

September 20, 2021

Craig Dossey El Paso County Planning and Community Development 2880 International Circle, Suite 110 Colorado Springs, CO 80910

Re: Final Drainage Report Revision 4, Cherokee WRF Total Dissolved Solids Reduction Facility

Dear Mr. Dossey:

On behalf of the Cherokee Metropolitan District, Burns & McDonnell Engineering Company Inc. (Burns & McDonnell) is submitting Revision 4 of this Final Drainage Report for the Cherokee Water Reclamation Facility (WRF) Total Dissolved Solids (TDS) Reduction Project. It has been prepared as a submittal in accordance with the list of required documents provided by the El Paso County Planning and Community Development Department during the Pre-Application meeting for this project.

This Final Drainage Report has been prepared to present proposed stormwater management improvements associated with the development of the TDS Reduction Facility, as it alters the current drainage patterns and imperviousness of the stie. Standards presented in the El Paso County Drainage Criteria Manual, Volumes 1 and 2 were adhered to in this Report and its analysis.

Closing

Please feel free to contact either of the undersigned should you have any questions. Nick can be reached at 720-551-9941 or <u>ntessitore@burnsmcd.com</u>. Sarah can be reached at 720-866-7543 or <u>sjforeman@burnsmcd.com</u>.

Sincerely,

rich Foreman

Sarah Foreman, EIT Staff Environmental Engineer

Nick Tessitore, PE Associate Civil Engineer

Attachments:

Attachment 1 – TDS Reduction Project Final Drainage Report, Revision 4

Cherokee Metropolitan District TDS Reduction Project

Final Drainage Report

Cherokee Metropolitan District

Cherokee TDS Reduction Project No. 119416 Document No. LP-PLAT-RT-0002

> Revision 4 9/20/2021

PCD Filing No.: PPR-20-044

Cherokee Metropolitan District TDS Reduction Project

Final Drainage Report

prepared for

Cherokee Metropolitan District Cherokee TDS Reduction El Paso, Colorado

Project No. 119416

Revision 4 9/20/2021

prepared by

Burns & McDonnell Engineering Company, Inc. Denver, CO

INDEX AND CERTIFICATION

Cherokee Metropolitan District TDS Reduction Project

Final Drainage Report

Project No. 119416

Report Index

<u>Chapter</u>	
Number	Chapter Title
	<u>+</u>
1.0	GENERAL LOCATION AND DESCRIPTION
2.0	DRAINAGE BASINS AND SUB-BASINS
3.0	DRAINAGE DESIGN CRITERIA
4.0	DRAINAGE FACILITY DESIGN
5.0	CONCLUSIONS
6.0	REFERENCES
APPENDIX A	HYDROLOGIC SOIL INFORMATION
APPENDIX B	FEMA FLOOD ZONES
APPENDIX C	NOAA RAINFALL DATA
APPENDIX D	HYDROLOGIC CALCULATIONS
APPENDIX E	HYDRAULIC CALCULATIONS
APPENDIX F	DRAINAGE DELINEATIONS

Certification

I hereby certify, as a Professional Engineer in the state of Colorado, that the information in this document was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Cherokee Metropolitan District or others without specific verification or adaptation by the Engineer.

Nick Tessitore, P.E. Colorado

Date: September 20, 2021

El Paso County Drainage Statements

Engineer's Statement

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Name

Developer's Statement

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name	 	
By:	 	
Title:	 	
Address:	 	

El Paso County Statement

Filed in accordance with Section 51.1 of the El Paso Land Development Code, as amended.

TABLE OF CONTENTS

				Page No.
	El Pas		Drainage Statements	
			er's Statement	
			per's Statement	
		El Paso	County Statement	1-1
1.0	GENI		OCATION AND DESCRIPTION	1_1
1.0	1.1		cation	
	1.1		tion of Property	
	1.2	1.2.1	Existing Site	
		1.2.1	Existing Site Drainage	
		1.2.2	Natural Resources Conservations Service (NRCS) Soil Surve	
		1.2.4	Project Description	
2.0			BASINS AND SUB-BASINS	
	2.1	•	Basin Descriptions	
	2.2		sin Descriptions	
		2.2.1	Offsite Basin OS-1	
		2.2.2	Offsite Basin OS-2	
		2.2.3	Onsite Basin A	
		2.2.4	Onsite Basin B	
		2.2.5	Onsite Basin C	
		2.2.6	Onsite Basin D	
		2.2.7	Onsite Basin E	
		2.2.8	Onsite Basin F	
		2.2.9	Onsite Basin G	
		2.2.10	Onsite Basin H	
3.0	DRAI	NAGE D	DESIGN CRITERIA	3-1
	3.1	Develop	oment Criteria Reference	
	3.2	Hydrolo	ogic Criteria	
	3.3	Hydrau	lic Criteria	
	3.4	Water Q	Quality Management	
		3.4.1	Water Quality Control BMP Selection	
4.0	DRAI	NAGE F	ACILITY DESIGN	4-1
	4.1		Concept	
	4.2		Details	
		4.2.1	Hydraulic Structures	
		4.2.2	Detention Pond.	
		4.2.3	Cost Estimate of Proposed Facilities	
	4.3		Sovernment Agency Requirements	
5.0	CON	CI USIO	NG	5-1

	5.1	Compliance with Standards	l
6.0	REFE	RENCES	1
APPE	NDIX E	A – HYDROLOGIC SOIL INFORMATION B – FEMA FLOOD ZONES	
		C – NOAA RAINFALL DATA D – HYDROLOGIC CALCULATIONS	
		E – HYDRAULIC CALCULATIONS F – DRAINAGE DELINEATIONS	

LIST OF TABLES

Page No.

Table 1-1:	NRCS Soil Report Summary	1-2
	NOAA Precipitation Estimates	
	Calculated Release Rates	
	Pre-Development Hydrologic Conditions	
	Post-Development Hydrologic Conditions	
	Hydraulic Structure Summary	

LIST OF ABBREVIATIONS

Abbreviation	Term/Phrase/Name
BMcD	Burns & McDonnell
CDPHE	Colorado Department of Public Health and Environment
Cherokee	Cherokee Metropolitan District
СМР	Corrugated Metal Pipe
cfs	Cubic feet per second
EURV	Excess Urban Runoff Volume
FDR	Final Drainage Report
FEMA	Federal Emergency Management Agency
FHWA	Federal Highway Association
fps	feet per second
ft	feet
HEC	Hydraulic Engineering Circular
MHFD	Mile High Flood District
NOAA	National Oceanic and Atmospheric Administration
NRCS	Natural Resources Conservation Service
PDR	Process Design Report
SCS	Soil Conservation Service
TDS	Total Dissolved Solids
WQCD	Water Quality Control Division
WQCV	Water Quality Capture Volume
WRF	Water Reclamation Facility

1.0 GENERAL LOCATION AND DESCRIPTION

This Final Drainage Report (FDR) is being prepared as part of the required submittal documents to El Paso County for the Total Dissolved Solids (TDS) Reduction Facility construction at the Cherokee Metropolitan District (Cherokee) Water Reclamation Facility (WRF). A Preliminary Drainage Report was not developed for this project because of the reduced timeline.

1.1 Site Location

The Cherokee WRF is located at the northeast corner of Milne Road and Drennan Road in El Paso County, Colorado. More accurately, it is located within the southwest ¼ of Section 8, Township 35 South, Range 63 West.

The Cherokee WRF is surrounded by residential properties along the northern and eastern boundaries and agricultural grazing land along the southern and western boundaries. All surrounding residential properties are vacant except for one single family residence at the northwest corner of the site. There are no major drainageways or storm drainage facilities adjacent to the site.

1.2 Description of Property

1.2.1 Existing Site

The Cherokee WRF property encompasses an entire quarter section and is approximately 160 acres in area. Vegetative cover consists of native grasses. The site includes the existing WRF, which consists of various water treatment buildings, basins, digestors, and related infrastructure. Several existing utility lines are present at the site, including sanitary sewer, electrical, and telephone. All existing infrastructure at the site is presented on the Existing Drainage Basin Map in Appendix F.

1.2.2 Existing Site Drainage

The existing site slopes generally from the north to the south, with approximately 46 feet of overall elevation change from the high to low elevation points. The mean percent grade within the property boundary is 3%. Generally, precipitation that falls on the western undeveloped half of the property flows into an existing ephemeral swale that discharges at the southern boundary via a 12-inch corrugated metal pipe (CMP) culvert under Drennan Road. Precipitation that falls on the eastern undeveloped half of the property. Finally, precipitation that falls within the existing WRF, which is located at the center of the property, flows to the south and into an existing detention pond. The detention pond is outfitted with a 24-inch CMP discharge pipe that releases flow just upstream of the culvert under Drennan Road. The existing

Basin Map, which is located in Appendix F.

Revision 3

1.2.3 Natural Resources Conservations Service (NRCS) Soil Survey

Soil data was obtained from the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) website – Web Soil Survey Tool. According to the NRCS report, the soils vary within the property and the offsite drainage basins. These soil types are summarized in Table 1-1 and broken down by onsite and offsite soil type. The full NRCS Soil Report can be found in Appendix A. The onsite soils are classified as Hydrologic Soil Groups A and B thus, it exhibits moderate runoff rates and infiltration rates when thoroughly wet.

Soil Type	Map Unit Symbol	Hydrologic Soil Group				
Onsite Soil Types						
Ascalon sandy loam, 3 to 9 percent slopes	3	В				
Bijou loamy sand, 1 to 8 percent slopes	5	А				
Olnest sandy loam, 0 to 3 percent slopes	124	В				
Offsite Soil Types						
Ascalon sandy loam, 1 to 3 percent slopes	2	В				
Ascalon sandy loam, 3 to 9 percent slopes	3	В				
Bijou loamy sand, 1 to 8 percent slopes	5	А				
Bijou sandy loam, 3 to 8 percent slopes	7	А				
Truckton Blakeland complex, 9 to 20 percent slopes	100	В				
Olnest sandy loam, 0 to 3 percent slopes	124	В				

Table 1-1: NRCS Soil Report Summary

Source: U.S. Department of Agriculture, Natural Resources Conservation Service, *Web Soil Survey*. Accessed August 10, 2020, from *http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx*.

1.2.4 Project Description

The purpose of this project is to construct a TDS Reduction Facility at the existing WRF. Construction of the TDS Reduction Facility will include installation of new basins, tanks, buildings, bioreactors, and associated infrastructure. Additionally, the TDS Reduction Facility will include seven (7) new evaporation ponds and access roads that will encompass approximately 50 acres in area.

2.0 DRAINAGE BASINS AND SUB-BASINS

2.1 Major Basin Descriptions

The WRF property is divided from the northwest corner to the southeast corner by two El Paso County drainage basins. The southwestern half of the property is located within the Upper Dry Squirrel Basin and the northeastern half of the property is located within the Drennan Basin. Both drainage basins are located within the Chico Creek major basin.

The Drennan Basin (CHDS0400) and the Upper Dry Squirrel Basin (CHDS0200) flow generally to the southeast towards Dry Squirrel Creek. These major basins are characterized by minor slopes and minimal vegetation. Runoff is collected into intermittent streams until it reaches Dry Squirrel Creek, which ultimately discharges into Chico Creek and the Arkansas River.

The Federal Emergency Management Agency (FEMA) flood map panel number 08041C0815G data classifies the WRF property as Zone X, Area of Minimal Flood Hazard. The FEMA flood map is provided in Appendix B.

The WRF property is not located within the boundary of any drainage basin planning studies, flood hazard delineation reports, or flood insurance studies. There are no adjacent irrigation facilities or other obstructions that may influence or be influenced by this project.

2.2 Sub-Basin Descriptions

Included in Appendix F is an Off Site Drainage Map (Figure 1), which shows the extents of the offsite drainage basins, and an Existing Drainage Basin Map (Figure 2), which shows the extents of the predevelopment onsite drainage basins along with locations of existing drainage features within the project site. Pre-development onsite drainage basins and offsite drainage basins were determined for the WRF property in the Final Drainage Report (GMS, 2008) that was developed for the construction of the original facility. Pre-development site flows from the 2008 Report were recalculated to account for more accurate soil types on and offsite. The property contains eight (8) onsite drainage basins and is impacted by two offsite drainage basins. All onsite and offsite drainage basins are discussed in the sections below. A summary of weighted curve numbers, acreage, and runoff flow rates for each drainage basin is included in Table 4-1.

All offsite and onsite drainage basins consist of both Hydrologic Soil Groups A and B. A weighted curve number was calculated for each basin based on percentage of soil group, gravel roads, asphalt pavement, and buildings.

2.2.1 Offsite Basin OS-1

Offsite Basin OS-1 enters the WRF property at the northwest corner and flows onto onsite Basin G. This basin consists primarily of native vegetation. Drainage is generally conveyed as sheet flow within the basin and does not concentrate until it flows onto onsite Basin G.

2.2.2 Offsite Basin OS-2

Offsite Basin OS-2 enters the WRF property as sheet flow at the northern boundary into onsite Basin H and is located directly to the east of Basin OS-1. This basin primarily consists of native vegetation and gravel roads.

2.2.3 Onsite Basin A

Onsite Basin A is located southeast corner of the WRF property. This basin primarily consists of native vegetation and gravel roads. Runoff in Basin A generally flows to the southwest and discharges into a culvert located under the site entrance. The culvert carries stormwater into the southeast corner of onsite Basin B where it flows west to the existing culvert under Drennan Road and discharges offsite.

2.2.4 Onsite Basin B

Onsite Basin B is located along the southern site boundary west of the entrance road and downstream of the existing detention basin. This basin consists of gravel roads, asphalt pavement, and native vegetation. Runoff generally flows to the southwest and discharges at the southwest corner of the basin into the 12-inch CMP culvert that carries stormwater offsite. Onsite Basin B also accepts discharge from onsite Basin A and the existing detention pond located in onsite Basin D via culvert.

2.2.5 Onsite Basin C

Onsite Basin C is located in the west-central portion of the WRF property. This basin consists of infiltration basins, gravel roads, asphalt pavement, buildings, and native vegetation. The western boundary of Basin C terminates at the centerline of an ephemeral swale that runs north-south in the west-central portion of the property. Runoff in onsite Basin C generally flows to the south and west and discharges into the ephemeral swale. The basin ultimately discharges at the southernmost point into onsite Basin G.

2.2.6 Onsite Basin D

Onsite Basin D is located in the southern-central portion of the WRF property and consists of buildings, asphalt pavement, and native vegetation. Additionally, Basin D contains the existing detention pond. Runoff from onsite Basins E and F flow onto Basin D along the northeastern basin boundary and discharges into the detention pond. The existing 24-inch CMP culvert located in the detention pond releases runoff from the pond onto onsite Basin B.

2.2.7 Onsite Basin E

Onsite Basin E is located in the center of the WRF property and consists of infiltration basins, asphalt pavement, buildings, and native vegetation. Runoff from Basin E flows generally to the south and discharges at the southernmost corner of the basin onto both onsite Basins D and F. Stormwater flows from onsite Basin E ultimately discharge into the existing detention pond.

2.2.8 Onsite Basin F

Onsite Basin F is located in the east-central portion of the WRF property and consists of buildings, asphalt pavement, and native vegetation. Runoff from onsite Basin F flows generally to the south and to the west and discharges at the southernmost corner of the basin onto onsite Basin D. Stormwater flows from onsite Basin F ultimately discharge into the existing detention pond.

2.2.9 Onsite Basin G

Onsite Basin G incorporates the western half of the WRF property and consists of gravel roads and native vegetation. Runoff from Basin G flows generally to the south and east towards the ephemeral swale located in the west-central portion of the property. The eastern boundary of Basin G extends to the centerline of the swale. The ephemeral swale terminates at the southeast corner of the Basin G boundary. Discharge from the ephemeral swale is dissipated and carried into onsite Basin B at the southeast corner of the basin boundary. Basin B contains the 12-inch culvert that carries stormwater offsite. Offsite Basin OS-1 and onsite basins A, B, and C ultimately discharge onto Basin G.

2.2.10 Onsite Basin H

Onsite Basin H incorporates the eastern half of the WRF property and consists of gravel roads and native vegetation. Runoff from Basin H flows to the south and east and ultimately discharges in the southeast corner of the property. Offsite Basin OS-2 also flows onto Basin H. Stormwater flows from Basin H do not enter the WRF facilities and discharge offsite. Runoff from Basins H and OS-1 were not utilized in any hydraulic computations.

3.0 DRAINAGE DESIGN CRITERIA

3.1 Development Criteria Reference

The design criteria for the proposed drainage system for the WRF TDS Reduction Facility are in accordance with El Paso County's *Drainage Criteria Manual, Volumes 1 and 2* (El Paso County 1994, 2002). Criteria from the Mile High Flood District (MHFD) Urban Storm Drainage Criteria Manual (USDCM), Volume 2 was also utilized in the design of the proposed drainage system.

3.2 Hydrologic Criteria

The Soil Conservation Service (SCS) Hydrograph Procedure, as described in Section 5.3 of the El Paso County Drainage Criteria Manual, Volume 1, was used to calculate runoff for all parts of the project area. This method was utilized because the overall drainage area is greater than 100 acres. The Hydraflow Hydrographs Extension for Autodesk Civil 3D was utilized for runoff calculations. All detailed results of the hydrologic computation are presented in Appendix D.

As required by the first paragraph Section 2.1 of the El Paso County Drainage Criteria Manual, Volume 1, design storm and recurrence interval data was collected from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 8, Version 2 and is summarized in Table 3-1. Precipitation data can also be referenced in Appendix C. 1-hour rainfall depths for the 2, 5, 10, 25, 50, 100, and 500-year storms were utilized for detention basin design (see Section 3.3). 6-hour and 24-hour rainfall depths for the 2-year and 100-year storms were inputted into the Hydraflow Hydrographs Extension for Autodesk Civil 3D for analysis with the SCS Hydrograph Procedure. The 10-year, 6-hour and 24-hour storm was also inputted to calculate peak flows during the 10-year storm for sizing of hydraulic structures.

Duration	Average Recurrence Interval (Years)						
Duration	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year
1-Hour	0.99	1.29	1.91	1.99	2.35	2.74	3.75
6-Hour	1.46	-	2.30	-	-	4.13	-
24-Hour	1.77	-	2.69	-	-	4.61	-

 Table 3-1:
 NOAA Precipitation Estimates

3.3 Hydraulic Criteria

Hydraulic analyses were performed to size and evaluate the performance of the existing detention pond, drainage swale, grass buffer, and culverts. The site was designed with the assumption of being classified

as nonurbanizing. As described in Section 13.2.1 of the El Paso Drainage Criteria Manual, Volume 1. The allowable release rates for the existing detention pond were calculated from Table 13-2 of the El Paso County Drainage Criteria Manual, Volume 1. The calculated release rates are included in Appendix D and summarized in Table 3-2. The MHFD "UD-Detention_v4.03" software was used to determine if the existing detention pond was appropriately sized. The results of the UD-Detention software were inputted into the Hydraflow Hydrographs Extension for Autodesk Civil 3D to complete the analysis of the site.

Design Return	Allowable Release Rate (cfs)
2-Year	0.21
5-Year	0.82
100-Year	7.07

Table 3-2: Calculated Release Rates

The swale was designed to convey the runoff from the 100-year, 24-hour storm event (see Section 2.2.1 of the Drainage Criteria Manual, Volume 1). In accordance with Section 6.5.3 of Drainage Criteria Manual, the following formula was used to calculate the required freeboard in the swale:

$$H = 1.0 + 0.025 V D^{0.33} = 1.1 ft$$

Where:

V = average channel velocity, 3.39 fps

D = maximum depth of flow, 2.26 ft

Both culverts were designed to carry the 10-year storm while maintaining a headwater-to-depth ratio that is less than the culvert diameter and control the 100-year storm without exceeding the overtop requirements of 12-inches, as required by Section 6.4.1 of the Drainage Criteria Manual. The culvert and drainage swale sizing were done using the Hydraflow Express software. The detailed results of all the hydraulic culvert computations are presented in Appendix E.

The Federal Highway Administration (FHWA) Culvert Hydraulic Analysis Program Software, HY-8, was also utilized to analyze the existing 12-inch CMP culvert outfall and Drennan Road crossing to determine the depth overtopping on Drennan Road and potential impacts to the roadway. The results of the analysis are included in Appendix E.

One riprap apron was sized using calculations from the FHWA Hydraulic Engineering Circular (HEC) No. 14, Third Edition: Hydraulic Design of Energy Dissipators for Culverts and Channels (FHWA, 2006). The results of the riprap apron sizing calculations are included in Appendix E.

A grass buffer located in Basin E was designed according to Volume 2 Section 4.2 of the Drainage Criteria Manual, with a concrete level spreader to create evenly distributed flow across the grass buffer. Results of the grass buffer sizing calculations are included in Appendix E.

3.4 Water Quality Management

To verify compliance with the County's criteria and promote enhanced water quality in stormwater leaving the site, Best Management Practices (BMP's) were utilized. A Four-Step Process for water quality control BMP selection is provided in Appendix I of the El Paso County Engineering Criteria Manual (El Paso County, 2016). The Four-Step Process was adhered to in the drainage design and is discussed below.

3.4.1 Water Quality Control BMP Selection

3.4.1.1 Employ Runoff Reduction Practices

The first step of the BMP selection process is to reduce runoff from the proposed facility by reducing impervious areas to the extent practicable and routing runoff from impervious spaces over grass-lined areas. The proposed design of the TDS Reduction Facility significantly reduces the tributary area, thus reducing the runoff, to the west-central swale through the construction of the evaporation ponds. The evaporation ponds encompass approximately 50 acres in area and will intercept all precipitation that falls in them. Additionally, the grass swale will be vegetated after grading activities are completed to promote further infiltration.

The tributary areas contributing to the detention pond will also be reduced, thus reducing runoff, due to construction of the evaporation ponds. Although, the imperviousness of the tributary areas will increase slightly as new infrastructure is installed, a dedicated grass buffer and other grass-lined areas will reduce and treat the runoff before entering the existing detention pond.

3.4.1.2 Stabilize Drainageways

The second step of the BMP selection process is to choose appropriate stabilization methods for existing and new drainageways to prevent erosion. The only drainageway present on site is the ephemeral swale, which will be re-constructed as part of the improvements to the site. Due to the low channel slopes and flow velocities, grass was selected as the stabilization method for the channel. Erosion control blanket will also be utilized. Channel hydraulics are discussed in Section 4.2.1.

3.4.1.3 **Provide Water Quality Capture Volume (WQCV)**

In accordance with Section I.7.1C of Appendix I of the El Paso County Engineering Criteria Manual, the drainage basins that contain the new and redevelopment WRF infrastructure require to meet the "base design standard". Although the existing detention basin is already present on site and receives runoff from the appropriate tributary area, it does not provide any treatment for the WQCV. An engineered grass buffer will treat and infiltrate the WQCV before discharging to the existing detention basin. Hydraulic calculations for the detention basin are discussed in Section 4.2.2.

3.4.1.4 Consider Need for Industrial and Commercial BMPs

The construction of the TDS Reduction Facility at the Cherokee WRF will involve significant redevelopment activity. In accordance with Appendix I of the El Paso County Engineering Criteria Manual, the need for specialized BMPs must be considered if redevelopment activity will be significant. However, due to the nature of construction, no specialized BMPs will be required for the construction of this facility. Management of temporary construction materials and spill prevention and response procedures during construction are discussed in the construction Stormwater Management Plan (SWMP).

Provide a summary of the Runoff Reduction Calculation results

Update to note that Runoff Reduction Standard is used per I.7.1.C.3 in lieu of WQCV.

4.0 DRAINAGE FACILITY DESIGN

4.1 General Concept

To accommodate the TDS Reduction Facility at the WRF, proposed additions to the site include installation of new basins, tanks, buildings, bioreactors, and associated infrastructure. Additionally, the TDS Reduction Facility will include seven (7) new evaporation ponds and access roads that will encompass approximately 50 acres in area. Drainage improvements will include the construction of a grass swale to divert stormwater around the evaporation ponds and the installation of two new culverts.

The engineered grass swale will include a riprap apron at the outlet of the channel to dissipate flow. All runoff and tributary flows from the site will be conveyed overland. Construction of the TDS Reduction Facility and drainage improvements will result in the modification of the existing onsite drainage basins as discussed below. Post-development drainage basins are also presented on the Proposed Drainage Basin Map in Appendix F.

The proposed improvements to the WRF property will replace the existing ephemeral swale with an engineered grass swale. The construction of the evaporation ponds will also greatly reduce the contributing drainage area to this swale. These changes will result in the elimination of onsite Basin G and the modification of Basins B and C. Basin C is broken into three sub-basins, C1, C2, and C3. The discharge points for basins C1 and C2 were utilized to size the two proposed culverts. Basin A will not be modified as part of the construction of the TDS Reduction Facility. Onsite Basins A, B, C and offsite Basin OS-1 will discharge into the engineered grass swale. At the outlet of the grass swale, a riprap protection apron will be installed to dissipate flow before it discharges into the existing 12-inch CMP and is carried offsite. The 12-inch CMP will not be moved and will still be utilized as the site outfall.

New infrastructure for the TDS Reduction Facility will result in increased imperviousness in Basin E and the slight modification of the contributing drainage areas for Basins E and F. A portion of Basin E will be designated as an engineered grass buffer, vegetated with native grasses, capable of treating and infiltrating the WQCV. Basins D, E, and F will continue to discharge into the existing detention pond. The detention pond will discharge through an existing 24-inch CMP culvert onto the southern portion of Basin B, ultimately conveyed to the 12-inch CMP and discharged offsite. The capacity of the 12-inch CMP was analyzed and is discussed in Section 4.2.1. It was determined that the CMP is adequate for site flows. Due to the addition of the evaporation ponds, grass buffer, and grass lined swale, the total post-development runoff from the site will be reduced from the pre-development runoff. Because there is no increase in historical runoff, the existing detention pond will not require any modifications.

Additionally, Basin H will not be modified a part of the construction of the TDS Reduction Facility. Basin OS-2 will still discharge into Basin H and all runoff will flow to the southeast and exit the property at the southeast corner.

The proposed drainage improvements associated with the Cherokee WRF TDS Reduction Facility will not adversely impact downstream properties.

4.2 Specific Details

Pre-development and post-development hydrologic calculations, including time of concentration and flows for the following design storms are summarized in Tables 4-1 and 4-2. The peak flows for the design storms were used to size the drainage swale, culverts, and riprap apron.

- 10-year, 24-hour, and
- 100-year, 24-hour.

Peak flow calculations were used to size and design all hydraulic structures, including the engineered swale and culverts. Hydraulic structure design is discussed in Sections 4.2.1 and 4.2.2.

Calculated peak flows from offsite basin OS-1 and post-development basin C2 was used to size culvert C2. Peak flows from post-development basin C1 were used to size culvert C1. The grass-lined engineered swale and riprap apron were sized with peak flows from offsite basin OS-1 and post-development basins A, B, C1, C2, and C3. The basin combinations used to size each hydraulic structure are summarized on the schematics included with the Hydraflow results in Appendix D.

Minor Drainage Basin	Curve Number	Area (Acres)	Time of Concentration, T _c	10-Year, 24-Hour Flow (cfs)	100-Year, 24-Hour Flow (cfs)		
OS-1	56	429.0	114.4	8.6	94.6		
OS-2	51	4.54	34.3	0.0	1.3		
А	57	7.64	37.5	0.3	4.0		
В	61	3.51	32.4	0.4	2.9		
С	62	10.05	34.3	1.1	8.4		
D	61	4.49	37.0	0.4	3.5		
Е	66	11.35	55.5	1.8	8.9		
F	58	12.47	43.0	0.6	6.7		
G	55	67.09	50.3	1.3	24.3		
Н	59	39.62	57.9	1.9	18.2		

Table 4-1: Pre-Development Hydrologic Conditions

Table 4-2: Post-Development Hydrologic Conditions

Minor Drainage Basin	Curve Number	Area (Acres)	Time of Concentration, T _c	10-Year, 24-Hour Flow (cfs)	100-Year, 24-Hour Flow (cfs)
OS-1	56	429.0	114.40	8.6	94.6
OS-2	51	4.54	34.30	0.0	1.3
А	57	7.64	37.50	0.3	4.0
В	64	2.77	32.40	0.5	2.8
C1	57	2.31	34.06	0.1	1.3
C2	60	19.72	20.30	2.0	19.6
C3	55	9.99	16.90	0.2	7.0
D	61	4.49	37.00	0.4	3.5
Е	66	10.09	34.10	2.1	10.9
F	58	12.13	43.00	0.6	6.5
Н	59	39.62	57.90	1.9	18.2

4.2.1 Hydraulic Structures

The grass swale is a 4-foot flat bottom ditch with side slopes at four horizontal to one vertical (4H:1V). Channel slopes are low, which results in low flow velocities. The swale was analyzed for capacity, velocity, and flow depth at the minimum and maximum slopes that will be constructed. Results of the channel analysis are provided in Appendix E.

The riprap apron at the outlet of the grass swale is 30 feet by 30 feet in dimension and will be constructed with Type M riprap at a 28-inch depth. The apron was sized based on the outlet flow velocity from the grass swale. Results of the riprap apron sizing calculation are provided in Appendix E.

A section of Basin E will be revegetated with native grasses following construction and designated as a grass buffer. The grass buffer will capture and treat the WQCV flows from Basin E and continue to direct flow into Basin D and the existing detention pond. Details of the grass buffer sizing are provided in Appendix E. A separate Operations and Maintenance Plan has been prepared for the grass buffer as well.

One stormwater culvert will be installed to convey stormwater from the overhead electrical easement area to the grass swale. This culvert was sized based on the discharge flow from Sub-Basin C1. Another culvert will be installed along the alignment of the grass swale to allow for a haul road to cross the swale and allow access to the evaporation ponds. This culvert was sized based on the discharge from Sub-Basin C2 and offsite basin OS-1. The runoff calculations for each culvert sub-basin are included in Appendix D and summarized in Table 4-2. Culvert profiles with the hydraulic grade lines for the 10-year and 100-year storms are included in Appendix E. The design information for the engineered swale, grass buffer and two stormwater culverts is summarized in Table 4-3. Design flow rates for each structure are summed, not routed, so that flow rates are conservative because time of concentration differs across the drainage basins.

Hydraulic Structure	Tributary Basins	Combined 10- Year, 24-Hour Flow (cfs)	Combined 100- Year, 24-Hour Flow (cfs)	Maximum Flow Depth (ft)	Maximum Velocity (fps)
Engineered Grass Swale	Offsite Basin 1 Onsite Basins A, B, C1, C2, C3	9.5	99.9	2.26	8.46 ¹
Engineered Grass Buffer	Onsite Basin E	2.1	10.9	0.16	0.05
Culvert C1	Onsite Basin C1	0.1	2.6	1.19	2.94
Culvert C2	Offsite Basin 1 Onsite Basins C1 and C2	2.0	19.6	2.76	8.06

 Table 4-3:
 Hydraulic Structure Summary

¹ Section 6.5.2 of the Drainage Criteria Manual, Volume 1 states that concrete, soil, or riprap must be utilized if channel velocities exceed 6.0 fps. However, only a short section of the swale is at a 3% slope and is near the start of the swale. At this portion of the swale, the maximum flow rate will not likely be reached, so no degradation of the swale is expected.

The existing 12-inch CMP outfall was analyzed with the FHWA HY-8 software to determine overtopping on Drennan Road during the 100-year, 24-hour storm. The results of the analysis indicated a maximum overtop of approximately 0.7 feet (8.4 inches) on Drennan Road during the design storm. The results of the HY-8 analysis are included in Appendix E. The 12-inch CMP was also analyzed in the 2008 Final Drainage Report (GMS, 2008). The analysis completed for the 2008 Report indicated that the road would be overtopped 0.65 feet and overtopping would not cause damage to the WRF facility or downstream structures. The results of the HY-8 analysis for the TDS Reduction Facility indicate that the proposed improvements to the site will not significantly change how the design storm will impact the 12-inch CMP and Drennan Road.

4.2.2 Detention Pond

The post-development flows from Basins D, E, and F will be conveyed overland to the existing detention pond. The pond has a footprint of roughly 1.3 acres measured at the top of the pond, which is at elevation 5898, and a volume of 2.91 acre-feet. The existing pond is sufficiently sized to hold the 100-year, 1-hour storm event, . and will be coupled with an engineered grass buffer that captures the WQCV and releases stormwater at a rate equal to or less than the calculated release rates in Appendix D. The existing detention pond is lined with native vegetation, so a minor volume of stormwater will be infiltrated and will not be discharged from the pond. The drainage area for the detention pond includes post-development Basins D, E, and F (26.71 total acres).

The existing 24-inch CMP culvert will be maintained as the outlet pipe for the detention pond. The total capacity of the pond is 2.91 acre-feet at the top of pond elevation of 5898.

4.2.3 Cost Estimate of Proposed Facilities

The cost estimate for all proposed facilities associated with the Cherokee WRF TDS Reduction Facility and all required fees are submitted under separate cover.

4.3 Other Government Agency Requirements

Construction of the Cherokee WRF TDS Reduction Facility is also governed by the Colorado Department of Public Health and Environment (CDPHE) Water Quality Control Division (WQCD). A Site Location Application Package was submitted to the WQCD and approved on May 19, 2020. A Process Design Report (PDR) was developed for the project and submitted to the WQCD in August 2020.

5.0 CONCLUSIONS

5.1 Compliance with Standards

The design of the proposed drainage system for the Cherokee WRF TDS Reduction Facility project complies with the adopted drainage criteria of El Paso County. The design criteria for the proposed drainage system are in accordance with the *El Paso County Drainage Criteria Manual, Volume 1*.

6.0 **REFERENCES**

El Paso County, 1994. Drainage Criteria Manual Volume 1. October.

El Paso County, 2002. Drainage Criteria Manual Volume 2. November 1.

El Paso County, 2016. Engineering Criteria Manual. December 13.

FWHA, 2006. *HEC No. 14, 3rd Edition: Hydraulic Design of Energy Dissipators for Culverts and Channels.* July.

GMS, 2008. Final Drainage Report for Black Squirrel Creek Wastewater Treatment Plant. March.

MHFD, 2010. Urban Storm Drainage Criteria Manual, Volume 3. November

APPENDIX A – HYDROLOGIC SOIL INFORMATION

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	11
El Paso County Area, Colorado	
2—Ascalon sandy loam, 1 to 3 percent slopes	
3—Ascalon sandy loam, 3 to 9 percent slopes	15
5—Bijou loamy sand, 1 to 8 percent slopes	16
7—Bijou sandy loam, 3 to 8 percent slopes	18
8—Blakeland loamy sand, 1 to 9 percent slopes	19
28—Ellicott loamy coarse sand, 0 to 5 percent slopes	20
62—Olnest-Vona complex, cool, 1 to 6 percent slopes, eroded	22
78—Sampson loam, 0 to 3 percent slopes	
101—Ustic Torrifluvents, loamy	25
106—Wigton loamy sand, 1 to 8 percent slopes	26
124—Olnest sandy loam, 0 to 3 percent slopes	27
References	30

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

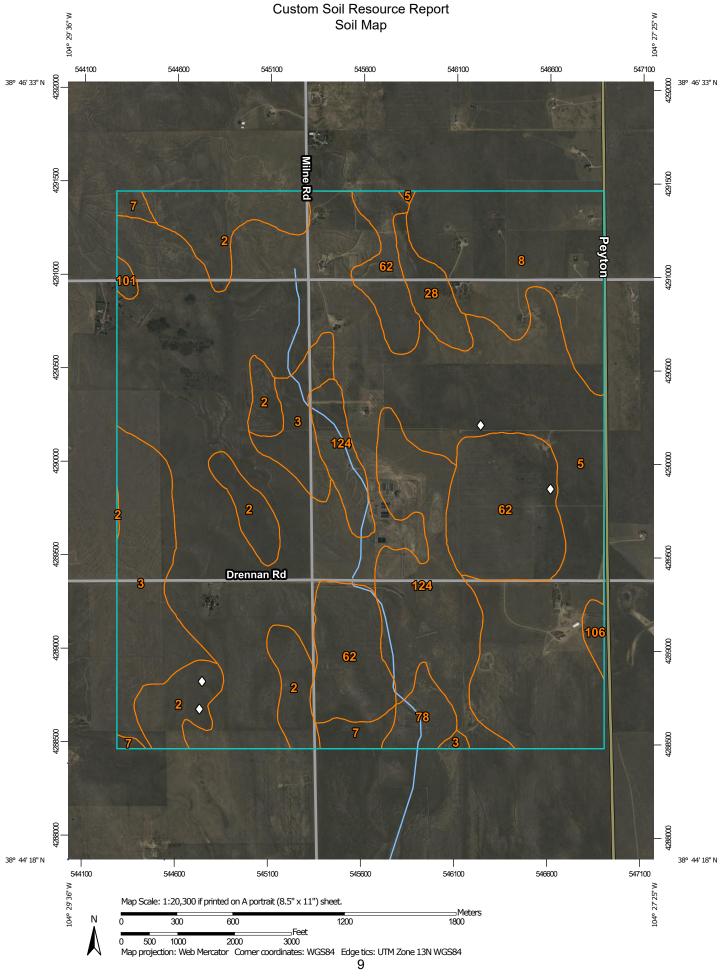
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

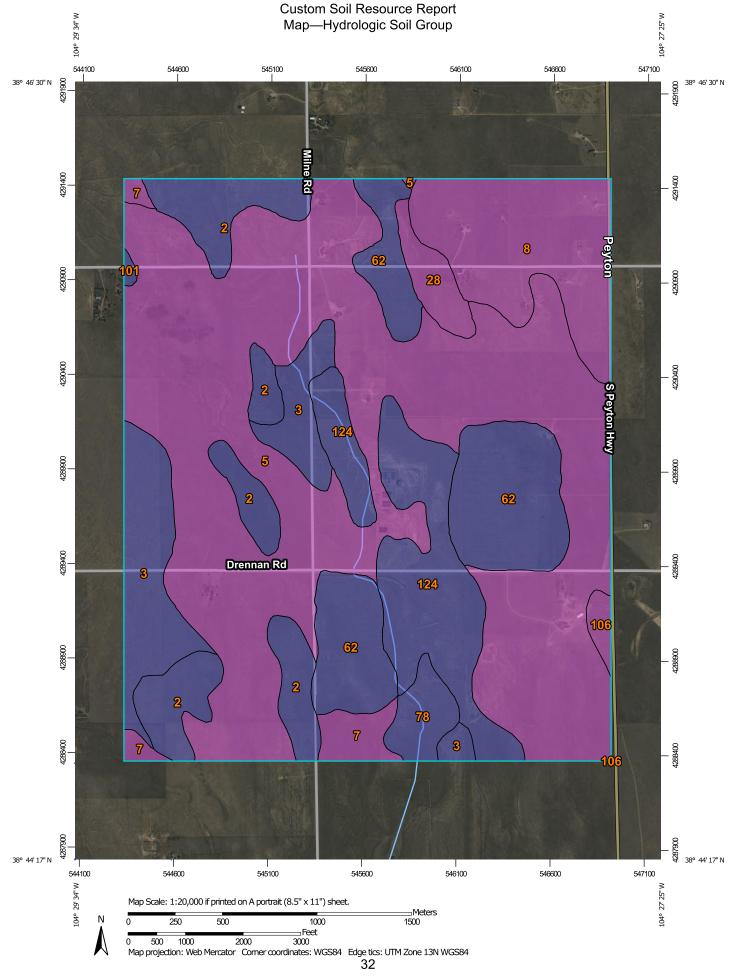
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

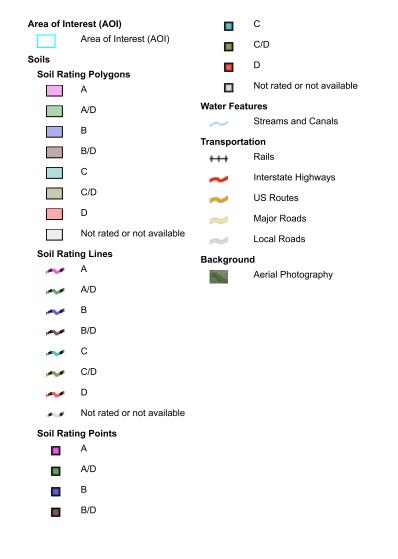
While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and


identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map


The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND		MAP INFORMATION
Area of Inte	e rest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	Soil Map Unit Polygons	Ø V	Very Stony Spot Wet Spot	Please rely on the bar scale on each map sheet for map measurements.
Special F	Soil Map Unit Lines Soil Map Unit Points Point Features	<u></u>	Other Special Line Features	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
() () () () () () () () () () () () () (Blowout Borrow Pit Clay Spot	Water Fea	Streams and Canals	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
◇ ¥	Closed Depression Gravel Pit Gravelly Spot	~	Interstate Highways US Routes Major Roads	accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
0 1	Landfill Lava Flow	ackgrou	Local Roads	Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020
*	Marsh or swamp Mine or Quarry Miscellaneous Water		Aerial Photography	Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
0	Perennial Water Rock Outcrop			Date(s) aerial images were photographed: Sep 11, 2018—Oct 20, 2018
+	Saline Spot Sandy Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
⇔ ♦	Severely Eroded Spot Sinkhole			sinting of map unit boundaries may be evident.
ð Ø	Slide or Slip Sodic Spot			

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 11, 2018—Oct 20, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
2	Ascalon sandy loam, 1 to 3 percent slopes	160.7	8.3%
3	Ascalon sandy loam, 3 to 9 percent slopes	155.4	8.0%
5	Bijou loamy sand, 1 to 8 percent slopes	955.0	49.3%
7	Bijou sandy loam, 3 to 8 percent slopes	22.8	1.2%
8	Blakeland loamy sand, 1 to 9 percent slopes	174.3	9.0%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	30.5	1.6%
62	Olnest-Vona complex, cool, 1 to 6 percent slopes, eroded	219.8	11.3%
78	Sampson loam, 0 to 3 percent slopes	26.5	1.4%
101	Ustic Torrifluvents, loamy	4.5	0.2%
106	Wigton loamy sand, 1 to 8 percent slopes	8.4	0.4%
124	Olnest sandy loam, 0 to 3 percent slopes	178.8	9.2%
Totals for Area of Interest		1,936.7	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a

particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Custom Soil Resource Report

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

2—Ascalon sandy loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 367q Elevation: 5,500 to 6,500 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 47 to 50 degrees F Frost-free period: 130 to 150 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Ascalon and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ascalon

Setting

Landform: Flats Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian deposits

Typical profile

A - 0 to 8 inches: sandy loam Bt - 8 to 21 inches: sandy clay loam BC - 21 to 27 inches: sandy loam Ck1 - 27 to 48 inches: sandy loam Ck2 - 48 to 60 inches: loamy sand

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water capacity: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R069XY026CO - Sandy Plains LRU's A & B Other vegetative classification: SANDY PLAINS (069BY026CO) Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent *Hydric soil rating:* No

3—Ascalon sandy loam, 3 to 9 percent slopes

Map Unit Setting

National map unit symbol: 2tlny Elevation: 3,870 to 5,960 feet Mean annual precipitation: 13 to 18 inches Mean annual air temperature: 46 to 54 degrees F Frost-free period: 95 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Ascalon and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ascalon

Setting

Landform: Interfluves Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Wind-reworked alluvium and/or calcareous sandy eolian deposits

Typical profile

Ap - 0 to 6 inches: sandy loam Bt1 - 6 to 12 inches: sandy clay loam Bt2 - 12 to 19 inches: sandy clay loam Bk1 - 19 to 35 inches: fine sandy loam Bk2 - 35 to 80 inches: fine sandy loam

Properties and qualities

Slope: 3 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 5.98 in/hr)

Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 10 percent Maximum salinity: Nonsaline (0.1 to 1.9 mmhos/cm) Sodium adsorption ratio, maximum: 1.0 Available water capacity: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No

Minor Components

Olnest

Percent of map unit: 10 percent Landform: Interfluves Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No

Vona

Percent of map unit: 5 percent Landform: Interfluves Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No

5—Bijou loamy sand, 1 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2tqxq Elevation: 4,000 to 5,300 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 50 to 54 degrees F Frost-free period: 130 to 170 days Farmland classification: Not prime farmland

Map Unit Composition

Bijou and similar soils: 85 percent *Minor components:* 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bijou

Setting

Landform: Sand sheets Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian sands

Typical profile

A - 0 to 4 inches: loamy sand AB - 4 to 9 inches: loamy sand Bt - 9 to 36 inches: sandy loam BC - 36 to 50 inches: loamy sand C - 50 to 79 inches: loamy sand

Properties and qualities

Slope: 1 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.1 to 0.2 mmhos/cm)
Available water capacity: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No

Minor Components

Valent

Percent of map unit: 10 percent Landform: Sand sheets Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY015CO - Deep Sand Hydric soil rating: No

Olnest

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear *Ecological site:* R067BY024CO - Sandy Plains *Hydric soil rating:* No

7—Bijou sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2tqxs Elevation: 5,700 to 6,200 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 50 to 54 degrees F Frost-free period: 130 to 170 days Farmland classification: Not prime farmland

Map Unit Composition

Bijou and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bijou

Setting

Landform: Sand sheets Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian sands

Typical profile

A - 0 to 4 inches: sandy loam Bt1 - 4 to 8 inches: sandy loam Bt2 - 8 to 21 inches: sandy loam Bw - 21 to 28 inches: sandy loam C - 28 to 79 inches: loamy coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.1 to 0.2 mmhos/cm)
Available water capacity: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A *Ecological site:* R067BY024CO - Sandy Plains *Hydric soil rating:* No

Minor Components

Valent

Percent of map unit: 10 percent Landform: Sand sheets Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY015CO - Deep Sand Hydric soil rating: No

Olnest

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No

8—Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand *AC* - 11 to 27 inches: loamy sand *C* - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water capacity: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent Hydric soil rating: No

28—Ellicott loamy coarse sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 3680 Elevation: 5,500 to 6,500 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 47 to 50 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Ellicott and similar soils: 97 percent *Minor components:* 3 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ellicott

Setting

Landform: Flood plains, stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium

Typical profile

A - 0 to 4 inches: loamy coarse sand C - 4 to 60 inches: stratified coarse sand to sandy loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: FrequentNone
Frequency of ponding: None
Available water capacity: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w Hydrologic Soil Group: A Ecological site: R069XY031CO - Sandy Bottomland LRU's A & B Other vegetative classification: SANDY BOTTOMLAND (069AY031CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 1 percent Hydric soil rating: No

Fluvaquentic haplaquoll

Percent of map unit: 1 percent Landform: Swales Hydric soil rating: Yes

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

62—Olnest-Vona complex, cool, 1 to 6 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2t51g Elevation: 5,900 to 6,200 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 48 to 54 degrees F Frost-free period: 130 to 170 days Farmland classification: Not prime farmland

Map Unit Composition

Olnest, eroded, and similar soils: 45 percent *Vona, eroded, and similar soils:* 40 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Olnest, Eroded

Setting

Landform: Hillslopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian deposits and/or old alluvium

Typical profile

A - 0 to 2 inches: sandy loam Bt - 2 to 21 inches: sandy clay loam Bk - 21 to 26 inches: sandy clay loam BCk - 26 to 79 inches: sandy loam

Properties and qualities

Slope: 1 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.5 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water capacity: Moderate (about 6.7 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B *Ecological site:* R067BY024CO - Sandy Plains *Forage suitability group:* Loamy, Dry (G067BW019CO) *Other vegetative classification:* Loamy, Dry (G067BW019CO) *Hydric soil rating:* No

Description of Vona, Eroded

Setting

Landform: Sand sheets Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian sands

Typical profile

A - 0 to 2 inches: sandy loam Bt1 - 2 to 12 inches: sandy loam Bt2 - 12 to 17 inches: sandy loam Bk - 17 to 41 inches: sandy loam BCk - 41 to 79 inches: loamy sand

Properties and qualities

Slope: 3 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Gypsum, maximum content: 2 percent
Maximum salinity: Nonsaline to slightly saline (0.5 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water capacity: Moderate (about 7.2 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R067BY024CO - Sandy Plains Forage suitability group: Loamy, Dry (G067BW019CO) Other vegetative classification: Sandy Plains #24 (067XY024CO_2), Loamy, Dry (G067BW019CO) Hydric soil rating: No

Minor Components

Olnest, cool

Percent of map unit: 8 percent Landform: Hillslopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains *Other vegetative classification:* Loamy, Dry (G067BW019CO) *Hydric soil rating:* No

Vona, cool

Percent of map unit: 7 percent Landform: Sand sheets Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains Other vegetative classification: Sandy Plains #24 (067XY024CO_2), Loamy, Dry (G067BW019CO) Hydric soil rating: No

78—Sampson loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 369s Elevation: 5,500 to 6,500 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 47 to 50 degrees F Frost-free period: 135 to 155 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Sampson and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sampson

Setting

Landform: Alluvial fans, terraces, depressions Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 15 inches: loam Bt - 15 to 34 inches: clay loam Bk - 34 to 60 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 15 percent Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water capacity: High (about 9.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3c Hydrologic Soil Group: B Ecological site: R049XY202CO - Loamy Foothill Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

101—Ustic Torrifluvents, loamy

Map Unit Setting

National map unit symbol: 3673 Elevation: 5,500 to 7,000 feet Mean annual precipitation: 13 to 16 inches Mean annual air temperature: 47 to 52 degrees F Frost-free period: 125 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Ustic torrifluvents and similar soils: 95 percent *Minor components:* 5 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ustic Torrifluvents

Setting

Landform: Flood plains, stream terraces Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy, clayey, stratified loamy

Typical profile

A - 0 to 6 inches: variable

C - 6 to 60 inches: stratified loamy sand to clay loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water capacity: Moderate (about 8.6 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: R069XY037CO - Saline Overflow LRU's A & B Other vegetative classification: OVERFLOW (069BY036CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

106—Wigton loamy sand, 1 to 8 percent slopes

Map Unit Setting

National map unit symbol: 3678 Elevation: 5,300 to 6,000 feet Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 135 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Wigton and similar soils: 95 percent *Minor components:* 5 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Wigton

Setting

Landform: Dunes Down-slope shape: Linear Across-slope shape: Linear Parent material: Noncalcareous, dune-like sandy eolian deposits

Typical profile

A - 0 to 8 inches: loamy sand AC - 8 to 19 inches: loamy sand C - 19 to 60 inches: sand

Properties and qualities

Slope: 1 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R067BY015CO - Deep Sand Other vegetative classification: DEEP SANDS (069BY019CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

124—Olnest sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2t51j Elevation: 4,500 to 6,100 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 50 to 54 degrees F *Frost-free period:* 130 to 170 days *Farmland classification:* Prime farmland if irrigated

Map Unit Composition

Olnest and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Olnest

Setting

Landform: Sand sheets Parent material: Eolian sands

Typical profile

A - 0 to 4 inches: sandy loam Bt - 4 to 20 inches: sandy clay loam Bk1 - 20 to 48 inches: sandy loam Bk2 - 48 to 79 inches: very fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 14 percent
Maximum salinity: Very slightly saline (2.0 to 3.9 mmhos/cm)
Available water capacity: Moderate (about 7.4 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4c Hydrologic Soil Group: B Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No

Minor Components

Udic haplusterts, ponded

Percent of map unit: 5 percent Landform: Closed depressions Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: R067BY010CO - Closed Upland Depression Hydric soil rating: No

Otero

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope *Down-slope shape:* Linear *Across-slope shape:* Linear *Ecological site:* R067BY024CO - Sandy Plains *Hydric soil rating:* No

Vona

Percent of map unit: 5 percent Landform: Sand sheets Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX B – FEMA FLOOD ZONES

National Flood Hazard Layer FIRMette

250

n

500

1,000

1,500

2,000

Legend

regulatory purposes.

104°28'43"W 38°45'33"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF Area with Flood Risk due to Levee Zone D FLOOD HAZARD NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - - - - Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation AREA OF MINIMAL FLOOD HAZARD – – Coastal Transect ക Base Flood Elevation Line (BFE) ELPASO COUNTY Limit of Study Jurisdiction Boundary 080059 ---- Coastal Transect Baseline OTHER **Profile Baseline** CO815G FEATURES Hydrographic Feature **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 9/25/2020 at 9:36 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map USGS The National Map: Orthoimagery. Data refreshed April 2020 elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, T15S R63W S017 FIRM panel number, and FIRM effective date. Map images for 104°28'5"W 38°45'5"N Feet 1:6.000 unmapped and unmodernized areas cannot be used for

APPENDIX C – NOAA RAINFALL DATA

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Colorado Springs, Colorado, USA* Latitude: 38.7547°, Longitude: -104.4735°

POINT PRECIPITATION FREQUENCY ESTIMATES

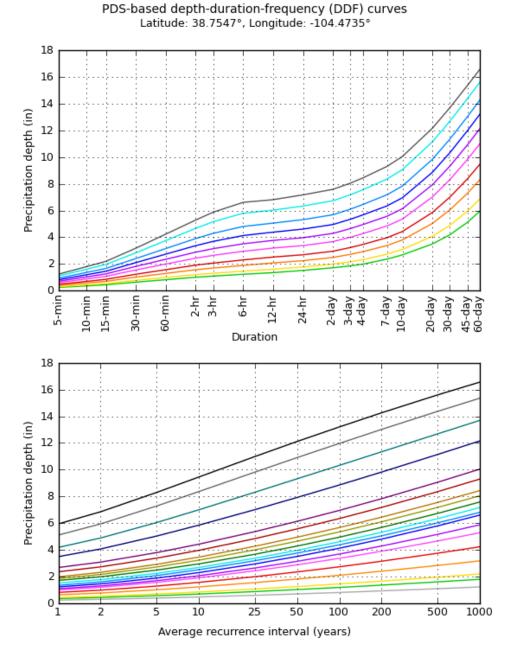
Elevation: 5912.49 ft** * source: ESRI Maps ** source: USGS

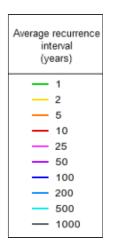
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular


Duration				Average	recurrence	interval (yea	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.246 (0.199-0.309)	0.299 (0.242-0.376)	0.393 (0.316-0.494)	0.476 (0.381-0.602)	0.601 (0.468-0.795)	0.704 (0.533-0.941)	0.814 (0.595-1.11)	0.932 (0.652-1.31)	1.10 (0.737-1.58)	1.23 (0.801-1.78
10-min	0.360 (0.291-0.452)	0.438 (0.354-0.550)	0.575 (0.463-0.724)	0.697 (0.558-0.882)	0.880 (0.685-1.16)	1.03 (0.781-1.38)	1.19 (0.871-1.63)	1.36 (0.954-1.91)	1.61 (1.08-2.31)	1.80 (1.17-2.61
15-min	0.439 (0.355-0.551)	0.534 (0.431-0.671)	0.701 (0.564-0.883)	0.851 (0.680-1.08)	1.07 (0.835-1.42)	1.26 (0.953-1.68)	1.45 (1.06-1.99)	1.66 (1.16-2.33)	1.96 (1.32-2.81)	2.20 (1.43-3.18
30-min	0.638 (0.515-0.800)	0.774 (0.625-0.972)	1.01 (0.816-1.28)	1.23 (0.984-1.56)	1.55 (1.21-2.05)	1.82 (1.38-2.43)	2.10 (1.54-2.87)	2.40 (1.68-3.37)	2.83 (1.90-4.07)	3.18 (2.07-4.60
60-min	0.820 (0.663-1.03)	0.988 (0.798-1.24)	1.29 (1.04-1.63)	1.57 (1.26-1.99)	1.99 (1.56-2.65)	2.35 (1.78-3.15)	2.74 (2.00-3.75)	3.15 (2.21-4.43)	3.75 (2.52-5.40)	4.23 (2.76-6.13
2-hr	1.00 (0.816-1.25)	1.20 (0.977-1.50)	1.57 (1.27-1.96)	1.91 (1.54-2.40)	2.43 (1.92-3.22)	2.88 (2.21-3.85)	3.37 (2.49-4.59)	3.90 (2.76-5.45)	4.66 (3.16-6.68)	5.29 (3.47-7.60
3-hr	1.09 (0.891-1.36)	1.30 (1.06-1.62)	1.69 (1.38-2.11)	2.07 (1.67-2.58)	2.64 (2.09-3.50)	3.14 (2.42-4.18)	3.69 (2.74-5.02)	4.29 (3.05-5.98)	5.16 (3.52-7.37)	5.88 (3.88-8.42
6-hr	1.23 (1.01-1.52)	1.46 (1.20-1.80)	1.89 (1.54-2.34)	2.30 (1.87-2.86)	2.95 (2.35-3.88)	3.51 (2.72-4.65)	4.13 (3.08-5.58)	4.81 (3.44-6.66)	5.79 (3.98-8.23)	6.61 (4.39-9.41
12-hr	1.35 (1.11-1.65)	1.61 (1.32-1.97)	2.08 (1.71-2.56)	2.52 (2.06-3.11)	3.19 (2.55-4.14)	3.76 (2.93-4.93)	4.38 (3.29-5.87)	5.06 (3.64-6.94)	6.02 (4.17-8.48)	6.81 (4.57-9.64
24-hr	1.52 (1.26-1.85)	1.77 (1.47-2.16)	2.24 (1.85-2.74)	2.69 (2.21-3.30)	3.38 (2.72-4.36)	3.97 (3.11-5.17)	4.61 (3.49-6.14)	5.32 (3.86-7.26)	6.34 (4.42-8.86)	7.17 (4.85-10.1
2-day	1.72 (1.43-2.08)	1.99 (1.66-2.41)	2.49 (2.07-3.02)	2.95 (2.44-3.60)	3.67 (2.98-4.70)	4.29 (3.38-5.54)	4.95 (3.77-6.54)	5.68 (4.15-7.70)	6.73 (4.73-9.34)	7.58 (5.17-10.6
3-day	1.85 (1.55-2.23)	2.16 (1.81-2.61)	2.72 (2.27-3.29)	3.23 (2.68-3.92)	4.00 (3.25-5.09)	4.65 (3.67-5.97)	5.35 (4.08-7.02)	6.10 (4.48-8.22)	7.18 (5.07-9.91)	8.05 (5.51-11.2
4-day	1.98 (1.67-2.38)	2.32 (1.95-2.79)	2.92 (2.44-3.52)	3.46 (2.88-4.19)	4.27 (3.47-5.41)	4.95 (3.92-6.33)	5.67 (4.34-7.42)	6.45 (4.74-8.65)	7.55 (5.35-10.4)	8.44 (5.80-11.7
7-day	2.36 (1.99-2.82)	2.73 (2.30-3.27)	3.38 (2.84-4.06)	3.97 (3.32-4.78)	4.84 (3.95-6.09)	5.57 (4.43-7.07)	6.35 (4.89-8.25)	7.18 (5.31-9.57)	8.36 (5.95-11.4)	9.30 (6.44-12.8
10-day	2.68 (2.27-3.19)	3.09 (2.61-3.68)	3.80 (3.20-4.54)	4.43 (3.71-5.31)	5.36 (4.39-6.70)	6.14 (4.90-7.76)	6.96 (5.37-9.00)	7.83 (5.81-10.4)	9.06 (6.48-12.3)	10.0 (6.98-13.8
20-day	3.50 (2.98-4.13)	4.07 (3.46-4.82)	5.03 (4.27-5.97)	5.85 (4.94-6.97)	7.01 (5.74-8.63)	7.92 (6.34-9.88)	8.86 (6.87-11.3)	9.82 (7.33-12.9)	11.1 (8.01-15.0)	12.2 (8.52-16.6
30-day	4.18 (3.58-4.93)	4.89 (4.18-5.77)	6.05 (5.15-7.15)	7.00 (5.93-8.31)	8.31 (6.81-10.1)	9.32 (7.48-11.5)	10.3 (8.02-13.1)	11.3 (8.48-14.8)	12.7 (9.15-17.0)	13.7 (9.65-18.6
45-day	5.11 (4.38-6.00)	5.94 (5.09-6.98)	7.28 (6.22-8.57)	8.36 (7.11-9.89)	9.82 (8.05-11.9)	10.9 (8.77-13.4)	12.0 (9.33-15.1)	13.0 (9.76-16.8)	14.4 (10.4-19.1)	15.4 (10.9-20.8
60-day	5.95 (5.11-6.96)	6.85 (5.89-8.03)	8.30 (7.10-9.74)	9.45 (8.05-11.1)	11.0 (9.03-13.2)	12.1 (9.76-14.8)	13.2 (10.3-16.5)	14.3 (10.7-18.4)	15.6 (11.3-20.6)	16.6 (11.8-22.4

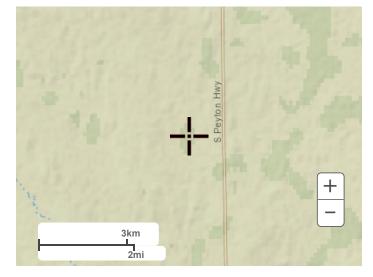

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

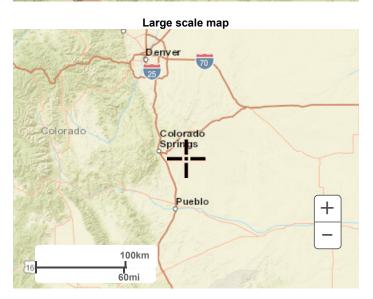
PF graphical

Duration 5-min 2-day 10-min 3-day 4-day 15-min 30-min 7-day 60-min 10-day 20-day 2-hr 3-hr 30-day 6-hr 45-day 12-hr 60-day 24-hr

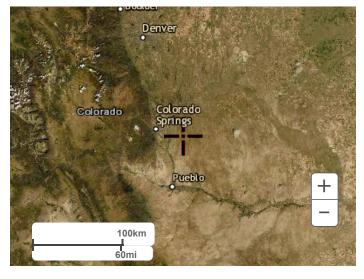

NOAA Atlas 14, Volume 8, Version 2

Created (GMT): Mon Aug 10 14:04:15 2020

Back to Top


Maps & aerials

Small scale terrain


Large scale terrain

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

APPENDIX D – HYDROLOGIC CALCULATIONS

WEIGHTED CURVE NUMBER AND RELEASE RATE CALCULATIONS

Pre and Post Development Basin Weighted Curve Number Calculation Cherokee WRF TDS Reduction Facility

El Paso County, Colorado

Pre-Development

rea (SF) ,685,933	Area (AC) 428.97		dings = 98 AC	Infiltratio No Ru SF	inoff		Soil Type A) = 76 (A)	Gravel (So CN = 3	oil Type B)			-	a (Soil Type A)		a (Soil Type B)	Weighted Curve
,685,933	· /					CN =	= 76 (A)	CN =								
,685,933	· /	SF	AC	SE					00 (D)	CN =	= 98	CN =	= 49	CN = 61		-
, ,	428.97			56	AC	SF	AC	SF	AC	SF	AC	SF	AC	SF	AC	Number
07 700		0	0	0	0	0	0	0	0	0	0	8,210,189	188.48	10,475,744	240.49	56
97,762	4.54	0	0	0	0	0	0	0	0	0	0	157,252	3.61	40,511	0.93	51
32,744	7.64	0	0.00	0	0.00	7,290	0.17	0	0.00	0	0.00	117,312	2.69	208,137	4.78	57
52,976	3.51	0	0.00	0	0.00	732	0.02	6,545	0.15	8,924	0.20	42,479	0.98	94,295	2.16	61
37,705	10.05	6,036	0.14	39,591	0.91	2,470	0.06	0	0.00	59,352	1.36	210,100	4.82	159,747	3.67	62
95,572	4.49	675	0.02	18,047	0.41	0	0.00	0	0.00	18,648	0.43	54,632	1.25	121,617	2.79	61
94,609	11.35	7,197	0.17	38,430	0.88	0	0.00	0	0.00	94,397	2.17	112,764	2.59	280,250	6.43	66
543,184	12.47	487	0.01	0	0.00	0	0.00	0	0.00	4,681	0.11	136,437	3.13	401,579	9.22	58
922,266	67.09	0	0.00	0	0.00	0	0.00	47,910	1.10	0	0.00	1,499,245	34.42	1,375,111	31.57	55
725,874	39.62	0	0.00	0	0.00	0	0.00	5,770	0.13	0	0.00	364,897	8.38	1,355,208	31.11	59
332 52 31 92 92 72	2,976 7,705 5,572 4,609 3,184 22,266	2,744 7.64 2,976 3.51 7,705 10.05 5,572 4.49 4,609 11.35 3,184 12.47 22,266 67.09 25,874 39.62	2,7447.6402,9763.5107,70510.056,0365,5724.496754,60911.357,1973,18412.4748722,26667.09025,87439.620	2,7447.6400.002,9763.5100.007,70510.056,0360.145,5724.496750.024,60911.357,1970.173,18412.474870.0122,26667.0900.0025,87439.6200.00	2,7447.6400.0002,9763.5100.0007,70510.056,0360.1439,5915,5724.496750.0218,0474,60911.357,1970.1738,4303,18412.474870.01022,26667.0900.000	2,7447.6400.0000.002,9763.5100.0000.007,70510.056,0360.1439,5910.915,5724.496750.0218,0470.414,60911.357,1970.1738,4300.883,18412.474870.0100.0022,26667.0900.0000.00	2,7447.6400.0000.007,2902,9763.5100.0000.007327,70510.056,0360.1439,5910.912,4705,5724.496750.0218,0470.4104,60911.357,1970.1738,4300.8803,18412.474870.0100.00022,26667.0900.0000.000	2,7447.6400.0000.007,2900.172,9763.5100.0000.007320.027,70510.056,0360.1439,5910.912,4700.065,5724.496750.0218,0470.4100.004,60911.357,1970.1738,4300.8800.003,18412.474870.0100.0000.0022,26667.0900.0000.0000.00	2,7447.6400.0000.007,2900.1702,9763.5100.0000.007320.026,5457,70510.056,0360.1439,5910.912,4700.0605,5724.496750.0218,0470.4100.0004,60911.357,1970.1738,4300.8800.0003,18412.474870.0100.0000.0047,910	2,7447.6400.0000.007,2900.1700.002,9763.5100.0000.007320.026,5450.157,70510.056,0360.1439,5910.912,4700.0600.005,5724.496750.0218,0470.4100.0000.004,60911.357,1970.1738,4300.8800.0000.003,18412.474870.0100.0000.0047,9101.10	2,7447.6400.0000.007,2900.1700.0002,9763.5100.0000.007320.026,5450.158,9247,70510.056,0360.1439,5910.912,4700.0600.0059,3525,5724.496750.0218,0470.4100.0000.0018,6484,60911.357,1970.1738,4300.8800.0000.0094,3973,18412.474870.0100.0000.0000.004,68122,26667.0900.0000.0000.0011.100	2,7447.6400.0000.007,2900.1700.0000.002,9763.5100.0000.007320.026,5450.158,9240.207,70510.056,0360.1439,5910.912,4700.0600.0059,3521.365,5724.496750.0218,0470.4100.0000.0018,6480.434,60911.357,1970.1738,4300.8800.0000.0094,3972.173,18412.474870.0100.0000.004,6810.1122,26667.0900.0000.0000.0047,9101.1000.00	2,7447.6400.0000.007,2900.1700.0000.00117,3122,9763.5100.0000.007320.026,5450.158,9240.2042,4797,70510.056,0360.1439,5910.912,4700.0600.0059,3521.36210,1005,5724.496750.0218,0470.4100.0000.0018,6480.4354,6324,60911.357,1970.1738,4300.8800.0000.0094,3972.17112,7643,18412.474870.0100.0000.0047,9101.1000.001,499,245	2,7447.6400.0000.007,2900.1700.0000.00117,3122.692,9763.5100.0000.007320.026,5450.158,9240.2042,4790.987,70510.056,0360.1439,5910.912,4700.0600.0059,3521.36210,1004.825,5724.496750.0218,0470.4100.0000.0018,6480.4354,6321.254,60911.357,1970.1738,4300.8800.0000.0094,3972.17112,7642.593,18412.474870.0100.0000.0047,9101.1000.001,499,24534.4222,26667.0900.0000.0000.0047,9101.1000.001,499,24534.42	2,7447.6400.0000.007,2900.1700.0000.00117,3122.69208,1372,9763.5100.0000.007320.026,5450.158,9240.2042,4790.9894,2957,70510.056,0360.1439,5910.912,4700.0600.0059,3521.36210,1004.82159,7475,5724.496750.0218,0470.4100.0000.0018,6480.4354,6321.25121,6174,60911.357,1970.1738,4300.8800.0000.0094,3972.17112,7642.59280,2503,18412.474870.0100.0000.0047,9101.1000.001,499,24534.421,375,11122,26667.0900.0000.0047,9101.1000.001,499,24534.421,375,111	2,7447.6400.0000.007,2900.1700.0000.00117,3122.69208,1374.782,9763.5100.0000.007320.026,5450.158,9240.2042,4790.9894,2952.167,70510.056,0360.1439,5910.912,4700.0600.0059,3521.36210,1004.82159,7473.675,5724.496750.0218,0470.4100.0000.0018,6480.4354,6321.25121,6172.794,60911.357,1970.1738,4300.8800.0000.0094,3972.17112,7642.59280,2506.433,18412.474870.0100.0000.0047,9101.1000.001,499,24534.421,375,11131.57

* Infiltration Areas not included in calculations

									Post-D	evelopment	t						
			Buil	dings	Infiltratio	n Area*	Gravel (S	Soil Type A)	Gravel (So	oil Type B)	Pave	ment	Vegetated Are	a (Soil Type A)	Vegetated Area (Soil Type B) CN = 61		Weighted Curve Number
			CN	= 98	No Ru	inoff	CN =	= 76 (A)	CN =	85 (B)	CN :	= 98	CN	= 49			
Basin	Area (SF)	Area (AC)	SF	AC	SF	AC	SF	AC	SF	AC	SF	AC	SF	AC	SF	AC	Number
OS-1	18,685,933	428.97	0	0	0	0	0	0	0	0	0	0	8,210,189	188.48	10,475,744	240.49	56
OS-2	197,762	4.54	0	0	0	0	0	0	0	0	0	0	157,252	3.61	40,511	0.93	51
А	332,744	7.64	0	0.00	0	0.00	7,290	0.17	0	0.00	0	0.00	117,312	2.69	208,137	4.78	57
В	120,463	2.77	0	0.00	0	0.00	0	0.00	6,262	0.14	8,924	0.20	12,338	0.28	92,939	2.13	64
C1	104,240	2.39	0	0.00	0	0.00	3,690	0.08	6,310	0.14	0	0.00	49,254	1.13	44,986	1.03	57
C2	859,034	19.72	6,040	0.14	1,103,022	25.32	0	0.00	10,294	0.24	44,962	1.03	247,540	5.68	550,198	12.63	60
C3	435,300	9.99	12,948	0.30	1,026,955	23.58	31,197	0.72	1,551	0.04	14,690	0.34	336,269	7.72	38,645	0.89	55
D	195,572	4.49	675	0.02	18,047	0.41	0	0.00	0	0.00	18,648	0.43	54,632	1.25	121,617	2.79	61
E	439,674	10.09	7,197	0.17	38,430	0.88	0	0.00	0	0.00	94,397	2.17	112,506	2.58	225,574	5.18	66
F	528,303	12.13	487	0.01	0	0.00	0	0.00	0	0.00	4,681	0.11	54,632	1.25	106,817	2.45	58
Н	1,725,874	39.62	0	0.00	0	0.00	0	0.00	5,770	0.13	0	0.00	364,897	8.38	1,355,208	31.11	59

* Infiltration Areas not included in calculations

Allowable Release Rate Calculation Cherokee WRF TDS Reduction Facility El Paso County, Colorado

Table 13-2 - Allowable Unit Release Rates (cfs/ac) El Paso County Drainage Criteria Manual, Volume 1

Design	NRCS Hydrologic Soil Group (CFS/AC)									
Return	Α	В	C/D							
2	0	0.01	0.04							
5	0	0.04	0.3							
100	0.1	0.3	0.5							

Pre-Development NCRS Soil Type Summary

Basin	Soil 3	Acres	Soil 5	Acres	Soil 62	Acres	Soil 124	Acres	Total SF	Total Acre
А	0	0.00	117,312	2.69	0	0.00	215,427	4.95	332,739	7.64
В	0	0.00	42,565	0.98	0	0.00	110,200	2.53	152,766	3.51
С	0	0.00	279,388	6.41	0	0.00	197,922	4.54	477,310	10.96
D	0	0.00	62,794	1.44	0	0.00	150,439	3.45	213,233	4.90
E	0	0.00	193,240	4.44	0	0.00	340,085	7.81	533,325	12.24
F	0	0.00	138,946	3.19	0	0.00	404,303	9.28	543,249	12.47
G	288,561	6.62	1,526,008	35.03	0	0.00	1,108,078	25.44	2,922,647	67.09
H	0	0.00	365,009	8.38	318,291	7.31	1,139,936	26.17	1,823,236	41.86

Allowable Release Rate Calculations

Basin	Soil A	Soil B		Soil A Runoff 5 Year	Soil A Runoff 100 vear		Soil B Runoff 5 Year	Soil B Runoff 100 year	Total Runoff		Total Runoff 100 year
			2 year	5 fear	Tuu year	2 year	5 fear	TUU year	2 year	5 year	-
A	2.69	4.95	0	0	0.27	0.05	0.20	1.48	0.05	0.20	1.75
В	0.98	2.53	0	0	0.10	0.03	0.10	0.76	0.03	0.10	0.86
С	6.41	4.54	0	0	0.64	0.05	0.18	1.36	0.05	0.18	2.00
D	1.44	3.45	0	0	0.14	0.03	0.14	1.04	0.03	0.14	1.18
E	4.44	7.81	0	0	0.44	0.08	0.31	2.34	0.08	0.31	2.79
F	3.19	9.28	0	0	0.32	0.09	0.37	2.78	0.09	0.37	3.10
G	35.03	32.06	0	0	3.50	0.32	1.28	9.62	0.32	1.28	13.12
Н	8.38	33.48	0	0	0.84	0.33	1.34	10.04	0.33	1.34	10.88
								All Basins =	0.98	3.92	35.69
							E	Basins D, E, F =	0.21	0.82	7.07

SCS HYDROGRAPH CALCULATIONS – EXISTING CONDITIONS

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

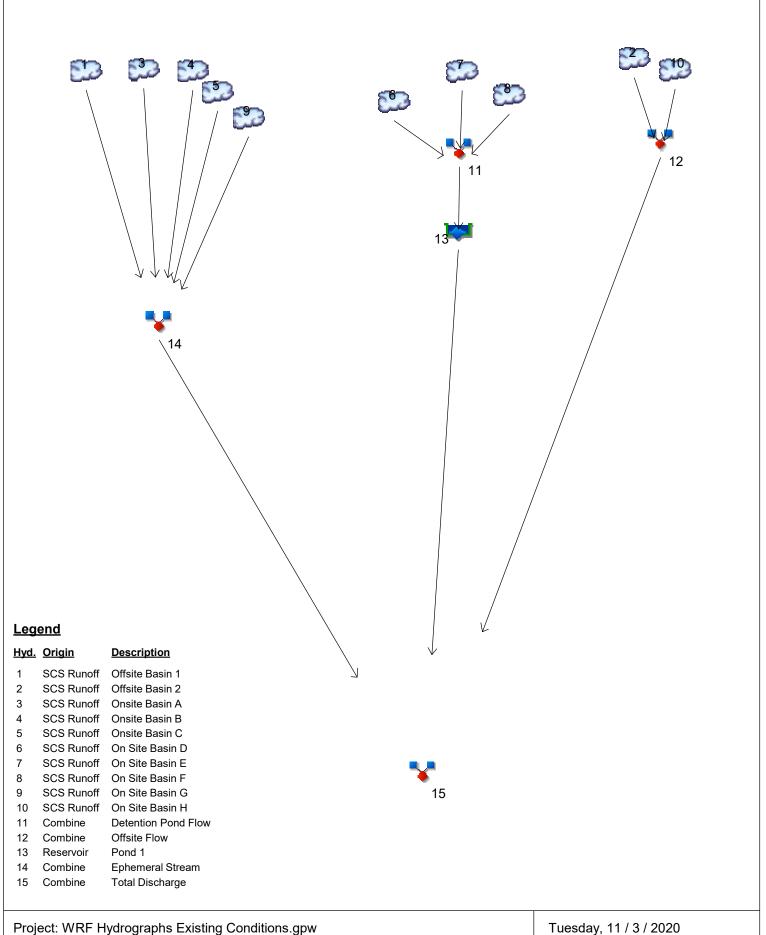
2 - Year

Summary Report	
Hydrograph Reports Hydrograph No. 1, SCS Runoff, Offsite Basin 1	
TR-55 Tc Worksheet	
Hydrograph No. 2, SCS Runoff, Offsite Basin 2	
TR-55 Tc Worksheet	
Hydrograph No. 3, SCS Runoff, Onsite Basin A	
TR-55 Tc Worksheet	
Hydrograph No. 4, SCS Runoff, Onsite Basin B	-
TR-55 Tc Worksheet	
Hydrograph No. 5, SCS Runoff, Onsite Basin C	12
TR-55 Tc Worksheet	
Hydrograph No. 6, SCS Runoff, On Site Basin D	
TR-55 Tc Worksheet	
Hydrograph No. 7, SCS Runoff, On Site Basin E	
TR-55 Tc Worksheet	17
Hydrograph No. 8, SCS Runoff, On Site Basin F	18
TR-55 Tc Worksheet	19
Hydrograph No. 9, SCS Runoff, On Site Basin G	
TR-55 Tc Worksheet	
Hydrograph No. 10, SCS Runoff, On Site Basin H	
TR-55 Tc Worksheet	
Hydrograph No. 11, Combine, Detention Pond Flow	
Hydrograph No. 12, Combine, Offsite Flow	
Hydrograph No. 13, Reservoir, Pond 1	
Pond Report - Pond 1	
Hydrograph No. 14, Combine, Ephemeral Stream	
Hydrograph No. 15, Combine, Total Discharge	30

10 - Year

20
32
32
33
34
35
36
37
38
39
40
41
42

Hydrograph No. 12, Combine, Offsite Flow	
Hydrograph No. 13, Reservoir, Pond 1	
Hydrograph No. 14, Combine, Ephemeral Stre	eam
	e


100 - Year

Summary Report	. 47
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Offsite Basin 1	
Hydrograph No. 2, SCS Runoff, Offsite Basin 2	. 49
Hydrograph No. 3, SCS Runoff, Onsite Basin A	. 50
Hydrograph No. 4, SCS Runoff, Onsite Basin B	. 51
Hydrograph No. 5, SCS Runoff, Onsite Basin C	. 52
Hydrograph No. 6, SCS Runoff, On Site Basin D	. 53
Hydrograph No. 7, SCS Runoff, On Site Basin E	
Hydrograph No. 8, SCS Runoff, On Site Basin F	. 55
Hydrograph No. 9, SCS Runoff, On Site Basin G	. 56
Hydrograph No. 10, SCS Runoff, On Site Basin H	
Hydrograph No. 11, Combine, Detention Pond Flow	
Hydrograph No. 12, Combine, Offsite Flow	. 59
Hydrograph No. 13, Reservoir, Pond 1	
Hydrograph No. 14, Combine, Ephemeral Stream	
Hydrograph No. 15, Combine, Total Discharge	
- Report	63

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

1

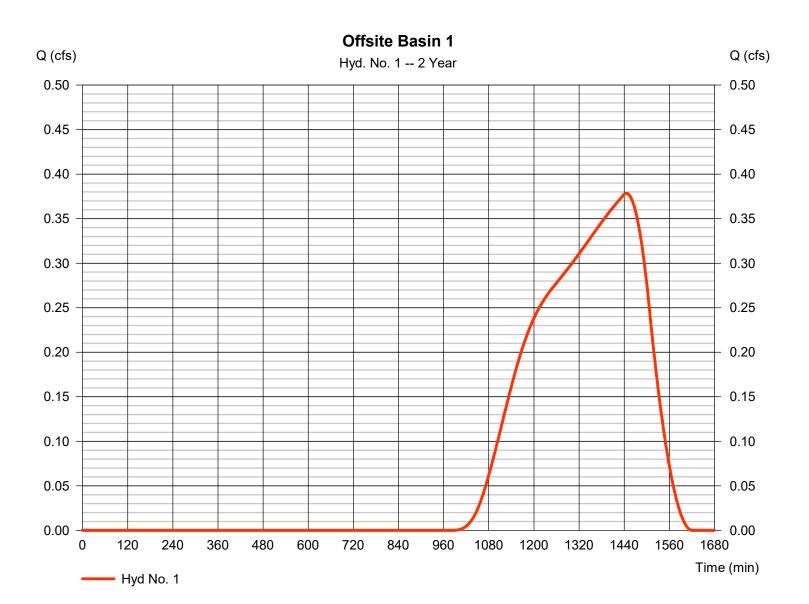
Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

lyd. Hydrograph Inflow Io. type hyd(s)						Hydrograph Description					
0.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			0.379			8.620			94.58	Offsite Basin 1
2	SCS Runoff			0.000			0.027			1.252	Offsite Basin 2
3	SCS Runoff			0.010			0.282			3.969	Onsite Basin A
4	SCS Runoff			0.013			0.352			2.922	Onsite Basin B
5	SCS Runoff			0.049			1.141			8.370	Onsite Basin C
6	SCS Runoff			0.016			0.423			3.473	On Site Basin D
7	SCS Runoff			0.191			1.773			8.918	On Site Basin E
8	SCS Runoff			0.020			0.568			6.703	On Site Basin F
9	SCS Runoff			0.039			1.336			24.25	On Site Basin G
10	SCS Runoff			0.084			1.936			18.20	On Site Basin H
11	Combine	6, 7, 8,		0.199			2.727			18.37	Detention Pond Flow
12	Combine	2, 10,		0.083			1.933			19.18	Offsite Flow
13	Reservoir	11		0.085			1.387			10.41	Pond 1
14	Combine	1, 3, 4,		0.467			10.24			113.27	Ephemeral Stream
15	Combine	5, 9, 12, 13, 14		0.656			12.72			140.17	Total Discharge
Pro	j. file: WRF I	Hydrograp	hs Fxisti	ng Cond					 	esday 1	1 / 3 / 2020

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.379	2	1446	7,650				Offsite Basin 1
2	SCS Runoff	0.000	2	n/a	0				Offsite Basin 2
3	SCS Runoff	0.010	2	1440	242				Onsite Basin A
4	SCS Runoff	0.013	2	918	452				Onsite Basin B
5	SCS Runoff	0.049	2	824	1,601				Onsite Basin C
6	SCS Runoff	0.016	2	920	565				On Site Basin D
7	SCS Runoff	0.191	2	782	3,793				On Site Basin E
8	SCS Runoff	0.020	2	1440	625				On Site Basin F
9	SCS Runoff	0.039	2	1442	523				On Site Basin G
10	SCS Runoff	0.084	2	1110	2,836				On Site Basin H
11	Combine	0.199	2	786	4,984	6, 7, 8,			Detention Pond Flow
12	Combine	0.083	2	1110	2,817	2, 10,			Offsite Flow
13	Reservoir	0.085	2	1442	2,031	11	5892.86	3,590	Pond 1
14	Combine	0.467	2	1442	10,440	1, 3, 4,			Ephemeral Stream
15	Combine	0.656	2	1440	16,607	5, 9, 12, 13, 14			Total Discharge
WF	RF Hydrograp	hs Existir	ng Condit	ions.gpw	Return I	Period: 2 Ye	ear	Tuesday, 7	11 / 3 / 2020


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Offsite Basin 1

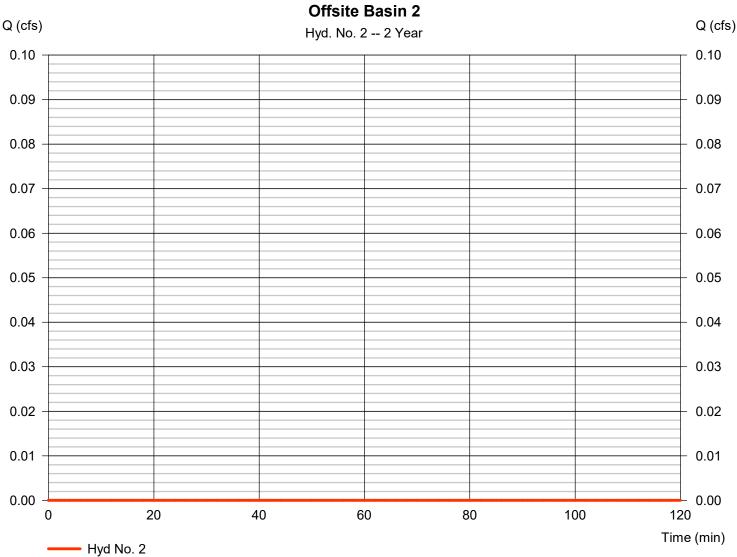
Hydrograph type	= SCS Runoff	Peak discharge	= 0.379 cfs
Storm frequency	= 2 yrs	Time to peak	= 1446 min
Time interval	= 2 min	Hyd. volume	= 7,650 cuft
Drainage area	= 428.970 ac	Curve number	= 56*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 114.40 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(240.490 x 61) + (188.480 x 49)] / 428.970

Hyd. No. 1

Offsite Basin 1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.150 = 300.0 = 1.77 = 1.74 = 33.54	+	0.011 0.0 0.00 0.00 0.00	+	0.011 0.0 0.00 0.00 0.00	=	33.54
	- 33.34	•	0.00	•	0.00	-	55.54
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 10323.00 = 1.74 = Unpaved =2.13		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 80.84	+	0.00	+	0.00	=	80.84
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Offsite Basin 2

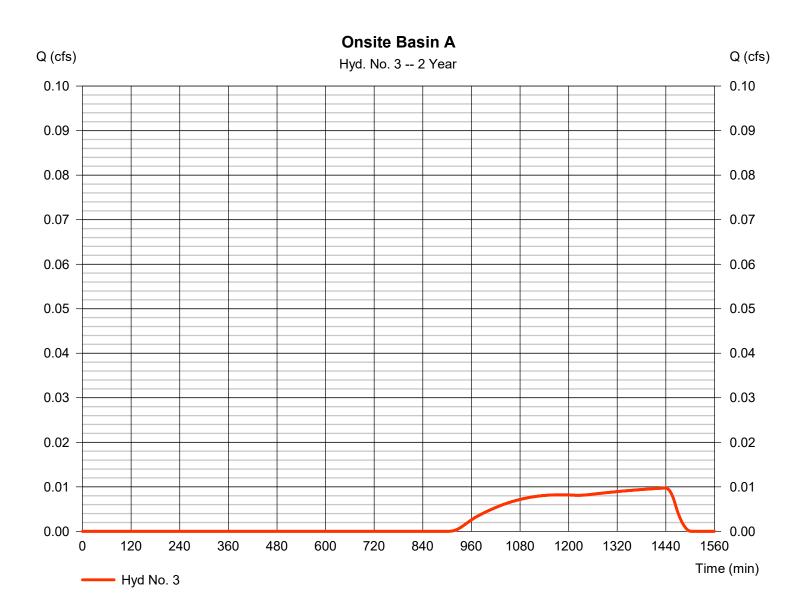
Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Drainage area	= 4.540 ac	Curve number	= 51*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.30 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.610 x 49) + (0.930 x 61)] / 4.540

Hyd. No. 2

Offsite Basin 2

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 1.77 = 2.42		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 29.40	+	0.00	+	0.00	=	29.40
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 731.00 = 2.42 = Unpaved =2.51	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 4.85	+	0.00	+	0.00	=	4.85
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Onsite Basin A

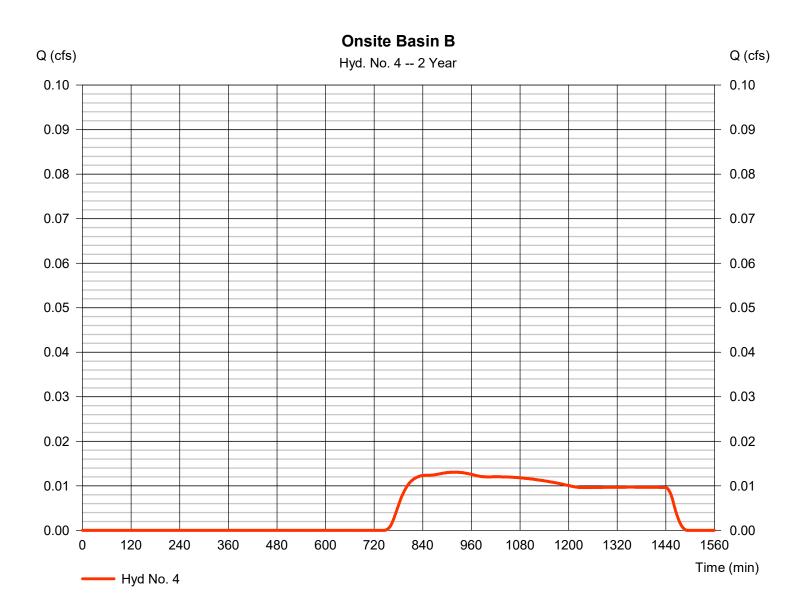
Hydrograph type	= SCS Runoff	Peak discharge	= 0.010 cfs
Storm frequency	= 2 yrs	Time to peak	= 1440 min
Time interval	= 2 min	Hyd. volume	= 242 cuft
Drainage area	= 7.640 ac	Curve number	= 57*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.50 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.690 x 49) + (4.780 x 61) + (0.170 x 76)] / 7.640

Hyd. No. 3

Onsite Basin A

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 1.77 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 31.73	+	0.00	+	0.00	=	31.73
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 786.82 = 2.00 = Unpavec =2.28	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 5.75	+	0.00	+	0.00	=	5.75
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							37.50 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Onsite Basin B

= SCS Runoff	Peak discharge	= 0.013 cfs
= 2 yrs	Time to peak	= 918 min
= 2 min	Hyd. volume	= 452 cuft
= 3.510 ac	Curve number	= 61*
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 32.40 min
= 1.77 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= 2 yrs = 2 min = 3.510 ac = 0.0 % = TR55 = 1.77 in	= 2 yrsTime to peak= 2 minHyd. volume= 3.510 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 1.77 inDistribution

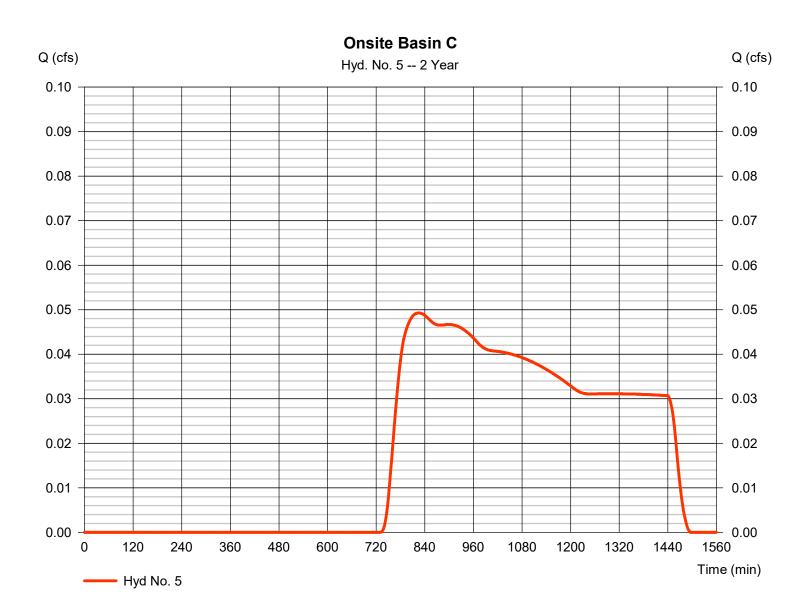
* Composite (Area/CN) = [(0.150 x 85) + (0.020 x 76) + (2.160 x 61) + (0.980 x 49) + (0.200 x 98)] / 3.510

10

Hyd. No. 4

Onsite Basin B

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.1 = 300 = 1.7 = 2.0).0 7	0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 31.	73 +	0.00	+	0.00	=	31.73
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 73.9 = 1.39 = Ung =1.87	5 baved	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.6	6 +	0.00	+	0.00	=	0.66
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.0 = 0.0	0 0	0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.	0	0.0		0.0		
Travel Time (min)	= 0.0	0 +	0.00	+	0.00	=	0.00
Total Travel Time, Tc							32.40 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

Onsite Basin C

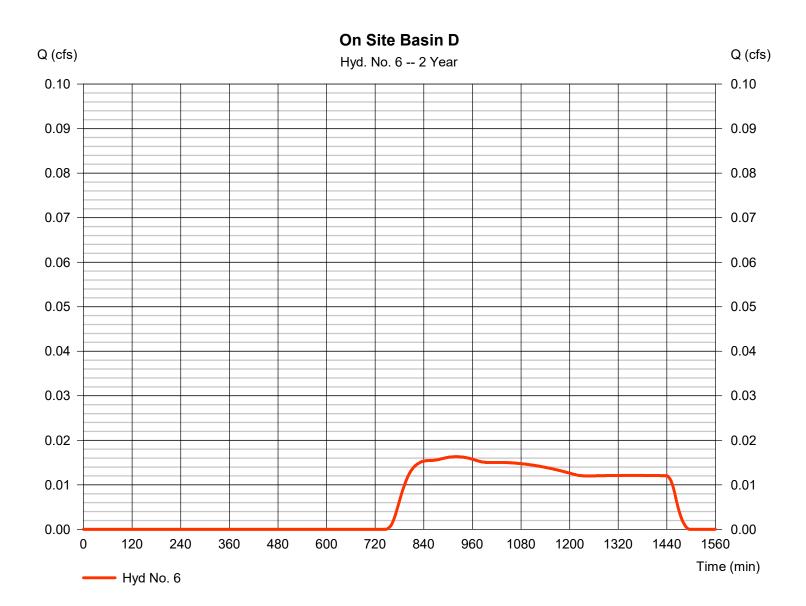
Hydrograph type	= SCS Runoff	Peak discharge	= 0.049 cfs
Storm frequency	= 2 yrs	Time to peak	= 824 min
Time interval	= 2 min	Hyd. volume	= 1,601 cuft
Drainage area	= 10.050 ac	Curve number	= 62*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.30 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.060 x 76) + (0.140 x 98) + (1.360 x 98) + (4.820 x 61) + (3.670 x 49)] / 10.050

Hyd. No. 5

Onsite Basin C

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 1.77 = 3.00		0.011 0.0 1.77 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 26.98	+	0.00	+	0.00	=	26.98
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 869.87 = 1.50 = Unpaved =1.98	I	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 7.34	+	0.00	+	0.00	=	7.34
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							34.30 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

On Site Basin D

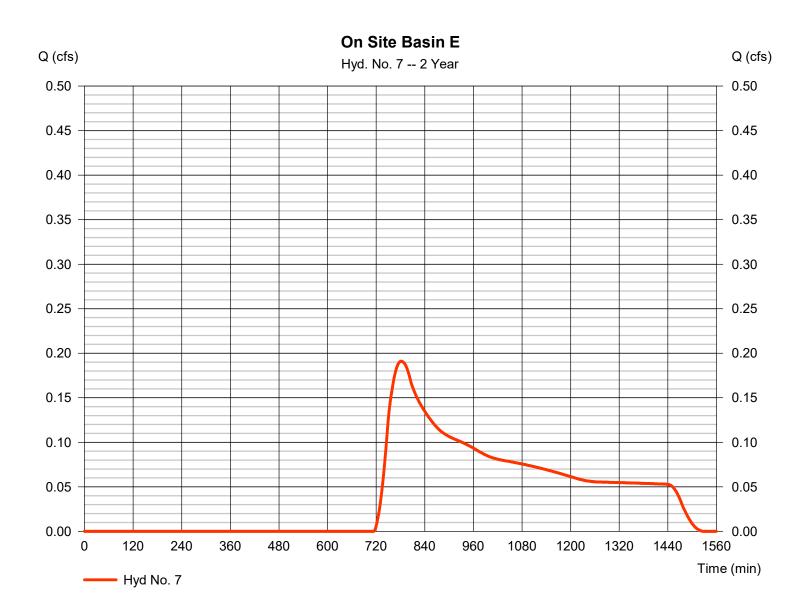
Hydrograph type	= SCS Runoff	Peak discharge	= 0.016 cfs
Storm frequency	= 2 yrs	Time to peak	= 920 min
Time interval	= 2 min	Hyd. volume	= 565 cuft
Drainage area	= 4.490 ac	Curve number	= 61*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.00 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.430 x 98) + (0.020 x 98) + (2.790 x 61) + (1.250 x 49)] / 4.490

Hyd. No. 6

On Site Basin D

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.150 = 245.0 = 1.77 = 1.50 = 30.27	+	0.011 55.0 1.77 1.50 1.13	+	0.011 0.0 0.00 0.00 0.00	=	31.40
	- 30.27	т	1.15	т	0.00	-	51.40
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 109.14 = 2.00 = Paved =2.87		477.45 1.00 Unpaved 1.61	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.63	+	4.93	+	0.00	=	5.56
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							37.00 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

On Site Basin E

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 2 yrs	Time to peak	= 782 min
Time interval	= 2 min	Hyd. volume	= 3,793 cuft
Drainage area	= 11.350 ac	Curve number	= 66*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 55.50 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

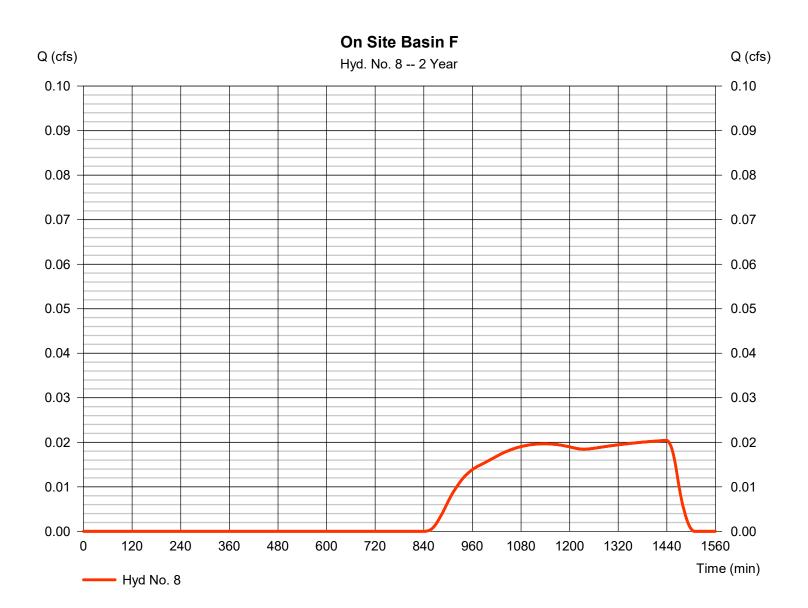
* Composite (Area/CN) = [(0.170 x 98) + (2.170 x 98) + (6.420 x 61) + (2.590 x 49)] / 11.350

Tuesday, 11 / 3 / 2020

Hyd. No. 7

On Site Basin E

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.150 = 161.2 = 1.77 = 2.00 = 19.30	+	0.150 92.5 1.77 10.83 6.30	+	0.150 164.9 1.77 1.50 22.05	=	47.65
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 101.77 = 2.00 = Paved =2.87		994.48 2.00 Unpaveo 2.28	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.59	+	7.26	+	0.00	=	7.85
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							55.50 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

On Site Basin F

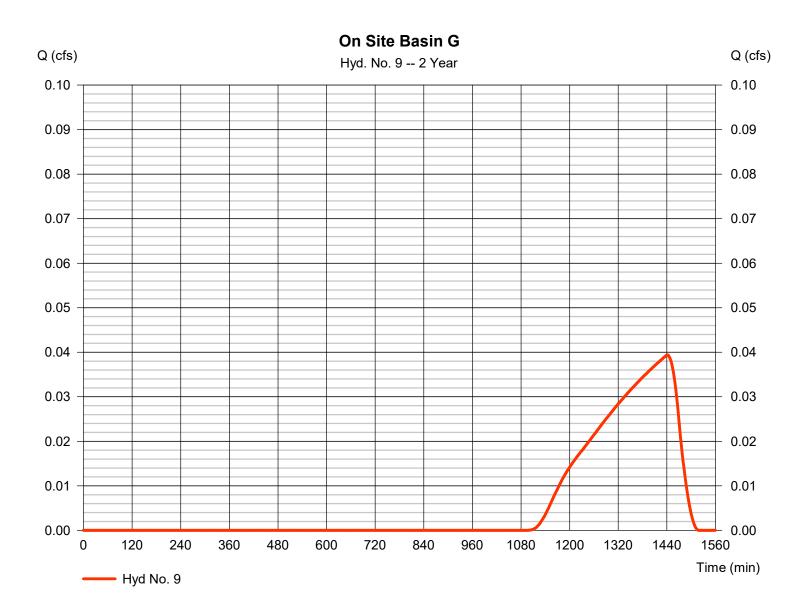
Hydrograph type	= SCS Runoff	Peak discharge	= 0.020 cfs
Storm frequency	= 2 yrs	Time to peak	= 1440 min
Time interval	= 2 min	Hyd. volume	= 625 cuft
Drainage area	= 12.470 ac	Curve number	= 58*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 43.00 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.010 x 98) + (0.110 x 98) + (9.220 x 61) + (3.130 x 49)] / 12.470

Hyd. No. 8

On Site Basin F

Description		A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= =	0.150 300.0 1.77 2.00		0.011 0.0 1.77 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	=	31.73	+	0.00	+	0.00	=	31.73
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= =	100.00 6.53 Unpaved .12		1367.56 2.00 Unpaved 2.28	ł	200.00 5.55 Unpaveo 3.80	b	
Travel Time (min)	=	0.40	+	9.99	+	0.88	=	11.27
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= = =	0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0)})0.0		0.0		0.0		
Travel Time (min)	=	0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc								43.00 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

On Site Basin G

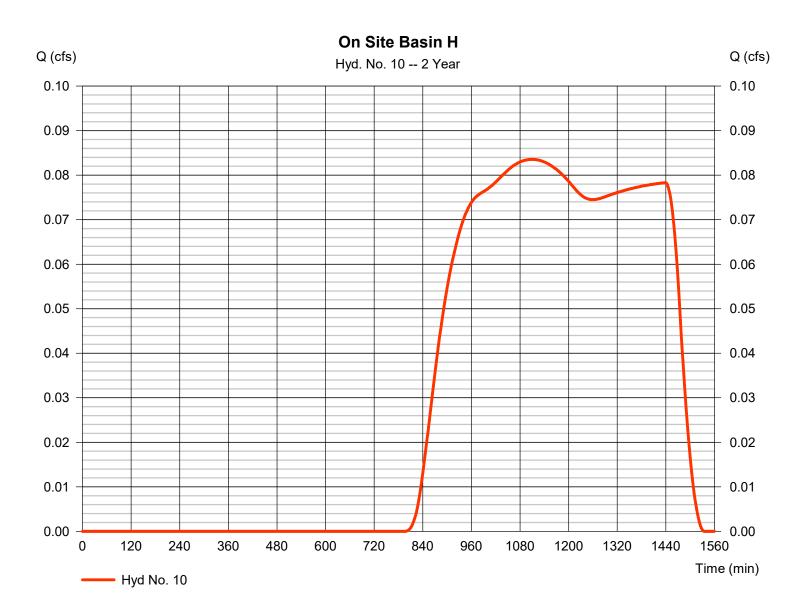
Hydrograph type	= SCS Runoff	Peak discharge	= 0.039 cfs
Storm frequency	= 2 yrs	Time to peak	= 1442 min
Time interval	= 2 min	Hyd. volume	= 523 cuft
Drainage area	= 67.090 ac	Curve number	= 55*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 50.30 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(34.420 x 49) + (31.570 x 61) + (1.100 x 85)] / 67.090

Hyd. No. 9

On Site Basin G

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.150 = 100.0 = 1.77 = 2.15 = 12.80	+	0.150 100.0 1.77 3.80 10.19	+	0.150 100.0 1.77 4.11 9.88	=	32.87
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 530.22 = 1.50 = Unpaved =1.98	1	603.73 5.00 Unpaved 3.61	b	1399.26 2.00 Unpave 2.28		
Travel Time (min)	= 4.47	+	2.79	+	10.22	=	17.48
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							50.30 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

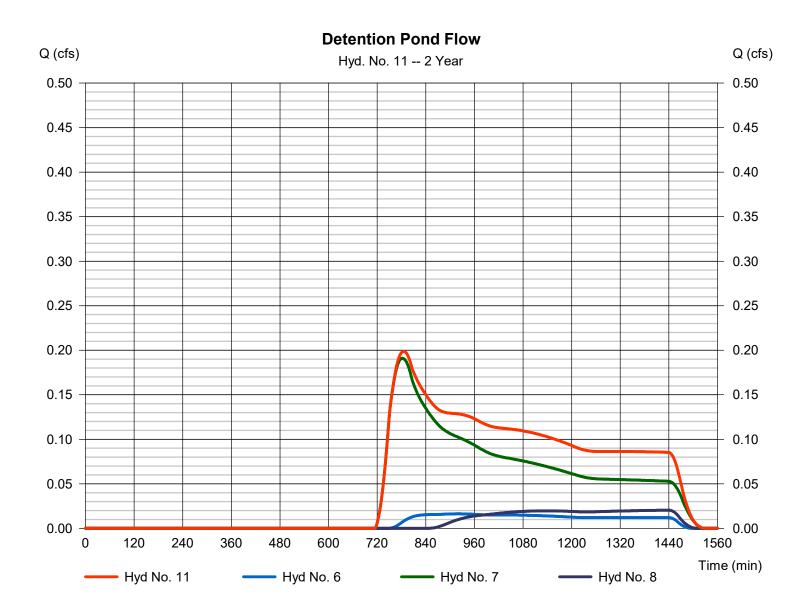
On Site Basin H

Hydrograph type	= SCS Runoff	Peak discharge	= 0.084 cfs
Storm frequency	= 2 yrs	Time to peak	= 1110 min
Time interval	= 2 min	Hyd. volume	= 2,836 cuft
Drainage area	= 39.620 ac	Curve number	= 59*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 57.90 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(31.110 x 61) + (8.380 x 49) + (0.130 x 85)] / 39.620

Hyd. No. 10

On Site Basin H

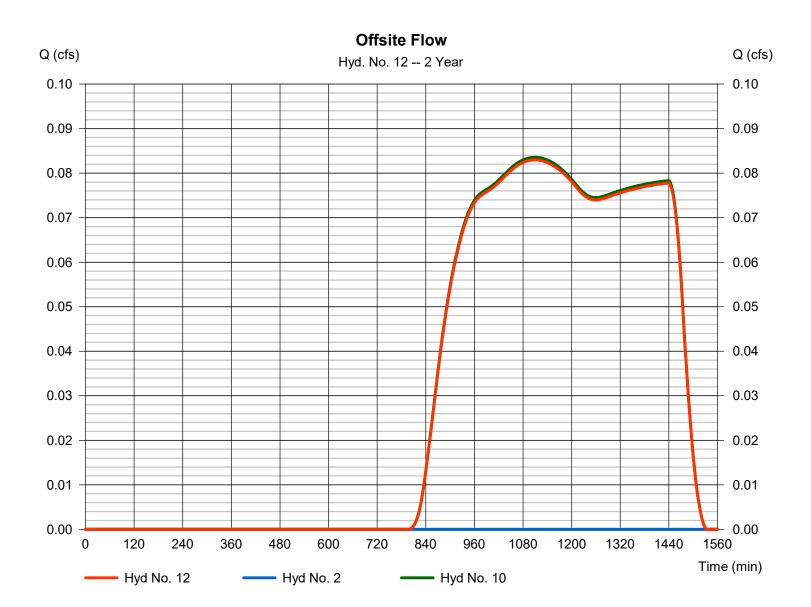

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 1.77 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00	_	24 72
Travel Time (min)	= 31.73	+	0.00	+	0.00	=	31.73
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 1933.72 = 1.25 = Unpaved =1.80	I	600.56 3.00 Unpaveo 2.79	d	556.40 1.50 Unpave 1.98	d	
Travel Time (min)	= 17.87	+	3.58	+	4.69	=	26.14
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							57.90 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

Detention Pond Flow

Hydrograph type	= Combine	Peak discharge	= 0.199 cfs
Storm frequency	= 2 yrs	Time to peak	= 786 min
Time interval	= 2 min	Hyd. volume	= 4,984 cuft
Inflow hyds.	= 6, 7, 8	Contrib. drain. area	= 28.310 ac

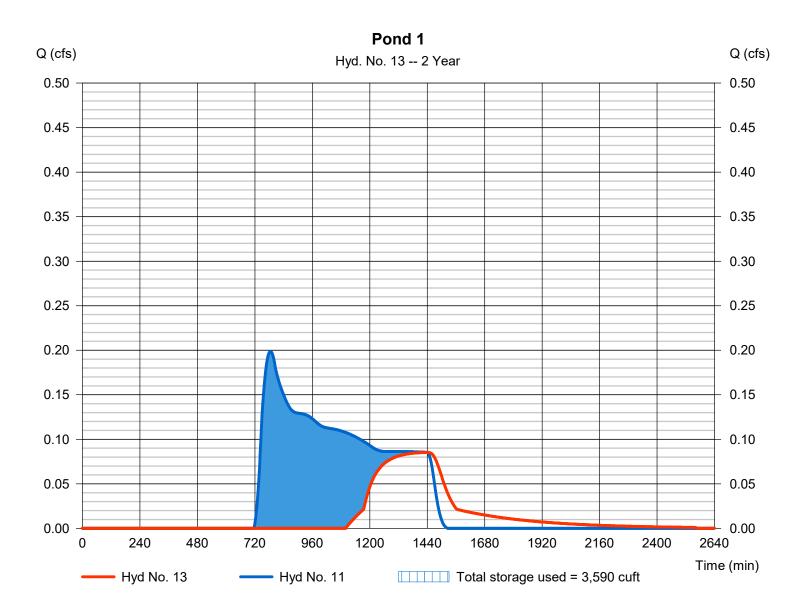

Tuesday, 11 / 3 / 2020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Offsite Flow

Hydrograph type	 = Combine = 2 yrs = 2 min = 2, 10 	Peak discharge	= 0.083 cfs
Storm frequency		Time to peak	= 1110 min
Time interval		Hyd. volume	= 2,817 cuft
Inflow hyds.		Contrib. drain. area	= 44.160 ac
,	,		


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Pond 1

Hydrograph type	= Reservoir	Peak discharge	= 0.085 cfs
Storm frequency	= 2 yrs	Time to peak	= 1442 min
Time interval	= 2 min	Hyd. volume	= 2,031 cuft
Inflow hyd. No.	= 11 - Detention Pond Flow	Max. Elevation	= 5892.86 ft
Reservoir name	= Pond 1	Max. Storage	= 3,590 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Pond No. 1 - Pond 1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 5892.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5892.00	1,770	0	0
1.00	5893.00	7,238	4,196	4,196
2.00	5894.00	12,045	9,539	13,735
3.00	5895.00	18,047	14,944	28,679
4.00	5896.00	25,583	21,704	50,382
5.00	5897.00	36,234	30,752	81,134
5.50	5897.50	44,882	20,238	101,372
6.00	5898.00	57,768	25,592	126,965

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 87.50	0.00	0.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 5897.50	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 5892.73	0.00	0.00	0.00	Weir Type	= Ciplti			
Length (ft)	= 56.03	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.54	0.00	0.00	n/a					
N-Value	= .023	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

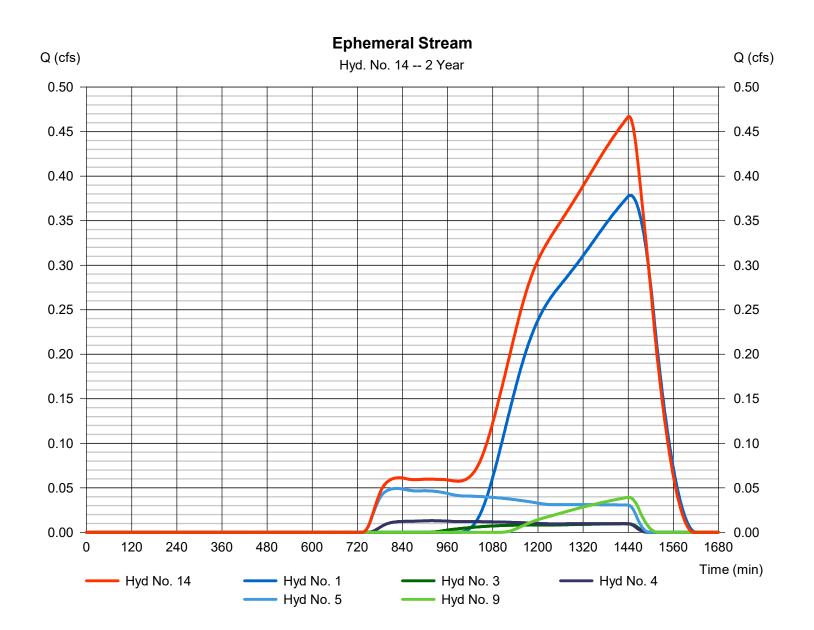
Oluge /	otoruge / L	Sisteria ge	abic										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	5892.00	0.00				0.00						0.000
0.10	420	5892.10	0.00				0.00						0.000
0.20	839	5892.20	0.00				0.00						0.000
0.30	1,259	5892.30	0.00				0.00						0.000
0.40	1,678	5892.40	0.00				0.00						0.000
0.50	2,098	5892.50	0.00				0.00						0.000
0.60	2,517	5892.60	0.00				0.00						0.000
0.70	2,937	5892.70	0.00				0.00						0.000
0.80	3,356	5892.80	0.02 oc				0.00						0.021
0.90	3,776	5892.90	0.14 oc				0.00						0.136
1.00	4,196	5893.00	0.35 oc				0.00						0.345
1.10	5,149	5893.10	0.64 oc				0.00						0.638
1.20	6,103	5893.20	1.00 oc				0.00						1.000
1.30	7,057	5893.30	1.42 oc				0.00						1.423
1.40	8,011	5893.40	1.89 oc				0.00						1.891
1.50	8,965	5893.50	2.39 oc				0.00						2.392
1.60	9,919	5893.60	2.92 oc				0.00						2.923
1.70	10,873	5893.70	3.47 oc				0.00						3.469
1.80	11,827	5893.80	4.02 oc				0.00						4.024
1.90	12,781	5893.90	4.57 oc				0.00						4.574
2.00	13,735	5894.00	5.11 oc				0.00						5.112
2.10	15,229	5894.10	5.63 oc				0.00						5.630
2.20	16,723	5894.20	6.12 oc				0.00						6.119
2.30	18,218	5894.30	6.57 oc				0.00						6.568
2.40	19,712	5894.40	6.96 oc				0.00						6.956
2.50	21,207	5894.50	7.27 oc				0.00						7.267
2.60	22,701	5894.60	7.46 oc				0.00						7.464
2.70	24,195	5894.70	7.45 oc				0.00						7.446
2.80	25,690	5894.80	8.05 oc				0.00						8.052
2.90	27,184	5894.90	9.07 oc				0.00						9.067
3.00	28,679	5895.00	9.97 oc				0.00						9.970
3.10	30,849	5895.10	10.81 oc				0.00						10.81
3.20	33,019	5895.20	11.58 oc				0.00						11.58
3.30	35,190	5895.30	12.31 oc				0.00						12.31
3.40	37,360	5895.40	13.00 oc				0.00						13.00
											Continue	s on nev	tnage

Continues on next page ...

Pond 1

Stage / Storage / Discharge Table

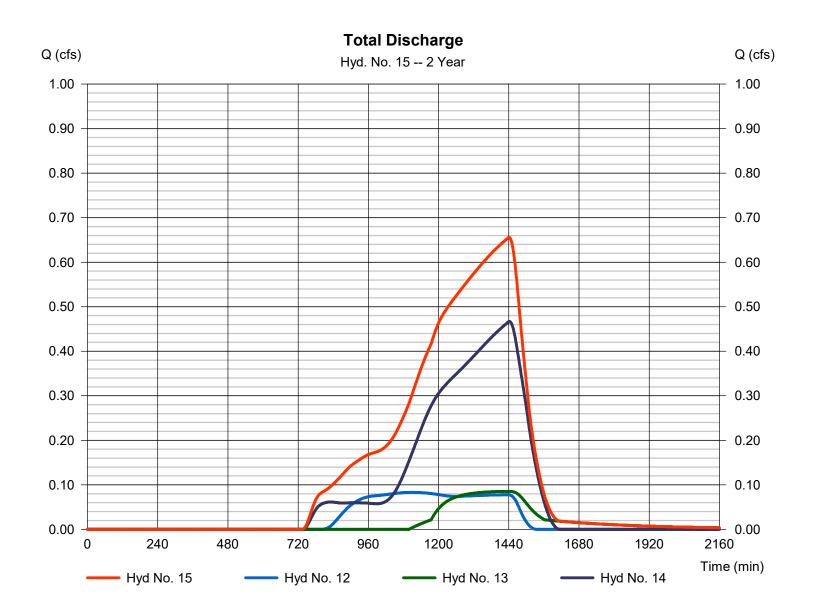
Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.50	39,531	5895.50	13.65 oc				0.00						13.65
3.60	41,701	5895.60	14.27 oc				0.00						14.27
3.70	43,871	5895.70	14.87 oc				0.00						14.87
3.80	46,042	5895.80	15.44 oc				0.00						15.44
3.90	48,212	5895.90	15.99 oc				0.00						15.99
4.00	50,382	5896.00	16.52 oc				0.00						16.52
4.10	53,458	5896.10	17.04 oc				0.00						17.04
4.20	56,533	5896.20	17.54 oc				0.00						17.54
4.30	59,608	5896.30	18.03 oc				0.00						18.03
4.40	62,683	5896.40	18.51 oc				0.00						18.51
4.50	65,758	5896.50	18.97 oc				0.00						18.97
4.60	68,833	5896.60	19.42 oc				0.00						19.42
4.70	71,909	5896.70	19.86 oc				0.00						19.86
4.80	74,984	5896.80	20.30 oc				0.00						20.30
4.90	78,059	5896.90	20.72 oc				0.00						20.72
5.00	81,134	5897.00	21.13 oc				0.00						21.13
5.05	83,158	5897.05	21.33 oc				0.00						21.33
5.10	85,182	5897.10	21.54 oc				0.00						21.54
5.15	87,206	5897.15	21.74 oc				0.00						21.74
5.20	89,229	5897.20	21.93 oc				0.00						21.93
5.25	91,253	5897.25	22.13 oc				0.00						22.13
5.30	93,277	5897.30	22.32 oc				0.00						22.32
5.35	95,301	5897.35	22.52 oc				0.00						22.52
5.40	97,325	5897.40	22.71 oc				0.00						22.71
5.45	99,349	5897.45	22.90 oc				0.00						22.90
5.50	101,372	5897.50	23.09 oc				0.00						23.09
5.55	103,932	5897.55	23.28 oc				3.24						26.52
5.60	106,491	5897.60	23.46 oc				9.16						32.62
5.65	109,050	5897.65	23.65 oc				16.83						40.48
5.70	111,609	5897.70	23.83 oc				25.91						49.74
5.75	114,169	5897.75	24.01 oc				36.21						60.22
5.80	116,728	5897.80	24.19 oc				47.60						71.79
5.85	119,287	5897.85	24.37 oc				59.98						84.35
5.90	121,846	5897.90	24.54 oc				73.28						97.83
5.95	124,405	5897.95	24.72 oc				87.44						112.16
6.00	126,965	5898.00	24.90 oc				103.02						127.92


...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

Ephemeral Stream


Hydrograph type	= Combine	Peak discharge	= 0.467 cfs
Storm frequency	= 2 yrs	Time to peak	= 1442 min
Time interval	= 2 min	Hyd. volume	= 10,440 cuft
Inflow hyds.	= 1, 3, 4, 5, 9	Contrib. drain. area	= 517.260 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

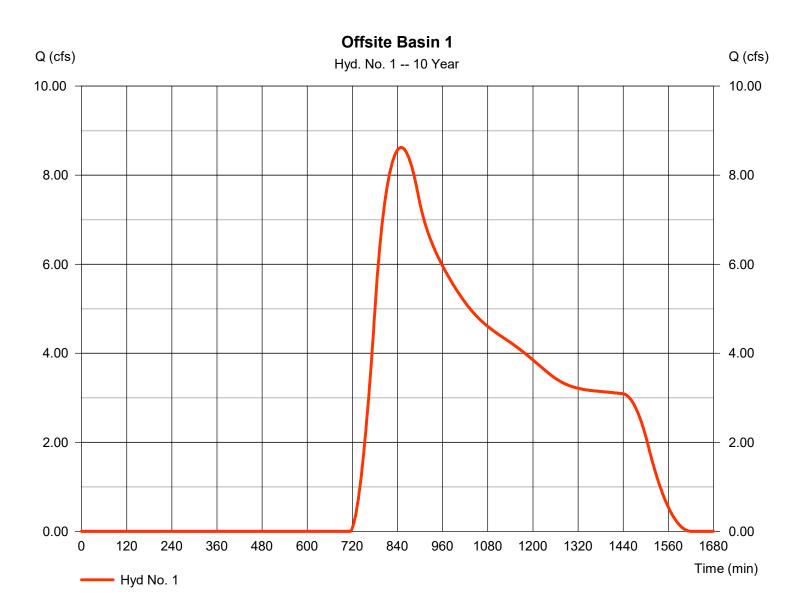
Hyd. No. 15

Total Discharge

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	8.620	2	850	217,477				Offsite Basin 1
2	SCS Runoff	0.027	2	914	927				Offsite Basin 2
3	SCS Runoff	0.282	2	758	4,434				Onsite Basin A
4	SCS Runoff	0.352	2	740	3,292				Onsite Basin B
5	SCS Runoff	1.141	2	740	10,175				Onsite Basin C
6	SCS Runoff	0.423	2	744	4,112				On Site Basin D
7	SCS Runoff	1.773	2	752	16,537				On Site Basin E
8	SCS Runoff	0.568	2	760	8,281				On Site Basin F
9	SCS Runoff	1.336	2	782	29,261				On Site Basin G
10	SCS Runoff	1.936	2	772	29,471				On Site Basin H
11	Combine	2.727	2	752	28,929	6, 7, 8,			Detention Pond Flow
12	Combine	1.933	2	772	30,197	2, 10,			Offsite Flow
13	Reservoir	1.387	2	800	25,987	11	5893.29	6,975	Pond 1
14	Combine	10.24	2	840	263,843	1, 3, 4,			Ephemeral Stream
15	Combine	12.72	2	820	325,615	5, 9, 12, 13, 14			Total Discharge
WF	RF Hydrograp	hs Existir	ng Condit	ions.gpw	Return F	Period: 10 Y	/ear	Tuesday, 1	11 / 3 / 2020

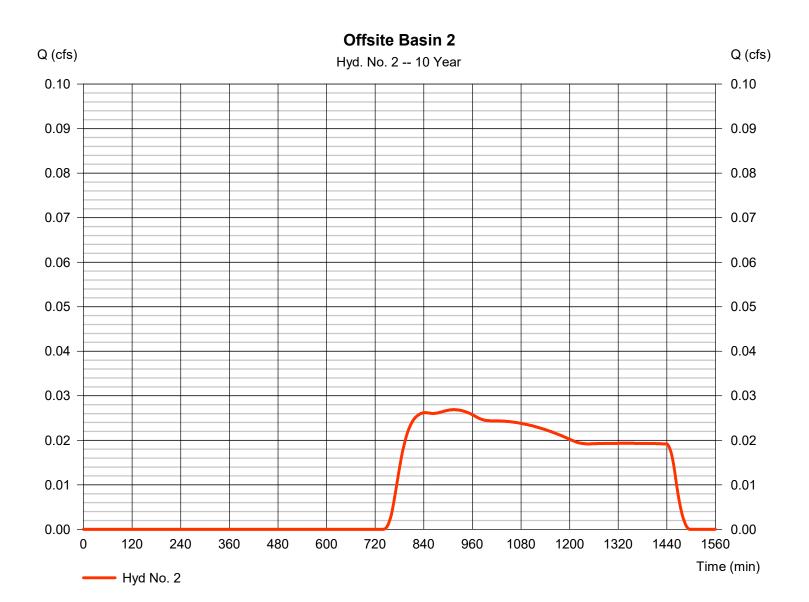

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Offsite Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 8.620 cfs
Storm frequency	= 10 yrs	Time to peak	= 850 min
Time interval	= 2 min	Hyd. volume	= 217,477 cuft
Drainage area	= 428.970 ac	Curve number	= 56*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 114.40 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(240.490 x 61) + (188.480 x 49)] / 428.970

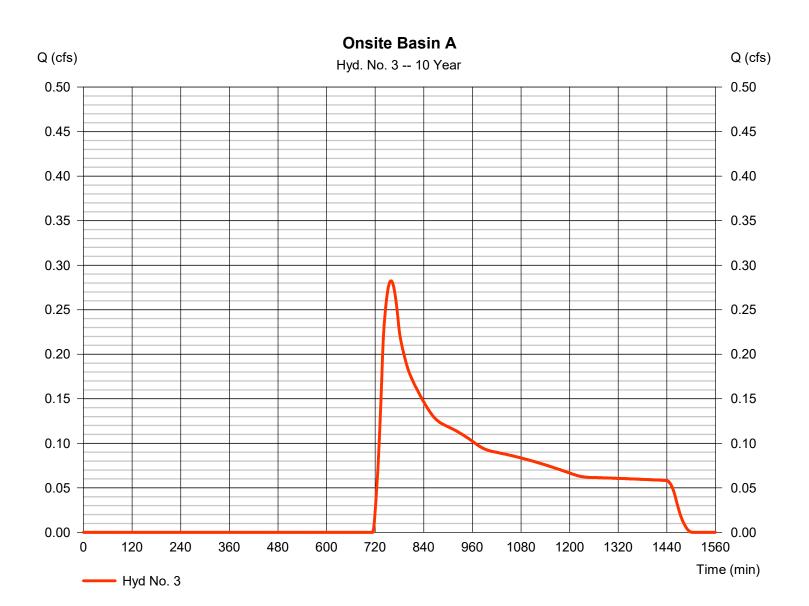

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Offsite Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.027 cfs
Storm frequency	= 10 yrs	Time to peak	= 914 min
Time interval	= 2 min	Hyd. volume	= 927 cuft
Drainage area	= 4.540 ac	Curve number	= 51*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.30 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.610 x 49) + (0.930 x 61)] / 4.540

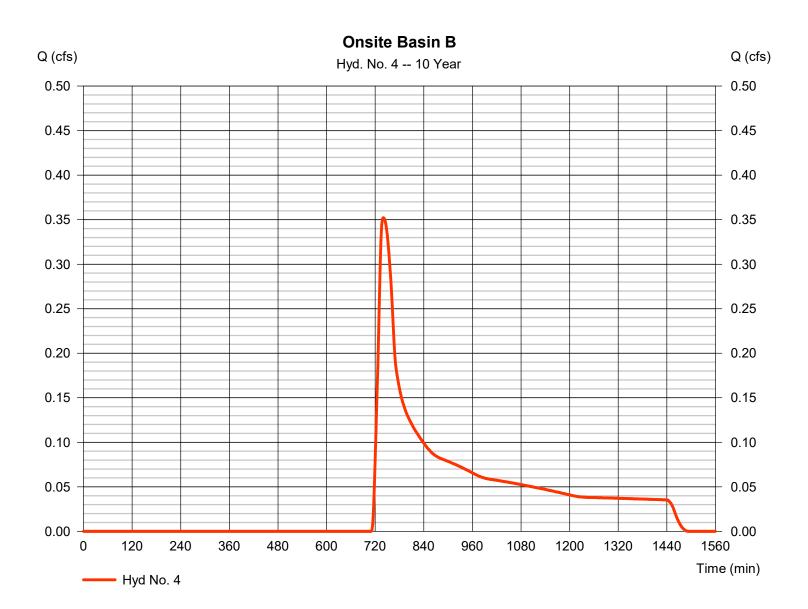

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Onsite Basin A

Hydrograph type	= SCS Runoff	Peak discharge	= 0.282 cfs
Storm frequency	= 10 yrs	Time to peak	= 758 min
Time interval	= 2 min	Hyd. volume	= 4,434 cuft
Drainage area	= 7.640 ac	Curve number	= 57*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.50 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.690 x 49) + (4.780 x 61) + (0.170 x 76)] / 7.640

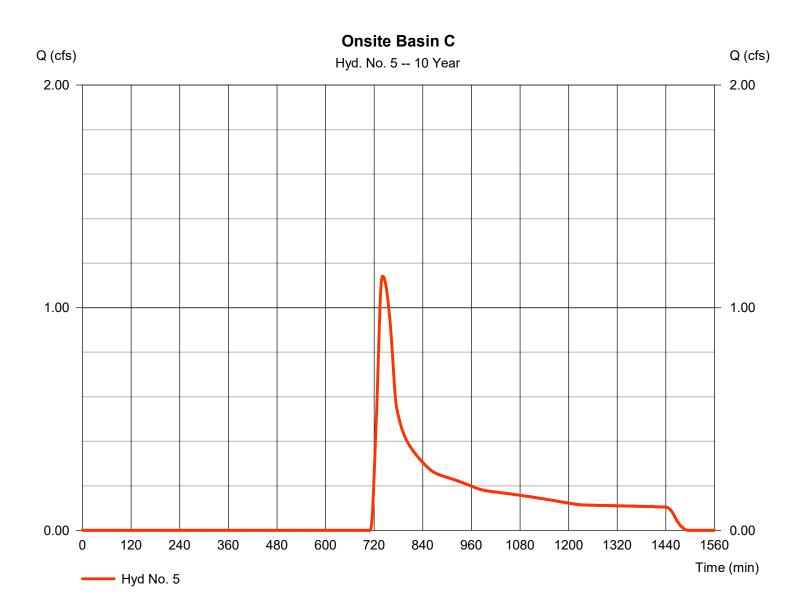

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Onsite Basin B

Hydrograph type	= SCS Runoff	Peak discharge	= 0.352 cfs
Storm frequency	= 10 yrs	Time to peak	= 740 min
Time interval	= 2 min	Hyd. volume	= 3,292 cuft
Drainage area	= 3.510 ac	Curve number	= 61*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.40 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.150 x 85) + (0.020 x 76) + (2.160 x 61) + (0.980 x 49) + (0.200 x 98)] / 3.510

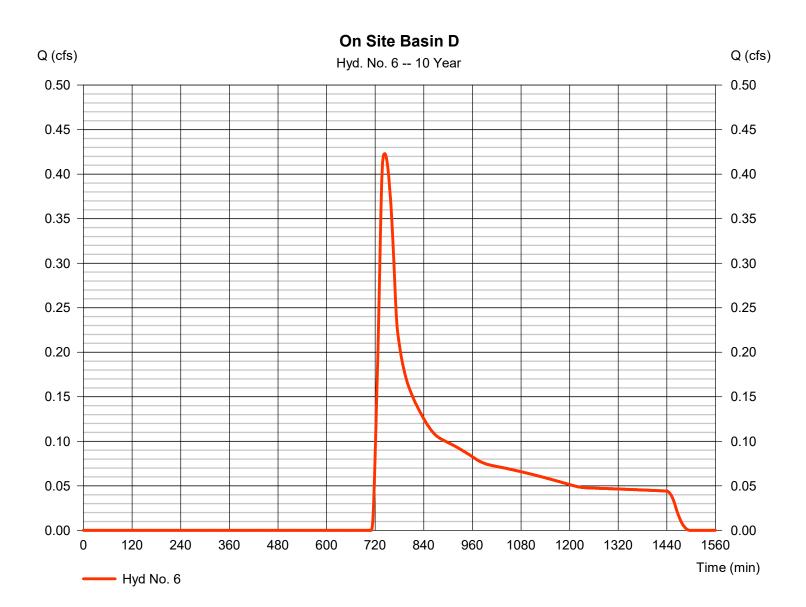

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

Onsite Basin C

Hydrograph type	= SCS Runoff	Peak discharge	= 1.141 cfs
Storm frequency	= 10 yrs	Time to peak	= 740 min
Time interval	= 2 min	Hyd. volume	= 10,175 cuft
Drainage area	= 10.050 ac	Curve number	= 62*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.30 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.060 x 76) + (0.140 x 98) + (1.360 x 98) + (4.820 x 61) + (3.670 x 49)] / 10.050


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

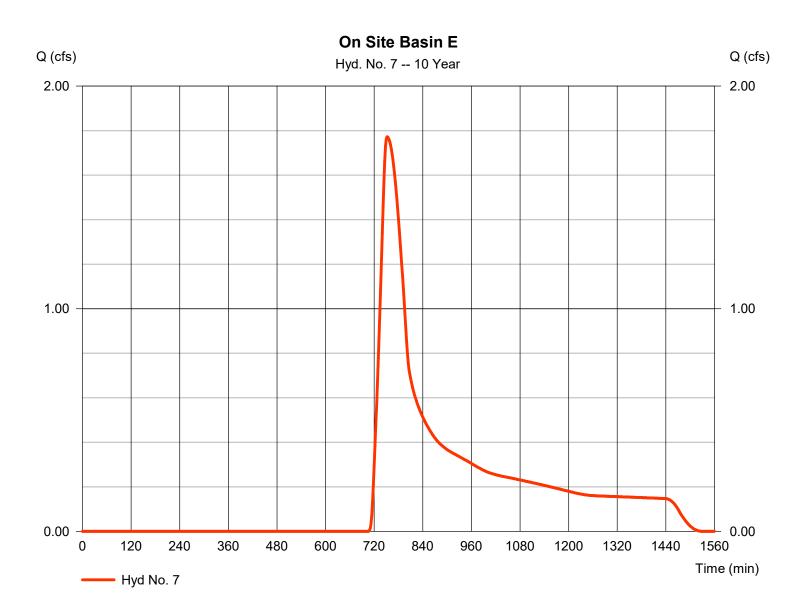
Hyd. No. 6

On Site Basin D

Hydrograph type	= SCS Runoff	Peak discharge	= 0.423 cfs
Storm frequency	= 10 yrs	Time to peak	= 744 min
Time interval	= 2 min	Hyd. volume	= 4,112 cuft
Drainage area	= 4.490 ac	Curve number	= 61*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.00 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.430 x 98) + (0.020 x 98) + (2.790 x 61) + (1.250 x 49)] / 4.490

37


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

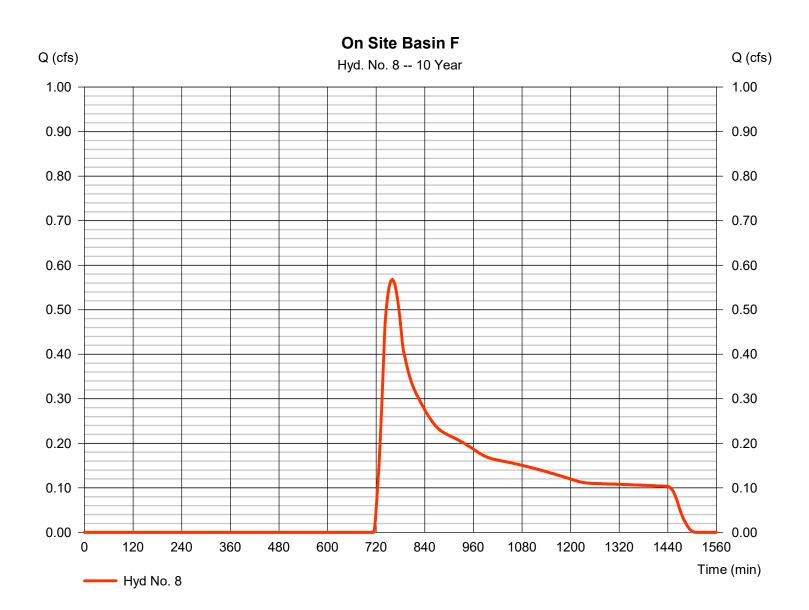
Hyd. No. 7

On Site Basin E

Hydrograph type	= SCS Runoff	Peak discharge	= 1.773 cfs
Storm frequency	= 10 yrs	Time to peak	= 752 min
Time interval	= 2 min	Hyd. volume	= 16,537 cuft
Drainage area	= 11.350 ac	Curve number	= 66*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 55.50 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.170 x 98) + (2.170 x 98) + (6.420 x 61) + (2.590 x 49)] / 11.350

38


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

On Site Basin F

Hydrograph type	= SCS Runoff	Peak discharge	= 0.568 cfs
Storm frequency	= 10 yrs	Time to peak	= 760 min
Time interval	= 2 min	Hyd. volume	= 8,281 cuft
Drainage area	= 12.470 ac	Curve number	= 58*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 43.00 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.010 x 98) + (0.110 x 98) + (9.220 x 61) + (3.130 x 49)] / 12.470

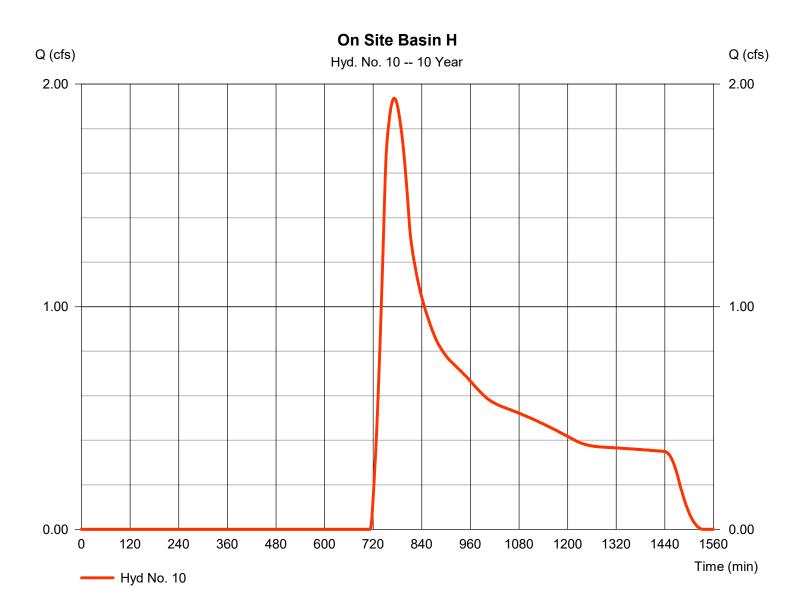
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

On Site Basin G

Hydrograph type	= SCS Runoff	Peak discharge	= 1.336 cfs
Storm frequency	= 10 yrs	Time to peak	= 782 min
Time interval	= 2 min	Hyd. volume	= 29,261 cuft
Drainage area	= 67.090 ac	Curve number	= 55*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 50.30 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(34.420 x 49) + (31.570 x 61) + (1.100 x 85)] / 67.090

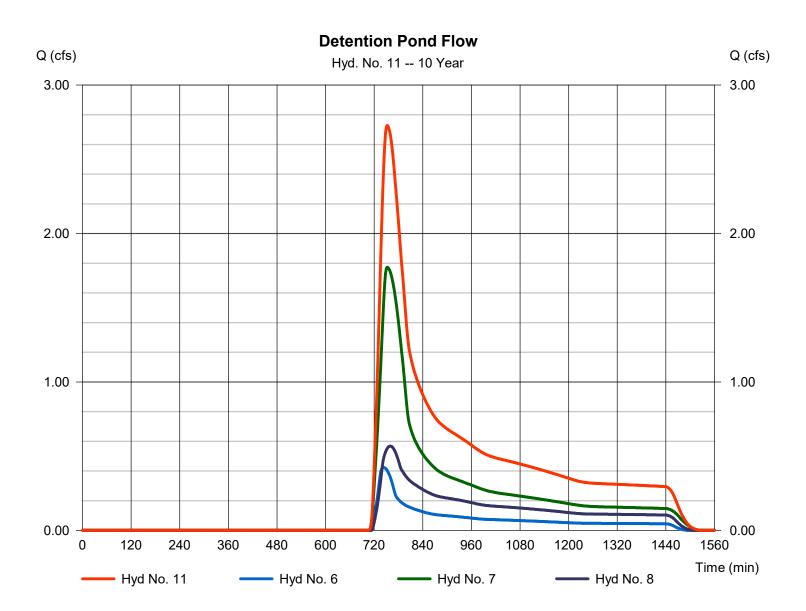

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

On Site Basin H

Hydrograph type	= SCS Runoff	Peak discharge	= 1.936 cfs
Storm frequency	= 10 yrs	Time to peak	= 772 min
Time interval	= 2 min	Hyd. volume	= 29,471 cuft
Drainage area	= 39.620 ac	Curve number	= 59*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 57.90 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		•	

* Composite (Area/CN) = [(31.110 x 61) + (8.380 x 49) + (0.130 x 85)] / 39.620

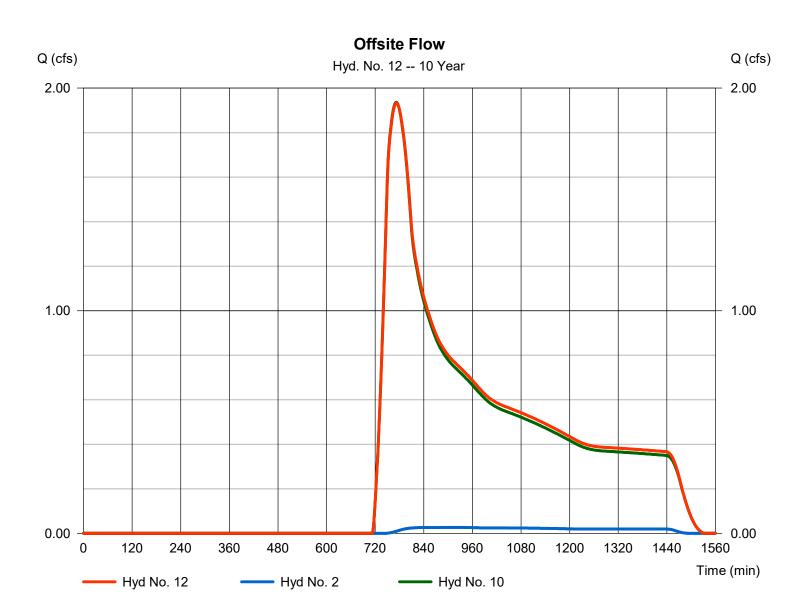

.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

Detention Pond Flow

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 2.727 cfs = 752 min
Time interval	= 2 min	Hyd. volume	= 28,929 cuft
Inflow hyds.	= 6, 7, 8	Contrib. drain. area	= 28.310 ac

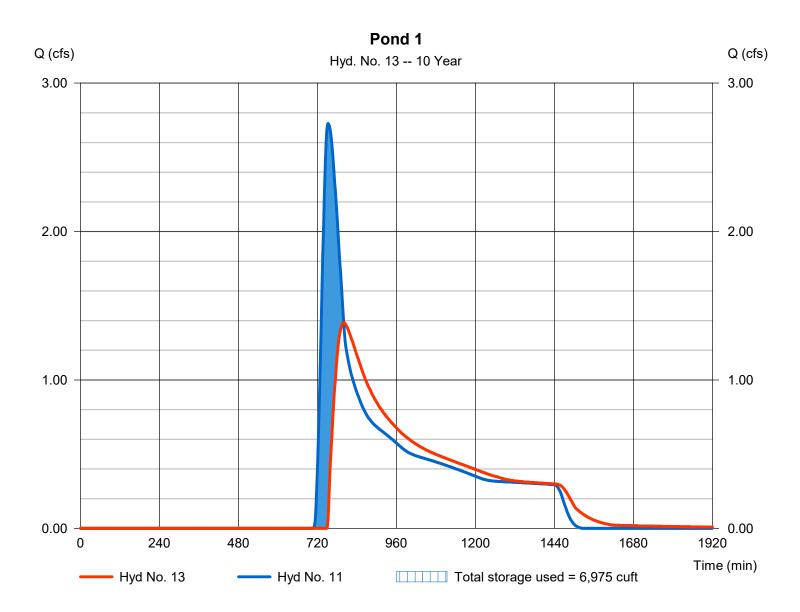


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Offsite Flow

Hydrograph type	= Combine	Peak discharge	= 1.933 cfs
Storm frequency	= 10 yrs	Time to peak	= 772 min
Time interval	= 2 min	Hyd. volume	= 30,197 cuft
Inflow hyds.	= 2, 10	Contrib. drain. area	= 44.160 ac

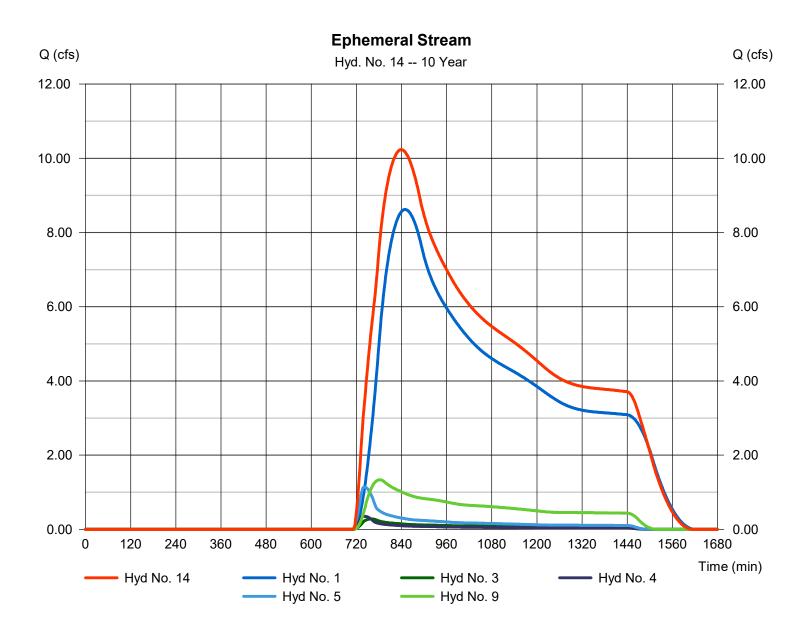

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Pond 1

Hydrograph type	= Reservoir	Peak discharge	= 1.387 cfs
Storm frequency	= 10 yrs	Time to peak	= 800 min
Time interval	= 2 min	Hyd. volume	= 25,987 cuft
Inflow hyd. No.	= 11 - Detention Pond Flow	Max. Elevation	= 5893.29 ft
Reservoir name	= Pond 1	Max. Storage	= 6,975 cuft

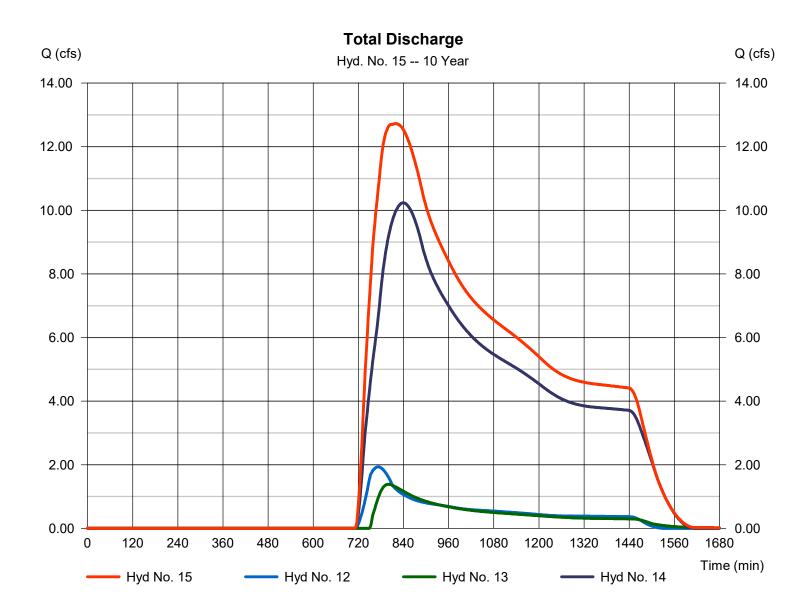
Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

Ephemeral Stream


Hydrograph type	= Combine	Peak discharge	= 10.24 cfs
Storm frequency	= 10 yrs	Time to peak	= 840 min
Time interval	= 2 min	Hyd. volume	= 263,843 cuft
Inflow hyds.	= 1, 3, 4, 5, 9	Contrib. drain. area	= 517.260 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

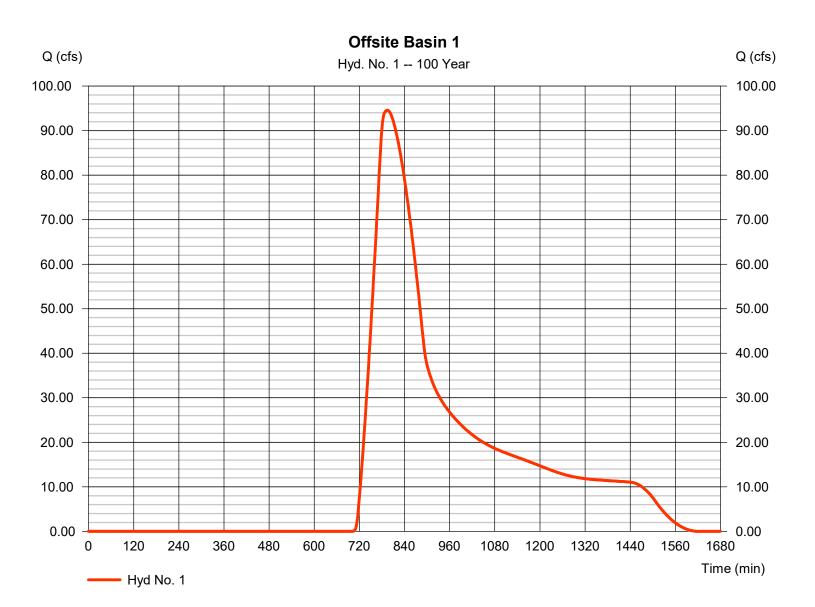
Hyd. No. 15

Total Discharge

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	94.58	2	794	1,324,269				Offsite Basin 1
2	SCS Runoff	1.252	2	740	9,570				Offsite Basin 2
3	SCS Runoff	3.969	2	740	25,052				Onsite Basin A
4	SCS Runoff	2.922	2	734	14,722				Onsite Basin B
5	SCS Runoff	8.370	2	736	43,420				Onsite Basin C
6	SCS Runoff	3.473	2	736	18,388				On Site Basin D
7	SCS Runoff	8.918	2	748	60,023				On Site Basin E
8	SCS Runoff	6.703	2	742	43,910				On Site Basin F
9	SCS Runoff	24.25	2	746	193,042				On Site Basin G
10	SCS Runoff	18.20	2	752	146,640				On Site Basin H
11	Combine	18.37	2	746	122,321	6, 7, 8,			Detention Pond Flow
12	Combine	19.18	2	752	155,210	2, 10,			Offsite Flow
13	Reservoir	10.41	2	776	119,418	11	5895.05	29,813	Pond 1
14	Combine	113.27	2	782	1,595,655	1, 3, 4,			Ephemeral Stream
15	Combine	140.17	2	778	1,884,725	5, 9, 12, 13, 14			Total Discharge
WF	F Hydrograp	hs Existin	ng Condit	ions.gpw	Return P	eriod: 100	Year	Tuesday, 1	11 / 3 / 2020

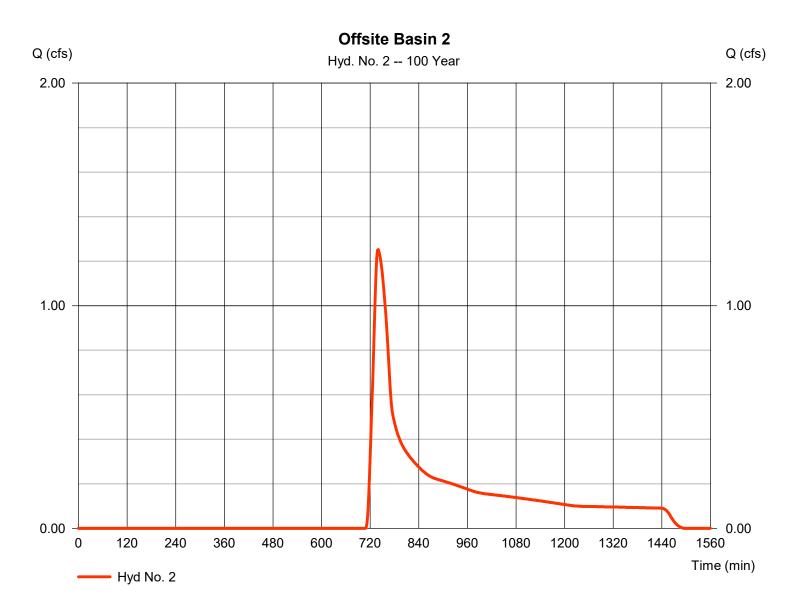

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Offsite Basin 1

= SCS Runoff	Peak discharge	= 94.58 cfs
= 100 yrs	Time to peak	= 794 min
= 2 min	Hyd. volume	= 1,324,269 cuft
= 428.970 ac	Curve number	= 56*
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 114.40 min
= 4.61 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= 100 yrs = 2 min = 428.970 ac = 0.0 % = TR55 = 4.61 in	= 100 yrsTime to peak= 2 minHyd. volume= 428.970 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 4.61 inDistribution

* Composite (Area/CN) = [(240.490 x 61) + (188.480 x 49)] / 428.970

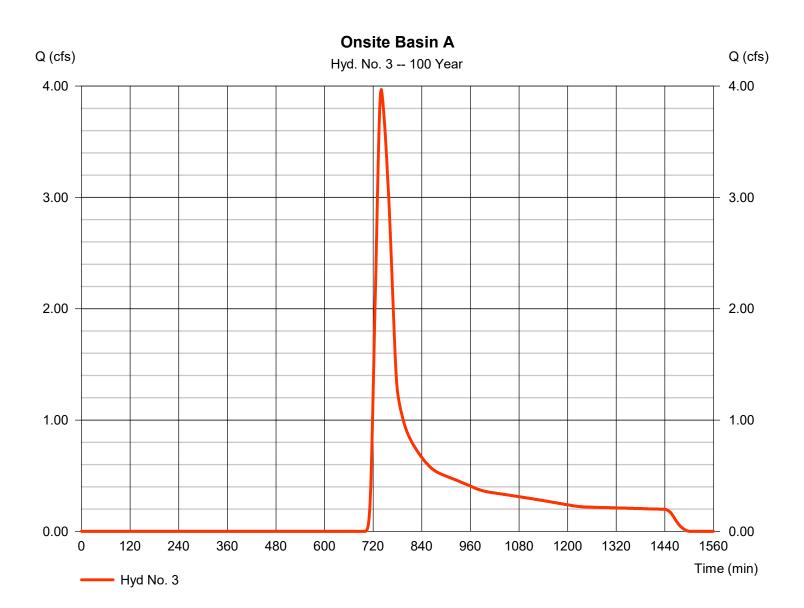

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Offsite Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.252 cfs
Storm frequency	= 100 yrs	Time to peak	= 740 min
Time interval	= 2 min	Hyd. volume	= 9,570 cuft
Drainage area	= 4.540 ac	Curve number	= 51*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.30 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.610 x 49) + (0.930 x 61)] / 4.540

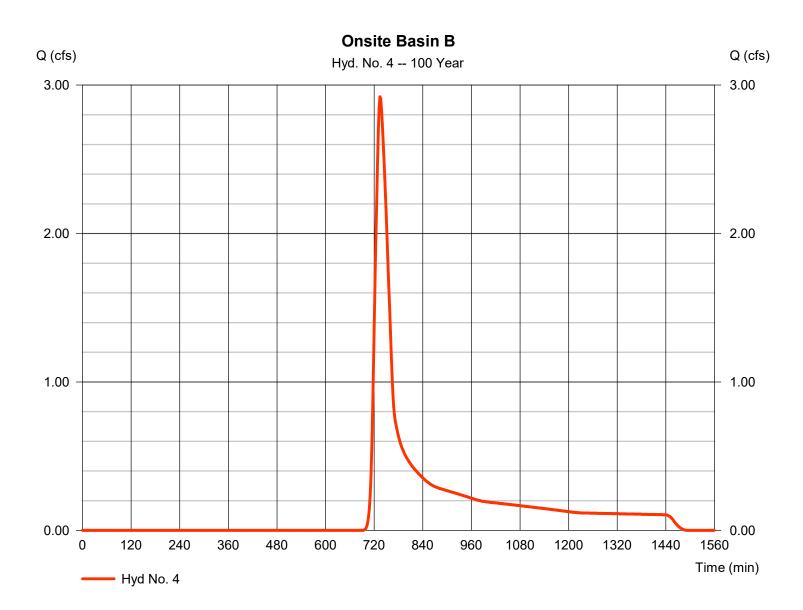

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Onsite Basin A

Hydrograph type	= SCS Runoff	Peak discharge	= 3.969 cfs
Storm frequency	= 100 yrs	Time to peak	= 740 min
Time interval	= 2 min	Hyd. volume	= 25,052 cuft
Drainage area	= 7.640 ac	Curve number	= 57*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.50 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.	= 2 min = 7.640 ac = 0.0 % = TR55 = 4.61 in	Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	= 25,052 cuft = 57* = 0 ft = 37.50 min = Type II

* Composite (Area/CN) = [(2.690 x 49) + (4.780 x 61) + (0.170 x 76)] / 7.640

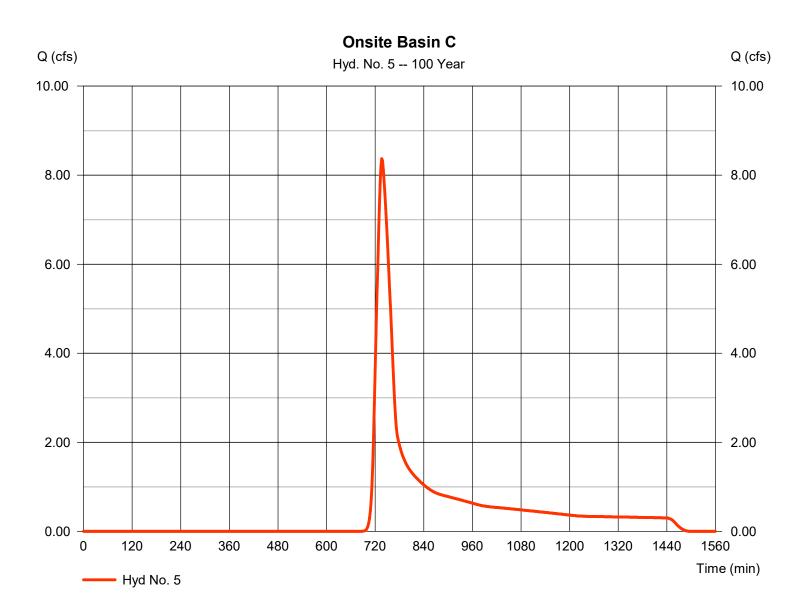

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Onsite Basin B

Hydrograph type	= SCS Runoff	Peak discharge	= 2.922 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 14,722 cuft
Drainage area	= 3.510 ac	Curve number	= 61*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.40 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.150 x 85) + (0.020 x 76) + (2.160 x 61) + (0.980 x 49) + (0.200 x 98)] / 3.510


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

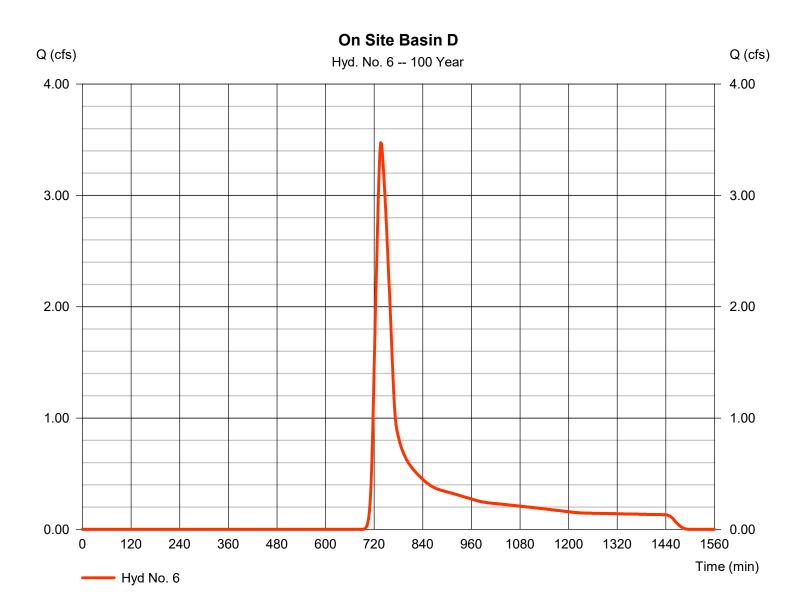
Hyd. No. 5

Onsite Basin C

Hydrograph type Storm frequency	= SCS Runoff = 100 yrs	Peak discharge Time to peak	= 8.370 cfs = 736 min
Time interval	= 2 min	Hyd. volume	= 43,420 cuft
Drainage area	= 10.050 ac	Curve number	= 62*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.30 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.060 x 76) + (0.140 x 98) + (1.360 x 98) + (4.820 x 61) + (3.670 x 49)] / 10.050

52

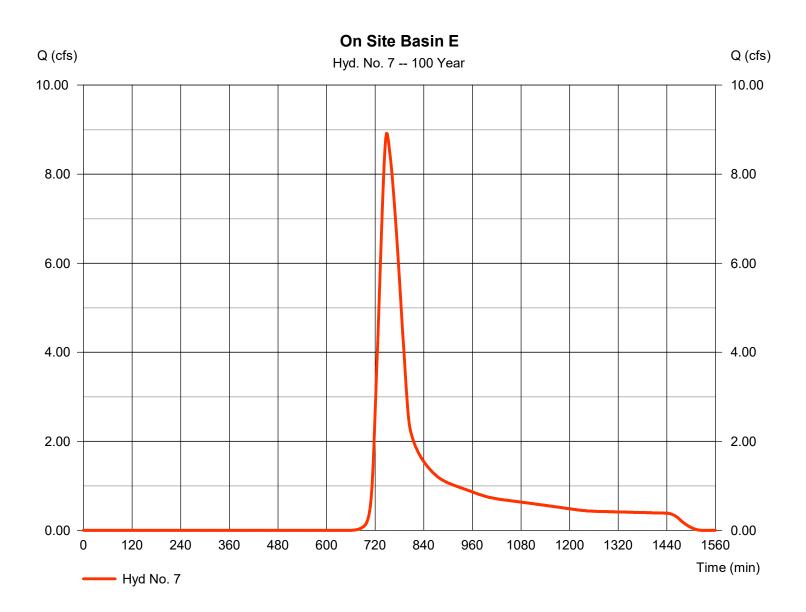

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

On Site Basin D

Hydrograph type	= SCS Runoff	Peak discharge	= 3.473 cfs
Storm frequency	= 100 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 18,388 cuft
Drainage area	= 4.490 ac	Curve number	= 61*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.00 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.430 x 98) + (0.020 x 98) + (2.790 x 61) + (1.250 x 49)] / 4.490

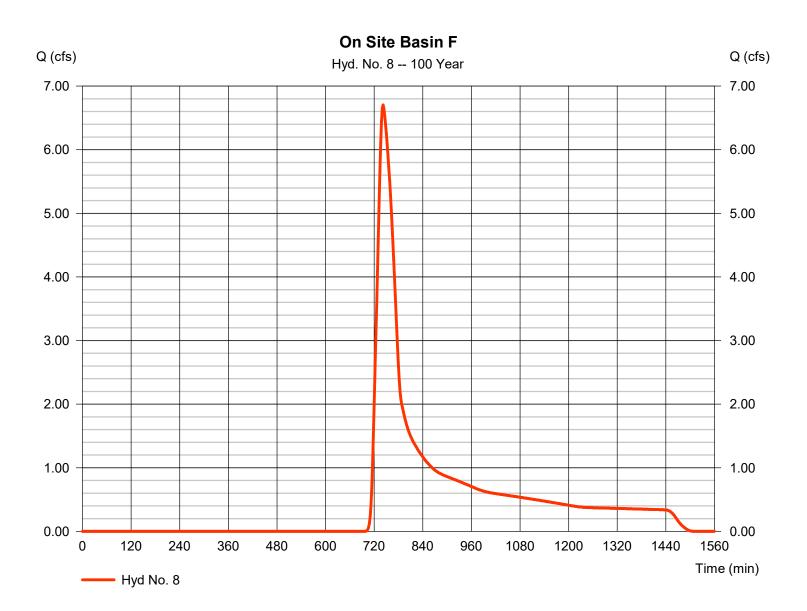

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

On Site Basin E

Hydrograph type	= SCS Runoff	Peak discharge	= 8.918 cfs
Storm frequency	= 100 yrs	Time to peak	= 748 min
Time interval	= 2 min	Hyd. volume	= 60,023 cuft
Drainage area	= 11.350 ac	Curve number	= 66*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 55.50 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.170 x 98) + (2.170 x 98) + (6.420 x 61) + (2.590 x 49)] / 11.350

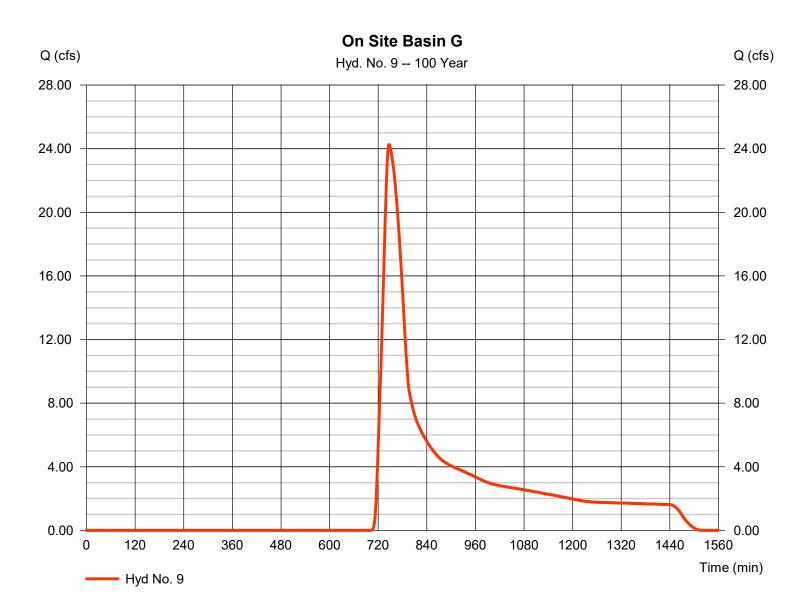

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

On Site Basin F

Hydrograph type	= SCS Runoff	Peak discharge	= 6.703 cfs
Storm frequency	= 100 yrs	Time to peak	= 742 min
Time interval	= 2 min	Hyd. volume	= 43,910 cuft
Drainage area	= 12.470 ac	Curve number	= 58*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 43.00 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.010 x 98) + (0.110 x 98) + (9.220 x 61) + (3.130 x 49)] / 12.470

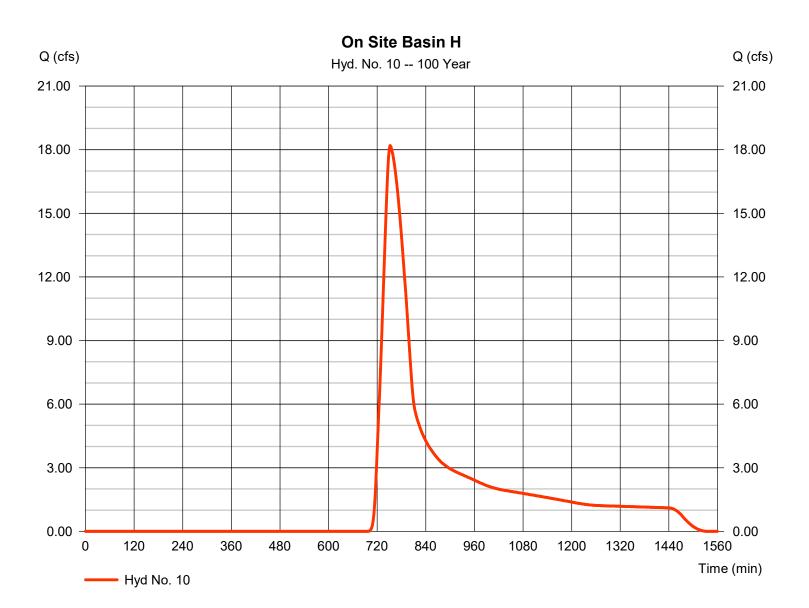

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

On Site Basin G

Hydrograph type	= SCS Runoff	Peak discharge	= 24.25 cfs
Storm frequency	= 100 yrs	Time to peak	= 746 min
Time interval	= 2 min	Hyd. volume	= 193,042 cuft
Drainage area	= 67.090 ac	Curve number	= 55*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 50.30 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(34.420 x 49) + (31.570 x 61) + (1.100 x 85)] / 67.090


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

On Site Basin H

Hydrograph type	= SCS Runoff	Peak discharge	= 18.20 cfs
Storm frequency	= 100 yrs	Time to peak	= 752 min
Time interval	= 2 min	Hyd. volume	= 146,640 cuft
Drainage area	= 39.620 ac	Curve number	= 59*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 57.90 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

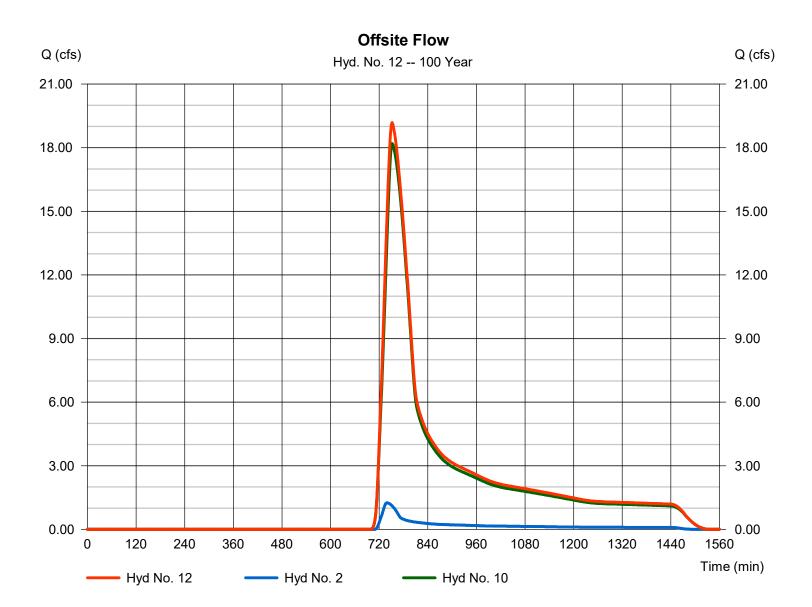
* Composite (Area/CN) = [(31.110 x 61) + (8.380 x 49) + (0.130 x 85)] / 39.620

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

Detention Pond Flow

Hydrograph type	= Combine	Peak discharge	= 18.37 cfs
Storm frequency	= 100 yrs	Time to peak	= 746 min
Time interval	= 2 min	Hyd. volume	= 122,321 cuft
Inflow hyds.	= 6, 7, 8	Contrib. drain. area	= 28.310 ac
innow nyus.	- 0, 7, 0		- 20.010 ac



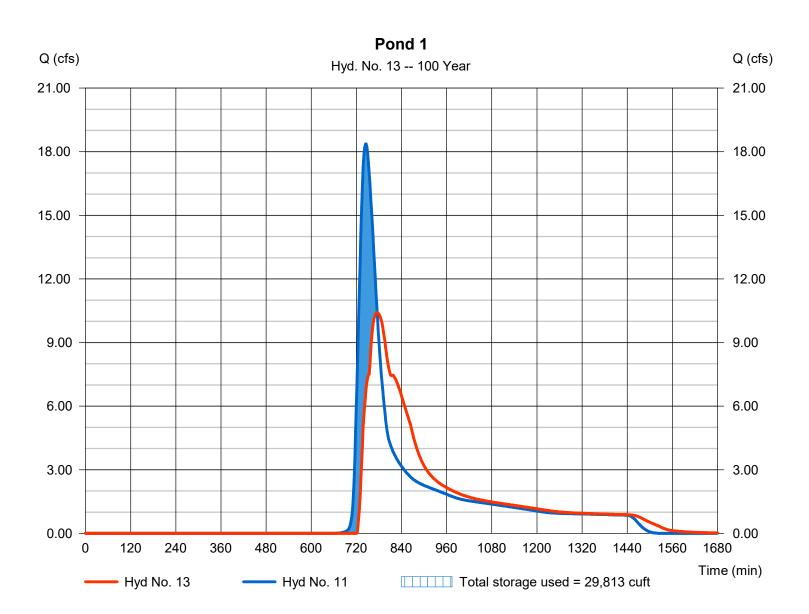
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Offsite Flow

Hydrograph type	= Combine	Peak discharge	= 19.18 cfs
Storm frequency	= 100 yrs	Time to peak	= 752 min
Time interval	= 2 min	Hyd. volume	= 155,210 cuft
Inflow hyds.	= 2, 10	Contrib. drain. area	= 44.160 ac

59

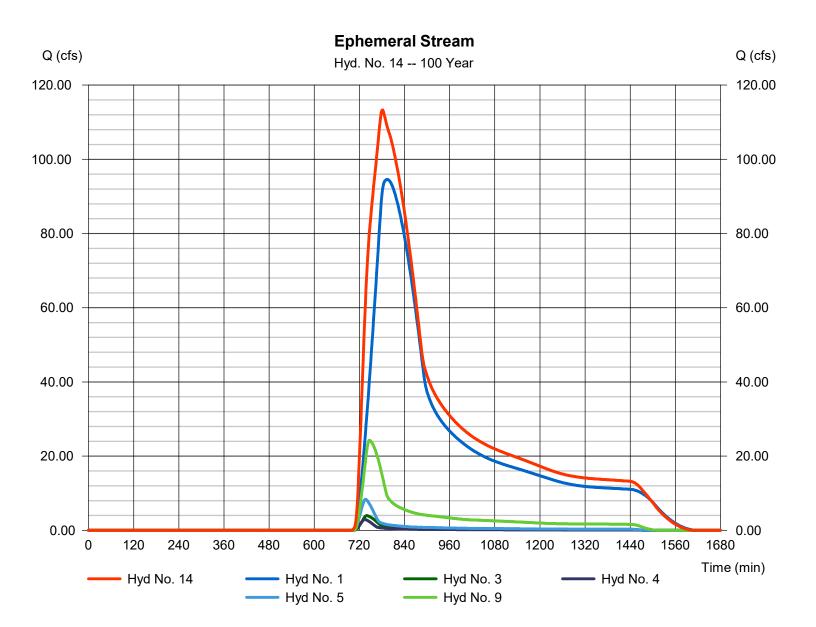

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Pond 1

Hydrograph type	= Reservoir	Peak discharge	= 10.41 cfs
Storm frequency	= 100 yrs	Time to peak	= 776 min
Time interval	= 2 min	Hyd. volume	= 119,418 cuft
Inflow hyd. No.	= 11 - Detention Pond Flow	Max. Elevation	= 5895.05 ft
Reservoir name	= Pond 1	Max. Storage	= 29,813 cuft

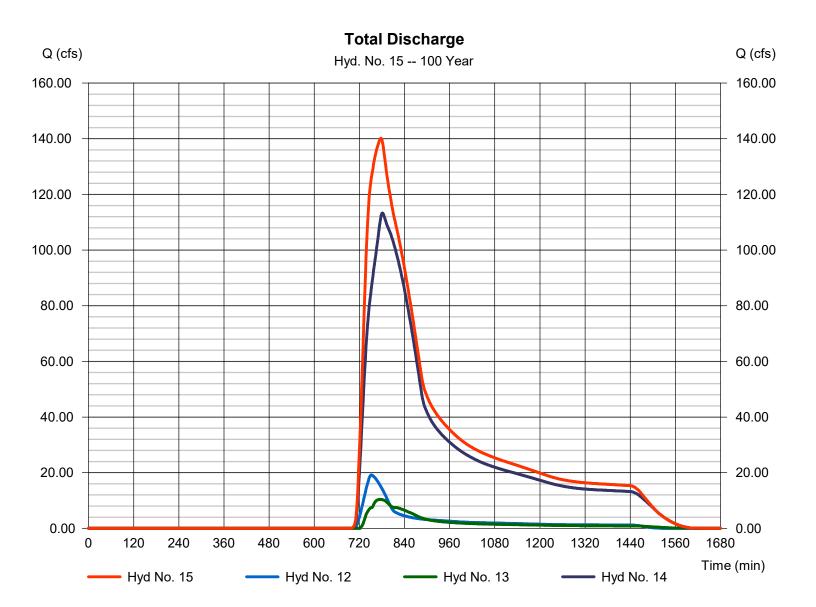
Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

Ephemeral Stream


Hydrograph type	= Combine	Peak discharge	= 113.27 cfs
Storm frequency	= 100 yrs	Time to peak	= 782 min
Time interval	= 2 min	Hyd. volume	= 1,595,655 cuft
Inflow hyds.	= 1, 3, 4, 5, 9	Contrib. drain. area	= 517.260 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Total Discharge

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)									
(Yrs)	В	D	E	(N/A)						
1	19.7890	7.4000	0.7561							
2	25.0946	7.6000	0.7677							
3	0.0000	0.0000	0.0000							
5	33.7537	7.7000	0.7745							
10	38.9252	7.4000	0.7625							
25	45.5828	6.9000	0.7450							
50	50.5681	6.6000	0.7309							
100	51.3489	5.7000	0.7003							

File name: Cherokee Rainfall.IDF

Intensity = B / (Tc + D)^E

Return			Intensity Values (in/hr)									
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	2.95	2.28	1.89	1.62	1.43	1.28	1.16	1.07	0.99	0.93	0.87	0.82
2	3.59	2.78	2.29	1.97	1.73	1.55	1.41	1.29	1.20	1.12	1.05	0.99
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	4.71	3.65	3.01	2.58	2.27	2.03	1.84	1.69	1.57	1.46	1.37	1.29
10	5.71	4.41	3.64	3.12	2.74	2.46	2.24	2.05	1.90	1.77	1.67	1.57
25	7.20	5.55	4.57	3.92	3.46	3.10	2.82	2.59	2.40	2.25	2.11	1.99
50	8.43	6.49	5.35	4.60	4.05	3.64	3.31	3.05	2.83	2.65	2.49	2.35
100	9.77	7.47	6.15	5.29	4.67	4.20	3.83	3.53	3.29	3.08	2.90	2.74

Tc = time in minutes. Values may exceed 60.

Precip. file	e name: Z:\Clients\WT	R\CherokeeMetr\119461	TDSReduce\Design\Civil\Stormwater\Cherokee Rainfall.pcp

	Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
SCS 24-hour	0.00	1.77	0.00	0.00	2.69	0.00	0.00	4.61		
SCS 6-Hr	0.00	1.46	0.00	0.00	2.30	0.00	0.00	4.13		
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Custom	0.00	1.20	0.00	0.00	1.91	0.00	0.00	3.37		

SCS HYDROGRAPH CALCULATIONS – PROPOSED CONDITIONS

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)									
(Yrs)	В	D	E	(N/A)						
1	19.7890	7.4000	0.7561							
2	25.0946	7.6000	0.7677							
3	0.0000	0.0000	0.0000							
5	33.7537	7.7000	0.7745							
10	38.9252	7.4000	0.7625							
25	45.5828	6.9000	0.7450							
50	50.5681	6.6000	0.7309							
100	51.3489	5.7000	0.7003							
	1	1	1	1						

File name: Cherokee Rainfall.IDF

Intensity = B / (Tc + D)^E

Return												
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	2.95	2.28	1.89	1.62	1.43	1.28	1.16	1.07	0.99	0.93	0.87	0.82
2	3.59	2.78	2.29	1.97	1.73	1.55	1.41	1.29	1.20	1.12	1.05	0.99
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	4.71	3.65	3.01	2.58	2.27	2.03	1.84	1.69	1.57	1.46	1.37	1.29
10	5.71	4.41	3.64	3.12	2.74	2.46	2.24	2.05	1.90	1.77	1.67	1.57
25	7.20	5.55	4.57	3.92	3.46	3.10	2.82	2.59	2.40	2.25	2.11	1.99
50	8.43	6.49	5.35	4.60	4.05	3.64	3.31	3.05	2.83	2.65	2.49	2.35
100	9.77	7.47	6.15	5.29	4.67	4.20	3.83	3.53	3.29	3.08	2.90	2.74

Tc = time in minutes. Values may exceed 60.

Precip. file	e name: Z:\Clients\WT	R\CherokeeMetr\119461	TDSReduce\Design\Civil\Stormwater\Cherokee Rainfall.pcp

	Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
SCS 24-hour	0.00	1.77	0.00	2.24	2.69	0.00	0.00	4.61		
SCS 6-Hr	0.00	1.46	0.00	1.89	2.30	0.00	0.00	4.13		
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Custom	0.00	1.20	0.00	1.57	1.91	0.00	0.00	3.37		

Hydraflow Table of Contents

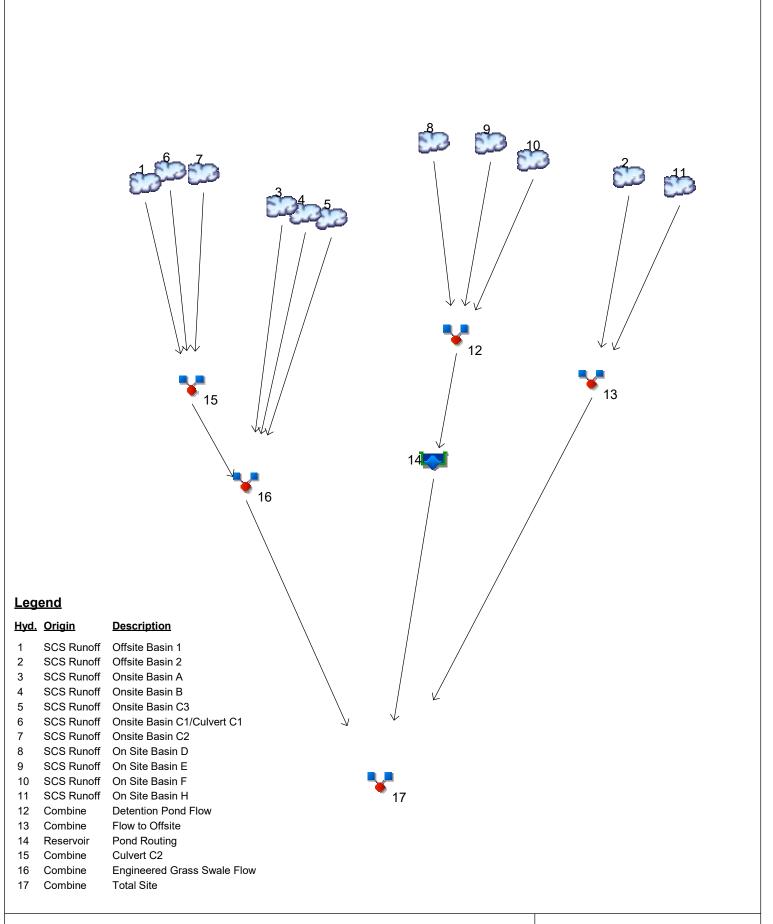
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

2 - Year

Summary Report	3
Hydrograph Reports	4
Hydrograph No. 1, SCS Runoff, Offsite Basin 1	4
TR-55 Tc Worksheet	5
Hydrograph No. 2, SCS Runoff, Offsite Basin 2	
TR-55 Tc Worksheet	
Hydrograph No. 3, SCS Runoff, Onsite Basin A	
TR-55 Tc Worksheet	
Hydrograph No. 4, SCS Runoff, Onsite Basin B	
TR-55 Tc Worksheet	
Hydrograph No. 5, SCS Runoff, Onsite Basin C3	
TR-55 Tc Worksheet	13
Hydrograph No. 6, SCS Runoff, Onsite Basin C1/Culvert C1	14
TR-55 Tc Worksheet	
Hydrograph No. 7, SCS Runoff, Onsite Basin C2	
TR-55 Tc Worksheet	
Hydrograph No. 8, SCS Runoff, On Site Basin D	
TR-55 Tc Worksheet Hydrograph No. 9, SCS Runoff, On Site Basin E	
TR-55 Tc Worksheet	
Hydrograph No. 10, SCS Runoff, On Site Basin F	
TR-55 Tc Worksheet	
Hydrograph No. 11, SCS Runoff, On Site Basin H.	
TR-55 Tc Worksheet	
Hydrograph No. 12, Combine, Detention Pond Flow	
Hydrograph No. 13, Combine, Flow to Offsite	
Hydrograph No. 14, Reservoir, Pond Routing	
Pond Report - Pond 1	
Hydrograph No. 15, Combine, Culvert C2	
Hydrograph No. 16, Combine, Engineered Grass Swale Flow	
Hydrograph No. 17, Combine, Total Site	

5 - Year


34
35
35
36
37
38
39
40
41
42

Hy	drograph No. 9, SCS Runoff, On Site Basin E	43
	drograph No. 10, SCS Runoff, On Site Basin F	
	drograph No. 11, SCS Runoff, On Site Basin H	
	drograph No. 12, Combine, Detention Pond Flow	
Hy	drograph No. 13, Combine, Flow to Offsite	47
Hy	drograph No. 14, Reservoir, Pond Routing	48
	drograph No. 15, Combine, Culvert C2	
Hy	drograph No. 16, Combine, Engineered Grass Swale Flow	50
	drograph No. 17, Combine, Total Site	
10 - Yea	r	
Sumr	mary Report	52
	ograph Reports	
Hy	rdrograph No. 1, SCS Runoff, Offsite Basin 1	53
Hy	drograph No. 2, SCS Runoff, Offsite Basin 2	54
Hy	rdrograph No. 3, SCS Runoff, Onsite Basin A	55
Hy	drograph No. 4, SCS Runoff, Onsite Basin B	56
Hy	drograph No. 5, SCS Runoff, Onsite Basin C3	57
Hy	drograph No. 6, SCS Runoff, Onsite Basin C1/Culvert C1	58
Hy	drograph No. 7, SCS Runoff, Onsite Basin C2	59
Hy	drograph No. 8, SCS Runoff, On Site Basin D	60
Hy	drograph No. 9, SCS Runoff, On Site Basin E	61
	drograph No. 10, SCS Runoff, On Site Basin F	
Hy	drograph No. 11, SCS Runoff, On Site Basin H	63
	drograph No. 12, Combine, Detention Pond Flow	
Hy	drograph No. 13, Combine, Flow to Offsite	65
Hy	drograph No. 14, Reservoir, Pond Routing	66
	drograph No. 15, Combine, Culvert C2	
	drograph No. 16, Combine, Engineered Grass Swale Flow	
	drograph No. 17, Combine, Total Site	

100 - Year

Summary Report	70
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Offsite Basin 1	
Hydrograph No. 2, SCS Runoff, Offsite Basin 2	72
Hydrograph No. 3, SCS Runoff, Onsite Basin A	73
Hydrograph No. 4, SCS Runoff, Onsite Basin B	74
Hydrograph No. 5, SCS Runoff, Onsite Basin C3	75
Hydrograph No. 6, SCS Runoff, Onsite Basin C1/Culvert C1	76
Hydrograph No. 7, SCS Runoff, Onsite Basin C2	77
Hydrograph No. 8, SCS Runoff, On Site Basin D	78
Hydrograph No. 9, SCS Runoff, On Site Basin E	79
Hydrograph No. 10, SCS Runoff, On Site Basin F 8	80
Hydrograph No. 11, SCS Runoff, On Site Basin H	81
Hydrograph No. 12, Combine, Detention Pond Flow	82
Hydrograph No. 13, Combine, Flow to Offsite	83
Hydrograph No. 14, Reservoir, Pond Routing	84
Hydrograph No. 15, Combine, Culvert C2	85
Hydrograph No. 16, Combine, Engineered Grass Swale Flow	86

Hydrograph No. 17, Combine, Total Site	. 87
IDF Report	88

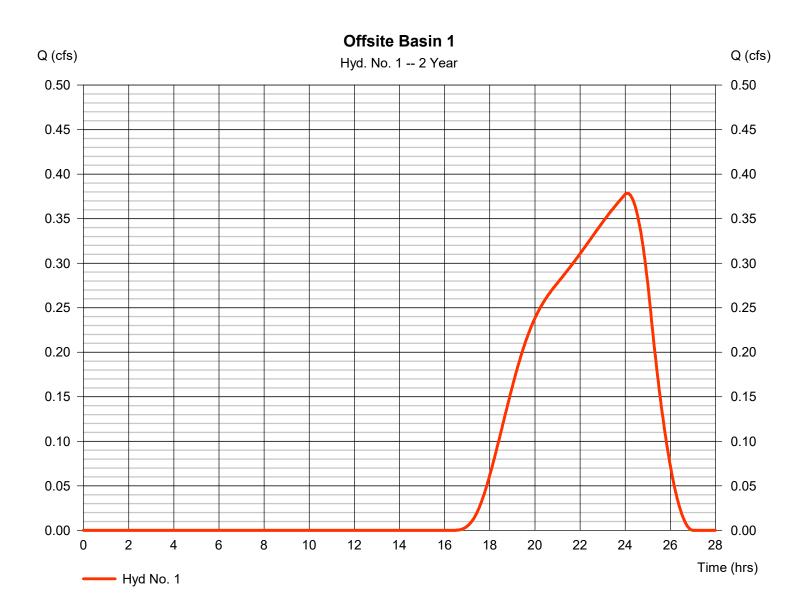
Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Inflow hyd(s)	Peak Outflow (cfs)								Hydrograph	
0.			1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description	
1	SCS Runoff			0.379		2.377	8.620			94.58	Offsite Basin 1	
2	SCS Runoff			0.000		0.007	0.027			1.252	Offsite Basin 2	
3	SCS Runoff			0.010		0.059	0.282			3.969	Onsite Basin A	
4	SCS Runoff			0.028		0.176	0.472			2.843	Onsite Basin B	
5	SCS Runoff			0.006		0.043	0.237			6.953	Onsite Basin C3	
6	SCS Runoff			0.003		0.018	0.088			1.276	Onsite Basin C1/Culvert C1	
7	SCS Runoff			0.055		0.463	1.981			19.60	Onsite Basin C2	
8	SCS Runoff			0.016		0.126	0.423			3.473	On Site Basin D	
9	SCS Runoff			0.195		0.917	2.148			10.88	On Site Basin E	
10	SCS Runoff			0.020		0.131	0.552			6.520	On Site Basin F	
11	SCS Runoff			0.084		0.552	1.936			18.20	On Site Basin H	
12	Combine	8, 9, 10,		0.196		1.072	2.983			20.49	Detention Pond Flow	
13	Combine	2, 11,		0.084		0.552	1.946			19.31	Flow to Offsite	
14	Reservoir	12		0.077		0.371	1.180			10.29	Pond Routing	
15	Combine	1, 6, 7,		0.427		2.593	9.127			97.48	Culvert C2	
16	Combine	3, 4, 5,		0.454		2.730	9.495			99.98	Engineered Grass Swale Flow	
17	Combine	15 13, 14, 16		0.609		3.460	11.55			121.25	Total Site	
Proj. file: WRF Hydrographs Proposed Conditions.gpw									 Tu	Tuesday, 09 / 21 / 2021		

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.379	2	1446	7,650				Offsite Basin 1
2	SCS Runoff	0.000	2	n/a	0				Offsite Basin 2
3	SCS Runoff	0.010	2	1440	242				Onsite Basin A
4	SCS Runoff	0.028	2	770	675				Onsite Basin B
5	SCS Runoff	0.006	2	1440	78				Onsite Basin C3
6	SCS Runoff	0.003	2	1440	72				Onsite Basin C1/Culvert C1
7	SCS Runoff	0.055	2	932	1,956				Onsite Basin C2
8	SCS Runoff	0.016	2	920	565				On Site Basin D
9	SCS Runoff	0.195	2	758	3,359				On Site Basin E
10	SCS Runoff	0.020	2	1440	608				On Site Basin F
11	SCS Runoff	0.084	2	1110	2,836				On Site Basin H
12	Combine	0.196	2	760	4,532	8, 9, 10,			Detention Pond Flow
13	Combine	0.084	2	1110	2,836	2, 11,			Flow to Offsite
14	Reservoir	0.077	2	1444	1,576	12	5892.85	3,560	Pond Routing
15	Combine	0.427	2	1440	9,678	1, 6, 7,			Culvert C2
16	Combine	0.454	2	1440	10,673	3, 4, 5,			Engineered Grass Swale Flow
17	Combine	0.609	2	1440	15,085	15 13, 14, 16			Total Site
WF	RF Hydrograp	hs Propo	sed Cond	ditions.gp	w Return I	Period: 2 Ye	ear	Tuesday. ()9 / 21 / 2021


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Offsite Basin 1

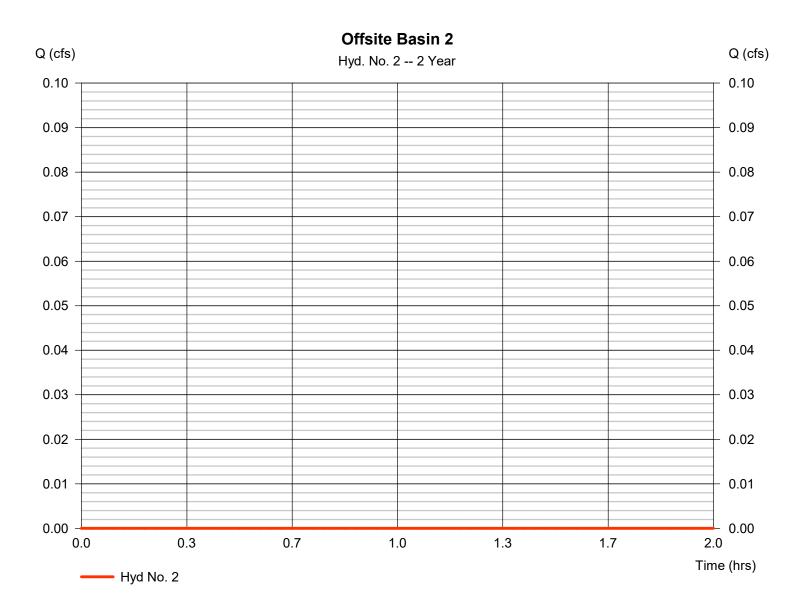
Hydrograph type	= SCS Runoff	Peak discharge	= 0.379 cfs
Storm frequency	= 2 yrs	Time to peak	= 24.10 hrs
Time interval	= 2 min	Hyd. volume	= 7,650 cuft
Drainage area	= 428.970 ac	Curve number	= 56*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 114.40 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(240.490 x 61) + (188.480 x 49)] / 428.970

Hyd. No. 1

Offsite Basin 1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 1.77 = 1.74 = 33.54	+	0.011 0.0 1.77 0.00 0.00	+	0.011 0.0 1.77 0.00 0.00	_	33.54
Travel Time (min)	- 33.54	Ŧ	0.00	Ŧ	0.00	-	33.54
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 10323. = 1.74 = Unpave =2.13		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 80.84	+	0.00	+	0.00	=	80.84
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							114.40 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Offsite Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Drainage area	= 4.540 ac	Curve number	= 51*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.30 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

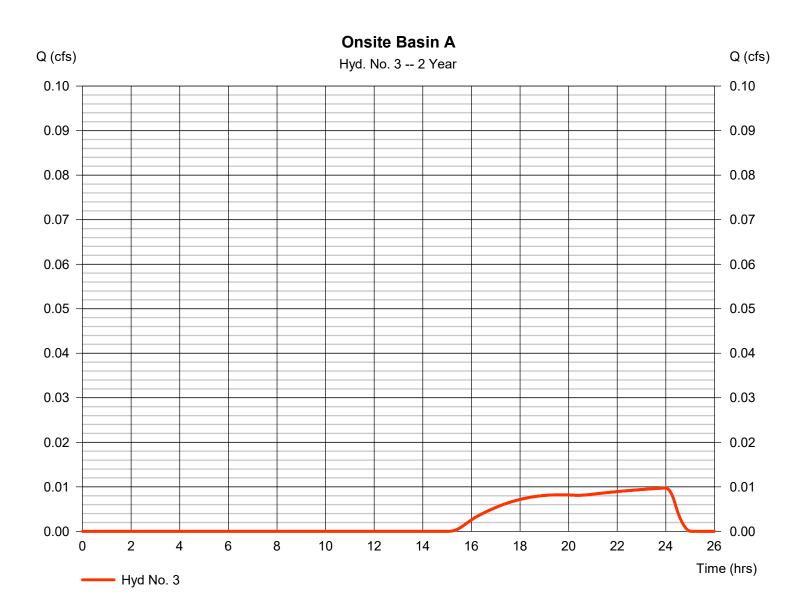
* Composite (Area/CN) = [(3.610 x 49) + (0.930 x 61)] / 4.540

Tuesday, 09 / 21 / 2021

Hyd. No. 2

Offsite Basin 2

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 1.77 = 2.42		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 29.40	+	0.00	+	0.00	=	29.40
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 731.00 = 2.42 = Unpaved =2.51	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 4.85	+	0.00	+	0.00	=	4.85
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Onsite Basin A

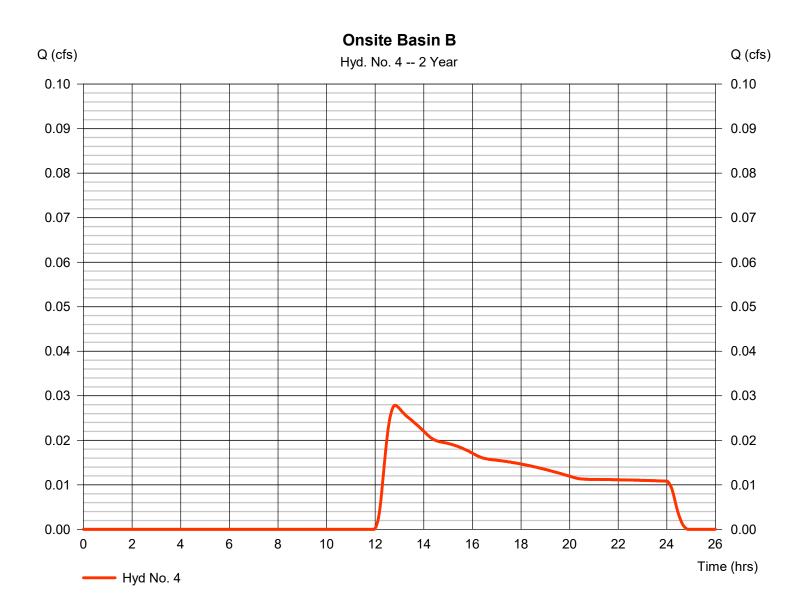
Hydrograph type	= SCS Runoff	Peak discharge	= 0.010 cfs
Storm frequency	= 2 yrs	Time to peak	= 24.00 hrs
Time interval	= 2 min	Hyd. volume	= 242 cuft
Drainage area	= 7.640 ac	Curve number	= 57*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.50 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.690 x 49) + (4.780 x 61) + (0.170 x 85)] / 7.640

Hyd. No. 3

Onsite Basin A

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 1.77 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 31.73	+	0.00	+	0.00	=	31.73
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 786.82 = 2.00 = Unpavec =2.28	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 5.75	+	0.00	+	0.00	=	5.75
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							37.50 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Onsite Basin B

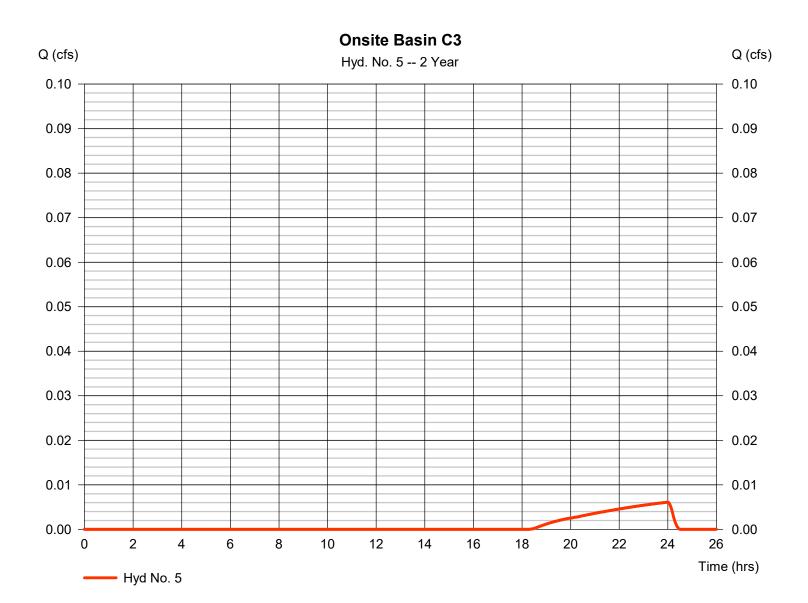
Hydrograph type	= SCS Runoff	Peak discharge	= 0.028 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.83 hrs
Time interval	= 2 min	Hyd. volume	= 675 cuft
Drainage area	= 2.770 ac	Curve number	= 64*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.40 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.144 x 85) + (0.205 x 98) + (0.283 x 49) + (2.134 x 61)] / 2.770

Hyd. No. 4

Onsite Basin B

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.1 = 300 = 1.7 = 2.0).0 7	0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 31.	73 +	0.00	+	0.00	=	31.73
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 73.9 = 1.39 = Ung =1.87	5 baved	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.6	6 +	0.00	+	0.00	=	0.66
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.0 = 0.0	0 0	0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.	0	0.0		0.0		
Travel Time (min)	= 0.0	0 +	0.00	+	0.00	=	0.00
Total Travel Time, Tc							32.40 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

Onsite Basin C3

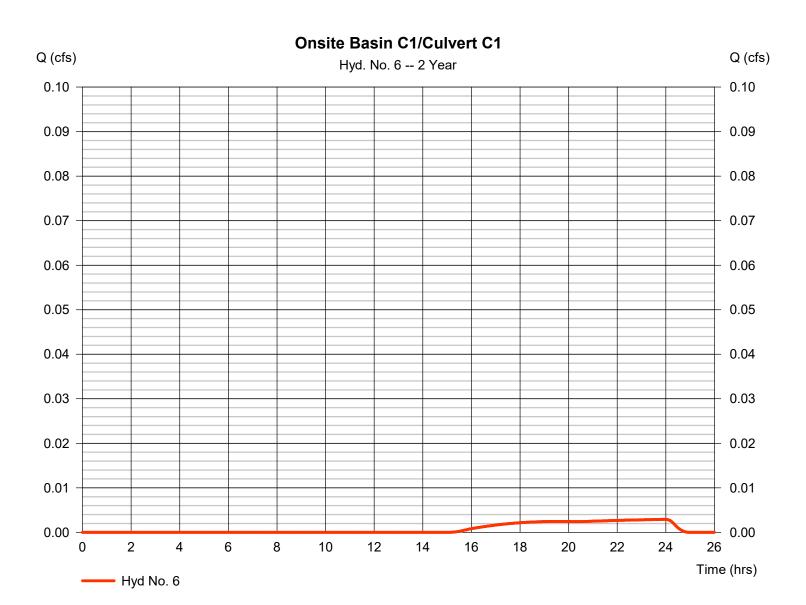
Hydrograph type	= SCS Runoff	Peak discharge	= 0.006 cfs
Storm frequency	= 2 yrs	Time to peak	= 24.00 hrs
Time interval	= 2 min	Hyd. volume	= 78 cuft
Drainage area	= 9.990 ac	Curve number	= 55*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.90 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.297 x 98) + (0.716 x 76) + (0.036 x 85) + (0.337 x 98) + (7.720 x 49) + (0.887 x 61)] / 9.990

Hyd. No. 5

Onsite Basin C3

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 168.2 = 1.77 = 4.30		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 14.70	+	0.00	+	0.00	=	14.70
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 0.00 = 0.00 = Unpaved =0.00	1	0.00 0.00 Unpave 0.00	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 31.95 = 23.54 = 0.82 = 0.026 =6.38		0.00 0.00 0.00 0.013 0.00		0.00 0.00 0.00 0.026 0.00		
Flow length (ft)	({0})829.5		0.0		0.0		
Travel Time (min)	= 2.17	+	0.00	+	0.00	=	2.17
Total Travel Time, Tc	Total Travel Time, Tc1						


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

Onsite Basin C1/Culvert C1

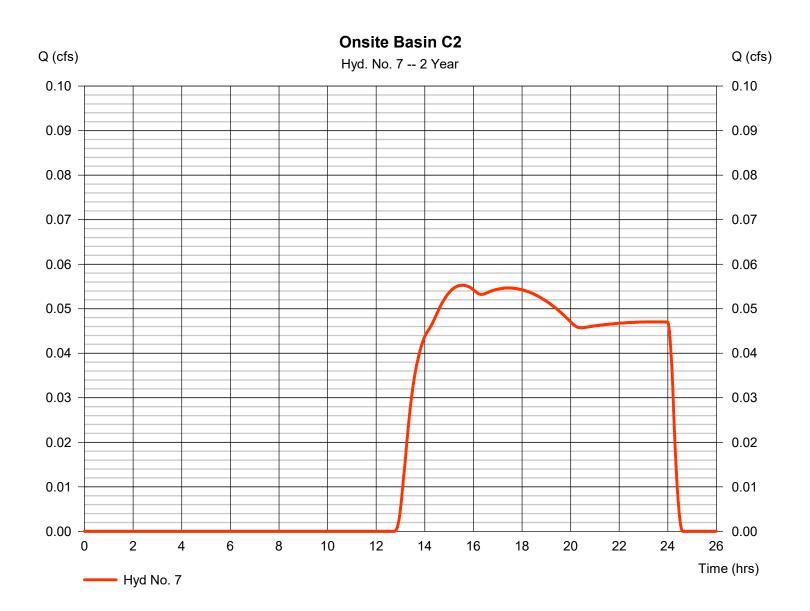
Hydrograph type	= SCS Runoff	Peak discharge	= 0.003 cfs
Storm frequency	= 2 yrs	Time to peak	= 24.00 hrs
Time interval	= 2 min	Hyd. volume	= 72 cuft
Drainage area	= 2.310 ac	Curve number	= 57*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.06 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.145 x 85) + (1.131 x 49) + (1.033 x 61)] / 2.310

Hyd. No. 6

Onsite Basin C1/Culvert C1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 97.5 = 1.77 = 0.43		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 23.85	+	0.00	+	0.00	=	23.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 1391.72 = 1.98 = Unpavec =2.27	1	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 10.22	+	0.00	+	0.00	=	40.00
	- 10.22	т	0.00	т	0.00	-	10.22
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 = 0.00	·	0.00 0.00 0.00 0.015 0.00	T	0.00 0.00 0.00 0.015 0.00	-	10.22
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.00 = 0.00 = 0.00 = 0.015	·	0.00 0.00 0.00 0.015	T	0.00 0.00 0.00 0.015	-	10.22
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015 0.00	=	0.00


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

Onsite Basin C2

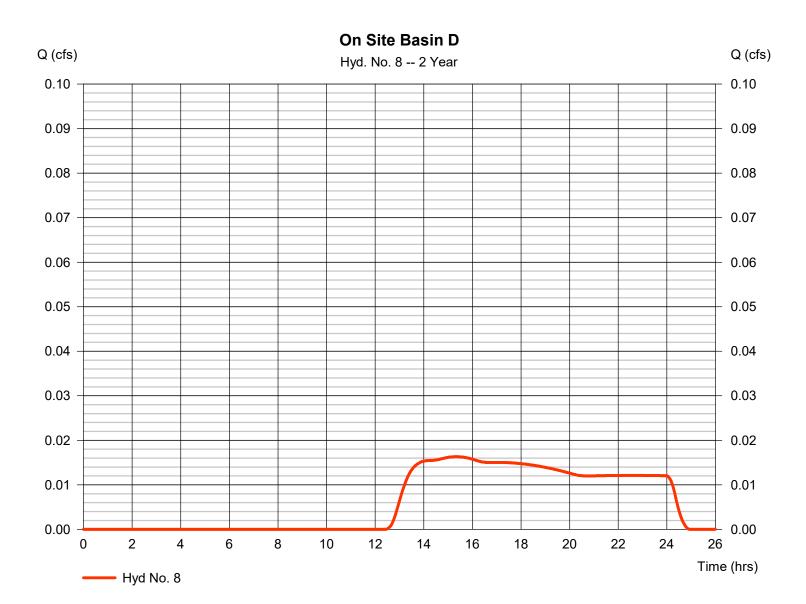
Hydrograph type	= SCS Runoff	Peak discharge	= 0.055 cfs
Storm frequency	= 2 yrs	Time to peak	= 15.53 hrs
Time interval	= 2 min	Hyd. volume	= 1,956 cuft
Drainage area	= 19.720 ac	Curve number	= 60*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.30 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.139 x 98) + (0.236 x 85) + (1.032 x 98) + (5.683 x 49) + (12.631 x 61)] / 19.720

Hyd. No. 7

Onsite Basin C2

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 119.0 = 1.77 = 2.85		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 13.14	+	0.00	+	0.00	=	13.14
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 0.00 = 0.00 = Paved =0.00		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 31.95 = 23.54 = 0.77 = 0.026 =6.18		0.00 0.00 0.00 0.015		0.00 0.00 0.00 0.015		
	0.10		0.00		0.00		
Flow length (ft)	({0})2662.5		0.00		0.00 0.0		
Flow length (ft) Travel Time (min)		+		+		=	7.18


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

On Site Basin D

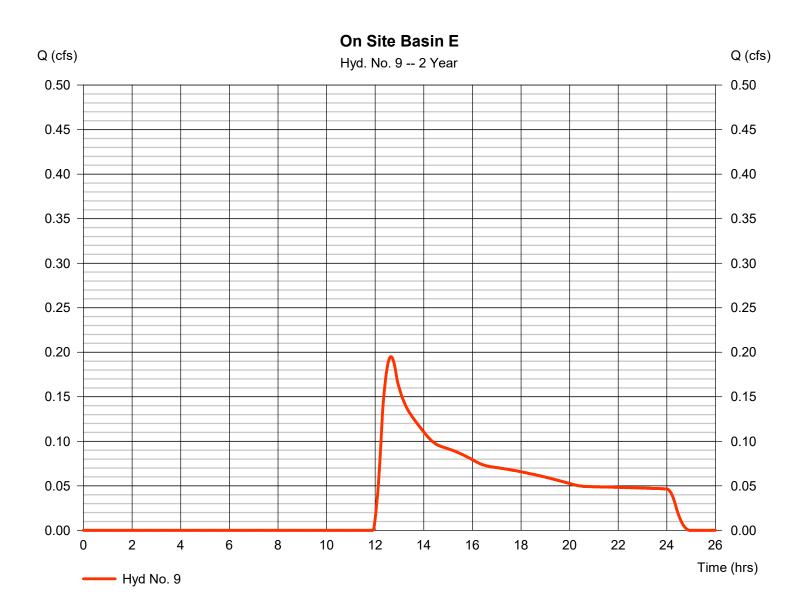
Hydrograph type	= SCS Runoff	Peak discharge	= 0.016 cfs
Storm frequency	= 2 yrs	Time to peak	= 15.33 hrs
Time interval	= 2 min	Hyd. volume	= 565 cuft
Drainage area	= 4.490 ac	Curve number	= 61*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.00 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.015 x 98) + (0.428 x 98) + (1.254 x 49) + (2.792 x 61)] / 4.490

Hyd. No. 8

On Site Basin D

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 245.0 = 1.77 = 1.50		0.011 55.0 1.77 1.50		0.011 0.0 0.00 0.00		
Travel Time (min)	= 30.27	+	1.13	+	0.00	=	31.40
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 109.14 = 2.00 = Paved =2.87		477.45 1.00 Unpave 1.61	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.63	+	4.93	+	0.00	=	5.56
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							37.00 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

On Site Basin E

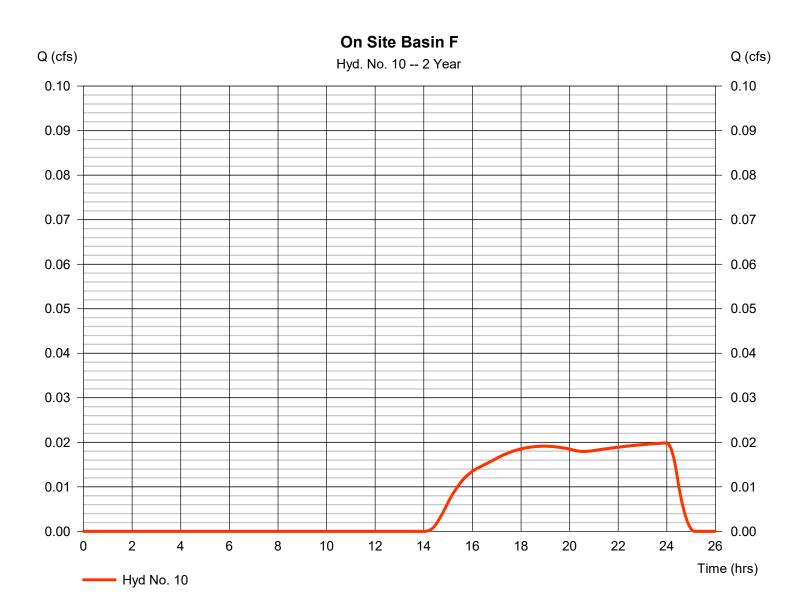
Hydrograph type	= SCS Runoff	Peak discharge	= 0.195 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.63 hrs
Time interval	= 2 min	Hyd. volume	= 3,359 cuft
Drainage area	= 10.090 ac	Curve number	= 66*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.10 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.165 x 98) + (2.167 x 98) + (2.583 x 49) + (5.178 x 61)] / 10.090

Hyd. No. 9

On Site Basin E

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.150 = 300.0 = 1.77 = 3.94 = 24.19	+	0.150 0.0 0.00 0.00 0.00	+	0.150 0.0 0.00 0.00 0.00	_	24.19
	- 24.10	•	0.00	•	0.00		24.15
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 924.04 = 1.43 = Unpaved =1.93	1	210.58 0.78 Paved 1.80		0.00 0.00 Paved 0.00		
Travel Time (min)	= 7.98	+	1.95	+	0.00	=	9.94
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							34.10 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

On Site Basin F

Hydrograph type	= SCS Runoff	Peak discharge	= 0.020 cfs
Storm frequency	= 2 yrs	Time to peak	= 24.00 hrs
Time interval	= 2 min	Hyd. volume	= 608 cuft
Drainage area	= 12.130 ac	Curve number	= 58*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 43.00 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

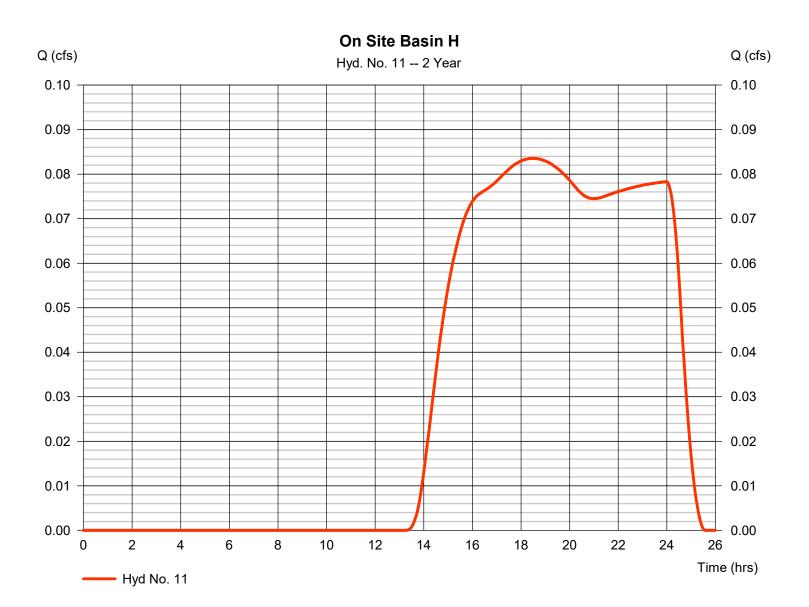
* Composite (Area/CN) = [(0.011 x 98) + (0.107 x 98) + (3.132 x 49) + (8.879 x 61)] / 12.130

22

Hyd. No. 10

On Site Basin F

Description		A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= =	0.150 300.0 1.77 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	=	31.73	+	0.00	+	0.00	=	31.73
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= =	100.00 6.53 Unpaved .12		1367.56 2.00 Unpaved 2.28	ł	200.00 5.55 Unpaveo 3.80	b	
Travel Time (min)	=	0.40	+	9.99	+	0.88	=	11.27
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= = =	0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0)})0.0		0.0		0.0		
Travel Time (min)	=	0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc								43.00 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

On Site Basin H

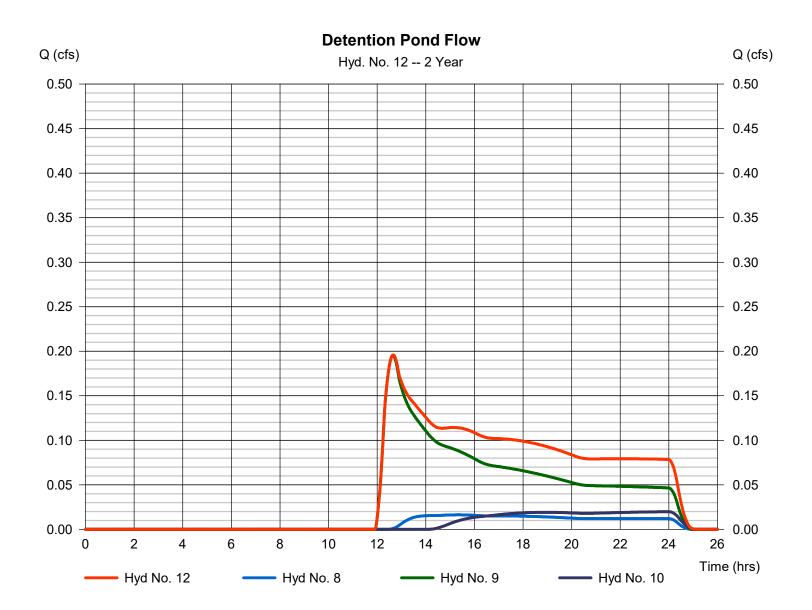
Hydrograph type	= SCS Runoff	Peak discharge	= 0.084 cfs
Storm frequency	= 2 yrs	Time to peak	= 18.50 hrs
Time interval	= 2 min	Hyd. volume	= 2,836 cuft
Drainage area	= 39.620 ac	Curve number	= 59*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 57.90 min
Total precip.	= 1.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.132 x 85) + (8.377 x 49) + (31.111 x 61)] / 39.620

24

Hyd. No. 11

On Site Basin H

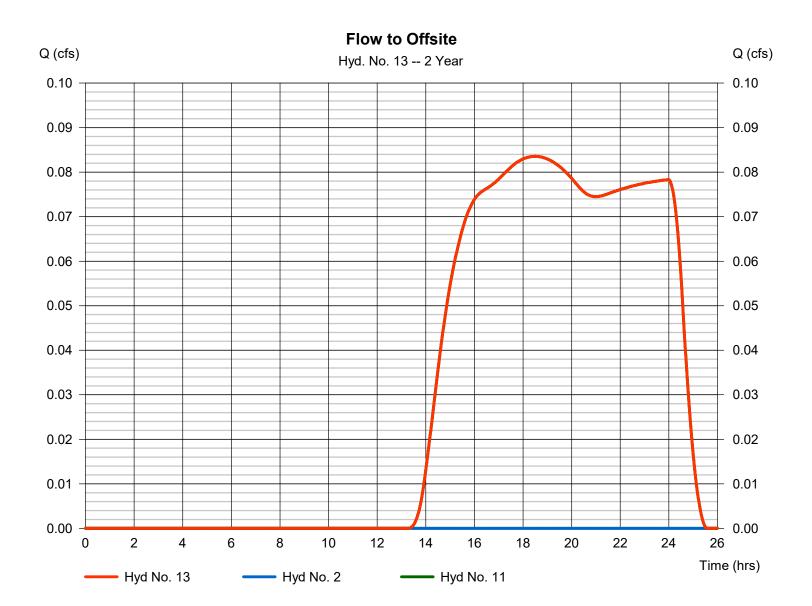

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 1.77 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00	_	24 72
Travel Time (min)	= 31.73	+	0.00	+	0.00	=	31.73
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 1933.72 = 1.25 = Unpaved =1.80	I	600.56 3.00 Unpaveo 2.79	d	556.40 1.50 Unpave 1.98	d	
Travel Time (min)	= 17.87	+	3.58	+	4.69	=	26.14
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							57.90 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Detention Pond Flow

Hydrograph type	= Combine	Peak discharge	= 0.196 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.67 hrs
Time interval	= 2 min	Hyd. volume	= 4,532 cuft
Inflow hyds.	= 8, 9, 10	Contrib. drain. area	= 26,710 ac
IIII0W Hyds.	- 0, 9, 10	Contrib. drain. area	= 20.7 10 ac

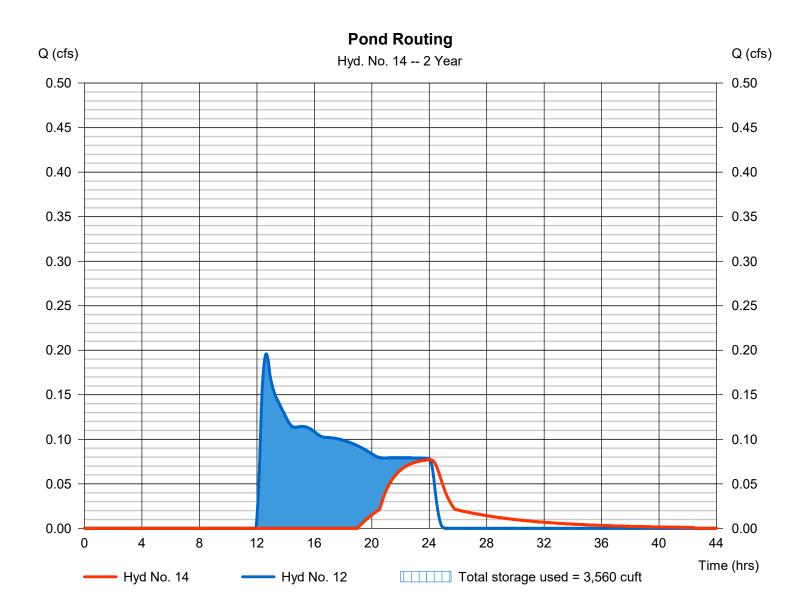


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Flow to Offsite

Hydrograph type	= Combine	Peak discharge	= 0.084 cfs
Storm frequency	= 2 yrs	Time to peak	= 18.50 hrs
Time interval	= 2 min	Hyd. volume	= 2,836 cuft
Inflow hyds.	= 2, 11	Contrib. drain. area	= 44.160 ac
,	,	-	


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

Pond Routing

Hydrograph type =	= Reservoir	Peak discharge	= 0.077 cfs
Storm frequency =	= 2 yrs	Time to peak	= 24.07 hrs
Time interval =	= 2 min	Hyd. volume	= 1,576 cuft
Inflow hyd. No. =	= 12 - Detention Pond Flow	Max. Elevation	= 5892.85 ft
Reservoir name =	= Pond 1	Max. Storage	= 3,560 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Pond No. 1 - Pond 1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 5892.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5892.00	1,770	0	0
1.00	5893.00	7,238	4,195	4,195
2.00	5894.00	12,045	9,539	13,734
3.00	5895.00	18,047	14,944	28,678
4.00	5896.00	25,583	21,704	50,382
5.00	5897.00	36,234	30,751	81,133
5.50	5897.50	44,882	20,238	101,371
6.00	5898.00	57,768	25,592	126,964

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	Inactive	0.00	Crest Len (ft)	= 87.50	0.00	0.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 5897.50	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 5892.73	0.00	0.00	0.00	Weir Type	= Ciplti			
Length (ft)	= 56.03	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.54	0.00	0.00	n/a					
N-Value	= .023	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

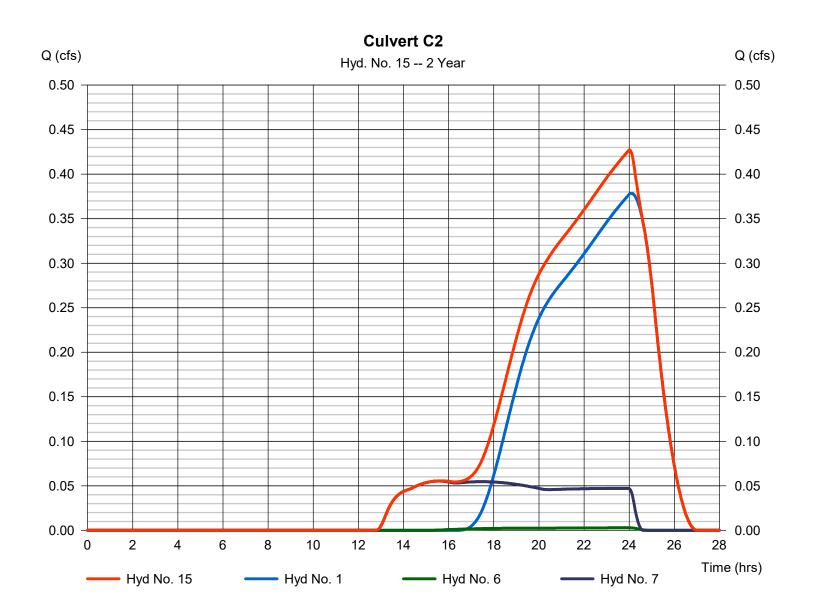
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	5892.00	0.00				0.00						0.000
0.10	420	5892.10	0.00				0.00						0.000
0.20	839	5892.20	0.00				0.00						0.000
0.30	1,259	5892.30	0.00				0.00						0.000
0.40	1,678	5892.40	0.00				0.00						0.000
0.50	2,098	5892.50	0.00				0.00						0.000
0.60	2,517	5892.60	0.00				0.00						0.000
0.70	2,937	5892.70	0.00				0.00						0.000
0.80	3,356	5892.80	0.02 oc				0.00						0.021
0.90	3,776	5892.90	0.14 oc				0.00						0.136
1.00	4,195	5893.00	0.35 oc				0.00						0.345
1.10	5,149	5893.10	0.64 oc				0.00						0.638
1.20	6,103	5893.20	1.00 oc				0.00						1.000
1.30	7,057	5893.30	1.42 oc				0.00						1.423
1.40	8,011	5893.40	1.89 oc				0.00						1.891
1.50	8,965	5893.50	2.39 oc				0.00						2.392
1.60	9,919	5893.60	2.92 oc				0.00						2.923
1.70	10,873	5893.70	3.47 oc				0.00						3.469
1.80	11,827	5893.80	4.02 oc				0.00						4.024
1.90	12,781	5893.90	4.57 oc				0.00						4.574
2.00	13,734	5894.00	5.11 oc				0.00						5.112
2.10	15,229	5894.10	5.63 oc				0.00						5.630
2.20	16,723	5894.20	6.12 oc				0.00						6.119
2.30	18,218	5894.30	6.57 oc				0.00						6.568
2.40	19,712	5894.40	6.96 oc				0.00						6.956
2.50	21,206	5894.50	7.27 oc				0.00						7.267
2.60	22,701	5894.60	7.46 oc				0.00						7.464
2.70	24,195	5894.70	7.45 oc				0.00						7.446
2.80	25,689	5894.80	8.05 oc				0.00						8.052
2.90	27,184	5894.90	9.07 oc				0.00						9.067
3.00	28,678	5895.00	9.97 oc				0.00						9.970
3.10	30,849	5895.10	10.81 oc				0.00						10.81
3.20	33,019	5895.20	11.58 oc				0.00						11.58
3.30	35,189	5895.30	12.31 oc				0.00						12.31
3.40	37,360	5895.40	13.00 oc				0.00						13.00
											Continue	es on nev	tnage

Pond 1

Stage / Storage / Discharge Table

Stage	Storage	Elevation	Clv A	Clv B	Clv C	PrfRsr	Wr A	Wr B	Wr C	Wr D	Exfil	User	Total
ft	cuft	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
3.50	39,530	5895.50	13.65 oc				0.00						13.65
3.60	41,700	5895.60	14.27 oc				0.00						14.27
3.70	43,871	5895.70	14.87 oc				0.00						14.87
3.80	46,041	5895.80	15.44 oc				0.00						15.44
3.90	48,211	5895.90	15.99 oc				0.00						15.99
4.00	50,382	5896.00	16.52 oc				0.00						16.52
4.10	53,457	5896.10	17.04 oc				0.00						17.04
4.20	56,532	5896.20	17.54 oc				0.00						17.54
4.30	59,607	5896.30	18.03 oc				0.00						18.03
4.40	62,682	5896.40	18.51 oc				0.00						18.51
4.50	65,757	5896.50	18.97 oc				0.00						18.97
4.60	68,832	5896.60	19.42 oc				0.00						19.42
4.70	71,908	5896.70	19.86 oc				0.00						19.86
4.80	74,983	5896.80	20.30 oc				0.00						20.30
4.90	78,058	5896.90	20.72 oc				0.00						20.72
5.00	81,133	5897.00	21.13 oc				0.00						21.13
5.05	83,157	5897.05	21.33 oc				0.00						21.33
5.10	85,181	5897.10	21.54 oc				0.00						21.54
5.15	87,205	5897.15	21.74 oc				0.00						21.74
5.20	89,228	5897.20	21.93 oc				0.00						21.93
5.25	91,252	5897.25	22.13 oc				0.00						22.13
5.30	93,276	5897.30	22.32 oc				0.00						22.32
5.35	95,300	5897.35	22.52 oc				0.00						22.52
5.40	97,324	5897.40	22.71 oc				0.00						22.71
5.45	99,348	5897.45	22.90 oc				0.00						22.90
5.50	101,371	5897.50	23.09 oc				0.00						23.09
5.55	103,931	5897.55	23.28 oc				3.24						26.52
5.60	106,490	5897.60	23.46 oc				9.16						32.62
5.65	109,049	5897.65	23.65 oc				16.83						40.48
5.70	111,608	5897.70	23.83 oc				25.91						49.74
5.75	114,168	5897.75	24.01 oc				36.21						60.22
5.80	116,727	5897.80	24.19 oc				47.60						71.79
5.85	119,286	5897.85	24.37 oc				59.98						84.35
5.90	121,845	5897.90	24.54 oc				73.28						97.83
5.95	124,405	5897.95	24.72 oc				87.44						112.16
6.00	126,964	5898.00	24.90 oc				103.02						127.92
	,												

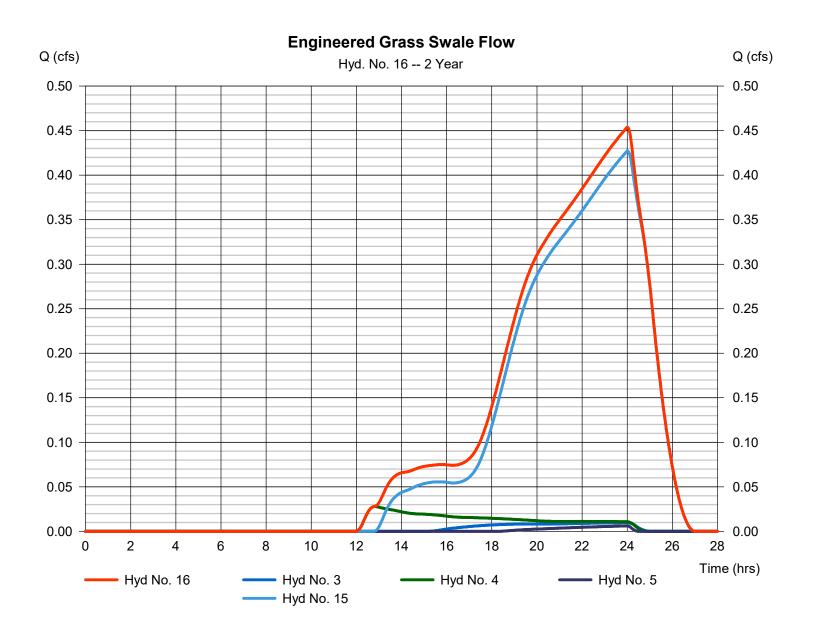

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Culvert C2

Hydrograph type Storm frequency Time interval Inflow hyds.	 Combine 2 yrs 2 min 1, 6, 7 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	 = 0.427 cfs = 24.00 hrs = 9,678 cuft = 451.000 ac
	., ., .	•••••••••••••••••	



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

Engineered Grass Swale Flow


Hydrograph type	= Combine	Peak discharge	= 0.454 cfs
Storm frequency	= 2 yrs	Time to peak	= 24.00 hrs
Time interval	= 2 min	Hyd. volume	= 10,673 cuft
Inflow hyds.	= 3, 4, 5, 15	Contrib. drain. area	= 20.400 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

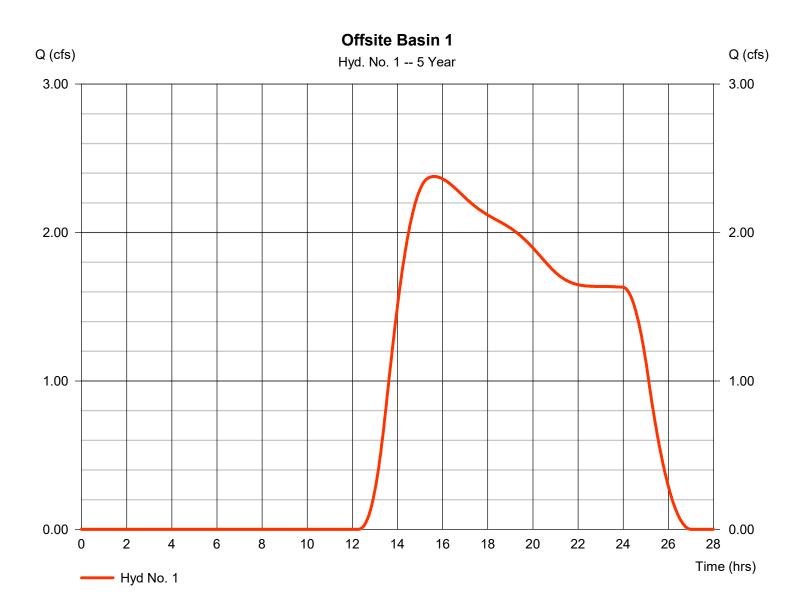
Hyd. No. 17

Total Site

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.377	2	936	81,935				Offsite Basin 1
2	SCS Runoff	0.007	2	1440	166				Offsite Basin 2
3	SCS Runoff	0.059	2	812	1,792				Onsite Basin A
4	SCS Runoff	0.176	2	744	1,876				Onsite Basin B
5	SCS Runoff	0.043	2	914	1,504				Onsite Basin C3
6	SCS Runoff	0.018	2	808	536				Onsite Basin C1/Culvert C1
7	SCS Runoff	0.463	2	748	7,885				Onsite Basin C2
8	SCS Runoff	0.126	2	756	2,025				On Site Basin D
9	SCS Runoff	0.917	2	742	8,327				On Site Basin E
10	SCS Runoff	0.131	2	788	3,469				On Site Basin F
11	SCS Runoff	0.552	2	800	13,326				On Site Basin H
12	Combine	1.072	2	746	13,820	8, 9, 10,			Detention Pond Flow
13	Combine	0.552	2	800	13,493	2, 11,			Flow to Offsite
14	Reservoir	0.371	2	874	10,864	12	5893.01	4,281	Pond Routing
15	Combine	2.593	2	930	90,355	1, 6, 7,			Culvert C2
16	Combine	2.730	2	928	95,527	3, 4, 5,			Engineered Grass Swale Flow
17	Combine	3.460	2	920	119,885	15 13, 14, 16			Total Site
WF	RF Hydrograp	hs Propo	sed Cond	ditions.gp	w Return F	Period: 5 Ye	ear	Tuesday, (09 / 21 / 2021


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

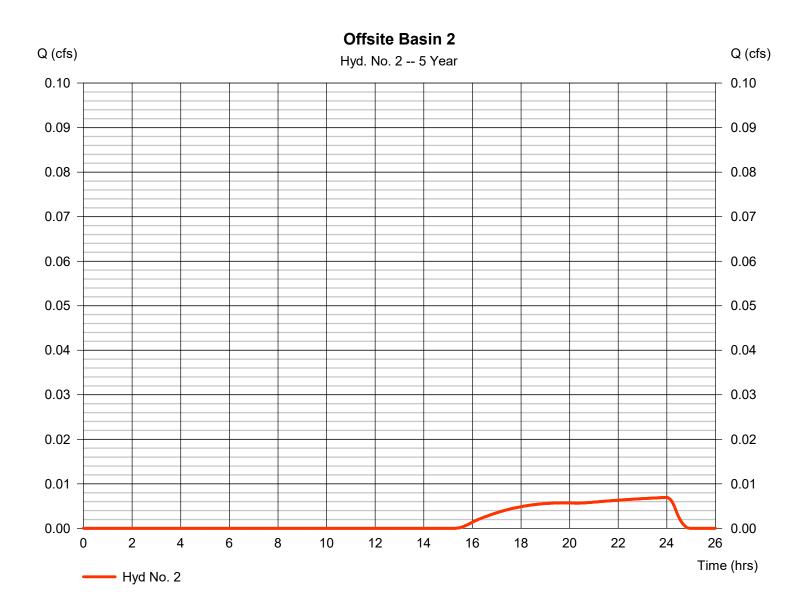
Hyd. No. 1

Offsite Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 2.377 cfs
Storm frequency	= 5 yrs	Time to peak	= 15.60 hrs
Time interval	= 2 min	Hyd. volume	= 81,935 cuft
Drainage area	= 428.970 ac	Curve number	= 56*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 114.40 min
Total precip.	= 2.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(240.490 x 61) + (188.480 x 49)] / 428.970

35


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

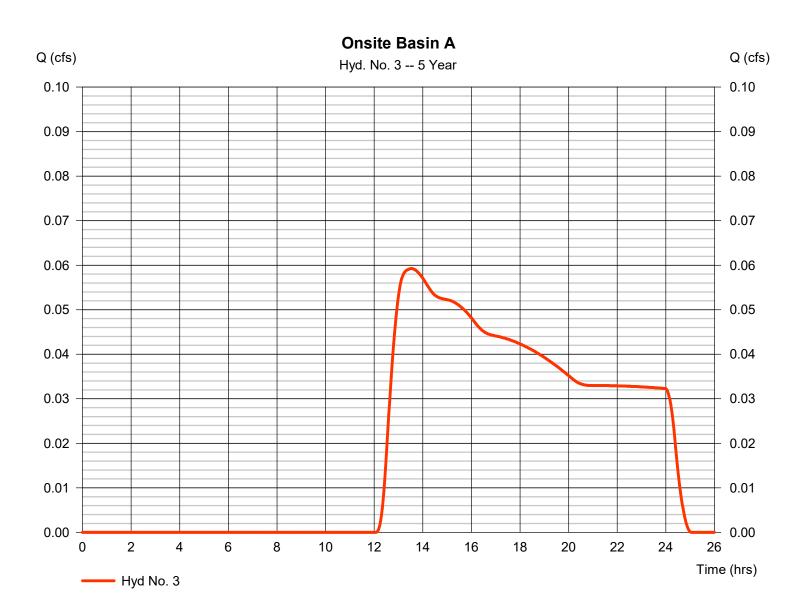
Hyd. No. 2

Offsite Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.007 cfs
Storm frequency	= 5 yrs	Time to peak	= 24.00 hrs
Time interval	= 2 min	Hyd. volume	= 166 cuft
Drainage area	= 4.540 ac	Curve number	= 51*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.30 min
Total precip.	= 2.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.610 x 49) + (0.930 x 61)] / 4.540

Tuesday, 09 / 21 / 2021

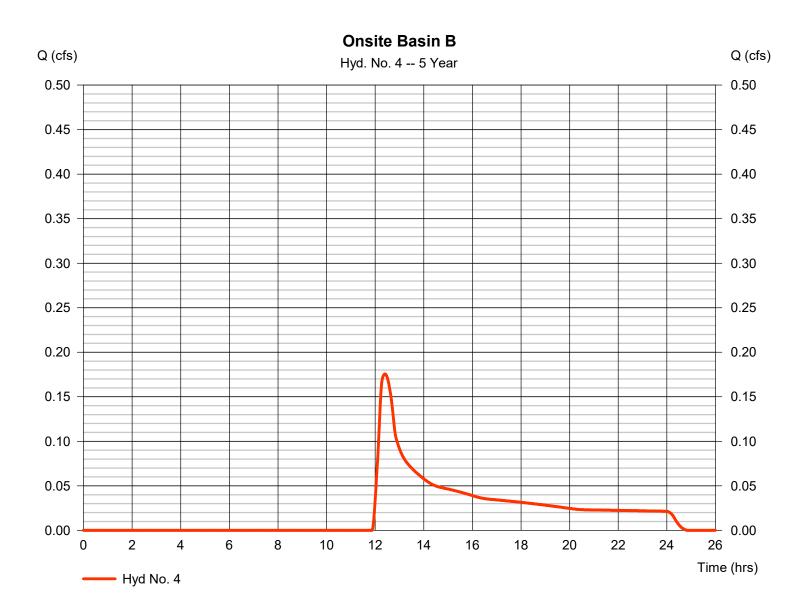

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Onsite Basin A

= SCS Runoff	Peak discharge	= 0.059 cfs
= 5 yrs	Time to peak	= 13.53 hrs
= 2 min	Hyd. volume	= 1,792 cuft
= 7.640 ac	Curve number	= 57*
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 37.50 min
= 2.24 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= 5 yrs = 2 min = 7.640 ac = 0.0 % = TR55 = 2.24 in	= 5 yrsTime to peak= 2 minHyd. volume= 7.640 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 2.24 inDistribution

* Composite (Area/CN) = [(2.690 x 49) + (4.780 x 61) + (0.170 x 85)] / 7.640

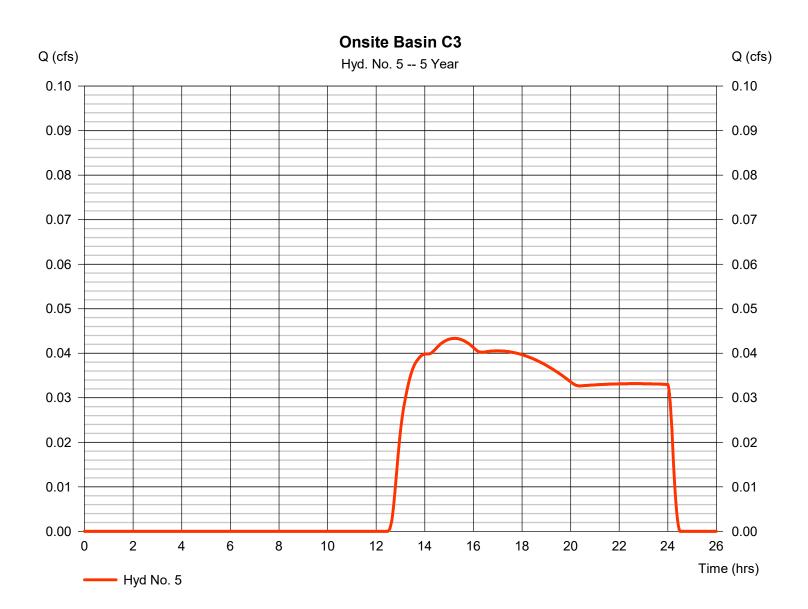

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Onsite Basin B

Hydrograph type	= SCS Runoff	Peak discharge	= 0.176 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 1,876 cuft
Drainage area	= 2.770 ac	Curve number	= 64*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.40 min
Total precip.	= 2.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.144 x 85) + (0.205 x 98) + (0.283 x 49) + (2.134 x 61)] / 2.770

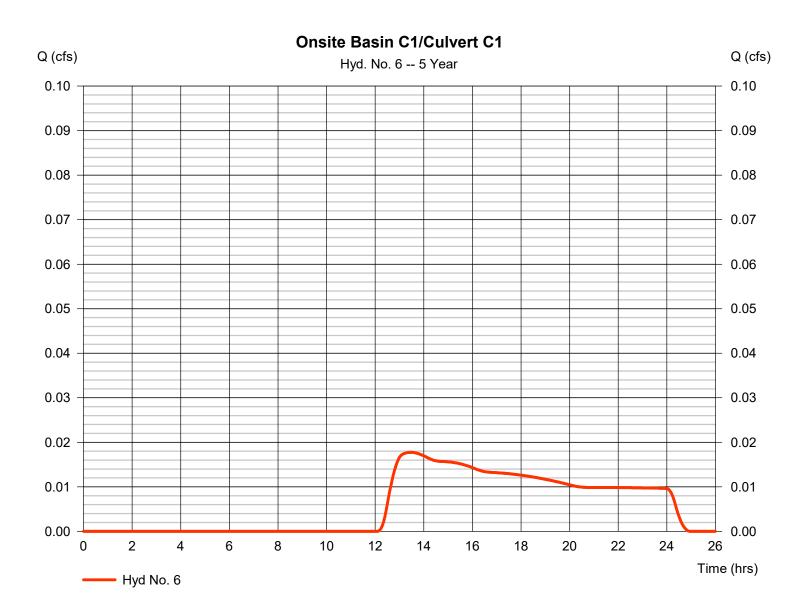

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

Onsite Basin C3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.043 cfs
Storm frequency	= 5 yrs	Time to peak	= 15.23 hrs
Time interval	= 2 min	Hyd. volume	= 1,504 cuft
Drainage area	= 9.990 ac	Curve number	= 55*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.90 min
Total precip.	= 2.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.297 x 98) + (0.716 x 76) + (0.036 x 85) + (0.337 x 98) + (7.720 x 49) + (0.887 x 61)] / 9.990

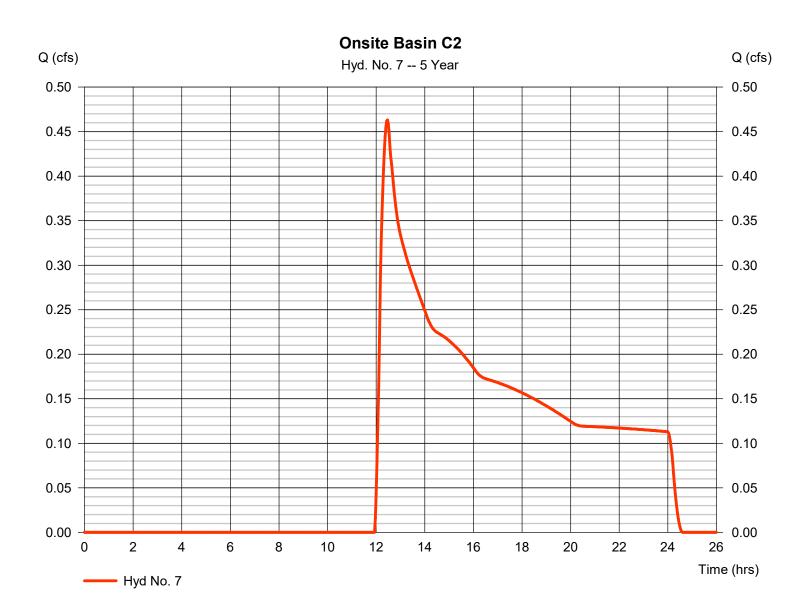

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

Onsite Basin C1/Culvert C1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.018 cfs
Storm frequency	= 5 yrs	Time to peak	= 13.47 hrs
Time interval	= 2 min	Hyd. volume	= 536 cuft
Drainage area	= 2.310 ac	Curve number	= 57*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.06 min
Total precip.	= 2.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.145 x 85) + (1.131 x 49) + (1.033 x 61)] / 2.310

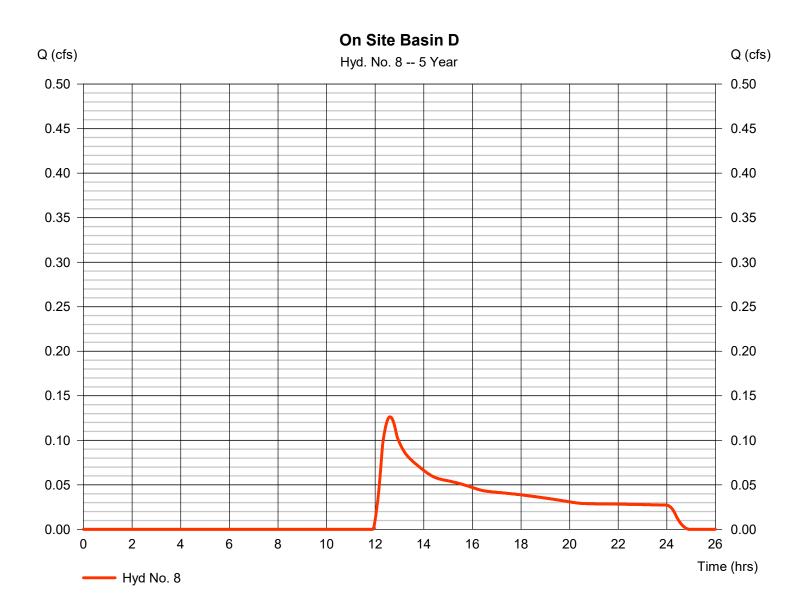

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

Onsite Basin C2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.463 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.47 hrs
Time interval	= 2 min	Hyd. volume	= 7,885 cuft
Drainage area	= 19.720 ac	Curve number	= 60*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.30 min
Total precip.	= 2.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.139 x 98) + (0.236 x 85) + (1.032 x 98) + (5.683 x 49) + (12.631 x 61)] / 19.720

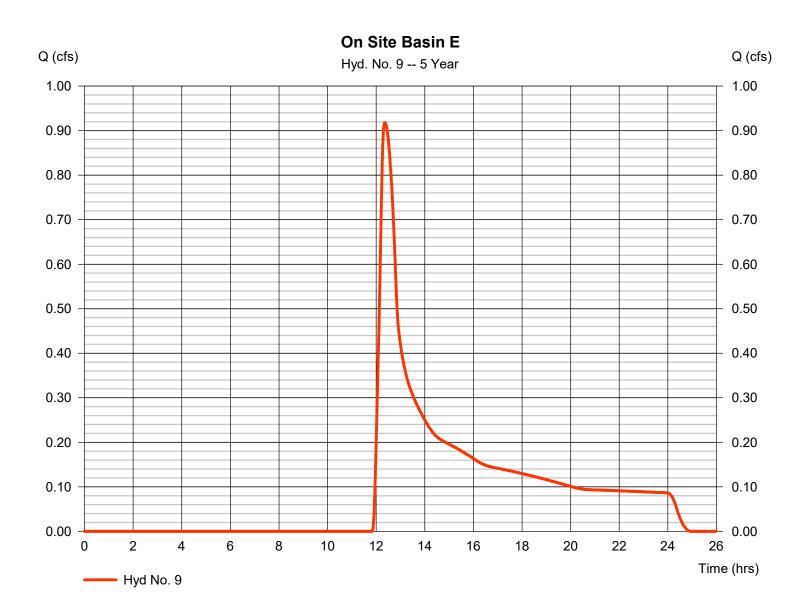

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

On Site Basin D

Hydrograph type	= SCS Runoff	Peak discharge	= 0.126 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.60 hrs
Time interval	= 2 min	Hyd. volume	= 2,025 cuft
Drainage area	= 4.490 ac	Curve number	= 61*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.00 min
Total precip.	= 2.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.015 x 98) + (0.428 x 98) + (1.254 x 49) + (2.792 x 61)] / 4.490

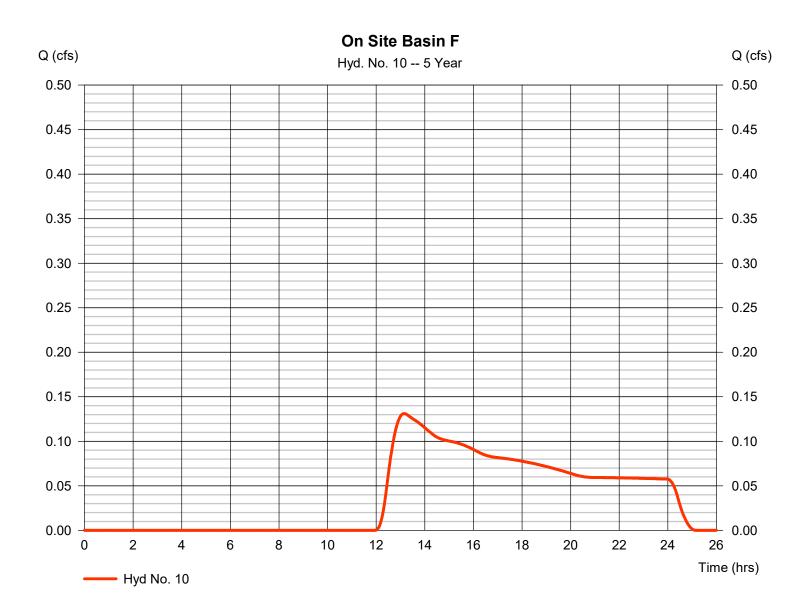

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

On Site Basin E

Hydrograph type	= SCS Runoff	Peak discharge	= 0.917 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 8,327 cuft
Drainage area	= 10.090 ac	Curve number	= 66*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.10 min
Total precip.	= 2.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.165 x 98) + (2.167 x 98) + (2.583 x 49) + (5.178 x 61)] / 10.090

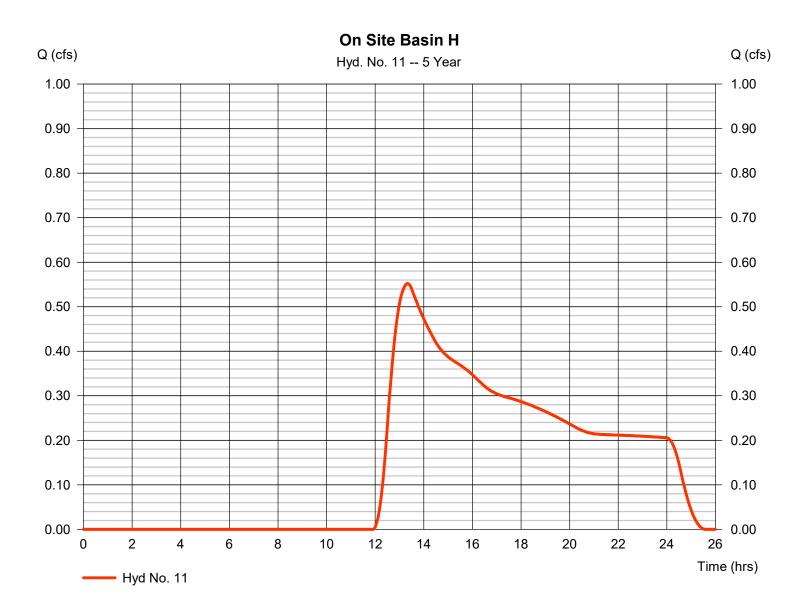

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

On Site Basin F

Hydrograph type	= SCS Runoff	Peak discharge	= 0.131 cfs
Storm frequency	= 5 yrs	Time to peak	= 13.13 hrs
Time interval	= 2 min	Hyd. volume	= 3,469 cuft
Drainage area	= 12.130 ac	Curve number	= 58*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 43.00 min
Total precip.	= 2.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.011 x 98) + (0.107 x 98) + (3.132 x 49) + (8.879 x 61)] / 12.130

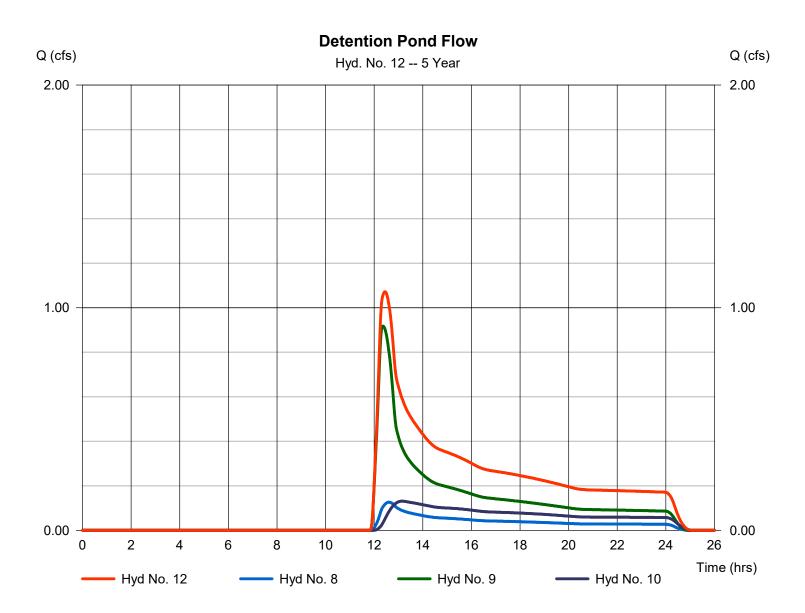

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

On Site Basin H

Hydrograph type	= SCS Runoff	Peak discharge	= 0.552 cfs
Storm frequency	= 5 yrs	Time to peak	= 13.33 hrs
Time interval	= 2 min	Hyd. volume	= 13,326 cuft
Drainage area	= 39.620 ac	Curve number	= 59*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 57.90 min
Total precip.	= 2.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.132 x 85) + (8.377 x 49) + (31.111 x 61)] / 39.620

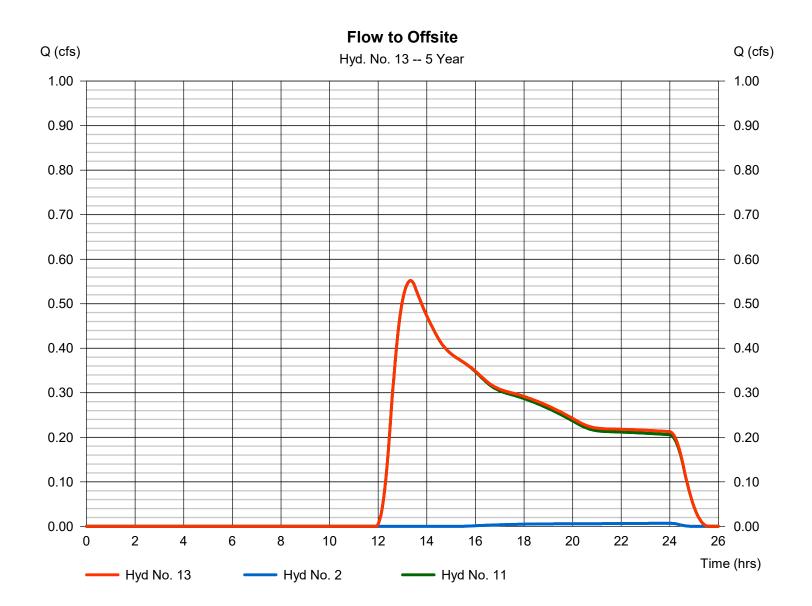

45

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Detention Pond Flow

Hydrograph type	= Combine	Peak discharge	= 1.072 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.43 hrs
Time interval	= 2 min	Hyd. volume	= 13,820 cuft
Inflow hyds.	= 8, 9, 10	Contrib. drain. area	= 26.710 ac

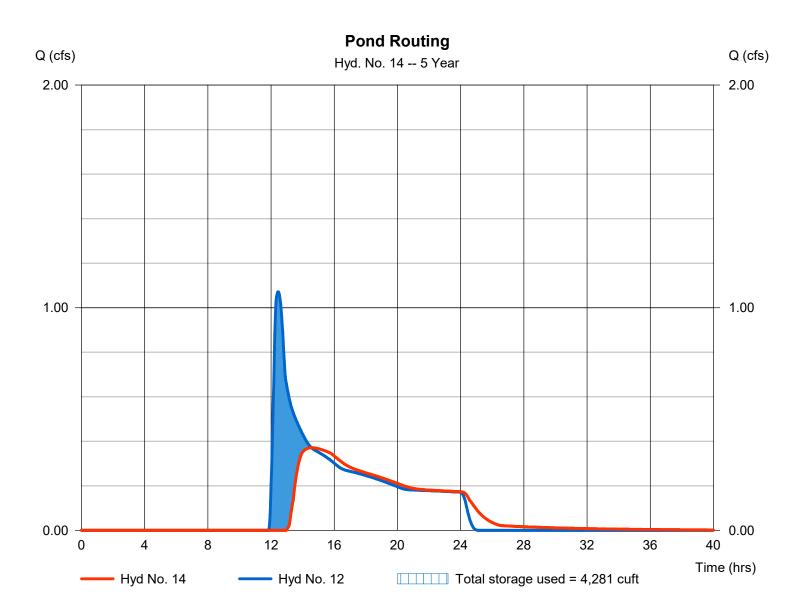


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Flow to Offsite

Hydrograph type= CombineStorm frequency= 5 yrsTime interval= 2 minInflow hyds.= 2, 11	Time to peak Hyd. volume	= 0.552 cfs = 13.33 hrs = 13,493 cuft = 44.160 ac
---	-----------------------------	--

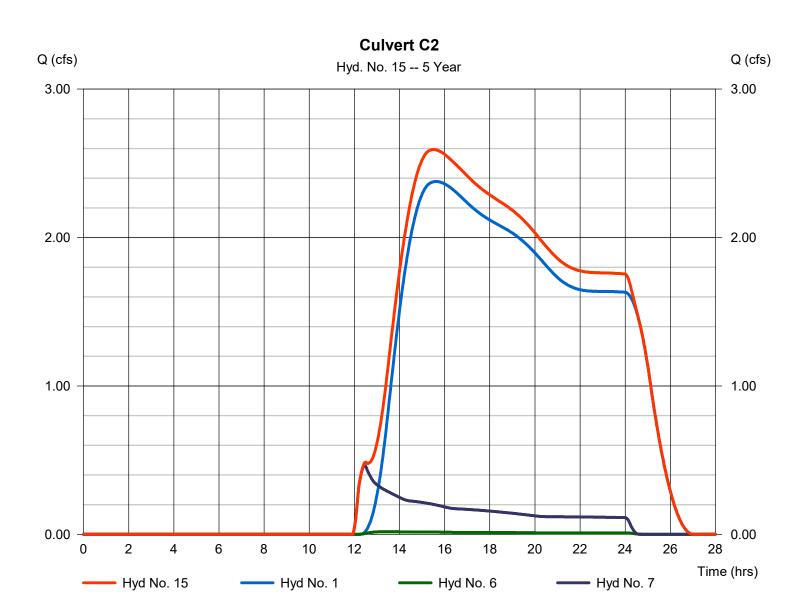

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

Pond Routing

5
uft
ft
ť
f

Storage Indication method used.

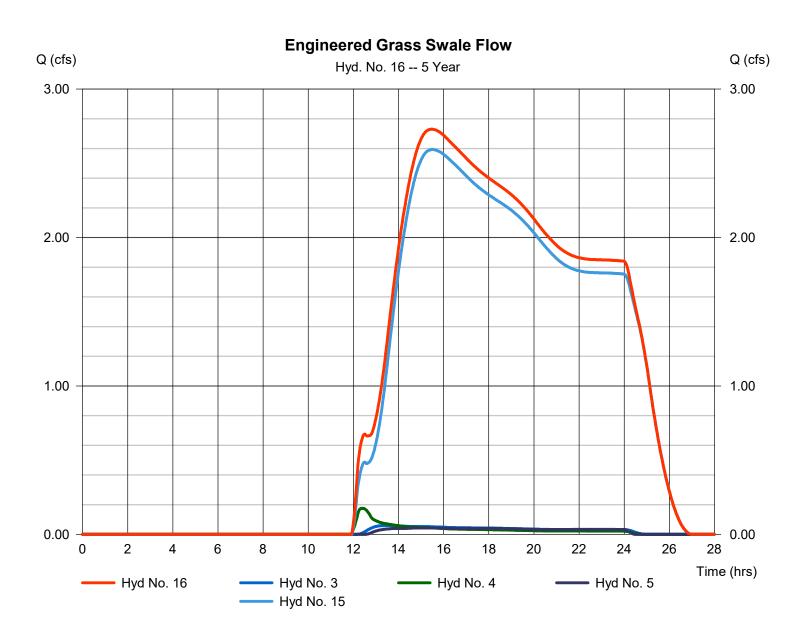


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Culvert C2

= Combine = 5 yrs = 2 min = 1, 6, 7	Peak discharge Time to peak Hyd. volume Contrib. drain. area	= 2.593 cfs = 15.50 hrs = 90,355 cuft = 451.000 ac
- 1, 0, 7		- 401.000 ac
	= 5 yrs = 2 min	= 5 yrs Time to peak = 2 min Hyd. volume

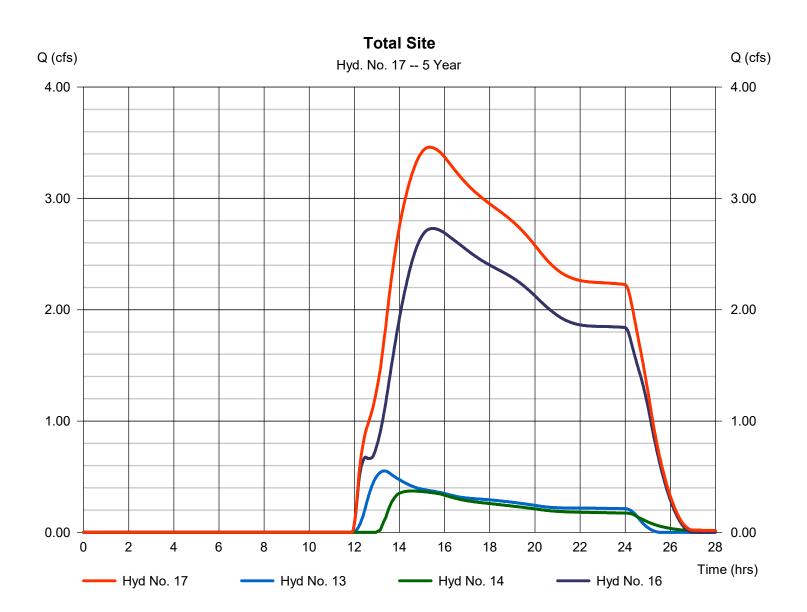


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

Engineered Grass Swale Flow

Combine	Peak discharge	= 2.730 cfs
5 yrs	Time to peak	= 15.47 hrs
2 min	Hyd. volume	= 95,527 cuft
3, 4, 5, 15	Contrib. drain. area	= 20.400 ac
	5 yrs 2 min	5 yrs Time to peak 2 min Hyd. volume


50

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 17

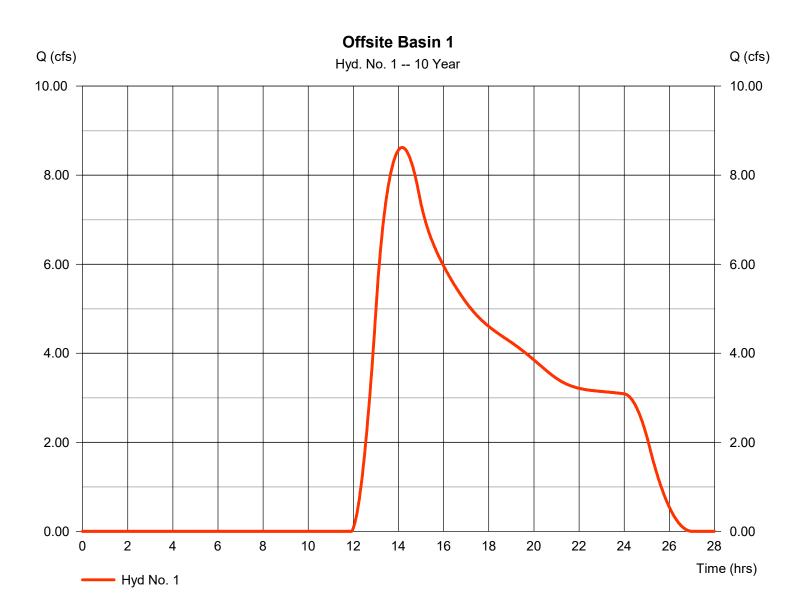
Total Site

Hydrograph type	= Combine	Peak discharge	= 3.460 cfs
Storm frequency	= 5 yrs	Time to peak	= 15.33 hrs
Time interval	= 2 min	Hyd. volume	= 119,885 cuft
Inflow hyds.	= 13, 14, 16	Contrib. drain. area	= 0.000 ac
innow nyus.	- 13, 14, 10	Contrib. Grain. area	- 0.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	8.620	2	850	217,477				Offsite Basin 1
2	SCS Runoff	0.027	2	914	927				Offsite Basin 2
3	SCS Runoff	0.282	2	758	4,434				Onsite Basin A
4	SCS Runoff	0.472	2	738	3,466				Onsite Basin B
5	SCS Runoff	0.237	2	744	4,357				Onsite Basin C3
6	SCS Runoff	0.088	2	756	1,325				Onsite Basin C1/Culvert C1
7	SCS Runoff	1.981	2	732	16,686				Onsite Basin C2
8	SCS Runoff	0.423	2	744	4,112				On Site Basin D
9	SCS Runoff	2.148	2	738	14,641				On Site Basin E
10	SCS Runoff	0.552	2	760	8,055				On Site Basin F
11	SCS Runoff	1.936	2	772	29,471				On Site Basin H
12	Combine	2.983	2	742	26,808	8, 9, 10,			Detention Pond Flow
13	Combine	1.946	2	772	30,398	2, 11,			Flow to Offsite
14	Reservoir	1.180	2	790	23,852	12	5893.24	6,510	Pond Routing
15	Combine	9.127	2	846	235,488	1, 6, 7,			Culvert C2
16	Combine	9.495	2	846	247,745	3, 4, 5,			Engineered Grass Swale Flow
17	Combine	11.55	2	836	301,995	15 13, 14, 16			Total Site
WF	RF Hydrograp	hs Propo	sed Cond	ditions.gp	w Return F	Period: 10 Y	/ear	Tuesday, (09 / 21 / 2021


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

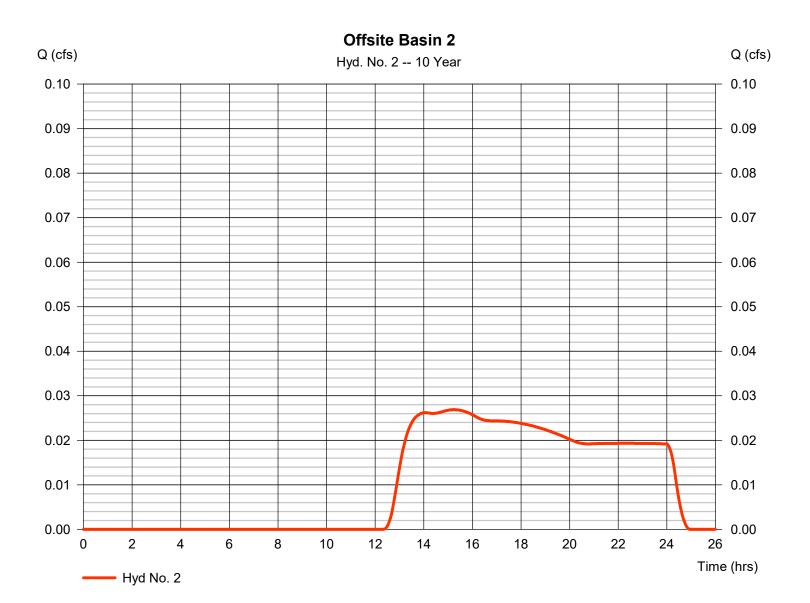
Offsite Basin 1

= 8.620 cfs
= 14.17 hrs
= 217,477 cuft
= 56*
= 0 ft
= 114.40 min
= Type II
= 484

* Composite (Area/CN) = [(240.490 x 61) + (188.480 x 49)] / 428.970

.

53

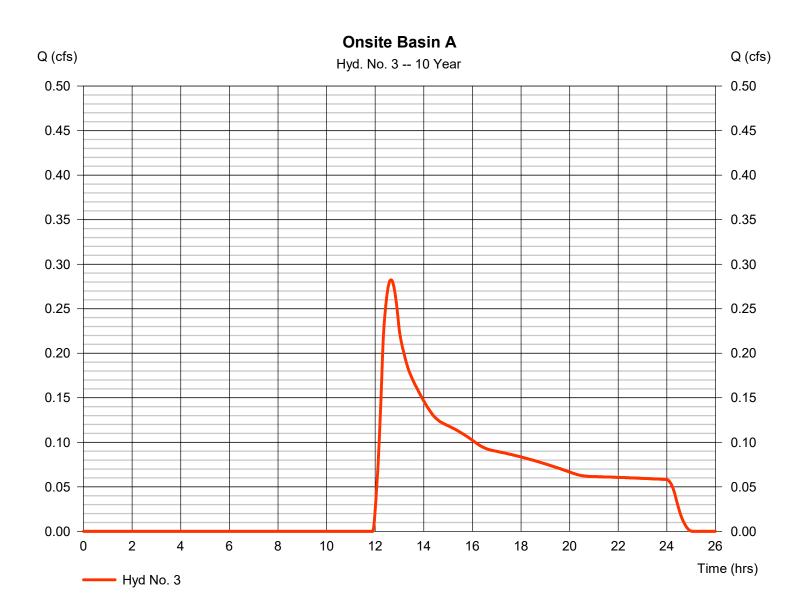

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Offsite Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.027 cfs
Storm frequency	= 10 yrs	Time to peak	= 15.23 hrs
Time interval	= 2 min	Hyd. volume	= 927 cuft
Drainage area	= 4.540 ac	Curve number	= 51*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.30 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.610 x 49) + (0.930 x 61)] / 4.540


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

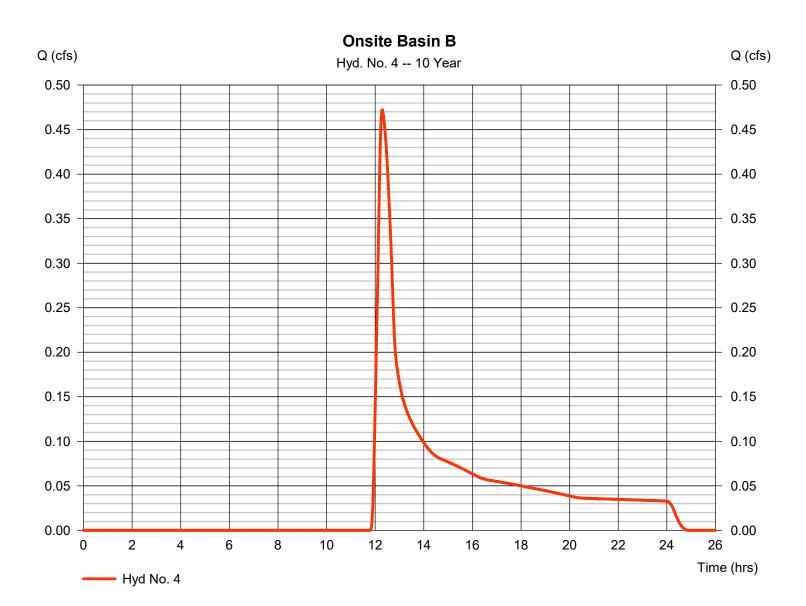
Hyd. No. 3

Onsite Basin A

Hydrograph type	= SCS Runoff	Peak discharge	= 0.282 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.63 hrs
Time interval	= 2 min	Hyd. volume	= 4,434 cuft
Drainage area	= 7.640 ac	Curve number	= 57*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.50 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.690 x 49) + (4.780 x 61) + (0.170 x 85)] / 7.640

55

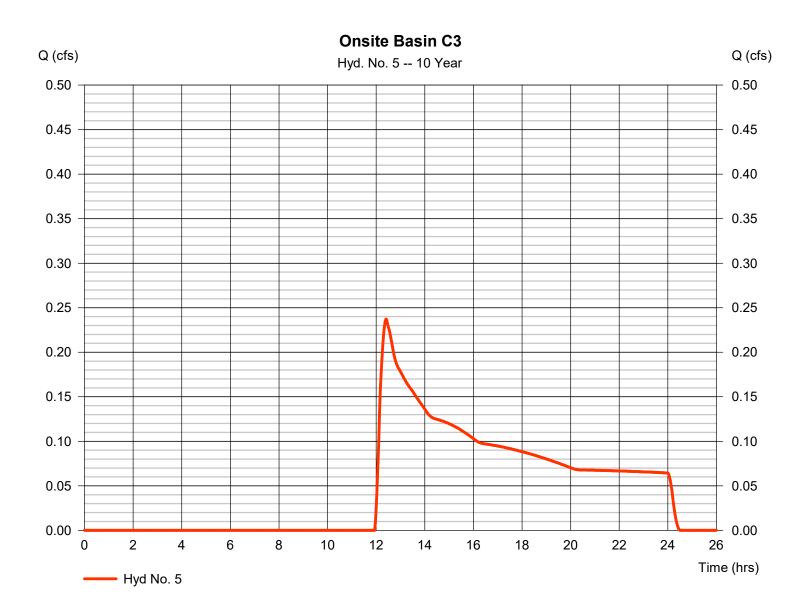

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Onsite Basin B

Hydrograph type	= SCS Runoff	Peak discharge	= 0.472 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 3,466 cuft
Drainage area	= 2.770 ac	Curve number	= 64*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.40 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.144 x 85) + (0.205 x 98) + (0.283 x 49) + (2.134 x 61)] / 2.770

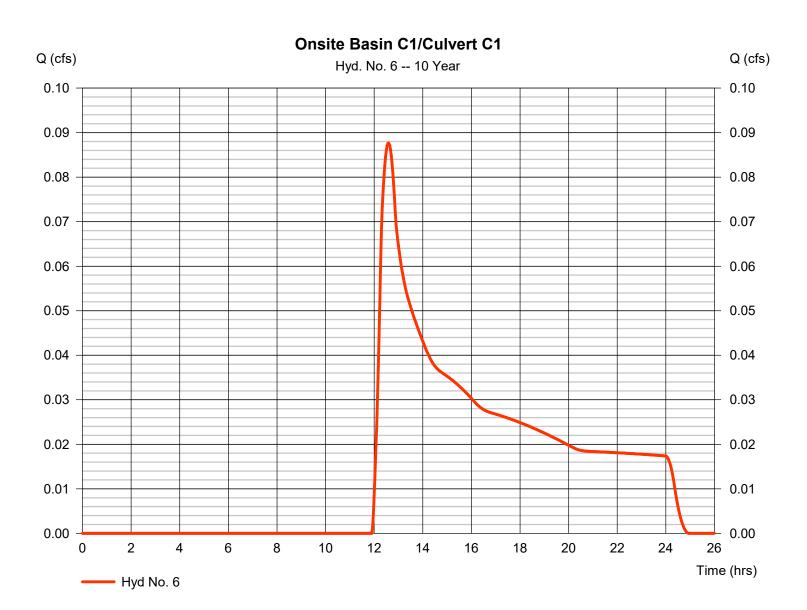

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

Onsite Basin C3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.237 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 4,357 cuft
Drainage area	= 9.990 ac	Curve number	= 55*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.90 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.297 x 98) + (0.716 x 76) + (0.036 x 85) + (0.337 x 98) + (7.720 x 49) + (0.887 x 61)] / 9.990

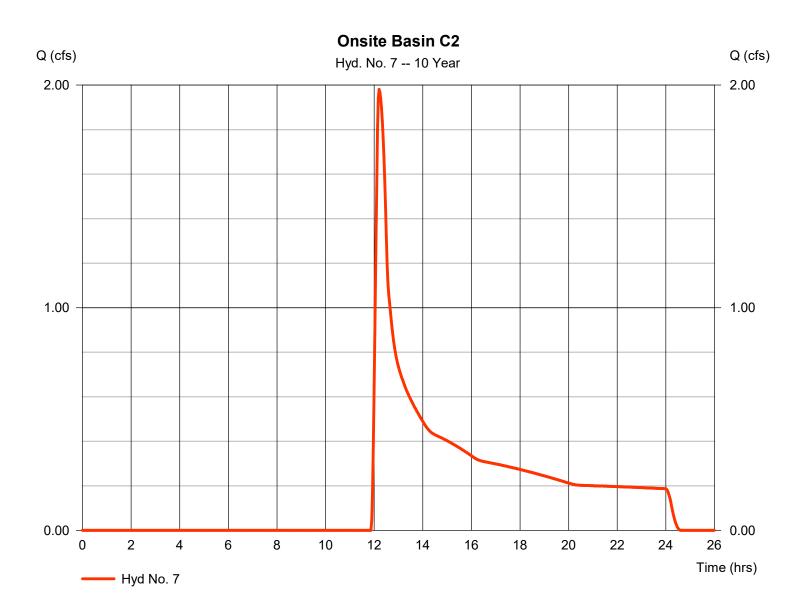

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

Onsite Basin C1/Culvert C1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.088 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.60 hrs
Time interval	= 2 min	Hyd. volume	= 1,325 cuft
Drainage area	= 2.310 ac	Curve number	= 57*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.06 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.145 x 85) + (1.131 x 49) + (1.033 x 61)] / 2.310

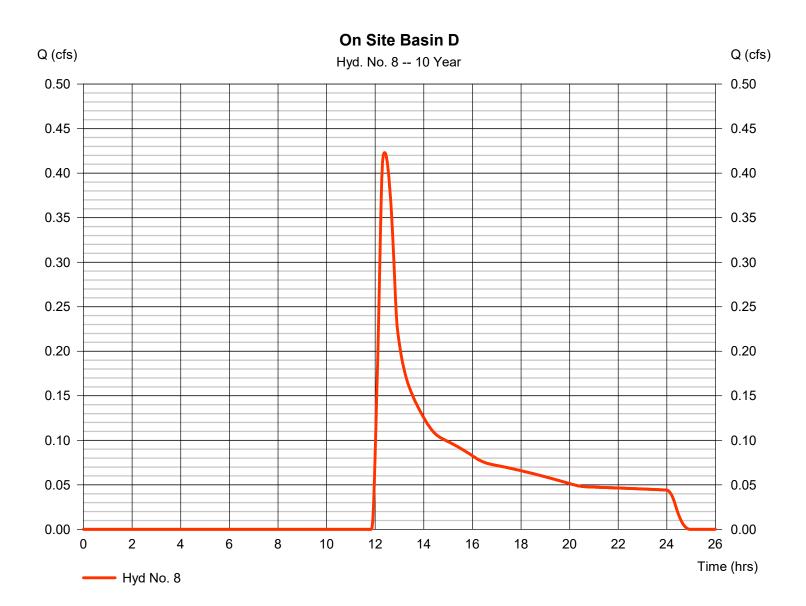

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

Onsite Basin C2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.981 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 16,686 cuft
Drainage area	= 19.720 ac	Curve number	= 60*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.30 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.139 x 98) + (0.236 x 85) + (1.032 x 98) + (5.683 x 49) + (12.631 x 61)] / 19.720

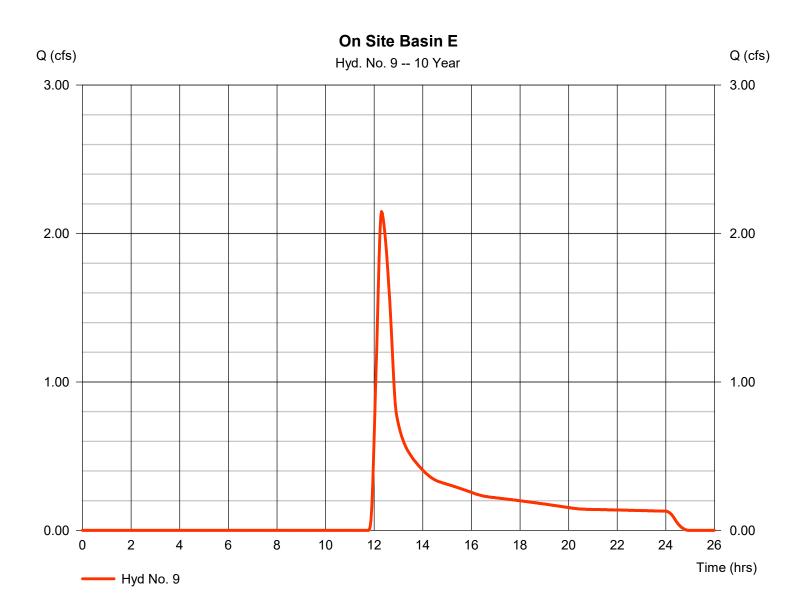

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

On Site Basin D

Hydrograph type	= SCS Runoff	Peak discharge	= 0.423 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 4,112 cuft
Drainage area	= 4.490 ac	Curve number	= 61*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.00 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.015 x 98) + (0.428 x 98) + (1.254 x 49) + (2.792 x 61)] / 4.490

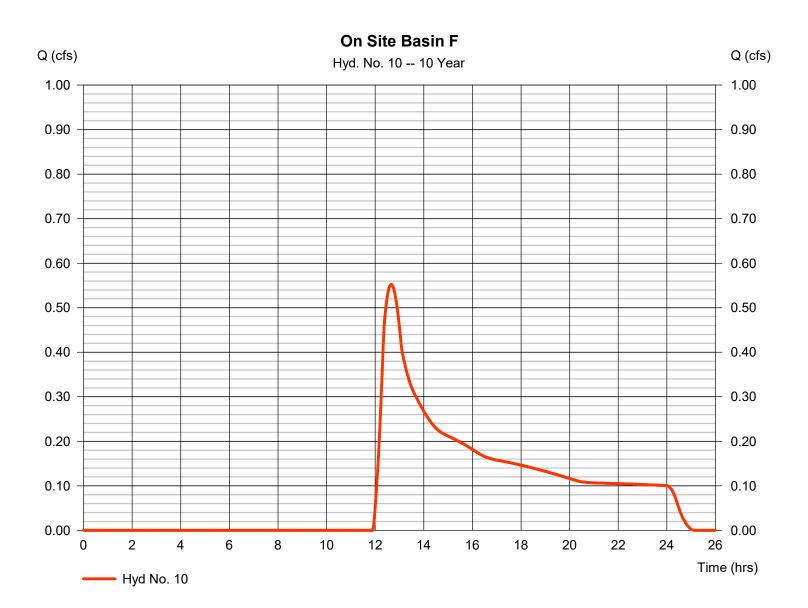

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

On Site Basin E

Hydrograph type	= SCS Runoff	Peak discharge	= 2.148 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 14,641 cuft
Drainage area	= 10.090 ac	Curve number	= 66*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.10 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.165 x 98) + (2.167 x 98) + (2.583 x 49) + (5.178 x 61)] / 10.090

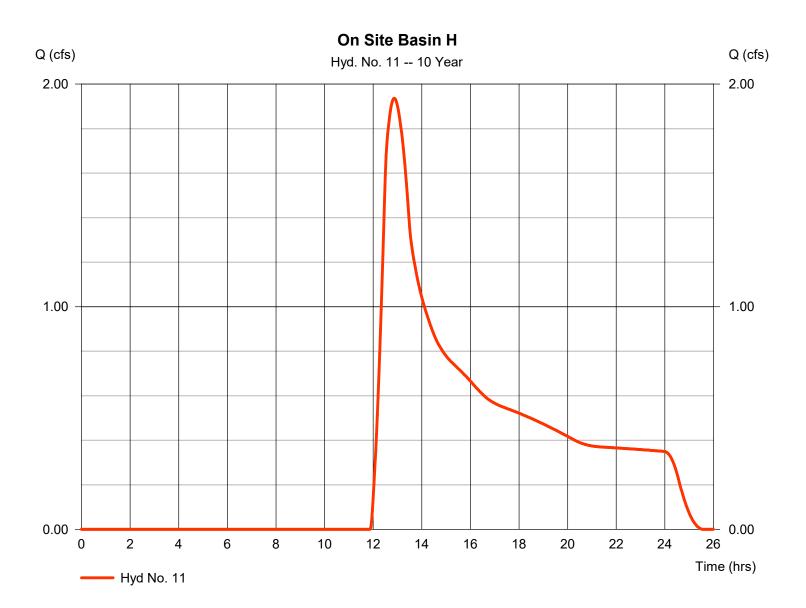

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

On Site Basin F

Hydrograph type	= SCS Runoff	Peak discharge	= 0.552 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.67 hrs
Time interval	= 2 min	Hyd. volume	= 8,055 cuft
Drainage area	= 12.130 ac	Curve number	= 58*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 43.00 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.011 x 98) + (0.107 x 98) + (3.132 x 49) + (8.879 x 61)] / 12.130

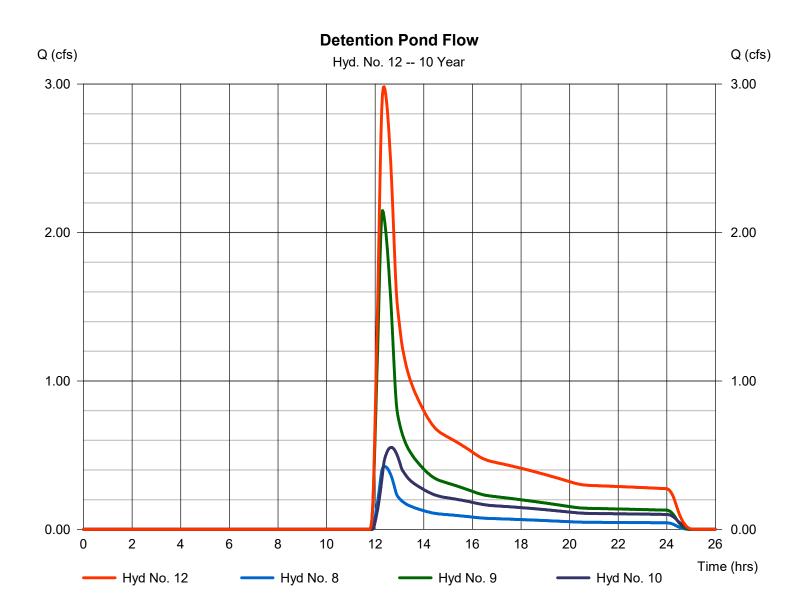

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

On Site Basin H

Hydrograph type	= SCS Runoff	Peak discharge	= 1.936 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.87 hrs
Time interval	= 2 min	Hyd. volume	= 29,471 cuft
Drainage area	= 39.620 ac	Curve number	= 59*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 57.90 min
Total precip.	= 2.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.132 x 85) + (8.377 x 49) + (31.111 x 61)] / 39.620

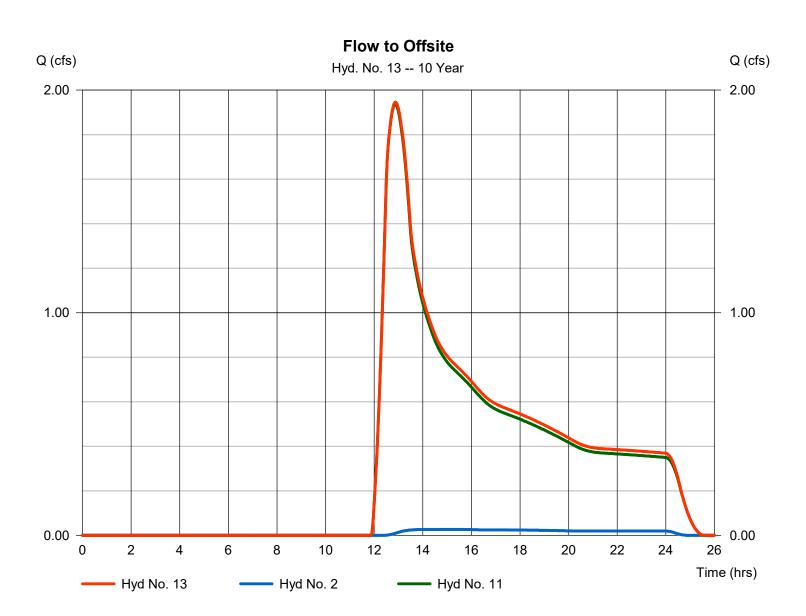


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Detention Pond Flow

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 2.983 cfs = 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 26,808 cuft
Inflow hyds.	= 8, 9, 10	Contrib. drain. area	= 26.710 ac

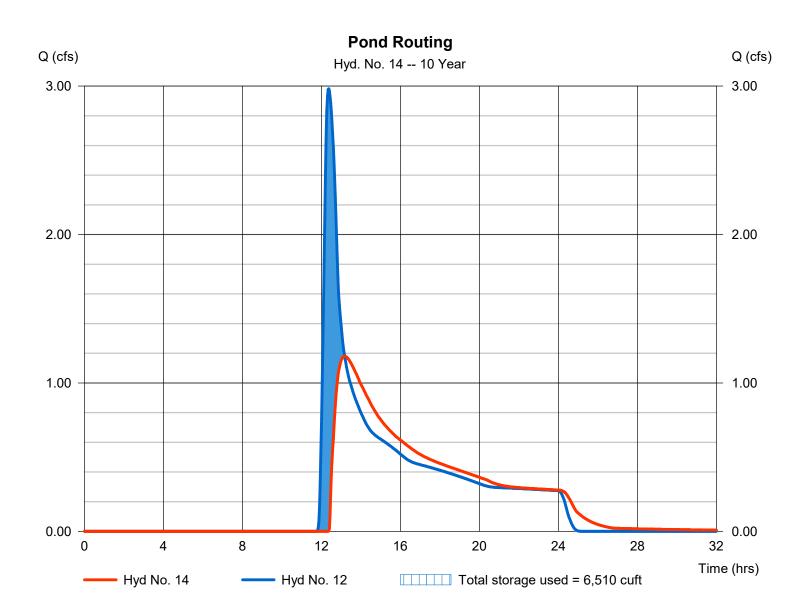


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Flow to Offsite

Storm frequency= 10 yrsTime to peak= 12.87 hrsTime interval= 2 minHyd. volume= 30,398 cuftInflow hyds.= 2, 11Contrib. drain. area= 44.160 ac	Time interval	= 2 min	Hyd. volume	= 30,398 cuft
--	---------------	---------	-------------	---------------

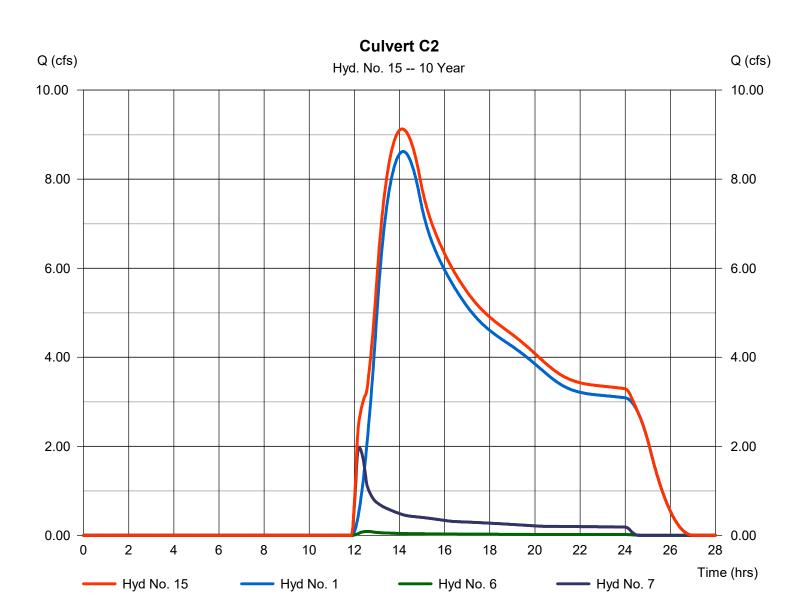

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

Pond Routing

Hydrograph type	= Reservoir	Peak discharge	= 1.180 cfs
Storm frequency	= 10 yrs	Time to peak	= 13.17 hrs
Time interval	= 2 min	Hyd. volume	= 23,852 cuft
Inflow hyd. No.	= 12 - Detention Pond Flow	Max. Elevation	= 5893.24 ft
Reservoir name	= Pond 1	Max. Storage	= 6,510 cuft

Storage Indication method used.

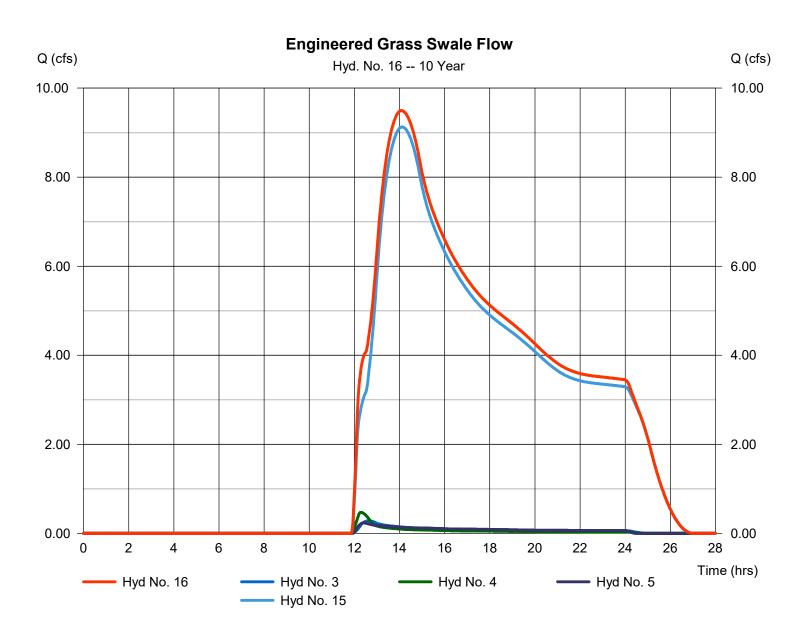


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Culvert C2

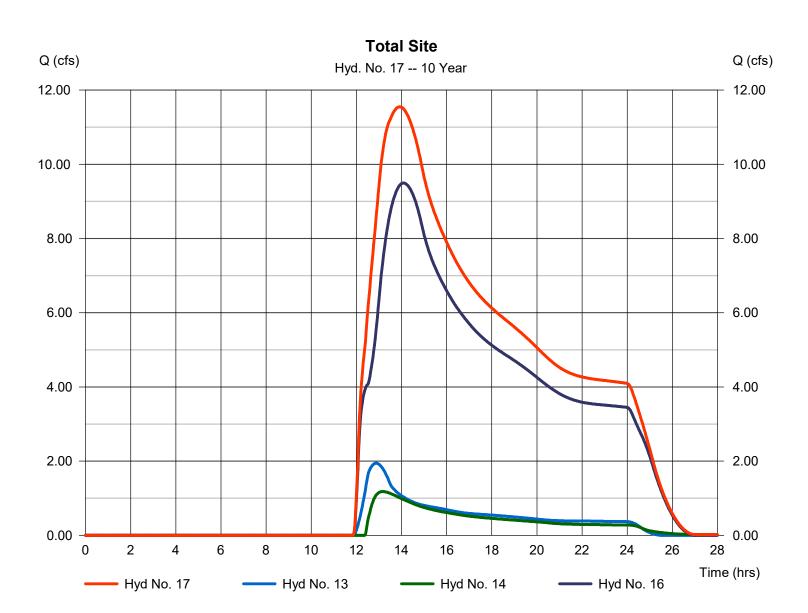
Hydrograph type	 = Combine = 10 yrs = 2 min = 1, 6, 7 	Peak discharge	= 9.127 cfs
Storm frequency		Time to peak	= 14.10 hrs
Time interval		Hyd. volume	= 235,488 cuft
Inflow hyds.		Contrib. drain. area	= 451.000 ac
innow nyao.	1, 0, 1		101.000 40



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

Engineered Grass Swale Flow


Hydrograph type	Combine10 yrs	Peak discharge	= 9.495 cfs
Storm frequency		Time to peak	= 14.10 hrs
Time interval	= 2 min	Hyd. volume	= 247,745 cuft
Inflow hyds.	= 3, 4, 5, 15	Contrib. drain. area	= 20.400 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

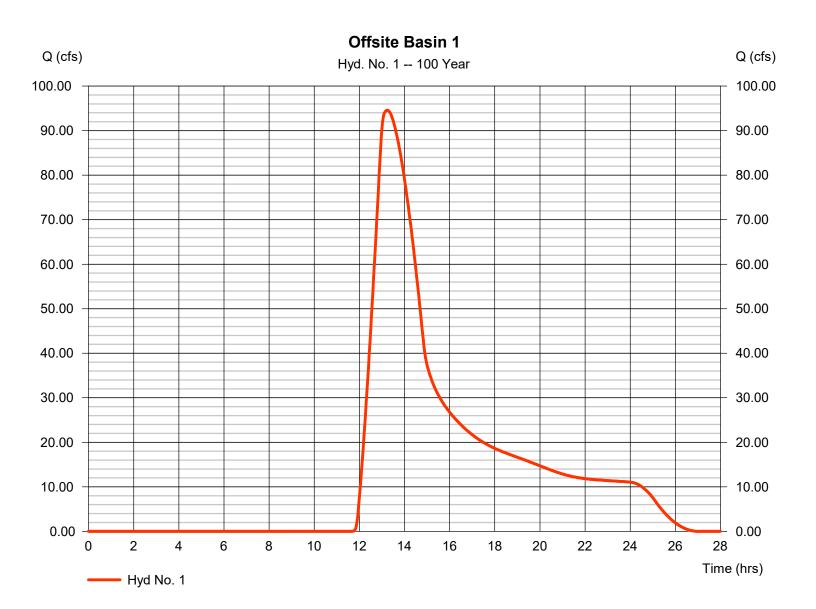
Hyd. No. 17

Total Site

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	94.58	2	794	1,324,269				Offsite Basin 1
2	SCS Runoff	1.252	2	740	9,570				Offsite Basin 2
3	SCS Runoff	3.969	2	740	25,052				Onsite Basin A
4	SCS Runoff	2.843	2	734	13,573				Onsite Basin B
5	SCS Runoff	6.953	2	726	28,745				Onsite Basin C3
6	SCS Runoff	1.276	2	738	7,489				Onsite Basin C1/Culvert C1
7	SCS Runoff	19.60	2	728	78,674				Onsite Basin C2
8	SCS Runoff	3.473	2	736	18,388				On Site Basin D
9	SCS Runoff	10.88	2	736	53,144				On Site Basin E
10	SCS Runoff	6.520	2	742	42,713				On Site Basin F
11	SCS Runoff	18.20	2	752	146,640				On Site Basin H
12	Combine	20.49	2	738	114,245	8, 9, 10,			Detention Pond Flow
13	Combine	19.31	2	752	156,209	2, 11,			Flow to Offsite
14	Reservoir	10.29	2	764	111,289	12	5895.04	29,519	Pond Routing
15	Combine	97.48	2	792	1,410,432	1, 6, 7,			Culvert C2
16	Combine	99.98	2	792	1,477,800	3, 4, 5,			Engineered Grass Swale Flow
17	Combine	121.25	2	784	1,745,298	15 13, 14, 16			Total Site
WF	RF Hydrograp	hs Propo	sed Cone	ditions.gp	w Return P	eriod: 100	Year	Tuesday, (09 / 21 / 2021


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Offsite Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 94.58 cfs
Storm frequency	= 100 yrs	Time to peak	= 13.23 hrs
Time interval	= 2 min	Hyd. volume	= 1,324,269 cuft
Drainage area	= 428.970 ac	Curve number	= 56*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 114.40 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(240.490 x 61) + (188.480 x 49)] / 428.970

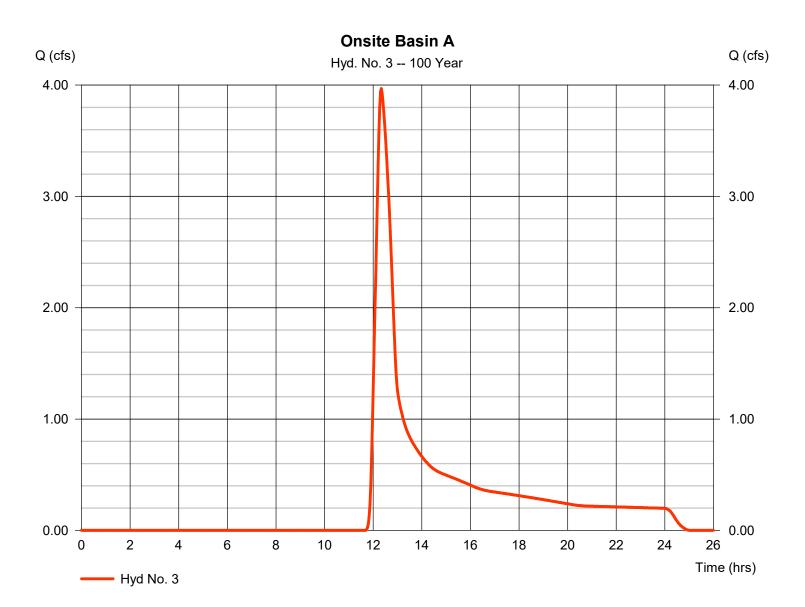
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Offsite Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.252 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 9,570 cuft
Drainage area	= 4.540 ac	Curve number	= 51*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.30 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.610 x 49) + (0.930 x 61)] / 4.540

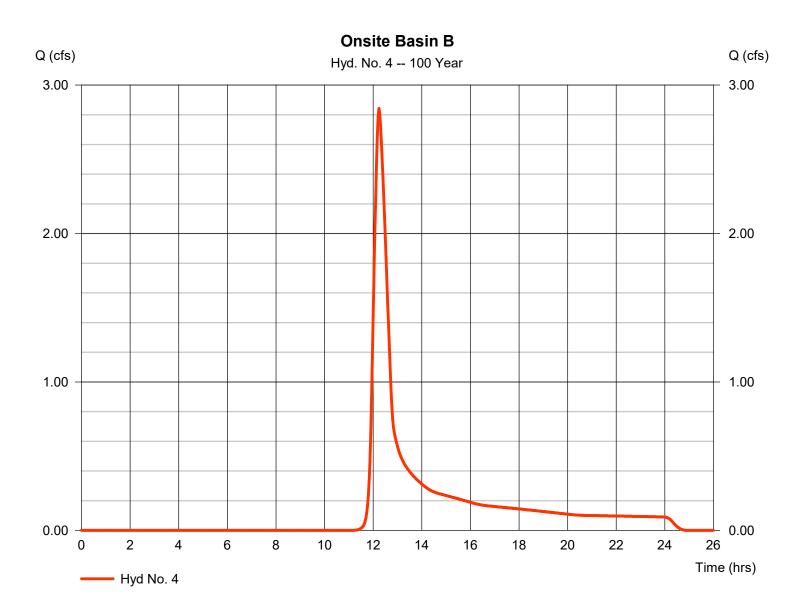

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Onsite Basin A

Hydrograph type	= SCS Runoff	Peak discharge	= 3.969 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 25,052 cuft
Drainage area	= 7.640 ac	Curve number	= 57*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 37.50 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.690 x 49) + (4.780 x 61) + (0.170 x 85)] / 7.640


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

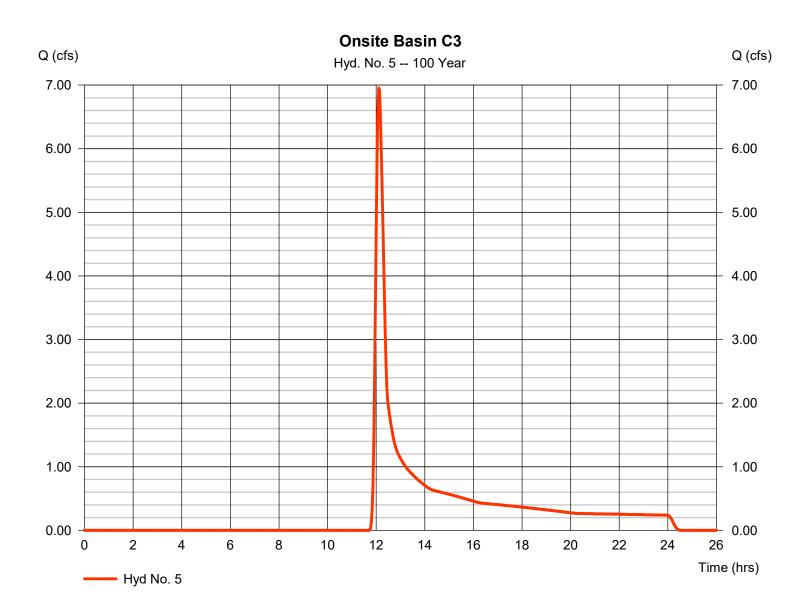
Hyd. No. 4

Onsite Basin B

Hydrograph type	= SCS Runoff	Peak discharge	= 2.843 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 13,573 cuft
Drainage area	= 2.770 ac	Curve number	= 64*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.40 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.144 x 85) + (0.205 x 98) + (0.283 x 49) + (2.134 x 61)] / 2.770

74

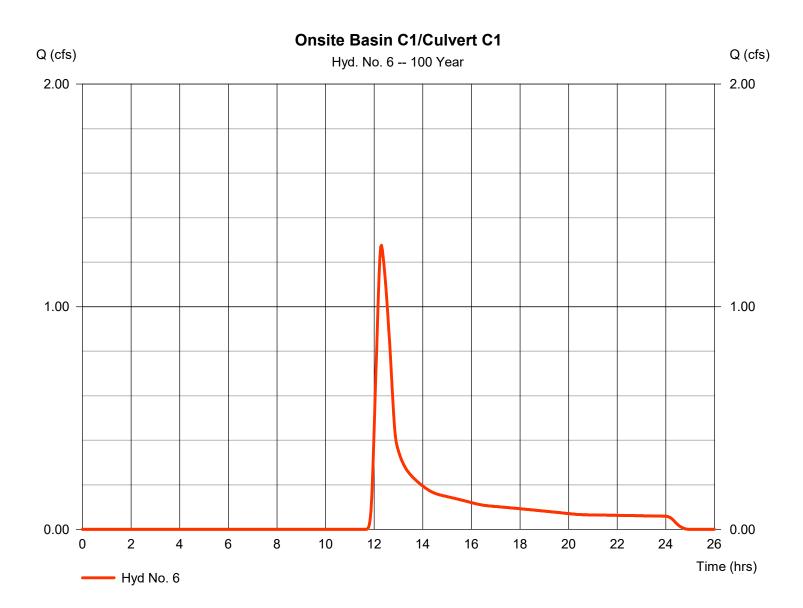

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

Onsite Basin C3

Hydrograph type	= SCS Runoff	Peak discharge	= 6.953 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 28,745 cuft
Drainage area	= 9.990 ac	Curve number	= 55*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.90 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.297 x 98) + (0.716 x 76) + (0.036 x 85) + (0.337 x 98) + (7.720 x 49) + (0.887 x 61)] / 9.990


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

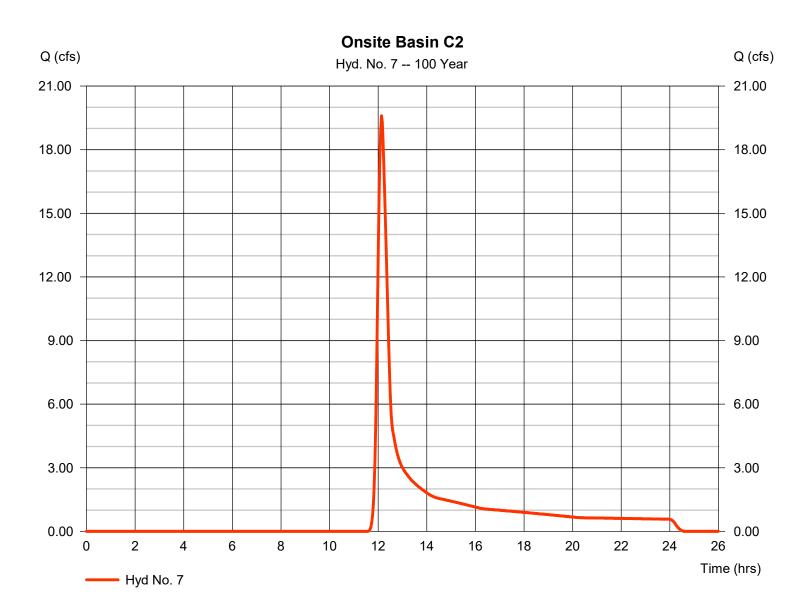
Hyd. No. 6

Onsite Basin C1/Culvert C1

Hydrograph type	= SCS Runoff	Peak discharge	= 1.276 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 7,489 cuft
Drainage area	= 2.310 ac	Curve number	= 57*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.06 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.145 x 85) + (1.131 x 49) + (1.033 x 61)] / 2.310

76

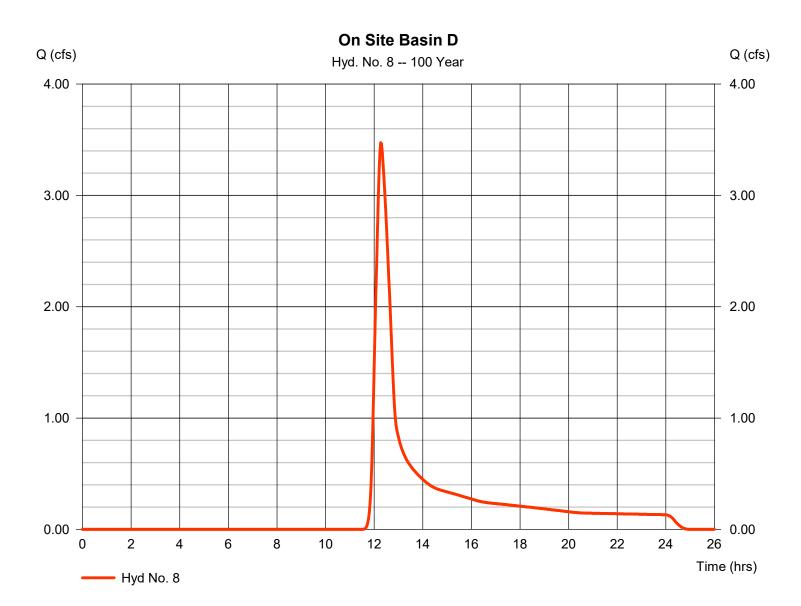

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

Onsite Basin C2

Hydrograph type	= SCS Runoff	Peak discharge	= 19.60 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 78,674 cuft
Drainage area	= 19.720 ac	Curve number	= 60*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.30 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.139 x 98) + (0.236 x 85) + (1.032 x 98) + (5.683 x 49) + (12.631 x 61)] / 19.720

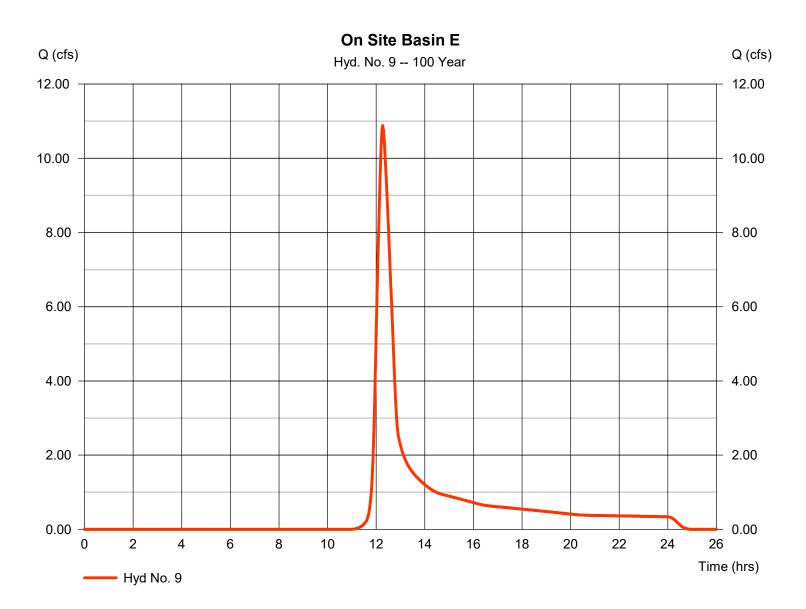

77

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

On Site Basin D

* Composite (Area/CN) = [(0.015 x 98) + (0.428 x 98) + (1.254 x 49) + (2.792 x 61)] / 4.490


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

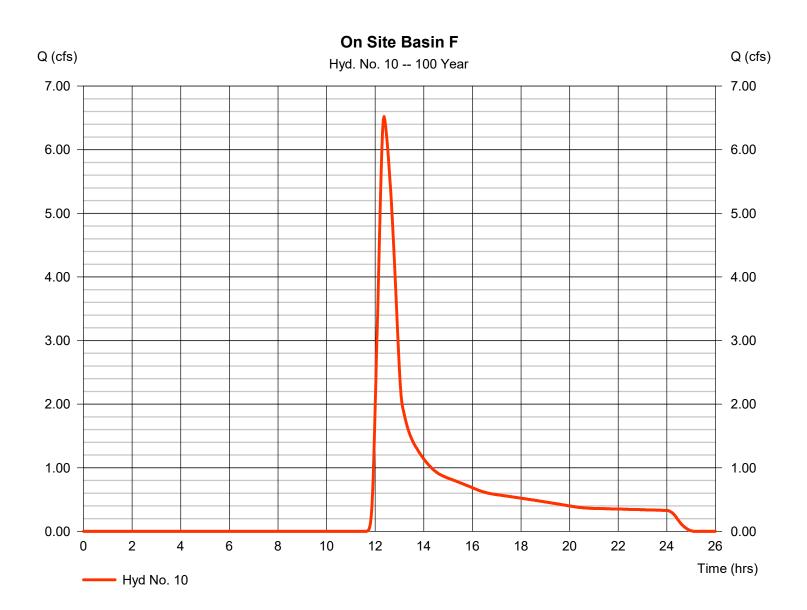
Hyd. No. 9

On Site Basin E

Hydrograph type	= SCS Runoff	Peak discharge	= 10.88 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 53,144 cuft
Drainage area	= 10.090 ac	Curve number	= 66*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.10 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.165 x 98) + (2.167 x 98) + (2.583 x 49) + (5.178 x 61)] / 10.090

79

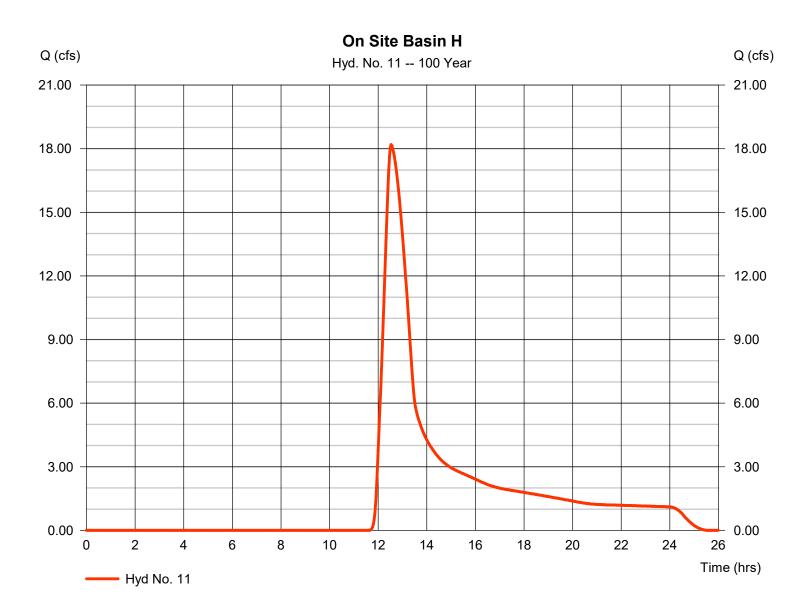

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

On Site Basin F

Hydrograph type	= SCS Runoff	Peak discharge	= 6.520 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 42,713 cuft
Drainage area	= 12.130 ac	Curve number	= 58*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 43.00 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.011 x 98) + (0.107 x 98) + (3.132 x 49) + (8.879 x 61)] / 12.130

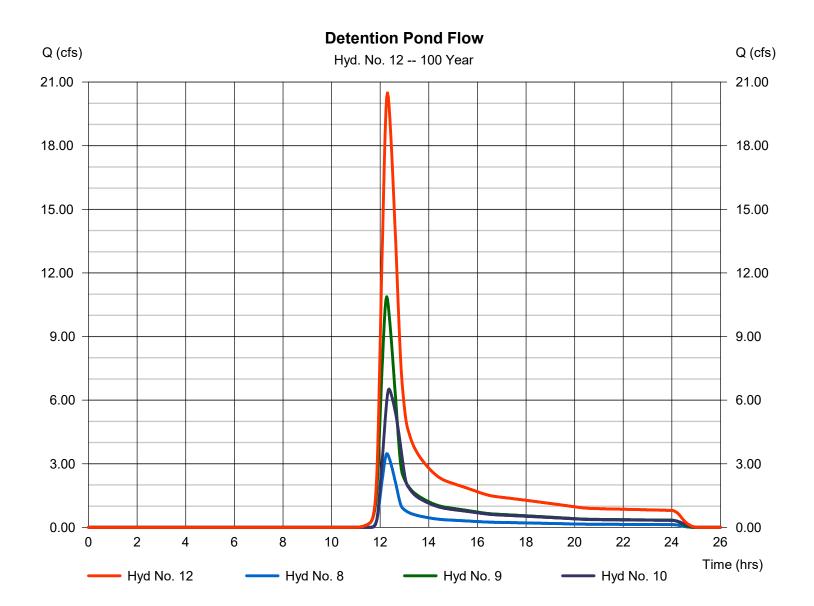

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

On Site Basin H

Hydrograph type	= SCS Runoff	Peak discharge	= 18.20 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.53 hrs
Time interval	= 2 min	Hyd. volume	= 146,640 cuft
Drainage area	= 39.620 ac	Curve number	= 59*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 57.90 min
Total precip.	= 4.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.132 x 85) + (8.377 x 49) + (31.111 x 61)] / 39.620

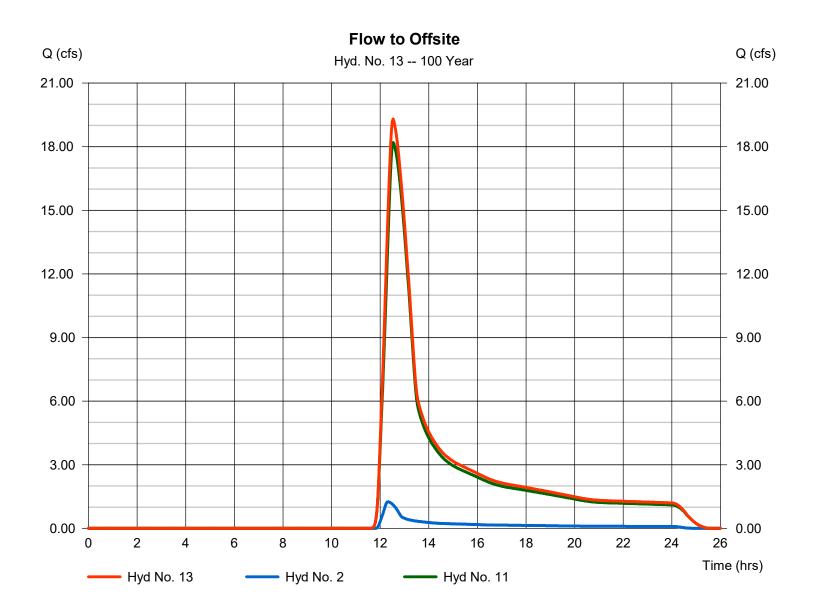


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Detention Pond Flow

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 20.49 cfs = 12.30 hrs
Time interval	$= 2 \min$	Hyd. volume	= 12.30 ms = 114,245 cuft
Inflow hyds.	= 8, 9, 10	Contrib. drain. area	= 26.710 ac



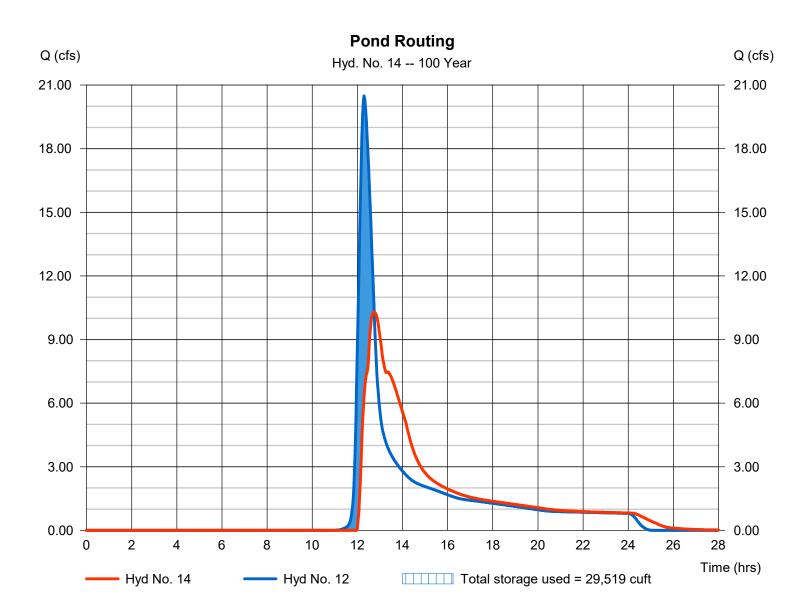
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Flow to Offsite

Hydrograph type	= Combine	Peak discharge	= 19.31 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.53 hrs
Time interval	= 2 min	Hyd. volume	= 156,209 cuft
Inflow hyds.	= 2, 11	Contrib. drain. area	= 44.160 ac
2	·		

83

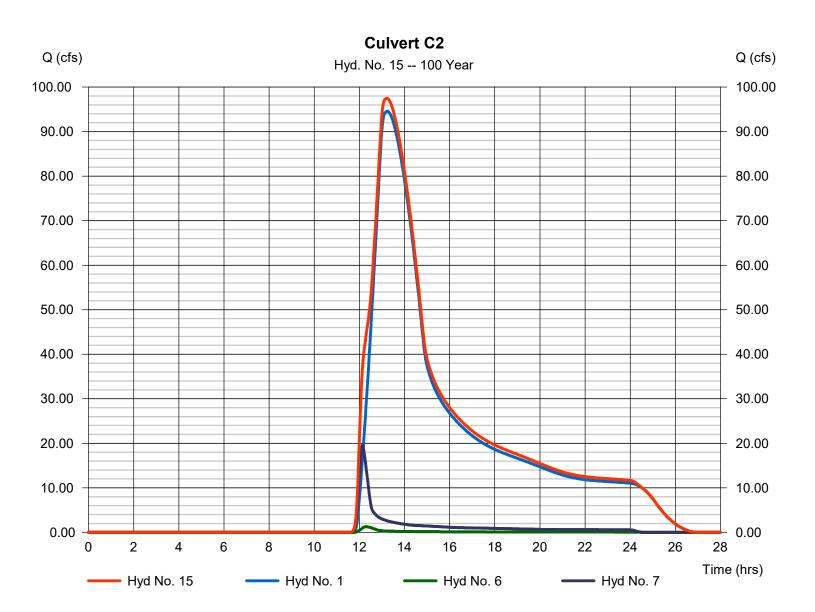

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

Pond Routing

Hydrograph type	= Reservoir	Peak discharge	= 10.29 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.73 hrs
Time interval	= 2 min	Hyd. volume	= 111,289 cuft
Inflow hyd. No.	= 12 - Detention Pond Flow	Max. Elevation	= 5895.04 ft
Reservoir name	= Pond 1	Max. Storage	= 29,519 cuft

Storage Indication method used.

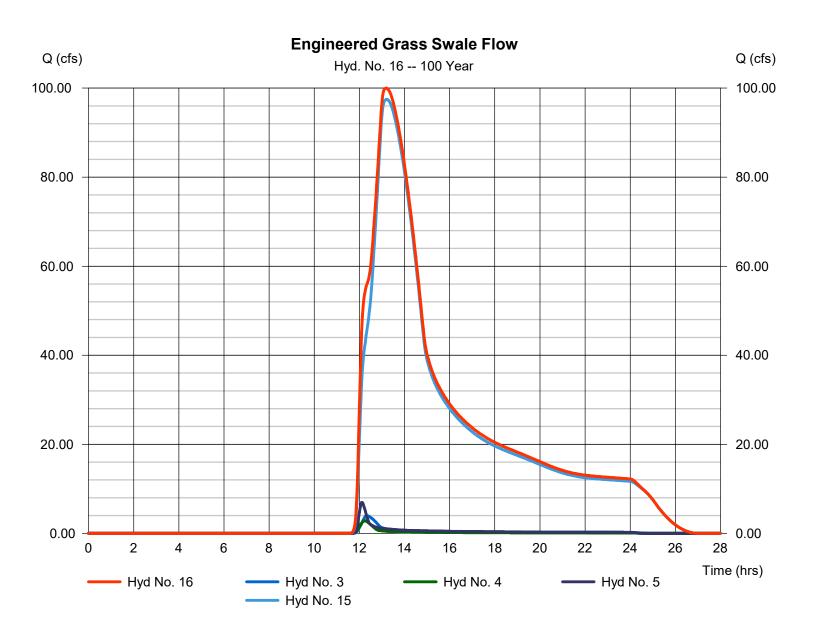


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Culvert C2

Hydrograph type	= Combine	Peak discharge	= 97.48 cfs
Storm frequency	= 100 yrs	Time to peak	= 13.20 hrs
Time interval	= 2 min	Hyd. volume	= 1,410,432 cuft
Inflow hyds.	= 1, 6, 7	Contrib. drain. area	= 451.000 ac
5			

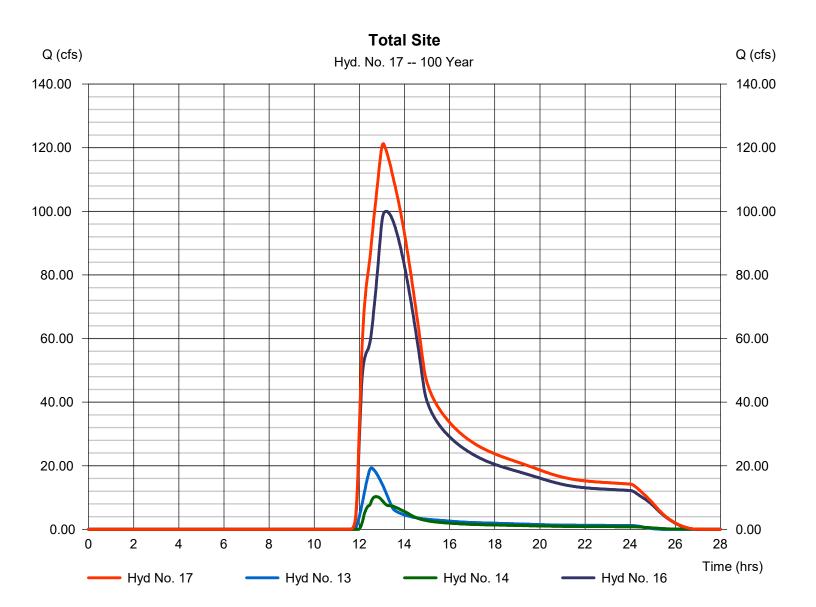


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

Engineered Grass Swale Flow

Hydrograph type	= Combine	Peak discharge	= 99.98 cfs
Storm frequency	= 100 yrs	Time to peak	= 13.20 hrs
Time interval	= 2 min	Hyd. volume	= 1,477,800 cuft
Inflow hyds.	= 3, 4, 5, 15	Contrib. drain. area	= 20.400 ac



86

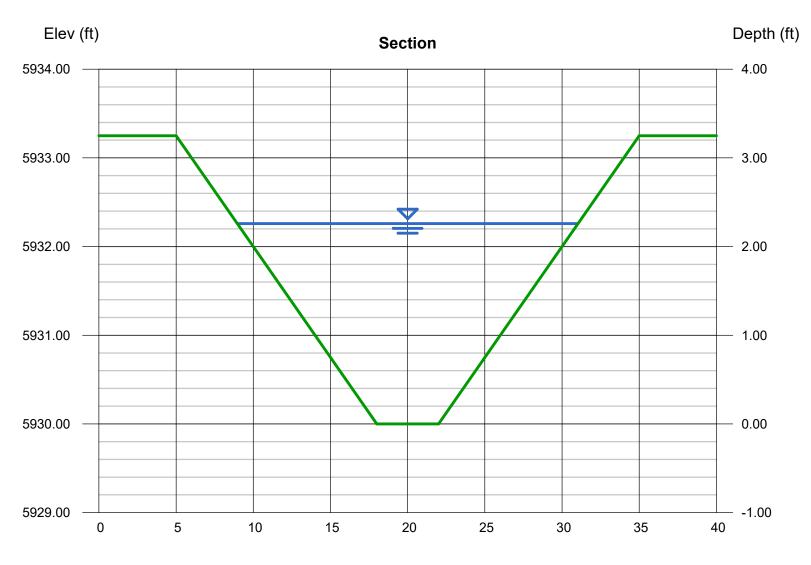
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 17

Total Site

87

APPENDIX E – HYDRAULIC CALCULATIONS

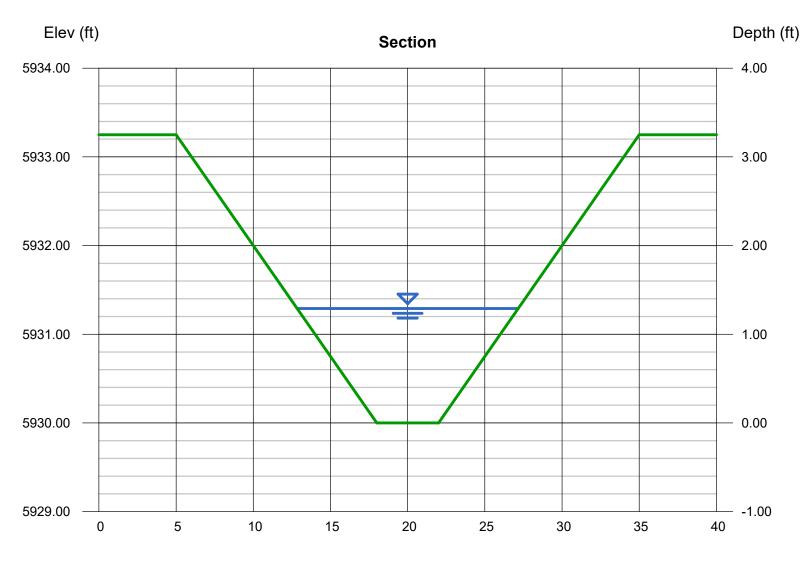

HYDRAULIC STRUCTURE CALCULATIONS

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Nov 5 2020

Engineered Grass Swale - Minimum Slope

Trapezoidal		Highlighted	
Bottom Width (ft)	= 4.00	Depth (ft)	= 2.26
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 99.98
Total Depth (ft)	= 3.25	Area (sqft)	= 29.47
Invert Elev (ft)	= 5930.00	Velocity (ft/s)	= 3.39
Slope (%)	= 0.25	Wetted Perim (ft)	= 22.64
N-Value	= 0.026	Crit Depth, Yc (ft)	= 1.65
		Top Width (ft)	= 22.08
Calculations		EGL (ft)	= 2.44
Compute by:	Known Q		
Known Q (cfs)	= 99.98		

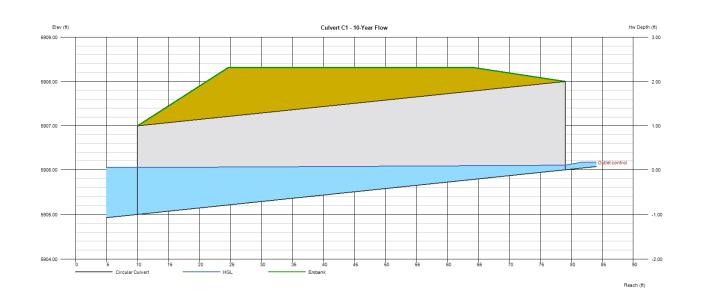

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Nov 5 2020

Engineered Grass Swale - Maximum Slope

Trapezoidal		Highlighted	
Bottom Width (ft)	= 4.00	Depth (ft)	= 1.29
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 99.98
Total Depth (ft)	= 3.25	Area (sqft)	= 11.82
Invert Elev (ft)	= 5930.00	Velocity (ft/s)	= 8.46
Slope (%)	= 3.00	Wetted Perim (ft)	= 14.64
N-Value	= 0.026	Crit Depth, Yc (ft)	= 1.65
		Top Width (ft)	= 14.32
Calculations		EGL (ft)	= 2.40
Compute by:	Known Q		
Known Q (cfs)	= 99.98		

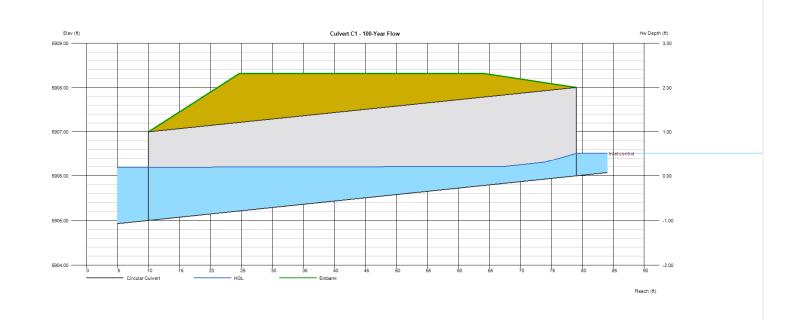

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Nov 5 2020

Culvert C1 - 10-Year Flow

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 5905.00 = 69.00 = 1.45 = 5906.00 = 24.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.09 = 1.28 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 0.09
No. Barrels	= 1	Qpipe (cfs)	= 0.09
n-Value	= 0.024	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Corrugate Metal Pipe	Veloc Dn (ft/s)	= 0.05
Culvert Entrance	= Projecting	Veloc Up (ft/s)	= 1.49
Coeff. K,M,c,Y,k	= 0.034, 1.5, 0.0553, 0.54, 0.9	HGL Dn (ft)	= 5906.05
		HGL Up (ft)	= 5906.10
Embankment		Hw Elev (ft)	= 5906.17
Top Elevation (ft)	= 5908.31	Hw/D (ft)	= 0.08
Top Width (ft)	= 39.77	Flow Regime	= Outlet Control
Crest Width (ft)	= 0.00		

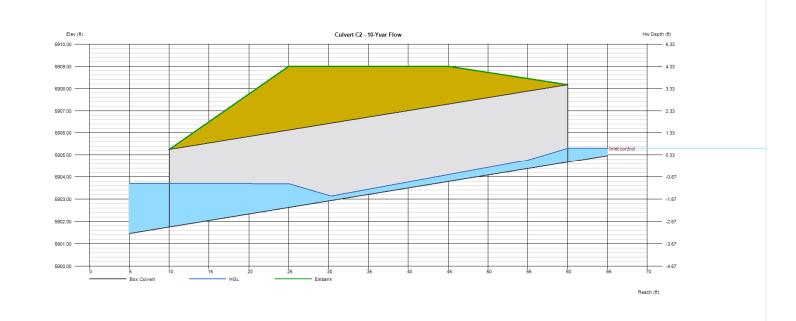


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Nov 5 2020

Culvert C1 - 100-Year Flow

Invert Elev Dn (ft)	= 5905.00	Calculations	
Pipe Length (ft)	= 69.00	Qmin (cfs)	= 0.09
Slope (%)	= 1.45	Qmax (cfs)	= 1.28
Invert Èlev Up (ft)	= 5906.00	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 24.0		, , , , , , , , , , , , , , , , , , ,
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 1.24
No. Barrels	= 1	Qpipe (cfs)	= 1.24
n-Value	= 0.024	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Corrugate Metal Pipe	Veloc Dn (ft/s)	= 0.64
Culvert Entrance	= Projecting	Veloc Up (ft/s)	= 2.94
Coeff. K,M,c,Y,k	= 0.034, 1.5, 0.0553, 0.54, 0.9	HGL Dn (ft)	= 5906.19
		HGL Up (ft)	= 5906.38
Embankment		Hw Elev (ft)	= 5906.51
Top Elevation (ft)	= 5908.31	Hw/D (ft)	= 0.26
Top Width (ft)	= 39.77	Flow Regime	= Inlet Control
Crest Width (ft)	= 0.00		

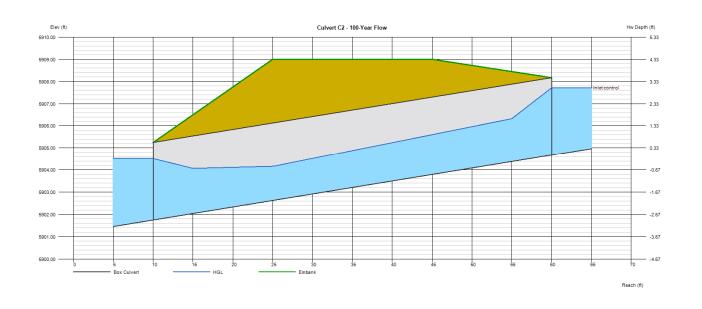


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Nov 5 2020

Culvert C2 - 10-Year Flow

Invert Elev Dn (ft)	= 5901.75	Calculations	
Pipe Length (ft)	= 50.00	Qmin (cfs)	= 9.13
Slope (%)	= 5.84	Qmax (cfs)	= 97.48
Invert Elev Up (ft)	= 5904.67	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 42.0		
Shape	= Box	Highlighted	
Span (in)	= 72.0	Qtotal (cfs)	= 9.13
No. Barrels	= 1	Qpipe (cfs)	= 9.13
n-Value	= 0.015	Qovertop (cfs)	= 0.00
Culvert Type	= Rectagular Concrete	Veloc Dn (ft/s)	= 0.78
Culvert Entrance	= Tapered inlet throat	Veloc Up (ft/s)	= 3.65
Coeff. K,M,c,Y,k	= 0.475, 0.667, 0.0179, 0.97, 0.2	HGL Dn (ft)	= 5903.71
		HGL Up (ft)	= 5905.09
Embankment		Hw Elev (ft)	= 5905.30
Top Elevation (ft)	= 5909.00	Hw/D (ft)	= 0.18
Top Width (ft)	= 20.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 22.00		



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

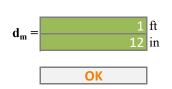
Thursday, Nov 5 2020

Culvert C2 - 100-Year Flow

Invert Elev Dn (ft)	= 5901.75	Calculations	
Pipe Length (ft)	= 50.00	Qmin (cfs)	= 9.13
Slope (%)	= 5.84	Qmax (cfs)	= 97.48
Invert Elev Up (ft)	= 5904.67	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 42.0		
Shape	= Box	Highlighted	
Span (in)	= 72.0	Qtotal (cfs)	= 97.33
No. Barrels	= 1	Qpipe (cfs)	= 97.33
n-Value	= 0.015	Qovertop (cfs)	= 0.00
Culvert Type	= Rectagular Concrete	Veloc Dn (ft/s)	= 5.88
Culvert Entrance	= Tapered inlet throat	Veloc Up (ft/s)	= 8.06
Coeff. K,M,c,Y,k	= 0.475, 0.667, 0.0179, 0.97, 0.2	HGL Dn (ft)	= 5904.51
		HGL Up (ft)	= 5906.68
Embankment		Hw Elev (ft)	= 5907.72
Top Elevation (ft)	= 5909.00	Hw/D (ft)	= 0.87
Top Width (ft)	= 20.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 22.00		

date: 11/3/2020

date:


Calculation by: <u>SJF</u> Checked by: <u>JLL</u>

Riprap Size Calculation

Peak Runoff for the 100-year, 24-hour event, Q Channel Outlet Velocity, V Acceleration of Gravity, g Riprap Specific Gravity, S Minimum Riprap Size, D₅₀min 0.692

 $D_{50}=\frac{0.692}{S-1}\left(\frac{V^2}{2g}\right)$

 $Q = 99.98 ft^{3}/s$ V = 3.39 ft/s $g = 32.2 ft/s^{2}$ S = 2.5 $D_{50min} = 0.08 ft$

D = L _{min} =	3.25 ft 17.88 ft
$\mathbf{D}_{\mathrm{Amin}} =$	27.60 in
L =	30.00 ft
$\mathbf{D}_{\mathbf{A}} =$	28.00 in

OK

OK

Federal Highway Administration HEC No. 14, Hydraulic Design of Energy Dissipators for Culverts and Channels, Table 10.1

Design Riprap Size, D₅₀

Check, $D_{50} > D_{50min}$

Apron Size Calculation

Channel Depth, D Minimum Apron Length, $L_{min} = 5.5D^1$ Minimum Apron Depth, $D_{Amin} = 2.3D_{50}$

Design Apron Length, L Design Apron Depth, D_A

Check, $L > L_{min}$ Check, $D_A > D_{Amin}$

Notes:

1. Culvert rise replaced with channel depth

Table 10.1. Example Riprap Classes and Apron Dimensions

			Apron	Apron
Class	D ₅₀ (mm)	D ₅₀ (in)	Length ¹	Depth
1	125	5	4D	3.5D ₅₀
2	150	6	4D	3.3D ₅₀
3	250	10	5D	2.4D ₅₀
4	350	14	6D	2.2D ₅₀
5	500	20	7D	2.0D ₅₀
6	550	22	8D	2.0D ₅₀

¹D is the culvert rise.

Reference99.98 ft^3/s 3.39ft/s2.2.2 $p_1/2$ Fadaral Hit

Federal Highway Administration HEC No. 14, Hydraulic Design of Energy Dissipators for Culverts and Channels, Appendix D

Company: E Date: S Project: C Location: E	Nick Tessitore, Jordan Brothers Burns & McDonnell Engineering September 20, 2021	ion 3.07, March 2018) Sheet 1 of 1
0	UD-BMP (Version 3.07, March 2018) Designer: Nick Tessitore, Jordan Brothers Company: Burns & McDonnell Engineering Date: September 20, 2021 Project: Cherokee TDS Reduction Facility Location: El Paso County, CO	
	narge ak Flow Rate of the Area Draining to the Grass Buffer	$Q_2 = 0.2$ cfs
	dth of Grass Buffer	$Q_2 = 0.2$ cfs $W_G = 4$ ft
3. Length of Gra	ass Buffer (14' or greater recommended)	L _G = 50 ft
4. Buffer Slope	(in the direction of flow, not to exceed 0.1 ft / ft)	$S_{G} = 0.010$ ft / ft
 A) Does rund entire widt B) Watershe C) Interface D) Type of F Sheet Flo 	teristics (sheet or concentrated) off flow into the grass buffer across the th of the buffer? ed Flow Length Slope (normal to flow) Flow S^{I} fow $S^{I} \in 1$ rated Flow: $F_{L} * S_{I} \le 1$	$ \begin{array}{c} \hline Choose \ One \\ \hline \red{S} \ Yes \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
6. Flow Distribu	ition for Concentrated Flows	Choose One None (sheet flow) Slotted Curbing Evel Spreader Other (Explain):
7 Soil Preparat (Describe soi	tion il amendment)	
8 Vegetation (C	Check the type used or describe "Other")	Choose One Existing Xeric Turf Grass Irrigated Turf Grass Other (Explain): Native grass/vegetation
	e if existing buffer area has 80% vegetation be disturbed during construction.)	Choose One Temporary Permanent None*
10. Outflow Colle	ection (Check the type used or describe "Other")	Choose One Grass Swale Street Gutter Storm Sewer Inlet Other (Explain):
Notes:		

HY-8 ANALYSIS

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 100 cfs Maximum Flow: 150 cfs

Site Data - EX. 12-inch CMP

Site Data Option: Culvert Invert Data Inlet Station: -40.00 ft Inlet Elevation: 5890.30 ft Outlet Station: 40.00 ft Outlet Elevation: 5889.50 ft Number of Barrels: 1

Culvert Data Summary - EX. 12-inch CMP

Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Corrugated Steel Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Thin Edge Projecting Inlet Depression: None

Roadway Data for Crossing: Drennan Road Crossing

Roadway Profile Shape: Irregular Roadway Shape (coordinates) Irregular Roadway Cross-Section:

Coord N	o. Station (ft)	Elevation (ft)
0	0.00	5895.00
1	75.00	5894.00
2	188.00	5893.00
3	311.00	5892.35
4	552.00	5892.10
5	858.00	5892.20
6	988.00	5892.00
7	1074.00	5891.30
8	1155.00	5892.00
9	1227.00	5893.00
10	1322.00	5894.00
11	1394.00	5895.00
Roadway Surface:	Gravel	

Roadway Top Width: 30.00 ft

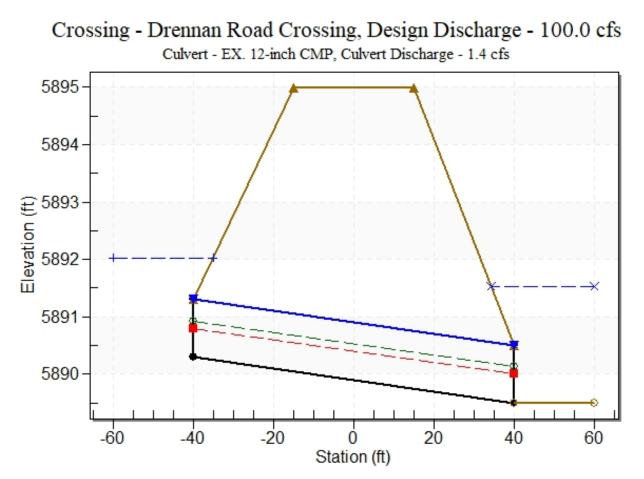

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	5889.50	0.00	0.00	0.00	0.00
15.00	5890.32	0.82	3.32	0.51	0.78
30.00	5890.66	1.16	4.00	0.72	0.81
45.00	5890.90	1.40	4.45	0.88	0.83
60.00	5891.10	1.60	4.80	1.00	0.85
75.00	5891.27	1.77	5.08	1.11	0.86
90.00	5891.43	1.93	5.32	1.20	0.87
100.00	5891.52	2.02	5.47	1.26	0.88
120.00	5891.69	2.19	5.73	1.37	0.89
135.00	5891.81	2.31	5.90	1.44	0.89
150.00	5891.92	2.42	6.06	1.51	0.90

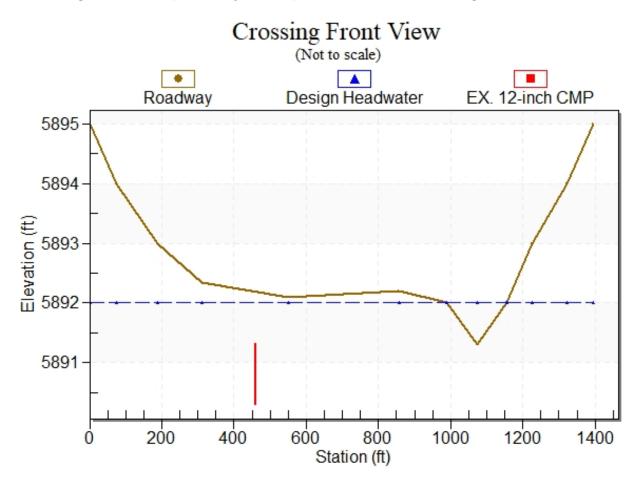
Table 1 - Downstream Channel Rating Curve (Crossing: Drennan Road Crossing)

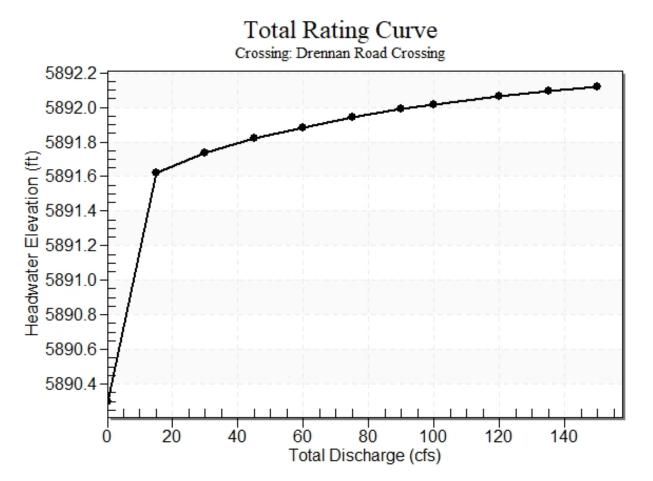
Tailwater Channel Data - Drennan Road Crossing

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 3.00 ft Side Slope (H:V): 3.00 (_:1) Channel Slope: 0.0100 Channel Manning's n: 0.0300 Channel Invert Elevation: 5889.50 ft

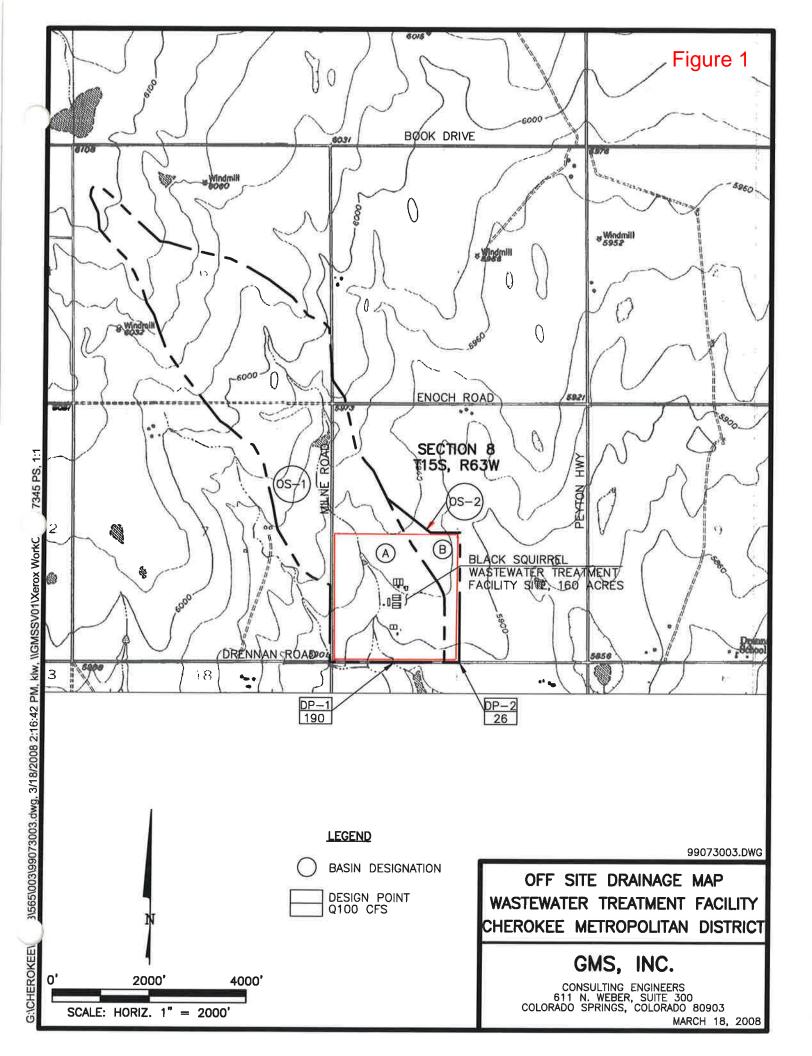
Water Surface Profile Plot for Culvert: EX. 12-inch CMP

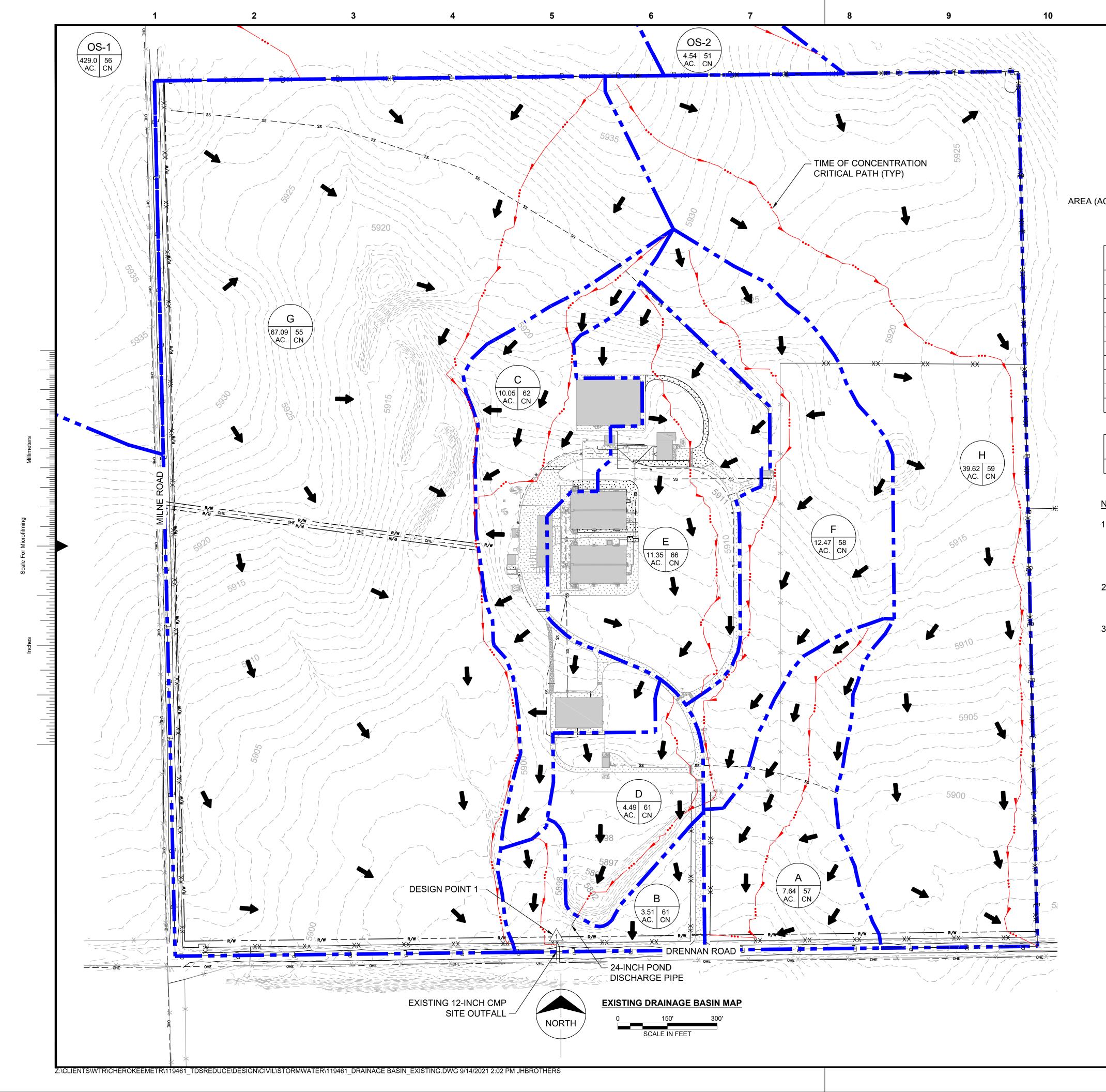
Crossing Front View (Roadway Profile): Drennan Road Crossing

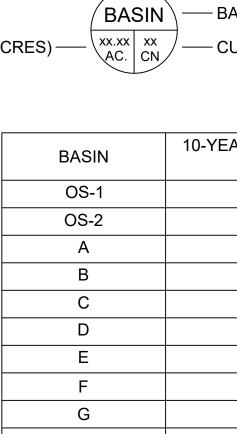


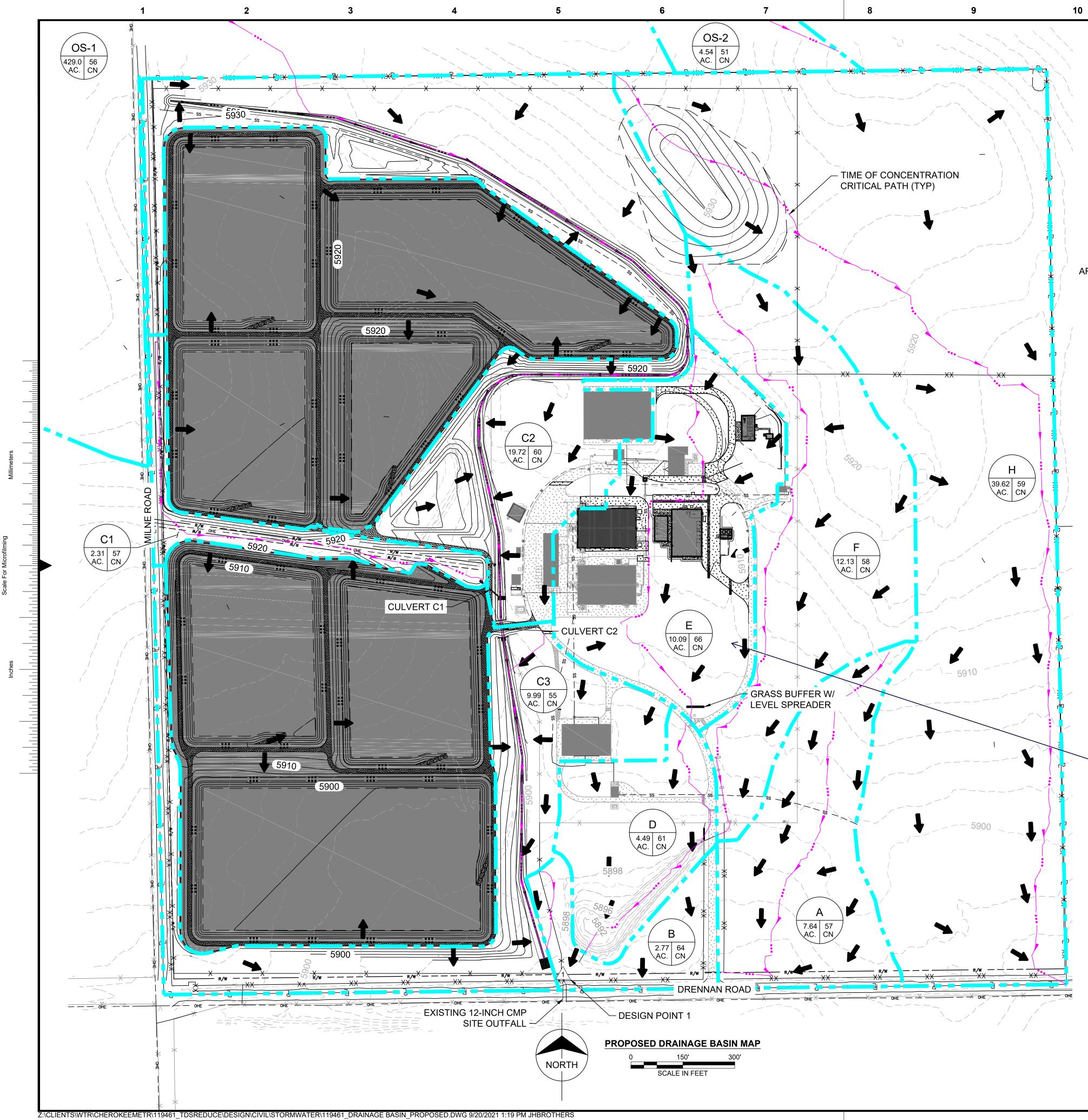

Table 2 - Culvert Summary Table: EX. 12-inch CMP

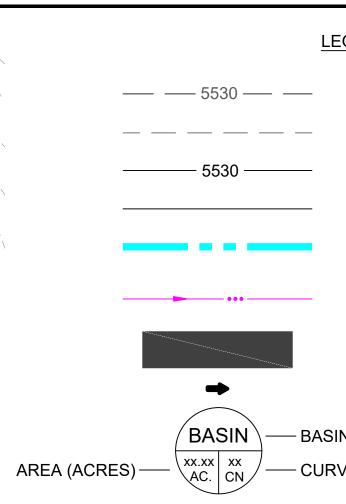
Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	5890.30	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
15.00	2.27	5891.62	1.099	1.320	7-M2t	1.000	0.644	0.825	0.825	3.270	3.323
30.00	2.03	5891.74	1.009	1.437	4-FFf	0.875	0.608	1.000	1.158	2.587	4.002
45.00	1.87	5891.82	0.950	1.519	4-FFf	0.792	0.583	1.000	1.403	2.383	4.451
60.00	1.73	5891.88	0.898	1.585	4-FFf	0.738	0.559	1.000	1.603	2.202	4.795
75.00	1.60	5891.94	0.850	1.641	4-FFf	0.693	0.536	1.000	1.774	2.033	5.079
90.00	1.47	5891.99	0.804	1.689	4-FFf	0.652	0.513	1.000	1.926	1.869	5.322
100.00	1.38	5892.02	0.773	1.716	4-FFf	0.624	0.497	1.000	2.019	1.755	5.468
120.00	1.19	5892.06	0.706	1.762	4-FFf	0.568	0.461	1.000	2.190	1.520	5.728
135.00	1.05	5892.09	0.653	1.793	4-FFf	0.524	0.430	1.000	2.306	1.334	5.902
150.00	0.89	5892.12	0.592	1.821	4-FFf	0.476	0.395	1.000	2.415	1.131	6.063

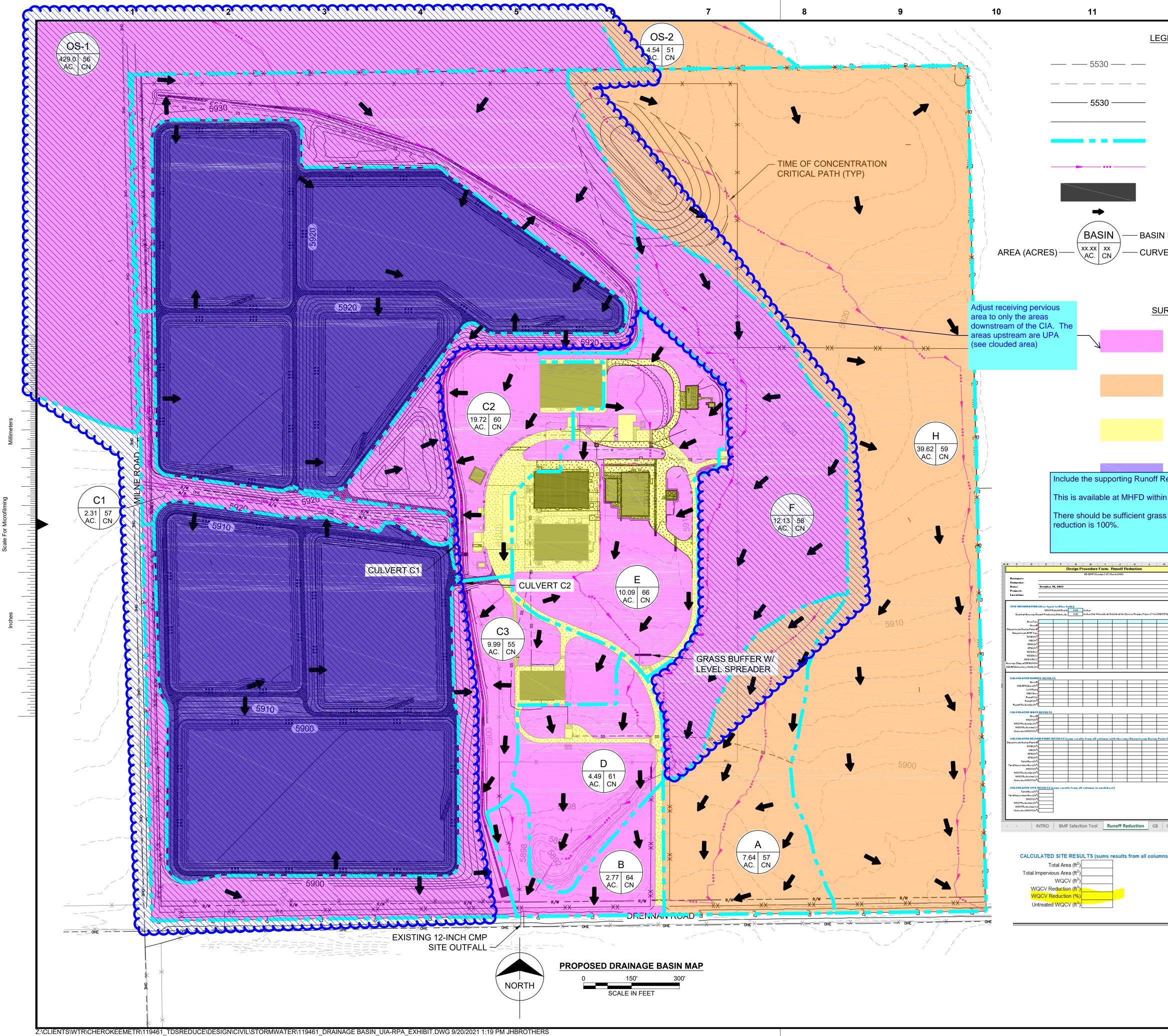

Table 3 - Summary of Culvert Flows at Crossing: Drennan Road Crossing


Headwater Elevation (ft)	Total Discharge (cfs)	EX. 12-inch CMP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
5890.30	0.00	0.00	Ò.0Ó	1
5891.62	15.00	2.27	12.63	16
5891.74	30.00	2.03	27.82	8
5891.82	45.00	1.87	42.93	6
5891.88	60.00	1.73	58.03	5
5891.94	75.00	1.60	73.26	5
5891.99	90.00	1.47	88.16	4
5892.02	100.00	1.38	98.31	3
5892.06	120.00	1.19	118.63	3
5892.09	135.00	1.05	133.90	3
5892.12	150.00	0.89	149.10	2
5891.30	1.81	1.81	0.00	Overtopping


Rating Curve Plot for Crossing: Drennan Road Crossing


APPENDIX F – DRAINAGE DELINEATIONS

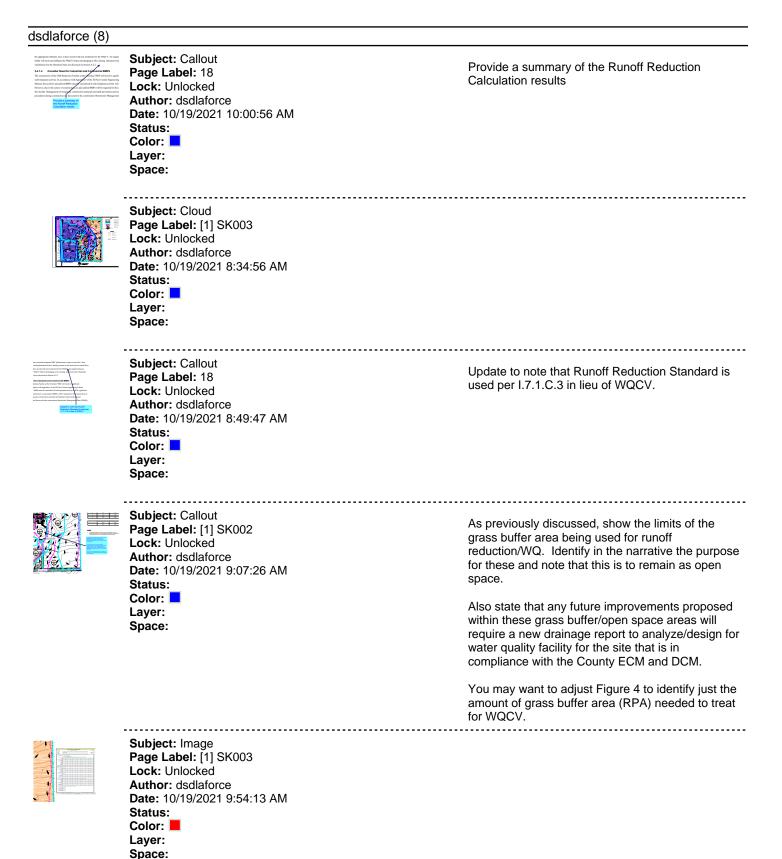



	11	12	13						
		LEGEND		no.	date	by	ckd	description	
	5530 -		EXISTING MAJOR CONTOUR						
			EXISTING MINOR CONTOUR						
			EXISTING BASIN BOUNDARY						
			EXISTING BASIN DOUNDART						А
			CONCENTRATION FLOW PATH						
	•		FLOW DIRECTION						
	BASIN	BASIN ID							
ACRE	S) — XX.XX XX AC. CN	CURVE NUMBER	BASIN DESIGNATION						
		10-YEAR 24-HR FLOW	100-YEAR 24-HR FLOW						В
	BASIN	(CFS)	(CFS)						
	OS-1	8.6	94.6						
	OS-2 A	0.0	1.3						
	B	0.3	4.0						
	C	1.1	8.4						
	D	0.4	3.5						С
	E	1.8	8.9						
	F	0.6	6.7						
	G	1.3	24.3						
	Н	1.9	18.2						
	I								
D	ESIGN POINT	10-YEAR 24-HR FLOW (CFS)	100-YEAR 24-HR FLOW (CFS)						D
	1	14.2	149.3						
NOT									
NOTI	<u>ES:</u>								
		SITE DRAINAGE BASINS							
		E REPORT FOR BLACK SQ REATMENT PLAN, COMPL							
		IGINEERS IN MARCH 2008							
	WATER RECLAM	ATION FACILITY.							
2.	BASINS B, C, ANI	D G ARE SEPARATED BY	THE CENTERLINE OF THE						
	EPHEMERAL SW. EXISTING BASIN	ALE. SEE REPORT TEXT F	OR MORE DETAILED						
			TIONS FROM THE 2008 FINAL						
I	DRAINAGE REPC	ORT (SEE NOTE 1) WERE F	RECALCULATED IN THIS						
	FINAL DRAINAGE CONDITIONS ON	REPORT TO ACCOUNT F	OR ACCURATE SOIL		PRE	LIN	/IN/	ARY - NO	T F
	CONDITIONS ON	AND OFF SITE.				CC	NIC	TRUCTIC	
							JRN		
								ONNELL	
					97			ir., Suite 400 CO 80112	
						3	03-721-	-9292	G
									_
				da	t <mark>e</mark> NOVEM	BER 2	020	detailed S. FOREMA	N
					signed	E		checked	
					S. FO	REMA	N	J. LEE	
							M	ETRO	
						/ś	E.E.	ROD	н
				4					
						CHERO			
						(*)	へ、進		
							DIST	RICT	
								POLITAN DISTRIC	т
								AGE BASIN MAP	1
						-			
				pro	oject 11	9461		contract	
				dra	awing	וטו		rev.	
					eet	9		sheets E BASIN_EXISTING	
						ייים			

			no. date	by cko	d description	
	LEGEND				•	
5530		EXISTING MAJOR CONTOUR				
		EXISTING MINOR CONTOUR				
5530		DESIGN MAJOR CONTOUR				
		DESIGN MINOR CONTOUR				
		PROPOSED BOUNDARY BASIN				
		EXISTING BASIN TIME OF				
_		CONCENTRATION FLOW PATH				
		AREA NOT IN DRAINAGE BOUNDARY				
~	<u></u>	FLOW DIRECTION				
		FLOW DIRECTION				
BASIN	— BASIN ID	BASIN DESIGNATION				
$S) \longrightarrow \begin{pmatrix} xx.xx \\ AC. \\ CN \end{pmatrix}^{-1}$	— CURVE NUMBER	BAGIN DEGIGINATION				
	10-YEAR 24-HR FLOW	100-YEAR 24-HR FLOW				
BASIN	(CFS)	(CFS)				
OS-1	8.6	94.6				
OS-2	0.0	1.3				
A B	0.3	4.0				
C1	0.1	1.3				
C2	2.0	19.6				
C3	0.2	7.0				
D	0.4	3.5				
E	2.1	10.9				
F	0.6	6.5 18.2				
11	1.9	10.2				
	10-YEAR 24-HR FLOW	100-YEAR 24-HR FLOW				
DESIGN POINT	10-YEAR 24-HR FLOW (CFS)	100-YEAR 24-HR FLOW (CFS)				
1						
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI	(CFS) 14.5 NAGE BASIN G WAS ELIN N OF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT			IARY - NO	
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in	(CFS) 14.5 NAGE BASIN G WAS ELIN N OF THE EVAPORATION ON OF OTHER BASIN MC Show the limits of the used for runoff in the narrative the	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT			IARY - NC STRUCTIC	
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in	(CFS) 14.5 NAGE BASIN G WAS ELIN N OF THE EVAPORATION ON OF OTHER BASIN MC Show the limits of the used for runoff	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR			
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space.	(CFS) 14.5 NAGE BASIN G WAS ELIN N OF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff of the narrative the ote that this is to remain	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR		STRUCTIONS	
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space.	(CFS) 14.5 NAGE BASIN G WAS ELIN N OF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the ote that this is to remain	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR	CONS BURI MS 85 Maroon Centennial	STRUCTIONS NS ONNELL Cir., Suite 400 , CO 80112	
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water	(CFS) 14.5 NAGE BASIN G WAS ELIN NOF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the ote that this is to remain e improvements ass buffer/open space drainage report to quality facility for the	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR	CONS BURI MS 85 Maroon Centennial	STRUCTIONS ONNELL Cir., Suite 400	
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water	(CFS) 14.5 NAGE BASIN G WAS ELIN N OF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the ote that this is to remain	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97	CONS BURI MS 85 Maroon Centennial	STRUCTIONS NS ONNELL Cir., Suite 400 , CO 80112 1-9292	
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance that is in compliance	(CFS) 14.5 NAGE BASIN G WAS ELIN NOF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the bet that this is to remain e improvements ass buffer/open space drainage report to quality facility for the with the County ECM	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97	CONS BURI MS 85 Maroon Centennial	STRUCTIONS NS ONNELL Cir., Suite 400 , CO 80112	ON
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance that is in compliance	(CFS) 14.5	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97	CONS BURI MSD 85 Maroon Centennial 303-72	STRUCTIONS NS ONNELL Cir., Suite 400 , CO 80112 1-9292 detailed	ON
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN NOF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the bet that this is to remain e improvements ass buffer/open space drainage report to quality facility for the with the County ECM	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed	CONS BURI MSD 85 Maroon Centennial 303-72	STRUCTIONS SONNELL Cir., Suite 400 , CO 80112 1-9292 detailed S. FOREM	ON
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN NOF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the bet that this is to remain e improvements ass buffer/open space drainage report to quality facility for the with the County ECM	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed	CONS BURI 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTIONS SONNELL Cir., Suite 400 , CO 80112 1-9292 detailed S. FOREMA Checked J. LEE	ON
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN NOF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the bet that this is to remain e improvements ass buffer/open space drainage report to quality facility for the with the County ECM	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed	CONS BURI 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTIONS SONNELL Cir., Suite 400 , CO 80112 1-9292 detailed S. FOREMAN Checked	ON
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN NOF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the bet that this is to remain e improvements ass buffer/open space drainage report to quality facility for the with the County ECM	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed	CONS BURI 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTIONS SONNELL Cir., Suite 400 , CO 80112 1-9292 detailed S. FOREMA Checked J. LEE	ON
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN NOF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the bet that this is to remain e improvements ass buffer/open space drainage report to quality facility for the with the County ECM	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed	CONS BURI 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTIONS SONNELL Cir., Suite 400 , CO 80112 1-9292 detailed S. FOREMA Checked J. LEE	ON
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN NOF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the bet that this is to remain e improvements ass buffer/open space drainage report to quality facility for the with the County ECM	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed	CONS BURI 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTIONS SONNELL Cir., Suite 400 , CO 80112 1-9292 detailed S. FOREMA Checked J. LEE	ON
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN NOF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the bet that this is to remain e improvements ass buffer/open space drainage report to quality facility for the with the County ECM	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed	CONS BURN 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTIONS SONNELL Cir., Suite 400 , CO 80112 1-9292 detailed S. FOREMA Checked J. LEE	ON
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN NOF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the bet that this is to remain e improvements ass buffer/open space drainage report to quality facility for the with the County ECM	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed S. FOF	CONS BUR 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTIONS SONNELL Cir., Suite 400 , CO 80112 1-9292 detailed S. FOREMA Checked J. LEE	
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN NOF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the used for runoff in the narrative the bet that this is to remain e improvements ass buffer/open space drainage report to quality facility for the with the County ECM	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed S. FOF	CONS BURN 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTIONS SONNELL Cir., Suite 400 , CO 80112 1-9292 detailed S. FOREMA Checked J. LEE	
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN OF THE EVAPORATION OF OTHER BASIN MC Show the limits of the used for runoff the narrative the ote that this is to remain in the narrative the ote that this is to remain	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed S. FOF	CONS BURN 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTIONS SONNELL Cir., Suite 400 CO 80112 1-9292 detailed S. FOREMA Checked J. LEE	DN AN CT
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN OF THE EVAPORATION OF OTHER BASIN MC Show the limits of the used for runoff the narrative the ote that this is to remain in the narrative the ote that this is to remain	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed S. FOF	CONS BURN 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTION STRUCTION Source And Cir., Suite 400 CO 80112 1-9292 detailed S. FOREMA Checked J. LEE Support of the second	DN AN CT
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN OF THE EVAPORATION OF OTHER BASIN MC Show the limits of the used for runoff the narrative the ote that this is to remain in the narrative the ote that this is to remain	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed S. FOF S. FOF PROP project	CONS BURN 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTION STRUCTION Source	DN AN CT
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN OF THE EVAPORATION OF OTHER BASIN MC Show the limits of the used for runoff the narrative the ote that this is to remain in the narrative the ote that this is to remain	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed S. FOF S. FOF PROP project 119 drawing	CONS BUR 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTION SONNELL Cir., Suite 400 , CO 80112 1-9292 detailed S. FOREMA Checked J. LEE OPOLITAN DISTRICUTION INAGE BASIN MAR Contract Contract	DN AN CT
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN OF THE EVAPORATION OF OTHER BASIN MC Show the limits of the used for runoff the narrative the ote that this is to remain in the narrative the ote that this is to remain	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed S. FOF S. FOF PROP project 119 drawing	CONS BURN 85 Maroon Centennial 303-72 BER 2020 REMAN	STRUCTION NSONNELL Cir., Suite 400 ,CO 80112 1-9292 detailed S. FOREMA Checked J. LEE OPOLITAN DISTRICTION FACILITY ANAGE BASIN MAR Contract Contract rev.	DN AN CT D
1 OTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTI previously discussed, ss buffer area being u uction/WQ. Identify in pose for these and no open space. o state that any future posed within these gr as will require a new of alyze/design for water that is in compliance d DCM.	(CFS) 14.5 NAGE BASIN G WAS ELIN OF THE EVAPORATION OF OTHER BASIN MC Show the limits of the used for runoff the narrative the ote that this is to remain in the narrative the ote that this is to remain	(CFS) 146.2 /INATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEME designed S. FOF S. FOF PROP project 119 drawing F sheet	CONS BUR 85 Maroon Centennial 303-72 BER 2020 REMAN KEE METR DS REDUC OSED DRA 0461 IGUR # of	STRUCTION SONNELL Cir., Suite 400 , CO 80112 1-9292 detailed S. FOREMA Checked J. LEE OPOLITAN DISTRICUTION INAGE BASIN MAR Contract Contract	DN AN CT D Uts

			no. date	by	ckd	decorintion	
	LEGEND		no. date	by	CKU	description	
<u>5530</u>		EXISTING MAJOR CONTOUR					
		EXISTING MINOR CONTOUR					
5530		DESIGN MAJOR CONTOUR					
		DESIGN MINOR CONTOUR					
		PROPOSED BOUNDARY BASIN					
		EXISTING BASIN TIME OF					
		CONCENTRATION FLOW PATH					
		AREA NOT IN DRAINAGE BOUNDARY					
	<u></u>	FLOW DIRECTION					
(BASIN)-	— BASIN ID	BASIN DESIGNATION					
$\mathbf{S} = \begin{bmatrix} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \\ \mathbf{A} \mathbf{C} \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{X} \mathbf{X} \\ \mathbf{C} \mathbf{N} \end{bmatrix} - \mathbf{C} \mathbf{S}$	— CURVE NUMBER						
BASIN	10-YEAR 24-HR FLOW	100-YEAR 24-HR FLOW					
	(CFS)	(CFS)					
OS-1 OS-2	8.6	94.6					
A	0.0	4.0					
В	0.5	2.8					
C1	0.1	1.3					
C2	2.0	19.6					
C3	0.2	7.0					
DE	0.4	3.5					
F	<u> </u>	6.5					
H	1.9	18.2					
		1	1				
П							
	10-YEAR 24-HR FLOW	100-YEAR 24-HR FLOW					
DESIGN POINT	(CFS)	(CFS)					
DESIGN POINT							
DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTIO	(CFS) 14.5 IAGE BASIN G WAS ELIN I OF THE EVAPORATION ON OF OTHER BASIN MO	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT				RY - NO	
DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION FOR DESCRIPTION	(CFS) 14.5 IAGE BASIN G WAS ELIN I OF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the sed for runoff	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT				RY - NO ⁻ RUCTIO	
DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTIC reviously discussed, s buffer area being u locion/WQ. Identify in loose for these and no	(CFS) 14.5 IAGE BASIN G WAS ELIN I OF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the sed for runoff	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT		CO	NST	RUCTIO	
DESIGN POINT 1 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION reviously discussed, s buffer area being u totion/WQ. Identify in ose for these and no pen space.	(CFS) 14.5 IAGE BASIN G WAS ELIN I OF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the sed for runoff the narrative the te that this is to remain	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT		CO		RUCTIO	
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT CONSTRUCTION FOR DESCRIPTION FOR DES	(CFS) 14.5 IAGE BASIN G WAS ELIN I OF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the sed for runoff the narrative the te that this is to remain improvements ass buffer/open space	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR	CO BL M 785 Mar	NST JRNS ISDO	RUCTIO	
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT DESIGN POINT DESIGN	(CFS) 14.5 AGE BASIN G WAS ELIN OF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the sed for runoff the narrative the te that this is to remain improvements ass buffer/open space trainage report to quality facility for the	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR	CO BI 785 Mar Cente	NST JRNS ISDO	RUCTIO NNELL Suite 400 80112	
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT DESIGN POINT DESIGN	(CFS) 14.5 IAGE BASIN G WAS ELIN I OF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the sed for runoff the narrative the te that this is to remain improvements ass buffer/open space trainage report to	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR	CO BI 785 Mar Cente	NST JRNS SDO roon Cir., nnial, CO	RUCTIO NNELL Suite 400 80112	
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION	(CFS) 14.5 AGE BASIN G WAS ELIN OF THE EVAPORATION ON OF OTHER BASIN MC show the limits of the sed for runoff the narrative the te that this is to remain improvements ass buffer/open space trainage report to quality facility for the	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date	CO BL 785 Mar Center 30	NST JRNS SDO roon Cir., nnial, CO 3-721-92	RUCTIO NNELL Suite 400 80112 292	Ν
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION reviously discussed, s buffer area being u uction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM	CO BL 785 Mar Center 30	NST JRNS Soon Cir., nnial, CO 03-721-92	RUCTIO NNELL Suite 400 80112 292	Ν
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION reviously discussed, s buffer area being u uction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed	CO BL 785 Mar Center 30	NST JRNS SDO roon Cir., nnial, CO 03-721-92	RUCTIO NNELL Suite 400 80112 292	Ν
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTIC reviously discussed, s buffer area being u totion/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new o yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed	CO BER 20	NST JRNS Sedo roon Cir., nnial, CO 03-721-92	RUCTIO NNELL Suite 400 80112 292 Ietailed S. FOREMAN checked J. LEE	Ν
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION reviously discussed, s buffer area being u uction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed	CO BER 20	NST JRNS Sedo roon Cir., nnial, CO 03-721-92	RUCTIO NNELL Suite 400 80112 292 Ietailed S. FOREMAN checked J. LEE	Ν
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION reviously discussed, s buffer area being u uction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed	CO BER 20 REMAN	NST JRNS Sedo roon Cir., nnial, CO 03-721-92	RUCTIO NNELL Suite 400 80112 292 Ietailed S. FOREMAN	Ν
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION reviously discussed, s buffer area being u uction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed	CO BER 20 REMAN	NST JRNS Sedo roon Cir., nnial, CO 03-721-92	RUCTIO NNELL Suite 400 80112 292 Ietailed S. FOREMAN checked J. LEE	Ν
DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION reviously discussed, s buffer area being u totion/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed	CO BER 20	NST JRNS Sedo roon Cir., nnial, CO 03-721-92	RUCTIO NNELL Suite 400 80112 292 Ietailed S. FOREMAN checked J. LEE	Ν
DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION reviously discussed, s buffer area being u totion/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed	CO BER 20 REMAN	NST JRNS Sedo roon Cir., nnial, CO 03-721-92	RUCTIO	Ν
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION reviously discussed, s buffer area being u uction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed S. FO	CO BL 785 Mar Centel 30 BER 20 REMAN	NST JRNS SeDO roon Cir., nnial, CO 03-721-92	RUCTIO	N
DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION reviously discussed, s buffer area being u totion/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed S. FO CHERC	CO BLANC REMAN	NST JRNS Soon Cir., nnial, CO 3-721-92	RUCTIO	N
DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION reviously discussed, s buffer area being u ction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed S. FO	CO BER 20 REMAN	NST JRNS SOON Cir., nnial, CO 03-721-92	RUCTIO	N
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION reviously discussed, s buffer area being u uction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed S. FO CHERC T PROF	CO BER 20 REMAN	NST JRNS JRNS JCO Toon Cir., nnial, CO 3-721-92	RUCTIO	N
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION reviously discussed, s buffer area being u uction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed S. FO CHERC T PROF	CO BER 20 REMAN	NST JRNS JRNS JCO Toon Cir., nnial, CO 3-721-92	RUCTIO	N
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION reviously discussed, s buffer area being u uction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed S. FO CHERC T PROF project 11 drawing	CO BL 785 Mar Centel 30 BER 20 REMAN	NST JRNS Coon Cir., nnial, CO 3-721-92	RUCTIO NNELL Suite 400 80112 92 Netailed S. FOREMAN Checked J. LEE	N
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION reviously discussed, s buffer area being u uction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 date NOVEM designed S. FO CHERC T PROF project 11 drawing	CO BL 785 Mar Centel 30 BER 20 REMAN	NST JRNS SeDO roon Cir., nnial, CO 3-721-92	RUCTIO NNELL Suite 400 80112 92 Netailed S. FOREMAN Checked J. LEE	
DESIGN POINT 1 DESIGN POINT 1 DESIGN POINT 1 DTES: EXISTING DRAIN CONSTRUCTION FOR DESCRIPTION FOR DESCRIPTION reviously discussed, s buffer area being u uction/WQ. Identify in ose for these and no pen space. state that any future osed within these gra s will require a new of yze/design for water that is in compliance DCM. may want to adjust F	(CFS) 14.5	(CFS) 146.2 MINATED DUE TO PONDS. SEE REPORT TEXT	FOR 97 97 date NOVEM designed S. FO CHERC S. FO PROF PROF T PROF T PROF	CO BL 785 Mar Centel 30 BER 20 REMAN	NST JRNS JCOO Coon Cir., nnial, CO 3-721-92	RUCTIO NNELL Suite 400 80112 92 Netailed S. FOREMAN Checked J. LEE	N 1 T

12	13								_
GEND		no.	date	by	ckd	desc	ription		
	EXISTING MAJOR CONTOUR								
	EXISTING MINOR CONTOUR								
	DESIGN MAJOR CONTOUR								
	DESIGN MINOR CONTOUR								Α
	PROPOSED BOUNDARY BASIN								
	EXISTING BASIN TIME OF								
	CONCENTRATION FLOW PATH								
	FLOW DIRECTION								
N ID VE NUMBER	BASIN DESIGNATION								В
JRFACE TYPES	2								6
RECEIV AREA (F	ING PERVIOUS RPA)								С
	NECTED US AREA (UPA)								
CONNE IMPERV	CTED IOUS AREA (CIA)								D
Reduction calculation the UD-BMP v ss buffer (RPA) s	vorksheet.								-E-
M N O P 0						RY -			F
			978	35 Mar Center 30	oon Cir. nnial, C(3-721-9 20	detailed			G
GS RG SF EDB mns in worksheet)	RP		S. FOF	CHEROF		LE OPOLITAN	LEE		н
		PROI pro	TI POSED ject 119 wing	DRAIN 461	AGE B	OLITAN I ON FACILI ASIN SUR contract	TY		1
		she		IGU #	of	4 —	sheets	,	
	1	file				BASIN_UI	A-RPA_E	EXHI	IT.D



CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 O 816-333-9400 F 816-333-3690 www.burnsmcd.com

FDR_v1 revision redline.pdf Markup Summary

CCULTER VERSET Cover work hand a down in surfaces Server 1 Server Subject: Image Page Label: [1] SK003 Lock: Unlocked Author: dsdlaforce Date: 10/19/2021 9:54:51 AM Status: Color: Layer: Space:

Subject: Text Box Page Label: [1] SK003 Lock: Unlocked Author: dsdlaforce Date: 10/19/2021 9:55:26 AM Status: Color: ■ Layer: Space:

Include the supporting Runoff Reduction calculation.

This is available at MHFD within the UD-BMP worksheet.

There should be sufficient grass buffer (RPA) so the WQCV reduction is 100%.

Subject: Callout Page Label: [1] SK003 Lock: Unlocked Author: dsdlaforce Date: 10/19/2021 9:56:24 AM Status: Color: Layer: Space: -----

Adjust receiving pervious area to only the areas downstream of the CIA. The areas upstream are UPA (see clouded area)