PRELIMINARY/FINAL DRAINAGE REPORT

MIDTOWN COLLECTION AT HANNAH RIDGE FILING No. 3 (A Replat of Tract CC, Hannah Ridge at Feathergrass Subdivision Filing No. 1) PUDSP-20-007

DECEMBER 2021

Prepared for: ELITE PROPERTIES OF AMERICA, INC. 2138 FLYING HORSE CLUB DRIVE COLORADO SPRINGS, CO 80921

Engineering Review

02/16/2022 1:07:01 PM dsdrice JeffRice@elpasoco.com (719) 520-7877 EPC Planning & Community Development Department

See comment letter also

Prepared by: CLASSIC CONSULTING ENGINEERS & SURVEYORS 619 CASCADE AVENUE, SUITE 200 COLORADO SPRINGS, CO 80903 (719) 785-0790

Job no. 1116.35

619 N. Cascade Ave, Suite 200 | Colorado Springs, CO 80903 | (719) 785-0790

PRELIMINARY/FINAL DRAINAGE REPORT FOR MIDTOWN COLLECTION AT HANNAH RIDGE FILING NO. 3 (A Replat of Tract CC, Hannah Ridge at Feathergrass Subdivision Filing No. 1)

DRAINAGE REPORT STATEMENT

DESIGN ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established the the unity for drainage reports and said report is in conformity with the applicable master and the unity basin. I accept responsibility for any liability caused by any negligent acts, er y part in preparing this report.

Kyle R. Campbell,

02/02/2022

Date

OWNERS/DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:	Elite Properties of America, Inc.	
	Amipoulton	12 13 21
Title:	Vice President	Date '
Address:	2138 Flying Horse Club Drive	
	Colorado Springs, CO 80921	

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code, as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator Date

Conditions:

Page ii

PRELIMINARY/FINAL DRAINAGE REPORT FOR MIDTOWN COLLECTION AT HANNAH RIDGE FILING NO. 3 (A Replat of Tract CC, Hannah Ridge at Feathergrass Subdivision Filing No. 1)

TABLE OF CONTENTS:

PURPOSE	Page	4
GENERAL DESCRIPTION	Page	4
EXISTING DRAINAGE CONDITIONS	Page	5
DEVELOPED DRAINAGE CONDITIONS	Page	5
HYDROLOGIC CALCULATIONS	Page	10
FLOODPLAIN STATEMENT	Page	11
EROSION CONTROL PLAN	Page	11
DRAINAGE FACILITY COST OPINION	Page	12
DRAINAGE AND BRIDGE FEES	Page	12
SUMMARY	Page	14
REFERENCES	Page	15

APPENDICES

VICINITY MAP SOILS MAP (S.C.S. SURVEY) F.E.M.A. MAP REFERENCE MATERIAL FROM ADJACENT STUDIES EXISTING CONDITIONS DRAINAGE MAP AND CALCULATIONS HYDROLOGIC / HYDRAULIC CALCULATIONS SWQ / FULL SPECTRUM DETENTION CALCULATIONS DRAINAGE MAPS

PURPOSE

This document is the Preliminary and Final Drainage Report for Midtown Collection at Hannah Ridge Filing No. 3. The purpose of this report is to identify onsite and offsite drainage patterns, storm sewer, inlet locations, and areas tributary to the site, and to safely route developed storm water runoff to adequate detention and water quality facilities while releasing storm water at or below historic rates and in accordance with all applicable master drainage plans. This report will discuss the proposed storm system to be built with Filing 3 and discuss the construction details, and more specifically, the design details of the proposed sub-regional public detention/water quality facility located within Filing 3 that will handle the treatment for this site as well as Hannah Ridge at Feathergrass Filings No. 1 & 2. Design information for the Filing No. 3 detention/water quality facility is included in this report.

It is anticipated that an amendment to this report will be provided when the Final Plat and Construction Drawings details are processed for review.

GENERAL DESCRIPTION

The overall Hannah Ridge at Feathergrass development is a 121.2 acre residential and commercial district within the south half of Section 32, Township 13 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado. The site is located on the west side of Akers Drive just north of Constitution Avenue. The existing abandoned Chicago Rock Island and Pacific Railroad sits directly north and west of the site, with Akers Drive bordering the east side and Constitution adjoining the south side of the site. The development includes a total of 345 single-family residences that will be developed in seven filings, as well as two small lot PUD single family developments and one commercial parcel, Tract CC. Tract CC is now proposed for a small lot PUD single family development which is prompting the PUD rezone and PUD site plan applications. Midtown Collection at Hannah Ridge Filing No. 3 (Tract CC) is 7.44 acres in size and contains 42 proposed small lot, single-family detached lots.

The average soil condition of the entire site and tributary area to the proposed ponds reflects Hydrologic Group "A" (Blakeland, loamy sand) as determined by the "Soil Survey of El Paso County Area," prepared by the National Cooperative Soil Survey (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The site is located within the Sand Creek Drainage Basin. More specifically, it is situated in the far southeast portion of the overall Hannah Ridge at Feathergrass development. This site was previously studied in the "Final Drainage Report for Hannah Ridge at Feathergrass Subdivision Filing No. 1", by MVE, Inc. dated January 2014 this proposed residential filing is located in Basin D9, D11 and G1 from the Filing No. 1 report as shown on the developed drainage map provided by MVE, Inc. (See Appendix). Existing Hannah Ridge Drive along the west edge of the development serves as the westerly basin boundary and Hunter Jumper Drive to the north as the northerly basin boundary. The construction of Hannah Ridge at Feathergrass Filing 1 and 2 improvements included the public storm under Hunter Jumper Drive and Hannah Ridge Drive out-falling into the existing drainageway that runs parallel to Constitution. The 84" RCP public storm from Hunter Jumper Drive to Hannah Ridge Drive was previously constructed. The on-site pre-development drainage patterns are generally sheet flowing towards Constitution Avenue where existing inlets intercept the flows and transfer them to an existing stormwater quality only facility located on the east side of Hannah Ridge Drive also constructed with Filing No. 1 and Filing No. 2. Filing No. 1 existing flows generally drain as street flow in a westerly direction towards the existing public drainage facilities within Hannah Ridge Drive. The prior report anticipated released of fully developed flows downstream into the dual cell box culverts under Constitution Avenue.

DEVELOPED DRAINAGE CONDITIONS

Based upon City/County Drainage Criteria, the drainage approach for this development now reflects current criteria for stormwater quality and Full Spectrum Detention requirements. The existing pond on the site will be redesigned as a Full Spectrum facility to accommodate the development of this site and all of northerly Hannah Ridge at Feathergrass Filing 1 and portions of Filing No. 2. This will include the design of concrete forebays, concrete trickle channels, concrete micro-pool and an outlet structure designed to release flows based on full spectrum criteria. The attached developed conditions drainage map contains the design points related to proposed sump conditions. All public and private Type R inlets have been designed at these various locations to accept both the 5-yr. and 100-yr. developed flows.

All proposed storm facilities within the public Right-of-way will be public with ownership and maintenance by El Paso County. All other proposed storm facilities are either public or private (as labeled on map and described below) and are within easements or tracts. The proposed modified Pond 1 will be owned and maintained by the Hannah Ridge Midtown Collection HOA. All existing public storm facilities are located within existing easements as reflected on the drainage map.

Design Point 1 ($Q_5 = 1.9$ cfs and $Q_{100} = 4.1$ cfs) is comprised of 0.76 acres of proposed on-site developed flows from Basin A. These single-family lots and private street flows travel west to the proposed intersection at Equine Court. The flows are intercepted by a 6' cross pan and routed south into Basin B-1 along the east side of proposed public Equine Court.

Design Point 2 ($Q_5 = 4.3 \text{ cfs}$ and $Q_{100} = 10.5 \text{ cfs}$) collects developed flows from Basin B-1 and C and the flows from Design Point 1. Basin B-1 ($Q_5 = 2.6 \text{ cfs}$ and $Q_{100} = 15.8 \text{ cfs}$) and C ($Q_5 = 0.9 \text{ cfs}$ and $Q_{100} = 1.7 \text{ cfs}$) flows are comprised of proposed single-family homes and public and private street flows. At this sump condition, a 10' public Type R sump inlet will be installed to completely collect both the 5-year and 100-year developed flows. These flows will have a maximum ponding depth of 6 inches and will then be conveyed via a 24" RCP public storm sewer in a northerly direction towards the Tract A Pond. The total flow within the pipe at this location is given by **Pipe Run 2 (Q_5 = 5.0 \text{ cfs} and Q_{100} = 12.0 \text{ cfs})** which includes flows from Design Point 4 ($Q_5 = 0.8 \text{ cfs}$ and $Q_{100} = 1.7 \text{ cfs}$), a small 0.34-acre basin of a portion of 7 proposed lots and landscape area. The emergency overflow route at Design Point 2 is in the southerly direction directly into the southerly drainage channel that will route the flows south under Constitution Avenue.

Design Point 3 ($Q_5 = 3.1$ cfs and $Q_{100} = 6.2$ cfs) is developed flows from Basin D, 1.08 acres of proposed single-family homes and public and private street flows. At this sump condition, a 10' private Type R private sump inlet, will be installed to completely collect both the 5-year and 100-year developed flows. These flows will have a maximum ponding depth of 6 inches and then be conveyed via an 18" PVC or ADS private storm sewer towards the Tract A Pond. The total flow within the pipe at this location is given by **Pipe Run 3** ($Q_5 = 3.1$ cfs and $Q_{100} = 6.2$ cfs). The emergency overflow route at this location is south directly into the proposed expanded Pond.

Design Point 5 (Q₅ = **27.2 cfs and Q**₁₀₀ = **53.5 cfs)** represents the combined pipe flows from Design Points 3 and all northerly off-site developed flows (the southerly curb line along Hunter Jumper Drive west of proposed Equine Court, and the easterly curb line of Hannah Ridge Drive south of Hunter Jumper Drive and north of Constitution Avenue). A 48" RCP public storm sewer (**Pipe Run 4**) will route these combined developed flows directly into the Pond after being intercepted by an existing 15' public sump inlet.

Design Point 4 ($Q_5 = 0.8$ cfs and $Q_{100} = 1.7$ cfs) collects developed flows from Basin B-2 (0.34 acres of a portion of seven homes and landscape area). At this sump condition, a private CDOT Type C sump grated inlet will be installed to completely collect both the 5-year and 100-year developed flows. These flows being collected have a maximum ponding depth of 0.13' and then be conveyed via a private 12" PVC or ADS storm sewer towards Design Point 2. The presence of a Froude number slightly more than 1.0 is not a concern for this landscape area with less than 2 inches of 100-year flow depth. The total flow within the pipe at this location is given by **Pipe Run 1 (Q_5 = 0.8 cfs and Q_{100} = 1.7 cfs).** The emergency overflow route at this location is via Tract A directly into the drainage channel along Constitution.

Basin E ($Q_5 = 2.1$ cfs and $Q_{100} = 4.1$ cfs) are flows from a portion of 8 homes along Hunter Jumper Drive and landscape areas that drain into Hannah Ridge Drive and are collected by the existing public 15' Type R sump inlet and also routed to the expanded Tract A Pond.

Runoff from **Basin F** (1.23 Acres) ($Q_5 = 1.5$ cfs and $Q_{100} = 5.0$ cfs) and **Basin G** (1.87 Acres) ($Q_5 = 1.2$ cfs and $Q_{100} = 6.6$ cfs) flow directly into the proposed expanded pond or into the southerly drainage channel. The areas draining directly into the channel are comprised of the channel itself or directly tributary landscape areas.

Basin H ($Q_5 = 0.2$ cfs and $Q_{100} = 1.4$ cfs) is a small 0.42-acre landscape parcel at the southeast corner of the site that sheet flows directly into Akers Drive and Constitution Avenue similar to existing conditions. Basin H will remain undeveloped land without pavement or structures, therefore water quality is not required for this area per current El Paso County ECM.

The total inflow into the expanded Pond is $Q_5 = 34.7$ cfs and $Q_{100} = 70.6$ cfs from both outfalls into the pond. The total proposed flow into the pond is comprised of off-site existing developed Basins D-1, D-2, D-3, D-4, D-5, D-6, D-7, D-8, D-9, D-10 and D-12 (15.25 acres total). See Drainage Map from prior approved report in the Appendix. Runoff Coefficients used for this composite off-site are $(Q_5 =$ 0.49 cfs and $Q_{100} = 0.57$ cfs). The existing facility will be expanded with the proposed Filing 3 development. This facility will have two inflow points. Both inflow points will outfall into proposed concrete forebays. The west inflow will be from a proposed 48" RCP into a proposed concrete forebay with a required size of .010 ac-ft based on 3% of the WQCV from this inflow. The forebay is designed with 12" high walls, 7.4" notch and a 30" wide concrete trickle channel routing the flows towards the pond outlet. The east inflow will be from a proposed 24" RCP into a proposed concrete forebay with a required size of .010 ac-ft based on 3% of the WQCV from this inflow. The forebay is designed with 12" high walls, 3.3" notch and a 30" wide concrete trickle channel routing the flows toward the pond outlet. The outlet structure consists of a 6'x5' concrete box with an integral 100 Square Foot micropool allowing for 6" initial surcharge depth. The micro-pool total depth of 2.5' provides the required 0.3% of the WQCV. The outlet box will have a height of 4.50' above the micro-pool water elevation. (See UD-BMP Spreadsheets in the Appendix). The orifice plate on the front of the outlet box consists of a series of 3 – 1 5/8" holes, 18" apart (see UD Detention Spreadsheets in Appendix) this facility will be owned and maintained by the Hannah Ridge Midtown Collection HOA.

Pond 1 has the following design parameters as a Full Spectrum Facility:

0.334 Ac.-ft. WQCV required0.647 Ac.-ft. EURV required0.819 Ac.-ft. 100-year storage required

Pond Design Release:	Q ₅ = 0.363 cfs, Q ₁₀₀ = 33.2 cfs (Design Point 5)
Pre-development Release:	Q ₅ = 0.549 cfs, Q ₁₀₀ = 31.90 cfs
Maximum 100-Year Ponding Elevation:	6448.32

An existing 24" HDPE storm pipe currently conveys the released flows and will continue to do so (Pipe Run Outfall). A 5' long by 3' wide rip-rap (Type VL) dissipator will be provided at the existing pipe outlet. The pond needs to be based on HSG A which calculates the required release rates based on existing soil types Hydrologic Soil Group B was used for FSD Calculations as use of Group A does not reflect the regrading

and landscaping of the existing pond which is better reflected with the use of Group B Soil.

All existing storm infrastructure that will not be utilized due to the upstream off-site flows being redirected will be capped at the disconnect point. Details will be provided on future Construction Drawings detailing the location.

The release from the pond will be discharged into the proposed public improved drainage corridor that runs parallel to Constitution Avenue towards an existing public storm outfall under Constitution Avenue contained within multiple El Paso County public drainage easements per Book 5122 and, Page 995 and Rec. No. 214713468. With the public box culverts and headwalls under Hannah Ridge Drive (dual 6' x 10') and Constitution Avenue (dual 6' x 12') being existing, the only remaining public improvements between the existing public outlet and inlet is approximately 450 linear feet of public rip-rap trapezoidal channel. As defined in the DBPS as a Rip Rap channel with a bottom width of 30', depth of 4' and projected flow of 1,580 cfs in the 100-year event. The inclusion of on-site Full Spectrum Detention (not anticipated with DBPS flows) will decrease the amount flowing into the proposed channel corridor. The subsequent Hannah Ridge MDDP further defined the tributary flows and required channel improvement as approved within the Filing No. 2 Construction Drawings. Pricing for the DBPS public channel (Reimbursable Public facility) is included in the report after the on-site cost opinion. Using the prior approved and constructed MVE, Inc. Design Drawings (west of this site), the same 20' base with 3:1 side slope channel will be built connecting the existing improvements based upon a 100-year flow depth of 5.06' for the approved MDDP flow rate of Q_{100} = 1076 cfs (using a 30' base instead of 20'). These public rip-rap channel improvements are identified as reimbursable facilities per the Drainage Basin Planning Study and will be used to off-set proposed drainage fees. In no location along this proposed public channel is the freeboard less than 2'. The proposed public channel will be maintained by El Paso County within the existing public drainage easement corridor.

> upon acceptance of the public improvements

Per the DBPS the existing downstream public box culvert under Constitution is "to remain". The existing public dual 6' x 12' box culvert was built prior to the 1989 DBPS. Using the approved MDDP flows of $Q_{100} = 1076$ cfs, a headwater depth calculation is included in the appendix (D = 6.9') which is easily contained within the existing conditions headwall and grading associated with the inlet control condition.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Individual on-site developed basin design used for inlet sizing and storm system routing was calculated using the Rational Method. Full-Spectrum detention pond modeling developed using UD-Detention spreadsheet ver. 3.07, Urban Drainage and Flood Control District.

The City of Colorado Springs/El Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

This site adheres to this Four Step Process as follows:

- Employ Runoff Reduction Practices: Proposed impervious areas (roof tops, patios) will sheet flow across landscaped yards and through open space areas to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets. This will minimize directly connected impervious areas within the project site.
- 2. **Stabilize Drainageways:** After developed flows utilize the runoff reduction practices through the yards, these flows will travel via curb and gutter within the public streets and eventually

public storm systems. These collected flows are then routed directly to the full-spectrum detention facility on-site and ultimately released into a proposed stabilized drainage channel.

- 3. **Provide Water Quality Capture Volume (WQCV):** Runoff from this development will be treated through capture and slow release of the WQCV in the proposed full-spectrum permanent Extended Detention Basin (Pond 1) designed per current El Paso County drainage criteria.
- 4. Consider need for Industrial and Commercial BMPs: No industrial or commercial uses are proposed within this development. However, a site-specific storm water quality and erosion control plan and narrative has been submitted along with the grading and erosion control plan. Details such as site-specific source control construction BMP's as well as permanent BMP's were detailed in this plan and narrative to protect receiving waters. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

FLOODPLAIN STATEMENT

No portion of this site is located within a FEMA floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C0752G and 756G, with effective dates of December 7, 2018 (See Appendix).

EROSION CONTROL PLAN

The Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate be submitted with the Final Drainage Report. We respectfully request that the Erosion Control Plan and cost estimate be submitted in conjunction with the Overlot Grading Plan and construction assurances posted prior to obtaining a grading permit. Early grading is not being requested with these applications.

Midtown Collection at Hannah Ridge Filing No. 3 Drainage Improvement Costs (Non-Reimbursable)

ITEM	DESCRIPTION	QUANTITY	UNIT COST	COST
1.	2'x2' Type C Grated Inlet	1 EACH	\$3,791/EA	\$ 3,791.00
2.	10' Type R Inlet	2 EACH	\$5,950/EA	\$ 11,900.00
3.	12" PVC Storm Drain	125 LF	\$60/LF	\$ 7,500.00
4.	18" RCP Storm Drain	30 LF	\$69/LF	\$ 2,070.00
5.	24" RCP Storm Drain	215 LF	\$84/LF	\$ 18,060.00
6.	48" RCP Storm Drain	60 LF	\$122/LF	\$ 7,320.00
7.	Type I MH	1 EACH	\$8,592/EA	\$ 8,592.00
8.	Type II MH	2 EACH	\$4,575/EA	\$ 9,150.00
9.	Pond FSD	1 EACH	\$83,000/EA	\$ 83,000.00
SUB-T	OTAL			\$ 151,383.00
10% E	NGINEERING			\$ 15,138.30
5% CC	NTINGENCIES			<u>\$ 7,569.15</u>
GRAN	D-TOTAL			<u>\$ 174,090.45</u>

Midtown Collection at Hannah Ridge Filing No. 3 Drainage Improvement Costs (Reimbursable)

ITEM	DESCRIPTION	QUANTITY	UNIT COST	COST
1.	Channel Imps	450 LF	\$250/LF	\$ 112,500.00
	GINEERING ITINGENCIES			\$ 112,500.00 \$ 11,250.00 <u>\$ 5,625.00</u> \$ 129,375.00

Classic Consulting Engineers & Surveyors cannot and does not guarantee that the construction cost will not vary from these opinions of probable construction costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular.

DRAINAGE & BRIDGE FEES

This site lies within the Sand Creek Drainage Basin. The fees are calculated using the following impervious acreage method approved by El Paso County. Filing No. 3 is a re-plat of previously platted

Tract CC within Filing 1. However, Tract CC was designated as future development and no fees were paid at time of original platting. Thus, the percent imperviousness for each Filing is calculated below based on the following acreage:

Filing 3: 7.44 ac.

The total development area is broken into different residential uses:

PUD zone (1/8 acre or less SF lots – 65% Impervious)

PUD zone Open space/drainage tracts (Greenbelts – 2% Impervious).

The following calculations are based on the 2021 drainage/bridge fees for the Sand Creek Basin:

FILING 3:

2158 SF avg. lots (1/8 acre or less)

(Per El Paso County Percent Impervious Chart for 1/8 acre or less SF lots: 65%)7.44 Ac. x 65% = 4.84 Impervious Ac.

Open Space Tracts

(Per El Paso County Percent Impervious Chart for greenbelts: 2%)2.60 Ac. x 2% = 0.05 Impervious Ac.

Total Impervious Acreage: 4.89 Imp. Ac.

FILING 3 FEE TOTALS:

Bridge Fees

\$ 989.00 x 4.89 Impervious Ac. = <u>\$ 4,836.21</u>

Drainage Fees

\$ 21,134.00 x 4.89 Impervious Ac. = <u>\$ 103,345.26</u>

These Drainage Fees will be off-set by the public channel improvements.

Fees will be recalculated based upon fees at time of Final Plat Submittal.

SUMMARY

This proposed development remains consistent with the previously approved MDDP and Final Drainage Report for Hannah Ridge at Feathergrass Filing No. 1. The existing storm facilities continue to adequately handle both the 5-yr. and 100-yr. developed flows. The proposed detention facility meets current criteria and provides full spectrum design. The proposed development will not adversely impact surrounding developments.

A future Final Plat application will include Construction Drawings and amendment to this report to provide further Final Design details associated with the more detailed design.

PREPARED BY: Classic Consulting

They to Cambull

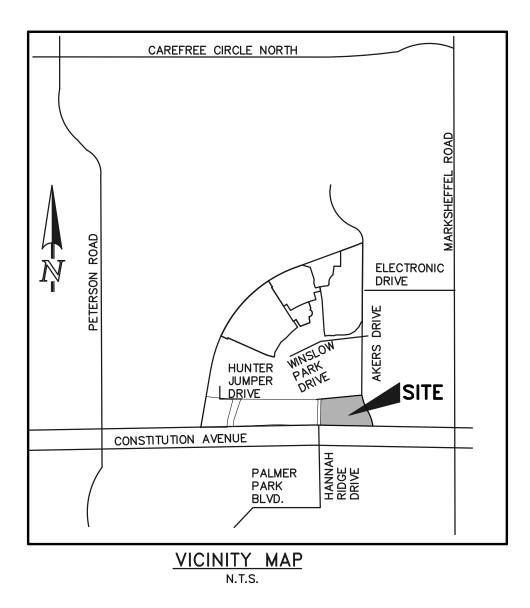
Kyle R. Campbell, P.E. Division Manager

db/111635/REPORTS/fdr

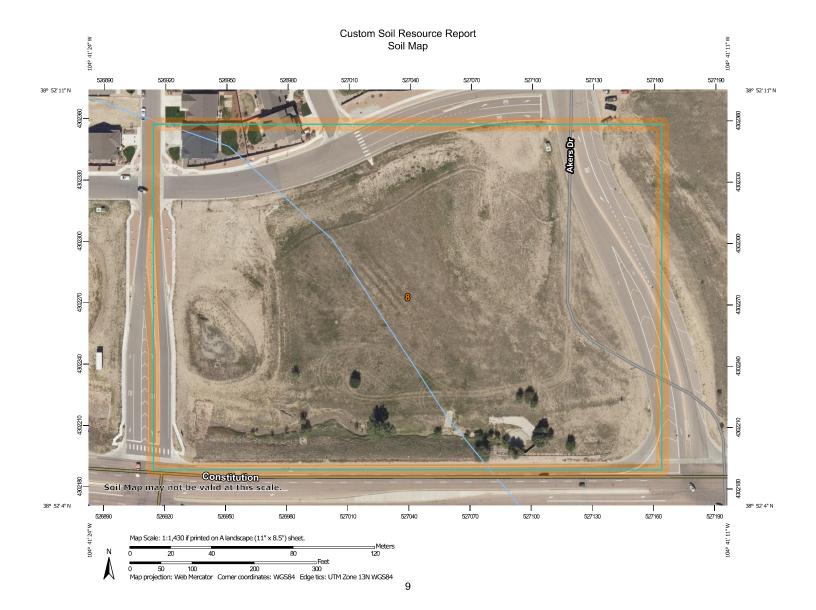
REFERENCES

- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual dated October 1991.*
- 2. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corp, dated March 1996.
- 3. "Master Development Drainage Plan for Hannah Ridge", prepared by MVE, Inc. November 2007
- 4. "Final Drainage Report for Hannah Ridge at Feathergrass Subdivision Filing No. 1", by MVE, Inc. January 2014.
- 5. Drainage Criteria Manual (Volume 3) latest revision April 2008, Urban Drainage and Flood Criteria District.
- 6. "Final Drainage Report for Hannah Ridge at Feathergrass Filing No. 3", by MVE, Inc. October 2017.
- 7. "Final Drainage Report for Hannah Ridge at Feathergrass Filing No. 4", by MVE, Inc. October 2017.
- 8. El Paso County Engineering Criteria Manual, Resolution No. 20-222, June 23, 2020 (Supp. No.2).

*EPC Board Resolution NO. 15-042 (El Paso County adoption of Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria manual dated May 2014, hydrology and full-spectrum detention)



APPENDIX


VICINITY MAP

SOILS MAP (S.C.S SURVEY)

Custom Soil Resource Report

MAP LE	GEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil AreaStony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Special Point Features Blowout	 Very Stony Spot Wet Spot Other Special Line Features Water Features Streams and Canals	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.
Image: Solution of the sector of the sect	Streams and Canals Transportation +++ Rails Interstate Highways Wajor Roads Local Roads Background Aerial Photography	 Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Aug 19, 2018—Sep 23, 2018 The orthophoto or other base map on which the soil lines were
		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

10

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	10.5	100.0%
Totals for Area of Interest		10.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

8—Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: Sandy Foothill (R049XB210CO) Hydric soil rating: No

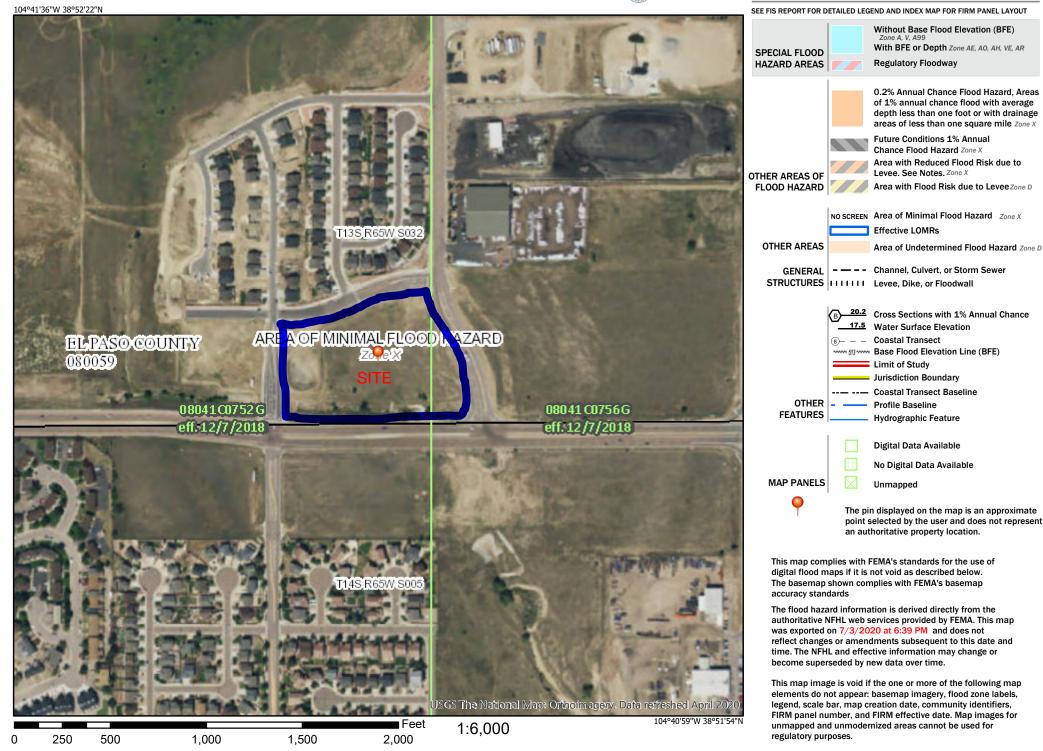
Minor Components

Pleasant

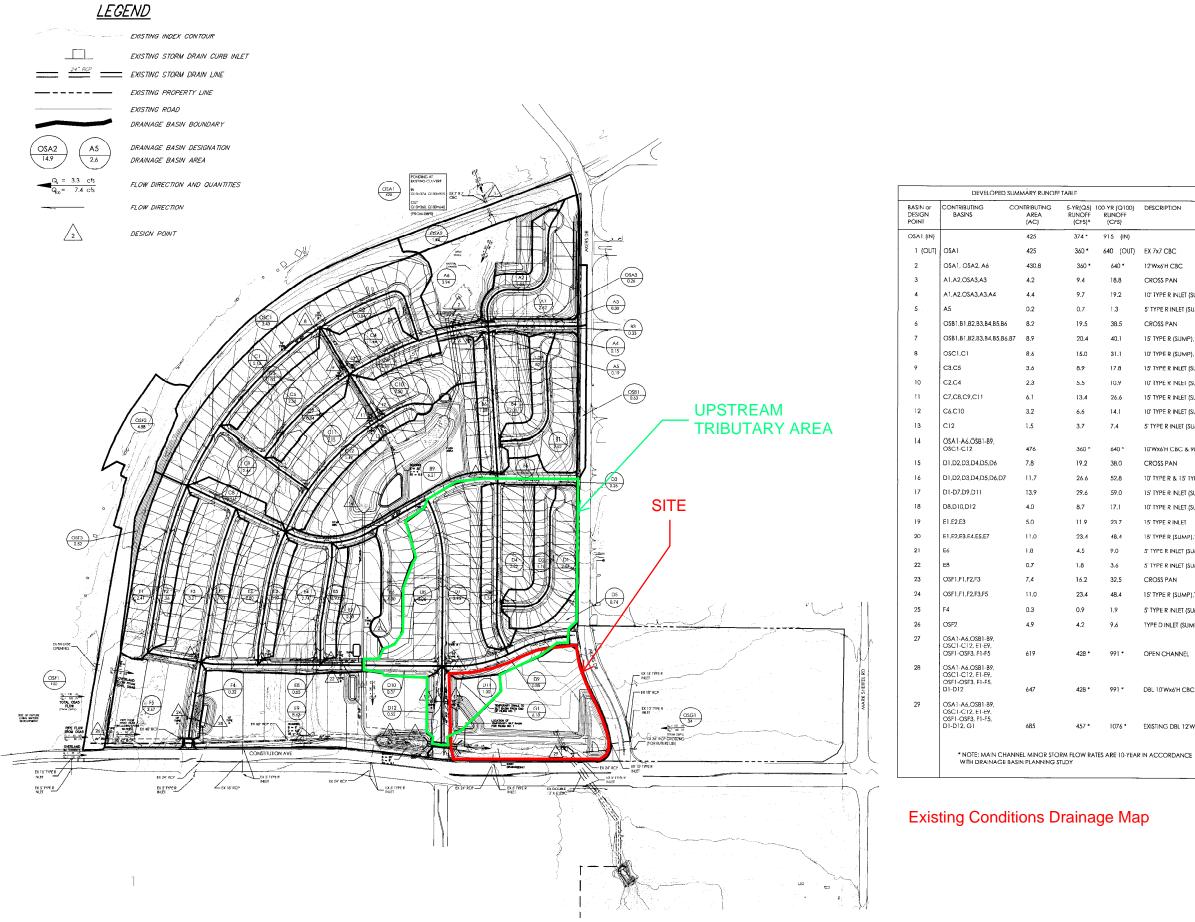
Percent of map unit: 1 percent

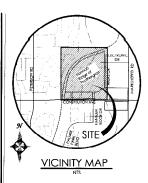
Landform: Depressions Hydric soil rating: Yes

Other soils


Percent of map unit: 1 percent Hydric soil rating: No F.E.M.A. MAP

National Flood Hazard Layer FIRMette




Legend

REFERENCE MATERIAL FROM ADJACENT STUDIES EXISTING CONDITIONS DRAINAGE MAP AND CALCULATIONS

BENCHMARK

LENCHMARK THE BENCHMARK FOR THESE PLANS IS THE TOP OF #4 REISAR, PANEL POINT NO. 1, LOCATED ON THE SOUTH EDGE OF CONSTITUTION AVE AND THE WEST EDGE OF THE ROCK ISLAND TRAIL, 335 FEET WEST OF THE CENTERLINE OF SHAWNEE DR. ELEVATION & 486.63. (EPC DATUM ELEVATION = 6485.29).

REVISIONS

DESIGNED BY DRG DRAWN BY DRG CHECKED BY _________ AS-BUILTS BY CHECKED BY _______

August 21, 2013 August 21, 2013

Hannah Ridge at Feathergrass

DEVELOPED Drainage Map

MVE PROJECT 60970 MVE DRAWING 60970110

December 12, 2013 SHEET 1 OF 1

00-YR (Q100) RUNOFF (CFS)	DESCRIPTION
915 (IN)	
640 (OUT)	EX 7x7 CBC
640 *	12'Wx6'H CBC
18.8	CROSS PAN
19.2	10' TYPE R INLET (SUMP)
1.3	5' TYPE R INLET (SUMP)
38.5	CROSS PAN
40.1	15' TYPE R (SUMP), 15' TYPE R INLETS
31.1	10' TYPE R (SUMP), 10' TYPE R INLETS
17.8	15' TYPE R INLET (SUMP)
10.9	10' TYPE R INLET (SUMP)
26.6	15' TYPE R INLET (SUMP)
14.1	10' TYPE R INLET (SUMP)
7.4	5' TYPE R INLET (SUMP)
640 *	10'Wx6'H CBC & 90" RCP
38.0	CROSS PAN
52.8	10' TYPE R & 15' TYPE R INLETS
59.0	15' TYPE R INLET (SUMP)
17.1	10' TYPE R INLET (SUMP)
23.7	15' TYPE R INLET
48.4	15' TYPE R (SUMP), TYPE C INLETS
9.0	5' TYPE R INLET (SUMP)
3.6	5' TYPE R INLET (SUMP)
32.5	CROSS PAN
48.4	15' TYPE R (SUMP), TYPE C INLETS
1.9	5' TYPE R INLET (SUMP)
9.6	TYPE D INLET (SUMP)
991 *	OPEN CHANNEL
991 *	DBL 10'Wx6'H CBC
1076 *	EXISTING DBL 12'Wx6'H CBC

HOFF-SITE FLOW SUMMARY FROM MVE FILLNG NO.1 REPORT

		Channel	Cont.	5 Year	100 Yr Coef	Manning		Elev	Au	l ch	Ele		et. 1	-					
	Basin	Type or	Area	Coef.	of Curve No	Rough.	Length	Change	Average Slope	Channel	Flow Depth	Flow	Flow	Time of	Total		100 Year	5 Year	100 Year
	Label	Basin	A. (AC)	C.	C100 OF CN	п	L (ft)	(ft)	S	Flow*	d (ft)	Area A (ft ²)	Velocity	Cont	Time	Intensity	Intensity	Discharge	Discharge
	D1+D2+D3+D4	3	5.7	0.61	0.71	0.016	0	0	0.250	Q (cfs) 31.76	0.33		v (fl/s)	T _o (min)	T _a (min)		1100 (in/hr)	Q ₆ (cfs)	Q ₁₀₀ (cfs)
	D5	0	0.7	0.57	0.66	-	140	6	0.230	31.70	0.33	2.39	13.31	0.0	10.0	4.09	7.00	14.3	28.3
	D5	3	0.7	0.57	0.66	0 0 1 6	310	13	0.043	3.87	0.22	0.97	3.98	7.2	-	-	-	-	-
	D1+D2+D3+D4+D5	D1+D2+D3+D4	5.7	0.61	0.71	-	-		-	3.07	-	.v.sr	3.30	1.3 10.0	6.5	4.36	7.46	1.9	3.6
	D1+D2+D3+D4+D5	3	6.5	0.60	0.70	0.016	0	0	0.250	35.58	0.34	2.60	13.69	0.0	10.0	4.09	7.00	16.0	-
	D8	0	1.3	0.60	0.70	-	60	1	0.013	-	-	-	- 13.03	6.6	10.0	4.05	7.00	10.0	31.7
	D8. D6	3	1.3	0.60	0.70	0.016	535	22	0.040	7.52	0.27	1.60	4.69	1.9	_	-	2	-	
	D1+D2+D3+D4+D5+D6	3 D1+D2+D3+D4+D5	1.3	0.60	0,70	0.016	210	4	0.020	7.52	0.31	2.07	3.63	1.0	9.5	4,18	7.15	3.3	6.6
	D1+D2+D3+D4+D5+D6	3	6.5 7.8	0.60	0.70	-	-	-	-	-	-	-	-	10.0	-	-	-	-	-
	D7	0	4.0	0.60	0.70	0.016	35	1	0.040	42.78	0 51	5.94	7.20	0.1	10.0	4.08	6.97	19.2	38.0
	D7	3	4.0	0.60	0.70	0.016	140	2	0.015	-	-	-	-		-	-	-	-	-
	D7	3	4.0	0.60	0.70	0.016	270	4	0.040	19.58	0.38	3.32	5.90 4.08	1.3	-	-	-	-	-
	D1+D2+D3+D4+D5+D6+D7	07	4.0	0.60	0.70	-	-	_ 7		- 19.30	~	- 4.60	4.00	1.1	12.1	3.77	6.43	8.9	17.8
-	D1+D2+D3+D4+D5+D8+D7	3	11.7	0.60	0.70	0.016	0	0	0.250	58.18	0 41	3.76	15.47	0.0	12.1	3.77	6.43	- 26.6	- 52.8
	D9 D9	0	0.9	0.50	0.58	-	40	1	0.020	-	-	-	-	56	-	-	-	- 20.0	52.0
	01+D2+D3+D4+D5+D6+D9		0.9 7.8	0.50	0.58	0.016	585	20	0.034	4.28	0.23	1.12	3.83	2.5	8.2	4.42	7.58	1.9	3.8
	01+02+D3+D4+D5+D8+D9	3	8.6	0.59	0.69	0.016	- 300		-	-	-	-	-	10.0	-	-	-	-	-
	D1+D2+D3+D4+D5+D6+D7+D9	D1+D2+D3+D4+D5+D6+D7	11.7	0.60	0.70			11	0.036	46.67	0.53	6.60	7.07	0.7	10.7	3.97	6.78	20.3	40.3
	D1+D2+D3+D4+D5+D6+D7+D9	3	12.6	0.59	0.69	0.016	0	- 0	0.250	61.69	- 0.42	3.93	15.69	12.1	-	-	-	-	-
	D8	0	3.1	0.60	0.70	-	120	1	0 010	- 01.05	-	3.93	13.09	10.2	12.1	3.77	6.43	28.2	56.0
	D8 D8	3	3.1	0.60	0.70	0.016	450	18	0.040	14.81	0.35	2.68	5.53	1.4	-	-	_	-	-
	D10	3	3.1	0.60	0.70	0.016	270	4	0.015	14.B1	0.41	3.89	3.81	1.2	12.8	3.68	6.28	6.8	13.4
	D10	0 3	0.4	0.60	0.70	-	32	1	0.020	-	-	-	-	4.2	-	-	-		
	D8+D10	5 D8	0.4 3.1	0.60	0.70	0.016	330	7	0.020	2.33	0.21	0.87	2.68	2.1	6.2	4.85	8.35	1.1	2.2
	D8+D10	3	3.4	0.60	0.70 0.70	-	-	-	~	-	-	-	-	12.8	-	-	-	-	-
	D11	0	1.3	0.38	0.70	0.016	0	0	0.250	16.61	0.26	1.47	11.33	0.0	12.8	3.68	6.28	7.6	15.1
	D11	3	1.3	0.38	0.47	0.016	210 95	4	0.019	-	-	-	-	15.9	-	-	-	-	-
	D1+D2+D3+D4+D5+D6+D9+D11	D1+D2+D3+D4+D5+D6+D9	8.6	0.59	0.69	-	- 35	-	0.015	3.43	0.25	1.30	2.64	0.6	16,5	3.26	5.57	1.6	3.4
	D1+D2+D3+D4+D5+D6+D9+D11	Э	9.9	0.56	0.66	0.016	130	2	0.015	51.42	0.64	9.77	- 5.27	10.7 0.4	- 11.2	- 3.90	- 6.87	-	-
*	D1+02+03+04+05+06+07+09+011	D1+D2+D3+D4+D5+D6+D7+D9	12.6	0.59	0.69	-	-	-	-	-	-	- 5.17	- 0.21	12.1	11.4	3.90	0.07	21.9	43.7
-17	D1+02+03+04+05+06+07+09+D11	3	13.9	0.57	0.67	0.016	140	2	0.015	65.98	0.71	11.89	5.55	0.4	12.5	3.71	6.33	29.6	
	D12 D12	o	0.5	0.65	0.72	-	85	3	0.035	-	-	-	-	5.1	-	-	-	-	- 55.0
	D8+D10+D12	3 D8+D10	0.5 3.4	0.65	0.72	0.016	130	2	0.015	3.33	0.24	1.25	2.67	80	59	4.93	8.50	1.7	3.2
	D8+D10+D12	3	4.0	0.60	0.70	-	-	-	-	-	-	-	-	12.8	_	~	-	~	-
	E1	0	1.2	0.60	0.70 0.70	0.016	130 65	2	0.015	19.19	0.45	4.66	4 12	0.5	13.3	3.61	6.16	8.7	17.1
	E1	3	1.2	0.60	0.70	0.016	615	1	0.015	-		-	-	6.5	-	-	-	-	-
	E2	٥	2.8	0.60	0.70	-	130	3	0.018	7.08	0.31	2.08	3 40	3.0	9.6	4.16	7.12	3.1	6.1
	E2	3	2.8	0.80	0.70	0.016	580	11	0.020	14.63	0.39	3.47	4.22	8.5 2.3	10.8	3.96	6.77	- 6.7	-
	E1+E2 E1+E2	E2	2.8	0.60	0.70	-	-	-	-	-	-	-		10.8	-	3.90	- 0.77	- 0.7	13.3
	E3	3	4.0	0.60	0.70	0.016	0	0	0.250	21.06	0 29	1.75	12.02	0.0	10.8	3.96	6.77	9.6	19.1
	E3	3	1.0 1.0	0.60	0.70	-	60	1	0.015	-	-	-	-	6.3	-	-	-	-	-
	E1+E2+E3	E1+E2	4.0	0.60	0.70	0.016	515	10	0.020	5.64	0.28	1.68	3.37	2.6	8.9	4.28	7.33	2.5	5.0
	E1+E2+E3	3	5.0	0.60	0.70	0.016	- 0	-	-	-	-	-	-		-	-	-	-	-
	E4	0	2.7	0.60	0.70	0.016	125	0 3	0.250	26.13	0.31	2.06	12.68	0.0	10.8	3.96	6.77	11.9	23.7
	E4	з	2.7	0.60	0.70	0.016	500	11	0.020	-	- 0.20	-	-	8.3	-	-	-	-	-
	E1+E2+E3+E4	E1+E2+E3	5.0	0.60	0.70	-	-	- "	0.023	14.43	0.38	3.24	4.45	1.9	10.2	4.06	6.93	6.7	13.3
	E1+E2+E3+E4	З	7.7	0.60	0.70	0.016	295	8	0.025	40.45	0.54	6.75	5.99	10.8 0.8	- 11.6	3.84	- 6.56	- 170	
	E5	D	0.9	0.60	0.70	-	60	1	0.015		-	-	_ 0.00	6.3	- 11.0	3.04	0.50	17.8	35.5
	E5 E1+E2+E3+E4+E5	3	0.9	0.60	0.70	0.016	460	11	0.023	5.24	0.27	1.50	3.50	2.2	8.5	4.35	7.45	2.3	4.7
	E1+E2+E3+E4+E5	E1+E2+E3+E4	7.7	0.60	0.70	-	-	-		-	-	-	-	11.6	-	-	-	-	-
	E6	0	8.6	0.60	0.70	0.016	٥	0	0.250	45.16	0.37	3.11	14.52	0.0	11.6	3.84	6.56	19.9	39.7
	E6	3	1.8 1.8	0.60	0.70	0.016	105 575	3	0.029	-	-	-	-	6.8	-	-	-	~	-
	E7	3 0	2.3	0.43		0.016	200	8	0.015	10.23	0.36	2.96	3.45	2.8	9,5	4.16	7.12	4.5	9.0
	E7	3	2.3	0.43	0.61	0.016	365	7	0.020	8.58	0.33	2.34	3.66	14.1		3.33			-
	E4+E5	E4	2.7	0.60	0.70	-	-	- '	- 0.013	- 0.00	- 0.00	-		10.2	15.8	3.33	5.69	3.3	8.1
	E4+E5	3	3.6	0.60	0.70	0.016	0	0	0.250	19.17	0.28	1.63	11.74	0.0	10.2	4.06	6.93	8.9	17,7
	E4+E5+E7 E4 *E5 +E7	E4+E5	3.6	0.60	0.70	-	-	-	-	-	-	-	-	10.2	-	-	-	-	-
	E1+E2+E3+E4+E5+E7	3 E1+E2+E3+E4+E5	6.0	0.53	0.67	0.016	100	З	0.025	29.94	0.49	5.42	5.52	0.3	10.5	4.01	6.85	12.6	27.2
	E1+E2+E3+E4+E5+E7	3	8.6 11.0	0.60	0.70	- 0.016	-	-	-	-	-	-	-	11.6	-	-	-	-	
		5	1.0	0.00	0.00	0.010	100	1	0.010	55.85	0.72	12.21	4.57	0.4	12.0	3.79	6.47	23.4	48.4

HYDROLOGIC / HYDRAULIC CALCULATIONS

		Runoff Coefficients													
Land Use or Surface Characteristics	Percent Impervious	2-year		5-y	5-year		year	25-year		50-year		100-	year		
-		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D		
Business															
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89		
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68		
Residential															
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65		
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58		
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57		
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56		
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55		
Industrial															
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74		
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83		
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52		
Playgrounds	13	0.05	0.13	0.12	0.23	0.20	0.31	0.32	0.40	0.37	0.48	0.41	0.54		
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58		
Undeveloped Areas															
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51		
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50		
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50		
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96		
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59		
Streets															
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96		
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74		
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96		
Roofs	90	0.85	0.85	0.73	0.75	0.75	0.32	0.78	0.80	0.55	0.82	0.50	0.83		
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50		

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

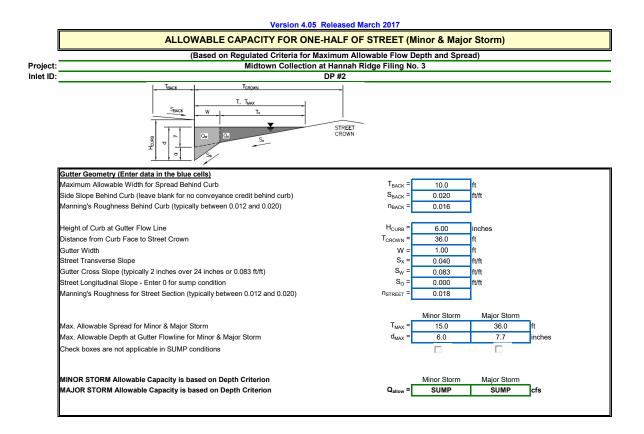
3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

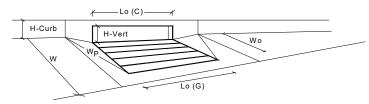
JOB NAME:	Midtown Collection at Hannah Ridge Filing No. 3
JOB NUMBER:	1116.35
DATE:	08/20/20
CALCULATED BY:	KRC

	FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY (PROPOSED CONDITIONS)																			
			IMPERVIOUS AREA / STREETS								LANDSCAF	PE/UNDEVEL	OPED AREA	S			WEIGHTED		WEIGHTED CA	
BASIN	TOTAL AREA (AC)	AREA (AC)	C(2)	C(5)	C(10)	C(25)	C(50)	C(100)	AREA (AC)	C(2)	C(5)	C(10)	C(25)	C(50)	C(100)	C(2)	C(5)	C(100)	CA(5)	CA(100)
А	0.76	0.48	0.89	0.90	0.92	0.94	0.95	0.96	0.28	0.04	0.15	0.25	0.37	0.44	0.5	0.58	0.62	0.79	0.47	0.60
B-1	1.36	0.79	0.89	0.90	0.92	0.94	0.95	0.96	0.57	0.04	0.15	0.25	0.37	0.44	0.5	0.53	0.59	0.77	0.80	1.04
B-2	0.34	0.20	0.89	0.90	0.92	0.94	0.95	0.96	0.14	0.04	0.15	0.25	0.37	0.44	0.5	0.54	0.59	0.77	0.20	0.26
С	0.29	0.21	0.89	0.90	0.92	0.94	0.95	0.96	0.08	0.04	0.15	0.25	0.37	0.44	0.5	0.66	0.69	0.83	0.20	0.24
D	1.08	0.79	0.89	0.90	0.92	0.94	0.95	0.96	0.29	0.04	0.15	0.25	0.37	0.44	0.5	0.66	0.70	0.84	0.75	0.90
E	0.89	0.67	0.89	0.90	0.92	0.94	0.95	0.96	0.22	0.04	0.15	0.25	0.37	0.44	0.5	0.68	0.71	0.85	0.64	0.75
F	1.23	0.22	0.89	0.90	0.92	0.94	0.95	0.96	1.01	0.04	0.15	0.25	0.37	0.44	0.5	0.19	0.28	0.58	0.35	0.72
G	1.87	0.00	0.89	0.90	0.92	0.94	0.95	0.96	1.87	0.04	0.15	0.25	0.37	0.44	0.5	0.04	0.15	0.50	0.28	0.94
Н	0.42	0.00	0.89	0.90	0.92	0.94	0.95	0.96	0.42	0.04	0.15	0.25	0.37	0.44	0.5	0.04	0.15	0.50	0.06	0.21

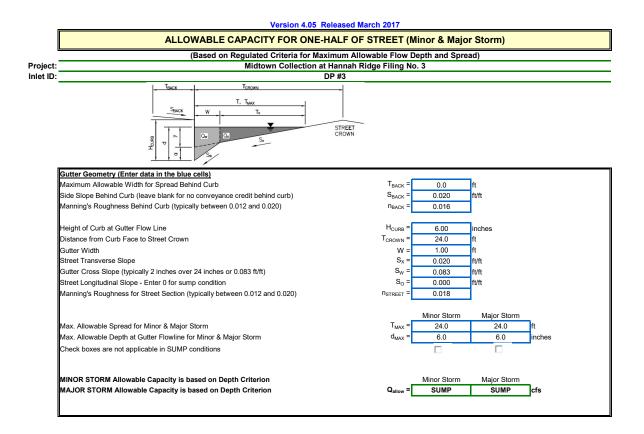

JOB NAME: Midtown Collection at Hannah Ridge Filing No. 3 JOB NUMBER: 1116.35 DATE: 08/20/20 CALC'D BY: KRC BASIN RUNOFF SUMMARY (PROPOSED CONDITIONS)																
	WEIGHTED				OVERLAND			STREET / CHANNEL FLOW			Tc INTENSITY		TOTAL FLOWS			
BASIN	CA(2)	CA(5)	CA(100)	C(5)	Length <i>(ft)</i>	Height <i>(ft)</i>	Tc (min)	Length <i>(ft)</i>	Slope <i>(%)</i>	Velocity <i>(fps)</i>	Tc (min)	TOTAL (min)	l(5) (in/hr)	l(100) (in/hr)	Q(5) (cfs)	Q(100) (cfs)
A	0.44	0.47	0.60	0.15	80	3	9.9	150	4.0%	7.0	0.4	10.3	4.09	6.86	1.9	4.1
B-1	0.73	0.80	1.04	0.15	200	6	16.9	90	4.0%	7.0	0.2	17.1	3.32	5.58	2.6	5.8
B-2	0.18	0.20	0.26	0.15	130	5	12.5	0	0.0%	0.0	0.0	12.5	3.79	6.36	0.8	1.7
С	0.19	0.20	0.24	0.15	45	0.9	9.2	80	4.0%	7.0	0.2	9.3	4.23	7.10	0.9	1.7
D	0.71	0.75	0.90	0.15	50	1	9.6	290	3.0%	6.1	0.8	10.4	4.06	6.82	3.1	6.2
E	0.61	0.64	0.75	0.15	240	8	17.9	0	0.0%	0.0	0.0	17.9	3.26	5.47	2.1	4.1
F	0.24	0.35	0.72	0.15	50	1	9.6	0	0.0%	0.0	0.0	9.6	4.18	7.02	1.5	5.0
G	0.07	0.28	0.94	0.15	50	1	9.6	0	0.0%	0.0	0.0	9.6	4.18	7.02	1.2	6.6
Н	0.02	0.06	0.21	0.15	95	3	11.4	0	0.0%	0.0	0.0	11.4	3.93	6.59	0.2	1.4

JOB NAME:	Midtown Collection at Hannah Ridge Filing No. 3
JOB NUMBER:	1116.35
DATE:	08/20/20
CALC'D BY:	KRC

SURFA	CE ROUTIN	IG SUMMAR	Y (PROPC	OSED CON	DITIONS)	
					14	

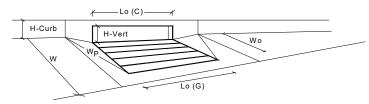

					Intensity		Flow			
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Inlet Size/Conveyance	
1	BASIN A	0.47	0.60	10.3	4.08	6.86	1.9	4.1	Street flow south to DP #2	
2	BASIN A, B-1 and C (Surface area tributary to east entry into pond)	1.31	1.89	17.1	3.32	5.58	4.3	10.5	Proposed 10' type R public inlet	
3	BASIN D	0.75	0.90	10.4	4.06	6.82	3.1	6.2	Proposed 10' type R public inlet	
4	BASIN B-2	0.20	0.26	12.5	3.79	6.36	0.8	1.7	Proposed 2'x2' type C priavte grated inlet	
5	Off-site and DP 3 (North entry into pond)	8.18	9.59	17.1	3.32	5.58	27.2	53.5	North pond Entry	
Total Pond Inflow	DP 2, 3, 4, 5 and Basin F	10.45	12.64	17.1	3.32	5.58	34.7	70.6	Total flow into pond	

JOB NAME:										
JOB NUMBER:	1116.35	_								
DATE:	08/20/20	_								
CALC'D BY: <u>KRC</u>										
	 * PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION. FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY 									
					Intensity Flow		ow			
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Pipe Size*	
1	DP 4	0.20	0.26	12.5	3.79	6.36	0.8	1.7	12" Private PVC/ADS	
2	DP 2 and DP 4	1.51	2.15	17.1	3.32	5.58	5.0	12.0	24" Public RCP	
3	DP 3	0.75	0.90	10.4	4.06	6.82	3.1	6.2	18" Private PVC/ADS	
4	DP 5	8.18	9.59	17.1	3.32	5.58	27.2	53.5	48" Public RCP	



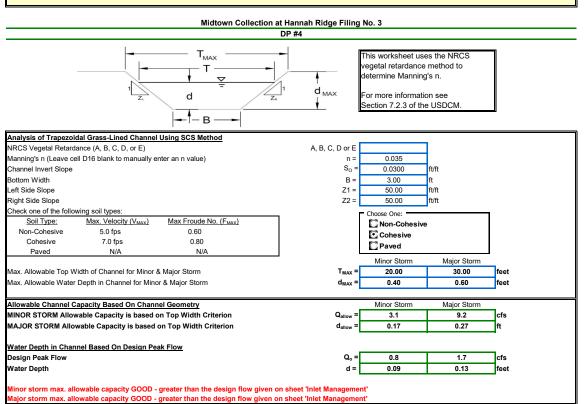
INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017



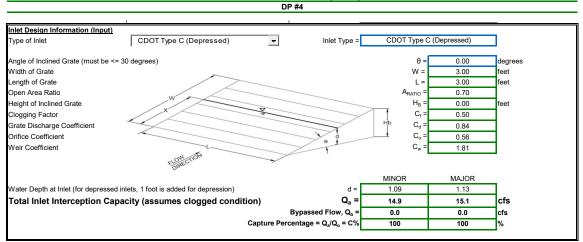
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.7	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-4
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.00	1.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.56	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.73	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.0	16.6	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.9	10.5	cfs

INLET IN A SUMP OR SAG LOCATION


Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
ength of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.00	1.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.42	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.57	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	0.93	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.0	10.0	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.1	6.2	cfs

Version 4.05 Released March 2017


AREA INLET IN A SWALE

Version 4.05 Released March 2017

AREA INLET IN A SWALE

Midtown Collection at Hannah Ridge Filing No. 3

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.010	
Channel Slope	0.010 0.005 ft/ft	
Diameter	12.0 in	
	1.70 cfs	
Discharge	1.70 US	
Results		
Normal Depth	6.1 in	
Flow Area	0.4 ft ²	
Wetted Perimeter	1.6 ft	
Hydraulic Radius	3.0 in	
Top Width	1.00 ft	
Critical Depth	6.7 in	
Percent Full	51.1 %	
Critical Slope	0.004 ft/ft	
Velocity	4.21 ft/s	
Velocity Head	0.28 ft	
Specific Energy	0.79 ft	
Froude Number	1.168	
Maximum Discharge	3.52 cfs	
Discharge Full	3.27 cfs	
Slope Full	0.001 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0.0 10	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	51.1 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	6.1 in	
Critical Depth	6.7 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.004 ft/ft	

Untitled1.fm8 10/15/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.005 ft/ft	
Diameter	24.0 in	
Discharge	12.00 cfs	
Results		
Normal Depth	15.5 in	
Flow Area	2.1 ft ²	
Wetted Perimeter	3.7 ft	
Hydraulic Radius	6.9 in	
Top Width	1.91 ft	
Critical Depth	14.9 in	
Percent Full	64.6 %	
Critical Slope	0.006 ft/ft	
Velocity	5.59 ft/s	
Velocity Head	0.49 ft	
Specific Energy	1.78 ft	
Froude Number	0.930	
Maximum Discharge	17.21 cfs	
Discharge Full	16.00 cfs	
Slope Full	0.003 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0.0 10	
	U	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise		
Normal Depth Over Rise	54.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	15.5 in	
Critical Depth	14.9 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.006 ft/ft	

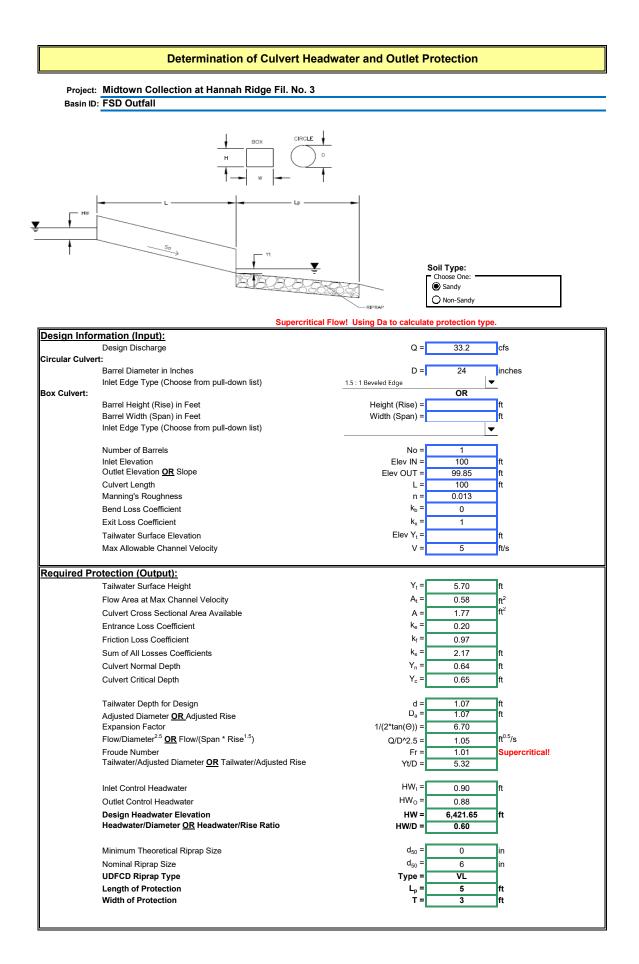
Untitled1.fm8 10/15/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
	Normai Depti	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	18.0 in	
Discharge	6.20 cfs	
Results		
Normal Depth	9.9 in	
Flow Area	1.0 ft ²	
Wetted Perimeter	2.5 ft	
Hydraulic Radius	4.8 in	
Top Width	1.49 ft	
Critical Depth	11.5 in	
Percent Full	55.3 %	
Critical Slope	0.006 ft/ft	
Velocity	6.19 ft/s	
Velocity Head	0.60 ft	
Specific Energy	1.42 ft	
Froude Number	1.332	
Maximum Discharge	11.30 cfs	
Discharge Full	10.50 cfs	
Slope Full	0.003 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	55.3 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	9.9 in	
Critical Depth	11.5 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.006 ft/ft	

Untitled1.fm8 10/15/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

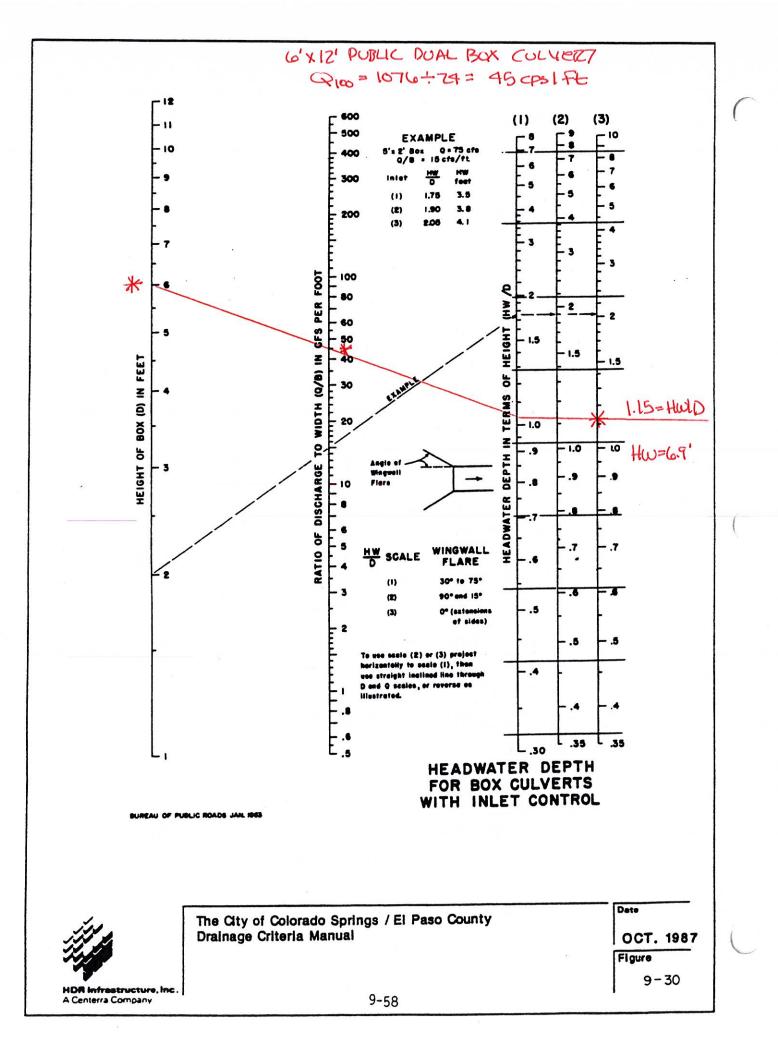
Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.005 ft/ft	
Diameter	48.0 in	
Discharge	53.50 cfs	
Desults		
Results		
Normal Depth	24.8 in	
Flow Area	6.5 ft ²	
Wetted Perimeter	6.4 ft	
Hydraulic Radius	12.2 in	
Top Width	4.00 ft	
Critical Depth	26.4 in	
Percent Full	51.6 %	
Critical Slope	0.004 ft/ft	
Velocity	8.19 ft/s	
Velocity Head	1.04 ft	
Specific Energy	3.10 ft	
Froude Number	1.129	
Maximum Discharge	109.25 cfs	
Discharge Full Slope Full	101.57 cfs 0.001 ft/ft	
Flow Type	Supercritical	
	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise		
Normal Depth Over Rise	51.6 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	24.8 in	
Critical Depth	26.4 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.004 ft/ft	

Untitled1.fm8 1/30/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.005 ft/ft	
Diameter	48.0 in	
Discharge	53.50 cfs	
Results		
Normal Depth	24.8 in	
Flow Area	6.5 ft ²	
Wetted Perimeter	6.4 ft	
Hydraulic Radius	12.2 in	
Top Width	4.00 ft	
Critical Depth	26.4 in	
Percent Full	51.6 %	
Critical Slope	0.004 ft/ft	
Velocity	8.19 ft/s	
Velocity Head	1.04 ft	
Specific Energy	3.10 ft	
Froude Number	1.129	
Maximum Discharge	109.25 cfs	
Discharge Full	101.57 cfs	
Slope Full	0.001 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	51.6 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	24.8 in	
Critical Depth	26.4 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.004 ft/ft	

Untitled1.fm8 12/18/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

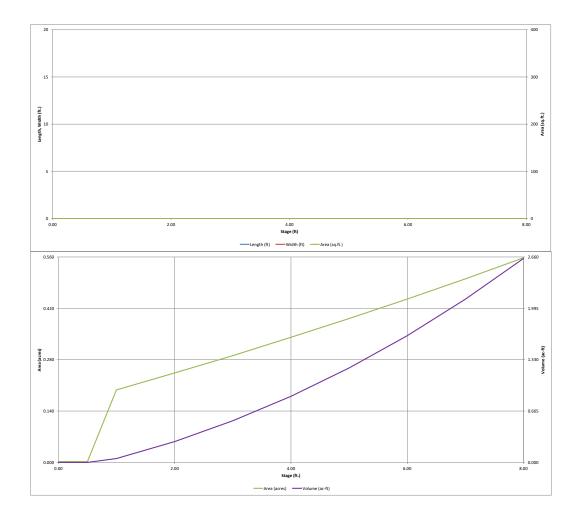
Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.010	
Channel Slope	0.012 ft/ft	
Diameter	24.0 in	
Discharge	33.20 cfs	
Results		
Normal Depth	20.4 in	
Flow Area	2.8 ft ²	
Wetted Perimeter	4.7 ft	
Hydraulic Radius	7.3 in	
Top Width	1.43 ft	
Critical Depth	22.8 in	
Percent Full	85.0 %	
Critical Slope	0.011 ft/ft	
Velocity	11.66 ft/s	
Velocity Head	2.11 ft	
Specific Energy	3.81 ft	
Froude Number	1.456	
Maximum Discharge	34.65 cfs	
Discharge Full	32.21 cfs	
Slope Full	0.013 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise		
Normal Depth Over Rise	85.0 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	20.4 in	
Critical Depth	22.8 in	
Channel Slope	0.012 ft/ft	
Critical Slope	0.011 ft/ft	


PR- Outfall

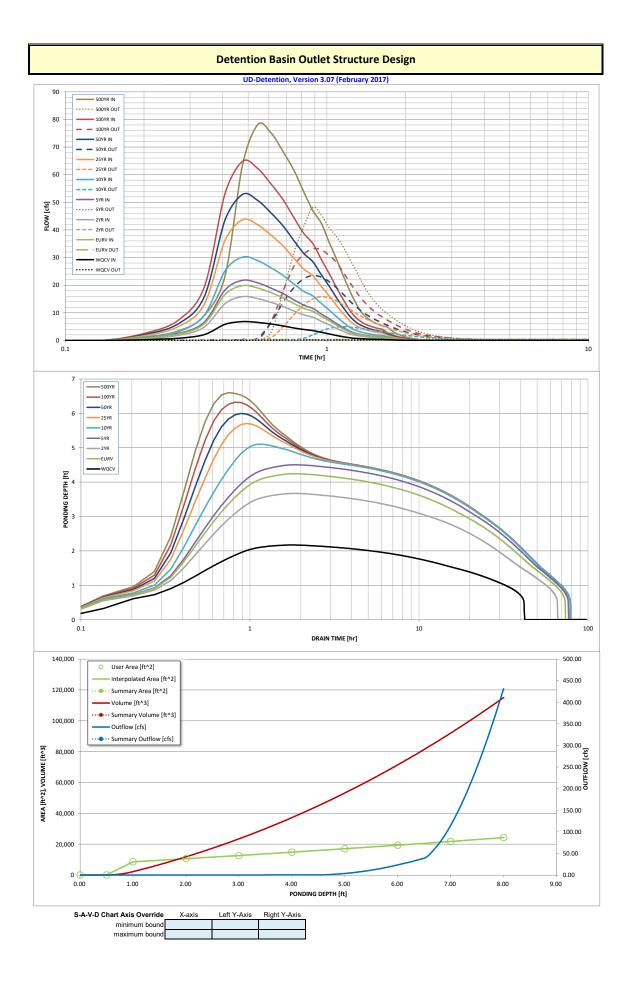
Untitled1.fm8 10/24/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description						
Friction Method	Manning					
	Formula					
Solve For	Normal Depth					
Input Data						
Roughness Coefficient	0.045					
Channel Slope	0.007 ft/ft					
Left Side Slope	3.000 H:V					
Right Side Slope	3.000 H:V					
Bottom Width	20.00 ft					
Discharge	1,076.00 cfs					
Results						
Normal Depth	60.7 in					
Flow Area	178.0 ft ²					
Wetted Perimeter	52.0 ft					
Hydraulic Radius	41.1 in					
Top Width	50.35 ft					
Critical Depth	44.4 in					
Critical Slope	0.022 ft/ft					
Velocity	6.05 ft/s					
Velocity Head	0.57 ft					
Specific Energy	5.63 ft					
Froude Number	0.567					
Flow Type	Subcritical					
GVF Input Data						
Downstream Depth	0.0 in					
Length	0.0 ft					
Number Of Steps	0					
GVF Output Data						
Upstream Depth	0.0 in					
Profile Description	N/A					
Profile Headloss	0.00 ft					
Downstream Velocity	0.00 ft/s					
Upstream Velocity	0.00 ft/s					
Normal Depth	60.7 in					
Critical Depth	44.4 in					
Channel Slope	0.007 ft/ft					
Critical Slope	0.022 ft/ft					

South Public Trapezoidal Channel



SWQ / FULL SPECTRUM DETENTION CALCULATIONS



	DETENTION BASIN STAGE-STORAGE TABLE BUILDER							
UD-Detention, Version 3.07 (February 2017) Project: MIDTOWN AT HANNAH RIDGE FILING NO. 3								
Basin ID: POND								
this needs to be existing cond	ditic							
Prometer - Commission - Optional Optional Optional Provide Length Width Area Override Area Volume	Volume							
Description (ft) Stage (ft) (ft) <td>(ac-ft)</td>	(ac-ft)							
Selected BMP Type = EDB 42.5 0.50 100 0.002 49	0.001							
Watershed Area = 21.08 acres 43 1.00 8.596 0.197 2,139 Watershed Length = 1.200 ft 44 2.00 10,617 0.244 11,724	0.049							
Watershed Slope = 0.050 th	0.539							
Watershed Imperviousness = 44.00% percent 46 4.00 14,842 0.341 37,224 Percentage Hydrologic Soil Group A = 0.0% percent 47 5.00 17,081 0.392 53,185	0.855							
Percentage Hydrologic Soli Group B = 100.0% percent 48 6.00 19,386 0.445 71,419 Percentage Hydrologic Soli Group C/D = 0.0% percent 49 7.00 21,778 0.500 92,001	1.640 2.112							
Desired WQCV Drain Time = 40.0 hours 50 8.00 24.304 0.558 115.042	2.112							
Location for 1-hr Rainfall Depths = User Input <td< td=""><td></td></td<>								
Excess Urban Runoff Volume (EURV) = 0.981 acre-feet 1-hr Precipitation								
2yr Runoff Volume (P1 = 1.19 in.) = 0.781 acre-feet 1.19 inches								
10-yr Runoff Volume (P1 = 1.75 in.) = 1.499 acre-feet 1.75 inches								
25-yr Runoff Volume (P1 = 2 in.) = 2.181 acre-feet 2.00 inches								
100-yr Runoff Volume (P1 = 2.52 in.) = 3.253 acre-feet 2.52 inches								
Approximate 2 yr Detention Volume = 0.731 acre-feet								
Approximate 5-yr Detention Volume = 1.012 acre-feet								
Approximate 25-yr Detention Volume = 1.517 acre-feet								
Approximate 50-yr Detention Volume = 1.589 acre-feet <th< td=""><td>]</td></th<>]							
Stage-Storage Calculation								
Zone 2 Volume (EURV - Zone 1) = 0.647 acre-feet								
Zone 3 Volume (100-year - Zones 1 & 2) = 0.819 acre-feet								
Initial Surcharge Volume (ISV) = user 1+3								
Initial Surcharge Depth (ISD) = user th								
Depth of Trickle Channel (H ₁ c) = user ft <								
Stopes of Main Basin Sides (S _{main}) = user H ₁ .v								
Basin Length-to-Width Ratio (R _{v/W}) = user <td></td>								
Initial Surcharge Area (A ₀ ,) = user #+2								
Surcharge Volume Length (L _{ox}) = user ft								
Depth of Basin Floor (H _{nood}) = user n								
Length of Basin Floor (U _{ncool}) = user It								
Area of Basin Floor (A ₁₀₀₀) = user Area								
Depth of Main Basin (H _{MMN}) = user ft								
Length of Main Basin (L _{MMAD}) = user It]							
Area of Main Basin (A _{Men}) = user the the term that the term term term term term term term ter								
Volume of Main Basin (V _{MM0}) = user h								
n n n n n n n n n n n n								
n n								
n n n n n n n n n n n n								
n n n n n n n n n n	-							
a a a a a a a a b a a a								
Image: second								
n n								
Image: state								

UD-Detention, Version 3.07 (February 2017)

		Dete	ention Basin (Dutlet Struct	ure Design								
Project:			UD-Detention, Ve	rsion 3.07 (Februar	y 2017)								
Basin ID:													
ZONE 3													
ZONE 2 ZONE 1		~		6 1 1 1 1 1		o							
					Zone Volume (ac-ft)		1						
			Zone 1 (WQCV)	2.26	0.334	Orifice Plate							
ZONE 1 AND 2	100-YEA	3	Zone 2 (EURV)	4.37	0.647	Orifice Plate							
PERMANENT ORIFICES Zone 3 (100-year) 6.36 0.819 Weir&Pipe (Restrict)													
POOL Example Zone Configuration (Retention Pond) 1.800 Total													
Jser Input: Orifice at Underdrain Outlet (typically u	sed to drain WQCV ir	a Filtration BMP)				Calculat	ed Parameters for Un	nderdrain					
Underdrain Orifice Invert Depth =	N/A	ft (distance below th	e filtration media sur	face)	Unde	rdrain Orifice Area =	N/A	ft ²					
Underdrain Orifice Diameter =	N/A	inches			Underdra	ain Orifice Centroid =	N/A	feet					
User Input: Orifice Plate with one or more orifices of	or Elliptical Slot Weir	typically used to dra	in WQCV and/or EUF	RV in a sedimentation	n BMP)	Calcu	lated Parameters for	Plate					
Invert of Lowest Orifice =	0.00	ft (relative to basin b	ottom at Stage = 0 ft))	WQ O	rifice Area per Row =	1.472E-02	ft ²					
Depth at top of Zone using Orifice Plate =	4.50	ft (relative to basin b	ottom at Stage = 0 ft))	E	lliptical Half-Width =	N/A	feet					
Orifice Plate: Orifice Vertical Spacing =	18.00	inches			Elli	ptical Slot Centroid =	N/A	feet					
Orifice Plate: Orifice Area per Row =	2.12	sq. inches (diameter	= 1-5/8 inches)			Elliptical Slot Area =	N/A	ft ²					
User Input: Stage and Total Area of Each Orifice	Row (numbered fro	n lowest to highest)										
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)					
Stage of Orifice Centroid (ft)	0.00	1.50	3.00										
Orifice Area (sq. inches)	2.12	2.12	2.12]				
		1	1					1	1				
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)					
Stage of Orifice Centroid (ft)	,												
Orifice Area (sq. inches)	1	1]				
User Input: Vertical Orifice (Cir	-					Calculated	Parameters for Vert						
	Not Selected	Not Selected					Not Selected	Not Selected					
Invert of Vertical Orifice =	N/A	N/A		ottom at Stage = 0 ft		ertical Orifice Area =	N/A	N/A	ft²				
Depth at top of Zone using Vertical Orifice =	N/A	N/A		ottom at Stage = 0 ft) Verti	cal Orifice Centroid =	N/A	N/A	feet				
Vertical Orifice Diameter =	N/A	N/A	inches										
User Input: Overflow Weir (Dropbox) and G	Grate (Flat or Sloped)					Calculated	Parameters for Ove	rflow Weir					
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected					
Overflow Weir Front Edge Height, Ho =	4.50	N/A	ft (relative to basin bo	ttom at Stage = 0 ft)		ate Upper Edge, H _t =	6.17	N/A	feet				
Overflow Weir Front Edge Length =	6.00	N/A	feet				5.27	N/A	feet				
Overflow Weir Slope =	3.00	N/A	H:V (enter zero for fl	at grate)	Grate Open Area /		5.54						
Horiz. Length of Weir Sides =	5.00	N/A							should be \geq 4				
									ft ²				
Overflow Grate Open Area % =	55%	N/A	%, grate open area/t	otal area	Overflow Grate Ope	-	17.39 8.70	N/A N/A N/A					
-				otal area	Overflow Grate Ope	en Area w/o Debris =		N/A	ft ²				
Overflow Grate Open Area % = Debris Clogging % =	55% 50%	N/A N/A	%, grate open area/t %	otal area	Overflow Grate Op Overflow Grate Op	en Area w/o Debris = pen Area w/ Debris =	8.70	N/A N/A	ft ² ft ²				
Overflow Grate Open Area % =	55% 50%	N/A N/A tor Plate, or Rectang	%, grate open area/t %	otal area	Overflow Grate Op Overflow Grate Op	en Area w/o Debris = pen Area w/ Debris =	8.70 rs for Outlet Pipe w/	N/A N/A Flow Restriction Plat	ft ² ft ²				
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci	55% 50% ircular Orifice, Restric Zone 3 Restrictor	N/A N/A tor Plate, or Rectang Not Selected	%, grate open area/t % ular Orifice)		Overflow Grate Op Overflow Grate Op	en Area w/o Debris = pen Area w/ Debris = Calculated Paramete	8.70 rs for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A Flow Restriction Plat Not Selected	ft ² ft ²				
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe =	ircular Orifice, Restrict Zone 3 Restrictor 2.50	N/A N/A tor Plate, or Rectang Not Selected N/A	%, grate open area/t % ular Orifice) ft (distance below basi	otal area in bottom at Stage = 0	Overflow Grate Op Overflow Grate Op (t)	en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Outlet Orifice Area =	8.70 rs for Outlet Pipe w/ Zone 3 Restrictor 3.14	N/A N/A Flow Restriction Plat Not Selected N/A	ft ² ft ² ft ²				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	= 55% = 50% ircular Orifice, Restric Zone 3 Restrictor = 2.50 = 24.00	N/A N/A tor Plate, or Rectang Not Selected N/A N/A	%, grate open area/t % ular Orifice) ft (distance below basi inches	in bottom at Stage = 0	Overflow Grate Op Overflow Grate Op ((ft) Out	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid =	8.70 rs for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00	N/A N/A Flow Restriction Plat Not Selected N/A N/A	ft ² ft ² ft ft ft ftet				
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe =	ircular Orifice, Restrict Zone 3 Restrictor 2.50	N/A N/A tor Plate, or Rectang Not Selected N/A N/A	%, grate open area/t % ular Orifice) ft (distance below basi	in bottom at Stage = 0	Overflow Grate Op Overflow Grate Op (t)	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid =	8.70 rs for Outlet Pipe w/ Zone 3 Restrictor 3.14	N/A N/A Flow Restriction Plat Not Selected N/A	ft ² ft ² ft ²				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	55% 50%	N/A N/A tor Plate, or Rectang Not Selected N/A N/A	%, grate open area/t % ular Orifice) ft (distance below basi inches	in bottom at Stage = 0	Overflow Grate Op Overflow Grate Op ((ft) Out	en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14	N/A N/A Flow Restriction Plat Not Selected N/A N/A	ft ² ft ² ft ft ft ftet				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan	= 55% 50% ircular Orifice, Restric Zone 3 Restrictor 2.50 24.00 24.00 gular or Trapezoidal)	N/A N/A tor Plate, or Rectang Not Selected N/A N/A	%, grate open area/t % ular Orifice) ft (distance below basi inches inches	in bottom at Stage = 0 Half-I	Overflow Grate Op Overflow Grate Op ((t) Out Central Angle of Rest	en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	8.70 rs for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway	ft ² ft ² ft ² ft ² feet				
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage=	55% 50% ircular Orifice, Restric Zone 3 Restrictor 2.50 24.00 24.00 gular or Trapezoidal) 6.50	N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b	%, grate open area/t % ular Orifice) ft (distance below basi inches	in bottom at Stage = 0 Half-I	Overflow Grate Op Overflow Grate Op (((((((() () () () () ()	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A ipillway feet	ft ² ft ² ft ² ft ² feet				
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length =	55% 50% ircular Orifice, Restric Zone 3 Restrictor 2.50 24.00 24.00 gular or Trapezoidal) 6.50 65.00	N/A N/A Not Selected N/A N/A ft (relative to basin b feet	%, grate open area/t % ular Orifice) ft (distance below basi inches inches	in bottom at Stage = 0 Half-I	Overflow Grate Op Overflow Grate Op ((ft) Central Angle of Rest Spillway Stage a	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard =	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A spillway feet feet	ft ² ft ² ft ft ft ftet				
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway End Slopes = Spillway End Slopes =	55% 50% ircular Orifice, Restrictor 2.50 24.00 24.00 24.00 6.50 6.50 6.50 4.00	N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V	%, grate open area/t % ular Orifice) ft (distance below basi inches inches	in bottom at Stage = 0 Half-I	Overflow Grate Op Overflow Grate Op ((ft) Central Angle of Rest Spillway Stage a	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A ipillway feet	ft ² ft ² ft ft ft ftet				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length =	55% 50% ircular Orifice, Restric Zone 3 Restrictor 2.50 24.00 24.00 gular or Trapezoidal) 6.50 65.00	N/A N/A Not Selected N/A N/A ft (relative to basin b feet	%, grate open area/t % ular Orifice) ft (distance below basi inches inches	in bottom at Stage = 0 Half-I	Overflow Grate Op Overflow Grate Op ((ft) Central Angle of Rest Spillway Stage a	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard =	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A spillway feet feet	ft ² ft ² ft ² ft ² feet				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway End Slopes = Spillway End Slopes =	55% 50% ircular Orifice, Restric 2.50 24.00 24.00 gular or Trapezoidal) 6.50 6.5.00 4.00 1.00	N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V	%, grate open area/t % ular Orifice) ft (distance below basi inches inches	in bottom at Stage = 0 Half-I	Overflow Grate Op Overflow Grate Op ((ft) Central Angle of Rest Spillway Stage a	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard =	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A spillway feet feet	ft ² ft ² ft ² ft ² feet				
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	55% 50% ircular Orifice, Restrictor 2.50 24.00 24.00 6.50 6.50 6.50 1.00	N/A N/A Not Selected N/A N/A ft (relative to basin b feet H:V feet	%, grate open area/t % ular Orifice) If (distance below basi inches inches bottom at Stage = 0 ft)	in bottom at Stage = 0 Half-)	Overflow Grate Op Overflow Grate Op ((ft) Central Angle of Rest Spillway Stage a Basin Area a	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= It Top of Freeboard = t Top of Freeboard =	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A epillway feet feet acres	ft ² ft ² fet radians				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	55% 50% ircular Orifice, Restric 2.50 24.00 24.00 24.00 6.50 6.50 6.50 4.00 1.00	N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V	%, grate open area/t % ular Orifice) ft (distance below basi inches inches	in bottom at Stage = 0 Half-I	Overflow Grate Op Overflow Grate Op ((ft) Central Angle of Rest Spillway Stage a	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard =	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A spillway feet feet	ft ² ft ² ft ² ft ² feet				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	55% 50% ircular Orifice, Restric Zone 3 Restrictor 24.00 24.00 24.00 6.50 65.00 4.00 1.00	N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV	%, grate open area/t % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year	in bottom at Stage = 0 Half-1) 5 Year	Overflow Grate Op Overflow Grate Op (ft) Central Angle of Rest Spillway Stage a Basin Area a 10 Year	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = 25 Year	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres	ft ² ft ² feet radians				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ti) = OPTIONAL Override Runoff Volume (acre-ti) =	55% 50% ircular Orifice, Restrictor 2.50 24.00 24.00 6.50 65.00 4.00 1.00 WQCV 0.53 0.334	N/A N/A N/A Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 0.981	%, grate open area/t % ular Orifice) ft (distance below basi inches inches wottom at Stage = 0 ft) <u>2 Year</u> 1.19 0.781	in bottom at Stage = 0 Half-) <u>5 Year 1.50 1.078</u>	Overflow Grate Op Overflow Grate Op (ft) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.499	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= It Top of Freeboard = It Top of Freeboard = 25 Year 2.00 2.181	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A feet feet feet acres 100 Year 2.52 3.253	ft ² ft ² fee feet radians <u>500 Year</u> 2.75 3.933				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acreft) =	55% 50% ircular Orifice, Restrictor 2.50 24.00 24.00 24.00 6.50 6.50 6.50 4.00 1.00 WQCV 0.53 0.334	N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 0.981	%, grate open area/t % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.781	in bottom at Stage = 0 Half-) <u>5 Year</u> 1.50 1.078 1.077	Overflow Grate Op Overflow Grate Op Overflow Grate Op (ft) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.499 1.498	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = 25 Year 2.00 2.181	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645 2.643	N/A N/A N/A N/A N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52 3.253 3.251	ft ² ft ² feet radians 500 Year 2.75 3.933 3.930				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	55% 50% ircular Orifice, Restrictor 2.50 24.00 24.00 24.00 24.00 6.50 6.50 6.50 4.00 1.00 WQCV 0.53 0.334 0.334 0.00	N/A N/A N/A Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 0.981 0.981 0.00	%, grate open area/t % ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 1.19 0.781 0.781 0.02	5 Year 1.50 1.078 0.03	Overflow Grate Op Overflow Grate Op Overflow Grate Op (tt) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 1.499 0.26	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = 25 Year 2.00 2.181 2.179 0.82	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645 2.643 1.13	N/A N/A N/A Flow Restriction Plat N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52 3.253 3.251 1.51	ft ² ft ² fee radians <u>500 Year</u> 2.75 3.933 <u>3.930</u> 1.95				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	55% 50% ircular Orifice, Restrictor 2.50 24.00 24.00 24.00 6.50 65.00 4.00 1.00 0.53 0.334 0.334 0.00 0.0	N/A N/A N/A Not Selected N/A N/A ft (relative to basin b feet H:V feet L.07 0.981 0.081 0.00 0.0	%, grate open area/t % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) <u>2 Year</u> 1.19 0.781 0.781 0.02 0.3	in bottom at Stage = 0 Half-) <u>5 Year</u> 1.50 1.078 	Overflow Grate Op Overflow Grate Op Overflow Grate Op (ft) Out Central Angle of Rest Spillway Stage a Basin Area a 1.75 1.499 1.499 0.26 5.4	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= It Top of Freeboard = t Top of Freeboard = 2.5 Year 2.00 2.181 0.82 17.3	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645 2.643 1.13 2.3.9	N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A epillway feet feet acres 100 Year 2.52 3.253 3.253 3.251 1.51 31.9	ft ² ft ² fee radians <u>500 Year</u> 2.75 3.933 <u>3.933</u> <u>1.95</u> 4.1.1				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Deak Q (cfs) = Peak Inflow Q (cfs) =	55% 50% ircular Orifice, Restrictor 2.50 24.00 24.00 24.00 6.50 65.00 4.00 1.00 WQCV 0.53 0.334 0.00 6.8	N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 0.981 0.081 0.081 0.00 19.9	%, grate open area/t % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.781 0.781 0.781 0.3 15.9	5 Year 1.50 1.078 1.077 0.03 0.549 2.1.8	Overflow Grate Op Overflow Grate Op Overflow Grate Op (ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.499 1.498 0.26 5.4 30.2	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = <u>25 Year</u> 2.00 2.181 <u>2.179</u> 0.82 17.3 43.7	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645 2.645 2.645 2.643 1.13 2.3.9 52.9	N/A N/A N/A Flow Restriction Plat Not Selected N/A Selected feet feet acres 100 Year 3.253 31.9 64.8	ft ² ft ² feet radians <u>500 Year</u> 2.75 3.933 <u>3.930</u> 1.95 41.1 7.8.1				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Ore-Hour Mainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) =	55% 50% ircular Orifice, Restrict 2.50 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 0.53 0.334 0.00 0.0 6.8 0.2 <td>N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet H:V feet 0.981 0.00 0.0 19.9 0.3</td> <td>%, grate open area/t % ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 1.19 0.781 0.781 0.781 0.02 0.3 15.9 0.3</td> <td>5 Year Half- 1.50 1.078 1.077 0.03 0.549 2.1.8 0.363</td> <td>Overflow Grate Op Overflow Grate Op Overflow Grate Op (tt) Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 1.499 1.499 0.26 5.4 30.2 5.0</td> <td>en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = 25 Year 2.00 2.181 - 0.82 17.3 43.7 15.8</td> <td>8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645 2.643 1.13 2.3.9 52.9 23.5</td> <td>N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet acres 100 Year 2.52 3.253 3.251 1.51 31.9 64.8 33.2</td> <td>tt² tt² ft² feet radians 500 Year 2.75 3.933 </td>	N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet H:V feet 0.981 0.00 0.0 19.9 0.3	%, grate open area/t % ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 1.19 0.781 0.781 0.781 0.02 0.3 15.9 0.3	5 Year Half- 1.50 1.078 1.077 0.03 0.549 2.1.8 0.363	Overflow Grate Op Overflow Grate Op Overflow Grate Op (tt) Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 1.499 1.499 0.26 5.4 30.2 5.0	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = 25 Year 2.00 2.181 - 0.82 17.3 43.7 15.8	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645 2.643 1.13 2.3.9 52.9 23.5	N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet acres 100 Year 2.52 3.253 3.251 1.51 31.9 64.8 33.2	tt ² tt ² ft ² feet radians 500 Year 2.75 3.933 				
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Volume (acre-ft) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Nuflow Q (cfs) =	55% 50% ircular Orifice, Restrictor 2.50 24.00 24.00 24.00 24.00 addard and and and and and and and and and an	N/A N/A N/A Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 0.981 0.081 0.981 0.00 0.3 N/A	%, grate open area/t % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.781 0.781 0.02 0.3 15.9 0.3 N/A	5 Year 1.50 1.078 0.03 0.549 21.8 0.363 0.7	Overflow Grate Op Overflow Grate Op Overflow Grate Op (ft) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 1.499 0.26 5.4 3.0.2 5.0 0.9	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.181 2.179 0.82 17.3 43.7 15.8 0.9	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 S0 Year 2.25 2.645 2.643 1.13 23.9 52.9 23.5 1.0	N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52 3.253 3.251 1.51 31.9 64.8 33.2 1.0	ft ² ft ² fee feet radians <u>500 Year</u> 2.75 3.933 <u>3.930</u> 1.95 41.1 78.1 78.1 48.2 1.2				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Ore-Hour Mainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) =	55% 50% ircular Orifice, Restrict 2.50 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 0.53 0.334 0.00 0.0 6.8 0.2 <td>N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet H:V feet 0.981 0.00 0.0 19.9 0.3</td> <td>%, grate open area/t % ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 1.19 0.781 0.781 0.781 0.02 0.3 15.9 0.3</td> <td>5 Year Half- 1.50 1.078 1.077 0.03 0.549 2.1.8 0.363</td> <td>Overflow Grate Op Overflow Grate Op Overflow Grate Op (tt) Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 1.499 1.499 0.26 5.4 30.2 5.0</td> <td>en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = 25 Year 2.00 2.181 - 0.82 17.3 43.7 15.8</td> <td>8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645 2.643 1.13 2.3.9 52.9 23.5</td> <td>N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet acres 100 Year 2.52 3.253 3.251 1.51 31.9 64.8 33.2</td> <td>tt² tt² ft² feet radians 500 Year 2.75 3.933 </td>	N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet H:V feet 0.981 0.00 0.0 19.9 0.3	%, grate open area/t % ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 1.19 0.781 0.781 0.781 0.02 0.3 15.9 0.3	5 Year Half- 1.50 1.078 1.077 0.03 0.549 2.1.8 0.363	Overflow Grate Op Overflow Grate Op Overflow Grate Op (tt) Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 1.499 1.499 0.26 5.4 30.2 5.0	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = 25 Year 2.00 2.181 - 0.82 17.3 43.7 15.8	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645 2.643 1.13 2.3.9 52.9 23.5	N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet acres 100 Year 2.52 3.253 3.251 1.51 31.9 64.8 33.2	tt ² tt ² ft ² feet radians 500 Year 2.75 3.933 				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	55% 50% ircular Orifice, Restrictor 2.50 24.00 24.00 6.50 65.00 4.00 1.00 WQCV 0.53 0.334 0.00 6.8 0.2 N/A Plate	N/A N/A N/A N/A N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 0.981 0.00 0.0 19.9 0.3 N/A Plate	%, grate open area/t % ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 1.19 0.781 0.781 0.02 0.3 15.9 0.3 N/A Plate	5 Year 1.50 1.078 1.077 0.03 0.549 21.8 0.363 0.7 Overflow Grate 1	Overflow Grate Op Overflow Grate Op Overflow Grate Op (ft) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 1.499 1.499 0.26 5.4 30.2 5.0 0.9 Overflow Grate 1	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = 25 Year 2.00 2.181 2.181 2.179 0.82 17.3 43.7 15.8 0.9 Overflow Grate 1	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.645 2.645 1.13 2.3.9 52.9 2.3.5 1.0 Overflow Grate 1	N/A N/A N/A Not Selected N/A N/A N/A N/A N/A interval 2.52 3.253 3.251 1.51 33.9 64.8 33.2 1.0 Overflow Grate 1	ft ² ft ² fee feet radians <u>500 Year</u> 2.75 3.933 <u>3.933</u> <u>1.95</u> 41.1 78.1 48.2 1.2 Spillway				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Unflow Q (cfs) = Peak Outflow to Credevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	 55% 50% ircular Orifice, Restrict 2.50 24.00 24.00 24.00 6.50 65.00 4.00 1.00 0.334 0.034 0.00 6.8 0.2 N/A Plate N/A 	N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 0.981 0.00 0.0 19.9 0.3 N/A Plate N/A	%, grate open area/t % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.781 0.02 0.3 15.9 0.3 15.9 0.3 N/A Plate N/A	5 Year Half- 1.50 1.078 1.077 0.03 0.549 21.8 0.363 0.7 0verflow Grate 1 0.0	Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.499 1.498 0.26 5.4 3.0.2 5.4 3.0.2 5.4 3.0.2 5.0 0.9 Overflow Grate 1 0.3	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = 25 Year 2.00 2.181 2.179 0.82 17.3 4.3.7 15.8 0.9 Overflow Grate 1 0.9	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645 2.643 1.13 23.9 52.9 23.5 1.0 Overflow Grate 1 1.3	N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A n/A pillway feet feet acres 100 Year 2.52 3.253 3.251 1.51 31.9 64.8 33.2 1.0 Overflow Grate 1 1.9	tt ² tt ² tf ² feet radians <u>500 Year</u> 2.75 3.933 <u>3.930</u> 1.95 4.1.1 7.8.1 7.8.1 4.8.2 1.2 5 1.9 5 4.1.2 7.8.1 7.7.5 7.5				
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Volume (acre-ft) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	55% 50% ircular Orifice, Restric 2.50 24.00 24.00 24.00 6.50 6.50 4.00 1.00 WQCV 0.53 0.334 0.334 0.00 6.8 0.2 N/A Plate N/A N/A	N/A N/A N/A N/A N/A N/A ft (relative to basin b feet H:V feet 1.07 0.981 0.00 0.081 0.081 0.00 0.0 19.9 0.3 N/A Plate N/A N/A	%, grate open area/t % ular Orifice) If (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.781 0.02 0.3 15.9 0.3 N/A Plate N/A N/A	5 Year Half- 1.50 1.078 0.03 0.549 21.8 0.363 0.7 Overflow Grate 1 0.0 N/A	Overflow Grate Op Overflow Grate Op Overflow Grate Op (tt) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 1.499 0.26 5.4 3.0.2 5.0 0.9 0.9 Overflow Grate 1 0.3 N/A	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.181 2.179 0.82 1.7.3 4.3.7 1.5.8 0.9 Overflow Grate 1 0.9 N/A	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645 2.643 1.13 23.9 52.9 23.5 1.0 Overflow Grate 1 1.3 N/A	N/A N/A N/A Not Selected N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52 3.251 1.51 31.9 64.8 33.2 1.0 Overflow Grate 1 1.9 N/A	tt ² tt ² ft ² feet radians <u>500 Year</u> 2.75 3.933 <u>3.930</u> 1.95 41.1 78.1 78.1 78.1 2.4 5pillway 2.4 N/A				
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Untflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	 55% 50% ircular Orifice, Restrict 2.50 24.00 24.00 24.00 6.50 65.00 4.00 1.00 0.334 0.334 0.00 0.0 6.8 0.2 N/A Plate N/A 40 41 2.17 	N/A N/A Not Selected NA N/A N/A N/A N/A N/A It (relative to basin b feet H:V feet 0.081 0.081 0.031 N/A Plate N/A 68 72 4.24	%, grate open area/t % ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 1.19 0.781 0.02 0.3 15.9 0.3 15.9 0.3 N/A Plate N/A N/A 62 65 3.67	5 Year Half- 1.50 1.078 1.077 0.03 0.549 21.8 0.363 0.7 Overflow Grate 1 0.0 N/A 70 75 4.50	Overflow Grate Op Overflow Grate Op Overflow Grate Op (tt) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 1.499 1.499 0.26 5.4 0.2 5.0 0.9 0.9 Overflow Grate 1 0.3 N/A 76 5.11	en Area w/o Debris = ben Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= tt Top of Freeboard = tt Top of Freeboard = tt Top of Freeboard = 25 Year 2.00 2.181 0.2 17.3 43.7 15.8 0.9 Overflow Grate 1 0.9 N/A 67 74 5.70	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.25 2.645 2.643 1.13 23.9 52.9 23.5 1.0 Overflow Grate 1 1.3 N/A 65 74 6.00	N/A N/A N/A Not Selected N/A N/A N/A interval interval	tt ² tt ² fee feet radians <u>500 Year</u> 2.75 3.933 <u>3.930</u> 1.95 4.1.1 78.1 4.8.2 1.2 Spillway 2.4 N/A 59 71 6.61				
Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 9% of Inflow Volume (hours) =	S5% S0% S0% Zone 3 Restrictor 2.50 24.00 24.00 24.00 30.2 6.50 6.50 4.00 1.00 0.53 0.334 0.334 0.00 0.0 6.8 0.334 0.00 0.0 6.8 0.2 N/A Plate N/A Plate N/A 40 41 2.17 0.25	N/A N/A N/A Not Selected N/A N/A N/A Image: Not Selected N/A N/A Image: Not Selected N/A Image: N/A Image: N/A Image: N/A N/A Plate N/A N/A Plate N/A N/A Plate N/A Plate N/A Plate N/A Plate N/A	%, grate open area/t % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.781 0.781 0.02 0.3 15.9 0.3 15.9 0.3 N/A Plate N/A N/A N/A 62 62	5 Year Half- 1.50 1.077 0.03 0.549 21.8 0.363 0.7 Overflow Grate 1 0.0 N/A 70 75	Overflow Grate Op Overflow Grate Op Overflow Grate Op (ft) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 1.499 1.498 0.26 5.4 30.2 5.0 0.9 Overflow Grate 1 0.3 N/A 70 76	en Area w/o Debris = ben Area w/o Debris = calculated Paramete Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.181 2.179 0.82 17.3 43.7 15.8 0.9 Overflow Grate 1 0.9 N/A 67 74	8.70 s for Outlet Pipe w/ Zone 3 Restrictor 3.14 1.00 3.14 ted Parameters for S 0.47 7.97 0.56 50 Year 2.645 2.645 2.643 1.13 2.3.9 52.9 23.5 1.0 Overflow Grate 1 1.3 N/A 65 74	N/A N/A N/A Not Selected N/A Selected feet feet acres 100 Year 2.52 3.253 3.251 3.1.51 33.9 64.8 33.2 1.0 Overflow Grate 1 1.9 N/A 62 73	ft ² ft ² fee feet radians				

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	Storm Inflow Hydrographs UD-Detention, Version 3.07 (February 2017) The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.									
			-						-	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4.08 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:04:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:08:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:12:14	0.31	0.87	0.70	0.95	1.31	1.87	2.25	2.74	3.26
1.225	0:16:19 0:20:24	0.82	2.36	1.89	2.58	3.56	5.12	6.18	7.54	9.03
	0:24:29	2.12 5.82	6.06 16.64	4.85 13.32	6.63 18.22	9.15 25.11	13.16 36.11	15.86 43.53	19.36 53.11	23.19 63.58
	0:24:25	6.85	19.87	15.86	21.79	30.18	43.70	52.86	64.82	78.12
	0:32:38	6.52	18.98	15.14	20.82	28.88	41.86	50.68	62.21	75.11
	0:36:43	5.93	17.28	13.78	18.96	26.29	38.10	46.12	56.61	68.38
	0:40:48	5.28	15.47	12.32	16.97	23.57	34.22	41.47	50.95	61.60
	0:44:53	4.54	13.39	10.65	14.70	20.46	29.78	36.14	44.49	53.86
	0:48:58	3.96	11.65	9.28	12.79	17.78	25.89	31.47	38.78	47.01
	0:53:02	3.59	10.56	8.41	11.59	16.12	23.46	28.48	35.07	42.45
	0:57:07	2.94	8.75	6.95	9.62	13.41	19.57	23.79	29.33	35.56
	1:01:12	2.39	7.17	5.69	7.89	11.03	16.15	19.66	24.27	29.46
	1:05:17 1:09:22	1.82	5.56	4.39	6.13	8.61	12.68	15.48	19.16	23.32
	1:09:22	1.34 0.98	4.17	3.28	4.61	6.53 4.77	9.68 7.14	11.86 8.78	14.74 10.96	18.00 13.43
	1:17:31	0.98	2.33	1.83	2.57	3.64	5.41	6.63	8.25	13.43
	1:21:36	0.63	1.91	1.51	2.11	2.97	4.39	5.37	6.66	8.11
	1:25:41	0.53	1.62	1.28	1.78	2.51	3.71	4.53	5.61	6.83
	1:29:46	0.47	1.42	1.12	1.56	2.20	3.24	3.95	4.89	5.94
	1:33:50	0.42	1.28	1.01	1.41	1.97	2.90	3.54	4.38	5.32
	1:37:55	0.39	1.18	0.93	1.29	1.82	2.66	3.25	4.01	4.87
	1:42:00	0.29	0.86	0.68	0.95	1.34	1.97	2.40	2.98	3.63
	1:46:05	0.21	0.63	0.50	0.70	0.98	1.43	1.75	2.16	2.63
	1:50:10	0.15	0.46	0.37	0.51	0.72	1.06	1.29	1.59	1.94
	1:54:14	0.11	0.34	0.27	0.38	0.53	0.78	0.96	1.19	1.44
	1:58:19 2:02:24	0.08	0.25	0.19	0.27	0.38	0.57	0.70	0.86	1.06
	2:02:24	0.06	0.17	0.14	0.19	0.27	0.41	0.50	0.62	0.76
	2:10:34	0.04	0.12	0.10	0.14	0.20	0.29	0.36	0.45	0.35
	2:14:38	0.01	0.05	0.04	0.06	0.08	0.13	0.16	0.31	0.25
	2:18:43	0.01	0.03	0.02	0.03	0.04	0.07	0.09	0.11	0.14
	2:22:48	0.00	0.01	0.01	0.01	0.02	0.03	0.04	0.05	0.06
	2:26:53	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.02
	2:30:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:39:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:43:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:47:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:51:22 2:55:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:59:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:03:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:07:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:11:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:19:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:24:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:28:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:32:10 3:36:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:44:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:48:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:52:34 3:56:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:04:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:08:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:12:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:02 4:21:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:21:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:29:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:33:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:37:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:41:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:36 4:49:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:53:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	· · · · · ·									

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

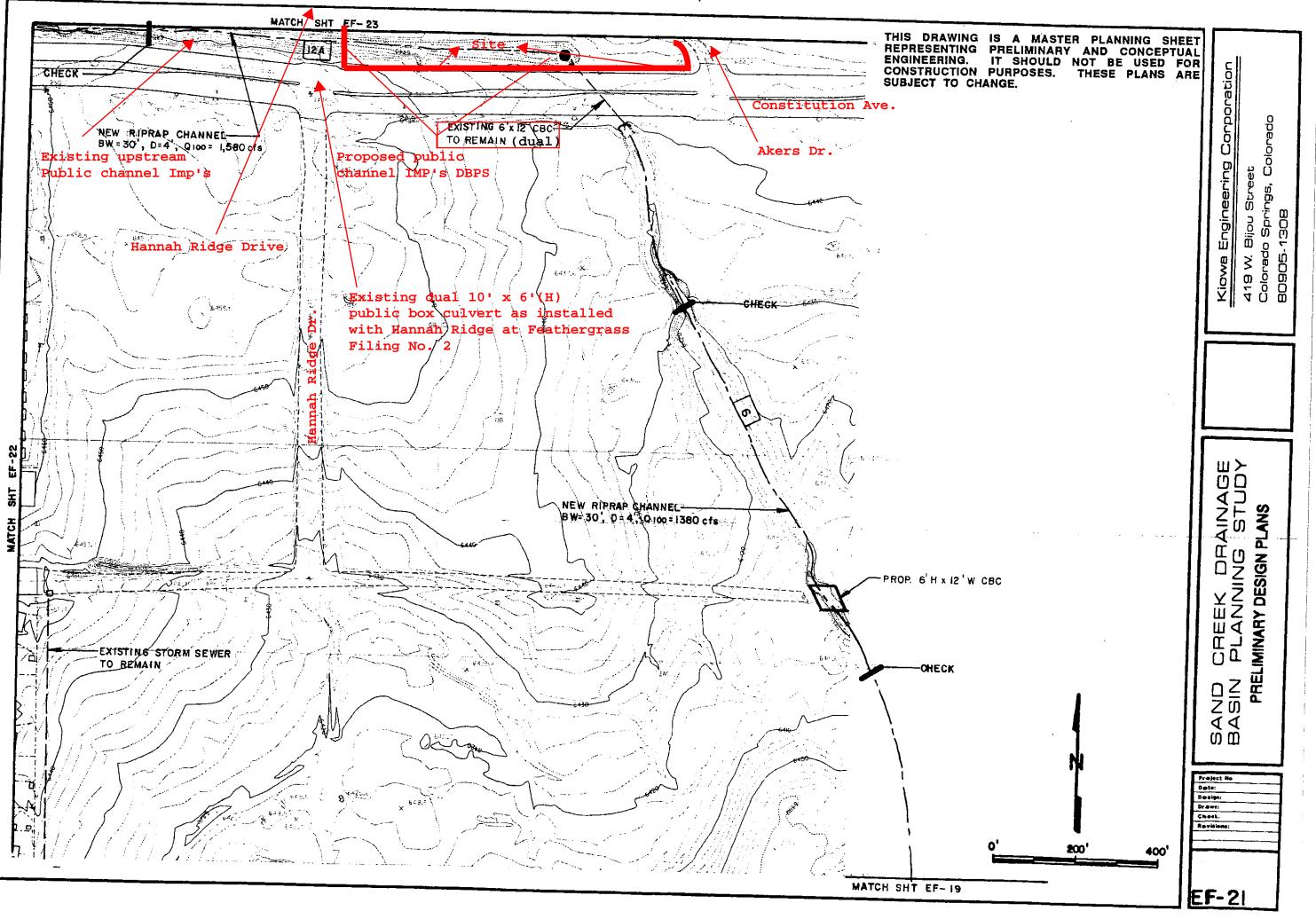
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

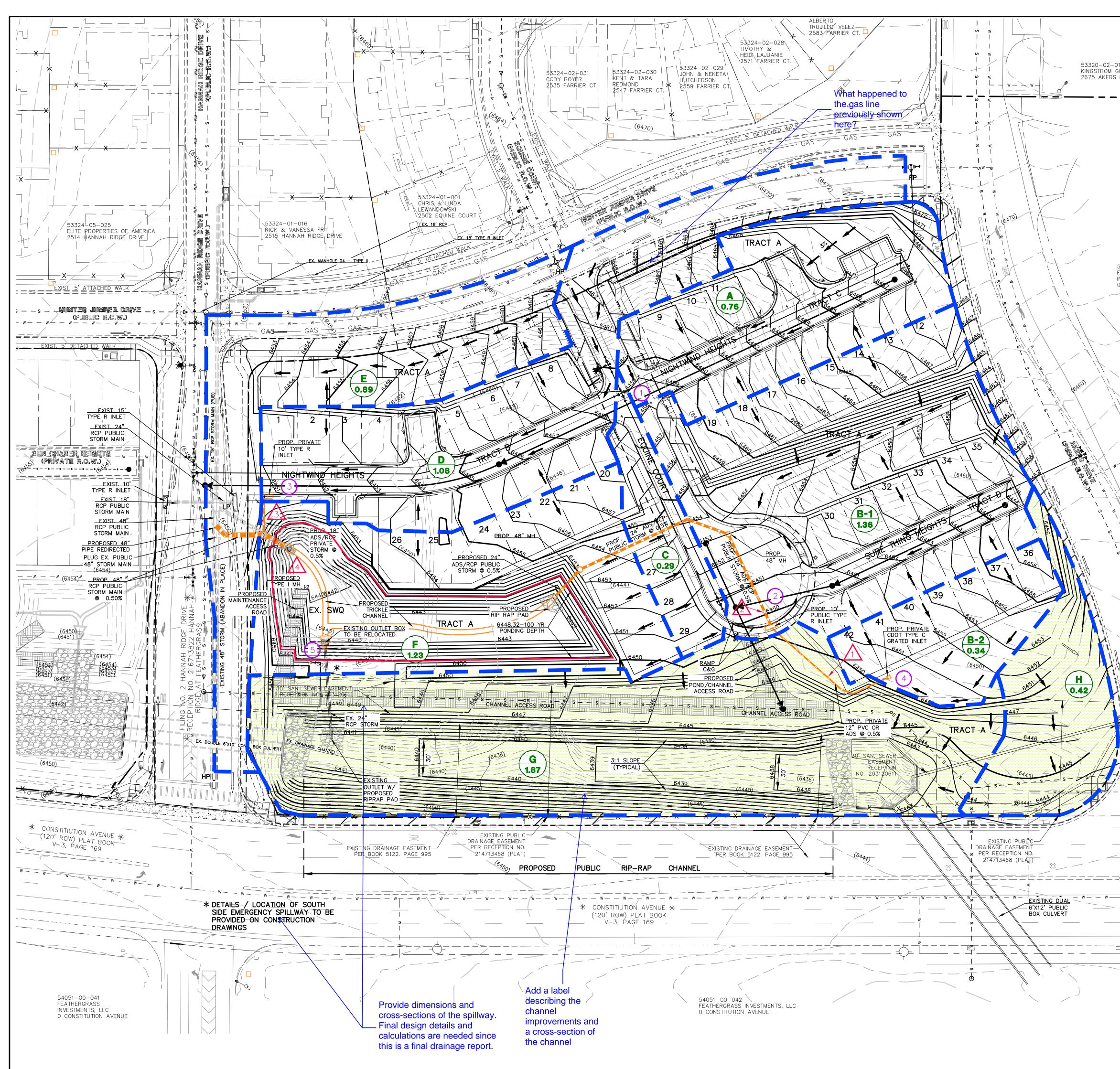
Stage - Storage Description	Stage [ft]	Area [ft^2]	Area [acres]	Volume [ft^3]	Volume [ac-ft]	Outflow [cfs]	
		-					For best results, include th
							stages of all grade slope
							changes (e.g. ISV and Floor
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of
							outlets (e.g. vertical orifice
							overflow grate, and spillwa
							where applicable).
							ł
							+
							+
							1
							÷
							ł
							+
							ł
					L		ł
			ļ	ļ			ļ
							ļ
							ļ
							ļ
							l
							1
							•
							t
							1
							+
							+
							ł
							+
							ł
							ł
							ł
							4
							+
							-
							ļ
							1
							t
							t
							t
							t
							t
							t
							1
							1
							Ī
							I
							ļ
							ļ
							ļ
							ļ
							ļ
							ļ
			ļ	ļ			ļ
			ļ	ļ			ļ
							ł
							ł
							ł
							ł

	Design Procedure Form	: Extended Detention Basin (EDB)							
Designer:	UD-BMF	(Version 3.06, November 2016) She	et 1 of 4						
Company:	Classic Consulting Engineers								
Date:	October 18, 2021								
Project:	Midtown Collection at Hannah Ridge Filing No. 3								
Location:	EDB Forebay 1								
Location.									
1. Basin Storage V	/olume								
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = <u>44.0</u> %							
B) Tributary Area	a's Imperviousness Ratio (i = I _a / 100)	i =0.440							
C) Contributing	Watershed Area	Area = <u>21.080</u> ac							
D) For Watersh Runoff Prode	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = <u>0.43</u> in							
E) Design Conc	pont	Choose One							
	V when also designing for flood control)	O Water Quality Capture Volume (WQCV)							
		Excess Urban Runoff Volume (EURV)							
	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 0.334 ac-ft							
	1.0 * (0.91 * i^3 - 1.19 * i^2 + 0.78 * i) / 12 * Area)								
Water Qualit	teds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume $_{R} = (d_{s}^{*}(V_{DESIGN}/0.43))$	V _{DESIGN OTHER} = 0.334 ac-ft							
(V WQCV OTHER	$R = (u_6 (v_{\text{DESIGN}}(0.43)))$								
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft							
I) Predominant	Watershed NRCS Soil Group								
		000							
	n Runoff Volume (EURV) Design Volume								
	: EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08}	EURV = <u>0.984</u> ac-f t							
	$D: EURV_{C/D} = 1.20 * i^{1.08}$								
	B. 2010() 1.20 1								
2. Basin Shape: Le	ength to Width Ratio	L : W = 2.0 : 1							
(A basin length t	to width ratio of at least 2:1 will improve TSS reduction.)								
3. Basin Side Slope	es								
A) Basin Maxim (Horizontal d	um Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = <u>3.00</u> ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE							
4. Inlet									
	one of providing operativ dissinction of concentrated								
A) Describe me inflow locatio	ans of providing energy dissipation at concentrated ons:								

	Design Procedure Form	: Extended Detention Basin (EDB)	
Designer:			Sheet 2 of 4
Company:	Classic Consulting Engineers		-
Date:	October 18, 2021		-
Project: Location:	Midtown Collection at Hannah Ridge Filing No. 3 EDB Forebay 1		-
Location.		1	-
5. Forebay			
A) Minimum For (V _{FMIN} =		V _{FMIN} = <u>0.010</u> ac-ft	
B) Actual Foreb	ay Volume	V _F = <u>0.012</u> ac-ft	
C) Forebay Dept (D _F =		D _F = <u>12.0</u> in	
D) Forebay Disc	harge		
	i) Undetained 100-year Peak Discharge	Q ₁₀₀ = <u>69.50</u> cfs	
	ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	Q _F = <u>1.39</u> cfs	
E) Forebay Disc	harge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir	(flow too small for berm w/ pipe)
F) Discharge Pip	pe Size (minimum 8-inches)	Calculated D _P = in	
G) Rectangular I	Notch Width	Calculated W _N = <u>7.4</u> in	
6. Trickle Channel		Choose One	
A) Type of Trick	de Channel	Soft Bottom	
F) Slope of Tric	kle Channel	S = <u>0.0100</u> ft / ft	
7. Micropool and O	Jutlet Structure		
A) Depth of Mic	ropool (2.5-feet minimum)	D _M = ft	
B) Surface Area	a of Micropool (10 ft ² minimum)	A _M = <u>100</u> sq ft	
C) Outlet Type		Choose One	
		Orifice Plate	
		Other (Describe):	
D) Smallest Dim (Use UD-Dete	nension of Orifice Opening Based on Hydrograph Routing ntion)	D _{orifice} = <u>1.63</u> inches	
E) Total Outlet A		$A_{ot} = 6.36$ square in	nches
		1	

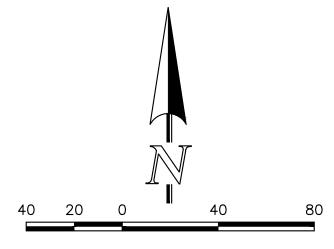
	Design Procedure Form	: Extended Dete	ntion Basi	n (EDB)	
Designer: Company: Date: Project: Location:	Classic Consulting Engineers October 18, 2021 Midtown Collection at Hannah Ridge Filing No. 3 EDB Forebay 1				Sheet 3 of 4
8. Initial Surcharg	e Volume				
	tial Surcharge Volume ccommended depth is 4 inches)	D _{IS} =	6	in	
	tial Surcharge Volume llume of 0.3% of the WQCV)	V _{IS} =	43.7	cu ft	
C) Initial Surch	arge Provided Above Micropool	V _s =	50.0	cu ft	
9. Trash Rack					
A) Water Qual	ity Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t =	210	square inches	
in the USDCM,	een (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the e for the material specified.)	Aluminum An	ico-Klemp SR Se	eries with Cross Rods 2" O.C.	
	Other (Y/N): N				-
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio =			
D) Total Water	Quality Screen Area (based on screen type)	A _{total} =	296	sq. in.	
	sign Volume (EURV or WQCV) sign concept chosen under 1E)	H=	4.5	feet	
F) Height of Wa	ater Quality Screen (H _{TR})	H _{TR} =	82	inches	
	ater Quality Screen Opening (W _{opening}) 12 inches is recommended)	W _{opening} =	12.0	inches	


	Design Procedure Form	: Extended Detention Basin (EDB)		
Designer: Company:	Classic Consulting Engineers		-	Sheet 4 of 4
Date:	October 18, 2021		_	
Project:	Midtown Collection at Hannah Ridge Filing No. 3		_	
Location:	EDB Forebay 1		_	
10. Overflow Emba A) Describe en	nkment nbankment protection for 100-year and greater overtopping:			
	erflow Embankment distance per unit vertical, 4:1 or flatter preferred)			
11. Vegetation		Choose One Irrigated Not Irrigated	AVOID PLACING IRRIGATION HEADS IN THE BOTTOM OF THE BASIN	
12. Access				
A) Describe Se	ediment Removal Procedures			
N /				
Notes:				


Design Procedure Form	Extended Detention Basin (EDB)
	Sheet 2 of 4
Designer: Company: Classic Consulting Engineers	
Date: October 18, 2021	
Project: Midtown Collection at Hannah Ridge Filing No. 3	
Location: EDB Forebay 2	
5. Forebay	
A) Minimum Forebay Volume (V _{FMIN} = <u>3%</u> of the WQCV)	V _{FMIN} = <u>0.010</u> ac-ft
B) Actual Forebay Volume	V _F = ac-ft
C) Forebay Depth (D _F = <u>18</u> inch maximum)	D _F = <u>12.0</u> in
D) Forebay Discharge	
i) Undetained 100-year Peak Discharge	Q ₁₀₀ = <u>12.00</u> cfs
ii) Forebay Discharge Design Flow (Q _F = 0.02 * Q ₁₀₀)	$Q_F = 0.24$ cfs
E) Forebay Discharge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir Choose One (flow too small for berm w/ pipe) (flow too small for berm w/ pipe)
F) Discharge Pipe Size (minimum 8-inches)	Calculated $D_p = $
G) Rectangular Notch Width	Calculated W _N = <u>3.3</u> in
6. Trickle Channel	Choose One
A) Type of Trickle Channel	Soft Bottom
F) Slope of Trickle Channel	S = <u>0.0100</u> ft / ft
7. Micropool and Outlet Structure	
A) Depth of Micropool (2.5-feet minimum)	$D_{M} = 2.5$ ft
B) Surface Area of Micropool (10 ft ² minimum)	A _M = <u>100</u> sq ft
C) Outlet Type	Choose One
	Orifice Plate Other (Describe):
D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing	
(Use UD-Detention) E) Total Outlet Area	$D_{\text{orffice}} = 1.63$ inches $A_{\text{ot}} = 6.36$ square inches

		D Credit	hy Imne	rvious P	eduction	Eactor	(IRE) M	othod						
	L	DCreuit						ethou						
User Input			UD	BMP (Version	3.06, Novem	ber 2016)								
Calculated cells				Designer:	dlg									
				Company:		IC CONSUL		INEERS						
***Design Storm: 1-Hour Rain Depth WQCV Event	0.53	inches		Date:		er 18, 202								
***Minor Storm: 1-Hour Rain Depth 5-Year Event ***Major Storm: 1-Hour Rain Depth 100-Year Event	1.50 2.52	inches		Project:	MIDT	OWN AT H	ANNAH RI	DGE FIL 3						
***Major Storm: 1-Hour Rain Depth 100-Year Event Optional User Defined Storm CUHP	2.52	inches		Location:										
(CUHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm	2.52													
Vax Intensity for Optional User Defined Storm 2.51496														
E INFORMATION (USER-INPUT)														
Sub-basin Identifier	A	B-1	с	D	E	F	D8,D10	D1-D7	D12					
Receiving Pervious Area Soil Type	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand	Loamy Sand									
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	0.760	1.360	0.290	1.080	0.890	1.230	3.300	11.740	0.430					
Directly Connected Impervious Area (DCIA, acres)	0.220	0.430	0.070	0.480	0.360	0.000	0.870	2.710	0.430					
Unconnected Impervious Area (UIA, acres)	0.340	0.240	0.030	0.170	0.090	0.060	0.680	2.580	0.000					
Receiving Pervious Area (RPA, acres)	0.000	0.530	0.190	0.430	0.320	0.280	1.750	6.290	0.000					
Separate Pervious Area (SPA, acres) RPA Treatment Type: Conveyance (C),	0.200	0.160	0.000	0.000	0.120	0.890	0.000	0.160	0.000					
Volume (V), or Permeable Pavement (PP)	с	с	с	с	с	с	С	с	с					
LCULATED RESULTS (OUTPUT) Total Calculated Area (ac. check against input)	0.760	1.360	0.290	1.080	0.890	1.230	3.300	11.740	0.430			1	1	
Directly Connected Impervious Area (DCIA, %)	28.9%	31.6%	24.1%	44.4%	40.4%	0.0%	26.4%	23.1%	100.0%					
Unconnected Impervious Area (UIA, %)	44.7%	17.6%	10.3%	15.7%	10.1%	4.9%	20.6%	22.0%	0.0%					
Receiving Pervious Area (RPA, %)	0.0%	39.0%	65.5%	39.8%	36.0%	22.8%	53.0%	53.6%	0.0%					
Separate Pervious Area (SPA, %)	26.3%	11.8%	0.0%	0.0%	13.5%	72.4%	0.0%	1.4%	0.0%					
A _R (RPA / UIA)	0.000	2.208	6.333	2.529	3.556	4.667	2.574	2.438	0.000					
I _a Check	1.000	0.310	0.140	0.280	0.220	0.180	0.280	0.290	1.000					
f / I for WQCV Event:	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6					
f / I for 5-Year Event: f / I for 100-Year Event:	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5					
f / I for Optional User Defined Storm CUHP:	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4					
IRE for WOCV Event:	1.00	0.50	0.30	0.48	0.45	0.39	0.48	0.49	1.00					
IRF for 5-Year Event:	1.00	0.86	0.50	0.85	0.84	0.75	0.85	0.85	1.00					
IRF for 100-Year Event:	1.00	0.88	0.61	0.88	0.87	0.78	0.88	0.88	1.00					
IRF for Optional User Defined Storm CUHP:	1.00	0.88	0.61	0.88	0.87	0.78	0.88	0.88	1.00					
Total Site Imperviousness: Itotal	73.7%	49.3%	34.5%	60.2%	50.6%	4.9%	47.0%	45.1%	100.0%					
Effective Imperviousness for WQCV Event:	73.7%	40.4%	27.3%	52.0%	45.0%	1.9%	36.3%	33.8%	100.0%					
Effective Imperviousness for 5-Year Event: Effective Imperviousness for 100-Year Event:	73.7% 73.7%	46.7% 47.2%	30.2% 30.4%	57.9% 58.3%	49.0% 49.2%	3.7% 3.8%	43.9% 44.5%	41.8% 42.4%	100.0% 100.0%					
Effective Imperviousness for 100-Year Event: Effective Imperviousness for Optional User Defined Storm CUHP:	73.7%	47.2%	30.4% 30.4%	58.3% 58.3%	49.2% 49.2%	3.8% 3.8%	44.5% 44.5%	42.4%	100.0% 100.0%					
/ EFFECTIVE IMPERVIOUSNESS CREDITS	0.00/		42.49	10.5%	7.20/	50.49/	44.2%	45 70/	0.00/					
WQCV Event CREDIT: Reduce Detention By: This line only for 10-Year Event	0.0%	11.4% N/A	13.4% N/A	10.6% N/A	7.2% N/A	59.4% N/A	14.3% N/A	15.7% N/A	0.0% N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
100-Year Event CREDIT**: Reduce Detention By:	0.0%	4.2%	12.4%	3.1%	2.6%	38.2%	5.3%	5.9%	0.1%	N/A	N/A	N/A	N/A	N/A
User Defined CUHP CREDIT: Reduce Detention By:	0.0%	3.8%	8.8%	3.5%	2.5%	10.1%	4.7%	5.0%	0.0%		<u> </u>	L	L	<u> </u>
	Total Site Imp		46.3%		Notes:									
Total Site Effective Imperv Total Site Effective Imperv			36.8% 43.6%						from Table 3 n empirical e		m Storage C	hantor of US	DCM	
Total Site Effective Impervio			43.6%	1	*** Method	assumes that	i voiume cre at 1-hour raii	nfall depth is	n empirical ei equivalent to	4uauons tro 1-hour inte	in storage C insity for cal	culation puri	oosed	
		Storm CUHP:	44.0%											

DRAINAGE MAP



53320-02-014 Kingstrom goup, LLC 2675 AKERS DRIVE

DESIGN POINT SUMMARY DESIGN POINT | Q5 (CFS) | Q100 (CFS) | INLET SIZE 1.9 4.1 STREET FLOW TO DP2# 1 10' PUBLIC TYPE R SUMP 2 4.3 10.5 10' PUBLIC TYPE R SUMP 3 3.1 6.2 0.8 2'x2' PRIVATE TYPE C SUMP 4 1.7 27.2 53.5 NORTH POND ENTRY 5 POND INFLOW 33.4 69.5 TOTAL FLOW INTO POND

BASIN	RUNOFF	SUMMARY
BASIN	Q5 (CFS)	Q100 (CFS)
А	1.9	4.1
B-1	2.6	5.8
B-2	0.8	1.7
С	0.9	1.7
D	3.1	6.2
E	2.1	4.1
F	1.5	5.0
G	1.2	6.6
Н	0.2	1.4

PIPE ROUTING SUMMARY								
PIPE RUN	Q5 (CFS)	Q100 (CFS)	PIPE SIZE					
1	0.8	1.7	12" PRIV PVC/ADS					
2	5.0	12.0	24" PUBLIC RCP					
3	3.1	6.2	18" PRIV PVC/ADS					
4	27.2	53.5	48" PUB RCP					

SCALE: 1'' = 40'

<u>LEGEND</u>

(6770) - EXISTING CONTOUR PROPOSED CONTOUR "A" A LOT "B" B LOT "W/O" "Т" "G" ΗP 1.41 🗲 PIPE RUN

FILING LINE BOUNDARY/R.O.W. LINE EXISTING FLOW DIRECTION PROPOSED FLOW WALKOUT LOT TRANSITION LOT

GARDEN LOT PROPOSED INLET PROPOSED STORM SEWER PIPE PROPOSED HIGH POINT PROPOSED LOW POINT

BASIN IDENTIFIER AREA IN ACRES

DESIGN POINT

OPEN SPACE / LANDSCAPE AREAS / CHANNEL AREA NOT DRAINING TO POND

PUD SP-20-007

(719)785-0799

Colorado Springs, Colorado 80903

PUD	26-	20	-0	U
 	וסטום	- [10),

SM					
	DESIGNED BY	KRC	SCALE	DATE	12/20/21
	DRAWN BY	кс	(H) 1"= 40'	SHEET 1	OF 1
(Fax)	CHECKED BY	KRC	(V) 1"= N/A	JOB NO.	1116.35

EX. 10' TYPE R INLET

1 1

v ≥ 1 1