FINAL DRAINAGE REPORT for HAVEN VALLEY

El Paso County, Colorado

June 2024

EL PASO COUNTY PCD FILE NO. PUDSP-21-007 SF2323

Prepared for:

Midco Investments, LLC

P.O. Box 60069 Colorado Springs, CO 80960 Contact: Robert C. Irwin (719) 475-7474

Prepared by:

Drexel, Barrell & Co.

3 South 7th Street Colorado Springs, CO 80905 Contact: Tim McConnell, P.E. (719) 260-0887 Project #21085-03

TABLE OF CONTENTS

1.0	CERTIFICATION STATEMENTS	1
2.0	PURPOSE	2
3.0	GENERAL SITE DESCRIPTION	2
4.0	EXISTING CONDITIONS HYDROLOGY SUMMARY	3
5.0	PROPOSED HYDROLOGY (RATIONAL METHOD) & HYDRAULIC SUMMARY	5
6.0	PROPOSED DETENTION/WATER QUALITY FACILITIES	10
7.0	FOUR-STEP PROCESS	12
8.0	GEOTECHNICAL HAZARDS	12
9.0	DRAINAGE & BRIDGE FEES	12
10.0	CONSTRUCTION COST ESTIMATE	
11.0	CONCLUSIONS	14
12.0	REFERENCES	15

APPENDICES

VICINITY MAP SOILS MAP FLOODPLAIN MAP DBPS SHEET 22 HYDROLOGY CALCULATIONS HYDRAULIC CALCULATIONS DRAINAGE MAPS

FINAL DRAINAGE REPORT

for HAVEN VALLEY Security, Colorado

1.0 CERTIFICATION STATEMENTS

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports, and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omission on my part in preparing this report.

- On Ell

Tim D. McConnell, P.E. Colorado P.E. License No. 33797 For and on Behalf of Drexel, Barrell & Co.

DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

Business Name:

Midco Investments, LLC

By:

Title: Address: Robert C. Irwin Manager P.O. Box 60069 Colorado Springs, CO 80960

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Joshua Palmer, P.E. County Engineer/ECM Administrator CONDITIONS:

Date

6/11/24

Date

<u>6/11/24</u> Date

FINAL DRAINAGE REPORT for HAVEN VALLEY Security, Colorado

2.0 PURPOSE

This report is prepared by Drexel, Barrell & Co in support of the Haven Valley in Security, CO. The purpose of this report is to identify onsite and offsite drainage patterns, storm sewer, inlet locations, and areas tributary to the site, and to safely route developed storm water runoff to adequate outfall facilities.

3.0 GENERAL SITE DESCRIPTION

<u>Location</u>

Haven Valley is a 11.768 acre subdivision within the northwest quarter of Section 12, Township 15 South, Range 66 West of the 6th Principle Meridian in El Paso County, Colorado. The site is located southwest of Cable Ln and west of Hunters Run. The site is bounded on the north by Calvary Fellowship Fountain Valley church and Cable Ln, the west by Good Shepherd United Methodist church, and the south and the east by residential subdivision Pheasant Run Ranch Filing No. 1. See Vicinity Map in Appendix.

Existing Site Conditions

The site is approximately 11.768 acres in size surrounded by existing development. There are no existing structures on the site, only native grasses, a few invasive trees and shrubs. There are no existing irrigation facilities on the project site. The project site slopes moderately from the northeast to southwest at approximately 5-7%. Existing drainage flows to the southwest where it drains overland between two houses to Pecos Drive, then south on Widefield Drive. Severe flooding has been observed between these two houses and one of the houses has experienced mold issues in the past.

Proposed Site Conditions

Haven Valley is a small lot single-family development, consisting of approximately 98 lots, streets, landscape areas and open space. A proposed full-spectrum detention pond (Pond 1) is proposed to be constructed in an existing off-site drainage easement adjacent to the west side of the site. The flows will be released from the detention pond and be carried by pipe between the two houses and outlet via a bubbler in Widefield Drive. There is an existing drainage and utility easement located between the two houses.

<u>Soils</u>

According to the Soil Survey of El Paso County Area, Colorado, prepared by the U.S. Department of Agriculture Soil Conservation Service, the site is underlain by the Blakeland loamy sand (Soil No. 8). This soil is a type 'A' hydrologic soil group. This type of soil typically

exhibits rapid infiltration rates and slow runoff characteristics with moderate erosion potential. See appendix for Soil Map.

<u>Climate</u>

This area of El Paso County can be described as the foothills, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry, and summers relatively warm and dry. Precipitation ranges from 12 to 14 inches per year, with the majority of this moisture occurring in the spring and summer in the form of rainfall. Thunderstorms are common during the summer months.

Floodplain Statement

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel 08041C0763G (December 7, 2018), the site does not lie within a designated 100-year floodplain. The site is in Zone X, an area of minimal flood hazard. See Appendix for FIRMette map.

Previous Drainage Studies

The site is located within the Security Drainage Basin, as studied in the Little Johnson/Security Drainage Basin Planning Study, prepared by Simons Li & Associates, Inc., 1987.

4.0 EXISTING CONDITIONS HYDROLOGY SUMMARY

Basin OS-1 is an offsite basin to the north. This basin drains the Elm Grove Subdivision (town homes, age restricted) and several commercial buildings on the east side of Main St. and the Wilson Elementary School on the west side of Main St. The runoff path begins on Main Street near the intersection of Bradley Road, then flows southerly down Main Street via curb and gutter. The runoff at this intersection is collected by a storm sewer constructed as part of the 1993 Main Street reconstruction by El Paso County. The storm drain system conveys runoff east underground via storm sewer and discharges into a valley gutter within the Elm Grove Subdivision. The valley gutter drains south to an existing detention pond (roughly 3-4' deep) where it is detained slightly. The pond discharges via a 24" CMP to the south. The 24" CMP is undersized for the 100-year which overtops the pond and drains into a swale which in turn drains south overland between two houses in the Security Colorado Addition 4, then south to the curb and gutter in Pecos Drive and Widefield Drive. The runoff generated by Basin OS1 is calculated to be 46.0 cfs and 88.8 cfs for the 5-year and 100-year storm respectively into the detention pond. After detention, the pond outflows are 18.1 cfs and 52.3 cfs respectively for the 5-year and 100-year storms.

Basin OS-2 is an offsite basin to the north of the site. Runoff from this basin is primarily generated from roof, parking lot and vacant land. The runoff path begins on Cable Lane and generally flows southerly along the west property line until it reaches Design Point A. Design Point A collects the flow from Basin OS2 and the release from the detention pond in Basin OS1. This flow is routed southerly through a small swale that divides Basins OS3 and H1. The calculated runoff from Basin OS2 is 11.8 cfs and 21.5 cfs for the 5-year and 100-

year storm respectively.

Design Point A. The drainage swale previously mentioned conveys the flow from Design Point A to Design Point B. The calculated flow at Design Point A is 29.9 cfs and 73.8 cfs for the 5-year and 100-year storm respectively. This flow includes detained flow from the Elm Grove pond and from Basin OS-2 which is conveyed south in an existing swale to a historic low point just north of Security Colorado Addn. No. 4 (Des. Pt. B).

Basin OS-3 is an offsite basin to the west of the site. Runoff from this basin is generated from roof, street, parking lot and vacant land. The runoff path flows southerly down Main Street via curb and gutter and then easterly onto Leta Drive. The flow then continues south through a parking lot until it empties onto vacant land, then travels to the southeast to Design Point B. Design Point B collects the flow from all basins; OS1, OS2, OS3 and H1 and drains them overland between two houses in the Security Colorado Addition 4, then south to the curb and gutter in Pecos Drive and Widefield Drive. Severe flooding between these houses has been observed on numerous occasions in the past. The calculated runoff from Basin OS3 is 15.6 cfs and 37.4 cfs for the 5-year and 100-year storm respectively.

Basin H-1 is an onsite basin which drains the site plus street runoff from Alturas Drive and Cable Lane. The east half of Alturas Drive drains is not included in this basin which drains overland eastward into the Windmill Creek Subdivision per the approved drainage report by Jefferies Engineering, October 10, 2001. Runoff from the undeveloped lot west of Alturas Drive is currently collected in a swale west of the ROW and directed south into a detention pond which outlets into the FMIC superditch. Future conditions for this undeveloped lot will need to remain the same as existing since additional runoff down Alturas would severely affect downstream properties. Runoff from Alturas Drive is included in this basin per existing conditions. The runoff path for Basin H1 begins near the intersection of Alturas Drive and Bradley Road (west half), and then flows southwesterly via an asphalt curb southward and over the top of the FMIC superditch. The flow then crosses Cable Lane and generally flows southwesterly through vacant land to Design Point B. The calculated runoff for Basin H1 is 6.9 cfs and 30.4 cfs for the 5-year and 100-year storm respectively.

Design Point B includes flow from Design Point A, Basin OS-3, and H-1. Design Point B discharges through the Security Colorado Addition No. 4 Refile Subdivision overland between two houses, then to the curb and gutter on the north side of Pecos Drive and the east side of Widefield Drive. The total flow at Design Point B is 46.1 cfs and 129.0 cfs for the 5-year and 100-year storm respectively between the two houses. Both of these two homeowners have indicated that they have experienced severe flooding of the backyard and crawl spaces of their homes.

Basin OS-4 is an offsite basin to the west of the site including Main Street and a portion of land west of Main Street. Runoff from this basin is generated from roof, street, and parking lot. The runoff path flows southerly down Main Street via curb and gutter to the intersection of Pecos Drive. An existing storm sewer system was constructed in 1993 as part of the 1993 Main Street reconstruction project by El Paso County. The storm system picks up street flow and discharges it to a 15' bubbler located just east of the intersection of Pecos Drive and Main Street. From the bubbler, all runoff is carried overland east to Widefield Drive (Design Pt C), then south on Widefield Drive via curb and gutter. There is no existing storm sewer

system within Pecos or Widefield Drive. None of the storm infrastructure east of this bubbler or within Widefield Dr. shown on the DBPS were ever installed. The existing bubbler was not proposed in the DBPS. The calculated runoff from Basin OS4 is 39.6 cfs and 82.3 cfs for the 5-year and 100-year storm respectively. The existing street capacity of Widefield Drive as it flows south from Pecos Drive is 7 cfs and 41 cfs for the 5-year and 100-year storm respectively. As shown, the flow from this basin alone exceeds the street capacity of Widefield Drive. Therefore, the flows from Basin OS-4 are split between the curb and gutter on each side of the street.

Design Point C is located at the intersection of Pecos Drive and Widefield Drive and includes flow from Design Point B and Basin OS-4. At Design Point C the existing flow with detention from the Elm Grove pond is 80.3 cfs and 200.0 cfs for the 5-year and 100-year storms respectively, which is all overland flow.

Per the $\frac{1}{2}$ street section street capacity chart Figure 7-9, the existing street capacity of Widefield Drive as it flows south from Pecos Drive is approximately 7 cfs and 41 cfs for the 5-year and 100-year storm events respectively. Per the MHFD-Inlet_v.01 spreadsheet for street capacity, the existing street capacity of Widefield Drive as it flows south from Pecos Drive is 8.9 cfs and 39.6 cfs for the 5-year and 100-year storm events respectively. As shown, the existing street capacity is severely exceeded in existing conditions which is echoed by the residents in this area experiencing chronic flooding at this intersection. This development is proposing to reduce the flooding issues in this area which will be discussed later in this report. Since street capacity is being exceeded, the flows at DP-C are split evenly on each side of the street. Therefore, the west side of the street carries 40.1 cfs and the east side of the street carries 40.1 cfs for the 5-year storm and the west side of the street carries 100.0 cfs and the east side of the street carries 100.0 cfs for the 100-year storm. Per the $\frac{1}{2}$ street section street capacity chart Figure 7-9, the capacity of the existing streets is exceeded by 33.1 cfs for the 5-year storm and by 59.0 cfs for the 100-year storm. Per the MHFD-Inlet v.01 spreadsheet for street capacity, the capacity of the existing streets is exceeded by 31.2 cfs for the 5-year storm and by 60.4 cfs for the 100-year storm. These existing excess flows are currently being conveyed via the street and adjacent sidewalks and front yards.

5.0 PROPOSED HYDROLOGY (RATIONAL METHOD) & HYDRAULIC SUMMARY

The Rational Method was used to determine runoff quantities for the 5- and 100-year storm recurrence intervals. Urban Drainage UD-Detention and Flowmaster were used to determine pond (Pond 1) and storm system sizing. UD-Inlet and UD-Sewer were also used to identify pond and storm system sizing (see appendix for calculations). See below for a summary runoff table of the basins and for descriptions of each design point. See appendix for Proposed Drainage Map showing the proposed drainage basin locations.

BASIN	AREA (AC)	Q5 (cfs)	Q100 (cfs)
А	0.44	0.5	1.5
OS-1	16.90	46.0	88.8
OS-2	2.85	11.8	21.5
В	1.42	3.2	6.6
С	3.43	6.4	14.0
D	0.98	1.2	3.5
E	3.09	6.4	14.0
F	0.69	1.4	3.1
G	1.61	2.8	6.2
OS-3	9.74	15.6	37.4
Н	0.84	1.0	2.9
OS-4	20.04	39.6	82.3
OS-5	0.15	0.3	0.7
OS-6	0.41	0.9	2.0
I	0.69	0.6	2.2

Rational Method Runoff Summary

North Swale carries the flows from Basin A, 1.5 cfs, and Basin OS-2, 21.5 cfs, for a total of 23 cfs to the proposed private area inlet at DP-1. The velocity within this swale is greater than allowable per DCM 6.5.2, therefore the swale will need to be lined. See Appendix for swale calculations.

Design Point 1 (DP-1) represents flows generated from existing Elm Grove pond release in offsite basin OS-1, as well as flows from offsite basin OS-2 and onsite Basin A. The flows are conveyed via a swale and are then captured by a proposed private Double Type D area inlet. The flows leave this inlet via a proposed private 36" RCP storm pipe and are conveyed to the proposed Extended Detention Basin to the south. The total flow at DP-1 is 28.1 cfs and 71.0 cfs for the 5-year and 100-year storm respectively. The Double Type D area area inlet can capture all of the DP-1 flows.

Design Point 2 (DP-2) represents flows generated from onsite Basin B. The flows are captured by a proposed private at-grade 5' Type R inlet in Basin B. The flows leave this inlet via a proposed private 18" RCP storm pipe and are carried south to DP-J1. The total flow at DP-2 is 3.2 cfs and 6.6 cfs for the 5-year and 100-year storm respectively.

Design Point 3 (DP-3) represents flows generated from Basin C. The flows are captured by a proposed private at-grade 15' Type R inlet in Basin C. The flows leave this inlet via a proposed private 24" RCP storm pipe and are carried west to DP-J1. The total flow at DP-3 is 6.4 cfs and 14.0 cfs for the 5-year and 100-year storm respectively.

Design Point J1 (DP-J1) represents flows generated from Basins B and C. This design point is located at a proposed junction with a Type II manhole in Basin C. The flows leave this

manhole via a proposed private 24" RCP storm pipe and are carried south to DP-J2. The total flow at DP-J1 is 9.5 cfs and 20.3 cfs for the 5-year and 100-year storm respectively.

East Swale carries the flows from Basin D, 3.5 cfs, to the proposed private area inlet at DP-4. The Froude number within this swale is greater than allowable per DCM 6.5.2, therefore the swale will need to be lined. See Appendix for swale calculations.

Design Point 4 (DP-4) represents flows generated from Basin D. The flows are conveyed via a swale and are then captured by a proposed private sump condition Type C area inlet in Basin D. The flows leave this inlet via a proposed private 18" RCP storm pipe and are carried west to DP-J2. The total flow at DP-4 is 1.2 cfs and 3.5 cfs for the 5-year and 100-year storm respectively.

Design Point 5 (DP-5) represents flows generated from Basin E, which includes a portion of Cable Ln as shown on the proposed drainage map in the Appendix. This design point represents the flows at the intersection of New Haven Point and Hawk Haven View. The street capacity is sufficient at this point for these flows as can be seen in the street capacity charts included in the Appendix. These flows continue to the west where they are captured by the proposed inlet at DP-6. The total flow at DP-5 is 6.4 cfs and 14.0 cfs for the 5-year and 100-year storm respectively. Cable Lane is an existing public two-lane paved roadway. As part of this project, the roadway will be widened and curb and gutter added. Basin E will collect runoff from a portion the existing and proposed Cable Lane. The remainder of the roadway drainage will follow historic patterns.

Design Point J2 (DP-J2) represents flows generated from Basins B, C and D. This design point is located at a proposed junction with a Type II manhole in Basin E. The flows leave this manhole via a proposed private 30" RCP storm pipe and are carried west to DP-J3. The total flow at DP-J2 is 10.6 cfs and 23.4 cfs for the 5-year and 100-year storm respectively.

Design Point 6 (DP-6) represents flows generated from Basin F. The flows are captured by a proposed private at-grade 15' Type R inlet in Basin F. The flows leave this inlet via a proposed private 24" RCP storm pipe and are carried south to DP-J3. The total flow at DP-6 is 7.7 cfs and 17.0 cfs for the 5-year and 100-year storm respectively.

Design Point J3 (DP-J3) represents flows generated from Basins B, C, D, E and F. This design point is located at a proposed junction with a Type II manhole in Basin G. The flows leave this manhole via a proposed private 30" RCP storm pipe and are carried west to DP-J4. The total flow at DP-J3 is 17.4 cfs and 38.4 cfs for the 5-year and 100-year storm respectively.

Design Point 7 (DP-7) represents flows generated from Basin G. The flows are captured by a proposed private sump 5' Type R inlet in Basin G. The flows leave this inlet via a proposed private 18" RCP storm pipe and are carried north to DP-J4. The total flow at DP-7 is 2.8 cfs and 6.2 cfs for the 5-year and 100-year storm respectively.

Design Point J4 (DP-J4) represents flows generated from Basins B, C, D, E, F and G. This design point is located at a proposed junction with a Type II manhole in Basin G. The flows leave this manhole via a proposed private 30" RCP storm pipe and are carried west

to the proposed private full-spectrum Extended Detention Basin. The total flow at DP-J4 is 20.0 cfs and 44.1 cfs for the 5-year and 100-year storm respectively.

Design Point 8 (DP-8) represents flows generated from Basin H only. The flows from the existing Elm Grove pond release are captured by the proposed private area inlet in Basin A at DP-1. See DP-1 discussion above. The flows from Basin H are captured by a proposed east swale and are carried to the proposed Extended Detention Basin. The total flow at DP-8 is 1.0 cfs and 2.9 cfs for the 5-year and 100-year storm respectively.

Design Point P1 (DP-P1) represents all of the flows generated from Basins OS-1, Exist. Elm Pond release and Basins A through G. These are all of the flows that are captured by the proposed Extended Detention Basin. Further detail is provided on the EDB (Pond 1) in the following section of this report. The total flows at DP-P1 is 63.9 cfs and 153.8 cfs for the 5year and 100-year storm respectively.

South Swale carries the flows from Basin I, 2.2 cfs, Basin OS-5, 0.7 cfs, and Basin OS-6, 2.0 cfs, for a total of 5.0 cfs to the proposed private area inlet at DP-9. The Froude number within this swale is greater than allowable per DCM 6.5.2, therefore the swale will need to be lined. See Appendix for swale calculations.

Design Point 9 (DP-9) represents flows generated from Basin I, OS-5 and OS-6 combined with the released flows from the proposed EDB (Pond 1). The flows are conveyed via a swale and are then captured by a proposed private sump condition Type C area inlet in Basin I. The flows leave this inlet via a proposed public 24" RCP storm pipe and are carried south to DP-J5. This pipe system is identified as a public reimbursable facility in the DBPS. By piping these flows between the two houses, flooding for these two existing residences will be eliminated in this area. In the event of a storm event that overtops the EDB spillway, a concrete channel is proposed between the two existing residences to help prevent flooding. The concrete channel is to be 2.5' high x 6.5' wide and is directly over the 24" RCP pipe below. The total flow at DP-9 is 2.8 cfs and 36.4 cfs for the 5-year and 100-year storm respectively. The flow depth in the concrete channel is 1.3', as shown in the calculations in the Appendix, and therefore the flows will be contained by the 2.5' high concrete walls and channel. Basin I is not being captured for water quality control, however it is under 1 acre, which is acceptable per ECM Appendix I.7.1.C.1. Basins OS-5 and OS-6 will also not be captured in the EDB. It is not necessary for these flows to be treated because they are offsite basins that will not mix with runoff that needs to be treated.

Design Point O4 (DP-O4) represents flows generated from Basin OS-4. A proposed public at-grade 15' Type R inlet is to be installed on existing Pecos Dr/Widefield Dr. knuckle. This inlet will not be able to capture all of the flows generated from the existing basin but will capture some of the street flows and relieve some of the flooding experienced by the residents in this area. The total flow at DP-O4 is 39.6 cfs and 82.3 cfs for the 5-year and 100-year storms respectively. These flows are split evenly on each side of the street due to the existing street capacity of Pecos Dr. and Widefield Dr. being exceeded, so the flows on the north side of Pecos Dr. approaching the proposed inlet are 19.8 cfs and 41.1 cfs for the 5-year and 100-year storm respectively. The proposed 15' Type R inlet can capture approximately 7 cfs of the 5-yr storm flows and 20 cfs of the 100-yr will continue to

the south along the east curb and gutter of Widefield Drive along historic drainage routes as outlined in the DBPS.

Per the ½ street section street capacity chart Figure 7-9, the street capacity of Pecos Dr. and Widefield Dr. is 7 cfs for the 5-year storm and 41 cfs for the 100-yr storm. Therefore, the street capacity will be exceeded by 5.8 cfs for the 5-yr storm (down from 33.1 cfs at DP-C in the existing condition) and will not be exceeded at all in the 100-yr condition. See street capacity charts in the Appendix.

Per the MHFD-Inlet_v.01 spreadsheet for street capacity, the capacity of Pecos Dr. and Widefield Dr. is 8.9 cfs for the 5-year storm and 39.6 cfs for the 100-yr storm. Therefore, the street capacity will be exceeded by 3.9 cfs for the 5-year storm (down from 33.1 cfs at DP-C in the existing condition) and will not be exceeded at all in the 100-yr condition. See spreadsheet with capacity calculations in the Appendix.

The depth of gutter flow for the existing conditions, 100 cfs, is 0.93' and for the proposed conditions, 21.1 cfs, is 0.45'. See flow depth calculations in the Appendix.

Design Point J5 (DP-J5) represents flows generated from Basins I, OS-4 (captured by the proposed inlet), OS-5, OS-6 and the flows released from the proposed EDB (Pond 1). This design point is located at a proposed junction with a Type I manhole in Basin OS-4. The total flow at DP-J5 is 9.8 cfs and 56.4 cfs for the 5-year and 100-year storm respectively. The flows leave this manhole via a proposed public 36" RCP storm pipe (or equivalent elliptical pipe - this pipe system was also identified in the DBPS as public and reimbursable) and are carried south where they will outlet via a proposed 25' Type R inlet to be used as a bubbler in Widefield Drive and continue to the south along historic drainage routes as outlined in the DBPS. The bubbler inlet will serve to release the developed upstream flows into Widefield Drive as street flow at the end of the storm sewer system. The inlet will fill and overtop/exit the inlet throat into the street. A small pipe will be provided at the bottom of the inlet to release nuisance flows and allow the inlet to drain after filling. This pipe will daylight downstream and release flows to the curb and gutter in Widefield Dr. The small pipe to drain the bubbler inlet is planned to be designed similar to a grease interceptor to avoid clogging issues experienced by the county on other similar facilities. Design detail will be provided with the construction documents.

Design Point 10 (DP-10) is located at the bubbler outfall pipes. It represents the flows from the bubbler itself, the flows released through the (2) 4" PVC bubbler outfall pipes, and the flows in the curb and gutter that previously bypassed DP-O4. The flows that bypass the inlet at DP-O4 and flow south along the east curb and gutter of Widefield Dr. are approximately12.8 cfs for the 5-year storm and 21.1 cfs for the 100-yr storm. The flows being conveyed via the 36" RCP storm pipe exiting the manhole at DP-O4 equals 9.8 cfs) and 56.4 cfs for the 100-yr storm (DP-9 flows are 2.8 cfs plus the 7 cfs captured by the inlet at DP-O4 equals 9.8 cfs) and 56.4 cfs for the 100-yr storm (DP-9 flows are 36.4 cfs plus the 20 cfs captured by the inlet at DP-O4 equals 56.4 cfs). See Rational Method calculations for each basin and design point in the Appendix. Therefore, the combined flows just past the bubbler are 22.6 cfs for the 5-yr storm and 100.0 cfs for the 100-yr storm. Therefore, the development of Haven Valley will not increase but decrease the flows and flooding issues in the area and downstream on Widefield Drive due to the proposed detention facility

which has been sized to not just handle the development of Haven Valley, but all surrounding areas that had no detention required of them in the DBPS. None of the storm infrastructure along Pecos Dr. or Widefield Dr. shown on the DBPS was ever installed. The existing street capacities are exceeded and the homes along Widefield Dr. currently experience flooding. See previous discussion in Existing Conditions DP-C. Since the proposed flows will be less than the existing flows, no new flooding issues will be created, but instead alleviated to the same extent. Also, since the proposed flows are being decreased from the existing flows, there will be no negative impact from our proposed development to the outfall of the existing County pond (in Pheasant Run Ranch Filing No. 1) south of the proposed bubbler. For the 100-yr storm the depth of flow for the existing condition, 100 cfs, is 0.93' at the curb flowline. The depth of flow for the proposed condition, 77.5 cfs, is 0.84'. This depth has a spread of 23' from the centerline of Widefield Dr. to the east, which is within the 60' ROW (30' on each side). While both existing and proposed conditions exceed street capacity (See street capacity discussion under DP-O4), the proposed conditions are an improvement from the existing conditions. See Depth of Flow calculations in the Appendix.

None of the proposed on-site streets exceed capacity, see Appendix for Street Capacity Charts. See also inlet capacity charts for inlet sizing in the Appendix.

A portion of Cable Ln. will be reconstructed and its drainage patterns shall remain the same as existing. The runoff from much of Cable Lane adjacent to the Haven Valley site (with the exception of flows captured by Basins B, C & E) will not be captured by the project's detention facility. This roadway redevelopment falls under the exclusions listed in the ECM 1.7.1.B.2 & 3. The total added paved area will be 0.10 acres, which is under the 1 acre of added paved area per 1 mile of roadway. The average width of the existing paved roadway is 22'+, the proposed mat width is 30', which is also less than the 8.25' added width requirement. The roadway width is also not being increased by 2 times or more of the original roadway.

6.0 PROPOSED DETENTION/WATER QUALITY FACILITIES

The proposed private full spectrum Extended Detention Basin (EDB) is located southwest of the project site within a 1.29 acre drainage easement. This detention pond (Pond 1) will fulfill on-site detention needs as well as providing detention for upstream properties, since there is a lack of detention facilities upstream which has caused chronic flooding issues between the two residences that the flows currently pass between on their way to Widefield Dr. The 1.29 acre easement is proposed to be a private drainage/detention easement and Pond 1 to be maintained by Homeowners Association. The Security DBPS does not address the need for a pond in this area, rather it shows roughly 188 cfs (100year storm) passing between the two houses with only a 24" storm sewer and no swale to convey the flow. The developed peak 100-year flow calculated in this report is 152.1 cfs at this location. The difference in flow is attributed to the DBPS bypassing Elm Grove Pond. The proposal shown in the DBPS does not work and will flood the two residences. Even though the DBPS does not adequately address flooding issues in this area, we are proposing to construct a facility nearly three times the size of a facility necessary to detain runoff from our project site alone. The proposed detention facility has been designed to capture flows from Basins OS-1, OS-2, OS-3, OS-4 and Basins A through H. A total of 41.99 acres is tributary to this EDB (Pond 1) with a composite imperviousness of 57.8%. The required pond volume for 100-year detention is 4.464 acre-feet. The actual pond volume will be 4.268 acre-feet. Concrete forebays with energy dissipaters will be placed where the flows enter Pond 1 on the northeast and the east sides of the pond. The combined volume of the two forebays will be 3% of the WQCV volume for the pond and will be divided proportionally. The flows will exit the forebays through a notch and into the concrete trickle channel at the bottom of Pond 1 that conveys the flows to the micropool. It will capture then release the flows at a reduced flow rate with the use of a plate with orifice holes into a proposed 24" pipe with a restrictor plate. This pipe connects to an area inlet, then a 24" pipe continues to the south, between the two existing residences, and outfalls into two bubblers in Widefield Dr. where they continue in historic patterns to the south.

Test borings of the site were taken as part of the Geotech report by CTL Thompson. These borings show that at worse case, the groundwater elevation is approximately 5 feet below the bottom of the pond, therefore the pond does not need to be lined. See test borings included in the Appendix.

In accordance with El Paso County criteria, the modified Type C outlet structure with a permanent micropool will release the WQCV over a 40-hour period. The outlet structure will result in release rates of 0.9 cfs and 31.4 cfs for the 5-year and 100-year storm respectively.

A 46-ft wide riprap emergency spillway will be located on the south side of Pond 1. In the event that water overtops the spillway, flow will discharge into a 2.5' high x 6.5' wide concrete channel between the two residences before discharging into Widefield Dr. curb and gutter and continuing to the south. A 2.5' high concrete wall will be installed on the west end of the spillway down to the concrete channel to guide the flows as well as to the east of the concrete channel to guide the flows and prevent flows from entering existing residential properties adjacent to the spillway and concrete channel. A concrete pan will be installed between the end of the channel and the back of the existing sidewalk. Final design and details of these items will be provided with the construction documents. In order to design the concrete channel conservatively, the flows from existing DP-B were used, which is 129.0 cfs. The depth of this flow would be 1.3', as can be seen in the calculations included in the Appendix.

Pond 1 calculations are provided in the appendix as well as forebay volumes, micropool sizing, outlet structure design, discharge pipe and spillway design.

Pond 1 will have a 12' wide maintenance road that will provide access to the pond bottom. The maintenance road can be accessed at the west end of New Haven Point. It then ramps down at 12% to the bottom of the pond and around its perimeter. Private maintenance agreements and O&M manuals will be established for Pond 1 as required by the County.

7.0 FOUR-STEP PROCESS

This project conforms to the City of Colorado Springs/El Paso County Four Step Process. The process focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

- 1. **Employ Runoff Reduction Practices:** Proposed impervious areas on this site (roofs, asphalt/sidewalk) will sheet flow across landscaped ground as much as possible to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets and storm sewer system. This will minimize directly connected impervious areas within the project site.
- 2. Implement BMP's that provide a Water Quality Capture Volume with slow release: Runoff from this project will be treated through capture and slow release of the WQCV in a permanent Extended Detention Basin facility designed per current City of Colorado Springs/El Paso County drainage criteria.
- 3. **Stabilize Drainage Ways:** Flows from Pond 1 are released into Widefield Dr. curb and gutter and no stabilization will be necessary.
- 4. **Implement Site Specific and Other Source Control BMP's:** The site is proposed as a residential development, and as such standard household source control will be utilized in order to minimize potential pollutants entering the storm system. Example source control measures consist of: garages for storage of household chemicals, trash receptacles for individual households and in common areas for pet waste. The need for Industrial and Commercial BMP's was considered, however per ECM 1.7.2.A the need for industrial and commercial BMPs are not applicable for this project.

8.0 GEOTECHNICAL HAZARDS

In accordance with geotechnical recommendations, the project design is intended to direct runoff away from structures at a minimum slope of six inches over ten feet, and into the receiving water quality basin. This will be accomplished by a variety of means, i.e. curb and gutter and storm sewer.

9.0 DRAINAGE & BRIDGE FEES

2023 Drainage and Bridge Fees

The project lies within the Security Drainage Basin and is previously un-platted. The following fees are required at time of plat recordation:

Impervious area = 11.768 acres x 58.1% = 6.84 acres

Drainage Fees

\$24,832 x 6.84 Impervious Acres = \$169,850.88

Bridge Fees

None

Drainage fees are requested to be deferred. The total reimbursable costs (see Section 10.0 below) are \$256,704. This exceeds the drainage fees by \$86,853. Therefore the amount being requested to be deferred is \$169,851.

Reimbursement for construction of some of the drainage facilities exceeding the drainage fees due for Haven Valley and the storm sewer outfall in accordance with DCM Section 3.3, is anticipated as identified by the Little Johnson/Security Drainage Basin Planning Study. See Appendix for Sheet 22 of this DBPS for the reimbursable facilities. Construction costs are listed below and the drainage fee is requested to be adjusted accordingly.

10.0 CONSTRUCTION COST ESTIMATE

Private (Non-Reimbursable)			
Description	Quantity	Unit Cost	Cost
Type C Area Inlet	2 EA	\$4,800/EA	\$9,600
Double Type D Area Inlet	1 EA	\$11,800/EA	\$11,800
5' Type R Inlet	2 EA	\$5,700/EA	\$11,400
15' Type R Inlet	2 EA	\$11,995/EA	\$23,990
Type I Manhole	1 EA	\$7,000/EA	\$7,000
Type II Manhole	5 EA	\$5,000/EA	\$25,000
18" RCP storm	930 LF	\$67/LF	\$62,310
24" RCP storm	49 LF	\$91/LF	\$4,459
30" RCP storm	152 LF	\$114/LF	\$17,328
36'' RCP storm	391 LF	\$140/LF	\$54,740
Extended Detention Basin	0.5 EA	\$200,000/EA	\$100,000
		Subtotal	\$327,627
	Engineering	& Contingency (10%)	<u>\$32,763</u>
		TOTAL	\$360,390
Public (Reimbursable) – Facili	ties identified in the	e DBPS	
Description	Quantity	Unit Cost	Cost
15' Type R Inlet	3 EA	\$11,995/EA	\$35,985
Type I Manhole	2 FA	\$14.061/EA	\$28,122

40 LF

15 LF

335 LF

Driverta (Nen Dairaburachla)

24" RCP storm

30" RCP storm

36" RCP storm

\$91/LF

\$114/LF

\$140/LF

Engineering & Contingency (10%)

Subtotal

TOTAL

\$3,640

\$1,710

\$46,900

\$116,357

\$11,636

\$127,993

Private (Reimbursable) – per ECM Appendix L (see below)

Description	Quantity	Unit Cost	Cost
*24" RCP storm	105 LF	\$162/LF	\$17,010
**Extended Detention Basin	0.5 EA	\$200,000/EA	\$100,000
		Subtotal	\$117,010
	Engineering	& Contingency (10%)	<u>\$11,701</u>
		TOTAL	\$128,711

*This pipe is identified in the DBPS as being reimbursable.

**Per ECM Appendix L 3.10.4a, the proposed detention facility qualifies for a 50% reimbursement. The following requirements for the reimbursement have been met:

- 1. Allowed only where regional system is not yet in place. (The DBPS infrastructure along Widefield Dr. is not in place)
- 2. The pond is less than 15 acre-feet in volume from the lowest outlet structure to the crest of the emergency spillway. (The proposed pond volume is 4.54 ac-ft)
- 3. The on-site pond is not part of the regional plan. (It's not)
- 4. The outlet of the pond must be designed to release at historical levels for all precipitation events from the 2-year storm to the 100-year storm. A smaller outlet may be required by the County if adequate downstream channel improvements are not in place to protect residents from the 2-year storm flows. (Even better, the proposed pond is designed to release at LESS than historical levels for all storm events)
- 5. County approved design and construction. (Pond design plans have been submitted to the County for approval, no construction will take place without this approval)
- 6. Landowners assume responsibility for maintenance. (The detention facility is to be maintained by the Haven Valley Metropolitan District)

11.0 CONCLUSIONS

The Haven Valley project has been designed in accordance with El Paso County criteria. The detention pond and water quality basin (Pond 1) have been designed to limit the release of storm runoff to less than historic flows. This development will not negatively impact the downstream facilities. This development will improve the downstream conditions by lessening the flows where there are currently flooding issues.

12.0 REFERENCES

The sources of information used in the development of this study are listed below:

- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual, May 2014.
- 2. Urban Storm Drainage Criteria Manuals, Urban Drainage and Flood Control District. June 2001, Revised April 2008.
- 3. Preliminary & Final Drainage Report for Patriot Village. Prepared by Core Engineering Group, LLC, December 2013.
- 4. Natural Resources Conservation Service (NRCS) Web Soil Survey
- 5. Federal Emergency Management Agency, Flood Insurance Rate Map, El Paso County, Colorado and Unincorporated Areas, Map Number 08041C0763G, Effective Date December 7, 2018
- 6. EL Paso County Board Resolution No 15-042: El Paso County adoption of Chapter 6 and Section 3.2.1, Chapter 13 of the City of Colorado Springs Drainage Criteria Manual, May 2014.
- 7. Little Johnson/Security Drainage Basin Planning Study. Prepared by Simons Li & Associates, Inc., 1988.
- 8. Soil Investigation Report for Patriot Village. Prepared by Colorado Engineering & Geotechnical Group, Inc., November 15, 2004.

APPENDIX

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	12.7	100.0%
Totals for Area of Intere	st	12.7	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

USDA

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - — – – Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **AREAOF MINIMAL FLOOD HAZARD** EL PASO COUNTY **Coastal Transect** Mase Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** OTHER **Profile Baseline** 08041C0763G FEATURES Hydrographic Feature eff. 12/7/2018 **Digital Data Available** No Digital Data Available SITE MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 4/8/2021 at 1:19 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

1,000 1,500 Feet 1:6,000

2.000 Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

104°43'49"W 38°45'46"N

n

250

500

104°44'26"W 38°46'14"N

080059

PROJECT INF	ORMATION							
PROJECT:	Haven Valle	y						
PROJECT NO:	21085-03							
DESIGN BY:	SBN						Drexe	I, Barrell & Co.
REV. BY:	TDM							
AGENCY:	El Paso Cou	inty						
REPORT TIPE:	FINAI 2/3/2022							
Soil Type: A	21312022							
				C2*	C5*	C10*	C100*	% IMPERV
Pasture/Meadow					0.08		0.35	
Commorpial					0.00		0.00	05
4/0 A are Desidenti					0.01		0.00	95 65
1/8 Acre Residenti	ai				0.45		0.59	C0
Asphalt/Sidewalk					0.90		0.96	100
*C Values and Pasin Impo	niousnoss basad ar	Table 6 6 El Das	o County "Droing	ao Critorio Monual'	 •			
			D County Diama	iye Chiena Mahuar				
				004000177				
SUB-BASIN	SURFACE DE	SIGNATION	AREA	COMPOSITE		DEFFICIENTS		% IMPERV
			ACRE	C2	C5	C10	C100	
05-1	Pasture/Meado	W	0.00		0.08		0.35	0
	Commercial	t ¹ - 1	8.10		0.81		0.88	95 CF
	1/8 Acre Resid		1.20		0.45		0.59	65 100
	Aspnait/Sidewa		1.60		0.90		0.90	100
		VERAGE	16.00		0.07		0.70	03%
			10.30					
OS-2	Pasture/Meado)W	0.00		0.08		0.35	0
002	Commercial		2.85		0.81		0.88	95
	1/8 Acre Resid	ential	0.00		0.45		0.59	65
	Asphalt/Sidewa	alk	0.00		0.90		0.96	100
	WEIGHTED A	VERAGE			0.81		0.88	95%
TOTAL OS-2			2.85					
OS-3	Pasture/Meado	W	4.93		0.08		0.35	0
	Commercial		4.05		0.81		0.88	95
	1/8 Acre Resid	ential	0.76	-	0.45		0.59	65
	Asphalt/Sidewa	aik	0.00		0.90		0.96	100
	WEIGHTED A	VERAGE		_	0.41		0.59	45%
TOTAL OS-3			9.74					
06.4	Deet #1		0.00		0.00		0.05	
05-4	Pasture/Meado)W	0.00		0.08		0.35	0
	1/8 Acro Posid	ontial	4.20		0.01		0.00	90 65
	Asphalt/Sidewa	alk	0.00		0.45		0.09	100
	WEIGHTED A		0.00		0.50		0.50	71%
TOTAL OS-4	MEIGHTED /		20.04		0.00		0.00	11/0
H-1	Pasture/Meado	W	12.03		0.08		0.35	0
	Commercial		0.00		0.81		0.88	95
	1/8 Acre Resid	ential	0.39		0.45		0.59	65
	Asphalt/Sidewa	alk	1.02		0.90		0.96	100
	WEIGHTED A	VERAGE	40.44		0.15		0.40	9%
IOTAL H-1			13.44					
			<u> 00 07</u>		0.40		0.00	FO 407
IUTAL SITE			62.97		0.48		0.63	58.1%

PROJECT:	Haven Valley
PROJECT NO:	21085-03
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	2/3/2022

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF EXISTING TIME OF CONCENTRATION STANDARD FORM SF-2

			• · · · · · · · · · · · · · · · · · · ·													
		SUB-BASI	N			INITIAL/O	VERLAND			TRAVEL	TIME			TIME OF	CONC.	FINAL
		DATA				TIME (t _i)				(t _t)				t _c		tc
BASIN	DESIGN PT:	C ₅	C ₁₀₀	AREA	LENGTH	HT	SLOPE	ti	LENGTH	HT	SLOPE	VEL.	t	COMP.	MINIMUM	
				Ac	Ft	FT	%	Min	Ft	FT	%	FPS	Min	t _c	t _c	Min
0S-1		0.67	0.76	16.90	100	2	2.0	6.5	1600	26	1.6	7.4	3.6	10.1	5	10.1
OS-2		0.81	0.88	2.85	100	2	2.0	4.3	400	13	3.3	10.6	0.6	4.9	5	5.0
	А	0.69	0.78	19.75										10.1	5	10.1
OS-3		0.41	0.59	9.74	100	2.5	2.5	9.5	1200	34	2.8	9.8	2.0	11.5	5	11.5
H-1		0.15	0.40	13.44	100	2	2.0	14.1	1600	73	4.6	12.5	2.1	16.2	5	16.2
	В	0.32	0.52	26.03					700	20	2.9	5.28	2.2	16.2	5	16.2
OS-4		0.53	0.65	20.04	100	2	2.0	8.5	2000	41	2.1	8.48	3.9	12.5	5	12.5
	С	0.41	0.58	46.07					100	1	1	3.10	0.5	16.7	5	16.7

PROJECT INFORMATION	
PROJECT:	Haven Valley
PROJECT NO:	21085-03
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	2/3/2022

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

EXISTING	RUNOFF	5	YR STORI	M		P1=	1.50
			DIRECT RUNC)FF			
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)
OS-1		16.90	0.67	10.1	11.24	4.09	46.0
Exist. Elm Grove Pond Release							18.1
OS-2		2.85	0.81	5.0	2.31	5.10	11.8
	A						29.9
OS-3		9.74	0.41	11.5	4.02	3.88	15.6
H-1		13.44	0.15	16.2	2.06	3.34	6.9
	В	26.03	0.32	16.2	8.38	3.34	46.1
OS-4		20.04	0.53	12.5	10.53	3.76	39.6
	C	46.07	0.41	16.7	18.91	3.29	80.3

Drexel, Barrell & Co.

PROJECT:	Haven Valley
PROJECT NO:	21085-03
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	2/3/2022

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

EXISTING	RUNOFF	10	00 YR STOF		P1=	2.52	
			DIRECT RUNC	DFF			
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)
OS-1		16.90	0.76	10.1	12.91	6.88	88.8
Exist. Elm Grove Pond Release							52.3
OS-2		2.85	0.88	5.0	2.51	8.58	21.5
	Α						73.8
OS-3		9.74	0.59	11.5	5.74	6.52	37.4
H-1		13.44	0.40	16.2	5.42	5.62	30.4
	В	26.03	0.52	16.2	13.67	5.62	129.0
OS-4		20.04	0.65	12.5	13.04	6.31	82.3
	С	46.07	0.58	16.7	26.71	5.53	200.0

PROJECT INF	ORMATION						
PROJECT:	Haven Valley						
PROJECT NO:	21085-03						
DESIGN BY:	SBN					Drexe	I, Barrell & Co.
REV. BY:	TDM		_				-
REPORT TYPE:	Final						-
DATE:	2/3/2022						
Soil Type: A							
			C2*	C5*	C10*	C100*	% IMPERV
Pasture/Meadow				0.08		0.35	0
1/8 acre Resident	tial			0.45		0.59	65
Asphalt/Sidewalk	(0.90		0.96	100
*C-Values and Basin Impr	erviousness based on Table 6-6, El Paso	County "Drainaç	ge Criteria Manual"				
PROPOSED							
SUB-BASIN	SURFACE DESIGNATION	AREA	COMPOSITE	RUNOFF CO	EFFICIENTS		% IMPERV
		ACRE	C2	C5	C10	C100	
Α	Pasture/Meadow	0.20		0.08		0.35	0
	1/8 acre Residential	0.24		0.45		0.59	65
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.28		0.48	35%
TOTAL A		0.44					
В	Pasture/Meadow	0.00		0.08	1	0.35	0
	1/8 acre Residential	1.11		0.45		0.59	65
	Asphalt/Sidewalk	0.31		0.90		0.96	100
	WEIGHTED AVERAGE		1	0.55		0.67	73%
TOTAL B		1.42				0.05	
С	Pasture/Meadow	0.32		0.08		0.35	U 65
	1/8 acre Residentia	2.09	+	0.45		0.59	100
	WFIGHTFD AVERAGE	0.72	+	0.30	+	0.00	63%
TOTAL C		3.43		0.17	+	0.01	
D	Pasture/Meadow	0.43		0.08	1	0.35	0
	1/8 acre Residential	0.55		0.45		0.59	65
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE	0.00		0.29		0.48	36%
	Desture Maadau	0.98				0.25	+
E	Pasture/Meadow	0.10		0.00		0.35	65
	Asnhalt/Sidewalk	0.21		0.40	+	0.00	100
	WEIGHTED AVERAGE	0.21		0.46	+	0.60	64%
TOTAL E		3.09					
F	Pasture/Meadow	0.00		0.08		0.35	0
	1/8 acre Residential	0.69		0.45		0.59	65
	Asphalt/Sidewalk	0.00	_	0.90		0.96	100
	WEIGHTED AVERAGE	0.00		0.45		0.59	65%
		0.69				0.00	<u> </u>
G	1/8 acre Residential	1.61		0.00		0.00	65
	Asnhalt/Sidewalk	0.00	+	0.90	+	0.96	100
	WEIGHTED AVERAGE	0.00	1	0.45	1	0.59	65%
TOTAL G		1.61	+		1		
Η	Pasture/Meadow	0.40		0.08		0.35	0
	1/8 acre Residential	0.44		0.45		0.59	65
	Asphalt/Sidewalk	0.00	_	0.90		0.96	100
	WEIGHTED AVERAGE	0.01		0.27		0.48	34%
	Pacturo/Meadow	0.04				0.35	<u></u>
<u> </u>	1/8 acre Residential	0.47	+	0.00	+	0.55	65
	Asphalt/Sidewalk	0.00		0.90	+	0.96	100
	WEIGHTED AVERAGE	0.00	1	0.20	+	0.43	21%
TOTAL I		0.69		<u> </u>			
TOTAL		13.19		0.43		0.58	57.7%
					-		
IIOIAI POND IR	JBULARY I	41.99		0.55		0.68	57.8%

PROJECT:	Haven Valley
PROJECT NO:	21085-03
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	2/3/2022

Drexel, Barrell & Co.

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF PROPOSED TIME OF CONCENTRATION STANDARD FORM SF-2

SUB-BASIN			INITIAL/OVERLAND TRAVEL TIME						PIPE TRAVEL TIME			TIME OF CONC.		FINAL						
		DATA				TIME (t _i)				(t _t)					(t _p)			t,		t _c
BASIN	DESIGN PT:	C ₅	C ₁₀₀	AREA	LENGTH	HT	SLOPE	ti	LENGTH	HT	SLOPE	VEL.	tt	LENGTH	SLOPE	VEL.	tt	COMP.	MINIMUM	
				Ac	Ft	FT	%	Min	Ft	FT	%	FPS	Min	Ft	%	FPS	Min	t _c	tc	Min
A	1	0.28	0.48	0.44	100	8	8.0	7.7	350	14	4.0	6.2	0.9					8.6	5	8.6
OS-1		0.67	0.76	16.90	100	2	2	6.5	1600	26	1.6	7.4	3.6					10.1	5	10.1
OS-2		0.81	0.88	2.85	100	2	2	4.3	400	13	3.3	10.6	0.6					4.9	5	5.0
В	2	0.55	0.67	1.42	100	2	2.0	8.2	1300	57.0	4.4	12.3	1.8					10.0	5	10.0
С	3	0.47	0.61	3.43	100	2	2.0	9.3	250	11	4.4	6.5	0.6	600	3.3	10.6	0.9	10.9	5	10.9
	J1	0.49	0.63	4.85										5	0.5	3.4	0.0	10.9	5	10.9
D	4	0.29	0.48	0.98	100	7	7.0	7.9	250	9	3.6	5.9	0.7					8.6	5	8.6
E	5	0.46	0.60	3.09	55	1.5	2.7	6.3	915	28	3.1	10.3	1.5					7.8	5	7.8
	J2	0.46	0.61	5.83										40	2.0	8.3	0.1	11.0	5	11.0
F		0.45	0.59	0.69	50	1	2.0	6.8	470	16	3.4	10.8	0.7					7.5	5	7.5
	6	0.46	0.60	3.78										50	3.1	10.3	0.1	7.9	5	7.9
	J3	0.46	0.60	9.61										40	2.5	9.3	0.1	11.1	5	11.1
G	7	0.45	0.59	1 61	80	1	13	10 1	720	17	24	91	13					11.4	5	11.4
	.14	0.46	0.60	11 22							2	0.1		20	10	59	0.1	11.5	5	11.5
05-3	01	0.10	0.00	9.74	100	2.5	25	9.5	1200	34	2.8	9.8	2.0	20	1.0	0.0	0.1	11.5	5	11.5
н	8	0.41	0.00	0.84	100	7	7.0	8.1	350	17	1.0	6.0	0.8					80	5	89
	P1	0.27	0 68	11 00	100	1	7.0	0.1	000	17	7.5	0.0	0.0					11.5	5	11.5
09.5	F I	0.55	0.00	0.15	50	2	4.0	5.4										5.4	5	5.4
03-5		0.45	0.59	0.15	50	2	4.0	5.4										5.4	5	5.4 5.7
05-6		0.45	0.59	0.41	70	4	5./	5.7	050	40	0.4	4.5						5./	5	5./
		0.20	0.43	0.69	20	1	5.0	4.4	850	18	2.1	4.5	3.2					7.6	5	/.6
	9	0.31	0.50	1.25														13.3	5	13.3
OS-4	04	0.53	0.65	20.04	100	2	2	8.5	2000	41	2.1	8.5	3.9					12.5	5	12.5

PROJECT:	Haven Vallev
PROJECT NO:	21085-03
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	9/20/2023

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

PROPOSED	RUNOFF	Ę	5 YR STOR		P1=	1.50	
			DIRECT RUNC	DIRECT RUNOFF			
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)
А		0.44	0.28	8.6	0.12	4.34	0.5
0S-1		16.90	0.67	10.1	11.24	4.09	46.0
Exist. Elm Grove Pond Release							18.1
0S-2		2.85	0.81	5.0	2.31	5.10	11.8
	1	3.29	0.74	10.1	2.43	4.09	28.1
В	2	1.42	0.55	10.0	0.78	4.11	3.2
С	3	3.43	0.47	10.9	1.61	3.96	6.4
	J1	4.85	0.49	10.9	2.39	3.96	9.5
D	4	0.98	0.29	8.6	0.28	4.33	1.2
E	5	3.09	0.46	7.8	1.43	4.48	6.4
	J2	5.83	0.46	11.0	2.67	3.95	10.6
F		0.69	0.45	7.5	0.31	4.53	1.4
	6	3.78	0.46	7.9	1.74	4.46	7.7
	J3	9.61	0.46	11.1	4.41	3.94	17.4
G	7	1.61	0.45	11.4	0.72	3.89	2.8
	J4	11.22	0.46	11.5	5.14	3.89	20.0
OS-3		9.74	0.41	11.5	4.02	3.88	15.6
H	8	0.84	0.27	8.9	0.23	4.28	1.0
	P1	25.10	0.47	11.5	11.80	3.88	63.9
POND RELEASE							0.9
US-5		0.15	0.45	5.4	0.07	5.00	0.3
US-6		0.41	0.45	5.7	0.18	4.93	0.9
	0	0.69	0.20	1.6	0.14	4.53	0.6
05.1	9		0.50	10.5	10.50	0.7/	2.8
05-4	04	20.04	0.53	12.5	10.53	3.76	39.6
	J5						9.8
	10						22.6

PROJECT:	Haven Vallev
PROJECT NO:	21085-03
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	9/20/2023

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

PROPOSED	RUNOFF	1(00 YR STOF	RN					P1=	2.52
			DIRECT RUNO)FF					PIPE SIZI	NG
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)	n	Slope (ft/ft)	Pipe Diameter (in)
A		0.44	0.48	8.6	0.21	7.29	1.5	_		
OS-1		16.90	0.76	10.1	12.91	6.88	88.8			
Exist. Elm Grove Pond Release							52.3			
OS-2		2.85	0.88	5.0	2.51	8.58	21.5			
	1	3.29	0.83	10.1	2.72	6.88	71.0	0.016	0.038	36
В	2	1.42	0.67	10.0	0.95	6.90	6.6	0.016	0.035	18
С	3	3.43	0.61	10.9	2.10	6.66	14.0	0.016	0.005	24
	J1	4.85	0.63	10.9	3.05	6.65	20.3	0.016	0.035	24
D	4	0.98	0.48	8.6	0.48	7.27	3.5	0.016	0.023	18
E	5	3.09	0.60	7.8	1.86	7.52	14.0			
	J2	5.83	0.61	11.0	3.53	6.63	23.4	0.016	0.023	24
F		0.69	0.59	7.5	0.41	7.61	3.1			
	6	3.78	0.60	7.9	2.27	7.50	17.0	0.016	0.005	24
	J3	9.61	0.60	11.1	5.80	6.62	38.4	0.016	0.023	24
G	7	1.61	0.59	11.4	0.95	6.54	6.2	0.016	0.005	18
	J4	11.22	0.60	11.5	6.75	6.53	44.1	0.016	0.125	24
OS-3		9.74	0.59	11.5	5.74	6.52	37.4			
Н	8	0.84	0.48	8.9	0.40	7.19	2.9			
	P1	25.10	0.62	11.5	15.56	6.52	153.8			
POND RELEASE							31.4	0.016	0.006	24
OS-5		0.15	0.59	5.4	0.09	8.40	0.7			
OS-6		0.41	0.59	5.7	0.24	8.29	2.0			
<u> </u>		0.69	0.43	7.6	0.29	7.61	2.2			
	9						36.4	0.016	0.029	24
OS-4	04	20.04	0.65	12.5	13.04	6.31	82.3	0.016	0.005	30
	J5						56.4	0.016	0.006	36 or elp. eqvlt
	10						77.5			

Cross Section Cross Section for Trapezoidal Channel

North Swale

Project Description	
Worksheet	Trapezoidal Channe
Flow Element	Trapezoidal Channe
Method	Manning's Formula
Solve For	Channel Depth
Section Data	

Coolion Bala					
Mannings Coeffic 0.030					
Slope	040000	ft/ft			
Depth	0.69	ft			
Left Side Slope	0.25	V : H			
Right Side Slope	10.00	V : H			
Bottom Width	4.00	ft			
Discharge	23.00	cfs			

Worksheet Worksheet for Trapezoidal Channel

Project Descripti	ion
Worksheet	East Swale
Flow Element	Trapezoidal Cha
Method	Manning's Form
Solve For	Channel Depth
Input Data	
Mannings Coeff	ic 0.030
Slope	030000 ft/ft
Left Side Slope	0.25 V:H
Right Side Slope	e 0.25 V:H
Bottom Width	2.00 ft
Discharge	3.50 cfs
Results	
Depth	0.33 ft
Flow Area	1.1 ft ²
Wetted Perime	4.70 ft
Top Width	4.62 ft
Critical Depth	0.36 ft
Critical Slope	0.021252 ft/ft
Velocity	3.23 ft/s
Velocity Head	0.16 ft
Specific Enerç	0.49 ft
Froude Numb	1.17
Flow Type 30	upercritical

Worksheet Worksheet for Trapezoidal Channel

Project Description	
Worksheet	South Swale
Flow Element	Trapezoidal Cha
Method	Manning's Form
Solve For	Channel Depth
Input Data	
Mannings Coeffic	0.030
Slope 0	20000 ft/ft
Left Side Slope	0.15 V:H
Right Side Slope	0.25 V:H
Bottom Width	4.00 ft
Discharge	5.00 cfs
Results	
Depth	0.32 ft
Flow Area	1.8 ft ²
Wetted Perime	7.48 ft
Top Width	7.41 ft
Critical Depth	0.31 ft
Critical Slope 0.02	21254 ft/ft
Velocity	2.74 ft/s
Velocity Head	0.12 ft
Specific Enerç	0.44 ft
Froude Numb	0.97
Flow Type Subc	ritical

Figure 7-9. Street Capacity Charts Minor Residential (Attached Sidewalk)

These charts shall only be used for the standard street sections as shown. The capacity shown is based on $\frac{1}{2}$ the street section as calculated by the UD-Inlet spreadsheets. Minor storm capacities are based on no crown overtopping, curb height or maximum allowable spread widths. Major storm capacities are based on flow being containing within the public right-of-way, including conveyance capacity behind the curb. The UDFCD Safety Reduction Factor was applied. An 'nstreet' of 0.016 and 'n_{BACK}' of 0.020 was used. Calculations were done using UD-Inlet 3.00.xls, March, 2011.

City of Colorado Springs Drainage Criteria Manual, Volume 1

Exist. depth of flow on Widefield Dr. Worksheet for Irregular Channel

Project Description

Worksheet	Irregular Channel
Flow Element	Irregular Channel
Method	Manning's Formul
Solve For	Channel Depth

Input Data

Slope 012500 ft/ft Discharg 100.00 cfs

Options

Current Roughness Methoved Lotter's Method Open Channel Weighting vved Lotter's Method Closed Channel Weighting Horton's Method

Results								
Mannings Coefficie	0.017							
Water Surface Elev	/: <mark>0.93</mark>	ft						
Elevation Range).00 to 0.66							
Flow Area	14.6	ft²						
Wetted Perimeter	24.05	ft						
Top Width	23.00	ft						
Actual Depth	0.93	ft						
Critical Elevation	1.14	ft						
Critical Slope	0.005095	ft/ft						
Velocity	6.84	ft/s						
Velocity Head	0.73	ft						
Specific Energy	1.66	ft						
Froude Number	1.51							
Flow Type	Supercritical							

Calculation Messages:

Water elevation exceeds lowest end station by 0.65343054 ft.

Roughness Segments										
Start Station	End Station	Mannings Coefficient								
-0+09	-0+01	0.020								
-0+01	0+14	0.016								
Natural Ch	Natural Channel Points									
Station (ft)	Elevatior (ft)	1								
-0+09	6									
-0+01	0.5	0								
0+00	0.0	0								
0+14	0.2	.8								

Prop. depth of flow just past DP-O4 Worksheet for Irregular Channel

Project Description

Worksheet	Irregular Channel
Flow Element	Irregular Channel
Method	Manning's Formul
Solve For	Channel Depth

Input Data

Slope 012500 ft/ft Discharg 21.10 cfs

Options

Current Roughness Methoved Lotter's Method Open Channel Weighting vved Lotter's Method Closed Channel Weighting Horton's Method

Results								
Mannings Coefficie	0.016							
Water Surface Elev	/: <mark>0.45</mark>	ft						
Elevation Range).00 to 0.66							
Flow Area	4.5	ft²						
Wetted Perimeter	15.18	ft						
Top Width	14.90	ft						
Actual Depth	0.45	ft						
Critical Elevation	0.56	ft						
Critical Slope	0.005457	ft/ft						
Velocity	4.65	ft/s						
Velocity Head	0.34	ft						
Specific Energy	0.79	ft						
Froude Number	1.48							
Flow Type	Supercritical							

Calculation Messages:

Water elevation exceeds lowest end station by 0.1699811 ft.

Roughness Segments										
Start Station	End Station	Mannings Coefficient								
-0+09	-0+01	0.020								
-0+01	0+14	0.016								
Natural Ch	Natural Channel Points									
Station (ft)	Elevatior (ft)	1								
-0+09	6									
-0+01	0.5	0								
0+00	0.0	0								
0+14	0.2	.8								

Prop. depth of flow at DP-10 Worksheet for Irregular Channel

Project Description

Worksheet	Irregular Channel
Flow Element	Irregular Channel
Method	Manning's Formul
Solve For	Channel Depth

Input Data

Slope 012500 ft/ft Discharg 77.50 cfs

Options

Current Roughness Methoved Lotter's Method Open Channel Weighting vved Lotter's Method Closed Channel Weighting Horton's Method

Results								
Mannings Coefficie	ei 0.017							
Water Surface Elev	/: <mark>0.84</mark>	ft						
Elevation Range).00 to 0.66							
Flow Area	12.5	ft²						
Wetted Perimeter	23.87	ft						
Top Width	23.00	ft						
Actual Depth	0.84	ft						
Critical Elevation	1.00	ft						
Critical Slope	0.005312	ft/ft						
Velocity	6.20	ft/s						
Velocity Head	0.60	ft						
Specific Energy	1.44	ft						
Froude Number	1.48							
Flow Type	Supercritical							

Calculation Messages:

Water elevation exceeds lowest end station by 0.56152969 ft.

ents
lannings oefficient
0.020
0.016
-
_
_
-
-

Type 16 and Type 14 Inlets for Sump Conditions

01/2006 City and County of Denver

Figure 8-9. Inlet Capacity Chart Continuous Grade Conditions, Minor Residential (Local) (Attached Sidewalk)

The standard street section parameters as defined in Chapter 7 must apply to use these charts. For non-standard sections, the inlet capacity shall be calculated using the UDFCD spreadsheets. The maximum spread width is limited by the curb height based on no curb overtopping during a minor storm and flow being contained within the public right-of-way during the major storm. Calculations were done using UD-Inlet 3.00.xls, Mar., 2011 with the default clogging factors.

11

Figure 8-10. Inlet Capacity Chart Sump Conditions, Area (Type C) Inlet

Notes:

DP-4: Q100 = 3.5 cf

1. The standard inlet parameters must apply to use these charts.

Figure 8-11. Inlet Capacity Chart Sump Conditions, Curb Opening (Type R) Inlet

Notes:

1. The standard inlet parameters must apply to use this chart.

Hydraflow Storm Sewer Extension for Autodesk Civil 3D

SOUTH LINES 1-11

Hydraflow Storm Sewer Extension for Autodesk Civil 3D

WEST

LINES 12-13

Hydraflow Storm Sewer Extension for Autodesk Civil 3D

OFFSITE

Line No.	Flow Rate	Line Size	Line Type	Line Length	Invert Dn	Invert Up	Line Slope	HGL Up	HGL Dn	Minor Loss	HGL Jnct	Vel Ave	J-Loss Coeff
	(cfs)	(in)		(ft)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	
1	21.30	30	Cir	40.816	5810.00	5813.90	9.55	5815.47	5811.57	0.67	5815.47	6.58	1.00 z
2	18.50	30	Cir	59.354	5814.00	5815.98	3.34	5817.44 j	5815.47	n/a	5817.44	6.21	1.00 z
3	10.80	30	Cir	51.469	5816.08	5816.59	0.99	5817.69 j	5817.44	n/a	5817.69	4.59	1.00 z
4	9.60	24	Cir	40.385	5817.09	5817.29	0.50	5818.40	5818.16	n/a	5818.40	5.51	1.00 z
5	3.20	18	Cir	205.191	5817.79	5824.29	3.17	5824.97	5818.40	0.20	5824.97	4.44	0.75 z
6	3.20	18	Cir	6.604	5824.29	5824.50	3.18	5825.18	5824.97	0.26	5825.18	4.10	1.00 z
7	1.20	18	Cir	280.163	5817.59	5822.43	1.73	5822.84	5817.88	0.02	5822.84	4.07	0.15 z
8	1.20	18	Cir	362.941	5822.43	5827.29	1.34	5827.70	5822.84	0.15	5827.70	3.07	1.00 z
9	6.40	24	Cir	4.670	5817.29	5817.34	1.07	5818.24	5818.40	0.34	5818.24	4.15	1.00 z
10	7.70	24	Cir	6.168	5816.48	5816.54	0.97	5817.53	5817.44	0.39	5817.53	5.09	1.00 z
11	2.80	18	Cir	10.006	5814.90	5815.00	1.00	5815.64	5815.47	0.24	5815.64	4.25	1.00 z
12	28.10	36	Cir	57.245	5810.67	5813.58	5.08	5815.29 j	5813.07	n/a	5815.29	5.69	0.75 z
13	28.10	36	Cir	333.343	5813.88	5820.50	1.99	5822.21	5815.29	0.71	5822.21	7.66	1.00 z
	Note	es: j-Li	ne cont	ains hyd. ju	imp; z-Zero	Junction	Loss						

Line ID	Flow Rate	Line Size	Line Type	Line Length	Invert Dn	Invert Up	Line Slope	HGL Up	HGL Dn	Minor Loss	HGL Jnct	Vel Ave	J-Loss Coeff
	(cfs)	(in)		(ft)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	
14	41.20	29	Cir	266.201	5804.12	5805.70	0.59	5809.03	5806.27	0.46	5809.49	9.27	0.37
15	41.20	29	Cir	57.697	5805.70	5806.05	0.61	5810.09	5809.49	0.99	5811.08	8.98	0.79
16	1.60	24	Cir	103.295	5806.47	5807.44	0.94	5811.08	5811.08	0.00	5811.08	0.51	0.64
17	1.00	24	Cir	63.274	5807.54	5808.13	0.93	5811.08	5811.08	0.00	5811.09	0.32	1.00
18	39.60	30	Cir	15.525	5806.55	5806.71	1.03	5811.20	5811.08	1.01	5812.21	8.07	1.00

Line No.	Flow Rate	Line Size	Line Type	Line Length	Invert Dn	Invert Up	Line Slope	HGL Up	HGL Dn	Minor Loss	HGL Jnct	Vel Ave	J-Loss Coeff
	(cfs)	(in)		(ft)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	
1	47.30	30	Cir	40.816	5810.00	5813.90	9.55	5816.16	5812.50	1.60	5816.16	9.88	1.00 z
2	41.10	30	Cir	59.354	5814.00	5815.98	3.34	5818.13 j	5816.16	n/a	5818.13	9.13	1.00 z
3	24.10	30	Cir	51.469	5816.08	5816.59	0.99	5818.26	5818.13	n/a	5818.26	6.25	1.00 z
4	20.60	24	Cir	40.385	5817.09	5817.29	0.50	5819.38	5819.09	0.67	5820.04	6.56	1.00
5	6.60	18	Cir	205.191	5817.79	5824.29	3.17	5825.28 j	5820.04	n/a	5825.28	4.53	0.75 z
6	6.60	18	Cir	6.604	5824.29	5824.50	3.18	5825.49	5825.28	0.44	5825.49	5.31	1.00 z
7	3.50	18	Cir	280.163	5817.59	5822.43	1.73	5823.14	5818.26	n/a	5823.14	4.40	0.15 z
8	3.50	18	Cir	362.941	5822.43	5827.29	1.34	5828.00	5823.14	n/a	5828.00	4.23	1.00 z
9	14.00	24	Cir	4.670	5817.29	5817.34	1.07	5820.06	5820.04	0.31	5820.37	4.46	1.00
10	17.00	24	Cir	6.168	5816.48	5816.54	0.97	5818.03	5818.13	0.72	5818.03	6.46	1.00 z
11	6.20	18	Cir	10.006	5814.90	5815.00	1.00	5815.96	5816.16	0.42	5815.96	4.55	1.00 z
12	71.00	36	Cir	57.245	5810.67	5813.58	5.08	5816.25	5813.67	n/a	5816.25	10.37	0.75 z
13	71.00	36	Cir	333.343	5813.88	5820.50	1.99	5823.17	5816.25	n/a	5823.17	11.27	1.00 z
	Notes: j-Line contains hyd. jump; z-Zero Junction Loss						Loss						

Line ID	Flow Rate	Line Size	Line Type	Line Length	Invert Dn	Invert Up	Line Slope	HGL Up	HGL Dn	Minor Loss	HGL Jnct	Vel Ave	J-Loss Coeff
	(cfs)	(in)		(ft)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	
14	107.20	29	Cir	266.201	5804.12	5805.70	0.59	5824.69	5806.53	3.14	5827.83	23.37	0.37
15	107.20	29	Cir	57.697	5805.70	5806.05	0.61	5831.86	5827.83	6.71	5838.57	23.37	0.79
16	24.90	24	Cir	103.295	5806.47	5807.44	0.94	5839.64	5838.57	0.63	5840.26	7.93	0.64
17	22.70	24	Cir	63.274	5807.54	5808.13	0.93	5840.81	5840.26	0.81	5841.62	7.23	1.00
18	82.30	30	Cir	15.525	5806.55	5806.71	1.03	5839.10	5838.57	4.37	5843.48	16.77	1.00

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Depth Increment =

Watershed Inform

		ersneu miornauon
]	EDB	Selected BMP Type =
acres	41.99	Watershed Area =
ft	2,000	Watershed Length =
ft	500	Watershed Length to Centroid =
ft/ft	0.023	Watershed Slope =
percent	57.80%	Watershed Imperviousness =
percent	100.0%	Percentage Hydrologic Soil Group A =
percent	0.0%	Percentage Hydrologic Soil Group B =
percent	0.0%	Percentage Hydrologic Soil Groups C/D =
hours	40.0	Target WQCV Drain Time =
-	User Input	Location for 1-hr Rainfall Depths =

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	Optional User	Override		
Water Quality Capture Volume (WQCV) =	0.801	acre-feet		acre-fee
Excess Urban Runoff Volume (EURV) =	2.914	acre-feet		acre-fee
2-yr Runoff Volume (P1 = 1.19 in.) =	2.123	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	2.801	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	3.345	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	4.111	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	4.864	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	5.798	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.49 in.) =	9.040	acre-feet	3.49	inches
Approximate 2-yr Detention Volume =	1.886	acre-feet		
Approximate 5-yr Detention Volume =	2.473	acre-feet		
Approximate 10-yr Detention Volume =	2.998	acre-feet		
Approximate 25-yr Detention Volume =	3.634	acre-feet		
Approximate 50-yr Detention Volume =	4.026	acre-feet		
Approximate 100-yr Detention Volume =	4.464	acre-feet		

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.801	acre-feet
Zone 2 Volume (EURV - Zone 1) =	2.113	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.550	acre-feet
Total Detention Basin Volume =	4.464	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft

Width of Main Basin (W_{MAIN}) =

Volume of Main Basin (V_{MAIN}) =

Calculated Total Basin Volume (V_{total}) =

Area of Main Basin (A_{MAIN}) =

user lft.

user ĥ

user

l_{ft} : user

acre-feet

Depth Increment =		ft							
		Optional				Optional		Mahama	
Stage - Storage	Stage	Override Chase (B)	Length	Width	Area (A-2)	Area (ft 2)	Area	volume (e.3)	Volume
Description	(ft)	stage (π)	(ft)	(π)	(π-)	Area (ft -)	(acre)	(π-)	(ac-π)
Top of Micropool		0.00				120	0.003		
E909 62		0.50				120	0.002	60	0.001
5000.05		0.50				120	0.005		0.001
5809.63		1.50				11,398	0.262	5,819	0.134
5810.63		2 50				21 163	0.486	22.099	0 507
5010.00		2.50				25,262	0.100	45.000	1.041
5811.63		3.50				25,363	0.582	45,362	1.041
5812.63		4.50				28,381	0.652	72,234	1.658
5813.63		5.50				30,687	0.704	101,768	2.336
E914 62		6 50				22.040	0.750	122 626	2 069
5014.05		0.50				33,049	0.759	133,030	3.000
5815.63		7.50				35,467	0.814	167,894	3.854
Spillway-5816.13		8.00				36.640	0.841	185,921	4,268
5016.63		9.50				27,041	0.071	204 566	4.606
5010.05		0.50				37,941	0.871	204,300	4.090
5817		8.87				40,720	0.935	219,119	5.030
5818		9.87				48,320	1.109	263,639	6.052
									L
	-				-			-	-
	-								
				-					
								l	
								-	-
				-					

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention. Version 4.06 (July 2022)

Project:	Haven Valley	7.	in D-Detention, V		2022)				
Basin ID:	Pond 1								
ZONE 3 ZONE 2 ZONE 1				Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	1		
			Zone 1 (WQCV)	3.08	0.801	Orifice Plate			
I muriuma	100-YEAR ORIFICE		Zone 2 (EURV)	6.30	2.113	Orifice Plate			
PERMANENT ORIFICES			Zone 3 (100-year)	8.24	1.550	Weir&Pipe (Restrict)			
Example Zone	Configuration (Re	tention Pond)		Total (all zones)	4.464		•		
User Input: Orifice at Underdrain Outlet (typicall	<u>y used to drain WQ</u>	CV in a Filtration Bl	<u>MP)</u>			-	Calculated Parame	ters for Underdrain	L
Underdrain Orifice Invert Depth =		ft (distance below	the filtration media	surface)	Under	drain Orifice Area =		ft ²	
Underdrain Orifice Diameter =		inches			Underdrair	Orifice Centroid =		feet	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WQCV and	d/or EURV in a sed	imentation BMP)		Calculated Parame	ters for Plate	
Centroid of Lowest Orifice =	0.00	ft (relative to basir	bottom at Stage =	0π) 0 θ	WQ Orif	ce Area per Row =	N/A	ft ^e	
Orifice Distor Orifice Vertical Caseing -	5.69	inches		01()	Ellist		N/A	foot	
Orifice Plate: Orifice Area per Row -	N/A	N/A inches Elliptical Slot Centroid = N/A feet							
	Ν	lad. Inclica			-	mptical Slot Area -	ПЛА	lic	
User Input: Stage and Total Area of Each Orifice	e Row (numbered f	rom lowest to high	est)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	0.00	2.00	4.00]
Orifice Area (sq. inches)	4.17	4.17	5.00						
									-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
									~
User Input: Vertical Orifice (Circular or Rectangi	ular)	Net Calente d	1				Calculated Parame	ters for Vertical Or	1
	Not Selected	Not Selected	O (uslative to basis	hattan at Chara	0.61)	tiaal Ouifiae Ause	Not Selected	Not Selected	
Invert of Vertical Onlice =	N/A	N/A	ft (relative to basin	bottom at Stage =	= 0 ft) Vertica	L Orifico Controid -	N/A	N/A	foot
Vertical Orifice Diameter -	N/A	N/A	inchos	Dollom at Stage -			IN/A	IN/A	lieer
Vertical Office Diameter =	IN/A	IN/A	Inches						
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	al Weir and No Out	tlet Pipe)		Calculated Parame	ters for Overflow V	Veir
	Zone 3 Weir	Not Selected			<u>aloc 1 (po)</u>		Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	6.50	N/A	ft (relative to basin b	ottom at Stage = 0 f	t) Height of Grat	e Upper Edge, H _t =	6.50	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet		Overflow W	/eir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gr	rate Open Area / 10	0-yr Orifice Area =	6.41	N/A	1
Horiz. Length of Weir Sides =	4.00	N/A	feet	0	verflow Grate Open	Area w/o Debris =	11.14	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A		C	Overflow Grate Ope	n Area w/ Debris =	5.57	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, R	estrictor Plate, or R	ectangular Orifice)		<u>Ca</u>	lculated Parameters	s for Outlet Pipe w/	Flow Restriction P	late
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below ba	isin bottom at Stage	= 0 ft) 0	utlet Orifice Area =	1./4	N/A	ft ²
Outlet Pipe Diameter =	24.00	IN/A	linches		Outle Well America of Destrois	t Orifice Centrold =	0.62	N/A	reet
Restrictor Plate Height Above Pipe Invert =	15.00		inches	nali-Cent	I al Aligie of Result	tor Plate on Pipe =	1.05	IN/A	Iradians
User Input: Emergency Spillway (Rectangular or	Trapezoidal)						Calculated Parame	ters for Spillwav	
Spillway Invert Stage=	8.00	ft (relative to basir	bottom at Stage =	0 ft)	Spillway D	esign Flow Depth=	0.87	feet	
Spillway Crest Length =	46.00	46.00 feet Stage at Top of Freeboard =						feet	
Spillway End Slopes =	4.00	H:V			Basin Area at	Fop of Freeboard =	1.11	acres	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at 7	Fop of Freeboard =	6.05	acre-ft	
								-	
Poutod Hydrograph Posults	The user can over	ride the default (1)	HD hydrographs and	rupoff volumes b	v enterina new valu	ues in the Inflow Hu	drographs table (C	olumps W/ through	1E)
Design Storm Return Period =	WOCV	FLIRV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft) =	0.801	2.914	2.123	2.801	3.345	4.111	4.864	5.798	9.040
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	2.123	2.801	3.345	4.111	4.864	5.798	9.040
CUHP Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	0.4	0.8	1.1	10.1	19.9	32./	/4.0
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.03	0.24	0.47	0.78	1.76
Peak Inflow Q (cfs) =	N/A	N/A	39.4	52.0	61.2	79.9	96.6	119.8	186.8
Peak Outflow Q (cfs) =	0.4	0.9	0.7	0.9	2.3	9.0	18.5	22.7	104.2
Katio reak Outflow to Predevelopment Q = Structure Controlling Flow -	IV/A Plate	IV/A Plate	N/A Plate	 Plate	2.1 Overflow Weir 1	0.9 Overflow Weir 1	0.9 Overflow Weir 1	U./ Outlet Plate 1	1.4 Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.1	0.7	1.6	1.9	2.0
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	75	66	74	79	78	76	75	68
Ime to Urain 99% of Inflow Volume (hours) =	4U 3 08	<u>۵۷</u>	5 NA	<u>/9</u> 5 07	6 64	6 96	<u>δ4</u> 7 27	<u>کک</u> ۲ ۵۶	<u>کا ۶</u>
Area at Maximum Ponding Depth (acres) =	0.54	0.75	0.68	0.73	0.77	0.78	0.80	0.84	0.90
Maximum Volume Stored (acre-ft) =	0.805	2.917	2.018	2.673	3.167	3.415	3.669	4.251	4.847

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

I	SOLIDCE	СШНР	CUHP	СШНР	СШНР	СШНР	СШНР	CIHB	СШНР	CLIHP
	JOOKCL									
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.64	0.06	3.20
	0:15:00	0.00	0.00	5.66	9.19	11.41	7.68	9.48	9.37	15.23
	0:20:00	0.00	0.00	19.11	24 72	29.00	18 23	21.11	22.81	33.20
	0:25:00	0.00	0.00	37.00	40.38	60.10	36.67	41 73	45.18	69.52
	0:30:00	0.00	0.00	37.00	F2 02	61.16	76.90	94.01	109.10	172.10
	0:30:00	0.00	0.00	39.40	32.03	40.40	70.09	94.01	110.19	1/5.19
	0:33.00	0.00	0.00	32.97	42.49	49.49	79.88	96.63	119.78	166.79
	0:40:00	0.00	0.00	27.10	34.15	39.65	69.44	84.01	103.39	161.36
	0:45:00	0.00	0.00	21.04	27.13	31.70	55.59	66.87	85.63	134.48
	0:50:00	0.00	0.00	17.15	22.76	26.07	45.35	54.02	68.14	107.93
	0:55:00	0.00	0.00	14.28	18.76	21.73	35.78	42.31	54.61	86.75
	1:00:00	0.00	0.00	11.78	15.36	18.03	28.72	33.64	45.15	71.94
	1:05:00	0.00	0.00	9.95	12.80	15.20	23.18	26.91	37.49	60.07
	1:10:00	0.00	0.00	8.10	11.54	14.02	17.52	19.99	26.37	41.37
	1:15:00	0.00	0.00	7.10	10.53	13.66	14.62	16.58	20.06	31.05
	1:20:00	0.00	0.00	6.54	9.58	12.55	12.19	13.76	15.05	22.85
	1:25:00	0.00	0.00	6.21	8.96	10.97	10.74	12.09	11.87	17.59
	1:30:00	0.00	0.00	6.02	8.55	9.91	9.22	10.37	10.04	14.57
	1:35:00	0.00	0.00	5.88	8.31	9.19	8.25	9.28	8.80	12.53
	1:40:00	0.00	0.00	5.78	7.32	8.72	7.63	8.58	8.01	11.21
	1:45:00	0.00	0.00	5,73	6.61	8,41	7,21	8,11	7.53	10.42
	1:50:00	0.00	0.00	5.72	6.15	8,19	6,98	7.85	7.36	10.19
	1:55:00	0.00	0.00	4 78	5.84	7 78	6.84	7.69	7 28	10.08
	2.00.00	0.00	0.00	7.70	5.04	6.07	6.77	7.09	7.20	10.00
	2:00:00	0.00	0.00	4.11	5.44	6.97	0.77	7.62	7.28	10.08
	2:03:00	0.00	0.00	2.72	3.60	4.63	4.50	5.05	4.84	6.69
	2:10:00	0.00	0.00	1./3	2.30	2.98	2.91	3.2/	3.13	4.31
	2:15:00	0.00	0.00	1.10	1.44	1.89	1.85	2.08	1.98	2.72
	2:20:00	0.00	0.00	0.64	0.87	1.13	1.12	1.25	1.19	1.63
	2:25:00	0.00	0.00	0.36	0.53	0.67	0.68	0.76	0.72	0.98
	2:30:00	0.00	0.00	0.16	0.27	0.33	0.35	0.39	0.36	0.49
	2:35:00	0.00	0.00	0.06	0.10	0.11	0.13	0.14	0.13	0.16
	2:40:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3.33.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2.50.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4.20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4.25.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TOTAL FOREBAY VOLUME

V=3% x WQCV

WQCV=	0.801 ac-ft
V=	0.0240 ac-ft

Qin NE=	71 cfs
Qin E=	44.1 cfs
Qtotal=	115.1 cfs

NORTHEAST FOREBAY VOLUME

71	cfs	=	x	ac-ft
115.1	cfs		0.0240	ac-ft

2	x =	0.0148 ac-ft	
= 645.7 ft ³	=[645.7 ft ³	

EAST FOREBAY VOLUME

44.1	cfs	=	х	ac-ft
115.1	cfs		0.0240	ac-ft
x =	0.0	0092	ac-ft	
=	4	01.1	ft ³	1

FOREBAY RELEASE NOTCH WIDTH

Q=CLH^{2/3}

Q ₁₀₀ =	71 cfs
2% of Q=	1.42 cfs
C=	2.6
H (height of forebay wall)=	1 ft
L=	7 in

FOREBAY RELEASE NOTCH WIDTH

Q=CLH^{2/3}

L=

Q ₁₀₀ =	44.1 cfs
2% of Q=	0.88 cfs
C=	2.6
H (height of forebay wall)=	1 ft

4 in

Worksheet Worksheet for Rectangular Channel

Trickle Channel

Project Description	วท
Worksheet	Rectangular Chann
Flow Element	Rectangular Chann
Method	Manning's Formula
Solve For	Channel Depth
Input Data	
Mannings Coeffic	c 0.016
Slope	005000 ft/ft
Bottom Width	6.00 ft

Discharge	2.84	cfs
Results		
Depth	<mark>0.21</mark>	ft
Flow Area	1.3	ft²
Wetted Perim	6.42	ft
Top Width	6.00	ft
Critical Depth	0.19	ft
Critical Slope	0.007034	ft/ft
Velocity	2.23	ft/s
Velocity Head	0.08	ft
Specific Energ	0.29	ft
Froude Numb	0.85	
Flow Type	Subcritical	

Figure 1 - Micropool surface area (SA) determination chart

The tributary impervious area is the effective number of impervious acres that will be treated by the extended detention basin (EDB). It is calculated by multiplying the tributary area to be treated by the $\frac{68}{100} \times 41.47 = 28.2$ ac impervious fraction of that area.

$$TIA = I \times A$$

- TIA = Tributary impervious area (acres)
- = Imperviousness (fraction) 1
- Α = Tributary catchment area upstream (acres)

For EDBs with tributary impervious areas greater than 100 acres, the micropool surface area is 400 sf. The initial surcharge depth (ISD) is defined as the depth of the initial surcharge volume (ISV). The surface area determined using Figure 1 assumes an ISD of 4 inches. The initial surcharge volume is thus calculated by multiplying the micropool surface area by 4 inches.

$$ISV = SA \times 4$$
 inches

= Surface area (from Figure 1, sf) SA

Worksheet Worksheet for Rectangular Channel

Concrete channel between existing homes

Project Description	
---------------------	--

, ,	
Worksheet	Rectangular Chann
Flow Element	Rectangular Chann
Method	Manning's Formula
Solve For	Channel Depth

Input Data

Mannings Coeffic	0.016	
Slope	030000	ft/ft
Bottom Width	6.50	ft
Discharge	129.00	cfs

Results		
Depth	1.30	ft
Flow Area	8.4	ft²
Wetted Perime	9.09	ft
Top Width	6.50	ft
Critical Depth	2.30	ft
Critical Slope	0.005771	ft/ft
Velocity	15.30	ft/s
Velocity Head	3.64	ft
Specific Enerç	4.93	ft
Froude Numb	2.37	
Flow Type Supercritica		

07/01/2013 04:55:40 PM Doc \$0.00 Page Rec \$46.00 1 of 8

DRAINAGE AND UTILITY EASEMENT AGREEMENT

N 25

This Drainage and Utility Easement Agreement ("Agreement") is entered into this day of day of address is 3734 Astrozon Drive, Colorado Springs, CO 80910 (collectively the "Grantor") and Midco Investments, LLC, whose address is 1765 S. 8th Street, Suite T-1, Colorado Springs, CO 80905.

RECITALS

WHEREAS, Grantor is the owner of that certain real property described on <u>Exhibit A</u> attached hereto and incorporated herein by this reference ("Grantor Property").

WHEREAS, Grantee is or shall be the owner of the real property located north of the Grantor Property and described on <u>Exhibit B</u> attached hereto and incorporated herein by this reference ("Grantee Property").

WHEREAS, subject to the express terms and provisions of this Agreement, the parties desire to create a perpetual, exclusive easement over, across, and under a certain portion of the Grantor Property that will be utilized by Grantee to construct and maintain utility and drainage ditch improvements to benefit the Grantee Property.

NOW, THEREFORE, in consideration for the mutual promises contained herein and for other valuable consideration given and received, the receipt and sufficiency of which are hereby acknowledged, the parties hereto, intending to be legally bound, do hereby agree as follows:

ARTICLE I

Creation and Use of Easement

1.1. <u>Incorporation</u>. Recitals set forth above are hereby incorporated herein as if fully set forth in this Article.

1.2 <u>Grant of Easement/Scope of Use.</u> Grantor does hereby sell, convey, grant, assign and transfer unto Grantee, and their respective successors and assigns, a perpetual, exclusive easement over, across, and under that portion of the Grantor Property legally described on <u>Exhibit C</u> attached hereto and incorporated herein by this reference, and illustrated on <u>Exhibit D</u> attached hereto and incorporated herein by this reference (the "Drainage and Utility Easement"). The Drainage and Utility Easement shall be utilized solely for the purpose of constructing and maintaining utility and drainage ditch improvements benefitting the Grantee Property. The Drainage and Utility Easement shall grant Grantee, its successors and assigns, the right and privilege to construct, reconstruct, inspect, alter, improve, remove, repair and maintain the Improvements (as defined below), including all rights and privileges necessary or convenient for the full enjoyment and use thereof, including but not limited to the right of ingress and egress over Grantor's Property for the purpose of exercising the easement rights granted herein.

1.3 <u>No Barriers or Impediments.</u> Grantor shall not construct, erect or install any fences, barrier, impediments, gates, landscaping, or other improvements ("Impediments") within the Drainage and Utility Easement which would impede the use of the Drainage and Utility Easement for

utility and storm water delivery. Grantee shall have the right to remove any Impediments from the Drainage and Utility Easement and shall have no liability to Grantee for any damage caused to such Impediment. The cost of such removal shall be paid by Grantor.

ARTICLE II

.

.

Construction: Maintenance and Repair: Indemnity

2.1 <u>Construction of Improvements</u>. Grantee shall, at Grantee's sole cost and expense, install and maintain utility service lines serving the Grantee Property and design and construct a utility and drainage ditch (the "Improvements") within the Drainage and Utility Easement sufficient to provide utility service to the Grantee Property and to accept and deliver storm water from the Grantee Property, as determined by Grantee at Grantee's sole discretion.

2.2 <u>Maintenance and Repair</u>. Grantee shall, at Grantee's sole cost and expense, maintain the Improvements in good working order, including but not limited to, maintaining the structures and side slopes of the Drainage and Utility Easement free of debris, impoundments or alterations to the flow of storm water drainage. After construction of Improvements which disturbs the surface, Grantee will restore the general surface of the ground as nearly as may reasonably be done to the condition it was in immediately prior to construction, except as necessarily modified to accommodate Improvements.

2.3 <u>Indemnity</u>. Grantee and their respective successors and assigns, hereby release, indemnify and hold Grantor harmless against and from any and all claims, causes of action, liabilities and damages (collectively "claims"), including attorney's fees, arising from any act or omission by Grantee or their successors and assigns in connection with the use and operation of the Improvements. This indemnification shall not extend to any claims arising from the negligent actions of Grantor, their successors, assigns or invitees.

ARTICLE III

Miscellaneous

3.1 <u>Run with the Land</u>. The provisions of this Agreement shall run with the Grantor Property and the Grantee Property and shall inure to the benefit of and be binding upon the owners, tenants, lessees thereof and their successors in interest and assigns, including their grantees, sub-lessees and assigns and all persons or entities claiming through them.

3.2 <u>Amendment and Termination</u>. This Agreement is perpetual and may only be amended or terminated by recordation of a written instrument in the official real property records of El Paso County, Colorado, executed by the owners of the Grantor Property and the Grantee Property.

3.3 <u>Default: Attorneys' Fees</u>. The failure of any party to this Agreement to comply with its responsibilities or obligations herein shall entitle the non-defaulting party to pursue any and all appropriate legal recourse, including the rights of injunction, damages, specific performance or any or all of the above. Should any party institute legal action or proceeding for the enforcement of the any responsibilities or obligations herein, the prevailing party shall be entitled to recover its reasonable attorneys' fees and costs incurred in the preparation and prosecution of such action or proceeding.

3.4 Governing Law; Venue. The laws of the State of Colorado shall govern the interpretation, validity, performance and enforcement of this Agreement. Venue shall be in El Paso County, Colorado.

3.5 No Joint Venture. Nothing in this Agreement shall be deemed or construed to create the relationship of partnership, joint venture, principal and agent, or any other association between or among the parties.

3.6 No Third Party Beneficiaries. Nothing in this Agreement shall be deemed to constitute a gift, grant or dedication of any portion of the Drainage and Utility Easement to the general public or for any public purpose. The provisions of this Agreement are for the exclusive benefit of the parties hereto (and their successors and assigns) and shall not be deemed to have conferred any rights, express or implied, upon any third person.

Assignment. Grantee may assign all of its right, title and interest in and 3.7 under this Agreement to either El Paso County, Colorado or author applicable governing jurisdiction ("County") or a homeowner's association ("HOA") formed in connection with Grantee's development of the Grantee Property. In the event that either El Paso County or the HOA accepts conveyance of the Improvements and the rights and obligations set forth in this Agreement, including but not limited to the right to construct, maintain and repair the Improvements, the obligations of Grantee with respect to such construction, maintenance and repair shall thereafter cease and become the obligations of the County or the HOA, whichever is applicable.

3.8 Exhibits. Each of the exhibits referenced herein and attached hereto are made part of this Agreement as if fully set forth herein.

IN WITNESS WHEREOF, the parties have executed this Easement Agreement the day and year first above written.

GRANTOR:

Alund 18 Jun 13

Bradley D. Shlund

Chlas 18 June 13

Victoria L. Schlund

STATE OF COLORADO) ss. COUNTY OF EL PASO The foregoing instrument was acknowledged before me this 18_{day} of 5une, 2013, by Bradley D. Schlund and Victoria L. Schlund. Witness my hand and official seal. NOTARY PUBLIC STATE OF ALABAMA AT LARGE DUY COmmission MX DODMMISSION EXPIRES: Oct 11, 2014 BONDED THRU NOTARY PUBLIC UNDERWRITERS MANY R- Stelle 论 **GRANTEE:** Midco Investments, LI By: Robert C. Irwin, Manager STATE OF COLORADO)) ss.

COUNTY OF EL PASO

ant

Subscribed and sworn to before me this Irwin, Manager, Midco Investments, LLC.

20/3, by Robert C.

My commission expires: 7-8-15

)

Renda K. Lee

ine

NOTARY PUBLIC

th

of

EXHIBIT A

LEGAL DESCRIPTION OF GRANTOR PROPERTY

Lot 9, Block 12, Subdivision of Tract 1 of the Refiling of Security, Colorado Addition No. 4, as recorded in Plat Book Z at Page 76, El Paso County, Colorado

also known by street number 416 Pecos Drive (Schedule No. 6512201017)

• •

.

EXHIBIT B

LEGAL DESCRIPTION OF GRANTEE PROPERTY

The North Half of the Northwest Quarter of the Northwest Quarter of Section 12 in Township 15 South, Range 66 West of the 6th P.M., EXCEPT that portion conveyed in Warranty Deed recorded November 25, 1959 in Book 1779 at Page 409, and EXCEPT that portion lying within the existing right of way of former Bradley Road, now designated as Cable Lane.

LEGAL DESCRIPTION:

AN EASEMENT OVER, UNDER AND ACROSS A PORTION OF LOT 9, BLOCK 12, SUBDIVISION OF TRACT NO. 1 OF THE REFILING OF SECURITY, COLORADO ADDITION NO. 4 AS RECORDED IN PLAT BOOK Z AT PAGE 76 OF THE RECORDS OF THE EL PASO COUNTY, COLORADO CLERK AND RECORDER AND LOCATED IN THE NORTHWEST ONE-QUARTER (NW ¼) SECTION 12, TOWNSHIP 15 SOUTH, RANGE 66 WEST OF THE 6th P.M., EL PASO COUNTY, COLORADO, SAID TRACT BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT THE NORTHEAST CORNER OF SAID LOT 9; THENCE S 89° 57' 51" W (AN ASSUMED BEARING TO WHICH ALL OTHERS HEREIN ARE RELATIVE) ALONG THE NORTHERLY LINE OF SAID LOT, A DISTANCE OF 105.12 FEET TO THE POINT OF BEGINNING OF THE EASEMENT HEREIN DESCRIBED;

THENCE CONTINUING S 89° 57' 51" W ALONG SAID NORTHERLY LINE, A DISTANCE OF 13.19 FEET TO THE NORTHWEST CORNER OF SAID LOT; THENCE S 04° 08' 15" W ALONG THE WESTERLY BOUNDARY OF SAID LOT, A DISTANCE OF 80.35 FEET TO THE SOUTHWEST CORNER OF SAID LOT; THENCE EASTERLY ALONG THE SOUTHERLY BOUNDARY OF SAID LOT AND ALONG THE ARC OF A 50.00 FOOT RADIUS CURVE TO THE RIGHT THROUGH A CENTRAL ANGLE OF 06° 53' 32" (THE LONG CHORD OF WHICH BEARS S 82° 24' 59" E, A LONG CHORD DISTANCE OF 6.01 FEET), AN ARC LENGTH OF 6.01 FEET; THENCE N 04° 08' 15" E, A DISTANCE OF 70.37 FEET; THENCE N 36° 27' 52" E, A DISTANCE OF 13.38 FEET TO THE POINT OF BEGINNING. SAID EASEMENT CONTAINS 523 SQUARE FEET, MORE OR LESS.

PREPARED BY: CHRISTOPHER THOMPSON COLORADO P.L.S. NO. 19625 FOR AND ON BEHALF OF ROCKY MOUNTAIN LAND SERVICES 1623 SOUTH TEJON STREET COLORADO SPRINGS, COLORADO 80906 719-630-0559

212132860 11/07/2012 04:14:50 PGS 8 \$46.00 DF \$ 0

Electronically Recorded Official Records El Paso County CO Wayne W. Williams Clerk and Recorder 101000 N

DRAINAGE AND UTILITY EASEMENT AGREEMENT

This Drainage and Utility Easement Agreement ("Agreement") is entered into this $\underline{\underline{C}\pi \underline{H}}$ day of <u>Nevernee</u>, 2012, by and between Christopher T. Pyle, whose address is 5395 Alturas Drive, Colorado Springs, CO 80911 ("Grantor"), and Midco Investments, LLC or assigns, whose address is 1765 S. 8th Street, Suite T-1, Colorado Springs, CO 80905 ("Grantee).

RECITALS

WHEREAS, Grantor is the owner of that certain real property described on <u>Exhibit A</u> attached hereto and incorporated herein by this reference ("Grantor Property").

WHEREAS, Grantee is or shall be the owner of the real property located north of the Grantor Property and described on <u>Exhibit B</u> attached hereto and incorporated herein by this reference ("Grantee Property").

WHEREAS, subject to the express terms and provisions of this Agreement, the parties desire to create a perpetual, exclusive easement over, across, and under a certain portion of the Grantor Property that will be utilized by Grantee to construct and maintain utility and drainage ditch improvements to benefit the Grantee Property.

NOW, THEREFORE, in consideration for the mutual promises contained herein and for other valuable consideration given and received, the receipt and sufficiency of which are hereby acknowledged, the parties hereto, intending to be legally bound, do hereby agree as follows:

ARTICLE I

Creation and Use of Easement

1.1. <u>Incorporation</u>. Recitals set forth above are hereby incorporated herein as if fully set forth in this Article.

1.2 <u>Grant of Easement/Scope of Use.</u> Grantor does hereby sell, convey, grant, assign and transfer unto Grantee, and their respective successors and assigns, a perpetual, exclusive easement over, across, and under that portion of the Grantor Property legally described on <u>Exhibit C</u> attached hereto and incorporated herein by this reference, and illustrated on <u>Exhibit D</u> attached hereto and incorporated herein by this reference (the "Drainage and Utility Easement"). The Drainage and Utility Easement shall be utilized solely for the purpose of constructing and maintaining utility and drainage ditch improvements benefitting the Grantee Property. The Drainage and Utility Easement shall grant Grantee, its successors and assigns, the right and privilege to construct, reconstruct, inspect, alter, improve, remove, repair and maintain the Improvements (as defined below), including all rights and privileges necessary or convenient for the full enjoyment and use thereof, including but not limited to the right of ingress and egress over Grantor's Property for the purpose of exercising the easement rights granted herein.

1.3 <u>No Barriers or Impediments.</u> Grantor shall not construct, erect or install any fences, barrier, impediments, gates, landscaping, or other improvements ("Impediments") within the Drainage and Utility Easement which would impede the use of the Drainage and Utility Easement for

utility and storm water delivery. Grantee shall have the right to remove any Impediments from the Drainage and Utility Easement and shall have no liability to Grantee for any damage caused to such Impediment. The cost of such removal shall be paid by Grantor.

ARTICLE II

Construction: Maintenance and Repair: Indemnity

2.1 <u>Construction of Improvements</u>. Grantee shall, at Grantee's sole cost and expense, install and maintain utility service lines serving the Grantee Property and design and construct a utility and drainage ditch (the "Improvements") within the Drainage and Utility Easement sufficient to provide utility service to the Grantee Property and to accept and deliver storm water from the Grantee Property, as determined by Grantee at Grantee's sole discretion.

2.2 <u>Maintenance and Repair</u>. Grantee shall, at Grantee's sole cost and expense, maintain the Improvements in good working order, including but not limited to, maintaining the structures and side slopes of the Drainage and Utility Easement free of debris, impoundments or alterations to the flow of storm water drainage. After construction of Improvements which disturbs the surface, Grantee will restore the general surface of the ground, including reconstructing or replacing existing fence or fences, as nearly as may reasonably be done to the condition it was in immediately prior to construction, except as necessarily modified to accommodate Improvements.

2.3 <u>Indemnity</u>. Grantee and their respective successors and assigns, hereby release, indemnify and hold Grantor harmless against and from any and all claims, causes of action, liabilities and damages (collectively "claims"), including attorney's fees, arising from any act or omission by Grantee or their successors and assigns in connection with the use and operation of the Improvements. This indemnification shall not extend to any claims arising from the negligent actions of Grantor, their successors, assigns or invitees.

ARTICLE III

Miscellaneous

3.1 <u>Run with the Land</u>. The provisions of this Agreement shall run with the Grantor Property and the Grantee Property and shall inure to the benefit of and be binding upon the owners, tenants, lessees thereof and their successors in interest and assigns, including their grantees, sub-lessees and assigns and all persons or entities claiming through them.

3.2 <u>Amendment and Termination</u>. This Agreement is perpetual and may only be amended or terminated by recordation of a written instrument in the official real property records of El Paso County, Colorado, executed by the owners of the Grantor Property and the Grantee Property.

3.3 Default: Attorneys' Fees. The failure of any party to this Agreement to comply with its responsibilities or obligations herein shall entitle the non-defaulting party to pursue any and all appropriate legal recourse, including the rights of injunction, damages, specific performance or any or all of the above. Should any party institute legal action or proceeding for the enforcement of the any responsibilities or obligations herein, the prevailing party shall be entitled to recover its reasonable attorneys' fees and costs incurred in the preparation and prosecution of such action or proceeding. 3.4 <u>Governing Law; Venue</u>. The laws of the State of Colorado shall govern the interpretation, validity, performance and enforcement of this Agreement. Venue shall be in El Paso County, Colorado.

3.5 <u>No Joint Venture</u>. Nothing in this Agreement shall be deemed or construed to create the relationship of partnership, joint venture, principal and agent, or any other association between or among the parties.

3.6 <u>No Third Party Beneficiaries.</u> Nothing in this Agreement shall be deemed to constitute a gift, grant or dedication of any portion of the Drainage and Utility Easement to the general public or for any public purpose. The provisions of this Agreement are for the exclusive benefit of the parties hereto (and their successors and assigns) and shall not be deemed to have conferred any rights, express or implied, upon any third person.

3.7 <u>Assignment</u>. Grantee may assign all of its right, title and interest in and under this Agreement to either El Paso County, Colorado or author applicable governing jurisdiction ("County") or a homeowner's association ("HOA") formed in connection with Grantee's development of the Grantee Property. In the event that either El Paso County or the HOA accepts conveyance of the Improvements and the rights and obligations set forth in this Agreement, including but not limited to the right to construct, maintain and repair the Improvements, the obligations of Grantee with respect to such construction, maintenance and repair shall thereafter cease and become the obligations of the County or the HOA, whichever is applicable.

3.8 <u>Exhibits</u>. Each of the exhibits referenced herein and attached hereto are made part of this Agreement as if fully set forth herein.

IN WITNESS WHEREOF, the parties have executed this Easement Agreement the day and year first above written.

GRANTOR

Christopher T. Pyle

STATE OF COLORADO COUNTY OF EL PASO

The foregoing instrument was acknowledged before me this <u>Grit</u> day of <u>November</u>, 2012, by Christopher T. Pyle.

Witness my hand and official seal.

My commission expires: 8-6-15

AMELIA A WALSH Notary Public State of Colorado My Commission Expires: August 6, 2015
LIC# 20034026175

OTARY PUBLIC

GRANTEE

deo Investments, LLC

By: Robert C. Irwin, Manager

STATE OF COLORADO)) ss. COUNTY OF EL PASO)

Subscribed and sworn to before me this 6 of Movember, 2012, by Robert C. Irwin, Manager, Midco Investments, LLC.

My commission expires:

CINDY S STIMITS Notary Public State of Colorado My Commission Expires: August 9, 2013 LIC# 19974012915 NOTARY PUBLIC

EXHIBIT A

LEGAL DESCRIPTION OF GRANTOR PROPERTY

Lot 8, Block 12, Subdivision of Tract 1 of the Refiling of Security, Colorado Addition No. 4, as recorded in Plat Book Z at Page 76, El Paso County, Colorado

also known by street number 412 Pecos Drive (Schedule No. 6512201016)

•___

EXHIBIT B

LEGAL DESCRIPTION OF GRANTEE PROPERTY

The North Half of the Northwest Quarter of the Northwest Quarter of Section 12 in Township 15 South, Range 66 West of the 6th P.M., EXCEPT that portion conveyed in Warranty Deed recorded November 25, 1959 in Book 1779 at Page 409, and EXCEPT that portion lying within the existing right of way of former Bradley Road, now designated as Cable Lane.

EXHIBIT C

LEGAL DESCRIPTION:

AN EASEMENT OVER, UNDER AND ACROSS A PORTION OF LOT 8, BLOCK 12, SUBDIVISION OF TRACT NO. 1 OF THE REFILING OF SECURITY, COLORADO ADDITION NO. 4 AS RECORDED IN PLAT BOOK Z AT PAGE 76 OF THE RECORDS OF THE EL PASO COUNTY, COLORADO CLERK AND RECORDER AND LOCATED IN THE NORTHWEST ONE-QUARTER (NW ½) SECTION 12, TOWNSHIP 15 SOUTH, RANGE 66 WEST OF THE 6th P.M., EL PASO COUNTY, COLORADO, SAID TRACT BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT THE NORTHEAST CORNER OF LOT 9, BLOCK 12; THENCE S 89° 57' 51" W (AN ASSUMED BEARING TO WHICH ALL OTHERS HEREIN ARE RELATIVE) ALONG THE NORTHERLY LINE OF SAID LOT, A DISTANCE OF 118.31 FEET TO THE NORTHEAST CORNER OF SAID LOT 8 AND ALSO BEING THE POINT OF BEGINNING OF THE EASEMENT HEREIN DESCRIBED;

THENCE S 04° 08' 15" W ALONG THE EASTERLY BOUNDARY OF SAID LOT 8, A DISTANCE OF 80.35 FEET TO THE SOUTHEAST CORNER OF SAID LOT; THENCE WESTERLY ALONG THE SOUTHERLY BOUNDARY OF SAID LOT AND ALONG THE ARC OF A 50.00 FOOT RADIUS CURVE TO THE LEFT THROUGH A CENTRAL ANGLE OF 06° 53' 32" (THE LONG CHORD OF WHICH BEARS N 89° 18' 30" W, A LONG CHORD DISTANCE OF 6.01 FEET), AN ARC LENGTH OF 6.01 FEET; THENCE N 04° 08' 15" E, A DISTANCE OF 73.37 FEET; THENCE N 50° 18' 48" W, A DISTANCE OF 10.78 FEET TO A POINT ON THE NORTHERLY BOUNDARY OF SAID LOT 8; THENCE N 89° 57' 51" E ALONG SAID NORTHERLY BOUNDARY, A DISTANCE OF 14.81 FEET TO THE POINT OF BEGINNING. SAID EASEMENT CONTAINS 512 SQUARE FEET, MORE OR LESS.

PREPARED BY: CHRISTOPHER THOMPSON COLORADO P.L.S. NO. 19625 FOR AND ON BEHALF OF ROCKY MOUNTAIN LAND SERVICES 1623 SOUTH TEJON STREET COLORADO SPRINGS, COLORADO 80906 719-630-0559

LEGEND

	EX. MINOR CONTOUR
— — —6800— — —	EX. MAJOR CONTOUR
	PR. MINOR CONTOUR
6800	PR. MAJOR CONTOUR
<u> </u>	PROPERTY LINE
	CURB FLOWLINE
	R.O.W.
	BASIN BOUNDARY
\rightarrow	FLOW DIRECTION
\bigwedge	DESIGN POINT
\sim	BASIN
AREA 0S-1 16.90 AC 5 (cfs) 46.0 88.8	-Q100 (cfs)

Disturbed Area Tributary to Pond 1		
Basin	Area (Ac)	
A	0.44	
В	1.42	
С	3.43	
D	0.98	
E	3.09	
F	0.69	
G	1.61	
Н	0.84	
Portion of Pond 1	0.88	
TOTAL	13.38	

Disturbed Area NOT Tributary to Pond	
Basin	Area (Ac)
I I	0.69
Portion of Cable Ln	0.39
Portion of Pond 1	0.13
TOTAL	1.21

Call before you dig.

BR

DREXEL, BARRELL & CO Engineers •Surveyors 3 SOUTH 7TH STREET COLORADO SPGS, COLORADO 80 CONTACT: TIM D. McCONNELL, P.E (719)260-0887 OULDER • COLORADO SPRINGS • GREELE CLIENT: 4350 S. MONACO ST. DENVER, CO 80237 CONTACT: MATTHEW JENKINS (720) 977-3686 Y RD/ALTURAS DR. COUNTY, COLORADO \succ ίτ) ALL FOR: PLANS \geq BRADLEY VEN DRAINAGE (LETA DR.) B SECURITY, EL HA ISSUE DATE INITIAL ISSUE LATEST ISSUE 4/29/21 9/20/23 DESIGNED BY: TDM DRAWN BY: SBN CHECKED BY: TDM FILE NAME: 21085-03DR02 PREPARED UNDER MY DIRECT SUPERVISION FOR AND ON BEHALF OF DREXEL, BARRELL & CO. DRAWING SCALE: HORIZONTAL: 1'' = 50'VERTICAL: N/A TREATED/ UNTREATED AREAS EXHIBIT PROJECT NO. 21085-03CSCV DRAWING NO. TΒ

SHEET:

OF 3

PREPARED BY:

