FINAL DRAINAGE PLAN AND REPORT

16140 OLD DENVER ROAD

PART OF THE NW1/4 SEC. 26, T.11S., R.67W., 6th P.M.

EL PASO COUNTY

February 3, 2017

Revised January 5, 2018

Revised October 23, 2019

Revised February 7, 2020

Revised May 18, 2020

Prepared for

All About Outdoor Storage

PCD File No. PPR-16-037

Oliver E. Watts, Consulting Engineer, Inc. Colorado Springs, Colorado All About Outdoor Storage Drainage Plan and Report

> OLIVER E. WATTS, PE-LS OLIVER E. WATTS, CONSULTING ENGINEER, INC. CIVIL ENGINEERING AND SURVEYING 614 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907 (719) 593-0173 Fax (719) 265-9660 <u>olliewatts@aol.com</u> Celebrating over 40 years in business

May 18, 2020

El Paso County D.O.T. 2880 International Circle Colorado Springs, CO 80910

ATTN: Gilbert LaFarge

SUBJECT: Drainage Plan and Report All About Outdoor Storage PPR-16-037

Transmitted herewith for your review and approval is the drainage plan and report for All About Outdoor Storage at 16140 Old Denver Road in El Paso County. This report will accompany the change in use request for subject development, as requested in you review letter of January 6, 2017. It has been revised in accordance with our meeting with you and Elizabeth Nijkamp April 17, 2017, subsequent additional surveys performed at your request, and your comments of January 5, 2018, January 28, 2020, and Marcy 12, 2020. This plan will reflect the anticipated ultimate development of the entire site.

Please contact me if I may provide any further information.

Oliver E. Watts, Consulting Engineer, Inc.

BY:

Oliver E. Watts, President

Encl:

Drainage Report, 7 pages Computations, 9 pages FEMA Map Panel No. 08041C0286 G SCS Soils Map and Interpretation Sheet Backup Information, 6 sheets Vivid Report, 8 pages Drainage Plan, Dwg 17-4958-03 Erosion Control Details, Dwg 17-4958-05

1. ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Oliver E. Watts, Consulting Engineer, Inc.

Oliver E. Watts Colo. PE-LS No. 9853

2. OWNERS / DEVELOPER'S STATEMENT:

I the owner / developer have read and will comply with all of the requirements specified in this drainage report and plan.

All About Outdoor Storage

By: _______ 16140 Old Denver Road P.O. Box 73 Monument, CO 80132-0073

3. EL PASO COUNTY:

Filed in accordance with the requirements of the El Paso Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E., County Engineer / ECM Administrator date

Conditions:

4. LOCATION AND DESCRIPTION:

All About Outdoor Storage is located at 16140 Old Denver Road adjacent to the Southerly City limits for the Town of Monument in Section 26, T.11S., R.67W. of the 6th P.M. in El Paso County. A change is land use from a landscape rock yard to a RV storage use was requested, and this report is a result of the 1st County review letter of January 6, 2017. The effect of this change in use is analyzed.

The site is located on Teachout Creek, and unstudied drainage basin lying south of Dirty Woman Creek. None of the requirements in the Dirty Woman Creek MDBPS affect this site. This and adjacent sites drain westerly to the Union Pacific Railroad right of way and southerly into the Teachout Creek Creek crossing, which immediately discharges into Monument Creek. The drainage outfall from this site remains on private ground east of the railroad right of way.

The front portion of the total property is leased and used by All About Outdoor Storage, and the rear is used for equipment storage by another owner, as shown on the drainage plan. The existing detention pond near the southwest corner was constructed in 1986; however the County files could not be found. There is no history of drainage problems with the existing construction and it does not appear that the outlet works or spillway have discharged since construction.

5. FLOOD PLAIN STATEMENT:

This subdivision is not within the limits of a flood plain or flood hazard area, according to FEMA map panel number 08041C0286 G, dated December 7, 2018, a copy of which is enclosed for reference.

6. METHOD AND CRITERIA:

The method used for all computations is that specified in the City-County Drainage Criteria Manual, using the rational method for areas of the size of the development. Detention computations are based on UD-Detention work sheets, for existing and full spectrum detention conditions. All computations are enclosed for reference and review. The approach is to use as many of the existing facilities as possible, consistent with the referenced meetings with El Paso County personnel.

The soils in the subdivision have been mapped by the local USDA/SCS office, and a soils map and interpretation sheet are enclosed for reference. All soils in this area are of hydrologic group "**B**" within the affected area.

7. DESCRIPTION OF RUNOFF:

The major change in the development resulting from the proposed change of use is a change in the pavement over the storage site from gravel to a shaved asphalt surface, in order to mitigate dust. The site is totally graded and runoff is westerly to an existing detention pond in the southwest corner adjacent to the D&RG railroad right of way. Existing and proposed runoffs are computed contrasting the two pavement types and the detention pond is analyzed in accordance with its intended use as a full spectrum extended detention basin.

Basin A consists of the total All About Outdoor Storage property and sheet flows to the westerly boundary where the historic runoff of 15.9 cfs / 31.8 cfs (5-year / 100- year runoffs), increases to 22.7 cfs / 49.9 cfs. The historic gravel surface of this site is analyzed to represent total shaved asphaltic pavement, rolled and compacted in place over the entire property, including the entrance roadway. This runoff will sheet flow in the historic manner into the equipment storage portion of the site. No change in grading will be required, nor will drainage structures of any sort be required.

Basis B consists of the majority of the equipment storage portion of the property, and is anticipated to develop in similar manor to Basin A, consisting of a native gravel surface. It now has numerous pieces of

construction equipment in storage but will be configured for vehicle storage similar to that in Basin A. An existing metal building constructed in 1999 will remain in place. The total runoff will sheet flow to the existing detention pond in the southwest corner of the site. The combined historic runoff at the pond site of 19.1 cfs / 41.5 cfs will be increased to 22.4 cfs / 49.6 cfs, based on an anticipated total impervious ratio of 70%. No additional drainage provisions will be required other than normal maintenance of existing facilities.

The existing detention pond was originally constructed in 1986 as a detention basin for peak flow mitigation, along with those of similar structures on the two adjacent northerly lots. No design details are on file. For the required full spectrum pond a water quality capture volume (WQCV) of 0.238 Acre Feet (AF) would be required, along with a 100-year detention of 2.11 AF and other required volumes as shown on the enclosed Stage-storage builder computation sheet. Based on the as-built topography shown on the enclosed drainage plan, the pond extends to a total depth of over four feet to an existing spillway in the northwest corner of the pond. The total storage in the pond to the spillway is 0.155 acre feet, with 0.559 acre feet available to the top of the embankment. There are two 8-inch drains stubbed into the pond, exiting into a 5 foot diameter vertical RCP outlet works, with an 8- inch PVC outlet works, discharging onto the owner's property to the south. As shown on the computation sheet, this vertical outlet works and outfall pipe cannot accommodate the total 100-year runoff. The 8-inch PVC outlet pipe would require replacement by a 27" HDPE to fully contain the 100-year runoff.

The existing pond, however, shows no sign of erosion at the spillway or along the embankment, and there is no sign that the outlet pipe has ever carried runoff. It apparently has functioned adequately since its construction in 1986, giving it a current history of nearly 33 years adequate service. Because of this, an infiltration test was taken by Vivid geotechnical, the results of which are enclosed. The anticipated infiltration values are incorporated into the design sheets.

In order to contain the required WQCV and provide a micro pool, the pond invert is lowered one foot and enlarged to the point that the WQCV level roughly corresponds to below top of the 60" riser. The WQCV is at a depth of 1.48 feet, or elevation 82.33. The pond above this level is further enlarged to contain the 100-year detention and a controlled inlet is constructed by drainage swales into a trickle channel and then into a concrete lined forebay. The 60" RPC outlet is replaced by a CDOT Type C modified inlet. Several of these were installed in the latest I-25 improvement project. The inflow hydrographs were computed and routed through the pond as shown on the enclosed UD-Detention work sheets. The 100 year outflow is reduced to 26.3 cfs at a depth of 3.23 feet above pond bottom, or elevation 82.30. Just above that level, a spillway is provided in the form of a trapezoidal channel with 4:1 slopes to pass the complete 100-year inflow as required, in case the outlet is plugged.

The outfall of the 27" RCP outlet pipe is within a small triangular portion of the boundary of this parcel as shown on the drainage plan. A channel runs southerly from there through a dense willow patch and outside the railroad right of way to the Teachout Creek channel that crosses the railroad into Monument Creek as shown on the enclosed FEMA map. Computations sheets are enclosed showing that the channel is stable through the willow thicket and needs no improvement.

Access ramps are to be provided as shown on the drainage plan to provide County required construction vehicular access to the pond for maintenance.

Basin "C" consists of an area adjacent to the D&RG right of way that was constructed to provide a dike routing the runoff into the pond, and is a range land type cover. The runoff is 0.1cfs /0.5cfs into the right of way

8. FOUR STEP PROCESS

The following process has been followed to minimize adverse impacts of urbanization

A. Employ Reduction Practiced: The scope of the development has been minimized consistent with zoning requirements to present the minimum footprint in providing a commercial development of the type proposed by the owner. The pavements chosen create a minimum of runoff consistent with the requirement amount of protection. The undisturbed portions are to be landscaped to increase the pervious percent.

B. Stabilize Drainageways: The site will be graded to route the runoff over improved installations to provide channel stabilizing in the natural erosive material over the site. Improvements above those shown on the approved plans will be made on an as-needed basis. Discharge from the site will be into a stable channel, being the historic discharge location. An analysis of this channel is included in the computations. There will be no adverse affect on downstream developments as a result of this subdivision

<u>C. Provide Water Quality Capture Volume (WQCV)</u>: The above described EDB is to be provided to provide water quality treatment and a reduced rate of discharge from the development as specified by County regulations. Details are shown on the enclosed ED-Detention work sheets, as summarized above. That portion to be graded at this time is below one acre. The WQCV will be released through the orifice plate figuration in the outlet structure.

D. Consider Need for Industrial and Commercial BMP's: This is a commercial RV storage site, so source control problems will be a minimum. During construction of the detention pond and site improvements, standard site specific state of the art BMP's will be employed to minimize and mitigate erosive problems. Grading and erosion control plans will be submitted for approval as required.

9. COST ESTIMATE:

All items are private.

Item No.	Description	Quantity	Unit Cost	Cost
1	Pond Excavation	1708 CY	\$ 5.00	\$ 8,540.00
2	Pond Embankment	186 CY	10.00	1,860.00
3	CDOT type C modified outlet	LS	10,000.00	10,000.00
4	27" HDPE	38 LF	20	760.00
	Subtotal Construction Cost			\$ 21,160.00
	Engineering	10%		2.116.00
	Total Estimated Cost			\$ 23,276.00

9. FEES:

Fees are not applicable

10. SUMMARY

The "All About Outdoor Storage" site is a 12.090 acre commercial RV storage site. The front (east) 7.002 acre portion is now in use for that purpose, and the rear remainder is vacant storage except for the existing detention pond in the Southwest corner. The proposed drainage facilities will adequately convey, detain and outfall runoff from the site to existing sufficient downstream

All About Outdoor Storage Drainage Plan and Report

facilities. These facilities are designed so that the total site may be used for RV storage without further revision to the drainage plan and facilities. Site runoff and storm drain and appurtenances will not adversely affect the downstream and surrounding developments.

The drainage analysis has been prepared in accordance with the current City of Colorado Springs and El Paso County Drainage Criteria Manuel. Supporting information and calculations are included in this report.

κ.,

.

References

- 1. City/ County Drainage Criteria Manuel, Volumes 1 and 2, May, 2014
- 2. El Paso County Engineering Criteria Manual.

MOVE MAJOR	SUB BASIN	AJ	REA	BA	SIN	Tc I SOIL DEV. C MIN GRP TYPE		Tc MIN		Tc I SOIL DEV. C MIN GRP TYPE C		SOIL DEV. C FLOW		WO	RET	TURN
BASIN		PLANIM READ	ACRES	LENGTH	HEIGHT				GIG				qp	db	TEI	dob
HISTORIC	A	COGO		100	S=2.7%	6.6					1		1		5	100
	1.00.1		S=1.69%	+650	V=2.6	+4.2			11.2.21	1				-		100
	S	80%	6.89	1 62 121	1	10.8	3.9	6.6	В	GRAVEL	0.59	0.70	15.9	31.8	5	100
	В	40%	4.66	+380	V=1.7	+3.6			В	STORE	0.30	0.50			-	
	TOTAL	64%	11.55	4	1	14.4	3.5	5.8	В	MIX	0.473	0.619	19.1	41.5	5	100
	C	1	0.35	300	1.64%	34	2.2	3.7	В	MDW	0.09	0.\36	0.1	0.5	5	100
DEVELOPED	A			100	S=2.7%	4.6	-		B	ACGRAV					-	
		1	S=1.69%	+650	V=2.6	+4.2						1.1.1.1	11 22 21	-		
			6.89	-		8.8	4.3	7.3			0.74	0.83	21.9	41.7	5	100
	В		4.17	+380		+3.6			В	STORE	0.30	0.50				
			0.49		1	11.00			В	POND	0.121	0.39				1
	TOTAL	70%	11.55			12.4	3.5	6.2	В	80%	0.555	0.692	22.4	496	5	100
	1													1		
		1												-		
														1		
			1		1	1		1	1	1	-				10.1	
				1.5.1								-				
														1	1.5	
HYDI ROJ: 16140 OLI ATIONAL MET	ROLOGICA D DENVER HOD	AL COMP ROAD D	UTATION - BY: O.E. V ATE: 1-27-1	- BASIC D VATTS 7 10-23-19	DATA		OL	IVEF	E. W A	TTS, CON	SULTI	NG EN	GINEE	R, INC.	PA	GE 1 OF ~

1.0

STREET AND STORM SEWER CALCULATIONS

STREET	LOCATION	DISTANCE	ELEVATION & SLOPE	TOTAL RUNOFF	STREET FLOW / CAPACITY	PIPE FLOW	TYPE PIPE, CATCH BASIN & SLOPE %
EXIST OUTLET			TOP=82.84	19.1/41.5		49.9	5' DIA RCP VERT, d=0.90'
			WS 84.02 S=0.94%			49.9	8" PVC, CAP = 1.52 REPLACE 30" RCP S=0.97% MIN hi=1.65 WS=84.85
-	1						
					11		
_							
						1	
					-	-	
						-	
						-	
						-	
						-	
_			-				
STDEET AN	ID STODM SE	WED CALCU	LATIONS	OI IVED E 3	VATTE CONSULT		
PROJECT: 1 BY: O.E. WAT	6140 OLD DEI TS	NVER CALCU NVER ROAD DATE: 1-27-	17, 1-5-18	614 ELKT	ON DRIVE COLORADO	SPRINGS,	CO 80907 Pages 7/

5-18-20

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017) Project: All Aboul Ourdoor Blorage, 19140 Did Denver Read, El Pass County, Colorado

(20HE)	ine :	-	_											
Willie aur T mont		T	>	_										
Trail Part	1	Bust			Dects Increment -	0.5	la		_			_		
HERMANNENT COMP	I MO I	chin			Stans - Storage	Stage	Optional	Length	Width	A/93	Optional Override	Area	Volume	Valume
Poor Example Zone	Configurati	on (Relen)	son Pena)		Description	(7)	Stape (n)	(ft)	(4)	(172)	Alea (117)	(acre)	(11*3)	(ac-fl)
Required Volume Calculation					Media Surface		0.00	-			3,341	0.005	1 727	0.040
Selected BMP Type =	SF	-			1		0.50	-	-		4112	0.000	3.661	0.085
Watershed Area -	11,55	acres		1130			1.60				4.522	0.104	5,835	0.134
Watershed Length =	1,130	-					200	-			4,948	0.114	8,199	0,168
Watershed Stope -	48.00%	percent			in the second second	-	2.50		-	-	8,351	0.192	11,580	0.266
Percentage Hydrologic Sol Group A =	0.0%	percent					3.00		-		13,262	0.304	16,991	0.390
Percentage Hydrologic Soll Group B =	100.0%	percent			-		3.50		+		13,942	0.320	23,792	0 548
Percentage Hydrologic Soil Groups C/D =	0.0%	percent				~	400				14,630	0 335	30,937	0.010
Desired WQCV Drain Time =	12.0	hours					A 00	-	-		16.066	0.369	46,285	1.063
Location for 1-M Rainfall Depons =	User input	Jacum level	Orientity	or Churrente		-				-				
Excess Lithan Runolf Volume (EURV) =	0.591	acre-leet	1-hr Precisi	note	-		1225-1	+						-
2-yr Runoff Volume (P1 = 1.19 m) =	0.474	acre-leet	1.19	inches		- H I	1.000	- C+C ((11)	1		-	-
S-yr Runoff Volume (P1 = 1.5 in) =	0.650	acre-leet	1.50	inches		e				- 141		-	-	-
10-yr Runoff Volume (P1 = 1 75 m) =	0.857	acre-leet	1.75	inches	-		-			-	-	-	-	-
25-yr Runoll Volume (P1 + 2 m) +	1.253	acre-feet	2.00	inches	-						1			
50-yr Runolf Volume (P1 = 2.25 m.) =	1.505	acre-test	2.02	inches	-	-					1			
500-w Runoff Volume (P1 + 0 in) +	0.000	acre-feat		inches			1							
Approximate 2-yr Detention Volume =	0.444	acte-feet											-	-
Approximate 5-yr Detention Volume #	0.610	acre-leas				1.1.40.0		- 0•C -	Die C	-	-	-	-	-
Approximate 10-yr Detention Volume =	0.814	acre-feet					1.5	-	144			-	-	-
Approximate 25-yr Detention Volume *	0 694	acro-lees				-	1	-	-				-	-
Approximate 50-yr Detention Volume #	1.049	acreiteet				-				~	12.2			-
Approximate 100-yr Detension volume -	1.049	Jacaster					100000		- H					
Stage-Storage Calculation					1	1.1.2	1.4	3. H.			1.000	-		1000
Zone 1 Volume (WQCV) =	0.155	acre-leet						-	-			-		-
Zone 2 Volume (EURV - Zone 1) =	0.436	acre-leet			100000	-	1.2.5		-	-	-	-	-	-
Zone 3 Volume (100-year - Zones 1 & 2) =	0.458	scre-leet					-			-	-	-	-	-
Total Detention Basin Volume =	1.049	acte-feel			-		-			-	-	-	-	-
Initial Surcharge Volume (ISV) =	N/A	6.0				Cier Ci	1.00		-	-	(Constant)			-
Total Available Detention Depth (Hand) *	User				100000	(H)	1.2.00		1 CH		1.			
Depth of Trickle Channel (Hrc) =	NVA.				2000					-	0.000	-	-	
Slope of Trickle Channel (Sig) =	N/A.	1.11			1	1497.		-			1	-	-	-
Sippes of Main Basin Sides (Same) *	user	H.V				1	-				-	-	-	-
Basin Length-Io-Width Ratio (Ruw) *	LS 87					-	-	-		-	-	-	-	-
100-10 -100-100-10-10-10-10-10-10-10-10-10-10-1	1.00	7						-		-	-	-	1	-
Succession Volume Length (L.,) =	user	10-2			1		1.00	-	~	н.	10000	· · · · · ·		
Surcharge Volume Width (Way) =	user	10			6		128.00		1					
Depth of Basin Floor (Hyuopa) =	User	n					100.1			-16	1	-	-	-
Length of Basin Floor (Leuceal *	user	n,				++	11.0				-	-		-
Width of Basin Floor (Wesoes) =	User	n				**	1.11.4		-		1	-	-	-
Area of Basin Floor (Avices)	user	0.2					10000		-		-	-	-	-
Denth of Main Basin (Hung) =	User	100			-	4		**						
Length of Main Basin (Luna) +	LISHT	n				-	1	+	-	ů.				
With of Main Basin (Wussel -	User	n			2.2.2	-	1000	0.000	1	-	-		-	-
Area of Main Basin (Auun) =	uset	0.2					1.5	144	-		-	-	-	-
Volume of Main Basin (Versa) -	user	173								-		-	-	-
Calculated Total Basin Volume (V) =	user .	acre-lest				-	1		-	-				-
										-		-		-
								+	-					-
					-						-			-
							-		-		-		-	-
						**	-							-
						141			-	-	-			-
							1 T	-						-
								144				-	-	1
						-		-			-		-	
						344	1			-	-			
								-	н				-	-
							1.2	-	- 14					
					-		1.3 - 1			-		-		+
								-					-	-
						944		*		-	-		-	-
														-
					-			·					-	-
									1.00		-		-	-
							1			-	1.000		-	-
						- a-	1.1.1			- 14	Coster	-		-
						-				-				
					-		1.3		· · · ·		-			-
							1				1	-		1
														1

DETENTION BASIN STAGE-STORAGE TABLE BUILDER UD-Detention, Version 3.07 (February 2017)

215

		Dete	ention Basin C	Outlet Struct	ure Design				
			UD-Detention, Ver	rsion 3.07 (Februa	ry 2017)		5.	13.20	0-000
Project: Basin ID:	full Sprctrum Dete	intion Pond	a Deliver Rosa, El Pa	au county, colore			~		
ZONE 2 ZONE 2 ZONE 2		~		Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
UME EURY WOCY			Zone 1 (WQCV)	1.69	0.155	Filtration Media			
ZONE I AND 3	100-YEL	E	Zone 2 (EURV)	3.64	0.436	Orifice Plate			
PERIMIENT ORIFICES POOL Example Zone	Configuration (R	etention Pond)	(ine 3 (100-year)	4.97	1.049	Total			
r Input: Orlfice at Underdrain Outlet (typically u	sed to drain WQCV	In a Filtration BMP)	at a b		Ded	Calculat	ed Parameters for U	Inderdrain	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	4.00	It (distance below th inches	he filtration media sur	tace)	Underdra	in Orifice Centrold =	0.17	feet	
	as Elliptical Clat We	In /bunkcally used to d	rain WOOV and/or FU	IRV in a sedimentat	ion BMP)	Conside	er revisin	g to prov	ide a
Invert of Lowest Orifice =	0.10	ft (relative to basin)	bottom at Stage = 0 ft)	WQO	maximu	m of 3 ro	ows of ori	fice ho
Depth at top of Zone using Orlfice Plate =	2.40	ft (relative to basin I	bottom at Stage = 0 ft)	E	per MH	FD recor	nmendat	ion.
Orifice Plate: Orifice Area per Row =	1.33	sq. inches (diameter	r = 1-5/16 inches)	/	-	Elliptical Slot Area =	N/A	ft ²	
			/						
er Input: Stage and Total Area of Each Orifice	Row (numbered fro	om lowest to highes		David Jackson	David E (antine all	Pour & (aptional)	Row 7 (optional)	Row & (oplignet)	1
Stage of Orifice Centroid (II)	Row 1 (required) 0.10	Row 2 (optional) 0,35	Row 3 (optional) 0.60	0.85	1,10	1.35	1.60	1.85	
Orifice Area (sq. Inches)	1.33	1.33	1,33	1.33	1.33	1,33	1.33	1.33	1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	7
Stage of Orifice Centroid (ff)	2.10								
Office Area (sq. incres)	1.00					Calculates	Desemblars for Va	rtial OrlBen	-
User Input: Vertical Orifice (Circ	Not Selected	Not Selected	1			Calculated	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	ottom at Stage = 0 f	t) V	ertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice = Vertical Orifice Diameter =	N/A.	N/A N/A	inches	ottom at stage = 0 t	t) vertic	al Office Centroid =	N/A	1 146	lieer
User Input: Overflow Weir (Dropbox) and G	rate (Flat or Sloped)				Calculated	Parameters for Ov	erflow Weir	_
Quartinu Wair Front Edge Height Ho =	Zone 3 Weir	Not Selected	ff (relative to basin bot	from at Stage = 0 ft)	Height of Gr	ate Upper Edge, H. =	Zone 3 Weir 2.77	Not Selected	feet
Overflow Weir Front Edge Length =	3,92	N/A	feet	train acourage - o inf	Over Flow	Weir Slope Length =	3.92	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for fla	at grate)	Grate Open Area /	100-yr Orifice Area = n Area w/o Debris =	13.06	N/A N/A	should be≥
Overflow Grate Open Area % =	85%	N/A	%, grate open area/to	otal area	Overflow Grate Op	en Area w/ Debris =	13,06	N/A	h2
Debris Clogging % =	0%	N/A	%						
er input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orlfice, Rest	rictor Plate, or Rectar	ngular Orifice)		c	alculated Parameter	s for Outlet Pipe w	Flow Restriction Pl	ate
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	Ircular Orlfice, Rest Zone 3 Restrictor 2.77	rictor Plate, or Rectar Not Selected N/A	ngular Orifice) ft. (distance below basi	n bottom at Stage = 0	ri)	alculated Parameter Dutlet Orifice Area =	s for Outlet Pipe w, Zone 3 Restrictor	/ Flow Restriction Pl Not Selected	ate
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00	rictor Plate, or Rectar Not Selected N/A N/A	ngular Orlfice) ft (distance below basi inches	n bottom at 5(age = 0	ri) Outi	alculated Parameter Dutlet Orifice Area = et Orifice Centrold =	s for Outlet Pipe w, Zone 3 Restrictor	/ Flow Restriction Pl Not Selected N/A N/A	ft ² feet
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00	rictor Plate, or Rectain Not Selected N/A N/A	ngular Orlfice) ft (distance below basi inches inches	n bottom at Stage = 0 Half-1	ft) Outl	alculated Parameter Dutlet Orifice Area = et Orifice Centrold = Ictor Plate on Pipe =	rs for Outlet Pipe w, Zone 3 Restrictor	/ Flow Restriction Pl Not Selected N/A N/A N/A	ft ² feet radians
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang	Ircular Orlfice, Resi Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal	N/A	ngular Orifice) ft (distance below basi inches inches 2,735	n bottom at Stage = 0 Half-1 VCCVVD S	ft) Outl	alculated Parameter Dutlet Orifice Area = et Orifice Centrold = letor Plate on Pipe = Calcula	s for Outlet Pipe w, Zone 3 Restrictor	/ Flow Restriction Pl Not Selected N/A N/A N/A Spillway	ft ² feet radians
er Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00	rictor Piate, or Rectain Not Selected N/A N/A N/A	ngular Orifice) ft (distance below basil inches inches 2,735) bottom at Stage = 0 ft)	n bottom at Stage=0 Half-1 VCCFVD S	ft) Outl Central Angle of Restr Spillway Stage al	alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard =	s for Outlet Pipe w, Zone 3 Restrictor ted Parameters for 0.30 7.80	/ Flow Restriction Pi Not Selected N/A N/A N/A Spillway feet feet	ft ² feet radíans
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Unvert Stage= Spillway Crest Length = Spillway End Slopes =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00	rictor Plate, or Rectan Not Selected N/A N/A Tet (relative to basin to feet H-V	ngular Orifice) ft (distance below basil inches inches 25, 735) bottom at Stage = 0 ft)	n bottom at Stage = 0 Half-1 VCRY-UDS 1	ft) Outl Central Angle of Restr Spilliway Stage a Basin Area a	alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard =	ted Parameters for 0,30 7,80 0,37	/ Flow Restriction Pl Not Selected N/A N/A N/A Spillway feet feet acres	ate ft ² feet radians
tr input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50	rictor Piate, or Rectai Not Selected N/A N/A The Selected N/A N/A The Selected The Selected The Selected The Selected Selected H:V Feet	ngular Orifice) ft. (distance below basi inches inches 23, 735) bottom at Stage = 0 ft.	n bottom at Stage = 0 Half- VCC7-WS }	ft) Outl Central Angle of Restr Spillway Stage at Basin Area at	alculated Parameter Dutlet Orifice Area = et Orifice Centrold = letor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard =	ted Parameters for 0.30 7.80 0.37	/ Flow Restriction Pi Not Selected N/A N/A N/A Spillway feet feet acres	ft ² feet radians
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway East of Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Patient Patient	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal, 5.00 57.00 4.00 2.50	rictor Piate, or Rectain Not Selected N/A N/A N/A T((relative to basin the feet H:V feet	ngular Orifice) ft (distance below basil inches inches 25, 735) bottom at Stage = 0 ft)	n bottom at Stage = 0 Half- UCC & UD S J	ft) Outl Central Angle of Restr Spillway Stage at Basin Area at	alculated Parameter Dutlet Orifice Area = et Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year	ted Parameters for 0.30 7.80 0.37	/ Flow Restriction PI Not Selected N/A N/A N/A Spillway feet feet acres	ft ² feet radians
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50 WQCV 0.53	rictor Plate, or Rectan Not Selected N/A N/A N/A The fresh fr	ft (distance below basil inches inches 3, 755) bottom at Stage = 0 ft) 2 Year 1.15	n bottom at Stage = 0 Half-1 VCEXUD S S Year 1.50	ft) Outl Central Angle of Restr Stage at Basin Area at 10 Year 1.75	alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00	ted Parameters for 0.30 7.80 0.37 50 Year 2.25	/ Flow Restriction Pi Not Selected N/A N/A N/A Spillway feet feet acres	nt ² fret radians 500 Ye 0.00
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway (next Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50 WQCV 0.53 0.155	rictor Plate, or Rectan Not Selected N/A N/A N/A If (relative to basin I feet H:V Feet EURV 1.07 0.591	ngular Orifice) ft (distance below basil inches inches 2, 735) bottom at Stage = 0 ft) 2 Year 1.19 0.474	n bottom at Stage = 0 Half- VCCY DS) 5 Year 1.50 0.650	ft) Outl Central Angle of Restr Stage a Basin Area al 10 Year 1.75 0.887	alculated Parameter Dutlet Orifice Area = et Orifice Centrold = letor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 1.253	ted Parameters for 0.30 7.80 0.37 50 Year 2.25 1.505	/ Flow Restriction Pi Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52 1.836	ate ft ² feet radians 500 Ye 0.00 0.000
rr Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (neert Stage Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-It) = Inflow Hydrograph Volume (acre-It) = Inflow Hydrograph Volume (acre-It) =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50 WQCV 0.53 0.155 0.154 0.00	rictor Plate, or Rectain Not Selected N/A N/A N/A Tri (relative to basin I feet H:v Teet 1.07 0.591 0.590 0.00	ft (distance below basil inches inches 2, 757) bottom at Stage = 0 ft) 2. Year 1.15 0.474 0.474	n bottom at Stage = 0 Half- JCC + D S) 5 Year 1.50 0.650 0.650 0.02	ft) Outl Central Angle of Restr Stage a Basin Area at 10 Year 1.75 0.887 0.886 0.10	alculated Parameter Dutlet Orifice Centrold = et Orifice Centrold = lctor Plate on Pipe = Calcula Design flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 1.253 1.252 0.63	ted Parameters for 0.30 7.80 0.37 50 Year 2.25 1.505 1.504 0.87	/ Flow Restriction Pl Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 1.836 137	ate fr ² feet radians 500 Ye 0.00 0.000 0.000
rr input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = Ore-Hour Rainfail Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50 2.50 0.53 0.155 0.155 0.154 0.00 0.0	rictor Plate, or Rectain Not Selected N/A N/A N/A Tr (relative to basin I feet H:V feet EURV 1.07 0.591 0.590 0.00 0.0	angular Orifice) ft (distance below basilinches inches inches 2, T3= bottom at Stage = 0 ft) 0.474 0.474 0.1	n bottom at Stage = 0 Half- JCC + U S J 5 Year 1.50 0.650 0.650 0.02 0.2	ft) Outl Central Angle of Restr Spillway Stage at Basin Area at Basin Area at 0.886 0.19 2.2	alculated Parameter Dutlet Orifice Centrold = et Orifice Centrold = letor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 1.253 1.252 0.63 7.2	ted Parameters for 0.30 7.80 0.37 50 Year 2.25 1.505 1.504 0.87 30.0	/ Flow Restriction Pl Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52 1.836 1.835 1.17 13.5	ate fr ² feet radians 0.00 0.000
rr input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway invert Stage Spillway Crest Length = Spillway Crest Length = Calculated Hydrograph Results OPTIONAL Override Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Unitiow Q (cfs) = Peak Outflow Q (cfs) =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50 WQCV 0.53 0.155 0.154 0.00 0.0 0.0 0.2 5.0	EURV 1.07 0.591 EURV 1.07 0.591 0.590 0.00 0.00 0.50 5.0 0.00	angular Orifice) ft (distance below basilinches inches 2, 755 2, 755 bottom at Stage = 0 ft) 2, 744 0,474 0,01 7,5 2,7	n bottom at Stage = 0 Half- UCC + U 9 1 5 Year 1.50 0.650 0.650 0.02 0.2 10.3 6.0	ft) Outl Central Angle of Restr Spillway Stage at Basin Area at Basin Area at 10 Year 1.75 0.887 0.886 0.19 2.2 14.0 10.1	alculated Parameter Dutlet Orifice Centrold = et Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 1.253 1.252 0.63 7.2 19.7 16.3	ted Parameters for 0.30 7.80 0.37 50 Year 2.25 1.505 1.504 0.87 10.0 23.6 21.1	/ Flow Restriction PI Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 1.836 1.835 1.17 13.5 28.8 26.3	ate ft ² feet radians 500 Ye 0.00 0.000 0.00 0.00 0.00 MN/A HN/A
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway (nert Stage= Spillway (nert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-It) = Inflow Hydrograph Volume (acre-It) = Predevelopment Unit Peak (Inov (cfs) = Peak Inflow (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50 0.53 0.155 0.154 0.00 0.0 2.5 0.2 N/A Deter	EURV 1.07 0.590 0.00 0.00 0.4 5.0 0.00 0.0 0.4 5.0 0.0	Augular Orifice) ft (distance below basilinches inches inches 2, 7, 5, 1 bottom at Stage = 0 ft) 1.19 0.474 0.01 7,5 2,7 N/A	n bottom at Stage = 0 Half-1 J.CO.X. D. G 5 Year 1.50 0.650 0.02 0.2 10.3 6.0 2.64 2.64 2.64 2.64	ft) Outl Central Angle of Restr Spillway Stage al Basin Area al Basin Area al 0.75 0.887 0.19 2.2 14.0 10.1 4.7 0.000 log 5	alculated Parameter Dutlet Orifice Area = et Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = 70p of Freeboard = 25 Year 2.00 1.253 1.252 0.63 7.2 1.25 0.63 7.2 1.25 0.63 7.2 1.25 0.63 7.2 1.25 0.63 7.2 1.25 0.63 7.2 1.25 0.63 7.2 1.25 0.63 7.2 1.25 0.63 7.2 1.25 0.63 7.2 1.25 0.5 1.25 1.25 0.5 1.25 1.25 1.25 0.5 1.25 1.	ted Parameters for 0,30 7.80 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.3	/ Flow Restriction PI Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52 1.835 1.835 1.17 1.3.5 2.8.8 2.6.3 1.9 000 Fear	ate ft ² feet radians 500 Ye 0.00 0
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = Calculaided Runoft Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Q(cfs) = Peak Untflow Q (cfs) = Railo Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50 0.53 0.155 0.154 0.00 0.0 2.5 0.2 N/A Plate N/A	EURV 1.07 0.590 0.691 EURV 1.07 0.591 0.591 0.00 0.4 5.0 N/A Overflow Grate 1 -0.04	angular Orifice) ft (distance below basilinches inches inches 2, 7, 5, 1 boottom at Stage = 0 ft; 0.474 0.474 0.1 7,5 2,7 N/A Overflow Grate 1 -0.04	n bottom at Stage = 0 Half-1 JCC JD J S Year 1.50 0.650 0.650 0.02 0.2 10.3 6.0 26.4 Overflow Grate 1 0.0	ft) Outl Central Angle of Restr Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 0.887 0.886 0.19 2.2 14.0 10.1 4.7 Overflow Grate 1 0.0	alculated Parameter Dutlet Orifice Area = et Orifice Centrold = letor Plate on Pipe = Calcula Design flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 1.253 1.252 0.63 7.2 19.7 16.3 2.2 Overflow Grate 1 0.0	ted Parameters for 0.30 7.80 0.37 50 Year 2.25 1.505 1.504 0.87 10.0 23.6 21.1 2.1 Overflow Grate 1 0.0	/ Flow Restriction PI Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52 1.836 1.835 1.17 13.5 28.8 26.3 1.9 Overflow Grate 1 0.0	ste R ² feet radians S00 Ye 0.00 0.000 0.000 MN/A MN/A MN/A MN/A MN/A
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = Oealculaied Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak (cles) = Predevelopment Qeak (cles) = Predevelopment Qeak (cles) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50 WQCV 0.53 0.155 0.154 0.00 0.0 2.5 0.2 N/A Plate N/A N/A N/A N/A	EURV EURV 1.07 0.591 1.07 0.591 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 9.4 5.0 N/A Overflow Grate 1 -0.04 N/A 30	Appendiar Orifice) ft (distance below basilinches inches 2, 7, 7, 7, 1 bottom at Stage = 0 ft 2, 1, 1, 9 0, 474 0, 474 0, 1 7, 5 2, 7 N/A Overflow Grate 1 -0,04 N/A 33	n bottom at Stage = 0 Half-1 J CC J J J J S Year 1.50 0.650 0.650 0.02 0.2 10.3 6.0 26.4 Overflow Grate 1 0.0 N/A N/A 29	ft) Outl Central Angle of Restr Spillway Stage a Basin Area a Basin Area a 0.19 2.2 14.0 10.1 4.7 Overflow Grate 1/ 0.0 N/A 25	alculated Parameter Dutlet Orifice Centrold = et Orifice Centrold = lctor Plate on Pipe = Calcula Design flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 1.253 1.253 1.253 0.63 7.2 19.7 16.3 2.2 Overflow Grate 1 0.0 N/A 20	s for Outlet Pipe w, Zone 3 Restrictor 0.30 7.80 0.37 50 Year 2.25 1.505 1.505 1.504 0.87 10.0 23.6 21.1 2.1 Overflow Grate 1 0.0 N/A 19	/ Flow Restriction PI Not Selected N/A. N/A. N/A. N/A. Spillway feet feet acres 100 Year 2.52 1.836 1.635 1.17 13.5 28.8 26.3 1.9 Overflow Grate 1 0.0 N/A 17	8te fr ² feet radians 500 Ye 0.00 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000
rr input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = Ora-Hour Rainfail Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unil Peak Flow, q (cfs/acre) = Peak Outflow D (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50 WQCV 0.53 0.155 0.155 0.154 0.00 0.0 2.5 0.2 N/A Plate N/A Plate N/A >120 220	ritor Plate, or Rectain Not Selected N/A N/A N/A Tet (relative to basin 1 leet H:V Teet EURV 1.07 0.591 0.00	angular Orifice) ft (distance below basilinches inches inches 2, 7, 7, 7, 1 0, 7, 5 0, 1, 1 0, 1 7, 5 2, 7 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 2 N/A Overflow Grate 1 -0, 04 N/A 33 >120	n bottom at Stage = 0 Half- JCC + U S) 5 Year 1.50 0.650 0.650 0.02 0.2 10.3 6.0 26.4 Overflow Grate 1 0.0 N/A 29 >120	ft) Outl Central Angle of Restr Spillway Stage at Basin Area at Basin Area at 0.886 0.19 2.2 14.0 10.1 4.7 Overflow Grate 1 0.0 N/A 25 40	alculated Parameter Dutlet Orifice Area = et Orifice Centrold = letor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 1.253 1.252 0.63 7.2 19.7 16.3 2.2 Overflow Grate 1 0.0 N/A 20 35	s for Outlet Pipe w, Zone 3 Restrictor 0.30 7.80 0.37 50 Year 2.25 1.505 1.504 0.87 10.0 23.6 21.1 0.87 10.0 23.6 21.1 0.0 87 10.0 23.6 21.1 0.0 87 10.0 23.6 21.1 0.0 87 10.0 23.6 21.1 10.0 23.6 21.1 10.0 23.6 21.1 10.0 23.6 21.1 10.0 23.6 21.1 10.0 23.6 21.1 10.0 23.6 21.1 10.0 23.6 21.1 10.0 23.6 21.1 10.0 23.6 21.1 10.0 23.6 21.1 10.0 23.6 21.1 10.0 23.6 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21	/ Flow Restriction PI Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 1.836 1.835 1.17 13.5 26.3 1.9 Overflow Grate 1 0.0 N/A	8te fr ² feet radians 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Calculated Hydrograph Results Design Storm Return Period = OPTIONAL Override Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Hydrograph Volume (acre-ft) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (ft) = Area at Maximum Ponding Depth (ft) =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50 0.53 0.155 0.155 0.154 0.00 0.0 0.2 N/A Plate N/A Plate N/A N/A >120 -120 0.10	ritor Plate, or Rectain Not Selected N/A N/A N/A Tri (relative to basin l feet H:V feet 1.07 0.591 0.591 0.591 0.590 0.00 0.00 0.0 0.0 0.0 0.0 0.0	Appendiat Orifice) ft (distance below basilinches inches inches 2, 7, 5, 1 bottom at Stage = 0 ft 0,474 0,474 0,11 7,5 2,7 N/A 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 2,7 N/A 33 >120 2,86 0,27	n bottom at Stage = 0 Half- J J S Year 1.50 0.650 0.02 0.2 10.3 6.0 26.4 Overflow Grate 1 0.0 N/A 29 >120 2.93 0.29	ft) Outl Central Angle of Restr Spillway Stage at Basin Area at Basin Area at 0.886 0.19 2.2 14.0 10.1 4.7 Overflow Grate 1 0.0 N/A 25 40 3.01 0.30	alculated Parameter Dutlet Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 1.253 1.252 0.63 7.2 19.7 16.3 2.2 Overflow Grate 1 0.0 N/A 20 35 3.10 0.31	s for Outlet Pipe w, Zone 3 Restrictor 0.30 7.80 0.37 0.37 50 Year 2.25 1.505 1.504 0.87 10.0 23.6 21.1 2.1 Overflow Grate 1 0.0 N/A 19 33 3.17 0.31	/ Flow Restriction PI Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52 1.836 1.835 1.17 13.5 28.8 26.3 1.9 Overflow Grate 1 0.0 N/A 17 3.0 3.23 0.31	8te ft² feet radians 0.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
er input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway (next Stage= Spillway (next Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = Calculated Runoff Volume (acre-It) = Inflow Hydrograph Volume (acre-It) = Predevelopment Volume (acre-It) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Max Velocity through Grate 2 ((ps) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (acres) = Maximum Ponding Depth (acres) =	Ircular Orifice, Rest Zone 3 Restrictor 2.77 27.00 ular or Trapezoidal 5.00 57.00 4.00 2.50 WQCV 0.53 0.155 0.154 0.00 0.0 2.5 0.2 N/A Plate N/A N/A 2120 1.46 0.130 0.30	EURV 1.07 0.591 1.07 0.591 0.00 0.4 5.0 0.00 0.4 5.0 0.00 0.107 0.591 0.00 0.4 5.0 N/A 0.00 0.4 5.0 N/A 0.02 0.03 0.04 N/A 30 >120 2.91 0.28 0.364	t (distance below basil inches inches 2, ₹ 5 2, ↓) bottom at Stage = 0 ft) 2 Year 1.19 0.474 0.01 0.1 0.1 0.1 0.1 0.1 0.75 2.7 N/A 0.04 0.04 0.01 0.1 0.1 0.1 0.1 0.2 0.474 0.01 0.1 0.2 0.474 0.01 0.1 0.2 0.474 0.01 0.1 0.2 0.04 N/A 33 >120 2.86 0.27 0.347	n bottom at Stage = 0 Half- JCC + D 9 1 5 Year 1.50 0.650 0.02 0.2 10.3 6.0 26.4 0verflow Grat 1 0.0 0Verflow Grat 1 0.0 N/A 29 >120 2.93 0.29 0.369	ft) Outl Central Angle of Restr Spillway Stage al Basin Area al Basin Area al 0.885 0.19 2.2 14.0 10.1 4.7 Overflow Grate 1 0.0 N/A 25 40 3.01 0.30 0.390	alculated Parameter Dutlet Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 1.253 1.252 0.63 7.2 0.63 7.2 0.0 0.3 0.3 1.252 0.0 0.3 0.0 0.3 0.31 0.31 0.421	s for Outlet Pipe w, Zone 3 Restrictor 0.30 7.80 0.37 0.37 50 Year 2.25 1.505 1.504 0.87 1.504 0.87 1.504 0.87 1.505 21.1 0.0 23.6 21.1 0.0 1.504 0.87 1.50 3.3 3.17 0.31 0.439	/ Flow Restriction PI Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52 1.835 1.17 1.35 28.8 26.3 1.9 Overflow Grate 1 0.0 N/A 17 30 8.23 0.31 0.461	Ate ft ² feet radians radians 500 Ye 0.0000 0.00000 0.0000 0.00000 0.00000 0.000000 0.00000 0.0000 0.00000 0.00000 0.00000000

meet release time criteria for the WQCV Revise design to release at or below predevelopment Q

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

15	UD-Detention, Version 3.07 (Februa	ry 2017)
----	------------------------------------	----------

	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	#N/A
Time Interval	TIME	WOCV [cfs]	FURV (cfs)	2 Year (cfs)	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cl
Interver	0:00:00	trajer ferij		0.00	0.00	0.00	0.00	0.00	0.00	#N/A
5.23 min	0:00:00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	#11/A
	0:05:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	HM/A
Hydrograph	0:10:28	0,00	0.00	0.00	0.00	0.00	0.00	1.02	1.24	#N/A
Constant	0:15:41	0,11	0.42	0.34	0.46	0.62	0.85	2.79	3.38	#N/A
0.956	0:20:55	0.30	1.12	0.90	2.23	1.9/	5.99	7.15	8.69	#N/A
-	0:26:09	0.77	2.88	6.38	8.69	4.20	16.46	19.67	23.85	#N/A
	0:31:23	2.13	0.37	755	10.32	14.02	19.72	23.64	28.77	#N/A
	0:30:37	2.49	9,57	7.19	9.84	13.39	18.85	22.62	27.54	HN/A
	0:47:04	2.56	8.14	6.55	8.95	12.19	17.17	20.59	25.07	#N/A
	0:52:18	1.90	7.27	5.84	8.00	10.91	15.38	18.46	22.50	#N/A
	0:57:32	1.63	6.27	5.03	6.91	9.43	13.33	16.02	19,55	#N/A
	1:02:46	1.42	5.46	4.39	6.02	8,21	11.59	13.93	16.98	#N/A
	1:07:59	1.29	4.95	3.97	5.46	7.44	10.51	12.63	15.40	#N/A
	1:13:13	1.04	4.08	3.27	4.50	6,16	8.73	10.51	12.83	#N/A
1	1:18:27	0.84	3.33	2.66	3.68	5.05	7.17	8.64	10.58	#N/A
	1:23:41	0.63	2.56	2.04	2.83	3.91	5,58	6.75	8.28	#N/A
	1:28:55	0.46	1.90	1.51	2.11	2.92	4.21	5.11	6.30	#N/A
1	1:34:08	0.34	1.38	1.10	1.53	2.11	3.07	3.74	4.63	#N/A
	1:39:22	0.27	1.07	0.85	1.18	1,63	2.35	2.85	3.52	#N/A
	1:44:36	0.22	0.88	0.70	0.97	1.34	1.92	2.33	2,86	#N/A
1	1:49:50	0.19	0.75	0.60	0.83	1.14	1,63	1.97	2,42	#N/A
	1:55:04	0.17	0.66	0.52	0.73	1.00	1.43	1,72	2.12	#N/A
	2:00:17	0.15	0.59	0.47	0.65	0.90	1.28	1.55	1.90	#N/A
	2:05:31	0.14	0.55	0.44	0.60	0.83	1.18	1.42	1.74	#N/A
	2:10:45	0,10	0.40	0.32	0.44	0.61	0.87	1.05	1.29	#N/A
	2:15:59	0.07	0.29	0.23	0.32	0.44	0.63	0.76	0.94	#N/A
	2:21:13	0.05	0.22	0.17	0.24	0.33	0.47	0.56	0.69	#N/A
	2:26:26	0,04	0.16	0.13	0.17	0.24	0.34	0.42	0.51	#N/A
	2:31:40	0.03	0.11	0.09	0.13	0.17	0.25	0.30	0.37	#N/A
	2:36:54	0.02	0.08	0.06	0.09	0.12	0.18	0.21	0.26	#N/A
	2:42:08	0,01	0.06	0.04	0.06	0.09	0.13	0.15	0.19	#N/A
	2:47:22	0.01	0.04	0.03	0.04	0.06	0.09	0.10	0.13	#N/A
	2:52:35	0.00	0.02	0.02	0.02	0.03	0.05	0.06	0.08	#N/A
	2:57:49	0,00	0,01	0.01	0.01	0.02	0.03	0.03	0.04	#N/A
	3:03:03	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.02	#N/A
	3:08:17	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	MN/A
	3:13:31	0.00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	HN/A
	3:18:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	HN/A
	3:23:58	0.00	0.00	0.00	0,00	0,00	0.00	0.00	0.00	HN/A
1.1	3:29:12	0.00	0,00	0,00	0,00	0.00	0.00	0.00	0.00	HN/A
	3.34.20	0.00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	#11/4
	3:44:53	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	HN/A
	3-50-07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3.55.21	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	HN/A
	4.00.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	EN/A
F	4:05:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:11:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:16:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	IIN/A
1	4:21:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:26:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:31:58	0.00	0.00	0.00	0.00	0,00	0,00	0.00	0.00	#N/A
	4:37:11	0.00	0.00	0.00	0,00	0,00	0,00	0.00	0.00	HN/A
Ļ	4:42:25	0.00	0.00	0.00	0,00	0,00	0.00	0.00	0.00	#N/A
-	4:47:39	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	#N/A
	4:52:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#IN/A
	5:03:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NN/A
t	5:08:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:13:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
E	5:19:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:24:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
-	5:29:29	0.00	0,00	0.00	0.00	0,00	0.00	0.00	0.00	#N/A
ł	5:34:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:45:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:50:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
1	5:55:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	HN/A
1	6:00:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
E	6:06:06	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	#N/A
1	6:11:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	6:16:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NN/A

4958 DEQUINS 10/23/19 DETERTION HISTERIC POID EXISTING ROND STOPAGEC VECT INFILTRYION CES X-SF WSELE -0-0 6781.78 Lorefr -0-2517 0.084 251.2 2203.3 32 0.190 3726.4 OB 5169.6 3977.6 t 0:230 5/208975 5718-1 6266.5 84 9695.7 7271.9 6769.2 16464.9 2-267 35 7895.0 2:312 24360,0 6786 3518.2 TOP INFILTRATION SEE DIVIDREPORT 4/24/19 INF = 98.3 CM /AR = 30.48006 = 1.5846 "/AR = 0.000036682 FT/SEC OUTLES CAPACITY Q= 3.1 L h = 15.71' A = 48.69 h 3/2 82.84 th Tope Con hi = 0.02102 60"RCP 88.7.94 A=0.3491 80.07 8170 1 79.71 DationED 38.13LF BUDK 5=0.94% ROOTCAS Ba POC Dabl Totol Q + July State Q Q WEEd h : J TBR 81.38 0 0.08 0 0 0 0 0.22 82 0-173 0 1.06 D 0 0 0 82.89 83.0 0.16 2.26 10.37 3.62 3,12 1.22 3.31 3.26 12.45 4.35 1-16 2.22 84.0 6083 4.58 2.16 194.6 850 4.26 1429 4.97 5.24 3.22 5.26 15.82 5.52 273.5 3-16 4.22 584 860 CURVENO SOPP187 Brook AtB A= 11.59 AC L= 100+65+380= 11301 H=30' J=て,690% 6.80 ACC 808 +46 100 400 = 1155 × C @ 64%

5 SOUARES 5 SOUARES 5 SOUARES

42-382

National Brand

1/4

Worksheet for Irregular Section - 1

Project Desc	ription	Parente State -	All the second	
Flow Elemen	t:	Irregular Section		
Friction Meth	od:	Manning Formula		
Solve For:		Normal Depth		
Input Data		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Channel Slop	be:	0.02400		ft/ft
Discharge:		26.30		ft³/s
Options				
Current Roug	ghness Weighted Metho	ImprovedLotters		
Open Chann	el Weighted Roughnes:	ImprovedLotters		
Closed Chan	nel Weighted Roughne	Hortons		
Results		And	. The state	
Roughness (Coefficient:	0.100		
Water Surfac	ce Elevation:	78.00		ft
Elevation Ra	nge:	76.69 to 78.82 ft		
Flow Area:		16.37		ft²
Wetted Perin	neter:	28.08		ft
Top Width:		27.92		ft
Normal Dept	h:	1.31		ft
Critical Depth	n:	0.87		ft
Critical Slope	e:	0.19411		ft/ft
Velocity:		1.61		ft/s
Velocity Hea	d:	0.04		ft
Specific Ener	rgy:	1.35	- 1 B	ft
Froude Num	ber:	0.37		
Flow Type:		Subcritical		
Segment Ro	ughness			
Start Station	End Station Roughnes Coefficien	ts		
(-0+22, 78.82)	(0+32, 78.42) 0.100			
Section Geor	netry	1		
Station	Elevation			
-0+22	78.82			
0+08	77.78			

Worksheet for Irregular Section - 1

Station	Elevation
0+22	76.69
0+32	78.42

17-4958 All About Outdoor Storage, 0+56.18 Outril Channel Cross Section for Irregular Section - 1

Project Description		
Flow Element:	Irregular Section	
Friction Method:	Manning Formula	
Solve For:	Normal Depth	
Section Data		
Roughness Coefficient:	0.100	
Channel Slope:	0.02400	ft/ft
Normal Depth:	1.31	ft
Elevation Range:	76.69 to 78.82 ft	
Discharge:	26.30	ft³/s

National Flood Hazard Layer FIRMette

Legend

EL PASO COUNTY AREA, COLORADO

209

1

TABLE 16.--SOIL AND WATER FEATURES--Continued

	1	1	Flooding		l Bed	rock	1
Soil name and map symbol	Hydro- logic group	Frequency	Duration	Months	Depth	 Hardness 	Potential frost action
	1		1	1	In	1	
Manvel: 50	с	None			>60		High.
Manzanola: 51, 52, 53	C	None to rare			>60		Moderate.
Midway: 54	D	None			10-20	Rippable	Moderate.
Nederland: 55	В	None			>60		Moderate.
Nelson:					1		i
¹ 56: Nelson part	В	None			20-40	Rippable	Low.
Tassel part	D٠	None		,	10-20	Rippable	Low.
Neville: 57	В	None			>60		High.
¹ 58: Neville part	В	None			>60		High.
Rednun part	С	None			>60		Moderate.
Nunn: 59	С	None			>60		Moderate.
Olney: 60, 61	В	None			>60		Moderate.
¹ 62: Olney part	В	None			>60		Moderate.
Vona part	В	None			>60		Moderate.
Poursougurt					l		
¹ 63: Paunsaugunt part	D	None			10-20	Hard	Moderate.
Rock outerop part	D						
Penrose: ¹ 64:	<i></i>						
Penrose part	D	None			10-20	Rippable	Low.
Manvel part	С	None			>60		High.
Perrypark: 65	В	None			>60		Moderate.
Peyton: 66, 67	В	None			>60		Moderate.
168, 169: Peyton part	В	None			>60		Moderate.
Pring part	В	None			>60		Moderate.
Pits, gravel: 70	A						
Pring: 71, 72	(\mathbb{B})	None			>60		Moderate.
Razor: 73, 74	c	None			20-40	Rippable	Moderate.

See footnote at end of table.

Land Use or Surface	Percent						Runoff C	no fillatara						
Characteristics	Impervious	2.1	Voor	-		T	Ranon C	I	5					
				5-1	year	10-	year	25	year	50-	year	100)-year	
Business		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSGARE	HSG CRD	1150 100	1	
Commercial Areas	95	0.70	0.00						1		1Dd CaD	HSG A&B	HSG C8	
Neighborhood Areas	70	0.75	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.00	0.00	
		0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.60	0.89	
Residential											0.05	0.02	0.68	
1/8 Acre or less	65	0.41	0.45	0.45										
1/4 Acre	40	0.73	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.67	0.50	0.00	
1/3 Acre	30	0.19	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.55	0.65	
1/2 Acre	25	0.15	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.57	0.30	0.58	
1 Acre	20	0.13	0.20	0,22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.47	0.57	
		0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.51	0.46	0.56	
Industrial										0.10	0.50	0.44	0.55	
Light Areas	80	0.57	0.50											
Heavy Areas	90	0.37	0.60	0.59	0.63 🦯	0.63	0.66	0.66	0.70	0.69	0.72			
		0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.00	0.72	0.70	0.74	
Parks and Cemeteries	7	0.05							0.00	0.80	0.82	0.81	0.83	
Playgrounds	13	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.24	0.45			
Railroad Yard Areas	40	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.34	0.46	0,39	0.52	
		0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.37	0.48	0.41	0.54	
Undeveloped Areas										0.40	0.54	0.50	0.58	
Historic Flow Analysis														
Greenbelts, Agriculture	2	0.02			1									
Pasture/Meadow	0	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45			
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.45	0.36	0.51	
Exposed Rock	100	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50	
Offsite Flow Analysis (when	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.00	0.44	0.35	0.50	
landuse is undefined)	45								0.54	0.33	0.95	0.96	0.96	
		0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.40				
treets									0.01	0.48	0.55	0.51	0.59	
Paved	100	0.00												
Gravel	80	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.05	0.07			
		0.57	0.60	0.59	0.63 j	0.63	0.66	0.66	0.70	0.95	0.95	0.96	0.96	
ive and Walks	100	0.00								0.08	0.72	0.70	0.74	
pofs	90	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.05	0.05			
wns	0	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.95	0.95	0.96	0.96	
		0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.82	0.81	0.83	

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration consists of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

(Eq. 6-7)

$$t_c = t_i + t_i$$

Where:

 $t_c = \text{time of concentration (min)}$

 t_i = overland (initial) flow time (min)

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min)

- C_5 = runoff coefficient for 5-year frequency (see Table 6-6)
- L = length of overland flow (300 ft <u>maximum</u> for non-urban land uses, 100 ft <u>maximum</u> for

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 **Travel Time**

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{r_2} which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_i , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_v S_w^{0.5}$$

Where:

V = velocity (ft/s)

 $C_{\nu} =$ conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

(Eq. 6-9)

C_{ν}
2.5
5
6.5
7
10 /
15
20

Table 6-7. Conveyance (Coefficient. C.
-------------------------	-----------------

For buried riprap, select C_v value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_i) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

0.463	-8/3 2
Q= <u>n</u>	- D 5
5 cm	

ſ

Q=KS¹2

TAMETED	ADEA	D 8/3		K		
- TN -	-FT2-	- FT -	N=0.010	N=0.013	N=0.024	N=0.02
1						
	0 02102	0 008413	0.3895			
4	0.02102	0.053420	2.4733	in the second		
4	0.08/2/	0.157500	7.2922	5.609		
0	0.19030	0.339200	15,7050	12.081		
8	0.54910	0.615000	28,4745	21.903	100 meret 100	
10	0.34340	1 000000	46.3000	35.615		
12	1 22720	1 813100	83.9465	64.574	COLUMN TO A	
15	1.22720	2 948300	136.5100	105.000	56.88	52.
18	2 10530	4 447400	205,9100	158.400	85.80	79.3
- 21	3 14160	6.349600	293.9900	226.140	122.49	113.0
24	3.14100	8 692700	402.4700	309.590	167.70	154.
27	1 00870	11,512600	533.0300	410.030	222.10	205.
30	5 03060	14 844100		528.680		
33	7 06860	18 720800	866.7700	666.700	361.20	333.
30	2 20580	23 175100		825.400		
39	0.29300	28 238900		1005.000	544.80	502.
42	12 56640	40 317500		1436.000	777.80	718.
40	15 00430	55 195000		1966.000	1065.00	983.
54	10 63500	73 100400		2604.000	1410.00	1302.
66	23 75830	94.254200		3357.000	1818.00	1678.
72	28 27430	118 869400		4234.000	2293.00	2117.
70	33 19310	147 152900		5241.000	2839.00	2620.
91	38 18150	179.306000		6386.000	3459.00	3193.
04	44 17860	215.524500	I DE ERE	7676.000	4158.00	3838.
06	50 26550	256.000000		9118.000	4939.00	4559.
108	63 61730	350,466600	1.1.1.1.444	12480.000	6761.00	6140.
120	78.53980	464.158900	N	16530.000	8954.00	8265.
120	10.0000					
	1					- 11 - C
£			1	+		- 1

Oliver E. Watts Consulting Engin Colorado Spring:

VIVID Engineering Group, Inc.

1053 Elkton Drive, Colorado Springs, CO 80907

April 24, 2019

Kelly McKoon All About Outdoor Storage 16140 Old Denver Road, Monument, CO 80132 <u>info@allaboutoutdoorstorage.com</u> <u>levivankekerix@gmail.com</u>

CC: Oliver E. Watts Oliver E. Watts Consulting Engineer, Inc. 614 Elkton Drive, Colorado Springs, CO 80907 <u>olliewatts@aol.com</u>

 Subject: Double-Ring Infiltration Test Results
 Project: Proposed Detention Pond Facility, All About Outdoor Storage, 16140 Old Denver Road, Monument, Colorado
 Project No: D19-2-189

Dear Kelly:

Vivid Engineering Group, Inc. (VIVID) has performed a double-ring infiltration test in general accordance with ASTM D3385 for the proposed detention pond facility located at 16140 Old Denver Road, Monument, Colorado.

Our services consisted of performing a double-ring infiltration test within the existing detention pond area that is planned for expansion. This effort also included advancing a geotechnical boring to check for lateral drainage during the infiltration test, and obtaining a subgrade sample for soil gradation analysis testing. This letter transmits our results.

FIELD INVESTIGATION

On April 9, 2019, a test pit was excavated within the existing detention pond area by All About Outdoor Storage personnel to a depth of approximately 1.5 feet below the ground surface. This is the approximate depth of the bottom of the proposed detention pond. The double-ring infiltration test was performed on April 9, 2019 within the excavated test location. Photographs depicting the test pit area are presented in Appendix C to letter.

At the completion of the double-ring infiltration test, a boring (boring B-1) was performed within the test pit for the purpose of checking for lateral drainage that may have occurred during the test. The boring was advanced to a depth of approximately 5.5 feet below the existing ground surface using a 3-inch diameter hand auger. A bulk sample was taken of the cuttings from the boring.

Appendix A to this letter includes a boring log describing the subsurface conditions encountered in the profile boring.

SUBGRADE CONDITIONS

From the ground surface down, the general subsurface profile encountered in the boring consisted of olive-yellow poorly graded sand. Neither bedrock nor groundwater were encountered in the profile boring. The boring log in Appendix A should be reviewed for a more detailed description of the subsurface conditions encountered.

LABORATORY TESTING

A sample of the subgrade materials were taken from the profile boring. Geotechnical laboratory testing was conducted and included soil gradation. The poorly graded sand materials were judged to be non-plastic and have only 4 percent fines (percent passing the No. 200 sieve). This type of clean sand material generally exhibits high permeability. Results of the geotechnical laboratory testing are presented in Appendix B.

DOUBLE-RING INFILTRATION TESTING

The average infiltration rate obtained at the test location was approximately **48.3 cm/hour**. Water was not observed moving laterally around the test location, based on the hand excavation of a shallow bore hole adjacent the double-ring infiltrometer test location.

The double-ring infiltration test results are indicative of the granular (sand) soil encountered on the site.

LIMITATIONS

This work was performed in a manner consistent with that level of care and skill ordinarily exercised by other members of VIVID's profession practicing in the same locality, under similar conditions and at the date the services are provided. Our conclusions and opinions are based on a limited number of observations and data. Data or conclusions presented herein apply to the specific test pit and test locations only. It is likely that subsurface conditions will vary somewhat beyond the locations investigated. VIVID makes no other representation, guarantee, or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

CLOSING

We appreciate this opportunity to serve you, and we look forward to working with you again. Should you have any questions concerning this report, please contact Bill Barreire at 719.491.2292 or <u>wbarreire@vivideg.com</u>, or Benjamin Moore at 720.461.3692 or <u>bmoore@vivideg.com</u>.

William (Bill) J. Barreire, PE Senior Geotechnical Engineer

Ben Moore

Benjamin Moore, EIT Staff Engineer

ATTACHMENTS:

FIGURE 1 – VICINITY MAP FIGURE 2 – EXPLORATION LOCATION PLAN

APPENDIX A – LOG OF EXPLORATORY BORING APPENDIX B – LABORATORY TEST RESULTS APPENDIX C – SITE PHOTOS APPENDIX D – IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL ENGINEERING REPORT Figures

Not to Scale. Base image obtained from Google Earth Pro on June 9, 2017.

	Proje
VIVID Engineering Group, Inc. 1053 Elkton Drive	Date
Colorado Springs, Colorado 80907	Draw
719.896.4356	Revie

ect No: D19-2-189		
e: April 23, 2019	EXPLORATION LOCATION PLAN	
wn by: BM	Proposed Detention Pond Facility	
ewed by: WJB	All About Outdoor Storage Monument, Colorado	

LEGEND = APPROXIMATE LOCATION OF DOUBLE-RING INFILTRATION TEST AND EXPLORATORY PROFILE BORING

Figure
2

Appendix A

Logs of Exploratory Borings

Engin		VIVID Engineeri 1053 Elkton Driv Colorado Spring Telephone: 719 Fax: 719-896-4	ng Group, In /e s, Colorado 8 -896-4356 357	c. 30907	BORING NUMBER B-1 PAGE 1 OF 1
CLIEN	IT All Ab	out Outdoor Storag	ge		PROJECT NAME Proposed Detention Pond Facility
PROJE	ECT NUM	IBER			PROJECT LOCATION Monument, CO
DATE	STARTE	D _4/9/19	СОМ	PLETED _4/9/19	GROUND ELEVATION HOLE SIZE _3 inches
DRILL	ING CON) Engineering	g Group (Hand Auger)	GROUND WATER LEVELS:
DRILL	ING MET	HOD 3" Hand Au	ger		AT TIME OF DRILLING
LOGG	ED BY	Ben Moore	CHE	CKED BY W. Barreire	AT END OF DRILLING
NOTE	s –				AFTER DRILLING
	-				
o DEPTH o (ft)	SAMPLE TYPE NUMBER	TESTS	GRAPHIC LOG		MATERIAL DESCRIPTION
, <u>0.0</u>				Poorly Graded SAND, c	live-yellow, moist
<u>-</u>					
			-		
25					
2.0					
5					
	₩ GB	Fines = 4.0%			
5					
5.0					
			5.5		
					Bottom of borehole at 5.5 feet.
-					
2					
1					
1					

Appendix B

Geotechnical Laboratory Test Results

Appendix C

Site Photos

TEST LOCATION

TEST LOCATION WITH INFILTROMETER

Project No: D19-2-189	SITE PHOTOS	Figure
Date: April 23, 2019		
Drawn by: BM	Proposed Detention Pond Facility	C-1
Reviewed by:WJB	Monument, Colorado	

INFILTROMETER AND PROFILE BORE HOLE

Project No: D19-2-189	SITE PHOTOS	Figure
Date: April 23, 2019	51121110100	
Drawn by: BM	Proposed Detention Pond Facility	C-2
Reviewed by:WJB	Monument, Colorado	

Appendix D

Important Information About This Geotechnical Engineering Report

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you – assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. Active involvement in the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client. *Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled.* No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. *And no one – not even you – should apply this report for any purpose or project except the one originally contemplated.*

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full*.

You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.*

This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be*, and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, *they are not final*, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmationdependent recommendations if you fail to retain that engineer to perform construction observation*.

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note conspicuously that you've included the material for informational purposes only*. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, *only* from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnicalengineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, *do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.*

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration*. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. *Geotechnical engineers are not buildingenvelope or mold specialists*.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent

