

PRELIMINARY/FINAL DRAINAGE REPORT

FILING No. 3 (A Replat of Tract CC, Hannah Ridge at Feathergrass Subdivision Filing No. 1) PUDSP-20-007

DECEMBER 2021

See comment letter also

Prepared for:

ELITE PROPERTIES OF AMERICA, INC. 2138 FLYING HORSE CLUB DRIVE COLORADO SPRINGS, CO 80921

Prepared by:

CLASSIC CONSULTING ENGINEERS & SURVEYORS

619 CASCADE AVENUE, SUITE 200 COLORADO SPRINGS, CO 80903 (719) 785-0790

Job no. 1116.35

PRELIMINARY/FINAL DRAINAGE REPORT FOR MIDTOWN COLLECTION AT HANNAH RIDGE FILING NO. 3 (A Replat of Tract CC, Hannah Ridge at Feathergrass Subdivision Filing No. 1)

DRAINAGE REPORT STATEMENT

DESIGN ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established. The drainage reports and said report is in conformity with the applicable master part the drainage basin. I accept responsibility for any liability caused by any negligent acts, error to the drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established.

29794 E Light	12/13/2021
Kyle R. Campbell, Colorado P. E. # 200 2	Date

OWNERS/DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:	Elite Properties of	America, Inc.		113/21
Title:	<u>Vice President</u>			
Address:	2138 Flying Horse	Club Drive		
	Colorado Springs,	CO 80921		
		ents of the Drainage Land Development C		Volumes 1 and 2, El Pasc
Jennifer Irvine, P.E. County Engineer /	ECM Administrator	Da	ate	_
Conditions:				

Page ii

PRELIMINARY/FINAL DRAINAGE REPORT FOR MIDTOWN COLLECTION AT HANNAH RIDGE FILING NO. 3 (A Replat of Tract CC, Hannah Ridge at Feathergrass Subdivision Filing No. 1)

TABLE OF CONTENTS:

PURPOSE	Page	4
GENERAL DESCRIPTION	Page	4
EXISTING DRAINAGE CONDITIONS	Page	5
DEVELOPED DRAINAGE CONDITIONS	Page	5
HYDROLOGIC CALCULATIONS	Page	9
FLOODPLAIN STATEMENT	Page	10
EROSION CONTROL PLAN	Page	11
DRAINAGE FACILITY COST OPINION	Page	11
DRAINAGE AND BRIDGE FEES	Page	12
SUMMARY	Page	13
REFERENCES	Page	14

APPENDICES

VICINITY MAP

SOILS MAP (S.C.S. SURVEY)

F.E.M.A. MAP

REFERENCE MATERIAL FROM ADJACENT STUDIES EXISTING CONDITIONS DRAINAGE MAP

HYDROLOGIC / HYDRAULIC CALCULATIONS

SWQ / FULL SPECTRUM DETENTION CALCULATIONS

DRAINAGE MAPS

Page iii

PURPOSE

This document is the Preliminary and Final Drainage Report for Midtown Collection at Hannah Ridge Filing No. 3. The purpose of this report is to identify onsite and offsite drainage patterns, storm sewer, inlet locations, and areas tributary to the site, and to safely route developed storm water runoff to adequate detention and water quality facilities while releasing storm water at or below historic rates and in accordance with all applicable master drainage plans. This report will discuss the proposed storm system to be built with Filing 3 and discuss the construction details, and more specifically, the design details of the proposed sub-regional public detention/water quality facility located within Filing 3 that will handle the treatment for this site as well as Hannah Ridge at Feathergrass Filings No. 1 & 2. Design information for the Filing No. 3 detention/water quality facility is included in this report.

It is anticipated that an amendment to this report will be provided when the Final Plat and Construction Drawings details are processed for review.

GENERAL DESCRIPTION

The overall Hannah Ridge at Feathergrass development is a 121.2 acre residential and commercial district within the south half of Section 32, Township 13 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado. The site is located on the west side of Akers Drive just north of Constitution Avenue. The existing abandoned Chicago Rock Island and Pacific Railroad sits directly north and west of the site, with Akers Drive bordering the east side and Constitution adjoining the south side of the site. The development includes a total of 345 single-family residences that will be developed in seven filings, as well as two small lot PUD single family developments and one commercial parcel, Tract CC. Tract CC is now proposed for a small lot PUD single family development which is prompting the PUD rezone and PUD site plan applications. Midtown Collection at Hannah Ridge Filing No. 3 (Tract CC) is 7.44 acres in size and contains 42 proposed small lot, single-family detached lots.

The average soil condition of the entire site and tributary area to the proposed ponds reflects Hydrologic Group "A" (Blakeland, loamy sand) as determined by the "Soil Survey of El Paso County Area," prepared by the National Cooperative Soil Survey (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The site is located within the Sand Creek Drainage Basin. More specifically, it is situated in the far southeast portion of the overall Hannah Ridge at Feathergrass development. This site was previously studied in the "Final Drainage Report for Hannah Ridge at Feathergrass Subdivision Filing No. 1", by MVE, Inc. dated January 2014 this proposed residential filing is located in Basin D9, D11 and G1 from the Filing No. 1 report as shown on the developed drainage map provided by MVE, Inc. (See Appendix). Existing Hannah Ridge Drive along the west edge of the development serves as the westerly basin boundary and Hunter Jumper Drive to the north as the northerly basin boundary. The construction of Hannah Ridge at Feathergrass Filing 1 and 2 improvements included the public storm under Hunter Jumper Drive and Hannah Ridge Drive out-falling into the existing drainageway that runs parallel to Constitution. The 84" RCP public storm from Hunter Jumper Drive to Hannah Ridge Drive was previously constructed. The on-site pre-development drainage patterns are generally sheet flowing towards Constitution Avenue where existing inlets intercept the flows and transfer them to an existing stormwater quality only facility located on the east side of Hannah Ridge Drive also constructed with Filing No. 1 and Filing No. 2. Filing No. 1 existing flows generally drain as street flow in a westerly direction towards the existing public drainage facilities within Hannah Ridge Drive. The prior report anticipated released of fully developed flows downstream into the dual cell box culverts under Constitution Avenue.

DEVELOPED DRAINAGE CONDITIONS

Based upon City/County Drainage Criteria, the drainage approach for this development now reflects current criteria for stormwater quality and Full Spectrum Detention requirements. The existing pond on the site will be redesigned as a Full Spectrum facility to accommodate the development of this site and all of northerly Hannah Ridge at Feathergrass Filing 1 and portions of Filing No. 2. This will include the design of concrete forebays, concrete trickle channels, concrete micro-pool and an outlet structure designed to release flows based on full spectrum criteria. The attached developed conditions drainage map contains the design points related to proposed sump conditions. All public and private Type R inlets have been designed at these various locations to accept both the 5-yr. and 100-yr. developed flows.

All proposed storm facilities within the public Right-of-way will be public with ownership and maintenance by El Paso County. All other proposed storm facilities are either public or private (as labeled on map and described below) and are within easements or tracts. The proposed modified Pond 1 will be owned and maintained by the Hannah Ridge Midtown Collection HOA. All existing public storm facilities are located within existing easements as reflected on the drainage map.

Design Point 1 (Q_5 = 1.9 cfs and Q_{100} = 4.1 cfs) is comprised of 0.76 acres of proposed on-site developed flows from Basin A. These single-family lots and private street flows travel west to the proposed intersection at Equine Court. The flows are intercepted by a 6' cross pan and routed south into Basin B-1 along the east side of proposed public Equine Court.

Design Point 2 ($Q_5 = 4.3$ cfs and $Q_{100} = 10.5$ cfs) collects developed flows from Basin B-1 and C and the flows from Design Point 1. Basin B-1 ($Q_5 = 2.6$ cfs and $Q_{100} = 15.8$ cfs) and C ($Q_5 = 0.9$ cfs and $Q_{100} = 1.7$ cfs) flows are comprised of proposed single-family homes and public and private street flows. At this sump condition, a 10' public Type R sump inlet will be installed to completely collect both the 5-year and 100-year developed flows. These flows will have a maximum ponding depth of 6 inches and will then be conveyed via a 24" RCP public storm sewer in a northerly direction towards the Tract A Pond. The total flow within the pipe at this location is given by **Pipe Run 2** ($Q_5 = 5.0$ cfs and $Q_{100} = 12.0$ cfs) which includes flows from Design Point 4 ($Q_5 = 0.8$ cfs and $Q_{100} = 1.7$ cfs), a small 0.34-acre basin of a portion of 7 proposed lots and landscape area. The emergency overflow route at Design Point 2 is in the southerly direction directly into the southerly drainage channel that will route the flows south under Constitution Avenue.

Design Point 3 ($Q_5 = 3.1$ cfs and $Q_{100} = 6.2$ cfs) is developed flows from Basin D, 1.08 acres of proposed single-family homes and public and private street flows. At this sump condition, a 10' private Type R private sump inlet, will be installed to completely collect both the 5-year and 100-year developed flows. These flows will have a maximum ponding depth of 6 inches and then be conveyed via an 18" PVC or ADS private storm sewer towards the Tract A Pond. The total flow within the pipe at this location is given by **Pipe Run 3** ($Q_5 = 3.1$ cfs and $Q_{100} = 6.2$ cfs). The emergency overflow route at this location is south directly into the proposed expanded Pond. **Pipe Run 4** ($Q_5 = 33.4$ cfs and $Q_{100} = 69.5$

7.2 & 53.5 cfs

CLASSIC

CONSULTING

FINGINEERS & SURVEYORS

cfs) represents the combined pipe flows from Design Points 3 and all northerly off-site developed flows. A 48" RCP public storm sewer will route these combined developed flows directly into the Pond.

Design Point 4 (Q_5 = 0.8 cfs and Q_{100} = 1.7 cfs) collects developed flows from Basin B-2 (0.34 acres of a portion of seven homes and landscape area). At this sump condition, a private CDOT Type C sump grated inlet will be installed to completely collect both the 5-year and 100-year developed flows. These flows being collected have a maximum ponding depth of 0.13' and then be conveyed via a private 12" PVC or ADS storm sewer towards Design Point 2. The presence of a Froude number slightly more than 1.0 is not a concern for this landscape area with less than 2 inches of 100-year flow depth. The total flow within the pipe at this location is given by **Pipe Run 1** (Q_5 = **0.8 cfs and Q**₁₀₀ = **1.7 cfs**). The emergency overflow route at this location is via Tract A directly into the drainage channel along Constitution.

Discussion of Design Point 5

Basin E ($Q_5 = 2.1$ cfs and $Q_{100} = 4.1$ cfs) are flows from a portion of 8 homes along Hunter Jumper Drive and landscape areas that drain into Hannah Ridge Drive and are collected by the existing public 15' Type R sump inlet and also routed to the expanded Tract A Pond.

Runoff from **Basin F** (1.23 Acres) ($Q_5 = 1.5$ cfs and $Q_{100} = 5.0$ cfs) and **Basin G** (1.87 Acres) ($Q_5 = 1.2$ cfs and $Q_{100} = 6.6$ cfs) flow directly into the proposed expanded pond or into the southerly drainage channel. The areas draining directly into the channel are comprised of the channel itself or directly tributary landscape areas.

Basin H ($Q_5 = 0.2$ cfs and $Q_{100} = 1.4$ cfs) is a small 0.42-acre landscape parcel at the southeast corner of the site that sheet flows directly into Akers Drive and Constitution Avenue similar to existing conditions. Basin H will remain undeveloped land without pavement or structures, therefore water quality is not required for this area per current El Paso County ECM.

The total inflow into the expanded Pond is Q_5 = 33.4 cfs and Q_{100} = 69.5 cfs from both outfalls into the pond. The total proposed flow into the pond is comprised of off-site existing developed Basins D-1, D-2, D-3, D-4, D-5, D-6, D-7, D-8, D-9, D-10 and D-12 (15.25 acres total). See Drainage Map from prior approved report in the Appendix. Runoff Coefficients used for this composite off-site are (Q_5 =

0.49 cfs and $Q_{100} = 0.57$ cfs). The existing facility will be expanded with the proposed Filing 3 development. This facility will have two inflow points. Both inflow points will outfall into proposed concrete forebays. The west inflow will be from a proposed 48" RCP into a proposed concrete forebay with a required size of .010 ac-ft based on 3% of the WQCV from this inflow. The forebay is designed with 12" high walls, 7.4" notch and a 30" wide concrete trickle channel routing the flows towards the pond outlet. The east inflow will be from a proposed 24" RCP into a proposed concrete forebay with a required size of .010 ac-ft based on 3% of the WQCV from this inflow. The forebay is designed with 12" high walls, 3.3" notch and a 30" wide concrete trickle channel routing the flows toward the pond outlet. The outlet structure consists of a 6'x5' concrete box with an integral 100 Square Foot micropool allowing for 6" initial surcharge depth. The micro-pool total depth of 2.5' provides the required 0.3% of the WQCV. The outlet box will have a height of 4.50' above the micro-pool water elevation. (See UD-BMP Spreadsheets in the Appendix). The orifice plate on the front of the outlet box consists of a series of 3 - 15/8" holes, 18" apart (see UD Detention Spreadsheets in Appendix) this facility will be owned and maintained by the Hannah Ridge Midtown Collection HOA.

Pond 1 has the following design parameters as a Full Spectrum Facility:

0.334 Ac.-ft. WQCV required

0.647 Ac.-ft. EURV required

0.819 Ac.-ft. 100-year storage required

Pond Design Release: $Q_5 = 0.363$ cfs, $Q_{100} = 33.2$ cfs (Design Point 5)

Pre-development Release: $Q_5 = 0.549 \text{ cfs}, Q_{100} = 31.90 \text{ cfs}$

Maximum 100-Year Ponding Elevation: 6448.32

An existing 24" HDPE storm pipe currently conveys the released flows and will continue to do so (Pipe Run Outfall). A 5' long by 3' wide rip-rap (Type VL) dissipator will be provided at the existing pipe outlet.

Hydrologic Soil Group B was used for FSD Calculations as use of Group B Soil.

Please replace with full sentence from previous submittal - Looks like half of sentence got erased.

All existing storm infrastructure that will not be utilized due to the upstream off-site flows being redirected will be capped at the disconnect point. Details will be provided on future Construction Drawings detailing the location.

Also provide excerpts from the DBPS showing the channel improvements and costs.

The release from the pond will be discharged into the proposed improved drainage corridor that runs parallel to Constitution Avenue towards an existing public storm outfall under Constitution Avenue. With the box culvert and headwalls under Hannah Ridge Drive and Constitution Avenue being existing, the only remaining public improvements between the existing public outlet and inlet is approximately 450 linear feet of rip-rap trapezoidal channel. Using the prior approved and constructed MVE, Inc. Design Drawings, the same 20' base with 3:1 side slope channel will be built connecting the existing improvements based upon a 100-year flow depth of 5.06' for the approved MDDP flow rate of Q₁₀₀ = 1076 cfs. These rip-rap channel improvements are identified as reimbursable facilities per the Drainage Basin Planning Study and will be used to off-set proposed drainage fees (to be detailed with Final Plat Submittal Documents). No where along this proposed public channel is the freeboard less than 2'.

Who will maintain the channel?

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Individual on-site developed basin design used for inlet sizing and storm system routing was calculated using the Rational Method. Full-Spectrum detention pond modeling developed using UD-Detention spreadsheet ver. 3.07, Urban Drainage and Flood Control District.

overtop, etc.

Include discussion of the existing

pipe, does it handle flow, does it

The City of Colorado Springs/El Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

culvert design

or headwater

calculation.

This site adheres to this **Four Step Process** as follows:

- Employ Runoff Reduction Practices: Proposed impervious areas (roof tops, patios) will sheet flow across landscaped yards and through open space areas to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets. This will minimize directly connected impervious areas within the project site.
- 2. **Stabilize Drainageways:** After developed flows utilize the runoff reduction practices through the yards, these flows will travel via curb and gutter within the public streets and eventually public storm systems. These collected flows are then routed directly to the full-spectrum detention facility on-site and ultimately released into a proposed stabilized drainage channel.
- 3. **Provide Water Quality Capture Volume (WQCV):** Runoff from this development will be treated through capture and slow release of the WQCV in the proposed full-spectrum permanent Extended Detention Basin (Pond 1) designed per current El Paso County drainage criteria.
- 4. Consider need for Industrial and Commercial BMPs: No industrial or commercial uses are proposed within this development. However, a site-specific storm water quality and erosion control plan and narrative has been submitted along with the grading and erosion control plan. Details such as site-specific source control construction BMP's as well as permanent BMP's were detailed in this plan and narrative to protect receiving waters. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

FLOODPLAIN STATEMENT

No portion of this site is located within a FEMA floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C0752G and 756G, with effective dates of December 7, 2018 (See Appendix).

EROSION CONTROL PLAN

The Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate be submitted with the Final Drainage Report. We respectfully request that the Erosion Control Plan and cost estimate be submitted in conjunction with the Overlot Grading Plan and construction assurances posted prior to obtaining a grading permit. Early grading is not being requested with these applications.

Midtown Collection at Hannah Ridge Filing No. 3 Drainage Improvement Costs (Non-Reimbursable)

ITEM	DESCRIPTION	QUANTITY	UNIT COST	COST	
1.	5' Type R Inlet	1 EACH	\$3,791/EA	\$ 3,791.00	
2.	10' Type R Inlet	2 EACH	\$5,950/EA	\$ 11,900.00	-
3.	18" RCP Storm Drain	105 LF	\$69/LF	\$ 7,245.00	
4.	24" RCP Storm Drain	380 LF	\$84/LF	\$ 31,920.00	-
5.	48" RCP Storm Drain	75 LF	\$122/LF	\$ 9,150.00	-
6.	Type I MH	1 EACH	\$8,592/EA	\$ 8,592.00	•
7.	Type II MH	4EACH	\$4,575/EA	\$ 18,300.00	•
8.	Pond 1 FSD	1 EACH	\$83,000/EA	\$ 83,000.00	•
					•
SUB-T	OTAL			\$ 173,898.00	•
10% E	NGINEERING	Update based of	n	\$ 17,389.80	
5% CC	ONTINGENCIES	current drainage	e plan	\$ 8,694.90	
GRAN	D-TOTAL			<u>\$ 199,982.70</u>	
ددد		بالتنتي	נגגגג)

Midtown Collection at Hannah Ridge Filing No. 3 Drainage Improvement Costs (Reimbursable)

ITEM	DESCRIPTION	QUANTITY	UNIT COST	COST
1.	Channel Imps	450 LF	\$250/LF	\$ 112,500.00
SUB-TO	TAL			\$ 112,500.00
10% EN	GINEERING			\$ 11,250.00
5% CON	TINGENCIES			\$ 5,625.00
GRAND-	TOTAL			\$ 129,375.00

Classic Consulting Engineers & Surveyors cannot and does not guarantee that the construction cost will not vary from these opinions of probable construction costs. These opinions represent our best

judgment as design professionals familiar with the construction industry and this development in particular.

DRAINAGE & BRIDGE FEES

This site lies within the Sand Creek Drainage Basin. The fees are calculated using the following impervious acreage method approved by El Paso County. Filing No. 3 is a re-plat of previously platted Tract CC within Filing 1. However, Tract CC was designated as future development and no fees were paid at time of original platting. Thus, the percent imperviousness for each Filing is calculated below based on the following acreage:

Filing 3: 7.44 ac.

The total development area is broken into different residential uses:

PUD zone (1/8 acre or less SF lots – 65% Impervious)

PUD zone Open space/drainage tracts (Greenbelts – 2% Impervious).

The following calculations are based on the 2021 drainage/bridge fees for the Sand Creek Basin:

FILING 3:

2158 SF avg. lots (1/8 acre or less)

(Per El Paso County Percent Impervious Chart for 1/8 acre or less SF lots: 65%)

 $7.44 \text{ Ac. } \times 65\% = 4.84 \text{ Impervious Ac.}$

Open Space Tracts

(Per El Paso County Percent Impervious Chart for greenbelts: 2%)

2.60 Ac. \times 2% = **0.05 Impervious Ac.**

Total Impervious Acreage: 4.89 Imp. Ac.

FILING 3 FEE TOTALS:

Bridge Fees

\$ 8,339.00 x 4.89 Impervious Ac. = \$ 40,777.71

Drainage Fees

\$ 20,387.00 x 4.89 Impervious Ac.

= <u>\$ 99,692.43</u>

These Drainage Fees will be off-set by the public channel improvements.

Fees will be recalculated based upon fees at time of Final Plat Submittal.

SUMMARY

This proposed development remains consistent with the previously approved MDDP and Final Drainage Report for Hannah Ridge at Feathergrass Filing No. 1. The existing storm facilities continue to adequately handle both the 5-yr. and 100-yr. developed flows. The proposed detention facility meets current criteria and provides full spectrum design. The proposed development will not adversely impact surrounding developments.

A future Final Plat application will include Construction Drawings and amendment to this report to provide further Final Design details associated with the more detailed design.

PREPARED BY:

Classic Consulting

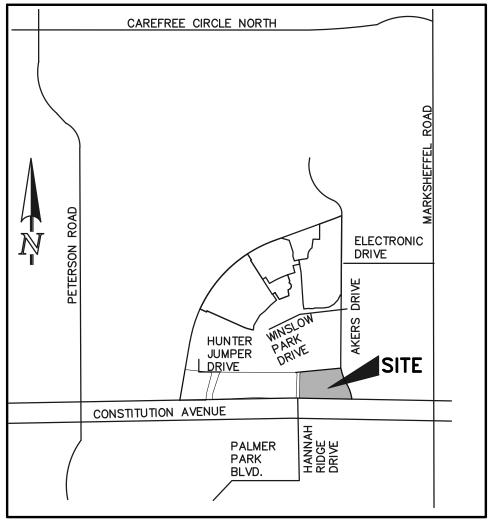
Kyle R. Campbell, P.E. Division Manager

db/111635/REPORTS/PDRdoc

Page 13

REFERENCES

- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual dated October 1991.*
- 2. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corp, dated March 1996.
- 3. "Master Development Drainage Plan for Hannah Ridge", prepared by MVE, Inc. November 2007
- 4. "Final Drainage Report for Hannah Ridge at Feathergrass Subdivision Filing No. 1", by MVE, Inc. January 2014.
- 5. Drainage Criteria Manual (Volume 3) latest revision April 2008, Urban Drainage and Flood Criteria District.
- 6. "Final Drainage Report for Hannah Ridge at Feathergrass Filing No. 3", by MVE, Inc. October 2017.
- 7. "Final Drainage Report for Hannah Ridge at Feathergrass Filing No. 4", by MVE, Inc. October 2017.
- 8. El Paso County Engineering Criteria Manual, Resolution No. 20-222, June 23, 2020 (Supp. No.2).


*EPC Board Resolution NO. 15-042 (El Paso County adoption of Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria manual dated May 2014, hydrology and full-spectrum detention)

APPENDIX

VICINITY MAP

 $\frac{\text{VICINITY} \quad \text{MAP}}{\text{N.T.S.}}$

SOILS MAP (S.C.S SURVEY)

Custom Soil Resource Report

MAP LEGEND MAP INFORMATION Area of Interest (AOI) Spoil Area The soil surveys that comprise your AOI were mapped at H 1:24,000 Area of Interest (AOI) Stony Spot ٥ Soils Very Stony Spot 0 Warning: Soil Map may not be valid at this scale. Soil Map Unit Polygons Wet Spot 7 Soil Map Unit Lines Enlargement of maps beyond the scale of mapping can cause Δ misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of Soil Map Unit Points .. Special Line Features Special Point Features contrasting soils that could have been shown at a more detailed Water Features Blowout scale. (9) Streams and Canals Borrow Pit Transportation Please rely on the bar scale on each map sheet for map Clay Spot × Rails measurements. +++ Closed Depression 0 Interstate Highways Source of Map: Natural Resources Conservation Service Gravel Pit X **US Routes** Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Gravelly Spot 4 Major Roads Landfill 0 Local Roads Maps from the Web Soil Survey are based on the Web Mercator Lava Flow projection, which preserves direction and shape but distorts A Background distance and area. A projection that preserves area, such as the Marsh or swamp Aerial Photography May ! 445 Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. Mine or Quarry 杂 0 Miscellaneous Water This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Perennial Water 0 Rock Outcrop Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020 Saline Spot Sandy Spot . . . Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Severely Eroded Spot Sinkhole 0 Date(s) aerial images were photographed: Aug 19, 2018—Sep 23, 2018 Slide or Slip Sodic Spot The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	10.5	100.0%
Totals for Area of Interest		10.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Custom Soil Resource Report

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

8—Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet

Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent

Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats

Landform position (three-dimensional): Side slope, talf

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock and/or eolian deposits

derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand

C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95

to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 5 percent Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: Sandy Foothill (R049XB210CO)

Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: 1 percent

Custom Soil Resource Report

Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent Hydric soil rating: No F.E.M.A. MAP

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

SPECIAL FLOOD HAZARD AREAS

With BFE or Depth Zone AE, AO, AH, VE, AR Without Base Flood Elevation (BFE)

0.2% Annual Chance Flood Hazard, Area of 1% annual chance flood with average Regulatory Floodway

areas of less than one square mile Zone Future Conditions 1% Annual Chance Flood Hazard Zone X

depth less than one foot or with drainag

Area with Flood Risk due to Levee Zone D Area with Reduced Flood Risk due to Levee. See Notes. Zone X

NO SCREEN Area of Minimal Flood Hazard Zone X

Effective LOMRs

Area of Undetermined Flood Hazard Zone

OTHER AREAS

Channel, Culvert, or Storm Sewer STRUCTURES | 1111111 Levee, Dike, or Floodwall

Cross Sections with 1% Annual Chance Water Surface Elevation

Base Flood Elevation Line (BFE) Coastal Transect mm 513 mm

Limit of Study

Jurisdiction Boundary

Coastal Transect Baseline

Hydrographic Feature

Profile Baseline

OTHER

FEATURES

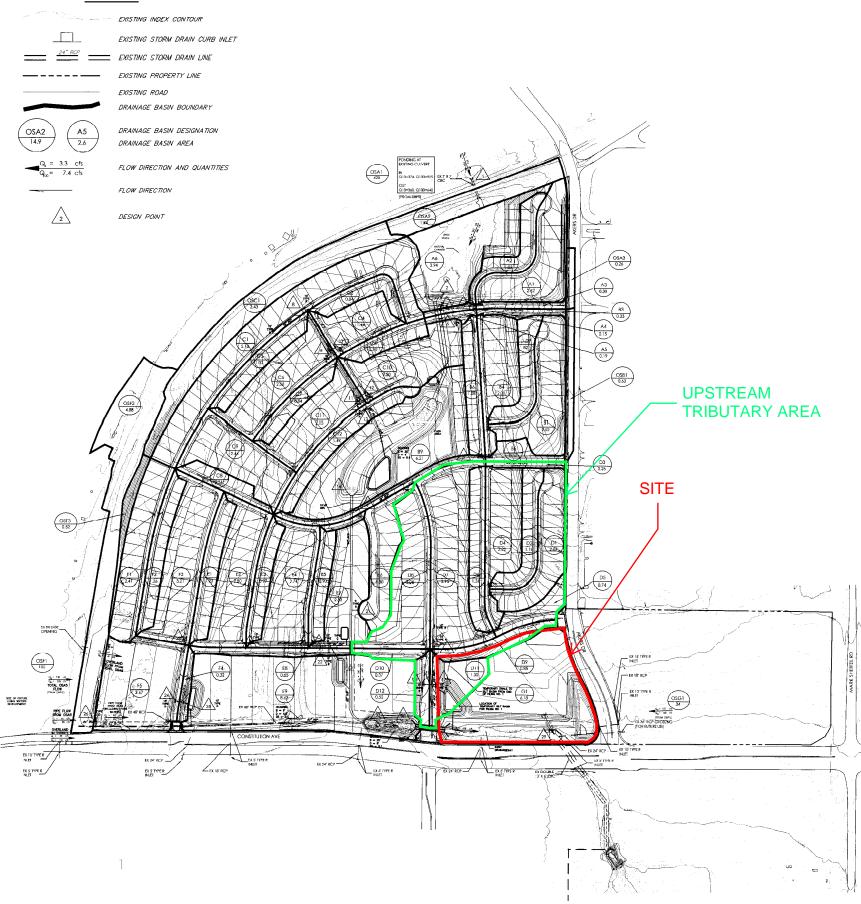
Digital Data Available

No Digital Data Available

Unmapped

MAP PANELS

The pin displayed on the map is an approximate point selected by the user and does not represe an authoritative property location.

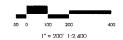

This map complies with FEMA's standards for the use of The basemap shown complies with FEMA's basemap digital flood maps if it is not void as described below.

authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or The flood hazard information is derived directly from the was exported on 7/3/2020 at 6:39 PM and does not become superseded by new data over time. This map image is void if the one or more of the following map legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for elements do not appear: basemap imagery, flood zone labels, regulatory purposes.

REFERENCE MATERIAL FROM ADJACENT STUDIES EXISTING CONDITIONS DRAINAGE MAP

<u>LEGEND</u>

Include copies of calculation sheets that accompanied this map from previous report.


(first)

BASIN or DESIGN POINT	CONTRIBUTING BASINS	CONTRIBUTING AREA (AC)	5-YR(Q5) RUNOFF (CFS)*	100-YR (4 RUNC (CFS	OFF	DESCRIPTION				
OSA1 (IN)		425	374 *	915	(IN)					
1 (OUT)	OSAI	425	360 *	640	(OUT)	EX 7x7 CBC				
2	OSA1, OSA2, A6	430.8	360 *	640) *	12'Wx6'H CBC				
3	A1,A2,O\$A3,A3	4.2	9.4	18.	8	CROSS PAN				
4	A1,A2,OSA3,A3,A4	4.4	9.7	19.	2	10' TYPE R INLET (SUMP)				
5 .	A5	0.2	0.7	1.3		5' TYPE R INLET (SUMP)				
6	OSB1,B1,B2,B3,B4,B5,B6	8.2	19.5	38.	.5	CROSS PAN				
7	OSB1,B1,B2,B3,B4,B5,B6,	37 8.9	20.4	40.	.1	15' TYPE R (SUMP), 15' TYPE R INLE				
8	OSC1,C1	8.6	15.0	31.	.1	10' TYPE R (SUMP), 10' TYPE R INLE				
9	C3,C5	3.6	8.9	17.	8	15' TYPE R INLET (SUMP)				
10	C2,C4	2.3	5.5	10.	9	10' TYPE R INLET (SUMP)				
11	C7,C8,C9,C11	6.1	13.4	26.	.6	15' TYPE R INLET (SUMP)				
12	C6,C10	3.2	6.6	14.	ı	10' TYPE R INLET (SUMP)				
13	C12	1.5	3.7	7.4		5' TYPE R INLET (SUMP)				
14	ÖSA1-A6,ÖSB1-B9, OSC1-C12	476	360 *	640) *	10'Wx6'H CBC & 90" RCP				
15	D1,D2,D3,D4,D5,D6	7.8	19.2	38.	0	CROSS PAN				
16	D1,D2,D3,D4,D5,D6,D7	11.7	26.6	52.	8	10' TYPE R & 15' TYPE R INLETS				
17	D1-D7,D9.D11	13.9	29.6	59.	0	15' TYPE R INLET (SUMP)				
18	D8,D10,D12	4.0	8.7	17.	1	10' TYPE R INLET (SUMP)				
19	E1.E2.E3	5.0	11.9	23.	7	15' TYPE R INLET				
20	E1,E2,E3,E4,E5,E7	11.0	23.4	18.	4	15' TYPE R (SUMP), TYPE C INLETS				
21	E6	1.8	4.5	9.0		5' TYPE R INLET (SUMP)				
22	E8	0.7	1.8	3.6		5' TYPE R INLET (SUMP)				
23	OSF1,F1,F2,F3	7.4	16.2	32.	5	CROSS PAN				
24	OSF1,F1,F2,F3,F5	11.0	23.4	48.	4	15' TYPE R (SUMP), TYPE C INLETS				
25	F4	0.3	0.9	1.9		5' TYPE R INLET (SUMP)				
26	OSF2	4.9	4.2	9.6		TYPE D INLET (SUMP)				
27	OSA1-A6,OSB1-B9, OSC1-C12, E1-E9, OSF1-OSF3, F1-F5	619	428 *	991		OPEN CHANNEL				
28	OSA1-A6.OSB1-B9. OSC1-C12, E1-E9, OSF1-OSF3, F1-F5, D1-D12	647	428 *	991	ı *	DBL 10'Wx6'H CBC				
29	OSA1-A6,OSB1-B9, OSC1-C12, E1-E9, OSF1-OSF3, F1-F5, D1-D12, G1	685	457 *	107	′6 *	EXISTING DBL 12"Wx6"H CBC				

BENCHMARK
THE BENCHMARK FOR THESE PLANS IS THE TOP
OF #4 REBAR, PANEL POINT NO. 1. LOCATED ON
THE SOUTH EDGE OF CONSTITUTION AVE AND
THE WEST EDGE OF THE ROCK BLAND TRAIL 333
FEET WEST OF THE CENTERLINE OF SHAWNEE DR.
ELEVATION = 6486.63. (EPC DATUM ELEVATION
= 6485.29).

DESIGNED BY DRAWN BY CHECKED BY	DRG DRG	August 21, 2013 August 21, 2013
AS-BUILTS BY CHECKED BY		

Hannah Ridge at Feathergrass

DEVELOPED Drainage Map

MVE PROJECT 60970 MVE DRAWING 60970110

December 12, 2013 SHEET 1 OF 1

HYDROLOGIC / HYDRAULIC CALCULATIONS

Chapter 6 Hydrology

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

Land Use or Surface	Percent						Runoff Co	efficients					
Characteristics	Impervious	2-у	ear	5-у	ear	10-	year	25-1	/ear	50-year		100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis													
Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
landuse is undermed)		0.26	0.51	0.32	0.57	0.56	0.44	0.44	0.51	0.46	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.30	0.83
Lawns	0	0.02	0.04	0.73	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

FROM MUE FILLNG NO. 1 REPORT

	Basin	Channel	Cont.	5 Year	100 Yr Coef	Manning		Elev	Average	Channel	Flow	Flow	Flow	Time of	Total	5 Year	100 Year	5 Year	100 Year
	Label	Type or	Area	Coef.	of Curve No	Rough.	Length	Change	Slope	Flow*	Depth	Area	Velocity	Cont**	Time	Intensity	Intensity	Discharge	Discharge
	D1+D2+D3+D4	Basin 3	A _c (Ac)	C,	C ₁₀₀ or CN	п	L (ft)	(ft)	S	Q (cfs)	d (ft)	A (ft²)	v (fl/s)	T _o (min)	T _o (min)	le (in/hr)	100 (in/hr)	Q ₆ (cfs)	Q ₁₀₀ (cfs)
	05	0	5.7 0.7	0.61	0.71	0.016	0	0	0.250	31.76	0.33	2.39	13.31	0.0	10.0	4.09	7.00	14.3	28.3
	05	3	0.7	0.57 0.57	0,00	- 0.040	140	6	0.043	-	-	-	-	7.2	-	-	-	-	-
	D1+D2+D3+D4+D5	D1+D2+D3+D4	5.7	0.57	0.66 0.71	0 0 1 6	310	13	0.040	3.87	0.22	0.97	3.98	1.3	8.5	4.36	7.48	1.9	3.6
	D1+D2+D3+D4+D5	3	6.5	0.60	0.70	0.016	- 0		- 0.250	-		-	-	10.0	-	-	-	-	-
	D6	0	1.3	0.60	0.70	_ 0.010	60	0	0.250	35.58	0.34	2.60	13.69	0.0	10.0	4.09	7.00	16.0	31.7
	ВC	3	1.3	0.60	0.70	0.016	535	22	0.013		 0.27				-	[-	-	-	••
	D6	3	1.3	0.60	0.70	0.016	210	4	0.020	7.52 7.52	0.27	1.60 2.07	4.69 3.63	1.9	9.5	4,18	- 746		-
	D1+D2+D3+D4+D5+D6	D1+D2+D3+D4+D5	6.5	0.60	0.70	-	_		-	_ 1.02	~	- 2.07	_ 5.05		- 9.5	4,10	7.15	3.3	6.6
	D1+D2+D3+D4+D5+D6	3	7.8	0.60	0.70	0.016	35	1	0.040	42.78	0.51	5.94	7.20	0.1	10.0	4.08	6.97	19.2	38.0
	D7 D7	0	4.0	0.60	0.70	-	140	2	0.015	-	-	••	_		-	_	_	- "	_
	D7	3	4.0 4.0	0.60	0.70	0.016 0.016	475	19	0.040	19.58	0.38	3.32	5.90		-	-	-	-	_
	D1+D2+D3+D4+D5+D6+D7	07	4.0	0.60	0.70	- 0.016	270	4	0.015	19.58	0.46	4.80	4.0B	1.1	12.1	3.77	6.43	8.9	17.8
	D1+D2+D3+D4+D5+D6+D7	3	11.7	0.60	0.70	0.016	0	- 0	0.250	58.18	0.41	3.76	15.47	12,1	-		-	-	-
	D9	0	0.9	0.50	0.58	_	40	1	0.020	_ 36.16	- 041	3.76	10.47	0.0 5.6	12.1	3.77	6.43	26.6	52.8
	D9 (21+D2+D3+D4+D5+D6+D9	3	0.9	0.50	0.58	0.016	585	20	0.034	4.28	0.23	1.12	3.83	2.5	6.2	4.42	7.58	1.9	3.8
	01+02+03+04+05+06+09	D1+D2+D3+D4+D5+D6	7.8 8.6	0.60	0.70	-	-	-	-	-	-	-	-		_	-	_		_
	D1+D2+D3+D4+D5+D6+D7+D9	D1+D2+D3+D4+D5+D6+D7	11.7	0.60	0.69 0.70	0.016	300	11	0.036	46.67	0.53	6.60	7.07	0.7	10.7	3.97	6.78	20.3	40.3
	D1+D2+D3+D4+D5+D6+D7+D9	3	12.6	0.59	0.69	0.016	- 0	- 0	0.250		0 42	-			-	-	-	-	-
	D8	D	3.1	0.60	0.70	_	120	1	0.250	61.69	0.42	3.93	15.69	0.0	12.1	3.77	6.43	28.2	56.0
	Dê	3	3.1	0.60	0.70	0.016	450	18	0.040	14.81	0.35	2.68	5.53	10.2 1.4	_	\ <u>-</u>	_	-	-
	D8	3	3.1	0.60	0.70	0.016	270	4	0.015	14.B1	0.41	3.89	3.81	1.2	12.8	3.68	6.28	6.8	13.4
	D10 D10	0 3	0.4	0.60	0.70	-	32	1	0.020	-	-	-	~	4.2	- 12.0	_ 5.00	~ 0.20	- 0.0	13.4
	D8+D10	D8	0.4	0.60	0.70	0.016	330	7	0.020	2.33	0.21	0.87	2.68	2.1	6.2	4.85	8.35	1.1	2.2
	D8+D10	3	3.1 3.4	0.60	0.70	-	-	-	~	-	-		-	12.8	-	-	-	-	_
	D11	0	1.3	0.38	0.70 0.47	0.016	0	0	0.250	16.61	0.26	1.47	11.33	0.0	12.8	3.68	6.28	7.6	15.1
	D11	3	1.3	0.38	0.47	0.018	210 95	4	0.019	-	- 005	-	-	15.9	-	-	-	-	-
	D12D2+D3+D4+D5+D6+D9+D11	D1+D2+D3+D4+D5+D6+D9	8.6	0.59	0.69	- 4.010	- 33	_ 1	0.015	3.43	0.25	1.30	2.64	0.6	16,5	3.26	5.57	1.6	3.4
	D1+D2+D3+D4+D5+D6+D9+D11	3	9.9	0.56	0.66	0.016	130	2	0.015	51.42	0.64	9.77	5.27	10.7	11.2	3.90	6.87	- 310	-
6	D1+D2+D3+D4+D5+D6+D7+D9+D11	D1+D2+D3+D4+D5+D6+D7+D9	12.8	0.59	0.69	-	-		-	- 51.42	_	_ 5.17	_ 5.21	12.1	11.2	3.90	0.07	21.9	43.7
	D1+02+03+04+05+06+07+09+D11 D12	3	13.9	0.57	0.67	0.016	140	2	0.015	65.98	0.71	11.89	5.55	0.4	12.5	3,71	6.33	29.6	59.0
	D12	0	0.5	0.65	0.72	-	85	3	0.035	-	-	-	-	5.1	-	-	_	-	- 55.0
	D8+D10+D12	D8+D10	0.5 3.4	0.65	0.72 0.70	0.016	130	2	0.015	3.33	0.24	1.25	2.67	8.0	5.9	4.93	8.50	1.7	3.2
	D8+D10+D12	3	4.0	0.81	0.70	0.016	130	- 2	-	-		-	-	,	-	~	-	~	-
	E1	0	1.2	0.80	0.70	- 0.010	65	1	0.015 0.015	19.19	0.45	4.66	4.12	0.5	13.3	3.61	6.16	8.7	17.1
	E1	3	1.2	0.60	0.70	0.016	615	11	0.013	7.08	0.31	2.08	3 40	6.5 3.0	9.6	4.16	- 7.0		-
	E2	a	2.8	0.60	0.70	-	130	3	0.020	_ 7.00	- 0.31	~ 2.00	_ 340	8.5	_ 9.0	4.10	7.12	3.1	6.1
	E2 E1+E2	3 E2	2.8	0.80	0.70	0.016	580	11	0.020	14.63	0.39	3.47	4.22	2.3	10.8	3.96	6.77	6.7	13.3
	E1+E2	3	2.8	0.60	0.70	~	-		-	-	-	-	-	10.8	-	-	-	-	-
	E3	0	4.0 1.0	0.60 0.60	0.70 0.70	0.016	0	0	0.250	21.06	0 29	1.75	12.02	0.0	10.8	3.96	6.77	9.6	19.1
	E3	3	1.0	0.60	0.70	0.016	60 515	1 10	0.015		- 000	-		0.5	-	-	-	-	_
	E1+E2+E3	E1+E2	4.0	0.60	0.70	_ 0.010	_ 515	- 10	0.020	5.64	0.28	1.68	3.37	2.6	8.9	4.28	7.33	2.5	5.0
	E1+E2+E3	3	5.0	0.60	0.70	0.016	0	0	0.250	26.13	0.31	2.06	12.68	10.8 0.0	- 400	- 200			-
	E4	0	2.7	0.60	0.70	_	125	3	0.020	20.13	- 0.31	2.00	_ 12.00	8.3	10.8	3.96	6.77	11.9	23.7
	E4 E1+E2+E3+E4	3	2.7	0.60	0.70	0.016	500	11	0.023	14,43	0.38	3.24	4.45	1.9	10.2	4.06	6.93	6.7	13.3
	E1+E2+E3+E4 E1+E2+E3+E4	E1+E2+E3	5.0	0.60	0.70	-	-	-	-		-	-	-			- 4.00	~ 0.55	_ 0.,	
	E5	3	7.7	0.60	0.70	0.016	295	8	0.025	40.45	0.54	6.75	5.99	0.8	11.6	3.84	6.56	17.8	35.5
	£5	3	0.9	0.60	0.70	- 0.040	60	1	0.015	-	-	-	-	0.0	-	-	-	_	_
	E1+E2+E3+E4+E5	E1+E2+E3+E4	7.7	0.60	0.70 0.70	0.016	460	11	0.023	5.24	0.27	1.50	3.50	2.2	8.5	4.35	7.45	2.3	4.7
	E1+E2+E3+E4+E5	3	8.6	0.60	0.70	0.016	_ 0	- 0	0.250	45.16	0.37	3.11	14.52		-			-	-
	E6	0	1,8	0.60	0.70	~	105	3	0.029	45.10	- 0.37	3.11	_ 14.32	0.0 6.8	11.6	3.84	6.56	19.9	39.7
	E6	3	1.8	0.60	0.70	0.016	575	8	0.015	10.23	0.36	2.96	3.45	2.8	9,5	4.16	7.12	4.5	9.0
	E7 E7	0	2.3	0.43	0.61	-	200	4	0.020		-				- 5.5	5		_	- 4.0
	£/ E4+E5	3 E4	2.3	0.43	0.61	0.016	365	7	0.019	8.58	0.33	2.34	3.66	1.7	15.8	3.33	5.69	3.3	8.1
	E4+E5	3	2.7 3.6	0.60	0.70	0.045	-	-	-		-	_		10.2	-	-	-	-	-
	E4+E5+E7	E4+E5	3.6	0.60	0.70 0.70	0.016	_ 0	0	0.250	19.17	0.28	1.63	11.74	0.0	10.2	4.06	6.93	8.9	17.7
	E4+E5+E7	3	6.0	0.53	0.67	0.016	100	- 3	0.025	29.94	0.49	5.42	5.52	10.2	10.6	4.01	- 606	12.6	- 27.3
	E1+E2+E3+E4+E5+E7	E1+E2+E3+E4+E5	8.6	0.60		_	_	_ ~	- 0.020	2.0.04	- 0,43	J.**Z	_ 3.42	11.6	10.5	4.01	6.85	12.6	27.2
	E1+E2+E3+E4+E5+E7	3	11.0	0.56	0.68	0.016	100	1	0.010	55.85	0.72	12.21	4.57	0.4	12.0	3.79	6.47	23.4	48.4
									- 1										

*

 JOB NAME:
 Midtown Collection at Hannah Ridge Filing No. 3

 JOB NUMBER:
 1116.35

 DATE:
 08/20/20

 CALCULATED BY:
 KRC

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY (PROPOSED CONDITIONS)

				IMPERVIO	OUS AREA /	STREETS			LANDSCAPE/UNDEVELOPED AREAS								WEIGHTED			ITED CA
BASIN	TOTAL AREA (AC)	AREA (AC)	C(2)	C(5)	C(10)	C(25)	C(50)	C(100)	AREA (AC)	C(2)	C(5)	C(10)	C(25)	C(50)	C(100)	C(2)	C(5)	C(100)	CA(5)	CA(100)
Α	0.76	0.48	0.89	0.90	0.92	0.94	0.95	0.96	0.28	0.04	0.15	0.25	0.37	0.44	0.5	0.58	0.62	0.79	0.47	0.60
B-1	1.36	0.79	0.89	0.90	0.92	0.94	0.95	0.96	0.57	0.04	0.15	0.25	0.37	0.44	0.5	0.53	0.59	0.77	0.80	1.04
B-2	0.34	0.20	0.89	0.90	0.92	0.94	0.95	0.96	0.14	0.04	0.15	0.25	0.37	0.44	0.5	0.54	0.59	0.77	0.20	0.26
С	0.29	0.21	0.89	0.90	0.92	0.94	0.95	0.96	0.08	0.04	0.15	0.25	0.37	0.44	0.5	0.66	0.69	0.83	0.20	0.24
D	1.08	0.79	0.89	0.90	0.92	0.94	0.95	0.96	0.29	0.04	0.15	0.25	0.37	0.44	0.5	0.66	0.70	0.84	0.75	0.90
E	0.89	0.67	0.89	0.90	0.92	0.94	0.95	0.96	0.22	0.04	0.15	0.25	0.37	0.44	0.5	0.68	0.71	0.85	0.64	0.75
F	1.23	0.22	0.89	0.90	0.92	0.94	0.95	0.96	1.01	0.04	0.15	0.25	0.37	0.44	0.5	0.19	0.28	0.58	0.35	0.72
G	1.87	0.00	0.89	0.90	0.92	0.94	0.95	0.96	1.87	0.04	0.15	0.25	0.37	0.44	0.5	0.04	0.15	0.50	0.28	0.94
Н	0.42	0.00	0.89	0.90	0.92	0.94	0.95	0.96	0.42	0.04	0.15	0.25	0.37	0.44	0.5	0.04	0.15	0.50	0.06	0.21

JOB NAME: Midtown Collection at Hannah Ridge Filing No. 3

JOB NUMBER: 1116.35
DATE: 08/20/20
CALC'D BY: KRC

BASIN RUNOFF SUMMARY (PROPOSED CONDITIONS)

								(- <u>/</u>			
		WEIGHTE)		OVER	LAND		STREET / CHANNEL FLOW				Tc INTENSITY			TOTAL FLOWS	
BASIN	CA(2)	CA(5)	CA(100)	C(5)	Length (ft)	Height (ft)	Tc (min)	Length (ft)	Slope (%)	Velocity (fps)	Tc (min)	TOTAL (min)	l(5) (in/hr)	l(100) (in/hr)	Q(5) (cfs)	Q(100) (cfs)
Α	0.44	0.47	0.60	0.15	80	3	9.9	150	4.0%	7.0	0.4	10.3	4.09	6.86	1.9	4.1
B-1	0.73	0.80	1.04	0.15	200	6	16.9	90	4.0%	7.0	0.2	17.1	3.32	5.58	2.6	5.8
B-2	0.18	0.20	0.26	0.15	130	5	12.5	0	0.0%	0.0	0.0	12.5	3.79	6.36	0.8	1.7
С	0.19	0.20	0.24	0.15	45	0.9	9.2	80	4.0%	7.0	0.2	9.3	4.23	7.10	0.9	1.7
D	0.71	0.75	0.90	0.15	50	1	9.6	290	3.0%	6.1	0.8	10.4	4.06	6.82	3.1	6.2
Е	0.61	0.64	0.75	0.15	240	8	17.9	0	0.0%	0.0	0.0	17.9	3.26	5.47	2.1	4.1
F	0.24	0.35	0.72	0.15	50	1	9.6	0	0.0%	0.0	0.0	9.6	4.18	7.02	1.5	5.0
G	0.07	0.28	0.94	0.15	50	1	9.6	0	0.0%	0.0	0.0	9.6	4.18	7.02	1.2	6.6
Н	0.02	0.06	0.21	0.15	95	3	11.4	0	0.0%	0.0	0.0	11.4	3.93	6.59	0.2	1.4

JOB NAME: Midtown Collection at Hannah Ridge Filing No. 3

JOB NUMBER: 1116.35

DATE: 08/20/20

CALC'D BY: KRC

SURFACE ROUTING SUMMARY (PROPOSED CONDITIONS)

					Intensity		Flow		
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Inlet Size/Conveyance
1	BASIN A	0.47	0.60	10.3	4.08	6.86	1.9	4.1	Street flow south to DP #2
2	BASIN A, B-1 and C (East entry into pond)	1.31	1.89	17.1	3.32	5.58	4.3	10.5	Proposed 10' type R public inlet
3	BASIN D	0.75	0.90	10.4	4.06	6.82	3.1	6.2	Proposed 10' type R public inlet
4	BASIN B-2	0.20	0.26	12.5	3.79	6.36	0.8	1.7	Proposed 2'x2' type C priavte grated inlet
5	Off-site and DP 3 (North entry into pond)	8.18	9.59	17.1	3.32	5.58	27.2	53.5	North pond Entry
Total Pond Inflow	DP 2, 3, 4 and Basin F	10.04	12.46	17.1	3.32	5.58	33.4	69.5	Total flow into pond

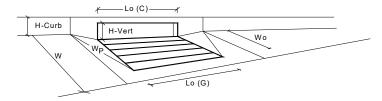
Shouldn't total pond inflow include DP 5?

Job Name:	Midtown Collection at Hannah Ridge Filing No. 3
JOB NUMBER:	1116.35
DATE:	08/20/20
CALC'D BY:	KRC

^{*} PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.

FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY

					Intensity		Flow		
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Pipe Size*
1	DP 4	0.20	0.26	12.5	3.79	6.36	0.8	1.7	12" Private PVC/ADS
2	DP 2 and DP 4	1.51	2.15	17.1	3.32	5.58	5.0	12.0	24" Public RCP
3	DP 3	0.75	0.90	10.4	4.06	6.82	3.1	6.2	18" Private PVC/ADS
4	DP 5	8.18	9.59	17.1	3.32	5.58	27.2	53.5	48" Public RCP


Version 4.05 Released March 2017

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Midtown Collection at Hannah Ridge Filing No. 3 Inlet ID: DP #2 STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 10.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 36.0 Gutter Width w: 1.00 Street Transverse Slope S_X 0.040 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w 0.083 ft/ft S_o Street Longitudinal Slope - Enter 0 for sump condition 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.018 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 15.0 36.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP

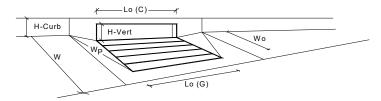
UD-Inlet_v4.05 UCH, DP #2 10/15/2021, 7:42 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.7	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	•	MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.00	1.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.56	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.73	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.0	16.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.9	10.5	cfs

UD-Inlet_v4.05 UCH, DP #2 10/15/2021, 7:42 AM

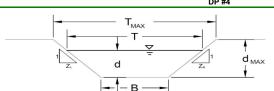

Version 4.05 Released March 2017

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Midtown Collection at Hannah Ridge Filing No. 3 Inlet ID: DP #3 STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 0.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 24.0 Gutter Width w: 1.00 Street Transverse Slope S_X 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w 0.083 ft/ft S_o Street Longitudinal Slope - Enter 0 for sump condition 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.018 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 24.0 24.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP

UD-Inlet_v4.05 UCH, DP #3 10/15/2021, 7:45 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017



Design Information (Input) CDOT Type R Curb Open	ing 🔻 _	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type I	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a'	from above) a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	•	MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 fe	et) W _p =	1.00	1.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.42	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.57	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	0.93	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes cloge	ed condition) Q _a =	10.0	10.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PE	AK) Q PEAK REQUIRED =	3.1	6.2	cfs

UD-Inlet_v4.05 UCH, DP #3 10/15/2021, 7:45 AM

AREA INLET IN A SWALE

Midtown Collection at Hannah Ridge Filing No. 3 DP #4

This worksheet uses the NRCS vegetal retardance method to determine Manning's n.

For more information see Section 7.2.3 of the USDCM.

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method NRCS Vegetal Retardance (A, B, C, D, or E)	A, B, C, D or E		1	
Manning's n (Leave cell D16 blank to manually enter an n value)	n =	0.035		
Channel Invert Slope	S ₀ =	0.0300	ft/ft	
Bottom Width	В=	3.00	ft	
Left Side Slope	Z1 =	50.00	ft/ft	
Right Side Slope	Z2 =	50.00	ft/ft	
Check one of the following soil types:		Choose One:		7
Soil Type: Max. Velocity (V _{MAX}) Max Froude No. (F _{MAX})		Non-Cohesive	•	
Non-Cohesive 5.0 fps 0.60		Cohesive		
Cohesive 7.0 fps 0.80		Paved		
Paved N/A N/A				1
		Minor Storm	Major Storm	¬
Max. Allowable Top Width of Channel for Minor & Major Storm	T _{MAX} =	20.00	30.00	feet
Max. Allowable Water Depth in Channel for Minor & Major Storm	d _{MAX} =	0.40	0.60	feet
Allowable Channel Capacity Based On Channel Geometry		Minor Storm	Major Storm	
MINOR STORM Allowable Capacity is based on Top Width Criterion	Q _{allow} =	3.1	9.2	cfs
MAJOR STORM Allowable Capacity is based on Top Width Criterion	d _{allow} =	0.17	0.27	ft
Water Depth in Channel Based On Design Peak Flow				—
<u>Water Depth in Channel Based On Design Peak Flow</u> Design Peak Flow	Q _o =	0.8	1.7	cfs

UD-Inlet_v4.05 UCH, DP #4 10/15/2021, 8:39 AM

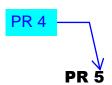
AREA INLET IN A SWALE

Midtown Collection at Hannah Ridge Filing No. 3 DP #4 Inlet Design Information (Input) CDOT Type C (Depressed) Type of Inlet -Inlet Type = CDOT Type C (Depressed) Angle of Inclined Grate (must be <= 30 degrees) degrees Width of Grate W = Length of Grate Open Area Ratio $\mathbf{A}_{\mathsf{RATIO}}$ 0.70 Height of Inclined Grate H_B 0.00 Clogging Factor 0.50 Grate Discharge Coefficient C_{d} 0.84 Orifice Coefficient C_o 0.56 Weir Coefficient 1.81 MINOR MAJOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) 1.09 1.13 Q_a = Total Inlet Interception Capacity (assumes clogged condition) 14.9 15.1 cfs Bypassed Flow, Q_b 0.0 0.0 cfs Capture Percentage = $Q_a/Q_o = C\%$ 100 100

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

UD-Inlet_v4.05 UCH, DP #4 10/15/2021, 8:39 AM

PR 1


Project Description		
Edular Malla I	Manning	
Friction Method	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.010	
Channel Slope	0.005 ft/ft	
Diameter	12.0 in	
Discharge	1.70 cfs	
Results		
Normal Depth	6.1 in	
Flow Area	0.1 III 0.4 ft ²	
Wetted Perimeter	0.4 it² 1.6 ft	
	1.6 ft 3.0 in	
Hydraulic Radius		
Top Width	1.00 ft	
Critical Depth	6.7 in	
Percent Full	51.1 %	
Critical Slope	0.004 ft/ft	
Velocity	4.21 ft/s	
Velocity Head	0.28 ft	
Specific Energy	0.79 ft	
Froude Number	1.168	
Maximum Discharge	3.52 cfs	
Discharge Full	3.27 cfs	
Slope Full	0.001 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth		
open earn 2 ept	0.0 in	
Profile Description	N/A	
Profile Description Profile Headloss		
Profile Description	N/A 0.00 ft	
Profile Description Profile Headloss Average End Depth Over Rise Normal Depth Over Rise	N/A 0.00 ft 0.0 % 51.1 %	
Profile Description Profile Headloss Average End Depth Over Rise Normal Depth Over Rise Downstream Velocity	N/A 0.00 ft 0.0 % 51.1 % Infinity ft/s	
Profile Description Profile Headloss Average End Depth Over Rise Normal Depth Over Rise Downstream Velocity Upstream Velocity	N/A 0.00 ft 0.0 % 51.1 % Infinity ft/s Infinity ft/s	
Profile Description Profile Headloss Average End Depth Over Rise Normal Depth Over Rise Downstream Velocity Upstream Velocity Normal Depth	N/A 0.00 ft 0.0 % 51.1 % Infinity ft/s Infinity ft/s 6.1 in	
Profile Description Profile Headloss Average End Depth Over Rise Normal Depth Over Rise Downstream Velocity Upstream Velocity	N/A 0.00 ft 0.0 % 51.1 % Infinity ft/s Infinity ft/s	

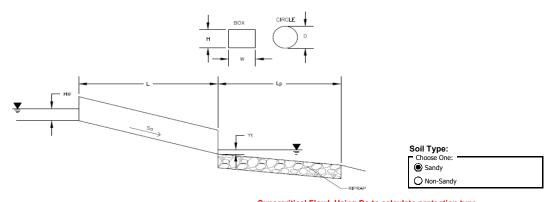
PR 2

Project Description		
Friction Method	Manning	
	Formula Normal Donth	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.005 ft/ft	
Diameter	24.0 in	
Discharge	12.00 cfs	
Results		
Normal Depth	15.5 in	
Flow Area	2.1 ft ²	
Wetted Perimeter	3.7 ft	
Hydraulic Radius	6.9 in	
Top Width	1.91 ft	
Critical Depth	14.9 in	
Percent Full	64.6 %	
Critical Slope	0.006 ft/ft	
Velocity Velocity Head	5.59 ft/s 0.49 ft	
Specific Energy	1.78 ft	
Froude Number	0.930	
Maximum Discharge	17.21 cfs	
Discharge Full	16.00 cfs	
Slope Full	0.003 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise		
Normal Depth Over Rise	54.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	15.5 in	
Critical Depth	14.9 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.006 ft/ft	

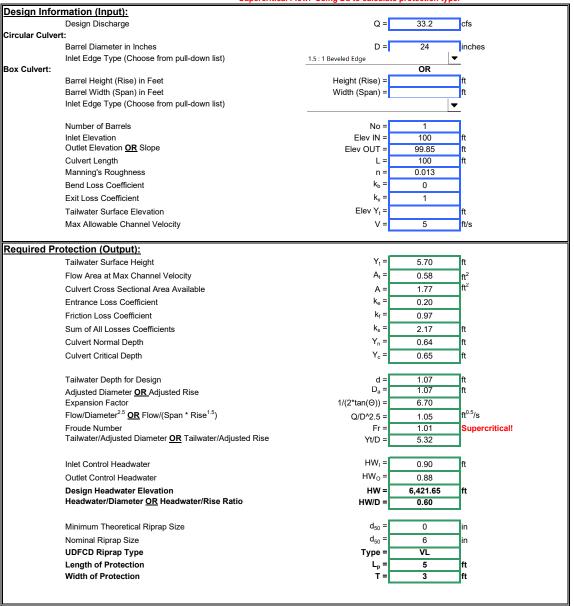
PR 3

Project Description		
Frieties Methy 1	Manning	
Friction Method	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	18.0 in	
Discharge	6.20 cfs	
Results		
Normal Depth	9.9 in	
Flow Area	1.0 ft ²	
Wetted Perimeter	2.5 ft	
Hydraulic Radius	4.8 in	
Top Width	1.49 ft	
Critical Depth	11.5 in	
Percent Full	55.3 %	
Critical Slope	0.006 ft/ft	
Velocity	6.19 ft/s	
Velocity Head	0.60 ft	
Specific Energy	1.42 ft	
Froude Number	1.332	
Maximum Discharge	11.30 cfs	
Discharge Full	10.50 cfs	
Slope Full	0.003 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	55.3 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	9.9 in	
Critical Depth	11.5 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.006 ft/ft	

Project Description		
	Manning	
Friction Method	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.015 0.005 ft/ft	
Diameter	48.0 in	
Discharge	53.50 cfs	
Results		
	240:	
Normal Depth	24.8 in	
Flow Area	6.5 ft ²	
Wetted Perimeter	6.4 ft	
Hydraulic Radius	12.2 in	
Top Width	4.00 ft	
Critical Depth	26.4 in	
Percent Full	51.6 %	
Critical Slope	0.004 ft/ft	
Velocity	8.19 ft/s	
Velocity Head	1.04 ft	
Specific Energy	3.10 ft	
Froude Number	1.129	
Maximum Discharge	109.25 cfs	
Discharge Full	101.57 cfs	
Slope Full	0.001 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	51.6 %	
Downstream Velocity	Infinity ft/s	
	•	
Upstream Velocity	Infinity ft/s	
Normal Depth	24.8 in	
Critical Depth	26.4 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.004 ft/ft	


PR- Outfall

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.010	
Channel Slope	0.012 ft/ft	
Diameter	24.0 in	
Discharge	33.20 cfs	
Results		
	20.4 in	
Normal Depth Flow Area	2.8 ft ²	
Wetted Perimeter	4.7 ft	
Hydraulic Radius	7.3 in	
Top Width	7.3 III 1.43 ft	
Critical Depth	22.8 in	
Percent Full	85.0 %	
Critical Slope	0.011 ft/ft	
Velocity	11.66 ft/s	
Velocity Head	2.11 ft	
Specific Energy	3.81 ft	
Froude Number	1.456	
Maximum Discharge	34.65 cfs	
Discharge Full	32.21 cfs	
Slope Full	0.013 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
	0.0 in	
Downstream Depth Length	0.0 in 0.0 ft	
Number Of Steps	0.0 10	
·	U	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	85.0 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	20.4 in	
Critical Depth	22.8 in	
Channel Slope	0.012 ft/ft	
Critical Slope	0.011 ft/ft	

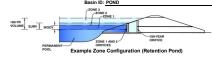

Determination of Culvert Headwater and Outlet Protection

Project: Midtown Collection at Hannah Ridge Fil. No. 3

Basin ID: FSD Outfall

Supercritical Flow! Using Da to calculate protection type

South Public Trapezoidal Channel


		-
Project Description		
Etti Mail I	Manning	
Friction Method	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.045	
Channel Slope	0.007 ft/ft	
Left Side Slope	3.000 H:V	
Right Side Slope	3.000 H:V	
Bottom Width	20.00 ft	
Discharge	1,076.00 cfs	
Results		
Normal Depth	60.7 in	
Flow Area	178.0 ft ²	
Wetted Perimeter	52.0 ft	
Hydraulic Radius	41.1 in	
Top Width	50.35 ft	
Critical Depth	44.4 in	
Critical Slope	0.022 ft/ft	
Velocity	6.05 ft/s	
Velocity Head	0.57 ft	
Specific Energy	5.63 ft	
Froude Number	0.567	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	60.7 in	
Critical Depth	44.4 in	
Channel Slope	0.007 ft/ft	
Critical Slope	0.022 ft/ft	

SWQ / FULL SPECTRUM DETENTION CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

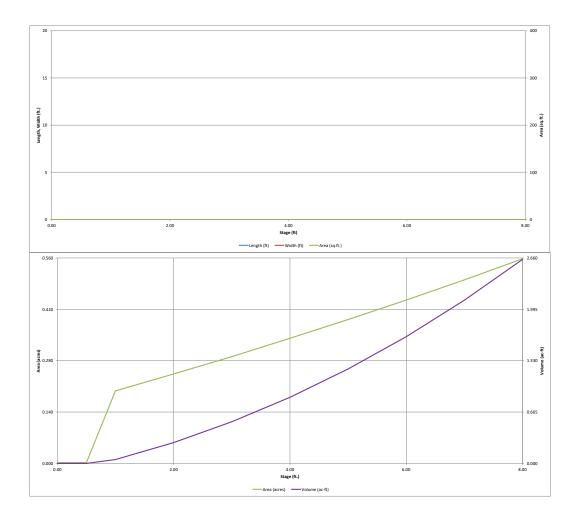
Required Volume Calculation

uired Volume Calculation		
Selected BMP Type =	EDB	
Watershed Area =	21.08	acres
Watershed Length =	1,200	ft
Watershed Slope =	0.050	ft/ft
Watershed Imperviousness =	44.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-br Rainfall Denths =	I lear Innut	

Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	0.334	acre-feet
Excess Urban Runoff Volume (EURV) =	0.981	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.781	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.078	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.499	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	2.181	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	2.645	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	3.253	acre-feet
500-yr Runoff Volume (P1 = 2.75 in.) =	3.933	acre-feet
Approximate 2-yr Detention Volume =	0.731	acre-feet
Approximate 5-yr Detention Volume =	1.012	acre-feet
Approximate 10-yr Detention Volume =	1.370	acre-feet
Approximate 25-yr Detention Volume =	1.517	acre-feet
Approximate 50-yr Detention Volume =	1.589	acre-feet
Approximate 100-yr Detention Volume =	1.800	acre-feet

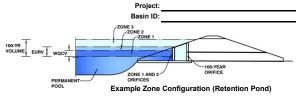
Stage-Storage Calculation

Zone 1 Volume (WQCV) =	0.334	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.647	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.819	acre-feet
Total Detention Basin Volume =	1.800	acre-feet
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area (A _{sv}) =	user	ft^2


Initial Surcharge Area (A _{SV}) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

Depth Increment =	1	ft Ontional				Ontional		1	
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Top of Micropool		0.00	-		-	100	0.002		
42.5		0.50			-	100	0.002	49	0.001
43		1.00			-	8,596	0.197	2,139	0.049
44		2.00	-		-	10,617	0.244	11,724	0.269
45		3.00	-		-	12,664	0.291	23,471	0.539
46		4.00	-		-	14,842	0.341	37,224	0.855
47		5.00			-	17,081	0.392	53,185	1.221
48		6.00			-	19,386	0.445	71,419	1.640
49		7.00			-	21,778	0.500	92,001	2.112
50		8.00			-	24,304	0.558	115,042	2.641
			-		-				
				-	-				
				-	-				
	-				-				
					_				
				_	_				
				_	_				
				_	_				
					_			†	
					_			†	
								†	
			-		-				
			-		-				
	-				-				
	-				-				
	-				-				
	-		-		-				
	-		-		-				
	-		-		-				
			-		-				
			-		-				
					-				
			-						
					-				
					-				
	-		-	-	-				
					-				
					-				
					-				
			-		-				
			-		-				
			-		-				
					-				
	-				-				
	-				-				
			-		-				
	-		-		-			-	
	-		-		-			-	
			-		-				
			-		-				
	-		-		-			-	
	-		-		-			 	
				-	=				
			-		-			1	
	-		-	-	-				
					-				
					-				
			-		-				
					-				
	-		-		-				
			-		-				
			-		-			 	
			-		-				
					-				
	-		-	-	-				
				-	-				
			-		-				
			-						
	-		-		-			 	
	-		-		-				
					-			\vdash	
			-		-			†	
			-		-				
					-			-	-
			-		-				
			-		-			1	
					-			 	
					-			 	
							1		

REV Copy of UD-Detention_v3.07.xkm, Basin 10/18/2021, 7:59 AM


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

REV Copy of UD-Detention_vi.07.48m, Basin 10/18/2021, 7:59 AM

UD-Detention, Version 3.07 (February 2017)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.26	0.334	Orifice Plate
Zone 2 (EURV)	4.37	0.647	Orifice Plate
?one 3 (100-year)	6.36	0.819	Weir&Pipe (Restrict)
' <u>-</u>		1.800	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain						
Underdrain Orifice Area =	N/A	ft ²				
Underdrain Orifice Centroid =	N/A	feet				

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	4.50	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	18.00	inches
Orifice Plate: Orifice Area per Row =	2.12	sq. inches (diameter = 1-5/8 inches)

Calculated Parameters for Plate					
WQ Orifice Area per Row =	1.472E-02	ft ²			
Elliptical Half-Width =		feet			
Elliptical Slot Centroid =	N/A	feet			
Elliptical Slot Area =	N/A	ft ²			

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.50	3.00					
Orifice Area (sq. inches)	2.12	2.12	2.12					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	N/A	N/A	inches

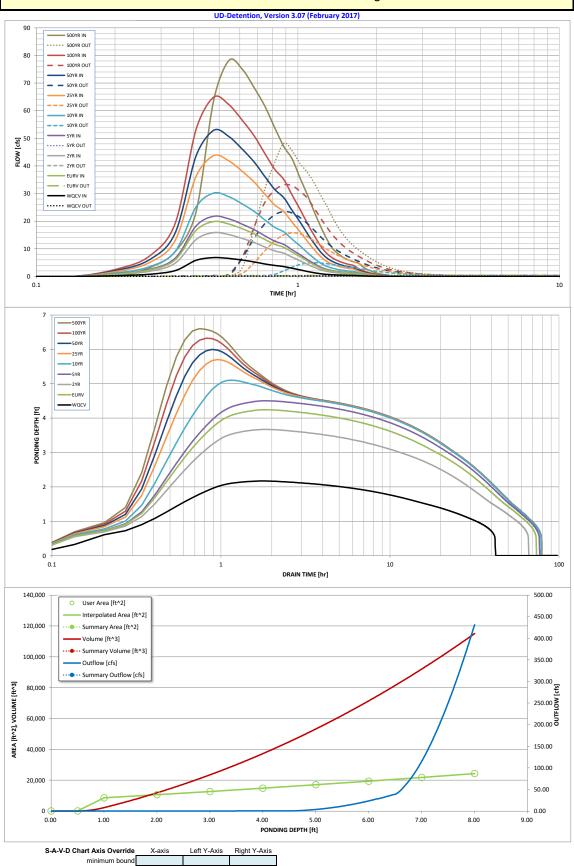
Calculated Parameters for Vertical Orifice					
Not Selected Not Selected					
N/A	N/A	ft ²			
N/A	N/A	feet			
	Not Selected N/A	Not Selected Not Selected N/A N/A			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.50	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	6.00	N/A	feet
Overflow Weir Slope =	3.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	5.00	N/A	feet
Overflow Grate Open Area % =	55%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated			
	Zone 3 Weir		
Height of Grate Upper Edge, H_t =	6.17	N/A	feet
Over Flow Weir Slope Length =	5.27	N/A	feet
Grate Open Area / 100-yr Orifice Area =	5.54	N/A	should be ≥ 4
Overflow Grate Open Area w/o Debris =	17.39	N/A	ft ²
Overflow Grate Open Area w/ Debris =	8.70	N/A	ft ²
_			_

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)


et Pipe w/ Flow Restriction Plate (Ci	rcular Orifice, Restric	tor Plate, or Rectang	cular Orifice) Calculated Paramete	rs for Outlet Pipe w/	Flow Restriction Plan	te
	Zone 3 Restrictor	Not Selected		Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area =	3.14	N/A	ft ²
Outlet Pipe Diameter =	24.00	N/A	inches Outlet Orifice Centroid =	1.00	N/A	feet
ctor Plate Height Above Pipe Invert =	24.00		inches Half-Central Angle of Restrictor Plate on Pipe =	3.14	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

oser input zine. Benef spinital (neetan)	baiai oi itapezoiaai,	
Spillway Invert Stage=	6.50	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	65.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	0.47	feet
Stage at Top of Freeboard =	7.97	feet
Basin Area at Top of Freeboard =	0.56	acres

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	2.75
Calculated Runoff Volume (acre-ft) =	0.334	0.981	0.781	1.078	1.499	2.181	2.645	3.253	3.933
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.334	0.981	0.781	1.077	1.498	2.179	2.643	3.251	3.930
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.03	0.26	0.82	1.13	1.51	1.95
Predevelopment Peak Q (cfs) =	0.0	0.0	0.3	0.549	5.4	17.3	23.9	31.9	41.1
Peak Inflow Q (cfs) =	6.8	19.9	15.9	21.8	30.2	43.7	52.9	64.8	78.1
Peak Outflow Q (cfs) =	0.2	0.3	0.3	0.363	5.0	15.8	23.5	33.2	48.2
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.7	0.9	0.9	1.0	1.0	1.2
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Grate 1	Spillway				
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.0	0.3	0.9	1.3	1.9	2.4
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	40	68	62	70	70	67	65	62	59
Time to Drain 99% of Inflow Volume (hours) =	41	72	65	75	76	74	74	73	71
Maximum Ponding Depth (ft) =	2.17	4.24	3.67	4.50	5.11	5.70	6.00	6.32	6.61
Area at Maximum Ponding Depth (acres) =	0.25	0.35	0.32	0.37	0.40	0.43	0.44	0.46	0.48
Maximum Volume Stored (acre-ft) =	0.314	0.938	0.745	1.031	1.260	1.508	1.635	1.785	1.916

maximum bound

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

SOURCE WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK

	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4.00	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.08 min		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:04:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:08:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:12:14	0.31	0.87	0.70	0.95	1.31	1.87	2.25	2.74	3.26
1.225	0:16:19	0.82	2.36	1.89	2.58	3.56	5.12	6.18	7.54	9.03
1.220	0:20:24	2.12	6.06	4.85	6.63	9.15	13.16	15.86	19.36	23.19
	0:24:29	5.82	16.64	13.32	18.22	25.11	36.11	43.53	53.11	63.58
	0:28:34	6.85	19.87	15.86	21.79	30.18	43.70	52.86	64.82	78.12
	0:32:38	6.52	18.98	15.14	20.82	28.88	41.86	50.68	62.21	75.11
	0:36:43	5.93	17.28	13.78	18.96	26.29	38.10	46.12	56.61	68.38
	0:40:48	5.28	15.47	12.32	16.97	23.57	34.22	41.47	50.95	61.60
	0:44:53	4.54	13.39	10.65	14.70	20.46	29.78	36.14	44.49	53.86
	0:48:58	3.96	11.65	9.28	12.79	17.78	25.89	31.47	38.78	47.01
	0:53:02									42.45
		3.59	10.56	8.41	11.59	16.12	23.46	28.48	35.07	
	0:57:07	2.94	8.75	6.95	9.62	13.41	19.57	23.79	29.33	35.56
	1:01:12	2.39	7.17	5.69	7.89	11.03	16.15	19.66	24.27	29.46
	1:05:17	1.82	5.56	4.39	6.13	8.61	12.68	15.48	19.16	23.32
	1:09:22	1.34	4.17	3.28	4.61	6.53	9.68	11.86	14.74	18.00
	1:13:26	0.98	3.02	2.37	3.34	4.77	7.14	8.78	10.96	13.43
	1:17:31	0.76	2.33	1.83	2.57	3.64	5.41	6.63	8.25	10.08
	1:21:36	0.63	1.91	1.51	2.11	2.97	4.39	5.37	6.66	8.11
	1:25:41									
		0.53	1.62	1.28	1.78	2.51	3.71	4.53	5.61	6.83
	1:29:46	0.47	1.42	1.12	1.56	2.20	3.24	3.95	4.89	5.94
	1:33:50	0.42	1.28	1.01	1.41	1.97	2.90	3.54	4.38	5.32
	1:37:55	0.39	1.18	0.93	1.29	1.82	2.66	3.25	4.01	4.87
	1:42:00	0.29	0.86	0.68	0.95	1.34	1.97	2.40	2.98	3.63
	1:46:05	0.21	0.63	0.50	0.70	0.98	1.43	1.75	2.16	2.63
	1:50:10	0.15	0.46	0.37	0.51	0.72	1.06	1.29	1.59	1.94
	1:54:14	0.11	0.34	0.27	0.38	0.53	0.78	0.96	1.19	1.44
	1:58:19	0.08	0.25	0.19	0.27	0.38	0.57	0.70	0.86	1.06
	2:02:24	0.06	0.17	0.14	0.19	0.27	0.41	0.50	0.62	0.76
	2:06:29	0.04	0.12	0.10	0.14	0.20	0.29	0.36	0.45	0.55
	2:10:34	0.03	0.08	0.07	0.09	0.13	0.20	0.25	0.31	0.38
	2:14:38	0.01	0.05	0.04	0.06	0.08	0.13	0.16	0.20	0.25
	2:18:43	0.01	0.03	0.02	0.03	0.04	0.07	0.09	0.11	0.14
	2:22:48	0.00	0.01	0.01	0.01	0.02	0.03	0.04	0.05	0.06
	2:26:53	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.02
	2:30:58									
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:39:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:43:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:47:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:51:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:59:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:03:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:07:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:11:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:19:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:24:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:28:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:32:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:36:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:44:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:48:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:52:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:56:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:04:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:08:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:12:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:21:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:29:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:33:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:37:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:41:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:49:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:53:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l.										

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft^2]	Area	Volume [ft^3]	Volume [ac-ft]	Total Outflow [cfs]	
	[π]	[π-2]	[acres]	[#13]	[ac-tt]		
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor)
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,
							where applicable).
			1		1		†
							†
							1
							}
							†
							†
							1
							†
							
							İ

	Design Procedure Form	n: Extended Detention Basin (EDB)	
	UD-BM	P (Version 3.06, November 2016)	Sheet 1 of
Designer:			
Company:	Classic Consulting Engineers		
Date:	October 18, 2021		
Project:	Midtown Collection at Hannah Ridge Filing No. 3		
Location:	EDB Forebay 1		
Basin Storage V	olume of the state		
A) Effective Imp	erviousness of Tributary Area, I _a	I _a =%	
B) Tributary Area	a's Imperviousness Ratio (i = I _a / 100)	i =	
C) Contributing	Watershed Area	Area =ac	
D) For Watersh Runoff Prod	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in	
E) Design Cond (Select EUR\	cept V when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)	
	ne (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.334 ac-ft	
Water Qualit	eds Outside of the Denver Region, by Capture Volume (WQCV) Design Volume $_{\rm q} = (d_{\rm e}^*(V_{\rm DESIGN}/0.43))$	V _{DESIGN OTHER} = 0.334 ac-ft	
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft	
I) Predominant	Watershed NRCS Soil Group	Choose One A B C / D	
For HSG A: For HSG B:	n Runoff Volume (EURV) Design Volume $EURV_A = 1.68 *; ^{1.28}$ $EURV_B = 1.36 *; ^{1.08}$ D: $EURV_{CID} = 1.20 *; ^{1.08}$	EURV = 0.984 ac-f t	
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L:W=:1	
Basin Side Slope	es		
A) Basin Maxim (Horizontal d	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE	

4. Inlet

A) Describe means of providing energy dissipation at concentrated inflow locations:

	Design Procedure Form	Extended Detention Basin (EDB)	
			Sheet 2 of 4
Designer:	Olerada Organista a Francisco		
Company:	Classic Consulting Engineers October 18, 2021		
Date: Project:	Midtown Collection at Hannah Ridge Filing No. 3		
Location:	EDB Forebay 1		
5. Forebay			
A) Minimum Fo (V _{FMIN}	rebay Volume = 3% of the WQCV)	V _{FMIN} = ac-ft	
B) Actual Foreb	oay Volume	V _F = 0.012 ac-ft	
C) Forebay Dep (D _F	th = <u>18</u> inch maximum)	D _F = <u>12.0</u> in	
D) Forebay Disc	charge		
	i) Undetained 100-year Peak Discharge	Q ₁₀₀ = 69.50 cfs	
	ii) Forebay Discharge Design Flow (Q _F = 0.02 * Q ₁₀₀)	Q _F = <u>1.39</u> cfs	
E) Forebay Disc	sharge Design	Choose One Berrm With Pipe Wall with Rect. Notch Wall with V-Notch Weir	too small for berm w/ pipe)
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P = in	
G) Rectangular	Notch Width	Calculated W _N = 7.4 in	
6. Trickle Channel		Choose One Concrete	
A) Type of Trick	kle Channel	Soft Bottom	
F) Slope of Tric	kle Channel	S = <u>0.0100</u> ft / ft	
7. Micropool and C	Outlet Structure		
A) Depth of Mic	propool (2.5-feet minimum)	D _M = <u>2.5</u> ft	
B) Surface Area	a of Micropool (10 ft² minimum)	A _M = 100 sq ft	
C) Outlet Type		Choose One Orifice Plate Other (Describe):	
D) Smallest Din (Use UD-Dete	nension of Orifice Opening Based on Hydrograph Routing intion)	D _{orifice} =1.63inches	
E) Total Outlet A	Area	A _{ot} = <u>6.36</u> square inches	

	Design Procedure Form	m: Extended Detention Basin (EDB)	
Designer: Company: Date: Project: Location:	Classic Consulting Engineers October 18, 2021 Midtown Collection at Hannah Ridge Filing No. 3 EDB Forebay 1		Sheet 3 of 4
8. Initial Surcharge	e Volume		
	ial Surcharge Volume commended depth is 4 inches)	D _{IS} = in	
	ial Surcharge Volume lume of 0.3% of the WQCV)	V _{IS} = 43.7 cu ft	
C) Initial Surcha	arge Provided Above Micropool	V _s =cu ft	
9. Trash Rack			
A) Water Quali	ty Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A _t = 210 square inches	
in the USDCM,	en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.)	Aluminum Amico-Klemp SR Series with Cross Rods 2" O.C.	
	Other (Y/N): N		
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio =	
D) Total Water	Quality Screen Area (based on screen type)	A _{total} =sq. in.	
	sign Volume (EURV or WQCV) sign concept chosen under 1E)	H= <u>4.5</u> feet	
F) Height of Wa	ater Quality Screen (H _{TR})	H _{TR} = 82 inches	
	ter Quality Screen Opening (W _{opening}) 12 inches is recommended)	W _{opening} = 12.0 inches	

	Design Procedure For	m: Extended Detention Basin (ED	B)	
				Sheet 4 of 4
Designer:				
Company:	Classic Consulting Engineers			
Date:	October 18, 2021			
Project:	Midtown Collection at Hannah Ridge Filing No. 3			
Location:	EDB Forebay 1		<u>—</u>	
10. Overflow En	nbankment			
A) Describe	embankment protection for 100-year and greater overtopping:			
	Overflow Embankment tal distance per unit vertical, 4:1 or flatter preferred)			
11. Vegetation		Choose One Irrigated Not Irrigated	AVOID PLACING IRRIGATION HEADS IN THE BOTTOM OF THE BASIN	
12. Access				
A) Describe	Sediment Removal Procedures			
,				
Notes:				
140165.				

	Design Procedure Form	: Extended Detention Basin (EDB)	
			Sheet 2 of 4
Designer: Company:	Classic Consulting Engineers		
Date:	October 18, 2021		
Project:	Midtown Collection at Hannah Ridge Filing No. 3		
Location:	EDB Forebay 2		
5. Forebay			
A) Minimum Fo (V _{FMIN}	orebay Volume = 3% of the WQCV)	V _{FMIN} = ac-ft	
B) Actual Fore	bay Volume	V _F = <u>0.012</u> ac-ft	
C) Forebay Dep (D _F		D _F = <u>12.0</u> in	
D) Forebay Dise	charge		
	i) Undetained 100-year Peak Discharge	Q ₁₀₀ = 12.00 cfs	
	ii) Forebay Discharge Design Flow ($Q_F = 0.02 * Q_{100}$)	Q _F = <u>0.24</u> cfs	
E) Forebay Disc	charge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir Choose One (flow too small for berm w/ pipe)	
F) Discharge Pi	ipe Size (minimum 8-inches)	Calculated D _P = in	
G) Rectangular	Notch Width	Calculated W _N = 3.3 in	
6. Trickle Channel	ı	Choose One Choose One Choose One	
A) Type of Tric	ckle Channel	○ Soft Bottom	
F) Slope of Tric	ckle Channel	S = 0.0100 ft / ft	
7. Micropool and 0	Outlet Structure		
A) Depth of Mi	cropool (2.5-feet minimum)	D _M = <u>2.5</u> ft	
B) Surface Are	ea of Micropool (10 ft² minimum)	A _M = 100 sq ft	
C) Outlet Type		Choose One	
		Orifice Plate	
		Other (Describe):	
1			
D) Smallest Di (Use UD-Dete	mension of Orifice Opening Based on Hydrograph Routing ention)	D _{orifice} = 1.63 inches	
E) Total Outlet	Area	A _{ot} = <u>6.36</u> square inches	

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator

LID Credit by Impervious Reduction Factor (IRF) Method UD-BMP (Version 3.06, November 2016)

User Input

Calculated cells

***Design Storm: 1-Hour Rain Depth WQCV Event 0.53 ***Minor Storm: 1-Hour Rain Depth 5-Year Event 1.50 inches ***Major Storm: 1-Hour Rain Depth 100-Year Event 2.52 inches Optional User Defined Storm CUHP (CUHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm 100-Year Event 2.52

Designer: CLASSIC CONSULTING ENGINEERS October 18, 2021 Date: MIDTOWN AT HANNAH RIDGE FIL 3 Project: Location:

Max Intensity for Optional User Defined Storm 2.51496

SITE INFORMATION (USER-INPUT)

Sub-basin Identifier	А	B-1	С	D	E	F	D8,D10	D1-D7	D12				
Receiving Pervious Area Soil Type	Loamy Sand												
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	0.760	1.360	0.290	1.080	0.890	1.230	3.300	11.740	0.430				
Directly Connected Impervious Area (DCIA, acres)	0.220	0.430	0.070	0.480	0.360	0.000	0.870	2.710	0.430				
Unconnected Impervious Area (UIA, acres)	0.340	0.240	0.030	0.170	0.090	0.060	0.680	2.580	0.000				
Receiving Pervious Area (RPA, acres)	0.000	0.530	0.190	0.430	0.320	0.280	1.750	6.290	0.000				
Separate Pervious Area (SPA, acres)	0.200	0.160	0.000	0.000	0.120	0.890	0.000	0.160	0.000				
RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP)	С	С	С	С	С	С	С	С	С		·	·	

CALCULATED RESULTS (OU

LATED RESULTS (OUTPUT)												
Total Calculated Area (ac, check against input)	0.760	1.360	0.290	1.080	0.890	1.230	3.300	11.740	0.430			
Directly Connected Impervious Area (DCIA, %)	28.9%	31.6%	24.1%	44.4%	40.4%	0.0%	26.4%	23.1%	100.0%			
Unconnected Impervious Area (UIA, %)	44.7%	17.6%	10.3%	15.7%	10.1%	4.9%	20.6%	22.0%	0.0%			
Receiving Pervious Area (RPA, %)	0.0%	39.0%	65.5%	39.8%	36.0%	22.8%	53.0%	53.6%	0.0%			
Separate Pervious Area (SPA, %)	26.3%	11.8%	0.0%	0.0%	13.5%	72.4%	0.0%	1.4%	0.0%			
A _R (RPA / UIA)	0.000	2.208	6.333	2.529	3.556	4.667	2.574	2.438	0.000			
I _a Check	1.000	0.310	0.140	0.280	0.220	0.180	0.280	0.290	1.000			
f / I for WQCV Event:	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6			
f / I for 5-Year Event:	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			
f / I for 100-Year Event:	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4			
f / I for Optional User Defined Storm CUHP:	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39			
IRF for WQCV Event:	1.00	0.50	0.30	0.48	0.45	0.39	0.48	0.49	1.00			
IRF for 5-Year Event:	1.00	0.86	0.59	0.85	0.84	0.75	0.85	0.85	1.00			
IRF for 100-Year Event:	1.00	0.88	0.61	0.88	0.87	0.78	0.88	0.88	1.00			
IRF for Optional User Defined Storm CUHP:	1.00	0.88	0.61	0.88	0.87	0.78	0.88	0.88	1.00			
Total Site Imperviousness: I _{total}	73.7%	49.3%	34.5%	60.2%	50.6%	4.9%	47.0%	45.1%	100.0%			
Effective Imperviousness for WQCV Event:	73.7%	40.4%	27.3%	52.0%	45.0%	1.9%	36.3%	33.8%	100.0%			
Effective Imperviousness for 5-Year Event:	73.7%	46.7%	30.2%	57.9%	49.0%	3.7%	43.9%	41.8%	100.0%			
Effective Imperviousness for 100-Year Event:	73.7%	47.2%	30.4%	58.3%	49.2%	3.8%	44.5%	42.4%	100.0%			
Effective Imperviousness for Optional User Defined Storm CUHP:	73.7%	47.2%	30.4%	58.3%	49.2%	3.8%	44.5%	42.4%	100.0%			

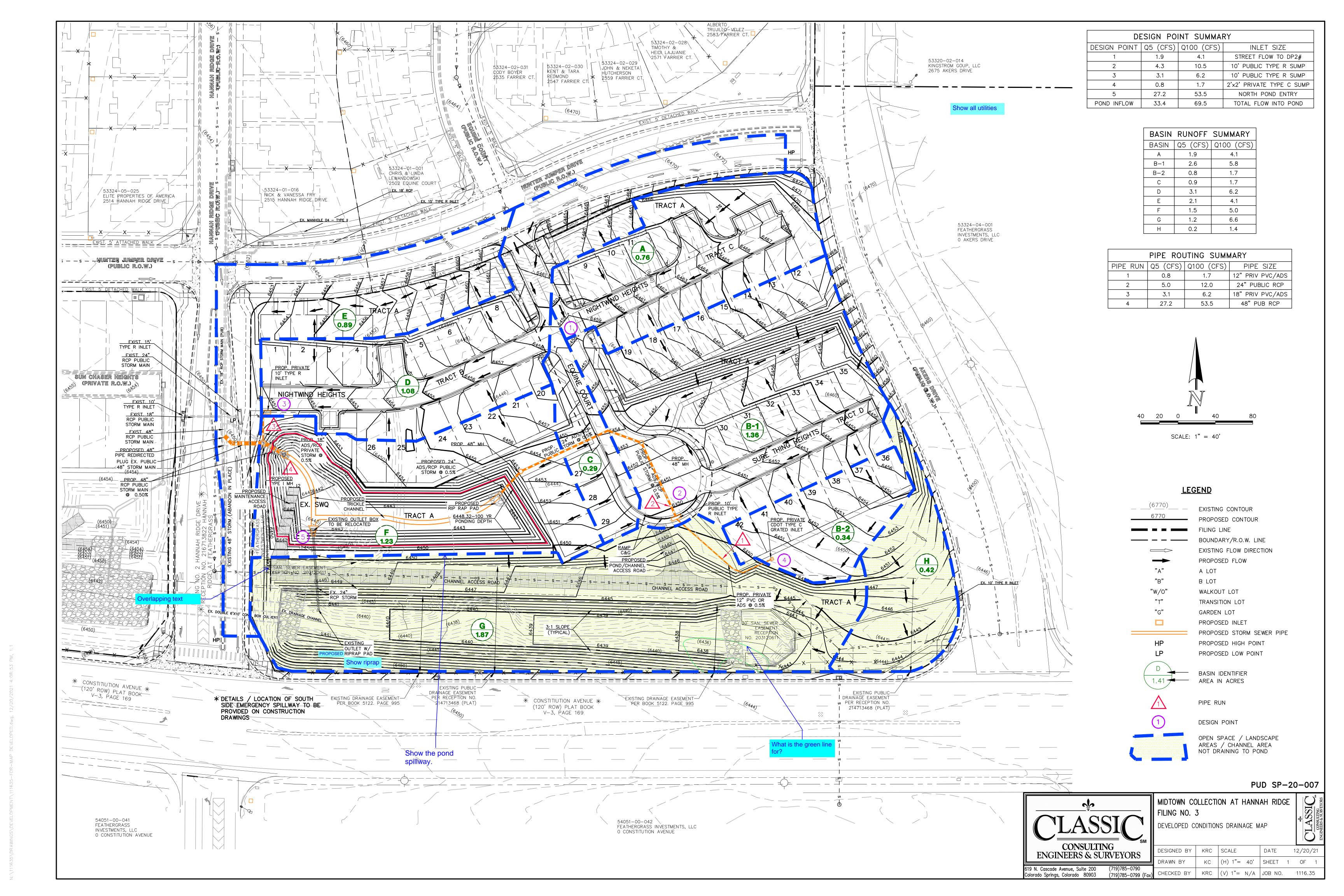
LID / EFFECTIVE IMPERVIOUSNESS CREDITS

WQCV Event CREDIT: Reduce Detention By:
This line only for 10-Year Event
100-Year Event CREDIT**: Reduce Detention By:
User Defined CUHP CREDIT: Reduce Detention By:

0.0%	11.4%	13.4%	10.6%	7.2%	59.4%	14.3%	15.7%	0.0%	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0.0%	4.2%	12.4%	3.1%	2.6%	38.2%	5.3%	5.9%	0.1%	N/A	N/A	N/A	N/A	N/A
0.0%	3.8%	8.8%	3.5%	2.5%	10.1%	4.7%	5.0%	0.0%					

Total Site Impervio 46.3% Total Site Effective Imperviousness for WOCV Event: 36.8% Total Site Effective Imperviousness for 5-Year Event: 43.6% Total Site Effective Imperviousness for 100-Year Event: 44.0% Total Site Effective Imperviousness for Optional User Defined Storm CUHP: 44.0%

- * Use Green-Ampt average infiltration rate values from Table 3-3.


** Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM.
*** Method assumes that 1-hour rainfall depth is equivalent to 1-hour intensity for calculation purposed

UD-BMP_v3.06.xlsm, IRF 10/18/2021, 7:46 AM

DRAINAGE MAP

Provide Existing or overall Drainage Plan showing the entire drainage area to the FSD. This can be combined with the MS4 map requested in the comments.

