			Existing		Calculated		Used			
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area $\left(\mathrm{ft}^{\wedge} 2\right)$	Comment
1	18.30	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
2	18.30	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
3	16.00	CIRCULAR	18.00 in	1.77						

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 6581.00

| | Invert Elev. | | Downstream Manhole
 Losses | | HGL | | EGL | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element
 Name | Downstream
 (ft) | Upstream
 (ft) | Bend
 Loss
 (ft) | Lateral
 Loss
 (ft) | Downstream
 (ft) | Upstream
 (ft) | Downstream
 (ft) | Friction
 Loss
 (ft) | Upstream
 (ft) |
| | 6579.00 | 6581.24 | 0.00 | 0.00 | 6581.00 | 6582.78 | 6581.53 | 2.02 | 6583.55 |
| 2 | 6581.24 | 6586.00 | 0.20 | 0.00 | 6582.98 | 6587.54 | 6586.97 | 1.34 | 6588.31 |
| 3 | 6587.71 | 6588.91 | 0.06 | 0.00 | 6588.85 | 6590.33 | 6590.77 | 0.89 | 6591.66 |

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer \#0, is not considered a sewer.
- Bend loss $=$ Bend $K * V _f i \wedge 2 /(2 * g)$
- Lateral loss $=\mathrm{V}$ fo ${ }^{\wedge} 2 /(2 * \mathrm{~g})$ - Junction Loss K * V_fi ${ }^{\wedge} 2 /(2 * \mathrm{~g})$.
- Friction loss is always Upstream EGL - Downstream EGL.

Excavation Estimate:

The trench side slope is $1.0 \mathrm{ft} / \mathrm{ft}$
The minimum trench width is 2.00 ft

See CD comments also

					Downstream			Upstream				
Element Name	Length (ft)	$\begin{array}{\|l} \text { Wall } \\ \text { (in) } \end{array}$	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
1	22.76	3.00	4.00	5.50	0.00	0.00	0.00	6.52	4.34	1.51	10.18	Sewer Too Shallow
2	48.50	3.00	4.00	5.50	6.52	4.34	1.51	12.24	7.20	4.37	67.47	Sewer Too Shallow
3	38.26	2.50	4.00	4.92	9.32	5.45	3.20	6.78	4.18	1.93	37.61	Sewer Too Shallow

Total earth volume for sewer trenches $=115$ cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)

Project: Windermere Filing No. 1
\square
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WOCV and/or EURV in a sedimentation BMP)

Inpu	liptica	Weir (typically used to drain WQCV and/or E	,	ted P	边
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row $=$	N/A	ft^{2}
Depth at top of Zone using Orifice Plate $=$	4.26	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width $=$	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	17.00	inches	Elliptical Slot Centroid $=$	N/A	eet
Orifice Plate: Orifice Area per Row $=$	N/A	inches	Elliptical Slot Area $=$	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.42	2.84					
Orifice Area (sq. inches)	11.00	11.00	11.00					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Calculated Parameters for Vertical Orifice			
	Not Selected	Not Selected		Vertical Orifice Area $=$ Vertical Orifice Centroid =	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A	eet
Vertical Orifice Diameter $=$	N/A	N/A					

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectanqular/Trapezoidal Weir (and No Outlet Pipe)					Calculated Parameters for Overflow Weir		
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir	Not Selected			Zone 3 Weir	Not Selected	feet feet
	4.30	N/A			4.30	N/A	
	6.75	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) feet		6.75	N/A	
Overflow Weir Grate Slope =	0.00	N/A	H:V Gr	Open Area / 100-yr Orifice Area	4.51	N/A	
Horiz. Length of Weir Sides =	6.75	N/A	feet Ov	ow Grate Open Area w/o Debris =	31.89	N/A	ft^{2}
Overflow Grate Open Area \% =	70\%	N/A	\%, grate open area/total area	ow Grate Open Area w/ Debris =	15.95	N/A	ft^{2}
Debris Clogging \% =	50\%	N/A	\%				

Zone 3 Circular	Not Selected
7.07	$\mathrm{~N} / \mathrm{A}$
1.50	f / A
f / A	N / A
ry	

Half-Central Angle of Restrictor Plate on Pipe $=$

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.92	feet
Stage at Top of Freeboard =	7.92	feet
Basin Area at Top of Freeboard =	5.10	acres
Basin Volume at Top of Freeboard $=$	21.63	acre-ft

Routed Hydrograph Resul	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft) =	2.016	5.899	4.497	6.048	7.280	9.553	11.773	14.673	24.739
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	4.497	6.048	7.280	9.553	11.773	14.673	24.739
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.8	1.5	2.2	19.7	39.5	65.5	155.5
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.02	0.15	0.30	0.49	1.17
Peak Inflow Q (cfs) $=$	N/A	N/A	49.7	67.5	81.3	119.9	153.1	194.1	328.3
Peak Outflow Q (cfs) $=$	1.0	1.8	1.6	1.8	7.1	24.1	40.8	66.0	142.3
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	1.2	3.3	1.2	1.0	1.0	0.9
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Qvegflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	10.2	0.7	1.2	2.0	2.3
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	38	66	59	68	71	69	67	65	58
Time to Drain 99\% of Inflow Volume (hours) =	40	71	63	73	76	76	75	74	71
Maximum Ponding Depth (ft) $=$	2.59	4.26	3.63	4.18	4.50	4.82	5.06	5.36	6.46
Area at Maximum Ponding Depth (acres) $=$	1.71	2.94	2.47	2.88	3.10	3.38	3.59	3.84	4.77
Maximum Volume Stored (acre-ft) $=$	2.027	5.908	4.179	5.675	6.602	7.673	8.510	9.625	14.322

