FINAL DRAINAGE REPORT

FOR
HOMESTEAD NORTH AT STERLING RANCH FILING NO. 3

Prepared For:
SR Land, LLC
20 Boulder Crescent, Suite 200
Colorado Springs, CO 80903
(719) 491-3024

October 2022
Project No. 25188.12

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593

PCD Filing No.:
SF-22-29

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. 32314
For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

By:

Title:
Address:

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Joshua Palmer, P.E.

Date

County Engineer/ ECM Administrator

Conditions:

JR Engineering

Table of Contents

Table of Contents 3
Purpose 1
General Site Description 1
General Location 1
D escription of Property 1
Floodplain statement 2
Existing Drainage Conditions 2
Major Basin Descriptions 2
Existing Sub-basin Drainage 3
Proposed Drainage Conditions 4
Drainage Design Criteria 9
D evelopment Criteria Reference 9
Hydrologic Criteria 9
Hydraulic Criteria 10
Drainage Facility Design 12
Four Step Process to Minimize Adverse Impacts of Urbanization 12
W ater Q uality 13
Erosion Control Plan 15
O peration \& Maintenance 15
Drainage and Bridge Fees 15
Construction Cost O pinion 16
Summary 17
References 18

APPENDIX
Appendix A - Vicinity Map, Soil Descriptions, FEMA Floodplain Map
Appendix B - Hydrologic Calculations
Appendix C - Hydraulic Calculations
Appendix D - Reference-Material
Appendix E - Drainage Maps

Purpose

This document is the Final Drainage Report for Homestead North at Sterling Ranch Filing No. 3. The purpose of this report is to identify on-site and off-site drainage patterns, storm sewer, culvert and inlet locations, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities.

This report also finalizes and provides design details for the concepts previously studied within the "Preliminary Drainage Report and MDDP Addendum for Homestead North At Sterling Ranch Preliminary Plan" by JR Engineering, Dated January 2022.

General Site Description

General Location

Homestead North at Sterling Ranch Filing No. 3 (hereby referred to as the "site") is a proposed Single-Family SF residential, urban (RS-6000) development with a total area of approximately 40.83 acres.

The site is located in a portion of the SE $1 / 4$ of Section 28, Township 12 South, Range 65 West of the Sixth Principal Meridian in the County of El Paso, State of Colorado. The site is located immediately east of Vollmer Road and South of Poco Road. Beyond Poco Road to the north lies "the Retreat at Timberridge Filing No. 1" and beyond Vollmer Road to the west lies a parcel owned by John R. Jaynes (Rec No. 211001958). The site is bounded by Homestead North at Sterling Ranch Filing No. 2 to the south, and Sand Creek borders the site to east. Beyond the Creek to the east is another portion of "The Retreat At Timberridge Filing No. 1". Refer to the vicinity map in Appendix A for additional information.

The site is completely within the "Sand Creek Major Drainage Basin". There are no known irrigation facilities located within the project site.

Description of Property

The site totals 40.83 acres in area and will be platted to contain 77 single-family residential lots, public, urban residential streets with 50 ' Right-of-Way's, and Tracts. The site ground cover is comprised of variable sloping grasslands that generally slope(s) downward to the south and east at 1 to $30+\%$ towards Sand Creek. On the eastern side of the site, between the proposed lots, and the Creek, is an existing 15' wide concrete maintenance and access trail centered within an existing 25 ' public easement. The western edge of this easement is the anticipated limits of disturbance for the entire eastern boundary of this project/site. The total area anticipated to be disturbed with this project is 36.49 acres.

Soil characteristics are comprised of Type B hydrologic Soil groups. Refer to the soil survey map in Appendix A for additional information.

The Sand Creek borders the eastern portion of the site. Currently, JR Engineering is performing studies and plans to address Sand Creek stabilization directly adjacent to the site. This project corresponds to PCD Project Number CDR-20-004.

Pre-Development grading and early utility plans have been submitted to El Paso County for this project site (El Paso County Proj. \# SP-22-007). The existing conditions for this site reflect the grading proposed on the "Pre-Development Grading Plans" and the Water and Sanitary infrastructure proposed within those plans sets can be considered existing for the purposes of this report. No other utilities are known to be located within the project site.

FLOODPLAIN STATEMENT

Based on the FEMA Firm Maps Number 08041C0535G revised December 7, 2018, the vast majority of the development is located within Zone X, or areas area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. The eastern property boundary will be platted to the center of Sand creek, placing a portion of the site within Zone AE. The area of disturbance for site grading is located outside of the delineated floodway within Zone X. The FEMA map containing the site has been presented in Appendix A. The plat for Homestead North at Sterling Ranch Filing No. 3 is anticipated to be recorded prior to a LOMR for channel improvement. It is anticipated that the floodplain improvements will result in a no-rise condition and will not adversely impact the Homestead Filing No. 3 development and surrounding developments. See Appendix A for a copy of the FEMA Firm Map.

Existing Drainage Conditions

MAJOR BASIN DESCRIPTIONS

The site lies within the Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" (DBPS) completed by Kiowa Engineering Corporation in January 1993, revised March 1996. The Sand Creek Drainage Basin covers approximately 54 square miles and is divided into major sub-basins. The site is within the respective sub-basin is shown in Appendix D.

The site generally drains from north to south consisting of rolling hills. Currently, the site is used as pasture land for cattle. Sand Creek is located adjacent to the east portion of the site running north to south. This reach of drainage conveyance is not currently improved. Currently, JR engineering is performing studies and plans to address Sand Creek stabilization adjacent to the site. It is anticipated that the channel improvements will be in place prior to the development of the site. The design
presented herein is coordinated with the proposed channel improvements presented in the "Sand Creek Restoration Public Improvement Plans" by JR Engineering. This project corresponds to PCD Project Number CDR-20-004.

The proposed drainage on the site closely follows the approved "Master Development Drainage Plan for Sterling Ranch", (MMDP) prepared by M\&S Civil Consultants, Inc., dated October 24, 2018 and the "Preliminary Drainage Report And MDDP Addendum For Homestead North At Sterling Ranch Preliminary Plan", prepared by JR Engineering, dated January 2022. The Homestead North Filing No. 3 detention facility closely follows the drainage patterns of pond A and B in the preliminary drainage report as well as the Final Drainage Report for Homestead At Sterling Ranch Filing No. 2, prepared by JR Engineering, dated July 2022. The Homestead North preliminary drainage report map and WQ map is shown within Appendix D of this report.

Existing Sub-BaSin Drainage

The total platted area for the site is 40.83 acres. The existing site drainage conditions were analyzed as 7 basins totaling 36.60 acres. These existing basins outfall to Sand Creek at the two locations shown and to Homestead North Filing No. 2 to the south at the four locations shown. Basins draining to Homestead North Filing No. 2 have been accounted and accommodated for in the design of the Filing No. 2 infrastructure, as presented in the Final Drainage Report for Homestead North at Sterling Ranch Filing No. 2.

The Sand Creek borders and is partially within the eastern limits of the site for a total onsite area of 4.23 acres. The portion of the Sand Creek running through and along the project site was not basinized for the purposes of this report, as the basis of design for this site was to not disturb or modify the Creek in any way, and to limit developed flows leaving the project site to predevelopment/historic rates. The Creek is being studied and improved with the "Sand Creek Restoration Public Improvement Plans" by JR Engineering. This project corresponds to PCD Project Number CDR-20-004.

Basin EX1 (Q5 = $0.9 \mathrm{cfs}, \mathrm{Q} 100=5.8 \mathrm{Cfs}$) is 3.82 acres, and consists of undeveloped land, covered with sparse native vegetation. Runoff generated generally sheet flows south per existing drainage patterns until it reaches the Site's southern border at DP E1 (the northern curb of Perry Owens Drive, El Paso County Type C). Once flows reach the curb and gutter, they continue per the drainage patterns identified in the Final Drainage Report for Homestead North at Sterling Ranch Filing No. 2, by JR Engineering.

Basin EX2 (Q5 = $1.8 \mathrm{cfs}, \mathrm{Q} 100=12.0 \mathrm{cfs}$) is 9.74 acres, and consists of undeveloped land covered with sparse native vegetation. Runoff generated in this basin generally flows southeast towards the Site's southern border. Flows are intercepted by the existing grass-lined swale and carried east to DP E2, flows continue through Basin EX3 to DP 3.1.

Basin EX3 (Q5 $=3.8 \mathrm{cfs}, \mathrm{Q} 100=25.4 \mathrm{cfs}$) is 21.47 acres, and consists of undeveloped land covered with sparse native vegetation. Runoff generated in this basin generally flows southeast towards the Site's southern border. Flows are intercepted by the existing grass-lined swale and carried east to Sand Creek at DP E3.1. Combined flows in the grass swale from DP2 and Basin EX3 that reach DP3.1 are Q5 $=5.0 \mathrm{cfs}, \mathrm{Q} 100=33.6 \mathrm{cfs}$.

Basin EX4 (Q5 = $1.6 \mathrm{cfs}, \mathrm{Q} 100=3.7 \mathrm{cfs}$) is 0.84 acres in area and consists mainly of undeveloped land bordering the western side of the Regional Trail that serves as a pedestrian and bike corridor as well as maintenance access road that allows for vehicular access to Sand Creek and other drainage infrastructure. In general this basin slopes to the east, directly into Sand Creek. Slopes range from flat to 33%. Runoff generated flows east, over the existing 15 ' concrete regional trail and into Sand Creek at DP E4.

Basin EX1.2 (Q5 = $0.1 \mathrm{cfs}, \mathrm{Q} 100=0.4 \mathrm{cfs}$) is 0.17 acres, and consists of undeveloped land with sparse, native vegetation. Runoff generated flows southeast to the Site's southern border with Filing No. 2 at DP 1.2. Flows continue per the drainage patterns identified in the Final Drainage Report for Homestead North at Sterling Ranch Filing No. 2, by JR Engineering. The flows identified in this report that are tributary to the Filing No. 2 development have remained consistent with what was planned for.

Basin EXB6 (Q5 $=0.0 \mathrm{cfs}$, Q100 $=0.3 \mathrm{cfs}$) is 0.13 acres, and consists of undeveloped land with sparse, native vegetation. Runoff generated flows southeast to the Site's southern border with Filing No. 2 at DP B6. Flows continue per the drainage patterns identified in the Final Drainage Report for Homestead North at Sterling Ranch Filing No. 2, by JR Engineering. The flows identified in this report that are tributary to the Filing No. 2 development have remained consistent with what was planned for.

Basin EXB4 (Q5 $=0.2 \mathrm{cfs}$, Q100 $=1.0 \mathrm{cfs}$) is 0.43 acres, and consists of undeveloped land with sparse, native vegetation. Runoff generated flows southeast to the Site's southern border with Filing No. 2 at DP B4. Flows continue per the drainage patterns identified in the Final Drainage Report for Homestead North at Sterling Ranch Filing No. 2, by JR Engineering. The flows identified in this report that are tributary to the Filing No. 2 development have remained consistent with what was planned for.

Proposed Drainage Conditions

The proposed site consists of 77 single family detached residential lots ranging in size from $1 / 4$ acre to over $1 / 2$ acre, public urban local streets, and intermixed open space. The site has been designed to collect, detain, and treat all developed flows prior to their discharge from the project site or their basins respective ultimate outfall. Developed basins that leave the site to the south, are all treated in

$$
\text { Page | } 4
$$

either Pond B or Pond C. Basins have been named to be consistent with the Preliminary Drainage Report And MDDP Addendum For Homestead North At Sterling Ranch Preliminary Plan and subsequent Filing No. 1 and Filing No. 2 FDR's. Basins designated with the prefix B, go to Pond B within the Filing 2 development and are consistent with what was planned for in the Filing No. 2 FDR. Basins designated with the Prefix D, go to Pond C, part of the Filing No. 1 development and are consistent with what was planned for in the Final Drainage Report for the Homestead North at Sterling Ranch Filing No. 1 by JR Engineering. All developed basins identified with the prefix A, are treated and detained on-site in the proposed Full-Spectrum detention and Water Quality Pond A. Basins OS-1 and OS-2 are undeveloped basins that flow directly to the Sand Creek. These basins are infeasible to capture onsite due to the existing topography and proximity to the Creek.

In general, this site utilizes a system of grass swales and lot grading to direct developed flows to the proposed streets and curb and gutter system. The proposed streets and curb and gutter, direct water to inlets and the proposed storm sewer system that carries flows to the proposed on-site, full-spectrum detention and water quality Pond A.

PROPOSED SUB-BASIN DRAINAGE

All basins include a numbered design point indicating where all flows will outfall/leave that basin. Basins that include a design point suffix of (i) or (B) in the rational calculations indicate that a portion of the flows are either captured in an inlet or continue as "by-pass" flow per overland flow patterns. Captured flows get the suffix (i) and by-pass flows get the suffix B. These are not shown on the map for clarity purposes.

Basin A1 is 3.82 acres and consists of proposed single-family residential lots ranging in size from just below a $1 / 4$ of an acre to greater than $1 / 2$ acre, the west half of a portion of proposed Aspen Valley Road, and Jess Evans Drive west of Aspen Valley Road. Runoff generated (Q5 = 5.2 cfs , Q100 = 13.5 cfs) sheet flows towards the curb and gutter and is then directed to the proposed on-grade 15 ' Type R inlet at Design Point 1. Captured flows at DP $1 \mathrm{i}(\mathrm{Q} 5=5.2 \mathrm{cfs}, \mathrm{Q} 100=10.9 \mathrm{cfs})$ are piped to DP2.1. By-pass flows at $\mathrm{DP} 1 \mathrm{~B}(\mathrm{Q} 100=2.6 \mathrm{cfs})$ continue in the curb and gutter, south, to DP3 per the drainage patterns identified in Basin A3.

Basin A2 is 3.02 acres and consists of proposed single-family residential lots ranging in size from $1 / 4$ of an acre to greater than $1 / 2$ acre, the east half of a portion of proposed Aspen Valley Road, and Jess Evans Drive east of Aspen Valley Road. Runoff generated ($\mathrm{Q} 5=4.5 \mathrm{cfs}$, $\mathrm{Q} 100=10.8 \mathrm{cfs}$) sheet flows towards the curb and gutter and is then directed to the proposed on-grade 15' Type R inlet at Design Point 2. Captured flows at DP $2 \mathrm{i}(\mathrm{Q} 5=4.5 \mathrm{cfs}$, $\mathrm{Q} 100=9.5 \mathrm{cfs})$ are piped to DP2.1. By-pass flows at DP 2B $(\mathrm{Q} 100=1.3 \mathrm{cfs})$ continue in the curb and gutter, south, to DP4 per the drainage patterns identified in Basin A4.

Total flow in the pipe at DP $2.1(24$ " RCP $)$ is Q5 $=9.3 \mathrm{cfs}$, and Q100 $=19.6 \mathrm{cfs}$. Flows at DP2.1 are piped to DP4.1.

Basin A3 is 4.54 acres and consists of proposed single-family residential lots ranging in size from $1 / 4$ of an acre to greater than $1 / 2$ acre, the west half of a portion of proposed Aspen Valley Road, and David Rudabaugh Drive west of Aspen Valley Road. Runoff generated (Q5 $=6.1 \mathrm{cfs}$, $\mathrm{Q} 100=15.1$ cfs) sheet flows towards the curb and gutter and is then directed to the proposed on-grade 15' Type R inlet at Design Point 3 (Total Flow $=\mathrm{Q} 5=6.1 \mathrm{cfs}, \mathrm{Q} 100=17.5$). Captured flows at DP $3 \mathrm{i}(\mathrm{Q} 5=6.1$ cfs, $\mathrm{Q} 100=12.6 \mathrm{cfs})$ are piped to DP3.1. By-pass flows at $\mathrm{DP} 1 \mathrm{~B}(\mathrm{Q} 100=4.9 \mathrm{cfs})$ continue in the curb and gutter, south, to DP5 per the drainage patterns identified in Basin A5.

Basin A4 is 3.82 acres and consists of proposed single-family residential averaging around a quarter of an acre in size, the east half of a portion of proposed Aspen Valley Road, and David Rudabaugh Drive east of Aspen Valley Road. Runoff generated (Q5 $=6.0 \mathrm{cfs}$, $\mathrm{Q} 100=14.4 \mathrm{cfs}$) sheet flows towards the curb and gutter and is then directed to the proposed on-grade 15' Type R inlet at Design Point 4 (Total Flow $=\mathrm{Q} 5=6.0 \mathrm{cfs}, \mathrm{Q} 100=14.4 \mathrm{cfs})$. Captured flows at $\mathrm{DP} 4 \mathrm{i}(\mathrm{Q} 5=6.0 \mathrm{cfs}, \mathrm{Q} 100=$ 11.3 cfs) are piped to DP4.1. By-pass flows at DP $4 \mathrm{~B}(\mathrm{Q} 100=3.1 \mathrm{cfs})$ continue in the curb and gutter, south, to DP6 per the drainage patterns identified in Basin A6.

Total flow in the pipe at DP $4.1(36 " \mathrm{RCP})$ is $\mathrm{Q} 5=20.6 \mathrm{cfs}$, and $\mathrm{Q} 100=42.1 \mathrm{cfs}$. Flows at DP4.1 are piped to DP5.1.

Basin A5 is 7.53 acres and consists of proposed single-family residential lots ranging in size from just under a $1 / 4$ of an acre to greater than $1 / 2$ acre, the west half of a portion of proposed Aspen Valley Road, and William Downing Drive west of Aspen Valley Road. Runoff generated (Q5 = 7.6 cfs , Q100 $=21.7 \mathrm{cfs}$) sheet flows towards the curb and gutter and is then directed to the proposed 15 ' Type R sump inlet at Design Point 5 (Total Flow $=\mathrm{Q} 5=7.5 \mathrm{cfs}$, $\mathrm{Q} 100=25.7 \mathrm{cfs}$). This inlet was sized to capture all flows up to and including the 100-yr storm event. Captured flows at DP 5i (Q5 = $7.6 \mathrm{cfs}, \mathrm{Q} 100=25.8 \mathrm{cfs}$) are piped to DP5.1. If the inlet were to become clogged, flows would overtop the crown of Aspen Valley and either enter the proposed 15' Type R sump inlet at DP-6, or would overtop the curb and gutter and flow directly into the proposed full spectrum EDB at design point 7.1.

Total flow in the pipe at DP $5.1\left(30^{\prime \prime} \mathrm{RCP}\right)$ is Q5 $=27.9 \mathrm{cfs}$, and $\mathrm{Q} 100=66.1 \mathrm{cfs}$. Flows at DP5.1 are piped to DP6.1.

Basin A6 is 4.29 acres and consists of proposed single-family residential lots averaging a quarter of an acre in size, the east half of a portion of proposed Aspen Valley Road, and William Downing Drive east of Aspen Valley Road. Runoff generated (Q5 $=6.5 \mathrm{cfs}$, $\mathrm{Q} 100=15.5 \mathrm{cfs}$) sheet flows towards the curb and gutter and is then directed to the proposed 15 ' Type R sump inlet at Design Point 6 (Total Flow = Q5 = $6.5 \mathrm{cfs}, \mathrm{Q} 100=18.8 \mathrm{cfs}$). This inlet was sized to capture all flows up to and including the $100-\mathrm{yr}$ storm event. Captured flows at $\mathrm{DP} 6 \mathrm{i}(\mathrm{Q} 5=6.5 \mathrm{cfs}, \mathrm{Q} 100=18.8 \mathrm{cfs})$ are piped to DP7.1. If the inlet were to become clogged, flows would overtop the crown of Aspen Valley
and either enter the proposed 15^{\prime} Type R sump inlet at DP-5, or would overtop the curb and gutter and flow directly into the proposed full spectrum EDB at design point 7.1.

Total flow in the pipe at DP 6.1 ($36{ }^{\prime \prime} \mathrm{RCP}$) is Q5 $=34.0 \mathrm{cfs}$, and $\mathrm{Q} 100=83.2 \mathrm{cfs}$. Flows at DP6.1 are piped to DP7.1.

Basin A7 is 2.93 acres and consists of proposed single-family residential lots ranging in size from a quarter of an acre to just under $1 / 3$ of an acre and a proposed full-spectrum extended detention basin (EDB) named Pond A. See the water quality section of this report for design information related to Pond A. Runoff generated (Q5 = $1.9 \mathrm{cfs}, \mathrm{Q} 100=8.3 \mathrm{cfs}$) sheet flows towards and into the proposed EDB, Pond A at Design Point 7.1 (Total Flow $=$ Q5 $=35.1 \mathrm{cfs}$, $\mathrm{Q} 100=92.2 \mathrm{cfs}$). Combined flows include the Basin A7's runoff and the storm sewer outfall into the Pond from Design Point 6.1. A section of Basin A7 (A7A) was analyzed to determine the flowrate for the minor semi-channelized flow into the pond from Lots 76-77 and part of 75. The analysis is included in Appendix C and the swale will be armored with Type VL soil riprap where potentially erosive velocities are encountered.

Basin B1.1 is 2.08 acres and consists of proposed single-family residential lots averaging about a quarter of an acre in size, the west half of William Downing Drive, and a portion of the proposed trail and landscaping that borders the eastern side of Vollmer Road. Runoff generated in this basin (Q5 = 2.8 cfs , Q100 $=7.5 \mathrm{cfs}$) sheet flows southeast towards the western curbline of William Downing Drive, where it enters the roadway and is directed in the curb line south, to the Filing $2 / 3$ boundary at Design Point 1F (same flows). Flows continue per the drainage patterns identified in the Filing No. 2 FDR. This basin was accounted for in the Filing 2 FDR, and the basin characteristics and anticipated flows have remained consistent with that report. The filing 2 storm sewer and Pond B were sized to accept, detain, and treat these flows in accordance with all local and state criteria.

Basin B1.2 is 1.36 acres and consists of proposed single-family residential lots ranging in size from a quarter of an acre to $1 / 3$ of an acre and the east half of William Downing Drive. Runoff generated in this basin $(\mathrm{Q} 5=2.1 \mathrm{cfs}, \mathrm{Q} 100=5.1 \mathrm{cfs})$ sheet flows southwest towards the eastern curbline of William Downing Drive, where it enters the roadway and is directed in the curb line south, to the Filing $2 / 3$ boundary at Design Point 2F (same flows). Flows continue per the drainage patterns identified in the Filing No. 2 FDR. This basin was accounted for in the Filing 2 FDR, and the basin characteristics and anticipated flows have remained consistent with that report. The filing 2 storm sewer and Pond B were sized to accept, detain, and treat these flows in accordance with all local and state criteria.

Basin B1.3 is 0.33 acres and consists of a small portion of proposed single-family residential lots that average a ${ }^{1 / 4}$ of an acre in size, a small portion of the open space Tract B, and approximately 130^{\prime} of the southernmost portion of Aspen Valley Road within Filing 3. Runoff generated (Q5 = 0.7 cfs , Q100 $=1.4$ cfs), sheet flows south and towards Aspen Valley Road until it reaches Design Point 1.3 (same flows) at the Filing $2 / 3$ boundary. Flows continue per the drainage patterns identified in the

Filing No. 2 FDR. The proposed flows ($\mathrm{Q} 5=0.7 \mathrm{cfs}, \mathrm{Q} 100=1.4 \mathrm{cfs}$) are less than the flows shown in the Filing No. 2 FDR (Q5 = 1.0 cfs , Q100 = 2.2 cfs). This basin was accounted for in the Filing 2 FDR, and the basin characteristics and anticipated flows have remained consistent with that report. The Filing 2 storm sewer and Pond B were sized to accept, detain, and treat these flows in accordance with all local and state criteria.

Basin B4 is 1.21 acres and consists of a portion of Tract C which consists of open space and the proposed EDB, Pond A. This basin boundary extends south to Filing $2 / 3$ boundary. Runoff generated ($\mathrm{Q} 5=0.5 \mathrm{cfs}, \mathrm{Q} 100=3.1 \mathrm{cfs}$) in this basin flows overland southeast towards the Filing 2/3 boundary at Design point B4 (same flows). Flows continue per the drainage patterns identified in the Filing No. 2 FDR. Filing 3 basin B4 correlates to Filing 2 basins F5 and part of B4. Filing 2 split the basins further north from the Filing $2 / 3$ boundary and thus results in an area discrepancy between the Filing 2 and Filing 3 analysis. Therefore, the Filing 3 B4 basin was accounted for in the Filing 2 FDR, and the basin characteristics and anticipated flows have remained consistent with that report. The Filing 2 storm sewer and Pond B were sized to accept, detain, and treat these flows in accordance with all local and state criteria.

Basin OS1 is 0.20 acres and consists of undeveloped open space or landscaped areas part of Tract C, bordering the southern side of the Poco Road Right-of-Way. This basin is located at the border of the property and there is no planned imperviousness or development in this basin. Construction consists only of grading work. It was found that in order to match into the existing grades of Poco Road and Right-of-Way, this basin was infeasible to capture and therefore flows off-site to the north, to the Poco Road drainage system. The runoff generated ($\mathrm{Q} 5=0.1 \mathrm{cfs}, \mathrm{Q} 100=0.6 \mathrm{cfs}$) reaches the Poco Road Right-of-Way at Design Point OS1 (same flows), and continues per existing drainage patterns flowing to the east into Sand Creek. Because this basin has the same ultimate outfall (Sand Creek) as the existing condition the drainage system will safely route these flows to their ultimate outfall and no downstream impacts are expected due to this project.

State what those existing flows are

Basin OS2 is 1.01 acres and consists of undeveloped open space or landscaped areas and the existing regional trail and maintenance access that borders the western banks of Sand Creek within Tract C of this development. There is no new planned imperviousness or development in this basin related to this project as the trail was constructed with PCD Project Number CDR-20-004. Construction consists only of grading work. It was found that in order to match into the existing grades of the regional trail/maintenance road, this basin was infeasible to capture and therefore flows off-site to the east and into Sand Creek at Design Point OS2. The runoff generated (Q5 = $0.4 \mathrm{cfs}, \mathrm{Q} 100=2.9 \mathrm{cfs}$) sheet flows east, over the existing regional trail and into Sand Creek per existing drainage patterns. The flows entering the Sand Creek drainage system in the proposed condition are equal to or less than the flows reaching Sand Creek from this project site in the existing condition, and therefore, the drainage system will safely route these flows to their ultimate outfall and no downstream impacts are expected due to this project.

Basin D2 is 0.18 acres and consists of undeveloped open space or landscaped areas bordering Vollmer Road, part of Tract A. There is no new planned imperviousness or development in this basin related to this project. Construction consists only of grading work. It was found that in order to match into the existing grades of the Vollmer Road Right-of-Way, this basin was infeasible to capture onsite and therefore flows off-site to the existing roadside swale of Vollmer Road. Runoff generated (Q5 $=0.1 \mathrm{cfs}, \mathrm{Q} 100=0.5 \mathrm{cfs}$) sheet flows west to the Vollmer Road Right-of-Way at Design point D2. This area was studied with the Final Drainage Report for Homestead North at Sterling Ranch Filing No. 1, By JR Engineering, and the Vollmer Road drainage system was sized and designed to accept these flows and safely route them to their ultimate outfall at Sand Creek. Filing 3 D2 basin correlates to part of Filing 1 D2 basin and proposed flows are less than the existing flows in Filing 1 (Q5 $=2.8 \mathrm{cfs}, \mathrm{Q} 100=6.6 \mathrm{cfs})$. Flows continue per the drainage patterns identified in the Filing 1 report and no downstream impacts are anticipated due to this development. See Appendix D for applicable excerpts.

Basin D3 is 0.17 acres and consists of undeveloped open space or landscaped areas bordering Vollmer Road, part of Tract A. There is no new planned imperviousness or development in this basin related to this project. Construction consists only of grading work. It was found that in order to match into the existing grades of the Vollmer Road Right-of-Way, this basin was infeasible to capture onsite and therefore flows off-site to the existing roadside swale of Vollmer Road. Runoff generated (Q5 = $0.1 \mathrm{cfs}, \mathrm{Q} 100=0.5 \mathrm{cfs}$) sheet flows west to the Vollmer Road Right-of-Way at Design point D3. This area was studied with the Final Drainage Report for Homestead North at Sterling Ranch Filing No. 1, By JR Engineering, and the Vollmer Road drainage system was sized and designed to accept these flows and safely route them to their ultimate outfall at Sand Creek. Filing 3 D3 basin correlates to part of Filing 1 D2 basin and proposed flows are less than the existing flows in Filing 1 $(\mathrm{Q} 5=2.8 \mathrm{cfs}, \mathrm{Q} 100=6.6 \mathrm{cfs})$. Flows continue per the drainage patterns identified in the Filing 1 report and no downstream impacts are anticipated due to this development. See Appendix D for applicable excerpts.

Drainage Design Criteria

Development Criteria Reference

Storm drainage analysis and design criteria for this project were taken from the "City of Colorado Springs/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual" (CSDCM), dated May 2014, as adopted by El Paso County.

Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual"

Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5 -year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One-hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

1-hr Point Rainfall Data

Storm	Rainfall (in.)
5-year	1.50
100-year	2.52

Hydraulic Criteria

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site, and the UDFCD MHFD-Detention 4.05 spreadsheet was utilized for evaluating the proposed detention and water quality pond(s). Sump and on-grade inlets were sized using UDFCD UD-Inlet v5.01.

Autodesk Hydraflow express and UDFCD figure 8-22 was used to size the swales. Autodesk Hydraflow express was also used to determine the hydraulic grade lines for the pond outfall. For the tailwater condition, an interpolation of the FEMA BFE cross sections was used. The FEMA BFE elevations used the $\operatorname{NAVD}(88)$ datum whereas our site is on the NGVD29 datum. The interpolated value from the BFE elevations were lowered by a factor of 3.82 feet to get to the equivalent elevation on the NGVD29 datum.

Storm StormCAD V8i, a modeling program for stormwater drainage, was utilized to determine the hydraulic grade lines and energy grade lines for the storm sewer network. Manhole and pipe losses for the model were obtained from the Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 1. The manhole loss coefficients used in the model were determined using Figure 7-13 of this manual. The manhole loss coefficients used in the model are shown in the Table below. StormCAD, Autodesk Hydraflow results, along with street and inlet capacities are presented in Appendix C.

Structure Name	Angle	Headloss
DP01-03	40	0.3
DP01-05	90	1.32
DP01-07	90	1.32
DP01-09	90	1.32
DP01-11	0	0.1
DP02-02	0	0.1
DP03-02	0	0.1
DP04-02	0	0.1
DP05-02	0	0.1

The Sand Creek improvements adjacent to the Sterling Ranch Homestead North are being designed in a separate report, The Final Design Report for Sand Creek Restoration by JR Engineering, April 2022 (PCD Project Number CDR-20-004). The general concept of the channel design is to design a low maintenance, high performance channel with a meandering bankfull channel. The design will cut in a new bankfull section offset to the east from the existing thalweg, grade up to the existing thalweg so that it can remain hydraulically connected to the new thalweg, and then extend a 1% flood terrace to the east between 80 and 120 ft . depending on shear stresses and velocities. The purpose of trying to keep the existing channel hydraulically connected to the new thalweg is to maintain as many existing wetlands as possible and satisfy the ACOE. The previous design in the Kiowa DBPS made no attempt to preserve wetlands in order to satisfy the County's design criteria, and was rejected by the ACOE. While the County's criteria are certainly a determining factor, we consider the need to satisfy the ACOE the highest priority, because without their approval JR won't be granted a 404 permit. The County review of the previous design by the Kiowa DBPS states that the maximum stable longitudinal slope of the channel is 0.17%. Using this longitudinal slope will require the use of at least 10 and possibly 15 GSB drop structures. This channel slope will also ensure the destruction of more wetlands by taking the existing ones offline due to large changes in elevation. JR Engineering's intent to prove that a steeper slope can remain stable long term, thus allowing us to preserve more wetlands and appease the ACOE, a work map for the Final Design Report for Sand Creek Restoration by JR Engineering has been provided for information in Appendix D.

Drainage Facility Design

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

Water quality and detention for this site is provided in 1 of 3 ponds. See the "Water Quality" exhibit in Appendix E for additional information. The majority of Filing 3, all "A" basins, totaling 29.95 acres, drain to the proposed full-spectrum extended detention basin named Pond A. All "B" basins, drain to Filing No. 2, and the full-spectrum extended detention basin named Pond B. All "D" basins, (named to be consistent with the Filing No. 1 FDR) drain to the full-spectrum extended detention basin named Pond C. Ponds A, B, and C were sized and designed to provide detention and water quality, per the "full-spectrum" design methodology and all local and state criteria. The Filing No. 3 areas that drain to Ponds B or C, have remained consistent with what was planned for in both the Filing No. 1 and Filing No. 2 Final Drainage Reports for the Homestead North at Sterling Ranch developments. See those reports for design details and more information.

Step 1 - Reducing Runoff Volumes: The Homestead North at Sterling Ranch development project consists single -family homes with open spaces and lawn areas interspersed within the development, which helps disconnect impervious areas and reduce runoff volumes. Roof drains from the structures will discharge to lawn areas, where feasible, to allow for infiltration and runoff volume reduction.

Step 2 - Stabilize Drainageways: The site lies within the Sand Creek Drainage Basin. Basin and bridge fees will be due at time of platting. These funds will be used for the channel stabilization being designed by JR Engineering adjacent to the site and on future projects within the basin to stabilize drainageways. The Soils and Geology study on the site showed a potentially unstable region directly adjacent to the western bank of Sand Creek on the southeast corner of the site. At the time of final design, specifications from a Geotechnical Engineer will be implemented to ensure that the developed site is safe. All developed areas of Homestead North at Sterling Ranch Filing No. 3 will discharge into Full Spectrum Detention Ponds, and outflows will be less than or equal to historic flows.

The subdivision improvement agreement (SIA) for Sterling Ranch Filing 1 states that "bank stabilization of the Sand Creek channel shall be required prior to any replats of other final plats adjacent to the channel. The design and installation of said improvements shall be accomplished and guaranteed through the normal subdivision review and collateralization process." Additionally, "Other drainage improvements in Tract D and future tracts containing the Sand Creek Channel, such as drop structures, check structures and similar stabilization or protection improvements, will be
designed and constructed by the District with the final construction drawings to be approved by the County no later than the final platting of the $700^{\text {th }}$ single family lot within the boundaries of the approved Sterling Ranch Sketch Plan and the completion of all said improvements no later than the $800^{\text {th }}$ single family lot with the boundaries of the approved Sterling Ranch Sketch Plan."

Step 3 - Treat the WQCV: Water Quality treatment for this site is provided in three proposed full spectrum water quality detention ponds: Pond A, B, and Pond C. The runoff from this site will be collected within inlets and conveyed to the proposed ponds via storm sewer or overland flows. Upon entrance to the ponds, flows will be captured in a forebay designed to promote settlement of suspended solids. A trickle channel is also incorporated into the ponds to minimize the amount of standing water and provide easy accumulated sediment removal. The outlet structure has been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for approx. 72 hours. All flows released from the ponds will be reduced to less than historic rates.

Step 4 - Consider Need for Industrial and Commercial BMPs: There are no commercial or industrial components to this development; therefore no BMPs of this nature are required. BMPs will be utilized to minimize off-site contaminants and to protect the downstream receiving waters. The site is a residential subdivision (ie: not a high-risk site per Figure I-1 in ECM Appendix I), therefore specialized BMPs do not need to be considered. Site specific temporary source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill containment and control, etc. The permanent erosion control BMPs include asphalt drives and parking, storm inlets and storm pipe, the full spectrum water quality and detention ponds, and permanent vegetation.

Water Quality

 Where can information forWater Quality treatment for this site Ponds B \& C be found? posed full spectrum water quality detention ponds: Pond A, B, and Pond C. See the "Water Quality Map" in Appendix E. For this Final drainage report the design points, pipes and inlets are discussed in the Proposed Drainage Conditions section of this report. The corresponding design points, pipes and basins are shown within the Proposed Drainage Map within Appendix E. The ponds have been designed per Section 13.3.2.1 of Resolution 15-042 of the El Paso County Drainage Criteria Manual. For additional information on Pond A's strage and outlet characteristics see the UD-Detention design workbook sheets within Appendix C. See below for information regarding Ponds A, B, and C.

Pond A was analyzed for the proposed condition with a tributary area of 29.95 acres and a composite percent impervious of 40.5%. Pond A was designed with a full-spectrum methodology, including a Water Quality Capture Volume drain time of 40 hours and an Excess Urban Runoff Volume (EURV) drain time of 72 hours. Additionally, the pond was designed to drain or infiltrate 97% of the 5 -yr storm in 72 hours or less and to drain or infiltrate 99% of events greater than the 5 -yr storm in 120
hours or less. Pond A also has a stabilized maintenance access path designed to facilitate easy maintenance by the anticipated equipment to be used by the maintenance entity. The path consists of a gravel section to access the bottom of pond and outlet structure, designed to meet all applicable county criteria and standards. This gravel access allows maintenance vehicles to enter the 6' wide trickle channel, which was designed to be wide enough for maintenance equipment to travel to and access the forebay. There is also a proposed concrete forebay to allow for settlement of sedimentation and ease of removal. The proposed forebay was designed to meet all applicable County criteria and standards. The forebay was sized to hold a minimum volume equal to 3% of the WQCV based on the tributary basins. The forebay notch was sized to release 2% of the undetained peak 100-year flows. See Appendix C for all applicable calculations. The forebay releases flows directly to a concrete trickle channel, which carries flows to the proposed outlet structure. The outlet structure was designed per full-spectrum design methodology, and includes a micropool. Should the pond outlet become clogged, or should the pond see flows in excess of the $100-\mathrm{yr}$ storm, an emergency overflow spillway was provided. The spillway is designed to be stable while conveying the peak, undetained 100-yr flows. The spillway is protected with soil riprap sized per MHFD Figure 12-21. The spillway also has over 1^{\prime} of freeboard above the $100-\mathrm{yr}$ water surface elevation over the spillway's crest (while conveying peak flows). The emergency overflow path is to the east towards Sand Creek.

Pond A Proposed Design

	Stage (ft.)	Volume Provided (acre-ft)	Release Rate (cfs)
WQCV	3.01	0.455	0.2
EURV	4.46	1.281	0.4
5-year	4.79	1.495	5.4
100-year	5.82	2.246	37.0

The Final Drainage Report for Homestead North at Sterling Ranch Filing No. 2 identified areas from the Filing No. 3 project site that are tributary. The Filing 2 design and report planned for and accepts these flows, safely routes them to their ultimate outfall, and treats and detains these flows per County and State criteria in the Proposed EDB called Pond B. These areas were identified in the Filing 2 FDR as "Future" basins F1-5. These areas are identified in this drainage report as Basins with the prefix B. This report, per the requirements of the Filing No. 2 FDR, has re-analyzed Pond B, within Filing 2, for the purpose of confirming that Pond B's design is adequate and meets the County and State requirements for water quality and detention, when including the anticipated Filing No. 3 developed flows from B basins. This report has found that no modifications are required to the design of Pond B, however, there was a slight difference in the F basins from the Filing 2 report, versus the Filing 3's B basins. An updated UD-Detention workbook is included in Appendix C of this report. Appendix D, also includes the UD-Detention printouts form the Filing No. 2 report, as a reference.

As previously stated, a small portion of the Filing No. 3 site designated as "D" basins in this report, drains to the proposed Pond C, part of the Filing No. 1 project site. These areas were accounted for
and planned for in the design of Filing No. 1 and Pond C. Applicable excerpts from the Filing No. 1 report are included in Appendix D.

As shown on the Water Quality Map included in Appendix E, 4.42 acres of this site, consists of portions of the Sand Creek, an Existing 15' Gravel Maintenance and Pedestrian Trail and undeveloped Basins OS1 and OS2 (grading only, no proposed development) and are excluded from the "Post-Construction (Permanent) Stormwater Management requirements per the "Post Construction Stormwater Management Applicability Evaluation Form" Section II, items G, H, \& I.

Erosion Control Plan

It is the policy of the El Paso County, that a grading and erosion control plan be submitted with the drainage report. Proposed silt fence, vehicles traffic control, temporary sediment basins, seeding and mulching are proposed as erosion control measures. The GEC plans have been submitted concurrently with this report.

Operation \& Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. The property owner shall be responsible for the inspection, maintenance, rehabilitation and repair of stormwater and erosion control facilities located on the property unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. Access is provided from onsite facilities and easements for proposed infrastructure located offsite. We respectfully request that the Operation \& Maintenance Manual be submitted in conjunction with the construction documents. The pond will be owned and maintained by Sterling Ranch Metro District. Maintenance is provided for Pond A with a 12 -foot access road off Aspen Valley Road for the proposed forebay and outlet structure. The maintenance drive for Sand Creek improvements is provided directly to the west of Sand Creek.

Drainage and Bridge Fees

The site lies within the Sand Creek Drainage Basin. An estimate of the Impervious Acres and Drainage/Bridge is presented below,
HN F3 Impervious Area Calculation

Breakdown	Acres	Impervious	Impervious Acres
ROW	7.1418	100%	7.14
Lots	21.8837	50%	10.94
Tracts	11.8016	2%	0.24
Total	40.8271		18.32

2022 Drainage and Bridge Fee - Sterling Ranch Homestead North Filing 3				
Impervious Acres (Ac.)	Drainage Fee (Per Imp. Acre)	Bridge Fee (Per Imp. Acre)	Sterling Ranch Drainage Fee	Sterling Ranch Bridge Fee
18.32	$\$ 21,814$	$\$ 8,923$	$\$ 399,632.48$	$\$ 163,469.36$

Construction Cost Opinion

A construction cost opinion for the public storm drainage infrastructure has been provided below. The below cost opinion is only an estimate of facility and drainage infrastructure cost and may vary.

Homestead North Filing No. 3 (Public Non-Reimbursable)

Item Description		Quantity	Unit	Unit Price	Cost	
1	18" RCP	230	L.F.	\$ 70	\$	16,100.00
2	24 " RCP	402	L.F.	\$ 83	\$	33,366.00
3	30" RCP	8	L.F.	\$ 104	\$	832.00
4	36" RCP	350	L.F.	\$ 128	\$	44,800.00
5	42" RCP	184	L.F.	\$ 171	\$	31,464.00
6	18" FES	1	Ea.	\$ 420	\$	420.00
7	15' Curb Inlet Type R <5 ft.	5	Ea.	\$ 10,984	\$	54,920.00
8	20' Curb Inlet Type R <5 ft.	1	Ea.	\$ 11,706	\$	11,706.00
9	Storm Sewer MH, box base	2	Ea.	\$ 12,876	\$	25,752.00
10	Storm Sewer MH, slab base	1	Ea.	\$ 7,082	\$	7,082.00
11	Pond A	1	Ea.	\$ 40,000	\$	40,000.00
				Sub-Total	\$	266,442.00

Update all storm quantities - No 18" rcp, 42 " rcp or 20' inlets shown on plans.

Per LDC section 8.5.5.C.3.b(ii) Fee Reductions, Credits or Reimbursement for Facilities, this development requests that no cash drainage or bridge fees are due at platting as the value of reimbursable DBPS improvements for the Sand Creek Tributary segment 159, 164, 169, 186 and the Briargate Bridge shown in the below table exceed the drainage and bridge fee estimate shown above.

Sterling Ranch Deferred Drainage Fees Analysis Reimbursable Costs associated with DBPS Segment 159 and 164, Segment 169 and 186
 Reimbursable Estimate Segment 159 and 164 from SR F2 FDR (SF-2015) \$1,918,065.00
 Reimbursable Estimate Segment 169 and 186 from HN F1 FDR (SF-2213) \$611,628.00
 Subtotal Reimb. Costs associated with DBPS Segments 159-164, 169-186 \$2,529,693.00
 Earlier Plats Deferred Drainage Fees (Branding Iron F1 \& Homestead F1) \$219,540.55
 SR F2 (SF-2015) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$400,855.70
 SR F3 (SF-2132) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$214,430.47
 * HN F1 (SF-2213) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$541,225.00
 * HN F2 (SF-2218) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$310,413.22
 HN F3 (SF-2229) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$399,632.48
 Subtotal Deferred Drainage Fees \$2,086,097.42
 Unused Reimb. Costs associated with DBPS Segments 159-164, 169-186
 \$443,595.58
 Sterling Ranch Deferred Bridge Fees Analysis
 Reimbursable Costs associated with DBPS Bridge at Briargate Parkway and Sterling Ranch Rd.
 Reimbursable Estimate Briargate Parkway Bridge from CDR $2113 \quad \$ 1,546,676.98$
 Reimbursable Estimate Sterling Ranch Road Bridge from CDR $226 \quad \$ 990,016.80$
 Subtotal Reimb. Costs associated with BGP and SR Rd. Bridges \$2,536,693.78
 SR F3 (SF-2132) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$87,709.60
 * HN F1 (SF-2213) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$221,388.00
 * HN F2 (SF-2218) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii) $\$ 126,974.29$
 HN F3 (SF-2229) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$163,469.36
 Subtotal Deferred Bridge Fees \$599,541.25
 Unused Reimb. Costs associated with Briargate Parkway and SR Road Bridges \$1,937,152.53
 * Filing is not yet approved, actual fee at time of approval may be different than shown here

Summary

The proposed Homestead North at Sterling Ranch Filing No. 3 drainage improvements were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development's ponds are designed to release at less than the predeveloped runoff rates per the studies associated with the subject site. The proposed development will not adversely affect the offsite drainageways or surrounding developments. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements.

References

1. "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I \& II".
2. El Paso County ECM, 2019
3. El Paso County DCM Vol. 1 Update, 2015
4. Urban Storm Drainage Criteria Manual (Volumes 1, 2, and 3), Urban Drainage and Flood Control District, June 2001.
5. Upper Sand Creek Detention Evaluation Study, Wilson and Company'
6. Final Drainage Report For Retreat at Timberridge Filing No. 1, Classic Consulting Engineers \& Surveyors
7. Sand Creek Drainage Basin Planning Study, Stantec, January 2021
8. Sand Creek Channel Design Report JR Engineering, October 2021- Draft
9. Preliminary Drainage Report And MDDP Addendum For Homestead North At Sterling Ranch Preliminary Plan", prepared by JR Engineering, dated January 2022
10. The Final Drainage Report for Homestead North at Sterling Ranch Filing No. 1, prepared by JR Engineering, Dated June 2022
11. The Final Drainage Report for Homestead North at Sterling Ranch Filing No. 2, prepared by JR Engineering, Dated July 2022.

Appendix A
 Vicinity Map, Soil Descriptions, FEMA Floodplain Map

VICINITY MAP
HOMESTEAD NORTH AT
STERLING RANCH FILING NO. 3 2000-5188.12 2022-07-19
A Westrian Company
Centernial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 - wuwirengineering.com

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 19, Aug 31, 2021
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 11, 2018-Oct 20, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
71	Pring coarse sandy loam, 3 to 8 percent slopes	B	59.6	100.0%	
Totals for Area of Interest		$\mathbf{5 9 . 6}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Appendix B Hydrologic Calculations

COM POSITE \% IM PERVIOUS \& COM POSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location:

Existing Conditions Rational El Paso County

Project Name: Homestead North @ Sterling Ranch F3
Project No.: 25188.12
Calculated By: REB
Checked By: \qquad
Date: $10 / 12 / 22$

Basin ID	Total Area (ac)	Streets/ Paved (100\% Impervious)				Residential (45\%-65\% Impervious)				Lawns (2\% Impervious)				Basins Total Weighted C Values		Basins Total Weighted \% Imp.
		C_{5}	C_{100}	Area (ac)	Weighted \% Imp.	C_{5}	C_{100}	Area (ac)	Weighted \% Imp.	C_{5}	C_{100}	Area (ac)	Weighted \% Imp.			
EX1	3.82	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.09	0.36	3.82	2.0\%	0.09	0.36	2.0\%
EX2	9.74	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.09	0.36	9.74	2.0\%	0.09	0.36	2.0\%
EX3	21.47	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.09	0.36	21.47	2.0\%	0.09	0.36	2.0\%
EX4	0.84	0.90	0.96	0.39	46.4\%	0.45	0.59	0.00	0.0\%	0.09	0.36	0.45	1.1\%	0.47	0.64	47.5\%
EX1.2	0.17	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.09	0.36	0.17	2.0\%	0.09	0.36	2.0\%
EXB6	0.13	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.09	0.36	0.13	2.0\%	0.09	0.36	2.0\%
EXB4	0.43	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.09	0.36	0.43	2.0\%	0.09	0.36	2.0\%
TOTAL	36.60															3.0\%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Existing Conditions Rational Location: El Paso County

Project Name: Homestead North @ Sterling Ranch F3
Project No.: 25188.12
Calculated By: REB
Checked By:
Date: $10 / 12 / 22$

SUB-BASIN						INITIAL/ OVERLAND			TRAVELTIME					tc CHECK			FINAL
DATA						$\left(\mathrm{T}_{\mathrm{i}}\right.$)			$\left(\mathrm{T}_{\mathrm{t}}\right.$)					(URBANIZED BASINS)			
$\begin{gathered} \hline \text { BASIN } \\ \text { ID } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { D.A. } \\ & \text { (ac) } \\ & \hline \end{aligned}$	Hydrologic Soils Group	$\begin{array}{\|c\|} \hline \text { Impervious } \\ \text { \%) } \\ \hline \end{array}$	C_{5}	C_{100}	$\begin{gathered} \hline \mathbf{L} \\ (\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \hline \mathbf{S}_{\mathbf{o}} \\ & (\%) \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{L}_{\mathbf{t}} \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \mathbf{S}_{\mathbf{t}} \\ & (\%) \end{aligned}$	K	$\begin{aligned} & \hline \mathrm{VEL} . \\ & (\mathrm{ft} / \mathrm{s}) \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{t}} \\ (\mathrm{min}) \\ \hline \end{gathered}$	COMP. t_{c} (min)	TOTAL LENGTH (ft)	$\begin{gathered} \text { Urbanized }^{\mathbf{t}} \\ (\min) \end{gathered}$	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min) \\ \hline \end{gathered}$
EX1	3.82	B	2\%	0.09	0.36	300	3.3\%	21.3	600	3.3\%	7.0	1.3	7.9	29.2	900.0	31.6	29.2
EX2	9.74	B	2\%	0.09	0.36	300	2.9\%	22.2	1375	2.9\%	7.0	1.2	19.2	41.5	1675.0	40.2	40.2
EX3	21.47	B	2\%	0.09	0.36	300	2.9\%	22.2	1600	2.9\%	7.0	1.2	22.4	44.6	1900.0	42.5	42.5
EX4	0.84	B	48\%	0.47	0.64	237	5.0\%	10.4	0	5.0\%	7.0	1.6	0.0	10.4	237.0	17.9	10.4
EX1.2	0.17	B	2\%	0.09	0.36	92	2.1\%	13.7	0	2.1\%	7.0	1.0	0.0	13.7	92.0	25.7	13.7
EXB6	0.13	B	2\%	0.09	0.36	75	10.0\%	7.4	0	10.0\%	7.0	2.2	0.0	7.4	75.0	25.7	10.0
EXB4	0.43	B	2\%	0.09	0.36	75	13.0\%	6.8	0	13.0\%	7.0	2.5	0.0	6.8	75.0	25.7	10.0

NOTES:

$t_{c}=t_{i}+t_{t}$	
Where:	
	$t_{c}=$ computed time of concentration (minutes)
	$t_{i}=$ overland (initial) flow time (minutes)
	$t_{t}=$ channelized flow time (minutes).
	$t_{t}=\frac{L_{t}}{60 K \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}}$
Where:	

Equation 6-2
$t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L_{i}}}{S_{0}^{033}}$
Where:
$t_{i}=$ overland (initial) flow time (minutes)
$C_{s}=$ runoff coefficient for 5 -year frequency (from Table 6-4)
$L_{i}=$ length of overland flow (ff)
$L_{i}=$ length of overland flow (ft)
$S_{o}=$ average slope along the overland flow path (ff/ft).

Equation 6-4

$$
t_{i}=(26-17 i)+\frac{L_{i}}{60(14 i+9) \sqrt{S_{t}}}
$$

Where:
$t_{c}=$ minimum time of concentration for first design point when less than t_{c} from Equation 6-1
$t_{c}=$ mimimum time of concen flo
$L_{t}=$ length of channelized flow path (ft)
$i=$ imperviousness (expressed as a decimal)
$S_{t}=$ slope of the channelized flow path (ff/ft).

Use a minimum t_{c} value of 5 minutes for urbanized areas and a minimum t_{c} value of 10 minutes for areas
that are not considered urban. Use minimum values even when calculations result in a lesser time of
concentration.

STANDARD FORM SF－3

STORM DRAINAGE SYSTEM DESIG

（RATIONAL M ETHOD PROCEDURE）

Subdivision：Existing Conditions Rational Location：EI Paso County
Design Storm：$\frac{5-\mathrm{Year} \text {（Mino })}{}$

Project Name：Homestead North＠Sterling Ranch F3
Project No．： 25188.1
Project No．： 2518
Calculated By：
Checked By：
Date：10／12／22

STREET		DIRECT RUNOFF							TOTAL RUNOFF				STREET／SWALE			PIPE				TRAVELTIME			
			$\begin{aligned} & \mathscr{4} \\ & \frac{8}{8} \\ & 8 \\ & \hline 8 \\ & \hline \hline \end{aligned}$		$\underset{y}{\underline{E}}$	$\begin{aligned} & \mathscr{y} \\ & \frac{\pi}{t} \\ & \hline \end{aligned}$	${ }_{c}^{\frac{1}{E}}$	$\begin{aligned} & \stackrel{\pi}{4} \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { y. } \\ \cline { 1 - 2 } \\ \hline \end{array}$	$\begin{aligned} & \tilde{0} \\ & \stackrel{\sim}{\pi} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1}{c} \\ & \stackrel{y}{s} \end{aligned}$	$\begin{gathered} \frac{\pi}{4} \\ 0 \\ \hline \end{gathered}$		$\begin{aligned} & \text { U0 } \\ & \underset{U}{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 厅} \\ & 0 \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{\pi}{6} \\ & \underbrace{\frac{8}{2}}_{0} \\ & 0^{2} \end{aligned}$		$\begin{aligned} & \text { ¢ } \\ & \text { ed } \\ & \text { ö } \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{y} \\ & \frac{4}{2} \\ & \hat{y} \\ & 0 \\ & \hat{y} \\ & 0 \\ & \frac{0}{2} \\ & \hline \end{aligned}$		$$	气㐅	REM ARKS
	E1	EX1	3.82	0.09	29.2	0.34	2.52	0.9															Sheet flows south to DP E1（Enters north c\＆g of Perry Owens Dr）
	E2	EX2	9.74	0.09	40.2	0.88	2.04	1.8					1.8	0.88	0.75					600	1.3	7.7	Sheet flows south to ex grass swale，＠DP E2，continues east through basin EX3 to DP3．1
	E3．1	EX3	21.47	0.09	42.5	1.93	1.96	3.8	47.9	2.81	1.78	5.0											Sheet flows southeast to ex grass swale，flows east to DP3．1＠Sand Creek
	E4	EX4	0.84	0.47	10.4	0.39	4.08	1.6															Sheet flows east to Sand Creek at DP EX4
	1.2	EX1．2	0.17	0.09	13.7	0.02	3.66	0.1															Sheet flows southeast to Filing 2 Boundary＠DP EX1．2
	B6	EXB6	0.13	0.09	10.0	0.01	4.13	0.0															Sheet flows southeast to Filing 2 Boundary＠DP EXB6
	B4	EXB4	0.43	0.09	10.0	0.04	4.13	0.2															Sheet flows southeast to Filing 2 Boundary＠DP EXB4

Street and Pipe $\mathrm{C}^{*} \mathrm{~A}$ values are determined by Q / i using the catchment＇s intensity value．
All pipes are private and RCP unless otherwise noted．Pipe size shown in table column．

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIG

(RATIONAL M ETHOD PROCEDURE)

Subdivision: Existing Conditions Rational Location: El Paso County Design Storm: 100 -Year (M ajor)												```Project Name: Homestead North @ Sterling Ranch F3 Project No.: 25188.12 Calculated By: REB Checked By: Date: 10/12/22```											
Description		DIRECT RUNOFF							TOTAL RUNOFF				STREET/ SWALE			PIPE				TRAVEL TIME			
			$\begin{aligned} & \text { O} \\ & \frac{0}{0} \\ & \frac{0}{4} \end{aligned}$		Ey	$\begin{aligned} & \underset{0}{6} \\ & \underset{U}{U} \end{aligned}$		$\frac{\widehat{U}}{0}$	\hat{y} है y	$\begin{aligned} & \tilde{0} \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$		$\stackrel{\hat{\pi}}{0}$		$\begin{aligned} & \tilde{\tilde{0}} \\ & \underset{U}{U} \end{aligned}$		$\begin{aligned} & \frac{\pi}{6} \\ & \frac{8,8}{2} \\ & 0^{\frac{8}{2}} \end{aligned}$	$\begin{array}{r} \tilde{0} \\ \underset{\sim}{t} \\ \hline \end{array}$				$$	$\underset{y}{\underline{\xi}}$	REM ARKS
	El	EXI	3.82	0.36	29.2	1.38	4.24	5.8															Sheet flows south to DP E1 (Enters north c\&g of Perry Owens Dr)
	E2	EX2	9.74	0.36	40.2	3.51	3.43	12.0					12.0	3.51	0.75					600	1.3	7.7	Sheet flows south to ex grass swale, @ DP E2, continues east through basin EX3 to DP3.1
	E3.1	EX3	21.47	0.36	42.5	7.73	3.28	25.4	47.9	11.24	2.99	33.6											Sheet flows southeast to ex grass swale, flows east to DP3.1 @ Sand Creek
	E4	EX4	0.84	0.64	10.4	0.54	6.84	3.7															Sheet flows east to Sand Creek at DP EX4
	1.2	EX1.2	0.17	0.36	13.7	0.06	6.14	0.4															Sheet flows southeast to Filing 2 Boundary @ DP EX1.2
	B6	EXB6	0.13	0.36	10.0	0.05	6.93	0.3															Sheet flows southeast to Filing 2 Boundary @ DP EXB6
	B4	EXB4	0.43	0.36	10.0	0.15	6.93	1.0															Sheet flows southeast to Filing 2 Boundary @ DP EXB4

Notes.
Pipe C*A values are determined by Q / i using the catchment's intensity value All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

COM POSITE \% IM PERVIOUS \& COM POSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision:	Proposed Conditions Rational
Location:	El Paso County

Project Name: Homestead North @ Sterling Ranch F3
Project No.: 25188.12
Calculated By: REB
Checked By:
Date: $\overline{10 / 12 / 22}$

Basin ID	Total Area (ac)	Streets/ Paved (100\% Impervious)				Residential (30\%-40\% Impervious)				Lawns (2\% Impervious)				Basins Total Weighted C Values		Basins Total Weighted \% Imp.
		C_{5}	C_{100}	Area (ac)	Weighted \% Imp.	C_{5}	C_{100}	$\begin{gathered} \hline \text { Area } \\ \text { (ac) } \\ \hline \end{gathered}$	Weighted \% Imp.	C_{5}	C_{100}	Area (ac)	$\begin{array}{\|c\|} \hline \text { Weighted } \\ \text { \% Imp. } \\ \hline \end{array}$			
A1	3.82	0.90	0.96	0.79	20.7\%	0.25	0.47	2.40	18.8\%	0.09	0.36	0.63	0.3\%	0.36	0.55	39.9\%
A2	3.02	0.90	0.96	0.82	27.2\%	0.25	0.47	2.06	20.5\%	0.09	0.36	0.14	0.1\%	0.42	0.60	47.7\%
A3	4.54	0.90	0.96	0.75	16.5\%	0.30	0.50	3.45	30.4\%	0.09	0.36	0.34	0.1\%	0.38	0.57	47.1\%
A4	3.82	0.90	0.96	0.78	20.4\%	0.30	0.50	2.73	28.6\%	0.09	0.36	0.31	0.2\%	0.41	0.58	49.2\%
A5	7.53	0.90	0.96	0.79	10.5\%	0.30	0.50	4.23	22.5\%	0.09	0.36	2.51	0.7\%	0.29	0.50	33.6\%
A6	4.29	0.90	0.96	0.88	20.5\%	0.30	0.50	3.22	30.0\%	0.09	0.36	0.19	0.1\%	0.41	0.59	50.6\%
A7	2.93	0.90	0.96	0.00	0.0\%	0.30	0.50	1.03	14.1\%	0.09	0.36	1.90	1.3\%	0.16	0.41	15.4\%
B1.1	2.08	0.90	0.96	0.25	12.0\%	0.30	0.50	1.41	27.1\%	0.09	0.36	0.42	0.4\%	0.33	0.53	39.5\%
B1.2	1.36	0.90	0.96	0.21	15.4\%	0.30	0.50	1.10	32.4\%	0.09	0.36	0.05	0.1\%	0.38	0.57	47.9\%
B1.3	0.33	0.90	0.96	0.14	40.9\%	0.30	0.50	0.08	9.2\%	0.09	0.36	0.12	0.7\%	0.47	0.64	50.8\%
B4	1.21	0.90	0.96	0.00	0.0\%	0.30	0.50	0.00	0.0\%	0.09	0.36	1.21	2.0\%	0.09	0.36	2.0\%
OS1	0.20	0.90	0.96	0.00	0.0\%	0.30	0.50	0.00	0.0\%	0.09	0.36	0.20	2.0\%	0.09	0.36	2.0\%
OS2	1.01	0.90	0.96	0.00	0.0\%	0.30	0.50	0.00	0.0\%	0.09	0.36	1.01	2.0\%	0.09	0.36	2.0\%
D2	0.18	0.90	0.96	0.00	0.0\%	0.30	0.50	0.00	0.0\%	0.09	0.36	0.18	2.0\%	0.09	0.36	2.0\%
D3	0.17	0.90	0.96	0.00	0.0\%	0.30	0.50	0.00	0.0\%	0.09	0.36	0.17	2.0\%	0.09	0.36	2.0\%
TOTAL POND A	29.95															40.5\%
TOTALSITE	36.49															37.9\%

STANDARD FORM SF-2

time of concentration

Subdivision: Proposed Conditions Rational Location: El Paso County

Project Name: Homestead North @ Sterling Ranch F3
Project No.: 25188.12
Calculated By: REB
Checked By:
Date: $\overline{10 / 12 / 22}$

SUB-BASIN						INITIAL/OVERLAND			TRAVELTIME					tc CHECK			FINAL
DATA						$\left(\mathrm{T}_{\mathrm{i}}\right)$			$\left(\mathrm{T}_{\mathrm{t}}\right)$					(URBANIZED BASINS)			
$\begin{gathered} \hline \text { BASIN } \\ \text { ID } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { D.A. } \\ & \text { (ac) } \\ & \hline \hline \end{aligned}$	Hydrologic Soils Group	$\begin{array}{\|c\|} \hline \text { Impervious } \\ (\%) \end{array}$	C5	C_{100}	$\begin{gathered} \mathbf{c} \\ (\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \begin{array}{l} \mathbf{S}_{\mathbf{o}} \\ (\%) \\ \hline \end{array} . \begin{array}{l} \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \\ \hline \end{gathered}$	\mathbf{L}_{t} (ft)	$\begin{aligned} & \hline \mathbf{S}_{\mathrm{t}} \\ & (\%) \\ & \hline \end{aligned}$	K	$\begin{aligned} & \text { VEL. } \\ & (\mathrm{ft} / \mathrm{s}) \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathrm{t}} \\ (\mathrm{~min}) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { COMP. } \mathbf{t}_{\mathbf{c}} \\ \text { (min) } \end{array}$	TOTAL LENGTH (ft)	$\begin{gathered} \text { Urbanized }^{\mathbf{t}_{\boldsymbol{c}}} \\ (\min) \end{gathered}$	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min) \end{gathered}$
A1	3.82	B	40\%	0.36	0.55	100	4.5\%	8.2	810	2.6\%	20.0	3.2	4.2	12.3	910.0	25.0	12.3
A2	3.02	B	48\%	0.42	0.60	100	2.0\%	9.8	764	1.6\%	20.0	2.5	5.0	14.8	864.0	24.3	14.8
A3	4.54	B	47\%	0.38	0.57	100	2.1\%	10.1	1027	2.8\%	20.0	3.3	5.1	15.2	1127.0	24.6	15.2
A4	3.82	B	49\%	0.41	0.58	100	7.2\%	6.5	861	1.7\%	20.0	2.6	5.5	12.0	961.0	24.6	12.0
A5	7.53	B	34\%	0.29	0.50	100	4.3\%	9.0	1294	2.4\%	20.0	3.1	7.0	16.0	1394.0	30.4	16.0
A6	4.29	B	51\%	0.41	0.59	100	6.0\%	6.9	976	1.4\%	20.0	2.4	6.9	13.7	1076.0	25.9	13.7
A7	2.93	B	15\%	0.16	0.41	100	9.7\%	8.0	161	7.1\%	7.0	1.9	1.4	9.4	261.0	24.3	9.4
B1.1	2.08	B	40\%	0.33	0.53	100	4.5\%	8.5	506	3.9\%	20.0	3.9	2.1	10.6	606.0	22.2	10.6
B1.2	1.36	B	48\%	0.38	0.57	100	2.4\%	9.7	324	3.9\%	20.0	3.9	1.4	11.0	424.0	19.6	11.0
B1.3	0.33	B	51\%	0.47	0.64	100	1.5\%	10.0	30	1.5\%	20.0	2.4	0.2	10.2	130.0	17.6	10.2
B4	1.21	B	2\%	0.09	0.36	100	8.7\%	8.9	42	9.0\%	7.0	2.1	0.3	9.3	142.0	25.9	9.3
OS1	0.20	B	2\%	0.09	0.36	25	20.0\%	3.4	0	20.0\%	7.0	3.1	0.0	3.4	25.0	25.7	5.0
OS2	1.01	B	2\%	0.09	0.36	50	8.0\%	6.5	0	13.0\%	7.0	2.5	0.0	6.5	50.0	25.7	6.5
D2	0.18	B	2\%	0.09	0.36	30	5.7\%	5.6	0	10.0\%	7.0	2.2	0.0	5.6	30.0	25.7	5.6
D3	0.17	B	2\%	0.09	0.36	30	12.0\%	4.4	0	13.0\%	7.0	2.5	0.0	4.4	30.0	25.7	5.0

NOTES:
$t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L_{i}}}{S_{0}^{03}}$
Equation 6-3
$t_{c}=t_{t}+t_{t}$
Where:
$=$ computed time of concentration (minute)
$t_{i}=$ overland (nitial) flow time (minutes)
$t=$ channelized flow time (minutes).
$t_{t}=\frac{L_{t}}{60 K \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}}$
where:
 $s_{0}=$ waterway lenguc (flff

Use a minimum $t c$ value of 5 minutes for urbanized areas and a minimum $t c$ value of 10 minutes for areas
that are not considered urban. Use minimum values even when calculations result in a lesser time of
concentration.

Equation 6-2 where:
$t_{i}=$ overland (initial) flow time (minutes)

$s_{0}=$ average slope along the overland flow path (f/ff).
$\ldots=(26-17 i)+\frac{L_{t}}{60(14 i+9) \sqrt{s_{t}}}$
Where:
$t_{c}=$ minimum time of concentration for first design point when less than t_{c} from Equation $6-1$

$i=$ imperviousness (expressed as a decimal)
$S_{t}=$ slope of the channelized flow path (ffft).

STANDARD FORM SF－3

STORM DRAINAGE SYSTEM DESIGN

（RATIONAL M ETHOD PROCEDURE）

Subdivision：Proposed Conditions Rational Location：El Paso County

Project Name：Homestead North＠Sterling Ranch F3
Project No．： 25188.12
Calculated By：REB
Checked By：
Date：
10／12／22

		DIRECT RUNOFF							TOTAL RUNOFF				STREE	T／SW	ALE	PIPE				TRAVEL TIME			
STREET			$\begin{aligned} & \frac{y}{4} \\ & \text { 悉 } \\ & \hline \hline \end{aligned}$		$\begin{gathered} \text { 气̄ } \\ \hline \end{gathered}$	$$	$\stackrel{T}{\stackrel{\Sigma}{E}}$	$\begin{aligned} & \frac{\pi}{6} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{y} \\ & \cline { 1 - 3 } \\ & \hline \end{aligned}$	$\begin{array}{r} \overline{6} \\ \underset{4}{4} \\ \hline \end{array}$	$\begin{aligned} & \frac{\substack{2}}{\stackrel{y}{y}} \end{aligned}$	$\begin{aligned} & \hat{\pi} \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \tilde{0} \\ & \frac{1}{4} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 厄i } \\ 0 . \\ \stackrel{0}{0} \\ \hline \hline \end{gathered}$	$\begin{aligned} & \stackrel{\pi}{6} \\ & \begin{array}{c} \frac{0}{0} \\ o_{0}^{2} \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \underset{甘}{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 厄 } \\ & \text { O} \\ & \stackrel{0}{0} \\ & \hline \hline \end{aligned}$		$\begin{aligned} & \mathbb{E} \\ & \stackrel{5}{\Xi} \\ & \underline{I} \end{aligned}$	$\begin{array}{\|c} \frac{\pi}{y} \\ \frac{3}{y} \\ \frac{2}{6} \\ \frac{0}{0} \\ \hline \end{array}$	$\begin{array}{\|c} \underset{H}{\hat{y}} \\ \hline \end{array}$	REM ARKS
	$\begin{gathered} 1 \mathrm{i} \\ 1 \mathrm{~B} \end{gathered}$	A1	3.82	0.36	12.3	1.37	3.81	5.2					0.00	0	2.8	5.2	1.37	5.0	18	$\begin{array}{r} 6 \\ 316 \end{array}$	10.4	0.0	Basin A1 runoff captured by 15＇Type R on－grade inlet，piped to DP2．1 Basin A1 runoff inlet by－pass／flow by，continues in gutter to DP3
	$\begin{gathered} 2 \mathrm{i} \\ 2 \mathrm{~B} \\ \hline \end{gathered}$	A2	3.02	0.42	14.8	1.27	3.54	4.5					0.00	0	2.8	4.5	1.27	2.0	18	$\begin{array}{r} 24 \\ 330 \\ \hline \end{array}$	7.3	0.1	Basin A2 runoff captured by 15＇Type R on－grade inlet，piped to DP2．1 Basin A2 runoff inlet by－pass／flow by，continues in gutter to DP4
	2.1								14.9	2.64	3.53	9.3				9.3	2.64	2.7	24	344	9.7	0.6	Flow in Pipe＠DP2．1，piped to DP4．1
	$\begin{aligned} & 3 \mathrm{i} \\ & 3 \mathrm{~B} \\ & \hline \end{aligned}$	A3	4.54	0.38	15.2	1.74	3.50	6.1					0.00		2.6	6.1	1.74	4.0	24	$\begin{array}{r} 10 \\ 334 \end{array}$	9.9	0.0	Basin A3 runoff captured by 15＇Type R on－grade inlet，piped to DP4．1 Basin A3 runoff inlet by－pass／flow by，continues in gutter to DP5
	$\begin{array}{r} 4 \mathrm{i} \\ 4 \mathrm{~B} \\ \hline \end{array}$	A4	3.82	0.41	12.0	1.55	3.85	6.0					0.00		2.6	6.0	1.55	2.5	24	$\begin{array}{r} 24 \\ 347 \\ \hline \end{array}$	8.3	0.0	Basin A4 runoff captured by 15 ＇Type R on－grade inlet，piped to DP4．1 Basin A4 runoff inlet by－pass／flow by，continues in gutter to DP6
	4.1								15.5	5.93	3.48	20.6				20.6	5.93	2.2	36	337	11.0	0.5	Flow in Pipe＠DP4．1，piped to DP5．1
	5 i	A5	7.53	0.29	16.0	2.21	3.43	7.6								7.6	2.21	7.0	36	5	12.2	0.0	Basin A5 runoff captured by 20＇Type R sump inlet，piped to DP5．1
	5.1								16.0	8.14	3.43	27.9				27.9	8.14	3.0	42	24	13.2	0.0	Flow in Pipe＠DP4．1，piped to DP5．1
	6 i	A6	4.29	0.41	13.7	1.78	3.65	6.5								6.5	1.78	3.0	42	1	8.4	0.0	Basin A6 runoff captured by 15＇Type R sump inlet，piped to DP6．1
	6.1								16.0	9.92	3.42	34.0				34.0	9.92	3.0	42	180	14.0	0.2	Flow in Pipe＠DP6．1，piped to DP7（Pond A）
	7.1	A7	2.93	0.16	9.4	0.48	4.22	2.0	16.2	10.40	3.40	35.4											Combined flow from Basin A7 runoff \＆flows piped from DP6．1 in Pond A
	$1 F$	b1．1	2.08	0.33	10.6	0.69	4.04	2.8															Runoff from Basin B1．1，flows south in C\＆G to DP1F＠Southern project boundary
	2 F	B1．2	1.36	0.38	11.0	0.52	3.98	2.1															Runoff from Basin B1．2，flows south in C\＆G to DP2F＠Southern project boundary
	1.3	B1．3	0.33	0.47	10.2	0.16	4.11	0.7															Runoff from Basin B1．3，flows south in C\＆G to DP1．3＠Southern project boundary
	B4	B4	1.21	0.09	9.3	0.11	4.24	0.5															Runoff from Basin B4，flows southeast overland to project boundary
	OS1	OS1	0.20	0.09	5.0	0.02	5.17	0.1															Runoff from Basin OS1，flows north to project boundary，continues east in exisitng POCO Rd C\＆G
	OS2	OS2	1.01	0.09	6.5	0.09	4.78	0.4															Runoff from Basin OS2，flows east to Sand Creek and continues in creek to South
	D2	D2	0.18	0.09	5.6	0.02	4.99	0.1															Runoff from Basin D2，sheet flows West to ex Vollmer Rd swale＠D2，continues south in swale
	D3	D3	0.17	0.09	5.0	0.02	5.17	0.1															Runoff from Basin D3，sheet flows West to ex Vollmer Rd swale＠D3，continues south in swale

Street and Pipe $\mathrm{C}^{*} \mathrm{~A}$ values are determined by Q / i using the catchment＇s intensity value．
All pipes are private and RCP unless otherwise noted．Pipe size shown in table column．

STANDARD FORM SF－3

STORM DRAINAGE SYSTEM DESIGN

（RATIONAL METHOD PROCEDURE）

Subdivision：Proposed Conditions Rational Location：EIPaso County

Project Name：Homestead North＠Sterling Ranch F3
Project No．： 25188.12
Calculated By：RE
Checked By：
Date： $10 / 12 / 22$

Description	$\begin{aligned} & \frac{1}{0} \\ & 0 \\ & 0 \\ & 8 \\ & 6 \\ & \hline 8 \\ & \hline \end{aligned}$	DIRECT RUNOFF							TOTAL RUNOFF				STREE	ET／SW	ALE	PIPE				TRAVELTIME			
		$\begin{array}{\|l\|l} \underline{0} \\ \stackrel{\rightharpoonup}{6} \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \frac{\tilde{6}}{\mathscr{y}} \\ & \stackrel{y}{⿺} \end{aligned}$		듣	$\begin{aligned} & \text { Jỡ } \\ & \underset{U}{U} \end{aligned}$	$\underset{\substack{\widehat{E}}}{ }$	$\stackrel{\widehat{y}}{0}$		$\begin{aligned} & \text { Jon } \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \frac{T}{E} \\ & \stackrel{y}{s} \end{aligned}$	$\stackrel{\hat{0}}{0}$		$\begin{aligned} & \text { 苟 } \\ & \overleftarrow{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 巳ீ } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \frac{\tilde{\theta}}{\hat{y}} \\ & \frac{8}{2} \\ & \sigma^{2} \end{aligned}$	$\begin{aligned} & \text { U00 } \\ & \underset{\sim}{U} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{array}{\|l} \mathbb{E} \\ \text { E } \\ \text { 志 } \\ \mathbb{I} \\ \hline \end{array}$	$\frac{\pi}{2}$ 0 0 0 0 0	$\begin{aligned} & \hat{\bar{x}} \\ & \hline \end{aligned}$	REM ARKS
	$\begin{aligned} & 1 \mathrm{i} \\ & 1 \mathrm{~B} \\ & \hline \end{aligned}$	Al	3.82	0.55	12.3	2.11	6.40	13.5					2.6	0.41	2.8	10.9	1.70	5.0	18	${ }^{6}$	$\begin{array}{r} 13.0 \\ \hline 3.3 \end{array}$	$\begin{aligned} & \hline 0.0 \\ & \hline 0.6 \\ & 1.6 \end{aligned}$	Basin A1 runoff captured by 15^{\prime} Type R on－grade inlet，piped to DP2．1 Basin A1 runoff inlet by－pass／flow by，continues in qutter to DP3
	$\begin{aligned} & \hline 2 i \\ & 2 B \end{aligned}$	A2	3.02	0.60	14.8	1.81	5.94	10.8					1.3	0.21	2.8	9.5	1.60	2.0	18	$\begin{array}{r} 24 \\ 330 \\ \hline \end{array}$	$\begin{aligned} & 8.8 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1.6 \end{aligned}$	Basin A2 runoff captured by 15^{\prime} Type R on－grade inlet，piped to DP2．1 Basin A2 runoff inlet by－pass／flow by，continues in gutter to DP4
	2.1								14.9	3.30	5.93	19.6				19.6	3.30	2.7	24	344	11.9	0.5	Flow in Pipe＠DP2．1，piped to DP4．1
	$\begin{aligned} & 3 i \\ & 3 B \end{aligned}$	A3	4.54	0.57	15.2	2.57	5.87	15.1	15.2	2.98	5.87	17.5	4.9	0.83	2.6	12.6	2.15	4.0	24	$\begin{array}{r} 10 \\ 334 \\ \hline \end{array}$	$\begin{array}{r} 12.2 \\ 3.2 \end{array}$	$\begin{aligned} & 0.0 \\ & 1.7 \end{aligned}$	Basin A3 runoff captured by 15 ＇Type R on－grade inlet，piped to DP4．1 Basin A3 runoff inlet by－pass／flow by，continues in gutter to DP5
	$\begin{aligned} & \hline 4 i \\ & 4 B \end{aligned}$	A4	3.82	0.58	12.0	2.23	6.46	14.4	16.5	2.44	5.68	14.4	3.1	0.55	2.6	11.3	1.75	2.5	24	$\begin{array}{r} 24 \\ 347 \\ \hline \end{array}$	$\begin{array}{r} 5.2 \\ \hline 10.0 \\ 3.2 \\ \hline \end{array}$	$\begin{aligned} & 1.10 \\ & 0.0 \\ & 1.8 \\ & \hline \end{aligned}$	Basin A4 runoff captured by 15＇Type R on－grade inlet，piped to DP4．1 Basin A4 runoff inlet by－pass／flow by，continues in gutter to DP6
	4.1								15.3	7.20	5.85	42.1				42.1	7.20	2.2	36	337	13.4	0.4	Flow in Pipe＠DP4．1，piped to DP5．1
	5 i	A5	7.53	0.50	16.0	3.78	5.75	21.7	17.0	4.61	5.60	25.8				25.8	4.61	7.0	30	5	18.1	0.0	Basin A5 runoff captured by 15＇Type R sump inlet，piped to DP5．1
	5.1								17.0	11.81	5.60	66.1				66.1	11.81	3.0	36	24	16.9	0.0	Flow in Pipe＠DP4．1，piped to DP5．1
	6 i	A6	4.29	0.59	13.7	2.52	6.13	15.5	13.8	3.07	6.11	18.8				18.8	3.07	3.0	36	1	12.0	0.0	Basin A6 runoff captured by 15＇Type R sump inlet，piped to DP6．1
	6.1								17.0	14.88	5.60	83.2				83.2	14.88	3.0	36	180	17.7	0.2	Flow in Pipe＠DP6．1，piped to DP7（Pond A）
	7.1	A7	2.93	0.41	9.4	1.20	7.08	8.5	17.2	16.62	5.57	92.6											Combined flow from Basin A7 runoff \＆flows piped from DP6．1 in Pond A
	1 F	B1．1	2.08	0.53	10.6	1.10	6.79	7.5															Runoff from Basin B1．1，flows south in C\＆G to DP1F＠Southern project boundary
	2 F	B1．2	1.36	0.57	11.0	0.77	6.68	5.1															Runoff from Basin B1．2，flows south in C\＆G to DP2F＠Southern project boundary
	1.3	B1． 3	0.33	0.64	10.2	0.21	6.89	1.4															Runoff from Basin B1．3，flows south in C\＆G to DP1．3＠Southern project boundary
	B4	B4	1.21	0.36	9.3	0.44	7.13	3.1															Runoff from Basin B4，flows southeast overland to project boundary
	OS1	OS1	0.20	0.36	5.0	0.07	8.68	0.6															Runoff from Basin OS1，flows north to project boundary，continues east in exisitng POCO Rd C\＆G
	OS2	OS2	1.01	0.36	6.5	0.36	8.02	2.9															Runoff from Basin OS2，flows east to Sand Creek and continues in creek to South
	D2	D2	0.18	0.36	5.6	0.06	8.38	0.5															Runoff from Basin D2，sheet flows West to ex Vollmer Rd swale＠D2，continues south in swale
	D3	D3	0.17	0.36	5.0	0.06	8.68	0.5															Runoff from Basin D3，sheet flows West to ex Vollmer Rd swale＠D3，continues south in swale

Street and $\mathrm{Pipe}^{C} \mathrm{C}^{*}$ A values are determined by Q／i using the catchment＇s intensity value

Appendix C Hydraulic Calculations

Ex. Swale Section A-A

Trapezoidal

Bottom Width (ft)

$$
=2.00
$$

Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=5.00,5.00$
$=2.40$
$=1.00$
$=1.00 \pi$
$=0.035$

Per drainage map, slope
$K n$ for this section of swale
$=$ \{appears to be closer to 0.75\%

Highlighted

Depth (ft)	$=1.24$
Q (cfs)	$=33.60$
Area (sqft)	$=10.17$
Velocity (ft/s)	$=3.30$
Wetted Perim (ft)	$=14.65$
Crit Depth, Yc (ft)	$=1.05$
Top Width (ft)	$=14.40$
EGL (ft)	$=1.41$

Elev (ft)

Section

Depth (ft)

Channel Report

Ex. Swale Section B-B

Trapezoidal

Bottom Width (ft)

$$
=2.00
$$

Side Slopes (z:1)
$=5.00,5.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value

Calculations

Compute by:
Known Q (cfs)
$=2.00$
$=1.00$
$=1.00$
$=0.035$

Known Q
$=12.00$

Highlighted

Depth (ft)	$=0.79$
Q (cfs)	$=12.00$
Area (sqft)	$=4.70$
Velocity (ft/s)	$=2.55$
Wetted Perim (ft)	$=10.06$
Crit Depth, Yc (ft)	$=0.65$
Top Width (ft)	$=9.90$
EGL (ft)	$=0.89$

Elev (ft)
Section
Depth (ft)

Reach (ft)

Swale A-A

Triangular

Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value

Calculations

Compute by:
Known Q (cfs)
$=20.00,50.00$
$=0.61$
$=1.00$
$=0.70$
$=0.035$

Known Q A portion of flow $=4.16$

Highlighted
Depth (ft)
$=0.34$
Q (cfs)
$=4.160$
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
$=4.05$

Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
= 1.03
$=23.81$
$=0.25$
$=23.80$
$=0.36$

Elev (ft)

Section
Depth (ft)

Basin	Area	Percent Impervious (\%)	\mathbf{C}_{5}	\mathbf{C}_{100}	tc (min.)	$\mathbf{Q}_{\mathbf{5}}$ (cfs)	$\mathbf{Q}_{\mathbf{1 0 0}}$ (cfs)
A7A	0.38	27.1	0.23	0.46	6.9	0.4	1.3

Analysis for minor semi-channelized flow into the pond. Used flows for typical section analysis.
To be protected with Type VL soil riprap.

Channel Report

Pond Swale Analysis (Rundown)

Triangular

Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=4.00,4.00$
$=1.00$
$=100.00$
$=20.40$
$=0.030$

Known Q
$=1.30$

Highlighted

Depth (ft)	$=0.25$
Q (cfs)	$=1.300$
Area (sqft)	$=0.25$
Velocity (ft/s)	$=5.20$
Wetted Perim (ft)	$=2.06$
Crit Depth, Yc (ft)	$=0.37$
Top Width (ft)	$=2.00$
EGL (ft)	$=0.67$

Elev (ft)
Section
Depth (ft)

MHFD-Inlet, Version 5.01 (April 2021)

INLET MANAGEMENT

INLET NAME	1 i	$\underline{\underline{i}}$	3 i
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows

Minor Q			
Known (cfs)	5.2	4.5	6.1
Major Q 2 Known	$\mathrm{cfs})$	13.5	10.8

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q_{b} (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q_{b} (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)			
Percent Impervious			
NRCS Soil Type			

Watershed Profile

Overland Slope $(\mathrm{ft} / \mathrm{ft})$			
Overland Length (ft)			
Channel Slope $(\mathrm{ft} / \mathrm{ft})$			
Channel Length (ft)			

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	$\mathbf{5 . 2}$	$\mathbf{4 . 5}$	$\mathbf{6 . 1}$
Major Total Design Peak Flow, Q (cfs)	$\mathbf{1 3 . 5}$	$\mathbf{1 0 . 8}$	
Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$	0.0	$\mathbf{1 7 . 5}$	
Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$	2.6	1.3	0.0

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

INLET NAME	4i	Si	6i
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	In Sump	
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor $\mathrm{Q}_{\text {Known }}$ (cfs)	6.0	7.6	6.5
Major $\mathrm{Q}_{\text {Known }}$ (cfs)	14.4	25.8	18.8
Bypass (Carry-Over) Flow from Upstream			
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q_{b} (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q_{b} (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)			
Percent Impervious			
NRCS Soil Type			

Watershed Profile

Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope $(\mathrm{ft} / \mathrm{ft})$			
Channel Length (ft)			

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	$\mathbf{6 . 0}$	$\mathbf{7 . 6}$	$\mathbf{6 . 5}$
Major Total Design Peak Flow, Q (cfs)	$\mathbf{1 4 . 4}$	$\mathbf{2 5 . 8}$	$\mathbf{1 8 . 8}$
Minor Flow Bypassed Downstream, $Q_{b}(c f s)$	0.0	$\mathrm{~N} / \mathrm{A}$	N / A
Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$	3.1	$\mathrm{~N} / \mathrm{A}$	N / A

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Homestead North at Sterling Ranch Filing No. 3
Inlet ID: $\mathbf{1 i}$

Gutter Geometry:			ft $\mathrm{ft} / \mathrm{ft}$
Maximum Allowable Width for Spread Behind Curb	$\mathrm{T}_{\mathrm{BACK}}=$ $\mathrm{S}_{\mathrm{BACK}}=$ $\mathrm{n}_{\mathrm{BACK}}=$	5.0	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)		0.020	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)		0.020	
Height of Curb at Gutter Flow Line	$\mathrm{H}_{\text {CURB }}=$	6.00	inches
Distance from Curb Face to Street Crown	$\begin{aligned} \mathrm{T}_{\text {CROWN }} & = \\ \mathrm{W} & =\end{aligned}$	17.0	
Gutter Width		2.00	ft
Street Transverse Slope	S_{X}	0.020	$\mathrm{ft} / \mathrm{ft}$
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)	$\mathrm{S}_{\mathrm{w}}=$	0.083	$\mathrm{ft} / \mathrm{ft}$
Street Longitudinal Slope - Enter 0 for sump condition	$\mathrm{S}_{0}=$	0.028	$\mathrm{ft} / \mathrm{ft}$
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$\mathrm{n}_{\text {STREET }}=$	0.013	
		nor Storm	Major Storm
Max. Allowable Spread for Minor \& Major Storm	$\mathrm{T}_{\text {MAX }}=$	11.0	17.0
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm	$\mathrm{d}_{\text {MAX }}=$	4.0	6.0
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)		Г	Γ
MINOR STORM Allowable Capacity is based on Depth Criterion		nor Storm	Major Storm
MAJ OR STORM Allowable Capacity is based on Depth Criterion	$\mathbf{Q}_{\text {allow }}=$	7.0	18.1
Minor storm max. allowable capacity GOOD - greater than the desig Major storm max. allowable capacity GOOD - greater than the desig	on sheet on sheet	Manag Manag	$\begin{aligned} & \text { ent' } \\ & \text { ent } \end{aligned}$

INLET ON A CONTINUOUS GRADE

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJ OR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Typ	Openin	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{Cr}_{\mathrm{f}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJ OR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	5.2	13.5	cfs
Water Spread Width	T =	9.1	13.8	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	3.7	4.8	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.627	0.430	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	1.9	7.7	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.3	5.8	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {BaCk }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_{w}=$	0.45	0.64	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	7.3	9.1	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	6.7	7.8	inches
Grate Analysis (Calculated)		MINOR	MAJ OR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJ OR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	$f p s$
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJ OR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{0}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {}}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJ OR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.138	0.101	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	13.14	24.67	ft
Under No-Clogqing Condition		MINOR	MAJ OR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_{\top})	L	13.14	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	5.2	11.0	cfs
Under Clogging Condition		MINOR	MAJ OR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog $=$	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	5.2	10.9	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {bigbate) }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.0	2.6	cfs
Summary		MINOR	MAJ OR	
Total Inlet Interception Capacity	Q =	5.2	10.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.0	2.6	cfs
Capture Percentage $=\mathrm{Q}_{2} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	81	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Homestead North at Sterling Ranch Filing No. 3
Inlet ID: 2i

Gutter Geometry:			ft $\mathrm{ft} / \mathrm{ft}$
Maximum Allowable Width for Spread Behind Curb	$\mathrm{T}_{\mathrm{BACK}}=$ $\mathrm{S}_{\mathrm{BACK}}=$ $\mathrm{n}_{\mathrm{BACK}}=$	5.0	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)		0.020	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)		0.020	
Height of Curb at Gutter Flow Line	$\mathrm{H}_{\text {CURB }}=$	6.00	inches
Distance from Curb Face to Street Crown	$\begin{aligned} \mathrm{T}_{\text {CROWN }} & = \\ \mathrm{W} & =\end{aligned}$	17.0	
Gutter Width		2.00	ft
Street Transverse Slope	S_{X}	0.020	$\mathrm{ft} / \mathrm{ft}$
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)	$\mathrm{S}_{\mathrm{w}}=$	0.083	$\mathrm{ft} / \mathrm{ft}$
Street Longitudinal Slope - Enter 0 for sump condition	$\mathrm{S}_{0}=$	0.028	$\mathrm{ft} / \mathrm{ft}$
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$\mathrm{n}_{\text {STREET }}=$	0.013	
		nor Storm	Major Storm
Max. Allowable Spread for Minor \& Major Storm	$\mathrm{T}_{\text {MAX }}=$	11.0	17.0
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm	$\mathrm{d}_{\text {MAX }}=$	4.0	6.0
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)		Г	Γ
MINOR STORM Allowable Capacity is based on Depth Criterion		nor Storm	Major Storm
MAJ OR STORM Allowable Capacity is based on Depth Criterion	$\mathbf{Q}_{\text {allow }}=$	7.0	18.1
Minor storm max. allowable capacity GOOD - greater than the desig Major storm max. allowable capacity GOOD - greater than the desig	on sheet on sheet	Manag Manag	$\begin{aligned} & \text { ent' } \\ & \text { ent } \end{aligned}$

INLET ON A CONTINUOUS GRADE

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJ OR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Typ	Openin	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{Cr}_{\mathrm{f}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJ OR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	4.5	10.8	cfs
Water Spread Width	T =	8.5	12.6	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	3.5	4.5	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.661	0.471	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	1.5	5.7	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.0	5.1	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {BaCk }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{W}=$	0.42	0.59	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	7.0	8.6	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	6.5	7.5	inches
Grate Analysis (Calculated)		MINOR	MAJ OR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJ OR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	$f p s$
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJ OR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{0}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {}}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJ OR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.144	0.108	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	11.94	21.29	ft
Under No-Clogqing Condition		MINOR	MAJ OR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_{\top})	L=	11.94	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	4.5	9.6	cfs
Under Clogging Condition		MINOR	MAJ OR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	4.5	9.5	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {bigbate) }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.0	1.3	cfs
Summary		MINOR	MAJ OR	
Total Inlet Interception Capacity	Q =	4.5	9.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.0	1.3	cfs
Capture Percentage $=\mathrm{Q}_{2} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	88	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Homestead North at Sterling Ranch Filing No. 3
Inlet ID: 3i

Gutter Geometry:			ft $\mathrm{ft} / \mathrm{ft}$
Maximum Allowable Width for Spread Behind Curb	$\mathrm{T}_{\mathrm{BACK}}=$ $\mathrm{S}_{\mathrm{BACK}}=$ $\mathrm{n}_{\mathrm{BACK}}=$	5.0	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)		0.020	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)		0.020	
Height of Curb at Gutter Flow Line	$\mathrm{H}_{\text {CURB }}=$	6.00	inches
Distance from Curb Face to Street Crown	$\begin{aligned} \mathrm{T}_{\text {CROWN }} & = \\ \mathrm{W} & =\end{aligned}$	17.0	
Gutter Width		2.00	ft
Street Transverse Slope	S_{X}	0.020	$\mathrm{ft} / \mathrm{ft}$
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)	$\mathrm{S}_{\mathrm{w}}=$	0.083	$\mathrm{ft} / \mathrm{ft}$
Street Longitudinal Slope - Enter 0 for sump condition	$\mathrm{S}_{0}=$	0.028	$\mathrm{ft} / \mathrm{ft}$
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$\mathrm{n}_{\text {STREET }}=$	0.013	
		nor Storm	Major Storm
Max. Allowable Spread for Minor \& Major Storm	$\mathrm{T}_{\text {MAX }}=$	11.0	17.0
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm	$\mathrm{d}_{\text {MAX }}=$	4.0	6.0
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)		Г	Γ
MINOR STORM Allowable Capacity is based on Depth Criterion		nor Storm	Major Storm
MAJ OR STORM Allowable Capacity is based on Depth Criterion	$\mathbf{Q}_{\text {allow }}=$	7.0	18.1
Minor storm max. allowable capacity GOOD - greater than the desig Major storm max. allowable capacity GOOD - greater than the desig	on sheet on sheet	Manag Manag	$\begin{aligned} & \text { ent' } \\ & \text { ent } \end{aligned}$

INLET ON A CONTINUOUS GRADE

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJ OR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{Cr}_{\mathrm{f}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJ OR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	6.1	17.5	cfs
Water Spread Width	$\mathrm{T}=$	9.8	15.4	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	3.9	5.2	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.590	0.387	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	2.5	10.7	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.6	6.8	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {BaCk }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_{w}=$	0.48	0.70	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	7.6	9.7	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	6.9	8.2	inches
Grate Analysis (Calculated)		MINOR	MAJ OR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJ OR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	$f p s$
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJ OR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{0}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {}}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/ A	N/ A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJ OR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.131	0.093	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	14.59	29.26	ft
Under No-Clogqing Condition		MINOR	MAJ OR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_{\top})	L	14.59	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	6.1	12.7	cfs
Under Clogging Condition		MINOR	MAJ OR	
Clogging Coefficient	CurbCoef $=$	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog $=$	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	6.1	12.6	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {bigbate) }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.0	4.9	cfs
Summary		MINOR	MAJ OR	
Total Inlet Interception Capacity	Q =	6.1	12.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	4.9	cfs
Capture Percentage $=\mathrm{Q}_{2} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	72	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Homestead North at Sterling Ranch Filing No. 3
Inlet ID: 4i

Gutter Geometry:			ft $\mathrm{ft} / \mathrm{ft}$
Maximum Allowable Width for Spread Behind Curb	$\mathrm{T}_{\mathrm{BACK}}=$ $\mathrm{S}_{\mathrm{BACK}}=$ $\mathrm{n}_{\mathrm{BACK}}=$	5.0	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)		0.020	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)		0.020	
Height of Curb at Gutter Flow Line	$\mathrm{H}_{\text {CURB }}=$	6.00	inches
Distance from Curb Face to Street Crown	$\begin{aligned} \mathrm{T}_{\text {CROWN }} & = \\ \mathrm{W} & =\end{aligned}$	17.0	
Gutter Width		2.00	ft
Street Transverse Slope	S_{X}	0.020	$\mathrm{ft} / \mathrm{ft}$
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)	$\mathrm{S}_{\mathrm{w}}=$	0.083	$\mathrm{ft} / \mathrm{ft}$
Street Longitudinal Slope - Enter 0 for sump condition	$\mathrm{S}_{0}=$	0.028	$\mathrm{ft} / \mathrm{ft}$
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$\mathrm{n}_{\text {STREET }}=$	0.013	
		nor Storm	Major Storm
Max. Allowable Spread for Minor \& Major Storm	$\mathrm{T}_{\text {MAX }}=$	11.0	17.0
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm	$\mathrm{d}_{\text {MAX }}=$	4.0	6.0
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)		Г	Γ
MINOR STORM Allowable Capacity is based on Depth Criterion		nor Storm	Major Storm
MAJ OR STORM Allowable Capacity is based on Depth Criterion	$\mathbf{Q}_{\text {allow }}=$	7.0	18.1
Minor storm max. allowable capacity GOOD - greater than the desig Major storm max. allowable capacity GOOD - greater than the desig	on sheet on sheet	Manag Manag	$\begin{aligned} & \text { ent' } \\ & \text { ent } \end{aligned}$

INLET ON A CONTINUOUS GRADE

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJ OR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{Cr}_{\mathrm{f}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJ OR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	6.0	14.4	cfs
Water Spread Width	$\mathrm{T}=$	9.7	14.2	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	3.8	4.9	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.594	0.419	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	2.4	8.4	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.6	6.0	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {BaCk }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{W}=$	0.47	0.65	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	7.5	9.2	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	6.8	7.9	inches
Grate Analysis (Calculated)		MINOR	MAJ OR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJ OR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	$f p s$
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJ OR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{0}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {}}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/A	N/ A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJ OR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.131	0.099	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	14.44	25.74	ft
Under No-Clogqing Condition		MINOR	MAJ OR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_{\top})	L=	14.44	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	6.0	11.4	cfs
Under Clogging Condition		MINOR	MAJ OR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	6.0	11.3	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {bigbate) }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.0	3.1	cfs
Summary		MINOR	MAJ OR	
Total Inlet Interception Capacity	Q =	6.0	11.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.0	3.1	cfs
Capture Percentage $=\mathrm{Q}_{2} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	78	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Homestead North at Sterling Ranch Filing No. 3
Inlet ID: 5i

$\|$Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor \& Major Storm Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJ OR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.0	7.7	inches
Grate Information		MINOR	MAJ OR	\checkmark Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$C_{f}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value $0.60-0.80$)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJ OR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJ OR	
Interception without Clogging	$\mathrm{Q}_{0 i}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$\mathrm{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJ OR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	8.4	27.1	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	8.0	25.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJ OR	
Interception without Clogging	$\mathrm{Q}_{0 i}=$	26.8	33.0	cfs
Interception with Clogging	$\mathrm{Q}_{0 \mathrm{a}}=$	25.7	31.6	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJ OR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	14.0	27.8	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	13.3	26.6	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	8.0	25.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	14.5	26.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.1	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJ OR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.25	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.47	0.73	
Curb Opening Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {curb }}=$	0.72	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJ OR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	8.0	25.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	7.6	25.8	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Homestead North at Sterling Ranch Filing No. 3
Inlet ID: $\mathbf{6 i}$

$\|$Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor \& Major Storm Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJ OR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.7	7.0	inches
Grate Information		MINOR	MAJOR	\checkmark Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$C_{f}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value $0.60-0.80$)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJ OR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJ OR	
Interception without Clogging	$\mathrm{Q}_{0 i}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$\mathrm{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef $=$	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	6.9	21.1	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	6.6	20.2	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJ OR	
Interception without Clogging	$\mathrm{Q}_{0 i}=$	26.1	31.5	cfs
Interception with Clogging	$\mathrm{Q}_{0 \mathrm{a}}=$	24.9	30.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJ OR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	12.5	24.0	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	12.0	22.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	6.6	20.2	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	13.3	22.9	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {CROWN }}=$	0.0	1.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJ OR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.23	0.42	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.44	0.66	
Curb Opening Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {curb }}=$	0.70	0.84	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJ OR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	6.6	20.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	6.5	18.8	cfs

DP05-02	DP01-11
DP05-01	DP01-10 DP01-09

See Construction drawings for comments in regards to discrepancies between StormCAD and CD information.

STORMCAD MAP
HOMESTEAD NORTH FILING 3 JOB NO. 25188.12
10/13/2022
SHEET 1 OF 1

DP02-5 YEAR

DP04-5 YEAR

DPO5-5 YEAR

Scenario: 5 YEAR

Current Time Step: 0.000 h
Conduit FlexTable: Combined Pipe/Node Report

Upstream Structure	Label	$\begin{aligned} & \text { Flow } \\ & \text { (cfs) } \end{aligned}$	$\begin{aligned} & \text { Capacity } \\ & \text { (Full } \\ & \text { Flow) } \\ & \text { (cfs) } \end{aligned}$	Diameter (in)	Length Defined) (t)	$\begin{aligned} & \text { Slope } \\ & \left.\begin{array}{c} \text { (Calculated) } \\ \text { (t/ftt) } \end{array}\right) \end{aligned}$	$\underset{(\mathrm{ft} / \mathrm{s})}{\text { Velocity }}$ (ft/s)	$\begin{gathered} \text { Invert } \\ \begin{array}{c} \text { (Start) } \\ \text { (tt) } \end{array} \end{gathered}$	Invert (Stop) (ft)	Elevation Ground (Start) (ft) (ft)	$\begin{aligned} & \text { Elevation } \\ & \text { Ground } \\ & \text { (Stop) } \\ & \text { (ft) } \end{aligned}$	$\underset{(\mathrm{tt})}{\mathrm{HGL}}$	$\begin{aligned} & \text { HGL } \\ & \text { (Out) (ft) } \end{aligned}$	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Upstream Structure Headloss Coefficient	Manning's n
DP01-03	DP01-02	34.00	88.49	36.0	158.4	-0.015	11.70	7,158.09	7,160.43	7,161.93	7,168.27	7,162.32	7,159.37	7,163.14	7,161.40	0.300	. 012
DP01-05	DP01-04	27.90	121.61	36.0	27.5	-0.028	13.96	7,160.73	7,161.51	7,168.27	7,168.12	7,163.22	7,162.57	7,163.92	7,163.15	1.320	0.012
DP01-07	DP01-06	20.60	107.14	36.0	350.2	-0.022	11.70	7,161.81	7,169.51	7,168.12	7,175.78	7,170.97	7,164.14	7,171.54	7,164.33	1.320	0.012
DP01-09	DP01-08	9.30	41.07	24.0	340.0	-0.028	10.57	7,170.51	7,180.06	7,175.78	7,185.31	7,181.15	7,171.72	7,181.59	7,172.06	1.320	0.012
DP01-11	DP01-10	4.50	34.15	24.0	28.5	-0.019	7.53	7,180.37	7,180.92	7,185.31	7,185.21	7,181.67	7,181.73	7,181.94	7,181.79	0.100	0.012
DP02-02	DP02-01	7.60	126.17	30.0	8.5	0.081	14.17	7,163.00	7,162.31	7,168.26	7,168.12	7,163.92	7,164.14	7,164.26	7,164.20	0.100	0.012
DP03-02	DP03-01	6.10	56.90	24.0	8.1	0.054	11.82	7,170.95	7,170.51	7,175.79	7,175.78	7,171.83	7,171.72	7,172.16	7,171.87	0.100	0.012
DP04-02	DP04-01	6.00	38.49	24.0	28.9	-0.025	8.91	7,170.51	7,171.23	7,175.78	7,175.70	7,172.09	7,171.72	7,172.42	7,171.86	0.100	0.012
05-02	DP05-01	5.2	54.76	24.0	7.5	-0.050	10.98	7,180.36	7,180.74	7,185.31	7,185.25	7,181.54	7,181.73	7,181.84	7,181.81	0.100	0.01

X::2510000.all2518812|StormCADI2022-10-13_2518812_StormCAD.stsw

DP02-100 YEAR

DP03-100 YEAR

DP04-100 YEAR

DP05-100 YEAR

Scenario: 100 YEAR
Current Time Step: 0.000 h
Conduit FlexTable: Combined Pipe/Node Report

Upstream Structure	Label	$\begin{aligned} & \text { Flow } \\ & \text { (cfs) } \end{aligned}$	$\begin{gathered} \text { Capacity } \\ \text { (Full } \\ \text { Flow) } \\ \text { (cfs) } \end{gathered}$	Diameter (in)	Length (User Defined) (t)	$\begin{gathered} \text { Slope } \\ \text { (Calculated) } \\ (\mathrm{ttftr}) \end{gathered}$	$\begin{aligned} & \text { Velocity } \\ & (\mathrm{ft/s}) \end{aligned}$	$\begin{aligned} & \text { Invert } \\ & \text { (Start) } \\ & \text { (ft) } \end{aligned}$	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	$\underset{(\mathrm{tr})}{\mathrm{HGL}}$	$\begin{aligned} & \text { HGL } \\ & \text { (Out) (ft) } \end{aligned}$	Energy Grade Line (In) (ft)	$\begin{gathered} \hline \text { Energy } \\ \text { Grade } \\ \text { Line } \\ \text { (Out) (ft) } \end{gathered}$	Upstream Structure Headloss Coefficient	Manning's
DP01-03	DP01-02	83.20	88.49	36.0	158.4	-0.015	14.23	7,158.09	7,160.43	7,161.93	7,168.27	7,163.23	7,160.43	7,165.51	7,163.42	0.300	0.012
DP01-05	DP01-04	66.10	121.61	36.0	27.5	-0.028	17.56	7,160.73	7,161.51	7,168.27	7,168.12	7,164.11	7,163.91	7,165.71	7,165.27	1.320	0.012
DP01-07	DP01-06	42.10	107.14	36.0	350.2	-0.022	14.25	7,161.81	7,169.51	7,168.12	7,175.78	7,171.62	7,166.23	7,172.60	7,166.78	1.320	0.012
DP01-09	DP01-08	19.60	41.07	24.0	340.0	-0.028	12.92	7,170.51	7,180.06	7,175.78	7,185.31	7,181.66	7,172.91	7,182.49	7,173.51	1.320	0.012
DP01-11	DP01-10	9.50	34.15	24.0	28.5	-0.019	9.31	7,180.37	7,180.92	7,185.31	7,185.21	7,182.79	7,182.75	7,182.94	7,182.89	0.100	0.012
DP02-02	DP02-01	25.80	126.17	30.0	8.5	0.081	5.26	7,163.00	7,162.31	7,168.26	7,168.12	7,166.25	7,166.23	7,166.68	7,166.65	0.100	0.012
DP03-02	DP03-01	12.60	56.90	24.0	8.1	0.054	14.55	7,170.95	7,170.51	7,175.79	7,175.78	7,172.93	7,172.91	7,173.18	7,173.16	0.100	0.012
DP04-02	DP04-01	11.30	38.49	24.0	28.9	-0.025	10.64	7,170.51	7,171.23	7,175.78	7,175.70	7,172.92	7,172.91	7,173.17	7,173.11	0.100	0.012
DP05-02	DP05-01	10.90	54.76	24.0	7.5	-0.050	3.47	7,180.36	7,180.74	7,185.31	7,185.25	7,182.77	7,182.75	7,182.95	7,182.94	0.100	0.012

X:12510000.all12518812|StormCADI2022-10-13_2518812_StormCAD.stsw

Weir Report

Forebay Release Rate

Compound Weir

Crest	$=$ Sharp
Bottom Length (ft)	$=6.00$
Total Depth (ft)	$=1.50$
Length, $\mathrm{x}(\mathrm{ft})$	$=0.52$
Depth, $\mathrm{a}(\mathrm{ft})$	$=1.25$

Calculations

Weir Coeff. Cw
Compute by:
Known Q (cfs)

$$
\begin{aligned}
& =\text { Sharp } \\
& =6.00 \\
& =1.50 \\
& =0.52 \\
& =1.25
\end{aligned}
$$

$$
=3.33
$$

Known Q

$$
=1.36
$$

Highlighted

Depth (ft)	$=0.85$
Q (cfs)	$=1.360$
Area (sqft)	$=0.44$
Velocity (ft/s)	$=3.07$
Top Width (ft)	$=0.52$

= 1.360
$=0.44$
$=3.07$
Top Width (ft)
$=0.52$

Forebay Release Rate
Depth (ft)

Channel Report

Trickle Channel-Capacity

Rectangular	
Bottom Width (ft) $=6.00$ Total Depth (ft) $=0.50$ $=100.00$ Invert Elev (ft) $=0.50$ Slope (\%) $=0.012$ N-Value Calculations Known Q Compute by: $=1.36$$\quad$Known Q (cfs)	

Highlighted

Depth (ft)	$=0.12$
Q (cfs)	$=1.360$
Area (sqft)	$=0.72$
Velocity (ft/s)	$=1.89$
Wetted Perim (ft)	$=6.24$
Crit Depth, Yc (ft)	$=0.12$
Top Width (ft)	$=6.00$
EGL (ft)	$=0.18$

Elev (ft)
Section
Depth (ft)

Optional User Override

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.05 (January 2022)

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
	0.00	1.50	3.00	3.25				
	1.86	1.86	1.86	2.00				

| | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | |

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)

	Zone 3 Weir	Not Selected	$\left.\right\|_{\mathrm{ft} \text { (relat }}$
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	4.50	N/A	
	5.00	N/A	
Overflow Weir Grate Slope $=$	0.00	N/A	$\mathrm{H}: \mathrm{V}$
Horiz. Length of Weir Sides =	5.00	N/A	feet
Overflow Grate Type =	Type C Grate	N/A	
Debris Clogging \% =	50\%	N/A	\%

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Res							
Depth to Invert of Outlet Pipe =	Zone 3 Restrictor	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches	Outlet Orifice Area = Outlet Orifice Centroid =	Zone 3 Restrictor	Not Selected	$\mid \mathrm{ft}^{2}$
	0.00	N/A			3.48	N/A	
	30.00	N/A			0.94	N/A	
Restrictor Plate Height Above Pipe Invert =	20.00		inches Half-Central Angl	Restrictor Plate on Pipe $=$	1.91	N/A	adians

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=0}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	4.00
CUHP Runoff Volume (acre-ft)	0.452	1.275	1.247	1.860	2.411	3.199	3.813	4.614	8.451
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	1.247	1.860	2.411	3.199	3.813	4.614	8.451
CUHP Predevelopment Peak Q (cfs) $=$	N/A	N/A	3.2	9.0	13.6	24.4	30.6	39.2	76.8
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.11	0.30	0.46	0.82	1.02	1.31	2.56
Peak Inflow Q (cfs)	N/A	N/A	17.8	27.5	34.8	47.5	56.5	67.8	122.0
Peak Outflow Q (cfs) =	0.2	0.4	0.4	5.4	11.5	23.1	31.2	37.0	96.3
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.6	0.8	0.9	1.0	0.9	1.3
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.3	0.6	1.3	1.8	2.1	2.3
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	38	68	67	70	68	66	64	62	53
Time to Drain 99% of Inflow Volume (hours) =	40	72	72	76	75	74	73	71	67
Maximum Ponding Depth (ft) =	3.01	4.46	4.31	4.79	4.99	5.29	5.47	5.82	6.60
Area at Maximum Ponding Depth (acres) $=$	0.46	0.65	0.64	0.68	0.70	0.73	0.74	0.78	0.85
Maximum Volume Stored (acre-ft)	0.455	1.281	1.177	1.495	1.640	1.848	1.980	2.246	2.879

DETENTION BASIN OUTLET STRUCTURE DESIGN

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.02	1.21
	0:15:00	0.00	0.00	1.39	2.28	2.83	1.90	2.39	2.32	4.86
	0:20:00	0.00	0.00	5.04	6.70	8.48	5.00	5.85	6.25	12.73
	0:25:00	0.00	0.00	12.49	19.66	26.51	12.31	14.72	16.68	41.49
	0:30:00	0.00	0.00	17.77	27.54	34.85	37.80	45.78	52.34	99.09
	0:35:00	0.00	0.00	17.62	26.62	33.22	47.33	56.54	67.79	122.02
	0:40:00	0.00	0.00	16.12	23.88	29.90	47.53	56.38	67.53	120.27
	0:45:00	0.00	0.00	14.04	20.94	26.65	43.70	51.80	63.64	112.83
	0:50:00	0.00	0.00	12.27	18.62	23.51	40.07	47.48	58.31	103.50
	0:55:00	0.00	0.00	10.81	16.33	20.75	35.27	41.90	52.53	93.38
	1:00:00	0.00	0.00	9.49	14.19	18.25	30.76	36.64	47.32	84.11
	1:05:00	0.00	0.00	8.41	12.46	16.30	26.83	32.03	42.59	75.99
	1:10:00	0.00	0.00	7.38	11.32	15.07	22.80	27.33	35.80	64.98
	1:15:00	0.00	0.00	6.57	10.24	14.13	19.83	23.86	30.38	56.06
	1:20:00	0.00	0.00	5.87	9.08	12.66	17.06	20.51	25.44	46.93
	1:25:00	0.00	0.00	5.23	7.99	10.87	14.60	17.52	21.11	38.77
	1:30:00	0.00	0.00	4.59	6.95	9.18	12.18	14.56	17.31	31.67
	1:35:00	0.00	0.00	3.98	5.98	7.66	9.94	11.82	13.85	25.20
	1:40:00	0.00	0.00	3.45	4.89	6.35	7.89	9.33	10.70	19.42
	1:45:00	0.00	0.00	3.07	4.09	5.50	6.11	7.18	8.03	14.87
	1:50:00	0.00	0.00	2.88	3.63	5.01	5.01	5.90	6.41	12.13
	1:55:00	0.00	0.00	2.55	3.35	4.60	4.35	5.11	5.40	10.35
	2:00:00	0.00	0.00	2.28	3.08	4.15	3.92	4.59	4.69	9.09
	2:05:00	0.00	0.00	1.84	2.47	3.33	3.08	3.59	3.58	6.97
	2:10:00	0.00	0.00	1.44	1.93	2.60	2.35	2.74	2.64	5.15
	2:15:00	0.00	0.00	1.13	1.50	2.01	1.80	2.09	1.93	3.78
	2:20:00	0.00	0.00	0.88	1.16	1.54	1.37	1.58	1.42	2.77
	2:25:00	0.00	0.00	0.68	0.89	1.16	1.04	1.20	1.08	2.09
	2:30:00	0.00	0.00	0.53	0.67	0.87	0.78	0.89	0.81	1.56
	2:35:00	0.00	0.00	0.40	0.50	0.65	0.59	0.67	0.62	1.18
	2:40:00	0.00	0.00	0.30	0.37	0.49	0.44	0.50	0.47	0.89
	2:45:00	0.00	0.00	0.22	0.27	0.36	0.33	0.38	0.35	0.67
	2:50:00	0.00	0.00	0.16	0.19	0.26	0.24	0.27	0.25	0.48
	2:55:00	0.00	0.00	0.10	0.13	0.17	0.16	0.18	0.17	0.32
	3:00:00	0.00	0.00	0.06	0.08	0.10	0.10	0.11	0.10	0.19
	3:05:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.05	0.09
	3:10:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.05 (January 2022)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically, The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	$\begin{gathered} \text { Stage } \\ \text { [ft] } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Area } \\ & {\left[\mathrm{ft}^{2}\right]} \end{aligned}$		Volume [ft ${ }^{3}$]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [cfs] } \end{gathered}$	
							For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.
							Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

EMERGENCY SPILLWAY SECTION AND SPILLWAY CHANNEL

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)

Culvert Report

Pond A Outfall-100-year WSEL (Existing Tailwater)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c,Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=7154.00$
$=221.66$
$=0.50$
= 7155.11
$=30.0$
= Circular
$=30.0$
$=1$
$=0.012$
= Circular Concrete
$=$ Groove end projecting (C)
$=0.0045,2,0.0317,0.69,0.2$
$=7161.01$
$=173.00$
$=45.90$

Calculations
Qmin (cfs)
Qmax (cfs) $=37.00$
Tailwater Elev (ft) $\quad={ }^{\prime} 155.68$

Highlighted

Qtotal (cfs) $=37.00$
Qpipe (cfs) $\quad=37.00$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s) $\quad=8.56$
Veloc Up (ft/s) $\quad=7.54$
HGL Dn (ft) = 7156.06
HGL Up (ft)
Hw Elev (ft)
Hw / D (ft)
Flow Regime
= 7157.85
$=7158.63$
$=1.41$
$=$ Inlet Control

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).

Figure 9-35. Expansion factor for circular conduits

Figure 9-36. Expansion factor for rectangular conduits

$\begin{gathered} \hline \text { Routed Hydrograph Results } \\ \text { Design Storm Return Period }= \\ \hline \end{gathered}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	4.00
CUHP Runoff Volume (acre-ft) =	0.478	1.478	1.404	2.012	2.548	3.271	3.855	4.598	8.224
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	1.404	2.012	2.548	3.271	3.855	4.598	8.224
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	3.0	8.4	12.8	22.9	28.7	36.7	72.0
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.11	0.30	0.46	0.81	1.02	1.31	2.56
Peak Inflow Q (cfs) =	N/A	N/A	22.2	32.6	40.2	53.0	62.6	74.5	130.8
Peak Outflow Q (cfs) =	0.2	0.8	0.7	3.9	11.9	25.8	28.7	30.3	108.7
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.5	0.9	1.1	1.0	0.8	1.5
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.2	0.6	1.4	1.6	1.7	1.8
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97% of Inflow Volume (hours) $=$	40	67	68	71	68	66	64	62	53
Time to Drain 99\% of Inflow Volume (hours) =	42	72	72	77	76	75	74	73	68
Maximum Ponding Depth (ft) =	3.16	5.28	4.95	5.73	5.91	6.13	6.39	7.04	7.68
Area at Maximum Ponding Depth (acres) $=$	0.39	0.55	0.53	0.58	0.60	0.62	0.64	0.69	0.74
Maximum Volume Stored (acre-ft) $=$	0.480	1.482	1.299	1.732	1.839	1.972	2.135	2.574	3.033

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.02	1.71
	0:15:00	0.00	0.00	1.99	3.25	4.03	2.71	3.39	3.31	6.81
	0:20:00	0.00	0.00	7.13	9.42	11.66	7.00	8.16	8.74	17.00
	0:25:00	0.00	0.00	16.72	24.94	32.48	16.43	19.43	21.63	48.65
	0:30:00	0.00	0.00	22.20	32.60	40.24	44.46	53.10	60.17	109.98
	0:35:00	0.00	0.00	21.10	30.30	36.99	52.99	62.57	74.51	130.75
	0:40:00	0.00	0.00	18.74	26.32	32.18	51.45	60.39	71.81	124.81
	0:45:00	0.00	0.00	15.90	22.64	28.18	45.66	53.55	65.48	113.68
	0:50:00	0.00	0.00	13.53	19.68	24.20	41.26	48.40	58.98	102.33
	0:55:00	0.00	0.00	11.55	16.70	20.68	35.18	41.34	51.64	89.59
	1:00:00	0.00	0.00	10.08	14.44	18.22	29.69	34.96	45.09	78.60
	1:05:00	0.00	0.00	9.07	12.93	16.59	25.82	30.52	40.56	71.12
	1:10:00	0.00	0.00	7.88	11.72	15.24	22.06	26.14	33.92	60.17
	1:15:00	0.00	0.00	6.77	10.26	13.92	18.83	22.38	28.05	50.41
	1:20:00	0.00	0.00	5.75	8.64	11.93	15.52	18.41	22.32	40.03
	1:25:00	0.00	0.00	4.82	7.20	9.65	12.58	14.90	17.33	30.92
	1:30:00	0.00	0.00	4.07	6.05	7.81	9.72	11.45	13.00	23.22
	1:35:00	0.00	0.00	3.64	5.42	6.77	7.42	8.72	9.64	17.55
	1:40:00	0.00	0.00	3.46	4.79	6.14	6.11	7.16	7.68	14.15
	1:45:00	0.00	0.00	3.35	4.31	5.69	5.29	6.17	6.44	11.93
	1:50:00	0.00	0.00	3.29	3.96	5.38	4.75	5.52	5.58	10.39
	1:55:00	0.00	0.00	2.91	3.70	5.02	4.38	5.06	4.97	9.29
	2:00:00	0.00	0.00	2.57	3.41	4.53	4.15	4.77	4.55	8.50
	2:05:00	0.00	0.00	1.99	2.63	3.47	3.18	3.65	3.40	6.34
	2:10:00	0.00	0.00	1.50	1.96	2.57	2.35	2.68	2.46	4.58
	2:15:00	0.00	0.00	1.13	1.46	1.90	1.74	1.98	1.83	3.38
	2:20:00	0.00	0.00	0.84	1.09	1.39	1.29	1.47	1.36	2.51
	2:25:00	0.00	0.00	0.62	0.79	1.01	0.94	1.07	1.00	1.84
	2:30:00	0.00	0.00	0.45	0.56	0.73	0.68	0.76	0.72	1.32
	2:35:00	0.00	0.00	0.32	0.39	0.53	0.49	0.56	0.53	0.96
	2:40:00	0.00	0.00	0.21	0.27	0.36	0.35	0.39	0.37	0.67
	2:45:00	0.00	0.00	0.13	0.18	0.23	0.23	0.26	0.24	0.44
	2:50:00	0.00	0.00	0.07	0.10	0.13	0.13	0.15	0.14	0.25
	2:55:00	0.00	0.00	0.03	0.05	0.06	0.06	0.07	0.07	0.12
	3:00:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

Summary Staqe-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Appendix D Reference Material

NORTHWESTERN TRIBUTARY SHEET 1 OF 5

Centernial 303-740-9393 • Colorado Springs 719-593-2593

SOUTHWEST TRIBUTARY SHEET 3 OF 5

J•R Engineering
A Westrian Company

PRELIMINARY DRAINAGE REPORT AND MDDP ADDENDUM FOR HOMESTEAD NORTH AT STERLING RANCH PRELIMINARY PLAN

Prepared For:
SR Land, LLC
20 Boulder Crescent, Suite 200
Colorado Springs, CO 80903
(719) 491-3024

April 1st, 2021
Project No. 25188.00

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593

PCD Filing No.:
SP-20-008

WATER QUALITY CAPTURE PLAN

HOMESTEAD NORTH

POND C 224.42 ACRES, 10.3\% IMPERVIOUS
NOTE:

1. A SEPARATE PLAN FOR STERLING RANCH ROAD AND BRIARGATE PKWY WILL BE PROVIDED IN A THE SEPARATE FDR REQUIRED FOR CONSTRUCTION OF THESE ROADWAYS.
2. A TOTAL OF 20,046 SQ-FT ON SITE IS

LEFT UNTREATED. TO VOLLMER ROAD AND THE OFFSITE RIBUTARY AREA

FINAL DRAINAGE REPORT
FOR
HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1 EL PASO COUNTY, COLORADO

Prepared For:
SR Land, LLC
20 Boulder Crescent, Suite 200
Colorado Springs, CO 80903
(719) 491-3024

June, 2022
Project No. 25188.00

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593

PCD Filing No.:
SF-22-2213

WATER QUALITY CAPTURE PLAN

HOMESTEAD NORTH

FINAL DRAINAGE REPORT
FOR
HOMESTEAD NORTH AT STERLING RANCH FILING NO. 2

Prepared For:
SR Land, LLC
20 Boulder Crescent, Suite 200
Colorado Springs, CO 80903

(719) 491-3024

July 2022
Project No. 25188.10

Prepared By:
JR Engineering, LLC 5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593
PCD Filing No.:
SF-22-18

HOMESTEAD NORTH AT STERLING RANCH FILING NO. 2 DRAINAGE MAP

LEGEND		
BASIN ID A: BASIN Label B: AREA c: $\mathrm{C}-100 \mathrm{YR}$ D: C-5 YR	PROPOSED R.O.W PROPOSED PROPERTY LINES PROPOSED SIDEWALK EXISTING PROPERTY LINE ROW EXISTING FL EXISTING SIDEWALK EXISTING	

design point		-------------------
PROPOSED FLOW DIRECTION \rightarrow	drainage access \& Maliten	nance - - -
	EXISTING	PROPOSED
basin drainage area		-
EXISTING STORM SEWER STORM SEWER PROPOSED	-6100-	
future basin area \quad - - - -		
		FUTURE
NOTE: STORM INFRASTRUCTURE IN PUBLIC R.O.W CONSIDRED PUBLC. AL OTHER STORM SEWER INERASTRUCTURE IS PRIVATE UNIESS STATED OTHERWISE.		- 6100

DRAINAGE MAP HOMESTEAD NORTH 02-24-2022
SHEET 1 OF 2

HOMESTEAD NORTH AT STERLING RANCH FILING NO. 2 FUTURE DRAINAGE MAP
see sheet

Project: $\mathbf{2 5 1 8 8 . 1 0}$ Homestead North Filing No. 2

| PemmaneNT- |
| ---: | :--- |
| Poolt |

Example Zone

Define Zones and Basin Geometry
Zone 1 Volume (WQCV) $=0.442$ acre-fee

Zone 2 Volume (EURV - Zone 1) =	0.860
Zone 3 Volume (100 -year - Zones $1 \& 2$) $=$	1.078
Total Detention Basin Volume $=$	2.380
Initial Surcharge Volume (ISV) =	user
Initial Surcharge Depth (ISD) $=$	user
Total Available Detention Depth ($\mathrm{H}_{\text {total }}$) $=$	user
Depth of Trickle Channel ($\mathrm{H}_{\text {TC }}$) $=$	user
Slope of Trickle Channel ($\mathrm{STC}_{\text {c }}$) $=$	user
Slopes of Main Basin Sides ($\mathrm{S}_{\text {main }}$) $=$	user
Basin Length-to-Width Ratio (Ruw) $=$	user

Optional User Overides

	Optional User Overrides
	acre-feet
acre-feet	

Project: $\mathbf{2 5 1 8 8 . 1 0}$ Homestead North Filing No. 2 Basin ID: Pond B

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)				Calculated Parameters for Overflow Weir		
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0$ ftleight of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	Zone 3 Weir	Not Selected	feet feet
	5.60	N/A		5.60	N/A	
	5.00	N/A		5.00	N/A	
Overflow Weir Grate Slope =	0.00	N/A		6.88	N/A	
Horiz. Length of Weir Sides $=$	5.00	N/A	feet Overflow Grate Open Area w/o Debris =	17.40	N/A	ft^{2}
Overflow Grate Type	Type C Grate	N/A	\% Overflow Grate Open Area w/ Debris	17.40	N/A	ft^{2}
Debris Clogging \% =	0\%	N/A				

Depth to Invert of Outlet Pipe $=$	One 3 Restricto	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches	Outlet Orifice Area $=$ Outlet Orifice Centroid $=$	Zone 3 Restrictor	Not Selected	ft^{2}
	0.00	N/A			2.53	N/A	
	24.00	N/A			0.83	N/A	feet
Restrictor Plate Height Above Pipe Invert =	18.00		inches Half-Central Angle of	Restrictor Plate on Pipe $=$	2.09	N/A	radians

Spillway Invert Stage=	7.20	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	75.00	feet
Spillway End Slopes =	4.00	$\mathrm{H}: \mathrm{V}$
Freeboard above Max Water Surface $=$	1.00	feet

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	4.00
CUHP Runoff Volume (acre-ft)	0.442	1.302	1.255	1.836	2.352	3.073	3.644	4.379	7.939
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.255	1.836	2.352	3.073	3.644	4.379	7.939
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	3.0	8.2	12.5	22.4	28.1	36.0	70.5
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.11	0.30	0.45	0.81	1.02	1.30	2.55
Peak Inflow Q (cfs) $=$	N/A	N/A	18.7	28.3	35.4	47.4	56.3	67.3	119.7
Peak Outflow Q (cfs) =	0.2	0.7	0.7	1.6	9.0	22.1	28.3	29.8	98.1
Ratio Peak Oufflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.2	0.7	1.0	1.0	0.8	1.4
Structure Controlling Flow $=$	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) $=$	N/A	N/A	N/A	0.0	0.5	1.2	1.6	1.6	1.8
Max Velocity through Grate $2(\mathrm{fps})=$	N/A								
Time to Drain 97% of Inflow Volume (hours) $=$	38	66	66	71	69	66	65	63	54
Time to Drain 99\% of Inflow Volume (hours) =	40	70	70	77	76	75	74	73	68
Maximum Ponding Depth (ft) $=$	3.07	4.95	4.68	5.65	5.85	6.07	6.25	6.81	7.64
Area at Maximum Ponding Depth (acres) $=$	0.38	0.53	0.51	0.58	0.60	0.61	0.63	0.67	0.74
Maximum Volume Stored (acre-ft) =	0.445	1.304	1.165	1.685	1.809	1.942	2.047	2.417	2.996

MHFD-Detention, Version 4.04 (February 2021)

DRAN TIME[hr]

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

Subdivision: Proposed Conditions Rational
Location: ElPaSo County

Homestead North @
Project Name: Sterling Ranch F3
Project No.: 25188.12
Calculated By: REB
Checked By:
Date: 10/12/22

	STORM DRAIN SYSTEM			Notes
	DESIGN POINT	DESIGN POINT	DESIGN POINT	
Q_{100} (cfs):	37.0			Flows are the greater of proposed vs. future
Conduit	Pipe			
D_{c}, Pipe Diameter (in):	30			
W, Box Width (ft):	N/A			
H, Box Height (ft):	N/A			
Y_{t}, Tailwater Depth (ft):	1.00			If unknown, use $\mathrm{Y}_{\mathrm{t}} / \mathrm{D}_{\mathrm{c}}($ or H$)=0.4$
$\mathrm{Y}_{\mathrm{t}} / \mathrm{Dc}$ or $\mathrm{Y}_{\mathrm{t}} / \mathrm{H}$	0.40			
$\mathrm{Q} / \mathrm{D}^{2.5}$ or $\mathrm{Q} /\left(\mathrm{WH}^{3 / 2}\right)$	3.74			
Supercritical?	No			
Y_{n}, Normal Depth (ft) [Supercritical]:	1.00			
$\mathrm{D}_{\mathrm{a}}, \mathrm{H}_{\mathrm{a}}$ (in) [Supercritical]:	N/A			$\mathrm{D}_{\mathrm{a}}=\left(\mathrm{D}_{\mathrm{c}}+\mathrm{Y}_{\mathrm{n}}\right) / 2$
Riprap d_{50} (in) [Supercritical]:	N/A			
Riprap d_{50} (in) [Subcritical]:	7.76			
Required Riprap Size:	L			Fig. 9-38 or Fig. 9-36
d_{50} (in):	9			
Expansion Factor, $1 /(2 \tan \theta)$:	3.90			Read from Fig. 9-35 or 9-36
θ :	0.13			
Erosive Soils?	No			
Area of Flow, $\mathrm{A}_{\mathrm{t}}\left(\mathrm{ft}^{2}\right)$:	5.29			$A_{t}=Q / V$
Length of Protection, $\mathrm{L}_{\mathrm{p}}(\mathrm{ft})$:	10.9			$\mathrm{L}=(1 /(2 \tan \theta))($ At/ Yt - D)
M in Length (ft)	7.5			M in L=3D or 3H
M ax Length (ft)	25.0			MaxL=10D or 10H
M in Bottom Width, T (ft):	5.3			$\mathrm{T}=2 *\left(\mathrm{~L}_{p}^{*} \tan \theta\right)+\mathrm{W}$
Design Length (ft)	11.0			
Design Width (ft)	5.3			
Riprap Depth (in)	18			Depth $=2\left(\mathrm{~d}_{50}\right)$
Type II Bedding Depth (in)*	6			*Not used if Soil Riprap
Cutoff Wall	No			
Cutoff Wall Depth (ft)				Depth of Riprap and Base
Cutoff Wall Width (ft)				

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).

Figure 9-35. Expansion factor for circular conduits

Figure 9-36. Expansion factor for rectangular conduits

Appendix E Drainage Maps

HOMESTEAD NORTH AT STERLING RANCH FILING NO. 3 PROPOSED CONDITIONS DRAINAGE MAP

POND A TOTAL BASIN: 29.95 ACRES
POND B TOTAL BASIN: 28.13 ACRES
TOTAL FROM FILING NO. 3: 4.98 ACRES
POND C TOTAL BASIN: 224.3 ACRES
TOTAL FROM FILING NO. 3: 0.35 ACRES
PLATED FILING NO. 3 WQEXCLUSIONS:PARTS II G, H, I AREA: 4.42 ACRES

NOTE:

1. THIS MAP SHOWS HOW WATER QUALITY IS PROVIDED FOR FILING NO. 3 AREAS. SEE THE FILING NO. 1 AND 2 FDR'S FOR THE WATER QUALITY MAPS ASSOCIATED WITH THOSE FILINGS.
2. SEE THE HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1 FINAL DRAINAGE REPORT FOR DETAILED POND C SIZING AND DESIGN INFORMATION.
3. SEE THE HOMESTEAD NORTH AT STERLING RANCH FILING NO. $2 \& 3$ FINAL DRAINAGE REPORT FOR DETAILED POND B SIZING AND DESIGN INFORMATION.
4. SEE THE HOMESTEAD NORTH AT STERLING RANCH FILING NO. 3 FINAL DRAINAGE REPORT FOR DETAILED POND A SIZING AND DESIGN INFORMATION.

PROPOSED CONDITIONS WATER QUALITY MAP homestead north at sterling ranch fing no. 3 JOB NO. 25188.10 OB-O2-2022
SHEET 1 OF

v2-Drainage Report - Final.pdf Markup Summary

Callout (11)		
	Subject: Callout Page Label: 11 Author: CDurham Date: 12/20/2022 4:02:22 PM Status: Color: Layer: Space:	State what those existing flows are
	Subject: Callout Page Label: 14 Author: CDurham Date: 12/20/2022 4:29:46 PM Status: Color: Layer: Space:	Did not see anything resembling a work map for the channel improvements in Appendix D. Drainage maps from other filings and pond design worksheets were the only items included. Please include a copy of the channel workmap
	Subject: Callout Page Label: 16 Author: CDurham Date: 12/20/2022 4:34:31 PM Status: Color: Layer: Space:	Where can information for Ponds B \& C be found?
	Subject: Callout Page Label: 17 Author: CDurham Date: 12/20/2022 4:39:32 PM Status: Color: Layer: Space:	Include Required volumes in table and existing flow rates for comparison.
	Subject: Callout Page Label: 39 Author: CDurham Date: 12/21/2022 10:44:54 AM Status: Color: Layer: Space:	Per drainage map, slope for this section of swale appears to be closer to 0.75%
	Subject: Callout Page Label: 112 Author: CDurham Date: 12/21/2022 12:33:20 PM Status: Color: Layer: Space:	C-values do not match table

