FINAL DRAINAGE PLAN

CREEKSIDE SOUTH AT LORSON RANCH FILING NO. 1

JUNE 15, 2020 REV 9/10/2020

SF-20-017

Prepared for:

Lorson, LLC 212 N. Wahsatch Ave, Suite 301 Colorado Springs, Colorado 80903 (719) 635-3200

Prepared by:

Core Engineering Group, LLC 15004 1ST Avenue South Burnsville, MN 55306 (719) 570-1100

Project No. 100.051

TABLE OF CONTENTS

ENGINEER'S STATEMENT	1
OWNER'S STATEMENT	1
FLOODPLAIN STATEMENT	1
1.0 LOCATION and DESCRIPTION	2
2.0 DRAINAGE CRITERIA	3
3.0 EXISTING HYDROLOGICAL CONDITIONS	3
4.0 DEVELOPED HYDROLOGICAL CONDITIONS	5
5.0 HYDRAULIC SUMMARY	
6.0 DETENTION and WATER QUALITY PONDS	
7.0 DRAINAGE and BRIDGE FEES	
8.0 4 STEP PROCESS	
9.0 CONCLUSIONS	21
10.0 REFERENCES	21

APPENDIX A

VICINITY MAP, SCS SOILS INFORMATION, FEMA FIRM MAP

APPENDIX B

HYDROLOGY CALCULATIONS

APPENDIX C

HYDRAULIC CALCULATIONS

APPENDIX D

POND CALCULATIONS

APPENDIX E

STORM SEWER SCHEMATIC and HYDRAFLOW STORM SEWER CALCS

BACK POCKET

EXISTING CONDITIONS DRAINAGE MAP WQ AREA MAP OVERALL DEVELOPED CONDITIONS DRAINAGE MAP DEVELOPED CONDITIONS DRAINAGE MAPS

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts,

errors, or omissions on my part in preparing this repo	
Richard L. Schindler, P.E. #33997 For and on Behalf of Core Engineering Group, LLC	II-ZO-ZOZOG
OWNER'S STATEMENT	arannon and a second a s

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

11/20/20

Lorson, LLC

By Jeff Mark	
Title	
Manager	
Address 212 N. Wahsatch Avenue, Suite 301, Colorado Springs, CO 80903	

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development. within a designated floodplain as loca December 7, 2018 and modified shown on Flood Insurance Rate Map Panel No 08041 C095 A FIRM Exhibit) by modified per LOMR Case No. 19-08-0605R (See Ap

Richard L. Schindler, #33997

Date

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volume 1 and 2, and Engineering Criteria Manual, As Amended.

		APPROVED — Engineering Department	
Jennifer Irvine County Engineer/ECM Administrator	Date	02/01/2021 1:25:52 PM dsdnijkamp EPC Planning & Community Development Department	
Conditions:			

1.0 LOCATION and DESCRIPTION

Creekside South at Lorson Ranch is located south of the East Tributary of Jimmy Camp Creek (Etrib). The site is located on approximately 64.257 acres of vacant land. Future plans are to develop this site into single-family residential developments. Also included in this report and plan is the proposed layout for Creekside South at Lorson Ranch which is located east and south of the East Tributary of Jimmy Camp Creek. The land is currently owned by Lorson LLC or its nominees for Lorson Ranch.

The site is located in the North 1/2 of Section 23, Township 15 South and Range 65 West of the 6th Principal Meridian. The property is bounded on the north and west by the East Tributary of Jimmy Camp Creek, on the northeast by Lorson Ranch East Filing #4, single-family residential development and on the south by the Lorson Ranch South Boundary and Peaceful Valley Lake Estates. For reference, a vicinity map is included in Appendix A of this report.

Conformance with applicable Drainage Basin Planning Studies

There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson & Company in 1987, and is referenced in this report. The only major drainage improvements for this study area according to the 1987 Wilson study was the reconstruction of the East Tributary of Jimmy Camp Creek (East Tributary). In 2014, a portion of the East Tributary was reconstructed from Fontaine Boulevard south 2,800 feet in accordance with the 1987 study, which is located within this project. This section of the East Tributary included a trapezoidal channel section with 6:1 side slopes and a sand bottom. On March 9, 2015, a new DBPS for Jimmy Camp Creek and the East Tributary was completed by Kiowa Engineering. The Kiowa Engineering DBPS for Jimmy Camp Creek has not been adopted by El Paso County but is allowed for concept design. The concept design for the remaining portions of the Etrib include an armoring concept and full spectrum detention pond requirements. The Kiowa DBPS did not calculate drainage fees so current El Paso County drainage/bridge fees apply to this development. Per the Kiowa DBPS concept, the preferred channel improvements include selective channel armoring on outer bends and a low flow channel for the East Tributary. Channel improvements in the East Tributary are potentially reimbursable against drainage fees for future development but need to be processed through the county process for reimbursement. Kiowa Engineering Corporation is nearing completion of construction plans for the East Tributary of Jimmy Camp Creek from the south property line of Lorson Ranch north and east to the channel improvements constructed by Lorson Ranch in 2014.

Conformance with Lorson Ranch MDDP1 by Pentacor Engineering

Lorson Ranch MDDP1 (October 26, 2006) includes this project area and the East Tributary. This PDR conforms to the MDDP1 for Lorson Ranch and is referenced in this report. The major infrastructure referenced in the MDDP includes the Etrib armoring from the south property line of Lorson Ranch east and north to the previously reconstructed Etrib completed in 2014 and construction of several on-site detention ponds. Kiowa Engineering is currently designing this section of the East Tributary and is included in the appendix of this report. Detention/WQ Pond E2 (existing pond) will be increased in volume and will include a full spectrum outlet structure and emergency overflow structure. Proposed Detention/WQ pond J is shown as a full spectrum detention /WQ pond in the MDDP and will be designed/constructed because the runoff has been redirected to Pond J reducing the number of ponds Lorson Ranch will have to maintain.

Reconstruction of the East Tributary of Jimmy Camp Creek

The Kiowa DBPS shows the East Tributary to be protected using selective armoring (soil rip rap) at the outside stream bends (500' minimum radius) and a stabilized low flow channel. The East Tributary has been divided into three different sections, south, middle, and north. The first section (south) is from the south property line east and north to design point ET-3 (see drainage map) and is roughly 2,900 feet in length. The south section is within this preliminary plan area and will be armored in accordance with the Kiowa DBPS and is currently being designed by Kiowa Engineering and construction will begin in

2020. The 100-year flow rate for design is 5,500cfs for the south section. The middle section is from Design Point ET-3 north 2,800 feet to the future extension of Fontaine Boulevard. The channel for this section was reconstructed and stabilized in 2014 in accordance with the 1987 Wilson DBPS. LOMR Case No. 14-08-0534P was approved by FEMA for this middle section. The northern section is from Fontaine Boulevard and extends north to the north property line. The north section was constructed in 2018 as part of Lorson Ranch East Filing No. 1 improvements. The channel consists of a stabilized low flow channel and soil rip rap armored outer bends and followup LOMR Case No. 19-08-0605P has been approved. The 100-year flow rate for design is from FEMA FIS data and is from 4,400cfs to 4,750cfs for this section. The low flow channel is sized using 10% of the 100-yr FEMA flow rates and is from 440cfs to 475cfs.

Creekside South at Lorson Ranch is located within the *"Jimmy Camp Creek Drainage Basin"*, which is a fee basin in El Paso County.

2.0 DRAINAGE CRITERIA

The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November, 1991, the El Paso County "Engineering Criteria Manual", Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, and the UDFCD "Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 for inlet sizing and full spectrum ponds. No deviations from these published criteria are requested for this site. The proposed improvements to the Lorson Ranch Development will be in substantial compliance with the "Jimmy Camp Creek Drainage Basin Planning Study", prepared by Kiowa Engineering Corp., Colorado Springs, CO.

The Rational Method as outlined in Section 6.3.0 of the May 2014 "Drainage Criteria Manual" and in Section 3.2.8.F of the El Paso County "Engineering Criteria Manual" was used for basins less than 130 acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County indicates if detention is necessary, Full Spectrum Detention will be included in the design, based on this criteria, Full Spectrum Detention will be required for this development

3.0 EXISTING HYDROLOGICAL CONDITIONS

The site is currently undeveloped with native vegetation (grass with no shrubs) and slopes in a northerly direction to the East Tributary of Jimmy Camp Creek.

The Soil Conservation Service (SCS) classifies the soils within the Creekside South at Lorson Ranch site and the offsite drainage basin boundary as; 3-Ascalon Sandy Loam (2%), 10-Blendon Sandy Loam (1%), 52-Manzanst clay loam (11%), 54-Midway Clay Loam (10%), 56-Nelson-Tassel fine sandy loams (29%), 104-Vona Sandy Loam (12%), 108-Wiley silt loam (35%). The sandy loams are considered hydrologic soil group A/B soils with moderate to moderately rapid permeability. The clay loams are considered hydrologic soil group C/D soils with slow permeability. All of these soils are susceptible to erosion by wind and water, have low bearing strength, moderate to high shrink-swell potential, and high frost heave potential. The sandy loams are comprised of the hydrologic soil group B with moderate to moderately rapid permeability. The Clay loams are considered hydrologic soil group C and D soils with slow permeability. The clay loams are susceptible to erosion by wind and water, have low bearing strength, moderate to high shrink-swell potential, and high frost heave potential. The sandy loams are comprised of the hydrologic soil group B with moderate to moderately rapid permeability. The Manzanst and Midway clay loams are considered hydrologic soil group C and D soils with slow permeability. The clay loam soils are susceptible to erosion by wind and water, have low bearing strength, moderate to high shrink-swell potential, and high frost heave potential (see table 3.1 below). The clay loams are difficult to vegetate. The clay loams are difficult to vegetate. These soils can be mitigated easily by limiting their use as topsoil.

Soil	Hydro. Group	Shrink/Swell Potential	Permeability	Surface Runoff Potential	Erosion Hazard
3-Ascalon Sandy Loam (2%)	В	Moderate	Moderate	Slow to Medium	Moderate
10-Blendon Sandy Loam (1%)	В	Low	Moderately Rapid	Slow	Moderate
52-Manzanst Clay Loam (11%)	С	Moderate to high	Slow	Medium	Moderate
54-Midway Clay Loam (10%)	D	High	Slow	Medium to Rapid	Moderate to High
56-Nelson-Tassel sandy loam (29%)	В	Moderate	Moderately Rapid	Slow	Moderate
104-Vona Sandy Loam (12%)	С	Moderate to High	Slow	Medium	Moderate
108-Vona Sandy Loam (35%)	В	Moderate	Moderate	Medium	Moderate

 Table 3.1: SCS Soils Survey.

Excerpts from the SCS "Soil Survey of El Paso County Area, Colorado" are provided in *Appendix A* for further reference.

For the purpose of preparing hydrologic calculations for this report, the soil of each basin was weighted and used for runoff calculations.

Portions of the site are located within the delineated 100-year floodplain of the East Tributary of Jimmy Camp Creek per the Federal Emergency Management Agency (FEMA) Flood Rate Insurance Map (FIRM) number 08041C0957 G, effective December 7, 2018 [2]. Floodplain along the East Tributary of Jimmy Camp Creek was modified per LOMR 19-08-0605P effective May 4, 2020 (see appendix). Floodplain designations include Zone AE and Zone X within the property boundary. A portion of this map is provided in *Appendix A* for reference. A CLOMR for the creek construction by Kiowa Engineering will not be necessary since BFE's are not changing.

Basin OS-E2 (overall offsite basin)

This 43.18 acre offsite basin contributes flow from the Peaceful valley Lake Estates subdivision overland onto Basin EX-E2. It is estimated that the flow to Basin EX-E2 will be 18.0cfs and 78.4cfs for 5-year and 100-year events respectively.

Basin EX-E2

This 31.81 acre basin includes areas between the east tributary of Jimmy Camp Creek, Lorson Ranch East Filing #4 and the South Boundary of Lorson Ranch. Under existing conditions, this area flows northwesterly to the East Tributary and contributes 10.7cfs and 56.9cfs for 5-year and 100-year events respectively.

Design Point 3 (OS-E2.1 & EX-E2)

This 74.99 acre design point is comprised of Basins OS-E2.1 and EX-E2; runoff flows in a northwesterly direction to the East Tributary of Jimmy Camp Creek and generates a peak flow of 23.9cfs and 112.0cfs for 5-year and 100-year events respectively

Basin OS-I1.1

This 15.54 acre offsite basin contributes flow from the Peaceful Valley Lake Estates subdivision overland onto Basin EX-I1. It is estimated that the flow to Basin EX-I1 will be 6.7cfs and 30.7cfs for the 5-year and 100-year storm events respectively.

Basin EX-I1

This 12.78 acre basin includes that area between the east tributary of Jimmy Camp Creek and the South Boundary of Lorson Ranch. Under existing conditions, this area flows northwesterly to the East Tributary and contributes 3.4cfs and 22.7cfs for 5-year and 100-year events respectively.

Design Point 2 (OS-I1.1 & EX-I1)

This 28.32 acre design point is comprised of Basins OS-I1.1 and EX-I1; runoff flows in a northwesterly direction to the East Tributary of Jimmy Camp Creek and generates a peak flow of 8.7cfs and 46.1cfs for 5-year and 100-year events respectively

Basin OS-J1.1

This 11.55 acre offsite basin contributes flow from the Peaceful Valley Lake Estates subdivision and a portion of Apple Ridge Subdivision overland onto Basin EX-J1. It is estimated that the flow to Basin EX-J1 will be 5.7cfs and 23.0cfs for the 5-year and 100-year storm events respectively.

Basin EX-J1

This 15.29 acre basin includes that area between the east tributary of Jimmy Camp Creek and the South Boundary of Lorson Ranch. Under existing conditions, this area flows northwesterly to the East Tributary and contributes 6.9cfs and 31.6cfs for 5-year and 100-year events respectively.

Design Point 1 (OS-J1.1 & EX-J1)

This 26.84 acre design point is comprised of Basins OS-J1.1 and EX-J1; runoff flows in a northwesterly direction to the East Tributary of Jimmy Camp Creek and generates a peak flow of 10.8cfs and 46.6cfs for 5-year and 100-year events respectively

4.0 DEVELOPED HYDROLOGICAL CONDITIONS

Hydrology for the **Creekside South at Lorson Ranch** drainage report was based on the City of Colorado Springs/El Paso County Drainage Criteria. Sub-basins that lie within this project were determined and the 5-year and 100-year peak discharges for the developed conditions have been presented in this report. Based on these flows, storm inlets will be added when the street capacity is exceeded.

This site can be broken into two soil types. The westerly portion is Soil Type A/B and a small area on the east edge consists of Soil Type C/D. See Appendix A for SCS Soils Map.

The time of concentration for each basin and sub-basins were developed by using overland, ditch, street and pipe flow components. The maximum overland flow length for developed conditions was limited to 100 feet. Travel time velocities ranged from 2 to 6 feet per second. The travel time calculations are included in the back of this report. Runoff coefficients for the various land uses were obtained from the City of Colorado Springs/El Paso County Drainage Criteria Manual.

Drainage concepts for each of the basins are briefly discussed as follow:

Basin E7

This basin consists of runoff from residential development. Runoff will be directed east to Trappe Drive and then routed north via existing curb and gutter to a low point in Trappe Drive where it will be collected by an existing Type R inlet constructed as part of Lorson Ranch East Filing No. 4. Basin E7 was included in the final drainage report for Lorson Ranch East Filing No. 4. The developed flow from this 0.60-acre basin E7 is 1.2cfs for the 5-year storm event and 2.7cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin E8.1

This basin consists of runoff from 2.5-acre rural residential land and open space areas under the existing electric powerline. Runoff will be directed northwesterly to Horton Drive, then routed west in Horton Drive to Design Point 16 via curb and gutter where it will be collected by a Type R inlet. The developed flow from this 4.00-acre is 4.0cfs for the 5-year storm event and 12.9cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin OS-E2.1

This offsite basin consists of runoff from existing offsite 5.0-acre rural residential development located south of Lorson Ranch. These flows will be directed north through onsite basin E8.2 to Design Point 14 and intercepted by a storm sewer system in Horton Drive. The developed flow from this 36.66-acre basin OS-E2.1 is 15.3cfs for the 5-year storm event and 68.1cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin E8.2

This basin consists of runoff from 2.5-acre rural residential development land. These flows will be directed north to Design Point 14 and intercepted by a storm sewer system in Horton Drive, and will also intercept overland runoff from basin OS-E2.1 The developed flow from this 1.70-acre basin E8.2 is 1.2cfs for the 5-year storm event and 4.9cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin OS-E2.2

This offsite basin consists of runoff from offsite existing 5.0-acre rural residential development. These flows will be directed north through onsite basin E8.3 to Horton Drive, then southwesterly in Horton Drive to Design Point 15 and a Type R inlet. The developed flow from this 6.52-acre basin is 3.4cfs for the 5-year storm event and 15.4cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin E8.3

This basin consists of runoff from on-site 2.5-acre lots and urban residential development. These flows will be directed north to Horton Drive, then southwesterly in Horton Drive to Design Point 15 via curb and gutter where it will be collected by a Type R inlet, and will also intercept overland runoff from basin OS-E2.2 The developed flow from this 5.37-acre basin E8.3 is 4.7cfs for the 5-year storm event and 14.3cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin E8.4

This basin consists of runoff from the urban residential development. These flows will be directed south to Horton Drive, then southeasterly in Horton Drive to Shunka Lane at Design Point 17. The developed flow from this 1.20-acre basin is 1.9cfs for the 5-year storm event and 4.3cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin E8.5

This basin consists of runoff from the urban residential development. These flows will be directed north and east to Shunka Lane, then northerly in Shunka Lane and Luneth Drive to Design Point 19 via curb and gutter where it will be collected by a Type R inlet. The developed flow from this 4.27-acre basin is

6.8cfs for the 5-year storm event and 15.0cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin E8.6

This basin consists of runoff from the urban residential development. These flows will be directed west to Akela Lane, then northerly in Akela Lane and west in Luneth Drive to Design Point 19 via curb and gutter where it will be collected by a Type R inlet. The developed flow from this 1.02-acre basin is 2.0cfs for the 5-year storm event and 4.5cfs for the 100-year storm event. See the appendix for detailed calculations

Basin E8.7

This basin consists of runoff from the urban residential development. These flows will be directed east to Akela Lane, then northerly in Akela Lane and west in Luneth Drive to Design Point 19 via curb and gutter where it will be collected by a Type R inlet. The developed flow from this 0.71-acre basin is 1.4cfs for the 5-year storm event and 3.1cfs for the 100-year storm event. See the appendix for detailed calculations

Basin E8.8

This basin consists of runoff from the urban residential development. These flows will be directed south to Horton Drive and west to Shunka Lane, then northerly in Shunka Lane and west in Luneth Drive to Design Point 19 via curb and gutter where it will be collected by a Type R inlet. The developed flow from this 2.43-acre basin is 4.1cfs for the 5-year storm event and 9.1cfs for the 100-year storm event. See the appendix for detailed calculations

Basin E8.9

This basin consists of runoff from the urban residential development. These flows will be directed south to Luneth Drive, then southeasterly in Luneth Drive to Design Point 20 via curb and gutter where it will be collected by Type R inlets. The developed flow from this 1.52-acre basin is 2.4cfs for the 5-year storm event and 5.4cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin E8.10

This basin consists of runoff from the urban residential development. These flows will be directed south to Luneth Drive, then southwesterly in Luneth Drive to Design Point 20 via curb and gutter where it will be collected by Type R inlets. The developed flow from this 0.38-acre basin is 0.9cfs for the 5-year storm event and 2.0cfs for the 100-year storm event. See the appendix for detailed calculations

Basin E8.11

This basin consists of runoff from backyards of urban residential development and open space areas draining directly to Pond E2. The developed flow from this 3.99-acre basin is 3.2cfs for the 5-year storm event and 12.2cfs for the 100-year storm event. See the appendix for detailed calculations

Basin OS-I1.1

This offsite basin consists of runoff from offsite existing 5.0-acre rural residential development. These flows will be directed north through onsite basin 11.2 to Design Point 4 and intercepted by a Type R inlet in Horton Drive. The developed flow from this 15.54-acre basin is 6.7cfs for the 5-year storm event and 30.7cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin I1.2

This basin consists of runoff from 2.5-acre rural residential development. These flows will be directed north to Design Point 4 and intercepted by a Type R inlet in Horton Drive, and will also intercept runoff from basin OS-I1.1 The developed flow from this 6.23-acre basin is 5.8cfs for the 5-year storm event and 17.6cfs for the 100-year storm event. See the appendix for detailed calculations

Overall Basin I1

This overall basin combines basins OS-I1.1 and I1.2 and develops peak flow from offsite 5.0-acre and 2.5-acre rural residential development. These flows will be directed north to Design Point 4 and intercepted by a Type R inlet in Horton Drive. The developed flow from this overall 21.77-acre basin is 11.1cfs for the 5-year storm event and 43.6cfs for the 100-year storm event. See the appendix for detailed calculations

Basin I2

This basin consists of runoff from the urban residential development. These flows will be directed south to Horton Drive, then east to Nakai Lane, then northerly in Nakai Lane and west in Luneth Drive to Design Point 5 via curb and gutter where it will be collected by a Type R inlet on a continuous grade. The developed flow from this 1.12-acre basin is 1.9cfs for the 5-year storm event and 4.2cfs for the 100-year storm event. See the appendix for detailed calculations

Basin 13

This basin consists of runoff from the urban residential development. These flows will be directed south to Horton Drive, then westerly and southwesterly in Horton Drive to Nakai Lane. The developed flow from this 1.01-acre basin is 1.7cfs for the 5-year storm event and 3.8cfs for the 100-year storm event. See the appendix for detailed calculations.

<u>Basin I4</u>

This basin consists of runoff from the urban residential development. These flows will be directed north to Luneth Drive and west to Nakai Lane, then northerly in Nakai Lane and then continues west in Luneth Drive to Design Point 5 via curb and gutter where it will be collected by a Type R inlet on a continuous grade. The developed flow from this 3.45-acre basin is 5.6cfs for the 5-year storm event and 12.3cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin I5

This basin consists of runoff from the urban residential development. These flows will be directed north to Luneth Drive, runoff then continues west in Luneth Drive to Design Point 7 via curb and gutter where it will be collected by a Type R inlet on a continuous grade. The developed flow from this 1.44-acre basin is 2.7cfs for the 5-year storm event and 5.8cfs for the 100-year storm event. See the appendix for detailed calculations

Basin I6

This basin consists of runoff from the urban residential development. These flows will be directed northerly and westerly to Luneth Drive, runoff continues westerly and southerly in Luneth Drive to Design Point 8 via curb and gutter where it will be collected by a sump Type R inlet. The developed flow from this 1.18-acre basin is 2.0cfs for the 5-year storm event and 4.4cfs for the 100-year storm event. See the appendix for detailed calculations.

<u>Basin I7</u>

This basin consists of runoff from the street and the urban residential development. These flows will be directed southerly to Luneth Drive, then westerly and southwesterly in Luneth Drive to via curb and gutter where it will be collected by a Type R inlet. The developed flow from this 2.01-acre basin I7 is 2.8cfs for the 5-year storm event and 6.2cfs for the 100-year storm event. See the appendix for detailed calculations.

<u>Basin I8</u>

This basin consists of runoff from backyards of urban residential development and open space areas draining directly to pond J. The developed flow from this 2.44-acre basin is 1.9cfs for the 5-year storm event and 6.6cfs for the 100-year storm event. See the appendix for detailed calculations

Overall Basin I

This basin contains a total area of 34.42 acres and runoff is routed to proposed detention pond J via overland, street and storm system from the I1 to I8 offsite and onsite sub-basins. The peak developed flow from basin is 24.3cfs for the 5-year storm event and 73.8cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin OS-J1.1

This offsite basin consists of runoff from existing offsite 5.0-acre rural residential development. These flows will be directed north through onsite basin J1.2 to Design Point 1 and intercepted by a storm sewer in Horton Drive. The developed flow from this 11.55-acre basin is 5.7cfs for the 5-year storm event and 23.0cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin J1.2

This basin consists of runoff from 2.5-acre rural residential development. These flows will be directed north to Design Point 1 and intercepted by a storm sewer system in Horton Drive, and will also intercept runoff from basin OS-J1.1 The developed flow from this 2.01-acre basin is 1.3cfs for the 5-year storm event and 5.3cfs for the 100-year storm event. See the appendix for detailed calculations

Overall Basin J1

This overall basin combines basins OS-J1.1 and J1.2 and develops peak flow from existing offsite 5.0acre and 2.5-acre rural residential development. These flows will be directed north to Design Point 1 and intercepted by a storm sewer system in Horton Drive. The developed flow from this 13.56-acre basin is 6.4cfs for the 5-year storm event and 26.0cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin J2

This basin consists of runoff from the street and urban residential development. These flows will be directed north to Horton Drive, runoff then continues west in Luneth Drive to Design Point 2 via curb and gutter where it will be collected by a Type R inlet on a continuous grade. The developed flow from this 0.36-acre basin is 1.1cfs for the 5-year storm event and 2.2cfs for the 100-year storm event. See the appendix for detailed calculations

Basin J3

This basin consists of runoff from the urban residential development, open space, and offsite urban development. These flows will be directed north to Luneth Drive, then easterly and northeasterly in Luneth Drive to Design Point 2a. The developed flow from this 3.40-acre basin is 5.5cfs for the 5-year storm event and 12.0cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin J4

This basin consists of runoff from the urban residential development and open space. These flows will be directed southerly to Horton Drive and westerly to Luneth Drive, runoff continues westerly in Horton Drive and northeasterly in Luneth Drive to Design Point 3a via curb and gutter where it will be collected by a Type R inlet. The developed flow from this 1.93-acre basin is 3.4cfs for the 5-year storm event and 7.4cfs for the 100-year storm event. See the appendix for detailed calculations.

<u>Basin J5</u>

This basin consists of runoff from the urban residential development. These flows will be directed south to Luneth Drive, then easterly and northeasterly in Luneth Drive to Design Point 10 via curb and gutter where it will be collected by sump Type R inlets. The developed flow from this 1.93-acre basin is 3.1cfs for the 5-year storm event and 6.9cfs for the 100-year storm event. See the appendix for detailed calculations.

Overall Basin J

This basin contains a total area of 21.18 acres and runoff is routed to proposed detention pond J via overland, street and storm system from the J1 to the J5 offsite and onsite sub-basins. The peak

developed flow from this overall basin is 15.4cfs for the 5-year storm event and 45.9cfs for the 100-year storm event. See the appendix for detailed calculations.

Combined Basins I & J

These basins contain a total area of 55.60 acres and runoff is routed to proposed detention Pond J via overland, street and storm system from the I1 to I8 offsite and onsite sub-basins. The peak developed flow from this overall basin is 38.7cfs for the 5-year storm event and 116.7cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin K1

This basin consists of runoff from open space areas that sheet flows directly to the East Tributary. The developed flow from this 2.65-acre basin is 1.2cfs for the 5-year storm event and 6.6cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin K2

This basin consists of runoff from open space areas that sheet flows directly to the East Tributary. The developed flow from this 2.14-acre basin is 1.2cfs for the 5-year storm event and 6.8cfs for the 100-year storm event. See the appendix for detailed calculations.

<u>Basin L</u>

This basin consists of runoff from open space areas that sheet flows directly to the East Tributary. The developed flow from this 2.30-acre basin is 1.4cfs for the 5-year storm event and 7.8cfs for the 100-year storm event. See the appendix for detailed calculations.

Basin M

This basin consists of runoff from open space areas that sheet flows directly to the East Tributary. The developed flow from this 0.48-acre basin is 0.3cfs for the 5-year storm event and 1.5cfs for the 100-year storm event. See the appendix for detailed calculations.

See the Developed Conditions Hydrology Calculations in the back of this report and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

5.0 HYDRAULIC SUMMARY

The sizing of the hydraulic structures and detentions ponds were prepared by using the *StormSewers* and *Hydrographs* computer software programs developed by Intellisolve, which conforms to the methods outlined in the "City of Colorado Springs/El Paso County Drainage Criteria Manual". Street capacities and Inlets were sized by Denver Urban Drainage's excel spreadsheet UD-Inlet.

It is the intent of this drainage report to use the proposed curb/gutter and storm sewer in the streets to convey runoff to detention and water quality ponds then to the East Tributary of Jimmy Camp Creek. Inlet size and location are preliminary only as shown on the storm sewer layout in the appendix. See Appendix C for detailed hydraulic calculations and the storm sewer model.

	Residen	tial Local	Residentia	al Collector	Principa	I Arterial
Street Slope	5-year	100-year	5-year	100-year	5-year	100-year
0.5%	6.3	26.4	9.7	29.3	9.5	28.5
0.6%	6.9	28.9	10.6	32.1	10.4	31.2
0.7%	7.5	31.2	11.5	34.6	11.2	33.7
0.8%	8.0	33.4	12.3	37.0	12.0	36.0
0.9%	8.5	35.4	13.0	39.3	12.7	38.2
1.0%	9.0	37.3	13.7	41.4	13.4	40.2

Table 1: Street Capacities (100-year capacity is only ½ of street)

1.4%	10.5	44.1	16.2	49.0	15.9	47.6
1.8%	12.0	45.4	18.4	50.4	18.0	50.4
2.2%	13.3	42.8	19.4	47.5	19.5	47.5
2.6%	14.4	40.7	18.5	45.1	18.5	45.1
3.0%	15.5	39.0	17.7	43.2	17.8	43.2
3.5%	16.7	37.2	16.9	41.3	17.0	41.3
4.0%	17.9	35.7	16.2	39.7	16.3	29.7
4.5%	19.0	34.5	15.7	38.3	15.7	38.3
5.0%	19.9	33.4	15.2	37.1	15.2	37.1

Note: all flows are in cfs (cubic feet per second)

Design Point 1

Design Point 1 is the overland runoff flowing north to a 24" storm sewer (end section) located at Horton Drive. The total flow into the storm sewer system is 6.4cfs and 26.0cfs in the 5/100-year storm events. The Hw/D is 1.69' for a 24" RCP end section in the 100-year storm event.

Design Point 2

Design Point 2 is located in Horton Drive (south side) east of Luneth Drive

<u>(5-year storm)</u> Tributary Basins: J1 Upstream flowby: 0cfs	Inlet/MH Number: Inlet J2 Total Street Flow: 1.1cfs		
Flow Intercepted: 1.1cfs Inlet Size: 5' type R	Flow Bypassed: 0		
Street Capacity: Street slope = 2%, capa	city = 12cfs, capacity okay		
(100-year storm) Tributary Basins: J1 Upstream flowby: 0cfs	Inlet/MH Number: Inlet J2 Total Street Flow: 2.2cfs		
Flow Intercepted: 1.9cfs Inlet Size: 5'type R	Flow Bypassed: 0.3cfs to Des. Pt 8		
Street Capacity: Street slope = 2%, capacity = 45.4cfs (half street) is okay			

Design Point 3

Design Point 3 is the total pipe flow in a 24" RCP storm sewer in Horton Drive to Luneth Drive and is located west of Design Point 2. The total pipe flow is 7.5cfs and 27.9cfs in the 5/100-year storm events.

Design Point 3a Design Point 3a is located in Luneth Drive (east side) south of the low point at Pond J

<u>(5-year storm)</u> Tributary Basins: J3+J4 Upstream flowby: 0cfs	Inlet/MH Number: Inlet J Total Street Flow: 8.6cfs	•	
Flow Intercepted: 6.6cfs Inlet Size: 10' type R	Flow Bypassed: 2.00	ofs to Des. Pt. 8	
Street Capacity: Street slope = 1.9%, cap	oacity = 12cfs, capacity okay	,	
(100-year storm) Tributary Basins: J3+J4 Upstream flowby: 0.3cfs	Inlet/MH Number: Inlet J Total Street Flow: 19.2ct	•	
Flow Intercepted: 9.9cfs Inlet Size: 10'type R	Flow Bypassed: 9.3cfs	to Des. Pt 8	
Street Capacity: Street slope = 1.9%, capacity = 45.4cfs (half street) is okay			

Design Point 3b

Design Point 3b is the total pipe flow in a 30" RCP storm sewer in Luneth Drive and is located south of Design Point 8. The total pipe flow is 14.1cfs and 37.8cfs in the 5/100-year storm events.

Design Point 4 Design Point 4 is located at a low point in Horton Drive (south side) at Nakai Lane

(5-year storm) Tributary Basins: I-1 Upstream flowby: 0cfs	Inlet/MH Number: Inlet I-1 Total Street Flow: 11.1cfs
Flow Intercepted: 11.1cfs Inlet Size: 20' type R, sump	Flow Bypassed: 0
Street Capacity: Street slope = 2.3%, ca	pacity = 13.3cfs, capacity okay
(100-year storm) Tributary Basins: I-1 Upstream flowby: 0cfs	Inlet/MH Number: Inlet I-1 Total Street Flow: 43.6cfs
Flow Intercepted: 15.5cfs Inlet Size: 20' type R, sump	Flow Bypassed: 28.1cfs to Des. Pt. 5
Street Capacity: Street slope = 2.3%, ca	apacity = 32.8cfs (half street). Flow uses north half of

Design Point 5 Design Point 5 is located in Luneth Drive (south side) west of Nakai Lane

<u>(5-year storm)</u> Tributary Basins: I2, I3, I4 Upstream flowby: 0cfs	Inlet/MH Number: Inlet I-2 Total Street Flow: 8.7cfs
Flow Intercepted: 3.6cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 5.1cfs to Des. Pt. 7
Street Capacity: Street slope = 0.8%, cap	pacity = 8.0cfs, capacity okay
(100-year storm) Tributary Basins: I2, I3, I4 Upstream flowby: 28.1cfs	Inlet/MH Number: Inlet I-2 Total Street Flow: 47.4cfs
Flow Intercepted: 7.1cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 40.3cfs to Des. Pt 7
· · ·	apacity = 33.4cfs (half street). Flow overtops crown Only flow from Basin I7 (6.2cfs) is on north side.

<u>Design Point 6</u>

Design Point 6 is the total pipe flow in a 30" RCP storm sewer in Luneth Drive and is located west of Nakai Lane. The total pipe flow is 14.7cfs and 22.6cfs in the 5/100-year storm events.

Design Point 7 Design Point 7 is located in Luneth Drive (south side) west of Nakai Lane and Des. Pt. 5

<u>(5-year storm)</u> Tributary Basins: I5 Upstream flowby: 5.1cfs	Inlet/MH Number: Inlet I-5 Total Street Flow: 7.8cfs	
Flow Intercepted: 3.5cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 4.3cfs to Des. Pt. 8	
Street Capacity: Street slope = 0.8%, cap	pacity = 8.0cfs, capacity okay	
<u>(100-year storm)</u> Tributary Basins: I5 Upstream flowby: 40.3cfs	Inlet/MH Number: Inlet I-5 Total Street Flow: 46.1cfs	
Flow Intercepted: 7.0cfs	Flow Bypassed: 24.1cfs to Des. Pt 8	
Inlet Size: 5' type R, on-grade	15.0cfs to Des. Pt.10	
Street Capacity: Street slope = 0.8%, capacity = 33.4cfs (half street). Flow overtops crown and flows on north side of Luneth Dr to Des. Pt.10. Only flow from Basin I7 (6.2cfs) is on north side. Capacity okay		

<u>Design Point 7a</u>

Design Point 7a is the total pipe flow in a 30" RCP storm sewer in Luneth Drive and is located west of Design Point 7. The total pipe flow is 18.2cfs and 29.6cfs in the 5/100-year storm events.

٦

Design Point 8 Design Point 8 is located in Luneth Drive (east side) at a low point east of Pond J

(5-year storm) Tributary Basins: 16 Upstream flowby: 2.0+4.3 = 6.3cfs	Inlet/MH Number: Inlet I6 Total Street Flow: 8.3cfs									
Flow Intercepted: 8.3cfs Inlet Size: 10' type R, sump	Flow Bypassed: 0									
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs, capacity okay since flow is from both ways										
(100-year storm) Tributary Basins: I6 Upstream flowby: 0.3+9.3+24.1=33.7cfs	Inlet/MH Number: Inlet I6 Total Street Flow: 38.1cfs									
Flow Intercepted: 15.5cfs Inlet Size: 10' type R, sump	Flow Bypassed: 22.6cfs to Des. Pt 10									
Street Capacity: Street slope = 1.0%, capacity and flows on west side of Luneth Dr. Only Capacity okay	· · · · ·									

Design Point 9

Design Point 9 is the total pipe flow in a 36" RCP storm sewer in Luneth Drive and is located west of Design Point 8. The total pipe flow is 22.4cfs and 53.3cfs in the 5/100-year storm events.

<u>Design Point 10</u> Design Point 10 is located in Luneth Drive (west side) at a low point east of Pond J

(5-year storm) Tributary Basins: J5+I7 Upstream flowby: 0

Inlet/MH Number: Inlet I7 Total Street Flow: 5.0cfs

Flow Intercepted: 5.0cfs Inlet Size: 45' type R, sump Flow Bypassed: 0

Street Capacity: Street slope = 1.0%, capacity = 9.0cfs, capacity okay since flow is from both ways

(100-year storm) Tributary Basins: J5+I7 Upstream flowby: 37.6cfs

Inlet/MH Number: Inlet I7 Total Street Flow: 50.7cfs

Flow Intercepted:50.7cfsFlow Bypassed:0Inlet Size:45' type R, sump (flow depth = 7.8" at flowline curb, flow spreads to ROW line and does not inundate lots

Design Point 11

Design Point 11 is the total pipe flow in a 42" RCP storm sewer in Luneth Drive and is located west of Design Point 10. The total pipe flow is 27.4cfs and 104.0cfs in the 5/100-year storm events.

Design Point 12

Design Point 12 is the total pipe flow in a 48" RCP storm sewer in Luneth Drive and is located west of Design Point 11. The total pipe flow is 45.6cfs and 133.6cfs in the 5/100-year storm events and outlets into Pond J.

Design Point 13

Design Point 13 is located west of Pond J and is the total flow from the outlet structure for Pond J in a 36" RCP storm sewer. The total outflow is 1.2cfs and 55.5cfs in the 5/100-year storm events from the Pond J full spectrum EDB worksheets. The Pond Outflow Channel is a trapezoidal swale with a 5' bottom, 3:1 side slopes, 0.5% channel slope, and is lined with 12" D50 rip rap. This flow enters the low flow channel of the East Tributary of Jimmy Camp Creek in a rip rap swale. Kiowa Engineering has accommodated the low flow channel for this swale.

Design Point 14

Design Point 14 is the overland runoff flowing north to a 36" storm sewer (end section) located at Horton Drive and Shunka Lane. The total flow into the storm sewer system is 15.8cfs and 70.0cfs in the 5/100-year storm events. The Hw/D is 1.72' for a 36" RCP end section in the 100-year storm event.

Design Point 15

Design Point 15 is located on the south side of Horton Drive at Shunka Lane. This design point was added to verify the street capacity of Horton Drive on the south side of the street from the west. The total street flow is 6.2cfs and 22.9cfs in the 5/100-year storm events from Basins OS E2.2 & E8.3. The street capacity of Horton Drive at 0.7% slope is 7.5cfs (5-yr) and 31.2cfs (100-yr). The street capacity is not exceeded at this design point from the west.

Design Point 16 Design Point 16 is located in Horton Drive (south side) at a low point at Shunka Lane

(<u>5-year storm)</u> Tributary Basins: E8.1 + Des. Pt 15 Upstream flowby: 0	Inlet/MH Number: Inlet E8.1 Total Street Flow: 9.4cfs
Flow Intercepted: 9.4cfs Inlet Size: 25' type R, sump	Flow Bypassed: 0
Street Capacity: Street slope = 1.5%, capacity =	10.5cfs, capacity okay
(100-year storm) Tributary Basins: E8.1+ Des. Pt 15 Upstream flowby: 0	Inlet/MH Number: Inlet E8.1 Total Street Flow: 33.0cfs
Flow Intercepted: 18.9cfs Inlet Size: 25' type R, sump	Flow Bypassed: 14.1cfs to Des. Pt.20
Street Capacity: Street slope = 1.5%, capacity =	44.1cfs, capacity okay

Design Point 17

Design Point 17 is the total pipe flow in a 36" RCP storm sewer in Shunka Lane. The total pipe flow is 25.2cfs and 85.5cfs in the 5/100-year storm events.

Design Point 18

Design Point 18 is located on the south side of Luneth Drive at Akela Lane. This design point was added to verify the street capacity of Luneth Drive on the south side of the street from the east. The total street flow is 3.4cfs and 7.5cfs in the 5/100-year storm events from Basins E8.6 & E8.7. The street capacity of Luneth Drive at 1.7% slope is 10.5cfs (5-yr) and 44.1cfs (100-yr). The street capacity is not exceeded at this design point.

Design Point 19

Design Point 19 is located in Luneth Drive (south side) at a low point at Shunka Lane

<u>(5-year storm)</u> Tributary Basins: E8.4-E8.8 Upstream flowby: 0	Inlet/MH Number: Inlet E8.5 Total Street Flow: 15.0cfs
Flow Intercepted: 15.0cfs Inlet Size: 25' type R, sump	Flow Bypassed: 0
Street Capacity: Street slope = 1.5%, capacity = the west (100-year storm)	10.5cfs, capacity okay since half flow is from
Tributary Basins: E8.1+ Des. Pt 15 Upstream flowby: 0	Inlet/MH Number: Inlet E8.5 Total Street Flow: 33.1cfs
Flow Intercepted: 32.0cfs Inlet Size: 25' type R, sump	Flow Bypassed: 1.1cfs to Des. Pt.20
Street Capacity: Street slope = 1.5%, capacity =	44.1cfs, capacity okay

Design Point 20

Design Point 20 is located in Luneth Drive (north side) at a low point at Shunka Lane

(5-year storm) Tributary Basins: E8.9+E8.10 Upstream flowby: 0	Inlet/MH Number: Inlet E8.9 Total Street Flow: 3.1cfs
Flow Intercepted: 3.1cfs Inlet Size: double 10' type R, sump	Flow Bypassed: 0
Street Capacity: Street slope = 1.5%, capac	tity = 10.5cfs, capacity okay
(100-year storm) Tributary Basins: E8.9+E8.10 Upstream flowby: 1.1+14.1=15.2cfs	Inlet/MH Number: Inlet E8.9 Total Street Flow: 22.0cfs
Flow Intercepted: 22.0cfs Inlet Size: double 10' type R, sump	Flow Bypassed: 0
Street Capacity: Street slope = 1.5%, capac	city = 44.1cfs (half street). Capacity okay

Design Point 21

Design Point 21 is the total pipe flow in a 30" RCP storm sewer in Luneth Drive connecting Inlets E8.9 to a 48" storm sewer flowing to Pond E2. The total pipe flow is 18.1cfs and 54.0cfs in the 5/100-year storm events.

Design Point 22

Design Point 22 is the total pipe flow in a 48" RCP storm sewer in from Luneth Drive flowing north into Pond E2. The total pipe flow is 43.3cfs and 139.5cfs in the 5/100-year storm events and outlets into Pond E2.

Design Point 22a

Design Point 22a is the total inflow from this development and Lorson Ranch East Filing No. 4 into Pond E2. The total pond inflow is 102.8cfs and 333.2cfs in the 5/100-year storm events and outlets into Pond E2.

Design Point 23

Design Point 23 is located west of Pond E2 and is the total flow from the outlet structure for Pond E2 in a 48" RCP storm sewer. The pond outlet structure is built as part of Lorson Ranch East Filing No. 4 but will be modified to account for development in Creekside South. The total pond outflow is 4.5cfs and 151.3cfs in the 5/100-year storm events from the Pond E2 full spectrum EDB worksheets. The outlet structure, outflow pipe, and creek outfall are all constructed as part of the Lorson Ranch East Filing 4 development. This flow enters the reconstructed portion of the East Tributary of Jimmy Camp Creek.

6.0 DETENTION AND WATER QUALITY PONDS

Detention and Storm Water Quality for Creekside South at Lorson Ranch is required per El Paso County criteria. We have implemented the Full Spectrum approach for detention for Creekside South at Lorson Ranch per the Denver Urban Drainage Districts specifications. There is one existing detention pond to be expanded and one proposed detention pond for this project site. All developed runoff from this site will flow to ponds and will incorporate storm water quality features prior to discharge into the East Tributary. Open space areas (no development) will be allowed to flow directly to the East Tributary of Jimmy Camp Creek.

Full Spectrum Pond Construction Requirements

Design calculations for full spectrum ponds will include a 15' wide gravel access road on a 15' wide bench at a maximum 10% slope to the pond bottom. The final design of the full spectrum ponds consists of an outlet structure, storm sewer outfall to the East Tributary, concrete low flow channels, sediment forebays, and overflow weirs to the East Tributary. Soil borings, embankment, slope, and compaction requirements for detention ponds can be found in the geotechnical report for the Creekside South prepared by RMG.

Detention Pond E2 (Full Spectrum Design)

This is an on-site permanent full spectrum extended detention pond that includes water quality and discharges directly into the East Tributary. Pond E2 was partially constructed as part of Lorson Ranch East Filing No. 4 with a full spectrum outlet structure, forebay, and concrete low flow channel designed using the UDCF Full Spectrum spreadsheets. The existing outlet structure is a 6.7'x6.7' full spectrum sloped outlet structure with an interim overflow structure. Creekside South will add more developed area to the pond's tributary area requiring the pond to be expanded and the outlet structure to be modified. This development will expand the existing pond, update the existing outlet structure, construct additional forebay, construct additional concrete low flow channel, and construct a new concrete weir overflow spillway set above the outlet structure designed by the full spectrum spreadsheets to match pre-developed rates. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Ares: 125 acres (full buildout of watershed including offsite 5-acre rural residential lots)
- Watershed Imperviousness: 35%
- Hydrologic Soils Group B (40%) and C/D (60%)
- Forebay: 0.0256ac-ft (see spreadsheet in appendix). (one existing and one new forebay)
- Zone 1 WQCV: 1.617ac-ft, WSEL: 5696.05, 0.8cfs
- Zone 2 EURV: 3.868ac-ft, WSEL: 5697.57, Top EURV set at 5698.85, 6.7'x17' outlet with flat top, 3.5cfs
- (5-yr): 5.072ac-ft, WSEL: 5698.34, 4.5cfs
- Zone 3 (100-yr): 9.855ac-ft, WSEL: 5701.16, 151.3cfs
- Pipe Outlet: 48" RCP at 0.5% with no restrictor plate
- Overflow Spillway: 55' wide bottom, elevation=5701.20, 4:1 side slopes
- Pre-development release rate into creek compliance from full spectrum pond spreadsheets
- Pond Bottom Elevation: 5693.00

Existing Pond E2 and Existing Pond E2 Outlet Structure Modifications:

- Expand pond size to accommodate full buildout area
- Construct one additional concrete forebay at new 48" RCP storm sewer
- Construct new concrete low flow channel from new forebay to existing outlet structure
- · Construct additional access road to new forebay
- Construct additional 11' length to 6.7'x6.7' outlet structure
- Modify Zone 1 WQ plate to larger size openings
- Modify Zone 2 square opening to 4"x18"
- Construct permanent concrete overflow weir

Detention Pond J (Full Spectrum Design)

This is an on-site permanent full spectrum extended detention pond that includes water quality and discharges directly into the East Tributary. Pond J is designed using the UDCF Full Spectrum spreadsheets. The outlet structure is a standard full spectrum sloped outlet structure and the overflow spillway is a concrete weir set above the outlet structure designed by the full spectrum spreadsheets to match pre-developed rates. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Ares: 54 acres including offsite 5-acre rural residential lots
- Watershed Imperviousness: 26%
- Hydrologic Soils Group B (90%), C/D (10%)
- Forebay: 0.024ac-ft, 24" depth, std concrete forebay
- Zone 1 WQCV: 0.575ac-ft, WSEL: 5684.13, 0.3cfs
- Zone 2 EURV: 1.272ac-ft, WSEL: 5685.10, Top EURV wall set at 5685.37, 6'x6' outlet with 6:1 slope, 1.1cfs
- (5-yr): 1.442ac-ft, WSEL: 5685.31, 1.2cfs
- Zone 3 (100-yr): 3.545ac-ft, WSEL: 5687.67, 55.5cfs
- Pipe Outlet: 36" RCP at 0.5% with restrictor plate up 25"
- Overflow Spillway: 25' wide bottom, elevation=5687.77, 4:1 side slopes, flow depth=1.2'
- Pre-development release rate into creek compliance from full spectrum pond spreadsheets
- Pond Bottom Elevation: 5681.67

Water Quality Design

Water quality will be provided by two permanent extended detention basins (Pond E2, J) for all of the developed areas of this site.

7.0 DRAINAGE AND BRIDGE FEES

Creekside South at Lorson Ranch is located within the Jimmy Camp Creek drainage basin which is currently a fee basin in El Paso County. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land as part of the plat recordation process. Lorson Ranch Metro District will be constructing the major drainage infrastructure as part of the district improvements.

Lorson Ranch Metro District will compile and submit to the county on a yearly basis the Drainage and bridge fees for the approved plats, and shall show all credits they have received for the same yearly time frame.

Creekside South at Lorson Ranch Filing No. 1 contains 64.257 acres. This project consists of 13.037 acres of open space (2% impervious), 30.458 acres residential (57% impervious based on 4600sf lots), 14.753 acres of large lots (5% impervious). Tract A (6.009 acres) which is a future development tract will defer fees until it is platted into lots. The 2020 drainage fees are \$19,084, bridge fees are \$893 and Drainage Surety fees are \$7,285 per impervious acre per Resolution 18-470. The drainage and bridge fees are calculated when the final plat is submitted. The fees are due at plat recordation. The following table details the drainage fees for the platted area. Lorson Ranch intends to use the Drainage Fee Precredits for the surety, drainage fee, and the bridge fee credits for the bridge fee.

Table 1: Drainage/Bridge Fees

Type of Land Use	Total Area (ac)	Imperviousness	Drainage Fee	Bridge Fee	Surety Fee
Residential Area	30.458	51%	\$296,442	\$13,871	\$113,162

Large Lots	14.753	11%	\$30,970	\$1,449	\$11,822
Open Space, Landscape Tracts,	13.037	2%	\$4,975	\$232	\$1,899
		Total	\$332,387	\$15,552	\$126,883

 Table 7.1: Public Drainage Facility Costs (non-reimbursable)

ltem	Quantity	Unit	Unit Cost	Item Total
Rip Rap	200	CY	\$50/CY	\$10,000
Manholes	11	EA	\$3000/EA	\$33,000
Inlets	12	EA	\$3,000	\$36,000
18" Storm	54	LF	\$35	\$1,890
24" Storm	760	LF	\$40	\$30,400
30" Storm	775	LF	\$45	\$34,875
36" Storm	560	EA	\$50	\$28,000
42" Storm	29	EA	\$55	\$1,595
48" Storm	202	EA	\$60	\$12,120
24" FES	1	EA	\$250	\$250
36" FES	1	EA	\$300	\$300
			Subtotal	\$188,430
			Eng/Cont 15%)	\$28,264
			Total Est. Cost	\$216,694

Table 7.2: Lorson Ranch Metro District Drainage Facility Costs (non-reimbursable)

Item	Quantity	Unit	Unit Cost	Item Total
Full Spectrum Ponds and Outlet	2	LS	\$100,000	\$100,000
			Subtotal	\$100,000
			Eng/Cont (15%)	\$15,000
			Total Est. Cost	\$115,000

8.0 FOUR STEP PROCESS

The site has been developed to minimize wherever possible the rate of developed runoff that will leave the site and to provide water quality management for the runoff produced by the site as proposed on the development plan. The following four step process should be considered and incorporated into the storm water collection system and storage facilities where applicable.

Step 1: Employ Runoff Reduction Practices

Creekside South at Lorson Ranch has employed several methods of reducing runoff.

- The street configuration was laid out to minimize the length of streets. Many streets are straight and perpendicular resulting in lots with less wasted space.
- A buffer tract added along the East Tributary which reduces impervious areas
- Larger 2.5-acre lots added on south side to reduce impervious area
- Lorson Ranch Metro District requires homeowners to maintain landscaping on lots
- Full Spectrum Detention Pond J and E2 will be constructed. The full spectrum detention mimics existing storm discharges

Step 2: Implement BMP's that Slowly Release the Water Quality Capture Volume

Treatment and slow release of the water quality capture volume (WQCV) is required. Creekside South at Lorson Ranch will utilize Pond J and E2 which are full spectrum stormwater detention ponds which includes Water Quality Volumes and WQ outlet structures.

Step 3: Stabilize Drainageways

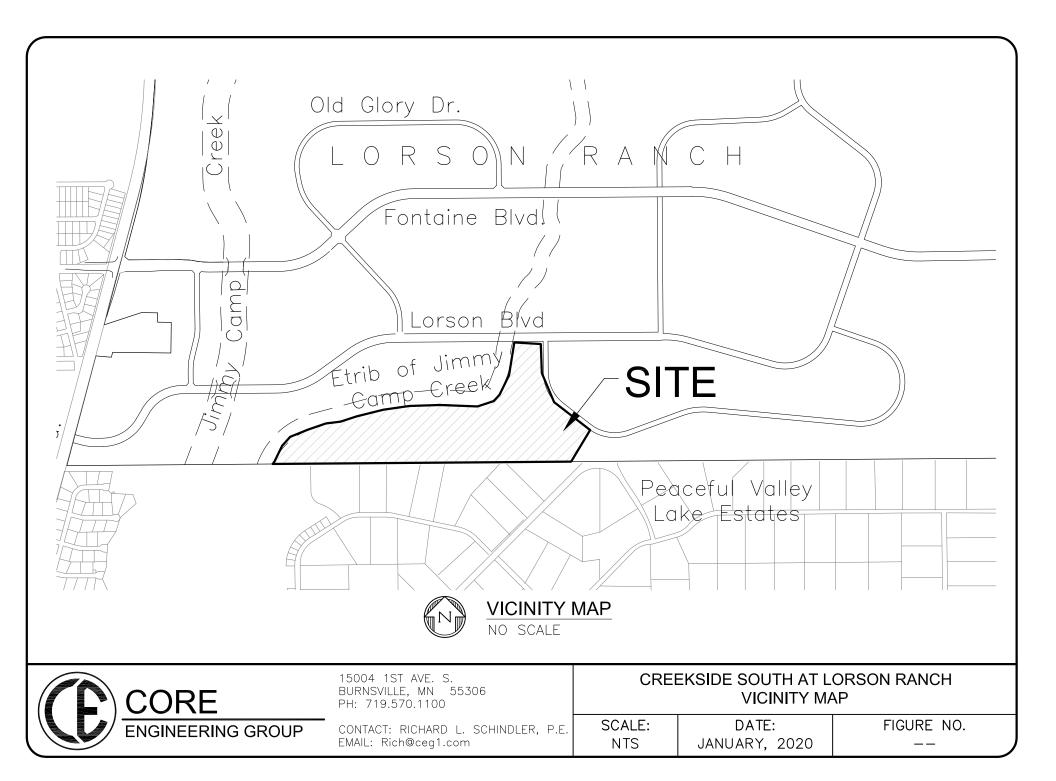
East Tributary of Jimmy Camp Creek is a major drainageway located west of this site. In 2020 the East Tributary of JCC adjacent to this site will be reconstructed and stabilized per county criteria. The design included a low flow channel bottom and selectively armored sides.

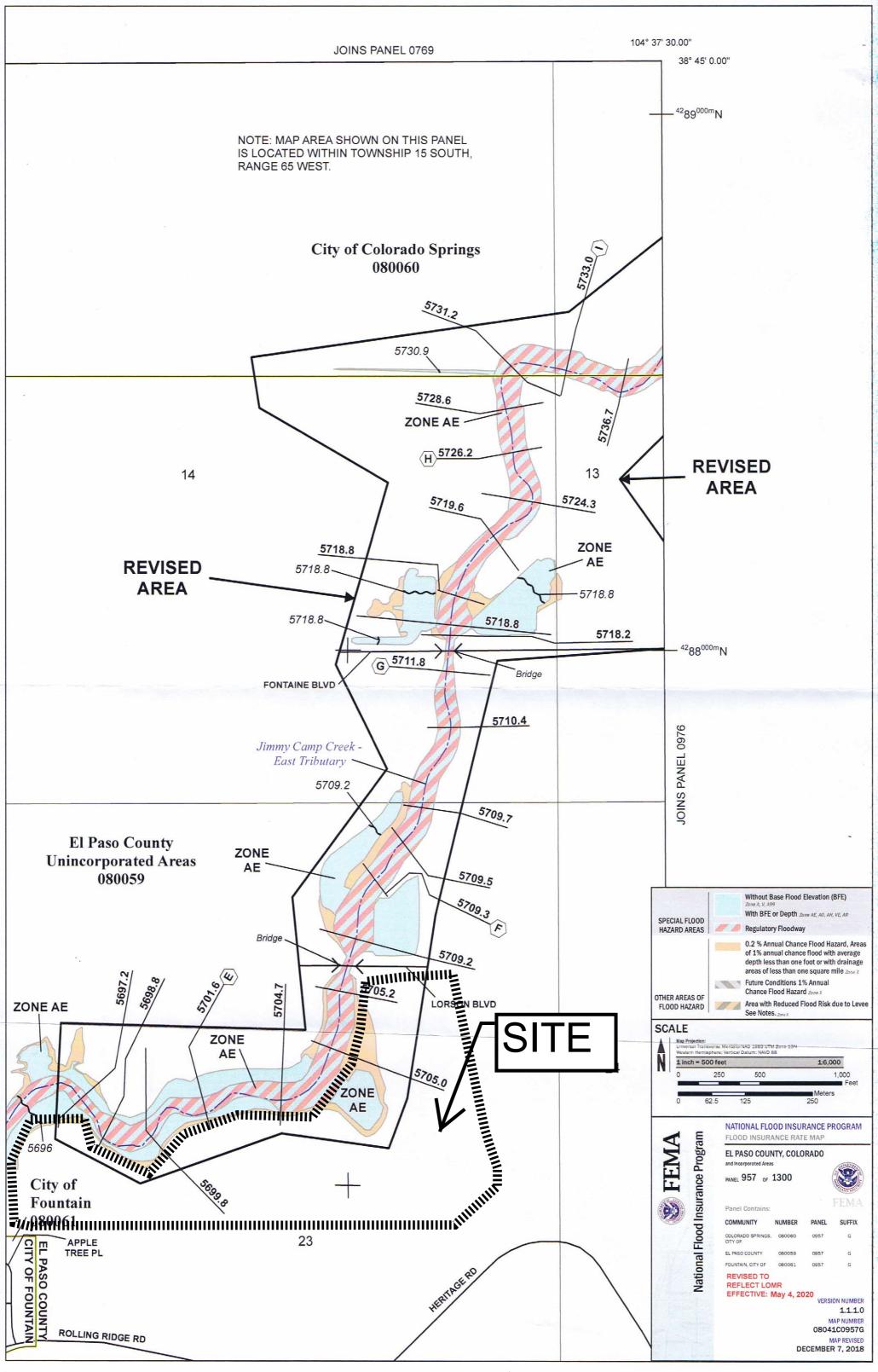
Step 4: Implement Site Specific & Source Control BMP's

There are no potential sources of contaminants that could be introduced to the County's MS4. During construction source control will be provided with the proper installation of erosion control BMPs to limit erosion and transport of sediment. Area disturbed by construction will be seeded and mulched. Cut and fill slopes will be reseeded, and the slopes equal to or greater than three-to-one will be protected with erosion control fabric. Silt fences will be placed at the bottom of re-vegetated and rough graded slopes. Inlet protection will be used around proposed inlets. In addition, temporary sediment basins will be constructed so runoff will be treated prior to discharge. Construction BMPs in the form of vehicle tracking control, sediment basins, concrete washout area, rock socks, buffers, and silt fences will be utilized to protect receiving waters.

9.0 CONCLUSIONS

This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:


- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- The East Tributary of Jimmy Camp Creek will be reconstructed within this study area
- Detention and water quality for this preliminary plan area will be provided in two permanent ponds


10.0 REFERENCES


- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM, dated November, 1991
- 2. Soil Survey of El Paso County Area, Colorado by USDA, SCS

- 3. Jimmy Camp Creek Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
- 4. City of Colorado Springs "Drainage Criteria Manual, Volume 2
- 5. El Paso County "Engineering Criteria Manual"
- 6. Lorson Ranch East MDDP, June 30, 2017 by Core Engineering.
- 7. Final construction plans "East Fork Jimmy Camp Creek Channel Design", Dated April 1, 2020 by Kiowa Engineering Corporation
- 8. El Paso County Resolution #15-042, El Paso County adoption of Chapter 6 and Section 3.2.1 of the City of Colorado Springs Drainage Criteria Manual dated May, 2014.
- 9. Final Drainage Report for Lorson Ranch East Filing No. 4 by Core Engineering, approved September 12, 2019 (SF19-008)

APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 12/14/2019 Page 1 of 3

	MAP L	EGEND		MAP INFORMATION				
Area of Inter	rest (AOI) Area of Interest (AOI)	303	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:24,000.				
Soils		۵	Stony Spot					
	Soil Map Unit Polygons	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.				
~	Soil Map Unit Lines	\$	Wet Spot	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil				
	Soil Map Unit Points	\triangle	Other	line placement. The maps do not show the small areas of				
-	oint Features	10	Special Line Features	contrasting soils that could have been shown at a more detailed scale.				
ు	Blowout	Water Fea						
×	Borrow Pit	\sim	Streams and Canals	Please rely on the bar scale on each map sheet for map measurements.				
*	Clay Spot	Transport	Rails	Source of Map: Natural Resources Conservation Service				
0	Closed Depression		Interstate Highways	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)				
X	Gravel Pit	~	US Routes	Maps from the Web Soil Survey are based on the Web Mercato				
	Gravelly Spot		Major Roads	projection, which preserves direction and shape but distorts				
0	Landfill	~	Local Roads	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more				
Ă.	Lava Flow	Backgrou		accurate calculations of distance or area are required.				
	Marsh or swamp	Dackgrou	Aerial Photography	This product is generated from the USDA-NRCS certified data a of the version date(s) listed below.				
衆	Mine or Quarry							
0	Miscellaneous Water			Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 17, Sep 13, 2019				
0	Perennial Water			Soil map units are labeled (as space allows) for map scales				
\vee	Rock Outcrop			1:50,000 or larger.				
+	Saline Spot			Date(s) aerial images were photographed: Aug 14, 2018—Se 23, 2018				
÷.	Sandy Spot			The orthophoto or other base map on which the soil lines were				
-	Severely Eroded Spot			compiled and digitized probably differs from the background				
0	Sinkhole			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.				
3	Slide or Slip			5 - · · · · · · · · · · · · · · · · · ·				
5	Sodic Spot							

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI				
3	Ascalon sandy loam, 3 to 9 percent slopes	2.6	2.0%				
10	Blendon sandy loam, 0 to 3 percent slopes	1.2	0.9%				
52	Manzanst clay loam, 0 to 3 percent slopes	14.5	11.2%				
54	Midway clay loam, 3 to 25 percent slopes	12.9	10.0%				
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	37.6	29.2%				
104	Vona sandy loam, warm, 0 to 3 percent slopes	15.7	12.2%				
108	Wiley silt loam, 3 to 9 percent slopes	44.5	34.5%				
Totals for Area of Interest		128.8	100.0%				

Standard Form SF-2. Storm Drainage System Design (Rational Method Procedure)

ENG	INEERI	NG GRO	UP																		
							rd Beas	<u>ley</u>						o: <u>100.0</u> 5			_				
						<u>er 17, 2</u>								t: <u>Creek</u>							
	1			Checke	ed By: <u>L</u>	<u>eonard</u>	Beasle	<u>y</u>	1					Storm:	<u>5-Year</u>		(Curren	<u>t)</u>	·		
	Ę		1		rect Rur	noff	1	1		Total	Runoff		St	reet		Pipe	1	Travel Time			
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	t	CA		a	2	Σ (CA)		σ	Slope	Street	Design Flow	Slope	· Pipe Size	Length	Velocity	. tt	
		∢	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
OS-E2.1			43.18	0.17	30.5	7.34	2.46	18.0													
EX-E2			31.81	0.13	27.7	4.14	2.60	10.7													
(E2 & E2.1)	3	74.99							39.1	11.48	2.08	23.9									
OS-I1.1			15.54	0.15	23.1	2.33	2.87	6.7													
EX-I1			12.78	0.09	22.1	1.15	2.94	3.4													
(I1 & I1.1)	2	28.32							29.6	3.48	2.50	8.7	-								
OS-J1.1			11.55	0.19	28.1	2.19	2.58	5.7													
EX-J1			15.29	0.15	21.2	2.29	3.00	6.9													
(J1 & J1.1)	1	26.84							31.7	4.49	2.40	10.8									
													- 								
													-								
													-								

Standard Form SF-2. Storm Drainage System Design (Rational Method Procedure)

ENG	INEERII	NG GRO		Date: C Checke	<u>)ctober</u> ed By: <u>L</u>	Leonar 29, 201 eonard	9	-					Project Design	Storm:	<u>50</u> side Sou <u>100-Yea</u>	ar Ever		<u>ent)</u>			
	Ħ				ect Rur	noff				Total	Runoff		St	reet		Pipe		Т	ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		σ	tc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ā	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
OS-E2.1			43.18	0.44	30.5	19.00	4.13	78.4													
EX-E2			31.81	0.41	27.7	13.04	4.36	56.9													
(E2 & E2.21	3	74.99							39.1	32.04	3.50	112.0									
OS-I1.1			15.54	0.41	23.1	6.37	4.82	30.7													
EX-I1			12.78	0.36	22.1	4.60	4.94	22.7													
(I1 & I1.1)	2	28.32							29.6	10.97	4.20	46.1									
OS-J1.1			11.55	0.46	28.1	5.31	4.33	23.0													
EX-J1			15.29	0.41	21.2	6.27	5.04	31.6													
(J1 & J1.1)	1	26.84							31.7	11.58	4.03	46.6									

15004 1st Avenue South Burnsville, MN 55306 PROJECT NAME: Creekside South at Lorson Ranch PROJECT NUMBER: 100.051 ENGINEER: LAB DATE: December 16, 2019

Preliminary Drainage Plan CURRENT CONDITIONS COEFFICIENT "C" CALCULATH

BASIN	Soil No.	Hydro Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	Impervious	Type of Cover
DS-E2.1	108	В	32.10	74.34%	0.15	0.11	0.41	0.30	10%	5 Ac. Tracts
	54	D	11.08	25.66%	0.22	0.06	0.53	0.14	10%	5 Ac. Tracts
			43.18	100.00%		0.17		0.44		
EX-E2	56/109	Р	24.15	75.020/	0.00	0.07	0.26	0.07	20/	Lindovolonod
EX-EZ	56/108	B	24.15	75.92%	0.09	0.07	0.36	0.27	2%	Undeveloped
	52	С	2.08	6.54%	0.49	0.03	0.65	0.04	2%	Undeveloped
	52	С	5.58	17.54%	0.16	0.03	0.51	0.09	65%	Single Family
			31.81	100.00%		0.13		0.41		
DS-J1.1	56	В	1.10	9.52%	0.30	0.03	0.50	0.05	40%	0.25 Ac. Tracts
	56	В	6.25	54.11%	0.15	0.08	0.41	0.22	10%	5 Ac. Tracts
	54	D	4.20	36.36%	0.22	0.08	0.53	0.19	10%	5 Ac. Tracts
			11.55	100.00%		0.19		0.46		
	50	5	4.00	4 700/	0.00	0.04	0.50	0.00	100%	
DP-1	56 56	B	1.29	4.73%	0.30	0.01	0.50	0.02	100%	5 Ac. Tracts
	56	B	6.34	23.23%	0.15	0.03	0.41	0.10	80%	0.25 Ac. Tracts
	54	D	4.37	16.01%	0.22	0.04	0.53	0.08	95%	5 Ac. Tracts
	104	A	15.29	56.03%	0.09	0.05	0.36	0.20	40%	Yard Area
			27.29	100.00%		0.13		0.41		
DP-2	56/108	В	15.54	54.87%	0.15	0.08	0.41	0.22	100%	Hard Surface
	56	В	12.78	45.13%	0.09	0.04	0.36	0.16	80%	Light Industrial
			28.32	100.00%		0.12		0.39		
DP-3	108	В	32.19	42.80%	0.15	0.06	0.41	0.18	10%	5 Ac. Tracts
-	54	D	11.21	14.90%	0.22	0.03	0.53	0.08	10%	5 Ac. Tracts
	56/108	В	24.15	32.11%	0.09	0.03	0.36	0.12	2%	Undeveloped
	52	С	2.08	2.77%	0.49	0.01	0.65	0.02	2%	Undeveloped
	52	С	5.58	7.42%	0.16	0.01	0.51	0.04	65%	Single Family
			75.21	100.00%		0.15		0.43		
	-									

Standard Form SF-2. Storm Drainage System Design (Rational Method Procedure)

	NEERI			Date: J Checke	anuary ed By: <u>L</u>	15, 202 eonard	<u>d Beasl</u> 0 <u>Beasley</u>	-					Project Design	Storm:	<u>51</u> side So <u>5 - Yea</u>	r Event		osed)			
	Ħ	Direct Runoff Total Ru									Runoff		Str	eet		Pipe		Travel Time			
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		σ	tc.	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		A	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	ļļ
E7			0.60	0.49	10.1	0.29	4.12	1.2													
E8.1			4.00	0.30	16.6	1.20	3.37	4.0													
OS-E2.1			36.66	0.17	30.5	6.23	2.46	15.3													
E8.2			1.70	0.19	12.8	0.32	3.76	1.2													
OS-E2.1 - E8.2	14	38.36							31.4	6.56	2.41	15.8									
OS-E2.2			6.52	0.15	16.0	0.98	3.43	3.4													
E8.3			5.37	0.26	16.6	1.40	3.37	4.7													
OS-E2.2 - E8.3	15	11.89							27.2	2.37	2.63	6.2									
E8.1 & DP-15	16	15.89							27.2	3.57	2.63	9.4									
DP-14 thru DP-16		54.25							31.4	10.13	2.41	24.4									
E8.4			1.20	0.45	14.3	0.54	3.59	1.9													
E8.5			4.27	0.45	14.7	1.92	3.55	6.8													
E8.6			1.02	0.49	10.5	0.50	4.06	2.0													
E8.7			0.71	0.47	9.4	0.33	4.22	1.4													
E8.6 & E8.7	18	1.73							10.5	0.83	4.06	3.4									
E8.8			2.43	0.45	12.8	1.09	3.76	4.1													

Standard Form SF-2. Storm Drainage System Design (Rational Method Procedure)

Calculated By: <u>Leonard Beasley</u> Date: January 15, 2020 Checked By: <u>Leonard Beasley</u>											Job No: <u>100.051</u> Project: Creekside South at Lorson Ranch Design Storm: <u>5 - Year Event (Proposed)</u> Total Runoff Street Pipe Travel Time											
	ιt	Direct Runoff Total Runoff										Str	reet	Pipe			Travel Time					
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	ţ	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks	
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min		
E8.4 - E8.8	19	9.63							16.1	4.39	3.42	15.0										
E8.1 - E8.8		63.88							32.2	14.52	2.38	34.5										
E8.9			1.52	0.45	14.5	0.68	3.57	2.4														
E8.10			0.38	0.47	5.2	0.18	5.12	0.9														
E8.9 - E8.10	20	1.90							14.5	0.86	3.57	3.1										
OS-E2.1 - E8.10		65.78							31.8	15.38	2.40	36.8									 	
E8.11			3.99	0.21	12.4	0.84	3.80	3.2														
E8		69.77							31.8	16.22	2.40	38.8										
OS-I1.1			15.54	0.15	23.1	2.33	2.87	6.7														
I1.2			6.23	0.27	16.0	1.68	3.43	5.8														
I1	4	21.77							25.0	4.01	2.76	11.1										
I2			1.12	0.45	12.7	0.50	3.77	1.9														
I3			1.01	0.45	12.5	0.45	3.79	1.7														
I4			3.45	0.45	14.2	1.55	3.61	5.6														
I2 - I4		5.58							15.4	2.51	3.48	8.7										
OS-I1.1-I4		27.35							25.2	6.52	2.74	17.9										

			UP	Date: J	lanuary	15, 202	<u>d Beasl</u> 0 Beaslev	-		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
	ıt				ect Rur	noff				Total	Runoff		Str	reet		Pipe		TI	ravel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		a									Pipe		Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
15			1.44	0.45	10.3	0.65	4.09	2.7													
OS-I1.1-I5		28.79							25.7	7.17	2.71	19.5									
I6			1.18	0.45	12.6	0.53	3.78	2.0													
OS-I1.1-I6		29.97							26.6	7.70	2.66	20.5									
DP-2a & DP-8		35.30							28.6	10.10	2.55	25.8									
17			2.01	0.45	19.4	0.90	3.13	2.8													
I7 & J5	10	3.94							19.4	1.77	3.13	5.6									
DP-9 & DP-10	11	39.24							28.6	11.87	2.55	30.3									
18			2.44	0.21	13.7	0.51	3.66	1.9													
Ι	12	34.42							26.6	9.12	2.66	24.3									
OS-J1.1			11.55	0.19	28.1	2.19	2.58	5.7													
J1.2			2.01	0.17	12.8	0.34	3.76	1.3													
J1	1	13.56							29.4	2.54	2.51	6.4									
J2			0.36	0.62	6.0	0.22	4.90	1.1													
OS-J1.1 - J2	2	13.92							29.4	2.76	2.51	6.9									
J3			3.40	0.45	14.5	1.53	3.57	5.5													

	INCERI		UP	Date: J Checke	anuary ed By: <u>L</u>	15, 202 eonard	r <u>d Beasl</u> 20 <u>Beasley</u>	-					Projec Desigr	Storm:	<u>51</u> side Soเ 5 - Yea	r Even		<u>osed)</u>			
	It				ect Rur	noff				Total I	Runoff		St	reet		Pipe		Τι	ravel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	tc	Σ (CA)	. <u> </u>	a	Slope	Street Flow		Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
J4			1.93	0.45	11.8	0.87	3.89	3.4													
J3-J4		5.33							14.5	2.40	3.57	8.6	-								
J5			1.93	0.45	14.1	0.87	3.62	3.1					-								
J		21.18							28.6	6.03	2.55	15.4									
I & J		55.60							28.6	15.15	2.55	38.7									
K1			2.65	0.12	12.5	0.32	3.79	1.2													
К2			2.14	0.12	6.2	0.26	4.84	1.2													
L			2.30	0.12	5.0	0.28	5.17	1.4													
М			0.48	0.12	6.3	0.06	4.83	0.3													
													-								

	NEERI			Date: J Checke	l <u>anuary</u> ed By: <u>L</u>	<u>Leonar</u> 15, 202 eonard	<u>20</u>						Projec Desigr	n Storm:	<u>51</u> side Sou 100 - Y	ear Ev		oposed			
	ц				ect Rur	noff				Total	Runoff	1	St	reet		Pipe		Т	ravel Tir	ne	1
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	t C	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
	_	Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
E7			0.60	0.65	10.1	0.39	6.91	2.7													
E8.1			4.00	0.57	16.6	2.28	5.66	12.9													
OS-E2.1			36.66	0.45	30.5	16.50	4.13	68.1													
E8.2			1.70	0.46	12.8	0.78	6.31	4.9													
OS-E2.1 - E8.2	14	38.36							31.4	17.28	4.05	70.0									
OS-E2.2			6.52	0.41	16.0	2.67	5.75	15.4													
E8.3			5.37	0.47	16.6	2.52	5.65	14.3													
OS-E2.2 - E8.3	15	11.89							27.2	5.20	4.42	22.9									
E8.1 & DP-15	16	15.89							27.2	7.48	4.42	33.0									
DP-14 thru DP-16		54.25							31.4	24.76	4.05	100.2									
E8.4			1.20	0.59	14.3	0.71	6.03	4.3													
E8.5			4.27	0.59	14.7	2.52	5.96	15.0													
E8.6			1.02	0.65	10.5	0.66	6.81	4.5													
E8.7			0.71	0.62	9.4	0.44	7.08	3.1													
E8.6 & E8.7	18	1.73							10.5	1.10	6.81	7.5									
E8.8			2.43	0.59	12.8	1.43	6.31	9.1													
E8.4 - E8.8	19	9.63							16.1	5.76	5.73	33.1									
E8.1 - E8.8		63.88							32.2	30.52	3.99	121.7									

	INEERI	NG GRO	UP	Calcula	ated By:	Leona	rd Beas	ley					Job No	o: <u>100.0</u>	51						
				Date: J	anuary	15, 202	<u>20</u>						Projec	t: Creek	side So	uth at L	orson F	Ranch			
	1	1		Checke	ed By: <u>L</u> ect Rur	<u>eonard</u>	Beasle	у	1	Total	Runoff			<u>n Storm:</u> reet	<u> 100 - Y</u>	ear Ev Pipe	ent (Pr	oposec	<u>1)</u> ravel Tir	no	1
Street or	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	ect Rui	CA		a	tc tc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	e Size	Length _	Velocity	tt -	Remarks
Basin	Desi	vrea [чö	min		in/hr	ofo	min	Σ	in/br	ofo	%			%	i: Pipe		, ≶ ft/sec	min	Re
E8.9		4	ac. 1.52	0.59	min. 14.5	0.90	in/hr 5.99	cfs 5.4	min		in/hr	cfs	%	cfs	cfs	%	in	ft	TU/Sec	min	
E8.10			0.38	0.62	5.2	0.24	8.59	2.0													
E8.9 - E8.10	20	1.90							14.5	1.13	5.99	6.8									
OS-E2.1 - E8.10		65.78							31.8	31.65	4.02	127.2									
E8.11			3.99	0.48	12.4	1.92	6.38	12.2													
E8		69.77							34.1	33.57	3.84	129.0									
OS-I1.1			15.54	0.41	23.1	6.37	4.82	30.7													
I1.2			6.23	0.49	16.0	3.05	5.75	17.6													
I1	4	21.77							25.0	9.42	4.62	43.6									
12			1.12	0.59	12.7	0.66	6.34	4.2													
I3			1.01	0.59	12.5	0.60	6.37	3.8													
I4			3.45	0.59	14.2	2.04	6.05	12.3													
I2 - I4		5.58							15.4	3.29	5.85	19.3									
OS-I1.1-I4		27.35							25.2	12.72	4.61	58.6									
15			1.44	0.59	10.3	0.85	6.87	5.8													
OS-I1.1-I5		28.79	<u></u>						25.7	13.57	4.55	61.8									
I6			1.18	0.59	12.6	0.70	6.35	4.4			<u></u>										
OS-I1.1-I6		29.97							26.6	14.26	4.47	63.7									
DP-2a & DP-8		35.30							28.6	23.83	4.29	102.2									

ENG)	INEERI	NG GRO		Date: J Checke	ated By: <u>anuary</u> ed By: <u>L</u>	15, 202 eonard	20						Projec	o: <u>100.0</u> t: Creek n Storm:	side So			oposec	<u>)</u>		
	ιt				ect Rur	noff	1	1		Total	Runoff	1	St	reet		Pipe	1	Т	ravel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		σ	tc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
I7			2.01	0.59	19.4	1.19	5.26	6.2													
I7 & J5		3.94							19.4	2.32	5.26	12.2									
DP-9 & DP-10		39.24							28.6	26.16	4.29	112.1									
18			2.44	0.44	13.7	1.07	6.14	6.6													
Ι		34.42							26.6	16.52	4.47	73.8									
OS-J1.1			11.55	0.46	28.1	5.31	4.33	23.0													
J1.2			2.01	0.42	12.8	0.84	6.32	5.3													
J1	1	13.56							29.4	6.16	4.22	26.0									
J2			0.36	0.75	6.0	0.27	8.23	2.2													
OS-J1.1 - J2	2	13.92							29.4	6.43	4.22	27.1									
J3			3.40	0.59	14.5	2.01	5.99	12.0													
J4			1.93	0.59	11.8	1.14	6.52	7.4													
J3-J4		5.33							14.5	3.14	6.00	18.9									
J5			1.93	0.59	14.1	1.14	6.08	6.9													
J		21.18							28.6	10.71	4.29	45.9									
I & J		55.60							28.6	27.23	4.29	116.7									
K1			2.65	0.39	12.5	1.03	6.37	6.6													
К2			2.14	0.39	6.2	0.83	8.13	6.8													

	Standard Form SF-2. Storm Drainage System Design (Rational Method Procedure) Calculated By: Leonard Beasley Job No: 100.051 Date: January 15, 2020 Project: Creekside South at Lorson Ranch Checked By: Leonard Beasley Design Storm: 100 - Year Event (Proposed)																				
					ed By: <u>L</u> ect Rur		Beasle	<u>y</u>	1	Total	Runoff			<u>storm:</u> reet	<u> 100 - Y</u>	ear Ev	ent (Pr	oposed	<u>)</u> ravel Tin		,
	nt			1	ect Rur	1011				rotar	Runoli		ા	eel		Pipe				ne	4
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA	.—	Ø	ţ	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	ţ,	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
L			2.30	0.39	5.0	0.90	8.68	7.8													
			2.00	0.00	0.0	0.00	0.00	1.0					-								1
М			0.48	0.39	6.3	0.19	8.11	1.5													
													-								1
													-								
													-								l
																					l
																					1
																					
													1								1
																					
													-								1
																	1				l

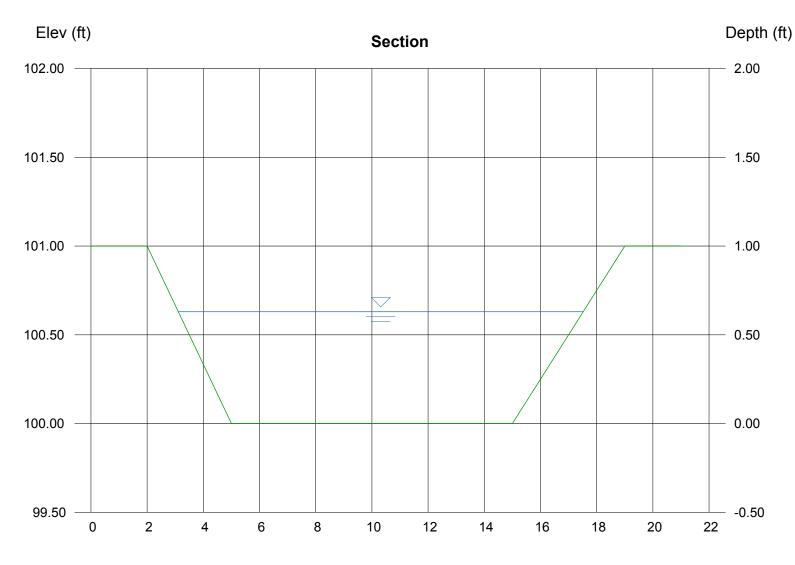
Channel Report

Hydraflow Express by Intelisolve

DES.PT. 1 SWALE

Trapezoidal

Botom Width (ft)	= 10.00
Side Slope (z:1)	= 3.00
Total Depth (ft)	= 1.00
Invert Elev (ft)	= 100.00
Slope (%)	= 0.50
N-Value	= 0.020
Calculations	


liculations

Compute by:	Known Q
Known Q (cfs)	= 26.00

Monday, May 11 2020, 11:38 AM

Highlighted

Depth (ft)	=	0.63
Q (cfs)	=	26.00
Area (sqft)	=	7.69
Velocity (ft/s)	=	3.38
Wetted Perim (ft)	=	14.59
Crit Depth, Yc (ft)	=	0.56
Top Width (ft)	=	14.41
EGL (ft)	=	0.81

Reach (ft)

Culvert Report

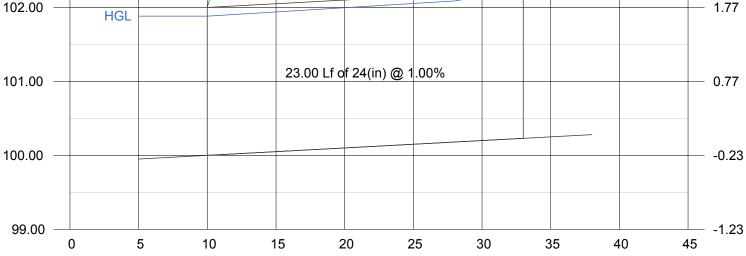
Hydraflow Express by Intelisolve

Tuesday, Jan 7 2020, 1:39 PM

End Section Des. Pt. 1

Invert Elev Dn (ft)	= 100.00
Pipe Length (ft)	= 23.00
Slope (%)	= 1.00
Invert Elev Up (ft)	= 100.23
Rise (in)	= 24.0
Shape	= Cir
Span (in)	= 24.0
No. Barrels	= 1
n-Value	= 0.013
Inlet Edge	= Projecting
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.5

Embankment


Elev (ft)

Top Elevation (ft)	= 104.50
Top Width (ft)	= 15.00
Crest Width (ft)	= 100.00

Calculations Omin (cfs)

Qmin (cfs)	= 0.00
Qmax (cfs)	= 30.00
Tailwater Elev (ft)	= (dc+D)/2
Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft)	= 25.00 = 25.00 = 0.00 = 9.65 = 9.55 = 101.88 = 102.14 = 103.61
Hw/D (ft)	= 1.69
Flow Regime	= Inlet Control

105.00 -104.00 — - Hw Embankment 103.00 — 102.00 -HGL

Profile

Hw Depth (ft)

- 4.77

- 3.77

- 2.77

Hydraflow Express by Intelisolve

36inch end section -Horton-Shunka

Invert Elev Dn (ft)	= 99.58	C
Pipe Length (ft)	= 50.00	Q
Slope (%)	= 0.84	Q
Invert Elev Up (ft)	= 100.00	Ta
Rise (in)	= 36.0	
Shape	= Cir	н
Span (in)	= 36.0	Q
No. Barrels	= 1	Q
n-Value	= 0.013	Q
Inlet Edge	= Projecting	Ve
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.5	Ve
		Ц

Embankment

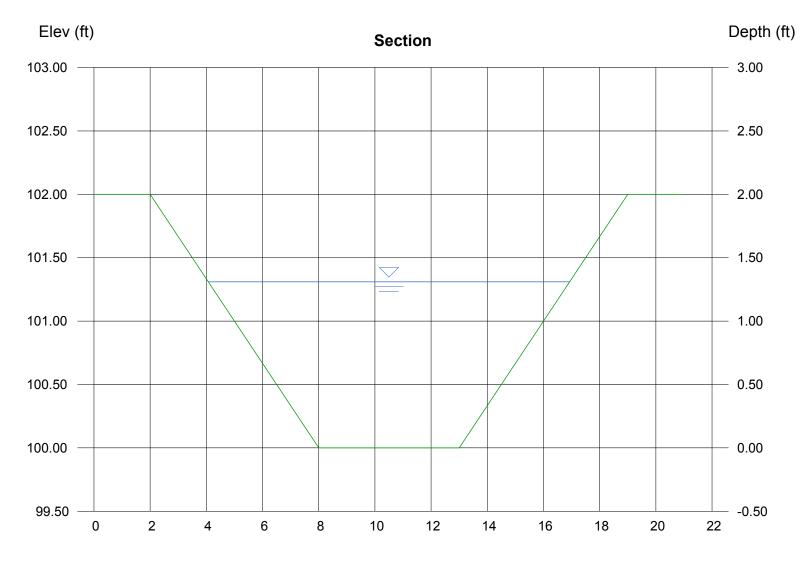
Top Elevation (ft)	
Top Width (ft)	
Crest Width (ft)	

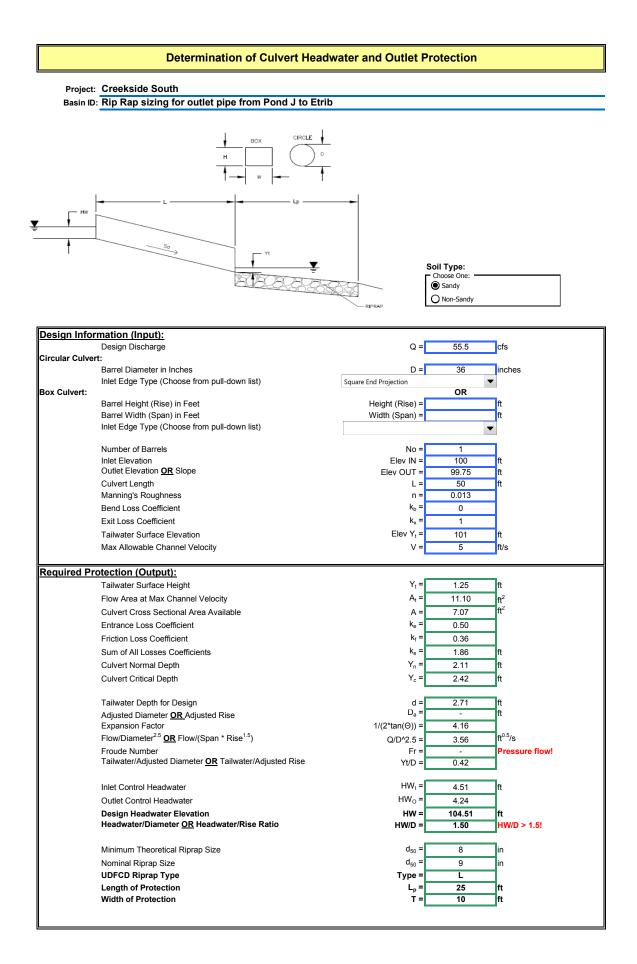
=	107.00
=	20.00
=	100.00

Calculations

Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 70.00 = 70.00 = (dc+D)/2
Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft)	= 70.00 = 70.00 = 0.00 = 10.13 = 9.92 = 102.41 = 102.97 = 105.17 = 1.72
Flow Regime	= Inlet Control

Elev (ft) Hw Depth (ft) Profile 108.00 -- 8.00 107.00 -- 7.00 106.00 -- 6.00 Hw 105.00 — - 5.00 Embankment 104.00 -- 4.00 103.00 -- 3.00 HGL 102.00 -- 2.00 50.00 Lf of 36(in) @ 0.84% 101.00 -- 1.00 100.00 -- 0.00 99.00 -- -1.00 98.00 -- -2.00 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

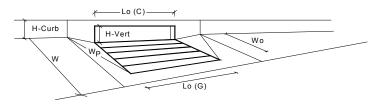

Reach (ft)


Channel Report

Hydraflow Express by Intelisolve

pond J outflow channel

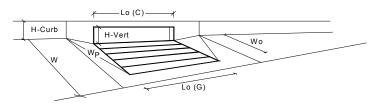
Trapezoidal		Highlighted	
Botom Width (ft)	= 5.00	Depth (ft)	= 1.31
Side Slope (z:1)	= 3.00	Q (cfs)	= 56.00
Total Depth (ft)	= 2.00	Area (sqft)	= 11.70
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.79
Slope (%)	= 0.50	Wetted Perim (ft)	= 13.29
N-Value	= 0.020	Crit Depth, Yc (ft)	= 1.23
		Top Width (ft)	= 12.86
Calculations		EGL (ft)	= 1.67
Compute by:	Known Q		
Known Q (cfs)	= 56.00		



INLET E8.1

INLET IN A SUMP OR SAG LOCATION

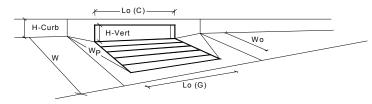
Version 4.05 Released March 2017



Destan information (Innut)		MINOR	MAJOR	
Design Information (Input) CDOT Type R Curb Opening	Type =		MAJOR Curb Opening	-
Type of Inlet Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00		inches
			3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No = Ponding Depth =	1 5.4	1 6.5	inches
Water Depth at Flowline (outside of local depression) Grate Information	Ponding Depth =	5.4 MINOR	MAJOR	Verride Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A N/A	N/A N/A	
				feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	_
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.29	0.38	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.51	0.61	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.75	0.82	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	3
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.5	18.9	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	9.4	33.0	cfs

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

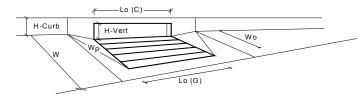


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.76	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	15.2	32.0	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	15.0	33.1	cfs

INLET E8.9

INLET IN A SUMP OR SAG LOCATION

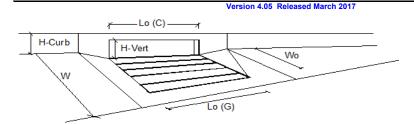
Version 4.05 Released March 2017



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	-	Curb Opening	-
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	indico
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.2	7.2	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.18	0.43	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.39	0.68	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.65	0.85	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.7	23.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.1	22.0	cfs

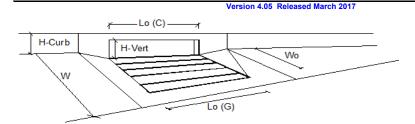
INLET IN A SUMP OR SAG LOCATION

INLET I1



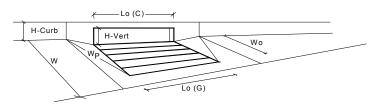
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	-
Vater Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.5	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Vidth of a Unit Grate	W _o =	N/A	N/A	feet
area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
leight of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
leight of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W ₀ =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 2.0 6.7)	$C_{0}(C) =$	0.67	0.67	1
Grate Flow Analysis (Calculated)	-0(-)	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	_
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	WG	MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	ca	MINOR	MAJOR	010
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
nterception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	Grate	MINOR	MAJOR	613
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	٦
Clogging Factor for Multiple Units	Clog =	0.03	0.03	-
Curb Opening as a Weir (based on Modified HEC22 Method)	olog -	MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	12.9	16.0	cfs
nterception with Clogging	Q _{wa} =	12.5	15.5	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	··wa	MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	39.0	40.5	cfs
nterception with Clogging	Q _{oa} =	37.7	39.2	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	0.0
nterception without Clogging	Q _{mi} =	20.9	23.7	cfs
nterception with Clogging	Q _{ma} =	20.9	23.7	cfs
		20.2 12.5	15.5	cfs
Resulting Curb Opening Capacity (assumes clogged condition) Resultant Street Conditions	Q _{Curb} =		MAJOR	010
Resultant Street Conditions Fotal Inlet Length	L =	MINOR 20.00	MAJOR 20.00	feet
5	L = T =	20.00	20.00	ft.>T-Crown
Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown	l = d _{CROWN} =	0.4	20.8	inches
Countaint i now Deputi at Street Grown	GCROWN -	0.4	0.5	incries .
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	-
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.38	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.61	4
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.82	4
	RF _{Grate} =	N/A	N/A	
Grated Inlet Performance Reduction Factor for Long Inlets				
Srated Inlet Performance Reduction Factor for Long Inlets		MINOP	MALOP	
	_	MINOR	MAJOR	7.4
Srated Inlet Performance Reduction Factor for Long Inlets Fotal Inlet Interception Capacity (assumes clogged condition) VARNING: Inlet Capacity less than Q Peak for Major Storm	Q _a =	MINOR 12.5 11.1	MAJOR 15.5 43.4	cfs cfs

INLET I2


INLET ON A CONTINUOUS GRADE

Design Information (Input)		MINOR	MAJOR	1
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q _o =	8.7	47.4	cfs
Water Spread Width	T =	16.7	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.5	9.4	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	3.8	inches
Ratio of Gutter Flow to Design Flow	E, =	0.358	0.205	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	5.6	33.6	cfs
Discharge within the Gutter Section W	Q _w =	3.1	8.7	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	5.1	cfs
Flow Area within the Gutter Section W	A _W =	0.75	1.40	sq ft
Velocity within the Gutter Section W	V _W =	4.1	6.2	fps
Water Depth for Design Condition	d _{LOCAL} =	8.5	12.4	inches
Grate Analysis (Calculated)	-LOCAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	- ``
Under No-Clogging Condition	-0-GRATE	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	∨₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	ips
Interception Rate of Side Flow	R _f =	N/A N/A	N/A	-
Interception Capacity	R _x =	N/A N/A	N/A	cfs
Under Clogging Condition	Qi -	MINOR	MAJOR	CIS
	GrateCoef =	N/A	N/A	
Clogging Coefficient for Multiple-unit Grate Inlet				-
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	4
Effective (unclogged) Length of Multiple-unit Grate Inlet		N/A	N/A	ft fa -
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q ₀ -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	-
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.087	0.059	ft/ft
Required Length L_T to Have 100% Interception	L _T =	17.33	46.62	ft
Under No-Clogging Condition	-	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.00	5.00	ft
Interception Capacity	Q _i =	4.0	7.8	cfs
Under Clogging Condition	_	MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.00	1.00	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	
Effective (Unclogged) Length	L _e =	4.50	4.50	ft
Actual Interception Capacity	Q _a =	3.6	7.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	5.1	40.3	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.6	7.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	5.1	40.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	42	15	%

INLET ON A CONTINUOUS GRADE

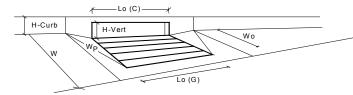

Design Information (Input)		-	MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	-	Curb Opening	
Local Depression (additional to con	tinuous autter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (o , ,	No =	1	1	
Length of a Single Unit Inlet (Grate		L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be gr			N/A	N/A	ft
Clogging Factor for a Single Unit G		C _r -G =	N/A	N/A	
	curb Opening (typical min. value = 0.0)	C _f -C =	0.10	0.10	-
	> ALLOWABLE Q FOR MAJOR STORM	90	MINOR	MAJOR	
	eet (from Sheet Inlet Management)	Q ₀ =	7.8	46.1	cfs
Water Spread Width	er (nem eneer met management)	0 T =	16.0	17.0	ft
Water Depth at Flowline (outside of	f local depression)	d =	5.3	9.3	inches
Water Depth at Street Crown (or at		d _{CROWN} =	0.0	3.7	inches
Ratio of Gutter Flow to Design Flow		E _o =	0.374	0.206	inchico
Discharge outside the Gutter Section		 Q _x =	4.9	32.8	cfs
Discharge within the Gutter Section		Q _w =	2.9	8.5	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	4.8	cfs
Flow Area within the Gutter Section	1 W	A _W =	0.72	1.38	sg ft
Velocity within the Gutter Section W		Aw - Vw =	4.0	6.2	fps
Water Depth for Design Condition	1	d _{LOCAL} =	8.3	12.3	inches
Grate Analysis (Calculated)		ULOCAL -	MINOR	MAJOR	incries
		L =	N/A	N/A	ft
Total Length of Inlet Grate Opening				N/A N/A	"
Ratio of Grate Flow to Design Flow		E _{o-GRATE} =	N/A MINOR		
Under No-Clogging Condition		Г	-	MAJOR	٦.
Minimum Velocity Where Grate Spl	ash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	_
Interception Rate of Side Flow		R _x =	N/A	N/A	
Interception Capacity		Q _i =	N/A	N/A	cfs
Under Clogging Condition		. .	MINOR	MAJOR	-
Clogging Coefficient for Multiple-un		GrateCoef =	N/A	N/A	_
Clogging Factor for Multiple-unit Gr		GrateClog =	N/A	N/A	
Effective (unclogged) Length of Mu		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Spl	ash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	
Interception Rate of Side Flow		R _x =	N/A	N/A	
Actual Interception Capacity		Q _a =	N/A	N/A	cfs
	pplied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening An			MINOR	MAJOR	_
Equivalent Slope Se (based on grat		S _e =	0.090	0.059	ft/ft
Required Length L_T to Have 100%	Interception	L _T =	16.13	45.96	ft
Under No-Clogging Condition		_	MINOR	MAJOR	
Effective Length of Curb Opening of	or Slotted Inlet (minimum of L, LT)	L =	5.00	5.00	ft
Interception Capacity		Q _i =	3.8	7.7	cfs
Under Clogging Condition		•	MINOR	MAJOR	-
Clogging Coefficient		CurbCoef =	1.00	1.00	ן ו
Clogging Factor for Multiple-unit Cu	urb Opening or Slotted Inlet	CurbClog =	0.10	0.10	7
Effective (Unclogged) Length		L _e =	4.50	4.50	ft
Actual Interception Capacity		Q _a =	3.5	7.0	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a		Q _b =	4.3	39.1	cfs
Summary			MINOR	MAJOR	-
Total Inlet Interception Capacity		Q =	3.5	7.0	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	4.3	39.1	cfs
Capture Percentage = Q_a/Q_a =		C% =	44	15	%
		8/8 =			· · ·

INLET IN A SUMP OR SAG LOCATION

J

ET I6

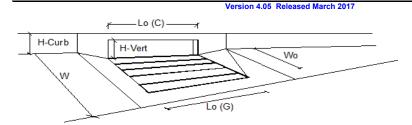
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	15.5	cfs
WARNING: Inlet Capacity less than Q Peak for Minor and Major Storms	Q PEAK REQUIRED =	8.3	38.1	cfs


ET

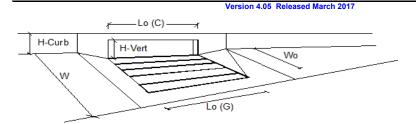
T

INI

INLET IN A SUMP OR SAG LOCATION



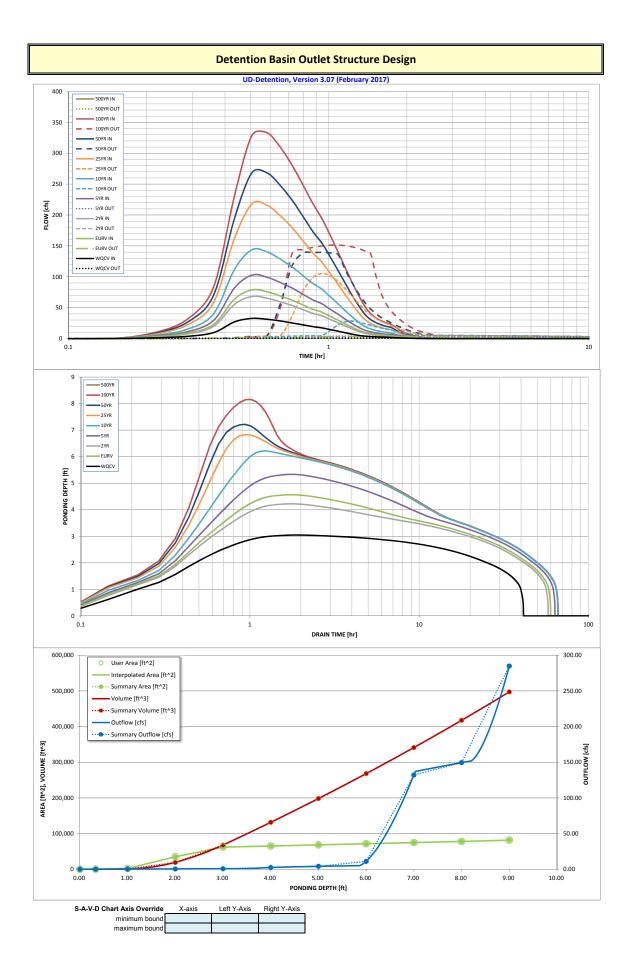
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Nater Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	7.8	inches
Grate Information	· · · · · ·	MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	L ₀ (C) =	45.00	45.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 2.6 6.7)	$C_{0}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)	-0(-/	MINOR	MAJOR	1
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Eactor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on Modified HEC22 Method)	5.59	MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	- wa	MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	- Ga	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	Horace	MINOR	MAJOR	010
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	7
Clogging Factor for Multiple Units	Clog =	0.01	0.01	-
Curb Opening as a Weir (based on Modified HEC22 Method)	5.59	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	11.8	52.1	cfs
Interception with Clogging	Q _{wa} =	11.6	51.3	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	77.0	99.5	cfs
nterception with Clogging	Q _{oa} =	75.9	98.0	cfs
Curb Opening Capacity as Mixed Flow	-04	MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	28.0	66.9	cfs
nterception with Clogging	Q _{ma} =	27.6	65.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	11.6	51.3	cfs
Resultant Street Conditions	Tourb	MINOR	MAJOR	
Fotal Inlet Length	L =	45.00	45.00	feet
Resultant Street Flow Spread (based on street geometry from above)	т=	12.7	26.2	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	2.2	inches
	-crown			
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.43	0.74	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.68	0.88	
	RF _{Grate} =	N/A	N/A	1
Grated Inlet Performance Reduction Factor for Long Inlets				-
Grated Inlet Performance Reduction Factor for Long Inlets				
srated Inlet Performance Reduction Factor for Long Inlets		MINOR	MAJOR	
Srated Inlet Performance Reduction Factor for Long Inlets	Q _a =	MINOR 11.6	MAJOR 51.3	cfs


INLET ON A CONTINUOUS GRADE

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	-	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	w. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	-1	MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	1.1	2.2	cfs
Water Spread Width	0 T =	5.0	7.5	ft
Water Depth at Flowline (outside of local depression)	d =	2.7	3.3	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.893	0.722	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.1	0.6	cfs
Discharge within the Gutter Section W	Q _w =	1.0	1.6	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	Aw =	0.28	0.39	sg ft
Velocity within the Gutter Section W	V _W =	3.5	4.1	fps
Water Depth for Design Condition	d _{LOCAL} =	5.7	6.3	inches
Grate Analysis (Calculated)	ULOCAL -	MINOR	MAJOR	inches
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		N/A N/A	N/A	
	E _{0-GRATE} =	MINOR	MAJOR	
Under No-Clogging Condition	V -	N/A	N/A	fa.a.
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A N/A	N/A N/A	_
Interception Rate of Side Flow	R _x =	N/A N/A	N/A N/A	- (-
Interception Capacity	Q _i =	MINOR		cfs
Under Clogging Condition			MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	_
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	-
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.188	0.155	ft/ft
Required Length L_T to Have 100% Interception	L _T =	4.45	6.92	ft
Under No-Clogging Condition	-	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	4.45	5.00	ft
Interception Capacity	Q _i =	1.1	2.0	cfs
Under Clogging Condition	_	MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.00	1.00	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	
Effective (Unclogged) Length	L _e =	4.50	4.50	ft
Actual Interception Capacity	Q _a =	1.1	1.9	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	0.3	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.1	1.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	85	%

INLET J4

INLET ON A CONTINUOUS GRADE


Design Information (Input)		MINOR	MAJOR	1
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W., =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _r -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	8.6	19.2	cfs
Water Spread Width	T =	13.9	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	4.9	6.1	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.5	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.429	0.309	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	4.9	13.3	cfs
Discharge within the Gutter Section W	Q _w =	3.7	5.9	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.64	0.86	sq ft
Velocity within the Gutter Section W	V _W =	5.7	6.9	fps
Water Depth for Design Condition	d _{LOCAL} =	7.9	9.1	inches
Grate Analysis (Calculated)	-LOONE	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	- ° ·
Under No-Clogging Condition	0-GIVITE	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V., =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	190
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	u	MINOR	MAJOR	0.0
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	- I
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	103
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	ч _ь –	MINOR	MAJOR	015
Equivalent Slope S_e (based on grate carry-over)	S _e =			ft/ft
Required Length L_T to Have 100% Interception	о _е – L _T =	0.100	0.078 28.69	ft
Under No-Clogging Condition	LT -			n.
		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L=	10.00	10.00	ft
Interception Capacity	Q _i =	6.9	10.3	cfs
Under Clogging Condition		MINOR	MAJOR	- I
Clogging Coefficient	CurbCoef =	1.25	1.25	-l
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	- I
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	6.6	9.9	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	2.0	9.3	cfs
Summary		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	6.6	9.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	2.0	9.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	77	52	%

				ASIN STAGE-S				EK					
Desis	atı Casalısida G	auth EDD	UD-Det	ention, Version 3	.07 (Febr	uary 2017	7)						
	ct: Creekside S D: POND E2	outh FDR											
ZONE 1	INE 2												
		T											
		K.				1							
	INE 1 AND 2	ORIFIC	ar Ce	Depth Increment =	0.2	ft Optional	1	1	1	Optional			r
POOL Example Zo	one Configura	tion (Rete	ntion Pond)	Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft [*] 2)	Override	Area (acre)	Volume (ft'3)	Vol (ar
equired Volume Calculation				Top of Micropool		0.00			-	20	0.000	(11.3)	(a
Selected BMP Type	= EDB	1		5693.33	-	0.33	-		-	50	0.001	11	0.0
Watershed Area		acres		5694	-	1.00	-	-	-	2,250	0.052	760	0.
Watershed Length		ft		5695		2.00				35,024	0.804	19,070	0.
Watershed Slope Watershed Imperviousness		ft/ft percent		5696 5697		3.00 4.00	-	-	-	62,057 65,120	1.425 1.495	67,959 131,548	1.
Percentage Hydrologic Soil Group A		percent		5698		5.00			-	68,248	1.567	198,232	4
Percentage Hydrologic Soil Group E		percent		5699		6.00	-	-	-	71,443	1.640	268,077	6.
Percentage Hydrologic Soil Groups C/E Desired WQCV Drain Time		percent hours		5700 5701		7.00 8.00			-	74,705 78,040	1.715 1.792	341,151 417,524	7.
Location for 1-hr Rainfall Depths		nours		5702	-	9.00	-	-	-	81,442	1.870	497,265	9.
Water Quality Capture Volume (WQCV) = 1.732	acre-feet	Optional User Override		-				-				
Excess Urban Runoff Volume (EURV		acre-feet	1-hr Precipitation						-				1
2-yr Runoff Volume (P1 = 1.19 in.) 5-yr Runoff Volume (P1 = 1.5 in.)		acre-feet acre-feet	1.19 inches 1.50 inches				-	-	-				-
10-yr Runoff Volume (P1 = 1.75 in.)		acre-feet	1.75 inches		-		-	-	-				1
25-yr Runoff Volume (P1 = 2 in.) = 12.045	acre-feet	2.00 inches				-	-	-				
50-yr Runoff Volume (P1 = 2.25 in.		acre-feet	2.25 inches										1
100-yr Runoff Volume (P1 = 2.52 in. 500-yr Runoff Volume (P1 = 0 in.		acre-feet acre-feet	2.52 inches			-	-	-		-			-
Approximate 2-yr Detention Volume		acre-feet			-		-	-	-				1
Approximate 5-yr Detention Volume		acre-feet			-		-	-	-				
Approximate 10-yr Detention Volume		acre-feet			-		-		-				
Approximate 25-yr Detention Volume Approximate 50-yr Detention Volume		acre-feet acre-feet							-				
Approximate 100-yr Detention Volume		acre-feet											
					-		-	-	-				
tage-Storage Calculation Zone 1 Volume (WQCV) = 1.732	1				-	-	-	-	-			-
Zone 1 Volume (WQCV Zone 2 Volume (EURV - Zone 1		acre-feet acre-feet					-		-				-
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2		acre-feet							-				L
Total Detention Basin Volume		acre-feet			-		-	-	-				
Initial Surcharge Volume (ISV Initial Surcharge Depth (ISD		ft*3							-			-	-
Total Available Detention Depth (H _{total}		n ft					-	-	-				-
Depth of Trickle Channel (H _{TC}) = user	ft					-	-	-				
Slope of Trickle Channel (STC		ft/ft					-	-	-			L	
Slopes of Main Basin Sides (Smain Basin Length-to-Width Ratio (R _{L/W}		H:V			-				-				-
Contraction of the second of the second seco	000				-		-	-	-				1
Initial Surcharge Area (A _{ISV}) = user	ft*2							-				
Surcharge Volume Length (LISV		ft					-		-			L	
Surcharge Volume Width (W _{ISV} Depth of Basin Floor (H _{FLOOR}		ft					-		-			-	-
Length of Basin Floor (H _{FLOOR}) = user) = user	π ft					-	-	-				-
Width of Basin Floor (W _{FLOOR}) = user	ft					-	-	-				
Area of Basin Floor (A _{FLOOR}) = user	ft*2					-		-			L	
Volume of Basin Floor (V _{FLOOR} Denth of Main Basin (H.		ft*3			-				-			-	-
Depth of Main Basin (H _{MAN} Length of Main Basin (L _{MAN}		π ft					-	-	-				-
Width of Main Basin (WMAIN) = user	ft					-	-	-				
Area of Main Basin (A _{MAIN}		ft*2					-	-	-			L	1
Volume of Main Basin (V _{MAIN} Calculated Total Basin Volume (V _{total}) = user) = user	ft*3 acre-feet					-		-				-
- second cost beam volume (Vtotal	, user	Jaci e-teet			-		-	-	-				1
							-	-					L
							-	-	-			-	-
					-		-	-	-				1
							-	-	-				
					-								
									-			-	-
					-				-				
							-	-				<u> </u>	1-
							-	-	-				-
							-	-	-				L
							-	-	-				
							-	-	-				-
						-	-	1 -	1 -	-		1	+

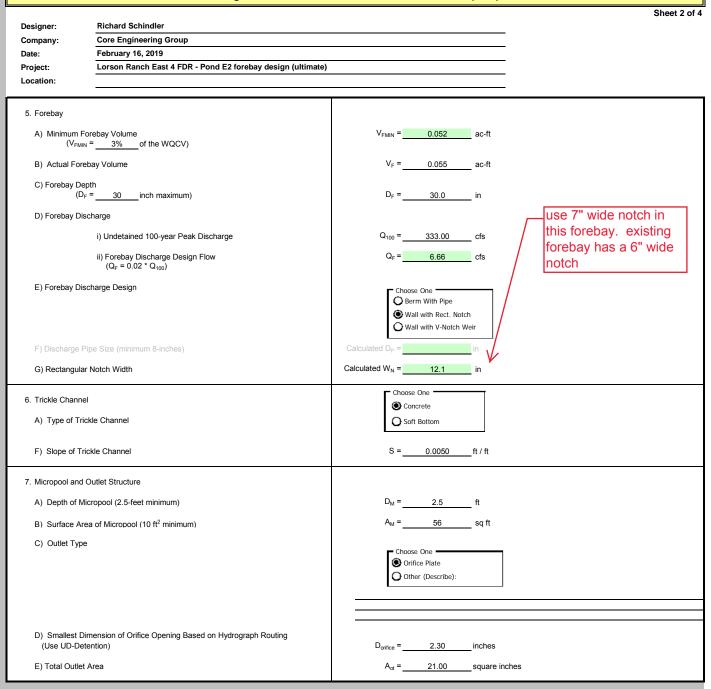
Γ

		Dete	ntion Basin (Outlet Struct	ure Design				
				rsion 3.07 (Februar					
	Creekside South FE	DR							
ZONE 3	POND E2								
			7	0.17	Zone Volume (ac-ft)		1		
T	100-YEA	R	Zone 1 (WQCV) Zone 2 (EURV)	3.13 4.80	1.732 2.500	Orifice Plate Rectangular Orifice			
ZONE 1 AND 2 PERMANENT ORIFICES	ORIFICE		(100+1/2WQCV)	8.18	5.673	Weir&Pipe (Restrict)	-		
POOL Example Zone	Configuration (Re	etention Pond)			9.905	Total	1		
User Input: Orifice at Underdrain Outlet (typically u Underdrain Orifice Invert Depth =	sed to drain WQCV ir N/A	n a Filtration BMP) ft (distance below th	e filtration media sur	face)	Unde	Calculat erdrain Orifice Area =	ed Parameters for Ur N/A	nderdrain ft ²	
Underdrain Orifice Diameter =	N/A	inches		1000)		ain Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orifices of	or Elliptical Slot Weir	(typically used to dr	ain WOCV and/or FU	RV in a sedimentatio	n BMP)	Calcu	lated Parameters for	Plate	
Invert of Lowest Orifice =	-	ft (relative to basin b				rifice Area per Row =	3.646E-02	ft ²	
Depth at top of Zone using Orifice Plate =		ft (relative to basin b	oottom at Stage = 0 ft)		lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	12.00 5.25	inches sq. inches (use recta	ngular openings)		Elli	ptical Slot Centroid = Elliptical Slot Area =	N/A N/A	feet ft ²	
			0						
User Input: Stage and Total Area of Each Orifice F	Row (numbered from	n lowest to highest)							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	0.00	1.00 5.25	2.00 5.25	3.00 5.25					-
Guilde Area (og. 110165)	0.20	0.20	0.20	0.20					-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	-
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)									
· · · · · · · · · · · · · · · · · · ·									_
User Input: Vertical Orifice (Circ	cular or Rectangular) Zone 2 Rectangular	Not Selected	l			Calculated	Parameters for Vert Zone 2 Rectangular	tical Orifice Not Selected	1
Invert of Vertical Orifice =	3.50	N/A	ft (relative to basin b	oottom at Stage = 0 fl	:) V	ertical Orifice Area =	0.50	N/A	ft²
Depth at top of Zone using Vertical Orifice =	4.80	N/A	-	oottom at Stage = 0 fl	:) Verti	cal Orifice Centroid =	0.17	N/A	feet
Vertical Orifice Height = Vertical Orifice Width =	18.00	N/A	inches inches						
								<i>a</i>	
User Input: Overflow Weir (Dropbox) and G		Not Selected				Calculated	Parameters for Ove Zone 3 Weir		1
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho =	irate (Flat or Sloped) Zone 3 Weir 5.85	Not Selected	ft (relative to basin bo	ttom at Stage = 0 ft)	Height of Gr	Calculated are Upper Edge, $H_t =$	Parameters for Ove Zone 3 Weir 5.85	rflow Weir Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir 5.85 17.00	N/A N/A	feet		Over Flow	ate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir 5.85 6.70	Not Selected N/A N/A	feet
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 5.85	N/A			Over Flow Grate Open Area /	ate Upper Edge, H _t =	Zone 3 Weir 5.85	Not Selected N/A	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobe = Overflow Grate Open Area % =	Zone 3 Weir 5.85 17.00 0.00 6.70 70%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 5.85 6.70 6.34	Not Selected N/A N/A N/A	feet should be <u>></u> 4
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 5.85 17.00 0.00 6.70	N/A N/A N/A N/A	feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 5.85 6.70 6.34 79.73	Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobe = Overflow Grate Open Area % =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	ate Upper Edge, Η, = Weir Slope Length = 100-γr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 5.85 6.70 6.34 79.73	Not Selected N/A N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor	N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	at grate) iotal area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 rs for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected	feet should be \geq 4 ft ² ft ² te
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri	N/A N/A N/A N/A N/A Ctor Plate, or Rectan	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ate Upper Edge, Η, = Weir Slope Length = 100-γr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 rs for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10	N/A N/A N/A N/A N/A ctor Plate, or Rectanj Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet should be \geq 4 ft ² ft ² te ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00	N/A N/A N/A N/A N/A ctor Plate, or Rectanj Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t)	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sone 3 Restrictor 12.57 2.00	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A	feet should be \geq 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 gular or Trapezoidal)	N/A N/A N/A N/A N/A ctor Plate, or Rectanj Not Selected N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) iotal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sofor Outlet Pipe w// Zone 3 Restrictor 12.57 2.00 3.14 Steel Parameters for S 1.51	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A	feet should be \geq 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Siloes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 gular or Trapezoidal) 8.20 55.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectan NA Not Selected N/A N/A ft (relative to basin b feet	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) iotal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.51 10.21	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet feet	feet should be \geq 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectanj Spillway Invert Stage=	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 gular or Trapezoidal) 8.20	N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) iotal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sofor Outlet Pipe w// Zone 3 Restrictor 12.57 2.00 3.14 Steel Parameters for S 1.51	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A	feet should be \geq 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 48.00 gular or Trapezoidal) 8.20 55.00 4.00 0.50	N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A t (relative to basin t feet H:V	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) iotal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.51 10.21	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be \geq 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 gular or Trapezoidal) 8.20 55.00 4.00 0.50	N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A t (relative to basin t feet H:V feet H:V	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year	at grate) iotal area n bottom at Stage = 0 f Half-1) 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 sted Parameters for S 1.51 10.21 1.87	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 48.00 gular or Trapezoidal) 8.20 55.00 4.00 0.50 WQCV 0.53	N/A N/A N/A N/A N/A Ctor Plate, or Rectany Not Selected N/A N/A It (relative to basin the feet H:V feet EURV 1.07	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19	at grate) iotal area n bottom at Stage = 0 f Half-1) <u>5 Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calculate Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 sted Parameters for S 1.51 10.21 1.87 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52	feet should be ≥ 4 ft ² te ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 3.20 55.00 4.00 0.50 WQCV 0.53 1.732	N/A N/A N/A N/A N/A Ctor Plate, or Rectan, Not Selected N/A N/A ft (relative to basin b feet H:V feet H:V feet EURV 1.07 4.232	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft <u>2 Year</u> <u>1.19</u> <u>3.645</u>	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year 1.50 5.556</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () ()) ()) ()) ()))) ()) ()))) ()))) ())))) ()))) ()))))) ())))) ()))) ())))) ())))) ())))) ())))) ())))) ())))) ())))) ())))) ()))) ()))) ())))) ()))) ())))) ()))) ())))) ()))) ())))) ()))) ())))) ())))) ())))) ()))))) ())))))))))) ()	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 12.045	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.51 10.21 1.87 50 Year 2.25 14.974	Not Selected N/A	feet should be \geq 4 ft ² ft ² ft ² fte ft ² feet radians 500 Year 0.00 0.000
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Hour Max Water Surface = Dept Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = One-Hour Rainfall Depth (in) =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 48.00 gular or Trapezoidal) 8.20 55.00 4.00 0.50 WQCV 0.53 1.732 1.732	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A ft (relative to basin the feet H:V feet EURV 1.07 4.232 4.233	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches outtom at Stage = 0 ft 2 Year 1.19 3.645	at grate) iotal area n bottom at Stage = 0 f Half-1) <u>5 Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calculated Parameter Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sofor Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 tted Parameters for S 1.51 10.21 1.87 SO Year 2.25 14.974 14.970	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52	feet should be ≥ 4 ft ² te ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 3.00 48.00 3.00 4.00 0.50 WQCV 0.53 1.732 1.732 0.00 0.0	N/A N/A N/A N/A N/A N/A N/A N/A Intervention ft (relative to basin to feet H:V feet H:V feet J.07 4.232 4.233 0.00 0.0	feet H:V (enter zero for ff feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 3.645 0.02 2.0	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year 1.50</u> <u>5.556</u> <u>0.10</u> 1.2.4	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Overflow Grate Overflow Ov	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 12.045 12.049 0.87 108.8	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sofor Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.51 10.21 1.87 S0 Year 2.25 14.974 1.17 1.17 146.0	Not Selected N/A Spillway feet feet acres 100 Year 2.52 18.724 1.53 191.3	feet should be ≥ 4 ft^2 ft^2 te ft^2 feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Mexic Q(cfs) = Peak Inflow Q (cfs) =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 48.00 0.10 8.20 55.00 4.00 0.50 WQCV 0.53 1.732 1.732 0.00 0.0 32.7	N/A N/A N/A N/A N/A N/A or Plate, or Rectan N/A N/A not Selected N/A 0.0 0.0 78.8	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches outtom at Stage = 0 ft 2 Year 1.19 3.645 3.646 0.02 2.0 6.8.1	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year</u> 1.50 5.554 5.554 0.10 12.4 102.8	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 7.847 7.843 0.34 42.6 143.9	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 12.045 12.045 12.049 0.87 108.8 218.1	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sofor Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 sted Parameters for S 1.51 10.21 1.87 SO Year 2.25 14.974 14.970 1.17 146.0 268.6	Not Selected N/A Spillway feet acres 100 Year 1.53 1.53 191.3 333.2	feet should be \geq 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Max Water Surface = Cone-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 3.00 48.00 3.00 4.00 0.50 WQCV 0.53 1.732 1.732 0.00 0.0	N/A N/A N/A N/A N/A N/A N/A N/A Intervention ft (relative to basin to feet H:V feet H:V feet J.07 4.232 4.233 0.00 0.0	feet H:V (enter zero for ff feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 3.645 0.02 2.0	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year 1.50</u> <u>5.556</u> <u>0.10</u> 1.2.4	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Overflow Grate Overflow Ov	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 12.045 12.049 0.87 108.8	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sofor Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.51 10.21 1.87 S0 Year 2.25 14.974 1.17 1.17 146.0	Not Selected N/A Spillway feet feet acres 100 Year 2.52 18.724 1.53 191.3	feet should be ≥ 4 ft^2 ft^2 te ft^2 feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Calculated Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak (Cfs) Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment La	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 48.00 3.20 55.00 4.00 0.50 WQCV 0.53 1.732 1.732 0.00 0.0 32.7 0.8 N/A Plate	N/A N/A N/A N/A N/A N/A N/A N/A N/A It (relative to basin to feet H:V feet H:V 6 It (relative to basin to feet H:V feet H:V feet H:V feet H:V feet N/A Vertical Orifice 1	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year 1.19 3.645 3.646 0.02 2.0 68.1 2.9 N/A Vertical Orifice 1	at grate) otal area n bottom at Stage = 0 f Half-1) 5.556 5.554 0.10 12.4 102.8 4.5 0.4 Vertical Orifice 1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () () ()) ()) ()) ()) ()) ()))) ()))) ())))) ())))) ())))) ())))) ()))))))) ()	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 12.045 12.045 12.049 0.87 108.8 218.1 105.4 1.0 Overflow Grate 1	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.51 10.21 1.87 50 Year 2.25 14.974 1.17 1.46.0 268.6 139.5 1.0 Outlet Plate 1	Not Selected N/A Spillway feet feet acres 18.731 1.53 191.3 333.2 151.3 0.8 Outlet Plate 1	feet should be ≥ 4 ft^2 ft^2 te ft^2 feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Calculated Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Autflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fts) =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 48.00 48.00 30.00 0.50	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A tr (relative to basin the feet H:V feet H:V feet 0.00 0.00 78.8 3.5 N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches outtom at Stage = 0 ft 2 Year 1.19 3.645 3.646 0.02 2.0 68.1 2.9 N/A Vertical Orifice 1 N/A	at grate) otal area n bottom at Stage = 0 f Half-1) 5.556 5.554 0.10 12.4 102.8 4.5 0.4 Vertical Orifice 1 N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 7.847 7.843 0.34 42.6 143.9 28.3 0.7 Overflow Grate 1 0.3	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 12.045 12.045 12.049 0.87 108.8 218.1 105.4 1.0 Overflow Grate 1 1.2	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sofor Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 tted Parameters for S 1.51 10.21 1.87 SO Year 2.25 14.974 14.970 1.17 146.0 268.6 139.5 1.0 Outlet Plate 1 1.7	Not Selected N/A Spillway feet feet acres 100 Year 2.52 18.721 1.53 191.3 333.2 151.3 0.8 Outlet Plate 1 1.8	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = Rester Surface Above Max Water Surface = Cone-Hour Rainfall Depth (n) Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 48.00 48.00 3.20 55.00 4.00 0.53 1.732 0.00 0.00 0.0 3.2.7 0.8 N/A Plate N/A N/A	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectany Not Selected N/A N/A h/A N/A etcor Plate, or Rectany N/A N/A ft (relative to basin the feet H:V feet H:V feet J.07 4.232 4.233 0.00 0.0 78.8 3.5 N/A Vertical Orifice 1 N/A	feet H:V (enter zero for ff feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft 2 Year 1.19 3.645 	at grate) otal area n bottom at Stage = 0 f Half-1) 5.556 5.556 5.554 0.10 12.4 102.8 4.5 0.4 Vertical Orifice 1 N/A N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Spillway Stage a Basin Area a DOVERT 7.847 7.843 0.34 42.6 143.9 28.3 0.7 Overflow Grate 1 0.3 N/A	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 2.00 12.045 12.049 0.87 108.8 218.1 105.4 1.0 Overflow Grate 1 1.2 N/A	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sofor Outlet Pipe w// Zone 3 Restrictor 12.57 2.00 3.14 Sof Paarmeters for S 1.51 10.21 1.87 Sof Year 2.25 14.974 14.970 1.17 146.0 268.6 139.5 1.0 Outlet Plate 1 1.7 N/A	Not Selected N/A Spillway feet feet acres 18.724 153 191.3 333.2 151.3 0.8 Outlet Plate 1 1.8 N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians #N/A #N/A #N/A #N/A #N/A #N/A
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Calculated Hudrograph Results Design Storm Return Period = OPTIONAL Override Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Aufflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 48.00 48.00 30.00 0.50	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A tr (relative to basin the feet H:V feet H:V feet 0.00 0.00 78.8 3.5 N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches outtom at Stage = 0 ft 2 Year 1.19 3.645 3.646 0.02 2.0 68.1 2.9 N/A Vertical Orifice 1 N/A	at grate) otal area n bottom at Stage = 0 f Half-1) 5.556 5.554 0.10 12.4 102.8 4.5 0.4 Vertical Orifice 1 N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 7.847 7.843 0.34 42.6 143.9 28.3 0.7 Overflow Grate 1 0.3	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 12.045 12.045 12.049 0.87 108.8 218.1 105.4 1.0 Overflow Grate 1 1.2	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sofor Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 tted Parameters for S 1.51 10.21 1.87 SO Year 2.25 14.974 14.970 1.17 146.0 268.6 139.5 1.0 Outlet Plate 1 1.7	Not Selected N/A Spillway feet feet acres 100 Year 2.52 18.721 1.53 191.3 333.2 151.3 0.8 Outlet Plate 1 1.8	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Oatme (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Oatme (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 40.00 0.50 55.00 4.00 0.50 52.7 0.8 N/A N/A 38 40 8.20 52.7 0.8 N/A 9.14 8.20 55.00 55.00 4.00 0.00 0.00 0.00 0.32.7 0.8 N/A 9.14 1.732 0.00 0.3 0.50 1.732 0.00 0.3 0.50 1.732 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	N/A N/A N/A N/A N/A N/A N/A N/A N/A Not Selected N/A N/A Intervention ft (relative to basin the feet H:V feet H:V feet H:V feet H:V feet H:V feet H:V feet N/A Solution N/A S7 4.57	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches outtom at Stage = 0 ft 2 Year 1.19 3.645 3.646 0.02 2.0 8.1 2.9 N/A Vertical Orifice 1 N/A N/A 53 56 4.23	at grate) otal area n bottom at Stage = 0 f Half-1) 5.556 5.554 0.10 12.4 102.8 4.5 0.4 Vertical Orifice 1 N/A N/A 56 60 5.34	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 7.847 7.843 0.34 42.6 143.9 28.3 0.7 Overflow Grate 1 0.3 N/A 56 62 6.22	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 12.045 12.045 12.049 0.87 108.8 218.1 105.4 1.0 Overflow Grate 1 1.2 N/A 53 60 6.83	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sof Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 Sof Year 1.51 10.21 1.87 Sof Year 2.25 14.974 14.970 1.17 146.0 268.6 139.5 1.0 Outlet Plate 1 1.7 N/A 59 7.22	Not Selected N/A Spillway feet feet acres 18.731 1.53 191.3 333.2 151.3 0.8 Outlet Plate 1 1.8 N/A 47 58 8.16	feet should be ≥ 4 ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Rester Above Max Water Surface = Rester Above Max Water Surface = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Duit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fts) = Max Velocity through Grate 2 (fts) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 5.85 17.00 0.00 6.70 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.10 48.00 48.00 48.00 48.00 0.00 40.00 0.50 WQCV 0.53 1.732 1.732 0.00 0.0 32.7 0.8 N/A N/A N/A N/A N/A 40	N/A N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin the feet H:V feet H:V	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft 2 Year 1.19 3.645 0.00 0.02 0.68.1 2.9 N/A Vertical Orifice 1 N/A N/A N/A S3 56	at grate) otal area n bottom at Stage = 0 f Half-1) 5.556 5.554 0.10 1.2.4 1.02.8 4.5 0.4 Vertical Orifice 1 N/A N/A N/A N/A S6 60	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () ()) ()) ()) ()	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 12.045 12.045 12.049 0.87 108.8 218.1 105.4 1.0 Overflow Grate 1 1.2 N/A 53 60	Zone 3 Weir 5.85 6.70 6.34 79.73 39.87 Sofor Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.51 10.21 1.87 So Year 2.25 14.974 14.970 1.17 14.6.0 268.6 139.5 1.0 Outlet Plate 1 1.7 N/A 50 59	Not Selected N/A Spillway feet feet acres 100 Year 2.52 18.731 1.53 191.3 333.2 151.3 0.8 Outlet Plate 1 1.8 N/A 58	feet should be ≥ 4 ft ² ft ² ft ² feet radians

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

The user can override the calculated inflow hydrographs from this workbook SOURCE WORKBOOK WORKBOOK WORKBOOK WORKBOOK Time Interval TIME WQCV [cfs] EURV [cfs] 2 Year [cfs] 5 Year [cf 4.35 min 0:00:00 0.00 0.00 0.00 0.00 0.00 Hydrograph 0:08:42 0.00 0.00 0.00 0.00 0.00 Constant 0:13:03 1.41 3.27 2.85 4.14 1.160 0:17:24 3.85 9.08 7.89 11.67 0:26:06 27.12 63.93 55.56 82.12 0:30:27 32.68 78.81 68.07 102.79 0:34:48 31.28 75.85 65.39 99.41 0:39:09 28.47 69.09 59.51 90.75 0:43:30 25.54 62.24 53.59 81.79 0:47:51 22.18 54.46 46.84 71.70 0:56:33 17.48 42.91 36.	OK WORKBOOK fs] 10 Year [cfs] 0.00 0.00 0.00 0.00 5.52 15.93 40.92 111.96 143.86 140.34 128.54 115.94 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64 19.64	WORKBOOK 25 Year [cfs] 0.00 0.00 7.70 23.16 59.52 162.49 218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41	WORKBOOK 50 Year [cfs] 0.00 0.00 9.01 27.80 71.52 194.97 268.59 268.33 247.77 228.77 197.69 173.27 197.69 173.27 154.56 132.19 110.16 89.08	WORKBOOK 100 Year [cfs] 0.00 0.00 10.37 33.01 85.08 231.60 328.95 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09 114.35	#N/A 500 Year [cfs] #N/A #N/A
Time Interval TIME WQCV [cfs] EURV [cfs] 2 Year [cfs] 5 Year [cfs] 4.35 min 0:00:00 0.00 0.00 0.00 0.00 0.00 0:04:21 0.00 0.00 0.00 0.00 0.00 0.00 Hydrograph 0:08:42 0.00 0.00 0.00 0.00 0.00 Constant 0:13:03 1.41 3.27 2.85 4.14 1.150 0:17:24 3.85 9.08 7.89 11.67 0:21:45 9.88 23.32 20.26 29.97 0:26:06 27.12 63.93 55.56 82.12 0:30:27 32.68 78.81 68.07 102.79 0:34:48 31.28 75.85 65.39 99.41 0:39:09 28.47 69.09 59.51 90.75 0:43:30 25.54 62.24 53.59 81.79 0:47:51 22.18 54.46 46.84 71.70 0:55:15 11.99<	10 Year [cfs] 0.00 0.00 5.52 15.93 40.92 111.96 143.86 140.34 128.54 101.90 880.09 67.69 56.27 45.03 35.07 26.47 19.64	25 Year [cfs] 0.00 0.00 7.70 23.16 59.52 162.49 218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41	50 Year [cfs] 0.00 0.00 9.01 27.80 71.52 194.97 268.59 268.53 247.77 223.77 197.69 173.27 154.56 132.19 110.16	100 Year [cfs] 0.00 0.00 10.37 33.01 85.08 231.60 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09	500 Year [cfs] #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
4.35 min 0:00:00 0.00 0.00 0.00 0.00 10:04:21 0.00 0.00 0.00 0.00 0.00 Hydrograph 0:08:42 0.00 0.00 0.00 0.00 Constant 0:13:03 1.41 3.27 2.85 4.14 1.150 0:17:24 3.85 9.08 7.89 11.67 0:21:45 9.88 23.32 20.26 29.97 0:26:06 27.12 63.93 55.56 82.12 0:30:27 32.68 78.81 68.07 102.79 0:34:48 31.28 75.85 65.39 99.41 0:39:09 28.47 69.09 59.51 90.75 0:47:51 22.18 54.46 46.84 71.70 0:47:51 22.18 54.46 46.84 71.70 0:52:12 19.27 47.54 40.86 62.68 0:56:33 17.48 42.91 36.92 56.45 1:00:54	0.00 0.00 0.00 5.52 15.93 40.92 111.96 143.86 140.34 128.54 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64	0.00 0.00 7.70 23.16 59.52 162.49 218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41	0.00 0.00 9.01 27.80 71.52 194.97 268.59 268.53 247.77 223.77 197.69 173.27 154.56 132.19 110.16	0.00 0.00 10.37 33.01 85.08 231.60 328.95 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
0:04:21 0:00 0:00 0:00 0:00 Hydrograph 0:08:42 0:00 0:00 0:00 0:00 Constant 0:13:03 1.41 3.27 2.85 4.14 1.150 0:17:24 3.85 9.08 7.89 11.67 0:21:45 9.88 23.32 20.26 29.97 0:26:06 27.12 63.93 55.56 82.12 0:30:27 32.68 78.81 66.07 102.79 0:34:48 31.28 75.85 65.39 994.1 0:39:09 28.47 69.09 59.51 90.75 0:47:51 22.18 54.46 46.84 71.70 0:47:51 22.18 54.46 46.84 71.70 0:47:51 22.18 54.46 46.84 71.70 0:47:51 12.21 19.27 47.54 40.86 62.68 0:56:33 17.48 42.91 36.92 56.45 1:00:54 14.56 <td>0.00 0.00 5.52 15.93 40.92 111.96 143.86 140.34 128.54 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64</td> <td>0.00 0.00 7.70 23.16 59.52 162.49 218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41</td> <td>0.00 0.00 9.01 27.80 71.52 194.97 268.59 268.33 247.77 223.77 197.69 173.27 154.56 132.19 110.16</td> <td>0.00 0.00 10.37 33.01 85.08 231.60 328.95 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09</td> <td>#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A</td>	0.00 0.00 5.52 15.93 40.92 111.96 143.86 140.34 128.54 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64	0.00 0.00 7.70 23.16 59.52 162.49 218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41	0.00 0.00 9.01 27.80 71.52 194.97 268.59 268.33 247.77 223.77 197.69 173.27 154.56 132.19 110.16	0.00 0.00 10.37 33.01 85.08 231.60 328.95 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
Hydrograph Constant 0:08:42 0.00 0.00 0.00 0.00 Constant 0:13:03 1.41 3.27 2.85 4.14 1.150 0:17:24 3.85 9.08 7.89 11.67 0:21:45 9.88 23.32 20.26 29.97 0:26:06 27.12 63.93 55.56 82.12 0:30:27 32.68 7.81 68.07 102.79 0:34:48 31.28 75.85 65.39 99.41 0:39:09 28.47 69.09 59.51 90.75 0:43:30 25.54 62.24 53.59 81.79 0:47:51 22.18 54.46 46.84 71.70 0:52:12 19.27 47.54 40.66 62.68 0:55:55 11.99 29.81 25.59 39.40 1:05:15 11.99 29.81 25.59 39.40 1:09:36 9.38 23.63 20.24 31.36 1:13:57 7.13 <td< td=""><td>0.00 5.52 15.93 40.92 111.96 143.86 140.34 128.54 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64</td><td>0.00 7.70 23.16 59.52 162.49 218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41</td><td>0.00 9.01 27.80 71.52 194.97 268.59 268.33 247.77 223.77 197.69 173.27 154.56 132.19 110.16</td><td>0.00 10.37 33.01 85.08 231.60 328.95 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09</td><td>#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A</td></td<>	0.00 5.52 15.93 40.92 111.96 143.86 140.34 128.54 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64	0.00 7.70 23.16 59.52 162.49 218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41	0.00 9.01 27.80 71.52 194.97 268.59 268.33 247.77 223.77 197.69 173.27 154.56 132.19 110.16	0.00 10.37 33.01 85.08 231.60 328.95 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
Constant 0:13:03 1.41 3.27 2.85 4.14 1.150 0:17:24 3.85 9.08 7.89 11.67 0:21:45 9.88 23.32 20.26 29.97 0:26:06 27.12 63.93 55.56 82.12 0:30:27 32.68 7.81 68.07 102.79 0:34:48 31.28 75.85 65.39 99.41 0:39:09 28.47 69.09 59.51 90.75 0:43:30 25.54 62.24 53.59 81.79 0:47:51 22.18 54.46 46.84 71.70 0:52:12 19.27 47.54 40.66 62.68 0:56:33 17.48 42.91 36.92 56.45 1:00:54 14.56 35.97 30.91 47.48 1:05:15 11.99 29.81 25.59 39.40 1:09:36 9.38 23.63 20.24 31.36 1:13:57 7.13 18.25 15.60 <td>5.52 15.93 40.92 111.96 143.86 140.34 128.54 115.94 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64</td> <td>7.70 23.16 59.52 162.49 218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41</td> <td>9.01 27.80 71.52 194.97 268.59 268.33 247.77 223.77 197.69 173.27 154.56 132.19 110.16</td> <td>10.37 33.01 85.08 231.60 328.95 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09</td> <td>#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A</td>	5.52 15.93 40.92 111.96 143.86 140.34 128.54 115.94 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64	7.70 23.16 59.52 162.49 218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41	9.01 27.80 71.52 194.97 268.59 268.33 247.77 223.77 197.69 173.27 154.56 132.19 110.16	10.37 33.01 85.08 231.60 328.95 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
0:21:45 9.88 23.32 20.26 29.97 0:26:06 27.12 63.93 55.56 82.12 0:30:27 32.68 78.81 66.07 102.79 0:34:48 31.28 75.85 65.39 99.41 0:39:09 28.47 69.09 59.51 90.75 0:43:30 25.54 62.24 53.59 81.79 0:47:51 22.18 54.46 46.84 71.70 0:52:12 19.27 47.54 40.86 62.68 0:56:33 17.48 42.91 36.92 56.45 1:00:54 14.56 35.97 30.91 47.48 1:05:15 11.99 29.81 25.59 39.40 1:09:36 9.38 23.63 20.24 31.36 1:13:57 7.13 18.25 15.60 24.32 1:18:18 5.23 13.64 11.62 18.26 1:22:39 3.98 10.23 8.73 13.63	40.92 111.96 143.86 140.34 128.54 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64	59.52 162.49 218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41	71.52 194.97 268.59 268.33 247.77 223.77 197.69 173.27 154.56 132.19 110.16	85.08 231.60 328.95 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	111.96 143.86 140.34 128.54 101.99 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64	162.49 218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41	194.97 268.59 268.33 247.77 223.77 197.69 173.27 154.56 132.19 110.16	231.60 328.95 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
0:30:27 32.68 78.81 68.07 102.79 0:34:48 31.28 75.85 65.39 99.41 0:39:09 28.47 69.09 59.51 90.75 0:43:30 25.54 62.24 53.59 81.79 0:47:51 22.18 54.46 46.84 71.70 0:52:12 19.27 47.54 40.86 62.68 0:56:33 17.48 42.91 36.92 55.45 1:00:54 14.56 35.97 30.91 47.48 1:05:15 11.99 29.81 25.59 39.40 1:09:36 9.38 23.63 20.24 33.36 1:13:57 7.13 18.25 15.60 24.32 1:18:18 5.23 13.64 11.62 18.26 1:22:39 3.98 10.23 8.73 13.63 1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17	143.86 140.34 128.54 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64	218.07 215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41	268.59 268.33 247.77 223.77 197.69 173.27 154.56 132.19 110.16	328.95 333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09	#N/A #N/A #N/A #N/A #N/A #N/A #N/A
0:34:48 31.28 75.85 65.39 99.41 0:39:09 28.47 69.09 59.51 90.75 0:43:30 25.54 62.24 53.59 81.79 0:47:51 22.18 54.46 46.84 71.70 0:52:12 19.27 47.54 40.86 62.68 0:56:33 17.48 42.91 36.92 55.45 1:00:54 14.56 35.97 30.91 47.48 1:05:15 11.99 29.81 25.59 39.40 1:09:36 9.38 23.63 20.24 31.36 1:13:57 7.13 18.25 15.60 24.32 1:18:18 5.23 13.64 11.62 18.26 1:22:39 3.98 10.23 8.73 13.63 1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17	140.34 128.54 115.94 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64	215.86 198.71 179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41	268.33 247.77 223.77 197.69 173.27 154.56 132.19 110.16	333.22 309.79 280.34 248.77 218.72 194.41 167.27 140.09	#N/A #N/A #N/A #N/A #N/A #N/A #N/A
0:43:30 25.54 62.24 53.59 81.79 0:47:51 22.18 54.46 46.84 71.70 0:52:12 19.27 47.54 40.86 62.68 0:56:33 17.48 42.91 36.92 56.45 1:00:54 14.56 35.97 30.91 47.48 1:05:15 11.99 29.81 25.59 39.40 1:09:36 9.38 23.63 20.24 31.36 1:13:57 7.13 18.25 15.60 24.32 1:18:18 5.23 13.64 11.62 18.26 1:22:39 3.98 10.23 8.73 13.64 1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17	115.94 101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64	179.40 158.21 138.61 123.94 105.56 87.89 70.81 55.41	247.77 223.77 197.69 173.27 154.56 132.19 110.16	280.34 248.77 218.72 194.41 167.27 140.09	#N/A #N/A #N/A #N/A #N/A
0:47:51 22.18 54.46 46.84 71.70 0:52:12 19.27 47.54 40.86 62.68 0:56:33 17.48 42.91 36.92 56.45 1:00:54 14.56 35.97 30.91 47.48 1:05:15 11.99 29.81 25.59 39.40 1:09:36 9.38 23.63 20.24 31.36 1:13:57 7.13 18.25 15.60 24.32 1:18:18 5.23 13.64 11.62 18.26 1:22:39 3.98 10.23 8.73 13.63 1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17	101.90 89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64	158.21 138.61 123.94 105.56 87.89 70.81 55.41	197.69 173.27 154.56 132.19 110.16	248.77 218.72 194.41 167.27 140.09	#N/A #N/A #N/A #N/A
0:52:12 19.27 47.54 40.86 62.68 0:56:33 17.48 42.91 36.92 56.45 1:00:54 14.56 35.97 30.91 47.48 1:05:15 11.99 29.81 25.59 39.40 1:09:36 9.38 23.63 20.24 31.36 1:13:57 7.13 18.25 15.60 24.32 1:18:18 5.23 13.64 11.62 18.26 1:22:39 3.98 10.23 8.73 13.63 1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17	89.18 80.09 67.69 56.27 45.03 35.07 26.47 19.64	138.61 123.94 105.56 87.89 70.81 55.41	173.27 154.56 132.19 110.16	218.72 194.41 167.27 140.09	#N/A #N/A #N/A #N/A
0:56:33 17.48 42.91 36.92 56.45 1:00:54 14.56 35.97 30.91 47.48 1:05:15 11.99 29.81 25.59 39.40 1:09:36 9.38 23.63 20.24 31.36 1:13:57 7.13 18.25 15.60 24.32 1:18:18 5.23 13.64 11.62 18.26 1:22:39 3.98 10.23 8.73 13.63 1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17	80.09 67.69 56.27 45.03 35.07 26.47 19.64	123.94 105.56 87.89 70.81 55.41	154.56 132.19 110.16	194.41 167.27 140.09	#N/A #N/A #N/A
1:00:54 14.56 35.97 30.91 47.48 1:05:15 11.99 29.81 25.59 39.40 1:09:36 9.38 23.63 20.24 31.36 1:13:57 7.13 18.25 15.60 24.32 1:18:18 5.23 13.64 11.62 18.26 1:22:39 3.98 10.23 8.73 13.63 1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17	67.69 56.27 45.03 35.07 26.47 19.64	105.56 87.89 70.81 55.41	132.19 110.16	167.27 140.09	#N/A #N/A
1:09:36 9.38 23.63 20.24 31.36 1:13:57 7.13 18.25 15.60 24.32 1:18:18 5.23 13.64 11.62 18.26 1:22:39 3.98 10.23 8.73 13.63 1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17	56.27 45.03 35.07 26.47 19.64	87.89 70.81 55.41		140.09	
1:13:57 7.13 18.25 15.60 24.32 1:18:18 5.23 13.64 11.62 18.26 1:22:39 3.98 10.23 8.73 13.63 1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17	35.07 26.47 19.64	55.41	89.08	114.35	#NI/A
1:18:18 5.23 13.64 11.62 18.26 1:22:39 3.98 10.23 8.73 13.63 1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17	26.47 19.64				
1:22:39 3.98 10.23 8.73 13.63 1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17	19.64		69.87	90.57	#N/A
1:27:00 3.24 8.22 7.04 10.91 1:31:21 2.74 6.92 5.93 9.17		42.08 31.02	53.31 39.45	70.11 52.59	#N/A #N/A
1:31:21 2.74 6.92 5.93 9.17	15.64	24.52	39.45	40.57	#N/A #N/A
1:35:42 2.40 6.02 5.16 7.96	13.12	20.51	25.81	33.46	#N/A
	11.36	17.71	22.23	28.67	#N/A
1:40:03 2.15 5.38 4.62 7.11 1:44:24 1.98 4.93 4.23 6.50	10.13	15.75	19.75	25.34	#N/A
1:44:24 1.98 4.93 4.23 6.50 1:48:45 1.46 3.68 3.15 4.89	9.26	14.36 11.13	17.97 14.09	22.96 18.26	#N/A #N/A
1:53:06 1.06 2.66 2.28 3.53	5.08	8.02	10.16	13.22	#N/A
1:57:27 0.78 1.97 1.68 2.62	3.77	5.95	7.53	9.76	#N/A
2:01:48 0.58 1.46 1.25 1.95	2.80	4.42	5.58	7.26	#N/A
2:06:09 0.42 1.07 0.92 1.43 2:10:30 0.30 0.77 0.66 1.03	2.06	3.27	4.14	5.39	#N/A
2:10:30 0.30 0.77 0.66 1.03 2:14:51 0.22 0.56 0.48 0.75	1.49	2.37	3.00	3.95 2.86	#N/A #N/A
2:19:12 0.15 0.39 0.33 0.52	0.76	1.22	1.56	2.09	#N/A
2:23:33 0.09 0.25 0.21 0.34	0.50	0.82	1.05	1.44	#N/A
2:27:54 0.05 0.14 0.12 0.20	0.30	0.49	0.64	0.91	#N/A
2:32:15 0.02 0.07 0.05 0.09 2:36:36 0.00 0.02 0.01 0.03	0.14	0.25	0.33	0.50	#N/A
2:36:36 0.00 0.02 0.01 0.03 2:40:57 0.00 0.00 0.00 0.00	0.05	0.08	0.12	0.21	#N/A #N/A
2:45:18 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
2:49:39 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
2:54:00 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
2:58:21 0.00 0.00 0.00 0.00 3:02:42 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
3:07:03 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
3:11:24 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
3:15:45 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
3:20:06 0.00 0.00 0.00 0.00 3:24:27 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
3:24:27 0.00 0.00 0.00 0.00 3:28:48 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
3:33:09 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
3:37:30 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
3:41:51 0.00 0.00 0.00 0.00 3:46:12 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
3:40:12 0.00 0.00 0.00 0.00 3:50:33 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
3:54:54 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
3:59:15 0.00 0.00 0.00 0.00 4:03:36 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
4.05.56 0.00 0.00 0.00 0.00 4:07:57 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
4:12:18 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
4:16:39 0.00 0.00 0.00 0.00 4:21:00 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
4:25:21 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
4:29:42 0.00 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
4:34:03 0.00 0.00 0.00 0.00 4:38:24 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
4:42:45 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
4:47:06 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
4:51:27 0.00 0.00 0.00 0.00 4:55:48 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
4.53.43 0.00 0.00 0.00 0.00 5:00:09 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A
5:04:30 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A
5:08:51 0.00 0.00 0.00 0.00 5:13:12 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	#N/A #N/A


Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
5693	0.00	20	0.000	0	0.000	0.00	For best results, include the
		49	0.001	11	0.000	0.10	stages of all grade slope
5693.33	0.33	2,217	0.051	760	0.017	0.10	changes (e.g. ISV and Floor)
5694	2.00	34,696	0.797	19,070	0.438	0.17	from the S-A-V table on
5696	3.00	62,057	1.425	67,959	1.560	0.42	Sheet 'Basin'.
5697	4.00	65,120	1.495	131,548	3.020	2.47	Also include the inverts of a
5698	5.00	68,248	1.567	198,232	4.551	4.08	outlets (e.g. vertical orifice,
5699	6.00	71,443	1.640	268,077	6.154	11.09	overflow grate, and spillwa
5700	7.00	74,705	1.715	341,151	7.832	132.07	where applicable).
5701	8.00	78,040	1.792	417,524	9.585	149.44	
5702	9.00	81,442	1.870	497,265	11.416	284.79	
							-
							-
							_
							_
							-
	-						
	-						
			-				
							-
							-
	1						
							-
							-
							_
	-						
							_
							4
							-
							1
							1
	1						
							_
							4
	_						-
							1
							1
							1
]
							1
							4

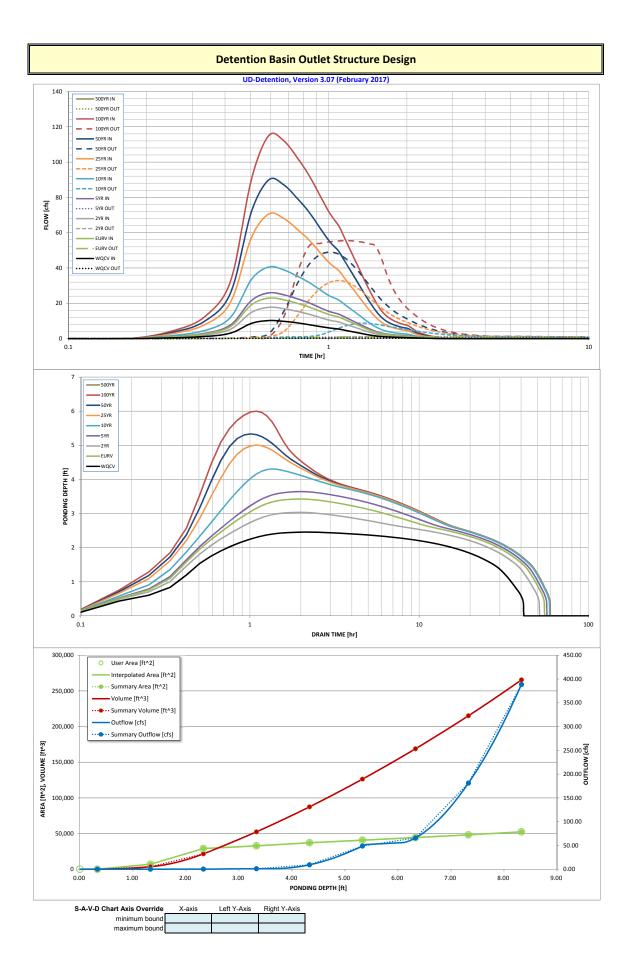
Design Procedure Form	: Extended Detention Basin (EDB)
UD-BMP Designer: Richard Schindler Company: Core Engineering Group Date: February 16, 2019 Project: Lorson Ranch East 4 FDR - Pond E2 forebay design (ultimate) Location:	P (Version 3.06, November 2016) Sheet 1 of 4
 Basin Storage Volume A) Effective Imperviousness of Tributary Area, I_a B) Tributary Area's Imperviousness Ratio (i = I_a / 100) C) Contributing Watershed Area D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm E) Design Concept (Select EURV when also designing for flood control) F) Design Volume (WQCV) Based on 40-hour Drain Time	$l_{a} = \underline{35.0} \%$ $i = \underline{0.350}$ Area = <u>125.000</u> ac $d_{6} = \underline{0}$ in Choose One Water Quality Capture Volume (WQCV) Water Quality Capture Volume (WQCV) C Excess Urban Runoff Volume (EURV) $V_{DESIGN} = \underline{1.732}$ ac-ft VDESIGN OTHER= ac-ft
 Water Quality Capture Volume (WQCV) Design Volume (V_{WQCV OTHER} = (d₆*(V_{DESIGN}/0.43)) H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) I) Predominant Watershed NRCS Soil Group J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV_A = 1.68 * 1^{1.28} For HSG A: EURV_A = 1.68 * 1^{1.28} For HSG B: EURV_B = 1.36 * 1^{1.08} For HSG C/D: EURV_{CO} = 1.20 * 1^{1.08} 	$V_{\text{DESIGN USER}} = ac-ft$ $V_{\text{DODESIGN USER}} = WQCV \text{ selected. Soil group not required.}$ $W_{\text{DODESIGN USER}} = ac-ft$ $EURV = ac-ft$
 Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) 	L : W = : 1
 Basin Side Slopes A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) 	Z = <u>0.33</u> ft / ft TOO STEEP (< 3)
 4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations: 	

Design Procedure Form: Extended Detention Basin (EDB)

	Design Procedure Form	Extended De	tention Basi	n (EDB)	
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group February 16, 2019 Lorson Ranch East 4 FDR - Pond E2 forebay design (ultimate)				Sheet 3 of 4
8. Initial Surcharge	Volume				
	al Surcharge Volume commended depth is 4 inches)	D _{IS} =	4	in	
	al Surcharge Volume ume of 0.3% of the WQCV)	V _{IS} =	226.3	cu ft	
C) Initial Surcha	rge Provided Above Micropool	V _s =	18.7	cu ft	
9. Trash Rack					
A) Water Qualit	y Screen Open Area: $A_t = A_{ot} * 38.5^* (e^{-0.095D})$	A _t =	650	square i	inches
in the USDCM, i	en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.)		Other (Please d		w)
	Other (Y/N): Y				
C) Ratio of Total	Open Area to Total Area (only for type 'Other')	User Ratio =	0.6		
D) Total Water 0	Quality Screen Area (based on screen type)	A _{total} =	1083	sq. in.	Based on type 'Other' screen ratio
· · ·	ign Volume (EURV or WQCV) sign concept chosen under 1E)	H=	3	feet	
F) Height of Wat	ter Quality Screen (H _{TR})	H _{TR} =	64	inches	
	ter Quality Screen Opening (W _{opening}) 2 inches is recommended)	$W_{opening} =$	16.9	inches	

Design	Procedure Form:	Extended Detention Basin	(EDB)

		Sheet 4 of
Designer:	Richard Schindler	
Company:	Core Engineering Group	
Date:	February 16, 2019	
Project:	Lorson Ranch East 4 FDR - Pond E2 forebay design (ultimate)	
Location:		
10. Overflow Emb	bankment	
A) Describe	embankment protection for 100-year and greater overtopping:	
	Dverflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	
(1012018	a distance per unit vertical, 4.1 or natter preferred)	
11. Vegetation		Choose One
The Vegetation		OIrrigated
		O Not Irrigated
12. Access		
A) Describe	Sediment Removal Procedures	
Notes:		


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017) Project: Creekside South at Lorson Ranch

110/000	oreenside of		Annon			
Basin ID:	Pond J					
ZONE 3						
	ONE 1	~	~			
VOLUME EURY WOOT		1	_	-		
I I I I I	< 1	<u>K</u>			i i	
ZONE	1 AND 2	ORIFICE	8		Depth Increment =	
PERMANENT ORIFIC POOL Example Zone		ion (Boton	tion Dond)		Stage - Storage	s
Example 2016	Connigunai		tion Fond)		Description	
Required Volume Calculation					Top of Micropool	
Selected BMP Type =	EDB	1			5682	
Watershed Area =	54.00	acres			5683	
Watershed Length =	2,200	ft			5684	
Watershed Slope =	0.020	ft/ft			5685	
Watershed Imperviousness =	26.00%	percent			5686	
Percentage Hydrologic Soil Group A =	0.0%	percent			5687	
Percentage Hydrologic Soil Group B =	90.0%	percent			5688	
Percentage Hydrologic Soil Groups C/D =	10.0%	percent			5689	
Desired WQCV Drain Time =	40.0	hours			5690	
Location for 1-hr Rainfall Depths =	User Input					
Water Quality Capture Volume (WQCV) =	0.623	acre-feet	Optional Use	r Override		
Excess Urban Runoff Volume (EURV) =	1.408	acre-feet	1-hr Precipita	ation		
2-yr Runoff Volume (P1 = 1.19 in.) =	1.084	acre-feet	1.19	inches		
5-yr Runoff Volume (P1 = 1.5 in.) =	1.592	acre-feet	1.50	inches		
10-yr Runoff Volume (P1 = 1.75 in.) =	2 509	acre-feet	1 75	inches		
25-yr Runoff Volume (P1 = 2 in.) =	4.406	acre-feet	2.00	inches		
50-yr Runoff Volume (P1 = 2.25 in.) =	5.648	acre-feet	2.25	inches		
100-yr Runoff Volume (P1 = 2.52 in.) =	7.267	acre-feet	2.52	inches		
500-yr Runoff Volume (P1 = 2.52 iii.) =	0.000	acre-feet	2.32	inches		
	1.011	acre-feet		Inches		
Approximate 2-yr Detention Volume =						
Approximate 5-yr Detention Volume =	1.495	acre-feet				
Approximate 10-yr Detention Volume =	2.192	acre-feet				
Approximate 25-yr Detention Volume =	2.587	acre-feet				
Approximate 50-yr Detention Volume =	2.728	acre-feet				
Approximate 100-yr Detention Volume =	3.285	acre-feet				
Stage-Storage Calculation						
Zone 1 Volume (WQCV) =	0.623	acre-feet				
Zone 2 Volume (EURV - Zone 1) =	0.785	acre-feet				
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	2.188	acre-feet				
Total Detention Basin Volume =	3.596	acre-feet				
Initial Surcharge Volume (ISV) =	user	ff*3				
Initial Surcharge Depth (ISD) =	user	A				
Total Available Detention Depth (H _{total}) =	user	e				
Depth of Trickle Channel (H _{TC}) =	user	e e				
Slope of Trickle Channel (Src) =	user	n/n				
Slopes of Main Basin Sides (Smain) =	user	HV				
Basin Length-to-Width Ratio (R _{L/W}) =	user	n.v				
Sabin Cengerto-Widen (KdU) (RL/W) =	usei	L				
Initial Surcharge Area (A _{sy}) =	user	ft*2				
	user					
Surcharge Volume Length (L _{ISV}) =		ft				
Surcharge Volume Width (W _{ISV}) =	user	ft				
Depth of Basin Floor (H _{FLOOR}) =	user	ft				
Length of Basin Floor (L _{FLOOR}) =	user	ft				
Width of Basin Floor (W _{FLOOR}) =	user	ft				
Area of Basin Floor (A _{FLOOR}) =	user	ft'2				
Volume of Basin Floor (V _{FLOOR}) =	user	ft/3				
Depth of Main Basin (H _{MAIN}) =	user	ft				
Length of Main Basin (L _{MAIN}) =	user	ft				
Width of Main Basin (W _{M4N}) =	user	ft				
Area of Main Basin (A _{MAIN}) =	user	ft*2				
Volume of Main Basin (V _{MAIN}) =	user	ft^3				
Calculated Total Basin Volume (V _{total}) =	user	acre-feet				
- K 001007						

Depth Increment =		ft							
Stage - Storage	Stage	Optional	Length	Width	Area	Optional	Area	Volume	Volume
Description	(ft)	Override Stage (ft)	Length (ft)	(ft)	(ft'2)	Override Area (ft/2)	(acre)	(ft'3)	(ac-ft)
Top of Micropool		0.00			-	49	0.001	((00 11/
5682		0.33	-		-	50	0.001	16	0.000
5683		1.33	-			7,000	0.161	3,472	0.080
5684	-	2.33	-		-	29,000	0.161	3,472 21,541	0.080
5685	-	3.33	-	-	-	32,800	0.888	52,441	1.204
5686	-	4.33	-	-	-	32,800	0.852	87,391	2.006
	-		-	-	-				2.000
5687	-	5.33	-		-	40,720	0.935	126,301	
5688 5689	-	6.33 7.33	-	-	-	44,410 48,200	1.020	168,866 215,171	3.877 4.940
5690	-	8.33	-	-	-	48,200 52,430	1.204	265,486	6.095
5690	-	0.33	-	-		32,430	1.204	200,400	6.095
	-		-	-	-				
	-		-	-					
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-					
	-		-	-					
	-		-					l	
	-		-					l	
	-		-					l	
	-		-					l	
	-		-					l	
	-		-					l	
	-		-						
	-		-	-	-			1	
	-		-	-	-			1	
	-		-	-	-			1	
	-		-	-	-			1	
	-		-	-	-			1	
	-		-	-	-				
	-		-	-	-			1	
	-		-	-	-			1	
	-		-	-	-			1	
	-		-	-	-			1	
	-		-	-	-			1	
	-		-	-	-				
	-		-	-	-				
			-		-				
			-		-				
			-		-				
	-		-	-	-			1	
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
	-		-	-	-				
	-		-	-	-				
			-	-	-			1	
	-		-	-	-			1	
	-		-		-				-
			-	-	-			l	
	-								
	-		-	-	-			I	
	-		-	-	-			1	
					-				
					-				
	-		-	-	-				
-		_			-				
	-			-	-			1	
			-		-				
		-		-	-			l	
	-		-	-	-				
	-			-	-				_
	-			-	-			1	
					-				
				-	-				
	-		-	-	-				
-		_			-				
				-	-			1	
	-								
		_			-				
				-	-			l	
			-		-				
	-		-	-	-				_
			-		-			1	
					-				
					-				
	-		-	-	-				
								1	
			-						
	-		-	-	-				

		Dete	ntion Basin (Outlet Struct	ure Design						
D11-	Creekside South		UD-Detention, Ve	rsion 3.07 (Februar	ry 2017)						
Project: Basin ID:											
ZONE 3											
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type					
			Zone 1 (WQCV)	2.52	0.623	Orifice Plate					
	100-YEA	R	Zone 2 (EURV)	3.60	0.785	Rectangular Orifice					
PERMANENT ORIFICES			(100+1/2WQCV)	6.06	2.188	Weir&Pipe (Restrict)					
Example Zone	Configuration (Re	etention Pond)			3.596	Total					
ser Input: Orifice at Underdrain Outlet (typically us		T					ed Parameters for Un				
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =		ft (distance below th inches	e filtration media sur	face)		rdrain Orifice Area = ain Orifice Centroid =		ft² feet			
Underdrain Uniter Diameter -		inches			onderuna	ani Ornice Centrold -		ieet			
Jser Input: Orifice Plate with one or more orifices of	or Elliptical Slot Weir	(typically used to dra	ain WQCV and/or EU	RV in a sedimentatio	on BMP)	Calcu	lated Parameters for	Plate			
Invert of Lowest Orifice =		ft (relative to basin b	ottom at Stage = 0 ft)	WQ O	rifice Area per Row =	1.493E-02	ft²			
Depth at top of Zone using Orifice Plate =	2.52	•	oottom at Stage = 0 ft)		lliptical Half-Width =	N/A	feet			
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	9.00	inches sq. inches (diameter	- 1-5/9 inchos)		Elli	ptical Slot Centroid = Elliptical Slot Area =	N/A N/A	feet ft ²			
Office Plate. Office Area per Now –	2.15	sq. inches (diameter	- 1-5/8 inches/			Elliptical Slot Area -	N/A	it.			
Jser Input: Stage and Total Area of Each Orifice F			[I				1		
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)			
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	0.00	0.80	1.60 2.15								
Office Area (sy. IIICIES)	2.10	2.10	2.10						J		
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)			
Stage of Orifice Centroid (ft)											
Orifice Area (sq. inches)]		
User Input: Vertical Orifice (Circ	cular or Rectangular)					Calculated	Parameters for Vert	ical Orifice			
oser input. Vertical office (ent	Zone 2 Rectangular	Not Selected				Calculated	Zone 2 Rectangular	Not Selected	1		
Invert of Vertical Orifice =	2.52	N/A	ft (relative to basin b	ottom at Stage = 0 ft	:) V	ertical Orifice Area =	0.17	N/A	ft²		
Depth at top of Zone using Vertical Orifice =	3.60	N/A	-	oottom at Stage = 0 ft	:) Verti	al Orifice Centroid =	0.08	N/A	feet		
Vertical Orifice Height =	2.00	N/A	inches								
-			-								
Vertical Orifice Width =	12.13		inches								
-	12.13		-			Calculated	Parameters for Over	flow Weir			
Vertical Orifice Width =	12.13 Grate (Flat or Sloped) Zone 3 Weir		-				Zone 3 Weir	flow Weir Not Selected]		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho =	12.13 Grate (Flat or Sloped) Zone 3 Weir 3.70	Not Selected	inches ft (relative to basin bot	ttom at Stage = 0 ft)		ate Upper Edge, H _t =	Zone 3 Weir 4.70	Not Selected N/A	feet		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	12.13 arate (Flat or Sloped) Zone 3 Weir 3.70 6.00	Not Selected N/A N/A	inches ft (relative to basin bot feet		Over Flow	ate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir 4.70 6.08	Not Selected N/A N/A	feet		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	12.13 Grate (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00	Not Selected N/A N/A N/A	inches ft (relative to basin bol feet H:V (enter zero for fl		Over Flow Grate Open Area /	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 4.70 6.08 4.88	Not Selected N/A N/A N/A	feet should be <u>></u> 4		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	12.13 arate (Flat or Sloped) Zone 3 Weir 3.70 6.00	Not Selected N/A N/A	inches ft (relative to basin bot feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir 4.70 6.08	Not Selected N/A N/A	feet		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	12.13 Grate (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 6.00	Not Selected N/A N/A N/A N/A	inches ft (relative to basin bol feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 4.70 6.08 4.88 25.55	Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	12.13 Tate (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bol feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77	Not Selected N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	12.13 Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% ircular Orifice, Restri	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan	inches ft (relative to basin bol feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat	feet should be ≥ 4 ft ² ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	12.13 Tate (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected	inches ft (relative to basin bol feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected	feet should be ≥ 4 ft ² ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	12.13 rate (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan	inches ft (relative to basin bol feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	at grate) iotal area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat	feet should be ≥ 4 ft ² ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	12.13 rate (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00	Not Selected N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A	inches ft (relative to basin bol feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w/ Zone 3 Restrictor 5.24	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet should be ≥ 4 ft ² ft ² te ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	12.13 Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% Ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00	Not Selected N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A	inches ft (relative to basin bol feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t)	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = sen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w/ / Zone 3 Restrictor 5.24 1.16 1.97	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C) Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang	12.13 Transport Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% Ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal)	Not Selected N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A	inches ft (relative to basin bot feet H:V (enter zero for fl feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-(Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ean Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w// Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	12.13 Tate (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10	Not Selected N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A	inches ft (relative to basin bot feet H:V (enter zero for fl feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-(Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 S for Outlet Pipe w/ Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20	Not Selected N/A	feet should be ≥ 4 ft ² ft ² te ft ² ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C) Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang	12.13 Tone 3 Weir 3.70 6.00 6.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10	Not Selected N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A	inches ft (relative to basin bot feet H:V (enter zero for fl feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-(Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ean Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w// Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	12.13 Trate (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10 25.00	Not Selected N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A N/A ft (relative to basin b feet	inches ft (relative to basin bot feet H:V (enter zero for fl feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-(Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w/ 1 Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A pillway feet feet	feet should be ≥ 4 ft ² ft ² te ft ² ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C) Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	12.13 Transport Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% Ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10 25.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A Ctor Plate, or Rectan N/A N/A t f (relative to basin t feet H:V	inches ft (relative to basin bot feet H:V (enter zero for fl feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-(Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w/ 1 Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A pillway feet feet	feet should be ≥ 4 ft ² ft ² te ft ² ft ²		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes =	12.13 Transport Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% Ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10 25.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A Ctor Plate, or Rectan N/A N/A t f (relative to basin t feet H:V	inches ft (relative to basin bot feet H:V (enter zero for fl feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-(Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w/ 1 Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A pillway feet feet	feet should be ≥ 4 ft ² ft ² te ft ² ft ²		
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Invert Stage= Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	12.13 Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% Ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal 6.10 25.00 4 .00 1.00	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan N/A tor Plate, or Rectan N/A ft (relative to basin to feet H:V feet EURV 1.07	inches ft (relative to basin bot feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19	at grate) iotal area n bottom at Stage = 0 f Half-() <u>5 Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w/ Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 8.30 1.20 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A NA NA NA N/A N/A N/	feet should be ≥ 4 ft ² ft ² feet radians 500 Year 0.00		
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C) Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	12.13 Zone 3 Weir 3.70 6.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10 25.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan N/A N/A ft (relative to basin t feet H:V feet EURV	inches ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft	at grate) otal area n bottom at Stage = 0 f Half-() 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 20ne 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 8.30 1.20	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A pillway feet feet feet acres 100 Year	feet should be ≥ 4 ft ² ft ² te ft ² feet radians		
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Invert Stage= Spillway Invert Stage= Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	12.13 Transition Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal 6.10 25.00 4.00 1.00 WQCV 0.53 0.623 0.623	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 1.408	inches ft (relative to basin bol feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.19</u> <u>1.084</u>	at grate) otal area n bottom at Stage = 0 f Half-() <u>5 Year 1.50</u> <u>1.592</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () ()) ()) ()) ()))) ()) ()))) ()))) ())))) ()))) ())))) ())))) ()))) ())))) ())))) ())))) ())))) ())))) ())))) ())))) ()))) ()))) ()) ()))) ()))) ()))) ()))) ()))) ())))) ()))) ()))) ())))) ()))) ()))) ())))) ()))) ()))))) ()))))))) ())))))))) ()	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 4.406	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 S for Outlet Pipe w/ 1 Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 8.30 1.20 50 Year 2.25 5.648	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A pillway feet feet acres 100 Year 2.52 7.267	feet should be \geq 4 ft ² ft ² fe ft ² feet radians 500 Year 0.00 0.000		
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Galopes = Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Now (a (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) =	12.13 Transport Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% Ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10 25.00 4.00 1.00 WQCV 0.53 0.623 0.622 0.00	Not Selected N/A It (relative to basin to feet H:V feet H:V feet I.07 1.408 0.00	inches ft (relative to basin bot feet H:V (enter zero for fl feet % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 1.084 0.01	at grate) otal area n bottom at Stage = 0 f Half-() <u>5 Year 1.592</u> <u>1.593</u> 0.03	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 2.509 2.510 0.21	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 4.406 4.409 0.67	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w// Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 8.30 1.20 5.648 5.647 0.92	Not Selected N/A N/A <	feet should be ≥ 4 ft ² ft ² te ft ² feet radians 500 Year 0.00 0.000 4N/A 0.00		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (In) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs)	12.13 Trate (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10 25.00 4.00 1.00 WQCV 0.53 0.623 0.02 0.00 0.0	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Image: second se	inches ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 2 Year 1.19 1.084 1.084 0.01 0.7	at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.59 1.592 1.593 0.03 1.7	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Grate	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.00 4.406 4.409 0.67 36.1	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w/ / Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 8.30 1.20 50 Year 2.25 5.648 5.647 0.92 49.8	Not Selected N/A A <td>feet should be ≥ 4 ft² ft² fe ft² feet radians</td>	feet should be ≥ 4 ft ² ft ² fe ft ² feet radians		
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) =	12.13 Trace (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 70% Solution Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10 25.00 4.00 1.00 WQCV 0.53 0.623 0.622 0.00 10.2	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectanger N/A N/A tor Plate, or Rectanger N/A N/A tor Plate, or Rectanger N/A N/A tor Selected N/A tor Selected N/A ft (relative to basin the feet H:V feet 1.07 1.409 0.00 0.0 23.0	inches ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 1.19 1.084 0.01 0.7 17.7	at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.59 1.592 1.593 0.03 1.7 25.9	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () () () () () () (ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 4.406 4.409 0.67 36.1 70.6	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 20ne 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 8.30 1.20 5.648 5.647 0.92 49.8 90.0	Not Selected N/A A A	feet should be ≥ 4 ft ² ft ² feet radians		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (In) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs)	12.13 Trate (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10 25.00 4.00 1.00 WQCV 0.53 0.623 0.02 0.00 0.0	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Image: second se	inches ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 2 Year 1.19 1.084 1.084 0.01 0.7	at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.59 1.592 1.593 0.03 1.7	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Grate	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.00 4.406 4.409 0.67 36.1	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w/ / Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 8.30 1.20 50 Year 2.25 5.648 5.647 0.92 49.8	Not Selected N/A 100 Year 2.52 7.267 1.24 </td <td>feet should be ≥ 4 ft² ft² te ft² feet radians</td>	feet should be ≥ 4 ft ² ft ² te ft ² feet radians		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Clow, q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Stru	12.13 Transport Zone 3 Weir 3.70 6.00 6.00 70% 50% Ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal 6.10 25.00 4.00 1.00 WQCV 0.53 0.623 0.623 0.622 0.00 10.2 0.3 N/A Plate	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectanger N/A N/A N/A time N/A time fet H:V feet H:V 1.07 1.408 0.00 0.00 23.0 1.1 N/A Vertical Orifice 1	inches ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year 1.19 1.084 0.01 0.7 17.7 0.9 N/A Vertical Orifice 1	at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 1.593 0.03 1.7 25.9 1.2 0.7 Vertical Orifice 1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () () () () () () (ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 4.406 4.409 0.67 3.6.1 70.6 3.2.9 0.9 Overflow Grate 1	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 S for Outlet Pipe w/1 Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 8.30 1.20 5.648 5.647 0.92 49.8 90.0 49.0 1.0 Overflow Grate 1	Not Selected N/A Sciencintretin	feet should be ≥ 4 ft ² ft ² ft ² feet radians		
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Invert Stage= Spillway Invert Stage= Stage Start Return Period = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	12.13 Transport Zone 3 Weir 3.70 6.00 6.00 70% Some 3 Meir Zone 3 Weir Zone 3 Weir Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10 6.10 4.00 1.00 WQCV 0.53 0.623 0.622 0.00 1.02 0.3 N/A Plate N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A It (relative to basin the feet H:V feet H:V 1.07 1.409 0.00 0.0 23.0 1.1 N/A	inches ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 1.084 0.01 0.7 17.7 0.9 N/A Vertical Orifice 1 N/A	at grate) otal area n bottom at Stage = 0 f Half-4) <u>5 Year</u> 1.59 1.593 0.03 1.7 25.9 1.2 0.7 Vertical Orifice 1 N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 2.509 2.510 0.21 11.4 40.6 8.8 0.8 0.8 0verflow Grate 1 0.3	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 4.406 	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 s for Outlet Pipe w/ Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 8.30 1.20 5.647 0.92 49.8 90.0 49.0 1.0 Overflow Grate 1 1.9	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Platf Not Selected N/A N/A N/A N/A N/A Pillway feet feet feet acres 7.267 1.24 66.7 1.24 66.7 1.15.1 55.5 0.8 Outlet Plate 1 2.1	feet should be ≥ 4 ft ² ft ² fe ft ² feet radians		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Clow, q (cfs) Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Structure Controlling	12.13 Transport Zone 3 Weir 3.70 6.00 6.00 70% 50% Ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal 6.10 25.00 4.00 1.00 WQCV 0.53 0.623 0.623 0.622 0.00 10.2 0.3 N/A Plate	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectanger N/A N/A N/A time N/A N/A time fet H:V feet H:V 1.07 1.408 0.00 0.00 23.0 1.1 N/A Vertical Orifice 1	inches ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year 1.19 1.084 0.01 0.7 17.7 0.9 N/A Vertical Orifice 1	at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 1.593 0.03 1.7 25.9 1.2 0.7 Vertical Orifice 1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () () () () () () (ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 4.406 4.409 0.67 3.6.1 70.6 3.2.9 0.9 Overflow Grate 1	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 S for Outlet Pipe w/1 Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 8.30 1.20 5.648 5.647 0.92 49.8 90.0 49.0 1.0 Overflow Grate 1	Not Selected N/A Sciencintretin	feet should be ≥ 4 ft ² ft ² te ft ² feet radians		
Vertical Orifice With = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Nuflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) =	12.13 Trate (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 70% Solution Zone 3 Restrictor 0.00 36.00 25.00 25.00 gular or Trapezoidal) 6.10 25.00 4.00 1.00 WQCV 0.53 0.623 0.623 0.623 0.623 0.623 0.623 0.00 1.02 0.3 N/A Plate N/A N/A Plate N/A 38 40	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectanger N/A N/A tor Plate, or Rectanger N/A tor Selected N/A ft (relative to basin the feet H:V feet 1.07 1.409 0.00 23.0 1.1 N/A Vertical Orifice 1 N/A YA	inches ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 1.084 0.01 0.7 17.7 0.9 N/A Vertical Orifice 1 N/A N/A N/A 46 49	at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.59 1.592 1.593 0.03 1.7 25.9 1.2 0.7 Vertical Orifice 1 N/A N/A N/A 49 53	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Coverflow Grate Op Coverflow Grate Op Coverflow Grate 1 0.3 N/A 49 54	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 4.406 4.409 0.67 3.6.1 70.6 32.9 0.9 Overflow Grate 1 1.2 N/A 44 52	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 20ne 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 5.648 5.647 0.92 49.8 90.0 49.0 1.0 Overflow Grate 1 1.9 N/A 42 51	Not Selected N/A S0 </td <td>feet should be ≥ 4 ft² ft² ft feet radians</td>	feet should be ≥ 4 ft ² ft ² ft feet radians		
Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Noted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Outlow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Peak Q (cfs) = Ratio Peak Outflow to Predevelopment Peak Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours)	12.13 Trace (Flat or Sloped) Zone 3 Weir 3.70 6.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 36.00 25.00 gular or Trapezoidal) 6.10 25.00 4.00 1.00 WQCV 0.53 0.623 WQCV 0.53 0.623 WQCV 0.53 0.623 WQCV 0.53 0.623 WQCV 0.53 0.623 WQCV 0.53 0.623 WQCV 0.53 0.623 WQCV 0.53 0.623 WQCV 0.53 0.623 WQCV 0.53 0.623 WQCV 0.53 0.623 WQCV 0.53 0.623 WQCV 0.75 0.75 WQCV 0.75 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 WQCV 0.75 W W W W W W W W	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectan N/A N/A ft (relative to basin the feet H:V feet H:V fort 1.07 1.408 0.00 0.00 0.00 1.1 N/A Vertical Orifice 1 N/A 48	inches ft (relative to basin bot feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year 1.19 2 Year 1.084 0.01 0.7 1.7.7 0.9 N/A Vertical Orifice 1 N/A 46	at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.59 1.59 1.59 0.03 1.7 25.9 1.2 0.7 Vertical Orifice 1 N/A 49	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Overflow Overflow Grate 1 0.3 N/A 49	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 4.406 4.409 0.67 3.6.1 70.6 32.9 0.9 Overflow Grate 1 1.2 N/A 44	Zone 3 Weir 4.70 6.08 4.88 25.55 12.77 S for Outlet Pipe w/ / Zone 3 Restrictor 5.24 1.16 1.97 ted Parameters for S 1.20 8.30 1.20 8.30 1.20 5.648 5.648 5.647 0.92 49.8 90.0 1.0 Overflow Grate 1 1.9 N/A 42	Not Selected N/A Solution 0.8 Outlet Plate 1 2.1 N/A 39	feet should be ≥ 4 ft ² ft ² fe ft ² feet radians		

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

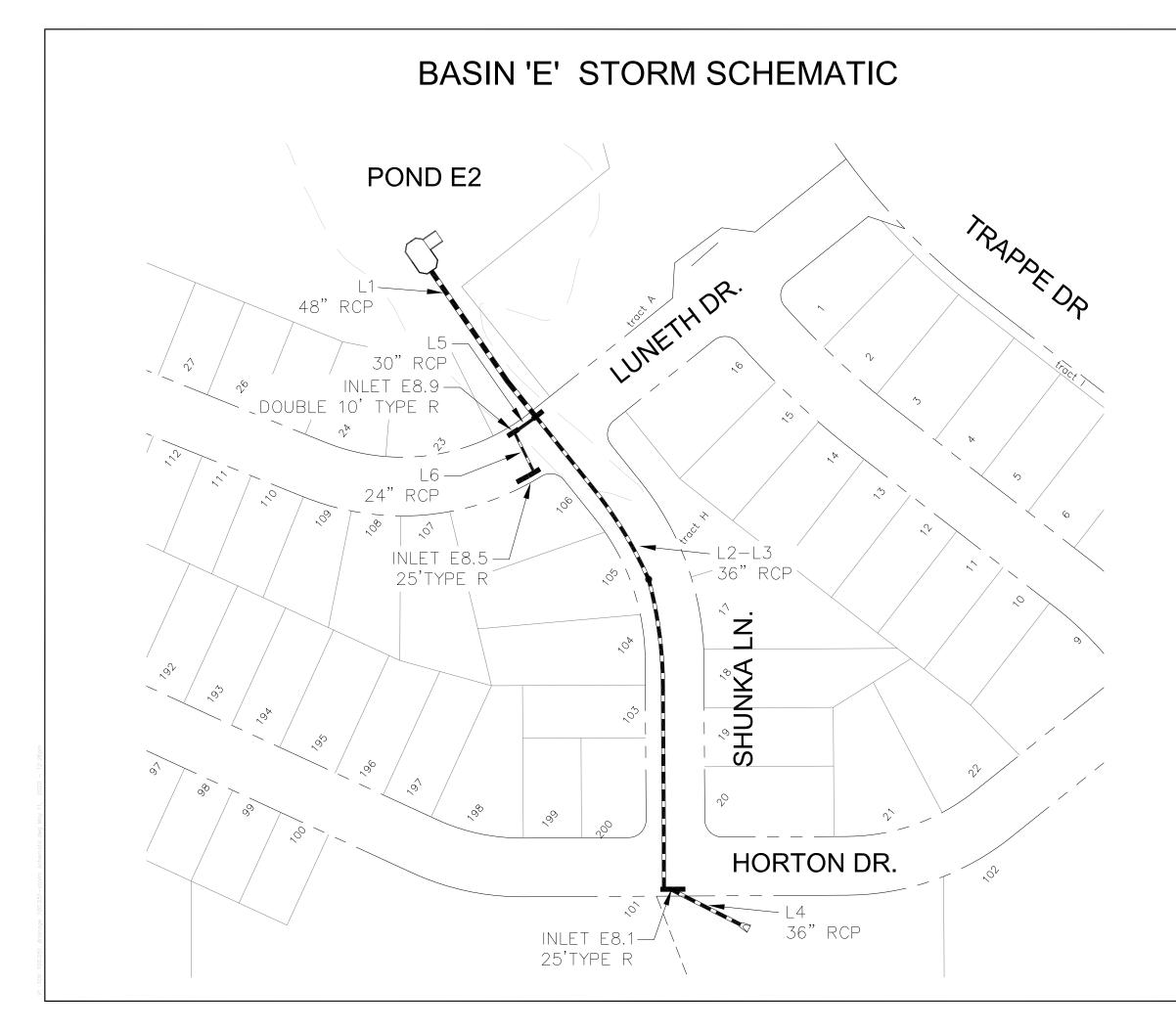
		lydrographs			n 3.07 (Februa		anhs developed	in a separate pro	aram	
Γ	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	#N/A
Time Interval	TIME	WORRBOOK WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.05 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
5.05 11111	0:05:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Hydrograph	0:10:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
Constant	0:15:09	0.45	1.00	0.78	1.12	1.73	2.92	3.62	4.47	#N/A
0.991	0:20:12	1.22	2.71	2.10	3.05	4.75	8.13	10.21	12.82	#N/A
	0:25:15	3.14	6.96	5.39	7.84	12.19	20.86	26.21	32.93	#N/A
	0:30:18	8.63	19.12	14.82	21.54	33.46	57.20	71.82	90.14	#N/A
	0:35:21	10.24	22.96	17.72	25.91	40.59	70.65	89.98	115.07	#N/A
	0:40:24	9.77	21.96	16.94	24.80 22.57	38.91	68.04	87.06 79.48	112.01	#N/A
	0:50:30	8.89 7.94	19.99 17.92	15.42 13.81	22.57	35.41 31.83	61.99 55.85	79.48	102.51 92.45	#N/A #N/A
·	0:55:33	6.85	15.55	11.96	17.58	27.73	48.88	62.81	81.21	#N/A
	1:00:36	5.97	13.51	10.40	15.27	24.13	42.68	54.91	71.05	#N/A
	1:05:39	5.41	12.25	9.43	13.85	21.85	38.51	49.45	63.85	#N/A
	1:10:42	4.46	10.19	7.82	11.53	18.24	32.30	41.59	53.91	#N/A
	1:15:45	3.64	8.38	6.42	9.49	15.07	26.77	34.52	44.79	#N/A
	1:20:48	2.81	6.53	4.98	7.41	11.85	21.23	27.48	35.80	#N/A
	1:25:51 1:30:54	2.09	4.94 3.61	3.75	5.62	9.08 6.71	16.41 12.27	21.32	27.86 21.01	#N/A #N/A
ł	1:35:57	1.51	2.76	2.72	3.14	5.07	9.19	11.94	15.61	#N/A #N/A
ļ	1:41:00	0.96	2.25	1.71	2.56	4.11	7.39	9.56	12.44	#N/A
ĺ	1:46:03	0.82	1.91	1.45	2.16	3.47	6.22	8.03	10.44	#N/A
	1:51:06	0.72	1.67	1.27	1.89	3.03	5.41	6.98	9.05	#N/A
	1:56:09	0.65	1.50	1.14	1.70	2.71	4.83	6.23	8.07	#N/A
	2:01:12	0.60	1.38	1.05	1.56	2.49	4.42	5.70	7.37	#N/A
	2:06:15 2:11:18	0.44	1.01 0.74	0.77	1.15 0.84	1.84 1.34	3.30 2.39	4.28 3.10	5.59	#N/A #N/A
	2:16:21	0.32	0.74	0.42	0.62	0.99	1.77	2.29	2.99	#N/A #N/A
	2:21:24	0.17	0.40	0.31	0.46	0.73	1.32	1.70	2.22	#N/A
	2:26:27	0.12	0.29	0.22	0.33	0.53	0.96	1.25	1.64	#N/A
	2:31:30	0.09	0.21	0.16	0.23	0.38	0.69	0.90	1.18	#N/A
	2:36:33	0.06	0.15	0.11	0.17	0.28	0.50	0.65	0.86	#N/A
	2:41:36	0.04	0.10	0.08	0.12	0.19	0.35	0.46	0.61	#N/A
	2:46:39	0.02	0.06	0.05	0.07	0.12	0.23	0.30	0.40	#N/A
	2:51:42 2:56:45	0.01	0.03	0.02	0.04	0.07	0.13	0.17	0.23	#N/A #N/A
	3:01:48	0.00	0.01	0.00	0.01	0.03	0.08	0.08	0.03	#N/A #N/A
·	3:06:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:11:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:16:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:22:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:27:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:32:06 3:37:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	3:42:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
ŀ	3:47:15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:52:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:57:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ļ	4:02:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ŀ	4:07:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ŀ	4:12:30 4:17:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
ŀ	4:22:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:27:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ŀ	4:32:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ŀ	4:37:45 4:42:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:47:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ļ	4:52:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ļ	4:57:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
ŀ	5:03:00 5:08:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
ł	5:13:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ļ	5:18:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ļ	5:23:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
ŀ	5:28:15 5:33:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
ł	5:38:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ļ	5:43:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ļ	5:48:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ł	5:53:30 5:58:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	6:03:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A

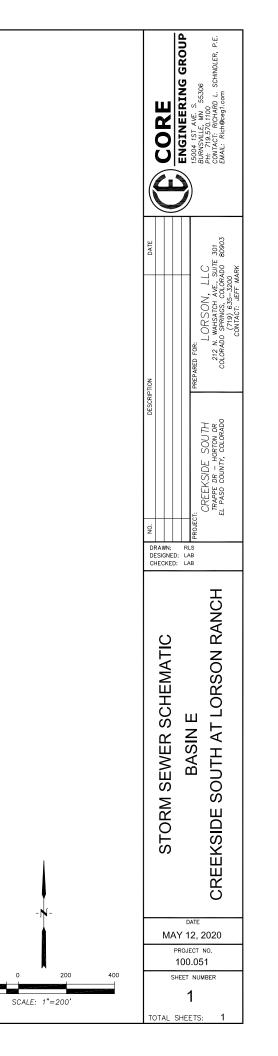
Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

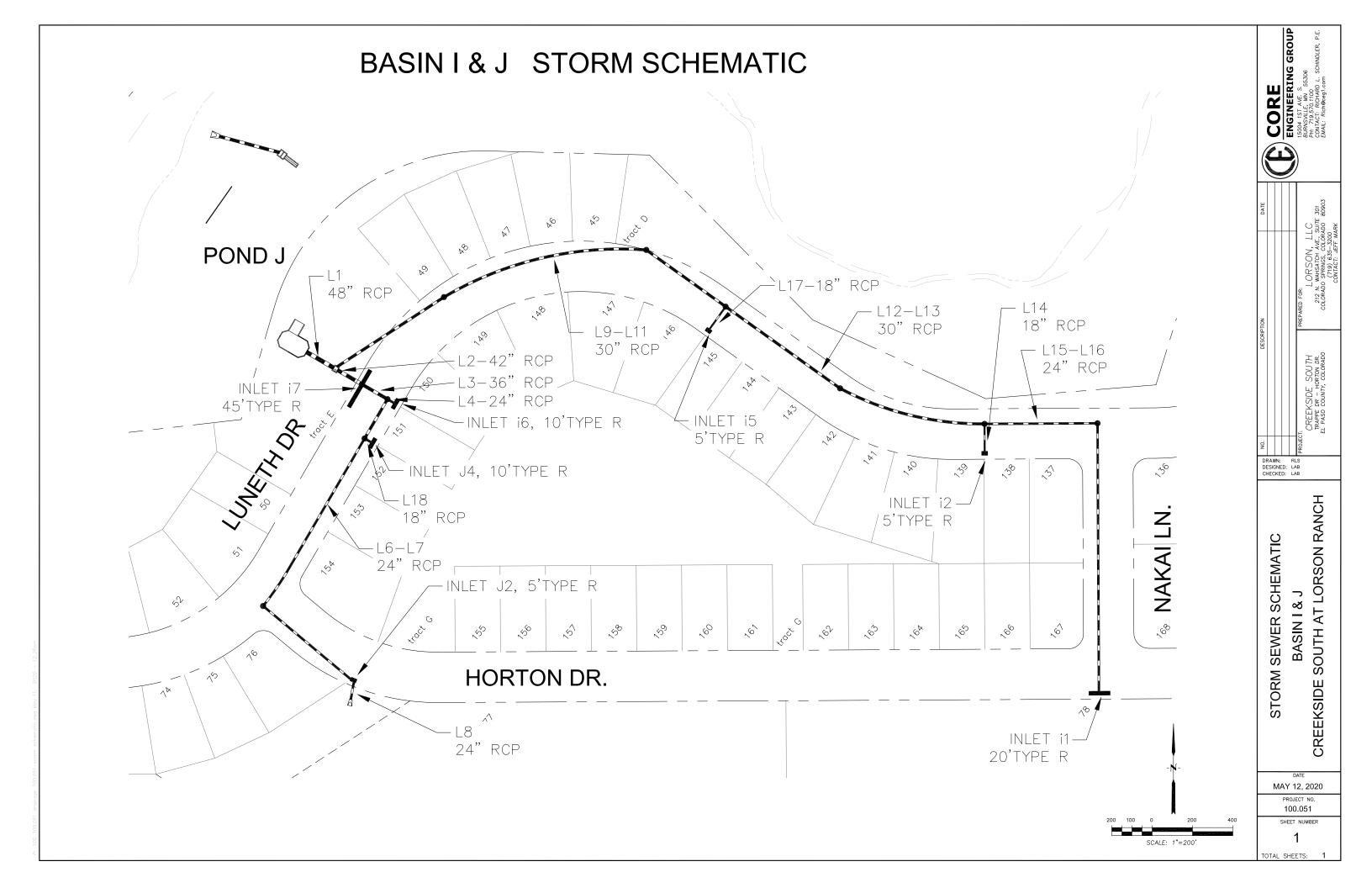
he user should graphically c	ompare the summ	ary S-A-V-D tab	ole to the full S-A	A-V-D table in th	e chart to confirr		ey transition points.
Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
5692		50	0.001	16	0.000	0.04	For bost results, include the
5682	0.33						For best results, include the stages of all grade slope
5683	1.33	6,931	0.159	3,472	0.080	0.13	changes (e.g. ISV and Floor)
5684	2.33	29,000	0.666	21,541	0.495	0.26	from the S-A-V table on
5685	3.33	32,800	0.753	52,441	1.204	1.03	Sheet 'Basin'.
5686	4.33	37,100	0.852	87,391	2.006	9.30	
5687	5.33	40,720	0.935	126,301	2.899	48.73	Also include the inverts of all
5688	6.33	44,410	1.020	168,866	3.877	65.85	outlets (e.g. vertical orifice,
5689	7.33	48,200	1.107	215,171	4.940	181.06	overflow grate, and spillway,
5690	8.33	52,430	1.204	265,486	6.095	388.58	where applicable).
							1
			1				1
							1
		-					1
							1
	-						
							-
	-						
]
]
]
							1
]
]
]
							1
			ļ				4
							-
							1
							1
							1
							1
							1
							1
]
							1
							ļ
							1
							1
							J


	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company: Date:	Core Engineering Group	
Project:	Creekside South at Lorson Ranch	
Location:	Pond J	
1. Basin Storage V	olume	
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = <u>26.0</u> %
B) Tributary Area	a's Imperviousness Ratio (i = I _a / 100)	i = 0.260
C) Contributing	Watershed Area	Area = 54.000 ac
	eds Outside of the Denver Region, Depth of Average	d _n = in
Runoff Prod		
E) Design Conc (Select EUR)	ept / when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
	ne (WQCV) Based on 40-hour Drain Time .0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =0.623 ac-ft
Water Qualit	eds Outside of the Denver Region, y Capture Volume (WQCV) Design Volume $_{e} = (d_{e}^{*}(V_{DESIGN}0.43))$	V _{DESIGN OTHER} =ac-ft
	f Water Quality Capture Volume (WQCV) Design Volume ierent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
i) Percenta ii) Percenta	ogic Soil Groups of Tributary Watershed ge of Watershed consisting of Type A Soils ge of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	HSG _A = % HSG _B = % HSG _{CD} = %
For HSG A: For HSG B:	n Runoff Volume (EURV) Design Volume EURV _A = 1.68 * i ^{1.28} EURV _B = 1.36 * i ^{1.08} D: EURV _{CD} = 1.20 * i ^{1.08}	EURV _{DESIGN} =ac-f t
K) User Input of	i Excess Urban Runoff Volume (EURV) Design Volume ierent EURV Design Volume is desired)	EURV _{DESIGN USER} =
	ength to Width Ratio o width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1
3. Basin Side Slop	es	
A) Basin Maxim (Horizontal c	um Side Slopes listance per unit vertical, 4:1 or flatter preferred)	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4. Inlet		
A) Describe me inflow locatio	ans of providing energy dissipation at concentrated ons:	
5. Forebay		
A) Minimum For	rebay Volume = 3% of the WQCV)	V _{FMIN} = 0.019 ac-ft
		V - 0.024 oo f
B) Actual Foreb		$V_{\rm F} = 0.024$ ac-ft
C) Forebay Dep (D _F :		D _F = 24.0 in DF > DF MAXIMUM
D) Forebay Disc	harge	
i) Undetaine	d 100-year Peak Discharge	Q ₁₀₀ = 115.00 cfs
	Discharge Design Flow	$Q_F = 2.30$ cfs
E) Forebay Disc	harge Design be Size (minimum 8-inches)	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir Calculated D _p =
G) Rectangular		Calculated W _N = 7.7 in
C) Neclanyulai		


UD-BMP_v3.07-pond J forebay, EDB

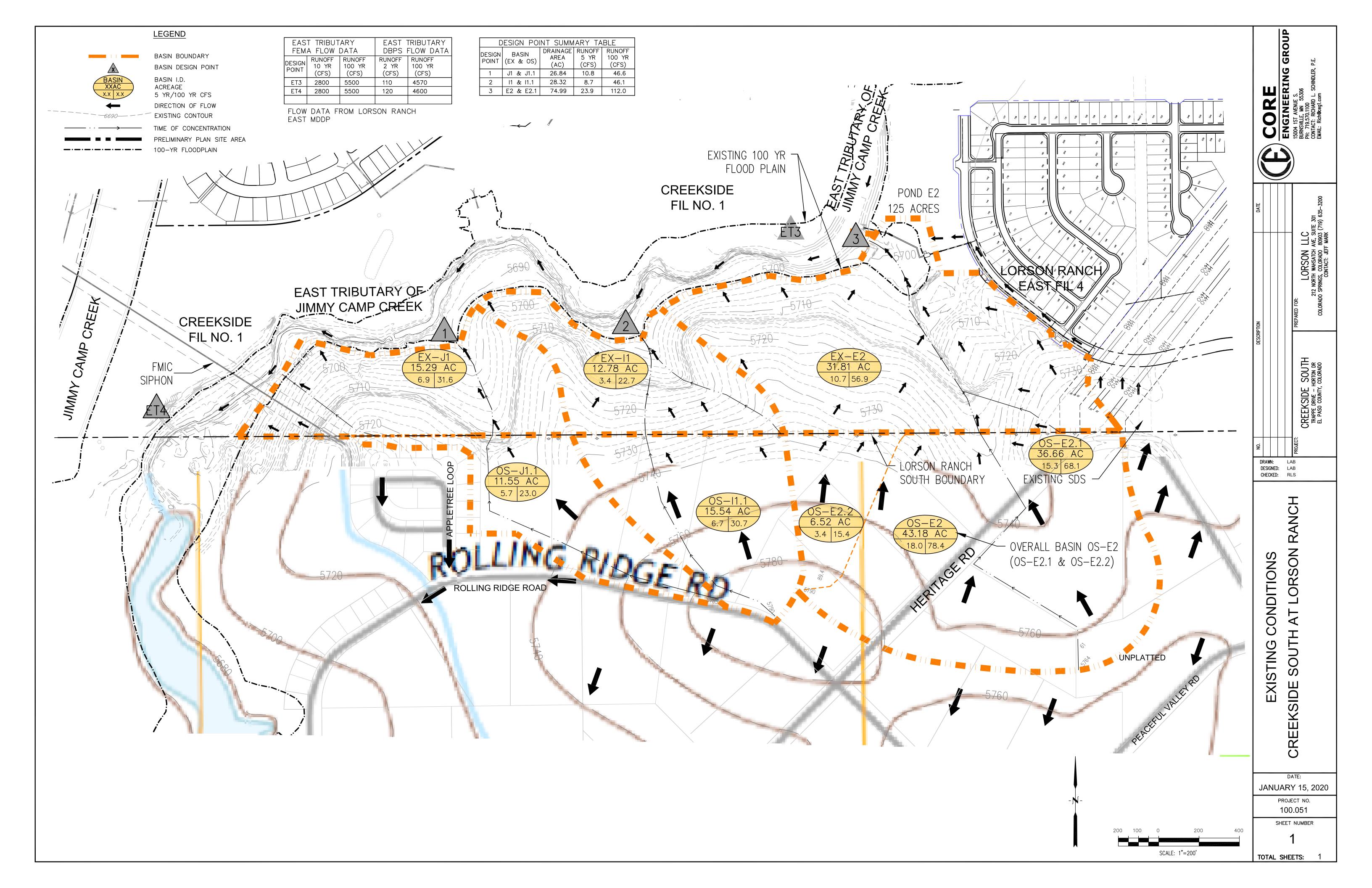
	Design Procedure Form:	Extended Detention Basin (EDB)
Designer:	Richard Schindler	Sheet 2 of 3
Company:	Core Engineering Group	
Date:	January 9, 2020	
Project:	Creekside South at Lorson Ranch	
Location:	Pond J	
6. Trickle Channel		Choose One Oncrete
A) Type of Trick	sle Channel	Q Soft Bottom
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
F) Slope of Tric	kle Channel	S = 0.0050 ft / ft
7. Micropool and C	Dutlet Structure	
A) Depth of Mic	ropool (2.5-feet minimum)	D _M = 2.5 ft
B) Surface Area	a of Micropool (10 ft ² minimum)	A _M = 50 sq ft
C) Outlet Type		
-, , F-		Choose One Orifice Plate
		O Other (Describe):
	nension of Orifice Opening Based on Hydrograph Routing	
(Use UD-Detent	ion)	D _{orffice} = <u>1.63</u> inches
E) Total Outlet A	Area	A _{ct} = 6.45 square inches
8. Initial Surcharge	Volume	
		D _{is} = 4 in
	al Surcharge Volume commended depth is 4 inches)	D _{IS} = <u>4</u> in
B) Minimum Initi	al Surcharge Volume	V _{IS} = 81 cu ft
	ume of 0.3% of the WQCV)	
C) Initial Surcha	rge Provided Above Micropool	V _s = 16.7 cu ft
	- · · ·	
9. Trash Rack		
A) Water Qualit	y Screen Open Area: $A_t = A_{ot} * 38.5^*(e^{-0.095D})$	A _t = 213 square inches
	en (If specifying an alternative to the materials recommended	Other (Please describe below)
	ndicate "other" and enter the ratio of the total open are to the for the material specified.)	wellscreen stainless
	Other (Y/N): y	
C) Ratio of Total	Open Area to Total Area (only for type 'Other')	User Ratio = 0.6
D) Total Water (Quality Screen Area (based on screen type)	A _{total} = 355 sq. in. Based on type 'Other' screen ratio
	ign Volume (EURV or WQCV) lesign concept chosen under 1E)	H= 2.52 feet
F) Height of Wa	ter Quality Screen (H_{TR})	H _{TR} = 58.24 inches
G) Width of Wat	er Quality Screen Opening (W _{opening})	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.
	inches is recommended)	WIDTH HAS BEEN SET TO 12 INCHES.

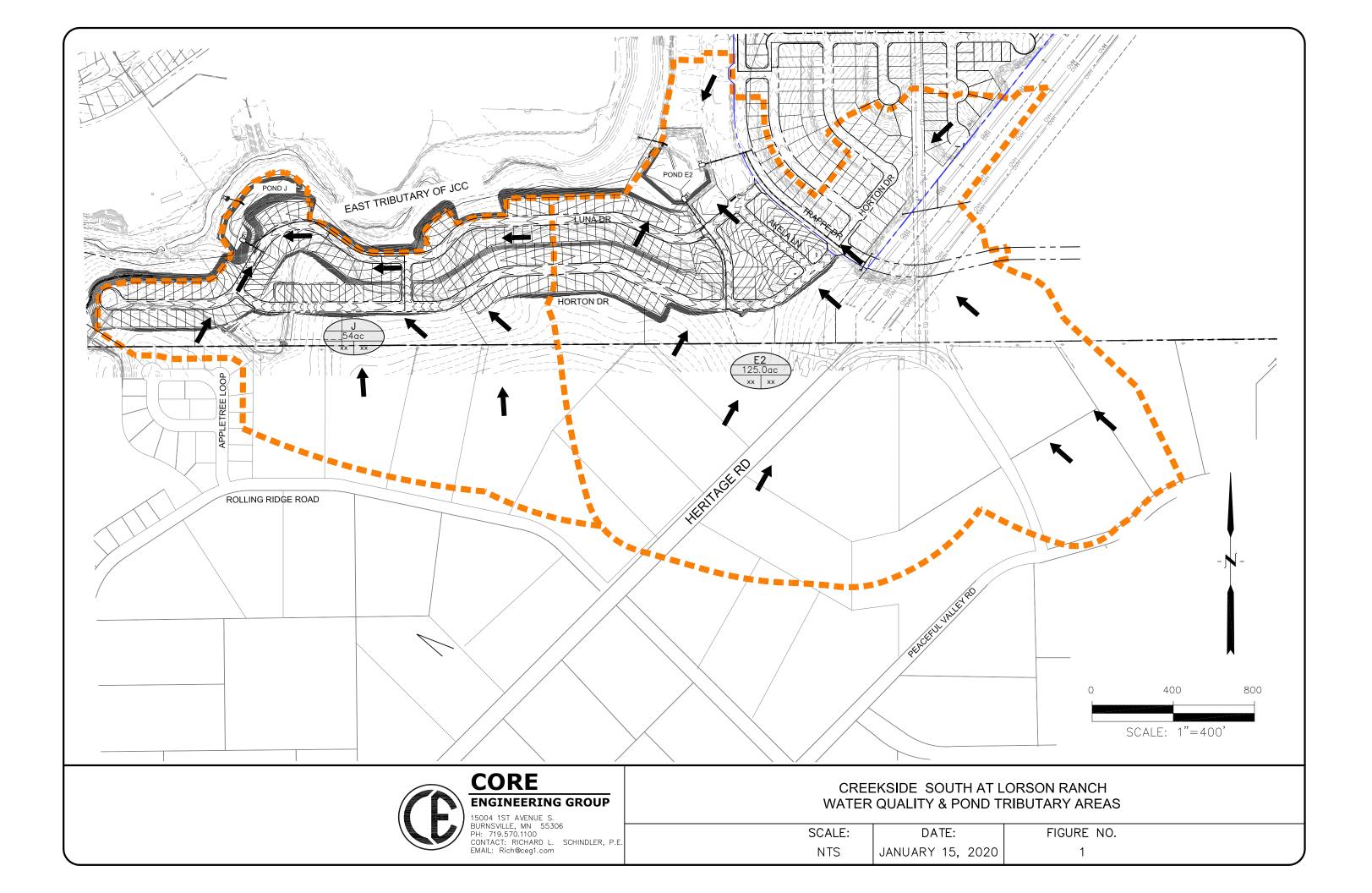
	Design Procedure Form:	Extended Detention Basin (EDB)								
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group January 9, 2020 Creekside South at Lorson Ranch Pond J									
B) Slope of C	bankment embankment protection for 100-year and greater overtopping: Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	Ze = ft / ft								
11. Vegetation		Choose One O Irrigated O Not Irrigated								
12. Access A) Describe :	Sediment Removal Procedures									
Notes:										

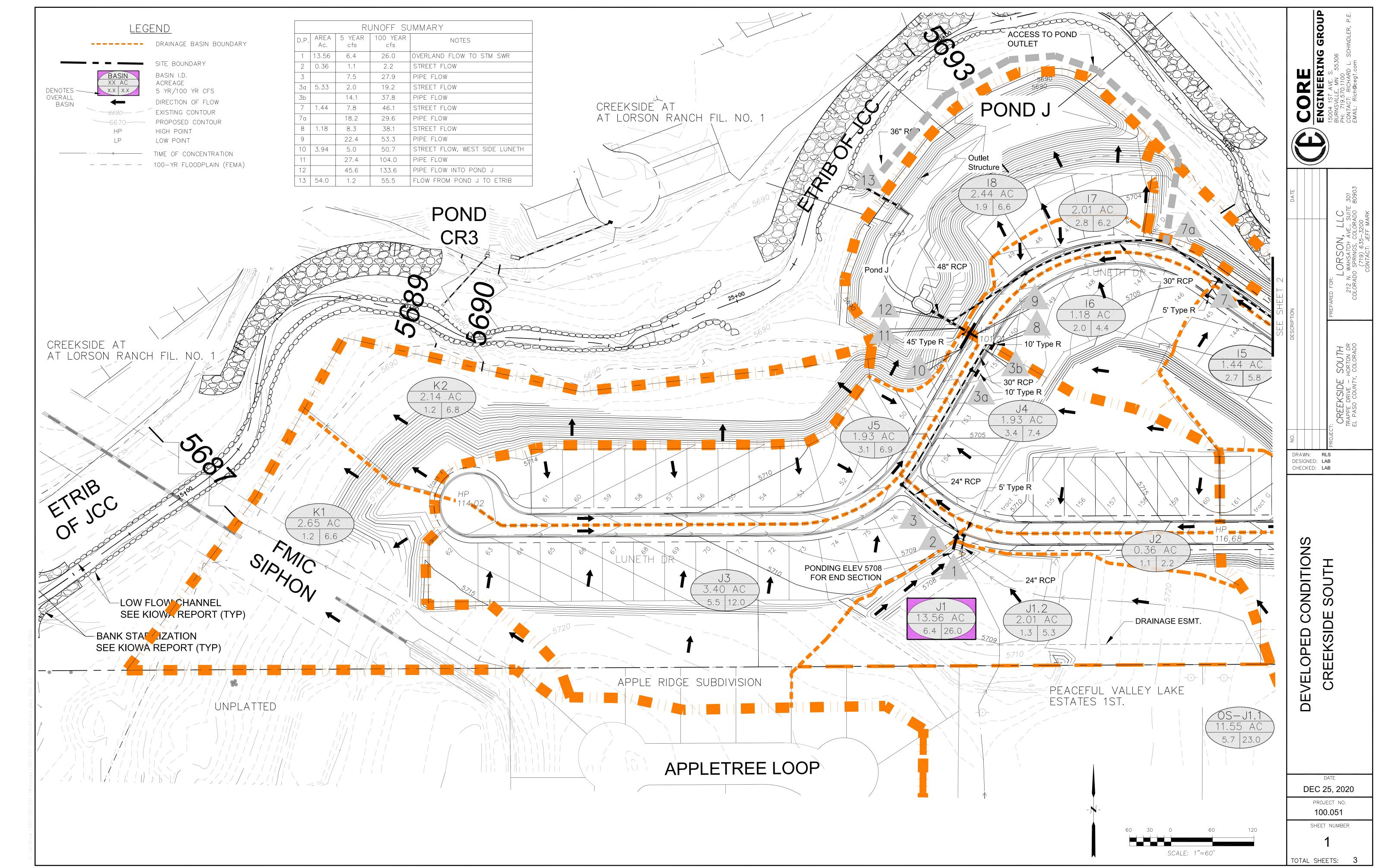

APPENDIX E- STORM SEWER SCHEMATIC AND HYDRAFLOW STORM SEWER CALCS

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn: line No.
1	L1-48"	43.30	48 c	151.0	5695.35	5699.40	2.682	5698.69	5701.35	n/a	5701.35 j	End
2	L2-36"	25.20	36 c	166.0	5700.40	5702.90	1.506	5701.94	5704.50	0.38	5704.50	1
3	L3-36"	25.20	36 c	264.0	5703.20	5709.07	2.223	5704.97	5710.67	n/a	5710.67 j	2
4	L4-36"	15.80	36 c	73.0	5709.40	5711.51	2.890	5711.26	5712.78	n/a	5712.78 j	3
5	L5-24"	18.10	30 c	17.0	5700.91	5701.76	4.998	5701.93	5703.18	n/a	5703.18	1
6	L6-24"	15.00	24 c	36.0	5703.26	5703.64	1.057	5704.43	5705.11	0.14	5705.25	5
rojec	t File: 100.051 Basin	s E, 5yr flow.s	tm				Nun	nber of line	s: 6	Run	Date: 01-22	2-202

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn line No
1	L1-48"	139.5	48 c	151.0	5695.35	5699.40	2.683	5698.87	5702.92	n/a	5702.92	En
2	L2-36"	85.50	36 c	166.0	5700.40	5702.90	1.506	5703.00	5705.73	1.33	5707.06	1
3	L3-36"	85.50	36 c	264.0	5703.20	5709.07	2.223	5707.17	5711.89	3.30	5711.89	2
1	L4-36"	70.00	36 c	73.0	5709.40	5711.51	2.890	5712.76	5714.18	1.73	5714.18	3
5	L5-24"	54.00	30 c	17.0	5700.91	5701.76	4.998	5703.24	5704.11	0.99	5704.11	1
6	L6-24"	32.00	24 c	36.0	5703.26	5703.64	1.057	5705.26*	5705.98*	0.40	5706.38	5
rojec	t File: 100.051 Basins	s E, 100yr flov	w.stm				Nun	nber of line	s: 6	Run I	Date: 01-22	2-202

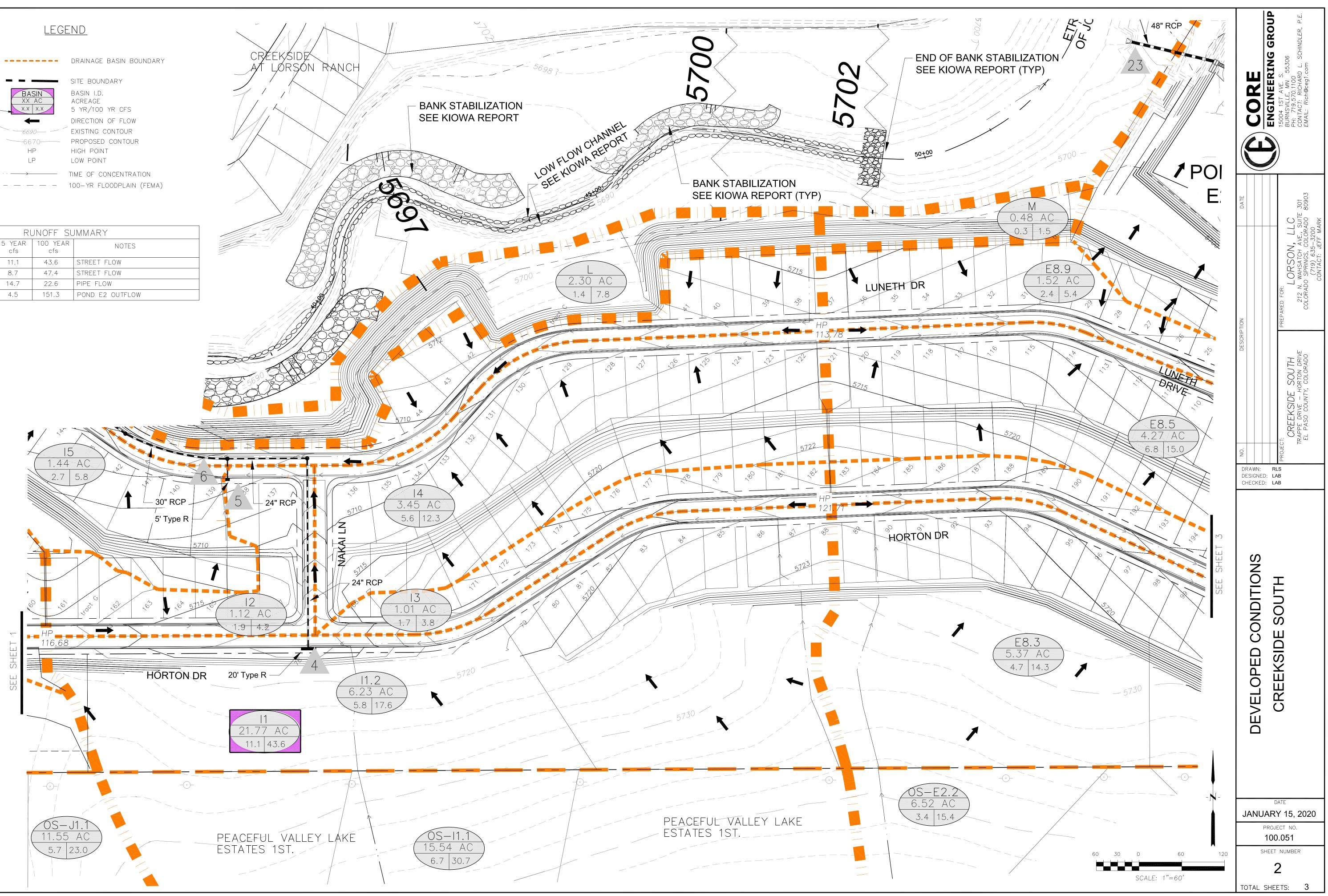


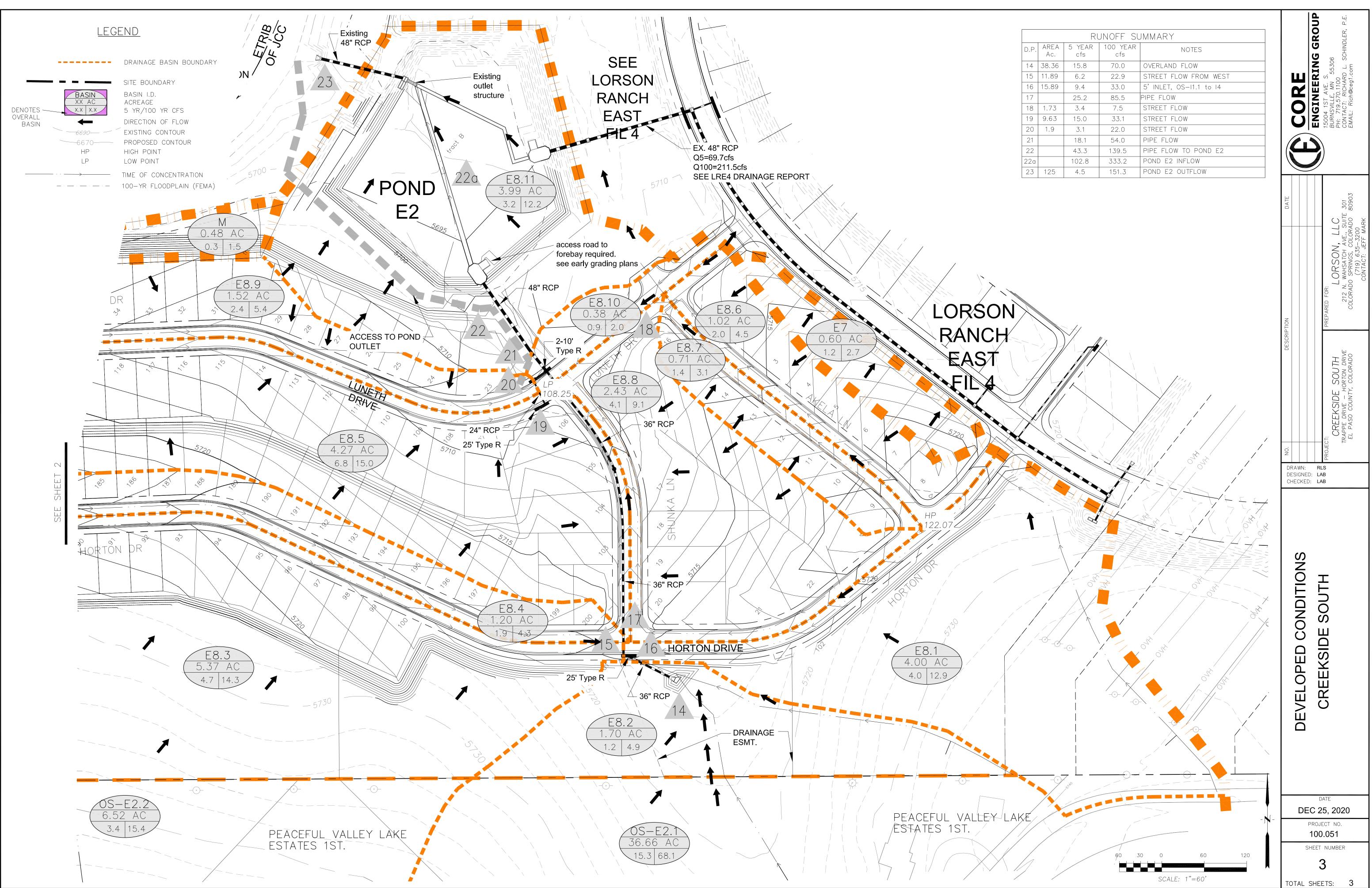

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	45.60	48 c	50.8	5684.60	5685.37	1.515	5688.06	5687.92	0.25	5688.17	End
2	L2	27.40	42 c	28.6	5687.29	5693.00	19.979	5688.50	5694.60	0.32	5694.60	1
3	L3	22.40	36 c	27.5	5695.20	5695.50	1.090	5696.37	5697.39	0.35	5697.75	2
4	L4	8.30	24 c	7.5	5696.50	5696.57	0.931	5697.86	5697.84	0.24	5698.08	3
5	L5	14.10	30 c	45.0	5696.00	5696.74	1.646	5697.97	5698.00	n/a	5698.00 j	3
6	L6	7.50	24 c	204.7	5697.24	5701.60	2.130	5698.41	5702.57	n/a	5702.57 j	5
7	L7	7.50	24 c	112.9	5701.71	5703.74	1.799	5702.86	5704.71	n/a	5704.71 j	6
8	L8	6.40	24 c	23.0	5703.90	5704.53	2.739	5705.03	5705.43	n/a	5705.43 j	7
9	L9	18.20	30 c	129.0	5690.55	5696.73	4.791	5691.31	5698.16	n/a	5698.16	1
10	L10	18.20	30 c	209.0	5696.83	5698.92	1.000	5698.56	5700.35	n/a	5700.35 j	9
11	L11	18.20	30 c	97.0	5699.02	5699.99	1.000	5700.75	5701.42	n/a	5701.42	10
12	L12	14.70	30 c	139.0	5700.39	5701.51	0.805	5701.89	5702.79	n/a	5702.79 j	11
13	L13	14.70	30 c	150.0	5701.88	5703.07	0.793	5703.18	5704.35	n/a	5704.35 j	12
14	L14	3.60	18 c	27.0	5703.98	5704.14	0.593	5704.81	5704.87	0.28	5705.15	13
15	L15	11.10	24 c	112.0	5703.58	5704.48	0.803	5704.68	5705.66	0.26	5705.66	13
16	L16	11.10	24 c	265.3	5704.65	5708.21	1.342	5705.98	5709.39	n/a	5709.39 j	15
17	L17	3.50	18 c	27.0	5700.92	5701.21	1.074	5701.97	5701.93	n/a	5702.20 j	11
18	L18	6.60	18 c	35.3	5697.72	5698.27	1.558	5698.47	5699.32	0.20	5699.51	5
Projec	t File: 100.051 Basins	l & J, 5yr flo	w.stm				Nun	nber of line	s: 18	Run	Date: 01-23	3-202 ^r


NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	L1	133.6	48 c	50.8	5684.60	5685.37	1.515	5688.06	5688.83	1.17	5688.83	En
2	L2	104.0	42 c	28.6	5687.29	5693.00	19.979	5689.09	5696.12	1.03	5696.12	1
3	L3	53.30	36 c	27.5	5695.20	5695.50	1.090	5697.29	5697.95	1.15	5699.11	2
1	L4	15.50	24 c	7.5	5696.50	5696.57	0.931	5699.88*	5699.92*	0.38	5700.30	3
5	L5	37.80	30 c	45.0	5696.00	5696.74	1.646	5699.34*	5699.72*	0.74	5700.46	3
6	L6	27.90	24 c	204.7	5697.24	5701.60	2.130	5700.46	5703.60	1.23	5704.83	5
7	L7	27.90	24 c	112.9	5701.71	5703.74	1.799	5704.83*	5706.54*	1.79	5708.33	6
3	L8	26.00	24 c	23.0	5703.90	5704.53	2.739	5708.50*	5708.80*	1.06	5709.86	7
Э	L9	29.60	30 c	129.0	5690.55	5696.73	4.791	5691.54	5698.55	0.14	5698.55	1
10	L10	29.60	30 c	209.0	5696.83	5698.92	1.000	5698.91	5700.74	n/a	5700.74 j	9
11	L11	29.60	30 c	97.0	5699.02	5699.99	1.000	5701.10	5701.81	0.93	5701.81	10
12	L12	22.60	30 c	139.0	5700.39	5701.51	0.805	5702.41	5703.10	n/a	5703.10 j	11
13	L13	22.60	30 c	150.0	5701.88	5703.07	0.793	5703.50	5704.66	n/a	5704.66 j	12
14	L14	7.10	18 c	27.0	5703.98	5704.14	0.593	5705.14	5705.25	0.40	5705.65	13
15	L15	15.50	24 c	112.0	5703.58	5704.48	0.803	5705.01	5705.88	n/a	5705.88 j	13
16	L16	15.50	24 c	265.3	5704.65	5708.21	1.342	5706.18	5709.60	n/a	5709.60 j	15
17	L17	7.00	18 c	27.0	5700.92	5701.21	1.074	5702.39	5702.42	0.33	5702.75	11
18	L18	9.90	18 c	35.3	5697.72	5698.27	1.558	5700.89*	5701.21*	0.24	5701.45	5
Projec	t File: 100.051 Basins I	& J, 100vr	flow.stm				Nun	nber of line:	s: 18	Run I	Date: 05-11	-202(

MAP POCKET





RUNOFF SUMMARY											
AREA Ac.	5 YEAR cfs	100 YEAR cfs	NOTES								
21.77	11.1	43.6	STREET FLOW								
5.58	8.7	47.4	STREET FLOW								
	14.7	22.6	PIPE FLOW								
125	4.5	151.3	POND E2 OUTFLOW								
-	Ac. 21.77 5.58	AREA 5 YEAR Ac. cfs 21.77 11.1 5.58 8.7 14.7	AREA 5 YEAR 100 YEAR Ac. cfs cfs 21.77 11.1 43.6 5.58 8.7 47.4 14.7 22.6								

