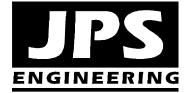
FINAL DRAINAGE REPORT

for


SETTLERS RANCH SUBDIVISION FILING NO. 3

Prepared for:

Hodgen Settlers Ranch, LLC PO Box 1488 Monument, CO 80908

April 22, 2024

Prepared by:

19 E. Willamette Avenue Colorado Springs, CO 80903 (719)-477-9429 www.jpsengr.com

JPS Project No. 030501 El Paso County PCD File No. SF-24-____

SETTLERS RANCH SUBDIVISION – FILING NO. 3 FINAL DRAINAGE REPORT <u>TABLE OF CONTENTS</u>

PAGE

	DRAINAGE STATEMENTi
I.	GENERAL LOCATION AND DESCRIPTION 1
II.	DRAINAGE BASINS AND SUB-BASINS
III.	DRAINAGE DESIGN CRITERIA 4
IV.	DRAINAGE PLANNING FOUR STEP PROCESS
V.	GENERAL DRAINAGE RECOMMENDATIONS
VI.	DRAINAGE FACILITY DESIGN
VII.	EROSION / SEDIMENT CONTROL 11
VIII.	COST ESTIMATE AND DRAINAGE FEES 11
IX.	SUMMARY 12

APPENDICES

alysis
-

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

John P. Schwab, P.E. #29891

Developer's Statement:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Printed Name: Mark Davis, Manager Hodgen Settlers Ranch, LLC P.O. Box 1488, Monument, CO 80132 Date

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Joshua Palmer, P.E. County Engineer / ECM Administrator

Conditions:

Date

I. GENERAL LOCATION AND DESCRIPTION

A. Background

Settlers Ranch is a rural residential subdivision located in northeastern El Paso County, Colorado. The Settlers Ranch property is located on the north side of Hodgen Road, east of State Highway 83 (SH83), as shown in Figure A1 (Appendix F). The originally approved 2005 Preliminary Plan and PUD for Settlers Ranch Subdivision consisted of 86 low-density residential lots (2.5-acre minimum size) on a 307-acre parcel. Previous development of the subdivision has been completed in several phases including Filing No. 1 (43 lots), Filing No. 2A (7 lots), Filing No. 2B (7 lots), and Filing No. 2C (11 lots).

Filing No. 3 is a replat of Tracts A-2, A-3, B, and C of Filing No. 2C. The proposed Filing No. 3 will complete development of the Settlers Ranch Subdivision. Filing No. 3 consists of 24 residential lots on the easterly 78.7 acres of the site, including 16 lots along easterly extension of Settlers Ranch Road to Steppler Road at the east end of the site. An additional 8 lots will be platted along a new cul-de-sac (Boundary Basin Court) extending south from Settlers Ranch Road in the southeasterly corner of the subdivision. Concurrently with the final plat for Filing No. 3, a re-zoning is being processed which will increase the number of lots in the easterly area of Filing No. 3 from 10 lots shown in the original Preliminary Plan to 16 lots currently proposed, while maintaining 2.5-acre minimum lot sizes.

B. Scope

This report is intended to fulfill the El Paso County requirements for a Final Drainage Report (FDR) for submittal with the final plat application for Filing No. 3. The report provides a summary of site drainage issues impacting the proposed development, including analysis of impacts from upstream drainage areas, site-specific developed drainage patterns, and impacts on downstream facilities. This FDR report has been prepared based on the guidelines and criteria presented in the El Paso County Drainage Criteria Manual.

Drainage planning for the Filing No. 3 area was previously studied in the "Final Drainage Report for Settlers Ranch Subdivision Filing No. 2" prepared by JPS Engineering, dated May 30, 2008. The proposed road layout for Filing No. 3 is entirely consistent with the road layout in the previously approved Filing No. 2 FDR.

C. Site Location and Description

The Settlers Ranch parcel is located in Section 23 and the northwest quarter (NW1/4) of Section 24, Township 11 South, Range 66 West of the 6th Principal Meridian. The Filing No. 3 site is currently a vacant meadow area.

The west side of the Filing No. 3 area adjoins previously platted filings of Settlers Ranch Subdivision. The north boundary of Filing No. 3 adjoins the previously platted rural subdivisions of Settlers View and Abert Ranch. The east boundary of Filing No. 3 adjoins Steppler Road, and

the southeast boundary adjoins existing rural ranch properties. The adjoining Stewart parcel to the southeast was recently re-zoned to RR-2.5 (2.5-acre minimum lot sizes).

Access to Settlers Ranch Filing No. 3 will be provided by the extension of Settlers Ranch Road easterly to a connection with Steppler Road at the easterly subdivision boundary. This filing will also include connection of Settlers Ranch Road to Abert Ranch Drive along the north boundary of the property.

Subdivision improvements will include paving of the new public roadways through the site, as well as grading, drainage, and utility service improvements for the proposed residential lots. Local roads will be classified as rural local public roads, with 60-feet rights-of-way and paved widths of 28-feet.

Surface drainage from this area flows northerly towards tributaries of West Cherry Creek and East Cherry Creek. The terrain is rolling with south to north slopes ranging from 2% to 12%. Existing vegetation is typical eastern Colorado prairie grass.

D. General Soil Conditions

As detailed in the previously approved "Final Drainage Report for Settlers Ranch Subdivision Filing No. 2" prepared by JPS Engineering, dated May 30, 2008, on-site soils are comprised of the following soil types (according to the NRCS Soil Survey of El Paso County):

- Type 41 "Kettle gravelly loamy sand": medium surface runoff, moderate erosion hazard (Hydrologic Group B)
- Type 67 "Peyton sandy loam": medium surface runoff, moderate erosion hazard (Hydrologic group B)
- Type 92 "Tomah-Crawfoot loamy sands": slow surface runoff, slight to moderate erosion hazard (Hydrologic Group B)

The soils within this property are characterized as hydrologic soils group B (moderate infiltration rates).

E. References

City of Colorado Springs and El Paso County "Drainage Criteria Manual, Volumes 1 and 2," revised October 31, 2018.

El Paso County "Engineering Criteria Manual," revised December 13, 2016.

FEMA, Flood Insurance Rate Map (FIRM) Number 08041C0305G, December 7, 2018.

Front Range Geotechnical Inc., "Soils and Geology Report for Hodgen Settlers Ranch, LLC," February, 2004.

JPS Engineering, Inc., "Drainage Letter Report for Settlers Ranch Subdivision Filing No. 2B," revised February 19, 2016 (approved by El Paso County 4/12/16; PCD File No. SF1512).

JPS Engineering, Inc., "Drainage Letter Report for Settlers Ranch Subdivision Filing No. 2C," March 22, 2019 (approved by El Paso County 6/18/19; PCD File No. SF1818).

JPS Engineering, Inc., "Final Drainage Report for Abert Ranch Subdivision," revised April 15, 2020 (approved by El Paso County 6/9/20; PCD File No. SF1911).

JPS Engineering, Inc., "Final Drainage Report for Settlers Ranch Subdivision Filing No. 1," October 18, 2005 (approved by El Paso County 10/19/05).

JPS Engineering, Inc., "Final Drainage Report for Settlers Ranch Subdivision Filing No. 2," revised May 30, 2008 (approved by El Paso County 5/31/09; PCD File No. SF06026).

JPS Engineering, Inc., "Final Drainage Report for Settlers View Subdivision," revised March 5, 2019 (approved by El Paso County 3/11/19; PCD File No. SF1841).

M.V.E., Inc., "Settlers Ranch Preliminary Drainage Report," December 13, 2004.

II. DRAINAGE BASINS AND SUB-BASINS

A. Major Basin Description

The Settlers Ranch Subdivision lies within both the West Cherry Creek Drainage Basin (CYCY 0400) and East Cherry Creek Drainage Basin (CYCY 0200), as classified by El Paso County. Drainage from the west part of Filing No. 3 flows northerly to an eastern tributary of West Cherry Creek, which flows to a confluence with the main channel north of Walker Road. Downstream agricultural areas generally drain northerly towards the main channel of West Cherry Creek. Drainage from the east part of Filing No. 3 generally flows northeasterly to a tributary of East Cherry Creek.

No drainage planning study has been completed for this drainage basin, or any adjacent drainage basins. The Settlers Ranch parcel is located near the southerly limits of the West Cherry Creek and East Cherry Creek Drainage Basins, each of which comprise total drainage areas in excess of 30 square miles. As such, the proposed 307-acre Settlers Ranch Subdivision represents less than 2 percent of the total basin area, which is primarily agricultural land.

B. Floodplain Impacts

Settlers Ranch Filing No. 3 is located beyond the limits of any 100-year floodplain delineated by the Federal Emergency Management Agency (FEMA). The floodplain limits in the vicinity of the site are shown in Flood Insurance Rate Map (FIRM) Number 08041C0305G dated December 7, 2018, as shown in the enclosed Firmette exhibit (Appendix F).

C. Sub-Basin Description

The developed drainage basins lying within the proposed development are depicted on Figure D1-SR. The developed site layout has been divided into sub-basins based on the proposed road layout within the site. The natural drainage patterns will be impacted through development by site grading and concentration of runoff in subdivision roadside ditches and channels. On-site flows will be conveyed to the existing natural drainage swales and channels running through the property, following historic drainage paths.

III. DRAINAGE DESIGN CRITERIA

A. Development Criteria Reference

No Drainage Basin Planning Study (DBPS) has been completed for either the West Cherry Creek Drainage Basin or the East Cherry Creek Drainage Basin. Previous drainage reports for recently completed subdivision filings have proposed to provide on-site detention for mitigation of developed flows.

Drainage planning for the Filing No. 3 area was previously studied in the "Final Drainage Report for Settlers Ranch Subdivision Filing No. 2" prepared by JPS Engineering, dated May 30, 2008. The proposed road layout for Filing No. 3 is entirely consistent with the road layout in the previously approved Filing No. 2 FDR.

B. Hydrologic Criteria

Rational Method procedures were utilized for calculation of peak flows within the on-site drainage basins. Rational Method hydrologic calculations are based on the following assumptions:

٠	Design storm (minor)	5-year	
•	Design storm (major)	100-year	
٠	Rainfall Intensities	El Paso Count	y I-D-F Curve
٠	Hydrologic soil type	В	
		<u>C5</u>	<u>C100</u>
٠	Runoff Coefficients - undeveloped:		
	Existing pasture/range areas	0.25	0.35
٠	Runoff Coefficients - developed:		
	Proposed lot areas (2.5-acre lots)	0.170	0.417

Hydrologic calculations are enclosed in Appendix B, and peak design flows are identified on the drainage basin drawings.

IV. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls. As stated in DCM Volume 2, the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

- Minimize Impacts: The proposed rural residential subdivision development with 2.5-acre minimum lot sizes provides for inherently minimal drainage impacts based on the limited impervious areas associated with rural residential development.
- Minimize Directly Connected Impervious Areas (MDCIA): The rural residential development will have roadside ditches along all roads, providing for impervious areas to drain across pervious areas. Based on the roadside ditches throughout the subdivision, the subdivision is classified as MDCIA Level One.
- Grass Swales: The proposed roadside ditches will drain to existing and proposed grasslined drainage swales following historic drainage patterns through the property.

Step 2: Stabilize Drainageways

- There are no major drainageways within the Filing No. 3 site. Vegetated buffer strips will be maintained between developed areas of the site and downstream drainage channels.
- Proper erosion control measures will be implemented along the roadside ditches and grass-lined drainage channels to provide stabilized drainageways within the site.

Step 3: Provide Water Quality Capture Volume (WQCV)

• EDB: Extended Detention Basin (EDB) facilities mitigate developed drainage impacts by providing stormwater detention and water quality capture volume (WQCV). The existing Settlers Ranch Detention Pond #4 was previously upgraded with Filing No. 2B and serves the westerly part of Filing No. 3. The existing Settlers View Detention Pond #S3 and Abert Ranch Detention Pond #I provide detention and water quality for the northern areas of Settlers Ranch Filing No. 3. The proposed Settlers Ranch Detention Pond #5 provides detention and water quality for the southeasterly part of Settlers Ranch Filing No. 3.

Step 4: Consider Need for Industrial and Commercial BMPs

• No industrial or commercial land uses are proposed within this rural residential subdivision.

V. GENERAL DRAINAGE RECOMMENDATIONS

The developed drainage plan for the site is to provide and maintain positive drainage away from structures and conform to the established drainage patterns for the overall subdivision. JPS Engineering recommends that positive drainage be established and maintained away from all structures within the site in conformance with applicable building codes and geotechnical engineering recommendations.

Individual lot grading and drainage is the sole responsibility of the individual builders and property owners. Final grading of each home site should establish proper protective slopes and positive drainage in accordance with HUD guidelines and building codes. In general, main floor elevations for each home should be established a minimum of 2 feet above the top of curb (or pavement) of the adjoining street.

We recommend a minimum of 6 inches clearance from the top of concrete foundation walls to adjacent finished site grades. Positive drainage slopes should be maintained away from all structures, with a minimum recommended slope of 5 percent for the first 10 feet away from buildings in landscaped areas, a minimum recommended slope of 2 percent for the first 10 feet away from buildings in paved areas, and a minimum slope of 1 percent for paved areas beyond buildings.

VI. DRAINAGE FACILITY DESIGN

A. General Concept

Development of the Settlers Ranch Subdivision will require site grading and paving, resulting in additional impervious areas across the site. The general drainage pattern will consist of grading away from home sites to swales and roadside ditches along the roads within the subdivision, conveying runoff flows through the site. Runoff from the site will flow by roadside ditches to cross culverts at low points in the road profiles, and grass-lined channels connecting to existing natural swales at the site boundaries.

The stormwater management concept for the Settlers Ranch development will be to provide roadside ditches and natural swales as required to convey developed drainage through the site to existing natural outfalls. Individual lot grading will provide positive drainage away from building sites, and direct developed flows into the system of roadside ditches and drainage swales running through the subdivision.

An existing stock pond within Settlers Ranch Filing No. 2 was previously upgraded to serve as "Detention Pond #4", which mitigates developed drainage impacts from the west side of Filing No. 3. Existing detention ponds within the adjoining Settlers View and Abert Ranch Subdivisions were designed to accept developed flows from the north side of Filing No. 3. The proposed "Detention Pond #5" will be constructed on the west side of Steppler Road to mitigate the impact of developed flows from the east side of Filing No. 3.

B. Specific Details

1. Existing Drainage Conditions

Historic drainage conditions are detailed in the previously approved "Final Drainage Report for Settlers Ranch Subdivision Filing No. 2" prepared by JPS Engineering, dated May 30, 2008.

2. Developed Drainage Conditions

The developed drainage basins and projected flows are shown in the attached "Figure D1-SR: Developed Drainage Plan" (Appendix F). The proposed Filing No. 3 area lies within Basins D5-D14.

Filing No. 3 - Lots 17-24 (Boundary Basin Court)

Th westerly part of Filing No. 3 is area lies within parts of Basins D5, D7, and D9, and these basins flow northwesterly to existing grass-lined drainage swales along the northern subdivision boundary.

The proposed Filing No. 3 lots on the northeast side of Boundary Basin Court lie within Basin D5c, which flows to the existing Culvert D5c (36" RCP). Culvert D5c crosses Settlers Ranch Road on the north side of Boundary Basin Court, ultimately flowing to the existing downstream Detention Pond #4. Developed peak flows at Design Point #D5c are calculated as $Q_5 = 11.0$ cfs and $Q_{100} = 45.4$ cfs.

The proposed Filing No. 3 lots at the southeast end of Boundary Basin Court lie within Basins D5b and D7b, and these basins flow westerly to the proposed Culvert D7b (18" RCP), which flows westerly across Boundary Basin Court. Developed peak flows at Design Point #D7b are calculated as of $Q_5 = 2.8$ cfs and $Q_{100} = 11.6$ cfs.

The proposed Filing No. 3 lots along the west side of Boundary Basin Court lie within Basins D5a and D7a, and these basins flow northwesterly to the existing Culvert D5a (36" RCP). Culvert D5a crosses Settlers Ranch Road on the south side of Boundary Basin Court and flows to the existing downstream Detention Pond #4. Developed flows from Basins D5a, D5b, D7a, and D7b combine at Design Point #D5a, with peak flows calculated as $Q_5 = 15.0$ cfs and $Q_{100} = 61.6$ cfs.

The existing stock pond near the north boundary of Settlers Ranch Subdivision was previously upgraded to serve as "Detention Pond #4," mitigating the impact of developed flows from the west part of the Filing No. 3 area (including Design Points #5a and #D5c). Detention Pond #4 is an Extended Detention Basin (EDB) located within Tract A of Settlers Ranch Filing No. 2A, and this pond provides both stormwater detention and water quality. Detention Pond #4 improvements were previously completed as part of Filing No. 2B.

Filing No. 3 - Lot 1 (NW side of Settlers Ranch Road)

The proposed Lot 1 of Filing No. 3 lies within Basin D9a along the northwest side of Settlers Ranch Road. Settlers Ranch Road has been constructed by previous phases of the subdivision to a temporary cul-de-sac along the frontage of Lot 1, and the temporary cul-de-sac will be removed as the roadway is completed to the east with Filing No. 3. Basins D9a-D9c flow northwesterly to Design Pont #D9, with peak flows calculated as $Q_5 = 9.4$ cfs and $Q_{100} = 38.6$ cfs. The developed flows from Basins D9a-D9c have been fully accounted for in the previously developed Settlers View Subdivision which adjoins Settlers Ranch to the northwest, and there is no change in the Filing No. 3 lot layout impacting this area.

Filing No. 3 – Lots 2-16 (Easterly extension of Settlers Ranch Road)

The proposed lots on the east side of Filing No. 3 lie within Basins D10-D14. Basins D11a and D11b drain northeasterly to Design Point #D11, with developed peak flows calculated as $Q_5 = 8.9$ cfs and $Q_{100} = 36.7$ cfs.

Basin D12 will continue to drain northerly to Design Point #D12 along the northern subdivision boundary, with developed peak flows calculated as $Q_5 = 7.3$ cfs and $Q_{100} = 29.9$ cfs.

Developed Basins D11 and D12 will continue to drain northeasterly through existing natural swales, with combined peak flows of $Q_5 = 15.2$ cfs and $Q_{100} = 62.7$ cfs at Design Point #4.

Developed flows from Basins D11-D12 have been accounted for in the drainage planning for Abert Ranch Subdivision which adjoins Settlers Ranch to the north. Development of Abert Ranch Subdivision included upgrade of an existing stock pond to serve as "Detention Pond #I." While the proposed Filing No. 3 increases the number of rural residential lots within Basins D11-D12 from 3 to 5, the 2.5-acre minimum lot sizes result in a negligible drainage impact. As detailed in Appendix D1, the existing Abert Ranch Detention Pond #I has ample capacity to accept developed flows from the currently proposed 2.5-acre lot sizes within Basins D11-D12 of Settlers Ranch Filing No. 3.

Developed Basins D10 and D14 will continue to drain southeasterly through existing grasslined swales. Developed flows from Basins D10 and D14 combine at Design Point #5, with peak flows calculated as $Q_5 = 10.2$ cfs and $Q_{100} = 41.8$ cfs. The proposed "Pond #5" near the southeast corner of the site has been designed to provide stormwater detention and water quality for Basins D10 and D14. Detained peak flows at Design Point #5 are calculated as Q_5 = 4.1 cfs and $Q_{100} = 18.6$ cfs.

Basin D13 will continue to drain easterly towards Steppler Road, with developed peak flows calculated as $Q_5 = 3.8$ cfs and $Q_{100} = 15.6$ cfs. These flows are conveyed easterly across Steppler Road in an existing 24" RCP culvert.

D. Detention Ponds

Stormwater detention and water quality for the subdivision will be provided by a combination of existing and proposed detention ponds.

Settlers Ranch Detention Pond #4

Settlers Ranch Detention Pond #4 is an existing stock pond located along the drainage channel running through the westerly part of the Filing No. 2 property, and this pond was previously upgraded to serve as a detention pond serving the westerly parts of Filing No. 3.

Detention Pond #4 was designed to provide stormwater detention and water quality for Basins D5-D7, accepting developed flows from the 2.5-acre lots (impervious area of 11%) on the west side of Settlers Ranch Filing No. 3.

Settlers View Detention Pond #S3

Detention Pond #S3 within the adjoining Settlers View Subdivision was designed to provide stormwater detention and water quality, accepting developed flows from the 2.5-acre lots (impervious area of 11%) within Settlers Ranch Basin D9.

Abert Ranch Detention Pond #I

Detention Pond #I within the adjoining Abert Ranch Subdivision was designed to provide stormwater detention and water quality, accepting developed flows from the 5-acre lots anticipated within Settlers Ranch Basins D11-D12. As detailed in Appendix D1, the impervious area impact of the currently proposed Filing No. 3 has been evaluated, confirming that the existing Detention Pond #I has ample capacity to accept the developed flows from the currently proposed 2.5-acre minimum lot sizes in Basins D11-D12. The currently proposed Settlers Ranch Filing No. 3 increases the total impervious area tributary to Detention Pond #I from 8.6% to 9.8%, resulting in a required 100-year detention volume increase from 3.3 acre-feet to 3.5 acre-feet, which is well below the existing design volume of 4.4 acre-feet.

Settlers Ranch Detention Pond #5

Filing No. 3 drainage improvements will include construction of the proposed Detention Pond #5 at the southeast corner of the subdivision, providing stormwater detention and water quality at Design Point #5. Detention Pond #5 has been designed as a Private Full-Spectrum Extended Detention Basin (EDB) to meet current full-spectrum detention design standards. The proposed Detention Basin has been designed utilizing the Denver Mile High Flood District's "MH-Detention_v4.06" software package.

Calculations and details for the proposed Detention Basin are enclosed in Appendix D2, and design parameters for the Detention Basin are summarized as follows:

Detention Basin	Tributary Drainage Basins	Tributary Area (ac)	Impervious Percentage	Min. 100-Yr FSD Vol. (af)	Design Volume (af)
SR #5	D10,D14	18.9	11.0	0.7	0.8

The proposed Full-Spectrum Detention Pond #5 provides a storage volume of 0.8 acre-feet, which meets the required 100-year detention and WQCV volume.

The proposed detention pond will include an outlet structure with a water quality orifice plate to maintain discharges below the allowable release rates. The pond outlet structure has been designed for a 40-hour release of the WQCV, with outlet sizing to maintain maximum allowable release rates from the pond. The detention pond will have a grass-lined bottom to encourage infiltration of stormwater prior to discharging into the downstream drainage system.

A concrete forebay has been designed at the entrance to the proposed detention pond (see "UD-BMP" calculation in Appendix D2). A concrete trickle channel will be provided along the bottom of the pond between the forebay and outlet structure.

A buried riprap spillway will be provided for stabilization of the pond overflow spillway, which has been sized to convey the fully-developed flow entering the detention pond in the event of a fully clogged condition. Based on the relatively low developed peak flow entering the pond at Design Point No. 5 ($Q_{100} = 41.8$ cfs), buried riprap will provide appropriate stabilization and there is no need for concrete cutoff walls for the spillway or underground piping.

The proposed detention pond will be privately owned and maintained by the subdivision homeowners association (HOA), and a 15-foot wide gravel maintenance access driveway will be provided from Steppler Road along the east boundary of the site.

As detailed in the detention basin calculations in Appendix D2, detained peak flows from Detention Basin #5 are calculated as $Q_5 = 4.1$ cfs and $Q_{100} = 18.6$ cfs, and the detained flows are below the calculated existing condition flows at Design Point No. 5 ($Q_5 = 10.4$ cfs and $Q_{100} = 25.5$ cfs).

Areas Excluded from Water Quality Facilities

Basin D13 is excluded from permanent water quality requirements based on ECM Appendix I.7.1.C.1, which allows for 20%, not to exceed 1-acre, of the applicable development site area to not be captured. While the total area of Basin D13 is 5.7-acres, the applicable soil disturbance in this basin is limited to approximately 0.6 acres (calculated based on half of the ROW width of 790 feet of proposed Settlers Ranch Road length), which is below the 1-acre limit for exclusion.

E. On-Site Drainage Facility Design / Hydraulic Calculations

Developed sub-basins and proposed drainage improvements are depicted in the enclosed Drainage Plan (Sheet D1-SR). On-site drainage facilities will consist of roadside ditches and culverts. Hydraulic calculations for the proposed Filings No. 3 drainage facilities (roadside ditches and culvert) are enclosed in Appendix C1 and C2.

F. Anticipated Drainage Problems and Solutions

The existing Settlers Ranch Detention Pond #4, Settlers View Detention Pond #S3, Abert Ranch Detention Pond #I, and proposed Settlers Ranch Detention Pond #5 have been designed to mitigate the impacts of developed drainage from this project. The overall drainage plan for the subdivision includes a system of roadside ditches, channels, and culverts to convey developed flows through the site. The primary drainage problems anticipated within this development will consist of maintenance of these drainage channels, culverts, and detention pond facilities. Care will need to be taken to implement proper erosion control measures in the roadside ditches, channels, and swales. Ditches have been designed to meet allowable velocity criteria. Erosion control mats have been specified where necessary to minimize erosion concerns. Proper construction and maintenance of the detention facilities will minimize downstream drainage impacts. Public roadway improvements and ditches within the public right-of-way are owned and maintained by El Paso County. The stormwater detention ponds are owned and maintained by the applicable subdivision HOA.

VII. EROSION / SEDIMENT CONTROL

The Contractor will be required to implement control measures for erosion and sediment control through the course of construction. Sediment control measures will include installation of silt fence at the toe of disturbed areas along with straw bales and other control measures. Cut slopes will be stabilized during excavation as necessary and vegetation will be established for stabilization of disturbed areas as soon as possible. All ditches have been designed to meet El Paso County criteria for slope and velocity. The proposed detention pond will also serve as a temporary sediment basin during the construction phase of the project.

VIII. COST ESTIMATE AND DRAINAGE FEES

Cost estimates for the proposed drainage improvements are enclosed in Appendix E. The estimated cost for the on-site drainage improvements is approximately \$9,067.

The estimated cost of the proposed private detention facilities (Detention Pond #5) is approximately \$53,284.

The developer will be responsible for all construction costs for proposed roadway and drainage improvements, and public facilities will be owned and maintained by El Paso County upon final acceptance. Private drainage facilities will be owned and maintained by the subdivision HOA.

This parcel is located in the West Cherry Creek and East Cherry Creek Drainage Basins. No drainage and bridge fees will be due at the time of recordation of the final plat as the subject site is not located in a fee basin.

IX. SUMMARY

Settlers Ranch Filing No. 3 is the final phase of the Settlers Ranch Subdivision in northeastern El Paso County. The proposed Filing No. 3 consists of 24 lots in the easterly part of the site. Development of this subdivision will generate an increase in developed runoff from the site, which will be mitigated through a combination of existing and proposed stormwater detention facilities. The proposed drainage patterns will remain consistent with historic conditions, and new drainage facilities constructed to El Paso County standards will safely convey runoff to suitable outfalls.

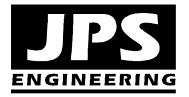
The proposed development of Settlers Ranch Filing No. 3 fully conforms to the previously approved drainage plan for this subdivision, as detailed in the "Final Drainage Report for Settlers Ranch Filing No. 2." Construction and proper maintenance of the proposed drainage and erosion control facilities will ensure that this subdivision will not adversely affect downstream or surrounding areas.

APPENDIX A

EXCERPTS FROM ADJOINING SUBDIVISION DRAINAGE REPORTS

DRAINAGE LETTER REPORT

for


SETTLERS RANCH FILING NO. 2C

Prepared for:

Hodgen Settlers Ranch LLC PO Box 1488 Monument, CO 80132

March 22, 2019

Prepared by:

19 E. Willamette Avenue Colorado Springs, CO 80903 (719)-477-9429 www.jpsengr.com

JPS Project No. 111603 PCD File No.: SF-18-018

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in prepared the transformation.

John P. Schwab, P.E. #29891 Developer's Statement:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By: /

Printed Name: Mark Davis, Manager Hodgen Settlers Ranch, LLC P.O. Box 1488, Monument, CO 80132

County Engineer / ECM Administrator

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Date

Conditions:

Jennifer Irvine, P.E.

Colorado Springs, CO 80903 (719)-477-9429 (719)-471-0766 fax

SETTLERS RANCH FILING NO. 2 – FILING NO. 2C DRAINAGE LETTER REPORT PCD File No. SF-18-018

A. Background

This Drainage Letter Report has been prepared in support of the final plat submittal for Phase 2C of Settlers Ranch Filing No. 2. The proposed Phase 2C consists of 11 single-family residential lots on a 33.6-acre parcel along Settlers Ranch Road, with minimum lot sizes of 2.5 acres.

El Paso County previously approved the "Final Drainage Report for Settlers Ranch Subdivision Filing No. 2" prepared by JPS Engineering, dated May 30, 2008. As shown in the attached "Figure D1: Developed Drainage Plan," the majority of the area within Phase 2C of Filing No. 2 lies within Sub-Basins D8a-D8d and D9a-D9c. This area generally sheet flows northwesterly to existing grass-lined drainage swales at Design Points #D8 and #D9. As discussed in the approved subdivision drainage report, the existing stock pond near the north boundary of the Settlers Ranch property will be upgraded to serve as "Detention Pond #4," mitigating the impact of developed flows from this part of the site (including Design Points #3, D8, and D9). Detention Pond No. 4 is an Extended Detention Basin (EDB) located within Tract A of Settlers Ranch Filing No. 2A, and this pond provides both stormwater detention and water quality. The proposed detention pond improvements were included as part of the previous Filing No. 2B.

B. Drainage Planning Four-Step Process

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in DCM Volume 2, the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

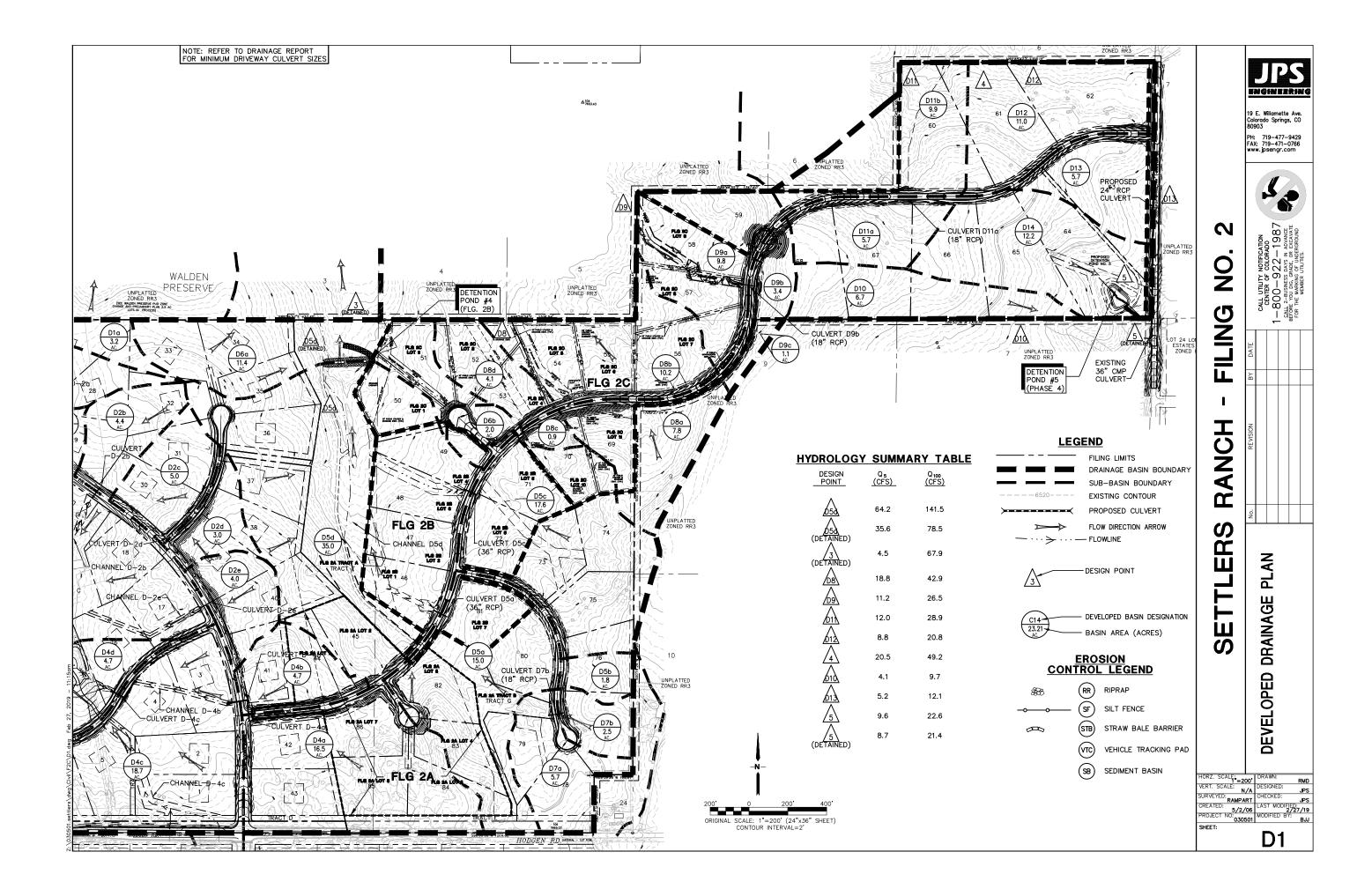
- Minimize Impacts: The proposed rural residential subdivision development with 2.5-acre minimum lot sizes provides for inherently minimal drainage impacts based on the limited impervious areas associated with rural residential development.
- Minimize Directly Connected Impervious Areas (MDCIA): The rural residential development will have roadside ditches along all roads, providing for impervious areas to drain across pervious areas. Based on the roadside ditches throughout the subdivision, the subdivision is classified as MDCIA Level One.
- Grass Swales: The proposed roadside ditches will drain to existing and proposed grass-lined drainage swales following historic drainage patterns through the property.

Step 2: Stabilize Drainageways

• Proper erosion control measures will be implemented along the roadside ditches and grass-lined drainage channels to provide stabilized drainageways within the site.

Step 3: Provide Water Quality Capture Volume (WQCV)

• EDB: An existing Extended Detention Basin (EDB) mitigates developed drainage impacts from this filing. Detention Pond #4 was previously upgraded with Filing No. 2B.


Step 4: Consider Need for Industrial and Commercial BMPs

• No industrial or commercial land uses are proposed within this rural residential subdivision.

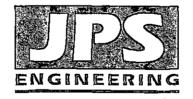
C. Summary

In summary, the proposed development of Settlers Ranch Filing No. 2C conforms to the previously approved drainage plan for this subdivision as detailed in the "Final Drainage Report for Settlers Ranch Filing No. 2." This phase of development will include culverts and drainage improvements as detailed in the approved subdivision drainage report.

As noted in the previously approved report, this part of the Settlers Ranch site lies within the West Cherry Creek Drainage Basin, and no drainage basin fees or bridge fees are applicable in this basin.

DRAINAGE LETTER REPORT

for


SETTLERS RANCH SUBDIVISION FILING NO. 2B

Prepared for:

Hodgen Settlers Ranch, LLC PO Box 1488 Monument, CO 80908

December 30, 2015 Revised February 18, 2016

Prepared by:

19 E. Willamette Avenue Colorado Springs, CO 80903 (719)-477-9429 (719)-471-0766 fax www.jpsengr.com

JPS Project No. 030501

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this and the file of the file

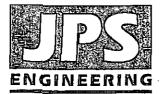
John P. Schwab, P.E. #29891 Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Printed Name: Mark Davis, Manager

Hodgen Settlers Ranch, LLC PO Box 1488 Monument, CO 80132


El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Andre P. Brackin, P.E. County Engineer / ECM Administrator 4-12-16

Date

Conditions:

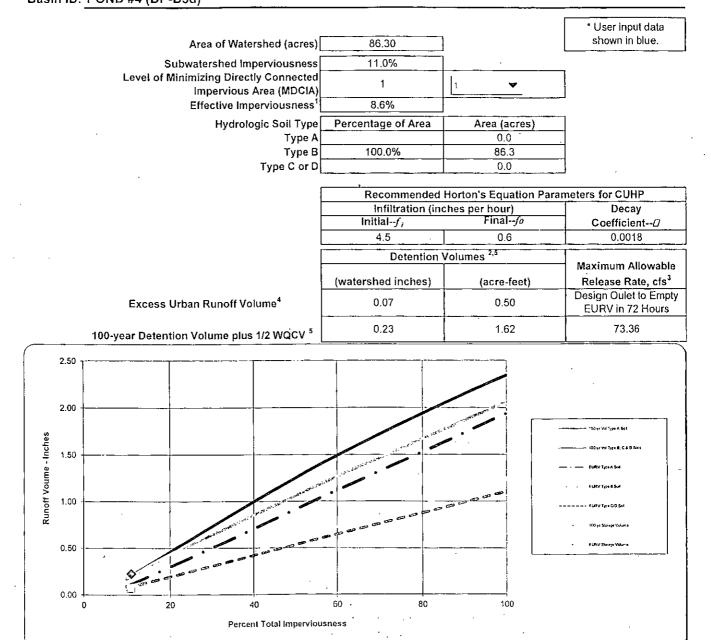
19 E. Willamette Avenue Colorado Springs, CO 80903 (719)-477-9429 (719)-471-0766 fax

SETTLERS RANCH FILING NO. 2 – FILING NO. 2B DRAINAGE LETTER REPORT December, 2015

This Drainage Letter Report has been prepared in support of the final plat submittal for Phase 2B of Settlers Ranch Filing No. 2. The proposed Phase 2B consists of 7 single-family residential lots along Settlers Ranch Road, with minimum lot sizes of 2.5 acres.

El Paso County previously approved the "Final Drainage Report for Settlers Ranch Subdivision Filing No. 2" prepared by JPS Engineering, dated May 30, 2008. As shown in the attached "Figure D1: Developed Drainage Plan," the majority of the area within Phase 2B of Filing No. 2 lies within Sub-Basins D5a, D5c, and D5d. This area drains northwesterly through an open space tract to an existing stock pond, which then flows northerly through two existing downstream ponds within the Walden Subdivision to the north. As detailed in the approved subdivision drainage report, the existing stock pond near the north boundary of the Settlers Ranch property will be upgraded to serve as "Detention Pond #4," and the proposed pond improvements will be constructed as part of Filing No. 2B.

The detention pond calculations for Pond #4 have been updated with this Drainage Letter Report providing for full-spectrum detention as required by current County drainage criteria. Updated pond design calculations using the Denver Urban Drainage & Flood Control District's "UD-Detention" software are attached to this report.


In summary, the proposed development of Settlers Ranch Filing No. 2B conforms to the previously approved drainage plan for this subdivision as detailed in the "Final Drainage Report for Settlers Ranch Filing No. 2." This phase of development will include construction of Detention Pond #4 and related culverts and drainage channel improvements as detailed in the approved subdivision drainage report.

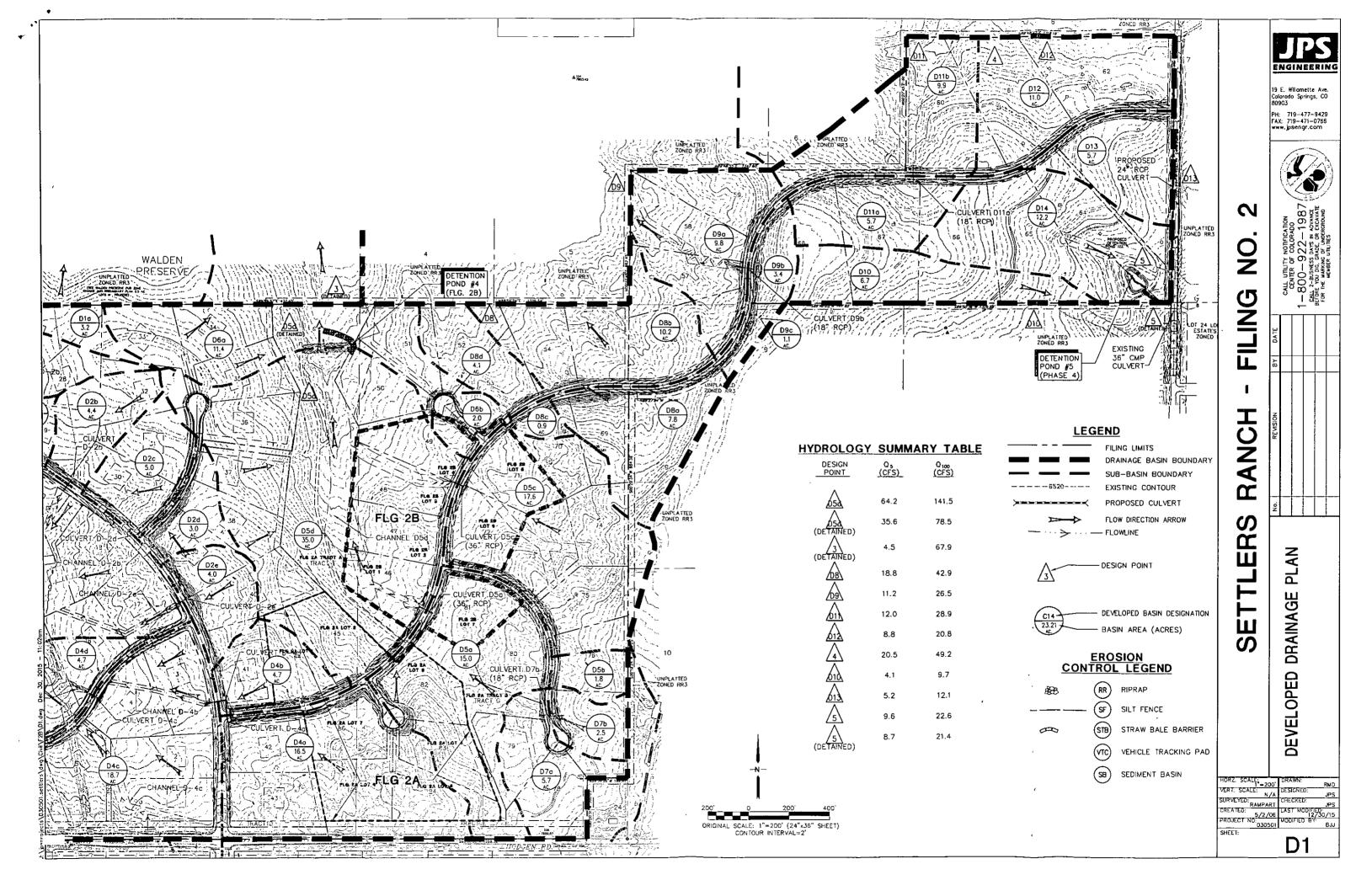
. . .

As noted in the previously approved report, this part of the Settlers Ranch site lies within the West Cherry Creek Drainage Basin, and no drainage basin fees or bridge fees are applicable in this basin.

DETENTION VOLUME BY THE FULL SPECTRUM METHOD

Project: SETTLERS RANCH FILING 2B Basin ID: POND #4 (DP-D5d)

Notes:


1) Effective imperviousness is based on Figure ND-1 of the Urban Storm Drainage Criteria Manual (USDCM).

2) Results shown reflect runoff reduction from Level 1 or 2 MDCIA and are plotted at the watershed's total imperviousness value; the impact of MDCIA is reflected by the results being below the curves.

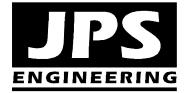
3) Maximum allowable release rates for 100-year event are based on Table SO-1. Outlet for the Excess Urban Runoff Volume (EURV) to be designed to empty out the EURV in 72 hours. Outlet design is similar to one for the WQCV outlet of an extended detention basin (i.e., perforated plate with a micro-pool) and extends to top of EURV water surface elevation.

4) EURV approximates the difference between developed and pre-developed runoff volume.

5) User has opted to add 1/2 the WQCV to the 100-year detention volume to satisfy local regulations. This is not required per the USDCM.

FINAL DRAINAGE REPORT

for


SETTLERS VIEW SUBDIVISION

Prepared for:

Hannigan and Associates, Inc. 19360 Spring Valley Road Monument, CO 80132

July 31, 2018 Revised January 28, 2019 Revised March 5, 2019

Prepared by:

19 E. Willamette Avenue Colorado Springs, CO 80903 (719)-477-9429 (719)-471-0766 fax www.jpsengr.com

JPS Project No. 111603 PCD File No.: SF-18-041 Basin S discharges to an existing grass-lined drainage swale flowing westerly across the adjoining 40-acre property to the existing downstream drainage channel and series of ponds within the Walden Preserve Subdivision.

2. Developed Drainage Conditions

The developed drainage basins and projected flows are shown in Figure D1, and hydrologic calculations are enclosed in Appendix B.

The east side of the property has been delineated as Basins A, B, and C in the developed condition, and these basins will continue to sheet flow easterly through the proposed Abert Ranch Subdivision.

Basin A flows easterly to Design Point #A, with developed peak flows calculated as $Q_5 = 5.5$ cfs and $Q_{100} = 22.4$ cfs. Basin B flows easterly to Design Point #B, with developed peak flows calculated as $Q_5 = 1.7$ cfs and $Q_{100} = 6.8$ cfs. Basin C flows easterly to Design Point #C, with developed peak flows calculated as $Q_5 = 0.8$ cfs and $Q_{100} = 3.1$ cfs. Combined developed flows from Basins A, B, and C are calculated as $Q_5 = 7.6$ cfs and $Q_{100} = 31.2$ cfs (Design Point #A1).

Development plans for the proposed Abert Ranch Subdivision on the adjoining ranch property to the east include upgrade of an existing stock pond to meet stormwater detention requirements for the Abert Ranch site, including the minimal developed drainage contribution from Settlers View Basins A, B, and C. Recognizing the minimal developed area along the east side of Settlers View Subdivision, there will be no significant adverse impact on the Abert Ranch property if Settlers View is fully developed before development of Abert Ranch Subdivision and the upgrade to the existing stock pond.

The west side of the property has been delineated as Basins S1-S4 based on the developed road configuration, and these basins will continue to flow westerly to the existing drainage swale at the western property boundary.

Developed Basin S1 will flow southwesterly to the proposed Culvert S1 crossing Silver Nell Drive at Design Point #S1. Culvert S1 will flow southwesterly along Ditch S3 on the west side of Settlers View Road to a proposed Full-Spectrum Detention Pond (Pond S3) at the west boundary of the subdivision. Ditch S3 will be stabilized with erosion control blanket lining.

Off-site drainage from Basin D9 of the adjoining Settlers Ranch Subdivision will flow northwesterly through Basin S2 to the proposed Culvert S2 crossing Settlers View Road at Design Point #S2, continuing through a grass-lined channel to Detention Pond S3.

Flows from Basins D9 and S1-S3 combine at Design Point #S3, with developed peak flows of $Q_5 = 19.0$ cfs and $Q_{100} = 78.1$ cfs. Developed flow impacts from the subdivision will be mitigated by routing flows through Detention Pond #S3.

Off-site Basin OS1 will continue to flow northwesterly through Basin S4 to the west boundary of the site.

Flows from Basins D9, OS1, and S1-S4 ultimately combine at downstream Design Point #S, with developed peak flows calculated as $Q_5 = 22.0$ cfs and $Q_{100} = 90.6$ cfs.

C. Comparison of Developed to Historic Discharges

Based on the hydrologic calculations in Appendix B, the proposed development will result in developed flows exceeding historic flows from the parcel. The increase in developed flows will be mitigated through on-site stormwater detention facilities.

The comparison of developed to historic discharges at key design points is summarized as follows:

	H	listoric Flo	ow	Dev	eloped F	low	Comparison of Developed
Design	Area	Q5	Q100	Area	Q5	Q100	to Historic Flow
Point	(ac)	(cfs)	(cfs)	(ac)	(cfs)	(cfs)	(Q5%/Q100%)
A1	15.0	3.0	21.6	15.0	7.6	31.2	253% / 144% (increase)
S	46.8	10.0	73.1	46.8	22.0	90.6	220% / 124% (increase)

D. Detention Ponds

The Developed storm runoff downstream of the proposed subdivision will be maintained at historic levels by routing flows through a proposed detention pond at the west boundary of the property. Pond #S3 will be constructed as a Full-Spectrum Detention (FSD) Pond to mitigate developed flow impacts from the proposed subdivision. The pond outlet structure has been designed with multiple orifice openings to detain the full spectrum of storm events.

Detailed pond routing calculations have been performed utilizing the Denver Urban Drainage "UD-Detention" software package (see Appendix C). The pond outlet structure configuration has been designed to maintain the calculated pond discharge below the target outflow, while maintaining the maximum water surface elevation below the pond spillway. Final detention pond design parameters are summarized as follows:

Pond	Inflow	Outflow	Volume	Outlet
	(Q_{100}, cfs)	(Q_{100}, cfs)	(ac-ft)	Structure
Pond #S3	68.2	39.0	1.3	30-inch SD w/ orifice plates

SETTLERS VIEW SUBDIVISION COMPOSITE RUNOFF COEFFICIENTS - TYPICAL RURAL RESIDENTIAL LOTS

5-ACRE LOTS	2.50	7.00	BUILDING / PAVEMENT	0.96	93.00	LANDSCAPED	0.35				0.393
2.5-ACRE LOTS	2.50	11.00	BUILDING / PAVEMENT	0.96	89.00	LANDSCAPED	0.35				0.417
BASIN	TOTAL AREA (AC)	AREA (%)	SUB-AREA 1 DEVELOPMENT/ COVER	С	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	С	AREA (%)	SUB-AREA 3 DEVELOPMENT/ COVER	С	WEIGHTE C VALUE
100-YEAR C VALL	ES										
5-ACRE LOTS	2.50	7.00	BUILDING / PAVEMENT	0.90	93.00	LANDSCAPED	0.08				0.137
2.5-ACRE LOTS	2.50	11.00	BUILDING / PAVEMENT	0.90	89.00	LANDSCAPED	0.08				0.170
BASIN	TOTAL AREA (AC)	AREA (%)	SUB-AREA 1 DEVELOPMENT/ COVER	С	AREA (%)	SUB-AREA 2 DEVELOPMENT/ COVER	С	AREA (%)	SUB-AREA 3 DEVELOPMENT/ COVER	С	WEIGHTE C VALUE

SETTLERS VIEW RATIONAL METHOD

DEVELOPED FLOWS

					Ove	rland Flo	w		Char	nnel flow			1					
54001	5501011		5 X 5 4 5 ⁽⁷⁾	С			- (1)		CONVEYANCE		SCS ⁽²⁾	- . (3)	TOTAL Tc ⁽⁴⁾	TOTAL Tc ⁽⁴⁾				(FLOW
BASIN	POINT	AREA (AC)	5-YEAR"	100-YEAR ⁽⁷⁾	LENGTH (FT)	SLOPE (FT/FT)			COEFFICIENT C	SLOPE (FT/FT)	VELOCITY (FT/S)	Tt ⁽³⁾ (MIN)	(MIN)	(MIN)	5-YR (IN/HR)	100-YR (IN/HR)	Q5 (%) (CFS)	Q100 ⁽⁶⁾ (CFS)
WEST CHERRY	CREEK	BASIN																
OS1	OS1	4.01	0.170	0.417	300	0.073	15.2	450	15.00	0.058	3.61	2.1	17.3	17.3	3.31	5.55	2.25	9.28
S4		2.46	0.080	0.350			0.0	200	15.00	0.05	3.35	1.0	1.0	5.0	5.17	8.68	1.02	7.47
OS1,S4	S4	6.47	0.136	0.392									18.3	18.3	3.22	5.41	2.83	13.71
S1	S1	4.30	0.170	0.417	300	0.033	19.8	0				0.0	19.8	19.8	3.10	5.21	2.27	9.34
D9	D9	14.30	0.170	0.417	250	0.080	13.5	700	15.00	0.074	4.08	2.9	16.3	16.3	3.39	5.70	8.25	33.97
S2	S2a	9.04	0.170	0.417	300	0.073	15.2	650	15.00	0.049	3.33	3.3	18.4	18.4	3.21	5.39	4.93	20.32
Tc Channel S2							0.0	280	15.00	0.025	2.37	2.0	2.0	5.0				
D9,S2	S2	23.34	0.170	0.417									18.4	18.4	3.21	5.39	12.74	52.46
S3	S3a	12.67	0.170	0.417	300	0.060	16.2	1000	15.00	0.049	3.31	5.0	21.3	21.3	3.00	5.03	6.46	26.58
Tc Channel S3							0.0	1000	15.00	0.050	3.35	5.0	5.0	5.0				
D9,S1-S3	S3	40.31	0.170	0.417									24.8	24.8	2.77	4.65	18.97	78.09
OS1,D9,S1-S4	S	46.78	0.170	0.417									24.8	24.8	2.77	4.65	22.01	90.62
EAST CHERRY	CREEK	BASIN																
A	А	10.74	0.170	0.417	300	0.033	19.8	400	15.00	0.075	4.11	1.6	21.4	21.4	2.99	5.01	5.45	22.44
В	В	2.93	0.170	0.417	300	0.050	17.3	0				0.0	17.3	17.3	3.31	5.56	1.65	6.79
С	С	1.28	0.170	0.417	300	0.067	15.7	0				0.0	15.7	15.7	3.45	5.80	0.75	3.10
A,B,C	A1	14.95	0.170	0.417									21.4	21.4	2.99	5.01	7.59	31.24

1) OVERLAND FLOW Tco = (0.395*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH^(0.5)/(SLOPE^(0.333))

2) SCS VELOCITY = C * ((SLOPE(FT/FT)^0.5)

- C = 2.5 FOR HEAVY MEADOW
- C = 5 FOR TILLAGE/FIELD
- C = 7 FOR SHORT PASTURE AND LAWNS
- C = 10 FOR NEARLY BARE GROUND
- C = 15 FOR GRASSED WATERWAY

C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES

3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)

4) Tc = Tco + Tt

*** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED

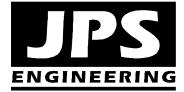
- 5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL
 - I₅ = -1.5 * In(Tc) + 7.583
 - I₁₀₀ = -2.52 * In(Tc) + 12.735

6) Q = CiA

7) WEIGHTED AVERAGE C VALUES FOR COMBINED BASINS

PRELIMINARY & FINAL DRAINAGE REPORT

for


ABERT RANCH SUBDIVISION

Prepared for:

Hannigan and Associates, Inc. 19360 Spring Valley Road Monument, CO 80132

March 27, 2017 Revised November 16, 2017 Revised April 5, 2019 Revised November 15, 2019 Revised April 15, 2020

Prepared by:

19 E. Willamette Avenue Colorado Springs, CO 80903 (719)-477-9429 www.jpsengr.com

JPS Project No. 111604 PCD File No. SP-17-007 / SF-1911

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. Laccept responsibility for liability caused by negligent acts, errors or omissions on my part in prepared this report.

John P. Schwab, P.E. #29891

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Date

Printed Name: Eric Leffler BF Ranch Trust 2015 11730 Timberlane Court, Colorado Springs, CO 80908

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator Date

Conditions:

The stormwater management concept for the Abert Ranch development will be to provide roadside ditches and natural swales as required to convey developed drainage through the site to existing natural outfalls. Individual lot grading will provide positive drainage away from building sites, and direct developed flows into the system of roadside ditches and drainage swales running through the subdivision.

An existing stock pond near the east boundary of the subdivision will be upgraded to serve as a stormwater detention pond to mitigate the impact of developed flows and maintain historic peak flows downstream of the property.

B. Specific Details

1. Existing Drainage Conditions

Historic drainage conditions within the site are depicted in Figure EX1. The on-site area has been identified as Basin I, which is impacted by upstream off-site drainage basins to the north, west, and south.

Basin OI1 is the off-site area to the north within the existing Grandview Subdivision. Basin A is the off-site area to the west within the proposed Settlers View Subdivision. Basins D11 and D12 are the off-site areas to the south within the proposed Settlers Ranch Subdivision.

Off-site flows from Basins OI1, A, D11, and D12 enter the Abert Ranch property and drain easterly in an existing grass-lined drainage channel, flowing through an existing stock pond, and ultimately crossing Steppler Road in an existing 48-inch RCP culvert at the eastern site boundary.

Flows from Basins OI1, A, D11, D12, and I combine at Design Pont #I, with historic peak flows calculated as $Q_5 = 16.3$ cfs and $Q_{100} = 119.9$ cfs.

2. Developed Drainage Conditions

The developed drainage basins and projected flows are shown in Figure D1, and hydrologic calculations are enclosed in Appendix A.

Basins A, B, and C represent developed basins within the adjoining Settlers View Subdivision, and these basins will continue to sheet flow easterly through the proposed Abert Ranch Subdivision.

Basin C will flow easterly along the south side of Silver Nell Drive, combining with Basin E at Design Point #E, with developed peak flows calculated as $Q_5 = 2.5$ cfs and $Q_{100} = 10.2$ cfs. An 18-inch RCP culvert will convey flows at Design Point #E northerly across Silver Nell Drive on the west side of Abert Ranch Drive.

Basins G, D11, and H will flow northeasterly to the low point in the roadway profile at Design Point #H, combining with upstream flows from DP-F, with total developed peak flows calculated as $Q_5 = 14.6$ cfs and $Q_{100} = 64.4$ cfs. A 30-inch RCP culvert will convey flows from Design Point #H northerly across Abert Ranch Drive.

Basins A, D12, OI1, and I combine with flows from DP-H at Design Point #I, with total developed peak flows calculated as $Q_5 = 32.8$ cfs and $Q_{100} = 147.9$ cfs.

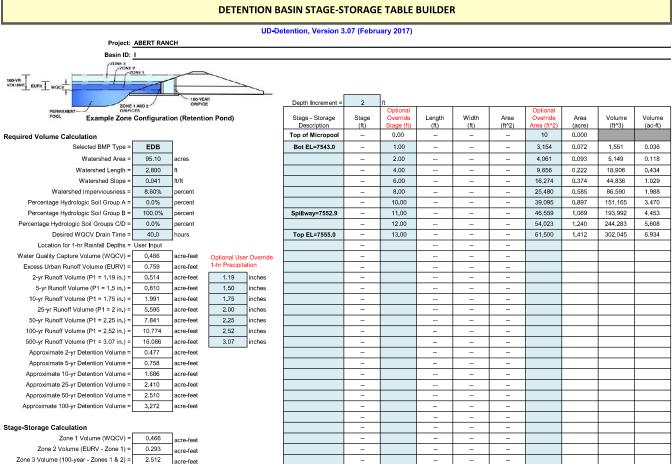
The existing stock pond within Basin I near the eastern site boundary will be upgraded to serve as "Detention Pond I," mitigating the impact of developed flows from the subdivision. This pond will reduce flows to historic levels prior to discharging to the existing natural drainage swale downstream.

C. Comparison of Developed to Historic Discharges

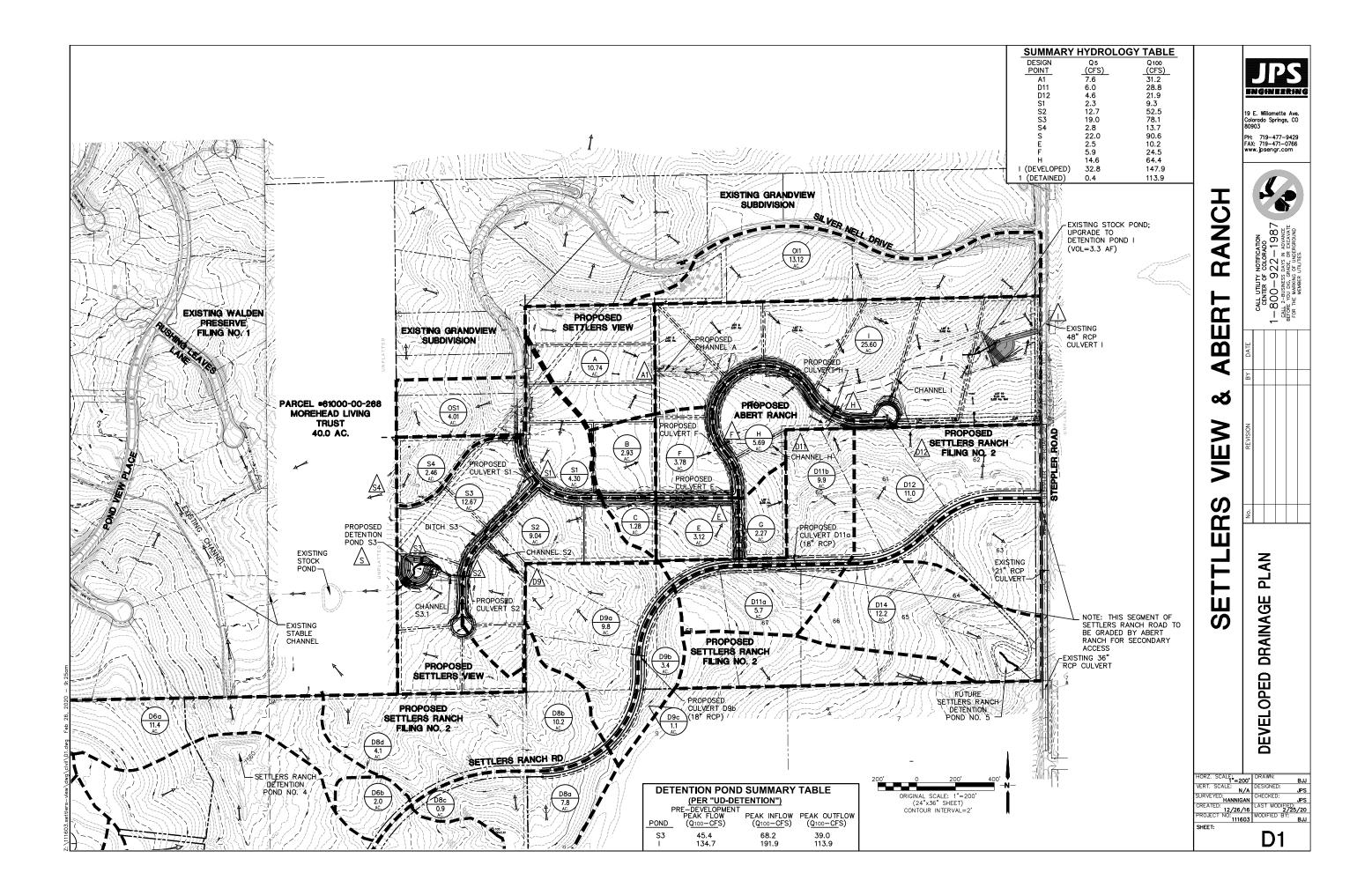
Based on the hydrologic calculations in Appendix A, the proposed development will result in calculated flows exceeding historic flows from the parcel. The increase in developed flows will be mitigated through on-site stormwater detention facilities. The comparison of developed to historic discharges at key design points is summarized as follows:

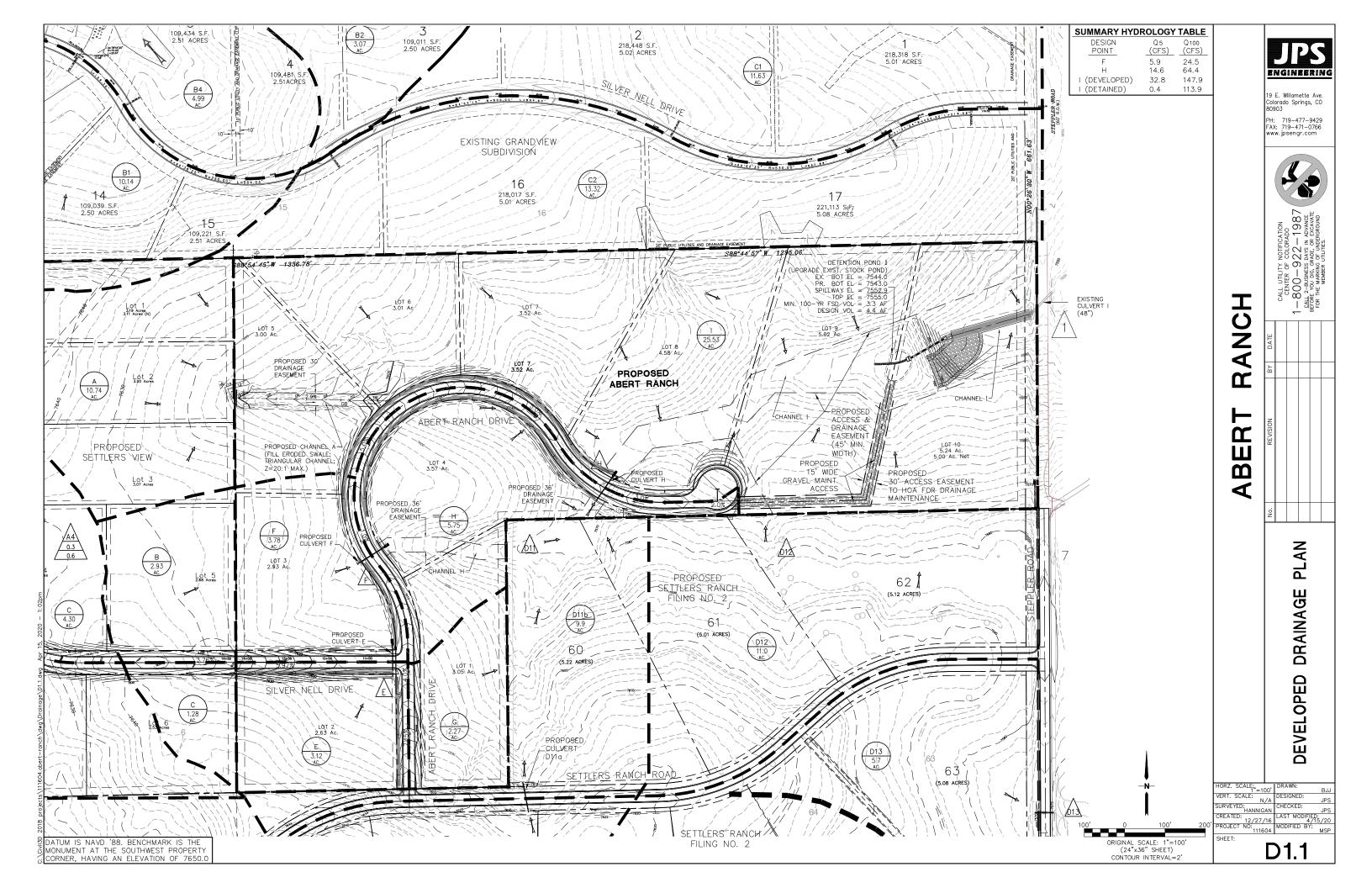
	H	istoric F	low	Dev	veloped F	low	Comparison of
Design	Area	Q5	Q100	Area	Q5	Q100	Developed to Historic
Point	(ac)	(cfs)	(cfs)	(ac)	(cfs)	(cfs)	Flow (Q5%/Q100%)
I (Developed)	95.1	16.3	119.9	95.1	32.8	147.9	201% / 123% (increase)
I (Detained)				95.1	0.4	113.9	2.5% / 95% (decrease)

D. Detention Ponds


The Developed storm runoff downstream of the proposed subdivision will be maintained at historic levels by routing flows through the proposed detention pond at the east boundary of the property. The existing stock pond will be upgraded to serve as Full-Spectrum Detention (FSD) Pond #I to mitigate developed flow and water quality impacts from the proposed subdivision. The pond outlet structure has been designed with multiple orifice openings to detain the full spectrum of storm events.

A geotechnical analysis will be performed to confirm the structural stability of the existing pond embankment, and any applicable geotechnical recommendations will be implemented in conjunction with upgrade of the existing pond. According to DCM Section 6.6, a jurisdictional dam is defined as a dam which "exceeds 10 feet in height measured vertically from the elevation of the lowest point of the natural surface of the ground where that point occurs along the longitudinal centerline of the dam up to the flowline crest of the emergency spillway of the dam."


ABERT RANCH SUBDIVISION COMPOSITE IMPERVIOUS AREAS


IMPERVIOUS AREAS

INIPERVIOUS AR											
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/	PERCENT	AREA	DEVELOPMENT/	PERCENT		DEVELOPMENT/	PERCENT	WEIGHTED
BASIN	(AC)	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	% IMP
С	1.28	1.28	2.5-AC LOTS	11.0							11.000
E	3.12	3.12	2.5-AC LOTS	11.0							11.000
C,E	4.40										11.000
В	2.93	2.93	2.5-AC LOTS	11.0							11.000
F	3.78	3.78	2.5-AC LOTS	11.0							11.000
C,E,B,F	11.11										11.000
G	2.27	2.27	2.5-AC LOTS	11.0							11.000
D11	15.60	15.60	5-AC LOTS	7.0							7.000
Н	5.69	5.69	2.5-AC LOTS	11.0							11.000
DPF,G,D11,H	34.67										9.200
A	10.74	10.74	2.5-AC LOTS	11.0							11.000
D12	11.00	11.00	5-AC LOTS	7.0							7.000
OI1	13.12	13.12	5-AC LOTS	7.0							7.000
l	25.60	16.60	5-AC LOTS	7.0	9.00	2.5-AC LOTS	11.0				8.406
DPH,D12,OI1,I	95.13										8.632

Zone i volume (wgcv) -	0.400	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.293	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	2.512	acre-feet
Total Detention Basin Volume =	3.272	acre-feet

APPENDIX B

HYDROLOGIC CALCULATIONS

Land Use or Surface	Democrat	Runoff Coefficients												
Characteristics	Percent Impervious	2-y	ear	5-y	ear	י-10	/ear	ړ-25	/ear	י-50	year	100-	year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	
Business														
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89	
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68	
Residential														
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65	
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58	
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57	
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56	
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55	
Industrial														
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74	
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83	
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52	
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54	
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58	
Undeveloped Areas														
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51	
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50	
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50	
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96	
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59	
Chura a ha														
Streets	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96	
Paved Gravel	80	0.89	0.89	0.59	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96	
	00	0.57	0.00	0.35	0.03	0.03	0.00	0.00	0.70	0.08	0.72	0.70	0.74	
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96	
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83	
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50	

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$t_c = t_i + t_t \tag{Eq. 6-7}$$

Where:

 t_c = time of concentration (min)

 t_i = overland (initial) flow time (min)

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min)

- C_5 = runoff coefficient for 5-year frequency (see Table 6-6)
- L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
- S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_t , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_t , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_v S_w^{0.5}$$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

(Eq. 6-9)

Type of Land Surface	C_{v}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
* For buried ripran select C value based on type of y	agetative cover

Table 6-7.	Conveyance	Coefficient, C_{ν}
-------------------	------------	------------------------

For buried riprap, select C_v value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_i) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

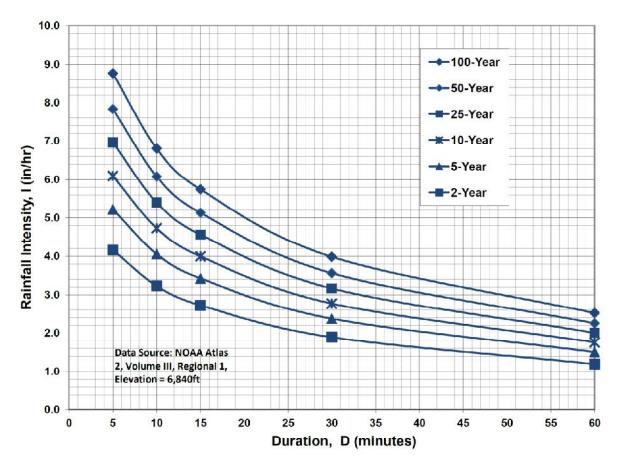


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$I_{100} = -2.52 \ln(D) + 12.735$
$I_{50} = -2.25 \ln(D) + 11.375$
$I_{25} = -2.00 \ln(D) + 10.111$
$I_{10} = -1.75 \ln(D) + 8.847$
$I_5 = -1.50 \ln(D) + 7.583$
$I_2 = -1.19 \ln(D) + 6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

SETTLERS RANCH RATIONAL METHOD

HISTORIC FLOWS

				С	OVERLAND			CHANNEL	CONVEYANCE		SCS ⁽²⁾		TOTAL	INTE	NSITY ⁽⁵⁾		FLOW
BASIN	DESIGN	AREA	5-YEAR ⁽⁷⁾	100-YEAR (7)	LENGTH	SLOPE	Tco ⁽¹⁾	LENGTH	COEFFICIENT	SLOPE	VELOCITY	Tt ⁽³⁾	Tc ⁽⁴⁾	5-YR	100-YR	Q5 ⁽⁶⁾	Q100 ⁽⁶
	POINT	(AC)			(FT)	(%)	(MIN)	(FT)	К	(%)		(MIN)	(MIN)	(IN/HR)	(IN/HR)	(CFS)	(CFS)
E3	1	15.90	0.270	0.370									16.7	3.24	5.54	13.91	32.59
OS1a		32.50	0.280	0.370									25.1	2.61	4.48	23.75	53.87
OS1b		4.80	0.280	0.370									18.6	3.07	5.24	4.13	9.31
E4		46.00	0.260	0.360									24.4	2.66	4.55	31.81	75.35
E2		57.50	0.250	0.350									27.9	2.46	4.23	35.36	85.13
E1		18.80	0.250	0.350									36.1	2.12	3.66	9.96	24.08
OS1a,b,E4,E2,E1	2	159.60	0.260	0.370									31.8	2.20	4.00	91.29	236.21
F 7		11 10	0.250	0.250	400	7.5	45.0	250	1.50	2.0	2.55	0.0	17.0	2.40	5.25	0.00	20.40
E7 E5		<u>11.10</u> 67.20	0.250	0.350	400	7.5	15.6	350 2150	1.50 1.50	2.9 3.7	2.55 2.89	2.3 12.4	17.9 12.4	3.10	5.25	8.60	20.40
E6		15.80	0.250	0.350			0.0	2150	1.50	3.7 4.6	3.20	12.4	12.4				
E7,E5,E6	E6	94.10	0.250	0.350			0.0	220	1.50	4.0	5.20	1.1	31.5	2.30	4.00	54.11	131.74
		34.10	0.230	0.350									51.5	2.50	4.00	34.11	131.7-
E8	E8	23.10	0.250	0.350	300	9.3	12.6	1350	1.50	5.2	3.42	6.6	19.2	3.00	5.20	17.33	42.04
E9	E9	13.10	0.250	0.350	400	8.3	15.1	550	1.50	5.6	3.55	2.6	17.7	3.10	5.25	10.15	24.07
E9-E5	3	130.30	0.250	0.350									31.5	2.30	4.00	74.92	182.42
E11	E11	16.50	0.250	0.350	600	5.8	20.9	700	1.50	7.4	4.08	2.9	23.7	2.69	4.61	11.10	26.62
E12	E12	10.90	0.250	0.350	600	6.7	19.9	140	1.50	7.1	4.00	0.6	20.5	2.90	5.00	7.90	19.08
E11,E12	4	27.40	0.250	0.350									23.7	2.69	4.61	18.43	44.21
E10	E10	6.70	0.250	0.350	1000	4.6	29.1	900	1.50	5.6	3.55	4.2	33.3	2.20	3.85	3.69	9.03
E14		12.20	0.250	0.350	300	4.0	16.7	1050	1.50	5.9	3.64	4.8	21.5	2.85	5.00	8.69	21.35
E10,E14	5	18.90	0.250	0.350									33.3	2.20	3.85	10.40	25.47
E13	E13	5.80	0.250	0.350	300	6.7	14.1	380	1.50	5.8	3.61	1.8	15.8	3.35	5.70	4.86	11.57

1) OVERLAND FLOW Tco = (1.87*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH^(0.5)/(SLOPE^(0.333)))

2) SCS VELOCITY = K * ((SLOPE(%))^0.5)

K = 0.25 FOR MEADOW

K = 1.0 FOR BARE SOIL

K = 1.5 FOR GRASS CHANNEL

K = 2.0 FOR PAVEMENT

3) GUTTER/SWALE FLOW, Tt = (GUTTER LENGTH/ SCS VELOCITY) / 60 SEC

4) Tc = Tco + Tt

*** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED

5) INTENSITY BASED ON I-D-F CURVE IN EL PASO COUNTY DRAINAGE CRITERIA MANUAL

6) Q = CiA

7) WEIGHTED AVERAGE C VALUES FOR COMBINED BASINS

SETTLERS RANCH FILING NO. 3 COMPOSITE RUNOFF COEFFICIENTS - TYPICAL RURAL RESIDENTIAL LOTS

TIONS										
TOTAL AREA (AC)	AREA (%)	SUB-AREA 1 DEVELOPMENT/ COVER	с	AREA (%)	SUB-AREA 2 DEVELOPMENT/ COVER	с	AREA (%)	SUB-AREA 3 DEVELOPMENT/ COVER	с	WEIGHTE C VALUE
2.50	11.00	JILDING / PAVEME	0.90	89.00	LANDSCAPED	0.08				0.170
s			<u> </u>						1	
TOTAL AREA (AC)	AREA (%)	SUB-AREA 1 DEVELOPMENT/ COVER	С	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	, c	AREA (%)	SUB-AREA 3 DEVELOPMENT/ COVER	С	WEIGHTEI C VALUE
2.50	11.00	JILDING / PAVEME	0.96	89.00	LANDSCAPED	0.35				0.417
s I			l I		I	I I			I	1
TOTAL AREA (AC)	AREA (%)			AREA (%)	SUB-AREA 2 DEVELOPMENT/ COVER	PERCENT IPERVIOU	AREA (%)	SUB-AREA 3 DEVELOPMENT/ COVER	-	WEIGHTEI % IMP
2.50	11.00	JILDING / PAVEME	100	89.00	LANDSCAPED	0				11.000
	AREA (AC) 2.50 S TOTAL AREA (AC) 2.50 S TOTAL AREA (AC)	TOTAL AREA (AC) AREA (%) 2.50 11.00 S TOTAL AREA (AC) AREA (%) 2.50 11.00 S TOTAL AREA (AC) AREA (%) S TOTAL AREA (AC) AREA (%)	TOTAL AREA AREA (AC) SUB-AREA 1 DEVELOPMENT/ COVER 2.50 11.00 JILDING / PAVEME S TOTAL AREA AREA (%) SUB-AREA 1 DEVELOPMENT/ COVER 2.50 11.00 JILDING / PAVEME S 100 JILDING / PAVEME S 100 JILDING / PAVEME 1 100 JILDING / PAVEME 2.50 11.00 JILDING / PAVEME S 100 JILDING / PAVEME 1 100 JILDING / PAVEME 1 100 JILDING / PAVEME 1 100 JILDING / PAVEME	TOTAL AREA AREA (AC) SUB-AREA 1 (%) 2.50 11.00 JILDING / PAVEME 0.90 2.50 11.00 JILDING / PAVEME 0.90 S SUB-AREA 1 DEVELOPMENT/ (AC) C 2.50 11.00 JILDING / PAVEME 0.90 S 10 11.00 DEVELOPMENT/ COVER C S 10 11.00 JILDING / PAVEME 0.96 S 10 11.00 JILDING / PAVEME 0.96 S 10 10 10 10 S 10 10 10 10 AREA (AC) AREA (%) SUB-AREA 1 DEVELOPMENT/ COVER PERCENT (PERVIOU	TOTAL AREA (AC) AREA (%) SUB-AREA 1 DEVELOPMENT/ COVER AREA (%) 2.50 11.00 JILDING / PAVEME 0.90 89.00 S S SUB-AREA 1 DEVELOPMENT/ COVER AREA (AC) AREA (%) AREA COVER AREA (AC) 2.50 11.00 JILDING / PAVEME 0.90 89.00 S S SUB-AREA 1 DEVELOPMENT/ COVER AREA (AC) AREA (AC) S S SUB-AREA 1 DEVELOPMENT/ COVER AREA (AC) AREA (AC) S SUB-AREA 1 DEVELOPMENT/ COVER AREA (AC) AREA (%) AREA (%)	TOTAL AREA SUB-AREA 1 AREA DEVELOPMENT/ AREA DEVELOPMENT/ C With and a constraints (AC) (%) COVER C (%) COVER COVER 2.50 11.00 JILDING / PAVEME 0.90 89.00 LANDSCAPED 2.50 11.00 JILDING / PAVEME 0.90 89.00 LANDSCAPED S Sub-AREA 1 DEVELOPMENT/ AREA Sub-AREA 2 Development/ (AC) (%) COVER C (AC) Development/ 2.50 11.00 JILDING / PAVEME 0.96 89.00 LANDSCAPED 2.50 11.00 JILDING / PAVEME 0.96 89.00 LANDSCAPED S S Sub-AREA 1 Development/ COVER Development/ (AC) (%) SUB-AREA 1 Development/ Development/ Development/ (AC) (%) SUB-AREA 1 Development/ Development/ Development/ (AC) (%) COVER AREA 1 Development/ Development/ (AC) (%)	TOTAL AREA (AC) AREA (%) SUB-AREA 1 DEVELOPMENT/ COVER AREA (%) SUB-AREA 2 DEVELOPMENT/ COVER SUB-AREA 2 DEVELOPMENT/ COVER 2.50 11.00 JILDING / PAVEME 0.90 89.00 LANDSCAPED 0.08 3	TOTAL AREA (AC) AREA (%) SUB-AREA 1 DEVELOPMENT/ COVER AREA C SUB-AREA 2 DEVELOPMENT/ COVER AREA C 2.50 11.00 JILDING / PAVEME 0.90 89.00 LANDSCAPED 0.08 2.50 11.00 JILDING / PAVEME 0.90 89.00 LANDSCAPED 0.08 S S S SUB-AREA 1 DEVELOPMENT/ (AC) AREA (%) C (AC) COVER C 2.50 11.00 JILDING / PAVEME 0.96 89.00 LANDSCAPED 0.08 S S SUB-AREA 2 DEVELOPMENT/ (AC) AREA (%) COVER C (AC) COVER C S S SUB-AREA 1 DEVELOPMENT/ COVER AREA 0.96 SUB-AREA 2 DEVELOPMENT/ COVER AREA 0.35 AREA 0.35 S SUB-AREA 1.00 JILDING / PAVEME 0.96 89.00 LANDSCAPED 0.35 S SUB-AREA 1.00 DEVELOPMENT/ COVER PERCENT AREA 0.00 AREA 0.00	TOTAL AREA (AC) SUB-AREA 1 DEVELOPMENT/ COVER AREA C SUB-AREA 2 DEVELOPMENT/ COVER AREA C SUB-AREA 3 DEVELOPMENT/ COVER 2.50 11.00 JILDING / PAVEME 0.90 89.00 LANDSCAPED 0.08	TOTAL AREA (AC) AREA (%) SUB-AREA 1 DEVELOPMENT/ COVER AREA C SUB-AREA 2 DEVELOPMENT/ COVER AREA C SUB-AREA 3 DEVELOPMENT/ COVER SUB-AREA 3 C 2.50 11.00 ILDING / PAVEME 0.90 89.00 LANDSCAPED 0.08

SETTLERS RANCH FILING NO. 3 RATIONAL METHOD

DEVELOPED FLOWS

					Ove	rland Flo	w	Channel flow										
				С				CHANNEL	CONVEYANCE		SCS ⁽²⁾		TOTAL	TOTAL	INTEN	ISITY ⁽⁵⁾	PEAK	FLOW
BASIN	DESIGN		5-YEAR(7)	100-YEAR (7)	LENGTH	SLOPE	Tco ⁽¹⁾	LENGTH	COEFFICIENT	SLOPE	VELOCITY	Tt ⁽³⁾	Tc ⁽⁴⁾	Tc ⁽⁴⁾	5-YR	100-YR	Q5 ⁽⁶⁾	Q100 ⁽⁶⁾
	POINT	(AC)			(FT)	(FT/FT)	(MIN)	(FT)	С	(FT/FT)	(FT/S)	(MIN)	(MIN)	(MIN)	(IN/HR)	(IN/HR)	(CFS)	(CFS)
D5b		1.8	0.170	0.417	100	0.087	8.3	300	15	0.071	4.00	1.3	9.5	9.5	4.20	7.05	1.29	5.29
D7b		2.5	0.170	0.417	100	0.047	10.2	350	15	0.044	3.15	1.9	12.0	12.0	3.85	6.47	1.64	6.74
D5b,D7b	D7b	4.3	0.170	0.417									12.0	12.0	3.85	6.47	2.82	11.60
D5a		15.0	0.170	0.417			0.0	600	15	0.050	3.35	3.0	3.0	5.0	5.17	8.68	13.18	54.29
D7a		5.7	0.170	0.417	100	0.750	4.0	650	15	0.050	3.35	3.2	7.3	7.3	4.61	7.73	4.46	18.39
D5a-D5b,D7a-D7b	D5a	25.0	0.170	0.417									15.0	15.0	3.52	5.91	14.96	61.61
D5c	D5c	17.6	0.170	0.417	100	0.083	8.4	1130	15	0.063	3.76	5.0	13.4	13.4	3.69	6.19	11.04	45.44
D9b		3.4	0.170	0.417	100	0.080	8.5	150	15	0.080	4.24	0.6	9.1	9.1	4.27	7.17	2.47	10.16
D9c		1.1	0.170	0.417	100	0.107	7.7	50	15	0.107	4.91	0.2	7.9	7.9	4.48	7.53	0.84	3.45
D9b,D9c		4.5	0.170	0.417									9.1	9.1	4.27	7.17	3.27	13.45
D9a		9.8	0.170	0.417			0.0	700	15	0.074	4.08	2.9	2.9	5.0	5.17	8.68	8.61	35.47
D9a-D9c	D9	14.3	0.170	0.417									12.0	12.0	3.86	6.48	9.38	38.64
			0.470										10.0	10.0				
D11a		5.7	0.170	0.417	100	0.037	11.0	550	15	0.077	4.16	2.2	13.2	13.2	3.71	6.23	3.60	14.81
D11b		9.9	0.170	0.417			0.0	750	15	0.059	3.64	3.4	3.4	5.0	5.17	8.68	8.70	35.83
D11a,D11b	D11	15.6	0.170	0.417									16.6	16.6	3.36	5.65	8.92	36.74
D12		11.0	0.170	0.417	100	0.067	9.0	640	15	0.068	3.91	2.7	11.8	11.8	3.89	6.52	7.27	29.92
D11,D12	4	26.6	0.170	0.417	-								16.6	16.6	3.36	5.65	15.22	62.65
D10		6.7	0.170	0.417	100	0.046	10.2	1800	15	0.051	3.39	8.9	19.1	19.1	3.16	5.30	3.60	14.81
D14		12.2	0.170	0.417	100	0.040	10.7	1250	15	0.056	3.55	5.9	16.6	16.6	3.37	5.66	6.99	28.77
D10,D14	5	18.9	0.170	0.417		0.0.0		.200		0.000	0.00	0.0	19.1	19.1	3.16	5.30	10.15	41.79
D13	D13	5.7	0.170	0.417	100	0.067	9.0	580	15	0.061	3.70	2.6	11.6	11.6	3.90	6.55	3.78	15.57

1) OVERLAND FLOW Tco = (0.395*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH*(0.5)/(SLOPE*(0.333))

2) SCS VELOCITY = C * ((SLOPE(FT/FT)^0.5)

C = 2.5 FOR HEAVY MEADOW

C = 5 FOR TILLAGE/FIELD

C = 7 FOR SHORT PASTURE AND LAWNS

C = 10 FOR NEARLY BARE GROUND

C = 15 FOR GRASSED WATERWAY

C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES

3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)

4) Tc = Tco + Tt

*** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED

5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL

I₅ = -1.5 * In(Tc) + 7.583

I₁₀₀ = -2.52 * In(Tc) + 12.735

6) Q = CiA

7) WEIGHTED AVERAGE C VALUES FOR COMBINED BASINS

APPENDIX C1

HYDRAULIC CALCULATIONS – ROADSIDE DITCHES

TABLE 10-4

MAXIMUM PERMISSIBLE VELOCITIES FOR EARTH CHANNELS WITH VARIED GRASS LININGS AND SLOPES

Channel Slope	Lining	Permissible Mean Channel <u>Velocity *</u> (ft/sec)
0 - 5%	Sodded grass Bermudagrass Reed canarygrass Tall fescue Kentucky bluegrass Grass-legume mixture Red fescue Redtop	7 6 5 5 5 4 2.5 2.5
	Sericea lespedeza Annual lespedeza Small grains (temporary)	2.5 2.5 2.5
5 - 10%	Sodded grass Bermudagrass Reed canarygrass Tall fescue Kentucky bluegrass Grass-legume mixture	6 5 4 4 4 3
Greater than 10%	Sodded grass Bermudagrass Reed canarygrass Tall fescue Kentucky bluegrass	5 4 3 3 3

* For highly erodible soils, decrease permissible velocities by 25%.

* Grass lined channels are dependent upon assurances of continuous growth and maintenance of grass.

The complete line of RollMax[®] products offers a variety of options for both short-term and permanent erosion control needs. Reference the RollMax Products Chart below to find the right solution for your next project.

RollMax Product Selection Chart

			EDC	TEMPORARY DNET			BIONET
							BIONET
	DS75	DS150	S75	S150	SC150	C125	S75BN
Longevity	45 days	60 days	12 mo.	12 mo.	24 mo.	36 mo.	12 mo.
Applications	Low Flow Channels 4:1-3:1 Slopes	Moderate Flow Channels 3:1-2:1 Slopes	Low Flow Channels 4:1-3:1 Slopes	Moderate Flow Channels 3:1-2:1 Slopes	Medium Flow Channels 2:1-1:1 Slopes	High-Flow Channels 1:1 and Greater Slopes	Low Flow Channels 4:1-3:1 Slopes
Design Permissible Shear Stress Ibs/ft² (Pa)	Unvegetated 1.55 (74)	Unvegetated 1.75 (84)	Unvegetated 1.55 (74)	Unvegetated 1.75 (84)	Unvegetated 2.00 (96)	Unvegetated 2.25 (108)	Unvegetated 1.60 (76)
Design Permissible Velocity ft/s (m/s)	Unvegetated 5.00 (1.52)	Unvegetated 6.00 (1.52)	Unvegetated 5.00 (1.2)	Unvegetated 6.00 (1.83)	Unvegetated 8.00 (2.44)	Unvegetated 10.00 (3.05)	Unvegetated 5.00 (1.52)
Top Net	Lightweight accelerated photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Lightweight accelerated photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Lightweight photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Lightweight photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Heavyweight UV-stabilized polypropylene 2.9 lbs/1000 ft ² (1.47 kg/100 m ²) approx wt	Heavyweight UV-stabilized polypropylene 2.9 lbs/1000 ft ² (1.47 kg/100 m ²) approx wt	Leno woven. 100% biodegradable jute fiber 9.30 lbs/1000 ft ² (4.53 kg/100 m ²) approx wt
Center Net	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fiber Matrix	Straw fiber 0.50 lbs/yd² (0.27 kg/m²)	Straw fiber 0.50 lbs/yd² (0.27 kg/m²)	Straw fiber 0.50 lbs/yd ² (0.27 kg/m ²)	Straw fiber 0.50 lbs/γd² (0.27 kg/m²)	Straw/coconut matrix 70% Straw 0.35 lbs/yd ² (0.19 kg/m ²) 30% Coconut 0.15 lbs/yd ² (0.08 kg/m ²)	Coconut fiber 0.50 lbs/yd² (0.27 kg/m²)	Straw fiber 0.50 lbs/yd² (0.27 kg/m²)
Bottom Net	N/A	Lightweight accelerated photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	N/A	Lightweight photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Lightweight photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Heavyweight UV-stabilized polypropylene 2.9 lbs/1000 ft ² (1.47 kg/100 m ²) approx wt	N/A
Thread	Accelerated degradable	Accelerated degradable	Degradable	Degradable	Degradable	UV-stabilized polypropylene	Biodegradable

SETTLERS RANCH - FILING NO. 3 DITCH CALCULATION SUMMARY

PROPOSED ROADSIDE DITCHES

				PROPOSED	SIDE	CHANNEL	FRICTION	ROW		Q100	DITCH	DITCH	Q100	Q100	DITCH
	FROM	ТО		SLOPE	SLOPE	DEPTH	FACTOR	WIDTH		FLOW	FLOW %	FLOW	DEPTH	VELOCITY	LINING
ROADWAY	STA	STA	SIDE	(%)	(Z)	(FT)	(n)	(ft)	BASIN	(CFS)	OF BASIN	(CFS)	(FT)	(FT/S)	
SETTLERS RANCH RD	50+06	52+62	E	4.00	4:1/3:1	2.5	0.030	60	D9b	10.2	60	6.1	0.6	4.4	GRASS
SETTLERS RANCH RD	50+06	52+62	W	4.00	4:1/3:1	2.5	0.030	60	D9a	35.5	10	3.6	0.5	3.9	GRASS
SETTLERS RANCH RD	52+62	55+20	E	7.87	4:1/3:1	2.5	0.030	60	D11a	14.8	40	5.9	0.5	5.7	GRASS / TRM
SETTLERS RANCH RD	52+62	55+20	W	7.87	4:1/3:1	2.5	0.030	60	D11b	35.8	10	3.6	0.5	5.0	GRASS / TRM
SETTLERS RANCH RD	55+20	59+20	S	4.00	4:1/3:1	2.5	0.030	60	D11a	14.8	70	10.4	0.8	5.1	GRASS / TRM
SETTLERS RANCH RD	55+20	59+20	N	4.00	4:1/3:1	2.5	0.030	60	D11b	35.8	10	3.6	0.5	3.9	GRASS
SETTLERS RANCH RD	59+20	62+02	S	2.50	4:1/3:1	2.5	0.030	60	D11a	14.8	30	4.4	0.6	3.4	GRASS
SETTLERS RANCH RD	59+20	62+02	N	2.50	4:1/3:1	2.5	0.030	60	D11b	35.8	10	3.6	0.6	3.3	GRASS
SETTLERS RANCH RD	62+02	65+25	S	2.00	4:1/3:1	2.5	0.030	60	D14	28.8	10	2.9	0.5	2.8	GRASS
SETTLERS RANCH RD	62+02	65+25	N	2.00	4:1/3:1	2.5	0.030	60	D12	29.9	10	3.0	0.5	2.9	GRASS
SETTLERS RANCH RD	65+25	68+75	S	6.00	4:1/3:1	2.5	0.030	60	D13	15.6	10	1.6	0.4	3.7	GRASS
SETTLERS RANCH RD	65+25	68+75	N	6.00	4:1/3:1	2.5	0.030	60	D12	29.9	10	3.0	0.4	4.3	GRASS
SETTLERS RANCH RD	68+75	70+85	S	1.50	4:1/3:1	2.5	0.030	60	D13	15.6	10	1.6	0.5	2.2	GRASS
SETTLERS RANCH RD	68+75	70+85	N	1.50	4:1/3:1	2.5	0.030	60	D12	29.9	10	3.0	0.6	2.6	GRASS
SETTLERS RANCH RD	70+85	71+93	S	6.00	4:1/3:1	2.5	0.030	60	D13	15.6	20	3.1	0.5	4.4	GRASS
SETTLERS RANCH RD	70+85	71+93	N	6.00	4:1/3:1	2.5	0.030	60	D12	29.9	20	6.0	0.6	5.2	GRASS / TRM
SETTLERS RANCH RD	71+93	72+91	S	4.00	4:1/3:1	2.5	0.030	60	D13	15.6	20	3.1	0.5	3.8	GRASS
SETTLERS RANCH RD	71+93	72+91	N	4.00	4:1/3:1	2.5	0.030	60	D12	29.9	20	6.0	0.6	4.4	GRASS

	FROM	TO		PROPOSED SLOPE	SIDE SLOPE		FRICTION FACTOR	ROW WIDTH	DAONU	Q100 FLOW	DITCH FLOW %	DITCH FLOW	Q100 DEPTH	Q100 VELOCITY	DITCH LINING
ROADWAY	STA	STA	SIDE	(%)	(Z)	(FT)	(n)	(ft)	BASIN	(CFS)	OF BASIN	(CFS)	(FT)	(FT/S)	
BOUNDARY BASIN CT	10+16	11+16	E	4.00	4:1/3:1	2.5	0.030	60	D5c	45.4	20	9.1	0.7	4.9	GRASS
BOUNDARY BASIN CT	10+16	11+16	W	4.00	4:1/3:1	2.5	0.030	60	D5a	54.3	15	8.1	0.7	4.8	GRASS
BOUNDARY BASIN CT	11+16	13+20	E	5.50	4:1/3:1	2.5	0.030	60	D5c	45.4	20	9.1	0.7	5.5	GRASS / TRM
			_												
BOUNDARY BASIN CT	11+16	13+20	W	5.50	4:1/3:1	2.5	0.030	60	D5a	54.3	15	8.1	0.7	5.4	GRASS / TRM
BOUNDARY BASIN CT	13+20	15+69	E	8.00	4:1/3:1	2.5	0.030	60	D5c	45.4	15	6.8	0.6	5.9	GRASS / TRM
BOUNDARY BASIN CT	13+20	15+69	W	8.00	4:1/3:1	2.5	0.030	60	D5a	54.3	10	5.4	0.5	5.6	GRASS / TRM
	45.00	40.05		0.00	4.4/0.4	0.5	0.000	00	DCh	5.0	400	5.0	0.0		00400
BOUNDARY BASIN CT	15+69	18+25	E	3.00	4:1/3:1	2.5	0.030	60	D5b	5.3	100	5.3	0.6		GRASS
BOUNDARY BASIN CT	15+69	18+25	W	3.00	4:1/3:1	2.5	0.030	60	D5a	54.3	10	5.4	0.6	3.9	GRASS
BOUNDARY BASIN CT	18+25	21+07	E	1.00	4:1/3:1	2.5	0.030	60	D7b	6.7	30	2.0	0.5	2.0	GRASS
BOUNDARY BASIN CT	18+25	21+07	W	1.00	4:1/3:1	2.5	0.030	60	D7a	18.4	10	1.8	0.5	1.9	GRASS
BOUNDARY BASIN CT	21+07	22+61	E	2.00	4:1/3:1	2.5	0.030	60	D7b	6.7	70	4.7	0.6	3.2	GRASS
BOUNDARY BASIN CT	21+07	• ·	W	2.00	4:1/3:1	2.5	0.030	60	D7b D7a	18.4	30	5.5	0.0	3.3	GRASS
						-							-		

1) Channel flow calculations based on Manning's Equation

2) Channel depth includes 1' minimum freeboard

3) n = 0.03 for grass-lined non-irrigated channels (minimum)

4) n = 0.045 for riprap-lined channels

5) Vmax = 5.0 fps per El Paso County criteria (p. 10-13) for fescue (dry land grass) for 100-year flows

6) Vmax = 8.0 fps with Turf Reinforcement Mat (TRM) Lining (Tensar Eronet SC150 or equal)

Hydraulic Analysis Report

Project Data

Project Title:Project - Settlers Ranch F3 - Roadside DitchesDesigner:JPSProject Date:Monday, March 11, 2024Project Units:U.S. Customary UnitsNotes:

Channel Analysis: Channel Analysis-SR-Rd-Ditch-50+06 to 52+62,E

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0400 ft/ft Manning's n: 0.0300 Flow: 6.1000 cfs

Result Parameters

Depth: 0.6260 ft Area of Flow: 1.3717 ft² Wetted Perimeter: 4.5609 ft Hydraulic Radius: 0.3008 ft Average Velocity: 4.4470 ft/s Top Width: 4.3822 ft Froude Number: 1.4007 Critical Depth: 0.7193 ft Critical Velocity: 3.3682 ft/s Critical Slope: 0.0191 ft/ft Critical Top Width: 5.14 ft Calculated Max Shear Stress: 1.5626 lb/ft² Calculated Avg Shear Stress: 0.7507 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-50+06 to 52+62,W

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0400 ft/ft Manning's n: 0.0300 Flow: 3.6000 cfs

Result Parameters

Depth: 0.5137 ft Area of Flow: 0.9236 ft² Wetted Perimeter: 3.7425 ft Hydraulic Radius: 0.2468 ft Average Velocity: 3.8977 ft/s Top Width: 3.5959 ft Froude Number: 1.3553 Critical Depth: 0.5825 ft Critical Velocity: 3.0311 ft/s Critical Slope: 0.0205 ft/ft Critical Slope: 0.0205 ft/ft Critical Top Width: 4.16 ft Calculated Max Shear Stress: 1.2822 lb/ft² Calculated Avg Shear Stress: 0.6160 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-52+62 to 55+20,E

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0787 ft/ft Manning's n: 0.0300 Flow: 5.9000 cfs

Result Parameters

Depth: 0.5446 ft Area of Flow: 1.0380 ft² Wetted Perimeter: 3.9674 ft Hydraulic Radius: 0.2616 ft Average Velocity: 5.6842 ft/s **>5 fps....Use TRM Lining** Top Width: 3.8120 ft Froude Number: 1.9197 Critical Depth: 0.7098 ft Critical Velocity: 3.3458 ft/s Critical Slope: 0.0192 ft/ft Critical Top Width: 5.07 ft Calculated Max Shear Stress: 2.6743 lb/ft² Calculated Avg Shear Stress: 1.2848 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-52+62 to 55+20,W

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0787 ft/ft Manning's n: 0.0300 Flow: 3.6000 cfs

Result Parameters

Depth: 0.4525 ft Area of Flow: 0.7166 ft² Wetted Perimeter: 3.2965 ft Hydraulic Radius: 0.2174 ft Average Velocity: 5.0238 ft/s **>5 fps....Use TRM Lining** Top Width: 3.1674 ft Froude Number: 1.8613 Critical Depth: 0.5825 ft Critical Velocity: 3.0311 ft/s Critical Slope: 0.0205 ft/ft Critical Slope: 0.0205 ft/ft Critical Top Width: 4.16 ft Calculated Max Shear Stress: 2.2221 lb/ft² Calculated Avg Shear Stress: 1.0675 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-55+20 to 59+20,S

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0400 ft/ft Manning's n: 0.0300 Flow: 10.4000 cfs

Result Parameters

Depth: 0.7647 ft Area of Flow: 2.0466 ft² Wetted Perimeter: 5.5711 ft Hydraulic Radius: 0.3674 ft Average Velocity: 5.0815 ft/s **>5 fps....Use TRM Lining** Top Width: 5.3528 ft Froude Number: 1.4482 Critical Depth: 0.8905 ft Critical Velocity: 3.7475 ft/s Critical Slope: 0.0178 ft/ft Critical Top Width: 6.36 ft Calculated Max Shear Stress: 1.9087 lb/ft² Calculated Avg Shear Stress: 0.9169 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-55+20 to 59+20,N

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0400 ft/ft Manning's n: 0.0300 Flow: 3.6000 cfs

Result Parameters

Depth: 0.5137 ft Area of Flow: 0.9236 ft² Wetted Perimeter: 3.7425 ft Hydraulic Radius: 0.2468 ft Average Velocity: 3.8977 ft/s Top Width: 3.5959 ft Froude Number: 1.3553 Critical Depth: 0.5825 ft Critical Velocity: 3.0311 ft/s Critical Slope: 0.0205 ft/ft Critical Slope: 0.0205 ft/ft Critical Top Width: 4.16 ft Calculated Max Shear Stress: 1.2822 lb/ft² Calculated Avg Shear Stress: 0.6160 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-59+20 to 62+02,S

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0250 ft/ft Manning's n: 0.0300 Flow: 4.4000 cfs

Result Parameters

Depth: 0.6049 ft Area of Flow: 1.2806 ft² Wetted Perimeter: 4.4067 ft Hydraulic Radius: 0.2906 ft Average Velocity: 3.4360 ft/s Top Width: 4.2341 ft Froude Number: 1.1011 Critical Depth: 0.6312 ft Critical Velocity: 3.1552 ft/s Critical Slope: 0.0199 ft/ft Critical Top Width: 4.51 ft Calculated Max Shear Stress: 0.9436 lb/ft² Calculated Avg Shear Stress: 0.4533 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-59+20 to 62+02,N

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0250 ft/ft Manning's n: 0.0300 Flow: 3.6000 cfs

Result Parameters

Depth: 0.5610 ft Area of Flow: 1.1016 ft^2 Wetted Perimeter: 4.0873 ft Hydraulic Radius: 0.2695 ft Average Velocity: 3.2679 ft/s Top Width: 3.9272 ft Froude Number: 1.0873 Critical Depth: 0.5825 ft Critical Velocity: 3.0311 ft/s Critical Slope: 0.0205 ft/ft Critical Top Width: 4.16 ft Calculated Max Shear Stress: 0.8752 lb/ft^2 Calculated Avg Shear Stress: 0.4205 lb/ft^2

Channel Analysis: Channel Analysis-SR-Rd-Ditch-62+02 to 65+25,S

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0200 ft/ft Manning's n: 0.0300 Flow: 2.9000 cfs

Result Parameters

Depth: 0.5394 ft Area of Flow: 1.0185 ft² Wetted Perimeter: 3.9300 ft Hydraulic Radius: 0.2592 ft Average Velocity: 2.8474 ft/s Top Width: 3.7761 ft Froude Number: 0.9662 Critical Depth: 0.5343 ft Critical Velocity: 2.9028 ft/s Critical Slope: 0.0211 ft/ft Critical Top Width: 3.82 ft Calculated Max Shear Stress: 0.6732 lb/ft² Calculated Avg Shear Stress: 0.3234 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-62+02 to 65+25,N

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0200 ft/ft Manning's n: 0.0300 Flow: 3.0000 cfs

Result Parameters

Depth: 0.5463 ft Area of Flow: 1.0447 ft² Wetted Perimeter: 3.9803 ft Hydraulic Radius: 0.2625 ft Average Velocity: 2.8716 ft/s Top Width: 3.8244 ft Froude Number: 0.9682 Critical Depth: 0.5416 ft Critical Velocity: 2.9225 ft/s Critical Slope: 0.0210 ft/ft Critical Top Width: 3.87 ft Calculated Max Shear Stress: 0.6818 lb/ft² Calculated Avg Shear Stress: 0.3276 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-65+25 to 68+75,S

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0600 ft/ft Manning's n: 0.0300 Flow: 1.6000 cfs

Result Parameters

Depth: 0.3513 ft Area of Flow: 0.4318 ft² Wetted Perimeter: 2.5590 ft Hydraulic Radius: 0.1687 ft Average Velocity: 3.7051 ft/s Top Width: 2.4588 ft Froude Number: 1.5580 Critical Depth: 0.4212 ft Critical Velocity: 2.5773 ft/s Critical Slope: 0.0228 ft/ft Critical Top Width: 3.01 ft Calculated Max Shear Stress: 1.3151 lb/ft² Calculated Avg Shear Stress: 0.6318 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-65+25 to 68+75,N

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0600 ft/ft Manning's n: 0.0300 Flow: 3.0000 cfs

Result Parameters

Depth: 0.4446 ft Area of Flow: 0.6919 ft^2 Wetted Perimeter: 3.2393 ft Hydraulic Radius: 0.2136 ft Average Velocity: 4.3356 ft/s Top Width: 3.1124 ft Froude Number: 1.6205 Critical Depth: 0.5416 ft Critical Velocity: 2.9225 ft/s Critical Slope: 0.0210 ft/ft Critical Top Width: 3.87 ft Calculated Max Shear Stress: 1.6647 lb/ft^2 Calculated Avg Shear Stress: 0.7997 lb/ft^2

Channel Analysis: Channel Analysis-SR-Rd-Ditch-68+75 to 70+85,S

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0150 ft/ft Manning's n: 0.0300 Flow: 1.6000 cfs

Result Parameters

Depth: 0.4555 ft Area of Flow: 0.7263 ft² Wetted Perimeter: 3.3187 ft Hydraulic Radius: 0.2188 ft Average Velocity: 2.2031 ft/s Top Width: 3.1887 ft Froude Number: 0.8135 Critical Depth: 0.4212 ft Critical Velocity: 2.5773 ft/s Critical Slope: 0.0228 ft/ft Critical Top Width: 3.01 ft Calculated Max Shear Stress: 0.4264 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-68+75 to 70+85,N

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0150 ft/ft Manning's n: 0.0300 Flow: 3.0000 cfs

Result Parameters

Depth: 0.5766 ft Area of Flow: 1.1637 ft² Wetted Perimeter: 4.2009 ft Hydraulic Radius: 0.2770 ft Average Velocity: 2.5780 ft/s Top Width: 4.0363 ft Froude Number: 0.8461 Critical Depth: 0.5416 ft Critical Velocity: 2.9225 ft/s Critical Slope: 0.0210 ft/ft Critical Top Width: 3.87 ft Calculated Max Shear Stress: 0.5397 lb/ft² Calculated Avg Shear Stress: 0.2593 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-70+85 to 71+93,S

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0600 ft/ft Manning's n: 0.0300 Flow: 3.1000 cfs

Result Parameters

Depth: 0.4501 ft Area of Flow: 0.7092 ft² Wetted Perimeter: 3.2794 ft Hydraulic Radius: 0.2163 ft Average Velocity: 4.3713 ft/s Top Width: 3.1509 ft Froude Number: 1.6238 Critical Depth: 0.5487 ft Critical Velocity: 2.9418 ft/s Critical Slope: 0.0209 ft/ft Critical Top Width: 3.92 ft Calculated Max Shear Stress: 1.6853 lb/ft² Calculated Avg Shear Stress: 0.8096 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-70+85 to 71+93,N

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0600 ft/ft Manning's n: 0.0300 Flow: 6.0000 cfs

Result Parameters

Depth: 0.5766 ft Area of Flow: 1.1637 ft² Wetted Perimeter: 4.2009 ft Hydraulic Radius: 0.2770 ft Average Velocity: 5.1559 ft/s **>5 fps....Use TRM Lining** Top Width: 4.0363 ft Froude Number: 1.6922 Critical Depth: 0.7146 ft Critical Velocity: 3.3571 ft/s Critical Slope: 0.0191 ft/ft Critical Top Width: 5.11 ft Calculated Max Shear Stress: 2.1589 lb/ft² Calculated Avg Shear Stress: 1.0371 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-71+93 to 72+91,S

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0400 ft/ft Manning's n: 0.0300 Flow: 3.1000 cfs

Result Parameters

Depth: 0.4857 ft Area of Flow: 0.8256 ft² Wetted Perimeter: 3.5384 ft Hydraulic Radius: 0.2333 ft Average Velocity: 3.7547 ft/s Top Width: 3.3998 ft Froude Number: 1.3427 Critical Depth: 0.5487 ft Critical Velocity: 2.9418 ft/s Critical Slope: 0.0209 ft/ft Critical Slope: 0.0209 ft/ft Critical Top Width: 3.92 ft Calculated Max Shear Stress: 1.2123 lb/ft²

Channel Analysis: Channel Analysis-SR-Rd-Ditch-71+93 to 72+91,N

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0400 ft/ft Manning's n: 0.0300 Flow: 6.0000 cfs

Result Parameters

Depth: 0.6222 ft Area of Flow: 1.3548 ft² Wetted Perimeter: 4.5327 ft Hydraulic Radius: 0.2989 ft Average Velocity: 4.4287 ft/s Top Width: 4.3551 ft Froude Number: 1.3993 Critical Depth: 0.7146 ft Critical Velocity: 3.3571 ft/s Critical Slope: 0.0191 ft/ft Critical Slope: 0.0191 ft/ft Critical Top Width: 5.11 ft Calculated Max Shear Stress: 1.5529 lb/ft² Calculated Avg Shear Stress: 0.7460 lb/ft²

Channel Analysis: Channel Analysis-BB-Ct-Ditch-10+16 to 11+16,E

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0400 ft/ft Manning's n: 0.0300 Flow: 9.1000 cfs

Result Parameters

Depth: 0.7273 ft Area of Flow: 1.8516 ft² Wetted Perimeter: 5.2990 ft Hydraulic Radius: 0.3494 ft Average Velocity: 4.9147 ft/s Top Width: 5.0914 ft Froude Number: 1.4362 Critical Depth: 0.8441 ft Critical Velocity: 3.6487 ft/s Critical Slope: 0.0181 ft/ft Critical Slope: 0.0181 ft/ft Critical Top Width: 6.03 ft Calculated Max Shear Stress: 1.8154 lb/ft² Calculated Avg Shear Stress: 0.8722 lb/ft²

Channel Analysis: Channel Analysis-BB-Ct-Ditch-10+16 to 11+16,W

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0400 ft/ft Manning's n: 0.0300 Flow: 8.1000 cfs

Result Parameters

Depth: 0.6963 ft Area of Flow: 1.6968 ft^2 Wetted Perimeter: 5.0726 ft Hydraulic Radius: 0.3345 ft Average Velocity: 4.7737 ft/s Top Width: 4.8739 ft Froude Number: 1.4258 Critical Depth: 0.8057 ft Critical Velocity: 3.5648 ft/s Critical Slope: 0.0184 ft/ft Critical Top Width: 5.76 ft Calculated Max Shear Stress: 1.7379 lb/ft^2 Calculated Avg Shear Stress: 0.8349 lb/ft^2

Channel Analysis: Channel Analysis-BB-Ct-Ditch-11+16 to 13+20,E

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0550 ft/ft Manning's n: 0.0300 Flow: 9.1000 cfs

Result Parameters

Depth: 0.6852 ft Area of Flow: 1.6432 ft² Wetted Perimeter: 4.9918 ft Hydraulic Radius: 0.3292 ft Average Velocity: 5.5381 ft/s **>5 fps....Use TRM Lining** Top Width: 4.7963 ft Froude Number: 1.6674 Critical Depth: 0.8441 ft Critical Velocity: 3.6487 ft/s Critical Slope: 0.0181 ft/ft Critical Top Width: 6.03 ft Calculated Max Shear Stress: 2.3515 lb/ft² Calculated Avg Shear Stress: 1.1297 lb/ft²

Channel Analysis: Channel Analysis-BB-Ct-Ditch-11+16 to 13+20,W

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0550 ft/ft Manning's n: 0.0300 Flow: 8.1000 cfs

Result Parameters

Depth: 0.6559 ft Area of Flow: 1.5058 ft² Wetted Perimeter: 4.7786 ft Hydraulic Radius: 0.3151 ft Average Velocity: 5.3792 ft/s **>5 fps....Use TRM Lining** Top Width: 4.5914 ft Froude Number: 1.6553 Critical Depth: 0.8057 ft Critical Velocity: 3.5648 ft/s Critical Slope: 0.0184 ft/ft Critical Slope: 0.0184 ft/ft Critical Top Width: 5.76 ft Calculated Max Shear Stress: 2.2511 lb/ft² Calculated Avg Shear Stress: 1.0815 lb/ft²

Channel Analysis: Channel Analysis-BB-Ct-Ditch-13+20 to 15+69,E

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0800 ft/ft Manning's n: 0.0300 Flow: 6.8000 cfs

Result Parameters

Depth: 0.5726 ft Area of Flow: 1.1475 ft² Wetted Perimeter: 4.1716 ft Hydraulic Radius: 0.2751 ft Average Velocity: 5.9258 ft/s **>5 fps....Use TRM Lining** Top Width: 4.0081 ft Froude Number: 1.9517 Critical Depth: 0.7513 ft Critical Velocity: 3.4422 ft/s Critical Slope: 0.0188 ft/ft Critical Top Width: 5.37 ft Calculated Max Shear Stress: 2.8584 lb/ft² Calculated Avg Shear Stress: 1.3732 lb/ft²

Channel Analysis: Channel Analysis-BB-Ct-Ditch-13+20 to 15+69,W

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0800 ft/ft Manning's n: 0.0300 Flow: 5.4000 cfs

Result Parameters

Depth: 0.5252 ft Area of Flow: 0.9653 ft² Wetted Perimeter: 3.8261 ft Hydraulic Radius: 0.2523 ft Average Velocity: 5.5940 ft/s **>5 fps....Use TRM Lining** Top Width: 3.6762 ft Froude Number: 1.9238 Critical Depth: 0.6851 ft Critical Velocity: 3.2871 ft/s Critical Slope: 0.0194 ft/ft Critical Top Width: 4.90 ft Calculated Max Shear Stress: 2.6217 lb/ft² Calculated Avg Shear Stress: 1.2595 lb/ft²

Channel Analysis: Channel Analysis-BB-Ct-Ditch-15+69 to 18+25,E

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0300 ft/ft Manning's n: 0.0300 Flow: 5.3000 cfs

Result Parameters

Depth: 0.6268 ft Area of Flow: 1.3751 ft² Wetted Perimeter: 4.5665 ft Hydraulic Radius: 0.3011 ft Average Velocity: 3.8544 ft/s Top Width: 4.3876 ft Froude Number: 1.2133 Critical Depth: 0.6800 ft Critical Velocity: 3.2748 ft/s Critical Slope: 0.0194 ft/ft Critical Top Width: 4.86 ft Calculated Max Shear Stress: 1.1734 lb/ft² Calculated Avg Shear Stress: 0.5637 lb/ft²

Channel Analysis: Channel Analysis-BB-Ct-Ditch-15+69 to 18+25,W

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0300 ft/ft Manning's n: 0.0300 Flow: 5.4000 cfs

Result Parameters

Depth: 0.6312 ft Area of Flow: 1.3945 ft² Wetted Perimeter: 4.5986 ft Hydraulic Radius: 0.3032 ft Average Velocity: 3.8724 ft/s Top Width: 4.4184 ft Froude Number: 1.2147 Critical Depth: 0.6851 ft Critical Velocity: 3.2871 ft/s Critical Slope: 0.0194 ft/ft Critical Top Width: 4.90 ft Calculated Max Shear Stress: 1.1816 lb/ft² Calculated Avg Shear Stress: 0.5677 lb/ft²

Channel Analysis: Channel Analysis-BB-Ct-Ditch-18+25 to 21+07,E

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0300 Flow: 2.0000 cfs

Result Parameters

Depth: 0.5344 ft Area of Flow: 0.9996 ft^2 Wetted Perimeter: 3.8933 ft Hydraulic Radius: 0.2567 ft Average Velocity: 2.0009 ft/s Top Width: 3.7408 ft Froude Number: 0.6821 Critical Depth: 0.4605 ft Critical Depth: 0.4605 ft Critical Slope: 0.0221 ft/ft Critical Slope: 0.0221 ft/ft Critical Top Width: 3.29 ft Calculated Max Shear Stress: 0.3335 lb/ft^2 Calculated Avg Shear Stress: 0.1602 lb/ft^2

Channel Analysis: Channel Analysis-BB-Ct-Ditch-18+25 to 21+07,W

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0300 Flow: 1.8000 cfs

Result Parameters

Depth: 0.5137 ft Area of Flow: 0.9236 ft² Wetted Perimeter: 3.7425 ft Hydraulic Radius: 0.2468 ft Average Velocity: 1.9489 ft/s Top Width: 3.5959 ft Froude Number: 0.6777 Critical Depth: 0.4415 ft Critical Velocity: 2.6387 ft/s Critical Slope: 0.0224 ft/ft Critical Slope: 0.0224 ft/ft Critical Top Width: 3.15 ft Calculated Max Shear Stress: 0.3205 lb/ft²

Channel Analysis: Channel Analysis-BB-Ct-Ditch-21+07 to 22+61,E

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0200 ft/ft Manning's n: 0.0300 Flow: 4.7000 cfs

Result Parameters

Depth: 0.6465 ft Area of Flow: 1.4629 ft^2 Wetted Perimeter: 4.7101 ft Hydraulic Radius: 0.3106 ft Average Velocity: 3.2127 ft/s Top Width: 4.5256 ft Froude Number: 0.9958 Critical Depth: 0.6481 ft Critical Velocity: 3.1971 ft/s Critical Slope: 0.0197 ft/ft Critical Slope: 0.0197 ft/ft Critical Top Width: 4.63 ft Calculated Max Shear Stress: 0.8068 lb/ft^2 Calculated Avg Shear Stress: 0.3876 lb/ft^2

Channel Analysis: Channel Analysis-BB-Ct-Ditch-21+07 to 22+61,W

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0200 ft/ft Manning's n: 0.0300 Flow: 5.5000 cfs

Result Parameters

Depth: 0.6858 ft Area of Flow: 1.6460 ft² Wetted Perimeter: 4.9961 ft Hydraulic Radius: 0.3295 ft Average Velocity: 3.3415 ft/s Top Width: 4.8004 ft Froude Number: 1.0056 Critical Depth: 0.6902 ft Critical Velocity: 3.2992 ft/s Critical Slope: 0.0193 ft/ft Critical Top Width: 4.93 ft Calculated Max Shear Stress: 0.8558 lb/ft² Calculated Avg Shear Stress: 0.4112 lb/ft² **APPENDIX C2**

HYDRAULIC CALCULATIONS - CULVERT

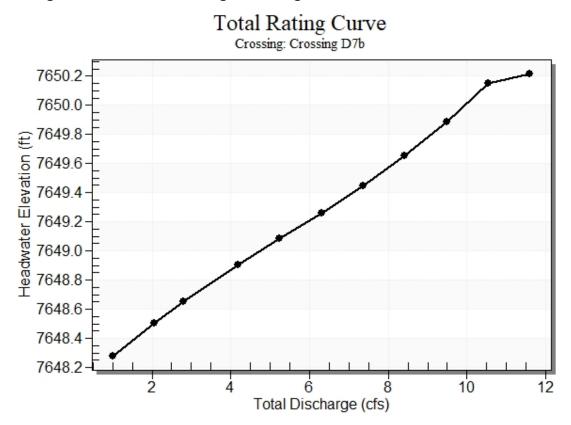
SETTLERS RANCH FILING NO. 3 CULVERT DESIGN SUMMARY

		RD	INV	INV	PIPE		PIPE	TOTAL	PER PIPE	Q ₅ MAX	CALC	TOTAL	PER PIPE	Q ₁₀₀ MAX	CALC
	DESIGN	CL	IN	OUT	LENGTH	N0. OF	DIA	Q ₅	Q_5	ALLOWABLE	$Q_5 HW$	Q ₁₀₀	Q ₁₀₀	ALLOWABLE	Q ₁₀₀ HW
BASIN	POINT	ELEV	ELEV	ELEV	(FT)	PIPES	(FT)	(CFS)	(CFS)	HEADWATER ¹	ELEV	(CFS)	(CFS)	HEADWATER ²	ELEV
SILVERADO HILI	VIEW:														
D7b	D7b	7650.20	7647.80	7642.07	74.0	1	1.5	2.8	2.8	7649.3	7648.7	11.6	11.6	7650.38	7650.22

¹ Q_5 MAX. ALLOWABLE HEADWATER, HW/D = 1.0

 2 Q₁₀₀ MAX. ALLOWABLE HEADWATER = 6" DEPTH AT SHOULDER (PER DCM TABLE 6-1)

HY-8 Culvert Analysis Report


Crossing Discharge Data – Culvert D7b

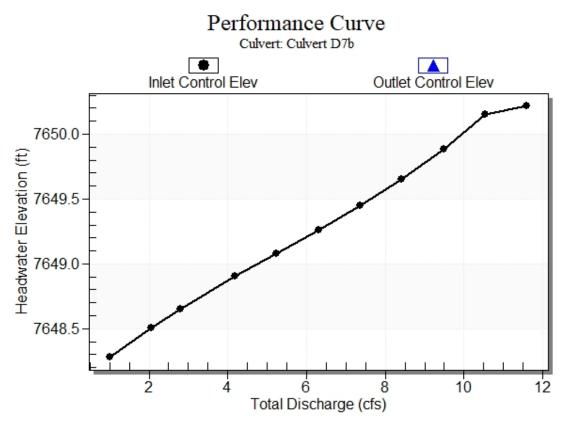
Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 1 cfs Design Flow: 2.8 cfs Maximum Flow: 11.6 cfs

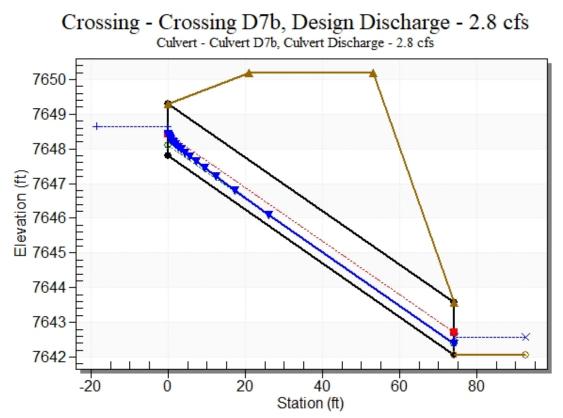
Headwater Elevation (ft)	Total Discharge (cfs)	Culvert D7b Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7648.28	1.00	1.00	0.00	1
7648.50	2.06	2.06	0.00	1
7648.65	2.80	2.80	0.00	1
7648.91	4.18	4.18	0.00	1
7649.08	5.24	5.24	0.00	1
7649.26	6.30	6.30	0.00	1
7649.45	7.36	7.36	0.00	1
7649.65	8.42	8.42	0.00	1
7649.89	9.48	9.48	0.00	1
7650.15	10.54	10.54	0.00	1
7650.22	11.60	10.79	0.72	9
7650.20	10.73	10.73	0.00	Overtopping

Table 1 - Summary of Culvert Flows at Crossing: Crossing D7b

Rating Curve Plot for Crossing: Crossing D7b

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
1.00	1.00	7648.28	0.481	0.0*	1-S2n	0.184	0.369	0.184	0.343	7.927	2.121
2.06	2.06	7648.50	0.705	0.0*	1-S2n	0.262	0.539	0.262	0.450	9.677	2.540
2.80	2.80	7648.65	0.853	0.0*	1-S2n	0.305	0.634	0.305	0.505	10.557	2.743
4.18	4.18	7648.91	1.106	0.0*	1-S2n	0.373	0.782	0.373	0.587	11.806	3.032
5.24	5.24	7649.08	1.282	0.0*	1-S2n	0.418	0.879	0.418	0.639	12.586	3.208
6.30	6.30	7649.26	1.458	0.0*	1-S2n	0.460	0.965	0.488	0.685	12.216	3.360
7.36	7.36	7649.45	1.646	0.0*	5-S2n	0.499	1.048	0.538	0.726	12.475	3.493
8.42	8.42	7649.65	1.854	0.0*	5-S2n	0.536	1.120	0.536	0.763	14.345	3.612
9.48	9.48	7649.89	2.087	0.0*	5-S2n	0.572	1.188	0.609	0.798	13.601	3.721
10.54	10.54	7650.15	2.351	0.0*	5-S2n	0.606	1.246	0.606	0.830	15.233	3.821
11.60	10.79	7650.22	2.418	0.0*	5-S2n	0.614	1.259	0.659	0.861	13.973	3.913


Table 2 - Culvert Summary Table: Culvert D7b


* Full Flow Headwater elevation is below inlet invert.

Straight Culvert Inlet Elevation (invert): 7647.80 ft, Culvert Length: 74.22 ft, Culvert Slope: 0.0774

Culvert Performance Curve Plot: Culvert D7b

Water Surface Profile Plot for Culvert: Culvert D7b

Site Data - Culvert D7b

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7647.80 ft Outlet Station: 74.00 ft Outlet Elevation: 7642.07 ft Number of Barrels: 1

Culvert Data Summary - Culvert D7b

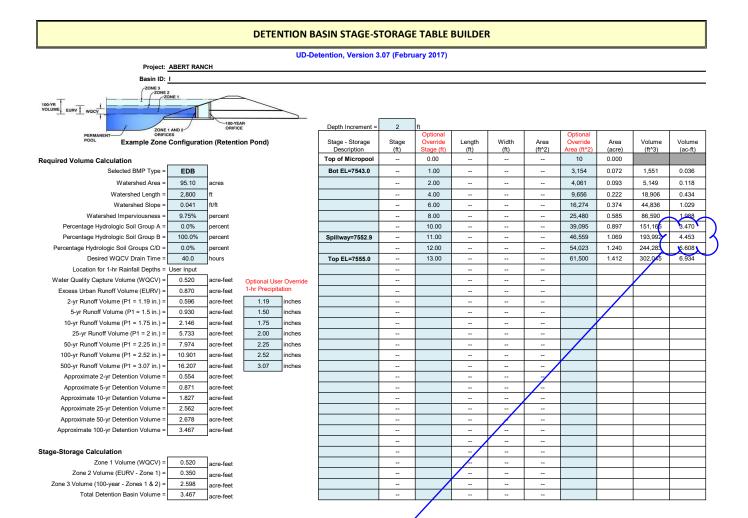
Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
1.00	7642.41	0.34	2.12	0.43	0.90
2.06	7642.52	0.45	2.54	0.56	0.94
2.80	7642.58	0.51	2.74	0.63	0.96
4.18	7642.66	0.59	3.03	0.73	0.99
5.24	7642.71	0.64	3.21	0.80	1.00
6.30	7642.75	0.68	3.36	0.85	1.01
7.36	7642.80	0.73	3.49	0.91	1.02
8.42	7642.83	0.76	3.61	0.95	1.03
9.48	7642.87	0.80	3.72	1.00	1.04
10.54	7642.90	0.83	3.82	1.04	1.04
11.60	7642.93	0.86	3.91	1.07	1.05

Table 3 - Downstream Channel Rating Curve (Crossing: Crossing D7b)

Tailwater Channel Data - Crossing D7b

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0300 Channel Invert Elevation: 7642.07 ft


Roadway Data for Crossing: Crossing D7b

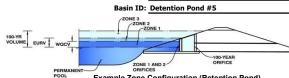
Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 7650.20 ft Roadway Surface: Paved Roadway Top Width: 32.00 ft

APPENDIX D1

DETENTION POND CALCULATIONS ABERT RANCH POND #I CAPACITY ANALYSIS

ABERT RANCH S	UBDIVISION	I									
COMPOSITE IMP											
MPERVIOUS AR	EAS - PER 2	020 ABERT RA	NCH FDR								
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/	PERCENT	AREA	DEVELOPMENT/	PERCENT		DEVELOPMENT/	PERCENT	WEIGHTED
BASIN	(AC)	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	% IMP
С	1.28	1.28	2.5-AC LOTS	11.0							11.000
E	3.12	3.12	2.5-AC LOTS 2.5-AC LOTS	11.0							11.000
C,E	4.40	5.12	2.3-AC LOTS	11.0							11.000
<u>0,∟</u> R	2.93	2.93	2.5-AC LOTS	11.0							11.000
5 F	3.78	3.78	2.5-AC LOTS	11.0							11.000
C.E.B.F	11.11	0.70	2.0710 2010	11.0							11.000
G.	2.27	2.27	2.5-AC LOTS	11.0							11.000
 D11	15.60	15.60	5-AC LOTS	7.0							7.000
Н	5.69	5.69	2.5-AC LOTS	11.0							11.000
DPF,G,D11,H	34.67										9.200
A	10.74	10.74	2.5-AC LOTS	11.0							11.000
D12	11.00	11.00	5-AC LOTS	7.0							7.000
Ol1	13.12	13.12	5-AC LOTS	7.0							7.000
1	25.60	16.60	5-AC LOTS	7.0	9.00	2.5-AC LOTS	11.0				8.406
DPH,D12,OI1,I	95.13										8.632
COMPOSITE IMP	ERVIOUS AF	REAS	RANCH FILING NO. 3 FDR								
ABERT RANCH S COMPOSITE IMP IMPERVIOUS AR	ERVIOUS AF	REAS	SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
COMPOSITE IMP	ERVIOUS AF	REAS	SUB-AREA 1 DEVELOPMENT/	PERCENT	AREA	DEVELOPMENT/	PERCENT		DEVELOPMENT/		
COMPOSITE IMP	ERVIOUS AF	REAS	SUB-AREA 1	PERCENT	AREA (AC)	-	PERCENT IMPERVIOUS	(AC)	-	PERCENT	
COMPOSITE IMP	ERVIOUS AF EAS - PER 2 TOTAL AREA (AC)	REAS 024 SETTLERS (AC)	SUB-AREA 1 DEVELOPMENT/ COVER	IMPERVIOUS		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP
COMPOSITE IMP	ERVIOUS AF	REAS 024 SETTLERS (AC) 1.28	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS	IMPERVIOUS 11.0		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000
COMPOSITE IMP IMPERVIOUS AR BASIN C E	ERVIOUS AF	REAS 024 SETTLERS (AC)	SUB-AREA 1 DEVELOPMENT/ COVER	IMPERVIOUS		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000 11.000
COMPOSITE IMP	ERVIOUS AF EAS - PER 2 TOTAL AREA (AC) 1.28 3.12 4.40	REAS 024 SETTLERS (AC) 1.28 3.12	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS 2.5-AC LOTS	IMPERVIOUS 11.0 11.0		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000 11.000 11.000
COMPOSITE IMP IMPERVIOUS AR BASIN C E C,E	ERVIOUS AF EAS - PER 20 TOTAL AREA (AC) 1.28 3.12 4.40 2.93	REAS (AC) 1.28 3.12 2.93	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS	IMPERVIOUS 11.0 11.0 11.0 11.0		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000 11.000 11.000 11.000
COMPOSITE IMP IMPERVIOUS AR BASIN C E C,E B F	ERVIOUS AF EAS - PER 2 TOTAL AREA (AC) 1.28 3.12 4.40	REAS 024 SETTLERS (AC) 1.28 3.12	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS 2.5-AC LOTS	IMPERVIOUS 11.0 11.0		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000 11.000 11.000
COMPOSITE IMP IMPERVIOUS AR BASIN C E C,E	ERVIOUS AF EAS - PER 20 TOTAL AREA (AC) 1.28 3.12 4.40 2.93 3.78	REAS (AC) 1.28 3.12 2.93	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS	IMPERVIOUS 11.0 11.0 11.0 11.0		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000 11.000 11.000 11.000 11.000
COMPOSITE IMP IMPERVIOUS AR BASIN C E C,E B F C,E,B,F G	EAS - PER 2 TOTAL AREA (AC) 1.28 3.12 4.40 2.93 3.78 11.11	REAS 024 SETTLERS (AC) 1.28 3.12 2.93 3.78	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS	IMPERVIOUS 11.0 11.0 11.0 11.0 11.0		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000 11.000 11.000 11.000 11.000 11.000
COMPOSITE IMP IMPERVIOUS AR BASIN C E C,E B F C,E,B,F G	EAS - PER 2 TOTAL AREA (AC) 1.28 3.12 4.40 2.93 3.78 11.11 2.27	REAS (AC) 1.28 3.12 2.93 3.78 2.27	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS	IMPERVIOUS 11.0 11.0 11.0 11.0 11.0 11.0 11.0		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000 11.000 11.000 11.000 11.000 11.000 11.000
COMPOSITE IMP IMPERVIOUS AR BASIN C E C,E B F C,E,B,F G D11 H	EAS - PER 2 TOTAL AREA (AC) 1.28 3.12 4.40 2.93 3.78 111.11 2.27 15.60	REAS (AC) 1.28 3.12 2.93 3.78 2.27 15.60	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS	IMPERVIOUS 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000
COMPOSITE IMP IMPERVIOUS AR BASIN C E C,E B F C,E,B,F G D11 H	ERVIOUS AF EAS - PER 2 TOTAL AREA (AC) 1.28 3.12 4.40 2.93 3.78 111.11 2.27 15.60 5.69	REAS (AC) 1.28 3.12 2.93 3.78 2.27 15.60	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS	IMPERVIOUS 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000
COMPOSITE IMP IMPERVIOUS AR BASIN C.E. B F C.E.B.F G D11 H DPF,G,D11,H A	ERVIOUS AF EAS - PER 2 TOTAL AREA (AC) 1.28 3.12 4.40 2.93 3.78 11.11 2.27 15.60 5.69 34.67	REAS (AC) 1.28 3.12 2.93 3.78 2.27 15.60 5.69	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS	IMPERVIOUS 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000
COMPOSITE IMP IMPERVIOUS AR BASIN C.E. B F C.E.B.F G D11 H DPF,G,D11,H A DPF,G,D11,H A DI2	EAS - PER 2 TOTAL AREA (AC) 1.28 3.12 4.40 2.93 3.78 111.11 2.27 15.60 5.69 34.67 10.74 11.00 13.12	REAS (AC) (AC) 1.28 3.12 2.93 3.78 2.27 15.60 5.69 10.74 11.00 13.12	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 5-AC LOTS	IMPERVIOUS 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.	(AC)	DEVELOPMENT/ COVER	IMPERVIOUS	(AC)	DEVELOPMENT/		11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 7.000
COMPOSITE IMP IMPERVIOUS AR BASIN C E C,E B F	EAS - PER 2 TOTAL AREA (AC) 1.28 3.12 4.40 2.93 3.78 111.11 2.27 15.60 5.69 34.67 10.74 11.00	REAS (AC) 1.28 3.12 2.93 3.78 2.27 15.60 5.69 10.74 11.00	SUB-AREA 1 DEVELOPMENT/ COVER 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS 2.5-AC LOTS	IMPERVIOUS 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.		DEVELOPMENT/	-	(AC)	DEVELOPMENT/		% IMP 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000

EXISTING DESIGN VOLUME IS ADEQUATE FOR INCREASED TOTAL IMPERVIOUS AREA OF 9.8%


APPENDIX D2

DETENTION POND CALCULATIONS SETTLERS RANCH POND #5

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

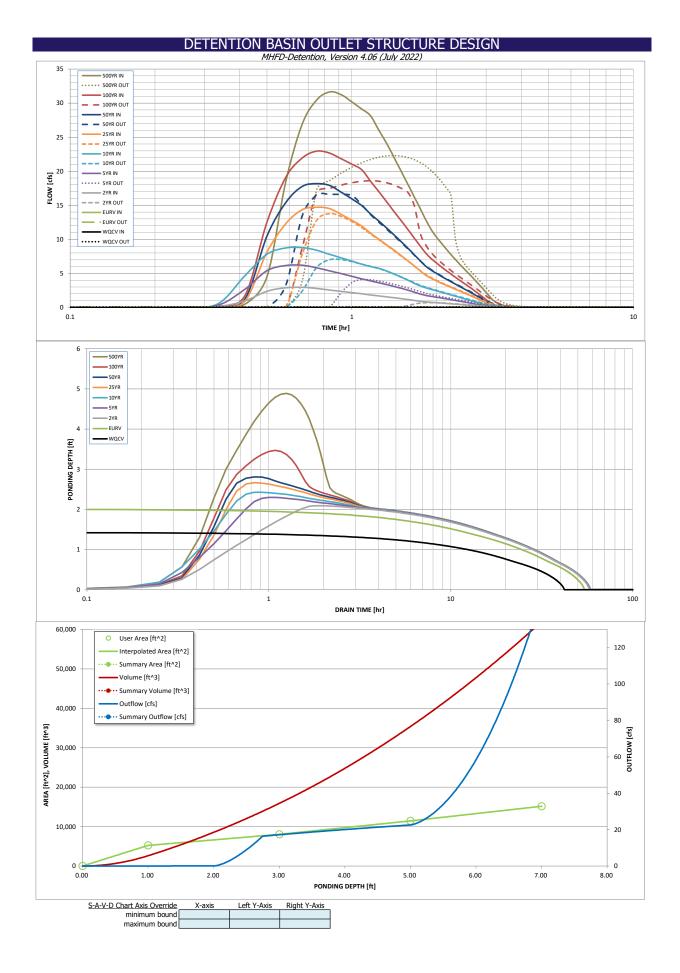
Project: Settlers Ranch Filing No. 3

Example Zone Configuration (Retention Pond)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	18.90	acres
Watershed Length =	1,950	ft
Watershed Length to Centroid =	975	ft
Watershed Slope =	0.049	ft/ft
Watershed Imperviousness =	11.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.


the embedded Colorado Urban Hydro	graph Procedu	re.	Optional User	Override
Water Quality Capture Volume (WQCV) =	0.114	acre-feet		acre-fee
Excess Urban Runoff Volume (EURV) =	0.197	acre-feet		acre-fee
2-yr Runoff Volume (P1 = 1.19 in.) =	0.268	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.576	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.882	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	1.422	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	1.793	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	2.324	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	3.295	acre-feet	3.14	inches
Approximate 2-yr Detention Volume =	0.127	acre-feet		
Approximate 5-yr Detention Volume =	0.198	acre-feet		
Approximate 10-yr Detention Volume =	0.394	acre-feet		
Approximate 25-yr Detention Volume =	0.541	acre-feet		
Approximate 50-yr Detention Volume =	0.568	acre-feet		
Approximate 100-yr Detention Volume =	0.730	acre-feet		
		-		

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.114	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.083	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.533	acre-feet
Total Detention Basin Volume =	0.730	acre-feet

	Depth Increment =		ft							
			Optional				Optional			
	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				10	0.000		
	Bot EL=7562.0		1.00				5,230	0.120	2,620	0.060
			3.00				8,045	0.185	15,895	0.365
	Spillway=7566.0		5.00				11,447	0.263	35,387	0.812
	Top EL=7568.0		7.00				15,165	0.348	61,999	1.423
er Override	es									
acre-fee	t									
acre-fee	et 🛛									
inches										
inches										
inches										
inches										
inches										
inches										
inches										
				1		1			1	

	DE	TENTION	Basin Out	LET <u>STRU</u>	CTUR <u>E DE</u>	SIGN			
Project	Settlers Ranch Fil	٨	1HFD-Detention, V						
	Detention Pond #								
ZONE 3 ZONE 2				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	1.43	0.114	Orifice Plate			
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	2.01	0.083	Orifice Plate			
PERMANENT ORIFICES			Zone 3 (100-year)	4.68	0.533	Weir&Pipe (Restrict)			
Example Zone C	Configuration (Ret	ention Pond)		Total (all zones)	0.730				
ser Input: Orifice at Underdrain Outlet (typically		i i i i i i i i i i i i i i i i i i i	,					eters for Underdrain	<u>1</u>
Underdrain Orifice Invert Depth =	N/A		the filtration media	surface)		Irain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrain	Orifice Centroid =	N/A	feet	
ser Input: Orifice Plate with one or more orifice	es or Elliptical Slot	Weir (typically used	I to drain WOCV an	d/or EURV in a sed	mentation BMP)		Calculated Parame	eters for Plate	
Centroid of Lowest Orifice =	0.00	1	n bottom at Stage =		,	ce Area per Row =	5.903E-03	ft ²	
Depth at top of Zone using Orifice Plate =	2.01	ft (relative to basir	n bottom at Stage =	• 0 ft)	Elli	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	8.00	inches				ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	0.85	sq. inches (diamet	er = 1 inch)		E	Iliptical Slot Area =	N/A	ft ²	
ser Input: Stage and Total Area of Each Orifice	Row (numbered f	rom lowest to high	est)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	0.00	0.67	1.34						
Orifice Area (sq. inches)	0.85	0.85	0.85						
,				a 1-1			a		1
Share of Outline Control 1 (0)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	-
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)									1
Office Area (sq. incles)									
ser Input: Vertical Orifice (Circular or Rectangu	ılar <u>)</u>						Calculated Parame	eters for Vertical Or	ifice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	-	,	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basir	bottom at Stage =	= 0 ft) Vertica	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
ser Input: Overflow Weir (Dropbox with Flat or	Sloped Grate and	Outlet Pipe OR Red	tangular/Trapezoid	al Weir and No Out	let Pipe)		Calculated Parame	eters for Overflow V	Veir
	Zone 3 Weir	Not Selected]				Zone 3 Weir	Not Selected]
Overflow Weir Front Edge Height, Ho =	2.01	N/A	ft (relative to basin t	oottom at Stage = 0 f	, -	e Upper Edge, $H_t =$	2.01	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet			/eir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	0.00 4.00	N/A N/A	H:V feet		•	0-yr Orifice Area = Area w/o Debris =	5.19 11.14	N/A N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A			•	n Area w/ Debris =	5.57	N/A	ft ²
Debris Clogging % =	50%	N/A	%]
ser Input: Outlet Pipe w/ Flow Restriction Plate			ectangular Orifice)		<u>Ca</u>	Iculated Parameters			late
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor		
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	0.50 24.00	N/A N/A	ft (distance below ba inches	isin bottom at Stage		utlet Orifice Area = t Orifice Centroid =	2.15 0.73	N/A N/A	ft ² feet
Restrictor Plate Height Above Pipe Invert =	15.50	IN/A	inches	Half-Cent		tor Plate on Pipe =	1.87	N/A N/A	radians
	0	I					,		
ser Input: Emergency Spillway (Rectangular or	Trapezoidal)						Calculated Parame	eters for Spillway	
Spillway Invert Stage=	=						Calculated Farallie		
	5.00		n bottom at Stage =	0 ft)	• •	esign Flow Depth=	0.80	feet	
Spillway Crest Length =	8.00	feet	n bottom at Stage =	= 0 ft)	Stage at ⁻	Top of Freeboard =	0.80 6.80	feet	
Spillway Crest Length = Spillway End Slopes =	8.00 4.00	feet H:V	n bottom at Stage =	= 0 ft)	Stage at ⁻ Basin Area at ⁻	Top of Freeboard = Top of Freeboard =	0.80 6.80 0.34	feet acres	
Spillway Crest Length =	8.00	feet	n bottom at Stage =	- 0 ft)	Stage at ⁻ Basin Area at ⁻	Top of Freeboard =	0.80 6.80	feet	
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	8.00 4.00 1.00	feet H:V feet	-	·	Stage at ⁻ Basin Area at ⁻ Basin Volume at ⁻	Fop of Freeboard = Fop of Freeboard = Fop of Freeboard =	0.80 6.80 0.34 1.35	feet acres acre-ft	45)
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results	8.00 4.00 1.00	feet H:V feet <i>ride the default CU</i>	HP hydrographs and	t runoff volumes by	Stage at ⁻ Basin Area at ⁻ Basin Volume at ⁻ <i>centering new valu</i>	Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Tes in the Inflow Hyde	0.80 6.80 0.34 1.35 drographs table (CC	feet acres acre-ft	
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	8.00 4.00 1.00 <i>The user can over</i> WQCV N/A	feet H:V feet ride the default CU, EURV N/A	HP hydrographs and 2 Year 1.19	d runoff volumes by 5 Year 1.50	Stage at Basin Area at Basin Volume at <u>centering new valu</u> 10 Year 1.75	Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = 25 Year 2.00	0.80 6.80 0.34 1.35 drographs table (CC 50 Year 2.25	feet acres acre-ft <u>100 Year</u> 2.52	500 Yea 3.14
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	8.00 4.00 1.00 <i>The user can over</i> WQCV N/A 0.114	feet H:V feet ride the default CU EURV N/A 0.197	HP hydrographs and 2 Year 1.19 0.268	d runoff volumes by 5 Year 1.50 0.576	Stage at Basin Area at Basin Volume at <u>Ventering new valu</u> 10 Year 1.75 0.882	Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = <u>res in the Inflow Hy</u> 25 Year 2.00 1.422	0.80 6.80 0.34 1.35 drographs table (C 50 Year 2.25 1.793	feet acres acre-ft 100 Year 2.52 2.324	500 Yea 3.14 3.295
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft)	8.00 4.00 1.00 <i>The user can over</i> WQCV N/A 0.114 N/A	feet H:V feet EURV N/A 0.197 N/A	HP hydrographs and 2 Year 1.19 0.268 0.268	d runoff volumes b) 5 Year 1.50 0.576 0.576	Stage at Basin Area at Basin Volume at <u>entering new valu</u> 10 Year 1.75 0.882 0.882	Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Less in the Inflow Hyr 25 Year 2.00 1.422 1.422	0.80 6.80 0.34 1.35 drographs table (C 50 Year 2.25 1.793 1.793	feet acres acre-ft 100 Year 2.52 2.324 2.324	500 Yea 3.14 3.295 3.295
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	8.00 4.00 1.00 <i>The user can over</i> N/A 0.114 N/A N/A N/A	feet H:V feet <u>EURV</u> N/A 0.197 N/A N/A N/A	HP hydrographs and 2 Year 1.19 0.268 0.268 1.7	d runoff volumes by 5 Year 1.50 0.576 0.576 4.9	Stage at Basin Area at Basin Volume at Centering new value 10 Year 1.75 0.882 0.882 7.4	Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = es in the Inflow Hys 25 Year 2.00 1.422 1.422 1.33	0.80 6.80 0.34 1.35 drographs table (C 50 Year 2.25 1.793 1.793 1.793 16.8	feet acres acre-ft <u>100 Year</u> 2.52 2.324 2.324 2.324 21.4	500 Yea 3.14 3.295 3.295 30.0
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	8.00 4.00 1.00 <i>The user can over</i> WQCV N/A 0.114 N/A N/A N/A N/A	feet H:V feet <u>EURV</u> N/A 0.197 N/A N/A N/A N/A	HP hydrographs and 2 Year 1.19 0.268 0.268 1.7 0.09	d runoff volumes by 5 Year 1.50 0.576 0.576 4.9 0.26	Stage at Basin Area at Basin Volume at Stage at Basin Volume at 1.75 0.882 0.882 0.882 7.4 0.39	For of Freeboard = For of Freeboard = For of Freeboard = es in the Inflow Hy 25 Year 2.00 1.422 1.422 1.3.3 0.71	0.80 6.80 0.34 1.35 drographs table (C 50 Year 2.25 1.793 1.793 1.793 16.8 0.89	feet acres acre-ft <u>100 Year</u> 2.52 2.324 2.324 2.324 2.324 1.13	500 Yea 3.14 3.295 3.295 30.0 1.59
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	8.00 4.00 1.00 <i>The user can over</i> N/A 0.114 N/A N/A N/A N/A N/A 0.1	feet H:V feet N/A 0.197 N/A N/A N/A N/A N/A 0.1	HP hydrographs and 2 Year 1.19 0.268 0.268 1.7 0.09 3.0 0.7	5 Year 1.50 0.576 0.576 4.9 0.26 6.2 4.1	Stage at Basin Area at Basin Volume at Basin Volume at Centering new value 10 Year 1.75 0.882 0.88 0.800 0.882 0.882 0.88 0.800 0.882 0.880 0.800 0.882 0.880 0.800 0.882 0.880 0.800 0.880 0.880 0.800 0.880 0.880 0.800 0.88	Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = 25 Year 2.00 1.422 1.422 1.422 1.3.3 0.71 14.7 13.8	0.80 6.80 0.34 1.35 <i>drographs table (Cl</i> 50 Year 2.25 1.793 1.793 1.793 16.8 	feet acres acre-ft <u>0/umns W through</u> 2.52 2.324 2.324 21.4 1.13 23.0 18.6	500 Yea 3.14 3.295 3.295 30.0 1.59 31.6 22.3
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q	8.00 4.00 1.00 7 <i>The user can over</i> WQCV N/A 0.114 N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet N/A 0.197 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	HP hydrographs and 2 Year 1.19 0.268 0.268 1.7 0.09 3.0 0.7 N/A	1 runoff volumes by 5 Year 1.50 0.576 0.576 4.9 0.26 6.2 4.1 0.8	Stage at Basin Area at Basin Volume at Centering new value 10 Year 1.75 0.882 0.882 7.4 0.39 8.8 7.0 0.9	Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = es in the Inflow Hy 25 Year 2.00 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.3.3 = 0.71 14.7 13.8 1.0	0.80 6.80 0.34 1.35 drographs table (C 50 Year 2.25 1.793 1.793 16.8 0.89 18.2 16.6 1.0	feet acres acre-ft 100 Year 2.52 2.324 2.324 2.324 2.324 2.324 2.324 2.320 1.13 2.30 18.6 0.9	500 Yea 3.14 3.295 3.295 30.0 1.59 31.6 22.3 0.7
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	8.00 4.00 1.00 <i>The user can over</i> WQCV N/A 0.114 N/A N/A N/A N/A N/A N/A N/A N/A Plate	feet H:V feet EURV N/A 0.197 N/A N/A N/A N/A N/A 0.1 N/A O.1 N/A O.1 N/A O.1 N/A	HP hydrographs and 2 Year 1.19 0.268 0.268 1.7 0.09 3.0 0.7 N/A Overflow Weir 1	1 runoff volumes by 5 Year 1.50 0.576 0.576 4.9 0.26 6.2 4.1 0.8 Overflow Weir 1	Stage at Basin Area at Basin Volume at Centering new value 1.75 0.882 0.882 0.882 0.882 0.882 0.882 0.882 0.882 0.882 0.882 0.89 0.89 0.89 0.90 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	For of Freeboard = For of Freeboard = For of Freeboard = Cop of Freeboard = 25 Year 2.00 1.422 1.3.3 0.71 14.7 13.8 1.0 Overflow Weir 1	0.80 6.80 0.34 1.35 drographs table (C 50 Year 2.25 1.793 1.793 1.793 1.6.8 0.89 18.2 16.6 1.0 Outlet Plate 1	feet acres acre-ft 100 Year 2.52 2.324 2.324 2.324 2.324 2.324 2.324 2.324 0.13 2.30 1.8.6 0.9 Outlet Plate 1	500 Yea 3.14 3.295 3.295 30.0
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	8.00 4.00 1.00 7 <i>he user can over</i> WQCV N/A 0.114 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet N/A 0.197 N/A N/A N/A N/A N/A N/A O.1 N/A Overflow Weir 1 N/A N/A	HP hydrographs and 2 Year 1.19 0.268 0.268 1.7 0.09 3.0 0.7 N/A Overflow Weir 1 0.05 N/A	1 runoff volumes by 5 Year 1.50 0.576 0.576 4.9 0.26 6.2 4.1 0.8 Overflow Weir 1 0.4 N/A	Stage at Basin Area at Basin Volume at Centering new value 10 Year 1.75 0.882 0.882 7.4 0.39 8.8 7.0 0.39 8.8 7.0 0.9 0verflow Weir 1 0.6 N/A	Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Cop of Freeboard = 2.00 1.422 1.4	0.80 6.80 0.34 1.35 drographs table (C 50 Year 2.25 1.793 1.793 16.8 0.89 18.2 16.6 1.0 Outlet Plate 1 1.5 N/A	feet acres acre-ft 100 Year 2.52 2.324 2.327 2.3	500 Yea 3.14 3.295 3.295 3.295 30.0 1.59 31.6 22.3 0.7 0.0tlet Plat 2.0 N/A
Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	8.00 4.00 1.00 <i>The user can over</i> . WQCV N/A 0.114 N/A N/A N/A N/A N/A N/A N/A N/A N/A 20.1 N/A N/A N/A 21 N/A N/A 38	feet H:V feet EURV N/A 0.197 N/A N/A N/A N/A N/A N/A 0.1 N/A Overflow Weir 1 N/A A V/A 48	HP hydrographs and 2 Year 1.19 0.268 0.268 1.7 0.09 3.0 0.7 N/A Overflow Weir 1 0.05 N/A 50	1 runoff volumes by 5 Year 1.50 0.576 0.576 4.9 0.26 6.2 4.1 0.8 Overflow Weir 1 0.4 N/A 45	Stage at Basin Area at Basin Volume at Basin Volume at Centering new value at Centering new	Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Top of Freeboard = 25 Year 2.00 1.422 1.422 1.422 1.422 1.422 1.422 1.423 0.71 1.4.7 1.3.8 1.0 Overflow Weir 1 1.2 N/A 34	0.80 6.80 0.34 1.35 drographs table (C 50 Year 2.25 1.793 1.793 1.793 1.6.8 0.89 18.2 16.6 1.0 Outlet Plate 1 1.5 N/A 30	feet acres acre-ft 100 Year 2.52 2.324 2.324 2.324 2.324 2.324 2.324 2.324 2.324 2.324 2.324 2.324 2.324 2.324 2.324 2.32 2.32	500 Yea 3.14 3.295 3.295 30.0 1.59 31.6 22.3 0.7 Outlet Plat 2.0 N/A 20
Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	8.00 4.00 1.00 7 <i>he user can over</i> WQCV N/A 0.114 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet N/A 0.197 N/A N/A N/A N/A N/A N/A O.1 N/A Overflow Weir 1 N/A N/A	HP hydrographs and 2 Year 1.19 0.268 0.268 1.7 0.09 3.0 0.7 N/A Overflow Weir 1 0.05 N/A	1 runoff volumes by 5 Year 1.50 0.576 0.576 4.9 0.26 6.2 4.1 0.8 Overflow Weir 1 0.4 N/A	Stage at Basin Area at Basin Volume at Centering new value 10 Year 1.75 0.882 0.882 7.4 0.39 8.8 7.0 0.39 8.8 7.0 0.9 0verflow Weir 1 0.6 N/A	Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Cop of Freeboard = 2.00 1.422 1.4	0.80 6.80 0.34 1.35 drographs table (C 50 Year 2.25 1.793 1.793 16.8 0.89 18.2 16.6 1.0 Outlet Plate 1 1.5 N/A	feet acres acre-ft 100 Year 2.52 2.324 2.327 2.3	500 Yea 3.14 3.295 3.295 3.00 1.59 31.6 22.3 0.7 Outlet Plat 2.0 N/A

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

[SOURCE	verride the calcu CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
me Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]		100 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.03	0.05	0.06	0.04	0.05	0.05	0.07
ľ	0:20:00	0.00	0.00	0.11	0.29	0.49	0.11	0.14	0.16	0.47
[0:25:00	0.00	0.00	0.96	2.64	4.62	0.91	1.19	1.70	4.51
	0:30:00	0.00	0.00	2.37	5.38	7.82	8.13	10.47	12.51	18.51
	0:35:00	0.00	0.00	2.87	6.15	8.73	12.31	15.41	19.12	26.89
	0:40:00	0.00	0.00	2.96	6.19	8.78	14.35	17.77	21.93	30.43
-	0:45:00	0.00	0.00	2.79	5.81	8.40	14.71	18.18	22.95	31.64
-	0:55:00	0.00	0.00	2.56 2.35	5.38 4.96	7.80 7.29	14.52 13.66	17.92 16.93	22.67 21.83	31.25 30.19
-	1:00:00	0.00	0.00	2.33	4.58	6.81	12.80	15.95	21.03	29.16
-	1:05:00	0.00	0.00	2.01	4.20	6.35	11.97	14.99	20.24	28.12
-	1:10:00	0.00	0.00	1.83	3.89	6.00	10.89	13.71	18.52	25.96
ľ	1:15:00	0.00	0.00	1.68	3.61	5.73	10.00	12.66	16.95	24.01
	1:20:00	0.00	0.00	1.55	3.34	5.33	9.16	11.61	15.45	21.94
	1:25:00	0.00	0.00	1.41	3.07	4.89	8.37	10.62	14.03	19.93
	1:30:00	0.00	0.00	1.28	2.80	4.43	7.59	9.64	12.70	18.05
	1:35:00	0.00	0.00	1.16	2.53	3.99	6.84	8.69	11.43	16.25
	1:40:00	0.00	0.00	1.03	2.24	3.55	6.10	7.76	10.20	14.50
	1:45:00	0.00	0.00	0.91	1.97	3.16	5.37	6.85	9.01	12.84
-	1:50:00	0.00	0.00	0.82	1.77	2.87	4.72	6.04	7.95	11.40
-	1:55:00	0.00	0.00	0.75	1.62	2.65	4.26	5.46	7.17	10.32
-	2:00:00 2:05:00	0.00	0.00	0.70	1.50	2.44	3.88	5.00	6.53	9.42
-	2:10:00	0.00	0.00	0.64	1.38 1.25	2.23 2.03	3.55 3.23	4.56 4.15	5.94 5.40	8.56 7.77
-	2:15:00	0.00	0.00	0.53	1.14	1.83	2.95	3.78	4.89	7.04
	2:20:00	0.00	0.00	0.48	1.02	1.65	2.67	3.42	4.42	6.36
	2:25:00	0.00	0.00	0.43	0.91	1.47	2.40	3.08	3.99	5.72
ľ	2:30:00	0.00	0.00	0.38	0.80	1.29	2.15	2.75	3.57	5.11
Ī	2:35:00	0.00	0.00	0.33	0.70	1.13	1.90	2.43	3.16	4.52
[2:40:00	0.00	0.00	0.28	0.59	0.97	1.64	2.11	2.76	3.94
[2:45:00	0.00	0.00	0.23	0.49	0.81	1.40	1.79	2.35	3.36
	2:50:00	0.00	0.00	0.19	0.39	0.65	1.15	1.48	1.94	2.78
	2:55:00	0.00	0.00	0.14	0.29	0.49	0.90	1.17	1.54	2.20
	3:00:00	0.00	0.00	0.09	0.19	0.35	0.66	0.86	1.14	1.63
-	3:05:00	0.00	0.00	0.06	0.12	0.24	0.42	0.56	0.76	1.11
-	3:10:00	0.00	0.00	0.04	0.08	0.18	0.27	0.37	0.50	0.77
-	3:15:00	0.00	0.00	0.03	0.07	0.14	0.17	0.25	0.34	0.54
-	3:20:00 3:25:00	0.00	0.00	0.02	0.05	0.12	0.12	0.17	0.23	0.38
-	3:30:00	0.00	0.00	0.02	0.04	0.09	0.08	0.12	0.15 0.10	0.26
	3:35:00	0.00	0.00	0.01	0.03	0.07	0.03	0.09	0.10	0.17
	3:40:00	0.00	0.00	0.01	0.02	0.00	0.03	0.00	0.03	0.07
	3:45:00	0.00	0.00	0.01	0.01	0.03	0.02	0.03	0.02	0.05
	3:50:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.02	0.04
Ī	3:55:00	0.00	0.00	0.00	0.01	0.02	0.01	0.02	0.01	0.03
[4:00:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02
[4:05:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
ŀ	4:10:00	0.00	0.00	0.00	0.00	0.01 0.00	0.00	0.01 0.00	0.01 0.00	0.01
ŀ	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	5:40:00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00
-	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	Design Procedure Form:	Extended Detention Basin (EDB)
		(Version 3.07, March 2018) Sheet 1 of 3
Designer:	JPS	
Company:	JPS	
Date:	April 18, 2024	
Project:	Settlers Ranch - Detention Pond #5	
Location:	SW Corner of Steppler Road & Settlers Ranch Road, Monument, CO	(El Paso County)
1. Basin Storage \	/olume	
A) Effective Imp	perviousness of Tributary Area, I _a	$I_a = 11.0$ %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.110
C) Contributing	Watershed Area	Area = 18.900 ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in
		Choose One
E) Design Con (Select EUR	cept V when also designing for flood control)	O Water Quality Capture Volume (WQCV)
,		Excess Urban Runoff Volume (EURV)
F) Design Volu	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 0.114 ac-ft
(V _{DESIGN} = (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
	neds Outside of the Denver Region,	V _{DESIGN OTHER} =ac-ft
	ty Capture Volume (WQCV) Design Volume _R = (d ₆ *(V _{DESIGN} /0.43))	
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
	logic Soil Groups of Tributary Watershed	
	age of Watershed consisting of Type A Soils	HSG _A = 0%
	age of Watershed consisting of Type B Soils	HSG _B = 100 % HSG _{CD} = 0 %
iii) Percent	age of Watershed consisting of Type C/D Soils	
J) Excess Urba	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = 0.197 ac-ft
For HSG B	: EURV _B = 1.36 * i ^{1.08}	
For HSG C	/D: EURV _{C/D} = 1.20 * i ^{1.08}	
	f Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} =ac-f t
(Only if a dif	ferent EURV Design Volume is desired)	
0. Desir Oheney I		L:W= 3.0 : 1
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 3.0 : 1
3. Basin Side Slop	es	
A) Basin Maxin	num Side Slopes	Z = 4.00 ft / ft
	distance per unit vertical, 4:1 or flatter preferred)	2 4.00 1011
4. Inlet		Granite Freedow
A) Describe me	eans of providing energy dissipation at concentrated	Concrete Forebay
ínflow locati		
5. Forebay		
A) Minimum Fo		V _{FMIN} = 0.002 ac-ft
(V _{FMIN}	= <u>2%</u> of the WQCV)	
B) Actual Forel	pay Volume	V _F = 0.003 ac-ft
C) Forebay Der	th	
(D _F		D _F = 18.0 in
D) Forebay Dis	charge	
, ,	-	
i) Undetain	ed 100-year Peak Discharge	Q ₁₀₀ = <u>21.40</u> cfs
ii) Forebay (Q _F = 0.0	Discharge Design Flow	Q _F = 0.43 cfs
E) Forebay Disc	charge Design	Choose One
		Berm With Pipe Flow too small for berm w/ pipe Wall with Rect. Notch
		Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated W _N = in

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	JPS JPS April 18, 2024 Settlers Ranch - Detention Pond #5 SW Corner of Steppler Road & Settlers Ranch Road, Monument, CO	(El Paso County)
 6. Trickle Channel A) Type of Trick F) Slope of Trick 	kle Channel	Choose One • Concrete • Soft Bottom S = 0.0050 ft / ft
	Dutlet Structure cropool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{10}_{\text{orfice Plate}} \text{ sq ft}$ $Other (Describe):$
D) Smallest Din (Use UD-Detent E) Total Outlet A		$D_{office} = 1.00$ inches $A_{ct} = 2.55$ square inches
(Minimum red B) Minimum Initi (Minimum vol	e Volume ial Surcharge Volume commended depth is 4 inches) ial Surcharge Volume ume of 0.3% of the WQCV) irge Provided Above Micropool	$D_{1S} = 6$ in $V_{1S} = $ cu ft $V_s = 5.0$ cu ft
B) Type of Scree in the USDCM, i	ty Screen Open Area: $A_t = A_{ct} * 38.5*(e^{-0.095D})$ en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): N	A _t = square inches S.S. Well Screen with 60% Open Area
D) Total Water (E) Depth of Des (Based on o F) Height of Wa G) Width of Wa	l Open Area to Total Area (only for type 'Other') Quality Screen Area (based on screen type) isign Volume (EURV or WQCV) design concept chosen under 1E) ter Quality Screen (H _{TR}) ter Quality Screen (H _{TR}) ter Quality Screen Opening (W _{opening}) inches is recommended)	User Ratio = $\[A_{total} = \[149] sq. in.\]$ $H = \[2.01] feet$ $H_{TR} = \[52.12] inches$ $W_{opening} = \[12.0] inches$ VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer:	JPS	Sheet 3 of 3
Company:	JPS	
Date:	April 18, 2024	
Project:	Settlers Ranch - Detention Pond #5	
Location:	SW Corner of Steppler Road & Settlers Ranch Road, Monument, Co	D (El Paso County)
10. Overflow Em	bankment embankment protection for 100-year and greater overtopping:	
A) Describe	embankment protection for 100-year and greater overtopping.	Buried Soil Riprap Spillway
	Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	Ze = ft / ft
11. Vegetation		Choose One O Irrigated Not Irrigated
12. Access		
A) Describe	Sediment Removal Procedures	Periodic inspection and removal as needed; Access ramp provided to pond bottom
Notes:		

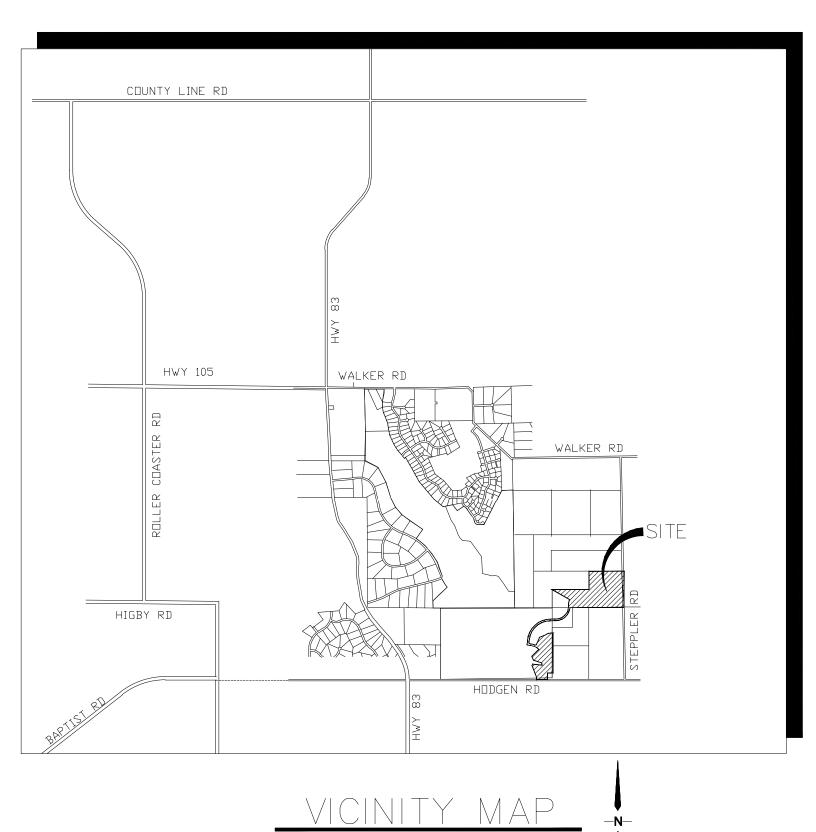
APPENDIX E

COST ESTIMATES

JPS ENGINEERING

SETTLERS RANCH - FILING NO. 3 DRAINAGE IMPROVEMENTS COST ESTIMATE

No.	Description	Quantity	Unit	Unit	Total
110.				Cost	Cost
				(\$\$\$)	(\$\$\$)
	DRAINAGE IMPROVEMENTS				
506	Riprap Culvert Aprons ($d_{50} = 12"$)	8	TN	\$104	\$832
603	18" RCP Culvert	74	LF	\$82	\$6,068
603	18" RCP FES	2	EA	\$492	\$984
	SUBTOTAL				\$7,884
	Contingency @ 15%				\$1,183
	TOTAL				\$9,067

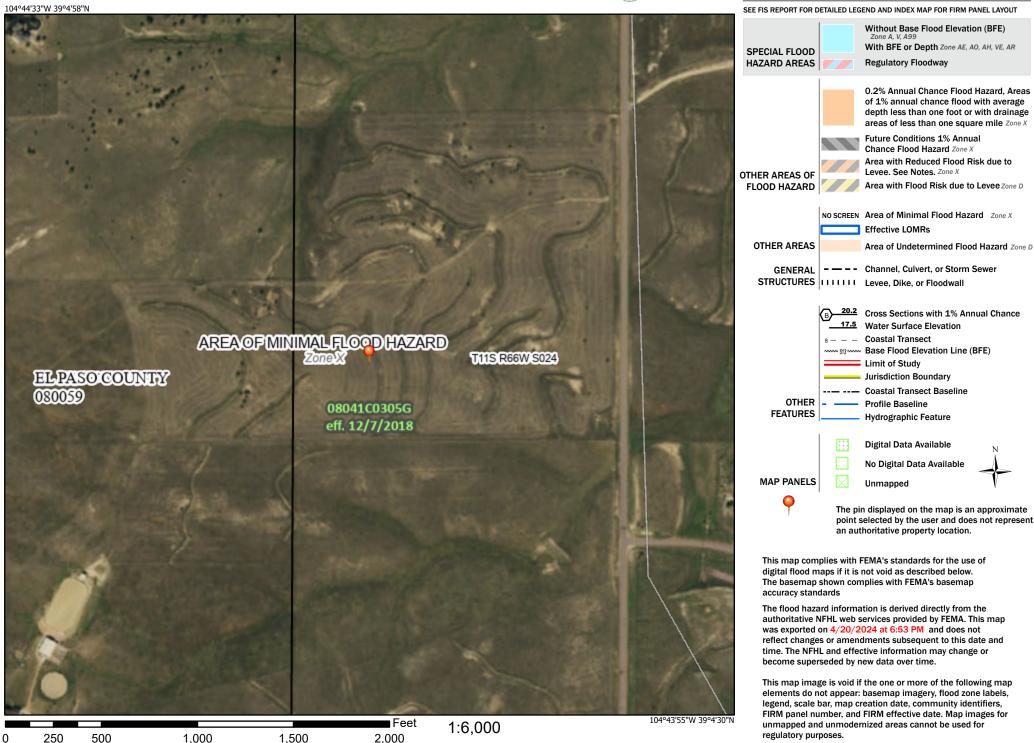

JPS ENGINEERING

SETTLERS RANCH FILING NO. 3 - DETENTION POND NO. 5
ENGINEER'S COST ESTIMATE
DRAINAGE IMPROVEMENTS - FULL-SPECTRUM DETENTION FACILITY (PRIVATE)

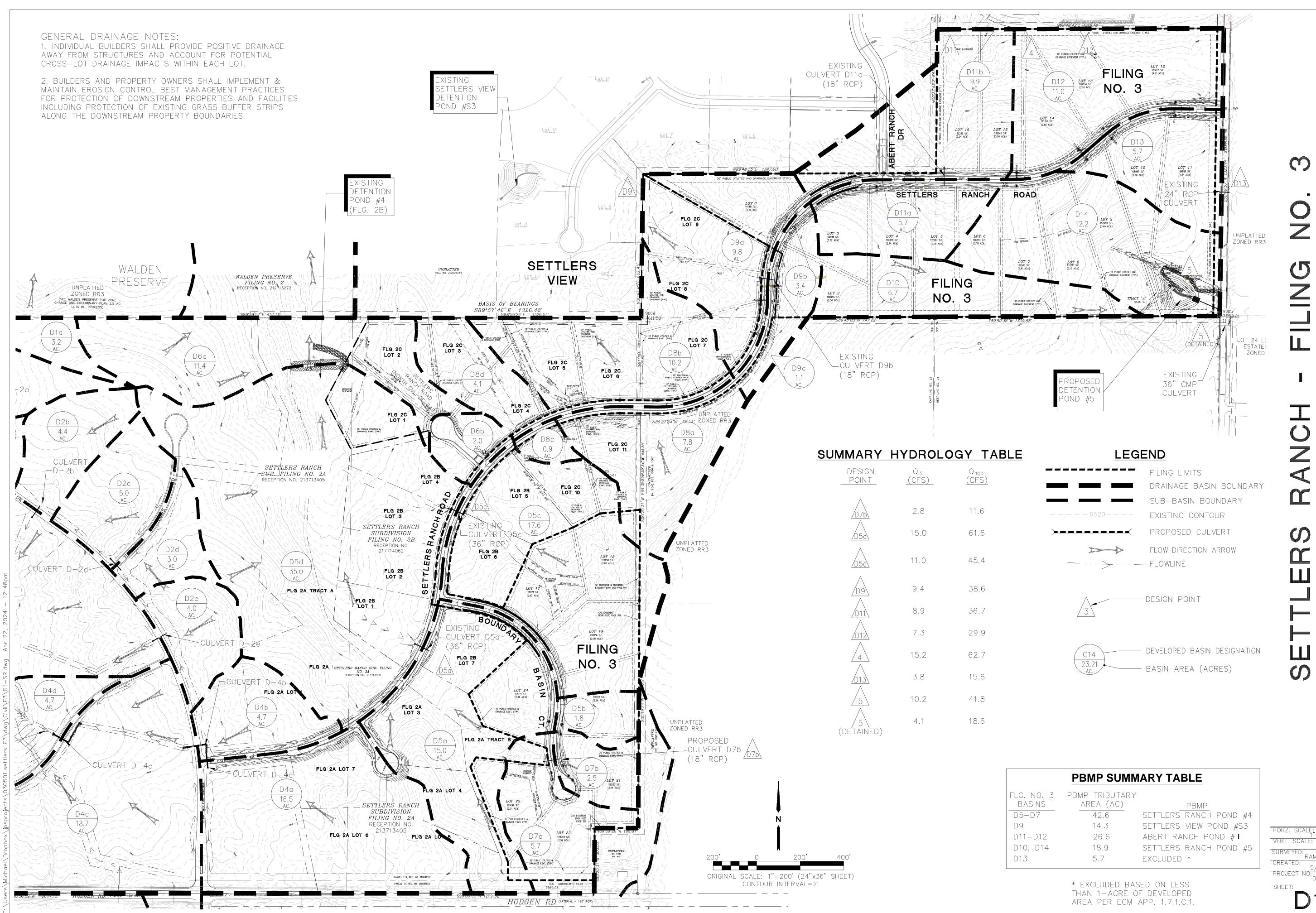
Item No.	Description	Quantity	Unit	Unit Cost	Total Cost
INO.				(\$\$\$)	(\$\$\$)
				(\$\$\$)	(\$\$\$)
	PRIVATE DRAINAGE FACILITIES (NON-REIMBURSABLE)				
	Aggregate Base Course (Access Drive / Ramp)	126	CY	\$66	\$8,31
	Riprap Aprons (12" Riprap)	30	TN	\$104	\$3,12
	Concrete Forebay	1	LS	\$2,500	\$2,50
	Concrete Trickle Channel	37	SY	\$40	\$1,48
	18" HDPE Driveway Culvert	42	LF	\$82	\$3,44
	24" HDPE Pond Discharge Line	130	LF	\$98	\$12,74
	Detention Basin Outlet Structure	1	LS	\$8,000	\$8,00
	Buried Soil Riprap Spillway	85	TN	\$104	\$8,84
	SUBTOTAL				\$48,44
	Contingency @ 10%				\$4,84
	TOTAL				\$53,28
e cost	estimate submitted herein is based on time-honored practices within th	e construction industry. As suc	h		
e engin	eer does not control the cost of labor, materials, equipment or a contract	ctor's method of determining			
	d competitive bidding practices or market conditions. The estimate rep				
design	professionals using current information available at the time of the pro-	eparation. The engineer cannot			
arante	e that proposals, bids and/or construction costs will not vary from this of	ost estimate.			

APPENDIX F

FIGURES



NOT TO SCALE


National Flood Hazard Layer FIRMette

Legend

Basemap Imagery Source: USGS National Map 2023

JPS ENGINEERING 19 E. Willamette Ave. Colorado Springs, CO 80903 PH: 719-477-9429 FAX: 719-471-0766 www.jpsengr.com \mathcal{O} O Z I R d \mathbf{O} Z \bigcirc \mathbf{Z} \mathcal{O} AN Ч Ш RAINAGE \mathcal{O} \square \square OPEI DEVEL HORZ. SCALE; 1"=200' DRAWN: RMD DESIGNED: JPS N/A SURVEYED: CHECKED: CREATED: 5/2/06 PROJECT NO: 030501 LAST MODIF MODIFIED BY: 030501 MSP D1-SR