Final Drainage Report PD Site Plan Lots 1-7 Falcon Commerce Center Monument, Colorado

Prepared for: Forest Lakes, LLC 1123 Emerson Ave, Suite 204 Evanston, Illinois 60201

1604 South 21st Street Colorado Springs, Colorado 80904 Ph: (719)630-7342

Kiowa Project No. 19036

September 14, 2020

TABLE OF CONTENTS

Table	of Contents	i
Staten	nents and Approvals	. ii
I.	General Description	1
II.	Soil Conditions	1
III.	Drainage Criteria	1
IV.	Existing Drainage Conditions	2
V.	Proposed Drainage Conditions	2
VI.	Water Quality and Detention Design	4
VII.	Floodplain	5
VIII.	Summary	5
IX.	References	5
Apper	ndix Table of Contents	7

STATEMENTS AND APPROVALS

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the Town/City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by negligent acts, errors or omissions on my part in preparing this report.

Matthew W. Erichsen, PE (PE #36713) For and on Behalf of Kiowa Engineering Corporation	Seal
DEVELOPER'S STATEMENT:	
I, the developer, have read and comply with all require plan.	ments specified in this drainage report and
Business Name: Forest Lakes LLC	
Authorized Signature:	Date:
Title:	
Address: 1123 Emerson Ave, Suite 204	
Evanston, Illinois 60201	
Town of Monument:	
Filed in accordance with Section 17.45 of the Zoning O Section 16.12.060 of the Subdivision Code for the Town	
Director of Development Services	Date
Conditions:	

I. GENERAL DESCRIPTION

The purpose of this Final Drainage Report is to address and discuss the drainage patterns and impacts associated with Phase 1 of the proposed development of the Falcon Commerce Center (FCC) site. The overall site is located west of Interstate 25, south of Baptist Road, east of Woodcarver Road, Santa Fe trail and the Union Pacific Railroad; and north of the United States Air Force Academy (USAFA). The Phase 1 portion of the site is located in the northwest corner of the Falcon Commerce Center site. The property is located in the east half of Section 35 and the west half of Section 36. Township 11 South, Range 67 West of the Sixth Principal Meridian, El Paso County, Colorado. The location of the site is shown on the Vicinity Map (Figure 1) and is hatched on the Drainage Plan exhibits. The site is bounded on the north by Baptist Road, the Pilot Travel Center Filing No. 1 and undeveloped property; on the east by Interstate 25 and CDOT owned property; on the south by the USAFA and on the west by Woodcarver Road, property developed by Woodcarver Properties, the Union Pacific Railroad and undeveloped property. The subject site will include seven lots, the widening of Terrazzo Drive to the west and extension to the south, extension of Squadron drive from Terrazzo Drive to Woodcarver Road. The overall site is undeveloped, however the abandoned Old Denver Highway and old/abandoned railroad grade cross through the property from north to south. The total area of the property is approximately 32.04 acres.

The site is planned to be developed with mixed use commercial and a distribution center. The proposed distribution center will be submitting a more detailed drainage report for the development of that lot (Lot 7). The improvements associated with the development include:

- Widening Terrazzo Drive to the west to its full street section and extend the road south to Squadron Drive including utility improvements.
- Construct Squadron Drive from Terrazzo Drive west to Woodcarver Road including utility improvements.
- Construct eastbound right turn land on Baptist Road at Terrazzo Drive.
- Improve Woodcarver Road from Squadron Drive to the south end of the existing roundabout at Baptist Road.
- Construct the future condition storm sewer system from Squadron Drive to the proposed subregional detention basin.
- Construct the regional detention basin for the overall development at the south end of the development (north of Jackson Creek).

There are no irrigation facilities located within the property.

II. SOIL CONDITIONS

Soils within the property are classified to be within Hydrologic Soils Group B based on the NRCS Soil Survey for the El Paso County area. Soils on the site are predominantly Pring coarse sandy loam and Peyton-Pring complex (Soil Group B). For the site drainage calculations, the soils were assumed to be Hydrologic Soil Group B. The existing vegetative cover within the development is in fair condition with mostly native grasses and scattered trees throughout the site. The existing ground slopes within a majority of the property range from 2 to 8 percent.

III. DRAINAGE CRITERIA

Hydrologic and hydraulic calculations for the site were performed using the methods outlined in the *City of Colorado Springs Drainage Criteria Manual Volumes 1 and 2*. Topography for the site was compiled using two-foot contour interval and is presented on the Drainage Plan. The hydrological calculations were made for the proposed site conditions. The MDDP is reference for the existing

condition drainage plan. The Final Drainage Plan (Exhibits A, B and C) present the proposed drainage patterns for the site, including the sub-basins. The peak flow rates for the sub-basins were estimated using the Rational Method. The 5-year (Minor Storm) and 100-year (Major Storm) recurrence intervals were determined. The one-hour rainfall depths were determined from Table 6-2 of the City's Drainage Criteria Manual, Volume 1.

Hydraulic calculations are provided for the proposed drainage facilities. UDFCD spreadsheets were used to design the inlets, water quality and detention facility. The UD-Inlet spreadsheet was used for inlet capacity calculations and UD-Detention spreadsheet was used for water quality and detention design. The UD-Sewer software has been used to analyze and size the storm sewer system along with determining the Hydraulic Grade Line location.

IV. EXISTING DRAINAGE CONDITIONS

The existing drainage patterns for the subject site were reviewed and described as part of the Falcon Commerce Center Master Development Drainage Plan. Refer to that document for detailed description and calculations.

The subject site is located to the north of Jackson Creek and within the Jackson Creek drainage basin just upstream of its confluence with Monument Creek. The majority of the subject site presently drains by sheet flow to the south and southwest towards low points along Woodcarver Road and the existing railroad right of way. Existing site runoff leaves the site on the west side in a couple locations. Under or across Woodcarver Road (Design Points EXE and EXD) and on the southwest side at a low point in the Santa Fe Trail into the railroad ROW (Design Point E7). The location of these design points and the drainage patterns is described and presented in the MDDP.

Along both sides of Jackson Creek, a 300-ft buffer is shown for the Preble's Meadow Jumping Mouse (PMJM). The proposed detention basin is located outside the buffer. The detention basin outfall will extend into the PMJM buffer and will require coordination and approval through the United States Fish and Wildlife Service. Refer to the MDDP for the analysis of the existing drainage patterns.

V. PROPOSED DRAINAGE CONDITIONS

The proposed drainage patterns for the overall development were analyzed and are presented in the Falcon Commerce Center MDDP. This section provides a detailed description of the proposed drainage conditions for the PD Site Plan area. Refer to the FCC MDDP for more information on the overall development.

The proposed drainage patterns for the site subject to development will generally include sheet flow and gutter flow to proposed inlets which will collect the flows. A storm sewer system will be installed to convey these flows to the south end of the site to the proposed sub-regional stormwater quality and detention basin will be constructed. This detention basin will be designed for the overall site development as a Full Spectrum Detention (FSD) basin. It will include forebays, trickle channel, FSD outlet structure, emergency spillway and outlet pipe. The outlet pipe will discharge the flows to the existing Jackson Creek drainageway to the south of the site within the PMJM habitat buffer. The Drainage Plan – Proposed Condition for the site (Exhibits A, B and C) are provided at the end of this report.

The proposed development will include both public and private facilities. The public drainage facilities are planned to be maintained by the Town and include the inlets within the public roadways, the storm sewer system downstream of those inlets (Storm Sewer System 1) and the sub-regional detention basin. Following is a description of the on-site storm sewer system and the drainage sub-basins. The proposed drainage basins and runoff calculations are the same for both the MDDP and this drainage report.

Storm Sewer System 1: Storm Sewer System 1 will convey a majority of the flows from the overall development to the sub-regional detention basin. Storm 1 begins to the north of Squadron Drive where a stub will be constructed into the future lots. From there the storm sewer routes west along Squadron to the west end of the development and Lot 7, near a low point in the roadway. Curb inlets will be located in Squadron Drive at the low point to capture flows and route to Storm 1. Storm 1 will continue south following the west/south side of the development to the sub-regional detention basin. A drainage easement will be added along the length of the storm sewer in areas where it is not located within the street right of way. Future storm sewer laterals from the overall development will connect to Storm 1. The storm sewer is sized for the fully developed flows from the overall development. The storm sewer will begin as a 36-inch pipe at the upstream end and discharge into the detention basin as a 72-inch pipe.

<u>Sub-basin C-1</u>: The sub-basin is located along the southwest corner of the site and consists of the sub-regional detention basin for the site. It will be constructed as a Full Spectrum Detention (FSD) basin to provide both stormwater quality and detention for the site runoff. Refer to the Water Quality and Detention Design section for additional information on the FSD design. The runoff from this basin will sheet flow to the trickle channel located along the bottom of the detention basin. The trickle channel will convey the flows to the outlet structure which will release flows at historic levels to the outlet pipe and Jackson Creek.

<u>Sub-basin C-8:</u> The sub-basin is located at the southwest corner of the Phase 1 site. It is planned to be developed as industrial or commercial area in the future. The runoff from the basin will be captured and routed into Storm Sewer System 1.

<u>Sub-basin C-9, C-10, C-11:</u> The sub-basins are located on the west portion of the site and will be part of a distribution center with buildings, parking lot, drive aisles, landscaping and driveway connections to Squadron Drive. The gutter flows from basin C-13 are planned to be captured by an on-grade inlet in Squadron Drive before entering the site. The runoff from the basin will be captured and routed to Storm Sewer System 1.

<u>Sub-basin C-12, C-13, C-14, C-15</u>: The sub-basins are located on the northwest portion of the site and include a portion of Terrazzo Drive, Squadron Drive and landscaping. The runoff from the basins will drain by sheet flow and gutter flow to the west where a low point will be located in Squadron Drive near Woodcarver Road. Flows from Basin C-13 will be routed to Storm Sewer System 1 with an ongrade inlet prior to the driveway connection to the south. Inlets 22 and 26 in sump condition will be located at the low point and designed to capture the 100-year storm. A pipe will route the flow from the inlets to Storm Sewer System 1.

<u>Sub-basin C-16:</u> The sub-basin is located on the northwest portion of the site and is planned to include commercial, retail and restaurants with buildings, parking lot, drive aisles, landscaping and driveway connections to Squadron and Terrazzo Drive. The runoff from the basin will be captured and routed to Storm Sewer System 1 in Squadron Drive.

<u>Sub-basin C-24, C-25</u>: The sub-basins are located in the center of the site and to the south of Phase 1. The basins include the temporary gravel access road to the existing wastewater treatment plant which is along the future alignment of Terrazzo Drive. The runoff from the basins have been calculated assuming the fully developed condition. A roadside swale will be added along the east side of the temporary access drive to route flows south The flows on the west side of the access drive will sheet flows west.

<u>Sub-basin C-27:</u> The sub-basin is located on the east portion of the site and includes a small portion of the Terrazzo Road extension. In the future, the area is planned to include commercial, office, and industrial areas with buildings drive aisles, and landscaping. The runoff from the basin has been

calculated assuming fully developed condition. Runoff from the basin which is a part of Phase 1 will drain by gutter flow south to the intersection with Squadron and then flow southeast into the grassed area until the area is developed in the future.

<u>Sub-basin D-1:</u> The sub-basin is located on the west side of the site. The majority of the basin is will be pervious land sloping to the west and runoff will drain into the Woodcarver Road roadside ditch. The runoff will then follow existing condition drainage patterns to the south and ultimately to Monument Creek.

<u>Sub-basin E-17:</u> The sub-basin is located north of the site and includes the south portion of Baptist Road to the west of the Pilot Travel Center and east of the existing round-about. The flows will sheet flow and gutter flow into an existing 10-ft curb inlet along Baptist road. These flows are routed northwest with an existing storm sewer and will not enter the site.

<u>Sub-basin E-18:</u> The sub-basin is located west of the site and includes a portion of Baptist Road and the east half of Woodcarver Road. The flows from this basin will sheet and gutter flow to proposed on-grade inlet (Inlet 50) located along Woodcarver Road to the north of Terrazzo Drive. Inlet 50 will route flows into the proposed roadside ditch and culvert along Woodcarver Road. The flows will then follow existing drainage patterns. The runoff from this basin will not flow to the proposed subregional detention basin.

<u>Sub-basin E-19:</u> The sub-basin is located west of the site and includes the west half of Woodcarver Road. The flows from this basin will sheet and gutter flow to the south end of the basin where the flows will enter an existing roadside ditch and follow existing drainage patterns. An 18-inch culvert exists under the existing driveway to the west property (Pioneer Sand and Gravel site). This culvert will be replaced as part of the Phase 1 development.

<u>Sub-Basin OS-1</u>: The drainage basin is located to the northwest corner of the site and includes undeveloped land, the east side of Woodcarver Road and a portion of the existing roundabout. The majority of the basin sheet flows southwest to the intersection of Squadron Drive and Woodcarver Road where the runoff will flow into the roadside swale through the proposed culvert under Squadron Drive and flow along the east side of Woodcarver Road. Flows from the roundabout and Woodcarver Road will also flow into this roadside swale. The roadside swale continues south adjacent to Woodcarver Road, ultimately flowing into Monument Creek. The runoff from this basin does not flow to the proposed sub-regional detention basin.

VI. WATER QUALITY AND DETENTION DESIGN

The development of the property will include storm water quality and detention improvements meeting the requirements of the Town of Monument and the City of Colorado Spring's Drainage Criteria Manual (Volume 1 and 2). A Full Spectrum Detention (FSD) basin will be constructed in the southwest corner of the site to provide both stormwater quality and detention improvements for the overall development. The FSD will include forebays, trickle channel, FSD outlet structure, emergency spillway and outlet pipe. The outlet structure has been designed to control the release the of the WQCV, EURV and multiple storm return periods up to the 100 year event at a flow rate equal to or less than the calculated existing condition flows into Jackson Creek from the area. The water quality orifice plate will be a 5-hole plate sized to drain the WQCV in approximately 40 hours and to drain the EURV in approximately 72 hours. The emergency spillway will be constructed along the south side of the detention area to release flows in excess of the 100-year event and in an emergency situation to the existing grassed area to the south of the site and to Jackson Creek. The spillway will extend to the toe of the proposed slope and edge of the PMJM buffer area. The UD-Detention workbook along with Mile High Flood District equations have been used to design the facility. Refer

to the Appendix for the calculations and for a detailed summary of the maximum allowable detention release rates.

The maximum allowable detention release rates were calculated to result in a proposed condition flow at Jackson Creek at the existing railroad tracks which is equal to or less than the existing condition. The common Design Points between the existing and proposed conditions are DP E4 and DP 42 respectively. This meant the need to over detain to account for the runoff from Basins EX-D and EX-E which flow directly to Monument Creek. In the proposed condition, the runoff from those basins will be routed through the sub-regional detention basin and into Jackson Creek. This results in a lower overall flow reaching Monument Creek than in the existing condition

The detailed final design of the FSD detention basin will require a separate drainage report and construction documents.

- Tributary Area = 135.0 acres
- Percent Impervious = 78.3%
- WQCV = 3.57 ac-ft
- EURV = 11.70 ac-ft
- 100-Year Volume = 21.74ac-ft
- Emergency Spillway width = 100-ft

VII. FLOODPLAIN

The subject property is not located within a FEMA regulated floodplain based on Flood Insurance Rate Map 08041C0286 G (effective date of December 7, 2018). The proposed storm sewer outfall for the detention basin will be included a portion of the Zone A floodplain along Jackson Creek.

VIII. SUMMARY

This Final Drainage Report has been prepared in general conformance with the Town of Monument standards and the *City of Colorado Springs Drainage Criteria Manual Volumes 1 and 2*. The proposed stormwater management design for the subject site has been designed to properly convey and treat stormwater based on the requirements and guidance provided in the criteria manuals.

IX. REFERENCES

- 1) <u>Falcon Commerce Center Master Development Drainage Plan</u>, prepared by Kiowa Engineering Corporation, dated August 24, 2020.
- 2) <u>City of Colorado Springs, Drainage Criteria Manual, Volumes 1 and 2</u> dated May 2014.
- 3) <u>Urban Storm Drainage Criteria Manual, Vol. 1, 2 and 3, and Design</u>
 <u>Workbooks/Spreadsheets,</u> Urban Drainage and Flood Control District, latest revisions.
- 4) <u>Monument Creek Drainage Basin Planning Study, City of Colorado Springs and El Paso County,</u> prepared by CH2M Hill and Kiowa Engineering Corporation.
- 5) <u>Final Drainage Report for Baptist Road West</u>, prepared by Felsburg Holt & Ullevig, dated March 19, 2015.
- 6) <u>Preliminary and Final Drainage Report for Pilot Travel Center Filing No. 1</u>, prepared by Drexel, Barrell & Co. dated July 13, 2017.

7)	<u>Hydrology Report I-25 North Design Build</u> , prepared by RESPEC Consulting & Services, dated August 2012, revised September 14, 2012.

APPENDIX TABLE OF CONTENTS

APPENDIX A

Figure 1: Vicinity Map

Soils Map

FEMA Flood Insurance Rate Map

APPENDIX B

Hydrologic Calculations – Proposed Conditions

Runoff Coefficient and Percent Impervious Calculations

Time of Concentration and Drainage Basin Runoff Calculations

APPENDIX B.1

Supporting Hydrologic Tables and Figures

APPENDIX C

Water Quality and Detention Calculations

Runoff Summary and Maximum Detention Release Rates

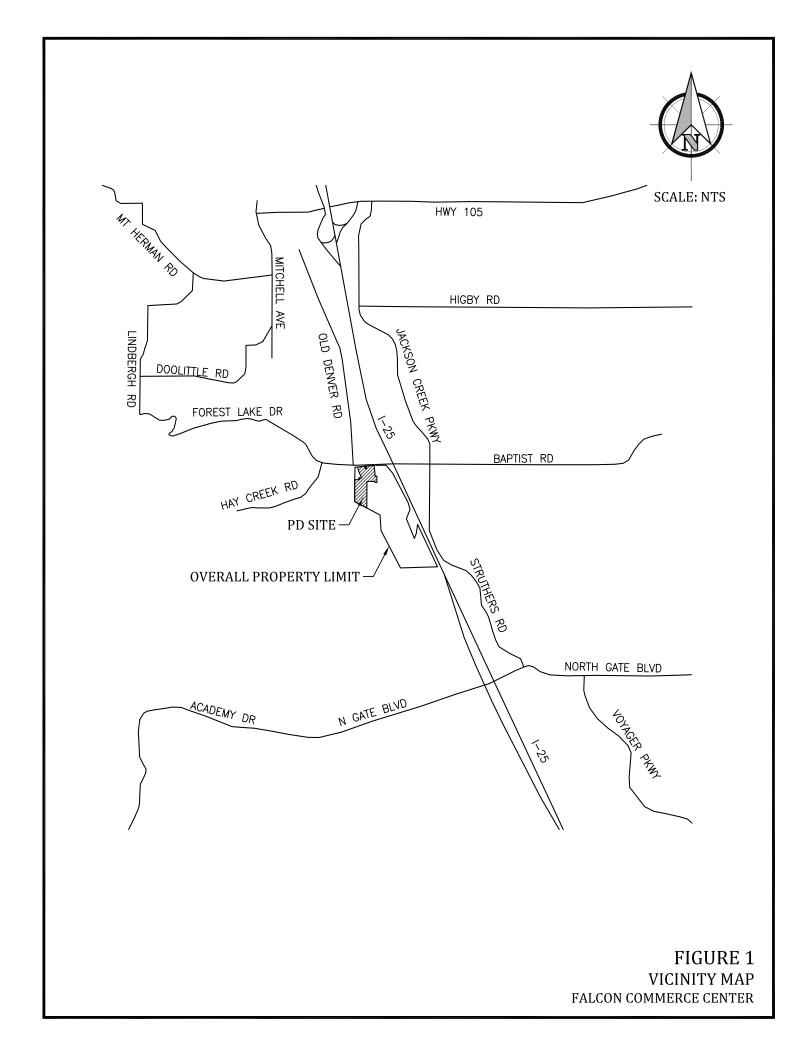
APPENDIX D

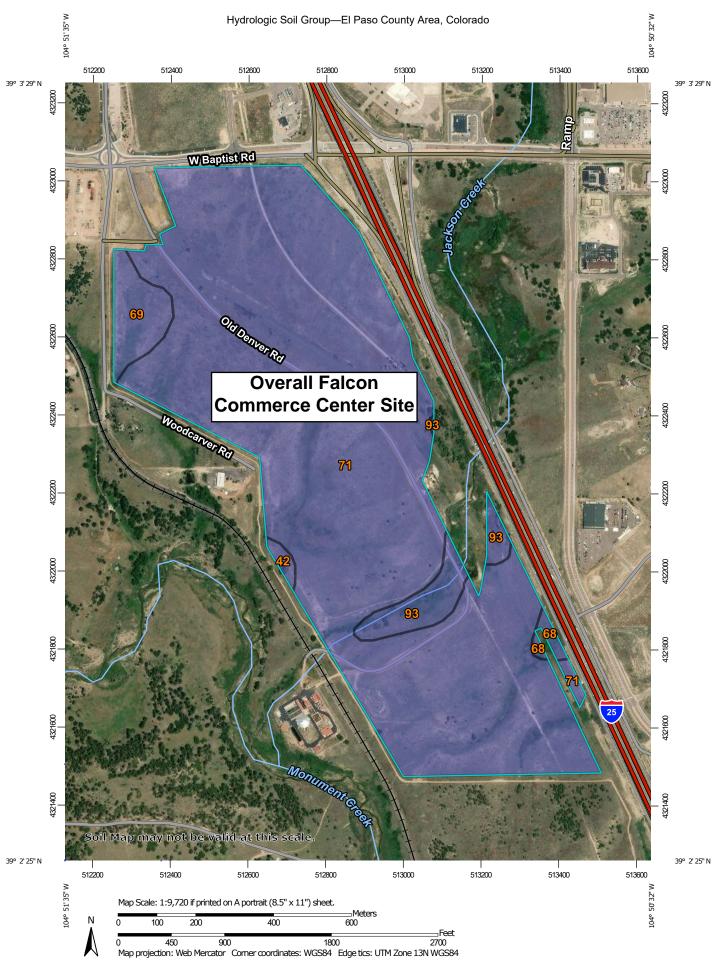
Hydraulic Calculations

Inlet Summary and Calculations

Pipe Sizing Calculations and UD-Sewer Output

APPENDIX E


For Reference – MDDP Drainage Plan - Proposed Condition


APPENDIX F

Proposed Condition Drainage Plan

APPENDIX A

Figure 1: Vicinity Map Soils Map FEMA Flood Insurance Rate Map

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 16, Sep 10, 2018 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Jul 4, 2010—Oct 16, 2017 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
42	Kettle-Rock outcrop complex	В	1.1	0.5%
68	Peyton-Pring complex, 3 to 8 percent slopes	В	1.3	0.6%
69	Peyton-Pring complex, 8 to 15 percent slopes	В	7.8	3.5%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	205.4	91.5%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	В	8.7	3.9%
Totals for Area of Inter	est	224.4	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

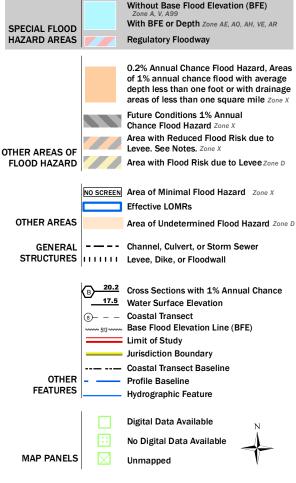
Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified


Tie-break Rule: Higher

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

9

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 7/18/2019 at 11:07:10 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

National Flood Hazard Layer FIRMette Legend **FEMA** SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD **HAZARD AREAS** Regulatory Floodway 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X **Future Conditions 1% Annual** Chance Flood Hazard Zone X Area with Reduced Flood Risk due to **Overall Falcon** Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D **Commerce Center Site** NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D **GENERAL** - -- - Channel, Culvert, or Storm Sewer STRUCTURES | LILLIL Levee, Dike, or Floodwall TOWNOF MONUMENT ARE NOT MINIMAL FLOOD HAZARD Cross Sections with 1% Annual Chance 080064 Water Surface Elevation **Coastal Transect** Base Flood Elevation Line (BFE) Limit of Study 11S R67W S035 T1 5 R67W S036 Jurisdiction Boundary **Coastal Transect Baseline** OTHER **Profile Baseline** 08041 C0286 G **FEATURES** Hydrographic Feature eff. 12/7/2018 Digital Data Available No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards FLOGSWAY The flood hazard information is derived directly from the EL & SOCOUNTY authoritative NFHL web services provided by FEMA. This map was exported on 7/18/2019 at 11:10:36 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

USGS The National Map: Orthoimagery. Data refreshed April, 2019.

1:6,000

Feet

2,000

250

500

1,000

1,500

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for

regulatory purposes.

APPENDIX B

Hydrologic Calculations – Proposed Conditions Runoff Coefficient and Percent Impervious Calculations Time of Concentration and Drainage Basin Runoff Calculations

Falcon Commerce Canter - MDDP Runoff Coeficient and Percent Impervious Calculation - Proposed Condition

				US1	Area 1	Land U	Jse	US2	Area 2	Land	Use	GR	Area 3	Land	Use	LA	Area 4	Land	Use	НІ	Area 5	Land	Use	1		
	Dagin on DD	Awaa	ē										υ		ρι di		ø)		р С					,o ,	Ba	sin
Basin /	Basin or DP (DP contribu		Type	Imperv	ınd Usı Area	Area	np Land % Imp	Imperv	nd Us Area	Area	np Land % Imp	Imperv	ınd Usı Area	% Area	p Land % Imp	Imperv	ınd Usı Area	Area	np Land % Imp	Imperv	ınd Usı Area	Area	ip Land % Imp	sin % ıperv	Runoi	ff Coef
DP	basins)		Soil	% In	Land Use Area	<i>1</i> %	Comp Land Use % Imp	% In	Land Use Area	<i>1</i> %	Comp Land Use % Imp	% In	Land Use Area	1%	Comp Land Use % Imp	% In	Land Use Area	1 %	Comp Land Use % Imp	М Іп	Land Use Area	1%	Comp Land Use % Imp	Basin % Imperv	C ₅	C ₁₀₀
C-1	422,482 sf 9	9.70ac	AB	85%	0.00ac	0%	0%	75%		0%	0%	80%		0%	0%	0%	9.70ac	100%		2%		0%	0%	0.0%	0.08	0.35
C-2		1.85ac	AB	85%		100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-3	442,716 sf 10	0.16ac	AB	85%	10.16ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-4	121,502 sf 2	2.79ac	AB	85%	2.79ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-5	381,247 sf 8	3.75ac	AB	85%	8.75ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-6	255,584 sf 5	5.87ac	AB	85%	5.87ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-7	356,419 sf 8	3.18ac	AB	85%	8.18ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-8	123,101 sf 2	2.83ac	AB	85%	2.83ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-9	138,561 sf 3	3.18ac	AB	85%	3.18ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-10	302,974 sf 6	6.96ac	AB	85%	6.96ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-11	148,880 sf 3	3.42ac	AB	85%	3.42ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-12	7,016 sf 0	0.16ac	AB	85%	0.00ac	0%	0%	75%	0.16ac	100%	75%	80%		0%	0%	0%		0%	0%	2%		0%	0%	75.0%	0.54	0.66
C-13	16,061 sf 0	0.37ac	AB	85%	0.00ac	0%	0%	75%	0.37ac	100%	75%	80%		0%	0%	0%		0%	0%	2%		0%	0%	75.0%	0.54	0.66
C-14	87,402 sf 2	2.01ac	AB	85%	0.00ac	0%	0%	75%	1.69ac	84%	63%	80%	0.32ac	16%	13%	0%		0%	0%	2%		0%	0%	75.8%	0.55	0.66
C-15	32,492 sf 0	0.75ac	AB	85%	0.00ac	0%	0%	75%	0.75ac	100%	75%	80%		0%	0%	0%		0%	0%	2%		0%	0%	75.0%	0.54	0.66
C-16	556,153 sf 12	2.77ac	AB	85%	12.77ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-20	26,181 sf 0	0.60ac	AB	85%	0.00ac	0%	0%	75%	0.60ac	100%	75%	80%		0%	0%	0%		0%	0%	2%		0%	0%	75.0%	0.54	0.66
C-21	25,073 sf 0	0.58ac	AB	85%	0.00ac	0%	0%	75%	0.58ac	100%	75%	80%		0%	0%	0%		0%	0%	2%		0%	0%	75.0%	0.54	0.66
C-22	452,831 sf 10	0.40ac	AB	85%	10.40ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-23	322,059 sf 7	7.39ac	AB	85%	7.39ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-24	32,559 sf 0	0.75ac	AB	85%	0.00ac	0%	0%	75%	0.75ac	100%	75%	80%		0%	0%	0%		0%	0%	2%		0%	0%	75.0%	0.54	0.66
C-25	32,412 sf 0	0.74ac	AB	85%	0.00ac	0%	0%	75%	0.74ac	100%	75%	80%		0%	0%	0%		0%	0%	2%		0%	0%	75.0%	0.54	0.66
C-26	287,907 sf 6	6.61ac	AB	85%	6.61ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-27	301,760 sf 6	5.93ac	AB	85%	6.93ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-30	69,387 sf 1	1.59ac	AB	85%	0.00ac	0%	0%	75%	1.59ac	100%	75%	80%		0%	0%	0%		0%	0%	2%		0%	0%	75.0%	0.54	0.66
C-31	70,440 sf 1	1.62ac	AB	85%	0.00ac	0%	0%	75%	1.62ac	100%	75%	80%		0%	0%	0%		0%	0%	2%		0%	0%	75.0%	0.54	0.66
C-32	350,897 sf 8	3.06ac	AB	85%	8.06ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
C-40	359,359 sf 8	3.25ac	AB	85%		0%	0%	75%	2.17ac	26%	20%	80%		0%	0%	0%		0%	0%	2%	6.08ac	74%	1%	21.2%	0.20	0.44
C-41	967,143 sf 22	2.20ac	AB	85%		0%	0%	75%	1.27ac	6%	4%	80%	0.70ac	3%	3%	0%		0%	0%	2%	20.23ac	91%	2%	8.6%	0.13	0.40
C-42	1,166,143 sf 26	6.77ac	AB	85%		0%	0%	75%		0%	0%	80%	1.55ac	6%	5%	0%		0%	0%	2%	25.22ac	94%	2%	6.5%	0.11	0.39
D-1	51,488 sf 1	1.18ac	AB	85%		0%	0%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%	1.18ac	100%	2%	2.0%	0.08	0.36
D-2	241,038 sf 5	5.53ac	AB	85%		0%	0%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%	5.53ac	100%	2%	2.0%	0.08	0.36
E-17	45,254 sf 1	1.04ac	AB	85%	0.95ac	91%	77%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%	0.09ac	9%	0%	77.7%	0.57	0.68
E-18	15,284 sf 0	0.35ac	AB	85%	0.35ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
E-19	16,899 sf 0	0.39ac	AB	85%	0.39ac	100%	85%	75%		0%	0%	80%		0%	0%	0%		0%	0%	2%		0%	0%	85.0%	0.66	0.75
OS-1	182,538 sf 4	4.19ac	AB	85%		0%	0%	75%		0%	0%	80%	0.32ac	8%	6%	0%		0%	0%	2%	3.87ac	92%	2%	8.0%	0.12	0.39
OS-2		2.67ac	AB	85%	0.00ac	0%	0%	75%	8.47ac	67%	50%	80%		0%	0%	0%		0%	0%	2%	4.20ac	33%	1%	50.8%	0.35	0.53
DP13	C1-C32 13	35.00ac	AB	85%	116.14ac	86%	73%	75%	8.84ac	7%	5%	80%	0.32ac	0%	0%	0%	9.70ac	7%	0%	2%	0.00ac	0%	0%	78.2%	0.57	0.68
DP42	C-40,41,42 57	7.22ac	AB	85%	0.00ac	0%	0%	75%	3.44ac	6%	5%	80%	2.25ac	4%	3%	0%	0.00ac	0%	0%	2%	51.53ac	90%	2%	9.5%	0.13	0.40

19036 MDDP Drainage Calcs.xlsx Runoff Coef-CS Proposed Date Printed: 9/11/2020

Falcon Commerce Canter - MDDP Runoff Coeficient and Percent Impervious Calculation - Proposed Condition

Basin Runoff Coef is bas	ed on % Ir	npervio	ous Calo	culation			
Runoff Coefficients and	d Percent	s Impe	rvious				
Hydrologic Soil Type:	AB	Rur	off Co	ef Method	%I	mp	Based on Table 6-6: Runoff Coefficients for Rational Method from City of Colo Springs DCM
Land Use	Abb	%	C_5	C_{10}	C_{100}	Weighted	
Commercial Area	CO	95%	0.81	0.83	0.88	%Imp	
Streets - Gravel (Packed)	GR	80%	0.59	0.63	0.70	AB	
Historic Flow Analysis	HI	2%	0.09	0.17	0.36	CD	
Lawns	LA	0%	0.08	0.15	0.35	D	
Off-site flow-Undeveloped	OF	45%	0.32	0.38	0.51		
Park	PA	7%	0.12	0.20	0.39		
Streets - Paved	PV	100%	0.90	0.92	0.96		
Roofs	RO	90%	0.73	0.75	0.81		
User Input 1	US1	85%	0.66	0.69	0.75	*Plan	nned commercial areas are assumed to be 85% impervious
User Input 2	US2	75%	0.54	0.58	0.66	*Stre	et right of way areas are planned to have an average impervious area of 75% based on the typical street sec

Falcon Commerce Center - MDDP Time of Concentration Calculation - Proposed Condition

	Sub-Basin Data						Time of (Concent	ratior	ı Est	imate				
Basin /				Initial/	Overland	l Time (t _i)			Trave	l Tin	ne (t _t)		Comp.	1	Final t _c
Design Point	Contributing Basins	Area	C ₅	Length	Slope	t _i	Length	Slope	Land Type	Cv	Velocity	t _t	t _c		i iliai c
C-1		9.70ac	0.08	50lf	25.0%	4.5 min.	100lf	25.0%	PV	20	10.0 ft/sec	0.2 min.	5.0 min.	5	5.0 min.
C-2		11.85ac	0.66	50lf	3.0%	4.0 min.	960lf	2.8%	PV	20	3.3 ft/sec	4.8 min.	8.8 min.	8	3.8 min.
C-3		10.16ac	0.66	50lf	12.0%	2.5 min.	650lf	2.8%	PV	20	3.3 ft/sec	3.2 min.	5.7 min.	5	5.7 min.
C-4		2.79ac	0.66	50lf	3.0%	4.0 min.	600lf	2.7%	PV	20	3.3 ft/sec	3.1 min.	7.0 min.	7	7.0 min.
C-5		8.75ac	0.66	50lf	2.8%	4.1 min.	850lf	2.8%	PV	20	3.3 ft/sec	4.2 min.	8.3 min.	8	3.3 min.
C-6		5.87ac	0.66	50lf	2.6%	4.2 min.	680lf	2.6%	PV	20	3.2 ft/sec	3.5 min.	7.7 min.	7	7.7 min.
C-7		8.18ac	0.66	50lf	25.0%	2.0 min.	750lf	3.5%	PV	20	3.7 ft/sec	3.3 min.	5.3 min.	5	5.3 min.
C-8		2.83ac	0.66	50lf	4.0%	3.6 min.	250lf	4.0%	PV	20	4.0 ft/sec	1.0 min.	5.0 min.	5	5.0 min.
C-9		3.18ac	0.66	40lf	1.5%	4.5 min.	250lf	2.6%	PV	20	3.2 ft/sec	1.3 min.	5.8 min.	5	5.8 min.
C-10		6.96ac	0.66	25lf	2.5%	3.0 min.	1100lf	3.5%	PV	20	3.7 ft/sec	4.9 min.	7.9 min.	7	7.9 min.
C-11		3.42ac	0.66	25lf	2.5%	3.0 min.	300lf	4.0%	PV	20	4.0 ft/sec	1.3 min.	5.0 min.	5	5.0 min.
C-12		0.16ac	0.54	25lf	2.5%	3.8 min.	100lf	1.0%	PV	20	2.0 ft/sec	0.8 min.	5.0 min.	5	5.0 min.
C-13		0.37ac	0.54	25lf	2.5%	3.8 min.	900lf	2.8%	PV	20	3.3 ft/sec	4.5 min.	8.3 min.	8	3.3 min.
C-14		2.01ac	0.55	25lf	2.5%	3.7 min.	1050lf	3.2%	PV	20	3.6 ft/sec	4.9 min.	8.6 min.	8	3.6 min.
C-15		0.75ac	0.54	25lf	2.5%	3.8 min.	500lf	2.2%	PV	20	3.0 ft/sec	2.8 min.	6.6 min.	6	6.6 min.
C-16		12.77ac	0.66	50lf	2.4%	4.3 min.	980lf	2.5%	PV	20	3.2 ft/sec	5.2 min.	9.5 min.	9	9.5 min.
C-20		0.60ac	0.54	25lf	2.5%	3.8 min.	620lf	1.0%	PV	20	2.0 ft/sec	5.2 min.	8.9 min.		3.9 min.
C-21		0.58ac	0.54	25lf	2.5%	3.8 min.	600lf	1.0%	PV	20	2.0 ft/sec	5.0 min.	8.8 min.	8	3.8 min.
C-22		10.40ac	0.66	50lf	2.2%	4.4 min.	770lf	2.2%	PV	20	3.0 ft/sec	4.3 min.	8.7 min.	8	3.7 min.
C-23		7.39ac	0.66	50lf	2.2%	4.4 min.	800lf	1.0%	PV	20	2.0 ft/sec	6.7 min.	11.1 min.	11	1.1 min.
C-24		0.75ac	0.54	25lf	2.5%	3.8 min.	725lf	4.0%	PV	20	4.0 ft/sec	3.0 min.	6.8 min.	6	6.8 min.
C-25		0.74ac	0.54	25lf	2.5%	3.8 min.	700lf	4.0%	PV	20	4.0 ft/sec	2.9 min.	6.7 min.	6	6.7 min.
C-26		6.61ac	0.66	50lf	3.0%	4.0 min.	650lf	2.8%	PV	20	3.3 ft/sec	3.2 min.	7.2 min.	7	7.2 min.
C-27		6.93ac	0.66	50lf	4.0%	3.6 min.	630lf	3.2%	PV	20	3.6 ft/sec	2.9 min.	6.6 min.	6	6.6 min.
C-30		1.59ac	0.54	25lf	2.5%	3.8 min.	1500lf	2.5%	PV	20	3.2 ft/sec	7.9 min.	11.7 min.	11	1.7 min.
C-31		1.62ac	0.54	25lf	2.5%	3.8 min.	1550lf	2.5%	PV	20	3.2 ft/sec	8.2 min.	11.9 min.	11	1.9 min.
C-32		8.06ac	0.66	50lf	4.0%	3.6 min.	840lf	2.2%	PV	20	3.0 ft/sec	4.7 min.	8.3 min.	8	3.3 min.
C-40		8.25ac	0.20	300lf	3.0%	19.7 min.	1515lf	2.2%	GW	15	2.2 ft/sec	11.3 min.	31.1 min.	31	1.1 min.
C-41		22.20ac	0.13	300lf	2.5%	22.7 min.	1150lf	2.4%	GW	15	2.3 ft/sec	8.2 min.	31.0 min.	31	1.0 min.
C-42		26.77ac	0.11	300lf	2.0%	24.9 min.	1300lf	2.5%	GW	15	2.4 ft/sec	9.1 min.	34.0 min.	34	4.0 min.
D-1		1.18ac	0.08	40lf	5.0%	6.9 min.	800lf	2.6%	GW	15	2.4 ft/sec	5.5 min.	12.4 min.	12	2.4 min.
D-2		5.53ac	0.08	40lf	5.0%	6.9 min.	900lf	4.0%	GW	15	3.0 ft/sec	5.0 min.	11.9 min.	11	1.9 min.
E-17		1.04ac	0.57	30lf	2.0%	4.2 min.	830lf	2.2%	PV	20	3.0 ft/sec	4.7 min.	8.9 min.	8	3.9 min.
E-18		0.35ac	0.66	30lf	2.0%	3.5 min.	840lf	2.9%	PV	20	3.4 ft/sec	4.1 min.	7.6 min.	7	7.6 min.

Falcon Commerce Center - MDDP Time of Concentration Calculation - Proposed Condition

E-19	0.39ac	0.66	30lf	2.0%	3.5 min.	900lf	2.9%	PV	20	3.4 ft/sec	4.4 min.	7.9 min.		7.9 min.
OS-1	4.87ac	0.12	170lf	5.9%	12.9 min.	460lf	1.7%	SP	7	0.9 ft/sec	8.4 min.	21.3 min.		21.3 min.

Equations:

 t_i (Overland) = 0.395(1.1-C₅)L ^{0.5} S ^{-0.333}

 C_5 = Runoff coefficient for 5-year

L = Length of overland flow (ft)

S = Slope of flow path (ft/ft)

tc Check = (L/180)+10 (Developed Cond. Only)

L = Overall Length

Velocity (Travel Time) = CvS^{0.5} Cv = Conveyance Coef (see table) S = Watercourse slope (ft/ft) Table 6-7: Conveyance Coef (City CS DCM, Vol 1)

Type of Land Surface	Land Type	Cv
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

Design Storm: 5 Year

8	Storm:		Dia	rect Ru	ınoff					Total	Runoff		Street	/Chan		Pipe		T	ravel T	ime	
G .	Design					C*A	i			Sum	i		ĺ				Pipe	L	Vel		
Street	Point	Area Designation	Area	С	T _c	(acre)	(in/hr)	Q	T _c	C*A	(in/hr)	Q	Slope	Q	Q	Slope	Size	(ft)	(ft/s)	T_{t}	Remarks
		C-1	9.70 ac	0.08	5.0min	0.73	5.2	3.8 cfs													
		C-2	11.85 ac	0.66	8.8min	7.78	4.3	33.7 cfs													
		C-3	10.16 ac	0.66	5.7min	6.67	5.0	33.1 cfs													
		C-4	2.79 ac	0.66	7.0min	1.83	4.7	8.5 cfs													
		C-5	8.75 ac	0.66	8.3min	5.74	4.4	25.3 cfs													
		C-6	5.87 ac	0.66	7.7min	3.85	4.5	17.4 cfs													
		C-7	8.18 ac	0.66	5.3min	5.37	5.1	27.3 cfs													
		C-8	2.83 ac	0.66	5.0min	1.85	5.2	9.6 cfs													
		C-9	3.18 ac	0.66	5.8min	2.09	5.0	10.3 cfs													
		C-10	6.96 ac	0.66	7.9min	4.57	4.5	20.5 cfs													
		C-11	3.42 ac	0.66	5.0min	2.24	5.2	11.6 cfs													
		C-12	0.16 ac	0.54	5.0min	0.09	5.2	0.4 cfs													
		C-13	0.37 ac	0.54	8.3min	0.20	4.4	0.9 cfs													
		C-14	2.01 ac	0.55	8.6min	1.10	4.4	4.8 cfs													
		C-15	0.75 ac	0.54	6.6min	0.40	4.8	1.9 cfs													
		C-16	12.77 ac	0.66	9.5min	8.38	4.2	35.3 cfs							35.3 cfs	1.5%	36-in	290'	11.7	0.4min	to DP2
		C-20	0.60 ac	0.54	8.9min	0.32	4.3	1.4 cfs													
		C-21	0.58 ac	0.54	8.8min	0.31	4.3	1.3 cfs													
		C-22	10.40 ac	0.66	8.7min	6.82	4.3	29.6 cfs													
		C-23	7.39 ac	0.66	11.1min	4.85	4.0	19.3 cfs										550'	10	0.9min	to DP23
		C-24	0.75 ac	0.54	6.8min	0.40	4.7	1.9 cfs													
		C-25	0.74 ac	0.54	6.7min	0.40	4.7	1.9 cfs													
		C-26	6.61 ac	0.66	7.2min	4.34	4.6	20.0 cfs													
		C-27	6.93 ac	0.66	6.6min	4.55	4.8	21.7 cfs										710'	10	1.2min	to DP20
		C-30	1.59 ac	0.54	11.7min	0.86	3.9	3.3 cfs													
		C-31	1.62 ac		11.9min	0.87	3.9	3.4 cfs													
		C-32	8.06 ac	0.66	8.3min	5.29	4.4	23.3 cfs							23.3 cfs	1.8%	30-in	730'	11.2	1.1min	to DP30
		C-40	8.25 ac		31.1min	1.68	2.4	4.1 cfs													
		C-41	22.20 ac		31.0min		2.4	6.9 cfs													
		C-42	26.77 ac		34.0min		2.3	6.9 cfs													
		D-1	1.18 ac		12.4min		3.8	0.4 cfs													
		D-2	5.53 ac	0.08	11.9min	0.45	3.9	1.7 cfs													
		E-17	1.04 ac	0.57	8.9min	0.59	4.3	2.5 cfs													
		E-18	0.35 ac	0.66	7.6min	0.23	4.5	1.0 cfs													
		E-19	0.39 ac	0.66	7.9min	0.25	4.5	1.1 cfs													
		0S-1	4.19 ac	0.12	21.3min	0.51	3.0	1.5 cfs	Dototi		low Cool	TC EDD									
	DP1	OS-2	12.67 ac					U.4 CIS	Detention		1 1				E O ofo	1 504	26 in	27'	7.2	0.1min	to DD2
1 1	ואת	C-14+C-15	2.75 ac	1					11.5min	1.50	3.9	5.9 cfs	I		5.9 cfs	1.5%	30-10	3/	7.3	0.1min	to DP3

Design Storm: 5 Year

			Dir	ect Ru	ınoff					Total	Runoff		Street/	'Chan		Pipe		T	ravel T	ime	
Street	Design	Area Designation	Area			C*A	i			Sum	i						Pipe	L	Vel		
Street	Point	Alea Designation	Alea	С	T_{c}	(acre) ((in/hr)	Q	T_{c}	C*A	(in/hr)	Q	Slope	Q	Q	Slope	Size	(ft)	(ft/s)	T _t	Remarks
	DP2	C-13+C-16	13.14 ac						9.9min	8.58	4.1	35.6 cfs									to DP4
	DP3	DP1+C-12	2.91 ac						11.6min	1.59	3.9	6.2 cfs			6.2 cfs	1.5%	18-in	56'	10.5	0.1min	to DP4
	DP4	DP2+DP3	16.05 ac						11.7min	10.17	3.9	39.6 cfs			39.6 cfs	2.5%	36-in	290'	10.5	0.5min	to DP5
	DP5	DP4+C-11	19.47 ac						12.1min	12.41	3.8	47.7 cfs			47.7 cfs	1.0%	42-in	433'	15.9	0.5min	to DP6
	DP6	DP5+C-10	26.42 ac						12.6min	16.98	3.8	64.3 cfs			64.3 cfs	2.3%	42-in	295'	13.6	0.4min	to DP7
	DP7	DP6+C-9	29.60 ac						12.9min	19.06	3.7	71.4 cfs			71.4 cfs	1.2%	54-in	663'	8.4	1.3min	to DP8
	DP8	DP7+C-7+C-8	40.61 ac						14.2min	26.29	3.6	94.6 cfs			94.6 cfs	0.4%	60-in	266'	15.0	0.3min	to DP9
	DP9	DP8+C-6	46.48 ac						14.5min	30.14	3.6	107.5 cfs			107.5 cfs	1.2%	72-in	430'	10.8	0.7min	to DP10
	DP10	DP9+C-5	55.23 ac						15.2min	35.89	3.5	125.6 cfs			125.6 cfs	1.6%	72-in	101'	10.8	0.2min	to DP11
	DP11	DP10+DP26+C-4	92.02 ac						15.4min	59.72	3.5	208.1 cfs			208.1 cfs	1.0%	72-in	88'	20.2	0.1min	to DP12
	DP12	DP11+C-3	102.18 ac						15.4min	66.39	3.5	230.9 cfs			230.9 cfs	1.3%	36-in	547'	13.4	0.7min	to FB/DP13
	DP13	DP12+DP30+C1+C2	135.00 ac						16.1min	81.92	3.4	279.6 cfs									to JC
	DP20	C-27+C-26	13.54 ac						7.7min	8.89	4.5	40.1 cfs									to DP21
	DP21	DP20+C-25	14.28 ac						7.7min	9.29	4.5	41.9 cfs			41.9 cfs	2.0%	36-in	37'	12.4	0.0min	to DP22
	DP22	DP21+C-24	15.03 ac						7.8min	9.69	4.5	43.6 cfs									to DP25
	DP23	C-22+C-23	17.79 ac						12.0min	11.68	3.9	45.0 cfs									to DP24
	DP24	DP23+C-21	18.36 ac						12.0min	11.99	3.9	46.2 cfs			46.2 cfs	1.4%	42-in	37'	16.2	0.0min	to DP25
	DP25	DP22+DP24	33.39 ac						12.0min	21.68	3.9	83.5 cfs			83.5 cfs	2.0%	48-in	13'	16.2	0.0min	to DP26
	DP26	DP25+C-20	33.99 ac						12.1min	22.00	3.8	84.7 cfs			84.7 cfs	2.0%	48-in	710'	16.2	0.7min	to DP11
	DP30	C-30+C-31+C-32	11.27 ac						11.9min	7.02	3.9	27.1 cfs			27.1 cfs	1.5%	32-in	328'	10.7	0.5min	to FB/DP13
	DP40	C40+OS2 (Detent)	20.92 ac						31.1min	1.68	2.4	4.5 cfs	Added fl	ow out	of PTC dete	ntion ba	nsin	1310'	3.0	7.3min	
	DP41	DP40+C-41	43.12 ac						38.3min	4.50	2.1	9.9 cfs	Added fl	ow out	of PTC dete	ntion ba	asin	1280'	4.0	5.3min	
	DP42	DP41+C-42	69.89 ac						43.7min	7.50	1.9	14.8 cfs	Added fl	ow out	of PTC dete	ntion ba	sin				
	DP50	E-18+OS-1	4.54 ac						21.3min	0.74	3.0	2.2 cfs									

NOTE: PTC FDR is Pilot Travel Center Final Drainage Report, prepared by Drexel, Barrell & Co. July 13, 2017.

Equations (taken from Fig 6-5, City of Colorado Springs DCM):

 i_2 =-1.19 ln(T_c) + 6.035

 i_5 =-1.50 ln(T_c) + 7.583

 i_{10} =-1.75 $ln(T_c)$ + 8.847

 i_{100} =-2.52 ln(T_c) + 12.735

Q = CiA

Q = Peak Runoff Rate (cubic feet/second)

C = Runoff coef representing a ration of peak runoff rate to ave rainfall intensity for a duration equal to the runoff time of concentration.

i = average rainfall intensity in inches per hour

A = Drainage area in acres

Design Storm: 100 Year

J	[100 Year	D	irect R	unoff				Tota	al Runoff		Street/	Chan		Pipe		T	ravel T	ime	
C+ +	Design	A Davisanski sa	A			C*A	i		Sum	i						Pipe	L	Vel		
Street	Point	Area Designation	Area	С	T_c	(acre)	(in/hr)	Q	T _c C*A	(in/hr)	Q	Slope	Q	Q	Slope	Size	(ft)	(ft/s)	T_{t}	Remarks
		C-1	9.70 ac	0.35	5.0min	3.39	8.7	29.5 cfs												
		C-2	11.85 ac	0.75	8.8min	8.90	7.3	64.7 cfs												
		C-3	10.16 ac	0.75	5.7min	7.63	8.3	63.6 cfs												
		C-4	2.79 ac	0.75	7.0min	2.09	7.8	16.4 cfs												
		C-5	8.75 ac	0.75	8.3min	6.57	7.4	48.6 cfs												
		C-6	5.87 ac	0.75	7.7min	4.41	7.6	33.5 cfs												
		C-7	8.18 ac	0.75	5.3min	6.14	8.5	52.4 cfs												
		C-8	2.83 ac	0.75	5.0min	2.12	8.7	18.4 cfs												
		C-9	3.18 ac	0.75	5.8min	2.39	8.3	19.9 cfs												
		C-10	6.96 ac	0.75	7.9min	5.22	7.5	39.3 cfs												
		C-11	3.42 ac	0.75	5.0min	2.57	8.7	22.3 cfs												
		C-12	0.16 ac	0.66	5.0min	0.11	8.7	0.9 cfs												
		C-13	0.37 ac	0.66	8.3min	0.24	7.4	1.8 cfs												
		C-14	2.01 ac	0.66	8.6min	1.33	7.3	9.7 cfs												
		C-15	0.75 ac	0.66	6.6min	0.49	8.0	3.9 cfs												
		C-16	12.77 ac	0.75	9.5min	9.59	7.1	67.8 cfs						67.8 cfs	1.5%	36-in	290'	11.7	0.4min	to DP2
		C-20	0.60 ac	0.66	8.9min	0.39	7.2	2.8 cfs												
		C-21	0.58 ac	0.66		0.38	7.3	2.7 cfs												
		C-22	10.40 ac	0.75	8.7min	7.81	7.3	56.8 cfs												
		C-23	7.39 ac	0.75	11.1min	5.55	6.7	37.0 cfs									550'	10	0.9min	to DP23
		C-24	0.75 ac	0.66		0.49	7.9	3.9 cfs												
		C-25	0.74 ac	0.66	6.7min	0.49	7.9	3.9 cfs												
		C-26	6.61 ac	0.75	7.2min		7.8	38.5 cfs												
		C-27	6.93 ac	0.75	6.6min		8.0	41.6 cfs									710'	10	1.2min	to DP20
		C-30	1.59 ac		11.7min		6.5	6.8 cfs												
		C-31	1.62 ac		11.9min		6.5	6.9 cfs												
		C-32	8.06 ac	0.75	8.3min		7.4	44.7 cfs						44.7 cfs	1.8%	30-in	730'	11.2	1.1min	to DP30
		C-40	8.25 ac		31.1min		4.1	15.0 cfs												
		C-41	22.20 ac		31.0min		4.1	36.0 cfs												
		C-42	26.77 ac		34.0min		3.8	39.9 cfs												
		D-1	1.18 ac		12.4min		6.4	2.7 cfs												
		D-2	5.53 ac		11.9min		6.5	13.0 cfs												
		E-17	1.04 ac	0.68	8.9min		7.2	5.1 cfs												
		E-18	0.35 ac	0.75	7.6min		7.6	2.0 cfs												
		E-19	0.39 ac	0.75		0.29	7.5	2.2 cfs												
		0S-1	4.19 ac	0.39	21.3min	1.65	5.0	8.3 cfs	D		 DEC EDD									
	DD1	0S-2	12.67 ac					20.8 cfs	Detention outle					120 af-	1 50/	26:	27!	7.2	0.1	to DD2
I	DP1	C-14+C-15	2.75 ac						11.5min 1.82	6.6	12.0 cfs	I		12.0 cfs	1.5%	36-in	3/	7.3	0.1min	to DP3

Design Storm: 100 Year

		Direct Runoff		Total Runoff			Street/Chan Pipe			Travel Time											
Chwood De	esign	Auga Dagiamatian	A			C*A	i			Sum	i						Pipe	L	Vel		
Street P	Point	Area Designation	Area	С	T_{c}	(acre)	(in/hr)	Q	$T_{\rm c}$	C*A	(in/hr)	Q	Slope	Q	Q	Slope	Size	(ft)	(ft/s)	T_{t}	Remarks
I	DP2	C-13+C-16	13.14 ac						9.9min	9.83	7.0	68.5 cfs									to DP4
I	DP3	DP1+C-12	2.91 ac						11.6min	1.93	6.6	12.7 cfs			12.7 cfs	1.5%	18-in	56'	10.5	0.1 min	to DP4
I	DP4	DP2+DP3	16.05 ac						11.7min	11.76	6.5	77.0 cfs			77.0 cfs	2.5%	36-in	290'	15.9	0.3min	to DP5
I	DP5	DP4+C-11	19.47 ac						12.0min	14.32	6.5	92.8 cfs			92.8 cfs	1.0%	42-in	433'	13.6	0.5min	to DP6
I	DP6	DP5+C-10	26.42 ac						12.5min	19.55	6.4	124.5 cfs			124.5 cfs	2.3%	42-in	295'	8.4	0.6min	to DP7
I	DP7	DP6+C-9	29.60 ac						13.1min	21.93	6.3	137.2 cfs			137.2 cfs	1.2%	54-in	663'	15.0	0.7min	to DP8
I	DP8	DP7+C-7+C-8	40.61 ac						13.8min	30.20	6.1	184.8 cfs			184.8 cfs	0.4%	60-in	266'	10.8	0.4min	to DP9
I	DP9	DP8+C-6	46.48 ac						14.2min	34.61	6.0	209.2 cfs			209.2 cfs	1.2%	72-in	430'	10.8	0.7min	to DP10
D	DP10	DP9+C-5	55.23 ac						14.9min	41.18	5.9	244.2 cfs			244.2 cfs	1.6%	72-in	101'	20.2	0.1min	to DP11
D	DP11	DP10+DP26+C-4	92.02 ac						15.0min	68.55	5.9	405.5 cfs			405.5 cfs	1.0%	72-in	88'	5.0	0.3min	to DP12
D	DP12	DP11+C-3	102.18 ac						15.3min	76.18	5.9	446.9 cfs			446.9 cfs	1.3%	36-in	547'	13.4	0.7min	to FB/DP13
D	DP13	DP12+DP30+C1+C2	135.00 ac						15.9min	96.63	5.8	556.3 cfs									to JC
D	DP20	C-27+C-26	13.54 ac						7.7min	10.16	7.6	77.0 cfs									to DP21
	DP21	DP20+C-25	14.28 ac						7.7min	10.65	7.6	80.7 cfs			80.7 cfs	2.0%	36-in	37'	13.4	0.0min	to DP22
	DP22	DP21+C-24	15.03 ac						7.8min	11.14	7.6	84.3 cfs									to DP25
	DP23	C-22+C-23	17.79 ac						12.0min	13.36	6.5	86.5 cfs									to DP24
	DP24	DP23+C-21	18.36 ac						12.0min	13.74	6.5	88.9 cfs			88.9 cfs	1.4%	42-in	37'	12.4	0.0min	to DP25
	DP25	DP22+DP24	33.39 ac						12.0min	24.88	6.5	160.8 cfs			160.8 cfs	2.0%	48-in	13'	16.2	0.0min	to DP26
	DP26	DP25+C-20	33.99 ac						12.1min	25.28	6.5	163.3 cfs			163.3 cfs	2.0%	48-in	710'	16.2	0.7min	to DP11
D	DP30	C-30+C-31+C-32	11.27 ac						11.9min	8.16	6.5	52.9 cfs			52.9 cfs			328'	10.7	0.5min	to FB/DP13
D	DP40	C40+OS2 (Detent)	20.92 ac						31.1min	3.67	4.1	35.8 cfs	Added flo	w ou	t of PTC dete	ntion bas	sin	1310'	4.0	5.5min	
D	DP41	DP40+C-41	43.12 ac						36.5min	12.49	3.7	66.6 cfs	Added flo	w ou	t of PTC dete	ntion bas	sin	1280'	5.0	4.3min	
D	DP42	DP41+C-42	69.89 ac						40.8min	22.85	3.4	98.2 cfs	Added flo	w ou	t of PTC dete	ntion bas	sin				
D	DP50	E-18+0S-1	4.54 ac						21.3min	1.92	5.0	9.6 cfs									

NOTE: PTC FDR is Pilot Travel Center Final Drainage Report, prepared by Drexel, Barrell & Co. July 13, 2017.

Equations (taken from Fig 6-5, City of Colorado Springs DCM):

 i_2 =-1.19 $ln(T_c)$ + 6.035

 i_5 =-1.50 ln(T_c) + 7.583

 i_{10} =-1.75 ln(T_c) + 8.847

 i_{100} =-2.52 ln(T_c) + 12.735

Q = CiA

Q = Peak Runoff Rate (cubic feet/second)

C = Runoff coef representing a ration of peak runoff rate to ave rainfall intensity for a duration equal to the runoff time of concentration.

i = average rainfall intensity in inches per hour

A = Drainage area in acres

APPENDIX B.1 Supporting Hydrologic Tables and Figures

Hydrology Chapter 6

For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

Table 6-2. Rainfall Depths for Colorado Springs

Return Period	1-Hour Depth	6-Hour Depth	24-Hour Depth
2	1.19	1.70	2.10
5	1.50	2.10	2.70
10	1.75	2.40	3.20
25	2.00	2.90	3.60
50	2.25	3.20	4.20
100	2.52	3.50	4.60

Where Z = 6.840 ft/100

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves² and should produce similar depth calculation results.

2.2 Design Storms

Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either short-duration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lower-intensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

■ Thunderstorms: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14-year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1-hour rainfall depth to create the distribution shown in Table 6-3 with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

Chapter 6 Hydrology

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

Land Use or Surface	Percent	Runoff Coefficients											
Characteristics	Impervious	2-у	2-year		ear	10-	year	25-	/ear	50-y	year	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Charache													
Streets Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.89	0.60	0.59	0.90	0.92	0.92	0.94	0.70	0.95	0.95	0.70	0.96
	,								- 1				
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Hydrology Chapter 6

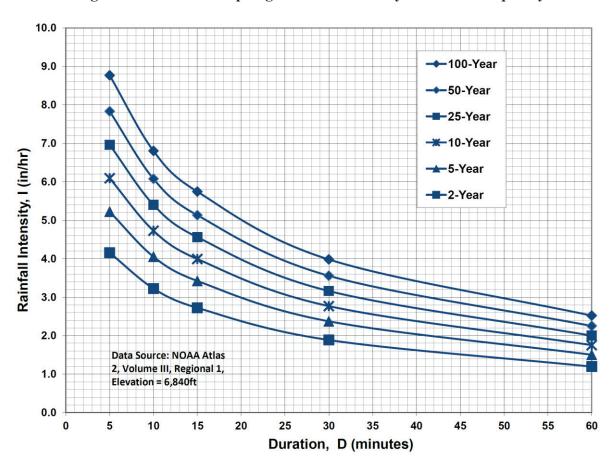


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations

$$I_{100} = -2.52 \ln(D) + 12.735$$

$$I_{50} = -2.25 \ln(D) + 11.375$$

$$I_{25} = -2.00 \ln(D) + 10.111$$

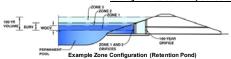
$$I_{10} = -1.75 \ln(D) + 8.847$$

$$I_5 = -1.50 \ln(D) + 7.583$$

$$I_2 = -1.19 \ln(D) + 6.035$$

Note: Values calculated by equations may not precisely duplicate values read from figure.

APPENDIX C


Water Quality and Detention Calculations Runoff Summary and Maximum Detention Release Rates

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

Project: Falcon Commerce Center MDDP

Basin ID: Sub-Regional Detention Basin (Volume shown for Total Detention Basin Volume is not correct because Overtdetaining is planned)

Watershed Information

vatersiieu	IIIIOIIIIduoii		
	Selected BMP Type =	EDB	

5.00 acres	=	Watershed Area =
800 ft	=	Watershed Length =
500 ft	=	Watershed Length to Centroid =
030 ft/ft	=	Watershed Slope =
.20% percent	=	Watershed Imperviousness =
.0% percent	=	Percentage Hydrologic Soil Group A =
0.0% percent	=	Percentage Hydrologic Soil Group B =
.0% percent	=	Percentage Hydrologic Soil Groups C/D =
n n hours	_[Target WOO/ Prain Time -

Location for 1-hr Rainfall Depths = User Input

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.								
Water Quality Capture Volume (WQCV) =	3.571	acre-feet						
Excess Urban Runoff Volume (EURV) =	11.697	acre-feet						
2-yr Runoff Volume (P1 = 1.19 in.) =	10.451	acre-feet						
5-yr Runoff Volume (P1 = 1.5 in.) =	13.869	acre-feet						
10-yr Runoff Volume (P1 = 1.75 in.) =	16.707	acre-feet						
25-yr Runoff Volume (P1 = 2 in.) =	19.888	acre-feet						
50-yr Runoff Volume (P1 = 2.25 in.) =	22.824	acre-feet						
100-yr Runoff Volume (P1 = 2.52 in.) =	26.203	acre-feet						
500-vr Runoff Volume (P1 = 3.1 in.) =	33.118	acre-feet						

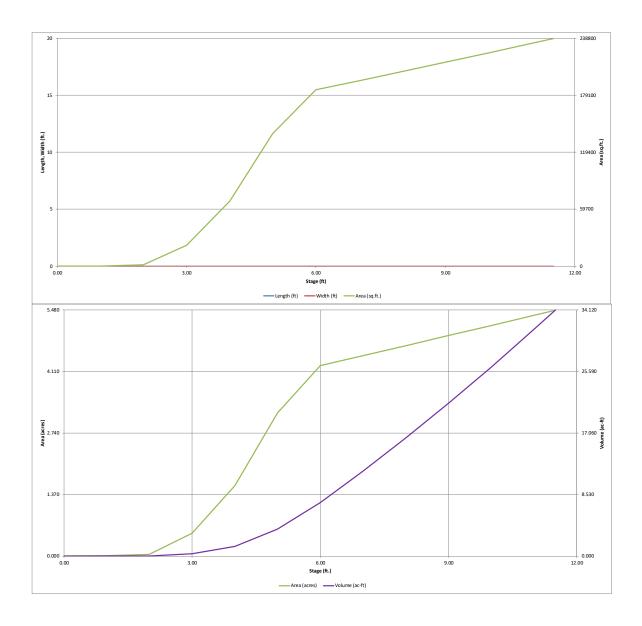
100-yr Runoff Volume (P1 = 2.52 in.) = 26.203 acre-feet acre-feet 500-yr Runoff Volume (P1 = 3.1 in.) = 33.118 acre-feet Approximate 5-yr Detention Volume = 9.245 acre-feet Approximate 10-yr Detention Volume = 15.196 acre-feet Approximate 25-yr Detention Volume = 16.290 acre-feet Approximate 50-yr Detention Volume = 16.924 acre-feet Approximate 100-yr Detention Volume = 17.883 acre-feet Approximate 100-yr Detention Volume = 17.883

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	3.571	acre-feet
Zone 2 Volume (EURV - Zone 1) =	8.126	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	6.186	acre-feet
Total Detention Basin Volume =	17.883	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A_{ISV}) =	-[user	ft²
Surcharge Volume Length (L_{ISV}) =	•[user	ft
Surcharge Volume Width (W _{ISV}) =	•	user	ft
Depth of Basin Floor (H_{FLOOR}) =	٠	user	ft
Length of Basin Floor (L_{FLOOR}) =	L	user	ft
Width of Basin Floor (W_{FLOOR}) =	L	user	ft
Area of Basin Floor (A_{FLOOR}) =	-		ft ²
Volume of Basin Floor (V _{FLOOR}) =	•	user	ft ³
Depth of Main Basin (H _{MAIN}) =	•	user	ft
Length of Main Basin (L_{MAIN}) =	•	user	ft
Width of Main Basin (W_{MAIN}) =	•	user	ft
Area of Main Basin (A _{MAIN}) =	-[user	ft²
Volume of Main Basin (V _{MAIN}) =	·	user	ft ³
Calculated Total Basin Volume (V_{total}) =	·	user	acre-fee

Depth Increment =	

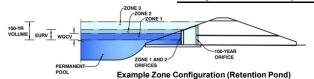

acre-feet acre-feet

1.19 inches 1.50 inches 1.75 inches

2.00 inches 2.25 inches 2.52 inches 3.10 inches

	Depth Increment =		π				0.000.001			
		61	Optional		145 81		Optional		Makasas	
	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft ³)	(ac-ft)
	Top of Micropool		0.00				475	0.011		
			1.00	-			475	0.011	475	0.011
			2.00				1,600	0.037	1,512	0.035
			3.00				22,029	0.506	13,327	0.306
			4.00				68,279	1.567	58,481	1.343
			5.00	-	-	-	138,865	3.188	162,052	3.720
			6.00				184,678	4.240	323,824	7.434
			7.00			-	194,243	4.459	513,284	11.783
			8.00	-			203,894	4.681	712,353	16.353
			9.00	-	-		213,652	4.905	921,126	21.146
			10.00		-		223,488	5.131	1,139,696	26.164
			11.00				233,450	5.359	1,368,165	31.409
			11.50	-			238,455	5.474	1,486,141	34.117
				-						
S				-						
				-						
				-		-				
				-						
				-		-		1	1	1
				-				1		1
				_				l	1	
				-				1	1	1
								1		l
								 		ļ
				-		-		1	1	1
				-						
				-				l		l
								l		l
				-						
						-				
				-						
				-						
				_		-				
				-						
				-						
				_						
				-						
				_						
				_						
				-						
				_						
				-						
				-						
				-						
				-		-				
				-				l	1	1
				-				<u></u>	<u></u>	<u></u>
				-					1	
				-						
				-		-		l	1	1
								l —	-	l —
				-		-				
				-	-	-				
				-		-				
				-		-				
				-	-					
				1						
				-		-				
				-						
				1 1		-		ļ — —	1	
				-				-		-
				-		-		-	-	-
				-		-		-		-
								l	1	
				-				l		l
				-	-					
					-					
				-						
				1						
				-		-				
				-						
				1						
				-	-	-				
				-						
				-						
				-						
						-				
				-						
				-						
				-					-	
				-				 		
									-	
				-					-	
				-		-			-	
				-		-		l	1	l
				-				 	 	
				-				l		l

19036 MHFD-Detention_v4 03.xlsm, Basin



19036 MHFD-Detention_v4 03.xlsm, Basin 9/11/2020, 11:58 AM

DETENTION BASIN OUTL

Project: Falcon Commerce Center MDDP

Basin ID: Sub-Regional Detention Basin (Volume shown for Total Detention Basin Volume is not correct because Overtdetaining is planned)

	Estimated	Estimated	
_	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	4.96	3.571	Orifice Plate
Zone 2 (EURV)	6.99	8.126	Orifice Plate
Zone 3 (100-year)	8.33	6.186	Weir&Pipe (Restrict)
•	Total (all zones)	17.883	

<u>User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)</u>

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) Underdrain Orifice Diameter = inches

Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Centroid =

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

inches

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = 8.00 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A inches N/A

Calculated Parameters for Plate WQ Orifice Area per Row = ft² N/A Elliptical Half-Width = N/A feet Elliptical Slot Centroid = N/A feet Elliptical Slot Area = ft² N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	2.00	3.50	5.00	6.50			
Orifice Area (sq. inches)	6.00	7.00	18.00	36.00	36.00			

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

Orifice Plate: Orifice Area per Row =

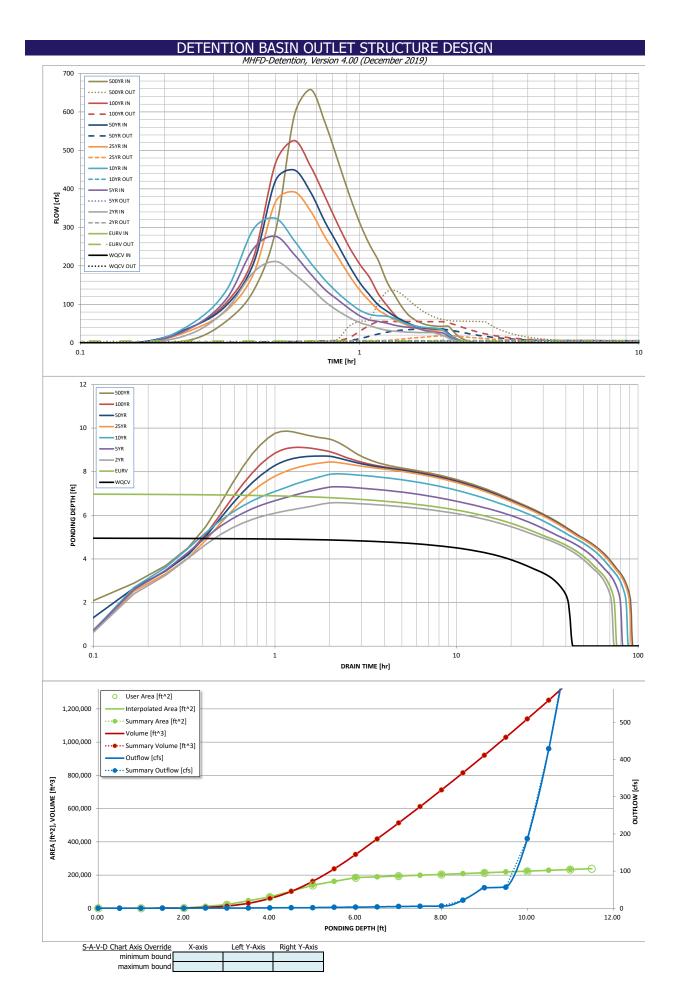
Not Selected Not Selected Invert of Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) N/A N/A Depth at top of Zone using Vertical Orifice = N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Diameter = inches N/A N/A

Calculated Parameters for Vertical Orifice Not Selected Not Selected Vertical Orifice Area N/A N/A Vertical Orifice Centroid =

User I

r Input: Overflow Weir (Dropbox with Flat or	Calculated Parameters for Overflow Weir					
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	8.10	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	8.10	N/A	feet
Overflow Weir Front Edge Length =	10.00	N/A	feet Overflow Weir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	7.16	N/A	
Horiz. Length of Weir Sides =	4.00	N/A	feet Overflow Grate Open Area w/o Debris =	28.00	N/A	ft ²
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area	14.00	N/A	ft ²
Debris Clogging % =	50%	N/A	%			

User Input: O


er Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, Re	estrictor Plate, or R	ectangular Orifice)	Calculated Parameters for Outlet Pipe w/ Flow Restriction			<u>ate</u>
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.50	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	3.91	N/A	ft ²
Outlet Pipe Diameter =	36.00	N/A	inches	Outlet Orifice Centroid =	0.93	N/A	feet
Restrictor Plate Height Above Pipe Invert =	19.50		inches Half-Central Angle of	Restrictor Plate on Pipe =	1.65	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

out. Emergency Spiliway (Rectangular or	Trapczoladi)	
Spillway Invert Stage=	9.50	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	120.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	0.00	feet

	Calculated Parameters for Spillway			
Spillway Design Flow Depth=	1.25	feet		
Stage at Top of Freeboard =		feet		
Basin Area at Top of Freeboard =	5.30	acres		
Basin Volume at Top of Freeboard =	30.08	acre-ft		

Routed Hydrograph Results	The user can ove	rride the default CUI	HP hydrographs and	d runoff volumes by	entering new value	es in the Inflow Hyd	lrographs table (Col	umns W through A	1 <i>F).</i>
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.10
CUHP Runoff Volume (acre-ft) =	3.571	11.697	10.451	13.869	16.707	19.888	22.824	26.203	33.118
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	10.451	13.869	16.707	19.888	22.824	26.203	33.118
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	17.5	48.2	72.5	129.3	162.0	205.9	280.8
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.13	0.36	0.54	0.96	1.20	1.53	2.08
Peak Inflow Q (cfs) =	N/A	N/A	211.3	276.6	323.3	391.9	449.2	525.3	658.1
Peak Outflow Q (cfs) =	1.6	4.7	3.9	5.2	5.9	18.5	35.8	55.5	135.9
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.1	0.1	0.1	0.2	0.3	0.5
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.4	1.0	1.7	1.8
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	67	65	71	76	78	77	75	73
Time to Drain 99% of Inflow Volume (hours) =	41	72	70	77	83	86	85	85	84
Maximum Ponding Depth (ft) =	4.96	6.99	6.58	7.31	7.90	8.44	8.71	9.12	9.86
Area at Maximum Ponding Depth (acres) =	3.12	4.46	4.36	4.53	4.66	4.78	4.84	4.93	5.10
Maximum Volume Stored (acre-ft) =	3.594	11.739	9.886	13.131	15.840	18.435	19.733	21.687	25.397

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

The Decel									d in a separate pi		CUIHD
		SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
\$\begin{align*} \begin{align*} \begin{align*} \text{DDSSO} & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 \\ \end{align*} \begin{align*} \text{DDSS} & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 \\ \end{align*} \begin{align*} \text{DDSS} & 0.00 & 0.00 & 0.00 & 0.44 & 0.08 & 0.09 & 0.00 & 0.00 \\ \end{align*} \begin{align*} \text{DDSS} & 0.00 & 0.00 & 0.00 & 110.44 & 114.31 & 117.04 & 64.77 & 97.68 & 104.90 \\ \end{align*} \begin{align*} \text{DDSS} & 0.00 & 0.00 & 0.00 & 110.44 & 274.83 & 285.90 & 179.20 & 295.96 & 222.22 & 296.97 \\ \end{align*} \begin{align*} \text{DDSS} & 0.00 & 0.00 & 0.00 & 178.44 & 276.93 & 295.90 & 179.20 & 491.88 & 295.33 & 688.00 \\ \end{align*} \begin{align*} \text{DDSS} & 0.00 & 0.00 & 0.00 & 178.44 & 270.08 & 285.31 & 391.92 & 491.88 & 295.33 & 688.00 \\ \end{align*} \begin{align*} \text{DDSS} & 0.00 & 0.00 & 0.00 & 178.44 & 270.08 & 285.31 & 391.92 & 491.88 & 295.33 & 688.00 \\ \end{align*} \begin{align*} \text{DDSS} & 0.00 & 0.00 & 0.00 & 187.43 & 180.80 & 276.09 & 391.09 & 490.00 & 274.00 \\ \end{align*} \begin{align*} \text{DDSS} & 0.00 & 0.00 & 0.00 & 187.43 & 180.80 & 276.09 & 391.09 & 390.17 & 386.39 \\ \end{align*} \begin{align*} \text{DDSS} & 0.00 & 0.00 & 0.00 & 187.43 & 180.80 & 176.44 & 276.09 & 391.09 & 390.17 & 386.39 \\ \end{align*} \begin{align*} \text{DDSS} & 0.00 & 0.00 & 0.00 & 187.43 & 180.80 & 176.44 & 176.90 & 276.00 & 390.17 & 386.39 \\ \end{align*} \text{DDSS} & 0.00 & 0.00 & 0.00 & 187.43 & 180.20 & 176.44 & 176.22 & 175.55 & 390.17 & 386.19 \\ \end{align*} \text{DDSS} & 0.00 & 0.00 & 187.44 & 180.90 & 274.43 & 176.22 & 175.55 & 180.52 & 175.94 \\ \end{align*} \text{DDSS} & 0.00 & 0.00 & 177.79 & 55.90 & 70.97 & 65.40 & 891.6 & 126.82 & 179.99 \\ \end{align*} \text{DDSS} & 0.00 & 0.00 & 177.79 & 55.90 & 70.97 & 65.40 & 891.6 & 126.82 & 179.99 \\ \end{align*} \text{DDSS} & 0.00 & 0.00 & 177.73 & 390.55 & 177.8 & 490.9 & 994.6 & 46.55	ime Interval		WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
0.1500 0.00	5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Description		0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.270		0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	2.78	0.28	8.35
0.2500 0.000 0.000 183.45 244.93 295.90 179.20 206.56 222.3 290.97 0.2500 0.000 0.000 111.44 276.83 333.31 86.59 82.21 290.97 0.2500 0.000 0.000 10.00 178.64 238.08 265.31 391.92 4491.80 253.3 574.02 0.4500 0.000 0.000 10.78 138.87 268.16 394.69 391.69 499.09 574.02 0.4500 0.000 0.000 10.78 31 318.87 163.80 276.09 315.28 813.48 476.19 0.5500 0.000 0.000 0.00 833.3 112.87 163.80 276.09 315.28 813.48 476.19 0.5500 0.000 0.000 661.88 89.02 104.68 176.14 201.33 249.71 312.36 1.1000 0.000 0.000 12.21 70.38 15.05 175.21 175.14 201.33 249.71 312.36 1.10500 0.000 0.000 1.21 70.70 85.09 70.57 185.88 816.15 172.4 175.14 175.			0.00	0.00	24.67		49.67	33.32	41.46	40.52	56.78
0.53000											
0.3500 0.00 0.00 178.64 229.08 265.31 391.92 4491.8 555.31 658.09 0.00 0.00 0.00 0.00 178.81 138.87 183.88 276.09 135.28 381.86 476.19 0.5500 0.00 0.00 0.00 178.81 138.87 183.88 276.09 135.28 381.86 476.19 0.5500 0.00 0.00 0.00 183.33 112.28 130.38 12.24.86 25.69 309.17 386.39 10.00 0.00 0.00 0.00 183.33 112.28 130.38 12.24 52.24 56 25.60 209.17 312.36 10.00 0.00 0.00 0.00 12.81 70.38 85.05 117.21 117.04 204.60 25.60 11.05500 0.00 0.00 0.00 12.81 70.38 85.05 117.21 117.04 204.60 25.60 11.05500 0.00 0.00 0.00 181.8 85.07 7 24.55 119.22 115.15 170.44 226.00 11.05500 0.00 0.00 0.00 18.18 85.07 7 24.55 119.22 115.15 170.44 211.76 11.00 0.00 0.00 0.00 23.85 51.10 49.34 72.15 189.22 115.15 170.44 211.76 11.1500 0.00 0.00 0.00 22.85 51.10 49.34 72.15 88.48 89.16 128.82 139.59 11.1500 0.00 0.00 0.00 22.85 51.10 49.34 72.15 89.02 97.91 124.45 11.3500 0.00 0.00 0.00 22.65 66 42.47 54.48 51.88 99.44 55.35 71.74 11.3500 0.00 0.00 0.00 28.66 42.47 54.48 51.88 99.44 55.35 71.74 11.3500 0.00 0.00 0.00 25.69 34.44 41.11 13.55 40.12 36.47 44.57 11.3500 0.00 0.00 0.00 25.69 34.44 41.11 13.55 40.12 36.47 44.57 11.3500 0.00 0.00 0.00 25.69 34.44 41.11 13.55 40.12 36.47 44.57 11.3500 0.00 0.00 0.00 22.46 26.99 34.44 41.11 13.55 40.12 36.47 44.57 11.3500 0.00 0.00 0.00 22.46 26.99 34.44 41.11 13.55 40.12 36.47 44.57 11.3500 0.00 0.00 0.00 22.46 26.91 36.44 41.11 13.55 40.12 36.47 44.57 11.3500 0.00 0.00 0.00 25.67 28.30 38.39 39.33 33.25 37.78 34.70 44.88 11.5500 0.00 0.00 0.00 25.67 28.30 38.30 39.31 33.55 37.78 34.70 44.89 11.3500 0.00 0.00 0.00 25.67 28.30 38.30 39.31 33.55 37.78 34.70 44.57 11.3500 0.00 0.00 0.00 25.67 28.30 38.30 39.31 33.55 37.78 34.70 44.57 11.3500 0.00 0.00 0.00 12.57 16.85 21.36 0.00 0.00 0.00 22.46 26.91 30.44 41.11 35.56 0.21 36.47 14.22 36.47 14											
0-40-00 0.00 0.00 142.57 179.31 208.16 392.66 391.69 491.90 574.02 0.5500 0.00 0.00 0.00 170.83 11867 163.80 224.36 1256.90 391.73 386.38 0.5500 0.00 0.00 0.00 6518 303 112.28 193.38 224.36 1256.90 391.73 386.38 112.00 0.5500 0.00 0.00 0.00 6518 503 112.28 193.38 1254.36 1256.90 391.73 386.31 112.00 0.00 0.00 0.00 0.00 152.81 70.38 65.05 137.21 157.64 224.86 256.00 11.0500 0.00 0.00 0.00 152.81 70.38 65.05 137.21 157.64 224.80 256.00 11.0500 0.00 0.00 0.00 152.81 70.38 65.05 137.21 157.64 224.80 256.00 11.0500 0.00 0.00 0.00 325 55.01 0.93 77 425 199.22 125.35 170.54 2213.76 11.00 0.00 0.00 0.00 325 55.01 0.93 77 425 199.22 125.35 170.54 2213.76 11.00 0.00 0.00 0.00 325 55.01 0.93 17.21 58.30 97.91 124.45 11.00 0.00 0.00 0.00 325 455 51.10 69.34 72.15 83.02 97.91 124.45 11.00 0.00 0.00 0.00 326 66 42.77 54.88 15.88 93.46 126.25 193.90 11.5500 0.00 0.00 0.00 226 66 42.77 54.88 15.88 93.45 56.35 71.74 11.00 0.00 0.00 0.00 26.66 42.77 53.08 18.88 94.16 40.23 51.16 11.00 11.00 0.00 0.00 0.00 26.69 33.41 41.11 35.35 42.12 35.47 46.37 11.5500 0.00 0.00 0.00 25.57 30.89 39.34 33.35 37.78 34.70 44.38 11.500 0.00 0.00 0.00 25.57 30.89 39.34 33.35 37.78 34.70 44.38 11.500 0.00 0.00 0.00 25.57 30.89 39.34 33.16 33.55 37.36 34.70 44.38 11.500 0.00 0.00 0.00 25.57 30.89 39.34 33.16 33.55 37.36 34.70 44.38 11.500 0.00 0.00 0.00 12.57 16.85 12.36 12.35 12.44 12.35 43.35 33.81 42.20 12.55 12.44 12.35 43.25 12.55 12.44 12.35 43.25 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12.55 12.44 12.35 12											
0.45,00											
0.550,00 0.00 0.00 8353 112.28 130.38 224.36 256.99 390.17 386.39 0.550,00 0.00 0.00 0.00 152.81 70.38 85.05 1475.14 175.14 175.04 1204.60 256.00 1.005,00 0.00 0.00 0.00 152.81 70.38 85.05 1475.12 157.04 1204.60 256.00 1.005,00 0.00 0.00 0.00 152.81 70.38 85.05 1475.12 157.04 1204.60 256.00 1.105,00 0.00 0.00 0.00 37.70 55.59 70.57 85.48 98.16 125.82 213.76 115.00 0.00 0.00 0.00 37.70 55.59 70.57 85.48 98.16 125.82 137.91 115.00 0.00 0.00 0.00 32.85 51.10 663.48 60.09 68.07 73.28 147.44 115.00 0.00 0.00 0.00 130.22 45.88 81.34 60.09 68.07 73.28 93.28 115.00 0.00 0.00 0.00 22.85 6 142.74 54.48 60.09 68.07 73.28 93.28 115.00 0.00 0.00 0.00 27.73 40.32 45.98 15.18 51.89 59.44 55.3 71.74 13.00 0.00 0.00 0.00 27.73 40.32 45.98 15.18 15.89 59.45 46.55 59.36 13.59 0.00 0.00 0.00 25.65 49.74 54.48 15.18 59.04 50.45 15.16 14.40 0.00 0.00 0.00 25.65 49.34 41 41.11 35.25 40.12 35.47 44.01 40.25 15.16 15.15 15.10 0.00 0.00 0.00 25.57 38.39 39.43 32.32 37.78 34.70 44.08 15.50 0.00 0.00 0.00 25.57 38.39 39.43 32.32 37.78 34.70 44.08 15.50 0.00 0.00 0.00 25.26 57 38.39 39.34 32.18 35.53 33.40 43.15 15.50 0.00 0.00 0.00 25.24 56 59.35 13.64 13.16 33.58 33.31 42.29 32.20 0.00 0.00 0.00 12.27 56 59.35 13.35 13.16 14.92 14.22 18.00 22.00 0.00 0.00 0.00 12.27 56 59.35 13.35 13.15 14.92 14.22 18.00 22.00 0.00 0.00 0.00 12.27 56 59.35 13.35 13.15 14.92 14.22 18.00 22.00 0.00 0.00 0.00 12.27 56 59.35 13.35 13.15 14.92 14.22 18.00 22.00 0.00 0.00 0.00 12.27 56 59.35 10.33 13.15 14.92 14.22 18.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											
10.55,00											
100.00											
1.150.00											
110,000											
1:15:00											
1.20:00			0.00	0.00	32.85	51.10	69.34	72.15	83.02	97.91	124.45
130:00			0.00	0.00	30.22	45.98	63.48	60.09	69.07	73.28	93.28
1:35:00		1:25:00	0.00	0.00	28.66	42.47	54.48	51.80	59.44	56.35	71.74
14:00:00		1:30:00	0.00	0.00	27.73	40.32	47.92	44.09	50.45	46.65	59.36
1.45.00		1:35:00	0.00	0.00	27.07	39.05	43.74	38.58	44.01		51.16
1:50:00											
1:55:00											
2:00:00											
2-05:00											
2:10:00											
2:15:00											
2:20:00 0.00 0.00 1.18 3.43 4.46 4.52 5.12 4.87 6.17 2:25:00 0.00 0.00 1.18 1.86 2.33 2.249 2.82 2.68 3.39 2:35:00 0.00											
2:25:00 0.00 0.00 0.18 1.86 2.33 2.49 2.82 2.68 3.39 2:30:00 0.00 0.00 0.00 0.01 0.17 0.19 0.23 1.07 1.20 1.14 1.44 2:35:00 0.00											
2:30:00 0.00 0.00 0.14 0.78 0.93 1.07 1.20 1.14 1.44 2:35:00 0.00											
2:40:00			0.00	0.00	0.46	0.78	0.93	1.07	1.20	1.14	1.44
2:45:00 0.00		2:35:00	0.00	0.00	0.11	0.17	0.19	0.23	0.26	0.25	0.31
2:50:00 0.00		2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2:55:00 0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
3:00:00											
3:05:00											
3:10:00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											
3:15:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00											
3:20:00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											
3:25:00											
3:30:00											
3:35:00 0.00											
3:45:00 0.00		3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:50:00 0.00		3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:55:00 0.00	\dashv		0.00	0.00	0.00			0.00	0.00	0.00	0.00
4:00:00 0.00											
4:05:00 0.00											
4:10:00 0.00											
4:15:00 0.00											
4:25:00 0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:30:00 0.00		4:20:00									
4:35:00 0.00											
4:40:00 0.00											
4:50:00 0.00		4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:55:00 0.00											
5:00:00 0.00											
5:10:00 0.00		5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:15:00 0.00											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
5:30:00 0.00		5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:35:00 0.00											
5:40:00 0.00											
5:50:00 0.00		5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:55:00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
	_										

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

, , , , , , , , , , , , , , , , , , ,	compare the summ	.,.				
Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow
Description	[ft]	[ft²]	[acres]	[ft ³]	[ac-ft]	[cfs]
		475	0.011	0	0.000	0.00
	0.00					
	0.50	475	0.011	238	0.005	0.14
	1.00	475	0.011	475	0.011	0.20
	1.50	1,038	0.024	853	0.020	0.25
	2.00	1,600	0.037	1,512	0.035	0.28
	2.50	11,814	0.271	4,866	0.112	0.48
	3.00	22,029	0.506	13,327	0.306	0.58
	3.50	45,154	1.037	30,122	0.692	0.66
	4.00	68,279	1.567	58,481	1.343	1.16
	4.50	103,572	2.378	101,443	2.329	1.40
	5.00	138,865	3.188	162,052	3.720	1.59
	5.50	161,771	3.714	237,211	5.446	2.61
	6.00	184,678	4.240	323,824	7.434	3.11
	6.50	189,460	4.349	417,358	9.581	3.52
	7.00	194,243	4.459	513,284	11.783	4.73
	7.50	199,068	4.570	611,612	14.041	5.41
	8.00	203,894	4.681	712,353	16.353	5.98
	8.50	208,773	4.793	815,520	18.722	21.76
	9.00	213,652	4.905	921,126	21.146	55.10
	9.50	218,570	5.018	1,029,181	23.627	56.68
	10.00	223,488	5.131	1,139,696	26.164	187.20
	10.50	228,469	5.245	1,252,685	28.758	429.32
	11.00	233,450	5.359	1,368,165	31.409	749.01
				1		1
				 		
				1		
				İ		İ
_						
				 		
				-		
				 		
						İ
				ļ		
						1
		-		-		
		L	L	I	·	l

For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.

Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

Falcon Commerce Center - MDDP Runoff Summary and Maximum Detention Release Rates

Existing Site Runoff from Site

	Design Point	Q_5	Q ₁₀₀
To Monument Creek	DP EX-D	4.4 cfs	32.1 cfs
To Monument Creek	DP EX-E	6.8 cfs	32.2 cfs
To Jackson Creek	EP E4	27.2 cfs	153.8 cfs
Total Runoff Ultimately to Monument Creek	EX-D, EX-E, E4	38.5 cfs	218.1 cfs
To Site Low Point (Infiltrates)	DP E7	8.5 cfs	65.6 cfs

Regional Detention Basin Release Rates

					Total	Runoff			
Storm Event	Design Point	С	A		Sum	i		Ex. Pilot Detent	Total
				T_{c}	C*A	(in/hr)	Q	Q	Q
2 Year	E4	0.05	111.51ac	49.0min	6.09	1.4	8.6 cfs		
10 Year	E4	0.22		47.0min	24.35	2.1	51.4 cfs		
25 Year	E4	0.31		45.0min	34.12	2.5	85.2 cfs		
50 Year	E4	0.36		43.0min	39.81	2.9	115.9 cfs		
2 Year	42	0.05	57.22ac	40.5min	3.06	1.6	5.0 cfs	0.3 cfs	5.3 cfs
10 Year	42	0.22		37.5min	12.37	2.5	31.0 cfs	0.5 cfs	31.5 cfs
25 Year	42	0.30		37.0min	17.40	2.9	50.3 cfs	4.8 cfs	55.1 cfs
50 Year	42	0.36		36.0min	20.33	3.3	67.3 cfs	12.1 cfs	79.4 cfs

Equations (taken from Fig 6-5, City of Colorado Springs DCM):

 $i_2 = -1.19 \ln(T_c) + 6.035 \\ i_{10} = -1.75 \ln(T_c) + 8.847$ $i_{25} = -2.00 \ln(T_c) + 10.111 \\ i_{50} = -2.25 \ln(T_c) + 11.375$

Maximum Detention Release Rates at Common Design Point: Jackson Creek at Santa Fe Trail

	Design Point	\mathbf{Q}_2	\mathbf{Q}_{5}	Q ₁₀	Q_{25}	Q_{50}	Q_{100}
Existing Condition	E4	8.6 cfs	27.2 cfs	51.4 cfs	85.2 cfs	115.9 cfs	153.8 cfs
Proposed Condition: Flow to DP (not including Detention) Maximum Detention Release Rate	42	5.3 cfs	14.8 cfs	31.5 cfs	55.1 cfs 30.2 cfs	79.4 cfs 36.5 cfs	98.2 cfs 55.6 cfs
Maximum Detention Release Rate		3.3 CIS	12.5 CIS	19.9 CIS	30.2 CIS	30.5 CIS	55.6 CIS
Proposed Condition: Total Flow to DP	42	8.6 cfs	27.2 cfs	51.4 cfs	85.2 cfs	115.9 cfs	153.8 cfs

Falcon Commerce Center **Detention Calculations**

Presedementation / Forebay Sizing

			Total Req'd			Required	F	orebay Des	sign	Discharge	Calc'd Open	
		Detention	Forebay Vol	Tributary	% Total	Forebay		Depth		Design Flow	Width	Design
Forebay	100 Yr Flow	WQCV	3.0% WQCV	Area	Trib Area	Volume	Area	30" Max	Volume	2.0% 100yr	(1" min)	Width
NW - DP12	446.9cfs	155,624cf	4,669cf	102.18ac	81.5%	3,807cf	1,680sf	2.50-ft	4,200 cf	8.94 cfs	15.0-inch	15.0-inch
North - C2	64.7cfs			11.85ac	9.5%	442cf	320sf	1.50-ft	480 cf	1.29 cfs	6.4-inch	7.0-inch
East - DP30	52.9cfs			11.27ac	9.0%	420cf	330sf	1.50-ft	495 cf	1.06 cfs	5.9-inch	6.0-inch
					0.0%							
Totals		155.624cf	4.669cf	125.30ac	100.0%							

Opening Width Equation for Rectangular Opening

 $L = Q / (CH^{1.5}) \times 12 + 0.2 \times H \times 12$ (UD-BMP Spreadsheet -- EDB tab)

Flow = $(1.49/n)AR_n^{2/3} S^{1/2}$

Trickle Channel Calculation

Location	100yr Flow	Req'd Flow	Bottom Width	Max. Flow Depth	Side Slope	Slope	Manning 'n'	Top Width	Flow Area	Wetted Perimeter	Hydraulic Radius	Flow Velocity	Capacity
		1.0% 100yr	Witti	Deptil	Stope			witti		i ei iiiletei	Raulus	Velocity	
NW - DP12	446.9cfs	4.5cfs	6.0 ft	0.50 ft	0.0:1	0.5%	0.013	6.0 ft	3.00 sf	7.0 ft	0.43 ft	4.6 ft/sec	13.8 cfs
North - C2	64.7cfs	0.6cfs	6.0 ft	0.50 ft	0.0:1	0.5%	0.013	6.0 ft	3.00 sf	7.0 ft	0.43 ft	4.6 ft/sec	13.8 cfs
East - DP30	52.9cfs	0.5cfs	4.0 ft	0.50 ft	0.0:1	0.5%	0.013	4.0 ft	2.00 sf	5.0 ft	0.40 ft	4.4 ft/sec	8.8 cfs

Equations:

b = width

d = depth

Perimeter (P) = $b+2d*(1+z^2)^{0.5}$ Area (A) = $b(d)+zd^2$

Velocity = $(1.49/n)R_n^{2/3} S^{1/2}$ z = side slope

S = Slope of the channel

n = Manning's number

R_n = Hydraulic Radius (Reynold's Number)

Detention Basin Outlet - Initial Surcharge Sizing

			Initial Surcharge Volume						
Detention		Minimun	n Required	Design					
Basin	WQCV	0.3% WQCV	Min. Depth	Area	Depth	Volume			
DP13	155,624 cf	467 cf	4.0-in	475 sf	12.0-in	475 cf			

Hydraulic Radius = A/P

Notes: ISV depth shall be 4" to 12" deep. Can not extend into trickle channel. (Section 4.1.3 ISV - City of Colo Springs DCM, Volume 1)

Emergency Spillway Calculation

Detention Area	100-yr Flow	Water Surf Elev	Crest Elev	Crest Length	Z	С	Flow Depth (H)	Calc'd Flow	Check
Detention- DP13	556 cfs	101.5	100.0	100 ft	4:1	3.0	1.50 ft	578 cfs	OK

Broad Crested Weir Equation (USDCM Eqn 12-20 and 12-21):

 $Q = CLH^{1.5} + 2x((2/5)CZH^{5/2})$

H = Head above weir crest, in ft

C = Weir coefficient, C = 3.0 (most cases)

Z = Side slope (horizontal:vertical)

L = Length of weir at Crest, in ft. Not including sideslopes.

Storage Chapter 13

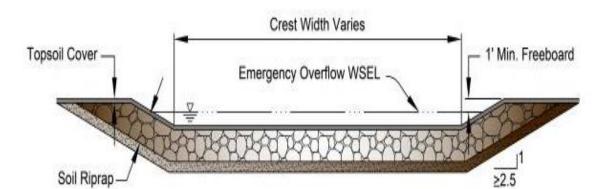
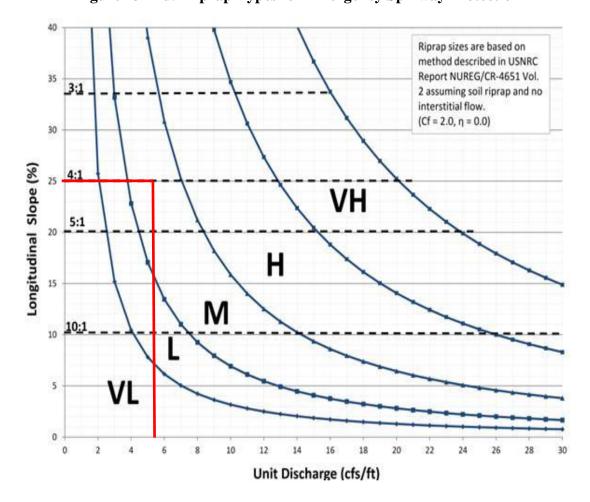



Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

APPENDIX D

Hydraulic Calculations
Inlet Summary and Calculations
Pipe Sizing Calculations and UD-Sewer Output

Version 4.05 Released March 2017

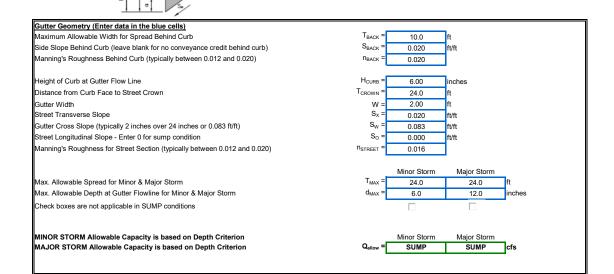
INLET MANAGEMENT

Norkshoot Protected

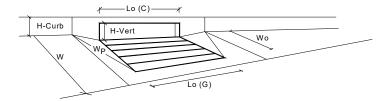
	Inlet 22	Inlet 26	Inlet 23	Inlet 50	Inlet 51
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN
nlet Application (Street or Area)	STREET	STREET	STREET	STREET	AREA
Hydraulic Condition	In Sump	In Sump	On Grade	On Grade	Swale
nlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type C
ER-DEFINED INPUT					
Jser-Defined Design Flows					
Minor Q _{Known} (cfs)	5.9	0.4	0.9	1.0	1.5
Major Q _{Known} (cfs)	12.0	0.9	1.8	2.0	8.3
Bypass (Carry-Over) Flow from Upstream					
eceive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
finor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0
ajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0
		•	•		
Vatershed Characteristics					
Subcatchment Area (acres)					
ercent Impervious					
IDOC C-II T					
NRCS Soil Type					
•					
Vatershed Profile					
Vatershed Profile Everland Slope (ft/ft)					
Vatershed Profile Overland Slope (ft/ft) Overland Length (ft)					
Vatershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft)					
Vatershed Profile Dverland Slope (ft/ft) Dverland Length (ft) Channel Slope (ft/ft)					
Vatershed Profile verland Slope (ft/ft) verland Length (ft) hannel Slope (ft/ft) hannel Length (ft) hannel Storm Rainfall Input					
Vatershed Profile Iverland Slope (ft/ft) Iverland Length (ft) Ihannel Slope (ft/ft) Ihannel Length (ft) Ilinor Storm Rainfall Input esign Storm Return Period, Tr (years)					
Vatershed Profile Diverland Slope (ft/ft) Diverland Length (ft) Channel Length (ft) Channel Length (ft) Alinor Storm Rainfall Input Design Storm Return Period, T, (years) Die-Hour Precipitation, P ₁ (inches)					
Vatershed Profile verland Slope (ft/ft) verland Length (ft) thannel Slope (ft/ft) thannel Length (ft) thannel Length (ft) thannel Length (ft) linor Storm Rainfall Input essign Storm Return Period, T _r (years) one-Hour Precipitation, P ₁ (inches)					
Vatershed Profile Everland Slope (ft/ft) Everland Length (ft) Evhannel Slope (ft/ft) Evhannel Length (ft) Elinor Storm Rainfall Input Essign Storm Return Period, Tr. (years)					

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	5.9	0.4	0.9	1.0	1.5
Major Total Design Peak Flow, Q (cfs)	12.0	0.9	1.8	2.0	8.3
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	0.0	0.0	0.0
Minor Storm (Calculated) Analysis of Flow Til	me				
C	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Q _p	N/A	N/A	N/A	N/A	N/A
Major Storm (Calculated) Analysis of Flow Tir	me				
C	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Q _p	N/A	N/A	N/A	N/A	N/A


Version 4.05 Released March 2017

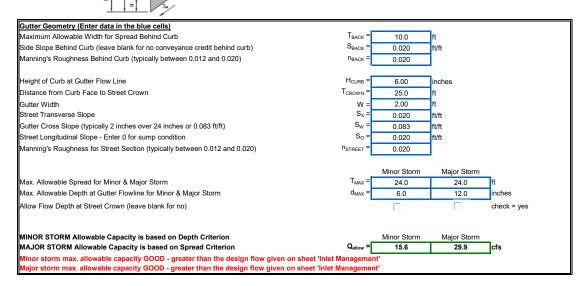
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Falcon Commerce Center MDDP
Inlet ID: Inlet 22

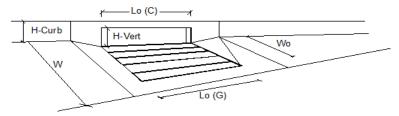
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Tra

INLET IN A SUMP OR SAG LOCATION Version 4.05 Released March 2017



nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _{PEAK REQUIRED} =	5.9	12.0	cfs
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	13.4	cfs
		MINOR	MAJOR	_
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	J
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	_
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.69	4
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.44	ft
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Low Head Performance Reduction (Calculated)	_	MINOR	MAJOR	_
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
ength of a Unit Curb Opening	L ₀ (C) =	10.00	10.00	feet
Curb Opening Information	-	MINOR	MAJOR	_
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	-
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Water Depth at Flowline (outside of local depression) Grate Information	Ponding Depth =	MINOR	MAJOR	Override Depths
Number of Unit Inlets (Grate or Curb Opening)	No =	1 6.0	7.3	inches
ocal Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
ype of Inlet	Type =		Curb Opening	
Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	_

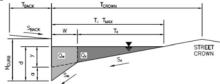
Version 4.05 Released March 2017

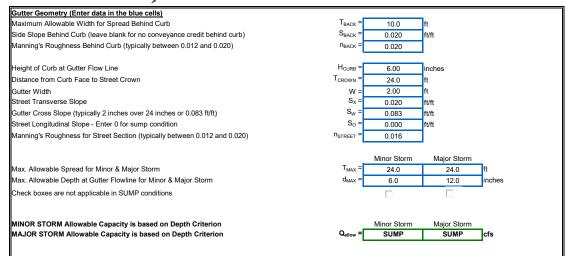

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

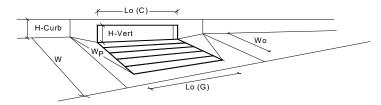
INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017


Design Information (Input)	00077 00 10 1		MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to contin	uous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Gra	ate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or	Curb Opening)	L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be grea	ter than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Gra	te (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curl	Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowal	ole Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity		Q =	0.9	1.8	cfs
Total Inlet Carry-Over Flow (flow by	passing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	100	%


Version 4.05 Released March 2017

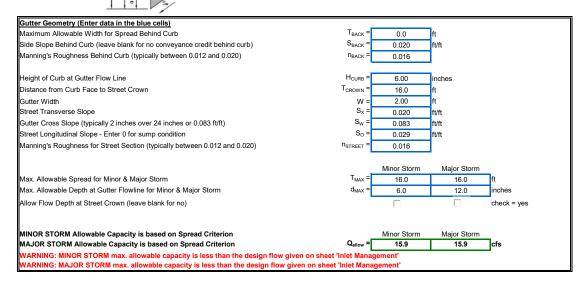
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Inlet ID: Falcon Commerce Center MDDP Inlet 26

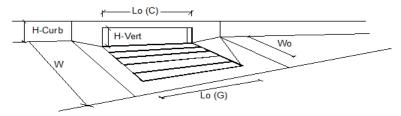
INLET IN A SUMP OR SAG LOCATION Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.3	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	L ₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	0.93	7
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	8.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _{PEAK REQUIRED} =	0.4	0.9	cfs


ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

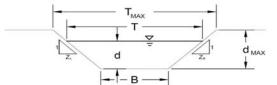
Project:
Inlet ID:


Falcon Commerce Center MDDP
Inlet 50

Todown
T, TMAX
T, TMAX
STREET
CROWN

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017



Design Information (Input)	ODOT To a Digital Organia	_	MINOR	MAJOR	_
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to contin	uous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Gra	ate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or	Curb Opening)	L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be grea	ter than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Gra	ite (typical min. value = 0.5)	C _f G =	N/A	N/A	
Clogging Factor for a Single Unit Curl	Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowal	ole Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity		Q =	1.0	2.0	cfs
Total Inlet Carry-Over Flow (flow by	passing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	100	%

AREA INLET IN A SWALE

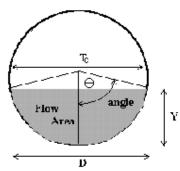
Falcon Commerce Center MDDP

Inlet 51

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

This worksheet uses the NRCS vegetal retardance method to determine Manning's n.

For more information see Section 7.2.3 of the USDCM.

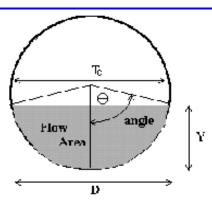

		Î- B					
Analysis of Trapezo	idal Grass-Lined Channel	Using SCS Method					
NRCS Vegetal Retard	dance (A, B, C, D, or E)		A, B, C, D or E		1		
Manning's n (Leave c	ell D16 blank to manually er	iter an n value)	n =	0.040			
Channel Invert Slope			S ₀ =	0.0180	ft/ft		
Bottom Width			B =	0.00	ft		
Left Side Slope			Z1 =	5.00	ft/ft		
Right Side Slope			Z2 =	5.00	ft/ft		
Check one of the follo			_	Choose One:			
Soil Type:	Max. Velocity (V _{MAX})	Max Froude No. (F _{MAX})	1	Non-Cohesive			
Non-Cohesive	5.0 fps	0.60	1	Cohesive			
Cohesive	7.0 fps	0.80	1	Paved			
Paved	N/A	N/A	L				
			r	Minor Storm	Major Storm	¬	
	Vidth of Channel for Minor 8	•	T _{MAX} =	18.00	18.00	feet	
Max. Allowable Water	r Depth in Channel for Mino	& Major Storm	d _{MAX} =	2.00	2.00	feet	
Allowable Channel (Capacity Based On Chann	al Gaomatry		Minor Storm	Major Storm		
	wable Capacity is based o		Q _{allow} =	74.5	74.5	cfs	
	wable Capacity is based of	•	d _{allow} =	1.80	1.80	ft	
MAJOR STORM AND	wable capacity is based t	iii rop widdi onterion	allow	1.00	1.00	⊣ "	
Water Depth in Char	nnel Based On Design Pea	ık Flow					
Design Peak Flow			Q ₀ =	1.5	8.3	cfs	
Water Depth			d =	0.42	0.79	feet	
II .			-			_	

AREA INLET IN A SWALE

Falcon Commerce Center MDDP Inlet 51 Inlet Design Information (Input) CDOT Type C • Inlet Type = CDOT Type C Type of Inlet Angle of Inclined Grate (must be <= 30 degrees) θ= 0.00 degrees Width of Grate W = 3.00 feet Length of Grate 3.00 Open Area Ratio $\textbf{A}_{\text{RATIO}}$ 0.70 Height of Inclined Grate 0.00 Clogging Factor 0.50 Grate Discharge Coefficient C_d 0.96 C_o Orifice Coefficient 0.64 Weir Coefficient 2.05 MAJOR MINOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) 0.42 0.79 Q_a = Total Inlet Interception Capacity (assumes clogged condition) 5.0 13.0 cfs Bypassed Flow, Q_b 0.0 0.0 Capture Percentage = $Q_a/Q_o = C\%$ 100 100

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation) MHFD-Culvert, Version 4.00 (May 2020) Project: Falcon Commerce Center Pipe ID: 597



	.
0.0100	ft/ft
0.0130	
24.00	inches
9.60	cfs
3.14	sq ft
6.28	ft
3.14	radians
22.68	cfs
1.48	radians
1.39	sq ft
1.99	ft
2.96	ft
0.91	ft
6.92	fps
9.60	cfs
42.3%	of full flow
1.46	supercritical
1.68	radians
1.79	sq ft
1.99	ft
1.11	ft
5.38	fps
1.00]
_	1.00

CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)

Project: Falcon Commerce Center

Pipe ID: Pipe S98

Design Information (Input)			_
Pipe Invert Slope	So=	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	2.10	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.17</td><td>radians</td></theta<3.14)<>	Theta =	1.17	radians
Flow area	An =	0.45	sq ft
Top width	Tn =	1.38	ft
Wetted perimeter	Pn =	1.75	ft
Flow depth	Yn =	0.45	ft
Flow velocity	Vn =	4.65	fps
Discharge	Qn =	2.10	cfs
Percent Full Flow	Flow =	19.9%	of full flow
Normal Depth Froude Number	Fr _n =	1.43	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.30</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.30	radians
Critical flow area	Ac=	0.58	sq ft
Critical top width	Tc=	1.44	ft
Critical flow depth	Yc =	0.55	ft
Critical flow velocity	Vc=	3.60	fps
Critical Depth Froude Number	Fr _c =	1.00	

Program:

UDSEWER Math Model Interface 2.1.1.4

8/20/2020 7:00:10 PM

Run Date:

UDSewer Results Summary

Project Title: 19036 Falcon Commerce Center

Project Description: Default system

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100

Rainfall Calculation Method: Formula

One Hour Depth (in): 1.00 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300

Used UDFCD Tc. Maximum: No

Sizer Constraints

Minimum Sewer Size (in): 12.00 **Maximum Depth to Rise Ratio:** 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

Backwater Calculations:

Tailwater Elevation (ft): 6719.85

Manhole Input Summary:

		Gi	ven Flow	Sub Basin Information								
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Kunoii	5yr Coefficient	Overland Coverland Slope (%)		1 1	Gutter Velocity (fps)		
OUTFALL 1	6717.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
S52	6735.75	447.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

0,20,2020			ODSEVVEIX Maiii iv	iodol ilitoridot	o results. 1000c	o i alcon commi	noc ocinci oc	12012020 10.0	· ·	
S51	6742.80	42.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S50-3	6742.98	405.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S50-2	6748.87	405.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S50-1	6752.73	405.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S50	6759.67	405.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S70	6778.00	163.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S69	6778.00	160.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S65	6784.00	84.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S64	6784.00	80.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S63	6784.00	3.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S68	6778.00	88.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S47	6763.83	244.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT 6	6763.00	35.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S45	6762.87	209.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT 5	6769.00	24.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S43	6763.66	184.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT 4	6769.00	47.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S40	6770.82	137.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S31	6781.25	124.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S30	6784.16	93.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT 1	6790.00	15.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S28	6793.60	77.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S26	6793.00	12.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S22	6793.00	12.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S21	6795.07	68.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S20-1	6799.44	67.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S20	6800.47	67.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT 2	6782.50	31.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT 3	6779.00	13.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Local	Contril	oution			Total Des	sign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	96.12	4.65	0.04	447.10	Surface Water Present (Upstream)
S52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	447.10	Surface Water Present (Downstream)
S51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	42.70	
S50-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	405.70	
S50-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	405.70	
S50-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	405.70	

0/20/2020			ODSEVVE	V Matri Mode	i iiileiiace iv	esults. 19	030 i alcoii c	John Herce Co	enter 00/20/2020 19.00
S50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	405.70
S70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	163.30
S69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	160.80
S65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	84.30
S64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	80.70
S63	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.90
S68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	88.90
S47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	244.30
LAT 6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	35.50
S45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	209.30
LAT 5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	24.40
S43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	184.90
LAT 4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	47.20
S40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	137.40
S31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	124.70
S30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	93.00
LAT 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.60
S28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	77.10
S26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.80
S22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.10
S21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	68.50
S20-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	67.80
S20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	67.80
LAT 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	31.50
LAT 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.40

Sewer Input Summary:

		Ele	evation		Loss C	oeffici	ents	Giver	Dimensio	ns
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
S52	34.70	6719.05	1.3	6719.50	0.013	0.03	1.00	CIRCULAR	72.00 in	72.00 in
S51	200.00	6722.53	1.0	6724.53	0.013	1.00	0.00	CIRCULAR	36.00 in	36.00 in
S50-3	75.00	6724.97	1.1	6725.79	0.013	0.27	0.25	CIRCULAR	72.00 in	72.00 in
S50-2	75.00	6730.76	1.1	6731.58	0.013	0.05	1.00	CIRCULAR	72.00 in	72.00 in
S50-1	75.00	6736.61	1.0	6737.36	0.013	0.05	1.00	CIRCULAR	72.00 in	72.00 in
S50	322.38	6742.36	1.0	6745.58	0.013	0.05	1.00	CIRCULAR	72.00 in	72.00 in
S70	706.00	6747.58	1.8	6760.29	0.013	0.21	0.00	CIRCULAR	48.00 in	48.00 in
S69	14.00	6761.00	1.6	6761.22	0.013	0.05	1.00	CIRCULAR	48.00 in	48.00 in
S65	577.00	6764.46	2.0	6776.00	0.013	1.32	0.25	CIRCULAR	42.00 in	42.00 in
S64	37.50	6776.50	1.5	6777.06	0.013	1.32	0.00	CIRCULAR	36.00 in	36.00 in
S63	13.00	6776.51	1.5	6776.70	0.013	1.32	0.00	CIRCULAR	18.00 in	18.00 in
S68	37.00	6762.21	1.5	6762.76	0.013	0.05	0.00	CIRCULAR	42.00 in	42.00 in

S47	263.20	6745.75	1.0	6748.38	0.013	0.43	0.52	CIRCULAR	72.00 in	72.00 in
LAT 6	50.00	6751.88	1.0	6752.38	0.013	0.69	0.00	CIRCULAR	30.00 in	30.00 in
S45	156.04	6749.39	0.8	6750.64	0.013	0.05	1.00	CIRCULAR	72.00 in	72.00 in
LAT 5	300.00	6753.64	1.5	6758.14	0.013	0.52	0.00	CIRCULAR	36.00 in	36.00 in
S43	365.32	6751.79	0.4	6753.25	0.013	0.05	0.32	CIRCULAR	60.00 in	60.00 in
LAT 4	300.00	6755.25	1.5	6759.75	0.013	0.53	0.00	CIRCULAR	36.00 in	36.00 in
S40	663.06	6753.89	1.2	6761.85	0.013	0.05	0.32	CIRCULAR	54.00 in	54.00 in
S31	294.78	6763.77	2.3	6770.55	0.013	0.53	1.00	CIRCULAR	42.00 in	42.00 in
S30	433.65	6773.04	1.0	6777.38	0.013	0.05	0.25	CIRCULAR	42.00 in	42.00 in
LAT 1	120.00	6778.88	1.5	6780.68	0.013	0.97	0.00	CIRCULAR	24.00 in	24.00 in
S28	289.83	6777.87	2.5	6785.12	0.013	0.05	0.27	CIRCULAR	36.00 in	36.00 in
S26	60.00	6786.62	1.5	6787.52	0.013	1.14	0.00	CIRCULAR	18.00 in	18.00 in
S22	40.00	6787.82	1.0	6788.22	0.013	1.14	0.00	CIRCULAR	18.00 in	18.00 in
S21	107.74	6786.63	1.8	6788.57	0.013	0.80	0.25	CIRCULAR	36.00 in	36.00 in
S20-1	221.44	6788.82	1.6	6792.36	0.013	0.05	0.25	CIRCULAR	36.00 in	36.00 in
S20	67.00	6792.64	1.5	6793.64	0.013	1.00	1.00	CIRCULAR	36.00 in	36.00 in
LAT 2	40.00	6771.55	1.5	6772.15	0.013	1.32	0.00	CIRCULAR	30.00 in	30.00 in
LAT 3	50.00	6764.35	1.5	6765.10	0.013	1.32	0.00	CIRCULAR	24.00 in	24.00 in

Sewer Flow Summary:

		Flow pacity	Critic	al Flow	Normal Flow						
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
S52	484.17	17.12	66.26	16.42	54.60	19.44	1.62	Supercritical	447.10	0.00	Velocity is Too High
S51	66.88	9.46	25.54	7.96	20.90	10.03	1.47	Pressurized	42.70	200.00	
S50-3	445.37	15.75	64.32	15.22	53.95	17.85	1.51	Supercritical	405.70	0.00	
S50-2	445.37	15.75	64.32	15.22	53.95	17.85	1.51	Supercritical	405.70	0.00	
S50-1	424.65	15.02	64.32	15.22	56.32	17.10	1.38	Supercritical	405.70	0.00	
S50	424.65	15.02	64.32	15.22	56.32	17.10	1.38	Supercritical	405.70	0.00	
S70	193.24	15.38	44.25	13.48	33.84	17.25	1.89	Supercritical Jump	163.30	171.68	
S69	182.19	14.50	44.07	13.31	35.03	16.36	1.73	Supercritical	160.80	0.00	
S65	142.67	14.83	34.33	10.01	23.23	15.44	2.17	Supercritical Jump	84.30	210.47	
S64	81.91	11.59	33.32	11.82	29.04	13.21	1.45	Pressurized	80.70	37.50	
S63	12.90	7.30	9.06	4.37	6.79	6.39	1.74	Pressurized	3.90	13.00	
S68	123.55	12.84	35.14	10.34	26.38	13.98	1.80	Pressurized	88.90	37.00	
S47	424.65	15.02	51.38	11.32	39.17	15.54	1.69	Pressurized	244.30	263.20	
LAT 6	41.13	8.38	24.26	8.35	21.50	9.43	1.28	Pressurized	35.50	50.00	
S45	379.82	13.43	47.48	10.58	38.15	13.76	1.52	Pressurized	209.30	156.04	
LAT 5	81.91	11.59	19.11	6.40	13.47	10.11	1	Supercritical	I	183.02	

							<u> </u>	Jump			
S43	165.16	8.41	60.00	9.42	60.00	9.42	0.00	Pressurized	184.90	365.32	
LAT 4	81.91	11.59	26.85	8.35	19.60	12.00	1.84	Pressurized	47.20	300.00	
S40	216.00	13.58	41.36	10.51	31.28	14.39	1.73	Supercritical Jump	137.40	500.99	
S31	152.99	15.90	39.35	13.31	28.81	17.73	2.12	Supercritical	124.70	0.00	
S30	100.88	10.49	35.80	10.64	31.80	11.90	1.30	Pressurized	93.00	433.65	
LAT 1	27.78	8.84	17.09	6.52	12.86	9.10	1.73	Pressurized	15.60	120.00	
S28	105.74	14.96	32.90	11.38	22.81	16.32	2.25	Supercritical Jump	77.10	111.40	
S26	12.90	7.30	16.13	7.67	14.63	8.32	1.28	Pressurized	12.80	60.00	
S22	10.53	5.96	18.00	6.85	18.00	6.85	0.00	Pressurized	12.10	40.00	
S21	89.73	12.69	31.64	10.41	23.55	13.98	1.88	Pressurized	68.50	107.74	
S20-1	84.59	11.97	31.52	10.33	24.39	13.30	1.74	Pressurized	67.80	221.44	
S20	81.91	11.59	31.52	10.33	24.98	12.95	1.66	Pressurized	67.80	67.00	
LAT 2	50.37	10.26	22.94	7.82	17.19	10.83	1.76	Pressurized	31.50	40.00	
LAT 3	27.78	8.84	15.81	6.10	11.75	8.76	1.77	Pressurized	13.40	50.00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
S52	447.10	CIRCULAR	72.00 in	72.00 in	72.00 in	72.00 in	72.00 in	72.00 in	28.27	
S51	42.70	CIRCULAR	36.00 in	36.00 in	33.00 in	33.00 in	36.00 in	36.00 in	7.07	
S50-3	405.70	CIRCULAR	72.00 in	72.00 in	72.00 in	72.00 in	72.00 in	72.00 in	28.27	
S50-2	405.70	CIRCULAR	72.00 in	72.00 in	72.00 in	72.00 in	72.00 in	72.00 in	28.27	
S50-1	405.70	CIRCULAR	72.00 in	72.00 in	72.00 in	72.00 in	72.00 in	72.00 in	28.27	
S50	405.70	CIRCULAR	72.00 in	72.00 in	72.00 in	72.00 in	72.00 in	72.00 in	28.27	
S70	163.30	CIRCULAR	48.00 in	48.00 in	48.00 in	48.00 in	48.00 in	48.00 in	12.57	
S69	160.80	CIRCULAR	48.00 in	48.00 in	48.00 in	48.00 in	48.00 in	48.00 in	12.57	
S65	84.30	CIRCULAR	42.00 in	42.00 in	36.00 in	36.00 in	42.00 in	42.00 in	9.62	
S64	80.70	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
S63	3.90	CIRCULAR	18.00 in	18.00 in	12.00 in	12.00 in	18.00 in	18.00 in	1.77	
S68	88.90	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
S47	244.30	CIRCULAR	72.00 in	72.00 in	60.00 in	60.00 in	72.00 in	72.00 in	28.27	
LAT 6	35.50	CIRCULAR	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	4.91	
S45	209.30	CIRCULAR	72.00 in	72.00 in	60.00 in	60.00 in	72.00 in	72.00 in	28.27	
LAT 5	24.40	CIRCULAR	36.00 in	36.00 in	24.00 in	24.00 in	36.00 in	36.00 in	7.07	
S43	184.90	CIRCULAR	60.00 in	60.00 in	66.00 in	66.00 in	60.00 in	60.00 in	19.63	Existing height is smaller

0/20/2020			ODOLVVLIV	Mati Mode	i interiace it	Courto. 1000	o i alcon o	Jillineree Oc	11101 00/2	0/2020 19.00
										than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
LAT 4	47.20	CIRCULAR	36.00 in	36.00 in	30.00 in	30.00 in	36.00 in	36.00 in	7.07	
S40	137.40	CIRCULAR	54.00 in	54.00 in	48.00 in	48.00 in	54.00 in	54.00 in	15.90	
S31	124.70	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
S30	93.00	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
LAT 1	15.60	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
S28	77.10	CIRCULAR	36.00 in	36.00 in	33.00 in	33.00 in	36.00 in	36.00 in	7.07	
S26	12.80	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
S22	12.10	CIRCULAR	18.00 in	18.00 in	21.00 in	21.00 in	18.00 in	18.00 in	1.77	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
S21	68.50	CIRCULAR	36.00 in	36.00 in	33.00 in	33.00 in	36.00 in	36.00 in	7.07	
S20-1	67.80	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
S20	67.80	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
LAT 2	31.50	CIRCULAR	30.00 in	30.00 in	27.00 in	27.00 in	30.00 in	30.00 in	4.91	
LAT 3	13.40	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 6719.85

	Invert 1	Elev.		eam Manhole osses	HG	L	EGL			
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)	
S52	6719.05	6719.50	0.00	0.00	6723.60	6725.58	6729.46	0.00	6729.46	
S51	6722.53	6724.53	0.57	0.00	6729.46	6730.28	6730.03	0.82	6730.85	
S50-3	6724.97	6725.79	0.86	3.08	6729.53	6731.15	6734.41	0.34	6734.75	
S50-2	6730.76	6731.58	0.16	0.00	6735.25	6736.94	6740.20	0.34	6740.54	
S50-1	6736.61	6737.36	0.16	0.00	6741.30	6742.72	6745.84	0.47	6746.32	
S50	6742.36	6745.58	0.16	0.00	6747.05	6750.94	6751.59	2.95	6754.54	
S70	6747.58	6760.29	0.55	0.00	6752.47	6763.98	6755.09	11.71	6766.80	
S69	6761.00	6761.22	0.13	0.08	6764.18	6765.53	6768.07	0.00	6768.07	
S65	6764.46	6776.00	1.57	2.24	6770.70	6778.86	6771.89	8.53	6780.42	
S64	6776.50	6777.06	2.67	0.00	6781.53	6782.08	6783.56	0.55	6784.10	
S63	6776.51	6776.70	0.10	0.00	6780.44	6780.46	6780.52	0.02	6780.54	

S68	6762.21	6762.76	0.07	0.00	6766.81	6767.10	6768.14	0.29	6768.43
S47	6745.75	6748.38	0.50	2.59	6756.47	6757.34	6757.63	0.87	6758.50
LAT 6	6751.88	6752.38	0.56	0.00	6758.25	6758.62	6759.06	0.37	6759.43
S45	6749.39	6750.64	0.04	0.31	6758.00	6758.38	6758.85	0.38	6759.23
LAT 5	6753.64	6758.14	0.10	0.00	6759.14	6759.73	6759.33	1.04	6760.37
S43	6751.79	6753.25	0.07	0.41	6758.86	6760.69	6760.24	1.83	6762.07
LAT 4	6755.25	6759.75	0.37	0.00	6761.74	6763.24	6762.43	1.49	6763.93
S40	6753.89	6761.85	0.06	1.01	6761.97	6765.30	6763.13	3.88	6767.01
S31	6763.77	6770.55	1.38	0.00	6766.68	6773.83	6771.05	5.53	6776.58
S30	6773.04	6777.38	0.07	2.25	6777.45	6781.13	6778.90	3.69	6782.58
LAT 1	6778.88	6780.68	0.37	0.00	6782.57	6783.14	6782.96	0.57	6783.52
S28	6777.87	6785.12	0.09	0.95	6782.18	6787.86	6784.03	5.85	6789.87
S26	6786.62	6787.52	0.93	0.00	6789.99	6790.87	6790.80	0.89	6791.69
S22	6787.82	6788.22	0.83	0.00	6791.79	6792.32	6792.52	0.53	6793.05
S21	6786.63	6788.57	1.17	1.48	6791.06	6792.20	6792.52	1.13	6793.65
S20-1	6788.82	6792.36	0.07	1.10	6793.40	6795.67	6794.83	2.28	6797.10
S20	6792.64	6793.64	1.43	0.00	6797.10	6797.79	6798.53	0.69	6799.22
LAT 2	6771.55	6772.15	0.84	0.00	6776.79	6777.02	6777.43	0.23	6777.66
LAT 3	6764.35	6765.10	0.37	0.00	6767.10	6767.28	6767.39	0.17	6767.56

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a
- Bend loss = Bend K * $V_fi ^ 2/(2*g)$
- Lateral loss = $V_f \circ ^2/(2*g)$ Junction Loss K * $V_f \circ ^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

					Downstream Upstream					1		
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
S52	34.70	7.00	8.00	10.17	0.00	0.00	0.00	27.50	17.50	9.67	162.59	Sewer Too Shallow
S51	200.00	4.00	6.00	6.67	24.44	14.05	9.89	34.54	19.10	14.94	1830.55	
S50-3	75.00	7.00	8.00	10.17	16.57	12.04	4.20	29.38	18.44	10.61	572.73	
S50-2	75.00	7.00	8.00	10.17	19.45	13.48	5.64	29.58	18.54	10.71	612.85	
S50-1	75.00	7.00	8.00	10.17	19.52	13.51	5.68	25.74	16.62	8.79	540.03	
S50	322.38	7.00	8.00	10.17	15.75	11.62	3.79	23.18	15.34	7.51	1935.80	
S70	706.00	5.00	6.00	7.83	21.18	13.00	7.67	32.42	18.63	13.29	5797.19	
S69	14.00	5.00	6.00	7.83	31.01	17.92	12.59	30.56	17.70	12.36	140.62	
S65	577.00	4.50	6.00	7.25	24.58	14.42	9.67	13.50	8.88	4.13	2710.84	
S64	37.50	4.00	6.00	6.67	13.01	8.34	4.17	11.88	7.77	3.61	86.27	
S63	13.00	2.50	4.00	4.92	14.49	8.04	5.79	14.10	7.84	5.59	29.39	

S68	37.00	4.50	6.00	7.25	29.09	16.67	11.92	27.98	16.12	11.37	318.18	
S47	263.20	7.00	8.00	10.17	22.84	15.17	7.34	25.90	16.70	8.87	2076.82	
LAT 6	50.00	3.50	6.00	6.08	22.40	12.74	9.16	19.74	11.41	7.83	240.85	
S45	156.04	7.00	8.00	10.17	23.88	15.69	7.85	19.46	13.48	5.65	1055.08	
LAT 5	300.00	4.00	6.00	6.67	16.46	10.06	5.90	19.72	11.69	7.53	1175.66	
S43	365.32	6.00	8.00	9.00	18.16	12.25	5.58	16.82	11.58	4.91	1696.02	
LAT 4	300.00	4.00	6.00	6.67	14.82	9.24	5.08	16.50	10.08	5.92	942.43	
S40	663.06	5.50	8.00	8.42	16.03	10.89	4.81	14.44	10.10	4.01	2458.38	
S31	294.78	4.50	6.00	7.25	11.60	7.92	3.17	18.90	11.58	6.83	982.79	
S30	433.65	4.50	6.00	7.25	13.91	9.08	4.33	11.06	7.66	2.91	1092.70	
LAT 1	120.00	3.00	4.00	5.50	9.56	5.86	3.03	17.64	9.90	7.07	283.74	
S28	289.83	4.00	6.00	6.67	10.57	7.12	2.95	14.96	9.31	5.15	700.72	
S26	60.00	2.50	4.00	4.92	13.46	7.52	5.27	10.46	6.02	3.77	102.80	
S22	40.00	2.50	4.00	4.92	9.86	5.72	3.47	9.06	5.32	3.07	47.92	
S21	107.74	4.00	6.00	6.67	11.94	7.80	3.64	11.00	7.33	3.17	224.56	
S20-1	221.44	4.00	6.00	6.67	10.51	7.09	2.92	12.16	7.91	3.75	456.12	
S20	67.00	4.00	6.00	6.67	11.61	7.64	3.47	11.66	7.66	3.50	141.88	
LAT 2	40.00	3.50	6.00	6.08	17.90	10.49	6.91	19.20	11.14	7.56	155.20	
LAT 3	50.00	3.00	4.00	5.50	11.94	7.05	4.22	26.80	14.48	11.65	224.30	

Total earth volume for sewer trenches = 28795 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

Chapter 9 Hydraulic Structures

3.2.2 Low Tailwater Basin

The design of low tailwater riprap basins is necessary when the receiving channel may have little or no flow or tailwater at time when the pipe or culvert is in operation. Figure 9-37 provides a plan and profile view of a typical low tailwater riprap basin.

By providing a low tailwater basin at the end of a storm drain conduit or culvert, the kinetic energy of the discharge dissipates under controlled conditions without causing scour at the channel bottom.

Low tailwater is defined as being equal to or less than ½ of the height of the storm drain, that is:

$$y_t \le \frac{D}{3}$$
 or $y_t \le \frac{H}{3}$

Where:

 y_t = tailwater depth at design flow (feet) <1.0'

D = diameter of circular pipe (feet) = 3.0'

H = height of rectangular pipe (feet)

Rock Size

The procedure for determining the required riprap size downstream of a conduit outlet is in Section 3.2.3.

After selecting the riprap size, the minimum thickness of the riprap layer, *T*, in feet, in the basin is defined as:

From figure 9-38, Type H Riprap required, D50=18"

$$T = 2D_{50} = 2*18"=3.0'$$

Equation 9-15

Basin Geometry

Figure 9-37 includes a layout of a standard low tailwater riprap basin with the geometry parameters provided. The minimum length of the basin (L) and the width of the bottom of the basin (W1) are provided in a table at the bottom of Figure 9-37. All slopes in the low tailwater basin shall be 3(H):1(V), minimum.

Other Design Requirements

Extend riprap up the outlet embankment slope to the mid-pipe level, minimum. It is recommended that riprap that extends more than 1 foot above the outlet pipe invert be installed 6 inches below finished grade and buried with topsoil.

Provide pipe end treatment in the form of a pipe headwall or a flared-end section headwall. See Section 3.1 for options.

Hydraulic Structures Chapter 9

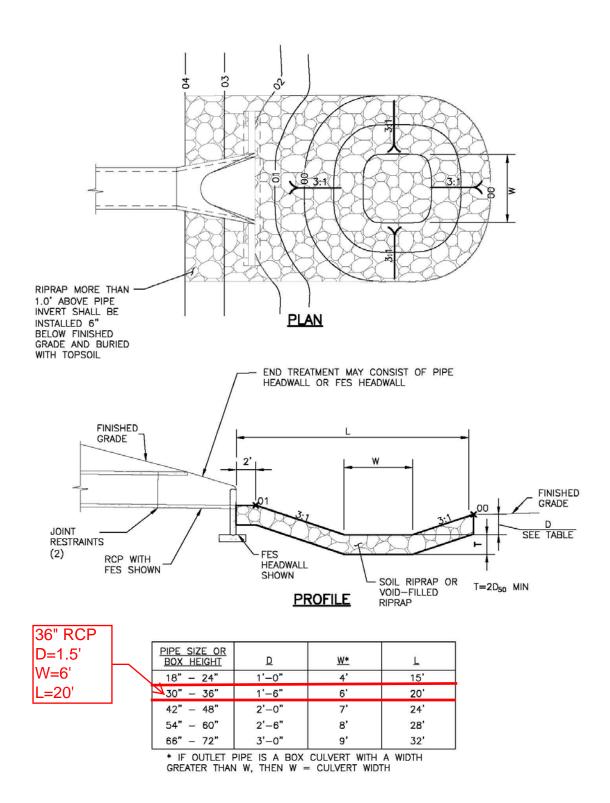


Figure 9-37. Low tailwater riprap basin

Chapter 9 Hydraulic Structures

3.2.3 Rock Sizing for Riprap Apron and Low Tailwater Basin

Scour resulting from highly turbulent, rapidly decelerating flow is a common problem at conduit outlets. The following section summarizes the method for sizing riprap protection for both riprap aprons (Section 3.2.1) and low tailwater basins (Section 3.2.2).

Use Figure 9-38 to determine the required rock size for circular conduits and Figure 9-39 for rectangular conduits. Figure 9-38 is valid for $Q/D_c^{2.5}$ of 6.0 or less and Figure 9-39 is valid for $Q/WH^{1.5}$ of 8.0 or less. The parameters in these two figures are: $Q/Dc^2.5=55.6cfs/(3.0'^2.5)=3.57<6$ -Use figure 9-38

- 1. $Q/D^{1.5}$ or $Q/WH^{0.5}$ in which Q is the design discharge in cfs, D_c is the diameter of a circular conduit in feet, and W and H are the width and height of a rectangular conduit in feet.
- 2. Y_t/D_c or Y_t/H in which Y_t is the tailwater depth in feet, D_c is the diameter of a circular conduit in feet, and H is the height of a rectangular conduit in feet. In cases where Y_t is unknown or a hydraulic jump is suspected downstream of the outlet, use $Y_t/D_t = Y_t/H = 0.40$ when using Figures 9-38 and 9-39.
- 3. The riprap size requirements in Figures 9-38 and 9-39 are based on the non-dimensional parametric Equations 9-16 and 9-17 (Steven, Simons, and Watts 1971 and Smith 1975).

Circular culvert:

$$d_{50} = \frac{0.023Q}{Y_t^{1.2} D_c^{0.3}}$$
 Equation 9-16

Rectangular culvert:

$$d_{50} = \frac{0.014H^{0.5}Q}{Y.W}$$
 Equation 9-17

These rock size requirements assume that the flow in the culvert is subcritical. It is possible to use Equations 9-16 and 9-17 when the flow in the culvert is supercritical (and less than full) if the value of D_c or H is modified for use in Figures 9-38 and 9-39. Note that rock sizes referenced in these figures are defined in the *Open Channels* chapter. Whenever the flow is supercritical in the culvert, substitute D_a for D_c and H_a for H, in which D_a is defined as:

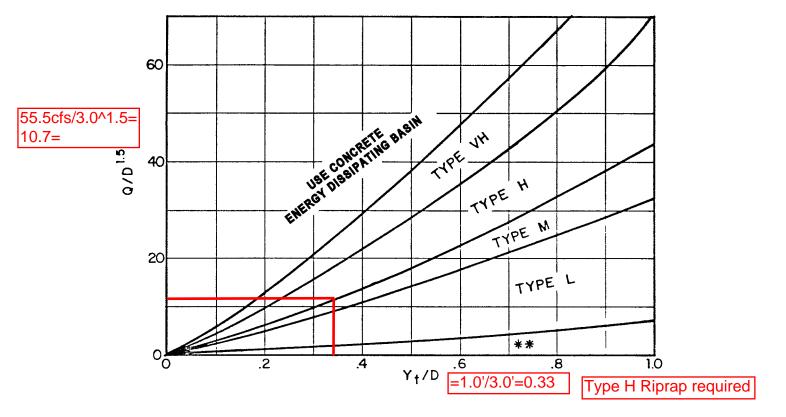
$$D_a = \frac{\left(D_c + Y_n\right)}{2}$$
 Equation 9-18

Where the maximum value of D_a shall not exceed D_c , and

Hydraulic Structures Chapter 9

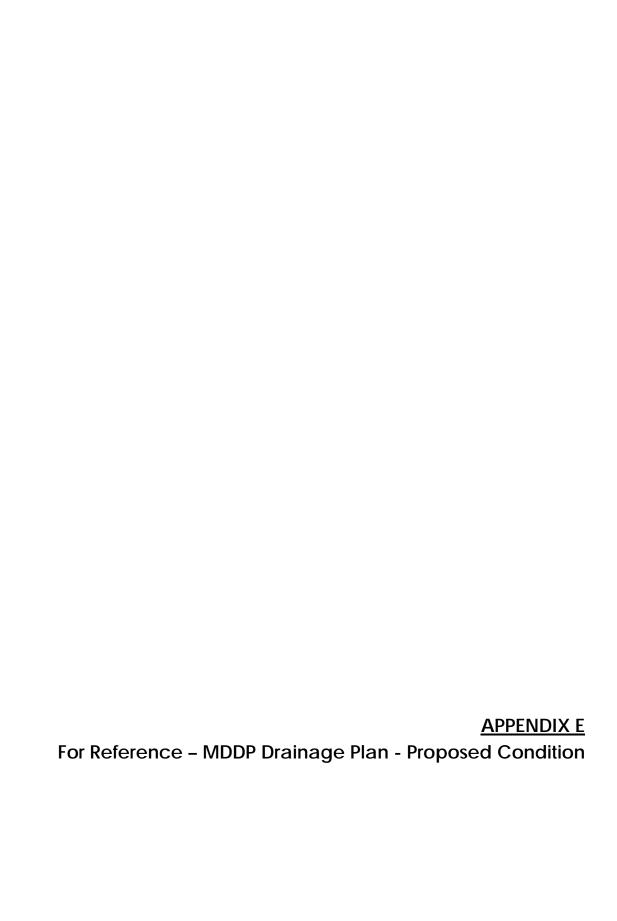
$$H_a = \frac{(H + Y_n)}{2}$$
 Equation 9-19

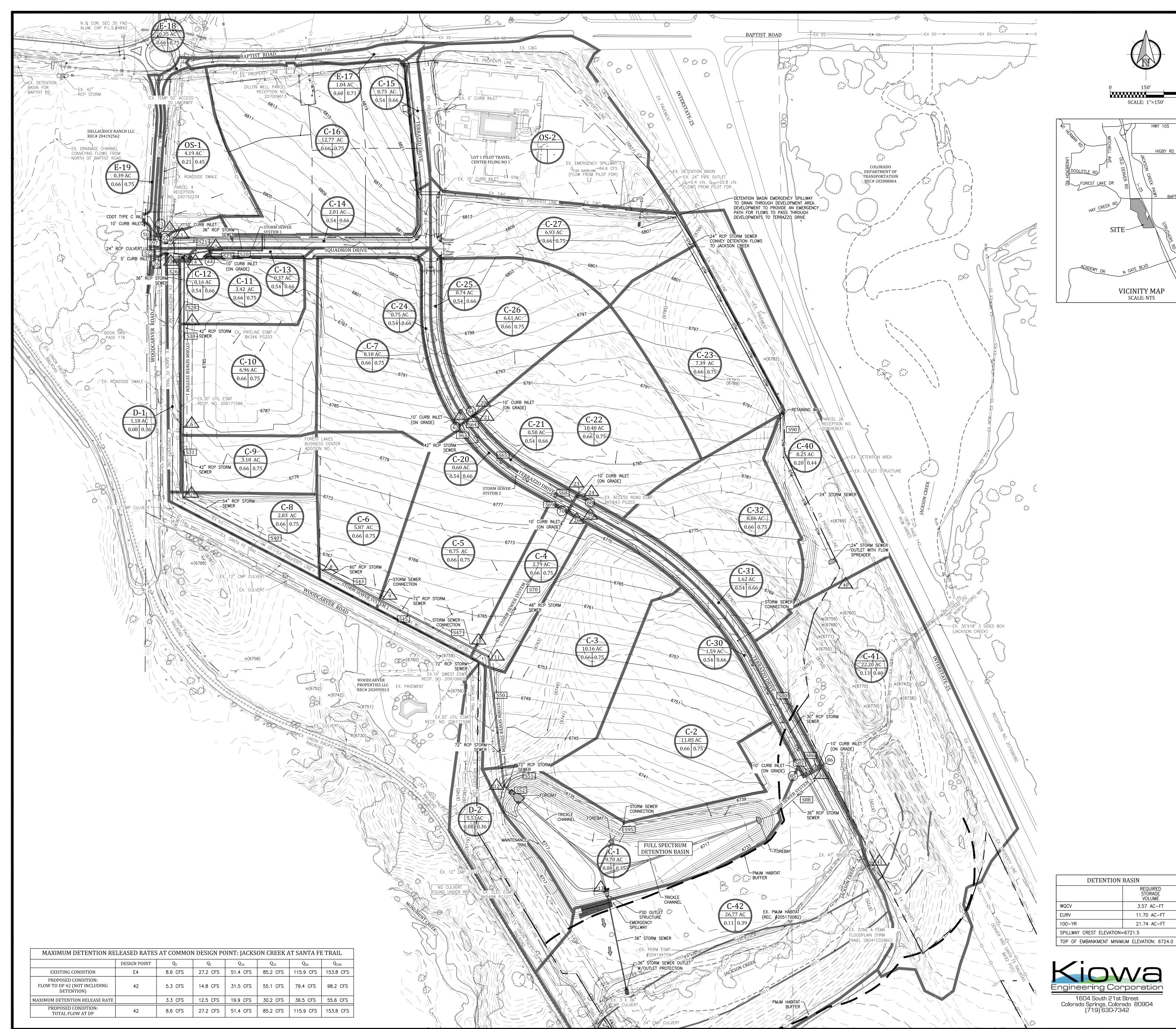
Where the maximum value of H_a shall not exceed H, and:


 D_a = parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)

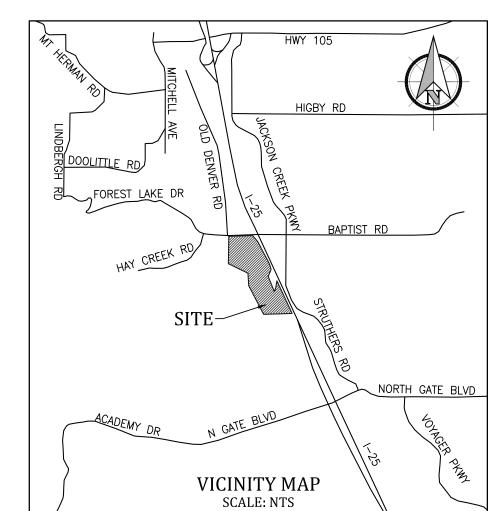
 D_c = diameter of circular culvert (ft)

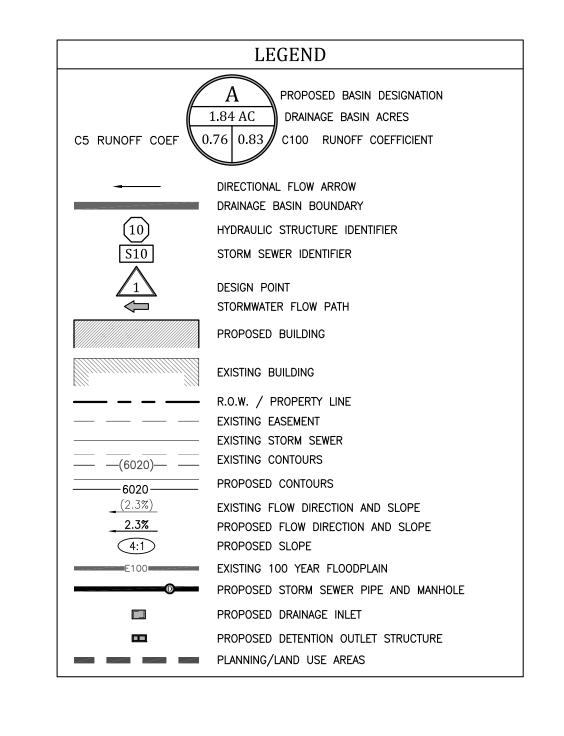
 H_a = parameter to use in place of H in Figure 9-39 when flow is supercritical (ft)


H = height of rectangular culvert (ft)

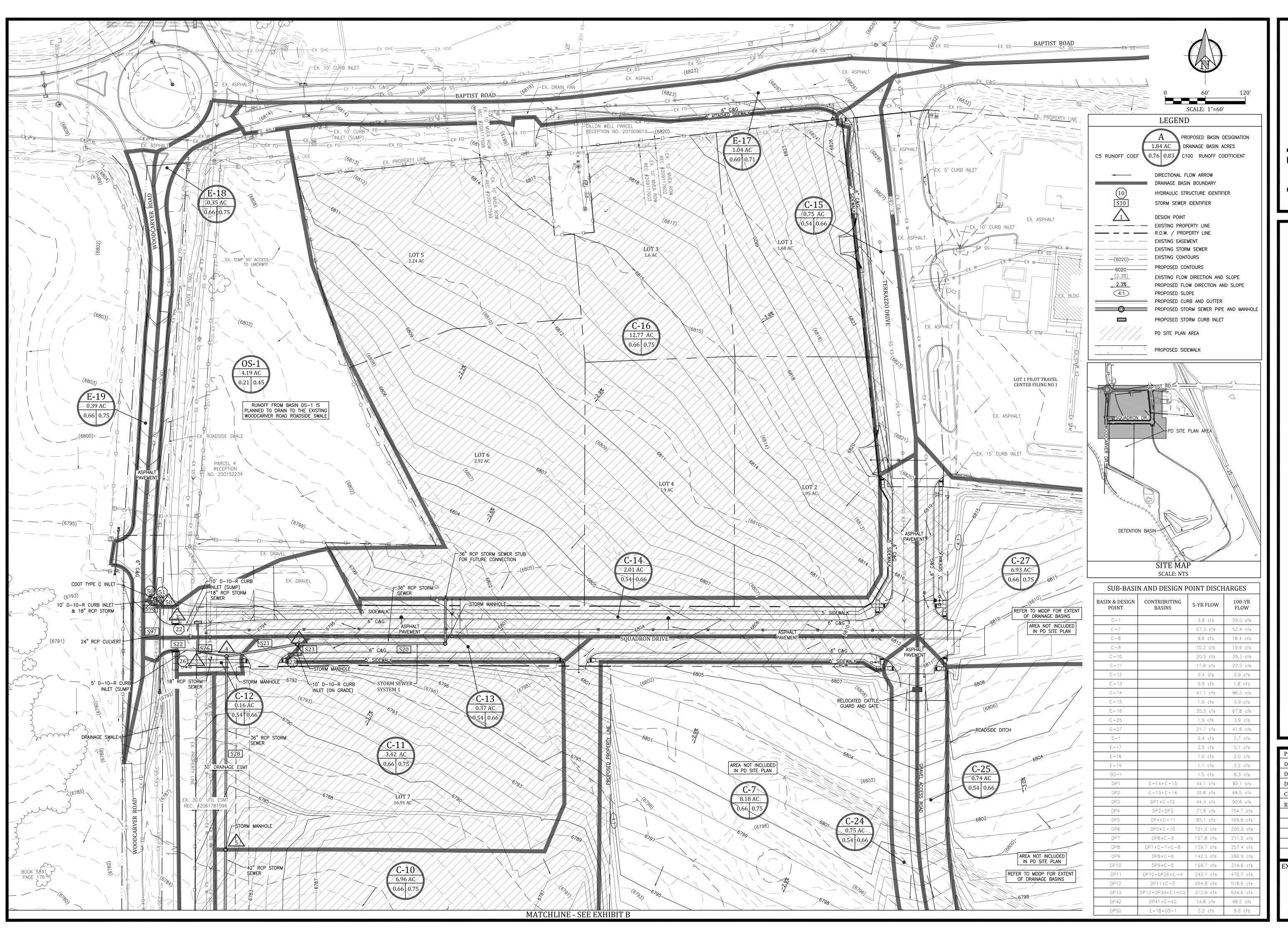

 Y_n = normal depth of supercritical flow in the culvert (ft)

Use D_d instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.


Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for Q/D2.5 \leq 6.0)



SCALE: 1"=150'


BASIN & DESIGN POINT	CONTRIBUTING BASINS	5-YR FLOW	100-YR FLOW
C = 1	אווטמע	3.8 cfs	29.5 cfs
C-2		33.7 cfs	64.7 cfs
C-3		33.1 cfs	63.6 cfs
C - 4		8.5 cfs	16.4 cfs
C -5		25.3 cfs	48.6 cfs
C - 7		27.3 cfs	52.4 cfs
C-8		9.6 cfs	18.4 cfs
C-9		10.3 cfs	19.9 cfs
C – 10		20.5 cfs	39.3 cfs
C -11		11.6 cfs	22.3 cfs
C-12		0.5 cfs	1.0 cfs
C -13		0.9 cfs	1.8 cfs
C-14		4.8 cfs	9.9 cfs
C – 14		1.9 cfs	3.9 cfs
C=15			
		35.3 cfs	67.8 cfs
C-20		1.4 cfs	2.8 cfs
C -21		1.3 cfs	2.7 cfs
C-22		29.6 cfs	56.8 cfs
C -23		19.3 cfs	37.0 cfs
C-24		1.9 cfs	3.9 cfs
C -25		1.9 cfs	3.9 cfs
C-26		20.0 cfs	38.5 cfs
C -27		21.7 cfs	41.6 cfs
C - 30		3.3 cfs	6.8 cfs
C-31		3.4 cfs	6.9 cfs
C-32		23.3 cfs	44.7 cfs
C-40		4.1 cfs	15.0 cfs
C -41		6.9 cfs	36.0 cfs
C-42		6.9 cfs	39.9 cfs
D-1		0.4 cfs	2.7 cfs
D-2		1.7 cfs	13.0 cfs
E-17		2.5 cfs	5.1 cfs
E-18		1.1 cfs	2.1 cfs
E-19		1.0 cfs	1.9 cfs
OS-1		1.6 cfs	8.5 cfs
0S-2		0.4 cfs	20.8 cfs
DP1	C-14+C-15	5.9 cfs	12.1 cfs
DP2	C-13+C-16	35.6 cfs	68.5 cfs
DP3	DP1+C-12	6.3 cfs	12.8 cfs
DP4	DP2+DP3	39.7 cfs	77.1 cfs
DP5	DP4+C-11	47.8 cfs	93.0 cfs
DP6	DP5+C-10	64.4 cfs	124.7 cfs
DP7	DP6+C-9	71.4 cfs	137.4 cfs
DP8	DP7+C-7+C-8	94.7 cfs	184.9 cfs
DP9	DP8+C-6	107.6 cfs	209.3 cfs
DP10	DP9+C-5	125.7 cfs	244.3 cfs
DP11	DP10+DP26+C-4	208.2 cfs	405.7 cfs
DP12	DP11+C-3	231.0 cfs	447.1 cfs
DP13	DP12+DP30+C1+C2	279.7 cfs	556.4 cfs
DP20	C-27+C-26	40.1 cfs	77.0 cfs
DP21	DP20+C-25	41.9 cfs	80.7 cfs
DP22	DP21+C-24	43.6 cfs	84.3 cfs
DP23	C-22+C-23	45.0 cfs	86.5 cfs
DP24	DP23+C-21	46.2 cfs	88.9 cfs
DP25	DP22+DP24	83.5 cfs	160.8 cfs
DP26	DP25+C-20	84.7 cfs	163.3 cfs
DP30	C-30+C-31+C-32	27.1 cfs	52.9 cfs
DP40	C 40+OS2 (Detent)	4.5 cfs	35.8 cfs
DP41	DP40+C-41	9.9 cfs	66.6 cfs
DP42	DP41+C-42	14.8 cfs	98.2 cfs
DI TA	DI 1110 #Z	1 F.U CIS	JU.Z CIS

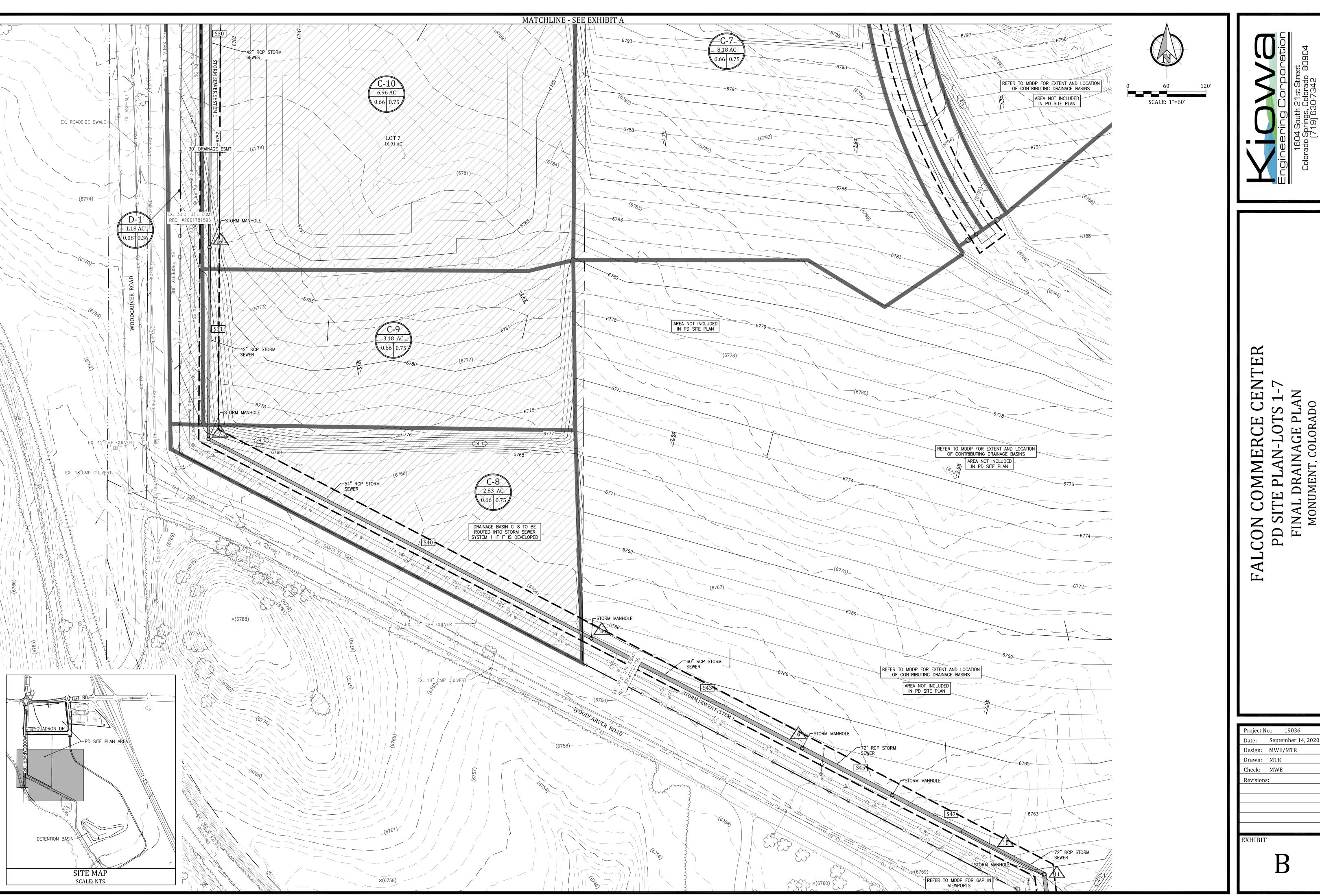
DETENTION	BASIN
	REQUIRED STORAGE VOLUME
WQCV	3.57 AC-FT
EURV	11.70 AC-FT
100-YR	21.74 AC-FT
SPILLWAY CREST ELEVATION=	=6721.5
<u> </u>	•

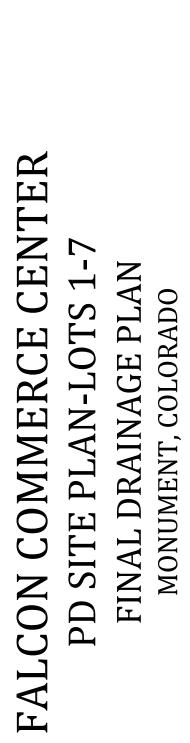
EXHIBIT B FALCON COMMERCE CENTER MASTER DEVELOPMENT DRAINAGE PLAN DRAINAGE PLAN - PROPOSED CONDITION DATE: SEPTEMBER 14, 2020

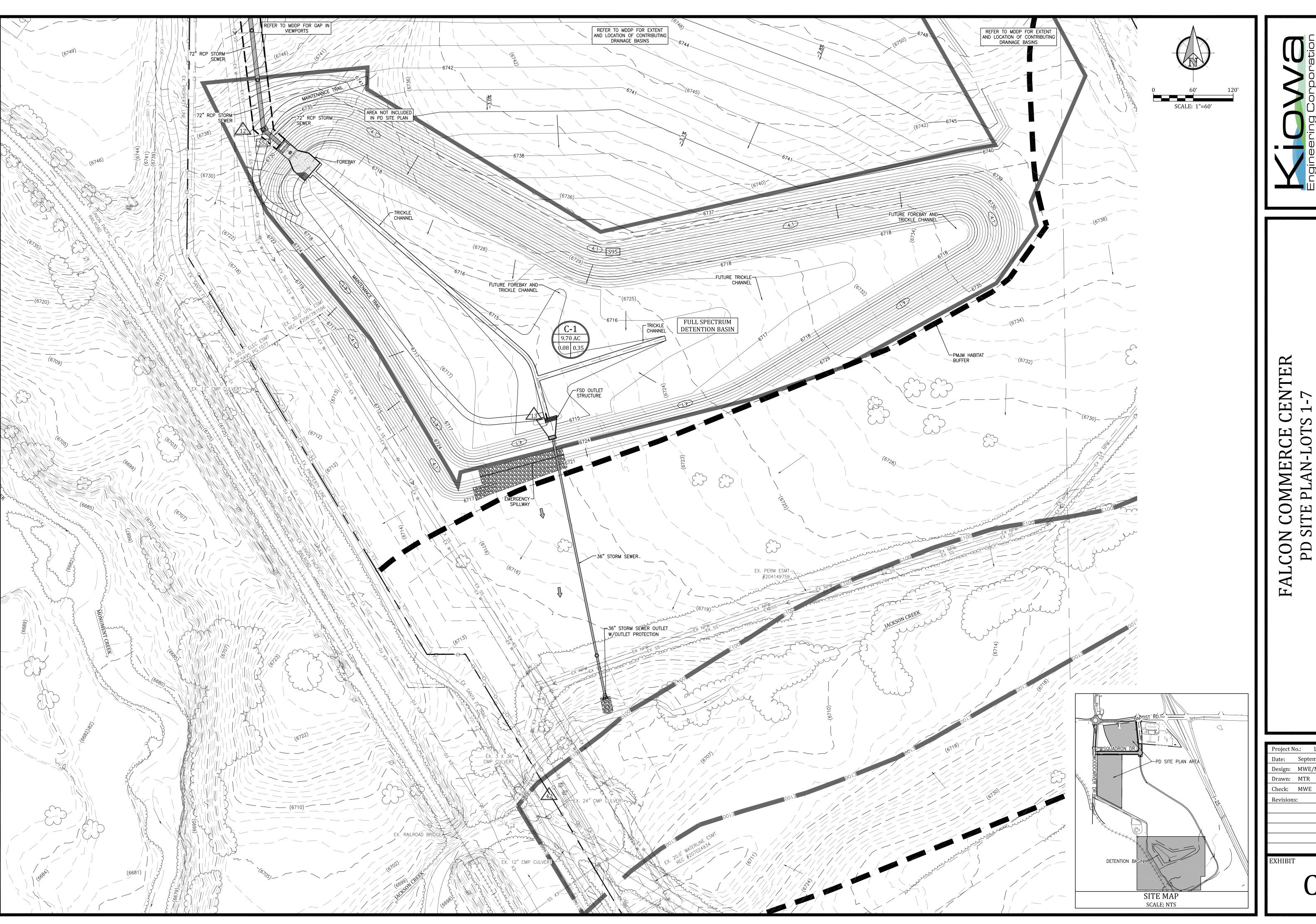
APPENDIX F
Proposed Condition Drainage Plan

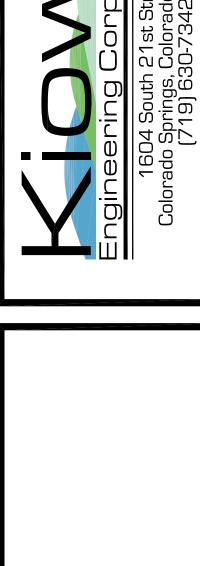
Project No.: 19036

Date: September 14, 2020


Design: MWE/MTR


Drawn: MTR


Check: MWE


Revisions:

A

D SITE PL, FINAL DRA MONUMEN FALCON COM

Project No. 19036 Date: September 14, 2020 Design: MWE/MTR Drawn: MTR Check: MWE