located a minimum of 10 feet from any storm inlets and 50 feet from state waters. Portable toilets will be securely anchored at all four corners to prevent tipping. Portable toilets shall be inspected daily for spills.

Fueling and minor preventative maintenance of vehicles and equipment may occur only on areas specifically stabilized for construction vehicle traffic. Appropriate procedures will be taken to limit the potential of stormwater pollution from spills and leaks. The locations of areas specifically stabilized for construction vehicle traffic are identified on the **Site Map** and a specification for vehicle and equipment handling is provided in the **Appendix**. No significant maintenance of vehicles and equipment and no vehicle and equipment washing will be performed on site

Any spills of potential pollutants on the site related to the construction activities will be addressed according to the requirements of Colorado Department of Public Health and Environment, Hazardous Materials and Waste Management Division.

Appropriate spill prevention and response measures will be implemented on the site. The details and specifications referenced above in this section provide general and specific guidelines for spill prevention and response measures relating to the various potential non-sediment pollution sources.

No groundwater and/or stormwater dewatering activities are proposed or expected for the proposed construction activities.

No significant waste generation is expected as a result of the proposed construction activities. Any minor waste that is produced will be disposed of properly in waste disposal bins. (See Inspection and Maintenance section below for inspection and emptying frequency.)

4 Final Stabilization and Long-Term Storm Water Management

According to the Stormwater Construction Permit "Final stabilization is reached when all soil disturbing activities at the site have been completed, and uniform vegetative cover has been established with a density of at least 70 percent of pre-disturbance levels or equivalent permanent, physical erosion reduction methods have been employed."¹⁷ Such a viable vegetative cover will be established within one year of completion of construction activities on all disturbed areas not otherwise stabilized. Unless otherwise indicated on a landscape plan, revegetation will be achieved through seedbed preparation, including but not necessarily limited to soil roughening, seeding, mulching, and irrigating when specified. Soil roughening, mulching, and seeding are all described in the above section **Control Measures for Stormwater Pollution Prevention**, and specifications for surface stabilization and revegetation are included in the **Appendix**.

In order to prevent or control erosion and pollution of stormwater by sediment after completion of construction activities, many of the structural CMs described in the above section **Control Measures for Stormwater Pollution Prevention**, will remain in place until final stabilization. CMs that must remain in place until final stabilization shall be removed following final stabilization and the resulting disturbed areas shall be seeded and mulched. The specifications or details corresponding to each CM provide general guidelines for the removal of the CM.

^{17 [}CDPHE], App. A, Section C.5

5 Other Stormwater Pollution Controls

All stormwater pollution control measures to be implemented on the Table Rock Homesteads site are included in the above sections **Control Measures for Stormwater Pollution Prevention** and **Final Stabilization and Long-Term Storm Water Management**.

6 Construction Scheduling

The expected timing of the project is to install initial erosion control CM's and start grading Spring 2025. Grading and site operations are expected to continue through Fall 2025 with final stabilization by Spring 2026. Activities are expected to proceed as written above.

7 Inspection and Maintenance

The primary purpose of a regular inspection is to "determine if there is evidence of, or the potential for, pollutants entering the drainage system."¹⁸ "The Stormwater Construction Permit requires that a thorough inspection of the stormwater management system be performed and documented at least every 14 days, and after any precipitation or snowmelt event that results in stormwater running across the ground."¹⁹ This is only a minimum requirement and more frequent inspection and regular maintenance of the stormwater management system is typically necessary to effectively reduce pollutants in stormwater discharges from a construction site. A thorough inspection of the Table Rock Homesteads site will therefore be performed and documented weekly and after any precipitation or snowmelt event that results in stormwater any formed and documented weekly and after any precipitation or snowmelt event that results in stormwater any formed and documented weekly and after any precipitation or snowmelt event that results in stormwater any formed and documented weekly and after any precipitation or snowmelt event that results in stormwater running across the ground.

The regular inspections of the site will include observation of the construction site perimeter and all stormwater discharge points including storm drain system inlets and culverts. CMs applied in the site perimeter or around stormwater discharge points include inlet protection, site entrance vehicle tracking controls, silt fences, straw bale barriers, and straw bale check structures. Specific inspection and maintenance requirements for each of these CMs are included in the **Appendix**.

The regular inspections of the site will also include observation of all disturbed areas and all stabilized and revegetated areas. Inspection of these areas will involve particular attention on possible erosion problems. Specifications for surface stabilization and revegetation are included in the **Appendix** and provide specific inspection and maintenance requirements.

The regular inspections of the site will also include observation of material storage areas including waste disposal bins and topsoil stockpiles. Inspection of these areas will involve particular attention on possible leaks and spills and, in the case of the topsoil stockpile, on possible ineffectively managed runoff. Any leaking waste disposal bins shall be replaced prior to the next inspection. Waste disposal bins shall be emptied upon reaching 90% capacity. Specifications for on site materials handling and details for silt fence, used around topsoil stockpiles, are included in the **Appendix** and provide specific inspection and maintenance requirements.

Concrete rinse facilities will be included in the regular inspections of the site, but will require additional attention when in use. Details of a concrete rinse facility, with specific inspection and maintenance requirements, are included in the **Appendix**.

All structural CMs on the site will be thoroughly examined during each inspection to "determine if they still meet the design and operational criteria in the SWMP and that they continue to adequately control pollutants at the site."²⁰ Details of each CM, with specific inspection and maintenance requirements, are included in the **Appendix**.

Following each inspection, repairs will be performed on CMs that are found to no longer function as needed and designed, and preventative maintenance will be exercised on CMs as needed to ensure continued operation. CMs that have failed or have the potential to fail without maintenance or

^{18 [}CDPHE], App. A, Section C.6 (b)

^{19 [}CDPHE], App. A, Section C.6 (a) 20 [CDPHE], App. A, Section C.6 (b)

modifications will be addressed immediately to prevent the discharge of pollutants. As described above, the details of each CM, included in the **Appendix**, provided specific maintenance instructions and requirements. When a CM is found to be ineffective in preventing discharge of pollutants, even though the CM is in good repair and is functioning as designed, that CM will be modified or an alternative or additional CM will be installed promptly.²¹

An **Inspection Log** will be maintained on site in an enclosed sealed receptacle near the site entrance and will include a record of all stormwater management system inspections along with all CM maintenance and repair activities²². Said inspection log will be signed and dated by the SWMP Administrator after each inspection. All the inspection, maintenance, and repair requirements for each CM, as described in this SWMP and as outlined in the details or specifications in the **Appendix**, will be performed as specified and will be recorded in the **Inspection Log**. The **Inspection Log** will also include a description of any incidence of non-compliance, such as uncontrolled releases of pollutants including mud, muddy water or measurable quantities of sediment found off the site along with a description of measures to be taken to cleanup pollutants that have left the site and a description of measures to be taken to prevent future pollutive discharges. Records of any spills, leaks, or overflows of non-sediment potential pollutants, whether or not such a spill, leak, or overflow results in pollution of stormwater, will be included.

Following an inspection that does not reveal any incidents of non-compliance, or following the completion of measures taken to correct any non-compliance issues, a **Certification** indicating the site is in compliance will be signed and dated.

In addition to regularly maintaining an **Inspection Log** and **Certification**, this SWMP will be updated regularly to reflect the actual stormwater management system as implemented on the site.

8 SWMP Revision Procedure

When CMs or other site conditions change, the SWMP must be modified to accurately reflect the actual field conditions. Examples include, but are not limited to, removal of CMs, identification of new potential pollutant sources, addition of CMs, modification of CM installation and implementation criteria or maintenance procedures, and changes in items included in the site map and/or descriptions. SWMP revisions must be made prior to changes in site conditions, except for Responsive SWMP Changes, as follows:

The SWMP Administrator shall be a Qualified Stormwater Manager (QSM). The designations of QSM and SWMP Administrator are used interchangeably in this SWMP. The SWMP Administrator is responsible for implementing, maintaining, and revising the SWMP. The SWMP administrator will update the Site Map by adding, deleting or modifying specific CMs shown on the Site Map by hand marking on the full size hard copy Site Map. The QSM will be sufficiently qualified for the required duties per the Engineering Criteria Manual (ECM) Appendix I.5.2.A.

 SWMP revisions must be made immediately after changes are made in the field to address CM installation and/or implementation issues; or

– SWMP revisions must be made as soon as practicable, but in no case more than 72 hours, after change(s) in CM installation and/or implementation occur at the site that require development of materials to modify the SWMP (e.g., design of retention pond capacity)

The SWMP should be viewed as a living document that is continuously being reviewed and modified as part of the overall process of assessing and managing stormwater quality issues at the site by the SWMP Administrator.

^{21 [}CDPHE], App. A, Section C.6 (c)

^{22 [}CDPHE], App. A, Section C.6 (d)

9 Batch Plants, Wetlands, and Control Measures by other Entities

There are no dedicated batch plants to be located on this project.

There are no springs, streams, wetlands and other surface waters, including areas that require maintenance of pre-existing vegetation that are located within 50 feet of a receiving waters for this project. This project does not rely on control measure to be operated by another entity.

CDPHE: Colorado Department of Public Health & Environment, Water Quality Control Division, State of Colorado Stormwater Management Plan Guidance for Stormwater Discharges Associated with Construction Activity (State of Colorado:Denver, April, 2011).

FIRM: Federal Emergency Management Agency, National Flood Insurance Program, *Flood Insurance Rate Map (FIRM)* (:Washington D.C., March 17, 1997).

OSD: United States Department of Agriculture, Natural Resources Conservation Service, *NRCS Official Soil Series Descriptions* (: , March, 2018).

OSD: United States Department of Agriculture, Natural Resources Conservation Service, *NRCS Official Soil Series Descriptions* (:, October 20165).

OSD: Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, *Official Soil Series Descriptions* (USDA-NRCS:Lincoln, NE, Accessed April 26, 2007).

UDFCD: Urban Drainage and Flood Control District, *Urban Storm Drainage Criteria Manual Volume 3 - Best Management Practices* (Urban Drainage and Flood Control District:2480 W. 26th Ave. Ste 156B, Denver, CO 80211, September 1992, Updated November 2010).

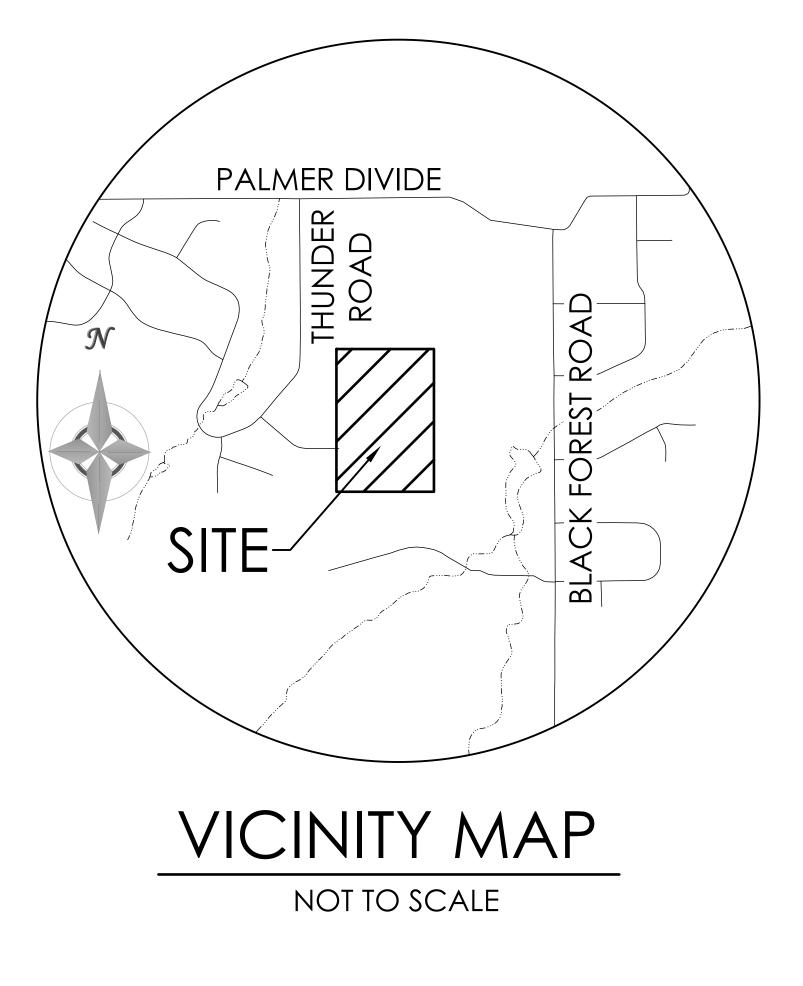
WSS: United States Department of Agriculture, Natural Resources Conservation Service, *NCSS Web Soil Survey* (:, Accessed April 26, 2007).

WSS: United States Department of Agriculture, Natural Resources Conservation Service, *NRCS Web Soil Survey* (:, March, 2018).

WSS: United States Department of Agriculture, Natural Resources Conservation Service, *NRCS Web Soil Survey* (:, October 2016).

Appendix

Vicinity Map

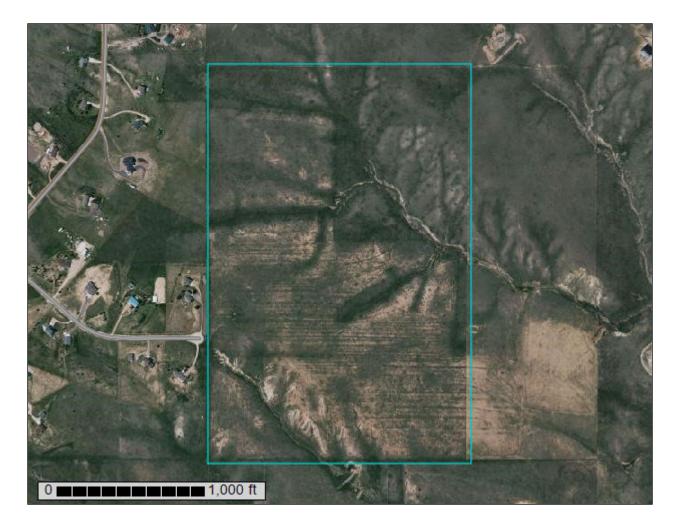

Sample Field Inspection Sequence and Field Inspection Report

CM Installation and Maintenance Details*

Colorado Springs SCM Detail and Description	Map Key Abbreviation
CD – Check Dam	CD
CIP – Culvert Inlet Protection	CIP
CWA – Concrete Washout Area	CWA
ECB – Erosion Control Blanket	ECB
IP – Inlet Protection	IP-1, IP-2, IP-3, IP-4
PT – Portable Toilet	PT
RS – Rock Sock	RS
SCL – Sediment Control Log	SCL
SF – Silt Fence	SF
SM – Seeding and Mulching	SM
SP – Stockpile Protection	SP
SR – Surface Roughening	SR
ST – Slope Tracking	ST
TCB – Temporary Compacted Berm	TCB
TSB – Temporary Sediment Basin	TSB
TSD – Temporary Slope Drain	TSD
VTC – Vehicle Tracking Control	VTC
	Мар Кеу
UDFCD Detail and Description	Abbreviation

EC-10 – Earth Dikes and Drainage SwalesED/DSSM-6 – Stabilized Staging AreaSSASM-7 – Street Sweeping and VacuumingSSMM-3 – Good Housekeeping PracticesGH	
MM-3 – Good Housekeeping Practices GH	

Site Map (Grading & Erosion Control Plan)


United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
El Paso County Area, Colorado	
15—Brussett loam, 3 to 5 percent slopes	
69—Peyton-Pring complex, 8 to 15 percent slopes	

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP LEGEND	MAP INFORMATION
Area of Interest (AOI)	st (AOI) Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
	st (AOI) Conscience of the sector of the sec	
 Rock Outcrop Saline Spot Sandy Spot Severely Eroc Sinkhole Slide or Slip Sodic Spot 		Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 22, Sep 3, 2024 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jun 9, 2021—Jun 12, 2021 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
15	Brussett loam, 3 to 5 percent slopes	69.7	63.4%
69	Peyton-Pring complex, 8 to 15 percent slopes	40.3	36.6%
Totals for Area of Interest		110.0	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

15—Brussett loam, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: 367k Elevation: 7,200 to 7,500 feet Frost-free period: 115 to 125 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Brussett and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Brussett

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian deposits

Typical profile

A - 0 to 8 inches: loam BA - 8 to 12 inches: loam Bt - 12 to 26 inches: clay loam Bk - 26 to 60 inches: silt loam

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R048AY222CO - Loamy Park Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

69—Peyton-Pring complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 369g Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Peyton and similar soils: 40 percent Pring and similar soils: 30 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Peyton

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic residuum weathered from sedimentary rock

Typical profile

A - 0 to 12 inches: sandy loam Bt - 12 to 25 inches: sandy clay loam BC - 25 to 35 inches: sandy clay loam C - 35 to 60 inches: sandy loam

Properties and qualities

Slope: 8 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R049XY216CO - Sandy Divide Hydric soil rating: No

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam *C - 14 to 60 inches:* gravelly sandy loam

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R048AY222CO - Loamy Park Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No mental irrigation may be needed when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. In cropland areas, habitat favorable for ring-necked pheasant, mourning dove, and many nongame species can be developed by establishing areas for nesting and escape cover. For pheasant, undisturbed nesting cover is vital and should be provided for in plans for habitat development. This is especially true in areas of intensive farming. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for homesites. Practices are needed to control surface runoff and keep soil losses to a minimum. Limiting the disturbance of the soil and the removal of existing plant cover during construction helps to control erosion. Capability subclass IVe.

14—Brussett loam, 1 to 3 percent slopes. This deep, well drained soil formed in eolian silt and sand on uplands. Elevation ranges from 7,200 to 7,500 feet. The average annual precipitation is about 18 inches, and the average annual air temperature is about 43 degrees F.

Typically, the surface layer is dark grayish brown loam about 8 inches thick. The subsoil is grayish brown and brown clay loam about 26 inches thick. The substratum is pale brown silt loam. Mycelia and soft masses of lime are common in the substratum.

Included with this soil in mapping are small areas of Peyton sandy loam, 1 to 5 percent slopes.

Permeability of this Brussett soil is moderate. Effective rooting depth is 60 inches or more. Available water capacity is high. Surface runoff is slow, and the hazard of erosion is moderate.

Nearly all the acreage of this soil is used for nonirrigated winter wheat, spring oats, and improved pasture that is grazed by cattle and sheep. The chief pasture grasses are smooth brome, intermediate wheatgrass, and pubescent wheatgrass. Winter wheat is grown under a wheat-fallow system. Stubble mulching is the most important conservation practice. Application of fertilizer generally is not needed in the wheat-fallow system. Other crops respond to application of nitrogen. The growing season is too short for warm-season field crops. Management of the plant cover is needed to control erosion.

Rangeland vegetation consists of mountain muhly, little bluestem, needleandthread, Parry oatgrass, and junegrass.

Deferment of grazing in spring helps to maintain the vigor and reproduction of the cool-season bunchgrasses. Fencing and properly distributing livestock watering facilities may be needed to control grazing. Locating salt blocks in areas not generally grazed increases the amount of forage that is used on this soil. Windbreaks and environmental plantings are generally well suited to this soil. Summer fallow a year prior to planting and continued cultivation for weed control are needed to insure the establishment and survival of plantings. Trees that are best suited and have good survival potential are Rocky Mountain juniper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, Siberian peashrub, and American plum.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. In cropland areas, habitat favorable for ring-necked pheasant, mourning dove, and many nongame species can be developed by establishing areas for nesting and escape cover. For pheasant, undisturbed nesting cover is vital and should be provided for in plans for habitat development. This is especially true in areas of intensive farming. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

The main limitations for urban development are moderate shrink-swell potential and frost action potential. Dwellings and roads can be designed to overcome these limitations. Permeability adversely affects the performance of septic tank absorption fields. Capability subclass IIIc.

15—Brussett loam, 3 to 5 percent slopes. This deep, well drained soil formed in eolian silt and sand on uplands. Elevation ranges from 7,200 to 7,500 feet. The average annual precipitation is about 18 inches, and the average annual air temperature is about 43 degrees F.

Typically, the surface layer is dark grayish brown loam about 8 inches thick. The subsoil is grayish brown and brown clay loam about 26 inches thick. The substratum is pale brown silt loam. Mycelia and soft masses of lime are common in the substratum.

Included with this soil in mapping are small areas of Peyton sandy lom, 1 to 5 percent slopes, and Peyton-Pring complex, 3 to 8 percent slopes.

Permeability of this Brussett soil is moderate. Effective rooting depth is 60 inches or more. Available water capacity is high. Surface runoff is medium to rapid. The hazard of erosion is moderate, especially when snow melts in spring while the ground is frozen. Some gullies are present.

Nearly all the acreage of this soil is used for nonirrigated winter wheat, spring oats, and improved pasture that is grazed by cattle and sheep. The chief pasture grasses are smooth brome, intermediate wheatgrass, and pubescent wheatgrass. Winter wheat is grown under a wheat-fallow system. Stubble mulching is the most important conservation practice. Application of fertilizer generally is not needed in the wheat-fallow system. Other crops respond to application of nitrogen. The growing season is too short for warm-season field crops. Management of plant cover is needed to control erosion.

Rangeland vegetation consists of mountain muhly, little bluestem, needleandthread, Parry oatgrass, and junegrass. Deferment of grazing in spring helps to maintain the vigor and production of the cool-season bunchgrasses. Fencing and properly distributing livestock watering facilities may be needed to control grazing. Locating salt blocks in areas not generally grazed increases the amount of forage that is used on this soil.

Windbreaks and environmental plantings are generally well suited to this soil. Summer fallow a year prior to planting and continued cultivation for weed control are needed to insure the establishment and survival of plantings. Trees that are best suited and have good survival potential are Rocky Mountain juniper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, Siberian peashrub, and American plum.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. In cropland areas, habitat favorable for ring-necked pheasant, mourning dove, and many nongame species can be developed by establishing areas for nesting and escape cover. For pheasant, undisturbed nesting cover is vital and should be provided for in plans for habitat development. This is especially true in areas of intensive farming. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

The main limitations for urban development are moderate shrink-swell potential and frost action potential. Dwellings and roads can be designed to overcome these limitations. Capability subclass IVe.

16—Chaseville gravelly sandy loam, 1 to 8 percent slopes. This deep, somewhat excessively drained soil formed in arkosic alluvial sediment on alluvial fans, terraces, and side slopes. Elevation ranges from 6,100 to 7,000 feet. Average annual precipitation is about 17 inches, average annual air temperature is about 17 degrees F, and the average frost-free season is about 135 days.

Typically, the surface layer is dark grayish brown gravelly sandy loam about 6 inches thick. The next layer is dark grayish brown very gravelly sandy loam about 13 inches thick. The substratum is reddish gray extremely gravelly loamy coarse sand and brown very gravelly loamy sand. The lower part of the subtratum, below a depth of 40 inches, is about 10 percent cobbles.

Included with this soil in mapping are small areas of Jarre gravelly sandy loam, 1 to 8 percent slopes; Bresser sandy loam; Truckton sandy loam; and Ascalon sandy loam.

Permeability of this Chaseville soil is rapid. Effective rooting depth is 60 inches or more. Available water capacity is low. Surface runoff is slow, and the hazard of erosion is moderate.

This soil is used mainly as native rangeland. It is also used as homesites and for wildlife habitat.

Rangeland vegetation is mainly western wheatgrass, side-oats grama, needleandthread, and little bluestem. The main shrub on this site is true mountainmahogany.

Proper location of livestock watering facilities helps to control grazing.

Windbreaks and environmental plantings are suited to this soil. Low available water capacity is the main limitation to the establishment of tree and shrub plantings. Summer fallow a year in advance and continued cultivation for weed control are needed to insure the establishment and survival of plantings. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac and lilac.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for homesites. Because of its high gravel content, problems with excavations may arise because cut banks cave in. A surface dressing of topsoil is needed where the very gravelly subsoil is exposed or where vegetation has been removed during site preparation. Caution should be exercised when locating septic tank absorption fields because of possible pollution of water supplies as a result of the rapid permeability of this soil. Capability subclass VIe.

17—Chaseville gravelly sandy loam, 8 to 40 percent slopes. This deep, somewhat excessively drained soil formed in arkosic alluvial sediment on alluvial fans, terraces, and side slopes. Elevation ranges from 6,100 to 7,000 feet. The average annual precipitation is about 17 inches, the average annual air temperature is about 47 degrees F, and the average frost-free season is about 135 days.

Typically, the surface layer is dark grayish brown gravelly sandy loam about 6 inches thick. The subsurface layer is dark grayish brown very gravelly sandy loam about 13 inches thick. The substratum is reddish gray extremely gravelly loamy coarse sand and brown very gravelly loamy sand. The part of the substratum below a depth of 40 inches is about 10 percent cobbles.

Included with this soil in mapping are small areas of Jarre gravelly sandy loam, 1 to 8 percent slopes; Nederland cobbly sandy loam, 9 to 25 percent slopes; and Bresser sandy loam, 5 to 9 percent slopes.

Permeability of this Chaseville soil is rapid. Effective rooting depth is 60 inches or more. Available water capacity is low. Surface runoff is slow to medium, and the hazard of erosion is moderate to high.

This soil is used mainly as rangeland. It is also used for recreation, wildlife habitat, and homesites.

Native vegetation is mainly western wheatgrass, sideoats grama, needleandthread, and little bluestem. The prominent shrub on this site is true mountainmahogany. Yucca is present in some places.

Proper location of livestock watering facilities helps to control grazing.

survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

These soils are suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

These soils have a good potential for homesites. The main limitations, especially on the Peyton soil, are low bearing strength and frost-action potential. Buildings and roads can be designed to overcome these limitations. Access roads should have adequate cut-slope grade and be provided with drains to control surface runoff and keep soil losses to a minimum. Capability subclass VIe.

69—Peyton-Pring complex, 8 to 15 percent slopes. These gently to moderately sloping soils are on valley side slopes and on uplands. Elevation ranges from 6,800 to 7,600 feet. The average annual precipitation is about 17 inches, the average annual air temperature is about 43 degrees F, and the average frost-free period is about 120 days.

The Peyton soil makes up about 40 percent of the complex, the Pring soil about 30 percent, and other soils about 30 percent.

Included with these soils in mapping are areas of Holderness loam, 8 to 15 percent slopes; Tomah-Crowfoot loamy sands, 8 to 15 percent slopes; Kettle gravelly loamy sand, 8 to 40 percent slopes; and a few areas of Rock outcrop.

The Peyton soil is commonly on the less sloping part of the landscape. It is deep, noncalcareous, and well drained. It formed in alluvium and residuum derived from weathered, arkosic, sedimentary rock. Typically, the surface layer is grayish brown sandy loam about 12 inches thick. The subsoil, about 23 inches thick, is pale brown sandy clay loam in the upper 13 inches and pale brown sandy loam in the lower 10 inches. The substratum is pale brown sandy loam to a depth of 60 inches or more.

Permeability of the Peyton soil is moderate. Effective rooting depth is 60 inches or more. Available water capacity is high. Surface runoff is medium to rapid, and the hazard of erosion is moderate to high. Some gullies have developed along drainageways and livestock trails.

The Pring soil is deep, noncalcareous, and well drained. It formed in sandy sediment derived from weathered, arkosic, sedimentary rock. Typically, the surface layer is dark grayish brown coarse sandy loam about 4 inches thick. The substratum is dark grayish brown coarse sandy loam about 10 inches thick over pale brown gravelly sandy loam that extends to a depth of 60 inches or more.

Permeability of the Pring soil is rapid. Effective rooting depth is 60 inches or more. Available water capacity is moderate. Surface runoff is medium to rapid, and the hazard of erosion is moderate to high. Some gullies have developed along drainageways and livestock trails.

The soils in this complex are used as rangeland, for wildlife habitat, and for homesites. These soils are well suited to the production of native vegetation suitable for grazing. The dominant native species are mountain muhly, bluestem grasses, needleandthread, and blue grama. These soils are subject to invasion of Kentucky bluegrass and Gambel oak. Common forbs are hairy goldenrod, geranium, milkvetch, low larkspur, fringed sage, and buckwheat.

Properly locating livestock watering facilities helps to control grazing. Timely deferment of grazing is needed to protect the plant cover.

Windbreaks and environmental plantings generally are suited to these soils. Soil blowing is the main limitation to the establishment of trees and shrubs. This limitation can be overcome by cultivating only in the tree rows and leaving a strip of vegetation between the rows. Supplemental irrigation may be needed when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

These soils are well suited to wildlife habitat. They are best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

These soils have good potential for use as homesites. The main limitations are steepness of slope, limited ability to support a load, and frost-action potential. Buildings and roads can be designed to overcome these limitations. These soils also require special site or building designs because of the slope. Access roads should have adequate cut-slope grade, and drains should be provided to control surface runoff and keep soil losses to a minimum. Capability subclass VIe.

70—Pits, gravel. Gravel pits are in nearly level to rolling areas. They are open excavations several feet deep and commonly 5 acres or less in size.

Gravel pits are very low in natural fertility and are highly susceptible to soil blowing. A cover of weeds or straw helps to control erosion.

Windbreaks and environmental plantings generally are not suited to these areas. Onsite investigation is needed to determine if plantings are feasible. Capability subclass VIIIs.

71—Pring coarse sandy loam, 3 to 8 percent slopes. This deep, noncalcareous, well drained soil formed in sandy sediment derived from arkosic sedimentary rock on valley side slopes and on uplands. Elevation ranges from 6,800 to 7,600 feet. The average annual precipitation is about 17 inches, the average annual air temperature is about 43 degrees F, and the average frost-free period is about 120 days.

Typically, the surface layer is dark grayish brown coarse sandy loam about 4 inches thick. The substratum is dark grayish brown coarse sandy loam about 10 inches thick over pale brown gravelly sandy loam that extends to a depth of 60 inches or more.

Appendix

Vicinity Map

Sample Field Inspection Sequence and Field Inspection Report

CM Installation and Maintenance Details*

Colorado Springs SCM Detail and Description	Map Key <u>Abbreviation</u>
CD – Check Dam	CD
CIP – Culvert Inlet Protection	CIP
CWA – Concrete Washout Area	CWA
ECB – Erosion Control Blanket	ECB
IP – Inlet Protection	IP-1, IP-2, IP-3, IP-4
PT – Portable Toilet	PT
RS – Rock Sock	RS
SCL – Sediment Control Log	SCL
SF – Silt Fence	SF
SM – Seeding and Mulching	SM
SP – Stockpile Protection	SP
SR – Surface Roughening	SR
ST – Slope Tracking	ST
TCB – Temporary Compacted Berm	TCB
TSB – Temporary Sediment Basin	TSB
TSD – Temporary Slope Drain	TSD
VTC – Vehicle Tracking Control	VTC
UDFCD Detail and Description	Map Key <u>Abbreviation</u>
EC-10 – Earth Dikes and Drainage Swales	ED/DS
SM-6 – Stabilized Staging Area	SSA
SM-7 – Street Sweeping and Vacuuming	SS
MM-3 – Good Housekeeping Practices	GH
SM-6 – Stabilized Staging Area SM-7 – Street Sweeping and Vacuuming	SSA SS

Note: Additional CM's, other than those shown to be utilized on the Site Map, are included in the CM Details section to facilitate use of alternate or additional CM's at the discretion of the GEC Administrator. Any alternate or additional CM's employed will be added to the Site Map by the GEC Administrator.

COLORADO DEPARTMENT OF TRANSPORTATION **STORMWATER FIELD INSPECTION REPORT - ACTIVE CONSTRUCTION**

(1) Project Name:	(2) Project Contractor:	(3) SWMP Administrator (Qualified / Erosion Control Inspector:	Stormwater Manager)
(4) CDOT Project Engineer/CDOT Designee:	(5) Other Attendee(s) (Name and Title):	·	
(6) CDOT Project Number:	(7) Project Code (Sub Account #):	(8) CDPS-SCP Certification#:	(9) CDOT Region:
(10) Date of Project Inspection:	(11) Weather at Time of Inspection:	•	

(12) REASON FOR INSPECTION / EXCLUSION

C Routine Inspection: (A routine erosion control inspection shall be conducted at a minimum, once every 7 Calendar Days)

Runoff Event: (Post-storm event inspections must be conducted within 24 hours after the end of any precipitation or snowmelt event that causes surface erosion. If no construction activities will occur following a storm event, post-storm event inspections shall be conducted prior to re-commencing construction activities, but no later than 72 hours following the storm event. The occurrence of any such delayed inspection must be documented in the inspection record.) Routine inspections still must be conducted every 7 calendar days. Storm Start Date:

Approximate End Time of Storm (hrs):

 Third Party Request: Winter Conditions Inspections Exclusion: Inspections are not required at sites where construction activities are temporarily halted, snow cover exists over the entire site for an extended period, and melting conditions posing a risk of surface erosion do not exist. This exception is applicable only during the period where melting conditions do not exist, and applies to the routine 7-day inspections, as well as the poststorm-event inspections. If visual inspection of the site verifies that all of these conditions are satisfied, document the conditions in section 17 (General Notes) and proceed to section 18 (Inspection Certification). Documentation must include: dates when snow cover existed, date when construction activities ceased, and date when melting conditions began.

Other:

(13) SWMP MANAGEMENT

	Yes	No	N/A	(g) Reason for N/A
(a) Is the SWMP located on site?				
(b) Are changes to the SWMP documents noted and approved?				
(c) Are the inspection reports retained in the SWMP?				
(d) Are corrective actions from the last inspection completed?				
(e) Is the Spill Response Plan updated in the SWMP?				
(f) Is a list of potential pollutants updated in the SWMP?				

(14) CURRENT CONSTRUCTION ACTIVITIES

(a)Describe current phase of construction activities				
(b)Estimate of disturbed area at the time of the inspection, use guidance found in 208.04 (e):				
	Acres	Notes		
Temporary Stabilization (includes areas of vertically tracked and/or surface roughened temporary stabilizing surface treatments) +				
Interim Stabilization (spray on soil tackifier such as organic mulch tackifier, bonded fiber matrix, wood cellulose fiber with tackifier, etc.) +				
Permanent Stabilization (includes areas of permanent seeding that have not achieved 70% of pre-disturbance vegetation levels) +				
Other (Includes ground disturbing, clearing and grubbing, materials storage, equipment staging, haul roads) +				
Total acres of disturbance (includes cumulative total number of acres including: temporary, interim, permanent stabilized and other) =				
(c) Has the SWMP Phased Control Measure Implementation Matrix been updated? Yes				

The Construction Site Boundary/Limits of Corr discharge locations, and locations where vehi drainage system, or discharging to State wate	nstruction (LO icles exit the s ers. If there is	C), all disturl site shall be i evidence of	The Construction Site Boundary/Limits of Construction (LOC), all disturbed areas, designated haul roads, material and/or waste storage areas that are exposed to precipitation, discharge locations, and locations where vehicles exit the site shall be inspected for evidence of, or the potential for, pollutants leaving the LOC, entering the stormwater drainage system, or discharging trom the state waters. If there is evidence of sediment or other pollutants discharging from the site, see section 16 (Construction Site Assessment).	itation, r ent).
All erosion and sediment control practices identified in the SWMP shall , control measure, using more than one letter if necessary: (I) Inadequate control measure. Keep copies of this blank page for additional room if r	ntified in the recessary: (l age for additi	SWMP shall () Inadequate onal room if r	All erosion and sediment control practices identified in the SWMP shall be evaluated to ensure that they are maintained and operating correctly. Identify the condition of the control measure, using more than one letter if necessary: (I) Inadequate control measure; (M) Maintenance is needed; (A) Additional control measure is needed; (R) Remove control measure. Keep copies of this blank page for additional room if needed.	the nove
Continuous maintenance is required on all control measures. As per CDPS-SCP: "Con have failed must be addressed as soon as possible, immediately in most cases."	ntrol measure possible, im	s. As per Cl mediately in	Continuous maintenance is required on all control measures. As per CDPS-SCP: "Control measures that are not operating effectively, have proven to be inadequate, or have failed must be addressed as soon as possible, immediately in most cases."	ate, or
Location		Condition	Comments: Date	Date
	Imeasure		Completed & Completed & Completed & Completed & Main & Main & Main & Completed & Completed	ipieteu nitials

(15) CONSTRUCTION SITE ASSESSMENT & CORRECTIVE ACTIONS **Off-site Pollutant Discharges are a Violation of the Permit and Reason for Immediate Project Suspension**

(a) Is there evidence of discharge of sediment or other pollutants from the site? □ Yes □ No *If yes, explain the discharge, the location and the associated corrective actions in section 15 (Construction Site Assessment & Corrective Actions) or section 18 (General Notes).	☐ Yes ☐ No tion 15 (Construction Site Assessment & Corrective Actions) or section 18 (General Notes).
(b) Has sediment or other pollutants discharging from the site reached State waters? \Box Y *If yes, see subsection 208.03(c) and Part I.L.6 of the permit for reporting requirements.	□ Yes □ No S.
(17) GENERAL NOTES	
(18) INSPECTION CERTIFICATION	
By signing this form, I certify that I attended the inspection in accordance with specification 208.03	1 208.03.
Contractor's SWMP Administrator (Qualified Stormwater Manager) Print Name: Signature Required:	Date:
Contractor's Erosion Control Inspector (If Needed): Print Name: Signature (if needed)	Date:
(19) COMPLIANCE CERTIFICATION	
I verify that, to the best of my knowledge and belief, that if any corrective action items wer is currently in compliance with the permit (Part I.A.3.f.i).	action items were identified during the inspection, those corrective actions are complete, and the site
Contractor's SWMP Administrator/ECI Print Name: Signature Required:	Date
Contractor's Superintendent/Approved Designee Print Name: Signature Required:	Date:
CDOT Project Engineer/CDOT Designee Print Name: Signature Required:	Date:

(16) CONSTRUCTION SITE ASSESSMENT **Off-site Pollutant Discharges are a Violation of the Permit and Reason for Immediate Project Suspension**

Stormwater Management Field Inspection Report Instructions

State waters are defined to be any and all surface and subsurface waters which are contained in or flow through the state, including, streams, rivers, lakes, drainage ditches, storm drains, ground water, and wetlands, but not including waters in sewage systems, waters in treatment works of disposal systems, waters in potable water distribution systems, and all water withdrawn for use until use and treatment have been completed. (Per subsection 107.25 and 25-8-103 (19) CRS)

- (3) SWMP Administrator (Qualified Stormwater Manager) and Erosion Control Inspector: Indicate the name(s) of the individual responsible for implementing, maintaining and revising the SWMP. An Erosion Control Inspector(s) may be the SWMP Administrator in projects with not more than 40 acres of disturbance (see 208.03(c)).
- (4) CDOT Project Engineer/CDOT Designee: Indicate the name of the CDOT representative performing the inspection with the SWMP Administrator/Erosion Control Inspector(s). This person should be the Project Engineer or an authorized representative.
- (9) CDPS-SCP Certification #: Indicate the Colorado Discharge Permit System (CDPS) Stormwater Construction Permit (SCP) (for Stormwater Discharges Associated with Construction Activities) certification number, issued by CDPHE, for the project which the report is being completed. Certification number can be found on the first page of the SCP.
- (12) Reason(s) for Inspection / Exclusion: Indicate the purpose for the inspection or exclusion. These inspections are required to comply with the CDOT Specifications and the CDPS-SCP.

□ Routine Inspections. These inspections are required at least every 7 calendar days during active construction. Suspended projects require the 7 calendar day inspection unless snow cover exists over the entire site for an extended period of time, and melting conditions do not exist (see, Winter Conditions Inspections Exclusions). □ Runoff Event Inspection for Active Sites. See page 1 for definition.

Third Party Request. Indicate the name of the third party requesting the inspection and, if known, the reason the request was made.

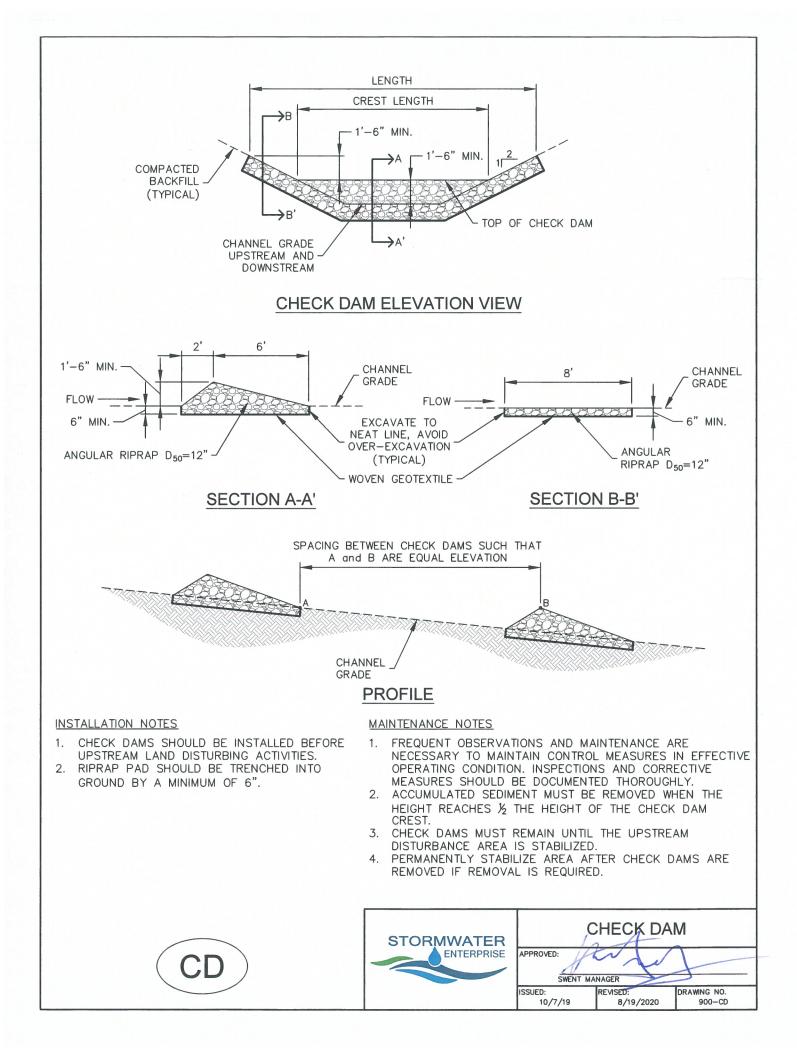
□ Winter Conditions Inspections Exclusions. See page 1 for definition. An inspection does not need to be completed, but use this form to document the conditions that meet the Exclusion. □ Other. Specify any other reason(s) that resulted in the inspection.

- (13) SWMP Management: Review the SWMP records and documents and use a ✓ to answer the question. To comply with CDOT Standard Specifications and the CDPS-SCP, all of the items identified must be adhered to. If No is checked, indicate the necessary corrective action in section 15 (Construction Site Assessment & Corrective Actions). Specification 208.03(d).
 - a) A copy of the SWMP must be retained on site, unless another location (specified by the permit) is approved by the Division.
 - b) Indicate all changes that have been made to any portion of the SWMP documents during construction. Changes shall be dated and signed at the time of occurrence. Amendments may include items listed in subsection 208.03(d).
 - c) The SWMP Administrator shall keep a record of inspections. Inspection reports must identify any incidents of noncompliance with the terms and conditions of the CDOT specifications or the CDPS-SCP. Inspection records must be retained for three years from expiration or inactivation of permit coverage.
 - d) Are corrective actions from the last inspection completed? Is a description of the corrective action(s), the date(s) of the corrective action(s), and the measure(s) taken to prevent future violations (including changes to the SWMP, as necessary) documented?
 - e) Subsection 208.06(c) requires that a Spill Response Plan be developed and implemented to establish operating procedures and that the necessary employee training be provided to minimize accidental releases of pollutants that can contaminate stormwater runoff. Records of spills, leaks or overflows that result in the discharge of pollutants must be documented and maintained. Information that should be recorded for all occurrences include the time and date, weather conditions, reasons for spill, etc. Some spills may need to be reported to the Water Quality Control Division immediately.
 - f) (f) Subsection 107.25(b)6 requires the Erosion Control Supervisor to identify and describe all potential pollutant sources, including materials and activities, and evaluate them for the potential to contribute pollutants to stormwater discharge.
 - g) (g) If N/A is checked for any of the items (a) through (f), indicate why in the space provided, if additional space is needed indicate in section 17 (General Notes).

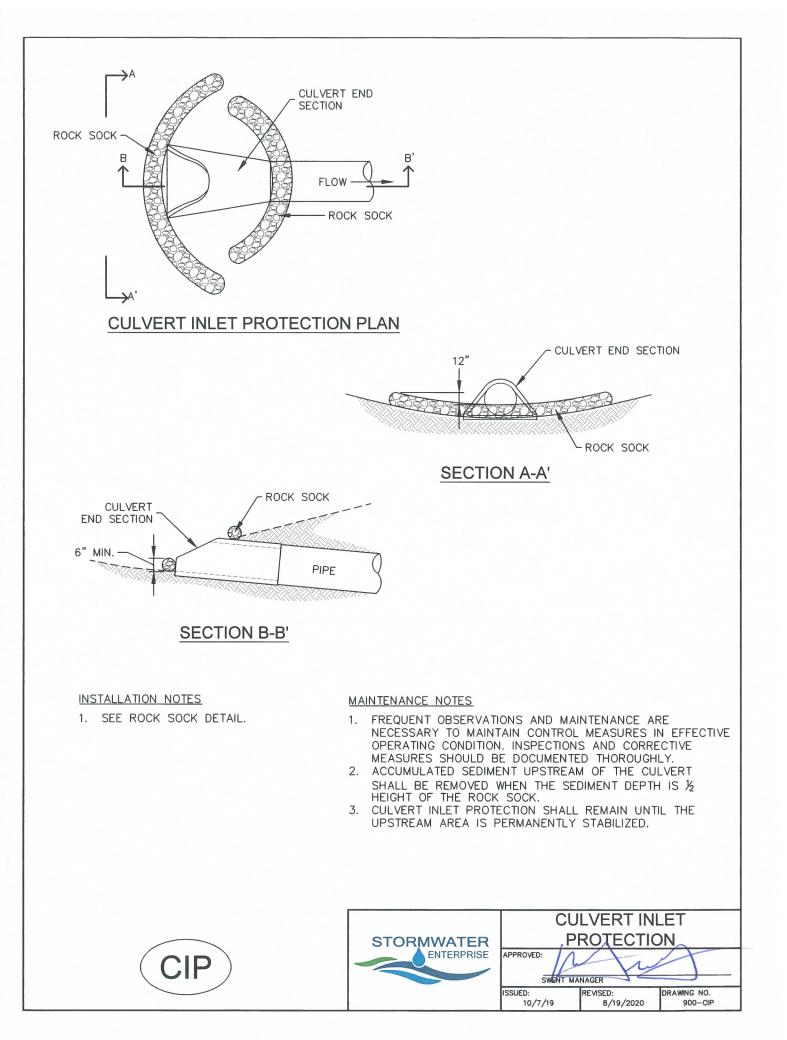
(14) Current Construction Activities:

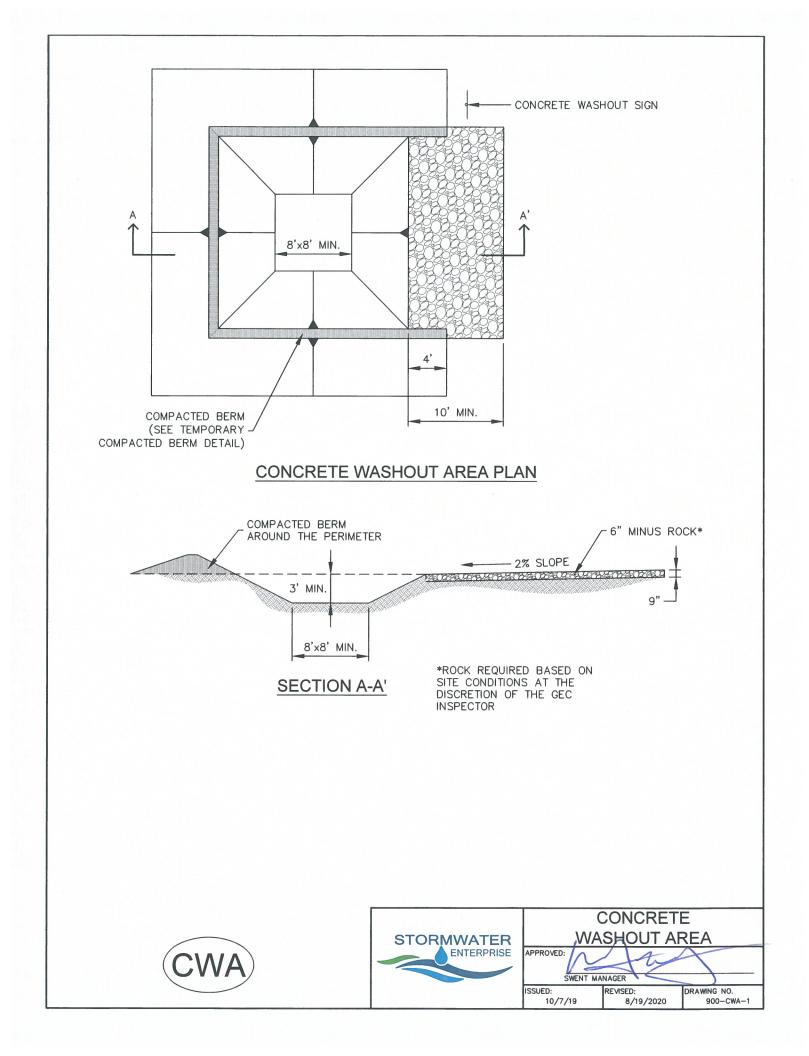
- a) Provide a short description of the current construction activities/phase at the project site; include summary of grading activities, installation of utilities, paving, excavation, landscaping, etc.
- (1) Estimate of disturbed area at the time of the inspection, use guidance found in 208.04 (e). Estimate the acres of disturbed area at the time of the inspection. Include clearing, grading, excavation activities, areas receiving overburden (e.g. stockpiles), demolition areas and areas with heavy equipment/vehicle traffic, installation of new or improved haul roads and access roads, staging areas, borrow areas and storage that will disturb existing vegetative cover, (Areas that have been: hard armored or paved should not be counted for total disturbance).
- b) Has the Phased control measure Implementation Matrix on the SWMP been updated? As part of the inspection the Phased control measure Implementation matrix for both the structural and non-structural control measures found at the beginning of the SWMP sheets must be reviewed to ensure that "In use on site" box is checked for control measures currently in use at the time of the inspection.
- (15) Construction Site Assessment & Corrective Actions: Inspect the construction site and indicate where control measure feature(s) identified in section 13 (SWMP Management), require corrective action. Erosion and sediment control practices identified in the SWMP shall be evaluated to ensure that they are operating correctly.
 - Condition. Identify the condition of the control measure, using more than one letter (identified in section 15) if necessary.
 - Location. Site location (e.g., project station number, mile marker, intersection quadrant, etc.).
 - Control measure. Indicate the type of control measure at this location that requires corrective action (e.g., silt fence, erosion logs, soil retention blankets, etc.).
 - Date Completed & Initials. Date and initial when the corrective action was completed and the preventative measure statement finished.
 - Description of Corrective Action and Preventative Measure Taken. Provide the proposed corrective action needed to bring the area or control measure into compliance. Once corrective actions are completed, state the measures taken to prevent future violations and ensure that the control measures are operating correctly, including the required changes made to the
 - SWMP.

Inadequate control measure: Is any control measure that is not designed or implemented in accordance with the requirements of the permit and/or any control measure that is not implemented to operate in accordance with its design, this includes control measures that have not been implemented for pollution sources. If it is infeasible to install or repair the control measure immediately after discovering the deficiency the reason must be documented and a schedule included to return the control measure to effective operating condition as soon as possible.


Control measures requiring routine maintenance: Any control measure that is still operating in accordance with its design and the requirements of the permit, but requires maintenance to prevent a breach of the control measure. These items are not subject to the corrective action requirements as specified in Part I.b.1.c of the permit.

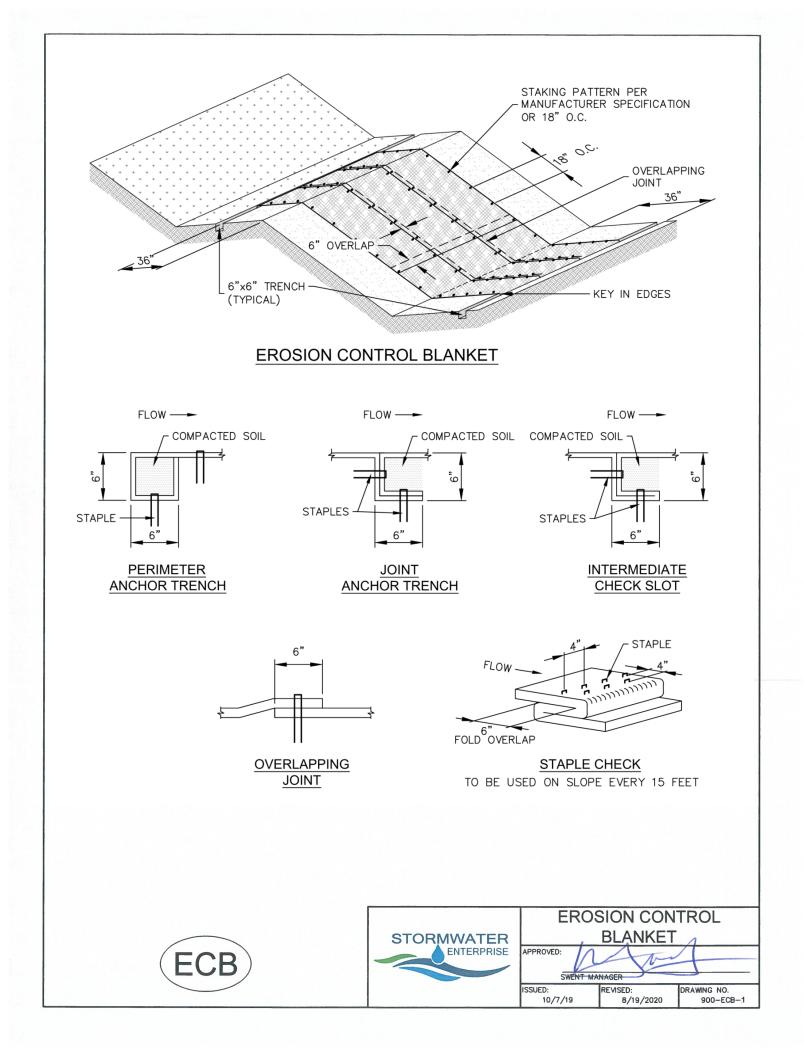
Additional: Any control measure inadequate for its application or an area with insufficient control measure(s). If it is infeasible to install revised or additional control measure(s) immediately after discovering the deficiency the reason must be documented and a schedule included to return the control measure to effective operating condition as soon as possible.


Remove: Control measure no longer necessary


(16) Construction Site Assessment: Was there any off site discharge of sediment at this site since the last inspection?

- a) Is there evidence of discharge of sediment or other pollutants from the site? Off-site pollutant discharges are a violation of the permit. (The construction site perimeter, all disturbed areas, material and/or waste storage areas that are exposed to precipitation, discharge locations, and locations where vehicles access the site shall be inspected for evidence of, or the potential for, pollutants leaving the construction site boundaries, entering the stormwater drainage system).
- b) Are pollutants discharging to State water?
- c) Has sediment or other pollutants discharging from the site reached State waters? Off-site pollutant discharges are a violation of the permit. If off site discharge has occurred, explain the discharge and the corrective actions in section 15 (Construction Site Assessment & Corrective Actions) or section 17 (General Notes).

- (17) General Notes: Indicate any additional notes that add detail to the inspection; this may include positive practices noted on the project.
- (18) Inspection Certification: In accordance with 208.03, required personnel shall sign to verify that they were in attendance.
- (19) Compliance Certification: After all corrections have been made, this signature must be completed in accordance with Part I.A.3.f of the CDPS-SCP.



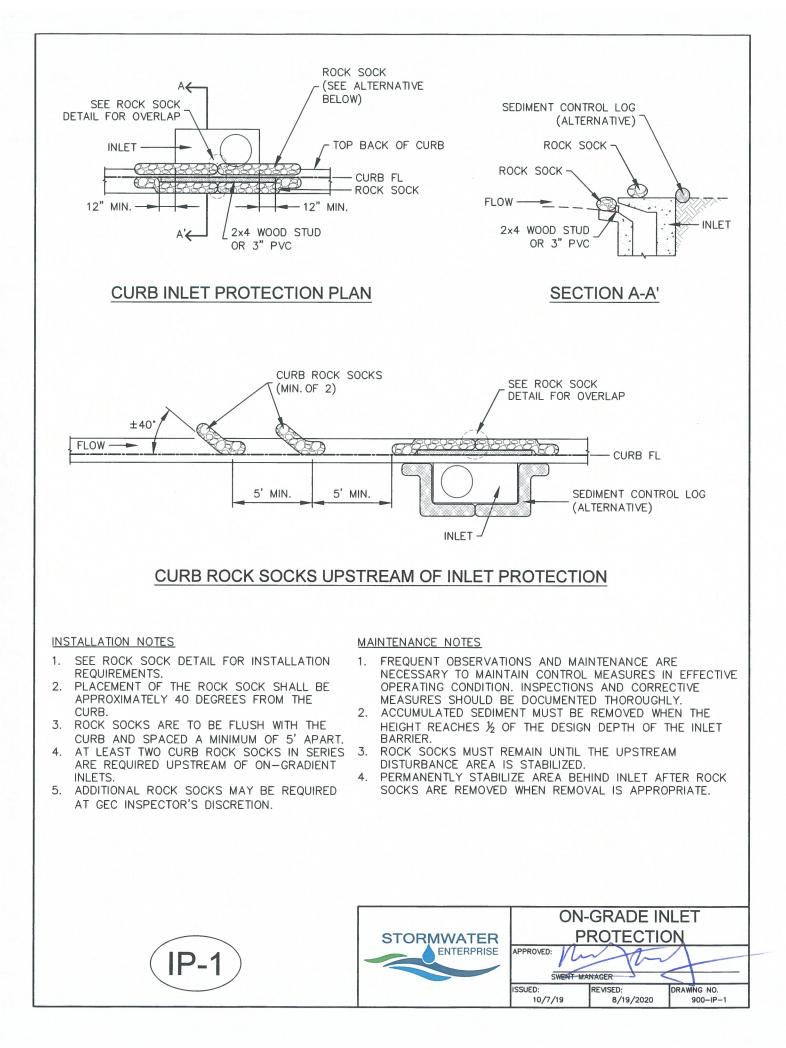
INSTALLATION NOTES

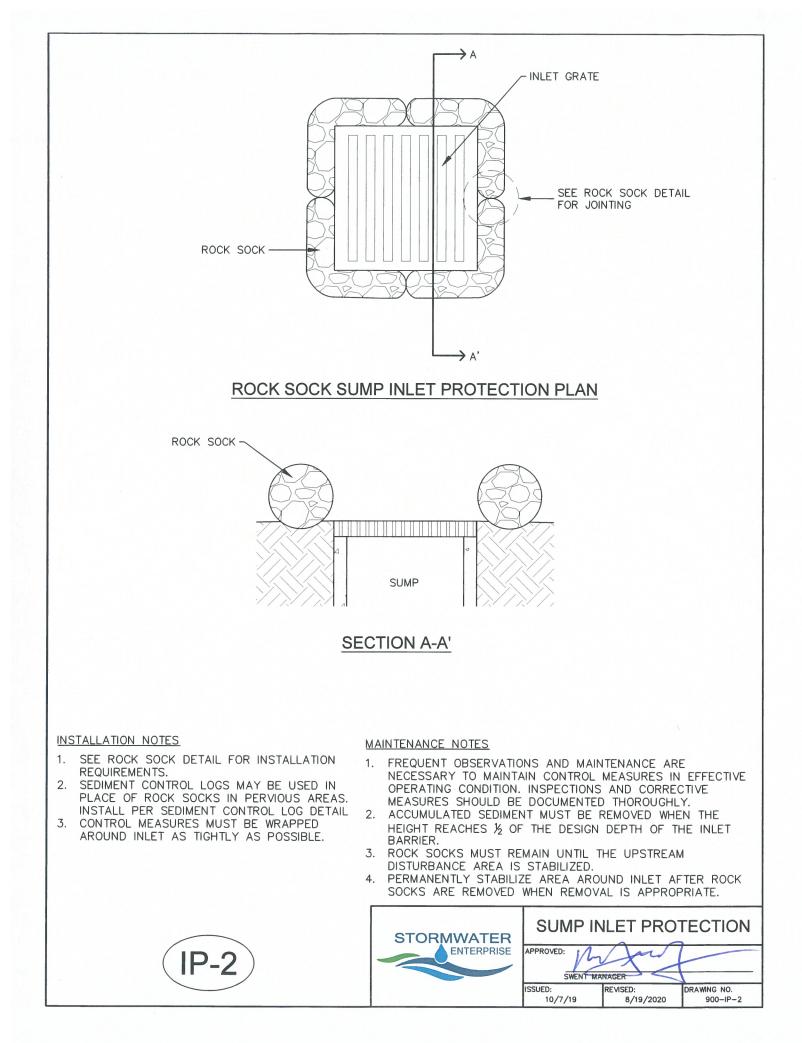
- 1. SEE PLAN VIEW FOR:
- -LOCATION OF CONCRETE WASHOUT AREA 2. LOCATE AT LEAST 50' AWAY FROM STATE
- WATERS MEASURED HORIZONTALLY.
- 3. AN IMPERMEABLE LINER (16 MIL. MINIMUM THICKNESS) IS REQUIRED IF CONCRETE WASH AREA IS LOCATED WITHIN 400' OF STATE WATERS OR 1000' OF WELLS OR DRINKING WATER SOURCES.
- 4. DO NOT LOCATE IN AREAS WHERE SHALLOW GROUNDWATER MAY BE PRESENT.
- 5. THE CONCRETE WASH AREA SHALL BE INSTALLED PRIOR TO CONCRETE PLACEMENT ON SITE.
- 6. CONCRETE WASH AREA SHALL INCLUDE A FLAT SUBSURFACE PIT THAT IS AT LEAST 8' BY 8'.
- BERM SURROUNDING SIDES AND BACK OF CONCRETE WASH AREA SHALL HAVE A MINIMUM HEIGHT OF 2 FEET.
- 8. CONCRETE WASH AREA ENTRANCE SHALL BE SLOPED 2% TOWARDS THE CONCRETE WASH AREA.
- 9. SIGNS SHALL BE PLACED AT THE CONCRETE WASH AREA.
- 10. USE EXCAVATED MATERIAL FOR PERIMETER BERM CONSTRUCTION.

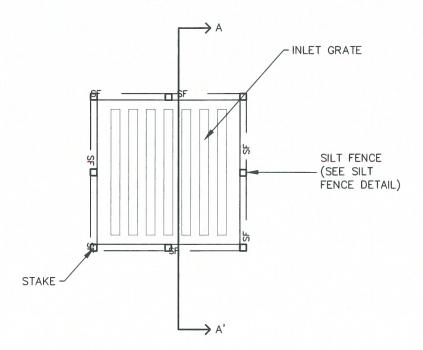
- 1. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN CONTROL MEASURES IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 2. THE CONCRETE WASH AREA SHALL BE REPAIRED, CLEANED, OR ENLARGED AS NECESSARY TO MAINTAIN CAPACITY FOR CONCRETE WASTE. CONCRETE MATERIALS ACCUMULATED IN THE PIT SHALL BE REMOVED ONCE THE MATERIALS HAVE REACHED A DEPTH OF ²/₃ THE HEIGHT OF THE CONCRETE WASH AREA.
- CONCRETE WASHOUT WATER, WASTED PIECES OF CONCRETE, AND ALL OTHER DEBRIS IN THE SUBSURFACE PIT SHALL BE TRANSPORTED FROM THE JOB SITE IN A WATER-TIGHT CONTAINER AND DISPOSED OF PROPERLY.
- 4. THE CONCRETE WASH AREA SHALL REMAIN IN PLACE UNTIL ALL CONCRETE FOR THE PROJECT IS PLACED.
- 5. PERMANENTLY STABILIZE AREA AFTER CONCRETE WASH AREA IS REMOVED.

INSTALLATION NOTES

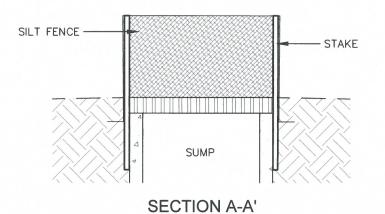
- 100% NATURAL AND BIODEGRADABLE MATERIALS ARE REQUIRED FOR EROSION CONTROL BLANKETS. TRM PRODUCTS MAY ME USED WHERE APPROPRIATE AS DESIGNATED BY THE ENGINEER.
- 2. IN AREAS WHERE EROSION CONTROL BLANKETS ARE SHOWN ON THE PLANS, THE PERMITTEE SHALL PLACE TOPSOIL AND PERFORM FINAL GRADING, SURFACE PREPARATION, AND SEEDING AND MULCHING. SUBGRADE SHALL BE SMOOTH AND MOIST PRIOR TO EROSION CONTROL BLANKET INSTALLATION, AND THE EROSION CONTROL BLANKET SHALL BE IN FULL CONTACT WITH THE SUBGRADE. NO GAPS OR VOIDS SHALL EXIST UNDER THE BLANKET.
- 3. PERIMETER ANCHOR TRENCH SHALL BE USED ALONG THE OUTSIDE PERIMETER OF ALL BLANKET AREAS.
- JOINT ANCHOR TRENCH SHALL BE USED TO JOIN ROLLS OF EROSION CONTROL BLANKETS TOGETHER (LONGITUDINALLY AND TRANSVERSELY) FOR ALL EROSION CONTROL BLANKETS.
- INTERMEDIATE CHECK SLOT OR STAPLE CHECK SHALL BE INSTALLED EVERY 15' DOWN SLOPES. IN DRAINAGEWAYS, INSTALL CHECK SLOTS EVERY 25' PERPENDICULAR TO FLOW DIRECTION.
- OVERLAPPING JOINT DETAIL SHALL BE USED TO JOIN ROLLS OF EROSION CONTROL BLANKETS TOGETHER FOR EROSION CONTROL BLANKETS ON SLOPES.
- MATERIAL SPECIFICATIONS OF EROSION CONTROL BLANKETS SHALL CONFORM TO TABLE ECB-1.
- 8. ANY AREAS OF SEEDING AND MULCHING DISTURBED IN THE PROCESS OF INSTALLING EROSION CONTROL BLANKETS SHALL BE RESEEDED AND MULCHED.
- 9. STRAW EROSION CONTROL BLANKETS SHALL NOT BE USED WITHIN STREAMS AND DRAINAGE CHANNELS.
- 10. COMPACT ALL TRENCHES.


MAINTENANCE NOTES

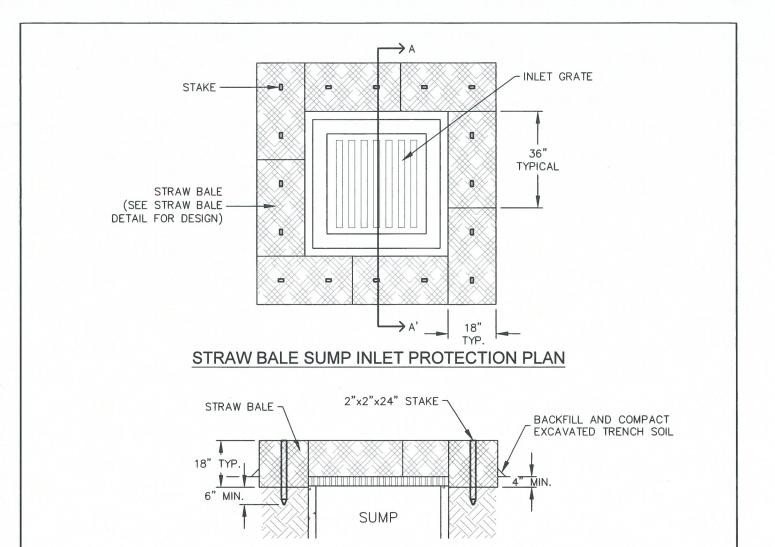

- 1. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN CONTROL MEASURES IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- EROSION CONTROL BLANKETS SHALL BE LEFT IN PLACE TO EVENTUALLY BIODEGRADE. TRM MUST BE REMOVED AT THE DISCRETION OF THE GEC INSPECTOR.
 ANY EROSION CONTROL BLANKET PULLED OUT, TORN,
- 3. ANY EROSION CONTROL BLANKET PULLED OUT, TORN, OR OTHERWISE DAMAGED SHALL BE REPAIRED OR REINSTALLED. ANY SUBGRADE AREAS BELOW GEOTEXTILE THAT HAVE ERODED TO CREATE A VOID UNDER THE BLANKET, OR THAT REMAIN DEVOID OF GRASS SHALL BE REPAIRED, RESEEDED AND MULCHED AND THE EROSION CONTROL BLANKET REINSTALLED.


TABLE ECB-1, EROSION CONTROL
BLANKET MATERIAL SPECIFICATIONSTYPECOCONUT
CONTENTSTRAW
CONTENTEXCELSIOR
CONTENTRECOMMENDED
NETTING

STRAW	-	100%	_	DOUBLE/ NATURAL
STRAW- COCONUT	30% MIN.	70% MAX.	-	DOUBLE/ NATURAL
COCONUT	100%	-	-	DOUBLE/ NATURAL
EXCELSIOR	-	-	100%	DOUBLE/ NATURAL


	EROS	SION CON	TROL
STORMWATER	, BLANKET A		
ENTERPRISE	APPROVED:	Atra	
	SWENT MA	NAGER	1
	ISSUED: 10/7/19	REVISED: 8/19/2020	DRAWING NO. 900-ECB-2

SILT FENCE SUMP INLET PROTECTION PLAN

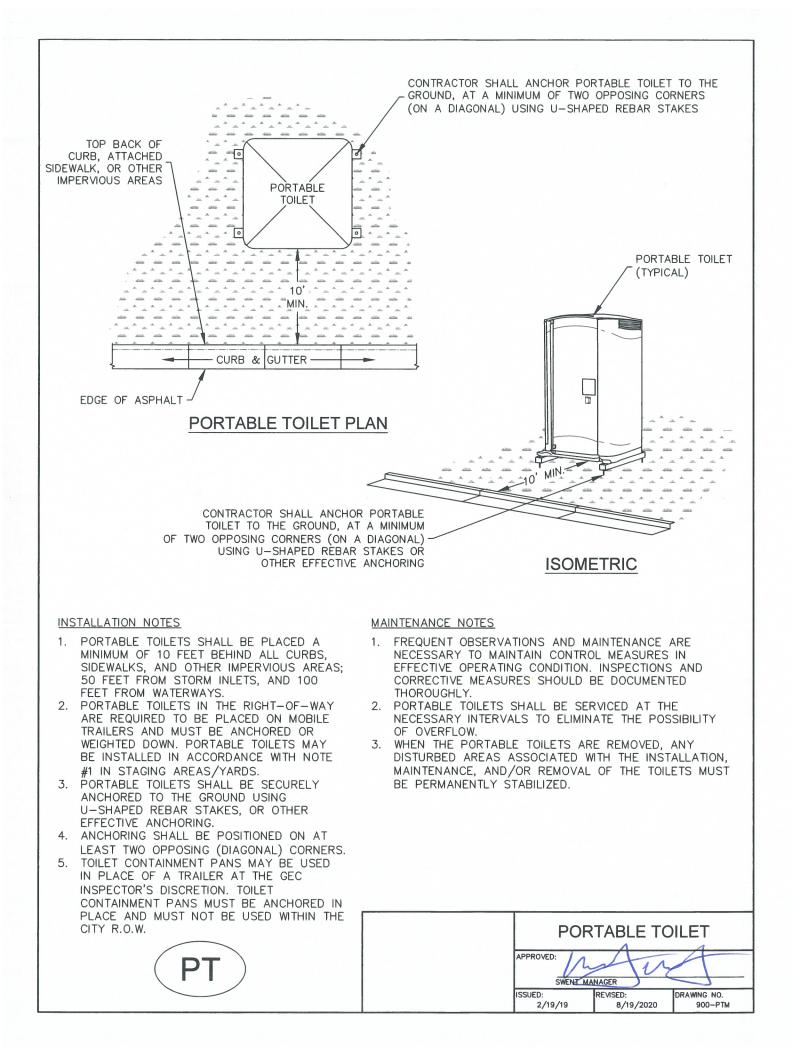


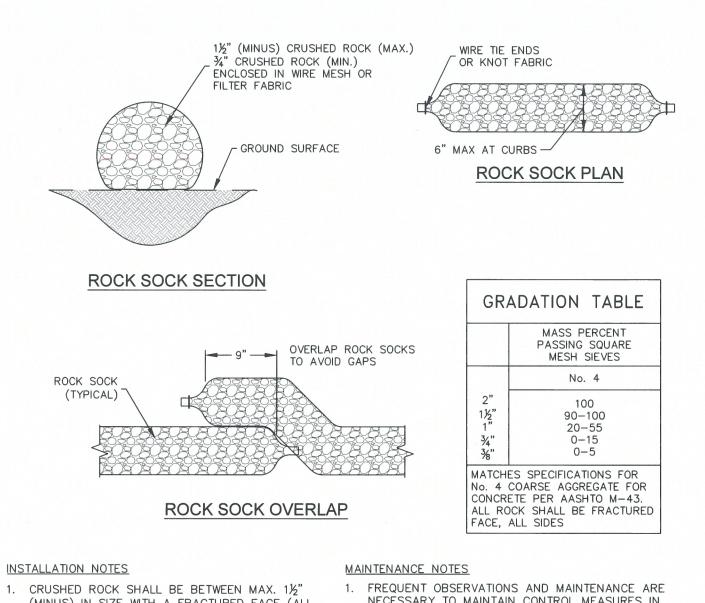
INSTALLATION NOTES

- 1. SEE SILT FENCE DETAIL FOR INSTALLATION REQUIREMENTS.
- 2. POSTS SHALL BE PLACED AT EACH CORNER OF THE INLET AND AROUND THE EDGES AT A MAXIMUM SPACING OF THREE FEET.
- 3. SILT FENCE FABRIC SHOULD HAVE A FLOW RATE IN EXCESS OF 30 GALLONS PER MINUTE PER SQUARE YARD SO AS TO ALLOW SOME WATER FLOW AND NOT DAM THE WATER. STANDARD, LOW-FLOW SILT FENCE FABRIC WILL NOT BE ALLOWED.

- 1. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN CONTROL MEASURES IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 2. ACCUMULATED SEDIMENT MUST BE REMOVED WHEN THE HEIGHT REACHES ½ OF THE DESIGN DEPTH OF THE INLET BARRIER.
- 3. SILT FENCE MUST REMAIN UNTIL THE UPSTREAM DISTURBANCE AREA IS STABILIZED.
- 4. PERMANENTLY STABILIZE AREA AROUND INLET AFTER SILT FENCE IS REMOVED WHEN REMOVAL IS APPROPRIATE.

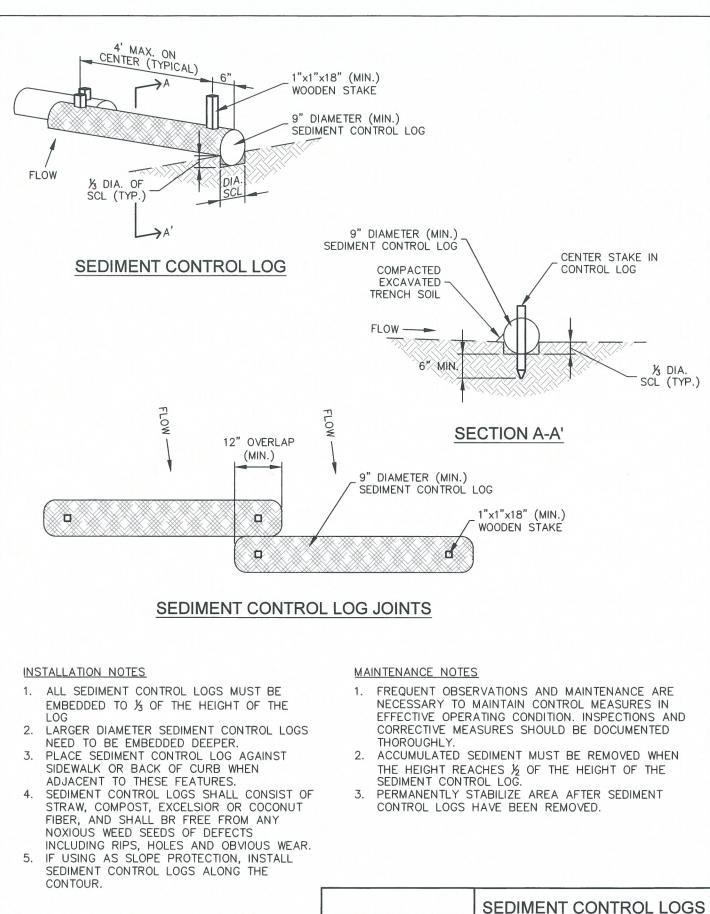
SECTION A-A'


INSTALLATION NOTES


- 1. BALES SHALL BE PLACED IN A SINGLE ROW AROUND THE INLET WITH THE ENDS OF THE BALES TIGHTLY ABUTTING ONE ANOTHER.
- 2. STRAW BALES SHALL CONSIST OF CERTIFIED WEED FREE STRAW OR HAY. LOCAL JURISDICTIONS MAY REQUIRE PROOF THAT BALES ARE WEED FREE.
- 3. STRAW BALES SHALL CONSIST OF APPROXIMATELY 5 CUBIC FEET OF STRAW OR HAY AND WEIGH NOT LESS THAN 35 POUNDS.
- STRAW BALE DIMENSIONS SHALL BE APPROXIMATELY 36"x18"x18".
- 5. A UNIFORM ANCHOR TRENCH SHALL BE EXCAVATED TO A DEPTH OF 4". STRAW BALES SHALL BE PACED SO THAT THE BINDING TWINE IS ENCOMPASSING THE VERTICAL SIDES OF THE BALE(S).
- TWO (2) WOODEN STAKES SHALL BE USED TO HOLD EACH BALE IN PLACE. WOODEN STAKED SHALL BE 2"x2"x24 (MIN.)". WOODEN STAKES SHALL BE DRIVEN A MINIMUM OF 6" INTO THE GROUND.

IP-4

- 1. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN CONTROL MEASURES IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 2. ACCUMULATED SEDIMENT MUST BE REMOVED WHEN THE HEIGHT REACHES ½ OF THE DESIGN DEPTH OF THE INLET BARRIER.
- 3. STRAW BALES MUST REMAIN UNTIL THE UPSTREAM DISTURBANCE AREA IS STABILIZED.
- PERMANENTLY STABILIZE AREA AROUND INLET AFTER STRAW BALES ARE REMOVED WHEN REMOVAL IS APPROPRIATE.
- 5. STRAW BALES SHALL BE REPLACED IF THEY BECOME HEAVILY SOILED, ROTTEN OR DAMAGED BEYOND REPAIR.

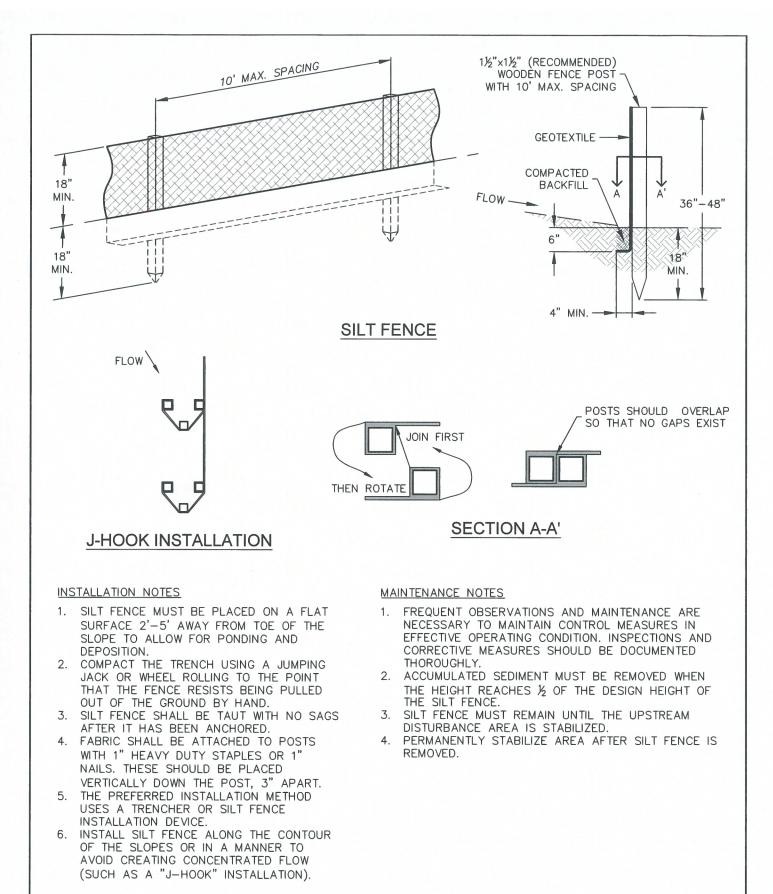


- (MINUS) IN SIZE WITH A FRACTURED FACE (ALL SIDES) AND SHALL COMPLY WITH GRADATION SHOWN ON THIS SHEET AND MIN. ¾" CRUSHED ROCK.
- 2. WIRE MESH SHALL HAVE OPENINGS SMALLER THAN THE SMALLEST SIZE ROCK.
- WIRE MESH SHALL BE SECURED USING 'HOG RINGS' OR WIRE TIES AT 6" CENTERS ALONG ALL JOINTS AND AT 2" CENTERS ON ENDS OF SOCKS.

RS

- 1. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN CONTROL MEASURES IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 2. ROCK SOCKS SHALL BE REPLACED IF THEY BECOME HEAVILY SOILED OR DAMAGED BEYOND REPAIR.
- 3. ACCUMULATED SEDIMENT SHALL BE REMOVED WHEN THE DEPTH REACHES ½ OF THE HEIGHT OF THE ROCK SOCK.
- 4. ROCK SOCKS ARE TO REMAIN IN PLACE UNTIL DISTURBED AREA IS STABILIZED.
- 5. PERMANENTLY STABILIZE AREA AFTER ROCK SOCKS HAVE BEEN REMOVED.

STORMWATER	R	ROCK SOC	K
ENTERPRISE	APPROVED:	MAGER	4
	ISSUED: 10/7/19	REVISED: 8/19/2020	DRAWING NO. 900-RS



STORMWATER	SEDIMEN	NT CONT
ENTERPRISE	APPROVED:	INAGER
	ISSUED: 10/7/19	REVISED: 8/19/2020

DRAWING NO.

900-SCL

S(

SF SILT FENCE

SEEDING & MULCHING

ALL SOIL TESTING, SOILS AMENDMENT AND FERTILIZER DOCUMENTATION, AND SEED LOAD AND BAG TICKETS MUST BE ADDED TO THE CSWMP.

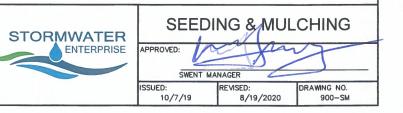
SOIL PREPARATION

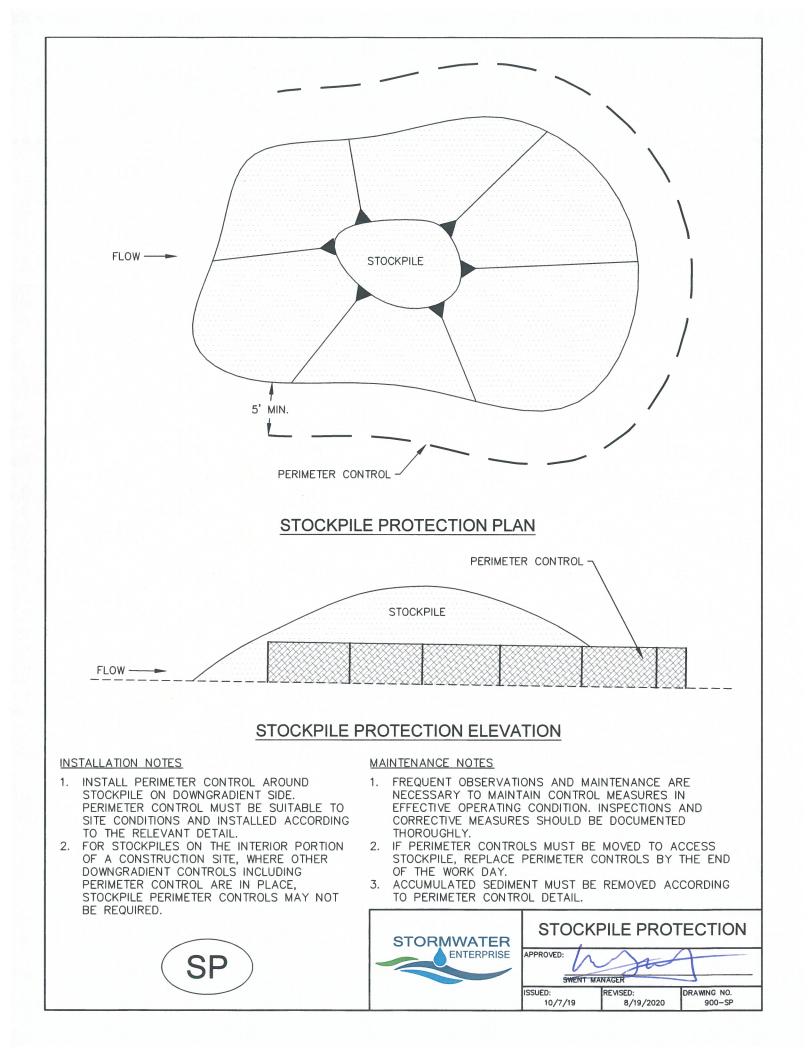
- 1. IN AREAS TO BE SEEDED, THE UPPER 6 INCHES OF THE SOIL MUST NOT BE HEAVILY COMPACTED, AND SHOULD BE IN FRIABLE CONDITION. LESS THAN 85% STANDARD PROCTOR DENSITY IS ACCEPTABLE. AREAS OF COMPACTION OR GENERAL CONSTRUCTION ACTIVITY MUST BE SCARIFIED TO A DEPTH OF 6 TO 12 INCHES PRIOR TO SPREADING TOPSOIL TO BREAK UP COMPACTED LAYERS AND PROVIDE A BLENDING ZONE BETWEEN DIFFERENT SOIL LAYERS.
- 2. AREAS TO BE PLANTED SHALL HAVE AT LEAST 4 INCHES OF TOPSOIL SUITABLE TO SUPPORT PLANT GROWTH.
- 3. THE CITY RECOMMENDS THAT EXISTING AND/OR IMPORTED TOPSOIL BE TESTED TO IDENTIFY SOIL DEFICIENCIES AND ANY SOIL AMENDMENTS NECESSARY TO ADDRESS THESE DEFICIENCIES. SOIL AMENDMENTS AND/OR FERTILIZERS SHOULD BE ADDED TO CORRECT TOPSOIL DEFICIENCIES BASED ON SOIL TESTING RESULTS.
- 4. TOPSOIL SHALL BE PROTECTED DURING THE CONSTRUCTION PERIOD TO RETAIN ITS STRUCTURE AVOID COMPACTION, AND TO PREVENT EROSION AND CONTAMINATION. STRIPPED TOPSOIL MUST BE STORED IN AN AREA AWAY FROM MACHINERY AND CONSTRUCTION OPERATIONS, AND CARE MUST BE TAKEN TO PROTECT THE TOPSOIL AS A VALUABLE COMMODITY. TOPSOIL MUST NOT BE STRIPPED DURING UNDESIRABLE WORKING CONDITIONS (E.G. DURING WET WEATHER OR WHEN SOILS ARE SATURATED). TOPSOIL SHALL NOT BE STORED IN SWALES OR IN AREAS WITH POOR DRAINAGE.

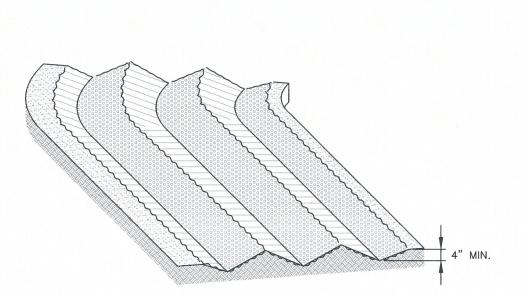
SEEDING

- ALLOWABLE SEED MIXES ARE INCLUDED IN THE CITY OF COLORADO SPRINGS STORMWATER CONSTRUCTION MANUAL. ALTERNATIVE SEED MIXES ARE ACCEPTABLE IF INCLUDED IN AN APPROVED LANDSCAPING PLAN.
 SEED SHOULD BE DRILL-SEEDED WHENEVER POSSIBLE
- •SEED DEPTH MUST BE ⅓ TO ½ INCHES WHEN DRILL-SEEDING IS USED
- BROADCAST SEEDING OR HYDRO-SEEDING WITH TACKIFIER MAY BE SUBSTITUTED ON SLOPES STEEPER THAN
 3:1 OR ON OTHER AREAS NOT PRACTICAL TO DRILL SEED.
 SEEDING RATES MUST BE DOUBLED FOR BROADCAST SEEDING OR INCREASED BY 50% IF USING A BRILLION
 - SEEDING RATES MUST BE DOUBLED FOR BROADCAST SEEDING OR INCREASED BY 50% IF USING A BRILLION DRILL OR HYDRO-SEEDING
 - BROADCAST SEEDING MUST BE LIGHTLY HAND-RAKED INTO THE SOIL

MULCHING


- 1. MULCHING SHOULD BE COMPLETED AS SOON AS PRACTICABLE AFTER SEEDING, HOWEVER PLANTED AREAS MUST BE MULCHED NO LATER THAN 14 DAYS AFTER PLANTING.
- 2. MULCHING REQUIREMENTS INCLUDE:

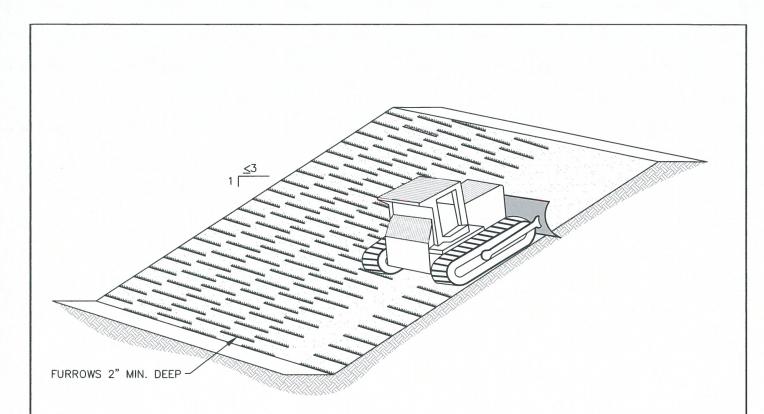

SM


- •HAY OR STRAW MULCH
 - ONLY CERTIFIED WEED-FREE AND CERTIFIED SEED-FREE MULCH MAY BE USED. MULCH MUST BE APPLIED AT 2 TONS/ACRE AND ADEQUATELY SECURED BY CRIMPING AND/OR TACKIFIER.
 - CRIMPING MUST NOT BE USED ON SLOPES GREATER THAN 3:1 AND MULCH FIBERS MUST BE TUCKED INTO THE SOIL TO A DEPTH OF 3 TO 4 INCHES.
 - TACKIFIER MUST BE USED IN PLACE OF CRIMPING ON SLOPES STEEPER THAN 3:1.

•HYDRAULIC MULCHING

- HYDRAULIC MULCHING IS AN OPTION ON STEEP SLOPES OR WHERE ACCESS IS LIMITED.
- IF HYDRO-SEEDING IS USED, MULCHING MUST BE APPLIED AS A SEPARATE, SECOND OPERATION.
- WOOD CELLULOSE FIBERS MIXED WITH WATER MUST BE APPLIED AT A RATE OF 2,000 TO 2,500
- POUNDS/ACRE, AND TACKIFIER MUST BE APPLIED AT A RATE OF 100 POUNDS/ACRE. • EROSION CONTROL BLANKET
 - EROSION CONTROL BLANKET MAY BE USED IN PLACE OF TRADITIONAL MULCHING METHODS.

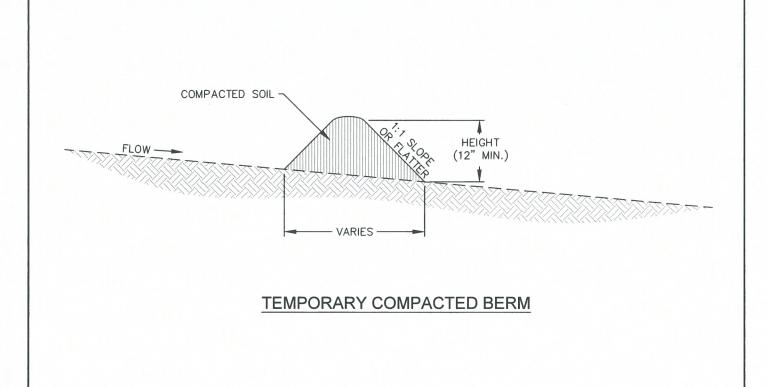
SURFACE ROUGHENING


INSTALLATION NOTES

- 1. SURFACE ROUGHENING MAY BE USED IN AREAS FLATTER THAN 3:1. INSTALL FURROWS ALONG CONTOUR TO INTERCEPT SHEET FLOW.
- 2. SURFACE ROUGHENING MAY BE ACCOMPLISHED BY FURROWING, SCARIFYING, RIPPING OR DISKING THE SOIL.
- 3. FURROWS MUST BE A MINIMUM OF 4" IN DEPTH.
- 4. SURFACE ROUGHENING SHALL NOT BE USED ON EXTREMELY SANDY OR ROCKY SOILS.

SR

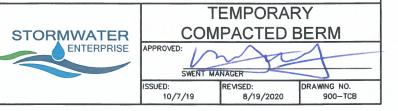
- 1. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN CONTROL MEASURES IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 2. VEHICLES AND EQUIPMENT SHALL NOT BE DRIVEN OVER AREAS THAT HAVE BEEN SURFACE ROUGHENED.

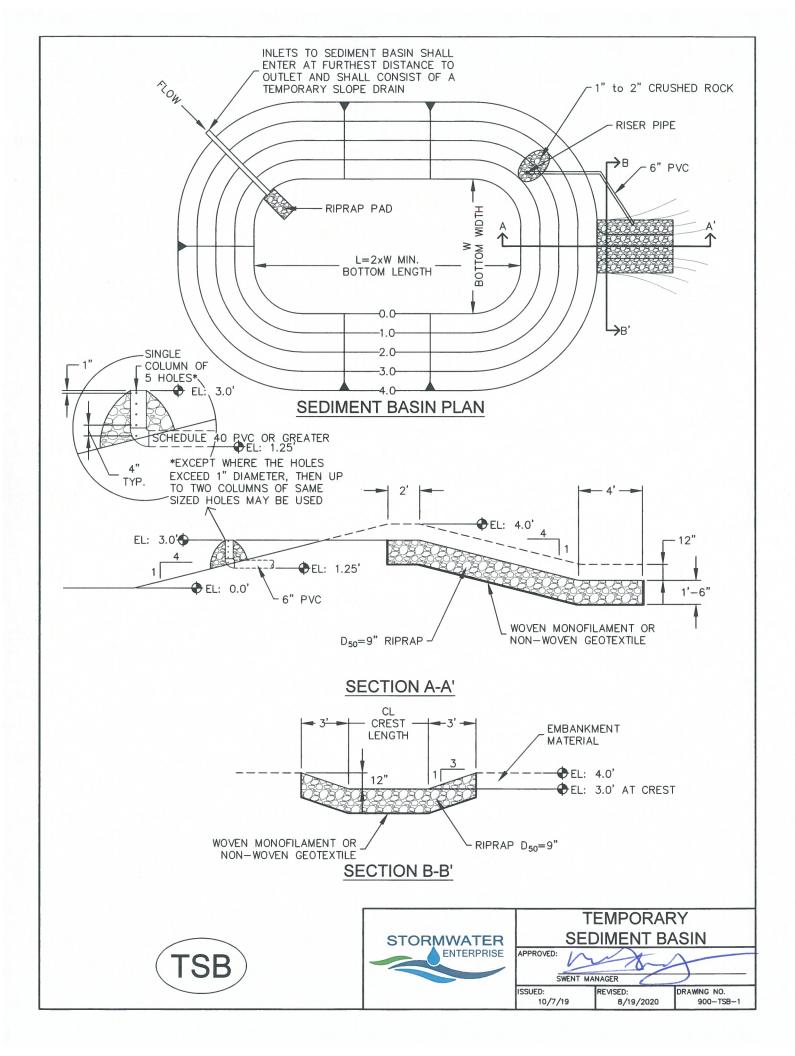

SLOPE TRACKING

INSTALLATION NOTES

- 1. SLOPE TRACKING MAY BE USED ON SLOPES 3:1 OR STEEPER.
- TRACKING GROOVES SHALL BE PERPENDICULAR TO THE SLOPE.
 SLOPE TRACKING SHALL NOT BE USED ON
- EXTREMELY SANDY OR ROCKY SOILS.

- 1. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN CONTROL MEASURES IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 2. VEHICLES AND EQUIPMENT SHALL NOT BE DRIVEN OVER AREAS THAT HAVE BEEN SLOPE TRACKED.

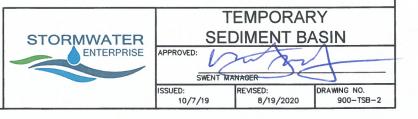

	STORMWATER	SLC	PE TRACK	KING
(ST)	ENTERPRISE	APPROVED:		
		ISSUED: 10/7/19	REVISED: 8/19/2020	DRAWING NO. 900-ST

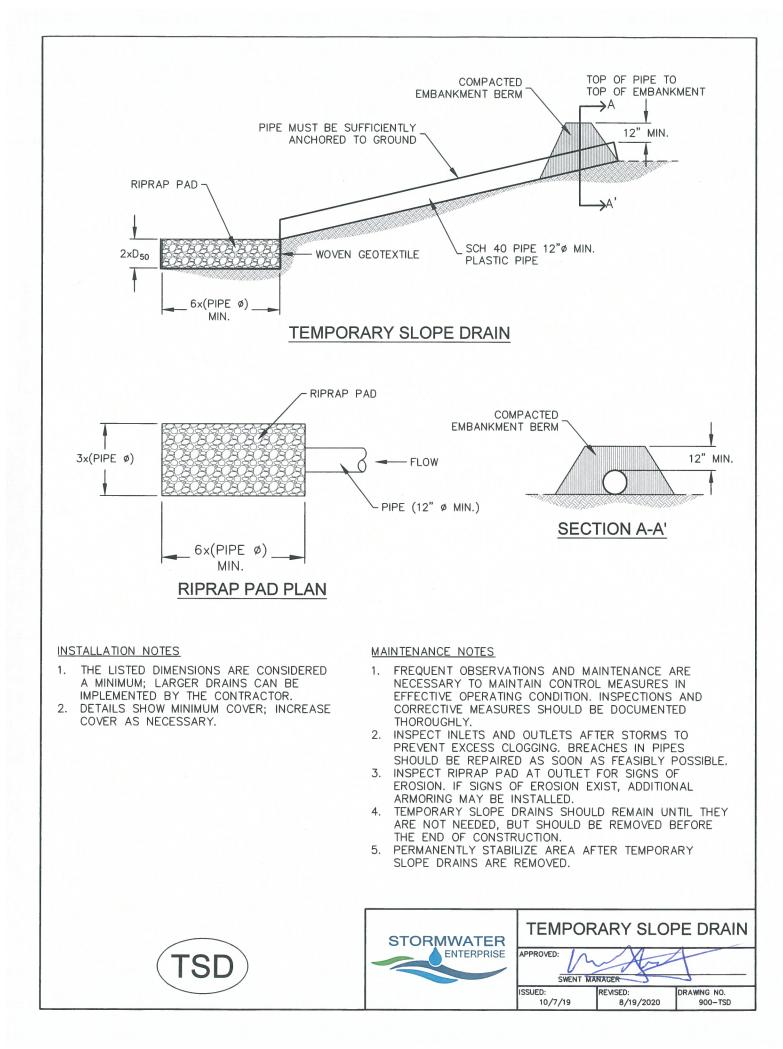


INSTALLATION NOTES

- 1. COMPACTED BERM MUST BE A MINIMUM HEIGHT OF ONE FOOT. BASE WIDTH IS DETERMINED BY HEIGHT.
- 2. COMPACTED BERMS MUST BE ADEQUATELY COMPACTED. NOT ALL SOILS ARE SUITABLE FOR COMPACTED BERMS.
- 3. INSTALL COMPACTED BERMS ALONG CONTOUR; DO NOT INSTALL PERPENDICULAR TO SLOPE.
- 4. THE MAXIMUM TRIBUTARY DRAINAGE AREA PER 100 LINEAR FEET OF COMPACTED BERMS SHALL BE $\car{4}$ ACRE.

- 1. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN CONTROL MEASURES IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 2. ACCUMULATED SEDIMENT MUST BE REMOVED WHEN THE HEIGHT REACHES $\frac{1}{2}$ OF THE DESIGN DEPTH OF THE BERM.


			1.1
TABLE SB-1, SIZING INFORMATION FOR STANDARD SEDIMENT BASIN			
UPSTREAM DRAINAGE AREA (ROUNDED TO NEAREST ACRE), (AC)	BASIN BOTTOM WIDTH (W), (FT)	SPILLWAY CREST LENGTH (CL), (FT)	HOLE DIAMETER (HD), (IN)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12½" 21 28 33½ 43 47¼ 51 55 58¼ 61 64 67½ 70½ 73¼	2 3 5 6 8 9 11 12 13 15 16 18 19 21 22	932 1376 2532 2532 2532 2732 78 1576 3522 1 1576 3522 1 1766 178 1366


INSTALLATION NOTES

- FOR STANDARD BASIN, BOTTOM DIMENSION MAY BE MODIFIED AS LONG AS BOTTOM AREA IS NOT REDUCED.
- 2. EMBANKMENT MATERIAL SHALL CONSIST OF SOIL FREE OF DEBRIS, ORGANIC MATERIAL, AND ROCKS OR CONCRETE GREATER THAN 3 INCHES, AND SHALL HAVE A MINIMUM OF 15 PERCENT BY WEIGHT PASSING THE No. 200 SIEVE
- EMBANKMENT MATERIAL SHALL BE COMPACTED TO AT LEAST 95 PERCENT OF MAXIMUM DENSITY IN ACCORDANCE WITH ASTM D-698.
- 4. PIPE SCHEDULE 40 OR GREATER SHALL BE USED.
- 5. THE DETAILS SHOWN ON THESE SHEETS PERTAIN TO STANDARD SEDIMENT BASIN(S) FOR DRAINAGE AREAS LESS THAN 15 ACRES. SEE CONSTRUCTION DRAWINGS FOR EMBANKMENT, STORAGE VOLUME, SPILLWAY, OUTLET, AND OUTLET PROTECTION DETAILS FOR ANY SEDIMENT BASIN(S) THAT HAVE BEEN INDIVIDUALLY DESIGNED FOR DRAINAGE AREAS LARGER THAN 15 ACRES. DESIGN CALCULATIONS MUST BE APPROVED PRIOR TO IMPLEMENTATION.

TSB

- 1. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN CONTROL MEASURES IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 2. SEDIMENT ACCUMULATED IN BASIN SHALL BE REMOVED AS NEEDED TO MAINTAIN CONTROL MEASURE EFFECTIVENESS, TYPICALLY WHEN SEDIMENT DEPTH REACHES ONE FOOT (I.E. TWO FEET BELOW SPILLWAY CREST).
- 3. SEDIMÉNT BASINS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS PERMANENTLY STABILIZED.
- 4. PERMANENTLY STABILIZE AREA AFTER SEDIMENT BASIN REMOVAL.

NIERPRISE	APPROVED:	Vh
	SW	ENT MANAGER
	ISSUED:	REVISED:

10/7/19

DRAWING NO.

900-VTC

8/19/2020

Description

Earth dikes and drainage swales are temporary storm conveyance channels constructed either to divert runoff around slopes or to convey runoff to additional sediment control BMPs prior to discharge of runoff from a site. Drainage swales may be lined or unlined, but if an unlined swale is used, it must be well compacted and capable of resisting erosive velocities.

Appropriate Uses

Earth dikes and drainage swales are typically used to control the flow path of runoff at a construction site by diverting runoff around areas prone to erosion, such as steep slopes. Earth dikes and drainage swales may also be constructed as temporary conveyance features. This will direct runoff to additional sediment control treatment BMPs, such as sediment traps or basins.

Photograph ED/DS-1. Example of an earth dike used to divert flows at a construction site. Photo courtesy of CDOT.

Design and Installation

When earth dikes are used to divert water for slope protection, the earth dike typically consists of a horizontal ridge of soil placed perpendicular to the slope and angled slightly to provide drainage along the contour. The dike is used in conjunction with a swale or a small channel upslope of the berm to convey the diverted water. Temporary diversion dikes can be constructed by excavation of a V-shaped trench or ditch and placement of the fill on the downslope side of the cut. There are two types of placement for temporary slope diversion dikes:

- A dike located at the top of a slope to divert upland runoff away from the disturbed area and convey it in a temporary or permanent channel.
- A diversion dike located at the base or mid-slope of a disturbed area to intercept runoff and reduce the effective slope length.

Depending on the project, either an earth dike or drainage swale may be more appropriate. If there is a

need for cut on the project, then an excavated drainage swale may be better suited. When the project is primarily fill, then a conveyance constructed using a berm may be the better option.

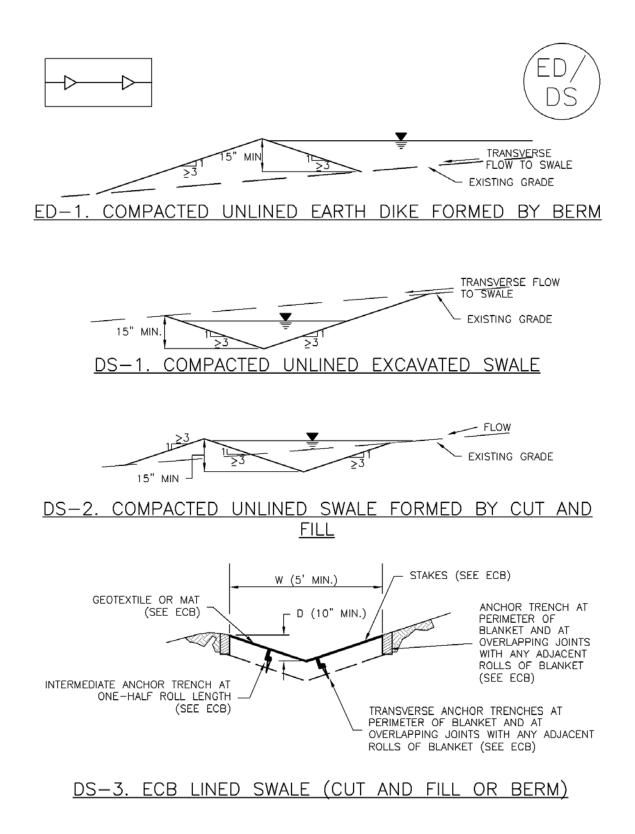
All dikes or swales receiving runoff from a disturbed area should direct stormwater to a sediment control BMP such as a sediment trap or basin.

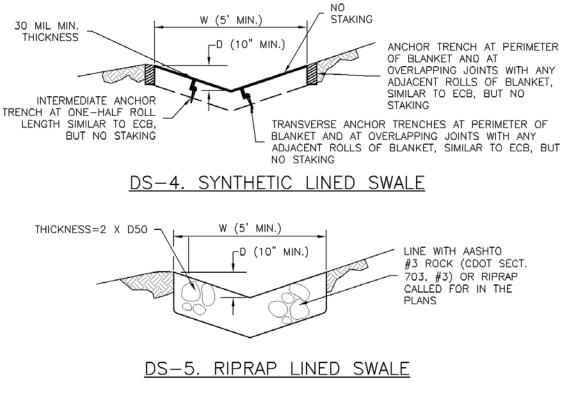
Earth Dikes and Drainage Swales		
Functions		
Erosion Control	Yes	
Sediment Control	Moderate	
Site/Material Management No		

EC-10 Earth Dikes and Drainage Swales (ED/DS)

Unlined dikes or swales should only be used for intercepting sheet flow runoff and are not intended for diversion of concentrated flows.

Details with notes are provided for several design variations, including:


- ED-1. Unlined Earth Dike formed by Berm
- DS-1. Unlined Excavated Swale
- DS-2. Unlined Swale Formed by Cut and Fill
- DS-3. ECB-lined Swale
- DS-4. Synthetic-lined Swale
- DS-5. Riprap-lined Swale


The details also include guidance on permissible velocities for cohesive channels if unlined approaches will be used.

Maintenance and Removal

Inspect earth dikes for stability, compaction, and signs of erosion and repair. Inspect side slopes for erosion and damage to erosion control fabric. Stabilize slopes and repair fabric as necessary. If there is reoccurring extensive damage, consider installing rock check dams or lining the channel with riprap.

If drainage swales are not permanent, remove dikes and fill channels when the upstream area is stabilized. Stabilize the fill or disturbed area immediately following removal by revegetation or other permanent stabilization method approved by the local jurisdiction.

EARTH DIKE AND DRAINAGE SWALE INSTALLATION NOTES

- 1. SEE SITE PLAN FOR:
 - LOCATION OF DIVERSION SWALE
 - TYPE OF SWALE (UNLINED, COMPACTED AND/OR LINED).
 - LENGTH OF EACH SWALE.
 - DEPTH, D, AND WIDTH, W DIMENSIONS.
 - FOR ECB/TRM LINED DITCH, SEE ECB DETAIL.
 - FOR RIPRAP LINED DITCH, SIZE OF RIPRAP, D50.

2. SEE DRAINAGE PLANS FOR DETAILS OF PERMANENT CONVEYANCE FACILITIES AND/OR DIVERSION SWALES EXCEEDING 2-YEAR FLOW RATE OR 10 CFS.

3. EARTH DIKES AND SWALES INDICATED ON SWMP PLAN SHALL BE INSTALLED PRIOR TO LAND-DISTURBING ACTIVITIES IN PROXIMITY.

4. EMBANKMENT IS TO BE COMPACTED TO 90% OF MAXIMUM DENSITY AND WITHIN 2% OF OPTIMUM MOISTURE CONTENT ACCORDING TO ASTM D698.

5. SWALES ARE TO DRAIN TO A SEDIMENT CONTROL BMP.

6. FOR LINED DITCHES, INSTALLATION OF ECB/TRM SHALL CONFORM TO THE REQUIREMENTS OF THE ECB DETAIL.

7. WHEN CONSTRUCTION TRAFFIC MUST CROSS A DIVERSION SWALE, INSTALL A TEMPORARY CULVERT WITH A MINIMUM DIAMETER OF 12 INCHES.

EARTH DIKE AND DRAINAGE SWALE MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPS HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SWALES SHALL REMAIN IN PLACE UNTIL THE END OF CONSTRUCTION; IF APPROVED BY LOCAL JURISDICTION, SWALES MAY BE LEFT IN PLACE.

5. WHEN A SWALE IS REMOVED, THE DISTURBED AREA SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY LOCAL JURISDICTION.

(DETAIL ADAPTED FROM DOUGLAS COUNTY, COLORADO AND THE CITY OF COLORADO SPRINGS, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

Description

A stabilized staging area is a clearly designated area where construction equipment and vehicles, stockpiles, waste bins, and other construction-related materials are stored. The contractor office trailer may also be located in this area. Depending on the size of the construction site, more than one staging area may be necessary.

Appropriate Uses

Most construction sites will require a staging area, which should be clearly designated in SWMP drawings. The layout of the staging area may vary depending on

Photograph SSA-1. Example of a staging area with a gravel surface to prevent mud tracking and reduce runoff. Photo courtesy of Douglas County.

the type of construction activity. Staging areas located in roadways due to space constraints require special measures to avoid materials being washed into storm inlets.

Design and Installation

Stabilized staging areas should be completed prior to other construction activities beginning on the site. Major components of a stabilized staging area include:

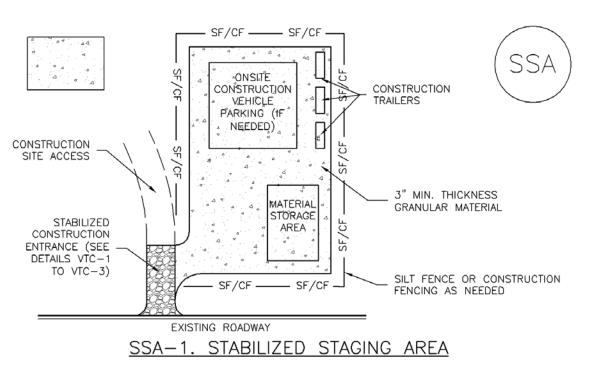
- Appropriate space to contain storage and provide for loading/unloading operations, as well as parking if necessary.
- A stabilized surface, either paved or covered, with 3-inch diameter aggregate or larger.
- Perimeter controls such as silt fence, sediment control logs, or other measures.
- Construction fencing to prevent unauthorized access to construction materials.
- Provisions for Good Housekeeping practices related to materials storage and disposal, as described in the Good Housekeeping BMP Fact Sheet.
- A stabilized construction entrance/exit, as described in the Vehicle Tracking Control BMP Fact Sheet, to accommodate traffic associated with material delivery and waste disposal vehicles.

Over-sizing the stabilized staging area may result in disturbance of existing vegetation in excess of that required for the project. This increases costs, as well as

required for the project. This increases costs, as wen as requirements for long-term stabilization following the construction period. When designing the stabilized staging area, minimize the area of disturbance to the extent practical.

Stabilized Staging Area		
Functions		
Erosion Control	Yes	
Sediment Control	Moderate	
Site/Material	Yes	

Minimizing Long-Term Stabilization Requirements


- Utilize off-site parking and restrict vehicle access to the site.
- Use construction mats in lieu of rock when staging is provided in an area that will not be disturbed otherwise.
- Consider use of a bermed contained area for materials and equipment that do not require a stabilized surface.
- Consider phasing of staging areas to avoid disturbance in an area that will not be otherwise disturbed.

See Detail SSA-1 for a typical stabilized staging area and SSA-2 for a stabilized staging area when materials staging in roadways is required.

Maintenance and Removal

Maintenance of stabilized staging areas includes maintaining a stable surface cover of gravel, repairing perimeter controls, and following good housekeeping practices.

When construction is complete, debris, unused stockpiles and materials should be recycled or properly disposed. In some cases, this will require disposal of contaminated soil from equipment leaks in an appropriate landfill. Staging areas should then be permanently stabilized with vegetation or other surface cover planned for the development.

STABILIZED STAGING AREA INSTALLATION NOTES

- 1. SEE PLAN VIEW FOR
 - -LOCATION OF STAGING AREA(S).

-CONTRACTOR MAY ADJUST LOCATION AND SIZE OF STAGING AREA WITH APPROVAL FROM THE LOCAL JURISDICTION.

2. STABILIZED STAGING AREA SHOULD BE APPROPRIATE FOR THE NEEDS OF THE SITE. OVERSIZING RESULTS IN A LARGER AREA TO STABILIZE FOLLOWING CONSTRUCTION.

3. STAGING AREA SHALL BE STABILIZED PRIOR TO OTHER OPERATIONS ON THE SITE.

4. THE STABILIZED STAGING AREA SHALL CONSIST OF A MINIMUM 3" THICK GRANULAR MATERIAL.

5. UNLESS OTHERWISE SPECIFIED BY LOCAL JURISDICTION, ROCK SHALL CONSIST OF DOT SECT. #703, AASHTO #3 COARSE AGGREGATE OR 6" (MINUS) ROCK.

6. ADDITIONAL PERIMETER BMPs MAY BE REQUIRED INCLUDING BUT NOT LIMITED TO SILT FENCE AND CONSTRUCTION FENCING.

STABILIZED STAGING AREA MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. ROCK SHALL BE REAPPLIED OR REGRADED AS NECESSARY IF RUTTING OCCURS OR UNDERLYING SUBGRADE BECOMES EXPOSED.

STABILIZED STAGING AREA MAINTENANCE NOTES

5. STABILIZED STAGING AREA SHALL BE ENLARGED IF NECESSARY TO CONTAIN PARKING, STORAGE, AND UNLOADING/LOADING OPERATIONS.

6. THE STABILIZED STAGING AREA SHALL BE REMOVED AT THE END OF CONSTRUCTION. THE GRANULAR MATERIAL SHALL BE REMOVED OR, IF APPROVED BY THE LOCAL JURISDICTION, USED ON SITE, AND THE AREA COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY LOCAL JURISDICTION.

NOTE: MANY MUNICIPALITIES PROHIBIT THE USE OF RECYCLED CONCRETE AS GRANULAR MATERIAL FOR STABILIZED STAGING AREAS DUE TO DIFFICULTIES WITH RE-ESTABLISHMENT OF VEGETATION IN AREAS WHERE RECYCLED CONCRETE WAS PLACED.

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO, NOT AVAILABLE IN AUTOCAD)

Description

Street sweeping and vacuuming remove sediment that has been tracked onto roadways to reduce sediment transport into storm drain systems or a surface waterway.

Appropriate Uses

Use this practice at construction sites where vehicles may track sediment offsite onto paved roadways.

Design and Installation

Street sweeping or vacuuming should be conducted when there is noticeable

Photograph SS-1. A street sweeper removes sediment and potential pollutants along the curb line at a construction site. Photo courtesy of Tom Gore.

sediment accumulation on roadways adjacent to the construction site. Typically, this will be concentrated at the entrance/exit to the construction site. Well-maintained stabilized construction entrances, vehicle tracking controls and tire wash facilities can help reduce the necessary frequency of street sweeping and vacuuming.

On smaller construction sites, street sweeping can be conducted manually using a shovel and broom. Never wash accumulated sediment on roadways into storm drains.

Maintenance and Removal

- Inspect paved roads around the perimeter of the construction site on a daily basis and more frequently, as needed. Remove accumulated sediment, as needed.
- Following street sweeping, check inlet protection that may have been displaced during street sweeping.
- Inspect area to be swept for materials that may be hazardous prior to beginning sweeping operations.

Street Sweeping/ Vacuuming		
Functions		
Erosion Control	No	
Sediment Control	Yes	
Site/Material Management	Yes	

Description

Good housekeeping practices are designed to maintain a clean and orderly work environment. The most effective first steps towards preventing pollution in stormwater from work sites simply involve using common sense to improve the facility's basic housekeeping methods. Poor housekeeping practices result in increased waste and potential for stormwater contamination.

A clean and orderly work site reduces the possibility of accidental spills caused by mishandling of chemicals and equipment and should reduce safety hazards to personnel. A well-maintained material and chemical storage area will reduce the possibility of stormwater mixing with pollutants.

Photograph GH-1. Use dry clean-up methods to remove spilled materials. Photo courtesy of Colorado Nonpoint Source Program.

Some simple procedures a facility can use to promote good housekeeping include improved operation and maintenance of machinery and processes, material storage practices, material inventory controls, routine and regular clean-up schedules, maintaining well organized work areas, signage, and educational programs for employees and the general public about all of these practices.

Appropriate Uses

Good housekeeping practices require education and training, typically targeted to industries and businesses, municipal employees, as well as the general public.

Practice Guidelines

Good housekeeping practices include these general areas:

- Operation and Maintenance
- Material Storage
- Material Inventory
- Training and Participation.

Operation and Maintenance

Consider implementing the following practices:

- Maintain dry and clean floors and ground surfaces by using brooms, shovels, vacuums or cleaning machines, rather than wet clean-up methods.
- Regularly collect and dispose of garbage and waste material.

- Routinely inspect equipment to ensure that it is functioning properly without leaking and conduct preventative maintenance and needed repairs.
- Train employees on proper clean up and spill response procedures.
- Designate separate areas of the site for auto parking, vehicle refueling and routine maintenance.
- Promptly clean up leaks, drips and other spills.
- Cover and maintain dumpsters and waste receptacles. Add additional dumpsters or increase frequency of waste collection if overflowing conditions reoccur.
- Where outdoor painting and sanding occur, implement these practices:
 - Conduct these activities in designated areas that provide adequate protection to prevent overspray and uncontrolled emissions. All operations should be conducted on paved surfaces to facilitate cleanup.
 - o Use portable containment as necessary for outside operations.
 - Clean up and properly dispose of excess paint, paint chips, protective coatings, grit waste, etc.
- Maintain vegetation on facility grounds in a manner that minimizes erosion. Follow the Landscape Maintenance and Pesticide, Herbicide and Fertilizer Usage BMPs to ensure that minimum amounts of chemicals needed for healthy vegetation are applied in a manner that minimizes transport of these materials in runoff.

Material Storage Practices

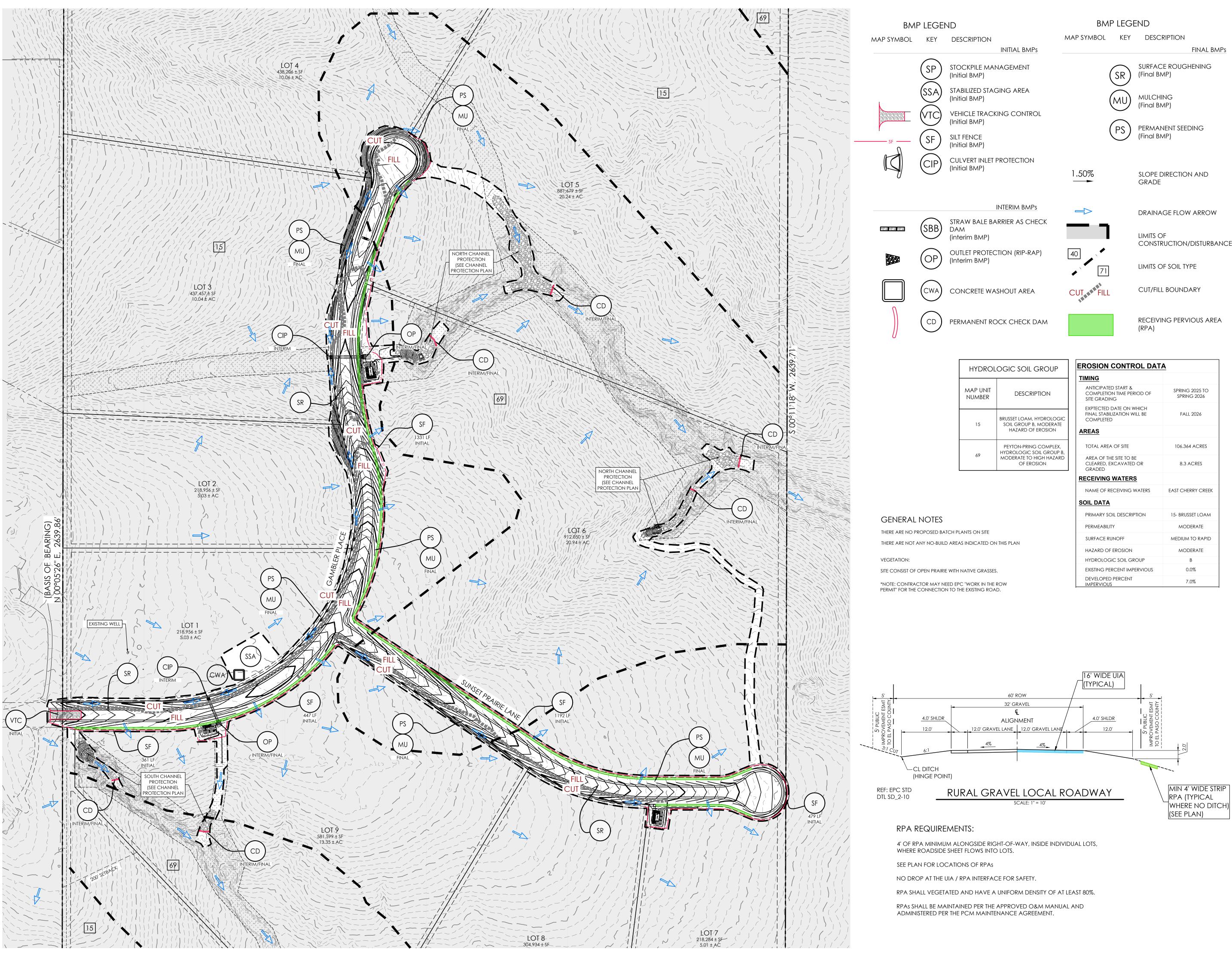
Proper storage techniques include the following:

- Provide adequate aisle space to facilitate material transfer and ease of access for inspection.
- Store containers, drums, and bags away from direct traffic routes to reduce container damage resulting in accidental spills.
- Stack containers according to manufacturer's instructions to avoid damaging the containers from improper weight distribution. Also store materials in accordance with directions in Material Safety Data Sheets (MSDSs).
- Store containers on pallets or similar devices to prevent corrosion of containers that results from containers coming in contact with moisture on the ground.
- Store toxic or hazardous liquids within curbed areas or secondary containers.

Material Inventory Practices

An up-to-date materials inventory can keep material costs down by preventing overstocking, track how materials are stored and handled onsite, and identify which materials and activities pose the most risk to the environment. Assign responsibility of hazardous material inventory to individuals trained to handle such materials. A material inventory should include these steps:

• Identify all chemical substances present at work site. Perform a walk-through of the site, review


purchase orders, list all chemical substances used and obtain Material Safety Data Sheets (MSDS) for all chemicals.

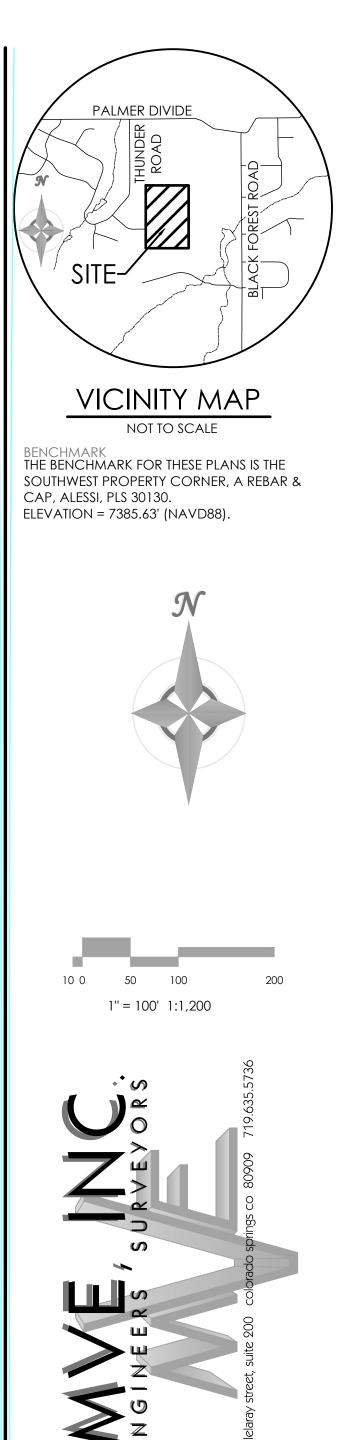
- Label all containers. Labels should provide name and type of substance, stock number, expiration date, health hazards, handling suggestions, and first aid information. Much of, this information can be found on an MSDS.
- Clearly identify special handling, storage, use and disposal considerations for hazardous materials on the material inventory.
- Institute a shelf-life program to improve material tracking and inventory that can reduce the amount
 of materials that are overstocked and ensure proper disposal of expired materials. Careful tracking of
 materials ordered can result in more efficient materials use. Decisions on the amounts of hazardous
 materials that are stored on site should include an evaluation of any emergency control systems that
 are in place. All storage areas for hazardous materials should be designed to contain spills.

Training and Participation

Frequent and proper training in good housekeeping techniques reduces the likelihood that chemicals or equipment will be mishandled. To promote good housekeeping, consider implementing these practices:

- Discuss good housekeeping practices in training programs and meetings.
- Publicize pollution prevention concepts through posters or signs.
- Post bulletin boards with updated good housekeeping procedures, tips and reminders.

BWb	LEGE	NL
BOL	KEY	Ľ



CONSTRUCTION/DISTURBANCE

RECEIVING PERVIOUS AREA

HYDROL	HYDROLOGIC SOIL GROUP		
MAP UNIT NUMBER	DESCRIPTION	-	A C SI
15	BRUSSET LOAM, HYDROLOGIC SOIL GROUP B, MODERATE HAZARD OF EROSION		E) FI C
69	PEYTON-PRING COMPLEX, HYDROLOGIC SOIL GROUP B, MODERATE TO HIGH HAZARD OF EROSION		T A C
		1	REC
			Ν

ANTICIPATED START & COMPLETION TIME PERIOD OF SITE GRADING	SPRING 2025 TO SPRING 2026
EXPTECTED DATE ON WHICH FINAL STABILIZATION WILL BE COMPLETED	FALL 2026
AREAS	
TOTAL AREA OF SITE	106.364 ACRES
AREA OF THE SITE TO BE CLEARED, EXCAVATED OR GRADED	8.3 ACRES
RECEIVING WATERS	
NAME OF RECEIVING WATERS	EAST CHERRY CREEK
SOIL DATA	
PRIMARY SOIL DESCRIPTION	15- BRUSSET LOAM
PERMEABILITY	MODERATE
SURFACE RUNOFF	MEDIUM TO RAPID
HAZARD OF EROSION	MODERATE
HYDROLOGIC SOIL GROUP	В
EXISTING PERCENT IMPERVIOUS	0.0%
DEVELOPED PERCENT IMPERVIOUS	7.0%

REVISIONS

DESIGNED BY DRAWN BY CHECKED BY AS-BUILTS BY CHECKED BY

> TABLE ROCK HOMESTEADS

GRADING & EROSION CONTROL PLANS **EROSION CONTROL** PLAN

JANUARY 24, 2025 SHEET 2 OF 8