

Grandview Reserve Phase 2 Preliminary Drainage Report

December 2023

HR Green Project No: 201662.202

Prepared For:

D.R. Horton

Contact: Riley Hillen, P.E.

9555 S. Kingston Ct.

Englewood, CO 80112

Prepared By:

HR Green Development, LLC

Contact: Ken Huhn, P.E.

khuhn@hrgreen.com

(630) 602-4965

Add text:

EDARP Filing No.: PUDSP236

ADDRESSED.

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Ken Huhn, P	.E.	Date
State of Colo	rado No. 54022	
For and on b	ehalf of HR Green Development, L	LC
Owner/[Developer's Statemen	t:
I, the develop	per, have read and will comply with	all of the requirements specified in this drainage report and plan.
By:		
Authorized S	ignature	Date
Address:	D.R. Horton	
Address:	9555 S. Kingston Court	
	Englewood, CO	
El Paso	County Statement	
	rdance with the requirements of the Criteria Manual and Land Developr	e Drainage Criteria Manual, Volumes 1 and 2, El Paso County ment code, as amended.
Joshua Palm	er, P.E.	Date
County Engir	neer/ECM Administrator	
Conditions:		

Table of Contents

Tab	le	of Contents	2
I.	(General Purpose, Location and Description	3
а	ι.	Purpose	3
b).	Location	3
C	; .	Description of Property	3
C	l.	Floodplain Statement	4
II.		Orainage Design Criteria	4
а	ι.	Drainage Criteria	4
III.		Drainage Basins and Subbasins	4
а	۱.	Major Basin Description	4
b).	Existing Subbasin Description	5
C	; <u>.</u>	Proposed Subbasin Description	5
IV.		Drainage Facility Design	9
а	۱.	General Concept	g
b).	Water Quality & Detention	g
C	; .	Inspection and Maintenance	10
V.	٧	Vetlands Mitigation	10
VI.		Four Step Method to Minimize Adverse Impacts of Urbanization	10
VII.		Drainage and Bridge Fees	11
VIII		Opinion of Probable Cost	11
IX.		Hydraulic Grade Line Analysis	11
X.	5	Summary	11
XI.		Drawings	11
XII.		References	11

Appendices

- A. Vicinity Map, FEMA Map, NRCS Soil Survey
- B. Hydrologic Analysis
- C. Hydraulic Analysis
- D. Water Quality and Detention Calculations
- E. Reference Material
- F. Drainage Maps

I. General Purpose, Location and Description

a. Purpose

The purpose of this Preliminary Drainage Report (PDR) for the Grandview Reserve Subdivision Phase 2 is to describe the onsite and offsite drainage patterns, size drainage infrastructure to safely capture and convey developed runoff to water quality and detention facilities, and to safely route detained stormwater to adequate outfalls.

b. Location

The Grandview Reserve Phase 2 site is located in unincorporated El Paso County, Colorado. The Phase 2 location (referred to as the site herein) is located northwest of Grandview Reserve Filings 1-4 and MST2, and southeast of the intersection of Eastonville Road & Rex Road.

The site lies within a tract of land within Sections 21 and 28, Township 12 South, Range 64 West of the 6th Principal Meridian, in El Paso County, State of Colorado. A Vicinity Map is included in **Appendix A**.

The site is bound by a segment of Rex Road to be developed with this project to the northeast and undeveloped land that has historically been used as ranching lands. The east of the site will be a future phase of the Grandview Reserve Subdivision. The south and west of the site is bound by Grandview Reserve Filings 1-4 and MST2. A vicinity map is presented in Appendix A.

The Gieck Ranch Tributary #2 "MST2" is a part of the Gieck Ranch Drainage Basin tributary to Black Squirrel Creek. The channel draining through the site is an ongoing project with associated CLOMR Report and the PCD File No. is CDR228 with El Paso County. The Grandview Reserve improvements will follow any requirements of that report. There is another floodplain channel to the north of Rex Road that will not be disturbed by this phase of development and studies as a future project.

The existing surrounding platted developments include the Grandview Reserve Phase 1 Filings 1-4, and the Meridian Ranch Subdivision is west of the site on the west side of Eastonville Road.

c. Description of Property 68.72 per other documents | ADDRESSED.

The site is approximately 70.67 acres of proposed residential development with associated right of way, open space tracts, public improvements, and stormwater treatment infrastructure.

The existing groundcover and topography of the site is native grasses/weeds and exposed soil on gently rolling hillside with slopes ranging from 2% to 4%.

Per a NRCS soil survey, the site is made up of Type A Columbine gravelly sandy loam. The NRCS soil survey is presented in **Appendix A**.

There is one major drainageway through the site. The Gieck Ranch Tributary #2 (MST2 as referenced in the MDDP) traverses the site along its southwestern boundary and forms the southwest boundary for Phase 2. This drainageway generally flows from the northwest to the southeast towards Highway 24, before crossing through existing drainage infrastructure. The CLOMR report by HR Green for MST2 is ongoing and pending approval for this channel. Refer to the CLOMR report included in **Appendix E** for more specific design information regarding the MST2 channel. Gieck Ranch Tributary #3 traverses the site along its northeastern

Analysis has established the

100 base flood elevation limits.

This delineation is now shown on the Plans. Phase 2 proposed

no fill within these limits or the

boundary and forms the northeast boundary for Phase 2 along Rex Road. This channel will not be disturbed Indicate when/what phase or filing by this phase of development. ADDRESSED. The initial HRG

this channel will be evaluated with.

There are no known irrigation facilities in the area.

There are no known existing utilities or other encumbrances on site.

d. Floodplain Statement

Based on FEMA Firm map 08041C0552G & 08041C0556G (eff. 12/7/20 FEMA Mapped limits. through the site which is part of the Gieck Ranch Tributary #2. See FEM... floodplain is being studied and revised in the Gieck Ranch Tributary # 2 CLOMR report. A copy of the current revised floodplain map is also provided in **Appendix A**. There is a Zone A floodplain northeast of the site which will not be altered with this projects improvements.

Drainage Design Criteria Ш.

a. Drainage Criteria

Hydrologic data and calculations were performed using Drainage Criteria Manual Volume 1 of El Paso County (EPCDCM), with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual (CCSDCM), May 2014 revised January 2021.

Onsite drainage improvements are designed for the 5-year storm (minor event) and 100-year storm (major event) using rainfall values from the NOAA Atlas 14 Point Precipitation Frequency Data Server. Runoff was calculated per CCSDCM Section 6.3.0 - Rational Method. Private, full spectrum pond design was completed using the latest version of Mile High Flood District's (MHFD) UD-Detention per CCSDCM Section 13.3.2.1 – Private, full spectrum Detention. Detention pond allowable release rate will be limited to less than historic rates.

Rainfall Depths per NOAA Atlas 14										
Return Period (yr)	5	100								
1-hr Rainfall Depth (in)	1.21	2.49								

Storm sewer and inlet sizing shown is preliminary at this stage of the project. Calculations for the storm sewer system on site will be provided with the Final Drainage Report (FDR) for the project. The sizing methodology that will be used is per the methods described in EPCDCM Section III Chapter 7 - Street Drainage and Storm Water Inlets. Storm sewer sizing was performed per the methods described in EPCDCM Section III Chapter 8 - Storm Drains and Appurtenances.

This preliminary drainage report follows any recommendations and is in conformance with the previously approved MDDP for the site prepared by HR Green, "Grandview Reserve Master Development Drainage Plan", HR Green, November 2020 (MDDP).

Ш. **Drainage Basins and Subbasins**

a. Major Basin Description

The site is located within the Gieck Ranch Drainage Basin. The site's drainage characteristics were previously studied in the following reports:

- 1. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- 2. "Grandview Reserve Master Development Drainage Plan" prepared by HR Green, August 2021.
- 3. "Grandview Reserve Filing No. 1 Preliminary Drainage Report" prepared by Galloway & Company, Inc., September 2022.
- 4. "Grandview Reserve CLOMR REPORT" prepared by HR Green, March 2023

Gieck Ranch Drainage Basin is a 22.05 square mile watershed located in El Paso County, Colorado. Gieck Ranch Drainage Basin is tributary to Black Squirrel Creek which drains to the Arkansas River. The majority of the basin is undeveloped and rolling range land of 2% - 4% slopes.

The Grandview Reserve MDDP divided the site into 8 major drainage basins (A-H), where each basin is tributary to a full spectrum detention pond facility. The Grandview Reserve Phase 2 improvements are located in subbasins B3 and C1 of the MDDP.

There are no known existing irrigation facilities or other obstructions that could influence or will be influenced by local drainage characteristics. Proposed local drainage characteristics will continue to follow historic patterns.

Indicate if there are any offsite flows entering the project site.

ADDRESSED.

b. Existing Subbasin Description

The Grandview Reserve Phase 2 site drains from the northwest to the southeast slopes ranging from 2% - 4%. The site has historically drained into the Gieck Ranch Tributary #2 (the existing MST2).

The existing subbasins for the Grandview Reserve Phase 2 site were studied the approved MDDP for Grandview Reserve. This site is located within subbasins B3 and C1 of this report and are described as follows.

"Subbasin B3 is located between MS and EF and to the northeast of east of basin B2. The existing MST2 tributary runs through the basin. The site drains towards the southeast and towards Detention Pond B. Current planning documents call for high, medium-high, and medium density dwelling units along with a pocket park. The basin is 118.90 acres, with a composite impervious value of 49.42% and runoff rates for the 5 and 100 year of 92.76 cfs and 295.27 cfs respectively."

"Subbasin C1 is located to the northeast of east of basin B1 and the existing MST2 tributary runs through the middle of the basin. The basin drains towards the southeast and towards Detention Pond C. Current planning documents call for an institutional parcel, medium and high density dwelling units and a pocket park. The basin is 77.83 acres, with a composite impervious value Only provide relevant year of 77.99 cfs and 238.03 cfs respectively."

Only provide relevant year the 5 and 100 sheets from the report.

ADDRESSED.

A copy of the approved MDDP has been included in **Appendix E** of this report. The proposed drainage conditions for this development will follow historic drainage patterns as described in the MDDP.

c. Proposed Subbasin Description

Description of Proposed Project

The proposed drainage conditions for the site generally follow historic drainage patterns. The site drains from the northwest to the southeast at slopes between 0.6% - 4%, into proposed public storm sewer systems via sheetflow/curb & gutter/channel flow which drain to proposed private extended detention basins for treatment and flood attenuation. The northwestern half of the site will drain to and be treated by "Pond A", and the southeastern half of the site will drain to and be treated by "Pond B". Both of these detention ponds will outfall

into the rerouted channel MST2. Drainage from both of these ponds has been accounted for in the channel re-alignment design and is detailed in the CLOMR report.

There is no anticipated offsite flow that will enter the site.

Swales not shown on Drainage Map. Please clarify how flows will reach their intented design points and ultimately the pond. Or if any WQ exclusions are applicable.

Subbasins Tributary to and Treated by Pond A

HR GREEN RESPONSE: FLOWS ARE CONVEYED AT THE DP AND THEN FLOW TO THE INLET. WHILE FLOWING TO THE INLET THEY CAN COMBINE WITH THE FLOWS AT DIFFERENT A DIFFERENT DP THAN THEY WERE CONVEYED AT. FOR EXAMPLE: B1-A IS CONVEYED AT 18-A AND FLOWS TO 20-A. WHILE FLOWING TO THE INLET IT COMBINES WITH B2-1 AT 19-A.

es of landscaped area, townhome lot area, and the proposed full spect ADDRESSED. vater ($Q_5 = 2.2$ cfs $Q_{100} = 8.5$ cfs) is conveyed via grass system. Tract A at DP25-A. all public pipe must be RCP

es of Jandscaped area and townhome lot area. Stormwater ($Q_5 = 1.7$ cfs $Q_{100} = 4.6$ cfs) swates in a rear yard swale to the public 18" HDPE culvert crossing at DP23-A.

es of right-of-way (ROW) area, landscaped area, and townhome lot area ADDRESSED. i cfs) is conveyed via curb and gutter in the public right-of-way to a publi<mark>c type ਨ ।niet at</mark> draining to Pond A via the proposed public storm sewer network.

es of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater cfs) is conveyed via curb and gutter in the public right-of-way to DP19-A, where flows subbasin B1-A, B3-A, and B4-A-Runoff then follows patterns of subbasin B1-A and R inlet at DP20-A, and ultimately draining to Pond A via the proposed public storm

From drainage map, Basin B4-A

es of right-of-way (ROW) area, asphalt parking lot, landscaped area, = 2.6 cfs Q_{100} = 5.2 cfs) is conveyed via curb and gutter in the public right-of-way to

ADDRESSED.

DP19-A, where flows combine with those of subbasin B1-A, B2-A and B4-A. Runoff then follows patterns of subbasin B1-A and drains to a public type R inlet at DP20-A, and ultimately draining to Pond A via the proposed public storm sewer network.

Basin B4-A is 0.86 acres of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater $(Q_5 = 2.3 \text{ cfs } Q_{100} = 4.9 \text{ cfs})$ is conveyed via curb and gutter in the public right-of-way to DP18-A, where flows combine with those of subbasin B1-A Runoff then follows patterns of subbasin B1-A and drains to DP19-A, then to a public type R inlet at DP20-A, and ultimat ADDRESSED. A via the proposed public storm sewer network. B1-A combines at DP20-A

Basin C1-A is 0.56 acres of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater $(Q_5 = 1.5 \text{ cfs } Q_{100} = 3.1 \text{ cfs})$ is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP21-A, and ultimately draining to Pond A via the proposed public storm sewer network.

Basin D1-A is 0.82 acres of landscaped area, and townhome lot area. Stormwater ($Q_5 = 1.3$ cfs $Q_{100} = 3.2$ cfs) is conveyed via a swale in Tract D to a public type C inlet at DP17-A, and ultimately draining to Pond A via the proposed public storm sewer network. ADDRESSED.

Basin E1-A is 0.18 acres of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater $(Q_5 = 0.6 \text{ cfs } Q_{100} = 1.2 \text{ cfs})$ is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP14-A, and ultimately draining to Pond A via the proposed public storm sewer network.

Basin E2-A is 0.73 acres of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater $(Q_5 = 1.9 \text{ cfs } Q_{100} = 3.9 \text{ cfs})$ is conveyed via curb and gutter in the public right-of-way to DP13-A, where flows combine with those of subbasin E1-A. Runoff then follows patterns of subbasin E1-A and drains to a public type R inlet at DP14-A, and ultimately draining to Pond A via the proposed public storm sewer network.

> Per routing spreadsheet, this basin ADDRESSED.

ADDRESSED.

Basin E2-A is combined at DP 13-A according to spreadsheet. Revise report or spreadsheet to match

Grandview Reserve Phase 2 Preliminary Drainage Report Project No.: 201662.202

Basin E3-A is 0.95 acres of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater $(Q_5 = 2.7 \text{ cfs } Q_{100} = 5.4 \text{ cfs})$ is conveyed via curb and gutter in the public right-of-way to DP12-A, where flows combine with those of subbasin E2-A, and E4-A. Runoff then follows patterns of subbasin E2-A draining to DP13-A and then drains to a public type R inlet at DP14-A, ultimately draining to Pond A via the proposed public storm sewer network.

Basin E4-A is 1.12 acres of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater $(Q_5 = 3.0 \text{ cfs } Q_{100} = 6.1 \text{ cfs})$ is conveyed via curb and gutter in the public right-of-way to DP12-A, where flows combine with those of subbasin $\frac{\text{E2-A}}{\text{E2-A}}$, and $\frac{\text{E4-A}}{\text{E4-A}}$. Runoff then follows patterns of substantial graphs to DP13-A and then drains to a public type R inlet at DP14-A, ultimately draining to P $\frac{\text{ADDRESSED}}{\text{Per routing spreadsheet combines with Basin E6-A}$. Revise report or spreadsheet to match

Basin E5-A is 1.23 acres of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater $(Q_5 = 3.3 \text{ cfs } Q_{100} = 6.7 \text{ cfs})$ is conveyed via curb and gutter in the public right-of-way to DP11-A, where flows combine with those of subbasin E1-A. Runoff then follows patterns of subbasin E1-A draining to a public type R inlet at DP14-A, ultimately draining to Pond A via the proposed public storm sewer network.

Basin E6-A is 0.96 acres of right-of-way (ROW) area, asphalt parking lot, landscaped area, and townhome lot area. Stormwater ($Q_5 = 2.3$ cfs $Q_{100} = 4.8$ cfs) is conveyed via curb and gutter in the public right-of-way to DP10-A, where flows combine with those of subbasin E5-A. Runoff then follows patterns of subbasin E5-A draining to DP11-A, then to a public type R inlet at DP14-A, and ADDRESSED. To Pond A via the proposed public storm sewer network DP15-A per routing spreadsheet

Basin F1-A is 0.40 acres of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater $(Q_5 = 1.2 \text{ cfs } \Omega_{100} = 2.4 \text{ cfs})$ is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP16-A, and ultimately draining to Pond A via the proposed public storm sewer network.

Area doesn't match with spreadsheet Please update.

Basin G1-A is 3.22 acres of landscaped area, and town pome for area. Such mwater ($Q_5 = 3.9$ cfs $Q_{100} = 13.1$ cfs) is conveyed via grass swales in Tract AB to a public ADDRESSED. 9-A, and ultimately draining to Pond A via the proposed public storm sewer network.

THERE IS A SLIGHT BIT OF TOWNHOME AREA IN THE BASIN.

Basin H1-A is 0.41 acres of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater ($Q_5 = 1.2$ cfs $Q_{100} = 2.3$ cfs) is conveyed via curb and gutter in the public right-of-X ic type R inlet at DP6-A, and ultimately draining to Pond A via the proposed public storm sewer network.

Basin H2-A is 1.05 acres of right-of-way (ROW) area, asphalt parking lot, landscaped area, and townhome lot area. Stormwater (Q₅ = 2.8 cfs O₄₀₀ = 5.6 cfs) is conveyed via curb and gutter in the public right-of-way to DP5-A, where flows combine v ADDRESSED. in H1-A. Runoff then follows patterns of subbasin H1-A draining to a public type R inlet at DP6-A, ultimately draining to Pond A via the proposed public storm sewer network.

Per routing spreadsheet, only Basins H3-A & H4-A are combined at DP3-A

Basin H3-A is 0.70 acres of right-of-way (ROW) area, landscaped area, an ADDRESSED. Stormwater $(Q_5 = 1.9 \text{ cfs } Q_{100} = 4.0 \text{ cfs})$ is conveyed via curb and gutter in the public right-of-way where flows combine with those of subbasin H1-A, H4-A, and H5-A. Runoff then follows patterns of subbasin H1-A SED, ag to a public type R inlet at DP6-A ultimately draining to Pond A via the proposed public storm sewer.

ADDRESSED. hg to a public type R inlet at DP6-A, ultimately draining to Pond A via the proposed public storm sewer

oesn't match with

Lasin 1.4-A is 0.78 acres of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater ($Q_5 = 4.3$ cfs $Q_{100} = 8.8$ cfs) is conveyed via curb and gutter in the public right-of-way to DP3-A, where flows combine with those of subbasin H1-A, H3-A, and H5-A. Runoff then follows patterns of subbasin H1-A

draining to a public type R inlet at DP6-A, ultimately draining to Pond A v ADDRESSED. lic storm sewer network.

Area doesn't match with spreadsheet Please update.

Basin H5-A is 3.75 acres of right-of-way (ROW) area, landscaped area, and townhome lot area. Stormwater (Q₅ = 5.7 cfs Q₁₀₀ = 13.5 cfs) is conveyed via curb and gutter in the public right-of-way to DP2-A, where flows combine with those of subbasin H1-A. Runoff then follows patterns of subbasin H1-A draining to DP3-A and then to a public type R inlet at DP6-A, ultimately draining to Pond A via the proposed public storm sewer Per routing spreadsheet, Basin 5H-A combines with Basin H1-A at DP6-A. Please revise report or spreadsheet to match.

Basin I1-A is 0.63 acres of right-of-way (ROW) area, landscaped area, and townhome lo $(Q_5 = 1.3 \text{ cfs } Q_{100} = 2.9 \text{ cfs})$ is conveyed via curb and gutter in the public right-of-way to DP7-A, and ultimately draining to Pond A via the proposed public storm sewer network.

Basin J1-A is 1.55 acres of landscaped area, and townhome lot area. Stormwater ($Q_5 = 1.8$ cfs $Q_{100} = 5.1$ cfs) is conveyed via grass swales in Tract O to a public type C inlet at DP4-A, and ultimately draining to Pond A via the proposed public storm sev Area doesn't match with spreadsheet Please update. ADDRESSED.

Basin K1-A is 0.63 acres of right-of-way (ROW) area, and landscaped area. Stormwater ($Q_5 = 4.1$ cfs $Q_{100} = 8.3$ cfs) is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP1-A, and ultimately draining to Pond A via the proposed public storm sewer network.

Subbasins Tributary to and Treated by Pond B

PLease update all basin flows in this section to match with hydrology spreadsheet.

Basin A-B is 3.52 acres of landscaped area, duplex lot area, townhome ADDRESSED. of-way (ROW) area. Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.6$ cfs) is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP1-B, and ultimately draining to Pond B via the proposed public storm sewer network.

Basin B-B is 2.50 acres of landscaped area, duplex lot area, and right-of-way (ROW) area. Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.6$ cfs) is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP1-B, and ultimately draining to Pond B via the proposed public storm sewer network.

Basin C-B is 0.85 acres of landscaped area, duplex lot area, townhome lot area, and right-of-way (ROW) area. Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.6$ cfs) is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP2-B, and ultimately draining to Pond B via the proposed public storm sewer network.

Basin D-B is 1.05 acres of landscaped area, duplex lot area, and right-of-way (ROW) area. Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.6$ cfs) is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP2-B, and ultimately draining to Pond B via the proposed public storm sewer network.

Basin E-B is 4.05 acres of landscaped area, duplex lot area, and right-of-way (ROW) area. Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.6$ cfs) is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP6-B, and ultimately draining to Pond B via the proposed public storm sewer network.

Basin F-B is 2.95 acres of landscaped area, duplex lot area, and right-of-way (ROW) area. Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.6$ cfs) is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP5-B, and ultimately draining to Pond B via the proposed public storm sewer network.

Basin G-B is 2.15 acres of landscaped area and right-of-way (ROW) area. Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.6$ cfs) is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP8-B, and ultimately draining to Pond B via the proposed public storm sewer network.

Swales not shown on Drainage Map. Please clarify how flows will reach their intented design points and ultimately the pond. Or i ADDRESSED. any WQ exclusions are applicable.

Grandview Reserve Phase 2 Preliminary Drainage Report Project No.: 201662.202

Basin H-B is 4.77 acres of landscaped area, duplex lot area, and right-of-way (ROW) area. Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.6$ cfs) is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP9-B, and ultimately draining to Pond B via the proposed public storm sewer network.

Basin I-B is 2.05 acres of landscaped area, duplex lot area, and right-of-way (ROW) area. Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.6$ cfs) is conveyed via curb and gutter in the public right-of-way to a public type R inlet at DP11-B, and ultimately draining to Pond B via the proposed public storm sewer network.

Basin J-B is 2.77 acres of landscaped area, duplex lot area, and right-of-way (ROW) area. Stormwater (Q₅ =

 $0.8 \text{ cfs } Q_{100} = 1.6 \text{ cfs})$ is conveyed via curb and gutter DP13-B, and ultimately draining to Pond B via the property.

Basin K-B is 2.30 acres of landscaped area, duplex low 0.8 cfs $Q_{100} = 1.6$ cfs) is conveyed via curb and gutter DP13-B, and ultimately draining to Pond B via the property of the propert

Basin L-B is 2.14 acres of landscaped area, duplex lot $0.8 \text{ cfs } Q_{100} = 1.6 \text{ cfs})$ is conveyed via curb and gutter DP13-B, and ultimately draining to Pond B via the property.

Basin M-B is 1.81 acres of landscaped area, duplex lo 0.8 cfs Q₁₀₀ = 1.6 cfs) is conveyed via curb and gutter DP15-B, and ultimately draining to Pond B via the programmer.

Basin N-B is 4.10 acres of landscaped area, and duple conveyed via rear yard swales to DP17-B in Pond B.

HR GREEN RESPONSE:

TEXT UPDATED TO INDICATE Q RATIOS ARE MET THE FOR DESIGN STORMS.

THE DESIGN STORMS ARE THE WQCV, EURV, AND 100 YR STORM. THE DETENTION MEASURES ARE DESIGNED TO RELEASE THE WQCV & EURV OVER A SPECIFIC TIME DURATION FOR TREATMENT WHICH IS ACCOMPLISHED VIA THE ORIFICE PLATE. THE 100 YR STORM IS RELEASED AT LESS-THAN-HISTORIC RATES WHICH IS ACCOMPLISHED VIA THE RESTRICTOR PIPE. THE TEXT HAS BEEN UPDATED TO CLARIFY THE RELEASE RATE DESIGN STORMS.

HR GREEN RESPONSE:

Justification for 5-yr and 100-yr release rates has been provided in the "Water Quality & Detention" Section of the PDR. Per coordination with Glenn Reese on 02.27.24 we will not be required to meet pre-development flows for storms in between the 5-yr and 100-yr event.

et flow to DP17-B in Pend B

ge patterns. Inlets will be place

This statement conflicts with what is shown as the Q ratios on the two MHFD-Detention spreadsheet.

and in the public ROW where the street capacity would be exceeded. Stormwater from the debe routed via a proposed public storm sewer system to a full spectrum detention pond which rinto MST2. All ponds and water quality features will discharge at less than historic rates.

THIS STATEMENT HAS BEEN REVISED.

b. Water Quality & Detention

Pond A (Full Spectrum Detention Basin)

Labeled on map as Gieck Ranch Trib #2. Please and/or to remove discrepancy.

ADDRESSED.

Water quality and detention for Basins A-A through K-A is provid text. A total of 30.60 acres at 47% composite imperviousness will be detained. The pond has been sized to provide water quality treatment, and detention for up to the 100-yr storm volume to be released at or below historic rates. The WQCV is 0.505 ac-ft, the EURV is 1.630 ac-ft, and the 100-year detention volume is 2.603 ac-ft. The WQCV, EURV and 100-year storms are released in 43, 72 and 74 hours, respectively. A forebay is located at the outfall into the pond and a 4.0' trickle channel conveys flow towards the outlet structure. A 10' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 60' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow r ADDRESSED. oard towards MST2.

Pond B (Full Spectrum Detention Basin)

Labeled on map as Gieck Ranch Trib #2. Please revise to clarify and/or to remove discrepancy.

Water quality and detention for Basins A-B through O-B is provided in Pond B; a private, full spe ADDRESSED. extended detention basin within Phase 2 of Grandview Reserve. A total of 38.19 acres at 43% of imperviousness will be detained. The pond has been sized to provide water quality treatment, and detention for up to the 100-yr storm volume to be released at or below historic rates. The WQCV is 0.597 ac-ft, the EURV is 1.815 ac-ft, and the 100-year detention volume is 2.974 ac-ft. The WQCV, EURV and 100-year storms are released in 42, 72 and 72 hours, respectively. A forebay is located at the outfall into the pord and a 4.0' trickle channel conveys flow towards the outlet structure. A 10' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 77.5' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow rate with 1.0' of free ADDRESSED. 2.

c. Channel Improvements

minimum width for access The Gieck Ranch Tributary #2 is proposed to be rerouted. As part of this rerouting is 15'. Please revise upstream tributary flows will be captured upstream from the proposed Rex Road extension and be conveyed

via culvert to the rerouted chi been done for the channel w Reserve CLOMR Report, HF throughout the channel fall w

HR GREEN RESPONSE: TEXT HAS BEEN ADDED TO CLARIFY

je Phase 2 western boundary. An analysis has n flows as described within the Grandview January 2022 (CLOMR). Both scenarios, Indicate if channel improvements plans have been submitted yet for review or when they plan to be. Include project # if they have.

Per DCM Section 11.2.2

d. Inspection and Maintenance

After completion of construction and upon the Board of County Commissioners acceptance, it is anticipated that all drainage facilities within the public Right-of-Way are to be owned and maintained by El Paso County.

All private detention ponds are to be owned and maintained by the Grandview Rese NO. 2 (DISTRICT), once established, unless an agreement is reached stating othe for all full spectrum detention facilities will be provided from public Right-of-Way. Manual full spectrum detention facilities will be provided from public Right-of-Way. drainageways will be provided through the proposed tracts.

Wetlands Mitigation

There is one existing wetlands on site associated with the Gieck Ranch Tributary # contained within the existing channel and classified as non-jurisdictional. The wetla will be provided with the Grandview Reserve CLOMR Report, HR Green; April 2022 Appendix E. Wetlands maintenance will be the responsibility of the Grandview Res No. 2.

HR GREEN RESPONSE: DESCRIPTION OF PROPOSED LID PRACTICES ON THE SITE ARE DESCRIBED IN STEP 1 OF THE FOUR STEP PROCESS, **ADDITIONAL DESCRIPTION HAS** BEEN ADDED.

ts of

Urbanization

In the MDDP Summary submitted with the Sketch Plan Four Step (SKP-20-001) it is noted that due to the increased volume of flow, low impact design should be taken into account for design of each filing. Please include additional information on where and how this is being accomplished within such a high density area.

Step 1 - Reducing Ruhon volumes, Low impact development (LID) practices are utilized to reduce runoff at the source. In general, stormwater discharges are routed across pervious areas prior to capture in storm sewer. This practice promotes infiltration and reduces peak runoff rates. The Impervious Reduction Factor (IRF) method will be used in the final design and calculations provided with the FDR.

Step 2 - Treat and slowly release the WQCV: This step utilizes full spectrum water quality and detention to capture the WQCV and slowly release runoff from the site. Onsite full spectrum detention pond provides water

quality treatment for the site. The WQCV is released over a period of 40 hours while the EURV is release over a period of 72 hours.

Step 3 – Stabilize stream channels: This step establishes practices to stabilize drainageways and provide scour protection at stormwater outfalls. Erosion protection is provided at all concentrated stormwater discharge points in the form of riprap pads.

Step 4 – Consider the need for source controls: No industrial or commercial uses are proposed within this development and therefore no source controls are proposed.

VII. Drainage and Bridge Fees

Gieck Ranch drainage basin has not been established as a fee basin within El Paso County. Therefore, no drainage basin fees are due at time of platting.

VIII. Opinion of Probable Cost

An engineer's opinion of probable cost will be provided with the Final Drainage Report (FDR) for the site.

IX. Hydraulic Grade Line Analysis

Hydraulic grade line analysis and final pipe sizes will be provided with the FDR for the site.

X. Summary

The Grandview Reserve Phase 2 site lies within the Gieck Ranch Drainage Basin. Water quality and detention for the site is provided in full spectrum water quality and detention ponds. There is one major drainageway that traverses the site: Gieck Ranch Tributary #2. The water quality and detention features ponds will be maintained by the Grandview Reserve Metropolitan District No. 2 (DISTRICT). All drainage facilities were sized per the El Paso County Drainage Criteria Manuals.

The development of this project will not adversely affect adjacent or downstream properties.

XI. Drawings

Refer to the appendices for vicinity and drainage basin maps.

XII. References

- 1. City of Colorado Springs Drainage Criteria Manual, May 2014, Revised January 2021.
- 2. Drainage Criteria Manual of El Paso, Colorado, October 2018.
- 3. Urban Storm Drainage Criteria Manual, Urban Drainage Flood Control District, January 2018.
- 4. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- 5. "Grandview Reserve Master Development Drainage Plan" prepared by HR Green, August 2021.
- 6. "Grandview Reserve Filing No. 1 Preliminary Drainage Report" prepared by Galloway & Company, Inc., September 2022.
- 7. "Grandview Reserve CLOMR REPORT" prepared by HR Green, March 2023

APPENDIX A - VICINITY MAP, PHOTOS, SOIL MAP, FEMA MAP

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 20, Sep 2, 2022 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Sep 11, 2018—Jun 12. 2021 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI		
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	254.0	66.5%		
83	Stapleton sandy loam, 3 to 8 percent slopes	В	127.8	33.5%		
Totals for Area of Intere	est	381.8	100.0%			

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

104°33'44.61"W 38°58'N

PANEL

0552

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP

Base Flood Elevation Line (BFE)

Jurisdiction Boundary

Limit of Study

OTHER

FEATURES

NOTES TO USERS

For information and questions about this Flood Insurance Rate Map (FIRM), available products associated with this FIRM, including historic versions, the current map date for each FIRM panel, how to order products, or the National Flood Insurance Program (NFIP) in general, please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at https://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report,

and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website.

Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well

as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number

T12S R64W S029

listed above. For community and countywide map dates, refer to the Flood Insurance Study Report for this jurisdiction.

The basemap shown is the USGS National Map: Orthoimagery. Last refreshed October, 2020.

To determine if flood insurance is available in this community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620. Basemap information shown on this FIRM was provided in digital format by the United States Geological Survey (USGS).

This map was exported from FEMA's National Flood Hazard Layer (NFHL) on 12/14/2023 3:20 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. For additional information, please see the Flood Hazard Mapping Updates Overview Fact Sheet at https://www.fema.gov/media-library/assets/documents/118418

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date.

SCALE

Map Projection: GCS, Geodetic Reference System 1980; Vertical Datum: NAVD88

For information about the specific vertical datum for elevation features, datum conversions, or vertical monuments used to create this map, please see the Flood

	Insi	urance Stu	dy (FIS) Repor	t for your co	mmunity at https://n	nsc.fema.gov
	1	inch =	500 feet		1:6,000	0
	0	250	500	1,000	1,500	2,000
N I					Meters	Feet
V	0	50 100	200	300	400	

National Flood Insurance Program

NATIONAL FLOOD INSURANCE PROGRAM

FLOOD INSURANCE RATE MAP

PANEL 552 OF 1275

T12S R64W S028

AREA OF MINIMAL FLOOD HAZARD

Panel Contains: COMMUNITY

NUMBER **EL PASO COUNTY** 080059

> MAP NUMBER 08041C0552G **EFFECTIVE DATE December 07, 2018**

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP

Base Flood Elevation Line (BFE)

Jurisdiction Boundary

Limit of Study

OTHER

FEATURES

NOTES TO USERS

For information and questions about this Flood Insurance Rate Map (FIRM), available products associated with this FIRM, including historic versions, the current map date for each FIRM panel, how to order products, or the National Flood Insurance Program (NFIP) in general, please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at https://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report,

and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website.

Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well

as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number

listed above. For community and countywide map dates, refer to the Flood Insurance Study Report for this jurisdiction.

To determine if flood insurance is available in this community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Basemap information shown on this FIRM was provided in digital format by the United States Geological Survey (USGS). The basemap shown is the USGS National Map: Orthoimagery. Last refreshed October, 2020.

This map was exported from FEMA's National Flood Hazard Layer (NFHL) on 12/14/2023 3:22 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. For additional information, please see the Flood Hazard Mapping Updates Overview Fact Sheet at https://www.fema.gov/media-library/assets/documents/118418

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date.

SCALE

Map Projection: GCS, Geodetic Reference System 1980; Vertical Datum: No elevation features on this FIRM For information about the specific vertical datum for elevation features, datum conversions, or vertical monuments used to create this map, please see the Flood Insurance Study (FIS) Report for your community at https://msc.fema.gov

0 250 500 1,000 1,500 2,000 Fee		inch = 50	. , .		1:6,00	
	0	250 5	00	1,000	1,500	,
						Fee
	0	50 100	200	300	400	

National Flood Insurance Program

NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP

PANEL 556 OF 1275

Panel Contains:

COMMUNITY NUMBER **EL PASO COUNTY** 080059

> MAP NUMBER 08041C0556G **EFFECTIVE DATE** December 07, 2018

PANEL

0556

APPENDIX B - HYDROLOGIC CALCULATIONS

NOAA Atlas 14, Volume 8, Version 2 Location name: Peyton, Colorado, USA* Latitude: 38.9877°, Longitude: -104.5596° Elevation: 6971 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-	based po	int precip	itation fre	quency e	stimates v	with 90% (confiden	ce interva	als (in ind	ches) ¹
Duration				interval (ye	ars)					
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.239 (0.189-0.304)	0.291 (0.230-0.371)	0.382 (0.300-0.487)	0.461 (0.360-0.591)	0.576 (0.438-0.771)	0.670 (0.497-0.906)	0.769 (0.552-1.06)	0.874 (0.602-1.24)	1.02 (0.675-1.48)	1.14 (0.731-1.67)
10-min	0.350 (0.276-0.446)	0.427 (0.337-0.544)	0.559 (0.439-0.714)	0.675 (0.528-0.866)	0.844 0.982 (0.642-1.13) (0.728-1.33)		1.13 (0.808-1.56)	1.28 (0.881-1.82)	1.49 (0.989-2.17)	1.66 (1.07-2.44)
15-min	0.427 (0.337-0.543)	0.520 (0.410-0.663)	0.681 (0.536-0.870)	0.823 (0.643-1.06)	1.03 (0.783-1.38)	1.20 (0.888-1.62)	1.37 (0.985-1.90)	1.56 (1.07-2.22)	1.82 (1.21-2.65)	2.03 (1.30-2.98)
30-min	0.607 (0.480-0.773)	.607 0.740 0.967 0-0.773) (0.583-0.942) (0.761-1.24)		1.17 (0.912-1.50)	1.46 (1.11-1.95) (1.26-2.29) (1.94 (1.39-2.68)	2.20 (1.51-3.12)	2.56 (1.70-3.73)	2.85 (1.83-4.19)
60-min	0.774 (0.611-0.985)	0.932 1.21		1.46 (1.14-1.88)	1.84 (1.40-2.47)	2.15 (1.60-2.92)	2.49 (1.79-3.45)	2.85 (1.96-4.05)	3.35 (2.22-4.90)	3.76 (2.42-5.54)
2-hr	0.941 (0.749-1.19)	1 1.12 1.46		1.76 (1.39-2.24)	2.22 (1.71-2.97)	2.61 (1.96-3.52)	3.03 (2.20-4.19)	3.49 (2.43-4.94)	4.14 (2.78-6.02)	4.68 (3.04-6.84)
3-hr	1.03 (0.824-1.29)	1.22 (0.973-1.53)	1.57 (1.25-1.98)	1.90 (1.50-2.40)			3.34 (2.44-4.60)	3.87 (2.72-5.47)	4.64 (3.13-6.72)	5.27 (3.44-7.67)
6-hr	1.19 (0.961-1.48)	1.40 (1.12-1.74)	1.78 (1.43-2.23)	2.16 (1.72-2.71)	2.76 (2.17-3.67)	3.28 (2.50-4.40)	3.86 (2.85-5.29)	4.50 (3.19-6.33)	5.44 (3.70-7.84)	6.21 (4.10-8.98)
12-hr	1.38 (1.12-1.70)	1.61 (1.30-1.98)	2.05 (1.66-2.53)	2.47 (1.99-3.07)	3.14 (2.49-4.15)	3.73 (2.87-4.96)	4.38 (3.26-5.96)	5.10 (3.64-7.12)	6.14 (4.23-8.80)	7.01 (4.67-10.1)
24-hr	1.59 (1.30-1.95)	1.86 (1.52-2.28)	2.37 (1.93-2.90)	2.84 (2.30-3.50)	3.58 (2.86-4.66)	4.22 (3.27-5.55)	4.92 (3.69-6.62)	5.68 (4.09-7.86)	6.79 (4.71-9.65)	7.70 (5.17-11.0)
2-day	1.85 (1.53-2.24)	2.17 (1.79-2.63)	2.75 (2.26-3.34)	3.28 (2.68-4.00)	4.09 (3.28-5.26)	4.78 (3.73-6.21)	5.52 (4.17-7.36)	6.33 (4.59-8.67)	7.48 (5.23-10.5)	8.42 (5.71-12.0)
3-day	2.02 (1.68-2.44)	2.38 (1.97-2.86)	3.01 (2.48-3.64)	3.58 (2.94-4.35)	4.45 (3.58-5.68)	5.18 (4.06-6.69)	5.97 (4.52-7.90)	6.81 (4.97-9.28)	8.02 (5.63-11.2)	8.99 (6.13-12.7)
4-day	2.17 (1.81-2.61)	2.55 (2.12-3.06)	3.21 (2.66-3.86)	3.81 (3.14-4.61)	4.72 (3.80-6.00)	5.48 (4.31-7.04)	6.29 (4.79-8.30)	7.17 (5.24-9.73)	8.42 (5.93-11.8)	9.42 (6.45-13.3)
7-day	2.57 (2.16-3.06)	2.97 (2.48-3.54)	3.67 (3.06-4.39)	4.31 (3.58-5.17)	5.27 (4.28-6.64)	6.08 (4.81-7.76)	6.94 (5.32-9.09)	7.87 (5.80-10.6)	9.20 (6.53-12.8)	10.3 (7.08-14.4)
10-day	2.92 (2.46-3.46)	3.35 (2.82-3.98)	4.11 (3.44-4.89)	4.79 (3.99-5.73)	5.81 (4.73-7.28)	6.66 (5.29-8.45)	7.56 (5.82-9.85)	8.53 (6.32-11.4)	9.90 (7.06-13.7)	11.0 (7.63-15.4)
20-day	3.90 (3.31-4.57)	4.50 (3.81-5.28)	5.51 (4.65-6.49)	6.37 (5.36-7.55)	7.61 (6.22-9.37)	8.60 (6.87-10.8)	9.62 (7.44-12.4)	10.7 (7.95-14.1)	12.1 (8.71-16.6)	13.3 (9.28-18.4)
30-day	4.68 (3.99-5.46)	5.42 (4.61-6.33)	6.63 (5.63-7.76)	7.64 (6.45-8.99)	9.03 (7.39-11.0)	10.1 (8.11-12.5)	11.2 (8.70-14.3)	12.3 (9.20-16.2)	13.8 (9.95-18.7)	14.9 (10.5-20.6)
45-day	5.64 (4.84-6.55)	6.52 (5.58-7.58)	7.94 (6.77-9.25)	9.09 (7.71-10.6)	10.6 (8.73-12.8)	11.8 (9.49-14.5)	13.0 (10.1-16.4)	14.1 (10.6-18.4)	15.6 (11.3-21.0)	16.7 (11.8-22.9)
60-day	6.45 (5.55-7.46)	7.42 (6.37-8.59)	8.96 (7.68-10.4)	10.2 (8.69-11.9)	11.8 (9.74-14.2)	13.1 (10.5-16.0)	14.2 (11.1-17.9)	15.4 (11.6-20.0)	16.8 (12.2-22.6)	17.9 (12.7-24.6)

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 38.9877°, Longitude: -104.5596°

NOAA Atlas 14, Volume 8, Version 2

Created (GMT): Tue Sep 5 16:10:04 2023

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

GRANDVIEW RESERVE (PHASE II) PROPOSED CONDITIONS

HRGreen EL PASO COUNTY, CO

	SUMMAR	Y RUNOFF	TABLE	
BASIN	AREA (ac)	% IMPERVIOUS	Q ₅ (cfs)	Q ₁₀₀ (cfs)
A1-A	3.22	14	2.2	8.5
A2-A	1.23	35	1.7	4.6
B1-A	0.26	79	0.8	1.6
B2-A	1.02	64	2.6	5.3
В3-А	0.87	69	2.6	5.2
B4-A	0.86	61	2.3	4.9
C1-A	0.56	67	1.5	3.1
D1-A	0.82	38	1.3	3.2
E1-A	0.18	77	0.6	1.2
E2-A	0.73	67	1.9	3.9
E3-A	0.95	69	2.7	5.4
E4-A	1.12	66	3.0	6.1
E5-A	1.23	68	3.3	6.7
E6-A	0.96	63	2.3	4.8
F1-A	0.40	68	1.2	2.4
G1-A	4.69	20	3.9	13.1
H1-A	0.41	70	1.2	2.3
H2-A	1.05	70	2.8	5.6
Н3-А	0.70	63	1.9	4.0
H4-A	1.78	66	4.3	8.8
H5-A	3.72	44	5.7	13.5
I1-A	0.63	57	1.3	2.9
J1-A	1.55	28	1.8	5.1
K1-A	1.66	68	4.1	8.3

DES	SIGN POINT SUI	MMARY TA	BLE		
DESIGN POINT	CONTRIBUTING BASINS	ΣQ_5 (cfs)	ΣQ ₁₀₀ (cfs)		
1-A	K1-A	4.1	8.3		
2-A	H5-A	5.7	13.5		
2.1-A	DPS 1-A, 2-A	9.4	21.0		
3-A	H3-A, H4-A	6.0	12.3		
4-A	J1-A	1.8	5.1		
4.1-A	DPS 2.1-A, 4-A	10.5	24.4		
5-A	H2-A	2.8	5.6		
6-A	H1-A, DPS 3-A, 5-A	8.7	17.8		
7-A	I1-A	1.3	2.9		
8-A	DPS 4.1-A, 6-A, 7-A	19.6	43.2		
9-A	G1-A	3.9	13.1		
9.1-A	DPS 8-A, 9-A	22.7	54.0		
10-A	E6-A	2.3	4.8		
11-A	E5-A, DPS 10-A	4.2	8.5		
12-A	E3-A, E4-A	5.6	11.5		
13-A	E2-A, DPS 12-A	6.4	12.9		
14-A	E1-A, DPS 11-A, 13-A	8.9	18.2		
15-A	F1-A	1.2	2.4		
16-A	DPS 9.1-A, 14-A, 15-A	29.1	65.9		
17-A	D1-A	1.3	3.2		
17.1-A	DPS 16-A, 17-A	29.5	67.2		
18-A	B4-A	2.3	4.9		
19-A	B2-A, B3-A, DPS 18-A	6.3	12.9		
20-A	B1-A, DPS 19-A	6.6	13.5		
21-A	C1-A	1.5	3.1		
22-A	DPS 17.1-A, 20-A, 21-A	34.9	78.0		
23-A	A2-A	1.7	4.6		
24-A	DPS 23-A	1.7	4.5		

SPC

KH

12/15/2023

Calc'd by:

Checked by:

Date:

25-A

A1-A, DPS 22-A, 24-A

37.6

87.1

GRANDVIEW RESERVE (PHASE II) PROPOSED CONDITIONS

Calc'd by: SPC

Checked by: KH

12/15/2023 Date:

SOIL TYPE	: HSG	A&B

									CON	IPOS	ITE '	C' F	ACT	ORS								
								LA	ND U	ND USE TYPE												
		Paved Gravel			Lawns		Typical Townhome Minor Arterial ROW Lots Typ.				al ROW	Local ROW Typ.				COMPOSITE IMPERVIOUSNESS & C						
	%I 100	C ₅	C ₁₀₀	%I 80	C ₅	C ₁₀₀	%I 0	C ₅	C ₁₀₀	%I 53	C ₅	C ₁₀₀	%I 68	C ₅	C ₁₀₀	%I 90	C ₅	C ₁₀₀	TOTAL	IMPER	FACTOR	
BASIN		ACRES	<u> </u>		ACRES			ACRES			ACRES			ACRES	<u> </u>	ACRES		ACRES	%I	C ₅	C ₁₀₀	
A1-A					0.14			2.42			0.66								3.22	14	0.18	0.42
A2-A								0.41			0.82								1.23	35	0.35	0.54
B1-A								0.03					0.23			0.26	79	0.73	0.83			
B2-A								0.06			0.56		0.4		0.40		1.02	64	0.59	0.72		
B3-A		0.09						0.07			0.37		0.34		0.87	69	0.63	0.76				
B4-A								0.09			0.46		0.31		0.86	61	0.56	0.70				
C1-A								0.01			0.33						0.22		0.56	67	0.61	0.74
D1-A								0.23			0.59								0.82	38	0.37	0.56
E1-A								0.03								0.15		0.18	77	0.71	0.82	
E2-A								0.05		0.32						0.35		0.73	67	0.62	0.74	
E3-A								0.00		0.54					0.41			0.95	69	0.63	0.75	
E4-A								0.02		0.68					0.41			1.12	66	0.60	0.73	
E5-A		0.09						0.05			0.65		0.44			1.23	68	0.62	0.75			
E6-A		0.09						0.18		0.27		0.41			0.96	63	0.59	0.73				
F1-A								0.00		0.23		0.17		0.17		0.40	68	0.62	0.75			
G1-A								2.96			1.73								4.69	20	0.23	0.46
H1-A								0.09					0.32			0.41	70	0.65	0.78			
H2-A		0.10						0.05			0.49						0.42		1.05	70	0.64	0.76
Н3-А								0.07			0.33						0.30		0.70	63	0.58	0.72
H4-A								0.02			1.12						0.64		1.78	66	0.60	0.73
H5-A								1.04			1.14			1.54					3.72	44	0.43	0.61
I1-A								0.15			0.21						0.28		0.63	57	0.54	0.69
J1-A								0.74			0.81								1.55	28	0.29	0.50
K1-A								0.00						1.66					1.66	68	0.63	0.76
POND A		0.38			0.14	·		8.76			12.31			3.20	·		5.80		30.60	47	0.45	0.62

GRANDVIEW RESERVE (PHASE II)

Checked by:

Calc'd by:

SPC

PROPOSED CONDITIONS

y: KH

HRGreen EL PASO COUNTY, CO

Date: 12/15/2023

				TIME OF	CONCE	NTRATI	ON						
BAS	IN DATA		OVER	LAND TIM	E (T;)		TRAV	EL TIME (T _t)		TOTAL	tc=(L/180)+10	Design tc
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t_c (min)	tc max	tc design (min)
A1-A	0.18	3.22	100	2.8	11.9	7	529	2.9	1.2	7.3	19.2	13.5	13.5
A2-A	0.35	1.23	68	4.9	6.7	15	470	2.2	2.2	3.5	10.2	13.0	10.2
B1-A	0.73	0.26	41	0.5	5.4	20	340	0.6	1.5	3.7	9.1	12.1	9.1
B2-A	0.59	1.02	32	0.7	6.1	20	614	2.9	3.4	3.0	9.2	13.6	9.2
B3-A	0.63	0.87	42	2.9	3.9	20	544	2.9	3.4	2.7	6.6	13.3	6.6
B4-A	0.56	0.86	43	4.8	3.8	20	480	2.7	3.3	2.4	6.3	12.9	6.3
C1-A	0.61	0.56	53	2.9	4.6	20	318	0.6	1.5	3.4	8.0	12.1	8.0
D1-A	0.37	0.82	100	4.6	8.1	15	196	2.3	2.3	1.4	9.5	11.6	9.5
E1-A	0.71	0.18	41	1.0	4.5	20	186	1.0	2.0	1.5	6.1	11.3	6.1
E2-A	0.62	0.73	38	0.6	6.4	20	570	2.8	3.3	2.9	9.2	13.4	9.2
E3-A	0.63	0.95	68	4.2	4.4	20	656	2.6	3.2	3.4	7.8	14.0	7.8
E4-A	0.60	1.12	66	4.5	4.5	20	656	2.4	3.1	3.5	8.1	14.0	8.1
E5-A	0.62	1.23	54	3.0	4.5	20	677	1.8	2.7	4.2	8.7	14.1	8.7
E6-A	0.59	0.96	74	1.0	8.0	20	495	3.5	3.7	2.2	10.2	13.2	10.2
F1-A	0.62	0.40	63	3.0	4.8	20	197	1.0	2.0	1.6	6.5	11.4	6.5
G1-A	0.23	4.69	100	10.0	7.4	15	822	2.0	2.1	6.5	13.9	15.1	13.9
H1-A	0.65	0.41	79	2.0	5.8	20	284	0.6	1.5	3.0	8.8	12.0	8.8
H2-A	0.64	1.05	41	0.8	5.9	20	667	2.0	2.8	3.9	9.8	13.9	9.8
H3-A	0.58	0.70	41	2.8	4.3	20	467	2.5	3.2	2.5	6.7	12.8	6.7
H4-A	0.60	1.78	62	2.5	5.3	20	1089	3.0	3.5	5.2	10.5	16.4	10.5
H5-A	0.43	3.72	100	4.8	7.3	20	1343	2.3	3.0	7.4	14.7	18.0	14.7
I1-A	0.54	0.63	81	0.6	11.0	20	114	0.6	1.5	1.2	12.2	11.1	11.1
J1-A	0.29	1.55	100	4.5	9.0	15	321	2.4	2.3	2.3	11.3	12.3	11.3
K1-A	0.63	1.66	45	3.4	3.8	20	1409	2.4	3.1	7.6	11.4	18.1	11.4

FORMULAS:

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}} \qquad V = C_v S_w^{0.5}$$

Table 6-7. Conveyance Coefficient, C_{ν}

Type of Land Surface	C_{ν}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

For buried riprap, select C_v value based on type of vegetative cover.

GRANDVIEW RESERVE (PHASE II) PROPOSED CONDITIONS DESIGN STORM: 5-YEAR

Calc'd by:
Checked by:
Date:

SPC KH 12/15/2023

1 11 (TITOTECT																						
			/	DIF	RECT	RUNO	FF		TC	OTAL	RUNO	FF	S.	TREE	Т		PIF	PΕ		TR	RAVEL	. TIME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	→ C²	t_c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	С ₅ *А (ас)	SLOPE %	Q _{PIPE} (cfs)	C ₅ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (min	
	1-A	K1-A	0.63	1.66	11.4	1.05	3.93		11.4	1.05	3.93	4.1				4.1	1.05	0.5	1.5	85	2.1	0.67	
	2-A								14.7	1.60	3.55	5.7				5.7	1.60	0.5	1.5	6	2.1	0.04	
	2.1-A	H5-A	0.43	3.72	14.7	1.60	3.55	5.7	14.7	2.65	3.55	9.4				9.4	2.65	0.5	2.0	300	2.9	1.70	
	3-A								10.5	1.47	4.05	6.0	6.0	1.47	0.6					160	0.8	3.44	
		Н3-А	0.58	0.70	6.7	0.41	4.72																
		H4-A	0.60	1.78	10.5	1.07	4.05																
	4-A	J1-A	0.29	1.55	11.3	0.45	3.94			0.45	3.94	1.8				1.8	0.45	0.5	1.5	26	2.1	0.21	
	4.1-A								16.4	3.09	3.39	10.5				10.5	3.09	0.5	2.0	46	2.9	0.26	
	5-A	110.4	0.04	4.05		0.07	4.40			0.67	4.16	2.8	2.8	0.67	0.6					80	0.8	1.72	
	6-A	H2-A		1.05			4.16		14.0	2.41	3.63	8.7				8.7	2.41	0.5	1.5	3	2.1	0.02	
	7-A	H1-A	0.65	0.41	8.8	0.27	4.32		11.1	0.34	3.98	1.3				1.3	0.34	0.5	1.0	28	1.3	0.35	
	8-A	I1-A	0.54	0.63	11.1	0.34	3.98	1.3	16.7	5.84	3.36	19.6				19.6	5.84	0.5	3.0	250	4.7	0.88	
	9-A	G1-A	0.23	4.69	13.9	1.07	3.64	3.9	13.9		3.64										1.3		
	9.1-A								17.6	6.91	3.28	22.7				22.7	6.91	0.5	3.0	86	4.7	0.30	
	10-A	E6-A	0.59	0.96	10.2	0.57	4 10			0.57	4.10	2.3	2.3	0.57	1.8					731	1.3	9.08	
	11-A								19.3	1.33	3.14	4.2	4.2	1.33	0.6					217	0.8	4.67	
	12-A	E5-A		1.23					8.1	1.27	4.45	5.6	5.6	1.27	2.7					506	1.6	5.16	
		E3-A	0.63	0.95	7.8	0.60	4.50	2.7															
	13-A	E4-A	0.60	1.12	8.1	0.67	4.45			1.71	3.71	6.4	6.4	1.71	0.6					25	0.8	0.54	
		E2-A	0.62	0.73	9.2	0.45	4.25	1.9								0.0	0.45	0.5	0.0				
	14-A	E1-A	0.71	0.18	6.1	0.13	4.88			3.17											2.9		
	15-A	F1-A	0.62	0.40	6.5	0.25	4.78	1.2		0.25	4.78	1.2				1.2	0.25	0.5	1.5	29	2.1	0.23	
	16-A		2.5-			5.25				10.33	2.82	29.1				29.1	10.33	0.5	3.0	173	4.7	0.61	
																				<u> </u>	<u> </u>	<u> </u>	

GRANDVIEW RESERVE (PHASE II) PROPOSED CONDITIONS DESIGN STORM: 5-YEAR

Calc'd by:
Checked by:
Date:

SPC KH 12/15/2023

	DIRECT RUNOFF TOTAL RUNOFF																						DEMARKS
				DIF	RECT	RUNO	FF		TC	TAL F	RUNC)FF	SI	REE	Т		PIP	E		TR	AVEL	TIME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₅	t_c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t_c (min)	C₅*A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₅ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (min	
	17-A	D1-A	0.37	0.82	9.5	0.30	4.20	1.3	9.5	0.30	4.20	1.3				1.3	0.30	0.5	1.5	26	2.1	0.21	
	17.1-A								24.6	10.63	2.78	29.5				29.5	10.63	0.5	3.0	241	4.7	0.85	
	18-A	B4-A	0.56	0.86	6.3	0.48	4 83	2.3		0.48	4.83	2.3	2.3	0.48	0.6					268	0.8	5.77	
	19-A	B2-A	0.59			0.60			12.1	1.63	3.85	6.3	6.3	1.63	0.6					85	8.0	1.83	
		ВЗ-А	0.63	0.87																			
	20-A	B1-A	0.73						13.9	1.82	3.64	6.6				6.6	1.82	0.5	1.5	6	2.1	0.04	
	21-A	C1-A	0.61	0.56		0.34			8.0	0.34	4.47	1.5				1.5	0.34	0.5	1.5	29	2.1	0.23	
	22-A		5.51	0.00	2.0	0.01				12.79	2.73	34.9				34.9	12.79	0.5	3.0	34	4.7	0.12	
	23-A	A2-A	0.35	1.23	10.2	0.43	4.10			0.43	4.10	1.7				1.7	0.43	0.5	1.5	80	2.1	0.63	
	24-A	NZ N	0.00	1.20	10.2	0.40	4.10			0.43	4.01	1.7	1.7	0.43	2.0				•	400	1.4	4.71	
	25-A	A1-A	0.40	2.22	42.5	0.50	2.60			13.81	2.72	37.6											

GRANDVIEW RESERVE (PHASE II)	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	КН
DESIGN STORM: 100-YEAR	Date:	12/15/2023

			DIRECT RUNOFF						TOTAL RUNOFF STREET						r	PIPE				TR	AVEL	TIME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOP	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min)	
	1-A	K1-A	1.66	0.76	11.4	1.26	6.60	8.3	11.4	1.26	6.60	8.3				8.3	1.26	0.5	1.5	85	2.1	0.67	
	2-A	H5-A		0.61				13.5	14.7	2.26	5.97	13.5				13.5	2.26	0.5	1.5	6	2.1	0.04	
	2.1-A	110-74	3.72	0.01	14.7	2.20	3.97	15.5		3.53	5.96	21.0			:	21.0	3.53	0.5	2.0	300	2.9	1.70	
	3-A		0.70	0.70	0.7	0.50	7.00	4.0		1.81	6.80	12.3	12.3	1.81	0.6					160	0.8	3.44	-
		Н3-А	0.70	0.72	6.7	0.50	7.92	4.0															
	4-A	H4-A	1.78	0.73	10.5	1.30	6.80	8.8		0.78	6.62	5.1			_	5.1	0.78	0.5	1.5	26	2.1	0.21	
		J1-A	1.55	0.50	11.3	0.78	6.62	5.1															
	4.1-A															24.4	4.30	0.5	2.0	46		0.26	
	5-A	H2-A	1.05	0.76	9.8	0.80	6.98	5.6		0.80	6.98	5.6	5.6	0.80	0.6					80	0.8	1.72	
	6-A	H1-A		0.78					14.0	2.92	6.09	17.8				17.8	2.92	0.5	1.5	3	2.1	0.02	
	7-A								11.1	0.43	6.67	2.9				2.9	0.43	0.5	1.0	28	1.3	0.35	
	8-A	I1-A	0.63	0.69	11.1	0.43	6.67	2.9		7.66	5.64	43.2			 	43.2	7.66	0.5	3.0	250	4.7	0.88	
	9-A								13.9	2 14	6.11	13 1				13.1	2.14	0.5	1.0	24	1.3	0.31	
		G1-A	4.69	0.46	13.9	2.14	6.11	13.1															
	9.1-A										5.51					54.0	9.80	0.5	3.0	86	4.7	0.30	
	10-A	E6-A	0.96	0.73	10.2	0.70	6.88	4.8		0.70	6.88	4.8	4.8	0.70	1.8	T				731	1.3	9.08	
	11-A	E5-A					7.29		19.3	1.62	5.28	8.5	8.5	1.62	0.6					217	0.8	4.67	
	12-A								8.1	1.53	7.47	11.5	11.5	1.53	2.7					506	1.6	5.16	
		E3-A	0.95	0.75	7.8	0.72	7.55	5.4							\dashv								
	13-A	E4-A	1.12	0.73	8.1	0.82	7.47		13.2	2.08	6 23	12 9	12 9	2.08	0.6					25	0.8	0.54	
		E2-A	0.73	0.74	9.2	0.54	7.14	3.9						2.00		10.0	0.04	0.5	0.0				
	14-A	E1-A	0.18	0.82	6.1	0.15	8.19		24.0								3.84					0.03	
Ţ	15-A	F1-A	0.40	0.75	6.5	0.30	8.03	2.4		0.30	8.03	2.4				2.4	0.30	0.5	1.5	29	2.1	0.23	
	16-A	, .	33	23	3.0	2.20	2.00			13.94	4.73	65.9			1	65.9	13.94	0.5	3.0	173	4.7	0.61	

GRANDVIEW RESERVE (PHASE II)	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	КН
DESIGN STORM: 100-YEAR	Date:	12/15/2023

				DII	RECT I	RUNOI	FF		TC	TAL I	RUNOF	F	ST	REE	Т		PIF	PE		TR	AVEL	TIME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min)	
	17-A	D4 A	0.00	0.50	0.5	0.40	7.00	0.0	9.5	0.46	7.06	3.2				3.2	0.46	0.5	1.5	26	2.1	0.21	
	17.1-A	D1-A	0.82	0.56	9.5	0.46	7.06	3.2		14.40	4.66	67.2				67.2	14.40	0.5	3.0	241	4.7	0.85	
	18-A								6.2	0.60	8.10	4.0	4.9 (2.60	0.6					268	0.8	5.77	
	10-A	B4-A	0.86	0.70	6.3	0.60	8.10	4.9		0.60	0.10	4.9	4.9	0.60	0.6					200	0.6	5.77	
	19-A								12.1	2.00	6.46	12.9	12.9	2.00	0.6					85	0.8	1.83	
		B2-A	1.02	0.72	9.2	0.74	7.15	5.3															
		ВЗ-А	0.87	0.76	6.6	0.66	7.98	5.2															
	20-A								13.9	2.22	6.11	13.5				13.5	2.22	0.5	1.5	6	2.1	0.04	
	04.4	B1-A	0.26	0.83	9.1	0.22	7.17	1.6		0.44	7.50	3.1				0.4	0.44	0.5	4.5	00	0.4	0.00	
	21-A	C1-A	0.56	0.74	8.0	0.41	7.50	3.1		0.41	7.50	3.1				3.1	0.41	0.5	1.5	29	2.1	0.23	
	22-A									17.03	4.58	78.0				78.0	17.03	0.5	3.0	34	4.7	0.12	
	23-A	A2-A	1.23	0.54	10.2	0.67	6.88	4.6		0.67	6.88	4.6				4.6	0.67	0.5	1.5	80	2.1	0.63	
	24-A	NE N	1.20	0.04	10.2	0.07	5.55	7.0	10.9	0.67	6.73	4.5	4.5	0.67	2.0					400	1.4	4.71	
	25-A	A1-A	3.22	0.42	13.5	1.37	6.18	8.5		19.07	4.57	87.1											

GRANDVIEW RESERVE (PHASE II- DUPLEXES)	Calc'd by:	СВМ
PROPOSED CONDITIONS	Checked by:	SPC
EL PASO COUNTY, CO	Date:	12/15/2023

,	SUMMARY RUNOFF TABLE													
BASIN	AREA (ac)	% IMPERVIOUS	Q ₅ (cfs)	Q ₁₀₀ (cfs)										
A-B	3.52	39	6.6	11.0										
B-B	2.50	55	6.2	10.4										
C-B	0.83	47	1.9	3.2										
D-B	1.05	45	2.4	4.1										
E-B	4.05	45	8.4	14.0										
F-B	2.95	43	6.1	10.3										
G-B	2.15	56	4.8	8.1										
H-B	4.77	40	8.7	14.7										
I-B	2.06	51	4.1	7.0										
J-B	2.77	60	6.6	11.0										
K-B	2.30	58	5.9	9.8										
L-B	2.14	39	4.6	7.7										
M-B	1.81	44	4.0	6.8										
N-B	4.10	20	6.8	11.5										
О-В	1.18	0	2	3.1										

DESIGN POINT SUMMARY TABLE												
DESIGN POINT	CONTRIBUTING BASINS	ΣQ_5 (cfs)	ΣQ ₁₀₀ (cfs)									
DP1-B	A,B	11.9	20.0									
DP2-B	C,D	4.2	7.1									
DP3-B	A,B,C,D	0.0	26.5									
DP4-B	E	8.4	14.0									
DP5-B	F	6.1	10.3									
DP6-B	E,F	0.0	24.0									
DP7-B	A,B,C,D,E,F	0.0	49.3									
DP8-B	G	4.8	8.1									
DP9-B	Н	8.7	14.7									
DP10-B	G,H	0.0	22.5									
DP11-B		7.9	15.8									
DP12-B	A,B,C,D,E,F,I	0.0	62.1									
DP13-B	J,K,L	14.4	27.4									
DP14-B	A-L	0.0	109.3									
DP15-B	M	7.5	12.9									
DP16-B	A-M	68.3	120.6									

GRANDVIEW RESERVE (PHASE II- DUPLEXES) PROPOSED CONDITIONS

Calc'd by: **CBM**

Checked by:

SPC

Date:

12/15/2023

SOIL TYPE: HSG A&B

SUIL ITPE:	пэв	705																	
							C	ОМР	OSITI	E 'C'	FAC	TOR	S						
		LAND USE TYPE EPC MINOR																	
	EP	C LOC	AL		Duplex			Lawns			PC MINO		т	ownhon	ne			OMPOSIT	
	%I	C ₅	C ₁₀₀	% I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%l	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀		IMPER	VIOUSNE	
	90	0.82	0.90	47	0.40	0.58	0	80.0	0.35	68	0.63	0.76	53	0.48	0.64	TOTAL		FACTOR	
BASIN		ACRES	•		ACRES	•		ACRES	•		ACRES	;		ACRES		ACRES	%I	C ₅	C ₁₀₀
A-B		0.48			1.51			1.09			0.00			0.44		3.52	39	0.37	0.56
B-B		0.48			2.02			0.00			0.00			0.00		2.50	55	0.48	0.64
C-B		0.26		0.25				0.25			0.00			0.08		0.83	47	0.44	0.62
D-B		0.44		0.15				0.46			0.00			0.00		1.05	45	0.44	0.62
E-B		0.71			2.26			0.83			0.00			0.25		4.05	45	0.41	0.59
F-B		0.57			1.59			0.79			0.00			0.00		2.95	43	0.40	0.58
G-B		0.00			0.00		0.38				1.77		0.00			2.15	56	0.53	0.69
H-B		0.00			1.42			1.56			1.79			0.00		4.77	40	0.38	0.57
I-B		0.22			1.80			0.03			0.00			0.00		2.06	51	0.44	0.61
J-B		0.89			1.84			0.04			0.00			0.00		2.77	60	0.53	0.68
K-B		0.84			1.24			0.22			0.00			0.00		2.30	58	0.52	0.67
L-B		0.70			0.46	·		0.99			0.00			0.00	•	2.14	39	0.39	0.58
M-B		0.50					0.58			0.00			0.00		1.81	44	0.41	0.59	
N-B		0.00	00 1.76				2.35			0.00			0.00		4.10	20	0.22	0.45	
О-В		0.00	0.00			1.18			0.00			0.00 1.18		0	0.08	0.35			
Pond B	6.09 17.04							10.74			3.56			0.77		38.19	43		

GRANDVIEW RESERVE (PHASE II- DUPLEXES)	Calc'd by:	СВМ
PROPOSED CONDITIONS	Checked by:	SPC
EL PASO COUNTY, CO	Date:	12/15/2023

TIME OF CONCENTRATION

BASIN DATA			OVERLAND TIME (T _i)			TRAVEL TIME (T _t)					TOTAL	tc=(L/180)+10	Design tc
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t_c (min)	tc max	tc design (min)
A-B	0.37	3.52	100	2.0	10.7	20	1225	2.6	3.2	6.3	17.0	17.4	17.0
B-B	0.48	2.50	100	2.0	9.0	20	575	2.6	3.2	3.0	12.0	13.8	12.0
C-B	0.44	0.83	100	2.0	9.6	20	800	2.6	3.2	4.1	13.7	15.0	13.7
D-B	0.44	1.05	100	2.0	9.6	20	650	2.6	3.2	3.4	13.0	14.2	13.0
E-B	0.41	4.05	100	2.0	10.0	20	1100	2.9	3.4	5.4	15.4	16.7	15.4
F-B	0.40	2.95	100	2.0	10.3	20	830	2.9	3.4	4.1	14.3	15.2	14.3
G-B	0.53	2.15	30	2.0	4.5	20	1600	1.0	2.0	13.3	17.9	19.1	17.9
H-B	0.38	4.77	100	2.0	10.5	20	1450	1.0	2.0	12.1	22.5	18.6	18.6
I-B	0.44	2.06	100	2.0	9.6	20	1420	2.3	3.0	7.8	17.4	18.4	17.4
J-B	0.53	2.77	100	2.0	8.3	20	1290	2.3	3.0	7.1	15.4	17.7	15.4
K-B	0.52	2.30	100	2.0	8.4	20	890	3.0	3.5	4.3	12.7	15.5	12.7
L-B	0.39	2.14	100	2.0	10.3	20	520	2.0	2.8	3.1	13.4	13.4	13.4
M-B	0.41	1.81	100	2.0	10.0	20	520	2.3	3.0	2.9	12.8	13.4	12.8
N-B	0.22	4.10	100	2.0	12.8	20	460	0.8	1.8	4.3	17.1	13.1	13.1
O-B	0.08	1.18	25	2.0	7.4	20	50	1.0	2.0	0.4	7.8	10.4	7.8

FORMULAS:

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}} \qquad V = C_v S_w^{0.5}$$

Table 6-7. Conveyance Coefficient, C_{ν}

Type of Land Surface	C_{ν}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

For buried riprap, select C_v value based on type of vegetative cover.

GRANDVIEW RESERVE (PHASE II- DUPLEXES)	Calc'd by:	СВМ
PROPOSED CONDITIONS	Checked by:	SPC
DESIGN STORM: 5-YEAR	Date:	12/15/2023

				DII	RECT	RUNOI	FF		TC	TAL F	RUNC	OFF	ST	TREE	т		PIP	E		TR	AVEL	TIME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	ဒၥ	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	% JUDE %	Q _{PIPE} (cfs)	С ₅ *А (ас)	% adons	PIPE SIZE (ft)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (min	
		A D	3.52	0.56	17.0	1.07	2 22	6.6															BASIN A CAPTURED IN 15' TYPE R @ DP1
		A-B	3.52	0.56	17.0	1.97	3.33	0.0					4.2	1.26	2.4				1	475	3.1	2.56	DP1 FLOWBY CAPTURED BY @ DP12
	DP1-B	B-B	2.50	0.64	12.0	1.60	3.86	6.2	17.0	3.57	3.33	11.9				7.7	2.31	2.0	1.5	7	8.4	0.01	BASIN B CAPTURED IN 15' TYPE R @ DP1, PIPED TO DP3
		С-В	0.83	0.62	13.7	0.51	3.66	1.9															BASIN C CAPTURED IN 10' TYPE R @ DP2
	DD0 D				40.0				40.7					0.04	2.4					0.7	3.1	0.00	DAGNUR O DETURER IN LOUTURE D. O. DRO. RIPER TO DRO.
	DP2-B	D-B	1.05	0.62	13.0	0.65	3.74	2.4	13.7	1.16	3.66	4.2				4.1	1.12	2.0	1.5	27	8.4	0.05	BASIN D CAPTURED IN 10' TYPE R @ DP2, PIPED TO DP3
	DP3-B								17.0	4.73		0.0				0.0	4.73	2.0		58	8.4	0.11	DP3 FLOW TO DP7
	DP4-B	E-B	4.05	0.59	15.4	2.40	3.48	8.4	15.4	2.40	3 48	8.4		0.54	8.0	6.5	1 87	2.0	1.5	640 27	1.8 8.4	5.96 0.05	FLOWBY CAPTURED @ DP15
					10.4	2.40								0.90	0.8					675	1.8	6.29	FLOWBY CAPTURED @ DP15
	DP5-B	F-B	2.95	0.58	14.3	1.71	3.59	6.1	14.3	1.71	3.59	6.1				2.9	0.81	2.0	1.5	7	8.4	0.01	
	DP6-B								15.4	4.11		0.0				0.0	0.00	2.0	1.5	62	8.4	0.12	PIPE TO DP7
	DD7 D								47.4	0.05		0.0				0.0	0 0 5	2.0	2.0	400	10.0	0.00	PIPE TO DP12
	DP7-B								17.1	8.85		0.0	0.3	0.10	0.8	0.0	8.85	2.0		1000	10.2	0.69 9.32	FLOWBY CAPTURED BY PHASE 3 STORM
	DP8-B	G-B	2.15	0.69	17.9	1.48	3.26	4.8	17.9	1.48	3.26	4.8				4.5	1.38	2.0	1.5	19	8.4	0.04	
	DP9-B	Н-В	4.77	0.57	18.6	2.73	3.20	8.7	18.6	2.73	3.20	8.7		0.98	8.0	5.6	1.75	2.0		1000 34	1.8 8.4	9.32 0.07	FLOWBY CAPTURED BY PHASE 3 STORM
											0.120												
	DP10-B								18.7	4.21		0.0	0.2	0.06	2.4	0.0	4.21	2.0		215	10.2 3.1	1.06 1.16	PIPE TO DP14 FLOWBY CAPTURED @ DP13
	DP11-B	I-B	2.06	0.61	17.4	1.26	3.30	4.1	19.5	2.52	3.12	7.9		0.00	2.7	7.7	2.46	2.0	1.5	7	8.4	0.01	1 EOM DI ONI PORED O DI 10
	DP12-B								10.6	11.37		0.0				0.0	11 37	2.0	2.5	58	11.8	0.08	PIPE TO DP14
	DI 12-D								13.0	11.57		0.0				0.0	11.57	2.0	2.0	50	11.0	0.00	THE 10 01 14
		J-B	2.77	0.68	15.4	1.88	3.48	6.6															
		K-B	2.30	0.67	12.7	1.55	3.77	5.9															
	DP13-B	L-B	244	0.58	13.4	4.04	3.69	4.0	20.7	4.70	2.04	44.4				14.4	4.70	2.0	2.0	7	10.2	0.01	SUMP INLET-PIPE TO DP14, OVERTOP CROWN AND CURB INTO POND
	DP13-B	L-B	2.14	0.58	13.4	1.24	3.69	4.0	20.7	4.73	3.04	14.4				14.4	4.73	2.0	2.0		10.2	0.01	SUMP INLET-PIPE TO DP14, OVERTOP CROWN AND CORB INTO POND
	DP14-B								20.7	20.30		0.0				0.0	20.30	2.0	1.5	58	8.4	0.11	PIPE TO DP16
	DP15-B	M-B	1.81	0.59	12.8	1.08	3.75	4.0	21.3	2.52	2.99	7.5				7.5	2.52	2.0	2.0	7	10.2	0.01	SUMP INLET, OVERTOP CURB INTO POND
				2.50		30	20					/ <u></u>											
	DP16-B						-	-	21.3	22.82	2.99	68.3			\dashv	-		\vdash	\dashv				PIPE TO POND X TO BE DETAINED AND RELEASED AT LESS THAN HISTORIC RATES
	DP17-B	N-B	4.10	0.45	13.1	1.84	3.72	6.8				\											BASIN N SWALE FLOW TO POND X
		О-В	1.18	0.35	7.8	0.41	4.49	1.9				' '	ΚĪ										BASIN O SHEET FLOW INTO POND X
		0-0	1.10	0.00	7.0	0.41	7.73	1.5					\vdash						1				BAGING GILETTEON INTO FORD A

Missing flow rate for design point ADDRESSED.

Highlighted flows cannot be 0 cfs. Appears that intensity is missing. Please

GRANDVIEW RESERVE (PHASE II- DUPLEXES)	Calc'd by:	СВМ
PROPOSED CONDITIONS	Checked by:	SPC
DESIGN STORM: 100-YEAR	Date:	12/15/2023

	al eel																							
				DIF	RECT	RUNO	FF		TC	OTAL F	RUNO	FF	S	TREE	Т		PIP	E		TR	AVEL		REMARKS	
STREET	DESIGN POINT	BASINID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min)		
			0.50	0.50	47.0	4.07	5.00	44.0															DAGINA GARTIJEED IN 451 TVD5 D. G. DD4	
		A-B	3.52	0.56	17.0	1.97	5.60	11.0					0.8	1.75	2.4					475	3.1	2.56	BASIN A CAPTURED IN 15' TYPE R @ DP1 DP1 FLOWBY CAPTURED BY @ DP12	
	DP1-B	B-B	2.50	0.64	12.0	1.60	6.48	10.4	17.0	3.57	5.60	20.0	9.0	1.73	2.4	10.2	1.82	2.0	1.5		8.4	0.01	BASIN B CAPTURED IN 15' TYPE R @ DP1, PIPED TO DP3	
		C-B	0.83	0.62	13.7	0.51	6.14	3.2															BASIN C CAPTURED IN 10' TYPE R @ DP2	
	DP2-B	D D	4.05	0.00	42.0	0.05	6.07	4.4	10.7	4.46	C 4.4	7.4	1.3	0.21	2.4	F 0	0.04	2.0	1.5	27	3.1	0.00	BASIN D CAPTURED IN 10' TYPE R @ DP2, PIPED TO DP3	
	DPZ-B	D-B	1.05	0.62	13.0	0.65	6.27	4.1	13.7	1.16	6.14	7.1			-+	ე.გ	0.94	2.0	1.5	21	8.4	0.05	DASIN D CAPTURED IN 10 TIPE R & DP2, PIPED 10 DP3	
	DP3-B								17.0	4.73	5.59	26.5			1	26.5	4.73	2.0	1.5	58	8.4	0.11	DP3 FLOW TO DP7	
													5.6	0.97	0.8					640	1.8	5.96	FLOWBY CAPTURED @ DP15	
	DP4-B	E-B	4.05	0.59	15.4	2.40	5.85	14.0	15.4	2.40	5.85	14.0				8.4	1.44	2.0	1.5	27	8.4	0.05		
	DP5-B	F-B	2.95	0.58	14.3	4 74	0.00	10.3	110	1.71	0.00	10.3	3.2	0.53	8.0	7.1	1.18	2.0	1.5	675 7	1.8 8.4	6.29 0.01	FLOWBY CAPTURED @ DP15	
	DP5-B	F-B	2.95	0.58	14.3	1.71	6.03	10.3	14.3	1.71	6.03	10.3				7.1	1.10	2.0	1.5	- /	6.4	0.01		
	DP6-B								15.4	4.11	5.84	24.0			- 1	24.0	24.03	2.0	1.5	62	8.4	0.12	PIPE TO DP7	
	DP7-B								17.1	8.85	5.58	49.3				49.3	8.85	2.0	2.0	420	10.2	0.69	PIPE TO DP12	
	DD0 D	0.5	0.45		47.0	4 40			47.0	4 40			0.3	0.05	8.0					1000	1.8	9.32	FLOWBY CAPTURED BY PHASE 3 STORM	
	DP8-B	G-B	2.15	0.69	17.9	1.48	5.47	8.1	17.9	1.48	5.47	8.1	2.1	0.57	0.0	7.8	1.43	2.0	1.5	19 1000	8.4 1.8	0.04 9.32	FLOWBY CAPTURED BY PHASE 3 STORM	
	DP9-B	H-B	4.77	0.57	18.6	2.73	5.37	14.7	18.6	2.73	5.37	14.7	3.1	0.57		116	2.16	2.0	1.5	34	8.4	0.07	FLOWBT CAPTURED BY PRASE 3 STORM	
							0.0.													-				
	DP10-B								18.7	4.21	5.36	22.5				22.5	4.21	2.0	2.0	650	10.2	1.06	PIPE TO DP14	
	DD44 D					4.00			40.5	0.04		45.0	3.7	0.70	2.4					215	3.1	1.16	FLOWBY CAPTURED @ DP13	
	DP11-B	I-B	2.06	0.61	17.4	1.26	5.54	7.0	19.5	3.01	5.24	15.8				12.1	2.31	2.0	1.5	7	8.4	0.01		
	DP12-B								19.6	11.85	5 24	62 1				62 1	11.85	2.0	2.5	58	11.8	0.08	PIPE TO DP14	
	525								10.0		0.2.	OZ. I				02			2.0	- 00		0.00		
		J-B	2.77	0.68	15.4	1.88	5.85	11.0																
		V 5	0.00	0.0-	40.7	4																		
		K-B	2.30	0.67	12.7	1.55	6.33	9.8							-+							1		
	DP13-B	L-B	2.14	0.58	13.4	1.24	6.19	7.7	20.7	5.37	5.10	27.4			1	27.4	5.37	2.0	2.0	7	10.2	0.01	SUMP INLET-PIPE TO DP14, OVERTOP CROWN AND CURB INTO POND	
				2.20			50												0					
	DP14-B								20.7	21.44	5.10	109.3				109.3	21.44	2.0	1.5	58	8.4	0.11	PIPE TO DP16	
	DD45 D		,	0.50	40.0		0.00		64 -	0.50	F 00	40.5			1	40.0	0.56				40.0	0.01	OUND NUTT OVER THE TOTAL OF THE	
	DP15-B	M-B	1.81	0.59	12.8	1.08	6.30	6.8	21.3	2.58	5.02	12.9			-+	12.9	2.58	2.0	2.0	7	10.2	0.01	SUMP INLET, OVERTOP CURB INTO POND	
	DP16-B								21.3	24.01	5.02	120.6			1								PIPE TO POND X TO BE DETAINED AND RELEASED AT LESS THAN HISTORIC RATES	
															ı									
	DP17-B	N-B	4.10	0.45	13.1	1.84	6.25	11.5															BASIN N SWALE FLOW TO POND X	
		0.5		0.35	7.8	0.41									- 1								BASIN O SHEET FLOW INTO POND X	
		O-B	1.18				7.55	3.1							1						ľ	1		

APPENDIX C – HYDRAULIC CALCULATIONS (TO BE PROVIDED WITH FDR)

APPENDIX D - WATER QUALITY & DETENTION

Note that the pond calcs will be reviewed in more detail with the FDR and subsequent submission of CDs. Can't do a full review of these calcs without the pond details in the CDs.

HR GREEN RESPONSE: NOTED.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Depth Increment = 6,966.50

Optional User Overrides

0.93

1.21

1.46

1.84

2.15

2.49

3.35

acre-feet acre-feet

inches

inches

inches

inches

inches

inches

inches

Project: Grandview Reserve - Phase 2

Watershed Information

	_					
EDB						
30.60	acres					
2,327	ft					
1,283	ft					
0.018	ft/ft					
47.00%	percent					
100.0%	percent					
0.0%	percent					
0.0%	percent					
40.0	hours					
Location for 1-hr Rainfall Depths = User Input						
	30.60 2,327 1,283 0.018 47.00% 100.0% 0.0% 0.0% 40.0					

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydrograph Procedure.								
Water Quality Capture Volume (WQCV) =	0.505	acre-feet						
Excess Urban Runoff Volume (EURV) =	1.630	acre-feet						
2-yr Runoff Volume (P1 = 0.93 in.) =	0.924	acre-feet						
5-yr Runoff Volume (P1 = 1.21 in.) =	1.247	acre-feet						
10-yr Runoff Volume (P1 = 1.46 in.) =	1.576	acre-feet						
25-yr Runoff Volume (P1 = 1.84 in.) =	2.182	acre-feet						
50-yr Runoff Volume (P1 = 2.15 in.) =	2.828	acre-feet						
100-yr Runoff Volume (P1 = 2.49 in.) =	3.654	acre-feet						
500-yr Runoff Volume (P1 = 3.35 in.) =	5.721	acre-feet						
Approximate 2-yr Detention Volume =	0.817	acre-feet						
Approximate 5-yr Detention Volume =	1.112	acre-feet						
Approximate 10-yr Detention Volume =	1.407	acre-feet						
Approximate 25-yr Detention Volume =	1.906	acre-feet						
Approximate 50-yr Detention Volume =	2.217	acre-feet						
Approximate 100-yr Detention Volume =	2.603	acre-feet						

Define Zones and Basin Geometry

<u>Penne Zunes anu basin Geometry</u>		
Zone 1 Volume (WQCV) =	0.505	acre-feet
Zone 2 Volume (EURV - Zone 1) =	1.124	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.973	acre-feet
Total Detention Basin Volume =	2.603	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides $(S_{main}) =$	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	

		_
Initial Surcharge Area $(A_{ISV}) =$	user	ft²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet
		=

Depth Increment =	6,966.50	IT	1	1	т	Louis	1		
		Optional			l .	Optional		,, ,	
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft 2)	(acre)	(ft ³)	(ac-ft)
Top of Micropool		0.00				10	0.000		
Top of Priciopool									
		0.50				592	0.014	150	0.003
		1.50				11,497	0.264	6,195	0.142
								!	
		2.50				24,552	0.564	24,219	0.556
		3.50				34,874	0.801	53,932	1.238
					<u> </u>				
		4.50				44,697	1.026	93,718	2.151
		5.50				53,878	1.237	143,005	3.283
		6.50				62,472	1.434	201,180	4.618
		0.50				02,772	1.757	201,100	7.010
							<u> </u>	<u>L</u> _	<u>L</u> _
								 	
								 	
								<u> </u>	<u> </u>
					-			 	
				1			1		
				<u> </u>			<u> </u>		
								1	
							L	L	L
								 	
								 	
								<u> </u>	ļ
								<u> </u>	
								1	
								<u> </u>	ļ
									1:

MHFD-Detention, Version 4.06 (July 2022)

02-Pond_A, Basin 12/13/2023, 12:44 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Project: Grandview Reserve - Phase 2

	Estimated	Estimated	
_	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.41	0.505	Orifice Plate
Zone 2 (EURV)	3.96	1.124	Circular Orifice
Zone 3 (100-year)	4.93	0.973	Weir&Pipe (Restrict)
-	Total (all zones)	2.603	

<u>User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)</u>

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) Underdrain Orifice Diameter = inches

	Calculated Paramet	ers for Underdrain
Underdrain Orifice Area =		ft ²
Underdrain Orifice Centroid =		feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = 2.41 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A inches Orifice Plate: Orifice Area per Row = 1.77 sq. inches (diameter = 1-1/2 inches)

<u>')</u>	Calculated Paramet	ers for Plate
WQ Orifice Area per Row =	1.229E-02	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

<u>User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)</u>

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.80	1.60					
Orifice Area (sq. inches)	1.77	1.77	1.77					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

<u>User Input: Vertical Orifice (Circular or Rectangular)</u>

-	Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	2.42	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	3.96	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	3.00	N/A	inches

	Calculated Parameters for Vertical Orifice				
	Zone 2 Circular	Not Selected			
Vertical Orifice Area =	0.05	N/A	ft ²		
Vertical Orifice Centroid =	0.13	N/A	feet		
-					

er Input: Overflow Weir (Dropbox with Flat or :	Sloped Grate and O	utlet Pipe OR Recta	ngular/Trapezoidal Weir and No Outlet Pipe)	Calculated Paramet	ers for Overflow W	<u>/eir</u>
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected]
Overflow Weir Front Edge Height, Ho =	4.00	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	4.00	N/A	feet
Overflow Weir Front Edge Length =	5.67	N/A	feet Overflow Weir Slope Length =	2.92	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	9.84	N/A	
Horiz. Length of Weir Sides =	2.92	N/A	feet Overflow Grate Open Area w/o Debris =	11.52	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	11.52	N/A	ft ²
Debris Clogging % =	0%	N/A] %			_

<u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

r Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Res	trictor Plate, or Red	ctangular Orifice)	Calculated Parameter	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate				
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	1		
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.17	N/A	ft ²		
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.53	N/A	feet		
Restrictor Plate Height Above Pipe Invert =	11.33		inches Half-Central Angle	of Restrictor Plate on Pipe =	1.83	N/A	radians		

<u>User Input: Emergency Spillway (Rectangular or Trapezoidal)</u>

ut: Emergency Spillway (Rectangular or T	rapezoidal)			Calculated Parame	ters for Spillway
Spillway Invert Stage=	5.00	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.38	feet
Spillway Crest Length =	60.00	feet	Stage at Top of Freeboard =	6.38	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	1.41	acres
Freeboard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	4.45	acre-ft

Routed Hydrograph Results	The user can over	rride the default CUH	P hydrographs and	runoff volumes by e	entering new values	in the Inflow Hydrog	graphs table (Colum	ns W through AF).	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	0.93	1.21	1.46	1.84	2.15	2.49	3.35
CUHP Runoff Volume (acre-ft) =	0.505	1.630	0.924	1.247	1.576	2.182	2.828	3.654	5.721
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.924	1.247	1.576	2.182	2.828	3.654	5.721
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.1	0.3	1.5	6.1	12.1	27.2
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.00	0.00	0.01	0.05	0.20	0.40	0.89
Peak Inflow Q (cfs) =	N/A	N/A	9.4	12.4	15.7	24.5	33.4	44.2	69.6
Peak Outflow Q (cfs) =	0.2	0.6	0.4	0.5	0.6	5.2	11.3	12.0	41.5
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	3.6	2.2	3.5	1 .9	1.0	1.5
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	/ 0.4	0.9	1.0	1.0
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	/ N/A /	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	41	67	55	61	67	/ 70 /	67	65	59
Time to Drain 99% of Inflow Volume (hours) =	43	72	59	66	72	76	75	74	71
Maximum Ponding Depth (ft) =	2.41	3.96	2.98	3.40	3.78	4.19	4.34	4.79	5.29
Area at Maximum Ponding Depth (acres) =	0.54	0.90	0.68	0.77	0.86	0.95	0.99	1.09	1.19
Maximum Volume Stored (acre-ft) =	0.506	1.630	0.847	1.151	1.462	1.835	1.980	2.447	3.028

Q ratios should be less than or equal to 1.

HR GREEN RESPONSE:

Justification for 5-yr and 100-yr release rates has been provided in the "Water Quality & Detention" Section of the PDR. Per coordination with Glenn Reese on 02.27.24 we will not be required to meet pre-development flows for storms in between the 5-yr and 100-yr event.

02-Pond_A, Outlet Structure 12/13/2023, 12:44 PM

02-Pond_A, Outlet Structure 12/13/2023, 12:44 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]		10 Year [cfs]		50 Year [cfs]		500 Year [cfs]
	0:00:00									
5.00 min	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00 0.52	0.00 1.14	0.00 1.58	0.00 1.25	0.05 1.74	0.00 1.79	0.54 3.07
	0:20:00	0.00	0.00	2.88	4.16	5.18	3.72	4.68	5.21	7.64
	0:25:00	0.00	0.00	6.76	9.13	11.85	8.24	9.96	11.41	17.34
	0:30:00	0.00	0.00	9.00	12.06	15.38	17.76	23.77	29.33	47.12
	0:35:00	0.00	0.00	9.39	12.44	15.72	23.19	31.50	41.25	65.17
	0:40:00	0.00	0.00	9.06	11.85	14.83	24.53	33.36	44.16	69.56
	0:45:00	0.00	0.00	8.43	11.09	13.88	23.32	31.48	42.51	67.19
	0:50:00	0.00	0.00	7.82	10.42	12.93	22.04	29.52	39.73	63.23
	0:55:00 1:00:00	0.00	0.00	7.30	9.76	12.10	20.29	26.93	36.51	58.14
	1:05:00	0.00	0.00	6.89 6.50	9.18 8.64	11.42 10.78	18.69 17.30	24.59 22.61	33.70 31.44	53.78 50.35
	1:10:00	0.00	0.00	5.96	8.09	10.70	15.83	20.55	28.33	45.20
	1:15:00	0.00	0.00	5.41	7.48	9.50	14.38	18.53	25.13	39.83
	1:20:00	0.00	0.00	4.96	6.91	8.84	12.87	16.46	21.83	34.36
	1:25:00	0.00	0.00	4.64	6.49	8.24	11.57	14.69	19.03	29.84
	1:30:00	0.00	0.00	4.40	6.17	7.71	10.51	13.29	16.92	26.42
	1:35:00	0.00	0.00	4.19	5.87	7.23	9.62	12.12	15.26	23.64
	1:40:00	0.00	0.00	3.99	5.47	6.78	8.83	11.08	13.78	21.19
	1:45:00 1:50:00	0.00	0.00	3.79 3.59	5.05 4.64	6.36 5.96	8.11 7.42	9.20	12.42 11.13	18.93 16.79
	1:55:00	0.00	0.00	3.25	4.04	5.51	6.76	8.31	9.89	14.75
	2:00:00	0.00	0.00	2.89	3.86	4.98	6.11	7.44	8.69	12.81
	2:05:00	0.00	0.00	2.40	3.23	4.16	5.10	6.15	7.10	10.36
	2:10:00	0.00	0.00	1.94	2.61	3.36	4.06	4.84	5.51	7.92
	2:15:00	0.00	0.00	1.56	2.11	2.72	3.15	3.69	4.09	5.82
	2:20:00	0.00	0.00	1.28	1.73	2.26	2.48	2.89	3.13	4.45
	2:25:00	0.00	0.00	1.06	1.44	1.88	2.00	2.31	2.46	3.47
	2:30:00 2:35:00	0.00	0.00	0.88	1.19	1.56	1.62	1.88	1.95	2.71
	2:40:00	0.00	0.00	0.73 0.59	0.99 0.81	1.29 1.05	1.32 1.06	1.52	1.55 1.22	2.12 1.64
	2:45:00	0.00	0.00	0.48	0.65	0.85	0.85	0.98	0.95	1.26
	2:50:00	0.00	0.00	0.39	0.53	0.69	0.68	0.78	0.74	0.98
	2:55:00	0.00	0.00	0.32	0.42	0.55	0.54	0.62	0.59	0.78
	3:00:00	0.00	0.00	0.26	0.34	0.44	0.44	0.50	0.48	0.63
	3:05:00	0.00	0.00	0.21	0.27	0.35	0.35	0.40	0.38	0.50
	3:10:00	0.00	0.00	0.16	0.21	0.27	0.27	0.31	0.30	0.39
	3:15:00 3:20:00	0.00	0.00	0.12 0.08	0.15 0.11	0.21 0.15	0.21 0.15	0.23	0.23 0.16	0.29 0.21
	3:25:00	0.00	0.00	0.05	0.11	0.10	0.10	0.17	0.16	0.21
	3:30:00	0.00	0.00	0.03	0.05	0.06	0.06	0.07	0.07	0.08
	3:35:00	0.00	0.00	0.02	0.03	0.03	0.04	0.04	0.03	0.04
	3:40:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

02-Pond_A, Outlet Structure 12/13/2023, 12:44 PM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Project: Grandview Reserve Phase 2

Watershed Information

	EDB	Selected BMP Type =
acres	38.19	Watershed Area =
ft	2,173	Watershed Length =
ft	1,171	Watershed Length to Centroid =
ft/ft	0.020	Watershed Slope =
percent	43.00%	Watershed Imperviousness =
percent	100.0%	Percentage Hydrologic Soil Group A =
percent	0.0%	Percentage Hydrologic Soil Group B =
percent	0.0%	Percentage Hydrologic Soil Groups C/D =
hours	40.0	Target WQCV Drain Time =
	User Input	Location for 1-hr Rainfall Depths =

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban riyaro	graphirioccuu	ic.
Water Quality Capture Volume (WQCV) =	0.597	acre-feet
Excess Urban Runoff Volume (EURV) =	1.815	acre-feet
2-yr Runoff Volume (P1 = 0.93 in.) =	1.033	acre-feet
5-yr Runoff Volume (P1 = 1.21 in.) =	1.395	acre-feet
10-yr Runoff Volume (P1 = 1.46 in.) =	1.771	acre-feet
25-yr Runoff Volume (P1 = 1.84 in.) =	2.481	acre-feet
50-yr Runoff Volume (P1 = 2.15 in.) =	3.268	acre-feet
100-yr Runoff Volume (P1 = 2.49 in.) =	4.283	acre-feet
500-yr Runoff Volume (P1 = 3.35 in.) =	6.832	acre-feet
Approximate 2-yr Detention Volume =	0.908	acre-feet
Approximate 5-yr Detention Volume =	1.236	acre-feet
Approximate 10-yr Detention Volume =	1.571	acre-feet
Approximate 25-yr Detention Volume =	2.140	acre-feet
Approximate 50-yr Detention Volume =	2.503	acre-feet
Approximate 100-yr Detention Volume =	2.974	acre-feet

Define Zones and Basin Geometry

		_
Zone 1 Volume (WQCV)	= 0.597	acre-feet
Zone 2 Volume (EURV - Zone 1)	= 1.218	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2)	= 1.158	acre-feet
Total Detention Basin Volume	= 2.974	acre-feet
Initial Surcharge Volume (ISV)	= user	ft ³
Initial Surcharge Depth (ISD)	= user	ft
Total Available Detention Depth (H_{total})	= user	ft
Depth of Trickle Channel (H_{TC})	= user	ft
Slope of Trickle Channel (S_{TC})	= user	ft/ft
Slopes of Main Basin Sides (S_{main})	= user	H:V
Basin Length-to-Width Ratio (R _{L/W})	= user	

		_
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

Optional User	Overrides
	acre-feet
	acre-feet
0.93	inches
1.21	inches
1.46	inches
1.84	inches
2.15	inches
2.49	inches
3.35	inches

Double In average	6 020 50	_							
Depth Increment =	•	ft Optional				Optional			
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
Top of Micropool		0.00				10	0.000	(10)	(uc it)
		0.50				5,911	0.136	1,480	0.034
		1.50				28,305	0.650	18,588	0.427
		2.50				33,324	0.765	49,402	1.134
		3.50				35,278	0.810	83,703	1.922
		4.50				41,358	0.949	122,021	2.801
		5.50				45,643	1.048	165,522	3.800
		6.00				47,848	1.098	188,895	4.336
									<u> </u>
									10000
								12/15	2023, 1·06 P

02-Pond_B, Basin

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Project: Grandview Reserve Phase 2

	Estimated	Estimated	
_	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.76	0.597	Orifice Plate
Zone 2 (EURV)	3.37	1.218	Circular Orifice
Zone 3 (100-year)	4.68	1.158	Weir&Pipe (Restrict)
•	Total (all zones)	2.974	

<u>User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)</u>

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Underdrain Orifice Area = Underdrain Orifice Centroid =

<u>Calculated Parameters for Underdrain</u> N/A

feet

<u>Calculated Parameters for Overflow Weir</u>

Not Selected

feet feet

Zone 3 Weir

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft)

Depth at top of Zone using Orifice Plate = 1.76 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A 2.95 Orifice Plate: Orifice Area per Row = sq. inches (diameter = 1-15/16 inches)

WQ Orifice Area per Row = Elliptical Half-Width = Elliptical Slot Centroid = Elliptical Slot Area = <u>Calculated Parameters for Plate</u> 2.049E-02 N/A feet N/A feet N/A

N/A

<u>User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)</u>

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.60	1.20					
Orifice Area (sq. inches)	2.95	2.95	2.95					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangul	<u>ar)</u>				Calculated Paramete	ers for Vertical Orifi	ice
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	1.76	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	0.01	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	3.37	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	0.06	N/A	feet
Vertical Orifice Diameter =	1.38	N/A	inches	•			•

<u>User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)</u> Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho = 3.38 N/A ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =

rflow Weir Front Edge Height, Ho =	3.38	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, $H_t = $	3.38	N/A
Overflow Weir Front Edge Length $=$	5.67	N/A	feet Overflow Weir Slope Length =	2.92	N/A
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	6.19	N/A
Horiz. Length of Weir Sides =	2.92	N/A	feet Overflow Grate Open Area w/o Debris =	11.52	N/A
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	5.76	N/A
Debris Clogging % =	50%	N/A	%		

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

er Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Res	trictor Plate, or Re	ctangular Orifice)	Calculated Parameter	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate				
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected]		
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.86	N/A	ft ²		
Outlet Pipe Diameter =	24.00	N/A	inches	Outlet Orifice Centroid =	0.65	N/A	feet		
Restrictor Plate Height Above Pipe Invert =	13.75		inches Half-Central Angle	of Restrictor Plate on Pipe =	1.72	N/A	radians		
									

<u>User Input: Emergency Spillway (Rectangular or Trapezoidal)</u>

<u>put: Emergency Spillway (Rectangular or T</u>	Calculated Parameters for Spillway				
Spillway Invert Stage=	4.50	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.50	feet
Spillway Crest Length =	77.50	feet	Stage at Top of Freeboard =	6.00	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	1.10	acres
Freeboard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	4.34	acre-ft

Routed Hydrograph Results	The user can overr	ide the default CUH	P hydrographs and l	runoff volumes by e	ntering new values	in the Inflow Hydrog	graphs table (Colum	ns W through AF).	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	0.93	1.21	1.46	1.84	2.15	2.49	3.35
CUHP Runoff Volume (acre-ft) =	0.597	1.815	1.033	1.395	1.771	2.481	3.268	4.283	6.832
Inflow Hydrograph Volume (acre-ft) =		N/A	1.033	1.395	1.771	2.481	3.268	4.283	6.832
CUHP Predevelopment Peak Q (cfs) =		N/A	0.0	0.2	0.4	2.2	9.1	18.2	40.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.00	0.01	0.01	0.06	0.24	0.48	1.06
Peak Inflow Q (cfs) =	N/A	N/A	11.5	15.2	19.4	30.7	42.7	57.6	92.2
Peak Outflow Q (cfs) =	0.3	0.6	0.4	0.5	0.5	5.7	13.2	18.1	64.1
Ratio Peak Outflow to Predevelopment Q =	•	N/A	N/A	2.2	1,4	2.6	1.4	1.0	1.6
Structure Controlling Flow =	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/ <mark>A</mark>	<u>/</u> 0.4	/ 1.1	1.5	1.6
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/ <mark>A</mark>	/ N/A	/ N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	66	51	59	66	/ 68	66	63	58
Time to Drain 99% of Inflow Volume (hours) =	41	72	55	64	72	/ 75 /	74	72	69
Maximum Ponding Depth (ft) =	1.76	3.37	2.27	2.72	3.1 <mark>9</mark>	/ 3.70 /	3.97	4.46	4.83
Area at Maximum Ponding Depth (acres) =	0.68	0.80	0.74	0.77	0.80	0.84	0.88	0.94	0.98
Maximum Volume Stored (acre-ft) =	0.600	1.817	0.954	1.304	1.665	2.086	2.318	2.754	3.120

Q ratios should be less than or equal to 1.

HR GREEN RESPONSE:

Justification for 5-yr and 100-yr release rates has been provided in the "Water Quality & Detention" Section of the PDR. Per coordination with Glenn Reese on 02.27.24 we will not be required to meet pre-development flows for storms in between the 5-yr and 100-yr event.

12/15/2023, 1:06 PM 02-Pond_B, Outlet Structure

02-Pond_B, Outlet Structure

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]		100 Year [cfs]	
	0:00:00									
5.00 min		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00 0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.71
	0:13:00	0.00	0.00	0.68 3.75	1.49 5.36	2.06 6.67	1.63 4.79	2.27 6.02	2.35 6.71	3.99 9.81
	0:25:00	0.00	0.00	8.65	11.62	15.24	10.49	12.68	14.63	22.51
	0:30:00	0.00	0.00	11.25	15.08	19.40	22.98	31.51	39.48	64.89
	0:35:00	0.00	0.00	11.45	15.20	19.32	29.67	41.28	55.11	88.61
	0:40:00	0.00	0.00	10.86	14.20	17.88	30.70	42.69	57.56	92.18
	0:45:00	0.00	0.00	9.91	13.06	16.44	28.62	39.46	54.32	87.45
	0:50:00	0.00	0.00	9.07	12.12	15.08	26.54	36.23	49.65	80.59
	0:55:00	0.00	0.00	8.39	11.23	13.98	23.99	32.40	44.72	72.74
	1:00:00	0.00	0.00	7.80	10.40	12.98	21.78	29.13	40.70	66.38
	1:05:00	0.00	0.00	7.20	9.58	11.99	19.80	26.24	37.25	61.01
	1:10:00 1:15:00	0.00	0.00	6.48 5.89	8.85 8.20	11.11 10.46	17.70 15.74	23.24	32.61 28.05	53.09 45.26
	1:20:00	0.00	0.00	5.45	7.64	9.85	14.03	18.06	24.15	38.81
	1:25:00	0.00	0.00	5.10	7.16	9.12	12.70	16.26	21.15	33.76
	1:30:00	0.00	0.00	4.79	6.72	8.41	11.45	14.58	18.64	29.49
	1:35:00	0.00	0.00	4.49	6.31	7.74	10.29	13.02	16.44	25.73
	1:40:00	0.00	0.00	4.19	5.73	7.11	9.21	11.57	14.38	22.25
	1:45:00	0.00	0.00	3.90	5.14	6.50	8.20	10.19	12.41	18.94
	1:50:00	0.00	0.00	3.60	4.58	5.91	7.23	8.87	10.56	15.84
	1:55:00	0.00	0.00	3.14	4.08	5.32	6.33	7.65	8.86	13.02
	2:00:00	0.00	0.00	2.73	3.64	4.73	5.53	6.56	7.34	10.52
	2:05:00 2:10:00	0.00	0.00	2.25	3.04	3.94	4.41	5.17	5.65	8.07
	2:15:00	0.00	0.00	1.84 1.50	2.49 2.03	3.24 2.65	3.49 2.78	4.07 3.23	4.36 3.40	6.20 4.78
	2:20:00	0.00	0.00	1.23	1.65	2.03	2.76	2.59	2.66	3.69
	2:25:00	0.00	0.00	0.99	1.34	1.76	1.79	2.07	2.08	2.84
	2:30:00	0.00	0.00	0.80	1.09	1.42	1.44	1.65	1.62	2.18
	2:35:00	0.00	0.00	0.64	0.87	1.13	1.13	1.30	1.25	1.65
	2:40:00	0.00	0.00	0.51	0.68	0.89	0.89	1.02	0.97	1.28
	2:45:00	0.00	0.00	0.41	0.53	0.70	0.69	0.79	0.76	1.00
	2:50:00	0.00	0.00	0.32	0.42	0.55	0.55	0.63	0.60	0.79
	2:55:00	0.00	0.00	0.25	0.32	0.43	0.43	0.49	0.48	0.62
	3:00:00 3:05:00	0.00	0.00	0.19	0.24	0.33	0.33	0.37	0.36	0.47
	3:10:00	0.00	0.00	0.14 0.09	0.18 0.12	0.24 0.17	0.24 0.17	0.28 0.19	0.27 0.18	0.34 0.23
	3:15:00	0.00	0.00	0.09	0.12	0.17	0.17	0.19	0.18	0.23
	3:20:00	0.00	0.00	0.03	0.05	0.06	0.06	0.07	0.06	0.08
	3:25:00	0.00	0.00	0.01	0.02	0.03	0.03	0.03	0.03	0.03
	3:30:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

02-Pond_B, Outlet Structure 12/15/2023, 1:06 PM

APPENDIX E - REFERENCES

For Reference Material, please only include sheets that are relevant to this portion of the project (Phase 2). Also, highlight specific information, such as basins & DP's being discussed within this report.

ADDRESSED.

Grandview Reserve Master Development Drainage Plan

August 2021

HR Green Project No: 191850

Prepared For:

4 SITE INVESTMENTS, LLC
Mr. Peter Martz or Paul Howard
1271 Kelly Johnson Blvd., Ste. 100
Colorado Springs, CO 80920
719-499-8416

Prepared By:

HR Green Development, LLC Contact: Chris McFarland, PE cmcfarland@hrgreen.com 720-602-4956

Table of Contents

Engi	neer's Statement	1
Deve	eloper's Statement	1
El Pa	aso County:	1
Mast	ter Development Drainage Plan – Grandview Reserve	2
l.	General Purpose, Location and Description	2
a.	Purpose and Scope of study	2
b.	DBPS Investigations	2
c.	Agency Jurisdictions	2
d.	General Project Description	3
e.	Data Sources	3
f.	Applicable Criteria and Standards	4
II.	Project Characteristics	4
a.	Location in Drainage Basin, offsite flows, size	4
b.	Compliance with DBPS	4
C.	Site Characteristic	4
d.	Major drainage ways and structures	5
e.	Existing and proposed land uses	5
III.	Hydrologic Analysis	5
a.	Major Basins and subbasins	5
Ma	ajor Basin Description	5
Su	ubbasin Description	6
b.	Methodology	9
c.	Basin Hydrology	10
IV.	Hydraulic Analysis	11
a.	Major Drainageways	11
V.	Environmental Evaluations	12
a.	Significant existing or potential wetland and riparian areas impacts	12
b.	Stormwater quality considerations and proposed practices	12
c.	Permitting requirements	13
d.	4-Step Process	13
VI.	Selected Plan	14

a.	Plan Hydrology14
b.	Detention Ponds
VII.	Drawings
VIII.	Summary
IX.	References
Lis	st of Tables
Figu	re 1 - Site Map3
Ap	pendices
A.	Maps & Exhibits
B.	Hydrology Calculations
C.	SWMM Calculations
D.	Pond Calculations
E.	Proposed Modeling Hydraulic Results
F.	Proposed Modeling Hydraulic Results
G.	Referenced Report Excerpts
H.	Site Drainage Maps

Engineer's Statement

This report and plan for the drainage design of the development, Grandview Reserve, was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the *El Paso County Drainage Criteria* Manual and is in conformity with the master plan of the drainage basin. I understand that El Paso County does not and will not assume liability for drainage facilities designed by others. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Greg Panza, PE	Date	
State of Colorado No.	37081	
For and on behalf of H	R Green Development, LLC	
Developer's	Statement	
I, the developer, have	read and will comply with all of th	e requirements specified in this drainage report ar
4 Site Investments LLC		
Ву:		
Title:		
Address:		
El Daco Cou	intv:	
El Paso Cou	•	
	th the requirements of the El Pas d 2 and the Engineering Criteria	o County Land Development Code, Drainage Crite Manual, as amended
Maridai, Volumes i an	d 2 and the Engineering Ontena	Maridal, as alliended.
Jennifer Irvine, P.E.		Date
County Engineer/ECM	Administrator	

Master Development Drainage Plan – Grandview Reserve

I. General Purpose, Location and Description

a. Purpose and Scope of study

The Purpose of this Master Development Drainage Plan (MDDP) is to describe the onsite and offsite drainage patterns, existing and proposed storm infrastructure as it relates to preliminary water quality and stormwater detention, areas tributary to the site and the planned storm water management for Grandview Reserve 2 development. The items discussed in this report are preliminary in nature and final drainage calculations and design will be required as development proceeds. This report provides a general drainage concept and guidance for future development of Grandview Reserve.

b. DBPS Investigations

The Gieck Ranch Drainage Basin Planning Study (DBPS) Preliminary Design Report prepared by Drexel, Barrell was reviewed to determine existing plans and constraints that would influence the design of Grandview Reserve. The proposed plans for Grandview Reserve are in general conformance with the DBPS.

The DBPS shows 4 reaches through Grandview Reserve. The Main Stem (MS) in the south western portion of the site, the Main Stem Tributary #2 (MST2) to the north and east of the Main Stem, the East Fork Tributary (EFT) in the middle of the site north and east of MST2, and the East Fork Upper (EF) at the north east side of the site. These drainageways have been reviewed in the following reports and further analysis will be completed of these major drainageways in future planning documents.

- Unnamed Tributary Black Squirrel Creek, Four Way Ranch Letter of Map Revisions, Kiowa Engineering, March 2004
- Haegler and Gieck Drainage Basins Letter of Map Revision, Four Way Ranch Subdivision, Kiowa, March 2004
- Unnamed Tributary Black Squirrel Creek Drainage Basin, Letter of Map Revision, Elbert Road Site, Kiowa Engineering, February 2006
- Geick Ranch Drainage Basin Planning Study (DBPS), Drexel Barrell, October 2010 (not approved)
- Meridian Ranch Master Development Drainage Plan (MDDP), Tech Contractors, January 2018

c. Agency Jurisdictions

Listed below are the jurisdictions that this project will conform to:

El Paso County

Falcon Colorado Municipal Code (where applicable)

Federal Emergency Management Agency

d. General Project Description

Grandview Reserve is located in Falcon, Colorado within El Paso County and contains approximately 776 acres within the south half of section 21 and 22 and the north half of section 27 and 28, Township 12 South, and Range 66 West of the Sixth Principal Meridian in Ela Paso County, Colorado. See below for approximate site location.

Figure 1 - Site Map

e. Data Sources

Listed Below are the technical resources reviewed in the preparation of this MDDP:

City of Colorado Springs Drainage Criteria Manual (DCM), Volumes 1 and 2

Mile High Flood District

NOAA Atlas 14

NRCS Soil Survey for El Paso County Area, Colorado

FEMA FIRM 08041C0556G and FIRM 08041C0552G (eff. 12/7/2018)

El Paso County Assessor Property Records

f. Applicable Criteria and Standards

Per the DBPS, flows from the proposed site will be limited to historic flows in an effort to maintain the stability and of the existing channels with the drainage basin. The master plan follows the Drainage Criteria Manual for El Paso County which refers to the City of Colorado Springs Drainage Criteria Manuals as amended.

II. Project Characteristics

a. Location in Drainage Basin, offsite flows, size

Grandview Reserve is located within the Gieck Ranch Drainage Basin which covers approximately 22 square miles. This drainage basin is tributary to Black Squirrel Creek and joins said creek just to the south of Elicott, CO about 18 miles to the south. Black Squirrel Creek eventually drains to the Arkansas River in Pueblo Colorado. The majority of the Gieck Ranch Drainage basin is undeveloped consisting of rural farmland. The Gieck Ranch Drainage basin lies north of the Haegler Ranch drainage basin.

As part of the Fourway LOMR discussed above, the study reviewed the hydrology and hydraulics for the Main Stem Tributaries, however only a small portion of the site within Grandview was analyzed. The peak flows rates for the Main Stem for the 100 year event was 413 cfs and for the Main Stem Tributary (MST2) was 280 cfs.

For the East Fork tributaries (EF and EFT), the DBPS established 100 year flow rates of 595 cfs for the East Fork (EF) and 217 cfs for the East Fork Tributary (EFT)

Generally offsite flows are conveyed through the site via the 4 tributaries. Minor offsite basins may sheet flow onto the site. These flows will be routed through the site via the 4 tributaries.

b. Compliance with DBPS

This MDDP is in general conformance with the guidelines outlined in the Gieck Ranch DBPS. Grandview Reserve will construct multiple full spectrum detention facilities to limit the effects of development and mimic natural flow patterns.

Existing downstream infrastructure is currently limited to the historic drainage channels and minimal downstream improvements exist. As such, the site follows the DBPS and restricts offsite flow rates to not exceed historic flow rates. The sites ultimate outfalls will generally be along the same historic tributaries. Although outfall rates will be at or below historic, the cumulative volume of runoff will increase and therefore downstream facilities may see an increase in the duration of flows. This may provide a net benefit to the downstream facilities by providing more water to assist with the sustenance of vegetation however it should be noted that increased volume may expedite potential erosion or channel movement.

c. Site Characteristic

Per the NRCS web soil survey, the site is made up entirely of Type A and B soils. The majority of which are Type A soils. The predominate soils are Blakeland loamy sand, Columbine gravelly sandy loam, and Stapleton sandy loam. The first two soils are Type A soil and cover approximately 55.1% of the site and the later soil is a Type B soil and covers the remaining 44.9% of the site. See Appendix A for the NRCS soil map.

Current ground cover is predominantly short- to mid-grass prairie grasslands and former farmland which consists of nonnative weeds and grasses. The site has very few, if any, trees and a minimal number of shrubs are found on the site.

d. Major drainage ways and structures

As mentioned previously, 4 major drainage ways exist on the site. These convey existing on and off-site flows and current on-site flows through the site in a southeasterly direction. The drainageways eventually cross Highway 24 via culverts and other structures; further survey will be conducted to determine their effectiveness as the development of the site progresses.

A breached stock pond is located along the Main Stem; while it is breached, it still causes some ponding along the channel. As development occurs, this dam will be completely removed, and the region of the channel will be regraded to match the existing character of the remainder of the Main Stem channel. Improvements along the Main Stem Channel will be limited to the previously described reach.

Main Stem Tributary will be realigned through the site and will meander through a designated 100-foot corridor generally maintaining a 1% slope with a series of grade control structures. MST will be constructed to achieve a channel that is high functioning and will require low maintenance.

East Fork and East Fork Tributary improvements will be implemented to ensure the channels are high functioning low maintenance drainageway corridors.

e. Existing and proposed land uses

The existing site is open rangeland and farmland with no visible structures. The proposed development will consist of low, medium, and high density residential, along with two institutional sites, multiple pocket park sites, a large community park and a commercial area adjacent to Highway 24. The current land plan assumes approximately 3,261 dwelling units will be constructed on the site.

Land Use	MAX DU/AC
Low	2
Medium	4
Medium – High	8
High	12

III. Hydrologic Analysis

a. Major Basins and subbasins

Major Basin Description

- Previous basin study: Gieck Ranch Drainage Basin Planning Study
- Per FEMA FIRM 08041C0556G and 08041C0552G (eff. 12/7/2018), Grandview Reserve has four mapped channels within its boundaries.
- Per aerial imaging, no major irrigation is in the vicinity that would affect Grandview Reserve.

The site has been divided into 8 major drainage basins per where each basin is tributary to a full spectrum detention pond facility. These basins and associated sub basins are described in more detail in the next section of this report.

Subbasin Description

The entire site drains in a south easterly direction and is divided into 8 major drainage basins and a total of 18 subbasins together as described below.

- Subbasin A1 is located in the southwestern corner of the site, to the south and west of MS. The
 basin drains towards the southeast to proposed detention pond A. Current planning documents
 call for medium density dwelling units and a small pocket park. The basin is 37.00 acres, with a
 composite impervious value of 35.22% and runoff rates for the 5 and 100 year of 30.72 cfs and
 100.64 cfs respectively. The pond will discharge at predevelopment rates and into MS via the
 ponds outlet structure.
- Subbasin B1 is located between MS and MST2 to the east of subbasin A1. The basin drains
 towards the southeast and towards subbasin B2. Current planning documents call for medium
 density dwelling units and some parkland area. The basin is 37.00 acres, with a composite
 impervious value of 45.00% and runoff rates for the 5 and 100 year of 29.46 cfs and 97.08 cfs
 respectively.
- Subbasin B2 is located between MS and MST2 to the northeast of subbasin A1. The basin
 drains towards the southeast and towards Detention Pond B. Current planning documents call
 for medium density dwelling units. The basin is 24.89 acres, with a composite impervious value
 of 43.26% and runoff rates for the 5 and 100 year of 12.02 cfs and 42.26 cfs respectively.
- Subbasin B3 is located between MS and EF and to the northeast of east of basin B2. The
 existing MST2 tributary runs through the basin. The site drains towards the southeast and
 towards Detention Pond B. Current planning documents call for high, medium-high, and medium
 density dwelling units along with a pocket park. The basin is 118.90 acres, with a composite
 impervious value of 49.42% and runoff rates for the 5 and 100 year of 92.76 cfs and 295.27 cfs
 respectively.
- Subbasin C1 is located to the northeast of east of basin B1 and the existing MST2 tributary runs
 through the middle of the basin. The basin drains towards the southeast and towards Detention
 Pond C. Current planning documents call for an institutional parcel, medium and high density
 dwelling units and a pocket park. The basin is 77.83 acres, with a composite impervious value of
 51.20% and runoff rates for the 5 and 100 year of 77.99 cfs and 238.03 cfs respectively.
- Subbasin D1 is located between MS and MST2 to the east of Basin B3 and adjacent to the MST2 channel. The basin drains towards the southeast and towards drainage basin D2. Current planning documents call for medium density dwelling units along with a pocket park. The basin is 24.33 acres, with a composite impervious value of 53.89% and runoff rates for the 5 and 100 year of 24.15 cfs and 70.07 cfs respectively.
- Subbasin D2 is located between MS and MST2 to the south of basins D1 and B3. The basin
 drains towards the southwest and towards detention pond D. Current planning documents call for
 high density dwelling units along with a pocket park and a commercial parcel. The basin is 77.90
 acres, with a composite impervious value of 62.10% and runoff rates for the 5 and 100 year of
 98.47 cfs and 252.18 cfs respectively.
- Subbasin E1 is located just east of EFT along the northern portion of the site. The basin drains towards the southeast and towards basins F3 and F4. Current planning documents call for low

density dwelling units. The basin is 88.60 acres, with a composite impervious value of 19.54% and runoff rates for the 5 and 100 year of 46.88 cfs and 178.04 cfs respectively.

- Subbasin F1 is located east of basin E1 and between EFT and EF along the northern portion of
 the site. The basin drains towards the southeast and towards basin F3 and F4. Current planning
 documents call for a large community park, high density dwelling units, commercial site and an
 institution parcel. The basin is 33.73 acres, with a composite impervious value of 25.00% and
 runoff rates for the 5 and 100 year of 16.28 cfs and 58.95 cfs respectively.
- Subbasin F2 is located east of the existing drainage channel EFT. The basin drains towards the
 southwest and towards basin F4 and to the EFT drainage channel which runs parallel to the north
 east with Highway 24. Current planning documents call for high density dwelling units and
 commercial space. The basin is 67.64 acres, with a composite impervious value of 51.39% and
 runoff rates for the 5 and 100 year of 60.11 cfs and 170.90 cfs respectively.
- Subbasin F3 is located west of the existing drainage channel EF. The basin drains towards the
 southeast towards drainage channel EF but will be conveyed south towards subbasin F4.
 Current planning documents call for medium density dwelling units. The basin is 12.84 acres,
 with a composite impervious value of 45.00% and runoff rates for the 5 and 100 year of 11.36 cfs
 and 32.93 cfs respectively.
- Subbasin F4 is located west of the existing drainage channel EF and south of subbasins F1 and
 F3. The basin drains towards the southeast towards detention pond F. Current planning
 documents call for medium and medium-high density dwelling units. The basin is 51.81 acres,
 with a composite impervious value of 49.54% and runoff rates for the 5 and 100 year of 42.32 cfs
 and 124.89 cfs respectively.
- Subbasin G1 is located west of the existing drainage channel EFT along the northern property boundary. The basin drains towards the southeast towards detention pond G. Current planning documents call for medium density dwelling units and a park. The basin is 20.13 acres, with a composite impervious value of 36.52% and runoff rates for the 5 and 100 year of 13.78 cfs and 43.95 cfs respectively.
- Subbasin G2 is located east of the existing drainage channel EFT along the northern property boundary. The basin drains towards the southeast towards detention pond G. Current planning documents call for low density dwelling units. The basin is 15.14 acres, with a composite impervious value of 25.00% and runoff rates for the 5 and 100 year of 6.55 cfs and 23.95 cfs respectively.
- Subbasin H1 is located in the northeast corner of the site and east of the existing drainage channel EFT. The basin drains towards the south towards subbasin H4. Current planning documents call for low density dwelling units and a small park. The basin is 20.71 acres, with a composite impervious value of 24.49% and runoff rates for the 5 and 100 year of 5.68 cfs and 27.62 cfs respectively.
- Subbasin H2 is located south of basin G2 and east of the existing drainage channel EFT. The
 basin drains towards the south towards subbasin H4. Current planning documents call for
 medium density dwelling units and a small park. The basin is 18.55 acres, with a composite

impervious value of 46.68% and runoff rates for the 5 and 100 year of 16.24 cfs and 47.62 cfs respectively.

- Subbasin H3 is located south of basin H2 and east of the existing drainage channel EFT. The
 basin drains towards the southeast towards subbasin H4. Current planning documents call for
 medium density dwelling units and a small park. The basin is 6.01 acres, with a composite
 impervious value of 40.57% and runoff rates for the 5 and 100 year of 5.21 cfs and 15.60 cfs
 respectively.
- Subbasin H4 is located south of basin H2 and east of the existing drainage channel EFT and basin H3. The basin drains towards the south towards detention pond H. Current planning documents call for medium density dwelling units and park/open space area. The basin is 27.65 acres, with a composite impervious value of 38.24% and runoff rates for the 5 and 100 year of 20.93 cfs and 64.71 cfs respectively.

The above mentioned basins are large planning area basins and as drainage reports are developed for the individual developed parcels additional drainage reports and calculations will be required. It is expected that storm drainage infrastructure consisting of inlets, storm sewer and open drainage channels will be constructed as the property develops.

 Offsite Basins as shown in the Meridian Ranch MDDP include basins HG4, HG5, HG6A, HG6B, HG13, and HG14. Flow contributing to the site from these basins will be routed through the existing tributaries. Flow rates as shown in the MDDP Ranch report include the following flows and associated tributary areas.

Offsite Flow Summary							
Ultimate Basin Design Description Point		Basin Area (ac)	Receiving Tributary	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)		
HG4	G6	57	Main Stem	2	42		
HG5	G6	72	72 Main Stem		52		
HG6A	G6	88	88 Main Stem		51		
HG6B	G6	66 Main Stem		2	35		
HG13			Main Stem Tributary 2	4	59		
	Main Stem Tributary						
HG14	G08	147	2	5	83		

Offsite Flow Summary						
Design Basin Area Point (ac) Receiving Tributary		5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)			
G6	G6 760 Main Stem		36	628		
G08	201	Main Stem Tributary 2	8	122		

These basins along with the offsite basins which lie east of Eastonville Road contribute flows onto the site through the major tributaries. Estimate oncoming flows for each tributary are as follows:

Offsite Flow Summary						
Tributary	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)				
Main Stem	36	628				
Main Stem Tributary 2	8	122				
East Fork Tributary*	56	116				
East Fork*	175	357				

^{*}Flows from Gieck Ranch DBPS, Oct 2010

As hydraulic analysis continues for the channels, these offsite flows will be used to size the channels for proper conveyance of the flow however it should be noted that the flows mentioned for the Main Stem and Main Stem Tributary 2 assume proper conveyance of the flow through (below or above) Eastonville Road. Due to the unknown nature of these conditions at the time of buildout, a probable scenario of the split flows will require analysis and agreed upon flow rates to each channel will be required. Currently some of the flow shown going to the Main Stem Tributary 2 may be diverted into the Main Stem. Previous analysis done by JR Engineering assumed approximately 160 additional cfs going to the Main Stem Tributary #2 during the 100-year event and as such it is recommended the following flows be used for analysis of the oncoming offsite flows:

Revised Offsite Flow Summary						
Tributary	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)				
Main Stem**	67	413				
Main Stem Tributary 2**	59	280				
East Fork Tributary*	61	217				
East Fork*	180	595				

^{*}Flows from Gieck Ranch DBPS, Oct 2010

Please note that the preliminary drainage reports will be required to reconcile any differences between the various reports done for these channels.

b. Methodology

Design rainfall was determined utilizing figures from the NOAA Atlas 14, Volume 8, Version 2 to determine the 5-year and 100-year rainfall values for 1, 6 and 24-hour events. The 1-hour rainfall depths are 1.22 and 2.50 in/hr respectively, 6 hour 1.79 and 3.87 in/hr respectively and 2.36 and 4.90 in/hr for the 24 hour event. The rainfall values were then used as inputs into the Colorado Urban Hydrograph Procedure (CUHP) spreadsheets to determine runoff values for both pre-development and post-development site.

CUHP is an evolution of the Snyder unit hydrograph and is calibrated for use along the Colorado Front Range. 1 Hour rainfall amounts are input into the program to produce a storm hydrograph that is then uses to calculate a storm hydrograph for each basin depending on the subbasins properties including

^{**}Flows from 4 Way Ranch LOMR, Mar 2004

slope, length, shape, impervious area, pervious depression storage area, and various infiltration rates. Tabular hydrographs are then computed and can be used in EPA SWMM. The CUHP results are included within Appendix B.

EPA SWMM was used to determine flow routing via the kinematic wave method. Subbasins were routed to their respective design points and detention ponds for both the developed and predeveloped condition to determine peak runoff amounts for the 5-year and 100-year storm events. Information from these models along with information and calculations performed in the Colorado Springs BMP spreadsheets was used to determine pond sizing calculations and release rates.

c. Basin Hydrology

A summary of the flows for both the predeveloped and developed cases for each basin, subbasin and Pond are found on next page along with the full computation found in Appendix B.

SWMM Basin and Pond Summary						
Basin Description	Basin Area (ac)	% Impervious	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)	5 Year Pond Volume (ac- ft)	100 Year Pond Volume (ac- ft)
A1	45.38	35.22%	30.72	100.64		-
			P	ond A	1.83	3.50
B1	37.00	45.00%	29.46	97.08		
B2	24.89	43.26%	12.02	42.26		
В3	118.90	49.42%	92.76	295.27		
			P	ond B	5.90	19.00
C1	77.83	51.20%	77.99	238.03		
			P	ond C	3.91	6.87
D1	24.33	44.14%	24.15	70.07		
D2	77.90	62.10%	98.47	252.18		
			Pond D		6.61	10.19
E1	88.60	19.54%	46.88	178.04		
			Р	ond E	1.96	2.44
F1	33.73	25.00%	16.28	58.95		
F2	67.64	51.39%	60.11	170.90		
F3	12.84	45.00%	11.36	32.93		
F4	51.81	46.54%	42.32	124.89		
			P	ond F	7.38	12.62
G1	20.13	36.52%	13.78	43.95		
G2	15.14	25.00%	6.55	23.95		
			Pond G		0.72	2.03
H1	20.71	24.49%	5.68	27.62		
H2	18.55	43.68%	16.24	47.62		
Н3	6.01	40.57%	5.21	15.60		
H4	27.65	38.24%	20.93	64.71		
			P	ond H	2.93	6.17

IV. Hydraulic Analysis

a. Major Drainageways

In general, the site runoff flows towards the 4 major drainageways and in a southeasterly direction. These basins are described in more detail below:

Main Stem

The Main Stem (MS) is in the southwestern portion of the site. Offsite flows collect and are conveyed under Eastonville Road via a culvert. MS travels in a southeasterly direction and combines with the Main Stem Tributary #2 (MST2) just off site where it is then conveyed past Highway 24 via a culvert. An existing breached stock pond exists in the approximate center point of the channel within the site. Jurisdictional wetlands exist within this channel and the area is within a Zone A floodplain towards the southern portion of the site. This channel sees only intermittent flows at this time however once development occurs there may be a more constant baseflow.

Proposed improvements for MS include the removal of the breached stock pond berm and regrading of the affected stretch of channel to restore its historic state. Proposed flow rates through MS are not to exceed historic flowrates and as such, the remainder of the channel is to remain in its current state sans any preemptive check structures; modeling indicates the channel shall remain stable despite the removal of the existing berm.

Main Stem Tributary #2

MST2 crosses Eastonville road via an existing culvert and flows through the site in a southeasterly direction. Portions of this channel are within a mapped floodplain as shown in the existing FIRM Panel. Per a July email from the USACE this drainage channel was preliminarily determined to be a non-jurisdictional waters/wetland.

Proposed improvements for MST2 include the realignment of the channel, generally shifting the channel towards the west to accommodate the proposed land plan. There is to be a dedicated 100' corridor in which the valley will meander. Preliminary analysis indicates the valley will have an average width of approximately 63' at the elevation necessary to meet freeboard requirements; initial sizing approximates the bankfull width to be 6.8'. The valley and channel thalweg will generally follow the same profile, with some deviation as the bankfull channel meanders through the valley in turn decreasing the low flow channels average slope. The average valley profile is to be approximately 1% with a series of grade control structures to both decrease elevation and dissipate energy to meet natural channel criteria as outline in El Paso County criteria and agreed upon channel parameters.

East Fork Tributary

The East Fork tributary (EFT) crosses the north property line and flows are conveyed through the site via a natural channel. The channel has been mapped as a Zone A floodplain per the existing FIRM panel; it appears any hydraulic effects of the crossing at Eastonville Road was not accounted for in the floodplain delineation. While the current floodplain delineation shows the channel continuing through Highway 24, there is no existing crossing for this section of the drainage channel below Highway 24 and instead the flows are conveyed to the northeast towards the East Fork Upper (EF). Per a July email from the USACE this drainage channel was preliminarily determined to be a non-jurisdictional waters/wetland.

Per SWMM modeling the current velocities will require channel stabilization. The EFT channel is to be engineered later in the design which will likely include a combination of channel widening, lowering of slope facilitated by the implementation of drop structures to meet non erosive velocity requirements. Bank stabilization, should it be necessary, may include coir rolls, erosion control blankets, live willow staking, soil lifts and/or other measures to ensure successful bank stabilization. The drainageway will require further analysis and design which will be completed as the project progresses.

East Fork Upper

The EF crosses the north property line approximately 1500' east of the EFT crossing. The flow through the site is via a natural channel and travels in a southeasterly direction. The channel is mapped as a Zone A floodplain, and the channel crosses Highway 24 via an existing shallow bridge. The current floodplain delineation shows EF and EFT eventually merging approximately 1750' southeast of the site, however, as mentioned above Highway 24 blocks the flow of the EFT and flows are conveyed northeast to the EF bridge crossing.

Per SWMM modeling the current velocities will require channel stabilization. The EF channel is to be engineered later in the design which will likely include a combination of channel widening, lowering of slope facilitated by the implementation of drop structures to meet non erosive velocity requirements. Bank stabilization, should it be necessary, may include coir rolls, erosion control blankets, live willow staking, soil lifts and/or other measures to ensure successful bank stabilization. The drainageway will require further analysis and design which will be completed as the project progresses.

V. Environmental Evaluations

a. Significant existing or potential wetland and riparian areas impacts

As part of this work, the developer has engaged Ecosystem Services, LLC (ECOS) to perform environmental studies of the site that will be submitted with the planning documents. Major information from this report related to the wetlands shows that two of the tributaries through the site, the Main Stem and the East Fork contain jurisdictional wetlands and the other two tributaries, the East Fork Tributary and the Main Stem Tributary #2 are non-jurisdictional wetlands.

At this time, only minor improvements to the jurisdictional channels are proposed. These stream improvements will be made with keeping the natural habitat intact and the natural function of these channels as it is to maintain the wetland habitat. The non-jurisdictional channels will be modified, and the design of those channels is forthcoming.

b. Stormwater quality considerations and proposed practices

As part of the development, full spectrum detention facilities will be installed to provide water quality for the development. The facilities will be designed using El Paso County criteria and provide stormwater quality by slowing the release of stormwater captured by the ponds and allowing solids to settle out. Additionally, when possible, the revised drainage channels, which were not jurisdictional wetlands, will be used to convey stormwater via a natural channel. Stormwater must be treated before entering the natural channels. The natural channel will provide a pervious means to transport stormwater and provide some water quality benefits as well.

On site practices for the homes, schools, churches, and other buildings should use means such that impervious areas drain across pervious area to allow for infiltration during the minor events. This would

include discharge of the gutters onto landscape areas vs. directly connecting to storm sewer and using natural ditches and swales where it is logical and makes sense to convey stormwater in lieu of storm sewer piping.

c. Permitting requirements

When work infringes upon the wetlands or floodplain a 404 Permit will be required. If the work within the waterways is minimal, it will likely be covered under a nationwide 404 permit; it is however possible that an individual permits will be required.

The Colorado Department of Public Health and Environment will require permits for any disturbance that exceed 1 acre of land. Should groundwater be encountered, a dewatering permit will also be required.

El Paso County will require an Erosion and Stormwater Quality Control Permit and any other construction permits required to complete the construction of the site.

FEMA will require a permit for floodplain development prior to the commencement of any construction or development within any special flood hazard area (SFHA).

FEMA will require a letter of map revision (LOMR) should work alter the base flood elevation (BFE) of any area falling withing the floodplain as shown in FEMA FIRM 08041C0556G and FIRM 08041C0552G (eff. 12/7/2018).

d. 4-Step Process

In accordance with the Engineering Criteria Manual I.7.2.A and DCM V2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume, and considering the need for Industrial Commercial BMPs.

Step 1 – Reducing Runoff Volumes: The development of the project site includes a variety of land uses including open and vegetated areas interspersed to help disconnect imperious areas and reduce runoff volumes.

Step 2 – Stabilize Drainageways: Altered channels will be designed in a manner that provides water quality benefits through infiltration and the removal of pollutants via phytoremediation. Vegetation will also be selected to stabilize the channel by reducing the velocity of flows and decreasing any scour. Should the final channel require, grade control structures may be implemented to further reduce flow velocities and protect against erosion. These improvements will help stabilize drainageways.

Step 3 – Provide WQCV: Runoff from this development is treated through capture and slow release of the WQCV via detention ponds that are designed per current El Paso County DCM V2.

Step 4 – Consider the need for Industrial and Commercial BMP's: A site specific storm water quality and erosion control plan and narrative will be prepared with subsequent land use approvals prepared in conjunction with the report prior to any construction. Site specific temporary source control BMPs as well as permanent BMPs are detailed in this plan and narrative. Guidelines detailed in the EI Paso DCM V2 4.2 pertaining to the covering and storage handline and spill containment and control shall be followed as necessary.

VI. Selected Plan

a. Plan Hydrology

This MDDP schematically addressed on-site and off-site drainage patterns using the existing topography and proposed land use plan for the overall drainage design. Individual preliminary and final drainage reports will better define the planning areas as the site is developed. These reports will include inlet design, storm sewer hydraulics, street design and other requirements typical of more detailed drainage reports.

The overall site is divided into 8 separate major basins, basins A-H and contribute to individual detention ponds for each major basin. Basin sizes range from 35 acres to 181 acres in size. Basins A, B, C and D drain and eventually discharge into the Main Stem and Main Stem Tributary #2. Basins E, F, G, and H drain towards the East Fork Drainage channel.

The sub-basins are described in additional detail above.

b. Detention Ponds

The site plans propose the construction of 8 separate full spectrum detention facilities.

- Pond A is located in the southwest corner of the site and discharges into the Main Stem
 drainageway. The pond is planned to store a maximum of 4.05 ac-ft during the 100 year event
 and have a peak outflow of 55.9 cfs which is slightly below the pre development peak outflow of
 57.1 cfs. The 5 year storage volume is 2.46 ac-ft with a peak outflow of 3.7 cfs.
- Pond B is located to the east of Pond A and the Main Stem and discharges into the Main Stem Tributary #2. The pond is planned to store a maximum of 16.60 ac-ft during the 100 year event and have a peak outflow of 165.4 cfs which is slightly above the pre development peak outflow of 164.2 cfs. The 5 year storage volume is 8.44 ac-ft with a peak outflow of 2.6 cfs.
- Pond C is located near the center of the western portion of the site near the existing Main Stem Tributary #2. The pond discharges into a revised open channel to be designed and discharges to the Main Stem Tributary #2 which merges with the Main Stem Tributary just off site. The pond is planned to store a maximum of 6.91 ac-ft during the 100 year event and have a peak outflow of 119.2 cfs which is slightly below the pre development peak outflow of 120.2 cfs. The 5 year storage volume is 4.07 ac-ft with a peak outflow of 1.5 cfs.
- Pond D is located near the southern portion of the site adjacent to Highway 24. The pond discharges into the Main Stem right after the Main Stem and Main Stem Tributary #2 merge. The pond is planned to store a maximum of 9.41 ac-ft during the 100 year event and have a peak outflow of 154.4 cfs which equals the predevelopment peak flow rate. The 5 year storage volume is 6.28 ac-ft with a peak outflow of 2.0 cfs.
- Pond E is located in the middle of the site just east of the East Fork drainage way. The pond
 discharges into the East Fork drainageway. The pond is planned to store a maximum of 2.40 acft during the 100 year event and have a peak outflow of 163.4 cfs which is greater than the pre

development peak outflow of 157.99 cfs. The 5 year storage volume is 1.70 ac-ft with a peak outflow of 18.8 cfs.

- Pond F is located near the south east corner of the site just west of the East Fork Tributary drainageway. The pond discharges into the East Fork Tributary drainageway. The pond is planned to store a maximum of 12.40 ac-ft during the 100 year event and have a peak outflow of 235.5 cfs which is greater than the pre development peak outflow of 221.11 cfs. The 5 year storage volume is 8.07 ac-ft with a peak outflow of 14.5 cfs.
- Pond G is located near the north east corner of the site just west of the East Fork Tributary drainageway. The pond discharges into the East Fork Tributary drainageway at an upstream location within the site. The pond is planned to store a maximum of 2.54 ac-ft during the 100 year event and have a peak outflow of 50.7 cfs which is slightly greater than the pre development peak outflow of 48.48 cfs. The 5 year storage volume is 1.69 ac-ft with a peak outflow of 9.1 cfs.
- Pond H is located near the south east corner of the site just east of the East Fork Tributary drainageway and adjacent to Highway 24. The pond discharges into the East Fork Tributary drainageway. The pond is planned to store a maximum of 6.60 ac-ft during the 100 year event and have a peak outflow of 99.1 cfs which matches the pred development peak outflow. The 5 year storage volume is 4.03 ac-ft with a peak outflow of 1.3 cfs.

Overall runoff from the site will by and large match the predevelopment peak flows. The volume of water will increase however as the drainage channels are designs, continuous simulation models will be done to see the effects of prolonged runoff rates. Predevelopment and post development flows for the 5-year and 100-year events are summarized in the following table for the 4 site outfalls.

OUTFALL	Predev	Predevelopment		Postdevelopment*	
OUTFALL	5 year	100 year	5 year	100 year	
1	80.03	479.80	67.69	466.95	
2	85.96	597.41	61.68	536.11	
3	30.00	154.35	8.58	160.70	
4	341.05	1335.77	276.10	1291.25	

^{*}Values to be refined with Preliminary and Final Drainage Reports for each filing

VII. Drawings

Please refer to the appendices for vicinity maps and drainage basin maps.

VIII. Summary

Grandview Reserve is a large master planned community consisting of various densities of dwelling units to include single family homes, multifamily homes, parks, institutional sites, and commercial areas. Due to development increased runoff will occur. To mitigate downstream impacts 8 large full spectrum detention facilities will be built to reduce the runoff rate to near historic levels. These detention facilities will provide water quality enhancements to account for the increased urbanization of the upstream catchment areas.

Additional analysis will be required and completed to review the hydraulics of the proposed major drainage channels and be included in future submittals. The proposed design, as described in this report, is not anticipated to cause any adverse impact to downstream properties however as noted previously due to the increased volume of water, downstream tributaries will see increases in the volume of flow. It is advised that low impact design be considered when designing and developing each filing. This shall include those items listed in the four-step process above and any additional measures that are within reason to disconnect impervious areas and increase infiltration. This will alleviate the additional volume of water due to development. Although the rate will remain at or below historic levels, the amount of time the channels will see water will increase which may cause more channel movement than historic. Downstream planning efforts should allow for the natural migration and movement of the channel by continuing to provide large floodplain areas to allow movement of the channel.

IX. References

El Paso County - Drainage Criteria Manual, 2014

City of Colorado Springs - Drainage Criteria Manual, May 2014

Urban Storm Drainage Criteria Manual, Urban Drainage Flood Control District, January 2018

Unnamed Tributary Black Squirrel Cree, Four Way Ranch Letter of Map Revisions, Kiowa Engineering, March 2004

Haegler and Gieck Drainage Basins Letter of Map Revision, Four Way Ranch Subdivision, Kiowa, March 2004

Unnamed Tributary Black Squirrel Creek Drainage Basin, Letter of Map Revision, Elbert Road Site, Kiowa Engineering, February 2006

Geick Ranch Drainage Basin Planning Study (DBPS), Drexel Barrell, October 2010 (not approved)

EPC Engineering Criteria Manual (Appendix I updated July, 2019)

Meridian Ranch MDDP, January 2018

Appendix A

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, uses are encouraged to consult the Flood Profiles and Floodway Data and/or Summay of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BEEs shown on the FIRM represent curuided withole-tool elevations. These BFEs are thended for flood insurance raing purposes only and should not be used as the sole source of flood elevation information. Accordingly, the FIRM for purposes of construction and/or should be tuitled in conjunction with the FIRM for purposes of construction and/or floodplain management.

2. In a manual paginate model turbular page and manual page

Flood Elevations determined.

depths of 1 to 3 feet (usually areas of panding); Base Flood deptits of 1 to 3 feet (usually sheet flow on sloping terrain); averages determined. For areas of alluvial fan flooding, velocities als

al Flood Hazard Area Formerly protected from the 1% annual by a flood control system that was subsequently detertified, olicides that the former flood control system is being rest the protection from the 1% annual chance or greater flood. to be protected from 1% annual chance flood by a Federaction system under construction; no Base Flood Elements channel of a stream plus any adjacent floodplain areas that must be channent so that the 1% annual chance flood can be carried without in flood heights.

OTHER FLOOD AREAS

Coestal flood zone with velocity hazard (wave action); Base Floo Elevations determined.

FLOODWAY AREAS IN ZONE AE

Areas of 0,2% annual chance flood; areas of 1% annual chance flood will average depths of less than 1 foot or with drainage areas less than square mile; and areas protected by levees from 1% annual chance flood.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are nor

Boundary dividing Special Flood Hazard Areas or Flood Elevations, flood depths or flood velocities

* Referenced to the

--- 513 ---(EL 987)

97° 07° 30.00° 32° 22′ 30.00°

Areas determined to be outside the 0.2% annual chance floor Areas in which flood hazards are undetermined, but possible.

OTHER AREAS

Coastal Base Flood Elevations shown on this map apply only landward North American Vertical Datum of 1988 (NAVOR8). Lessor of this FRIM shower that coastal ficod elevations are also provided in the Summary of Silecations habe in the Flood Insurance Surviv report for this justication. Elesations that be in the Flood Insurance Surviv report for this justication. Elesations that is interestion. Elesations that Summary of Silkwater Elevations table should be used for constraind or flood and in the Summary of Silkwater Elevations table should be used for constraind or flood and the proposes when they are higher than the ele

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood contro structures. Refer to section 2.4 Flood Protection Measures" of the Flood Insuranc Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transve Macarol (UM) zone 13. The horizontal datum was NADS3, GRS90 spheri Differences in datum, spheriold, projection or UTM zones zones used in Induction of FRMs for adjacent jurisdictions may result in slight position differences in map features across jurisdiction boundaries. These differences do affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and spound elevations reteriored but have sare vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1938, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address.

NGS Information Services NOAA, NNGS12 National Geodetic Survey SSMC-3, #2002 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks alrown on this map, please contact the information forevices Branch of the National stodents Survey at (301) 713-22-20 or visit its website at http://www.ngs.naa.govi.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Cofrado Springers, inc. These distance are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain defineations than those shown on the provious FIRM for this jurisdiction. The floodplain defineations than those shown on the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which confains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modelling baselines that match the flood profiles and Floodway Data Tables it applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to name/acidons or de-amexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 14977-385-3872 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change. a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also, bee reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/i.

f you have **questions about this map** or questions concerning the National Flood sistenance Program in general, please cell 1-4877-438-2827) or sist the FEIAA website at http://www.ferna.gov/business/mfp.

Panel Location Map

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

PANEL 556 OF 1300

EL PASO COUNTY, COLORADO AND INCORPORATED AREAS

FLOOD INSURANCE RATE MAP

FIRM

PANEL 0556G

A In 72

EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL.

DECEMBER 7. So update coportial limits, to change Base Proof Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and the incorporate previously issued Letters of Map Revision.

MAP REPOSITORIES Refer to Map Repositories list on Map Indi

EFFECTIVE DATE OF COUNTYWIDS FLOOD INSURANCE RATE MAP MARCH 17, 1997

00-foot grid ticks. Colorado State Plat stem, central zone (FIPSZONE 0502), mbert Conformal Conic Projection

Bench mark (see exp this FIRM panel)

DX5510

To determine if flood insurance is available in this community, contact your opent or call the National Flood Insurance Program at 1-600-638-6620. For community map revision history prior to countywide mapping, refer to the Map History Table located in the Flood Insurance Study report for this jurisdicti

MAP SCALE 1" = 500"

250 0 500 HHH F

MAP NUMBER 08041C0556G

AD DEVICED

Notion to User. The Map Number shown below should be used when placing map orders. Se Ceremunity Number used when placing map on shugaron applications for the

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Woleycarding Teachrical Partner (CTP) agreement between the State of Colorado Woten Consolary and CWCB) and the Federal Emergency Management Agency (FBMA).

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodways Data and/or Summary of Sillwater Elevations tables contained within the Flood insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-host elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with FIRM for purposes of construction and/or floodplain management.

The its animal contract look (Light-Version Look), as been considered to the resolution of the transition of the contract look of the contract of the contract of the contract of the contract look of the contract of the contract of the contract look of the contr

ZONE A his base Proof Elevations determined.

ZONE AE Boss Frood Elevations determined.

ZONE AH Frood deptits of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.

d depths of 1 to 3 feet (usually sheet flow on stoping terrain); average fis determined. For areas of alluvial fan flooding, velocities also

exact Base Flood Elevations shown on this map apply only inniviend of 0° Nort American Verlical Datum of 1988 (NAVD89). Users of this FIRM should be associated coastal Verlical Datum of 1988 (NAVD89). Users of this FIRM should be associated that coastal Verlical Datum of 1988 (NAVD89). Users of this FIRM should be associated to the should be used to the sections shown in the same of Sillivative Elevations shown in the coastal of Sillivative Elevations shown in the coastal of Sillivative Elevation shown in the first of Sillivative Elevation shown in this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 Flood Protection Nasaures* of the Flood Insurano Sludy report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transve Michaelor (URIX) con 13. The horizontal datum was NDA93, GRS90 spherior Differences in datum, spheriod, projection or UTM zones zones used in production of FRMs for adjacent jurisdictions may result in slight position differences in map features across jurisdiction boundaries. These differences do affect the accuracy of this FRMs.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations insist be compared to structure and ground elevations referenced to the same vertical adtum. For information regarding conversion between the National Geodetic Vertical Datum of 1959 and the North American Vertical Datum of 1958 wist the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey website at andress.

NGS Information Services NOA4, NNGS12 National Geodetic Survey SSMC-3, #2002 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks in shown on this map, please ordisat the information Services Barbard of the National Geodetic Survey at (301) 718-3242 or visit its website at http://www.ngs.nasa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Pass County, Colorado Springs Utilities. City of Fourian, Bureau of Land Management National Oceanic and Atmospheries, Clark of Annistration, United States Geological Survey and Anteopheria Atmospheria Propineers, inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations an floodplant etinestories than those shown on the previous FRM of this jurisdiction. The floodplants and floodblants that were transferred from the previous FRM man have been adjusted to conflorm to these new stream channel configurations. As result, the Flood Profiles and Floodway Data tables in the Flood insurance Shul Report (which contains authoritherly hydraudical) may be flood insurance Shul distances that differ from what is shown on this map. The portile baselines depicted on this map representation modeling baselines that match the flood profile and Floodway Data a Tables if applicable, in the FIS report. As a result, the profil asselines may deviate significantly from the new base map channel respectively. and may appear outside of the floo Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may haw occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the count wholly the layout of map panels, community map repository addresses; and Listing of Communities take containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (MM). 1477-352-2727 for information on available products associated with this FIRM. Available products may include previously issued Leiters of Map Change. For four instance Study Report, and/or digital versions of this map. The MSC masses be resorbed by Fax at 1-800-358-9620 and its website a http://www.msc.fema.gov/.

you have questions about this map or questions concerning the National Flo surance Program in general, please call 1-877-FEMA MAP (1-877-336-2627)

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUD FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

Panel Location Map

PANEL 552 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT)

COLORADO AND INCORPORATED AREAS

EL PASO COUNTY,

FIRM FLOOD INSURANCE RATE MAP

PANEL 0552G

NUMBER PANEL SUFFIX (MODS) TAKE G

MAP NUMBER 08041C0552G

Notice to User: The Map Number shows below should be used when pleting map orders. The Community Number shown above should be used on intuitance applications for the subject.

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

28 21 Haegler Ranch Tributary 2 ZONE A 1% ANNUAL CHANCE FLOOD DISCHARGE CONTAINED IN CULVERT Site Haegler Ranch Tributary Ia 1% ANNUAL CHANCE FLOOD DISCHARGE CONTAINED IN CULVERY 1% ANNUAL CHANCE FLOOD DISCHARGE CONTAINED IN CULVERT ZONE AE Haegler Ranch Tributary 2 EL PASO COUNTY UNINCORPORATED AREAS 080059 EL PASO COUNTY UNINCORPORATED AREAS 080059 30 10INS PANEL 0551 1415000 FT 38" 56" 7.50" 1425000 FT

EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL.

DECEMBER 7, 2018 - to judial or prograte initis, to change Base froof Elevations and Special Flood Fazard Areas, to update map format, to add reads and own more and programmer, and to incorporate previously issued Letters of Map Revision. flood zone with velocity hazard (wave action); no Base Floo vations determined. Coastal flood zone with velocity hazard (wave action); Base Floo Elevations determined. The floodway is the channel of a stream puss any adjacent floodplain areas that must b neight free of incroachment is so that the 1% annual chance flood can be carried without the stranger and noon brights. Areas of 0.2% annual chance flood; areas of 1% annual chance flood will average depths of less than 1 foot or with drainage areas less than square mile; and areas protected by levees from 1% annual chance flood COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS to be protected from 1% emusal chance flood by a Federal sction system under construction; no Base Flood Eleva mined. To determine if flood insurance is available in this community, contact your agent or call the National Flood Insurance Program at 1-800-638-6620. For community map revision history prior to countywide mapping, refer to the Map History Table located in the Flood Insurance Study report for this jurisdictio Boundary dividing Special Flood Hazard Areas of Flood Elevations, Rood depths or flood velocities Areas determined to be outside the 0.2% annual chance floo Areas in which flood hazards are undetermined, but possible, EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP MARCH 17, 1997 OTHERWISE PROTECTED AREAS (OPAs) 5000-foot grid ticks: Colorado State Pl system, central zone (FIPSZONE 0502) ambert Conformal Conic Projection MAP SCALE 1" = 500" 500 MAP REPOSITORIES Refer to Map Repositories list on Map FLOODWAY AREAS IN ZONE AE Bench mark (see e this FIRM panel) OTHER FLOOD AREAS OTHER AREAS 250 0 HHH ~~ 573 ~~ (EL 987) 97° 07' 30.00" 32° 22' 30.00" DX5510_X 60000000 FT • M1.5

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Please rely on the bar scale on each map sheet for map Soils D measurements. Soil Rating Polygons Not rated or not available Α Source of Map: Natural Resources Conservation Service Web Soil Survey URL: **Water Features** A/D Coordinate System: Web Mercator (EPSG:3857) Streams and Canals В Maps from the Web Soil Survey are based on the Web Mercator Transportation projection, which preserves direction and shape but distorts B/D Rails --distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more Interstate Highways accurate calculations of distance or area are required. C/D **US Routes** This product is generated from the USDA-NRCS certified data as D Major Roads of the version date(s) listed below. Not rated or not available -Local Roads Soil Survey Area: El Paso County Area, Colorado Soil Rating Lines Survey Area Data: Version 17, Sep 13, 2019 Background Aerial Photography Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. A/D Date(s) aerial images were photographed: Sep 8, 2018—May 26, 2019 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor C/D shifting of map unit boundaries may be evident. D Not rated or not available **Soil Rating Points** A/D B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	А	22.4	2.6%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	Α	450.7	52.5%
83	Stapleton sandy loam, 3 to 8 percent slopes	В	385.4	44.9%
Totals for Area of Intere	est		858.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

EAST FORK

Region ID: CO

Workspace ID: C020200817220340831000

Clicked Point (Latitude, Longitude): 38.99090, -104.54663

Time: 2020-08-17 16:03:57 -0600

Grandview Reserve

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLDEM10M	Mean basin slope computed from 10 m DEM	4	percent
DRNAREA	Area that drains to a point on a stream	0.84	square miles
I24H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	4.9	inches
124H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precipitation intensity index	1.86	inches

Parameter Code	Parameter Description	Value	Unit
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx? content=17758.wba)	58.28	dimensionless
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.22	dimensionless

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

EAST FORK TRIBUTARY BASIN DELINATION

Region ID: CO

Workspace ID: C020200817220732890000

Clicked Point (Latitude, Longitude): 38.99085, -104.55989

Time: 2020-08-17 16:07:50 -0600

Grandview Reserve

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLDEM10M	Mean basin slope computed from 10 m DEM	3	percent
DRNAREA	Area that drains to a point on a stream	0.22	square miles
I24H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	4.92	inches
124H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precipitation intensity index	1.86	inches

https://streamstats.usgs.gov/ss/

Parameter Code	Parameter Description	Value	Unit
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx? content=17758.wba)	54.53	dimensionless
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.23	dimensionless

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

MAIN STEM

Region ID: CO

Workspace ID: C020200817221517278000

Clicked Point (Latitude, Longitude): 38.98969, -104.56703

Time: 2020-08-17 16:15:34 -0600

Grandview Reserve

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLDEM10M	Mean basin slope computed from 10 m DEM	3	percent
DRNAREA	Area that drains to a point on a stream	0.17	square miles
124H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	4	inches
124H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precipitation intensity index	1.87	inches

Parameter Code	Parameter Description	Value	Unit
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx? content=17758.wba)	55.04	dimensionless
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.22	dimensionless

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

MAIN STEM TRIBUTARY NUMBER 2

Region ID: CO

Workspace ID: C020200817221139984000

Clicked Point (Latitude, Longitude): 38.99101, -104.56354

Time: 2020-08-17 16:11:57 -0600

Basin Characteristics

Grandview Reserve

Parameter Code	Parameter Description	Value	Unit
BSLDEM10M	Mean basin slope computed from 10 m DEM	3	percent
DRNAREA	Area that drains to a point on a stream	0.44	square miles
I24H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	4.94	inches
124H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precipitation intensity index	1.87	inches

Parameter Code	Parameter Description	Value	Unit
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx? content=17758.wba)	56.49	dimensionless
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.23	dimensionless

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

Appendix B

Basin	Park/Open	High					Total	Total	Composite Percent	Predominant Soil	5 Year C	100 Year
Description	Space	Density/Schools	Med/High Density	Med Density	Low Density	Commercial	Impervious	Acreage	Impervious	Group	Factor	C Factor
Impervious				/								
Percentage	10%	65%	55%	45%	25%	75%						
A1	12.68	0.00	0.00	32.70	0.00	0.00	15.98	45.38	35.22%	В	0.38	0.71
					Por	nd A		45.38	35.22%		•	
B1	0.00	0.00	0.00	37.00	0.00	0.00	16.65	37.00	45.00%	Α	0.4	0.61
B2	1.24	0.00	0.00	23.65	0.00	0.00	10.77	24.89	43.26%	Α	0.38	0.59
В3	7.42	12.64	53.20	45.64	0.00	0.00	58.76	118.90	49.42%	Α	0.36	0.5
					Poi	nd B		180.79	47.66%			
C1	4.19	30.61	1.70	41.33	0.00	0.00	39.85	77.83	51.20%	А	0.38	0.59
					Poi	nd C		77.83	51.20%			
D1	0.60	0.00	0.00	23.73	0.00	0.00	10.74	24.33	44.14%	Α	0.39	0.6
D2	5.60	64.10	0.00	0.00	0.00	8.20	48.38	77.90	62.10%	Α	0.39	0.6
					Poi	nd D		102.23	57.82%			
E1	32.26	0.00	0.00	0.00	56.34	0.00	17.31	88.60	19.54%	В	0.12	0.59
					Poi	nd E		88.60	19.54%		·	*
F1	0.00	0.00	0.00	0.00	33.73	0.00	8.43	33.73	25.00%	В	0.15	0.61
F2	18.34	40.50	0.00	0.00	0.00	8.80	34.76	67.64	51.39%	В	0.36	0.7
F3	0.00	0.00	0.00	12.84	0.00	0.00	5.78	12.84	45.00%	В	0.45	0.74
F4	6.24	0.00	29.80	15.77	0.00	0.00	24.11	51.81	46.54%	В	0.37	0.64
					Poi	nd F		166.02	44.02%			
G1	4.88	0.00	0.00	15.25	0.00	0.00	7.35	20.13	36.52%	В	0.25	0.66
G2	0.00	0.00	0.00	0.00	15.14	0.00	3.79	15.14	25.00%	В	0.45	0.74
					Por	nd G		35.27	31.57%			
H1	0.70	0.00	0.00	0.00	20.01	0.00	5.07	20.71	24.49%	Α	0.38	0.75
H2	0.70	0.00	0.00	17.85	0.00	0.00	8.10	18.55	43.68%	В	0.43	0.75
Н3	0.76	0.00	0.00	5.25	0.00	0.00	2.44	6.01	40.57%	В	0.4	0.72
H4	5.34	0.00	0.00	22.31	0.00	0.00	10.57	27.65	38.24%	В	0.37	0.7
					Poi	nd H		72.92	35.91%			

Summary of Unit Hydrograph Parameters Used By Program and Calculated Results (Version 2.0.1)

		Unit Hydrograph Parameters and Results						Excess Precip. Storm Hyd			/drograph					
					W50		W75	Time to					Time to		Total	Runoff per
				W50	Before	W75	Before	Peak		Volume	Excess	Excess	Peak	Peak Flow	Volume	Unit Area
Catchment Name/ID	User Comment for Catchment	СТ	Ср	(min.)	Peak	(min.)	Peak	(min.)	Peak (cfs)	(c.f)	(inches)	(c.f.)	(min.)	(cfs)	(c.f.)	(cfs/acre)
A1		0.157	0.143	37.3	5.59	19.4	3.95	9.3	57	164,729	0.25	40,666	35.0	13	40,592	0.29
B1		0.158	0.131	33.0	4.82	17.2	3.41	8.0	53	134,310	0.08	11,390	35.0	4	11,363	0.12
B2		0.158	0.109	58.5	6.42	30.4	4.54	10.7	20	90,351	0.08	7,662	40.0	2	7,665	0.07
B3		0.158	0.221	39.1	8.15	20.3	5.76	13.6	142	431,607	0.08	36,602	40.0	12	36,572	0.10
C1		0.158	0.183	30.3	5.75	15.7	4.06	9.6	120	281,797	0.08	23,898	35.0	10	23,870	0.13
D1		0.157	0.108	31.5	4.11	16.4	2.91	6.9	36	88,318	0.25	21,803	35.0	8	21,721	0.33
D2		0.157	0.182	37.7	6.77	19.6	4.78	11.3	97	282,777	0.25	69,809	40.0	22	69,820	0.29
E1		0.157	0.193	28.9	5.77	15.0	4.08	9.6	144	321,618	0.25	79,397	35.0	32	79,287	0.37
F1		0.157	0.125	37.2	5.07	19.4	3.58	8.5	42	122,440	0.25	30,227	35.0	10	30,151	0.29
F2		0.157	0.171	45.1	7.42	23.5	5.24	12.4	70	245,533	0.25	60,614	40.0	16	60,563	0.24
F3		0.157	0.081	37.8	3.84	19.6	2.72	6.4	16	46,609	0.25	11,506	35.0	4	11,472	0.28
F4		0.157	0.151	43.2	6.52	22.5	4.61	10.9	56	186,981	0.25	46,160	40.0	13	46,174	0.25
G1		0.157	0.099	38.8	4.45	20.2	3.14	7.4	24	73,072	0.25	18,039	35.0	6	17,996	0.28
G2		0.157	0.087	42.3	4.33	22.0	3.06	7.2	17	54,958	0.25	13,567	35.0	4	13,536	0.26
H1		0.158	0.101	43.7	4.89	22.7	3.45	8.1	22	75,177	0.08	6,375	35.0	2	6,365	0.09
H2		0.157	0.095	37.0	4.21	19.2	2.97	7.0	24	67,337	0.25	16,623	35.0	5	16,581	0.29
H3		0.157	0.057	32.6	2.94	16.9	2.08	4.9	9	21,816	0.25	5,384	35.0	2	5,324	0.32
H4		0.157	0.114	36.7	4.72	19.1	3.33	7.9	35	100,370	0.25	24,778	35.0	8	24,718	0.29

Printouts for Storm Hydrographs

	Printouts	for Storm	Hydrogra	<u>ipns</u>														
	flow in cfs	I	ı	1	I	I	I			I	I				I	I	I	ı
time in minutes																		
	¥	B1	B2	8	8	10	D2	E1	ᄄ	22	œ	3	61	62	7	42	£	Ŧ
5 10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	0.11	0.05	0.01	0.08	0.10	0.09	0.16	0.27	0.09	0.10	0.04	0.09	0.06	0.04	0.02	0.06	0.02	0.08
25 30	4.37 10.53	0.49 3.60	0.15 1.09	0.79 6.02	0.97 7.25	3.50 7.38	6.05 16.27	10.68 26.19	3.53 8.12	3.91 11.07	1.60 3.32	3.64 9.60	2.24 4.86	1.57 3.39	0.20 1.51	2.24 4.78	0.93 1.85	3.12 6.93
35	13.03	4.33	1.65	10.87	9.95	8.12	21.83	32.34	9.70	15.57	3.65	12.69	5.57	3.87	1.85	5.37	1.92	8.07
40	12.83	4.07	1.66	11.85	9.38	7.47	22.23	30.31	9.45	16.46	3.47	12.98	5.40	3.78	1.79	5.14	1.75	7.79
45 50	11.55 10.17	3.53 3.04	1.62 1.54	11.26 10.00	7.98 6.77	6.50 5.67	20.38 17.95	26.01 22.15	8.49 7.48	15.82 14.39	3.11 2.76	12.23 11.00	4.86 4.32	3.47 3.11	1.67 1.50	4.59 4.06	1.53	6.96 6.14
55	9.05	2.66	1.43	8.60	5.79	4.90	15.88	18.86	6.66	12.88	2.76	9.83	3.87	2.81	1.33	3.61	1.35	5.45
60	7.99	2.29	1.30	7.68	4.93	4.29	14.03	16.29	5.88	11.66	2.18	8.89	3.45	2.54	1.21	3.19	1.03	4.80
65	7.10	2.03	1.20	6.77	4.36	3.80	12.42	14.16	5.23	10.56	1.95	8.00	3.08	2.27	1.09	2.84	0.92	4.27
70 75	6.40 5.77	1.81	1.12	5.94 5.41	3.79 3.22	3.34 2.88	11.15 10.06	12.11 10.06	4.73 4.26	9.49 8.60	1.77 1.60	7.19 6.55	2.79	2.06 1.88	0.98	2.57 2.31	0.82	3.86 3.47
80	5.13	1.36	0.96	4.88	2.66	2.41	8.99	8.20	3.79	7.91	1.42	5.99	2.27	1.72	0.82	2.05	0.60	3.07
85	4.50	1.14	0.88	4.36	2.14	2.00	7.91	6.93	3.32	7.26	1.25	5.45	2.01	1.56	0.75	1.79	0.50	2.68
90 95	3.87 3.26	0.93	0.82	3.84	1.88	1.73 1.55	6.84 5.78	6.11 5.38	2.85	6.61 5.96	1.08 0.91	4.92 4.39	1.75 1.50	1.39	0.68	1.53	0.43	2.28 1.94
100	2.83	0.75	0.72	2.81	1.50	1.38	4.97	4.66	2.10	5.31	0.79	3.85	1.29	1.07	0.54	1.14	0.35	1.70
105	2.57	0.68	0.68	2.39	1.31	1.22	4.48	3.95	1.91	4.67	0.72	3.32	1.15	0.92	0.47	1.04	0.31	1.55
110 115	2.35	0.60	0.63	2.21	1.12 0.93	1.06 0.90	4.09 3.72	3.25 2.54	1.74	4.03 3.55	0.66	2.90	1.06 0.97	0.82	0.40	0.95 0.86	0.27	1.41
120	1.92	0.45	0.53	1.86	0.74	0.74	3.35	1.84	1.42	3.27	0.54	2.44	0.88	0.70	0.34	0.80	0.20	1.14
125	1.70	0.38	0.49	1.68	0.55	0.58	2.99	1.14	1.26	3.04	0.49	2.25	0.79	0.64	0.31	0.68	0.16	1.01
130	1.49	0.30	0.44	1.50	0.36	0.43	2.63	0.49	1.10 0.94	2.81	0.43	2.07 1.89	0.71	0.59	0.29	0.59 0.51	0.13	0.87 0.74
140	1.06	0.22	0.35	1.15	0.17	0.27	1.91	0.14	0.79	2.39	0.37	1.71	0.62	0.55	0.26	0.51	0.09	0.74
145	0.85	0.08	0.33	0.98	0.01	0.03	1.55	0.04	0.63	2.16	0.25	1.53	0.45	0.42	0.22	0.33	0.02	0.47
150	0.64	0.01	0.31	0.80	0.01	0.01	1.19	0.03	0.47	1.94	0.20	1.35	0.36	0.37	0.19	0.25	0.01	0.34
155 160	0.43	0.00	0.29	0.62	0.01	0.01	0.84	0.02	0.32	1.72 1.51	0.14	1.17 0.99	0.28	0.32	0.17 0.15	0.16 0.07	0.00	0.21
165	0.08	0.00	0.26	0.27	0.00	0.00	0.19	0.01	0.06	1.29	0.03	0.81	0.11	0.21	0.12	0.02	0.00	0.03
170	0.03	0.00	0.24	0.11	0.00	0.00	0.06	0.01	0.02	1.07	0.01	0.64	0.04	0.15	0.10	0.01	0.00	0.01
175 180	0.01	0.00	0.23	0.01	0.00	0.00	0.03	0.00	0.01	0.86	0.00	0.46	0.01	0.10	0.07	0.01	0.00	0.01
185	0.01	0.00	0.20	0.01	0.00	0.00	0.01	0.00	0.01	0.43	0.00	0.12	0.00	0.01	0.03	0.00	0.00	0.00
190	0.01	0.00	0.18	0.00	0.00	0.00	0.01	0.00	0.00	0.22	0.00	0.03	0.00	0.01	0.01	0.00	0.00	0.00
195 200	0.00	0.00	0.16 0.15	0.00	0.00	0.00	0.01	0.00	0.00	0.07	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
205	0.00	0.00	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
210	0.00	0.00	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
215 220	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
225	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
230	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
235 240	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
245	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
255 260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
265	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
275 280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
295	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
300 305	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
310	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
315	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
320 325	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
335	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Printouts for Unit Hydrographs

	flow in cfs																	
time in minutes	_			-											_		_	_
	A1	B1	B2	B3	ט	10	D2	E1	F1	F2	F3	F4	61	62	Ξ.	7	ΕΞ	4
5	40.28	42.09	12.13	63.61	82.42	32.48	55.24	98.24	32.62	35.61	14.87	33.35	20.73	14.60	17.60	20.82	8.64	28.84
10	57.05	52.23	19.82	128.67	120.14	35.66	95.11	143.90	42.37	66.66	15.76	55.34	24.18	16.70	22.15	23.32	8.39	35.18
15	55.14	49.14	19.80	142.11	113.71	32.86	95.34	135.22	40.64	69.88	14.91	55.08	23.11	16.08	21.50	22.10	7.65	33.53
20	50.23 42.58	42.59 36.47	19.29 18.42	135.55 120.63	96.28 81.39	27.58 24.10	88.48	111.47 94.77	36.78	67.16 61.81	13.37 11.56	52.19 47.11	21.00	14.87 13.08	20.10 17.96	19.77 17.02	6.45 5.72	30.09 25.74
30	38.19	31.93	17.17	102.86	69.70	20.86	76.12 66.79	79.97	31.35 28.11	53.81	10.39	40.94	18.05 16.29	11.74	15.92	15.24	4.99	23.02
35	33.80	27.39	15.55	91.99	58.90	17.81	59.27	68.09	24.87	48.71	9.22	37.24	14.54	10.64	14.50	13.46	4.28	20.30
40	29.41	24.26	14.30	81.13	52.19	15.90	51.76	59.63	21.63	44.21	8.05	33.54	12.78	9.53	13.08	11.71	3.85	17.61
45	26.49	21.61	13.35	70.68	45.48	14.00	46.02	51.18	19.57	39.70	7.32	29.84	11.49	8.43	11.66	10.66	3.41	16.01
50	23.93	18.96	12.40	64.49	38.78	12.09	41.69	42.72	17.67	35.20	6.62	26.88	10.45	7.76	10.59	9.61	2.98	14.41
55	21.37	16.30	11.45	58.31	32.07	10.19	37.36	34.27	15.77	32.56	5.93	24.72	9.41	7.10	9.75	8.56	2.54	12.81
60	18.81	13.65	10.50	52.12	25.36	8.28	33.03	27.80	13.87	29.94	5.23	22.56	8.38	6.45	8.92	7.50	2.10	11.21
65	16.25	11.00	9.72	45.94	22.24	6.95	28.70	24.98	11.97	27.33	4.53	20.40	7.34	5.79	8.08	6.45	1.71	9.61
70	13.69	9.78	9.16	39.75	20.01	6.31	24.37	22.16	10.07	24.72	3.84	18.25	6.30	5.14	7.24	5.40	1.56	8.01
75	11.32	8.90	8.59	33.57	17.77	5.68	20.04	19.34	8.39	22.11	3.17	16.09	5.27	4.48	6.40	4.58	1.42	6.85
80	10.47	8.01	8.03	28.12	15.53	5.04	18.15	16.52	7.75	19.50	2.94	13.93	4.65	3.83	5.56	4.23	1.27	6.31
85	9.62	7.13	7.47	26.06	13.30	4.41	16.71	13.70	7.12	16.89	2.71	11.77	4.31	3.30	4.72	3.88	1.13	5.78
90	8.76	6.25	6.91	24.00	11.06	3.77	15.27	10.89	6.49	14.28	2.48	10.65	3.96	3.08	4.25	3.53	0.98	5.25
95	7.91	5.36	6.34	21.94	8.83	3.14	13.82	8.07	5.86	13.26	2.24	9.93	3.62	2.86	3.97	3.18	0.84	4.71
100	7.06	4.48	5.78	19.87	6.59	2.50	12.38	5.25	5.22	12.39	2.01	9.21	3.27	2.64	3.69	2.83	0.69	4.18
105	6.20	3.59	5.22	17.81	4.36	1.87	10.94	2.43	4.59	11.51	1.78	8.49	2.92	2.42	3.41	2.48	0.55	3.65
110 115	5.35 4.50	2.71 1.82	4.65 4.09	15.75 13.69	2.12 0.00	1.23 0.60	9.49 8.05	0.00	3.96 3.32	10.64 9.77	1.55 1.32	7.77 7.05	2.58	2.20 1.99	3.13 2.85	2.13 1.78	0.40 0.26	3.11 2.58
120	3.64	0.94	3.83	11.63	0.00	0.00	6.61		2.69	8.90	1.08	6.33	1.89	1.99	2.85	1.78	0.26	2.58
125	2.79	0.94	3.65	9.57		0.00	5.17		2.09	8.03	0.85	5.62	1.54	1.55	2.29	1.43	0.00	1.51
130	1.94	0.00	3.46	7.50			3.72		1.43	7.16	0.62	4.90	1.20	1.33	2.02	0.72	0.00	0.98
135	1.08	0.00	3.27	5.44			2.28		0.79	6.29	0.39	4.18	0.85	1.11	1.74	0.37		0.44
140	0.23		3.08	3.38			0.84		0.16	5.42	0.16	3.46	0.50	0.89	1.46	0.02		0.00
145	0.00		2.90	1.32			0.00		0.00	4.55	0.00	2.74	0.16	0.68	1.18	0.00		
150			2.71	0.00						3.68		2.02	0.00	0.46	0.90			
155			2.52							2.81		1.30		0.24	0.62			
160			2.33							1.94		0.58		0.02	0.34			
165			2.15							1.07		0.00		0.00	0.06			
170			1.96							0.20					0.00			
175			1.77							0.00								
180			1.58														L	
185			1.40														<u> </u>	
190			1.21														 	
195 200			1.02 0.83														<u> </u>	
200			0.83														 	
210			0.46															
215			0.46														 	
220			0.08															
225			0.00															
	L	l					l	l								l		

Summary of Unit Hydrograph Parameters Used By Program and Calculated Results (Version 2.0.1)

				Uni	t Hydrograp	h Paramet	ers and Res	sults			Excess	Precip.		Storm H	ydrograph	
					W50		W75	Time to					Time to		Total	Runoff per
				W50	Before	W75	Before	Peak		Volume	Excess	Excess	Peak	Peak Flow	Volume	Unit Area
Catchment Name/ID	User Comment for Catchment	СТ	Ср	(min.)	Peak	(min.)	Peak	(min.)	Peak (cfs)	(c.f)	(inches)	(c.f.)	(min.)	(cfs)	(c.f.)	(cfs/acre)
A1		0.156	0.142	37.3	5.57	19.4	3.93	9.3	57	164,729	1.56	257,605	45.0	67	257,125	1.47
B1		0.157	0.130	33.0	4.80	17.2	3.39	8.0	53	134,310	1.17	157,714	40.0	49	157,336	1.32
B2		0.157	0.109	58.5	6.39	30.4	4.52	10.6	20	90,351	1.17	106,094	50.0	21	106,130	0.83
B3		0.157	0.220	39.1	8.11	20.3	5.73	13.5	142	431,607	1.17	506,815	45.0	140	506,418	1.18
C1		0.157	0.182	30.3	5.72	15.7	4.04	9.5	120	281,797	1.17	330,900	40.0	111	330,490	1.43
D1		0.156	0.107	31.5	4.10	16.4	2.90	6.8	36	88,318	1.56	138,112	40.0	40	137,590	1.64
D2		0.156	0.181	37.7	6.75	19.6	4.77	11.2	97	282,777	1.56	442,208	45.0	115	442,279	1.47
E1		0.156	0.192	28.8	5.76	15.0	4.07	9.6	144	321,618	1.56	502,948	40.0	158	502,220	1.78
F1		0.156	0.124	37.2	5.06	19.4	3.57	8.4	42	122,440	1.56	191,472	45.0	49	190,993	1.47
F2		0.156	0.170	45.1	7.40	23.5	5.23	12.3	70	245,533	1.56	383,966	50.0	87	383,641	1.28
F3		0.156	0.081	37.7	3.83	19.6	2.71	6.4	16	46,609	1.56	72,888	45.0	18	72,670	1.43
F4		0.156	0.150	43.2	6.50	22.5	4.59	10.8	56	186,981	1.56	292,403	45.0	68	292,494	1.32
G1		0.156	0.099	38.8	4.44	20.2	3.14	7.4	24	73,072	1.56	114,270	45.0	28	113,996	1.41
G2		0.156	0.087	42.3	4.31	22.0	3.05	7.2	17	54,958	1.56	85,944	45.0	20	85,743	1.32
H1		0.157	0.100	43.7	4.86	22.7	3.44	8.1	22	75,177	1.17	88,277	45.0	22	88,139	1.06
H2		0.156	0.095	37.0	4.20	19.2	2.97	7.0	24	67,337	1.56	105,301	45.0	27	105,031	1.46
H3		0.156	0.057	32.6	2.93	16.9	2.07	4.9	9	21,816	1.56	34,116	40.0	10	33,729	1.58
H4		0.156	0.114	36.7	4.70	19.1	3.32	7.8	35	100,370	1.56	156,958	45.0	41	156,578	1.48

Printouts for Storm Hydrographs

	Printouts	ior storm	nyurogra	ipiis														
	flow in cfs	ı	ı	1	I	I	I			I				I	I	I	I	I
time in minutes	_	_		_		_							_		_		_	_
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	<u>로</u> 0.00	0.00	0.00	0.00	0.00	0.00	9.00	9.00 0.00	£ 0.00	0.00
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	0.01	0.01	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
20	0.19	0.10	0.03	0.16	0.20	0.16	0.27	0.47	0.16	0.17	0.07	0.16	0.10	0.07	0.04	0.10	0.04	0.14
25 30	8.12 34.59	3.13 26.76	0.92 8.08	4.86 44.30	6.18 53.77	6.49 25.80	11.23 50.87	19.84 85.32	6.56 27.24	7.27 33.89	2.97 11.70	6.77 30.29	4.15 16.76	2.92 11.74	1.31 11.22	4.16 16.64	1.72 6.64	5.78 23.63
35	55.93	43.27	15.49	97.67	95.72	36.82	90.40	139.23	42.28	63.07	16.51	52.88	24.75	17.20	18.33	24.08	8.94	35.59
40	64.93	48.76	18.92	129.21	110.70	40.00	109.38	157.99	48.34	79.01	18.22	63.75	27.87	19.43	21.16	26.79	9.51	40.19
45 50	66.80 64.59	48.19 44.98	20.36	140.35 138.21	108.85 100.81	39.34 37.49	114.87 112.26	155.63 146.93	49.45 47.76	85.76 86.73	18.42 17.78	67.82 67.62	28.46 27.55	20.06 19.63	21.89 21.22	27.12 26.14	9.32 8.91	40.86 39.39
55	61.26	40.75	20.19	127.94	90.29	34.77	106.51	135.02	45.25	83.59	16.83	64.71	26.19	18.75	19.74	24.71	8.30	37.23
60	57.64	36.45	19.11	117.17	79.70	32.18	100.16	123.69	42.57	79.90	15.87	61.71	24.78	17.90	18.34	23.24	7.72	34.96
65	54.17	32.98	18.06	106.73	71.53	30.21	94.06	114.66	40.04	76.47	14.98	58.85	23.43	17.05	17.02	21.88	7.28	32.86
70 75	49.50 44.49	29.39 25.88	16.95 15.77	95.81 86.25	63.09 54.40	26.87 23.41	86.32 77.73	101.69 86.59	36.49 32.81	71.24 64.76	13.57 12.22	54.41 49.38	21.31 19.24	15.53 14.13	15.43 13.98	19.83 17.82	6.47 5.68	29.87 26.80
80	39.66	22.48	14.61	77.59	45.94	20.04	69.44	72.09	29.24	59.04	10.92	44.90	17.27	12.84	12.74	15.86	4.91	23.82
85	35.05	19.22	13.48	69.37	38.02	16.98	61.48	60.25	25.85	53.80	9.69	40.70	15.40	11.62	11.61	14.01	4.19	20.99
90 95	30.75 26.60	16.13 13.89	12.47 11.62	61.54 54.03	32.26 28.03	14.46 12.58	54.04 46.90	51.51 44.50	22.66 19.60	48.89 44.35	8.53 7.40	36.78 33.11	13.66 11.95	10.48 9.39	10.54 9.51	12.25 10.59	3.57 3.11	18.32 15.80
100	26.60	13.89	10.86	46.67	24.54	11.06	40.40	38.42	16.94	39.99	6.40	29.55	10.37	8.32	9.51 8.50	9.19	2.75	13.72
105	20.31	10.86	10.14	40.05	21.41	9.70	35.55	32.88	15.01	35.72	5.68	26.07	9.12	7.30	7.50	8.16	2.43	12.18
110	18.18	9.62	9.45	35.53	18.50	8.47	31.77	27.72	13.44	31.55	5.10	22.87	8.17	6.44	6.54	7.31	2.14	10.90
115 120	16.30 14.59	8.47 7.37	8.77 8.10	32.01 28.94	15.69 12.97	7.31 6.22	28.48 25.53	22.84 18.25	12.06 10.79	27.80 24.99	4.58 4.12	20.38 18.44	7.35 6.63	5.79 5.26	5.80 5.26	6.55 5.86	1.87 1.61	9.75 8.71
125	13.00	6.29	7.44	26.14	10.33	5.18	22.79	13.83	9.62	22.73	3.68	16.78	5.96	4.78	4.81	5.22	1.37	7.73
130	11.49	5.24	6.78	23.51	7.70	4.19	20.20	9.50	8.50	20.76	3.27	15.27	5.33	4.35	4.41	4.61	1.14	6.80
135 140	10.07 8.73	4.20 3.16	6.11 5.48	20.95	5.08 2.69	3.19 2.20	17.76 15.47	5.87 3.75	7.45 6.46	18.98	2.89	13.89	4.74	3.94	4.05 3.69	4.03 3.48	0.92	5.93
145	7.39	2.12	5.48	16.03	1.47	1.36	13.20	2.42	5.47	15.78	2.32	11.37	3.64	3.20	3.35	2.93	0.69	4.26
150	6.05	1.15	4.66	13.61	0.84	0.87	10.94	1.51	4.47	14.31	1.79	10.21	3.10	2.86	3.02	2.38	0.29	3.42
155	4.72	0.63	4.37	11.19	0.46	0.56	8.68	0.88	3.48	12.94	1.43	9.09	2.55	2.51	2.69	1.83	0.18	2.58
160 165	3.38 2.17	0.36	4.11 3.86	8.77 6.35	0.25	0.35	6.42 4.29	0.45 0.17	2.49 1.60	11.57 10.20	1.06 0.72	7.96 6.83	2.01 1.47	2.17 1.83	2.36	1.28 0.80	0.12	1.77 1.09
170	1.37	0.11	3.63	3.98	0.05	0.11	2.67	0.04	1.00	8.84	0.44	5.70	0.97	1.49	1.70	0.51	0.04	0.70
175	0.88	0.05	3.40	2.12	0.01	0.04	1.71	0.03	0.65	7.48	0.28	4.58	0.60	1.15	1.37	0.33	0.02	0.45
180	0.56	0.02	3.18 2.96	1.17	0.00	0.01	1.09 0.67	0.02	0.41	6.11 4.75	0.18	3.45 2.36	0.39	0.80	1.05 0.72	0.20	0.01	0.28
190	0.33	0.00	2.96	0.66	0.00	0.01	0.67	0.02	0.25	3.39	0.11	1.46	0.25	0.30	0.72	0.12	0.00	0.16
195	0.08	0.00	2.52	0.19	0.00	0.00	0.19	0.01	0.06	2.17	0.03	0.93	0.08	0.21	0.22	0.03	0.00	0.03
200	0.02	0.00	2.30	0.09	0.00	0.00	0.07	0.01	0.02	1.36	0.01	0.60	0.04	0.13	0.12	0.01	0.00	0.01
205 210	0.01	0.00	2.07 1.85	0.03	0.00	0.00	0.02	0.00	0.01	0.88	0.00	0.37	0.01	0.08	0.07	0.00	0.00	0.01
215	0.01	0.00	1.63	0.00	0.00	0.00	0.01	0.00	0.00	0.33	0.00	0.11	0.00	0.02	0.02	0.00	0.00	0.00
220	0.00	0.00	1.41	0.00	0.00	0.00	0.01	0.00	0.00	0.18	0.00	0.04	0.00	0.00	0.01	0.00	0.00	0.00
225	0.00	0.00	1.19 0.97	0.00	0.00	0.00	0.01	0.00	0.00	0.08	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
235	0.00	0.00	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
240	0.00	0.00	0.53	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
245	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
250 255	0.00	0.00	0.17 0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
260	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
265	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
270 275	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
275	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
285	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
295 300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
305	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
310	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
315	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
320 325	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
335	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Printouts for Unit Hydrographs

	flow in cfs																	
ne in minutes																		
time	Α1	В1	B2	В3	77	D1	D2	E1	F1	F2	F3	F4	G1	62	Ħ	Н2	НЗ	Ŧ
5	40.40	42.25	12.21	64.08	82.83	32.53	55.47	98.57	32.71	35.78	14.89	33.49	20.77	14.63	17.67	20.86	8.64	28.91
10	57.06	52.24	19.84	129.10	120.16	35.66	95.22	143.91	42.37	66.77	15.76	55.38	24.18	16.70	22.15	23.33	8.39	35.19
15	55.13	49.12	19.80	142.11	113.65	32.85	95.32	135.16	40.63	69.88	14.91	55.08	23.11	16.08	21.49	22.10	7.65	33.52
20	50.21	42.56	19.29	135.46	96.16	27.57	88.44	111.36	36.77	67.15	13.37	52.17	21.00	14.87	20.09	19.76	6.45	30.08
25	42.57	36.46	18.41	120.46	81.35	24.10	76.05	94.73	31.34	61.78	11.56	47.08	18.04	13.08	17.95	17.02	5.72	25.74
30	38.18	31.92	17.16	102.78	69.66	20.85	66.76	79.93	28.10	53.77	10.39	40.93	16.29	11.74	15.92	15.24	4.99	23.02
35	33.79	27.37	15.54	91.92	58.88 52.17	17.80	59.25 51.73	68.07	24.86	48.70 44.19	9.22 8.04	37.23	14.53 12.78	10.63	14.50	13.46 11.71	4.28	20.29
40	29.40 26.48	24.25 21.60	14.30 13.35	81.06 70.65	45.46	15.90 13.99	46.01	59.61 51.16	21.62 19.56	39.69	7.32	33.53 29.82	11.49	9.53 8.43	13.08 11.66	10.66	3.85 3.41	17.61 16.01
50	23.92	18.95	12.40	64.46	38.75	12.09	41.68	42.70	17.67	35.18	6.62	26.87	10.45	7.76	10.59	9.61	2.97	14.41
55	21.36	16.29	11.45	58.28	32.04	10.18	37.35	34.24	15.77	32.55	5.93	24.71	9.41	7.10	9.75	8.55	2.54	12.81
60	18.80	13.64	10.50	52.09	25.33	8.28	33.02	27.79	13.87	29.94	5.23	22.56	8.38	6.45	8.91	7.50	2.10	11.20
65	16.24	10.99	9.72	45.91	22.24	6.95	28.69	24.97	11.97	27.33	4.53	20.40	7.34	5.79	8.07	6.45	1.71	9.60
70	13.68	9.78	9.16	39.72	20.00	6.31	24.36	22.15	10.07	24.71	3.84	18.24	6.30	5.14	7.23	5.39	1.56	8.00
75	11.32	8.90	8.59	33.53	17.76	5.68	20.03	19.33	8.39	22.10	3.17	16.08	5.26	4.48	6.39	4.58	1.42	6.85
80	10.47	8.01	8.03	28.11	15.53	5.04	18.15	16.52	7.75	19.49	2.94	13.92	4.65	3.83	5.56	4.23	1.27	6.31
85	9.61	7.13	7.47	26.05	13.29	4.41	16.71	13.70	7.12	16.88	2.71	11.77	4.31	3.30	4.72	3.88	1.13	5.78
90	8.76	6.24	6.90	23.99	11.06	3.77	15.26	10.88	6.49	14.27	2.48	10.65	3.96	3.08	4.25	3.53	0.98	5.25
95	7.91	5.36	6.34	21.93	8.82	3.14	13.82	8.06	5.85	13.25	2.24	9.93	3.61	2.86	3.97	3.18	0.84	4.71
100	7.05	4.47	5.78	19.87	6.58	2.50	12.38	5.24	5.22	12.38	2.01	9.21	3.27	2.64	3.69	2.83	0.69	4.18
105	6.20	3.59	5.21	17.80	4.35	1.87	10.93	2.42	4.59	11.51	1.78	8.49	2.92	2.42	3.41	2.48	0.55	3.64
110	5.35	2.70	4.65	15.74	2.11	1.23	9.49	0.00	3.95	10.64	1.55	7.77	2.58	2.20	3.13	2.13	0.40	3.11
115	4.49	1.82	4.09	13.68	0.00	0.60	8.05		3.32	9.77	1.32	7.05	2.23	1.99	2.85	1.78	0.25	2.58
120	3.64	0.94	3.83	11.62		0.00	6.60		2.69	8.90	1.08	6.33	1.89	1.77	2.57	1.43	0.11	2.04
125	2.79	0.05	3.65	9.56			5.16		2.06	8.03	0.85	5.61	1.54	1.55	2.29	1.07	0.00	1.51
130	1.93	0.00	3.46	7.49			3.72		1.42	7.16	0.62	4.89	1.19	1.33	2.01	0.72		0.97
135	1.08		3.27	5.43			2.27		0.79	6.29	0.39	4.17	0.85	1.11	1.73	0.37		0.44
140	0.23		3.08	3.37			0.83		0.16	5.42	0.15	3.45	0.50	0.89	1.45	0.02		0.00
145 150	0.00		2.90 2.71	1.31 0.00			0.00		0.00	4.55 3.68	0.00	2.74	0.16	0.67 0.46	1.17 0.89	0.00		
155			2.71	0.00						2.81		1.30	0.00	0.46	0.89			
160			2.32							1.94		0.58		0.02	0.81			
165			2.14							1.07		0.00		0.00	0.06			
170			1.96							0.20		0.00		0.00	0.00			
175			1.77							0.00								
180			1.58															
185			1.39															
190			1.21															
195			1.02															
200			0.83								_		_					
205			0.64															
210			0.46															
215			0.27															
220			0.08															
225			0.00															1

Summary of Unit Hydrograph Parameters Used By Program and Calculated Results (Version 2.0.1)

				Uni	t Hydrograp	h Paramet	ers and Res	sults			Excess	Precip.		Storm H	ydrograph	
					W50		W75	Time to					Time to		Total	Runoff per
				W50	Before	W75	Before	Peak		Volume	Excess	Excess	Peak	Peak Flow	Volume	Unit Area
Catchment Name/ID	User Comment for Catchment	СТ	Ср	(min.)	Peak	(min.)	Peak	(min.)	Peak (cfs)	(c.f)	(inches)	(c.f.)	(min.)	(cfs)	(c.f.)	(cfs/acre)
A1		0.097	0.131	25.0	4.03	13.0	2.84	6.7	85	164,729	0.57	94,676	35.0	31	94,308	0.68
B1		0.092	0.139	18.2	3.44	9.5	2.43	5.7	95	134,310	0.58	77,837	30.0	29	77,220	0.80
B2		0.093	0.113	33.3	4.40	17.3	3.11	7.3	35	90,351	0.56	50,405	35.0	12	50,284	0.48
B3		0.109	0.171	35.1	6.09	18.2	4.30	10.2	159	431,607	0.31	135,184	35.0	37	135,109	0.31
C1		0.089	0.205	15.3	3.91	7.9	2.76	6.5	238	281,797	0.64	181,072	30.0	76	180,336	0.97
D1		0.092	0.115	17.3	3.03	9.0	2.14	5.1	66	88,318	0.67	59,557	30.0	24	58,560	0.99
D2		0.084	0.229	15.9	4.30	8.3	3.04	7.2	229	282,777	0.87	246,138	30.0	98	245,292	1.26
E1		0.114	0.151	26.8	4.61	13.9	3.25	7.7	155	321,618	0.41	131,675	35.0	47	131,227	0.53
F1		0.107	0.097	32.8	3.94	17.1	2.78	6.6	48	122,440	0.47	56,968	35.0	16	56,751	0.48
F2		0.088	0.198	21.9	4.83	11.4	3.41	8.1	145	245,533	0.75	184,862	35.0	60	183,986	0.89
F3		0.092	0.087	20.4	2.87	10.6	2.03	4.8	30	46,609	0.68	31,862	30.0	11	31,302	0.88
F4		0.121	0.121	41.5	5.37	21.6	3.79	8.9	58	186,981	0.36	67,763	35.0	17	67,675	0.34
G1		0.096	0.093	25.2	3.31	13.1	2.34	5.5	37	73,072	0.59	43,083	30.0	14	42,758	0.68
G2		0.107	0.067	37.3	3.43	19.4	2.42	5.7	19	54,958	0.47	25,571	35.0	7	25,468	0.43
H1		0.109	0.078	39.3	3.85	20.4	2.72	6.4	25	75,177	0.31	23,258	35.0	6	23,195	0.27
H2		0.092	0.101	20.5	3.09	10.6	2.18	5.2	42	67,337	0.67	45,076	30.0	16	44,528	0.88
H3		0.094	0.058	19.2	2.36	10.0	1.67	3.9	15	21,816	0.64	13,878	30.0	5	13,432	0.87
H4		0.095	0.111	22.8	3.45	11.9	2.44	5.7	57	100,370	0.61	61,173	30.0	21	60,592	0.76

Printouts for Unit Hydrographs

flow in cfs

	now in cis															1		
time in minutes	A1	81	82	B3	13	D1	D2	E1	F1	23	33	F4	61	G 2	H1	Н2	Н3	H4
5	77.33	93.25	30.09	102.59	220.53	65.84	199.90	128.93	44.36	115.64	29.50	42.62	37.03	18.62	23.03	42.42	14.61	55.54
10	82.78	86.57	34.71	158.92	211.37	57.29	212.53	153.31	47.44	142.37	26.77	58.18	35.84	18.73	24.44	38.99	12.72	53.96
15	70.87	64.60	32.47	154.15	146.87	42.55	148.71	136.86	43.94	117.23	20.78	56.54	30.18	17.61	23.25	30.20	9.82	43.13
20	57.63	49.16	28.07	139.10	107.74	32.08	108.63	110.77	37.50	92.72	16.66	52.59	24.96	15.66	21.07	24.25	7.67	35.72
25	47.82	39.67	24.21	116.79	80.83	25.68	83.75	93.90	32.69	72.89	13.46	46.34	20.75	13.62	18.22	19.53	6.26	28.56
30	39.89	30.81	21.23	103.58	53.91	19.28	58.88	77.26	28.57	61.39	11.05	41.06	17.44	12.21	16.48	16.06	5.00	24.34
35	34.20	21.94	18.25	90.37	40.79	13.08	41.89	67.52	24.45	50.16	8.64	37.09	14.97	10.80	14.74	12.59	3.73	20.17
40	28.51	17.08	16.20	78.14	31.82	10.94	33.60	57.77	21.87	38.93	6.23	33.12	12.50	9.45	13.00	9.12	2.78	16.00
45	22.81	14.12	14.45	70.52	22.85	8.81	25.30	48.03	19.44	28.50	5.21	29.15	10.02	8.61	11.70	7.55	2.35	11.83
50	17.12	11.17	12.70	62.89	13.88	6.68	17.01	38.28	17.01	24.76	4.40	26.80	7.55	7.77	10.67	6.39	1.93	10.13
55	15.14	8.21	10.96	55.26	4.91	4.55	8.72	30.20	14.58	21.02	3.60	24.47	6.69	6.93	9.63	5.24	1.51	8.74
60	13.25	5.26	9.21	47.63	0.00	2.41	0.43	26.95	12.15	17.28	2.80	22.14	5.86	6.09	8.60	4.08	1.09	7.35
65	11.35	2.30	7.46	40.01		0.28	0.00	23.70	9.73	13.53	1.99	19.80	5.04	5.25	7.56	2.92	0.66	5.96
70	9.45	0.00	6.57	32.38		0.00		20.45	8.85	9.79	1.19	17.47	4.21	4.41	6.53	1.77	0.24	4.57
75	7.55		5.99	29.45				17.20	8.04	6.05	0.39	15.14	3.39	3.73	5.49	0.61	0.00	3.18
80	5.65		5.41	26.90				13.96	7.23	2.30	0.00	12.80	2.56	3.45	4.78	0.00		1.79
85	3.76		4.83	24.36				10.71	6.42	0.00		11.25	1.74	3.17	4.43			0.40
90	1.86		4.24	21.82				7.46	5.61			10.48	0.92	2.89	4.09			0.00
95	0.00		3.66	19.28				4.21	4.80			9.70	0.09	2.61	3.74			
100			3.08	16.73				0.96	3.99			8.92	0.00	2.33	3.40			
105			2.50	14.19				0.00	3.18			8.14		2.05	3.05			
110			1.91	11.65					2.37			7.37		1.77	2.71			<u> </u>
115			1.33	9.11					1.57			6.59		1.49	2.36			<u> </u>
120			0.75	6.57					0.76			5.81		1.21	2.02			<u> </u>
125			0.16	4.02					0.00			5.03		0.93	1.67			<u> </u>
130			0.00	1.48								4.25		0.65	1.33			ļ
135				0.00								3.48		0.37	0.98			\vdash
140												2.70		0.09	0.64			\vdash
145												1.92		0.00	0.29			\vdash
150												1.14			0.00			\vdash
155												0.37						\vdash
160												0.00						

Printouts for Storm Hydrographs

Fig.		flow in cfs																	
Fig.	es																		
Fig.	j,																		
Fig.	Ē																		
S	ë																		
10	tim	Α1	B1	B2	B3	C1	D1	D2	E1	14	F2	Ε	F4	G1	62	抂	Н2	뛴	Ŧ
15																			
10																			
15 10.87 22.60 7.93 17.10 59.49 18.93 77.51 25.66 9.88 42.33 8.75 7.68 9.88 4.07 3.28 12.38 4.00 15.21 20.93 35.8 39.28 31.38 4.00 4.07 3.28 12.38 4.00 4.07 3.28 12.38 4.00 4.07 3.28 12.38 4.00 4.07 3.28 12.38 4.00 4.07 3.28 12.38 4.00 4.07 3.28 12.38 4.00 4.07 3.28 12.38 4.00 4.07 3.28 12.38 4.00 4.07 3.28 4.00 4.07 4.																			
100 38 29.46 11.46 31.45 75.68 24.15 98.47 43.67 15.39 59.83 11.36 14.72 13.78 62.3 5.34 15.24 5.21 20.93 101 102 103 103 105 105 105 105 105 105 105 105 105 105 105 102 103 103 105																			
15 10.72 10.67 10.07 36.88 66.79 21.82 89.91 46.88 16.28 60.11 10.660 17.33 13.54 65.5 5.68 15.19 48.0 20.15																			
40 1781 2258 11.45 3592 54.47 18.39 74.71 42.71 15.34 53.80 9.79 17.30 12.26 6.29 5.48 13.31 41.4 17.97																			
185 1845 1922 10.58 32.86 44.66 15.44 62.77 37.28 13.93 46.86 8.06 16.18 10.85 5.79 5.07 11.52 35.55 15.89 15.90 17.18 11.59 18.25 22.25 23.65 33.65 13.05 23.12 32.55 12.86 14.17 7.06 14.89 9.00 53.4 46.6 10.08 3.07 13.95 15.90 13.24 13.25 12.25 13.83 13.75 15.80 13.25 13.83 13.95 13.85 13.05 13.75 13.80 13.25 13.80 13.25 13.80 13.75 13.25 13.80 13.25 13.80 13.75 13.25 13.80 13.25 13.80 13.75 13.25 13.80 13.25 13.80 13.75 13.25 13.80 13.25																			
100 11/18 16.55 6.82 29.65 36.85 31.05 51.12 32.25 12.68 41.47 7.06 14.80 9.70 5.34 4.66 10.08 3.07 11.90 11.9	_																		
155 19.37 13.99 9.08 26.95 30.79 10.72 43.00 28.65 11.48 36.51 6.07 13.55 8.65 4.91 4.30 8.67 25.99 12.22																			
15 13 10 18 7.94 72.29 72.96 12 32.85 72.34 95.9 77.79 45.7 13.11 6.80 4.17 3.65 6.51 1.94 9.21	55	19.37									36.51								
To 13.24 9.76 7.45 20.59 19.65 7.15 28.46 19.37 8.80 25.18 4.16 10.45 5.97 3.90 3.41 5.91 1.74 8.23 1.75 17.79 17.75 17.79 8.35 6.89 18.85 16.26 6.00 23.71 16.54 7.92 22.91 3.71 3.95 9.53 3.30 3.17 5.26 15.27 7.41 18.0 10.62 7.22 6.30 17.03 13.53 4.85 19.26 14.42 6.99 20.51 3.23 8.91 4.82 3.27 2.93 4.99 1.29 6.62 1.85 1.75 1	60	17.19	12.08	8.45	24.37	26.55	9.18	37.60	25.43	10.42	31.82	5.18	12.40	7.70	4.50	3.96	7.40	2.19	10.64
The color The																			9.21
10 10 10 10 10 10 10 10																			
85 957 6.07 5.76 15.22 12.11 3.89 16.78 12.86 6.11 18.18 2.78 8.12 4.36 2.94 2.68 3.95 1.07 5.87																			
10																			
Feb 1.75 1.76 1.76 1.76 1.77 1.148 1.127 1.149 1.125 1.138 1.38 1.12 1.138 1.14 1.127 1.149 1.141																			
100 6.58 4.29 4.75 11.49 9.92 2.75 13.45 8.75 4.63 11.66 1.65 5.77 3.04 2.14 2.00 2.33 0.63 3.69 105 5.52 3.91 4.43 10.66 6.00 2.49 12.15 7.33 4.21 9.81 1.45 5.11 2.58 1.98 1.85 2.03 0.57 2.99 110 4.54 3.64 4.12 9.86 8.35 2.30 11.26 5.94 3.80 8.73 1.33 4.64 2.14 1.83 1.74 1.86 0.53 2.52 115 3.70 3.43 3.83 3.09 7.88 2.17 10.60 4.61 3.41 8.10 12.44 4.29 1.76 1.69 1.63 1.74 0.49 2.27 1.20 3.19 3.52 8.32 7.31 2.00 9.84 3.37 3.02 7.53 1.15 3.97 1.51 1.55 1.52 1.61 0.46 2.09 125 2.62 2.47 3.05 7.36 5.48 1.52 7.54 2.39 2.55 6.26 0.91 3.63 1.23 1.38 1.38 1.28 0.35 1.70 1.30																			
105 5.52 3.91 4.43 10.66 9.00 2.49 12.15 7.33 4.21 9.81 1.45 5.11 2.58 1.98 1.85 2.03 0.57 2.99 1.00 4.45 4.12 9.86 8.35 2.30 11.26 5.94 3.80 8.73 1.33 4.64 2.14 1.38 1.74 1.86 0.33 2.52 115 3.70 3.43 3.83 9.09 7.88 2.17 10.60 4.61 3.41 8.10 1.24 4.29 1.76 1.69 1.63 1.74 0.49 2.27 1.20 3.19 3.19 3.52 8.32 7.31 2.00 9.84 3.37 3.02 7.53 1.15 3.57 1.51 1.55 1.61 0.46 2.09 1.25 2.62 2.47 3.05 7.56 5.48 1.52 7.54 2.39 2.55 6.26 0.91 3.63 1.23 1.38																			
110 4.54 3.64 4.12 9.86 8.35 2.30 11.26 5.94 3.80 8.73 1.33 4.64 2.14 1.83 1.74 1.86 0.53 2.52 115 3.70 3.43 3.83 3.99 7.88 2.17 10.60 4.61 3.41 8.10 1.24 4.29 1.76 1.69 1.63 1.74 0.49 2.27 1.20 3.19 3.19 3.52 8.32 7.31 2.00 9.84 3.37 3.02 7.53 1.15 3.57 1.51 1.55 1.52 1.61 0.46 2.09 1.25 2.62 2.47 3.05 7.36 5.48 1.52 7.54 2.39 2.55 6.26 0.91 3.63 1.23 1.38 1.38 1.28 0.35 1.70 1.30 2.11 1.84 2.57 6.30 3.83 1.12 5.34 1.80 2.09 4.91 0.70 3.29 0.99 1.21 1.23 0.99 0.77 1.34 1.35 1.69 1.37 2.11 5.27 2.67 0.82 3.79 1.42 1.65 3.82 0.54 2.96 0.80 1.05 1.09 0.76 0.20 1.06 1.40 1.35 1.02 1.70 4.28 1.82 0.60 2.64 1.13 1.23 2.88 0.42 2.63 0.64 0.89 0.95 0.58 0.15 0.84 1.45 1.55 1.52 1.61 0.46 0.52 1.07 0.28 0.80 0.52 1.07 0.28 0.80 0.52 1.07 0.80 0.50 0.80 0.52 1.17 0.64 1.75 0.23 0.31 2.32 0.51 0.74 0.92 0.44 0.11 0.65 1.50 0.86 0.52 1.07 2.50 0.80 0.29 1.19 0.71 0.64 1.75 0.23 2.01 0.41 0.59 0.69 0.33 0.08 0.50 0.55																			
15 370 343 383 9.99 7.88 2.17 10.60 4.61 3.41 8.10 1.24 4.29 1.76 1.69 1.63 1.74 0.49 2.27																			
125 2.62 2.47 3.05 3.19 3.52 8.32 7.31 2.00 9.84 3.37 3.02 7.53 1.15 3.97 1.51 1.55 1.52 1.61 0.46 2.09 125 2.62 2.47 3.05 7.36 5.48 1.52 7.54 2.39 2.55 6.26 0.91 3.63 1.23 1.38 1.38 1.38 1.28 0.35 1.70 130 2.11 1.84 2.57 6.30 3.83 1.12 5.34 1.80 2.09 4.91 0.70 3.29 0.99 1.21 1.23 0.99 0.27 1.34 135 1.69 1.37 2.11 5.27 2.67 0.82 3.79 1.42 1.65 3.82 0.42 2.63 0.64 0.89 0.95 0.58 0.15 0.84 140 1.35 1.02 1.70 4.28 1.82 0.60 2.64 1.13 1.23 2.98 0.42 2.63 0.64 0.89 0.95 0.58 0.15 0.84 145 1.08 0.74 1.34 3.35 1.21 0.42 1.78 0.90 0.87 2.30 0.31 2.32 0.51 0.74 0.82 0.44 0.11 0.65 150 0.86 0.52 1.07 2.50 0.80 0.29 1.19 0.71 0.64 1.75 0.23 2.01 0.41 0.59 0.69 0.33 0.88 0.50 155 0.67 0.37 0.89 1.83 0.51 0.20 0.79 0.55 0.52 1.31 0.17 1.71 0.32 0.45 0.57 0.24 0.06 0.38 160 0.51 0.25 0.74 1.42 0.29 0.14 0.47 0.43 0.42 0.88 0.13 1.41 0.25 0.33 0.45 0.18 0.04 0.29 175 0.23 0.04 0.15 0.05																			
125 2.62 2.47 3.05 7.36 5.48 1.52 7.54 2.39 2.55 6.26 0.91 3.63 1.23 1.38 1.38 1.28 0.35 1.70																			
135 1.69 1.37 2.11 1.84 2.57 6.30 3.83 1.12 5.34 1.80 2.09 4.91 0.70 3.29 0.99 1.21 1.23 0.99 0.27 1.34 1.35 1.69 1.37 2.11 5.27 2.67 0.82 3.79 1.42 1.65 3.82 0.54 2.96 0.80 1.05 1.09 0.76 0.20 1.06 1.06 1.06 1.06 1.06 1.06 1.07 1.07 1.06 1.07 1																			
140 1.35 1.02 1.70 4.28 1.82 0.60 2.64 1.13 1.23 2.98 0.42 2.63 0.64 0.89 0.95 0.58 0.15 0.84 145 1.08 0.74 1.34 3.35 1.21 0.42 1.78 0.90 0.87 2.30 0.31 2.32 0.51 0.74 0.82 0.44 0.11 0.65 150 0.86 0.52 1.07 2.50 0.80 0.29 1.19 0.71 0.64 1.75 0.23 2.01 0.41 0.59 0.69 0.33 0.88 0.50 155 0.67 0.37 0.89 1.83 0.51 0.20 0.79 0.56 0.52 1.31 0.17 1.71 0.32 0.45 0.57 0.24 0.06 0.38 160 0.51 0.25 0.74 1.42 0.29 0.14 0.47 0.43 0.42 0.98 0.13 1.41 0.25 0.33 0.45 0.18 0.04 0.29 165 0.40 0.16 0.62 1.18 0.13 0.08 0.23 0.33 0.34 0.73 0.09 1.12 0.19 0.24 0.34 0.13 0.03 0.22 170 0.31 0.09 0.51 0.98 0.03 0.04 0.08 0.25 0.28 0.52 0.06 0.83 0.15 0.18 0.25 0.09 0.02 0.16 175 0.23 0.04 0.42 0.82 0.00 0.01 0.00 0.19 0.22 0.36 0.04 0.55 0.11 0.15 0.19 0.05 0.01 0.11 180 0.17 0.01 0.35 0.67 0.00 0.00 0.00 0.00 0.14 0.18 0.23 0.02 0.35 0.08 0.12 0.15 0.03 0.00 0.08 185 0.12 0.00 0.29 0.56 0.00 0.00 0.00 0.00 0.14 0.18 0.23 0.02 0.35 0.08 0.12 0.15 0.03 0.00 0.08 185 0.12 0.00 0.29 0.56 0.00 0.00 0.00 0.00 0.10 0.14 0.13 0.11 0.01 0.04 0.08 0.11 0.15 0.19 0.05 0.01 0.11 180 0.17 0.01 0.35 0.67 0.00	130																		
145 1.08 0.74 1.34 3.35 1.21 0.42 1.78 0.90 0.87 2.30 0.31 2.32 0.51 0.74 0.82 0.44 0.11 0.65 150 0.86 0.52 1.07 2.50 0.80 0.29 1.19 0.71 0.64 1.75 0.23 2.01 0.41 0.59 0.69 0.69 0.33 0.08 0.50 155 0.67 0.37 0.89 1.83 0.51 0.20 0.79 0.56 0.52 1.31 0.17 1.71 0.32 0.45 0.57 0.24 0.06 0.38 160 0.51 0.25 0.74 1.42 0.29 0.14 0.47 0.43 0.42 0.98 0.13 1.41 0.25 0.33 0.45 0.18 0.04 0.29 165 0.40 0.16 0.62 1.18 0.13 0.08 0.23 0.33 0.34 0.73 0.09 1.12 0.19 0.24 0.34 0.13 0.03 0.22 170 0.31 0.09 0.51 0.98 0.03 0.04 0.08 0.25 0.28 0.52 0.06 0.83 0.15 0.18 0.25 0.09 0.02 0.16 175 0.23 0.04 0.42 0.82 0.00 0.01 0.00 0.19 0.22 0.36 0.04 0.55 0.11 0.15 0.19 0.05 0.01 0.11 180 0.17 0.01 0.35 0.67 0.00 0.00 0.00 0.01 0.00 0.10 0.00 0.00 0.15 0.10 0.00 0.00 0.00 0.00 190 0.08 0.02 0.05 0.00 0.01 0.00 0.00 0.01 0.00	135	1.69	1.37	2.11	5.27	2.67	0.82	3.79	1.42	1.65	3.82	0.54	2.96	0.80	1.05	1.09	0.76	0.20	1.06
150	140	1.35	1.02	1.70	4.28	1.82	0.60	2.64	1.13	1.23	2.98	0.42	2.63	0.64	0.89	0.95	0.58	0.15	0.84
155	145	1.08	0.74	1.34	3.35	1.21	0.42	1.78	0.90	0.87	2.30	0.31	2.32	0.51	0.74	0.82	0.44	0.11	0.65
160																			
165																			
170																			
175 0.23 0.04 0.42 0.82 0.00 0.01 0.00 0.19 0.22 0.36 0.04 0.55 0.11 0.15 0.19 0.05 0.01 0.11 180 0.17 0.01 0.35 0.67 0.00 0.00 0.00 0.00 0.14 0.18 0.22 0.35 0.08 0.12 0.15 0.03 0.00 0.08 185 0.12 0.00 0.29 0.56 0.00 0.00 0.00 0.01 0.14 0.13 0.01 0.24 0.06 0.10 0.13 0.01 0.00 0.03 0.00 0.02 0.00 <td></td>																			
180																			
185																			
190 0.08 0.00 0.23 0.46 0.00 0.00 0.07 0.11 0.06 0.00 0.19 0.04 0.08 0.11 0.00 0.00 0.03 195 0.05 0.00 0.19 0.38 0.00 0.00 0.05 0.09 0.02 0.00 0.15 0.09 0.00 0.01 0.00																			
195 0.05 0.00 0.19 0.38 0.00 0.00 0.00 0.00 0.05 0.09 0.02 0.00 0.15 0.02 0.07 0.09 0.00 0.00 0.00 0.01																			
200 0.02 0.00 0.15 0.30 0.00 0.00 0.03 0.07 0.00 0.00 0.12 0.01 0.05 0.08 0.00 0.00 0.00 205 0.01 0.00 0.11 0.24 0.00																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
210 0.00 0.00 0.08 0.18 0.00 0.00 0.01 0.04 0.00	205	0.01	0.00	0.11	0.24	0.00	0.00	0.00	0.02	0.05	0.00	0.00	0.10	0.00	0.04	0.06	0.00	0.00	0.00
220 0.00 0.00 0.04 0.10 0.00		0.00	0.00		0.18	0.00	0.00	0.00	0.01	0.04	0.00	0.00	0.08	0.00	0.03	0.05	0.00		0.00
225 0.00 0.00 0.02 0.07 0.00																			
230 0.00 0.00 0.01 0.04 0.00																			
235 0.00																			
240 0.00 0.00 0.00 0.01 0.00																			
245 0.00																			
250 0.00																			
255 0.00																			
260 0.00																			
265 0.00																			
270 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0																			

Summary of Unit Hydrograph Parameters Used By Program and Calculated Results (Version 2.0.1)

				Uni	t Hydrograp	h Paramet	ers and Res	sults			Excess	Precip.		Storm H	ydrograph	
					W50		W75	Time to					Time to		Total	Runoff per
				W50	Before	W75	Before	Peak		Volume	Excess	Excess	Peak	Peak Flow	Volume	Unit Area
Catchment Name/ID	User Comment for Catchment	СТ	Ср	(min.)	Peak	(min.)	Peak	(min.)	Peak (cfs)	(c.f)	(inches)	(c.f.)	(min.)	(cfs)	(c.f.)	(cfs/acre)
A1		0.096	0.134	24.4	4.01	12.7	2.83	6.7	87	164,729	1.93	317,756	40.0	101	316,720	2.22
B1		0.091	0.141	17.8	3.42	9.2	2.42	5.7	98	134,310	1.82	243,813	35.0	97	241,630	2.62
B2		0.092	0.115	32.5	4.38	16.9	3.09	7.3	36	90,351	1.79	161,555	40.0	42	161,041	1.70
В3		0.089	0.250	19.5	5.26	10.2	3.72	8.8	285	431,607	1.88	813,554	40.0	295	807,930	2.48
C1		0.088	0.210	14.7	3.88	7.6	2.74	6.5	247	281,797	1.91	539,141	35.0	238	535,192	3.07
D1		0.092	0.116	17.1	3.02	8.9	2.14	5.0	67	88,318	2.03	179,570	35.0	70	176,587	2.88
D2		0.083	0.230	15.8	4.30	8.2	3.04	7.2	231	282,777	2.25	634,968	35.0	252	632,818	3.24
E1		0.113	0.150	26.5	4.56	13.8	3.23	7.6	157	321,618	1.75	563,176	40.0	178	561,356	2.01
F1		0.106	0.096	32.4	3.90	16.9	2.76	6.5	49	122,440	1.81	221,916	40.0	59	221,037	1.75
F2		0.088	0.199	21.7	4.82	11.3	3.40	8.0	146	245,533	2.12	520,116	40.0	171	517,601	2.53
F3		0.091	0.088	20.1	2.86	10.5	2.02	4.8	30	46,609	2.04	95,234	35.0	33	93,473	2.56
F4		0.090	0.168	22.4	4.39	11.7	3.10	7.3	108	186,981	2.06	385,413	40.0	125	383,174	2.42
G1		0.095	0.095	24.6	3.29	12.8	2.33	5.5	38	73,072	1.94	142,048	40.0	44	140,977	2.18
G2		0.106	0.067	36.8	3.40	19.2	2.41	5.7	19	54,958	1.81	99,609	45.0	24	99,196	1.58
H1		0.107	0.078	38.6	3.80	20.1	2.69	6.3	25	75,177	1.49	111,730	45.0	28	111,424	1.33
H2		0.092	0.102	20.2	3.08	10.5	2.18	5.1	43	67,337	2.03	136,549	35.0	48	134,796	2.57
H3		0.093	0.059	18.9	2.36	9.8	1.66	3.9	15	21,816	1.99	43,454	35.0	16	42,019	2.60
H4		0.094	0.113	22.3	3.44	11.6	2.43	5.7	58	100,370	1.96	197,106	35.0	65	195,054	2.34

Printouts for Storm Hydrographs

The color of the		flow in cfs																	
B																			
B	뒬																		
B	Ē																		
S																			
S	E I	ч	e.	Ŋ	m	1	4	2	-	-	- 7		4	7	2	<u> </u>	7	<u>m</u>	4
10 994 168 0.52 4.22 4.78 1.15 5.37 0.48 0.27 2.45 0.53 1.71 0.48 0.11 0.13 0.73 0.23 0.79 15 3.15 5.42 1.79 1.533 1.549 3.64 1.860 1.65 0.99 8.65 1.69 5.85 1.75 0.37 0.65 2.35 0.73 2.57 25 28.66 2.950 10.44 2.19 78.37 2.479 95.14 3.837 1.16 5.376 1.14 1.40 1.40 1.40 5.00 1.74 6.52 25 28.66 2.950 10.44 2.19 78.37 2.479 95.14 38.37 1.16 5.376 1.14 3.902 1.16 1.86 8.84 8.86 4.88 1.626 5.32 2.051 30 74.80 79.47 28.38 209.96 19.61 5.958 2.0621 115.53 40.66 125.47 2.756 93.76 34.55 16.72 18.14 39.34 1.13 51.86 35 99.97 79.08 93.90 92.93 2.860 70.07 22.18 1.670 5.496 1.754 3.23 1.279 4.842 1.15 5.38 4.762 1.156 64.72 40 10.64 51.72 42.26 2.95.27 21.28 6.555 2.66.81 176.04 58.55 10.00 3.133 124.89 44.55 23.88 27.51 46.23 14.56 64.17 40 10.64 51.57 51.57 51.00		_																	
15 1.15 5.42 1.179 15.33 15.49 3.64 18.05 16.5 0.90 8.65 1.69 5.85 1.57 0.37 0.45 2.35 0.73 2.57 25 28.66 28.50 10.41 82.19 78.37 24.79 85.14 38.37 14.16 53.76 11.42 39.02 13.48 5.86 4.98 16.26 5.32 20.51 37 40 79.47 78.38 29.69 19.76 19.58 20.62 11.55 4.066 12.547 73.76 39.76 33.76 31.48 5.86 4.98 16.26 5.32 20.51 35 97.97 97.08 39.09 293.44 28.03 70.07 72.218 167.02 54.09 167.34 32.03 12.279 42.48 22.15 25.18 47.62 15.60 64.77 45 95.76 81.74 41.60 270.79 18.54 59.25 20.657 77.173 58.16 10.064 71.193 39.52 24.278 17.00 64.72 45 95.76 81.74 41.60 270.79 18.54 59.25 20.657 77.173 58.16 10.016 29.55 11.793 39.52 42.78 11.70 60.43 50 88.61 71.33 39.52 24.10 18.877 52.39 16.227 19.994 55.88 15.50 61.31 10.793 39.52 13.48 47.62 15.50 58.60 167.34 32.39 12.794 42.89 34.44 10.81 49.79 50 73.72 51.53 33.33 51.13 10.80 83.53 33.44 84.59 10.80 12.35 33.39 21.94 24.69 34.44 10.81 49.79 70 74.62 77.62																			
10 11.45 4.00 34.16 32.52 8.58 40.38 7.60 33.88 20.68 4.00 14.16 4.16 1.40 1.40 5.00 1.74 6.52 1.55 1.																			
15																			
190 74.80 79.47 28.38 209.96 197.61 59.58 206.21 118.53 40.66 125.47 27.36 98.76 34.55 16.77 18.14 39.34 13.13 13.18 13.85 13.57 197.08 33.09 293.44 223.00 270.79 283.65 293.64 178.04 58.95 170.30 31.93 124.89 43.95 23.88 27.51 46.03 14.96 64.17 64.05 59.76 64.17 27.05 27.07 27.07 27.08 59.55 28.06 17.34 27.05 29.55 17.07 27.05 27.00 27.07 27.08 27.00 27.07 27.00 27.07 27.00 27.07 27.00	_																		
15 16 17 17 17 18 18 18 18 18	_																		
No. No.	_																		
15 15 15 15 15 15 15 15	_																		
Section Sect																			
SS 80.64 61.06 36.70 210.38 128.15 44.77 154.98 145.85 52.10 31.63 23.79 97.40 35.39 21.94 24.69 34.43 10.81 49.97																			
Section Fig. Fig.	_																		
Feb Fig. 140 Fig. 1818 31.76 51.67.0 93.56 34.56 318.81 123.94 46.04 306.27 18.72 79.39 29.76 19.73 21.51 27.09 84.44 40.65 70.57 70																			
To Str. To Str. To Str.	_																		
The The																			
Ref Ref	_																		
85 35.33 18.17 19.94 74.04 27.23 12.61 40.76 64.74 27.82 54.76 8.95 41.21 15.71 13.05 14.51 12.91 3.68 20.55																			
90 13,24 17,37 58,22 21,17 8,92 31,25 55,66 23,97 45,42 7,12 34,55 13,49 11,51 12,93 10,27 2,78 17,14 19,5 52,56 9,81 15,52 44,14 17,61 6,75 25,52 47,90 21,14 36,94 5,47 28,49 11,50 10,09 11,40 7,89 20,2 14,01 10,00 21,38 7,91 14,06 33,30 15,21 5,47 21,73 40,83 18,87 29,27 4,09 22,92 9,66 8,92 9,98 5,89 1,52 11,11 10,5 17,42 6,73 12,77 27,55 13,68 4,57 13,13 34,26 16,87 22,78 3,22 17,88 7,94 8,04 8,89 4,60 1,23 8,49 11,15 10,62 5,43 10,50 21,44 11,96 3,53 16,10 22,23 13,36 15,62 2,31 11,46 4,94 6,63 7,37 3,28 0,89 5,17 12,08 32,5 5,07 9,45 19,57 11,75 3,23 15,37 15,77 11,75 13,81 20,09 3,95 38,6 6,02 6,74 2,99 0,79 4,39 13,54	_																		
\$\begin{array}{c c c c c c c c c c c c c c c c c c c																			
100 21.38 7.91 14.06 33.30 15.21 5.47 21.73 40.83 18.87 29.27 4.09 22.92 9.66 8.92 9.98 5.89 1.52 11.11 105 17.42 6.73 12.77 27.35 13.68 4.57 19.13 34.26 16.87 22.78 3.22 17.88 7.94 8.04 8.89 4.60 1.23 8.49 110 13.78 5.95 11.60 23.68 12.61 3.96 17.35 28.05 11.50 18.35 2.68 13.86 6.34 7.30 8.07 3.81 1.03 6.41 115 10.62 5.43 10.50 21.24 11.96 3.53 16.10 22.23 13.36 15.62 2.31 11.46 4.94 6.63 7.37 3.28 0.89 5.17 10.62 5.43 10.50 21.24 11.96 3.53 16.10 22.23 13.36 15.62 2.31 11.46 4.94 6.63 7.37 3.28 0.89 5.17 12.65 3.35 16.10 22.23 13.36 15.62 2.31 11.46 4.94 6.63 7.37 3.28 0.89 5.17 12.65 3.35 16.10 22.23 13.36 15.62 2.31 11.46 4.94 6.63 7.37 3.28 0.89 5.17 12.65 3.35 16.10 22.23 13.36 15.62 2.31 11.46 4.94 6.63 7.37 3.28 0.89 5.17 12.65 3.35 16.10 22.23 13.36 15.62 2.31 11.46 4.94 6.63 7.37 3.28 0.89 5.17 12.65 3.35 16.10 22.23 13.36 15.62 2.31 11.46 4.94 6.63 7.37 3.28 0.89 5.17 12.65 3.35 16.10 22.23 13.36 15.62 2.31 11.46 4.94 6.63 7.37 3.28 0.89 5.17 12.65 3.35 3.52 2.07 5.52 8.70 4.24 1.26 6.01 5.78 6.72 6.17 5.80 4.24 2.05 5.36 6.08 2.19 0.58 3.35																			
105 17.42 67.3 12.77 27.35 13.86 4.57 19.13 34.26 16.87 22.78 3.22 17.88 7.94 8.04 8.89 4.60 1.23 8.49 110 13.78 5.95 11.60 23.68 12.61 3.96 17.35 28.05 15.05 18.35 2.68 13.86 6.34 7.30 8.07 3.81 1.03 6.41 115 10.62 5.43 10.50 21.24 11.96 3.53 16.10 22.23 13.36 15.62 2.31 11.46 4.94 6.63 7.37 3.28 0.89 5.17 120 8.32 5.07 9.45 19.57 11.75 3.23 15.37 16.77 11.75 13.81 2.05 9.95 3.86 6.02 6.74 2.90 0.79 4.39 1.35 13.33 13.12 15.88 8.79 2.37 11.92 11.58 10.02 11.33 15.57 7.48 2.90 5.36 6.08 2.19 0.58 3.35 13.34 4.73 2.80 6.80 11.73 6.09 1.72 8.39 8.10 8.35 8.30 1.14 5.91 2.18 4.72 5.44 1.60 0.42 2.49 13.35	_																		
110 13.78 5.55 11.60 23.68 12.61 3.96 17.35 28.05 15.05 18.35 2.68 13.86 6.34 7.30 8.07 3.81 1.03 6.41 115 10.62 5.43 10.50 21.24 11.96 3.53 16.10 22.23 13.36 15.62 2.31 11.46 4.94 6.63 7.37 3.28 0.89 5.17 120 8.32 5.07 9.45 19.57 11.75 3.23 15.37 16.77 11.75 13.81 2.05 9.95 3.86 6.02 6.74 2.90 0.79 4.39 125 6.31 3.83 8.12 15.88 8.79 2.37 11.92 11.58 10.02 11.03 1.55 7.84 2.90 5.36 6.08 2.19 0.58 3.35 130 4.73 2.80 6.80 11.73 6.09 1.72 8.39 8.10 8.35 8.30 1.14 5.91 2.18 4.72 5.44 1.60 0.42 2.49 135 3.52 2.07 5.52 8.70 4.24 1.26 6.01 5.78 6.72 6.17 0.83 4.41 1.63 4.12 4.82 1.17 0.31 1.84 140 2.61 1.55 4.31 6.55 2.89 0.93 4.27 4.12 5.15 4.58 0.63 3.26 1.22 3.56 4.24 0.88 0.23 1.34 145 1.91 1.13 3.21 4.92 1.91 0.66 2.93 2.90 3.70 3.47 0.47 2.44 0.90 3.00 3.67 0.66 0.17 0.99 150 1.39 0.81 2.32 3.64 1.29 0.47 2.00 2.02 2.57 2.64 0.35 1.86 0.66 2.45 3.11 0.50 0.57 0.99 0.57 160 0.80 0.40 1.36 1.97 0.41 0.22 0.80 0.91 1.35 1.51 0.20 1.08 0.37 1.40 2.02 0.28 0.07 0.44 0.45	_																		
15	_																		
125 8.32 5.07 9.45 19.57 11.75 3.23 15.37 16.77 11.75 13.81 2.05 9.95 3.86 6.02 6.74 2.90 0.79 4.39 125 6.31 3.83 8.12 15.88 8.79 2.37 11.92 11.58 10.02 11.03 1.55 7.84 2.90 5.36 6.08 2.19 0.58 3.35 130 4.73 2.80 6.80 11.73 6.09 1.72 8.39 8.10 8.35 8.30 1.14 5.91 2.18 4.72 5.44 1.60 0.42 2.49 135 3.52 2.07 5.52 8.70 4.24 1.26 6.01 5.78 6.72 6.17 0.83 4.41 1.63 4.12 4.82 1.17 0.31 1.84 140 2.61 1.55 4.31 6.55 2.89 0.93 4.27 4.12 5.15 4.58 0.63 3.26 1.22 3.56 4.24 0.88 0.23 1.34 145 1.91 1.13 3.21 4.92 1.91 0.66 2.93 2.90 3.70 3.47 0.47 2.44 0.90 3.00 3.67 0.66 0.17 0.99 150 1.39 0.81 2.32 3.64 1.29 0.47 2.00 2.02 2.57 2.64 0.35 1.86 0.66 2.45 3.11 0.50 0.13 0.15 155 1.04 0.58 1.76 2.65 0.79 0.33 1.33 1.36 1.85 1.99 0.26 1.41 0.49 1.91 2.56 0.37 0.09 0.57 160 0.80 0.40 1.36 1.97 0.41 0.22 0.80 0.91 1.35 1.51 0.20 1.08 0.37 1.40 2.00 0.28 0.07 0.44 1.00 0.49 0.44 0.84 0.99 0.26 0.05 0.44 0.05 0.13 0.04 0.69 0.98 1.15 0.14 0.84 0.29 0.96 1.49 0.20 0.05 0.34 1.75 0.37 0.00 0.05 0.34 0.05 0.35 0.05 0.35 0.05 0.05 0.34 0.05 0.35 0.05 0.35 0.05 0.35 0.05 0.35 0.05 0.05 0.35 0.05 0.																			
125 6.31 3.83 8.12 15.88 8.79 2.37 11.92 11.58 10.02 11.03 1.55 7.84 2.90 5.36 6.08 2.19 0.58 3.35 130 4.73 2.80 6.80 11.73 6.09 1.72 8.39 8.10 8.35 8.30 1.14 5.91 2.18 4.72 5.44 1.60 0.42 2.49 1.35 1.35 1.35 2.07 5.52 8.70 4.24 1.26 6.01 5.78 6.72 6.17 0.83 4.41 1.63 4.12 4.82 1.17 0.31 1.84 1.40 1.25 1.2																			
135 1.37 2.80 6.80 11.73 6.09 1.72 8.39 8.10 8.35 8.30 1.14 5.91 2.18 4.72 5.44 1.60 0.42 2.49 135 3.52 2.07 5.52 8.70 4.24 1.26 6.01 5.78 6.72 6.17 0.83 4.41 1.63 4.12 4.82 1.17 0.31 1.84 1.40 2.61 1.55 4.31 6.55 2.89 0.93 4.27 4.12 5.15 4.88 0.63 3.26 1.22 3.56 4.24 0.88 0.23 1.34 1.45 1.91 1.13 3.21 4.92 1.91 0.66 2.93 2.90 3.70 3.47 0.47 2.44 0.90 3.00 3.67 0.66 0.17 0.99 1.50 1.39 0.81 2.32 3.64 1.29 0.47 2.00 2.02 2.57 2.64 0.35 1.86 0.66 2.45 3.11 0.50 0.13 0.75 1.60 0.80 0.40 1.36 1.97 0.41 0.22 0.80 0.91 1.35 1.51 0.20 1.08 0.37 1.40 2.02 0.28 0.07 0.44 0.58 1.65 0.62 0.26 1.41 0.49 1.91 2.56 0.37 0.09 0.57 0.49 0.44 0.81 0.91 0.02 0.07 0.13 0.54 0.06 0.98 1.15 0.14 0.84 0.29 0.96 1.49 0.20 0.28 0.07 0.44 0.81 0.91 0.02 0.07 0.13 0.54 0.70 0.85 0.10 0.63 0.23 0.68 1.00 0.14 0.03 0.25 0.37 0.06 0.38 0.08 0.00 0	_																		
135 3.52 2.07 5.52 8.70 4.24 1.26 6.01 5.78 6.72 6.17 0.83 4.41 1.63 4.12 4.82 1.17 0.31 1.84 140 2.61 1.55 4.31 6.55 2.89 0.93 4.27 4.12 5.15 4.58 0.63 3.26 1.22 3.56 4.24 0.88 0.23 1.34 145 1.91 1.13 3.21 4.92 1.91 0.66 2.93 2.90 3.70 3.47 0.47 2.44 0.90 3.00 3.67 0.66 0.17 0.99 150 1.39 0.81 2.32 3.64 1.29 0.47 2.00 2.02 2.57 2.64 0.35 1.86 0.66 2.45 3.11 0.50 0.13 0.75 155 1.04 0.58 1.76 2.65 0.79 0.33 1.33 1.36 1.85 1.99 0.26 1.41 0.49 1.91 2.56 0.37 0.09 0.57 160 0.80 0.40 1.36 1.97 0.41 0.22 0.80 0.91 1.35 1.51 0.20 1.08 0.37 1.40 2.02 2.28 0.07 0.44 165 0.62 0.26 1.05 1.39 0.15 0.13 0.40 0.69 0.98 1.15 0.14 0.84 0.29 0.96 1.49 0.20 0.05 0.34 170 0.49 0.14 0.81 0.91 0.02 0.07 0.13 0.54 0.70 0.85 0.10 0.63 0.23 0.68 1.00 0.14 0.03 0.25 180 0.28 0.02 0.49 0.26 0.00 0.00 0.00 0.03 0.35 0.37 0.03 0.30 0.13 0.36 0.46 0.05 0.01 185 0.19 0.00 0.39 0.08 0.00 0.00 0.00 0.33 0.35 0.37 0.03 0.30 0.13 0.36 0.46 0.05 0.01 185 0.19 0.00 0.39 0.08 0.00 0.00 0.00 0.01 0.18 0.09 0.06 0.13 0.14	_																		
140	_																		
145 1.91 1.13 3.21 4.92 1.91 0.66 2.93 2.90 3.70 3.47 0.47 2.44 0.90 3.00 3.67 0.66 0.17 0.99 1.50 1.39 0.81 2.32 3.64 1.29 0.47 2.00 2.02 2.57 2.64 0.35 1.86 0.66 2.45 3.11 0.50 0.13 0.75 1.55 1.04 0.58 1.76 2.65 0.79 0.33 1.33 1.35 1.85 1.99 0.26 1.41 0.49 1.91 2.56 0.37 0.09 0.57 1.60 0.80 0.40 1.36 1.97 0.41 0.22 0.80 0.91 1.35 1.51 0.20 1.08 0.37 1.40 2.02 0.28 0.07 0.44 1.65 0.62 0.26 1.05 1.39 0.15 0.13 0.40 0.69 0.98 1.15 0.14 0.84 0.29 0.96 1.49 0.20 0.05 0.34 1.70 0.49 0.49 0.44 0.81 0.91 0.02 0.07 0.13 0.54 0.70 0.85 0.10 0.63 0.23 0.68 1.00 0.14 0.03 0.25 1.75 0.37 0.06 0.63 0.53 0.00 0.02 0.00 0.43 0.50 0.58 0.06 0.45 0.18 0.50 0.66 0.09 0.02 0.18 1.80 0.28 0.02 0.49 0.26 0.00 0.00 0.00 0.00 0.33 0.35 0.37 0.03 0.33 0.36 0.46 0.05 0.14 0.12 0.12 0.12 0.12 0.00 0.39 0.08 0.00 0.00 0.00 0.00 0.25 0.26 0.21 0.01 0.18 0.09 0.26 0.33 0.00 0.00 0.00 0.00 0.25 0.26 0.21 0.01 0.18 0.09 0.26 0.33 0.02 0.00 0																			
150																			
155 1.04 0.58 1.76 2.65 0.79 0.33 1.33 1.36 1.85 1.99 0.26 1.41 0.49 1.91 2.56 0.37 0.09 0.57 160 0.80 0.40 1.36 1.97 0.41 0.22 0.80 0.91 1.35 1.51 0.20 1.08 0.37 1.40 2.02 0.28 0.07 0.44 165 0.62 0.26 1.05 1.39 0.15 0.13 0.40 0.69 0.98 1.15 0.14 0.84 0.29 0.96 1.49 0.20 0.05 170 0.49 0.14 0.81 0.91 0.02 0.07 0.13 0.40 0.69 0.98 1.15 0.14 0.84 0.29 0.96 1.49 0.20 0.05 175 0.37 0.06 0.63 0.53 0.00 0.02 0.00 0.43 0.50 0.85 0.10 0.63 0.23 0.68 1.00 0.14 0.03 0.25 175 0.37 0.06 0.63 0.53 0.00 0.02 0.00 0.43 0.50 0.58 0.06 0.45 0.18 0.50 0.66 0.09 0.02 0.18 180 0.28 0.02 0.49 0.26 0.00 0.00 0.00 0.00 0.33 0.35 0.37 0.03 0.33 0.36 0.46 0.05 0.18 185 0.19 0.00 0.39 0.08 0.00 0.00 0.00 0.00 0.25 0.26 0.21 0.01 0.18 0.09 0.26 0.33 0.02 0.00 0.07 190 0.12 0.00 0.32 0.00 0.00 0.00 0.00 0.18 0.21 0.09 0.00 0.09 0.06 0.19 0.24 0.00 0.00 0.04 195 0.07 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.12 0.17 0.02 0.00 0.03 0.13 0.18 0.00 0.00 0.00 0.00 205 0.01 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.01 0.00	_																		
160 0.80 0.40 1.36 1.97 0.41 0.22 0.80 0.91 1.35 1.51 0.20 1.08 0.37 1.40 2.02 0.28 0.07 0.44 155 0.62 0.26 1.05 1.39 0.15 0.13 0.40 0.69 0.98 1.15 0.14 0.84 0.29 0.96 1.49 0.20 0.05 0.34 170 0.49 0.14 0.81 0.91 0.02 0.07 0.13 0.54 0.70 0.85 0.10 0.63 0.23 0.68 1.00 0.14 0.03 0.25 175 0.37 0.06 0.63 0.53 0.00 0.02 0.00 0.03 0.58 0.06 0.45 0.18 0.50 0.66 0.09 0.02 0.12 1.00 0.48 0.18 0.50 0.66 0.09 0.02 0.18 1.00 0.02 0.02 0.18 1.00 0.03 0.03	_																		
165 0.62 0.26 1.05 1.39 0.15 0.13 0.40 0.69 0.98 1.15 0.14 0.84 0.29 0.96 1.49 0.20 0.05 0.34 170 0.49 0.14 0.81 0.91 0.02 0.07 0.13 0.54 0.70 0.85 0.10 0.63 0.23 0.68 1.00 0.14 0.03 0.25 180 0.28 0.02 0.49 0.26 0.00 0.00 0.03 0.58 0.06 0.45 0.18 0.50 0.66 0.09 0.02 0.18 180 0.28 0.02 0.49 0.26 0.00 0.00 0.00 0.33 0.35 0.37 0.03 0.36 0.46 0.05 0.01 0.12 185 0.19 0.00 0.39 0.08 0.00 0.00 0.25 0.26 0.21 0.01 0.18 0.09 0.26 0.33 0.02 0.00	_																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_																		
175 0.37 0.06 0.63 0.53 0.00 0.02 0.00 0.43 0.50 0.58 0.06 0.45 0.18 0.50 0.66 0.09 0.02 0.18 180 0.28 0.02 0.49 0.26 0.00																			
180 0.28 0.02 0.49 0.26 0.00 0.00 0.03 0.35 0.37 0.03 0.30 0.13 0.36 0.46 0.05 0.01 0.12 185 0.19 0.00 0.39 0.08 0.00 0.00 0.00 0.25 0.26 0.21 0.01 0.18 0.09 0.26 0.33 0.02 0.00 0.07 190 0.12 0.00 0.32 0.00 0.00 0.00 0.09 0.00 0.09 0.06 0.19 0.24 0.00 0.00 0.04 195 0.07 0.00 0.26 0.00 0.00 0.00 0.02 0.00 0.03 0.13 0.18 0.21 0.09 0.06 0.19 0.24 0.00	_																		
185 0.19 0.00 0.39 0.08 0.00 0.00 0.25 0.26 0.21 0.01 0.18 0.09 0.26 0.33 0.02 0.00 0.07 190 0.12 0.00 0.32 0.00 0.00 0.00 0.09 0.00 0.09 0.06 0.19 0.24 0.00 0.00 0.04 195 0.07 0.00 0.26 0.00 0.00 0.00 0.01 0.02 0.00 0.03 0.03 0.13 0.18 0.00 <td>_</td> <td></td>	_																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
205 0.01 0.00 0.16 0.00	_																		
210 0.00 0.00 0.12 0.00	_																		
215 0.00 0.00 0.08 0.00																			
220 0.00 0.00 0.05 0.00																			
225 0.00 0.00 0.03 0.00																			
230 0.00 0.00 0.01 0.00	_																		
235 0.00	_																		
240 0.00																			
245 0.00																			
250 0.00																			
255 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0																			
	_																		
1260 0.00	260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
265 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.																			

Printouts for Unit Hydrographs

flow in cfs

	tiow in cts																	
time in minutes	A1	81	82	B3	C1	D1	D2	E1	13	23	33	F4	G1	G 2	H1	Н2	Н3	H4
5	79.48	95.51	30.93	212.33	229.82	66.81	201.50	131.02	45.09	117.17	29.92	92.63	37.90	18.89	23.57	43.06	14.85	56.70
10	84.67	87.92	35.54	282.68	215.27	57.76	213.46	154.59	47.98	143.83	27.05	104.96	36.56	18.95	24.84	39.42	12.85	54.86
15	71.63	65.18	33.09	218.45	147.65	42.75	148.95	137.43	44.32	117.53	20.92	85.95	30.43	17.77	23.57	30.43	9.89	43.38
20	58.21	48.97	28.30	170.33	107.98	32.20	108.75	111.17	37.59	92.99	16.68	69.02	25.18	15.74	21.25	24.29	7.66	35.92
25	47.87	39.61	24.48	132.75	78.94	25.61	83.53	93.98	32.85	72.85	13.48	54.84	20.77	13.71	18.39	19.57	6.27	28.68
30	40.08	30.32	21.34	107.50	49.89	19.02	58.31	77.43	28.63	61.37	11.00	46.28	17.51	12.26	16.59	16.00	4.96	24.34
35	34.09	21.04	18.21	82.24	39.94	13.05	41.79	67.50	24.41	49.89	8.52	38.16	14.92	10.82	14.79	12.42	3.65	20.00
40	28.10	16.93	16.26	57.04	30.26	10.85	33.38	57.58	21.90	38.40	6.04	30.04	12.33	9.48	12.98	8.85	2.77	15.66
45	22.11	13.83	14.43	48.62	20.58	8.66	24.98	47.65	19.41	28.45	5.18	21.93	9.74	8.62	11.74	7.51	2.33	11.51
50	16.99	10.74	12.59	40.20	10.90	6.46	16.57	37.72	16.92	24.63	4.35	18.95	7.50	7.76	10.67	6.32	1.89	10.06
55	15.00	7.64	10.76	31.78	1.22	4.26	8.16	30.14	14.43	20.80	3.52	16.25	6.63	6.90	9.60	5.12	1.46	8.61
60	13.00	4.55	8.92	23.36	0.00	2.07	0.00	26.83	11.95	16.97	2.70	13.54	5.77	6.04	8.53	3.93	1.02	7.17
65	11.00	1.45	7.15	14.94		0.00		23.53	9.65	13.14	1.87	10.83	4.91	5.18	7.46	2.74	0.58	5.72
70	9.01	0.00	6.53	6.53				20.22	8.82	9.32	1.04	8.13	4.04	4.32	6.39	1.55	0.15	4.27
75	7.01		5.92	0.00				16.91	7.99	5.49	0.22	5.42	3.18	3.72	5.32	0.36	0.00	2.82
80	5.01		5.31					13.60	7.16	1.66	0.00	2.72	2.31	3.43	4.76	0.00		1.38
85	3.02		4.70					10.29	6.33	0.00		0.01	1.45	3.15	4.41			0.00
90	1.02		4.09					6.98	5.50			0.00	0.59	2.86	4.05			
95	0.00		3.47					3.67	4.67				0.00	2.57	3.69			
100			2.86					0.36	3.84					2.29	3.34			
105			2.25					0.00	3.01					2.00	2.98			
110			1.64						2.18					1.71	2.62			
115			1.03						1.35					1.43	2.27			
120			0.41						0.52					1.14	1.91			
125			0.00						0.00					0.85	1.55			
130														0.57	1.19			
135														0.28	0.84			
140														0.00	0.48			
145															0.12			
150															0.00			

Appendix C

SWMM Model Pre Development 5 Year

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

SWMM Pre Development 5 Year

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options ********

Flow Units CFS

Process Models:

Rainfall/Runoff NO
RDII NO
Snowmelt NO
Groundwater ... NO
Flow Routing ... YES
Ponding Allowed ... NO
Water Quality ... NO

Flow Routing Method KINWAVE

Starting Date 01/01/2005 00:00:00 Ending Date 01/01/2005 06:00:00

Antecedent Dry Days 0.0
Report Time Step 00:05:00

Routing Time Step 30.00 sec

********	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	12.024	3.918
External Outflow	12.024	3.918
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	-0.002	

SWMM Model Pre Development 5 Year

All links are stable.

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.00
Percent Not Converging : 0.00

66

70

71

72

73

Maximum Maximum Time of Max Average Reported Depth Depth HGL Occurrence Max Depth Feet days hr:min Node Type Feet Feet Feet 10 0.00 0.00 6975.00 00:00 0.00 JUNCTION 20 JUNCTION 0.00 0.00 6982.00 0 00:00 0.00 21 JUNCTION 0.00 0.00 6953.00 00:00 0.00 22 JUNCTION 0.00 0.00 6936.00 00:00 0.00 23 JUNCTION 0.08 0.31 6945.31 00:35 0.30 24 0.10 0.44 6934.44 JUNCTION 0 00:40 0.44 30 JUNCTION 0.00 0.00 6985.00 0 00:00 0.00 40 0.00 0.00 JUNCTION 6918.00 00:00 0.00 41 JUNCTION 0.00 0.00 6888.00 00:00 0.00 42 JUNCTION 0.10 0.48 6911.48 00:35 0.48 50 JUNCTION 0.00 0.00 6945.00 0 00:00 0.00 60 0.00 0.00 JUNCTION 6942.00 00:00 0.00 0.00 0.00 6893.00 0.00 61 JUNCTION 00:00 62 JUNCTION 0.00 0.00 6908.00 0 00:00 0.00 63 JUNCTION 0.00 0.00 6882.00 0 00:00 0.00 64 JUNCTION 0.11 0.48 6900.48 0 00:35 0.48 65 JUNCTION 0.17 0.69 6880.69 00:36 0.69

0.89

0.00

0.00

0.00

0.43

6868.89

6923.00

6908.00

6904.00

6902.43

00:40

00:00

00:00

00:00

00:35

0

0

0

0.89

0.00

0.00

0.00

0.42

0.24

0.00

0.00

0.00

0.11

JUNCTION

JUNCTION

JUNCTION

JUNCTION

JUNCTION

	SWMM Mode	l Pre Deve	elopmer	nt 5 Year			
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.11	0.48	6872.48	0	00:35	0.47
85	JUNCTION	0.06	0.30	6874.30	0	00:35	0.30
PondC	JUNCTION	0.00	0.00	6956.00	0	00:00	0.00
PondA	JUNCTION	0.00	0.00	6949.00	0	00:00	0.00
PondB	JUNCTION	0.11	0.44	6911.44	0	00:41	0.43
PondE	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
PondG	JUNCTION	0.11	0.42	6900.42	0	00:36	0.42
PondH	JUNCTION	0.11	0.47	6866.47	0	00:36	0.47
PondF	JUNCTION	0.24	0.89	6866.89	0	00:41	0.88
PondD	JUNCTION	0.10	0.48	6881.48	0	00:37	0.47
Outfall2	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4	OUTFALL	0.00	0.00	6865.00	0	00:00	0.00
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
31	OUTFALL	0.00	0.00	6953.00	0	00:00	0.00
51	OUTFALL	0.00	0.00	6920.00	0	00:00	0.00
74	OUTFALL	0.00	0.00	6897.00	0	00:00	0.00
67	OUTFALL	0.00	0.00	6865.50	0	00:00	0.00

To+ol	Flour.		Maximum	Maximum			Lateral	
Total	Flow		latama]	To±o1	Time.	of Mov	Tm£1a	
Inflow	Balance		Lateral	Total	iime (of Max	Inflow	
			Inflow	Inflow	0ccu	rrence	Volume	
Volume	Error	_	656	656			4046 7	1016
Node		Type	CFS	CFS	days	hr:min	10^6 gal	10^6
gal	Percent							
10		JUNCTION	13.03	13.03	0	00:35	0.304	
0.304	0.000							
20		JUNCTION	4.33	4.33	0	00:35	0.085	
0.085	0.000							
21		JUNCTION	1.66	1.66	0	00:40	0.0573	
0.0573	0.000							

Page 3

SWMM Model Pre Development 5 Year								
22		JUNCTION	11.85	11.85		00:40	0.274	
0.274	0.000							
23		JUNCTION	0.00	5.99	0	00:35	0	
0.142	0.000							
24		JUNCTION	0.00	11.85	0	00:40	0	
0.274	0.000							
30		JUNCTION	9.95	9.95	0	00:35	0.179	
0.179	0.000							
40		JUNCTION	8.12	8.12	0	00:35	0.162	
0.162	0.000				_			
41		JUNCTION	22.23	22.23	0	00:40	0.522	
0.522	0.000	TUNCTION	0.00	0.40	•	00.25	•	
42	0.000	JUNCTION	0.00	8.12	0	00:35	0	
0.162	0.000	JUNCTION	22.24	22.24	_	00.25	0 503	
50	0.000	JUNCTION	32.34	32.34	0	00:35	0.593	
0.593 60	0.000	JUNCTION	9.70	9.70	0	00:35	0.226	
0.226	0.000	JUNCTION	9.70	9.70	О	00:35	0.226	
61	0.000	JUNCTION	16.46	16.46	0	00:40	0.453	
0.453	0.000	JONCTION	10.40	10.40	U	00.40	0.433	
62	0.000	JUNCTION	3.65	3.65	0	00:35	0.0858	
0.0858	0.000	SOILCITON	3.03	3.03	Ū	00.55	0.0050	
63	0.000	JUNCTION	12.98	12.98	0	00:40	0.345	
0.345	0.000	33.13.120.1			•			
64		JUNCTION	0.00	13.35	0	00:35	0	
0.311	0.000							
65		JUNCTION	0.00	26.04	0	00:36	0	
0.657	0.000							
66		JUNCTION	0.00	16.46	0	00:40	0	
0.453	0.000							
70		JUNCTION	5.57	5.57	0	00:35	0.135	
0.135	0.000							
71		JUNCTION	3.87	3.87	0	00:35	0.101	
0.101	0.000				_		_	
72		JUNCTION	0.00	3.87	0	00:35	0	
0.101	0.000			2 2=	_			
73	0.000	JUNCTION	0.00	3.87	0	00:35	0	
0.101	0.000	JUNCTION	1 05	1 05	_	00.25	0.0476	
80	0 000	JUNCTION	1.85	1.85	0	00:35	0.0476	
0.0476 81	0.000	THINCTTON	5.37	5.37	0	00:35	0.124	
81 0.124	0.000	JUNCTION	5.5/	5.5/	О	ככ.שש	0.124	
82	0.000	JUNCTION	1.92	1.92	0	00:35	0.0398	
0.0398	0.000	JOING LIOIN	1.72	1.72	U	00.00	0.0550	
83	0.000	JUNCTION	8.07	8.07	0	00:35	0.185	
0.185	0.000	33.1011011	3.07	3.07	3	55.55	0.105	
84	0.000	JUNCTION	0.00	7.22	0	00:35	0	
0.172	0.000			- —	-		_	

Page 4

		SWMM Model	Pre Dev	velopment !	5 Yea	ar	
85		JUNCTION	0.00	1.92	0	00:35	0
0.0398	0.000						
PondC		JUNCTION	0.00	9.95	0	00:35	0
0.179	0.000						
PondA		JUNCTION	0.00	13.03	0	00:35	0
0.304	0.000						
PondB		JUNCTION	0.00	17.56	0	00:41	0
0.416	0.000			22.24	_		•
PondE	0.000	JUNCTION	0.00	32.34	0	00:35	0
0.593	0.000	TUNCTION	0.00	0.42	_	00.26	•
PondG	0 000	JUNCTION	0.00	9.42	0	00:36	0
0.236 PondH	0.000	JUNCTION	0.00	17.11	0	00:36	0
0.397	0.000	JUNCTION	0.00	1/.11	О	00.30	Ø
PondF	0.000	JUNCTION	0.00	42.32	0	00:41	0
1.11	0.000	JONETION	0.00	42.32	Ü	00.41	0
PondD	0.000	JUNCTION	0.00	30.00	0	00:38	0
0.685	0.000	5011011011	0.00	30.00		00.30	Ū
Outfall2		OUTFALL	0.00	17.56	0	00:41	0
0.416	0.000						_
Outfall1		OUTFALL	0.00	13.03	0	00:35	0
0.304	0.000						
Outfall4		OUTFALL	0.00	17.11	0	00:36	0
0.397	0.000						
Outfall3		OUTFALL	0.00	30.00	0	00:38	0
0.685	0.000						
31		OUTFALL	0.00	9.95	0	00:35	0
0.179	0.000						
51		OUTFALL	0.00	32.34	0	00:35	0
0.593	0.000				_		
74		OUTFALL	0.00	9.42	0	00:36	0
0.236	0.000			40	_	00.44	_
67	0.000	OUTFALL	0.00	42.32	0	00:41	0
1.11	0.000						

No nodes were flooded.

	SWMM	Model Pre	Development	5 Year
	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
Outfall2	67.36	3.82	17.56	0.416
Outfall1	55.28	3.40	13.03	0.304
Outfall4	59.31	4.14	17.11	0.397
Outfall3	60.56	7.00	30.00	0.685
31	50.97	2.17	9.95	0.179
51	51.53	7.12	32.34	0.593
74	58.61	2.49	9.42	0.236
67	65.97	10.41	42.32	1.110
System	58.70	40.55	169.75	3.918

			Time of Max				
		Flow	Occurrence		Veloc	Full	Full
Link	Type	CFS	days	hr:min	ft/sec	Flow	Depth
100	DUMMY	13.03	0	00:35			
200	DUMMY	4.33	0	00:35			
201	DUMMY	1.66	0	00:40			
202	CONDUIT	5.95	0	00:36	10.09	0.00	0.04
204	DUMMY	11.85	0	00:40			
205	CONDUIT	11.83	0	00:41	11.82	0.01	0.06
300	DUMMY	9.95	0	00:35			
400	DUMMY	8.12	0	00:35			
401	CONDUIT	8.03	0	00:37	8.38	0.02	0.10
402	DUMMY	22.23	0	00:40			
500	DUMMY	32.34	0	00:35			
601	DUMMY	16.46	0	00:40			
602	CONDUIT	16.42	0	00:41	6.99	0.07	0.18
603	DUMMY	9.70	0	00:35			
604	DUMMY	3.65	0	00:35			
605	CONDUIT	13.32	0	00:36	11.62	0.01	0.07
606	DUMMY	12.98	0	00:40			
607	CONDUIT	26.04	0	00:36	12.42	0.02	0.09
700	DUMMY	5.57	0	00:35			
701	DUMMY	3.87	0	00:35			
702	DUMMY	3.87	0	00:35			
703	CONDUIT	3.86	0	00:36	4.80	0.01	0.08
801	DUMMY	1.85	0	00:35			

	SWMM Mode	el Pre Deve	elop	ment 5	Year		
802	DUMMY	5.37	0	00:35			
803	CONDUIT	7.18	0	00:36	6.34	0.01	0.07
804	DUMMY	1.92	0	00:35			
806	DUMMY	8.07	0	00:35			
805	CONDUIT	1.91	0	00:37	4.00	0.01	0.06
301	DUMMY	9.95	0	00:35			
101	DUMMY	13.03	0	00:35			
206	DUMMY	17.56	0	00:41			
501	DUMMY	32.34	0	00:35			
704	DUMMY	9.42	0	00:36			
807	DUMMY	17.11	0	00:36			
608	DUMMY	42.32	0	00:41			
403	DUMMY	30.00	0	00:38			

Conduit Surcharge Summary ***********

No conduits were surcharged.

Analysis begun on: Fri Apr 10 17:42:01 2020 Analysis ended on: Fri Apr 10 17:42:01 2020

Total elapsed time: < 1 sec

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CFS

Process Models:

Rainfall/Runoff NO
RDII NO
Snowmelt NO
Groundwater ... NO
Flow Routing ... YES
Ponding Allowed ... NO
Water Quality ... NO

Flow Routing Method KINWAVE

Starting Date 01/01/2005 00:00:00 Ending Date 01/01/2005 06:00:00

Antecedent Dry Days 0.0
Report Time Step 00:05:00

Routing Time Step 30.00 sec

*******	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	193.874	63.177
External Outflow	193.874	63.177
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
<pre>Initial Stored Volume</pre>	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	-0.000	

SWMM 5 Year Output Ex 9-21-20

0.00

Link 205 (1) Link 206 (1)

Routing Time Step Summary ************

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.00

Percent Not Converging

Time of Max Average Maximum Maximum Reported Depth HGL Occurrence Depth Max Depth Node Feet Feet Feet days hr:min Feet Type 10 JUNCTION 0.00 0.00 6975.00 00:00 0.00 20 JUNCTION 0.00 0.00 6982.00 00:00 0.00 0.00 21 JUNCTION 0.00 6953.00 00:00 0.00 22 JUNCTION 0.00 0.00 6936.00 00:00 0.00 23 0.08 0.31 6945.31 JUNCTION 0 00:35 0.30 24 JUNCTION 0.13 0.58 6934.58 0 00:40 0.58 30 0.00 JUNCTION 0.00 6985.00 00:00 0.00 40 JUNCTION 0.00 0.00 6918.00 00:00 0.00 41 JUNCTION 0.00 0.00 6888.00 00:00 0.00 42 JUNCTION 0.10 0.48 6911.48 0 00:35 0.48 50 0.00 0.00 JUNCTION 6945.00 00:00 0.00 60 0.00 0.00 6942.00 0.00 JUNCTION 0 00:00 61 JUNCTION 0.00 0.00 6893.00 0 00:00 0.00 62 JUNCTION 0.00 0.00 6908.00 0 00:00 0.00 63 JUNCTION 0.00 0.00 6882,00 0 00:00 0.00 64 JUNCTION 0.110.48 6900.48 00:35 0.48 65 0.17 0.69 JUNCTION 6880.69 00:36 0.69 0.24 0.89 6868.89 0 00:40 0.89 66 JUNCTION 70 0.00 0.00 JUNCTION 6923.00 0 00:00 0.00 71 JUNCTION 0.00 0.00 6908.00 0 00:00 0.00 0.00 0.00 6904.00 0.00 72 JUNCTION 00:00

	SWMM 5	Year Out	put Ex 9	9-21-20			
73	JUNCTION	0.11	0.43	6902.43	0	00:35	0.42
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.11	0.48	6872.48	0	00:35	0.47
85	JUNCTION	0.06	0.30	6874.30	0	00:35	0.30
PondC	JUNCTION	0.00	0.00	6956.00	0	00:00	0.00
PondA	JUNCTION	0.00	0.00	6949.00	0	00:00	0.00
PondB	JUNCTION	0.13	0.58	6911.58	0	00:40	0.58
PondE	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
PondG	JUNCTION	0.11	0.42	6900.42	0	00:36	0.42
PondH	JUNCTION	0.11	0.47	6866.47	0	00:36	0.47
PondF	JUNCTION	0.24	0.89	6866.89	0	00:41	0.88
PondD	JUNCTION	0.10	0.48	6881.48	0	00:37	0.47
31	JUNCTION	0.00	0.00	6953.00	0	00:00	0.00
51	JUNCTION	0.00	0.00	6920.00	0	00:00	0.00
67	JUNCTION	0.00	0.00	6865.50	0	00:00	0.00
74	JUNCTION	0.00	0.00	6897.00	0	00:00	0.00
0S1	JUNCTION	0.00	0.00	6950.00	0	00:00	0.00
0S2	JUNCTION	0.00	0.00	6924.00	0	00:00	0.00
0S3	JUNCTION	0.00	0.00	6930.00	0	00:00	0.00
0S4	JUNCTION	0.00	0.00	6905.00	0	00:00	0.00
Outfall2	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4	OUTFALL	0.00	0.00	6865.00	0	00:00	0.00
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00

			Maximum	Maximum		Lateral	
Total	Flow						
			Lateral	Total	Time of Max	Inflow	
Inflow	Balance						
			Inflow	Inflow	Occurrence	Volume	
Volume	Error						
Node		Type	CFS	CFS	days hr:min	10^6 gal	10^6
gal	Percent	7 .				o o	
J							
10		JUNCTION	13.03	13.03	0 00:35	0.304	

SWMM 5 Year Output Ex 9-21-20

0 204	0 000	JWI II J	rear oue,	Juc Lx J Z			
0.304 20	0.000	JUNCTION	4.33	4.33	0	00:35	0.085
0.085	0.000	3011011	1.55	1.33	Ū	00.33	0.003
21		JUNCTION	1.66	1.66	0	00:40	0.0573
0.0573	0.000						
22		JUNCTION	11.85	11.85	0	00:40	0.274
0.274	0.000				_		_
23	0.000	JUNCTION	0.00	5.99	0	00:35	0
0.142	0.000	JUNCTION	0.00	24 22	^	00.40	0
24 0.452	0 000	JUNCTION	0.00	21.23	0	00:40	0
30	0.000	JUNCTION	9.95	9.95	0	00:35	0.179
0.179	0.000	JUNCTION	9.93	9.95	U	00.55	0.179
40	0.000	JUNCTION	8.12	8.12	0	00:35	0.162
0.162	0.000	33.13.120.1	0	01	·		0,101
41		JUNCTION	22.23	22.23	0	00:40	0.522
0.522	0.000						
42		JUNCTION	0.00	8.12	0	00:35	0
0.162	0.000						
50		JUNCTION	32.34	32.34	0	00:35	0.593
0.593	0.000				_		
60	0.000	JUNCTION	9.70	9.70	0	00:35	0.226
0.226	0.000	JUNCTION	16 46	16 46	0	00.40	0.453
61 0.453	0.000	JUNCTION	16.46	16.46	0	00:40	0.453
62	0.000	JUNCTION	3.65	3.65	0	00:35	0.0858
0.0858	0.000	3011011	3.03	3.03	Ū	00.55	0.0030
63		JUNCTION	12.98	12.98	0	00:40	0.345
0.345	0.000						
64		JUNCTION	0.00	13.35	0	00:35	0
0.311	0.000						
65		JUNCTION	0.00	26.04	0	00:36	0
0.657	0.000				_		•
66	0.000	JUNCTION	0.00	16.46	0	00:40	0
0.453 70	0.000	JUNCTION	5.57	5.57	0	00:35	0.135
0.135	0.000	JUNCTION	3.37	2.37	V	00.55	0.133
71	0.000	JUNCTION	3.87	3.87	0	00:35	0.101
0.101	0.000	30.10.120.1	3.07	3.07	Ū	00.55	0.101
72		JUNCTION	0.00	3.87	0	00:35	0
0.101	0.000						
73		JUNCTION	0.00	3.87	0	00:35	0
0.101	0.000						
80		JUNCTION	1.85	1.85	0	00:35	0.0476
0.0476	0.000	TUNICTTON	F 37	F 37	^	00.25	0.404
81 0 124	0 000	JUNCTION	5.37	5.37	0	00:35	0.124
0.124 82	0.000	JUNCTION	1.92	1.92	0	00:35	0.0398
02		30110111011		±•,72	Ū	50.55	0.0550

Page 4

SWMM :	5 N	/ear	Output	Ex	9-21-20

0.0398	0.000			•			
83		JUNCTION	8.07	8.07	0	00:35	0.185
0.185	0.000						
84		JUNCTION	0.00	7.22	0	00:35	0
0.172	0.000						
85		JUNCTION	0.00	1.92	0	00:35	0
0.0398	0.000						
PondC		JUNCTION	0.00	9.95	0	00:35	0
0.179	0.000						
PondA		JUNCTION	0.00	13.03	0	00:35	0
0.304	0.000						
PondB		JUNCTION	0.00	26.96	0	00:40	0
0.594	0.000						
PondE		JUNCTION	0.00	32.34	0	00:35	0
0.593	0.000						
PondG		JUNCTION	0.00	189.42	0	00:36	0
29.3	0.000						
PondH		JUNCTION	0.00	17.11	0	00:36	0
0.397	0.000						
PondF		JUNCTION	0.00	42.32	0	00:41	0
1.11	0.000						
PondD		JUNCTION	0.00	30.00	0	00:38	0
0.685	0.000						
31		JUNCTION	0.00	9.95	0	00:35	0
0.179	0.000						
51		JUNCTION	0.00	93.34	0	00:35	0
10.4	0.000						
67		JUNCTION	0.00	231.47	0	00:40	0
30.4	0.000						
74		JUNCTION	0.00	189.42	0	00:36	0
29.3	0.000						
0S1		JUNCTION	67.00	67.00	0	00:00	10.8
10.8	0.000				_		
0S2		JUNCTION	59.00	59.00	0	00:00	9.53
9.53	0.000				_		
0S3		JUNCTION	61.00	61.00	0	00:00	9.86
9.85	0.000	3011611011	01.00	01.00	Ū	00.00	3.00
0S4	0.000	JUNCTION	180.00	180.00	0	00:00	29.1
29.1	0.000	3011611011	100.00	100.00	J	00.00	23.1
Outfall2		OUTFALL	0.00	85.96	0	00:40	0
10.1	0.000	OOTTALL	0.00	03.30	Ū	00.40	· ·
Outfall:		OUTFALL	0.00	80.03	0	00:35	0
11.1	0.000	OUTTALL	0.00	80.05	Ð	00.55	O
Outfall		OUTFALL	0.00	341.05	0	00:36	0
		OUTTALL	0.00	J+1.67	V	00.30	Ø
41.2	0.000	OUTEALL	0.00	20.00	Ω	00.20	0
Outfall:		OUTFALL	0.00	30.00	0	00:38	0
0.685	0.000						

No nodes were flooded.

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CFS	CFS	10^6 gal
Outfall2	100.00	62.68	85.96	10.120
Outfall1	100.00	68.88	80.03	11.121
Outfall4	100.00	255.45	341.05	41.246
Outfall3	60.56	7.00	30.00	0.685
System	90.14	394.01	536.81	63.172

		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow	0ccu	irrence	Veloc	Full	Full
Link	Type	CFS	davs	hr:min	ft/sec	Flow	Depth
100	DUMMY	13.03	0	00:35			
200	DUMMY	4.33	0	00:35			
201	DUMMY	1.66	0	00:40			
202	CONDUIT	5.95	0	00:36	10.09	0.00	0.04
204	DUMMY	11.85	0	00:40			
205	CONDUIT	21.20	0	00:40	14.13	0.01	0.08
300	DUMMY	9.95	0	00:35			
400	DUMMY	8.12	0	00:35			
401	CONDUIT	8.03	0	00:37	8.38	0.02	0.10
402	DUMMY	22.23	0	00:40			
500	DUMMY	32.34	0	00:35			
601	DUMMY	16.46	0	00:40			
602	CONDUIT	16.42	0	00:41	6.99	0.07	0.18
603	DUMMY	9.70	0	00:35			

	SWMM !	5 Year Out	put E	x 9-21-20	0		
604	DUMMY	3.65	0	00:35			
605	CONDUIT	13.32	0	00:36	11.62	0.01	0.07
606	DUMMY	12.98	0	00:40			
607	CONDUIT	26.04	0	00:36	12.42	0.02	0.09
700	DUMMY	5.57	0	00:35			
701	DUMMY	3.87	0	00:35			
702	DUMMY	3.87	0	00:35			
703	CONDUIT	3.86	0	00:36	4.80	0.01	0.08
801	DUMMY	1.85	0	00:35			
802	DUMMY	5.37	0	00:35			
803	CONDUIT	7.18	0	00:36	6.34	0.01	0.07
804	DUMMY	1.92	0	00:35			
806	DUMMY	8.07	0	00:35			
805	CONDUIT	1.91	0	00:37	4.00	0.01	0.06
301	DUMMY	9.95	0	00:35			
101	DUMMY	13.03	0	00:35			
206	DUMMY	26.96	0	00:40			
501	DUMMY	32.34	0	00:35			
704	DUMMY	189.42	0	00:36			
807	DUMMY	17.11	0	00:36			
608	DUMMY	42.32	0	00:41			
403	DUMMY	30.00	0	00:38			
41	DUMMY	9.95	0	00:35			
42	DUMMY	93.34	0	00:35			
43	DUMMY	231.47	0	00:40			
44	DUMMY	189.42	0	00:36			
45	DUMMY	180.00	0	00:00			
46	DUMMY	67.00	0	00:00			
47	DUMMY	59.00	0	00:00			
48	DUMMY	61.00	0	00:00			

No conduits were surcharged.

Analysis begun on: Mon Sep 21 16:32:27 2020 Analysis ended on: Mon Sep 21 16:32:27 2020

Total elapsed time: < 1 sec

SWMM Model Pre Development 100 Year

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

SWMM 100 Year Pre Development

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options ********

Flow Units CFS

Process Models:

Rainfall/Runoff NO
RDII NO
Snowmelt NO
Groundwater ... NO
Flow Routing ... YES
Ponding Allowed ... NO
Water Quality ... NO

Flow Routing Method KINWAVE

Starting Date 01/01/2005 00:00:00 Ending Date 01/01/2005 06:00:00

Antecedent Dry Days 0.0

Report Time Step 00:05:00 Routing Time Step 30.00 sec

********	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	82.644	26.931
External Outflow	82.609	26.919
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.043	

SWMM Model Pre Development 100 Year

Link 608 (1)

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.04
Percent Not Converging : 0.00

_____ Maximum Maximum Time of Max Average Reported Depth Depth HGL Occurrence Max Depth Feet days hr:min Node Type Feet Feet Feet 10 0.00 6975.00 00:00 0.00 JUNCTION 0.00 20 JUNCTION 0.00 0.00 6982.00 0 00:00 0.00 21 JUNCTION 0.00 0.00 6953.00 00:00 0.00 22 JUNCTION 0.00 0.00 6936.00 00:00 0.00 23 JUNCTION 0.21 0.59 6945.59 00:45 0.58 24 0.36 1.43 6935.43 JUNCTION 0 00:45 1.42 30 JUNCTION 0.00 0.00 6985.00 0 00:00 0.00 40 0.00 JUNCTION 0.00 6918.00 00:00 0.00 41 JUNCTION 0.00 0.00 6888.00 00:00 0.00 42 JUNCTION 0.24 1.05 6912.05 00:40 1.05 50 JUNCTION 0.00 0.00 6945.00 0 00:00 0.00 60 0.00 0.00 JUNCTION 6942.00 00:00 0.00 0.00 0.00 6893.00 0.00 61 JUNCTION 00:00 62 JUNCTION 0.00 0.00 6908.00 0 00:00 0.00 63 JUNCTION 0.00 0.00 6882.00 0 00:00 0.00 64 JUNCTION 0.27 1.04 6901.04 0 00:45 1.03 65 JUNCTION 0.43 1.52 6881.52 00:45 1.52 0.61 2.08 66 JUNCTION 6870.08 0 00:50 2.08 70 0.00 0.00 6923.00 0 00:00 0.00 JUNCTION 0.00 0.00 71 JUNCTION 6908.00 0 00:00 0.00 72 JUNCTION 0.00 0.00 6904.00 0 00:00 0.00 73 0.27 0.94 0.94 JUNCTION 6902.94 00:45

	SWMM Model	Pre Devel	opment	100 Year			
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.32	1.19	6873.19	0	00:45	1.18
85	JUNCTION	0.15	0.64	6874.64	0	00:40	0.64
PondC	JUNCTION	0.00	0.00	6956.00	0	00:00	0.00
PondA	JUNCTION	0.00	0.00	6949.00	0	00:00	0.00
PondB	JUNCTION	0.39	1.43	6912.43	0	00:46	1.42
PondE	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
PondG	JUNCTION	0.27	0.94	6900.94	0	00:46	0.94
PondH	JUNCTION	0.32	1.18	6867.18	0	00:46	1.18
PondF	JUNCTION	0.61	2.08	6868.08	0	00:51	2.08
PondD	JUNCTION	0.25	1.05	6882.05	0	00:42	1.05
Outfall2	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4	OUTFALL	0.00	0.00	6865.00	0	00:00	0.00
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
31	OUTFALL	0.00	0.00	6953.00	0	00:00	0.00
51	OUTFALL	0.00	0.00	6920.00	0	00:00	0.00
74	OUTFALL	0.00	0.00	6897.00	0	00:00	0.00
67	OUTFALL	0.00	0.00	6865.50	0	00:00	0.00

			Maximum	Maximum		Lateral	
Total	Flow						
			Lateral	Total	Time of Max	Inflow	
Inflow	Balance						
			Inflow	Inflow	Occurrence	Volume	
Volume	Error						
Node		Type	CFS	CFS	days hr:min	10^6 gal	10^6
gal	Percent				-		
10		JUNCTION	13.03	13.03	0 00:35	0.304	
0.304	0.000						
20		JUNCTION	4.33	4.33	0 00:35	0.085	
0.085	0.000						
21		JUNCTION	20.74	20.74	0 00:50	0.794	
0.794	0.000						

Page 3

		SWMM Mode	el Pre Dev	velopment	100 Ye	ear	
22		JUNCTION	140.35	140.35	0	00:45	3.79
3.79	0.000						•
23	0.000	JUNCTION	0.00	23.90	0	00:45	0
0.879 24	0.000	JUNCTION	0.00	140.35	0	00:45	0
3.79	0.000	JUNCTION	0.00	140.33	Ø	00.45	Ø
30	0.000	JUNCTION	110.70	110.70	0	00:40	2.47
2.47	0.000	3011611011	110.70	110.70	Ü	00.10	2.17
40		JUNCTION	40.00	40.00	0	00:40	1.03
1.03	0.000						
41		JUNCTION	114.87	114.87	0	00:45	3.31
3.31	0.000						
42		JUNCTION	0.00	40.00	0	00:40	0
1.03	0.000				_		
50		JUNCTION	157.99	157.99	0	00:40	3.76
3.76	0.000	TUNCTION	40.45	40.45	0	00.45	1 42
60 1.43	0.000	JUNCTION	49.45	49.45	0	00:45	1.43
61	0.000	JUNCTION	86.73	86.73	0	00:50	2.87
2.87	0.000	JONETION	00.75	00.75	0	00.50	2.07
62	0.000	JUNCTION	18.42	18.42	0	00:45	0.544
0.544	0.000	30.10.120.1	101.1	201.2	Ū	00.15	0.5
63		JUNCTION	67.82	67.82	0	00:45	2.19
2.19	0.000						
64		JUNCTION	0.00	67.87	0	00:45	0
1.97	0.000						
65		JUNCTION	0.00	135.62	0	00:45	0
4.16	0.000						
66		JUNCTION	0.00	86.73	0	00:50	0
2.87	0.000	TUNCTION	20.46	20.46	0	00.45	0.053
70 0.853	0.000	JUNCTION	28.46	28.46	0	00:45	0.853
71	0.000	JUNCTION	20.06	20.06	0	00:45	0.641
0.641	0.000	JONETION	20.00	20.00	0	00.45	0.041
72	0.000	JUNCTION	0.00	20.06	0	00:45	0
0.641	0.000						
73		JUNCTION	0.00	20.06	0	00:45	0
0.641	0.000						
80		JUNCTION	21.89	21.89	0	00:45	0.659
0.659	0.000						
81		JUNCTION	27.12	27.12	0	00:45	0.786
0.786	0.000	TUNCTION	0 54	0 54	•	00.40	0.050
82	0.000	JUNCTION	9.51	9.51	0	00:40	0.252
0.252	0.000	JUNCTION	10.00	10.06	0	00.45	1 17
83 1.17	0.000	JUNCTION	40.86	40.86	0	00:45	1.17
84	0.000	JUNCTION	0.00	49.01	0	00:45	0
1.44	0.000	3311211011	0.00	12.01	J	55.75	9
	5.555						

Page 4

		SWMM Model	Pre Deve	elopment	100 Ye	ar	
85		JUNCTION	0.00	9.51		00:40	0
0.252	0.000						
PondC		JUNCTION	0.00	110.70	0	00:40	0
2.47	0.000						
PondA		JUNCTION	0.00	13.03	0	00:35	0
0.304	0.000						
PondB		JUNCTION	0.00	164.21	0	00:46	0
4.66	0.000						
PondE		JUNCTION	0.00	157.99	0	00:40	0
3.76	0.000						
PondG		JUNCTION	0.00	48.48	0	00:45	0
1.49	0.000				_		_
PondH		JUNCTION	0.00	99.16	0	00:45	0
2.87	0.000	TUNCTION	0.00	224 44	•	00.46	_
PondF	0.000	JUNCTION	0.00	221.11	0	00:46	0
7.02	0.000	TUNCTION	0.00	154 25	0	00.45	^
PondD	0.000	JUNCTION	0.00	154.35	0	00:45	0
4.34 Outfall2	0.000	OUTFALL	0.00	164.21	0	00:46	0
4.66	0.000	OUTFALL	0.00	104.21	Ø	00.40	О
Outfall1	0.000	OUTFALL	0.00	13.03	0	00:35	0
0.304	0.000	OUTTALL	0.00	13.03	U	00.55	O
Outfall4	0.000	OUTFALL	0.00	99.16	0	00:45	0
2.87	0.000	OOTTALL	0.00	33.10	Ū	00.15	Ū
Outfall3	0.000	OUTFALL	0.00	154.35	0	00:45	0
4.34	0.000	•••••					
31		OUTFALL	0.00	110.70	0	00:40	0
2.47	0.000						
51		OUTFALL	0.00	157.99	0	00:40	0
3.76	0.000						
74		OUTFALL	0.00	48.48	0	00:45	0
1.49	0.000						
67		OUTFALL	0.00	221.11	0	00:46	0
7.02	0.000						

No nodes were flooded.

	SWMM	Model Pre	Development	100 Year
	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
Outfall2	76.53	37.73	164.21	4.665
Outfall1	55.28	3.40	13.03	0.304
Outfall4	67.08	26.46	99.16	2.867
Outfall3	67.92	39.52	154.35	4.336
31	53.89	28.39	110.70	2.472
51	58.47	39.76	157.99	3.757
74	67.08	13.78	48.48	1.494
67	74.31	58.49	221.11	7.022
System	65.07	247.53	962.28	26.917

			0ccu	rrence	Veloc	Full	Full
Link	Type	CFS	days	hr:min	ft/sec	Flow	Depth
100	DUMMY	13.03	0	00:35			
200	DUMMY	4.33	0	00:35			
201	DUMMY	20.74	0	00:50			
202	CONDUIT	23.89	0	00:46	15.49	0.01	0.08
204	DUMMY	140.35	0	00:45			
205	CONDUIT	140.32	0	00:46	24.86	0.09	0.20
300	DUMMY	110.70	0	00:40			
400	DUMMY	40.00	0	00:40			
401	CONDUIT	39.84	0	00:42	13.30	0.10	0.21
402	DUMMY	114.87	0	00:45			
500	DUMMY	157.99	0	00:40			
601	DUMMY	86.73	0	00:50			
602	CONDUIT	86.65	0	00:51	11.22	0.36	0.42
603	DUMMY	49.45	0	00:45			
604	DUMMY	18.42	0	00:45			
605	CONDUIT	67.80	0	00:45	19.12	0.05	0.15
606	DUMMY	67.82	0	00:45			
607	CONDUIT	135.63	0	00:46	20.33	0.08	0.19
700	DUMMY	28.46	0	00:45			
701	DUMMY	20.06	0	00:45			
702	DUMMY	20.06	0	00:45			
703	CONDUIT	20.04	0	00:46	7.87	0.08	0.19
801	DUMMY	21.89	0	00:45			

	SWMM Mode	el Pre Deve	lopn	nent 100	Year		
802	DUMMY	27.12	0	00:45			
803	CONDUIT	48.96	0	00:46	11.36	0.06	0.17
804	DUMMY	9.51	0	00:40			
806	DUMMY	40.86	0	00:45			
805	CONDUIT	9.46	0	00:42	6.45	0.04	0.13
301	DUMMY	110.70	0	00:40			
101	DUMMY	13.03	0	00:35			
206	DUMMY	164.21	0	00:46			
501	DUMMY	157.99	0	00:40			
704	DUMMY	48.48	0	00:45			
807	DUMMY	99.16	0	00:45			
608	DUMMY	221.11	0	00:46			
403	DUMMY	154.35	0	00:45			

Conduit Surcharge Summary ***********

No conduits were surcharged.

Analysis begun on: Fri Apr 10 13:11:18 2020 Analysis ended on: Fri Apr 10 13:11:18 2020

Total elapsed time: < 1 sec

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options ******

Flow Units CFS

Process Models:

Rainfall/Runoff NO RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO

Flow Routing Method KINWAVE

Starting Date 01/01/2005 00:00:00 Ending Date 01/01/2005 06:00:00

Antecedent Dry Days 0.0 Report Time Step 00:05:00

Routing Time Step 30.00 sec

*******	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	836.701	272.651
External Outflow	836.646	272.634
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.007	

SWMM 100 Year Output EX 9-21-20

Link 205 (1)

Link 608 (1)

Link 206 (1)

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.03
Percent Not Converging : 0.00

Time of Max Average Maximum Maximum Reported Depth Depth HGL Occurrence Max Depth Node days hr:min Type Feet Feet Feet Feet 0.00 10 JUNCTION 0.00 6975.00 0 00:00 0.00 20 JUNCTION 0.00 0.00 6982.00 00:00 0.00 21 JUNCTION 0.00 0.00 6953.00 00:00 0.00 22 0.00 JUNCTION 0.00 6936.00 0 00:00 0.00 23 JUNCTION 0.28 0.97 6945.97 0 00:45 0.97 0.45 24 JUNCTION 1.91 6935.91 00:45 1.91 30 JUNCTION 0.00 0.00 6985.00 00:00 0.00 40 JUNCTION 0.00 0.00 6918.00 00:00 0.00 41 JUNCTION 0.00 0.00 6888.00 0 00:00 0.00 42 0.24 JUNCTION 1.05 6912.05 00:40 1.05 50 0.00 0.00 6945.00 0.00 JUNCTION 0 00:00 60 JUNCTION 0.00 0.00 6942.00 0 00:00 0.00 61 JUNCTION 0.00 0.00 6893.00 0 00:00 0.00 0.00 62 JUNCTION 0.00 0.00 6908.00 0 00:00 63 JUNCTION 0.00 0.00 6882.00 00:00 0.00 64 0.27 JUNCTION 1.04 6901.04 0 00:45 1.03 65 0.43 1.52 6881.52 0 00:45 1.52 JUNCTION 0.61 2.08 66 JUNCTION 6870.08 0 00:50 2.08 00:00 70 JUNCTION 0.00 0.00 6923.00 0 0.00 0.00 0.00 6908.00 0.00 71 JUNCTION 00:00

	SWMM 100	9 Year Ou	tput EX	9-21-20			
72	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00
73	JUNCTION	0.27	0.94	6902.94	0	00:45	0.94
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.32	1.19	6873.19	0	00:45	1.18
85	JUNCTION	0.15	0.64	6874.64	0	00:40	0.64
PondC	JUNCTION	0.00	0.00	6956.00	0	00:00	0.00
PondA	JUNCTION	0.00	0.00	6949.00	0	00:00	0.00
PondB	JUNCTION	0.48	1.91	6912.91	0	00:45	1.90
PondE	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
PondG	JUNCTION	0.27	0.94	6900.94	0	00:46	0.94
PondH	JUNCTION	0.32	1.18	6867.18	0	00:46	1.18
PondF	JUNCTION	0.61	2.08	6868.08	0	00:51	2.08
PondD	JUNCTION	0.25	1.05	6882.05	0	00:42	1.05
31	JUNCTION	0.00	0.00	6953.00	0	00:00	0.00
51	JUNCTION	0.00	0.00	6920.00	0	00:00	0.00
67	JUNCTION	0.00	0.00	6865.50	0	00:00	0.00
74	JUNCTION	0.00	0.00	6897.00	0	00:00	0.00
0S1	JUNCTION	0.00	0.00	6950.00	0	00:00	0.00
0S2	JUNCTION	0.00	0.00	6924.00	0	00:00	0.00
0S3	JUNCTION	0.00	0.00	6930.00	0	00:00	0.00
0S4	JUNCTION	0.00	0.00	6905.00	0	00:00	0.00
Outfall2	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4	OUTFALL	0.00	0.00	6865.00	0	00:00	0.00
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00

			Maximum	Maximum		Lateral					
Total	Flow										
		Lateral	Total	Time of Max	Inflow						
Inflow	Balance				_						
	_		Inflow	Inflow	Occurrence	Volume					
Volume	Error	T	CEC	CEC	da la	1006]	1000				
Node		Type	CFS	CFS	days hr:min	10^6 gal	10^6				
gal	Percent										

Page 3

		SWMM 10	00 Year Ou	tput EX 9	-21-26)	
10		JUNCTION	66.80	66.80	0	00:45	1.92
1.92	0.000						
20		JUNCTION	48.76	48.76	0	00:40	1.18
1.18	0.000						
21		JUNCTION	20.74	20.74	0	00:50	0.794
0.794	0.000						
22		JUNCTION	140.35	140.35	0	00:45	3.79
3.79	0.000						
23		JUNCTION	0.00	68.56	0	00:45	0
1.97	0.000						
24		JUNCTION	0.00	249.20	0	00:45	0
6.26	0.000						
30		JUNCTION	110.70	110.70	0	00:40	2.47
2.47	0.000						
40		JUNCTION	40.00	40.00	0	00:40	1.03
1.03	0.000						
41		JUNCTION	114.87	114.87	0	00:45	3.31
3.31	0.000						
42		JUNCTION	0.00	40.00	0	00:40	0
1.03	0.000						
50		JUNCTION	157.99	157.99	0	00:40	3.76
3.76	0.000				_		
60		JUNCTION	49.45	49.45	0	00:45	1.43
1.43	0.000		04 -0	04 =0	_		
61		JUNCTION	86.73	86.73	0	00:50	2.87
2.87	0.000	TUNCTION	40.40	40.40	•	00 45	0.544
62	0.000	JUNCTION	18.42	18.42	0	00:45	0.544
0.544	0.000	TUNCTION	67.00	67.00	0	00.45	2 10
63	0.000	JUNCTION	67.82	67.82	0	00:45	2.19
2.19 64	0.000	JUNCTION	0.00	67 97	0	00.45	۵
	0.000	JUNCTION	0.00	67.87	0	00:45	0
1.97 65	0.000	JUNCTION	0.00	125 62	0	00.45	۵
4.16	0.000	JUNC I TON	0.00	135.62	0	00:45	0
66	0.000	JUNCTION	0.00	86.73	0	00:50	0
2.87	0.000	JOINGTION	0.00	80.75	ð	00.50	O
70	0.000	JUNCTION	28.46	28.46	0	00:45	0.853
0.853	0.000	JOINGTION	20.40	20.40	O	00.45	0.055
71	0.000	JUNCTION	20.06	20.06	0	00:45	0.641
0.641	0.000	3011611011	20.00	20.00	Ū	00.15	0.011
72	0.000	JUNCTION	0.00	20.06	0	00:45	0
0.641	0.000	55.16.126.1	0.00	20.00	Ū	001.15	J
73	2.000	JUNCTION	0.00	20.06	0	00:45	0
0.641	0.000				-	-	,
80		JUNCTION	21.89	21.89	0	00:45	0.659
0.659	0.000						
81		JUNCTION	27.12	27.12	0	00:45	0.786
0.786	0.000						

Page 4

		SWMM 10	00 Year Ou	utput EX 9	-21-26)	
82		JUNCTION	9.51	9.51	0		0.252
0.252	0.000						
83		JUNCTION	40.86	40.86	0	00:45	1.17
1.17	0.000						
84		JUNCTION	0.00	49.01	0	00:45	0
1.44	0.000			0 = 1			•
85	0.000	JUNCTION	0.00	9.51	0	00:40	0
0.252 PondC	0.000	TUNCTION	0 00	110.70	0	00:40	0
2.47	0.000	JUNCTION	0.00	110.70	Ø	00.40	Ø
PondA	0.000	JUNCTION	0.00	66.80	0	00:45	0
1.92	0.000	JONETION	0.00	00.80	ð	00.43	ð
PondB	0.000	JUNCTION	0.00	317.41	0	00:45	0
8.22	0.000	301161 2011	0.00	317.11	J	00.15	ŭ
PondE	0.000	JUNCTION	0.00	157.99	0	00:40	0
3.76	0.000	30.10.20.1			·		•
PondG		JUNCTION	0.00	643.48	0	00:45	0
97.6	0.000						-
PondH		JUNCTION	0.00	99.16	0	00:45	0
2.87	0.000						
PondF		JUNCTION	0.00	221.11	0	00:46	0
7.02	0.000						
PondD		JUNCTION	0.00	154.35	0	00:45	0
4.34	0.000						
31		JUNCTION	0.00	110.70	0	00:40	0
2.47	0.000						
51		JUNCTION	0.00	374.99	0	00:40	0
38.8	0.000						
67		JUNCTION	0.00	864.52	0	00:46	0
105	0.000						•
74		JUNCTION	0.00	643.48	0	00:45	0
97.6	0.000	TUNCTION	442.00	442.00	•	00.00	66.7
0S1	0.000	JUNCTION	413.00	413.00	0	00:00	66.7
66.7	0.000	TUNCTION	200 00	200 00	a	00:00	45.2
0S2 45.2	0.000	JUNCTION	280.00	280.00	0	00.00	45.2
45.2 0S3	0.000	JUNCTION	217.00	217.00	0	00:00	35.1
35	0.000	JONETION	217.00	217.00	Ð	00.00	33.1
0S4	0.000	JUNCTION	595.00	595.00	0	00:00	96.1
96.1	0.000	3011611011	333.00	333.00	J	00.00	30.1
Outfal		OUTFALL	0.00	597.41	0	00:45	0
53.4	0.000	00117122	0.00	337 • 12	Ū	001.5	J
Outfal		OUTFALL	0.00	479.80	0	00:45	0
68.6	0.000						-
Outfal		OUTFALL	0.00	1335.77	0	00:45	0
146	0.000						
Outfal		OUTFALL	0.00	154.35	0	00:45	0
4.34	0.000						

Page 5

No nodes were flooded.

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CFS	CFS	10^6 gal
Outfall2	100.00	330.89	597.41	53.430
Outfall1	100.00	424.90	479.80	68.605
Outfall4	100.00	905.71	1335.77	146.242
Outfall3	67.92	39.52	154.35	4.336
System	91.98	1701.02	2567.34	272.613

	_	Maximum Flow	0ccu	of Max irrence	Maximum Veloc	Max/ Full	Max/ Full
Link	Type	CFS	days	hr:min	ft/sec	Flow	Depth
100	DUMMY	66.80	0	00:45			
200	DUMMY	48.76	0	00:40			
201	DUMMY	20.74	0	00:50			
202	CONDUIT	68.51	0	00:45	21.36	0.04	0.14
204	DUMMY	140.35	0	00:45			
205	CONDUIT	248.90	0	00:45	29.30	0.16	0.27
300	DUMMY	110.70	0	00:40			
400	DUMMY	40.00	0	00:40			
401	CONDUIT	39.84	0	00:42	13.30	0.10	0.21
402	DUMMY	114.87	0	00:45			
500	DUMMY	157.99	0	00:40			
601	DUMMY	86.73	0	00:50			
602	CONDUIT	86.65	0	00:51	11.22	0.36	0.42

	SWMM	100 Year	Output	EX 9-21-2	0		
603	DUMMY	49.45	0	00:45			
604	DUMMY	18.42	0	00:45			
605	CONDUIT	67.80	0	00:45	19.12	0.05	0.15
606	DUMMY	67.82	0	00:45			
607	CONDUIT	135.63	0	00:46	20.33	0.08	0.19
700	DUMMY	28.46	0	00:45			
701	DUMMY	20.06	0	00:45			
702	DUMMY	20.06	0	00:45			
703	CONDUIT	20.04	0	00:46	7.87	0.08	0.19
801	DUMMY	21.89	0	00:45			
802	DUMMY	27.12	0	00:45			
803	CONDUIT	48.96	0	00:46	11.36	0.06	0.17
804	DUMMY	9.51	0	00:40			
806	DUMMY	40.86	0	00:45			
805	CONDUIT	9.46	0	00:42	6.45	0.04	0.13
301	DUMMY	110.70	0	00:40			
101	DUMMY	66.80	0	00:45			
206	DUMMY	317.41	0	00:45			
501	DUMMY	157.99	0	00:40			
704	DUMMY	643.48	0	00:45			
807	DUMMY	99.16	0	00:45			
608	DUMMY	221.11	0	00:46			
403	DUMMY	154.35	0	00:45			
41	DUMMY	110.70	0	00:40			
42	DUMMY	374.99	0	00:40			
43	DUMMY	864.52	0	00:46			
44	DUMMY	643.48	0	00:45			
45	DUMMY	595.00	0	00:00			
46	DUMMY	413.00	0	00:00			
47	DUMMY	280.00	0	00:00			
48	DUMMY	217.00	0	00:00			

No conduits were surcharged.

Analysis begun on: Mon Sep 21 16:37:19 2020 Analysis ended on: Mon Sep 21 16:37:19 2020

Total elapsed time: < 1 sec

EPA STORM WATER	R MANAGEMENT	MODEL - VERSION	5.1 (Build 5.1.012)

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CFS

Process Models:

Rainfall/Runoff NO
RDII NO
Snowmelt NO
Groundwater ... NO
Flow Routing ... YES
Ponding Allowed ... NO
Water Quality ... NO

Flow Routing Method KINWAVE

Antecedent Dry Days 0.0
Report Time Step 00:05:00
Routing Time Step 30.00 sec

*******	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	39.629	12.914
External Outflow	23.957	7.807
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
<pre>Initial Stored Volume</pre>	0.000	0.000
Final Stored Volume	15.654	5.101
Continuity Error (%)	0.045	

SWMM 5 Year Output

All links are stable.

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.01
Percent Not Converging : 0.00

Time of Max Average Maximum Maximum Reported Depth Depth HGL Occurrence Max Depth Node Feet Feet Feet days hr:min Feet Type 10 JUNCTION 0.00 0.00 6975.00 00:00 0.00 20 0.00 0.00 6982.00 00:00 JUNCTION 0.00 21 0.00 00:00 JUNCTION 0.00 6953.00 0.00 22 JUNCTION 0.00 0.00 6936.00 00:00 0.00 23 0.04 0.75 6945.75 0.74 JUNCTION 0 00:30 24 JUNCTION 0.21 1.17 6935,17 0 00:30 1.16 0.00 30 0.00 JUNCTION 6985.00 00:00 0.00 31 JUNCTION 0.17 0.20 6953.20 02:23 0.20 0.59 67 JUNCTION 0.16 6866.09 01:57 0.59 40 JUNCTION 0.00 0.00 6918.00 0 00:00 0.00 41 0.00 0.00 6888.00 JUNCTION 00:00 0.00 42 0.03 0.82 6911.82 00:30 0.81 JUNCTION 0 50 JUNCTION 0.00 0.00 6945.00 0 00:00 0.00 51 JUNCTION 0.03 0.21 6920.21 0 01:12 0.21 60 JUNCTION 0.00 0.00 6942,00 00:00 0.00 61 JUNCTION 0.00 0.00 6893.00 00:00 0.00 62 0.00 0.00 6908.00 JUNCTION 00:00 0.00 63 0.00 0.00 6882.00 0 00:00 0.00 JUNCTION 0.03 64 JUNCTION 0.66 6900.66 0 00:35 0.66 65 JUNCTION 0.05 1.10 6881.10 0 00:35 1.10 0.08 1.71 66 JUNCTION 6869.71 00:35 1.71

		SWMM 5 Year	Outpu	t			
70	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
71	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
72	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00
73	JUNCTION	0.03	0.55	6902.55	0	00:35	0.54
74	JUNCTION	0.02	0.24	6897.24	0	01:15	0.24
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.04	0.80	6872.80	0	00:30	0.79
85	JUNCTION	0.02	0.48	6874.48	0	00:30	0.47
Outfall2	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4	OUTFALL	0.16	0.59	6865.59	0	01:57	0.59
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
PondB	STORAGE	5.89	6.37	6917.37	0	01:30	6.37
PondC	STORAGE	4.70	5.56	6961.56	0	02:23	5.56
PondA	STORAGE	4.01	4.67	6953.67	0	01:46	4.67
PondD	STORAGE	5.54	6.51	6887.51	0	02:25	6.51
PondE	STORAGE	4.04	4.77	6927.77	0	01:12	4.77
PondF	STORAGE	5.76	6.73	6872.73	0	02:02	6.73
PondG	STORAGE	0.11	1.20	6901.20	0	01:15	1.20
PondH	STORAGE	4.49	5.12	6871.12	0	02:09	5.12

			Maximum	Maximum		Lateral	
Total	Flow						
			Lateral	Total	Time of Max	Inflow	
Inflow	Balance				_		
	_		Inflow	Inflow	Occurrence	Volume	
Volume	Error	Tuno	CEC	CEC	dave boimin	1006 00]	1006
Node gal	Percent	Type	CFS	CFS	days hr:min	10^6 gal	10^6
gai	rercent						
10		JUNCTION	30.72	30.72	0 00:35	0.705	
0.705	0.000						
20		JUNCTION	29.46	29.46	0 00:30	0.578	
0.578	0.000						
21		JUNCTION	12.02	12.02	0 00:35	0.376	

			SWMM 5 Yea	ar Output			
0.376 22	0.000	JUNCTION	92.76	92.76	0	00:30	2.04
2.04	0.000						
23 0.954	0.000	JUNCTION	0.00	40.92	0	00:30	0
24	0.000	JUNCTION	0.00	93.26	0	00:30	0
2.96	0.000						
30	0.000	JUNCTION	77.99	77.99	0	00:30	1.38
1.38 31	0.000	JUNCTION	0.00	1.52	0	02:23	0
0.925	0.000	3011612011	0.00	1.32	Ū	02.23	J
67		JUNCTION	0.00	23.06	0	01:57	0
2.4	-0.000		04.45	04.45	_		
40	0.000	JUNCTION	24.15	24.15	0	00:30	0.438
0.438 41	0.000	JUNCTION	00 47	98.47	α	00:30	1.83
1.83	0.000	JUNCTION	98.47	98.47	0	00:30	1.65
42	0.000	JUNCTION	0.00	24.15	0	00:30	0
0.438	-0.000	30110111011	0.00	21123	Ū	00.50	ŭ
50		JUNCTION	46.88	46.88	0	00:35	0.982
0.982	0.000						
51		JUNCTION	0.00	18.70	0	01:12	0
0.69	0.000						
60		JUNCTION	16.28	16.28	0	00:35	0.424
0.424	0.000						
61	0.000	JUNCTION	60.11	60.11	0	00:35	1.38
1.38	0.000	TUNCTION	11 26	11 26	^	00.20	0.224
62 0.234	0.000	JUNCTION	11.36	11.36	0	00:30	0.234
63	0.000	JUNCTION	42.32	42.32	0	00:30	0.975
0.975	0.000	SONCTION	72.32	72.32	Ū	00.30	0.373
64		JUNCTION	0.00	26.88	0	00:35	0
0.659	0.000						
65		JUNCTION	0.00	69.12	0	00:35	0
1.63	0.000						
66		JUNCTION	0.00	60.11	0	00:35	0
1.38	0.000	TI IN CTT ON	42.70	42.70	•	00 20	0.22
70	0.000	JUNCTION	13.78	13.78	0	00:30	0.32
0.32 71	0.000	JUNCTION	6.55	6.55	0	00:35	0.191
0.191	0.000	JONETION	0.55	0.55	U	00.55	0.191
72	0.000	JUNCTION	0.00	6.55	0	00:35	0
0.191	0.000	555.		0,122	·		
73		JUNCTION	0.00	6.55	0	00:35	0
0.191	0.000						
74		JUNCTION	0.00	9.05	0	01:15	0
0.51	-0.000	JUNIOTTO:	F 60	F 60	^	00.35	0.470
80		JUNCTION	5.68	5.68	0	00:35	0.173

Page 4

			SWMM 5 Yea	ar Output			
0.173	0.000						
81		JUNCTION	16.24	16.24	0	00:30	0.333
0.333	0.000						
82		JUNCTION	5.21	5.21	0	00:30	0.1
0.1	0.000						
83		JUNCTION	20.93	20.93	0	00:30	0.453
0.453	0.000						
84		JUNCTION	0.00	21.67	0	00:30	0
0.507	0.000						
85		JUNCTION	0.00	5.21	0	00:30	0
0.1	0.000						
Outfall2		OUTFALL	0.00	34.45	0	01:30	0
2.22	0.000						
Outfall1		OUTFALL	0.00	5.43	0	01:46	0
0.441	0.000						
Outfall4		OUTFALL	0.00	35.27	0	01:51	0
3.71	0.000						
Outfall3		OUTFALL	0.00	2.52	0	02:25	0
1.43	0.000						
PondB		STORAGE	0.00	134.27	0	00:31	0
3.91	0.047						
PondC		STORAGE	0.00	77.99	0	00:30	0
1.38	0.005						
PondA		STORAGE	0.00	30.72	0	00:35	0
0.705	0.012						
PondD		STORAGE	0.00	120.96	0	00:30	0
2.27	0.003						
PondE		STORAGE	0.00	46.88	0	00:35	0
0.982	0.118						
PondF		STORAGE	0.00	129.20	0	00:35	0
3.01	0.014						
PondG		STORAGE	0.00	20.07	0	00:35	0
0.51	0.116						
PondH		STORAGE	0.00	47.25	0	00:32	0
1.06	0.001						

No nodes were flooded.

SWMM 5 Year Output

C 14		Average	Avg	Evap	Exfil	Maximum	Max	Time
of Max	Maximum	Volume	Pcnt	Pont	Pcnt	Volume	Pcnt	
Occurrenc	e Outflow	vorame	1 6116	1 6116	rene	VOIGING	, circ	
Storage		1000 ft3	Full	Loss	Loss	1000 ft3	Full	days
hr:min	CFS							
PondB		241.825	30	0	0	296.729	37	0
01:30 PondC	34.45	111.256	19	0	0	174.130	30	0
02:23	1.52	111.250	19	О	О	1/4.130	30	О
PondA	1.32	53.736	15	0	0	79.797	22	0
01:46	5.43							
PondD	2 52	192.634	28	0	0	287.984	41	0
02:24 PondE	2.52	56.473	16	0	0	85.437	24	0
01:11	18.70	30.473	10	· ·	J	03.437	2-7	J
PondF		235.289	29	0	0	351.325	44	0
02:02	16.38	2 6 4 7	•	•	•	24 200	_	•
PondG 01:15	9.05	2.647	0	0	0	31.290	6	0
PondH	J. UJ	88.617	17	0	0	127.653	25	0
02:09	4.21							

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
Outfall2	99.64	2.76	34.45	2.223
Outfall1	99.67	0.55	5.43	0.441
Outfall4	99.67	4.61	35.27	3.709
Outfall3	99.69	1.78	2.52	1.434
System	99.67	9.70	73.13	7.806

		Maximum	Time of Max		Maximum	Max/	Max/
				irrence			-
Link	Type	•			ft/sec		
100	DUMMY	30.72	0	00:35			
200	DUMMY	29.46	0	00:30			
201	DUMMY	12.02	0	00:35			
202	CONDUIT	40.84	0	00:31	18.27		0.11
203	CONDUIT	1.52	0	02:24	6.34	0.00	0.05
204	DUMMY	92.76	0	00:30			
205	CONDUIT	93.43	0	00:31	22.09	0.06	0.17
300	DUMMY	77.99	0	00:30			
400	DUMMY	24.15	0	00:30			
401	CONDUIT	23.53	0	00:32	11.46	0.06	0.16
402	DUMMY	98.47	0	00:30			
500	DUMMY	46.88	0	00:35			
601	DUMMY	60.11	0	00:35			
602	CONDUIT	60.09	0	00:35	10.17	0.25	0.34
603	DUMMY	16.28	0	00:35			
604	DUMMY	11.36	0	00:30			
605	CONDUIT	26.88	0	00:35	14.61	0.02	0.09
606	DUMMY	42.32	0	00:30			
607	CONDUIT	69.12	0	00:31	16.65	0.04	0.14
700	DUMMY	13.78	0	00:30			
701	DUMMY	6.55	0	00:35			
702	DUMMY	6.55	0	00:35			
703	CONDUIT	6.54	0	00:36	5.62	0.03	0.11
801	DUMMY	5.68	0	00:35			
802	DUMMY	16.24	0	00:30			
803	CONDUIT	21.49	0	00:32	8.87	0.03	0.11
804	DUMMY	5.21	0	00:30			
806	DUMMY	20.93	0	00:30			
805	CONDUIT	5.08	0	00:32	5.42	0.02	0.09
808	CONDUIT	23.06			2.25		
800	CONDUIT	8.95	0	01:25	2.34	0.00	0.02
600	CONDUIT	18.26	0	01:17	5.75	0.00	0.03
101	DUMMY	5.43	0	01:46			
206	DUMMY	34.45	0	01:30			
301	DUMMY	1.52	0	02:23			
501	DUMMY	18.70	0	01:12			
704	DUMMY	9.05	0	01:15			
807	DUMMY	4.21	0	02:09			
608	DUMMY	16.38	0	02:02			
403	DUMMY	2.52	0	02:25			

SWMM 5 Year Output

No conduits were surcharged.

Analysis begun on: Mon Apr 13 19:10:46 2020 Analysis ended on: Mon Apr 13 19:10:46 2020

Total elapsed time: < 1 sec

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options ******

Flow Units CFS

Process Models:

Rainfall/Runoff NO RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO

Flow Routing Method KINWAVE

Starting Date 01/01/2005 00:00:00 Ending Date 01/02/2005 06:00:00

Antecedent Dry Days 0.0 Report Time Step 00:05:00

Routing Time Step 30.00 sec

*******	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	949.387	309.372
External Outflow	930.375	303.177
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
<pre>Initial Stored Volume</pre>	0.000	0.000
Final Stored Volume	20.095	6.548
Continuity Error (%)	-0.114	

SWMM 5 Year Output 9-21-20

All links are stable.

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.00
Percent Not Converging : 0.00

Maximum Maximum Time of Max Average Reported Depth Depth HGL Occurrence Max Depth days hr:min Node Type Feet Feet Feet Feet 10 JUNCTION 0.00 0.00 6975,00 00:00 0.00 20 JUNCTION 0.00 0.00 6982.00 0 00:00 0.00 0.00 21 JUNCTION 0.00 6953.00 00:00 0.00 22 JUNCTION 0.00 0.00 6936.00 00:00 0.00 23 JUNCTION 0.04 0.75 6945.75 00:30 0.74 24 0.21 6935.17 JUNCTION 1.17 0 00:30 1.16 30 JUNCTION 0.00 0.00 6985.00 0 00:00 0.00 0.17 31 JUNCTION 0.20 6953.20 02:23 0.20 67 JUNCTION 1.87 1.97 6867.47 01:59 1.97 40 JUNCTION 0.00 0.00 6918.00 00:00 0.00 41 JUNCTION 0.00 0.00 6888.00 0 00:00 0.00 42 0.03 0.82 JUNCTION 6911.82 00:30 0.81 50 0.00 0.00 6945.00 0.00 JUNCTION 0 00:00 51 JUNCTION 0.71 0.71 6920.71 0 00:32 0.71 60 JUNCTION 0.00 0.00 6942.00 0 00:00 0.00 0.00 61 JUNCTION 0.00 0.00 6893,00 0 00:00 62 JUNCTION 0.00 0.00 6908.00 00:00 0.00 63 0.00 JUNCTION 0.00 6882.00 00:00 0.00 64 0.03 0.66 6900.66 0 00:35 JUNCTION 0.66 0.05 65 JUNCTION 1.10 6881.10 0 00:35 1.10 66 JUNCTION 0.08 1.71 6869.71 0 00:35 1.71 0.00 70 0.00 6923.00 0.00 JUNCTION 00:00

	SWMM 5	Year Ou	tput 9-	21-20			
71	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
72	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00
73	JUNCTION	0.03	0.55	6902.55	0	00:35	0.54
74	JUNCTION	1.36	1.40	6898.40	0	01:15	1.40
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.04	0.80	6872.80	0	00:30	0.79
85	JUNCTION	0.02	0.48	6874.48	0	00:30	0.47
0S1	JUNCTION	0.45	0.45	6953.05	0	00:00	0.45
0S3	JUNCTION	0.71	0.71	6923.51	0	00:00	0.71
0S4	JUNCTION	1.21	1.21	6901.01	0	00:00	1.21
0S2	JUNCTION	0.42	0.42	6924.42	0	00:00	0.42
Outfall2	OUTFALL	0.42	0.42	6910.42	0	03:03	0.42
Outfall1	OUTFALL	0.45	0.45	6947.45	0	01:12	0.45
Outfall4	OUTFALL	1.87	1.97	6866.97	0	01:59	1.97
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
PondB	STORAGE	6.42	6.96	6917.96	0	02:52	6.96
PondC	STORAGE	4.70	5.56	6961.56	0	02:23	5.56
PondA	STORAGE	5.16	6.43	6955.43	0	02:35	6.43
PondD	STORAGE	5.57	6.66	6887.66	0	02:07	6.65
PondE	STORAGE	3.99	4.85	6927.85	0	01:03	4.85
PondF	STORAGE	5.76	6.72	6872.72	0	02:04	6.72
PondG	STORAGE	0.11	1.20	6901.20	0	01:15	1.20
PondH	STORAGE	4.38	5.01	6871.01	0	02:39	5.01

			Maximum	Maximum		Lateral					
Total	Flow										
			Lateral	Total	Time of Max	Inflow					
Inflow	Balance										
			Inflow	Inflow	Occurrence	Volume					
Volume	Error										
Node		Type	CFS	CFS	days hr:min	10^6 gal	10^6				
gal	Percent										
10		JUNCTION	30.72	30.72	0 00:35	0.705					
0.705	0.000										

		SWMM	5 Vear Ou	utput 9-21	- 20		
20		JUNCTION	29.46	29.46	0	00:30	0.578
0.578	0.000	00.101.20.1			•		
21		JUNCTION	12.02	12.02	0	00:35	0.376
0.376	0.000						
22		JUNCTION	92.76	92.76	0	00:30	2.04
2.04	0.000						
23		JUNCTION	0.00	40.92	0	00:30	0
0.954	0.000						
24		JUNCTION	0.00	93.26	0	00:30	0
2.96	0.000						
30		JUNCTION	77.99	77.99	0	00:30	1.38
1.38	0.000				_		
31		JUNCTION	0.00	1.52	0	02:23	0
0.925	0.000	7. INCTTON	0.00	204 42	•	04 50	•
67	0.000	JUNCTION	0.00	201.42	0	01:59	0
147	0.000	TUNCTION	24 15	24.45	0	00.20	0.430
40	0.000	JUNCTION	24.15	24.15	0	00:30	0.438
0.438 41	0.000	JUNCTION	98.47	98.47	0	00:30	1.83
1.83	0.000	JUNCTION	30.47	30.47	Ø	00.30	1.03
42	0.000	JUNCTION	0.00	24.15	0	00:30	0
0.438	-0.000	JONETION	0.00	24.13	O	00.50	· ·
50	0.000	JUNCTION	46.88	46.88	0	00:35	0.982
0.982	0.000	50110112011	.0.00	.0.00	·	00.33	0.302
51	0,000	JUNCTION	0.00	85.04	0	01:03	0
50	0.000						
60		JUNCTION	16.28	16.28	0	00:35	0.424
0.424	0.000						
61		JUNCTION	60.11	60.11	0	00:35	1.38
1.38	0.000						
62		JUNCTION	11.36	11.36	0	00:30	0.234
0.234	0.000						
63		JUNCTION	42.32	42.32	0	00:30	0.975
0.975	0.000				_		
64		JUNCTION	0.00	26.88	0	00:35	0
0.659	0.000	TUNCTION	0.00	60.43	0	00.25	•
65	0.000	JUNCTION	0.00	69.12	0	00:35	0
1.63 66	0.000	JUNCTION	0.00	60.11	0	00.25	0
1.38	0.000	JUNC I TON	0.00	66.11	О	00:35	V
70	0.000	JUNCTION	13.78	13.78	0	00:30	0.32
0.32	0.000	JOINGTION	13.78	13.76	U	00.50	0.32
71	0.000	JUNCTION	6.55	6.55	0	00:35	0.191
0.191	0.000	5511611011	0.55	0.55	3	55.55	0.101
72		JUNCTION	0.00	6.55	0	00:35	0
0.191	0.000				-		· ·
73		JUNCTION	0.00	6.55	0	00:35	0
0.191	0.000						

Page 4

		SWMM	5 Year Ou	ıtput 9-21	-20		
74		JUNCTION	0.00	189.05	0	01:15	0
146	0.000						
80	0.000	JUNCTION	5.68	5.68	0	00:35	0.173
0.173	0.000	JUNICETON	16 24	16 24	0	00.20	0 222
81 0.333	0.000	JUNCTION	16.24	16.24	0	00:30	0.333
82	0.000	JUNCTION	5.21	5.21	0	00:30	0.1
0.1	0.000	JONETION	3.21	3.21	U	00.30	0.1
83	0.000	JUNCTION	20.93	20.93	0	00:30	0.453
0.453	0.000				_		
84		JUNCTION	0.00	21.67	0	00:30	0
0.507	0.000						
85		JUNCTION	0.00	5.21	0	00:30	0
0.1	0.000						
0S1		JUNCTION	67.00	67.00	0	00:00	54.1
54.1	0.000				_		
0S3		JUNCTION	61.00	61.00	0	00:00	49.3
49.3	0.000	TUNCTION	100 00	100 00	^	00.00	145
0S4	0.000	JUNCTION	180.00	180.00	0	00:00	145
145 0S2	0.000	JUNCTION	59.00	59.00	0	00:00	47.7
47.7	0.000	JONCTION	39.00	33.00	Ø	00.00	47.7
Outfal		OUTFALL	0.00	61.68	0	02:52	0
49.4	0.000	OOTTALL	0.00	01.00	Ū	02.32	· ·
Outfal		OUTFALL	0.00	67.69	0	02:35	0
54.5	0.000				_		_
Outfal	14	OUTFALL	0.00	276.10	0	01:07	0
198	0.000						
Outfal	13	OUTFALL	0.00	8.58	0	02:07	0
1.45	0.000						
PondB		STORAGE	0.00	134.27	0	00:31	0
3.91	-0.000						
PondC		STORAGE	0.00	77.99	0	00:30	0
1.38	0.005	CTODACE	0.00	20.72	^	00.25	2
PondA	0.003	STORAGE	0.00	30.72	0	00:35	0
0.705	0.003	CTODACE	0.00	120 06	0	00.20	0
PondD 2.27	0.003	STORAGE	0.00	120.96	Ø	00:30	V
PondE	0.003	STORAGE	0.00	46.88	0	00:35	0
0.982	0.190	STORAGE	0.00	+0.00	U	00.55	O .
PondF	0.130	STORAGE	0.00	129.20	0	00:35	0
3.01	0.010	5.0	0.00				· ·
PondG	- · - - •	STORAGE	0.00	20.07	0	00:35	0
0.51	0.116						
PondH		STORAGE	0.00	47.25	0	00:32	0
1.06	0.003						

SWMM 5 Year Output 9-21-20

**	***	**	***	**	**	**	**	**	**
No	de	Fl	000	lin	g	Sι	ımn	na	ry
**	***	**	***	**	**	**	**	* *	**

No nodes were flooded.

		Average	Avg	Evap	Exfil	Maximum	Max	Time
of Max	Maximum	N/ 3	ъ.				ъ.	
0	o 0+£1 o	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	
Occurrenc		1000 ft3	Full	Locc	Loss	1000 ft3	Full	daye
Storage hr:min	CFS	1000 113	FUII	LUSS	LUSS	1000 163	rull	days
111 .111111	CIS							
PondB		321.956	38	0	0	389.908	46	0
02:51	2.68							
PondC		111.256	19	0	0	174.130	30	0
02:23	1.52							
PondA	0.40	59.417	29	0	0	88.970	44	0
02:35	0.69	104 527	20	0	•	270 050	4.5	0
PondD 02:07	8.58	184.527	30	0	0	278.950	45	0
PondE	0.30	46.471	16	0	0	72.497	25	0
01:03	24.04	40.471	10	Ø	V	/2.45/	23	Ø
PondF	24.04	238.240	29	0	0	353.902	43	0
02:03	15.59	2301210		Ū	ŭ	3331302	.5	Ū
PondG		2.647	0	0	0	31.289	6	0
01:15	9.05							
PondH		86.593	14	0	0	132.766	21	0
02:39	1.11							

Flow Avg Max Total Freq Flow Flow Volume

SWMM 5 Year Output 9-21-20

Outfall Node	Pcnt	CFS	CFS	10^6 gal
Outfall2	99.97	61.16	61.68	49.385
Outfall1	99.97	67.44	67.69	54.456
Outfall4	99.89	245.24	276.10	197.866
Outfall3	99.69	1.80	8.58	1.447
System	99.88	375.63	407.24	303.154

		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow	0ccu	ırrence	Veloc	Full	Full
Link	Туре	CFS	days	hr:min	ft/sec	Flow	Depth
100	DUMMY	30.72	0	00:35			
200	DUMMY	29.46	0	00:30			
201	DUMMY	12.02	0	00:35			
202	CONDUIT	40.84	0	00:31	18.27	0.02	0.11
203	CONDUIT	1.52	0	02:24	6.34	0.00	0.05
204	DUMMY	92.76	0	00:30			
205	CONDUIT	93.43	0	00:31	22.09	0.06	0.17
300	DUMMY	77.99	0	00:30			
400	DUMMY	24.15	0	00:30			
401	CONDUIT	23.53	0	00:32	11.46	0.06	0.16
402	DUMMY	98.47	0	00:30			
500	DUMMY	46.88	0	00:35			
601	DUMMY	60.11	0	00:35			
602	CONDUIT	60.09	0	00:35	10.17	0.25	0.34
603	DUMMY	16.28	0	00:35			
604	DUMMY	11.36	0	00:30			
605	CONDUIT	26.88	0	00:35	14.61	0.02	0.09
606	DUMMY	42.32	0	00:30			
607	CONDUIT	69.12	0	00:31	16.65	0.04	0.14
700	DUMMY	13.78	0	00:30			
701	DUMMY	6.55	0	00:35			
702	DUMMY	6.55	0	00:35			
703	CONDUIT	6.54	0	00:36	5.62	0.03	0.11
801	DUMMY	5.68	0	00:35			
802	DUMMY	16.24	0	00:30			
803	CONDUIT	21.49	0	00:32	8.87	0.03	0.11
804	DUMMY	5.21	0	00:30			
806	DUMMY	20.93	0	00:30			
805	CONDUIT	5.08	0	00:32	5.42	0.02	0.09

	SMMM	5 Vear	Outnut	9-21-20			
808	CONDUIT	201.42	0 0	01:59	4.47	0.03	0.20
			-				
800	CONDUIT	189.04	0	01:19	6.57	0.02	0.14
600	CONDUIT	84.88	0	01:06	9.93	0.00	0.06
EastForkTrib	CONDUIT	61.00	0	00:32	3.08	0.01	0.07
EastFork	CONDUIT	180.00	0	00:24	4.29	0.03	0.15
MainStem	CONDUIT	67.00	0	01:15	2.39	0.00	0.05
MainStemTrib	CONDUIT	59.00	0	03:06	2.28	0.00	0.04
101	DUMMY	0.69	0	02:35			
206	DUMMY	2.68	0	02:52			
301	DUMMY	1.52	0	02:23			
501	DUMMY	24.04	0	01:03			
704	DUMMY	9.05	0	01:15			
807	DUMMY	1.11	0	02:39			
608	DUMMY	15.59	0	02:04			
403	DUMMY	8.58	0	02:07			

No conduits were surcharged.

Analysis begun on: Mon Sep 21 16:22:13 2020 Analysis ended on: Mon Sep 21 16:22:14 2020

Total elapsed time: 00:00:01

SWMM 100 Year Post Development

EP	Α	ST	OR	M	WA	١T٨	ΞR	Μ	ΙAΝ	۱A	GE	ME	EN.	Τ	M	OD	ΕL	-	-	٧	ER:	5I	NC	5	. 1	-	(B	ui	.10	d	5 .	. 1	. 0	12	2)

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CFS

Process Models:

Rainfall/Runoff ... NO
RDII ... NO
Snowmelt ... NO
Groundwater ... NO
Flow Routing ... YES
Ponding Allowed ... NO
Water Quality ... NO

Flow Routing Method KINWAVE

Starting Date 01/01/2005 00:00:00 Ending Date 01/02/2005 06:00:00

Antecedent Dry Days 0.0

Report Time Step 00:05:00
Routing Time Step 30.00 sec

********	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	123.320	40.186
External Outflow	105.086	34.244
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	18.084	5.893
Continuity Error (%)	0.122	

SWMM 100 Year Output

All links are stable.

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.02
Percent Not Converging : 0.00

Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Feet Feet days hr:min Type Feet Feet 0.00 0.00 6975.00 10 JUNCTION 0 00:00 0.00 20 JUNCTION 0.00 0.00 6982.00 00:00 0.00 21 JUNCTION 0.00 0.00 6953.00 00:00 0.00 22 0.00 JUNCTION 0.00 6936.00 0 00:00 0.00 23 JUNCTION 0.06 1.35 6946.35 0 00:35 1.34 0.27 24 JUNCTION 2.22 6936.22 00:51 2.22 30 JUNCTION 0.00 0.00 6985.00 00:00 0.00 31 JUNCTION 0.24 1.68 6954.68 00:59 1.68 0.24 67 JUNCTION 2.30 6867.80 0 01:13 2.30 40 0.00 0.00 JUNCTION 6918.00 00:00 0.00 41 0.00 0.00 6888.00 0.00 JUNCTION 00:00 42 JUNCTION 0.05 1.40 6912.40 0 00:35 1.38 50 JUNCTION 0.00 0.00 6945.00 0 00:00 0.00 51 JUNCTION 0.04 0.74 6920.74 0 00:49 0.74 60 JUNCTION 0.00 0.00 6942.00 00:00 0.00 0.00 0.00 61 JUNCTION 6893.00 00:00 0.00 62 0.00 0.00 6908.00 0 00:00 0.00 JUNCTION 0.00 63 JUNCTION 0.00 6882.00 0 00:00 0.00 64 JUNCTION 0.06 1.19 6901.19 0 00:40 1.19 0.09 1.92 65 JUNCTION 6881.92 00:40 1.92

	SWMN	M 100 Yea	r Outp	ut			
66 J	JUNCTION	0.13	3.12	6871.12	0	00:40	3.12
70	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
71 J	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
72 J	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00
73 J	JUNCTION	0.06	1.02	6903.02	0	00:45	1.02
74 3	JUNCTION	0.05	0.60	6897.60	0	01:12	0.60
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81 J	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82 J	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84 J	JUNCTION	0.07	1.45	6873.45	0	00:40	1.45
85 J	JUNCTION	0.03	0.82	6874.82	0	00:35	0.81
Outfall2 0	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1 0	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4 0	OUTFALL	0.24	2.30	6867.30	0	01:13	2.30
Outfall3 0	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
PondB S	STORAGE	6.72	9.85	6920.85	0	01:16	9.85
PondC S	STORAGE	5.17	7.08	6963.08	0	00:59	7.08
PondA S	STORAGE	5.81	8.60	6957.60	0	01:13	8.59
PondD S	STORAGE	5.66	8.08	6889.08	0	01:04	8.08
PondE S	STORAGE	4.04	5.84	6928.84	0	00:49	5.84
PondF S	STORAGE	5.86	8.17	6874.17	0	01:09	8.17
PondG S	STORAGE	0.20	2.69	6902.69	0	01:12	2.68
PondH S	STORAGE	4.95	6.51	6872.51	0	01:12	6.51

Total	Flow		Maximum	Maximum		Lateral						
			Lateral	Total	Time of Max	Inflow						
Inflow	Balance		Inflow	Inflow	Occurrence	Volume						
Volume Node	Error	Type	CFS	CFS	days hr:min	10^6 gal	10^6					
gal	Percent	Туре	CF3	CF3	uays III.IIIII	10.0 gar	10.0					
10	0.000	JUNCTION	100.64	100.64	0 00:40	2.37						
2.37 20	0.000	JUNCTION	97.08	97.08	0 00:35	1.81						
1.81	0.000											

			SWMM 100 Y	ear Output			
21		JUNCTION	42.26	42.26	0	00:40	1.2
1.2	0.000						
22		JUNCTION	295.27	295.27	0	00:40	6.04
6.04	0.000						
23		JUNCTION	0.00	136.17	0	00:35	0
3.01	0.000			224 24	_	00 =1	•
24	0.000	JUNCTION	0.00	334.84	0	00:51	0
9.43 30	-0.000	JUNCTION	238.03	238.03	0	00:35	4
4	0.000	JUNCTION	230.03	230.03	Ø	00.33	4
31	0.000	JUNCTION	0.00	115.75	0	00:59	0
3.39	0.000	000.				00102	•
67		JUNCTION	0.00	270.41	0	01:13	0
9.72	-0.000						
40		JUNCTION	70.07	70.07	0	00:35	1.32
1.32	0.000						
41		JUNCTION	252.18	252.18	0	00:35	4.73
4.73	0.000	JUNGTTON	0.00	70.07	•	00.25	0
42 1.32	0 000	JUNCTION	0.00	70.07	0	00:35	0
50	0.000	JUNCTION	178.04	178.04	0	00:40	4.2
4.2	0.000	JUNCTION	178.04	178.04	ð	00.40	4.2
51	0.000	JUNCTION	0.00	164.75	0	00:49	0
3.95	0.000						
60		JUNCTION	58.95	58.95	0	00:40	1.65
1.65	0.000						
61		JUNCTION	170.90	170.90	0	00:40	3.87
3.87	0.000				_		
62	0.000	JUNCTION	32.93	32.93	0	00:35	0.699
0.699	0.000	JUNCTION	124 90	124.89	0	00.40	2 07
63 2.87	0.000	JUNCTION	124.89	124.89	0	00:40	2.87
64	0.000	JUNCTION	0.00	90.88	0	00:40	0
2.35	0.000	JONETION	0.00	30.00	Ü	00.40	· ·
65		JUNCTION	0.00	215.63	0	00:40	0
5.22	0.000						
66		JUNCTION	0.00	170.90	0	00:40	0
3.87	0.000						
70		JUNCTION	43.95	43.95	0	00:40	1.05
1.05	0.000	JUNICITION	22.05	22.05	•	00.45	0.740
71	0.000	JUNCTION	23.95	23.95	0	00:45	0.742
0.742 72	0.000	JUNCTION	0.00	23.95	0	00:45	0
0.742	0.000	2014C L TOIN	0.00	در. دے	ð	00.40	9
73	2.000	JUNCTION	0.00	23.95	0	00:45	0
0.742	0.000			· · · _	-		-
74		JUNCTION	0.00	42.13	0	01:12	0
1.79	-0.000						

Page 4

		SI	WMM 100 Ye	ear Output			
80		JUNCTION	27.62	27.62	0	00:45	0.833
0.833	0.000						
81		JUNCTION	47.62	47.62	0	00:35	1.01
1.01	0.000				_		
82	0.000	JUNCTION	15.60	15.60	0	00:35	0.314
0.314	0.000	TUNCTION	64 71	CA 71	_	00.25	1 46
83	0.000	JUNCTION	64.71	64.71	0	00:35	1.46
1.46 84	0.000	JUNCTION	0.00	72 72	0	00:40	۵
04 1.84	0.000	JUNCTION	0.00	73.73	0	00.40	0
85	0.000	JUNCTION	0.00	15.60	0	00:35	0
0.314	0.000	JUNCTION	0.00	13.00	О	00.55	Ø
0.314 Outfal		OUTFALL	0.00	256.11	0	01:16	0
10.3	0.000	OUTTALL	0.00	250.11	U	01.10	0
Outfal		OUTFALL	0.00	53.95	0	01:13	0
2.03	0.000	OOTTALL	0.00	33.33	J	01.15	Ü
Outfal		OUTFALL	0.00	478.86	0	01:05	0
16.7	0.000	00117122	0.00	., 0.00	Ū	02.05	· ·
Outfal		OUTFALL	0.00	160.70	0	01:04	0
5.21	0.000						_
PondB		STORAGE	0.00	447.00	0	00:49	0
12.4	0.062						
PondC		STORAGE	0.00	238.03	0	00:35	0
4	0.130						
PondA		STORAGE	0.00	100.64	0	00:40	0
2.37	0.096						
PondD		STORAGE	0.00	320.21	0	00:35	0
6.05	0.105						
PondE		STORAGE	0.00	178.04	0	00:40	0
4.2	0.178						
PondF		STORAGE	0.00	385.87	0	00:41	0
9.08	0.109						
PondG		STORAGE	0.00	67.73	0	00:40	0
1.8	0.079				_		
PondH		STORAGE	0.00	153.03	0	00:38	0
3.61	0.143						

No nodes were flooded.

SWMM 100 Year Output

		_	_					
c		Average	Avg	Evap	Exfil	Maximum	Max	Time
of Max	Maximum	\/a]a	D = ±	Dant	Dant	Va 1	Dant	
0ccurren	ce Outflow	Volume	Pcnt	PCnt	Pcnt	Volume	Pcnt	
Storage		1000 ft3	Full	Loss	Loss	1000 ft3	Full	days
hr:min	CFS	1000 103	IUII	2033	2033	1000 105	1 411	aays
	5. 5							
PondB		363.135	43	0	0	827.701	97	0
01:15	256.11				_			
PondC	445 75	146.763	26	0	0	299.338	52	0
00:58	115.75	75.030	37	0	0	152 554	76	0
PondA 01:12	53.95	75.030	37	0	О	152.554	76	0
PondD	33.33	192.591	31	0	0	418.291	67	0
01:04	160.70	132.331	31	Ū	Ū	110.231	07	Ū
PondE		48.028	17	0	0	106.230	37	0
00:48	164.75							
PondF		250.108	31	0	0	549.589	67	0
01:09	229.20							
PondG		5.811	1	0	0	88.594	16	0
01:11	42.13	424 24=	2.5	_	•	262 222	40	•
PondH	00 17	131.315	21	0	0	268.983	42	0
01:12	80.17							

Outfall Node	Flow Freq Pcnt	Avg Flow CFS	Max Flow CFS	Total Volume 10^6 gal
Outfall2	99.64	12.77	256.11	10.280
Outfall1	99.69	2.53	53.95	2.035
Outfall4	99.67	20.76	478.86	16.717
Outfall3	99.69	6.47	160.70	5.209
System	99.67	42.53	924.48	34.241

		Maximum	Time	of Max	Maximum	Max/	Max/
				irrence			Full
Link	Type	CFS	days	hr:min	ft/sec	Flow	Depth
100	DUMMY	100.64	0	00:40			
200	DUMMY	97.08	0	00:35			
201	DUMMY	42.26	0	00:40			
202	CONDUIT	136.36	0	00:36	26.17	0.08	0.19
203	CONDUIT	115.74	0	00:59	23.03	0.37	0.42
204	DUMMY	295.27	0	00:40			
205	CONDUIT	334.86	0	00:51	31.89	0.22	0.32
300	DUMMY	238.03	0	00:35			
400	DUMMY	70.07	0	00:35			
401	CONDUIT	69.37	0	00:36	15.63	0.17	0.28
402	DUMMY	252.18	0	00:35			
500	DUMMY	178.04	0	00:40			
601	DUMMY	170.90	0	00:40			
602	CONDUIT	170.58	0	00:41	13.26	0.71	0.62
603	DUMMY	58.95	0	00:40			
604	DUMMY	32.93	0	00:35			
605	CONDUIT	90.74	0	00:41	20.83	0.06	0.17
606	DUMMY	124.89	0	00:40			
607	CONDUIT	215.42	0	00:40	23.26	0.13	0.24
700	DUMMY	43.95	0	00:40			
701	DUMMY	23.95	0	00:45			
702	DUMMY	23.95	0	00:45			
703	CONDUIT	23.94	0	00:45	8.29	0.09	0.20
801	DUMMY	27.62	0	00:45			
802	DUMMY	47.62	0	00:35			
803	CONDUIT	73.66	0	00:40	12.80	0.09	0.21
804	DUMMY	15.60	0	00:35			
806	DUMMY	64.71	0	00:35			
805	CONDUIT	15.43	0	00:37	7.47	0.06	0.16
808	CONDUIT	270.40	0	01:13	4.87	0.04	0.23
800	CONDUIT	41.98	0	01:17	4.06	0.00	0.06
600	CONDUIT	164.38	0	00:51	12.48	0.01	0.09
101	DUMMY	53.95	0	01:13			
206	DUMMY	256.11	0	01:16			
301	DUMMY	115.75	0	00:59			
501	DUMMY	164.75	0	00:49			
704	DUMMY	42.13	0	01:12			
807	DUMMY	80.17	0	01:12			
608	DUMMY	229.20	0	01:09			

No conduits were surcharged.

Analysis begun on: Mon Apr 13 19:00:38 2020 Analysis ended on: Mon Apr 13 19:00:38 2020

Total elapsed time: < 1 sec

SWMM 100 Year Output 9-21-20

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options ********

Flow Units CFS

Process Models:

Rainfall/Runoff NO
RDII NO
Snowmelt NO
Groundwater ... NO
Flow Routing ... YES
Ponding Allowed ... NO
Water Quality ... NO

Flow Routing Method KINWAVE

Starting Date 01/01/2005 00:00:00 Ending Date 01/02/2005 06:00:00

Antecedent Dry Days 0.0

Report Time Step 00:05:00 Routing Time Step 30.00 sec

*******	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	3854.070	1255.906
External Outflow	3828.229	1247.485
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	28.186	9.185
Continuity Error (%)	-0.061	

SWMM 100 Year Output 9-21-20

All links are stable.

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.02
Percent Not Converging : 0.00

Maximum Maximum Time of Max Average Reported Depth Depth HGL Occurrence Max Depth Feet Feet Node Type Feet days hr:min Feet 10 JUNCTION 0.00 0.00 6975.00 00:00 0.00 20 JUNCTION 0.00 0.00 6982.00 0 00:00 0.00 0.00 21 JUNCTION 0.00 6953.00 00:00 0.00 22 JUNCTION 0.00 0.00 6936.00 00:00 0.00 23 JUNCTION 0.06 1.35 6946.35 00:35 1.34 24 0.27 2.22 6936.22 2.22 JUNCTION 0 00:51 30 JUNCTION 0.00 0.00 6985.00 0 00:00 0.00 0.24 31 JUNCTION 1.68 6954.68 00:59 1.68 67 JUNCTION 3.45 4.11 6869.61 01:12 4.11 40 JUNCTION 0.00 0.00 6918.00 00:00 0.00 41 JUNCTION 0.00 0.00 6888.00 0 00:00 0.00 42 0.05 1.40 JUNCTION 6912.40 00:35 1.38 50 0.00 0.00 6945.00 0.00 JUNCTION 0 00:00 51 JUNCTION 1.48 1.48 6921.48 0 00:21 1.48 60 JUNCTION 0.00 0.00 6942.00 0 00:00 0.00 61 JUNCTION 0.00 0.00 6893,00 0 00:00 0.00 62 JUNCTION 0.00 0.00 6908.00 00:00 0.00 63 0.00 0.00 JUNCTION 6882.00 00:00 0.00 64 0.06 1.19 6901.19 0 00:40 JUNCTION 1.19 0.09 1.92 65 JUNCTION 6881.92 0 00:40 1.92 66 JUNCTION 0.13 3.12 6871.12 0 00:40 3.12 0.00 0.00 6923.00 0.00 70 JUNCTION 00:00

	SWMM	100 Year	Output 9	-21-20			
71	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
72	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00
73	JUNCTION	0.06	1.02	6903.02	0	00:45	1.02
74	JUNCTION	2.57	2.66	6899.66	0	01:12	2.66
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.07	1.45	6873.45	0	00:40	1.45
85	JUNCTION	0.03	0.82	6874.82	0	00:35	0.81
0S1	JUNCTION	1.33	1.33	6953.93	0	00:00	1.33
0S3	JUNCTION	1.48	1.48	6924.28	0	00:00	1.48
0S4	JUNCTION	2.38	2.38	6902.18	0	00:00	2.38
0S2	JUNCTION	1.06	1.06	6925.06	0	00:00	1.06
Outfall2	OUTFALL	1.06	1.06	6911.06	0	01:47	1.06
Outfall1	OUTFALL	1.33	1.33	6948.33	0	00:39	1.33
Outfall4	OUTFALL	3.45	4.11	6869.11	0	01:12	4.11
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
PondB	STORAGE	6.72	9.85	6920.85	0	01:16	9.85
PondC	STORAGE	5.17	7.08	6963.08	0	00:59	7.08
PondA	STORAGE	5.81	8.60	6957.60	0	01:13	8.59
PondD	STORAGE	5.66	8.08	6889.08	0	01:04	8.08
PondE	STORAGE	4.04	5.84	6928.84	0	00:49	5.84
PondF	STORAGE	5.86	8.17	6874.17	0	01:09	8.17
PondG	STORAGE	0.20	2.69	6902.69	0	01:12	2.68
PondH	STORAGE	4.95	6.51	6872.51	0	01:12	6.51

			Maximum	Maximum		Lateral	
Total	Flow						
			Lateral	Total	Time of Max	Inflow	
Inflow	Balance						
			Inflow	Inflow	Occurrence	Volume	
Volume	Error						
Node		Type	CFS	CFS	days hr:min	10^6 gal	10^6
gal	Percent						
10		JUNCTION	100.64	100.64	0 00:40	2.37	
2.37	0.000						

		SWMM	100 Year	Output 9-2	21-20		
20		JUNCTION	97.08	97.08	0	00:35	1.81
1.81	0.000	TUNCTION	42.26	42.26	0	00.40	1.2
21	0.000	JUNCTION	42.26	42.26	0	00:40	1.2
1.2 22	0.000	JUNCTION	295.27	295.27	0	00:40	6.04
6.04	0.000	JONETION	233.27	233.27	O	00.40	0.04
23	0.000	JUNCTION	0.00	136.17	0	00:35	0
3.01	0.000						
24		JUNCTION	0.00	334.84	0	00:51	0
9.43	-0.000						
30		JUNCTION	238.03	238.03	0	00:35	4
4	0.000						
31		JUNCTION	0.00	115.75	0	00:59	0
3.39	0.000			045 00	_		
67		JUNCTION	0.00	865.98	0	01:12	0
489	0.000	JUNGTTON	70.07	70.07	0	00.25	4 22
40	0.000	JUNCTION	70.07	70.07	0	00:35	1.32
1.32	0.000	JUNCTION	252 10	252 10	0	00.25	4.73
41 4.73	0.000	JUNCTION	252.18	252.18	0	00:35	4./3
4.73	0.000	JUNCTION	0.00	70.07	0	00:35	0
1.32	0.000	JUNCTION	0.00	70.07	Ð	00.55	0
50	0.000	JUNCTION	178.04	178.04	0	00:40	4.2
4.2	0.000	30.10.120.1	2,000	270101	Ū	001.0	.,_
51		JUNCTION	0.00	381.75	0	00:49	0
179	0.000						
60		JUNCTION	58.95	58.95	0	00:40	1.65
1.65	0.000						
61		JUNCTION	170.90	170.90	0	00:40	3.87
3.87	0.000						
62		JUNCTION	32.93	32.93	0	00:35	0.699
0.699	0.000						
63		JUNCTION	124.89	124.89	0	00:40	2.87
2.87	0.000				_		
64	0.000	JUNCTION	0.00	90.88	0	00:40	0
2.35	0.000	JUNCTION	0.00	215 62	0	00.40	0
65 5.22	0.000	JUNCTION	0.00	215.63	0	00:40	0
66	0.000	JUNCTION	0.00	170.90	0	00:40	0
3.87	0.000	JONETION	0.00	170.50	O	00.40	O
70	0.000	JUNCTION	43.95	43.95	0	00:40	1.05
1.05	0.000	30.10.120.1	.3.33	13.73	Ū	001.0	2.05
71		JUNCTION	23.95	23.95	0	00:45	0.742
0.742	0.000						
72		JUNCTION	0.00	23.95	0	00:45	0
0.742	0.000						
73		JUNCTION	0.00	23.95	0	00:45	0
0.742	0.000						
			_				

Page 4

		SWMM	100 Year	Output 9-2	21-20		
74		JUNCTION	0.00	637.13	0	01:12	0
482	0.000	JUNICTTON	27.62	27.62	α	00.45	0.833
80 0.833	0.000	JUNCTION	27.62	27.02	0	00:45	0.833
81	0.000	JUNCTION	47.62	47.62	0	00:35	1.01
1.01	0.000						
82		JUNCTION	15.60	15.60	0	00:35	0.314
0.314	0.000	7. INCTTON	C 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	64 74	•	00.25	4.46
83 1.46	0.000	JUNCTION	64.71	64.71	0	00:35	1.46
84	0.000	JUNCTION	0.00	73.73	0	00:40	0
1.84	0.000	JONETION	0.00	73.73	O	00.40	· ·
85		JUNCTION	0.00	15.60	0	00:35	0
0.314	0.000						
0S1		JUNCTION	413.00	413.00	0	00:00	334
334	0.000						
0S3	0.000	JUNCTION	217.00	217.00	0	00:00	175
175 0S4	-0.000	JUNCTION	EOE AA	595.00	0	00.00	481
481	0.000	JUNCTION	595.00	393.00	О	00:00	401
0S2	0.000	JUNCTION	280.00	280.00	0	00:00	226
226	0.000	30.1012011	200.00	200100	J	00.00	220
Outfa]		OUTFALL	0.00	536.11	0	01:16	0
236	0.000						
Outfa]		OUTFALL	0.00	466.95	0	01:13	0
335	0.000						
Outfa]		OUTFALL	0.00	1291.25	0	01:05	0
671 Outfal	0.000	OUTFALL	0.00	160.70	0	01:04	0
5.21	0.000	OUTFALL	0.00	100.70	О	01.04	V
PondB	0.000	STORAGE	0.00	447.00	0	00:49	0
	0.062				_		_
PondC		STORAGE	0.00	238.03	0	00:35	0
4	0.130						
PondA		STORAGE	0.00	100.64	0	00:40	0
2.37	0.096	STORAGE	0.00	222 24	•	00.25	•
PondD	0 105	STORAGE	0.00	320.21	0	00:35	0
6.05 PondE	0.105	STORAGE	0.00	178.04	0	00:40	0
4.2	0.178	STORAGE	0.00	170.04	0	00.40	0
PondF	0.1=.0	STORAGE	0.00	385.87	0	00:41	0
9.08	0.109						
PondG		STORAGE	0.00	67.73	0	00:40	0
1.8	0.079						
PondH		STORAGE	0.00	153.03	0	00:38	0
3.61	0.143						

SWMM 100 Year Output 9-21-20

**	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
No	d	e		F	1	o	0	d	i	n	g		S	u	m	m	a	r	y	

No nodes were flooded.

		Average	Avg	Evap	Exfil	Maximum	Max	Time
of Max	Maximum							
		Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	
Occurrence		1000 (10	- 11			1000 (10	- 11	
Storage		1000 ft3	Full	Loss	Loss	1000 ft3	Full	days
hr:min	CFS							
PondB		363.135	43	0	0	827.701	97	0
01:15	256.11							
PondC		146.763	26	0	0	299.338	52	0
00:58	115.75							
PondA		75.030	37	0	0	152.554	76	0
01:12	53.95							
PondD		192.591	31	0	0	418.291	67	0
01:04	160.70	40.000				404 000		
PondE	164 75	48.028	17	0	0	106.230	37	0
00:48	164.75	250 100	21	0	0	F40 F00	c7	0
PondF 01:09	229.20	250.108	31	0	0	549.589	67	0
PondG	229.20	5.811	1	0	0	88.594	16	0
01:11	42.13	3.011		Ø	V	00.334	10	V
PondH	72.13	131.315	21	0	0	268.983	42	0
01:12	80.17	131.313		Ū	Ü	230.303		Ŭ

Flow Avg Max Total Freq Flow Flow Volume

SWMM 100 Year Output 9-21-20

Outfall Node	Pcnt	CFS	CFS	10^6 gal
Outfall2	99.97	292.00	536.11	235.796
Outfall1	99.97	415.18	466.95	335.258
Outfall4	99.92	831.58	1291.25	671.130
Outfall3	99.69	6.47	160.70	5.209
System	99.89	1545.23	2428.13	1247.393

		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow	0ccu	irrence	Veloc	Full	Full
Link	Туре	CFS	days	hr:min	ft/sec	Flow	Depth
100	DUMMY	100.64	0	00:40			
200	DUMMY	97.08	0	00:35			
201	DUMMY	42.26	0	00:40			
202	CONDUIT	136.36	0	00:36	26.17	0.08	0.19
203	CONDUIT	115.74	0	00:59	23.03	0.37	0.42
204	DUMMY	295.27	0	00:40			
205	CONDUIT	334.86	0	00:51	31.89	0.22	0.32
300	DUMMY	238.03	0	00:35			
400	DUMMY	70.07	0	00:35			
401	CONDUIT	69.37	0	00:36	15.63	0.17	0.28
402	DUMMY	252.18	0	00:35			
500	DUMMY	178.04	0	00:40			
601	DUMMY	170.90	0	00:40			
602	CONDUIT	170.58	0	00:41	13.26	0.71	0.62
603	DUMMY	58.95	0	00:40			
604	DUMMY	32.93	0	00:35			
605	CONDUIT	90.74	0	00:41	20.83	0.06	0.17
606	DUMMY	124.89	0	00:40			
607	CONDUIT	215.42	0	00:40	23.26	0.13	0.24
700	DUMMY	43.95	0	00:40			
701	DUMMY	23.95	0	00:45			
702	DUMMY	23.95	0	00:45			
703	CONDUIT	23.94	0	00:45	8.29	0.09	0.20
801	DUMMY	27.62	0	00:45			
802	DUMMY	47.62	0	00:35			
803	CONDUIT	73.66	0	00:40	12.80	0.09	0.21
804	DUMMY	15.60	0	00:35			
806	DUMMY	64.71	0	00:35			
805	CONDUIT	15.43	0	00:37	7.47	0.06	0.16

	SWMM	100 Year	Outpu	t 9-21-20	9		
808	CONDUIT	865.97	0	01:12	6.70	0.14	0.41
800	CONDUIT	637.10	0	01:15	9.35	0.06	0.27
600	CONDUIT	381.54	0	00:50	16.34	0.02	0.15
EastForkTrib	CONDUIT	217.00	0	00:21	4.75	0.02	0.15
EastFork	CONDUIT	595.00	0	00:16	6.34	0.10	0.30
MainStem	CONDUIT	413.00	0	00:40	4.75	0.03	0.13
MainStemTrib	CONDUIT	280.00	0	01:49	4.12	0.02	0.11
101	DUMMY	53.95	0	01:13			
206	DUMMY	256.11	0	01:16			
301	DUMMY	115.75	0	00:59			
501	DUMMY	164.75	0	00:49			
704	DUMMY	42.13	0	01:12			
807	DUMMY	80.17	0	01:12			
608	DUMMY	229.20	0	01:09			
403	DUMMY	160.70	0	01:04			

No conduits were surcharged.

Analysis begun on: Mon Sep 21 16:06:21 2020 Analysis ended on: Mon Sep 21 16:06:21 2020

Total elapsed time: < 1 sec

Appendix D

		Prelimir				-	Detention (F	•	•
			COS PO	CM-FSD Preli		•	1.00, Septemb	per 2019)	Sheet 1
	STOR	11111	TED		•	Chris McFarlan Grandview Res			
	SIUN					April 6, 2020	erve Foria A		Last Edited: April 13, 2
COLORADO		ENTER	PRISE		Date.	April 0, 2020			Last Luited. April 10, 2
SPRINGS									
OLYMPIC CITY USA									
Select WQCV/EURV PCM Type: Imports the Stage-Area-Volume-Discharg corresponding PCM worksheet. The sele must be completed before the import will	cted PCM work				Б	stended Detention B	lasin (EDB)	•	
. WQCV/EURV Outlet Details						Input Pa	rameters		
					:_	User Input	COS DCM	i / I	
A) Average Infiltration Rate of WQCV B) Depth to Centroid of Underdrain Outlet C	rifice from filte	r media surfa	ce		y =	N/A	N/A	in / hr inches	
C) Underdrain Outlet Orifice Area D) Number of WQCV Orifice Rows				Un	derdrain Ao = VQCV rows =	N/A 10	N/A	sq in	
Number of WQCV Orifice Rows Vertical Spacing between WQCV Orifice	Rows				ice Spacing =	4.0	4.0	inches	
F) WQCV Orifice Area (A _o) per Row					WQCV Ao =	0.61	0.61	sq in	
 G) Maximum Stage of WQCV (includes ISD H) EURV Orifice Area (A_o) in Single Row 	and I rickle C	nannel Depth))		Stage wqcv = EURV Ao =	3.40 2.96	3.40 2.96	ft sa in	
I) Maximum Stage of EURV (includes ISD a				Max	Stage _{EURV} =	4.50	4.50	ft	
J) Discharge Coefficient for all WQCV/EUR	V Outlet Orifice	e(s)			Cd =	0.60	0.60	1	
Flood Control Surcharge Basin Geometry (above EURV) - See Figure Default Flood Surcharge Geometry inputs represent a continuation of the PCM Geometry in an upward direction without a transition bench. A) Length of Basin at Top of EURV B) Width of Basin at Top of EURV C) Stage at Top of Transition Bench (Bottom of Flood Control Surcharge) D) Length of Basin at Top of Transition Bench (Bottom of Flood Control Surcharge) E) Width of Basin at Top of Transition Bench (Bottom of Flood Control Surcharge) F) Average Side Stopes of Flood Control Surcharge above Transition Bench (Recommend no steeper than 3H:1V slope. Use zero for vertical walls.)				Stage at To	L PCM = W PCM = POP OF BENCH = L Bench = W Bench = Z Surcharge =	Input Pa User Input 370.3 113.6 4.60 371.1 114.4 4.00	rameters COS DCM 370.3 4.60 4.60 371.1 114.4 4.00	ft ft ft ft ft ft/ft	User can override default flood surcharge geometry inputs to create a transition bench between the top of the PCM and the Flood Surcharge Volume by entering larger dimensions in C), D), and E). See the Figure to the right. Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction
. Tributary Watershed Hydrology				Pro Do	relopment Pe	ak Flow (cfs)			1
A) Input hydrology data (copy/paste) from m	odel runs	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	
B) Adjust "Time Interval" to match	Time Interva		13.03				57.08		1
hydrograph data	5.0	minutes							-
5-yr and 100-yr Hydrology Required	Time (min)	2 Year	5 Year	10 Year	25 Year	ow Hydrograph 50 Year	100 Year	500 Year	1
(Other Storms are Optional)	0:00		0.00				0.00		
	0:05 0:10		0.32 2.12				0.84 2.93		-
	0:15		6.24				8.14		
	0:20		19.45				26.66 70.19		
	0:25 0:30		29.43 30.68				70.19 95.65		1
	0:35		28.10				100.37		1
	0:40 0:45		24.84 22.05				96.25 89.32		-
	0:50		19.61				81.43]
	0:55		17.40				74.41		-
	1:00 1:05		15.33 13.43				68.04 58.60		1
	1:10		11.93				49.54		
	1:15 1:20		10.74 9.68				42.06 35.93		-
	1:25		8.69				30.71		1
	1:30		7.74 6.69				26.07		-
	1:35 1:40		6.69 5.63 4.64				21.81 17.82 14.14		

0:00	0.00			0.00	
0:05	0.32			0.84	
0:10	2.12			2.93	
0:15	6.24			8.14	
0:20	19.45			26.66	
0:25	29.43			70.19	
0:30	30.68			95.65	
0:35	28.10			100.37	
0:40	24.84			96.25	
0:45	22.05			89.32	
0:50	19.61			81.43	
	17.40			74.41	
0:55					
1:00	15.33			68.04	
1:05	13.43			58.60	
1:10	11.93			49.54	
1:15	10.74			42.06	
1:20	9.68			35.93	
1:25	8.69			30.71	
1:30	7.74			26.07	
1:35	6.69			21.81	
1:40	5.63			17.82	
1:45	4.64			14.14	
1:50	3.79			10.94	
1:55	3.24			8.55	
2:00	2.68			6.51	
2:05	2.16			4.89	
2:10	1.73			3.64	
2:15	1.39			2.70	
2:20	1.11			1.98	
2:25	0.88			1.45	
2:30	0.68			1.07	
2:35	0.53			0.82	
2:40	0.41			0.64	
	0.41			0.50	
2:45					
2:50	0.24			0.39	
2:55	0.17			0.29	
3:00	0.12			0.20	
3:05	0.08			0.13	
3:10	0.05			0.07	
3:15	0.02			0.03	
3:20	0.01			0.01	
3:25	0.00			0.00	
3:30					
3:35					
3:40					
3:45					
3:50					
3:55					
4:00					
4:05					
4:10					
4:15					
4:20					
4:25					
4:30					
4:35					
4:40					
4:45					
4:50					
4:55					
5:00					
5:05					
5:10					
5:15					
5:20					
5:25					
5:30					
5:35					

5:40				
5:45				
5:50				
5:55				
6:00				

	Preliminary	Design	Procedure	e Form: Fu	II Spectrum	Detention (I	FSD) Routi	na
	1 Tellillillary				•	n 1.00, Septem		Sheet 1 of 3
					Chris McFarlar			
STORI	MWATE	R			Grandview Res	serve Pond B		
COLORADO SPRINGS OLYMPIC CITY USA	ENTERPRI	SE		Date:	April 6, 2020			Last Edited: April 13, 2020
Select WQCV/EURV PCM Type: Imports the Stage-Area-Volume-Discharge information f corresponding PCM worksheet. The selected PCM workmust be completed before the import will work.			Ex	tended Detention	Basin (EDB)	•	•	
2. WQCV/EURV Outlet Details						arameters		
A) Average Infiltration Rate of WQCV				i =	User Input N/A	N/A	lin / hr	
B) Depth to Centroid of Underdrain Outlet Orifice from filte	r media surface			v =	N/A	N/A	inches	
C) Underdrain Outlet Orifice Area				derdrain Ao =	N/A	N/A	sq in	
D) Number of WQCV Orifice Rows				VQCV rows =	14	14	1	
 E) Vertical Spacing between WQCV Orifice Rows F) WQCV Orifice Area (A_n) per Row 			Ont	ice Spacing = WQCV Ao =	4.0 1.49	4.0 1.49	inches sq in	
G) Maximum Stage of WQCV (includes ISD and Trickle Cl	hannel Depth)		Max	Stage work =	4.70	4.70	ft	
H) EURV Orifice Area (A₀) in Single Row	. ,			EURV Ao =	1.49	1.49	sq in	
 Maximum Stage of EURV (includes ISD and Trickle Cha 			Max	Stage _{EURV} =	6.00	6.00	ft	
Discharge Coefficient for all WQCV/EURV Outlet Orifice	e(s)			Cd =	0.60	0.60		
3. Flood Control Surcharge Basin Geometry (above EURV) -								User can override default flood surcharge
Default Flood Surcharge Geometry inputs represent a cor the PCM Geometry in an upward direction without a transi						arameters	_	geometry inputs to create a transition bench
the PCM Geometry in an upward direction without a transi	luon bench.				User Input	COS		between the top of the PCM and the Flood Surcharge Volume by entering larger
A) Length of Basin at Top of EURV				L _{PCM} =	644.7	644.7	ft	dimensions in C), D), and E).
B) Width of Basin at Top of EURV				W _{PCM} =	191.2	191.2	ft	See the Figure to the right.
C) Stage at Top of Transition Bench (Bottom of Flood Con	trol Surcharge)		Stage at To	op of Bench =	6.10	6.10	ft	
D) Length of Basin at Top of Transition Bench (Bottom of F) Width of Basin at Top of Transition Bench (Bottom of F)				L _{Bench} = W _{Bench} =	645.5 192.0	645.5 192.0	- I't	Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction
F) Average Side Slopes of Flood Control Surcharge above				Z Surcharge =	4.00	4.00	ft / ft	Bench Slope is 4H. IV in width direction
(Recommend no steeper than 3H:1V slope. Use zero to				,			_	
Tributary Watershed Hydrology								_
				elopment Pe				
A) Input hydrology data (copy/paste) from model runs		5 Year 17.56	10 Year	25 Year	50 Year	100 Year	500 Year	4
D) Adjust Wiles - Intervell to match. Time Interve		17.56				164.21		

B) Adjust "Time Interval" to match hydrograph data

5-yr and 100-yr Hydrology Required (Other Storms are Optional)

Tillie lillerva							
5.0	minutes						
Time		Pos	t-Developme	nt Storm Infl	ow Hydrograph		
(min)	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
0:00		0.00				0.00	
0:05		0.69				2.08	
0:10		5.80				8.30	
0:15		16.64				20.58	
0:20		42.42				58.80	
0:25		68.16				179.82	
0:30		75.65				276.49	
0:35		71.78				307.62	
0:40		64.91				331.81	
0:45		58.24				366.22	
0:50		52.24				365.58	
0:55		47.02				346.26	
1:00		42.99				321.76	
1:05		39.68				290.00	
		36.25				252.97	
1:10							
1:15		32.60				216.52	
1:20		29.09				182.15	
1:25		26.07				152.09	
1:30	ļ	23.97				127.70	
1:35		22.28				109.78	
1:40		20.74				96.42	
1:45		19.35				85.46	
1:50		18.07				76.27	
1:55		16.77				68.63	
2:00		14.81				60.20	1
2:05		12.66				51.42	
2:10	1	10.67				42.95	
2:15		8.88				35.32	
2:20		7.28				28.18	
2:25		5.90				21.64	
2:30		4.82				15.96	
		4.08					
2:35						11.89	
2:40		3.58				9.39	
2:45		3.19				7.53	
2:50		2.86				6.09	
2:55		2.60				4.98	
3:00		2.39				4.12	
3:05		2.22				3.47	
3:10		2.09				2.97	
3:15		1.97				2.55	
3:20		1.86				2.21	
3:25		1.77				2.08	
3:30		1.70				1.98	
3:35	1	1.63				1.88	
3:40		1.58				1.81	
3:45		1.54				1.75	
3:50		1.51				1.70	
3:55		1.49				1.67	
4:00	ļ	1.47				1.65	
4:05		1.46				1.64	
4:10		1.46				1.64	
4:15		1.46				1.64	
	1	1.46				1.64	
4:20							
4:25		1.45				1.64	
4:30		1.45				1.63	
4:35		1.45				1.63	
4:40		1.45				1.63	
4:45		1.45				1.63	
4:50		1.44				1.63	
4:55		1.44				1.63	
5:00	1	1.44				1.62	
	1			-			—
5:05		1.44				1.62	
5:10		1.44				1.62	
5:15		1.43				1.62	
5:20	1	1.43				1.62	
5:25		1.43				1.61	
5:30		1.43				1.61	
5:35		1.43				1.61	
0.00							

5:40	1.42		1.61	
5:45	1.42		1.61	
5:50	1.42		1.60	
5:55	1.42		1.60	
6:00				

		Prelimin	ary Desigr	n Procedure	e Form: Fu	II Spectrum	Detention (F	SD) Routir	ng
			COS PC	CM-FSD Prelin	ninary Desig	n (Beta Version	n 1.00, Septem	per 2019)	Sheet 1 of
					Designer:	Chris McFarlan	ıd		
	STOR	MWAT	ER		Project:	Grandview Res	erve Pond C		
COLORADO		ENTER	PRISE		Date:	April 6, 2020			Last Edited: April 08, 202
SPRINGS									
OLYMPIC CITY USA									
Select WQCV/EURV PCM Type: Imports the Stage-Area-Volume-Discha corresponding PCM worksheet. The se must be completed before the import w	lected PCM work				Ex	tended Detention E	Basin (EDB)	•	I
WQCV/EURV Outlet Details							rameters	_	
A) Average Infiltration Rate of WQCV					i =	User Input N/A	COS DCM	in / hr	
B) Depth to Centroid of Underdrain Outlet	Orifice from filte	r media surfac	e		y =	N/A	N/A	inches	
C) Underdrain Outlet Orifice Area D) Number of WQCV Orifice Rows					derdrain Ao = VQCV rows =	N/A 12	N/A 12	sq in	
E) Vertical Spacing between WQCV Orific			ice Spacing =	4.0	4.0	inches			
 F) WQCV Orifice Area (A_o) per Row G) Maximum Stage of WQCV (includes IS 		Max	WQCV Ao = Stage wqcv =	1.05 4.00	1.05	sq in ft			
H) EURV Orifice Area (Ao) in Single Row			EURV Ao =	17.07					
Maximum Stage of EURV (includes ISD and Trickle Channel Depth) Discharge Coefficient for all WQCV/EURV Outlet Orifice(s)				Max	Stage _{EURV} =	6.00 0.60			
Discharge Coefficient for all WQCV/EU	RV Outlet Onlice	e(s)			Cd =	0.60	0.60	_	
3. Flood Control Surcharge Basin Geometry Default Flood Surcharge Geometry input the PCM Geometry in an upward direction A) Length of Basin at Top of EURV B) Width of Basin at Top of EURV C) Stage at Top of Transition Bench (Bott D) Length of Basin at Top of Transition Ber E) Width of Basin at Top of Transition Ber F) Average Side Slopes of Flood Control (Recommend no steeper than 3H:1V steeps of Transition Ber Basin at Top of Transition Ber F) Average Side Slopes of Flood Control (Recommend no steeper than 3H:1V steeps Basin at Top of Transition Ber F) Average Side Slopes of Flood Control (Recommend no steeper than 3H:1V steeps Basin at Top of Transition Ber F)	s represent a con n without a transi om of Flood Con ench (Bottom of Fl inch (Bottom of Fl Surcharge above	ntinuation of tion bench. htrol Surcharge Flood Control ood Control S Transition Be	Surcharge) urcharge) nch	Stage at To	L PCM = W PCM = DP of Bench = L Bench = W Bench = Z Surcharge =	Input Pa User Input 453.3 177.8 6.10 454.1 178.6 4.00	COS DCM 453.3 177.8 6.10 454.1 178.6 4.00	ft ft ft ft ft ft	User can override default flood surcharge geometry inputs to create a transition bench between the top of the PCM and the Flood Surcharge Volume by entering larger dimensions in C), D), and E). See the Figure to the right. Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction
Tributary Watershed Hydrology				Pro-Dev	relonment Pe	ak Flow (cfs)			1
A) Input hydrology data (copy/paste) from	model runs	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	1
B) Adjust "Time Interval" to match	Time Interva		9.95				120.21		1
hydrograph data	5.0	minutes		4 Danielan			(-f-)		1
5-yr and 100-yr Hydrology Required	Time (min)	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	1
(Other Storms are Optional)	0:00		0.00				0.00		
	0:05 0:10		1.75 11.33				4.56 15.20		
	0:15		27.93				32.42		1
	0:20		61.14				76.70]
	0:25 0:30		78.99 71.29				190.43 238.04		1
	0:35		58.22				222.59]
	0:40 0:45		47.28 38.58				193.29 162.70		-
	0:45		32.22				131.89		1
	0:55		27.64				110.47]
	1:00		23.60				95.05 74.37		1
	1:10		16.49				54.92]
	1:15 1:20		14.05 12.80				38.35 27.93		-
			12.00						

(min)	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
0:00		0.00				0.00	
0:05		1.75				4.56	
0:10		11.33				15.20	
		07.00					
0:15		27.93				32.42	
0:20		61.14				76.70	
0:25		78.99				190.43	İ
0:30		71.29				238.04	
0:35		58.22				222.59	
		47.28				193.29	
0:40							
0:45		38.58				162.70	
0:50		32.22				131.89	
0:55		27.64				110.47	
1:00		23.60				95.05	
1:05		20.00				74.37	
1:10		16.49				54.92	-
1:15		14.05				38.35	
1:20		12.80				27.93	
1:25		12.09				21.76	
1:30		11.62				18.07	
1:35		10.55				15.64	
1:40		9.56				14.06	-
1:45		8.84				12.98	
1:50		8.33				12.35	
1:55		7.74				12.15	
2:00		5.88				9.32	
2:05		4.08				6.49	
2:10		2.79				4.48	
2:15		1.86				3.04	
2:20		1.21				1.99	
2:25		0.80				1.32	
2:30		0.49				0.80	
2:35		0.25				0.40	
2:40		0.09				0.14	-
2:45		0.01				0.01	
2:50		0.00				0.00	
2:55							
3:00							
3:05							
3:10							
3:15							
3:20							l
3:25							İ
3:30							
3:35							
3:40							
3:45							-
3:50							
3:55							
4:00							
4:05							
4:10							
4:15							
4:20							
4:25							
4:30							
4:35							
4:40							
4:45							
4:50							
4:55							
5:00							
5:05							
5:10							
5:15							
5:20							
5:25							
5:30							
5.35							

5:40				
5:45				
5:50				
5:55				
6:00				

		Prelimin	ary Desigr	Procedur	e Form: Fu	ıll Spectrum	Detention (F	SD) Routir	ng	
			COS PO	CM-FSD Preli		•	n 1.00, Septemb	er 2019)	Sheet 1	
	OTOD				-	Chris McFarlan				
	STOR	MWA	ER			Grandview Res	serve Pond D			
COLORADO		ENTER	PRISE		Date:	April 6, 2020			Last Edited: April 13, 2	
SPRINGS										
OLYMPIC CITY USA										
Select WQCV/EURV PCM Type: Imports the Stage-Area-Volume-Dischal corresponding PCM worksheet. The sel must be completed before the import wi	lected PCM worl			Extended Detention Basin (EDB)						
. WQCV/EURV Outlet Details						Input Pa	arameters			
						User Input	COS DCM	i / I		
A) Average Infiltration Rate of WQCV B) Depth to Centroid of Underdrain Outlet	Orifice from filte	er media surfa	ce		y =	N/A N/A	N/A N/A	in / hr inches		
C) Underdrain Outlet Orifice Area D) Number of WQCV Orifice Rows					derdrain Ao = VQCV rows =	N/A 13	N/A	sq in		
E) Vertical Spacing between WQCV Orific	e Rows				ice Spacing =	4.0	4.0	inches		
F) WQCV Orifice Area (A _o) per Row			WQCV Ao = Stage wqcv =	1.34	1.34	sq in				
 G) Maximum Stage of WQCV (includes IS H) EURV Orifice Area (A_o) in Single Row 	SD and Trickle C	hannel Depth)			EURV Ao =	4.50 20.83	4.50 20.83	ft sq in		
Maximum Stage of EURV (includes ISD and Trickle Channel Depth)				Max	Stage _{EURV} =	6.50	6.50	ft		
J) Discharge Coefficient for all WQCV/EU			Cd =	0.60	0.60	1				
. Flood Control Surcharge Basin Geometry	(ahove FURV) -	See Figure							User can override default flood surcharge	
Default Flood Surcharge Geometry inputs	s represent a co	ntinuation of					rameters	•	geometry inputs to create a transition bench	
the PCM Geometry in an upward direction	n without a trans	ition bench.				User	COS		between the top of the PCM and the Flood Surcharge Volume by entering larger	
A) Length of Basin at Top of EURV					L PCM =	588.5	588.5	ft	dimensions in C), D), and E).	
B) Width of Basin at Top of EURV C) Stage at Top of Transition Bench (Botte	om of Flood Cor	trol Surchara	-)	Stone at To	W _{PCM} = op of Bench =	180.1 6.60	180.1	ft	See the Figure to the right.	
D) Length of Basin at Top of Transition Be	ench (Bottom of	Flood Control	Surcharge)	Stage at 10	L Bench =	589.3	589.3	ft	Bench Slope is 4H:1V in length direction	
 E) Width of Basin at Top of Transition Ben F) Average Side Slopes of Flood Control 					W Bench = Z Surcharge =	180.9 4.00	180.9	ft ft / ft	Bench Slope is 4H:1V in width direction	
r) Average Side Slopes of Flood Collifor.					← Surcharge	4.00	4.00	J		
(Recommend no steeper than 3H:1V s	lope. Use zero	ior vertical wa								
(Recommend no steeper than 3H:1V s	slope. Use zero	ior vertical wa								
(Recommend no steeper than 3H:1V s			•			ak Flow (cfs)]	
(Recommend no steeper than 3H:1V s		2 Year	5 Year	Pre-Dev	relopment Pe	ak Flow (cfs) 50 Year	100 Year	500 Year		
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match	model runs Time Interva	2 Year	•				100 Year 154.35	500 Year]	
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from	model runs	2 Year	5 Year 30.00	10 Year	25 Year		154.35	500 Year]	
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	model runs Time Interve 5.0 Time (min)	2 Year	5 Year 30.00 Pos 5 Year	10 Year	25 Year	50 Year	154.35 hs (cfs) 100 Year	500 Year]	
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data	model runs Time Interve 5.0 Time (min) 0:00	2 Year	5 Year 30.00 Pos 5 Year 0.00	10 Year	25 Year	50 Year	154.35 hs (cfs) 100 Year 0.00			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	Time Interva 5.0 Time (min) 0:00 0:05 0:10	2 Year	5 Year 30.00 5 Year 0.00 1.91 13.55	10 Year	25 Year	50 Year	154.35 ns (cfs) 100 Year 0.00 5.05 18.88			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	Time Interva 5.0 Time (min) 0:00 0:05 0:10 0:15	2 Year	5 Year 30.00 5 Year 0.00 1.91 13.55 36.44	10 Year	25 Year	50 Year	154.35 ns (cfs) 100 Year 0.00 5.05 18.88 44.44			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	model runs Time Interve 5.0 Time (min) 0:00 0:05 0:10 0:15 0:20 0:25	2 Year	5 Year 30.00 5 Year 0.00 1.91 13.55 36.44 87.25 118.48	10 Year	25 Year	50 Year	154.35 ns (cfs) 100 Year 0.00 5.05 18.88 44.44 108.47 244.10			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	Time Intervace 5.0 Time (min) 0:00 0:05 0:10 0:20 0:25 0:30	2 Year	5 Year 30.00 5 Year 0.00 1.91 13.55 36.44 87.25 118.48 113.01	10 Year	25 Year	50 Year	154.35 ns (cfs) 100 Year 0.00 5.05 18.88 44.44 108.47 244.10 314.40			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	model runs Time Interva 5.0 Time (min) 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35	2 Year	5 Year 30.00 5 Year 0.00 1.91 13.55 36.44 87.25 118.48	10 Year	25 Year	50 Year	154.35 ns (cfs) 100 Year 0.00 5.05 18.88 44.44 108.47 244.10			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	Time interve 5.0 Time interve 5.0 Time (min) 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40	2 Year	5 Year 30.00 5 Year 0.00 1.91 13.55 36.44 87.25 118.48 113.01 95.70 80.03	10 Year	25 Year	50 Year	154.35 100 Year 0.00 5.05 18.88 44.44 108.47 244.10 305.49 273.09 239.63			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	Time Interval 5.0 Time (min) 0:00 0:05 0:10 0:25 0:35 0:40 0:45 0:50 0:50 0:50 0:50 0:50 0:5	2 Year	5 Year 30.00 Pos 5 Year 0.00 1.91 13.55 36.44 81.30.01 95.70 80.03 67.12 56.09	10 Year	25 Year	50 Year	154.35 100 Year 0.00 5.05 18.88 44.44 108.47 244.10 314.40 273.09 239.63 204.40			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	Time interva 5.0 Time (min) 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00	2 Year	5 Year 30.00	10 Year	25 Year	50 Year	154.35 100 Year 0.00 5.05 18.88 44.44 108.47 244.10 314.40 305.49 273.09 239.63 204.40 175.96 156.02			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	Time Interve 5.0 Time (min) 0:00 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00	2 Year	5 Year 30.00 5 Year 0.00 1.91 13.55 116.48 17.25 116.48 17.25 18.48 17.25 18.48 19.570 95.70 96.712 96.03 41.91 36.44	10 Year	25 Year	50 Year	154.35 100 Year 0.00 5.05 18.88 108.47 244.10 305.49 273.09 239.63 204.40 175.96 156.02 129.55			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	Time Interval 5.0 Time (min) 0.00 (min) 0.10 (min) 0.25 (min) 0.35 (min) 0.36 (min) 0.35 (min) 0.40 (min) 0.55	2 Year	5 Year 30.00 Pos 5 Year 0.00 1.91 13.55 36.725 118.48 113.01 95.70 80.03 67.12 56.09 48.05 48.05 49.05 49.05 49.05	10 Year	25 Year	50 Year	154.35 ns (cfs) 100 Year 0.00 5.05 18.88 44.44 108.47 244.10 305.49 273.09 239.63 204.40 175.96 156.02 129.55 102.47 77.55			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	Time Interve 5.0 Time (min) 0:00 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 1:00 1:15 1:10 1:15	2 Year	5 Year 30.00 Pos 5 Year 0.00 1.91 13.55 36.44 87.25 118.48 113.01 95.70 80.03 67.12 56.09 44.91 36.47 30.68 25.11 21.41	10 Year	25 Year	50 Year	154.35 100 Year 0.00 5.05 18.88 44.44 108.47 244.10 305.49 273.09 273.09 156.02 129.55 102.47 77.55 56.75			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	Time Interval 5.0 Time (min) 0:00 0:05 0:15 0:35 0:36 0:55 1:00 1:05 1:10 1:15 1:20 1:25 1:25 1:20 1:25 1:20 1:25 1:20 1:25 1:20 1:25 1:20 1:25 1:20 1:25 1:20 1:25 1:20 1:25 1:20 1:25 1:20 1:25 1:20 1:25 1:20 1:25 1:25 1:20 1:25 1:25 1:20 1:25 1:25 1:20 1:25 1:25 1:20 1:25 1:25 1:20 1:25 1:25 1:20 1:25 1:25 1:25 1:25 1:25 1:25 1:25 1:25	2 Year	5 Year 30.00 Pos 5 Year 0.00 1.91 13.55 36.725 118.48 113.01 95.70 80.03 67.12 56.09 48.05 48.05 49.05 49.05 49.05	10 Year	25 Year	50 Year	154.35 ns (cfs) 100 Year 0.00 5.05 18.88 44.44 108.47 244.10 305.49 273.09 239.63 204.40 175.96 156.02 129.55 102.47 77.55			
(Recommend no steeper than 3H:1V s Tributary Watershed Hydrology A) Input hydrology data (copy/paste) from B) Adjust "Time Interval" to match hydrograph data 5-yr and 100-yr Hydrology Required	Time Interve 5.0 Time (min) 0:00 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 1:00 1:15 1:10 1:15	2 Year	5 Year 30.00 5 Year 0.00 1.91 13.55 36.44 87.25 118.48 113.01 95.70 80.03 67.12 56.09 48.05 48.05 41.0	10 Year	25 Year	50 Year	154.35 100 Year 0.00 5.05 18.88 44.44 108.47 244.10 314.40 305.49 273.09 239.63 204.40 175.96 156.02 129.55 102.47 77.55 56.75			

(min)	2 rear	5 rear	io rear	25 Year	50 Year	100 fear	500 Year
0:00		0.00				0.00	
0:05		1.91				5.05	
0:10		13.55				18.88	
0:15		36.44				44.44	
0:20		87.25				108.47	
0:25		118.48				244.10	
0:30		113.01				314.40	
		95.70				305.49	
0:35							
0:40		80.03				273.09	
0:45		67.12				239.63	
0:50		56.09				204.40	
0:55		48.05				175.96	
1:00		41.91				156.02	
1:05		36.47				129.55	
1:10		30.68				102.47	
1:15		25.11				77.55	
1:20		21.41				56.75	
1.20						40.40	
1:25		19.34				42.46	
1:30		18.14				33.79	
1:35		16.52				28.16	
1:40		14.92				24.40	
1:45		13.77				21.80	
1.40			-				
1:50		12.92				19.98	
1:55		12.02				18.83	
2:00		9.58				15.10	
2:05		6.95				10.86	
2:10		4.98				7.82	
2:15		3.53				5.61	
2:20		2.44				3.93	
2:25		1.66				2.73	
2:30		1.13				1.86	
2:35		0.72				1.18	
2.33							
2:40		0.41				0.67	
2:45		0.20				0.31	
2:50		0.08				0.11	
2:55		0.04				0.05	
3:00		0.02				0.02	
3:05		0.01				0.01	
3:10		0.01				0.01	
3:15		0.00				0.00	
3:20						0.00	
3:25							
3:30							
3:35							
3:40							
3:45							
3:50							
3:55							
		-	-				
4:00							
4:05							
4:10							
4:15							
4:20							
4:25							
4:30							
4:35							
4:40							
4:45							
4:50							
4:55							
5:00							
5:05							
5:10							
5:15							
5:20							
5:25							
5:30							
E:2E							

Pond D,FSD Routing 4/13/2020,4:16 PM

5:40				
5:45				
5:50				
5:55				
6:00				

Pond D,FSD Routing 4/13/2020,4:16 PM

Pond D,FSD Routing 4/13/2020,4:16 PM

Pond D,FSD Routing 4/13/2020.4:16 PM

		Prelimina	ary Desig	n Procedur	e Form: Fu	III Spectrum	Detention (F	SD) Routir	ng
			COS P	CM-FSD Preli		n (Beta Versior Chris McFarlan		ber 2019)	Sheet 1
	STORM	NWAT	ER			Grandview Res	erve Pond E		
COLORADO		ENTERP	PRISE		Date:	April 6, 2020			Last Edited: April 13, 2
SPRINGS									
OLYMPIC CITY USA									
Select WQCV/EURV PCM Type: Imports the Stage-Area-Volume-Discha corresponding PCM worksheet. The se must be completed before the import wind the completed before the completed b	lected PCM works				E	stended Detention B	lasin (EDB)	•	1
2. WQCV/EURV Outlet Details							rameters		
A) Average Infiltration Rate of WQCV					i =	User Input	COS DCM	in / hr	
B) Depth to Centroid of Underdrain Outlet	Orifice from filter	media surfac	е		y =	N/A	N/A	inches	
C) Underdrain Outlet Orifice Area D) Number of WQCV Orifice Rows				Un #1	derdrain Ao = NQCV rows =	N/A 10	N/A	sq in	
E) Vertical Spacing between WQCV Orific	e Rows				ice Spacing =	4.0	4.0	inches	
F) WQCV Orifice Area (A _o) per Row		15 11)		Max	WQCV Ao = Stage wqcv =	0.67	0.67	sq in	
 G) Maximum Stage of WQCV (includes IS H) EURV Orifice Area (A₀) in Single Row 	SD and Trickle Cha	annel Depth)		IVIAX	EURV Ao =	3.60 0.67	3.60	ft sq in	
I) Maximum Stage of EURV (includes ISD				Max	x Stage _{EURV} =	4.50	4.50	ft	
Discharge Coefficient for all WQCV/EU	IRV Outlet Orifice(s)			Cd =	0.60	0.60	_	
Flood Control Surcharge Basin Geometry (above EURV) - See Figure Default Flood Surcharge Geometry inputs represent a continuation of the PCM Geometry in an upward direction without a transition bench. A) Length of Basin at Top of EURV B) Width of Basin at Top of EURV C) Stage at Top of Transition Bench (Bottom of Flood Control Surcharge) D) Length of Basin at Top of Transition Bench (Bottom of Flood Control Surcharge) E) Width of Basin at Top of Transition Bench (Bottom of Flood Control Surcharge) F) Average Side Slopes of Flood Control Surcharge above Transition Bench (Recommend no steeper than 3H:1V slope. Use zero for vertical walls.)				Stage at To	L PCM = W PCM = DP of Bench = L Bench = W Bench = Z Surcharge =	Input Pa User Input 327.0 127.7 4.60 327.8 128.5 4.00	COS DCM 327.0 127.7 4.60 327.8 128.5 4.00	ft ft ft ft ft ft	User can override default flood surcharge geometry inputs to create a transition bench between the top of the PCM and the Flood Surcharge Volume by entering larger dimensions in C), D), and E). See the Figure to the right. Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction
. Tributary Watershed Hydrology	_								_
A) Input hydrology data (copy/paste) from	model runs	2 Year	5 Year	Pre-Dev 10 Year	velopment Pe 25 Year	ak Flow (cfs) 50 Year	100 Year	500 Year	4
	Ī		32.34	10 1001	20 1001	00 100	157.99	555 . 541	1
 B) Adjust "Time Interval" to match hydrograph data 	Time Interval	minutes							
, .	Time					ow Hydrograph]
5-yr and 100-yr Hydrology Required (Other Storms are Optional)	(min) 0:00	2 Year	5 Year 0.00	10 Year	25 Year	50 Year	100 Year 0.00	500 Year	-
(Other otornis are optional)	0:05		0.16				0.43		
	0:10		1.11				1.54		
	0:15 0:20		5.07 23.64				7.00 35.29		1
	0:25		41.87				110.52]
	0:30		46.56 43.13				162.17 176.94		4
	0:35 0:40		37.83				176.94		1
	0:45		33.03				161.08]
			29.04				147.26		1
	0:50 0:55		25.75				135.35		
	0:55 1:00		25.75 22.65				135.35 124.96		
	0:55 1:00 1:05		22.65 19.67				124.96 109.31		
	0:55 1:00 1:05 1:10		22.65 19.67 16.82 14.63				124.96 109.31 92.46 77.36		
	0:55 1:00 1:05 1:10		22.65 19.67 16.82				124.96 109.31 92.46		

Time					ow Hydrograpn		
(min)	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
0:00		0.00				0.00	
0:05		0.16				0.43	
0:10		1.11				1.54	
0:15		5.07				7.00	
					-		
0:20		23.64				35.29	
0:25		41.87				110.52	
0:30		46.56				162.17	
					-		
0:35		43.13				176.94	
0:40		37.83				172.03	
0:45		33.03				161.08	
		29.04				147.26	
0:50							
0:55		25.75				135.35	
1:00		22.65				124.96	
1:05		19.67				109.31	
1:10		16.82				92.46	
1:15		14.63				77.36	
1:20		13.01				65.86	
1:25		11.61				56.57	
1:30		10.30				48.68	
1:35		8.90				41.54	
1:40		7.47				34.92	
1:45		6.08				28.67	
1:50		4.75				22.81	
1:55		3.50				17.32	
2:00		2.49				12.10	
2:05		1.86				8.45	
2:10		1.45					
						6.02	
2:15		1.16				4.29	
2:20		0.92				3.03	
2:25		0.73				2.11	
					-		
2:30		0.57				1.42	
2:35		0.44				0.96	
2:40		0.34				0.71	
2:45		0.26				0.55	
2:50		0.20				0.44	
2:55		0.15				0.34	
		0.11				0.26	
3:00							
3:05		0.07				0.19	
3:10		0.05				0.13	
3:15		0.03				0.08	
3:20		0.02				0.04	
3:25		0.01				0.02	
3:30		0.00				0.00	
3:35		0.00				0.00	
3:40		0.00					
3:45		0.00					
3:50		0.00					
3:55		0.00					
4:00		0.00					
4:05		0.00					
4:10		0.00					
4:15							
4:20							
4:25							
4:30							
4:35							
4:40							
4:45							
4:50							
4:55							
5:00							
5:05							
5:10							
5:15							
5:20							
5:25							
5:30							
5.50							

5:4	40				
5:4	45				
5:	50				
5:	55				
6:1	00				

		Preliminary Desig	n Procedur	e Form: Fu	III Spectrum	Detention (F	SD) Routii	ng
		COS P	CM-FSD Preli		•	n 1.00, Septem	ber 2019)	Sheet 1 o
	OTODA	ALA / ATED			Chris McFarlar			
	STORN	1WATER		•	Grandview Res	serve Pond F		
COLORADO		ENTERPRISE		Date:	April 6, 2020			Last Edited: April 13, 2
SPRINGS								
OLYMPIC CITY USA								
Select WQCV/EURV PCM Type: Imports the Stage-Area-Volume-Dischar corresponding PCM worksheet. The sel must be completed before the import will	ected PCM worksh			E	ktended Detention I	Basin (EDB)	-	,
A MACCAUTTION OF A TAX A					Innut D			
P. WQCV/EURV Outlet Details					User Input Pa	cos DCM	-	
A) Average Infiltration Rate of WQCV				i =	N/A	N/A	in / hr	
B) Depth to Centroid of Underdrain Outlet C) Underdrain Outlet Orifice Area	Oritice from filter n	nedia surface	Un	y = derdrain Ao =	N/A N/A	N/A N/A	inches sq in	
D) Number of WQCV Orifice Rows			#\	NQCV rows =	14	13]	
 E) Vertical Spacing between WQCV Orific F) WQCV Orifice Area (A_o) per Row 	e Rows		Orif	ice Spacing = WQCV Ao =	4.0 1.55	4.0 1.47	inches sq in	
G) Maximum Stage of WQCV (includes IS	D and Trickle Char	nnel Depth)	Max	Stage wqcv =	4.80	4.50	ft	
 H) EURV Orifice Area (A_o) in Single Row I) Maximum Stage of EURV (includes ISD 	and Trickle Chann	ol Donth)	Ma	EURV Ao = x Stage _{EURV} =	1.55 6.00	7.84 6.00	sq in	
J) Discharge Coefficient for all WQCV/EU			IVICA	Cd =	0.60	0.60	11	
		-					_	
. Flood Control Surcharge Basin Geometry (User can override default flood surcharge
Default Flood Surcharge Geometry inputs the PCM Geometry in an upward direction						cos	_	geometry inputs to create a transition bench between the top of the PCM and the Flood
the PCM Geometry in an upward direction	i wiliioul a li arisilio	ii belicii.			User Input	DCM		Surcharge Volume by entering larger
A) Length of Basin at Top of EURV				L _{PCM} =	570.9	570.9	ft ft	dimensions in C), D), and E).
B) Width of Basin at Top of EURV C) Stage at Top of Transition Bench (Botto)	om of Flood Contro	ol Surcharge)	Stage at Te	W _{PCM} = op of Bench =	217.0 6.10	6.10	ft	See the Figure to the right.
D) Length of Basin at Top of Transition Be	nch (Bottom of Flo	od Control Surcharge)		L Bench =	571.7	571.7	ft	Bench Slope is 4H:1V in length direction
 E) Width of Basin at Top of Transition Ben F) Average Side Slopes of Flood Control S 	ch (Bottom of Floo Surcharge above T	d Control Surcharge)		W Bench = Z Surcharge =	217.8 4.00	217.8	ft ft/ft	Bench Slope is 4H:1V in width direction
(Recommend no steeper than 3H:1V s				Outstunge	1.00	1.00	4	
. Tributary Watershed Hydrology	Г		Pre-Dev	relopment Pe	ak Flow (cfs)			7
A) Input hydrology data (copy/paste) from	model runs	2 Year 5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	
B) Adjust "Time Interval" to match	Time Interval	42.34				221.11		_
hydrograph data		inutes	-4 Davidson	at Ctares Infl	ow Hydrograpi	h = /-f=\		
5-yr and 100-yr Hydrology Required	(min)	2 Year 5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	<u></u>
(Other Storms are Optional)	0:00	0.00				0.00		
	0:05 0:10	0.52 5.98				1.80 8.99		
	0:15	19.71				25.32		
	0:20 0:25	58.79 94.74				77.64 207.48		
	0:30	103.82				301.83		
	0:35	97.47				329.97		
	0:40 0:45	87.23 77.84				323.46 304.34		
	0:50	69.34				281.05		
	0:55 1:00	61.26 54.52				257.82 237.51		
	1:05	49.46				211.11		
	1:10	45.22 40.70				185.26		
	1:15 1:20	40.70 36.24				161.15 139.03		
	1:25	32.06				119.17		
	1:30	28.34				101.90		

(min)	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
0:00		0.00				0.00	
0:05		0.52				1.80	
0:10		5.98				8.99	
0:15		19.71				25.32	
0:10		58.79				77.64	
0:25		94.74				207.48	
0:30		103.82				301.83	
0:35		97.47				329.97	
0:40		87.23				323.46	
0:45		77.84				304.34	
0:50		69.34				281.05	
0:55		61.26				257.82	
1:00		54.52				237.51	
1:05		49.46				211.11	
1:10		45.22				185.26	
1:15		40.70				161.15	
1:20		36.24				139.03	
1:25		32.06				119.17	
1:30		28.34				101.90	
1:35		24.61				86.26	
1:40		21.24				72.79	
1:45		19.05				62.33	
1:50		17.44				54.79	
1:55		16.04				48.91	
		13.99				42.35	
2:00							
2:05		11.69				35.81	
2:10		9.57				29.96	
2:15		7.79				24.91	
2:20		6.28				20.57	
2:25		5.03				16.95	
2:30		4.03				13.95	
		3.21				11.42	
2:35							
2:40		2.52				9.20	
2:45		1.92				7.18	
2:50		1.38				5.32	
2:55		0.95				3.69	
3:00		0.65				2.49	
		0.46				1.70	
3:05							
3:10		0.33				1.17	
3:15		0.24				0.81	
3:20		0.18				0.56	
3:25		0.14				0.38	
3:30		0.11				0.26	
3:35		0.08				0.18	
		0.06					
3:40						0.13	
3:45		0.05				0.10	
3:50		0.03				0.07	
3:55		0.02				0.05	
4:00		0.02				0.04	
4:05		0.01				0.03	
4:10		0.01				0.02	
4:15		0.00				0.01	
4:20						0.01	
4:25						0.00	
4:30							
4:35							
4:40							
4:40		-					
4:50							
4:55							
5:00							
5:05							
5:10							
		-					
5:15							
5:20							
5:25							
5:30							
5.35							

	5:40				
	5:45				
l	5:50				
	5:55				
	6:00				

		Prelimin	ary Desigr	Procedure	e Form: Fu	II Spectrum	Detention (I	SD) Routi	ng				
COLORADO	STOR	MWA7 ENTERR	TER	CM-FSD Preliminary Design (Beta Version 1.00, September 2019) Designer: Chris McFarland Project: Grandview Reserve Pond G Date: April 6, 2020 Last Edited:									
OLYMPIC CITY USA 1. Select WQCV/EURV PCM Type: Imports the Stage-Area-Volume-Dischar corresponding PCM worksheet. The sele must be completed before the import will	cted PCM wor				Ex	tended Detention I	Basin (EDB)		•				
. WQCV/EURV Outlet Details A) Average Infiltration Rate of WQCV B) Depth to Centroid of Underdrain Outlet (C) Underdrain Outlet Orffice Area D) Number of WQCV Orffice Rows E) Vertical Spacing between WQCV Orffice F) WQCV Orffice Area (A.) per Row G) Maximum Stage of WQCV (includes ISD at 1) EURV Orffice Area (A.) in Single Row J) Maximum Stage of EURV (includes ISD at 1) Discharge Coefficient for all WQCV/EUR	Rows and Trickle C	hannel Depth)		# V Orifi Max	i = y = derdrain Ao = VQCV rows = ice Spacing = WQCV Ao = Stage wocv = EURV Ao = Cstage Eurv = Cd =	Input Pa User Input N/A N/A N/A 9 4.0 0.49 3.20 1.94 4.00 0.60	COS DCM N/A N/A N/A N/A N/A 9 4.0 0.49 3.20 1.94 4.00 0.60	in / hr inches sq in inches sq in ft sq in ft					
. Flood Control Surcharge Basin Geometry (a Default Flood Surcharge Geometry inputs the PCM Geometry in an upward direction A) Length of Basin at Top of EURV B) Width of Basin at Top of EURV C) Stage at Top of Transition Bench (Botton D) Length of Basin at Top of Transition Bench E) Width of Basin at Top of Transition Bench F) Average Side Slopes of Flood Control S (Recommend no steeper than 3H:1V slo	Surcharge) surcharge) ench	Stage at To	Input Parameters User COS Input DCM				User can override default flood surcharge geometry inputs to create a transition bench between the top of the PCM and the Flood Surcharge Volume by entering larger dimensions in (), D), and E). See the Figure to the right. Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction						
. Tributary Watershed Hydrology													
A) Input hydrology data (copy/paste) from r	nodel runs	2 Year	5 Year	Pre-Dev 10 Year	25 Year	50 Year	100 Year	500 Year					
B) Adjust "Time Interval" to match	Time Interva		9.42				48.48						
hydrograph data	5.0	minutes							_				
5-yr and 100-yr Hydrology Required	Time (min)	2 Year	5 Year	10 Year	25 Year	w Hydrograpi 50 Year	100 Year	500 Year	-				
(Other Storms are Optional)	0:00 0:05		0.00 0.18				0.00						
	0:05		1.27				1.75						
	0:15		3.86				5.05						
	0:20		12.69 19.21				17.55 47.38		_				
	0:25		20.06				63.86		1				
	0:35		18.72				67.51						
	0:40 0:45		16.88 15.24				66.01 62.38		+				
	0:50		13.74				57.86						
	0:55		12.37 11.12				53.71 49.93						
	1:00		11.12				49.93						
	1:10		9.05				38.52						
	1:15 1:20		8.20 7.42				33.58 29.30		4				
	1:25		6.67				25.48						
	1:30 1:35		5.98 5.28				22.03 18.97		-				
	1.55												
	1:40		4.64				16.31						

0:00	0.00		0.00	
0:05	0.18		0.49	
0:10	1.27		1.75	
0:15	3.86		5.05	
0:20	12.69		17.55	
0:25	19.21		47.38	
0:30	20.06		63.86	
0:35	18.72		67.51	
0:40	16.88		66.01	
0:45	15.24		62.38	
0:50	13.74		57.86	
0:55	12.37		53.71	
1:00	11.12		49.93	
1:05	10.01		44.10	
1:10	9.05		38.52	
1:15	8.20		33.58	
1:20	7.42		29.30	
1:25	6.67		25.48	
1:30	5.98		22.03	
1:35	5.28		18.97	
1:40	4.64		16.31	
1:45	4.05		13.93	
1:50	3.52		11.83	
1:55	3.12		10.10	
2:00	2.67		8.48	
2:05	2.26		7.10	
2:10	1.90		5.93	
2:15	1.58		4.93	
2:20	1.30		4.04	
2:25	1.05		3.25	
2:30	0.82		2.54	
2:35	0.62		1.90	
2:40	0.46		1.36	
2:45	0.35		0.99	
2:50	0.28		0.73	
2:55	0.20		0.73	
3:00	0.17		0.39	
3:05	0.17		0.39	
3:10	0.10		0.19	
3:15	0.10		0.13	
3:20	0.05		0.09	
3:25	0.03		0.03	
3:30	0.03		0.06	
3:35	0.03		0.04	
3:40	0.02		0.03	
3:45	0.02		0.03	
3:45	0.01		0.03	
3:55	0.01		0.02	
4:00	0.01		0.01	
4:00	0.00		0.00	
4:05			0.00	
4:15				
4:15				
4:25				
4:25				
4:35				
4:40				
4:40				
4:45				
4:55 5:00				
5:05				
5:05				
5:10				
5:15				
5:25				
5:25				
5:35				

5:40				
5:45				
5:50				
5:55				
6:00				

		Prelimin	ary Desigr	Procedure	e Form: Fu	II Spectrum	Detention (F	SD) Routir	ng
			COS PO	CM-FSD Prelin		•	n 1.00, Septem	ber 2019)	Sheet 1 of
						Chris McFarla			
	STORM	MWAT	ER		Project:	Grandview Re	serve Pond G		
COLORADO		ENTER	PRISE		Date:	April 6, 2020			Last Edited: April 13, 20
SPRINGS OLYMPIC CITY USA									
Select WQCV/EURV PCM Type: Imports the Stage-Area-Volume-Discharg corresponding PCM worksheet. The sele must be completed before the import will	cted PCM work				Ex	tended Detention	Basin (EDB)	•	
. WQCV/EURV Outlet Details							arameters	_	
A) Average Infiltration Rate of WQCV					i =	User Input	COS DCM	in / hr	
B) Depth to Centroid of Underdrain Outlet C	rifice from filter	media surfac	e		y =	N/A	N/A	inches	
Underdrain Outlet Orifice Area Number of WQCV Orifice Rows					derdrain Ao = VQCV rows =	N/A 11	N/A 11	sq in	
E) Vertical Spacing between WQCV Orifice	Rows				ice Spacing =	4.0	4.0	inches	
F) WQCV Orifice Area (A _o) per Row					WQCV Ao =	0.86	0.86	sq in	
 G) Maximum Stage of WQCV (includes ISD H) EURV Orifice Area (A_o) in Single Row 	and Trickle Ch	annel Depth)		Max	Stage wqcv = EURV Ao =	3.80 4.73	3.80 4.73	ft sq in	
Maximum Stage of EURV (includes ISD a	nd Trickle Char	nnel Depth)		Max	Stage _{EURV} =	5.00			
J) Discharge Coefficient for all WQCV/EUR					Cd =	0.60	0.60	1	
Flood Control Surcharge Basin Geometry (a Default Flood Surcharge Geometry inputs in the PCM Geometry in an upward direction of the CM Geometry in an upward direction of the CM Geometry in an Upward Default of Basin at Top of EURV C) Stage at Top of Transition Bench (Botton D) Length of Basin at Top of Transition Bench (Button D) Width of Basin at Top of Transition Bench (Button D) Karage Side Slopes of Flood Control Stage Commend no steeper than 3H:1V slo	represent a con without a transit on of Flood Cont ch (Bottom of Flo in (Bottom of Flo ircharge above	tinuation of ion bench. trol Surcharge lood Control S ood Control S Transition Be	Surcharge) urcharge) ench	Stage at To	L PCM = W PCM = DP of Bench = L Bench = W Bench = Z Surcharge =	Input P User Input 468.4 141.1 5.10 469.2 141.9 4.00	Arameters COS DCM 468.4 141.1 5.10 469.2 141.9 4.00	ft ft ft ft ft ft/ft	User can override default flood surcharge geometry inputs to create a transition bench between the top of the PCM and the Flood Surcharge Volume by entering larger dimensions in C), D), and E). See the Figure to the right. Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction
. Tributary Watershed Hydrology									
		2 V	5 Van		relopment Per		100 Year	500 Year]
A) Input hydrology data (copy/paste) from m	iodei runs	2 Year	5 Year 17.11	10 Year	25 Year	50 Year	99.16	500 Year	
B) Adjust "Time Interval" to match	Time Interval								_
hydrograph data	5.0 Time	minutes	D	4 Danielania	Ct India	11	h = (-f-)		7
5-yr and 100-yr Hydrology Required	(min)	2 Year	5 Year	10 Year	ent Storm Inflo	50 Year	100 Year	500 Year	1
(Other Storms are Optional)	0:00		0.00				0.00		1
	0:05		0.41				1.20		
	0:10 0:15		3.42 10.22				4.91 13.16		-
	0:15		29.97				40.46		1
	0:25		45.35				109.08		
	0:30		46.22				147.68		4
	0:35 0:40		41.85 36.79				152.97 145.92		1
	0:45		32.51				134.77		1
	0:50		28.57				122.07		
	0:55		24.90	1			110.10		

Time		Pos	t-Developme	nt Storm Infle	ow Hydrograph	s (cfs)	
(min)	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
0:00		0.00				0.00	
0:05		0.41				1.20	
0:10		3.42				4.91	
0:15		10.22				13.16	
0:20		29.97				40.46	
0:25		45.35				109.08	
0:30		46.22				147.68	
0:35		41.85				152.97	
0:40		36.79				145.92	
0:45		32.51				134.77	
0:50		28.57				122.07	
0:55		24.90				110.10	
1:00		21.86				99.42	
1:05		19.69				85.33	
1:10		17.78				73.97	
1:15		15.86				63.12	
1:20		14.00				53.39	
1:25		12.24				44.73	
1:30		10.61				36.81	
1:35		9.00				29.80	
1:40		7.68				24.16	
1:45		6.80				19.99	
1:50		6.25				17.20	
1:55		5.79				15.20	
2:00		4.96				12.77	
2:05		4.07				10.46	
2:10		3.32				8.57	
2:15		2.70				7.04	
2:20		2.18				5.80	
2:25		1.75				4.76	
2:30		1.37				3.85	
2:35		1.07				3.04	
2:40		0.81				2.31	
2:45		0.60				1.65	
2:50		0.43				1.12	
2:55		0.31				0.76	
3:00		0.23				0.51	
3:05		0.17				0.34	
3:10		0.12				0.23	
3:15		0.09				0.16	
3:20		0.07				0.12	
3:25		0.06				0.09	
3:30		0.05				0.03	
3:35		0.04				0.06	
3:40		0.03				0.05	
3:45		0.03				0.04	
3:50		0.02				0.03	
3:55		0.01				0.02	
4:00		0.01				0.01	
4:05		0.01				0.01	
4:10		0.00				0.01	
4:15						0.00	
4:20							
4:25							
4:30							
4:35							
4:40							
4:45							
4:50							
4:55							
5:00							
5:05							
5:10							
5:15							
5:20							
5:25							
5:30							

5:40				
5:45				
5:50				
5:55				
6:00				

Appendix E

201662.03

TBI

EXISTING MODEL

CROSS SECTIONS

HEC-RAS Plan: E																	
Reach	River Sta	Profile	Q Total (cfs)	Min Ch El	W.S. Elev (ft)	Crit W.S.	E.G. Elev (ft)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area (sq ft)	Froude # Chl	Shear LOB (lb/sq ft)	Shear Chan (lb/sq ft)	Shear ROB (lb/sq ft)	Power LOB (lb/ft s)	Power Chan (lb/ft s)	Power ROB (lb/ft s)
Alignment - (2)	4530	100-YR	280.00	7010.72	7011.62	7011.62	7011.80	0.008420	4.14	115.80	0.82	0.12	0.41	0.13	0.18	1.71	0.17
Alignment - (2)	4530	5-YR	59.00	7010.72	7011.16	7011.16	7011.31	0.015603	3.15	20.24	0.97	0.08	0.32	0.08	0.07	1.00	0.07
Alignment - (2) Alignment - (2)	4298.61 4298.61	100-YR 5-YR	280.00 59.00	7003.52 7003.52	7004.33 7003.89	7004.33 7003.89	7004.60 7004.02	0.011446 0.016302	4.51 2.85	75.98 22.00	0.95 0.96	0.19 0.06	0.51 0.28	0.25 0.09	0.32 0.04	2.29 0.79	0.50
/ angramone (L)	1200.01	O III	00.00	7000.02	7000.00	1000.00	7001.02	0.010002	2.00	22.00	0.00	0.00	0.20	0.00	0.01	0.70	0.00
Alignment - (2)	4025.69	100-YR	280.00	6995.96	6996.89	6996.89	6997.16	0.010606	4.76	80.74	0.93	0.21	0.54	0.27	0.37	2.57	0.57
Alignment - (2)	4025.69	5-YR	59.00	6995.96	6996.43	6996.43	6996.56	0.013192	3.02	22.56	0.90	0.06	0.29	0.09	0.04	0.87	0.09
Alignment - (2)	3872.21	100-YR	280.00	6991.45	6992.03	6992.03	6992.25	0.013013	3.94	80.99	0.96	0.24	0.43	0.18	0.45	1.68	0.27
Alignment - (2)	3872.21	5-YR	59.00	6991.45	6991.71	6991.71	6991.80	0.018167	2.44	25.07	0.96	0.07	0.23	0.05	0.05	0.55	0.03
Alignment - (2)	3739.65	100-YR	390.70	6987.86	6988.94	6988.94	6989.24	0.009468	4.89	107.95	0.90	0.19	0.55	0.25	0.31	2.67	0.52
Alignment - (2)	3739.65	5-YR	68.95	6987.86	6988.33	6988.33	6988.48	0.015568	3.13	22.67	0.97	0.02	0.32	0.07	0.01	0.99	0.05
Alignment - (2)	3575.47	100-YR	390.70	6983.48	6984.46	6984.46	6984.75	0.011370	5.06	107.93	0.97	0.34	0.60	0.25	0.83	3.04	0.50
Alignment - (2)	3575.47	5-YR	68.95	6983.48	6983.94	6983.94	6984.07	0.014396	3.04	27.39	0.93	0.12	0.30	0.06	0.14	0.90	0.05
A.I	0004.00	400 V/D	000 70	0070 44	2000 50	0000 50	0000.00	0.040000	5.44	00.00	0.00	0.00	0.05	0.07	0.40	0.54	0.07
Alignment - (2) Alignment - (2)	3361.62 3361.62	100-YR 5-YR	390.70 68.95	6979.44 6979.44	6980.59 6979.96	6980.59 6979.96	6980.96 6980.11	0.010660 0.014781	5.41 3.22	92.08 23.64	0.96 0.96	0.23	0.65	0.37 0.13	0.43	3.54 1.05	0.97 0.15
giiiiioiii (2)	2301.02		55.55	00.0.44	307.5.30	0070.00	0000.11	0.011701	J.22	20.04	3.30	5.04	3.00	3.13	3.02	1.00	3.13
Alignment - (2)	3164.79	100-YR	390.70	6975.30	6976.21	6976.21	6976.50	0.010031	4.74	107.61	0.91	0.23	0.53	0.27	0.43	2.50	0.56
Alignment - (2)	3164.79	5-YR	68.95	6975.30	6975.66	6975.66	6975.79	0.015475	2.92	25.80	0.95	0.10	0.28	0.08	0.10	0.83	0.08
Alignment - (2)	2955.21	100-YR	390.70	6970.48	6971.89	6971.89	6972.19	0.008109	5.43	119.58	0.87	0.13	0.61	0.27	0.21	3.33	0.61
Alignment - (2)	2955.21	5-YR	68.95	6970.48	6971.18	6971.18	6971.33	0.010373	3.40	26.43	0.87	0.13	0.81	0.27	0.21	1.10	0.61
													. •				
Alignment - (2)	2742.47	100-YR	390.70	6965.00	6966.28	6966.28	6966.73	0.009026	5.74	84.97	0.92	0.33	0.68	0.21	0.82	3.93	0.38
Alignment - (2)	2742.47	5-YR	68.95	6965.00	6965.47	6965.47	6965.66	0.014494	3.51	20.49	0.97	0.12	0.37	0.05	0.13	1.29	0.04
Alignment - (2)	2559.12	100-YR	390.70	6957.93	6959.77	6959.77	6960.47	0.008921	6.81	61.70	0.95	0.21	0.88	0.25	0.40	6.00	0.52
Alignment - (2)	2559.12	5-YR	68.95	6957.93	6958.63	6958.63	6958.90	0.014366	4.22	16.34	1.01		0.48	*.=*		2.05	****
Alignment - (2)	2421.92 2421.92	100-YR 5-YR	390.70 68.95	6954.85 6954.85	6956.44 6955.49	6956.44 6955.49	6957.02 6955.72	0.009346 0.014603	6.37 3.85	70.02 18.05	0.95 0.99	0.26	0.81	0.37	0.54	5.15 1.63	0.99
Alignment - (2)	2421.92	D-11K	00.95	0934.03	0933.49	0935.49	0955.72	0.014603	3.03	16.05	0.99		0.42	0.06		1.03	0.04
Alignment - (2)	2258.77	100-YR	390.70	6950.91	6952.55	6952.55	6953.14	0.009029	6.48	70.14	0.95	0.25	0.82	0.36	0.51	5.32	0.95
Alignment - (2)	2258.77	5-YR	68.95	6950.91	6951.55	6951.55	6951.79	0.013876	3.94	17.90	0.98		0.43	0.12		1.71	0.13
Alignment - (2)	2060.1	100-YR	390.70	6945.95	6947.97	6947.97	6948.64	0.007977	7.08	69.96	0.92	0.35	0.91	0.34	0.94	6.44	0.85
Alignment - (2)	2060.1	5-YR	68.95	6945.95		6946.75	6947.05	0.007977	4.37	16.11	0.92	0.09	0.50	0.06	0.94	2.18	0.03
Alignment - (2)	1906.96	100-YR	390.70	6942.93	6944.96	6944.96	6945.50	0.006399	6.55	88.19	0.83	0.18	0.77	0.31	0.31	5.02	0.78
Alignment - (2)	1906.96	5-YR	68.95	6942.93	6943.68	6943.68	6943.98	0.012807	4.45	15.91	0.98	0.06	0.51	0.10	0.05	2.27	0.11
Alignment - (2)	1755.99	100-YR	597.69	6940.90	6942.46	6942.46	6943.03	0.010131	6.24	105.07	0.98	0.21	0.80	0.36	0.39	4.99	0.93
Alignment - (2)	1755.99	5-YR	86.00	6940.90	6941.55	6941.55	6941.73	0.016031	3.40	25.67	1.00		0.36	0.12		1.23	0.13
Alignment - (2) Alignment - (2)	1519.95 1519.95	100-YR 5-YR	597.69 86.00	6936.99 6936.99	6938.53 6937.78	6938.53 6937.78	6938.92 6937.98	0.009285 0.008294	6.44 3.68	150.76 29.86	0.95 0.80	0.18	0.82	0.43	0.30	5.28 1.27	1.24 0.05
/ angramone (L)	1010.00	O III	00.00	0000.00	0001.10	0001.10	0007.000	0.000201	0.00	20.00	0.00		0.01	0.00		1.27	0.00
Alignment - (2)	1350.59	100-YR	597.69	6933.90	6935.19	6935.19	6935.65	0.009350	5.88	125.14	0.94	0.28	0.72	0.36	0.61	4.20	0.92
Alignment - (2)	1350.59	5-YR	86.00	6933.90	6934.33	6934.33	6934.50	0.014571	3.30	27.04	0.96	0.07	0.34	0.09	0.05	1.11	0.08
Alignment - (2)	1212.11	100-YR	597.69	6931.60	6932.77	6932.77	6933.20	0.011126	5.81	125.93	1.00	0.33	0.73	0.52	0.79	4.26	1.66
Alignment - (2)	1212.11	5-YR	86.00	6931.60	6932.09	6932.06	6932.21	0.010257	2.82	34.67	0.81	0.06	0.24	0.09	0.05	0.68	0.10
Alignment - (2)	974.69 974.69	100-YR 5-YR	597.69 86.00	6928.54	6929.54	6929.54	6929.91	0.012309	5.01 2.81	127.84	1.00	0.31	0.60	0.23	0.71	3.02	0.41
Alignment - (2)	5/4.09	J-1R	00.00	6928.54	6928.96	6928.96	6929.09	0.017451	2.81	30.71	0.98	0.02	0.28		0.01	0.78	
Alignment - (2)	802.78	100-YR	597.69	6925.60	6926.84	6926.84	6927.25	0.011014	5.65	129.11	0.99	0.50	0.70	0.36	1.60	3.97	0.93
Alignment - (2)	802.78	5-YR	86.00	6925.60	6926.18	6926.13	6926.29	0.010327	2.74	34.35	0.80	0.12	0.23	0.06	0.15	0.64	0.04
Alimont (2)	642.67	100 VD	507.00	6000.00	6004.00	6004.00	6004.00	0.042425	4.00	120.01	4.00	0.00	0.55	0.00		0.00	0.54
Alignment - (2) Alignment - (2)	613.67 613.67	100-YR 5-YR	597.69 86.00	6923.23 6923.23	6924.06 6923.58	6924.06 6923.58	6924.39 6923.67	0.013105 0.019440	4.68 2.49	139.34 35.29	1.00 0.99	0.22	0.55 0.24	0.26 0.11	0.38	2.60 0.59	0.51 0.11
.g(2)			55.50	-520.20	2520.00	2320.00	2320.07	2.310.10	2.10	55.25	0.00		5.24	J.11		0.00	0.11
Alignment - (2)	460.25	100-YR	597.69	6921.03	6922.26	6922.26	6922.59	0.007909	5.11	160.82	0.85	0.18	0.56	0.23	0.30	2.85	0.45
Alignment - (2)	460.25	5-YR	86.00	6921.03	6921.55	6921.46	6921.64	0.007343	2.52	35.52	0.69	0.06	0.19	0.04	0.04	0.48	0.03
Alignment - (2)	208.05	100-YR	597.69	6917.96	6918.53	6918.53	6918.76	0.025003	5.16	163.15	1.31	0.12	0.75	0.68	0.13	3.88	2.30
Alignment - (2)	208.05	5-YR	86.00	6917.96	6918.17	6918.17	6918.24	0.031904	2.87	42.68	1.24	J.12	0.73	0.29	3.10	0.95	0.54
Alignment - (2)	2.6	100-YR	597.42	6912.97	6914.97	6914.97	6915.51	0.010321	7.88	148.43	1.04	0.32	1.14	0.40	0.79	8.97	1.12
Alignment - (2)	2.6	5-YR	85.99	6912.97	6913.98	6913.98	6914.31	0.011008	4.72	20.88	0.94	0.16	0.54	0.16	0.25	2.54	0.24

Appendix F

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Froude # Chl	Shear LOB	Shear Chan	Shear ROB	Power LOB	Power Chan	Power ROB
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)		(lb/sq ft)	(lb/sq ft)	(lb/sq ft)	(lb/ft s)	(lb/ft s)	(lb/ft s)
lignment - (2)	3712.84	100-YR	413.00	6993.54	6994.84	6994.84	6995.27	0.012379	5.24	78.75	1.01	(11)	0.65	(11)	(-1.112)	3.39	(12,112)
dignment - (2)	3712.84	5-YR	67.00	6993.54	6994.13	6994.13	6994.30	0.016774	3.26	20.58	1.00		0.34			1.11	i
																	Ī
Nignment - (2)	3618.51	100-YR	413.00	6989.96	6991.61	6991.61	6992.06	0.012115	5.42	76.24	1.01		0.68			3.66	
Alignment - (2)	3618.51	5-YR	67.00	6989.96	6990.82	6990.82	6991.01	0.015635	3.54	18.93	1.00		0.38			1.35	
Alignment - (2)	3424.5	100-YR	413.00	6985.91	6987.02	6987.02	6987.39	0.013081	4.88	84.55	1.01		0.59			2.88	í
Alignment - (2)	3424.5	5-YR	67.00	6985.91	6986.30	6986.30	6986.45	0.016765	3.12	21.47	0.99		0.32			1.00	i
Alignment - (2)	3214.73	100-YR	413.00	6979.87	6981.76	6981.76	6982.42	0.010605	6.55	63.05	1.00		0.87			5.69	i
Alignment - (2)	3214.73	5-YR	67.00	6979.87	6980.52	6980.52	6980.79	0.014361	4.16	16.10	1.01		0.47			1.97	
																	i T
Alignment - (2)	2882.47	100-YR	413.00	6973.22	6974.71	6974.71	6975.21	0.011487	5.72	72.23	1.00		0.72			4.13	
Alignment - (2)	2882.47	5-YR	67.00	6973.22	6973.90	6973.87	6974.06	0.012544	3.19	21.03	0.90		0.31			0.98	
																	1
Alignment - (2)	2772.34	100-YR	413.00	6972.00	6972.90	6972.90	6973.31	0.012758	5.14	80.40	1.02		0.63			3.25	
Alignment - (2)	2772.34	5-YR	67.00	6972.00	6972.29	6972.29	6972.42	0.017777	2.91	23.04	1.00		0.29			0.85	
Alignment - (2)	2592.31	100-YR	479.80	6964.02	6966.01	6966.01	6966.73	0.010427	6.80	70.59	1.01		0.91			6.22	
Alignment - (2)	2592.31	5-YR	80.03	6964.02	6964.82	6964.82	6965.09	0.014202	4.17	19.19	1.00		0.47			1.98	
Alignment - (2)	2527.18	100-YR	479.80	6962.89	6964.83	6964.83	6965.52	0.010519	6.69	71.69	1.01		0.90			5.99	
Alignment - (2)	2527.18	5-YR	80.03	6962.89	6963.64	6963.64	6963.92	0.013864	4.20	19.05	1.00		0.48			2.00	
Alignment - (2)	2303.17	100-YR	479.80	6959.99	6962.42	6962.38	6963.11	0.009556	6.70	71.65	0.97		0.87			5.86	
Alignment - (2)	2303.17	5-YR	80.03	6959.99	6961.06	6960.97	6961.32	0.009677	4.15	19.30	0.87		0.43			1.77	
Alignment - (2)	2121.94	100-YR	479.80	6957.99	6960.51	6960.51	6961.34	0.009879	7.30	65.68	1.00		1.01			7.34	1
Alignment - (2)	2121.94	5-YR	80.03	6957.99	6958.91	6958.91	6959.28	0.013151	4.88	16.40	1.01		0.59			2.88	
Alignment - (2)	1814.04	100-YR	479.80	6953.99	6956.15	6956.15	6956.92	0.010160	7.04	68.15	1.01		0.96			6.74	
Alignment - (2)	1814.04	5-YR	80.03	6953.99	6954.76	6954.76	6955.08	0.013386	4.54	17.62	1.00		0.53			2.41	
Alignment - (2)	1556.67	100-YR	479.80	6949.87	6952.10	6952.10	6952.67	0.009989	6.07	80.71	0.97	0.09	0.76		0.10	4.63	
Alignment - (2)	1556.67	5-YR	80.03	6949.87	6950.72	6950.72	6951.03	0.013371	4.47	17.92	1.00		0.52			2.31	
Alignment - (2)	1297.03	100-YR	479.80	6941.99	6945.29	6945.29	6946.29	0.009589	8.02	59.80	1.00		1.15			9.21	
Alignment - (2)	1297.03	5-YR	80.03	6941.99	6943.40	6943.27	6943.76	0.008428	4.83	16.57	0.84		0.52			2.51	——
Alignment - (2)	1084.03	100-YR	479.80	6939.97	6942.57	6942.57	6943.09	0.011853	5.81	82.59	1.02		0.75			4.33	
Alignment - (2)	1084.03	5-YR	80.03	6939.97	6941.17	6941.17	6941.50	0.013605	4.64	17.26	1.01		0.55			2.55	
Alignment - (2)	642.96	100-YR	479.80	6930.00		6932.27	6932.98	0.010616	6.78	70.78	1.01		0.91			6.20	
Alignment - (2)	642.96	5-YR	80.03	6930.00	6931.22		6931.37	0.005127	3.14	25.52	0.64		0.24			0.75	
A.I	500 77	400 \/D	470.55	0000	2004	0004	0004	0.044655		70.01							
Alignment - (2)	523.77	100-YR	479.80	6929.58	6931.06	6931.06	6931.63	0.011302	6.09	78.84	1.01		0.79		-	4.81	
Alignment - (2)	523.77	5-YR	80.03	6929.58	6930.16	6930.16	6930.36	0.016078	3.63	22.05	1.02		0.40			1.44	
A.I	000.70	400 \/D	470.55	0004	2000 :-	0000 :-	0000 ==	0.0405:-	0.10	70.00	,						
Alignment - (2)	290.78	100-YR	479.80	6924.69	6926.15	6926.15	6926.73	0.010915	6.13	78.32	1.00		0.79			4.85	
Alignment - (2)	290.78	5-YR	80.03	6924.69	6925.22	6925.22	6925.43	0.015614	3.64	21.97	1.01		0.40		-	1.45	
Alianmort (2)	214.43	100-YR	479.80	6922.96	6924.83	6924.83	6925.53	0.010512	6.74	71.18	1.01		0.90			6.10	
Alignment - (2)	214.43															6.10 2.04	
Alignment - (2)	214.43	5-YR	80.03	6922.96	6923.66	6923.66	6923.94	0.014503	4.21	18.99	1.01		0.48			2.04	
Alimment (C)	140.70	100-YR	470.00	6000.00	6000.00	6000.00	6000.50	0.040000	6 74	71.47	4.00		0.00			6.00	
Alignment - (2)	148.72		479.80	6920.98	6922.82	6922.82	6923.52	0.010380	6.71 4.11		1.00		0.90			6.02 1.90	
Alignment - (2)	148.72	5-YR	80.03	6920.98	6921.69	6921.69	6921.95	0.014036	4.11	19.47	1.00		0.46			1.90	
Alimment (C)	22.42	100-YR	470.00	6040.00	6000 40	6000 10	6004.40	0.040447	6.00	70.40	4.00		0.00			E 00	
Alignment - (2)	33.13 33.13	100-YR 5-YR	479.80	6918.00	6920.43	6920.43	6921.12	0.010447	6.63	72.42	1.00		0.88		-	5.83	
Alignment - (2)	JJ. 13	0-1 K	80.03	6918.00	6919.14	6919.14	6919.45	0.013835	4.53	17.68	1.01		0.53			2.41	

HEC-RAS Plan: PR_C	River Sta	OWS River: Cl	hannel B Read	ch: Alignment C	Channe W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Froude # Chl	Shear LOB	Shear Chan	Shear ROB	Power LOB	Power Chan	Power ROB
Alignment Channe	4748.5	100-YR	(cfs) 280.00	(ft) 7006.24	(ft) 7008.33	(ft) 7008.24	(ft) 7008.81	(ft/ft) 0.008996	(ft/s) 7.62	(sq ft) 59.94	0.97	(lb/sq ft) 0.63	(lb/sq ft) 1.05	(lb/sq ft) 0.63	(lb/ft s) 2.41	(lb/ft s) 7.97	(lb/ft s) 2.42
Alignment Channe	4748.5	5-YR	59.00	7006.24	7007.45	7008.24	7007.68	0.008990	4.81	20.62	0.83	0.03	0.51	0.03	0.36	2.46	0.36
Alignment Channe	4700	100-YR	280.00	7005.80	7007.96		7008.39	0.007882	7.27	62.72	0.91	0.58	0.94	0.58	2.12	6.86	2.12
Alignment Channe	4700	5-YR	59.00	7005.80	7007.02	7007.02	7007.25	0.007985	4.77	20.79	0.82	0.20	0.50	0.20	0.36	2.40	0.36
Alignment Channe Alignment Channe	4662.69 4662.69	100-YR 5-YR	280.00 59.00	7005.46 7005.46	7007.47 7006.67	7007.47 7006.67	7008.02 7006.91	0.011159 0.008170	8.22 4.81	55.66 20.61	1.07 0.83	0.74 0.20	1.24 0.51	0.74 0.20	3.01 0.36	10.16 2.46	3.01 0.36
Alignment Channe	4636.96	100-YR	280.00	7002.89	7004.93	7004.90	7005.46		7.99	57.19	1.03	0.70	1.16		2.78		2.78
Alignment Channe	4636.96	5-YR	59.00	7002.89	7004.10	7004.10	7004.34	0.008058	4.78	20.72	0.83	0.20	0.51	0.20	0.36	2.42	0.36
Alignment Channe Alignment Channe	4580 4580	100-YR 5-YR	280.00 59.00	7002.32 7002.32	7004.42 7003.53	7004.33 7003.53	7004.89 7003.77	0.008981 0.008191	7.61 4.81	59.97 20.59	0.97 0.83	0.63 0.20	1.04 0.51	0.63 0.20	2.41 0.36	7.95 2.47	2.41 0.36
Alignment Channe	4520	100-YR	280.00	7001.72	7003.73	7003.73	7004.29	0.011154	8.22	55.66	1.07	0.74	1.24	0.74	3.00	10.16	3.00
Alignment Channe	4520	5-YR	59.00	7001.72	7002.94	7002.94	7003.17	0.008055	4.78	20.72	0.83	0.20	0.51	0.20	0.36	2.42	0.36
Alignment Channe Alignment Channe	4485 4485	100-YR 5-YR	280.00 59.00	6998.22 6998.22	7000.33 6999.43	7000.23 6999.43	7000.79 6999.67	0.008854 0.008075	7.58 4.79	60.26 20.70	0.96 0.83	0.63 0.20	1.03 0.51	0.63 0.20	2.38 0.36	7.82 2.43	2.38 0.36
Alignment Channe Alignment Channe	4440 4440	100-YR 5-YR	280.00 59.00	6997.82 6997.82	6999.99 6999.06	6999.06	7000.41 6999.27	0.007644 0.007204	7.20 4.59	63.37 21.58	0.90	0.56	0.92	0.56 0.19	2.05	6.64 2.13	2.05 0.33
Alignment Channe	4365	100-YR	280.00	6997.15	6999.15	6999.15	6999.71	0.007204	8.23	55.62	1.07	0.74	1.24	0.74	3.01	10.20	3.01
Alignment Channe	4365	5-YR	59.00	6997.15	6998.37	6998.37	6998.59	0.007751	4.72	21.01	0.81	0.19	0.49	0.19	0.35	2.32	0.35
Alignment Channe Alignment Channe	4320 4320	100-YR 5-YR	280.00 59.00	6992.85 6992.85	6994.95 6994.07	6994.86 6994.07	6995.42 6994.30	0.009001 0.008005	7.62 4.77	59.92 20.77	0.97 0.82	0.63 0.20	1.05	0.63 0.20	2.42 0.36	7.97 2.40	2.42 0.36
Alignment Channe	4210	100-YR	280.00	6991.75	6993.76	6993.76	6994.31	0.011161	8.22	55.65	1.07	0.74	1.24	0.74	3.01	10.16	3.01
Alignment Channe	4210	5-YR	59.00	6991.75	6992.97	6992.97	6993.20	0.007905	4.75	20.87	0.82	0.20	0.50	0.20	0.35	2.37	0.35
Alignment Channe Alignment Channe	4070 4070	100-YR 5-YR	280.00 59.00	6990.35 6990.35	6992.40 6991.56	6992.40 6991.56	6992.81 6991.80	0.008921 0.008275	7.44 4.83	69.51 20.51	0.96 0.84	0.30 0.20	1.01 0.52	0.61 0.20	0.89 0.37	7.50 2.50	2.24 0.37
Alignment Channe	4025	100-YR	280.00	6985.85	6987.95	6987.86	6988.42	0.008940	7.60	60.06	0.97	0.63	1.04	0.63	2.40	7.91	2.40
Alignment Channe	4025	5-YR	59.00	6985.85	6987.06	6987.06	6987.30	0.008424	4.86	20.37	0.84	0.20	0.52	0.20	0.37	2.55	0.37
Alignment Channe Alignment Channe	3925 3925	100-YR 5-YR	280.00 59.00	6984.85 6984.85	6986.86 6986.06	6986.86 6986.06	6987.42 6986.30	0.011256 0.008087	8.24 4.79	55.49 20.69	1.07 0.83	0.74 0.20	1.24 0.51	0.74 0.20	3.03 0.36	10.26 2.43	3.03 0.36
Alignment Channe	3880	100-YR	280.00	6980.35	6984.85		6984.89	0.000291	2.35	198.09	0.20	0.05	0.08	0.05	0.06	0.18	0.06
Alignment Channe	3880	5-YR	59.00	6980.35	6981.92		6981.99	0.001771	2.73	35.82	0.41	0.08	0.15	0.08	0.10	0.41	0.10
Alignment Channe Alignment Channe	3830 3830	100-YR 5-YR	280.00 59.00	6979.90 6979.90	6984.60 6981.49	6982.19 6980.92	6984.78 6981.59	0.000681 0.001625	3.73 2.78	87.49 25.28	0.30 0.39	0.17 0.09	0.19 0.15	0.17 0.09	0.42 0.13	0.70 0.42	0.42 0.13
Alignment Channe	3825		Culvert														
Alignment Channe	3760	100-YR	280.00	6979.27	6981.78	6981.78	6982.88	0.008939	8.85	34.61	0.99	1.03	1.31	1.03	5.42	11.58	5.42
Alignment Channe	3760	5-YR	59.00	6979.27	6980.36	6980.28	6980.70		4.77	13.40	0.82	0.21	0.50	0.21	0.41	2.40	0.41
Alignment Channe Alignment Channe	3650 3650	100-YR 5-YR	390.70 68.95	6978.28 6978.28	6980.80 6979.56	6979.56	6981.29 6979.80	0.007384 0.007808	7.87 4.92	80.68 23.55	0.91 0.82	0.66 0.22	1.05 0.52	0.66 0.22	2.70 0.44	8.22 2.57	2.70 0.44
Alignment Channe	3405	100-YR	390.70	6976.08	6978.36	6978.36	6979.04	0.011518	9.17	69.24	1.11	0.92	1.47	0.92	4.29	13.49	4.29
Alignment Channe	3405	5-YR	68.95	6976.08	6977.34	6977.34	6977.59		5.07	22.85	0.86	0.24	0.56	0.24	0.47	2.83	0.47
Alignment Channe Alignment Channe	3360 3360	100-YR 5-YR	390.70 68.95	6971.58 6971.58	6973.91 6972.83	6973.86 6972.83	6974.54 6973.09	0.010411 0.008634	8.86 5.10	71.69 22.71	1.06 0.86	0.85 0.24	1.36 0.57	0.85 0.24	3.86 0.47	12.05 2.89	3.86 0.47
Alignment Channe	3040 3040	100-YR	390.70 68.95	6968.69 6968.69	6971.20 6969.96	6970.99 6969.96	6971.70	0.007461 0.008491	7.90 5.07	80.40	0.91	0.67	1.05	0.67	2.73	8.32 2.84	2.73
Alignment Channe		5-YR 100-YR	390.70	6965.77	6968.07		6970.21 6968.74		9.10	22.83	0.86	0.23	1.44	0.23	0.47		0.47
Alignment Channe Alignment Channe	2715 2715	5-YR	68.95	6965.77	6967.04	6968.07 6967.04	6967.29	0.011236 0.008451	5.06	69.82 22.87	1.10 0.85	0.90	0.56	0.90 0.23	4.18 0.46	13.14 2.82	4.18 0.46
Alignment Channe Alignment Channe	2675 2675	100-YR 5-YR	390.70 68.95	6961.77 6961.77	6964.18 6963.04	6964.07 6963.04	6964.75 6963.29	0.009096 0.008411	8.46 5.05	75.09 22.91	1.00	0.77	1.23	0.77	3.36 0.46	10.38	3.36 0.46
Alignment Channe	2570	100-YR	390.70	6960.72	6963.03	6963.03	6963.69	0.008411	9.06	70.19	1.09	0.23	1.43	0.23	3.89	12.95	4.12
Alignment Channe	2570	5-YR	68.95	6960.72	6961.98	6961.98	6962.24	0.008643	5.11	22.68	0.86		0.57	0.24	0.47	2.90	0.47
Alignment Channe Alignment Channe	2545 2545	100-YR 5-YR	390.70 68.95	6958.22 6958.22	6960.64 6959.51	6960.51 6959.51	6961.20 6959.74	0.008854 0.007720	8.38 4.89	75.79 23.65	0.99	0.76 0.22	1.20	0.76 0.22	3.26 0.43	10.07 2.54	3.26 0.43
Alignment Channe	2460	100-YR	390.70	6957.37	6959.66	6959.66	6960.34	0.011438	9.16	69.39	1.11	0.22	1.46		4.25	13.41	4.25
Alignment Channe	2460	5-YR	68.95	6957.37	6958.63	6958.63	6958.89		5.11	22.66	0.86	0.24	0.57	0.24	0.47	2.91	0.47
Alignment Channe Alignment Channe	2420 2420	100-YR 5-YR	390.70 68.95	6953.37 6953.37	6955.91 6954.71		6956.39 6954.90		7.74 4.49	82.01 25.72	0.89 0.74	0.64 0.19	1.01 0.43	0.64 0.19	2.57 0.36	7.80 1.93	2.57 0.36
Alignment Channe	2260	100-YR	390.70	6951.93	6954.44	6954.22	6954.94	0.007451	7.89	80.43	0.91	0.67	1.05	0.67	2.73	8.31	2.73
Alignment Channe	2260	5-YR	68.95	6951.93	6953.19	6953.19	6953.45	0.008646	5.11	22.68	0.86	0.24	0.57	0.24	0.47	2.90	0.47
Alignment Channe Alignment Channe	2045 2045	100-YR 5-YR	390.70 68.95	6950.00 6950.00	6952.28 6951.25	6952.28 6951.25	6952.96 6951.51	0.011523 0.008766	9.18 5.13	69.23 22.58	1.11 0.87	0.92 0.24	1.47 0.57	0.92 0.24	4.29 0.48	13.50 2.94	4.29 0.48
Alignment Channe	2000	100-YR	390.70	6945.50	6948.10		6948.53	0.006304	7.45	85.22	0.84	0.59	0.92	0.59	2.29	6.89	2.29
Alignment Channe	2000	5-YR	68.95	6945.50	6946.76	6946.76	6947.01	0.008518	5.07	22.83	0.86	0.24	0.56	0.24	0.47	2.84	0.47
Alignment Channe Alignment Channe	1740 1740	100-YR 5-YR	597.69 86.00	6942.90 6942.90	6945.81 6944.25	6945.64 6944.25	6946.52 6944.53	0.008796 0.008827	9.55 5.45	101.93 26.46	1.02 0.88	0.95 0.29	1.46 0.63	0.95 0.29	4.74 0.64		4.74 0.64
Alignment Channe	1445	100-YR	597.69	6939.94	6942.69	6942.69	6943.55	0.011516	10.47	92.83	1.15	1.16	1.79	1.16	6.32	18.76	6.32
Alignment Channe	1445	5-YR 100-YR	86.00	6939.94	6941.29	6941.29	6941.57	0.008918	5.46	26.37	0.89	0.29	0.63	0.29	0.65	3.46	0.65
Alignment Channe Alignment Channe	1400	100-YR 5-YR	597.69 86.00	6935.44 6935.44	6938.21 6936.79	6938.19 6936.79	6939.05 6937.07	0.011170 0.009053	10.36 5.49	93.81 26.22	1.13 0.89	1.13 0.29	1.75 0.64	1.13 0.29	6.11 0.66	18.13 3.53	6.11 0.66
Alignment Channe Alignment Channe	1050	100-YR 5-YR	597.69 86.00	6931.94 6931.94	6934.86 6933.29	6934.69 6933.29	6935.56 6933.57	0.008741 0.009073	9.52 5.50	102.30 26.20	1.01	0.80	1.45	0.94	4.00 0.66	13.82	4.71 0.66
Alignment Channe	745	100-YR	597.69	6928.90	6933.29	6933.29	6932.50	0.009073	10.48	92.73	1.15	1.16	1.80	1.16	6.33	18.84	6.33
Alignment Channe	745	5-YR	86.00	6928.90	6930.24	6930.24	6930.53		5.48	26.30	0.89		0.64	0.29	0.65		0.65
Alignment Channe Alignment Channe	700 700	100-YR 5-YR	597.69 86.00	6924.40 6924.40	6927.27 6925.75	6927.14 6925.75	6928.01 6926.03	0.009447 0.008903	9.78 5.46	99.43 26.38	1.05 0.89	1.00	1.54 0.63	1.00	5.12 0.65		5.12 0.65
. signmont Orianne			50.50	5524.40	5525.75	5525.75	5320.03	5.000303	5.40	20.30	0.09	0.29	0.03	0.29	0.00	5.40	0.00

HEC-RAS Plan: PR_GEOM_EX_FLOWS River: Channel B Reach: Alignment Channe (Continued)

HEC-RAS Plan: PR_GEOM_EX_FLOWS River: Channel B Reach: Alignment Channe (Continued)																	
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Froude # Chl	Shear LOB	Shear Chan	Shear ROB	Power LOB	Power Chan	Power ROB
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)		(lb/sq ft)	(lb/sq ft)	(lb/sq ft)	(lb/ft s)	(lb/ft s)	(lb/ft s)
Alignment Channe	590	100-YR	597.69	6923.40	6926.43		6927.06	0.007427	9.01	108.08	0.94	0.84	1.28	0.84	3.96	11.55	3.96
Alignment Channe	590	5-YR	86.00	6923.40	6924.75	6924.75	6925.03	0.008880	5.46	26.41	0.89	0.29	0.63	0.29	0.65	3.45	0.65
Alignment Channe	445	100-YR	597.69	6922.10	6924.85	6924.85	6925.71	0.011516	10.47	92.83	1.15	1.16	1.79	1.16	6.32	18.76	6.32
Alignment Channe	445	5-YR	86.00	6922.10	6923.45	6923.45	6923.73	0.008918	5.46	26.37	0.89	0.29	0.63	0.29	0.65	3.46	0.65
Alignment Channe	400	100-YR	597.69	6917.60	6920.46	6920.35	6921.21	0.009682	9.84	98.47	1.06	1.01	1.56	1.02	5.24	15.38	5.25
Alignment Channe	400	5-YR	86.00	6917.60	6918.95	6918.94	6919.23	0.008982	5.45	26.29	0.89	0.29	0.63	0.29	0.65	3.44	0.65
Alignment Channe	200	100-YR	597.69	6915.80	6918.80	6918.55	6919.44	0.007830	9.17	106.11	0.96	0.87	1.33	0.87	4.19	12.24	4.19
Alignment Channe	200	5-YR	86.00	6915.80	6917.15	6917.15	6917.43	0.008995	5.48	26.29	0.89	0.29	0.64	0.29	0.66	3.50	0.66
Alignment Channe	70.18	100-YR	597.69	6914.63	6917.40	6917.40	6918.23	0.011055	10.32	94.86	1.13	1.12	1.74	0.96	6.03	17.90	5.07
Alignment Channe	70.18	5-YR	86.00	6914.63	6915.98	6915.98	6916.26	0.009065	5.50	26.21	0.90	0.29	0.64	0.29	0.66	3.53	0.67

Appendix G

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jan 25 2019

East Fork Tributary 1 Reach 3 - Proposed Channel_Capacity

 Trapezoidal

 Bottom Width (ft)
 = 25.00

 Side Slopes (z:1)
 = 4.00, 4.00

 Total Depth (ft)
 = 3.00

 Invert Elev (ft)
 = 1.00

 Slope (%)
 = 0.69

 N-Value
 = 0.040

Calculations

Compute by: Known Q Known Q (cfs) = 217.00 Highlighted Depth (ft) = 1.75Q (cfs) = 217.00Area (sqft) = 56.00Velocity (ft/s) = 3.88Wetted Perim (ft) = 39.43Crit Depth, Yc (ft) = 1.24 Top Width (ft) = 39.00EGL (ft) = 1.98

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jan 25 2019

East Fork Tributary 1 Reach 3 - Proposed Channel_Velocity

rapezoldai		
Bottom Width (ft)	= 25.00	
Side Slopes (z:1)	= 4.00, 4.00	
Total Depth (ft)	= 3.00	
Invert Elev (ft)	= 1.00	
Slope (%)	= 0.69	
N-Value	= 0.030	

Calculations

Compute by: Known Q Known Q (cfs) = 217.00

Highlighted	
Depth (ft)	= 1.49
Q (cfs)	= 217.00
Area (sqft)	= 46.13
Velocity (ft/s)	= 4.70
Wetted Perim (ft)	= 37.29
Crit Depth, Yc (ft)	= 1.24
Top Width (ft)	= 36.92
EGL (ft)	= 1.83

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jan 18 2019

East Fork Tributary 1 Reach 2 - Proposed Channel_Capacity

 Trapezoidal

 Bottom Width (ft)
 = 38.00

 Side Slopes (z:1)
 = 4.00, 4.00

 Total Depth (ft)
 = 2.00

 Invert Elev (ft)
 = 1.00

 Slope (%)
 = 1.58

 N-Value
 = 0.050

Calculations

Compute by: Known Q Known Q (cfs) = 177.00

Highlighted Depth (ft) = 1.12Q (cfs) = 177.00Area (sqft) = 47.58Velocity (ft/s) = 3.72Wetted Perim (ft) = 47.24Crit Depth, Yc (ft) = 0.86Top Width (ft) = 46.96EGL (ft) = 1.34

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jan 18 2019

East Fork Tributary 1 Reach 2 - Proposed Channel_Velocity

 Trapezoidal

 Bottom Width (ft)
 = 38.00

 Side Slopes (z:1)
 = 4.00, 4.00

 Total Depth (ft)
 = 2.00

 Invert Elev (ft)
 = 1.00

 Slope (%)
 = 1.58

 N-Value
 = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 177.00 Highlighted Depth (ft) = 0.86Q (cfs) = 177.00Area (sqft) = 35.64Velocity (ft/s) = 4.97Wetted Perim (ft) = 45.09Crit Depth, Yc (ft) = 0.86Top Width (ft) = 44.88EGL (ft) = 1.24

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Jan 17 2019

Main Stem Trib 2

Gieck Name Tributary 2 - Proposed Channel Section Capacity Check

Trapezoidal

Bottom Width (ft) = 60.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 1.00 Slope (%) = 2.00 N-Value = 0.050

Calculations

Compute by: Known Q Known Q (cfs) = 220.00 Highlighted

Depth (ft) = 0.92Q (cfs) = 220.00Area (sqft) = 58.59Velocity (ft/s) = 3.76Wetted Perim (ft) = 67.59Crit Depth, Yc (ft) = 0.74Top Width (ft) = 67.36EGL (ft) = 1.14

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Jan 17 2019

Main Stem Trib 2

Gieck Ranch Tributary 2 - Proposed Channel Section Velocity Check

Trapezoidal

Bottom Width (ft) = 60.00
Side Slopes (z:1) = 4.00, 4.00
Total Depth (ft) = 2.00
Invert Elev (ft) = 1.00
Slope (%) = 2.00
N-Value = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 220.00 Highlighted

Depth (ft) = 0.70Q (cfs) = 220.00Area (sqft) = 43.96Velocity (ft/s) = 5.00 Wetted Perim (ft) = 65.77Crit Depth, Yc (ft) = 0.74Top Width (ft) = 65.60EGL (ft) = 1.09

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Jan 17 2019

Gieck Ranch Tributary 2 Reach 1 - Proposed Channel Section Capacity Check

	Main Stem		
Trapezoidal		lighlighted Highlighted	
Bottom Width (ft)	= 60.00	Depth (ft)	= 0.92
Side Slopes (z:1)	= 4.00, 4	.00 Q (cfs)	= 220.00
Total Depth (ft)	= 2.00	Area (sqft)	= 58.59
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.76
Slope (%)	= 2.00	Wetted Perim (ft)	= 67.59
N-Value	= 0.050	Crit Depth, Yc (ft)	= 0.74
		Top Width (ft)	= 67.36
Calculations		EGL (ft)	= 1.14
Compute by:	Known Q		
Known Q (cfs)	= 220.00		

Known Q (cfs)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 220.00

Thursday, Jan 17 2019

Gieck Ranch Tributary 2 Reach 1 - Proposed Channel Section Velocity Check

Trapezoidal Highlighted Bottom Width (ft) = 60.00= 0.70Depth (ft) Side Slopes (z:1) = 4.00, 4.00Q (cfs) = 220.00Total Depth (ft) Area (sqft) = 2.00= 43.96Invert Elev (ft) Velocity (ft/s) = 1.00 = 5.00 Slope (%) = 2.00Wetted Perim (ft) = 65.77N-Value = 0.032Crit Depth, Yc (ft) = 0.74Top Width (ft) = 65.60**Calculations** EGL (ft) = 1.09Compute by: Known Q

Reach (ft)

Known Q (cfs)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 237.00

Thursday, Jan 17 2019

Gieck Ranch Tributary 2 Reach 2 - Proposed Channel Section Capacity Check

Trapezoidal Highlighted Bottom Width (ft) = 60.00= 0.99Depth (ft) Side Slopes (z:1) = 4.00, 4.00Q (cfs) = 237.00Total Depth (ft) Area (sqft) = 2.00= 63.32Invert Elev (ft) Velocity (ft/s) = 3.74= 1.00 Slope (%) = 1.80Wetted Perim (ft) = 68.16N-Value = 0.050Crit Depth, Yc (ft) = 0.78Top Width (ft) = 67.92**Calculations** EGL (ft) = 1.21 Compute by: Known Q

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Jan 17 2019

Gieck Ranch Tributary 2_Reach 2 - Proposed Channel Section Velocity Check

Trapezoidal	Main Stem	Highlighted	
Bottom Width (f	t) = 60.00		= 0.76
Side Slopes (z:	= 4.00, 4	4.00 Q (cfs)	= 237.00
Total Depth (ft)	= 2.00	Area (sqft)	= 47.91
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 4.95
Slope (%)	= 1.80	Wetted Perim (ft)	= 66.27
N-Value	= 0.032	Crit Depth, Yc (ft)	= 0.78
		Top Width (ft)	= 66.08
Calculations		EGL (ft)	= 1.14
Compute by:	Known C	Q	
Known Q (cfs)	= 237.0	0	

S:\CivilProi\Meridian Ranch MDDP\dw

Appendix H

FIG.EX1

341.05

Outfall4

16.46

86.73

60.11

170.90

276.10

1335.77

1291.25

PROPOSED DR1 04/14/2020

Prepared By:

HRGreen

FIG.DR3

APPENDIX F - DRAINAGE MAPS

V1_Drainage Report - Preliminary Review 1.pdf Markup Summary

Callout (32)

Subject: Callout Page Label: [1] EX1 Author: CDurham

Date: 1/30/2024 5:32:13 PM

Status: Color: Layer: Space: Have project boundary be more pronounced

Subject: Callout

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/31/2024 9:10:08 AM

Status: Color: Layer: Space: Information in this column matches with C5 value in spreadsheet. Please revise table or spreadsheet accordingly to match

Subject: Callout

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/30/2024 5:34:54 PM

Status: Color: Layer: Space: Provide street names

Subject: Callout

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/30/2024 5:35:24 PM

Status: Color: Layer: Space: Fix all overlapping text

Subject: Callout

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/30/2024 5:37:52 PM

Status:
Color: Layer:
Space:

Use Design Point designations, as done on other DP Table, such as "DPs 1-B, 2-B" instead of

"A,B,C,D"

Subject: Callout

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/31/2024 9:28:09 AM

Status: Color: Layer: Space: Label storm infrastructure (MH, inlet, pipes, culverts, swales, etc) and include if it's

public/private. Sizes do not need to provided at this

time).

Subject: Callout

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/30/2024 5:40:12 PM

Status: Color: Layer: Space:

Update flows in these tables. Several do not match

hydrology spreadsheet

Subject: Callout

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/30/2024 5:40:46 PM

Status: Color: Layer: Space:

DP labels are hard to read. Please make a little

larger.

Subject: Callout

Page Label: [1] DRAINAGE MAP Author: CDurham

Date: 1/30/2024 5:41:23 PM

Status: Color: Laver: Space:

Show and label Phase 2 boundary

Subject: Callout

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/30/2024 5:43:49 PM

Status: Color: Layer: Space:

Label HP & LP's

Subject: Callout Page Label: 30 Author: CDurham

Date: 1/30/2024 5:49:59 PM

Status: Color: Layer: Space:

Highlighted flows cannot be 0 cfs. Appears that

intensity is missing. Please update.

Subject: Callout Page Label: 30 Author: CDurham

Date: 1/30/2024 5:50:25 PM

Status: Color: Layer: Space:

Missing flow rate for design point

Subject: Callout Page Label: 4 Author: CDurham

Date: 1/31/2024 8:43:19 AM

Status: Color: Layer: Space:

Subject: Callout Page Label: 6 Author: CDurham

Date: 1/31/2024 9:03:51 AM

Status: Color: Layer: Space:

Only provide relevant sheets from the report.

68.72 per other documents

Subject: Callout Page Label: 23 Author: CDurham

Date: 1/31/2024 9:09:41 AM

Status: Color: Layer: Space:

Labels appear to be switched for these 2 columnn

Subject: Callout Page Label: 7 Author: CDurham

Date: 1/31/2024 9:27:24 AM

Status: Color: Layer: Space:

Per ECM Section 3.3.1.J.1 all public pipe must be **RCP**

Subject: Callout Page Label: 7 Author: CDurham Date: 1/31/2024 9:34:28 AM

Status: Color: Layer: Space:

From drainage map, Basin B4-A appears to go towards DP 18-A

Subject: Callout Page Label: 7 Author: CDurham

Date: 1/31/2024 9:37:04 AM

Status: Color: Layer: Space:

Per routing spreadsheet, Basin B1-A combines at DP20-A

Subject: Callout Page Label: 7 Author: CDurham

Date: 1/31/2024 9:42:51 AM

Status: Color: Layer: Space:

Per routing spreadsheet, this basin combines with Basins E3-A & E4-A at DP 13-A. Basin E1-A combines at BP 14-A. Verify and update report or

spreadsheet accordingly.

Subject: Callout Page Label: 8 Author: CDurham

Date: 1/31/2024 9:44:51 AM

Status: Color: Layer: Space:

Basin E2-A is combined at DP 13-A according to spreadsheet. Revise report or spreadsheet to

match

Subject: Callout Page Label: 8 Author: CDurham

Date: 1/31/2024 10:38:24 AM

Status: Color: Layer: Space:

Per routing spreadsheet combines with Basin E6-A. Revise report or spreadsheet to match

Subject: Callout Page Label: 8 Author: CDurham

Date: 1/31/2024 10:16:56 AM

Status: Color: Layer: Space:

DP15-A per routing spreadsheet

Subject: Callout Page Label: 8 Author: CDurham

Date: 1/31/2024 10:18:40 AM

Status: Color: Layer: Space:

Area doesn't match with spreadsheet Please update.

Subject: Callout Page Label: 8 Author: CDurham

Date: 1/31/2024 10:47:13 AM

Status: Color: Layer: Space:

Per routing spreadsheet, only Basins H3-A & H4-A are combined at DP3-A.

network.

Basin H3-A is 0.70 acres o (0s = 1.9 cfs 0ws = 4.0 cfs sharpwadzheef Please yedzhe preudzheef Please yedzhe (ER type R network.

Basin H4-A is 0.78 acres o (0s = 4.3 cfs 0ws = 8.8 cfs combine with those chief.

Subject: Callout Page Label: 8 Author: CDurham

Date: 1/31/2024 10:47:41 AM

Status: Color: Layer: Space: Area doesn't match with spreadsheet Please

update.

To a patie type R relat of DRA, utilizately dashing to Prind A via the proposed point of the proposed point of the proposed point of the Asia 25 has been of right-of-way (ROR)) peas, landscaped area, and towntones to RA. As 25 has been of right-of-way (15 cm) and and gaster in the public diport-dway (15 cm) and the control of the Robert of the Asia HA. As could from tollowe password of subbasis HAH. As could be public type R No PROPA with stress of the Robert of the Asia Asia Asia Asia (15 cm) and the Robert of the Asia Asia Asia Asia (15 cm) and the Robert of the Rober

Subject: Callout Page Label: 9 Author: CDurham

Date: 1/31/2024 10:48:02 AM

Status: Color: Layer: Space: Area doesn't match with spreadsheet Please

update.

ultimating during in Fred A. As the Impropriet glassic states were FEOT glass. In Section 2 and Commission and Section 2 and Se Subject: Callout Page Label: 9 Author: CDurham

Date: 1/31/2024 10:52:11 AM

Status: Color: Layer: Space: Per routing spreadsheet, Basin 5H-A combines with Basin H1-A at DP6-A. Please revise report or

spreadsheet to match.

Subject: Callout

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/31/2024 10:53:27 AM

Status: Color: Layer: Space: Can't read DP label

A STATE CONTROL OF THE PROPERTY OF THE PROPERT

Subject: Callout Page Label: 9 Author: CDurham

Date: 1/31/2024 10:54:53 AM

Status: Color: Layer: Space: Area doesn't match with spreadsheet Please update.

sections and investment in the Section (Section 1) and (Section 1). If of (Section 1, 6) is a flow upon (Section 1) and (Secti

Subject: Callout Page Label: 9 Author: CDurham

Date: 1/31/2024 11:06:52 AM

Status: Color: Layer: Space: PLease update all basin flows in this section to match with hydrology spreadsheet.

Subject: Callout Per DCM Section 11.2.2 minimum width for access Page Label: 10 is 15'. Please revise Author: CDurham Date: 1/31/2024 11:12:45 AM Status: Color: Layer: Space: Subject: Callout Per DCM Section 11.2.2 minimum width for access Page Label: 11 is 15'. Please revise Author: CDurham Date: 1/31/2024 11:14:33 AM Status: Color: Layer: Space: Highlight (18) Subject: Highlight 0.0 Page Label: 30 0.0 Author: CDurham Date: 1/30/2024 5:48:42 PM Status: Color: Layer: Space: Subject: Highlight 0.0 Page Label: 30 Author: CDurham Date: 1/30/2024 5:48:55 PM Status: Color: Layer: Space: Subject: Highlight 0.0 Page Label: 30 Author: CDurham Date: 1/30/2024 5:48:57 PM Status: Color: Layer: Space: Subject: Highlight 0.0 Page Label: 30 Author: CDurham Date: 1/30/2024 5:48:59 PM Status: Color: Layer: Space:

Subject: Highlight 0.78 Page Label: 8 \ is 0.78 ac Author: CDurham Date: 1/31/2024 10:46:28 AM fs $Q_{100} = 8$. Status: Color: Layer: Space: Subject: Highlight H1-A, H3-A, and H5-A. of right-of-way (ROW) area, landsca s) is conveyed via curb and gutter in basin H1-A, H3-A, and H5-A. Runo Page Label: 8 Author: CDurham Date: 1/31/2024 10:47:21 AM Status: Color: Layer: Space: Subject: Highlight 3.75 Page Label: 9 \ is 3.75 ac Author: CDurham Date: 1/31/2024 10:48:08 AM fs $Q_{100} = 1$; Date: 17 Status: Color: Layer: Space: Subject: Highlight Runoff then follows patterns of subbasin H1-A Page Label: 9 draining to DP3-A and Author: CDurham then to a public type R inlet at DP6-A Date: 1/31/2024 10:50:47 AM Status: Color: Layer: Space: Subject: Highlight 0.63 Page Label: 9 \ is 0.63 ac Author: CDurham Date: 1/31/2024 10:54:56 AM conveyed v status: Color: Layer: Space: ining to Pond A via the proposed public Subject: Highlight Tributary to and Treated by Pond B Page Label: 9 i 3.52 acres of landscaped area, duplex water (Q₅ = 0.8 cfs Q₁₀₀ = 1.6 cfs) is con R inlet at DP1-B, and ultimately draining Author: CDurham Date: 1/31/2024 10:56:20 AM i 2.50 acres of landscaped area, duplex = 1.6 cfs) is conveyed via curb and gutte ately draining to Pond B via the propose Status: Color: Layer: Space:

It to provide water quality treatment, and of whistoric rates. The WBCV is 0.505 ac.H. 12.603 ac.H. The WDCV. LRDV and 100-4 forebay is located at the outfall into the pture. Arit access and maintenance road of the pond facilities. A 60° emergency cyr flow rate with 1.0° of freeboard towards

Subject: Highlight Page Label: 10

Author: CDurham

Date: 1/31/2024 11:12:15 AM

Status: Color: Layer: Space:

10' access and maintenanc

10' access and maintenance ro

Subject: Highlight Page Label: 11 Author: CDurham

Date: 1/31/2024 11:14:14 AM

Color: Layer:

Status:

Image (2)

Subject: Image

Page Label: [1] DRAINAGE MAP Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 9:45:59 AM

Status: Color: Layer: Space:

Space:

Subject: Image

Page Label: [1] DRAINAGE MAP Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 9:47:08 AM

Status: Color: Layer: Space:

Line (9)

HDPE culvert crossing at DP23-A

area, and townhome lot area. Stori public right-of-way to a public type storm sewer network.

area, and townhome lot area. Stori

Subject: Line Page Label: 7 Author: CDurham

Date: 1/31/2024 9:29:34 AM

Status: Color: Layer: Space:

Subject: Line

nveyed via

Page Label: 7 sin B1 A, B3 Author: CDurham Date: 1/31/2024 9:31:10 AM

t DP20-A, a Status:

Color: Layer: Space:

conveyed Subject: Line Page Label: 7 in B1-A, B; Author: CDurham Date: 1/31/2024 9:31:46 AM at DP20-A Status: Color: Layer: Space: Subject: Line rea. Stormwater ($Q_5 = 1.3 \text{ cfs } Q_{100} =$ -A, and ultimately draining to Pond ν Page Label: 7 Author: CDurham public right-of-way to a public type I Date: 1/31/2024 9:39:12 AM area, and townhome lot area. Storr Status: Color: Layer: Space: ıgııι-οι-way (κον Subject: Line s conveyed via ct Page Label: 8 sin E2-A, and E4 Author: CDurham Status: Color: Layer: Space: Subject: Line ea. Stormwater (Qs = 3.9 cfs Q100 et at DP9-A, and ultimately draining Page Label: 8 Author: CDurham public right-of-way to a public type Date: 1/31/2024 10:29:53 AM torm sewer network. Status: ng lot, landscaped area, and town Color: Layer: Space: Subject: Line Page Label: 8 Author: CDurham Date: 1/31/2024 10:31:18 AM Status: Color: Layer: Space: Subject: Line

a. Stormwater
-A, where flows—
to DP3-A and
orm sewer

Page Label: 9
Author: CDurham

Date: 1/31/2024 10:50:31 AM

Status: Color: Layer: Space: ----

network.

Basin H5-A is 3.75 acres of right-of-way (ROV)
Qis = 5.7 cfs Q₁₀₀ = 13.5 cfs) is conveyed via combine with tiose of subblash H17A. Runoff then to a public type R inlet at DP6-A, utlimate

network.

Basin I1-A is 0.63 acres of right-of-way (ROW $(Q_S = 1.3 \text{ cfs } Q_{100} = 2.9 \text{ cfs})$ is conveyed via o DP7-A and ultimately draining to Pond A via i

Subject: Line Page Label: 9 Author: CDurham

Date: 1/31/2024 10:50:37 AM

Status: Color: Layer: Space:

Polygon (2)

Subject: Polygon

Page Label: [1] DRAINAGE MAP Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:11:15 AM

Status: Color: Layer: Space:

Subject: Polygon

Page Label: [1] DRAINAGE MAP Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:14:02 AM

Status:
Color: Layer:
Space:

SW - Highlight (1)

Section 1.5 of the contract of

Subject: SW - Highlight

Page Label: 10

Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:39:48 AM

Status: Color: Layer: Space: All ponds and water quality features will discharge at less than historic rates.

SW - Textbox (4)

Subject: SW - Textbox

Page Label: [1] DRAINAGE MAP Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:05:23 AM

Status: Color: ■ Layer: Space: Please add both on and offsite drainage flow arrows to this map.

Also add scale and north arrow.

Subject: SW - Textbox

Page Label: [1] DRAINAGE MAP Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 9:45:30 AM

Status: Color: ■ Layer: Space:

We need to know how much of the proposed area of disturbance (not just the impervious surfaces) is treated vs untreated and if there are any exclusions that apply to the untreated areas. So please create a basic overview map (or modify an existing drainage map) with color shading/hatching that shows areas tributary to each PBMP (pond, runoff reduction, etc.) and those disturbed areas that are not treated by a PBMP, with the applicable exclusion labeled (ex: 20% up to 1ac of development can be excluded per ECM App I.7.1.C.1 and exclusions listed in ECM App I.7.1.B.#). An accompanying summary table on this

map would also be very helpful (two examples provided):

Add text EDARP Filing No.: PUDSP236 Subject: SW - Textbox

Page Label: 1

Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:53:07 AM

Status: Color: Layer: Space:

Add text:

EDARP Filing No.: PUDSP236

Subject: SW - Textbox

Page Label: 33

Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 3:32:23 PM

Status: Color: Layer: Space:

Note that the pond calcs will be reviewed in more detail with the FDR and subsequent submission of CDs. Can't do a full review of these calcs without

the pond details in the CDs.

SW - Textbox with Arrow (10)

Subject: SW - Textbox with Arrow Page Label: [1] DRAINAGE MAP Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:25:00 AM

Status: Color: Layer: Space:

Unless this maintenance path acts as a berm with a swale on the north side (which I'm not seeing from the topo), then these orange areas are not actually tributary to the ponds as stated in the report narrative above.

Subject: SW - Textbox with Arrow

Page Label: 7

Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:17:42 AM

Status: Color: Layer: Space:

Swales not shown on Drainage Map. Please clarify how flows will reach their intented design points and ultimately the pond. Or if any WQ exclusions are applicable.

Subject: SW - Textbox with Arrow Page Label: [1] DRAINAGE MAP Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:24:26 AM

Status: Color: Layer: Space:

The report narrative above states that this whole basin is tributary to design point 23-A via grass swales. But I don't see any swales. Everything appears to flow to Gieck Ranch Trib #2. Please clarify/revise to remove discrepancy.

Subject: SW - Textbox with Arrow Page Label: [1] 00-Drainage Basins-DR2 Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:28:34 AM

Status: Color: ■ Layer: Space: Is this Land Use legend supposed to be in color for the colors (like yellow and orange) shown on this map? Either way, please provide a Legend for all of the shaded colors show on these maps.

Subject: SW - Textbox with Arrow

Page Label: 10

Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:29:29 AM

Status: Color: ■ Layer: Space: Swales not shown on Drainage Map. Please clarify how flows will reach their intented design points and ultimately the pond. Or if any WQ exclusions are applicable.

Subject: SW - Textbox with Arrow

Page Label: 10

Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:40:11 AM

Status: Color: ■ Layer: Space: Labeled on map as Gieck Ranch Trib #2. Please revise to clarify and/or to remove discrepancy.

Subject: SW - Textbox with Arrow

Page Label: 11

Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:40:01 AM

Status: Color: ■ Layer: Space: Labeled on map as Gieck Ranch Trib #2. Please revise to clarify and/or to remove discrepancy.

Subject: SW - Textbox with Arrow

Page Label: 36

Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:39:12 AM

Status: Color: ■ Layer: Space: Q ratios should be less than or equal to 1.

Subject: SW - Textbox with Arrow

Page Label: 41

Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:38:41 AM

Status: Color: ■ Layer: Space: Q ratios should be less than or equal to 1.

bit area. Stormwater (Ca = 0.8 cts Cus = 1.6 cts) is not the proposed Mil spectrum deterrison budley Pund on them to be 100°17.8 in Pand 48. [This subservation conflicts with whalf is shown prescribed.]

This subservation conflicts with whalf is shown prescribed. The subservation of the prescribed in prescribed. The prescribed is subserved in secretaria. Stormwater tray for subservation and prescribed in the prescribed prescribed and prescribed in the prescribed prescribed and prescribed in the part with or state and prescribed in the part with or state and the prescribed part which release and target as less than the part with creates and target as less than the part with the prescribed prescribed to the prescribed part which creates. Subject: SW - Textbox with Arrow

Page Label: 10

Author: Glenn Reese - EPC Stormwater

Date: 1/29/2024 10:41:21 AM

Status: Color: ■ Layer: Space: This statement conflicts with what is shown as the Q ratios on the two MHFD-Detention spreadsheet.

Text Box (9)

APPENDIX E = REFERENCES

For Reference Material, please only include

Subject: Text Box Page Label: 44 Author: CDurham

Date: 1/30/2024 5:10:55 PM

Status: Color: Layer: Space: For Reference Material, please only include sheets that are relevant to this portion of the project (Phase 2). Also, highlight specific information, such as basins & DP's being discussed within this

report.

Property owner information

Subject: Text Box

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/30/2024 5:33:33 PM

Status: Color: Layer: Space: Property owner information

Missing DP 17-B Subject: Text Box

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/30/2024 5:38:17 PM

Status: Color: Layer: Space: Missing DP 17-B

Add north arrow and scale

Subject: Text Box

Page Label: [1] DRAINAGE MAP

Author: CDurham

Date: 1/30/2024 5:42:03 PM

Status: Color: Layer: Space: Add north arrow and scale

ortheast boundary for Phase 2 along Rex Road. This indicate when/what phase or filing this channel will be evaluated with. In the califiles in the area. In guildliss or other encumbrances on site.

Subject: Text Box Page Label: 5 Author: CDurham

Date: 1/31/2024 8:45:34 AM

Status: Color: Layer: Space: Indicate when/what phase or filing this channel will be evaluated with.

Subject: Text Box Page Label: 6 Author: CDurham

Date: 1/31/2024 9:04:52 AM

Status: Color: Layer: Space:

Indicate if there are any offsite flows entering the project site.

VIA CUID c Subject: Text Box

Page Label: 7 Author: CDurham

Date: 1/31/2024 9:32:40 AM

Status: Color: Layer: Space:

B2-A

Subject: Text Box Page Label: 11 Author: CDurham

Date: 1/31/2024 11:17:08 AM

Status: Color: Layer: Space:

Indicate if channel improvements plans have been submitted yet for review or when they plan to be. Include project # if they have.

Subject: Text Box Page Label: 11 Author: CDurham

Date: 1/31/2024 11:27:15 AM

Status: Color: Layer: Space:

In the MDDP Summary submitted with the Sketch Plan (SKP-20-001) it is noted that due to the increased volume of flow, low impact design should be taken into account for design of each filing. Please include additional information on where and how this is being accomplished within

such a high density area.