PRELIMINARY & FINAL DRAINAGE PLAN

PONDEROSA AT LORSON RANCH FILING NO 3 EL PASO COUNTY, COLORADO

NOVEMBER, 2019 REV. JANUARY 15, 2020 REV. APRIL 8, 2020

Prepared for:

Lorson, LLC 212 N. Wahsatch Ave, Suite 301 Colorado Springs, Colorado 80903 (719) 635-3200

Prepared by:

Core Engineering Group, LLC 15004 1ST Avenue South Burnsville, MN 55306 (719) 570-1100

Add SF2016

TABLE OF CONTENTS

ENGINEER'S STATEMENT
OWNER'S STATEMENT
FLOODPLAIN STATEMENT
1.0 LOCATION and DESCRIPTION
2.0 DRAINAGE CRITERIA
3.0 EXISTING HYDROLOGICAL CONDITIONS
4.0 DEVELOPED HYDROLOGICAL CONDITIONS
5.0 HYDRAULIC SUMMARY
6.0 DETENTION and WATER QUALITY PONDS 11
7.0 FOUR STEP PROCESS
8.0 DRAINAGE and BRIDGE FEES 12
9.0 CONCLUSIONS
10.0 REFERENCES

APPENDIX A

VICINITY MAP SCS SOILS INFORMATION FEMA FIRM MAP

APPENDIX B

HYDROLOGY CALCULATIONS

APPENDIX C

HYDRAULIC CALCULATIONS

APPENDIX D

STORM SEWER SCHEMATIC and HYDRAFLOW STORM SEWER CALCS

APPENDIX E

POND CALCULATIONS

BACK POCKET

EXISTING CONDITIONS DRAINAGE MAP DEVELOPED CONDITIONS DRAINAGE MAP POND A3 OUTLET STRUCTURE

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in prepared the report.

	And in the second of the second	F?
Richard L. Schindler, P.E. #33997 For and on Behalf of Core Enginee	8-0: 4-9-2120:0	. 🕅 Date
For and on Behalf of Core Engineer	ering Group, LLC	de la companya de la comp
	ESSIONAL ENGLA	r
	China h	

OWNER'S STATEMENT

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

JM+LL LLC	4/6/20	
Business Name	Ďate	
Jan		
By Authorized Signing Agent		
Title 212 N. Wahretch Ave.		
Address Coluvado Springs Co 80913		

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development is not located within a designated floodplain as shown on Flood Insurance Rate Map Panel No. 08041C0957C Dated December 7, 2018. (See Appendix A, FEMA FIRM Exhibit)

Richard L. Schindler, #33997, For and on Behalf of Core Engineering Group, LLC	₩ 33997 Date 8. 4-8-2•8. 7. 5
EL PASO COUNTY	WAL EN ONAL EN ONAL

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E., County Engineer / ECM Administrator

Date

Conditions:

1.0 LOCATION and DESCRIPTION

Ponderosa at Lorson Ranch Filing No. 3 is located north and east of the intersection of Fontaine Boulevard and Old Glory Drive in El Paso County Colorado. The site is located on approximately 10.38 acres of vacant land. Future plans are to develop this site into 90 single family attached lots. The land is currently owned by Love-in-Action and will be developed by Lorson LLC. Planned development of this area will consist of single-family attached lots.

The site is located in the Southwest ¼ of Section 23, Township 15 South and Range 65 West of the 6th Principal Meridian; it is currently zoned PUD. The property is bounded on the north and west by Old Glory Drive, on the south and east by Ponderosa Filing No. 1, a single-family development. For reference, a vicinity map is included in Appendix A of this report.

Ponderosa at Lorson Ranch Filing No. 3 is located within the *"Jimmy Camp Creek Drainage Basin"*, which is a fee basin and is part of the "Jimmy Camp Creek Drainage Basin Planning Study", prepared by Kiowa Engineering Corp., Colorado Springs, CO.

2.0 DRAINAGE CRITERIA

The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November, 1991, the El Paso County "Engineering Criteria Manual", and the UDFCD "Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3. No deviations from these published criteria are requested for this site. The proposed improvements to the Lorson Ranch Development are in substantial compliance with the "Jimmy Camp Creek Drainage Basin Planning Study", prepared by Kiowa Engineering Corp., Colorado Springs, CO.

Conformance with applicable Drainage Basin Planning Studies

There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson & Company in 1987, and is referenced in this report. The only major drainage improvements required for this study area according to the 1987 Wilson study was the reconstruction of Jimmy Camp Creek. In 2005 Jimmy Camp Creek was reconstructed and armored from the south limits of Lorson Ranch to the north limits. On March 9, 2015 a new DBPS for Jimmy Camp Creek and the East Tributary was completed by Kiowa Engineering which also confirms the creek reconstruction done in 2005. All drainage from this site flows to Jimmy Camp Creek.

Conformance with Lorson Ranch MDDP1 by Pentacor Engineering

Lorson Ranch MDDP1 (October 26, 2006) includes this preliminary plan area. This PDR/FDR conforms to the MDDP1 for Lorson Ranch and is referenced in this report. The major infrastructure required for this site per the MDDP1 was constructed in 2006 and includes storm sewer in Fontaine Boulevard, storm sewer in Old Glory Drive, and downstream Pond A1. The only pond not constructed as required by the MDDP1 is Pond A3 which will be constructed and located on this site. Detention/WQ Pond A3 is within this preliminary plan area and will be designed/constructed as part of this project.

The Rational Method as outlined in Section 6.3.0 of the May 2014 "Drainage Criteria Manual" and in Section 3.2.8.F of the El Paso County "Engineering Criteria Manual" was used for basins less than 130 acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County states that if detention is necessary, Full Spectrum Detention will be included in the design, proposed detention Pond A3 will require Full Spectrum Detention and will be included for this development.

3.0 EXISTING HYDROLOGICAL CONDITIONS

The site is currently undeveloped with native vegetation (grass with no shrubs) and moderate slopes in a southerly direction. Runoff is directed overland to an existing storm system in Old Glory Drive and the existing drainage ditch located on the east and southeast edge of the site. Runoff from the existing ditch is directed southwesterly to the previously mentioned existing storm system in Old Glory Drive via 36" RCP's to an existing detention facility, located on the north side of Fontaine Boulevard, adjacent to Jimmy Camp Creek. The soils across the site consists of the Fort Collins loam, a deep somewhat excessively drained soil with 0 - 3% slopes, and the Manzanola clay loam, also a deep well drained soil with 1 - 3% slopes according to the Soil Survey of El Paso County Area. A majority of these soils are type C, and a small portion consist of soil type B. These soil types will be used for the hydrologic conditions. Offsite drainage enters the property at the existing drainage ditch from basin OS1 via an existing 36" RCP. See Appendix A for SCS Soils Map.

Soil	Hydro. Group	Shrink/Swell Potential	Permeability	Surface Runoff Potential	Erosion Hazard								
30-Fort Collins Loam (22%)	В	Low	Moderate	Medium	Moderate								
52-Manzanola Clay Loam (78%)	С	Moderate to High	Slow	Medium	Moderate								

Table 3.1: SCS Soils Survey

The following off-site and on-site current condition basins are briefly discussed as follows:

Basin EX1

This basin encompasses the entire site. Runoff is directed southwesterly and southerly to Old Glory Drive and the existing drainage ditch and is routed to the storm system in Old Glory Drive via an existing 36" RCP. The peak flow from this 10.26 acre basin is 5.4cfs for the 5-year storm event and 29.1cfs for the 100-year storm event. See Hydraflow modeling in the appendix.

Basin OS1

This basin encompasses portions of Old Glory and adjacent areas from Pioneer Landing Filing No. 1 and Ponderosa Filing No. 1. Runoff is directed west in the street to two existing inlets that drain to an existing 36" RCP storm sewer flowing south. The existing 36" storm sewer flows into an existing swale draining southwest to Design Point B. The total existing flow from this basin is 9.8cfs for the 5-year storm event and 21.9cfs for the 100-year storm event. See Hydraflow modeling in the appendix.

Basin A4 and Existing Pond A4

Pond A4 was built in 2010 as part of Pioneer Landing at Lorson Ranch Filing No. 1 and accepts flow from Basin A4. This pond is an existing standard detention basin and does not include provisions for Water Quality. Water Quality is provided downstream in Existing Pond A1 located at Jimmy Camp Creek and Fontaine Boulevard. The as-built flow was calculated in July, 2010 by Core Engineering Group and was calculated to have a 5 year release rate of 3.6cfs and 100 year release rate of 20.5cfs. This flows south in storm sewer to Design Point A. See Hydraflow modeling in the appendix.

Existing Flow at Design Pt. A.

Design Point A is located in the NE corner of this site and is the total flow from an existing 36" storm sewer draining into an existing swale on the east side of the site. The flows were calculated using a hydraulic modeling program called Hydraflow Hydrographs and include flows from Pond A4 and Basin OS1. The existing 5 year flow is 10.4cfs and the existing 100 year flow is 23.0cfs at this design point flowing in an existing 36" storm sewer. See Hydraflow modeling in the appendix.

Existing Flow at Design Pt. B.

Design Point B is located in the SW corner of this site and is the total flow into an existing 36" storm sewer draining to Old Glory Drive. The flows were calculated using a hydraulic modeling program called Hydraflow Hydrographs and include flows from Pond A4, Basin OS1, and Basin EX1. The existing 5 year flow is 14.0cfs and the existing 100 year flow is 46.3cfs at this design point flowing in an existing 36" storm sewer. The 36" storm sewer was designed to accept 54cfs of flow in the 100-year storm event per the Fontaine/Old Glory Final Drainage Report prepared in 2006 by Pentacor Engineering. See Hydraflow modeling in the appendix.

4.0 DEVELOPED HYDROLOGICAL CONDITIONS

Hydrology for the **Ponderosa at Lorson Ranch Filing No. 3** drainage report was based on the City of Colorado Springs/El Paso County Drainage Criteria. Basins that lie within this project were determined and the 5-year and 100-year peak discharges for the developed conditions have been presented in this report. Based on these flows, storm inlets will be added if the street capacity is exceeded.

The site was divided into four (4) major basins (A-D), twenty-four (24) sub-basins and fifteen (15) design points.

The time of concentration for each basin was developed using an overland, ditch, street and pipe flow components. The maximum overland flow length for developed conditions was limited to 100 feet. Travel time velocities ranged from 2 to 6 feet per second. The travel time calculations are included in the back of this report.

Runoff coefficients for the various land uses were obtained from the City of Colorado Springs/El Paso County Drainage Criteria Manual.

The hydrology analysis necessary for sizing the storm sewer system is preliminary only and will be finalized when the construction documents are prepared.

Drainage concepts for each of the sub-basins and basins are briefly discussed as follow:

Sub-Basin A1

This basin is located on the south side of Whitewolf Point; runoff from the proposed townhomes directs flow north to Whitewolf Point. These flows are then routed easterly in Whitewolf Point and then north in Winter Gem Grove to design point 1; a proposed 5' type "R" inlet located in a low spot on the west side of Winter Gem Grove, this inlet will be discussed in greater detail under the hydraulic summary part of this report. The peak developed flow from this basin is 1.2cfs for the 5-year storm event and 2.2cfs for the 100-year storm event. Runoff is then routed east in a proposed 18" RCP.

Sub-Basin A2

This basin is located on the north side of Whitewolf Point; runoff from the proposed townhomes directs flow south to Whitewolf Point. These flows are then routed easterly in Whitewolf Point and then north in Winter Gem Grove to design point 1; a proposed 5' type "R" inlet located in a low spot on the west side of Winter Gem Grove, this inlet will be discussed in greater detail under the hydraulic summary part of this report. The peak developed flow from this basin is 2.6cfs for the 5-year storm event and 4.8cfs for the 100-year storm event. Runoff is then routed east in a proposed 18" RCP.

Sub-Basin A3

This basin is located north of Whitewolf Point and on the south side of Old Glory Drive; runoff from the rooftops of Lots 27 through 36 directs flow north to an underground collection system, flow is then conveyed easterly via 275' of 12" PVC storm drain at a minimum of 0.50% slope to design point 1; a proposed 5' type "R" inlet located in a low spot on the west side of Winter Gem Grove, this inlet will be discussed in greater detail under the hydraulic summary part of this report. The peak developed flow

from this basin is 0.8cfs for the 5-year storm event and 1.5cfs for the 100-year storm event. Runoff is then routed east in a proposed 18" RCP.

Sub-Basin A4

This basin is located on the east side of Winter Gem Grove; runoff from the proposed townhomes directs flow west to Winter Gem Grove. These flows are then routed north in Winter Gem Grove to design point 3; a proposed 5' type "R" inlet located in a low spot on the east side of Winter Gem Grove, this inlet will be discussed in greater detail under the hydraulic summary part of this report. The peak developed flow from this basin is 0.8cfs for the 5-year storm event and 1.4cfs for the 100-year storm event. Runoff is then routed east in a proposed 18" RCP.

Sub-Basin A5

This basin is located east of Winter Gem Grove and on the south side of Old Glory Drive; runoff from the rooftops of proposed Lots 37 through 40 directs flow north to an underground collection system, flow is then conveyed easterly via an 8" PVC storm drain at a minimum of 0.50% slope to design point 4; a proposed manhole located east of Winter Gem Grove and south of Old Glory Drive, this manhole will be discussed in greater detail under the hydraulic summary part of this report. The peak developed flow from this basin is 0.4cfs for the 5-year storm event and 0.8cfs for the 100-year storm event. Runoff is then routed southeasterly in a proposed 18" RCP, then southerly in a 36" RCP.

Sub-Basin A6

This basin is located east of Winter Gem Grove and the south of Old Glory Drive; runoff from the proposed townhomes directs flow east to design point 5; a proposed 5' type "R" inlet located in a low spot on the east side of the private drive, this inlet will be discussed in greater detail under the hydraulic summary part of this report. The peak developed flow from this basin is 1.2cfs for the 5-year storm event and 2.2cfs for the 100-year storm event. Runoff is then routed east in a proposed 18" RCP, then southerly in a 36" RCP.

Sub-Basin A7

This basin is located east of Winter Gem Grove and south of Old Glory Drive; runoff from the rooftops of proposed Lots 41 through 44 and Lots 84 through 87 and directs flow easterly to an underground collection system, flow is then conveyed northerly via a 12" PVC storm drain at a minimum of 0.50% slope to the previously mentioned proposed 5' type "R" inlet in sub-basin A6, this will be discussed in greater detail under the hydraulic summ The ECM requires the entire applicable development is 1.0cfs for the 5-year storm event and is to be treated for water quality. Update the narrative for a proposed 18" RCP, then southerly in the entire flow is the narrative for water quality.

<u>Sub-Basin B1</u>

for all subbasins flowing off-site by describing where/how these are treated for water quality.

This basin contains the easterly half $(\frac{1}{2})$ of Old Glory Drive from the most easterly edge of the property to the southerly portion of Winter Gem Grove. Runoff is directed to the street and flows will be intercepted by the existing inlets located on Old Glory Drive. The peak developed flow from this basin is 3.3cfs for the 5-year storm event and 5.9cfs for the 100-year storm event. Runoff is then routed southerly within the street and storm drain system.

Sub-Basin B2

This basin contains the easterly half (½) of Old Glory Drive from the southerly portion of Winter Gem Grove to the southerly edge of the property. Runoff is directed to the street and flows will be intercepted by the existing inlets located on Old Glory Drive. The peak developed flow from this basin is 2.2cfs for the 5-year storm event and 4.0cfs for the 100-year storm event. Runoff is then routed southerly within the street and storm drain system.

Sub-Basin C1

This basin is located west of Whitewolf Point and on the east side of Old Glory Drive; runoff from the rooftops of proposed Lots 20 through 26 and directs flow west to an underground collection system,

flow is then conveyed southerly to design point 7. The peak developed flow from this basin is 0.6cfs for the 5-year storm event and 1.0cfs for the 100-year storm event.

Sub-Basin C2

This basin is located west of Whitewolf Point and on the east side of Old Glory Drive; runoff from the rooftops of Lots 7 through 19 directs flow southwest to an underground collection system, flow is then conveyed southerly to design point 7. The peak developed flow from this basin is 1.1cfs for the 5-year storm event and 1.9cfs for the 100-year storm event. Runoff is then routed south in a proposed 18" RCP.

Sub-Basin C3

This basin is located on the northwest side of Whitewolf Point; runoff from the proposed townhomes directs flow southeast to Whitewolf Point. These flows are then routed southerly in Whitewolf Point and then westerly in Winter Gem Grove to design point 7. The peak developed flow from this basin is 3.8cfs for the 5-year storm event and 6.9cfs for the 100-year storm event. Runoff is then routed southerly in a proposed 18" RCP.

Sub-Basin C4

This basin is located on the southeast side of Whitewolf Point; runoff from the proposed townhomes directs flow northwesterly to Whitewolf Point. These flows are then routed southerly in Whitewolf Point and then westerly in Winter Gem Grove to design point 7. The peak developed flow from this basin is 3.3cfs for the 5-year storm event and 5.9cfs for the 100-year storm event. Runoff is then routed southerly in a proposed 18" RCP.

Sub-Basin C5

This basin is located between Whitewolf Point and Winter Gem Grove; runoff from the rooftops of Lots 45 through 47 and Lots 81 through 83, is directed to an underground collection system, this collection system is located between the units, flow is then conveyed to a proposed inlet in Sub-Basin C5. The peak developed flow from this basin is 0.6cfs for the 5-year storm event and 1.2cfs for the 100-year storm event. Runoff is then routed southwesterly in a proposed 12" PVC storm pipe.

Sub-Basin C6

This basin is located between Whitewolf Point and Winter Gem Grove; runoff from the rooftops of Lots 48 through 51 and Lots 78 through 80, is directed to an underground collection system, this collection system is located between the units, flow is then conveyed southwesterly via 12" PVC storm drain at a minimum of 0.50% to a proposed manhole at design point 9, this design point will be discussed in greater detail under the hydraulic summary part of this report. The peak developed flow from this basin is 0.7cfs for the 5-year storm event and 1.3cfs for the 100-year storm event. Runoff is then routed southwesterly in a proposed 12" PVC storm pipe.

Sub-Basin C7

This basin is located between Whitewolf Point and Winter Gem Grove; runoff from the rooftops of Lots 52 through 58 and Lots 75 through 77, is directed to an underground collection system, this collection system is located between the units, flow is then conveyed southerly via 12" PVC storm drain at a minimum of 0.50% to a proposed manhole at design point 10, this design point will be discussed in greater detail under the hydraulic summary part of this report. The peak developed flow from this basin is 1.0cfs for the 5-year storm event and 1.9cfs for the 100-year storm event.

Sub-Basin C8

This basin is located between Whitewolf Point and Winter Gem Grove; runoff from the rooftops of Lots 59 through 64 and Lots 72 through 74, is directed to an underground collection system, this collection system is located between the units, flow is then conveyed southerly to a proposed area inlet in Sub-Basin C8, flow will then continue southerly to design point 11 in Winter Gem Grove via 15" HDPE at a minimum of 0.80% slope, this design point will be discussed in greater detail under the hydraulic

summary part of this report. The peak developed flow from this basin is 0.9cfs for the 5-year storm event and 1.7cfs for the 100-year storm event.

Sub-Basin C9

This basin is located on the west and northerly side of Winter Gem Grove; runoff from the proposed townhomes directs flow easterly and southerly to Winter Gem Grove. These flows are then routed south and southwesterly in Winter Gem Grove to design point 13 located in a low spot on the north side of Winter Gem Grove. The peak developed flow from this basin is 2.6cfs for the 5-year storm event and 4.7cfs for the 100-year storm event.

Sub-Basin C10

This basin is located on the northerly side of Winter Gem Grove; runoff from the proposed townhomes directs flow southerly to Winter Gem Grove. These flows are then routed east and southwesterly in Winter Gem Grove to design point 13. The peak developed flow from this basin is 1.8cfs for the 5-year storm event and 3.3cfs for the 100-year storm event.

Sub-Basin C11

This basin is located on the easterly and southerly side of Winter Gem Grove; runoff from the proposed townhomes directs flow westerly and northerly to Winter Gem Grove. These flows are then routed east and southwesterly in Winter Gem Grove to a proposed 5' type "R" inlet located in a low spot on the southeast side of Winter Gem Grove. The peak developed flow from this basin is 2.7cfs for the 5-year storm event and 4.9cfs for the 100-year storm event.

Sub-Basin C12

This basin is located southeast of Winter Gem Grove; runoff from the proposed townhomes and parking lot flows southwest via an underground collection system and curb/gutter to the southwest side of the parking area to a 5' Type R inlet. The peak developed flow from this basin is 0.9cfs for the 5-year storm event and 1.7cfs for the 100-year storm event.

Sub-Basin C13

This basin is located southeast of Winter Gem Grove; runoff from the rooftops of Lots 65 through 71 is directed southeasterly to an underground collection system, flow is then conveyed southwesterly and southerly via 12" PVC storm drain at a minimum of 0.50% slope to a proposed storm drain manhole in Sub Basin C13. The peak developed flow from this basin is 0.7cfs for the 5-year storm event and 1.3cfs for the 100-year storm event.

Sub-Basin C14

This basin is located south of Winter Gem Grove; runoff from the proposed townhomes directs flow southerly to design point 15 on the southeast side of the private drive. The peak developed flow from this basin is 1.8cfs for the 5-year storm event and 3.3cfs for the 100-year storm event. Runoff is then routed south in a proposed 30" RCP to proposed detention pond A3.

Sub-Basin C15

This basin is located south of Winter Gem Grove and east of Old Glory Drive; runoff from the rooftops of Lots 1 through 6 is directed westerly to an underground collection system, flow is then conveyed southeasterly and easterly via 12" PVC storm drain at a minimum of 0.50% slope to design point 15. The peak developed flow from this basin is 0.5cfs for the 5-year storm event and 0.8cfs for the 100-year storm event.

<u>Basin D</u>

This basin is located on the east and southeast portion of the site and is open space and backyards. The peak developed flow from this basin is 1.5cfs for the 5-year storm event and 8.2cfs for the 100-year storm. Flows are directed to an existing 6' deep drainage ditch runoff and then conveyed south and southeasterly to proposed detention pond A3. This pond will be discussed in greater detail under the Detention Pond summary of this report.

5.0 HYDRAULIC SUMMARY

The sizing of the hydraulic structures was prepared by using the *StormSewers* computer software programs developed by Intellisolve, which conforms to the methods outlined in the "City of Colorado Springs/El Paso County Drainage Criteria Manual".

It is the intent of this Preliminary and Final Drainage Report to use the proposed curb/gutter and storm sewer to convey runoff to the proposed detention pond A3. Pipe size, Inlet size and locations are shown on the developed conditions drainage map. See Appendix C for detailed hydraulic calculations and the storm sewer model.

Design Point 1

Design point 1 includes surface flow from basins A1 and A2 and the combined peak flow at this low point on the west side of Winter Gem Grove was used to size the proposed 5' type "R" inlet. Design point 1 contains 0.91 acres and generates a peak developed flow of 3.9cfs for the 5-year storm event and 7.0cfs for the 100-year storm event. Inlet 7 is a 5' type "R" inlet in a sump condition. The street capacity of Winter Gem Grove at 0.5% slope is 6.3cfs (5-yr) and 26.4cfs (100-yr). The street capacity is not exceeded.

Design Point 2

Design point 2 is pipe flow under Winter Gem Grove and includes inlet flow from design point 1 and pipe flow from basin A3, and the combined peak flow at this low point on the east side of Winter Gem Grove was used to size the proposed 18" RCP at a minimum of 0.50%. Design point 2 generates a peak developed flow of 4.7cfs for the 5-year storm event and 8.5cfs for the 100-year storm event. These flows will be routed easterly via proposed 18" RCP at a minimum of 0.50% slope and is designed to handle the flow from this design point.

Design Point 3a

Design point 3a includes surface flow from basin A4 at a low point on the East side of Winter Gem Grove was used to size the proposed 5' type "R" inlet. Design point 3a contains 0.18 acres and generates a peak developed flow of 0.8cfs for the 5-year storm event and 1.4cfs for the 100-year storm event. Inlet 6 is a 5' type "R" inlet in a sump condition. The street capacity of Winter Gem Grove at 0.5% slope is 6.3cfs (5-yr) and 26.4cfs (100-yr). The street capacity is not exceeded.

Design Point 3

Design point 3 includes upstream flow from design point 2 and 3a. Design point 3 is the pipe flow which is 5.5cfs for the 5-year storm event and 9.9cfs for the 100-year storm event. These flows will be routed easterly via proposed 18" RCP at a minimum of 0.50% slope and is designed to handle the flow from this design point.

Design Point 4

Design point 4 includes upstream flow from design point 3 and basin A5. Design point 4 generates a peak developed flow of 5.9cfs for the 5-year storm event and 10.7cfs for the 100-year storm event. These flows will be routed easterly via proposed 18" RCP to storm manhole 6 at a minimum of 0.50% slope and is designed to handle the flow from this design point.

Design Point 5

Basin A6 surface flows to Inlet 8 which is a 5' type "R" inlet in a sump condition. The inlet is sized for 2.2cfs in the 100-year event for a sump condition. Design point 5 includes upstream flow from design point 4, Basin A6, Basin A7, and flow from an existing 36" storm sewer in Old Glory Drive (see Design Pt. A, existing conditions). Design point 5 generates a peak developed flow of 18.5cfs for the 5-year storm event and 37.7cfs for the 100-year storm event. Runoff is then routed southerly via the proposed

36" RCP to the pipe outlet then conveyed southwesterly within an existing 6' deep drainage ditch to proposed detention pond A3.

Design Point 6

Design point 6 includes upstream flow from basins C1 and C2 and was used to size the proposed 12" PVC at a minimum of 0.60%. Design point 6 contains generates a peak developed flow of 1.6cfs for the 5-year storm event and 2.9cfs for the 100-year storm event. These flows will be routed southerly via proposed 12" PVC to inlet 2. This PVC pipe is designed to handle the flow to design point 6.

Design Point 7

Design point 7 is surface flow and includes upstream flow from basins C3 and C4 and the located on the north side of Winter Gem Grove and was used to size the proposed 10' type "R" inlet on a continuous grade. Design point 7 generates a peak developed flow of 7.0cfs for the 5-year storm event and 12.8cfs for the 100-year storm event. Inlet 2 is a 10' type "R" inlet on a continuous grade. This 10' inlet intercepts 5.9cfs at a 1.20% grade with 1.1cfs flowby for the 5-year storm event and intercepts 8.1cfs at a 1.20% grade with 4.7cfs flowby for the 100-year storm event, these flowbys are then directed to Old Glory Drive, The intercepted flows will be routed southerly to storm manhole 2 via proposed 18" RCP at a minimum of 0.90% slope, this pipe is designed to handle the flow from this design point. The street capacity of Winter Gem Grove at 1.2% slope is 9.0cfs (5-yr) and 37.3cfs (100-yr). The street capacity is not exceeded.

Design Point 8

Design point 8 is pipe flow and includes upstream flow from design point 6 and design point 7 and was used to size the proposed 18" RCP at a minimum of 0.80%. Design point 8 generates a peak developed flow of 7.5cfs for the 5-year storm event and 11.0cfs for the 100-year storm event. These flows will be routed easterly via proposed 18" RCP to storm manhole 1 at a minimum of 0.90% slope and is designed to handle the flow from this design point.

Design Point 9

Design point 9 includes upstream flow from basins C5 and C6 and was used to size the proposed 12" PVC at a minimum of 0.50%. Design point 9 contains 0.32 acres and generates a peak developed flow of 1.4cfs for the 5-year storm event and 2.5cfs for the 100-year storm event. These flows will be routed southerly via proposed 12" PVC to a proposed manhole at design point 10. This PVC pipe at a minimum of 0.50% slope and is designed to handle the flow to design point 10.

Design Point 10

Design point 10 includes upstream flow from design point 9 (C5- C6) and basin C7 and was used to size the proposed 15" HDPE at a minimum of 0.50%. Design point 10 contains 0.56 acres and generates a peak developed flow of 2.4cfs for the 5-year storm event and 4.3cfs for the 100-year storm event. These flows will be routed southerly via proposed 15" HDPE at a minimum of 0.50% slope to Design Point 10a, then will flow southerly to design point 11 in Winter Gem Grove.

Design Point 10a

Design point 10a is the same flow as Design Point 11 which includes upstream flow from design point 10 and basin C8 and was used to size the proposed 15" HDPE at a minimum of 0.80%. Design point 10a generates a peak developed flow of 3.3cfs for the 5-year storm event and 6.0cfs for the 100-year storm event. These flows will be routed southerly via proposed 15" HDPE at a minimum of 0.80% slope to design point 11 in Winter Gem Grove.

Design Point 11

Design point 11 is the same flow as Design Point 10a and was used to size the proposed 18" RCP at a minimum of 0.60%. Design point 11 generates a peak developed flow of 3.3cfs for the 5-year storm event and 6.0cfs for the 100-year storm event. These flows will be routed westerly via proposed 18" RCP to storm manhole 1 at a minimum of 0.60% slope and is designed to handle the flow from this design point.

Design Point 12

Design point 12 is the pipe flow which includes upstream flow from design point 8 and 11. Design point 12 generates a peak developed flow of 10.8cfs for the 5-year storm event and 17.0cfs for the 100-year storm event. These flows will be routed southerly via proposed 24" RCP to proposed inlet 1 located in basin C14 at a minimum of 0.80% slope and is designed to handle the flow from this design point.

Design Point 13

Design point 13 includes upstream flow from basins C9 and C10 and the combined peak flow at this low point on the north side of Winter Gem Grove was used to size the proposed inlet. Design point 13 generates a peak developed flow of 4.0cfs for the 5-year storm event and 7.4cfs for the 100-year storm event. Inlet 5 is a 5' type "R" inlet in a sump condition. These flows will be routed southeasterly via proposed 18" RCP at a minimum slope of 0.60% slope to proposed inlet 4, this pipe is designed to handle the flow from this design point. The street capacity of Winter Gem Grove at 0.7% slope is 7.5cfs (5-yr) and 31.2cfs (100-yr). The street capacity is not exceeded.

Design Point 14a

Design point 14a includes upstream flow from basin C11 at a low point on the south side of Winter Gem Grove and was used to size the proposed inlet. Design point 14a generates a peak developed flow of 2.7cfs for the 5-year storm event and 4.9cfs for the 100-year storm event. Inlet 4 is a 5' type "R" inlet in a sump condition, runoff from this basin was used to size this inlet. These flows will be routed southeasterly. The street capacity of Winter Gem Grove at 0.7% slope is 7.5cfs (5-yr) and 31.2cfs (100-yr). The street capacity is not exceeded.

Design Point 14

Design point 14 is pipe flow and includes upstream flow from design point 13 and 14a. Design point 14 generates a peak developed flow of 6.7cfs for the 5-year storm event and 12.3cfs for the 100-year storm event. The peak flow will be routed southeasterly to storm manhole 4 via 24" RCP at a minimum slope of 0.50%. These flows will continue to proposed detention pond A3.

Design Point 14b

Design point 14b includes upstream flow from basins C12 at a low point in a proposed parking lot. Design point 14b generates a peak developed flow of 0.9cfs for the 5-year storm event and 1.7cfs for the 100-year storm event. Inlet 3 is a 5' type "R" inlet in a sump condition. These flows will be routed southeasterly.

Design Point 14c

Design point 14c is pipe flow and includes upstream flow from design point 14 and 14b. Design point 14c generates a peak developed flow of 7.6cfs for the 5-year storm event and 14.0cfs for the 100-year storm event. The peak flow will be routed southeasterly via 24" RCP at a minimum slope of 0.50%. These flows will continue to detention pond A3.

Design Point 14d

Design point 14d is pipe flow and includes upstream flow from design point 14c and Basin C13. Design point 14d generates a peak developed flow of 8.3cfs for the 5-year storm event and 15.3cfs for the 100-year storm event. The peak flow will be routed southeasterly via 24" RCP at a minimum slope of 0.50%. These flows will continue to detention pond A3.

Design Point 15

Design point 15 includes upstream flow from basins C14 and C15. Design point 15 generates a peak developed flow of 2.7cfs for the 5-year storm event and 4.8cfs for the 100-year storm event. Inlet 1 located at the south edge of the parking lot, south of Winter Gem Grove in basin C15 is a 5' type "R" inlet in a sump condition, runoff from this basin was used to size this inlet. Design point 15 flows will be

routed southerly via 30" RCP at a minimum slope of 0.60% slope. These flows will continue to proposed detention pond A3.

Design Point 15a

Design point 15a is pipe flow and includes upstream flow from design point 12, 14d, and 15. Design point 15a generates a peak developed flow of 21.4cfs for the 5-year storm event and 36.4cfs for the 100-year storm event. The peak flow will be routed southeasterly via 30" RCP at a minimum slope of 0.60% to detention pond A3.

Design Point 16

Design point 16 is the total flow into an existing 36" RCP that connects to the storm sewer system in Old Glory Drive in the SW corner of this site. Design point 16 generates a peak developed flow of 10.9cfs for the 5-year storm event and 30.4cfs for the 100-year storm event. The flow was calculated by adding the outflow from Pond A3 and flow from Existing Design Point A (10.0cfs/23.0cfs) that flows through Pond A3. The 36" storm sewer was designed to accept 54cfs of flow in the 100-year storm event per the Fontaine/Old Glory Final Drainage Report prepared in 2006 by Pentacor Engineering.

Storm Sewer Notes

Storm sewer within the streets in this subdivision and Pond A3 will be owned/maintained by the Lorson Ranch Metropolitan District since these are private streets. Roof drain connections will be owned/maintained by the Homeowners Association. See Grading Plan.

6.0 DETENTION AND WATER QUALITY POND

Detention and Storm Water Quality for Ponderosa at Lorson Ranch Filing No. 3 is required per El Paso County criteria. We have implemented the Full Spectrum approach for detention for Ponderosa at Lorson Ranch Filing No. 3 per the Denver Urban Drainage Districts specifications. There is one proposed detention pond with full spectrum detention for this project site. Nearly all runoff from this site will flow to the on-site pond which will incorporate storm water quality features prior to discharge into downstream storm sewer.

Full Spectrum Pond Construction Requirements

Design calculations for full spectrum ponds will include a 10' wide gravel access road on a 15' wide bench at a maximum 10% slope to the pond outlet structures. The final design of full spectrum ponds consists of an outlet structure, storm sewer outfall to Old Glory Drive, concrete low flow channel, sediment forebay, and overflow weir. Soil borings for this project can be found in the geotechnical report for Ponderosa at Lorson Ranch Filing No. 3 prepared by RMG.

Detention Pond A3 (Full Spectrum Design)

This is an on-site permanent full spectrum extended detention pond that includes water quality and discharges downstream into existing storm sewer in Old Glory Drive. Pond A3 is designed using the UDCF Full Spectrum spreadsheets and is sized for the drainage of this site only (10.1ac). Pond A3 outlet structure is a standard 3'x19.25' full spectrum sloped outlet structure designed by the full spectrum spreadsheets to match pre-developed rates for 10.1acres. Offsite flow entering this site from Existing Design Point A will be allowed to flow through Pond A3 and will be captured by a three-cell CDOT Type D inlet set slightly above the full spectrum outlet structure elevation. The 3-cell CDOT Type D inlets will collect the offsite flow and discharge it directly into an existing 36" storm sewer connecting to the storm sewer system in Old Glory Drive. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Ares: 10.1 acres
- Watershed Imperviousness: 52%
- Hydrologic Soils Group B (22%) and Group C/D (78%)
- Forebay: 0.005ac-ft, 18" depth

- Zone 1 WQCV: 0.162ac-ft, WSEL: 5709.78, 0.1cfs
- Zone 2 EURV: 0.452ac-ft, WSEL: 5711.06, Top EURV wall set at 5711.82, 3'x3" outlet with 0:1 slope, 0.4cfs
- (5-yr): 0.600ac-ft, WSEL: 5711.49, 0.5cfs
- Zone 3 (100-yr): 1.114ac-ft, WSEL: 5712.56, 7.4cfs
- Pipe Outlet: 18" RCP with restrictor plate up 7.75"
- Overflow Spillway: 3-cell CDOT Type D inlet connected to 36" stm, flow depth=0.7'
- Pre-development release rate into creek compliance from full spectrum pond spreadsheets
- Pond Bottom Elevation: 5707.77

Water Quality Design

Water quality will be provided by one permanent extended detention basin (Pond A3) for this site.

Pond A3 Emergency Overflow

Pond A3's emergency Overflow structure consists of a three-cell CDOT Type D inlet attached to and set slightly above the full spectrum outlet structure elevation. The 3-cell CDOT Type D inlets will discharge flow directly into an existing 36" storm sewer flowing into the storm sewer system in Old Glory Drive. Pond A3's emergency overflow structure was sized by adding the on-site undetained fully developed 100-year flows (24.2cfs) to the offsite 100-year flows from Existing Design Point A (23cfs) for a total flow of 47.2cfs with a flow depth of 5.8inches above the top of the Type D inlets. The existing 36" storm sewer was designed to accept 54cfs of flow in the 100-year storm event per the Fontaine/Old Glory Final Drainage Report prepared in 2006 by Pentacor Engineering.

7.0 FOUR STEP PROCESS

The site has been developed to minimize wherever possible the rate of developed runoff that will leave the site and to provide water quality management for the runoff produced by the site as proposed on the development plan. The following four step process should be considered and incorporated into the storm water collection system and storage facilities where applicable.

Step 1: Employ Runoff Reduction Practices

Ponderosa at Lorson Ranch Filing No. 3 has employed several methods of reducing runoff.

- The street configuration was laid out to minimize the length of streets. Many streets are straight and perpendicular resulting in lots with less wasted space.
- Open space tracts of land act as a buffer between houses and the street
- The entire site drains to a WQ pond.
- The proposed HOA will maintain common area landscaping.
- Full Spectrum Detention Pond A3 (extended detention basin) will be constructed. The full spectrum detention ponds mimics existing storm discharges

Step 2: Stabilize Drainageways

Jimmy Camp Creek is a major drainageway located west of this site. JCC has been stabilized per county criteria in 2006. The design included a natural sand channel bottom and armored sides.

Step 3: Provide Water Quality Control Volume (WQCV)

Treatment and slow release of the water quality capture volume (WQCV) is required. Ponderosa at Lorson Ranch Filing No. 3 will utilize Pond A3 which is a full spectrum stormwater detention pond including Water Quality Capture Volume and a full spectrum detention/WQ outlet structure.

Step 4: Consider Need for Industrial and Commercial BMP's or Other Specialized BMP's

This site is a residential site and does not contain commercial or industrial development. There are no potential sources of contaminants that could be introduced to the County's MS4. During construction the source control will be provided with the proper installation of erosion control BMPs to limit erosion and transport of sediment. Area disturbed by construction will be seeded and mulched. Cut and fill slopes will be reseeded, and the slopes equal to or greater than three-to-one will be protected with erosion control fabric. Silt fences will be placed at the bottom of re-vegetated and rough graded slopes. Inlet protection will be used around proposed inlets. In addition, temporary sediment basins will be constructed so runoff will be treated prior to discharge. Construction BMPs in the form of vehicle tracking control, sediment basins, concrete washout area, rock socks, buffers, and silt fences will be utilized to protect receiving waters.

8.0 DRAINAGE AND BRIDGE FEES

Ponderosa at Lorson Ranch Filing No. 3 is located within the Jimmy Camp Creek drainage basin which is currently a fee basin in El Paso County. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land as part of the plat recordation process. Lorson Ranch Metro District will be constructing the major drainage infrastructure as part of the district improvements.

The drainage/bridge fees for this site have previously been paid in 2006 as part of the Ponderosa at Lorson Ranch Filing No. 1 final plat. The following table provides a breakdown of the drainage fees that have been paid for this site in 2006.

Type of Land Use	Total Area (ac)	Imperviousness	Bridge Fee	Surety Fee				
Residential	10.03	50%	\$46,062	\$1,670	0			

Table 8.1: Drainage/Bridge Fees Paid For This Site in 2006

The 2006 Drainage fee was \$9,185 and bridge fee was \$333 per impervious acre

Table 8.2: Public Drainage Facility Costs (non-reimbursable)

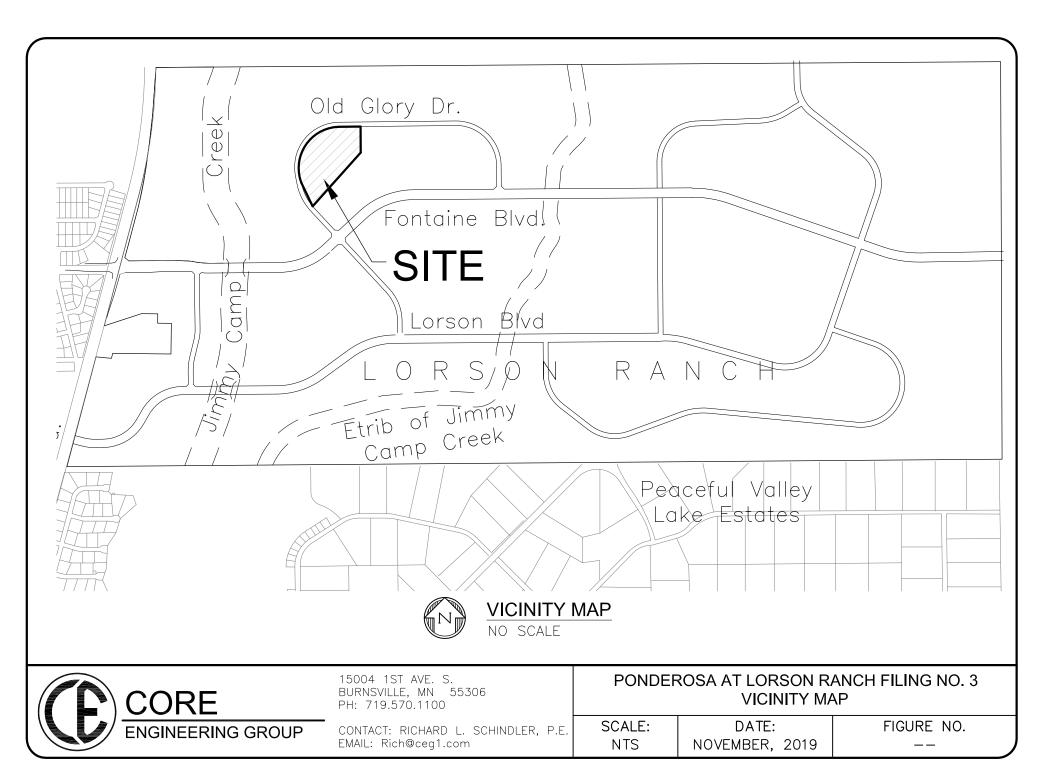
ltem	Quantity	Unit	Unit Cost	Item Total
18" Storm	792	LF	\$40	\$31,680
24" Storm	484	LF	\$50	\$24,200
30" Storm	33	LF	\$60	\$1,980
36" Storm	293	LF	\$70	\$20,510
15" HDPE	85	EA	\$30	\$6,000
5' Inlet	7	EA	\$3,0000	\$21,000
10' Inlet	1	EA	\$4,0000	\$4,000
MH	8	EA	\$5,0000	\$40,000
36" FES	1	EA	\$2,0000	\$2,000
			Sub-Total	\$145,370
			Eng/Cont 15%)	\$21,806
			Total Est. Cost	\$167,176

ltem	Quantity	Unit	Unit Cost	Item Total
12" PVC	2390	LF	\$20	\$47,800.00
15" HDPE	88	LF	\$25	\$2,200.00
Manholes	7	EA	\$250	\$1,750.00
Area Inlets	1	EA	\$150	\$150.00
			Subtotal	\$51,900.00
			Eng/Cont 15%)	\$7,785
			Total Est. Cost	\$59,685

 Table 8.3: Private Drainage Facility Costs (non-reimbursable)

Table 8.4: Lorson Ranch Metro District Drainage Facility Costs (non-reimbursable)

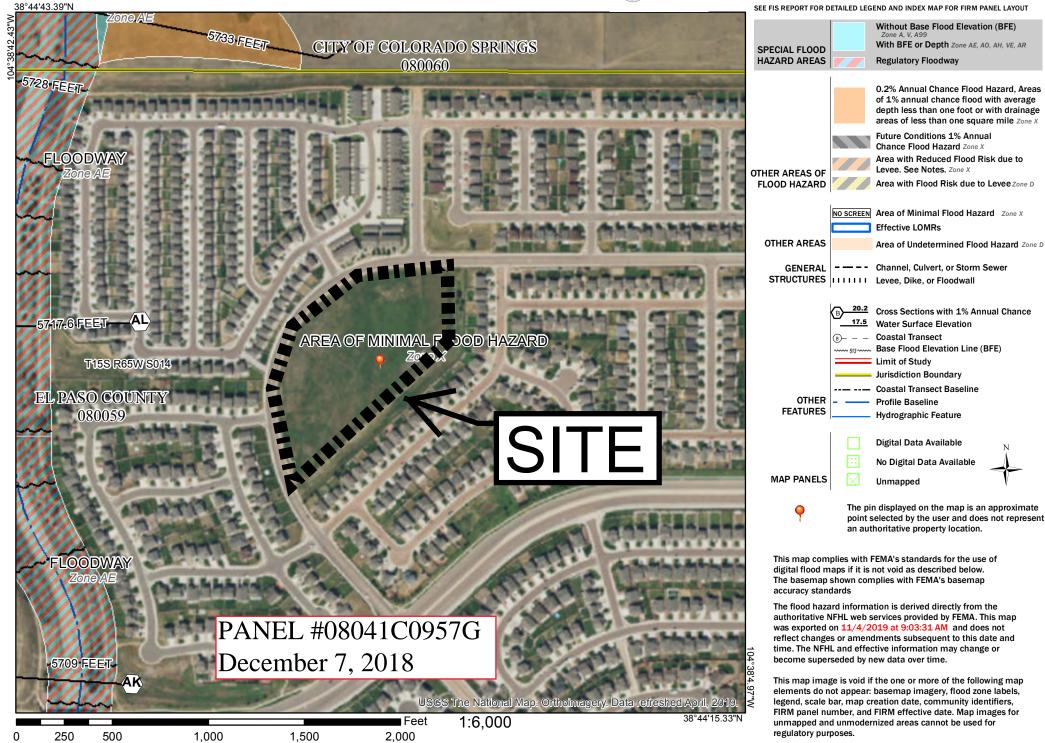
Item	Quantity	Unit	Unit Cost	Item Total
Full Spectrum Ponds and Outlet	1	LS	\$40,000	\$40,000
			Subtotal	\$40,000
		Eng/Cont (15%)	\$6,000	
		Total Est. Cost	\$46,000	

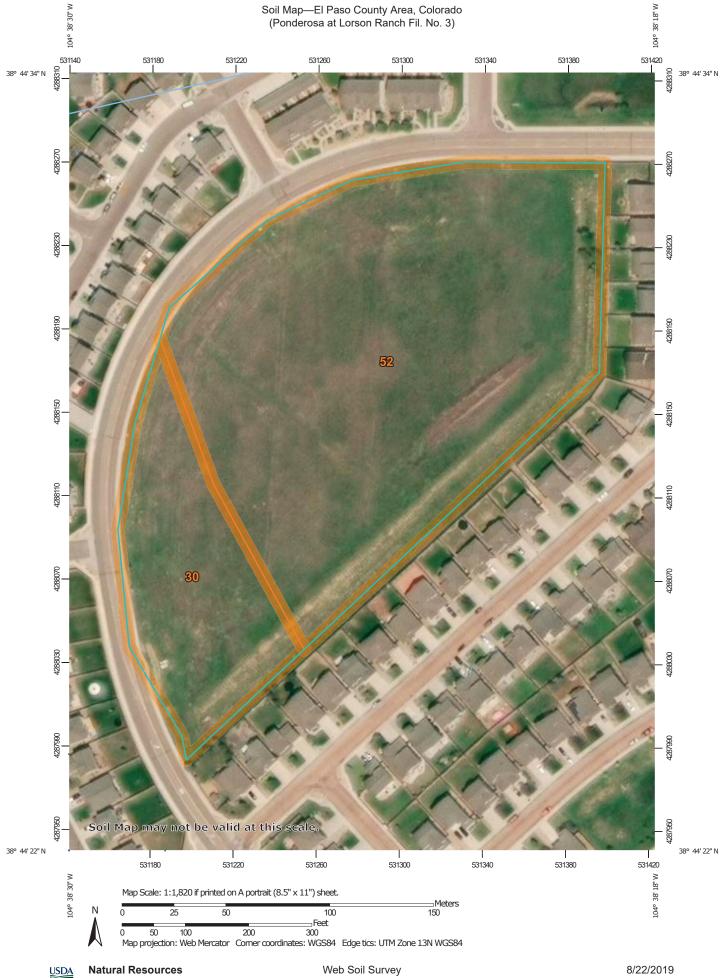

9.0 CONCLUSIONS

This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:

- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- Jimmy Camp Creek has been realigned within Lorson Ranch.

10.0 REFERENCES


- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM, dated November, 1991
- 2. Soil Survey of El Paso County Area, Colorado by USDA, SCS
- 3. City of Colorado Springs "Drainage Criteria Manual, Volume 2
- 4. El Paso County "Engineering Criteria Manual"
- 5. Lorson Ranch MDDP1, October 26, 2006 by Pentacor Engineering.
- 6. Final Drainage Report for Fontaine Boulevard, Old Glory Drive, and Marksheffel Road Phase 1 Improvements, Dated February 6, 2006, Revised September 7, 2006, by Pentacor Engineering.
- 7. DBPS for Jimmy Camp Creek prepared by Wilson & Company, 1987
- 8. Jimmy Camp Creek Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
- 9. El Paso County Resolution #15-042, El Paso County adoption of Chapter 6 and Section 3.2.1 of the City of Colorado Springs Drainage Criteria Manual dated May, 2014.



National Flood Hazard Layer FIRMette

Legend

Soil Map—El Paso County Area, Colorado (Ponderosa at Lorson Ranch Fil. No. 3) ſ

MAP INFORMATION	The soil surveys that comprise your AOI were mapped at 1:24,000.	Warning: Soil Map may not be valid at this scale.	Enlargement of maps beyond the scale of mapping can cause	line placement. The maps do not show the small areas of	contrasting soils that could have been shown at a more detailed	scare.	Please rely on the bar scale on each map sheet for map measurements	Source of Man. Natural Recources Concervation Service		COULDINATE SYSTEM: WED INFOCATION (ELGO: 2007) Mans from the Web Soil Survey are based on the Web Marrator	projection, which preserves direction and shape but distorts	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more	accurate calculations of distance or area are required.	This product is generated from the USDA-NRCS certified data as of the version date(s) listed helow	Soil Survey Area: El Daso County Area Colorado		Soil map units are labeled (as space allows) for map scales	1:50,000 or larger.	Date(s) aerial images were photographed: Apr 12, 2017—Nov 17. 2017	The orthonhoto or other base man on which the soil lines were	compiled and digitized probably differs from the background	imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.			
	Spoil Area Stony Spot	Very Stony Spot	Wet Spot	Other	Special Line Features	ures	Streams and Canals	tion	Kalls Interstate Hichwave	US Routes	Maior Roads	Local Roads	q	Aerial Photography											
EGEND	₩ <	8	\$	\triangleleft	ţ	Water Features	{	Transportation	Ŧ		8	5	Background	4											
MAPL	Area of Interest (AOI) Area of Interest (AOI)		Soil Map Unit Polygons	Soil Map Unit Points		Special Point Features	Borrow Pit	Clav Spot	Closed Depression	Gravel Pit	Gravelly Spot	Landfill	Lava Flow	Marsh or swamp	Mine or Quarry	Miscellaneous Water	Perennial Water	Rock Outcrop	Saline Spot	Sandy Spot	Severely Eroded Spot	Sinkhole	Slide or Slip	Sodic Spot	
	Area of In	Soils		} 1	:	Special	0 0	Z X	(0	* *	0 <mark>0</mark>	٩	~	4	64	0	0	>	÷	° °	Ŵ	٥	A	Ø	

NSDA

Map Unit Legend

Man Linit Symbol	Man Linit Nama	Acres in AOI	Percent of AOI
Map Unit Symbol	Map Unit Name	Acres In AOI	Percent of AOI
30	Fort Collins loam, 0 to 3 percent slopes	2.2	21.7%
52	Manzanst clay loam, 0 to 3 percent slopes	7.9	78.3%
Totals for Area of Interest		10.1	100.0%

	THEERI	IG GRU	UP																		
				Calcula	ated By:	Leonar	d Beasl	ey					Job No): <u>100.0</u>	<u>50</u>						
					October								Project	t: <u>Ponde</u>	erosa at	Lorson	Ranch	Filing N	<u>o. 3</u>		
				Checke	ed By: <u>L</u>	eonard	Beasley	<u>y</u>					Design	Storm:	5-Year	Event					
	t			Diı	rect Rur	noff				Total	Runoff			reet		Pipe		Tr	avel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	СА		Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-1			10.26	0.15	15.0	1.54	3.52	5.4													
OS1			4.95	0.49	10.6	2.43	4.05	9.8													
													·								
													-								
													-								
													-								
													-								
	1				1						1		1	1	1		1				

ENG.	INCERI	NG GRO	UP																		
				Calcula	ated By:	Leonar	d Beasl	<u>ey</u>					Job No): <u>100.05</u>	<u>50</u>						
				Date: 0	<u>Dctober</u>	29, 201	9	-					Project	: Ponde	erosa at	Lorson	Ranch	Filing N	o. 3		
				Checke	ed By: L	eonard	Beasley	/					Design	Storm:	100-Ye	ar Ever	nt				
				Di	rect Rur	noff				Total	Runoff		Sti	reet		Pipe	-	Tr	avel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		a	tc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-1			10.26	0.48	15.0	4.92	5.91	29.1													
OS-1			4.95	0.65	10.6	3.22	6.79	21.9													
													-								
													-								
													-								

Standard Form SF-1. Time of Concentration-Existing

Calculated By: <u>Leonard Beasley</u> Date: <u>October 29, 2019</u> Job No: <u>100.050</u> Project: <u>Ponderosa at Lorson Ranch Filing No. 3</u>

	Sub-Ba	sin Data		Ini	tial Overla		ti)		Tra	avel Time ((tt)			(urbanized sins)	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended Tc=TI+Tt (min)
EX-1	0.15	10.26	15.0	35.00	3.14%	0.08	6.98	839.00	0.83%	1.37	10.23				
			15.0					27.00	18.89%	6.52	0.07	17.28	901.00	15.01	15.01
OS1	0.49	4.95	20.0	97.00	2.06%	0.19	8.58	1139.00	0.68%	1.65	11.51				
			30"					103.00	0.50%	5.88	0.29	20.38	103.00	10.57	10.57
								<u></u>							

Job No: <u>100.050</u>

Calculated By: Leonard Beasley

							<u>u Deasi</u>	ey). <u>100.0</u> ;			_ .				
						<u>29, 201</u>								t: <u>Ponde</u>				Filing I	<u>No. 3</u>		
	-	1					Beasley	Y	1	- ()			Design	Storm:	<u>5 - Yea</u>						
	Ę		1		ect Rur	noff		1		l otal	Runoff	1	St	reet		Pipe	1	11	ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	ţ	CA		a	t	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
A1			0.29	0.82	5.0	0.24	5.17	1.2													
A2			0.62	0.82	5.0	0.51	5.17	2.6													
A1-A2	1	0.91							5.0	0.75	5.17	3.9									
A3			0.19	0.82	5.0	0.16	5.17	0.8													
A1-A3	2	1.10							5.0	0.90	5.17	4.7									
A4			0.18	0.82	5.0	0.15	5.17	0.8													
A1-A4	3	1.28							5.0	1.05	5.17	5.4									
A5			0.10	0.82	5.0	0.08	5.17	0.4													
A1-A5	4	1.38							5.0	1.13	5.17	5.8									
A6			0.28	0.82	5.0	0.23	5.17	1.2													
A1-A6	5	1.66							5.0	1.36	5.17	7.0									
A7			0.23	0.82	5.0	0.19	5.17	1.0					-								
А		1.89							5.0	1.55	5.17	8.0	 								
B1			0.82	0.90	7.9	0.74	4.49	3.3					 								
B2			0.49	0.90	5.3	0.44	5.08	2.2					 								
В		1.31							10.9	1.18	4.00	4.7	 								

Job No: 100.050

Calculated By: Leonard Beasley

								<u> </u>). <u>100.0</u> ; h. Davada			Danah	Ellin el N			
						<u>29, 201</u>									erosa at				<u>IO. 3</u>		
	1	1			ect Rur	eonard	Beasley	<u>/</u>	1	Total	Runoff		Design	reet	<u>5 - Yea</u>	Pipe		Tr	avel Tir	no	1
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	ç	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope .	Pipe Size	Length	Velocity	tt d	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C1			0.13	0.82	5.0	0.11	5.17	0.6													
C2			0.25	0.82	5.0	0.21	5.17	1.1													
C1-C2	6	0.38							5.0	0.31	5.17	1.6									
C3			0.93	0.82	5.7	0.76	4.98	3.8													
C4			0.81	0.82	5.9	0.66	4.91	3.3													
C3-C4	7	1.74							5.9	1.43	4.91	7.0									
C1-C4	8	2.12							5.9	1.74	4.91	8.5									
C5			0.15	0.82	5.0	0.12	5.17	0.6													
C6			0.17	0.82	5.0	0.14	5.17	0.7													
C5-C6	9	0.32							5.0	0.26	5.17	1.4									
C7			0.24	0.82	5.0	0.20	5.17	1.0													
C5-C7	10	0.56							5.0	0.46	5.17	2.4									
C8			0.22	0.82	5.0	0.18	5.17	0.9													
C5-C8	11	0.78							5.0	0.64	5.17	3.3									
C1-C8	12	2.90							5.9	2.38	4.91	11.7									
C9			0.61	0.82	5.0	0.50	5.17	2.6													

GROUP								
	Calcula	ated By:	Leonar	d Beas	ley			
	Date: C	October	29, 201	9	-			
	Checke	ed By: <u>L</u>	eonard	Beasle	Y			
	Dii	rect Run	off			Total I	Runoff	
L (-		

Job No: <u>100.050</u> Project: <u>Ponderosa at Lorson Ranch Filing No. 3</u> Design Storm: <u>5 - Year Event</u>

	t				rect Rur	noff				Total	Runoff		Štr	reet		Pipe		TI	avel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	СА		Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C10			0.43	0.82	5.0	0.35	5.17	1.8													
C9-C10	13	1.04							6.6	0.85	4.75	4.0									
C11			0.67	0.82	6.0	0.55	4.89	2.7													
C9-C11	14	1.71							6.6	1.40	4.75	6.7									
C12			0.22	0.82	5.0	0.18	5.17	0.9													
C13			0.17	0.82	5.0	0.14	5.17	0.7													
C14			0.45	0.82	5.7	0.37	4.98	1.8													
C15			0.11	0.82	5.0	0.09	5.17	0.5					-								
C13-C15	15	0.73							5.7	0.60	4.98	3.0									
С		5.56							8.0	4.56	4.47	20.4									
D			2.93	0.15	15.4	0.44	3.48	1.5													
													-								

ENG	INEERI	NG GROU	UP	Date: C	<u>)ctober</u> ed By: <u>L</u>	<u>29, 201</u> eonard	<u>d Beasl</u> 9 Beasley	-					Projec Desigr	o: <u>100.08</u> t: <u>Ponde</u> n Storm:	rosa at	ear Eve		-			
	Ę				ect Rur	noff	r.			Total	Runoff	1	St	reet		Pipe	r.	T	ravel Tir	ne	1
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	to to	CA		Ø	tc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		A	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
A1			0.29	0.89	5.0	0.26	8.68	2.2													
A2			0.62	0.89	5.0	0.55	8.68	4.8													
A1-A2	1	0.91							5.0	0.81	8.68	7.0									
A3			0.19	0.89	5.0	0.17	8.68	1.5													
A1-A3	2	1.10							5.0	0.98	8.68	8.5									
A4			0.18	0.89	5.0	0.16	8.68	1.4													
A1-A4	3	1.28							5.0	1.14	8.68	9.9									
A5			0.10	0.89	5.0	0.09	8.68	0.8													
A1-A5	4	1.38							5.0	1.23	8.68	10.7									
A6			0.28	0.89	5.0	0.25	8.68	2.2													
A1-A6		1.66							5.0	1.48	8.68	12.8									
A7			0.23	0.89	5.0	0.20	8.68	1.8													
A Basins		1.89							5.0	1.68	8.68	14.6									
B1			0.82	0.96	7.9	0.79	7.53	5.9													
B2			0.49	0.96	5.3	0.47	8.53	4.0													
B Basins		1.31							10.9	1.26	6.71	8.4									

ENG:	INEERI	NG GRO	UP	Calcula Date: <u>C</u> Checke	<u>)ctober</u> ed By: <u>L</u>	<u>29, 201</u> eonard							Project Design	o: <u>100.08</u> :: <u>Ponde</u> : Storm:	rosa at	ear Eve		-			
	Ħ				ect Rur	noff				Total	Runoff		St	reet		Pipe	1	T	ravel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	to	CA		Ø	tc	Σ (CA)		a	Slope	Street		Slope	Pipe Size	Length	Velocity	tt	Remarks
		A	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	J
C1			0.13	0.89	5.0	0.12	8.68	1.0													
C2			0.25	0.89	5.0	0.22	8.68	1.9													
C1-C2	6	0.38							5.0	0.34	8.68	2.9									
C3			0.93	0.89	5.7	0.83	8.36	6.9													
C4			0.81	0.89	5.9	0.72	8.25	5.9													
C3-C4	7	1.74							5.9	1.55	8.25	12.8									
C1-C4	8	2.12							5.9	1.89	8.25	15.6									
C5			0.15	0.89	5.0	0.13	8.68	1.2													
C6			0.17	0.89	5.0	0.15	8.68	1.3													
C5-C6	9	0.32							5.0	0.28	8.68	2.5									
C7			0.24	0.89	5.0	0.21	8.68	1.9													
C5-C7	10	0.56							5.0	0.50	8.68	4.3									
C8			0.22	0.89	5.0	0.20	8.68	1.7													
C5-C8	11	0.78							5.0	0.69	8.68	6.0									
C1-C8	12	2.90							5.9	2.58	8.25	21.3									
C9			0.61	0.89	5.0	0.54	8.68	4.7													

ENG.		NG GRO	UP	Date: C Checke	<u>)ctober</u> ed By: <u>L</u>	<u>29, 201</u> eonard	<u>d Beasl</u> 9 Beasley	-					Project Design	Storm:		ear Eve	Ranch	-			
	Ę				ect Rur	noff				Total	Runoff		St	reet		Pipe		Ti	avel Tim	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		a	tc	Σ (CA)		a	Slope	Street Flow		Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ā	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C10			0.43	0.89	5.0	0.38	8.68	3.3													
C9-C10	13	1.04							6.6	0.93	7.97	7.4									<u> </u>
C11			0.67	0.89	6.0	0.60	8.21	4.9													
C9-C11	14	1.71							6.6	1.52	7.97	12.1									
C12			0.22	0.89	5.0	0.20	8.68	1.7													
C13			0.17	0.89	5.0	0.15	8.68	1.3													
C14			0.45	0.89	5.7	0.40	8.36	3.3													
C15			0.11	0.89	5.0	0.10	8.68	0.8													
C13-C15	15	0.73							5.7	0.65	8.36	5.4									
С		5.43							8.0	4.95	7.51	37.1									
D			2.93	0.48	15.4	1.41	5.85	8.2													
					<u> </u>																

Standard Form SF-1. Time of Concentration-Proposed

Calculated By: <u>Leonard Beasley</u> Date: <u>October 29, 2019</u> Job No: <u>100.050</u> Project: <u>Ponderosa at Lorson Ranch Filing No. 3</u>

	Sub-Ba	sin Data		Ini	tial Overla			<u>+</u>	Tr	avel Time ((tt)			(urbanized sins)	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10	USDCM Recommended Tc=Ti+Tt (min)
A1	0.82	0.29	20.0	16.00	1.80%	0.16	1.67	73.00	0.70%	1.67	0.73				
			20.0					110.00	1.00%	2.00	0.92	3.32	199.00	11.11	3.32
A2	0.82	0.62	20.0	17.00	1.70%	0.16	1.76	75.00	1.50%	2.45	0.51				
			20.0					258.00	0.70%	1.67	2.57	4.84	350.00	11.94	4.84
A3	0.82	0.19	8"	2.00	2.00%	0.06	0.57	75.00	1.00%	3.47	0.36				
			8"					184.00	1.00%	3.47	0.88	1.81	184.00	11.02	1.81
A4	0.82	0.18	20.0	20.00	2.00%	0.18	1.81	170.00	0.74%	1.72	1.65	3.45	190.00	11.06	3.45
A5	0.82	0.10	8"	2.00	2.00%	0.06	0.57	15.00	1.00%	3.47	0.07				
			8"					104.00	1.00%	3.47	0.50	1.14	104.00	10.58	1.14
A6	0.82	0.28	20.0	2.00	2.00%	0.06	0.57	22.00	4.00%	4.00	0.09				
			20.0					126.00	1.60%	2.53	0.83	1.49	150.00	10.83	1.49
A7	0.82	0.23	8"	2.00	2.00%	0.06	0.57	36.00	1.00%	3.47	0.17				
			8"					120.00	1.00%	3.47	0.58	1.32	120.00	10.67	1.32
B1	0.90	0.82	20.0	34.00	2.00%	0.34	1.68	698.00	0.88%	1.88	6.20	7.88	732.00	14.07	7.88
B2	0.90	0.49	20.0	10.00	2.00%	0.18	0.91	507.00	0.92%	1.92	4.40	5.31	517.00	12.87	5.31
В	0.90	1.31	20.0	34.00	2.00%	0.34	1.68	1040.00	0.88%	1.88	9.24	10.91	1074.00	15.97	10.91

CORE ENGINEERING GROUP

Standard Form SF-1. Time of Concentration-Proposed

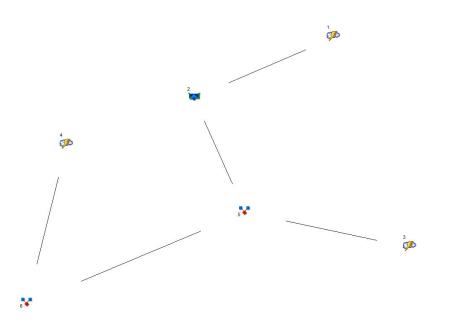
Calculated By: <u>Leonard Beasley</u> Date: <u>October 29, 2019</u> Job No: <u>100.050</u> Project: <u>Ponderosa at Lorson Ranch Filing No. 3</u>

	Sub-Ba	sin Data		Ini	tial Overla				Tr	avel Time ((t t)			(urbanized sins)	Final tc
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	Т t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C1	0.82	0.13	8"	2.00	2.00%	0.06	0.57	10.00	0.50%	2.46	0.07				
			12"					150.00	0.50%	3.21	0.78	1.42	150.00	10.83	1.42
C2	0.82	0.25	8"	2.00	2.00%	0.06	0.57	23.00	0.50%	2.46	0.16				
			12"					378.00	0.50%	3.21	1.96	2.69	378.00	12.10	2.69
C1-C2	0.82	0.38	8"	2.00	2.00%	0.06	0.57	10.00	0.50%	2.46	0.07				
			12"					620.00	0.50%	3.21	3.22	3.86	620.00	13.44	3.86
C3	0.82	0.93	20.0	7.00	2.00%	0.11	1.07	83.00	1.00%	2.00	0.69				
			20.0					484.00	1.06%	2.06	3.92	5.68	574.00	13.19	5.68
C4	0.82	0.81	20.0	17.00	2.00%	0.17	1.66	73.00	1.04%	2.04	0.60				
			20.0					441.00	1.00%	2.00	3.68	5.94	531.00	12.95	5.94
C3-C4	0.82	0.81	20.0	17.00	2.00%	0.17	1.66	73.00	1.04%	2.04	0.60				
			20.0					471.00	1.00%	2.00	3.93	6.19	561.00	13.12	6.19
C5	0.82	0.15	8"	2.00	2.00%	0.06	0.57	14.00	0.50%	2.46	0.09				
			12"					85.00	0.50%	3.21	0.44	1.11	85.00	10.47	1.11
C6	0.82	0.17	8"	2.00	2.00%	0.06	0.57	23.00	0.50%	2.46	0.16	0.73	25.00	10.14	0.73
C7	0.82	0.24	8"	2.00	2.00%	0.06	0.57	114.00	0.50%	2.46	0.77				
			12"					66.00	0.50%	3.21	0.34	1.69	182.00	11.01	1.69

CORE ENGINEERING GROUP

Standard Form SF-1. Time of Concentration-Proposed

Calculated By: <u>Leonard Beasley</u> Date: <u>October 29, 2019</u> Job No: <u>100.050</u> Project: <u>Ponderosa at Lorson Ranch Filing No. 3</u>


	Sub-Ba	sin Data			tial Overla				Tr	avel Time ((tt)			(urbanized sins)	Final tc
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C8	0.82	0.22	8"	2.00	2.00%	0.06	0.57	120.00	0.50%	2.46	0.81				
			12"					77.00	0.50%	3.21	0.40	1.78	77.00	10.43	1.78
C5-C8	0.82	0.78	8"	2.00	2.00%	0.06	0.57	23.00	0.50%	2.46	0.16				
			12"					507.00	0.50%	3.21	2.63	3.36	507.00	12.82	3.36
C9	0.82	0.61	20.0	22.00	2.00%	0.19	1.89	311.00	0.70%	1.67	3.10	4.98	333.00	11.85	4.98
C10	0.82	0.43	20.0	26.00	2.00%	0.21	2.06	93.00	0.60%	1.55	1.00				
			20.0					100.00	0.70%	1.67	1.00	4.06	219.00	11.22	4.06
C9-C10	0.82	1.04	20.0	22.00	2.00%	0.19	1.89	476.00	0.70%	1.67	4.74	6.63	498.00	12.77	6.63
C11	0.82	0.67	20.0	19.00	2.00%	0.18	1.75	512.00	1.00%	2.00	4.27	6.02	531.00	12.95	6.02
C12	0.82	0.22	8"	2.00	2.00%	0.06	0.57	6.00	0.50%	2.46	0.04				
			12"					113.00	0.50%	3.21	0.59	1.20	121.00	10.67	1.20
C13	0.82	0.17	8"	2.00	2.00%	0.06	0.57	6.00	0.50%	2.46	0.04				
			12"					100.00	0.50%	3.21	0.52	1.13	108.00	10.60	1.13
C14	0.82	0.45	20.0	84.00	1.00%	0.30	4.63	154.00	1.50%	2.45	1.05	5.68	238.00	11.32	5.68
C15	0.82	0.11	8"	2.00	2.00%	0.06	0.57	5.00	0.50%	2.46	0.03				
			12"					242.00	0.50%	3.21	1.26	1.86	249.00	11.38	1.86

CORE ENGINEERING GROUP

Standard Form SF-1. Time of Concentration-Proposed

Calculated By: <u>Leonard Beasley</u> Date: <u>October 29, 2019</u> Job No: <u>100.050</u> Project: <u>Ponderosa at Lorson Ranch Filing No. 3</u>

Sub-Basin Data				Initial Overland Time (ti)				Travel Time (tt)					tc Check (urbanized Basins)		Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
С	0.82	5.56	20.0	22.00	2.00%	0.19	1.89	476.00	0.70%	1.67	4.74				
			18"					66.00	0.60%	4.60	0.24				
			24"					35.00	0.60%	5.58	0.10				
			24"					277.00	0.50%	5.09	0.91				
			30"					33.00	0.60%	6.47	0.09	7.96	909.00	15.05	7.96
D	0.15	2.93	15.0	34.00	2.00%	0.07	7.96	934.00	0.88%	1.41	11.06	19.02	968.00	15.38	15.38

<u>Legend</u>

<u>Hyd.</u>	<u>Origin</u>	Description
1	Rational	Pond A4 inflow from Basin A4
2	Reservoir	Pond Outflow A4
3	Rational	old glory road, OS1
4	Rational	Basin EX1
5	Combine	flow from north-Des, Pt A
6	Combine	total flow at design pt. B

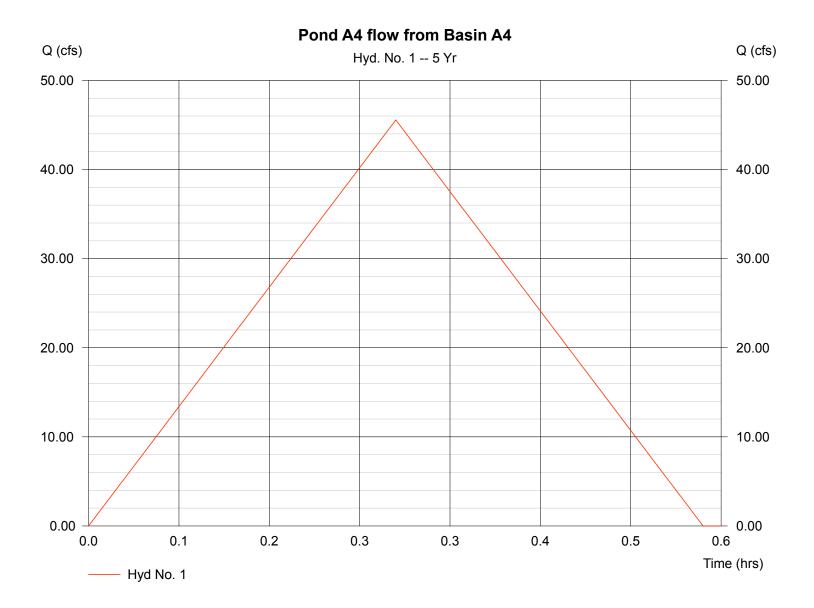
Tuesday, Nov 12 2019, 12:59 PM

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	45.56	1	17	46,473				Pond A4 flow from Basin A4
2	Reservoir	3.585	1	33	46,404	1	5717.69	55,008	Pond Outflow A4
3	Rational	9.950	1	10	5,970				Basin OS1
4	Rational	5.328	1	15	4,796				Basin EX1
5	Combine	10.40	1	10	52,374	2, 3,			Des. Pt A
6	Combine	13.95	1	10	57,169	4, 5			Design Pt. B
100.050pdr-pond-5-asbuilt (1).gpw Return Period: 5 Year Tuesday, Nov 12 2019, 1:05 PM			Nov 12 2019, 1:05 PM						

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	92.16	1	17	94,003				Pond A4 inflow from Basin A4
2	Reservoir	20.47	1	30	82,745	1	5718.54	81,222	Pond Outflow A4
3	Rational	22.29	1	11	14,711				old glory road, OS1
4	Rational	30.35	1	15	27,315				Basin EX1
5	Combine	22.78	1	11	97,456	2, 3,			flow from north-Des, Pt A
6	Combine	46.34	1	15	124,772	4, 5			total flow at design pt. B
100	100.050pdr-pond-100-asbuilt (1).gpw Return Period: 100 Year Tuesday, Nov 12 2019, 12:59 PM				Nov 12 2019. 12:59 PM				


Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

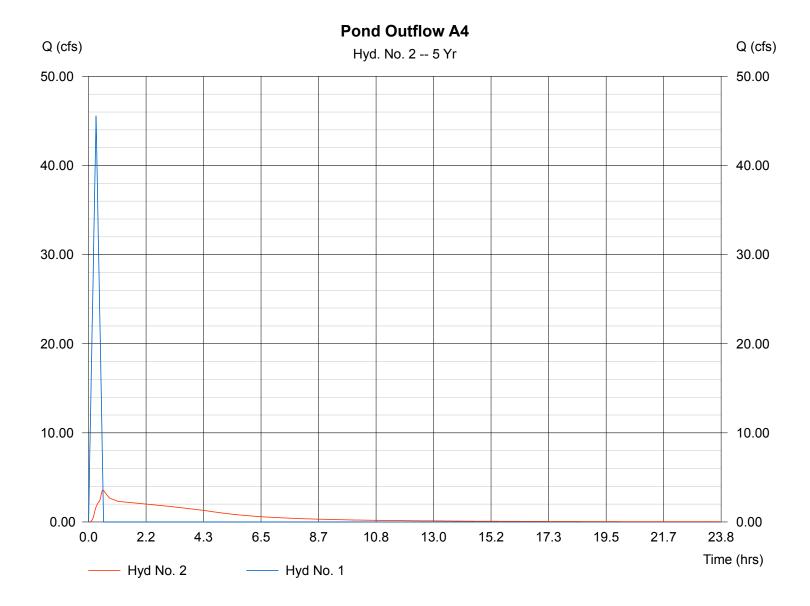
Pond A4 flow from Basin A4

Hydrograph type	= Rational	Peak discharge	= 45.56 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Drainage area	= 21.140 ac	Runoff coeff.	= 0.66
Intensity	= 3.266 in/hr	Tc by User	= 17.00 min
IDF Curve	= Colorado Springs - El Paso County.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 46,473 cuft

1

Hydraflow Hydrographs by Intelisolve

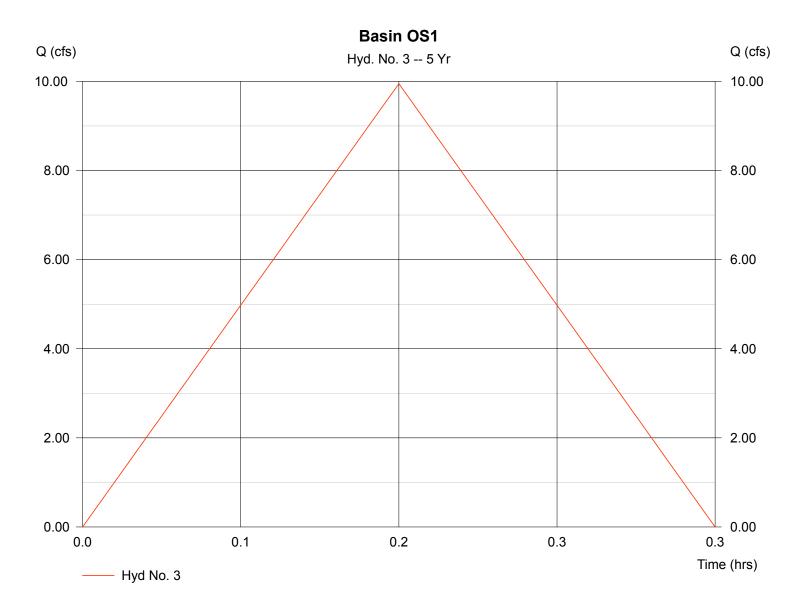

Hyd. No. 2

Pond Outflow A4

Hydrograph type	= Reservoir	Peak discharge	= 3.585 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Inflow hyd. No.	= 1	Max. Elevation	= 5717.69 ft
Reservoir name	= Pond A4	Max. Storage	= 55,008 cuft

Storage Indication method used. Wet pond routing start elevation = 5716.00 ft.

Hydrograph Volume = 46,404 cuft

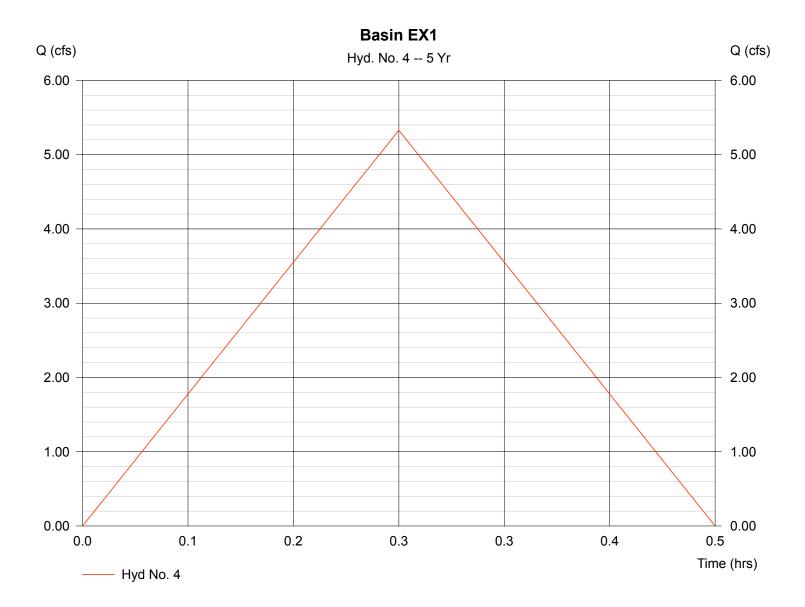

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

Basin OS1

Hydrograph type	= Rational	Peak discharge	= 9.950 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Drainage area	= 4.950 ac	Runoff coeff.	= 0.49
Intensity	= 4.102 in/hr	Tc by User	= 10.00 min
IDF Curve	= Colorado Springs - El Paso County.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 5,970 cuft

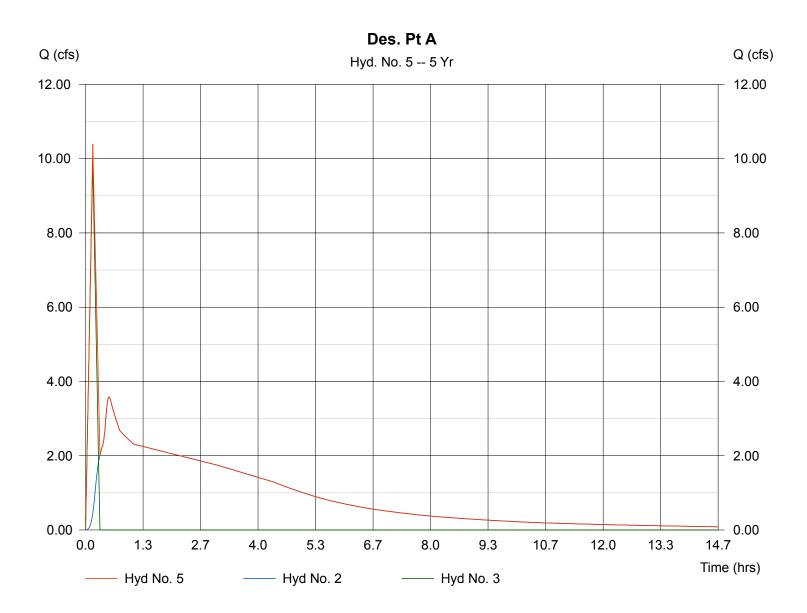

Hydraflow Hydrographs by Intelisolve

Hyd. No. 4

Basin EX1

Hydrograph type	= Rational	Peak discharge	= 5.328 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Drainage area	= 10.260 ac	Runoff coeff.	= 0.15
Intensity	= 3.462 in/hr	Tc by User	= 15.00 min
IDF Curve	= Colorado Springs - El Paso County.IDF	Asc/Rec limb fact	= 1/1

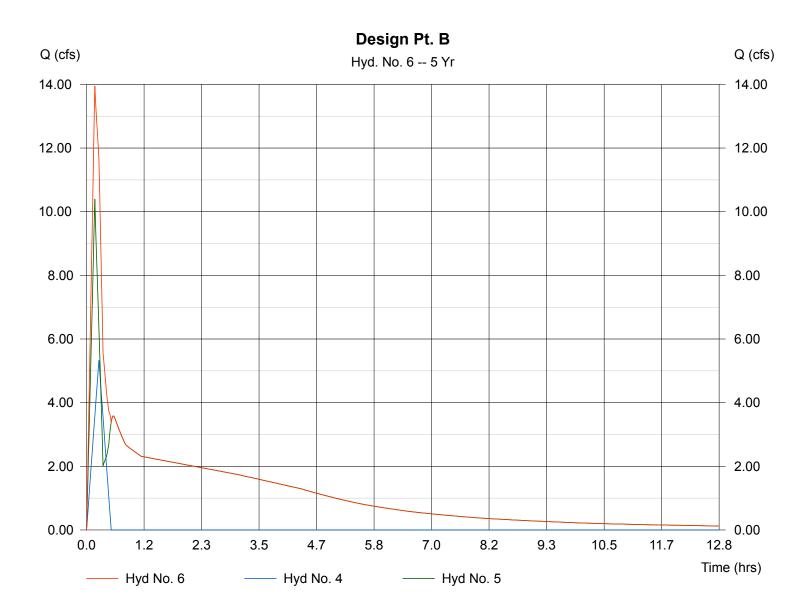
Hydrograph Volume = 4,796 cuft


4

Hydraflow Hydrographs by Intelisolve

Hyd. No. 5

Des. Pt A

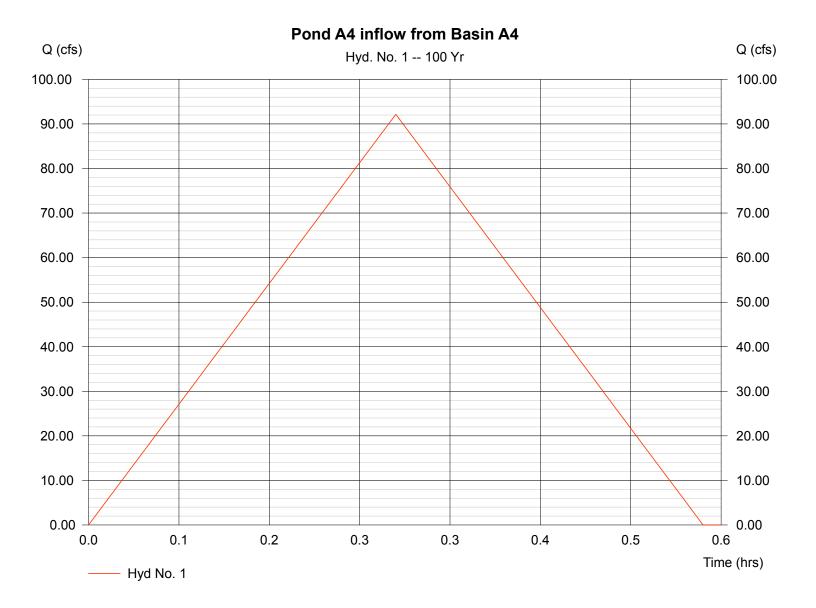

Hydraflow Hydrographs by Intelisolve

Hyd. No. 6

Design Pt. B

Hydrograph type	= Combine	Peak discharge	= 13.95 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Inflow hyds.	= 4, 5		

Hydrograph Volume = 57,169 cuft


Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

Pond A4 inflow from Basin A4

Hydrograph type	= Rational	Peak discharge	= 92.16 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Drainage area	= 21.140 ac	Runoff coeff.	= 0.75
Intensity	= 5.813 in/hr	Tc by User	= 17.00 min
IDF Curve	 Colorado Springs - El Paso County.IDF 	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 94,003 cuft

1

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

Pond Outflow A4

Hydrograph type	= Reservoir	Peak discharge	= 20.47 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Inflow hyd. No.	= 1	Max. Elevation	= 5718.54 ft
Reservoir name	= Pond A4	Max. Storage	= 81,222 cuft

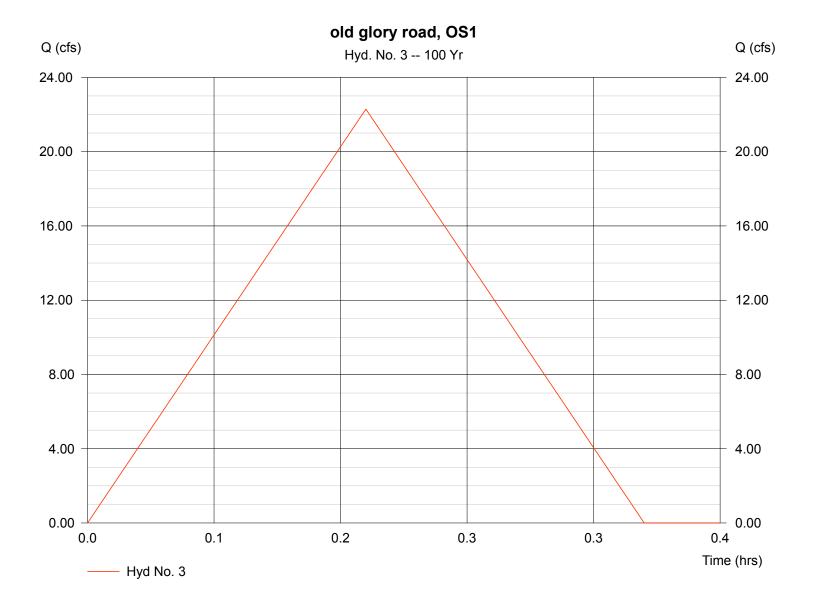
Pond Outflow A4

Storage Indication method used. Wet pond routing start elevation = 5715.30 ft.

j · · · ,___ · · · · ·

Hydrograph Volume = 82,745 cuft

Q (cfs) Q (cfs) Hyd. No. 2 -- 100 Yr 100.00 100.00 90.00 90.00 80.00 80.00 70.00 70.00 60.00 60.00 50.00 50.00 40.00 40.00 30.00 30.00 20.00 20.00 10.00 10.00 0.00 0.00 0.0 1.2 2.3 3.5 4.7 5.8 7.0 8.2 9.3 10.5 11.7 Time (hrs) Hyd No. 2 Hyd No. 1

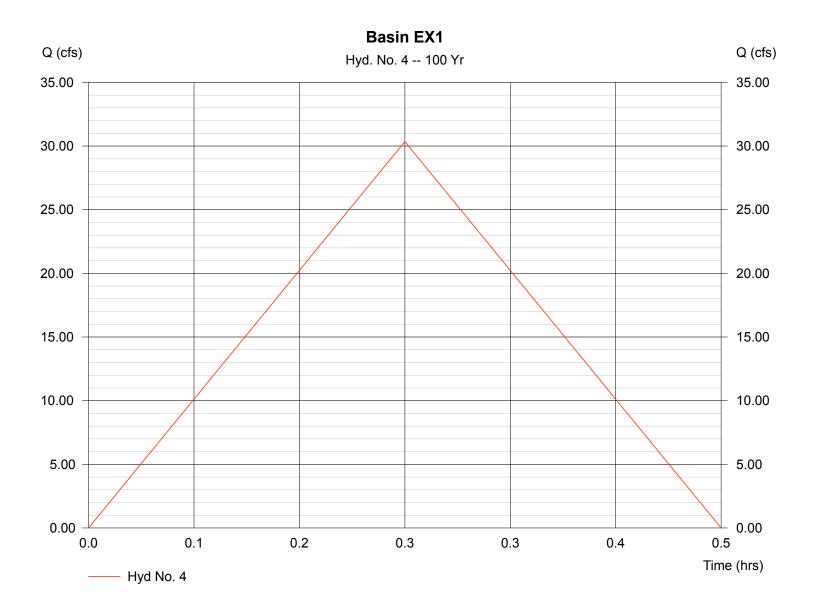

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

old glory road, OS1

Hydrograph type	= Rational	Peak discharge	= 22.29 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Drainage area	= 4.950 ac	Runoff coeff.	= 0.64
Intensity	= 7.036 in/hr	Tc by User	= 11.00 min
IDF Curve	= Colorado Springs - El Paso County.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 14,711 cuft


Hydraflow Hydrographs by Intelisolve

Hyd. No. 4

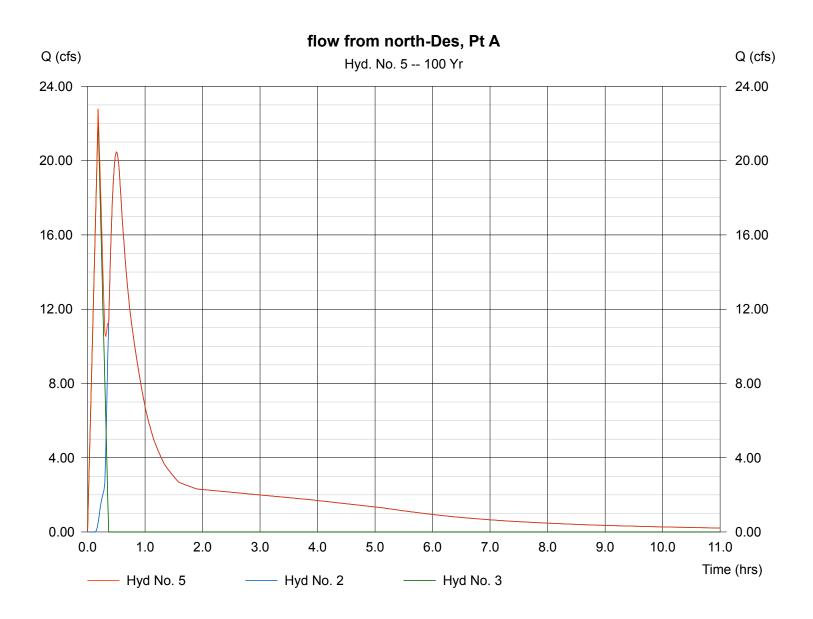
Basin EX1

Hydrograph type	= Rational	Peak discharge	= 30.35 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Drainage area	= 10.260 ac	Runoff coeff.	= 0.48
Intensity	= 6.163 in/hr	Tc by User	= 15.00 min
IDF Curve	= Colorado Springs - El Paso County.IDF	Asc/Rec limb fact	

Hydrograph Volume = 27,315 cuft

4

Hydraflow Hydrographs by Intelisolve


Hyd. No. 5

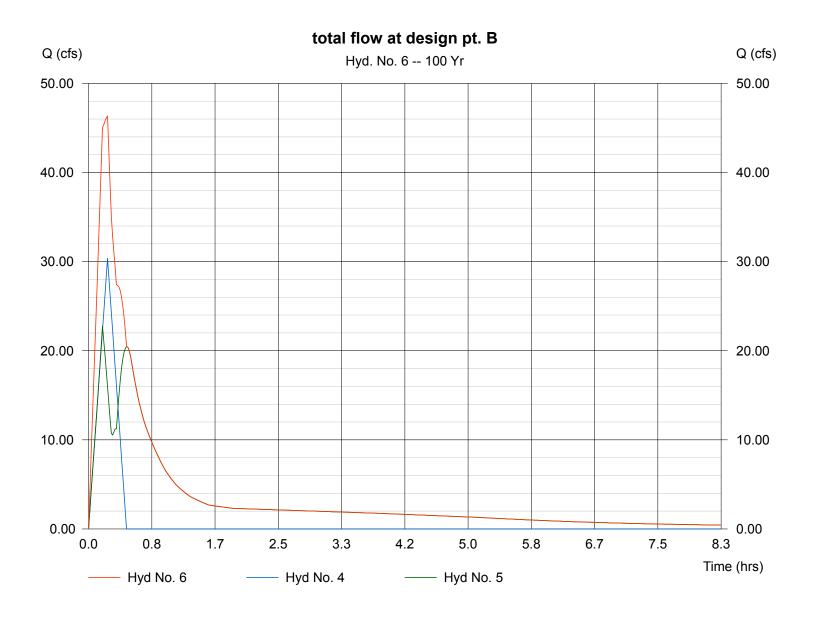
flow from north-Des, Pt A

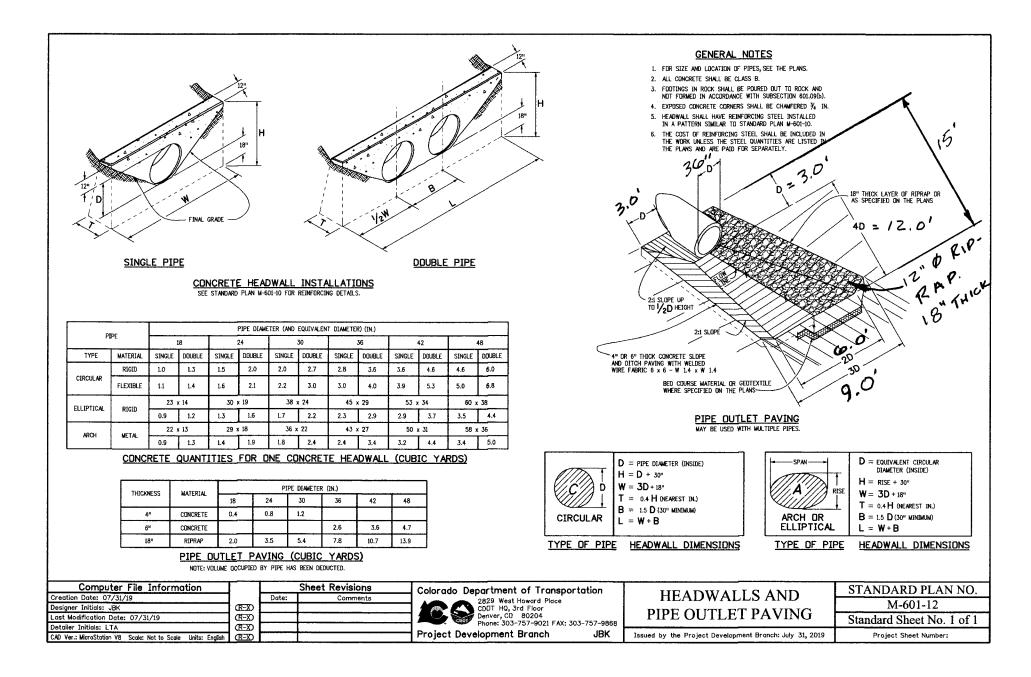
Hydrograph type	= Combine
Storm frequency	= 100 yrs
Inflow hyds.	= 2, 3

Peak discharge = 22.78 cfs Time interval = 1 min

Hydrograph Volume = 97,456 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 6


total flow at design pt. B

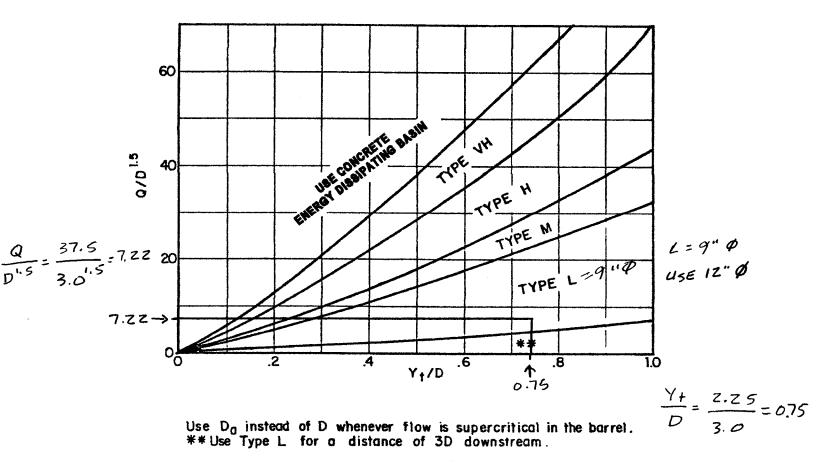
Hydrograph type	= Combine
Storm frequency	= 100 yrs
Inflow hyds.	= 4, 5

Peak discharge = 46.34 cfs Time interval = 1 min

Hydrograph Volume = 124,772 cuft

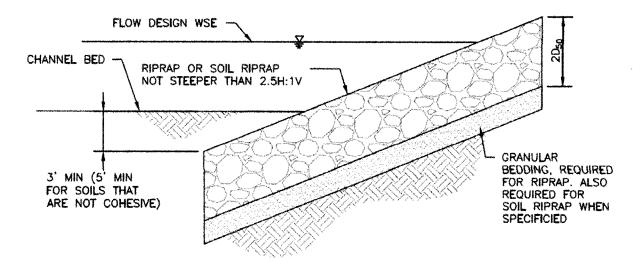
$$H_a = \frac{(H+Y_n)}{2}$$
 Equation 9-19

Where the maximum value of H_a shall not exceed H, and:

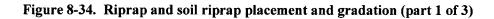

 D_a = parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)

 D_c = diameter of circular culvert (ft)

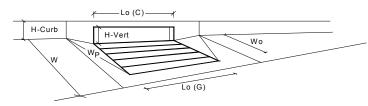
 H_a = parameter to use in place of H in Figure 9-39 when flow is supercritical (ft)


H = height of rectangular culvert (ft)

 Y_n = normal depth of supercritical flow in the culvert (ft)

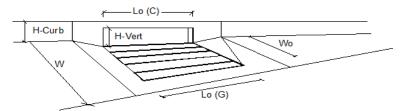


September 2017


RIPRAP DESIGNATION	% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION (INCHES)	D ₅₀ * (INCHES)
TYPE VL	$70 - 100 \\ 50 - 70 \\ 35 - 50 \\ 2 - 10$	12 9 6 2	6
TYPE L	$70 - 100 \\ 50 - 70 \\ 35 - 50 \\ 2 - 10$	15 12 9 3	9
TYPE M	$70 - 100 \\ 50 - 70 \\ 35 - 50 \\ 2 - 10$	21 18 12 4	12
түре н	$70 - 100 \\ 50 - 70 \\ 35 - 50 \\ 2 - 10$	30 24 18 6	18
*D ₅₀ = MEAN ROCK SIZ	E	Lanu,	

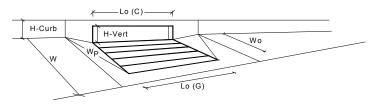
INLET IN A SUMP OR SAG LOCATION

INLET 1

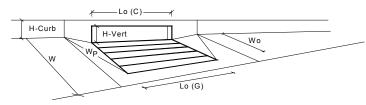


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	4.9	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.16	0.24	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.51	0.63	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	1.8	3.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.8	3.3	cfs

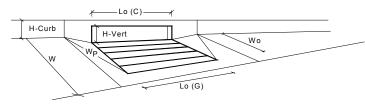
INLET ON A CONTINUOUS GRADE


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	ר ר
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	w. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	- ⁻
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'	-1-	MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	7.0	12.8	cfs
Water Spread Width	0 T =	14.0	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	4.9	5.8	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.2	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.424	0.332	
Discharge outside the Gutter Section W, carried in Section T_x	 Q _x =	4.0	8.6	cfs
Discharge within the Gutter Section W	Q _w =	3.0	4.2	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.65	0.80	sq ft
Velocity within the Gutter Section W	Aw = Vw =	4.6	5.3	fps
Water Depth for Design Condition		7.9	8.8	inches
	d _{LOCAL} =	MINOR		linches
Grate Analysis (Calculated)			MAJOR	
Total Length of Inlet Grate Opening	L=	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{0-GRATE} =	N/A	N/A	1
Under No-Clogging Condition		MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	· · · · · · · · · · · · · · · · · ·
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	_	MINOR	MAJOR	_
Equivalent Slope Se (based on grate carry-over)	S _e =	0.100	0.082	ft/ft
Required Length L _T to Have 100% Interception	L _T =	14.93	22.18	ft
Under No-Clogging Condition		MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	Qi =	6.0	8.4	cfs
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	٦
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	1
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	5.9	8.1	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	1.1	4.7	cfs
Summary	- U~	MINOR	MAJOR	1
Total Inlet Interception Capacity	Q =	5.9	8.1	cfs
i otar mier merception Gapacity	Q -	5.5		015
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.1	4.7	cfs

INLET IN A SUMP OR SAG LOCATION

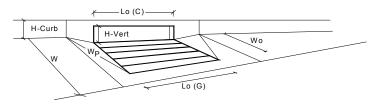

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.3	3.9	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.11	0.16	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	0.50	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.97	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	0.9	1.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.9	1.7	cfs

INLET IN A SUMP OR SAG LOCATION

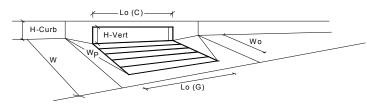

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.32	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00]
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.7	4.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.7	4.9	cfs

INLET IN A SUMP OR SAG LOCATION

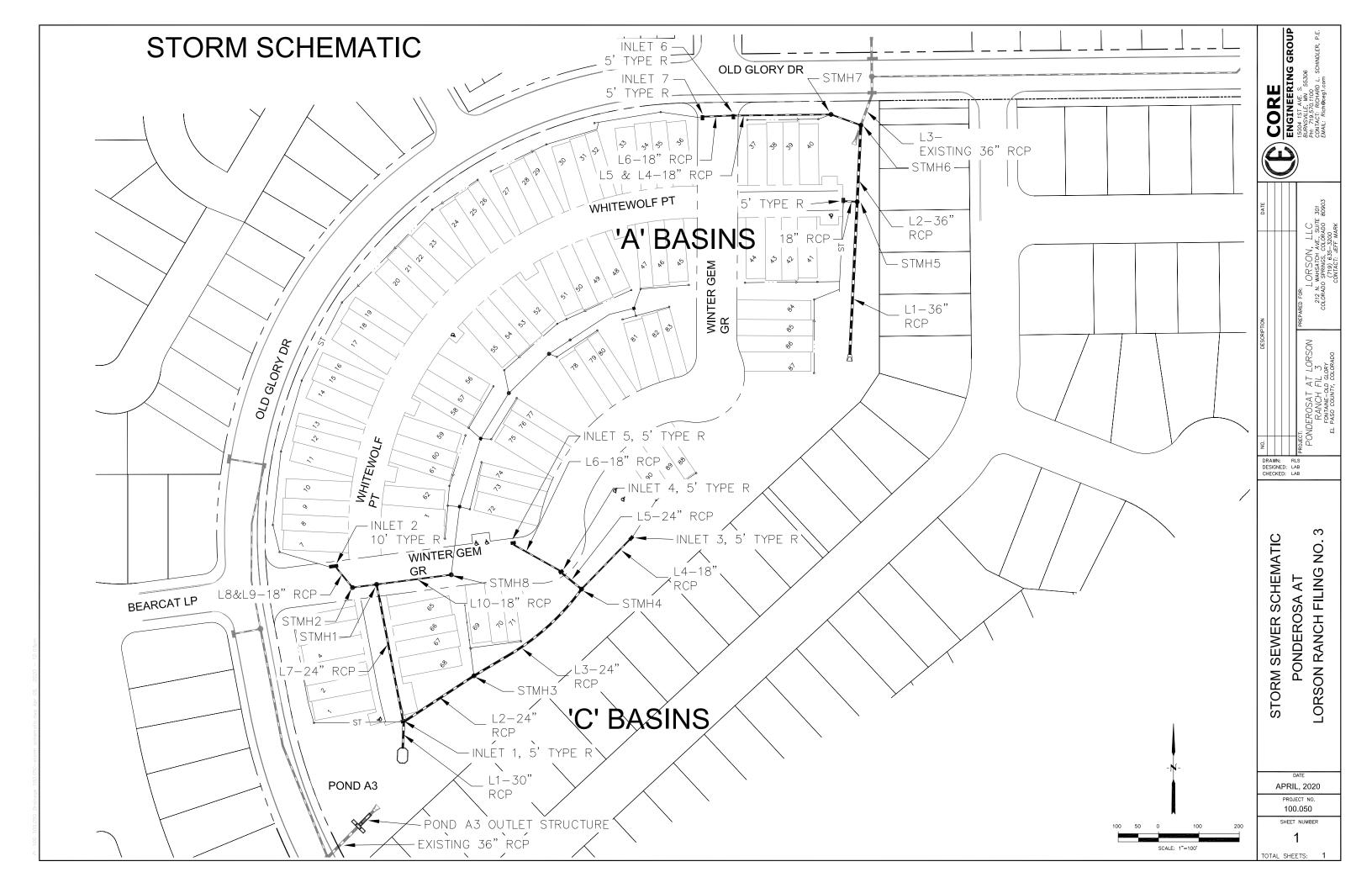
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.3	7.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.28	0.41	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.68	0.89	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.0	7.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.0	7.4	cfs


INLET IN A SUMP OR SAG LOCATION

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.2	3.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.10	0.14	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.41	0.47	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.95	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	0.8	1.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.8	1.4	cfs



INLET IN A SUMP OR SAG LOCATION



Design Information (Input)			MINOR	MAJOR	
Type of Inlet		Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depres	sion 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)		No =	1	1	
Water Depth at Flowline (outside of local depression)		Ponding Depth =	5.3	6.8	inches
Grate Information			MINOR	MAJOR	✓ Override
Length of a Unit Grate		L _o (G) =	N/A	N/A	feet
Width of a Unit Grate		W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90))	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0	.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)		C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)		C ₀ (G) =	N/A	N/A	
Curb Opening Information		_	MINOR	MAJOR	
Length of a Unit Curb Opening		L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches		H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches		H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)		Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width	of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value	0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)		C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.7	0)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)			MINOR	MAJOR	
Depth for Grate Midwidth		d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation		d _{Curb} =	0.28	0.40	ft
Combination Inlet Performance Reduction Factor for Lon	g Inlets	RF _{Combination} =	0.68	0.87	
Curb Opening Performance Reduction Factor for Long Ir	lets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inle	S	RF _{Grate} =	N/A	N/A]
		_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes	clogged condition)	Q _a =	4.0	7.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(Q PEAK)	Q PEAK REQUIRED =	3.9	7.0	cfs

INLET IN A SUMP OR SAG LOCATION

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.5	4.2	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.13	0.19	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.45	0.54	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.99	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	1.2	2.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.2	2.2	cfs

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1, 197.4, 36"@0.50	18.50	36 c	197.0	5712.25	5713.24	0.503	5713.73	5714.61	n/a	5714.61 j	Enc
2	L2- 94.9, 36"@0.50%	16.30	36 c	94.9	5713.24	5713.71	0.495	5715.07	5715.06	0.42	5715.47	1
3	L3, 40.6, 36"@0.33%	10.40	36 c	40.6	5713.71	5713.84	0.320	5715.83	5715.84	0.07	5715.91	2
4	L4, 39.4, 18"@0.50%	5.90	18 c	39.4	5715.21	5715.41	0.508	5716.21	5716.41	0.14	5716.55	2
5	L5-123.1, 18"@0.50	5.50	18 c	123.1	5715.41	5716.02	0.495	5716.74	5717.04	0.14	5717.18	4
6	L6-34', 18"@0.50%	4.70	18 c	34.0	5716.02	5716.19	0.500	5717.28	5717.32	0.17	5717.49	5
Projec	t File: 100.050 Basin A,	5yr flow.st	m				Nur	mber of line	s: 6	Run	Date: 11-12	-2019

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1, 197.4, 36"@0.50	37.70	36 c	197.0	5712.25	5713.24	0.503	5714.50	5715.21	n/a	5715.34 j	End
2	L2- 94.9, 36"@0.50%	33.70	36 c	94.9	5713.24	5713.71	0.495	5715.91	5716.04	0.38	5716.42	1
3	L3, 40.6, 36"@0.33%	23.00	36 c	40.6	5713.71	5713.84	0.320	5716.75	5716.80	0.08	5716.88	2
4	L4, 39.4, 18"@0.50%	10.70	18 c	39.4	5715.21	5715.41	0.508	5716.71*	5717.12*	0.23	5717.35	2
5	L5-123.1, 18"@0.50	9.90	18 c	123.1	5715.41	5716.02	0.495	5717.43*	5718.52*	0.24	5718.77	4
6	L6-34', 18"@0.50%	8.50	18 c	34.0	5716.02	5716.19	0.500	5718.90*	5719.12*	0.18	5719.30	5
Proiec	t File: 100.050 Basin A,	100vr flow	.stm				Nun	nber of line:	s: 6	Run I	Date: 11-12	-2019

1 2 3 4 5 6	L1, 30"RCP@0.60% L2, 24"RCP@0.50% L3, 24"RCP@0.50% L4, 18"RCP@0.60% L5, 24"RCP@0.60%	21.40 8.30 7.60	30 c 24 c	32.5	5709.00							
3 4 5	L3, 24"RCP@0.50% L4, 18"RCP@0.60%	7.60		101.0		5709.20	0.616	5711.05	5711.08	0.23	5711.30	End
4 5	L4, 18"RCP@0.60%		_	104.6	5709.50	5710.02	0.497	5711.60	5711.71	0.02	5711.73	1
5	_		24 c	172.7	5710.12	5710.99	0.504	5711.78	5712.01	0.26	5712.27	2
	L5, 24"RCP@0.60%	0.90	18 c	88.3	5711.49	5712.02	0.600	5712.58	5712.59	0.02	5712.60	3
6		6.70	24 c	34.9	5711.09	5711.30	0.601	5712.37	5712.36	0.12	5712.48	3
	L6, 18"RCP@1.00%	4.00	18 c	66.3	5711.80	5712.46	0.996	5712.65	5713.22	n/a	5713.22 j	5
7	L7, 24"RCP@0.80%	10.80	24 c	173.6	5709.50	5710.89	0.801	5711.58	5712.05	n/a	5712.05 j	1
3	L8, 18"RCP@0.90%	7.50	18 c	42.7	5711.38	5711.76	0.889	5712.36	5712.81	0.25	5713.06	7
9	L9, 18"RCP@0.90%	7.50	18 c	27.0	5711.86	5712.10	0.890	5713.28	5713.34	0.18	5713.52	8
10	L10, 18"@0.60%	3.30	18 c	93.2	5711.38	5711.94	0.601	5712.50	5712.64	n/a	5712.69 j	7
	File: 100.050 Basin C,							nber of line:			Date: 11-12	

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn line No
1	L1, 30"RCP@0.60%	36.40	30 c	32.5	5709.00	5709.20	0.616	5711.05	5711.45	0.48	5711.92	En
2	L2, 24"RCP@0.50%	15.30	24 c	104.6	5709.50	5710.02	0.497	5712.51*	5712.99*	0.06	5713.04	1
3	L3, 24"RCP@0.50%	14.00	24 c	172.7	5710.12	5710.99	0.504	5713.10*	5713.76*	0.23	5714.00	2
4	L4, 18"RCP@0.60%	1.70	18 c	88.3	5711.49	5712.02	0.600	5714.29*	5714.31*	0.01	5714.32	3
5	L5, 24"RCP@0.60%	12.30	24 c	34.9	5711.09	5711.30	0.601	5714.07*	5714.17*	0.12	5714.29	3
6	L6, 18"RCP@1.00%	7.40	18 c	66.3	5711.80	5712.46	0.996	5714.29*	5714.62*	0.14	5714.75	5
7	L7, 24"RCP@0.80%	17.00	24 c	173.6	5709.50	5710.89	0.801	5712.42*	5713.40*	0.23	5713.63	1
3	L8, 18"RCP@0.90%	11.00	18 c	42.7	5711.38	5711.76	0.889	5713.63*	5714.10*	0.30	5714.40	7
9	L9, 18"RCP@0.90%	11.00	18 c	27.0	5711.86	5712.10	0.890	5714.40*	5714.70*	0.30	5715.00	8
10	L10, 18"@0.60%	6.00	18 c	93.2	5711.38	5711.94	0.601	5713.91*	5714.21*	0.04	5714.25	7
rojec	t File: 100.050 Basin C,	, 100yr flow	(1).stm				Nun	nber of lines	s: 10	Run I	Date: 11-12	-201

Weir Report

Hydraflow Express by Intelisolve

forebay weir

Rectangular Weir Highlighted Crest = Sharp Depth (ft) Bottom Length (ft) = 6.00 Q (cfs) Total Depth (ft) = 0.25 Area (sqft) Velocity (ft/s) Calculations Top Width (ft) Weir Coeff. Cw = 3.33 Compute by: Known Depth Known Depth (ft) = 0.25

Initial Flow = 2.01 cfs opening meets design criteria

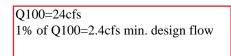
Depth (ft) forebay weir Depth (ft) 1.00 -1.00 0.50 -- 0.50 0.00 -- 0.00 -0.50 -0.50 2 6 7 8 0 1 3 4 5 - Weir – W.S. Length (ft)

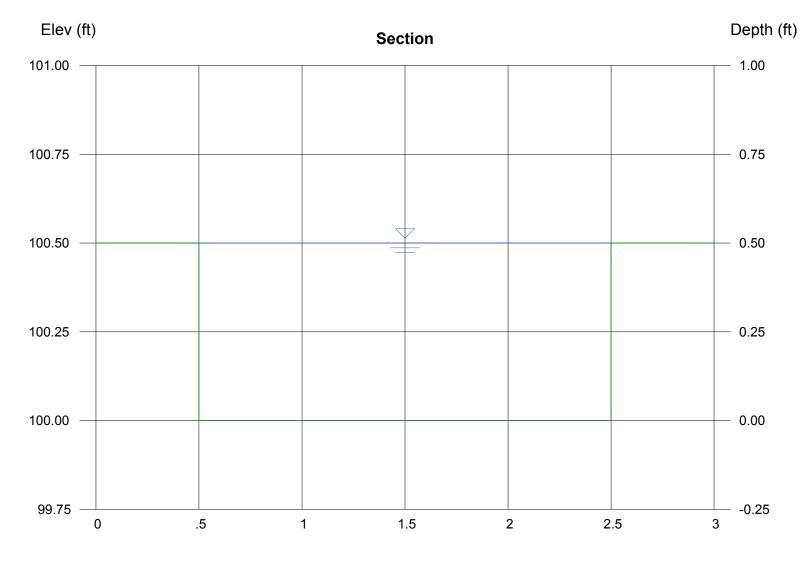
Thursday, Oct 24 2019, 10:13 AM

= 0.25 = 2.498 = 1.50 = 1.67 = 6.00

Channel Report

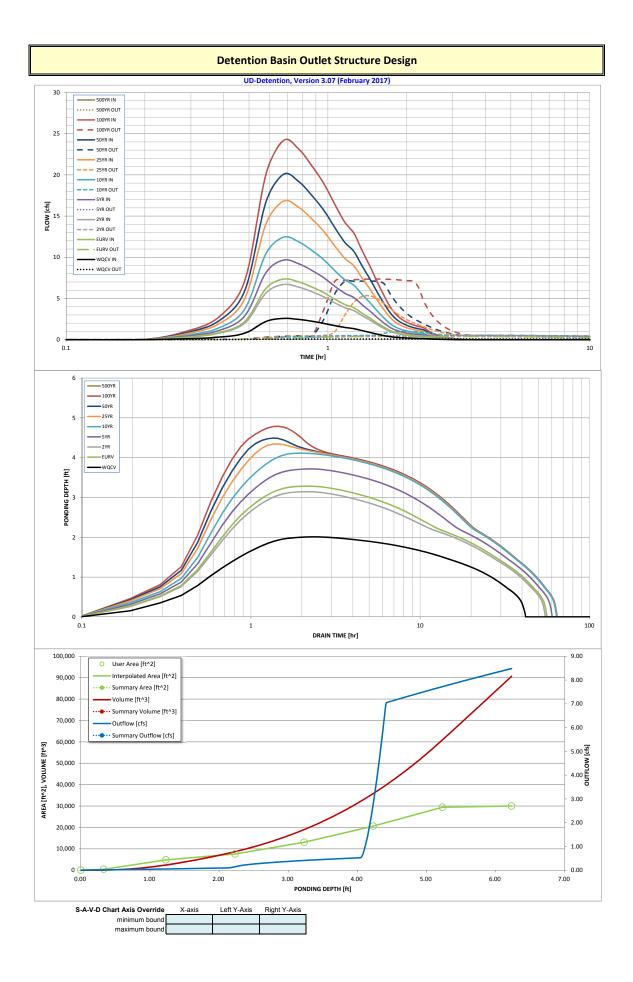
Hydraflow Express by Intelisolve


Thursday, Oct 24 2019, 10:22 AM


Pond A3 low flow channel

Rectangular

Rectangular		Highlighted	
Botom Width (ft)	= 2.00	Depth (ft)	= 0.50
Total Depth (ft)	= 0.50	Q (cfs)	= 3.884
		Area (sqft)	= 1.00
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.88
Slope (%)	= 0.50	Wetted Perim (ft)	= 3.00
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.49
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 0.73


Compute by: Known Depth (ft) Known Depth = 0.50

DETENTION BASIN STAGE-STORAGE TABLE BUILDER													
				ention, Version 3			-						
Project:													
Basin ID:													
	ONE 1	1											
VOLUME EURY Wacy		K.		ſ		1							
	1 AND 2	ORIFIC		Depth Increment =		ft Optional				Optional			
POOL Example Zone	Configura	tion (Rete	ntion Pond)	Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft'2)	Override Area (ft/2)	Area (acre)	Volume (ft/3)	Volume (ac-ft)
Required Volume Calculation Selected BMP Type =	EDB	1		Top of Micropool 5708.1		0.00				20 450	0.000	73	0.002
Watershed Area =	10.10	acres		5709		1.23				4,829	0.111	2,405	0.055
Watershed Length =	1,000	ft		5710 5711	-	2.23 3.23			-	7,607 13,064	0.175	8,671 19,007	0.199
Watershed Slope = Watershed Imperviousness =	0.010 52.00%	ft/ft percent		5712	-	4.23	-		-	20,628	0.474	35,853	0.438
Percentage Hydrologic Soil Group A = Percentage Hydrologic Soil Group B =	0.0%	percent percent		5713 5714		5.23 6.23	1 1		-	29,434 30,000	0.676	60,883 90,600	1.398 2.080
Percentage Hydrologic Soil Groups C/D =	78.0%	percent		5/14	-	0.23	-		-	30,000	0.009	90,000	2.000
Desired WQCV Drain Time = Location for 1-hr Rainfall Depths =	40.0	hours			-		-	-					
Water Quality Capture Volume (WQCV) =		acre-feet	Optional User Override		-		-		-				
Excess Urban Runoff Volume (EURV) = 2-yr Runoff Volume (P1 = 1.19 in.) =	0.513 0.467	acre-feet acre-feet	1-hr Precipitation 1.19 inches				1 1						
5-yr Runoff Volume (P1 = 1.5 in.) =	0.467	acre-feet	1.50 inches		-		-		-				
10-yr Runoff Volume (P1 = 1.75 in.) = 25-yr Runoff Volume (P1 = 2 in.) =	0.872	acre-feet	1.75 inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	1.184 1.416	acre-feet acre-feet	2.00 inches 2.25 inches		-		1 1						
100-yr Runoff Volume (P1 = 2.52 in.) = 500-yr Runoff Volume (P1 = 0 in.) =	1.710	acre-feet	2.52 inches										
Approximate 2-yr Detention Volume =	0.000	acre-feet acre-feet	inches				1 1				<u> </u>		
Approximate 5-yr Detention Volume =	0.637	acre-feet											
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =	0.748	acre-feet acre-feet			-		-						+
Approximate 50-yr Detention Volume =	0.840	acre-feet					-						
Approximate 100-yr Detention Volume =	0.946	acre-feet						-					
Stage-Storage Calculation	-	n			-		-		-				
Zone 1 Volume (WQCV) = Zone 2 Volume (EURV - Zone 1) =	0.178	acre-feet acre-feet						-	-				
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	0.522	acre-feet			-		-		-				
Total Detention Basin Volume = Initial Surcharge Volume (ISV) =	1.035 user	acre-feet ft/3						-	-				
Initial Surcharge Depth (ISD) =	user	ft							-				
Total Available Detention Depth (H _{total}) = Depth of Trickle Channel (H _{TC}) =	user	ft			-		-	-	-				
Slope of Trickle Channel (STC) =	user	ft/ft							-				
Slopes of Main Basin Sides (S _{main}) = Basin Length-to-Width Ratio (R _{L/W}) =	user	H:V			-		-	-	-				
		- -			-		-		-				
Initial Surcharge Area (A _{ISV}) = Surcharge Volume Length (L _{ISV}) =	user	ft*2			-		-	-	-				
Surcharge Volume Width (W _{ISV}) =	user	ft			-		-		-				
Depth of Basin Floor (H_{FLOOR}) = Length of Basin Floor (L_{FLOOR}) =	user	ft ft							-				
Width of Basin Floor (W _{FLOOR}) =	user	ft			-		-		-				
Area of Basin Floor (A _{FLOOR}) = Volume of Basin Floor (V _{FLOOR}) =	user	ft*2 ft*3						-	-				
Depth of Main Basin (H _{MAIN}) =	user	ft			-		-		-				
Length of Main Basin (L _{MAIN}) = Width of Main Basin (W _{MAIN}) =	user	ft						-	-				
Area of Main Basin (A _{MAIN}) =	user	ft*2			-		-		-				
Volume of Main Basin (V _{MAN}) = Calculated Total Basin Volume (V _{total}) =	user user	ft/'3 acre-feet							-				<u> </u>
······································							-		-				<u> </u>
							-		-				-
					-				-				
							-		-				
							-		-				
							1 1		-				
					-		-	-	-				
					-				-				
									-				
					-		-		-				
					-		-	-	-				<u> </u>
					-		-	-	-				<u> </u>
							-		-				
							-		-				
					-		-	-	-				<u> </u>
					-		-		-				<u> </u>
					-		-		-				
					-		-		-				
					-				-				
							-		-				<u> </u>
									-				
								-	-		-		+

		Dete	ntion Basin (Dutlet Struct	ure Design				
UD-Detention, Version 3.07 (February 2017)									
Project: Basin ID:									
ZONE 3									
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
100-YR VOLUME EURV WQCV			Zone 1 (WQCV)	2.11	0.178	Orifice Plate	1		
	100-YEA	IR	Zone 2 (EURV)	3.47	0.334	Rectangular Orifice			
ZONE 1 AND 2-	ORIFICE	E				-			
P ENMAGENT	Configuration (Re	etention Pond)	(100+1/2WQCV)	4.65	0.522	Weir&Pipe (Restrict)	l		
ser Input: Orifice at Underdrain Outlet (typically u	-				1.035	Total	ed Parameters for U	adordroin	
Underdrain Orifice Invert Depth =	N/A	ft (distance below th	e filtration media sur	face)	Unde	erdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches		,		ain Orifice Centroid =	N/A	feet	
		-						4	
ser Input: Orifice Plate with one or more orifices of	or Elliptical Slot Weir	(typically used to dra	ain WQCV and/or EU	RV in a sedimentatio	on BMP)	Calcu	lated Parameters for	r Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin b	ottom at Stage = 0 ft)		rifice Area per Row =	5.764E-03	ft²	
Depth at top of Zone using Orifice Plate =	2.11		ottom at Stage = 0 ft)		lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	9.80	inches			Elli	ptical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	0.83	sq. inches (diameter	= 1 inch)			Elliptical Slot Area =	N/A	ft ²	
ser Input: Stage and Total Area of Each Orifice F	Row (numbered from	n lowest to hiahest)							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)	0.00	0.70	1.41]
Orifice Area (sq. inches)	0.83	0.83	0.83						J
									7
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	-
Stage of Orifice Centroid (ft)									-
Orifice Area (sq. inches)									J
User Input: Vertical Orifice (Circ	cular or Rectangular)					Calculater	Parameters for Ver	tical Orifice	
osci input. Vertical office (ent	Zone 2 Rectangular					Calculated	Zone 2 Rectangular	1	1
Invert of Vertical Orifice =	2.11	N/A	ft (relative to basin b	ottom at Stage = 0 fi	.) V	ertical Orifice Area =	0.06	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	3.47	N/A	ft (relative to basin b	ottom at Stage = 0 ft	:) Verti	cal Orifice Centroid =	0.08	N/A	feet
Vertical Orifice Height =	2.00	N/A	· · · · · · ·						
Vertical Office Height -		N/A	inches						
Vertical Orifice Width =	4.10		inches						
Vertical Orifice Width =	4.10								
	4.10 irate (Flat or Sloped)	l 				Calculated	Parameters for Ove	1	1
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G	4.10 irate (Flat or Sloped) Zone 3 Weir	Not Selected	inches	them at $C_{1220} = 0.61$	Height of G		Zone 3 Weir	Not Selected	foot
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho =	4.10 irate (Flat or Sloped) Zone 3 Weir 4.05	Not Selected	inches ft (relative to basin bo	ttom at Stage = 0 ft)		ate Upper Edge, H _t =	Zone 3 Weir 4.05	Not Selected	feet
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G	4.10 irate (Flat or Sloped) Zone 3 Weir	Not Selected N/A N/A	inches		Over Flow	ate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir	Not Selected N/A N/A	feet feet should be ≥ 4
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	4.10 irate (Flat or Sloped) Zone 3 Weir 4.05 3.00	Not Selected N/A N/A	inches ft (relative to basin bo feet		Over Flow Grate Open Area /	ate Upper Edge, H _t =	Zone 3 Weir 4.05 3.00	Not Selected	feet
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	4.10 irate (Flat or Sloped) Zone 3 Weir 4.05 3.00 0.00	Not Selected N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fl	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 4.05 3.00 9.89	Not Selected N/A N/A N/A	feet should be <u>></u> 4
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	4.10 irate (Flat or Sloped) Zone 3 Weir 4.05 3.00 0.00 3.00	Not Selected N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 4.05 3.00 9.89 7.20	Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ²
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	4.10 irate (Flat or Sloped) Zone 3 Weir 4.05 3.00 0.00 3.00 80% 50%	Not Selected N/A N/A N/A N/A N/A	inches ft (relative to basin bo' feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	ate Upper Edge, Η, = Weir Slope Length = 100-γr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60	Not Selected N/A N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloge = Overflow Grate Open Area % = Debris Clogging % =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan	inches ft (relative to basin bo' feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla	feet should be ≥ 4 ft ² ft ²
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	4.10 Zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected	inches ft (relative to basin bor feet H:V (enter zero for fl feet % grate open area/t % gular Orifice)	at grate) iotal area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 *s for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected	feet should be ≥ 4 ft ² ft ²
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	4.10 Zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00	Not Selected N/A N/A N/A N/A N/A intor Plate, or Rectan Not Selected N/A	inches ft (relative to basin boʻ feet H:V (enter zero for fl feet % grate open area/t % gular Orifice) ft (distance below basi	at grate) iotal area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.73	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t)	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 *s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² ft ²
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	4.10 Zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A	inches ft (relative to basin boʻ feet H:V (enter zero for fl feet % grate open area/t % gular Orifice) ft (distance below basi	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.73	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A	inches ft (relative to basin bo' feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t)	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 *s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² ft ²
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A	inches ft (relative to basin bor feet H:V (enter zero for ff feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 S for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² ft ²
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobe = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A N/A ft (relative to basin b feet	inches ft (relative to basin bor feet H:V (enter zero for ff feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 S for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² ft ²
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Sides = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan, Not Selected N/A N/A ft (relative to basin the feet H:V	inches ft (relative to basin bor feet H:V (enter zero for ff feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 S for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43	Not Selected N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² ft ²
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobe = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A N/A ft (relative to basin b feet	inches ft (relative to basin bor feet H:V (enter zero for ff feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 S for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² ft ²
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan, Not Selected N/A N/A ft (relative to basin the feet H:V	inches ft (relative to basin bor feet H:V (enter zero for ff feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 S for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² ft ²
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway End Slopes =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectan, Not Selected N/A N/A ft (relative to basin the feet H:V	inches ft (relative to basin bor feet H:V (enter zero for ff feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 * s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be \geq 4 ft ² ft ² te ft ² ft ² feet
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Stoge = Horiz. Length of Weir Stoge = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) WQCV 0.53	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV 1.07	inches ft (relative to basin bor feet H:V (enter zero for ff feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft <u>2 Year</u> 1.19	at grate) iotal area n bottom at Stage = 0 f Half-1) <u>5 Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 *s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 ted Parameters for S 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52	feet should be ≥ 4 ft ² te ft ² feet radians
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	4.10 irate (Flat or Sloped) Zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) WQCV	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan, Not Selected N/A ft (relative to basin t feet H:V feet EURV	inches ft (relative to basin bo' feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 tted Parameters for S 50 Year	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year	feet should be ≥ 4 ft ² ft ² te ft ² feet radians
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Sides = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculate Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) WQCV 0.53 0.178	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan N/A it (relative to basin t feet H:V feet EURV 1.07 0.513	inches ft (relative to basin bo' feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year 1.19 0.467	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year 1.50 0.676</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () ()) ()) ()) ()))) ())) ())))) ()))) ()))) ())))) ())))) ()))) ()))) ()))) ())))) ()))) ())))) ())))) ())))) ()))) ())))) ()))) ()) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ())))) ()))) ())))) ())))) ())))) ())))) ())))))) ()	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.184	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 Sofor Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 ted Parameters for S 50 Year 2.25 1.416	Not Selected N/A	feet should be \geq 4 ft ² ft ² ft ² feet radians 500 Year 0.00 0.000
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Stotes = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Crest Length = Sp	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) WQCV 0.53 0.178 0.178	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 0.513 0.512	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % zular Orifice) ft (distance below basi inches ottom at Stage = 0 ft <u>2 Year</u> <u>1.19</u> 0.467	at grate) iotal area n bottom at Stage = 0 f Half-1) <u>5 Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Court Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.872 0.872	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.184 1.183	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 ted Parameters for 9 50 Year 2.25 1.416 1.415	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 0.00 0.000 0.000 0.000
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Sides = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculate Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) WQCV 0.53 0.178	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan N/A it (relative to basin t feet H:V feet EURV 1.07 0.513	inches ft (relative to basin bo' feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year 1.19 0.467	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year 1.50 0.675</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () ()) ()) ()) ()))) ())) ())))) ()))) ()))) ())))) ())))) ()))) ()))) ()))) ())))) ()))) ())))) ())))) ())))) ()))) ())))) ()))) ()) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ())))) ()))) ())))) ())))) ())))) ())))) ())))))) ()	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.184	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 Sofor Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 ted Parameters for S 50 Year 2.25 1.416	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 1.710 1.709	feet should be \geq 4 ft ² ft ² ft ² feet radians 500 Year 0.00 0.000
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Stides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) VQCV 0.53 0.178 0.0178 0.00 0.0 2.6	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectang Not Selected N/A It (relative to basin the feet H:V feet H:O 0.513 0.512 0.00 0.0 7.4	inches ft (relative to basin bo' feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft <u>2 Year</u> <u>1.19</u> 0.467 <u>0.466</u> 0.01 0.1 6.7	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year</u> 1.50 0.676 0.675 0.08 0.8 9.7	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 0.872 0.872 0.872 0.26 2.6 1.2.4	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00 1.184 1.183 0.64 6.5 16.8	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 ted Parameters for S 50 Year 2.25 1.416 1.415 0.86 8.7 20.1	Not Selected N/A I.13 11.4 24.2	feet should be ≥ 4 ft ² ft ² ft ² fteet radians
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Stoles = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Sungth = Spillway Crest Sungth = Spillway Crest Length = Preeboard above Max Water Surface = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Nufflow Q (cfs) =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) WQCV 0.53 0.178 0.01 0.178 0.01	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan NA NA fit (relative to basin the feet H:V feet H:V feet 0.513 0.512 0.00 0.0 7.4 0.4	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches ottom at Stage = 0 ft 2 Year 1.19 0.467 0.466 0.01 0.1 6.7 0.4	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.675 0.675 0.08 0.8 9.7 0.5	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.872 0.872 0.26 2.6 12.4 1.0	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.184 1.183 0.64 6.5 16.8 5.3	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 ted Parameters for S 50 Year 2.25 1.416 1.415 0.86 8.7 20.1 7.1	Not Selected N/A Spillway feet feet acres 100 Year 2.52 1.709 1.13 11.4 24.2 7.4	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Noted Hydrograph Results Design Storm Return Period = OrTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs) = Peak Untflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	4.10 irate (Flat or Sloped) Zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) WQCV 0.53 0.178 0.178 0.00 0.0 2.6 0.1 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectang Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Selected H:V feet H:V feet 0.0513 0.512 0.00 0.0 0.7.4 N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t gular Orifice) ft (distance below basi inches ottom at Stage = 0 ft 1.19 0.467 0.467 0.467 0.01 0.1 6.7 0.4 N/A	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.676 0.08 0.8 9.7 0.5 0.6	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Gr	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.184 1.183 0.64 6.5 16.8 5.3 0.8	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 ted Parameters for S 50 Year 2.25 1.416 1.415 0.86 8.7 20.1 7.1 0.8	Not Selected N/A 0.6	feet should be ≥ 4 ft ² ft ² te ft ² feet radians
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Stoles = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Sungth = Spillway Crest Sungth = Spillway Crest Length = Preeboard above Max Water Surface = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Nufflow Q (cfs) =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) WQCV 0.53 0.178 0.01 0.178 0.01	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan NA NA fit (relative to basin the feet H:V feet H:V feet 0.513 0.512 0.00 0.0 7.4 0.4	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches ottom at Stage = 0 ft 2 Year 1.19 0.467 0.466 0.01 0.1 6.7 0.4	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.675 0.675 0.08 0.8 9.7 0.5	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.872 0.872 0.26 2.6 12.4 1.0	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.184 1.183 0.64 6.5 16.8 5.3	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 ted Parameters for S 50 Year 2.25 1.416 1.415 0.86 8.7 20.1 7.1	Not Selected N/A Spillway feet feet acres 100 Year 2.52 1.709 1.13 11.4 24.2 7.4	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above (Cfs) = Freeboard above Max Water Surface = Predevolograph Neume (acreft) = OPTIONAL Override Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak Flow, q (cfs)acre) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	4.10 irate (Flat or Sloped) Zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) VQCV 0.53 0.178 0.	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectany ictor Plate, or Rectany N/A N/A into Selected K ft (relative to basin the feet H:V feet H:V feet 0.512 0.00 0.512 0.00 0.4 N/A Vertical Orifice 1 N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 1.19 0.467	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.675 0.08 0.675 0.08 0.8 9.7 0.5 0.6 9.7 0.5 0.6 Vertical Orifice 1 N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Control Control Control Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 0.872 0.970 0.872 0.970 0.872 0.970 0.872 0.970 0.872 0.970 0.970 0.872 0.9700 0.9700 0.9700 0.970000000000	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.184 0.64 6.5 16.8 5.3 0.8 Overflow Grate 1 0.7 N/A	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 ted Parameters for S 1.415 0.86 8.7 2.0.1 7.1 0.86 0.87 2.0.1 7.1 0.88 Outlet Piate 1 0.9 N/A	Not Selected N/A Spillway feet feet acres 1.709 1.13 11.4 24.2 7.4 0.6 Outlet Plate 1 0.9 N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Sides = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway (Crest Length = Spillway Crest Length = Spillway (Crest Length = Predevelopment Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Untfow V (cfs) = Peak Outflow Q (cfs) = Peak Outflow O (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) WQCV 0.53 0.178 0.00 0.0 2.6 0.1 N/A Plate N/A N/A 38	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan N/A N/A ictor Plate, or Rectan N/A ictor Plate, or Rectan N/A ft (relative to basin to feet H:V feet EURV 1.07 0.513 0.00 0.01 7.4 0.4 N/A Vertical Orifice 1 N/A 47	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches ottom at Stage = 0 ft 2 Year 1.19 0.467 0.466 0.01 0.1 6.7 0.4 Vertical Orifice 1 N/A Vertical Orifice 1 N/A 46	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.676 0.675 0.08 0.8 9.7 0.5 0.8 9.7 0.5 0.6 Vertical Orifice 1 N/A N/A 49	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Overflow Overflow Grate 1 0.1 N/A 51	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.184 25 Year 2.00 1.183 0.64 6.5 16.8 5.3 0.8 Overflow Grate 1 0.7 N/A 48	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 ted Parameters for S 50 Year 2.25 1.416 1.415 0.86 8.7 20.1 7.1 0.8 Outlet Plate 1 0.9 N/A 46	Not Selected N/A Spillway feet feet feet 1.709 1.13 11.4 24.2 7.4 0.6 Outlet Plate 1 0.9 N/A 44	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Vertical Orifice With User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = Detris Clogging Weir Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Debris Clogging % = Resterictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = Spillway Crest Length = Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Noted Hydrograph Results Design Storm Return Period = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours)	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% cular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) WQCV 0.53 0.178 0.178 0.0178 0.00 0.0 2.6 0.178 N/A Plate N/A N/A N/A 38 40	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectang Not Selected N/A N/A ictor Plate, or Rectang N/A It (relative to basin the feet H:V feet H:V feet U.07 0.513 0.00 7.4 0.0 7.4 N/A N/A N/A N/A N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 0.466 0.01 0.1 0.7 0.467 0.466 0.01 0.1 6.7 0.4 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A 46 51	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.675 0.675 0.675 0.68 9.7 0.5 0.8 9.7 0.5 0.6 Vertical Orifice 1 N/A N/A N/A 49 55	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () () () () () () (ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.183 0.64 6.5 16.8 5.3 0.8 Overflow Grate 1 0.7 N/A 48 56	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 2one 3 Restrictor 0.73 0.37 1.43 ted Parameters for 9 50 Year 2.25 1.416 1.415 0.86 8.7 20.1 7.1 0.8 Outlet Plate 1 0.9 N/A 46 55	Not Selected N/A 100 Year 2.52 1.710 11.709 1.13 11.4 24.2 7.4 0.6 Outlet Plate 1 0.9 N/A 44 54	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (Cfs/acre) = Predevelopment Unit Peak Outlow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Peak Q (cfs) = Ratio Peak Outlow to Prade Volums (acre 1 (fs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours)	4.10 zone 3 Weir 4.05 3.00 0.00 3.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 18.00 7.75 gular or Trapezoidal) WQCV 0.53 0.178 0.00 0.0 2.6 0.1 N/A Plate N/A N/A 38	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectan N/A N/A ictor Plate, or Rectan N/A ictor Plate, or Rectan N/A ft (relative to basin to feet H:V feet EURV 1.07 0.513 0.00 0.01 7.4 0.4 N/A Vertical Orifice 1 N/A 47	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches ottom at Stage = 0 ft 2 Year 1.19 0.467 0.466 0.01 0.1 6.7 0.4 Vertical Orifice 1 N/A Vertical Orifice 1 N/A 46	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.676 0.675 0.08 0.8 9.7 0.5 0.8 9.7 0.5 0.6 Vertical Orifice 1 N/A N/A 49	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Overflow Overflow Grate 1 0.1 N/A 51	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.184 25 Year 2.00 1.183 0.64 6.5 16.8 5.3 0.8 Overflow Grate 1 0.7 N/A 48	Zone 3 Weir 4.05 3.00 9.89 7.20 3.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.73 0.37 1.43 ted Parameters for S 50 Year 2.25 1.416 1.415 0.86 8.7 20.1 7.1 0.8 Outlet Plate 1 0.9 N/A 46	Not Selected N/A Spillway feet feet feet 1.709 1.13 11.4 24.2 7.4 0.6 Outlet Plate 1 0.9 N/A 44	feet should be ≥ 4 ft ² ft ² ft ² feet radians

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	Storm Inflow Hydrographs UD-Detention, Version 3.07 (February 2017) The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.									
Г										
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	#N/A
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.80 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	0:05:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Hydrograph	0:11:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Constant 0.862	0:17:24 0:23:12	0.12	0.33	0.30	0.43	0.55	0.73	0.87	1.04 2.85	#N/A #N/A
0.002	0:29:00	0.80	2.26	2.06	2.96	3.80	5.11	6.09	7.31	#N/A #N/A
	0:34:48	2.21	6.21	5.66	8.13	10.43	14.04	16.72	20.07	#N/A
	0:40:36	2.58	7.35	6.69	9.66	12.44	16.82	20.07	24.18	#N/A
	0:46:24	2.46	7.01	6.38	9.22	11.88	16.08	19.20	23.15	#N/A
	0:52:12	2.23	6.38	5.81	8.39	10.81	14.64	17.48	21.07	#N/A
	0:58:00	1.98	5.69	5.18	7.50	9.67	13.11	15.67	18.90	#N/A
	1:03:48	1.69	4.91	4.46	6.47	8.37	11.36	13.59	16.42	#N/A
	1:09:36 1:15:24	1.48	4.28 3.88	3.89 3.52	5.64 5.11	7.28	9.88 8.96	11.82 10.72	14.26 12.93	#N/A #N/A
	1:21:12	1.34	3.19	2.90	4.22	5.46	7.44	8.91	12.55	#N/A
	1:27:00	0.88	2.60	2.36	3.45	4.47	6.11	7.33	8.87	#N/A
	1:32:48	0.66	2.00	1.81	2.66	3.46	4.75	5.71	6.94	#N/A
	1:38:36	0.48	1.48	1.34	1.98	2.59	3.58	4.32	5.27	#N/A
	1:44:24	0.35	1.07	0.97	1.43	1.87	2.60	3.16	3.87	#N/A
	1:50:12	0.28	0.83	0.76	1.11	1.44	2.00	2.41	2.94	#N/A
	1:56:00	0.23	0.69	0.62	0.91	1.19	1.63	1.97	2.40	#N/A
	2:01:48	0.20	0.58	0.53	0.77	1.01	1.38	1.67	2.03	#N/A
	2:07:36 2:13:24	0.17	0.51	0.47	0.68	0.88	1.21	1.46 1.31	1.77	#N/A
	2:13:24	0.15	0.46	0.42	0.61	0.80	1.09	1.31	1.59	#N/A #N/A
	2:25:00	0.13	0.43	0.33	0.37	0.54	0.74	0.89	1.40	#N/A
	2:30:48	0.08	0.23	0.21	0.30	0.39	0.54	0.65	0.79	#N/A
	2:36:36	0.06	0.17	0.15	0.22	0.29	0.40	0.48	0.58	#N/A
	2:42:24	0.04	0.12	0.11	0.16	0.21	0.29	0.35	0.43	#N/A
	2:48:12	0.03	0.09	0.08	0.12	0.15	0.21	0.25	0.31	#N/A
	2:54:00	0.02	0.06	0.06	0.08	0.11	0.15	0.18	0.22	#N/A
	2:59:48	0.01	0.04	0.04	0.06	0.08	0.11	0.13	0.16	#N/A
	3:05:36	0.01	0.03	0.03	0.04	0.05	0.07	0.09	0.11	#N/A
	3:11:24 3:17:12	0.00	0.02	0.02	0.02	0.03	0.04	0.05	0.07	#N/A
	3:17:12	0.00	0.01	0.01	0.01	0.02	0.02	0.03	0.04	#N/A #N/A
	3:28:48	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	#N/A
	3:34:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:40:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:46:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:52:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:57:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:03:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:09:24 4:15:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:21:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:26:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:32:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:38:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:44:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:55:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:01:36 5:07:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:13:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:19:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:24:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:30:36 5:36:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:42:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:48:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:53:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:59:36 6:05:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	6:05:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	6:17:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	6:22:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	6:28:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
-	6:34:24 6:40:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	6:46:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	6:51:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	6:57:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company: Date:	Core Engineering Group October 24, 2019	
Project:	Ponderosa at Lorson Ranch Filing No. 3	
Location:	Pond A3	
1 Pagin Storage)	/olumo	
1. Basin Storage V		
	erviousness of Tributary Area, I _a	I _a = 52.0 %
B) Tributary Are	a's Imperviousness Ratio (i = l _a / 100)	i = 0.520
C) Contributing	Watershed Area	Area = 10.100 ac
	neds Outside of the Denver Region, Depth of Average	d ₆ = in
Runoff Prod		Choose One
E) Design Cond (Select EUR)	cept V when also designing for flood control)	Water Quality Capture Volume (WQCV)
		O Excess Urban Runoff Volume (EURV)
E) Design Volu	ma (WOCV) Report on 40 hour Drain Time	V _{DESIGN} = 0.178 ac-ft
	me (WQCV) Based on 40-hour Drain Time I.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.178 ac-ft
	neds Outside of the Denver Region,	V _{DESIGN OTHER} =ac-ft
	ty Capture Volume (WQCV) Design Volume _R = (d ₆ *(V _{DESIGN} /0.43))	
	f Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER}
	ferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
I) NRCS Hydrol	logic Soil Groups of Tributary Watershed	
	ge of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$HSG_{A} = $ % $HSG_{B} = $ %
	age of Watershed consisting of Type C/D Soils	HSG cn = %
	In Runoff Volume (EURV) Design Volume	
For HSG B:	: EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} =ac.ft
For HSG C	/D: EURV _{C/D} = 1.20 * i ^{1.08}	
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-ft
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1
3. Basin Side Slop	es	
A) Basin Maxim	num Side Slopes	Z = 4.00 ft / ft
(Horizontal o	distance per unit vertical, 4:1 or flatter preferred)	
4. Inlet		
	eans of providing energy dissipation at concentrated	
inflow location		
5. Forebay		
A) Minimum Fo (V _{EMIN}	rebay Volume = 3% of the WQCV)	V _{FMIN} = 0.005 ac-ft
B) Actual Foreb		$V_{\rm F} = 0.005$ ac-ft
C) Forebay Dep (D _F		D _F = 18.0 in
D) Forebay Disc	charge	
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 24.20 cfs
	Discharge Design Flow	Q _F = 0.48 cfs
E) Forebay Disc		
		Choose One O Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated $W_N = 4.5$ in

UD-BMP_v3.07-pond a3 forebay, EDB

	Design Procedure Form:	Extended Detention Basin (EDB)
Design	Bishard Sebiadlar	Sheet 2 of 3
Designer: Company:	Richard Schindler Core Engineering Group	
Date:	October 24, 2019	
Project:	Ponderosa at Lorson Ranch Filing No. 3	_
Location:	Pond A3	
		r Choose One
6. Trickle Channel		
A) Type of Trick	kle Channel	O Soft Bottom
F) Slope of Tric	kle Channel	S = 0.0050 ft / ft
7. Micropool and C	Dutlet Structure	
A) Depth of Mic	cropool (2.5-feet minimum)	D _M = <u>2.5</u> ft
B) Surface Area	a of Micropool (10 ft² minimum)	A _M = 43 sq ft
C) Outlet Type		
of outer type		Choose One
		Orifice Plate Other (Describe):
	nension of Orifice Opening Based on Hydrograph Routing	
(Use UD-Detent	lion)	D _{ortfice} = <u>1.00</u> inches
E) Total Outlet A	Area	A _{ct} = 2.49 square inches
8. Initial Surcharge	2 Volume	
A) Depth of Initi	ial Surcharge Volume	D _{IS} = 4 in
(Minimum red	commended depth is 4 inches)	
	al Surcharge Volume	V _{IS} = cu ft
(Minimum vol	ume of 0.3% of the WQCV)	
C) Initial Surcha	rge Provided Above Micropool	V _s = <u>14.3</u> cu ft
9. Trash Rack		
A) Water Qualit	ty Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A _t =square inches
	en (If specifying an alternative to the materials recommended	Other (Please describe below)
	indicate "other" and enter the ratio of the total open are to the for the material specified.)	wellscreen stainless
	Other (Y/N): y	
C) Ratio of Tota	l Open Area to Total Area (only for type 'Other')	User Ratio = 0.6
D) Total Water (Quality Screen Area (based on screen type)	A _{total} = 145 sq. in. Based on type 'Other' screen ratio
	ign Volume (EURV or WQCV) design concept chosen under 1E)	H= 2.01 feet
F) Height of Wa	ter Quality Screen (H _{TR})	H _{TR} = 52.12 inches
G) Width of Wat	ter Quality Screen Opening (W _{opening})	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.
	inches is recommended)	WIDTH HAS BEEN SET TO 12 INCHES.

	Design Procedure Form: Extended Detention Basin (EDB)				
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group October 24, 2019 Ponderosa at Lorson Ranch Filing No. 3 Pond A3	She	leet 3 of 3		
B) Slope of Ov	ankment mbankment protection for 100-year and greater overtopping: verflow Embankment distance per unit vertical, 4:1 or flatter preferred)	Ze = ft / ft			
11. Vegetation		Choose One O Irrigated O Not Irrigated			
12. Access A) Describe S	ediment Removal Procedures				
Notes:					

IN-4

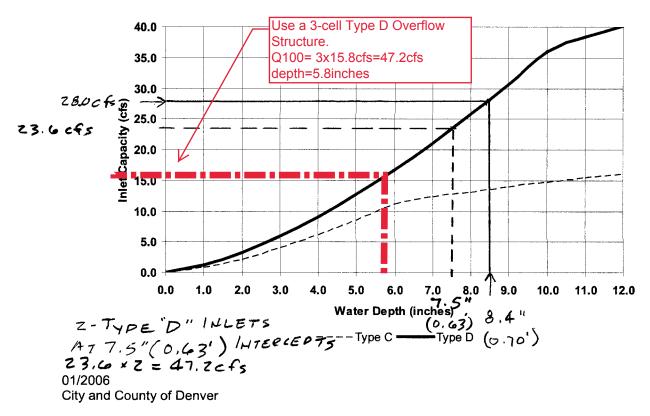



Figure 8.1. Allowable Inlet Capacity— Sump Conditions

Note: See Section 8.3.2 for assumptions.

Allowable Inlet Capacity for Type C and D Inlets for Sump Conditions

program is used to size inlets, copies of the input and output listings must be provided in both hard copy and electronic format.)

8.3.2 Assumptions for Figures 8.1 and 8.2

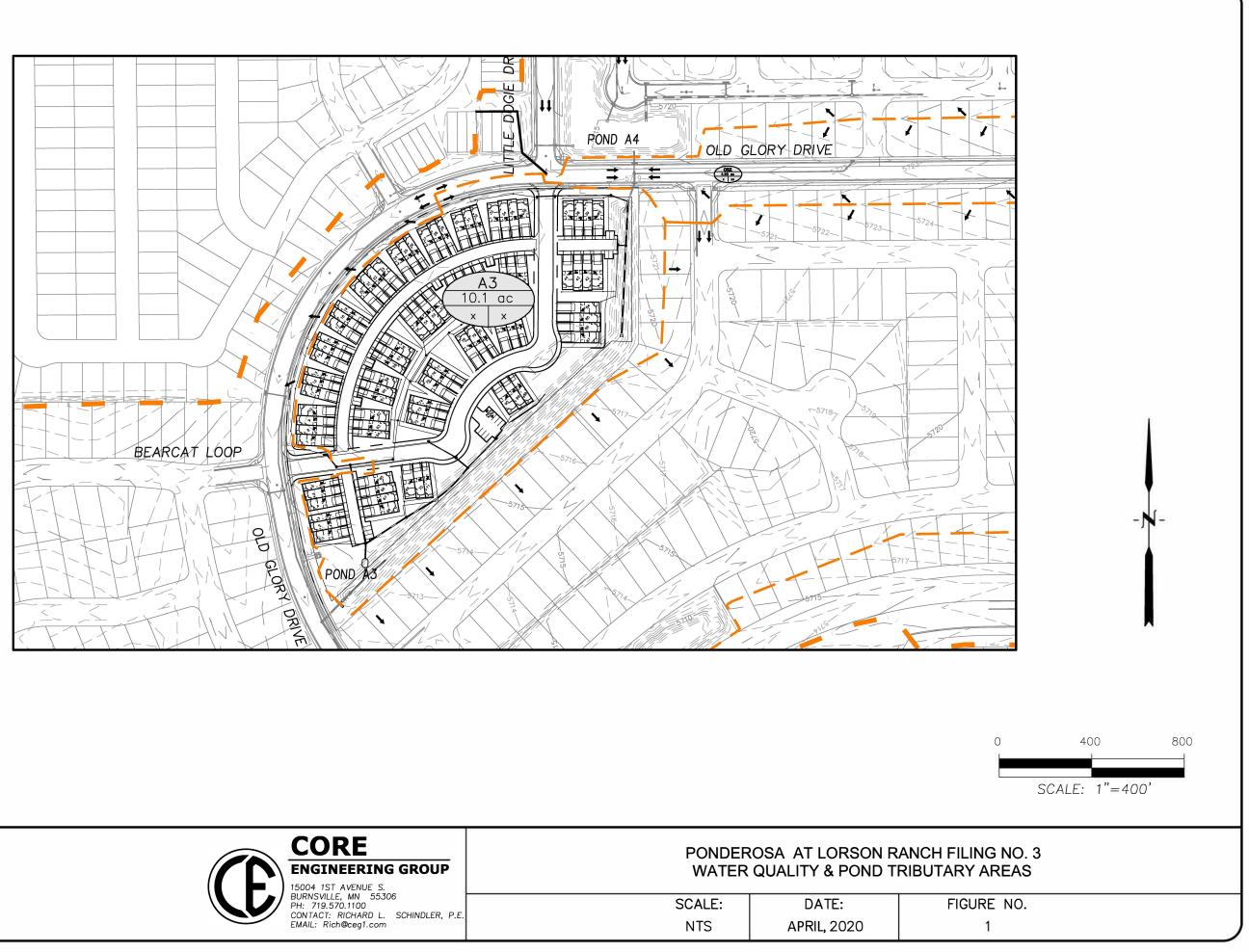
Capacity curves are presented in Figures 8.1 and 8.2 for No. 14, No. 16 Combination, Type C, and Type D inlets. Figure 8.2 on-grade capacity curves only apply when street flow is at the **maximum allowable depth**. For lower gutter depths, the inlet interception rate will decrease. No. 14 and No. 16 Combination inlets may be used in either on-grade or sump conditions. Type C and D inlets may only be used in sump conditions.

The following assumptions were used for developing these curves using UD INLET:

- Local depression at No. 14 inlets is 3 inches.
- Local depression at No. 16 combination inlets is 2 inches.
- A clogging factor of 0.1 was applied to the curb openings (No. 14 and No. 16 combination inlets).
- A clogging factor of 0.7 was applied for single grate inlets (No. 16 combination inlet).

Type C and D charts were developed using orifice and weir equations with the following assumptions:

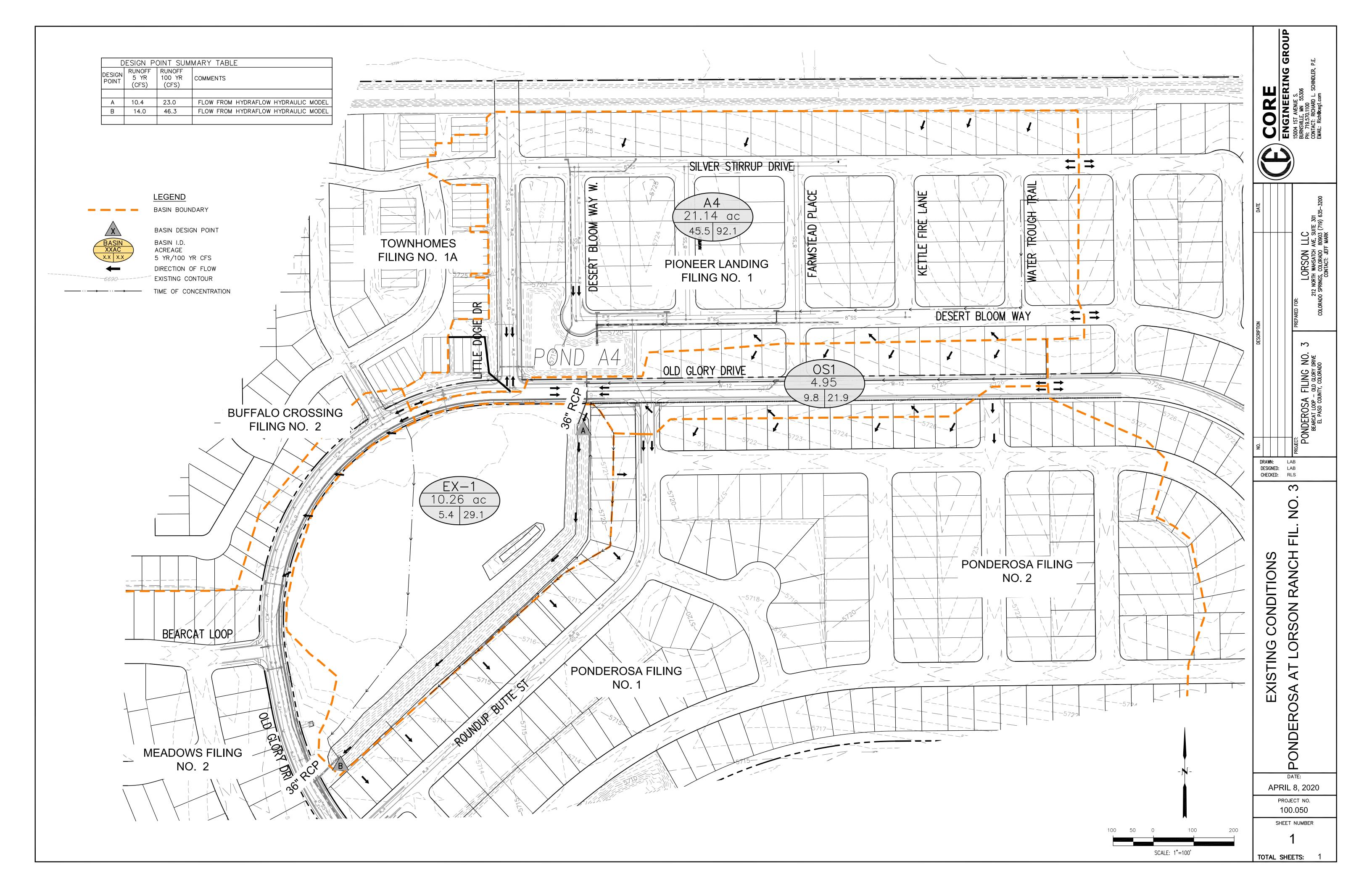
- The orifice coefficient is 0.67.
- The weir coefficient is 3.0.
- A clogging factor of 0.5 was used for the orifice for the Type C inlet.
- A clogging factor of 0.38 was used for the orifice for the Type D inlet.
- A clogging factor of 0.1 was used for the weir for Type C and D inlets.

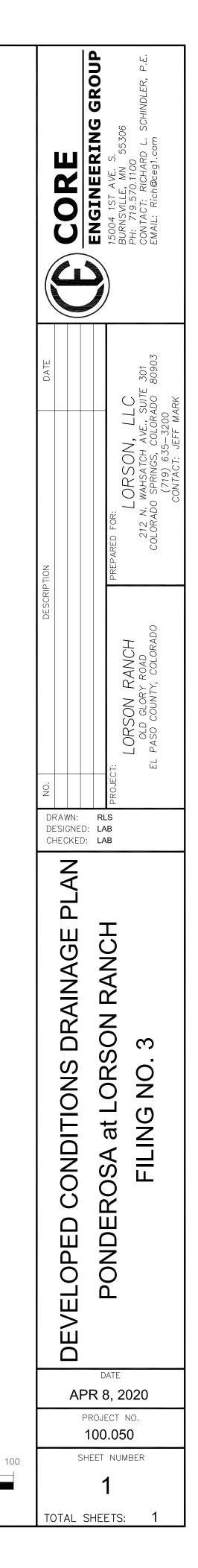

8.3.3 Inlet Location and Spacing

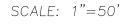
Inlets are required in the following locations:

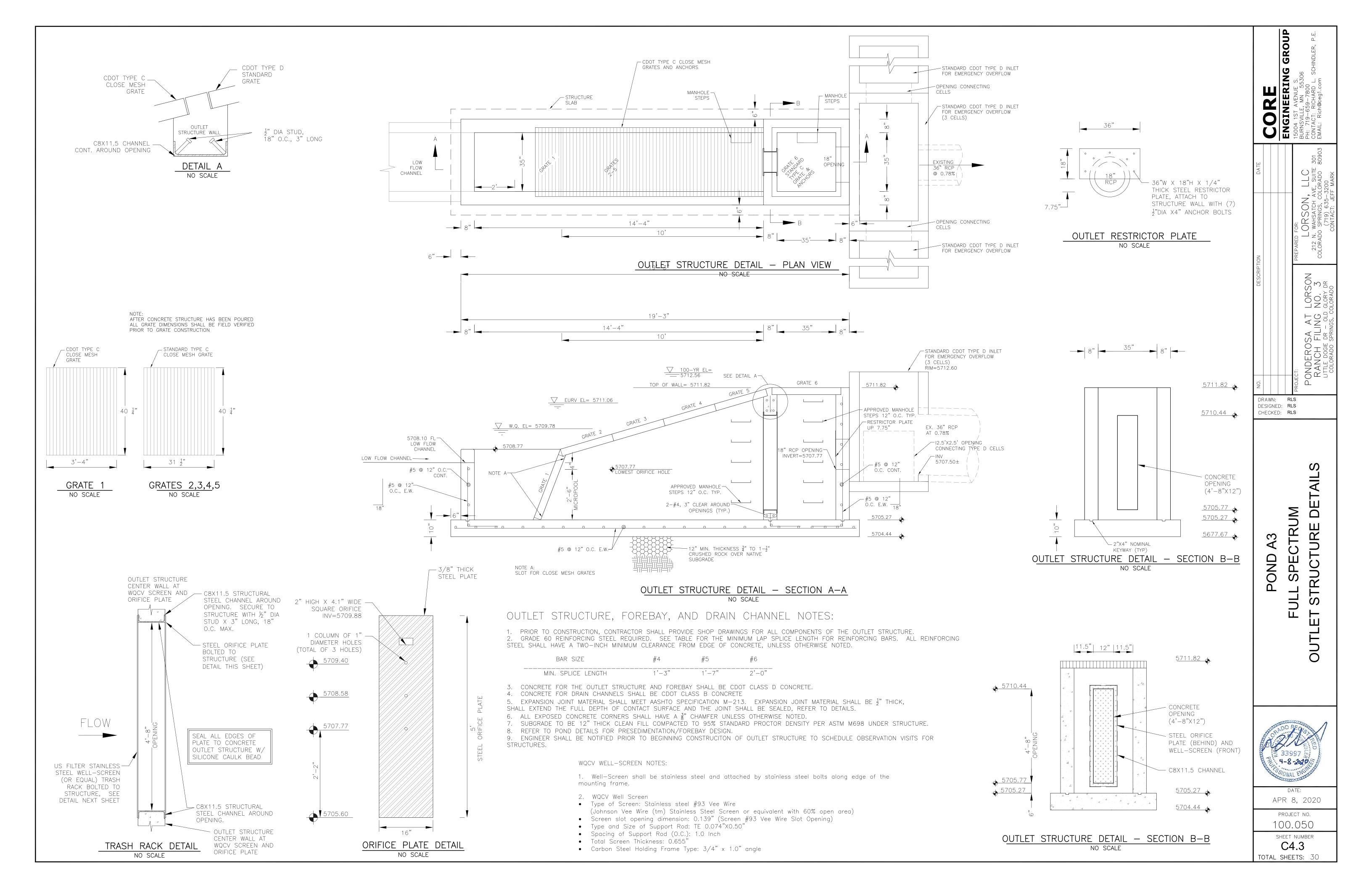
- Sumps.
- Median breaks (e.g., where traffic turns across the median).
- Areas where street capacity (e.g., allowable design flow spread) would be exceeded without them.
- Upstream of pedestrian curb ramps with less than 1 percent slope on the curb return when a storm sewer is available (See Figure 8.3 for example).

Other criteria and guidelines with regard to design and placement of inlets include:


MAP POCKET


PONDEROSA AT LORSON R
WATER QUALITY & POND T


SCALE:	DATE:
NTS	APRIL, 2020


	<u>runof</u>	<u>FF SU</u>	MMARY
Д	Q5	Q100	CONTRIBUTING AREA / NOTES
1	3.9	7.0	A1-A2 & 5' Inlet @ A2
)	4.7	8.5	Pipe Flow
8	0.8	1.4	flow at inlet
8	5.5	9.9	Pipe Flow
)	5.9	10.7	Pipe Flow
	18.5	37.7	Pipe Flow into swale
3	1.6	2.9	12" PVC Flow
-	7.0	12.8	C3-C4, 10' Inlet @ C3
	7.5	11.0	18" Pipe Flow
2	1.4	2.5	C5-C6, 12" PVC Flow
2 S	2.4	4.3	Pipe Flow
3	3.3	6.0	Pipe Flow
	10.8	17.0	Pipe Flow
-	4.0	7.4	C9-C10 & 5' Inlet @ C10, 18" Pipe Flow
	6.7	12.3	C9-C11, 18" Pipe Flow
7	2.7	4.9	flow at inlet
	0.9	1.7	flow at inlet
	7.6	14.0	Pipe Flow
	8.3	15.3	Pipe Flow
5	2.7	4.8	flow at inlet
	21.4	36.4	Pipe Flow into Pond
	10.9	30.4	Flow from Pond A3 and Ex. Des. Pt A in Existing 36" RCP

50

50 25 0

DRainage V_1 redlines.pdf Markup Summary 8-4-2020

dsdlaforce (2)		
<text><text><text><text><text><text></text></text></text></text></text></text>	Subject: Callout Page Label: 7 Author: dsdlaforce Date: 8/3/2020 10:45:35 AM Status: Color: Layer: Space:	The ECM requires the entire applicable development site to be treated for water quality. Update the narrative for all subbasins flowing off-site by describing where/how these are treated for water quality.
reaction of the second	Subject: Callout Page Label: 1 Author: dsdlaforce Date: 8/3/2020 4:09:31 PM Status: Color: Layer: Space:	Add SF2016
RSchindler (15)		
Abuilt bir Capit for far Card Dun to far	Subject: Callout Page Label: 80 Author: RSchindler Date: 1/13/2020 4:18:47 PM Status: Color: Layer: Space:	Use a 3-cell Type D Overflow Structure. Q100= 3x15.8cfs=47.2cfs depth=5.8inches
Known Depth = 0.50 (1980-3445 1% of 0100-2.4ds min. design flow 	Subject: Text Box Page Label: 72 Author: RSchindler Date: 10/24/2019 9:24:16 AM Status: Color: Layer: Space:	Q100=24cfs 1% of Q100=2.4cfs min. design flow
Forman Depth = 0.25 hepering water, bulking charac hepering water, bulking charac forebay weir	Subject: Text Box Page Label: 71 Author: RSchindler Date: 10/24/2019 9:27:24 AM Status: Color: Layer: Space:	Initial Flow = 2.01cfs opening meets design criteria
too f f f f f f f f f f f f f f	Subject: Polygonal Line Page Label: 80 Author: RSchindler Date: 11/13/2019 9:58:31 AM Status: Color: Layer: Space:	

	Subject: Polygonal Line Page Label: 19 Author: RSchindler Date: 11/4/2019 7:06:18 AM Status: Color: ■ Layer: Space:	
SITE	Subject: Callout Page Label: 19 Author: RSchindler Date: 11/4/2019 7:07:07 AM Status: Color: L Layer: Space:	SITE
PANEL BogbultCOS57G BogbultCOS57 Bogbul	Subject: Text Box Page Label: 19 Author: RSchindler Date: 11/4/2019 7:10:46 AM Status: Color: Layer: Space:	PANEL #08041C0957G December 7, 2018
INLET 1	Subject: Text Box Page Label: 56 Author: RSchindler Date: 11/9/2019 2:56:34 PM Status: Color: Layer: Space:	INLET 1
INLET 2	Subject: Text Box Page Label: 57 Author: RSchindler Date: 11/9/2019 2:56:48 PM Status: Color: Layer: Space:	INLET 2
INLET 3	Subject: Text Box Page Label: 58 Author: RSchindler Date: 11/9/2019 2:57:12 PM Status: Color: Layer: Space:	INLET 3

INLET 4	Subject: Text Box Page Label: 59 Author: RSchindler Date: 11/9/2019 2:57:32 PM Status: Color: Layer: Space:	INLET 4
INLET 5	Subject: Text Box Page Label: 60 Author: RSchindler Date: 11/9/2019 2:58:11 PM Status: Color: Layer: Space:	INLET 5
INLET 6	Subject: Text Box Page Label: 61 Author: RSchindler Date: 11/9/2019 2:58:34 PM Status: Color: ■ Layer: Space:	INLET 6
INLET 7	Subject: Text Box Page Label: 62 Author: RSchindler Date: 11/9/2019 2:58:59 PM Status: Color: ■ Layer: Space:	INLET 7
INLET 8	Subject: Text Box Page Label: 63 Author: RSchindler Date: 11/9/2019 2:59:22 PM Status: Color: ■ Layer: Space:	INLET 8