PRELIMINARY/FINAL DRAINAGE REPORT

FOR

JACKSON OFFICE WAREHOUSE STORAGE BUILDINGS DEVELOPMENT ROCKY MOUNTAIN INDUSTRIAL PARK FILING NO. 1A, LOT 2

Prepared For:
Jackson Development Solutions, LLC
55963 Maroon Mesa Drive
Colorado Springs, CO 80918

Prepared By:
Associated Design Professionals, Inc.
3520 Austin Bluffs Parkway Suite 102
Colorado Springs, CO 80918
719.266-5212

ADP Project No.170602 October 10, 2017

PCD File No. PPR-17-057

Remove City.

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports, and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Michael A.	Bartusek, P.E. #23329
I, the Devel	ER'S STATEMENT: loper, have read and will comply with all of the requirements specified in this eport and plan.
Ву:	
Title: Pres	eident
Address:	Jackson Development Solutions, LLC 5963 Maroon Mesa Drive Colorado Springs, CO 80918
	cordance the El Paso County Land Development Code, Drainage Criteria Manual and 2, and the Engineering Criteria Manual, as amended.
Jennifer Irv	vine, Acting County Engineer Date
Conditions	County Engineer/ECM Administrator

PRELIMINARY/FINAL DRAINAGE REPORT **JACKSON OFFICE WAREHOUSE STORAGE BUILDINGS DEVELOPMENT** ROCKY MOUNTAIN INDUSTRIAL PARK FILING No. 1A, LOT 2

PROJECT DESCRIPTION

This drainage report is for the development of the Rocky Mountain Industrial Park Filing No. 1A, Lot 2. The currently vacant 2.09 acre site is located north of Constitution Avenue and east of Capital Drive on the north side of Sandy Court at the end of the cul-de-sac. It is further described as a portion of Section 33, Township 13 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado.

All of this lot is located in Sand Creek drainage basin. An existing storm Sewer is located within Sandy Court which empties into an existing riprap lined channel located along the east edge of the property.

SOILS

The soil on the site can be described as having a rapid permeability, medium-surface runoff, and moderate to high hazard of erosion. The soils within the site are Blendon sandy loams. These soils are classified as Hydrologic Group 'B'.

FLOODPLAIN STATEMENT

A small portion of the developed site is located within a designated FEMA 100-year floodplain according to the information published in the Federal Emergency Management Agency Flood Plain Map N. 08041C0756F, dated March 17, 1997, LOMR 04-08-0062P dated November 18, 2004. This area falls within the existing riprap channel.

METHOD OF COMPUTATION

The methodology utilized for this report is in accordance with the City Drainage Criteria Manual, Volumes 1, dated May 2014. The Rational Method for computation of runoff was used for determining Sub-Basin flows.

Q = cia

Where

Q = maximum rate of runoff in cubic feet per second

runoff coefficient representing drainage area characteristics

average rainfall intensity, in inches per hour, for the duration

required for the runoff to become established

drainage basin size in acres

EXISTING DRAINAGE CONDITIONS

channel which is private which is The existing site has been overlot grades and is covered with rang maintained by the property southeasterly direction with most flows directed onto Sandy Cour owner. by an existing 10' sump window inlet. The inlet flows into a 30" Real scorm sewer which empties into the east tributary of Sand Creek. The remainder of the site drains directly into the riprap-lined portion of the east fork of Sand Creek.

No flows enter the site from the east; however, a small portion of the lot from the north enters the site. The off-site sub-basin OS1 only drains the existing landscape area and produces flows of 0.2 cfs for the 5-year storm and 1.1 cfs for the 100-year storm. Sub-basin AEX drains to the western portion of the undeveloped site. It produces flows of 0.8 cfs and 5.7 cfs respectively.

Revise. Per the Kiowa FDR, the riprap lined channel is a collector These flows combine with the flows from OS1 at DP1 to produce flows to Sandy Court of $0.8\,cfs$ for the 5-year storm and $6.3\,cfs$ for the 100-year storm.

The estimated runoff amounts produced for the project under existing conditions are shown in Table 1 below.

TA	BLE 1 – EXISTING CONDITIONS	
Sub-Basin	Q ₅ CFS	Q ₁₀₀ CFS
OS1	0.2	1.1
AEX	0.8	5.7
DP1 (OS1 + AEX)	0.8	6.3

DEVELOPED DRAINAGE CONDITIONS

The development of this site includes the addition of two (2) 5,067 sf office/warehouse buildings in the center of the site and a 3,000 sf vehicle storage building in the northwest corner of the site.

The lower portion of the lot will be paved with asphalt while the upper portion will be covered with gravel. The site will be regraded to direct the flows around the proposed office/warehouse buildings.

Flows from the northern area will be directed to curbs and cross pans in the southern area and directed into a sand filter water quality basin.

As stated in the previous section, a small amount of off-site flow enters the site from a grass-covered berm on the north side of the site. Sub-basin OS1 drains the western part of this berm and produces flows of 0.1 cfs for the 5-year storm and 0.7 cfs for the 100-year storm. These flows drain onto Sub-basin A1.

The western portion of the developed site is designated as Sub-basin A1. This sub-basin will produce flows of 2.5 cfs and 5.2 cfs respectively. These flows combine with the flows from OS1 at DP1 to produce flows of 2.6 cfs for the 5-year storm and 5.7 cfs for the 100-year storm. Flows from DP1 continue to the east and into Sub-basin A2.

Sub-basin OS2 drains the eastern part of this berm and produces flows of 0.1 cfs for the 5-year storm and 0.4 cfs for the 100-year storm. These flows drain onto Sub-basin A2.

The eastern portion of the developed site is designated as Sub-basin A2. This sub-basin will produce flows of 2.1 cfs and 4.2 cfs respectively. These flows combine with the flows from OS2 at DP2 to produce flows of 2.1 cfs for the 5-year storm and 4.6 cfs for the 100-year storm.

Flows from DP2 combine with the flows from DP1 at DP3 to produce total flows into the sand filter basin of 4.7 cfs for the 5-year storm and 10.2 cfs for the 100-year storm.

Sub-basin B drains the eastern swale and the landscape area south of the developed site. This area produces flows of 0.3 cfs and 1.1 cfs respectively. These flows combine with the flows from DP3 at DP4 to produce total site flows of 4.9 cfs for the 5-year storm and 11.2 cfs for the 100-year storm.

Table 2 shows the estimated runoff which will be produced for the project under developed conditions.

TAB	LE 2 -PHASE I DEVELOPED CONDITI	ONS
Sub-Basin	Q ₅ CFS	Q ₁₀₀ CFS
OS1	0.1	0.7
Os2	0.1	0.4
A1	2.5	5.2
A2	2.1	4.2
В	0.3	1.1
DP1 (OS1 + A1)	2.6	5.7
DP2 (OS2 + A2)	Franksia valsa an aita	flood control 6
DP3 (DP1 + DP2)	Explain why on-site detention is not required.	
DP3 (DP3 + B)	determon is not req	.2

WATER QUALITY /

Water quality for the site will be achieved through a 1,190 cf sand filter basin (SFB) with a four-inch slotted underdrain tied into a "Type C" inlet with an 18" HDPE pipe outlet.

State the SFB is owned PRIVATE DR and maintained by the

Item	property owner.	it	Quantity	Unit Cost	Total Cost				
18" HDP	E FES	EA	1	\$400	\$ 400				
18" HDP	E	LF	15	\$40	\$ 600				
Outlet St	ructure	EA	1	\$5,000	\$5,000				
Emergen	ıcy Spillway	EA	1	\$1,500	\$1,500				
				Sub-Total	\$7,500				
			15% Continge	ency & Engineering	\$1,125				
				TOTAL	\$8,625				

DRAINAGE BASIN FEES

The entire project was previously platted and lies within the Sand Creek Drainage Basin; therefore, no fees are due.

CONCLUSION

The proposed development and subsequent lot developments follow the "Four Step Process" as mandated by the EPA as follows:

Step 1: Runoff has been reduced by disconnecting impervious areas where possible, eliminating "unnecessary" impervious areas and encouraging infiltration into suitable soils.

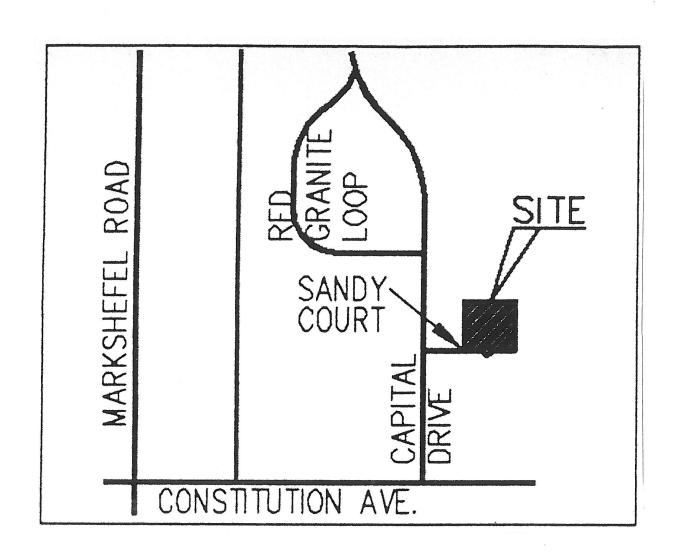
Step 2: All drainageways, ditches and channels have been stabilized by the following methods:

- Tributaries have been left in their relatively natural state where possible.
- New drainageways and swales have been stabilized with either riprap or erosion control fabric depending on the erosion potential.
- No new roadside ditches are proposed for the development.

Step 3: The proposed development will disturb approximately 2.0 acres.

Step 4: The development of this project will not affect sensitive waters.

The development of this site will have little impact on downstream properties once the water quality/detention basin is constructed.

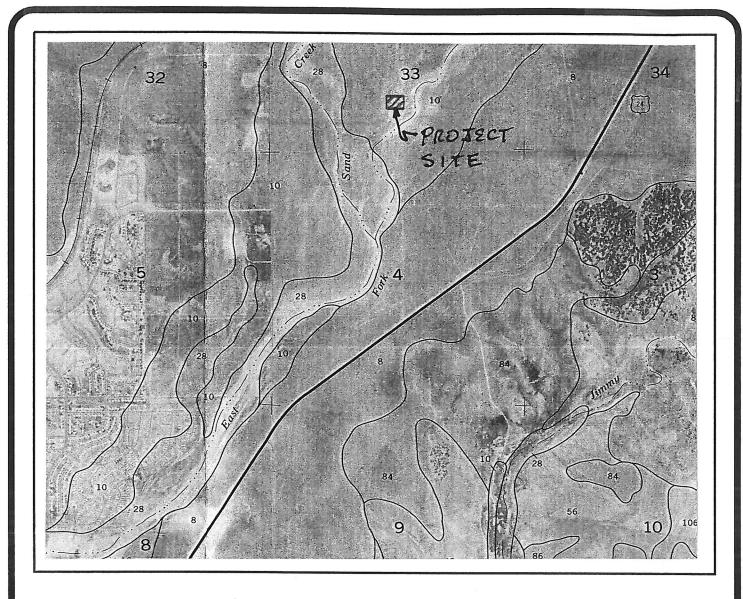

REFERENCES

- 1. City of Colorado Springs and El Paso County (1994). *Drainage Criteria Manual Volume* 1 (DCM).
- 2. City of Colorado Springs and El Paso County (1994). *Drainage Criteria Manual Volume II* (DCM).
- 3. Soil Survey of El Paso County Area, Colorado by USDA, NRCS.
- 4. El Paso County (January 2006) Engineering Criteria Manual.
- 5. Urban Drainage and Flood Control District (June 2011). *Urban Storm Drainage Criteria Manual, Volume 1-3*.
- 6. Rocky Mountain Industrial Park Filing No. 1 Final Drainage Plan by Kiowa Engineering Corporation, dated February 2002.

__ Include the drainage letter from Rocky Mountain Industrial Park Filing 1A

APPENDIX A

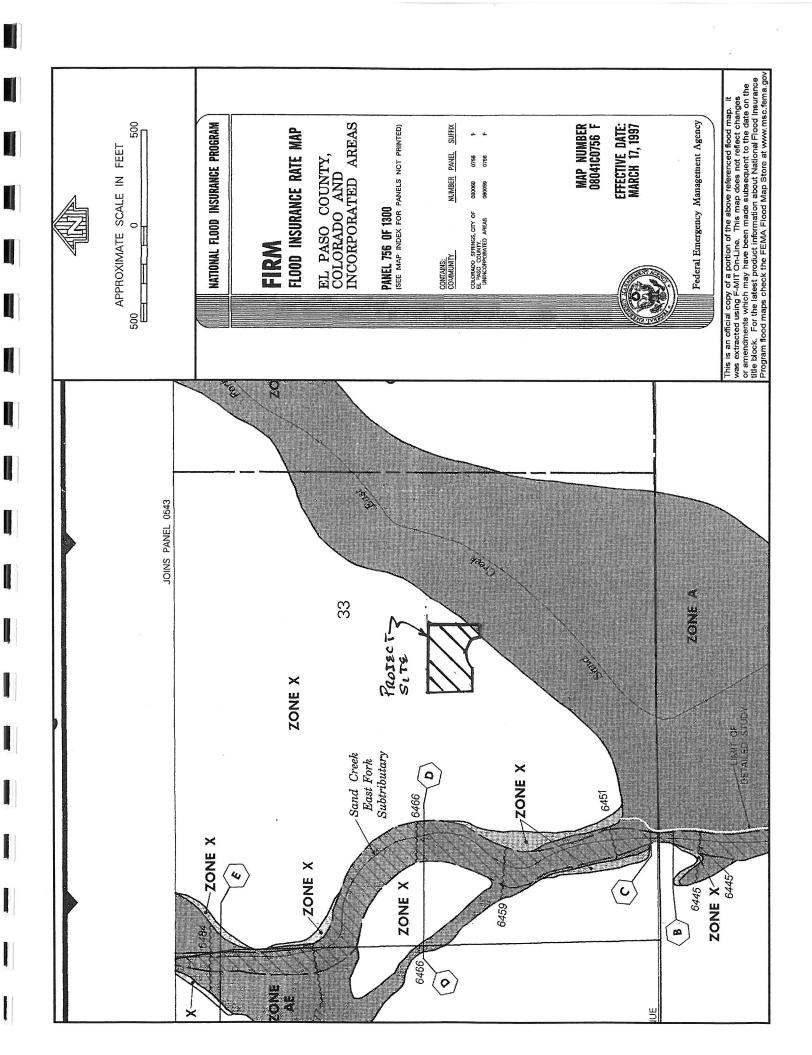
MAPS


VICINITY MAP

National Property lies

A STATE OF THE PARTY OF THE PAR

3520 Austin Bluffs Pkwy, Suite 102 Colorado Springs, CO 80918 (719) 266-5212 fax: (719) 266-5341



SOILS MAP

ADPCIVIL ENGINEERING FOR THE FUTURE

3520 Austin Bluffs Pkwy, Suite 102 Colorado Springs, CO 80918 (719) 266-5212 fax: (719) 266-5341

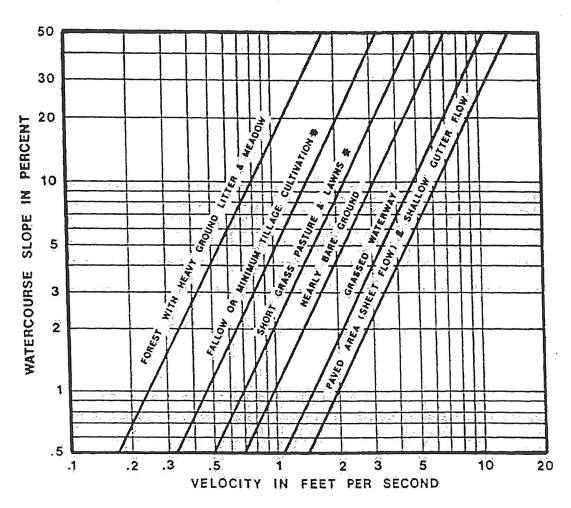
APPENDIX B DESIGN CALCULATIONS

												>	Value is small.	small.							
8140 SANDY CT	L					_ OS1	OS1 overla	nd travel	<u></u>	\parallel		+		+							
PRO:1 #170703						- lengt	nous y	length should only be	- pe			-	1								
DRAINAGE CALCULATION SHEET	CULATION	SHEET				aron	around 50'		-												
file:sandy ct dr																					
09/28/17																					
							Initial To		Ē	ravel Time	0							length	vel.		
AREA	AREA	C5	C100	C5 X A	C100 X A		Slope	t t		Slope	*	Tţ	TC	2	И00	Q5	Q100	_	>	\	AREA
DESIG.	(acre)	(5 yr)	(100 yr)			L (ff)	(%)	(min)	L (ft)	(%)	(tps)	(min) ((min) (ir		(in/hr)	(cts)	(cts)	(teet)	(tbs)	(min)	DESIG.
							F														
EXISTING CONDITIONS	DITIONS					1															
OS1	0.25	0.35	0.58	0.09	0.15	130	2.50	11.82	9	2.50	1.70		11.82	3.77	6.58	0.33	0.95				081
A	0.12		0.65	90.0	0.08	100	2.50	8.43	30	2.50	101/1	0.29	8.72	4.28	7.48	0.25	0.58				A
DP1	0.37	/			0.22								8.72	4.28	7.48	0.63	1.67				DP1
											/										
			,							/											
										//											
DEVELOPED CÓNDITIONS	SONDITIONS:	(0				>			/			_									
0S1	0.25	0.35	0.58	60.0	0.15	130	2.50	11.82	0.	2,50	1.70		11.82	3.77	6.58	0.33	0.95				081
A	0.13	676	0.65	90.0	0.08	100	2.50	8.43	8	2.50	1.70	0.29	8.72	4.28	7.48	0.27	0.63	25	1.50	0.28	٧
DP1	0.38			0.15									8.72	4.28	7.48	0.65	1.72				DP1
B	0.12	0.49	0.65	90.0	0.08	100	2.50	8.43	30	2.50	1.70	0.29	8.72	4.28	7.48	0.25	0.58				В
DP2	0.50			0.21	0.31								9.00	4.23	7.38	0.89	2.27				DP2
				•		Areas	ou op :	Areas do not match the	the .												
	_					drains	drainage map	d													

Update to include OS2 and DP3

	Design Procedure For	m: Sand Filter (SF)	
Designer: Company:	UD-BMP (Version 3.06, Michael A Bartusek Associated Design Professionals	November 2016)	Sheet 1 of 2
Date:	October 4, 2017		
Project: Location:	Jackson Office/Warehouse Storage Buildings Development Rocky Mountain Industrial Park Fil 1A Lot 2		
Location.	Nocky Mountain industrial Fark Fill IA Lot 2		
1. Basin Stor			
A) Effectiv (100%	e Imperviousness of Tributary Area, Ia if all paved and roofed areas upstream of sand filter)	I _a =%	
B) Tributa	ary Area's Imperviousness Ratio (i = I _a /100)	i = <u>0.503</u>	
C) Water WQC	Quality Capture Volume (WQCV) Based on 12-hour Drain Time V= $0.8 * (0.91* i^3 - 1.19 * i^2 + 0.78 * i)$	WQCV = <u>0.17</u> watershed inches	
D) Contrib	outing Watershed Area (including sand filter area)	Area = 91,475 sq ft	
	Quality Capture Volume (WQCV) Design Volume ,= WQCV / 12 * Area	V _{WQCV} = <u>1,263</u> cu ft	
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d _e = <u>0.40</u> in	
	atersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume	V _{wocv other} = <u>1,175</u> cu ft	
	nput of Water Quality Capture Volume (WQCV) Design Volume a different WQCV Design Volume is desired)	V _{WQCV USER} =1,190 cu ft	
2. Basin Geo	metry		
A) WQCV	Depth	D _{wacv} =ft	
B) Sand Fi 4:1 or fl	ilter Side Slopes (Horizontal distance per unit vertical, latter preferred). Use "0" if sand filter has vertical walls.	Z =ft / ft	
C) Minimur	m Filter Area (Flat Surface Area)	A _{Min} =575sq ft	
D) Actual F	Filter Area	A _{Actual} = sq ft	
E) Volume	Provided	V _T = <u>1190</u> cu ft	
3. Filter Mate	rial	Choose One 18" CDOT Class B or C Filter Material Other (Explain):	
4. Underdrain	System	Echago Ora	
A) Are und	erdrains provided?	Choose One YES	
B) Underdr	rain system orifice diameter for 12 hour drain time	ONO	
	i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	y = <u>1.8</u> ft	
	ii) Volume to Drain in 12 Hours	Vol ₁₂ =1,190 cu ft	
	iii) Orifice Diameter, 3/8" Minimum	D _O = <u>13 / 16</u> in	

	Design Procedure F	orm: Sand Filter (SF)	
Designer:	Michael A Bartusek	Sh	eet 2 of 2
Company:	Associated Design Professionals		
Date:	October 4, 2017		
Project:	Jackson Office/Warehouse Storage Buildings Development		
Location:	Rocky Mountain Industrial Park Fil 1A Lot 2		
A) Is an i	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One O YES ● NO	
	ritlet Works ribe the type of energy dissipation at inlet points and means of eying flows in excess of the WQCV through the outlet	Riprap rundowns into basin with riprap emergency spillway. Type C inlet w/18" HDPE pie outlet structure.	
Notes:			


APPENDIX C

DESIGN CHARTS

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

							Runoff Co	efficients					
and Use or Surface haracteristics	Percent Impervious	2-у	ear	5-у	ear	10-1	/ear	25-y	rear	50-1	/ear	100-	уеаг
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0,83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0,65	0.62	0.68
Residential													0.55
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0,65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas	 		+	+	+								
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38		0.45		
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25		0.37				
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25			_		_	
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (wher landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	1 0.44	0.51	. 0.48	0.55	0.51	0.59
Streets	-	_			_								
Paved	100	0.89	0.89	0.90	0.9	0.9	2 0.9	2 0.94	1 0.94	1 0.9	5 0.9	5 0.9	
Gravel	80	0.57	0.60	0.59	0.6	3 0.6	3 0.6	6 0.66	5 0.70	0.6	8 0.7	2 0.7	0 0.7
The Maria Maria													
Drive and Walks	100	0.8	0.8	0.90	0.9								
Roofs	90	0.7	1 0.7	3 0.7	3 0.7								
Lawns	0	0.0	2 0.0	4 0.0	8 0.1	5 0.1	5 0.2	5 0.2	5 0.3	7 0.3	0.4	14 0.3	5 0.5

Figure 6-25. Estimate of Average Concentrated Shallow Flow

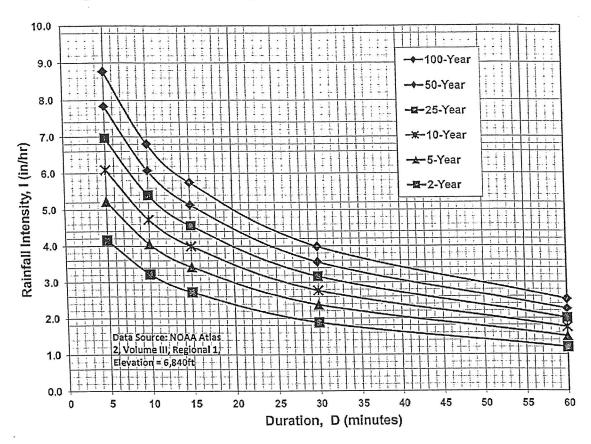
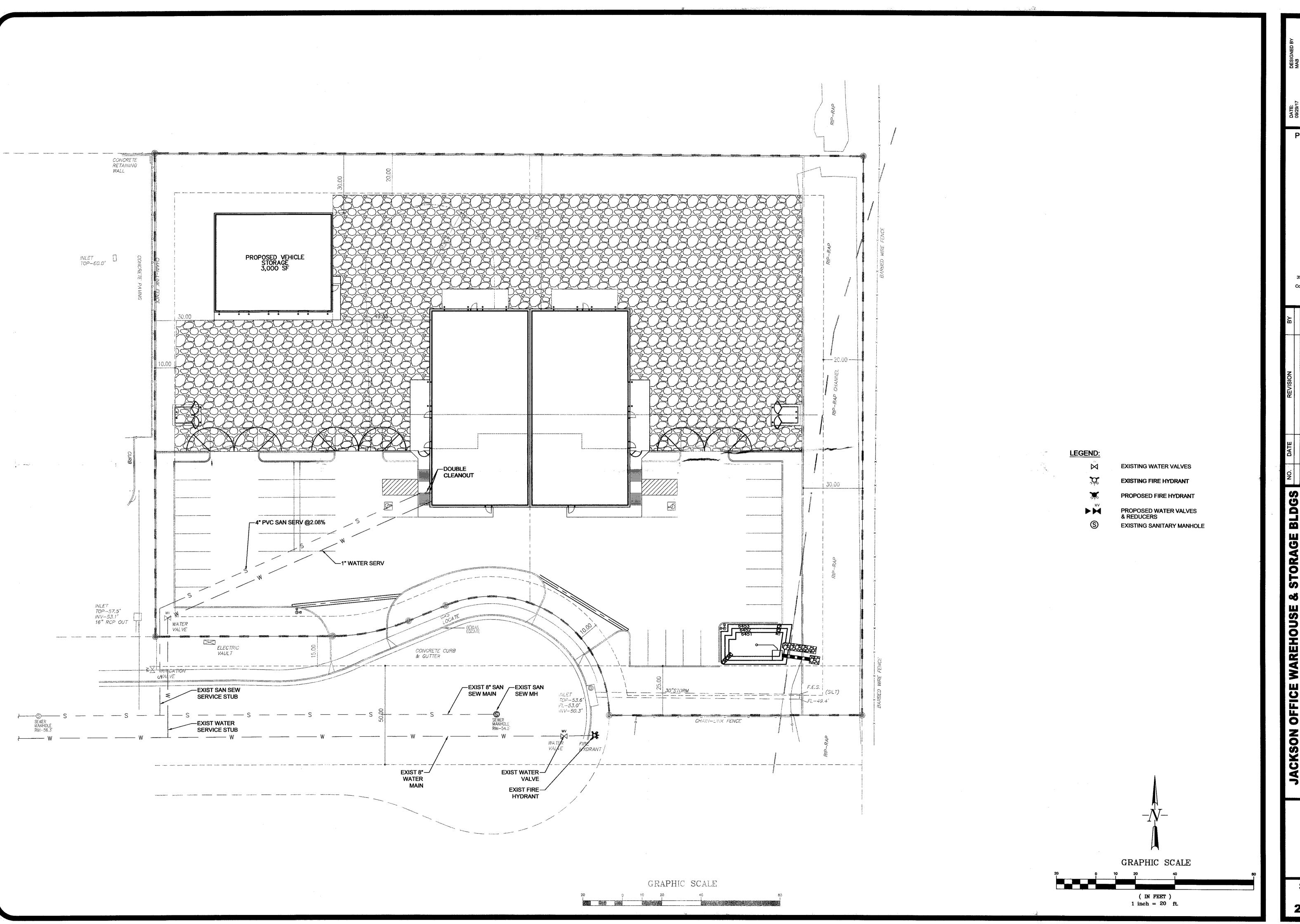


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

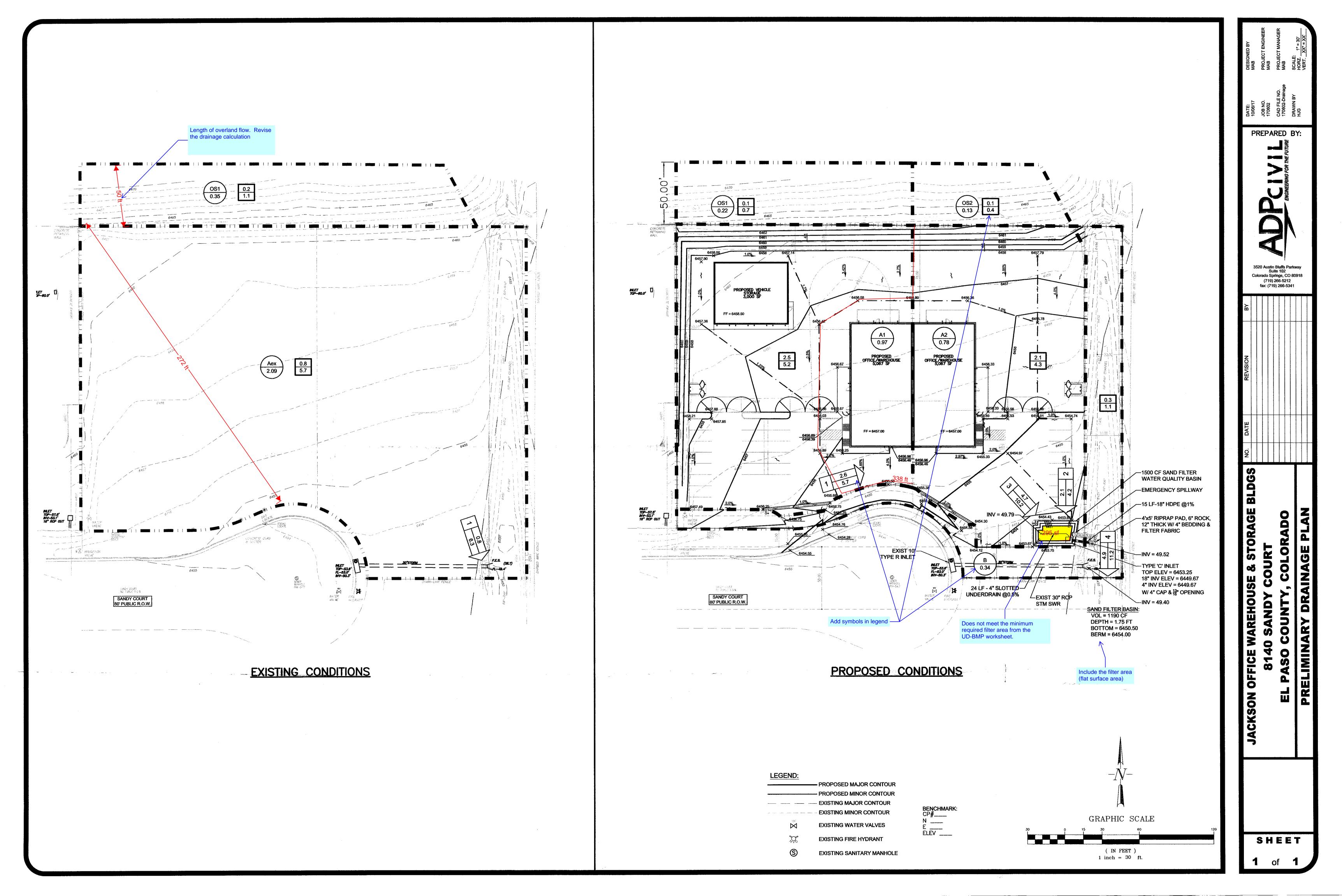
IDF Equations

$$I_{100} = -2.52 \ln(D) + 12.735$$

$$I_{50} = -2.25 \ln(D) + 11.375$$


$$I_{25} = -2.00 \ln(D) + 10.111$$

$$I_{10} = -1.75 \ln(D) + 8.847$$


$$I_5 = -1.50 \ln(D) + 7.583$$

$$I_2 = -1.19 \ln(D) + 6.035$$

Note: Values calculated by equations may not precisely duplicate values read from figure.

PREPARED BY: 3520 Austin Bluffs Parkway Suite 102 Colorado Springs, CO 80918 (719) 266-5212 fax: (719) 266-5341 BLDGS OFFICE WAREHOUSE & STORAGE JACKSON SHEET

Markup Summary

1 (1)

ADP Project No.170602 October 10, 2017 PCD File No. PPR-17-057 Subject: Text Box Page Label: 1 Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce Date: 12/29/2017 8:53:59 AM

Color: Layer: Space:

PCD File No. PPR-17-057

County Engineer/ECM Administrator

2 (2)

conduce the BP Pass County Land Development Code, Drainag
1 and 2, and the Engineering Criteria Manual, as amended.
Priton, Arging County Engineer

Dose

County Engineer

List

Subject: Callout Page Label: 2 Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce

Date: 12/29/2017 8:54:03 AM

Color: Layer: Space:

Subject: Callout

Nort were prepared under my direction are edge and bollef. Said drainage report has d by the Clfy/County for drainage report of the drainage basin. I accept responsibility.

Subject: Callout Page Label: 2 Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce

Date: 12/29/2017 8:54:02 AM

Color: Layer: Space:

Remove City.

3 (1)

and its calls they per second second

Subject: Callout Page Label: 3 Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce

Date: 12/29/2017 8:54:05 AM **Color:** ■

Layer: Space: Revise. Per the Kiowa FDR, the riprap lined channel is a collector channel which is private which is maintained by the property owner.

Subject: Callout Page Label: 6 Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce Date: 12/29/2017 8:54:13 AM

Color: Layer: Space:

Explain why on-site flood control detention is not required.

UPS (UPS + B)

WATER QUALITY
Water quality for the site will be achieved three
inch slotted underdrain teld into a "Two C" inl

State the SFB is owned
PRINATEOR and maintained by the
Item property owner. It
118" HDPE FES
LF
Outlet STructure
EA
Emergency Spillway
EA
Emergency Spillway
EA

Subject: Callout Page Label: 6 Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce

Date: 12/29/2017 8:54:15 AM

Color: Layer: Space:

State the SFB is owned and maintained by the property owner.

7 (1)

Subject: Callout Page Label: 7 Lock: Locked

Status: Checkmark: Unchecked

Author: dsdlaforce **Date:** 12/29/2017 8:54:16 AM

Color: Layer: Space:

Include the drainage letter from Rocky Mountain

Industrial Park Filing 1A

13 (4)

Subject: Callout Page Label: 13 Lock: Locked Status:

Checkmark: Unchecked **Author:** dsdlaforce

Date: 12/29/2017 8:54:21 AM

Color:
Layer:
Space:

Areas do not match the drainage map

Subject: Callout Page Label: 13 Lock: Locked

Checkmark: Unchecked Author: dsdlaforce

Date: 12/29/2017 8:54:17 AM

Color: Layer: Space:

Status:

Update to include OS2 and DP3

Subject: Callout

Page Label: 13 Lock: Locked

Status:

Checkmark: Unchecked Author: dsdlaforce Date: 12/29/2017 8:54:18 AM

Color: Layer: Space:

Value is small.

Subject: Callout Page Label: 13

Lock: Locked

Status:

Checkmark: Unchecked Author: dsdlaforce Date: 12/29/2017 8:54:18 AM

Color: Layer: Space:

OS1 overland travel length should only be around

50'

21 (8)

Subject: Callout Page Label: 21

Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce

Date: 12/29/2017 8:54:29 AM

Color: Layer: Space:

Include the filter area (flat surface area)

® ⊞

Subject: Length Measurement

Page Label: 21 Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce

Date: 12/29/2017 8:54:24 AM

Color: Layer: Space:

272 ft

Subject: Callout Page Label: 21 Lock: Locked

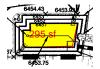
Status:

Checkmark: Unchecked Author: dsdlaforce

Date: 12/29/2017 8:54:26 AM

Color: Layer: Space:

Add symbols in legend


Subject: Callout Page Label: 21

Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce Date: 12/29/2017 8:54:28 AM

Color: Layer: Space:

Does not meet the minimum required filter area from the UD-BMP worksheet.

Subject: Area Measurement

Page Label: 21 Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce

Date: 12/29/2017 8:54:27 AM

Color: Layer: Space:

295 sf

Subject: Perimeter Measurement

Page Label: 21 Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce Date: 12/29/2017 8:54:25 AM

Color: Layer: Space:

338 ft

Subject: Length Measurement

Page Label: 21 Lock: Locked Status:

Checkmark: Unchecked Author: dsdlaforce Date: 12/29/2017 8:54:22 AM

Color: Layer: Space:

50 ft

Subject: Callout Page Label: 21 Lock: Locked

Status:

Checkmark: Unchecked Author: dsdlaforce Date: 12/29/2017 8:54:26 AM

Color: Layer: Space:

Length of overland flow. Revise the drainage

calculation