## **DRAINAGE LETTER REPORT**

for

## CATHEDRAL ROCK CHURCH 846 STRUTHERS RANCH ROAD TRACT A, STRUTHERS RANCH SUBDIVISION FILING NO. 2

**Prepared for:** 

Hammers Construction, Inc. 1411 Woolsey Heights Colorado Springs, CO 80915

September 20, 2024 Revised February 17, 2025

### **Prepared by:**



19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429 www.jpsengr.com

JPS Project No. 082401 PCD Filing No. PPR2436

### CATHEDRAL ROCK CHURCH DRAINAGE LETTER REPORT <u>TABLE OF CONTENTS</u>

|      | DRAINAGE STATEMENT                        | .i |
|------|-------------------------------------------|----|
| I.   | INTRODUCTION                              | 1  |
| II.  | EXISTING / PROPOSED DRAINAGE CONDITIONS   | 2  |
| III. | DRAINAGE PLANNING FOUR STEP PROCESS       | 6  |
| IV.  | FLOODPLAIN IMPACTS                        | 7  |
| V.   | STORMWATER DETENTION AND WATER QUALITY    | 7  |
| VI.  | PUBLIC IMPROVEMENTS / DRAINAGE BASIN FEES | 8  |
| VII. | SUMMARY                                   | 8  |

### APPENDICES

| APPENDIX A | Excerpts from Subdivision Drainage Report |
|------------|-------------------------------------------|
| APPENDIX B | Hydrologic Calculations                   |
| APPENDIX C | Hydraulic Calculations                    |
| APPENDIX D | Rain Garden Calculations                  |
| APPENDIX E | Rain Garden Cost Estimate                 |
|            |                                           |

| APPENDIX F  | Figures                                                   |
|-------------|-----------------------------------------------------------|
| Figure FIRM | Floodplain Map                                            |
| Sheet D1    | Struthers Ranch Subdivision - Developed Drainage Plan     |
| Sheet EX1   | Cathedral Rock Church – Existing Conditions Drainage Plan |
| Sheet D1.1  | Cathedral Rock Church - Developed Drainage Plan           |
|             |                                                           |

### DRAINAGE STATEMENT

### Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

John P. Schwab, P.E. #29891

### Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Hammers Construction, Inc. 1411 Woolsey Heights, Colorado Springs, CO 80915

### El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Joshua Palmer, P.E. County Engineer / ECM Administrator

Conditions:

Date

Date

### I. INTRODUCTION

### A. Property Location and Description

Cathedral Rock Church is planning to construct a new church building on the vacant 5.1-acre property at the northeast corner of Struthers Road and Struthers Ranch Road in northern El Paso County, Colorado. The property is described as Tract A, Struthers Ranch Subdivision Filing No. 2 (El Paso County Assessor's Parcel Number 71363-01-013).

The project consists of a new 11,375 square-foot Church Building with associated parking and site improvements. Future phases of site development are anticipated to include a 10,050 square-foot building addition on the southwest side of the Phase 1 building and expanded parking areas. Additionally, the Church plans to process a minor subdivision to create a separate 1-acre lot reserved for future development in the southwest corner of the site.

The property is bounded by Struthers Road on the southwest side and Struthers Ranch Road on the southeast side. Struthers Road is a fully improved, asphalt-paved arterial public street, and Struthers Ranch Road is a fully improved local public street. Existing platted residential lots are located along the northeast boundary of the parcel (Struthers Ranch Filing No. 2). The north boundary of the site adjoins a vacant, unplatted 6.5-acre property (zoned R-4).

The property is zoned Planned Unit Development (PUD), and the proposed site development is fully consistent with the existing zoning of the site. Access to the site will be provided by the existing private driveway connection to Struthers Ranch Road along the southeast boundary of the site.

The site is located in the Black Forest Creek Drainage Basin, and surface drainage from this site sheet flows southwesterly to an existing public storm sewer system in Struthers Ranch Road, flowing to the existing Struthers Ranch stormwater detention pond on the west side of Struthers Road.

This report is intended to meet the requirements of a site-specific "Letter Type" drainage report in accordance with El Paso County subdivision drainage criteria.

### **B.** References

JPS Engineering, Inc., "Preliminary & Final Drainage Report for Cathedral Rock Commons Commercial," revised March 8, 2023 (approved by El Paso County 3/29/23).

JPS Engineering, Inc., "Final Drainage Report for Struthers Ranch Filing No. 2," revised October 14, 2004 (approved by El Paso County 10/20/04).

JPS Engineering, Inc., "Drainage Letter Report for Struthers Ranch Polaris, Lots 1-2, Struthers Ranch Subdivision Filing No. 4," revised April 7, 2023 (approved by El Paso County 5/4/23).

| ITEM                         | DESCRIPTION                              | REFERENCE  |
|------------------------------|------------------------------------------|------------|
| Design Storm (initial/major) | 5-year/100-year                          | CS/EPC DCM |
| Storm Runoff                 | Rational Method (Area<100acres)          | CS/EPC DCM |
| Major Drainage Basin         | Black Forest Creek                       |            |
| Floodplain Impacts           | Parcel is located outside any delineated | FIRM       |
|                              | FEMA floodplains                         |            |
| Existing Downstream          | Existing storm sewer system on east side |            |
| Facilities                   | of Struthers Road; Existing detention    |            |
|                              | pond on west side of Struthers Road      |            |

### C. Drainage Analysis Methods and Criteria

CS/EPC DCM = City of Colorado Springs & El Paso County Drainage Criteria Manual

### II. EXISTING / PROPOSED DRAINAGE CONDITIONS

### Subdivision Drainage Report

Drainage planning for this site was previously master planned during original development of the Struthers Ranch Subdivision, as detailed in the "Final Drainage Report (FDR) for Struthers Ranch Filing No. 2" by JPS Engineering, dated October 14, 2004 (see excerpts in Appendix A). The project area at the northeast corner of Struthers Road and Struthers Ranch Road was identified as a future commercial development area in the original planning of the subdivision.

According to the original FDR, Basins C (4.75 acres) and E1 (1.5 acres) comprise the future commercial development areas on the north side of Struthers Ranch Road. The previously approved subdivision drainage planning assumed full commercial development within all of Basins C and E1, with runoff coefficients of  $C_5 = 0.90$  and  $C_{100} = 0.90$ , and impervious areas of 95 percent for the entirety of these basins. According to the Rational Method calculations in the original subdivision drainage report, developed peak flows from Basin C were calculated as  $Q_5 = 22.2$  cfs and  $Q_{100} = 38.5$  cfs, and peak flows from Basins OE1 and E1 (FDR DP#5) were calculated as  $Q_5 = 4.6$  cfs and  $Q_{100} = 8.9$  cfs (see Appendix A).

As shown on the enclosed Struthers Ranch Subdivision Drainage Plan (Figure D1, Appendix F), the proposed Church building and parking areas lie entirely within Basin C as delineated in the approved "Final Drainage Report for Struthers Ranch Filing No. 2."

The site slopes downward to the southwest, with average grades of 1-4 percent. On-site soils are classified by SCS as type 71, "Pring" series coarse sandy loam soils. These soils have moderately rapid permeability and slow to medium surface runoff characteristics. The soils are classified as hydrologic soils group B.

C:\Users\Owner\Dropbox\jpsprojects\082401.hammers-cathedral\admin\drainage\Drg-Rpt-CRC-0225.docx

Developed drainage from this Church site will sheet flow southwesterly into an on-site Rain Garden and then connect to an existing 24" storm sewer lateral prior to continuing downstream in the 42" public storm sewer system in Struthers Ranch Road. An existing 10-foot Type R public storm inlet collects street drainage at the northeast corner of Struthers Ranch Road and Struthers Road, and an existing 24" RCP storm sewer was stubbed north from the inlet during initial subdivision development. The existing 42" storm sewer in Struthers Ranch Road flows south along the east side of Struthers Road to a catch basin, where double 48-inch culverts convey developed flows across Struthers Road and into the existing detention pond. The previously approved drainage report for Struthers Ranch Filing No. 2 assumed full commercial development for this basin, which is consistent with the proposed site development. The existing detention pond was sized to account for fully developed flows from this commercial area.

As requested by the U.S. Air Force Academy design review during the original subdivision process, the existing Struthers Ranch Regional Detention Pond was designed to provide stormwater detention for the full range of 2-year through 100-year design storms, as detailed in the 2004 "Final Drainage Report (FDR) for Struthers Ranch Filing No. 2." The Struthers Ranch Detention Pond discharges through a 48-inch outlet pipe into Black Forest Creek, which flows southwesterly and crosses I-25 in a double 10'x10' box culvert, ultimately flowing into Monument Creek.

The impervious area for the proposed Cathedral Rock Church development (delineated as Basins A1-A4 within this report, which correlates with Basin C in the FDR) amounts to approximately 65.8 percent of the site (as tabulated on Sh. D1.1 and Appendix B), which is well below the impervious area of 95 percent assumed for full commercial development in the previously approved subdivision drainage report (see Appendix A).

Based on the previous construction of drainage improvements for the Struthers Ranch Subdivision, no significant impact on downstream drainage facilities is anticipated from this site development and replat. Proper erosion control measures will be required for development of the site, including silt fence along downstream property boundaries to minimize off-site transport of construction sediment.

### **Existing Drainage Conditions**

As shown on the enclosed Existing Conditions Drainage Plan (Figure EX1, Appendix F), the site has been delineated as two on-site drainage basins. The majority of the project area has been delineated as Basin A, and the north edge of the site has been delineated as Basin B. The site is impacted by small off-site basin areas (delineated as Basins OA1 and OB1) consisting of the rear sides of the adjoining single-family residential lots (platted as part of Struthers Ranch Filing No 2) along the northeast boundary of the site.

Surface drainage from off-site Basin OA1 (back sides of adjoining developed single-family residential lots along northeast boundary of project site) sheet flows into Basin A, and Basin A sheet flows southwesterly across the property to the existing public storm C:\Users\Owner\Dropbox\jpsprojects\082401.hammers-cathedral\admin\drainage\Drg-Rpt-CRC-0225.docx

inlet (10' Type R) on the north side of Struthers Ranch Road. Flows from Basin OA1 combine with Basin A at Design Point #1, with existing peak flows calculated as  $Q_5 = 1.4$ cfs and  $Q_{100} = 8.5$  cfs.

Drainage from off-site Basin OB1 (back sides of adjoining developed single-family residential lots along northeast boundary of project site) sheet flows southwesterly into Basin B, and Basin B flows southwesterly to the existing curb and gutter along the east side of Struthers Road, ultimately flowing north into the existing public culvert crossing Struthers Road at the southeast corner of Spanish Bit Drive and Struthers Road. Flows from Basins OB1 and B combine at Design Point #2, with existing peak flows calculated as  $Q_5 = 0.7$  cfs and  $Q_{100} = 4.1$  cfs.

### **Developed Drainage Plan**

Developed flows have been calculated based on the impervious areas associated with the proposed building and parking improvements. Surface drainage swales and a private storm sewer system will convey developed flows to the proposed Rain Garden A along the south boundary of the site. Site grades will slope to storm inlets and curb openings at selected locations, collecting surface drainage and conveying stormwater to Rain Garden A. The proposed building pads will be graded with protective slopes to provide positive drainage away from the buildings, and the curb, gutter, drainage swales, and private storm sewer system will convey developed flows southwesterly into Rain Garden A.

### Basin A

The proposed Church building and the majority of the central parking lot area have been delineated as Basin A1 (2.29-acres), which drains by sheet flow and curb and gutter to a private storm sewer system conveying flows to Rain Garden A. Building roof drains will be intercepted by 8" PVC roof drain collection lines along the north and south sides of the building, and Private Storm Sewer A1.0 (12" HDPE) will convey the combined roof drain flows south into Inlet A1.1 near the southeast corner of the building.

Private Storm Inlet A1.1 (5' Type R) will intercept surface drainage from the north side of the parking lot, and Private Storm Sewer A1.1 (12" HDPE) will convey this flow southwest to Private Storm Inlet A1.2. Storm Inlet A1.2 will intercept surface drainage from the south side of the parking lot, and Private Storm Sewer A1.2 (18" HDPE) will convey the combined flows southeasterly to Private Storm Inlet A2 in the southeast access drive.

Developed peak flows for Basin A1 are calculated as  $Q_5 = 7.9$  cfs and  $Q_{100} = 15.6$  cfs. Off-site flows from Basin OA1 combine with Basin A1 at Design Point A1.1, with developed peak flows calculated as  $Q_5 = 5.6$  cfs and  $Q_{100} = 11.2$  cfs.

The southeast access drive and southeast corner of the parking lot have been delineated as Basin A2 (0.86-acre), which drains southwesterly by sheet flow and curb and gutter to the proposed Private Storm Inlet A2 (5' Type R) at the southwest corner of the new access C:\Users\Owner\Dropbox\jpsprojects\082401.hammers-cathedral\admin\drainage\Drg-Rpt-CRC-0225.docx 4 drive. Private Storm Sewer A2 (18" HDPE) will convey the combined flows southwesterly into the forebay at the east end of Rain Garden A.

Developed peak flows for Basin A2 are calculated as  $Q_5 = 2.6$  cfs and  $Q_{100} = 5.3$  cfs. Off-site flows from Basin OA2 combine with Basin A2 at Design Point A2.1, with developed peak flows calculated as  $Q_5 = 2.3$  cfs and  $Q_{100} = 5.2$  cfs. Off-site flows from Basins OA1-OA2 combine with Basins A1-A2 at Design Point A2.2, with developed peak flows calculated as  $Q_5 = 8.1$  cfs and  $Q_{100} = 16.7$  cfs.

The future development area in the southwest corner of the property has been delineated as Basin A3 (0.96-acre). The Church has plans to process a subdivision to create a separate 1-acre lot in this area for potential future sale and commercial development. Runoff calculations for Basin A3 have assumed an impervious area of 85 percent for future commercial development of this area, with Basin A3 developed peak flows calculated as  $Q_5 = 3.6$  cfs and  $Q_{100} = 6.7$  cfs.

The proposed Rain Garden A area along the south boundary of the property has been delineated as Basin A4 (0.23-acre), and developed peak flows for Basin A4 are calculated as  $Q_5 = 0.1$  cfs and  $Q_{100} = 0.7$  cfs.

The 24" RCP discharge pipe from Rain Garden A (along with overflows from the pond spillway) will drain into the existing public storm inlet along the north side of Struthers Ranch Road, flowing into the existing 42-inch RCP public storm sewer in Struthers Ranch Road. The existing public storm sewer system flows south to the existing double 48-inch RCP storm sewer which crosses Struthers Road, draining southwesterly into the existing regional Struthers Ranch Detention Pond ("Detention Pond 11" per Black Forest Creek DBPS).

### Combined Flows and Comparison to Subdivision FDR

Developed flows from Basins OA1-OA2, and A1-A4 combine at Design Point #1, with peak flows calculated as  $Q_5 = 10.6$  cfs and  $Q_{100} = 21.8$  cfs. For comparison with the original Struthers Ranch Subdivision FDR, the developed flows from FDR Basin C (equivalent to Design Point #1 in this report) were calculated as  $Q_5 = 22.2$  cfs and  $Q_{100} = 38.5$  cfs (significantly higher than the current developed flow calculations). As such, the proposed developed flows are well below the previously master planned developed flows entering the regional detention pond.

Hydrologic and hydraulic calculations for the site are detailed in the appendices (Appendix B and C), and peak flows are identified on Figure D1.1 (Appendix F).

### Basin B

The proposed site development plan will minimize developed drainage impacts within Basin B along the north boundary of the site, as developed flows from the church building and parking areas will be conveyed southwesterly to Rain Garden A. Developed C:\Users\Owner\Dropbox\jpsprojects\082401.hammers-cathedral\admin\drainage\Drg-Rpt-CRC-0225.docx 5 peak flows for Basin B are calculated as  $Q_5 = 0.3$  cfs and  $Q_{100} = 2.3$  cfs. Developed flows from Basins OB1 and B will continue to combine at Design Point #2, with peak flows calculated as  $Q_5 = 0.4$  cfs and  $Q_{100} = 1.9$  cfs (lower than existing conditions).

Drainage from Design Point #2 flows north along the east side of Struthers Road into an existing box culvert at the southwest corner of Struthers Road and Spanish Bit Drive, which flows southwesterly across I-25 and ultimately drains into Monument Creek.

### III. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in ECM Appendix I.7., the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

### Step 1: Employ Runoff Reduction Practices

• Rain Garden: The majority of developed flows will be routed through the on-site Rain Garden water quality facility, which will be vegetated to encourage stormwater infiltration.

### Step 2: Stabilize Drainageways

- There are no drainageways directly adjacent to this project site. Implementation of the on-site drainage improvements and Rain Garden will minimize downstream drainage impacts from this site.
- Drainage basin fees were previously paid during recording of the subdivision plat, and these fees provided the applicable cost contribution towards regional drainage improvements.

### Step 3: Provide Water Quality Capture Volume (WQCV)

• RG: The majority of the developed site will drain through an on-site Private Rain Garden (RG) along the south boundary of the property. The Rain Garden will capture and slowly release the WQCV over an extended release period.

### Step 4: Consider Need for Industrial and Commercial BMPs

- No industrial uses are proposed for this site.
- The property owner will implement a Stormwater Management Plan including proper housekeeping practices and spill containment procedures.
- On-site developed drainage will be routed through the Rain Garden to minimize introduction of contaminants to the County's public drainage system.

### IV. FLOODPLAIN IMPACTS

According to the FEMA floodplain map for this area, El Paso County FIRM Panel No. 08041C0287G, dated December 7, 2018, the site is located beyond the limits of any delineated floodplains.

### V. STORMWATER DETENTION AND WATER QUALITY

Stormwater detention for this site is provided in the existing regional stormwater detention pond constructed during initial development of the Struthers Ranch Subdivision. The Struthers Ranch Homeowners Association is the owner of the existing Struthers Ranch Detention Pond located within Tract C, Struthers Ranch Filing No. 2. There currently appears to be a need for removal of excess vegetation within the pond to ensure proper operation of the detention facilities. The Struthers Ranch HOA is responsible for proper maintenance of the existing regional detention pond.

An on-site private Rain Garden will be constructed to meet stormwater quality requirements for this site in accordance with current El Paso County drainage criteria. As detailed in the Rain Garden calculations in Appendix D, the required Water Quality Capture Volume (WQCV) has been calculated as 0.13 acre-feet. The water quality capture volume has been calculated based on the actual impervious area of the proposed church site development within Basins A1-A2, along with the typical single-family residential impervious area of 40% within the adjoining developed Basins OA1-OA2, and a conservative estimated impervious area of 85% for the anticipated future commercial development within Basin A3. Water quality calculations have also accounted for future building improvements and future parking expansion areas within Basins A1-A2 as noted on the Developed Drainage Plan.

The proposed Rain Garden A has been designed utilizing the Denver Mile High Flood District's "SCM-Design-v4.00" and "MHFD-Detention\_v4.06" software packages. Calculations and details for the proposed Rain Garden are enclosed in Appendix D, and design parameters for the Rain Garden are summarized as follows:

| Water<br>Quality | Tributary<br>Drainage | Tributary<br>Area | Impervious | Min.<br>WQCV | Design      |
|------------------|-----------------------|-------------------|------------|--------------|-------------|
| Facility (RG)    | Basins                | (ac)              | Percentage | (cf)         | Volume (af) |
| А                | A1-A4                 | 4.79              | 65.8       | 3,579        | 3,817       |

The proposed on-site Rain Garden A provides a storage volume of 3,817 cubic feet, which meets the required WQCV volume.

The proposed Rain Garden will include a concrete forebay for erosion control at the entry. The outlet structure has been designed with a water quality orifice plate to maintain a 12-hour release of the WQCV. The Rain Garden will have a vegetated bottom to encourage infiltration of stormwater prior to discharging into the downstream public drainage system.

The new on-site Rain Garden will be privately owned and maintained by the property owner, and maintenance access will be provided from the access drive at the southeast corner of the site.

### VI. PUBLIC IMPROVEMENTS / DRAINAGE BASIN FEES

No public drainage improvements are required or proposed for this project. As detailed in Appendix E, the proposed private Rain Garden A has an estimated cost of approximately \$19,267.

The site lies completely within the Black Forest Creek Drainage Basin. Applicable drainage basin fees were paid at the time of original platting of Struthers Ranch Filing No. 2, so no drainage basin fees or bridge fees are applicable at this time.

### VII. SUMMARY

The developed drainage patterns for the proposed Cathedral Rock Church site development on Tract A, Struthers Ranch Filing No. 2 will remain consistent with the established drainage plan for this subdivision. The grading and drainage plan for the proposed church site development fully conforms to the approved drainage plan for Struthers Ranch Filing No. 2.

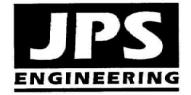
Developed flows from the site will drain through a Private Rain Garden water quality facility along the south boundary of the property prior to discharging into the existing downstream public storm sewer system. Stormwater detention is provided by the existing Struthers Ranch Detention Pond which was designed to accept fully developed flows from the commercial area encompassing this site. The proposed on-site Rain Garden will meet current stormwater quality requirements for this site. Construction and proper maintenance of the on-site drainage facilities and Rain Garden, in conjunction with proper erosion control practices, will ensure that this developed site has no significant adverse drainage impact on downstream or surrounding areas.

## APPENDIX A

### **EXCERPTS FROM SUBDIVISION DRAINAGE REPORT**

### FINAL DRAINAGE REPORT

for


## **STRUTHERS RANCH FILING NO. 2**

**Prepared for:** 

WL Homes LLC 8610 Explorer Drive, Suite 300 Colorado Springs, CO 80920

November 6, 2003 Revised April 12, 2004 Revised May 7, 2004 Revised May 25, 2004 Revised September 3, 2004 Revised October 14, 2004

Prepared by:



19 E. Willamette Avenue Colorado Springs, CO 80903 (719)-477-9429 (719)-471-0766 FAX

JPS Project No. 080006

15 2004 F. 2959

#### 2. Developed Drainage Conditions

The developed drainage basins and projected flows are shown in Figure D1, and preliminary hydrologic calculations are enclosed in Appendix B. The developed site has been divided into five major basins (A-E) and five design points (DP1-DP5), as shown on the enclosed Drainage Plan (Sheets D1 and D1.02). Hydrologic flow schematics and calculations are enclosed in Appendix B.

Struthers Ranch Filing No. 2 is located within parts of Basins C-F at the northwest corner of the site. The majority of developed areas ultimately flow to the proposed detention pond at Design Point No. 4. The internal road gutters of sub-basins D1-D10 will be graded to drain southwesterly through the interior road system. Storm inlets will be constructed in the interior roads as required to intercept developed flows exceeding the allowable street capacity. Storm sewer outfalls will be extended to the proposed detention pond.

To minimize the impacts of developed drainage from Struthers Ranch, flows from Basins C, D, and F will be routed through the proposed detention pond. Off-site Basins OC1 and OD1 will combine with flows from on-site Sub-basins D1-D10, C, E2, E3, and F at the proposed detention pond (Design Point #4), with developed flows of  $Q_5 = 66$  cfs and  $Q_{100} = 191$  cfs (SCS Method). The detention pond will discharge historic flows to the existing swale at the southerly site boundary, flowing into the existing 48-inch culvert crossing I-25. The proposed 48-inch RCP discharge pipe from the detention pond will be released to a riprap apron, flowing to an existing stable grass-lined swale across a parcel owned by the U.S Air Force Academy, ultimately crossing I-25 through the existing 48-inch CMP culvert.

The proposed site layout will significantly reduce the amount of developed flow reaching the existing 3.5'x2' culvert (Structure #11) at the westerly site boundary (Design Point #3). Flows from Sub-basin E4 ( $Q_5 = 1.9$  cfs and  $Q_{100} = 3.7$  cfs) represent the westerly side of the proposed Struthers Road draining to the existing culvert crossing I-25.

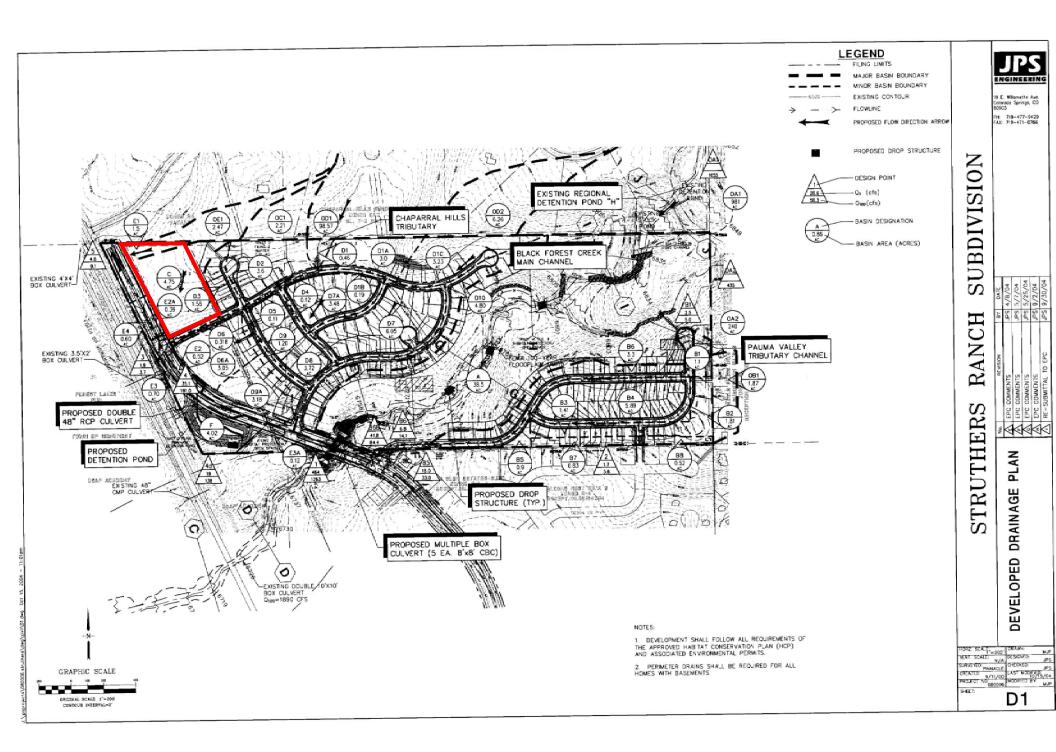
Basin E1 represents the small developed area at the northwest corner of the site, draining to the existing 4'x4' box culvert at Design Point #5. The proposed grading scheme for the commercial area north of Struthers Ranch Road will direct the majority of developed flows into Basin C, ultimately flowing to the proposed detention pond. As a result, developed flow impacts to the Jackson Creek Basin at the northwest corner of the site will be minimized. Estimated developed peak flows of  $Q_5 = 4.6$  cfs and  $Q_{100} = 8.9$  cfs at Design Point #5 remain within the capacity of the existing culvert.

J:\jpsprojects\080006.struthers\Admin\DrgReports\fdr2.struthers-e.doc

### C. Comparison of Developed to Historic Discharges

Based on the hydrologic calculations in Appendix B, the total undetained developed flow from the site will exceed historic flow from the parcel. Projected increases in developed flows will be mitigated by routing flows through a proposed on-site stormwater detention pond. The comparison of developed to historic discharges at key design points is summarized as follows:

|         | H            | istoric Fl  | ow                        | Dev          | eloped I    | Flow                      |                                                                                      |
|---------|--------------|-------------|---------------------------|--------------|-------------|---------------------------|--------------------------------------------------------------------------------------|
| 2<br>3  | Area<br>(ac) | Q5<br>(cfs) | Q <sub>100</sub><br>(cfs) | Area<br>(ac) | Q5<br>(cfs) | Q <sub>100</sub><br>(cfs) | Comparison of Developed<br>to Historic Flow<br>(Q <sub>5</sub> %/Q <sub>100</sub> %) |
| 1 (SCS) | 1,266        | 473         | 1,281                     | 1,274        | 464         | 1,263                     | 98% / 99% (decrease)                                                                 |
| 2       | 15.1         | 9.3         | 22.4                      | 1.4          | 1.7         | 3.6                       | 18% / 16% (decrease)                                                                 |
| 3       | 16.0         | 9.9         | 24.0                      | 0.6          | 1.9         | 3.7                       | 19% / 15% (decrease)                                                                 |
| 4 (SCS) | 133.6        | 50          | 148                       | 155.4        | 66          | 191                       | 132% / 129% (increase)                                                               |
| 5       | 6.8          | 8           | 9.2                       | 4.0          | 4.6         | 8.9                       | 121% / 99% (increase)                                                                |


#### D. Detention Ponds

The total developed storm runoff downstream of Struthers Ranch will be maintained at historic levels by routing flows through the proposed on-site detention pond located at the westerly boundary of the Struthers Ranch property (equivalent to "Detention Pond #11" as identified in the DBPS). The proposed detention facility will be sized to attenuate peak flows through the pond, based on the difference between outflow and inflow hydrographs. Flows from Basins C and D will be routed through the proposed detention pond at Design Point #4. The pond will be designed to "over-detain" to account for release of developed flows from Basins A and B, ensuring that the net discharge from the overall site will be maintained below historic levels.

As depicted on Sheet C1.02 (Appendix A), the proposed interim access connection from the I-25 Frontage Road to Struthers Road will bisect the pond, providing for a forebay at the upstream end of the pond. Once the interim access to the frontage road is abandoned, the maintenance access road will remain, and the forebay will continue to serve as a water quality enhancement feature. A detailed pond routing analysis utilizing the "Intelisolve Hydraflow" software package is enclosed in Appendix C1, resulting in the following pond design parameters:

| Pond             | Pond Inflow                               | Pond Outflow                              | Pond Volume |
|------------------|-------------------------------------------|-------------------------------------------|-------------|
|                  | (Q <sub>5</sub> / Q <sub>100</sub> , cfs) | (Q <sub>5</sub> / Q <sub>100</sub> , cfs) | (ac-ft)     |
| DP4 ("Pond #11") | 35/191                                    | 19.3 / 138.4                              | 4.7         |

J:\jpsprojects\080006.struthers\Admin\DrgReports\fdr2.struthers-e.doc



### TABLE 5-1

# RECONMENDED AVERAGE RUNOFF COEFFICIENTS AND PERCENT INPERVIOUS

| ,                                            |            |        |      | "C"<br>DUENCY |      |
|----------------------------------------------|------------|--------|------|---------------|------|
|                                              | PERCENT    | 1      | 0    | 10            | 0    |
| LAND USE OR<br>SURFACE CHARACTERISTICS       | IMPERVIOUS | A6B*   | C&D* | A6B*          | C&D* |
| Business                                     |            |        | 0.90 | 0.90          | 0.90 |
| Commercial Areas                             | 95         | 0.90   | 0.90 | 0.80          | 0.80 |
| Neighborhood Areas                           | 70         | 0.75   | 0.75 | 0.00          | 0.00 |
| Residential                                  | 65         | 0.60   | 0.70 | 0.70          | 0.80 |
| 1/8 Acre or less                             | 40         | 0.50   | 0.60 | 0.60          | 0.70 |
| 1/4 Acre                                     | 30         | 0.40   | 0.50 | 0.55          | 0.60 |
| 1/3 Acre                                     | 25         | 0.35   | 0.45 | 0.45          | 0.55 |
| 1/2 Acre                                     |            | 0.30   | 0.40 | 0.40          | 0.50 |
| 1 Acre                                       | 20         | 0.30   | 0.40 | 0.40          |      |
| Industrial                                   | ••         | 0.70   | 0,70 | 0.80          | 0.80 |
| Light Areas                                  | 80<br>90   | 0.80   | 0.80 | 0.90          | 0.90 |
| Heavy Areas                                  | 90         | 0.00   | 0.00 |               |      |
| a to a constant of                           | 7          | 0.30   | 0.35 | 0.55          | 0.60 |
| Parks and Cemeteries                         | 13         | 0.30   | 0.35 | 0.60          | 0.65 |
| Playgrounds<br>Railroad Yard Areas           | +0         | 0.50   | 0.55 | 0.60          | 0.65 |
|                                              |            |        |      |               |      |
| Undeveloped Areas<br>Historic Flow Analysis- | 2          | 0.15   | 0.25 | 0.20          | 0.30 |
| Greenbelts, Agricultural                     |            | $\sim$ |      |               |      |
| Pasture/Neadow                               | 0          | 0.25   | 0,10 | 6.35          | 0.45 |
| Forest                                       | 0          | 0.10   | 2.15 | 0.15          | 0.20 |
| Exposed Rock                                 | 100        | 0,90   | 0.90 | 0.95          | 0.95 |
| Offsite Flow Analysis                        | 45         | 0.55   | 0.60 | 0.65          | 0.70 |
| (when land use not defin                     | ed)        |        |      |               |      |
| Streets                                      |            |        |      |               | 0.95 |
| Paved                                        | 100        | 0.90   | 0.90 | 0.95          | 0.85 |
| Gravel                                       | 80         | 0.80   | 0.80 | 0.85          | 0.85 |
|                                              | 100        | 0.90   | 0.90 | 0.95          | 0.95 |
| Drive and Walks                              | 90         | 0.90   | 0.90 | 0.95          | C.95 |
| Roofs                                        | 0          | 0.25   | 0.30 | 0.35          | 0.45 |
| Lawns                                        | Ť          |        |      |               |      |

\* Hydrologic Soil Group

9/30/90

5-8

(EPC-DCM)

#### STRUTHERS RANCH COMPOSITE RUNOFF COEFFICIENTS

|                 | TOTAL  | SOIL |       | SUB-AREA 1<br>DEVELOPMENT/ |      | AREA     | SUB-AREA 2<br>DEVELOPMENT/ |      |       | SUB-AREA 3<br>DEVELOPMENT/ |   | WEIGHTED |
|-----------------|--------|------|-------|----------------------------|------|----------|----------------------------|------|-------|----------------------------|---|----------|
| BASIN           | (AC)   | TYPE | (AC)  | COVER                      | С    | (AC)     | COVER                      | С    | (AC)  | COVER                      | С | C VALUE  |
| OA1             | 981    | В    | 981   | 0.25-AC LOTS               | 0.5  | <u> </u> |                            | _    | 1.1.1 |                            |   | 0.500    |
| OA2             | 240    | В    | 240   | 0.25-AC LOTS               | 0.5  |          |                            |      |       |                            |   | 0.500    |
| 0A1.0A2         | 1221   |      |       |                            |      |          |                            |      |       |                            |   | 0.500    |
| B1              | 1.1    | В    | 1.1   | 0.25-AC LOTS               | 0.5  |          |                            |      |       |                            |   | 0.500    |
| A               | 38.5   | В    | 38.5  | OPEN SPACE                 | 0.25 |          |                            |      |       |                            |   | 0.250    |
| OA1,OA2,B1,A    | 1260.6 |      |       |                            |      |          |                            |      |       |                            |   | 0.492    |
| OB1             | 1.87   | в    | 1.87  | 0.25-AC LOTS               | 0.5  |          |                            |      |       |                            |   | 0.500    |
| B2              | 1.81   | В    | 1.81  | 0.25-AC LOTS               | 0.5  |          |                            |      |       |                            |   | 0.500    |
| B3              | 1.4    | В    | 1.41  | 0.25-AC LOTS               | 0.5  |          |                            |      |       |                            |   | 0.500    |
| B4              | 5.8    | В    | 5.8   | 0.25-AC LOTS               | 0.5  |          |                            |      |       |                            |   | 0.500    |
| OB1,B2-B4       | 10.9   |      |       |                            |      |          |                            |      |       |                            |   | 0.500    |
| B5              | 0.9    | В    | 0.9   | 0.25-AC LOTS               | 0.5  |          |                            |      |       |                            |   | 0.500    |
| OB1,B2-B5       | 11.8   |      |       |                            |      |          |                            |      |       |                            |   | 0.500    |
| B6              | 3.3    | В    | 3.3   | 0.25-AC LOTS               | 0.5  |          |                            |      |       |                            |   | 0.500    |
| OB1,B2-B6       | 15.1   |      |       |                            |      |          |                            |      |       |                            |   | 0.500    |
| OA1,OA2,A,B1-B6 | 1275.7 |      |       |                            |      |          |                            |      |       |                            |   | 0.492    |
| B7              | 0.83   | В    | 0.83  | 0.25-AC LOTS               | 0.5  |          |                            |      |       |                            |   | 0.500    |
| B8              | 0.52   | В    | 0.52  | 0.25-AC LOTS               | 0.5  |          |                            |      |       |                            |   | 0.500    |
| B7,B8           | 1.4    |      |       |                            | _    |          |                            |      |       | 4                          |   | 0.500    |
| E4              | 0.6    | В    | 0.34  | PAVED                      | 0.9  | 0.3      | LANDSCAPE                  | 0.25 |       |                            |   | 0.618    |
| OD1             | 98.57  | В    | 98.57 | 5-AC LOTS                  | 0.3  |          |                            |      |       |                            |   | 0.300    |
| D1              | 0.46   | В    | 0.46  | MEADOW                     | 0.25 |          |                            |      |       |                            |   | 0.250    |
| OD1,D1          | 99.03  |      |       |                            |      |          |                            |      |       |                            |   | 0.300    |

| OD2                  | 6.26   | В | 6.26          | 5-AC LOTS    | 0.3  |     |            |      | 0.300     |
|----------------------|--------|---|---------------|--------------|------|-----|------------|------|-----------|
| D1C                  | 3.23   | В | 1.5           | 0.25-AC LOTS | 0.5  | 1.7 | OPEN SPACE | 0.25 | 0.366     |
| OD2,D1C              | 9.49   |   |               |              |      |     |            |      | 0.322     |
| D1A                  | 3.00   | В | 0.8           | 0.25-AC LOTS | 0.5  | 2.2 | PARK / OS  | 0.25 | 0.317     |
| OD2,D1C,D1A          | 12.49  |   |               |              |      |     |            |      | 0.321     |
| D1B                  | 0.19   | В | 0.19          | ROADWAY      | 0.9  |     | 1          |      | 0.900     |
| OD1,D1,D1A,D1B       | 111.71 |   |               |              |      |     |            |      | 0.303     |
| D4                   | 0.12   | В | 0.12          | ROADWAY      | 0.9  |     |            |      | 0.900     |
| OD1,D1,D1A,D1B,D4    | 111.83 |   |               |              |      |     |            |      | 0.304     |
| D5                   | 0.11   | В | 0.11          | ROADWAY      | 0.9  |     |            |      | 0.900     |
| OD1,D1,D1A,D1B,D4,D5 | 111.94 |   |               |              |      |     |            |      | 0.304     |
| D6                   | 0.32   | В | 0.318         | ROADWAY      | 0.9  |     |            |      | 0.900     |
| OD1.D1.D1A.D1B.D4-D6 | 112.26 |   |               |              |      |     |            |      | 0.306     |
| OC1                  | 2.21   | В | 2.21          | 5-AC LOTS    | 0.3  |     |            |      | 0.300     |
| D2                   | 3.60   | В | 3.6           | 0.25-AC LOTS | 0.5  |     |            |      | 0.500     |
| OC1,D2               | 5.81   |   |               |              |      |     |            |      | 0.424     |
| E2A                  | 0.39   | В | 0.3           | PAVED        | 0.9  | 0.1 | LANDSCAPE  | 0.25 | 0.750     |
| D3                   | 1.55   | В | 1.55          | 0.25-AC LOTS | 0.5  |     |            |      | 0.500     |
| С                    | 4.75   | В | 4.75          | COMMERCIAL   | 0.9  |     |            |      | 0.900     |
| D3,C                 | 6.30   |   |               |              |      |     |            |      | 0.802     |
| OD1,OC1,C,E2A,D1-D6  | 124.76 |   |               |              |      |     |            |      | 0.338     |
| E2                   | 0.52   | В | 0.4           | PAVED        | 0.9  | 0.1 | LANDSCAPE  | 0.25 | 0.750     |
| D6A                  | 3.00   | В | 3             | COMMERCIAL   | 0.9  |     |            |      | 0.900     |
| OD1,OC1,C,D1-D6A     | 128.28 |   |               |              |      |     |            |      | 0.350     |
|                      |        |   |               |              |      |     |            |      |           |
| D7A                  | 3.48   | В | 3.48          | 0.25-AC LOTS | 0.5  |     |            |      | 0.500     |
| D7                   | 6.05   | В | 6.05          | 0.25-AC LOTS | 0.5  |     |            |      | 0.500     |
| D7A,D7               | 9.53   |   |               |              |      |     |            |      | 0.500     |
| D8                   | 3.72   | В | 3.72          | 0.25-AC LOTS | 0.5  |     |            |      | 0.500     |
| D7A,D7,D8            | 13.25  |   |               |              |      |     |            |      | 0.500     |
| D9                   | 1.20   | В | 1.2           | 0.25-AC LOTS | 0.5  |     |            |      | 0.500     |
| D7A-D9               | 14.45  |   | Table Control |              |      |     |            |      | 0.500     |
| E3A                  | 0.12   | В | 0.12          | MEDIAN       | 0.25 |     |            |      | 0.250     |
| D10                  | 4.80   | В | 4.8           | 0.25-AC LOTS | 0.5  |     |            |      | 0.500     |
| D7A-D10,E3A          | 19.37  |   |               |              |      |     |            |      | 0.498     |
| D9A                  | 3.18   | В | 3.18          | COMMERCIAL   | 0.9  |     |            |      | 0.900     |
| D7A-D10,E3A          | 22.55  |   |               |              |      |     |            |      | 0.555     |
| E3                   | 0.70   | В | 0.5           | PAVED        | 0.9  | 0.2 | LANDSCAPE  | 0.25 | 0.714     |
| F                    | 4.02   | B | 4.02          | OPEN SPACE   | 0.25 |     |            |      | 0.250     |
| OD1,C,D1-D10,E2-E3,F | 155.55 | B |               |              |      |     |            |      | <br>0.379 |
| OE1                  | 2.47   | В | 2.47          | 5-AC LOTS    | 0.3  |     |            |      | <br>0.300 |
| E1                   | 1.5    | B | 1.5           | COMMERCIAL   | 0.9  |     |            |      | <br>0.900 |
| OE1.E1               | 4.0    |   |               |              |      |     |            |      | 0.527     |

#### STRUTHERS RANCH COMPOSITE RUNOFF COEFFICIENTS

| 100-YEAR C VALUES | TOTAL  | SOIL |       | SUB-AREA 1<br>DEVELOPMENT/ |      | AREA | SUB-AREA 2<br>DEVELOPMENT/ |      |      | SUB-AREA 3<br>DEVELOPMENT/ |   | WEIGHTED |
|-------------------|--------|------|-------|----------------------------|------|------|----------------------------|------|------|----------------------------|---|----------|
| BASIN             | (AC)   | TYPE | (AC)  | COVER                      | С    | (AC) | COVER                      | С    | (AC) | COVER                      | С | C VALUE  |
| OA1               | 981    | В    | 981   | 0.25-AC LOTS               | 0.6  |      |                            |      |      |                            |   | 0.600    |
| OA2               | 240    | В    | 240   | 0.25-AC LOTS               | 0.6  |      |                            |      |      |                            |   | 0.600    |
| OA1,OA2           | 1221   |      |       |                            |      |      |                            |      |      |                            |   | 0.600    |
| B1                | 1.1    | В    | 1.1   | 0.25-AC LOTS               | 0.6  |      |                            |      |      |                            |   | 0.600    |
| A                 | 38.5   | В    | 38.5  | OPEN SPACE                 | 0.35 |      |                            |      |      |                            |   | 0.350    |
| OA1,OA2,B1,A      | 1260.6 |      |       |                            |      |      |                            |      |      |                            |   | 0.592    |
| OB1               | 1.87   | В    | 1.87  | 0.25-AC LOTS               | 0.6  |      |                            |      |      |                            |   | 0.600    |
| B2                | 1.81   | В    | 1.81  | 0.25-AC LOTS               | 0.6  |      |                            |      |      |                            |   | 0.600    |
| B3                | 1.4    | В    | 1.41  | 0.25-AC LOTS               | 0.6  |      |                            |      |      |                            |   | 0.600    |
| B4                | 5.8    | В    | 5.8   | 0.25-AC LOTS               | 0.6  |      |                            |      |      |                            |   | 0.600    |
| OB1,B2-B4         | 10.9   |      |       |                            |      |      |                            |      |      |                            |   | 0.600    |
| B5                | 0.9    | В    | 0.9   | 0.25-AC LOTS               | 0.6  |      |                            |      |      |                            |   | 0.600    |
| OB1,B2-B5         | 11.8   |      |       |                            |      |      |                            |      |      |                            |   | 0.600    |
| B6                | 3.3    | В    | 3.3   | 0.25-AC LOTS               | 0.6  |      |                            |      |      |                            |   | 0.600    |
| OB1,B2-B6         | 15.1   |      |       |                            |      |      |                            |      |      |                            |   | 0.600    |
| OA1,OA2,A,B1-B6   | 1275.7 |      |       |                            |      |      |                            |      |      |                            |   | 0.592    |
| 87                | 0.83   | В    | 0.83  | 0.25-AC LOTS               | 0.6  |      |                            |      |      |                            | - | 0.600    |
| B8                | 0.52   | В    | 0.52  | 0.25-AC LOTS               | 0.6  |      |                            |      |      |                            |   | 0.600    |
| B7,B8             | 1.4    |      |       |                            |      |      |                            |      |      |                            |   | 0.600    |
| E4                | 0.6    | в    | 0.34  | PAVED                      | 0.95 | 0.3  | LANDSCAPE                  | 0.35 |      |                            |   | 0.690    |
| OD1               | 98.57  | В    | 98.57 | 5-AC LOTS                  | 0.4  |      |                            |      |      |                            |   | 0.400    |
| D1                | 0.46   | В    | 0.46  | MEADOW                     | 0.35 |      |                            |      |      |                            |   | 0.350    |
| OD1,D1            | 99.03  |      |       |                            |      |      |                            |      |      |                            |   | 0.400    |

| OD2                  | 6.26   | В | 6.26      | 5-AC LOTS    | 0.4  |                    |            |      | 0.400     |
|----------------------|--------|---|-----------|--------------|------|--------------------|------------|------|-----------|
| D1C                  | 3.23   | В | 1.5       | 0.25-AC LOTS | 0.6  | 1.7                | OPEN SPACE | 0.35 | 0.466     |
| DD2,D1C              | 9.49   |   |           |              |      |                    |            |      | 0.422     |
| D1A                  | 3.00   | В | 0.8       | 0.25-AC LOTS | 0.6  | 2.2                | PARK / OS  | 0.35 | 0.417     |
| DD2,D1C,D1A          | 12.49  |   |           |              |      |                    |            |      | 0.421     |
| D1B                  | 0.19   | В | 0.19      | ROADWAY      | 0.95 |                    |            |      | 0.950     |
| OD1,D1,D1A,D1B       | 111.71 |   |           |              |      |                    |            |      | 0.403     |
| 04                   | 0.12   | В | 0.12      | ROADWAY      | 0.95 |                    |            |      | 0.950     |
| DD1,D1,D1A,D1B,D4    | 111.83 |   |           |              |      |                    |            |      | 0.404     |
| D5                   | 0.11   | В | 0.11      | ROADWAY      | 0.95 |                    |            |      | 0.950     |
| OD1,D1,D1A,D1B,D4,D5 | 111.94 |   |           |              |      | WI, and the second |            |      | 0.404     |
| D6                   | 0.32   | В | 0.318     | ROADWAY      | 0.95 |                    |            |      | 0.950     |
| DD1.D1.D1A.D1B.D4-D6 | 112.26 |   | anne an s |              |      |                    |            |      | 0.406     |
| OC1                  | 2.21   | В | 2.21      | 5-AC LOTS    | 0.4  |                    |            |      | 0.400     |
| 02                   | 3.60   | В | 3.6       | 0.25-AC LOTS | 0.6  |                    |            |      | 0.600     |
| OC1.D2               | 5.81   |   |           |              |      |                    |            |      | 0.524     |
| E2A                  | 0.39   | В | 0.3       | PAVED        | 0.95 | 0.1                | LANDSCAPE  | 0.35 | 0.812     |
| D3                   | 1.55   | В | 1.55      | 0.25-AC LOTS | 0.6  |                    |            |      | 0.600     |
| 0                    | 4.75   | В | 4.75      | COMMERCIAL   | 0.9  |                    |            |      | 0.900     |
| D3.C                 | 6.30   |   |           |              |      |                    |            |      | 0.826     |
| DD1,OC1,C,E2A,D1-D6  | 124.76 |   |           |              |      |                    |            |      | 0.434     |
| E2                   | 0.52   | B | 0.4       | PAVED        | 0.95 | 0.1                | LANDSCAPE  | 0.35 | 0.812     |
| D6A                  | 3.00   | В | 3         | COMMERCIAL   | 0.9  |                    |            |      | 0.900     |
| OD1,OC1,C,D1-D6A     | 128.28 |   |           |              |      |                    |            |      | 0.443     |
|                      |        |   |           |              |      |                    |            |      |           |
| D7A                  | 3.48   | В | 3.48      | 0.25-AC LOTS | 0.6  |                    |            |      | 0.600     |
| D <b>7</b>           | 6.05   | В | 6.05      | 0.25-AC LOTS | 0.6  |                    |            |      | 0.600     |
| D7A,D7               | 9.53   |   |           |              |      |                    |            |      | 0.600     |
| 08                   | 3.72   | В | 3.72      | 0.25-AC LOTS | 0.6  |                    |            |      | 0.600     |
| D7A,D7,D8            | 13.25  |   |           |              |      |                    |            |      | 0.600     |
| D9                   | 1.20   | В | 1.2       | 0.25-AC LOTS | 0.6  |                    |            |      | 0.600     |
| D7A-D9               | 14.45  |   |           |              |      |                    |            |      | 0.600     |
| E3A                  | 0.12   | В | 0.12      | MEDIAN       | 0.35 |                    |            |      | 0.350     |
| 010                  | 4.80   | B | 4.8       | 0.25-AC LOTS | 0.6  |                    | 1          |      | 0.600     |
| D7A-D10,E3A          | 19.37  |   |           |              |      |                    |            |      | 0.598     |
| D9A                  | 3.18   | В | 3.18      | COMMERCIAL   | 0.9  |                    |            |      | 0.900     |
| D7A-D10,E3A          | 22.55  |   |           |              |      |                    |            |      | 0.641     |
| E3                   | 0.70   | В | 0.5       | PAVED        | 0.95 | 0.2                | LANDSCAPE  | 0.35 | 0.779     |
|                      | 4.02   | B | 4.02      | OPEN SPACE   | 0.35 |                    |            |      | <br>0.350 |
| DD1,C,D1-D10,E2-E3,F | 155.55 | B |           |              |      |                    |            |      | 0.471     |
| DE1                  | 2.47   | В | 2.47      | 5-AC LOTS    | 0.4  |                    |            |      | <br>0.400 |
| E1                   | 1.5    | B | 1.5       | COMMERCIAL   | 0.9  |                    |            |      | 0.900     |
| DE1.E1               | 4.0    | 5 | 1.0       | COMMENCIAL   | 0.0  |                    |            |      | <br>0.589 |

#### STRUTHERS RANCH RATIONAL METHOD - DRAINAGE CALCULATIONS

| DEVEL | OPED | FLOWS |  |
|-------|------|-------|--|
| DEVEL | UPLD | LC HS |  |

|                           |            |         |        | С            | OVERLAND |       |                    | CHANNEL | CONVEYANCE  |       | SCS <sup>(2)</sup> |        | TOTAL  | INTER   | VSITY (5) | PEAK P            |                     |
|---------------------------|------------|---------|--------|--------------|----------|-------|--------------------|---------|-------------|-------|--------------------|--------|--------|---------|-----------|-------------------|---------------------|
| BASIN                     | DESIGN     | AREA    | 5-YEAR | 100-YEAR (7) | LENGTH   | SLOPE | Tco <sup>(1)</sup> | LENGTH  | COEFFICIENT | SLOPE | VELOCITY           | Tt (3) | Tc (4) | 5-YR    | 100-YR    | Q5 <sup>(6)</sup> | Q100 <sup>(6)</sup> |
|                           | POINT      | (AC)    |        |              | (FT)     | (%)   | (MIN)              | (FT)    | к           | (%)   | (FT/S)             | (MIN)  | (MIN)  | (IN/HR) | (IN/HR)   | (CFS)             | (CFS)               |
| OA1                       |            | 981.00  | 0.500  | 0.600        | 300      | 5.4   | 10.7               | 11900   | 1.50        | 5.4   | 3.49               | 56.9   | 67.6   | 1.50    | 2.65      | 735.75            | 1559.79             |
| OA2                       |            | 240.00  | 0.500  | 0.600        | 300      | 5.5   | 10.6               | 620     | 1.50        | 5.5   | 3.52               | 2.9    | 13.5   | 3.60    | 6.10      | 432.00            | 878.40              |
| OA1.0A2                   | OA1        | 1221.00 | 0.500  | 0.600        |          |       |                    |         |             |       |                    |        | 67.6   | 1.50    | 2.65      | 915.75            | 1941.39             |
| B1                        | B1         | 1.10    | 0.500  | 0.600        | 250      | 12.8  | 7.3                | 0       |             |       |                    | 0.0    | 7.3    | 4.50    | 7.60      | 2.48              | 5.02                |
| A                         |            | 38.50   | 0.250  | 0.350        | 0        |       | 0.0                | 2730    | 1.50        | 3.2   | 2.68               | 17.0   | 17.0   | 3.20    | 5.50      | 30.80             | 74.11               |
| OA1,OA2,B1,A              |            | 1260.60 | 0.492  | 0.592        |          |       |                    |         |             |       |                    |        | 84.5   | 1.50    | 2.65      | 930.32            | 1977.63             |
|                           |            | 1.81    | 0.500  | 0.600        | 150      | 60    | 7.6                | 450     |             |       | 1.10               | 1.7    |        | 4.10    | 7.10      | 3.71              | 7.71                |
| 82                        |            | 1.81    |        |              |          | 5.3   |                    |         | 2.00        | 4.9   | 4.43               |        | 9.3    | 5.20    | 9.00      | 3.67              | 7.61                |
| 83                        |            |         | 0.500  | 0.600        | 0        |       | 0.0                | 700     | 2.00        | 3     | 3.46               | 3.4    | 3.4    |         |           |                   | 31.81               |
| B4                        |            | 5.89    | 0.500  | 0.600        | 0        |       | 0.0                | 1180    | 2.00        | 3.7   | 3.85               | 5.1    | 5.1    | 5.20    | 9.00      | 15.31<br>16.85    | 33.89               |
| OB1,B2,B3,B4              | B3         | 9.11    | 0.500  | 0.600        |          |       |                    | 1000    | -           |       |                    |        | 12.7   | 3.70    | 6.20      |                   |                     |
| B5                        |            | 0.90    | 0.500  | 0.600        | 0        |       | 0.0                | 1000    | 2.00        | 3.3   | 3.63               | 4.6    | 4.6    | 5.20    | 9.00      | 2.34              | 4.86                |
| OB1,B2-B5                 | B5         | 10.01   | 0.500  | 0.600        |          |       |                    |         |             |       |                    |        | 17.2   | 3.20    | 5.50      | 16.02             | 33.03               |
| B6                        | <b>B</b> 6 | 3.30    | 0.500  | 0.600        | 0        |       | 0.0                | 2100    | 2.00        | 3.7   | 3.85               | 9.1    | 9.1    | 4.10    | 7.10      | 6.77              | 14.06               |
| OB1,B2-B6                 | B6A        | 13.31   | 0.500  | 0.600        |          |       |                    |         |             |       |                    |        | 17.2   | 3.20    | 5.50      | 21.30             | 43.92               |
| B6A                       | B6B        |         |        |              |          |       |                    | 1       |             |       | -                  |        |        |         |           | 41.80             | 84.40               |
| OA1,OA2,A,B1-B6           | 1          | 1273.9  | 0.492  | 0.592        |          |       |                    |         |             |       |                    |        | 84.5   | 1.50    | 2.65      | 940.15            | 1998.51             |
| B7                        |            | 0.83    | 0.500  | 0.600        | 150      | 4.0   | 8.3                | 0       |             |       | -                  | 0.0    | 8.3    | 4.25    | 7.50      | 1.76              | 3.74                |
| BB                        |            | 0.52    | 0.500  | 0.600        | 850      | 5.5   | 17.8               | 0       |             |       | -                  | 0.0    | 17.8   | 3.10    | 5.20      | 0.81              | 1.62                |
| B7,B8                     | 2          | 1.35    | 0.500  | 0.600        |          | 0.0   |                    | -       |             |       |                    | 0.0    | 26.2   | 2.50    | 4.40      | 1.69              | 3.56                |
|                           |            |         |        |              |          |       |                    |         |             |       |                    |        |        |         |           |                   |                     |
| E4                        | 3          | 0.60    | 0.618  | 0.690        | 0        |       | 0.0                | 450     | 1.50        | 5.5   | 3.52               | 2.1    | 2.1    | 5.20    | 9.00      | 1.93              | 3.73                |
| OD1                       |            | 98.57   | 0.300  | 0.400        | 1000     | 10.0  | 21.2               | 3300    | 1.50        | 3.9   | 2.96               | 18.6   | 39.7   | 1.90    | 3.40      | 56.18             | 134.06              |
| D1                        |            | 0.46    | 0.250  | 0.350        | 0        | 10.0  | 0.0                | 180     | 1.50        | 2.5   | 2.90               | 1.3    | 1.3    | 1.50    | 3.40      | 30.10             | 134.00              |
| OD1,D1                    | D1         | 99.03   | 0.300  | 0.400        |          |       | 0.0                | 100     | 1.50        | 2.0   | 2.31               | 1.5    | 41.0   | 1.90    | 3.40      | 56.45             | 134.68              |
| OD2                       |            | 6.26    | 0.300  | 0.400        | 1000     | 3.5   | 30.0               | 0       |             |       | -                  | 0.0    | 30.0   | 2.35    | 4.10      | 4.41              | 10.27               |
| DIC                       |            | 3.23    | 0.366  | 0.466        | 0        | 1 0.0 | 0.0                | 700     | 2.00        | 3.4   | 3.69               | 3.2    | 3.2    | 2.00    | 4.10      | 4.41              | 10.21               |
| OD2,D1C                   | DIC        | 9.49    | 0.322  | 0.422        |          |       | 0.0                |         | 2.00        | 0.4   | 0.00               | 0.2    | 33.2   | 2.20    | 3.85      | 6.72              | 15.42               |
| DIA                       |            | 3.00    | 0.317  | 0.417        | 0        | T     | 0.0                | 370     | 2.00        | 2.7   | 3.29               | 1.9    | 1.9    |         | 0.00      | 0.12              |                     |
| OD2,D1C,D1A               | DIA        | 12.49   | 0.321  | 0.421        |          |       |                    |         | 2.00        | 6./   | 0.20               | 1.0    | 35.0   | 2.10    | 3.75      | 8.42              | 19.72               |
| D1B                       | D1B        | 0.19    | 0.900  | 0.950        | 0        |       | 0.0                | 420     | 2.00        | 1.6   | 2.53               | 2.8    | 2.8    | 5.20    | 9.00      | 0.89              | 1.62                |
| OD1,D1,D1A,D1B            | DIA1       | 111.71  | 0.303  | 0.403        |          |       |                    |         | 2.00        | 1.0   | 2.00               |        | 41.0   | 1.90    | 3.40      | 64.31             | 153.07              |
| 04                        | D4         | 0.12    | 0.900  | 0.950        | 0        |       | 0.0                | 700     | 2.00        | 1.56  | 2.50               | 4.7    | 4.7    | 5.20    | 9.00      | 0.56              | 1.03                |
| OD1,D1,D1A,D1B,D4         | D4A        | 111.83  | 0.304  | 0.404        | 1        |       |                    | 1.00    |             | 1.00  | 1.00               | -      | 45.7   | 1.75    | 3.20      | 64.87             | 154.09              |
| DS                        | D5         | 0.11    | 0.900  | 0.950        | 0        | 1     | 0.0                | 250     | 2.00        | 3.27  | 3.62               | 1.2    | 1.2    | 5.20    | 9.00      | 0.51              | 0.94                |
| OD1, D1, D1A, D1B, D4, D5 | D5A        | 111.94  | 0.304  | 0.404        |          |       | 0.0                | 200     | 6.00        | 0.67  | 0.02               | 1.6    | 46.8   | 1.70    | 3.15      | 65.39             | 155.03              |
| D6                        | D6         | 0.32    | 0.900  | 0.950        | 0        | 1     | 0.0                | 480     | 2.00        | 4.44  | 4.21               | 1.9    | 1.9    | 5.20    | 9.00      | 1.49              | 2.72                |
| OD1.D1.D1A.D1B.D4-D6      | D6A1       | 112.26  | 0.306  | 0.406        |          |       |                    | 1       | 2.00        | 7.44  | 7.61               | 1.9    | 48.7   | 1.70    | 3.00      | 66.88             | 157.75              |
| 001,01,010,010,04-00      | Loon       | 112.20  | 0.000  | 0.400        |          | 1     |                    | 1       |             |       | 1                  |        | 40.7   | 1 1.70  | 0.00      | 0                 | 1.131.13            |

|                          |        |              |        | С            | OVERLAND |       |                             | CHANNEL | CONVEYANCE  |       | SCS <sup>(2)</sup> |                            | TOTAL                      | INTE            | NSITY (5)         | PEAK                       | LOW                          |
|--------------------------|--------|--------------|--------|--------------|----------|-------|-----------------------------|---------|-------------|-------|--------------------|----------------------------|----------------------------|-----------------|-------------------|----------------------------|------------------------------|
| BASIN                    | DESIGN | AREA<br>(AC) | 5-YEAR | 100-YEAR (7) | LENGTH   | SLOPE | Tco <sup>(1)</sup><br>(MIN) | LENGTH  | COEFFICIENT | SLOPE | VELOCITY<br>(FT/S) | Tt <sup>(3)</sup><br>(MIN) | Tc <sup>(4)</sup><br>(MIN) | 5-YR<br>(IN/HR) | 100-YR<br>(IN/HR) | Q5 <sup>(6)</sup><br>(CFS) | Q100 <sup>(6)</sup><br>(CFS) |
| OC1                      |        | 2.21         | 0.300  | 0.400        | 550      | 3.3   | 22.7                        |         |             |       |                    | 0.0                        | 22.7                       | 2.70            | 4.70              | 1.79                       | 4.15                         |
| D2                       |        | 3.60         | 0.500  | 0.600        | 0        |       | 0.0                         | 600     | 2.00        | 3.6   | 3.79               | 2.6                        | 2.6                        |                 |                   |                            |                              |
| OC1,D2                   | D2     | 5.81         | 0.424  | 0.524        |          |       |                             |         |             |       |                    |                            | 25.3                       | 2.60            | 4.50              | 6.40                       | 13.70                        |
| E2A                      | E2A    | 0.39         | 0.750  | 0.812        | 0        |       | 0.0                         | 300     | 1.50        | 4     | 3.00               | 1.7                        | 1.7                        | 5.20            | 9.00              | 1.52                       | 2.85                         |
| D3                       |        | 1.55         | 0.500  | 0.600        | 0        |       | 0.0                         | 580     | 2.00        | 4.3   | 4.15               | 2.3                        | 2.3                        | 5.20            | 9.00              | 4.03                       | 8.37                         |
| C                        |        | 4.75         | 0.900  | 0.900        | 0        |       | 0.0                         | 750     | 2.00        | 3.3   | 3.63               | 3.4                        | 3.4                        | 5.20            | 9.00              | 22.23                      | 38.48                        |
| D3.C                     | C      | 6.30         | 0.802  | 0.826        |          |       |                             |         |             |       |                    |                            | 5.8                        | 5.00            | 8.50              | 25.26                      | 44.23                        |
| OD1, OC1, E2A, C, D1-D6  | C1     | 124.76       | 0.338  | 0.434        |          |       |                             |         |             |       |                    | Colored by                 | 48.7                       | 1.70            | 3.00              | 71.69                      | 162.43                       |
| E2                       |        | 0.52         | 0.750  | 0.812        | 0        |       | 0.0                         | 300     | 1.50        | 4     | 3.00               | 1.7                        | 1.7                        | 5.20            | 9.00              | 2.03                       | 3.80                         |
| D6A                      | D6A    | 3.00         | 0.900  | 0.900        | 0        |       | 0.0                         | 470     | 2.00        | 3.4   | 3.69               | 2.1                        | 2.1                        | 5.20            | 9.00              | 14.04                      | 24.30                        |
| OD1,OC1,C,D1-D6A         | D6A2   | 128.28       | 0.350  | 0.443        |          |       |                             |         |             |       |                    |                            | 50.8                       | 1.60            | 2.90              | 71.84                      | 164.80                       |
| D7A                      | D7A    | 3.48         | 0.500  | 0.600        | 0        |       | 0.0                         | 950     | 2.00        | 1.68  | 2.59               | 6.1                        | 6.1                        | 5.00            | 8.50              | 8.70                       | 17.75                        |
| D7                       |        | 6.05         | 0.500  | 0.600        | 0        |       | 0.0                         | 1244    | 2.00        | 2.17  | 2.95               | 7.0                        | 7.0                        | 4.60            | 8.00              | 13.92                      | 29.04                        |
| D7A,D7                   | D7     | 9.53         | 0.500  | 0.600        |          |       |                             |         |             |       |                    |                            | 7.0                        | 4.60            | 8.00              | 21.92                      | 45.74                        |
| DB                       | D8     | 3.72         | 0.500  | 0.600        | 0        |       | 0.0                         | 225     | 2.00        | 3.4   | 3.69               | 1.0                        | 1.0                        | 5.20            | 9.00              | 9.67                       | 20.09                        |
| D7A-D8                   | D8A    | 13.25        | 0.500  | 0.600        |          |       |                             |         |             |       |                    |                            | 8.1                        | 4.40            | 7.50              | 29.15                      | 59.63                        |
| D9                       | D9     | 1.20         | 0.500  | 0.600        | 0        |       | 0.0                         | 210     | 2.00        | 3.4   | 3.69               | 0.9                        | 0.9                        | 5.20            | 9.00              | 3.12                       | 6.48                         |
| D7A-D9                   | D9A    | 14.45        | 0.500  | 0.600        |          |       |                             |         |             |       |                    |                            | 9.0                        | 4.20            | 7.20              | 30.35                      | 62.42                        |
| E3A                      | E3A    | 0.12         | 0.250  | 0.350        | 0        |       | 0.0                         | 220     | 1.50        | 4.3   | 3.11               | 1.2                        | 1.2                        | 5.20            | 9.00              | 0.16                       | 0.38                         |
| D10                      | D10    | 4.80         | 0.500  | 0.600        | 300      | 4.0   | 11.8                        | 1820    | 2.00        | 3     | 3.46               | 8.8                        | 20.5                       | 2.95            | 5.05              | 7.08                       | 14.54                        |
| D10A                     | D10A   | 0.23         | 0.500  | 0.600        | 0        |       | 0.0                         | 200     | 1.50        | 0.5   | 1.06               | 3.1                        | 3.1                        | 5.20            | 9.00              | 0.60                       | 1.24                         |
| D7A-D10,E3A              | D10B   | 19.37        | 0.498  | 0.598        |          |       |                             |         |             |       |                    |                            | 20.5                       | 2.95            | 5.05              | 28.46                      | 58.50                        |
| D9A                      |        | 3.18         | 0.900  | 0.900        | 0        |       | 0.0                         | 620     | 1.50        | 0.5   | 1.06               | 9.7                        | 9.7                        | 5.20            | 9.00              | 14.88                      | 25.76                        |
| D7A-D10,E3A              | D9B    | 22.55        | 0.555  | 0.641        |          |       |                             |         |             |       |                    |                            | 30.3                       | 2.30            | 4.05              | 28.79                      | 58.54                        |
| E3                       | E3     | 0.70         | 0.714  | 0.779        | 0        |       | 0.0                         | 620     | 1.50        | 0.8   | 1.34               | 7.7                        | 7.7                        | 4.40            | 7.50              | 2.20                       | 4.09                         |
| F                        |        | 4.02         | 0.250  | 0.350        | 0        |       | 0.0                         | 570     | 1.50        | 1.0   | 1.50               | 6.3                        | 6.3                        | 5.00            | 8.50              | 5.03                       | 11.96                        |
| OD1,OC1,C,D1-D10,E2-E3,F | 4      | 155.55       | 0.379  | 0.471        |          |       |                             |         |             |       |                    |                            | 50.8                       | 1.60            | 2.90              | 94.32                      | 212.46                       |
| OE1                      |        | 2.47         | 0.300  | 0.400        | 850      | 28    | 29.8                        |         |             | ~~~~  |                    | 0.0                        | 29.8                       | 2.35            | 4.10              | 1.74                       | 4.05                         |
| E1                       |        | 1.50         | 0.900  | 0.900        | 0        |       | 0.0                         | 700     | 2.00        | 2.3   | 3.03               | 3.8                        | 3.8                        | 5.20            | 9.00              | 7.02                       | 12.15                        |
| OE1.E1                   | 5      | 3.97         | 0.527  | 0.589        |          |       |                             |         |             |       |                    |                            | 33.6                       | 2.20            | 3.80              | 4.60                       | 8.89                         |

1) OVERLAND FLOW Tco = (1.87\*(1.1-RUNOFF COEFFICIENT)\*(OVERLAND FLOW LENGTH\*(0.5)/(SLOPE\*(0.333))

2) SCS VELOCITY = K \* ((SLOPE(%))^0.5)

K = 0.70 FOR MEADOW / FOREST

K = 1.0 FOR BARE SOIL

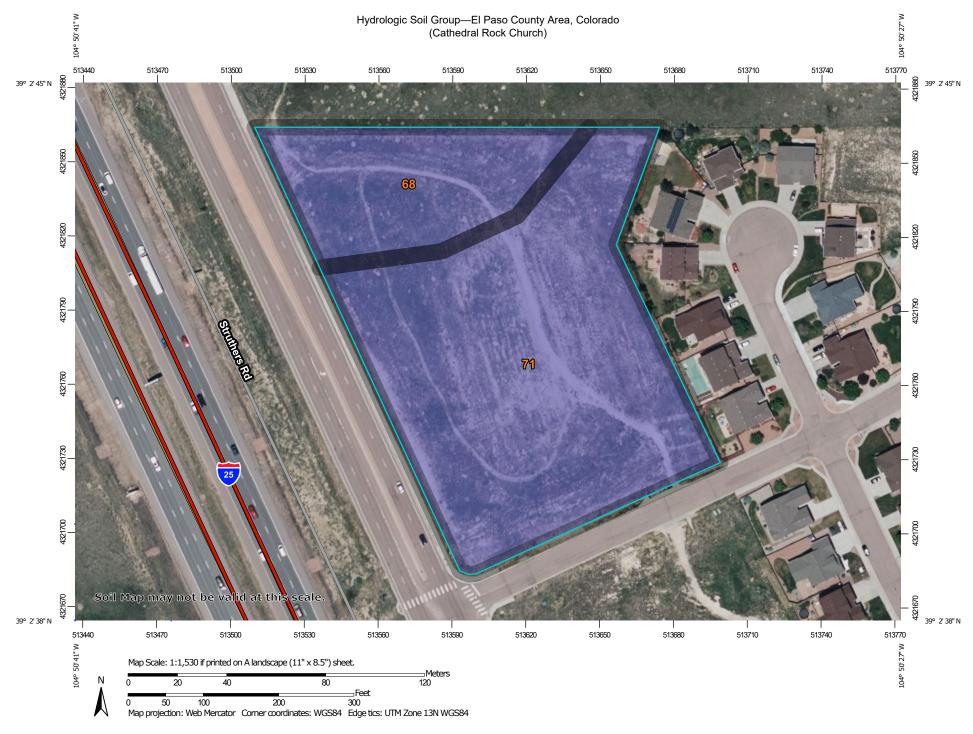
K = 1.5 FOR GRASS CHANNEL

K = 2.0 FOR PAVEMENT

3) GUTTER/SWALE FLOW, TRAVEL TIME, Tt = (CHANNEL LENGTH/ SCS VELOCITY) / 60 SEC

4) Tc = Tco + Tt

\*\*\* IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED


5) INTENSITY BASED ON I-D-F CURVE IN EL PASO COUNTY DRAINAGE CRITERIA MANUAL

6) Q = CiA


7) WEIGHTED AVERAGE C VALUES FOR COMBINED BASINS

### **APPENDIX B**

### HYDROLOGIC CALCULATIONS



USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey



## Hydrologic Soil Group

| Map unit symbol           | Map unit name                                        | Rating | Acres in AOI | Percent of AOI |
|---------------------------|------------------------------------------------------|--------|--------------|----------------|
| 68                        | Peyton-Pring complex, 3<br>to 8 percent slopes       | В      | 1.3          | 25.1%          |
| 71                        | Pring coarse sandy<br>loam, 3 to 8 percent<br>slopes | В      | 3.9          | 74.9%          |
| Totals for Area of Intere | est                                                  | 1      | 5.2          | 100.0%         |

### Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

## **Rating Options**

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher



| Land Use or Surface                                  | Percent    | Runoff Coefficients |         |         |         |         |         |         |         |         |         |         |         |  |
|------------------------------------------------------|------------|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|
| Characteristics                                      | Impervious | 2-year              |         | 5-y     | rear    | 10-1    | /ear    | ץ-25    | /ear    | 50-y    | year    | 100-    | year    |  |
|                                                      |            | HSG A&B             | HSG C&D | HSG A&B | HSG C&D | HSG A&B | HSG C&D | HSG A&B | HSG C&D | HSG A&B | HSG C&D | HSG A&B | HSG C&D |  |
| Business                                             |            |                     |         |         |         |         |         |         |         |         |         |         |         |  |
| Commercial Areas                                     | 95         | 0.79                | 0.80    | 0.81    | 0.82    | 0.83    | 0.84    | 0.85    | 0.87    | 0.87    | 0.88    | 0.88    | 0.89    |  |
| Neighborhood Areas                                   | 70         | 0.45                | 0.49    | 0.49    | 0.53    | 0.53    | 0.57    | 0.58    | 0.62    | 0.60    | 0.65    | 0.62    | 0.68    |  |
| Residential                                          |            |                     |         |         |         |         |         |         |         |         |         |         |         |  |
| 1/8 Acre or less                                     | 65         | 0.41                | 0.45    | 0.45    | 0.49    | 0.49    | 0.54    | 0.54    | 0.59    | 0.57    | 0.62    | 0.59    | 0.65    |  |
| 1/4 Acre                                             | 40         | 0.23                | 0.28    | 0.30    | 0.35    | 0.36    | 0.42    | 0.42    | 0.50    | 0.46    | 0.54    | 0.50    | 0.58    |  |
| 1/3 Acre                                             | 30         | 0.18                | 0.22    | 0.25    | 0.30    | 0.32    | 0.38    | 0.39    | 0.47    | 0.43    | 0.52    | 0.47    | 0.57    |  |
| 1/2 Acre                                             | 25         | 0.15                | 0.20    | 0.22    | 0.28    | 0.30    | 0.36    | 0.37    | 0.46    | 0.41    | 0.51    | 0.46    | 0.56    |  |
| 1 Acre                                               | 20         | 0.12                | 0.17    | 0.20    | 0.26    | 0.27    | 0.34    | 0.35    | 0.44    | 0.40    | 0.50    | 0.44    | 0.55    |  |
| Industrial                                           |            |                     |         |         |         |         |         |         |         |         |         |         |         |  |
| Light Areas                                          | 80         | 0.57                | 0.60    | 0.59    | 0.63    | 0.63    | 0.66    | 0.66    | 0.70    | 0.68    | 0.72    | 0.70    | 0.74    |  |
| Heavy Areas                                          | 90         | 0.71                | 0.73    | 0.73    | 0.75    | 0.75    | 0.77    | 0.78    | 0.80    | 0.80    | 0.82    | 0.81    | 0.83    |  |
| Parks and Cemeteries                                 | 7          | 0.05                | 0.09    | 0.12    | 0.19    | 0.20    | 0.29    | 0.30    | 0.40    | 0.34    | 0.46    | 0.39    | 0.52    |  |
| Playgrounds                                          | 13         | 0.05                | 0.03    | 0.12    | 0.13    | 0.20    | 0.25    | 0.30    | 0.40    | 0.34    | 0.48    | 0.35    | 0.52    |  |
| Railroad Yard Areas                                  | 40         | 0.23                | 0.28    | 0.30    | 0.35    | 0.36    | 0.42    | 0.42    | 0.50    | 0.46    | 0.54    | 0.50    | 0.58    |  |
| Linday allowed Average                               |            |                     |         |         |         |         |         |         |         |         |         |         |         |  |
| Undeveloped Areas                                    |            |                     |         |         |         |         |         |         |         |         |         |         |         |  |
| Historic Flow Analysis<br>Greenbelts, Agriculture    | 2          | 0.03                | 0.05    | 0.09    | 0.16    | 0.17    | 0.26    | 0.26    | 0.38    | 0.31    | 0.45    | 0.36    | 0.51    |  |
| Pasture/Meadow                                       | 0          | 0.02                | 0.04    | 0.08    | 0.15    | 0.15    | 0.25    | 0.25    | 0.37    | 0.30    | 0.44    | 0.35    | 0.50    |  |
| Forest                                               | 0          | 0.02                | 0.04    | 0.08    | 0.15    | 0.15    | 0.25    | 0.25    | 0.37    | 0.30    | 0.44    | 0.35    | 0.50    |  |
| Exposed Rock                                         | 100        | 0.89                | 0.89    | 0.90    | 0.90    | 0.92    | 0.92    | 0.94    | 0.94    | 0.95    | 0.95    | 0.96    | 0.96    |  |
| Offsite Flow Analysis (when<br>landuse is undefined) | 45         | 0.26                | 0.31    | 0.32    | 0.37    | 0.38    | 0.44    | 0.44    | 0.51    | 0.48    | 0.55    | 0.51    | 0.59    |  |
| Ctro etc.                                            |            |                     |         |         |         |         |         |         |         |         |         |         |         |  |
| Streets<br>Paved                                     | 100        | 0.89                | 0.89    | 0.90    | 0.00    | 0.92    | 0.92    | 0.94    | 0.04    | 0.05    | 0.05    | 0.96    | 0.06    |  |
| Gravel                                               | 80         | 0.89                | 0.89    | 0.90    | 0.90    | 0.92    | 0.92    | 0.94    | 0.94    | 0.95    | 0.95    | 0.96    | 0.96    |  |
| Ulavel                                               | 00         | 0.57                | 0.00    | 0.59    | 0.05    | 0.05    | 0.00    | 0.00    | 0.70    | 0.00    | 0.72    | 0.70    | 0.74    |  |
| Drive and Walks                                      | 100        | 0.89                | 0.89    | 0.90    | 0.90    | 0.92    | 0.92    | 0.94    | 0.94    | 0.95    | 0.95    | 0.96    | 0.96    |  |
| Roofs                                                | 90         | 0.71                | 0.73    | 0.73    | 0.75    | 0.75    | 0.77    | 0.78    | 0.80    | 0.80    | 0.82    | 0.81    | 0.83    |  |
| Lawns                                                | 0          | 0.02                | 0.04    | 0.08    | 0.15    | 0.15    | 0.25    | 0.25    | 0.37    | 0.30    | 0.44    | 0.35    | 0.50    |  |

# Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

### **3.2** Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration  $(t_c)$  consists of an initial time or overland flow time  $(t_i)$  plus the travel time  $(t_i)$  in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time  $(t_i)$  plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion  $(t_i)$  of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$t_c = t_i + t_t \tag{Eq. 6-7}$$

Where:

 $t_c$  = time of concentration (min)

 $t_i$  = overland (initial) flow time (min)

 $t_t$  = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

### 3.2.1 Overland (Initial) Flow Time

The overland flow time,  $t_i$ , may be calculated using Equation 6-8.

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 $t_i$  = overland (initial) flow time (min)

- $C_5$  = runoff coefficient for 5-year frequency (see Table 6-6)
- L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
- S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

### 3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time,  $t_t$ , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time,  $t_t$ , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_v S_w^{0.5}$$

Where:

V = velocity (ft/s)

 $C_v$  = conveyance coefficient (from Table 6-7)

 $S_w$  = watercourse slope (ft/ft)

(Eq. 6-9)

| Type of Land Surface                                  | $C_{v}$         |
|-------------------------------------------------------|-----------------|
| Heavy meadow                                          | 2.5             |
| Tillage/field                                         | 5               |
| Riprap (not buried) <sup>*</sup>                      | 6.5             |
| Short pasture and lawns                               | 7               |
| Nearly bare ground                                    | 10              |
| Grassed waterway                                      | 15              |
| Paved areas and shallow paved swales                  | 20              |
| * For buried ripran select C value based on type of y | agetative cover |

| <b>Table 6-7.</b> | Conveyance | Coefficient, $C_{\nu}$ |
|-------------------|------------|------------------------|
|-------------------|------------|------------------------|

For buried riprap, select  $C_v$  value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration  $(t_c)$  is then the sum of the overland flow time  $(t_i)$  and the travel time  $(t_i)$  per Equation 6-7.

### 3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 $t_c$  = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

### 3.2.4 Minimum Time of Concentration

If the calculations result in a  $t_c$  of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum  $t_c$  for urbanized areas is 5 minutes.

### 3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

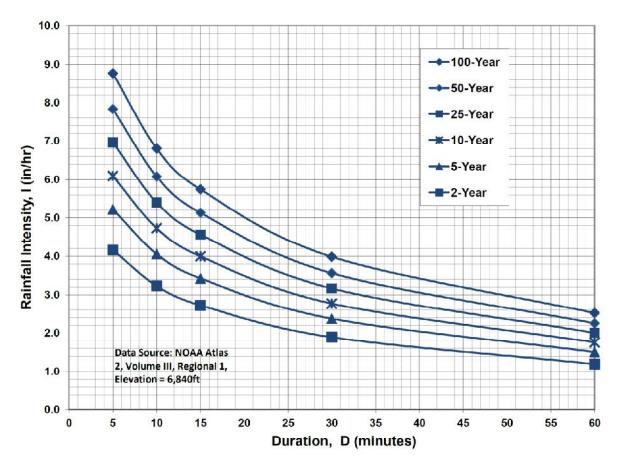



Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

| <b>IDF</b> Equations                                                                            |
|-------------------------------------------------------------------------------------------------|
| $I_{100} = -2.52 \ln(D) + 12.735$                                                               |
| $I_{50} = -2.25 \ln(D) + 11.375$                                                                |
| $I_{25} = -2.00 \ln(D) + 10.111$                                                                |
| $I_{10} = -1.75 \ln(D) + 8.847$                                                                 |
| $I_5 = -1.50 \ln(D) + 7.583$                                                                    |
| $I_2 = -1.19 \ln(D) + 6.035$                                                                    |
| Note: Values calculated by<br>equations may not precisely<br>duplicate values read from figure. |

|                                                                                                                                                                                              | DITIONS                                                                                                                     |                                                        |                                                                                                                                                             |                                           |                                      |                                     |                              |      |                                     |   |                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------|------------------------------|------|-------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------|
| 5-YEAR C VALUES                                                                                                                                                                              | 5                                                                                                                           |                                                        |                                                                                                                                                             |                                           |                                      |                                     |                              |      |                                     |   |                                                                                                                               |
| BASIN                                                                                                                                                                                        | TOTAL<br>AREA<br>(AC)                                                                                                       | (AC)                                                   | SUB-AREA 1<br>DEVELOPMENT/<br>COVER                                                                                                                         | С                                         | AREA<br>(AC)                         | SUB-AREA 2<br>DEVELOPMENT/<br>COVER | С                            | (AC) | SUB-AREA 3<br>DEVELOPMENT/<br>COVER | С | WEIGHTED<br>C VALUE                                                                                                           |
|                                                                                                                                                                                              |                                                                                                                             |                                                        |                                                                                                                                                             |                                           |                                      |                                     |                              |      |                                     |   |                                                                                                                               |
| OA1                                                                                                                                                                                          | 0.05                                                                                                                        | 0.00                                                   | SF RESIDENTIAL                                                                                                                                              | 0.3                                       |                                      |                                     |                              |      |                                     |   | 0.300                                                                                                                         |
| A1                                                                                                                                                                                           | 2.29                                                                                                                        | 1.632                                                  | PAVED/IMPERVIOUS                                                                                                                                            | 0.9                                       | 0.66                                 | LANDSCAPED                          | 0.08                         |      |                                     |   | 0.664                                                                                                                         |
| OA1,A1                                                                                                                                                                                       | 2.34                                                                                                                        |                                                        |                                                                                                                                                             |                                           |                                      |                                     |                              |      |                                     |   | 0.657                                                                                                                         |
| OA2                                                                                                                                                                                          | 0.40                                                                                                                        | 0.00                                                   | SF RESIDENTIAL                                                                                                                                              | 0.3                                       |                                      |                                     |                              |      |                                     |   | 0.300                                                                                                                         |
| A2                                                                                                                                                                                           | 0.86                                                                                                                        | 0.523                                                  | PAVED/IMPERVIOUS                                                                                                                                            | 0.9                                       | 0.34                                 | LANDSCAPED                          | 0.08                         |      |                                     |   | 0.579                                                                                                                         |
| OA2,A2                                                                                                                                                                                       | 1.26                                                                                                                        |                                                        |                                                                                                                                                             |                                           |                                      |                                     |                              |      |                                     |   | 0.490                                                                                                                         |
| OA1-OA2,A1-A2                                                                                                                                                                                | 3.60                                                                                                                        |                                                        |                                                                                                                                                             |                                           |                                      |                                     |                              |      |                                     |   | 0.598                                                                                                                         |
| A3                                                                                                                                                                                           | 0.96                                                                                                                        | 0.82                                                   | PAVED/IMPERVIOUS                                                                                                                                            | 0.9                                       | 0.14                                 | LANDSCAPED                          | 0.08                         |      |                                     |   | 0.777                                                                                                                         |
| A1-A3                                                                                                                                                                                        | 4.56                                                                                                                        |                                                        |                                                                                                                                                             |                                           |                                      |                                     |                              |      |                                     |   | 0.636                                                                                                                         |
| A4                                                                                                                                                                                           | 0.23                                                                                                                        | 0.00                                                   | PAVED/IMPERVIOUS                                                                                                                                            | 100                                       | 0.23                                 | LANDSCAPED                          | 0.08                         |      |                                     |   | 0.080                                                                                                                         |
| A1-A4                                                                                                                                                                                        | 4.79                                                                                                                        |                                                        |                                                                                                                                                             |                                           |                                      |                                     |                              |      |                                     |   | 0.609                                                                                                                         |
| OB1                                                                                                                                                                                          | 0.13                                                                                                                        | 0.00                                                   | SF RESIDENTIAL                                                                                                                                              | 0.3                                       |                                      |                                     |                              |      |                                     |   | 0.300                                                                                                                         |
|                                                                                                                                                                                              | 0.13                                                                                                                        | 0.00                                                   | PAVED/IMPERVIOUS                                                                                                                                            | 0.9                                       | 0.74                                 | LANDSCAPED                          | 0.08                         | -    |                                     |   | 0.080                                                                                                                         |
| D                                                                                                                                                                                            |                                                                                                                             | 0.00                                                   | PAVED/IIVIPERVIOUS                                                                                                                                          | 0.9                                       | 0.74                                 | LANDSCAPED                          | 0.06                         | -    |                                     |   | 0.080                                                                                                                         |
|                                                                                                                                                                                              |                                                                                                                             |                                                        |                                                                                                                                                             |                                           |                                      |                                     |                              |      |                                     |   |                                                                                                                               |
| OB1,B                                                                                                                                                                                        | 0.87                                                                                                                        |                                                        | <u> </u>                                                                                                                                                    |                                           |                                      |                                     |                              | _    |                                     |   | 0.113                                                                                                                         |
| OB1,B                                                                                                                                                                                        | 0.87                                                                                                                        |                                                        |                                                                                                                                                             |                                           |                                      |                                     |                              |      |                                     |   | 0.113                                                                                                                         |
| OB1,B                                                                                                                                                                                        |                                                                                                                             |                                                        |                                                                                                                                                             |                                           |                                      |                                     |                              |      |                                     |   | 0.113                                                                                                                         |
|                                                                                                                                                                                              | ES                                                                                                                          |                                                        | SUB-AREA 1                                                                                                                                                  |                                           |                                      | SUB-AREA 2                          |                              |      | SUB-AREA 3                          |   | 0.113                                                                                                                         |
|                                                                                                                                                                                              | ES<br>TOTAL                                                                                                                 |                                                        | SUB-AREA 1                                                                                                                                                  |                                           | ARFA                                 | SUB-AREA 2                          |                              |      | SUB-AREA 3                          |   |                                                                                                                               |
| 100-YEAR C VALU                                                                                                                                                                              | ES<br>TOTAL<br>AREA                                                                                                         | (AC)                                                   | DEVELOPMENT/                                                                                                                                                | C                                         | AREA<br>(AC)                         | DEVELOPMENT/                        | C                            | (AC) | DEVELOPMENT/                        | C | WEIGHTED                                                                                                                      |
|                                                                                                                                                                                              | ES<br>TOTAL                                                                                                                 | (AC)                                                   |                                                                                                                                                             | C                                         | AREA<br>(AC)                         |                                     | С                            | (AC) |                                     | С |                                                                                                                               |
| 100-YEAR C VALU<br>BASIN                                                                                                                                                                     | ES<br>TOTAL<br>AREA<br>(AC)                                                                                                 | × /                                                    | DEVELOPMENT/<br>COVER                                                                                                                                       |                                           |                                      | DEVELOPMENT/                        | С                            | (AC) | DEVELOPMENT/                        | С | WEIGHTED<br>C VALUE                                                                                                           |
| 100-YEAR C VALU<br>BASIN<br>OA1                                                                                                                                                              | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05                                                                                         | 0.00                                                   | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL                                                                                                                     | 0.5                                       | (AC)                                 | DEVELOPMENT/<br>COVER               |                              | (AC) | DEVELOPMENT/                        | С | WEIGHTED<br>C VALUE                                                                                                           |
| 100-YEAR C VALU<br>BASIN<br>OA1<br>A1                                                                                                                                                        | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29                                                                                 | × /                                                    | DEVELOPMENT/<br>COVER                                                                                                                                       |                                           |                                      | DEVELOPMENT/                        | C<br>0.35                    | (AC) | DEVELOPMENT/                        | С | WEIGHTED<br>C VALUE<br>0.500<br>0.785                                                                                         |
| 100-YEAR C VALU<br>BASIN<br>OA1<br>A1<br>OA1,A1                                                                                                                                              | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34                                                                         | 0.00                                                   | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS                                                                                                 | 0.5<br>0.96                               | (AC)                                 | DEVELOPMENT/<br>COVER               |                              | (AC) | DEVELOPMENT/                        | С | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779                                                                                |
| 100-YEAR C VALU<br>BASIN<br>OA1<br>A1<br>OA1,A1<br>OA2                                                                                                                                       | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34<br>0.40                                                                 | 0.00<br>1.632<br>0.00                                  | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>SF RESIDENTIAL                                                                               | 0.5<br>0.96<br>0.5                        | (AC)                                 | DEVELOPMENT/<br>COVER               | 0.35                         | (AC) | DEVELOPMENT/                        | С | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779<br>0.500                                                                       |
| 100-YEAR C VALU<br>BASIN<br>OA1<br>A1<br>OA1,A1<br>OA2<br>A2                                                                                                                                 | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34<br>0.40<br>0.86                                                         | 0.00                                                   | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS                                                                                                 | 0.5<br>0.96                               | (AC)                                 | DEVELOPMENT/<br>COVER               |                              | (AC) | DEVELOPMENT/                        | C | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779<br>0.500<br>0.721                                                              |
| 100-YEAR C VALU<br>BASIN<br>OA1<br>A1<br>OA1,A1<br>OA2<br>A2<br>OA2,A2                                                                                                                       | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34<br>0.40                                                                 | 0.00<br>1.632<br>0.00                                  | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>SF RESIDENTIAL                                                                               | 0.5<br>0.96<br>0.5                        | (AC)                                 | DEVELOPMENT/<br>COVER               | 0.35                         | (AC) | DEVELOPMENT/                        | С | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779<br>0.500<br>0.721<br>0.651                                                     |
| I00-YEAR C VALU           BASIN           OA1           A1           OA1,A1           OA2           A2           OA2,A2           OA1-OA2,A1-A2                                              | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34<br>0.40<br>0.86<br>1.26<br>3.60                                         | 0.00<br>1.632<br>0.00<br>0.523                         | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS                                                           | 0.5<br>0.96<br>0.5<br>0.96                | (AC)<br>0.66<br>0.34                 | DEVELOPMENT/<br>COVER               | 0.35                         | (AC) | DEVELOPMENT/                        | С | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779<br>0.500<br>0.721<br>0.651<br>0.734                                            |
| 100-YEAR C VALU<br>BASIN<br>OA1<br>A1<br>OA1,A1<br>OA2<br>A2<br>OA2,A2<br>OA2,A2<br>OA1-OA2,A1-A2<br>A3                                                                                      | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34<br>0.40<br>0.86<br>1.26<br>3.60<br>0.96                                 | 0.00<br>1.632<br>0.00                                  | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>SF RESIDENTIAL                                                                               | 0.5<br>0.96<br>0.5                        | (AC)                                 | DEVELOPMENT/<br>COVER               | 0.35                         | (AC) | DEVELOPMENT/                        | С | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779<br>0.500<br>0.721<br>0.651<br>0.734<br>0.869                                   |
| 100-YEAR C VALU<br>BASIN<br>OA1<br>A1<br>OA1,A1<br>OA2<br>A2<br>OA2,A2<br>OA2,A2<br>OA1-OA2,A1-A2<br>A3<br>A1-A3                                                                             | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34<br>0.40<br>0.86<br>1.26<br>3.60<br>0.96<br>4.56                         | 0.00<br>1.632<br>0.00<br>0.523<br>0.82                 | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>PAVED/IMPERVIOUS                                       | 0.5<br>0.96<br>0.5<br>0.96<br>0.96        | (AC)<br>0.66<br>0.34<br>0.14         | DEVELOPMENT/<br>COVER               | 0.35                         | (AC) | DEVELOPMENT/                        | С | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779<br>0.500<br>0.721<br>0.651<br>0.734<br>0.869<br>0.762                          |
| 100-YEAR C VALU<br>BASIN<br>OA1<br>A1<br>OA1,A1<br>OA2<br>A2<br>OA2,A2<br>OA1-OA2,A1-A2<br>A3<br>A1-A3<br>A4                                                                                 | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34<br>0.40<br>0.86<br>1.26<br>3.60<br>0.96<br>4.56<br>0.23                 | 0.00<br>1.632<br>0.00<br>0.523                         | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS                                                           | 0.5<br>0.96<br>0.5<br>0.96                | (AC)<br>0.66<br>0.34                 | DEVELOPMENT/<br>COVER               | 0.35                         | (AC) | DEVELOPMENT/                        | С | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779<br>0.500<br>0.721<br>0.651<br>0.734<br>0.869<br>0.762<br>0.350                 |
| 100-YEAR C VALU<br>BASIN<br>OA1<br>A1<br>OA1,A1<br>OA2<br>A2<br>OA2,A2<br>OA2,A2<br>OA1-OA2,A1-A2<br>A3<br>A1-A3                                                                             | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34<br>0.40<br>0.86<br>1.26<br>3.60<br>0.96<br>4.56                         | 0.00<br>1.632<br>0.00<br>0.523<br>0.82                 | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>PAVED/IMPERVIOUS                                       | 0.5<br>0.96<br>0.5<br>0.96<br>0.96        | (AC)<br>0.66<br>0.34<br>0.14         | DEVELOPMENT/<br>COVER               | 0.35                         | (AC) | DEVELOPMENT/                        | C | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779<br>0.500<br>0.721<br>0.651<br>0.734<br>0.869<br>0.762                          |
| 100-YEAR C VALU<br>BASIN<br>OA1<br>A1<br>OA1,A1<br>OA2<br>A2<br>OA2,A2<br>OA1-OA2,A1-A2<br>A3<br>A1-A3<br>A4<br>A1-A4<br>A1-A4                                                               | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34<br>0.40<br>0.86<br>1.26<br>3.60<br>0.96<br>4.56<br>0.23<br>4.79<br>4.79 | 0.00<br>1.632<br>0.00<br>0.523<br>0.82<br>0.00         | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>PAVED/IMPERVIOUS<br>PAVED/IMPERVIOUS                   | 0.5<br>0.96<br>0.5<br>0.96<br>0.96<br>100 | (AC)<br>0.66<br>0.34<br>0.14         | DEVELOPMENT/<br>COVER               | 0.35                         | (AC) | DEVELOPMENT/                        | C | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779<br>0.500<br>0.721<br>0.651<br>0.734<br>0.869<br>0.762<br>0.350<br><b>0.742</b> |
| 100-YEAR C VALU<br>BASIN<br>OA1<br>A1<br>OA1,A1<br>OA2<br>A2<br>OA2,A2<br>OA1-OA2,A1-A2<br>A3<br>A1-A3<br>A4                                                                                 | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34<br>0.40<br>0.86<br>1.26<br>3.60<br>0.96<br>4.56<br>0.23<br>4.79<br>0.13 | 0.00<br>1.632<br>0.00<br>0.523<br>0.82<br>0.00<br>0.00 | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>PAVED/IMPERVIOUS<br>PAVED/IMPERVIOUS<br>SF RESIDENTIAL | 0.5<br>0.96<br>0.5<br>0.96<br>0.96<br>100 | (AC)<br>0.66<br>0.34<br>0.14<br>0.23 | DEVELOPMENT/<br>COVER               | 0.35<br>0.35<br>0.35<br>0.35 | (AC) | DEVELOPMENT/                        | C | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779<br>0.500<br>0.721<br>0.651<br>0.734<br>0.869<br>0.762<br>0.350<br>0.742        |
| 100-YEAR C VALU           BASIN           OA1           A1           OA1,A1           OA2,A2           OA1-OA2,A1-A2           A3           A1-A3           A4           A1-A4           OB1 | ES<br>TOTAL<br>AREA<br>(AC)<br>0.05<br>2.29<br>2.34<br>0.40<br>0.86<br>1.26<br>3.60<br>0.96<br>4.56<br>0.23<br>4.79<br>4.79 | 0.00<br>1.632<br>0.00<br>0.523<br>0.82<br>0.00         | DEVELOPMENT/<br>COVER<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>SF RESIDENTIAL<br>PAVED/IMPERVIOUS<br>PAVED/IMPERVIOUS<br>PAVED/IMPERVIOUS                   | 0.5<br>0.96<br>0.5<br>0.96<br>0.96<br>100 | (AC)<br>0.66<br>0.34<br>0.14         | DEVELOPMENT/<br>COVER               | 0.35                         | (AC) | DEVELOPMENT/                        | C | WEIGHTED<br>C VALUE<br>0.500<br>0.785<br>0.779<br>0.500<br>0.721<br>0.651<br>0.734<br>0.869<br>0.762<br>0.350<br><b>0.742</b> |

#### CATHEDRAL ROCK CHURCH RATIONAL METHOD

#### EXISTING CONDITIONS

|               |                 |              |        |          | 0              | verland Flo      | w                           |                | Cha              | nnel flow        |                    |                            | ]                          |                            |                 |                     |                            |                              |
|---------------|-----------------|--------------|--------|----------|----------------|------------------|-----------------------------|----------------|------------------|------------------|--------------------|----------------------------|----------------------------|----------------------------|-----------------|---------------------|----------------------------|------------------------------|
|               |                 |              |        | С        |                |                  |                             | CHANNEL        | CONVEYANCE       |                  | SCS <sup>(2)</sup> |                            | TOTAL                      | TOTAL                      | INTEN           | SITY <sup>(5)</sup> | PEAK F                     | LOW                          |
| BASIN         | DESIGN<br>POINT | AREA<br>(AC) | 5-YEAR | 100-YEAR | LENGTH<br>(FT) | SLOPE<br>(FT/FT) | Tco <sup>(1)</sup><br>(MIN) | LENGTH<br>(FT) | COEFFICIENT<br>C | SLOPE<br>(FT/FT) | VELOCITY<br>(FT/S) | Tt <sup>(3)</sup><br>(MIN) | Tc <sup>(4)</sup><br>(MIN) | Tc <sup>(4)</sup><br>(MIN) | 5-YR<br>(IN/HR) | 100-YR<br>(IN/HR)   | Q5 <sup>(6)</sup><br>(CFS) | Q100 <sup>(6)</sup><br>(CFS) |
|               |                 |              |        |          |                |                  |                             |                |                  |                  |                    |                            |                            |                            |                 |                     |                            |                              |
| OA1           |                 | 0.40         | 0.300  | 0.500    | 100            | 0.020            | 11.6                        |                |                  |                  |                    | 0.0                        | 11.6                       | 11.6                       | 3.90            | 6.55                | 0.47                       | 1.31                         |
| Tt OA1 to DP1 |                 |              |        |          |                |                  |                             | 430            | 15               | 0.056            | 3.55               | 2.0                        |                            |                            |                 |                     |                            |                              |
| A             |                 | 3.36         | 0.080  | 0.350    | 100            | 0.070            | 9.8                         | 430            | 15               | 0.047            | 3.25               | 2.2                        | 12.0                       | 12.0                       | 3.86            | 6.48                | 1.04                       | 7.62                         |
| OA1,A         | 1               | 3.76         | 0.103  | 0.366    |                |                  |                             |                |                  |                  |                    |                            | 13.6                       | 13.6                       | 3.66            | 6.15                | 1.42                       | 8.46                         |
| OB1           |                 | 0.18         | 0.300  | 0.500    | 100            | 0.020            | 11.6                        | 30             | 15               | 0.02             | 2.12               | 0.2                        | 11.9                       | 11.9                       | 3.87            | 6.50                | 0.21                       | 0.59                         |
| B             |                 | 1.72         | 0.080  | 0.350    |                |                  | 0.0                         | 535            | 15               | 0.034            | 2.77               | 3.2                        | 3.2                        | 5.0                        | 5.17            | 8.68                | 0.71                       | 5.22                         |
| OB1,B         | 2               | 1.90         | 0.101  | 0.364    |                |                  |                             |                |                  |                  |                    |                            | 15.1                       | 15.1                       | 3.51            | 5.90                | 0.67                       | 4.08                         |
|               |                 |              |        |          |                |                  |                             |                |                  |                  |                    |                            |                            |                            |                 |                     |                            | L                            |

#### DEVELOPED CONDITIONS

|                  |                 |              |        |          | 0              | verland Flo      | w                           |                | Cha              | nnel flow        |                    |                            |                            |                            |                 |                     |                            |                              |
|------------------|-----------------|--------------|--------|----------|----------------|------------------|-----------------------------|----------------|------------------|------------------|--------------------|----------------------------|----------------------------|----------------------------|-----------------|---------------------|----------------------------|------------------------------|
|                  |                 |              |        | с        |                |                  |                             | CHANNEL        | CONVEYANCE       |                  | SCS <sup>(2)</sup> |                            | TOTAL                      | TOTAL                      | INTEN           | SITY <sup>(5)</sup> | PEAK F                     | LOW                          |
| BASIN            | DESIGN<br>POINT | AREA<br>(AC) | 5-YEAR | 100-YEAR | LENGTH<br>(FT) | SLOPE<br>(FT/FT) | Tco <sup>(1)</sup><br>(MIN) | LENGTH<br>(FT) | COEFFICIENT<br>C | SLOPE<br>(FT/FT) | VELOCITY<br>(FT/S) | Tt <sup>(3)</sup><br>(MIN) | Тс <sup>(4)</sup><br>(MIN) | Тс <sup>(4)</sup><br>(MIN) | 5-YR<br>(IN/HR) | 100-YR<br>(IN/HR)   | Q5 <sup>(6)</sup><br>(CFS) | Q100 <sup>(6)</sup><br>(CFS) |
|                  |                 |              |        |          |                |                  |                             |                |                  |                  |                    |                            |                            |                            |                 |                     |                            | L                            |
| OA1              |                 | 0.05         | 0.300  | 0.500    | 60             | 0.020            | 9.0                         |                |                  |                  |                    | 0.0                        | 9.0                        | 9.0                        | 4.29            | 7.20                | 0.06                       | 0.18                         |
| A1               |                 | 2.29         | 0.664  | 0.785    | 40             | 0.050            | 3.0                         | 400            | 20               | 0.032            | 3.58               | 1.9                        | 4.8                        | 5.0                        | 5.17            | 8.68                | 7.86                       | 15.60                        |
| Tt DP-A1 to A2.2 |                 |              |        |          |                |                  |                             | 250            | 20               | 0.041            | 4.05               | 1.0                        |                            |                            |                 |                     |                            |                              |
| OA1,A1           | A1.1            | 2.34         | 0.657  | 0.779    |                |                  |                             |                |                  |                  |                    |                            | 13.8                       | 13.8                       | 3.64            | 6.12                | 5.60                       | 11.15                        |
| OA2              |                 | 0.40         | 0.300  | 0.500    | 100            | 0.020            | 11.6                        |                |                  |                  |                    | 0.0                        | 11.6                       | 11.6                       | 3.90            | 6.55                | 0.47                       | 1.31                         |
| Tt OA2 to A2.1   |                 |              |        |          |                |                  |                             | 340            | 20               | 0.065            | 5.10               | 1.1                        |                            |                            |                 |                     |                            |                              |
| A2               |                 | 0.86         | 0.579  | 0.721    | 90             | 0.100            | 4.2                         | 255            | 20               | 0.051            | 4.52               | 0.9                        | 5.1                        | 5.1                        | 5.13            | 8.61                | 2.55                       | 5.34                         |
| OA2,A2           | A2.1            | 1.26         | 0.490  | 0.651    |                |                  |                             |                |                  |                  |                    |                            | 12.7                       | 12.7                       | 3.77            | 6.32                | 2.33                       | 5.19                         |
| OA1-OA2,A1-A2    | A2.2            | 3.60         | 0.598  | 0.734    |                |                  |                             |                |                  |                  |                    |                            | 12.7                       | 12.7                       | 3.77            | 6.32                | 8.11                       | 16.71                        |
| A3               |                 | 0.96         | 0.777  | 0.869    | 100            | 0.010            | 5.9                         | 160            | 20               | 0.069            | 5.25               | 0.5                        | 6.4                        | 6.4                        | 4.79            | 8.05                | 3.58                       | 6.71                         |
| OA1-OA2,A1-A3    | A3.1            | 4.56         | 0.636  | 0.762    |                |                  |                             |                |                  |                  |                    |                            | 6.4                        | 6.4                        | 4.79            | 8.05                | 13.90                      | 27.97                        |
| A4               |                 | 0.23         | 0.080  | 0.350    |                |                  | 0.0                         | 185            | 20               | 0.022            | 2.97               | 1.0                        | 1.0                        | 5.0                        | 5.17            | 8.68                | 0.10                       | 0.70                         |
| OA1-OA2,A1-A4    | 1               | 4.79         | 0.609  | 0.742    |                |                  |                             |                |                  |                  |                    |                            | 13.8                       | 13.8                       | 3.65            | 6.13                | 10.64                      | 21.77                        |
|                  |                 |              |        |          |                |                  |                             |                |                  |                  |                    |                            |                            |                            |                 |                     |                            |                              |
| OB1              |                 | 0.13         | 0.300  | 0.500    | 100            | 0.020            | 11.6                        | 30             | 15               | 0.02             | 2.12               | 0.2                        | 11.9                       | 11.9                       | 3.87            | 6.50                | 0.15                       | 0.42                         |
| В                |                 | 0.74         | 0.080  | 0.350    |                |                  | 0.0                         | 535            | 15               | 0.034            | 2.77               | 3.2                        | 3.2                        | 5.0                        | 5.17            | 8.68                | 0.31                       | 2.25                         |
| OB1,B            | 2               | 0.87         | 0.113  | 0.372    |                |                  |                             |                |                  |                  |                    |                            | 15.1                       | 15.1                       | 3.51            | 5.90                | 0.35                       | 1.91                         |
|                  |                 |              |        |          |                |                  |                             |                |                  |                  |                    |                            |                            |                            |                 |                     |                            |                              |

1) OVERLAND FLOW Tco = (0.395\*(1.1-RUNOFF COEFFICIENT)\*(OVERLAND FLOW LENGTH^(0.5)/(SLOPE^(0.333))) 2) SCS VELOCITY = C \* ((SLOPE(FT/FT)^0.5)

C = 2.5 FOR HEAVY MEADOW

C = 5 FOR TILLAGE/FIELD

C = 7 FOR SHORT PASTURE AND LAWNS C = 10 FOR NEARLY BARE GROUND

C = 15 FOR GRASSED WATERWAY

C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES

3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN) 4) Tc = Tco + Tt \*\*\* IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED

5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL

I<sub>5</sub> = -1.5 \* In(Tc) + 7.583

 $I_{100} = -2.52 * \ln(Tc) + 12.735$ 

6) Q = CiA

### **APPENDIX C**

## HYDRAULIC CALCULATIONS

### CATHEDRAL ROCK CHURCH STORM INLET SIZING SUMMARY

|           | BASIN F | LOW                 |                       | INLET FLO                   | W                   |                       |                              |                    |                            |
|-----------|---------|---------------------|-----------------------|-----------------------------|---------------------|-----------------------|------------------------------|--------------------|----------------------------|
| INLET     | DP      | Q5<br>FLOW<br>(CFS) | Q100<br>FLOW<br>(CFS) | INLET<br>FLOW %<br>OF BASIN | Q5<br>FLOW<br>(CFS) | Q100<br>FLOW<br>(CFS) | INLET<br>CONDITION /<br>TYPE | INLET<br>SIZE (FT) | INLET<br>CAPACITY<br>(CFS) |
| A1.0 (RD) | A1      | 7.9                 | 15.6                  | 15                          | 1.2                 | 2.3                   | ROOF DRAINS                  |                    |                            |
| A1.1      | A1      | 7.9                 | 15.6                  | 25                          | 2.0                 | 3.9                   | <br>SUMP TYPE R              | 5'                 | 10.1                       |
| A1.2      | A1      | 7.9                 | 15.6                  | 60                          | 4.7                 | 9.4                   | <br>SUMP TYPE R              | 5'                 | 11.0                       |
| A2        | A2      | 2.6                 | 5.3                   | 100                         | 2.6                 | 5.3                   | SUMP TYPE R                  | 5'                 | 11.7                       |
|           |         |                     |                       |                             |                     |                       |                              |                    |                            |

# **Hydraulic Analysis Report**

### **Project Data**

Project Title: Project - Cathedral Rock Church - Drainage Chases
Designer: JPS
Project Date: Thursday, October 31, 2024
Project Units: U.S. Customary Units
Notes:

#### Channel Analysis: Channel Analysis - Curb Chase A1.2A-A1.2C

Notes:

#### **Input Parameters**

Channel Type: Rectangular Channel Width: 2.0000 ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0130 Flow: 9.4000 cfs

### **Result Parameters**

Depth: 0.7305 ft Area of Flow: 1.4609 ft<sup>2</sup> Wetted Perimeter: 3.4609 ft Hydraulic Radius: 0.4221 ft Average Velocity: 6.4344 ft/s Top Width: 2.0000 ft Froude Number: 1.3267 Critical Depth: 0.8820 ft Critical Velocity: 5.3291 ft/s Critical Slope: 0.0060 ft/ft Critical Top Width: 2.00 ft Calculated Max Shear Stress: 0.4558 lb/ft<sup>2</sup> Calculated Avg Shear Stress: 0.2634 lb/ft<sup>2</sup>

#### MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

Worksheet Protected

| INLET NAME                         | Inlet A1.1               | Inlet A1.2               | Inlet A2                 |
|------------------------------------|--------------------------|--------------------------|--------------------------|
| Site Type (Urban or Rural)         | URBAN                    | URBAN                    | URBAN                    |
| Inlet Application (Street or Area) | STREET                   | STREET                   | STREET                   |
| Hydraulic Condition                | In Sump                  | In Sump                  | In Sump                  |
| Inlet Type                         | CDOT Type R Curb Opening | CDOT Type R Curb Opening | CDOT Type R Curb Opening |

#### **USER-DEFINED INPUT**

| User-Defined Design Flows      |     |     |     |
|--------------------------------|-----|-----|-----|
| Minor Q <sub>Known</sub> (cfs) | 2.0 | 4.7 | 2.6 |
| Major Q <sub>Known</sub> (cfs) | 3.9 | 9.4 | 5.3 |

#### Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked.

| Receive Bypass Flow from:                        | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
|--------------------------------------------------|-------------------------|-------------------------|-------------------------|
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs) | 0.0                     | 0.0                     | 0.0                     |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs) | 0.0                     | 0.0                     | 0.0                     |

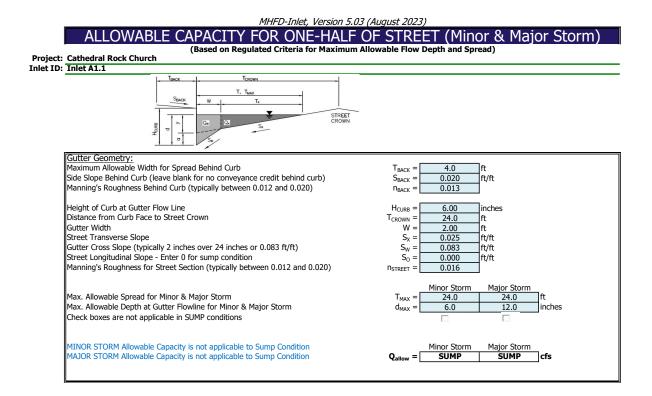
#### Watershed Characteristics

| Subcatchment Area (acres) |  |  |
|---------------------------|--|--|
| Percent Impervious        |  |  |
| NRCS Soil Type            |  |  |

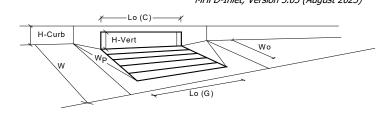
#### Watershed Profile

| Overland Slope (ft/ft) |  |  |
|------------------------|--|--|
| Overland Length (ft)   |  |  |
| Channel Slope (ft/ft)  |  |  |
| Channel Length (ft)    |  |  |

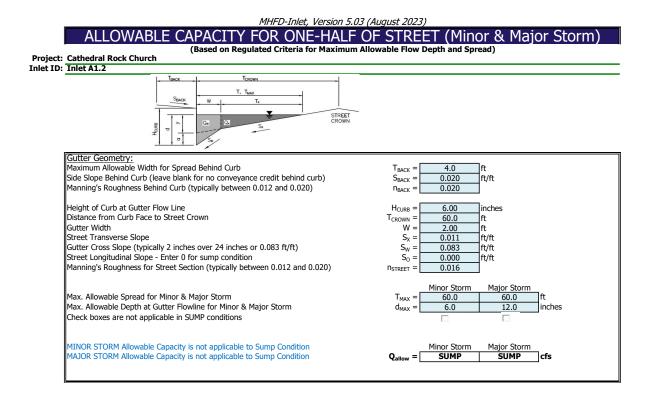
#### **Minor Storm Rainfall Input**


| Design Storm Return Period, T <sub>r</sub> (years) |  |  |
|----------------------------------------------------|--|--|
| One-Hour Precipitation, $P_1$ (inches)             |  |  |

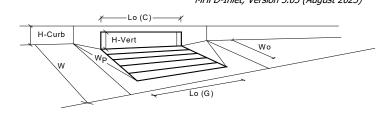
#### Major Storm Rainfall Input


| Design Storm Return Period, T <sub>r</sub> (years) |  |   |
|----------------------------------------------------|--|---|
| One-Hour Precipitation, $P_1$ (inches)             |  |   |
|                                                    |  | - |

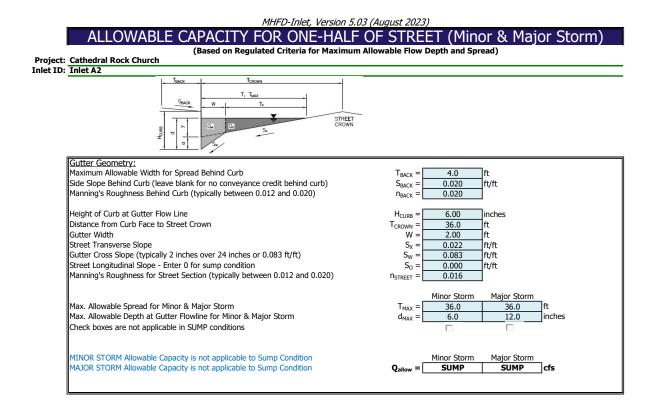
#### CALCULATED OUTPUT


| Minor Total Design Peak Flow, Q (cfs)                | 2.0 | 4.7 | 2.6 |
|------------------------------------------------------|-----|-----|-----|
| Major Total Design Peak Flow, Q (cfs)                | 3.9 | 9.4 | 5.3 |
| Minor Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | N/A | N/A | N/A |
| Major Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | N/A | N/A | N/A |

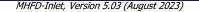


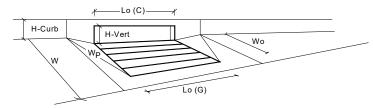

#### INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)




| Design Information (Input)                                                   |                             | MINOR | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      |       | Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00  | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1     | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 6.0   | 8.6          | inches          |
| Grate Information                                                            | 5                           | MINOR | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | $L_{0}(G) =$                | N/A   | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A   | N/A          | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | A <sub>ratio</sub> =        | N/A   | N/A          | 1               |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_f(G) =$                  | N/A   | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A   | N/A          | 1               |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_{o}(G) =$                | N/A   | N/A          |                 |
| Curb Opening Information                                                     |                             | MINOR | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | $L_{o}(C) =$                | 5.00  | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00  | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00  | 6.00         | inches          |
| Angle of Throat                                                              | Theta =                     | 63.40 | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00  | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10  | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                  | 3.60  | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_{o}(C) =$                | 0.67  | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A   | N/A          | lft             |
| Depth for Curb Opening Weir Equation                                         | d <sub>Grate</sub> =        | 0.33  | 0.55         | - ft            |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A   | N/A          | -1''            |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 1.00  | 1.00         | -               |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | N/A   | N/A          | -               |
| combination and renormalice nearestorn actor for Long micto                  | Combination -               |       |              | -1              |
|                                                                              |                             | MINOR | MAJOR        |                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 5.4   | 10.1         | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | $Q_{PEAK REQUIRED} =$       | 2.0   | 3.9          | cfs             |




#### INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)




| Design Information (Input)                                                   |                             | MINOR | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      |       | Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00  | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1     | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 6.0   | 9.6          | inches          |
| Grate Information                                                            |                             | MINOR | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | $L_{0}(G) =$                | N/A   | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>0</sub> =            | N/A   | N/A          | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | A <sub>ratio</sub> =        | N/A   | N/A          | 1               |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_f(G) =$                  | N/A   | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A   | N/A          | 1               |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_{0}(G) =$                | N/A   | N/A          |                 |
| Curb Opening Information                                                     | •                           | MINOR | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | $L_{0}(C) = [$              | 5.00  | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00  | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00  | 6.00         | inches          |
| Angle of Throat                                                              | Theta =                     | 63.40 | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00  | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10  | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_{w}(C) =$                | 3.60  | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_{o}(C) =$                | 0.67  | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A   | N/A          | Tft             |
| Depth for Curb Opening Weir Equation                                         | d <sub>Grate</sub> –        | 0.33  | 0.64         | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A   | N/A          |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 1.00  | 1.00         | -               |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | N/A   | N/A          | -               |
| Combination Inice renormance reduction ractor for Long Inices                | Combination -               | N/A   | I IV/A       |                 |
|                                                                              |                             | MINOR | MAJOR        |                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 5.4   | 11.0         | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | Q PEAK REQUIRED =           | 4.7   | 9.4          | cfs             |



# INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)





| Design Information (Innut)                                                   |                              | MINOR | MAJOR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------|------------------------------|-------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design Information (Input) CDOT Type R Curb Opening                          | Type =                       |       | Curb Opening | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Local Depression (additional to continuous gutter depression 'a' from above) | ·· -                         | 3.00  | 3.00         | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                              | a <sub>local</sub> =<br>No = | 1     | 3.00         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of Unit Inlets (Grate or Curb Opening)                                |                              |       | 11.0         | la alta a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =              | 6.0   | 11.0         | inches<br>Override Depths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Grate Information                                                            |                              | MINOR | MAJOR        | Provide State Sta |
| Length of a Unit Grate<br>Width of a Unit Grate                              | $L_{o}(G) =$                 | N/A   | N/A          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                              | W <sub>o</sub> =             | N/A   | N/A          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | A <sub>ratio</sub> =         | N/A   | N/A          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_{f}(G) =$                 | N/A   | N/A          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | $C_w$ (G) =                  | N/A   | N/A          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_{o}(G) = [$               | N/A   | N/A          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Curb Opening Information                                                     | . (n) F                      | MINOR | MAJOR        | 74 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Length of a Unit Curb Opening                                                | $L_{o}(C) =$                 | 5.00  | 5.00         | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =          | 6.00  | 6.00         | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =        | 6.00  | 6.00         | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Angle of Throat                                                              | Theta =                      | 63.40 | 63.40        | degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =             | 2.00  | 2.00         | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                 | 0.10  | 0.10         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                   | 3.60  | 3.60         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_{o}(C) =$                 | 0.67  | 0.67         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Low Head Performance Reduction (Calculated)                                  |                              | MINOR | MAJOR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =         | N/A   | N/A          | Πft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =          | 0.33  | 0.75         | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =        | N/A   | N/A          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =         | 1.00  | 1.00         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> =  | N/A   | N/A          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                              |                              | ,.    |              | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                              | _                            | MINOR | MAJOR        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Total Inlet Interception Capacity (assumes clogged condition)                | Q <sub>a</sub> =             | 5.4   | 11.7         | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | Q PEAK REQUIRED =            | 2.6   | 5.3          | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# CATHEDRAL ROCK CHURCH STORM SEWER SIZING SUMMARY

|      | PIPE FLOW       |                     |                       | PIPE CAPAC   | CITY                  |                           |
|------|-----------------|---------------------|-----------------------|--------------|-----------------------|---------------------------|
| PIPE | DESIGN<br>POINT | Q5<br>FLOW<br>(CFS) | Q100<br>FLOW<br>(CFS) | PIPE<br>SIZE | MIN.<br>PIPE<br>SLOPE | PIPE<br>CAPACITY<br>(CFS) |
| A1.0 | A1.0            | 1.2                 | 2.3                   | 12           | 1.0%                  | 3.6                       |
| A1.1 | A1.0-A1.1       | 3.2                 | 6.2                   | 12           | 3.0%                  | 6.2                       |
| A1.2 | A1.0-A1.2       | 7.9                 | 15.6                  | 18           | 2.3%                  | 15.9                      |
| A2   | A1.0-A2         | 10.5                | 20.9                  | 18           | 4.0%                  | 21.0                      |
|      |                 |                     |                       |              |                       |                           |

# ASSUMPTIONS:

1. STORM DRAIN PIPE ASSUMED TO BE RCP OR HDPE

# **Hydraulic Analysis Report**

#### **Project Data**

Project Title:Project - Cathedral Rock ChurchDesigner:JPSProject Date:Monday, September 16, 2024Project Units:U.S. Customary UnitsNotes:

### **Channel Analysis: SD-A1.0**

Notes:

#### **Input Parameters**

Channel Type: Circular Pipe Diameter: 1.0000 ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0130 Depth: 1.0000 ft

### **Result Parameters**

Flow: 3.5628 cfs Area of Flow: 0.7854 ft<sup>2</sup> Wetted Perimeter: 3.1416 ft Hydraulic Radius: 0.2500 ft Average Velocity: 4.5363 ft/s Top Width: 0.0000 ft Froude Number: 0.0000 Critical Depth: 0.8057 ft Critical Velocity: 5.2542 ft/s Critical Slope: 0.0103 ft/ft Critical Top Width: 0.79 ft Calculated Max Shear Stress: 0.6240 lb/ft<sup>2</sup> Calculated Avg Shear Stress: 0.1560 lb/ft<sup>2</sup>

#### **Channel Analysis: SD-A1.1**

Notes:

#### **Input Parameters**

Channel Type: Circular Pipe Diameter: 1.0000 ft Longitudinal Slope: 0.0300 ft/ft Manning's n: 0.0130 Depth: 1.0000 ft

#### **Result Parameters**

Flow: 6.1710 cfs Area of Flow: 0.7854 ft^2 Wetted Perimeter: 3.1416 ft Hydraulic Radius: 0.2500 ft Average Velocity: 7.8571 ft/s Top Width: 0.0000 ft Froude Number: 0.0000 Critical Depth: 0.9597 ft Critical Velocity: 7.9651 ft/s Critical Slope: 0.0261 ft/ft Critical Top Width: 0.39 ft Calculated Max Shear Stress: 1.8720 lb/ft^2 Calculated Avg Shear Stress: 0.4680 lb/ft^2

#### Channel Analysis: SD-A1.2

Notes:

#### **Input Parameters**

Channel Type: Circular Pipe Diameter: 1.5000 ft Longitudinal Slope: 0.0230 ft/ft Manning's n: 0.0130 Depth: 1.5000 ft

## **Result Parameters**

Flow: 15.9306 cfs Area of Flow: 1.7671 ft<sup>2</sup> Wetted Perimeter: 4.7124 ft Hydraulic Radius: 0.3750 ft Average Velocity: 9.0149 ft/s Top Width: 0.0000 ft Froude Number: 0.0000 Critical Depth: 1.4235 ft Critical Velocity: 9.1920 ft/s Critical Slope: 0.0199 ft/ft Critical Top Width: 0.66 ft Calculated Max Shear Stress: 2.1528 lb/ft<sup>2</sup> Calculated Avg Shear Stress: 0.5382 lb/ft<sup>2</sup>

#### **Channel Analysis: SD-A2**

Notes:

#### **Input Parameters**

Channel Type: Circular Pipe Diameter: 1.5000 ft Longitudinal Slope: 0.0400 ft/ft Manning's n: 0.0130 Depth: 1.5000 ft

#### **Result Parameters**

Flow: 21.0087 cfs Area of Flow: 1.7671 ft<sup>2</sup> Wetted Perimeter: 4.7124 ft Hydraulic Radius: 0.3750 ft Average Velocity: 11.8885 ft/s Top Width: 0.0000 ft Froude Number: 0.0000 Critical Depth: 1.4731 ft Critical Velocity: 11.9369 ft/s Critical Slope: 0.0360 ft/ft Critical Slope: 0.0360 ft/ft Critical Top Width: 0.40 ft Calculated Max Shear Stress: 3.7440 lb/ft<sup>2</sup>

# **APPENDIX D**

# **RAIN GARDEN CALCULATIONS**

#### CATHEDRAL ROCK CHURCH COMPOSITE IMPERVIOUS AREAS

#### IMPERVIOUS AREAS

| IMPERVIOUS ARE | :A5           |       |                            |            |      |                            |            |      |                            |            |          |
|----------------|---------------|-------|----------------------------|------------|------|----------------------------|------------|------|----------------------------|------------|----------|
|                | TOTAL<br>AREA |       | SUB-AREA 1<br>DEVELOPMENT/ | PERCENT    | AREA | SUB-AREA 2<br>DEVELOPMENT/ | PERCENT    |      | SUB-AREA 3<br>DEVELOPMENT/ | PERCENT    | WEIGHTED |
| BASIN          | (AC)          | (AC)  | COVER                      | IMPERVIOUS | (AC) | COVER                      | IMPERVIOUS | (AC) | COVER                      | IMPERVIOUS | % IMP    |
| <u></u>        | 0.05          |       |                            |            |      |                            |            |      |                            |            | 10.000   |
| OA1            | 0.05          | 0.00  | SF RESIDENTIAL             | 40         |      |                            |            |      |                            |            | 40.000   |
| A1             | 2.29          | 1.632 | PAVED/IMPERVIOUS           | 100        | 0.66 | LANDSCAPED                 | 0.00       |      |                            |            | 71.266   |
| OA1,A1         | 2.34          |       |                            |            |      |                            |            |      |                            |            | 70.598   |
| OA2            | 0.40          | 0.00  | SF RESIDENTIAL             | 40         |      |                            |            |      |                            |            | 40.000   |
| A2             | 0.86          | 0.523 | PAVED/IMPERVIOUS           | 100        | 0.34 | LANDSCAPED                 | 0.00       |      |                            |            | 60.814   |
| OA2,A2         | 1.26          |       |                            |            |      |                            |            |      |                            |            | 54.206   |
| OA1-OA2,A1-A2  | 3.60          |       |                            |            |      |                            |            |      |                            |            | 64.861   |
| A3             | 0.96          | 0.82  | PAVED/IMPERVIOUS           | 100        | 0.14 | LANDSCAPED                 | 0.00       |      |                            |            | 85.000   |
| A1-A3          | 4.56          |       |                            |            |      |                            |            |      |                            |            | 69.101   |
| A4             | 0.23          | 0.00  | PAVED/IMPERVIOUS           | 100        | 0.23 | LANDSCAPED                 | 0.00       |      |                            |            | 0.000    |
| A1-A4          | 4.79          |       |                            |            |      |                            |            |      |                            |            | 65.783   |
| OB1            | 0.13          | 0.00  | SF RESIDENTIAL             | 40         |      |                            |            |      |                            |            | 40.000   |
| B              | 0.74          | 0.00  | PAVED/IMPERVIOUS           | 100        | 0.74 | LANDSCAPED                 | 0.00       |      |                            |            | 0.000    |
| OB1,B          | 0.87          |       |                            |            |      |                            |            |      |                            |            | 5.977    |
|                |               |       |                            |            |      |                            |            |      |                            |            |          |

| · |                  |      |      |      |   |
|---|------------------|------|------|------|---|
| t | $\sim \Lambda c$ | coc  | rcm  | oni  | - |
|   | e As             | 555  | 5111 | еш   |   |
|   | .C A:            | 5562 | 5111 | CIII | Ŀ |

SCM Design, Version 4.00 (April 2024)

| Designer:<br>Company:<br>Date:<br>Project:<br>Location: | JPS<br>JPS<br>October 30, 2024<br>Cathedral Rock Church - Rain Garden A<br>Tract A, Struthers Ranch Filing No. 2                             |                                               |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| 1. Physical                                             | Site Characteristics                                                                                                                         |                                               |  |
| A) Total Si                                             | te Area                                                                                                                                      | Area = $4.79$ acres $208,652$ ft <sup>2</sup> |  |
|                                                         | e any upstream offsite areas that drain onto site and<br>ream conveyance systems or overland flow paths.                                     |                                               |  |
|                                                         | e any floodplain/floodway mapping, fluvial hazard zones,<br>morphic/geotechnical instabilites that may impact the site.                      |                                               |  |
| state fo                                                | vatershed anticipated to be in a phased development<br>or a number of years moving forward or are highly<br>soils present? Explain.          | NO                                            |  |
|                                                         | vegetation assessments that have been conducted<br>ing wetland and aquatic resources delineations.                                           |                                               |  |
|                                                         | assessments of habitat for threatened or<br>pered species and other regulated species.                                                       |                                               |  |
| G) Describ<br>subsurt                                   | e any existing and/or proposed utility mapping for<br>face and/or above-ground utilities that may impact SCMs.                               |                                               |  |
| H) Are the<br>303(d)                                    | re receiving water quality concerns such as TMDLs,<br>listings, or other pollutant reduction targets? Explain.                               | NO                                            |  |
| materia                                                 | e how community values including context, scale,<br>ls, and user experience will be incorporated on site.<br>apter 4 for additional gudance. |                                               |  |
|                                                         | enuation of the EURV and/or flood storage (e.g. FSD)<br>vided onsite?                                                                        | NO                                            |  |
|                                                         |                                                                                                                                              |                                               |  |

#### Site Assessment

SCM Design, Version 4.00 (April 2024)

| Designer:                                      | JPS                                                                                                                                                                                                                                                                                                     |                                                                                                  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Company:                                       | JPS                                                                                                                                                                                                                                                                                                     |                                                                                                  |
| Date:                                          | October 30, 2024<br>Cathedral Rock Church - Rain Garden A                                                                                                                                                                                                                                               |                                                                                                  |
| Project:                                       | Tract A, Struthers Ranch Filing No. 2                                                                                                                                                                                                                                                                   |                                                                                                  |
| Location:                                      | Tract A, Strutners Ranch Filing No. 2                                                                                                                                                                                                                                                                   |                                                                                                  |
| 2. Opportu                                     | nities for Step 1: Runoff Reduction                                                                                                                                                                                                                                                                     |                                                                                                  |
|                                                | be opportunities for runoff reduction measures that can<br>ad on this site to potentially reduce WQCV requirements?                                                                                                                                                                                     |                                                                                                  |
| Conserve                                       | Existing Amenities: Identify portions of site that should be                                                                                                                                                                                                                                            |                                                                                                  |
| protected                                      | including mature trees, stream corridors, wetlands, and Type with high infiltration potential.                                                                                                                                                                                                          |                                                                                                  |
|                                                | Impacts: Creative site layout and constructing to minimum<br>n reduce the extent of paved areas. Concentrate new                                                                                                                                                                                        |                                                                                                  |
| imperviou                                      | s areas over Type C/D soils. Maintain natural drainage<br>ind promote sheet flow.                                                                                                                                                                                                                       |                                                                                                  |
|                                                | Directly Connected Impervious Areas (MDCIA): Allow runoff                                                                                                                                                                                                                                               |                                                                                                  |
|                                                | ervious areas to sheet flow through vegetation which slows<br>omotes infiltration, reduces pollutant loads and helps mimic                                                                                                                                                                              |                                                                                                  |
|                                                | pment hydrology.                                                                                                                                                                                                                                                                                        |                                                                                                  |
|                                                | e a description of topsoil texture, agronomic properties,<br>otechnical soil characterizations.                                                                                                                                                                                                         |                                                                                                  |
| í) Is su                                       | y Site Constraints<br>bgrade depth to bedrock < 3 feet?<br>Jbgrade depth to seasonal high groundwater table < 3 feet?                                                                                                                                                                                   | NO<br>NO                                                                                         |
| i) Are e<br>ii) Are l<br>iii) Is si<br>iv) Are | y Site Risks<br>expansive/collapsible soils present?<br>highly concentrated pollutant sources present (hotspot)?<br>ite located above contaminated soils or groundwater?<br>steep slopes present in proposed SCM locations? (> 3H:1V)<br>there other concerns that indicate high risk for infiltration? | NO<br>NO<br>NO<br>NO<br>NO                                                                       |
| i) How                                         | be Exploratory Borings/Pits and Laboratory Tests (Sec. 4.2)<br>many borings/pits were drilled/excavated?<br>th of borings/pits below SCM (or proposed grade) surface?                                                                                                                                   | N <sub>Borings</sub> /Pits =ft                                                                   |
| iii) Des                                       | cribe laboratory tests performed on soil samples:                                                                                                                                                                                                                                                       |                                                                                                  |
| F) Prelimi                                     | nary Infiltration System Recommendation                                                                                                                                                                                                                                                                 | Full Infiltration Suitable Soils and Low Risk, must verify adequate subgrade infiltration rates. |
|                                                | preliminary recommendation. Consult with a qualified<br>ical engineer when planning an infiltration-based SCM.                                                                                                                                                                                          | acquate subgrate initiation rates.                                                               |

| Site Layout                             |              |                       |       |           |   |   |      |      |          |
|-----------------------------------------|--------------|-----------------------|-------|-----------|---|---|------|------|----------|
| SCM Design, Version 4.00 (April         | 2024)        |                       |       |           |   |   |      |      |          |
| Designer: JPS                           |              |                       |       |           |   |   |      |      |          |
| Company: JPS                            |              |                       |       |           |   |   |      | •    |          |
| Date: October 30, 2024                  | 4            |                       |       |           |   |   |      | •    |          |
| Project: Cathedral Rock C               | Church - Rai | in Garden A           |       |           |   |   |      | •    |          |
| Location: Tract A, Struther             | s Ranch Fili | ng No. 2              |       |           |   |   |      | •    |          |
|                                         |              |                       |       |           |   |   |      | •    |          |
|                                         |              |                       |       |           |   |   |      |      |          |
| SITE LAYOUT INFO                        |              |                       | ls)   |           |   |   |      |      |          |
| Water Quality Event (WQE)               | 0.60         | inches                |       |           |   |   |      |      |          |
| Outfall ID                              | DP1          |                       |       |           |   |   |      |      |          |
| Total Tributary Area (ft <sup>2</sup> ) |              |                       |       |           |   |   |      |      |          |
| Imperviousness (%)                      |              |                       |       |           |   |   |      |      |          |
| MS4 Design Standard                     |              |                       |       |           |   |   |      |      | 1        |
| SCM Type                                |              |                       |       |           |   |   |      |      |          |
| Notes:                                  |              |                       |       |           |   |   |      |      | iI       |
|                                         |              |                       |       |           |   |   |      |      |          |
|                                         |              |                       |       |           |   |   |      |      |          |
|                                         |              |                       |       |           |   |   |      |      |          |
|                                         |              |                       |       |           |   |   |      |      |          |
| OUTFALL RESULTS                         |              |                       |       |           | _ | - | <br> | -    |          |
| SCM Worksheet Name                      |              |                       |       |           |   |   |      |      |          |
| Untreated Area (ft <sup>3</sup> )       | 0            |                       |       |           |   |   |      |      |          |
| Default WQCV (ft <sup>3</sup> )         |              |                       |       |           |   |   |      |      |          |
| WQCV Reduction (ft <sup>3</sup> )       |              |                       |       |           |   |   |      |      |          |
| Remaining WQCV (ft <sup>3</sup> )       |              |                       |       |           |   |   |      |      |          |
| WQCV Reduction (%)                      |              |                       |       |           |   |   |      |      | l        |
| Design WQCV of SCM (ft <sup>3</sup> )   |              |                       |       |           |   |   |      | <br> | <b> </b> |
| Pollutant Removal (ft <sup>3</sup> )    |              |                       |       |           | - |   |      |      | ll       |
| Untreated WQCV (ft <sup>3</sup> )       | 3,579        |                       |       |           |   |   |      |      | <u> </u> |
|                                         | (Cumo non    | dha fuana all         | 0     |           |   |   |      |      |          |
| TOTAL SITE RESULTS<br>Total Site Area   |              | ft <sup>2</sup>       | 4.79  | acres     |   |   |      |      |          |
| Treated Area                            |              | μπ<br>ft <sup>2</sup> | 4.79  | acres     |   |   |      |      |          |
| Untreated Area                          |              | ft <sup>2</sup>       | 0.00  | acres     |   |   |      |      |          |
| Total Site Imperviousness               |              | %                     | 0.00  |           |   |   |      |      |          |
| Default WQCV                            |              | ft <sup>3</sup>       | 0.082 | acre-feet |   |   |      |      |          |
| Remaining WQCV                          |              | ft <sup>3</sup>       | 0.082 | acre-feet |   |   |      |      |          |
| WQCV Reduction                          |              | %                     | 01002 |           |   |   |      |      |          |
| Design WQCV                             |              | ft <sup>3</sup>       | 0.000 | acre-feet |   |   |      |      |          |
| Untreated WQCV                          |              | ft <sup>3</sup>       | 0.082 | acre-feet |   |   |      |      |          |
|                                         | .,           | <b>_</b>              |       | _         |   |   |      |      |          |

# Bioretention System (BR) SCM Design, Version 4.00 (April 2024)

| Designer:                        | JPS                                                                                                                                                                                  | -                                                           | . ,                  |                                                                                          |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------|
| Company:                         | JPS                                                                                                                                                                                  |                                                             |                      |                                                                                          |
| Date:                            | October 30, 2024                                                                                                                                                                     |                                                             |                      |                                                                                          |
| Project:                         | Cathedral Rock Church - Rain Garden A                                                                                                                                                |                                                             |                      |                                                                                          |
| Location:                        | Tract A, Struthers Ranch Filing No. 2                                                                                                                                                |                                                             |                      |                                                                                          |
| Outfall ID:                      | DP1                                                                                                                                                                                  |                                                             |                      |                                                                                          |
| 1. Subsurfac                     | e Exploration and Infiltration System Selection                                                                                                                                      |                                                             |                      |                                                                                          |
| A) Identify                      | Site Constraints                                                                                                                                                                     |                                                             |                      |                                                                                          |
|                                  | ograde depth to bedrock < 3 feet?                                                                                                                                                    |                                                             | NO                   |                                                                                          |
| ii) Is su                        | bgrade depth to seasonal high groundwater table < 3 feet?                                                                                                                            |                                                             | NO                   |                                                                                          |
| B) Identify                      | Site Risks                                                                                                                                                                           |                                                             |                      |                                                                                          |
|                                  | xpansive/collapsible soils present?                                                                                                                                                  |                                                             | NO                   |                                                                                          |
|                                  | ighly concentrated pollutant sources present (hotspot)?                                                                                                                              |                                                             | NO                   |                                                                                          |
|                                  | e located above contaminated soils or groundwater?                                                                                                                                   |                                                             | NO                   |                                                                                          |
|                                  | CM located at top of steep slope? (> 3H:1V)                                                                                                                                          |                                                             | NO<br>YES            | Provido protostivo moscuros                                                              |
| ,                                | IM located adjacent to building, hardscape, or pavement?<br>IM located above building foundation wall backfill?                                                                      |                                                             | NO                   | Provide protective measures                                                              |
|                                  | there other concerns that indicate high risk for infiltration?                                                                                                                       |                                                             | NO                   |                                                                                          |
|                                  | -                                                                                                                                                                                    |                                                             |                      |                                                                                          |
| i) Were                          | nary Infiltration/Percolation Tests of underlying soils<br>preliminary infiltration/percolation tests conducted?<br>ninary estimate of infiltration rate                             | F <sub>prelim</sub>                                         | = NO<br>in/hr        |                                                                                          |
| i) Were<br>ii) Selec<br>iii) How | esign Infiltrometer Test<br>infiltrometer tests conducted?<br>t type of infiltrometer test performed:<br>many locations were tested?<br>ribe test locations relative to borings/pits | N <sub>Tests</sub>                                          | =                    |                                                                                          |
| vi) Wha                          | : was the maximum infiltration rate tested?<br>t was the minimum infiltration rate tested?<br>ign Infiltration Rate                                                                  | F <sub>Max</sub><br>F <sub>Min</sub><br>F <sub>Design</sub> | = in/hr              |                                                                                          |
| E) Recomm                        | nended Infiltration System                                                                                                                                                           | No Recor                                                    | mmendation           | Please provide estimated infiltration rates<br>to get a recommended infiltration system. |
| F) Select I                      | nfiltration System to use for Design                                                                                                                                                 |                                                             | Partial Infiltration |                                                                                          |
|                                  |                                                                                                                                                                                      |                                                             |                      |                                                                                          |
|                                  |                                                                                                                                                                                      |                                                             |                      |                                                                                          |
|                                  |                                                                                                                                                                                      |                                                             |                      |                                                                                          |
|                                  |                                                                                                                                                                                      |                                                             |                      |                                                                                          |
|                                  |                                                                                                                                                                                      |                                                             |                      |                                                                                          |

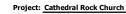
| SCM Design, | Version 4 | 4.00 | (April | 2024) |
|-------------|-----------|------|--------|-------|
|-------------|-----------|------|--------|-------|

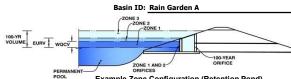
JPS Designer: JPS Company: October 30, 2024 Date: Project: Cathedral Rock Church - Rain Garden A Tract A, Struthers Ranch Filing No. 2 Location: Outfall ID: DP1 2. Inlet Design and Pretreatment Define inflow points for all areas tributary to A) Is RPA (GB/GS) used for Runoff Reduction upstream of SCM? NO the SCM below. B) Inflow Points contributing to SCM (max 8) Inflow Design Point ID A4 Tributary Area to Inflow Point (ft<sup>2</sup>) 208,652 Imperviousness above Inflow Point (%) 65.8% 3,579 Default WQCV for Inflow Point (ft<sup>3</sup>) WQCV Reduction above Inflow Point (ft<sup>3</sup>) Remaining WQCV at Inflow Point (ft<sup>3</sup>) 3,579 Will pretreatment be provided with a Sedimentation MTD (HDS) NO Paired Pretreatment HDS Worksheet Name Sheet or Concentrated Flow Conc C) Sheet Flow Select sheet flow inflow feature ---Is Concrete Edger used? --Spacing between slots, recommend  $\leq 2$  ft on center (ft) --Slot Opening Length, recommend 1.5 (in) --Select type of blind swale used to distribute flow --Select energy dissipation method for level spreader --Height of drop, recommend 2 to 3 (in) --Is concrete mowing strip provided to facilitate maintenance? --D) Concentrated Flow Select concentrated flow inflow feature Pipe Is downspout extension needed to bridge backfill zone? Depth of gutter flow line depression for curb opening, recommend 3 (in) Curb opening inlet width (ft) --Height of drop to sediment pad/forebay, recommend  $\geq$  1 (in) ---Select energy dissipation method for downspouts and/or curb openings. Select energy dissipation method for swales, channels, and piped outfalls Other v) Forebay Impervious area tributary to concentrated inflow location (ft<sup>2</sup>) 137,293 Forebay Type (Concrete Sediment Pad sufficient for Imp Area ≤ 2 acre) Forebay Minimum Forebay Volume (ft<sup>3</sup>) 36 Design Forebay Volume (ft<sup>3</sup>) 96 Maximum Forebay Depth (in) 15.00 Design Forebay Depth (in) 12.00 Rectangular Weir Notch Width to Empty Forebay in 5-minutes (in) 1.10 Design Notch Width (in) 1.10 Forebay Drain Time (minutes) 5.0 Provide pretreatment to remove coarse sediment, trash and debris. This is especially critical for roadway runoff to bioretention systems.

- PROPOSED FOREBAY VOLUME: = (12'L x 8'W x 12" DEEP)
- = 96 CF = 0.0022 AF

|        | SCM Design, Version 4.00 (April 2024)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | esigner: JPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Design                                                                                                                                                                               |
|        | ompany: JPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compa                                                                                                                                                                                |
|        | ate: October 30, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date:                                                                                                                                                                                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project                                                                                                                                                                              |
|        | Decation: Tract A, Struthers Ranch Filing No. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                      |
|        | utfall ID: DP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outfall                                                                                                                                                                              |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                      |
| ow     | Design Storage Volume Inflow Points above should be fully defined before proceeding below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3. Des                                                                                                                                                                               |
|        | A) Contributing Watershed Area (including bioretention area) $Area = 208,652$ ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A) C                                                                                                                                                                                 |
|        | B) Imperviousness of Tributary Area i = 65.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B) Ir                                                                                                                                                                                |
|        | C) Default WQCV $V_{WQCV Default} = 3,579 \text{ ft}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C) D                                                                                                                                                                                 |
|        | D) WQCV Reduction resulting from Upstream RPA (GB/GS) WQCV Reduction = $0 \text{ ft}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D) V                                                                                                                                                                                 |
|        | E) Remaining WQCV $V_{WQCV Remaining} = 3,579 \text{ ft}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E) R                                                                                                                                                                                 |
|        | Bioretention System Basin Geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4. Bior                                                                                                                                                                              |
|        | A) Minimum Filter Media Surface Area $A_{ruc} = 2.746 \text{ fr}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A) N                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                    |
|        | B) Design Filter Media Surface Area $A_{F Design} = 2,829 \text{ ft}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B) D                                                                                                                                                                                 |
|        | C) WQCV Ponding Depth (recommend max. 12-inch) $D_{WQCV} = 12.00$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C) V                                                                                                                                                                                 |
|        | D) Media Surface Slope (typically flat or mild slope < 0.01 ft/ft) $S_{Surface} = 0.000$ ft / ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D) M                                                                                                                                                                                 |
|        | E) Max. Side Slope (Z = 4:1 or flatter, horiz. dist per unit vertical)Z = 4.00(Use "0" if bioretention has vertical walls)Z = 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      |
|        | F) Media Surface Length-to-Width Ratio R <sub>L/W</sub> = 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F) M                                                                                                                                                                                 |
|        | G) Calculated WQCV (based on $A_{F \text{ Design}}$ , $D_{WQCV}$ , and Z) $V_{WQCV \text{ Calculated}} = 3,740 \text{ ft}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G) (                                                                                                                                                                                 |
| I WQCV | H) Design WQCV (based on actual design geometry) $V_{WQCV Design} = 3,817$ ft <sup>3</sup> Explain difference from Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H) [                                                                                                                                                                                 |
|        | I) If basin geometry is irregular, design volume differs, or media<br>pore space is being utilized, please provide description.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                      |
|        | Bioretention System Basin Geometry         A) Mimimum Filter Media Surface Area $A_{F Min} = 2,746$ ft <sup>2</sup> B) Design Filter Media Surface Area $A_{F Design} = 2,829$ ft <sup>2</sup> C) WQCV Ponding Depth (recommend max. 12-inch) $D_{WQCV} = 12.00$ in         D) Media Surface Slope (typically flat or mild slope < 0.01 ft/ft) $S_{Surface} = 0.000$ ft / ft         E) Max. Side Slope (Z = 4:1 or flatter, horiz. dist per unit vertical) (Use "0" if bioretention has vertical walls) $Z = 4.00$ ft / ft         F) Media Surface Length-to-Width Ratio $R_{L/W} = 15$ G) Calculated WQCV (based on actual design geometry) $V_{WQCV Calculated} = 3,740$ ft <sup>3</sup> H) Design WQCV (based on actual design geometry) $V_{WQCV Design} = 3,817$ ft <sup>3</sup> Explain difference from Calculated | <ul> <li>4. Bior</li> <li>A) M</li> <li>B) D</li> <li>C) W</li> <li>D) M</li> <li>D) M</li> <li>E) M</li> <li>((</li> <li>F) M</li> <li>G) C</li> <li>H) D</li> <li>I) If</li> </ul> |

| SCM Design, | Version 4.00 | (April 2024) |
|-------------|--------------|--------------|
|-------------|--------------|--------------|


| Designer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JPS                                                                                                  |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------|
| Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JPS                                                                                                  |                               |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | October 30, 2024                                                                                     |                               |
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cathedral Rock Church - Rain Garden A                                                                |                               |
| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tract A, Struthers Ranch Filing No. 2                                                                |                               |
| Outfall ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DP1                                                                                                  |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |                               |
| 5. Underdra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in System, Impermeable Liner, and Geotextile                                                         |                               |
| A) Are und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | erdrains provided?                                                                                   | YES                           |
| <ul> <li>B) Is a Drain Trench provided consistent with Figure 4-2? <ul> <li>Trench Bottom Width ≥ 12 inches, Trench Depth ≥ 15 inches</li> <li>Drain gravel satisfies gradation specifications for<br/>AASHTO M 43 No. 8 coarse aggregate</li> <li>Filter sand above drain gravel satisfies gradation specifications for<br/>AASHTO M 43 fine aggregate</li> <li>Filter sand depth above drain trench ≥ 6 inches</li> <li>Filter sand extends ≥ 12 inches beyond trench top width</li> </ul></li></ul> |                                                                                                      | YES                           |
| C) Select F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | actory-Slotted Pipe Size and Material                                                                | 4-inch (ID), Sch 40 PVC       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e specified pipe material meet the specifications for figurations shown in Table 4-6 and Figure 4-3. | YES                           |
| E) Are clea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nouts provided for inspection and maintenance?                                                       | YES                           |
| F) Is an im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | permeable geomembrane liner provided?                                                                | NO                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ails provided regarding sealing at underdrain penetrations                                           |                               |
| sımılar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to Figure 4-6?                                                                                       |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | membrane connections to vertical concrete surfaces<br>nt with Figure 4-7?                            |                               |
| I) Do the p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lans specify thermal welding and air lance testing of joints?                                        |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |                               |
| 6. Bioretent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ion Media                                                                                            |                               |
| A) Depth o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f Media (18-inch minimum, 36-inch when trees planted)                                                | D <sub>Media</sub> = 24.00 in |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | truction documents specify media testing requirements?                                               | YES                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | adation and nutrient content of media after delivery to the<br>eferably, prior to placement.         |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | ·                             |


SCM Design, Version 4.00 (April 2024)

| Designer:               | JPS                                                                                                           |                                                                                                                                                                       |
|-------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company:                | JPS                                                                                                           |                                                                                                                                                                       |
| Date:<br>Project:       | October 30, 2024<br>Cathedral Rock Church - Rain Garden A                                                     |                                                                                                                                                                       |
| Location:               | Tract A, Struthers Ranch Filing No. 2                                                                         |                                                                                                                                                                       |
| Outfall ID:             | DP1                                                                                                           |                                                                                                                                                                       |
|                         |                                                                                                               |                                                                                                                                                                       |
| Consul                  | he method of vegetation planting (pulldown list).<br>t with vegetation specialist to consider shade, heat     | Typically costs less than container grown plants         Sod-forming native grasses from seed         but more susceptible to being washed away during establishment. |
|                         | effects, application of deicers in the watershed, and<br>site-specific factors.                               |                                                                                                                                                                       |
| Table BR-               | 4 provides suggested Native Seed Mix                                                                          |                                                                                                                                                                       |
| B) Has a l              | andscape/vegetation management plan been developed?                                                           | YES                                                                                                                                                                   |
|                         | e vegetation/landscaping considerations:                                                                      |                                                                                                                                                                       |
|                         | ity issues (steep slopes, high erosion potential)?<br>il management (assessment, stockpiling, and placement)? | Per Landscape Plans                                                                                                                                                   |
| - Comn                  | nunity benefits with place-making approach?                                                                   |                                                                                                                                                                       |
|                         | rersity of the site including pollinator species?<br>Inmental stewardship through conservation?               |                                                                                                                                                                       |
|                         | ation frequency and depth impacts on vegetation?                                                              |                                                                                                                                                                       |
| - Requi                 | red maintenance activities and intervals?                                                                     |                                                                                                                                                                       |
|                         |                                                                                                               |                                                                                                                                                                       |
| 8. Irrigatio            |                                                                                                               |                                                                                                                                                                       |
| o. Ingatio              |                                                                                                               |                                                                                                                                                                       |
| A) How wi               | Il irrigation be provided for vegetation establishment?                                                       | Temporary                                                                                                                                                             |
| Place tem               | porary irrigation on top of the bioretention media surface.                                                   |                                                                                                                                                                       |
| Remove in<br>buried ove | rigation pipes once vegetation is established to avoid it being                                               |                                                                                                                                                                       |
| Duried Ove              | er ume.                                                                                                       |                                                                                                                                                                       |
| 9. Outlet               |                                                                                                               |                                                                                                                                                                       |
| A) Underd               | rain Orifice Diameter for 12-hour drain time                                                                  |                                                                                                                                                                       |
| -                       | rdrain Orifice Invert Depth<br>ance from filter media surface to orifice invert)                              | y = 24.0 in                                                                                                                                                           |
| ii) Calcı               | ulated Underdrain Orifice Diameter                                                                            |                                                                                                                                                                       |
| Simp                    | lified Equation (when not using MHFD-Detention)                                                               | Dia. <sub>Simplified</sub> = 1.43 in                                                                                                                                  |
| MHF                     | D-Detention Calculation (if used)                                                                             | Dia. <sub>MHFD-Detention</sub> = 1.42 in                                                                                                                              |
| iii) Und                | erdrain Orifice Diameter specified on construction plans                                                      | Orifice Dia. <sub>Design</sub> = 1.42 in                                                                                                                              |
|                         |                                                                                                               |                                                                                                                                                                       |
| B) Describ              | e Underdrain Orifice Outlet Configuration.                                                                    |                                                                                                                                                                       |
|                         | adding Internal Water Storage (IWS) zone as described in the                                                  |                                                                                                                                                                       |
| upfront se<br>outflows. | ection of Chapter 4. This can reduce nutrient loading from                                                    |                                                                                                                                                                       |
|                         |                                                                                                               |                                                                                                                                                                       |
|                         | e Outlet Structure(s) for events larger than WQCV.<br>ectrum detention, overflow spillway, etc.)              | Overflow Spillway (Buried Riprap)                                                                                                                                     |
| (1011 3)                | see all describely oremore spinning, etc.)                                                                    |                                                                                                                                                                       |
|                         |                                                                                                               |                                                                                                                                                                       |
| Notes                   |                                                                                                               | <u> </u>                                                                                                                                                              |
|                         |                                                                                                               |                                                                                                                                                                       |
|                         |                                                                                                               |                                                                                                                                                                       |
|                         |                                                                                                               |                                                                                                                                                                       |

#### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)





Example Zone Configuration (Retention Pond)

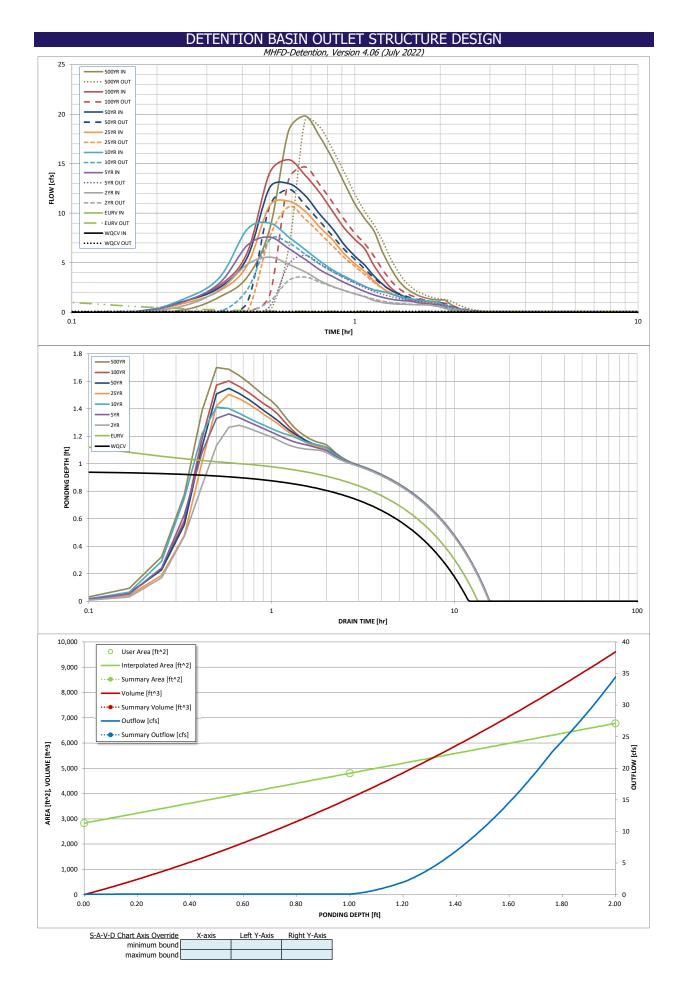
#### Watershed Information

| Selected BMP Type =                     | RG         |         |
|-----------------------------------------|------------|---------|
| Watershed Area =                        | 4.79       | acres   |
| Watershed Length =                      | 750        | ft      |
| Watershed Length to Centroid =          | 325        | ft      |
| Watershed Slope =                       | 0.035      | ft/ft   |
| Watershed Imperviousness =              | 65.80%     | percent |
| Percentage Hydrologic Soil Group A =    | 0.0%       | percent |
| Percentage Hydrologic Soil Group B =    | 100.0%     | percent |
| Percentage Hydrologic Soil Groups C/D = | 0.0%       | percent |
| Target WQCV Drain Time =                | 12.0       | hours   |
| Location for 1-hr Rainfall Depths =     | User Input | -       |
|                                         |            |         |

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

| the embedded Colorado Urban Hydro      | graph Procedu | re.       | Optional User | Override  |
|----------------------------------------|---------------|-----------|---------------|-----------|
| Water Quality Capture Volume (WQCV) =  | 0.082         | acre-feet |               | acre-feet |
| Excess Urban Runoff Volume (EURV) =    | 0.344         | acre-feet |               | acre-feet |
| 2-yr Runoff Volume (P1 = 1.19 in.) =   | 0.300         | acre-feet | 1.19          | inches    |
| 5-yr Runoff Volume (P1 = 1.5 in.) =    | 0.409         | acre-feet | 1.50          | inches    |
| 10-yr Runoff Volume (P1 = 1.75 in.) =  | 0.501         | acre-feet | 1.75          | inches    |
| 25-yr Runoff Volume (P1 = 2 in.) =     | 0.613         | acre-feet | 2.00          | inches    |
| 50-yr Runoff Volume (P1 = 2.25 in.) =  | 0.710         | acre-feet | 2.25          | inches    |
| 100-yr Runoff Volume (P1 = 2.52 in.) = | 0.828         | acre-feet | 2.52          | inches    |
| 500-yr Runoff Volume (P1 = 3.14 in.) = | 1.075         | acre-feet | 3.14          | inches    |
| Approximate 2-yr Detention Volume =    | 0.267         | acre-feet |               |           |
| Approximate 5-yr Detention Volume =    | 0.358         | acre-feet |               |           |
| Approximate 10-yr Detention Volume =   | 0.456         | acre-feet |               |           |
| Approximate 25-yr Detention Volume =   | 0.491         | acre-feet |               |           |
| Approximate 50-yr Detention Volume =   | 0.511         | acre-feet |               |           |
| Approximate 100-yr Detention Volume =  | 0.552         | acre-feet |               |           |
|                                        |               | -         |               |           |

#### Define Zones and Basin Geometry


|   | acre-feet | 0.082 | Zone 1 Volume (WQCV) =                    |
|---|-----------|-------|-------------------------------------------|
| т | acre-feet |       | Select Zone 2 Storage Volume (Optional) = |
| v | acre-feet |       | Select Zone 3 Storage Volume (Optional) = |
| 1 | acre-feet | 0.082 | Total Detention Basin Volume =            |

Total detention volume is less than 100-year volume.

|                   | Depth Increment =              |          | ft                     |          |               |                            |                                     |                 |                              |                   |
|-------------------|--------------------------------|----------|------------------------|----------|---------------|----------------------------|-------------------------------------|-----------------|------------------------------|-------------------|
|                   |                                |          | Optional               |          |               |                            | Optional                            |                 |                              |                   |
|                   | Stage - Storage<br>Description | Stage    | Override<br>Stage (ft) | Length   | Width<br>(ft) | Area<br>(ft <sup>2</sup> ) | Override<br>Area (ft <sup>2</sup> ) | Area<br>(acre)  | Volume<br>(ft <sup>3</sup> ) | Volume<br>(ac-ft) |
|                   | Media Surface                  | (ft)<br> | 0.00                   | (ft)<br> | (ft)<br>      | (ft )<br>                  | 2,829                               | (acre)<br>0.065 | (π)                          | (ac-π)            |
|                   | RG WSL=6758.0                  |          | 1.00                   |          |               |                            | 4,804                               | 0.003           | 3,816                        | 0.088             |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   | Top EL=6760.0                  |          | 2.00                   |          |               |                            | 6,779                               | 0.156           | 9,608                        | 0.221             |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| ser Overrides     |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| acre-feet         |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| acre-feet         |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| inches            |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| inches            |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| inches            |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| inches            |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| inches            |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| inches            |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| inches            |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| Inches            |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
|                   |                                |          |                        |          |               |                            |                                     |                 | <u> </u>                     |                   |
| ention            |                                |          |                        |          |               |                            |                                     |                 |                              |                   |
| less than volume. |                                |          |                        |          |               |                            |                                     |                 | <u> </u>                     |                   |
| Forume.           |                                |          |                        |          |               |                            |                                     |                 |                              |                   |

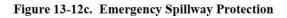
# DETENTION BASIN OUTLET STRUCTURE DESIGN

| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cathedral Rock Ch         |                        | 1HFD-Detention, V                                                                                                                                                     | ersion 4.06 (July 2              | 2022)                 |                       |                      |                        |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|-----------------------|----------------------|------------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rain Garden A             |                        |                                                                                                                                                                       |                                  |                       |                       |                      |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                                                                                                                                                       | Estimated                        | Estimated             |                       |                      |                        |                  |
| 100-YR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                        |                                                                                                                                                                       | Stage (ft)                       | Volume (ac-ft)        | Outlet Type           |                      |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1</b>                  |                        | Zone 1 (WQCV)                                                                                                                                                         | 0.95                             | 0.082                 | Filtration Media      |                      |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100-YEAR<br>ORIFICE       |                        | Zone 2                                                                                                                                                                |                                  |                       |                       | 1                    |                        |                  |
| PERMANENT ORIFICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                        | Zone 3                                                                                                                                                                |                                  |                       |                       |                      |                        |                  |
| POOL Example Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Configuration (Re         | tention Pond)          | 1                                                                                                                                                                     | Total (all zones)                | 0.082                 |                       | 1                    |                        |                  |
| User Input: Orifice at Underdrain Outlet (typicall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | v used to drain WC        | OCV in a Filtration Bl | <u>MP)</u>                                                                                                                                                            |                                  |                       | 1                     | Calculated Parame    | eters for Underdrain   | <u>1</u>         |
| Underdrain Orifice Invert Depth =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                         | 1                      | the filtration media                                                                                                                                                  | surface)                         | Underd                | drain Orifice Area =  | 0.0                  | ft <sup>2</sup>        | -                |
| Underdrain Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.42                      | inches                 |                                                                                                                                                                       |                                  | Underdrain            | n Orifice Centroid =  | 0.06                 | feet                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                                                                                                                                                       |                                  |                       |                       |                      | -                      |                  |
| User Input: Orifice Plate with one or more orific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · ·                   | 1                      | -                                                                                                                                                                     |                                  | ,                     |                       | Calculated Parame    |                        |                  |
| Centroid of Lowest Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                        | n bottom at Stage =                                                                                                                                                   |                                  |                       | ice Area per Row =    | N/A                  | ft <sup>2</sup>        |                  |
| Depth at top of Zone using Orifice Plate =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | inches                 | n bottom at Stage =                                                                                                                                                   | - 0 π)                           |                       | iptical Half-Width =  | N/A                  | feet                   |                  |
| Orifice Plate: Orifice Vertical Spacing =<br>Orifice Plate: Orifice Area per Row =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | sq. inches             |                                                                                                                                                                       |                                  |                       | ical Slot Centroid =  | N/A<br>N/A           | ft <sup>2</sup>        |                  |
| onnee nater onnee nieu per tott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                         | Sq. menes              |                                                                                                                                                                       |                                  | -                     | Inplicar Dioc / a ca  | 14/1                 | Jir                    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                                                                                                                                                       |                                  |                       |                       |                      |                        |                  |
| User Input: Stage and Total Area of Each Orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e R <u>ow (numbered f</u> | rom lowest to highe    | est)                                                                                                                                                                  |                                  |                       |                       |                      |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Row 1 (optional)          | Row 2 (optional)       | Row 3 (optional)                                                                                                                                                      | Row 4 (optional)                 | Row 5 (optional)      | Row 6 (optional)      | Row 7 (optional)     | Row 8 (optional)       | 1                |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                        |                                                                                                                                                                       |                                  |                       |                       |                      |                        | ]                |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                        |                                                                                                                                                                       |                                  |                       |                       |                      |                        | ]                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                         |                        |                                                                                                                                                                       |                                  |                       |                       |                      |                        | -                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Row 9 (optional)          | Row 10 (optional)      | Row 11 (optional)                                                                                                                                                     | Row 12 (optional)                | Row 13 (optional)     | Row 14 (optional)     | Row 15 (optional)    | Row 16 (optional)      | 4                |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ļ                         | ļ!                     | ļ!                                                                                                                                                                    | ļ                                | <b></b>               | ļ!                    |                      | <b></b>                | 4                |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ĺ                         | <u> </u>               | <u> </u>                                                                                                                                                              | L                                |                       | ļ                     |                      |                        |                  |
| User Input: Vertical Orifice (Circular or Rectange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ular)                     |                        |                                                                                                                                                                       |                                  |                       |                       | Calculated Parame    | eters for Vertical Ori | ifice            |
| User Input. Ventical Onnice Concutar of Accounty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected              | Not Selected           | 1                                                                                                                                                                     |                                  |                       |                       | Not Selected         | Not Selected           | 1                |
| Invert of Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NOL SCICLUS               |                        | ft (relative to basin                                                                                                                                                 | hottom at Stage =                | =0ft) Ver             | rtical Orifice Area = | NUL SCICCU           | NUL SCICCICA           | ft <sup>2</sup>  |
| Depth at top of Zone using Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                        | ft (relative to basin                                                                                                                                                 | -                                | ,                     | I Orifice Centroid =  |                      |                        | feet             |
| Vertical Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                        | inches                                                                                                                                                                | Doctorn at Stag                  |                       |                       |                      |                        | Jiece            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                                                                                                                                                       |                                  |                       |                       |                      |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                                                                                                                                                       |                                  |                       |                       |                      |                        |                  |
| User Input: Overflow Weir (Dropbox with Flat o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r Sloped Grate and        | Outlet Pipe OR Rec     | tangular/Trapezoid                                                                                                                                                    | al Weir and No Out               | tlet Pipe)            |                       | Calculated Parame    | eters for Overflow W   | Veir             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not Selected              | Not Selected           |                                                                                                                                                                       |                                  |                       | I                     | Not Selected         | Not Selected           |                  |
| Overflow Weir Front Edge Height, Ho =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                      |                        | ft (relative to basin b                                                                                                                                               | ottom at Stage = 0 f             |                       | e Upper Edge, $H_t$ = | 1.00                 |                        | feet             |
| Overflow Weir Front Edge Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.00                      |                        | feet                                                                                                                                                                  |                                  |                       | /eir Slope Length =   | 2.50                 |                        | feet             |
| Overflow Weir Grate Slope =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                      |                        | H:V                                                                                                                                                                   |                                  | rate Open Area / 10   |                       | 2.22                 |                        |                  |
| Horiz. Length of Weir Sides =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.50                      |                        | feet                                                                                                                                                                  |                                  | verflow Grate Open    |                       | 6.96                 | <b></b>                | ft <sup>2</sup>  |
| Overflow Grate Type =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Type C Grate              |                        |                                                                                                                                                                       | Ĺ                                | Overflow Grate Ope    | n Area w/ Debris =    | 3.48                 |                        | _ft <sup>2</sup> |
| Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50%                       |                        | %                                                                                                                                                                     |                                  |                       |                       |                      |                        |                  |
| User Input: Outlet Pipe w/ Flow Restriction Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Circular Orifice R       | estrictor Plate or R   | ectangular Orifice)                                                                                                                                                   |                                  | Cz                    | alculated Parameters  | s for Outlet Pine w/ | / Flow Restriction P   | late             |
| oser input. Oddet ripe wy now restriction ride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not Selected              | Not Selected           |                                                                                                                                                                       |                                  | <u></u>               |                       | Not Selected         | Not Selected           | 1                |
| Depth to Invert of Outlet Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.10                      |                        | ft (distance below ba                                                                                                                                                 | asin bottom at Stage             | = 0 ft) O             | utlet Orifice Area =  | 3.14                 |                        | ft <sup>2</sup>  |
| Circular Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.00                     |                        | inches                                                                                                                                                                |                                  |                       | t Orifice Centroid =  | 1.00                 |                        | feet             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | J                      | 1                                                                                                                                                                     | Half-Cent                        | tral Angle of Restric | tor Plate on Pipe =   | N/A                  | N/A                    | radians          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                                                                                                                                                       |                                  |                       |                       |                      | •                      | -                |
| User Input: Emergency Spillway (Rectangular or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Trapezoidal)              |                        |                                                                                                                                                                       |                                  |                       |                       | Calculated Parame    | ters for Spillway      |                  |
| Spillway Invert Stage=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.20                      | ft (relative to basin  | n bottom at Stage =                                                                                                                                                   | - 0 ft)                          | Spillway D            | esign Flow Depth=     | 0.77                 | feet                   |                  |
| Spillway Crest Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.00                      | feet                   |                                                                                                                                                                       |                                  | -                     | Top of Freeboard =    | 1.97<br>0.15         | feet                   |                  |
| Spillway End Slopes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | H:V                    |                                                                                                                                                                       | Basin Area at Top of Freeboard = |                       |                       |                      | acres                  |                  |
| Freeboard above Max Water Surface =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                      | feet                   |                                                                                                                                                                       |                                  | Basin Volume at T     | Top of Freeboard =    | 0.22                 | acre-ft                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                                                                                                                                                       |                                  |                       |                       |                      |                        |                  |
| Routed Hydrograph Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The user can over         | ride the default CUI   | HP hydrographs and                                                                                                                                                    | d runoff volumes by              | y entering new valu   | ies in the Inflow Hyd | drographs table (Ci  | olumns W through ,     | AF).             |
| Design Storm Return Period =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WQCV                      | EURV                   | 2 Year                                                                                                                                                                | 5 Year                           | 10 Year               | 25 Year               | 50 Year              | 100 Year               | 500 Year         |
| One-Hour Rainfall Depth (in) = $C(H) = C(H) = C(H) + C(H)$ | N/A                       | N/A                    | 1.19                                                                                                                                                                  | 1.50                             | 1.75                  | 2.00                  | 2.25                 | 2.52                   | 3.14             |
| CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.082<br>N/A              | 0.344<br>N/A           | 0.300                                                                                                                                                                 | 0.409                            | 0.501 0.501           | 0.613                 | 0.710                | 0.828                  | 1.075<br>1.075   |
| CUHP Predevelopment Peak Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A<br>N/A                | N/A<br>N/A             | 0.500                                                                                                                                                                 | 1.6                              | 2.4                   | 4.2                   | 5.3                  | 6.6                    | 9.2              |
| OPTIONAL Override Predevelopment Peak Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                       | N/A                    |                                                                                                                                                                       |                                  |                       |                       |                      |                        |                  |
| Predevelopment Unit Peak Flow, q (cfs/acre) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                       | N/A                    | 0.12                                                                                                                                                                  | 0.33                             | 0.49                  | 0.88                  | 1.10                 | 1.37                   | 1.91             |
| Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>0.1                | N/A<br>34.4            | 5.6                                                                                                                                                                   | 7.6                              | 9.0                   | 11.2                  | 13.0                 | 15.4                   | 19.8             |
| Ratio Peak Outflow to Predevelopment Q =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                       | N/A                    | 3.6         5.8         7.3         10.6         12.4         14.7         19.4           N/A         3.7         3.1         2.5         2.4         2.2         2.1 |                                  |                       |                       |                      |                        |                  |
| Structure Controlling Flow =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Filtration Media          | Overflow Weir 1        | Spillway                                                                                                                                                              | Spillway                         | Spillway              | Spillway              | Spillway             | Spillway               | Spillway         |
| Max Velocity through Grate 1 (fps) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                       | 0.16                   | 0.45                                                                                                                                                                  | 0.6                              | 0.8                   | 1.1                   | 1.2                  | 1.4                    | 1.8              |
| Max Velocity through Grate 2 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>N/A</u><br>12          | N/A<br>12              | N/A<br>14                                                                                                                                                             | <u>N/A</u><br>14                 | N/A<br>13             | N/A<br>13             | N/A<br>12            | N/A<br>12              | N/A<br>11        |
| Time to Drain 99% of Inflow Volume (hours) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                        | 12                     | 15                                                                                                                                                                    | 15                               | 15                    | 15                    | 12                   | 12                     | 11               |
| Maximum Ponding Depth (ft) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.95                      | 1.14                   | 1.28                                                                                                                                                                  | 1.36                             | 1.41                  | 1.50                  | 1.55                 | 1.60                   | 1.70             |
| Area at Maximum Ponding Depth (acres) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.11                      | 0.12                   | 0.12                                                                                                                                                                  | 0.13                             | 0.13                  | 0.13                  | 0.13                 | 0.14                   | 0.14             |
| Maximum Volume Stored (acre-ft) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.082                     | 0.102                  | 0.119                                                                                                                                                                 | 0.130                            | 0.137                 | 0.148                 | 0.154                | 0.162                  | 0.175            |



## DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:


Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate progra

| Interview         IDE         URON (rd)         Dave (rd)         2 Year (rd)         3 Year (rd)         3 Year (rd)         3 Year (rd)         000 re)         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <t< th=""><th></th><th>The user can o</th><th>verride the calcu</th><th>lated inflow hyd</th><th>lrographs from t</th><th>his workbook wi</th><th>th inflow hydrog</th><th>raphs developed</th><th>l in a separate pr</th><th>-</th><th></th></t<> |               | The user can o | verride the calcu | lated inflow hyd | lrographs from t | his workbook wi | th inflow hydrog | raphs developed | l in a separate pr | -              |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-------------------|------------------|------------------|-----------------|------------------|-----------------|--------------------|----------------|----------------|
| 5.00 min         0.000         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                  |               | SOURCE         | CUHP              | CUHP             | CUHP             | CUHP            | CUHP             | CUHP            | CUHP               | CUHP           | CUHP           |
| 0.050         0.03         0.03         0.03         0.03         0.03         0.03         0.03           0.1500         0.03         0.00         0.06         0.06         0.06         0.06         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01 <td< th=""><th>Time Interval</th><th>TIME</th><th>WQCV [cfs]</th><th>EURV [cfs]</th><th>2 Year [cfs]</th><th>5 Year [cfs]</th><th>10 Year [cfs]</th><th>25 Year [cfs]</th><th>50 Year [cfs]</th><th>100 Year [cfs]</th><th>500 Year [cfs]</th></td<>                          | Time Interval | TIME           | WQCV [cfs]        | EURV [cfs]       | 2 Year [cfs]     | 5 Year [cfs]    | 10 Year [cfs]    | 25 Year [cfs]   | 50 Year [cfs]      | 100 Year [cfs] | 500 Year [cfs] |
| 0.100         0.00         0.00         0.00         0.00         0.00         0.00         0.00           0.500         0.00         0.00         0.00         2.8         2.97         3.54         2.18         2.52         2.72         3.3           0.500         0.00         0.00         4.88         6.44         5.82         2.67         3.54           0.500         0.00         0.00         4.88         6.44         7.11         1.122         1.29         1.540         1.81           0.500         0.00         0.00         4.88         6.44         7.11         1.122         1.29         1.540         1.85           0.4500         0.00         0.00         4.86         4.77         7.32         8.45         1.030         1.85         2.01         3.65         5.50         1.50         0.00         0.00         1.55         2.10         2.25         1.51         1.50         1.50         0.00         0.00         1.55         2.04         2.45         2.45         2.46         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15                                                                                                                                                                                                                                                                                                       | 5.00 min      | 0:00:00        | 0.00              | 0.00             | 0.00             | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
| 0.1000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         1.11         0.11           0.2000         0.000         0.000         2.29         2.57         3.54         2.18         2.52         2.73         3.5           0.500         0.000         0.000         4.88         6.44         8.38         4.744         5.52         6.01         1.81           0.500         0.000         0.00         4.88         6.44         7.64         1.82         1.92         1.540         1.81           0.500         0.00         0.00         2.22         4.31         5.13         6.60         5.33         1.60         5.32         1.10         1.85         2.10         2.451         5.41         4.87         1.82         1.93         1.95         1.00         2.62         4.31         4.87         1.84         1.87         1.85         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                              |               | 0:05:00        | 0.00              | 0.00             | 0.00             | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
| 10:500         0.00         0.00         0.07         1.10         1.38         0.13         1.11         1.11           0.2500         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.02         0.00         0.02         0.00         0.02         0.00         0.02         0.00         0.02         0.00         0.01         0.02         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <t< td=""><td></td><td>0:10:00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.24</td></t<>                                                                                                                                                |               | 0:10:00        |                   |                  |                  |                 |                  |                 |                    |                | 0.24           |
| 0.2500         0.00         0.00         0.57         7.8         9.00         10.79         12.60         14.10         18.           0.3500         0.00         0.00         4.83         6.44         7.41         11.22         12.79         13.84         17.           0.4500         0.00         0.00         4.83         6.32         10.22         17.79         13.84         17.1           0.4500         0.00         0.00         1.22         4.31         5.19         8.60         9.92         12.10         15.1           0.5500         0.00         0.00         1.28         2.33         1.04         4.89         5.72         7.44         1.9           1.0500         0.00         0.00         1.28         2.10         2.42         4.10         4.72         3.34         4.64         4.72         3.34         4.64         4.72         3.34         4.64         4.72         3.34         4.64         1.83         1.23         1.64         1.35         1.55         1.56         1.51         2.26         2.35         3.43         1.41         1.42         1.35         1.52         1.53         1.56         1.56         1.56         2.26                                                                                                                                                                                                                                                                                                            |               | 0:15:00        |                   |                  |                  |                 |                  |                 |                    |                | 1.55           |
| 0.3000         0.00         6.577         7.58         9.00         11.27         12.40         14.10         18           0.4500         0.00         0.00         4.08         5.53         6.52         11.21         11.29         15.40         15           0.4500         0.00         0.00         2.24         3.51         5.19         6.63         6.52         10.20         13.6           0.5500         0.00         0.00         2.20         3.64         5.91         6.63         6.52         13.0         4.87         5.72         7.34         9.3           1.0500         0.00         0.00         1.55         2.10         2.62         4.10         4.76         6.38         8.8         1.11         1.90         0.00         0.00         1.55         2.13         1.30         1.65         1.33         1.57         1.24         1.35         1.35         1.21         1.90         1.93         1.32         1.92         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35 <td< td=""><td></td><td>0:20:00</td><td>0.00</td><td>0.00</td><td>2.29</td><td>2.97</td><td>3.54</td><td>2.18</td><td>2.52</td><td>2.72</td><td>3.55</td></td<>                                                                                                                                       |               | 0:20:00        | 0.00              | 0.00             | 2.29             | 2.97            | 3.54             | 2.18            | 2.52               | 2.72           | 3.55           |
| 0.3500         0.00         4.80         6.44         7.61         11.22         12.39         15.40         13.79           0.4500         0.00         0.00         2.22         4.31         5.39         6.60         9.33         12.10         13.79           0.5500         0.00         0.00         2.261         1.31         4.31         5.91         6.63         6.82         10.10           1.0500         0.00         0.00         1.86         2.33         3.40         4.85         4.33         6.33         6.37         4.73         6.6           1.1500         0.00         0.00         1.95         2.10         2.62         4.10         4.76         6.6           1.1500         0.00         0.00         0.99         1.51         2.09         2.85         2.85         3.38           1.2500         0.00         0.00         0.72         1.14         1.86         1.21         1.13         1.21         1.33         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         <                                                                                                                                                                                                                                                                                                           |               | 0:25:00        | 0.00              | 0.00             | 4.83             | 6.74            | 8.38             | 4.74            | 5.52               | 6.01           | 8.41           |
| 0.40.00         0.00         0.00         1.22         1.12         1.179         1.134         1.179           0.5500         0.00         0.00         2.26         3.61         4.27         7.32         8.45         1.02.0         1.3           0.5500         0.00         0.00         2.26         3.24         4.51         4.63         8.57         1.02           1.0500         0.00         0.00         1.55         2.10         2.62         4.10         4.76         6.38         8.           1.1500         0.00         0.00         1.55         2.10         2.25         3.16         3.47         4.77         6.           1.1500         0.00         0.00         0.00         0.00         1.18         1.47         1.44         1.35         1.56         1.33           1.2500         0.00         0.00         0.77         1.11         1.47         1.34         1.31         1.35         1.35         1.32         1.95         1.31         1.95         1.31         1.95         1.31         1.95         1.31         1.95         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.                                                                                                                                                                                                                                                                                                               |               |                | 0.00              | 0.00             | 5.57             | 7.58            | 9.00             | 10.79           | 12.60              | 14.10          | 18.32          |
| 0.45.00         0.00         0.00         2.22         4.31         5.19         6.60         9.31         12.10         131           0.55.00         0.00         0.00         2.20         3.62         3.64         5.91         6.63         6.52         101           1.90.00         0.00         0.00         1.86         2.23         3.10         4.85         5.77         7.23         8.63         6.53         6.53         6.51           1.90.00         0.00         0.00         1.55         2.10         2.62         4.10         4.76         4.77         7.67           1.90.00         0.00         0.00         0.00         1.20         1.76         2.25         3.16         3.77         4.73         1.6           1.15.00         0.00         0.00         0.27         1.11         1.12         1.37         1.34         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31         1.31 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>19.81</td></t<>                                                                                                                                                                                     |               | -              |                   |                  |                  |                 |                  |                 |                    |                | 19.81          |
| 0.5000         0.00         0.00         2.01         3.24         4.27         7.32         8.45         10.20         11           0.5500         0.00         0.00         1.86         2.33         3.10         4.89         5.57         7.34         9.           1.1900         0.00         0.00         1.55         2.20         2.62         3.16         3.67         4.73         6.           1.1900         0.00         0.00         0.00         1.55         2.20         2.45         2.25         3.16         4.72         1.93         2.25         2.33         3.         1.250         0.00         0.00         0.00         1.16         1.42         1.19         1.19         2.25         2.33         3.           1.2500         0.00         0.00         0.00         0.02         1.16         1.42         1.12         1.14         1.13         1.13         1.1         1.40         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                     |               |                |                   |                  |                  |                 |                  |                 |                    |                | 17.78          |
| 0.55:00         0.00         0.00         1.00         1.00         0.00         1.15         2.13         3.10         4.89         5.67         7.34         9.           1.05:00         0.00         0.00         1.20         1.76         2.25         3.16         3.67         6.73         6.3           1.15:00         0.00         0.00         1.20         1.76         2.25         3.16         3.67         6.73         6.3           1.20:00         0.00         0.00         0.88         1.34         1.87         1.94         2.25         2.53         3.3           1.20:00         0.00         0.00         0.00         0.75         0.88         1.21         1.66         1.42         1.85         1.56         1.52           1.35:00         0.00         0.00         0.00         0.75         0.88         1.21         1.66         1.21         1.11         1.14         1.35         1.55         1.55         1.35         1.55         1.35         1.55         1.35         1.55         1.35         1.55         1.35         1.55         1.35         1.55         1.55         1.35         1.55         1.35         1.55         1.35         1                                                                                                                                                                                                                                                                                                       |               |                |                   |                  |                  |                 |                  |                 |                    |                | 15.50          |
| 1:00:00         0.00         1.86         2.31         3.10         4.89         5.67         7.34         9.2           1:10:00         0.00         0.00         1.26         2.10         2.62         4.10         4.76         6.33         8.8           1:10:00         0.00         0.00         0.99         1.51         2.09         2.45         2.285         2.48         4.4           1:26:00         0.00         0.00         0.00         0.29         1.51         1.60         1.55         1.56         1.56         1.21           1:37:00         0.00         0.00         0.00         0.77         1.11         1.22         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>13.08<br/>10.94</td></t<>                                                                                                                                                                   |               | -              |                   |                  |                  |                 |                  |                 |                    |                | 13.08<br>10.94 |
| 195:00         0.00         1.55         2.10         2.62         4.10         4.76         6.33         PE           115:00         0.00         0.00         0.09         1.35         2.09         2.45         2.25         3.16         3.67         4.73         6.6           125:00         0.00         0.00         0.02         1.23         1.40         1.42         1.87         1.34         1.31         1.31         1.31         1.33         1.35         1.36         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.01         1.11         1.24         1.35         1.34         1.31         1.1           1.4500         0.00         0.00         0.07         0.88         1.14         0.88         1.11         1.04         1.1         1.14         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.11         1.14         1.11         1.14         1.11         1.14         1.11         1.14         1.11         1.15         1.15         1.15         1.15         1.11         1.14<                                                                                                                                                                                                                                                                                       |               |                |                   |                  |                  |                 |                  |                 |                    |                | 9.44           |
| 11000         0.00         1.00         1.76         2.25         3.16         3.67         4.73         6.6           11500         0.00         0.00         0.99         1.51         2.90         2.45         2.85         3.44         4.4           12500         0.00         0.00         0.02         1.66         1.42         1.94         2.25         2.53         3.3           12500         0.00         0.00         0.00         0.77         1.16         1.42         1.35         1.55         1.55         2.2           13500         0.00         0.00         0.77         1.11         1.29         1.17         1.34         1.3         1.1           14500         0.00         0.00         0.77         0.88         1.14         0.98         1.11         1.05         0.77         1.3         1.05         0.77         1.3         1.05         0.77         1.3         1.05         0.60         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.07         0.33         0.41         0.46         0.47         0.02         1.150         0.1         0.11                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 8.21           |
| 11500         0.00         0.00         0.88         1.14         1.87         1.84         2.25         2.3         3.3           12500         0.00         0.00         0.88         1.33         1.60         1.82         1.89         1.91         2.2           13700         0.00         0.00         0.77         1.11         1.29         1.17         1.34         1.11         1.11           1.4500         0.00         0.00         0.77         1.11         1.06         1.21         1.15         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.15         1.11         1.14         1.14         1.14         1.14         1.14         1.14         1.14         1.15         1.15         1.15         1.15         1.15 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.12</td>                                                                                                                                                                 |               | -              |                   |                  |                  |                 |                  |                 |                    |                | 6.12           |
| 1.2500         0.00         0.00         0.02         1.23         1.60         1.62         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         <                                                                                                                                                                                                                                                           |               | 1:15:00        |                   |                  |                  |                 |                  |                 |                    |                | 4.56           |
| 13000         0.00         0.00         0.07         1.11         1.42         1.33         1.56         1.56           13500         0.00         0.00         0.77         1.11         1.29         1.17         1.34         1.31         1.15           146000         0.00         0.00         0.75         0.89         1.14         0.98         1.11         1.04         1.15         1.11           15500         0.00         0.00         0.75         0.89         1.14         0.99         1.05         0.97         1.3           15500         0.00         0.00         0.55         0.72         0.92         0.88         0.99         0.94         1.3           20500         0.00         0.00         0.23         0.72         0.22         0.28         0.31         0.30         0.44         0.45         0.07         0.31         0.41         0.46         0.45         0.07         0.32         0.28         0.31         0.30         0.44         0.44         0.16         0.31         0.31         0.41         0.41         0.41         0.41         0.41         0.41         0.41         0.41         0.41         0.41         0.41         0.41                                                                                                                                                                                                                                                                                                            |               | 1:20:00        | 0.00              | 0.00             | 0.88             | 1.34            | 1.87             | 1.94            | 2.25               | 2.53           | 3.32           |
| 13500         0.00         0.00         0.77         1.11         1.28         1.17         1.34         1.31           1.4500         0.00         0.00         0.75         0.89         1.14         0.89         1.11         1.14           1.5500         0.00         0.00         0.75         0.89         1.14         0.99         1.05         1.2           1.5500         0.00         0.00         0.55         0.72         0.92         0.88         0.99         0.94         1.2           2.0500         0.00         0.00         0.25         0.33         0.43         0.44         0.46         0.45         0.2           2.1500         0.00         0.00         0.25         0.33         0.43         0.41         0.46         0.45         0.0           2.2500         0.00         0.00         0.01         0.22         0.22         0.23         0.31         0.31         0.12         0.12         0.13         0.12         0.12         0.13         0.12         0.12         0.13         0.14         0.14         0.14         0.14         0.14         0.14         0.14         0.14         0.14         0.14         0.14         0.14 <td></td> <td>1:25:00</td> <td>0.00</td> <td>0.00</td> <td>0.82</td> <td>1.23</td> <td>1.60</td> <td>1.62</td> <td>1.89</td> <td>1.93</td> <td>2.54</td>                                                                                                                                                          |               | 1:25:00        | 0.00              | 0.00             | 0.82             | 1.23            | 1.60             | 1.62            | 1.89               | 1.93           | 2.54           |
| 1-96.00         0.00         0.075         0.88         1.14         0.98         1.11         1.94         1.1           155:00         0.00         0.00         0.75         0.89         1.14         0.98         1.11         1.04         1.1           155:00         0.00         0.00         0.53         0.77         1.03         0.90         1.02         0.95         1.1           200:00         0.00         0.00         0.53         0.77         1.03         0.90         1.02         0.95         1.1           205:00         0.00         0.00         0.33         0.49         0.83         0.61         0.68         0.65         0.0           215:00         0.00         0.00         0.01         0.17         0.22         0.23         0.28         0.31         0.30         0.01           215:00         0.00         0.00         0.01         0.01         0.11         0.14         0.04         0.06         0.00         0.02         0.33         0.04         0.04         0.04         0.06         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 </td <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td>0.79</td> <td>1.16</td> <td>1.42</td> <td>1.35</td> <td>1.56</td> <td>1.56</td> <td>2.05</td>                                                                                                                                                          |               |                | 0.00              | 0.00             | 0.79             | 1.16            | 1.42             | 1.35            | 1.56               | 1.56           | 2.05           |
| 14500         0.00         0.07         0.89         1.14         0.88         1.11         1.04         1.1           15500         0.00         0.00         0.53         0.77         1.03         0.90         1.05         0.97         1.1           200:00         0.00         0.00         0.55         0.72         0.92         0.88         0.99         0.94         1.1           205:00         0.00         0.00         0.25         0.33         0.43         0.41         0.46         0.45         0.0           215:00         0.00         0.00         0.00         0.11         0.14         0.19         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.72</td>                                                                                                                                                                               |               | -              |                   |                  |                  |                 |                  |                 |                    |                | 1.72           |
| 150:00         0.00         0.07         0.82         1.10         0.93         1.05         0.97         1.1           250:00         0.00         0.05         0.77         1.03         0.90         1.02         0.95         1.1           200:00         0.00         0.05         0.72         0.92         0.88         0.99         0.94         1.1           205:00         0.00         0.00         0.23         0.43         0.41         0.46         0.45         0.1           215:00         0.00         0.00         0.17         0.22         0.29         0.28         0.31         0.33         0.16           225:00         0.00         0.00         0.07         0.09         0.12         0.12         0.12         0.13         0.12         0.0           235:00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.00         0.00 <td></td> <td>1.50</td>                                                                                                                                                                                                 |               |                |                   |                  |                  |                 |                  |                 |                    |                | 1.50           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 1.35           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 1.26           |
| 2205:00         0.00         0.00         0.28         0.49         0.63         0.61         0.68         0.65         0.00           2110:00         0.00         0.00         0.17         0.22         0.29         0.28         0.31         0.30         0.43           2120:00         0.00         0.00         0.11         0.14         0.19         0.18         0.28         0.31         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.13         0.12         0.12         0.13         0.12         0.11         0.11         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 1.23           |
| 2:10:00         0.00         0.00         0.01         0.22         0.23         0.43         0.41         0.46         0.45         0.0           2:15:00         0.00         0.00         0.11         0.14         0.19         0.28         0.31         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.31         0.12         0.12         0.12         0.13         0.12         0.12         0.13         0.12         0.12         0.33         0.40         0.04         0.06         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         <                                                                                                                                                                                                                                                                   |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.84           |
| 21:500         0.00         0.00         0.17         0.22         0.28         0.31         0.30         0.32           22:000         0.00         0.00         0.11         0.14         0.19         0.18         0.28         0.19         0.12           2:3:00         0.00         0.00         0.04         0.05         0.07         0.07         0.08         0.08         0.08           2:3:00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.58           |
| 22:0:00         0.00         0.01         0.14         0.19         0.18         0.20         0.19         0.2           2:25:00         0.00         0.00         0.04         0.05         0.77         0.07         0.08         0.08         0.6           2:35:00         0.00         0.00         0.02         0.03         0.03         0.04         0.04         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.39</td></t<>                                                                                                                                                               |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.39           |
| 2:3:0:00         0.00         0.04         0.05         0.07         0.08         0.08         0.0           2:35:00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                            |               | 2:20:00        |                   |                  |                  |                 |                  |                 |                    |                | 0.25           |
| 2:35:00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                    |               | 2:25:00        | 0.00              | 0.00             | 0.07             | 0.09            | 0.12             | 0.12            | 0.13               | 0.12           | 0.16           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                | 0.00              | 0.00             | 0.04             | 0.05            | 0.07             | 0.07            | 0.08               | 0.08           | 0.10           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.05           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | -              |                   |                  |                  |                 |                  |                 |                    |                | 0.02           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | -              |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| 3:25:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                    |               | -              |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| 3:30:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           3:35:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                            |               | 3:20:00        |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| 3:35:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           3:40:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                            |               | 3:25:00        | 0.00              | 0.00             | 0.00             | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                | 0.00              | 0.00             | 0.00             | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
| 3:45:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           3:50:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                            |               |                |                   |                  | 0.00             |                 | 0.00             |                 |                    |                | 0.00           |
| 3:50:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           3:55:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                            |               | -              |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| 3:55:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| 4:00:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| 4:05:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| 4:10:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 4:10:00        | 0.00              | 0.00             |                  |                 | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 4:35:00        | 0.00              | 0.00             | 0.00             | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 5:00:00        | 0.00              | 0.00             | 0.00             | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| 5:20:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| 5:30:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           5:35:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                            |               | 5:20:00        | 0.00              | 0.00             |                  | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
| 5:35:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           5:40:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                            |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| 5:40:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
| 5:45:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                    |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 5:45:00        | 0.00              | 0.00             | 0.00             | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                |                   |                  |                  |                 |                  |                 |                    |                | 0.00           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                | 0.00              | 0.00             | 0.00             | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |

## Cathedral Rock Church Rain Garden A Spillway





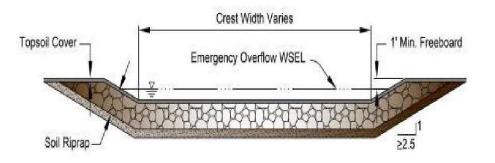
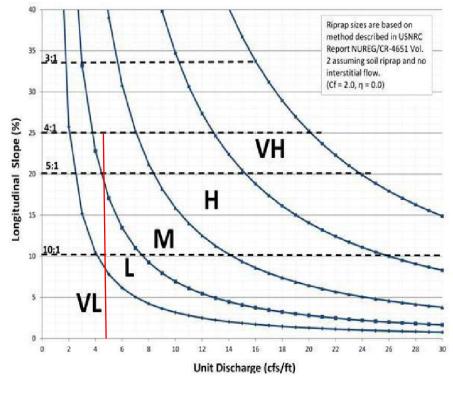
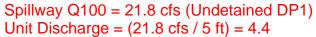





Figure 13-12d. Riprap Types for Emergency Spillway Protection





May 2014

City of Colorado Springs Drainage Criteria Manual, Volume 1 13-35

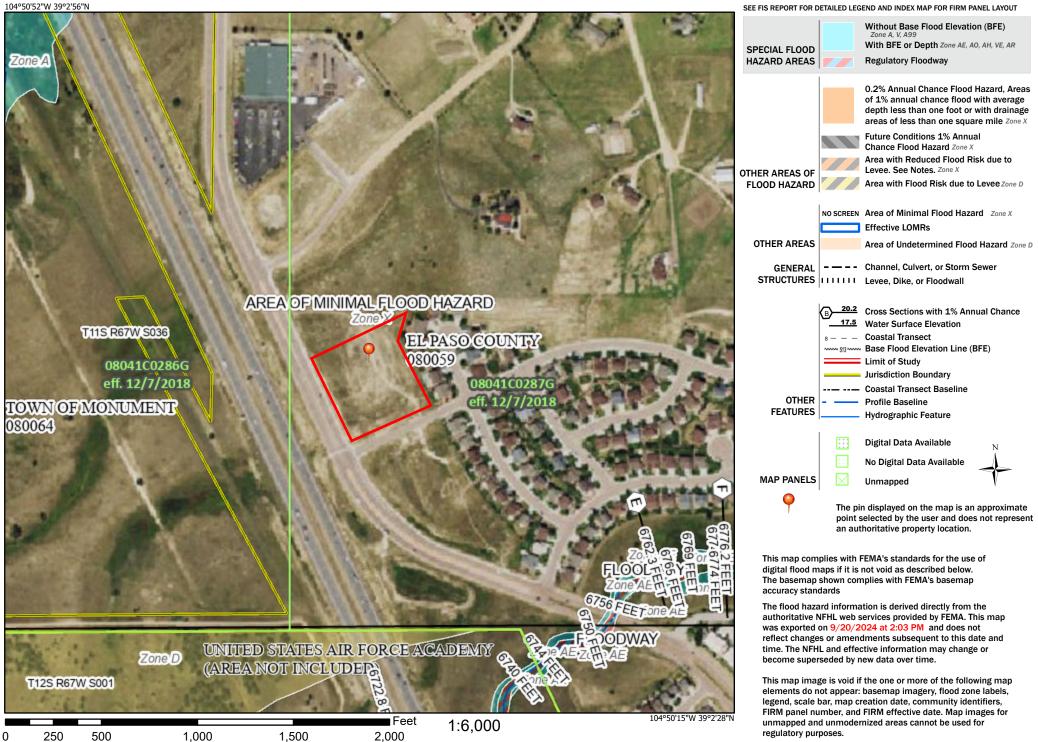
Storage

# **APPENDIX E**

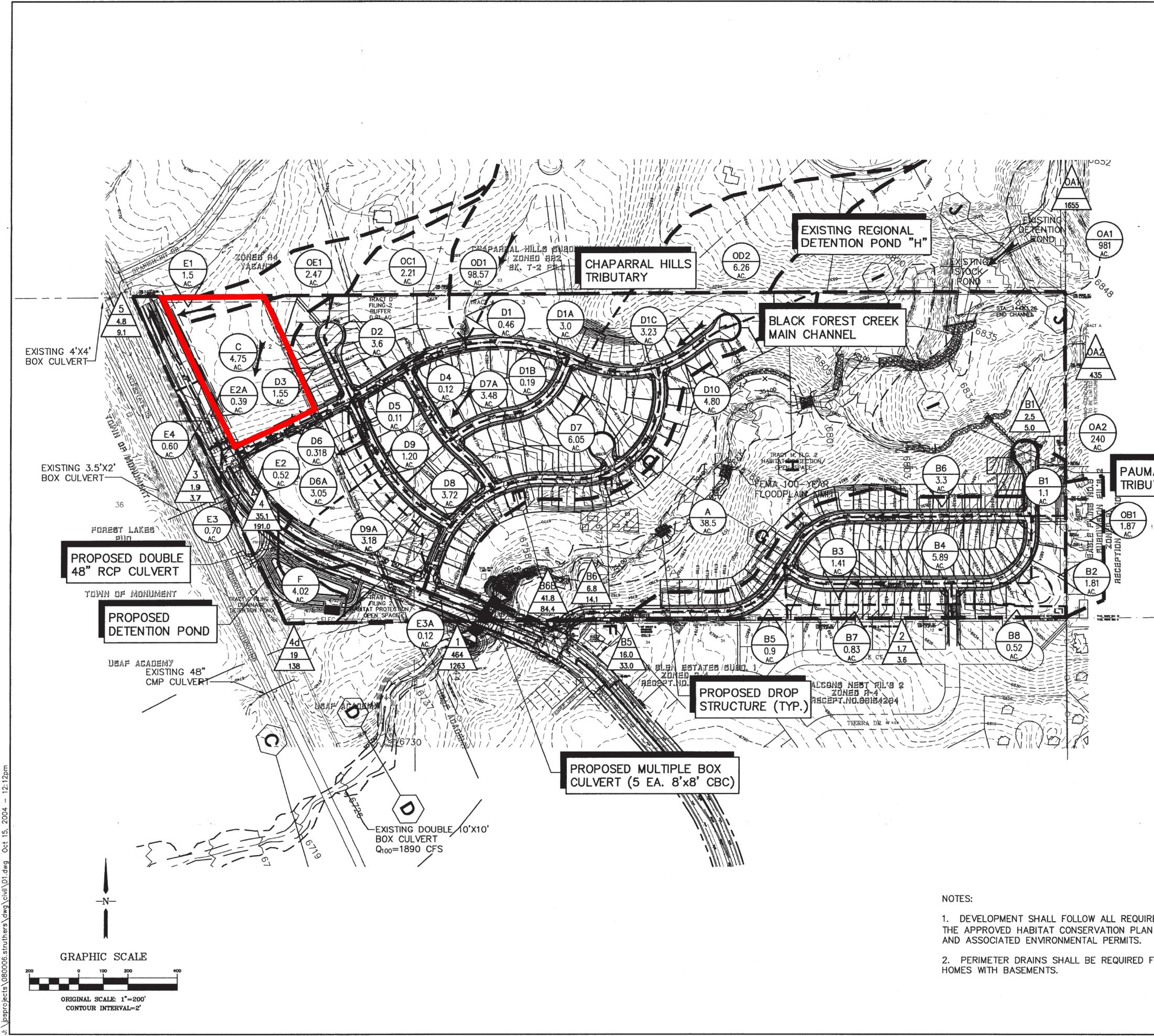
**RAIN GARDEN COST ESTIMATE** 

|                                     | CATHEDRAL ROCK CHURCH<br>TRACT A, STRUTHERS RANCH FILING NO. 2<br>ENGINEER'S COST ESTIMATE<br>DRAINAGE IMPROVEMENTS - WATER QUALITY RAIN GARDEN                                                                                                                                                                                                                                                                                                                                        |                    |      |          |          |  |  |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|----------|----------|--|--|--|--|--|
| Item                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quantity           | Unit | Unit     | Total    |  |  |  |  |  |
| No.                                 | No. Cost Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |      |          |          |  |  |  |  |  |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |      | (\$\$\$) | (\$\$\$) |  |  |  |  |  |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |      |          |          |  |  |  |  |  |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |      |          |          |  |  |  |  |  |
|                                     | PRIVATE DRAINAGE FACILITIES (NON-REIMBURSABLE)                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |      |          |          |  |  |  |  |  |
|                                     | Earthwork                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150                | CY   | \$5      | \$750    |  |  |  |  |  |
|                                     | Aggregate Base Course (Access Ramp)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                 | CY   | \$66     | \$990    |  |  |  |  |  |
|                                     | Rain Garden Infiltration Media                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 355                | CY   | \$20     | \$7,100  |  |  |  |  |  |
|                                     | Concrete Forebay                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                  | LS   | \$1,800  | \$1,800  |  |  |  |  |  |
|                                     | 24" RCP Outlet Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                  | LF   | \$98     | \$490    |  |  |  |  |  |
|                                     | Outlet Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                  | LS   | \$5,000  | \$5,000  |  |  |  |  |  |
|                                     | Buried Soil Riprap Spillway                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                  | TN   | \$104    | \$624    |  |  |  |  |  |
|                                     | SUBTOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |      |          | \$16,754 |  |  |  |  |  |
|                                     | Engineering @ 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |      |          | \$1,675  |  |  |  |  |  |
|                                     | Contingency @ 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |      |          | \$838    |  |  |  |  |  |
|                                     | TOTAL (NON-REIMBURSABLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |      |          | \$19,267 |  |  |  |  |  |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |      |          |          |  |  |  |  |  |
|                                     | Note: This estimate does not include costs for street improvements and general civil costs (curb & gutter, crosspans, retaining walls, etc.)                                                                                                                                                                                                                                                                                                                                           |                    |      |          |          |  |  |  |  |  |
| the engin<br>prices an<br>as design | estimate submitted herein is based on time-honored practices within the construction indus<br>ever does not control the cost of labor, materials, equipment or a contractor's method of dete<br>d competitive bidding practices or market conditions. The estimate represents our best judg<br>professionals using current information available at the time of the preparation. The engine<br>e that proposals, bids and/or construction costs will not vary from this cost estimate. | ermining<br>gement | h    |          |          |  |  |  |  |  |

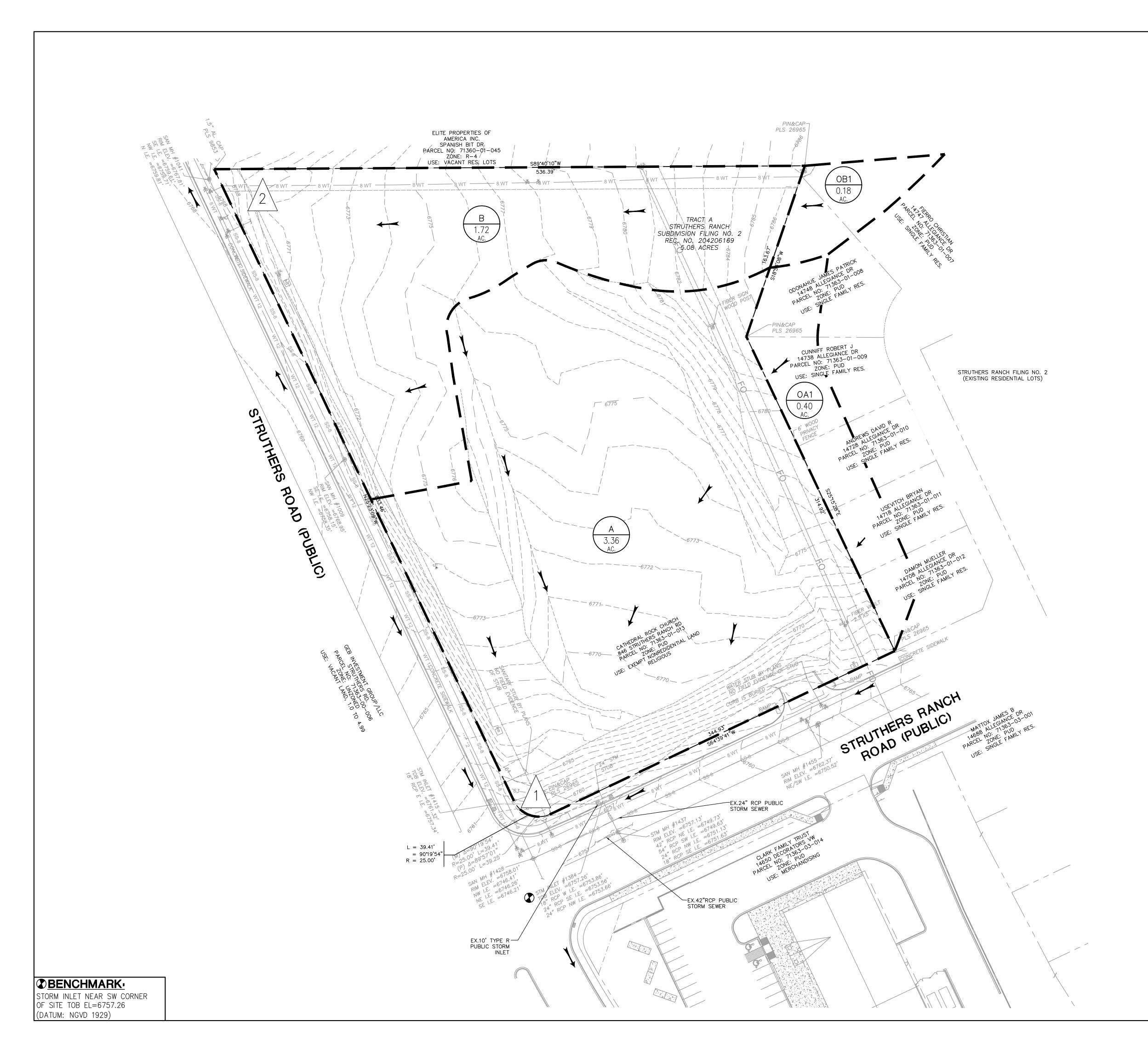
#### JPS ENGINEERING

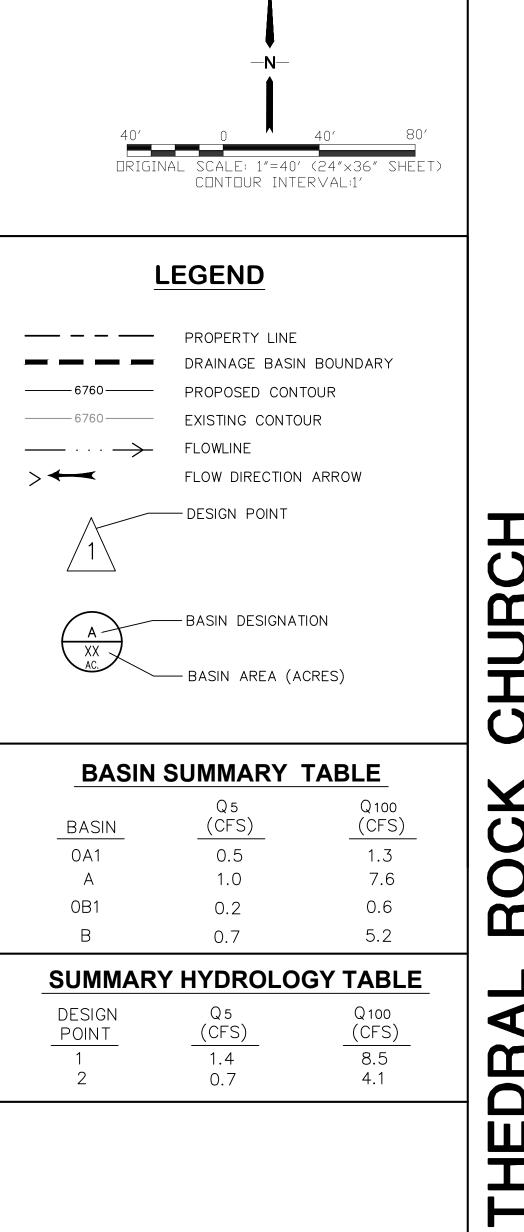

APPENDIX F

FIGURES


# National Flood Hazard Layer FIRMette

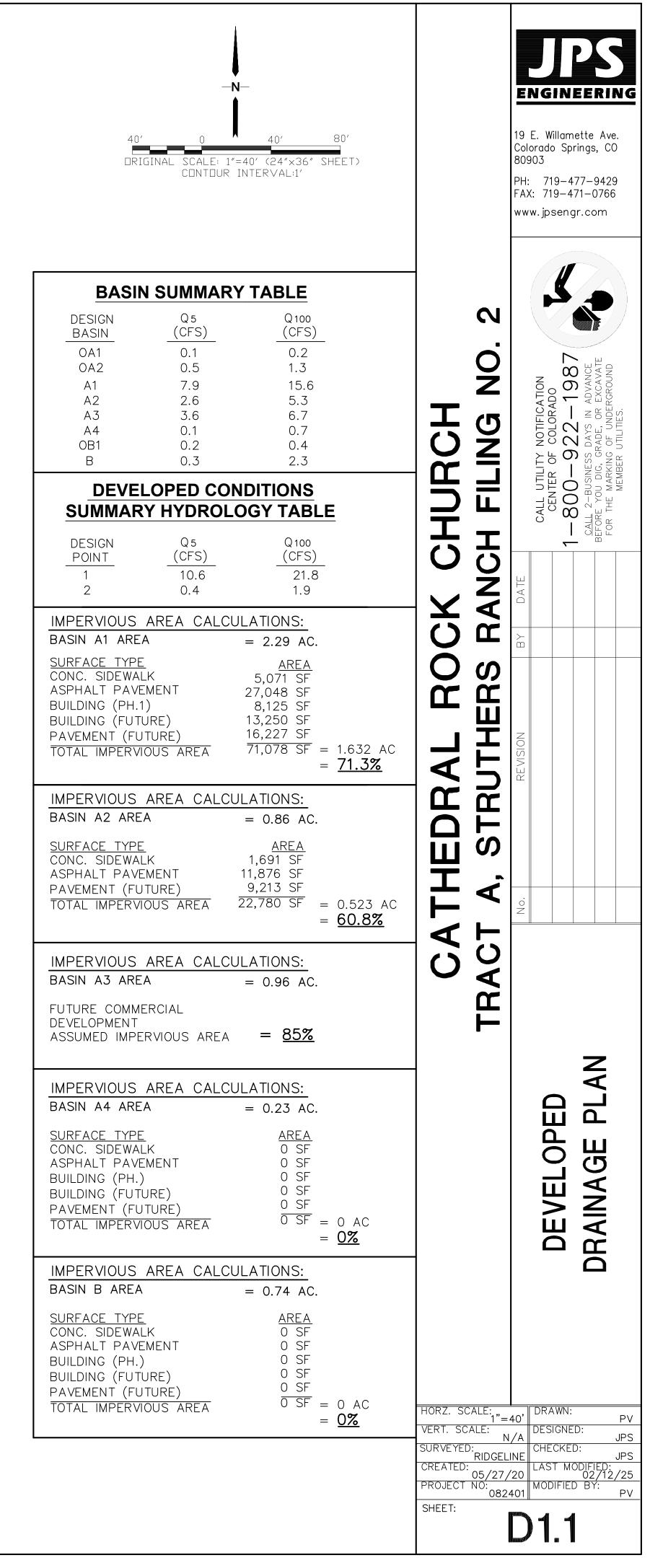



## Legend




Basemap Imagery Source: USGS National Map 2023




| FOR ALL                                         |                                                                                       | HORZ. SCALE:<br>1 <sup>1</sup> =20<br>VERT. SCALE:<br>N/<br>SURVEYED:<br>PINNAC<br>CREATED:<br>9/11/0<br>PROJECT NO:<br>0800<br>SHEET: | A JPS<br>LE CHECKED: JPS                                                                                                             |
|-------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| REMENTS OF                                      |                                                                                       |                                                                                                                                        | DEVELOPED                                                                                                                            |
|                                                 |                                                                                       | S                                                                                                                                      | D DRAINAGE                                                                                                                           |
|                                                 |                                                                                       | STRUTH                                                                                                                                 | AGE PLAN                                                                                                                             |
|                                                 | · · · · · · · · · · · · · · · · · · ·                                                 | ERS                                                                                                                                    | No.<br>E EPC COMMENTS<br>F EPC COMMENTS<br>C EPC COMMENTS<br>A EPC COMMENTS<br>A EPC COMMENTS                                        |
| IA VALLEY<br>JTARY CHANNEL                      |                                                                                       | RANCF                                                                                                                                  | REVISION<br>COMMENTS<br>COMMENTS<br>COMMENTS<br>COMMENTS<br>SUBMITTAL TO EPC                                                         |
|                                                 |                                                                                       | CH SUF                                                                                                                                 | BY         DATE           JPS         4/8/04           JPS         5/7/04           JPS         5/25/04           JPS         9/2/04 |
| A<br>0.86<br>AC.                                | - BASIN AREA (ACRES)                                                                  | UBDIV                                                                                                                                  |                                                                                                                                      |
| 1<br>20.6<br>50.3                               | -DESIGN POINT<br>-Q₅ (cfs)<br>-Q100(cfs)<br>-BASIN DESIGNATION                        | /ISION                                                                                                                                 |                                                                                                                                      |
|                                                 | PROPOSED DROP STRUCTURE                                                               |                                                                                                                                        | TAX. 719-471-0700                                                                                                                    |
| 6520<br>→ · · · · · · · · · · · · · · · · · · · | MINOR BASIN BOUNDARY<br>EXISTING CONTOUR<br>FLOWLINE<br>PROPOSED FLOW DIRECTION ARROW |                                                                                                                                        | 19 E. Willamette Ave.<br>Colorado Springs, CO<br>80903<br>PH: 719-477-9429<br>FAX: 719-471-0766                                      |
| <u>LE</u>                                       | EGEND<br>FILING LIMITS<br>MAJOR BASIN BOUNDARY                                        |                                                                                                                                        | JPS<br>ENGINEERING                                                                                                                   |





| CHURCH<br>H FILING NO. 2                                                                                                                                                                               | CALL UTILITY NOTIFICATION<br>CALL UTILITY NOTIFICATION<br>TO COLORADO<br>CENTER OF COLORADO<br>CENTER OF COLORADO<br>DEFORE VOLORADO<br>CENTER OF COLORADO<br>CENTER OF COLORADO<br>CALL 2-BUSINESS DAYS IN ADVANCE<br>CALL 2-BUSINESS DAYS IN ADVANCE<br>FOR THE MARKING OF UNDERGROUND<br>MEMBER UTILITES. |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| JK C<br>JANC                                                                                                                                                                                           | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| EDRAL ROCK CHU<br>STRUTHERS RANCH FI                                                                                                                                                                   | REVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| H (                                                                                                                                                                                                    | o Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| TRACT                                                                                                                                                                                                  | EXISTING CONDITIONS<br>DRAINAGE PLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| PRZ. SCALE:<br>1"=40'<br>RT. SCALE:<br>N/A<br>RVEYED:<br>RIDGELINE<br>EATED:<br>05/27/20<br>OJECT NO:<br>082401<br>DRAWN:<br>PV<br>DESIGNED:<br>JPS<br>CHECKED:<br>09/24/24<br>MODIFIED BY:<br>PV<br>1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |



