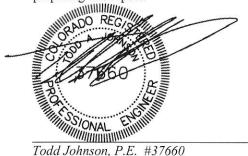


FINAL DRAINAGE STUDY

AUGUST 2019

For: Steel Structures America Inc. 3635 E. Covington Ave. Post Falls, ID 83854

By: Terra Forma Solutions 9994 Quintero Street Commerce City, CO 80022 Todd Johnson, P.E. 303.257.7653


Update

MONUMENT STEEL STRUCTURES FINAL DRAINAGE STUDY

Page 1 of 13

ENGINEER'S CERTIFICATION:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Todd Johnson, P.E. #37660

08/17/2019 Date

Owner/Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

Justin Sternberg

Steel Structures America Inc. 3635 E. Covington Ave. Post Falls, ID 83854

8-19-19 Date

El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator Date

Conditions:

FINAL DRAINAGE STUDY

Page 2 of 13

TABLE OF CONTENTS

Final	Draina	ge Studyi
SCOP	E	
I	GENE	RAL LOCATION AND DESCRIPTION
	A.	Site Location
	В.	Description of Property4
н.	DRAII	AGE BASINS AND SUB-BASINS4
	A.	Major Drainage Basins4
	В.	Historic Drainage Basins4
	C.	Minor Drainage Basins5
ш.	DRAII	NAGE DESIGN CRITERIA8
	A.	Regulations
	В.	Drainage Studies, Outfall Systems Plans, Site Constraints8
	C.	Hydrology
	D.	Hydraulics8
IV.	STOR	MWATER MANAGEMENT FACILITY DESIGN9
	A.	Existing Stormwater Drainage9
	В.	Proposed Stormwater Conveyance Facilities9
	C.	Proposed Stormwater Storage Facilities10
	D.	Water Quality Enhancement Best Management Practices10
	E.	Floodplain Modification10
	F.	Additional Permitting Requirements11
V .	CONC	LUSIONS
	Α.	Compliance with Standards11
	В.	Variances / Deviations / Exclusion11
	C.	Drainage Concept12
VI.	LIST	OF REFERENCES
APPE	NDICE	S13
APPE		– Hydrologic Computations
		- Hydraulic Computations - Detention Water Quality Enhancement BMDs
		- Detention/Water Quality Enhancement BMPs - Referenced Information
		- Referenced mormation

APPENDIX F – UD-BMP Runoff Reduction

FINAL DRAINAGE STUDY

Page 3 of 13

SCOPE

The purpose of this report is to present the drainage plan for the proposed Monument Steel Structures development. The following includes final analysis and design information for the proposed drainage systems in general conformance with the standards and specifications established by El Paso County, Colorado Springs and the Urban Drainage and Flood Control District (UDFCD).

I. GENERAL LOCATION AND DESCRIPTION

A. Site Location

- The Monument Steel Structures development is located at 18910 Base Camp Road in Section 11, Township 11 South, Range 67 West of the 6th Principal Meridian in El Paso County, State of Colorado.
- Approximate geodetic coordinates for the site are: 39°6'21"N, 104°51'48"W
- The site is bordered to the north by the Greater Europe Missions, to the east by Base Camp Road, to the west by Monument Hill Road and to the south by Deer Creek Road.
- See Site Location Map below for overall site location: (See Vicinity Map in the Appendices)

FINAL DRAINAGE STUDY

Page 4 of 13

B. <u>Description of Property</u>

- The site is approximately 4.0 acres in size. The site is currently vacant and is covered by native grasses and weeds. Topography generally slopes from northeast to southwest towards a roadside ditch along Monument Hill Road with grades generally varying from 1% to 10%.
- The site is not located within a flooplain as shown on the FEMA FIRM Map No. 08041C0276G dated December 7, 2018.
- The site lies within Zone X which is described as follows: Areas of 0.2% annual chance flood; areas of 1% annual chance of a flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. See Appendix D for a FEMA Firm panel exhibit.
- The proposed Monument Steel Structures development is proposing a sales office with display structures and Mini Warehouse and RV Boat Storage.
- Soil types on site as identified by the Natural Resources Conservation Service (NRCS) are as follows:

	Hydrologic Soil Group			
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
92	Tomah – Crowfoot Loamy sands, 3 to 8 percent slopes	В	4.7	80.6%
93	Tomah – Crowfoot complex, 8 to 15 percent slopes	В	1.1	19.4%

- See Appendix D for soils map.
- There are no known irrigation canals or ditches within the project boundaries.

II. DRAINAGE BASINS AND SUB-BASINS

A. <u>Major Drainage Basins</u>

- The site is tributary to the Crystal Creek basin within Monument Creek watershed. There are no major drainageways crossing or adjacent to the site. Runoff from the proposed site will release from the on-site extended detention basin at the southwest corner of the site and will enter the recently constructed 30" FES (constructed with the Monument Hill Widening Project), matching existing drainage patterns.
- Off-site flow patterns will not be influenced by the development of this site.

B. <u>Historic Drainage Basins</u>

• **Basin E-1:** Consists of the West half of Base Camp Road from the Greater Europe Missions southern access to the Deer Creek Road intersection, native grasses and weeds between the Base Camp Road and the eastern property boundary and native grasses and weeds from the Greater Europe Missions parking lot to the northern property boundary.

FINAL DRAINAGE STUDY

Page 5 of 13

- Historically, runoff from this basin flows onto the site and sheet flows across the subject property to the southwest corner of the site where it releases through the recently constructed 30" FES (constructed with the Monument Hill Widening Project).
- **Basin E-2:** Encompasses the property boundary and consists of vacant land covered by native grasses and weeds.
 - Historically, runoff from this basin sheet flows to the southwest corner of the site where it releases through the recently constructed 30" FES (constructed with the Monument Hill Widening Project).

C. <u>Minor Drainage Basins</u>

- **Basin OS-1:** Consists of vacant land in between the north boundary of the site and the southern parking lot of the Greater Europe Missions property.
 - Runoff generated in this basin will sheet flow overland from north to south entering the site along the northern property boundary and combine flows with Basin A-4 (See Below)
- **Basin OS-2:** Consists of vacant land in between the north boundary of the site and the southern parking lot of the Greater Europe Missions property.
 - Runoff generated in this basin will sheet flow overland from north to south entering the site along the northern property boundary and combine flows with Basin A-3.
- **Basin OS-3:** Consists of vacant land between the north boundary of the site and the southern parking lot of the Greater Europe Missions property. This basin also consists of the western half of Base Camp Road from the middle of the eastern property boundary north to the southern access of Greater Europe Missions property.
 - Runoff generated in this basin will sheet flow overland from north to south and east to west entering the site along the northern and eastern property boundary and combine flows with Basin A-2
- **Basin OS-4:** Consists of the western half of Base Camp Road and landscaping from the middle of the eastern property boundary south to the intersection of Base Camp Road and Deer Creek Road.
 - Runoff generated in this basin will sheet flow overland from east to west entering the site along the eastern property boundary and combine flows with Basin A-1.
- **Basin OS-5:** Consists of vacant land in between the north boundary of the site and the southern parking lot of the Greater Europe Missions property.
 - Runoff generated in this basin will sheet flow overland from the north to the south entering the site along the northern boundary and be directed west to the Monument Hill Road roadside via a drainage swale.
- **Basin OS-6:** Consists of rooftops and landscaping at the western portion of the site.
 - Runoff generated within this boundary will be released from the rooftops via downspouts and be directed west to the Monument Hill Road roadside ditch.
 Low Impact Development is being achieved within this basin as impervious and

FINAL DRAINAGE STUDY

Page 6 of 13

pervious areas are being disconnected along with implementing infiltration as the flows run along the earth lined roadside ditch. The 100-year allowable release for the EDB has been reduced by the derived 100-yr runoff of this basin.

 This basin is ~4.0% of the site (0.16ac) and therefore falls within the ECM exclusions from the MS4 Permit per Appendix I Section I.7.1.C.1a stating:

100% of the applicable development site is captured, except the County may exclude up to 20 percent, not to exceed 1 acre, of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site that will not drain towards control measures. In addition, the County must also determine that the implementation of a separate control measure for that portion of the site is not practicable (e.g., driveway access that drains directly to street).

- This area is implementing Low Impact Development (LID) techniques to Minimize Directly Connected Impervious Area (MDCIA) by routing runoff from impervious surfaces over grassy areas to slow runoff and promote infiltration. MDCIA is recommended as a key technique for reducing runoff peaks and volumes for frequently-occurring storms following urbanization. MDCIA is a key component of LID.
- The UD-BMP Runoff Reduction spreadsheet was used to quantify the WQCV Reduction within this area (See results in Appendix F). This spreadsheet was developed by UDFCD to provide a simple tool that can be used to demonstrate compliance with the Runoff Reduction Standard in the MS4 General Permit.
 - Using the spreadsheet, a WQCV of 272 cubic feet was derived with the roadside ditch providing a 100% reduction. Such that there is anticipated to 0% untreated WQCV leaving the site
- **Basin OS-7:** Consists of the existing 20-foot Monument Hill Road roadside ditch drainage and utility easement and landscaping behind the proposed buildings along the western boundary of the site.
 - Runoff generated in this basin will combine with the flows entering the basin from the Monument Hill Road roadside ditch to the north and the flows from Basin OS-5 and OS-6 described above. The combined flows will travel south along the earth lined roadside ditch to the recently constructed 30" FES transporting the flows under Deer Creek Road and off site.
 - This basin is ~10% of the site (0.40ac) and combines with Basin OS-6.
 - The sum of these basins is ~14% of the site (0.56ac) and therefore falls within the ECM exclusions from the MS4 Permit per Appendix I Section I.7.1.c.1a stating:

100% of the applicable development site is captured, except the County may exclude up to 20 percent, not to exceed 1 acre, of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site that will not drain towards control measures. In addition, the County must also determine that the implementation of a separate control measure for that portion of

FINAL DRAINAGE STUDY

Page 7 of 13

the site is not practicable (e.g., driveway access that drains directly to street).

- **Basin A-1:** Consist of rooftops, pavement and landscaping at the southeastern corner of the site.
 - Runoff generated in this basin will combine with the flows entering the site from the east (Basin OS-4) and the flows entering the site from the south (Basin OS-5). The flows will travel along the southern curb and gutter from the northeast to the southwest being captured by the proposed on-grade 10' Type R inlet (IN-1) at Design Point 1 where it will combine with flows from Basin A-2. This inlet has been sized to capture the 5-year flows and most of the 100-yr flows
 - Captured flows will be transported to the proposed EDB via concrete pipe.
 - Bypassing flows will travel west to Design Point 3 and be captured by a proposed Double Type 13 Combo inlet (IN-2) before entering the proposed EDB via concrete pipe.
- **Basin A-2:** Consists of rooftops, pavement and landscaping stretching from the northern boundary to the southern boundary encompassing the eastern-middle portion of the site.
 - Runoff generated in this basin will combine with the flows entering the site from the north (Basin OS-3). The flows will be directed towards and transported south via a 4-foot drainage pan being captured by the proposed on-grade 10' Type R inlet (IN-1) at Design Point 1 where it will combine with flows from Basin A-1 (See basin description above).
- **Basin A-3:** Consists of rooftops, pavement, and landscaping stretching from the northern boundary to the southern boundary encompassing the middle portion of the site.
 - Runoff generated in this basin will combine with the flows entering the site from the north (Basin OS-2). The flows will be directed towards and transported south vie a modified 2-foot curb and gutter running along the east side of the 48-foot storage building.
 - The said curb is proposed to be modified by having a 1-foot vertical height instead of the typical 0.5-foot vertical height for added capacity and building protection.
 - The flows will flow from the 2-curb and gutter to a 4-foot drainage pan at the south end of the 48-foot storage building directing flows south to Design Point 3. Here the flows will be combined with any bypass flows bypassing the on-grade IN-1 and be captured by a proposed Triple Type 13 Combo inlet (IN-2) in sump and be transported to the EDB via concrete pipe.
- **Basin A-4:** Consists of rooftops, pavement, sidewalk and landscaping stretching from the northern boundary to the southern boundary encompassing the western-middle portion of the site.
 - Runoff generated in this basin will combine with the flows entering the site from the north (Basin OS-1). The flows will be directed towards and transported south via a 4-foot drainage pan towards Design Point 4 being captured by a proposed

FINAL DRAINAGE STUDY

Page 8 of 13

Double - Type 13 Combo inlet (IN-3) in sump and be transported to the EDB via concrete pipe.

- Basin A-5: Consists of the onsite EDB.
 - Runoff generated in this basin will combine with all flows tributary to the EDB and will be captured and released by a controlled outlet structure.

III. DRAINAGE DESIGN CRITERIA

A. <u>Regulations</u>

 The site has been designed in accordance with the El Paso County Drainage Design Criteria Manual, adopted portions of the City of Colorado Springs Drainage Criteria Manual Volume 1, dated May 2014, and the Urban Storm Drainage Criteria Manual, Volumes 1, 2, and 3 (UDFCD), Urban Drainage and Flood Control District, latest revisions. The portions of the City of Colorado Springs Drainage Criteria Manual adopted by the County are Chapter 6 (Hydrology) and Chapter 13 Section 3.2.1 (Full Spectrum Detention).

B. Drainage Studies, Outfall Systems Plans, Site Constraints

• The site is included within the limits of the Dirty Woman Creek and Crystal Creek Drainage Basin Planning Study prepared by Kiowa Engineering in September of 1993. There are no drainage way facilities proposed in the study that are located within the limits of the site.

C. <u>Hydrology</u>

- Peak storm runoff was determined using the Rational Formula: Q=CIA
- Design storm recurrence intervals are the 5-year storm for the minor event and the 100year storm for the major event.
- Rainfall intensities were determined per Table 6-2, in accordance with the City of Colorado Springs Drainage Criteria Manual Volume 1, dated May 2014.
- Runoff coefficients have been determined per Table 6-6, in accordance with the City of Colorado Springs Drainage Criteria Manual Volume 1, dated May 2014.
- Time of Concentration has been calculated per Section 3-2, in accordance with the City of Colorado Springs Drainage Criteria Manual Volume 1, dated May 2014.
- See Appendix A for all hydrologic calculations.

D. <u>Hydraulics</u>

- The calculation methods for private improvements are based upon the Manning's Equation and the City of Colorado Springs Drainage Criteria Manual Volumes 1 and 2, dated May 2014.
- On-Site storm drainage improvements are designed for the 5-year and 100-year events.
- See Appendix B for all hydraulic calculations.

FINAL DRAINAGE STUDY

Page 9 of 13

IV. STORMWATER MANAGEMENT FACILITY DESIGN

A. Existing Stormwater Drainage

- The existing stormwater runoff for the proposed site flows overland from the northeast corner of the site towards the southwest corner with a fairly uniform grade of 3.5%.
- Historically the runoff from the vacant land between the north boundary of the site and the southern parking lot of the Greater Europe Missions property flows onto the site along the northern boundary of the site.
- Historically the runoff from the western half of Base Camp Road flows onto the site along the eastern boundary of the site.
- The eastern half of the proposed site flows into the Monument Hill roadside ditch north of Deer Creek Road and flows to the southwest corner of the site where it will be captured by the recently constructed 30" RCP flared end section (constructed with the Monument Hill Widening Project). As the proposed site will be release at or below historic levels the recently constructed 30" RCP crossing under Deer Creek Road is suitable outfall for the proposed development.
- The western half of the proposed site flows into the reconstructed roadside ditch east of Monument Hill Road (reconstructed with the Monument Hill widening project) and flows to the southwest corner of the site where it will be captured by the recently constructed 30" RCP flared end section (constructed with the Monument Hill Widening Project).

B. <u>Proposed Stormwater Conveyance Facilities</u>

- The proposed drainage patterns will follow historic flow patterns as closely as possible.
- The general concept for the site drainage will be for storm runoff to surface flow from the building roofs and pavement generally flowing from the north side of the site to the south side of the site via 4-foot v-channel drainage pans and curb and gutter. Runoff will be captured by a series of inlets south of the on-site drive isles and piped to the proposed Extended Detention Basin designed in accordance with City of Colorado Springs criteria.
- The proposed Extended Detention Basin will drain through a modified CDOT Type C outlet structure. The outlet structures released flow will be piped to the roadside ditch east of Monument Hill Road and be captured by the 30" RCP flared end section (which was constructed with the Monument Hill widening project.)
- The on-site storm sewers and EDB will be private and will be maintained by the property owner.
- Conveyance of off-site runoff is generated from Basin OS-6. Low Impact Development is being achieved within this basin as impervious and pervious areas are being disconnected along with implementing infiltration as the flows run along the earth lined roadside ditch. The 100-year allowable release for the EDB has been reduced by the derived 100-yr runoff of this basin.

FINAL DRAINAGE STUDY

Page 10 of 13

C. <u>Proposed Stormwater Storage Facilities</u>

- An Extended Detention Basin is proposed at the southwest corner of the site to treat storm runoff and attenuate peak flows in accordance with the City of Colorado Springs criteria and UDFCD.
- The Extended Detention Basin and outlet structure have been sized and designed with the UDFCD UD-Detention v3.07 spreadsheet to control the Water Quality Capture Volume (WQCV) and 100-year detention volume.
- The pond will include a trickle channel for low flow conditions, an outlet structure including a 2.5-ft deep micropool, and an emergency spillway with riprap erosion protection.
- See Appendix C for Detention and Water Quality Calculations
- D. Water Quality Enhancement Best Management Practices
 - El Paso County requires the Four Step Process be followed for the selection and siting of structural BMPs for new development to provide water quality for stormwater runoff being discharged into State Waters. The Four Steps are; employ runoff reduction practices, stabilize drainageways, provide water quality capture volume (WQCV) and consider need for industrial and commercial BMP's.
 - The design of the site has followed this process as much as possible. Pavement has been minimized to meet only the parking spaces as required by the county and landscaped areas are included to assist in reducing runoff. There are no major drainageways on site. The drainageways adjacent to the site are being improved with riprap protection where concentrated flows may cause erosion. The WQCV is being provided in the permanent BMP which is an Extended Detention Basin designed in accordance with county regulations
 - Discharge will be controlled by a standard outlet structure with a flow control plate designed to release the WQCV over 40 hours and release 97% of the 5-year storm in less than 72 hours.
 - The 100-year discharge will be limited to be at or below 2.95 cfs (0.85 cfs/acre for Type B soils minus the 100-yr peak runoff from Basin OS-7 which will bypass the EDB) and will be controlled by a circular orifice plate located at the discharge side of the outlet structure prior to the flow entering an 18" RCP flowing to the proposed drainage swale adjacent to Monument Hill Road. This swale flows to the south and will be captured by the 30" FES to be constructed as part of the Monument Hill Road widening Improvements. In the event the outlet structure should become clogged with debris, and emergency overflow weir and swale will be a notched 15' wide by 1' deep cavity in the proposed EDB upper wall. Overflow will go to the proposed drainage swale along Monument Hill Road flowing to the south to the existing 30" FES and will be routed off site.

E. <u>Floodplain Modification</u>

• A floodplain modification is not anticipated for the construction of the Monument Steel Structures development.

FINAL DRAINAGE STUDY

Page 11 of 13

F. Additional Permitting Requirements

• No additional permitting is anticipated for the construction of the Monument Steel Structures development.

V. CONCLUSIONS

- A. <u>Compliance with Standards</u>
 - The drainage design for the Monument Steel Structures site detailed within this report is in general compliance with the El Paso County, Colorado Springs and UDFCD criteria.
 - Per Note 9 of the Greater Europe Mission Subdivision Filing Number 1 Plat:
 - DRAINAGE FEES FOR LOT 2 SHALL BE PAID PRIOR TO THE ISSUANCE OF A BUILDING PERMIT AND THOSE FEES ARE TO BE CALCULATED ON THE BASIS OF THE FEE STRUCTURE IN EFFECT AT THE TIME OF BUILDING PERMIT APPLICATION.
 - Per the 2019 Drainage Basin Fees Drainage Basin FOMO5300
 - Drainage Basin Fee = \$18,350 / Impervious Acre
 - Bridge Fee = \$1,004 / Impervious Acre

2019 DRAINAGE BASIN FEES - LOT 2						
Fee	\$ / Imp Acre	Imp Acres	Fee			
Drainage Basin Fee	\$18,350	2.98	\$54,629.39			
Bridge Fee	\$1,004	2.98	\$2 <i>,</i> 988.99			

B. Variances / Deviations / Exclusion

- An Exclusion from *Appendix I Section I.7.1B Providing Water Quality for Entire Development* for proposed basins OS-6 and OS-7 is requested per *Appendix I Section I.7.1.C.1a*.
- Approximately 0.56 acres (14.0%) of 4.0-acre site will not reach a proposed on-site water quality facility. Of the area inside the development boundary that will not reach a facility, 0.14 acres is proposed roofs and 0.42 acres is the existing Monument Hill Road roadside ditch and landscape areas behind the proposed buildings.
 - The 0.14 acres of roofs drains to the Monument Hill Road roadside ditch as the site naturally drains towards the ditch.
 - This area is implementing Low Impact Development (LID) techniques to Minimize Directly Connected Impervious Area (MDCIA) by routing runoff from impervious surfaces over grassy areas to slow runoff and promote infiltration. MDCIA is recommended as a key technique for reducing runoff peaks and volumes for frequently-occurring storms following urbanization. MDCIA is a key component of LID.
 - The UD-BMP Runoff Reduction spreadsheet was used to quantify the WQCV Reduction within this area (See results in Appendix F). This

FINAL DRAINAGE STUDY

Page 12 of 13

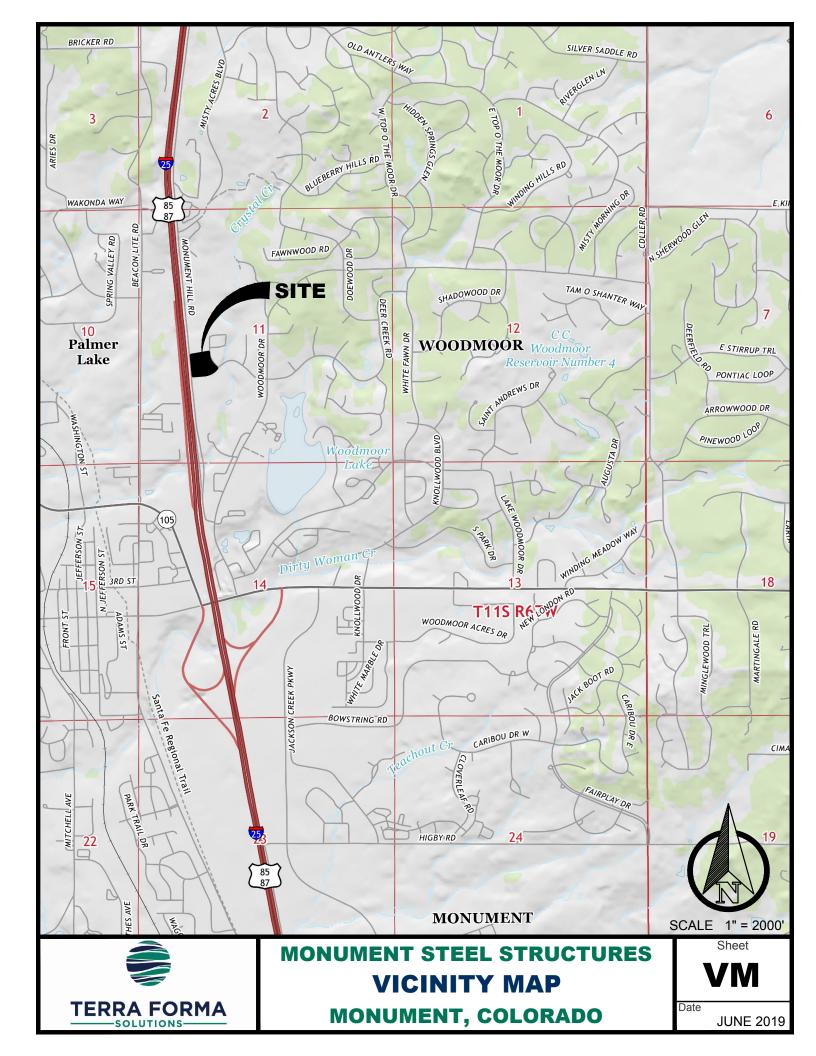
spreadsheet was developed by UDFCD to provide a simple tool that can be used to demonstrate compliance with the Runoff Reduction Standard in the MS4 General Permit.

- Using the spreadsheet, a WQCV of 272 cubic feet was derived with the roadside ditch providing a 100% reduction. Such that there is anticipated to 0% untreated WQCV leaving the site.
- The 0.42 acres of landscaping is primarily composed of an existing 20-foot drainage and utility easement running the entire length of the western boundary of the site transporting the runoff from Monument Hill Road from the north boundary of the site to the south boundary of the site. It is not practical to change the existing topography or modify the elevation to force additional area to the WQ facilities.

C. Drainage Concept

- The proposed drainage patterns will follow historic flow patterns as closely as possible. The majority of the site will sheet flow to the southwest into the proposed Extended Detention Basin.
- With the development of the proposed site; there should be no adverse impact to downstream facilities, adjacent properties, channel depths, velocities, or erosion rates, due to release flows being below historic rates.

VI. LIST OF REFERENCES


- El Paso County's Engineering Criteria Manual, Revised 07/29/2015 Revision 5.
- City of Colorado Springs Drainage Criteria Manual Volumes 1 and 2, dated May 2014.
- Urban Storm Drainage Criteria Manual, Volumes 1, 2, and 3, Urban Drainage and Flood Control District, latest editions.
- Federal Emergency Management Agency Flood Insurance Rate Map Panel Number 08041C0276G, effective December 7, 2018.
- Dirty Woman Creek and Crystal Creek Drainage Basin Planning Study prepared by Kiowa Engineering Dated September, 1993.

FINAL DRAINAGE STUDY Page 13 of 13

APPENDICES

VICINITY MAP

- **APPENDIX A** Hydrologic Computations
- **APPENDIX B** Hydraulic Computations
- **APPENDIX C** Detention/Water Quality Enhancement BMPs
- **APPENDIX D** Referenced Information
- **APPENDIX F** UD-BMP Runoff Reduction

APPENDIX A - HYDROLOGIC COMPUTATIONS

Project:	Monument Steel Structures
Location:	Monument, CO
Designer:	TAJ
Date:	4/7/2019
Latest Revision:	8/17/2019

 $^1{\rm From}$ Table 6-6 in Colorado Springs DCM, Volume 1 $^2{\rm From}$ Table 6-6 in Colorado Springs DCM, Volume 1

IMPERVIOUSNESS AND RUNOFF COEFFICIENT CALCULATIONS

				Roofs	Lawn	Pavement	Sidewalk	Pond HWL	Misc						
			Impervious % ¹	90%	0%	100%	100%	100%	0%						
Desia Desianation	NRCS Hydrologic	Total Area	Total Area	Roofs	Lawn	Pavement	C:	Pond HWL	Misc	Percent	Impervious		Runoff Coef	iicients, C ²	
Basin Designation	Soil Group	(ac)	(sf)	(sf)	(sf)	(sf)	Sidewalk (sf)	(sf)	(sf)	Impervious	Area (ac)	C ₂	C ₅	C ₁₀	C ₁₀₀
E-1	В	1.35	58,906		52,085	6,821				11.58%	0.16	0.12	0.17	0.24	0.42
E-2	В	4.00	174,280		174,280					0.00%	0.00	0.02	0.08	0.15	0.35
OS-1	В	0.45	19,479		19,479			0	0	0.00%	0.00	0.02	0.08	0.15	0.35
OS-2	В	0.22	9,459		9,459			0	0	0.00%	0.00	0.02	0.08	0.15	0.35
OS-3	В	0.42	18,281		13,642	4,639		0	0	25.38%	0.11	0.24	0.29	0.35	0.50
OS-4	В	0.15	6,407		4,225	2,182		0	0	34.06%	0.05	0.32	0.36	0.41	0.56
OS-5	В	0.12	5,280		5,280			0	0	0.00%	0.00	0.02	0.08	0.15	0.35
OS-6	В	0.16	7,031	6,636	395			0	0	84.94%	0.14	0.67	0.69	0.72	0.78
OS-7	В	0.40	17,418		17,418			0	0	0.00%	0.00	0.02	0.08	0.15	0.35
A-1	В	0.43	18,530	3,272	4,867	10,392		0	0	71.97%	0.31	0.63	0.65	0.69	0.77
A-2	В	0.90	39,189	9,409	6,191	23,589		0	0	81.80%	0.74	0.71	0.73	0.76	0.83
A-3	В	0.95	41,543	17,660	819	23,064		0	0	93.78%	0.89	0.80	0.81	0.83	0.88
A-4	В	0.93	40,705	13,218	825	25,847	815	0	0	94.73%	0.89	0.81	0.83	0.85	0.90
A-5	В	0.23	9,864		9,064	800		0	0	8.11%	0.02	0.09	0.15	0.21	0.40
								0	0						
Area Treated by EDB	В	4.67	203,457	Basins (O			2, A-3, A-4, A-5)	0	0	64.16%	3.00				
Area Not Treated by EDB	В	0.68	29,729		Basins (C	DS-5, OS-6, OS-	7)	0	0	20.09%	0.14				
								0	0						
Overall		5.35	233,186					0	0	58.54%	3.13				

Project: Monument Steel Structures Location: Monument, CO Designer: TAJ Date: 4/7/2019 Latest Revision: 8/17/2019

NRCS Conveyance Fa	actors, K ²
Type of Land Surface	к
Heavy Meadow	2.5
Tillage/Field	5
Short Pasture/Lawns	7
Nearly Bare Ground	10
Grassed Waterway	15
Paved Areas	20

TIME OF CONCENTRATION CALCULATIONS

¹Max 100 ft in Urban areas and 300 ft in rural areas ²From Table 6-7 - Coloardo Springs DCM

Channelized Flow/Travel Time, T_t Initial/Overland Flow Time, T_i Time of Concentration, T_c (Check) Imperviousness Velocity Computed T_c First Design Minimum T_c Selected T_c **Basin Designation** C5 T_i (min) Land Surface T_t (min) Length (ft)¹ Slope (%) Length (ft) Slope (%) (%) (ft/sec) (min) Point T_c (min) (min) (min) 10.00 E-1 11.58% 0.17 25 3.00 5.81 Paved Areas 140 3.40 3.69 0.63 6.44 10.92 10.00 13.03 100 3.40 12.30 Short Pasture/Lawns 445 4.65 1.51 17.21 10.00 F-2 0.00% 0.08 4.91 13.03 OS-1 0.00% 0.08 25 5.00 5.41 Short Pasture/Lawns 175 5.00 1.57 1.86 7.28 11.11 5.00 7.28 OS-2 0.00% 0.08 25 5.00 5.41 Short Pasture/Lawns 110 5.00 1.57 1.17 6.59 10.75 5.00 6.59 25.38% 0.29 25 2.00 5.83 Short Pasture/Lawns 130 5.00 1.57 1.38 7.22 5.00 7.22 OS-3 10.86 OS-4 34.06% 0.36 15 2.00 4.12 Short Pasture/Lawns 20 16.00 2.80 0.12 4.24 10.19 5.00 5.00 OS-5 0.00% 0.08 25 5.00 5.41 Short Pasture/Lawns 163 5.00 1.57 1.74 7.15 11.04 5.00 7.15 OS-6 84.94% 0.69 10 2.00 1.85 Grassed Waterway 25 2.00 2.12 0.20 2.04 10.19 5.00 5.00 OS-7 0.00% 0.08 25 2.51 5.79 12.32 5.00 5.79 25.00 3.18 Grassed Waterway 392 2.80 2.60 A-1 71.97% 0.65 45 3.05 3.73 Paved Areas 292 1.37 2.34 2.08 5.81 11.87 5.00 5.81 A-2 81.80% 0.73 45 4.80 2.67 Paved Areas 412 2.18 2.96 2.32 5.00 12.54 5.00 5.00 A-3 93.78% 0.81 45 2.50 2.58 Paved Areas 433 1.73 2.63 2.74 5.32 5.00 5.32 12.66 A-4 94.73% 0.83 65 1.65 Paved Areas 365 2.19 2.96 2.05 5.41 5.00 5.41 3.35 12.39 A-5 8.11% 0.15 25 10.00 4.03 Paved Areas 140 0.50 1.41 1.65 5.68 10.92 5.00 5.68

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i, may be calculated using Equation 6-8.

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{1.1 - C_5}$

S^{0.31}

Where

ti = overland (initial) flow time (min)

 C_5 = runoff coefficient for 5-year frequency (see Table 6-6) = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for L

urban land uses)

S = average basin slope (ft/ft)

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10$$
 (Eq. 6-10)

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser

3.2.2 Travel Time

(Eq. 6-8)

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, tr, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_0 can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

 $V = C_v S_w^{0.5}$

Where:

(Eq. 6-9)

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

 $t_c = t_i + t_i$

Where:

 t_c = time of concentration (min)

 t_i = overland (initial) flow time (min)

 t_r = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

(Eq. 6-7)

SOLUTIONS Project: Monument Steel Structures	ent Steel Structures
--	----------------------

Location: Monument, CO

Designer: TAJ

Date: 4/7/2019

Latest Revision: 8/17/2019

5-YEAR PEAK RUNOFF CALCULATIONS

Design Storm:

1-hr Design Point Rainfall (in):

5-Yr

1.50

Basin Designation	Design Point	Basin Outfall	Area (ac)	C₅	CXA	T _c (min)	Intensity (in/hr)	Peak Flow, Q (cfs)
E-1	1	Basin E-1	1.35	0.17	0.24	10.00	4.06	0.96
E-2	2	Ex 30" RCP	4.00	0.08	0.32	13.03	3.63	1.16
OS-1	4	Basin A-4	0.45	0.08	0.04	7.28	4.55	0.16
OS-2	3	Basin A-3	0.22	0.08	0.02	6.59	4.70	0.08
OS-3	2	Basin A-2	0.42	0.29	0.12	7.22	4.57	0.55
OS-4	1	Basin A-1	0.15	0.36	0.05	5.00	5.09	0.27
OS-5		Basin OS-7	0.12	0.08	0.01	7.15	4.58	0.04
OS-6		Basin OS-7	0.16	0.69	0.11	5.00	5.09	0.57
OS-7		Ex 30" RCP	0.40	0.08	0.03	5.79	4.89	0.16
A-1	1	IN-1 (10' Type R)	0.43	0.65	0.28	5.81	4.88	1.36
A-2	2	IN-1 (10' Type R)	0.90	0.73	0.66	5.00	5.09	3.34
A-3	3	IN-2 (Triple Type 13)	0.95	0.81	0.77	5.32	5.00	3.87
A-4	4	IN-3 (Double Type 13)	0.93	0.83	0.77	5.41	4.98	3.86
A-5	5	EDB Outlet Structure	0.23	0.15	0.03	5.68	4.91	0.16

Project:	Monument Steel Structures
Location:	Monument, CO
Designer:	TAJ
Date:	4/7/2019

Design Storm: 1-hr Design Point Rainfall (in):

100-Yr	
2.52	

Latest Revision: 8/17/2019

100-YEAR PEAK RUNOFF CALCULATIONS

Basin Designation	Design Point	Basin Outfall	Area (ac)	C ₁₀₀	СХА	T _c (min)	Intensity (in/hr)	Peak Flow, Q (cfs)
E-1	1	Basin E-1	1.35	0.42	0.57	10.00	6.82	3.88
E-2	2	Ex 30" RCP	4.00	0.35	1.40	13.03	6.10	8.55
OS-1	4	Basin A-4	0.45	0.35	0.16	7.28	7.65	1.20
OS-2	3	Basin A-3	0.22	0.35	0.08	6.59	7.90	0.60
OS-3	2	Basin A-2	0.42	0.50	0.21	7.22	7.67	1.62
OS-4	1	Basin A-1	0.15	0.56	0.08	5.00	8.55	0.70
OS-5		Basin OS-7	0.12	0.35	0.04	7.15	7.69	0.33
OS-6		Basin OS-7	0.16	0.78	0.13	5.00	8.55	1.08
OS-7		Ex 30" RCP	0.40	0.35	0.14	5.79	8.21	1.15
A-1	1	IN-1 (10' Type R)	0.43	0.77	0.33	5.81	8.20	2.70
A-2	2	IN-1 (10' Type R)	0.90	0.83	0.74	5.00	8.55	6.36
A-3	3	IN-2 (Triple Type 13)	0.95	0.88	0.84	5.32	8.41	7.09
A-4	4	IN-3 (Double Type 13)	0.93	0.90	0.84	5.41	8.37	7.03
A-5	5	EDB Outlet Structure	0.23	0.40	0.09	5.68	8.26	0.75

Project:	Monument Steel Structures
Location:	Monument, CO
Designer:	TAJ
Date:	4/7/2019
Revision:	8/17/2019

MINOR STORM ROUTING CALCULATIONS

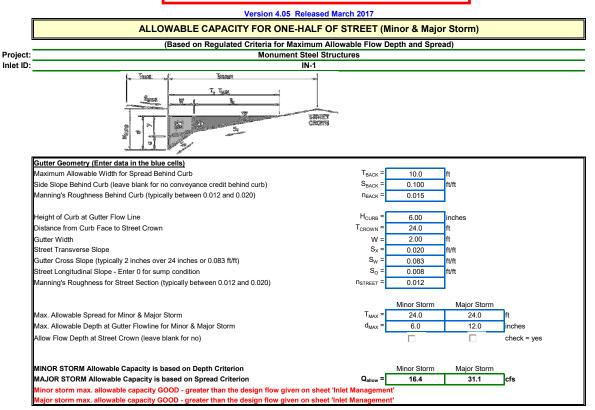
				Direct Runoff			Total Runoff			Street		Travel Time								
Design Point	Contributing Basins	Basin Outfall	Basin Designation	Area (ac)	C₅	СХА	T _c (min)	Intensity (in/hr)	Peak Flow, Q (cfs)	T _c (min)	Sum Area (C X A)	Intensity (in/hr)	Q (cfs)	Slope (%)	Street Q (cfs)	Length (ft)	Velocity (ft/sec)	T _t (min)	Carry Over CA	Remarks
			OS-4	0.15	0.36	0.05	5.00	5.09	0.27											
			A-1	0.43	0.65	0.28	5.81	4.88	1.36											
1	A-1, OS-4	C&G to IN-1								5.81	0.33	4.88	1.62							Used to check Gutter Capacity
			OS-3	0.42	0.29	0.12	7.22	4.57	0.55					1.80%	0.55	422	2.68	2.62	0.12	Flows from OS-3 to DP 2
			A-2	0.90	0.73	0.66	5.00	5.09	3.34											
2	A-2, OS-3	Drainage Pan to IN-1								9.84	0.78	4.08	3.17							Used to Check Drainage Pan Capacity
	A-1, A-2, OS-3, OS-4	IN-1								9.84	1.11	4.08	4.53							Inlet Overflows to DP 3
			OS-2	0.22	0.08	0.02	6.59	4.70	0.08					2.00%	0.08	415	2.83	2.45	0.02	Flows from OS-2 to DP 3
			A-3	0.95	0.81	0.77	5.32	5.00	3.87											
3	A-3, OS-2	IN-2								9.03	0.79	4.22	3.34							Inlet Overflows to DP 5 (EDB)
			OS-1	0.45	0.08	0.04	7.28	4.55	0.16					2.00%	0.16	358	2.83	2.11	0.04	
			A-4	0.93	0.83	0.77	5.41	4.98	3.86											
4	A-4, OS-1	IN-3								9.39	0.81	4.16	3.37							Inlet Overflows to DP 5 (EDB)
5	A-1 - A-4, OS-1 Through OS-4	EDB								9.84	2.71	4.08	11.07							
			OS-5	0.12	0.08	0.01	7.15	4.58	0.04											Used to check swale capacity
			OS-6	0.16	0.69	0.11	5.00	5.09	0.57											
			OS-7	0.40	0.08	0.03	5.79	4.89	0.16											

1-hr Design Point

Design Storm:	5-Yr	
nt Rainfall (in):	1.50	

Project:	Monument Steel Structures
Location:	Monument, CO
Designer:	TAJ
Date:	4/7/2019
t Revision:	8/17/2019

MAJOR STORM ROUTING CALCULATIONS

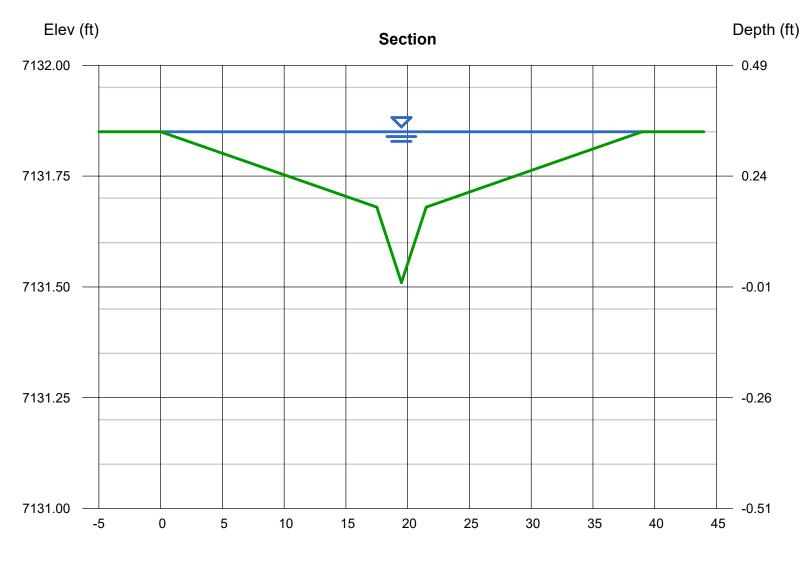

- •					Di	rect Runoff						Runoff		Str	eet		Travel Time			
Design Point	Contributing Basins	Basin Oufall	Basin Designation	Area (ac)	C ₁₀₀	СХА	T _c (min)	Intensity (in/hr)	Peak Flow, Q (cfs)	T _c (min)	Sum Area (C X A)	Intensity (in/hr)	Q (cfs)	Slope (%)	Street Q (cfs)	Length (ft)	Velocity (ft/sec)	T _t (min)	Carry Over CA	Remarks
			OS-4	0.15	0.56	0.08	5.00	8.55	0.70											
			A-1	0.43	0.77	0.33	5.81	8.20	2.70											
1	A-1, OS-4	C&G to IN-1								5.81	0.41	8.20	3.37							Used to check Gutter Capacity
			OS-3	0.42	0.50	0.21	7.22	7.67	1.62					1.80%	1.62	422	2.68	2.62	0.21	Flows from OS-3 to DP 2
			A-2	0.90	0.83	0.74	5.00	8.55	6.36											
2	A-2, OS-3	Drainage Pan to IN-1								9.84	0.96	6.86	6.56							Used to Check Drainage Pan Capacity
	A-1, A-2, OS-3, OS-4	IN-1								9.84	1.37	6.86	9.38							Inlet Overflows to DP 3
			OS-2	0.22	0.35	0.08	6.59	7.90	0.60					2.00%	0.60	415	2.83	2.45	0.08	Flows from OS-2 to DP 3
			A-3	0.95	0.88	0.84	5.32	8.41	7.09											
3	A-3, OS-2	IN-2								9.03	0.92	7.09	6.52							Inlet Overflows to DP 5 (EDB)
			OS-1	0.45	0.35	0.16	7.28	7.65	1.20					2.00%	1.20	358	2.83	2.11	0.16	
			A-4	0.93	0.90	0.84	5.41	8.37	7.03											
4	A-4, OS-1	IN-3								9.39	1.00	6.99	6.96							Inlet Overflows to DP 5 (EDB)
5	A-1 - A-4, OS-1 Through OS-4	EDB								9.84	3.28	6.86	22.53							
			OS-5	0.12	0.35	0.04	7.15	7.69	0.33											
			OS-6	0.16	0.78	0.13	5.00	8.55	1.08											
			OS-7	0.40	0.35	0.14	5.79	8.21	1.15											

1-hr Design Poin

Design Storm:	100-Yr	
int Rainfall (in):	2.52	

APPENDIX B - HYDRAULIC COMPUTATIONS

2ft Catch Curb and 24' Drive Isle Capacity

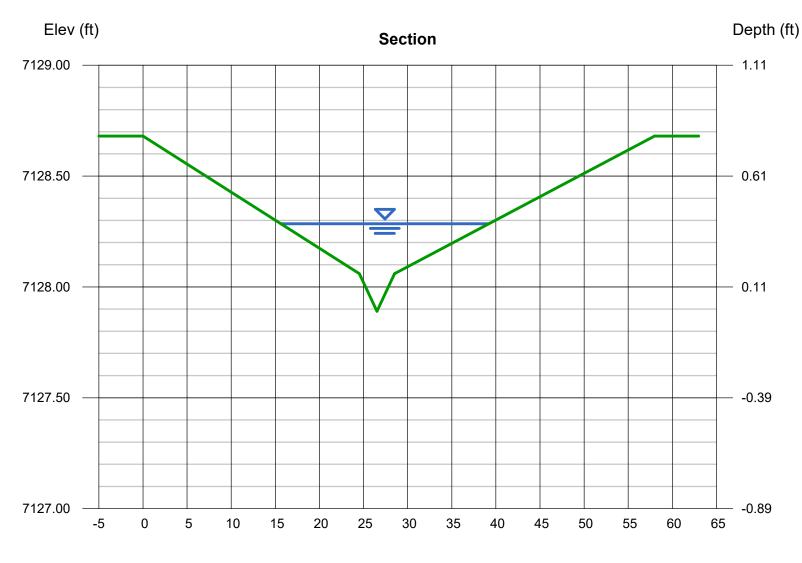

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

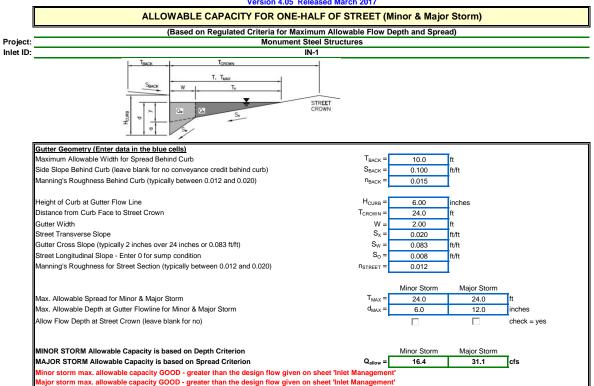
40 Foot Drainage Pan Capacity

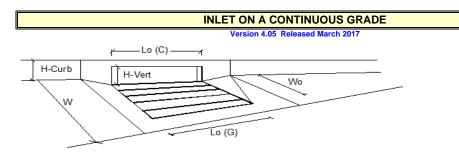
User-defined Invert Elev (ft)	= 7131.51	Highlighted Depth (ft)	= 0.34
Slope (%)	= 1.80	Q (cfs)	= 14.54
N-Value ´	= Composite	Area (sqft)	= 3.99
	- 1	Velocity (ft/s)	= 3.64
Calculations		Wetted Perim (ft)	= 39.00
Compute by:	Q vs Depth	Crit Depth, Yc (ft)	= 0.34
No. Increments	= 10	Top Width (ft)	= 38.98
		EGL (ft)	= 0.55

(Sta, El, n)-(Sta, El, n)... (0.00, 7131.85)-(17.50, 7131.68, 0.012)-(19.50, 7131.51, 0.012)-(21.50, 7131.68, 0.012)-(38.98, 7131.85, 0.012)

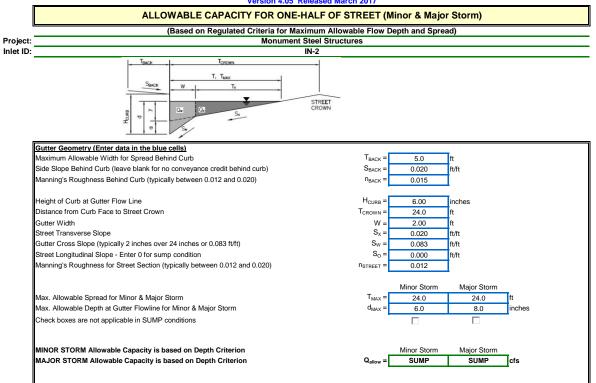

Channel Report

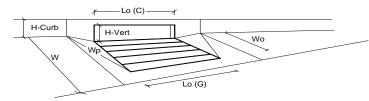
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


60 Foot Drainage Pan Capacity

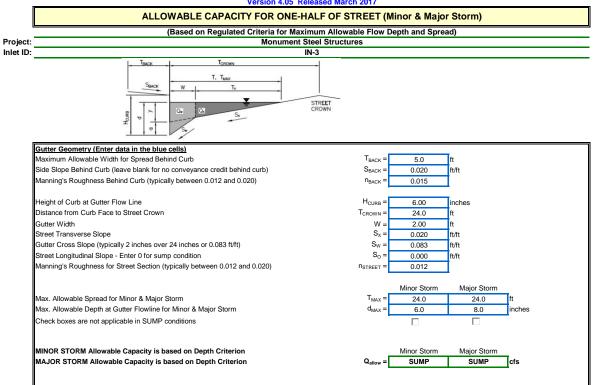

User-defined Invert Elev (ft) Slope (%) N-Value	= 7127.89 = 2.00 = Composite	Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s)	= 0.40 = 16.75 = 3.45 = 4.86
Calculations Compute by: No. Increments	Q vs Depth = 10	Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft)	= 23.61 = 0.51 = 23.59 = 0.76

(Sta, El, n)-(Sta, El, n)... (0.00, 7128.68)-(24.52, 7128.06, 0.012)-(26.52, 7127.89, 0.012)-(28.52, 7128.06, 0.012)-(57.98, 7128.68, 0.012)



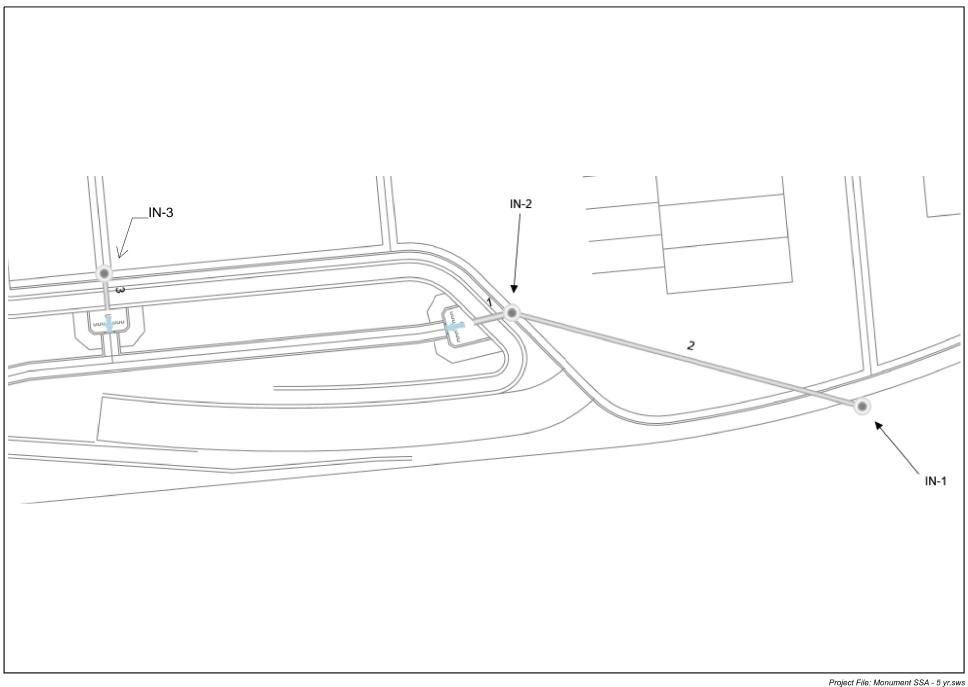


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.2	6.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.3	2.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	93	69	%



INLET IN A SUMP OR SAG LOCATION

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT/Denver	13 Combination	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.3	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.43	0.43	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.30	3.30	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.60	0.60	7
Curb Opening Information		MINOR	MAJOR	-•
Length of a Unit Curb Opening	L _o (C) =	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.66	0.66]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	0.629	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.69	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.97	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.57	0.69	L
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.4	11.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.7	9.4	cfs


INLET IN A SUMP OR SAG LOCATION

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT/Denver	13 Combination	T
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.3	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.43	0.43	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.30	3.30	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.60	0.60	T
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.70	3.70	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.66	0.66]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	0.629	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.71	0.86]
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00]
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.71	0.86	l
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.3	9.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.4	7.0	cfs

Plan View

Stormwater Studio 2019 v 3.0.0.7

Line Calculations	
Energy Grade I	Stormwater Studio 2019 v 3.0.0.14

Project Name: 10StormDesign

8-17-20	

						ي و
	Enrgy Loss	(ft)	0.00	0.00	00.00	'A - 5 yr.sw
Junction	EGLa Elev	(ft)	7121.15	7125.64	7120.52	Project File: Monument SSA - 5 yr.sws
	HGLa Elev	(ft)	7120.75	7125.32	7120.25	Project File: N
Pipe	Enrgy Loss	(ft)	0.536	3.282	0.499	
Pi	n Value		0.013	0.013	0.013	
	EGL Elev	(ft)	7121.15	7125.64	7120.52	
	Vel Head	(ft)	0.40	0.32	0.27	
_	Vel	(ft/s)	5.06	4.51	4.18	
Upstream	HGL Elev	(ft)	7120.75	7125.32	7120.25	
	Area	(sqft)	1.56	0.93	0.81	
	Depth	(ft)	1.00²	0.78²	0.70²	
	Invert Elev	(ft)	7119.76	7124.54	7119.55	
գյը	гөл	(ft)	10.71	100.98	76.6	
	EGL Elev	(ft)	7120.61	7122.35	7120.02	
	Vel Head	(ft)	0.78	0.96	0.59	
Ε	Vel	(ft/s)	7.07	7.85	9. 18	
Downstream	HGL Elev	(ft)	7119.99	7121.77	7119.57	ritical.
Do	Area	(sqft)	1.12	0.53	0.55	t Superc
	Depth	(ft)	0.77	0.51‡	0.52‡	depth. 1
	Invert Elev	(ft)	7119.22	7121.26	7119.05	² Critical
c	3	(cfs)	7.90	4.20	3.40	1 = 5-yrs.
Line	Size	(in)	24	18	ő	Notes: Return Period = 5-yrs. ² Critical depth. ‡ Supercritical.
Line	٩		٢	0	n	Notes: F

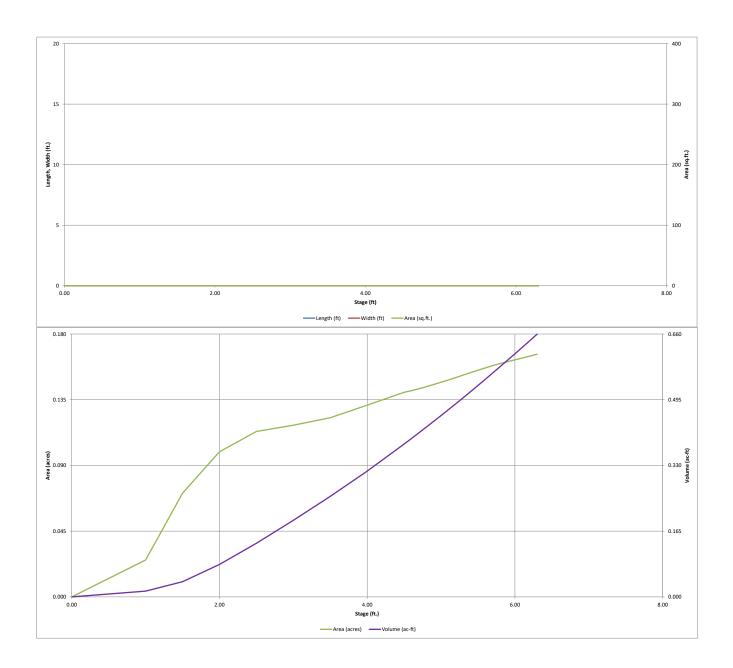
Line Calculations	
Energy Grade I	Stormwater Studio 2019 v 3.0.0.14

Project Name: 10StormDesign

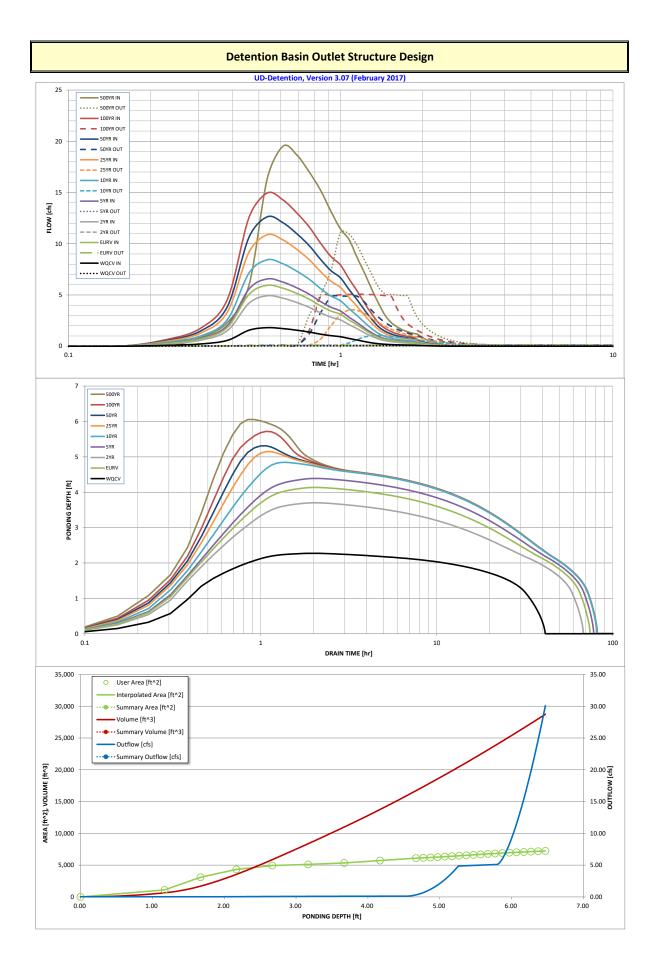
08-17-2019

Line	Line	C			Ď	Downstream	F			գյքւ			ر	Upstream	-			٩	Pipe		Junction	_
No	Size	ש	Invert Elev	Depth	Area	HGL Elev	Vel	Vel Head	EGL Elev	гөл	Invert Elev	Depth	Area	HGL Elev	Vel	Vel Head	EGL Elev	n Value	Enrgy Loss	/ HGLa Elev	EGLa Elev	Enrgy Loss
	(in)	(cfs)	(ft)	(ft)	(sqft)	(ft)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft)	(ft/s)	(ft)	(ft)		(ft)	(ft)	(ft)	(ft)
١	24	15.90	7119.22	1.12‡	1.82	7120.34	8.75	1.19	7121.33	10.71	7119.76	1.412	2.37	7121.17	6.70	0.70	7121.87	0.013	0.535	7121.17	7121.87	00.0
0	18	6.50	7121.26	0.64‡	0.72	7121.90	9.02	1.26	7122.67	100.98	7124.54	0.97²	1.21	7125.51	5.36	0.45	7125.96	0.013	3.282	7125.51	7125.96	00.0
η	δ	7.00	719.05	1.45	1.75	7120.50	4.00	0.25	7120.75	70.0	7119.55	1.012	1.27	7120.56	5.53	0.48	7121.03	0.013	0.284	7120.56	7121.03	0.00
Notes:	Notes: Return Period = 100-yrs. ² Critical depth. ‡ Supercritical.	d = 100-	yrs. ² Critic	al depth.	. ‡ Sup∈	 ∋rcritical.	1	1												I Project File: N	Project File: Monument SSA - 100 yr.sws	l - 100 yr.sw

APPENDIX C - DETENTION/WATER QUALITY ENHANCEMENT BMPs


			DETER	NTION B	ASIN STAGE-S	TORAGE	TABLE	BUILDEF	2					
UD-Detention, Version 3.07 (February 2017)														
	18910 Base	Camp Road												
Basin ID:	Lot 2 - SSA													
	2 ONE 1													
		1												
		100-YEA	AR		Depth Increment =	1	ft							
	1 AND 2		-		Stage - Storage	Channa	Optional	Longth	Width	Area	Optional	Area	Volume	Volume
POOL Example Zone	Configurati	on (Retentio	on Pona)		Description	Stage (ft)	Override Stage (ft)	Length (ft)	(ft)	(ft^2)	Override Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Required Volume Calculation		-		7116.83	Top of Micropool		0.00				0	0.000		
Selected BMP Type =	EDB	_			7118		1.17				1,099	0.025	632	0.015
Watershed Area =	4.67	acres			7118.5		1.67				3,094	0.071	1,661	0.038
Watershed Length = Watershed Slope =	630 0.034	ft ft/ft			7119 WQ - 7119.5		2.17				4,327 4,935	0.099	3,547 5,862	0.081 0.135
Watershed Imperviousness =	64.16%	percent			7120		3.17				5,121	0.118	8,376	0.192
Percentage Hydrologic Soil Group A =	0.0%	percent			7120.5		3.67				5,343	0.123	10,992	0.252
Percentage Hydrologic Soil Group B =	100.0%	percent			7121		4.17	-			5,720	0.131	13,758	0.316
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			EURV - 7121.5		4.67				6,101	0.140	16,713	0.384
Desired WQCV Drain Time =	40.0	hours			7121.6		4.77				6,152	0.141	17,326	0.398
Location for 1-hr Rainfall Depths =					7121.7		4.87				6,206	0.142	17,944	0.412
Water Quality Capture Volume (WQCV) = Excess Urban Runoff Volume (EURV) =	0.098	acre-feet acre-feet	Optional Use 1-hr Precipita		7121.8 7121.9		4.97 5.07				6,269 6,334	0.144	18,567 19,198	0.426
2-yr Runoff Volume (P1 = 1.19 in.) =	0.270	acre-feet	1.19	inches	7122		5.17				6,402	0.147	19,834	0.455
5-yr Runoff Volume (P1 = 1.5 in.) =	0.361	acre-feet	1.50	inches	7122.1		5.27				6,472	0.149	20,478	0.470
10-yr Runoff Volume (P1 = 1.75 in.) =	0.466	acre-feet	1.75	inches	7122.2		5.37				6,543	0.150	21,129	0.485
25-yr Runoff Volume (P1 = 2 in.) =	0.602	acre-feet	2.00	inches	7122.3		5.47				6,616	0.152	21,787	0.500
50-yr Runoff Volume (P1 = 2.25 in.) =	0.700	acre-feet	2.25	inches	7122.4		5.57				6,689	0.154	22,452	0.515
100-yr Runoff Volume (P1 = 2.52 in.) =	0.830	acre-feet	2.52	inches	100Yr - 7122.5		5.67				6,761	0.155	23,125	0.531
500-yr Runoff Volume (P1 = 3.1 in.) =	1.087 0.253	acre-feet acre-feet	3.10	inches	7122.6		5.77 5.87				6,831 6,900	0.157 0.158	23,804 24,491	0.546
Approximate 2-yr Detention Volume = Approximate 5-yr Detention Volume =	0.253	acre-feet			Spillway - 7122.8		5.97				6,900	0.158	24,491	0.578
Approximate 3-yr Detention Volume =	0.434	acre-feet			7122.9		6.07				7,016	0.161	25,882	0.576
Approximate 25-yr Detention Volume =	0.468	acre-feet			7123		6.17				7,071	0.162	26,587	0.610
Approximate 50-yr Detention Volume =	0.487	acre-feet			7123.1		6.27				7,125	0.164	27,297	0.627
Approximate 100-yr Detention Volume =	0.527	acre-feet			7123.2		6.37				7,181	0.165	28,012	0.643
					7123.3		6.47				7,239	0.166	28,733	0.660
Stage-Storage Calculation	0.000	٦												ļ
Zone 1 Volume (WQCV) = Zone 2 Volume (EURV - Zone 1) =	0.098	acre-feet								-			<u> </u>	┟───┦
Zone 3 Volume (100-year - Zones 1 & 2) =	0.200	acre-feet acre-feet												
Total Detention Basin Volume =	0.527	acre-feet												
Initial Surcharge Volume (ISV) =	user	ft^3												
Initial Surcharge Depth (ISD) =	user	ft												
Total Available Detention Depth $(H_{total}) =$	user	ft												
Depth of Trickle Channel (H_{TC}) =	user	ft								-				ļ
Slope of Trickle Channel (S_{TC}) = Slopes of Main Basin Sides (S_{main}) =	user	ft/ft											──	
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	H:V								-			<u> </u>	
	200	-								-			1	
Initial Surcharge Area (A _{ISV}) =	user	ft^2												
Surcharge Volume Length (LISV) =	user	ft								-				
Surcharge Volume Width (W _{ISV}) =	user	ft												
Depth of Basin Floor (H _{FLOOR}) =	user	ft											┢────	
Length of Basin Floor (L_{FLOOR}) = Width of Basin Floor (W_{FLOOR}) =	user	ft											───	┝───┦
Area of Basin Floor (VV _{FLOOR}) =	user	tt #A2								-				┝───┦
Volume of Basin Floor (V _{FLOOR}) =	user	ft^2 ft^3				-		-		-			<u> </u>	├ ──┤
Depth of Main Basin (H _{MAIN}) =	user	ft											1	
Length of Main Basin (L _{MAIN}) =	user	ft												
Width of Main Basin (W_{MAIN}) =	user	ft				-		-		-				
Area of Main Basin (A _{MAIN}) =	user	ft^2						-					\square	
Volume of Main Basin (V _{MAIN}) =	user	ft^3											───	└─── ┘
Calculated Total Basin Volume (V _{total}) =	user	acre-feet											───	├ ───┤
										-			L	
													\vdash	
													F	
										-			<u>+</u>	<u>↓ </u> ∤

F


٦

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

		Dete	ention Basin C	Dutlet Struct	ure Design				
Project	Monument Steel St	ructures - PCD File I	UD-Detention, Ve No. PPR1919	rsion 3.07 (Februai	ry 2017)				
-		Road - El Paso Coun							
ZONE 3 ZONE 2									
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
VOLUME EURV WOCV			Zone 1 (WQCV)	2.33	0.098	Orifice Plate			
ZONE 1 AND 2	100-YEA ORIFICE	R	Zone 2 (EURV)	4.26	0.229	Orifice Plate			
PERMANENT ORIFICES	Configuration (Re	tantian Band)	'one 3 (100-year)	5.65	0.200	Weir&Pipe (Circular)			
					0.527	Total			
er Input: Orifice at Underdrain Outlet (typically u		-	614 - 11	()	11- de	Calculate = rdrain Orifice Area	ed Parameters for U	nderdrain ft ²	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A N/A	inches	ne filtration media sur	lace)		in Orifice Centroid =	N/A N/A	feet	
	,	inches			onderare		,,,,	leet	
ser Input: Orifice Plate with one or more orifices of	or Elliptical Slot Wei	r (typically used to d	rain WQCV and/or EU	RV in a sedimentati	on BMP)	Calcu	lated Parameters for	r Plate	
Invert of Lowest Orifice =	0.00		pottom at Stage = 0 ft			rifice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	4.55		pottom at Stage = 0 ft)		lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	N/A N/A	inches inches			EIII	ptical Slot Centroid = Elliptical Slot Area =	N/A N/A	feet	
	,,,	indited				Emptical bloch and	,,,	7.0	
ser Input: Stage and Total Area of Each Orifice R			· _ · ·		_	_		1	1
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	-
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	0.00	2.17 0.89	2.42 0.52						1
Onice Area (sy. Incles)	0.00	0.00	0.02						1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]
Stage of Orifice Centroid (ft)									-
Orifice Area (sq. inches)									J
User Input: Vertical Orifice (Circ	ular or Rectangular)					Calculated	Parameters for Ver	tical Orifice	
	Not Selected	Not Selected]			calculated	Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	ottom at Stage = 0 ft	:) V	ertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b	ottom at Stage = 0 ft	:) Vertio	cal Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
Hear Innuts, Quarflaw, Main (Drankaw) and C	unto (Flat ou Claused)					Calaulata			
User Input: Overflow Weir (Dropbox) and G	Zone 3 Weir	Not Selected	1			Calculated	Parameters for Ove		1
Overflow Weir Front Edge Height, Ho =	4.55								
		N/A	ft (relative to basin bot	tom at Stage = 0 ft)	Height of Gr	ate Upper Edge, H, =	Zone 3 Weir 5.28	Not Selected N/A	feet
Overflow Weir Front Edge Length =	2.50	N/A N/A	ft (relative to basin bot feet	tom at Stage = 0 ft)	-	ate Upper Edge, H _t = Weir Slope Length =			feet feet
					Over Flow		5.28	N/A	feet should be <u>></u> 4
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	2.50 4.00 2.92	N/A N/A N/A	feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	5.28 3.01 11.91 5.26	N/A N/A N/A N/A	feet should be <u>></u> 4 ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	2.50 4.00 2.92 70%	N/A N/A N/A N/A	feet H:V (enter zero for fl	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area =	5.28 3.01 11.91	N/A N/A N/A	feet should be <u>></u> 4
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	2.50 4.00 2.92	N/A N/A N/A	feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	5.28 3.01 11.91 5.26	N/A N/A N/A N/A	feet should be <u>></u> 4 ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	2.50 4.00 2.92 70% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	5.28 3.01 11.91 5.26 2.63	N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	2.50 4.00 2.92 70% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	5.28 3.01 11.91 5.26 2.63	N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr	N/A N/A N/A N/A N/A ictor Plate, or Rectar	feet H:V (enter zero for fl feet %, grate open area/t %	at grate) otal area	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/	N/A N/A N/A N/A Flow Restriction Pla	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	at grate) otal area	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = alculated Parameter	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular	N/A N/A N/A N/A Flow Restriction Pla Not Selected	feet should be \geq 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid =	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44	N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet should be \geq 4 ft ² ft ² te ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op t)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A	N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 ular or Trapezoidal)	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op t) t) Ut Central Angle of Restr	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 5	N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 ular or Trapezoidal) 5.80	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op t) t) Central Angle of Restrict Spillway	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = alculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 9 0.47	N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 ular or Trapezoidal) 5.80 15.00	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op t) Court t) Central Angle of Restu Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 5	N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 ular or Trapezoidal) 5.80	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op t) Court t) Central Angle of Restu Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = alculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for S 0.47 7.27	N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 ular or Trapezoidal) 5.80 15.00 0.00	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op t) Court t) Central Angle of Restu Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for S 0.47 7.27	N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 yular or Trapezoidal) 5.80 15.00 0.00 1.00	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches pottom at Stage = 0 ft	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (Coverflow Grate Op (Coverflow Grate Open (Coverflow Grate Open) (Coverflow Grate Open) (C	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = alculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 9 0.47 7.27 0.17	N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² ft ft feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 ular or Trapezoidal) 5.80 15.00 0.00 1.00	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet H:V feet	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft	at grate) otal area n bottom at Stage = 0 f Half-() 5 Year	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op t) Contral Angle of Restr Spillway Stage a Basin Area a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 5 0.47 7.27 0.17 50 Year	N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² te ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 yular or Trapezoidal) 5.80 15.00 0.00 1.00	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches pottom at Stage = 0 ft	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op t) Central Angle of Restu Spillway Stage a Basin Area a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = alculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 9 0.47 7.27 0.17	N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² ft ft feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 ular or Trapezoidal) 5.80 15.00 0.00 1.00 WQCV 0.53 0.098	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 0.327	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.270	at grate) otal area n bottom at Stage = 0 f Half-0) <u>5 Year 1.50 0.361</u>	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op C t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.466	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ o Debris = lalculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.602	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 9 0.47 7.27 0.17 50 Year 2.25 0.700	N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.830	feet should be \geq 4 ft ² ft ² ft ² feet radians 500 Year 3.10 1.087
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 ular or Trapezoidal) 5.80 15.00 0.00 1.00 1.00 WQCV 0.53 0.098	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet H:V feet EURV 1.07 0.327	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.270 0.270	at grate) otal area n bottom at Stage = 0 f Half-0) <u>5 Year 1.50 0.361</u> 0.361	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op t) Out Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.466	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.602	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 3 0.47 7.27 0.17 50 Year 2.25 0.700 0.700	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet should be \geq 4 ft ² ft ² ft ² feet radians 500 Year 3.10 1.087
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 9.00 15.80 15.00 0.00 1.00 1.00 0.00 1.00 0.098 0.098 0.00	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A N/A ft (relative to basin I feet H:V feet EURV 1.07 0.327 0.326 0.00	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 2 Year 1.19 0.270 0.270 0.01	at grate) otal area n bottom at Stage = 0 f Half-O) <u>5 Year 1.50 0.361</u> 0.02	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Ope C Overflow Grate Ope S Spillway Stage a Basin Area a Overflow Grate Ope Stage Ope C Overflow Grate Ope Stage A D Overflow Grate Ope Stage Ope Overflow Grate Ope Overflow Grate Ope Stage Ope Overflow Grate Ope Overflow Grat	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.602 0.73	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 9 0.47 7.27 0.17 50 Year 2.25 0.700 0.700 1.01	N/A A A A A	feet should be ≥ 4 ft ² ft ² ft ² feet radians 1.087 1.088 1.98
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 ular or Trapezoidal) 5.80 15.00 0.00 1.00 1.00 WQCV 0.53 0.098	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet H:V feet EURV 1.07 0.327	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.270 0.270	at grate) otal area n bottom at Stage = 0 f Half-0) <u>5 Year 1.50 0.361</u>	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op t) Out Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.466	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.602	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 3 0.47 7.27 0.17 50 Year 2.25 0.700 0.700	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet should be \geq 4 ft ² ft ² ft ² feet radians 500 Year 3.10 1.087
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Unflow Q (cfs) = Peak Outflow Q (cfs) =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 ular or Trapezoidal) 5.80 15.00 0.00 1.00 WQCV 0.53 0.098 0.098 0.00 0.0 1.8 0.0	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet 0.3227 0.326 0.00 5.9 0.1	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.270 0.270 0.01 0.1	at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.361 0.361 0.02 0.1 6.6 0.1	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate Op Overflow Grate Overflow Overflow	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Concol	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 5 0.47 7.27 0.17 50 Year 2.25 0.700 1.01 4.7 12.6 4.9	N/A N/A N/A N/A N/A N/A NA Plow Restriction Pla Not Selected N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.830 0.831 1.36 6.4 15.0 5.1	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.10 1.087 1.088 1.98 9.3 19.5 11.1
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Cone-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Nolume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 9.00 15.80 15.00 0.00 1.00 0.00 0.00 0.098 0.098 0.00 0.098 0.00 0.0 1.8 1.8	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet EURV 1.07 0.327 0.326 0.00 0.0 5.9 0.1 N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 2 Year 1.19 0.270 0.270 0.01 0.1 4.9 0.1 N/A	at grate) otal area n bottom at Stage = 0 f Half-O) 5 Year 1.50 0.361 0.02 0.1 6.6 0.1 1.1	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate Op Overflow Grate Overflow Overflow Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Overflow Overflow Overflow Overflow Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Overfl	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.000 0.602 0.73 3.4 1.0	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 5 0.47 7.27 0.17 50 Year 2.25 0.700 1.01 4.7 12.6 4.9 1.0	N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A Spillway feet feet 0.830 0.831 1.36 6.4 15.0 5.1 0.8	feet should be ≥ 4 ft ² ft ² ft ² feet radians 1.088 1.98 9.3 19.5 11.1 1.2
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Quest (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Que Structure Controlling Flow =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 ular or Trapezoidal) 5.80 15.00 0.00 1.00 0.00 1.00 WQCV 0.53 0.098 0.098 0.098 0.098 0.00 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8	N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet H:V feet URV 1.07 0.327 0.326 0.00 0.0 0.0 5.9 0.1 N/A Plate	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches cottom at Stage = 0 ft 1.19 0.270 0.270 0.270 0.270 0.1 4.9 0.1 N/A Plate	at grate) otal area n bottom at Stage = 0 f Half-O) 5 Year 1.50 0.361 0.361 0.02 0.1 6.6 0.1 1.1 Plate	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate Op Overflow Grate Overflow Overflow	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Concol	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 5 0.47 7.27 0.17 50 Year 2.25 0.700 1.01 4.7 12.6 4.9	N/A N/A N/A N/A N/A N/A NA Plow Restriction Pla Not Selected N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.830 0.831 1.36 6.4 15.0 5.1	feet should be ≥ 4 ft ² ft ² ft ² feet radians 1.088 1.98 9.3 19.5 11.1 1.2
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Cone-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Nolume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Untflow Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 9.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.098 0.098 0.00 0.0 1.8 0.098 0.00 0.0 1.8 0.0 1.8 0.0 N/A Plate N/A N/A	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A It (relative to basin I feet H:V feet U.07 0.327 0.326 0.00 0.0 5.9 0.1 N/A Plate N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 2 Year 1.19 0.270 0.01 0.270 0.01 0.1 4.9 0.1 N/A Plate N/A N/A	at grate) otal area n bottom at Stage = 0 f Half-O) 5 Year 1.50 0.361 0.02 0.1 1.1 0.02 0.1 1.1 Plate N/A N/A	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Ope Spillway Stage a Basin Area a 0.465 0.23 1.1 8.4 1.0 1.0 0.465 0.23 1.1 8.4 1.0 1.0 0.2 N/A	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.602 0.602 0.73 3.4 10.9 3.5 1.0 Overflow Grate 1 0.6 N/A	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 5 0.47 7.27 0.17 50 Year 2.25 0.700 1.01 4.7 12.6 4.9 1.0 Outlet Plate 1 0.9 N/A	N/A N/A N/A N/A N/A NA Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.830 0.831 1.36 6.4 15.0 5.1 0.8 Outlet Plate 1 0.9 N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians 1.087 1.088 1.98 9.3 19.5 11.1 1.2 Spillway 1.0 N/A
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Core-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 9.00 15.80 15.00 0.00 1.00 0.00 0.00 0.00 0.098 0.00 0.098 0.00 0.098 0.00 0.00	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A Intervention Ret H:V feet H:V 0.326 0.00 0.0 5.9 0.1 N/A Plate N/A A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.270 0.01 0.1 0.1 4.9 0.1 N/A Plate N/A 62	at grate) otal area n bottom at Stage = 0 f Half-O) 5 Year 1.50 0.361 0.02 0.1 6.6 0.1 1.1 Plate N/A N/A 71	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate 1 0.2 N/A 72	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 0.602 0.73 3.4 10.9 3.5 1.0 Overflow Grate 1 0.6 N/A 71	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 5 0.47 7.27 0.17 50 Year 2.25 0.700 1.01 4.7 12.6 4.9 1.0 Outlet Plate 1 0.9 N/A 69	N/A N/A N/A N/A N/A Plow Restriction Pla Not Selected N/A N/A N/A N/A N/A N/A N/A Spillway feet feet 0.830 0.831 1.36 6.4 15.0 0.8 Outlet Plate 1 0.9 N/A 68	feet should be ≥ 4 ft ² ft ² ft ² feet radians 1.088 1.98 9.3 19.5 11.1 1.2 Spillway 1.0 N/A 65
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Neuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Deak Flow, q (cfs/acre) = Predevelopment Deak Indiw Q(cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow O Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 vular or Trapezoidal) 5.80 15.00 0.00 1.00 0.00 1.00 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.00 0.0 1.8 0.00 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0	N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet 0.327 0.326 0.00 0.0 5.9 0.1 N/A Plate N/A Plate N/A 72	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches bottom at Stage = 0 ft 1.19 0.270 0.270 0.270 0.270 0.1 4.9 0.1 N/A Plate N/A N/A 62 62 66	at grate) otal area n bottom at Stage = 0 f Half-O N 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.1 6.6 0.1 1.1 Plate N/A N/A N/A 71 75	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate 1 0.23 1.1 8.4 1.0 0.23 1.1 0.2 N/A N/A 72 78	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = leat Orifice Area = leat Orifice Area = leat Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.00 0.602 0.602 0.602 0.602 0.73 3.4 1.0 0.0erflow Grate 1 0.6 N/A 71 77	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 9 0.47 7.27 0.17 	N/A Spillway feet feet acres 0.830 0.831 1.36 6.4 15.0 S.1 0.8 Outlet Plate 1 0.9 N/A 68 76	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Core-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	2.50 4.00 2.92 70% 50% ircular Orifice, Restr Zone 3 Circular 0.33 9.00 9.00 15.80 15.00 0.00 1.00 0.00 0.00 0.00 0.098 0.00 0.098 0.00 0.098 0.00 0.00	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A Intervention Ret H:V feet H:V feet 0.326 0.00 0.0 5.9 0.1 N/A Plate N/A 68	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.270 0.01 0.1 0.1 4.9 0.1 N/A Plate N/A 62	at grate) otal area n bottom at Stage = 0 f Half-O) 5 Year 1.50 0.361 0.02 0.1 6.6 0.1 1.1 Plate N/A N/A 71	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate 1 0.2 N/A 72	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 0.602 0.73 3.4 10.9 3.5 1.0 Overflow Grate 1 0.6 N/A 71	5.28 3.01 11.91 5.26 2.63 s for Outlet Pipe w/ Zone 3 Circular 0.44 0.38 N/A ted Parameters for 5 0.47 7.27 0.17 50 Year 2.25 0.700 1.01 4.7 12.6 4.9 1.0 Outlet Plate 1 0.9 N/A 69	N/A N/A N/A N/A N/A Plow Restriction Pla Not Selected N/A N/A N/A N/A N/A N/A N/A Spillway feet feet 0.830 0.831 1.36 6.4 15.0 0.8 Outlet Plate 1 0.9 N/A 68	feet should be ≥ 4 ft ² ft ² ft ² feet radians 1.088 1.98 9.3 19.5 11.1 1.2 Spillway 1.0 N/A 65

Forebay Design

	Tributary Area (ac)	Imp. Tributary Area (ac)	% Imp.	WQCV (in)	WQCV (ac-ft)	Forebay Vol (cf)	
North Forebay	1.38	0.89	64.1%	0.26	0.029	25.66	2% of WQCV
East Forebay	3.06	2.09	68.3%	0.27	0.070	60.95	2% of WQCV

 $WQCV = a(0.91I^3 - 1.19I^2 + 0.78I)$

Where:

WQCV = Water Quality Capture Volume (watershed inches)

a = Coefficient corresponding to WQCV drain time (Table 3-2)

I = Imperviousness (%/100) (see Figures 3-3 through 3-5 [single family land use] and /or the Runoff chapter of Volume 1[other typical land uses])

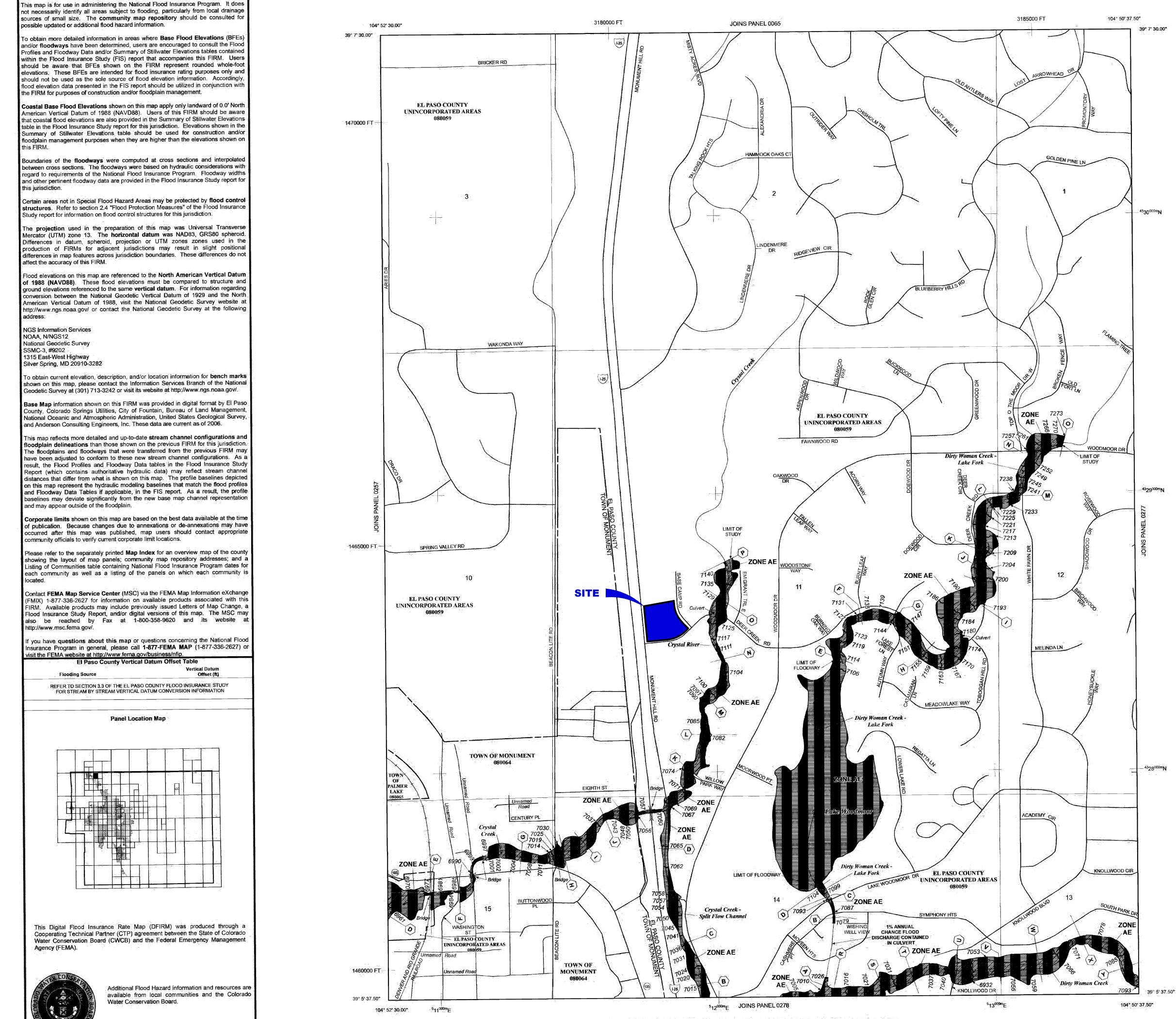
Table 3-2. Drain Time Coefficients for WQCV Calculations

Drain Time (hrs)	Coefficient, a
12 hours	0.8
24 hours	0.9
40 hours	1.0

Once the WQCV in watershed inches is found from Figure 3-2 or using Equation 3-1 and/or 3-2, the required BMP storage volume in acre-feet can be calculated as follows:

 $V = \left(\frac{WQCV}{12}\right)A$

Equation 3-1

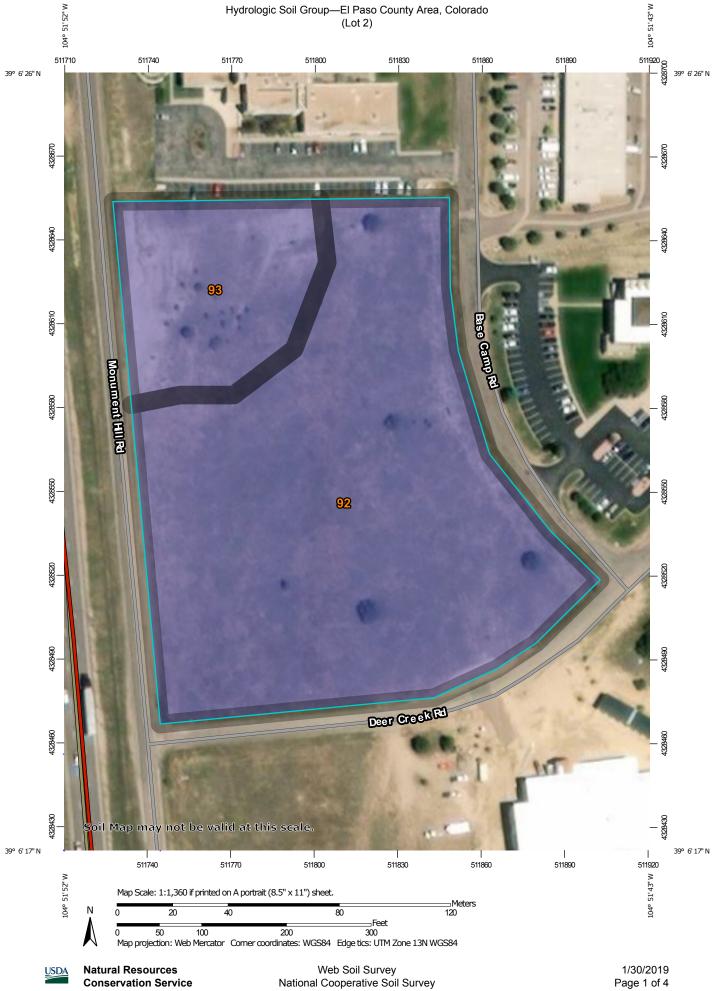

Equation 3-3

	O. Ch. EDD.		r	(
	On-Site EDBs for Watersheds up to 1 Impervious Acre ¹	EDBs with Watersheds between 1 and 2 Impervious Acres ¹	EDBs with Watersheds up to 5 Impervious Acres	EDBs with Watersheds over 5 Impervious Acres	EDBs with Watersheds over 20 Impervious Acres
Forebay Release and Configuration		Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch or berm/pipe ² configuration
Minimum Forebay Volume	EDBs should not be used for watersheds	1% of the WQCV	2% of the WQCV	3% of the WQCV	3% of the WQCV
Maximum Forebay Depth	with less than 1 impervious acre.	12 inches	18 inches	18 inches	30 inches
Trickle Channel Capacity	acit.	≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity
Micropool		Area $\geq 10 \text{ ft}^2$	Area $\geq 10 \text{ ft}^2$	Area $\geq 10 \text{ ft}^2$	Area $\geq 10 \text{ ft}^2$
Initial Surcharge Volume		Depth ≥ 4 inches	Depth ≥ 4 inches	$\begin{array}{l} \text{Depth} \geq \ 4 \ \text{in.} \\ \text{Volume} \geq \\ 0.3\% \ \text{WQCV} \end{array}$	$\begin{array}{l} \text{Depth} \geq \ 4 \ \text{in.} \\ \text{Volume} \geq \\ 0.3\% \ \text{WQCV} \end{array}$

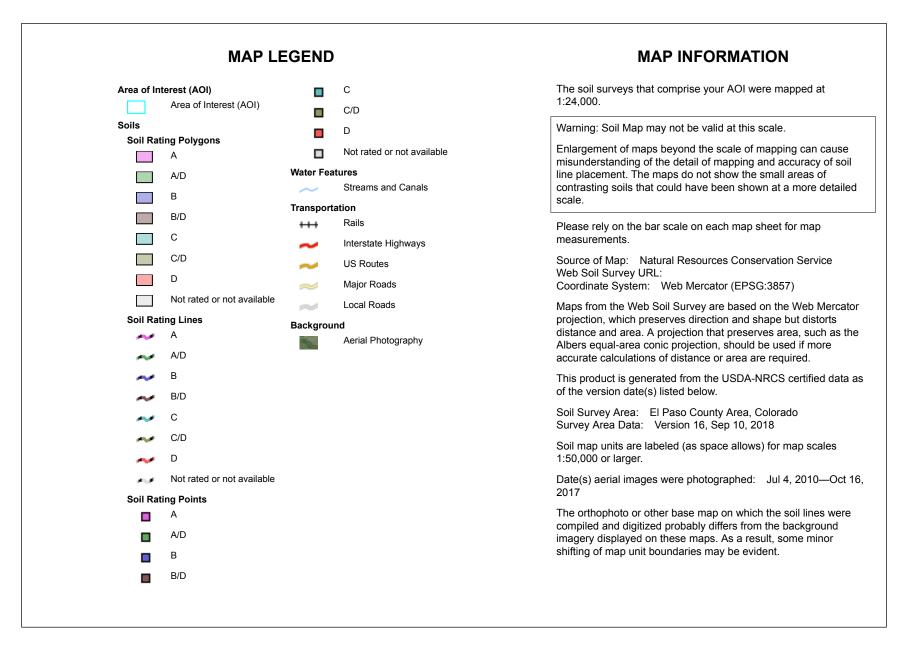
¹ EDBs are not recommended for sites with less than 2 impervious acres. Consider a sand filter or rain garden.

² Round up to the first standard pipe size (minimum 8 inches).

APPENDIX D - REFERENCED INFORMATION



NOTES TO USERS


NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 11 SOUTH, RANGE 67 WEST.

	LEGEND
	SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD
hat has a 1% Hazard Area it Special Flood I	al chance flood (100-year flood), also known as the base flood, is the flood chance of being equaled or exceeded in any given year. The Special Flood s the area subject to flooding by the 1% annual chance flood. Areas of Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood e water-surface elevation of the 1% annual chance flood.
ZONE A	No Base Flood Elevations determined. Base Flood Elevations determined.
ZONE AH	Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.
ZONE AO	Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined,
ZONE AR	Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.
ZONE A99	Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations determined.
ZONE V	Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.
ZONE VE	Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined.
The floodway	FLOODWAY AREAS IN ZONE AE is the channel of a stream plus any adjacent floodplain areas that must be
kept free of a	encroachment so that the 1% annual chance flood can be carried without creases in flood heights.
ZONE X	OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.
	OTHER AREAS
ZONE X ZONE D	Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible.
	COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS
	OTHERWISE PROTECTED AREAS (OPAs)
CBRS areas a	nd OPAs are normally located within or adjacent to Special Flood Hazard Areas.
	— — Floodway boundary
	Zone D Boundary CBRS and OPA boundary
	Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.
~~ 513 (EL 987	7) Base Flood Elevation value where uniform within zone;
* Referenced	elevation in feet* I to the North American Vertical Datum of 1988 (NAVD 88)
	- Cross section line
23	23 Transect line
97° 07' 30 32° 22' 30	0.00" Datum of 1983 (NAD 83)
4275 ⁰⁰⁰ⁿ	zone 13 5000-foot grid ticks: Colorado State Plane coordinate.
	system, central zone (FIPSZONE 0502), Lambert Conformal Conic Projection
DX551	• X this FIRM panel)
	Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE
	FLOOD INSURANCE RATE MAP MARCH 17, 1997 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL
DECEM Special F	EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL IBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision.
For commun	ity map revision history prior to countywide mapping, refer to the Community Table located in the Flood Insurance Study report for this jurisdiction.
To determin	table located in the Hood Insurance study report for this junisdiction. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1-800-638-6620.
	MAP SCALE 1" = 500'
	250 0 500 1000 ETHE
	150 0 150 300
	PANEL 0276G
-	
	FIRM
	FLOOD INSURANCE RATE MAP
	EL PASO COUNTY,
	COLORADO AND INCORPORATED AREAS
	(SEE MAP INDEX FOR FIRM PANEL LAYOUT)
	<u>CONTAINS:</u>
	COMMUNITY NUMBER PANEL SUFFIX EL PASO COUNTY 080059 0276 G
	MONUMENT, TOWN OF 080064 0276 G PALMER LAKE, TOWN OF 080065 0276 G
	Notice to User. The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the subject
	08041C0276G
	MAP REVISED
	DECEMBER 7, 2018 Federal Emergency Management Agency

Hydrologic Soil Group-El Paso County Area, Colorado (Lot 2)

Conservation Service

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	В	4.7	80.6%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	В	1.1	19.4%
Totals for Area of Intere	est		5.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

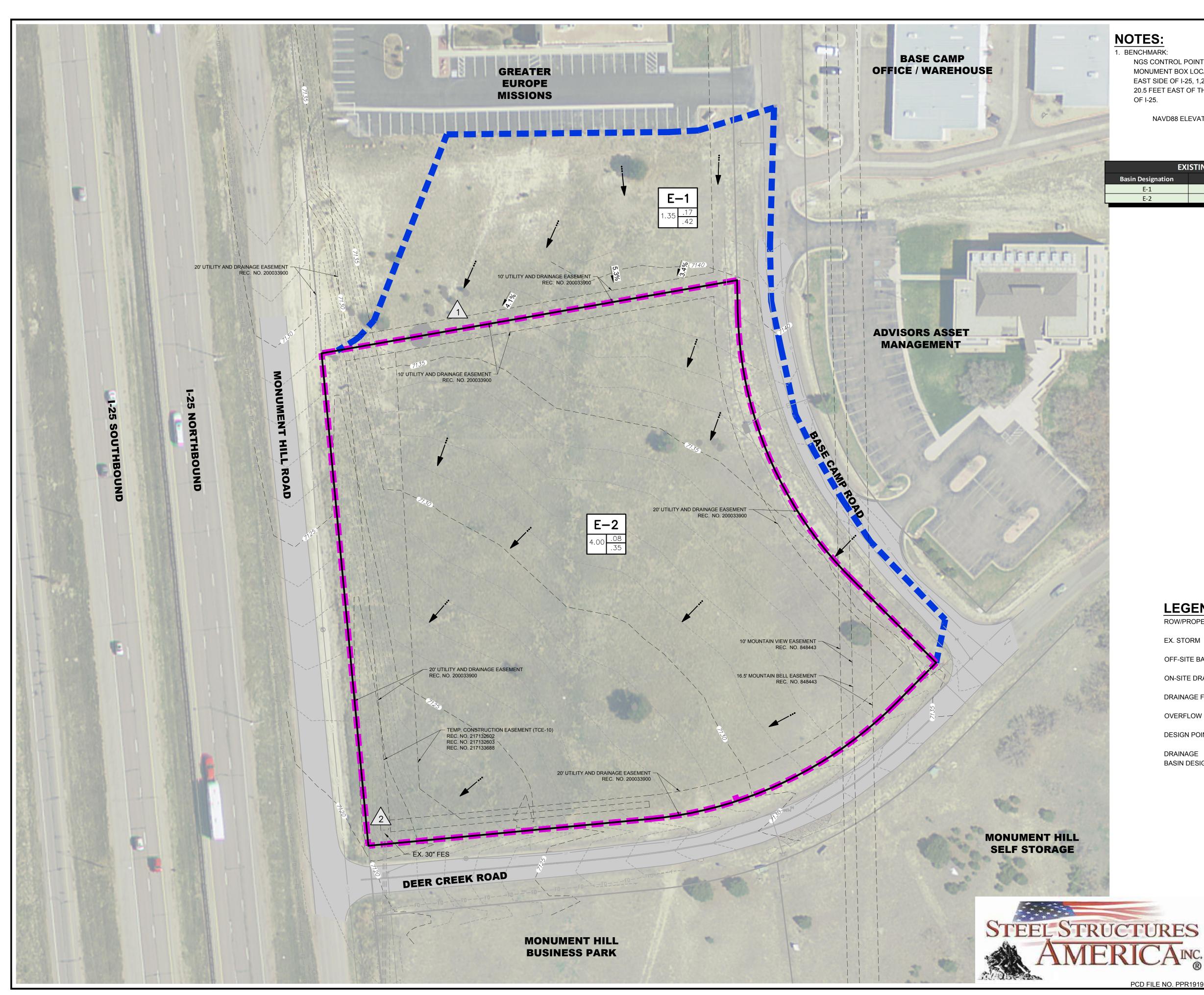
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

El	Paso	County	Drainage	Basin	Fees
		Resolution N	lo. <u>18-470</u>		

Basin	Receiving	Year	Drainage Basin Name	2019 Drainage Fee	2019 Bridge Fee
Number	Waters	Studied	Dramage Dasin Wante	(per Impervious Acre)	(per Impervious Acre)
and the second second	And the second second	T ottanta	ing a superior office star	(
Drainage Basins with					
CHMS0200	Chico Creek	2013	Haegler Ranch	\$10,324	\$1,524
CHWS1200	Chico Creek	2001	Bennett Ranch	\$11,558	\$4,433
CHWS1400	Chico Creek	2013	Falcon	\$29,622	\$4,069
FOFO2000	Fountain Creek	2001	West Fork Jimmy Camp Creek	\$12,564	\$3,717
FOFO2600	Fountain Creek	1991*	Big Johnson / Crews Gulch	\$18,350	\$2,370
FOFO2800	Fountain Creek	1988*	Widefield	\$18,350	\$0 \$0
FOFO2900	Fountain Creek	1988*	Security	\$18,350	\$0 \$275
FOFO3000	Fountain Creek	1991*	Windmill Gulch	\$18,350	\$275 \$0
FOFO3100 / FOFO3200		1988*	Carson Street / Little Johnson	\$11,192	\$0 \$1,004
FOFO3400	Fountain Creek	1984*	Peterson Field	\$13,235	\$1,004
FOFO3600	Fountain Creek	1991*	Fisher's Canyon	\$18,350	\$5,559
FOFO4000	Fountain Creek	1996	Sand Creek	\$18,940 \$5,617	\$0,558 \$0
FOFO4200	Fountain Creek	1977	Spring Creek	\$9,517 \$18,350	\$0
FOFO4600	Fountain Creek	1984* 1991	Southwest Area Bear Creek	\$18,350	\$1,004
FOF04800	Fountain Creek	1991	21st Street	\$5,521	\$0
FOFO5400	Fountain Creek	1964	19th Street	\$3,611	\$0 \$0
FOFO5600	Fountain Creek	1964	Camp Creek	\$2,033	\$0
FOFO5800 FOMO0400	Fountain Creek Monument Creek	1986"	Mesa	\$9,598	\$0
FOMO1000	Monument Creek	1980	Douglas Creek	\$11,540	\$255
FOMO1000	Monument Creek	1977	Templeton Gap	\$11,847	\$275
FOMO1200	Monument Creek	1976	Pope's Bluff	\$3,676	\$627
FOMO1600	Monument Creek	1976	South Rockrimmon	\$4,314	\$0
FOMO1800	Monument Creek	1973	North Rockrimmon	\$5,521	\$0
FOMO2000	Monument Creek	1971	Pulpit Rock	\$6,085	\$0
FOMO2200	Monument Creek	1994	Cottonwood Creek / S. Pine	\$18,350	\$1,004
FOMO2400	Monument Creek	1966	Dry Creek	\$14,486	\$524
FOMO3600	Monument Creek	1989"	Black Squirrel Creek	\$8,331	\$524
FOMO3700	Monument Creek	1987°	Middle Tributary	\$15,312	\$0
FOMO3800	Monument Creek	1987*	Monument Branch	\$18,350	\$0
FOMO4000	Monument Creek	1996	Smith Creek	\$7,481	\$1,004
FOMO4200	Monument Creek	1989*	Black Forest	\$18,350	\$500
FOMO5200	Monument Creek	1993*	Dirty Woman Creek	\$18,350	\$1,004
FOMO5300	Fountain Creek	1993*	Crystal Creek	\$18,350	\$1,004
Miscellaneous Drain	age Basins: 1				
				647.047	* 2.400
CHBS0800	Chico Creek		Book Ranch	\$17,217	\$2,492
CHEC0400	Chico Creek		Upper East Chico	\$9,380	\$272
CHWS0200	Chico Creek		Telephone Exchange	\$10,306	\$241
CHWS0400	Chico Creek		Livestock Company	\$16,976	\$202
CHWS0600	Chico Creek		West Squirrel	\$8,849	\$3,672 \$0
CHWS0800	Chico Creek		Solberg Ranch	\$18,350 \$5.540	\$0 \$0
FOFO1200 FOFO1400	Fountain Creek Fountain Creek		Crooked Canyon Calhan Reservoir	\$5,540 \$4,625	\$270
FOFO1400 FOFO1600	Fountain Creek		Sand Canyon	\$3,342	\$0
FOF02000	Fountain Creek		Jimmy Camp Creek ³	\$18,350	\$858
FOFO2200	Fountain Creek		Fort Carson	\$14,486	\$524
FOF02700	Fountain Creek		West Little Johnson	\$1,209	\$0 \$304
FOFO3800	Fountain Creek		Stratton	\$8,801	\$394 \$524
FOFO5000 FOFO6000	Fountain Creek		Midland Polmor Troil	\$14,486	\$524
FOFO6800	Fountain Creek Fountain Creek		Palmer Trail Black Canyon	\$14,486 \$14,486	\$524
FOF06800 FOM04600	Monument Creek		Black Canyon Beaver Creek	\$14,400	\$0 \$0
FOMO3000	Monument Creek		Kettle Creek	\$9,909	\$0
FOMO3000 FOMO3400	Monument Creek		Elkhom	\$1,665	\$0 \$0
FOMO5000	Monument Creek		Monument Rock	\$7,953	\$0
FOMO5000	Monument Creek		Palmer Lake	\$12,717	\$0
FOM05600	Monument Creek		Raspberry Mountain	\$4,278	\$0
PLPL0200	Monument Creek		Bald Mountain	\$9,116	\$0
					• •
Interim Drainage Ba			Little Fountain Creat	¢0 346	e0
FOFO1800	Fountain Creek Monument Creek		Little Fountain Creek Jackson Creek	\$2,346 \$7,263	\$0 \$0
FOMO4400 FOMO4800	Monument Creek		Teachout Creek	\$7,203 \$5,044	\$758


1. The miscellaneous drainage fee previous to September 1999 resolution was the average of all drainage fees for basins with Basin Planning Studies perform

2. Interim Drainage Fees are based upon draft Drainage Basin Planning Studies or the Drainage Basin Identification and Fee Estimation Report. (Best available

3. This is an interim fee and will be adjusted when a DBPS is completed. In addition to the Drainage Fee a surety in the amount of \$7,285 per impervious acre shi the DBPS results in a fee greater than the current fee. Fees paid in excess of the future revised fee will be reimbursed. See Resolution 06-326 (9/14/06) and Res-

Jennifer Irvine, P.E.

APPENDIX E - DRAINAGE MAPS

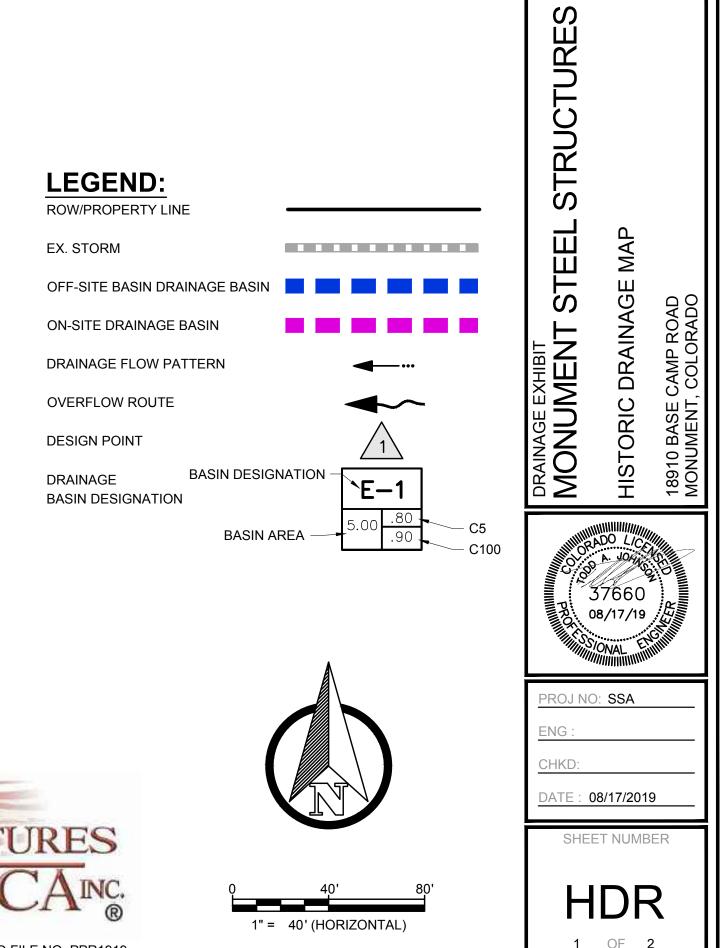
NOTES:

1. BENCHMARK:

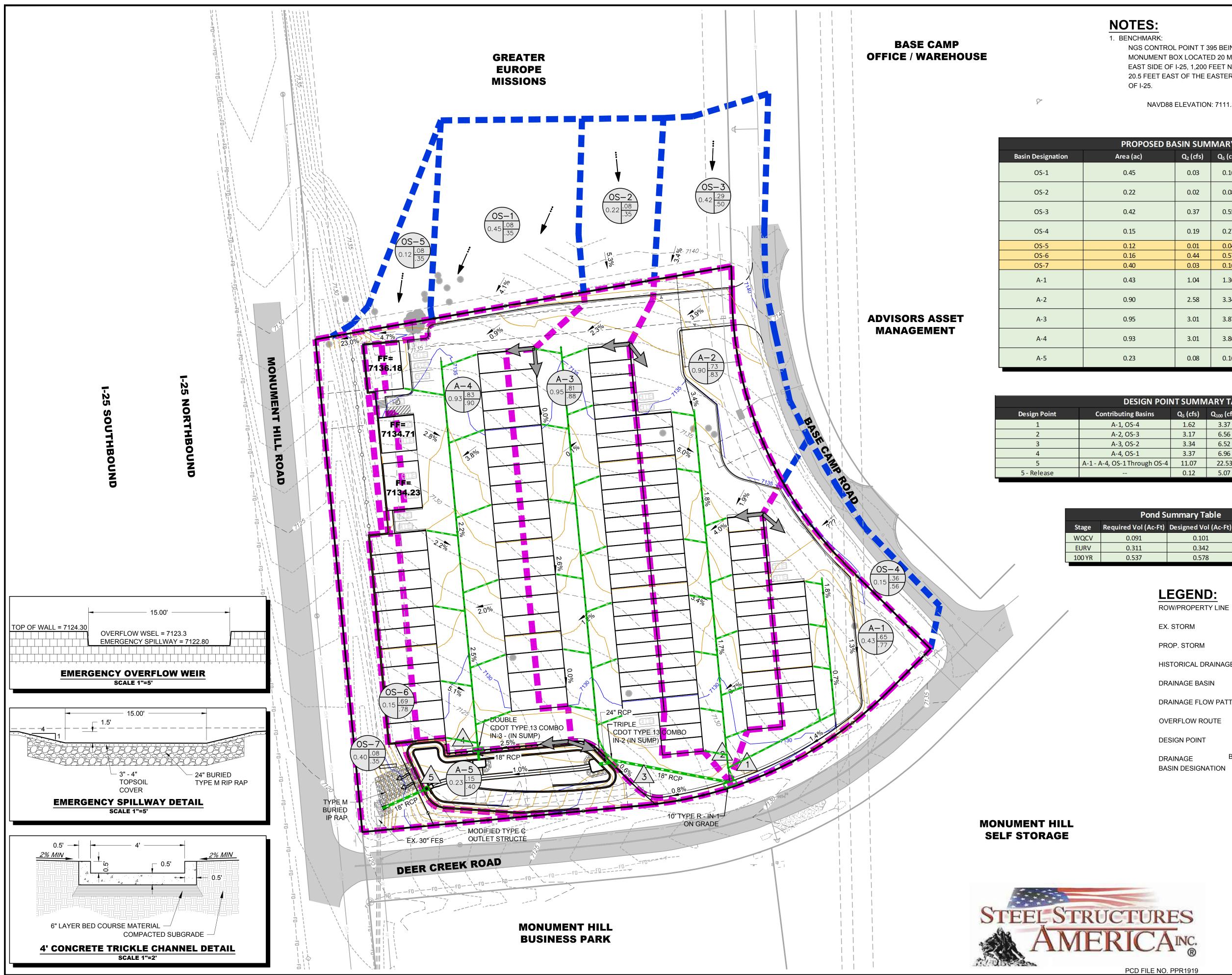
NGS CONTROL POINT T 395 BEING A STANDARD NGS STEEL ROD IN A LOGO MONUMENT BOX LOCATED 20 MILES NORTH OF COLORADO SPRINGS ON THE EAST SIDE OF I-25, 1,200 FEET NORTH OF THE WEIGH STATION BUILDING, AND 20.5 FEET EAST OF THE EASTERLY EDGE OF OIL OF THE NORTHBOUND LANES OF I-25.

4

FORM,


TERRA

ž >[<]


• Ľ |

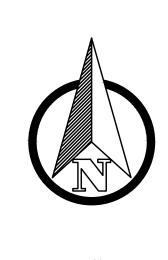
NAVD88 ELEVATION: 7111.32'

EXISTING BASIN SUMMARY TABLE							
Basin Designation	Area (ac)	Q ₂ (cfs)	Q₅ (cfs)	Q ₁₀₀ (cfs)			
E-1	1.35	0.53	0.96	3.88			
E-2	4.00	0.23	1.16	8.55			

PCD FILE NO. PPR1919

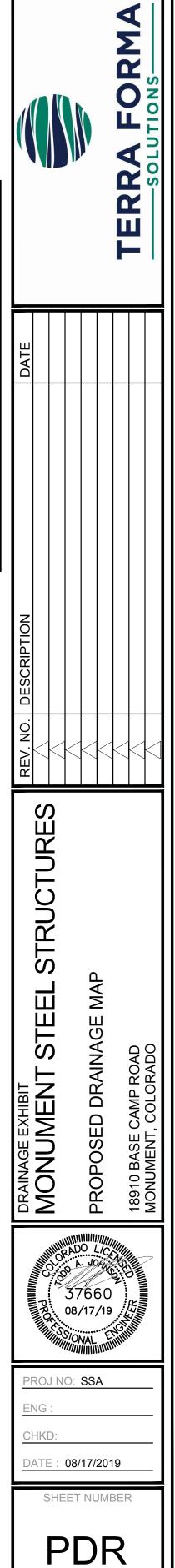
NGS CONTROL POINT T 395 BEING A STANDARD NGS STEEL ROD IN A LOGO MONUMENT BOX LOCATED 20 MILES NORTH OF COLORADO SPRINGS ON THE EAST SIDE OF I-25, 1,200 FEET NORTH OF THE WEIGH STATION BUILDING, AND 20.5 FEET EAST OF THE EASTERLY EDGE OF OIL OF THE NORTHBOUND LANES

NAVD88 ELEVATION: 7111.32'


PROPOSED BASIN SUMMARY TABLE									
Area (ac)	Q ₂ (cfs)	Q₅ (cfs)	Q ₁₀₀ (cfs)	TREATED OR UNTREATED					
0.45	0.03	0.16	1.20	Treated with Proposed WQ and Detention Facilities					
0.22	0.02	0.08	0.60	Treated with Proposed WQ and Detention Facilities					
0.42	0.37	0.55	1.62	Treated with Proposed WQ and Detention Facilities					
0.15	0.19	0.27	0.70	Treated with Proposed WQ and Detention Facilities					
0.12	0.01	0.04	0.33	Bypasses the site.					
0.16	0.44	0.57	1.08	Bypasses the site.					
0.40	0.03	0.16	1.15	Bypasses the site.					
0.43	1.04	1.36	2.70	Treated with Proposed WQ and Detention Facilities					
0.90	2.58	3.34	6.36	Treated with Proposed WQ and Detention Facilities					
0.95	3.01	3.87	7.09	Treated with Proposed WQ and Detention Facilities					
0.93	3.01	3.86	7.03	Treated with Proposed WQ and Detention Facilities					
0.23	0.08	0.16	0.75	Treated with Proposed WQ and Detention Facilities					

DESIGN POINT SUMMARY TABLE									
Contributing Basins	Q₅ (cfs)	Q ₁₀₀ (cfs)	Structure						
A-1, OS-4	1.62	3.37	IN-1 (10' CDOT Type R Inlet)						
A-2, OS-3	3.17	6.56							
A-3, OS-2	3.34	6.52	IN-2 (Triple CDOT Type 13 Combo Inlet)						
A-4, OS-1	3.37	6.96	IN-3 (Double CDOT Type 13 Combo Inlet)						
1 - A-4, OS-1 Through OS-4	11.07	22.53	Extended Detention Basin (EDB)						
	0.12	5.07	EDB - Outlet Structure						

Pond Summary Table											
	Required Vol (Ac-Ft)	Designed Vol (Ac-Ft)	As-Built Vol (Ac-Ft								
	0.091	0.101									
	0.311	0.342									
	0.537	0.578									


LEGEND:

EX. STORM	
PROP. STORM	
HISTORICAL DRAINAGE BASIN	
DRAINAGE BASIN	
DRAINAGE FLOW PATTERN	— …
OVERFLOW ROUTE	<
DESIGN POINT	$\overline{1}$
DRAINAGE BASIN DESIGNATION BASIN DESIGNATION	\sim D1

1" = 40' (HORIZONTAL)

2 OF 2

APPENDIX F - RUNOFF REDUCTION CALCULATION

Design Procedure Form: Runoff Reduction													
UD-BMP (Version 3.07, March 2018)											Sheet 1 of 1		
Designer:	Todd Johnson												
Company:	Terra Forma Solutions												
Date:	June 24, 2019												
Project:	Monument Steel Structures - PCD File No. PPR1919												
Location:	ttion: 18910 Base Camp Road - El Paso County												
SITE INFORMATION (User Input in Blue Cells) WQCV Rainfall Depth 0.60 inches													
Depth of Average Runoff Producing Storm, d ₆ = 0.43 inches (for Watersheds Outside of the Denver Region, Figure 3-1 in USDCM Vol. 3)													
Area Type	UIA:RPA												
Area ID													
Downstream Design Point ID	Ex 30" FES											┢────┤ ┃	
Downstream BMP Type	None											┢────┤ ┃	
DCIA (ft ²)	6,534											┢────┤┃	
UIA (ft ²) RPA (ft ²)	17,424											┌────┤┃	
SPA (it) SPA (it ²)												┌───┤┃	
HSG A (%)	0%			1			1			1	1	┌───┤┃	
HSG B (%)	100%												
HSG C/D (%)	0%												
Average Slope of RPA (ft/ft)	0.029												
UIA:RPA Interface Width (ft)	30.00												
CALCULATED RUNOFF												I	
Area ID UIA:RPA Area (ft ²)	OS6 & OS7 23,958											⊢	
L / W Ratio	16.00											┢────┤┃	
UIA / Area	0.2727												
Runoff (in)	0.00												
Runoff (ft ³)	0												
Runoff Reduction (ft ³)	272												
CALCULATED WQCV R					-								
	OS6 & OS7												
WQCV (ft ³)	272												
WQCV Reduction (ft ³)	272											⊢	
WQCV Reduction (%)	100%											┝────┤ ┃	
Untreated WQCV (ft ³)	0												
CALCULATED DESIGN		S (sums res	ults from all	columns wit	h the same l	Downstream	Design Poin	t ID)					
Downstream Design Point ID		0 (000					200.g.i t oli)					
DCIA (ft ²)	0			1								┌───┤┃	
UIA (ft ²)	6,534												
RPA (ft ²)	17,424												
SPA (ft ²)	0												
Total Area (ft ²)	23,958												
Total Impervious Area (ft ²)	6,534											╷───┤┃	
WQCV (ft ³)	272												
WQCV Reduction (ft ³)	272											┟────┤┃	
WQCV Reduction (%)	100%											┟────┤┃	
Untreated WQCV (ft ³) 0									·				
CALCULATED SITE RESULTS (sums results from all columns in worksheet)													
Total Area (tt ²) 23,958													
Total Impervious Area (ft ²)	6,534												
WQCV (ft ³)	272												
WQCV Reduction (ft ³)	272												
WQCV Reduction (%)	100%												
Untreated WQCV (ft ³)	0												