FINAL DRAINAGE PLAN

CARRIAGE MEADOWS SOUTH AT
 LORSON RANCH FILING NO. 1

SF 17-011

AUGUST 10, 2017

Prepared for:
Lorson, LLC
212 N. Wahsatch Ave, Suite 301
Colorado Springs, Colorado 80903
(719) 635-3200

Prepared by:

Core Engineering Group, LLC
$150041^{\text {ST }}$ Avenue South
Burnsville, MN 55306
(719) 570-1100

Project No. 100.030
CORE
ENGINEERING GROUP

TABLE OF CONTENTS
ENGINEER'S STATEMENT 1
OWNER'S STATEMENT 1
FLOODPLAIN STATEMENT 1
1.0 LOCATION and DESCRIPTION 2
2.0 DRAINAGE CRITERIA 3
3.0 EXISTING HYDROLOGICAL CONDITIONS 3
4.0 DEVELOPED HYDROLOGICAL CONDITIONS 5
5.0 HYDRAULIC SUMMARY 10
6.0 DETENTION and WATER QUALITY PONDS 24
7.0 DRAINAGE and BRIDGE FEES 26
8.0 CONCLUSIONS 27
9.0 REFERENCES 28

APPENDIX A

VICINITY MAP
SCS SOILS INFORMATION
FEMA FIRM MAP

APPENDIX B

HYDROLOGY CALCULATIONS

APPENDIX C

HYDRAULIC CALCULATIONS

APPENDIX D

POND AND HYDRAFLOW CALCULATIONS

APPENDIX E

STORM SEWER SCHEMATIC \& HDR Hydraulic Memo

BACK POCKET

EXISTING CONDITIONS DRAINAGE MAP
DEVELOPED CONDITIONS DRAINAGE MAP

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Richard L. Schindler, P.E. \#33997
Date
For and on Behalf of Core Engineering Group, LLC

OWNER'S STATEMENT

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

Lorson, LLC Date

By

Jeff Mark
Title
Manager
Address
212 N. Wahsatch Avenue, Suite 301, Colorado Springs, CO 80903

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development is located within a designated floodplain as shown on Flood Insurance Rate Map Panel No. 08041C0957 F, Dated March 17, 1997, Revised to Reflect LOMR Effective Aug. 29, 2007. (See Appendix A, FEMA FIRM Exhibit)

Richard L. Schindler, \#33997,
Date
For and on Behalf of Core Engineering Group, LLC

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volume 1 and 2, and Engineering Criteria Manual, As Amended.

Conditions:

1.0 LOCATION and DESCRIPTION

The purpose of this Final Drainage Report is to provide an overview of the overall drainage impacts/mitigation due to development in the proposed Carriage Meadows South at Lorson Ranch Filing No. 1 development located in Lorson Ranch. The study area of this report is approximately 110 acres. See Appendix A for vicinity map.

Carriage Meadows South at Lorson Ranch Filing No. 1 is located southeast of the intersection of Fontaine Boulevard and Marksheffel Road in El Paso County Colorado. The site is located on approximately 106.64 acres of vacant land. A portion of this study area is occupied by an existing single family residence that is not part of this development. For purposes of this report this offsite residence has been included as existing conditions. Also included in this report and plan is the proposed layout for Carriage Meadows South at Lorson Ranch Filing No. 1 which is located southeast of the intersection of Fontaine Boulevard and Marksheffel Road. The land is currently owned by Lorson LLC or its nominees for Lorson Ranch. The first phase of development will consist of 235 single-family homes. Future development in this area will develop as commercial land uses.

The site is located in the Northeast $1 / 4$ of Section 22 and the Northwest $1 / 4$ of Section 23, Township 15 South and Range 65 West of the $6^{\text {th }}$ Principal Meridian; it is currently unplatted and zoned RR3, Rural Residential District. The property is bounded on the north by the Fontaine Boulevard, on the east by the relocated Jimmy Camp Creek, a major Drainage conveyance system, on the west by Marksheffel Road, on the south by Peaceful Valley Country Club Estates, and the old Appletree Golf Course. For reference, a vicinity map is included in Appendix A of this report.

Conformance with applicable Drainage Basin Planning Studies

There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson \& Company in 1987 [3], adopted by El Paso County, and is referenced in this report. The only major drainage improvements for this study area according to the 1987 Wilson study was the reconstruction of the main stem of Jimmy Camp Creek. In 2006 the main stem of Jimmy Camp Creek and the FMIC relocation within Lorson Ranch was reconstructed in accordance with the 1987 study. In 2015 a new DBPS for Jimmy Camp Creek was completed by Kiowa Engineering. The Kiowa Engineering DPBS has been adopted by the City of Colorado Springs and partially adopted by El Paso County for the entire Jimmy Camp Creek Basin, including the main channel of Jimmy Camp Creek located on the east side of this site. El Paso county has not approved the drainage fees detailed in the Kiowa DBPS so current county drainage fees apply to this development. The Kiowa DBPS shows the reconstructed channel of Jimmy Camp Creek and the existing Fontaine Boulevard bridge over the main channel. According to the Kiowa DBPS all major drainage infrastructure has been constructed and there are no new requirements for channel/bridge improvements on Jimmy Camp Creek for development of Carriage Meadows South at Lorson Ranch Filing No. 1. The only major infrastructure not shown in the Kiowa DBPS is the future bridge over the main channel at Lorson Boulevard. The Lorson Boulevard bridge is not needed for this site but is included for discussion purposes.

Reconstruction of Jimmy Camp Creek and FMIC relocation

In 2006 Jimmy Camp Creek was re-aligned and reconstructed within Lorson Ranch from the southern boundary to the northern boundary. The construction plans were prepared by Drexel Barrell \& Company (project number C-7668-2) and were approved on September 6, 2005 by El Paso County (\#2801). Construction was based more or less on recommendations in the 1987 Wilson DBPS for Jimmy Camp Creek. The construction consisted of a trapezoidal channel section, armored creek banks with a sand bottom. Construction started at the south property line of Lorson Ranch and extended north 5,300 feet to the north line of Lorson Ranch. In 2006 the FMIC ditch in Lorson Ranch was also relocated in conjunction with the creek improvements. The FMIC through Lorson Ranch was relocated adjacent to the creek on the west bank and was constructed at the same time as the creek improvements. Pentacor Engineering prepared the FMIC relocation construction plans (project number 6000.0002) which were approved by EI Paso County on November 22, 2005. Both the creek and FMIC
relocation were completed in 2006 from the south property line of Lorson Ranch and extended north 5,300 feet to the north line of Lorson Ranch

2.0 DRAINAGE CRITERIA

The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November, 1991, the El Paso County "Engineering Criteria Manual", Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, and the UDFCD "Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 for full spectrum pond sizing. No deviations from these published criteria are requested for this site. The proposed improvements to the Lorson Ranch Development will be in substantial compliance with the "Jimmy Camp Creek Drainage Basin Planning Study", prepared by Kiowa Engineering Corp., Colorado Springs, CO.

The Rational Method as outlined in Section 6.3.0 of the May 2014 "Drainage Criteria Manual" and in Section 3.2.8.F of the El Paso County "Engineering Criteria Manual" was used for basins less than 130 acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County states the if detention is necessary, Full Spectrum Detention will be included in the design, based on this criteria, Full Spectrum Detention will be required for this development

3.0 EXISTING HYDROLOGICAL CONDITIONS

The site is currently undeveloped with native vegetation (grass with no shrubs) and moderate slopes in a southerly direction to an existing sediment basin located at the southeast corner of the site, these flows then continue east to Jimmy Camp Creek. The soils across the site consists of the Ellicott loamy course sand, a deep somewhat excessively drained soil with 0-5\% slopes, the Fort Collins loam and clay loam, a deep well drained soil with $0-3 \%$ slopes and the Manzanola clay loam, also a deep well drained soil with $1-3 \%$ slopes according to the Soil Survey of El Paso County Area. Other onsite soil types consist of Ustic Torrifluvents, Fluvaquentic Haploquolls, Blakeland Loamy Sand, Blendon Sandy Loam, Truckton Sandy Loam, Stoneham Sandy Loam, Keith Silt Loam, Olney Sandy Loam, Manzanola Clay Loam, Nunn Clay Loam and Sampson loam. Since the majority of this site will consist of import material, soil type C/D has been assumed for the hydrologic conditions. See Appendix A for SCS Soils Map.

Offsite drainage from the future Carriage Meadows 1, Marksheffel Road, and Fontaine Boulevard impact this development. The storm sewer system and streets accommodate the offsite flows.

The following on-site pre-development basins are briefly discussed as follows:

Basin EX-1

Basin EX-1 is an on-site, undeveloped basin is located east of Marksheffel Road, south of Fontaine Boulevard and extends southerly to Peaceful Valley Country Club Estates at the SW corner of Lorson Ranch. This basin has moderate to gentle slopes and flows southerly and westerly to the existing swale on the east side of Marksheffel Road. The existing contours shown on Marksheffel Road show the reconstructed road as it is nearly completed at the time of this report. The total pre-development flow from this 15.54 acre basin is 3.0 cfs for the 5 -year storm event and 22.0 cfs for the 100 -year storm event.

Basin EX-2

Basin EX-2 is primarily Marksheffel Road, flows are directed to the existing barrow ditch on the east side of the road. This small basin has moderate slopes and runoff sheet flows westerly, then southerly within the aforementioned ditch. The existing contours shown on Marksheffel Road and the barrow ditch show the reconstructed road as it is nearly completed at the time of this report. The total predevelopment flow from this 4.87 acre basin is 2.5 cfs for the 5 -year storm event and 8.6 cfs for the $100-$ year storm event.

Basin EX-3

Basin EX-3 is the main undeveloped basin and includes off-site and on-site drainage and is located east of Marksheffel Road, north and south of Fontaine Boulevard and west of the relocated of Jimmy Camp Creek. The existing conditions map show Fontaine as it has been constructed to show the basin boundaries but the runoff has been calculated based on the land being un-developed. There is no flow entering this basin from the north and east due to the relocated FMIC ditch. The contours on the east side of the basin reflect grading done in 2005 as part of the Jimmy Camp Creek CLOMR/LOMR project. The existing drainage patterns in this basin reflect historic patterns which ultimately drain to Jimmy Camp Creek in the SE corner of this site. This basin has moderate to gentle slopes and flows in a southerly and easterly direction; runoff is directed to an existing sediment basin in the SE corner of the site and then to Jimmy Camp Creek. The total pre-development flow from this 78.0 acre basin is 18.7 cfs for the 5 -year storm event and 125.8 cfs for the 100-year storm event.

Basin EX-4

Basin EX-4 is an on-site, undeveloped basin is located adjacent and north of the Appletree Golf Course and approximately 800 feet east of Marksheffel Road. This basin has moderate slopes and runoff sheetflows southerly to the Appletree Golf Course. The total pre-development flow from this 5.22 acre basin is 2.6 cfs for the 5 -year storm event and 14.8cfs for the 100-year storm event.

Basin EX-5

Basin EX-5 is an on-site, undeveloped basin is located easterly of Marksheffel Road, north and adjacent to the Peaceful Valley Country Club Estates. This small basin has moderate slopes and flows southwesterly via to the Marksheffel Road east barrow ditch. The total pre-development flow from this 5.23 acre basin is 2.8 cfs for the 5 -year storm event and 15.4 cfs for the 100 -year storm event.

Basin EX-6

Basin EX-5 is an on-site, undeveloped basin that encompasses Jimmy Camp Creek. This basin flows south in the re-constructed channel of the creek to the Apple Tree Golf Course. The total predevelopment flow from this 23.4 acre basin is 9.9 cfs for the 5 -year storm event and 55.3 cfs for the $100-$ year storm event.

Design Point DP-1

Design Point DP-1 was included in this report to determine the existing flow in the Marksheffel Road east barrow ditch. The flow at this design point is from Basin EX-1 and EX-2. The flow is contained in a newly constructed barrow ditch as part of the Marksheffel Road reconstruction project by El Paso County DOT. The road reconstruction project constructed two-24" RCP pipe culverts in this location for an existing road crossing and have sized the new culverts for existing 100-year flow. The predevelopment flows entering the culverts are 5.2 cfs and 29.5 cfs in the $5 / 100$-year storm events. The pre-development 100-year flows at this design point will not be allowed to be increased when development of Carriage Meadows occurs.

4.0 DEVELOPED HYDROLOGICAL CONDITIONS

Hydrology for the Carriage Meadows South at Lorson Ranch Filing No. 1 drainage report was based on the City of Colorado Springs/El Paso County Drainage Criteria. Sub-basins that lie within this project were determined and the 5-year and 100-year peak discharges for the developed conditions have been presented in this report. Based on these flows, storm inlets will be added when the street capacity is exceeded.

The time of concentration for each basin and sub-basin was developed using an overland, ditch, street and pipe flow components. The maximum overland flow length for developed conditions was limited to 100 feet. Travel time velocities ranged from 2 to 6 feet per second. The travel time calculations are included in the back of this report.
Runoff coefficients for the various land uses were obtained from the City of Colorado Springs/El Paso County Drainage Criteria Manual.

The hydrology analysis necessary for sizing the storm sewer system is preliminary only and will be finalized when the construction documents are prepared.

Drainage concepts for each of the basins are briefly discussed as follows:

Basin G1.1

Basin G1.1 consists of future commercial development. Runoff is directed southwest to a proposed Type " D " inlet on the east side of Carriage Meadows Drive at Design Point 1. Upon development of this basin the storm sewer at the SE corner may need to be extended easterly to Rubicon Drive. The peak developed flow from this 3.09 -acre basin is 11.2 cfs and 20.7 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G1.2

Basin G1.2 consists of residential development. Runoff is directed north in curb/gutter in Rubicon Drive and then west overland to Design Point 1 to a proposed Type " D " inlet on the east side of Carriage Meadows Drive. When areas in Basin G1.1 develop, the storm sewer at Design Point 1 may need to be extended east to Rubicon Drive. The peak developed flow from this 2.22 -acre basin is 4.3 cfs and 9.5 cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin G1.3

Basin G1.3 consists of residential development. Runoff is directed north in curb/gutter in Rubicon Drive and then west overland to Design Point 1 to a proposed Type "D" inlet on the east side of Carriage Meadows Drive. When areas in Basin G1.1 develop, the storm sewer at Design Point 1 may need to be extended east to Rubicon Drive. The peak developed flow from this 0.45 -acre basin is 0.8 cfs and 1.8 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G1.4

Basin G1.4 consists of future development on Carriage Meadows Drive and residential development on Mandan Drive. Runoff is directed north to a low point and a proposed Type "R" inlet on the east side of Carriage Meadows Drive at Design Point 2. The peak developed flow from this 3.53 -acre basin is 10.3 cfs and 19.0 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G1.5

Basin G1.5 consists of residential development and Carriage Meadows Drive. Runoff is directed to a low point and a proposed Type "R" inlet on the west side of Carriage Meadows Drive at Design Point 3. Additional future commercial area in Basin G1.7 might be able to flow east to Carriage Meadows Drive but the street and inlet capacities at Design Point 3 would need to be checked. The peak developed flow from this 0.83 -acre basin is 3.0 cfs and 5.4 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G1.6

Basin G1.6 is an offsite basin and consists of future commercial development (north of Fontaine Boulevard) and runoff from Fontaine Boulevard. Runoff is directed south to existing inlets and an existing storm sewer (42" HERCP) under Fontaine Boulevard. Runoff will then flow south overland to Interim Detention Pond G1.7 at Design Point 4. The peak developed flow from this 19.74-acre basin is 61.2 cfs and 111.6 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations. Detention and Water Quality for this offsite basin is included in Pond G1/G2.

Basin G1.7

Basin G1.7 consists of future commercial development. Runoff is directed south to Detention Pond G1.7 at Design Point 4. The peak developed flow from this 11.6 -acre basin is 37.8 cfs and 68.9 cfs for the $5 / 100$-year storm event. A swale in the south side of this basin will re-direct runoff east and south to Pond G1.7 so developed runoff does not flow south onto the Brownsville Subdivision No. 2. See the appendix for detailed calculations.

Basin G1.8a

Basin G1.8a consists of future commercial and residential areas in Lorson Ranch, Marksheffel Road, and from the Brownsville Subdivision No. 2 which is an existing single lot residential subdivision. The Brownsville Subdivision No. 2 is not part of the Lorson Ranch but we have included it in this drainage report because runoff from Lorson Ranch enters the subdivision from the north and exits back onto Lorson Ranch on the south side. Runoff is directed south to Detention Pond G1.8. For the Lorson Ranch future commercial areas the runoff has been calculated as fully developed but for the Brownsville Subdivision No. 2 we have kept runoff at existing values. If Brownsville Subdivision No. 2 should re-develop in the future and increase runoff they will have to detain runoff to pre-development amounts. Water Quality for Brownsville Subdivision No. 2 (if redevelopment occurs) is included in Pond G1/G2 but cannot be used unless an agreement is made with Lorson Ranch. The peak developed flow from this 11.6 -acre basin is 37.8 cfs and 68.9 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G1.8b

Basin G1.8b consists of residential areas and the east half of Marksheffel Road. Runoff is directed south to Design Point 6 in roadside barrow ditches on the east side of Marksheffel Road. A new roadside swale is proposed in the future ROW area for Marksheffel Road. If Marksheffel Road were to be widened the existing swale could be filled to make room for the additional road width and the new swale will convey runoff from the road south to Design Point 6 . We have routed all the runoff from this basin to Design Point 6 which connects to Pond G1/G2. This reduces the developed runoff flowing south to Lorson Boulevard where storm facilities are very shallow shall making it impractical to construction detention ponds at Lorson Boulevard/Marksheffel Road. The peak developed flow from this 5.11 -acre basin is 7.1 cfs and 15.6 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G1.9

Basin G1.9 consists of residential development and Mandan Drive. Runoff is directed in curb/gutter in Mandan Drive to a low point at Design Point 7 on the west side of Mandan Drive. The peak developed flow from this 2.97 -acre basin is 5.4 cfs and 11.8 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G1.10

Basin G1.10 consists of residential development and Mandan Drive. Runoff is directed in curb/gutter in Mandan Drive to a low point at Design Point 7a on the east side of Mandan Drive. The peak developed flow from this 4.3 -acre basin is 6.2 cfs and 13.6 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G1.11

Basin G1.11 consists of residential development and Pond G1/G2. Runoff is directed overland to the G1 side of Pond G1/G2. The peak developed flow from this 3.10 -acre basin is 5.6 cfs and 11.5 cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin G1

Basin G1 consists of runoff from Basins G1.1-G1.11 that enters into Pond G1/G2 on the G1 side. The peak developed flow from this 66.69 -acre basin is 132.2 cfs and 273.3 cfs for the $5 / 100$-year storm event and flows to Design Point 9. This overall basin was included to design the storm sewer linking G1 side (north) to G2 side (south). See the appendix for detailed calculations.

Basin G2.1

Basin G2.1 consists of residential development and Rubicon Drive. Runoff is directed southwest in curb/gutter in Rubicon Drive to an on-grade inlet at Design Point 10 on the north side of Rubicon Drive. The peak developed flow from this 3.4 -acre basin is 5.2 cfs and 11.4 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.2

Basin G2.2 consists of residential development and Galpin Drive. Runoff is directed in curb/gutter in Galpin Drive to a low point at Design Point 14 on the east side of Galpin Drive. The peak developed flow from this 1.95 -acre basin is $3.0 c f s$ and 6.6 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.3

Basin G2.3 consists of residential development and Galpin Drive. Runoff is directed in curb/gutter in Galpin Drive to a low point at Design Point 14a on the west side of Galpin Drive. The peak developed flow from this 3.7 -acre basin is 5.5 cfs and 12.1 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.4

Basin G2.4 consists of residential development and Rubicon Drive/Lorson Blvd. Runoff is directed in curb/gutter in Rubicon Drive to a low point at Design Point 12a on the east side of Wando Drive. The peak developed flow from this 4.00 -acre basin is 6.7 cfs and 14.8 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.5

Basin G2.5 consists of residential development and Wando Drive. Runoff is directed in curb/gutter in Rubicon Drive to a low point at Design Point 12b on the west side of Wando Drive. The peak developed flow from this 0.21 -acre basin is 0.4 cfs and 0.9 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.6

Basin G2.6 consists of residential development and Rubicon Drive. Runoff is directed in curb/gutter in Rubicon Drive to a low point at Design Point 13b on the south side of Rubicon Drive at Pond G1. The peak developed flow from this 1.43 -acre basin is 2.4 cfs and 5.3 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.6a
Basin G2.6a consists of residential development and Rubicon Drive. Runoff is directed in curb/gutter in Rubicon Drive to a low point at Design Point 13 on the north side of Rubicon Drive at Pond G1. The peak developed flow from this 0.3 -acre basin is 0.7 cfs and 1.1 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.7 consists of residential development and Rubicon/Clatsop Drive. Runoff is directed in curb/gutter in Rubicon Drive to a low point at Design Point 16 on the north side of Rubicon Drive. The peak developed flow from this 2.40 -acre basin is 4.6 cfs and 10.2 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.8

Basin G2.8 consists of residential development and Rubicon/Wando Drive. Runoff is directed in curb/gutter in Rubicon/Wando Drive to a low point at Design Point 17 on the west side of Wando Drive. The peak developed flow from this 1.01-acre basin is 2.2 cfs and 4.8 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.9

Basin G2.9 consists of residential development and Lorson Blvd/Wando Drive. Runoff is directed in curb/gutter in Lorson Blvd/Wando Drive to a low point at Design Point 17 on the west side of Wando Drive. The peak developed flow from this 0.23 -acre basin is 0.4 cfs and 0.9 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.10

Basin G2.10 consists of residential development and Rubicon/Wando Drive. Runoff is directed in curb/gutter in Rubicon/Wando Drive to a low point at Design Point 18 on the east side of Wando Drive. The peak developed flow from this 0.68 -acre basin is 1.2 cfs and 2.6 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.11a

Basin G2.11a consists of residential development and Lorson Blvd. Runoff is directed in curb/gutter in Lorson Blvd to a low point at Design Point 15 on the north side of Lorson Boulevard. The peak developed flow from this 1.61 -acre basin is 2.6 cfs and 5.8 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.11b

Basin G2.11b consists of residential development and Lorson Blvd. Runoff is directed in curb/gutter in Lorson Blvd to a low point at Design Point 20 on the north side of Lorson Boulevard. The peak developed flow from this 0.64 -acre basin is 1.1 cfs and 2.5 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.12a

Basin G2.12a consists of residential development and Lorson Blvd. Runoff is directed in curb/gutter in Lorson Blvd to a low point at Design Point 15a on the south side of Lorson Boulevard. The peak developed flow from this 1.14 -acre basin is 2.0 cfs and 4.5 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.12b

Basin G2.12b consists of residential development and Lorson Blvd/Wando Drive. Runoff is directed in curb/gutter in Lorson Blvd to a low point at Design Point 22 on the south side of Lorson Boulevard. The peak developed flow from this 1.16 -acre basin is 2.2 cfs and 4.8 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.13

Basin G2.13 consists of residential development and Simcoe Drive. Runoff is directed in curb/gutter in Simcoe Drive to a low point at Design Point 24 on the west end of Simcoe Drive. The peak developed flow from this 1.54 -acre basin is 2.8 cfs and 6.2 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2.14

Basin G2.14 consists of residential development and Pond G2. The peak developed flow from this 4.59 -acre basin is 7.7 cfs and 17.00 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G2

Basin G2 consists of runoff from Basins G2.1-G2.14 that enters into Pond G1/G2 from the G2 side (south). The peak developed flow from this 29.34 -acre basin is 42.5 cfs and 93.5 cfs for the $5 / 100$-year storm event and flows to Design Point 25. This overall basin was included to design Pond G1/G2.

Basin G3.1

Basin G3.1 consists of residential development and Wando Drive. Runoff is directed in curb/gutter in Wando Drive to a low point at Design Point 26 on the north side of Wando Drive. The peak developed flow from this 0.69 -acre basin is 1.2 cfs and 2.6 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G3.2

Basin G3.2 consists of residential development and Wando Drive. Runoff is directed in curb/gutter in Wando Drive to a low point at Design Point 26 on the north side of Wando Drive. The peak developed flow from this 0.68 -acre basin is 1.2 cfs and 2.7 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G3.3

Basin G3.3 consists of residential development and Wando Drive. Runoff is directed in curb/gutter in Wando Drive to a low point at Design Point 27 on the south side of Wando Drive. The peak developed flow from this 0.74 -acre basin is 1.3 cfs and 2.8 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G3.4
Basin G3.4 consists of residential development and Wando Drive. Runoff is directed in curb/gutter in Wando Drive to a low point at Design Point 27 on the south side of Wando Drive. The peak developed flow from this 3.46 -acre basin is 5.6 cfs and 12.4 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G3.5

Basin G3.5 consists of residential development and Pond G3. The peak developed flow from this 4.59acre basin is 1.0 cfs and 2.2 cfs for the $5 / 100$-year storm event. See the appendix for detailed calculations.

Basin G3

Basin G3 consists of runoff from Basins G3.1-G3.5 that enters into Pond G3. The peak developed flow from this 6.09 -acre basin is 9.9 cfs and 21.8 cfs for the $5 / 100$-year storm event and flows to Design Point 29. This overall basin was included to design Pond G3.

Basin G4

Basin G4 consists of residential development. Runoff is from backyards and is directed south onto the Appletree Golf Course as in pre-development conditions. The peak developed flow from this 1.32-acre basin is 2.6 cfs and 5.8 cfs for the $5 / 100$-year storm event which is less than the pre-development conditions in Basin EX-4. See the appendix for detailed calculations.

Basin G5

Basin G5 consists of backyards and open space south of Lorson Boulevard. Runoff is from open space and is directed south onto the Appletree Golf Course and land north of Peaceful Valley Country Club estates as in pre-development conditions. The peak developed flow from this 0.89 -acre basin is 1.8 cfs and 4.0cfs for the $5 / 100$-year storm event which is less than the pre-development conditions in Basin EX-5. See the appendix for detailed calculations.

Basin G6.1

Basin G6.1 consists of backyards and Lorson Boulevard. Runoff is directed south and west in curb/gutter in Lorson Boulevard to curb chase that flows north into the Marksheffel Road east barrow ditch. This basin also includes a swale in the future ROW of Marksheffel Road that will collect runoff from backyards. All flow from this basin flows to Design Point 30 into two proposed 24 " culverts under Lorson Boulevard and flows south in an existing roadside swale to two existing 24 " culverts constructed in 2016 as part of El Paso County's Marksheffel Road widening project. The peak developed flow from this 5.55 -acre basin is 8.7 cfs and 19.1 cfs for the $5 / 100$-year storm event. Per the El Paso County's Marksheffel Road widening project the two existing 24 " culverts can handle up to 28.6 cfs in the 100year storm event. See attached memo dated March 11, 2016 from HDR in Appendix E. See the appendix for detailed calculations. A portion of existing basin EX-1 (Developed basins G1.8a/b) has been diverted east into Pond G1/G2 at Design Point 6 so that runoff from Basin G6.1 can flow south to Design Point 30 and not exceed the capacity of the two existing 24 " culverts in the roadside barrow ditch.

Basin G6.2

Basin G6.2 consists of Lorson Boulevard. Runoff is directed south and west in curb/gutter in Lorson Boulevard to a curb chase that flows south into the Marksheffel Road east barrow ditch. All flow from this basin flows to Design Point 31. The peak developed flow from this 0.77 -acre basin is 3.1 cfs and 5.6 cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin G6

Basin G6 consists of runoff from Basins G6.1-G6.2 that flows to Design Point 31. The peak developed flow from this 6.32 -acre basin is 9.8 cfs and 21.5 cfs for the $5 / 100$-year storm event and flows to Design Point 31. This overall basin was included and verifies that developed flows are less than the 100 -year pre-development flows at existing Design Point DP-1 (5.2cfs/29.5cfs for 5/100year storm). The proposed flow is also lower than the allowable flow from the HDR drainage memo (Appendix E) for the hydraulic design of the two culverts which is 28.6 cfs in the 100 -year storm. There should be no downstream impacts due to our development since we have lowered the runoff to Marksheffel Road in this basin.

See the Developed Conditions Hydrology Calculations in the back of this report and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

5.0 HYDRAULIC SUMMARY

The sizing of the hydraulic structures and detentions ponds were prepared by using the StormSewers and Hydrographs computer software programs developed by Intellisolve, which conforms to the methods outlined in the "City of Colorado Springs/El Paso County Drainage Criteria Manual".

It is the intent of this drainage report to use the proposed curb/gutter and storm sewer in the streets to convey runoff to detention and water quality ponds then to Jimmy Camp Creek. Inlet size and location are preliminary only as shown on the storm sewer layout in the appendix. See Appendix C for detailed hydraulic calculations and the storm sewer model.

All storm sewer is to be part of a public system including Detention Pond G1/G2, G3, and Swale G1.8. Detention Pond G1.7 is an interim detention pond and may move in the future when the commercial areas are developed including the Brownsville Subdivision No. 2. Detention Pond G1.7 will be an interim district detention pond until
the remaining commercial areas are developed and the pond location has been finalized, then it will become public.

Table 1: Street Capacities (100-year capacity is only $1 / 2$ of street)

Street Slope	Residential Local		Residential Collector		Principal Arterial	
	5 -year	100 -year	5-year	100 -year	5 -year	100 -year
0.5%	6.3	26.4	9.7	29.3	9.5	28.5
0.6%	6.9	28.9	10.6	32.1	10.4	31.2
0.7%	7.5	31.2	11.5	34.6	11.2	33.7
0.8%	8.0	33.4	12.3	37.0	12.0	36.0
0.9%	8.5	35.4	13.0	39.3	12.7	38.2
1.0%	9.0	37.3	13.7	41.4	13.4	40.2
1.4%	10.5	44.1	16.2	49.0	15.9	47.6
1.8%	12.0	45.4	18.4	50.4	18.0	50.4
2.2%	13.3	42.8	19.4	47.5	19.5	47.5
2.6%	14.4	40.7	18.5	45.1	18.5	45.1
3.0%	15.5	39.0	17.7	43.2	17.8	43.2
3.5%	16.7	37.2	16.9	41.3	17.0	41.3
4.0%	17.9	35.7	16.2	39.7	16.3	29.7
4.5%	19.0	34.5	15.7	38.3	15.7	38.3
5.0%	19.9	33.4	15.2	37.1	15.2	37.1

Note: all flows are in cfs (cubic feet per second)

Design Point 1
Design Point 1 is located east of Carriage Meadows Drive and west of Rubicon Drive.
(5-year storm)
Tributary Basins: G1.1-G1.3 Inlet/MH Number: Inlet 1
Upstream flowby: 0
Total Street Flow:

Flow Intercepted: 14.9 cfs
Flow Bypassed:
Inlet Size: CDOT Type D
Street Capacity: will need inlets when future development occurs
(100-year storm)
Tributary Basins: G1.1-G1.3 Inlet/MH Number: Inlet 1
Upstream flowby: 0
Flow Intercepted: 29.2 cfs
Inlet Size: CDOT Type D
Street Capacity: will need inlets when future development occurs
Comments: The CDOT Type D is only for interim conditions. Additional inlets will be needed upstream to convey flow.

Design Point 2 is located on Carriage Meadows Drive at a low point just north of Mandan Drive and Design Point 2a is the flow in the storm sewer

(5-year storm)

Tributary Basins: G1.4 Upstream flowby: 0

Inlet/MH Number: Inlet 2 Total Street Flow:

Flow Bypassed:
Flow Intercepted: 10.3 cfs
Inlet Size: 15 ' Type R Inlet in sump
Street Capacity: The street capacity may be exceeded which will require additional inlets and storm sewer from Design Point 1 to be extended north to reduce the size of this basin. The un-developed conditions in Basin G1.4 do not exceed street capacity.
(100-year storm)
Tributary Basins: G1.4
Upstream flowby: 0
Flow Intercepted: 19.0 cfs
Inlet Size: 15' Type R Inlet in sump
Street Capacity: The street capacity is not exceeded in the 100-year storm event but the $5-\mathrm{yr}$ storm may require additional inlets and storm sewer from Design Point 1 to be extended north to reduce the size of this basin. The un-developed conditions in Basin G1.4 do not exceed street capacity.

Comments: Pipe flow in culvert is 24.3 cfs/46.5cfs in the $5 / 100$-year storm events at Design Point 2a. Storm sewer size is 30 " RCP

Design Point 3 and 3 a
Design Point 3 is located on Carriage Meadows Drive at a low point just north of Mandan Drive. Design Point 3a is the flow in the storm sewer into Pond G1.7

(5-year storm)

Tributary Basins: G1.5
Inlet/MH Number: Inlet 3
Total Street Flow:
Flow Bypassed:
Flow Intercepted: 3.0 cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 7 cfs at 0.65%---street capacity okay.
(100-year storm)
Tributary Basins: G1.5
Upstream flowby: 0
Flow Intercepted: 5.4 cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 14 cfs at 0.65%---street capacity ($1 / 2$ of street) okay.
Comments: Pipe flow in culvert is $26.9 \mathrm{cfs} / 51.2 \mathrm{cfs}$ in the $5 / 100$-year storm events at Design Point 3a. Storm sewer size is 30" RCP

Design Point 4

Design Point 4 is located on the north side of Pond G1.7 and includes Basins G1.6 \& G1.7

```
(5-year storm)
Tributary Basins: G1.6 & G1.7
Upstream flowby: 0
Flow Intercepted: 83.2 cfs
Inlet Size:
Street Capacity:
(100-year storm)
Tributary Basins: G1.6 & G1.7
Upstream flowby: 0
Flow Intercepted: 151.7 cfs Inlet Size:
Street Capacity:
```

Inlet/MH Number:
Total Street Flow:
Flow Bypassed:

Inlet/MH Number:
 Total Street Flow:

Flow Bypassed:

Comments: A swale with 5' bottom, 0.5% slope, and $3: 1$ side slopes will carry 100cfs. Full development of these basins will require additional storm sewer into Pond G1.7. The swale is okay for interim undeveloped conditions.

Design Point 5

Design Point 5 is located on the south side of Pond G1.7 and includes Basins G1.1-G1.7. The total inflow to Pond G1.7 is 106.4 cfs in the 5 -year storm event and 195.9cfs in the 100-year storm event. Pond G1.7 will detain runoff so the downstream storm sewer can be accommodated in a 48 " storm sewer outfall. Pond G1.7 is an interim pond that could be moved depending on whether or not Brownsville Subdivision No. 2 is developed as part of Lorson Ranch in the future.

Design Point 6

Design Point 6 is located south of Swale G1.8 and includes Basins G1.8a, G1.8b, Detention Pond G1.7, and flow from Swale G1.8. It is our intent to divert as much runoff from Marksheffel Road as possible to the on-site detention Pond G1/G2 for detention and water quality. This will allow Lorson Ranch to drain a portion of the Southwest corner of this site to the southwest without constructing a detention/WQ pond. The resultant tributary area is significantly reduced thus maintaining offsite flow rates in the Marksheffel Road barrow ditch. By diverting the upstream Marksheffel Road areas we can also utilize the WQ facilities in the barrow ditch to treat runoff from Lorson Boulevard and backyards in the SW corner. The total flow at this design point is 47.4 cfs in the 5 -year storm and 96.7 cfs in the $100-$ year storm event. All flow will be in a 48" RCP that drains to Pond G1/G2. The 48 " RCP does have additional capacity should upstream areas change in land use when they are platted. This design point was modeled in hydraflow hydrographs.

Design Point 7

Design Point 7 is located on the west side of Mandan Drive at a low point west of Pond G1.
(5-year storm)
Tributary Basins: G1.9
Inlet/MH Number: Inlet 7
Upstream flowby: 0
Flow Intercepted: 5.4 cfs
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 7.1 cfs at 0.63%---street capacity okay.
(100-year storm)
Tributary Basins: G1.9
Upstream flowby: 0
Flow Intercepted: 11.8 cfs
Inlet/MH Number: Inlet 7
Total Street Flow:
Flow Bypassed:
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 14.8 cfs at 0.63%---street capacity ($1 / 2$ of street) okay.

Design Point 7a
Design Point 7a is located on the east side of Mandan Drive at a low point west of Pond G1.

```
(5-year storm)
Tributary Basins: G1.10 Inlet/MH Number: Inlet 7a
Upstream flowby: 0
Flow Intercepted: 6.2 cfs
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 7.1cfs at 0.63% ---street capacity okay
(100-year storm)
```

Tributary Basins: G1.10
Upstream flowby: 0
Flow Intercepted: 13.6 cfs

Inlet/MH Number: Inlet 7a
Total Street Flow:
Flow Bypassed:

```
Street Capacity: 7.1cfs at 0.63\% ---street capacity okay
(100-year storm)
Inlet/MH Number: Inlet 7a
Total Street Flow:
Flow Bypassed:
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 14.8 cfs at \(0.63 \%\)---street capacity ( \(1 / 2\) of street) okay
```


Design Point 8

Design Point 8 is located west of Design Point 7a and is the total flow from Basins G1.9 and G1.10 in a storm sewer flowing into Pond G1. The total flow in the storm sewer is 12.6 cfs in the 5 -year storm event and 27.7 cfs in the 100 -year storm event.

Design Point 9

Design Point 9 is located on the south side of Pond G1 and includes Basins G1.1-G1.11, G2.2 \& G2.3. The total inflow was calculated in Hydraflow Hydrographs and included Pond G1.7 and Swale G1.8 which detains upstream flow. The total inflow to Pond G1 is 60cfs in the 5 -year storm event and 117cfs in the 100-year storm event. Pond G1 is connected directly to Pond G1/G2 and will included in the full spectrum detention calculations. This design point was added to design the interconnection pipe between Pond G1 and G2 and to determine a suitable emergency overflow for the "G1" side of the pond. The total outflow from Pond G1 to G2 into the 48" RCP interconnection pipe is 28 cfs in the 5 -year storm event (elev 5687.92) and 58cfs in the 100-year storm event (elev 5689.12) . The 48" RCP will also function as an emergency overflow for Pond G1 to the south. The emergency overflow capacity of the 48" RCP is 120cfs at a headwater depth of 5690.60

Design Point 10
Design Point 10 is located on Rubicon Drive northeast of Galpin Drive

(5-year storm)

Tributary Basins: G2.1
Inlet/MH Number: Inlet 10
Upstream flowby: 0
Total Street Flow:

Flow Intercepted: 4.9 cfs
Flow Bypassed: 0.3 cfs to DP14
Inlet Size: 10' Type R Inlet on grade
Street Capacity: 6.9 cfs at 0.6%---street capacity okay
(100-year storm)
Tributary Basins: G2.1
Inlet/MH Number: Inlet 10
Total Street Flow:

Flow Intercepted: 7.7 cfs
Inlet Size: 10' Type R Inlet
Street Capacity: 14.4 cfs at 0.6%---street capacity (1/2 of street) okay

Design Point 11

Design Point 11 is located at Manhole 11 on Rubicon Drive and is the flow in the 24 " RCP storm sewer at Manhole 11. Flow at this point is from Design Point 10 and Design Point 12. The total flow in the pipe is 11.9 cfs in the 5 -year storm event and 23.1cfs in the 100-year storm event.

Design Point 12a
Design Point 12a is located at a low point on Wando Drive.

(5-year storm)

Tributary Basins: G2.4
Inlet/MH Number: Inlet 12a
Upstream flowby:
Total Street Flow:

Flow Intercepted: 6.7 cfs
Flow Bypassed:
Inlet Size: 15' Type R Inlet in sump
Street Capacity: 7.2 cfs at 0.65%---street capacity okay since $1 / 3$ of flow is from Lorson Blvd

Tributary Basins: G2.4
Upstream flowby: 0

Flow Intercepted: 14.8 cfs
Inlet Size: 15' Type R Inlet in sump
Street Capacity: 15 cfs at 0.65\% ---street capacity (1/2 of street) okay.

Design Point 12b

Design Point 12b is located at a low point on Wando Drive.
(5-year storm)
Tributary Basins: G2.5
Upstream flowby:
Flow Intercepted: 0.4 cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 7.2 cfs at 0.65%---street capacity okay since $1 / 3$ of flow is from Lorson Blvd
(100-year storm)
Tributary Basins: G2.5 Upstream flowby:

Flow Intercepted: 0.9 cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 15 cfs at 0.65%---street capacity ($1 / 2$ of street).

Comments:

Design Point 12

Design Point 12 is located at Manhole 12 on Rubicon Drive and is the flow in the 24 " RCP storm sewer at Manhole 12. Flow at this point is from Design Point 12a and Design Point 12b. The total flow in the pipe is 7.0 cfs in the 5 -year storm event and 15.4 cfs in the 100-year storm event.

Design Point 13
Design Point 13 is located at a low point on the north side of Rubicon Drive next to Pond G1.

(5-year storm)

Tributary Basins: G2.6a Inlet/MH Number: Inlet 13
Upstream flowby:
Total Street Flow:
Flow Intercepted: 0.7 cfs
Flow Bypassed:
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 6.8 cfs at 0.56%---street capacity okay
(100-year storm)
Tributary Basins: G2.6a
Inlet/MH Number: Inlet 13 Upstream flowby:

Flow Intercepted: 1.1 cfs

Total Street Flow:

Flow Bypassed:
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 13.5 cfs at 0.56%---street capacity ($1 / 2$ of street) okay.

Design Point 13a

Design Point 13a is located at Manhole 13a on Rubicon Drive and is the flow in the 48" RCP storm sewer at Manhole 13a. Flow at this point is from Design Point 13, Design Point 11, and the outflow from Pond G1 ($28 \mathrm{cfs} / 58 \mathrm{cfs}$ in the $5 / 100$-year storm events). The total flow in the pipe is 40.6 cfs in the 5 -year storm event and 82.2 cfs in the 100 -year storm event.

Design Point 13b
Design Point 13b is located at a low point on the south side of Rubicon Drive next to Pond G1.
(5-year storm)
Tributary Basins: G2.6 Upstream flowby:

Flow Intercepted: 2.4 cfs
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 6.8 cfs at 0.56%---street capacity okay

(100-year storm)

Tributary Basins: G2.6a
Upstream flowby:
Flow Intercepted: 5.3 cfs
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 13.5 cfs at 0.56%---street capacity ($1 / 2$ of street) okay.

Design Point 13c

Design Point 13 c is located downstream of Design Point 13b and is the flow in the 48" RCP storm sewer. Flow at this point is from Design Point 13b and Design Point 13a. The total flow in the pipe is 43 cfs in the 5 -year storm event and 87.5 cfs in the 100 -year storm event. The emergency overflow swale from Design Point 13c to Lorson Blvd is 12' wide, 1.2% slope, 1' deep, and has a capacity of 100 cfs to handle the flow should the inlets become clogged.

Design Point 14
Design Point 14 is located at a low point on the east side Galpin Drive next to Pond G1.

(5-year storm)

Tributary Basins: G2.2 Inlet/MH Number: Inlet 14
Upstream flowby: 0.3cfs from Des. Pt. 10 Total Street Flow: 3.3cfs
Flow Intercepted: 3.3cfs
Flow Bypassed:
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 7.3 cfs at 0.67%---street capacity okay
(100-year storm)
Tributary Basins: G2.2
Upstream flowby: 3.7cfs from Des. Pt. 10 Total Street Flow: 10.3cfs
Flow Intercepted: 9.8 cfs
Flow Bypassed: 0.5cfs to Des. Pt. 14a
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 15.3 cfs at 0.67%---street capacity (1/2 of street).

Design Point 14a

Design Point 14a is located at a low point on the west side of Galpin Drive next to Pond G1.
(5-year storm)
Tributary Basins: G2.3
Upstream flowby:
Flow Intercepted: 5.5cfs
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 7.3 cfs at 0.67%---street capacity okay
(100-year storm)
Tributary Basins: G2.3
Inlet/MH Number: Inlet 14a
Upstream flowby: 0.5cfs from Des. Pt. 14 Total Street Flow: 12.6cfs
Flow Intercepted: 12.6cfs
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 15.3 cfs at 0.67%---street capacity (1/2 of street).

Design Point 14c

Design Point 14c is located on Galpin Drive where the storm sewer from Design Point 14c flows west to Pond G1. All flow is routed in a 24 " RCP to Pond G1. The total flow in the pipe is 8.8 cfs in the 5 -year storm event and 22.4cfs in the 100-year storm event. The emergency overflow swale from Design Point 14c to Pond G1 is 8' wide, 1.2% slope, 1^{\prime} deep, and has a capacity of 40 cfs to handle the flow should the inlets become clogged.

Design Point 15
Design Point 15 is located at a low point on the north side of Lorson Boulevard at Pond G2

(5-year storm)

Tributary Basins: G2.11a
Inlet/MH Number: Inlet 15
Upstream flowby:
Total Street Flow:
Flow Intercepted: 2.6 cfs
Flow Bypassed:
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 7.3 cfs at 0.67%---street capacity okay
(100-year storm)
Tributary Basins: G2.11a
Upstream flowby:
Flow Intercepted: 5.8 cfs
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 15.3 cfs at 0.67%---street capacity ($1 / 2$ of street).

Design Point 15a

Design Point 15a is located at a low point on the south side of Lorson Boulevard at Pond G2
(5-year storm)
Tributary Basins: G2.12a
Upstream flowby:
Flow Intercepted: 2.0 cfs
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 7.3 cfs at 0.67%---street capacity okay
(100-year storm)
Tributary Basins: G2.12a Upstream flowby:

Flow Intercepted: 4.5 cfs
Total Street Flow:
Flow Bypassed: Total Street Flow:

Flow Bypassed:

Inlet/MH Number: Inlet 15a

Inlet/MH Number: Inlet 15a

Inlet Size: 10' Type R Inlet in sump
Street Capacity: 15.3 cfs at 0.67%---street capacity (1/2 of street).

Design Point 15b

Design Point 15b is located downstream of Design Point 15a and is the flow in the 48" RCP storm sewer. Flow at this point is from Design Point 15 \& 15a and Design Point 13c. The total flow in the pipe is 47.6 cfs in the 5 -year storm event and 97.8 cfs in the 100 -year storm event flowing into Pond G2

Design Point 16
Design Point 16 is located at a low point on Rubicon Drive.

(5-year storm)

Tributary Basins: G2.7
Inlet/MH Number: Inlet 16
Upstream flowby:
Total Street Flow:
Flow Bypassed:
Flow Intercepted: 4.6 cfs
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 7.3 cfs at 0.67%---street capacity okay
(100-year storm)
Tributary Basins: G2.7
Inlet/MH Number: Inlet 16
Upstream flowby:
Flow Intercepted: 10.2 cfs
Total Street Flow:
Flow Bypassed:
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 15.3 cfs at 0.67%---street capacity (1/2 of street).

Design Point 17

Design Point 17 is located at a low point on the west side of Wando Drive north of Lorson Blvd.
(5-year storm)
Tributary Basins: G2.8 \& G2.9
Upstream flowby:
Flow Intercepted: 2.3 cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 7.2 cfs at 0.65%---street capacity okay since $1 / 3$ of flow is from Lorson Blvd
(100-year storm)
Tributary Basins: G2.8 \& G2.9 Upstream flowby:

Flow Intercepted: 5.0 cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 15 cfs at 0.65%---street capacity ($1 / 2$ of street).

Design Point 18

Design Point 18 is located at a low point on the east side of Wando Drive north of Lorson Blvd.

(5-year storm)

Tributary Basins: G2.10
Upstream flowby:
Flow Intercepted: 1.2 cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 7.2 cfs at 0.65%---street capacity okay since $1 / 3$ of flow is from Lorson Blvd
(100-year storm)
Tributary Basins: G2.10
Upstream flowby:
Flow Intercepted: 2.6 cfs

Inlet/MH Number: Inlet 18
Total Street Flow:
Flow Bypassed:

Inlet Size: 5' Type R Inlet in sump
Street Capacity: 15 cfs at 0.65%---street capacity ($1 / 2$ of street).

Design Point 19

Design Point 19 is flow in storm sewer located on Wando Drive just north of Lorson Boulevard Flow is routed in a 24 " RCP to Design Point 21 and then to Pond G2. The total flow in the pipe is 7.4 cfs in the 5 -year storm event and 16.2cfs in the 100-year storm event.

Design Point 20

Design Point 20 is located at a low point on the north side of Lorson Boulevard.
(5-year storm)
Tributary Basins: G2.11b
Upstream flowby:
Flow Intercepted: 1.1 cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 7.2 cfs at 0.65%---street capacity okay
(100-year storm)
Tributary Basins: G2.11b Upstream flowby:

Flow Intercepted: 2.5 cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 15 cfs at 0.65%---street capacity ($1 / 2$ of street).

Design Point 21

Design Point 21 is pipe flow in storm sewer located on Lorson Boulevard just north of Pond G2 and pipe flow from Design Point 19 and 20. Flow is routed in a 24 " RCP to Design Point 22 and then to Pond G2. The total flow in the pipe is 10.4 cfs in the 5 -year storm event and 22.8 cfs in the 100 -year storm event.

Design Point 22
Design Point 22 is located at a low point on the south side of Lorson Boulevard.

(5-year storm)

Tributary Basins: G2.12b
Upstream flowby:
Flow Intercepted: 2.2cfs

Inlet/MH Number: Inlet 22
Total Street Flow:
Flow Bypassed:

Inlet Size: 5' Type R Inlet in sump
Street Capacity: 7.2 cfs at 0.65%---street capacity okay
(100-year storm)
Tributary Basins: G2.12b
Upstream flowby:
Flow Intercepted: 4.8 cfs

Inlet/MH Number: Inlet 20 Total Street Flow:

Flow Bypassed:
Inlet/MH Number: Inlet 20
Total Street Flow:
Flow Bypassed:

Design Point 24

Design Point 24 is located at a low point on the west end of Simcoe Drive

```
(5-year storm)
Tributary Basins: G2.13
Upstream flowby:
Flow Intercepted: 2.8cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 7.2 cfs at \(0.65 \%\)---street capacity okay
(100-year storm)
Tributary Basins: G2.13 Upstream flowby:
Flow Intercepted: 6.2 cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 15 cfs at \(0.65 \%\)---street capacity (1/2 of street).
```


Design Point 25

Design Point 25 is pipe flow in storm sewer draining Pond G2. This pipe was sized by the full spectrum detention pond (UD Detention) worksheets provided by Denver Urban Drainage. The pond outflow pipe is 36 " RCP at a 0.4% slope. The total flow in the pipe is 4.5 cfs in the 5 -year storm event and 61.6 cfs in the 100-year storm event per the full spectrum spreadsheets.

Design Point 26
Design Point 26 is located at a low point on the north side of Wando Drive downstream of Pond G2.

(5-year storm)

Tributary Basins: G3.1 \& G3.2
Upstream flowby:
Flow Intercepted: 2.4cfs

Inlet/MH Number: Inlet 26
Total Street Flow:
Flow Bypassed:
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 7.2 cfs at 0.65%---street capacity okay
(100-year storm)
Tributary Basins: G3.1 \& G3.2 Upstream flowby:

Flow Intercepted: 5.2 cfs
Inlet Size: 5' Type R Inlet in sump
Street Capacity: 15 cfs at 0.65%---street capacity (1/2 of street).

Design Point 27 is located at a low point on the south side of Wando Drive downstream of Pond G2.
(5-year storm)
Tributary Basins: G3.3 \& G3.4 Upstream flowby:

Flow Intercepted: 6.8cfs
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 7.2 cfs at 0.65%---street capacity okay
(100-year storm)
Tributary Basins: G3.3 \& G3.4 Upstream flowby:

Flow Intercepted: 15.0 cfs
Inlet Size: 10' Type R Inlet in sump
Street Capacity: 15 cfs at 0.65%---street capacity ($1 / 2$ of street).

Design Point 28

Design Point 28 is pipe flow in storm sewer located on Wando Drive draining into Pond G3 from Design Point 27. Flow is routed in a 24 " RCP to Pond G3. The total flow in the pipe is 9.0 cfs in the 5 -year storm event and 19.9cfs in the 100-year storm event.

Design Point 29

Design Point 29 is the total flow from G3 basins draining to Pond G3. This pond was sized by the full spectrum detention pond (UD Detention) worksheets provided by Denver Urban Drainage. The pond outflow pipe is 18 " RCP at a 0.5% slope. The18" will connect into the 36 " pipe from Pond G 2 and drain east to Jimmy Camp Creek. The total flow into Pond G3 is 9.9cfs in the 5 -year storm event and 21.8 cfs in the 100-year storm event.

Design Point 30

Design Point 30 is runoff from Basin G6.1 on the north side of Lorson Boulevard. Runoff in Lorson Boulevard will drain west to Marksheffel Road and then north in a curb chase to a barrow ditch on the east side of Marksheffel Road. Two proposed 24 -inch RCP storm sewer pipes will be necessary to convey flow from this basin under Lorson Boulevard and will drain into the existing storm sewer system constructed as part of the Marksheffel Road improvement project consisting of two existing downstream pipes are $24^{\prime \prime}$ RCP pipes at 0.28% slope. The calculated flow in the proposed pipes is calculated to be 8.7 cfs in the 5 -year storm event and 19.1 cfs in the 100-year storm event. A portion of existing basin EX-1 (Developed basins G1.8a/b) has been diverted east into Pond G1/G2 at Design Point 6 so that developed runoff from Basin G6.1 can flow south to Design Point 30 and not exceed the capacity of the two existing 24 " culverts in the roadside barrow ditch.

Design Point 31

Design Point 31 is runoff from Basins G6.1-G6.2 and is the total flow in the barrow ditch of Marksheffel Road just downstream of Lorson Boulevard. Runoff in Lorson Boulevard, backyards, and the future Marksheffel Road will drain south in a barrow ditch on the east side of Marksheffel Road to two existing 24 " culverts under an access road. The total flow from all the G6 basins is 9.8 cfs in the 5 -year storm event and 21.5 cfs in the 100-year storm event. This developed flow will not exceed the capacity of the two existing downstream 24 " RCP pipes at 0.28% slope. Per the County's design of Marksheffel Road,
the two pipes have a total capacity of 28.6 cfs in the 100 -year storm event. See Appendix E for the drainage memo from HDR regarding design of the two 24 " storm sewer culverts.

Design Point 32

Design Point 32 is the total flow in the 36 " pipe to Jimmy Camp Creek. The total flow consists of flow from Pond G1/G2 and Pond G3 and is 4.5 cfs in the 5 -year storm event and 65.7 cfs in the 100 -year storm event. All flow discharges to Jimmy Camp Creek onto a rip rap pad. The existing flow to Jimmy Camp per the UDCF pre-development flow rates are 69cfs in the 100-year storm event. The proposed runoff rate is less than the pre-development flow rate and is in conformance with the MDDP/Preliminary Drainage Report for Carriage Meadows South at Lorson Ranch prepared by Core Engineering Group [11]

6.0 DETENTION AND WATER QUALITY PONDS

Detention and Storm Water Quality for Carriage Meadows South at Lorson Ranch Filing No. 1 is required per El Paso County criteria. We have implemented the Full Spectrum approach for detention for Carriage Meadows South at Lorson Ranch Filing No. 1 per the Denver Urban Drainage Districts specifications. There is one interim detention pond and two permanent full spectrum ponds proposed for this development. The interim detention pond does not have full spectrum or water quality features and is strictly to slightly reduce runoff so the downstream storm sewer (48" Storm Sewer) can accommodate the increased flows from the developed conditions. The two permanent full spectrum ponds incorporate storm water quality features. The detention ponds in Carriage Meadows South at Lorson Ranch Filing No. 1 will be owned and maintained by the Lorson Ranch Metropolitan District.

Interim Pond G1.7 (Interim District Pond)

This is an interim detention pond located north of the residential areas and west of Carriage Meadows Drive. If the Brownsville Subdivision No. 2 develops as part of Lorson Ranch all or a portion of this pond could be moved to a more effective location to the southwest. Interim Pond G1.7 reduces the size of the downstream storm sewer to a 48" diameter that flows south to Swale G1.8. The smaller size outfall pipe is necessary to maintain cover over the pipe. This pond was modeled in Hydraflow and does not include water quality features. Pond G1.7's developed inflow hydrograph has a 35 minute duration and the outflow hydrograph stores and drains the pond volume in around 110 minutes. Pond G1.7 will fill and drain out in less than two hours because of the large 48" diameter storm sewer outfall pipe. Pond G1.7 does not overdetain runoff when compared to existing conditions. When development occurs upstream of this interim pond the pond must be updated to meet El Paso County requirements for full spectrum ponding.

- Incoming flows: 107cfs/196cfs in the 5-year and 100-year storm event
- Detained flows: $62.7 \mathrm{cfs} / 95 \mathrm{cfs}$ in the 5-year and 100-year storm event
- Pipe Outlet: 48 " RCP at 0.5\%
- 5-yr WSEL= 5695.10, 100-yr WSEL=5696.94
- Volume: 1.22 ac-ft storage in 5-year, 2.40 acre-ft storage in 100-year

Swale G1.8 (District Facility)

This swale is located west of the residential areas adjacent to Marksheffel Road. The swale does have some storage volume in it which is why it is included in the hydraulic calculations. If the Brownsville Subdivision No. 2 develops as part of Lorson Ranch all or a portion of this swale could be moved to a more effective location or changed into a pond. Swale G1.8 helps reduces the size of storm sewer necessary to convey drainage from Design Point 6 to Pond G1. This swale was modeled in Hydraflow and does not include water quality features.

- Incoming flows: 74cfs/120cfs in the 5-year and 100-year storm event
- Detained flows: $52.8 \mathrm{cfs} / 105 \mathrm{cfs}$ in the 5 -year and 100-year storm event
- Pipe Outlet: 42 " RCP at 0.5\%
- 5-yr WSEL= 5692.86, 100-yr WSEL=5694.33
- Volume: 0.9 ac-ft storage in 5-year, 1.48 acre-ft storage in 100-year

Hydraulic Design of the "G1" portion of Pond G1/G2 (District Facility)

This analysis was added to provide a hydraulic model of the "G1" side of Pond G1/G2 to ensure the storm sewer interconnection pipes were sized adequately. See Pond G1/G2 for full spectrum calculations. The hydraulic model utilized the storage volume in Pond G1.7 and Swale G1.8 (tributary areas) and the site runoff directly entering the G1 side to determine the total flow entering the G1 side. The G1 side (north of Lorson Boulevard) was then hydraulically modeled in Hydraflow to determine the flow in the interconnect pipe flowing to the G2 side (south). The interconnection pipe will also serve as an emergency overflow with a capacity of over 120 cfs. In addition, a sideyard overflow swale will also be constructed which has a capacity of 100cfs.

- Incoming flows: 56cfs/113.5cfs in the 5-year and 100-year storm event
- Outflow to "G2" side: 28cfs at elevation 5687.92 in the 5 -year storm event
- Outflow to "G2" side: 58cfs at elevation 5689.12 in the 100-year storm event
- Volume: 2.25 ac-ft storage in 5-year, 3.79 acre-ft storage in 100-year
- Pipe Outlet: 48" RCP at 0.4\%

Detention Pond G1/G2 (Full Spectrum Design), (District Facility)

This is an on-site permanent full spectrum detention pond that includes water quality. Pond G1/G2 is designed as a single pond in the UDCF Full Spectrum spreadsheets. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas. This pond is sized to provide full spectrum and water quality for the Brownsville Subdivision No. 2 should it become a part of Lorson Ranch.

- Watershed Ares: 96 acres
- Watershed Imperviousness: 79\%
- Hydrologic Soils Group A, B, C/D
- Zone 1 WQCV: 2.301 ac-ft, WSEL: 5683.93
- Zone 2 EURV: 8.104 ac-ft, WSEL: 5686.29
- Zone 3 (100-yr): 12.881ac-ft, WSEL: 5687.93
- Pipe Outlet: 36 " RCP at 0.4%
- $5-\mathrm{yr}$ outflow $=4.2 \mathrm{cfs}, 100-\mathrm{yr}$ outflow $=55.6 \mathrm{cfs}$

Detention Pond G3 (Full Spectrum Design), (District Facility)
This is an on-site permanent full spectrum detention pond that includes water quality. Pond G3 is designed per the UDCF Full Spectrum spreadsheets. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Ares: 6.02 acres
- Watershed Imperviousness: 65\%
- Hydrologic Soils Group B
- Zone 1 WQCV: 0.11 ac-ft, WSEL: 5684.94
- Zone 2 EURV: 0.39 ac-ft, WSEL: 5686.41
- Zone 3 (100-yr): 0.51 ac-ft, WSEL: 5686.98
- Pipe Outlet: 18 " RCP at 0.5%
- $5-\mathrm{yr}$ outflow $=0.3 \mathrm{cfs}, 100-\mathrm{yr}$ outflow $=10.1 \mathrm{cfs}$

Water Quality Design

Water Quality for all the G1, G2, and G3 basins is provided in the on-site full spectrum ponds. The G4 and G5 basins are from the backyards of residential lots and open space and have been reduced in area as much as possible. The WQ for the G6 basins is provided by an existing sand filter basin in the east barrow ditch of Marksheffel Road near the SW corner of this site. The sand filter basin was constructed as part of the Marksheffel Road project by El Paso County. The sand filter basin was designed for all of Marksheffel Road but we have diverted most of the northern sections of Marksheffel Road (Basins G1.8a/b) into Pond G1/G2 which will allow the flows in the G6 basins to be treated by the existing sand filter basin. The main reason for diverting runoff is that there is not enough elevation difference to construct a pond in the SW corner with a suitable outfall.

7.0 DRAINAGE AND BRIDGE FEES

Carriage Meadows South at Lorson Ranch Filing No. 1 is located within the Jimmy Camp Creek drainage basin which is currently a fee basin in El Paso County. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land as part of the plat recordation process. Lorson Ranch Metro District has negotiated a development agreement with El Paso County which defines major drainage infrastructure to be constructed as part of the district.

Lorson Ranch Metro District will compile and submit to the county on a yearly basis the Drainage and bridge fees for the approved plats, and shall show all credits they have received for the same yearly time frame.

Carriage Meadows South at Lorson Ranch Filing No. 1 contains 106.64 acres. The 106.64 acres will be assessed Drainage, Bridge and Surety fees. This project consists of 34.02 acres of open space (7% impervious), 13.69 acres of commercial (95% impervious), and the remaining 58.93 acres is residential (65\% impervious) for a total impervious percentage of 50.4\%

The 2017 drainage fees are $\$ 15,720$, bridge fees are $\$ 735$ and Drainage Surety fees are $\$ 7,000$ per impervious acre. The fees are due at plat recordation and are calculated as follows:

Table 1: Drainage/Bridge Fees

Type of Land Use	Total Area $(\mathbf{a c})$	Imperviousness	Drainage Fee	Bridge Fee	Surety Fee				
Residential	58.93	65%	$\$ 602,657$	$\$ 28,177$	$\$ 268,359$				
Open Space	34.02	7%	$\$ 37,435$	$\$ 1,750$	$\$ 16,669$				
Commercial	13.69	95%	$\$ 204,446$	$\$ 9,559$	$\$ 91,038$				
Total							$\$ 844,538$	$\$ 39,486$	$\$ 376,066$

Table 2: Storm Drainage Facility Costs (non-reimbursable)

Table 3: Lorson Ranch Metro District Drainage Facility Costs (non-reimbursable)

Item	Quantity	Unit	Unit Cost	Item Total
Rip Rap	100	CY	$\$ 50 / C Y$	$\$ 5,000$
Channel Lining	1300	SY	$\$ 5 / \mathrm{SY}$	$\$ 6,500$
$\begin{array}{c}\text { Full Spectrum Ponds } \\ \text { and Outlet }\end{array}$	2	LS	$\$ 50,000$	$\$ 100,000$
				Subtotal

8.0 CONCLUSIONS

This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:

- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- Jimmy Camp Creek is realigned and Marksheffel Road has been reconstructed within this study area
- Detention and water quality for this study area has been provided

9.0 REFERENCES

1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM, dated November, 1991
2. Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014
3. Soil Survey of El Paso County Area, Colorado by USDA, SCS
4. Jimmy Camp Creek Drainage Basin Planning Study, 1987, Wilson \& Co.
5. City of Colorado Springs "Drainage Criteria Manual, Volume 2
6. El Paso County "Engineering Criteria Manual"
7. Final Drainage Report for Fontaine Boulevard, Old Glory Drive, and Marksheffel Road Phase 1 Improvements, Dated February 6, 2006, Revised September 7, 2006, by Pentacor Engineering.
8. Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
9. Drainage memo from HDR for Marksheffel Road project, dated March 11, 2016
10. Jimmy Camp Creek Reconstruction plans by Drexel, Barrell \& Co, dated September 6, 2005, county plans \#2801.
11. Master Development Drainage Plan and Preliminary Drainage Report for Carriage Meadows South at Lorson Ranch by Core Engineering Group, dated June, 2017 and revised March, 2017.

Custom Soil Resource Report

Map Unit Legend

El Paso County Area, Colorado (CO625)			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	50.3	46.1\%
30	Fort Collins loam, 0 to 3 percent slopes	25.0	22.9\%
52	Manzanst clay loam, 0 to 3 percent slopes	33.5	30.8\%
59	Nunn clay loam, 0 to 3 percent slopes	0.2	0.2\%
Totals for Area of Interest		109.0	100.0\%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used.
Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic
classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.
Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. AlphaBeta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

28-Ellicott loamy coarse sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 3680
Elevation: 5,500 to 6,500 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 47 to 50 degrees F
Frost-free period: 125 to 145 days
Farmland classification: Not prime farmland

Map Unit Composition

Ellicott and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ellicott

Setting

Landform: Flood plains, stream terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Sandy alluvium

Typical profile

A-0 to 4 inches: loamy coarse sand
C-4 to 60 inches: stratified coarse sand to sandy loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95
to $19.98 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Available water storage in profile: Low (about 4.1 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7w
Hydrologic Soil Group: A
Ecological site: Sandy Bottomland (R069XY031CO)
Other vegetative classification: SANDY BOTTOMLAND (069AY031CO)

Minor Components

Fluvaquentic haplaquoll
Percent of map unit:
Landform: Swales

Other soils

Percent of map unit:

Custom Soil Resource Report

Pleasant

Percent of map unit:
Landform: Depressions

30-Fort Collins loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 3683
Elevation: 5,200 to 6,500 feet
Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 48 to 52 degrees F
Frost-free period: 135 to 155 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Fort collins and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Fort Collins

Setting

Landform: Flats
Landform position (three-dimensional): Talf
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Loamy alluvium

Typical profile

A - O to 9 inches: loam
Bt - 9 to 16 inches: clay loam
Bk-16 to 21 inches: clay loam
Ck-21 to 60 inches: loam
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.57 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water storage in profile: High (about 10.1 inches)
Interpretive groups
Land capability classification (irrigated): 2 e
Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B
Ecological site: Loamy Plains, LRU's A \& B 10-14 Inches, P.Z. (R069XY006CO)
Other vegetative classification: LOAMY PLAINS (069AY006CO)

Minor Components

Other soils

Percent of map unit:

Pleasant

Percent of map unit:
Landform: Depressions

52-Manzanst clay loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2 w 4 nr
Elevation: 4,060 to 6,660 feet
Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 50 to 54 degrees F
Frost-free period: 130 to 170 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Manzanst and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Manzanst

Setting

Landform: Terraces, drainageways
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear, concave
Parent material: Clayey alluvium derived from shale

Typical profile

A - 0 to 3 inches: clay loam
Bt-3 to 12 inches: clay
Btk - 12 to 37 inches: clay
Bk1-37 to 52 inches: clay
Bk2-52 to 79 inches: clay
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches

Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Gypsum, maximum in profile: 3 percent
Salinity, maximum in profile: Slightly saline (4.0 to $7.0 \mathrm{mmhos} / \mathrm{cm}$)
Sodium adsorption ratio, maximum in profile: 10.0
Available water storage in profile: High (about 9.0 inches)

Interpretive groups

Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 4c
Hydrologic Soil Group: C
Ecological site: Saline Overflow (R067BY037CO)

Minor Components

Ritoazul

Percent of map unit: 7 percent Landform: Interfluves, drainageways
Landform position (three-dimensional): Rise
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: Clayey Plains (R067BY042CO)

Arvada

Percent of map unit: 6 percent
Landform: Drainageways, interfluves
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: Salt Flat (R067XY033CO)

Wiley

Percent of map unit: 2 percent
Landform: Interfluves
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: Loamy Plains (R067BY002CO)

59-Nunn clay loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 3693
Elevation: 5,400 to 6,500 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 46 to 50 degrees F
Frost-free period: 135 to 155 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Nunn and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Nunn

Setting
 Landform: Terraces, fans
 Down-slope shape: Linear
 Across-slope shape: Linear
 Parent material: Mixed alluvium
 Typical profile
 A - 0 to 12 inches: clay loam
 Bt - 12 to 26 inches: clay loam
 BC - 26 to 30 inches: clay loam
 Bk-30 to 58 inches: sandy clay loam
 C - 58 to 72 inches: clay

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Gypsum, maximum in profile: 2 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water storage in profile: High (about 9.8 inches)
Interpretive groups
Land capability classification (irrigated): 2e
Land capability classification (nonirrigated): 3c
Hydrologic Soil Group: C
Ecological site: Clayey Plains (R069XY042CO)
Other vegetative classification: CLAYEY PLAINS (069AY042CO)

Minor Components

Other soils
Percent of map unit:
Pleasant
Percent of map unit:
Landform: Depressions

APPENDIX B - HYDROLOGY CALCULATIONS

－CORE
Standard Form SF－2．Storm Drainage System Design（Rational Method Procedure）
Job No： 100.030
둔
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

syıeməy

Street
Storm：
100

	syлешәу																			
0		\ddagger	－																	
등	$\left\|\begin{array}{l} i= \\ \stackrel{i}{\otimes} \end{array}\right\|$	К！！	（																	
		Чъбиәך	\ddagger																	
딘			\subseteq																	
	\because	ədols	$\bigcirc \bigcirc$																	
		 	$\left\|\frac{\infty}{3}\right\|$																	
	＊	MOI」 łəə入1S	4																	
응		ədols	\bigcirc																	
		0	4				$\begin{gathered} \text { N } \\ \text { Ni } \end{gathered}$		$\begin{aligned} & \text { م } \\ & \dot{\varphi} \end{aligned}$		$\underset{\sim}{\sim}$			$\begin{aligned} & \stackrel{\rightharpoonup}{5} \\ & \stackrel{5}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$			¢		
	$\left\|\begin{array}{l} \frac{4}{4} \\ \frac{1}{2} \end{array}\right\|$	！					$\stackrel{\ominus}{\stackrel{\circ}{\bullet}}$		$\stackrel{\sim}{0}$		$\stackrel{1}{0}$			$\stackrel{\infty}{+}$	$\stackrel{\infty}{+}$			$\stackrel{m}{5}$		
	$\left\lvert\, \begin{aligned} & \stackrel{\overline{0}}{\stackrel{0}{0}} \\ & \hline \end{aligned}\right.$	（ \forall ） 3					$\stackrel{M}{\infty}$		$\stackrel{M}{\mathrm{~N}}$		$\begin{aligned} & \text { No } \\ & \infty \end{aligned}$			$\stackrel{\text { 을 }}{\stackrel{1}{N}}$	$\stackrel{N}{N}$			－		
		$\stackrel{7}{ }$	$\stackrel{\cong}{\bar{E}}$				$\stackrel{\rightharpoonup}{\circ}$		$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \end{aligned}$			$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$			$\stackrel{1}{\sim}$		
		0	$\left\|\frac{\omega}{3}\right\|$	$\stackrel{\hat{N}}{\hat{N}}$	$\begin{aligned} & 10 \\ & 0 \end{aligned}$	$\stackrel{\infty}{\sim}$		O-		$\stackrel{+}{\circ}$		$\stackrel{\ominus}{\stackrel{\circ}{+}}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$			「̇̇	$\stackrel{\bullet}{\stackrel{\circ}{6}}$		$\stackrel{\infty}{\stackrel{+}{+}}$	
$$		！	\mid	+	$\underset{N}{N}$	$\stackrel{1}{\stackrel{1}{\gtrless}}$		$$		$\stackrel{\text { N }}{\text { N }}$		$\stackrel{\oplus}{\dot{\circ}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\bullet} \end{aligned}$			$\stackrel{5}{6}$	$\stackrel{N}{i}$		$\stackrel{10}{\sim}$	
	$\\| \frac{4}{6}$	$\forall \bigcirc$		$\stackrel{\llcorner }{\stackrel{N}{N}}$	$\underset{\sim}{\Gamma}$	$\begin{gathered} N \\ \end{gathered}$		$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$		$\stackrel{1}{\stackrel{1}{\sim}}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{N}{2} \end{aligned}$	$$			$\begin{gathered} \underset{\sim}{N} \\ \hline \end{gathered}$	$\begin{aligned} & \dot{O} \\ & \dot{N} \end{aligned}$		$\stackrel{\llcorner }{\stackrel{\circ}{\sim}}$	
	$\left\lvert\, \begin{aligned} & \bar{\sim} \\ & \underline{\sim} \\ & \hline \end{aligned}\right.$	$\stackrel{ }{ }$	\dot{B}	$\stackrel{\square}{\sim}$	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	$\stackrel{\rightharpoonup}{\circ}$		$\stackrel{\bigcirc}{\stackrel{+}{+}}$		\cdots		$\stackrel{\text { N }}{\stackrel{1}{+}}$	$\stackrel{F}{\text { F }}$			－	N		$\stackrel{\sim}{\circ}$	
$$	－	（〕）भә๐つ Houny		$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$		O		$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & 0 \end{aligned}$			\bigcirc	$\xrightarrow{0}$		O80	
－		（ \forall ）eәлV	－	$\begin{aligned} & \text { O } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\stackrel{10}{0}$		$\begin{aligned} & n \\ & \end{aligned}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		N N －	$\stackrel{\text { ¢ }}{+}$			$\stackrel{0}{\circ}$	$\underset{\sim}{5}$		$\stackrel{\text { N}}{\text { N }}$	
		u6！səa eə					$\stackrel{0}{\stackrel{\circ}{\circ}}$		N N N		$\stackrel{\sim}{\stackrel{1}{+}}$			$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\ominus}{\dot{+}}$			¢		
		！od ubisə					r	N	๙ู	\cdots	๗ึ			＊	ก			I	N	
				$\stackrel{\Gamma}{\bar{\sigma}}$	$\stackrel{\Gamma}{\Gamma}$	$\stackrel{\Pi}{\overleftarrow{\sigma}}$		$\stackrel{ষ}{\overleftarrow{j}}$		$\stackrel{\square}{\square}$		$\stackrel{\ominus}{¢}$	$\frac{\stackrel{\rightharpoonup}{\top}}{\bar{\sigma}}$			$\stackrel{\infty}{\infty}$	$\stackrel{0}{\infty}$	$0 \times$ \vdots \vdots \vdots -0	$\stackrel{\square}{\overleftarrow{O}}$	

- CORE
Standard Form SF-2. Storm Drainage System Design (Rational Method Procedure)
Job No: 100.030

0	
$=0$	
읓	0
0	

syлешәу
Кџ!ојәへ

$\mathrm{ft} \quad \mathrm{ft} / \mathrm{sec} \quad \mathrm{min}$
a əz! $\frac{1}{}$ əd!d
\therefore

응

\square

	0	4

\square
in/hr

Calcula
Calculated By: Leonard Beasley

サouny
CORE
(-) ENGINEERING GROUP
Standard Form SF-2. Storm Drainage System Design (Rational Method Procedure)
Job No: 100.030
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

syıuшәу

CORE
Standard Form SF－2．Storm Drainage System Design（Rational Method Procedure）

동
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

syлешәу

	syлешәу																	
		7	¢															
	$\begin{aligned} & \stackrel{i}{\stackrel{\rightharpoonup}{2}} \\ & \stackrel{\rightharpoonup}{\otimes} \end{aligned}$	К！！	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 4 \end{array}\right\|$															
		цъбиәך	\ddagger															
든		əZ！S əd！d	．															
\sum_{0}^{∞}	$\stackrel{O}{2}$	ədols	\bigcirc															
		MoI」 u6！！əə	$\left\|\frac{\infty}{0}\right\|$															
	\pm		$\stackrel{4}{0}$															
응		ədols	20															
		0	$\left\|\begin{array}{\|c\|} \hline 0 \end{array}\right\|$	$\begin{aligned} & \bullet \\ & \stackrel{\circ}{\circ} \end{aligned}$			$\stackrel{N}{1}$			$\begin{aligned} & 0 \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{9}{9}$		$\stackrel{\infty}{\underset{\sim}{\Sigma}}$					
	$\left\lvert\, \begin{aligned} & \frac{4}{4} \\ & \frac{1}{2} \\ & \hline \end{aligned}\right.$	！	$\stackrel{\vdots}{气 㐅}$	$\stackrel{\ominus}{\circ}$			$\stackrel{\Im}{*}$			$\begin{aligned} & \odot \\ & \hline \dot{0} \end{aligned}$	$\begin{aligned} & \odot \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \circ \\ & \hline \end{aligned}$					
	$\left\lvert\, \begin{aligned} & \overline{\widetilde{n}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}\right.$	$(\forall \bigcirc) 3$		$$			$\begin{aligned} & \bar{\infty} \\ & 0 \end{aligned}$			$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\begin{aligned} & \underset{\sim}{N} \\ & \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$					
		$\stackrel{ }{ }$	$\left\|\cdot \frac{\subseteq}{\bar{E}}\right\|$	$\underset{\sim}{\dot{\infty}}$			$\stackrel{\text { N }}{\stackrel{\text { N }}{+}}$			$\underset{\text { F }}{\text { F }}$	$\underset{\underset{\sim}{F}}{\underset{\sim}{2}}$		$\stackrel{ \pm}{\dot{ \pm}}$					
		0	$\|\stackrel{\leftrightarrow}{6}\|$		$\stackrel{\bullet}{\mathrm{N}}$	$\stackrel{N}{N}$		$\stackrel{\infty}{\mathrm{N}}$	$\stackrel{\text { ̇ }}{\underset{\sim}{*}}$			$\stackrel{\text { N }}{\text { N }}$		∞	$\stackrel{\circ}{\forall}$	$\stackrel{\Gamma}{\sigma}$	$\stackrel{\bullet}{\circ}$	$\stackrel{\sim}{\sim}$
$\begin{aligned} & \mathscr{0} \\ & \stackrel{\otimes}{\otimes} \end{aligned}$		！			$\stackrel{\Im}{\bullet}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$		$\underset{\sim}{\sim}$	$\begin{aligned} & \bullet \\ & \hline 0 \\ & \hline \end{aligned}$			$\stackrel{\sim}{N}$		$\stackrel{ \pm}{\text {＋}}$	$\stackrel{\square}{+}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$		$\underset{i \infty}{\underset{i}{N}}$
$\stackrel{\substack{0}}{0} \mid$	5	$\forall \bigcirc$			$\underset{\sim}{\overleftarrow{G}}$	$\stackrel{\circ}{0}$		$\stackrel{ \pm}{+}$	$\begin{aligned} & \text { Z } \\ & \text { i } \end{aligned}$			$\underset{0}{\mathbf{m}}$		$\stackrel{\infty}{\stackrel{\infty}{0}}$	0	$\underset{\sim}{N}$	$\underset{\substack{\text { N } \\ \hline}}{ }$	$\stackrel{m}{\stackrel{m}{N}}$
	$\stackrel{\rightharpoonup}{\alpha}$	ว	$\|\cdot \dot{\bar{E}}\|$		$\begin{aligned} & \underset{\sim}{N} \end{aligned}$	$\stackrel{\varrho}{\circ}$		$\stackrel{\sim}{\mathrm{N}}$	$\stackrel{\leftarrow}{\dot{\sim}}$			$\widehat{\infty}$		$\stackrel{\sim}{\infty}$	$\stackrel{\bullet}{\stackrel{\circ}{N}}$	$\begin{aligned} & \text { مٌ } \\ & \stackrel{\circ}{6} \end{aligned}$	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{\stackrel{\circ}{\circ}}$
	－	（っ）みə૦っ Houny			$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\xrightarrow{8}$		¢	$\xrightarrow{8}$			$\xrightarrow[0]{18}$		$\xrightarrow{8}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\xrightarrow[0]{18}$	¢	¢
		（ \forall ）eәлヲ	－		$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \hline 0 . \end{aligned}$		$\underset{\sim}{N}$	$\begin{aligned} & \varphi \\ & \stackrel{+}{9} \end{aligned}$			N00		$\stackrel{\sim}{\sim}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$		$\underset{\substack{\mathrm{o}}}{ }$	$\begin{gathered} \underset{\sim}{\sim} \\ \hline \end{gathered}$
		u6！səด eə		$\begin{aligned} & \text { B } \\ & \text {-j } \end{aligned}$			$\stackrel{N}{\mathrm{~m}}$			$\stackrel{\text { N}}{+}$	$\stackrel{0}{5}$		$\stackrel{\circ}{\circ}$					
		od ubisə		$\stackrel{\sim}{\sim}$			$\stackrel{\sim}{\sim}$			N	$\underset{\sim}{\infty}$		N					
				N	$\stackrel{\rightharpoonup}{\odot}$	$\begin{aligned} & \text { N } \\ & \underset{O}{n} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \end{aligned}$	$\stackrel{\rightharpoonup}{\overleftarrow{C}}$			$\begin{aligned} & \stackrel{1}{\infty} \\ & \Gamma \end{aligned}$	\bigcirc	O	10	$$	$\begin{aligned} & \text { N } \\ & \text { ¢ } \end{aligned}$	\bigcirc

P：I1001100．030\Drainagel100．030－PDR
Standard Form SF-1. Time of Concentration-Proposed
 Date: May 23, 2016

tc Check (urbanized	Final tc

TOTAL \quad Regional tc \quad USDCM LENGTH \quad tc=(L/180)+10 Recommended (L) feet minutes $\mathrm{tc}=\mathrm{ti}+\mathrm{tt}(\mathrm{min})$ | 779.00 | 14.33 | 7.86 |
| :--- | :--- | :--- |

五 12.62
$\stackrel{\infty}{\infty}$ —
(N$\underset{\sim}{\sim}$

					Standard Form SF-1. Time of Concentration-Proposed														
					Calculated By: Leonard Beasley						Job No: 100.030								
					Date: May 23, 2016						Project: Carriage Meadows South								
Sub-Basin Data				Initial Overland Time (t_{i})				Travel Time (t)											
				tc Check (urbanized Basins)	Final tc USDCM Recommended tc=ti+tt (min) $)$														
$\begin{gathered} \text { BASIN } \\ \text { or } \\ \text { DESIGN } \end{gathered}$	C_{5}	AREA (A) acres	NRCS Convey.						LENGTH (L) feet		VELOCITY (V) $\mathrm{ft} / \mathrm{sec}$	$\begin{array}{\|c\|} \tau_{i} \\ \text { minutes } \\ \hline \end{array}$	LENGTH (L) feet	SLOPE (S) \%	VELOCITY (V) $\mathrm{ft} / \mathrm{sec}$	$\begin{gathered} \mathrm{\tau t}_{\mathrm{t}} \\ \text { minutes } \end{gathered}$	Computed tc Minutes	TOTAL (L) feet	$\begin{gathered} \text { Regional tc } \\ \text { tc=(L/180) }=10 \\ \text { minutes } \end{gathered}$
G1.8b	0.45	5.11	20.0	68.00	1.78\%	0.14	8.03	127.00	3.15\%	3.55	0.60								
			15.0					1633.00	1.41\%	1.78	15.28	23.91	1828.00	20.16	20.16				
DP-6	0.82	34.76	20.0	100.00	1.00\%	0.33	5.06	855.00	1.53\%	2.47	5.76								
			34"x53"					317.00	0.50\%	4.28	1.23								
			20.0					883.00	2.50\%	3.16	4.65								
			48"					508.00	0.68\%	9.41	0.90								
			Chnl					847.00	0.30\%	4.92	2.87	20.47	3510.00	29.50	20.47				
G1.9	0.45	2.97	20.0	45.00	2.43\%	0.13	5.89	1317.00	0.62\%	1.57	13.94	19.83	1362.00	17.57	17.57				
G1.10	0.45	5.04	20.0	100.00	2.30\%	0.19	8.95	1483.00	0.68\%	1.65	14.99	23.94	1583.00	18.79	18.79				
G1.11	0.45	3.10	7.0	67.00	1.49\%	0.13	8.42	458.00	2.62\%	1.13	6.74	15.16	525.00	12.92	12.92				
G1	0.72	66.69	20.0	100.00	1.00\%	0.24	6.86	3081.00	3.80\%	3.90	13.17	20.03	3181.00	27.67	20.03				
G2.1	0.45	3.95	7.0	81.00	1.73\%	0.15	8.81	56.00	2.14\%	1.02	0.91								
			20.0					1020.00	0.76\%	1.74	9.75	19.48	1157.00	16.43	16.43				
G2.2	0.45	1.40	20.0	42.00	1.33\%	0.10	6.92	1015.00	0.83\%	1.82	9.28	16.21	1057.00	15.87	15.87				
G2.3	0.45	3.04	20.0	97.00	2.47\%	0.19	8.58	1254.00	0.73\%	1.71	12.23	20.81	1351.00	17.51	17.51				
G2.4	0.45	4.00	7.0	71.00	15.49\%	0.30	4.00	141.00	1.49\%	0.85	2.75								
			20.0					687.00	0.82\%	1.81	6.32	13.08	899.00	14.99	13.08				

Standard Form SF-1. Time of Concentration-Proposed
Calculated By: Leonard Beasley Date: May 23, 2016

Calculated By: Leonard Beasley Job No: 100.030 Date: May 23, 2016 Project: Carriage Meadows S Checked By: Leonard Beasley															
Sub-Basin Data				Initial Overland Time (t_{i})				Travel Time (tt)					tc Check (urbanized Basins)		Final tcUSDCM Recommended $\mathrm{tc}=\mathrm{ti}+\mathrm{tt}(\mathrm{min})$
$\begin{gathered} \text { BASIN } \\ \text { or } \\ \text { DESIGN } \\ \hline \end{gathered}$	C_{5}	AREA (A) acres	NRCS Convey	LENGTH (L) feet	SLOPE (S) \%	VELOCITY (V) $\mathrm{ft} / \mathrm{sec}$	$\begin{array}{\|c\|} \hline \mathrm{\tau}_{\mathrm{i}} \\ \text { minutes } \\ \hline \end{array}$	LENGTH (L) feet	$\begin{gathered} \hline \text { SLOPE } \\ \text { (S) } \\ \% \\ \hline \end{gathered}$	VELOCITY (V) $\mathrm{ft} / \mathrm{sec}$	$\begin{gathered} \mathrm{\tau t} \\ \text { minutes } \\ \hline \end{gathered}$	$\begin{array}{c}\text { Computed } \\ \text { tc } \\ \text { Minutes }\end{array}$	TOTAL LENGTH (L) feet	$\begin{gathered} \text { Regional tc } \\ \text { tc }=(\mathrm{L} / 180)+10 \\ \text { minutes } \end{gathered}$	
G2.5	0.45	0.21	20.0	77.00	1.30\%	0.14	9.44	57.00	0.60\%	1.55	0.61	10.06	134.00	10.74	10.06
G2.6	0.45	1.43	20.0	73.00	2.05\%	0.15	7.91	504.00	0.58\%	1.52	5.51	13.43	577.00	13.21	13.21
G2.7	0.45	2.40	20.0	44.00	2.50\%	0.13	5.75	418.00	1.17\%	2.16	3.22	8.97	462.00	12.57	8.97
G2.8	0.45	1.01	20.0	55.00	2.36\%	0.14	6.58	5.95	0.92\%	1.92	0.05	6.63	60.95	10.34	6.63
G2.9	0.45	0.23	20.0	85.00	1.76\%	0.16	9.01	137.00	0.73\%	1.71	1.34	10.35	222.00	11.23	10.35
G2.10	0.45	0.68	20.0	70.00	1.29\%	0.13	9.07	376.00	0.69\%	1.66	3.77	12.84	446.00	12.48	12.48
G2.11a	0.45	1.61	20.0	77.00	2.34\%	0.16	7.78	554.00	0.60\%	1.55	5.96	13.74	631.00	13.51	13.51
G2.11b	0.45	0.64	20.0	50.00	2.00\%	0.13	6.60	120.00	0.60\%	1.55	1.29	7.89	170.00	10.94	10.94
G2.12a	0.45	1.14	20.0	25.00	2.00\%	0.09	4.67	560.00	0.54\%	1.47	6.35	11.02	585.00	13.25	11.02
G2.12b	0.45	1.16	20.0	30.00	2.00\%	0.10	5.11	400.00	0.54\%	1.47	4.54	9.65	430.00	12.39	9.65
G2.13	0.45	1.54	20.0	44.00	1.82\%	0.11	6.39	345.00	0.64\%	1.60	3.59				
			18"					184.00	2.17\%	8.76	0.35	10.33	184.00	11.02	10.33
G2.14	0.45	4.59	7.0	97.00	3.09\%	0.20	7.97	46.00	18.48\%	3.01	0.25				
			7.0					388.00	0.50\%	0.49	13.06	21.28	531.00	12.95	12.95
G3.1	0.45	0.69	20.0	84.00	1.90\%	0.16	8.70	401.00	0.92\%	1.92	3.48	12.19	485.00	12.69	12.19
G3.2	0.45	0.68	20.0	30.00	2.00\%	0.10	5.11	582.00	0.86\%	1.85	5.23	10.34	612.00	13.40	10.34
G3.3	0.00	0.74	20.0	69.00	2.17\%	0.09	12.78	425.00	0.87\%	1.87	3.80	16.57	494.00	12.74	12.74

TOTAL | Bas | Regional tc |
| :--- | :--- |
| USDCM | | LENGTH $\quad \mathrm{tc}=(\mathrm{L} / 180)+10$ Recommended (L) feet minutes $\mathrm{tc}=\mathrm{ti}+\mathrm{tt}(\mathrm{min})$

$\underset{\sim}{\mathrm{N}}$
$\underset{\sim}{2}$
$\stackrel{\wedge}{\infty}$
6.63
10.35
12.48
$\stackrel{H}{n}$

N
ते
ने
$\stackrel{1}{\circ}$

-
Project: Carriage Meadows South
Job No: 100.030
pzandwos

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A8:	HSG C\&D	HSG ABB	HSG C8D	HSG A B B	HSG C8,	H5G ARA	HSG C8D	HSG A\&B	HSG C8.	HSG A\&B	HSG C\&D
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time $\left(t_{i}\right)$ plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion $\left(t_{t}\right)$ of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Determination of Culvert Headwater and Outlet Protection

Project: Carriage Meadows South at Lorson Ranch Filing No. 1 Basin ID: Rip Rap sizing for 30" outlet pipe into Interim Pond G1.7

Culvert Report

G1 side 48-inch Interconnection Emergency Overflow

Invert Elev Dn (ft)	$=5684.00$
Pipe Length (ft)	$=320.00$
Slope (\%)	$=0.40$
Invert Elev Up (ft)	$=5685.28$
Rise (in)	$=48.0$
Shape	$=$ Cir
Span (in)	$=48.0$
No. Barrels	$=1$
n-Value	$=0.013$
Inlet Edge	$=$ Projecting
Coeff. K,M, $\mathrm{c}, \mathrm{Y}, \mathrm{k}$	$=0.0045,2,0.0317,0.69,0.5$
Embankment	
Top Elevation (ft)	$=5692.00$
Top Width (ft)	$=100.00$
Crest Width (ft)	$=50.00$

Profile

Calculations
$\begin{array}{ll}\text { Qmin (cfs) } & =50.00 \\ \text { Qmax (cfs) } & =120.00 \\ \text { Tailwater Elev (ft) } & =(\mathrm{dc}+\mathrm{D}) / 2\end{array}$
Highlighted

Qtotal (cfs)	$=113.00$
Qpipe (cfs)	$=113.00$
Qovertop (cfs)	$=0.00$
Veloc Dn (ft/s)	$=10.03$
Veloc Up (ft/s)	$=9.55$
HGL Dn (ft)	$=5687.57$
HGL Up (ft)	$=5689.60$
Hw Elev (ft)	$=5690.60$
Hw/D (ft)	$=1.33$
Flow Regime	$=$ Inlet Control

Elev (ft)

Reach (ft)

Channel Report

4FT WIDE CURB CHASE AT LORSON BLVD AND MARKSHEFFEL

Rectangular

Botom Width (ft)	$=4.00$
Total Depth (ft)	$=0.50$
Invert Elev (ft)	$=100.00$
Slope (\%)	$=1.50$
N-Value	$=0.013$

Calculations

Compute by: Known Depth
Known Depth (ft) $=0.50$

Highlighted

Depth (ft)	$=0.50$
Q (cfs)	$=15.20$
Area (sqft)	$=2.00$
Velocity (ft/s)	$=7.60$
Wetted Perim (ft)	$=5.00$
Crit Depth, Yc (ft)	$=0.50$
Top Width (ft)	$=4.00$
EGL (ft)	$=1.40$

Elev (ft)

Galpin Emergency Overflow to Lorson Blvd.

Trapezoidal

Botom Width $(\mathrm{ft})=8.00$
Side Slope $(z: 1)=4.00$
Total Depth (ft) $=1.00$
Invert Elev (ft) $=100.00$
Slope (\%) = 1.20
N -Value $=0.024$

Calculations

Compute by:
Known Q (cfs) $=40.00$

Highlighted
Depth (ft) $\quad=0.77$
Q (cfs) $=40.00$
Area (sqft) $=8.53$
Velocity (ft/s) $=4.69$
Wetted Perim (ft) $=14.35$
Crit Depth, Yc (ft) $=0.80$
Top Width (ft) $=14.16$
$\mathrm{EGL}(\mathrm{ft}) \quad=1.11$

Elev (ft)
Section
Depth (ft)

Rubicon Emergency Overflow to Lorson Blvd.

Trapezoidal

Botom Width (ft) $=12.00$
Side Slope (z:1) = 4.00
Total Depth (ft) $=1.00$
Invert Elev (ft) = 100.00
Slope (\%) = 1.20
N -Value $=0.020$

Calculations

Compute by: Known Depth
Known Depth (ft) $=1.00$

Highlighted

Depth (ft)	$=1.00$
Q (cfs)	$=111.31$
Area (sqft)	$=16.00$
Velocity (ft/s)	$=6.96$
Wetted Perim (ft)	$=20.25$
Crit Depth, Yc (ft)	$=1.00$
Top Width (ft)	$=20.00$
EGL (ft)	$=1.75$

Elev (ft)
Section
Depth (ft)

Channel Report

Interim Swale at Interim Pond G1.7

Trapezoidal

Botom Width $(\mathrm{ft})=5.00$
Side Slope (z:1) = 3.00
Total Depth (ft) $=3.00$
Invert Elev (ft) = 100.00
Slope (\%) $=0.50$
N -Value $=0.025$

Calculations

Compute by: Known Q
Known Q (cfs) = 152.00

Highlighted

Depth (ft)	$=2.36$
Q (cfs)	$=152.00$
Area (sqft)	$=28.51$
Velocity (ft/s)	$=5.33$
Wetted Perim (ft)	$=19.93$
Crit Depth, Yc (ft)	$=2.08$
Top Width (ft)	$=19.16$
EGL (ft)	$=2.80$

Elev (ft) Section Depth (ft)

Simcoe Emergency Overflow to Pond G2

Triangular
Side Slope (z:1) $=6.00$
Total Depth (ft) $=1.00$
Invert Elev (ft) = 100.00
Slope (\%) = 1.00
N -Value

$$
=0.024
$$

Calculations

Compute by:
Known Q (cfs) = 10.00

Highlighted
Depth (ft) $\quad=0.73$
Q (cfs) $=10.00$
Area (sqft) $=3.20$
Velocity (ft/s) $=3.13$
Wetted Perim (ft) $=8.88$
Crit Depth, Yc (ft) $=0.71$
Top Width (ft) $\quad=8.76$
$\mathrm{EGL}(\mathrm{ft}) \quad=0.88$

Elev (ft)
Section
Depth (ft)

INLET IN A SUMP OR SAG LOCATION
Project $=$

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Iniet Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow)	$\mathrm{a}_{\text {beated }}=$	3.00		inches
Number of Unit Iniets (Grate or Curb Opening)	No $=$	1		
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.1	8.0	inc
Grate Information		MINOR	MAJOR	ride Deptr
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	N/A		feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	F	feet
Area Opening Ratio for a Grate (ypical values 0.15-0.90)	$A_{\text {ato }}=$	N/A	in	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$C_{1}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{m}(\mathrm{G})=$	N/A		
Grate Orifice Coefficient (typical value $0.60-0.80$)	$C_{0}(\mathrm{G})=$	N/A		
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(\mathrm{C})=$	15.00		feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {ma }}=$	6.00		inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {soonem }}=$	6.00		inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40		degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00		feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{1}(C)=$	0.10	0.10	
Curb Opening Weir Coefficient (ypical value 2.3-3.7)	$\mathrm{C}_{\text {m }}(\mathrm{C})=$	3.60		
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67		
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef $=$	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$Q_{0 \times}=$	N/A	N/A	cfs
Interception with Clogging	$Q_{\text {m }}=$	N/A	N/A	cts
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\alpha}=$	N/A	N/A	cts
Interception with Clogging	$\mathrm{Q}_{\mathrm{om}}=$	N/A	N/A	cts
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {em }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{a}_{\text {ma }}=$	N/A	N/A	cts
Resulting Grate Capacity (assumes clogged condition)	$a_{\text {ante }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Muttiple Units	Coef $=$	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$Q_{0 \times}=$	10.83	21.18	cts
Interception with Clogging	$\mathrm{Q}_{\text {we }}=$	10.36	20.25	cts
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{o}_{\boldsymbol{\alpha}}=$	29.58	33.57	cts
Interception with Clogging	$\mathrm{Q}_{\mathrm{am}}=$	28.29	32.11	cts
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{ml}}=$	16.65	24.80	cfs
Interception with Clogging	$Q_{\text {ma }}=$	15.92	23.72	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	10.36	20.25	cts
Resultant Street Conditions		MINOR	MAJOR	
Total Iniet Length	L=	15.00	15.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	$T=$	19.3	27.0	At>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.5	2.4	inches
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	10.4	20.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	$Q_{\text {peax reoured }}=$	10.3	19.0	cts

Project $=$

INLET IN A SUMP OR SAG LOCATION
Project $=$
Inlet ID =
\qquad

INLET IN A SUMP OR SAG LOCATION
Project $=$

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	Inlet Type $=$ $a_{\text {boal }}=$	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow)		3.00		
Number of Unit Inlets (Grate or Curb Opening)	No =	1		inches [1] Override Depths
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.5	8.0	
Grate Information	MINOR MAJOR			
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	N/A		$\left\lvert\, \begin{aligned} & \text { feet } \\ & \text { feet } \end{aligned}\right.$
Width of a Unit Grate		N/A		
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\tan }=$	N/A		
Clogging Factor for a Single Grate (typical value $0.50-0.70$)	$\begin{aligned} C_{1}(G) & = \\ C_{m}(G) & = \end{aligned}$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)		N/A		
Grate Orifice Coefficient (typical value 0.60-0.80)	$\begin{aligned} C_{m}(G) & = \\ C_{0}(G) & = \end{aligned}$	N/A		
Curb Opening Information	MINOR MAJOR			
Length of a Unit Curb Opening	$\begin{aligned} L_{0}(C) & = \\ H_{\text {ment }} & = \end{aligned}$	10.00		feet inches
Height of Vertical Curb Opening in Inches		6.00		
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {marome }}=$	6.00		inches
Angle of Throat (see USDCM Figure ST-5)		63.40	W,	${ }_{\text {degrees }}$
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_{p}=$	2.00		
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\begin{aligned} & C_{1}(C)= \\ & C_{m}(C)= \\ & C_{0}(C)= \end{aligned}$	0.10	0.10	feet
Curb Opening Weir Coefficient (typical value 2.3-3.7)		3.60		
Curb Opening Orifice Coefficient (typical value 0.60-0.70)		0.67		
Grate Flow Analysis (Calculated)	MINOR MAJOR			
Clogging Coefficient for Multiple Units	$\begin{aligned} & \text { Coef }= \\ & \text { Clog }= \end{aligned}$	N/A	N/A	
Clogging Factor for Multiple Units		N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	$\begin{aligned} & Q_{0}= \\ & Q_{00}= \end{aligned}$	MINOR	MAJOR	
Interception without Clogging		N/A	N/A	cfs
Interception with Clogging		N/A	N/A	cts
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	MINOR		MAJOR	cfs
Interception without Clogging	$\mathrm{Q}_{\mathrm{d}}=$	N/A	N/A	
Interception with Clogging	$\mathrm{Q}_{\mathrm{am}}=$	N/A	N/A	
Grate Capacity as Mixed Flow	MINOR		MAJOR	
Interception without Clogging	$Q_{m m}=$	N/A	N/A	cts
Interception with Clogging		N/A	N/A	
Resulting Grate Capacity (assumes clogged condition)	$\mathrm{Q}_{\text {arate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)			MINOR MAJOR	
Clogging Coefficient for Multiple Units	$\begin{aligned} & \text { Coef }= \\ & \text { Clog }= \end{aligned}$	1.25	1.25	
Clogging Factor for Multiple Units		0.06	0.06	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	MINOR		MAJOR	
Interception without Clogging	$0_{m}=$	10.72	17.34	cfs
Interception with Clogging	$Q_{\text {ma }}=$	10.05	16.26	cts
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	MINOR		MAJOR	
Interception without Clogging	$Q_{\text {d }}=$	20.22	22.38	cfs
Interception with Clogging	$\mathrm{Q}_{\mathrm{om}}=$	18.96	20.98	
Curb Opening Capacity as Mixed Flow	MINOR		MAJOR	
Interception without Clogging	$\begin{aligned} & Q_{\mathrm{min}}= \\ & Q_{\mathrm{ma}}= \end{aligned}$	13.69	18.32	cfs
Interception with Clogging		12.84	17.18	
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	10.05	16.26	cfs
Resultant Street Conditions	MINOR MAJOR			feet
Total Iniet Length	$L=$	10.00	10.00	
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	$d_{\text {crown }}=$	20.7	27.0	$\mathrm{ft}>$ T-Crown
Resultant Flow Depth at Street Crown		0.9	2.4	inches
		MINOR MAJOR		
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	10.1	16.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	$\mathrm{a}_{\text {peakreoured }}=$	7.2	15.9	

Project:

INLET IN A SUMP OR SAG LOCATION

INLET IN A SUMP OR SAG LOCATION
Project $=$ \qquad
Inlet ID =

	INLET IN A SUMP OR SAG LOCATION				
Project $=$	Carriage Meadows South \#100.030				
Inlet ID $=$	Inlet DP-14a (G2.3)				
$\downarrow \quad \text { Lo (C) } \longrightarrow$					
		$\underbrace{\text { Wo }}$			
Design Information (Input)			MINOR	MAJOR	
	Type of Inlet	Inlet Type =	CDOT Type R Curb Opening		
	Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	$\mathrm{a}_{\text {cocal }}=$	3.00	3.00	inches
	Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
	Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.5	8.0	inches
	Grate Information		MINOR	MAJOR	Override Depths
	Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
	Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	fee
	Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	N/A	N/A	
		$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
		$C_{w}(\mathrm{G})=$	N/A	N/A	
	Grate Weir Coefficient (typical value $2.15-3.60$) Grate Orifice Coefficient (typical value $0.60-0.80$)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
	Curb Opening Information		MINOR	MAJOR	
	Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
		$\mathrm{H}_{\text {ver }}=$	6.00	6.00	inches
	Height of Verrical Curb Opening in Inches Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {troat }}=$	6.00	6.00	inches
	Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
	Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{w}_{\mathrm{p}}=$	2.00	2.00	feet
	Clogging Factor for a Single Curb Opening (typical value 0.10)Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
		$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
	Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
	Grate Flow Analysis (Calculated)		MINOR MAJOR		
	Clogging Coefficient for Multiple Units	Coef $=$	N/A	N/A	
	Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
	Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
	Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
	Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
	Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR MAJOR		
	Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
	Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
	Grate Capacity as Mixed Flow		MINOR MAJOR		
	Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
		$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
	Resulting Grate Capacity (assumes clogged condition)	$\mathrm{Q}_{\text {Grate }}=$	N/A	N/A	cfs
	Curb Opening Flow Analysis (Calculated)		MINOR MAJOR		
	Clogging Coefficient for Muttiple Units	Coef $=$	1.25	1.25	
	Clogging Factor for Multiple Units	Clog $=$	0.06	0.06	
	Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
	Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	6.99	17.34	cfs
	Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	6.56	16.26	cfs
	Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
	$\begin{array}{ll}\text { Interception without Clogging } & \mathrm{Q}_{00}= \\ \text { Interception with Clogging } & \mathrm{Q}_{\text {i }}=\end{array}$		18.72	22.38	cfs
			17.55	20.98	cfs
	Curb Opening Capacity as Mixed Flow		MINOR MAJOR		
	Interception without Clogging $\quad \mathrm{Q}_{\mathrm{mi}}=$		10.64	18.32	cfs
	Interception with Clogging $\quad \mathrm{Q}_{\text {ma }}=$		9.98	17.18	cfs
	Resulting Curb Opening Capacity (assumes clogged condition) $\quad Q_{\text {curb }}=$		6.56	16.26	cfs
	Resultant Street Conditions		MINOR MAJOR		
	Total Inlet Length L=		10.00	10.00	feet
	Resultant Street Flow Spread (based on sheet Q-Allow geometry) $\mathrm{T}=$		16.6	27.0	ft.>T-Crown
	Resultant Flow Depth at Street Crown $\mathrm{d}_{\text {CROWN }}=$		0.0	2.4	inches
			MINOR MAJOR		
	Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	$\mathrm{Q}_{\mathrm{a}}=$	6.6	16.3	cfs
		$\mathrm{Q}_{\text {peak required }}=$	5.5	12.6	cfs

INLET IN A SUMP OR SAG LOCATION

Project $=$

Design Information (Input)		MINOR MAJOR		inches
Type of Inlet	Iniet Type $=$	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow)	$\mathrm{a}_{\text {boca }}=$	3.00		
Number of Unit Inlets (Grate or Curb Opening)	No $=$	1		
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.5	8.0	inch
Grate information		MINOR	MAJOR	\checkmark Overide Depths
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	N/A	dia	feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	120	feet
Area Opening Ratio for a Grate (ypical values 0.15-0.90)	$A_{\text {aso }}=$	N/A	\cdots	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\text {F }}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{0}(\mathrm{G})=$	N/A	in	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A		
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(\mathrm{C})=$	10.00	¢	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {men }}=$	6.00		inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {moom }}=$	6.00		inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40		degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00		feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{1}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical vaiue 2.3-3.7)	$\mathrm{C}_{m}(\mathrm{C})=$	3.60		
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67		
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MANOR	$f_{\mathrm{cfs}}^{\mathrm{cfs}}$
Interception without Clogging	$Q_{\text {a }}=$	N/A	N/A	
Interception with Clogging	$Q_{a n}=$	N/A	N/A	
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	cfs
Interception without Clogging	$\mathrm{Q}_{\alpha}=$	N/A	N/A	
Interception with Clogging	$\mathrm{Q}_{\mathrm{om}}=$	N/A	N/A	
Grate Capacity as Mixed Flow		MINOR	MAJOR	$\left.\right\|_{\mathrm{cts}} ^{\mathrm{cts}}$
Interception without Clogging	$\mathrm{Q}_{\mathrm{mm}}=$	N/A	N/A	
Interception with Clogging	$\mathrm{O}_{\mathrm{ma}}=$	N/A	N/A	
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {arate }}=$	N/A	N/A	
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Muttiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	cfs
Interception without Clogging	$\mathrm{Q}_{\text {m }}=$	10.72	17.34	
Interception with Clogging	$Q_{0}=$	10.05	16.26	
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	cfs
Interception without Clogging	$Q_{\mathrm{a}}=$	20.22	22.38	
Interception with Clogging	$\mathrm{Q}_{\infty}=$	18.96	20.98	
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	$\begin{aligned} & \text { cifs } \\ & \text { cis } \\ & \text { cifs } \end{aligned}$
Interception without Clogging	$\mathrm{Q}_{\mathrm{mm}}=$	13.69	18.32	
Interception with Clogging	$\mathrm{Q}_{\mathrm{ma}}=$	12.84	17.18	
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathrm{a}_{\text {curb }}=$	10.05	16.26	
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	10.00	10.00	feetft>T-Crown
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	$T=$	20.7	27.0	
Resultant Flow Depth at Street Crown	$\mathrm{C}_{\text {crown }}=$	0.9	2.4	
		MINOR	MA.JOR	$\begin{aligned} & \text { cfs } \\ & \text { cfs } \end{aligned}$
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	10.1	16.3	
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	$Q_{\text {peakreoupeo }}=$	4.6	10.2	

INLET IN A SUMP OR SAG LOCATION
Project $=$

Design Information (Input)		MINOR	MAJOR	inches
Type of inlet	Iniet Type $=$	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow)	$a_{\text {beal }}=$	3.00		
Number of Unit Inlets (Grate or Curb Opening)	No $=$	1		
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.5	8.0	
Grate Information		MINOR	MAJOR	aride Dept
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	N/A	$1{ }^{\text {a }}$	feet
Width of a Unit Grate	$\mathrm{w}_{\mathrm{o}}=$	N/A	,	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {and }}=$	N/A		
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$C_{1}(G)=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A		
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N	
Curb Opening Information		MINOR	MANOR	
Length of a Unit Curb Opening	$L_{0}(\mathrm{C})=$	5.00	\$6	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {men }}=$	6.00	寿	nches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {moxa }}=$	6.00		inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	648	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00		feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{1}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{m}}(\mathrm{C})=$	3.60		
Curb Opening Orifice Coefflicient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67		
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$Q_{\text {ate }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {-a }}=$	N/A	N/A	fs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{d}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\infty}=$	N/A	N/A	cts
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mm}}=$	N/A	N/A	cts
Interception with Clogging	$\mathrm{Q}_{\mathrm{mm}}=$	N/A	N/A	cts
Resulting Grate Capacity (assumes clogged condition)	$\mathrm{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$Q_{\text {ancm }}=$	7.06	10.97	fis
Interception with Clogging	$Q_{00}=$	6.35	9.87	fs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$Q_{\alpha}=$	10.11	11.19	cfs
Interception with Clogging	$Q_{\infty}=$	9.10	10.07	cts
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$Q_{\text {min }}=$	7.86	10.30	cfs
Interception with Clogging	$Q_{\text {max }}=$	7.07	9.27	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	6.35	9.27	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	5.00	5.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	$T=$	20.7	27.0	$\mathrm{ft}>$ T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{C}_{\text {crawn }}=$	0.9	2.4	inches
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	6.4	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	$Q_{\text {Pexkeoured }}=$	2.3	5.0	cts

INLET IN A SUMP OR SAG LOCATION

Project $=$

Project $=$

INLET IN A SUMP OR SAG LOCATION

Project $=$ | Carriage Meadows South \#100.030 |
| :--- |
| Inlet DP-26 (G3.1 \& G3.2) |
| LO (C) |
| LO (G) |

Design Information (Input)		MINOR	MAJOR	
Type of inlet	Iniet Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous guter depression 'a' from 'Q-Allow)	$a_{\text {beat }}=$	3.00	Lex	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	1		
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.5	8.1	es
Grate Information		MINOR	MAJOR	\checkmark Overide Depths
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	N/A	tave	eet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	Dir	feet
Area Opening Ratio for a Grate (ypical values 0.15-0.90)	$A_{\text {ano }}=$	N/A	M	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{7}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{m}(\mathrm{G})=$	N/A		
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A		
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(\mathrm{C})=$	5.00	UH	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {min }}=$	6.00		inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {eroat }}=$	6.00		inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40		degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00		feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{1}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60		
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67		
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coeefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$Q_{\text {d }}=$	N/A	N/A	cts
Interception with Clogging	$Q_{\text {a }}=$	N/A	N/A	cts
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\alpha}=$	N/A	N/A	cts
Interception with Clogging	$Q_{\text {aco }}=$	N/A	N/A	cts
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mm}}=$	N/A	N/A	cts
Interception with Clogging	$\mathrm{O}_{\mathrm{mo}}=$	N/A	N/A	ts
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {ante }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Muttiple Units	Coef $=$	1.00	1.00	
Clogging Factor for Multiple Units	Clog $=$	0.10	0.10	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$Q_{\text {m }}=$	7.06	11.24	cts
Interception with Clogging	$Q_{\text {wa }}=$	6.35	10.12	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{a}}=$	10.11	11.26	cts
Interception with Clogging	$Q_{0 a}=$	9.10	10.13	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	7.86	10.46	cfs
Interception with Clogging	$\mathrm{Q}_{\mathrm{ma}}=$	7.07	9.42	cts
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	6.35	9.42	cts
Resultant Street Conditions		MINOR	MAJOR	
Total Iniet Length	$\mathrm{L}=$	5.00	5.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	$T=$	20.7	27.5	ft>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{C}_{\text {crown }}=$	0.9	2.5	inches
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	6.4	9.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	$Q_{\text {peax reoureo }}=$	2.4	5.2	cfs

INLET IN A SUMP OR SAG LOCATION
Project $=$

RESIDENTIAL STREET (34' Flowline to flowline)

Interim Release October 12, 1994
City of Colorado Springs
Use this graph to determine the allowable street capacity per side, initial storm, for the typical street section using a 2% crown.
Hydraflow Plan View

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (\%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.						
1	L1-30" RCP	26.90	30 c	37.0	5692.80	5693.10	0.812	5694.53	5694.83	n/a	5694.83	End						
2	L2-30" RCP	24.30	30 c	36.0	5693.60	5693.89	0.806	5695.31	5695.54	n/a	5695.54	1						
3	L3-24" RCP	14.90	24 c	18.0	5694.39	5694.53	0.776	5695.97	5695.92	0.00	5695.92	2						
Project File: 100.030 DP-3b Storm Drain-5yr.stm										Run Date: 06-21-2016								
															Number of lines: 3			
NOTES: $\mathrm{c}=\mathrm{cir}$; e = ellip; b = box; Return period $=5$ Yrs.																		

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (\%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1-30" RCP	51.20	30 c	37.0	5692.80	5693.10	0.812	5695.30*	5695.88*	0.00	5695.88	End
2	L2-30" RCP	46.50	30 c	36.0	5693.60	5693.89	0.806	5696.17*	5696.64*	0.00	5696.64	1
3	L3-24" RCP	29.20	24 c	18.0	5694.39	5694.53	0.776	5696.69*	5696.99*	0.00	5696.99	2
Project File: 100.030 DP-3b Storm Drain-100yr.stm							Number of lines: 3			Run Date: 06-21-2016		
NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown).												

Hydraflow Plan View

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (\%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.			
1	P1-48" RCP	120.0	48 c	198.0	5685.86	5686.85	0.500	5689.28	5690.83	0.00	5690.83	End			
Project File: 100.030 DP-6 Storm Drain-100yr.stm							Number of lines: 1			Run Date: 06-21-2016					
NOTES: $\mathrm{c}=\mathrm{cir}$; e = ellip; b = box; Return period $=100$ Yrs.															

Hydraflow Plan View

Storm Sewer Summary Report

Storm Sewer Summary Report

Hydraflow Plan View

NOTES: $\mathrm{c}=\mathrm{cir} ; \mathrm{e}=\mathrm{ellip} ; \mathrm{b}=\mathrm{box} ;$ Return period $=5$ Yrs. ; j - Line contains hyd. jump.

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (\%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	97.80	48 c	51.0	5683.54	5683.74	0.393	5687.54	5687.74	0.00	5687.74	End
2	L2	93.30	48 c	47.0	5683.74	5683.93	0.404	5687.80*	5688.00*	0.00	5688.00	1
3	L3	87.50	48 c	146.0	5683.93	5684.51	0.397	5688.10*	5688.64*	0.00	5688.64	2
4	L4	82.20	48 c	7.0	5684.51	5684.54	0.432	5688.73*	5688.76*	0.00	5688.76	3
5	L5	59.10	48 c	27.0	5684.54	5684.65	0.407	5689.08*	5689.12*	0.00	5689.12	4
6	L6	23.10	24 c	215.0	5686.99	5688.29	0.605	5688.99*	5691.23*	0.00	5691.23	4
7	L7	7.70	18 c	27.0	5689.03	5689.30	1.000	5691.78*	5691.93*	0.00	5691.93	6
8	L8	15.40	24 c	361.0	5688.73	5690.90	0.601	5691.70*	5693.38*	0.00	5693.38	6
9	L9	15.40	24 c	28.0	5691.20	5691.37	0.607	5693.38*	5693.51*	0.00	5693.51	8
10	L10	14.80	18 c	34.0	5691.87	5692.07	0.587	5693.51*	5694.18*	0.00	5694.18	9
Project File: 100.030 G2.1-G2.6 Storm Drain-100yr.stm							Number of lines: 10			Run Date: 02-20-2017		

NOTES: $\mathrm{c}=$ cir; $\mathrm{e}=$ ellip; $\mathrm{b}=$ box; Return period = 100 Yrs. ; *Surcharged (HGL above crown).

Hydraflow Plan View

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (\%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	14.50	24 c	55.0	5684.06	5684.34	0.509	5685.41	5685.87	0.00	5685.87	End
2	L2	10.40	24 c	35.0	5684.84	5685.02	0.515	5686.19	5686.24	0.00	5686.24	1
3	L3	3.50	18 c	9.0	5685.52	5685.61	0.998	5686.48	5686.45	0.00	5686.45	2
4	L4	7.40	24 c	166.0	5685.22	5686.05	0.500	5686.57	5687.01	n / a	5687.01 j	2
5	L5	7.40	24 c	62.0	5686.25	5686.56	0.500	5687.31	5687.53	n/a	5687.53 j	4
6	L6	1.20	18 c	27.0	5687.06	5687.20	0.519	5687.85	5687.85	0.00	5687.85	5
7	L7	2.30	18 c	7.0	5687.06	5687.13	0.997	5687.88	5687.86	0.00	5687.86	5
8	L8	4.60	18 c	129.0	5687.06	5687.71	0.504	5687.91	5688.56	0.00	5688.56	5
Project File: 100.030 G2.7-G2.12 Storm Drain-5yr.stm							Number of lines: 8			Run Date: 06-21-2016		

NOTES: $\mathrm{c}=\mathrm{cir} ; \mathrm{e}=\mathrm{ellip} ; \mathrm{b}=\mathrm{box} ;$ Return period $=5$ Yrs. ; j - Line contains hyd. jump.

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (\%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	32.00	24 c	55.0	5684.06	5684.34	0.509	5686.06*	5687.16*	0.00	5687.16	End
2	L2	22.80	24 c	35.0	5684.84	5685.02	0.515	5687.96*	5688.31*	0.00	5688.31	1
3	L3	7.60	18 c	9.0	5685.52	5685.61	0.998	5688.84*	5688.89*	0.00	5688.89	2
4	L4	16.20	24 c	166.0	5685.22	5686.05	0.500	5688.72*	5689.57*	0.00	5689.57	2
5	L5	16.20	24 c	62.0	5686.25	5686.56	0.500	5689.57*	5689.89*	0.00	5689.89	4
6	L6	2.60	18 c	27.0	5687.06	5687.20	0.519	5690.27*	5690.28*	0.00	5690.28	5
7	L7	5.00	18 c	7.0	5687.06	5687.13	0.997	5690.18*	5690.19*	0.00	5690.19	5
8	L8	10.20	18 c	129.0	5687.06	5687.71	0.504	5689.89*	5691.11*	0.00	5691.11	5
Project File: 100.030 G2.7-G2.12 Storm Drain-100yr.stm							Number of lines: 8			Run Date: 06-21-2016		

Hydraflow Plan View

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (\%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	2.80	18 c	26.0	5684.10	5684.57	1.807	5684.74	5685.21	n/a	5685.21 j	End
2	L2	2.80	18 c	148.0	5684.57	5687.23	1.797	5685.41	5687.87	n/a	5687.87 j	1
Project File: 100.030 G2.13 Storm Drain-5yr.stm							Number of lines: 2			Run Date: 06-21-2016		

NOTES: $\mathrm{c}=\mathrm{cir} ; \mathrm{e}=\mathrm{ellip} ; \mathrm{b}=\mathrm{box} ;$ Return period $=5$ Yrs. ; j - Line contains hyd. jump.

Storm Sewer Summary Report

NOTES: $\mathrm{c}=\mathrm{cir} ; \mathrm{e}=\mathrm{ellip} ; \mathrm{b}=\mathrm{box} ;$ Return period = 100 Yrs. ; j - Line contains hyd. jump.

Hydraflow Plan View

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (\%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.			
1	L1-24"RCP	9.00	24 c	25.0	5685.00	5685.15	0.600	5686.06	5686.22	0.00	5686.22	End			
2	L2-18"RCP	2.40	18 c	35.0	5685.65	5685.86	0.600	5686.62	5686.62	0.00	5686.62	1			
Project File: 100.030 G3.1-G3.4 Storm Drain-5yr.stm															
										Number of lines: 2			Run Date: 06-21-2016		
NOTES: $\mathrm{c}=\mathrm{cir}$; e = ellip; b = box; Return period $=5$ Yrs.															

Storm Sewer Summary Report

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown).

Hydraflow Plan View

Storm Sewer Summary Report

Storm Sewer Summary Report

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	106.94	1	18	115,493	----	------	------	Commercial (G1.1 to G1.7)
2	Reservoir	62.65	1	25	115,483	1	5695.10	53,518	Pond G1.7
3	Rational	14.66	1	20	17,588	----	-----	-----	Sub-Basin G1.8a
4	Combine	73.96	1	24	133,070	2, 3	-----	-----	inflow to Swale G1.8
5	Reservoir	52.83	1	34	133,065	4	5692.86	39,288	Swale G1.8
6	Reach	52.64	1	36	132,976	5	------	------	Route flow to des. pt. 6
7	Rational	7.126	1	19	8,124	----	------	------	Basin G1.8b
8	Combine	53.71	1	35	141,100	6, 7	------	------	Flow at Des. Pt. 6
9	Rational	26.41	1	17	26,940	----	------	------	Basin G1.9-G1.10-G1.11, G2.2, G2.3
10	Combine	59.98	1	24	168,040	8, 9	------	------	Total Detained Flow into Pond G1
11	Reservoir	28.06	1	58	167,438	10	5687.92	97,961	Pond G1

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	196.13	1	18	211,821	----	------	----	Commercial (G1.1 to G1.7)
2	Reservoir	95.15	1	27	211,811	1	5696.94	104,641	Pond G1.7
3	Rational	32.37	1	20	38,846	----	------	------	Sub-Basin G1.8a
4	Combine	119.53	1	23	250,657	2, 3	------	-----	inflow to Swale G1.8
5	Reservoir	105.09	1	32	250,651	4	5694.33	64,525	Swale G1.8
6	Reach	104.64	1	33	250,563	5	------	-----	Route flow to Des.Pt. 6
7	Rational	16.56	1	19	18,879	----	------	------	Basin G1.8b
8	Combine	109.00	1	33	269,442	6, 7	------	------	Total Flow at Des. Pt. 6
9	Rational	58.42	1	17	59,593	----	------	------	Basins G1.9-G1.11, G2.2, G2.3
10	Combine	117.04	1	31	329,035	8, 9	------	------	Total Flow into Pond G1
11	Reservoir	57.96	1	54	328,418	10	5689.12	165,167	Pond G1 to G2 flow

Pond Report

Hydraflow Hydrographs by Intelisolve

Pond No. 2-Pond G1.7

Pond Data

Pond storage is based on known contour areas. Average end area method used.
Stage I Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5692.00			
1.00	5693.00	300	0	0
2.00	5694.00	18,612	9,456	9,456
3.00	5695.00	20,476	19,544	29,000
4.00	5696.00	23,445	21,961	50,961
5.00	5697.00	27,847	25,646	76,607
6.00	5698.00	31,984	29,916	106,522
		34,000	32,992	139,514

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	$=48.00$	0.00	0.00	0.00	Crest Len (ft)	$=50.00$	0.00	0.00	0.00
Span (in)	$=48.00$	0.00	0.00	0.00	Crest El. (ft)	$=5697.50$	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	$=2.60$	0.00	0.00	0.00
Invert El. (ft)	$=5692.00$	0.00	0.00	0.00	Weir Type	$=\mathrm{Broad}$	---	---	---
Length (ft)	$=426.00$	0.00	0.00	0.00	Multi-Stage	$=$ No	No	No	No
Slope (\%)	$=0.53$	0.00	0.00	0.00					
N -Value	$=.013$. 000	. 000	. 000					
Orif. Coeff.	$=0.60$	0.00	0.00	0.00	Exfiltration $=0.000 \mathrm{in} / \mathrm{hr}$ (Contour) Tailwater Elev. $=0.00 \mathrm{ft}$				
Multi-Stage	= n/a	No	No	No					

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Pond Report

Hydraflow Hydrographs by Intelisolve

Pond No. 1 - Swale G1.8

Pond Data

Pond storage is based on known contour areas. Average end area method used.
Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5689.00	706	0	0
1.00	5690.00	8,766	4,736	4,736
2.00	5691.00	11,018	9,892	14,628
3.00	5692.00	13,306	12,162	26,790
4.00	5693.00	15,646	14,476	41,266
5.00	5694.00	18,041	16,844	58,110
6.00	5695.00	21,000	19,521	77,630
7.00	5696.00	24,000	22,500	100,130

Culvert I Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	$=42.00$	0.00	0.00	0.00	Crest Len (ft)	$=50.00$	0.00	0.00	0.00
Span (in)	$=42.00$	0.00	0.00	0.00	Crest El. (ft)	$=5694.00$	0.00	0.00	0.00
No. Barrels	$=1$	0	0	0	Weir Coeff.	$=2.60$	0.00	0.00	0.00
Invert El. (ft)	$=5689.00$	0.00	0.00	0.00	Weir Type	$=$ Broad	---	---	---
Length (ft)	$=150.00$	0.00	0.00	0.00	Multi-Stage	$=$ No	No	No	No
Slope (\%)	$=0.50$	0.00	0.00	0.00					
N -Value	$=.013$. 000	. 000	. 000					
Orif. Coeff.	$=0.60$	0.00	0.00	0.00					
Multi-Stage	= n / a	No	No	No	Exfiltration $=$	$00 \mathrm{in} / \mathrm{hr}$ (Con	r) Tail	Elev	. 00 ft

Stage / Storage / Discharge Table \quad Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.												
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Total cfs
0.00	0	5689.00	0.00	---	---	---	0.00	---	---	---	---	0.00
1.00	4,736	5690.00	7.75	---	---	---	0.00	---	---	---	---	7.75
2.00	14,628	5691.00	26.13	---	---	---	0.00	---	---	---	---	26.13
3.00	26,790	5692.00	41.32	---	---	---	0.00	---	---	---	---	41.32
4.00	41,266	5693.00	55.97	---	---	---	0.00	---	---	---	---	55.97
5.00	58,110	5694.00	75.09	---	---	---	0.00	---	---	---	---	75.09
6.00	77,630	5695.00	90.25	---	---	---	130.00	---	---	---	---	220.25
7.00	100,130	5696.00	103.20	---	---	---	367.70	---	---	---	---	470.90

Pond Report

Hydraflow Hydrographs by Intelisolve
Pond No. 3 - Pond G1

Pond Data

Pond storage is based on known contour areas. Average end area method used.
Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00				
1.00	5686.00	48,284	0	0
2.00	5687.00	51,208	49,746	49,746
3.00	5689.00	54,210	52,709	102,455
4.00	5690.00	57,244	55,727	158,182
5.00	5691.00	60,334	68,789	216,971
6.00	5692.00	63,481	65,908	278,879
7.00	5693.00	69,994	68,341	343,963
			412,303	

Culvert I Orifice Structures
Weir Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	$=0.00$	48.00	0.00	0.00	Crest Len (ft)	$=0.00$	0.00	0.00	0.00
Span (in)	$=0.00$	48.00	0.00	0.00	Crest El. (ft)	$=0.00$	0.00	0.00	0.00
No. Barrels	$=0$	1	0	0	Weir Coeff.	$=0.00$	3.33	0.00	0.00
Invert El. (ft)	$=0.00$	5686.00	0.00	0.00	Weir Type	= ---	---	---	---
Length (ft)	$=0.00$	320.00	0.00	0.00	Multi-Stage	$=$ No	No	No	No
Slope (\%)	$=0.00$	0.40	0.00	0.00					
N -Value	$=.013$. 013	. 000	. 000					
Orif. Coeff.	$=0.60$	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration =	$0 \mathrm{in} / \mathrm{hr}$ (C	r) Ta	Elev	0.00 ft

Stage / Storage / Discharge Table Note: Cuvertlorifice outfows have been analyzed under inlet and outlet control.												
Stage ft	Storage cuft	Elevation	$\begin{aligned} & \text { Clv A } \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & \text { Clv B } \\ & \text { cfs } \end{aligned}$	$\underset{\text { cfs }}{\text { Clv } \mathrm{C}}$	$\mathrm{Clv}_{\mathrm{cfs}}^{\mathrm{D}}$	WrA	$\underset{\sim}{\mathrm{Wra}} \mathrm{~B}$	$\underset{\mathrm{cfs}}{\mathrm{Wr}}$	Wr D	$\begin{aligned} & \text { Exfil } \\ & \text { cfs } \end{aligned}$	Tota cfs
0.00	0	5686.00	---	0.00	---	---	---	---	---	---	---	0.00
1.00	49,746	5687.00	---	8.38	---	---	---	---	---	---	---	8.38
2.00	102,455	5688.00	---	30.31	---	---	---	---	---			30.31
3.00	158,182	5689.00	---	55.67	---	---	---	---				55.67
4.00	216,971	5690.00	---	65.12	---	---	---	---	---	---	---	65.12
5.00	278,879	5691.00	---	86.91							---	86.91
6.00	343,963	5692.00	---	104.24	---	---	---	---	---	---	--	104.24
7.00	412,303	5693.00	---	119.08	---	---	---	---	---	---	---	119.08

Hydrograph Plot

Hyd. No. 1
Commercial (G1.1 to G1.7)

Hydrograph type	$=$ Rational	Peak discharge	$=106.94 \mathrm{cfs}$
Storm frequency	$=5$ yrs	Time interval	$=1 \mathrm{~min}$
Drainage area	$=41.460 \mathrm{ac}$	Runoff coeff.	$=0.81$
Intensity	$=3.184 \mathrm{in} / \mathrm{hr}$	Tc by User	$=18.00 \mathrm{~min}$
IDF Curve	$=$ Colorado Springs-El Paso County-Table.IDASc/Rec limb fact	$=1 / 1$	

Hydrograph Plot

Hyd. No. 2
Pond G1.7

Hydrograph type	$=$ Reservoir	Peak discharge	$=62.65 \mathrm{cfs}$
Storm frequency	$=5$ yrs	Time interval	$=1 \mathrm{~min}$
Inflow hyd. No.	$=1$	Max. Elevation	$=5695.10 \mathrm{ft}$
Reservoir name	$=$ Pond G1.7	Max. Storage	$=53,518 \mathrm{cuft}$

Hydrograph Plot

Hyd. No. 3

Sub-Basin G1.8a

Hydrograph type	$=$ Rational	Peak discharge	$=14.66 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time interval	$=1 \mathrm{~min}$
Drainage area	$=9.160 \mathrm{ac}$	Runoff coeff.	$=0.53$
Intensity	$=3.019 \mathrm{in} / \mathrm{hr}$	Tc by User	$=20.00 \mathrm{~min}$
IDF Curve	$=$ Colorado Springs-El Paso County-Table.IDASc/Rec limb fact	$=1 / 1$	

Hydrograph Plot

Hydraflow Hydrographs by Intelisolve
Hyd. No. 4
inflow to Swale G1.8

Hydrograph type	$=$ Combine
Storm frequency	$=5$ yrs
Inflow hyds.	$=2,3$

Peak discharge
$=73.96 \mathrm{cfs}$
Time interval
$=1 \mathrm{~min}$

Hydrograph Plot

Hyd. No. 5

Swale G1.8

Hydrograph type	$=$ Reservoir	Peak discharge	$=52.83 \mathrm{cfs}$
Storm frequency	$=5$ yrs	Time interval	$=1 \mathrm{~min}$
Inflow hyd. No.	$=4$	Max. Elevation	$=5692.86 \mathrm{ft}$
Reservoir name	$=$ Pond G1.8	Max. Storage	$=39,288 \mathrm{cuft}$

Hydrograph Plot

Hyd. No. 6
Route flow to des. pt. 6

Hydrograph type	$=$ Reach	Peak discharge	$=52.64 \mathrm{cfs}$
Storm frequency	$=5$	yrs	Time interval
Inflow hyd. No.	$=5$	1 min	
Reach length	$=256.0 \mathrm{ft}$	Section type	$=$ Trapezoidal
Manning's n	$=0.024$	Channel slope	$=0.3 \%$
Side slope	$=3.01$	Bottom width	$=5.0 \mathrm{ft}$
Rating curve x	$=1.162$	Max. depth	$=4.0 \mathrm{ft}$
Ave. velocity	$=3.02 \mathrm{ft} / \mathrm{s}$	Rating curve m	$=1.334$
		Routing coeff.	$=0.6417$

Route flow to des. pt. 6

Hydrograph Plot

Hyd. No. 7
Basin G1.8b

Hydrograph type	$=$ Rational	Peak discharge	$=7.126 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time interval	$=1 \mathrm{~min}$
Drainage area	$=5.110 \mathrm{ac}$	Runoff coeff.	$=0.45$
Intensity	$=3.099 \mathrm{in} / \mathrm{hr}$	Tc by User	$=19.00 \mathrm{~min}$
IDF Curve	$=$ Colorado Springs-El Paso County-Table.IDASc/Rec limb fact	$=1 / 1$	

Hydrograph Plot

Hydraflow Hydrographs by Intelisolve
Hyd. No. 8
Flow at Des. Pt. 6

Hydrograph type	$=$ Combine	Peak discharge	$=53.71 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time interval	$=1 \mathrm{~min}$
Inflow hyds.	$=6,7$		

Flow at Des. Pt. 6

Hydrograph Plot

Hyd. No. 9

Basin G1.9-G1.10-G1.11, G2.2, G2.3

Hydrograph type	$=$ Rational	Peak discharge	$=26.41 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time interval	$=1 \mathrm{~min}$
Drainage area	$=16.800 \mathrm{ac}$	Runoff coeff.	$=0.48$
Intensity	$=3.275 \mathrm{in} / \mathrm{hr}$	Tc by User	$=17.00 \mathrm{~min}$
IDF Curve	$=$ Colorado Springs-El Paso County-Table.IDASc/Rec limb fact	$=1 / 1$	

Hydrograph Plot

Hyd. No. 10
Total Detained Flow into Pond G1

Hydrograph type	$=$ Combine
Storm frequency	$=5$ yrs
Inflow hyds.	$=8,9$

Peak discharge
$=59.98 \mathrm{cfs}$
Time interval
$=1 \mathrm{~min}$

Hydrograph Plot

Hyd. No. 11
Pond G1

Hydrograph type	$=$ Reservoir	Peak discharge	$=28.06 \mathrm{cfs}$
Storm frequency	$=5$ yrs	Time interval	$=1 \mathrm{~min}$
Inflow hyd. No.	$=10$	Max. Elevation	$=5687.92 \mathrm{ft}$
Reservoir name	$=$ Pond G1	Max. Storage	$=97,961 \mathrm{cuft}$

Q (cfs) Pond G1
Hyd. No. 11 -- 5 Yr

Hydrograph Plot

Hyd. No. 1
Commercial (G1.1 to G1.7)

Hydrograph type	$=$ Rational	Peak discharge	$=196.13 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time interval	$=1 \mathrm{~min}$
Drainage area	$=41.400 \mathrm{ac}$	Runoff coeff.	$=0.84$
Intensity	$=5.640 \mathrm{in} / \mathrm{hr}$	Tc by User	$=18.00 \mathrm{~min}$
IDF Curve	$=$ Colorado Springs-El Paso County-Table.IDASc/Rec limb fact	$=1 / 1$	

Hydrograph Plot

Hyd. No. 2
Pond G1.7

Hydrograph type	$=$ Reservoir	Peak discharge	$=95.15 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time interval	$=1 \mathrm{~min}$
Inflow hyd. No.	$=1$	1	Max. Elevation
Reservoir name	$=5696.94 \mathrm{ft}$		
		Pond G1.7	

Hydrograph Plot

Hyd. No. 3

Sub-Basin G1.8a

Hydrograph type	$=$ Rational	Peak discharge	$=32.37 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time interval	$=1 \mathrm{~min}$
Drainage area	$=9.160 \mathrm{ac}$	Runoff coeff.	$=0.66$
Intensity	$=5.355 \mathrm{in} / \mathrm{hr}$	Tc by User	$=20.00 \mathrm{~min}$
IDF Curve	$=$ Colorado Springs-El Paso County-Table.IDASc/Rec limb fact	$=1 / 1$	

Hydrograph Plot

Hydraflow Hydrographs by Intelisolve
Hyd. No. 4
inflow to Swale G1.8

Hydrograph type	$=$ Combine
Storm frequency	$=100$ yrs
Inflow hyds.	$=2,3$

Peak discharge = 119.53 cfs
Time interval
$=1 \mathrm{~min}$

Hydrograph Plot

Hyd. No. 5
Swale G1.8

Hydrograph type	$=$ Reservoir	Peak discharge	$=105.09 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time interval	$=1 \mathrm{~min}$
Inflow hyd. No.	$=4$	Max. Elevation	$=5694.33 \mathrm{ft}$
Reservoir name	$=$ Swale G1.8	Max. Storage	$=64,525 \mathrm{cuft}$

Hydrograph Plot

Hyd. No. 6
Route flow to Des.Pt. 6

Hydrograph type	$=$ Reach	Peak discharge	$=104.64 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time interval	$=1$ min
Inflow hyd. No.	$=5$	Section type	$=$ Trapezoidal
Reach length	$=256.0 \mathrm{ft}$	Channel slope	$=0.3 \%$
Manning's n	$=0.024$	Bottom width	$=5.0 \mathrm{ft}$
Side slope	$=3.0: 1$	Max. depth	$=4.0 \mathrm{ft}$
Rating curve x	$=1.162$	Rating curve m	$=1.334$
Ave. velocity	$=3.59 \mathrm{ft} / \mathrm{s}$	Routing coeff.	$=0.7189$

Hydrograph Plot

Hyd. No. 7
Basin G1.8b

Hydrograph type	$=$ Rational	Peak discharge	$=16.56 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time interval	$=1 \mathrm{~min}$
Drainage area	$=5.110 \mathrm{ac}$	Runoff coeff.	$=0.59$
Intensity	$=5.493 \mathrm{in} / \mathrm{hr}$	Tc by User	$=19.00 \mathrm{~min}$
IDF Curve	$=$ Colorado Springs-El Paso County-Table.IDASc/Rec limb fact	$=1 / 1$	

Hydrograph Plot

Hyd. No. 8
Total Flow at Des. Pt. 6

Hydrograph type	$=$ Combine
Storm frequency	$=100$ yrs
Inflow hyds.	$=6,7$

Peak discharge
$=109.00 \mathrm{cfs}$
Time interval
$=1 \mathrm{~min}$

Hydrograph Plot

Hyd. No. 9

Basins G1.9-G1.11, G2.2, G2.3

Hydrograph type	$=$ Rational	Peak discharge	$=58.42 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time interval	$=1 \mathrm{~min}$
Drainage area	$=16.800 \mathrm{ac}$	Runoff coeff.	$=0.6$
Intensity	$=5.796 \mathrm{in} / \mathrm{hr}$	Tc by User	$=17.00 \mathrm{~min}$
IDF Curve	$=$ Colorado Springs-El Paso County-Table.IDAsc/Rec limb fact	$=1 / 1$	

Hydrograph Plot

Hyd. No. 10
Total Flow into Pond G1

Hydrograph type	$=$ Combine	Peak discharge	$=117.04 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time interval	$=1 \mathrm{~min}$
Inflow hyds.	$=8,9$		

Total Flow into Pond G1

Hyd No. 8
Hyd No. 9

Hydrograph Plot

Hydraflow Hydrographs by Intelisolve
Monday, Feb 20 2017, 2:31 PM
Hyd. No. 11
Pond G1 to G2 flow

Hydrograph type	$=$ Reservoir	Peak discharge	$=57.96 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time interval	$=1 \mathrm{~min}$
Inflow hyd. No.	$=10$	Max. Elevation	$=5689.12 \mathrm{ft}$
Reservoir name	$=$ Pond G1	Max. Storage	$=165,167$ cuft

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename

Storm Inflow Hydrograph
UD-Detention, Version 3.07 (February 2017)
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	WORKBOOK	\#N/A							
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
6.79 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	0:06:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
Hydrograph Constant	0:13:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	0:20:22	1.32	3.88	3.16	3.92	4.55	5.22	5.77	6.39	\#N/A
0.736	0:27:10	3.62	11.31	9.03	11.42	13.51	15.83	17.79	20.12	\#N/A
	0:33:57	9.30	29.04	23.20	29.33	34.71	40.70	45.77	51.81	\#N/A
	0:40:44	25.52	79.41	63.51	80.20	94.82	111.05	124.78	141.08	\#N/A
	0:47:32	30.98	103.13	80.70	104.26	125.73	150.37	171.89	198.14	\#N/A
	0:54:19	29.70	100.96	78.43	102.10	123.94	149.31	171.71	199.37	\#N/A
	1:01:07	27.03	92.59	71.73	93.65	113.94	137.60	158.55	184.52	\#N/A
	1:07:54	24.30	83.53	64.68	84.49	102.84	124.24	143.20	166.69	\#N/A
	1:14:41	21.17	73.49	56.79	74.34	90.61	109.63	126.50	147.43	\#N/A
	1:21:29	18.43	64.33	49.68	65.08	79.37	96.06	110.88	129.25	\#N/A
	1:28:16	16.69	57.71	44.67	58.37	71.05	85.83	98.91	115.10	\#N/A
	1:35:04	13.93	48.87	37.68	49.44	60.39	73.21	84.59	98.73	\#N/A
	1:41:51	11.51	40.64	31.30	41.12	50.26	60.97	70.49	82.33	\#N/A
	1:48:38	9.06	32.58	24.99	32.97	40.43	49.19	57.01	66.74	\#N/A
	1:55:26	6.94	25.41	19.43	25.72	31.60	38.52	44.71	52.43	\#N/A
	2:02:13	5.13	19.22	14.64	19.45	23.96	29.30	34.11	40.12	\#N/A
	2:09:01	3.88	14.23	10.89	14.40	17.68	21.63	25.24	29.76	\#N/A
	2:15:48	3.14	11.31	8.69	11.44	14.00	17.06	19.82	23.26	\#N/A
	2:22:35	2.65	9.48	7.29	9.59	11.72	14.25	16.52	19.33	\#N/A
	2:29:23	2.31	8.20	6.32	8.30	10.13	12.29	14.23	16.63	\#N/A
	2:36:10	2.07	7.31	5.64	7.40	9.02	10.93	12.64	14.75	\#N/A
	2:42:58	1.90	6.67	5.16	6.75	8.23	9.96	11.50	13.41	\#N/A
	2:49:45	1.41	5.10	3.90	5.16	6.35	7.75	9.02	10.60	\#N/A
	2:56:32	1.02	3.68	2.82	3.72	4.57	5.58	6.50	7.65	\#N/A
	3:03:20	0.75	2.73	2.09	2.76	3.39	4.14	4.82	5.66	\#N/A
	3:10:07	0.56	2.03	1.55	2.05	2.52	3.07	3.57	4.20	\#N/A
	3:16:55	0.41	1.50	1.14	1.52	1.86	2.28	2.65	3.11	\#N/A
	3:23:42	0.29	1.08	0.82	1.10	1.35	1.65	1.92	2.26	\#N/A
	3:30:29	0.21	0.78	0.60	0.79	0.98	1.19	1.39	1.63	\#N/A
	3:37:17	0.15	0.56	0.42	0.56	0.70	0.85	1.00	1.18	\#N/A
	3:44:04	0.09	0.37	0.28	0.37	0.46	0.57	0.67	0.80	\#N/A
	3:50:52	0.05	0.22	0.16	0.22	0.28	0.34	0.41	0.49	\#N/A
	3:57:39	0.02	0.11	0.08	0.11	0.14	0.17	0.21	0.26	\#N/A
	4:04:26	0.00	0.03	0.02	0.03	0.05	0.06	0.08	0.10	\#N/A
	4:11:14	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	\#N/A
	4:18:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:24:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:31:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:38:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:45:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:51:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:58:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:05:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:12:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:19:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:25:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:32:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:39:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:46:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:53:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:59:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:06:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:13:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:20:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:27:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:33:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:40:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:47:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:54:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	7:00:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	7:07:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	7:14:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	7:21:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	7:28:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	7:34:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	7:41:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	7:48:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	7:55:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	8:02:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	8:08:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A

Routed Hydrograph Results									
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	0.00
Calculated Runoff Volume (acre-ft) $=$	0.127	0.427	0.345	0.454	0.583	0.751	0.873	1.033	0.000
OPTIONAL Override Runoff Volume (acre-ft) $=$									
Inflow Hydrograph Volume (acre-ft) $=$	0.127	0.427	0.345	0.454	0.583	0.751	0.872	1.033	\#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) $=$	0.00	0.00	0.01	0.02	0.17	0.57	0.80	1.08	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	0.1	0.1	1.0	3.5	4.8	6.5	0.0
Peak Inflow Q (cfs) $=$	2.0	6.5	5.3	6.9	8.9	11.4	13.2	15.6	\#N/A
Peak Outflow Q (cfs) =	0.1	0.2	0.2	0.3	2.6	5.5	7.5	10.1	\#N/A
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	2.3	2.5	1.6	1.6	1.6	\#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	\#N/A
Max Velocity through Grate 1 (fps) $=$	N/A	N/A	N/A	N/A	0.0	0.0	0.0	0.0	\#N/A
Max Velocity through Grate 2 (fps) =	N/A	\#N/A							
Time to Drain 97\% of Inflow Volume (hours) $=$	37	55	53	56	55	53	52	50	\#N/A
Time to Drain 99\% of Inflow Volume (hours) =	40	62	58	63	62	61	60	59	\#N/A
Maximum Ponding Depth (ft) =	1.94	3.41	3.05	3.53	3.73	3.84	3.91	3.98	\#N/A
Area at Maximum Ponding Depth (acres) $=$	0.15	0.21	0.20	0.22	0.23	0.23	0.23	0.23	\#N/A
Maximum Volume Stored (acre-ft) $=$	0.116	0.391	0.315	0.417	0.462	0.487	0.500	0.519	\#N/A

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:
Storm Inflow Hydrograph
UD-Detention, Version 3.07 (February 2017)
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	WORKBOOK	\#N/A							
Time Interval	TIME	wacv [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.47 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	0:05:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
Hydrograph Constant	0:10:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	0:16:25	0.09	0.29	0.24	0.31	0.39	0.50	0.58	0.68	\#N/A
0.915	0:21:53	0.24	0.78	0.63	0.83	1.06	1.35	1.57	1.85	\#N/A
	0:27:21	0.62	2.01	1.63	2.13	2.72	3.48	4.03	4.75	\#N/A
	0:32:49	1.69	5.51	4.48	5.85	7.47	9.56	11.07	13.05	\#N/A
	0:38:17	1.97	6.51	5.27	6.92	8.85	11.37	13.20	15.60	\#N/A
	0:43:46	1.87	6.20	5.02	6.59	8.45	10.86	12.61	14.90	\#N/A
	0:49:14	1.70	5.65	4.57	6.00	7.69	9.89	11.48	13.57	\#N/A
	0:54:42	1.51	5.03	4.07	5.35	6.86	8.84	10.27	12.15	\#N/A
	1:00:10	1.29	4.33	3.50	4.61	5.92	7.64	8.88	10.52	\#N/A
	1:05:38	1.12	3.78	3.05	4.02	5.16	6.65	7.73	9.15	\#N/A
	1:11:07	1.02	3.42	2.76	3.64	4.67	6.03	7.01	8.30	\#N/A
	1:16:35	0.82	2.81	2.27	2.99	3.85	4.98	5.80	6.88	\#N/A
	1:22:03	0.66	2.29	1.84	2.44	3.14	4.07	4.75	5.64	\#N/A
	1:27:31	0.50	1.75	1.40	1.87	2.42	3.14	3.67	4.38	\#N/A
	1:32:59	0.36	1.29	1.03	1.38	1.80	2.35	2.75	3.29	\#N/A
	1:38:28	0.26	0.94	0.75	1.00	1.30	1.70	1.98	2.38	\#N/A
	1:43:56	0.21	0.73	0.59	0.78	1.01	1.31	1.53	1.83	\#N/A
	1:49:24	0.17	0.60	0.48	0.64	0.83	1.08	1.26	1.50	\#N/A
	1:54:52	0.15	0.51	0.41	0.55	0.71	0.92	1.07	1.27	\#N/A
	2:00:20	0.13	0.45	0.36	0.48	0.62	0.80	0.94	1.12	\#N/A
	2:05:49	0.12	0.41	0.33	0.43	0.56	0.72	0.84	1.00	\#N/A
	2:11:17	0.11	0.38	0.30	0.40	0.52	0.67	0.78	0.92	\#N/A
	2:16:45	0.08	0.28	0.22	0.29	0.38	0.49	0.57	0.68	\#N/A
	2:22:13	0.06	0.20	0.16	0.22	0.28	0.36	0.42	0.50	\#N/A
	2:27:41	0.04	0.15	0.12	0.16	0.20	0.26	0.31	0.37	\#N/A
	2:33:10	0.03	0.11	0.09	0.12	0.15	0.19	0.23	0.27	\#N/A
	2:38:38	0.02	0.08	0.06	0.08	0.11	0.14	0.16	0.19	\#N/A
	2:44:06	0.02	0.05	0.04	0.06	0.08	0.10	0.12	0.14	\#N/A
	2:49:34	0.01	0.04	0.03	0.04	0.05	0.07	0.08	0.10	\#N/A
	2:55:02	0.01	0.03	0.02	0.03	0.04	0.05	0.05	0.07	\#N/A
	3:00:31	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	\#N/A
	3:05:59	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	\#N/A
	3:11:27	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	\#N/A
	3:16:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:22:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:27:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:33:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:38:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:44:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:49:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:55:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:00:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:06:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:11:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:17:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:22:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:28:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:33:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:38:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:44:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:49:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:55:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:00:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:06:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:11:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:17:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:22:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:28:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:33:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:39:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:44:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:50:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	5:55:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:01:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:06:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:11:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:17:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:22:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:28:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	6:33:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A

Designer: Company: Date:	Richard Schindler
Project: Core Engineering Group Location: Carriage Meadows South	Pond G1/G2 Full Spectrum Forebay and WQ Outlet Design

5. Forebay	
A) Minimum Forebay Volume $\left(\mathrm{V}_{\mathrm{FMIN}}=3 \% \quad \text { of the } \mathrm{WQCV}\right)$	$\mathrm{V}_{\text {FMIN }}=0.077 \mathrm{ac}-\mathrm{ft}$
B) Actual Forebay Volume	$\mathrm{V}_{\mathrm{F}}=\underline{0.080} \mathrm{ac}-\mathrm{ft}$
C) Forebay Depth $\left(D_{F}=\right.$ \qquad inch maximum)	$D_{F}=\underline{26.4}$ in
D) Forebay Discharge	
i) Undetained 100-year Peak Discharge	$\mathrm{Q}_{100}=\underline{301.00} \mathrm{cfs}$
ii) Forebay Discharge Design Flow $\left(Q_{F}=0.02 * Q_{100}\right)$	$Q_{F}=\frac{6.02}{} \mathrm{cfs}$
E) Forebay Discharge Design	Choose One \qquad Berm With Pipe Wall with Rect. Notch . Wall with V-Notch Weir
F) Discharge Pipe Size (minimum 8-inches)	Calculated $\mathrm{DP}_{\mathrm{P}}=\square \ldots$ in
G) Rectangular Notch Width	Calculated $\mathrm{W}_{\mathrm{N}}=\underline{11.9}$ in
6. Trickle Channel A) Type of Trickle Channel	$\left[\begin{array}{l}\text { Choose One } \\ \text { O Concrete } \\ \text { Soft Bottom }\end{array}\right.$
F) Slope of Trickle Channel	$\mathrm{S}=\frac{0.0040}{\mathrm{ft} / \mathrm{ft}}$
7. Micropool and Outlet Structure	
A) Depth of Micropool (2.5-feet minimum)	$\mathrm{D}_{\mathrm{M}}=\ldots \quad 2.5$ ft
B) Surface Area of Micropool ($10 \mathrm{ft}^{2}$ minimum)	$A_{M}=\quad 150 \quad \mathrm{sq} \mathrm{ft}$
C) Outlet Type	Choose One \qquad Orifice Plate Other (Describe):
D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention)	$\mathrm{Dorifice}=\ldots 4.70$ inches
E) Total Outlet Area	$\mathrm{A}_{\text {ot }}=$ 66.36 square inches

Designer: Company: Date:	Richard Schindler
Project: Core Engineering Group Location: Caruary 30, 2017	

Location: Pond G1/G2 Full Spectrum Forebay and WQ Outlet Design

Designer: Richard Schindler	
Company: Core Engineering Group	
Date: February 21, 2017	
Project: Carriage Meadows South	
Location: Full Spectrum Pond G3	
1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I_{a} B) Tributary Area's Imperviousness Ratio ($\mathrm{i}=\mathrm{I}_{\mathrm{a}} / 100$) C) Contributing Watershed Area D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm E) Design Concept (Select EURV when also designing for flood control) F) Design Volume (WQCV) Based on 40-hour Drain Time $\left(V_{\text {DESIGN }}=\left(1.0 *\left(0.91 * i^{3}-1.19 * i^{2}+0.78 * i\right) / 12 * \text { Area }\right)\right.$ G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume $\left(\mathrm{V}_{\text {WQCV OTHER }}=\left(\mathrm{d}_{6}{ }^{*}\left(\mathrm{~V}_{\text {DESIGN }} / 0.43\right)\right)\right.$ H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) I) Predominant Watershed NRCS Soil Group J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV $A=1.68 * i^{1.28}$ For HSG B: EURV $=1.36 * i^{1.08}$ For HSG C/D: EURV ${ }_{C / D}=1.20 * i^{1.08}$	$\begin{aligned} & \mathrm{I}_{\mathrm{a}}=\frac{65.0}{\%} \\ & \mathrm{i}=\frac{0.650}{\%} \end{aligned}$ $\text { Area }=\frac{6.020}{} \text { ac }$ $\mathrm{d}_{6}=$ \qquad in - Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV) $\mathrm{V}_{\mathrm{DESIGN}}=$ \qquad ac-ft $V_{\text {DESIGN OTHER }}=$ \qquad $\mathrm{ac}-\mathrm{ft}$ $\mathrm{V}_{\text {DESIGN USER }}=$ \qquad $\mathrm{ac}-\mathrm{ft}$ Choose One A WQCV selected. Soil group not required. B C / D \square ac-f t
2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.)	$\mathrm{L}: \mathrm{W}=\ldots 2.0$: 1
3. Basin Side Slopes A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred)	$\mathrm{Z}=\frac{3.00}{\mathrm{fIFFICULT} \text { TO MAINTAIN, INCREASE WHERE POSSIBLE }}$
4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations:	

Designer:	
Company:	Richard Schindler
Date:	Core Engineering Group
Project:	February 21, 2017
Location:	Carriage Meadows South

Designer: Company: Richard Schindler Date: Core Engineering Group Project: February 21, 2017 Location: Carriage Meadows South	

8. Initial Surcharge Volume		
A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches)	$\mathrm{D}_{1 \mathrm{~S}}=$	
B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV)	$V_{\text {IS }}$	cu
C) Initial Surcharge Provided Above Micropool	$\mathrm{V}_{\mathrm{s}}=$	cu ft
9. Trash Rack		
A) Water Quality Screen Open Area: $\mathrm{A}_{t}=\mathrm{A}_{\text {ot }} * 38.5^{*}\left(\mathrm{e}^{-0.095 \mathrm{D}}\right)$	$\mathrm{A}_{\mathrm{t}}=$	square inches
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.)	S.S. Well Screen with 60\% Open Area	
Other (Y/N): N		
C) Ratio of Total Open Area to Total Area (only for type 'Other')	User Ratio =	
D) Total Water Quality Screen Area (based on screen type)	$\mathrm{A}_{\text {total }}=$	sq. in.
E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E)	$\mathrm{H}=$	
F) Height of Water Quality Screen ($\mathrm{H}_{\text {TR }}$)	$\mathrm{H}_{\text {TR }}=$	inches
G) Width of Water Quality Screen Opening ($\mathrm{W}_{\text {opening }}$) (Minimum of 12 inches is recommended)	$\mathrm{W}_{\text {opening }}=$	inches

Weir Report

Pond G2 forebay 24-inch RCP with 5 -inch wide drain notch

Rectangular Weir
Crest = Sharp
Bottom Length (ft) $=0.42$
Total Depth (ft) $=2.25$

Calculations

Weir Coeff. Cw = 3.33
Compute by: Known Depth
Known Depth (ft) $=2.25$

Highlighted
Depth (ft) $=2.25$
Q (cfs) $=4.720$
Area (sqft) $\quad=0.95$
Velocity (ft/s) $=5.00$
Top Width (ft) $=0.42$

Depth (ft) Pond G2 forebay 24-inch RCP with 5-inch wide drain notch Depth (ft)

Pond G2 low flow channel from 24-inch RCP

Rectangular

Botom Width (ft)	$=4.00$
Total Depth (ft)	$=0.50$
Invert Elev (ft)	$=100.00$
Slope (\%)	$=0.40$
N-Value	$=0.013$

Calculations

Compute by:
Q vs Depth
No. Increments = 10

Highlighted

Depth (ft)	$=0.50$
Q (cfs)	$=7.847$
Area (sqft)	$=2.00$
Velocity (ft/s)	$=3.92$
Wetted Perim (ft)	$=5.00$
Crit Depth, Yc (ft)	$=0.45$
Top Width (ft)	$=4.00$
EGL (ft)	$=0.74$

Elev (ft)
Section
Depth (ft)

Channel Report

Pond G2 low flow channel from 48-inch RCP

Rectangular

Botom Width (ft)	$=6.00$
Total Depth (ft)	$=0.50$
Invert Elev (ft)	$=100.00$
Slope $(\%)$	$=0.40$
N-Value	$=0.013$

Calculations

Compute by: Known Depth
Known Depth (ft) $=0.50$

Highlighted

Depth (ft)	$=0.50$
$\mathrm{Q}(\mathrm{cfs})$	$=12.32$
Area (sqft)	$=3.00$
Velocity (ft/s)	$=4.11$
Wetted Perim (ft)	$=7.00$
Crit Depth, Yc (ft)	$=0.50$
Top Width (ft)	$=6.00$
EGL (ft)	$=0.76$

Elev (ft)
Section
Depth (ft)

Channel Report

Pond G2 low flow channel

Rectangular

Botom Width (ft)	$=8.00$
Total Depth (ft)	$=0.50$
Invert Elev (ft)	$=100.00$
Slope $(\%)$	$=0.40$
N-Value	$=0.013$

Calculations

Compute by: Known Depth
Known Depth (ft) $=0.50$

Highlighted

Depth (ft)	$=0.50$
$\mathrm{Q}(\mathrm{cfs})$	$=16.84$
Area (sqft)	$=4.00$
Velocity (ft/s)	$=4.21$
Wetted Perim (ft)	$=9.00$
Crit Depth, Yc (ft)	$=0.50$
Top Width (ft)	$=8.00$
EGL (ft)	$=0.78$

Elev (ft)

Section
Depth (ft)

Memo

Date: Friday, March 11, 2016
Project: Marksheffel Road South
To: Dennis Barron, El Paso County
From: Matthew Johnson, HDR Elizabeth Staten, HDR
Subject: $\quad 3 / 11 / 16$ Marksheffel Road South Revisions

This memo serves as a supplement to the August 2015 Marksheffel Road South Final Drainage Report, stamped $8 / 26 / 2015$, to document changes to the hydraulic design and supporting calculations from the 3/11/16 revisions.

The following plan sheets are affected as part of the revisions:

- D-10a
- D-14
- D-16
- D-18
- D-43
- D-50
- D-58
- D-59

For all revisions see attached calculations.
The changes to the design include the addition of three approach culverts used to convey ditch flow underneath roadway bump outs. The roadway bump outs were added to provide utility manhole access. The approach culverts are all 24 " RCP with riprap outlet protection.

Two sand filters are shifted to accommodate access road changes. The affected sand filters are SF 125L and SF 178R. These sand filters are moved downstream so they will still have the ability to treat the required tributary area. Since the shift is downstream there are no required changes to the sand filter's water quality capture volume. Any excess runoff will bypass the sand filters and treatment will still be provided for at the downstream sand filters.

The driveway at station 150+00 LT is shifted to the north and the culvert at the driveway is shifted as well. The shift causes the culvert length to increase and the slope to increase. This culvert has conveyance capacity and significant downstream erosion protection so hydraulics were not performed for these minor changes.

The driveways from station 177+00 LT to 178+50 LT are shifted to the south. Both culverts used to convey runoff under these driveways are shifted and lengths and widths adjusted as appropriate.

The culvert under the access road at station $177+00$ RT is upsized from a single $24^{\prime \prime}$ RCP to a double $24^{\prime \prime}$ RCP. This change is taking place due to updated basin delineation provided by an adjacent developer that estimates a 100 -year peak flow of 28.6 cfs at this location. The double 24 " RCP will accommodate this flow. Similarly the culvert at $168+00$ RT is upsized to a double 24 " RCP to accommodate the additional expected runoff.

The culvert CV618 is extended 6 feet at the previous slope of 0.50%. This shift removes the conditions where the toe wall is above a water utility. There is more than 3 feet of vertical clearance from the bottom of culvert to the top of the water utility. Hydraulic calculations are not computed for the change in length since the friction loss for the additional 6 feet of culvert is considered negligible.

The ditch just north of the future Mesa Ridge is changed from a trapezoidal ditch section to a triangular ditch section. This occurs from approximately station 130+00 LT to 140+00 LT. This ditch section is part of basin 103L and is evaluated with the full flow from that basin. The new ditch section has $2: 1$ sideslopes and a depth of 1.50 feet.

The ditch just south of Fontaine Boulevard on the east is changed from a trapezoidal ditch section to a triangular ditch section. This occurs from approximately station 200+00 RT to 205+00 RT. This ditch section is part of basin 178R and is evaluated with the full flow from that basin. The new ditch section has 2:1 side-slopes and a depth of 1.50 feet.

See the Table below for a summary of changes to pipe quantities.

Pipe ID	Previous Size	Previous Length (LF)	Updated Size	Updated Length (LF)
CV117	-	-	$24^{\prime \prime}$	88
CV121	-	-	$24^{\prime \prime}$	103
CV125	-	-	$24^{\prime \prime}$	125
CV150	6×2 CBC	35	-	38
CV168	$18 "$	66	$2-24 "$	55
CV177R	$24 "$	39	$2-24^{\prime \prime}$	-
CV177	$2-36^{\prime \prime}$	77	-	100
CV178L	$2-36^{\prime \prime}$	26	-	-
CV618	5×2 CBC	112	-	118

Runoff Coefficients

\qquad

Sub-Basin Data			Composite C		Sub Area (Pavement)			Sub Area (Pervious)		
Basin ID	Description	Area (ac)	C_{5}	C_{100}	C_{5}	C_{100}	Area (ac)	C_{5}	C_{100}	Area (ac)
ZONE3										
CV233	Onsite flow from 233+00 to 246+00	2.37	0.90	0.95	0.90	0.95	2.37	0.25	0.35	0.00
P205	Onsite flow from 207+60 to 212+00	0.44	0.90	0.95	0.90	0.95	0.44	0.25	0.35	0.00
CV205	Onsite flow from 205+00 to 212+00	0.84	0.90	0.95	0.90	0.95	0.84	0.25	0.35	0.00
CV195	Onsite flow from 195+00 to 205+00	1.68	0.90	0.95	0.90	0.95	1.68	0.25	0.35	0.00
CV194	Onsite flow from 194+00 to 205+00	1.79	0.90	0.95	0.90	0.95	1.79	0.25	0.35	0.00
CV192	Onsite flow from 192+00 to 205+00	1.99	0.90	0.95	0.90	0.95	1.99	0.25	0.35	0.00
CV177R	Onsite \& Offisite flow from 177+00 to 205+00	5.51	0.64	0.71	0.90	0.95	3.32	0.25	0.35	2.19
CV168	Onsite flow from 168+00 to 179+00	0.95	0.90	0.95	0.90	0.95	0.95	0.25	0.35	0.00
CV152	Onsite flow from 152+00 to 177+00	2.49	0.90	0.95	0.90	0.95	2.49	0.25	0.35	0.00
ZONE 4										
CV125	Onsite flow from 125+00 to 148+00	2.95	0.90	0.95	0.90	0.95	2.95	0.25	0.35	0.00
CV121	Onsite flow from 121+00 to 148+00	3.31	0.90	0.95	0.90	0.95	3.31	0.25	0.35	0.00
CV117	Onsite flow from 117+00 to 148+00	3.85	0.90	0.95	0.90	0.95	3.85	0.25	0.35	0.00
CV112	Onsite flow from 112+00 to 114+00	0.18	0.90	0.95	0.90	0.95	0.18	0.25	0.35	0.00
CV109	Onsite flow from 109+00 to 114+00	0.27	0.90	0.95	0.90	0.95	0.27	0.25	0.35	0.00
CV106	Onsite flow from 106+00 to 114+00	0.40	0.90	0.95	0.90	0.95	0.40	0.25	0.35	0.00
CV99	Onsite flow from 99+00 to 103+00	0.20	0.90	0.95	0.90	0.95	0.20	0.25	0.35	0.00

Standard Form SF-1 . Time of Concentration

Corridor / Design Pack
System Name: South Approach Pipes

Computed:
Checked: EVS

Date:
Date: \qquad

SUB-BASIN DATA				INITIAL/OVERLAND FLOW (t_{i})			TRAVEL TIME (t_{t})							Total$\begin{gathered} \mathrm{t}_{\mathrm{c}}=\mathrm{t}_{\mathrm{i}}+\mathrm{t}_{\mathrm{t}} \\ (\min) \end{gathered}$
	Description	C_{5}	Area (ac)	Length (ft)	Slope (ft/ft)	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \end{gathered}$	Length (ft)	$\begin{gathered} \mathrm{S}_{\mathrm{w}} \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Type of Land Surface			Velocity (ft/s)	Travel Time (min)	
Basin ID									Code \quad Description		Convey Coef (C_{v})			
ZONE 3														
CV233	Onsite flow from 233+00 to 246+00	0.90	2.37	96	0.05208	2.13	1180	0.0288	5	Grassed waterway	15.00	2.55	7.72	9.85
P205	Onsite flow from 207+60 to 212+00	0.90	0.44	57	0.07018	1.48	453	0.01044	5	Grassed waterway	15.00	1.53	4.93	6.41
CV205	Onsite flow from 205+00 to 212+00	0.90	0.84	61	0.06557	1.57	660	0.01045	5	Grassed waterway	15.00	1.53	7.17	8.74
CV195	Onsite flow from 195+00 to 205+00	0.90	1.68	70	0.05714	1.75	1170	0.0120	5	Grassed waterway	15.00	1.64	11.88	13.63
CV194	Onsite flow from 194+00 to 205+00	0.90	1.79	70	0.05714	1.76	1280	0.01172	5	Grassed waterway	15.00	1.62	13.14	14.90
CV192	Onsite flow from 192+00 to 205+00	0.90	1.99	70	0.05714	1.76	1490	0.01208	5	Grassed waterway	15.00	1.65	15.06	16.82
CV177R	Onsite \& Offisite flow from 177+00 to 205+00	0.64	5.51	54	0.07407	3.25	2865	0.00999	5	Grassed waterway	15.00	1.50	31.86	35.11
CV168	Onsite flow from 168+00 to 179+00	0.90	0.95	58	0.05172	1.66	978	0.00511	5	Grassed waterway	15.00	1.07	15.20	16.85
CV152	Onsite flow from 152+00 to 177+00	0.90	2.49	53	0.0566	1.54	2600	0.00527	5	Grassed waterway	15.00	1.09	39.80	41.33
ZONE 4														
CV125	Onsite flow from 125+00 to 148+00	0.90	2.95	100	0.06	2.07	4386	0.00876	5	Grassed waterway	15.00	1.40	52.06	54.13
CV121	Onsite flow from 121+00 to 148+00	0.90	3.31	100	0.06	2.07	4386	0.00876	5	Grassed waterway	15.00	1.40	52.06	54.13
CV117	Onsite flow from 117+00 to 148+00	0.90	3.85	100	0.06	2.07	4386	0.00876	5	Grassed waterway	15.00	1.40	52.06	54.13
CV112	Onsite flow from 112+00 to 114+00	0.90	0.18	39	0.07692	1.19	262	0.01145	5	Grassed waterway	15.00	1.61	2.72	5.00
CV109	Onsite flow from 109+00 to 114+00	0.90	0.27	39	0.07692	1.19	492	0.01016	5	Grassed waterway	15.00	1.51	5.42	6.61
CV106	Onsite flow from 106+00 to 114+00	0.90	0.40	37	0.08108	1.14	677	0.01034	5	Grassed waterway	15.00	1.53	7.40	8.54
CV99	Onsite flow from 99+00 to 103+00	0.90	0.20	39	0.10256	1.08	330	0.00909	5	Grassed waterway	15.00	1.43	3.85	5.00

Notes:
$\mathrm{t}_{1}=\left(1.87^{*}\left(1.1-\mathrm{C}_{5}\right)^{*}\left(L^{\wedge} 0.5\right)\right) /\left(S^{\wedge} 0.33\right)$, from Cos DCM page 5-11
Velocity from $V=C_{v}{ }^{*} S_{w} \wedge 0.5$, from UDFCD Eqn RO-4, C_{v} from Table RO-2 (See Sheet Design Info
$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / 60 \mathrm{~V}$

Design Storm： 5 －yr

LOCATION		DIRECT RUNOFF							TOTAL RUNOFF						PIPE				AVEL		REMARKS
					$*^{\underline{\underline{Z}}}$	ஷভ্ভ	$-\frac{\underline{\alpha}}{\underline{\underline{z}}}$	○	$*^{\underline{\underline{z}}}$		$-\frac{\widetilde{\widetilde{x}}}{\underline{\underline{\Sigma}}}$	○ 苍					$\frac{山}{2} \stackrel{山}{2}$			$\sim{\underset{\underline{z}}{\underline{\underline{Z}}}}^{\underline{2}}$	
（1）	（2）	（3）	（4）	（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）	（14）	（15）	（16）	（17）	（18）	（19）	（20）	（21）	（22）
ZONE 3																					
1 Onsite flow from 233＋00 to 246＋00		CV233	2.37	0.90	9.85	2.13	2.79	5.95													
2 Onsite flow from 207＋60 to 212＋00		P205	0.44	0.90	6.41	0.40	3.36	1.33													
3 Onsite flow from 205＋00 to 212＋00		CV205	0.84	0.90	8.74	0.76	2.98	2.25													
4 Onsite flow from 195＋00 to 205＋00		CV195	1.68	0.90	13.63	1.51	2.31	3.49													
5 Onsite flow from 194＋00 to 205＋00		CV194	1.79	0.90	14.90	1.61	2.22	3.58													
6 Onsite flow from 192＋00 to 205＋00		CV192	1.99	0.90	16.82	1.79	2.08	3.73													
7 Onsite \＆Offisite flow from 177＋00 to 205＋00		CV177R	5.51	0.64	35.11	3.54	1.48	5.23													
8 Onsite flow from 168＋00 to 179＋00		CV168	0.95	0.90	16.85	0.86	2.08	1.78													
9 Onsite flow from 152＋00 to 177＋00		CV152	2.49	0.90	41.33	2.24	1.36	3.05													
ZONE 4																					
10 Onsite flow from 112＋00 to 114＋00		CV112	0.18	0.90	5.00	0.17	3.55	0.59													
11 Onsite flow from 109＋00 to 114＋00		CV109	0.27	0.90	6.61	0.24	3.36	0.82													
12 Onsite flow from 106＋00 to 114＋00		CV106	0.40	0.90	8.54	0.36	2.98	1.07													
13 Onsite flow from 99＋00 to 103＋00		CV99	0.20	0.90	5.00	0.18	3.55	0.62													

Design Storm： $100-\mathrm{yr}$

LOCATION		DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			REMARKS
					$\sim^{\circ} \underline{\underline{\underline{z}}}$	ভ்	$-\frac{\frac{\Upsilon}{\mathbf{x}}}{\underline{Z}}$	-	$\sim_{0}^{\underline{\underline{Z}}}$		$-\frac{\underset{\underline{x}}{\Sigma}}{\underline{\underline{z}}}$	○			$\begin{aligned} & 3 \\ & 0 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & u_{0}^{0} \\ & \stackrel{0}{0} \stackrel{0}{\circ} \end{aligned}$	$\stackrel{\text { 름 }}{\stackrel{\omega}{N}}$	도ㄴㅜㅡ를		$\sim \overline{\underline{z}}_{\underline{\Sigma}}^{\underline{Z}}$	
（1）	（2）	（3）	（4）	（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）	（14）	（15）	（16）	（17）	（18）	（19）	（20）	（21）	（22）
ZONE 3																					
1 Onsite flow from 233＋00 to 246＋00		CV233	2.37	0.95	9.85	2.25	7.49	16.87													
2 Onsite flow from 207＋60 to 212＋00		P205	0.44	0.95	6.41	0.42	9.02	3.77													
3 Onsite flow from 205＋00 to 212＋00		CV205	0.84	0.95	8.74	0.80	8.00	6.38													
4 Onsite flow from 195＋00 to 205＋00		CV195	1.68	0.95	13.63	1.59	6.19	9.87													
5 Onsite flow from 194＋00 to 205＋00		CV194	1.79	0.95	14.90	1.70	5.93	10.08													See TR－55 Peak Flow
6 Onsite flow from 192＋00 to 205＋00		CV192	1.99	0.95	16.82	1.89	5.57	10.53													
7 Onsite \＆Offisite flow from 177＋00 to 205＋00		CV177R	5.51	0.71	35.11	3.92	3.96	15.53													
8 Onsite flow from 168＋00 to 179＋00		CV168	0.95	0.95	16.85	0.90	5.57	5.03													
9 Onsite flow from 152＋00 to 177＋00		CV152	2.49	0.95	41.33	2.37	3.67	8.68													
ZONE 4																					
Onsite flow from $125+00$ to 148＋00		CV125	2.95	0.95	54.13	2.80	3.05	8.55													
Onsite flow from $121+00$ to 148＋00		CV121	3.31	0.95	54.13	3.14	3.05	9.59													
Onsite flow from 117＋00 to 148＋00		CV117	3.85	0.95	54.13	3.66	3.05	11.16													
10 Onsite flow from 112＋00 to 114＋00		CV112	0.18	0.95	5.00	0.18	9.53	1.67													See TR－55 Peak Flow
11 Onsite flow from 109＋00 to 114＋00		CV109	0.27	0.95	6.61	0.26	9.02	2.31													
12 Onsite flow from 106＋00 to 114＋00		CV106	0.40	0.95	8.54	0.38	8.00	3.04													
13 Onsite flow from 99＋00 to 103＋00		CV99	0.20	0.95	5.00	0.19	9.53	1.77													

（1）Basin Description linked to C －Value Sheet
（2）Basin Design Point
（3）Enter the Basin Name from C Value Sheet
（4）Basin Area linked to C－Value Sheet
（5）Composite C Cinked to－V－Vaue Sheet
（6）Time of Concentration linked to C－Value
（7）$=$ Column $4 \times$ Column 5
（8）$=28.5^{*} /(10+\text { Column } 6)^{0} 0.786$
（9）$=$ Column $7 \times$ Column 8
10）$=$ Column $6+$ Column 21
（11）Add the Basin Areas（ 7 ）to get the combined basin AC
（12）$=28.5^{*} P /(10+C o l u m n 10)^{\wedge} 0.786$

[^0]19）Additional Flow Leng
21）＝Column 19 ／Column $20 / 60$

Culvert Calculator Report CV117

Solve For: Headwater Elevation

Culvert Calculator Report CV121

Solve For: Headwater Elevation

Culvert Summary			
Allowable HW Elevation	5,650.77 ft	Headwater Depth/Height	0.82
Computed Headwater Elevation	$5,649.44 \mathrm{ft}$	Discharge	9.59 cfs
Inlet Control HW Elev.	$5,649.36 \mathrm{ft}$	Tailwater Elevation	$5,647.01 \mathrm{ft}$
Outlet Control HW Elev.	$5,649.44 \mathrm{ft}$	Control Type	Entrance Control
Grades			
Upstream Invert	5,647.79 ft	Downstream Invert	5,647.01 ft
Length	103.00 ft	Constructed Slope	$0.007573 \mathrm{ft} / \mathrm{ft}$
Hydraulic Profile			
Profile	S2	Depth, Downstream	0.98 ft
Slope Type	Steep	Normal Depth	0.98 ft
Flow Regime	Supercritical	Critical Depth	1.11 ft
Velocity Downstream	$6.23 \mathrm{ft} / \mathrm{s}$	Critical Slope	$0.005132 \mathrm{ft} / \mathrm{ft}$
Section			
Section Shape	Circular	Mannings Coefficient	0.013
Section Material	Concrete	Span	2.00 ft
Section Size	24 inch	Rise	2.00 ft
Number Sections	1		
Outlet Control Properties			
Outlet Control HW Elev.	5,649.44 ft	Upstream Velocity Head	0.45 ft
Ke	0.20	Entrance Loss	0.09 ft
Inlet Control Properties			
Inlet Control HW Elev.	5,649.36 ft	Flow Control	N/A
Inlet Type Beveled	33.7° bevels	Area Full	$3.1 \mathrm{ft}^{2}$
K	0.00180	HDS 5 Chart	3
M	2.50000	HDS 5 Scale	B
C	0.02430	Equation Form	1
Y	0.83000		

Culvert Calculator Report CV125

Solve For: Headwater Elevation

Culvert Summary			
Allowable HW Elevation	5,654.11 ft	Headwater Depth/Height	0.77
Computed Headwater Elevation	$5,652.54 \mathrm{ft}$	Discharge	8.55 cfs
Inlet Control HW Elev.	$5,652.47 \mathrm{ft}$	Tailwater Elevation	$5,650.07 \mathrm{ft}$
Outlet Control HW Elev.	5,652.54 ft	Control Type	Entrance Control
Grades			
Upstream Invert	5,651.00 ft	Downstream Invert	5,650.07 ft
Length	125.00 ft	Constructed Slope	$0.007440 \mathrm{ft} / \mathrm{ft}$
Hydraulic Profile			
Profile	S2	Depth, Downstream	0.93 ft
Slope Type	Steep	Normal Depth	0.93 ft
Flow Regime	Supercritical	Critical Depth	1.04 ft
Velocity Downstream	$6.01 \mathrm{ft} / \mathrm{s}$	Critical Slope	$0.004968 \mathrm{ft} / \mathrm{ft}$
Section			
Section Shape	Circular	Mannings Coefficient	0.013
Section Material	Concrete	Span	2.00 ft
Section Size	24 inch	Rise	2.00 ft
Number Sections	1		
Outlet Control Properties			
Outlet Control HW Elev.	5,652.54 ft	Upstream Velocity Head	0.41 ft
Ke	0.20	Entrance Loss	0.08 ft
Inlet Control Properties			
Inlet Control HW Elev.	5,652.47 ft	Flow Control	N/A
Inlet Type Beveled	33.7° bevels	Area Full	$3.1 \mathrm{ft}^{2}$
K	0.00180	HDS 5 Chart	3
M	2.50000	HDS 5 Scale	B
C	0.02430	Equation Form	1
Y	0.83000		

Culvert Calculator Report CV168

Solve For: Headwater Elevation

Culvert Summary			
Allowable HW Elevation	5,683.94	Headwater Depth/Height	1.19
Computed Headwater Elevation	5,683.18	Discharge	33.60 cfs
Inlet Control HW Elev.	5,683.11	Tailwater Elevation	$5,680.54 \mathrm{ft}$
Outlet Control HW Elev.	5,683.18	Control Type	Outlet Control
Grades			
Upstream Invert	5,680.80	Downstream Invert	5,680.54 ft
Length	66.00	Constructed Slope	$0.003939 \mathrm{ft} / \mathrm{ft}$
Hydraulic Profile			
Profile	M2	Depth, Downstream	1.48 ft
Slope Type	Mild	Normal Depth	N/A ft
Flow Regime	Subcritical	Critical Depth	1.48 ft
Velocity Downstream	6.75	Critical Slope	$0.006871 \mathrm{ft} / \mathrm{ft}$
Section			
Section Shape	Circular	Mannings Coefficient	0.013
Section Material	Concrete	Span	2.00 ft
Section Size	24 inch	Rise	2.00 ft
Number Sections	2		
Outlet Control Properties			
Outlet Control HW Elev.	5,683.18	Upstream Velocity Head	0.51 ft
Ke	0.20	Entrance Loss	0.10 ft
Inlet Control Properties			
Inlet Control HW Elev. $5,683.11 \mathrm{ft}$ Flow Control Transition			
Inlet Type Beveled ring, 33.7° bevels		Area Full	$6.3 \mathrm{ft}^{2}$
K	0.00180	HDS 5 Chart	3
M	2.50000	HDS 5 Scale	B
C	0.02430	Equation Form	1
Y	0.83000		

Culvert Calculator Report CV177

Solve For: Headwater Elevation

Culvert Calculator Report CV177R

Solve For: Headwater Elevation

Culvert Calculator Report CV178L

Solve For: Headwater Elevation

Culvert Summary			
Allowable HW Elevation	5,690.19	Headwater Depth/Height	1.12
Computed Headwater Elevation	5,688.90	Discharge	87.06 cfs
Inlet Control HW Elev.	5,688.83	Tailwater Elevation	$5,685.38 \mathrm{ft}$
Outlet Control HW Elev.	5,688.90	Control Type	Outlet Control
Grades			
Upstream Invert	5,685.55	Downstream Invert	5,685.45 ft
Length	26.00	Constructed Slope	$0.003846 \mathrm{ft} / \mathrm{ft}$
Hydraulic Profile			
Profile	M2	Depth, Downstream	2.15 ft
Slope Type	Mild	Normal Depth	2.63 ft
Flow Regime	Subcritical	Critical Depth	2.15 ft
Velocity Downstream	8.03	Critical Slope	$0.005723 \mathrm{ft} / \mathrm{ft}$
Section			
Section Shape	Circular	Mannings Coefficient	0.013
Section Material	Concrete	Span	3.00 ft
Section Size	36 inch	Rise	3.00 ft
Number Sections	2		
Outlet Control Properties			
Outlet Control HW Elev.	5,688.90	Upstream Velocity Head	0.84 ft
Ke	0.20	Entrance Loss	0.17 ft
Inlet Control Properties			
Inlet Control HW Elev.	5,688.83	Flow Control	Transition
Inlet Type Beveled	3.7° bevels	Area Full	$14.1 \mathrm{ft}^{2}$
K	0.00180	HDS 5 Chart	3
M	2.50000	HDS 5 Scale	B
C	0.02430	Equation Form	1
Y	0.83000		

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.030	
Channel Slope		0.00750	$\mathrm{ft} / \mathrm{ft}$
Left Side Slope		2.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Right Side Slope		2.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Bottom Width		0.00	ft
Discharge		13.47	$\mathrm{ft}^{3} / \mathrm{s}$
Results			
Normal Depth		1.45	ft
Flow Area		4.19	ft^{2}
Wetted Perimeter		6.48	ft
Hydraulic Radius		0.65	ft
Top Width		5.79	ft
Critical Depth		1.23	ft
Critical Slope		0.01789	$\mathrm{ft} / \mathrm{ft}$
Velocity		3.21	ft / s
Velocity Head		0.16	ft
Specific Energy		1.61	ft
Froude Number		0.67	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description	0.00	ft
Profile Headloss	Infinity	ft / s
Downstream Velocity	Infinity	ft / s
Upstream Velocity	1.45	ft
Normal Depth	1.23	ft
Critical Depth	0.00750	$\mathrm{ft} / \mathrm{ft}$
Channel Slope	0.01789	$\mathrm{ft} / \mathrm{ft}$

Messages

Notes

Project Description

Outlet Pipe Information:

Type of Pipe:	Circular
Storm St	

Riprap Size:

Velocity =	6.36	$\mathrm{ft} / \mathrm{s}^{(1)}$
Design Depth, $\mathrm{d}=$	1.09	$\mathrm{ft}^{(2)}$
Gravity, g =	32.2	$\mathrm{ft} / \mathrm{s}^{2}$

Eqn: HS-16e
$P_{d}=8.69 \mathrm{ft} / \mathrm{s}$

Use Figure HS-20c to find the size and type of riprap to use in the outlet protection basin.

Riprap Selection:	Type L
Riprap Diameter, D_{50}	$=9$

Riprap Minimum Thickness:

Eqn: HS-17
Thickness, $\mathrm{T}=\square \mathrm{ft}$

Basin Dimensions:

Storm Sewer Dia, $D=\square 2 \mathrm{ft}$

Length is defined as being the greater of the following:

Width:
$\mathrm{w}=$ width of box culvert

Eqn: HS-20 or HS-21

Cutoff Wall:

$$
\mathrm{B}=\mathrm{Z} .31 \mathrm{ft} \quad \mathrm{Eqn}: \mathrm{HS}-22
$$

(1) Obtain Velocity from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad
(2) Obtain flow depth from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad

Outlet Pipe Information:

Type of Pipe:	Circular
Storm Sewer Dia, D	$=2$

Riprap Size:

Velocity =	6.23	$\mathrm{ft} / \mathrm{s}^{(1)}$
Design Depth, $\mathrm{d}=$	0.98	$\mathrm{ft}^{(2)}$
Gravity, g =	32.2	$\mathrm{ft} / \mathrm{s}^{2}$

Eqn: HS-16e

Use Figure HS-20c to find the size and type of riprap to use in the outlet protection basin.

Riprap Selection:	Type L
Riprap Diameter, D_{50}	$=9$

Riprap Minimum Thickness:

Eqn: HS-17
Thickness, $\mathrm{T}=\square \mathrm{ft}$

Basin Dimensions:

Storm Sewer Dia, $D=\square 2 \mathrm{ft}$

Length is defined as being the greater of the following:

Width:
$\mathrm{w}=$ width of box culvert

Eqn: HS-20 or HS-21

Cutoff Wall:

$$
\mathrm{B}=\mathrm{Z} .31 \mathrm{ft} \quad \mathrm{Eqn}: \mathrm{HS}-22
$$

(1) Obtain Velocity from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad
(2) Obtain flow depth from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad

Outlet Pipe Information:

Type of Pipe:	Circular
Storm St	

Riprap Size:

Velocity	$=$	6.01
	$\mathrm{ft} / \mathrm{s}^{(1)}$	
Design Depth, d	$=0.93$	$\mathrm{ft}^{(2)}$
Gravity, g	$=0.2$	$\mathrm{ft} / \mathrm{s}^{2}$

Eqn: HS-16e

Use Figure HS-20c to find the size and type of riprap to use in the outlet protection basin.

Riprap Minimum Thickness:

Eqn: HS-17
Thickness, $\mathrm{T}=\square \mathrm{ft}$

Basin Dimensions:

Storm Sewer Dia, $D=\square 2 \mathrm{ft}$

Length is defined as being the greater of the following:

Width:
$\mathrm{w}=$ width of box culvert

Eqn: HS-20 or HS-21

Cutoff Wall:

$$
\mathrm{B}=2.31 \mathrm{ft} \quad \mathrm{Eqn}: \mathrm{HS}-22
$$

(1) Obtain Velocity from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad
(2) Obtain flow depth from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad

Outlet Pipe Information:

Type of Pipe:	
Circular	
Storm Sewer Dia, $D=$	2

Riprap Size:

Velocity	$=$6.75 $\mathrm{ft} / \mathrm{s}^{(1)}$ Design Depth, d $=$ 0.86 ft Gravity, g $=32.2$ $/ \mathrm{s}^{2}$

Eqn: HS-16e

Use Figure HS-20c to find the size and type of riprap to use in the outlet protection basin.

Riprap Selection:	Type L	
Riprap Diameter, D_{50}	$=9$	9
inches		

Riprap Minimum Thickness:

Eqn: HS-17

$$
\text { Thickness, } \mathrm{T}=1.31 \mathrm{ft}
$$

Basin Dimensions:

Storm Sewer Dia, $\mathrm{D}=\square 2 \mathrm{ft}$

Length is defined as being the greater of the following:

$$
\begin{array}{rl|l}
\mathrm{L}=4 \mathrm{D}= & 8 & \mathrm{ft} \\
\mathrm{~L}=(\mathrm{D})^{\wedge} 0.5(\mathrm{~V} / 2) & =4.772970773 \mathrm{ft} & \begin{array}{l}
\text { Eqn: } \mathrm{HS}-18 \\
\mathrm{ft} \\
\mathrm{~L}
\end{array} \\
\cline { 1 - 3 } & \mathrm{ft} &
\end{array}
$$

Width:
$\mathrm{w}=$ width of box culvert
 Eqn: HS-20 or HS-21

Cutoff Wall:

$$
\mathrm{B}=2.31 \mathrm{ft} \quad \mathrm{Eqn}: \mathrm{HS}-22
$$

(1) Obtain Velocity from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad
(2) Obtain flow depth from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad

Outlet Pipe Information:

Type of Pipe:	Circular
Storm St	

Riprap Size:

Velocity =	8.63	$\mathrm{ft} / \mathrm{s}^{(1)}$
Design Depth, $\mathrm{d}=$	2.15	$\mathrm{ft}^{(2)}$
Gravity, g =	32.2	$\mathrm{ft} / \mathrm{s}^{2}$

Eqn: HS-16e

Use Figure HS-20c to find the size and type of riprap to use in the outlet protection basin.

Riprap Selection:	Type L
Riprap Diameter, D_{50}	$=9$

Riprap Minimum Thickness:

Eqn: HS-17
Thickness, $\mathrm{T}=\square \mathrm{Ft}$

Basin Dimensions:

Storm Sewer Dia, $D=\square 3 \mathrm{ft}$

Length is defined as being the greater of the following:

Width:
w = width of box culvert
 Eqn: HS-20 or HS-21

Cutoff Wall:
$B=2.81 \mathrm{ft}$

Eqn: HS-22
(1) Obtain Velocity from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad
(2) Obtain flow depth from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad

Outlet Pipe Information:

Type of Pipe:	Circular
	2

Riprap Size:

Velocity =	6.27	$\mathrm{ft} / \mathrm{s}^{(1)}$
Design Depth, $\mathrm{d}=$	1.42	$\mathrm{ft}^{(2)}$
Gravity, g =	32.2	$\mathrm{ft} / \mathrm{s}^{2}$

Eqn: HS-16e

Use Figure HS-20c to find the size and type of riprap to use in the outlet protection basin.

Riprap Minimum Thickness:

Eqn: HS-17

$$
\text { Thickness, } \mathrm{T}=1.31 \mathrm{ft}
$$

Basin Dimensions:

Storm Sewer Dia, $\mathrm{D}=\square 2 \mathrm{ft}$

Length is defined as being the greater of the following:

$$
\begin{array}{rl|l}
\mathrm{L}=4 \mathrm{D}= & 8 & \mathrm{ft} \\
\mathrm{~L}=(\mathrm{D})^{\wedge} 0.5(\mathrm{~V} / 2) & =4.433559518 & \mathrm{ft}
\end{array} \quad \begin{aligned}
& \text { Eqn: } \mathrm{HS}-18 \\
& \mathrm{~L}
\end{aligned} \mathrm{Eqn:HS-19}
$$

Width:
$\mathrm{w}=$ width of box culvert
 Eqn: HS-20 or HS-21

Cutoff Wall:

$$
\mathrm{B}=2.31 \mathrm{ft} \quad \mathrm{Eqn}: \mathrm{HS}-22
$$

(1) Obtain Velocity from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad
(2) Obtain flow depth from Section 3.4.3.1 of Vol 2 in the UD Manual or program such as FlowMaster or StormCad

[^0]: 3）Sum of Q
 （14）Additonal Street Overland Flow
 15）Additonal Street Overland Flow
 16）Design Pipe Flow
 （17）Pipe Slope

