FINAL DRAINAGE LETTER

FOR

LOT 13, CLAREMONT BUSINESS PARK FILING NO. 2 EL PASO COUNTY, COLORADO

SEPTEMBER 2018

Prepared for:

Hammers Construction, Inc. 1411 Woolsey Heights Colorado Springs, CO 80915

Prepared by:

20 Boulder Crescent, Suite 110 Colorado Springs, CO 80903 (719) 955-5485

Project #44-028 PCD Project No. PPR-18-000

– PPR 1844

DRAINAGE LETTER FOR Lot 13, Claremont Business Park Filing No. 2

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria acceptable to the City of Colorado Springs. I accept responsibility for any liability caused by any negligent acts, errors of omission on my part in preparing this report.

Virgil A. Sanchez, P.E. #37160 For and on Behalf of M&S Civil Consultants, Inc

DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

BY:_____

TITLE:_____ DATE:_____

ADDRESS: Hammers Construction, LLC 1411 Woolsey Heights Colorado Springs, CO 80915

EL PASO COUNTY'S STATEMENT

Filed in accordance with the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Manual, as amended.

BY:_____

DATE:

Jennifer Irvine, P.E. County Engineer / ECM Administrator

CONDITIONS:

20 Boulder Crescent, Suite 110 Colorado Springs, CO 80903 Mail to: P.O. Box 1360 Colorado Springs, CO 80901 719.955.5485

September 13, 2018

Attn: Jennifer Irvine, P.E. El Paso County Engineer 2880 International Circle Colorado Springs, Colorado 80910

RE: Final Drainage Letter for Lot 13, Claremont Business Park Filing No. 2, in El Paso County, Colorado.

Dear Jennifer,

The purpose of this letter is to show that there shall be no negative drainage effects associated with the proposed development of Lot 13 within the Claremont Business Park Filing No. 2, recorded January 4, 2007 under Reception No. 207712506 of the El Paso County Records. This final drainage letter is being submitted concurrently with the improvement construction plans proposing a 5000 SF building and the associated parking improvements.

Property Description:

The proposed project site is within the Northeast Quarter of Section 8, Township 14 South, Range 65 West of the 6th Principal Meridian. Lot 13 consist of 0.5 acres and is currently vacant. The proposed project consist of all infrastructure typically associated with a 5,000 SF building structure. The majority of the site will consist of asphalt, curb, lighting, a subsurface Storm Water Quality Facility and landscaping.

Existing Drainage Characteristics:

The site, which is located Northwest of Meadowbrook Parkway, within an established commercial / light industrial neighborhood is bound to the Northeast and Northwest by the Cole View private roadway, and to the Southeast and Southwest by existing commercial lots. The site is currently vacant land with a relatively new roadway infrastructure and associated utilities with slopes ranging between 0-4 % from Northeast to Southwest. Flows from the site run along the north side of an existing retaining wall along the southern border of the property line and then eventually outfalls to an existing storm sewer collection system at the Southwest corner of the lot and ultimately discharges to the East Fork Sand Creek.

Floodplain Statement

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) No. 08041C0752 F, dated March 17, 1997, Revision LOMR dated Aug. 6, 2018 none of the site lies in a designated flood plain. The nearest major drainage way is East Fork Sand Creek just Northwest of the commercial business park.

Proposed drainage characteristics:

The proposed project consist of all infrastructure typically associated with a 5,000 SF building structure. The majority of the site will consist of asphalt, curb, lighting, a subsurface Storm Water Quality Facility and landscaping. The subject site was previously analyzed within the Final Drainage Report for Claremont Business Park Filing No. 2 prepared by Matrix Design Group approved April 24, 2007. On-site WQCV is required but on-site stormwater detention is not required per the FDR for Claremont Business Park Fil. 2.

The developed flows from Lot 13 shall be directed to a Storm Water Quality Facility (rain garden type) located along the Northwest portion of the property line along Cole View. Flows shall enter the rain garden near the southeastern portion of the site via a curb opening (1.3 cfs for the 5-yr and 2.2 cfs for the 100-yr). the rational calculations were made knowing the existing hydraulic soil group (HSC) of type A).

Flows that penetrate the Rain Garden will discharge into an existing storm drain catch basin at the Southwest corner of the property. Overflows from the Rain Garden will overtop a berm near the southwest portion of the site and flow into Cole View as it does currently. Flows from Lots 11 and 12 that are released at the Southeast corner of Lot 13 via an existing 3' curb opening shall continue along the proposed southern curb line, and then eventually outfall to an existing storm sewer collection system at the Southwest corner of Lot 13 and ultimately discharges to the East Fork Sand Creek.

Water Quality Provisions:

The proposed Rain Garden will be built per Urban Drainage and Flood Control recommendations (see Appendix B for additional information on the Rain Garden). The Volume provided by the Rain Garden is approximately 368 cu-ft which exceeds the required Water Quality Control Volume 345cu-ft. The size of the Rain Garden is based on an impervious area of 95%, a drainage area of approximately 0.27 acres, and a runoff of 0.6-inches of precipitation per City of Colorado Springs – Drainage Criteria Manual Volume 2, See Appendix B for Design Procedure Form for Sand Filter.

FOUR STEP PROCESS

Water quality facility is a rain garden

Step1 Employ Runoff Reduction Practices – The project does not provide any runoff reduction practices.

- Step 2 Stabilize Drainageways The site is indirectly adjacent to the Sand Creek Channel. The Lot 13 site proposed a Storm Water Quality Facility (Rain Garden type) before discharging East Fork Sand Creek. The development of this project does not anticipate to have negative effects on downstream drainageways.
- Step 3 Provide Water Quality Capture Volume Storm Water Quality Facility (Rain Garden type) is proposed to provide WQCV.
- **Step4** Consider Need for Industrial and Commercial BMP's This submittal provides a final grading and erosion control plans with BMPs in place. The proposed project will use silt fence, a vehicle tracking control pad, and concrete washout area, mulching and reseeding to mitigate the potential for erosion across the site.

Private Water Quality Facility - Cost Estimate:

Private Subsurface Water Quality Facility: \$6,000.00

Drainage fees:

No drainage fees are due as the site has been previous platted.

Conclusion:

No negative drainage effects associated with the proposed development of Lot 13 within the Claremont Business Park Filing No. 2.

This proposal does not conflict or change the specifications as previously detailed within the "Final Drainage Report for Claremont Business Park Filing No. 2" prepared by Matrix Design Group approved April 24, 2007.

This letter has been prepared according to the County drainage criteria and is being submitted for approval. If you have any question about this submittal, please feel free to call me at 719-491-0818 or email me at Virgils@mscivil.com

Sincerely,

Virgil A. Sanchez

VICINITY MAP

RAIN GARDEN DESIGN INFORMATION

A BMP that utilizes bioretention is an engineered, depressed landscape area designed to capture and filter or infiltrate the water quality capture volume (WQCV). BMPs that utilize bioretention are frequently referred to as rain gardens or porous landscape detention areas (PLDs). The term PLD is common in the UDFCD region as this manual first published the BMP by this name in 1999. In an effort to be consistent with terms most prevalent in the stormwater industry, this document generally refers to the treatment process as *bioretention* and to the BMP as a *rain garden*.

Photograph B-1. This recently constructed rain garden provides bioretention of pollutants, as well as an attractive amenity for a residential building. Treatment should improve as vegetation matures.

The design of a rain garden may provide

detention for events exceeding that of the WQCV. There are generally two ways to achieve this. The design can provide the flood control volume above the WQCV or the design can provide and slowly release the flood control volume in an area downstream of one or more rain gardens. See the *Storage* chapter in Volume 2 of the USDCM for more information.

This infiltrating BMP requires consultation with a geotechnical engineer when proposed adjacent to a structure. A geotechnical engineer can assist with evaluating the suitability of soils, identifying potential impacts, and establishing minimum distances between the BMP and structures.

Terminology

The term *bioretention* refers to the treatment process although it is also frequently used to describe a BMP that provides biological uptake and retention of the pollutants found in stormwater runoff. This BMP is sometimes referred to as a *porous landscape detention (PLD) area* or *rain garden*.

Bioretentic (Rain Gard	on en)							
Functions								
LID/Volume Red.	Yes							
WQCV Capture	Yes							
WQCV+Flood Control	Yes							
Fact Sheet Includes EURV Guidance	No							
Typical Effectiveness for Pollutants ³	or Targeted							
Sediment/Solids	Very Good ¹							
Nutrients	Moderate							
Total Metals Good								
Bacteria Moderate								
Other Considerations								
Life-cycle Costs ⁴	Moderate							
 Not recommended for wat high sediment yields (unles provided). ³ Based primarily on data fr International Stormwater B (www.bmpdatabase.org). ⁴ Based primarily on BMP- available at www.udfcd.org based on a single installatio the maximum recommende tributary to each BMP). 	ersheds with s pretreatment is om the MP Database REALCOST g. Analysis on (not based on d watershed							

T-3

Site Selection

This BMP allows WQCV treatment within one or more areas designated for landscape (see design step 7 for suggusted vegetation). In this way, it is an excellent alternative to extended detention basins for small sites. A typical rain garden serves a tributary area of one impervious acre or less, although they can be designed for larger tributary areas. Multiple installations can be used within larger sites. Rain gardens should not be used when a baseflow is anticipated. They are typically small and installed in locations such as:

- Parking lot islands
- Street medians
- Landscape areas between the road and a detached walk
- Planter boxes that collect roof drains

Bioretention requires a stable watershed. Retrofit applications are typically successful for this reason. When the watershed includes phased construction, sparsely vegetated areas, or steep slopes in sandy soils, consider another BMP or provide pretreatment before runoff from these areas reaches the rain garden.

The surface of the rain garden should be flat. For this reason, rain gardens can be more difficult to incorporate into steeply sloping terrain; however, terraced applications of these facilities have been successful in other parts of the country.

When bioretention (and other BMPs used for infiltration) are

Benefits

- Bioretention uses multiple treatment processes to remove pollutants, including sedimentation, filtering, adsorption, evapotranspiration, and biological uptake of constituents.
- Stormwater treatment occurs within attractive landscaped areas.
- There is a potential reduction of irrigation requirements by taking advantage of site runoff.

Limitations

- Additional design and construction steps are required for placement of any ponding or infiltration area near or upgradient from a building foundation and/or when expansive (low to high swell) soils exist. This is discussed in the design procedure section.
- In developing or otherwise erosive watersheds, high sediment loads can clog the facility.

located adjacent to buildings or pavement areas, protective measures should be implemented to avoid adverse impacts to these structures. Oversaturated subgrade soil underlying a structure can cause the structure to settle or result in moisture-related problems. Wetting of expansive soils or bedrock can cause swelling, resulting in structural movements. A geotechnical engineer should evaluate the potential impact of the BMP on adjacent structures based on an evaluation of the subgrade soil, groundwater, and bedrock conditions at the site. Additional minimum requirements include:

- In locations where subgrade soils do not allow infiltration and/or where infiltration could adversely impact adjacent structures, include a drainage layer (with underdrain) under the growing medium.
- In locations where potentially expansive soils or bedrock exist, placement of a rain garden adjacent to structures and pavement should only be considered if the BMP includes a drainage layer (with underdrain) and an impermeable geomembrane liner designed to restrict seepage.

Designing for Maintenance

Recommended maintenance practices for all BMPs are in Chapter 6 of this manual. During design, consider the following to ensure ease of maintenance over the long-term:

- Do not put a filter sock on the underdrain. This is not necessary and can cause the underdrain to clog.
- The best surface cover for a rain garden is full vegetation. Use rock mulch sparingly within the rain garden because rock mulch limits infiltration and is more difficult to maintain. Wood mulch handles sediment build-up better than rock mulch; however, wood mulch floats and may clog the overflow depending on the configuration of the outlet or settle unevenly. Some municipalities may not allow wood mulch for this reason.

Is Pretreatment Needed?

Designing the inflow gutter to the rain garden at a minimal slope of 0.5% can facilitate sediment and debris deposition prior to flows entering the BMP. Be aware, this will reduce maintenance of the BMP, but may require more frequent sweeping of the gutter to ensure that the sediment does not impede flow into the rain garden.

- Consider all potential maintenance requirements such as mowing (if applicable) and replacement of the growing medium. Consider the method and equipment for each task required. For example, in a large rain garden where the use of hand tools is not feasible, does the shape and configuration of the rain garden allow for removal of the growing medium using a backhoe?
- Provide pre-treatment when it will reduce the extent and frequency of maintenance necessary to maintain function over the life of the BMP. For example, if the tributary is larger than one acre, prone to debris or the use of sand for ice control, consider a small forebay.
- Make the rain garden as shallow as possible. Increasing the depth unnecessarily can create erosive side slopes and complicate maintenance. Shallow rain gardens are also more attractive.
- Design and adjust the irrigation system (temporary or permanent) to provide appropriate water for the establishment and maintenance of selected vegetation.

Design Procedure and Criteria

- 1. Subsurface Exploration and Determination of a No-Infiltration, Partial Infiltration, or Full Infiltration Section: Infiltration BMPs can have three basic types of sections. The appropriate section will depend on land use and activities, proximity to adjacent structures and soil characteristics. Sections of each installation type are shown in Figure B-1.
 - **No-Infiltration Section**: This section includes an underdrain and an impermeable liner that prevents infiltration of stormwater into the subgrade soils. Consider using this section when any of the following conditions exist:
 - The site is a stormwater hotspot and infiltration could result in contamination of groundwater.
 - The site is located over contaminated soils and infiltration could mobilize these contaminants.
 - The facility is located over potentially expansive soils or bedrock that could swell due to infiltration and potentially damage adjacent structures (e.g., building foundation or pavement).
 - **Partial Infiltration Section**: This section does not include an impermeable liner, and allows some infiltration. Stormwater that does not infiltrate is collected and removed by an underdrain

system.

• **Full Infiltration Section**: This section is designed to infiltrate the water stored in the basin into the subgrade below. UDFCD recommends a minimum infiltration rate of 2 times the rate needed to drain the WQCV over 12 hours. A conservative design could utilize the partial infiltration section with the addition of a valve at the underdrain outlet. In the event that infiltration does not remain adequate following construction, the valve could be opened and allow this section to operate as a partial infiltration section.

A geotechnical engineer should scope and perform a subsurface study. Typical geotechnical investigation needed to select and design the section includes:

- Prior to exploration review geologic and geotechnical information to assess near-surface soil, bedrock and groundwater conditions that may be encountered and anticipated ranges of infiltration rate for those materials. For example, if the facility is located adjacent to a structure and the site is located in a general area of known shallow, potentially expansive bedrock, a no-infiltration section will likely be required. It is also possible that this BMP may be infeasible, even with a liner, if there is a significant potential for damage to the adjacent structures (e.g., areas of dipping bedrock).
- Drill exploratory borings or exploratory pits to characterize subsurface conditions beneath the subgrade and develop requirements for subgrade preparation. Drill at least one boring or pit for every 40,000 ft², and at least two borings or pits for sites between 10,000 ft² and 40,000 ft². The boring or pit should extend at least 5 feet below the bottom of the base, and at least 20 feet in areas where there is a potential of encountering potentially expansive soils or bedrock. More borings or pits at various depths may be required by the geotechnical engineer in areas where the water table is likely within 8 feet below the planned bottom of the base or top of subgrade. Installation of temporary monitoring wells in selected borings or pits for monitoring groundwater levels over time should be considered where shallow groundwater is encountered.
- Perform laboratory tests on samples obtained from the borings or pits to initially characterize the subgrade, evaluate the possible section type, and to assess subgrade conditions for supporting traffic loads. Consider the following tests: moisture content (ASTM D 2216); dry density (ASTM D 2936); Atterberg limits (ASTM D 4318); gradation (ASTM D 6913); swell-consolidation (ASTM D 4546); subgrade support testing (R-value, CBR or unconfined compressive strength); and hydraulic conductivity. A geotechnical engineer should determine the appropriate test method based on the soil type.
- For sites where a full infiltration section may be feasible, perform on-site infiltration tests using a double-ring infiltrometer (ASTM D 3385). Perform at least one test for every 160,000 ft² and at least two tests for sites between 40,000 ft² and 160,000 ft². The tests should be located near completed borings or pits so the test results and subsurface conditions encountered in the borings can be compared, and at least one test should be located near the boring or pit showing the most unfavorable infiltration condition. The test should be performed at the planned top of subgrade underlying the growing media.
- Be aware that actual infiltration rates are highly variable dependent on soil type, density and moisture content and degree of compaction as well as other environmental and construction influences. Actual rates can differ an order of magnitude or more from those indicated by infiltration or permeability testing. Select the type of section based on careful assessment of the subsurface exploration and testing data.

The following steps outline the design procedure and criteria, with Figure B-1 providing a corresponding cross-section.

2. Basin Storage Volume: Provide a storage volume based on a 12-hour drain time.

Find the required WQCV (watershed inches of runoff). Using the imperviousness of the tributary area (or effective imperviousness where LID elements are used upstream), use Figure 3-2 located in Chapter 3 of this manual to determine the WQCV based on a 12-hour drain time.

Calculate the design volume as follows:

$$V = \left[\frac{WQCV}{12}\right]A$$

Where:

 $V = \text{design volume (ft}^3)$

A = area of watershed tributary to the rain garden (ft²)

3. **Basin Geometry:** UDFCD recommends a maximum WQCV ponding depth of 12 inches to maintain vegetation properly. Provide an inlet or other means of overflow at this elevation. Depending on the type of vegetation planted, a greater depth may be utilized to detain larger (more infrequent) events. The bottom surface of the rain garden, also referred to here as the filter area, should be flat. Sediment will reside on the filter area of the rain garden; therefore, if the filter area is too small, it may clog prematurely. If the filter area is not flat, the lowest area of the filter area will reduce clogging and decrease the frequency of maintenance. Equation B-2 provides a minimum filter area allowing for some of the volume to be stored beyond the area of the filter (i.e., above the sideslopes of the rain garden).

Note that the total surcharge volume provided by the design must also equal or exceed the design volume. Where needed to meet the the required volume, also consider the porosity of the media at 14 percent. Use vertical walls or slope the sides of the basin to achieve the required volume. Sideslopes should be no steeper than 4:1 (horizontal:vertical).

 $A_{F} = 0.02 AI$

Where:

 A_F = minimum (flat) filter area (ft²)

A = area tributary to the rain garden (ft²)

I = imperviousness of area tributary to the rain garden (percent expressed as a decimal)

Equation B-1

Equation B-2

4. **Growing Medium:** Provide a minimum of 18 inches of growing medium to enable establishment of the roots of the vegetation (see Figure B-1). A previous version of this manual specified a mixture consisting of 85% coarse sand and a 15% compost/shredded paper mixture (by volume). Based on field monitoring of this medium, compost was removed to reduce export of nutrients and fines and silts were added to both benefit the vegetation and increase capture of metals in stormwater.

Table B-1 specifies the growing media as well as other materials discussed in this Fact Sheet. Growing media is engineered media that requires a high level of quality control and must almost always be imported. Obtaining a particle size distribution and nutrient analysis is the only way to ensure that the media is acceptable. UDFCD has identified placement of media not meeting the specification as the most frequent cause of failure. Sample the media after delivery and prior to placement or obtain a sample from the supplier in advance of delivery and placement and have this analyzed prior to delivery.

Other Rain Garden Growing Medium Amendments

The specified growing medium was designed for filtration ability, clogging characteristics, and vegetative health. It is important to preserve the function provided by the rain garden growing medium when considering additional materials for incorporation into the growing medium or into the standard section shown in Figure B-1. When desired, amendments may be included to improve water quality or to benefit vegetative health as long as they do not add nutrients, pollutants, or modify the infiltration rate. For example, a number of products, including steel wool, capture and retain dissolved phosphorus (Erickson 2009). When phosphorus is a target pollutant, proprietary materials with similar characteristics may be considered. Do not include amendments such as top soil, sandy loam, and compost.

Material		Specification			Submittals	lesting	Notes
Bioretention Growing Media (soil + organics)	Bioreterntion soil	Particle size distribution: 80-80% sand (0.05 - 2.0 mm diameter) 3-17% sitt (0.002-0.5 mm diameter) 3-17% day (<0.002 diameter) 3-17% day (<0.002 diameter) 0-17% day (<0.002 diameter) 0-17% day (<0.002 diameter) pH 6.8 - 7.5 organic matter < 15% nitrogen <15 ppm phosphorus < 15 ppm selinity < 6 mmhostern			Particle size distribution and nutherit analysis required		Percentages are in weight.
	Bioretention organics	3 to $5%$ shredded mulch (by weight of gro	wing media)				bioretention soil required. Aged 6 months (minimum).
Landscape mulc	F	Shredded hardwood					Aged 6 months (minimum). No weed fabric allowed
			Mass Percen	t Passing Square Mesh Siev			
1 8		Sieve Size	Class B	Class C			
		13(.5 mm (1.5") 13 0 mm (0.75")		ę			
Underdrain	material (Class D	13.0.11111 (0.2.3.) A 76 (N.) - A)	00 UC	CO 100	Particle size		
- aggregate	in accual (class of for Clas specified)	4.7311111(1904) 1118.1m (No. 16)	00-07	00-100	distribution		
1	•		3 UI-U	10-30	required.		
1		150 to 100					
		75 UM [No. 200]	0-3	2-0 -0			
		Pipe diameter and type	Maximum slot width	Minimum open area (per 6000		Pipe must conform to requirements of AGTM designation F949. There shall be no evidence of solution	
Underdrain Pipe			(inches)	F	Required	cracking, or breaking when the pipe is tested per ASTM test	Contech A-2000 slotted pipe (or equal)
		4-inch slotted PVC	0.032	190 in ²		method D2412 in accordance	
		B-inch slatted PVC	0.032	198 in ²		F794 section 8.5.	
			Thickness 0.76 mm (30 mil)	Test method			
		Thickness, % Tolerance	<u></u>	ASTMID 1593		Thermal welding reguired for	
lmorneahle line	-	Persua suaright, MATHUMMI Modulus at 100% elongation, kNim	5.25 (30)	ASTM D8 82, method B	Reg ired	fully lined facilities (not a	
	-	Ultimate elongation, $\widetilde{\mathcal{X}}$	350	ASTM D8 82, method A		cutain). Leak testing in the field	
1		Tear resistance, N(Ibs)	38 (8.5)	ASTM D 1004		required.	
		Low temperature impact, * L'(* H) Vial vitio foco *7 m view eo	60 [UZ-]EZ-	AGTMUT/9U ACTMD003 motherd A			
		Pinholes, no. per 8 m² (no. per 10 yd.²)	1(max)				
		Bonded seam strength, $\%$ of tensile	8	NA			

Table B-1. Material specification for bioretention/rain garden facilities

Equation B-3

5. Underdrain System: When using an underdrain system, provide a control orifice sized to drain the design volume in 12 hours or more (see Equation B-3). Use a minimum orifice size of 3/8 inch to avoid clogging. This will provide detention and slow release of the WQCV, providing water quality benefits and reducing impacts to downstream channels. Space underdrain pipes a maximum of 20 feet on center. Provide cleanouts to enable maintenance of the underdrain. Cleanouts can also be used to conduct an inspection (by camera) of the underdrain system to ensure that the pipe was not crushed or disconnected during construction.

Calculate the diameter of the orifice for a 12-hour drain time using Equation B-3 (Use a minimum orifice size of 3/8 inch to avoid clogging.):

$$D_{12 \text{ hour drain time}} = \sqrt{\frac{V}{1414 \ y^{0.41}}}$$

Where:

- D = orifice diameter (in)
- y = distance from the lowest elevation of the storage volume (i.e., surface of the filter) to the center of the orifice (ft)
 V = volume (WOCV or the portion of the WOCV in the rain gar
 - = volume (WQCV or the portion of the WQCV in the rain garden) to drain in 12 hours (ft³)

In previous versions of this manual, UDFCD recommended that the underdrain be placed in an aggregate layer and that a geotextile (separator fabric) be placed between this aggregate and the growing medium. This version of the manual replaces that section with materials that, when used together, eliminate the need for a separator fabric.

The underdrain system should be placed within an 6-inch-thick section of CDOT Class B or Class C filter material meeting the gradation in Table B-1. Use slotted pipe that meets the slot dimensions provided in Table B-3.

6. Impermeable Geomembrane Liner and Geotextile Separator Fabric: For noinfiltration sections, install a 30 mil (minimum) PVC geomembrane liner, per Table B-1, on the bottom and sides of the basin, extending up at least to the top of the underdrain layer. Provide at least 9 inches (12 inches if possible) of cover over the membrane where it is attached to the wall to protect the membrane from UV deterioration. The geomembrane should be fieldseamed using a dual track welder, which allows for nondestructive testing of almost all field seams. A small amount of single track is allowed in limited areas to seam around pipe perforations, to patch seams removed for destructive seam testing, and for limited repairs. The liner should be installed with slack to prevent tearing due to backfill, compaction, and settling. Place CDOT Class B geotextile separator fabric above the geomembrane to protect it from being punctured during the placement of the filter material above the liner. If the subgrade contains angular rocks or other material that could puncture the geomembrane, smooth-roll the surface to create a suitable surface. If smooth-rolling the surface does not provide a

Photograph B-2. The impermeable membrane in this photo has ripped from the bolts due to placement of the media without enough slack in the membrane.

Photograph B-3. Ensure a water-tight connection where the underdrain penetrated the liner. The heat-welded "boot" shown here is an alternative to the clamped detail shown in Figure B-2.

suitable surface, also place the separator fabric between the geomembrane and the underlying subgrade. This should only be done when necessary because fabric placed under the geomembrane can increase seepage losses through pinholes or other geomembrane defects. Connect the geomembrane to perimeter concrete walls around the basin perimeter, creating a watertight seal between the geomembrane and the walls using a continuous batten bar and anchor connection (see Figure B-3). Where the need for the impermeable membrane is not as critical, the membrane can be attached with a nitrile-based vinyl adhesive. Use watertight PVC boots for underdrain pipe penetrations through the liner (see Figure B-2) or the technique shown in photo B-3.

Duomoutry	Class	В	Tagt Mathad
Property	Elongation $< 50\%^2$	Elongation $> 50\%^2$	i est Method
Grab Strength, N (lbs.)	800 (180)	510 (115)	ASTM D 4632
Puncture Resistance, N (lbs.)	310 (70)	180 (40)	ASTM D 4833
Trapezoidal Tear Strength, N (lbs.)	310 (70)	180 (40)	ASTM D 4533
Apparent Opening Size, mm (US Sieve Size)	AOS < 0.3mm (US S	ieve Size No. 50)	ASTM D 4751
Permittivity, sec ⁻¹	0.02 default value, must that of	ASTM D 4491	
Permeability, cm/sec	k fabric > k soil t	for all classes	ASTM D 4491
Ultraviolet Degradation at 500 hours	50% strength retained	ed for all classes	ASTM D 4355

Table B-2.	Physical	requirements	for	separator	fabric ¹
1		- equin entremes		Separator.	

¹ Strength values are in the weaker principle direction

 2 As measured in accordance with ASTM D 4632

7. **Inlet and Outlet Control:** In order to provide the proper drain time, the bioretention area can be restricted at the underdrain outlet with an orifice plate or can be designed without an underdrain

(provided the subgrade meets the requirements above). Equation B-3 is a simplified equation for sizing an orifice plate for a 12-hour drain time. UD-BMP or UD-Detention, available at <u>www.udfcd.org</u>, also perform this calculation.

How flow enters and exits the BMP is a function of the overall drainage concept for the site. Curb cuts can be designed to both allow stormwater into the rain garden as well as to provide release of stormwater in excess of the WQCV. Roadside rain gardens located on a steep site might pool and overflow into downstream cells with a single curb cut, level spreader, or outlet structure located at the most downstream cell. When selecting the

Photograph B-4. The curb cut shown allows flows to enter this rain garden while excess flows bypass the facility.

type and location of the outlet structure, ensure runoff will not short-circuit the rain garden. This is a frequent problem when using a curb inlet located outside the rain garden for overflow.

For rain gardens with concentrated points of inflow, provide a forebay and energy dissipation. A depressed concrete slab works best for a forebay. It helps maintain a vertical drop at the inlet and allows for easily removal of sediment using a square shovel. Where rock is used for energy dissipation, provide separator fabric between the rock and growing medium to minimize subsidence.

8. Vegetation: UDFCD recommends that the filter area be vegetated with drought tolerant species that thrive in sandy soils. Table B-3 provides a suggested seed mix for sites that will not need to be irrigated after the grass has been established.

Mix seed well and broadcast, followed by hand raking to cover seed and then mulched. Hydromulching can be effective for large areas. Do not place seed when standing water or snow is present or if the ground is frozen. Weed control is critical in the first two to three years, especially when starting with seed.

When using sod, specify sand–grown sod. Do not use conventional sod. Conventional sod is grown in clay soil that will seal the filter area, greatly reducing overall function of the BMP.

When using an impermeable liner, select plants with diffuse (or fibrous) root systems, not taproots. Taproots can damage the liner and/or underdrain pipe. Avoid trees and large shrubs that may interfere with restorative maintenance. Plant these outside of the area of growing medium. Use a cutoff wall to ensure that roots do not grow into the underdrain or place trees and shrubs a conservative distance from the underdrain.

9. **Irrigation:** Provide spray irrigation at or above the WQCV elevation or place temporary irrigation on top of the rain garden surface. Do not place sprinkler heads on the flat surface. Remove temporary irrigation when vegetation is established. If left in place this will become buried over time and will be damaged during maintenance operations.

Adjust irrigation schedules during the growing season to provide the minimum water necessary to maintain plant health and to maintain the available pore space for infiltration.

Designing for Flood Protection

Provide the WQCV in rain gardens that direct excess flow into to a landscaped basin designed for flood control or design a single basin to provide water quality and flood control. See the *Storage* chapter in Volume 2 of the USDCM for more information. UD-Detention, available at www.udfcd.org, will facilitate design either alternative.

Common Name	Scientific Name	Variety	PLS ² lbs per Acre	Ounces per Acre
Sand bluestem	Andropogon hallii	Garden	3.5	
Sideoats grama	Bouteloua curtipendula	Butte	3	
Prairie sandreed	Calamovilfa longifolia	Goshen	3	
Indian ricegrass	Oryzopsis hymenoides	Paloma	3	
Switchgrass	Panicum virgatum	Blackwell	4	
Western wheatgrass	Pascopyrum smithii	Ariba	3	
Little bluestem	Schizachyrium scoparium	Patura	3	
Alkali sacaton	Sporobolus airoides		3	
Sand dropseed	Sporobolus cryptandrus		3	
Pasture sage ¹	Artemisia frigida			2
Blue aster ¹	Aster laevis			4
Blanket flower ¹	Gaillardia aristata			8
Prairie coneflower ¹	Ratibida columnifera			4
Purple prairieclover ¹	Dalea (Petalostemum) purpurea			4
Sub-Totals:			27.5	22
Total lbs per acre:			28	3.9

Table B-3.	Native	seed	mix	for	rain	gardens
------------	--------	------	-----	-----	------	---------

¹ Wildflower seed (optional) for a more diverse and natural look. ² PLS = Pure Live Seed.

Aesthetic Design

In addition to effective stormwater quality treatment, rain gardens can be attractively incorporated into a site within one or several landscape areas. Aesthetically designed rain gardens will typically either reflect the character of their surroundings or become distinct features within their surroundings. Guidelines for each approach are provided below.

Reflecting the Surrounding

- Determine design characteristics of the surrounding. This becomes the context for the drainage improvement. Use these characteristics in the structure.
- Create a shape or shapes that "fix" the forms surrounding the improvement. Make the improvement part of the existing surrounding.
- The use of material is essential in making any new improvement an integral part of the whole. Select materials that are as similar as possible to the surrounding architectural/engineering materials. Select materials from the same source if possible. Apply materials in the same quantity, manner, and method as original material.
- Size is an important feature in seamlessly blending the addition into its context. If possible, the overall size of the improvement should look very similar to the overall sizes of other similar objects in the improvement area.

Reflective Design

A reflective design borrows the characteristics, shapes, colors, materials, sizes and textures of the built surroundings. The result is a design that fits seamlessly and unobtrusively in its environment.

• The use of the word texture in terms of the structure applies predominantly to the selection of plant material. The materials used should as closely as possible, blend with the size and texture of other plant material used in the surrounding. The plants may or may not be the same, but should create a similar feel, either individually or as a mass.

Creating a Distinct Feature

Designing the rain garden as a distinct feature is limited only by budget, functionality, and client preference. There is far more latitude in designing a rain garden that serves as a distinct feature. If this is the intent, the main consideration beyond functionality is that the improvement create an attractive addition to its surroundings. The use of form, materials, color, and so forth focuses on the improvement itself and does not necessarily reflect the surroundings, depending on the choice of the client or designer.

Figure B-1 – Typical rain garden plan and sections

Г-3

Figure B-2. Geomembrane Liner/Underdrain Penetration Detail

Figure B-3. Geomembrane Liner/Concrete Connection Detail

Construction Considerations

Proper construction of rain gardens involves careful attention to material specifications, final grades, and construction details. For a successful project, implement the following practices:

- Protect area from excessive sediment loading during construction. This is the most common cause of clogging of rain gardens. The portion of the site draining to the rain garden must be stabilized before allowing flow into the rain garden. This includes completion of paving operations.
- Avoid over compaction of the area to preserve infiltration rates (for partial and full infiltration sections).
- Provide construction observation to ensure compliance with design specifications. Improper installation, particularly related to facility dimensions and elevations and underdrain elevations, is a common problem with rain gardens.
- When using an impermeable liner, ensure enough slack in the liner to allow for backfill, compaction, and settling without tearing the liner.
- Provide necessary quality assurance and quality control (QA/QC) when constructing an impermeable geomembrane liner system, including but not limited to fabrication testing, destructive and non-destructive testing of field seams, observation of geomembrane material for tears or other defects, and air lace testing for leaks in all field seams and penetrations. QA/QC should be overseen by a professional engineer. Consider requiring field reports or other documentation from the engineer.

Provide adequate construction staking to

Photograph B-3. Inadequate construction staking may have contributed to flows bypassing this rain garden.

Photograph B-4. Runoff passed the upradient rain garden, shown in Photo B-3, and flooded this downstream rain garden.

ensure that the site properly drains into the facility, particularly with respect to surface drainage away from adjacent buildings. Photo B-3 and Photo B-4 illustrate a construction error for an otherwise correctly designed series of rain gardens.

References

- Erickson, Andy. 2009. Field Applications of Enhanced Sand Filtration. University of Minnesota Stormwater Management Practice Assessment Project Update. <u>http://wrc.umn.edu</u>.
- Hunt, William F., Davis, Allen P., Traver, Robert. G. 2012. "Meeting Hydrologic and Water Quality Goals through Targeted Bioretention Design" *Journal of Environmental Engineering*. (2012) 138:698-707. Print.

HYDRAULIC CALCULATIONS

FINAL DRAINAGE REPORT DRAINAGE CALCULATIONS LOT 13 CLAREMONT BUSINESS PARK FIL. NO. 2 (Area Runoff Coefficient Summary)

			DE	VELOPE	<i>Q</i>	INI	DEVELOP	ED	IDIAN	HTED
BASIN	TOTAL AREA (Sq Ft)	TOTAL AREA (Acres)	AREA (Acres)	C5	C_{100}	AREA (Acres)	C ₅	C_{100}	C ₅	C_{100}
V	11560	0.27	0.25	0.90	0.95	0.02	0.25	0.35	0.87	0.92
B	3901	0.09	0.02	0.90	0.95	0.07	0.25	0.35	070	0.49

LOT 13 CLAREMONT BUSINESS PARK FIL. NO. 2 FINAL DRAINAGE REPORT DRAINAGE CALCULATIONS
--

(Area Drainage Summary)

From Area Runoff Coeff	ficient Summ	ary			OVER	LAND		STRE	5T / CH	4NNEL F.	мот	Time of	f Travel	INTENS	* ALL	TOTAL	FLOWS
BASIN	AREA TOTAL	\mathbf{C}_{5}	C_{100}	C5	Length	Height	$\mathbf{T}_{\mathbf{C}}$	Length	Slope	Velocity	$\mathbf{T}_{\mathbf{f}}$	TOTAL	CHECK	١₅	I ₁₀₀	Q5	\mathbf{Q}_{100}
	(Acres)				(tt)	(ţţ)	(min)	(tt)	(%)	(fps)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
					Pro	y posod	1rea Dr	ainage .	Summa	<i>Ai</i>							
А	0.27	0.90	0.95	0.90	10	1	0.5	126	1.6%	4.4	0.5	5.0	10.8	5.2	8.7	1.3	2.2
B	0.09	0.90	0.95	0.90	10	1	0.5	06	2.9%	6.0	0.3	5.0	10.6	5.2	8.7	0.4	0.7

Calculated by: GW Date: 9/13/2018 Checked by: VAS

	Design Procedure	Form: Rain Garden (RG)	
Designer:	UD-BMP (M&S Civil Consultants	(Version 3.07, March 2018)	Sheet 1 of 2
Company:			
Date:	September 13, 2018		
Project:	Lot 13 Claremont Business Park		
Location:			
1 Basin Sto	rage Volume		
1. Dasiri Oto			
A) Effecti (100%	<i>v</i> e Imperviousness of Tributary Area, I _a if all paved and roofed areas upstream of rain garden)	I _a = <u>95.0</u> %	
B) Tribut	ary Area's Imperviousness Ratio (i = I _a /100)	i = 0.950	
C) Water (WQ	Quality Capture Volume (WQCV) for a 12-hour Drain Time CV= 0.8 * (0.91* i ³ - 1.19 * i ² + 0.78 * i)	WQCV = 0.36 watershe	ed inches
D) Contri	buting Watershed Area (including rain garden area)	Area = <u>11,560</u> sq ft	
E) Water Vol =	Quality Capture Volume (WQCV) Design Volume (WQCV / 12) * Area	V _{WQCV} = <u>345</u> cu ft	
F) For W Avera	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = in	
G) For W Wate	'atersheds Outside of the Denver Region, ⁻ Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} =cu ft	
H) User (Only i	nput of Water Quality Capture Volume (WQCV) Design Volume f a different WQCV Design Volume is desired)	V _{WQCV USER} =cu ft	
2. Basin Ge	ometry		
A) WQC\	/ Depth (12-inch maximum)	D _{wqcv} = 9 in	
B) Rain G (Use "	arden Side Slopes (Z = 4 min., horiz. dist per unit vertical) 0" if rain garden has vertical walls)	Z = 4.00 ft / ft	
C) Mimim	um Flat Surface Area	A _{Min} = 220 sq ft	
D) Actual	Flat Surface Area	A _{Actual} = <u>225</u> sq ft	
E) Area a	t Design Depth (Top Surface Area)	A _{Top} = 756 sq ft	
F) Rain G (V _⊺ = ((arden Total Volume A _{Top} + A _{Actual}) / 2) * Depth)	V _T = <u>368</u> cu ft	
3. Growing I	<i>M</i> edia	Choose One 18" Rain Garden Gro Other (Explain):	owing Media
4. Underdra	n System	Choose One	
A) Are un	derdrains provided?		
B) Under	drain system orifice diameter for 12 hour drain time		
	 i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice 	y=ft	
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = <u>345</u> cu ft	
	iii) Orifice Diameter, 3/8" Minimum	D _O = <u>5/8</u> in	

	Design Procedure	e Form: Rain Garden (RG)	
Designer: Company: Date:	M&S Civil Consultants		Sheet 2 of 2
Project: Location:	Lot 13 Claremont Business Park		
5. Imperme A) Is an of str	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One	Fill out this sheet
6. Inlet / Ou A) Inlet (tlet Control Control	Choose One Sheet Flow- No Energy Dissipa O Concentrated Flow- Energy Dis	ition Required ssipation Provided
7. Vegetatio	n	Choose One Seed (Plan for frequent weed Plantings Sand Grown or Other High Int	control) filtration Sod
8. Irrigation A) Will th	e rain garden be irrigated?	Choose One YES NO	
Notes:		·	

					a 12 1									
Proiect: C	CBP Lot 13			UD-Det	ention, Version 3	1.07 (Febr	uary 2017	7)						
Basin ID:														
(ZONE 3 (ZONE 2 -20	NE 1		~											
VOLUME EURY WOOT														
T		100-Y	FAR	\geq			1.							
PERMANENT ORIFICE	AND 2	ORIFI	CE		Depth Increment =	0.1	tt Optional				Optional			
POOL Example Zone	Configurat	tion (Rete	ention Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ⁴ 2)	Override Area (ft [*] 2)	Area (acre)	Volume (ft/3)	
Required Volume Calculation					Media Surface		0.00				225	0.005		
Selected BMP Type =	RG						0.10		-	-	288	0.007	26	
Watershed Area =	0.27	acres					0.20			-	352	0.008	54	
Watershed Length =	125	ft					0.30			-	418	0.010	92	
Watershed Imperviousness =	95.00%	percent					0.40			-	465	0.011	137	
Percentage Hydrologic Soil Group A =	100.0%	percent					0.60			-	662	0.015	247	
Percentage Hydrologic Soil Group B =	0.0%	percent				-	0.70			-	693	0.016	315	
Percentage Hydrologic Soil Groups C/D =	0.0%	percent					0.80			-	749	0.017	386	
Location for 1-br Rainfall Denths = L	12.0	nours			-	-	1.00			-	789	0.018	463	
Water Quality Capture Volume (WQCV) =	0.008	acre-feet	Optional User	Override			1.10			-	872	0.020	628	
Excess Urban Runoff Volume (EURV) =	0.035	acre-feet	1-hr Precipita	tion			1.20			-	914	0.021	717	
2-yr Runoff Volume (P1 = 1.19 in.) =	0.025	acre-feet	1.19	inches		-	1.30			-	956	0.022	810	
5-yr Runoff Volume (P1 = 1.5 in.) = 10-yr Runoff Volume (P1 = 1.75 in.) =	0.032	acre-feet	1.50	inches			1.40			-	1,000	0.023	907	
25-yr Runoff Volume (P1 = 2 in.) =	0.044	acre-feet	2.00	inches			1.00			-	1,017	0.024	1,000	
50-yr Runoff Volume (P1 = 2.25 in.) =	0.050	acre-feet	2.25	inches					-	-				
100-yr Runoff Volume (P1 = 2.52 in.) =	0.057	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = 0 in.) = Approximate 2-yr Detention Volume =	0.000	acre-feet		inches			-			-	-			
Approximate 5-yr Detention Volume =	0.030	acre-feet				-		-	-	-		1		
Approximate 10-yr Detention Volume =	0.036	acre-feet								-				
Approximate 25-yr Detention Volume =	0.042	acre-feet								-				
Approximate 50-yr Detention Volume =	0.046	acre-feet								-				
Approximate 100-yr Detention Volume -	0.048	acresider				-		-	-	-				
Stage-Storage Calculation		_				-			-	-				
Zone 1 Volume (WQCV) =	0.008	acre-feet								-				
Select Zone 2 Storage Volume (Optional) = Select Zone 3 Storage Volume (Optional) =		acre-feet	Total detent is less than 1	ion volume 100-vear						-				
Total Detention Basin Volume =	0.008	acre-teet	volume.			-		-	-	-				
Initial Surcharge Volume (ISV) =	user	ft/3								-				
Initial Surcharge Depth (ISD) =	user	ft												
I otal Available Detention Depth (H _{total}) = Depth of Trickle Channel (H _{ro}) =	user	ft								-				
Slope of Trickle Channel (S _{TC}) =	user	ft/ft								-				
Slopes of Main Basin Sides (S _{main}) =	user	H:V				-				-				
Basin Length-to-Width Ratio (R _{L/W}) =	user									-				
Initial Surcharge Area (App) =	user				-					-				
Surcharge Volume Length (L _{ISV}) =	user	ft								-				
Surcharge Volume Width (W _{ISV}) =	user	ft				-				-				
Depth of Basin Floor (H _{FLOOR}) =	user	ft								-				
Length of Basin Floor (L _{FLOOR}) = Width of Basin Floor (W) =	user	ft								-				
Area of Basin Floor (W _{FLOOR}) =	user	۱۲ ft/2				-		-	-	-		1		
Volume of Basin Floor (V _{FLOOR}) =	user	ft/3							-	-				
Depth of Main Basin (H _{MAIN}) =	user	ft												
Length of Main Basin (L _{MAIN}) = Width of Main Basin (W) =	user	ft					-			-	-			
Area of Main Basin (Amain) =	user	۱۲ ft/2				-		-	-	-		1		
Volume of Main Basin (V _{MAIN}) =	user	ft/3								-				
Calculated Total Basin Volume (V _{total}) =	user	acre-feet								-				
									-	-				
					-					-				
						-		-		-				
														_
					-				-	-				
										-				
										-				
										-				
						-			-	-				
										-				
						-		-		-				
									-	-				_

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	Storm Inflow H	ydrographs	UD-Det	ention, Versio	n 3.07 (Februa	ry 2017)				
	The user can o	verride the calcu	ulated inflow hyd	frographs from t	his workbook wi	th inflow hydrog	raphs develope	d in a separate pr	rogram.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	#N/Δ
-	5001102	WORRDOOK								#N/A
lime Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4.41 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	0:04:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Hydrograph	0:08:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Constant	0:13:14	0.01	0.03	0.02	0.03	0.03	0.04	0.05	0.05	#N/A
1.134	0:17:38	0.02	0.08	0.06	0.08	0.09	0.11	0.12	0.13	#N/A
	0:22:03	0.05	0.21	0.15	0.20	0.23	0.27	0.30	0.34	#N/A
	0:26:28	0.13	0.59	0.42	0.54	0.64	0.75	0.84	0.95	#N/A
	0:30:52	0.15	0.68	0.48	0.63	0.73	0.86	0.97	1.09	#N/A
	0:35:17	0.14	0.64	0.45	0.59	0.69	0.81	0.91	1.03	#N/A
	0:39:41	0.13	0.58	0.41	0.53	0.63	0.74	0.83	0.94	#N/A
	0:44:06	0.11	0.51	0.36	0.47	0.55	0.65	0.73	0.83	#N/A
	0:48:31	0.09	0.43	0.30	0.39	0.46	0.55	0.62	0.70	#N/A
	0:52:55	0.08	0.38	0.26	0.35	0.41	0.48	0.54	0.61	#N/A
	0:57:20	0.07	0.34	0.24	0.31	0.37	0.43	0.49	0.55	#N/A
	1:01:44	0.06	0.27	0.19	0.25	0.29	0.35	0.39	0.44	#N/A
	1:06:09	0.04	0.21	0.15	0.20	0.23	0.27	0.31	0.35	#N/A
	1:10:34	0.03	0.16	0.11	0.14	0.17	0.20	0.23	0.26	#N/A
	1:14:58	0.03	0.11	0.08	0.10	0.12	0.14	0.16	0.18	#N/A
	1:19:23	0.02	0.11	0.06	0.10	0.12	0.14	0.10	0.10	#N/A
	1:23:47	0.02	0.00	0.00	0.00	0.03	0.11	0.12	0.14	#N/A
	1:28.12	0.01	0.07	0.05	0.00	0.07	0.05	0.10	0.00	#N/A
	1.20.12	0.01	0.00	0.04	0.05	0.00	0.07	0.08	0.09	#N/A
	1.32.37	0.01	0.05	0.03	0.04	0.05	0.00	0.07	0.08	#N/A
	1:41:26	0.01	0.04	0.03	0.04	0.03	0.05	0.00	0.07	#N/A
	1:41:20	0.01	0.04	0.03	0.04	0.04	0.05	0.06	0.06	#N/A
	1:50:15	0.01	0.04	0.03	0.03	0.04	0.03	0.03	0.08	#N/A
	1.50.15	0.01	0.03	0.02	0.02	0.03	0.03	0.04	0.04	#N/A
	1.54.40	0.00	0.02	0.01	0.02	0.02	0.02	0.03	0.03	#N/A
	2.02.20	0.00	0.01	0.01	0.01	0.02	0.02	0.02	0.02	#N/A
	2.03.29	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02	#N/A
	2.07.33	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01	#IN/A
	2:12:18	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	#N/A
	2:16:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	#N/A
	2:21:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2:25:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Î	2:29:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2:34:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2:38:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2:43:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2:47:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2:51:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2:56:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:00:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:05:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:09:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:14:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:18:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:22:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:27:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:31:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:36:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:40:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:44:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:49:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2.59.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#IN/A #N/A
	4:02:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:06:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:11:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:15:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:20:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:24:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:29:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:33:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:42.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:46:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:51:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:55:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:59:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:04:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:08:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:13:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:17:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A

SOIL SURVEY

USDA

Natural Resources **Conservation Service** Web Soil Survey National Cooperative Soil Survey

Soil Map-El Paso County Area, Colorado

Γ

Area of Interest (ACI) Area of Interest (ACI) Area of Interest (ACI) Soil Map Unit Polygous Story Spot Soil Map Unit Polygous Wet Spot Soil Map Unit Polygous Met Spot Soil Map Unit Polygous Met Spot Point Features Other Point Features Special Line Features Point Features Met Spot Clay Spot Mater Features Clay Spot Us Routes Gravel Pt Major Roads Landfill Met Roads<
terest (AOI) Area of Interest (AOI) Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Lines Soil Map Unit Points Point Features Blowout Blowout Blowout Blowout Blowout Blowout Blowout Blowout Blowout Clay Spot Clay Spot Clay Spot Cavel Pit Gravel Pit Closed Depression Gravel Pit Gravel Pit Gravel Pit Closed Depression Gravel Pit Closed Depression Gravel Pit Gravel Pit Closed Depression Gravel Pit Closed Depression Closed D

9/13/2018 Page 2 of 3

Web Soil Survey National Cooperative Soil Survey

Natural Resources Conservation Service

NSDA

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	0.5	100.0%
Totals for Area of Interest		0.5	100.0%

El Paso County Area, Colorado

28—Ellicott loamy coarse sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 3680 Elevation: 5,500 to 6,500 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 47 to 50 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Ellicott and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ellicott

Setting

Landform: Flood plains, stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium

Typical profile

A - 0 to 4 inches: loamy coarse sand *C - 4 to 60 inches:* stratified coarse sand to sandy loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w Hydrologic Soil Group: A Ecological site: Sandy Bottomland LRU's A & B (R069XY031CO) Other vegetative classification: SANDY BOTTOMLAND (069AY031CO) Hydric soil rating: No

USDA

Minor Components

Fluvaquentic haplaquoll

Percent of map unit: Landform: Swales Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 15, Oct 10, 2017

FEMA MAP / LOMR

Page 4 of 4	Issue Date: March 16, 2018	Effective Date: August 6, 2018	Case No.: 18-08-0558P	LOMR-API
	Feder	ral Emergency Mana Washington, D.C. 204	agement Agency 172	
	LE DETERMIN	TTER OF MAP REVISION ATION DOCUMENT (CON	I ITINUED)	
	DUBI	IC NOTIFICATION OF PEVISI	ON	an dan selam kanan selam kanan

A notice of changes will be published in the *Federal Register*. This information also will be published in your local newspaper on or about the dates listed below, and through FEMA's Flood Hazard Mapping website at https://www.floodmaps.fema.gov/fhm/bfe_status/bfe_main.asp

LOCAL NEWSPAPER

Name: *Colorado Springs Gazette* Dates: March 30, 2018 and April 6, 2018

Within 90 days of the second publication in the local newspaper, any interested party may request that we reconsider this determination. Any request for reconsideration must be based on scientific or technical data. Therefore, this letter will be effective only after the 90-day appeal period has elapsed and we have resolved any appeals that we receive during this appeal period. Until this LOMR is effective, the revised flood hazard determination presented in this LOMR may be changed.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Information eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at https://www.fema.gov/national-flood-insurance-program.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

18-08-0558P

102-I-A-C

Servicest NUTL (FEE) Sector Area Number Sector Number Sector <th>BETARES WUTH (FEE) SECTION MAIL MORT (MAIL) <</th> <th>IG SOURCE</th> <th></th> <th>FLOODWAY</th> <th></th> <th></th> <th>BASE WATER SURF/ WITHOUT</th> <th>ACE ELEVATION</th> <th></th> <th></th>	BETARES WUTH (FEE) SECTION MAIL MORT (MAIL) <	IG SOURCE		FLOODWAY			BASE WATER SURF/ WITHOUT	ACE ELEVATION		
1,100 100 455 11.9 6,038.7 6,038.7 6,038.7 6,038.7 0,03 2,400 100 456 12.2 6,054.3 6,038.7 6,038.7 0,0 3,330 100 450 12.2 6,055.1 6,035.1 6,035.1 0,00 4,240 102 446 12.0 6,095.1 6,095.1 6,095.1 0,0 4,240 102 446 12.0 6,095.1 6,095.1 0,0 0 7,931 148 507 13.5 6,136.0 6,113.6 0,0 0 0 7,931 148 507 0,5 6,135.8 6,173.0 6,193.3 6,193.3 0	1,100 100 455 11.9 6.038.7 6.038.7 6.038.7 0.03 2,400 100 490 12.1 6.085.1 6.035.1 6.035.1 0.06 3,330 100 490 12.1 6.085.1 6.085.1 6.085.1 0.00 3,300 100 490 12.1 6.085.1 6.085.1 6.085.1 0.085.1 0.00 4,870 7 12.2 6.095.1 6.085.1 6.085.1 6.085.1 0.00 7,413 7 1 366 6.158.8 6.113.6 6.113.6 6.113.8 0.0 6,183 8 4.1 12.0 6.085.1 6.085.1 6.095.1 6.085.1 0.00 7 11.3 1.6 5.15.8 6.113.6 6.113.6 6.113.6 0.0 10,77 1.6 5.15.8 6.113.6 6.135.6 6.135.6 6.135.7 0.0 10,71 1.13 1.6 5.13 6.133.5 6.133.6 6.135.8 0.0 11,37 1.6 5.21 6.033.3 6.033.3 6.033.3 0.0 0.0 11,37 1.6 5.21 6.207.3 6.207.3 6.207.3 0.0 <t< th=""><th>DISTANCE¹</th><th>WIDTH (FEET)</th><th>SECTION AREA (SQUARE FEET)</th><th>MEAN VELOCITY (FEET PER SECOND)</th><th>REGULATORY</th><th>TEET FLOODWAY</th><th>(NGVD)</th><th>INCREASE</th><th></th></t<>	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	TEET FLOODWAY	(NGVD)	INCREASE	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,100 100 455 11.9 6,038.7 6,038.7 6,038.7 6,038.7 0,03 2,300 100 446 12.2 6,095.1 6,095.1 6,095.1 0,00 4,200 100 449 12.1 6,095.1 6,095.1 6,095.1 0,00 7,403 71 396 13.5 6,138.6 6,138.6 6,138.6 0,0 7,403 71 396 13.5 6,138.0 6,193.3 0,0 0,0 9,666 86 4.23 12.6 6,177.0 6,177.0 0,0 0,0 11,477 113 113 113 6,193.3 6,193.3 0,0 0,0 11,475 113 10 6,177.0 6,177.0 6,177.0 0,0 0,0 11,475 113 12.6 6,193.3 6,193.3 6,193.3 0,0 0,0 11,475 113 145 12.8 6,193.3 6,193.3 0,0 0,0 11,475 113 16 533.3 6,193.3 6,193.3 0,0 0,0 11,475 113 6,373 6,207.3 6,207.3 6,207.3 0,0 0,0 11,486 13.5									1
2,400 100 446 12.2 6,054.3 6,054.3 6,054.3 6,054.3 0.0 4,870 100 450 12.0 6,063.9 6,063.9 6,063.9 0.0 4,870 100 450 12.0 6,055.1 6,055.1 6,055.1 0.0 4,870 102 446 12.0 6,055.1 6,055.1 6,051.8 6,018.5 0.0 7,403 71 506 13.5 6,118.5 6,118.5 6,118.5 0.0 0.0 9,666 86 42.3 12.6 6,153.8 6,118.5 6,118.5 0.0 0.0 0.0 9,666 86 42.3 12.6 6,193.3 6,193.3 0.0	2400 100 446 12.2 6.054.3 6.054.3 0.0 4300 100 450 12.0 6.069.9 6.069.9 0.0 4300 100 450 12.0 6.069.9 6.069.9 0.0 4300 100 450 12.0 6.069.9 6.069.9 0.0 7311 148 50 13.6 6.18.5 6.118.5 6.118.5 0.0 7391 148 507 10.5 6.158.0 6.136.0 0.0 0.0 7391 148 507 10.5 6.136.0 6.118.5 6.136.0 0.0 9.666 8.8 6.136.0 6.136.0 6.136.0 0.0 0.0 10.721 81 415 12.0 6.177.0 6.177.0 0.0 10.721 81 415 12.3 6.193.3 6.193.3 0.0 11.375 116 526 6.373.6 6.207.3 6.207.3 0.0 11.375 116 627.3 6.373.8 6.238.8 0.1 0.0 11.4865 12.5 601 8.9 6.238.8 6.238.8 0.1 14305 12.5 601 8.9 6.238.8	1,100	100	455	11.9	6,038.7	6,038.7	6,038.7	0.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.330 100 450 12.0 6.069.9 6.069.9 0.00 9.0 4.870 100 449 12.1 6.085.1 6.095.1 0.0 4.870 101 449 12.0 6.095.1 6.095.1 0.0 4.870 113 50.136.6 6.118.5 6.118.5 6.018.5 0.0 7.403 71 306 13.5 6.163.0 6.103.0 0.0 8.943 98 444 12.0 6.093.3 6.073.3 6.033.3 0.0 8.943 98 444 12.0 6.107.0 6.117.0 0.0 0.0 8.943 98 444 12.0 6.107.3 6.107.3 6.107.3 0.0 0.731 148 12.3 6.107.3 6.107.3 6.107.3 0.0 0.0 11.347 166 526 8.4 6.207.3 6.207.3 6.207.3 0.0 0.0 11.347 166 528 570 10.1 6.237.9 6.207.3 0.0 0.0 11.347 166 528 528 528 528 6.238 6.238 0.0 13.701 13.55 11.1 6.237.3 6.207	2,400	100	446	12.2	6,054.3	6,054.3	6,054.3	0.0	
4,240 100 449 12.1 6,085.1 6,085.1 6,085.1 0.0 4,870 102 446 12.0 6,095.1 6,095.1 6,095.1 0,0 7,433 71 348 10.9 6,118.5 6,118.5 6,118.5 0,0 0 7,931 148 507 10.5 6,158.8 6,136.0 6,109.0 0 0 0 7,931 148 507 10.5 6,177.0 6,177.0 <	4,240 100 449 12.1 6.085.1 6.085.1 6.085.1 0.00 7,430 7 7 936 13.5 6,136.0 6,136.0 0.0 7,403 7 7 936 13.5 6,136.0 6,195.1 6,095.1 0.0 7,403 7 1 396 13.5 6,136.0 6,193.3 0,0 0.0 9,66 86 4.23 12.0 6,193.3 6,193.3 0,0 0.0 0.0 9,66 86 4.23 12.8 6,193.3 6,193.3 6,193.3 0,0 0.0	3,330	100	450	12.0	6,069.9	6,069.9	6,069.9	0.0	
4,870 102 446 12.0 6,095.1 6,095.1 6,095.1 0.00 6,188 7 4,870 10.2 446 12.0 6,095.1 6,095.1 0.00 0 7,403 7 396 13.5 6,188.6 6,138.8 6,138.8 0,138.6 0,138.8 0,0 0 7,931 148 507 10.5 6,138.8 6,138.8 6,133.3 0,133.3 0,133.3 0,10 0	4,870 102 446 12.0 6,095.1 6,095.1 6,095.1 0.0 7,431 148 71 396 6,118.5 6,118.5 6,118.5 0.0 7,431 148 507 10.5 6,186.6 6,136.0 0.0 7,431 148 507 6,136.0 6,118.5 6,118.5 0.0 7,431 148 12.0 6,177.0 6,177.0 0,118.5 0.0 9,666 86 42.3 12.6 6,177.0 6,177.0 0.0 0,721 81 413 12.6 6,177.0 6,177.0 0.0 0,721 81 226 10.1 6,207.3 6,207.3 0.0 0.0 11,347 166 528 6,37.3 6,207.3 6,207.3 0.0 0.0 11,347 166 528 6,37.3 6,207.3 6,207.3 0.0 0.0 14805 125 610 10.0 6,241.7 6,241.7 0.0 0.0 14305 125 601 8.9 6,237.3 6,207.3 0.0 0.0 14405 125 601 8.9 6,238.7 6,228.7 0.0 0.0	4,240	100	449	12.1	6,085.1	6,085.1	6,085.1	0.0	
6,188 70 489 10.9 6,118.5 6,118.5 6,118.5 6,118.5 0.0 7,403 71 396 13.5 6,136.0 6,136.0 0.0 0 7,403 71 396 13.5 6,136.0 6,136.0 6,136.0 0.0 0 7,403 148 507 10.5 6,159.0 6,193.3 6,193.3 0,193.3 0 0 0 0 9,666 86 423 12.6 6,177.0 6,177.0 0,0 0	6,188 70 489 10.9 6,118.5 6,118.5 6,118.5 6,118.5 0.0 No 7,403 7 1 305 135.6 6,136.0 6,136.0 6,136.0 0.0 No	4,870	102	446	12.0	6,095.1	6,095.1	6,095.1	0.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7403 71 396 13.5 6,136,0 6,136,0 6,136,0 0,0 7931 148 507 10.5 6,158,8 6,177,0 0,0 00 9,666 86 423 12.0 6,177,0 6,177,0 6,177,0 0,0 00 9,666 86 423 12.6 6,177,0 6,177,0 6,177,0 0,0 0,0 10,721 81 415 12.8 6,193,3 6,193,3 6,193,3 6,193,3 0,0 0,0 11,375 166 526 0,0 0 6,177,0 6,177,0 0,0 0,0 11,375 670 100 6,231,3 6,207,3 6,207,3 0,0 0,0 11,375 670 100 6,241,7 6,241,7 6,241,7 0,0 0,0 13,370 188 570 100 6,231,3 6,231,3 6,241,7 0,0 0,0 1488 12,5 601 8,16 6,231,3 6,231,3 0,0 0,0 0,0 1488 253 6,0 8,2 6,234,4 6,241,7 6,241,7 0,0 0,0 1488 12,5 6,0 8,6 6,235,9	6,188	70	489	10.9	6,118.5	6,118.5	6,118.5	0.0	
7,931 148 507 10.5 6,158.8 6,158.8 6,158.8 6,158.8 0,0 ReVisib BY 9,666 8 444 12.0 6,169.0 6,169.0 0,0 ReVisib BY 9,666 8 444 12.0 6,193.3 6,193.3 6,193.3 0,193.3 0,0 0.0 ReVisib BY 10,721 8 415 12.8 6,193.3 6,193.3 6,193.3 0,0 0.0 ReVisib BY 10,721 8 45 5,073 6,193.3 6,193.3 0,13 0 0.0 0.01 R 11,375 1166 520 8.4 6,207.3 6,207.3 0,0 0.0 R ReVisib BY 11,3720 188 570 10.0 6,237.9 6,207.3 6,207.3 0,0 0.0 R 14,805 125 601 8.9 6,288.7 6,207.3 0,0 0.0 R 14,805 125 601 8.9 6,288.8 6,228.9	7,931 148 507 10.5 6,158.8 6,158.8 6,158.8 6,158.8 0,0 0,0 ReVisub 8 8,943 36 444 12.0 6,107.0 6,117.0 6,117.0 0,0 0,0 8,943 86 433 12.6 6,103.3 6,193.3 6,193.3 0,0 0,00 10,721 81 415 12.6 6,107.3 6,207.3 6,207.3 6,207.3 0,0 0,0 11,347 166 526 10.1 6,207.3 6,207.3 6,207.3 0,0 0,0 11,347 166 536 7.0 6,207.3 6,207.3 6,207.3 0,0 0,0 11,347 166 537 6,307.9 6,307.5 6,207.3 6,207.3 0,0 0,0 13,720 188 570 10.1 6,577.9 6,241.7 6,241.7 0,0 0,0 14,885 1258 23 6,0 7.7 6,291.4 6,291.4 6,292.1 0,0 14,885 1258 5389 5,306 6,395.5 6,206.5 0,0 0,0 15,880 23,300 678 6,394.6 0,0 0,0 0,1 0,7	7,403	11	396	13.5	6,136.0	6,136.0	6,136.0	0.0	
8,943 98 444 12.0 6,169.0 6,169.0 6,169.0 6,169.0 0,0 RWISED BY INVERD BY 9,666 86 423 12.6 6,177.0 6,177.0 6,177.0 0,0 INVERD BY 10,721 81 415 12.8 6,193.3 6,193.3 6,193.3 0,0 Datter BY 11,347 166 5.26 10.1 6,207.3 6,207.3 6,207.3 0,0 Datter BY 11,375 173 659 7.6 6,238.8 6,237.9 6,207.3 0,0 Datter BY 13,720 188 570 10.0 6,241.7 6,241.7 6,207.9 6,207.9 0,0 Datter BY 14,805 125 601 8.9 6,257.9 6,257.9 6,241.7 0,0 Datter BY 14,805 125 601 8.9 6,258.9 6,258.9 0,1 Datter BY 14,805 125 601 8.9 6,258.9 6,258.9 0,1	8,943 98 444 12.0 6,169.0 6,169.0 6,169.0 0,0 100 NB 1958 10,001 10,721 86 423 12.6 6,177.0 0,0 100 NB 1958 11,372 11,372 11,3 15 10,5 5,207.9 6,207.9 6,207.9 0,0 2,3407 11,372 11,372 11,372 11,372 12,3 6,193 6,193 6,193 6,193 0,0 2,3407 11,372 13,320 123 479 111.0 6,528,9 6,228,8 6,228,8 6,228,8 6,228,8 6,228,8 6,228,8 6,228,8 6,228,9 0,0 0,0 NFBD 14,88 12,5 6,01 8,9 6,229,9 6,229,9 6,299,4 6,291,4 6,292,1 0,0 NM 14,88 15,880 228 882 9,2 6,209,4 6,291,4 6,292,1 0,0 NM 15D 15,880 228 882 9,2 6,209,4 6,291,4 6,292,1 0,0 NM 15D 15,880 5,288 6,391,4 6,291,4 6,292,1 0,0 NM 15D 15,880 5,288 1,601 3,3 6,291,4 6,291,4 6,292,1 0,0 NM 15D 15,880 5,288 1,601 3,3 6,291,4 6,291,4 6,292,1 0,0 NM 15D 17,915 338 1,601 3,3 6,291,4 6,291,4 6,292,1 0,0 NM 15D 17,915 338 1,601 3,3 6,291,4 6,291,4 6,292,1 0,0 NM 15D 17,915 338 1,601 3,3 6,291,4 6,291,4 6,292,1 0,0 NM 15D 17,915 338 1,601 3,3 6,291,4 6,291,4 6,292,1 0,0 NM 15D 17,915 338 1,601 3,3 6,291,4 6,291,4 6,292,1 0,0 NM 15D 17,915 338 1,601 3,3 6,291,4 6,291,4 6,292,1 0,0 NM 15D 17,915 338 1,601 3,3 6,291,4 6,291,4 6,292,1 0,0 0,0 12,170 132 4,19 10,6 6,348,8 6,348,8 6,348,4 0,6 6,31,8 6,348,4 0,6 6,31,6 6,416	7,931	148	507	10.5	6,158.8	6,158.8	6,158.8	0.0	
9,666 86 423 12,6 6,177,0 6,177,0 6,177,0 0,0 IRUNISED BY LOMR 10,721 81 415 12.8 6,193.3 6,193.3 6,193.3 0,0 DAMED MAY 10,721 81 415 12.8 6,193.3 6,193.3 6,193.3 0,0 DAMED MAY 11,375 173 632 8.4 6,207.3 6,207.3 6,207.3 0,0 DAMAY 13,720 367 699 7.6 6,241.7 6,207.9 6,207.9 0,0 DAMAY 13,720 188 570 10.0 6,241.7 6,241.7 6,241.7 0,0 DAMAY 13,720 188 570 10.0 6,255.9 6,227.3 6,241.7 0,0 DAMAY 13,720 188 570 11.0 6,257.9 6,257.9 0,0 DAMAY 14,865 125 601 8.9 6,257.9 6,257.9 0,0 DAMAY 14,865 23	9,666 86 423 12.6 6,177.0 6,177.0 6,177.0 00 ReVISD MA 10,721 81 415 12.8 6,933 6,933 6,1933 0,0 0.0 RAVIED MA 11,347 166 532 8.4 6,2073 6,2073 0,2073 0,0 0 2,3200 11,3720 188 570 10.0 6,2417 6,2073 6,2073 0,0 0 2,3200 13,720 188 570 10.0 6,2417 6,2417 0,0 0 0 2,3418 1,33,200 13,720 188 570 10.0 6,2417 6,2417 0,0 0 0 2,00 8,800 13,720 188 570 10.0 6,2417 6,2713 6,2417 0,0 0 0 8,800 15,805 228 6,238 6,238 6,238 0,1 0 0,0 8,800 15,805 228 529 6,239 6,239 6,239 0,0 0 8,800 15,805 232 6,0 10 0,0 2,2914 6,2914 6,2914 0,0 0 15,005 320 667 8,0 6,2914 6,2914 6,2914 0,0 0 17,915 388 0,0 7,7 6,2914 6,2914 6,291 0,0 0 17,915 388 0,0 7,7 6,2914 6,2914 6,292,0 0,0 0 17,915 388 0,0 7,7 6,3934 6,3934 0,0 6 20,730 103 575 11.7 6,3935 6,3835 6,3835 0,0 0 20,730 110 6,3835 6,3835 6,3835 6,3835 0,0 0 20,731 112 419 10.8 6,416.6 6,416.6 0,0 0 24,835 112 419 0,0 6,402.7 6,402.7 0,0 0 24,835 112 419 0,0 6,402.7 6,402.7 0,0 0 27,715 112 419 0,0 6,402.7 0,0 0 27,715 112 419 0,0 6,402.7 0,0 0 24,835 6,383.5 6,383.5 6,383.5 6,383.5 0,0 0 27,715 112 419 0,0 6,402.7 0,0 0 24,850 6,416.6 6,416.6 6,416.6 6,416.6 0,416.6 0,0 0 27,715 112 419 6,402.7 0,0 0 24,850 6,416.5 6,416.6 6,416.6 0,416.6 0,0 0 27,715 112 419 6,402.7 0,0 0 27,715 112 419 6,402.7 0,0 0 27,715 112 419 6,402.7 0,0 0 24,850 6,416.5 6,416.6 0,416.6 0,0 0 24,850 6,416.5 0,0 0 24,850 6,416.7 0,0 0 24,850	8,943	98	444	12.0	6,169.0	6,169.0	6,169.0	0.0	/
	10.721 81 415 12.8 6,193.3 6,193.3 6,193.3 0,0 LOMEDMA 11.347 166 526 10.1 6,207.3 6,207.3 6,207.3 0,0 23,200 12,617 570 100 6,207.3 6,207.3 6,207.3 6,207.3 0,0 23,200 12,617 173 6,09 7.6 6,228.8 6,237.9 6,241.7 0,0 24,200 13,720 188 570 10.0 6,241.7 6,241.7 6,241.7 0,0 24,200 14,805 125 601 8.9 6,257.9 6,237.9 6,241.7 0,0 0,0 14,805 125 601 8.9 6,257.9 6,277.3 6,277.5 0,0 0,0 15,835 23 300 678 7.7 6,291.4 6,292.0 0,0 0,0 15,915 338 1,601 7.7 6,291.4 6,292.1 0,7 0,0 17,065 336 6,995 5,095.4 0,0 0,6 0,0 0,0 17,065 338 1,601 7.7 6,291.4 6,292.1 0,7 17,065 338 6,399.4 0,6	9,666	86	423	12.6	6,177.0	6,177.0	6,177.0	0.0	EVISED BY
11,347 166 526 10.1 $6,207.3$ $6,207.3$ $6,207.3$ 0.0 $23,2007$ $11,375$ 173 632 8.4 $6,207.9$ $6,207.9$ 0.0 0.0 $12,610$ 367 699 7.6 $6,228.8$ $6,228.8$ 0.1 0.0 $13,720$ 188 570 10.0 $6,241.7$ $6,241.7$ $6,241.7$ 0.0 0.0 $13,720$ 188 570 10.0 $6,241.7$ $6,241.7$ $6,241.7$ 0.0 0.0 $14,805$ 125 479 11.1 $6,257.9$ $6,241.7$ $6,241.7$ 0.0 0.0 $14,805$ 125 601 8.9 $6,225.9$ $6,228.7$ $6,241.7$ 0.0 0.0 $14,805$ 125 601 8.9 $6,229.9$ $6,229.9$ 0.0 0.0 $14,805$ 125 601 8.9 $6,229.9$ $6,229.9$ 0.0 0.0 $14,805$ 125 601 8.9 $6,229.9$ $6,229.9$ 0.0 0.0 $16,325$ 320 $6,001$ 8.9 $6,229.9$ $6,229.9$ 0.0 0.0 $16,325$ 320 $6,001$ 8.9 $6,229.9$ $6,229.9$ 0.0 0.0 $16,325$ 320 $6,001$ 3.3 $6,277.3$ $6,277.5$ 0.2 004 $16,955$ 328 $1,601$ 3.3 $5,291.4$ $6,292.1$ 0.0 0.0 $17,915$ 138 $1,601$ 3.3 $5,293.4$	11.347 166 526 10.1 6.207.3 6.207.3 6.207.3 0.0 23,200 12.610 567 677 6.207.9 6.207.9 6.207.9 0.0 0 13.720 188 570 10.0 6.241.7 6.241.7 6.241.7 0.0 0 13.720 188 570 10.0 6.241.7 6.241.7 6.241.7 0.0 0 14.865 125 601 8.9 6.259.9 6.257.9 6.257.9 0.0 0 14.865 125 601 8.9 6.291.4 6.291.4 6.291.4 0.0 0.0 16.335 330 667 8.0 6.291.4 6.291.4 6.291.0 0.0 17.965 338 1,601 3.3 6.291.4 6.291.4 6.291.0 0.0 17.915 388 1,601 3.3 6.291.4 6.291.4 6.292.0 0.0 17.965 336 667 7.7 6.291.4 6.291.4 0.0 0.7 17.915 388 1,601 3.3 6.291.4 6.292.0 0.0 0.0 20,730 13 563 6.309.5 6.309.5 6.309.5 0.0 <td>10,721</td> <td>81</td> <td>415</td> <td>12.8</td> <td>6,193.3</td> <td>6,193.3</td> <td>6,193.3</td> <td>0.0</td> <td>ONIR ATED MAV</td>	10,721	81	415	12.8	6,193.3	6,193.3	6,193.3	0.0	ONIR ATED MAV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11.375 173 632 8.4 6,207.9 6,207.9 0.0 12.610 367 699 7.6 6,238.8 6,238.8 0.0 13.720 188 570 10.0 6,241.7 6,241.7 0.0 13.720 188 570 10.0 6,241.7 6,241.7 0.0 14.865 125 479 11.1 6,5251.9 6,238.9 0.0 14.865 125 601 8.9 6,277.3 6,241.7 0.0 15.860 278 5,291.4 6,292.0 0.0 0.0 16,955 321 600 7.7 6,291.4 6,291.4 0.7 16,955 321 600 7.7 6,291.4 6,292.0 0.0 16,955 326 1.6 5.31.4 6,291.4 6,291.4 0.7 17,915 188 0,7 6,291.4 6,291.4 0.0 0.7 17,915 188 6,97 7.7 6,391.5 0.0 0.7 20,706 103 575 11.7 6,317.8 0.0 0.7 21,910 103 575 11.7 6,317.8 0.0 0.7 20,716 <t< td=""><td>11,347</td><td>166</td><td>526</td><td>10.1</td><td>6,207.3</td><td>6,207.3</td><td>6,207.3</td><td>0.0 2</td><td>5, 2007</td></t<>	11,347	166	526	10.1	6,207.3	6,207.3	6,207.3	0.0 2	5, 2007
12,6103676997.66,228.86,228.86,228.80.113,72018857010.06,241.76,241.76,241.70.0 $\mathbf{NEVISED BY}$ 14,80512547911.16,257.96,257.96,257.90.0 $\mathbf{NEVISED BY}$ 14,8051256018.96,258.76,268.76,258.70.0 $\mathbf{NEVISED BY}$ 14,8851256018.96,257.96,259.96,257.96,257.90.0 $\mathbf{NEVISED BY}$ 14,8851256018.96,257.36,259.96,257.36,259.91.0 \mathbf{DMRE} 15,8502285829.26,268.76,268.76,268.70.0 \mathbf{DMRE} 16,9953216907.76,291.46,291.46,292.00.60.017,0153881,6013.36,291.46,291.46,292.00.617,0151886977.76,291.46,292.10.717,9151886977.76,291.46,292.60.020,73010357511.76,309.56,309.50.020,73010357511.06,348.86,395.56,309.50.020,73011250611.06,343.86,309.50.020,73011345210.06,402.76,402.76,402.70.024,8356,335.56,335.56,383.56,402.76,402.76,402.7 <t< td=""><td>12,610 367 699 7.6 6,228.8 6,228.8 0,1 13,720 188 570 10.0 6,241.7 6,241.7 6,241.7 0,0 14,805 125 479 11.1 6,257.9 6,257.9 6,257.9 0,288.7 0,0 14,805 125 601 8.9 6,259.9 6,259.9 6,259.9 6,237.3 0,0 0,00 14,805 228 321 6,09 7.7 6,257.3 6,259.9 6,299.4 0,0 15,805 326 667 8.0 7.7 6,291.4 6,291.4 6,291.4 0,0 17,915 338 1,601 3.3 6,299.4 6,291.4 6,291.4 6,291.4 0,0 17,915 338 1,601 3.3 6,299.4 6,291.4 6,291.4 6,291.4 0,0 17,915 338 1,601 3.3 6,399.5 6,399.5 0,0 0,0 17,915 338 1,301 6,327.8 6,391.4 6,292.1 0,0 20,731 10.3 575 11.1 6,327.8 6,393.5 6,399.4 0,6 20,736 149 10.3 5,353.5 6,393.5 <td< td=""><td>11,375</td><td>173</td><td>632</td><td>8.4</td><td>6,207.9</td><td>6,207.9</td><td>6,207.9</td><td>0.0</td><td></td></td<></td></t<>	12,610 367 699 7.6 6,228.8 6,228.8 0,1 13,720 188 570 10.0 6,241.7 6,241.7 6,241.7 0,0 14,805 125 479 11.1 6,257.9 6,257.9 6,257.9 0,288.7 0,0 14,805 125 601 8.9 6,259.9 6,259.9 6,259.9 6,237.3 0,0 0,00 14,805 228 321 6,09 7.7 6,257.3 6,259.9 6,299.4 0,0 15,805 326 667 8.0 7.7 6,291.4 6,291.4 6,291.4 0,0 17,915 338 1,601 3.3 6,299.4 6,291.4 6,291.4 6,291.4 0,0 17,915 338 1,601 3.3 6,299.4 6,291.4 6,291.4 6,291.4 0,0 17,915 338 1,601 3.3 6,399.5 6,399.5 0,0 0,0 17,915 338 1,301 6,327.8 6,391.4 6,292.1 0,0 20,731 10.3 575 11.1 6,327.8 6,393.5 6,399.4 0,6 20,736 149 10.3 5,353.5 6,393.5 <td< td=""><td>11,375</td><td>173</td><td>632</td><td>8.4</td><td>6,207.9</td><td>6,207.9</td><td>6,207.9</td><td>0.0</td><td></td></td<>	11,375	173	632	8.4	6,207.9	6,207.9	6,207.9	0.0	
	13,720 188 570 10.0 6,241.7 6,241.7 6,241.7 0,241.7 0,0 RIVISED B 14,805 125 479 11.1 6,257.9 6,257.9 6,257.9 0,0 RIVISED B 14,805 125 601 8.9 6,257.9 6,257.9 6,257.9 0,0 NIVISED B 14,805 125 601 8.9 6,257.3 6,277.3 6,277.3 6,277.5 0,0 0.0 16,325 320 678 7.7 6,291.4 6,291.4 6,292.1 0.0 16,935 326 667 8.0 6,291.4 6,291.4 6,292.1 0.0 17,015 338 1,601 3.3 6,291.4 6,291.4 6,292.1 0.0 17,915 388 1,601 3.3 6,291.4 6,291.4 6,292.1 0.0 20,730 103 575 11.7 6,309.5 6,309.5 6,309.5 0.0 21,715 132 413 3,156 11.0 6,348.8 6,349.4 0.6 22,560 142 6,309.5 6,309.5 6,309.5 6,309.5 0,0 24,835 6,416.6 6,416.6 6,402.7 <td< td=""><td>12,610</td><td>367</td><td>669</td><td>7.6</td><td>6,228.8</td><td>6,228.8</td><td>6,228.8</td><td>0.1</td><td></td></td<>	12,610	367	669	7.6	6,228.8	6,228.8	6,228.8	0.1	
	14,805 125 479 11.1 6,257.9 6,257.9 6,257.9 0,00 REVISED B 14,885 125 601 8.9 6,259.9 6,259.9 6,259.9 0,00 DATED 16,325 300 678 7.9 6,277.3 6,291.4 6,292.1 0,0 DATED 16,325 321 660 8.0 7.7 6,291.4 6,291.4 6,292.1 0,0 16,325 321 667 7.7 6,291.4 6,292.1 0,0 DATED 17,065 336 667 7.7 6,291.4 6,292.1 0,0 0,0 17,015 388 1,601 3.3 6,293.4 6,291.4 6,292.1 0,0 17,015 388 6,01 3.3 6,399.5 6,309.5 6,309.5 0,0 20,730 103 575 11.7 6,327.8 6,328.0 0,0 0 21,715 113 412 6,309.5 6,309.5 6,309.5 0,0 22,560 142 5,348 6,328.0 6,328.0 0,0 22,540 103 5,348 6,328.8 6,349.4 0,6 24,835 5,416.6 6,402.7	13,720	188	570	10.0	6,241.7	6,241.7	6,241.7	0.0	
14,8851256018.96,259.96,259.96,259.910 $\mathbf{R}_{\mathbf{V}}$ below15,8502285829.26,268.76,268.76,268.70.0 \mathbf{DATED} 16,3253006787.96,277.36,277.36,277.50.0 \mathbf{DATED} 16,9553216907.76,291.46,291.46,292.00.6 $\mathbf{O}_{\mathbf{C}}$ 17,0653266678.06,291.46,291.46,292.00.6 $\mathbf{O}_{\mathbf{C}}$ 17,0153381,6013.36,293.46,291.46,292.00.617,9153881,6013.36,293.46,294.00.617,9153881,6013.36,293.46,294.00.617,9153881,6013.36,293.46,294.00.617,9153881,6013.36,309.56,309.50.020,73010357511.76,303.56,348.86,349.40.620,73614250311.06,348.86,348.86,349.40.623,06014550311.06,343.56,383.50.0024,8354183,1567.06,343.56,402.70.0024,83511241910.86,416.66,416.66,416.60.027,71511241910.86,416.66,416.66,416.60.027,71511241910.86,416.6	14,885 125 601 8.9 6,259.9 6,259.9 6,259.9 10 Lowiks 15,850 228 582 9.2 6,268.7 6,268.7 0.0 DATED 16,325 300 678 7.9 6,277.3 6,277.3 6,277.5 0.2 OCIONBEN 16,935 321 690 7.7 6,291.4 6,291.4 6,292.0 0.6 0.0 17,065 326 667 8.0 6,291.4 6,291.4 6,292.1 0.7 17,015 338 1,601 3.3 6,399.5 6,309.5 6,309.5 0.6 17,915 388 1,601 3.3 6,309.5 6,309.5 6,309.5 0.0 20,730 103 575 11.7 6,327.8 6,309.5 0.0 20,730 142 503 11.0 6,328.8 6,349.4 0.6 20,730 132 452 10.0 6,402.7 6,402.7 0.0 20,470 132 452 10.0 6,402.7 6,402.7 0.0 24,835 416.6 6,416.6 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6	14,805	125	479	11.1	6,257.9	6,257.9	6,257.9	0.0	
15,8502285829.26,268.76,268.76,268.70.0 $DATED$ 16,3253006787.96,277.36,277.36,277.50.2 $OC1$ OBER 0716,9953216907.76,291.46,291.46,292.00.6 $O.6$ 17,0653266678.06,291.46,291.46,292.1 $O.7$ $O.2$ $O04$ 17,9153381,6013.36,291.46,291.46,292.0 $O.6$ $O.6$ 17,9153381,6013.36,291.46,291.46,294.0 $O.6$ 17,9151886977.76,399.56,399.5 $O.0$ $O.6$ 20,73010357511.76,327.8 $6,391.4$ $6,294.0$ $O.6$ 20,73010357511.0 $6,348.8$ $6,394.4$ $O.6$ 22,56014250611.0 $6,348.8$ $6,349.4$ $O.6$ 23,06014250311.0 $6,338.0$ $6,338.6$ $G,492.4$ $O.6$ 24,8351433,1567.0 $6,338.3$ $6,402.7$ $G,402.7$ $O.0$ 24,83511241910.8 $6,416.6$ $6,416.6$ $6,416.6$ $O.0$ 24,71511241910.8 $6,416.6$ $6,416.6$ $G,416.6$ $O.0$ 27,71511241910.8 $6,416.6$ $6,416.6$ $6,416.6$ $O.0$	15,850 228 582 9.2 6,268.7 6,268.7 6,268.7 0.0 Darrein Darrein 16,325 300 678 7.9 6,277.3 6,277.3 6,277.5 0.2 007 16,995 321 690 7.7 6,291.4 6,291.4 6,292.0 0.6 17,015 326 667 8.0 6,291.4 6,291.4 6,292.1 0.7 17,915 388 1,601 3.3 6,293.4 6,293.4 0.6 0.6 20,730 103 575 11.7 6,390.5 6,319.4 0.6 20,730 103 575 11.7 6,327.8 6,349.4 0.6 20,730 103 575 11.7 6,328.8 6,349.4 0.6 20,730 113 536 11.0 6,358.0 6,383.5 0.0 20,470 132 419 10.8 6,416.6 6,416.6 6,416.6 20,470 112 419 10.8 6,416.6 6,416.6 0.0 21,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,402.7 6,02 0.0	14,885	125	601	8.9	6,259.9	6,259.9	6,259.9	1.0 1	EVISED BY
16,3253006787.96,277.36,277.50.20.20.20.116,9953216907.76,291.46,292.00.60.617,0653266678.06,291.46,292.10.60.617,0153381,6013.36,291.46,291.46,292.00.617,9153381,6013.36,293.46,291.46,294.00.617,9153881,6013.36,293.46,293.46,399.56,309.50.017,9153881,6013.36,293.46,309.56,309.50.00.617,9153881,6013.36,293.46,309.56,309.50.00.020,73010357511.76,309.56,309.56,349.40.622,56014250611.06,348.86,348.86,349.40.623,06014550311.06,328.06,383.56,383.50.024,8354183,1567.06,383.56,383.56,402.76,402.724,71511241910.86,416.66,416.66,416.60.027,71511241910.86,416.66,416.60.027,71511241910.86,416.66,416.66,416.60.0	16,325 300 678 7.9 6,277.3 6,277.5 0.2 0.01 16,995 321 690 7.7 6,291.4 6,292.0 0.6 17,065 326 667 8.0 6,291.4 6,292.1 0.7 17,015 328 1,601 3.3 6,293.4 6,293.4 6,292.0 0.6 17,015 388 1,601 3.3 6,293.4 6,293.4 6,292.0 0.6 17,915 388 1,601 3.3 6,293.4 6,293.4 6,292.0 0.6 20,730 103 575 11.7 6,309.5 6,309.5 6,309.5 0.0 20,730 103 575 11.0 6,348.8 6,378.8 6,399.4 0.6 23,660 142 5,03 11.0 6,348.8 6,349.4 0.6 24,835 418 3,156 7.0 6,335.5 0.0 24,835 112 419 10.6 6,402.7 0.0 25,470 132 452 10.0 6,402.7 0.0 27,715 112 419 10.8 6,402.7 0.0 27,715 112 419 10.8 6,402.7 <	15,850	228	582	9.2	6,268.7	6,268.7	6,268.7	0.0	ATED
16,9953216907.76,291.46,291.46,292.0 0.6 17,0653266678.06,291.46,291.46,292.1 0.7 17,9153881,6013.36,291.46,291.46,292.1 0.7 17,9153881,6013.36,293.46,291.46,294.0 0.6 19,1101586977.76,309.56,309.5 $6,309.5$ 0.0 20,73010357511.7 $6,327.8$ $6,348.8$ $6,349.4$ 0.6 21,73014250311.0 $6,348.8$ $6,348.8$ $6,349.4$ 0.6 23,06014550311.0 $6,333.5$ $6,333.5$ $6,333.5$ 0.0 24,835418 $3,156$ 7.0 $6,333.5$ $6,383.5$ $6,333.5$ 0.0 24,83511241910.8 $6,416.6$ $6,416.6$ $6,416.6$ 0.0 25,71511241910.8 $6,416.6$ $6,416.6$ $6,416.6$ $6,416.6$ 0.0	16,995 321 690 7.7 6,291.4 6,291.4 6,292.0 0.6 17,065 326 667 8.0 6,291.4 6,291.4 6,292.1 0.7 17,915 338 1,601 3.3 6,293.4 6,291.4 6,291.4 6,292.1 0.7 17,915 338 1,601 3.3 6,293.4 6,293.4 6,292.1 0.7 17,915 188 697 7.7 6,309.5 6,309.5 6,309.5 0.0 20,730 103 575 11.7 6,327.8 6,328.4 0.6 22,560 142 5,36 11.0 6,348.8 6,349.4 0.6 23,060 145 503 11.0 6,348.8 6,340.7 0.6 24,835 418 3,156 7.0 6,383.5 6,383.5 0.0 24,835 112 419 10.8 6,416.6 6,416.6 0.0 25,470 132 452 10.0 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 5 </td <td>16,325</td> <td>300</td> <td>678</td> <td>7.9</td> <td>6,277.3</td> <td>6,277.3</td> <td>6,277.5</td> <td>0.2 0</td> <td>CTOBER 07,</td>	16,325	300	678	7.9	6,277.3	6,277.3	6,277.5	0.2 0	CTOBER 07,
17,0653266678.06,291.46,291.46,292.1 0.7 17,9153881,6013.36,293.46,293.46,294.0 0.6 19,1101586977.76,309.56,309.5 $6,309.5$ 0.0 20,73010357511.7 $6,329.4$ $6,293.4$ $6,293.4$ 0.6 20,73010357511.7 $6,329.5$ $6,309.5$ $6,309.5$ 0.0 20,73014250611.0 $6,348.8$ $6,348.8$ $6,349.4$ 0.6 23,06014550311.0 $6,338.6$ $6,348.8$ $6,349.4$ 0.6 23,06014550311.0 $6,338.5$ $6,338.5$ $6,338.6$ 0.0 24,835418 $3,156$ 7.0 $6,338.5$ $6,338.5$ $6,338.5$ 0.0 24,83511241910.8 $6,410.7$ $6,402.7$ $6,402.7$ 0.0 26,47013245210.0 $6,402.7$ $6,416.6$ $6,416.6$ $6,416.6$ 0.0	17,065 326 667 8.0 6,291.4 6,292.1 0.7 17,915 338 1,601 3.3 6,293.4 6,294.0 0.6 17,915 388 1,601 3.3 6,293.4 6,294.0 0.6 17,915 188 6,97 7.7 6,309.5 6,309.5 0.0 20,730 103 575 11.7 6,309.5 6,309.5 0.0 20,730 142 506 11.0 6,348.8 6,348.8 6,349.4 0.6 22,560 142 503 11.0 6,348.8 6,349.4 0.6 23,060 145 503 11.0 6,348.8 6,349.4 0.6 24,835 418 3,156 7.0 6,333.5 6,383.5 0.0 24,835 112 419 10.8 6,416.6 6,416.6 6,416.6 27,715 112 419 10.8 6,416.6 6,416.6 6,416.6 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6	16,995	321	069	7.7	6,291.4	6,291.4	6,292.0	0.6	5
17,915388 $1,601$ 3.3 $6,293.4$ $6,293.4$ $6,294.0$ 0.6 $19,110$ 158 697 7.7 $6,309.5$ $6,309.5$ $6,309.5$ 0.0 $20,730$ 103 575 11.7 $6,329.5$ $6,309.5$ $6,309.5$ 0.0 $20,730$ 103 575 11.7 $6,327.8$ $6,327.8$ $6,328.4$ 0.6 $22,560$ 142 506 11.0 $6,348.8$ $6,349.4$ 0.6 $23,060$ 145 503 11.0 $6,358.0$ $6,338.6$ 0.0 $24,835$ 418 $3,156$ 7.0 $6,333.5$ $6,333.5$ $6,333.5$ $0,00$ $24,835$ 418 $3,156$ 7.0 $6,333.5$ $6,333.5$ $6,333.5$ 0.0 $24,835$ 112 419 10.8 $6,410.77$ $6,402.77$ $6,402.77$ 0.0 $27,715$ 112 419 10.8 $6,416.6$ $6,416.6$ $6,416.6$ 0.0	17,915 388 1,601 3.3 6,293.4 6,293.4 6,294.0 0.6 19,110 158 697 7.7 6,309.5 6,309.5 0.0 20,730 103 575 11.7 6,327.8 6,309.5 0.0 20,730 142 506 11.0 6,348.8 6,349.4 0.6 22,560 142 506 11.0 6,348.8 6,349.4 0.6 23,060 145 503 11.0 6,348.8 6,349.4 0.6 23,060 145 503 11.0 6,348.8 6,349.4 0.6 24,835 418 3,156 7.0 6,348.5 6,383.5 6,383.5 0.0 24,835 112 419 10.8 6,416.6 6,416.6 6,416.6 6,416.6 27,715 112 419 10.8 6,416.6 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715	17,065	326	667	8.0	6,291.4	6,291.4	6,292.1	0.7	
19,110 158 697 7.7 $6,309.5$ $6,309.5$ $6,309.5$ 0.0 $20,730$ 103 575 11.7 $6,309.5$ $6,309.5$ 0.0 $22,560$ 142 506 11.0 $6,3248.8$ $6,3248.8$ $6,339.4$ 0.6 $23,060$ 142 503 11.0 $6,348.8$ $6,348.8$ $6,349.4$ 0.6 $23,060$ 145 503 11.0 $6,338.0$ $6,348.8$ $6,349.4$ 0.6 $24,835$ 418 $3,156$ 7.0 $6,338.5$ $6,338.5$ $6,338.5$ 0.0 $24,835$ 418 $3,156$ 7.0 $6,383.5$ $6,383.5$ $6,383.5$ 0.0 $24,835$ 112 419 10.8 $6,416.6$ $6,416.6$ $6,416.6$ 0.0 $27,715$ 112 419 10.8 $6,416.6$ $6,416.6$ $6,416.6$ 0.0	19,110 158 697 7.7 6,309.5 6,309.5 6,00 20,730 103 575 11.7 6,327.8 6,328.4 0.6 20,730 103 575 11.7 6,327.8 6,328.4 0.6 22,560 142 506 11.0 6,348.8 6,349.4 0.6 23,060 145 503 11.0 6,348.8 6,349.4 0.6 24,835 418 3,156 7.0 6,383.5 6,383.5 0.0 24,70 132 452 10.0 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 6,416.6 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 20 12 419.5 10.8 6,416.6 6,416.7 0.0 <td>17,915</td> <td>388</td> <td>1,601</td> <td>3.3</td> <td>6,293.4</td> <td>6,293.4</td> <td>6,294.0</td> <td>0.6</td> <td></td>	17,915	388	1,601	3.3	6,293.4	6,293.4	6,294.0	0.6	
20,730 103 575 11.7 $6,327.8$ $6,327.8$ $6,328.4$ 0.6 $22,560$ 142 506 11.0 $6,348.8$ $6,349.4$ 0.6 $23,060$ 145 503 11.0 $6,348.8$ $6,348.8$ $6,349.4$ 0.6 $23,060$ 145 503 11.0 $6,338.0$ $6,338.0$ 0.0 $24,835$ 418 $3,156$ 7.0 $6,383.5$ $6,383.5$ $6,338.5$ 0.0 $24,835$ 112 419 10.8 $6,402.7$ $6,402.7$ $6,402.7$ 0.0 $27,715$ 112 419 10.8 $6,416.6$ $6,416.6$ $6,416.6$ $6,416.6$ 0.0	20,730 103 575 11.7 6,327.8 6,328.4 0.6 20,730 142 506 11.0 6,348.8 6,348.8 6,349.4 0.6 22,560 142 503 11.0 6,348.8 6,348.8 6,349.4 0.6 23,060 145 503 11.0 6,348.8 6,348.8 6,349.4 0.6 23,060 145 503 11.0 6,348.5 6,348.5 6,349.4 0.6 24,835 18 3,156 7.0 6,383.5 6,333.5 6,333.5 0.0 26,470 132 432 10.0 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 12.1 8,416.6 6,416.6 6,416.7 0.0 20.1 Retributed <	19,110	158	697	7.7	6,309.5	6,309.5	6,309.5	0.0	
22,56014250611.06,348.86,348.86,349.4 0.6 23,06014550311.06,358.06,358.06,358.0 0.0 23,06014550311.06,358.06,358.0 $6,333.5$ 0.0 24,8354183,1567.06,383.5 $6,333.5$ $6,333.5$ 0.0 26,47013245210.0 $6,402.7$ $6,402.7$ $6,402.7$ 0.0 27,71511241910.8 $6,416.6$ $6,416.6$ $6,416.6$ $6,416.6$ 0.0	22,560 142 506 11.0 6,348.8 6,349.4 0.6 23,060 145 503 11.0 6,348.3 6,349.4 0.6 23,060 145 503 11.0 6,358.0 6,348.3 0.0 23,060 145 503 11.0 6,383.5 6,383.5 0.0 24,70 132 452 10.0 6,402.7 6,402.7 0.0 26,470 132 452 10.0 6,402.7 6,402.7 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 201 Stand Greek Reflect Comercial Reflect Comercial Reflect Comercial Reflect Comercial 200 Stand Greek Reflect Comercial Reflect Comercial	20,730	103	575	11.7	6,327.8	6,327.8	6,328.4	0.6	
23,06014550311.06,358.06,358.06,358.00.024,8354183,1567.06,383.56,383.56,383.50.026,47013245210.06,402.76,402.76,402.70.027,71511241910.86,416.66,416.66,416.60.0	23,060 145 503 11.0 6,358.0 6,358.0 6,358.0 0.0 24,835 418 3,156 7.0 6,383.5 6,383.5 0.0 26,470 132 452 10.0 6,402.7 6,383.5 0.0 26,470 132 452 10.0 6,402.7 6,383.5 0.0 26,470 132 452 10.0 6,402.7 6,402.7 0.0 27,715 112 419 10.8 6,416.6 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 201 Creek REVISED BY LOMR DATED OCTOBER 30, 2006 RefLect LOMR X MANGEMENT AGENCY REVISED BY LOMRY DATA RFLECT LOMR COUNTY, CO OO OO SAND CREEK EAST FORK	22,560	142	506	11.0	6,348.8	6,348.8	6,349.4	0.6	
24,835 418 $3,156$ 7.0 $6,383.5$ $6,383.5$ $6,383.5$ 0.0 $26,470$ 132 452 10.0 $6,402.7$ $6,402.7$ $6,402.7$ 0.0 $27,715$ 112 419 10.8 $6,416.6$ $6,416.6$ $6,416.6$ 0.0	24,835 418 3,156 7.0 6,383.5 6,383.5 6.00 26,470 132 452 10.0 6,402.7 6,402.7 0.0 26,470 132 452 10.0 6,402.7 6,402.7 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 0.0 27,715 112 419 10.8 6,416.6 0.0 27,715 112 2416.6 6,416.6 6,416.6 0.0 201 Creek REVISED BY LOMR DATED OCTOBER 30, 2006 REVISED TO X MANAGEMENT AGENCY REVISED BY LOMAY DATA REFLECT LOMR COUNTY, CO O O O O ORATED AREAS SAND CREEK EAST FORK	23,060	145	503	11.0	6,358.0	6,358.0	6,358.0	0.0	
26,470 132 452 10.0 6,402.7 6,402.7 6,402.7 0.0 27,715 112 419 10.8 6,416.6 6,416.6 6,416.6 0.0	26,470 132 452 10.0 6,402.7 6,402.7 0.0 27,715 112 419 10.8 6,416.6 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 6,416.6 0.0 27,715 112 419 10.8 6,416.6 6,416.6 0.0 27,715 I12 419 10.8 6,416.6 6,416.6 0.0 27,715 I12 A19 IO.8 6,416.6 6,416.6 0.0 27,715 Intervision Revise Drown Date Revise Drown Date Revise Drown Date 200UNTY, CO ODATED AREAS SAND CREEK EAST FORK 201	24,835	418	3,156	7.0	6,383.5	6,383.5	6,383.5	0.0	
27,715 112 419 10.8 6,416.6 6,416.6 6,416.6 0.0	27,715 112 419 10.8 6,416.6 6,416.6 0.0 ance with Sand Creek REVISED BY LOMR DATED OCTOBER 30, 2006 REVISED TO REVISED BY LOMR DATED OCTOBER 30, 2006 REFLECT LOMR COUNTY, CO ORATED AREAS SAND CREEK EAST FORK 	26,470	132	452	10.0	6,402.7	6,402.7	6,402.7	0.0	
•	The with Sand Creek Sevised BY LOMR DATED OCTOBER 30, 2006 REVISED TO REVISED BY LOMR DATED OCTOBER 30, 2006 REFLECT LOMR REFLECT LOMR COUNTY, CO SAND STATED AREAS SAND CREEK EAST FORK	27,715	112	419	10.8	6,416.6	6,416.6	6,416.6	0.0	
	PICE with Sand Creek REVISED BY LOMR DATED OCTOBER 30, 2006 REVISED DOR MANAGEMENT AGENCY COUNTY, CO ORATED AREAS SAND CREEK EAST FORK				•					
			MENT AGENCY				FLOODWA	AY DATA EFFEC	ECT LOMR CTIVE: Augu	st 6, 2018
Y MANAGEMENT AGENCY CI INITY CO		ORATED	AREAS			SAN	ID CREEK	EAST FORK		

DRAINAGE MAP / GRADING PLAN

A deviation request is required since 100% of storm water is not captured in the water quality facility . CDPS General Permit COR090000 (MS4 permit) Part I section E.4.iv.(A), page 29 of 63, may be used for justification of the deviation. Note that changes to the basins and/or grading will be required to comply with section E.4.iv.(A).

VEN

CBP, LOT 13

EL PASO COUNTY, STATE OF COLORADO UTILITY SERVICE PLAN

LOT 13 OF CLAREMONT BUSINESS PARK FIL. NO. 2

PROPOSED DRAINAGE MAP

SHEET 2 OF 9

CIVIL CONSULTANTS, INC.

EL PASO COUNTY FILE NO. PPR 18-000

GRADING AND EROSION CONTROL NOTES:

- 1. CONSTRUCTION MAY NOT COMMENCE UNTIL A CONSTRUCTION PERMIT IS OBTAINED FROM DEVELOPMENT SERVICES AND A PRECONSTRUCTION CONFERENCE IS HELD WITH DEVELOPMENT SERVICES INSPECTIONS.
- STORMWATER DISCHARGES FROM CONSTRUCTION SITES SHALL NOT CAUSE OR THREATEN TO CAUSE POLLUTION, CONTAMINATION, OR DEGRADATION OF STATE WATERS. ALL WORK AND EARTH DISTURBANCE SHALL BE DONE IN A MANNER THAT MINIMIZES POLLUTION OF ANY ON-SITE OR OFF SITE WATERS, INCLUDING WETLANDS.
- NOTWITHSTANDING ANYTHING DEPICTED IN THESE PLANS IN WORDS OR GRAPHIC REPRESENTATION, ALL DESIGN AND CONSTRUCTION RELATED TO ROADS. STORM DRAINAGE AND EROSION CONTROL SHALL CONFORM TO THE STANDARDS AND REQUIREMENTS OF THE MOST RECENT VERSION OF THE RELEVANT ADOPTED EL PASO COUNTY STANDARDS. INCLUDING THE LAND DEVELOPMENT CODE, THE ENGINEERING CRITERIA MANUAL, THE DRAINAGE CRITERIA MANUAL, AND THE DRAINAGE CRITERIA MANUAL VOLUME 2. ANY DEVIATIONS TO REGULATIONS AND STANDARDS MUST BE REQUESTED, AND APPROVED, IN WRITING.
- 4. A SEPARATE STORMWATER MANAGEMENT PLAN (SMWP) FOR THIS PROJECT SHALL BE COMPLETED AND AN EROSION AND STORMWATER QUALITY CONTROL PERMIT (ESQCP) ISSUED PRIOR TO COMMENCING CONSTRUCTION. DURING CONSTRUCTION THE SWMP IS THE RESPONSIBILITY OF THE DESIGNATED STORMWATER MANAGER, SHALL BE LOCATED ON SITE AT ALL TIMES AND SHALL BE KEPT UP TO DATE WITH WORK PROGRESS AND CHANGES IN THE FIELD.
- 5. ONCE THE ESQCP HAS BEEN ISSUED, THE CONTRACTOR MAY INSTALL THE INITIAL STAGE EROSION AND SEDIMENT CONTROL BMPS AS INDICATED ON THE GEC. A PRECONSTRUCTION MEETING BETWEEN THE CONTRACTOR, ENGINEER, AND EL PASO COUNTY WILL BE HELD PRIOR TO ANY CONSTRUCTION. IT IS THE RESPONSIBILITY OF THE APPLICANT TO COORDINATE THE MEETING TIME AND PLACE WITH COUNTY DSD INSPECTIONS STAFF.
- 6. SOIL EROSION CONTROL MEASURES FOR ALL SLOPES, CHANNELS, DITCHES, OR ANY DISTURBED LAND AREA SHALL BE COMPLETED WITHIN 21 CALENDAR DAYS AFTER FINAL GRADING, OR FINAL EARTH DISTURBANCE, HAS BEEN COMPLETED. DISTURBED AREAS AND STOCKPILES WHICH ARE NOT AT FINAL GRADE BUT WILL REMAIN DORMANT FOR LONGER THAN 30 DAYS SHALL ALSO BE MULCHED WITHIN 21 DAYS AFTER INTERIM GRADING. AN AREA THAT IS GOING TO REMAIN IN AN INTERIM STATE FOR MORE THAN 60 DAYS SHALL ALSO BE SEEDED. ALL TEMPORARY SOIL EROSION CONTROL MEASURES AND BMPS SHALL BE MAINTAINED UNTIL PERMANENT SOIL EROSION CONTROL MEASURES ARE IMPLEMENTED AND ESTABLISHED.
- TEMPORARY SOIL EROSION CONTROL FACILITIES SHALL BE REMOVED AND EARTH DISTURBANCE AREAS GRADED AND STABILIZED WITH PERMANENT SOIL EROSION CONTROL MEASURES PURSUANT TO STANDARDS AND SPECIFICATION PRESCRIBED IN THE DCM VOLUME II AND THE ENGINEERING CRITERIA MANUAL (ECM) APPENDIX
- 8. ALL PERSONS ENGAGED IN EARTH DISTURBANCE SHALL IMPLEMENT AND MAINTAIN ACCEPTABLE SOIL EROSION AND SEDIMENT CONTROL MEASURES INCLUDING BMPS IN CONFORMANCE WITH THE EROSION CONTROL TECHNICAL STANDARDS OF THE DRAINAGE CRITERIA MANUAL (DCM) VOLUME II AND IN ACCORDANCE WITH THE STORMWATER MANAGEMENT PLAN (SWMP)
- 9. ALL TEMPORARY EROSION CONTROL FACILITIES INCLUDING BMPS AND ALL PERMANENT FACILITIES INTENDED TO CONTROL EROSION OF ANY EARTH DISTURBANCE OPERATIONS, SHALL BE INSTALLED AS DEFINED IN THE APPROVED PLANS, THE SWMP AND THE DCM VOLUME II AND MAINTAINED THROUGHOUT THE DURATION OF THE EARTH DISTURBANCE OPERATION.
- 10. ANY EARTH DISTURBANCE SHALL BE CONDUCTED IN SUCH A MANNER SO AS TO EFFECTIVELY REDUCE ACCELERATED SOIL EROSION AND RESULTING SEDIMENTATION. ALL DISTURBANCES SHALL BE DESIGNED, CONSTRUCTED, AND COMPLETED SO THAT THE EXPOSED AREA OF ANY DISTURBED LAND SHALL BE LIMITED TO THE SHORTEST PRACTICAL PERIOD OF TIME.
- 11. ANY TEMPORARY OR PERMANENT FACILITY DESIGNED AND CONSTRUCTED FOR THE CONVEYANCE OF STORMWATER AROUND, THROUGH, OR FROM THE EARTH DISTURBANCE AREA SHALL BE DESIGNED TO LIMIT THE DISCHARGE TO A NON-EROSIVE VELOCITY.
- 12. CONCRETE WASH WATER SHALL BE CONTAINED AND DISPOSED OF IN ACCORDANCE WITH THE SWMP. NO WASH WATER SHALL BE DISCHARGED TO OR ALLOWED TO RUNOFF TO STATE WATERS, INCLUDING ANY SURFACE OR SUBSURFACE STORM DRAINAGE SYSTEM OR FACILITIES.
- 13. EROSION CONTROL BLANKETING IS TO BE USED ON SLOPES STEEPER THAN 3:1.
- 14. BUILDING, CONSTRUCTION, EXCAVATION, OR OTHER WASTE MATERIALS SHALL NOT BE TEMPORARILY PLACED OR STORED IN THE STREET, ALLEY, OR OTHER PUBLIC WAY, UNLESS IN ACCORDANCE WITH AN APPROVED TRAFFIC CONTROL PLAN. BMP'S MAY BE REQUIRED BY EL PASO COUNTY ENGINEERING IF DEEMED NECESSARY, BASED ON SPECIFIC CONDITIONS AND CIRCUMSTANCES.
- 15. VEHICLE TRACKING OF SOILS AND CONSTRUCTION DEBRIS OFF-SITE SHALL BE MINIMIZED. MATERIALS TRACKED OFFSITE SHALL BE CLEANED UP AND PROPERLY DISPOSED OF IMMEDIATELY.
- 16. CONTRACTOR SHALL BE RESPONSIBLE FOR THE REMOVAL OF ALL WASTES FROM THE CONSTRUCTION SITE FOR DISPOSAL IN ACCORDANCE WITH LOCAL AND STATE REGULATORY REQUIREMENTS. NO CONSTRUCTION DEBRIS, TREE SLASH, BUILDING MATERIAL WASTES OR UNUSED BUILDING MATERIALS SHALL BE BURIED, DUMPED, OR DISCHARGED AT THE SITE.
- 17. THE OWNER, SITE DEVELOPER, CONTRACTOR, AND/OR THEIR AUTHORIZED AGENTS SHALL BE RESPONSIBLE FOR THE REMOVAL OF ALL CONSTRUCTION DEBRIS, DIRT, TRASH, ROCK, SEDIMENT, AND SAND THAT MAY ACCUMULATE IN THE STORM SEWER OR OTHER DRAINAGE CONVEYANCE SYSTEM AND STORMWATER APPURTENANCES AS A RESULT OF SITE DEVELOPMENT.
- 18. THE QUANTITY OF MATERIALS STORED ON THE PROJECT SITE SHALL BE LIMITED, AS MUCH AS PRACTICAL, TO THAT QUANTITY REQUIRED TO PERFORM THE WORK IN AN ORDERLY SEQUENCE. ALL MATERIALS STORED ON-SITE SHALL BE STORED IN A NEAT, ORDERLY MANNER, IN THEIR ORIGINAL CONTAINERS, WITH ORIGINAL MANUFACTURER'S LABELS.
- 19. NO CHEMICALS ARE TO BE USED BY THE CONTRACTOR, WHICH HAVE THE POTENTIAL TO BE RELEASED IN STORMWATER UNLESS PERMISSION FOR THE USE OF A SPECIFIC CHEMICAL IS GRANTED IN WRITING BY THE ECM ADMINISTRATOR. IN GRANTING THE USE OF SUCH CHEMICALS, SPECIAL CONDITIONS AND MONITORING MAY BE REQUIRED.
- 20. BULK STORAGE STRUCTURES FOR PETROLEUM PRODUCTS AND OTHER CHEMICALS SHALL HAVE ADEQUATE PROTECTION SO AS TO CONTAIN ALL SPILLS AND PREVENT ANY SPILLED MATERIAL FROM ENTERING STATE WATERS, INCLUDING ANY SURFACE OR SUBSURFACE STORM DRAINAGE SYSTEM OR FACILITIES.
- 21. NO PERSON SHALL CAUSE THE IMPEDIMENT OF STORMWATER FLOW IN THE FLOW LINE OF THE CURB AND GUTTER OR IN THE DITCHLINE.
- 22. INDIVIDUALS SHALL COMPLY WITH THE "COLORADO WATER QUALITY CONTROL ACT" (TITLE 25, ARTICLE 8, CRS), AND THE "CLEAN WATER ACT" (33 USC 1344), IN ADDITION TO THE REQUIREMENTS INCLUDED IN THE DCM VOLUME II AND THE ECM APPENDIX I. ALL APPROPRIATE PERMITS MUST BE OBTAINED BY THE CONTRACTOR PRIOR TO CONSTRUCTION (NPDES, FLOODPLAIN, 404, FUGITIVE DUST, ETC.). IN THE EVENT OF CONFLICTS BETWEEN THESE REQUIREMENTS AND LAWS, RULES, OR REGULATIONS OF OTHER FEDERAL, STATE, OR COUNTY AGENCIES, THE MORE RESTRICTIVE LAWS, RULES, OR REGULATIONS SHALL APPLY.
- 23. ALL CONSTRUCTION TRAFFIC MUST ENTER/EXIT THE SITE AT APPROVED CONSTRUCTION ACCESS POINTS.
- 24. PRIOR TO ACTUAL CONSTRUCTION THE PERMITEE SHALL VERIFY THE LOCATION OF EXISTING UTILITIES.

25. A WATER SOURCE SHALL BE AVAILABLE ON SITE DURING EARTHWORK OPERATIONS AND UTILIZED AS REQUIRED TO MINIMIZE DUST FROM EARTHWORK EQUIPMENT AND WIND.

- 26. THE SOILS REPORT FOR THIS SITE HAS BEEN PREPARED BY ENTECH ENGINEERING, INC. # 76021 JUNE 1, 2011. AND SHALL BE CONSIDERED A PART OF THESE PLANS.
- 27. AT LEAST TEN DAYS PRIOR TO THE ANTICIPATED START OF CONSTRUCTION, FOR PROJECTS THAT WILL DISTURB 1 ACRE OR MORE, THE OWNER OR OPERATOR OF CONSTRUCTION ACTIVITY SHALL SUBMIT A PERMIT APPLICATION FOR STORMWATER DISCHARGE TO THE COLORADO DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT, WATER QUALITY DIVISION. THE APPLICATION CONTAINS CERTIFICATION OF COMPLETION OF A STORMWATER MANAGEMENT PLAN (SWMP), OF WHICH THIS GRADING AND EROSION CONTROL PLAN MAY BE A PART. FOR INFORMATION OR APPLICATION MATERIALS CONTACT:

COLORADO DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT WATER QUALITY CONTROL DIVISION WQCD - PERMITS 4300 CHERRY CREEK DRIVE SOUTH DENVER, CO 80246-1530 ATTN: PERMITS UNIT

FOR BURIED UTILITY INFORMATION HRS BEFORE YOU DI ALL 1-800-922-1987 FOR LOCATING & MARKING GAS, ELECTRIC, WATER & TELEPHONE LINES WATER EMERGENCIES 520-0300

CBP, LOT 13

EL PASO COUNTY, STATE OF COLORADO GRADING & EROSION CONTROL PLAN LOT 13 OF CLAREMONT BUSINESS PARK FIL. NO. 2

DESIGN ENGINEER'S STATEMENT

THIS GRADING AND EROSION CONTROL PLAN WAS PREPARED UNDER MY DIRECTION AND SUPERVISION AND IS CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. SAID PLAN HAS BEEN PREPARED ACCORDING TO THE CRITERIA ESTABLISHED BY THE COUNTY FOR GRADING AND EROSION CONTROL PLANS. I ACCEPT RESPONSIBILITY FOR ANY LIABILITY CAUSED BY NEGLIGENT ACTS, ERRORS OR OMISSIONS ON MY PART IN PREPARING THIS PLAN.

FGFND VIRGIL A. SANCHEZ, COLORADO P.E. #37160 DATE FOR AND ON BEHALF OF M & S CIVIL CONSULTANTS, INC. EX MAJ CONT EX MIN CONT PROP MAJ CONT PROP MIN CONT LOW POINT HIGH POINT EXISTING OWNER/DEVELOPER'S STATEMENT: FLOWLINE TOP OF CURB I, THE OWNER/DEVELOPER HAVE READ AND WILL COMPLY WITH ALL OF THE REQUIREMENTS FINISH GRADE SPECIFIED IN THESE DETAILED PLANS AND SPECIFICATIONS. FINISH FLOOR TOP OF FOOTING TOF ŚF _____ SILT FENCE DBA: HAMMERS CONSTRUCTION ́VTС VEHICLE TRACKING CONTROL ADDRESS: 1411 WOOLSEY HEIGHTS COLORADO SPRINGS, 80915 CWA CONCRETE WASH-OUT BASIN INLET PROTECTION EL PASO COUNTY: COUNTY PLAN REVIEW IS PROVIDED ONLY FOR GENERAL CONFORMANCE WITH COUNTY DESIGN CRITERIA. THE COUNTY IS NOT RESPONSIBLE FOR THE ACCURACY AND ADEQUACY OF THE DESIGN. DIMENSIONS, AND/OR ELEVATIONS WHICH SHALL BE CONFIRMED AT THE JOB SITE. THE COUNTY THROUGH THE APPROVAL OF THIS DOCUMENT ASSUMES NO RESPONSIBILITY FOR COMPLETENESS AND/OR ACCURACY OF THIS DOCUMENT. FILED IN ACCORDANCE WITH THE REQUIREMENTS OF THE EL PASO COUNTY LAND DEVELOPMENT CODE, DRAINAGE CRITERIA, AND ENGINEERING CRITERIA MANUAL AS AMENDED. IN ACCORDANCE WITH ECM SECTION 1.12, THESE CONSTRUCTION DOCUMENTS WILL BE VALID FOR CONSTRUCTION FOR A PERIOD OF 2 YEARS FROM THE DATE SIGNED BY THE EL PASO COUNTY ENGINEER. IF CONSTRUCTION HAS NOT STARTED WITHIN THOSE 2 YEARS. THE PLANS WILL NEED TO BE RESUBMITTED FOR APPROVAL. INCLUDING PAYMENT OF REVIEW FEES AT THE PLANNING AND COMMUNITY DEVELOPMENT DIRECTOR'S DISCRETION. JENNIFER IRVINE, P.E. DATE COUNTY ENGINER / ECM ADMINISTRATOR 1" = 20'Scale in Feet

FF=6341.33 FG=6341.25

BUILDING FINISH FLOOR DETAIL

GRADING & EROSION CONTROL PLAN CBP LOT 13 JOB NO. 44-028 DATE PREPARED: SEPT 16, 2018 DATE REVISED:

EL PASO COUNTY FILE NO. PPR 18-000

CIVIL CONSULTANTS, INC.

20 BOULDER CRESCENT, SUITE 110 COLORADO SPRINGS, CO 80903 PHONE: 719.955.5485

SHEET 1 OF 4

CBP, LOT 13

EL PASO COUNTY, STATE OF COLORADO GRADING & EROSION CONTROL PLAN LOT 13 OF CLAREMONT BUSINESS PARK FIL. NO. 2

SECTION A-A W/ RISER DETAILS NOT TO SCALE

GRADING & EROSION CONTROL PLAN CBP LOT 13 JOB NO. 44-028 DATE PREPARED: SEPT 16, 2018

DATE REVISED: EL PASO COUNTY FILE NO. PPR 18-000

20 BOULDER CRESCENT, SUITE 110 COLORADO SPRINGS, CO 80903 PHONE: 719.955.5485

SHEET 2 OF 4

				-	
Table TS/F	PS-2. Minimum Drill Seedi	ng Rates fo	or Perennial	Grasses	
Common ^a Name	Botanical Name	Growth Season ^b	Growth Form	Seeds/ Pound	Pounds of PLS/acre
Alakali Soil Seed Mix					
Alkali sacaton	Sporobolus airoides	Cool	Bunch	1,750,000	0.25
Basin wildrye	Elymus cinereus	Cool	Bunch	165,000	2.5
Sodar streambank wheatgrass	Agropyron riparium 'Sodar'	Cool	Sod	170,000	2.5
Jose tall wheatgrass	Agropyron elongatum 'Jose'	Cool	Bunch	79,000	7.0
Arriba western wheatgrass	Agropyron smithii 'Arriba'	Cool	Sod	110,000	5.5
Total					17.75
Fertile Loamy Soil Seed Mix					
Ephriam crested wheatgrass	Agropyron cristatum 'Ephriam'	Cool	Sod	175,000	2.0
Dural hard fescue	Festuca ovina 'duriuscula'	Cool	Bunch	565,000	1.0
Lincoln smooth brome	Bromus inermis leyss 'Lincoln'	Cool	Sod	130,000	3.0
Sodar streambank wheatgrass	Agropyron riparium 'Sodar'	Cool	Sod	170,000	2.5
Arriba western wheatgrass	Agropyron smithii 'Arriba'	Cool	Sod	110,000	7.0
Total					15.5
High Water Table Soil Seed Mix					
Meadow foxtail	Alopecurus pratensis	Cool	Sod	900,000	0.5
Redtop	Agrostis alba	Warm	Open sod	5,000,000	0.25
Reed canarygrass	Phalaris arundinacea	Cool	Sod	68,000	0.5
Lincoln smooth brome	Bromus inermis leyss 'Lincoln'	Cool	Sod	130,000	3.0
Pathfinder switchgrass	Panicum virgatum 'Pathfinder'	Warm	Sod	389,000	1.0
Alkar tall wheatgrass	Agropyron elongatum 'Alkar'	Cool	Bunch	79,000	5.5
Total					10.75
Transition Turf Seed Mix ^c					
Ruebens Canadian bluegrass	Poa compressa 'Ruebens'	Cool	Sod	2,500,000	0.5
Dural hard fescue	Festuca ovina 'duriuscula'	Cool	Bunch	565,000	1.0
Citation perennial ryegrass	Lolium perenne 'Citation'	Cool	Sod	247,000	3.0
Lincoln smooth brome	Bromus inermis leyss 'Lincoln'	Cool	Sod	130,000	3.0
Total					7.5

June 2012

TS/PS-4

Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 3 June 2012

Silt Fence	(SF)		SC-
SF SF	- SF	1 ½" x 1 ½" (RECOMMENDED) WOODEN FENCE POST WITH 10' MAX SPACING	F
F <u>L</u> EXIS GRC	COMPACTED BACKFILL OW TING UND 6" MIN 6" MIN OF SILT FENCE "TAIL" SHALL BE BURIED	36"-48" TYP. 18" MIN	
ROTATI SECON POSTS SHOWN, TH IN DIRECTI	SHALL BE JOINED AS IEN ROTATED 180 DEG. IN SHOWN AND DRIVEN O THE GROUND	LT FENCE POSTS SHALL OVERLAP AT JOINTS SO THAT NO GAPS EXIST IN SILT FENCE THICKNESS OF GEOTEXTILE HAS BEEN EXAGGERATED, TYP	2223
	<u>SF-1</u>	<u>ECTION A</u> . SILT FENCE	
November 2010	Urban Drainage an Urban Storm Drainage	d Flood Control District Criteria Manual Volume 3	SF

EL PASO COUNTY FILE NO. PPR 18-000

GRADING & EROSION CONTROL PLAN DETAILS CBP LOT 13 JOB NO. 44-028 DATE PREPARED: SEPT 16, 2018 DATE REVISED:

20 BOULDER CRESCENT, SUITE 110 COLORADO SPRINGS, CO 80903 PHONE: 719.955.5485

SHEET 3 OF 4

Designing for Maintenance	Is Pretreatment Needed?
Decommonded maintenance mostions for all DMDs are in Chapter	Designing the inflorm gutter to
5 of this manual. During design, consider the following to ensure ease of maintenance over the long-term:	the rain garden at a minimal slope of 0.5% can facilitate
• Do not put a filter sock on the underdrain. This is not necessary and can cause the underdrain to clog.	prior to flows entering the BMP. Be aware, this will reduce
• The best surface cover for a rain garden is full vegetation. Use rock mulch sparingly within the rain garden because rock mulch limits infiltration and is more difficult to maintain. Wood mulch handles sediment build-up better than rock mulch; however, wood mulch floats and may clog the overflow depending on the configuration of the outlet or settle unevenly. Some municipalities may not allow wood mulch for this reason.	maintenance of the BMP, but may require more frequent sweeping of the gutter to ensure that the sediment does not impede flow into the rain garden.
 Consider all potential maintenance requirements such as mowing the growing medium. Consider the method and equipment for ea large rain garden where the use of hand tools is not feasible, does rain garden allow for removal of the growing medium using a back 	(if applicable) and replacement of the task required. For example, in a the shape and configuration of the ckhoe?
 Provide pre-treatment when it will reduce the extent and frequence maintain function over the life of the BMP. For example, if the tr prone to debris or the use of sand for ice control, consider a small 	cy of maintenance necessary to ributary is larger than one acre, l forebay.
 Make the rain garden as shallow as possible. Increasing the deptl side slopes and complicate maintenance. Shallow rain gardens ar 	h unnecessarily can create erosive re also more attractive.
 Design and adjust the irrigation system (temporary or permanent) establishment and maintenance of selected vegetation.) to provide appropriate water for the
Design Procedure and Criteria	
 Subsurface Exploration and Determination of a No-Infiltration Infiltration Section: Infiltration BMPs can have three basic type section will depend on land use and activities, proximity to adjace characteristics. Sections of each installation type are shown in Fi No-Infiltration Section: This section includes an underdrain prevents infiltration of stormwater into the subgrade soils. Co of the following conditions exist: The site is a stormwater hotspot and infiltration could groundwater. The site is located over contaminated soils and infiltr contaminants. The facility is located over potentially expansive soil infiltration and potentially damage adjacent structure pavement). 	on, Partial Infiltration, or Full s of sections. The appropriate ent structures and soil igure B-1. n and an impermeable liner that onsider using this section when any d result in contamination of ration could mobilize these s or bedrock that could swell due to es (e.g., building foundation or
 Partial Infiltration Section: This section does not include a some infiltration. Stormwater that does not infiltrate is collected. 	in impermeable liner, and allows cted and removed by an underdrain

Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 3

T-3

system. Full Infiltration Section into the subgrade below. needed to drain the WQ infiltration section with th infiltration does not rema allow this section to oper-

A geotechnical engineer shou investigation needed to select a

- Prior to exploration review bedrock and groundwater infiltration rate for those and the site is located in a infiltration section will li even with a liner, if there
- areas of dipping bedrock) Drill exploratory borings subgrade and develop rec every 40,000 ft², and at le The boring or pit should in areas where there is a borings or pits at various soil types may change, in water table is likely withi
- Installation of temporary groundwater levels over t Perform laboratory tests the subgrade, evaluate th supporting traffic loads. density (ASTM D 2936);
- consolidation (ASTM D compressive strength); a the appropriate test metho For sites where a full infi a double-ring infiltromete at least two tests for sites completed borings or pits borings can be compared the most unfavorable infi
- subgrade underlying the Be aware that actual infil moisture content and deg influences. Actual rates of infiltration or permeabili subsurface exploration a

B-4 Urban E Urban Storn

<u>T-3</u>			
5. Calcula	Underdrain the design vo inch to avoid water quality maximum of Cleanouts ca ensure that th ate the diamete	System: When using an olume in 12 hours or more clogging. This will prove benefits and reducing im 20 feet on center. Providen also be used to conduct the pipe was not crushed over of the orifice for a 12-h	u ic ic ic ic ic ic ic ic ic ic ic ic ic
Size of	$D_{12 \text{ hour drain}}$	$\int_{n \text{ time}}^{n \text{ time}} = \sqrt{\frac{V}{1414 y^{0.41}}}$	
W	here:	N	
	D	= orifice diameter (in))
	У	= distance from the lo (i.e., surface of the f	w
	V	= volume (WQCV or to drain in 12 hours	tŀ (1
In agg gro tog	previous version gregate layer a powing medium gether, elimina	ons of this manual, UDFC nd that a geotextile (sepa . This version of the mar te the need for a separator	CL ra nu r f
Th filt pro	e underdrain s ter material me ovided in Table	ystem should be placed weeting the gradation in Tale B-3.	rit bl

B-8

Bioretention	Bioretention T-3
n: This section is designed to infiltrate the water stored in the basin . UDFCD recommends a minimum infiltration rate of 2 times the rate CV over 12 hours. A conservative design could utilize the partial the addition of a valve at the underdrain outlet. In the event that ain adequate following construction, the valve could be opened and rate as a partial infiltration section. uuld scope and perform a subsurface study. Typical geotechnical and design the section includes: ew geologic and geotechnical information to assess near-surface soil, er conditions that may be encountered and anticipated ranges of e materials. For example, if the facility is located adjacent to a structure a general area of known shallow, potentially expansive bedrock, a no- likely be required. It is also possible that this BMP may be infeasible, e is a significant potential for damage to the adjacent structures (e.g., (). s or exploratory pits to characterize subsurface conditions beneath the equirements for subgrade preparation. Drill at least one boring or pit for least two borings or pits for sites between 10,000 ft ² and 40,000 ft ² . Lextend at least 5 feet below the bottom of the base, and at least 20 feet potential of encountering potentially expansive soils or bedrock. More s depths may be required by the geotechnical engineer in areas where the low-lying areas where subsurface drainage may collect, or where the hin 8 feet below the planned bottom of the base or top of subgrade. y monitoring wells in selected borings or pits for monitoring time should be considered where shallow groundwater is encountered. on samples obtained from the borings or pits for monitoring time should be considered where shallow groundwater is encountered. on samples obtained from the borings or pits for worn j160/00 ft ² and 40,000	The following steps outline the design procedure and criteria, with Figure B-1 providing a corresponding cross-section. 1. Basin Storage Volume: Provide a storage volume based on a 12-hour drain time. Find the required WQCV (watershed inches of runoff). Using the imperviousness of the tributa area (or effective imperviousness where LiD elements are used upstream), use Figure 3-2 locate in Chapter 3 of this manual to determine the WQCV based on a 12-hour drain time. Calculate the design volume as follows:
Drainage and Flood Control District November 2015 rm Drainage Criteria Manual Volume 3	November 2015 Urban Drainage and Flood Control District B-5 Urban Storm Drainage Criteria Manual Volume 3

.

T-3

Sand bluestem

Sideoats grama

Prairie sandreed

Indian ricegrass

Western wheatgrass

Switchgrass

Little bluestem

Alkali sacaton

Sand dropseed

Blanket flower¹

Prairie coneflower¹

Purple prairieclover¹

 2 PLS = Pure Live Seed.

Sub-Totals:

Wildflower seed (optional) for a more diverse and natural look.

Total lbs per acre:

Pasture sage¹

Blue aster¹

Common Name

Bioretention

n using an underdrain system, provide a control orifice sized to drain urs or more (see Equation B-3). Use a minimum orifice size of 3/8 s will provide detention and slow release of the WQCV, providing educing impacts to downstream channels. Space underdrain pipes a nter. Provide cleanouts to enable maintenance of the underdrain. to conduct an inspection (by camera) of the underdrain system to crushed or disconnected during construction.

e for a 12-hour drain time using Equation B-3 (Use a minimum orifice

Equation B-3

from the lowest elevation of the storage volume

face of the filter) to the center of the orifice (ft)

WQCV or the portion of the WQCV in the rain garden) n 12 hours (ft^3)

ual, UDFCD recommended that the underdrain be placed in an extile (separator fabric) be placed between this aggregate and the of the manual replaces that section with materials that, when used a separator fabric.

be placed within an 6-inch-thick section of CDOT Class B or Class C ation in Table B-1. Use slotted pipe that meets the slot dimensions

Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 3

November 2015

B-12

Urban Drainage and Flood Control District November 2015 Urban Storm Drainage Criteria Manual Volume 3

Table B-3. Native seed mix for rain gardens

Scientific Name

Andropogon hallii

Bouteloua curtipendula

Calamovilfa longifolia

Oryzopsis hymenoides

Panicum virgatum

Pascopyrum smithii

Sporobolus airoides

Artemisia frigida

Gaillardia aristata

Ratibida columnifera

Dalea (Petalostemum) purpurea

Aster laevis

Sporobolus cryptandrus

Schizachyrium scoparium

EL PASO C

DATE PREPARED: SEPT 16, 2018

DATE REVISED:

Bioretention

Variety PLS² Ounces

lbs per

Acre

3.5

3

3

3

3

3

Garden

Goshen

Paloma

Ariba

Patura

Blackwell 4

Butte

per

2

4

8

4

4

27.5 22

28.9

Acre

<u>T-3</u>	Bio	oretention
4. Grow establi specifi (by vo of nutr metals	ing Medium: Provide a minimum of 18 inches of growing medium to a shment of the roots of the vegetation (see Figure B-1). A previous vers ded a mixture consisting of 85% coarse sand and a 15% compost/shredda lume). Based on field monitoring of this medium, compost was remove rients and fines and silts were added to both benefit the vegetation and in in stormwater.	enable fon of this manual ed paper mixture d to reduce export herease capture of
Table B-1 Growing n always be ensure that specification placement analyzed p	specifies the growing media as well as other materials discussed in this nedia is engineered media that requires a high level of quality control ar imported. Obtaining a particle size distribution and nutrient analysis is t the media is acceptable. UDFCD has identified placement of media no on as the most frequent cause of failure. Sample the media after deliver or obtain a sample from the supplier in advance of delivery and placem prior to delivery.	Fact Sheet. d must almost the only way to ot meeting the y and prior to ent and have this
Other Rai The specific vegetative medium we standard se quality or infiltration dissolved j with simila loam, and	in Garden Growing Medium Amendments The growing medium was designed for filtration ability, clogging charace health. It is important to preserve the function provided by the rain gar hen considering additional materials for incorporation into the growing ection shown in Figure B-1. When desired, amendments may be include to benefit vegetative health as long as they do not add nutrients, pollutan rate. For example, a number of products, including steel wool, capture phosphorus (Erickson 2009). When phosphorus is a target pollutant, pro ar characteristics may be considered. Do not include amendments such compost.	teristics, and den growing medium or into the ed to improve water nts, or modify the and retain oprietary materials as top soil, sandy
B-6	Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 3	November 2015
<u>T-3</u>	Bio	oretention
T-3	RATOR FABRIC SUBGRADE IS COMPATIBLE WITH R MATERIAL	Dretention
T-3	Rice FABRIC SUBGRADE IS COMPARIENT BIT	Dretention
T-3	Bie	SWEEP
T-3	Bie	sweep
T-3	Durance and Flood Control District	Dretention SWEP

CIVIL CONSULTANTS, INC.

SHEET 4 OF 4

Markup Summary

Daniel Torres (8)

Subject: Text Box Page Label: [1] SHT1 Lock: Unlocked Author: Daniel Torres Date: 10/23/2018 1:08:42 PM Color:

den will be built per Urban Drainage and Flood Control n tion on the Rain Garden). The Volume provided by the F i the required Water Quality Control Volume 34Scu-ft. Ti area of 95%, a drainage area of approximately 0.27 acres (Colorado Springs – Drainage Criteria Manual Volume 2 d Filter. SS Water quality facility is a rain garden

Reduction Practices – The project does not provide any ageways – The site is indirectly adjacent to the Sand Cr rm Water Quality Facility (Rain Garden type) before elopment of this project does not anticipate to have neg

· Onality Continue Volume Steam Water Onality

Date: 10/23/2018 1:19:38 PM Color: Subject: Callout

Subject: Callout

Author: Daniel Torres

Page Label: 4 Lock: Unlocked

Page Label: [1] SHT1 Lock: Unlocked Author: Daniel Torres Date: 10/23/2018 1:24:55 PM Color:

	~		Nace (N)	Zone Volume (ac-81	Outlet Tree	
	-	Zone 1 (WQCN)	0.75	0.008	Fibration Media	1
		Zane 2			Ant Ukland	
		Zane 3			And United	
e Configuration (R	etention Pond)			0.008	Tutal	۰.
used to drain WOCV I	a Albration BMP)				Celoutet	-17
130	th database halose th	A STRATE OF A DESCRIPTION OF A DESCRIPTI	facel	100	officers Particle Asso	—
0.04	acher.			Datast	in Only contrast	-
	inter.			Unama.		L
	A					
of Experie and write	other and areas on any	in more analyse too	to a streamentate			-
NON ISS	prove a serie	Acate at suger of the		with	nue sies per nos	⊢
NON.	a brank in more	Acade at suger to to			ingenal Parrierant i	⊢
· A3A	8434				plocal that Certificate -	L
- A0A	autes .	Detail mi	ssing on	the GEC.	Elliptical Side Area -	_
a Now (numbered by	in lowest to highest	2				
Row 1 (optional)	Row 2 (optional)	Rev3 (aptional)	Row & (optional)	Row 5 (uptional)	Raw 6 (optional)	R
NA NA	NA.	NA	NA	NA	NA	
NA NA	NA	NA	NB.	NA	NA	
						_
Ros 9 (optional)	Row 10 (optional)	Rew 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (uptional)	8
E NA	N/A	NA.	N/A	NA.	NA	
MA NA						

Subject: Callout Page Label: 36 Lock: Unlocked Author: Daniel Torres Date: 10/23/2018 2:20:27 PM Color:

 atom to be a set of the set of t

Subject: Callout Page Label: 36 Lock: Unlocked Author: Daniel Torres Date: 10/23/2018 2:21:01 PM Color:

Fill out this sheet

Page Label: 34 Lock: Unlocked Author: Daniel Torres Date: 10/23/2018 2:31:34 PM Color:

Subject: Text Box

A deviation request is required since 100% of storm water is not captured in the water quality facility . CDPS General Permit COR090000 (MS4 permit) Part I section E.4.iv.(A), page 29 of 63, may be used for justification of the deviation. Note that changes to the basins and/or grading will be required to comply with section E.4.iv.(A).

Water quality facility is a rain garden

Split Basin B into two separate basins as

runoff will release at two different locations. Additionally revise runoff coefficients accordingly.

.....

Detail missing on the GEC.

Per GEC this is 1.3 ft.

Fill out this sheet

PPR 1844

.....

.....

Subject: Callout Page Label: 1 Lock: Unlocked Author: Daniel Torres Date: 10/23/2018 3:18:22 PM Color:

PPR 1844 AGE MAR LOT 13 NO. 44-PREPAR REVISED 3 SEPT 16, 2018 PASO COUNTY FILE NO. PPR 18-000

Subject: Callout Page Label: [1] SHT1 Lock: Unlocked Author: Daniel Torres Date: 10/23/2018 3:19:08 PM Color:

PPR 1844