Terra Nova ^{Creative Civil Engineering Solutions}

FINAL DRAINAGE REPORT FOR LOT 2 BECKETT AT WOODMEN HILLS FILING NO. 3 7368 MCLAUGHLIN ROAD COLORADO SPRINGS, COLORADO

October 4, 2017

Prepared For:

TBONE CONSTRUCTION 1310 FORD STREET COLORADO SPRINGS, CO 80915 (719) 570-1456

Prepared By:

TERRA NOVA ENGINEERING, INC. 721 S. 23RD STREET Colorado Springs, CO 80904 (719) 635-6422

Job No. 1729.00

Add PCD File No. PPR-17-055

FINAL DRAINAGE REPORT FOR LOT 2 BECKETT AT WOODMEN HILLS FILING NO. 3 7368 MCLAUGHLIN ROAD COLORADO SPRINGS, COLORADO

TABLE OF CONTENTS

Engineer's Statement	Page 3
Purpose	Page 4
General Description	Page 4
Historic Drainage Conditions	Page 5
Developed Drainage Conditions	Page 5
Hydrologic Calculations	Page 5
Floodplain Statement	Page 6
Erosion Control	Page 6
Construction Cost Opinion	Page 6
Drainage Fees	Page 6
Maintenance	Page 6
Summary	Page 7
Bibliography	Page 8

REQUIRED MAPS AND DRAWINGS GENERAL LOCATION MAP S.C.S. SOILS MAP FEMA FIRM MAP HYDROLOGIC/HYDRAULIC CALCULATIONS DRAINAGE MAP

[2]

CERTIFICATION STATEMENT: Engineers Statement

This attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

L Ducett, P.E. 32339

Seal

Developers Statements

I, _____, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

Shops at McLaughlin 2 LLC Business Name

By:	 			
Title:	 	 		
Address:	 	 	 	

El Paso County Approval:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 & 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Ervine, P.E.	Date
County Engineer / ECM Administrator	
County Engineer / Echi Promission	
Conditions:	

FINAL DRAINAGE LETTER FOR LOT 2 BECKETT AT WOODMEN HILLS FILING NO. 3 7368 MCLAUGHLIN ROAD COLORADO SPRINGS, COLORADO

PURPOSE

The purpose of this Final Drainage Report is to identify and analyze the existing drainage patterns, determine existing runoff quantities and to analyze the current development of this site as a commercial site. This lot was previously platted with an existing drainage report entitled "Final Drainage Report for Beckett at Woodmen Hills Filing 3" by URS dated May 27, 2003. The proposed use and development is in conformance with the previously approved report.

Double check the Beckett Fil 3 drainage report. Cursory review of the URS report shows the majority f

the site within Basin 1 and portions

GENERAL DESCRIPTION

This Final Drainage Letter (F.D.L.) for the site located at 7368 in Basin 2 & 3.

approximately 37,497 square feet. The site is currently vacant and 1s platted as Lot 2 Beckett at Woodmen Hills Filing No. 3. This area is not part of a previous study entitled "Final Drainage Report for Becket at Woodmen Hills Filing No. 3" by URS dated May 27, 2003. The property is located in the northwest quarter of Section 7, Township 13 South, Range 64 West of the 6th Principal Meridian in the El Paso County, Colorado, near the intersection of McLaughlin and Woodmen Roads (See vicinity map, Appendix A) More specifically, the site is bounded by platted acreage properties with the same zoning on all sides.

The site lies within the Black Squirred Creek Drainage Basin

The site consists of Columbine gravelly sandy loam (19) and is part of the hydrologic soil group 'B' therefore hydrologic group "A" was used to represent the dominant soil type. (See map in appendix)

The study area consists of undeveloped land consisting of prairie vegetation. The existing topography is sloping from the north west to the south east.

Identify which subbasin of the URS report this is a part of.

HISTORIC DRAINAGE CONDITIONS

Currently the existing storm runoff drains overland to the to the southwest via sheet flow and then into the existing McLaughlin Road curb and gutter and into the existing 10' sump inlet at the south east corner of the site. From here, the flow continues in existing storm sewer to the regional detention pond east of the site. T Include the pond name of the regional detention pond. Identify if the regional pond incorporated water quality or if it is flood control only. If not, then this property may be required to provide

control only. If not, then this property may be required to provide WQCV.

DEVELOPED DRAINAGE C State whether or not the regional pond accounted for developed runoff for this subdivision.

In the proposed condition, there

existing inlet in McLaughlin Road. This inlet is sized for the developed flows. The sizing and basin areas for the onsite storm sewer are shown on the map and calculations in the appendix. The roof of the proposed building will dr Include a proposed drainage map. 12" minimum pipe with 1%

Basin A, B, C and D are roof areas that will drain into the proposed storm sewer at Design Points 6, 7, 8, and 9. Flows at each point are less than 0.4 cfs in both the 5 and 100 year events.

Basins J and E will flow to the proposed storm sewer and join roof flows. These combined flows will be approximately 3 cfs in the 100 year even and will be piped to the existing inlet at the south east corner of the site. An easement will need to be granted from the adjacent land owner for this connection.

Basin F's 0.27 acres will flow much as it does today directly into the existing inlet. It will join with flows from basin I and Basin H and G for total combined flows of 2.1 cfs in the 5 year event and 4.2 cfs in the 100 year event at Design Point 1, at the existing inlet.

These flows are consistent with the flows anticipated Please see detailed calculations in the appendix. Revise. Reference the Intensity-Frequency-Duration Curve (Figure 6-5) for obtaining the intensity.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County Storm Drainage Design Criteria Manual Volumes 1 & 2 latest editions. The Rational Method was used to estimate storm water runoff anticipated from the 24-Hour Rainfall Depths listed in Table 6-2 of the Drainage Criteria Manual for the design storms with 5-year and 100-year recurrence intervals. These values are 5-year 2.7 inches and 4.6 inches for the 100-year.

FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain, as determined by Flood Insurance Rate Map No. 08041C0575 F dated March 17, 1997 (see appendix).

EROSION CONTROL/WATER QUALITY

An erosion control plan is included with this drainage report as we are under one acre.

List the 4 step process (I.7.2) and summarize how each step were considered/incorporated. Below is a description of the Division of the Division construct and mater quality. For more detail

see the erosion control plan.

The first and most effective way to eliminate erosion is to minimize disturbance. Therefore we have shown on the plan to reseed as soon as possible.

CONSTRUCTION COST OPINION

Public Non Reimbursable NOT APPLICABLE

Private Non Reimbursable List the on-site storm drain.

NO DRAINAGE IMPROVEMENTS AT THIS TIME.

DRAINAGE FEES

This site is not being platted. Drainage or bridge fees do not apply.

MAINTENANCE

The proposed erosion control and water quality measures will be repaired and maintained by the property owner or owner's representative as required.

SUMMARY

Development of this site will not adversely affect the surrounding development at this time per the previously approved drainage reports, this site will drain into the existing storm sewer system that drains into the existing pond. See the attached previous drainage report in the appendix.

PREPARED BY: TERRA NOVA ENGINEERING, INC.

L Ducett P.E. President Terra Nova Engineering, Inc.

BIBLIOGRAPHY

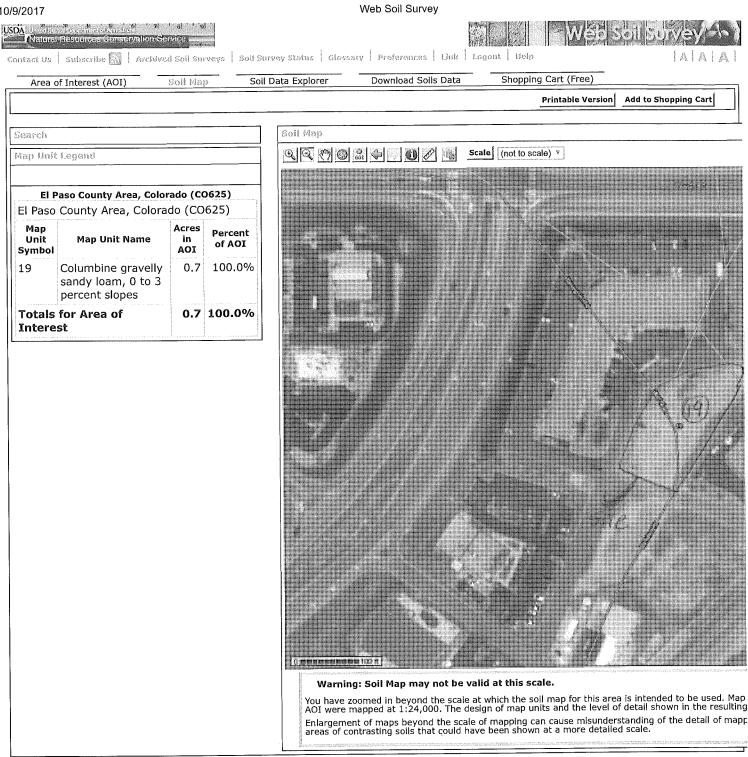
٩,

"El Paso County Drainage Criteria Manual-Volumes 1 & 2, latest edition"

SCS Soils Map for El Paso County

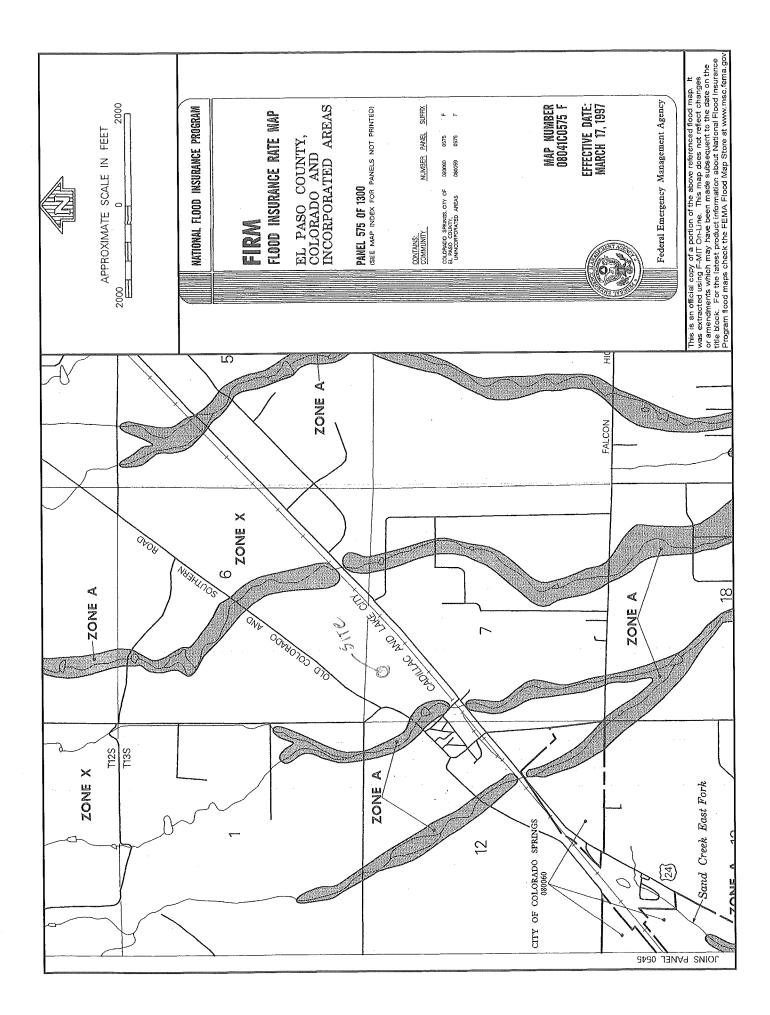
Federal Emergency Management Agency (FEMA) flood maps

"Final Drainage Report for Beckett at Woodmen Hills Filing 3" by URS dated May 27, 2003


VICINITY MAP

S.C.S. SOILS MAP

,


10/9/2017

FOIA | Accessibility Statement | Privacy Policy | Non-Discrimination Statement | Information Quality | USA.gov | White House

FEMA FIRM MAP

.

HYDROLOGIC/HYDRAULIC CALCULATIONS

SHOPS AT MCLAUGHLIN II AREA DRAINAGE SUMMARY

EXISTING CONDITIONS

		WEIGHTEI	HTED		OVER	VERLAND		STRE	ET / CH	STREET / CHANNEL FLOW	NOT	T_t	INTENSITY	\SITY	TOTAL FLOWS	FLOWS
BASIN	AREA TOTAL	ర	C100	స	Length	Height	Tc	Length	Slope	Velocity	T _t	TOTAL	Is	I ₁₀₀	Q	Q100
	(Acres)	 For Calas Sec. 	For Cales See Runoff Summary		(£)	(tt)	(min)	(<i>t</i> t)	(%)	(fps)	(min)	(min)	(in/hr) (in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
EX-I	0.88	0.09	0.36	0.09	220	5.0	21.4	172	1.7%	2.5	1.1	22.5	2.9	4.8	0.2	1.5

11:28 AM10/12/201712172900 fdr calculations

Shops at McLaughlin II Area Runoff Existing and Proposed

SNOITIONS
\geq
Q
hand
0
R
0
CO
\mathbf{i}
~
Q
Q
SED
Q

																1
	ED CA		CA100		0.04	0.03	0.028	0.035	0.115	0.238	0.006	0.074	0.145	0.0792		
	WEIGHTED		CA5		0.04	0.03	0.028									fficients based on Table 6-6 of the City of M. For Roofs: 5yr=0.73 and 100yr=0.81
	WEIGHTED	ł	C100		1.00	1.00	00.	ch 6-(ara 6 ir	acte	eris ne i	stic rep	s t	the ta	cc nd	fy what the corresponding surface prresponding c-values are or include Table identify (circle/mark) the corresponding cs.
	WEI	(C,		1.00	1.00	1.00	1.00	0.81	0.81	0.81	0.81	0.81	0.81		
	ED	1	C100		0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	/	
SND	UNDEVELOPED	1	C ²		0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.8		
F. T. TOTNO	UND		AREA	(Acres)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
PROPOSED CONDITIONS	Q.		C100		1.00	1.00	1.00	1.00	0.88	0.88	0.88	0.88	0.88	0.88		
PROPL	DEVELOPED		č		1.00	1.00	1.00	1.00	0.81	0.81	0.81	0.81	0.81	0.81		Provide a drainage map.
	DE		AREA	(Acres)	0.04	0.03	0.03	0.04	0.12	0.27	0.01	0.08	0.17	0.09		
		TOTAL	AREA	(Acres)	0.04	0.03	0.03	0.04	0.12	0.27	0.01	0.08	0.17	0.09		
			BASIN		A	В	C	Ω	ы	н	IJ	Н	I	ſ		

AREA DRAINAGE SUMMARY SHOPS AT MCLAUGHLIN II

WEIGHIELD C Le C ₅ C ₁₀₀ C ₅ Le -for Cata: Ste Family Summary 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.88 0.81 0.81 0.81 0.88 0.81 0.81 0.81 0.88 0.81 0.81			OVEERLAND Length Heigl (m) (m) (m) <th< th=""><th></th><th>T_c (min) #DIV/0! #DIV/0! #DIV/0! 1.0 0.6</th><th><i>STR</i> Length (f) (f) (f) 45 45 45 45 45 45 60 60 320 5 5 5</th><th>STREET / CHANNEL FLOW ngth Slope Velocity T. ngth Slope Velocity T. ng (%) (min) (min) (noise) (noise) (noise) (noise) 45 2.0% 2.5 0.3 45 2.0% 2.5 0.3 46 2.0% 2.5 0.3 60 5.0% 3.5 0.3 700 3.0% 3.5 0.0 6 4.0 0.1 3.4 0.0</th><th>HANNEL I Velocity (fps) 2.5 2.5 2.5 2.5 2.5 4.0 4.0 4.0 3.5 3.5</th><th>TLOW T_t min) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3</th><th><i>Tttttttttttttt</i></th><th>INTENSITY 15 1100 15 1000 1000 (10000 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911</th><th>NSITY 1,00 (in/hr) 9.1 9.1 9.1 9.1 9.1 9.1 9.1</th><th>TOTAL Qs Qs (c.f.s.) 0.2 0.2 0.2 0.2 0.5 0.6 0.7 0.0 0.0 0.3</th><th>TOTAL FLOWS Qs Q100 Qs Q100 mailer (mailer 0.2 0.4 0.2 0.4 0.2 0.3 0.2 0.3 0.2 0.4 0.2 0.3 0.2 0.4 0.5 1.0 1.1 2.2 0.0 0.1 0.3 0.7</th></th<>		T _c (min) #DIV/0! #DIV/0! #DIV/0! 1.0 0.6	<i>STR</i> Length (f) (f) (f) 45 45 45 45 45 45 60 60 320 5 5 5	STREET / CHANNEL FLOW ngth Slope Velocity T. ngth Slope Velocity T. ng (%) (min) (min) (noise) (noise) (noise) (noise) 45 2.0% 2.5 0.3 45 2.0% 2.5 0.3 46 2.0% 2.5 0.3 60 5.0% 3.5 0.3 700 3.0% 3.5 0.0 6 4.0 0.1 3.4 0.0	HANNEL I Velocity (fps) 2.5 2.5 2.5 2.5 2.5 4.0 4.0 4.0 3.5 3.5	TLOW T _t min) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	<i>Tttttttttttttt</i>	INTENSITY 15 1100 15 1000 1000 (10000 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911 2000 911	NSITY 1,00 (in/hr) 9.1 9.1 9.1 9.1 9.1 9.1 9.1	TOTAL Qs Qs (c.f.s.) 0.2 0.2 0.2 0.2 0.5 0.6 0.7 0.0 0.0 0.3	TOTAL FLOWS Qs Q100 Qs Q100 mailer (mailer 0.2 0.4 0.2 0.4 0.2 0.3 0.2 0.3 0.2 0.4 0.2 0.3 0.2 0.4 0.5 1.0 1.1 2.2 0.0 0.1 0.3 0.7
0.81		S C	0 0	4.0	1.9	2 ₹			0.0	5.0	5.0	9.1		0.3
	0.81		20 20	2.0	1.4	₹ 0	#	_	7.0	5.0	5.0	9.1	0.4	
-						-							Calculated by: Id	

Date: 10/12/2017 Checked by: 1d

Fix.

DEVELOPED CONDITIONS

11:29 AM10/12/201711172900 fdr calculations

SHOPS AT MCLAUGHLIN II SURFACE ROUTING SUMMARY

						,	LER		total					
ر		6	Q 100	4.2	4.1	1.3	0.7	1.0 1	0.4	0.3	0.3	0.4	0/12/17	
-		Flow	\mathcal{Q}_{5}	2.1	2.1	0.7	0.4	0.5	0.2	0.2	0.2	0.2	Date: 10/12/17 Checked by: 1d	
H		isity	I 100	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	5	
ß		Intensity	I ₅	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
	SNO.		IMAXIMUM T _C	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
ш	DEVELOPED CONDITIONS		Equivalent CA 100	0.46	0.46	0.15	0.08	0.11	0.04	0.03	0.03	0.04		
۵	EVELOPE		Equivalent CA 5	0.43	0.42	0.13	0.07	0.10	0.04	0.03	0.03	0.04		
C			Area (Acres)	0.53	0.52	0.17	0.09	0.12	0.04	0.03	0.03	0.04		
В			Contributing Basins	G+DP2	F+H+DP3	I	7	国	A	8	U	D		
A			Design Point(s)		5	ю	4	Ś	6	٢	∞	6		
	~	ω	ග	9	-	12	13	14	15	16	17	18	19 20	21

3

Routing Summary will be reviewed once the associated drainage map is included.

12:03 PM10/12/201711172900 fdr calculations

Free Online Manning Pipe Flow Calculator

>> Nationalism not welcome here. <<

Manning Formula Uniform Pipe Flow at Given Slope and Depth

Can you help me translate, program, or host these calculators? (../contact.php) [Hide this request]

Check out our newest spreadsheet update: Download Spreadsheet (spreadsheet/Manning-Pipe-Flow.xlsx) Open Google Sheets version (spreadsheet/Manning-Pipe-Flow.php) View All Spreadsheets (http://www.hawsedc.com/engcalcs/SpreadsheetLibrary.php)

--CAUTION: If you have downloaded the spreadsheet prior to September 24, you may have received incorrect results!--

Printable Title				
Printable Subtitle		Results		
		Flow, Q	3.2485	cfs ▼
		Velocity, v	5.1414	ft/sec ▼
Set units: m mm ft in		Velocity head, h _v	0.4108	ft ▼
Pipe diameter, d ₀	12	Flow area	0.6319	[ft^2 ▼
Manning roughness, n ?		Wetted perimeter	2.0944	ft ▼
(http://www.engineeringtoolbox.com/mannings- roughness-d_799.html)	0.013	Hydraulic radius	0.3017	ft ▼
Pressure slope (possibly ? (/pressureslope.php) equal to pipe slope), S ₀	1.0 % rise/run ▼	Top width, T	0.8660	ft ▼
Percent of (or ratio to) full depth (100% or 1 if flowing full)	75 % ▼	Froude number, F	1.06	
		Shear stress (tractive force), tau	22.4166	N/m^2 ▼

DRAINAGE MAP

EROSION CONTROL MAP

FINAL DRAINAGE REPORT FOR BECKETT AT WOODMEN HILLS FILING 3

May 27, 2003

1022 T

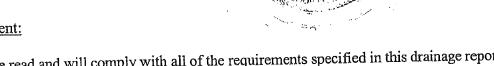
Prepared for:

BECKETT DEVELOPMENT, LLP P.O. BOX 49487 COLORADO SPRINGS, CO 80949

Prepared by:

URS 9960 FEDERAL DRIVE, SUITE 300 COLORADO SPRINGS, CO 80921

URS Project No. 21710935


CERTIFICATIONS

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

William D. Chaffin, PE # 35136

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

Beckett Development LLP.

By: Oudres C Becket

Title:

Pinon 6 len Circle Col Springs, Co, 80919 Address: 1674

El Paso County's Statement

Filed in accordance with Section 51.1 of the El Paso Land Development Code, as amended.

John McCarty, County/Engineer / Director **Conditions**:

-8-03 Date

Seal

TABLE OF CONTENTS

1272

100

Coresa

63F100

2018

17.335

2000

623

PURPOSE	1
GENERAL LOCATION AND DESCRIPTION	1
DRAINAGE BASINS AND SUB-BASINS	
DRAINAGE DESIGN CRITERIA	2
SCS Hydrologic Criteria	2
SCS HYDROLOGIC CRITERIA Rational Method Hydrologic Criteria Detention Storage Criteria	
DETENTION STORAGE CRITERIA	2
DRAINAGE FACILITY DESIGN	2
GENERAL CONCEPT	2
Existing Drainage Characteristics Proposed Design Drainage Characteristics	3
PROPOSED DESIGN DRAINAGE CHARACTERISTICS	4
EROSION CONTROL	
	4
DETENTION PONDS Silt Fencing	+ ار
MISCELLANEOUS	5
DRAINAGE FEES	5

ij

LIST OF FIGURES

0225

12.24

anse a

022

- Vicinity Map FIGURE 1:
- Woodmen Hills Development Filing No. 7 FIGURE 2:
- FEMA Flood Insurance Rate Map FIGURE 3:
- Soils Map FIGURE 4:
- Drainage Plan FIGURE 5:
- Erosion Control Plan FIGURE 6:

APPENDICES

Rational Method Calculations A.

PURPOSE

The purpose of this Final Drainage Report for Beckett at Woodmen Hills Filing 3 is to identify on-site drainage patterns and design adequate storm water facilities for routing and capturing developed storm water runoff.

This drainage report supercedes the previous drainage report submitted for Beckett at Woodmen Hills Filing No. 1. It contains the drainage information for the entire property as shown in Figure 1: Vicinity Map. This map includes areas previously platted as Beckett at Woodmen Hills Filing 1, Filing 2 and Woodmen Hills Filing 7D.

GENERAL LOCATION AND DESCRIPTION

Beckett at Woodmen Hills, Filing 3, is located approximately 1/2 mile north-northeast of Falcon, Colorado in El Paso County as shown on Figure 1, and further illustrated in Figure 2.

Filing 3, which is platted to be 9.21 acres, is located partly in Section 7, Township 13 South, Range 64 West, and partly in Section 12, Township 13 South, Range 65 West. Planned development for Filing 3 is commercial.

The terrain is generally flat with gentle northwest to southeast slopes ranging from 1% to 3%. The vegetation is typical eastern Colorado prairie grasses with little or no shrubs. Trees are present only near the existing drainage ways. The intermittent streams drain into the Black Squirrel Creek Basin which ultimately outfalls into the Arkansas River.

The site and surrounding area have soil characteristics of hydrologic soil Group A (Columbine and Blakeland) as classified by the Soil Conservation Service (See Figure 4). There are no irrigation facilities, utilities or other encumbrances that affect the drainage analysis of this site.

A FEMA regulated flood plain has been identified running adjacent with Filing 3 as shown in Figure 3.

The drainage design for Beckett at Woodmen Hills Filing 3 is consistent with the Final Drainage Report for Beckett at Woodmen Hills Filing 1 dated March 8, 2001.

DRAINAGE BASINS AND SUB-BASINS

10273

18/54/8

102000

The Falcon Basin Drainage Basin Planning Study was completed and adopted by El Paso County in December 2000. In addition, a Drainage Plan and Report was submitted to El Paso County for Phase III and Filing 7 Woodmen Hills in February 1999. This report is supplemental to the 1999 report. Drainage Reports have also been accepted and approved for Woodmen Hills Filings 1 through 11 and Drainage Letters have been approved for the Lot 3, Beckett at Woodmen Hills Filaing 1 and Lot 2, Beckett at Woodmen Hills Filing No. 2.

1

\\\$031ntfile1\6742451\ADMIN\21710935\submittal documents\Final Plat\FDR Beckett at Woodmen Hills Filing 3.doc

Developed condition basins for the Falcon Basin have been detailed in the previously mentioned Phase III Preliminary and Filing 7 Final Drainage and Erosion Control Report. These basin boundaries and designations are consistent with the earlier MDDP and Preliminary and Final Drainage Reports submitted for Woodmen Hills Subdivision Filing numbers 1 through 11 and remain consistent for this property. Beckett at Woodmen Hills Filing No. 3 is contained within basins 35A and 35B (the right-of-way for McLaughlin Road) as detailed in these previous reports.

DRAINAGE DESIGN CRITERIA

SCS Hydrologic Criteria

The SCS method was used in calculating drainage for Filing 7 (including this property). Please see Phase III Preliminary and Filing 7 Final Drainage and Erosion Control Report for HEC-1 computer model results.

Rational Method Hydrologic Criteria

The Rational Method was used to estimate stormwater runoff facilities for the 5-year and 100year design storm. The Rational Method coefficients "C" were selected from Table 5-1 in the Drainage Criteria Manual. The time of concentration is calculated per Drainage Criteria Manual requirements. The intensities for each basin are calculated from Figure 5-1 of the Drainage Criteria Manual based upon the basin time of concentration. Because there is no current development plan for the property, maximum values for C and intensity were used. Proposed developed subbasins used in the Rational Method analysis are detailed in Figure 5.

Detention Storage Criteria

Detention Pond No. 5 was designed in Woodmen Hills Filing 7 to handle runoff from the Woodmen Hills development, including portions of this property. Please see Phase III Preliminary and Filing 7 Final Drainage and Erosion Control Report for calculations and discussion on design.

DRAINAGE FACILITY DESIGN

General Concept

This Final Drainage Report for Beckett at Woodmen Hills Filing 3 consists of seven drainage sub-basins as shown on Figure 5. Runoff from the area will drain to McLaughlin Road and to the existing FEMA floodplain along the southern boundary of the site. The direct flow to the FEMA floodplain will be compensated for by over detention of developed flows in Pond No. 5 as designed in the Phase III Preliminary and Filing 7 Final Drainage and Erosion Control Report.

Existing Drainage Characteristics

Currently, runoff from this property flows south and east and is intercepted by existing roads or flows over the curb and gutter into McLaughlin Road. Existing inlets intercept flows in McLaughlin Road per the Phase III Preliminary and Filing 7 Final Drainage and Erosion Control Report. Please see Phase III Preliminary and Filing 7 Final Drainage and Erosion Control Report for details.

Proposed Design Drainage Characteristics

25.2

5233

The sub-basins shown on Figure 5 were developed based on the proposed lot layout for this site. The northwestern area (Basin 1) will be graded to drain to two 10-foot sump inlets located at Design Point 1. The inlets will discharge into an existing storm system and eventually discharge into Detention Pond 5. Design flows are estimated to be 15 cfs and 28 cfs for 5-year and 100-year storm.

Basin 2 contains 4.3 acres and is located in the northeastern part of the site. Runoff drains south to the existing access road from McLaughlin Road. Runoff travels along the curb and gutter to Design Point 2 located at the intersection with McLaughlin Road. Anticipated design flows are 13 cfs and 24 cfs for the 5-year and 100-year storm. Flows are routed south to Design Point 3 to the existing 15-foot on-grade inlet along the western flowline of McLaughlin Road.

Basin 3 contains 1.6 acres west of McLaughlin Road. Runoff drains south to a proposed access road from McLaughlin Road. Runoff is directed east, via curb and gutter, to Design Point 3. Anticipated flows from Basin 3 are 6 cfs and 12 cfs for the 5-year and 100-year storm.

Flows from Basin 2 and 3 are combined at Design Point 3 and intercepted by the existing 15-foot on-grade inlet. Routed flows to Design Point 3 are 17 cfs and 31 cfs. The 15-foot on-grade inlet at Design Point 3 will intercept approximately 10 cfs and 13 cfs and bypass 7 cfs and 18 cfs for the 5-year and 100-year storm. Bypassed flows continue south to Design Point 4.

Basin 4 contains 2.3 acres west of McLaughlin Road. Runoff drains south to a proposed access road from McLaughlin Road. Runoff is directed east and south, via curb and gutter, to an existing inlet in McLaughlin Road at Design Point 4. The inlet discharges directly into the FEMA floodplain. Anticipated design flows for Basin 4 are 6 cfs and 13 cfs for 5-year and 100-year storm. Routed flows from Basin 4 and Design Point 3 are 10 cfs and 25 cfs for the 5-year and 10-year storm at Design Point 4. The existing inlet along the western side of McLaughlin Road is a 5-foot type R inlet. The inlet will not handle the 5-year or 100-year storm. Both storms will overtop the curb and flow into the existing FEMA floodplain. Riprap protection can be added behind the inlet for stabilization.

Basin 5 is along the southern boundary of the site, adjacent to McLaughlin Road. This small basin drains south directly into the FEMA floodplain. Anticipated flows for Basin 5 are 2 cfs and 3 cfs for the 5-year and 100-year storm.

Basin 6 is centrally located and adjacent to the future Meridian Road. Runoff flows south to Design Point 5. Estimated runoff of 8 cfs and 14 cfs will be generated for the 5-year and 100-year storm.

Basin 7 is located along the southern boundary of the site, adjacent to the future Meridian Road. Anticipated flows for Basin 7 are 7 cfs and 13 cfs. Runoff from basins 6 and 7 are routed to Design Point 6 and discharge directly into the FEMA floodplain. Routed flows are estimated to be 14 cfs and 26 cfs for the 5-year and 100-year storm. The discharge structure at Design Point 6 will be designed as part of the individual development plan for these lots. The owner of the lot will be responsible for the installation of the required drainage structure. The structure at Design Point 6 will be equivalent to a 15-foot sump inlet.

EROSION CONTROL

General Concept

10000

All ditches will be designed to meet El Paso County criteria for slope and velocity. During construction, best management practices for erosion control will be employed based on El Paso County Criteria and the erosion control plans shown in Figure 6.

Detention Ponds

The detention ponds will act as the primary erosion control facilities for this property and other tributary areas. The ponds will serve dual purposes in facilitating the settling of sediment in runoff during and after construction, and in maintaining runoff to existing levels.

Silt Fencing

Silt fencing will be placed along the southern and eastern property boundaries. This will prevent suspended sediment from leaving the site during construction. Silt fencing is to remain in place until vegetation is reestablished after completion of construction.

Erosion Bales

11 101

2.00

0.000

Erosion bales will be placed within the Woodmen Road ditch as check dams. Erosion bales will remain in place until vegetation is reestablished in drainage swales. Erosion bales will also be placed around all inlets to minimize sediment transport.

Miscellaneous

Best erosion control practices will be utilized as deemed necessary by the Contractor or Engineer and are not limited to the measures described above or as shown in Figure 6.

COST ESTIMATE

The following table is a summary of estimated costs for proposed drainage improvements and erosion control measures for Beckett at Woodmen Hills Filing 3. The cost estimate submitted herein is based on time-honored practices within the construction industry. As such, the engineer does not control the cost of labor, material, equipment or a contractor's method of determining prices and competitive bidding practices or market conditions. The estimate contained represents our best judgement as design professionals using current information available at the time of preparation. The engineer cannot guarantee that proposals, bids, and/or construction costs will not vary from this cost estimate.

Item	Quantity	Unit	Unit Cost	Extension
Erosion Control Measures				
Erosion Control Hay Bales	8	EA	\$ 15.00	120
Silt Fencing	1,000	LF	\$ 2.00	2,000
Subtotal, Erosion Control				\$ 2,120
· · · · · · · · · · · · · · · · · · ·		al		\$ 2,120
Subtotal, All Drainage &	Erosion Conti	<u>01</u>	,	\$ 212
Engineering (10%)				\$ 212
Contingency (10%)				and the second s
TOTAL, DRAINAGE &]	EROSION CO	NTROL		\$ 2,544
Contingency (10%) TOTAL, DRAINAGE & J	EROSION CO	NTROL		

Drainage Fees

Drainage fees for Beckett at Woodmen Hills Filing 3 have been paid in the previous submittals for Beckett at Woodmen Hills Filing 1 and Filing 2.

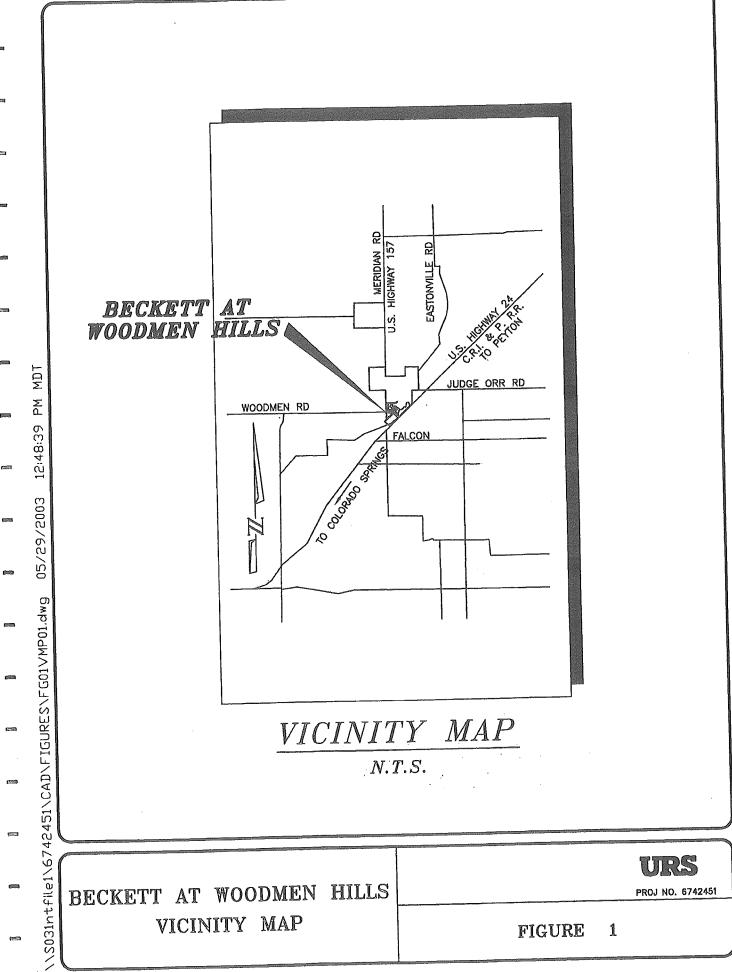
\\S03Intfile1\6742451\ADMIN\21710935\submittal documents\Final Plat\FDR Beckett at Woodmen Hills Filing 3.doc

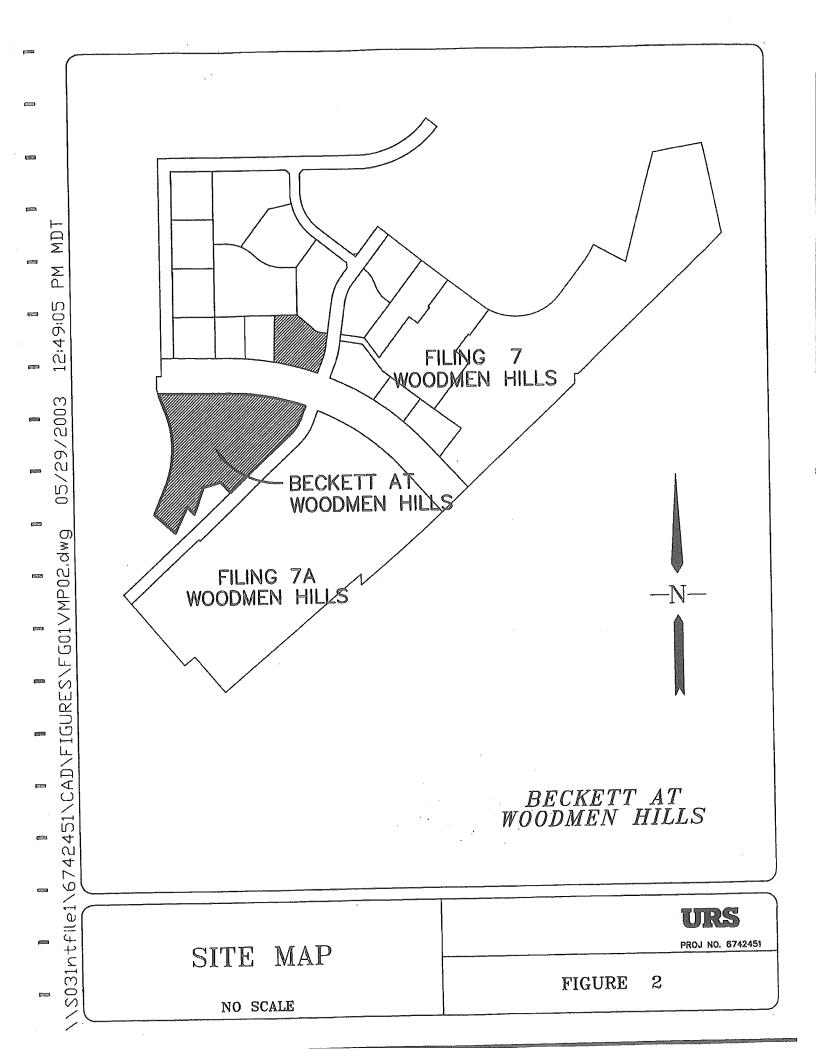
FIGURES

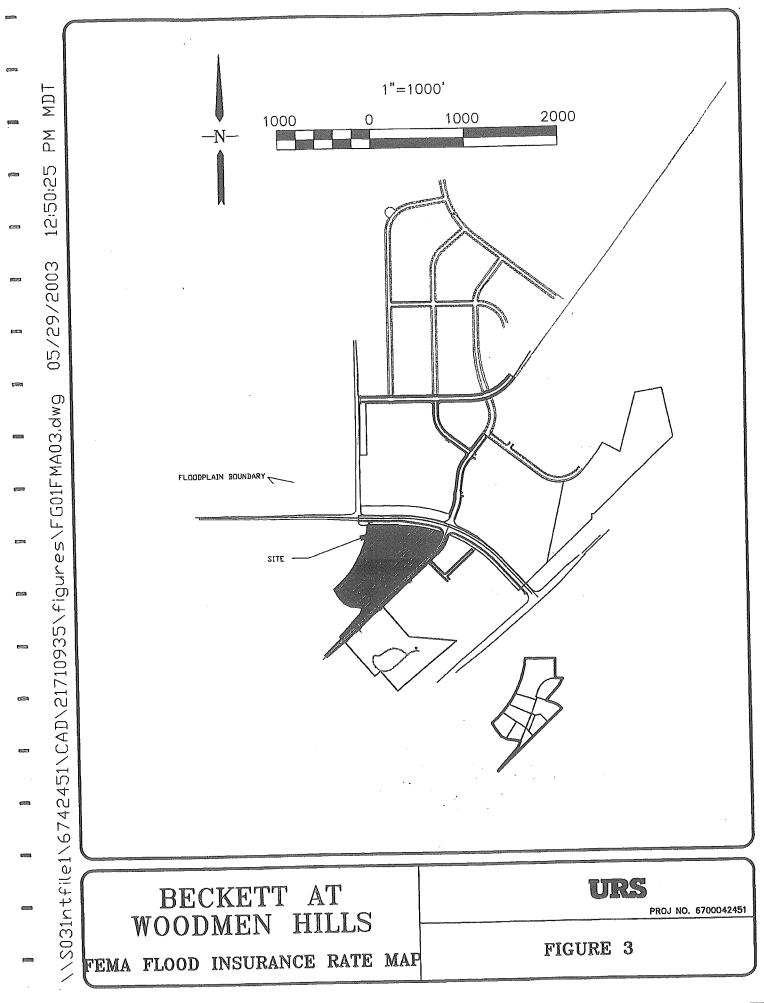
2334

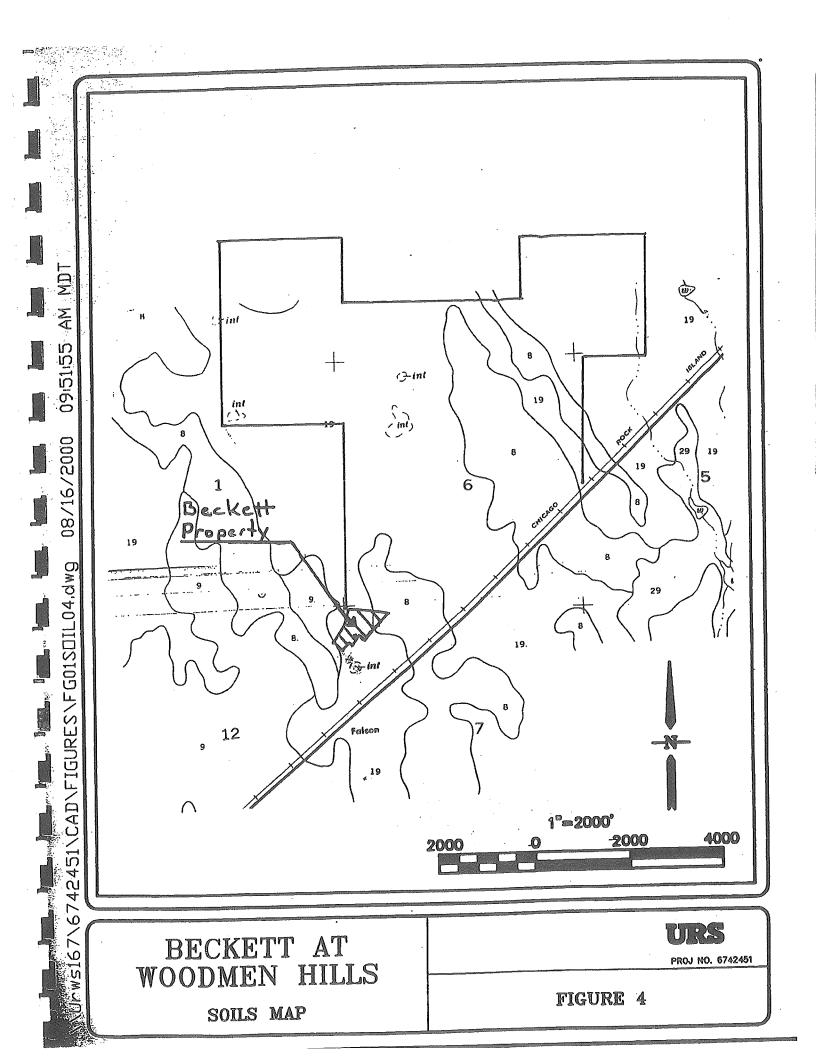
CANCELLA DE

0.20


6790B


Config


(36)


625/3

\\S031ntfile1\6742451\ADMIN\21710935\submittal documents\Final Plat\FDR Beckett at Woodmen Hills Filing 3.doc

APPENDIX A: Rational Method Calculations

80.0

ENNER

765755

enterio (

Brazerta

104000

\\S031ntfile1\6742451\ADMIN\21710935\submittal documents\Final Plat\FDR Beckett at Woodmen Hills Filing 3.doc

•

7

C2020
(and
ana)
1220
(Sing)
(1957)
1990
(1110) (1111)
(iiiiiii)
(22)
(2003)
1956-18
623

BECKETT @ WOODMEN HILLS FILING 3 ON-GRADE INLET CALCULATIONS Based on table 7-2 Drainage Criteria Manual

ypass	C	5	18	2	
Byp	¢	5		-	
	(-	3	75	2	
		2	24	7	
ğ		5	30	R	
		Å	5 00TT	7/00.2	
		⊢		53	
		(100) ai		22	
	╞	<u>ت</u>		88 	
ď	ļ	5		<u>م</u>	
	ή			4 27	
		Ř		1.924	
		+		a 18	
		0i (5			Normal State
		0(100)		<u>ب</u>	;
		0(5)	Ì	17	-
		STREET	SLOPE	2005	0/1.7
		STREET OF		/00 0	Z.U70
		, (j)	liner size Luy	and the second se	1
			j	ľ	(N

BECKETT @ WOODMEN HILLS FILING 3 SUMP INLET CALCULATIONS Based on formula: Q, = 1.7(L, + 1.8x)(d_am + w12)^{1/5}

	Length Final	500.000		in the mint		in Them		
	Clogging 1 Factor	1 25	1.47	1 75	(1.4.1	MIA		
	57	50	7.5	ŝ		ç	7.0	
8	M	ç	7	¢	V	4	77	
Q	d _{max}		2	4	<u>.</u>		리	
	ig <u>ô</u>	2	28	6	97		19	
	50	I,	0.1/		0.1/		8 0.5 2 0.17 19	
5	3	ŀ	~	•	7		2	
ð	d _{max}		0.5		0.5		0.5	
	_	Ì	τ <u>υ</u>		14 (8	
<u>1</u>	Q(100) Qi (5)		58		8		25	
	Q(5)		ŝ	2	14		10	
	Inlet size L(I) CROSS SLOPE (2 0%	2. A.A	2.0%	2	2 N%	
	Intet size L(i)	Initial	46	2	10	2	Ľ	
	DP	, pulling	-		u	þ		t

	SO	0.005	0.01	0.015	0.02	0.025	0.03
•	SX	0.02	0.02	0.02	0.02	0.02	0.02
	Ø	22	20	20	20	20	20
	D	0.48406	0.41014	0.38011	0.36015	0.3454	0.33379

			COMMENTS	CONTRIBUTION				
		VETV	TTTCNTTNT DT		_	(in/hr)		. (
				1/5/1	12/1	l (in/hr)		
		f	Ic	TOTAL IVEN		(min)		
3				ŧ	IC	(mim)		
BECKETT @ WOODMEN HILLS FILING 3	(A)		CHANNEL		Velocity	(3) ((100) ((100) ((100) (100) (100) (100) (100) (100) (100) (100) (100)	(ed1)	
ALLS	(RATIONAL METHOD Q=CIA)		CHA		Slope	(70)	(10)	
MEN	DOH L				Length		E)	
	T T				٦ د	ĺ		
0 N	ONA		LAND		Slone		8	
KETT	(RATI		OVERLAND		Ienoth		Ê	
BEC				Ί	30			
			LGHTFD		00000	100112		
			01 a m	۶۱				į.
			ADEA	× VIVI	TOTAL			3
				222		A(equiv.) A(equiv.)	100 001 0	K IW IN

0.32

1233

2224

	20174	-			
COMMENTS					
	I(100)		(IN/NT)		7.5 7.8 8.0 8.5 8.5 8.5
1	1(5)	1	(uv/hr)		0.4 4.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8
	TOTAL		(uiu)		6.6 15.5 7.2 6.3 6.1 6.1
			(uin)		2.5 2.9 1.0 1.7 0.8 0.8 0.5 0.5
CLIPTICE	Valocitud	Y EIUUILY	(tos)		4.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
3	Clano	adore	(%)		2.0% 2.0% 1.9% 3.1% 3.0%
	тh.	Lengun	(H) (620 780 330 660 280 220
	E	0	(mim)		6.5 12.6 6.9 5.5 5.5 5.5 5.5 5.5
A N A	;	Slope	(#)		3.0% 3.0% 3.0% 3.0% 3.0% 3.0%
OVEKLAND			10,000	Т	35 130 25 25 25 25 25
5		C(S) Length			0.25 0.25 0.25 0.25 0.25 0.25 0.25
WFIGHTFD		00177	1222		0.95 0.95 0.95 0.71 0.45 0.95 0.95
CI H M		S			0.90 0.90 0.59 0.59 0.35 0.90
ARFA		TOTAL		(Yc)	3.92 4.33 1.57 2.34 0.37 1.78 1.78
aup	T		1	100 Y.R	3.72 4.11 1.49 1.66 0.17 1.69 1.54
0 10 0 1	TULAL FLUWS		ğΙ	5 Y.R	3.53 3.90 1.41 1.41 1.38 0.13 1.60 1.46
r .	ALF		(001)	(c.f.s.)	0.0 + 0.0 + 4 m
	101		Q(5) Q	(c.f.s.) (9.11 0.0 - 6 t
			BASIN		- 2 % 4 % 9 /

•

DEVELOPED Rational buth filing 3

5/29/2003 10:44 AM

BECKETT @ WOODMEN HILLS FILING 3 SURFACE ROUTING

ji se	DESIGN	CONTRIBUTING	CA(equi	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
	POINT	BASINS	CA(5)	CA(100)		l(5)	I(100)	Q(5)	Q(100)
	POINT	DAOINO			(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
	2	2	3.90	4.11	15.5	3.3	5.8	13	24
and a second second	-				inaninaa too itoopoy		TRAVEL	TIME	
TEOMORY & STOP			3.90	4.11	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
ALC: LOG WOOL TO L						320	4.5	1,2	16.7
	3	2	3.90	4.11	16.7	3.2	5.6	17	31
TACAN DE LA CAL	Ŭ	3	1.41	1.49			TRAVEL	<u>TIME</u>	
Trade and the second second			5.31	5.61	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
Concession of the local diversion of the loca						660	4.5	2.4	19.1
	4	4	1.38	1.66	19.1	3.0	5.2	20	38
- ADCIDUCATION OF	•	2,3	5.31	5.61			TRAVEL		
			6.69	7.27	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
		·		L <u></u>					
	5	6	1,60	1.69	6.1	4.9	8.5	8	14
	Ū						TRAVEL	The second s	
	•		1.60	1.69	Type/flow	Length (ft)		Contraction of the local division of the loc	T. Time (min)
						210	4.5	0.8	6.9
	6	6	1.60	1.69	6.9	4.7	8.2	14	26
	-	7	1.46	1.54			TRAVEL	TIME	I / · · ·
		1	3.06	3.23	Type/flow	Length (ft) Velocity (fps)	d. Time (min	T. Time (min)

DEVELOPED Rational bwh filing 3

(******

pres

1000

178

-

633

19226

(anda

1933

124.00

5/29/2003 10:44 AM

1

	ω	<u>c</u>	2				
	5. CIS						
	2.0%		Indef size 1 (7) CROSS SLOPE STREET Q(5) Q(100) Qi (5) T FW L1 L2 L3 Qi (100)				
BECKETT @ WOODMEN HILLS FILING 3 SUMP INLET CALCULATIONS	2.0%	SLOPE	STREE				
KETT @ WOODMEN HILLS FILI SUMP INLET CALCULATIONS	2.0% 17 31 10 18 1.9244 27		Γ Q(5)				
INLE	31		Q(100)				
	1 10		Qi (5)				B
	18 1.	; 					ON-G
LS FI	244 2		≤" 			Based or	RADE
	1 10		<u>```</u>	E		1 table 7-2 E	NOOD
	00	ף ח ח	20)rainage Cri	NIEN T CAI
			3 Qi (100)			Based on table 7-2 Drainage Criteria Manual	BECKETT @ WOODMEN HILLS FILING 3 ON-GRADE INLET CALCULATIONS
	5	3	Ч				UNS 3
	E 1001 1	2 0077	Fw				0.5
		36	Ц		Q B		
•		21	5				
		75	٤3				
		7	ç		Bypass		
		18	Q ₁₀₀	,	ass		

200

1

£7552

œ

Based on formula: $Q_1 = 1.7(U_1 + 1.8w)(d_{max} + w/12)^{1.65}$	SUMP INLET CALCULATIONS	ECKETT @ WOODMEN HILLS FILING 3
--	-------------------------	---------------------------------

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												Construction of the second sec			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2.0	2	1.0	19	0.17	2	0.5		25	10	2.0%	თ	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nor A		2	,		;	i								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	roin (c.):	1.23	0.2	2	1	- and the second	0.17	2	0.5	14	26	14	2.0%	12	ת
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20.57		>	,							t		01.013	5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.2	~		07	11.0	~	0.5	റ	28	5	%N C	40	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NUDIAL C		c n	ა	2	3		ŗ	ŀ					Initial	
Q ₅ Q ₁₀₀ Clogging	Final	ļ	D	88	Umax	(100)		N	dmax	Qi (5)	Q(100)	Q(5)	CROSS SLOPE	Iniet size L(I)	p
Q ₁₀₀	Lengu	Clogging	ა	N.	2	Q			-	1					
		2 -		Į				5	ç						
			mostavi	3	p	-taon,		-	2						

0.33379	0.3454	0.36015	0.38011	0.41014	0.48406	٥
20	20	20	20	20	22	Q
0.02	0.02	0.02	0.02	0.02	0.02	SX
0.03	0.025	0.02	0.015	0.01	0.005	SO

DEVELOPED Rational bwh filing 3

5/29/2003 12:51 PM

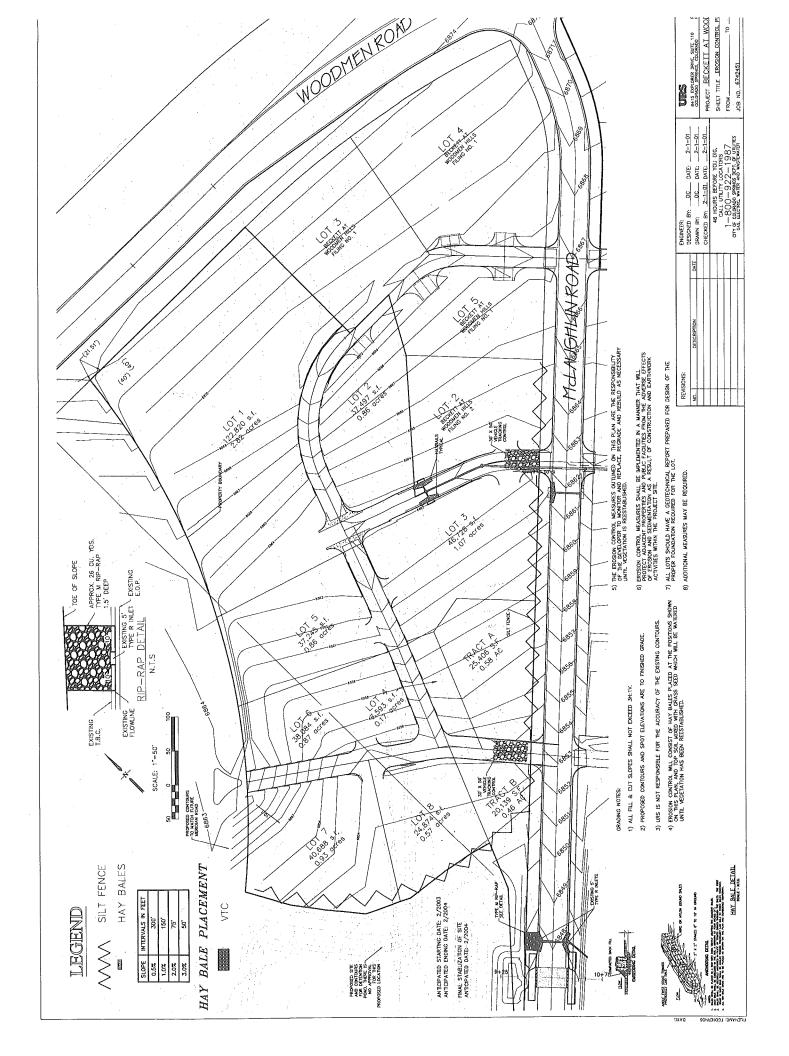
STREET CAPACITY

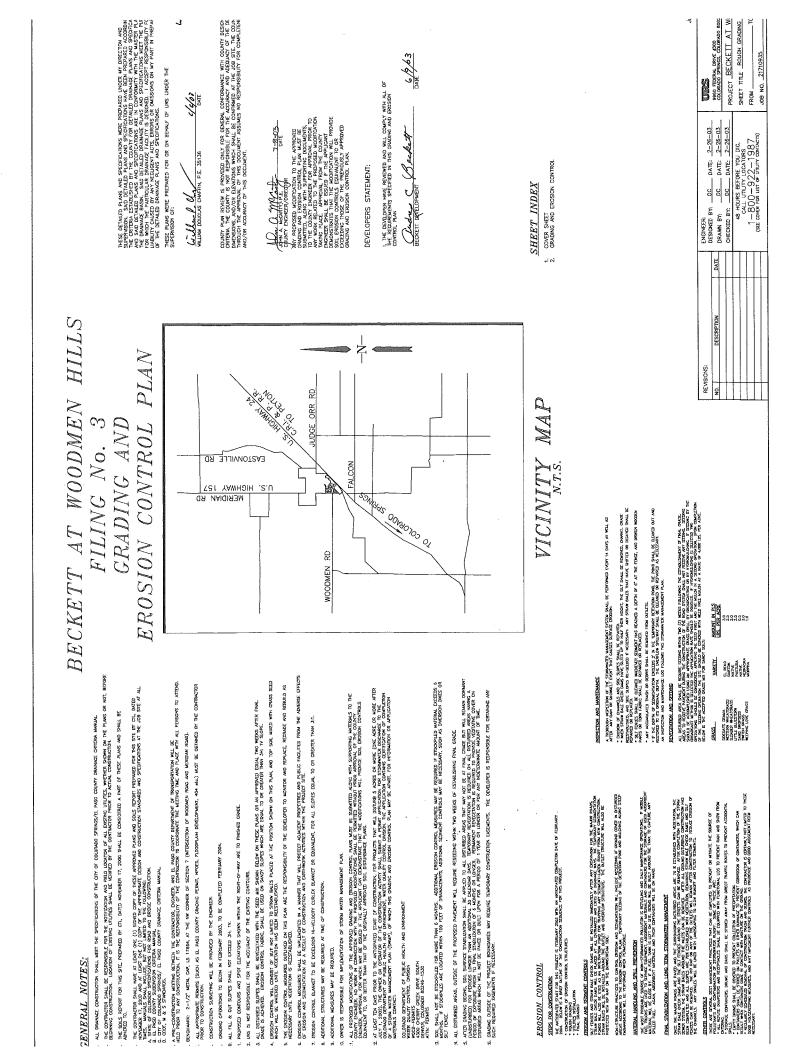
6-13

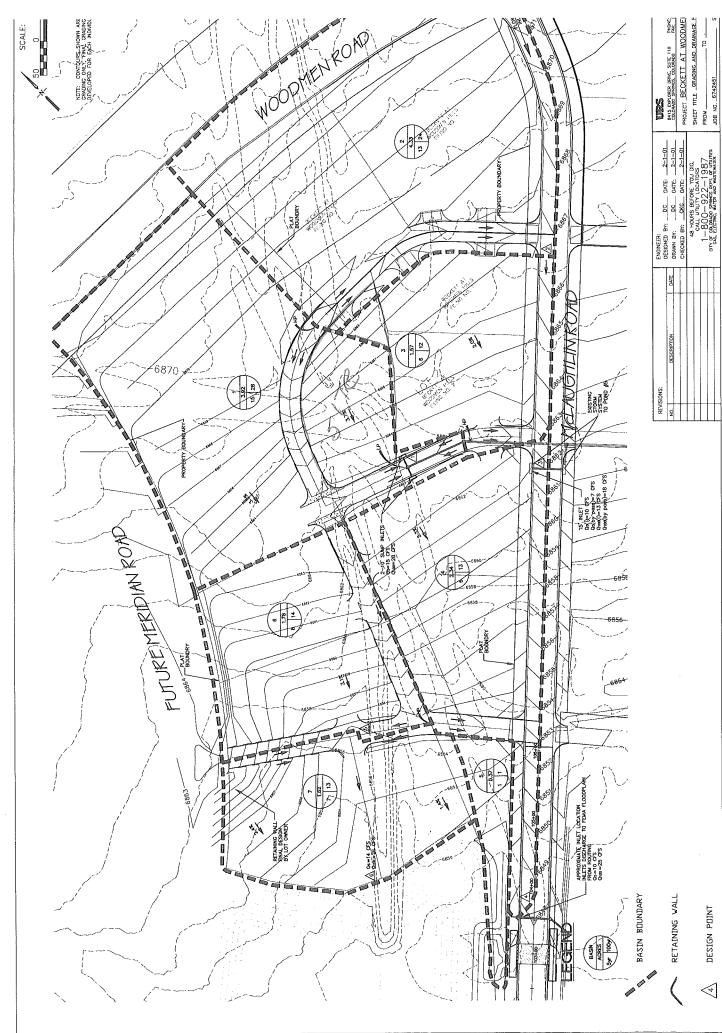
1335

80.00

63


.


FOR 1/2 STREET SECTION


•				<u> </u>	1		- 1	-	-	were were were were were were were were	Т	1	Т	T	T	Т	I		
Comments		County ramp curb is 6"																	
С	3	12.0	17.0	20.8	24.1	26.9	29.5	31.8	34.0		12.0	17.0	20.8	24.1	26.9	29.5	31.8	34.0	2
	Q _{max}	34	34	34	34	34	34	34	34	5	34	34	34	34	34	34	2	5 6	1
Curp Deptn of	tiow	0.5									0.5								
Curb	Type	N/R									>								
	c	0.016									0.016	2							
Cross	Slope	000	70.0								000	70.0							
Longitudinal	Slope		0.5%	1.0%	1.5%	2.0%	2.5%	3.0%	3.5%	4.0%	107 0	%C.0	1.0%	1.5%	2.0%	2.5%	3.0%	3.5%	4.0%
	Formula	<i>a</i> +	Q=170.2 S ^{**}								10	Q=171.7 S"							
			Residential									Collector/Arterial				-			

DEVELOPED Rational bwh filing 3

5/29/2003 10:44 AM

Markup Summary

dsdlaforce (15)		
Joh No. 1729.00" Add PCD File No. PPR-17:055	Subject: Text Box Page Label: 1 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:35:57 PM Color:	Add PCD File No. PPR-17-055
A with an adaption of a source of a source of the source of a source of the source of	Subject: Callout Page Label: 4 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:35:58 PM Color:	Double check the Beckett Fil 3 drainage report. Cursory review of the URS report shows the majority f the site within Basin 1 and portions in Basin 2 & 3.
.p "A" was used to "B" of undeveloped	Subject: Callout Page Label: 4 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:00 PM Color:	"В"
ren of Section 7, Towarday 13 South, Range of West of the ray, Columbo, search the intersection of MA anglin and West (14) Mess operating (14), the cain is handled (14), the cain index of the search of the search of the search of the 3. Sequent Cock Durings Rasin is agreedly analytic harm (17) and is part of the hybridizing in A ⁻¹ was used to represent the dominant soft type. (See map	Subject: Callout Page Label: 4 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:35:59 PM Color:	Falcon Drainage Basn
LIGHT BRANKLE CONTINUE In order carbies, for all he are also caracterist status of a set of the set of th	Subject: Callout Page Label: 5 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:05 PM Color:	Include a proposed drainage map.
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Subject: Callout Page Label: 5 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:20 PM Color:	Include the pond name of the regional detention pond. Identify if the regional pond incorporated water quality or if it is flood control only. If not, then this property may be required to provide WQCV. State whether or not the regional pond accounted for developed runoff for this subdivision.

Service which subcases a part of control of the service of the service subcases of the subcases of the subcases and case and gatter and into the octiming 10° sump in	Subject: Callout Page Label: 5 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:02 PM Color:	Identify which subbasin of the URS report this is a part of.
	Subject: Cloud+ Page Label: 5 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:04 PM Color:	Revise. Reference the Intensity-Frequency-Duration Curve (Figure 6-5) for obtaining the intensity.
<section-header> OUDER UNABLESS The State S</section-header>	Subject: Text Box Page Label: 6 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:16 PM Color:	List the 4 step process (I.7.2) and summarize how each step were considered/incorporated.
OPINION List the on-site atom dam. EMENTS AT THIS TIME.	Subject: Callout Page Label: 6 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:06 PM Color:	List the on-site storm drain.
Second angle of a field of the second s	Subject: Callout Page Label: 8 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:08 PM Color:	Include the Falcon DBPS.
	Subject: Callout Page Label: 17 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:09 PM Color:	Provide a drainage map.

Subject: Callout Page Label: 17 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:10 PM Color:

Subject: Cloud+ Page Label: 18 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:12 PM Color: Revise the runoff coefficients based on Table 6-6 of the City of Colorado Springs DCM. For Roofs: 5yr=0.73 and 100yr=0.81

Add a footnote identify what the corresponding surface characteristics the corresponding c-values are or include Table 6-6 in the report and identify (circle/mark) the corresponding surface characteristics.

.....

Fix.

Subject: Callout Page Label: 19 Lock: Locked Status: Checkmark: Unchecked Author: dsdlaforce Date: 1/11/2018 2:36:13 PM Color:

Routing Summary will be reviewed once the associated drainage map is included.