LSC Responses to TIS Redline Comments

TRANSPORTATION
CONSULTANTS, INC.

Sterling Ranch East - Phase 1
 Rezoning \& Preliminary Plan Traffic Impact Study (LSC \#S224510)

LSC TRANSPORTATION CONSULTANTS, INC.
2504 East Pikes Peak Avenue, Suite 304
Colorado Springs, CO 80909
(719) 633-2868

FAX (719) 633-5430
E-mail: Isc@lsctrans.com
Website: http://www.Isctrans.com

November 17, 202 2
SP-22-004, P-22-012, P-22-013
Refer to comments on Master TIS where appropriate.

Traffic Engineer's Statement

This traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Developer's Statement

I, the Developer, have read and will comply with all commitments made on my behalf within this report.

LSC Responses to TIS Redline Comments

- Findings and recommendations for study area roadways and intersections, including number of lanes, auxiliary turn lanes, intersection traffic control, etc.; and
- The recommended street classifications

RECENT TRAFFIC REPORTS

LSC prepared a previous master traffic impact study (TIS) for the entire Sterling Ranch development dated June 5, 2008. This master study was updated October 21, 2022. Since 2008, LSC and SM Rocha, LLC have completed multiple studies for individual filings and phases within Sterling Ranch. A list of other traffic studies within Sterling Ranch and in the vicinity of area of study completed within the past five years (that LSC is aware of) is attached for reference. We were not able to find this list. ${ }^{1}$

El Paso County is currently studying the Briargate Stapleton Corridor as part of a Pikes Peak Rural Transportation Authority (PPRTA) study. A draft version of the Briargate-Stapleton Corridor Study by Wilson \& Company was published December 9, 2021.

STUDY AREA

Figure 1 shows the location of the Sterling Ranch East Phase 1 Preliminary Plan Area relative to the overall Sterling Ranch Sketch Plan Area. As shown in Figure 1, the site is located generally in the middle of the Sketch Plan Area adjacent to the future extension of Sterling Ranch.

Land Use

Figure 2 shows the proposed Sterling Ranch East Phase 1 Preliminary Plan. The trip-generation table (Table 2) also lists the land uses and quantities of dwelling units, estimated nonresidential building square footage, etc. The site is planned to be developed with 761 lots for single-family homes. Two future tracts are also included in the Preliminary Plan. Tract M , located southwest of the future intersection of Briargate/Sterling Ranch, is planned to be developed with a K-8 school and Tract T, located on the south end of the Preliminary Plan area, is planned to be developed with an elementary school. This land use is consistent with the land use assumed in the October 21, 2022 Master TIS.

Pedestrian Plan

Figure 2 also shows the location of all planned trails and sidewalks in the vicinity of the site. Connections are also proposed to the planned future Sand Creek Regional Trail (west of Dines Boulevard), as shown in the attached map. These connections do not appear on ${ }^{3}$ Figure 2. It only shows sidewalks.
A detached sidewalk will be provided along the west side of Sterling Ranch Road. The multi-use paved shoulder on Sterling Ranch Road will accommodate bicycles.

Page: 6

Loren Moreland Page 4
Sterling Ranch East - Phase 1 Rezoning \& Preliminary Plan
November 17, 2022
Traffic Impact Study

The access control plan shows a right-in/right-out access to the south side of Briargate Parkway just west of Banning Lewis Parkway. The currently proposed Sketch Plan Amendment shows a right-in/right-out access to the north side of Briargate and a three-quarter movement access to the south side of Briargate at approximately the same location (1,085 feet west of Banning Lewis Parkway).

The access control plan shows the intersection of Briargate/Banning Lewis as a three-leg intersection. The currently proposed Sketch Plan includes a north leg at this future full-movement signal-controlled intersection.

Sight Distance Analysis

Figures 4a through 4b show sight-distance analysis at the proposed intersections to Sterling Ranch Road. Based on a design speed of 40 miles per hour (mph) and the criteria contained in Table 2-21 of the Engineering Criteria Manual (ECM), the required intersection sight distance at the future intersections is 445 feet.

Figure 4c shows sight-distance analysis at the proposed three-quarter movement intersections to Briargate Parkway. Based on a design speed of 50 miles per hour (mph) and the criteria contained in Table 2-21 of the Engineering Criteria Manual (ECM), the required intersection sight distance at the future intersections is 555 feet.

As shown in these figures, that intersection sight distance can be met at all of the proposed site-access points.

REPORT SCENARIOS

Short-Term Scenario

The short-term scenario includes the roadway segments to be added in the short term only as shown in Figure 3. This scenario includes the SRE Phase 1 Rezone and Preliminary Plan area ("the site") as well as traffic to be generated in the short term by buildout of Homestead at Sterling Ranch, Branding Iron at Sterling Ranch, Sterling Ranch Filings 2-4, Copper Chase at Sterling Ranch, Homestead North at Sterling Ranch Filings 1-3, the Retreat at TimberRidge Filings 1-3, the planned FourSquare at Sterling Ranch East development, and the planned Villages at Sterling Ranch East development. Trips projected from these other short-term developments outside of the SRE Phase 1 Preliminary Plan/Rezone boundary are included as short-term "background traffic" in this report.

Page: 8

Number: $1 \quad$ Author: Paul Brown Subject: Cloud $+\quad$ Date: $1 / 5 / 2023$ 10:32:50 AM
Duplicate text from page 3
$\quad \frac{\text { Author: kdferrin } \quad \text { Subject: Sticky Note }}{\text { LSC Response: The duplicate text has been struck from the updated TIS. }}$ 2/10/2023 3:41:07 PM

LSC Response: The duplicate text has been struck from the updated TIS.

2042 Total Traffic

Figure 15a shows the projected 2042 total daily traffic volumes on key street segments and Figure 15b shows the projected 2042 total peak-hour traffic volumes at the key study-area intersections. These volumes are the sum of the 2042 baseline traffic volumes (from Figures 7a and 7 b), the long-term residential-related site-generated traffic volumes (from Figures 12a and12b) and the long-term school-related site-generated traffic volumes (from Figures 13a and 13 b).

Figure 14 c shows the level of service analysis results for the key area intersections based on the projected 2042 total volumes. The figure also shows the general intersection lane geometry and intersection traffic control used in the analysis.

LEVEL OF SERVICE ANALYSIS

The key area future signalized intersections have been analyzed to determine the projected intersection levels of service for short-term and 2042 baseline and total traffic scenarios for the morning and afternoon peak-hour periods using Synchro. The key area future stop-sign-controlled and modern-roundabout-controlled intersections have been analyzed based on the unsignalized-intersection analysis procedures from the Highway Capacity Manual 6 th Edition. Figures $6 \mathrm{c}, 7 \mathrm{c}, 14 \mathrm{c}$ and 15 c show the level of service analysis results. The level of service reports are attached.

Intersection \#1: Vollmer/Burgess

The stop-sign-controlled intersection of Burgess/Vollmer is currently operating at LOS E for the eastbound approach and LOS F for the westbound approach during the afternoon peak hour. The intersection currently has one-lane approaches in all directions. Based on existing traffic volumes shown in Figure 5 and the criteria contained in the El Paso County Engineering Criteria Manual (ECM), multiple auxiliary turn lanes would be required to meet the ECM standard. LSC recommends this intersection be reconstructed as a modern one-lane roundabout. As a modern roundabout, it is projected to operate at LOS C or better for all approaches during the peak hours based on the projected short-term and 2042 total traffic volumes.

Please use a more appropriate analysis tool for 1
Intersection \#4: Vollmer/Briargate roundabout operations (Master TIS comment)

The section of Briargate Parkway between Vollmer Road and Sterling Ranch Road is planned to be constructed to its final cross section in the short term. The intersection of Briargate/Vollmer could operate at a satisfactory level of service (LOS C or better) in the short term as a stop-sign-controlled intersection.

Page: 14

[^0]By 2042, it was assumed Briargate Parkway would be extended west to Black Forest Road and East to Towner Avenue and that the intersection of Vollmer/Briargate will be converted to traffic-signal control. The intersection of Vollmer/Briargate is projected to operate at an overall LOS C during the peak hours as a signalized intersection, based on the projected 2042 total traffic volumes shown in Figure 15b and the lane geometry shown in Figure 15c.

Intersection \#5: Sterling Ranch/Briargate

The section of Briargate Parkway between Vollmer Road and Sterling Ranch Road is planned to be constructed to its final cross section in the short term. The intersection of Briargate/Sterling Ranch could operate at a satisfactory level of service (LOS C or better) in the short term as a stop-sign-controlled intersection.

By 2042, it was assumed Briargate Parkway would be extended west to Black Forest Road and East to Towner Avenue and that the intersection of Briargate/Sterling Ranch will be converted to traffic-signal control. The intersection of Sterling Ranch/Briargate is projected to operate at an overall LOS C during the peak hours as a signalized intersection, based on the projected 2042 total traffic volumes shown in Figure 15b and the lane geometry shown in Figure 15c.

Intersection \#8: Oak Park/Sterling Ranch

The intersection of Oak Park Place/Sterling Ranch Road is projected to operate at LOS B or better for all movements as a stop-sign-controlled intersection, based on the projected short-term total traffic volumes shown in Figure 14b and the lane geometry shown in Figure 14c.

This access is not shown on Figure 2.

By 2042, it was assumed the future K-8 School planned for the parcel southwest of Briargate/Sterling Ranch would be constructed and that an exit-only access would be constructed aligning with the Oak Park/Sterling Ranch intersection. Based on the 2042 total traffic volumes shown in Figure 15b and the lane geometry shown in Figure 15c, the eastbound and westbound left-turn movements are projected to operate at LOS E during the morning peak hour and LOS C during the afternoon peak hour. Alternate traffic control may be needed to achieve a satisfactory level of service at this intersection. Further analysis of this intersection should be conducted when number of students, site layout, and proposed access plan are determined.

Intersection \#12: Vollmer/Marksheffel

Marksheffel Road is planned to be constructed between Vollmer Road and Sterling Ranch Road in the short-term future. The intersection of Marksheffel/Vollmer is initially planned to be stop-sign controlled. Based on the projected short-term total traffic volumes which assume buildout of the residential portion of SRE Phase 1 Preliminary Plan, the westbound left-turn

Page: 15

気 Number: 1 Author: Paul Brown Subject: Callout \quad Date: 1/5/2023 10:38:48 AM		

movement is projected to operate at LOS E during the morning peak hour and LOS F during the afternoon peak hour. If this intersection is converted to traffic-signal control prior to buildout, it is projected to operate at an overall LOS A during the peak hours.

By 2042, it was assumed that Marksheffel Road would be constructed west to Briargate Parkway and that the intersection of Vollmer/Marksheffel will be converted to traffic-signal control. The intersection of Vollmer/Marksheffel is projected to operate at an overall LOS C or better during the peak hours as a signalized intersection, based on the projected 2042 total traffic volumes shown in Figure 15b and the lane geometry shown in Figure 15c.

Intersection \#13: Sterling Ranch/Marksheffel

Marksheffel Road is planned to be constructed between Vollmer Road and Sterling Ranch Road in the short-term future. The intersection of Marksheffel/Sterling Ranch is initially planned to be stop-sign controlled. Based on the projected short-term total traffic volumes which assume buildout of the residential portion of SRE Phase 1 Preliminary Plan, the southbound left-turn movement is projected to operate at LOS F during both the morning and afternoon peak hours. If this intersection is converted to traffic-signal control prior to buildout, it is projected to operate at an overall LOS A during the peak hours.

The intersection of Sterling Ranch/Marksheffel is projected to operate at an overall LOS C or better during the peak hours as a signalized intersection, based on the projected 2042 total traffic volumes shown in Figure 15b and the lane geometry shown in Figure 15c.

Sterling Ranch Road Site Access Points (Intersection \#303-\#308)

The intersections of Lubbock Trail/Sterling Ranch Road (\#303), Bellflower Drive/Sterling Ranch Road (\#304), Lake Tahoe Drive/Sterling Ranch Road (\#305), Newport Beach Place/Sterling Ranch Road (\#306), Idaho Falls Drive/Sterling Ranch Road (\#308) and Vancouver Street/Sterling Ranch Road (\#309) are projected to operate at a satisfactory level of service (LOS C or better) during the peak hours as stop-sign-controlled intersections, based on the projected short-term and 2042 total traffic volumes

Briargate Parkway Site Access Points (Intersection \#102-\#103)

The intersection of Boulder City Place/Briargate Parkway and the future K-8 school access to Briargate Parkway are projected to operate at LOS B or better for all movements as three-quarter movement (left-in/right-in/right-out only) stop-sign-controlled intersections, based on the projected short-term and 2042 total traffic volumes.

Page: 16
DNumber: $1 \quad$ Author: Paul Brown Subject: Cloud $+\quad$ Date: 1/5/2023 10:40:26 AM
Intersection \# 307 (Tract M entrance) is not discussed
Author: kdferrin \quad Subject: Sticky Note \quad Date: 2/10/2023 3:42:35 PM
LSC Response: Discussion of intersection \#307 has been added as requested.

- N12: Marksheffel Road from Woodman Road to Research Parkway as a 4-Lane Urban Principal Arterial; and
- M11: Vollmer Road Bicycle \& Primary Regional Trail from Marksheffel Road to Shoup Road.

CONCLUSIONS AND RECOMMENDATIONS

Trip Generation

- The residential portion of the Sterling Ranch East Phase 1 Preliminary Plan is projected to generate about 7,176 new external vehicle trips on the average weekday, with about half entering and half exiting the site during a 24 -hour period. During the morning peak hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 19 vehicles would enter and 394 vehicles would exit the site. During the afternoon peak hour, which generally occurs for one hour between 4:15 and 6:15 p.m., about 451 vehicles would enter and 265 vehicles would exit the site.
- The future school sites within Sterling Ranch East Phase 1 Preliminary Plan are projected to generate about 3,774 new external vehicle trips on the average weekday, with about half entering and half exiting the site during a 24 -hour period. During the morning peak hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 660 vehicles would enter and 563 vehicles would exit the site. During the afternoon peak hour, which generally occurs for one hour between $4: 15$ and 6:15 p.m., about 124 vehicles would enter and 143 vehicles would exit the site. As shown in the October 22, 2022 Master TIS, about 60 percent of these trips are projected to be internal to the Sterling Ranch Sketch Plan area.

Level of Service

Need to include progression analysis (Master TIS comment)

- The stop-sign-controlled intersection of Burgess/Vollmer is currently operating at LOS E for the eastbound approach and LOS F for the westbound approach during the afternoon peak hour. The intersection currently has one-lane approaches in all directions. Based on existing traffic volumes shown in Figure 5 and the criteria contained in the El Paso County Engineering Criteria Manual (ECM), multiple auxiliary turn lanes would be required to meet the ECM standard. LSC recommends this intersection be reconstructed as a modern one-lane roundabout. As a modern roundabout, it is projected to operate at LOS C or better for all approaches during the peak hours based on the projected short-term and 2042 total traffic volumes.
- The intersections of Briargate/Vollmer and Briargate/Sterling Ranch are projected to operate at a satisfactory level of service as stop-sign-controlled intersections in the short-term future. By 2042, these intersections will likely need to be converted to traffic-signal control. As signalized intersections, all movements are projected to

Page: 18

$\equiv \frac{\text { Number: } 1 \quad \text { Author: Paul Brown Subject: Text Box } \quad \text { Date: 1/5/2023 10:43:23 AM }}{\text { Need to include progression analysis (Master TIS comment) }}$
Suthor: kdferrin \quad Subject: Sticky Note \quad Date: 2/10/2023 10:46:50 AM

LSC Response: A paragraph has been added to the TIS report in response to this comment. The paragraph essentially indicates that no additional,
potentially signalized intersections beyond those shown in the approved Master TIS from 2008 are proposed with this Preliminary Plan.

Should be LUC 522; rates and other data are correct for LUC 522.

Page: 22

Page: 55

[^1]

Page: 57

FNumber: $1 \quad$ Author: Paul Brown Subject: Cloud+ \quad Date: 1/5/2023 10:49:34 AM
Why provide a 3/4 access for 7(2) trips? (Master TIS comment)
5Author: kdferrin Subject: Sticky Note Date: 2/10/2023 3:45:29 PM
LSC Response: Intersection \#103 is needed to serve the future K-8 school site. There are currently no plans available that show the school layout and access plan. This TIS assumed the access to Briargate Parkway would serve a bus loop only. However, this intersection is requested as a $3 / 4$ movement access to provide flexibility as actual designs are prepared for the school.

Map I4: 2040 Roadway Plan (Classification and Lanes)

Page: 64

Number: 1	Author: Kirstin	Subject: Callout	Date: $9 / 8 / 2022$ 1:01:35 PM -06'00'
Site			

Map 17: 2060 Corridor Preservation

Page: 65

\equiv Number: 1	Author: Kirstin	Subject: Callout
Sate: $9 / 8 / 2022$ 1:01:51 PM -06'00'		
Site		

Intersection				
Intersection Delay, s/veh	6.3			
Intersection LOS	A		WB	SB
Approach	EB	1	1	1
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	148	423	274	159
Adj Approach Flow, veh/h	151	432	280	162
Demand Flow Rate, veh/h	205	254	486	
Vehicles Circulating, veh/h	443	121	261	0
Vehicles Exiting, veh/h	0	0	0	0
Ped Vol Crossing Leg, \#/h	1.000	1.000	1.000	1.000
Ped Cap Adj	7.5	4.9	6.4	
Approach Delay, slveh	A	A	A	A

Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR		
RT Channelized				
Lane Util	1.000	1.000	1.000	2.600
Follow-Up Headway, s	2.609	2.609	4.609	4.976
Critical Headway, s	4.976	4.976	162	
Entry Flow, veh/h	151	432	280	841
Cap Entry Lane, veh/h	1120	1065	1252	0.980
Entry HV Adj Factor	0.980	0.980	159	
Flow Entry, veh/h	148	423	279	824
Cap Entry, veh/h	1097	1044	1225	0.193
V/C Ratio	0.135	0.406	6.4	
Control Delay, s/veh	4.5	7.8	4.9	A
LOS	A	2	1	1

Please use a more appropriate analysis tool for ${ }^{17}$ roundabout operations (Master TIS comment)

Page: 96

[^2]12: Vollmer Rd \& Marksheffel Rd

	7		4	p		\downarrow	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	${ }^{7}$	F	个个	F	${ }_{1}$	¢ \uparrow	
Traffic Volume (vph)	184	86	268	97	88	497	
Future Volume (vph)	184	86	268	97	88	497	
Turn Type	Prot	Prot	NA	Perm	$\mathrm{pm}+\mathrm{pt}$	NA	
Protected Phases	5	5	8		7	4	
Permitted Phases				8	4		
Detector Phase	5	5	8	8	7	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	10.0	10.0	5.0	10.0	
Minimum Split (s)	10.0	10.0	23.0	23.0	10.0	23.0	
Total Split (s)	30.0	30.0	48.0	48.0	12.0	60.0	
Total Split (\%)	33.3\%	33.3\%	53.3\%	53.3\%	13.3\%	66.7\%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	Calculate and include appropriate $\mathrm{Y}+\mathrm{AR}$
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	times (typical all signalized intersections)
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag			Lag	Lag	Lead		
Lead-Lag Optimize?			Yes	Yes	Yes		
Recall Mode	None	None	None	None	None	None	
Act Effct Green (s)	11.3	11.3	15.4	15.4	21.2	23.8	
Actuated g/C Ratio	0.29	0.29	0.40	0.40	0.55	0.62	
v / c Ratio	0.42	0.19	0.22	0.16	0.17	0.27	
Control Delay	16.8	4.9	13.7	4.6	6.5	6.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	16.8	4.9	13.7	4.6	6.5	6.2	
LOS	B	A	B	A	A	A	
Approach Delay	13.0		11.3			6.3	
Approach LOS	B		B			A	
Intersection Summary							

Cycle Length: 90
Actuated Cycle Length: 38.6
Natural Cycle: 45
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.42
Intersection Signal Delay: 9.2
Intersection LOS: A
Intersection Capacity Utilization 35.9\% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 12: Vollmer Rd \& Marksheffel Rd

Page: 101
$\equiv \frac{\text { Number: } 1 \quad \text { Author: Paul Brown Subject: Text Box } \quad \text { Date: 1/5/2023 10:50:51 AM }}{\text { Calculate and include appropriate Y+AR times (typical all signalized intersections) }}$

D Author: kdferrin \quad Subject: Sticky Note \quad Date: 2/10/2023 3:46:56 PM
LSC Response: Typical Y+AR times adequate for this preliminary planning level analysis as many of the intersections have yet to be designed.

Page: 136

Author: kdferrin Subject: Sticky Note
Date: 2/10/2023 3:47:18 PM
$\overline{\text { LSC Response: The analysis has been updated to remove these adjustments. }}$

[^0]: \equiv Number: $1 \quad$ Author: Paul Brown Subject: Text Box \quad Date: 1/5/2023 10:45:03 AM
 Please use a more appropriate analysis tool for roundabout operations (Master TIS comment)
 Author: kdferrin Subject: Sticky Note Date: $2 / 10 / 2023$ 3:42:16 PM
 LSC Response: LSC contends that the HCM methodology is appropriate for this planning level of analysis and provides a reasonable prediction of future
 LOS. This has been discussed with Staff. Once this intersection enters the design phase, detailed roundabout reports will be required that will utilize
 Rodel (most likely).

[^1]: \equiv Number: $1 \quad$ Author: Paul Brown Subject: Text Box \quad Date: 1/5/2023 10:47:55 AM
 Please use a more appropriate analysis tool for roundabout operations (Master TIS comment)
 5. Author: kdferrin Subject: Sticky Note Date: 2/10/2023 3:44:42 PM

 LSC Response: LSC contends that the HCM methodology is appropriate for this planning level of analysis and provides a reasonable prediction of future LOS. This has been discussed with Staff. Once this intersection enters the design phase, detailed roundabout reports will be required that will utilize Rodel (most likely).

[^2]: 弐Number: $1 \quad$ Author: Paul Brown Subject: Text Box \quad Date: 1/5/2023 10:49:58 AM
 Please use a more appropriate analysis tool for roundabout operations (Master TIS comment)
 5 Author: kdferrin Subject: Sticky Note Date: 2/10/2023 3:46:01 PM
 LSC Response: LSC contends that the HCM methodology is appropriate for this planning level of analysis and provides a reasonable prediction of future LOS. This has been discussed with Staff. Once this intersection enters the design phase, detailed roundabout reports will be required that will utilize Rodel (most likely).

