Final Drainage Report

Tract DD, Hannah Ridge at Feathergrass Filing No. 1 El Paso County, Colorado

Prepared for: Watermark Residential 111 Monument Circle, Suite 1500 Indianapolis, IN 46204 Contact: Monica Unger

Prepared by: Kimley-Horn and Associates, Inc. 2 North Nevada Avenue, Suite 300 Colorado Springs, Colorado 80903 (719) 453-0180 Contact: Eric Gunderson, P.E.

Project #: 096302009 Prepared: January 29, 2021 Resubmitted: April 8, 2021 PCD File Number: PPR-21-017

CERTIFICATION

DESIGN ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparation of this report.

SIGNATURE (Affix Seal):

Colorado P.E. No. 49487

Date

OWNER/DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all of the requirements specified in this Drainage Report and Plan.

Name of Developer

Authorized Signature

Date

Printed Name

Title

Address:

EL PASO COUNTY

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer/ ECM Administrator Date

Conditions:

TABLE OF CONTENTS

CERTIFICATION	2
DESIGN ENGINEER'S STATEMENT OWNER/DEVELOPER'S STATEMENT EL PASO COUNTY	2 2
TABLE OF CONTENTS	3
INTRODUCTION	4
PURPOSE AND SCOPE OF STUDY LOCATION DESCRIPTION OF PROPERTY	4
DRAINAGE BASINS	4
MAJOR BASIN DESCRIPTIONS EXISTING SUB-BASIN DESCRIPTIONS Sub-Basin EX-A PROPOSED RATIONAL SUB-BASIN DESCRIPTIONS	5 5
DRAINAGE DESIGN CRITERIA	7
DEVELOPMENT CRITERIA REFERENCE HYDROLOGIC CRITERIA HYDRAULIC CRITERIA	7
THE FOUR STEP PROCESS	9
DRAINAGE FACILITY DESIGN	9
GENERAL CONCEPT SPECIFIC DETAILS	-
SUMMARY	10
REFERENCES	10
APPENDIX	12
APPENDIX A: FIGURES APPENDIX B: HYDROLOGY APPENDIX C: HYDRAULICS APPENDIX D: DRAINAGE MAPS	

INTRODUCTION

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and hydraulic calculations and to document and finalize the drainage design methodology in support of the proposed Tract DD of Hannah Ridge at Feathergrass ("the Project") Filing No. 1 ("the Site") for Watermark Residential. The Project is located within the jurisdictional limits of El Paso County ("the County"). Thus, the guidelines for the hydrologic and hydraulic design components were based on the criteria for the County and City of Colorado Springs, described below.

LOCATION

The 15.39-acre parcel (TSN: 53324-04-001) is located at the northwest corner of the Marksheffel Road and Constitution Avenue intersections. The site is also adjacent to Akers Drive at its terminus with Constitution Avenue on the westernmost site boundary. A vicinity map has been provided in the **Appendix A** of this report.

DESCRIPTION OF PROPERTY

The Project is located on approximately 15.39 acres of land consisting of vacant land with native vegetation and is classified as "Undeveloped" per Table 6-6 of the City of Colorado Springs Drainage Criteria Manual. Filing No 1 consists of 9 multi-family buildings, 12 garage buildings, a front office building, and a clubhouse amenity space with a pool deck. The Site does not currently provide water quality or detention for the Project area. The existing land use is undeveloped vacant land.

The existing topography consists of slopes ranging from 1% to 40% and generally slopes from North to South.

NRCS soil data is available for this Site and it has been noted that soils onsite are generally USCS Type A/B. The NRCS soil data can be found in **Appendix B**. There are no major drainage ways or irrigation facilities within the Site.

Improvements will consist of mowing, clearing and grubbing, weed control, paved access road construction, roadway grading, one detention ponds, culverts, drainage swales, and native seeding.

An updated Topographic field survey was completed for the Project by Barren Land, LLC. dated September 23, 2020 and is the basis for design for the drainage improvements.

DRAINAGE BASINS

MAJOR BASIN DESCRIPTIONS

The Site improvements are located in Zone X, as determined by the Flood Insurance Rate Map (FIRM) number 08041C0756G effective date, December 7, 2018 (see **Appendix A**).

The Project is located within El Paso County's Sand Creek Drainage Basin.

EXISTING SUB-BASIN DESCRIPTIONS

Site runoff flows from north to south via sheet flow over vacant land to Constitution Ave. Below is a description of the existing onsite sub-basin.

Sub-Basin EX-A

Sub-Basin EX-A consists of the entirety of the 15.39-acre multi-family development. Drainage flows overland from North to South and conveys along the southern boundary to the West at Design Point 1. Runoff during the 5-year and 100-year events are 3.92 cfs and 28.77 cfs respectively. Runoff from this basin is currently directed to design point 1 where it will drain into the crosspan along the north side of Constitution Avenue across Akers Drive, where it conveys into an existing drainage inlet and storm drain system that runs underneath Constitution Avenue to the South. This sub-basin has an area of 15.39 acres. The impervious value for this basin is 2%. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-Basin OS-1

Sub-Basin OS-1 consists of an offsite basin to the North of the Property. Drainage flows overland from North to South and conveys to the northern line of Sub-basin EX-A at Design Point 2. Runoff during the 5-year and 100-year events are 0.31 cfs and 2.30 cfs respectively. Runoff from this basin is currently directed to design point 2 where it will drain into the Sub-basin EX-A, which is on-site. This sub-basin has an area of 1.03 acres. The impervious value for this basin is 2%. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Most of the flows from that site drain into the subject site don't they?

PROPOSED RATIONAL SUB-BASIN DESCRIPTIONS

Sub-Basin B1 consists of a portion of the multi-family development in a portion of the west half of the site. Runoff from this basin will be directed to design point B1 where it will drain into the full spectrum detention South Pond, which will outfall through the proposed outlet structure to the west into an existing 24-inch storm drain pipe. This sub-basin has an area of 2.98 acres. The impervious value for this basin is 100%. The basin will generate runoff of 13.83 cfs and 24.74 cfs in the minor and major storm event.

Sub-Basin B2 consists of a portion of landscaping, club house, and building unit in the west side of the site. Runoff from this basin will be directed to Swale B2 which will outfall to Culvert 1 at design point B2 and ultimate outfall into the South Pond. This sub-basin has an area of 1.01 acres. The impervious value for Sub-Basin DA2 is 16%. The basin will generate runoff of 0.80 cfs and 3.10 cfs in the minor and major storm event.

Sub-Basin B3 consists of a portion of a roof of a proposed building unit. Runoff from this basin will be directed into the proposed storm drain system where it will be directed to the South Pond. This sub-basin has an area of 0.16 acres. The impervious value for Sub-Basin DA3 is 90%. The basin will generate runoff of 0.61 cfs and 1.13 cfs in the minor and major storm event.

Sub-Basin B4 consists of landscaping, sidewalk and a parking lot. Runoff from this basin will be directed into design point B4 and where it will be directed to the west through a curb cut and outfall to a Swale B5. This sub-basin has an area of 0.23 acres. The impervious value for Sub-Basin DA4 is 100%. The basin will generate runoff of 1.08 cfs and 1.93 cfs in the minor and

major storm event.

Sub-Basin B5 consists of landscaping at the west side of the site. Runoff from this basin will be directed into design point B5 and where it will be directed the South Pond. This sub-basin has an area of 0.17 acres. The impervious value is 2%. The basin will generate runoff of 0.05 cfs and 0.39 cfs in the minor and major storm event.

Sub-Basin B6 consists of a portion of a roof of a proposed building unit. Runoff from this basin will be directed into the proposed storm drain system where it will be directed to the South Pond. This sub-basin has an area of 0.13 acres. The impervious value for Sub-Basin DA6 is 90%. The basin will generate runoff of 0.49 cfs and 0.91 cfs in the minor and major storm event.

Sub-Basin B7 consists of the South Pond and portions of the roofs of the proposed building units. This sub-basin has an area of 1.66 acres. The impervious value for this basin is 17%. The basin will generate runoff of 1.58 cfs and 5.91 cfs in the minor and major storm event.

Sub-Basin B8 consists of a portion of a roof of a proposed building unit. Runoff from this basin will be directed into the proposed storm drain system where it will be directed to the South Pond. This sub-basin has an area of 0.16 acres. The impervious value for this basin is 90%. The basin will generate runoff of 0.62 cfs and 1.15 cfs in the minor and major storm event.

Sub-Basin B9 consists of a portion of the multi-family development in a portion of the east half of the site. Runoff from this basin will be directed into design point B9 where it will be directed to the South Pond. This sub-basin has an area of 4.10 acres. The impervious value for this basin is 100%. The basin will generate runoff of 16.87 cfs and 30.19 cfs in the minor and major storm event.

Sub-Basin B10 consists of landscaping and roofs of the multiple building units. Runoff from this basin will be directed into design point B10 where it will be capture by an inlet and directed to the South Pond via storm drain system. This sub-basin has an area of 0.94 acres. The impervious value for this basin is 41%. The basin will generate runoff of 1.59 cfs and 4.01 cfs in the minor and major storm event.

Sub-Basin B11 consists of a portion of a roof of a proposed building unit. Runoff from this basin will be directed into the proposed storm drain system where it will be directed to the South Pond. This sub-basin has an area of 0.16 acres. The impervious value for this basin is 90%. The basin will generate runoff of 0.61 cfs and 1.14 cfs in the minor and major storm event.

Sub-Basin B12 consists of a portion of a roof of a proposed building unit. Runoff from this basin will be directed into the proposed storm drain system where it will be directed to the South Pond. This sub-basin has an area of 0.15 acres. The impervious value for this basin is 90%. The basin will generate runoff of 0.56 cfs and 1.05 cfs in the minor and major storm event.

Sub-Basin B13 consists of a portion of a roof of a proposed building unit. Runoff from this basin will be directed into the proposed storm drain system where it will be directed to the South Pond. This sub-basin has an area of 0.11 acres. The impervious value for this basin is 90%. The basin will generate runoff of 0.41 cfs and 0.76 cfs in the minor and major storm event.

Sub-Basin B14 consists of a portion of a roof of a proposed building unit. Runoff from this basin will be directed into the proposed storm drain system where it will be directed to the South Pond. This sub-basin has an area of 0.11 acres. The impervious value for this basin is 90%. The basin will generate runoff of 0.43 cfs and 0.80 cfs in the minor and major storm event.

Sub-Basin B15 consists of landscaping and roofs of the multiple building units. Runoff from this basin will be directed into design point B15 where it will be capture by an inlet and directed to the South Pond via storm drain system. This sub-basin has an area of 0.86 acres. The impervious value for this basin is 42%. The basin will generate runoff of 1.57 cfs and 3.93 cfs in the minor and major storm event.

Sub-Basin B16 consists of a portion of a roof of a proposed building unit. Runoff from this basin will be directed into the proposed storm drain system where it will be directed to the South Pond. This sub-basin has an area of 0.14 acres. The impervious value for this basin is 90%. The basin will generate runoff of 0.52 cfs and 0.97 cfs in the minor and major storm event.

Sub-Basin B17 consists of a portion of a roof of a proposed building unit. Runoff from this basin will be directed into the proposed storm drain system where it will be directed to the South Pond. This sub-basin has an area of 0.14 acres. The impervious value for this basin is 90%. The basin will generate runoff of 0.51 cfs and 0.95 cfs in the minor and major storm event.

Sub-Basin B18 consists of landscaping. Runoff from this basin will be directed into design point B18 and where it outfalls into the full spectrum detention South Pond. This sub-basin has an area of 1.09 acres. The impervious value for this basin is 2%. The basin will generate runoff of 0.27 cfs and 1.96 cfs in the minor and major storm event.

Sub-Basin OS-1 consists of landscaping offsite to the North of the Property. Runoff from this basin will be directed into design point OS-1 and enters the swale in Basin B18 where it outfalls into the full spectrum detention South Pond. This sub-basin has an area of 1.10 acres. The impervious value for this basin is 2%. The basin will generate runoff of 0.33 cfs and 2.45 cfs in the minor and major storm event.

Sub-Basin OS-2 consists of landscaping offsite to the North of the Property. Runoff from this basin will be directed into design point OS-2 and travels through Basin B1 where it outfalls into the full spectrum detention South Pond. This sub-basin has an area of 0.18 acres. The impervious value for this basin is 2%. The basin will generate runoff of 0.08 cfs and 0.55 cfs in the minor and major storm event.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)" dated October 2018 ("the MANUAL"), El Paso County "Engineering Criteria Manual" ("the Engineering Manual"), Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014 ("the Colorado Springs MANUAL").

There are no known master plans or studies for the site.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the existing and proposed drainage analysis per the MANUAL. The rainfall depths for site were determined from equation 6-1, equation 6-2 utilizing Figures 6-6, 6-11, 6-12, and 6 -17 from the

DCM. Refer to **Table 1** below for the rainfall depths utilized for the site and **Appendix B** for the hydrologic calculations for the site.

	Duration (HRS)
Storm Event	1 HR
5 Year	1.52
100 Year	2.55

Table	1:	Rainfall	Depths

Calculations for the runoff coefficients and percent impervious are included in the **Appendix B**. Rational method was used to determine the peak flows for the project. These flows were used to determine the size of the proposed curb cuts, inlets, culvert, storm drain system and on-site swales.

The proposed impervious values in Table 6-6 of the DCM were utilized in this report for the final design. Refer to **Appendix B** of this report for Table 6-6.

The Site is providing one full spectrum detention pond. The Site is maintaining the historic drainage patterns as much as possible.

There are no additional provisions selected or deviations from the criteria in both the MANUAL and Colorado Springs MANUAL.

HYDRAULIC CRITERIA

Applicable design methods were utilized to size the proposed pond, culvert and drainage swales, which includes the use of the UD-Detention spreadsheet, UD-Inlet spreadsheet, rational calculations spreadsheet, StormCAD, HY-8 and FlowMaster, V8i software.

Proposed drainage features on-site have been analyzed and sized for the following design storm events:

• Major Storm: 100-year Storm Event

One full spectrum detention pond is proposed in order to maintain historic flows and water quality. The detention pond known as the South Pond. The South Pond is in the southwest corner of the Site with a proposed volume of 1.5 ac-ft and designed for the 100-year storm event. With a discharge rate of 21.9 cfs, water from the South Pond is discharged into an existing 24-inch storm drain located at the southwest corner of the site and ultimately out falling to Sand Creek (Sand Creek's East Fork). Pond calculations are provided in the **Appendix C**.

Curb cuts, inlets, grass lined swales, and storm drain pipes are designed to carry flows from to the South Pond. The curb cuts, inlets, swales, and storm drain pipes calculations are provided in the **Appendix C** and the design points are provided in the Proposed Drainage Map located in **Appendix D**. The pond is designed to release the 100-year flow rates below the predevelopment flow rate.

Emergency overflows will be routed over the southwest corner of the pond. It will follow existing drainage conditions and enter the existing crosspan that conveys across Akers Drive on the

North side of Constitution Avenue. This flow enters an existing 5' Type-R Inlet that flows into an existing box culvert that crosses underneath Constitution Avenue to the South.

THE FOUR STEP PROCESS

The Project was designed in accordance with the four-step process to minimize adverse impacts of urbanization, as outlined in the County's "Four-Step Process" for selecting structural BMPs (ECM Section I.7.2 BMP Selection).

Step 1. Employ Runoff Reduction Practices- The project is proposing a residential development that will be designed to minimize the impact to the current existing terrain. The Site's proposed paved roadways will increase the Site's impervious area; however, drainage swales will be constructed to slow down the runoff velocity and reduce runoff peaks. A full spectrum detention pond will be used to capture stormwater and maintain flows discharging off site at or below historic levels.

Step 2. Stabilize Drainageways– Stabilizing proposed drainage swales by designing them with slopes that control the flow rates. Placement of riprap upstream and downstream of culverts to help reduce erosion of the drainage swales. Rock chutes will be constructed to reduce the velocities of runoff entering the ponds at the channel locations. We anticipate this will minimize erosion.

Step 3. Provide Water Quality Capture Volume (WQCV) –Permanent water quality measures and detention facilities will be provided with the Project. More specifically, this project proposes the construction of an Extended Detention Basin to provide for the required water quality capture volume.

Step 4. Consider Need for Industrial and Commercial BMPs – The proposed project is proposing a residential development; therefore, covering of storage/handling areas and spill containment and control will not need to be provided.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed drainage patterns will match the historic patterns. To maintain historic flows, a full spectrum detention pond is being proposed and will capture and control the flows from the proposed development to convey flows with a series of swales, parking lot sheet flow, and a storm drain system.

Provided in the **Appendix B** are hydrologic calculations utilizing the Rational method for the existing and proposed conditions. Provided in **Appendix C** are the hydraulic calculations for the proposed conditions HY-8 culvert calculations, Flowmaster details and cross sections for proposed drainage features. As previously mentioned, the and existing drainage map and proposed drainage map can be found in **Appendix D**.

SPECIFIC DETAILS

The existing conditions of the Site have flows conveying from the north to the south corner and spill into Constitution Ave. Runoff conditions for the Site were developed utilizing the Rational Method described in the Hydrologic Criteria section of this report.

Sub-basins B1 through B18 consist of a future multi-family buildings and detention pond. All basins have flows being captured and conveyed onsite. Flows are conveyed from the north side of the Site to the southwest corner of the Site. On site flows enter South Pond which then discharges into an existing 24-inch storm drain pipe at the northeast corner of Constitution Ave and Akers Drive.

The hydrologic calculations, hydraulic calculations, and Drainage Maps are included in the **Appendix B**, **Appendix C**, and **Appendix D** of this report for reference.

The Site will disturb more than 1 acre and will require a Colorado Discharge Permit System (CDPS) General Permit for Stormwater Discharge Associated with Construction Activities from the Colorado Department of Public Health and Environment (CDPHE).

The required fees for the Sand Creek Drainage Basin based upon the 2021 fee schedule, are listed below. Fees will be paid prior to plat recordation.

-	Drainage Fee/Impervious Acre =	\$20,387	х	9.83 acres =	\$200,404.21
-	Bridge Fee/Impervious Acre =	\$8,339	х	9.83 acres =	\$81,972.37
				Total =	\$282,376.58

SUMMARY

The proposed drainage design is to maintain the historic drainage patterns, the overall imperviousness and release rates for the Site. Runoff from the Site will flow through an existing storm drain system to an existing El Paso County drainage basin: The Sand Creek Basin. The basin ultimately discharges to Sand Creek. The drainage design presented within this report conforms to the criteria presented in both the MANUAL and the Colorado Springs MANUAL. Additionally, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments, including Sand Creek.

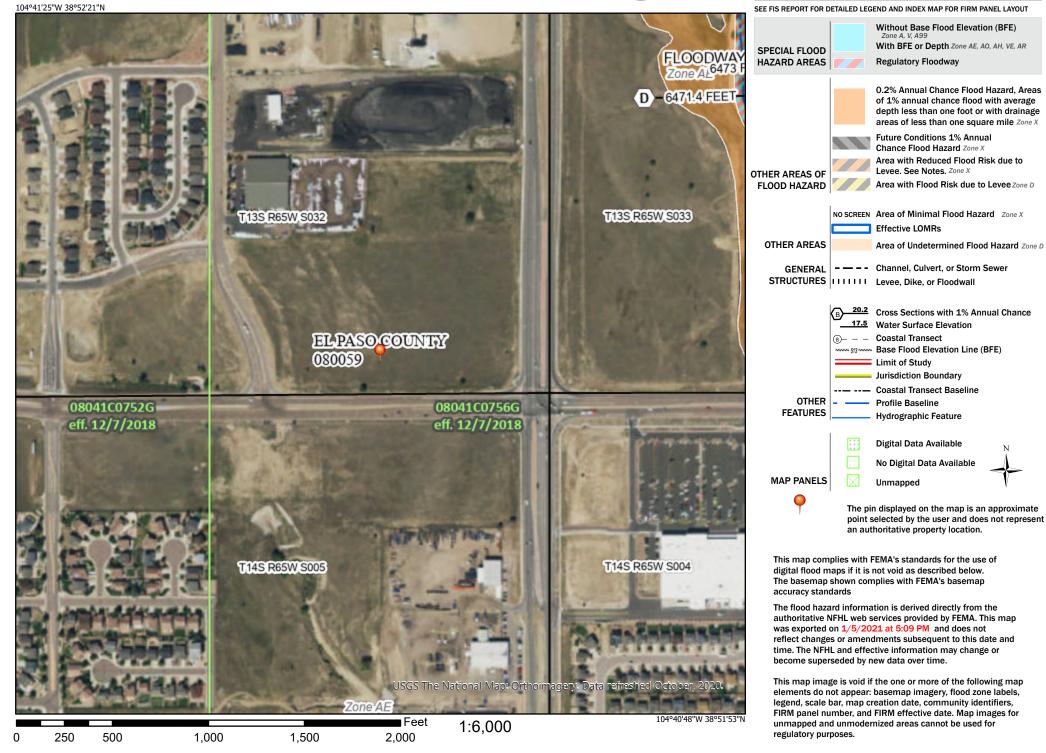
REFERENCES

- 1. City of Colorado Springs "Drainage Criteria Manual (DCM) Volume 1", dated May, 2014
- 2. El Paso County "Drainage Criteria Manual", dated October 31, 2018
- 3. El Paso County "Engineering Criteria Manual" Revision 6, dated December 13, 2016
- 4. Chapter 6 and Section 3.2.1. of Chapter 13-City of Colorado Springs Drainage Criteria Manual, May 2014.
- 5. Urban Drainage and Flood Control District Drainage Criteria Manual (UDFCDCM), Vol. 1, prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.

6. Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 08041C0756G, Effective Date December 7, 2018, prepared by the Federal Emergency Management Agency (FEMA).

APPENDIX

APPENDIX A: FIGURES


Vicinity Map

National Flood Hazard Layer FIRMette

Legend

APPENDIX B: HYDROLOGY

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	8
Soil Map	
Legend	
Map Unit Legend	11
Map Unit Descriptions	11
El Paso County Area, Colorado	13
8—Blakeland loamy sand, 1 to 9 percent slopes	13
10—Blendon sandy loam, 0 to 3 percent slopes	14
References	16

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

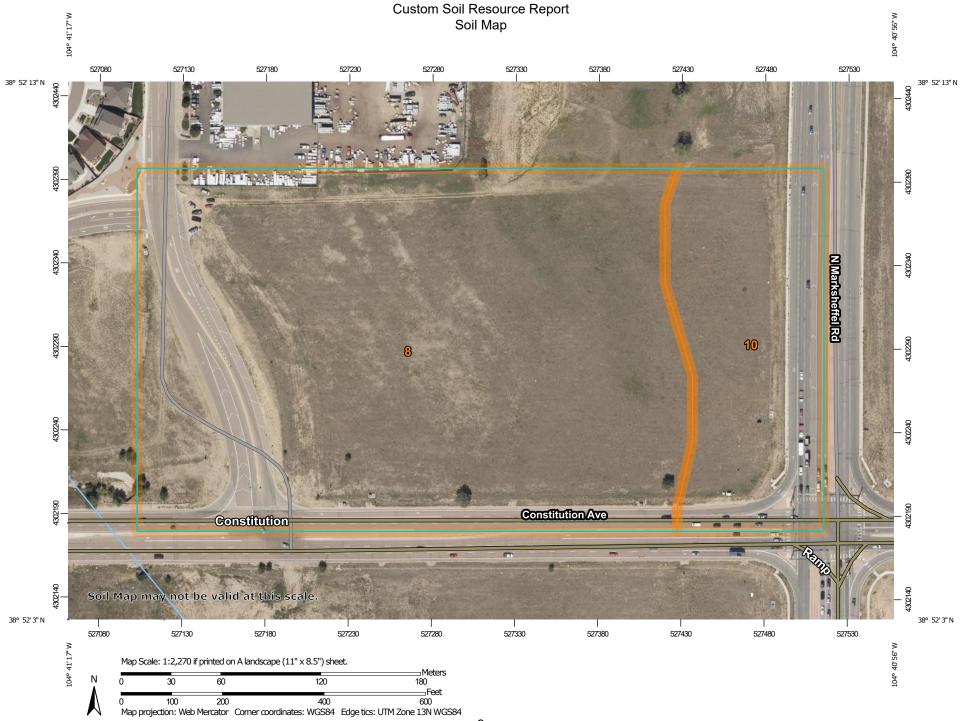
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND		MAP INFORMATION
Area of Int	erest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	Soil Map Unit Polygons	00 V	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.
\sim	Soil Map Unit Lines Soil Map Unit Points	۵ •	Other Special Line Features	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
ల	Point Features Blowout	Water Features Streams and Canals		contrasting soils that could have been shown at a more detailed scale.
X X	Borrow Pit Clay Spot	Transporta	ation Rails	Please rely on the bar scale on each map sheet for map measurements.
× \$	Closed Depression Gravel Pit	~	Interstate Highways US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
ů.	Gravelly Spot Landfill Lava Flow	%	Major Roads Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts
۸ ب	Lava Flow Marsh or swamp Mine or Quarry	Backgroui	nd Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
* 0	Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
0 ~	Rock Outcrop Saline Spot			Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020
+	Sandy Spot Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
\$	Sinkhole Slide or Slip			Date(s) aerial images were photographed: Aug 19, 2018—Sep 23, 2018
\$ Ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI	
8	Blakeland loamy sand, 1 to 9 percent slopes	17.5	78.8%	
10	Blendon sandy loam, 0 to 3 percent slopes	4.7	21.2%	
Totals for Area of Interest		22.3	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

8-Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water capacity: Low (about 4.5 inches)

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: 1 percent

Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent Hydric soil rating: No

10—Blendon sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 3671 Elevation: 6,000 to 6,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Blendon and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blendon

Setting

Landform: Terraces, alluvial fans Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose

Typical profile

A - 0 to 10 inches: sandy loam Bw - 10 to 36 inches: sandy loam C - 36 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 2 percent
Available water capacity: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B *Ecological site:* R049XB210CO - Sandy Foothill *Hydric soil rating:* No

Minor Components

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent *Hydric soil rating:* No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

(Eq. 6-1)

The methods described in this Manual require only that the 1-hour, 6-hour and 24-hours depths be used as input. The storm return periods required for the application of methods in this Manual are the 2-, 5-, 10-, 25-, 50- and 100-year events. The 6-hour and 24-hour depths for these return periods can be read directly from Figures 6-6 through 6-17 at the end of this chapter. The1-hour depth for return periods can be calculated for all design return periods following this procedure:

Step 1: Calculate 2-year, 1-hour rainfall based on 2-year, 6-hour and 24-hour values.

 $Y_2 = 0.218 + 0.709 \cdot (X_1 \cdot X_1 / X_2)$

Where:

 $Y_2 = 2$ -year, 1-hour rainfall (in)

 $X_1 = 2$ -year, 6-hour rainfall (in) from Figure 6-6

 $X_2 = 2$ -year, 24-hour rainfall (in) from Figure 6-12

Step 2: Calculate 100-year, 1-hour rainfall based on 2-year 6-hour and 24-hour values

$$Y_{100} = 1.897 + 0.439 \cdot (X_3 \cdot X_3 / X_4) - 0.008 Z$$
 (Eq. 6-2)

Where

 $Y_{100} = 100$ -year, 1-hour rainfall (in)

 $X_3 = 100$ -year, 6-hour rainfall (in) from Figure 6-11

 $X_4 = 100$ -year, 24-hour rainfall (in) from Figure 6-17

Z = Elevation in hundreds of feet above sea level

Step 3: Plot the 2-year and 100-year, 1-hour values on the diagram provided in Figure 6-18 and connect the points with a straight line. The 1-hour point rainfall values for other recurrence intervals can be read directly from the straight line drawn on Figure 6-18.

Example: Determine the 10-year, 1-hour rainfall depth for downtown Colorado Springs.

Step 1: Calculate 2-year, 1-hour rainfall (Y_2) based on 2-year, 6-hour and 24-hour values. From Figure 6-6, the 2-year, 6-hour rainfall depth for downtown Colorado Springs is approximately 1.7 inches (X_1) , and from Figure 6-12, the 2-year 24-hour depth is approximately 2.1 inches (X_2) . The 2-year, 1-hour rainfall is calculated as follows:

$$Y_2 = 0.218 + 0.709 \cdot (1.7 \cdot 1.7/2.1) = 1.19$$
 in (Eq. 6-3)

Step 2: Calculate 100-year, 1-hour rainfall (Y_{100}) based on 100-year, 6-hour and 24-hour values. From Figure 6-11, the 100-year, 6-hour rainfall depth for downtown Colorado Springs is approximately 3.5 inches (X₃), and from Figure 6-17, the 100-year 24-hour depth is approximately 4.5 inches (X₄). Assume an elevation of 6,840 feet for Colorado Springs. The 100-year, 1-hour rainfall is calculated as follows:

$$Y_{100} = 1.897 + 0.439 \cdot (3.5 \cdot 3.5 / 4.6) - 0.008 \cdot (6,840 / 100) = 2.52 \text{ in}$$
 (Eq. 6-4)

Step 3: Plot 2-year and 100-year, 1-hour rainfall depths on Figure 6-18 and read 10-year value from straight line. This example is illustrated on Figure 6-18, with a 1-hour, 10-year rainfall depth of approximately 1.75 inches. Figure 6-18a provides the example, and Figure 6-18b provides a blank chart.

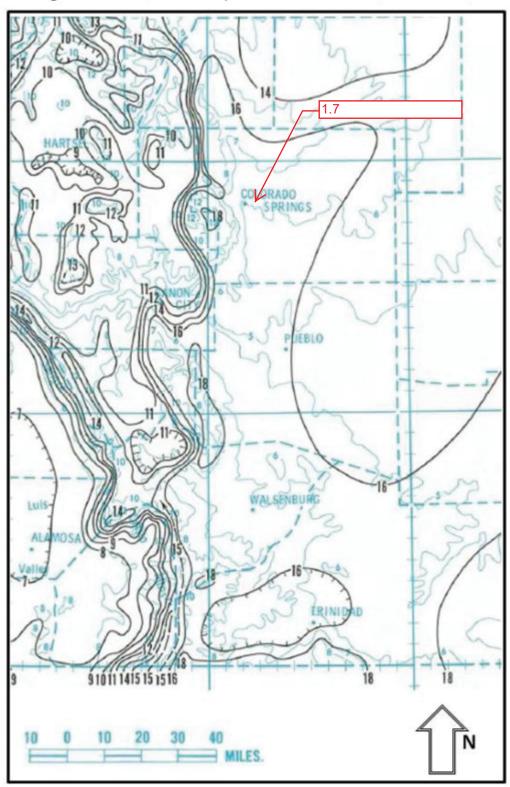


Figure 6-6. 2-Year, 6-Hour Precipitation Tenths of an Inch (NOAA Atlas 2)

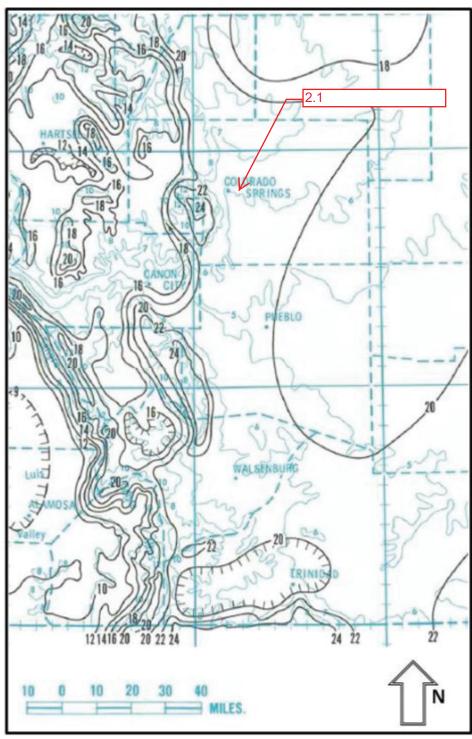


Figure 6-12. 2-Year, 24-Hour Precipitation Tenths of an Inch (NOAA Atlas 2)

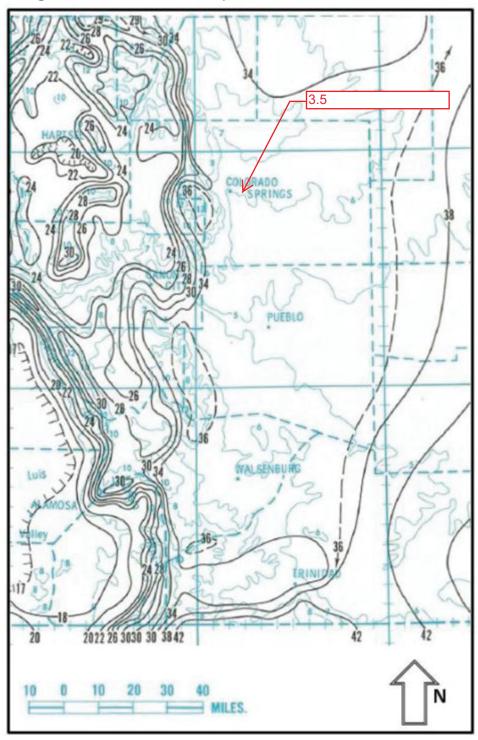


Figure 6-11. 100-Year, 6-Hour Precipitation Tenths of an Inch (NOAA Atlas 2)

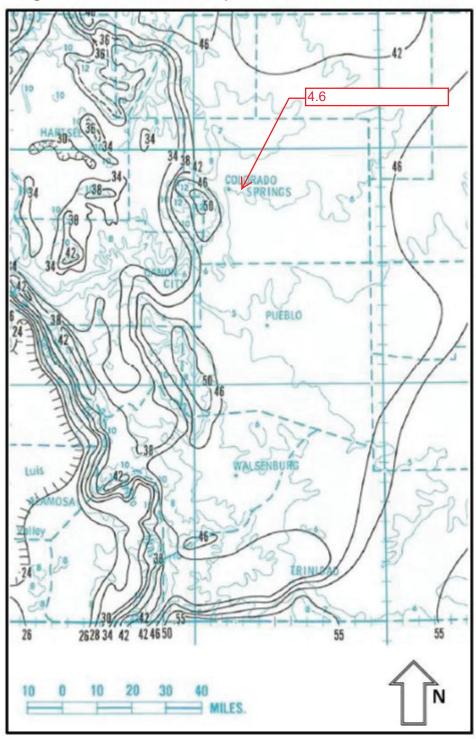
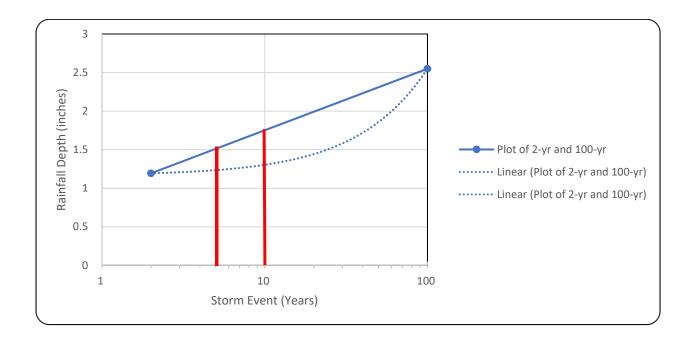



Figure 6-17. 100-Year, 24-Hour Precipitation Tenths of an Inch (NOAA Atlas 2)

	Rair	nfall Depths	
			Notes
2 yr, 6 hr rainfall (in)	X1 =	1.7	From Figure 6-6
2 yr, 24 hr rainfall (in)	X ₂ =	2.1	From Figure 6-12
100 yr, 6 hr rainfall (in)	X3 =	3.5	From Figure 6-11
100 yr, 24 hr rainfall (in)	X4 =	4.6	From Figure 6-17
Elevation (hundreds of feet)]	Z =	64.5	
2 yr, 1 hr rainfall (in)	Y ₂ =	1.193719	Equation 6-1
100 yr, 1 hr rainfall (in)	Y ₁₀₀	2.550076	Equation 6-2
		Graph	
X-axis		Y-axis	
2	Y2	1.193719	Calculated from Eq 6-1
100	Y100	2.550076	Calculated from Eq 6-2
	Y5	1.52	Determined From Graph below
	Y10	2.75	Determined From Graph below

$$I = \frac{28.5 P_1}{(10+T_p)^{0.786}}$$

Where:

I = rainfall intensity (inches per hour)

one-hour rainfall depth (inches) from Table 6-2 One- P_1 = hour Point Rainfall Depth

City of Colorado Springs Drainage Design

T_c = storm duration (minutes)

	<u>2-yr</u>	<u>5-yr</u>	<u>10-yr</u>	<u>100-yr</u>
P ₁ =	1.19	1.52	1.75	2.55

1	ie menony	ricquene	y rubuluti	
TIME	2 YR	5 YR	10 YR	100 YR
5	4.05	5.16	5.94	8.65
10	3.23	4.11	4.73	6.90
15	2.71	3.45	3.97	5.79
30	1.87	2.38	2.75	4.00
60	1.21	1.54	1.77	2.58
120	0.74	0.94	1.09	1.58

Time Intensity Frequency Tabulation

Land Use or Surface	Percent						Runoff Co	efficients					
Characteristics	Impervious	2-у	ear	5-y	rear	10-1	/ear	ץ-25	/ear	ן-50	/ear	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
<u>.</u>													
Streets	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Paved	100 80			0.90	0.90	0.92	0.92		0.0.	0.95	0.95		
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6.	Runoff Coefficients for Rational Method
	(Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Tract DD, Hannah Ridge at Feathergrass Filing No. 1 Drainage Report El Paso County, CO

Weighted Imperviousness Calculations

SUB-	AREA	AREA	ROOF	ROOF		RO	OF		LANDSCAPE	LANDSCAPE		LAND	SCAPE		PAVEMENT	PAVEMENT		PAVE	MENT		WEIGHTED		WEIGHTED	COEFFICIEN	TS
BASIN	(SF)	(Acres)	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	IMPERVIOUSNESS	C2	C5	C10	C100
EX-A	670487	15.39	0	90%	0.71	0.73	0.75	0.81	15.39226	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	2%	0.02	0.08	0.15	0.35
OS-1	44655	1.03	0	90%	0.71	0.73	0.75	0.81	1.025138	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	2%	0.02	0.08	0.15	0.35
TOTAL	715,142	16.42	0.00	90%	0.71	0.73	0.75	0.81	16.42	2%	0.02	0.08	0.15	0.35	0.00	100%	0.89	0.90	0.92	0.96	2%	0.02	0.08	0.15	0.35

		SUMMA	ARY - PROPOS	SED RUNOFF T	ABLE	
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATIVE 5-YR RUNOFF (CFS)	CUMULATIVE 100- YR RUNOFF (CFS)
EX-A	EX-A	15.39	3.92	28.77	3.92	28.77
OS-1	OS-1	1.03	0.31	2.30	0.31	2.30

Akers Ro	ad - Draina	ge Report								Watercou	irse Coeffic	ient				
Proposed	d Runoff Cal	culations			Forest	& Meadow	2.50	Short G	rass Pastur	e & Lawns	7.00			Grasse	d Waterway	15.00
Time of C	Concentratio	on			Fallow or	Cultivation	5.00		Nearly Ba	re Ground	10.00		Paved	l Area & Sha	allow Gutter	20.00
		SUB-BASIN			INIT	IAL / OVERL	AND	T	RAVEL TIM	IE				T(c) CHECK		FINAL
		DATA				TIME			T(t)				(URE	BANIZED BA	SINS)	T(c)
DESIGN	DRAIN	AREA	AREA	C(5)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(t)	COMP.	TOTAL	L/180+10	
POINT	BASIN	sq. ft.	ac.		ft.	%	min	ft.	%		fps	min.	T(c)	LENGTH		min.
EX-A	EX-A	670,487	15.39	0.08	100	2.0%	14.8	1287	1.0%	10.00	1.0	21.5	36.3	1387	17.7	17.7
OS-1	OS-1	44,655	1.03	0.08	100	5.5%	10.6	250	5.5%	10.00	2.3	1.8	12.4	350	11.9	11.9

	l - Drainage R Runoff Calculat	-			Desi	gn Storm	5 Year					
(Rational Me	thod Procedure)											
В	ASIN INFORMATI	ON			DIREC	Γ RUNOFF		CU	IMMULAT	IVE RUNC	DFF	
DESIGN	DRAIN	AREA	RUNOFF	T(c)	СхА	1	Q	T(c)	СхА	1	Q	NOTES
DESIGN POINT	DRAIN BASIN	AREA ac.	RUNOFF COEFF	T(c) min	C x A	ا in/hr	Q cfs	T(c) min	СхА	ا in/hr	Q cfs	NOTES
					C x A 1.23	l in/hr 3.18	-		СхА	l in/hr	- •	NOTES

Proposed	oad - Drainage R d Runoff Calculat Method Procedure)	-			Des	ign Storm	100 Year					
B DESIGN	BASIN INFORMATION	N AREA	RUNOFF	DIF T(c)	RECT RUNG	DFF	Q	C T(c)	UMMULAT C x A	IVE RUNOI	F	NOTES
POINT	BASIN	ac.	COEFF	min	CXA	in/hr	cfs	min	CXA	ı in/hr	cfs	NOTES
EX-A	EX-A	15.39	0.35	17.7	5.39	5.34	28.77					
OS-1	OS-1	1.03	0.35	11.9	0.36	6.42	2.30					

Weighted Imperviousness Calculations

weighte	<u>eu impervi</u>	00311033																							
SUB-	AREA	AREA	ROOF	ROOF		RO	OF		LANDSCAPE	LANDSCAPE		LAND	SCAPE		PAVEMENT	PAVEMENT		PAVE	MENT		WEIGHTED		WEIGHTED	COEFFICIEN	TS
BASIN	(SF)	(Acres)	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	IMPERVIOUSNESS	C2	C5	C10	C100
B1	129791	2.98	0	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	2.979591	100%	0.89	0.90	0.92	0.96	100%	0.89	0.90	0.92	0.96
B2	44027	1.01	0.16	90%	0.71	0.73	0.75	0.81	0.850721	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	16%	0.13	0.18	0.24	0.42
B3	7044.7314	0.16	0.161725	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	90%	0.71	0.73	0.75	0.81
B4	10113.61	0.23	0	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	0.232177	100%	0.89	0.90	0.92	0.96	100%	0.89	0.90	0.92	0.96
B5	7234	0.17	0	90%	0.71	0.73	0.75	0.81	0.16607	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	2%	0.02	0.08	0.15	0.35
B6	5654.3088	0.13	0.129805	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	90%	0.71	0.73	0.75	0.81
B7	72490.486	1.66	0.29	90%	0.71	0.73	0.75	0.81	1.374153	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	17%	0.14	0.19	0.25	0.43
B8	7168.5788	0.16	0.164568	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	90%	0.71	0.73	0.75	0.81
B9	178639.71	4.10	0	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	4.101004	100%	0.89	0.90	0.92	0.96	100%	0.89	0.90	0.92	0.96
B10	41057.563	0.94	0.42	90%	0.71	0.73	0.75	0.81	0.522552	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	41%	0.33	0.37	0.42	0.55
B11	7068.5201	0.16	0.162271	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	90%	0.71	0.73	0.75	0.81
B12	6531.5353	0.15	0.149943	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	90%	0.71	0.73	0.75	0.81
B13	4736.8861	0.11	0.108744	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	90%	0.71	0.73	0.75	0.81
B14	4984.6058	0.11	0.114431	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	90%	0.71	0.73	0.75	0.81
B15	37253.102	0.86	0.39	90%	0.71	0.73	0.75	0.81	0.465214	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	42%	0.33	0.38	0.42	0.56
B16	6028.3106	0.14	0.138391	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	90%	0.71	0.73	0.75	0.81
B17	5882.7155	0.14	0.135049	90%	0.71	0.73	0.75	0.81	0	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	90%	0.71	0.73	0.75	0.81
B18	47410.979	1.09	0	90%	0.71	0.73	0.75	0.81	1.088406	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	2%	0.02	0.08	0.15	0.35
OS-1	47943	1.10	0	90%	0.71	0.73	0.75	0.81	1.10062	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	2%	0.02	0.08	0.15	0.35
OS-2	7927	0.18	0	90%	0.71	0.73	0.75	0.81	0.181979	2%	0.02	0.08	0.15	0.35	0	100%	0.89	0.90	0.92	0.96	2%	0.02	0.08	0.15	0.35
TOTAL		15.59	2.52	90%	0.71	0.73	0.75	0.81	4.47	2%	0.02	0.08	0.15	0.35	7.31	100%	0.89	0.90	0.92	0.96	62%	0.54	0.56	0.60	0.68

see previous comments

		SUMMA	ARY - PROPOS	SED RUNOFF T	ABLE	
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATIVE 5-YR RUNOFF (CFS)	CUMULATIVE 100- YR RUNOFF (CFS)
B1	B1	2.98	13.83	24.74	13.83	24.74
B2	B2	1.01	0.80	3.10	0.80	3.10
В3	B3	0.16	0.61	1.13	0.61	1.13
B4	B4	0.23	1.08	1.93	1.08	1.93
B5	B5	0.17	0.05	0.39	0.05	0.39
B6	B6	0.13	0.49	0.91	0.49	0.91
B7	B7	1.66	1.58	5.91	1.58	5.91
B8	B8	0.16	0.62	1.15	0.62	1.15
В9	В9	4.10	16.87	30.19	16.87	30.19
B10	B10	0.94	1.59	4.01	1.59	4.01
B11	B11	0.16	0.61	1.14	0.61	1.14
B12	B12	0.15	0.56	1.05	0.56	1.05
B13	B13	0.11	0.41	0.76	0.41	0.76
B14	B14	0.11	0.43	0.80	0.43	0.80
B15	B15	0.86	1.57	3.93	1.57	3.93
B16	B16	0.14	0.52	0.97	0.52	0.97
B17	B17	0.14	0.51	0.95	0.51	0.95
B18	B18	1.09	0.27	1.96	0.27	1.96
OS-1	OS-1	1.10	0.33	2.45	0.33	2.45
OS-2	OS-2	0.18	0.08	0.55	0.08	0.55

Tract DD,	Hannah Ri	dge at Fea	thergrass	Filing N	o. 1 - Dr	ainage Re	port			Watercou	irse Coeffic	ient				
Proposed	Runoff Cal	culations			Forest	& Meadow	2.50	Short G	rass Pastur	e & Lawns	7.00			Grasse	d Waterway	15.00
Time of C	oncentratio	n			Fallow or	Cultivation	5.00		Nearly Ba	re Ground	10.00		Paveo	d Area & Sha	allow Gutter	20.00
		SUB-BASIN			INIT	IAL / OVERL	AND	Т	RAVEL TIM	IE				T(c) CHECK		FINAL
		DATA				TIME			T(t)				(URE	BANIZED BA	SINS)	T(c)
DESIGN	DRAIN	AREA	AREA	C(5)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(t)	COMP.	TOTAL	L/180+10	
POINT	BASIN	sq. ft.	ac.		ft.	%	min	ft.	%		fps	min.	T(c)	LENGTH		min.
B1	B1	129,791	2.98	0.90	49	6.5%	1.4	772	3.5%	20.00	3.7	3.4	5.0	821	14.6	5.0
B2	B2	44,027	1.01	0.18	68	8.5%	6.8	218	7.0%	7.00	1.9	2.0	8.8	286	11.6	8.8
B3	B3	7,045	0.16	0.73	32	0.5%	4.8	0		20.00	0.0	0.0	5.0	32	10.2	5.0
B4	B4	10,114	0.23	0.90	15	4.5%	0.9	229	1.5%	20.00	2.4	1.6	5.0	244	11.4	5.0
B5	B5	7,234	0.17	0.08	36	3.0%	7.8	152	1.0%	7.00	0.7	3.6	11.4	188	11.0	11.0
B6	B6	5,654	0.13	0.73	29	0.5%	4.6	0		20.00	0.0	0.0	5.0	29	10.2	5.0
B7	B7	72,490	1.66	0.19	85	17.5%	5.9	0		20.00	0.0	0.0	5.9	85	10.5	5.9
B8	B8	7,169	0.16	0.73	33	0.5%	4.9	0		20.00	0.0	0.0	5.0	33	10.2	5.0
B9	В9	178,640	4.10	0.90	97	1.5%	3.2	813	2.5%	20.00	3.2	4.3	7.5	910	15.1	7.5
B10	B10	41,058	0.94	0.37	34	2.0%	6.2	240	2.5%	20.00	3.2	1.3	7.5	274	11.5	7.5
B11	B11	7,069	0.16	0.73	31	0.5%	4.8	0		20.00	0.0	0.0	5.0	31	10.2	5.0
B12	B12	6,532	0.15	0.73	30	0.5%	4.7	0		20.00	0.0	0.0	5.0	30	10.2	5.0
B13	B13	4,737	0.11	0.73	32	0.5%	4.8	0		20.00	0.0	0.0	5.0	32	10.2	5.0
B14	B14	4,985	0.11	0.73	33	0.5%	4.9	0		20.00	0.0	0.0	5.0	33	10.2	5.0
B15	B15	37,253	0.86	0.38	64	9.0%	5.1	190	2.8%	20.00	3.3	0.9	6.0	254	11.4	6.0
B16	B16	6,028	0.14	0.73	32	0.5%	4.8	0		20.00	0.0	0.0	5.0	32	10.2	5.0
B17	B17	5,883	0.14	0.73	32	0.5%	4.8	0		20.00	0.0	0.0	5.0	32	10.2	5.0
B18	B18	47,411	1.09	0.08	112	8.5%	9.7	1530	1.0%	7.00	0.7	36.4	46.1	1642	19.1	19.1
OS-1	OS-1	47,943	1.10	0.08	100	13.0%	7.9	290	1.8%	7.00	0.9	5.1	13.0	390	12.2	12.2
OS-2	OS-2	7,927	0.18	0.08	25	41.0%	2.7	0	1.0%	7.00	0.7	0.0	5.0	25	10.1	5.0

ract DD, H	annah Ridge (at Featl	hergrass F	iling N	lo. 1 - D	rainage	Report					
Proposed Ri	unoff Calculat	tions			Desi	gn Storm	5 Year					
Rational Meth	hod Procedure)											
BA	SIN INFORMATI	ON			DIREC	r RUNOFF		CL	JMMULAT	IVE RUNC)FF	
DESIGN POINT	DRAIN BASIN	AREA ac.	RUNOFF COEFF	T(c) min	СхА	l in/hr	Q cfs	T(c) min	СхА	l in/hr	Q cfs	NOTES
B1	B1	2.98	0.90	5.0	2.68	5.16	13.83					
B2	B2	1.01	0.18	8.8	0.18	4.32	0.80					
B3	B3	0.16	0.73	5.0	0.12	5.16	0.61					
B4	B4	0.23	0.90	5.0	0.21	5.16	1.08					
B5	B5	0.17	0.08	11.0	0.01	3.96	0.05					
B6	B6	0.13	0.73	5.0	0.09	5.16	0.49					
B7	B7	1.66	0.19	5.9	0.32	4.92	1.58					
B8	B8	0.16	0.73	5.0	0.12	5.16	0.62					
B9	B9	4.10	0.90	7.5	3.69	4.57	16.87					
B10	B10	0.94	0.37	7.5	0.35	4.57	1.59					
B11	B11	0.16	0.73	5.0	0.12	5.16	0.61					
B12	B12	0.15	0.73	5.0	0.11	5.16	0.56					
B13	B13	0.11	0.73	5.0	0.08	5.16	0.41					
B14	B14	0.11	0.73	5.0	0.08	5.16	0.43					
B15	B15	0.86	0.38	6.0	0.32	4.89	1.57					
B16	B16	0.14	0.73	5.0	0.10	5.16	0.52					
B17	B17	0.14	0.73	5.0	0.10	5.16	0.51					
B18	B18	1.09	0.08	19.1	0.09	3.06	0.27					
OS-1	OS-1	1.10	0.08	12.2	0.09	3.79	0.33					
OS-2	OS-2	0.18	0.08	5.0	0.01	5.16	0.08					

Tract DD, Hannah Ridge at Feathergrass Filing No. 1 - Drainage Report

Proposed Runoff Calculations

Design Storm 100 Year

(Rational Method Procedure)

В	ASIN INFORMATIO	N		DIF	RECT RUN	OFF		С	UMMULAT	IVE RUNO	FF	
DESIGN POINT	DRAIN BASIN	AREA ac.	RUNOFF COEFF	T(c) min	СхА	ا in/hr	Q cfs	T(c) min	СхА	l in/hr	Q cfs	NOTES
B1	B1	2.98	0.96	5.0	2.86	8.65	24.74					
B2	B2	1.01	0.42	8.8	0.43	7.25	3.10					
B3	B3	0.16	0.81	5.0	0.13	8.65	1.13					
B4	B4	0.23	0.96	5.0	0.22	8.65	1.93					
B5	B5	0.17	0.35	11.0	0.06	6.64	0.39					
B6	B6	0.13	0.81	5.0	0.11	8.65	0.91					
B7	В7	1.66	0.43	5.9	0.72	8.26	5.91					
B8	B8	0.16	0.81	5.0	0.13	8.65	1.15					
B9	B9	4.10	0.96	7.5	3.94	7.67	30.19					
B10	B10	0.94	0.55	7.5	0.52	7.67	4.01					
B11	B11	0.16	0.81	5.0	0.13	8.65	1.14					
B12	B12	0.15	0.81	5.0	0.12	8.65	1.05					
B13	B13	0.11	0.81	5.0	0.09	8.65	0.76					
B14	B14	0.11	0.81	5.0	0.09	8.65	0.80					
B15	B15	0.86	0.56	6.0	0.48	8.20	3.93					
B16	B16	0.14	0.81	5.0	0.11	8.65	0.97					
B17	B17	0.14	0.81	5.0	0.11	8.65	0.95					
B18	B18	1.09	0.35	19.1	0.38	5.14	1.96					
OS-1	OS-1	1.10	0.35	12.2	0.39	6.36	2.45					
OS-2	OS-2	0.18	0.35	5.0	0.06	8.65	0.55					

APPENDIX C: HYDRAULICS

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
-		
Roughness Coefficient	0.013	
Channel Slope	0.006 ft/ft	
Bottom Width	3.00 ft	
Discharge	1.08 cfs	
Results		
Normal Depth	1.8 in	
Flow Area	0.5 ft ²	
Wetted Perimeter	3.3 ft	
Hydraulic Radius	1.7 in	
Top Width	3.00 ft	
Critical Depth	1.9 in	
Critical Slope	0.005 ft/ft	
Velocity	2.37 ft/s	
Velocity Head	0.09 ft	
Specific Energy	0.24 ft	
Froude Number	1.071	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.8 in	
Critical Depth	1.9 in	
Channel Slope	0.006 ft/ft	
Critical Slope	0.005 ft/ft	

Curb Cut - Design Point B4 - 5-yr

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.006 ft/ft	
Bottom Width	3.00 ft	
Discharge	1.93 cfs	
Results		
Normal Depth	2.6 in	
Flow Area	0.7 ft ²	
Wetted Perimeter	3.4 ft	
Hydraulic Radius	2.3 in	
Top Width	3.00 ft	
Critical Depth	2.8 in	
Critical Slope	0.005 ft/ft	
Velocity	2.94 ft/s	
Velocity Head	0.13 ft	
Specific Energy	0.35 ft	
Froude Number	1.107	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.6 in	
Critical Depth	2.8 in	
Channel Slope	0.006 ft/ft	
Critical Slope	0.005 ft/ft	

Curb Cut - Design Point B4 - 100-yr

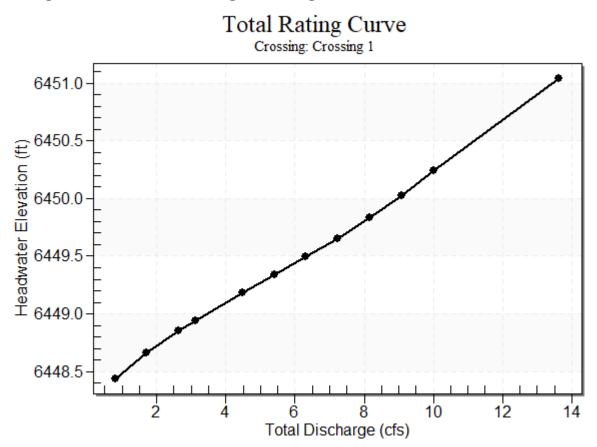
Project Description		
Friction Method	Manning	
FIICUUT MELIIUU	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.022 ft/ft	
Bottom Width	9.00 ft	
Discharge	16.87 cfs	
Results		
Normal Depth	3.3 in	
Flow Area	2.5 ft ²	
Wetted Perimeter	9.5 ft	
Hydraulic Radius	3.1 in	
Top Width	9.00 ft	
Critical Depth	5.7 in	
Critical Slope	0.004 ft/ft	
Velocity	6.86 ft/s	
Velocity Head	0.73 ft	
Specific Energy	1.00 ft	
Froude Number	2.315	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.3 in	
Critical Depth	5.7 in	
Channel Slope	0.022 ft/ft	
Critical Slope	0.004 ft/ft	

Curb Cut - Design Point B9 - 5-yr

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.022 ft/ft	
Bottom Width	9.00 ft	
Discharge	30.19 cfs	
Results		
Normal Depth	4.7 in	
Flow Area	3.5 ft ²	
Wetted Perimeter	9.8 ft	
Hydraulic Radius	4.3 in	
Top Width	9.00 ft	
Critical Depth	8.5 in	
Critical Slope	0.003 ft/ft	
Velocity	8.57 ft/s	
Velocity Head	1.14 ft	
Specific Energy	1.53 ft	
Froude Number	2.416	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	4.7 in	
Critical Depth	8.5 in	
Channel Slope	0.022 ft/ft	
Critical Slope	0.003 ft/ft	

Curb Cut - Design Point B9 - 100-yr

HY-8 Culvert Analysis Report


Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0.8 cfs Design Flow: 3.11 cfs Maximum Flow: 10 cfs

	•	•	•	
Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
6448.44	0.80	0.80	0.00	1
6448.66	1.72	1.72	0.00	1
6448.85	2.64	2.64	0.00	1
6448.94	3.11	3.11	0.00	1
6449.19	4.48	4.48	0.00	1
6449.34	5.40	5.40	0.00	1
6449.49	6.32	6.32	0.00	1
6449.65	7.24	7.24	0.00	1
6449.83	8.16	8.16	0.00	1
6450.03	9.08	9.08	0.00	1
6450.24	10.00	10.00	0.00	1
6451.00	12.65	12.65	0.00	Overtopping

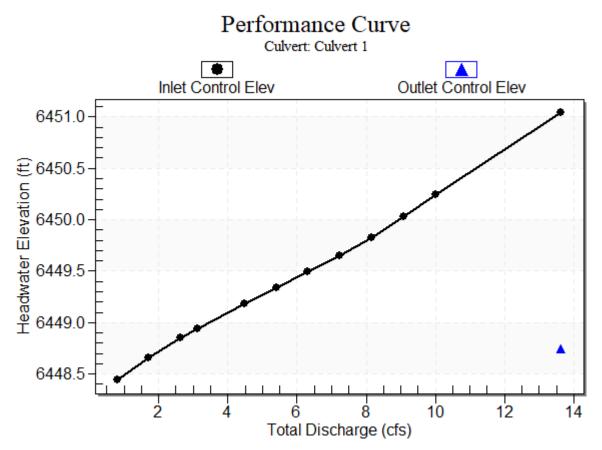
Table 1 - Summary of Culvert Flows at Crossing: Crossing 1

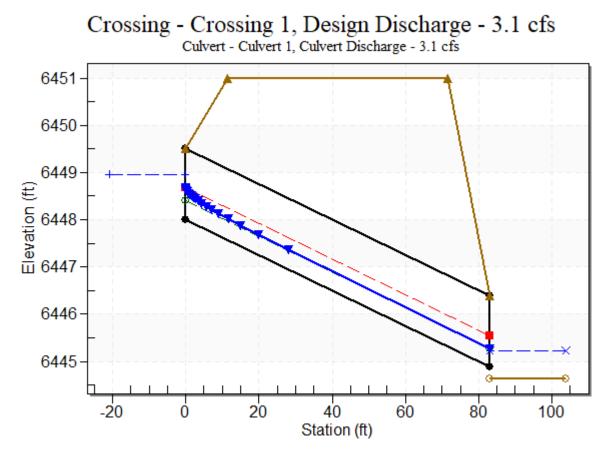
Rating Curve Plot for Crossing: Crossing 1

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.80	0.80	6448.44	0.441	0.0*	1-S2n	0.202	0.333	0.202	0.352	5.614	1.395
1.72	1.72	6448.66	0.660	0.0*	1-S2n	0.294	0.493	0.294	0.469	7.035	1.690
2.64	2.64	6448.85	0.850	0.0*	1-S2n	0.364	0.616	0.364	0.551	7.967	1.881
3.11	3.11	6448.94	0.944	0.0*	1-S2n	0.395	0.671	0.395	0.586	8.350	1.959
4.48	4.48	6449.19	1.187	0.0*	1-S2n	0.477	0.812	0.485	0.672	9.066	2.147
5.40	5.40	6449.34	1.338	0.0*	1-S2n	0.527	0.895	0.527	0.720	9.755	2.249
6.32	6.32	6449.49	1.492	0.0*	1-S2n	0.573	0.972	0.584	0.764	9.923	2.339
7.24	7.24	6449.65	1.654	0.0*	5-S2n	0.617	1.042	0.617	0.804	10.564	2.420
8.16	8.16	6449.83	1.830	0.0*	5-S2n	0.660	1.106	0.678	0.841	10.524	2.494
9.08	9.08	6450.03	2.026	0.0*	5-S2n	0.701	1.165	0.701	0.875	11.212	2.561
10.00	10.00	6450.24	2.242	0.0*	5-S2n	0.741	1.219	0.741	0.908	11.491	2.624

Table 2 - Culvert Summary Table: Culvert 1

Ensure that culvert calculations include total flows for the contributing acreages.


* Full Flow Headwater elevation is below inlet invert.


Straight Culvert

Inlet Elevation (invert): 6448.00 ft, Outlet Elevation (invert): 6444.88 ft Culvert Length: 83.06 ft, Culvert Slope: 0.0376

Culvert Performance Curve Plot: Culvert 1

Water Surface Profile Plot for Culvert: Culvert 1

Site Data - Culvert 1

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 6448.00 ft Outlet Station: 83.00 ft Outlet Elevation: 6444.88 ft Number of Barrels: 1

Culvert Data Summary - Culvert 1

Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
11000 (013)	Elev (ft)	Deptil (it)		Shear (psi)	
0.80	6444.99	0.35	1.40	0.18	0.59
1.72	6445.11	0.47	1.69	0.24	0.61
2.64	6445.19	0.55	1.88	0.29	0.63
3.11	6445.23	0.59	1.96	0.30	0.64
4.48	6445.31	0.67	2.15	0.35	0.65
5.40	6445.36	0.72	2.25	0.37	0.66
6.32	6445.40	0.76	2.34	0.40	0.67
7.24	6445.44	0.80	2.42	0.42	0.67
8.16	6445.48	0.84	2.49	0.44	0.68
9.08	6445.52	0.88	2.56	0.45	0.68
10.00	6445.55	0.91	2.62	0.47	0.69

 Table 3 - Downstream Channel Rating Curve (Crossing: Crossing 1)

Tailwater Channel Data - Crossing 1

Tailwater Channel Option: Irregular Channel

Roadway Data for Crossing: Crossing 1

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 30.00 ft Crest Elevation: 6451.00 ft Roadway Surface: Paved Roadway Top Width: 60.00 ft

Ensure that swale calculations include total flows for the contributing acreages.

Worksheet for Swale B2 - 100-yr

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.069 ft/ft	
Discharge	3.11 cfs	

Section Definitions

Station	Elevation
(ft)	(ft)
0+00	6,453.25
0+12	6,451.98
0+20	6,451.92
0+28	6,452.06
0+62	6,452.39
0+72	6,452.74
0+84	6,455.67
0+85	6,455.62

Roughness Segment Definitions

Start Station	Ending Stat	tion	Roughness Coefficient	
(0+00, 6,453.25)	00, 6,453.25) (0+85, 6,455.62)			0.030
Options				i
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth	1.6 in			
Roughness Coefficient	0.030			
Elevation	6,452.05 ft			
Elevation Range	6,451.9 to 6,455.7 ft			
Flow Area	1.3 ft ²			
Wetted Perimeter	16.1 ft			
Hydraulic Radius	1.0 in			
Top Width	16.09 ft			
Normal Depth	1.6 in			
Critical Depth	1.9 in			
Critical Slope	0.029 ft/ft			
Velocity	2.41 ft/s			
Velocity Head	0.09 ft			
wale Calculations.fm8 8/2021	Bentley Systems, Inc. Haest Center 27 Siemon Company Dr Watertown, CT 06795 USA	ive Suite 200 W	[1	FlowMast 0.03.00.0 Page 1 of

Results		
Specific Energy	0.22 ft	
Froude Number	1.502	
Flow Type	Supercritical	
	•	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.6 in	
Critical Depth	1.9 in	
Channel Slope	0.069 ft/ft	
Critical Slope	0.029 ft/ft	

Worksheet for Swale B2 - 100-yr

Project Description				
Friction Method	Manning			
Solve For	Formula Normal Depth			
Input Data				_
Channel Slope Discharge	0.008 ft/ft 3.50 cfs			_
		ction Definitions		_
Static			Elevation	
(ft)		0.00	(ft)	6 450 4
		0+00		6,450.1
		0+29 0+37		6,444.6 6,446.6
				0,110.0
	Roughne	ss Segment Definition		
Start Station		Ending Station	Roughness Coefficien	
(0+00, 6,450.19)		(0+37, 6,446.64)		0.03
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth	7.4 in			_
Roughness Coefficient	0.030			
Elevation	6,445.26 ft			
Elevation Range	6,444.6 to 6,450.2 ft			
Flow Area	1.8 ft ²			
Wetted Perimeter	5.8 ft			
Hydraulic Radius	3.6 in			
Top Width	5.70 ft			
Normal Depth	7.4 in			
Critical Depth	6.2 in			
Critical Slope	0.021 ft/ft			
Velocity	1.99 ft/s			
Velocity Head	0.06 ft			
Specific Energy	0.68 ft			
Froude Number Flow Type	0.632 Subcritical			

Worksheet for Swale B5 - 100-yr

Swale Calculations.fm8 4/8/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2

GVF Input Data			
Downstream Depth	0.0 in		
Length	0.0 ft		
Number Of Steps	0		
GVF Output Data			
Upstream Depth	0.0 in		
Profile Description	N/A		
Profile Headloss	0.00 ft		
Downstream Velocity	0.00 ft/s		
Upstream Velocity	0.00 ft/s		
Normal Depth	7.4 in		
Critical Depth	6.2 in		
Channel Slope	0.008 ft/ft		
Critical Slope	0.021 ft/ft		

Worksheet for Swale B5 - 100-yr

Project Description				
Friction Method	Manning			
	Formula			
Solve For	Normal Depth			
Input Data				
Channel Slope	0.026 ft/ft			
Discharge	4.01 cfs			
	S	ection Definitions		
Statio (ft)			Elevation (ft)	
(10)	/	0+00	(10)	6,451.2
		0+25		6,449.1
		0+49		6,450.2
	Roughne	ess Segment Definitions	5	
Start Station		Ending Station	Roughness Coef	ficient
(0+00, 6,451.28)		(0+49, 6,450.29)		0.03
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's			
Closed Channel Weighting	Method Pavlovskii's			
Method	Method			
Results				
Normal Depth	3.8 in			
Roughness Coefficient	0.030			
Elevation	6,449.49 ft			
Elevation Range	6,449.2 to 6,451.3 ft			
Flow Area	1.7 ft ²			
Wetted Perimeter	10.6 ft			
Hydraulic Radius	1.9 in			
Top Width	10.62 ft			
Normal Depth	3.8 in			
Critical Depth	3.9 in			
Critical Slope	0.024 ft/ft			
Velocity	2.36 ft/s			
Velocity Head	0.09 ft			
Specific Energy	0.41 ft			
Specific Lifergy				
Froude Number Flow Type	1.037			

Worksheet for Swale B10 - 100-yr

Swale Calculations.fm8 4/8/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2

GVF Input Data			
Downstream Depth	0.0 in		
Length	0.0 ft		
Number Of Steps	0		
GVF Output Data			
Upstream Depth	0.0 in		
Profile Description	N/A		
Profile Headloss	0.00 ft		
Downstream Velocity	Infinity ft/s		
Upstream Velocity	Infinity ft/s		
Normal Depth	3.8 in		
Critical Depth	3.9 in		
Channel Slope	0.026 ft/ft		
Critical Slope	0.024 ft/ft		

Worksheet for Swale B10 - 100-yr

Project Description				
Friction Method	Manning			_
	Formula			
Solve For	Normal Depth			_
Input Data				
Channel Slope	0.018 ft/ft			
Discharge	3.93 cfs			_
	Se	ection Definitions		
Statio			Elevation	
(ft)		0+00	(ft)	6 157 7
		0+35		6,457.79 6,450.5
		0+59		6,453.92
	Poughne	ss Segment Definitions		
	Köuginie	-		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 6,457.79)		(0+59, 6,453.92)		0.030
Options				_
Current Roughness Weighted	Pavlovskii's			_
Method	Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting	Pavlovskii's			
Method	Method			_
Results				
Normal Depth	6.0 in			_
Roughness Coefficient	0.030			
Elevation	6,451.05 ft			
Elevation Range	6,450.6 to 6,457.8 ft			
Flow Area	1.5 ft ²			
Wetted Perimeter	6.1 ft			
Hydraulic Radius	3.0 in			
Top Width	6.00 ft			
Normal Depth	6.0 in			
Critical Depth	5.8 in			
Critical Slope	0.021 ft/ft			
Velocity	2.62 ft/s			
Velocity Head	0.11 ft			
Specific Energy	0.61 ft			
Froude Number	0.922 Subcritical			

Worksheet for Swale B15 - 100-yr

Swale Calculations.fm8 4/8/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	6.0 in	
Critical Depth	5.8 in	
Channel Slope	0.018 ft/ft	
Critical Slope	0.021 ft/ft	

Worksheet for Swale B15 - 100-yr

Swale B18 - 100-yr

Friction Method	Manning Formula			
Solve For	Normal Depth			_
Input Data				_
Channel Slope	0.010 ft/ft			
Discharge	4.41 cfs			_
	Se	ction Definitions		
Static (ft)	n		Elevation (ft)	
(17)		0+04		6,457.4
		0+19		6,452.3
		0+29		6,453.1
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	:
0+04, 6,457.41)		(0+29, 6,453.11)		0.030
				_
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				_
Normal Depth	6.2 in			
Roughness Coefficient	0.030			
Elevation	6,452.89 ft			
Elevation Range	6,452.4 to 6,457.4 ft			
Flow Area	2.2 ft ²			
Wetted Perimeter	8.8 ft			
Hydraulic Radius	3.0 in			
Top Width	8.66 ft			
Normal Depth	6.2 in			
Critical Depth	5.3 in			
Critical Slope	0.022 ft/ft			
Velocity	1.99 ft/s			
Velocity Head	0.06 ft			
Specific Energy	0.57 ft			
Froude Number	0.691			
Flow Type	Subcritical			

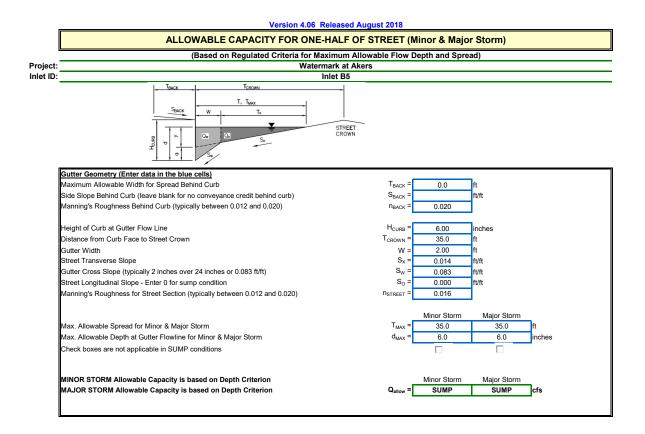
Swale Calculations.fm8 4/8/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	6.2 in	
Critical Depth	5.3 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.022 ft/ft	

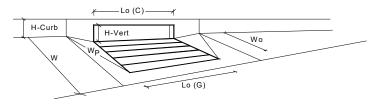
Swale B18 - 100-yr

Swale Calculations.fm8 4/8/2021

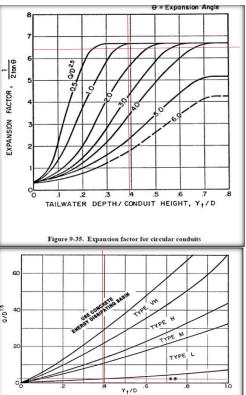

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

Project Description		
Solve For	Spread	
Input Data		
Discharge	4.01 cfs	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	3.33 ft	
Grate Width	1.91 ft	
Grate Length	3.3 ft	
Local Depression	0.0 in	
Local Depression Width	23.0 in	
Grate Type	Curved Vaned	
Clogging	50.0 %	
Results		
Spread	6.9 ft	
Depth	5.4 in	
Wetted Perimeter	7.0 ft	
Top Width	6.92 ft	
Open Grate Area	1.1 ft ²	
Active Grate Weir Length	8.6 ft	

Worksheet for Type 13 Design Point B10


Project Description		
Solve For	Spread	
Input Data		
Discharge	3.93 cfs	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	3.33 ft	
Grate Width	1.91 ft	
Grate Length	3.3 ft	
Local Depression	0.0 in	
Local Depression Width	23.0 in	
Grate Type	Curved Vaned	
Clogging	50.0 %	
Results		
Results		
Spread	6.8 ft	
Depth	5.2 in	
Wetted Perimeter	6.9 ft	
Top Width	6.78 ft	
Open Grate Area	1.1 ft ²	
Active Grate Weir Length	8.6 ft	

Worksheet for Type 13 Design Point B15


INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	-
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	6	6	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.57	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.79	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	27.6	27.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	13.8	24.7	cfs

Rip-Rap Calc Culvert 1				8
Applicable Equations:				7
$L_p = (1/2 \tan \Theta)(A_t/Y_t-D)$	Equation 9-	11 per USCDM		<u>اه</u> 6
A _t = Q/V	Equation 9-	12 per USDCM		2 tan 0
Θ = tan ⁻¹ (1/(2*ExpansionFactor))	Equation 9-	13 per USDCM		
$W = 2(L_{o}tan\Theta)+D$		14 per USDCM		4
$T = 2D_{50}$		15 per USDCM		NO 3
Assumptions				EXPANSION FACTOR,
Maximum Major Event Velocity is 7fps for FES outletting into trickle of	channels			
Input parameters:				
Description	Variable		Unit	о т
Width of the conduit (use diameter for circular conduits),	D:	1.50	ft	
Rectangular conduit	H:	0.00		
HGL Elevation		6445.47		
Invert Elevation		6444.88		
Tailwater depth (ft),	Y _t :	0.59		
Expansion angle of the culvert flow	Θ:		radians	60
Design discharge (cfs)*	Q:	3.11		
Froude Number	F,	0.40	Subcritical	
Unitless Variables for Tables:	25			9/0/12
For Figure	9-35 Q/D ^{2.5}	1.13		ò
	9-36 Q/WH ^{3/2}	#DIV/0!		
	9-35 Yt/D	0.39		20
For Figure	9-38 Q/D ^{1.5}	1.69		
For Figure	9-38 Y _t /D	0.39		
Allowable non-eroding velocity in the downstream channel (ft/sec) Expansion Factor (Figure 9-35), 1/(2tan(θ))	V:	5 6.5	ft/sec	0
		0.0		Use Da ₩≢Use T
Solve for: Description	Variable	Output	Unit	Figure 9-38. Rip
1. Required area of flow at allowable velocity (ft ²)	A _t :	0.62		
2. Length of Protection	L _p :	-2.90		RIPRAP DESIG
2. 2019/101710/00/01	L _n < 3D?	Yes	it in	RIPRAP DESIG
	L _p 1001	4.50	A	
2 Width of downations risks protection	Lpmin∙ W:	2.00		TYPE V
3. Width of downstream riprap protection 4. Rip Rap Type (Figure 9-38)	vv: -	2.00 L	π	
5. Rip Rap Size (Figure 8-34)	- D ₅₀ :	_	inches	TYPE L
Rip Rap Summary				
Length	Lp	5.00	ft	TYPE M
Width	W	2.00	ft	
Size	D ₅₀	9	inches	TYPE H
Туре	-	L	-	ALL
Type				

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

gure 9-38. Riprap erosion protection at circular conduit outlet (valid for $Q/D_{2.5} \le 6.0$)

RIPRAP DESIGNATION	% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION (INCHES)	D ₅₀ * (INCHES)
TYPE VL	70 - 100 50 - 70 35 - 50 2 - 10	12 9 6 2	6
TYPE L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15 12 9 3	9
TYPE M	70 - 100 50 - 70 35 - 50 2 - 10	21 18 12 4	12
TYPE H	70 - 100 50 - 70 35 - 50 2 - 10	30 24 18 6	18
D ₅₀ = MEAN ROCK SIZE	Ę	k. St	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Depth Increment =

-100-YEAR ORIFICE ZONE 1 AND 2 ORIFICES

Example Zone Configuration (Retention Pond)

PERMA Water

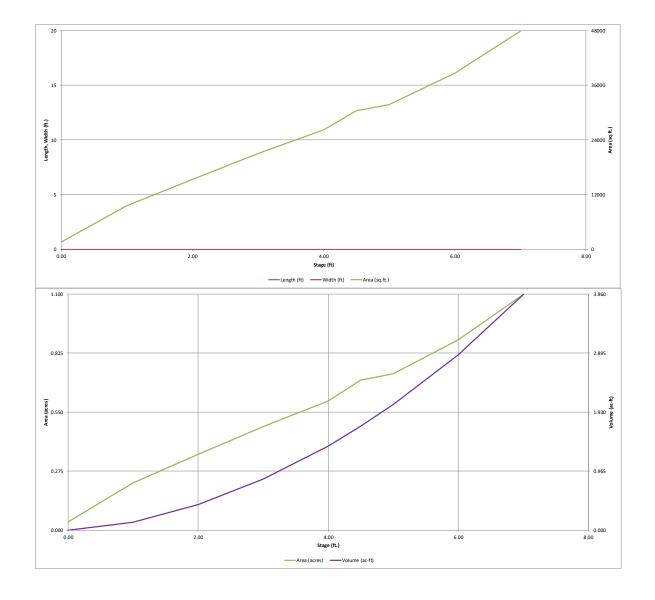
atershed Information					
Selected BMP Type =	EDB				
Watershed Area =	15.59	acres			
Watershed Length =	1,050	ft			
Watershed Length to Centroid =	525	ft			
Watershed Slope =	0.015	ft/ft			
Watershed Imperviousness =	62.00%	percent			
Percentage Hydrologic Soil Group A =	80.0%	percent			
Percentage Hydrologic Soil Group B =	20.0%	percent			
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			
Target WQCV Drain Time =	40.0	hours			
Location for 1-hr Rainfall Depths = User Input					

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban hydro	igraph Procedu	ie.
Water Quality Capture Volume (WQCV) =	0.316	acre-feet
Excess Urban Runoff Volume (EURV) =	1.157	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.872	acre-feet
5-yr Runoff Volume (P1 = 1.52 in.) =	1.159	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.371	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.718	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	2.013	acre-feet
100-yr Runoff Volume (P1 = 2.55 in.) =	2.424	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	3.181	acre-feet
Approximate 2-yr Detention Volume =	0.777	acre-feet
Approximate 5-yr Detention Volume =	1.037	acre-feet
Approximate 10-yr Detention Volume =	1.252	acre-feet
Approximate 25-yr Detention Volume =	1.476	acre-feet
Approximate 50-yr Detention Volume =	1.611	acre-feet
Approximate 100-yr Detention Volume =	1.790	acre-feet

Define	Zones	and	Basin	Geometry

Jenne Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.316	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.841	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.633	acre-feet
Total Detention Basin Volume =	1.790	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

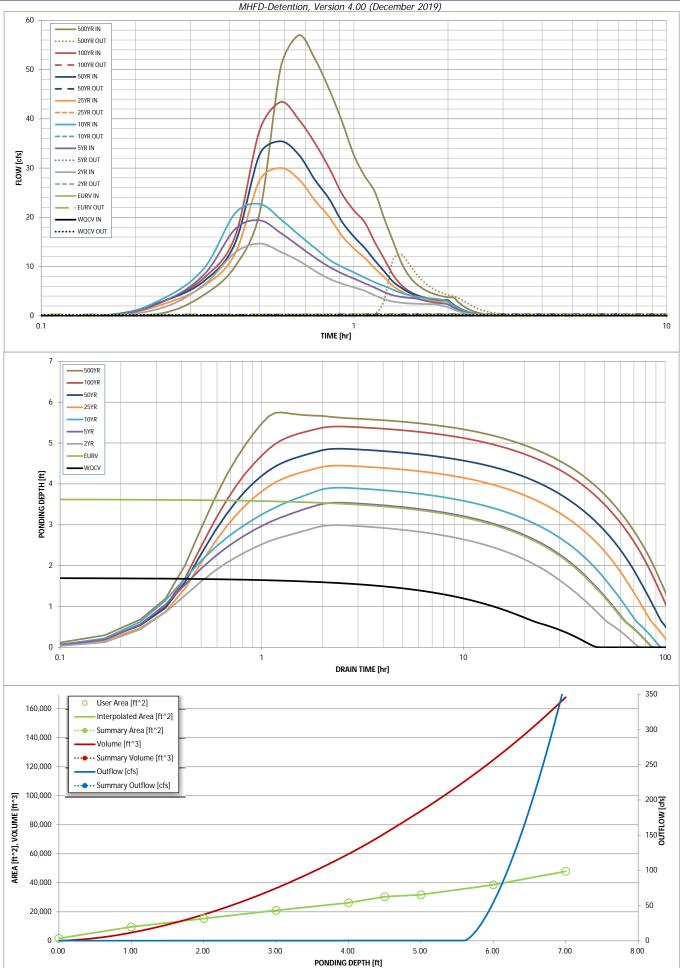

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

ntion Pond)	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00	-			1,666	0.038		
	6440		1.00	-		-	9,592	0.220	5,629	0.129
	6441		2.00				15,337	0.352	18,093	0.415
	6442		3.00				21,000	0.482	36,262	0.832
	6443		4.00	-			26,200	0.601	59,862	1.374
	6443.5		4.50	-			30,412	0.698	74,015	1.699
	6444		5.00	-			31,750	0.729	89,555	2.056
	6445		6.00					0.886		
							38,605		124,733	2.863
	6446		7.00				47,914	1.100	167,992	3.857
				-						
				-						
				-						
				-						
Optional User Overrides				-		-				
acre-feet										
acre-feet				-						
1.19 inches										
1.52 inches				-						
1.75 inches										
2.00 inches										
2.25 inches										
				-						
2.55 inches				-						
inches				-						
				-						
				-		-				
				-					1	
				-						
									1	
				-						
		-		-		-				
				-		-				
		-				-				
				-						
				-						
				-						
				-						
				-						
				-						
				-						
				-		-				
				-		-				
				-						
				-						
				-						
				-		-			1	
				-		-			<u> </u>	
				-						
				-						
				-						
				-						
						-				
				-						
		1 1		-						
				-						
				-		-				
				-						
				-						
				-						
				-		-				
				-						
				-						
				-		-				L
									1	-
		1 1		1 1						
									1	
		1 1		1 1						L
				-					I	
		-		1		-				
						-		1	I	I

 Stage - Storage
 Stage
 Operative
 Length
 Width
 Area
 Override
 Area
 Volume
 Volume

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)



	DF	TFNTION	BASIN OUT	LI FT STRU	CTURE DES	SIGN			
Decise		N		ersion 4.03 (May 2					
-	Watermark at Ake South Pond	rs							
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
VOLUME_ EURV WOCV			Zone 1 (WQCV)	1.71	0.316	Orifice Plate			
	100-YEAR ORIFICE		Zone 2 (EURV)	3.63	0.841	Orifice Plate			
PERMANENT ORIFICES			Zone 3 (100-year)	4.63	0.633	Weir&Pipe (Restrict)			
Example Zone	Configuration (Re			Total (all zones)	1.790		-		
User Input: Orifice at Underdrain Outlet (typically				<i>c</i>)			Calculated Paramet		
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A N/A	inches	the filtration media	surrace)		drain Orifice Area = n Orifice Centroid =	N/A N/A	ft ² feet	
		monos			ondordran			loot	
User Input: Orifice Plate with one or more orifice	es or Elliptical Slot W	leir (typically used t	o drain WQCV and/	or EURV in a sedime	entation BMP)		Calculated Paramet		
Invert of Lowest Orifice =	0.00		bottom at Stage =			ice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	3.63 N/A	inches	bottom at Stage =	0 ft)		iptical Half-Width = ical Slot Centroid =	N/A N/A	feet feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	N/A	ft ²	
		1						_	
User Input: Stage and Total Area of Each Orifice				Dow 4 (Daw E (anti-nai)	Dow ((ti)	Dow 7 (**	Dow 0 (1
Stage of Orifice Centroid (ft)	Row 1 (required) 0.00	Row 2 (optional) 0.60	Row 3 (optional) 1.60	Row 4 (optional) 2.40	Row 5 (optional) 3.20	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Orifice Area (sq. inches)		3.14	3.98	12.57	12.57				
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									J
User Input: Vertical Orifice (Circular or Rectangu	lar)						Calculated Paramet	ters for Vertical Orifi	ice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A		bottom at Stage =		rtical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice = Vertical Orifice Diameter =	N/A N/A	N/A N/A	inches	bottom at Stage =	U ft) Vertica	al Orifice Centroid =	N/A	N/A	feet
Venteal Office Diameter -	N/A	IN/A	inclies						
Liese Innut: Overfleyy Weis (Drenhey with Elet er									
User Input: Overflow Weir (Dropbox with Flat or			ingular/Trapezoidal	Weir (and No Outle	t Pipe)			ters for Overflow We	eir
	Zone 3 Weir	Not Selected				o Upper Edge U	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 3.90	Not Selected N/A	ft (relative to basin t	Weir (and No Outle pottom at Stage = 0 f	t) Height of Grat	e Upper Edge, H _t =	Zone 3 Weir 3.90	Not Selected N/A	feet
	Zone 3 Weir	Not Selected		pottom at Stage = 0 fi	t) Height of Grat	Veir Slope Length =	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir 3.90 23.36	Not Selected N/A N/A	ft (relative to basin b	oottom at Stage = 0 fi G	t) Height of Grat Overflow V	Veir Slope Length = 00-yr Orifice Area =	Zone 3 Weir 3.90 2.92	Not Selected N/A N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 3.90 23.36 0.00 2.92 70%	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin t feet H:V feet %, grate open are:	bottom at Stage = 0 fl G C) Height of Grat Overflow V Grate Open Area / 10	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris =	Zone 3 Weir 3.90 2.92 1486.03	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 3.90 23.36 0.00 2.92	Not Selected N/A N/A N/A N/A	ft (relative to basin t feet H:V feet	bottom at Stage = 0 fl G C	t) Height of Grat Overflow V Grate Open Area / 10 Overflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris =	Zone 3 Weir 3.90 2.92 1486.03 47.75	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin t feet H: V feet %, grate open are: %	bottom at Stage = 0 fl G C) Height of Grat Overflow V irate Open Area / 10 Iverflow Grate Oper Overflow Grate Ope	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin t feet H: V feet %, grate open are: %	bottom at Stage = 0 fl G C) Height of Grat Overflow V irate Open Area / 10 Iverflow Grate Oper Overflow Grate Ope	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87	Not Selected N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (<u>Circular Orifice, Re</u>	Not Selected N/A N/A N/A N/A N/A Strictor Plate, or Re	ft (relative to basin t feet H:V feet %, grate open are: %	bottom at Stage = 0 fl G C) Height of Grat Overflow V irate Open Area / 11 Overflow Grate Oper Overflow Grate Oper <u>C.</u>	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% Circular Orifice, Re Zone 3 Restrictor 0.00 24.00	Not Selected N/A N/A N/A N/A N/A Strictor Plate, or Rev Not Selected	ft (relative to basin t feet H:V feet %, grate open area % <u>ctangular Orifice)</u> ft (distance below ba inches	bottom at Stage = 0 ff C a/total area asin bottom at Stage of	t) Height of Grat Overflow V irate Open Area / 1(iverflow Grate Oper Overflow Grate Oper Overflow Grate Ope <u>C</u> = 0 ft) C	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vultet Orifice Area = t Orifice Centroid =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A	feet feet ft ² ft ² tte ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00	Not Selected N/A N/A N/A N/A N/A Strictor Plate, or Rev Not Selected N/A	ft (relative to basin t feet H:V feet %, grate open are: % <u>ctangular Orifice)</u> ft (distance below ba	bottom at Stage = 0 ff C a/total area asin bottom at Stage of	t) Height of Grat Overflow V birate Open Area / 10 Dverflow Grate Oper Overflow Grate Oper Overflow Grate Oper <u>C</u>	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vultet Orifice Area = t Orifice Centroid =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% <u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00 24.00 0.80	Not Selected N/A N/A N/A N/A N/A Strictor Plate, or Rev Not Selected N/A	ft (relative to basin t feet H:V feet %, grate open area % <u>ctangular Orifice)</u> ft (distance below ba inches	bottom at Stage = 0 ff C a/total area asin bottom at Stage of	t) Height of Grat Overflow V irate Open Area / 1(iverflow Grate Oper Overflow Grate Oper Overflow Grate Ope <u>C</u> = 0 ft) C	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vultet Orifice Area = t Orifice Centroid =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plg Not Selected N/A N/A N/A	feet feet ft ² ft ² tte ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% <u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00 24.00 0.80	Not Selected N/A N/A N/A N/A N/A Strictor Plate, or Rev Not Selected N/A N/A	ft (relative to basin t feet H:V feet %, grate open area % <u>ctangular Orifice)</u> ft (distance below ba inches	oottom at Stage = 0 fi C a/total area asin bottom at Stage - Half-Cer	t) Height of Grat Overflow V irate Open Area / 10 Iverflow Grate Oper Overflow Grate Oper Overflow Grate Oper <u>C</u> = 0 ft) C Outle htral Angle of Restrict	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/ Debris = alculated Parameter vultet Orifice Area = t Orifice Centroid =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plg Not Selected N/A N/A N/A	feet feet ft ² ft ² tte ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Ree Not Selected N/A N/A ft (relative to basin feet	ft (relative to basin t feet H:V feet %, grate open are: % ctangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 fi C a/total area asin bottom at Stage - Half-Cer	t) Height of Grat Overflow V irate Open Area / 11 Overflow Grate Oper Overflow Grate Oper Curflow Grate Oper	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² tte ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Rer Not Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin t feet H:V feet %, grate open are: % ctangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 fi C a/total area asin bottom at Stage - Half-Cer	t) Height of Grat Overflow V irate Open Area / 11 Overflow Grate Oper Overflow Grate Oper Curflow Grate Oper Curflow Grate Oper Curflow Grate Oper Curflow Grate Oper Curflow Grate Oper Curflow Grate Operation Outle Outle Outle Stage at Basin Area at	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 <u>Calculated Parame</u> 0.35 6.95 1.09	Not Selected N/A N/A N/A N/A N/A N/A N/A CFlow Restriction Pla Not Selected N/A N/A N/A ters for Spillway feet feet acres	feet feet ft ² ft ² tte ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Ree Not Selected N/A N/A ft (relative to basin feet	ft (relative to basin t feet H:V feet %, grate open are: % ctangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 fi C a/total area asin bottom at Stage - Half-Cer	t) Height of Grat Overflow V irate Open Area / 11 Overflow Grate Oper Overflow Grate Oper Curflow Grate Oper Curflow Grate Oper Curflow Grate Oper Curflow Grate Oper Curflow Grate Oper Curflow Grate Operation Outle Outle Outle Stage at Basin Area at	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² tte ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Ref Not Selected N/A N/A ft (relative to basin feet H:V feet	ft (relative to basin t feet H:V feet 9%, grate open are: 9% <u>ctangular Orifice)</u> ft (distance below ba inches inches bottom at Stage =	oottom at Stage = 0 ff C a/total area asin bottom at Stage = Half-Cer 0 ft)	t) Height of Grat Overflow V irate Open Area / 11 Iverflow Grate Oper Overflow Grate Oper Curflow Grate Oper Stage at Basin Area at Basin Volume at	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95 1.09 3.79	Not Selected N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² tte ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Ree Not Selected N/A N/A ft (relative to basin feet H:V feet def the default CUh	ft (relative to basin t feet H:V feet 9%, grate open area 9% ctangular Orifice) ft (distance below ba inches inches bottom at Stage =	oottom at Stage = 0 ff C a/total area asin bottom at Stage = Half-Cer 0 ft) <i>runoff volumes by e</i>	t) Height of Grat Overflow V irate Open Area / 11 Overflow Grate Oper Overflow Grate Oper Curflow Grate Oper	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = I of Freeboard = Top of Freeboar	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95 1.09 3.79	Not Selected N/A N/A N/A N/A N/A N/A N/A CELOW Restriction Pla Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft mns W through AF).	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Ref Not Selected N/A N/A ft (relative to basin feet H:V feet	ft (relative to basin t feet H:V feet 9%, grate open are: 9% <u>ctangular Orifice)</u> ft (distance below ba inches inches bottom at Stage =	oottom at Stage = 0 ff C a/total area asin bottom at Stage = Half-Cer 0 ft)	t) Height of Grat Overflow V irate Open Area / 11 Iverflow Grate Oper Overflow Grate Oper Curflow Grate Oper Stage at Basin Area at Basin Volume at	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95 1.09 3.79	Not Selected N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² tte ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00 The user can overr WOCV N/A 0.316	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Rev Not Selected N/A N/A ft (relative to basin feet H:V feet ide the default CUH EURV N/A 1.157	ft (relative to basin t feet H:V feet %, grate open are: % ctangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>P hydrographs and</u> 2 Year 1.19 0.872	oottom at Stage = 0 ff C a/total area asin bottom at Stage + Half-Cer 0 ft) <u>runoff volumes by e</u> <u>5 Year</u> 1.52 1.159	t) Height of Grat Overflow V irate Open Area / 11 iverflow Grate Oper Overflow Grate Oper Curflow Grate Oper Stage at Basin Area at Basin Volume at Curflow Curflow Grate Oper Curflow G	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Ion of Freeboard = 10 of Freeboard = 25 Year 2.00 1.718	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95 1.09 3.79 graphs table (Colum 50 Year 2.25 2.013	Not Selected N/A N/A <	feet feet ft ² ft ² feet radians 500 Year 3.14 3.181
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00 The user can overr WOCV N/A 0.316 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Rer Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet ide the default CUh EURV N/A 1.157 N/A	ft (relative to basin t feet H:V feet %, grate open are: % ctangular Orifice) ft (distance below ba inches inches inches bottom at Stage = Phydrographs and 2 Year 1.19 0.872 0.872	oottom at Stage = 0 ff C a/total area asin bottom at Stage = Half-Cer 0 ft) <u>runoff volumes by e</u> <u>5 Year</u> <u>1.52</u> <u>1.159</u> <u>1.159</u>	t) Height of Grat Overflow V irate Open Area / 11 Overflow Grate Oper Overflow Grate Oper C C = 0 ft) C Outle tral Angle of Restric Spillway [Stage at Basin Area at Basin Volume at C C C C C C C C C C C C C C C C C C C	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vutlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = in the Inflow Hydro 25 Year 2.00 1.718 1.718	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 <u>Calculated Paramel</u> 0.35 6.95 1.09 3.79 <u>Graphs table (Colur</u> 50 Year 2.25 2.013 2.013	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A CFlow Restriction Pla Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft 100 Year 2.55 2.424 2.424	feet feet ft ² ft ² feet radians 500 Year 3.14 3.181 3.181
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Plate Height Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00 The user can overr WOCV N/A 0.316 N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Ree Not Selected N/A N/A ft (relative to basin feet H:V feet ide the default CUH EURV N/A 1.157 N/A N/A N/A N/A	ft (relative to basin t feet H:V feet %, grate open area % <u>tangular Orifice)</u> ft (distance below basinches inches bottom at Stage = <u>P hydrographs and</u> <u>2 Year</u> <u>1.19</u> <u>0.872</u> <u>0.2</u>	oottom at Stage = 0 ff C C a/total area asin bottom at Stage = Half-Cer 0 ft) runoff volumes by e 5 Year 1.52 1.159 1.159 0.3	t) Height of Grat Overflow V irate Open Area / 11 iverflow Grate Oper Overflow Grate Oper Overflow Grate Oper C = 0 ft) C Outle tral Angle of Restrict Spillway E Stage at Basin Volume at Entering new values 10 Year 1.75 1.371 1.371 1.0	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vutlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 10 of Freeboard = 10 of Freeboard = 10 of Freeboard = 10 of 1.718 1.718 5.9	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95 1.09 3.79 graphs table (Colum 50 Year 2.25 2.013 2.013 8.8	Not Selected N/A N/A N/A N/A N/A N/A N/A Construction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft 100 Year 2.55 2.424 2.424 12.9	feet feet ft ² ft ² feet radians 500 Year 3.14 3.181 3.181 3.181
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00 The user can overr WOCV N/A 0.316 N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Ree Not Selected N/A N/A ft (relative to basin feet H:V feet EURV N/A 1.157 N/A N/A N/A N/A N/A	ft (relative to basin t feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>P hydrographs and</u> 2 Year 1.19 0.872 0.872 0.2	oottom at Stage = 0 ff C a/total area asin bottom at Stage = Half-Cer 0 ft) <u>runoff volumes by e</u> <u>5 Year</u> 1.52 1.159 1.159 0.3 0.02	t) Height of Grat Overflow V irate Open Area / 11 irate Open Area / 11 irate Open Area / 11 irate Open Area / 11 C C C C C C C C C C C C C	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vutlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 10 of Freeboard = 2.00 1.718 1.718 1.718 5.9 0.38	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Parame ¹ 0.35 6.95 1.09 3.79 graphs table (Colum 50 Year 2.25 2.013 2.013 8.8 0.57	Not Selected N/A N/A N/A N/A N/A N/A N/A CELOW Restriction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.55 2.424 2.424 12.9 0.83	feet feet ft ² ft ² feet radians 500 Year 3.14 3.181 3.181 2.1.0 1.34
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Max Water Surface = One-Hour Rainfall Depth (In) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00 The user can overr WOCV N/A 0.316 N/A N/A N/A N/A 0.2	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate. or Red N/A N/A Strictor Plate. or Red N/A N/A Strictor Plate. or Red N/A	ft (relative to basin t feet H:V feet %, grate open are: % <u>ctangular Orifice)</u> ft (distance below ba- inches inches bottom at Stage = <u>P hydrographs and</u> <u>2 Year</u> 1.19 0.872 0.2 0.2 0.1 14.7 0.3	xottom at Stage = 0 ff C C a/total area asin bottom at Stage = Half-Cer 0 ft) <u>5 Year</u> 1.159 1.159 1.159 0.3 0.02 19.4 0.3	t) Height of Grat Overflow V irate Open Area / 11 iverflow Grate Oper Overflow Grate Oper Overflow Grate Oper C = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new values 10 Year 1.75 1.371 1.371 1.0 0.07 22.7 0.3	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vullet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 1.718 1.718 1.718 5.9 0.38 30.0 0.3	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95 1.09 3.79 graphs table (Colum 50 Year 2.25 2.013 8.8 0.57 35.4 0.3	Not Selected N/A 0.00 Year 2.55 2.424 2.424 12.9 0.83 43.4 0.4	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 3.181 2.1.0 1.34 57.0 12.5
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Nee-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Row, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00 The user can overr WOCV N/A 0.316 N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Ree Not Selected N/A N/A ft (relative to basin feet H:V feet ide the default CUH EURV N/A 1.157 N/A 1.157 N/A	ft (relative to basin t feet H:V %, grate open area %, grate open area % tangular Orifice) ft (distance below basin inches bottom at Stage = <u>P hydrographs and</u> <u>2 Year</u> 1.19 0.872 0.872 0.2 0.01 14.7 0.3 N/A	xottom at Stage = 0 ff C C a/total area asin bottom at Stage = Half-Cer 0 ft) 1.159 1.159 1.159 1.159 1.159 1.159 0.3 0.02 19.4 0.3 1.0	t) Height of Grat Overflow V irate Open Area / 11 irate Open Area / 11 iverflow Grate Oper Overflow Grate Oper C = 0 ft) C Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at C C C C C C C C C C C C C	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vutlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 10 of Freeboard = 25 Year 2.00 1.718 1.718 5.9 0.38 30.0 0.3 0.1	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95 1.09 3.79 graphs table (Colum 50 Year 2.25 2.013 2.013 8.8 0.57 35.4 0.3 0.0	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A NA VA NA NA NA VA NA VA N/A Iters for Spillway feet acres acres acres 2.55 2.424 12.9 0.83 43.4 0.4 0.0	feet feet ft ² ft ² feet radians 500 Year 3.14 3.181 3.181 3.181 2.1.0 1.34 57.0 1.2.5 0.6
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Max Water Surface = One-Hour Rainfall Depth (In) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00 The user can overr WOCV N/A 0.316 N/A N/A N/A N/A 0.2	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate. or Red N/A N/A Strictor Plate. or Red N/A N/A Strictor Plate. or Red N/A	ft (relative to basin t feet H:V feet %, grate open are: % <u>ctangular Orifice)</u> ft (distance below ba- inches inches bottom at Stage = <u>P hydrographs and</u> <u>2 Year</u> 1.19 0.872 0.2 0.2 0.1 14.7 0.3	xottom at Stage = 0 ff C C a/total area asin bottom at Stage = Half-Cer 0 ft) <u>5 Year</u> 1.159 1.159 1.159 0.3 0.02 19.4 0.3	t) Height of Grat Overflow V irate Open Area / 11 iverflow Grate Oper Overflow Grate Oper Overflow Grate Oper C = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new values 10 Year 1.75 1.371 1.371 1.0 0.07 22.7 0.3	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vullet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 1.718 1.718 1.718 5.9 0.38 30.0 0.3	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95 1.09 3.79 graphs table (Colum 50 Year 2.25 2.013 8.8 0.57 35.4 0.3	Not Selected N/A 0.00 Year 2.55 2.424 2.424 12.9 0.83 43.4 0.4	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 3.181 2.1.0 1.34 57.0 12.5
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = Ne-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00 The user can overr WOCV N/A 0.316 N/A N/A N/A N/A O.2 N/A O.2 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Ree Not Selected N/A N/A Strictor Plate, or Ree It (relative to basin feet H:V feet It V feet It V feet It V N/A I.157 N/A	ft (relative to basin the feet H:V feet %, grate open area % <u>tangular Orifice)</u> ft (distance below basin inches to bottom at Stage = <u>P hydrographs and</u> <u>2 Year</u> 1.19 0.872 0.872 0.872 0.2 0.2 0.01 14.7 0.3 N/A Outlet Plate 1	oottom at Stage = 0 ff C C a/total area asin bottom at Stage = Half-Cer 0 ft) runoff volumes by e 5 Year 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.3 0.3 0.02 19.4 0.3 1.0 Outlet Plate 1 N/A N/A	t) Height of Grat Overflow V irate Open Area / 11 irate Open Area / 11 iverflow Grate Oper Overflow Grate Oper C = 0 ft) C Outle tral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at entering new values 1.75 1.371 1.371 1.371 1.371 0.07 22.7 0.3 Outlet Plate 1 0.0 N/A	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vittet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 10 pof Freeboard = 0 0, 0 freeboard = 0.38 30.0 0.3 0.1 Outlet Plate 1 0.0 N/A	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95 1.09 3.79 graphs table (Colum 50 Year 2.25 2.013 2.013 2.013 0.57 35.4 0.3 0.0 Outlet Plate 1 0.0 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A NA NA NA NA NA NA NA NA NA N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acres acres 2.55 2.424 2.424 2.424 0.83 43.4 0.4 0.0 Outlet Plate 1 0.0 N/A	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 3.181
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = UHP Redevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Peak Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00 The user can overr WOCV N/A 0.316 N/A N/A N/A N/A N/A N/A 0.2 N/A Outlet Plate 1 N/A 39	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Red N/A N/A territor Plate, or Red N/A N/A ft (relative to basin feet H:V feet ide the default CU/n feet LIST N/A 1.157 N/A 1.157 N/A	ft (relative to basin t feet H:V feet %, grate open are: % ft (distance below basin the inches inches bottom at Stage = Phydrographs and 2 Year 1.19 0.872 0.872 0.2 0.01 14.7 0.3 N/A Outlet Plate 1 N/A	bottom at Stage = 0 ff C C a/total area asin bottom at Stage = Half-Cer 0 ft) 0 ft) 0 ft) 0.02 19.4 0.3 1.0 0.02 19.4 0.3 1.0 0.02 19.4 0.3 1.0 0.02 19.4 0.3 1.0 0.02 19.4 0.3 71	t) Height of Grat Overflow V irate Open Area / 10 irate Open Area / 10 irate Open Area / 10 irate Open Area / 10 irate Open Area / 10 E = 0 ft) O Outle tral Angle of Restrice Spillway E Stage at Basin Volume at Basin Volume at E E 1.371 1.371 1.371 1.371 1.0 0.07 22.7 0.3 0.3 Outlet Plate 1 0.0	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vutlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 10 of Freeboard = 2.00 1.718 1.718 1.718 1.718 0.38 30.0 0.3 0.1 Outlet Plate 1 0.0 N/A 88	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramet 0.35 6.95 1.09 3.79 graphs table (Colurt 50 Year 2.25 2.013 2.013 8.8 0.57 35.4 0.3 0.0	Not Selected N/A Iters for Spillway feet acres acred	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 3.181 2.10
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Net-Hour Rainfail Depth (In) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% Circular Orifice, Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00 The user can overr WOCV N/A 0.316 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate. or Red N/A N/A tictor Plate. or Red N/A N/A N/A ft (relative to basin feet H:V feet ide the default CU/n EURV N/A 1.157 N/A 1.157 N/A	ft (relative to basin the feet H:V feet %, grate open area % ft (distance below basin inches inches bottom at Stage = Phydrographs and 2 Year 1.19 0.872 0.872 0.2 0.2 0.01 14.7 0.3 N/A Outlet Plate 1 N/A 68 2.99	oottom at Stage = 0 ff C C a/total area asin bottom at Stage = Half-Cer 0 ft) 1.159 1.159 1.159 0.3 0.02 19.4 0.3 1.0 Outlet Plate 1 N/A N/A 71 79 3.54	t) Height of Grat Overflow V irate Open Area / 10 irate Open Area / 10 irate Open Grate Open Overflow Grate Open C = 0 ft) O Outle tral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at entering new values 10 Year 1.371 1.371 1.371 1.371 1.371 1.0 0.07 0.3 0.1 0.0 N/A 77 87 3.91	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vultet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 1.718 1.718 5.9 0.38 30.0 0.3 0.1 Outlet Plate 1 0.0 N/A 88 98 4.45	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.03 0.04 0.37 Calculated Paramet 0.35 6.95 1.09 3.79 graphs table (Colum 50 Year 2.25 2.013 8.8 0.57 35.4 0.3 0.0 Outlet Plate 1 0.0 N/A 96 108 4.86	Not Selected N/A 0.0 Year 2.55 2.424 12.9 0.83 43.4 0.4 0.0 Outlet Plate 1 0.0 >120 5.40	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 3.181 2.1.0 12.5 0.6 Spillway 0.0 N/A 111 >120 5.75
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 3.90 23.36 0.00 2.92 70% 50% Circular Orifice. Re Zone 3 Restrictor 0.00 24.00 0.80 Trapezoidal) 5.60 70.00 4.00 1.00 The user can overr WQCV N/A 0.316 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Red N/A N/A Strictor Plate, or Red N/A N/A ft (relative to basin feet H:V feet EURV N/A 1.157 N/A 1.157 N/A	ft (relative to basin the feet H:V feet H:V feet %, grate open area %, grate open area %, for a feet %, grate open area for the feet % for the feet % for the feet % for the feet for the feet % for the feet for the feet % for the fe	xutom at Stage = 0 ff C C a/total area asin bottom at Stage = Half-Cer 0 ft) 0 ft) 1.159 0.3 1.159 0.3 1.159 0.3 1.0 0.02 19,4 0.3 1.0 0.02 19,4 0.3 1.0 0.02 19,4 0.3 1.0 71 79	t) Height of Grat Overflow V irate Open Area / 10 irate Open Area / 10 irate Open Grate Open Courflow Grate Open (Courflow Gra	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter vultet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 10 of Stear 2.00 1.718 1.718 1.718 0.38 30.0 0.3 0.1 0.1 0.0 N/A 88 98	Zone 3 Weir 3.90 2.92 1486.03 47.75 23.87 s for Outlet Pipe w/ Zone 3 Restrictor 0.03 0.04 0.37 Calculated Paramel 0.35 6.95 1.09 3.79 graphs table (Colum 50 Year 2.25 2.013 2.013 0.57 35.4 0.57 35.4 0.0 Outlet Plate 1 0.0 N/A 96 108	Not Selected N/A Iters for Spillway feet acres acre-ft 00 Year 2.55 2.424 2.424 1.2.9 0.83 43.4 0.0 Outlet Plate 1 0.0 N/A 108	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 3.181 21.0 1.34 57.0 12.5 0.6 Spillway 0.0 N/A 1.11 >120

MHFD-Detention v4 03 (4).xlsm, Outlet Structure

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention v4 03 (4).xlsm, Outlet Structure

You created this PDF from an application that is not licensed to print to novaPDF printer (<u>http://www.novapdf.com</u>)

4/14/2021, 8:52 AM

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

ļ	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	I in a separate pro	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]		50 Year [cfs]	100 Year [cfs]	
	0:00:00									
5.00 min	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.21 3.13	0.05	0.68
	0:20:00	0.00	0.00	6.41	8.51	9.82	6.17	7.17	7.82	9.99
	0:25:00	0.00	0.00	12.81	17.56	20.78	12.59	14.70	16.07	20.96
	0:30:00	0.00	0.00	14.67	19.38	22.70	27.56	32.80	37.74	50.38
	0:35:00	0.00	0.00	12.97	16.82	19.62	30.02	35.44	43.41	56.99
	0:40:00	0.00	0.00	11.16	14.17	16.45	27.73	32.71	39.85	52.19
	0:45:00	0.00	0.00	9.12	11.82	13.79	23.46	27.64	35.10	46.02
	0:50:00	0.00	0.00	7.54	9.96	11.41	20.11	23.74	30.03	39.44
	0:55:00	0.00	0.00	6.51	8.59	9.93	16.21	19.09	24.76	32.64
	1:00:00	0.00	0.00	5.77	7.56	8.82	13.67	16.07	21.41	28.36
	1:05:00	0.00	0.00	5.08 4.13	6.60 5.72	7.76 6.79	11.75 9.65	13.77 11.24	18.98 14.94	25.21 19.77
	1:15:00	0.00	0.00	3.37	4.82	6.03	7.82	9.04	14.94	15.21
	1:20:00	0.00	0.00	2.90	4.82	5.32	6.07	6.96	8.35	10.89
	1:25:00	0.00	0.00	2.65	3.84	4.67	5.00	5.70	6.28	8.14
	1:30:00	0.00	0.00	2.52	3.64	4.22	4.18	4.75	5.04	6.48
	1:35:00	0.00	0.00	2.45	3.50	3.91	3.67	4.16	4.29	5.47
	1:40:00	0.00	0.00	2.40	3.14	3.69	3.33	3.76	3.78	4.77
	1:45:00	0.00	0.00	2.36	2.86	3.54	3.11	3.51	3.44	4.30
	1:50:00	0.00	0.00	2.33	2.66	3.44	2.96	3.33	3.20	3.97
	1:55:00	0.00	0.00	2.01	2.51	3.26	2.86	3.21	3.05	3.77
	2:00:00	0.00	0.00	1.76	2.32	2.94	2.79	3.14	3.00	3.69
	2:05:00	0.00	0.00	1.28	1.68	2.11	2.02	2.26	2.17	2.66
	2:10:00	0.00	0.00	0.90	1.18	1.49	1.42	1.60	1.54	1.89
	2:15:00	0.00	0.00	0.63	0.82	1.04	1.00	1.12	1.08	1.33
	2:20:00	0.00	0.00	0.43	0.55	0.71	0.68	0.77	0.74	0.91
	2:25:00	0.00	0.00	0.28	0.36	0.47	0.46	0.51	0.49	0.60
	2:30:00 2:35:00	0.00	0.00	0.18	0.24	0.31	0.31	0.35	0.33	0.41
	2:40:00	0.00	0.00	0.10	0.15	0.19	0.19	0.21	0.21	0.25
	2:45:00	0.00	0.00	0.03	0.03	0.03	0.04	0.04	0.04	0.05
	2:50:00	0.00	0.00	0.02	0.03	0.03	0.04	0.04	0.04	0.01
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00 3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			0.00		0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00					
	4:55:00 5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00 5:05:00 5:10:00	0.00 0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00 5:05:00 5:10:00 5:15:00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00
	4:55:00 5:00:00 5:05:00 5:10:00	0.00 0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00 5:05:00 5:10:00 5:15:00 5:20:00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
	4:55:00 5:00:00 5:05:00 5:10:00 5:15:00 5:20:00 5:25:00 5:30:00 5:35:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
	4:55:00 5:00:00 5:05:00 5:10:00 5:15:00 5:20:00 5:25:00 5:30:00 5:35:00 5:40:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00
	4:55:00 5:00:00 5:05:00 5:10:00 5:15:00 5:20:00 5:25:00 5:30:00 5:35:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00

MHFD-Detention v4 03 (4).xlsm, Outlet Structure 0.00

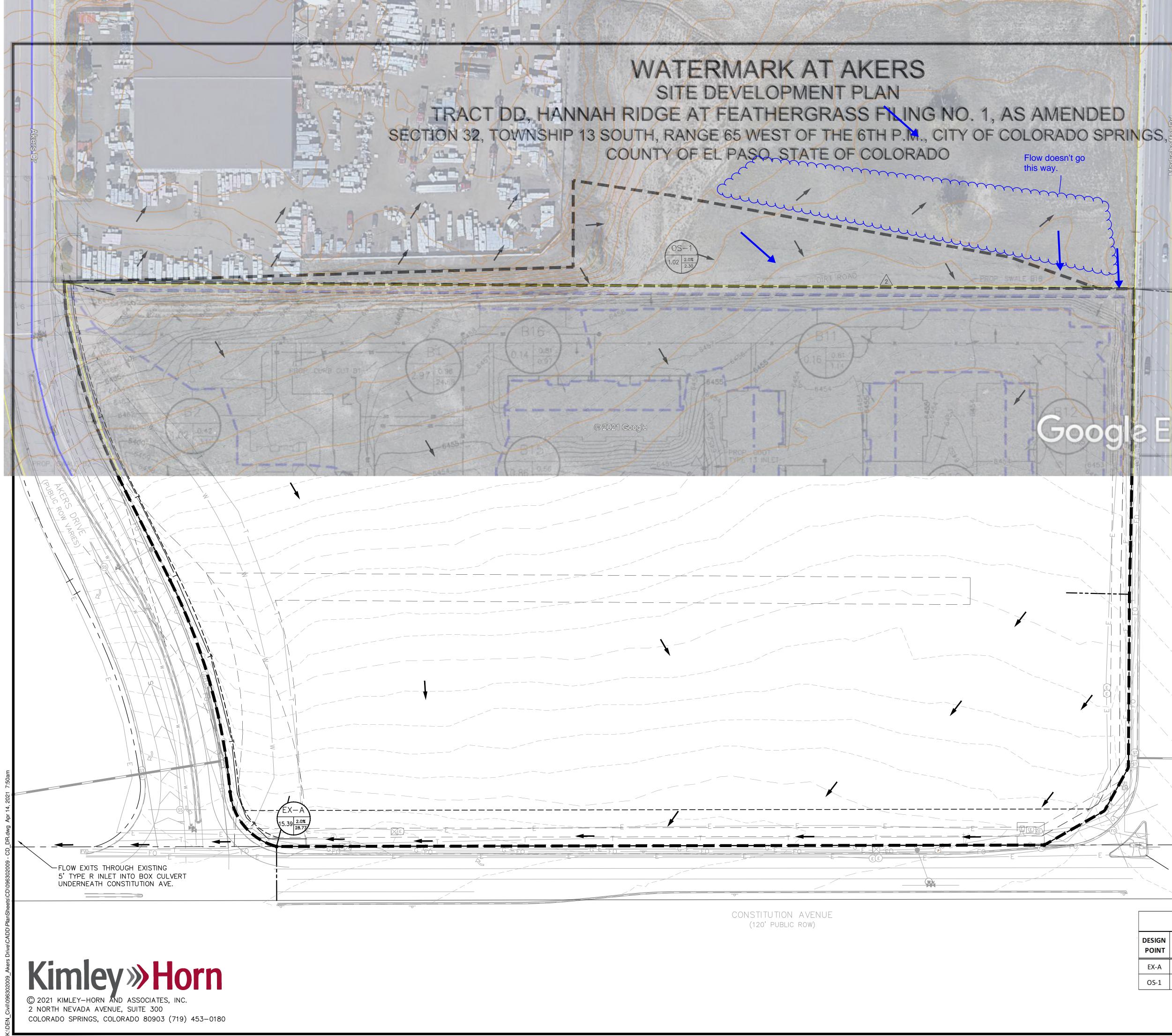
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

0.00

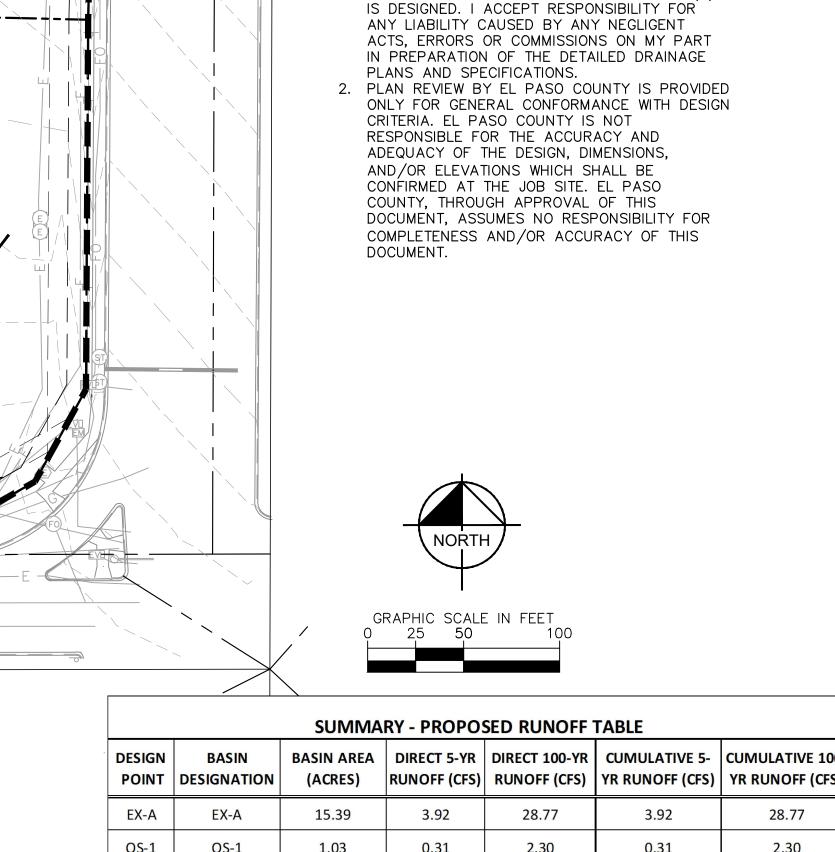
0.00

0.00

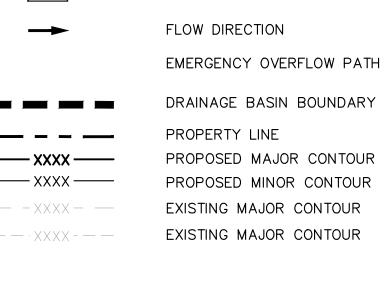
0.00


0.00

0.00


0.00

0.00

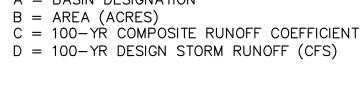

APPENDIX D: DRAINAGE MAPS

SUMMARY - PROPOSED RUNOFF TABLE										
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)		CUMULATIVE 100- YR RUNOFF (CFS)				
EX-A	EX-A	15.39	3.92	28.77	3.92	28.77				
OS-1	OS-1	1.03	0.31	2.30	0.31	2.30				
	EXISTING DRAINAGE MAP									

NOTES

THESE DETAILED PLANS AND SPECIFICATIONS WERE PREPARED UNDER MY DIRECTION AND SUPERVISION. SAID DETAILED PLANS AND SPECIFICATIONS HAVE BEEN PREPARED

PECIFICATIONS, AND SAID DETAILED PLANS AND SPECIFICATIONS ARE IN CONFORMITY WITH THE MASTER PLAN OF THE DRAINAGE BASIN

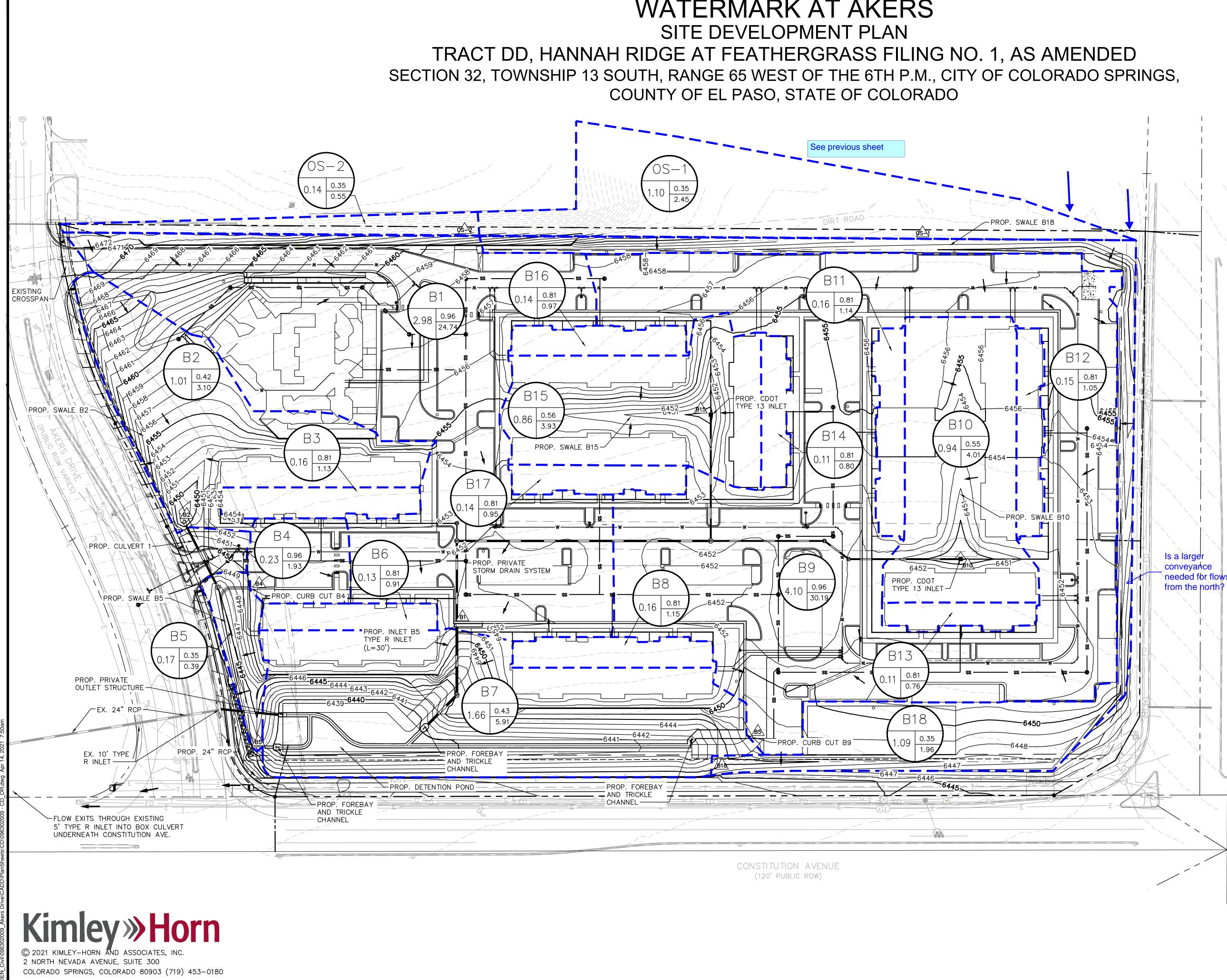

ETAILED DRAINAGE PLANS AND

SAID DETAILED DRAINAGE PLANS AND SPECIFICATIONS MEET THE PURPOSES FOR WHICH THE PARTICULAR DRAINAGE FACILITY(S)

CORDING TO THE ESTABLISHED CRITERIA FOR

DESIGN POINT

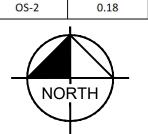
A = BASIN DESIGNATION

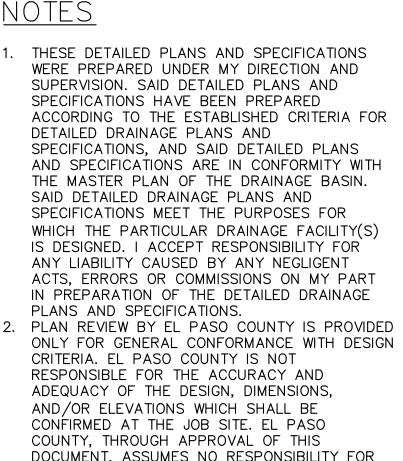


5000

<u>LEGEND</u>

В


С


WATERMARK AT AKERS

2.	 PLANS AND SPECIFICATIONS. PLAN REVIEW BY EL PASO COUNTY IS PROVIDED ONLY FOR GENERAL CONFORMANCE WITH DESIGN CRITERIA. EL PASO COUNTY IS NOT RESPONSIBLE FOR THE ACCURACY AND ADEQUACY OF THE DESIGN, DIMENSIONS, AND/OR ELEVATIONS WHICH SHALL BE CONFIRMED AT THE JOB SITE. EL PASO COUNTY, THROUGH APPROVAL OF THIS DOCUMENT, ASSUMES NO RESPONSIBILITY FOR COMPLETENESS AND/OR ACCURACY OF THIS DOCUMENT. 									
		SUMMA	RY - PROPO	SED RUNOFF	TABLE					
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)		CUMULATIVE 100- YR RUNOFF (CFS)				
B1	B1	2.98	13.83	24.74	13.83	24.74				
B2	B2	1.01	0.80	3.10	0.80	3.10				
B3	B3	0.16	0.61	1.13	0.61	1.13				
B4	B 4	0.23	1.08	1.93	1.08	1.93				
B5	B5	0.17	0.05	0.39	0.05	0.39				
B6	B6	0.13	0.49	0.91	0.49	0.91				
B7	B7	1.66	1.58	5.91	1.58	5.91				
B8	B8	0.16	0.62	1.15	0.62	1.15				
B9	B 9	4.10	16.87	30.19	16.87	30.19				
<mark>B10</mark>	B10	0.94	1.59	4.01	1.59	4.01				
B11	B11	0.16	0.61	1.14	0.61	1.14				
B12	B12	0.15	0.56	1.05	0.56	1.05				
B13	B13	0.11	0.41	0.76	0.41	0.76				
B14	B14	0.11	0.43	0.80	0.43	0.80				
<mark>B15</mark>	B15	0.86	1.57	3.93	1.57	3.93				
<mark>B16</mark>	B16	0.14	0.52	0.97	0.52	0.97				
B17	B17	0.14	0.51	0.95	<mark>0.51</mark>	0.95				
<mark>B1</mark> 8	B18	1.09	0.27	1.96	0.27	1.96				
OS-1	OS-1	1.10	0.33	2.45	0.33	2.45				
OS-2	OS-2	0.18	0.08	0.55	0.08	0.55				

A = BASIN DESIGNATION

DRAINAGE BASIN BOUNDARY

PROPOSED MAJOR CONTOUR

PROPOSED MINOR CONTOUR

EXISTING MAJOR CONTOUR

EXISTING MAJOR CONTOUR

DESIGN POINT

FLOW DIRECTION

PROPERTY LINE

B = AREA (ACRES)C = 100-YR COMPOSITE RUNOFF COEFFICIEND = 100 - YR DESIGN STORM RUNOFF (CFS)

NOTES

<u>LEGEND</u>

— — · XXXX - ·

—— XXXX ——