Final Drainage Report

Widefield Parks and Recreation Facility Expansion El Paso County, Colorado

Prepared for: Widefield School District 3 1820 Main Street Colorado Springs, CO 80911 Contact: Dave Gish

Prepared by: Kimley-Horn and Associates, Inc. 2 North Nevada Avenue, Suite 300 Colorado Springs, Colorado 80903 (719) 453-0180 Contact: Eric Gunderson, P.E.

Project #: 096958002 July 27 Prepared: July 27, 2022 PCD File Number: PPR-2213

Kimley »Horn

CERTIFICATION

DESIGN ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors of on issions on my part in preparation of this report.

A	
SIGNATURE (Affix Seal):	7/28/22
Colorado P.E. No. 49487	Date
WAL LISS	

OWNER/DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all of the requirements specified in this Drainage Report and Plan.

7-29-2022

Date

Widefield School District 3

Name of Developer

Authorized Signature

len

Printed Name

isector

prings, (1) 809/1 Jurado.

EL PASO COUNTY

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E. Interim County Engineer/ ECM Administrator APPROVED Engineering Department 09/21/2022 2:39:15 PM dsdnijkanp EPC Planning & Community Development Department

Conditions:

TABLE OF CONTENTS

CERTIFICATION	.2
DESIGN ENGINEER'S STATEMENT	.2
OWNER/DEVELOPER'S STATEMENT	
EL PASO COUNTY	.2
TABLE OF CONTENTS	.3
INTRODUCTION	.5
PURPOSE AND SCOPE OF STUDY	.5
LOCATION	
DESCRIPTION OF PROPERTY	.5
DRAINAGE BASINS	.5
MAJOR BASIN DESCRIPTIONS	.5
EXISTING SUB-BASIN DESCRIPTIONS	.6
Sub-Basin EX-1	.6
Sub-Basin EX-2	.6
Sub-Basin EX-3	
Sub-Basin EX-4	
Sub-Basin EX-5	
Sub-Basin EX-6	.7
Sub-Basin EX-7	
PROPOSED RATIONAL SUB-BASIN DESCRIPTIONS	.7
Sub-Basin EX-1	
Sub-Basin EX-2	
Sub-Basin EX-3	
Sub-Basin EX-4	
Sub-Basin A1	
Sub-Basin A2	
Sub-Basin A3	
Sub-Basin A4	
Sub-Basin A5	
Sub-Basin A6	
Sub-Basin A7	
Sub-Basin A8	
Sub-Basin A9	
Sub-Basin A10	
Sub-Basin A11	
Sub-Basin A12	
DRAINAGE DESIGN CRITERIA1	
DEVELOPMENT CRITERIA REFERENCE1	
HYDROLOGIC CRITERIA1	
HYDRAULIC CRITERIA1	1
THE FOUR STEP PROCESS1	2
DRAINAGE FACILITY DESIGN	2
GENERAL CONCEPT1	2

SPECIFIC DETAILS	12
SUMMARY	13
REFERENCES	14
APPENDIX	15
APPENDIX A: FIGURES Appendix B: HYDROLOGY Appendix C: HYDRAULICS	
APPENDIX D: DRAINAGE MAPS	19

INTRODUCTION

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and hydraulic calculations and to document and finalize the drainage design methodology in support of the proposed recreation center expansion ("the Project") for LKA Partners. The Project is located within the jurisdictional limits of El Paso County ("the County"). Thus, the guidelines for the hydrologic and hydraulic design components were based on the criteria for the County and City of Colorado Springs, described below.

LOCATION

The 39.26-acre parcel (TSN: 6513100001, 6513100003, 6512300003) is bounded between Widick St. to the east and Aspen Dr. to the west. A vicinity map has been provided in the **Appendix A** of this report.

DESCRIPTION OF PROPERTY

The Project is located on approximately 39.26 acres of land consisting of an existing park, with five (5) baseball fields, soccer field, parking lots, playground equipment, dirt trail around the perimeter, tennis courts, public library, aquatic center, and hardscape. The Project consists of a new recreation center with associated sidewalk and hardscape extensions, and a proposed onsite full spectrum detention basin. With the exception of pavement replacement over the proposed sanitary sewer service connection, the existing parking lot to the west of the proposed recreation building will remain undisturbed and be restriped. The Site does not currently provide water quality or detention for the Project area. The existing land use per El Paso County's Assessor is Exempt, Political Subdivision (Public School Use).

The existing topography consists of slopes ranging from 1% to 30% and generally slopes from Northeast to Southwest.

NRCS soil data is available for this Site and it has been noted that soils onsite are generally USCS Type A. The NRCS soil data can be found in **Appendix B**. There are no major drainage ways or irrigation facilities within the Site.

Improvements will consist of mowing, clearing and grubbing, weed control, paved access road construction, building pad grading, one detention pond, culverts, drainage swales, and native seeding.

An updated Topographic field survey was completed for the Project by Drexel, Barrell & CO, dated August 6, 2021 and is the basis for design for the drainage improvements.

DRAINAGE BASINS

MAJOR BASIN DESCRIPTIONS

The Site improvements are located in Zone X, as determined by the Flood Insurance Rate Map (FIRM) number 08041C0763G and 08041C0951G effective date, December 7, 2018 (see

Appendix A). Please note, a Portion of the Northwest corner of the Site is adjacent to an existing drainageway. An effective LOMR (17-08-1467P, dated 1/15/2019) is in place for this drainageway. The building and proposed parking area will not be within this drainageway.

The Project is located within El Paso County's Windmill Gulch Drainage Basin.

EXISTING SUB-BASIN DESCRIPTIONS

Site runoff flows from north to south via sheet and concentrated flows over developed land to Constitution Ave. Off-site flows entering the site are negligible and are not anticipated. Below is a description of the existing onsite sub-basins.

Sub-Basin EX-1

Sub-Basin EX-1 consists of a part of the northwest portion of the site. Drainage flows overland from south to north and conveys through the existing parking lot to the northwest corner at Design Point 1. Runoff during the 5-year and 100-year events are 8.19 cfs and 17.22 cfs, respectively. This sub-basin has an area of 3.07 acres. The impervious value for this basin is 61%. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-Basin EX-2

Sub-Basin EX-2 consists of a part of the northwest portion of the site. Drainage flows overland from east to west and is conveyed down an existing grass hill to the southwest corner at Design Point 2. Runoff during the 5-year and 100-year events are 1.03 cfs and 5.56 cfs, respectively. This sub-basin has an area of 2.06 acres. The impervious value for this basin is 5%. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-Basin EX-3

Sub-Basin EX-3 consists of a part of the western portion of the site. Drainage flows overland from east to west and conveys through the existing road and landscaping to the western edge at Design Point 3. Runoff during the 5-year and 100-year events are 5.79 cfs and 14.55 cfs, respectively. This sub-basin has an area of 4.38 acres. The impervious value for this basin is 38%. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-Basin EX-4

Sub-Basin EX-4 consists of a part of the western portion of the site. Drainage flows overland from east to west and conveys through the existing parking lot and landscaping to the western edge at Design Point 4. Runoff during the 5-year and 100-year events are 4.00 cfs and 10.34 cfs, respectively. This sub-basin has an area of 3.10 acres. The impervious value for this basin is 35%. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-Basin EX-5

Sub-Basin EX-5 consists of a part of the southwestern portion of the site. Drainage flows overland from North to South and conveys through the existing landscaping to the Southwest corner at Design Point 5. Runoff during the 5-year and 100-year events are 1.91 cfs and 8.93 cfs, respectively. This sub-basin has an area of 3.97 acres. The impervious value for this basin is 9%. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-Basin EX-6

Sub-Basin EX-6 consists the central majority of the site. Drainage flows overland from North to South and conveys through the existing landscaping into the existing concrete channel, which conveys to the southwest corner at Design Point 6 where flows enter an existing 24" CMP storm pipe which connects to the public storm system in Lindstrom Drive south of the Site. Runoff during the 5-year and 100-year events are 8.19 cfs and 41.69 cfs, respectively. This sub-basin has an area of 22.43 acres. The impervious value for this basin is 7%. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-Basin EX-7

Sub-Basin EX-7 consists of a part of the southeast portion of the site which includes an existing parking lot and tree lawn area adjacent to Widick Street. Drainage flows overland from north to south and conveys through the existing parking lot off-site to Widick Street at Design Point 7. Runoff during the 5-year and 100-year events are 2.04 cfs and 4.07 cfs, respectively. This subbasin has an area of 0.79 acres. The impervious value for this basin is 70%. Refer to **Appendix D** for the Existing Conditions Drainage Map.

PROPOSED RATIONAL SUB-BASIN DESCRIPTIONS

Sub-Basin EX-1

Sub-Basin EX-1 consists of a portion of the northwest part of the site. Runoff from this basin will be directed to design point 1 where it will follow existing drainage patterns and enter the curb and gutter within Aspen Drive. This sub-basin has an area of 3.07 acres. The impervious value for this basin is 61%. The basin will generate runoff of 8.19 cfs and 17.22 cfs in the minor and major storm event.

Sub-Basin EX-2

Sub-Basin EX-2 consists of a portion of the northwest part of the site. Runoff from this basin will be directed to design point 2 where it will follow existing drainage patterns and exit the site along the property line. This sub-basin has an area of 2.06 acres. The impervious value for this basin is 5%. The basin will generate runoff of 1.03 cfs and 5.56 cfs in the minor and major storm event.

Sub-Basin EX-3

Sub-Basin EX-3 consists of a portion of the western part of the site. Runoff from this basin will be directed to design point 3 where it will follow existing drainage patterns and exit the site at the property line. This sub-basin has an area of 4.38 acres. The impervious value for this basin is 38%. The basin will generate runoff of 5.79 cfs and 14.55 cfs in the minor and major storm event.

Sub-Basin EX-4

Sub-Basin EX-4 consists of the existing parking lot at the eastern side of the site. Runoff from this basin will be directed to design point 4 where it will follow existing drainage patterns and

enter the existing curb and gutter within Widick Street. This sub-basin has an area of 0.79 acres. The impervious value for this basin is 70%. The basin will generate runoff of 2.04 cfs and 4.07 cfs in the minor and major storm event.

Sub-Basin A1

Sub-Basin A1 consists of a portion of the existing landscaping and drive aisle along the northern property line. Runoff from this basin will be directed to design point 5 where it will enter a proposed 15' Type-R inlet and convey via the proposed private storm sewer system to the proposed onsite extended detention basin. This sub-basin has an area of 2.49 acres. The impervious value for this basin is 54%. The basin will generate runoff of 5.35 cfs and 11.73 cfs in the minor and major storm event.

Sub-Basin A2

Sub-Basin A2 consists of a portion of the proposed parking area and landscaping to the north of the proposed building. Runoff from this basin will be directed to design point 6 where it will enter a proposed area inlet and convey via the proposed private storm sewer system to the proposed onsite extended detention basin. This sub-basin has an area of 0.35 acres. The impervious value for this basin is 68%. The basin will generate runoff of 1.15 cfs and 2.31 cfs in the minor and major storm event.

Sub-Basin A3

Sub-Basin A3 consists of a portion of the sidewalk and landscaping to the northeast of the proposed building. Runoff from this basin will be directed to design point 7 where it will enter a proposed area inlet and convey via the proposed private storm sewer system to the proposed onsite extended detention basin. This sub-basin has an area of 0.09 acres. The impervious value for this basin is 6%. The basin will generate runoff of 0.06 cfs and 0.30 cfs in the minor and major storm event.

Sub-Basin A4

Sub-Basin A4 consists of a portion of the sidewalk and landscaping to the northeast of the proposed building. Runoff from this basin will be directed to design point 8 where it will enter a proposed area inlet and convey via the proposed private storm sewer system to the proposed onsite extended detention basin. This sub-basin has an area of 0.83 acres. The impervious value for this basin is 17%. The basin will generate runoff of 0.68 cfs and 2.40 cfs in the minor and major storm event.

Sub-Basin A5

Sub-Basin A5 consists of a portion of the sidewalk and landscaping to the northeast of the proposed building. Runoff from this basin will be directed to design point 9 where it will enter a proposed area inlet and convey via the proposed private storm sewer system to the proposed onsite extended detention basin. This sub-basin has an area of 0.82 acres. The impervious value for this basin is 13%. The basin will generate runoff of 0.56 cfs and 2.26 cfs in the minor and major storm event.

Sub-Basin A6

Sub-Basin A6 consists of a portion of the sidewalk and landscaping to the northeast of the proposed building. Runoff from this basin will be directed to design point 10 where it will enter a proposed area inlet and convey via the proposed private storm sewer system to the proposed onsite extended detention basin. This sub-basin has an area of 0.73 acres. The impervious value for this basin is 4%. The basin will generate runoff of 0.28 cfs and 1.70 cfs in the minor and major storm event.

Sub-Basin A7

Sub-Basin A7 consists of the entirety of the proposed building and roof area. Runoff from this basin will be directed to design point 11 where it will enter the proposed roof drain system, which will convey via the proposed private storm sewer system to the proposed onsite extended detention basin. This sub-basin has an area of 1.04 acres. The impervious value for this basin is 90%. The basin will generate runoff of 3.92 cfs and 7.30 cfs in the minor and major storm event.

Sub-Basin A8

Sub-Basin A8 consists of the majority of the proposed parking area located directly west of the proposed building. Runoff from this basin will be directed to design point 12 where it will enter a proposed 5' Type-R inlet and convey via the proposed private storm sewer system to the proposed onsite extended detention basin. This sub-basin has an area of 0.43 acres. The impervious value for this basin is 83%. The basin will generate runoff of 1.70 cfs and 3.21 cfs in the minor and major storm event.

Sub-Basin A9

Sub-Basin A9 consists an existing offsite basin with a small portion of the proposed parking area on the western side of the proposed building. Runoff from this basin will be directed to design point 13 where it will follow existing drainage patterns and exit the site at the property line. This sub-basin has an area of 3.41 acres. The impervious value for this basin is 34%. The basin will generate runoff of 4.42 cfs and 11.61 cfs in the minor and major storm event. Within This basin contains approx. 0.49 acres of disturbed impervious area, which qualifies under the WQ exclusion (please see Proposed Drainage Map for total area). The remainder of the basin is undisturbed.

Sub-Basin A10

Sub-Basin A10 consists of an existing offsite basin with a section of proposed landscaping at the southwest corner of the site. Runoff from this basin will be directed to design point 14 where it will follow existing drainage patterns and exit the site at the property line. This sub-basin has an area of 4.06 acres. The impervious value for this basin is 8%. The basin will generate runoff of 1.92 cfs and 9.02 cfs in the minor and major storm event. This basin contains approx. 0.44 acres of disturbed impervious area, which qualifies under the WQ exclusion I.7.1.C.1.a *Water Quality Capture Volume (WQCV) Standard* as the disturbed area is under 20%, not exceeding 1 acre (please see Proposed Drainage Map for total area). The remainder of the basin is undisturbed.

Sub-Basin A11

Sub-Basin A11 consists of the proposed parking lot and landscaping on the south side of the proposed building. Runoff from this basin will be directed to design point 15 where it enter a proposed area inlet and convey via the proposed private storm sewer system to the proposed onsite extended detention basin. This sub-basin has an area of 1.16 acres. The impervious value for this basin is 56%. The basin will generate runoff of 2.51 cfs and 5.41 cfs in the minor and major storm event.

Sub-Basin A12

Sub-Basin A12 consists of the central majority of the site. Runoff from this basin will be directed to design point 16 where flow directly into the existing concrete channel, which conveys directly to the proposed extended detention basin. This sub-basin has an area of 14.10 acres. The impervious value for this basin is 5%. The basin will generate runoff of 5.26 cfs and 28.67 cfs in the minor and major storm event.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)" dated October 2018 ("the MANUAL"), El Paso County "Engineering Criteria Manual" ("the Engineering Manual"), Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014 ("the Colorado Springs MANUAL").

There are no known master plans or studies for the site.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the existing and proposed drainage analysis per the MANUAL. The rainfall depths for site were determined from equation 6-1, equation 6-2 utilizing Figures 6-6, 6-11, 6-12, and 6 -17 from the MANUAL. Refer to **Table 1** below for the rainfall depths utilized for the site and **Appendix B** for the hydrologic calculations for the site.

Table 1: Rainfall Depths

	Duration (HRS)
Storm Event	1 HR
5 Year	1.52
100 Year	2.55

Calculations for the runoff coefficients and percent impervious are included in the **Appendix B**. Rational method was used to determine the peak flows for the project. These flows were used to determine the size of the proposed inlets, culvert, storm drain system and on-site swales.

The proposed impervious values in Table 6-6 of the DCM were utilized in this report for the final design. Refer to **Appendix B** of this report for Table 6-6.

The Site is providing one full spectrum detention pond. The Site is maintaining the historic drainage patterns as much as possible.

There are no additional provisions selected or deviations from the criteria in both the MANUAL and Colorado Springs MANUAL.

HYDRAULIC CRITERIA

Applicable design methods were utilized to size the proposed pond, which includes the use of the UD-Detention spreadsheet and rational calculations spreadsheet.

Proposed drainage features on-site have been analyzed and sized for the following design storm events:

• Major Storm: 100-year Storm Event

One full spectrum detention pond is proposed in order to maintain historic flows and water quality. The detention pond known as the South Pond. The South Pond is in the southwest corner of the Site with a proposed volume of 1.43 ac-ft and designed for the 100-year storm event. The pond has a discharge rate of 7.7 cfs in the 100-year condition. Water from the South Pond is discharged into an existing culvert at the southwest corner of the site and ultimately outfalls to Fountain Creek. Pond calculations are provided in the **Appendix C**.

Curb and gutter, inlets, concrete and grass lined swales, and storm drain pipes are designed to carry flows to the South Pond. The storm drain pipe calculations are provided in the **Appendix C** and the design points are provided in the Proposed Drainage Map located in **Appendix D**. The pond is designed to release the 100-year flow rates below the pre-development flow rate.

Emergency overflows will be routed over the western side of the pond. It will follow existing drainage conditions and cross the property line to the West, where it will avoid the single family residence and enter the Grand Boulevard right of way.

Due to the sub-basins that follow existing drainage patterns and do not enter the pond, an additional CIA calculation has been included in **Appendix C** to include all tributary areas.

THE FOUR STEP PROCESS

The Project was designed in accordance with the four-step process to minimize adverse impacts of urbanization, as outlined in the County's "Four-Step Process" for selecting structural BMPs (ECM Section I.7.2 BMP Selection).

Step 1. Employ Runoff Reduction Practices- The project is proposing an expansion to an existing school building that will be designed to minimize the impact to the current existing terrain. The Site's proposed paved roadways and building footprint will increase the Site's impervious area; however, drainage swales will be constructed to slow down the runoff velocity and reduce runoff peaks. A full spectrum detention pond will be used to capture stormwater and maintain flows discharging off site at or below historic levels.

Step 2. Stabilize Drainageways– Stabilizing proposed drainage swales by designing them with slopes that control the flow rates. Placement of riprap upstream and downstream of culverts to help reduce erosion of the drainage swales. Rock chutes will be constructed to reduce the velocities of runoff entering the ponds at the channel locations. We anticipate this will minimize erosion.

Step 3. Provide Water Quality Capture Volume (WQCV) –Permanent water quality measures and detention facilities will be provided with the Project. More specifically, this project proposes the construction of an Extended Detention Basin to provide for the required water quality capture volume.

Step 4. Consider Need for Industrial and Commercial BMPs – The proposed project is proposing a new recreation center; therefore, covering of storage/handling areas and spill containment and control will not need to be provided.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed drainage patterns will match the historic patterns. To maintain historic flows, a full spectrum detention pond is being proposed and will capture and control the flows from the proposed development to convey flows with a series of swales, parking lot sheet flow, and a storm drain system.

Provided in the **Appendix B** are hydrologic calculations utilizing the Rational method for the existing and proposed conditions. Provided in **Appendix C** are the hydraulic calculations for the proposed conditions, including the proposed detention basin sizing. As previously mentioned, the existing drainage map and proposed drainage map can be found in **Appendix D**.

SPECIFIC DETAILS

The existing conditions of the Site have flows conveying from the northeast to the southwest corner and spill into the existing culvert that conveys South underneath the existing properties. Runoff conditions for the Site were developed utilizing the Rational Method described in the Hydrologic Criteria section of this report.

Sub-basins EX-1 – EX-4 and A1-A12 consist of a proposed recreation center and detention

pond. Flows are conveyed from the north side of the Site to the southwest corner of the Site. On site flows enter the South Pond which then release controlled flows into the existing 24" CMP culvert that conveys flows south underneath the adjacent property's drive access. The 24" CMP has a 100% flow capacity of 41.59 cfs. The proposed pond has a 100 year discharge rate of 14.7 cfs. Therefore the pipe has capacity for the released flows.

The hydrologic calculations, hydraulic calculations, and Drainage Maps are included in the **Appendix B**, **Appendix C**, and **Appendix D** of this report for reference.

The Site will disturb more than 1 acre and will require a Colorado Discharge Permit System (CDPS) General Permit for Stormwater Discharge Associated with Construction Activities from the Colorado Department of Public Health and Environment (CDPHE).

Since the Site was previously platted, there are no associated drainage and bridge fees due at this time.

In the existing condition, the site does not provide water quality or 100-year detention. The pond has been sized to account for 22.04 acres of tributary area which consists of; all of the disturbed site area except for 0.92 acres which cannot be captured and the undisturbed areas upstream or tributary to the pond area. The remaining undisturbed acreage on-site flows off-site as part of the project matching the historical drainage patterns and is therefore not part of the pond sizing.

SUMMARY

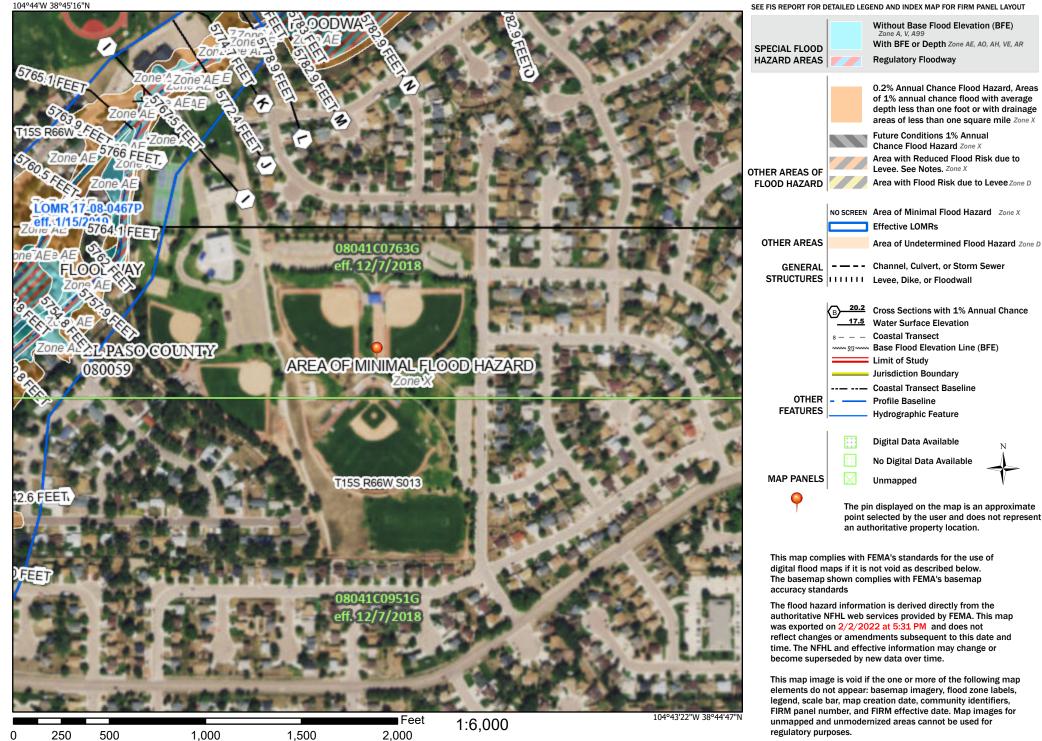
The proposed drainage design is to maintain the historic drainage patterns, the overall imperviousness and release rates for the Site. Runoff from the Site will flow through an existing storm drain system to an existing El Paso County drainage basin: The Windmill Gulch Drainage Basin. The basin ultimately discharges to Fountain Creek. The drainage design presented within this report conforms to the criteria presented in both the MANUAL and the Colorado Springs MANUAL. Additionally, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments, including Fountain Creek.

REFERENCES

- 1. City of Colorado Springs "Drainage Criteria Manual (DCM) Volume 1", dated May, 2014
- 2. El Paso County "Drainage Criteria Manual", dated October 31, 2018
- 3. El Paso County "Engineering Criteria Manual" Revision 6, dated December 13, 2016
- 4. Chapter 6 and Section 3.2.1. of Chapter 13-City of Colorado Springs Drainage Criteria Manual, May 2014.
- 5. Urban Drainage and Flood Control District Drainage Criteria Manual (UDFCDCM), Vol. 1, prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.
- 6. Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 08041C0763G and 08041C0951G effective date, December 7, 2018, prepared by the Federal Emergency Management Agency (FEMA).

APPENDIX

APPENDIX A: FIGURES

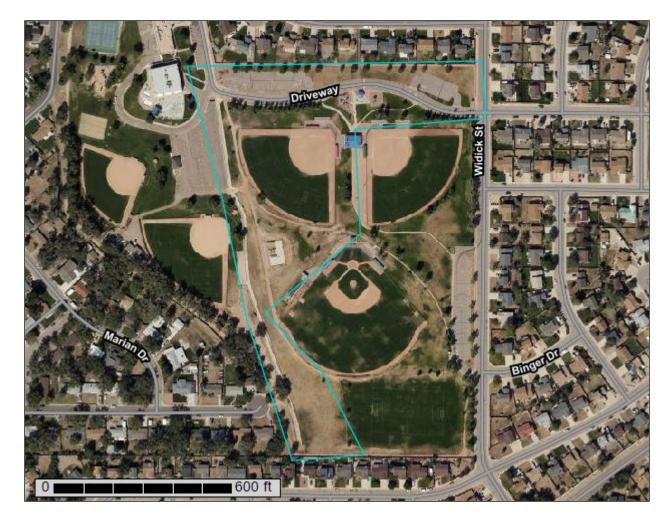

VICINITY MAP

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

APPENDIX B: HYDROLOGY


United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	
Legend	
Map Unit Legend	8
Map Unit Descriptions	8
El Paso County Area, Colorado	10
8—Blakeland loamy sand, 1 to 9 percent slopes	10
References	12

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

MAP L	EGEND	MAP INFORMATION
Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at
Area of Interest (AOI)	👌 Stony Spot	1:24,000.
Soils	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
Soil Map Unit Polygons	wet Spot	
Soil Map Unit Lines	∆ Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
Soil Map Unit Points	Special Line Features	line placement. The maps do not show the small areas of
Special Point Features Blowout	Water Features	contrasting soils that could have been shown at a more detailed scale.
0	Streams and Canals	
	Transportation	Please rely on the bar scale on each map sheet for map
Clay Spot	+++ Rails	measurements.
Closed Depression	nterstate Highways	Source of Map: Natural Resources Conservation Service
Gravel Pit	JS Routes	Web Soil Survey URL:
Gravelly Spot	🧫 Major Roads	Coordinate System: Web Mercator (EPSG:3857)
🔇 Landfill	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
🙏 Lava Flow	Background	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
له Marsh or swamp	Aerial Photography	Albers equal-area conic projection, should be used if more
Mine or Quarry		accurate calculations of distance or area are required.
Miscellaneous Water		This product is generated from the USDA-NRCS certified data as
Perennial Water		of the version date(s) listed below.
Rock Outcrop		Soil Survey Area: El Paso County Area, Colorado
Saline Spot		Survey Area Data: Version 19, Aug 31, 2021
Sandy Spot		Soil map units are labeled (as space allows) for map scales
Severely Eroded Spot		1:50,000 or larger.
Sinkhole		Date(s) aerial images were photographed: Aug 14, 2018—Sep
Slide or Slip		23, 2018
Sodic Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	12.2	100.0%
Totals for Area of Interest		12.2	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

8-Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 1 percent

Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Widefield Rec Center Expansion Drainage Report El Paso County, CO

$$I = \frac{28.5 P_1}{(10+T_D)^{0.786}}$$

Where:

I = rainfall intensity (inches per hour)

P₁ = one-hour rainfall depth (inches) from Table 6-2 One-hour Point Rainfall [City of Colorado Springs Drainage Design

T_c = storm duration (minutes)

	<u>2-yr</u>	<u>5-yr</u>	<u>10-yr</u>	<u>100-yr</u>
P ₁ =	1.19	1.52	1.75	2.55

TIME	2 YR	5 YR	10 YR	100 YR								
5	4.05	5.16	5.94	8.65								
10	3.23	4.11	4.73	6.90								
15	2.71	3.45	3.97	5.79								
30	1.87	2.38	2.75	4.00								
60	1.21	1.54	1.77	2.58								
120	0.74	0.94	1.09	1.58								

Time Intensity Frequency Tabulation

	SUMMARY - EXISTING RUNOFF TABLE														
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATIVE 5-YR RUNOFF (CFS)	CUMULATIVE 100- YR RUNOFF (CFS)									
1	EX-1	3.07	8.19	17.22	8.19	17.22									
2	EX-2	2.06	1.03	5.56	1.03	5.56									
3	EX-3	4.38	5.79	14.55	5.79	14.55									
4	EX-4	3.10	4.00	10.34	4.00	10.34									
5	EX-5	3.97	1.91	8.93	1.91	8.93									
6	EX-6	22.43	8.19	41.69	8.19	41.69									
7	EX-7	0.79	2.04	4.07	2.04	4.07									

Widefield Rec Center Expansion Drainage Report El Paso County, CO

Weighted Imperviousness Calculations - Existing Conditions

SUB-	AREA	AREA	ROOF	ROOF		RO	OF		LANDSCAPE	LANDSCAPE		LAND	SCAPE		PAVEMENT	PAVEMENT		PAVE	MENT		WEIGHTED		WEIGHTED	COEFFICIEN	TS
BASIN	(SF)	(Acres)	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	IMPERVIOUSNESS	C2	C5	C10	C100
EX-1	133517	3.07	0.176676	90%	0.71	0.73	0.75	0.81	1.213981	2%	0.03	0.09	0.17	0.36	1.674472	100%	0.89	0.90	0.92	0.96	61%	0.54	0.57	0.61	0.71
EX-2	89883	2.06	0	90%	0.71	0.73	0.75	0.81	1.990404	2%	0.03	0.09	0.17	0.36	0.073026	100%	0.89	0.90	0.92	0.96	5%	0.06	0.12	0.20	0.38
EX-3	190790	4.38	0.270432	90%	0.71	0.73	0.75	0.81	2.72702	2%	0.03	0.09	0.17	0.36	1.382484	100%	0.89	0.90	0.92	0.96	38%	0.34	0.39	0.44	0.58
EX-4	134827	3.10	0.016483	90%	0.71	0.73	0.75	0.81	2.036501	2%	0.03	0.09	0.17	0.36	1.042218	100%	0.89	0.90	0.92	0.96	35%	0.32	0.37	0.43	0.56
EX-5	173141	3.97	0.068641	90%	0.71	0.73	0.75	0.81	3.698852	2%	0.03	0.09	0.17	0.36	0.207277	100%	0.89	0.90	0.92	0.96	9%	0.09	0.14	0.22	0.40
EX-6	976946	22.43	0.021327	90%	0.71	0.73	0.75	0.81	21.37679	2%	0.03	0.09	0.17	0.36	1.029477	100%	0.89	0.90	0.92	0.96	7%	0.07	0.13	0.20	0.39
EX-7	34437	0.79	0	90%	0.71	0.73	0.75	0.81	0.241965	2%	0.03	0.09	0.17	0.36	0.5486	100%	0.89	0.90	0.92	0.96	70%	0.63	0.65	0.69	0.78
TOTAL	1,733,541	39.80	0.55	90%	0.71	0.73	0.75	0.81	33.29	2%	0.03	0.09	0.17	0.36	5.96	100%	0.89	0.90	0.92	0.96	18%	0.17	0.22	0.29	0.46

Akers Ro	ad - Draina	ge Report								Watercou	Irse Coeffic	ient				
Existing	Runoff Calcu	ulations			Forest & Meadow 2.50 Short Grass Pasture & Lawns 7.00 Grassed Waterw										d Waterway	15.00
Time of (Concentratio	on			Fallow or	Cultivation	5.00		Nearly Ba	re Ground	10.00		Paved	l Area & Sha	allow Gutter	20.00
SUB-BASIN DATA					INITIAL / OVERLAND TIME			T			T(c) CHECK (URBANIZED BASINS)			FINAL T(c)		
DESIGN POINT	DRAIN BASIN	AREA sq. ft.	AREA ac.	C(5)	Length ft.	Slope %	T(i) min	Length ft.	Slope %	Coeff.	Velocity fps	T(t) min.	COMP. T(c)	TOTAL LENGTH	L/180+10	min.
1	EX-1	133,517	3.07	0.57	68	4.8%	4.8	624	6.1%	20.00	4.9	2.1	6.9	692	13.8	6.9
2	EX-2	89,883	2.06	0.12	100	11.7%	7.9	187	9.1%	7.00	2.1	1.5	9.4	287	11.6	9.4
3	EX-3	190,790	4.38	0.39	100	2.5%	9.6	873	6.8%	10.00	2.6	5.6	15.2	973	15.4	15.2
4	EX-4	134,827	3.10	0.37	100	3.5%	8.9	672	4.9%	7.00	1.5	7.2	16.1	772	14.3	14.3
5	EX-5	173,141	3.97	0.14	100	10.3%	8.1	969	2.0%	7.00	1.0	16.3	24.4	1069	15.9	15.9
6	EX-6	976,946	22.43	0.13	100	6.1%	9.7	2015	5.0%	10.00	2.2	15.0	24.7	2115	21.8	21.8
7	EX-7	34,437	0.79	0.65	100	4.4%	5.0	678	3.5%	10.00	1.9	6.0	11.0	778	14.3	11.0

Existing Ru	I - Drainage F noff Calculati thod Procedure)	-			Desi	gn Storm	5 Year					
B	ASIN INFORMATI	ON			DIRECT	RUNOFF		С	UMULATI	ve runoi	FF	
design Point	DRAIN BASIN	AREA ac.	RUNOFF COEFF	T(c) min	СхА	l in/hr	Q cfs	T(c) min	СхА	l in/hr	Q cfs	NOTES
1	EX-1	3.07	0.57	6.9	1.75	4.69	8.19				8.19	
2	EX-2	2.06	0.12	9.4	0.24	4.22	1.03				1.03	
3	EX-3	4.38	0.39	15.2	1.69	3.43	5.79				5.79	
4	EX-4	3.10	0.37	14.3	1.13	3.53	4.00				4.00	
5	EX-5	3.97	0.14	15.9	0.57	3.36	1.91				1.91	
6	EX-6	22.43	0.13	21.8	2.87	2.86	8.19				8.19	
7	EX-7	0.79	0.65	11.0	0.52	3.95	2.04				2.04	

Existing	oad - Drainage R Runoff Calculati Method Procedure)	-			Des	ign Storm	100 Year					
E	BASIN INFORMATIO	N		DIF	RECT RUNG	DFF			CUMULATI	VE RUNOF	F	
DESIGN POINT	DRAIN BASIN	AREA ac.	RUNOFF COEFF	T(c) min	СхА	l in/hr	Q cfs	T(c) min	СхА	l in/hr	Q cfs	NOTES
1	EX-1	3.07	0.71	6.9	2.19	7.87	17.22				17.22	
2	EX-2	2.06	0.38	9.4	0.79	7.07	5.56				5.56	
3	EX-3	4.38	0.58	15.2	2.53	5.76	14.55				14.55	
4	EX-4	3.10	0.56	14.3	1.75	5.92	10.34				10.34	
5	EX-5	3.97	0.40	15.9	1.59	5.63	8.93				8.93	
6	EX-6	22.43	0.39	21.8	8.70	4.79	41.69				41.69	
7	EX-7	0.79	0.78	11.0	0.61	6.63	4.07				4.07	

Widefield Rec Center Expansion Drainage Report El Paso County, CO

$$I = \frac{28.5 P_1}{(10+T_D)^{0.786}}$$

Where:

- I = rainfall intensity (inches per hour)
- P₁ = one-hour rainfall depth (inches) from Table 6-2 One-hour Point Rainfall D City of Colorado Springs Drainage Design

T_c = storm duration (minutes)

	<u>2-yr</u>	<u>5-yr</u>	<u>10-yr</u>	<u>100-yr</u>
P ₁ =	1.19	1.52	1.75	2.55

	,		,	
TIME	2 YR	5 YR	10 YR	100 YR
5	4.05	5.16	5.94	8.65
10	3.23	4.11	4.73	6.90
15	2.71	3.45	3.97	5.79
30	1.87	2.38	2.75	4.00
60	1.21	1.54	1.77	2.58
120	0.74	0.94	1.09	1.58

Time Intens	ity Frequency	Tabulation
-------------	---------------	------------

Widefield Rec Center Expansion Drainage Report El Paso County, CO

Weighted Imperviousness Calculations

SUB-	AREA	AREA	ROOF	ROOF		RO	OF		LANDSCAPE	LANDSCAPE		LAND	SCAPE		PAVEMENT	PAVEMENT		PAVEI	MENT		WEIGHTED		WEIGHTED	COEFFICIEN	TS
BASIN	(SF)	(Acres)	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	IMPERVIOUSNESS	C2	C5	C10	C100
EX-1	133517	3.07	0.18	90%	0.71	0.73	0.75	0.81	1.21	2%	0.03	0.09	0.17	0.36	1.67	100%	0.89	0.90	0.92	0.96	61%	0.54	0.57	0.61	0.71
EX-2	89883	2.06	-	90%	0.71	0.73	0.75	0.81	1.99	2%	0.03	0.09	0.17	0.36	0.07	100%	0.89	0.90	0.92	0.96	5%	0.06	0.12	0.20	0.38
EX-3	190790	4.38	0.27	9 0%	0.71	0.73	0.75	0.81	2.73	2%	0.03	0.09	0.17	0.36	1.38	100%	0.89	0.90	0.92	0.96	38%	0.34	0.39	0.44	0.58
EX-4	34437	0.79	-	90%	0.71	0.73	0.75	0.81	0.24	2%	0.03	0.09	0.17	0.36	0.55	100%	0.89	0.90	0.92	0.96	70%	0.63	0.65	0.69	0.78
A1	108597	2.49	-	90%	0.71	0.73	0.75	0.81	1.17	2%	0.03	0.09	0.17	0.36	1.32	100%	0.89	0.90	0.92	0.96	54%	0.49	0.52	0.57	0.68
A2	15277	0.35	-	90%	0.71	0.73	0.75	0.81	0.12	2%	0.03	0.09	0.17	0.36	0.24	100%	0.89	0.90	0.92	0.96	68%	0.61	0.63	0.67	0.76
A3	3880	0.09	-	90%	0.71	0.73	0.75	0.81	0.09	2%	0.03	0.09	0.17	0.36	0.00	100%	0.89	0.90	0.92	0.96	6%	0.07	0.13	0.20	0.39
A4	36061	0.83	-	90%	0.71	0.73	0.75	0.81	0.70	2%	0.03	0.09	0.17	0.36	0.13	100%	0.89	0.90	0.92	0.96	17%	0.16	0.22	0.29	0.45
A5	35595	0.82	-	90%	0.71	0.73	0.75	0.81	0.73	2%	0.03	0.09	0.17	0.36	0.09	100%	0.89	0.90	0.92	0.96	13%	0.12	0.18	0.25	0.43
A6	31808	0.73	-	90%	0.71	0.73	0.75	0.81	0.72	2%	0.03	0.09	0.17	0.36	0.01	100%	0.89	0.90	0.92	0.96	4%	0.04	0.10	0.18	0.37
A7	45386	1.04	1.04	90%	0.71	0.73	0.75	0.81	-	2%	0.03	0.09	0.17	0.36	-	100%	0.89	0.90	0.92	0.96	90%	0.71	0.73	0.75	0.81
A 8	18831	0.43	-	9 0%	0.71	0.73	0.75	0.81	0.07	2%	0.03	0.09	0.17	0.36	0.36	100%	0.89	0.90	0.92	0.96	83%	0.74	0.76	0.79	0.86
A9	148438	3.41	0.02	9 0%	0.71	0.73	0.75	0.81	2.29	2%	0.03	0.09	0.17	0.36	1.11	100%	0.89	0.90	0.92	0.96	34%	0.31	0.36	0.42	0.56
A10	176750	4.06	0.07	90%	0.71	0.73	0.75	0.81	3.78	2%	0.03	0.09	0.17	0.36	0.21	100%	0.89	0.90	0.92	0.96	8%	0.09	0.14	0.22	0.40
A11	50356	1.16	-	90%	0.71	0.73	0.75	0.81	0.52	2%	0.03	0.09	0.17	0.36	0.64	100%	0.89	0.90	0.92	0.96	56%	0.51	0.54	0.58	0.69
A12	613982	14.10	0.02	90%	0.71	0.73	0.75	0.81	13.62	2%	0.03	0.09	0.17	0.36	0.45	100%	0.89	0.90	0.92	0.96	5%	0.06	0.12	0.19	0.38
TOTAL	1,733,588	39.80	1.60	9 0%	0.71	0.73	0.75	0.81	29.97	2%	0.03	0.09	0.17	0.36	8.23	100%	0.89	0.90	0.92	0.96	26%	0.24	0.28	0.35	0.50

Widefield	d Rec Center	· - Drainage	e Report							Watercou	irse Coeffic	ient				
Proposed	l Runoff Cald	culations			Forest	& Meadow	2.50	Short G	rass Pastur	e & Lawns	7.00			Grasse	d Waterway	15.00
Time of C	Concentratio					Cultivation	5.00		Nearly Ba		10.00		Paveo		allow Gutter	20.00
		SUB-BASIN			INIT	IAL / OVERL	AND	T	RAVEL TIM	IE				T(c) CHECK		FINAL
		DATA				TIME			T(t)				1	BANIZED BA	,	T(c)
DESIGN POINT	DRAIN BASIN	AREA sq. ft.	AREA ac.	C(5)	Length ft.	Slope %	T(i) min	Length ft.	Slope %	Coeff.	Velocity fps	T(t) min.	COMP. T(c)	TOTAL LENGTH	L/180+10	min.
1	EX-1	133,517	3.07	0.57	68	4.8%	4.8	624	6.1%	20.00	4.9	2.1	6.9	692	13.8	6.9
2	EX-2	89,883	2.06	0.12	100	11.7%	7.9	187	9.1%	7.00	2.1	1.5	9.4	287	11.6	9.4
3	EX-3	190,790	4.38	0.39	100	2.5%	9.6	873	6.8%	10.00	2.6	5.6	15.2	973	15.4	15.2
4	EX-4	34,437	0.79	0.65	100	4.4%	5.0	678	3.5%	10.00	1.9	6.0	11.0	778	14.3	11.0
5	A1	108,597	2.49	0.52	100	5.5%	6.0	864	3.5%	20.00	3.7	3.8	9.8	964	15.4	9.8
6	A2	15,277	0.35	0.63	50	22.0%	2.2	143	0.5%	20.00	1.4	1.7	5.0	193	11.1	5.0
7	A3	3,880	0.09	0.13	55	22.0%	4.7	0	0.0%	7.00	0.0	0.0	5.0	55	10.3	5.0
8	A4	36,061	0.83	0.22	100	3.3%	10.9	285	12.2%	7.00	2.4	1.9	12.8	385	12.1	12.1
9	A5	35,595	0.82	0.18	100	5.4%	9.6	256	9.2%	7.00	2.1	2.0	11.6	356	12.0	11.6
10	A6	31,808	0.73	0.10	100	9.4%	8.7	345	3.7%	7.00	1.3	4.3	13.0	445	12.5	12.5
11	A7	45,386	1.04	0.73	100	5.0%	4.0	15	5.0%	20.00	4.5	0.1	5.0	115	10.6	5.0
12	A8	18,831	0.43	0.76	100	5.1%	3.6	121	1.5%	20.00	2.4	0.8	5.0	221	11.2	5.0
13	A9	148,438	3.41	0.36	75	3.5%	7.8	731	4.9%	10.00	2.2	5.5	13.3	806	14.5	13.3
14	A10	176,750	4.06	0.14	100	15.0%	7.1	1016	2.7%	7.00	1.2	14.7	21.8	1116	16.2	16.2
15	A11	50,356	1.16	0.54	100	1.2%	9.7	197	4.4%	20.00	4.2	0.8	10.5	297	11.7	10.5
16	A12	613,982	14.10	0.12	100	13.9%	7.5	1273	4.6%	7.00	1.5	14.1	21.6	1373	17.6	17.6

	unoff Calcula hod Procedure)	tions			Desi	gn Storm	5 Year					
BA	SIN INFORMAT	ION			DIRECT	RUNOFF		С	UMULATI	VE RUNOI	FF	
design Point	DRAIN BASIN	AREA ac.	RUNOFF COEFF	T(c) min	СхА	l in/hr	Q cfs	T(c) min	СхА	l in/hr	Q cfs	NOTES
1	EX-1	3.07	0.57	6.9	1.75	4.69	8.19				8.19	
2	EX-2	2.06	0.12	9.4	0.24	4.22	1.03				1.03	
3	EX-3	4.38	0.39	15.2	1.69	3.43	5.79				5.79	
4	EX-4	0.79	0.65	11.0	0.52	3.95	2.04				2.04	
5	A1	2.49	0.52	9.8	1.29	4.14	5.35				5.35	
6	A2	0.35	0.63	5.0	0.22	5.16	1.15				1.15	
7	A3	0.09	0.13	5.0	0.01	5.16	0.06				0.06	
8	A4	0.83	0.22	12.1	0.18	3.80	0.68				0.68	
9	A5	0.82	0.18	11.6	0.15	3.87	0.56				0.56	
10	A6	0.73	0.10	12.5	0.08	3.75	0.28				0.28	
11	A7	1.04	0.73	5.0	0.76	5.16	3.92				3.92	
12	A8	0.43	0.76	5.0	0.33	5.16	1.70				1.70	
13	A9	3.41	0.36	13.3	1.21	3.65	4.42				4.42	
14	A10	4.06	0.14	16.2	0.58	3.33	1.92				1.92	
15	A11	1.16	0.54	10.5	0.62	4.04	2.51				2.51	
16	A12	14.10	0.12	17.6	1.65	3.19	5.26				5.26	

Midafial	d Dog Contor Dr	alaaa	Doport									
	d Rec Center - Dr d Runoff Calculai	-	Report		Des	ian Storm	100 Year					
	Method Procedure)	.10115			Des	ignistonni	100 1001					
(,											
E	BASIN INFORMATIO	N		DIF	RECT RUNG	OFF			CUMULATI	VE RUNOF	F	
DESIGN	DRAIN	AREA	RUNOFF	T(c)	СхА	I	Q	T(c)	СхА	I	Q	NOTES
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min		in/hr	cfs	
1	EX-1	3.07	0.71	6.9	2.19	7.87	17.22				17.22	
2	EX-2	2.06	0.38	9.4	0.79	7.07	5.56				5.56	
3	EX-3	4.38	0.58	15.2	2.53	5.76	14.55				14.55	
4	EX-4	0.79	0.78	11.0	0.61	6.63	4.07				4.07	
5	A1	2.49	0.68	9.8	1.69	6.94	11.73				11.73	
6	A2	0.35	0.76	5.0	0.27	8.65	2.31				2.31	
7	A3	0.09	0.39	5.0	0.03	8.65	0.30				0.30	
8	A4	0.83	0.45	12.1	0.38	6.38	2.40				2.40	
9	A5	0.82	0.43	11.6	0.35	6.49	2.26				2.26	
10	A6	0.73	0.37	12.5	0.27	6.29	1.70				1.70	
11	A7	1.04	0.81	5.0	0.84	8.65	7.30				7.30	
12	A8	0.43	0.86	5.0	0.37	8.65	3.21				3.21	
13	A9	3.41	0.56	13.3	1.90	6.12	11.61				11.61	
14	A10	4.06	0.40	16.2	1.62	5.58	9.02				9.02	
15	A11	1.16	0.69	10.5	0.80	6.77	5.41				5.41	
16	A12	14.10	0.38	17.6	5.35	5.36	28.67				28.67	

Widefi	eld Rec	Center	- Draina	ae Rep	ort							
			ulations			n Storm	10 Year					
	l Method											
DACIN		ATION		DID		055		011				
DESIGN	INFORM. DRAIN	ATION	RUNOFF	T(c)	ECT RUN C x A	UFF	Q	T(c)	MMULAT C x A	IVE RUN	Q Q	NOTES
POINT	BASIN	ac.	COEFF	min	0	in/hr	cfs	min	0	in/hr	cfs	NOILD
1	EX-1	3.065	0.61	6.9	1.88	5.40	10.15				10.15	
2	EX-2	2.063	0.20	9.4	0.41	4.85	1.97				1.97	
3	EX-3	4.38	0.44	15.2	1.94	3.95	7.66				7.66	
4	EX-4	0.791	0.69	11.0	0.55	4.55	2.48				2.48	
5	A1	2.493	0.57	9.8	1.41	4.76	6.73				6.73	
6	A2	0.351	0.67	5.0	0.24	5.94	1.40				1.40	
7	A3	0.089	0.20	5.0	0.02	5.94	0.11				0.11	
8	A4	0.828	0.29	12.1	0.24	4.38	1.04				1.04	
9	A5	0.817	0.25	11.6	0.21	4.46	0.92				0.92	
10	A6	0.73	0.18	12.5	0.13	4.32	0.57				0.57	
11	A7	1.042	0.75	5.0	0.78	5.94	4.64				4.64	
12	A8	0.432	0.79	5.0	0.34	5.94	2.03				2.03	
13	A9	3.408	0.42	13.3	1.42	4.20	5.96				5.96	
14	A10	4.058	0.22	16.2	0.89	3.83	3.39				3.39	
15	A11	1.156	0.58	10.5	0.68	4.65	3.14				3.14	
16	A12	14.1	0.19	17.6	2.75	3.68	10.09				10.09	

		SUMMA	ARY - PROPOS	SED RUNOFF T	ABLE	
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATIVE 5-YR RUNOFF (CFS)	CUMULATIVE 100- YR RUNOFF (CFS)
1	EX-1	3.07	8.19	17.22	8.19	17.22
2	EX-2	2.06	1.03	5.56	1.03	5.56
3	EX-3	4.38	5.79	14.55	5.79	14.55
4	EX-4	0.79	2.04	4.07	2.04	4.07
5	A1	2.49	5.35	11.73	5.35	11.73
6	A2	0.35	1.15	2.31	1.15	2.31
7	A3	0.09	0.06	0.30	0.06	0.30
8	A4	0.83	0.68	2.40	0.68	2.40
9	A5	0.82	0.56	2.26	0.56	2.26
10	A6	0.73	0.28	1.70	0.28	1.70
11	A7	1.04	3.92	7.30	3.92	7.30
12	A8	0.43	1.70	3.21	1.70	3.21
13	A9	3.41	4.42	11.61	4.42	11.61
14	A10	4.06	1.92	9.02	1.92	9.02
15	A11	1.16	2.51	5.41	2.51	5.41
16	A12	14.10	5.26	28.67	5.26	28.67

US AutoForce Drainage Report Colorado Springs, CO

Table 6-6. Runoff coefficient eq	luations based on NRCS soil.	aroun and storm return period
Table 0 0. Runon coemcient eq		group and storm return period

NRCS		Storm Return Period							
Soil Group	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year			
A	$C_{A} = 0.89i$	$C_{A} = 0.93i$	$C_{A} = 0.94i$	$C_{A} = 0.944i$	$C_{A} = 0.95i$	$C_A = 0.81i + 0.154$			
В	$C_{\rm B} = 0.89i$	$C_{\rm B} = 0.93i$	$C_{\rm B} = 0.81i + 0.125$	$C_{\rm B} = 0.70i$ + 0.23	$C_{\rm B} = 0.59i + 0.364$	$C_{\rm B} = 0.49i + 0.454$			
C/D	$C_{C/D} = 0.89i$	$C_{C/D} = 0.87i + 0.052$	$C_{C/D} = 0.74i + 0.2$	$C_{C/D} = 0.64i + 0.31$	$C_{C/D} = 0.54i + 0.418$	$C_{C/D} = 0.45i + 0.508$			

ROOF						
NRCS Soil		Storm Return Period				
Group	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
A	0.80	0.84	0.85	0.85	0.86	0.88
В						
C/D						

LANDSCAPE						
NRCS Soil		Storm Return Period				
Group	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
A	0.02	0.02	0.02	0.02	0.02	0.17
В						
C/D						

PAVEMENT						
NRCS Soil		Storm Return Period				
Group	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
A	0.89	0.93	0.94	0.94	0.95	0.96
В						
C/D						

I (%)			
ROOF	90.00%		
LANDSCAPE	2.00%		
PAVEMENT	100.00%		

APPENDIX C: HYDRAULICS

BASIN IMPERVIOUSNESS (TRIBUTARY TO POND)

	[Runoff Coefficient					
Landuse	I	2-YR 5-YR 100-YR					
Landscape	2%	0.03	0.09	0.36			
Roof	90%	0.71	0.73	0.81			
Drives&Walks	100%	0.89	0.90	0.96			

Basin Designation	A _{total} (AC)	A _{TOTAL} (SF)	A _{LANDSCAPE} (SF)	A _{ROOF} (SF)	A _{/DRIVES & WALKS} (SF)	IWEIGHTED
A1	2.49	108,597	51,089	0	57,508	54%
A2	0.35	15,277	5,031	0	10,246	68%
A3	0.09	3,880	3,712	0	168	6%
A4	0.83	36,061	30,410	0	5,651	17%
A5	0.82	35,595	31,719	0	3,876	13%
A6	0.73	31,808	31,304	0	504	4%
A7	1.04	45,386	0	45,386	0	90%
A8	0.43	18,831	3,214	0	15,617	83%
A11	1.16	50,356	22,516	0	27,840	56%
A12	14.10	613,982	593,477	929	19,576	5%
Total	22.03	959,773.00	772,472.00	46,315.00	140,986.00	21%

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project:	Widefield Re	c Center			
Basin ID:	South Pond				
VOLUME EUNY WOCY VOLUME EUNY WOCY PERMANENT EUNY WOCY PERMANENT EUNY COME 1 AND 2 C					
Watershed Information					
Selected BMP Type =	EDB				
Watershed Area = 22.04 acres					
Watershed Length =	1,400	ft			
Watershed Length to Centroid =	600	ft			

Watershed Slope =	0.040	ft/ft		
Watershed Imperviousness =	21.00%	percent		
Percentage Hydrologic Soil Group A =	100.0%	percent		
Percentage Hydrologic Soil Group B =	0.0%	percent		
Percentage Hydrologic Soil Groups C/D =	0.0%	percent		
Target WQCV Drain Time =	40.0	hours		
Location for 1-hr Rainfall Depths = User Input				

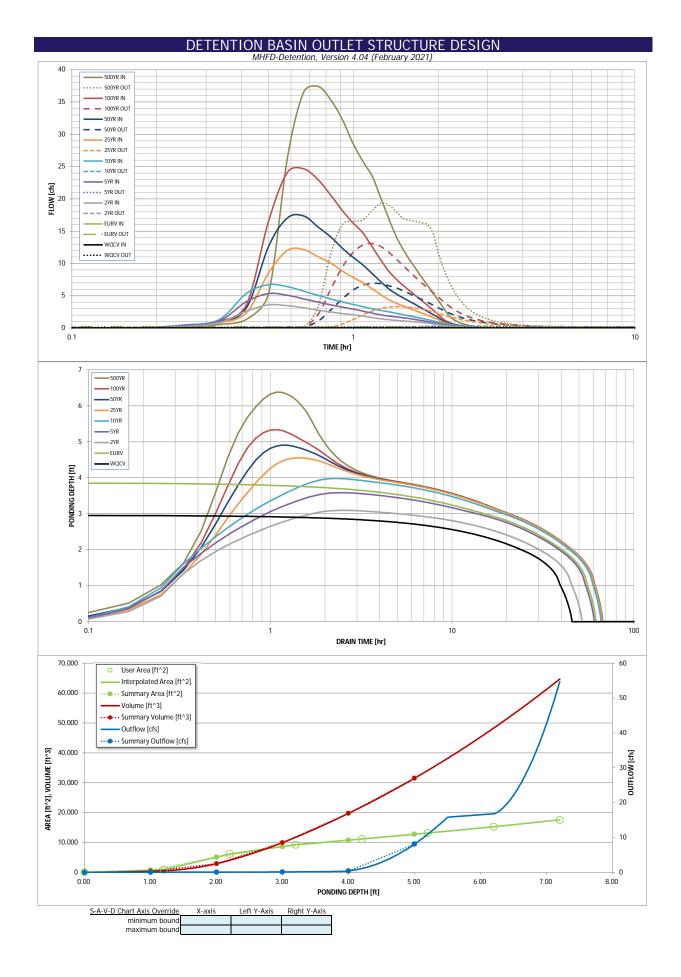
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

depths, click 'Run CUHP' to generate run the embedded Colorado Urban Hydro				
the embedded colorado orban nyard	graphi noceda	ic.	Optional User	Overrides
Water Quality Capture Volume (WQCV) =	0.220	acre-feet		acre-feet
Excess Urban Runoff Volume (EURV) =	0.419	acre-feet		acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.267	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.383	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.489	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	0.830	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	1.154	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.55 in.) =	1.637	acre-feet	2.55	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	2.555	acre-feet		inches
Approximate 2-yr Detention Volume =	0.259	acre-feet		
Approximate 5-yr Detention Volume =	0.349	acre-feet		
Approximate 10-yr Detention Volume =	0.443	acre-feet		
Approximate 25-yr Detention Volume =	0.573	acre-feet		
Approximate 50-yr Detention Volume =	0.686	acre-feet		
Approximate 100-yr Detention Volume =	0.913	acre-feet		

Define	Zones	and	Basin	Geometry	

chine zones una basin ocomea y		
Zone 1 Volume (WQCV) =	0.220	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.199	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.494	acre-feet
Total Detention Basin Volume =	0.913	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

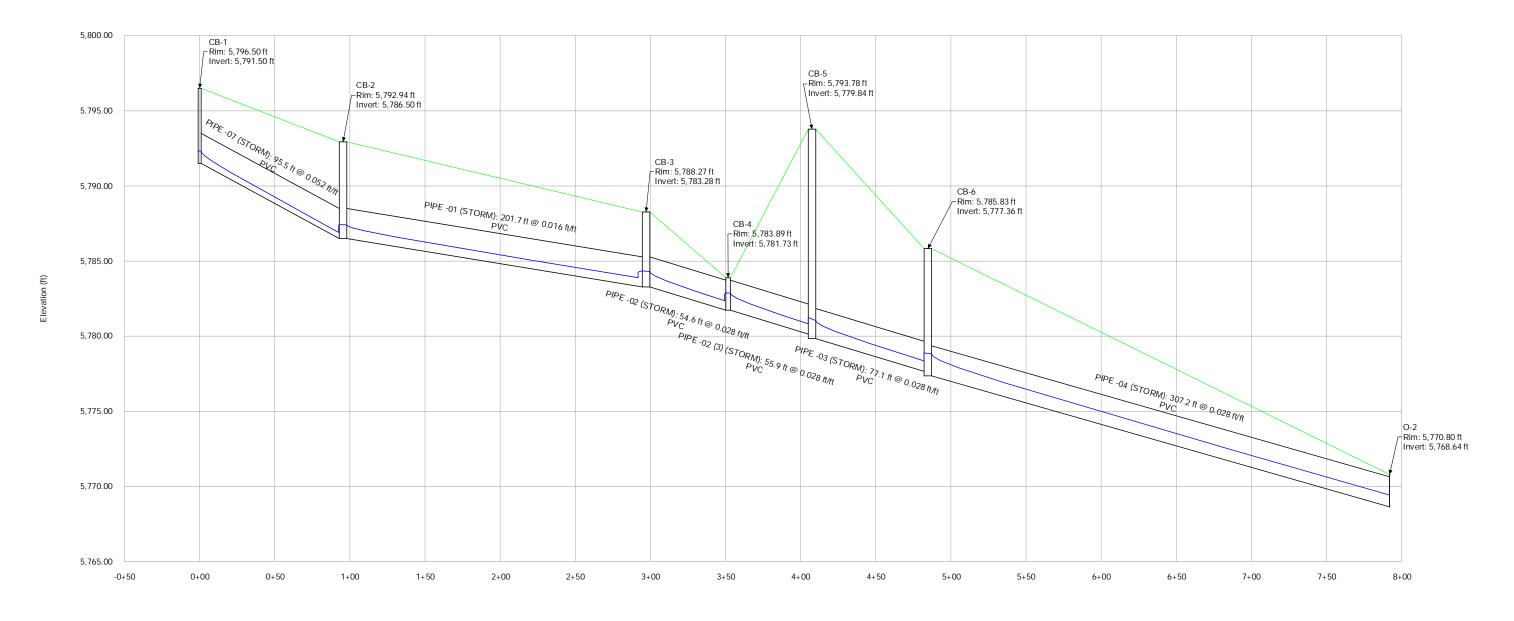
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volun
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-f
Top of Micropool		0.00				16	0.000		
5759		1.20				857	0.020	524	0.012
5760		2.20				6,158	0.141	4,031	0.093
5761		3.20				9,246	0.212	11,733	0.269
5762		4.20				11,150	0.256	21,931	0.503
5763		5.20		-	-	13,153	0.302	34,083	0.78
5764		6.20		1	-	15,255	0.350	48,287	1.10
5765		7.20				17,567	0.403	64,698	1.48
				-	-				
				-					
				-	-				
								Τ	
								1	<u> </u>
								1	—
								1	<u> </u>
								1	t
								1	
				-			-	1	<u> </u>
								1	<u> </u>
									<u> </u>
				-					
				-	-				
									1
									1
				-					
				-					
									<u> </u>
								1	<u> </u>
				-				1	
								1	<u> </u>
							-	1	
								1	
									<u> </u>
								1	
									<u> </u>
								1	<u> </u>
				-	-				
									<u> </u>
								+	
				-				1	
									Ē
								+	
				-	-			1	L
					-			Ţ	
									┣──
								+	<u> </u>
				-					
						-			┣──
								1	<u> </u>
				-	-				
				-	-				Ē
									├──
								+	<u> </u>
									<u> </u>
								1	
					-				


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

	DE			LET STRU		SIGN			
	DE	TENTION MHI	BASIN OU			SIGN			
	Widefield Rec Cen South Pond	ter			-				
ZONE 3	South Pond			Estimated	Estimated				
		~		Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	2.96	0.220	Orifice Plate	1		
± ± +	100-YEAR		Zone 2 (EURV)	3.86	0.199	Circular Orifice			
ZONE 1 AND 2 ORIFICES	ORIFICE		Zone 3 (100-year)	5.62	0.199	Weir&Pipe (Restrict)			
r Ennorten	Configuration (Ret	ention Pond)	Zone 3 (100-year)	Total (all zones)	0.494	Weil aripe (Restrict)	l		
User Input: Orifice at Underdrain Outlet (typicall	vused to drain WO	CV in a Filtration B	MP)	Total (all zones)	0.713	1	Calculated Parame	eters for Underdrain	
Underdrain Orifice Invert Depth =	N/A		the filtration media	surface)	Under	drain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrair	n Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orific						ing Area par Davi	Calculated Parame		
Invert of Lowest Orifice = Depth at top of Zone using Orifice Plate =	0.00 2.96		n bottom at Stage = n bottom at Stage =	-		ice Area per Row = iptical Half-Width =	4.653E-03 N/A	ft ² feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	- bottom at stage -	010		ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	0.67	sq. inches (diamet	er = 15/16 inch)			Iliptical Slot Area =	N/A	ft ²	
		•						-	
			- 4)						
User Input: Stage and Total Area of Each Orifice	Row (numbered fr Row 1 (required)	rom lowest to highe Row 2 (optional)	est) Row 3 (optional)	Pow 4 (optional)	Row 5 (optional)	Pow 6 (optional)	Row 7 (optional)	Pow 8 (ontional)	
Stage of Orifice Centroid (ft)	0.00	1.00	2.00	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row / (optional)	Row 8 (optional)	
Orifice Area (sq. inches)	0.67	0.67	0.67						
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectang	ılar)						Calculated Parame	eters for Vertical Orif	ice
User mpat. Verhear office (orediar of Rectang	Zone 2 Circular	Not Selected	1				Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	2.96	N/A	ft (relative to basin	bottom at Stage =	0 ft) Ver	rtical Orifice Area =	0.02	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	3.86	N/A	ft (relative to basin	bottom at Stage =	0 ft) Vertica	I Orifice Centroid =	0.08	N/A	feet
Vertical Orifice Diameter =	1.87	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat o	Sloped Grate and	Outlat Pina OP Pac	tangular/Tranazoida	Weir (and No Out	lat Pina)		Calculated Parame	eters for Overflow W	oir
User mpat. Overnow weir (Dropbox with hat o	Zone 3 Weir	Not Selected	tangular/ mapezoida				Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.86	N/A	ft (relative to basin I	oottom at Stage = 0 f	t) Height of Grat	e Upper Edge, H _t =	4.86	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet			/eir Slope Length =	4.12	N/A	feet
Overflow Weir Grate Slope =	4.00	N/A	H:V			00-yr Orifice Area =	8.17	N/A	2
Horiz. Length of Weir Sides =	4.00	N/A	feet			Area w/o Debris =	11.48	N/A	ft ²
Overflow Grate Type = Debris Clogging % =	Type C Grate 50%	N/A N/A	%	(overnow Grate Ope	n Area w/ Debris =	5.74	N/A	ft ²
Debris clogging 70 -	5076	11/74	70						
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, R	estrictor Plate, or R	ectangular Orifice)		Ca	alculated Parameter	s for Outlet Pipe w/	Flow Restriction Pla	ate
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.50	N/A	ft (distance below ba	asin bottom at Stage	– 0 ft) 0	utlet Orifice Area =	1.40	N/A	ft ²
Outlet Pipe Diameter =	24.00	N/A	inches		,				
Restrictor Plate Height Above Pipe Invert =	11.00				Outle	t Orifice Centroid =	0.53	N/A	feet
	11.00	l	inches	Half-Cent	Outle	t Orifice Centroid = ctor Plate on Pipe =	0.53	N/A N/A	feet radians
User Input: Emergency Spillway (Rectangular or		l	inches	Half-Cent	Outle		1.49	N/A	
User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=		ft (relative to basir	inches n bottom at Stage =		Outle tral Angle of Restric			N/A	
	Trapezoidal)	ft (relative to basir feet			Outle tral Angle of Restric Spillway E	ctor Plate on Pipe =	1.49 Calculated Parame	N/A	
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Trapezoidal) 6.20 9.00 4.00	feet H:V			Outle tral Angle of Restric Spillway E Stage at Basin Area at	tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40	N/A eters for Spillway feet feet acres	
Spillway Invert Stage= Spillway Crest Length =	Trapezoidal) 6.20 9.00	feet			Outle tral Angle of Restric Spillway E Stage at Basin Area at	ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	1.49 <u>Calculated Parame</u> 0.79 7.99	N/A eters for Spillway feet feet	
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Trapezoidal) 6.20 9.00 4.00	feet H:V			Outle tral Angle of Restric Spillway E Stage at Basin Area at	tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40	N/A eters for Spillway feet feet acres	
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	Trapezoidal) 6.20 9.00 4.00 1.00	feet H:V feet ride the default CUI	n bottom at Stage = 	0 ft) I runoff volumes by	Outle tral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at entering new value	tor Plate on Pipe = Pesign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hya	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co	N/A feet feet acres acre-ft lumns W through Al	radians
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period =	Trapezoidal) 6.20 9.00 4.00 1.00	feet H:V feet ride the default CUI EURV	h bottom at Stage = HP hydrographs and 2 Year	0 ft) (<u>runoff volumes by</u> 5 Year	Outle tral Angle of Restric Spillway [Stage at Basin Area at Basin Volume at <u>entering new value</u> 10 Year	tor Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hyzo 25 Year	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co 50 Year	N/A feet feet acres acre-ft uums W through At 100 Year	radians
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	Trapezoidal) 6.20 9.00 4.00 1.00 The user can overn WOCV N/A 0.220	feet H:V feet <u>Fide the default CUI</u> EURV N/A 0.419	HP hydrographs and 2 Year 1.19 0.267	0 ft) (<i>runoff volumes by</i> 5 Year 1.50 0.383	Outle tral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at <u>entering new value</u> 10 Year 1.75 0.489	tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>es in the Inflow Hyp</u> 25 Year 2.00 0.830	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co 50 Year 2.25 1.154	N/A feet feet acres acre-ft 100 Year 2.55 1.637	7.0. 500 Year 3.14 2.555
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Trapezoidal) 6.20 9.00 4.00 1.00 The user can overnow the user can ove	feet H:V feet EURV N/A 0.419 N/A	+P hydrographs and 2 Year 1.19 0.267 0.267	0 ft) <i>runoff volumes by</i> <u>5 Year</u> <u>1.50</u> 0.383 0.383	Outle tral Angle of Restrict Spillway IC Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 0.489 0.489	tor Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>es in the Inflow Hyco</u> <u>25 Year</u> <u>2.00</u> 0.830 0.830	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co 50 Year 2.25 1.154 1.154	N/A feet feet acres acre-ft 100 Year 2.55 1.637 1.637	7. 500 Year 3.14 2.555 2.555
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	Trapezoidal) 6.20 9.00 4.00 1.00 The user can overn WOCV N/A 0.220	feet H:V feet <u>Fide the default CUI</u> EURV N/A 0.419	HP hydrographs and 2 Year 1.19 0.267	0 ft) (<i>runoff volumes by</i> 5 Year 1.50 0.383	Outle tral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at <u>entering new value</u> 10 Year 1.75 0.489	tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>es in the Inflow Hyp</u> 25 Year 2.00 0.830	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co 50 Year 2.25 1.154	N/A feet feet acres acre-ft 100 Year 2.55 1.637	7.0. 500 Year 3.14 2.555
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Trapezoidal) 6.20 9.00 4.00 1.00 The user can overnow the user can ove	feet H:V feet URV N/A 0.419 N/A N/A N/A N/A	Important stage =	0 ft) <i>runoff volumes by</i> <u>5 Year</u> <u>1.50</u> <u>0.383</u> <u>0.383</u> <u>0.4</u> <u>0.02</u>	Outle tral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at <u>entering new value</u> 10 Year 1.75 0.489 0.489 0.5 0.02	Extor Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.830 0.830 4.9 0.22	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co 50 Year 2.25 1.154 1.154 9.8 0.44	N/A feet feet acres acre-ft 100 Year 2.55 1.637 1.637 1.637 1.637 1.637	7). 500 Year 3.14 2.555 2.555 28.6 1.30
Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak O (cfs) = OPTIONAL Override Predevelopment Peak O (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow O (cfs) =	Trapezoidal) 6.20 9.00 4.00 1.00 The user can over WOCV N/A 0.220 N/A 0.220 N/A	feet H:V feet EURV N/A 0.419 N/A N/A N/A N/A N/A	Important Programme Programe Programme Programme	0 ft) 1 runoff volumes by 5 Year 1.50 0.383 0.4 0.02 5.3	Outle tral Angle of Restrict Spillway IC Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 0.489 0.489 0.5 0.02 6.7	Corr Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hyza 25 Year 2.00 0.830 0.830 4.9 0.22 12.1	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Coo 50 Year 2.25 1.154 1.154 9.8 0.44 17.3	N/A feet feet acres acre-ft 100 Year 2.55 1.637 1.637 1.637 1.637 1.637	7. 500 Year 3.14 2.555 28.6 1.30 37.4
Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Notfow Q (cfs) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	Trapezoidal) 6.20 9.00 4.00 1.00 The user can overnow the user can ove	feet H:V feet URV N/A 0.419 N/A N/A N/A N/A N/A N/A N/A N/A N/A	Important stage = Important stage = Important stage = 2 Year 1.19 0.267 0.267 0.267 0.267 0.267 0.1 N/A	0 ft) <i>runoff volumes by</i> <u>5 Year</u> 1.50 0.383 0.383 0.4 0.02 5.3 0.2 0.4	Outle tral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at 10 Year 1.75 0.489 0.489 0.5 0.02 6.7 0.2 0.7	Corr Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.830 0.830 0.22 12.1 3.3 0.7	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co 50 Year 2.25 1.154 1.154 9.8 0.44 17.3 6.9 0.7	N/A ters for Spillway feet acres acre-ft 100 Year 2.55 1.637 1.637 1.637 1.637 1.637 0.76 24.7 13.1 0.8	7. 500 Year 3.14 2.555 2.555 2.8.6 1.30 37.4 19.3 0.7
Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak O (cfs) = OPTIONAL Override Predevelopment Peak O (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow O (cfs) = Peak Outflow O (cfs) = Ratio Peak Outflow O (cfs) = Structure Controlling Flow =	Trapezoidal) 6.20 9.00 4.00 1.00 The user can oven WOCV N/A 0.220 N/A	feet H:V feet EURV N/A 0.419 N/A N/A N/A N/A N/A N/A 0.2 N/A Overflow Weir 1	<i>HP hydrographs and</i> 2 Year 1.19 0.267 0.2 0.01 3.6 0.1 N/A Vertical Orifice 1	0 ft) 1 runoff volumes by 5 Year 1.50 0.383 0.4 0.02 5.3 0.2 0.4 Vertical Orifice 1	Outle tral Angle of Restrict Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 0.489 0.489 0.5 0.02 6.7 0.4 0.7 0.7 0.400	tor Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.830 4.9 0.22 12.1 3.3 0.7 Overflow Weir 1	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co 50 Year 2.25 1.154 1.154 9.8 0.44 17.3 6.9 0.7 Overflow Weir 1	N/A ters for Spillway feet acres acre-ft 100 Year 2.55 1.637 16.6 0.76 24.7 13.1 0.8 Overflow Weir 1	7. 500 Year 3.14 2.555 28.6 1.30 37.4 19.3 0.7 Spillway
Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak O (cfs) = OPTIONAL Override Predevelopment Peak O (cfs) = Predevelopment Unit Peak N (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow Q (cfs) =	Trapezoidal) 6.20 9.00 4.00 1.00 The user can overnow the user can ove	feet H:V feet URV N/A 0.419 N/A N/A N/A N/A N/A N/A N/A N/A N/A	Important stage = Important stage = Important stage = 2 Year 1.19 0.267 0.267 0.267 0.267 0.267 0.1 N/A	0 ft) <i>runoff volumes by</i> <u>5 Year</u> 1.50 0.383 0.4 0.02 5.3 0.2 0.4	Outle tral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at 10 Year 1.75 0.489 0.489 0.5 0.02 6.7 0.2 0.7	Corr Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.830 0.830 0.22 12.1 3.3 0.7	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co 50 Year 2.25 1.154 1.154 9.8 0.44 17.3 6.9 0.7	N/A ters for Spillway feet acres acre-ft 100 Year 2.55 1.637 1.637 1.637 1.637 1.637 0.76 24.7 13.1 0.8	7. 500 Year 3.14 2.555 2.555 2.8.6 1.30 37.4 19.3 0.7
Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak O (cfs) = OPTIONAL Override Predevelopment Peak O (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow O (cfs) = Peak Inflow O (cfs) = Ratio Peak Outflow O (cfs) = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Trapezoidal) 6.20 9.00 4.00 1.00 The user can oven WOCV N/A 0.220 N/A	feet H:V feet URV N/A 0.419 N/A N/A N/A N/A N/A N/A Overflow Weir 1 0.00 N/A 54	Important Stage = Important Stage = Important Stage = 2 Year 1.19 0.267 0.267 0.2 Important Stage = 0.01 3.6 0.1 N/A Vertical Orifice 1 N/A 46	0 ft) 1 runoff volumes by 5 Year 1.50 0.383 0.4 0.02 5.3 0.2 0.4 Vertical Orifice 1 N/A 53	Outle tral Angle of Restrict Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 0.489 0.489 0.5 0.489 0.5 0.489 0.5 0.2 6.7 0.4 0.7 0.02 6.7 0.4 0.7 0.7 0.9 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Corr Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hya 0.830 4.9 0.22 12.1 3.3 0.7 Overflow Weir 1 0.3 N/A 56	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co 50 Year 2.25 1.154 1.154 9.8 0.44 17.3 6.9 0.7 Overflow Weir 1 0.6 N/A 53	N/A feet feet acres acre-ft 100 Year 2.55 1.637 16.6 0.76 24.7 13.1 0.8 Overflow Weir 1 1.1 N/A	7. 500 Year 3.14 2.555 28.6 1.30 37.4 19.3 0.7 Spillway 1.5 N/A 44
Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow D Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Trapezoidal) 6.20 9.00 4.00 1.00 The user can over WOCV N/A 0.220 N/A 0.220 N/A	feet H:V feet N/A 0.419 N/A N/A N/A N/A N/A N/A N/A Overflow Weir 1 0.00 N/A 54 58	IP hydrographs and 2 Year 1.19 0.267 0.267 0.2 0.01 3.6 0.1 N/A Vertical Orifice 1 N/A 46 49	0 ft) 1 runoff volumes by 5 Year 1.50 0.383 0.383 0.4 0.02 5.3 0.2 0.4 Vertical Orifice 1 N/A N/A N/A S3 57	Outle tral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at 10 Year 1.75 0.489 0.489 0.489 0.489 0.5 0.2 0.2 0.7 0.2 0.7 0.2 0.7 0.4 0.7 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.7 0.4 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.7 0.4 0.7 0.4 0.7 0.7 0.7 0.4 0.7 0.7 0.7 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.7 0.7 0.7 0.4 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Corr Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = 20 of Stream 2.00 0.830 0.830 4.9 0.22 12.1 3.3 0.7 Overflow Weir 1 0.3 N/A 56 61	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co 50 Year 2.25 1.154 1.154 9.8 0.44 17.3 6.9 0.7 Overflow Weir 1 0.6 N/A 53 60	N/A ters for Spillway feet acres acre-ft lumns W through Al 100 Year 2.55 1.637 1.637 1.637 0.76 24.7 13.1 0.8 Overflow Weir 1 1.1 N/A 50 58	7. 500 Year 3.14 2.555 28.6 1.30 37.4 19.3 0.7 Spillway 1.5 N/A 44 56
Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = UHP Predevelopment Peak O (cfs) = OPTIONAL Override Predevelopment Peak O (cfs) = OPTIONAL Override Predevelopment Peak O (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow O (cfs) = Peak Inflow O (cfs) = Ratio Peak Outflow O (cfs) = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Trapezoidal) 6.20 9.00 4.00 1.00 The user can oven WOCV N/A 0.220 N/A	feet H:V feet URV N/A 0.419 N/A N/A N/A N/A N/A N/A Overflow Weir 1 0.00 N/A 54	Important Stage = Important Stage = Important Stage = 2 Year 1.19 0.267 0.267 0.2 Important Stage = 0.01 3.6 0.1 N/A Vertical Orifice 1 N/A 46	0 ft) 1 runoff volumes by 5 Year 1.50 0.383 0.4 0.02 5.3 0.2 0.4 Vertical Orifice 1 N/A 53	Outle tral Angle of Restrict Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 0.489 0.489 0.5 0.489 0.5 0.489 0.5 0.2 6.7 0.4 0.7 0.02 6.7 0.4 0.7 0.7 0.9 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Corr Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hya 0.830 4.9 0.22 12.1 3.3 0.7 Overflow Weir 1 0.3 N/A 56	1.49 <u>Calculated Parame</u> 0.79 7.99 0.40 1.49 rographs table (Co 50 Year 2.25 1.154 1.154 9.8 0.44 17.3 6.9 0.7 Overflow Weir 1 0.6 N/A 53	N/A feet feet acres acre-ft 100 Year 2.55 1.637 16.6 0.76 24.7 13.1 0.8 Overflow Weir 1 1.1 N/A	7. 500 Year 3.14 2.555 28.6 1.30 37.4 19.3 0.7 Spillway 1.5 N/A 44

Widefield - UD Detention REV.xlsm, Outlet Structure


DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

ſ	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	ed in a separate p CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	
	0:00:00									
5.00 min	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.01	0.08
F	0:20:00	0.00	0.00	0.23	1.09	1.29	0.82	0.39	1.04	1.34
ľ	0:25:00	0.00	0.00	2.60	4.08	5.36	2.36	3.11	3.63	5.39
Ī	0:30:00	0.00	0.00	3.60	5.33	6.72	8.56	12.67	16.60	26.41
	0:35:00	0.00	0.00	3.45	5.06	6.40	12.01	17.05	24.12	36.57
_	0:40:00	0.00	0.00	3.13	4.52	5.70	12.15	17.34	24.65	37.42
-	0:45:00	0.00	0.00	2.78	4.01	5.06	11.03	15.62	22.94	35.28
-	0:50:00	0.00	0.00	2.48	3.58	4.47	10.02	14.06	20.50	32.15
F	0:55:00	0.00	0.00	2.24	3.23 2.91	4.03 3.65	8.79 7.81	12.30 10.92	18.11 16.24	28.47 25.72
ŀ	1:05:00	0.00	0.00	1.84	2.60	3.85	6.99	9.74	14.67	23.53
-	1:10:00	0.00	0.00	1.61	2.31	2.98	6.07	8.43	12.58	20.21
ľ	1:15:00	0.00	0.00	1.42	2.05	2.74	5.18	7.19	10.58	17.02
	1:20:00	0.00	0.00	1.29	1.86	2.51	4.41	6.09	8.84	14.24
	1:25:00	0.00	0.00	1.20	1.72	2.28	3.87	5.32	7.60	12.21
[1:30:00	0.00	0.00	1.11	1.59	2.07	3.43	4.69	6.63	10.58
-	1:35:00	0.00	0.00	1.02	1.47	1.87	3.03	4.12	5.79	9.16
ļ	1:40:00	0.00	0.00	0.94	1.31	1.67	2.66	3.59	5.00	7.86
ŀ	1:45:00 1:50:00	0.00	0.00	0.86	1.15	1.49 1.30	2.31	3.08 2.59	4.24 3.51	6.62 5.43
-	1:55:00	0.00	0.00	0.65	0.85	1.30	1.63	2.39	2.81	4.30
F	2:00:00	0.00	0.00	0.55	0.83	0.92	1.31	1.65	2.81	3.22
ľ	2:05:00	0.00	0.00	0.42	0.56	0.72	0.93	1.13	1.41	2.10
Ī	2:10:00	0.00	0.00	0.34	0.45	0.59	0.66	0.79	0.95	1.43
-	2:15:00	0.00	0.00	0.28	0.37	0.49	0.50	0.59	0.68	1.02
	2:20:00	0.00	0.00	0.23	0.30	0.40	0.39	0.46	0.51	0.74
	2:25:00	0.00	0.00	0.19	0.25	0.33	0.31	0.36	0.38	0.54
	2:30:00	0.00	0.00	0.15	0.20	0.27	0.24	0.28	0.29	0.40
-	2:35:00 2:40:00	0.00	0.00	0.12	0.16	0.21	0.19	0.22	0.21	0.28
F	2:40:00	0.00	0.00	0.10	0.13	0.17	0.15	0.17 0.13	0.16	0.20
ŀ	2:50:00	0.00	0.00	0.08	0.10	0.13	0.12	0.13	0.12	0.15
ŀ	2:55:00	0.00	0.00	0.05	0.06	0.08	0.07	0.08	0.08	0.09
1	3:00:00	0.00	0.00	0.04	0.05	0.06	0.06	0.06	0.06	0.07
	3:05:00	0.00	0.00	0.03	0.04	0.05	0.04	0.05	0.05	0.06
	3:10:00	0.00	0.00	0.02	0.03	0.03	0.03	0.03	0.03	0.04
_	3:15:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
-	3:20:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
-	3:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
ŀ	3:30:00 3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ľ	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
_	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Γ	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5-Year Calculations

Profile Report Engineering Profile - STORM (Widefield Rec Center.stsw)

Station (ft)

Widefield Rec Center.stsw 2/17/2022

```
Bentley Systems, Inc. Haestad Methods Solution Center
27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
```

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

ID	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Inlet Type	Capture Efficiency (Calculated) (%)	Hydraulic Grade Line (In) (ft)	Headloss Coefficient (Standard)	Flow (Additional Subsurface) (cfs)
108	CB-1	5,796.50	5,796.50	5,791.50	Full Capture	100.0	5,792.33	0.050	5.35
109	CB-2	5,792.94	5,792.94	5,786.50	Full Capture	100.0	5,787.42	0.050	1.21
110	CB-3	5,788.27	5,788.27	5,783.28	Full Capture	100.0	5,784.34	0.100	1.70
111	CB-4	5,783.89	5,783.89	5,781.73	Full Capture	100.0	5,782.87	0.000	1.96
112	CB-5	5,793.78	5,793.78	5,779.84	Full Capture	100.0	5,781.24	0.400	0.98
113	CB-6	5,785.83	5,785.83	5,777.36	Full Capture	100.0	5,778.88	0.100	5.09

FlexTable: Catch Basin Table

Widefield Rec Center.stsw 2/17/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

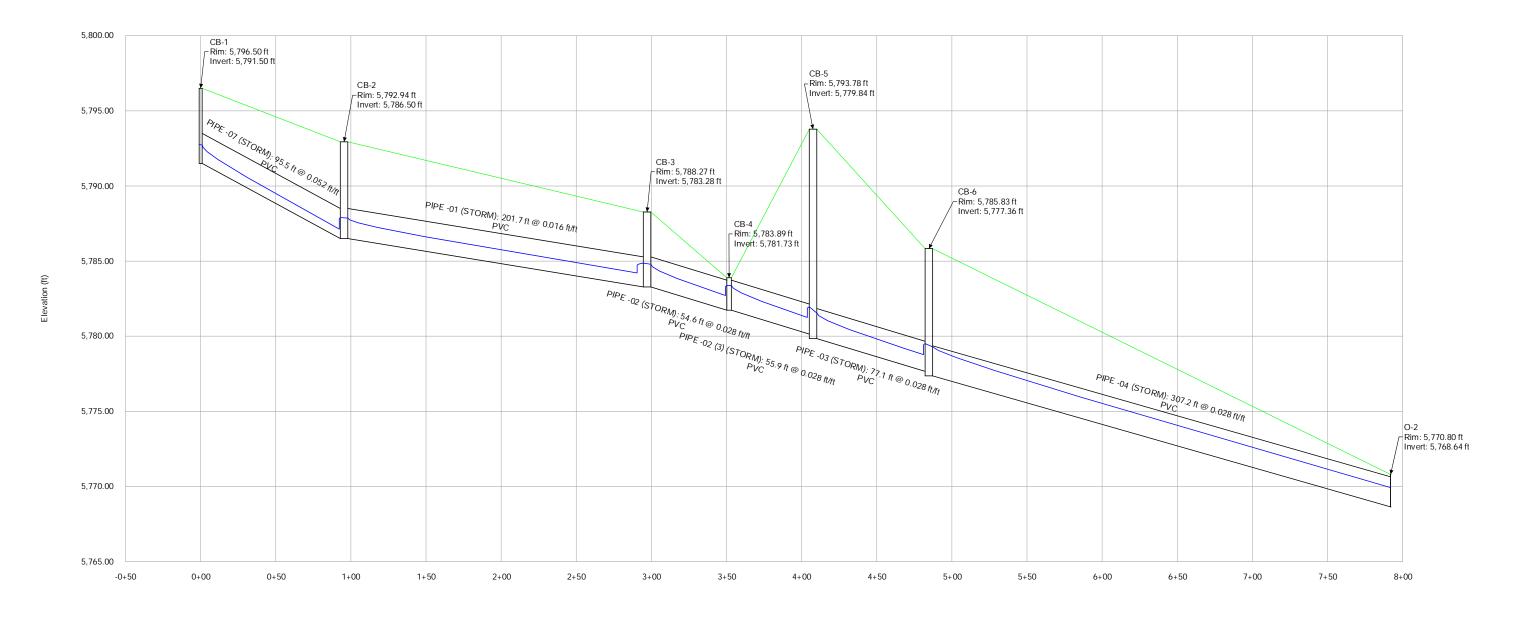
Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (Scaled) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)
PIPE -07 (STORM)	CB-1	5,791.50	CB-2	5,786.50	95.3	0.052	24.0	0.010	5.35	12.81	67.30	7.9
PIPE -02 (3) (STORM)	CB-4	5,781.73	CB-5	5,780.14	55.8	0.028	24.0	0.010	10.22	12.44	49.62	20.6
PIPE -03 (STORM)	CB-5	5,779.84	CB-6	5,777.66	77.1	0.028	24.0	0.010	11.20	12.73	49.44	22.7
PIPE -01 (STORM)	CB-2	5,786.50	CB-3	5,783.28	201.6	0.016	24.0	0.010	6.56	8.91	37.16	17.7
PIPE -02 (STORM)	CB-3	5,783.28	CB-4	5,781.73	54.6	0.028	24.0	0.010	8.26	11.69	49.55	16.7
PIPE -04 (STORM)	CB-6	5,777.36	0-2	5,768.64	307.1	0.028	24.0	0.010	16.29	14.13	49.54	32.9

FlexTable: Conduit Table

Widefield Rec Center.stsw 2/17/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 StormCAD [10.02.03.03] Page 1 of 1

FlexTable: Outfall Table


ID	Label	Elevation (Ground) (ft)	Set Rim to Ground Elevation?	Elevation (Invert) (ft)	Boundary Condition Type	Boundary Element	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)
114	0-2	5,770.80	True	5,768.64	Free Outfall	<none></none>		5,769.43
Flow (Total Out) (cfs)	Notes							
16.29	24" RCP FLARED END SECTION							

Widefield Rec Center.stsw 2/17/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

100-Year Calculations

Profile Report Engineering Profile - STORM (Widefield Rec Center.stsw)

Station (ft)

Widefield Rec Center.stsw 2/17/2022

```
Bentley Systems, Inc. Haestad Methods Solution Center
27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
```

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

ID	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Inlet Type	Capture Efficiency (Calculated) (%)	Hydraulic Grade Line (In) (ft)	Headloss Coefficient (Standard)	Flow (Additional Subsurface) (cfs)
108	CB-1	5,796.50	5,796.50	5,791.50	Full Capture	100.0	5,792.76	0.050	11.73
109	CB-2	5,792.94	5,792.94	5,786.50	Full Capture	100.0	5,787.90	0.050	2.61
110	CB-3	5,788.27	5,788.27	5,783.28	Full Capture	100.0	5,784.86	0.100	3.21
111	CB-4	5,783.89	5,783.89	5,781.73	Full Capture	100.0	5,783.38	0.000	3.65
112	CB-5	5,793.78	5,793.78	5,779.84	Full Capture	100.0	5,781.95	0.400	1.83
113	CB-6	5,785.83	5,785.83	5,777.36	Full Capture	100.0	5,779.51	0.100	13.45

FlexTable: Catch Basin Table

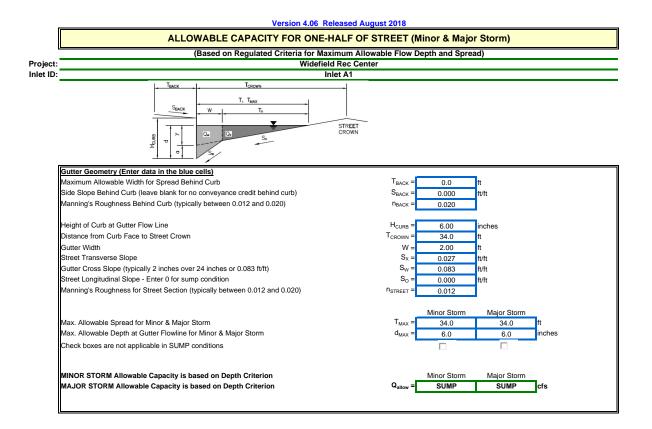
Widefield Rec Center.stsw 2/17/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (Scaled) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)
PIPE -07 (STORM)	CB-1	5,791.50	CB-2	5,786.50	95.3	0.052	24.0	0.010	11.73	16.09	67.30	17.4
PIPE -02 (3) (STORM)	CB-4	5,781.73	CB-5	5,780.14	55.8	0.028	24.0	0.010	21.20	15.17	49.62	42.7
PIPE -03 (STORM)	CB-5	5,779.84	CB-6	5,777.66	77.1	0.028	24.0	0.010	23.03	15.46	49.44	46.6
PIPE -01 (STORM)	CB-2	5,786.50	CB-3	5,783.28	201.6	0.016	24.0	0.010	14.34	11.06	37.16	38.6
PIPE -02 (STORM)	CB-3	5,783.28	CB-4	5,781.73	54.6	0.028	24.0	0.010	17.55	14.42	49.55	35.4
PIPE -04 (STORM)	CB-6	5,777.36	0-2	5,768.64	307.1	0.028	24.0	0.010	36.48	17.24	49.54	73.6

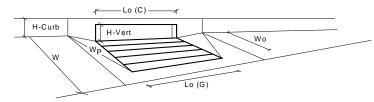
FlexTable: Conduit Table

Widefield Rec Center.stsw 2/17/2022

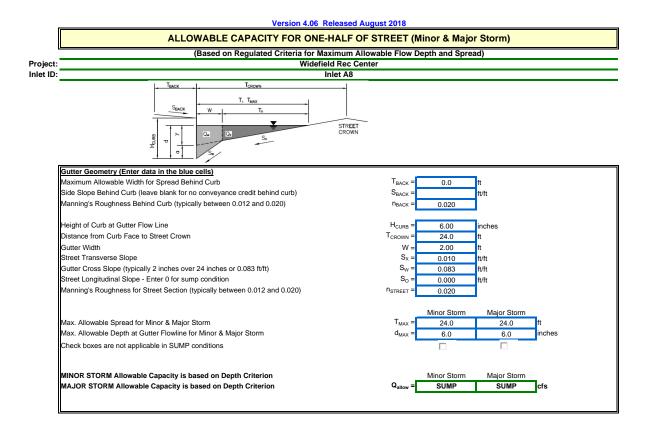

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 StormCAD [10.02.03.03] Page 1 of 1

FlexTable: Outfall Table

ID	Label	Elevation (Ground) (ft)	Set Rim to Ground Elevation?	Elevation (Invert) (ft)	Boundary Condition Type	Boundary Element	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)
114	0-2	5,770.80	True	5,768.64	Free Outfall	<none></none>		5,769.92
Flow (Total Out) (cfs)	Notes							
36.48	24" RCP FLARED END SECTION							

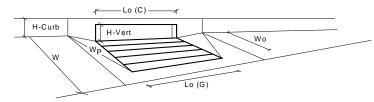

Widefield Rec Center.stsw 2/17/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

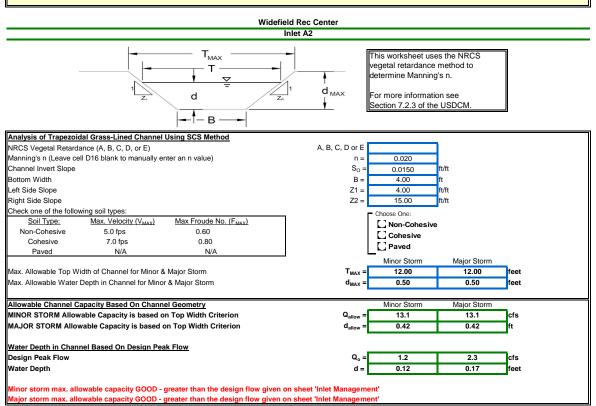


INLET IN A SUMP OR SAG LOCATION

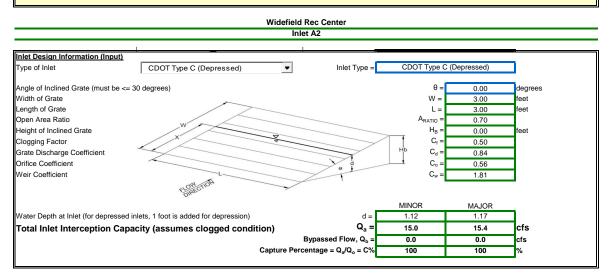
Version 4.06 Released August 2018



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.57	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.79	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	9.7	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	5.4	11.7	cfs

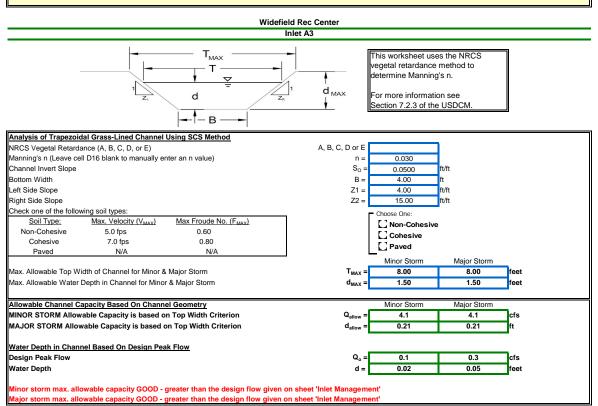

INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018



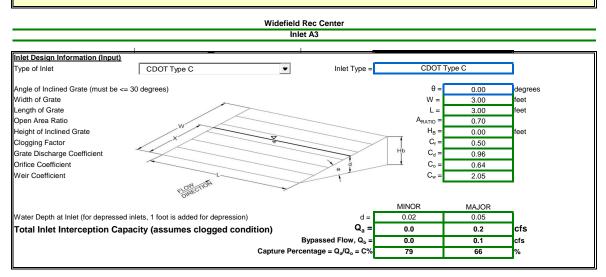
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	4.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.22	0.22	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.59	0.59	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.9	2.9	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	1.7	3.2	cfs

AREA INLET IN A SWALE


AREA INLET IN A SWALE

UD_Inlet.xlsm, Inlet A2

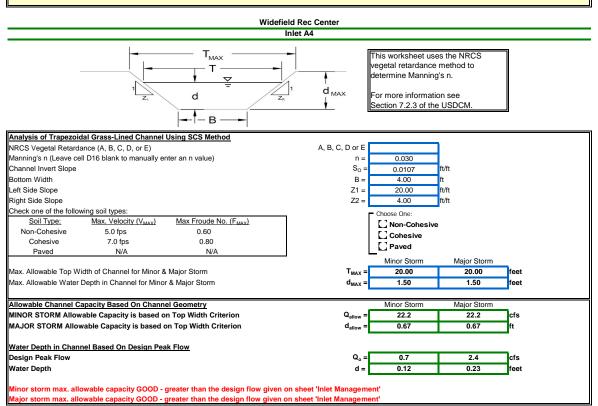
2/17/2022, 3:56 PM


AREA INLET IN A SWALE

UD_Inlet.xlsm, Inlet A3

2/17/2022, 3:56 PM

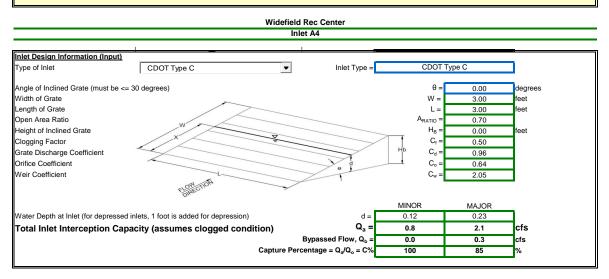
AREA INLET IN A SWALE



Warning 04: Froude No. exceeds USDCM Volume I recommendation.

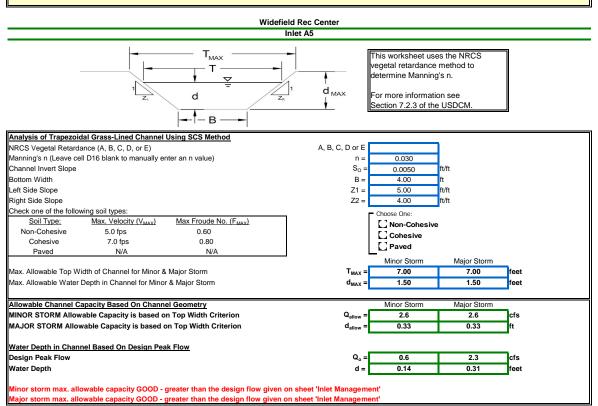
UD_Inlet.xlsm, Inlet A3

2/17/2022, 3:56 PM

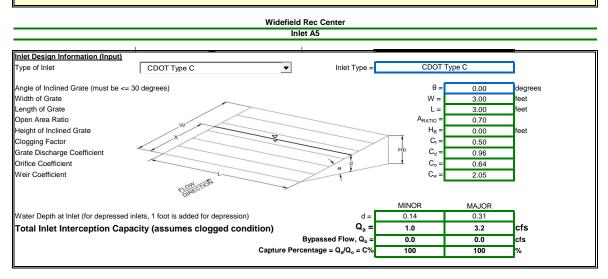

AREA INLET IN A SWALE

UD_Inlet.xlsm, Inlet A4

2/17/2022, 3:57 PM

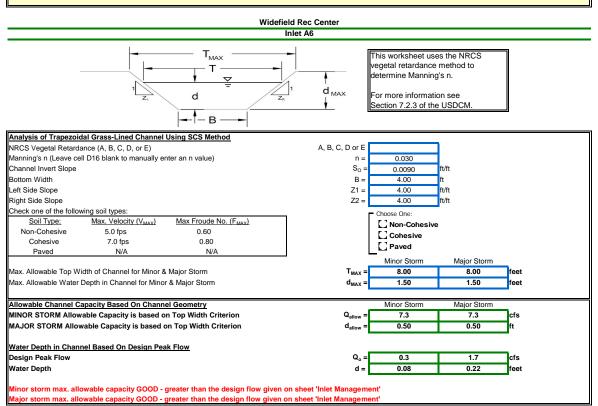

AREA INLET IN A SWALE

UD_Inlet.xlsm, Inlet A4


2/17/2022, 3:57 PM

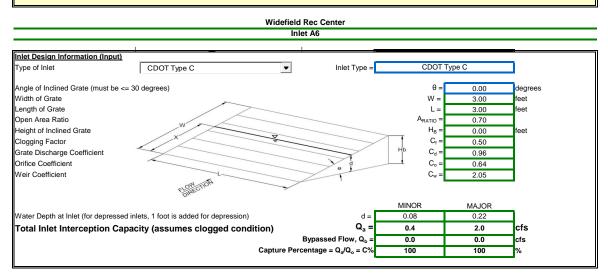
AREA INLET IN A SWALE

UD_Inlet.xlsm, Inlet A5


AREA INLET IN A SWALE

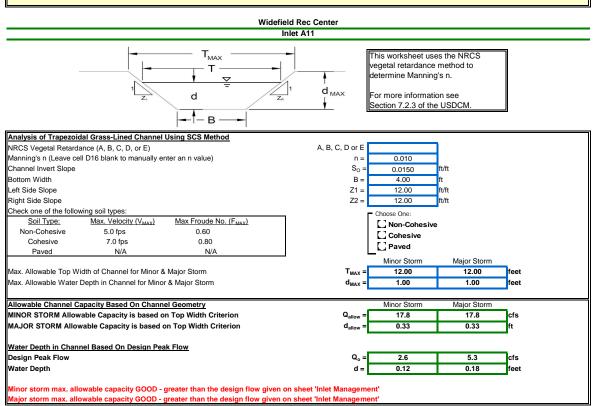
UD_Inlet.xlsm, Inlet A5

2/17/2022, 3:57 PM


AREA INLET IN A SWALE

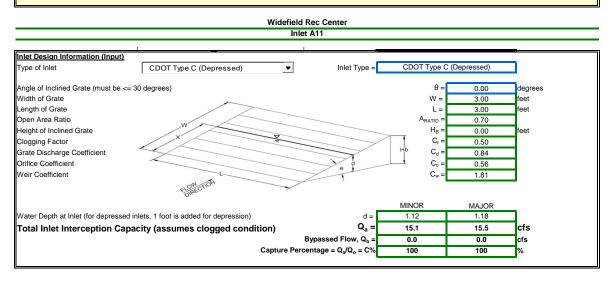
UD_Inlet.xlsm, Inlet A6

2/17/2022, 3:57 PM


AREA INLET IN A SWALE

UD_Inlet.xlsm, Inlet A6

2/17/2022, 3:57 PM


AREA INLET IN A SWALE

UD_Inlet.xlsm, Inlet A11

2/17/2022, 3:58 PM

AREA INLET IN A SWALE

UD_Inlet.xlsm, Inlet A11

2/17/2022, 3:58 PM

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.050	
Channel Slope	0.018 ft/ft	
Left Side Slope	5.000 H:V	
Right Side Slope	3.000 H:V	
Discharge	11.36 cfs	
Results		
Normal Depth	12.7 in	
Flow Area	4.5 ft ²	
Wetted Perimeter	8.7 ft	
Hydraulic Radius	6.1 in	
Top Width	8.44 ft	
Critical Depth	10.5 in	
Critical Slope	0.050 ft/ft	
Velocity	2.55 ft/s	
Velocity Head	0.10 ft	
Specific Energy	1.16 ft	
Froude Number	0.619	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	12.7 in	
Critical Depth	10.5 in	
Channel Slope	0.018 ft/ft	
Critical Slope	0.050 ft/ft	

Worksheet for Grass-Lined Swale 1

Swale Calculations.fm8 2/17/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

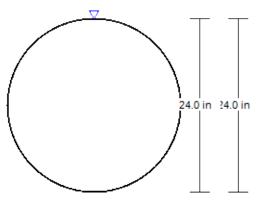
Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.015 ft/ft	
Left Side Slope	12.000 H:V	
Right Side Slope	12.000 H:V	
Discharge	5.26 cfs	
Results		
Normal Depth	3.9 in	
Flow Area	1.3 ft ²	
Wetted Perimeter	7.8 ft	
Hydraulic Radius	1.9 in	
Top Width	7.79 ft	
Critical Depth	5.0 in	
Critical Slope	0.004 ft/ft	
Velocity	4.16 ft/s	
Velocity Head	0.27 ft	
Specific Energy	0.59 ft	
Froude Number	1.819	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.9 in	
Critical Depth	5.0 in	
Channel Slope	0.015 ft/ft	
Critical Slope	0.004 ft/ft	

Worksheet for Concrete Swale 1

Swale Calculations.fm8 2/17/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.010	
Channel Slope	0.032 ft/ft	
Diameter	12.0 in	
Discharge	7.66 cfs	
Results		
Normal Depth	9.2 in	
Flow Area	0.6 ft ²	
Wetted Perimeter	2.1 ft	
Hydraulic Radius	3.6 in	
Top Width	0.85 ft	
Critical Depth	11.8 in	
Percent Full	76.4 %	
Critical Slope	0.025 ft/ft	
Velocity	11.89 ft/s	
Velocity Head	2.20 ft	
Specific Energy	2.96 ft	
Froude Number	2.406	
Maximum Discharge	8.84 cfs	
Discharge Full	8.22 cfs	
Slope Full	0.027 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	76.4 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	9.2 in	
Critical Depth	11.8 in	
Channel Slope	0.032 ft/ft	
Critical Slope	0.025 ft/ft	


Worksheet for Culvert 1

Culvert Calculations.fm8 2/17/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Friction Method	Manning Formula	
Solve For	Full Flow Capacity	
nput Data		
Roughness Coefficient	0.010	
Channel Slope	0.020 ft/ft	
-	0.020 ft/ft 24.0 in	
Channel Slope		

Pond Outfall Pipe.fm8 4/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Design Procedure Form: Extended Detention Basin (EDB)						
	UD-BMF	P (Version 3.07, March 2018)	Sheet 1 of 3			
Designer: Company:			_			
Date:	July 28, 2022		—			
Project:						
Location:			_			
1. Basin Storage V	olume					
	erviousness of Tributary Area, I _a	I _a = 21.0 %				
	a's Imperviousness Ratio (i = I_a / 100)					
, ,		i = 0.210				
	Watershed Area	Area = 22.040 ac				
D) For Watersh Runoff Produ	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = 6.00 in				
E) Design Conc	ept	Choose One				
	/ when also designing for flood control)	Water Quality Capture Volume Excess Urban Runoff Volume				
	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} =ac-ft				
	.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)					
Water Qualit	eds Outside of the Denver Region, y Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} = ac-ft				
(V _{WQCV OTHER}	$= (d_6^*(V_{\text{DESIGN}}/0.43))$					
	f Water Quality Capture Volume (WQCV) Design Volume erent WQCV Design Volume is desired)	V _{DESIGN USER} = 0.220 ac-ft				
i) Percentag	ogic Soil Groups of Tributary Watershed ge of Watershed consisting of Type A Soils	HSG _A = %				
	ige of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	HSG _B = % HSG _{C/D} = %				
J) Excess Urba	n Runoff Volume (EURV) Design Volume					
For HSG A:	$EURV_{A} = 1.68 * i^{1.28}$ $EURV_{B} = 1.36 * i^{1.08}$	EURV _{DESIGN} =ac-f t				
	D: EURV _{CD} = 1.20 * $i^{1.08}$					
	Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} =ac-f t				
(Only if a diff	erent EURV Design Volume is desired)					
2. Basin Shape: Le		L : W = 2.3 : 1				
(A basin length t	o width ratio of at least 2:1 will improve TSS reduction.)					
3. Basin Side Slope	es					
A) Basin Maxim	um Side Slopes	Z = 4.00 ft / ft				
(Horizontal d	listance per unit vertical, 4:1 or flatter preferred)					
4. Inlet						
	ans of providing energy dissipation at concentrated					
inflow locatio						
5. Forebay						
A) Minimum For (V _{FMIN} =	rebay Volume = 2% of the WQCV)	V _{FMIN} = 0.004 ac-ft				
B) Actual Foreb		V _F = 0.011 ac-ft	WQCV is .220 ac-ft. 5% of			
C) Forebay Dept			that is .011 ac-ft. The forebay volume is 516.09 sq			
	m = <u>18</u> inch maximum)	D _F = <u>18.0</u> in	ft. this volume is .0118 ac-ft			
D) Forebay Disc	harge		which is $> 5\%$			
i) Undetaine	d 100-year Peak Discharge	Q ₁₀₀ = 50.00 cfs				
,	Discharge Design Flow	Q _F = 1.00 cfs				
(Q _F = 0.02						
E) Forebay Disc	harge Design	Choose One				
		Berm With Pipe Wall with Bect. Notch	Flow too small for berm w/ pipe			
		Wall with Rect. Notch Wall with V-Notch Weir				
F) Discharge Pir	pe Size (minimum 8-inches)	Calculated D _P =				
, .						
G) Rectangular I		Calculated W _N = 5.6 in				

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	June 3, 2022	Sheet 2 of 3
 6. Trickle Channel A) Type of Trick F) Slope of Tricl 		Choose One © Concrete \bigcirc Soft Bottom S = 0.0050 ft / ft
	utlet Structure ropool (2.5-feet minimum) 1 of Micropool (10 ft ² minimum)	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{16}_{\text{$ orr}} \text{ sq ft}$ $\underbrace{Choose One}_{\text{$ orr}}$ $\underbrace{Orrifice Plate}_{\text{$ Orrifice Plate}}$
D) Smallest Din (Use UD-Detenti E) Total Outlet A		D _{orflice} = 0.92 inches A _{ot} = 0.67 square inches
(Minimum rec B) Minimum Initi (Minimum volu	Volume al Surcharge Volume commended depth is 4 inches) al Surcharge Volume ume of 0.3% of the WQCV) rge Provided Above Micropool	$D_{iS} = 6$ in $V_{iS} = $ cu ft $V_{s} = 8.0$ cu ft
 B) Type of Screet in the USDCM, in total screen are to C) Ratio of Total D) Total Water C E) Depth of Desitive (Based on d 	y Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D}) en (If specifying an alternative to the materials recommended ndicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): N Open Area to Total Area (only for type 'Other') Quality Screen Area (based on screen type) lign Volume (EURV or WQCV) lesign concept chosen under 1E) ter Quality Screen (H _{TR})	$A_{t} = 24 \qquad \text{square inches}$ $S.S. Well Screen with 60% Open Area$ User Ratio = $A_{total} = 39 \qquad \text{sq. in.}$ $H = 0.5 \qquad \text{feet}$ $H_{TR} = 34 \qquad \text{inches}$
G) Width of Wat	er Quality Screen Opening (W _{opening}) inches is recommended)	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

UD_BMP Runoff Reduction - Widefield.xlsm, EDB

	Design Procedure Form:	Extended Detention Basin (EDB)	
Designer: Company: Date: Project: Location:	June 3, 2022	Sheet 3 of 3	
B) Slope of Ove	ikment bankment protection for 100-year and greater overtopping: erflow Embankment distance per unit vertical, 4:1 or flatter preferred)	Ze = 4.00 ft / ft	
11. Vegetation		Choose One O Irrigated Not Irrigated	
12. Access A) Describe Sec	diment Removal Procedures		
Notes:			

APPENDIX D: DRAINAGE MAPS

Kimley **»Horn**

Kimley-Horn & Associates, Inc.

Opinion of Probable Construction Cost

1 of 1

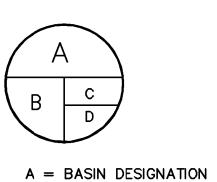
Sheet:

Client:	Widefield School District 3	Date:	6/3/2022
Project:	Widefield Rec Center	Prepared By:	JAR
KHA No.:	096958002	Checked By:	EJG

This OPC is not intended for basing financial decisions, or securing funding. Review all notes and assumptions. Since Kimley-Horn & Associates, Inc. has no control over the cost of labor, materials, equipment, or services furnished by others, or over methods of determining price, or over competitive bidding or market conditions, any and all opinions as to the cost herein, including but not limited to opinions as to the costs of construction materials, shall be made on the basis of experience and best available data. Kimley-Horn & Associates, Inc. cannot and does not guarantee that proposals, bids, or actual costs will not vary from the opinions on costs shown herein. The total costs and other numbers in this Opinion of Probable Cost have been rounded.


Item No.	Item Description	Quantity	Unit	Unit Price	Item Cost
	Private PCM - Non-Reimbursable				
4	3/4" Fractured Face Granite Mixed w/ Class 5				
I	Roadbase	1,406	CF	\$12.00	\$16,872
2	Concrete Trickle Channel	690	SF	\$10.00	\$6,900
3	24" PVC outlet pipe	2	LF	\$67.00	\$134
4	Outlet Structure	1	EA	\$5,000.00	\$5,000
5	Type L Riprap Emergency Overflow	9.8	Ton	\$2,000.00	\$19,600
6	Forebay	1.0	EA	\$3,000.00	\$3,000
		Subtotal:			\$51,506
		Contingency	/ (%,+/-)	40%	\$20,602
		Project Tot	al:		\$72,108

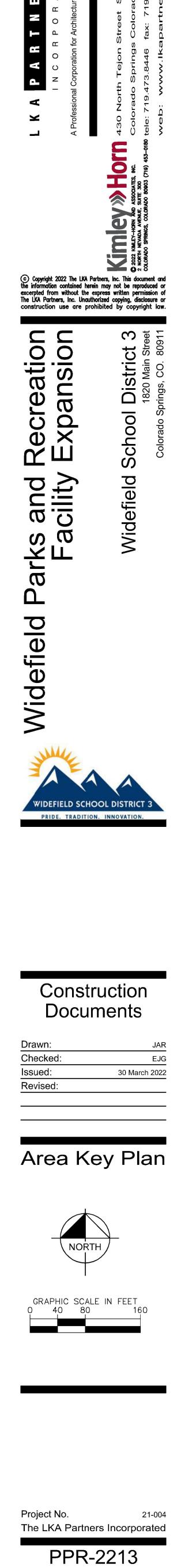
Basis for Cost Projection:


No Design Completed

Preliminary Design

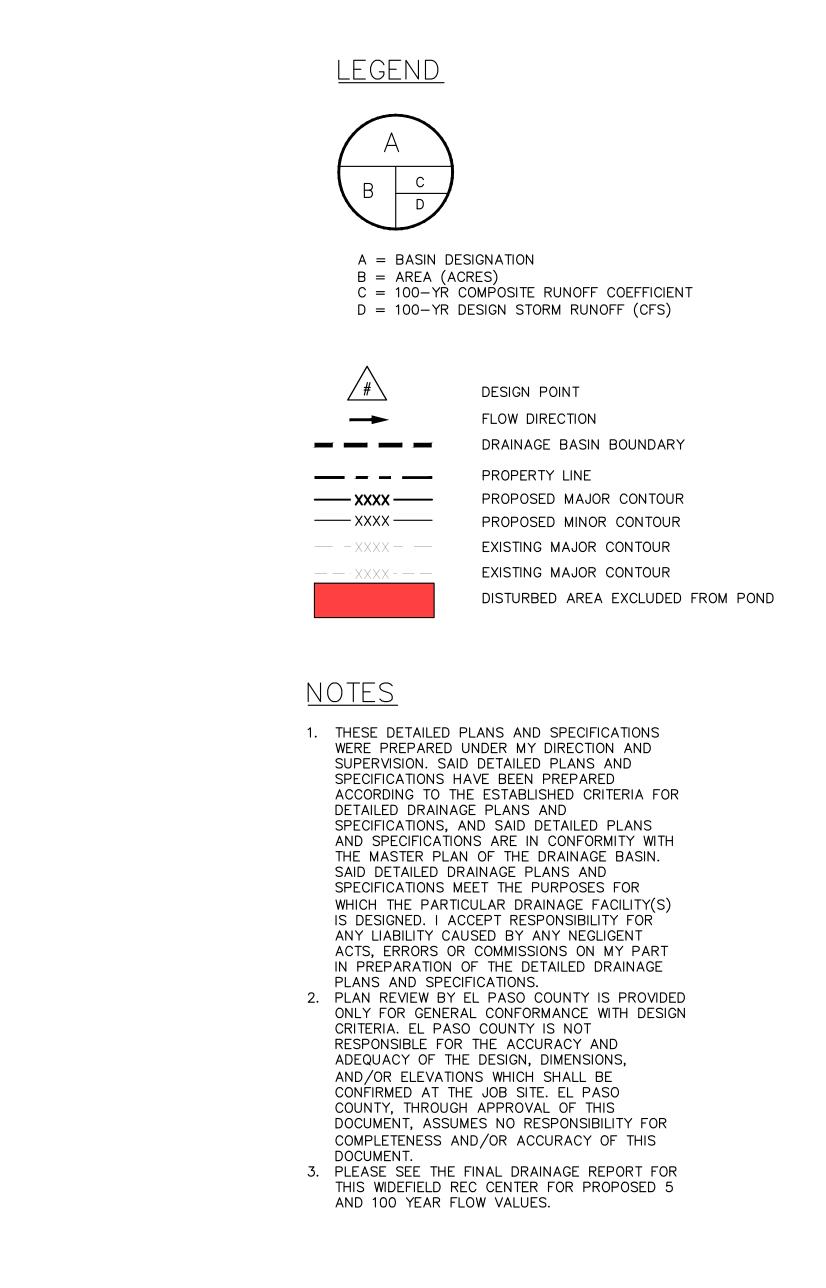
✓ Final Design

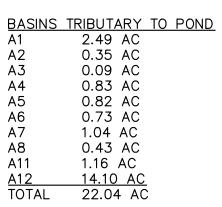
<u>LEGEND</u>

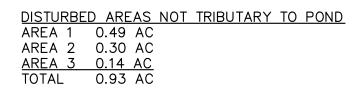

B = AREA (ACRES) C = 100 - YR COMPOSITE RUNOFF COEFFICIENTD = 100 - YR DESIGN STORM RUNOFF (CFS)

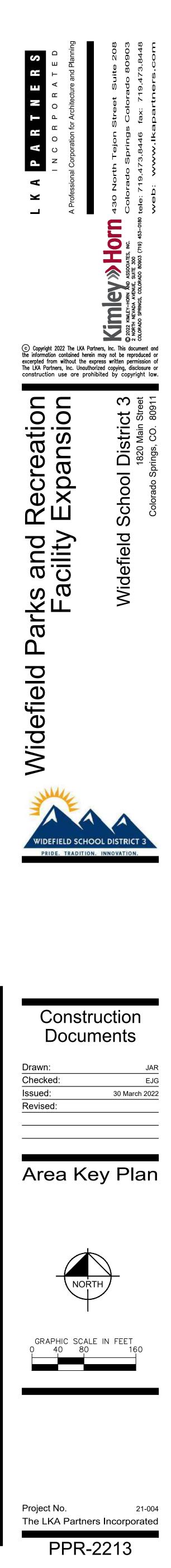
DESIGN POINT FLOW DIRECTION DRAINAGE BASIN BOUNDARY PROPERTY LINE PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR EXISTING MAJOR CONTOUR EXISTING MAJOR CONTOUR

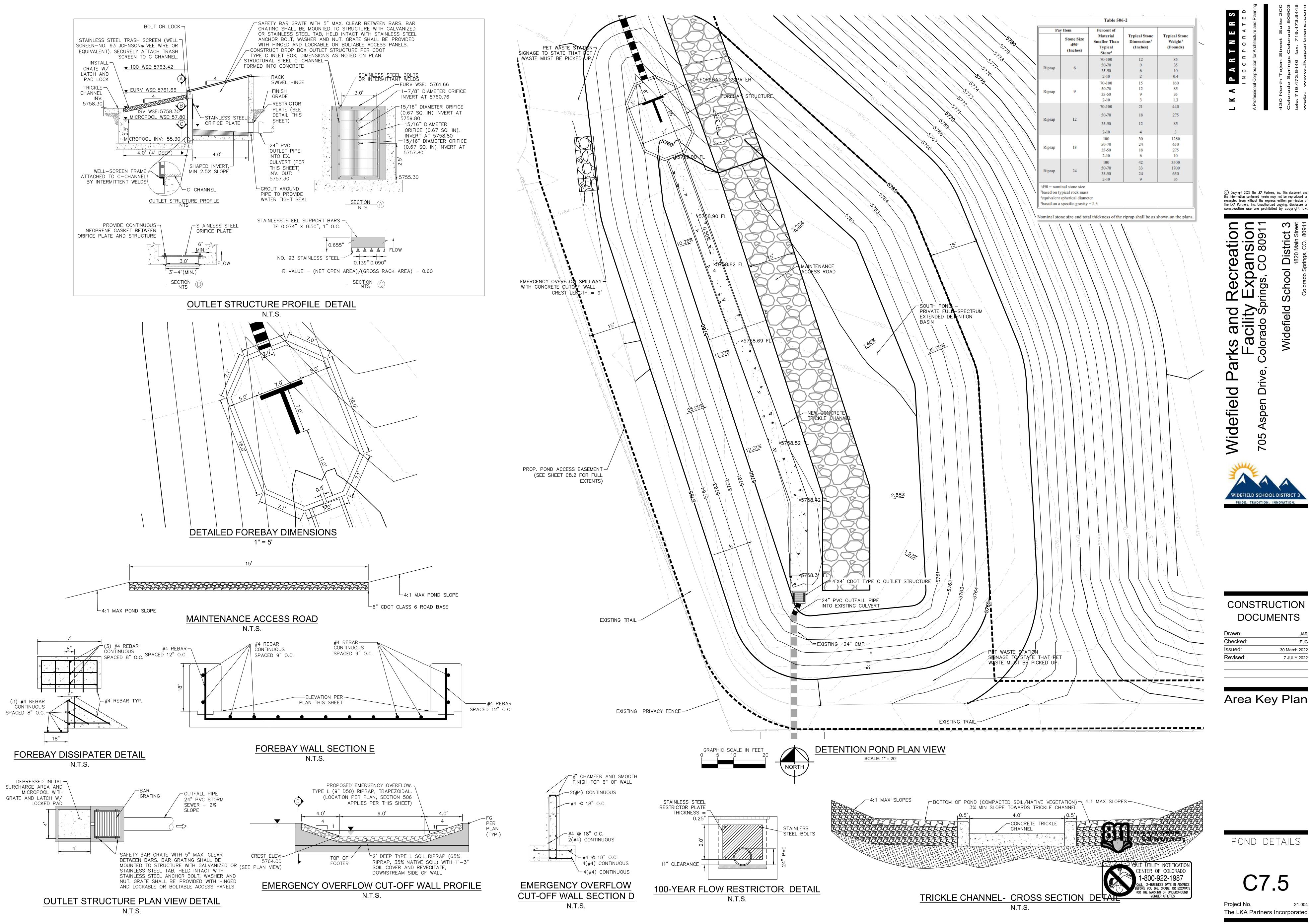
<u>NOTES</u>


- THESE DETAILED PLANS AND SPECIFICATIONS WERE PREPARED UNDER MY DIRECTION AND SUPERVISION. SAID DETAILED PLANS AND SPECIFICATIONS HAVE BEEN PREPARED ACCORDING TO THE ESTABLISHED CRITERIA FOR DETAILED DRAINAGE PLANS AND SPECIFICATIONS, AND SAID DETAILED PLANS AND SPECIFICATIONS ARE IN CONFORMITY WITH THE MASTER PLAN OF THE DRAINAGE BASIN. SAID DETAILED DRAINAGE PLANS AND SPECIFICATIONS MEET THE PURPOSES FOR WHICH THE PARTICULAR DRAINAGE FACILITY(S) IS DESIGNED. I ACCEPT RESPONSIBILITY FOR ANY LIABILITY CAUSED BY ANY NEGLIGENT ACTS, ERRORS OR COMMISSIONS ON MY PART IN PREPARATION OF THE DETAILED DRAINAGE PLANS AND SPECIFICATIONS.
 PLAN REVIEW BY EL PASO COUNTY IS PROVIDED
- 2. PLAN REVIEW BY EL PASO COUNTY IS PROVIDED ONLY FOR GENERAL CONFORMANCE WITH DESIGN CRITERIA. EL PASO COUNTY IS NOT RESPONSIBLE FOR THE ACCURACY AND ADEQUACY OF THE DESIGN, DIMENSIONS, AND/OR ELEVATIONS WHICH SHALL BE CONFIRMED AT THE JOB SITE. EL PASO COUNTY, THROUGH APPROVAL OF THIS DOCUMENT, ASSUMES NO RESPONSIBILITY FOR COMPLETENESS AND/OR ACCURACY OF THIS DOCUMENT.


	SUMMARY - EXISTING RUNOFF TABLE							
	DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATIVE 5- YR RUNOFF (CFS)	CUMULATIV YR RUNOFF	
/	1	EX-1	3.07	8.19	17.22	8.19	17.22	
	2	EX-2	2.06	1.03	5.56	1.03	<mark>5.56</mark>	
	3	EX-3	4.38	5.79	14.55	5.79	14.55	
	4	EX-4	3.10	4.00	10.34	4.00	10.34	
	5	EX-5	3.97	1.91	8.93	1.91	8.93	
	6	EX-6	22.43	8.19	41.69	8.19	41.69	
	7	EX-7	0.79	2.04	4.07	2.04	4.07	







SUMMARY - PROPOSED RUNOFF TABLE								
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATIVE 5-YR RUNOFF (CFS)	CUMULATIVE 100- YR RUNOFF (CFS)		
1	EX-1	3.07	8.19	17.22	8.19	17.22		
2	EX-2	2.06	1.03	5.56	1.03	5.56		
3	EX-3	4.38	5.79	14.55	5.79	14.55		
4	EX-4	0.79	2.04	4.07	2.04	4.07		
5	A1	2.49	5.35	11.73	5.35	11.73		
6	A2	0.35	1.15	2.31	1.15	2.31		
7	A3	0.09	0.06	0.30	0.06	0.30		
8	A4	0.83	0.68	2.40	0.68	2.40		
9	A5	0.82	0.56	2.26	0.56	2.26		
10	A6	0.73	0.28	1.70	0.28	1.70		
11	A7	1.04	3.92	7.30	3.92	7.30		
12	A8	0.43	1.70	3.21	1.70	3.21		
13	A9	3.41	4.42	11.61	4.42	11.61		
14	A10	4.06	1.92	9.02	1.92	9.02		
15	A11	1.16	2.51	5.41	2.51	5.41		
16	A12	14.10	5.26	28.67	5.26	28.67		

