FINAL DRAINAGE REPORT
FOR
SADDLEHORN RANCH - FILING 5 EARLY GRADING

Prepared For:
ROI Property Group, LLC
2495 Rigdon Street
Napa, CA 94558
(707) 365-6891

September 1, 2022
Project No. 25142.07

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive
Colorado Springs, CO 80919
719-593-2593

El Paso County PCD File No.:
EGPXXX
EGP226

Final Drainage Report

Filing 5 - Saddlehorn Ranch Early Grading

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Bryan Law, Colorado P.E. \# 25043
For and On Behalf of JR Engineering, LLC.

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

By:
Title:
Address:

ROI Property Group, LLC

2495 Rigdon Street
Napa, CA 94558

El Peso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Joshua Palmer, P.E.
County Engineer/ ECM Administrator

Date

Conditions:

Final Drainage Report
Filing 5-Saddlehom Ranch Early Grading
CONTENIS

PURPOSE. 0
GENERAL LOCATION AND DESCRIPTION 0
LOCATION. 0
DESCRIPTION OF PROPERTY 1
Floodplain Statement 1
DRAINAGE BASINS AND SUB-BASINS 1
Existing Major Basin Descriptions 1
Existing Sub-basin Drainage 3
Proposed Sub-basin Drainage 3
Early Grading Drainage 4
DRAINAGE DESIGN CRITERIA 5
Development Criteria Reference 5
Hydrologic Criteria. 6
Hydraulic Criteria 6
DRAINAGE FACILITY DESIGN 6
General Concept. 6
Specific Details 7
Four Step Process to Minimize Adverse Impacts of Urbanization 7
Water Quality 7
Erosion Control Plan 7
Operation \& Maintenance 8
Drainage and Bridge Fees 8
SUMMARY 8
REFERENCES: 9

APPENDICES

A. Figures and Exhibits
B. Hydrologic Calculations
C. Hydraulic Calculations
D. Detention and Water Quality Calculations
E. Reference Materials
F. Drainage Maps

No reference materials included. Please provide with next submittal

LIST OF TABLES:

 or delete appendix section1. Major Drainageway Naming Convention
2. Major Drainageway - Ex. 100-Year Flow Comparison
3. Pond Summary
4. Sediment Basin Summary

Purpose

This document is the Final Drainage report for Filing 5 of Saddlehorn Ranch Early Grading. The purpose of this report is to:

1. Identify on-site and off-site drainage patterns.
2. Recommend storm water facilities to collect and convey storm runoff from the proposed development during early grading operations to appropriate discharge and/or detention locations.
3. Recommend water quality and detention facilities to control discharge release rates to below historic.
4. Demonstrate compliance with surrounding major drainage basin planning studies, master development drainage plans and flood insurance studies.

General Location and Description

Location

The proposed Saddlehorn Ranch Filing 5, known as "Filing 5" from herein, is a parcel of land located in Section 3 and 10, Township 13 South, Range 64 West of the $6^{\text {th }}$ Principal Meridian in El Paso County, Colorado. Saddlehorn Ranch is an 824 acre, rural, single family-development. Filing 5 is 126.73 acres and is comprised of 41 lots of the overall Saddlehorn Ranch development. Saddlehorn Ranch is bound by Judge Orr Road to the North and Curtis Road to the West. To the East, Saddlehorn Ranch is bound by undeveloped land owned by Brent Houser Enterprises, LLC. To the south, Saddlehorn Ranch is bound by undeveloped properties owned by Carolyn Gudzunas and Faye Reynolds. Filing 5 is bound by future Filing 4 to the north, Drainageway MS-06 to the west, and unplatted vacant land to the east and to the south. A vicinity map is presented in Appendix A.

Currently, there are two major Drainageway that will receive flows from Filing 5: Gieck Ranch (WFR7A) and Haegler Ranch Main Stem 6 (MS-06). These Drainageways were analyzed, both hydrologically and hydraulically, in the following reports:

- Haegler Ranch Basin Drainage Basin Planning Study (DBPS), May 2009.
- Santa Fe Springs - Haegler Ranch Drainage Basin Letter of Map Revision, June 2004.
- Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch, May 2020.
- Geick Ranch Drainage Basin Planning Study (DBPS), October 2007

The impact of these Drainageways and planning studies on the proposed development will be discussed later in the report.

Final Drainage Report

Filing 5-Saddlehom Ranch Early Grading

Description of Property

Filing 5 is currently unoccupied and undeveloped. The existing ground cover is sparse vegetation and open space, typical of a Colorado rolling range land condition. In general, Filing 5 slopes from south to southeast and the existing drainageways follow this topography.

Per a NRCS web soil survey of the area, Filing 5 is made up of Group A soils. Group A soils have a high infiltration rate when thoroughly wet. A NRCS soil survey map has been presented in Appendix A.

Floodplain Statement

Based on the FEMA FIRM Map number 08041C0558G, dated December 7, 2018, Filing 5 lies within Zone AE and Zone X . Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. All proposed residential development within Filing 5 will occur in Zone X. The FIRM Map has been presented in Appendix A.

Address CLOMR/LOMR

Drainage Basins and Sub-BASINS

 requirements
Existing Major Basin Descriptions

Filing 5 lies within Haegler Ranch Drainage Basin based on the "Haegler Ranch Drainage Basin Planning Study" prepared by URS Corporation in May 2009.

The Haegler Ranch Drainage Basin covers approximately 16.6 square miles in unincorporated El Paso County, CO. The Haegler Ranch Drainage Basin is tributary to Black Squirrel Creek. In its existing condition, the basin is comprised of rolling rangeland with poor vegetative cover associated with Colorado's semi-arid climate. The natural Drainageways within the basin are typically shallow and wide with poorly defined flow paths in most areas. Anticipated land use for the basin includes residential and commercial development. Residential developments will range from $0.125-5$ acre lots with a mix of low, medium and high density developments.

As part of its drainage research, JR Engineering reviewed the following drainage studies, reports and LOMRs:

- Haegler Ranch Drainage Basin Planning Study prepared by URS Corporation in May 2009
- Santa Fe Springs - Haegler Ranch Drainage Basin Letter of Map Revision prepared by Tri-Core Engineering in June 2004.
- Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch, prepared by JR Engineering, May 2020.
- Gieck Ranch Drainage Basin Planning Study (DBPS), October 2007

The "Haegler Ranch Drainage Basin Planning Study" was used to establish a stormwater management plan for the existing and future stormwater infrastructure needs within the Haegler Ranch Drainage Basin. Based on provided drainage maps and analysis, in the existing condition Haegler Ranch contributes a total

Final Drainage Report
 Filing 5-Saddlehom Ranch Early Grading

of 710 cfs onto the site. Of the $710 \mathrm{cfs}, 590$ cfs crosses Curtis Road in an existing 24" CMP onto the site. Major Drainageway MS-06 conveys the stormwater through the site and to its off-site confluence with Major Drainageway MS-05. The remaining 210 cfs crosses Curtis Road in an existing 36" CMP onto the site. Major Drainageway T-6 conveys the stormwater through the site and to its off-site confluence with Major Drainageway MS-05. Both Curtis Road culverts are undersized for existing and future flows and overtopping occurs locally near the culvert crossings.

Based on flood impacts, stream stability and cost effectiveness, this study recommended a sub-regional detention approach. This allows future development anywhere in the basin with the construction of an associated sub-regional pond. However, based on the Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch, Filing 5 will utilize one on-site full spectrum water quality and detention ponds instead. This full spectrum detention pond will limit developed discharge into Drainageway MS-06 to less than historic rates.

The Santa Fe Springs - Haegler Ranch Drainage Basin LOMR was executed on Haegler Ranch Tributary 2, 3, and 4. The LOMR revised the onsite effective flood zone from Zone A to Zone AE. See FIRM Map Panel 08041C0558G for limits of LOMR study and revised flood zones, presented in Appendix E.

The Gieck Ranch Drainage Basin covers approximately 22 square miles and begins approximately five miles northeast of the Town of Falcon and travels approximately 15 miles to the southeast. The Gieck Ranch Drainage Basin is tributary to Black Squirrel Creek which drains south to the Arkansas River near the city of Pueblo, Colorado. The majority of the area within the basin is undeveloped and is characterized as rolling range land typically associated with Colorado's semi-arid climates. Anticipated land use for the basin includes residential, industrial, agricultural and commercial development. Residential developments will range from $0.125-5$ acre lots with a mix of low, medium and high density developments.

See Table 2 for comparison of Drainageway identification and the naming convention used within the context of this report. See Table 3 for a comparison of 100 -year flows as calculated in the aforementioned DBPS and LOMR. An existing conditions drainage map is presented in Appendix E.

Table 1: Major Drainageway Naming Convention

Major Drainageway Naming Conventions			
Saddlehorn Ranch MDDP/PDR:	Per Haegler Ranch DBPS:	Per Geick Ranch DBPS:	Per Sante Fe Springs LOMR:
MS-06	Main Stem (MS- $06)$	N/A*	Haegler Ranch Tributary 3
WF-R7A	N/A*	West Fork (Middle)/WF-R7A	N/A*

Table 2: Major Drainageway - Ex. 100-Year Flow Comparison

Major Drainageways: 100-Year Flow Comparison				
Drainageway Name	Contributing Area (sq. mi.)	Q100 Per Haegler Ranch DBPS:	Q $_{100}$ Per Geick Ranch DBPS:	Q $_{100}$ Per Sante Fe Springs LOMR:
MS-06 @ Curtis Road	1.05	590 cfs	N/A*	505 cfs
WF-R7A @ Judge Orr Road	1.50	N/A*	$1,017 \mathrm{cfs}$	N/A*

*N/A: Flow regime outside limits of study.

The Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch proposed the overall drainage facility design for Saddlehorn Ranch. Within the context of this report, onsite drainage basins the associated full spectrum water quality pond were established. As it pertains to Filing 5, two full spectrum water quality ponds are recommended. Roadside ditches and local street culverts will be utilized to capture and convey Filing 5's runoff to the water quality ponds. Both ponds A and B will discharge into Drainageway MS-06, while a portion of the proposed lots will release directly into Drainageway WF-R7A. All ponds are full spectrum and will release at less than historic rates.

Existing Sub-basin Drainage

On-site, existing sub-basin drainage patterns are generally from northwest to southeast by way of Drainageway MS-06 and Drainageway WF-R7A. On-site areas flow directly into these drainageways, which also bypass off-site flows through the site.

On-site, existing drainage basins were established based upon existing topography and the limits of the 100-year floodplain. These existing sub-basins were analyzed in the Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch. An existing drainage map has been provided in

Appendix E.
 Provide description of existing
 Proposed Sub-basin Drainage sub-basins and design points

The proposed Filing 5 basin delineation is as follows; rangeland and runoff generally flows southeast towards the southern property line where it wift ultimately outfall into Drainageway MS-06. In the proposed condition, Basin A will be rural 2.5 acre lots, paved roadway, and will include Pond A. Runoff from this basin will be collected in road side ditches and conveyed to Pond A located in the southeast corner of the Filing 5 development. Pond A will ee a full spectrum water quality and detention pond, and will release at less than historic rates into Drainageway MS-06. ultimately... State how it will function with EGP construction

Basin B consists of Sub-basins B1-B6 combining for a total of 60.42 acres. In its existing condition, Basin B is rolling rangeland and runoff generally flows southwest to Drainageway MS-06. In the
proposed condition, Basin B will be rural 2.5 acre lots, paved roadway, and will inclyele Pond B. Runoff from this basin will be collected in road side ditches and conveyed west to Pone B located in the south west corner of the Filing 5 development. Pond B is a full spectrum water quality and detention pond, and will release at less than historic rates into Drainageway MS-06.

Basin C consists of Sub-basins C1-C2 combining for a total of 5.45 acres. In its existing condition, Basin C is rolling rangeland and runoff generally flows south west towards Drainageway MS-06. In the proposed condition, Basin C will be rural 2.5 acre lots and paved roadway. Runoff from this basin will be collected in road side ditches and conveyed to the existing Pond C located in the southern portion of the Filing 4 development along Del Cambre Trail. Pond C is a full spectrum water quality and detention pond, and will release at less than historic rates into Drainageway MS-06. All calculations pertaining to Pond C can be found in the Final Drainage Reportfor Saddlehorn Ranch - Filing 3, prepared by JR Engineering, February 4, 2022.

Basin UD consists of Sub-basins UD1-UD4 combining for a total of 45.81 acres. In their existing condition, these basins are rolling rangeland. Runoff from Basins UD2, UD3, \& UD 4 generally flows south and west to Drainageway MS-06. Basin UD1 flows east to Drainageway WF-R7A. In the proposed condition, these basins will be rural 2.5 acre lots with an Imperviousness $=6.2 \%$ and will be excluded from permanent stormwater quality management per Section I.7.1.B.5 of the ECM - Stormwater Quality Policy and Procedures. less than 10% ?

A summary table of proposed basin parameters and flow rates are presented in Appendix B.
Basin A runoff will overland flow into Pond A, or be captured by roadside swales and conveyed to the proposed Pond A. This full spectrum pond will release treated flows at less than historic rates to minimize adverse impacts downstream. Basin B will be captured in roadside swales and conveyed to the proposed Pond B. Pond A and Pond B will both discharge into Drainageway MS-06.

See Table 3 below for proposed Filing 5 pond parameters.

Table 3: Pond Summary

Tributary						
Sub-Basin	Pond	Tributary				
Name	Wcres Volume (ac-ft)	Total Detention Volume (ac-ft)	Provided Volume (ac-ft)	Maximum 100-Year Discharge (cfs)		
A	PONDA	15.08	0.085	0.199	0.279	7.5
B	PONDB	60.42	0.382	1.144	1.295	21.6

Early Grading Drainage

During early grading operations, runoff will be captured in roadside ditches and conveyed into one of two sediment basins. Basin A runoff will be conveyed to Sediment Basin 2. Basin B

Final Drainage Report
 Filing 5-Saddlehom Ranch Early Grading

runoff will be conveyed to Sediment Basin 1. Sediment Basin 1 is designed to treat a tributary area of 60.42 acre, 20.98 acre of disturbed area, and 39.44 acre of undisturbed area. The required volume of Sediment Basin 1 in order to treat the 60.42 acre is $1.320 \mathrm{Ac}-\mathrm{ft}$. Sediment Basin 1 exceeds this with a provided volume of 2.315 Ac-ft. Sediment Basin 1 was designed to drain its entire volume within 40 hrs via a temporary outlet structure. This temporary outlet structure was designed as a singular column with five 1.25 " dia holes allowing for water to drain.

Sediment Basin 2 is designed to treat a tributary area of 15.08 acre, 1.55 acre of disturbed area, and 13.53 acre of undisturbed area. The required volume of Sediment Basin 2 in order to treat the 15.08 acre is 0.219 Ac -ft. Sediment Basin 2 has a provided volume of 0.279 Ac -ft. Sediment Basin 2 was designed to drain its entire volume within 40 hrs via a temporary outlet structure. This temporary outlet structure was designed as a singular column with five 1.25 " dia holes allowing for water to drain.

Once the project progresses past this early grading phase, both Sediment Basin 1 and Sediment Basin 2 will be converted to a full spectrum water quality detention ponds. Sediment Basin 1 will be converted to Pond B, and Sediment Basin 2 will be converted to Pond A. Each Pond will be fitted with a concrete forebay along with appropriately sized riprap. The water will then drain through a concrete trickle channel to the proposed permanent outlet structure. Both temporary outlet structures will be replaced with permanent outlet structures, each with appropriately sized riprap spreaders. Both ponds will release treated flows at less than historic rates to minimize adverse impacts downstream. Both ponds will discharge into Major Drainageway MS-06. The final design for both Pond A and Pond B will be included in the Final drainage Report.

See Table 4 below for proposed Filing 5 Early Grading sediment basin parameters

Table 4: Sediment Basin Summary

Tributary Sub-Basin	Sediment Basin Name	Tributary Acres	Total Detention Volume (ac- ft)	Provided Volume (ac- ft)	Maximum Discharge (cfs)
A	Sediment Basin 2	15.08	0.219	0.279	0.0331
B	Sediment Basin 1	60.42	1.320	2.315	0.1997

Drainage Design Criteria

Development Criteria Reference

Storm drainage analysis and design criteria for the project were taken from the "City of Colorado Spring/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1-3 (USDCM) and Chapter 6 and Section
3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County.

Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100 -year (major) storm event. Rational Method calculations were prepared, in accordance with Section 13.3.2.1. of the CCSDCM, for the sub-basins that directly impact the sizing of ditches and local street culverts. Rational method calculations are presented in Appendix B.

Urban Drainage and Flood Control District's UD-Detention, Version 4.06 workbook was used for pond sizing. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. Pond sizing spreadsheets are presented in Appendix D.

Hydraulic Criteria

Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used for roadside ditch design. Ditches were checked for velocity and capacity per the CCS/EPCDCM Section 12.3.2.2. In order to check both capacity and velocity, a cross section analysis was performed on the roadside swales using the basin's maximum runoff Q and the proposed uniform slope of the swale. Swale cross sections have been presented in Appendix C.

Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used for local road crossing culvert design. Culvert size was determined based on 100-year flows and hydraulic criteria from EPCDCM Chapter 9 -Culvert Design. All local road crossing culvert design reports are presented in Appendix C.

Drainage Facility Design

General Concept

The proposed stormwater conveyance system was designed to convey the developed Filing 5 runoff during interim early grading to one of two Sediment Basins via roadside ditches and local street culverts. These Sediment Basins were designed to release at less than historic rates to minimize adverse impacts downstream during early grading.

The proposed early grading improvements are over designed for the current state of the project site. The roadside swales along with the proposed culverts are designed to treat runoff for the completed development. During early grading operations, the site will have minimal composite impervious surfaces without the proposed roads and vacant lots. This will allow more runoff to infiltrate the ground, reducing the amount of runoff that needs to be caught by the roadside swales and sediment basins.

Once the project progresses past early grading operations, Sediment Basin 1 and Sediment Basin 2 will each be converted into Pond B and Pond A respectively. The temporary outlet structures will be replaced with permanent outlet structures. Each Pond will have a concrete forebay and trickle channel. Both ponds

Final Drainage Report
 Filing 5-Saddlehom Ranch Early Grading

will release treated flows at less than historic rates to minimize adverse impacts downstream. Both ponds will discharge into Major Drainageway MS-06. The final design for Ponds A and B will be included in the Final Drainage report.

Specific Details

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume (WQCV), and consider the need for Industrial Commercial BMP's.

Step 1, Reducing Runoff Volumes: The development of the project site is proposed single family residential lots ($2.5 \mathrm{ac} . \mathrm{min}$.) with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. Roadways utilize soil riprap lined roadside ditches further disconnecting impervious areas. These practices will also allow for increased infiltration and reduce runoff volume.

Step 2, Stabilize Drainageways: Filing 5 utilizes roadside ditches with culvert crossings throughout. These roadside ditches direct the on-site development flows to the proposed detention ponds within the project that releases at or below historic rates into Drainageway MS-06. Based upon the proposed reduction in released flows compared to the pre-developed flows, no impacts to downstream Drainageway MS-06 or Drainageway WF-R7A are anticipated.

Step 3, Provide WQCV: Runoff from this development is treated through capture and slow release of the WQCV in a full spectrum water quality and detention pond that is designed per current El Paso County drainage criteria.

Step 4 Consider the need for Industrial and Commercial BMP's: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative are prepared in conjunction with this report. Site specific temporary source control BMPs as well as permanent BMP's are detailed in this plan and narrative to protect receiving waters.

Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention are provided for all developed basins. Outlet structure release rates are limited to less than historic rates to minimize adverse impacts to downstream stormwater facilities. Complete pond and outlet structure designs are presented in Appendix D.___ for information

Erosion Control Plan

The El Paso County Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate must be submitted since this project is disturbing more than 1 acre. The Early Erosion Control Plans for Filing 5 have been submitted concurrently with this report.

Final Drainage Report

Filing 5-Saddlehom Ranch Early Grading

Saddlehorn

Operation \& Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within the any platted County ROW will be owned and maintained by El Paso County. All proposed drainage structures within easements or tracts will be owned and maintained by the 824 Acre Metropolitan No. 1. Vegetation in the natural and improved portions of Drainageway MS-06 with the Filing 5 improvements is the responsibility of $\$ 4$ Acre Metropolitan District No. 1. This includes all mowing, seeding and weed control activities. An Inspection \& Maintenance Plan is submitted concurrently with this drainage report that details the required maintenance activities and intervals to ensure proper function of all stormwater infrastructure in the future.

Drainage and Bridge Fees

Drainage and Bridge Fees are not due with the early grading permit application. An estimate of basin fees for the proposed development within Haegler Ranch drainage basin will be calculated and provided with the Filing 5 Final Drainage Report.

SUMMARY

The proposed development remains consistent with pre-development drainage conditions with the construction of the recommended drainage improvements, including ditches, culverts, detention ponds and drainage channel improvements. The proposed development will not adversely affect the offsite major drainageways \$r surrounding development. This report meets the latest El Paso County Drainage Criteria requirements for this site and is in accordance with the PDR/MDDP for Saddlehorn Ranch.

References:

1. City of Colorado Springs Drainage Criteria Manual Volume 1, City of Colorado Springs, CO, May 2014.
2. Urban Storm Drainage Criteria Manual, Urban Drainage and Flood Control District, Latest Revision.
3. Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch, JR Engineering, May 2020.
4. Haegler Ranch Drainage Basin Planning Study, URS Corporation, May 2009.
5. The Santa Fe Springs - Haegler Ranch Drainage Basin LOMR, Federal Emergency Management Agency, October 20, 2004.
6. Final Drainage Report for Saddlehorn Ranch - Filing 3, JR Engineering, February 4, 2022

Final Drainage Report
Filing 5-Saddlehom Ranch Early Grading

APPENDIX A

FIGURES AND EXHIBITS

VICINITY MAP
SADDLEHORN RANCH
25142.07

08/29/21
SHEET 1 OF 1

MAP LEGEND

Area of Interest (AOI)

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 16, Sep 10, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 22, 2016-Aug 17, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	388.3	44.6%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	307.3	35.3%
29	Fluvaquentic Haplaquolls, nearly level	D	150.0	17.2%
83	Stapleton sandy loam, 3 to 8 percent slopes	B	24.6	2.8%
95	Truckton loamy sand, 1 to 9 percent slopes	A	0.6	$\mathbf{8 7 0 . 8}$
Totals for Area of Interest		$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

APPENDIX B

HYDROLOGIC CALCULATIONS

Subdivision: Saddlehorn Ranch Filing 5 Early Grading Location: El Paso County

Project Name: Saddlehorn Ranch
Project No.: 25142.07
Calculated By: WKN
Checked By: TBD
Date: 8/12/22

		Paved Roads			2.5 Acre Rural Lots			Lawns			Basins Total Weighted \% Imp.
Basin ID	Total Area (ac)	\% Imp.	Area (ac)	Weighted \% Imp.	\% Imp.	Area (ac)	Weighted \% Imp.	\% Imp.	Area (ac)	Weighted \% Imp.	
A1	15.08	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	15.08	2.0\%	2.0\%
B1	12.57	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	12.57	2.0\%	2.0\%
B2	12.64	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	12.64	2.0\%	2.0\%
B3	10.83	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	10.83	2.0\%	2.0\%
B4	9.16	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	9.16	2.0\%	2.0\%
B5	13.72	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	13.72	2.0\%	2.0\%
B6	1.50	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	1.50	2.0\%	2.0\%
C1	1.26	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	1.26	2.0\%	2.0\%
C2	4.19	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	4.19	2.0\%	2.0\%
UD1	8.14	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	8.14	2.0\%	2.0\%
UD2	25.14	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	25.14	2.0\%	2.0\%
UD3	9.85	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	9.85	2.0\%	2.0\%
UD4	2.68	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	2.68	2.0\%	2.0\%
						\checkmark					
							\checkmark				
								,			
TOTAL	126.76										2.0\%

2.5 Acre Rural Lots - Comp. \% Impervious Calculation

Total Area (ac)	Area (ac) - Roofs (90\%)	Area (ac)- Drives (100\%)	Area (ac) - Lawns (2\%)
2.50	0.068	0.046	2.39

Comp \% Imperviousness

6.20\%

Add note about plat restriction to 10% imperviousness

COM POSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Saddlehorn Ranch Filing 5 Early Grading Location: El Paso County

Project Name: Saddlehorn Ranch
Project No.: 25142.07
Calculated By: WKN
Checked By: TBD
Date: $8 / 12 / 22$

Basin ID	Total Area (ac)	Basins Total Weighted \% Imp.	Hydrologic Soil Group			Hydrologic Soil Group			Minor Coefficients			Major Coefficients			Basins Total Weighted C_{5}	Basins Total Weighted C_{100}
			Area A (ac)	Area B (ac)	Area C/D (ac)	$\begin{aligned} & \% A \\ & (\mathrm{ac}) \end{aligned}$	$\begin{aligned} & \text { \% B } \\ & \text { (ac) } \end{aligned}$	$\begin{gathered} \text { \%C/D } \\ \text { (ac) } \end{gathered}$	$\mathrm{C}_{5,4}$	$\mathrm{c}_{5, \mathrm{~B}}$	$\mathrm{C}_{5, \mathrm{Cl}}$	$\mathrm{C}_{100, \mathrm{~A}}$	$\mathrm{C}_{100, \mathrm{~B}}$	$\mathrm{C}_{100, / / \mathrm{D}}$		
A1	15.08	2.0\%	15.08	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
B1	12.57	2.0\%	12.57	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
B2	12.64	2.0\%	12.64	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
B3	10.83	2.0\%	10.83	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
B4	9.16	2.0\%	9.16	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
B5	13.72	2.0\%	13.72	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
B6	1.50	2.0\%	1.50	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
Cl	1.26	2.0\%	1.26	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
Q	4.19	2.0\%	4.19	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
UD1	8.14	2.0\%	8.14	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
UD2	25.14	2.0\%	25.14	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
UD3	9.85	2.0\%	9.85	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
UD4	2.68	2.0\%	2.68	0.00	0.00	100\%	0\%	0\%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
TOTAL	126.76	2.0\%	126.76	0.00	0.00	100\%	0\%	0\%	\cdots	\cdots	\cdots	---	---	\cdots	0.01	0.13

$\begin{gathered} \text { NRCS } \\ \text { Soil } \\ \text { Group } \end{gathered}$		Storm Return Period					
	${ }^{2}$-Year	5-Year	${ }^{10-\text {-ear }}$	25-Year	50-Year	100-Year	500-Year
A	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.84 i^{1302} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.86 i^{276} \end{aligned}$	$\begin{array}{l\|} \hline \mathrm{C}_{\mathrm{A}}= \\ 0.87 i^{1232} \end{array}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.84 i^{1.124} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.85 i+0.025 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.78 i+0.110 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.65 i+0.254 \end{aligned}$
в	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.84 i^{1.169} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.86 i^{1.088} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.81 i+0.057 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.63 i+0.249 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.56 i+0.328 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.47 i+0.426 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.37 i+0.536 \end{aligned}$
C/D	$\begin{aligned} & \mathrm{C}_{\mathrm{CD}}= \\ & 0.83 i^{1.122} \end{aligned}$	$\begin{aligned} & \mathrm{CCD}= \\ & 0.82 i+0.035 \end{aligned}$	$\begin{aligned} & \mathrm{CCD}= \\ & 0.74 i+0.132 \end{aligned}$	$\begin{aligned} & \operatorname{CCD}= \\ & 0.56 i+0.319 \end{aligned}$	$\begin{aligned} & \mathrm{CCD}= \\ & 0.49 i+0.393 \end{aligned}$	$\begin{aligned} & \mathrm{CCD}= \\ & 0.41 i^{i+0.484} \end{aligned}$	$\begin{aligned} & \mathrm{CCD}= \\ & 0.32 i+0.588 \end{aligned}$

Where:
$i=\%$ imperviousness (expressed as a decimal)
$C_{A}=$ Runoff coefficient for Natural Resources Conservation Service (NRCS) HSG A soils
$C_{B}=$ Runoff coefficient for NRCS HSG B soils
$C_{C D}=$ Runoff coefficient for NRCS HSG C and D soils.

STANDARD FORM SF－2 TIME OF CONCENTRATION

Subdivision：Saddlehom Ranch Filing 5 Early Grading Location：El Paso County

Project Name：Saddlehorn Ranch
Project No．： 25142.07
Calculated By：WKN
Checked By：TBD
Date：8／12／22

SUB－BASIN						INITIAL／OVERLAND			TRAVEL TIME					tc CHECK			FINAL
DATA						（ T_{i} ）			$\left(\mathrm{T}_{\mathrm{t}}\right.$ ）					（URBANIZED BASINS）			
$\begin{gathered} \hline \text { BASIN } \\ \text { ID } \\ \hline \hline \end{gathered}$	$\begin{aligned} & \hline \text { D.A. } \\ & \text { (ac) } \\ & \hline \hline \end{aligned}$	Hydrologic Soils Group	$\begin{gathered} \text { Impervious } \\ \text { \%) } \\ \hline \end{gathered}$	C_{5}	C_{100}	$\begin{aligned} & \hline \mathbf{L} \\ & \text { (ft) } \end{aligned}$	$\begin{aligned} & \hline \mathbf{S}_{\mathbf{o}} \\ & (\%) \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\mathrm{min}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{L}_{\mathbf{t}} \\ & \mathrm{f(t)} \\ & \hline ⿰ ⿺ 乚 一 匕 \end{aligned}$	$\begin{gathered} \mathbf{S}_{\mathrm{t}} \\ (\%) \end{gathered}$	K	$\begin{aligned} & \hline \text { VEL. } \\ & \text { (} \mathrm{ft} / \mathrm{s} \text {) } \\ & \hline \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{t}} \\ (\min) \end{gathered}$	$\text { COMP. } \mathrm{t}_{\mathrm{c}}$ (\min)	TOTAL LENGTH（ft）	$\begin{gathered} {\text { Urbanized } \mathbf{t}_{\mathbf{c}}}^{(\min)} \mathbf{} \end{gathered}$	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min) \\ \hline \hline \end{gathered}$
A1	15.08	A	2\％	0.01	0.13	300	4．8\％	20.4	1330	2．9\％	7.0	1.2	18.6	39.0	1630.0	39.7	39.0
B1	12.57	A	2\％	0.01	0.13	282	4．9\％	19.6	1160	1．3\％	15.0	1.7	11.5	31.2	1442.0	44.3	31.2
B2	12.64	A	2\％	0.01	0.13	20	20．0\％	3.3	1561	4．6\％	15.0	3.2	8.1	11.4	1581.0	38.7	11.4
B3	10.83	A	2\％	0.01	0.13	300	2．0\％	27.2	1117	3．1\％	15.0	2.6	7.0	34.3	1417.0	37.1	34.3
B4	9.16	A	2\％	0.01	0.13	300	3．3\％	23.1	997	1．5\％	15.0	1.8	9.0	32.1	1297.0	40.3	32.1
B5	13.72	A	2\％	0.01	0.13	41	9．0\％	6.1	3242	1．6\％	15.0	1.9	28.9	35.1	3283.0	72.4	35.1
B6	1.50	A	2\％	0.01	0.13	76	4．0\％	10.9	448	0．5\％	20.0	1.4	5.3	16.2	524.0	37.0	16.2
C1	1.26	A	2\％	0.01	0.13	143	2．4\％	17.7	184	1．0\％	15.0	1.5	2.0	19.7	327.0	29.0	19.7
Q	4.19	A	2\％	0.01	0.13	154	3．0\％	17.1	455	1．0\％	15.0	1.5	5.1	22.1	609.0	33.8	22.1
UD1	8.14	A	2\％	0.01	0.13	300	3．6\％	22.4	267	5．5\％	7.0	1.6	2.7	25.1	567.0	27.7	25.1
UD2	25.14	A	2\％	0.01	0.13	300	1．7\％	28.7	367	4．1\％	7.0	1.4	4.3	33.0	667.0	28.9	28.9
UD3	9.85	A	2\％	0.01	0.13	300	1．8\％	28.2	552	1．3\％	7.0	0.8	11.4	39.5	852.0	34.2	34.2
UD4	2.68	A	2\％	0.01	0.13	300	5．1\％	19.9	360	2．1\％	7.0	1.0	5.9	25.8	660.0	30.1	25.8

$t_{c}=t_{i}+t_{t} \quad$ Equation $6-2 \quad t_{i}=\frac{0.395\left(1.1-C_{s}\right) \sqrt{L}}{s_{0}}$

Where
$t_{c}=$ computed time of concentration（minutes）
$t=$ overland（initial）flow time（minutes）
$f_{t}=$ channelized flow time（minutes）
$t_{t}=\frac{L_{t}}{60 K \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}}$
Where：
$t_{t}=$ channelized flow time（travel time，min）
$L=$ waterway length（ $\#$ ）
$L_{t}=$ waterway length（fi）
$\mathrm{S}_{0}=$ waterway slope（ff
$V_{t}=$ waterway
$V_{t}=$ travel time velocity $(\mathrm{ft} / \mathrm{sec})=\mathrm{K} \sqrt{ }$ S
$K=$ NRCS conveyance factor（see Table $6-2$ ）．

Equation 6－2 $\quad t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L_{i}}}{S_{o}^{033}}$
Where：
$t_{i}=$ overland（initial）flow time（minutes）
$C_{s}=$ runoff coefficient for s－year frequency（from Table $6-4$ ）
$L_{s}=$ length of overland flow（ft）
$S_{S_{0}}=$ average slope along the overland flow path（f／ff）．
Equation 6－4 $\quad t_{c}=(26-17 i)+\frac{L_{t}}{60(14 i+9) \sqrt{S_{t}}}$
Where：
$t_{c}=$ minimum time of concentration for first design point when less than t_{c} from Equation 6－1
$L_{t}=$ length of channelized flow path（ft）
$i=$ imperviousness（expressed as a decimal）
$S_{t}=$ slope of the channelized flow path（ff／ft）
Equation 6－3

Type of Land Surface	Conveyance Factor， K
Heavy meadow	2.5
Tillage／field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

Use a minimum t_{c} value of 5 minutes for urbanized areas and a minimum t_{c} value of 10 minutes for areas
that are not considered urban．Use minimum values even when calculations result in a lesser time of
concentration．

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)

Notes:
Street and Pipe C*A values are determined by Q/i using the catchment's intensity value

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)

Notes:
Street and Pipe $\mathrm{C}^{*} \mathrm{~A}$ values are determined by Q / i using the catchment's intensity value.

APPENDIX C

HYDRAULIC CALCULATIONS

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP01 Early Grading Design Point 1 (Q5=0.2 cfs Q100=6.4 cfs)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M, c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=6719.70$
$=53.00$
$=0.94$
$=6720.20$
$=18.0$
$=$ Circular
$=18.0$
$=1$
$=0.014$
$=$ Circular Corrugate Metal Pipe
$=$ Projecting
$=0.034,1.5,0.0553,0.54,0.9$
$=53.00$
$=0.94$
$=6720.20$
$=18.0$
= Circular
$=18.0$
$=1$
$=0.014$
= Circular Corrugate Metal Pipe
= Projecting
$=0.034,1.5,0.0553,0.54,0.9$

$$
\begin{aligned}
& =6722.69 \\
& =32.00 \\
& =20.00
\end{aligned}
$$

Calculations

$\begin{array}{ll}\text { Qmin (cfs) } & =0.20 \\ \text { Qmax (cfs) } & =6.40 \\ \text { Tailwater Elev (ft) } & =(\mathrm{dc}+\mathrm{D}) / 2\end{array}$
Highlighted

Qtotal (cfs)	$=6.40$
Qpipe (cfs)	$=6.40$
Qovertop (cfs)	$=0.00$
Veloc Dn (ft/s)	$=4.10$
Veloc Up (ft/s)	$=5.25$
HGL Dn (ft)	$=6720.94$
HGL Up (ft)	$=6721.18$
Hw Elev (ft)	$=6721.86$
Hw/D (ft)	$=1.11$
Flow Regime	$=$ Inlet Control

Culvert Report

Hydraflow Express Extension for Autodesk $®$ Civil 3D® by Autodesk, Inc.
Friday, Aug 122022

DP02 Early Grading Design Point 1.0 (Q5=0.2 cfs Q100=6.4 cfs)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)

```
\[
=6708.83
\]
\[
=58.00
\]
\[
=1.83
\]
\[
=6709.89
\]
\[
=18.0
\]
\[
=\text { Circular }
\]
\[
=18.0
\]
\[
=1
\]
\[
=0.014
\]
= Circular Corrugate Metal Pipe
= Projecting
\(=0.034,1.5,0.0553,0.54,0.9\)
```

$$
=6712.90
$$

$$
=32.00
$$

$$
=20.00
$$

Calculations

Qmin (cfs)	$=0.20$
Qmax (cfs)	$=6.40$
Tailwater Elev (ft)	$=(\mathrm{dc}+\mathrm{D}) / 2$

Highlighted

Qtotal (cfs)	$=6.40$
Qpipe (cfs)	$=6.40$
Qovertop (cfs)	$=0.00$
Veloc Dn $(\mathrm{ft} / \mathrm{s})$	$=4.10$
Veloc Up $(\mathrm{ft} / \mathrm{s})$	$=5.25$
HGL Dn (ft)	
HGL Up (ft)	$=6710.07$
Hw Elev (ft)	$=6711.87$
Hw/D (ft)	$=1.10$
Flow Regime	

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP03 Early Grading Design Point 1.1 (Q5=0.3 cfs Q100=11.4 cfs)
 spreadsheet for DP 1.1. Please upda sheet with flows shown on hydrology sheet with flows shown on hydro spreadsheet (0.4 \& 15.2 cfs)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)

```
\[
=6684.74
\]
\[
=53.00
\]
\[
=0.87
\]
\[
=6685.20
\]
\[
=18.0
\]
\[
=\text { Circular }
\]
\[
=18.0
\]
\[
=1
\]
\[
=0.014
\]
= Circular Corrugate Metal Pipe
= Projecting
\[
=0.034,1.5,0.0553,0.54,0.9
\]
```

$$
=6688.10
$$

$$
=32.00
$$

$$
=20.00
$$

Calculations

$\begin{array}{ll}\text { Qmin (cfs) } & =0.30 \\ \text { Qmax (cfs) } & =11.41 \\ \text { Tailwater Elev (ft) } & =(\mathrm{dc}+\mathrm{D}) / 2\end{array}$
Highlighted
Qtotal (cfs) $=11.40$
Qpipe (cfs) $\quad=11.00$
Qovertop (cfs) $=0.40$
Veloc Dn (ft/s) $=6.45$
Veloc Up (ft/s) $=6.22$
HGL Dn (ft) $=6686.13$
HGL Up (ft) $=6686.80$
Hw Elev (ft) $=6688.15$
$\mathrm{Hw} / \mathrm{D}(\mathrm{ft}) \quad=1.96$
Flow Regime = Inlet Control

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP04 Early Grading Design Point 1.2 (Q5=0.5 cfs Q100= 17.7cfs)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M, c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=6680.37$
$=56.00$
$=0.80$
$=6680.82$
$=24.0$
= Circular
$=24.0$
$=1$
$=0.014$
= Circular Corrugate Metal Pipe
$=$ Projecting
$=0.034,1.5,0.0553,0.54,0.9$
$=6683.57$
$=32.00$
$=20.00$

Calculations
$\begin{array}{ll}\text { Qmin (cfs) } & =0.50 \\ \text { Qmax (cfs) } & =17.70 \\ \text { Tailwater Elev (ft) } & =(\mathrm{dc}+\mathrm{D}) / 2\end{array}$
Highlighted
Qtotal (cfs) $\quad=17.70$
Qpipe (cfs) $=17.48$
Qovertop (cfs) $=0.22$
Veloc Dn (ft/s) $=5.99$
Veloc Up (ft/s) $=6.87$
HGL Dn (ft) $=6682.12$
HGL Up (ft) $=6682.33$
Hw Elev (ft) $=6683.60$
$\mathrm{Hw} / \mathrm{D}(\mathrm{ft}) \quad=1.39$
Flow Regime = Inlet Control

Channel Report
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP 1 Swale (5-Year)(FR:0.64)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.00$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=1.70$

Highlighted

Depth (ft)	$=0.51$
Q (cfs)	$=1.700$
Area (sqft)	$=0.91$
Velocity (ft/s)	$=1.87$
Wetted Perim (ft)	$=3.72$
Crit Depth, Yc (ft)	$=0.43$
Top Width (ft)	$=3.57$
EGL (ft)	$=0.56$

Elev (ft)

Section

Channel Report
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP 1 Swale (100-Year)(FR:0.75)

Triangular	
Side Slopes $(\mathrm{z}: 1)$	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.00$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=10.50$

Highlighted

Depth (ft)	$=1.00$
Q (cfs)	$=10.50$
Area (sqft)	$=3.50$
Velocity (ft/s)	$=3.00$
Wetted Perim (ft)	$=7.29$
Crit Depth, Yc (ft)	$=0.90$
Top Width (ft)	$=7.00$
EGL (ft)	$=1.14$

Elev (ft)
Depth (ft)

Section

DP 1.0 Swale (5-Year)(FR:0.80)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=3.00$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=3.10$

Highlighted

Depth (ft)	$=0.52$
Q (cfs)	$=3.100$
Area (sqft)	$=0.95$
Velocity (ft/s)	$=3.28$
Wetted Perim (ft)	$=3.79$
Crit Depth, Yc (ft)	$=0.55$
Top Width (ft)	$=3.64$
EGL (ft)	$=0.69$

Elev (ft)

Section

DP 1.0 Swale (100-Year)(FR:0.92)

Triangular	
Side Slopes $(\mathrm{z}: 1)$	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=3.00$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=18.70$

Highlighted

Depth (ft)	$=1.01$
Q (cfs)	$=18.70$
Area (sqft)	$=3.57$
Velocity (ft/s)	$=5.24$
Wetted Perim (ft)	$=7.36$
Crit Depth, Yc (ft)	$=1.13$
Top Width (ft)	$=7.07$
EGL (ft)	$=1.44$

Elev (ft)
Depth (ft)

Section

DP 1.1 Swale (5-Year)(FR:0.50)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.00$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=4.10$

Highlighted
Depth (ft) $\quad=0.70$
Q (cfs) $=4.100$
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
$=1.71$
$=2.39$
$=5.10$
Crit Depth, Yc (ft) $\quad=0.62$
Top Width (ft)
$=4.90$
EGL (ft)
$=0.79$

Elev (ft)

Section

DP 1.1 Swale (100-Year)(FR:0.56)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.00$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=24.90$
Known Q (cfs)	

Highlighted
Depth (ft) $=1.38$
Q (cfs)
$=24.90$
Area (sqft)
$=6.67$
Velocity (ft/s)
$=3.74$
Wetted Perim (ft)
Crit Depth, Yc (ft) $\quad=1.26$
Top Width (ft)
$=9.66$
EGL (ft)
$=1.60$

Elev (ft)

Section

DP 1.2 Swale (5-Year)(FR:0.77)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=2.40$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=4.60$

Highlighted

Depth (ft)	$=0.62$
Q (cfs)	$=4.600$
Area (sqft)	$=1.35$
Velocity (ft/s)	$=3.42$
Wetted Perim (ft)	$=4.52$
Crit Depth, Yc (ft)	$=0.65$
Top Width (ft)	$=4.34$
EGL (ft)	$=0.80$

Elev (ft)

Section

DP 1.2 Swale (100-Year)(FR:0.85)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=2.40$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=28.40$

Highlighted

Depth (ft)	$=1.23$
Q (cfs)	$=28.40$
Area (sqft)	$=5.30$
Velocity (ft/s)	$=5.36$
Wetted Perim (ft)	$=8.96$
Crit Depth, Yc (ft)	$=1.33$
Top Width (ft)	$=8.61$
EGL (ft)	$=1.68$

Elev (ft)

Section

DP 1.3 Swale (5-Year)(FR:0.42)

Trapezoidal

Bottom Width (ft)	$=4.00$
Side Slopes (z:1)	$=4.00,4.00$
Total Depth (ft)	$=3.00$
Invert Elev (ft)	$=10.00$
Slope (\%)	$=0.50$
N-Value	$=0.030$
Calculations	
Compute by:	Known Q
Known Q (cfs)	$=5.70$

Highlighted

Depth (ft)	$=0.52$
Q (cfs)	$=5.700$
Area (sqft)	$=3.16$
Velocity (ft/s)	$=1.80$
Wetted Perim (ft)	$=8.29$
Crit Depth, Yc (ft)	$=0.36$
Top Width (ft)	$=8.16$
EGL (ft)	$=0.57$

Elev (ft)

DP 1.3 Swale (100-Year)(FR:0.47)

Trapezoidal

Bottom Width (ft)	$=4.00$
Side Slopes (z:1)	$=4.00,4.00$
Total Depth (ft)	$=3.00$
Invert Elev (ft)	$=10.00$
Slope (\%)	$=0.50$
N-Value	$=0.030$
Calculations	
Compute by:	Known Q
Known Q (cfs)	$=34.30$

Highlighted

Depth (ft)	$=1.27$
Q (cfs)	$=34.30$
Area (sqft)	$=11.53$
Velocity (ft/s)	$=2.97$
Wetted Perim (ft)	$=14.47$
Crit Depth, Yc (ft)	$=0.97$
Top Width (ft)	$=14.16$
EGL (ft)	$=1.41$

Elev (ft)

Section

DP 5 Swale (5-Year)(FR:0.63)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.80$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=2.10$

Highlighted

Depth (ft)	$=0.49$
Q (cfs)	$=2.100$
Area (sqft)	$=0.84$
Velocity (ft/s)	$=2.50$
Wetted Perim (ft)	$=3.57$
Crit Depth, Yc (ft)	$=0.47$
Top Width (ft)	$=3.43$
EGL (ft)	$=0.59$

Elev (ft)

Section

DP 5 Swale (100-Year)(FR:0.68)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.80$
Slope (\%)	$=0.030$
N-Value	
Calculations	
Compute by:	Known Q
Known Q (cfs)	$=11.20$

Highlighted

Depth (ft)	$=0.92$
Q (cfs)	$=11.20$
Area (sqft)	$=2.96$
Velocity (ft/s)	$=3.78$
Wetted Perim (ft)	$=6.70$
Crit Depth, Yc (ft)	$=0.92$
Top Width (ft)	$=6.44$
EGL (ft)	$=1.14$

Elev (ft)

Section

DP 11 Swale (5-Year)(FR:0.70)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=2.40$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=1.50$
Known Q (cfs)	

Highlighted

Depth (ft)	$=0.41$
Q (cfs)	$=1.500$
Area (sqft)	$=0.59$
Velocity (ft/s)	$=2.55$
Wetted Perim (ft)	$=2.99$
Crit Depth, Yc (ft)	$=0.41$
Top Width (ft)	$=2.87$
EGL (ft)	$=0.51$

Elev (ft)

Section

DP 11 Swale (100-Year)(FR:0.79)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=2.40$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=10.40$
Known Q (cfs)	

Highlighted

Depth (ft)	$=0.85$
Q (cfs)	$=10.40$
Area (sqft)	$=2.53$
Velocity (ft/s)	$=4.11$
Wetted Perim (ft)	$=6.19$
Crit Depth, Yc (ft)	$=0.89$
Top Width (ft)	$=5.95$
EGL (ft)	$=1.11$

Elev (ft)

Section

APPENDIX D

WATER QUALITY AND DETENTION CALCULATIONS

Saddlehorn-2514207

Required Sediment Pond Volumes
8/29/2022

	Sediment Basin \#1	(north)	
Total Area $=$	60.42	acres	
Developed Area =	20.98	acres	
Undeveloped Area =	39.44	acres	
Required Volume $=($ Dev. Area * 1800 ft ^3/ac) + (Undev. Area * 500 ft ^3/ac)			
$=$	57,484	ft^{\wedge}	
L=2xW	1.320	AC-FT	
	0.660	1/2 VOL	
	196	L	76645.33 ft 3
	98	W	
	19,161	pond bo	

	Sediment Basin \#2	(South)	
Total Area $=$	15.08	acres	
Developed Area =	1.55	acres	
Undeveloped Area =	13.53	acres	
Required Volume $=($ Dev. Area * 1800 ft ^3/ac) + (Undev. Area * 500 ft ^3/ac)			
$=$	9,555	ft^{\wedge}	
	0.219	AC-FT	
	0.110	1/2 VOLUME	
$\mathrm{L}=2 \mathrm{xW}$	170	L	57800 ft 3
	85	W	
	3,185	pond bottom min (3' depth assumed)	

Provide summary table for each sediment basin showing contributing basin, total area, developed and undeveloped areas.

Saddlehorn (25142.07)

Orifice Sizing

Sediment Basin \#1			
Basin Total Volume:	1.320	ac-ft	
Top $1 / 2$	0.660	ac-ft	
	28750	cf	over 40 hrs
Drain Time 40 hrs	0.1997	cfs	holes
	Assuming	5	per hole
	0.0399	cfs	
Equates to a	1.25	diam. hole (in)	
Equates to a	1.23	sq. in. hole	
Solution	$\mathbf{5}$	1 Column - 5 holes	
			Inch diameter holes

Saddlehorn (25142.07)

Orifice Sizing

Sediment Basin \#2			
Basin Total Volume:	0.219	ac-ft	
Top 1/2	0.110	ac-ft	
	4770	cf	over 40 hrs
Drain Time 40 hrs	0.0331	cfs	holes
	Assuming	5	per hole
	0.0066	cfs	
Equates to a	1.25	diam. hole (in)	
Equates to a	1.23	sq. in. hole	
Solution	$\mathbf{5}$	1 Column - 5 holes	

MHFD-Detention, Version 4.06 (July 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project: Saddlehorn Filing 5

Underdrain Orifice Area	$=$Calculated Parameter Underdrain Orifice Centroid
$=$N/A	

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Centroid of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	$2.257 \mathrm{E}-03$	ft^{2}
Depth at top of Zone using Orifice Plate $=$	1.99	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width $=$	N/A	feet
Orifice Plate: Orifice Vertical Spacing $=$	8.00	inches	Elliptical Slot Centroid	N/A	feet
Orifice Plate: Orifice Area per Row $=$	0.33	sq. inches (diameter $=5 / 8$ inch)	Elliptical Slot Area $=$	N/A	ft^{2}

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.66	1.33					
Orifice Area (sq. inches)	0.33	0.33	0.33					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			Calculated Parameters for Vertical Orifice		
	Zone 2 Circular	Not Selected		Zone 2 Circular	Not Selected
Invert of Vertical Orifice $=$	1.99	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) Vertical Orifice Area $=$	0.00	N/A
Depth at top of Zone using Vertical Orifice $=$	2.16	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) Vertical Orifice Centroid	0.02	N/A
Vertical Orifice Diameter $=$	0.38	N/A	inches		

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)

	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	2.17	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	2.17	N/A
Overflow Weir Front Edge Length $=$	3.00	N/A	Overflow Weir Slope Length $=$	4.00	N/A
Overflow Weir Grate Slope =	0.00	N/A	Grate Open Area / 100-yr Orifice Area $=$	8.28	N/A
Horiz. Length of Weir Sides $=$	4.00	N/A	feet Overflow Grate Open Area w/o Debris =	8.35	N/A
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris $=$	8.35	N/A
Debris Clogging \% =	0\%	N/A			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

at Stage $=0 \mathrm{ft}$)	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate			ft^{2}
		Zone 3 Restrictor	Not Selected	
	Outlet Orifice Area $=$	1.01	N/A	
	Outlet Orifice Centroid =	0.48	N/A	feet
Half-Central	Restrictor Plate on Pipe $=$	1.68	N/A	radians

Calculated Parameters for Spillway		
Spillway Design Flow Depth=	0.20	feet
Stage at Top of Freeboard $=$	4.00	feet
Basin Area at Top of Freeboard =	0.51	acres
Basin Volume at Top of Freeboard $=$	0.81	acre-ft

Routed Hydrograph Results	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) $=$	0.085	0.112	0.055	0.094	0.126	0.330	0.534	0.822	1.456
nflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.055	0.094	0.126	0.330	0.534	0.822	1.456
CUHP Predevelopment Peak Q (cfs) $=$	N/A	N/A	0.1	0.2	0.3	2.5	5.0	8.1	14.7
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) $=$	N/A	N/A	0.01	0.01	0.02	0.16	0.33	0.54	0.98
Peak Inflow Q (cfs) =	N/A	N/A	0.6	1.0	1.4	4.0	6.6	9.8	16.5
Peak Outflow Q (cfs) $=$	0.0	0.0	0.0	0.0	0.1	2.5	5.0	7.5	13.7
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.2	0.3	1.0	1.0	0.9	0.9
Structure Controlling Flow $=$	Plate	Vertical Orifice 1	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.3	0.6	0.9	1.0
Max Velocity through Grate 2 (fps) $=$	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	38	45	29	41	50	45	41	36	28
Time to Drain 99\% of Inflow Volume (hours) =	40	48	31	43	52	50	49	46	42
Maximum Ponding Depth (ft) =	1.99	2.16	1.70	2.00	2.18	2.31	2.40	2.55	2.94
Area at Maximum Ponding Depth (acres) $=$	0.15	0.18	0.10	0.15	0.18	0.21	0.23	0.26	0.39
Maximum Volume Stored (acre-ft) $=$	0.085	0.114	0.048	0.085	0.116	0.143	0.163	0.197	0.332

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	0:15:00	0.00	0.00	0.02	0.04	0.05	0.03	0.04	0.04	0.06
	0:20:00	0.00	0.00	0.08	0.11	0.13	0.08	0.10	0.10	0.14
	0:25:00	0.00	0.00	0.32	0.69	1.00	0.25	0.43	0.55	0.99
	0:30:00	0.00	0.00	0.56	1.04	1.41	2.14	3.88	5.33	9.66
	0:35:00	0.00	0.00	0.58	1.05	1.42	3.67	5.98	8.87	14.81
	0:40:00	0.00	0.00	0.56	0.99	1.34	4.00	6.57	9.81	16.41
	0:45:00	0.00	0.00	0.51	0.90	1.21	3.85	6.29	9.70	16.50
	0:50:00	0.00	0.00	0.47	0.82	1.10	3.57	5.79	8.95	15.57
	0:55:00	0.00	0.00	0.44	0.76	1.01	3.23	5.24	8.17	14.37
	1:00:00	0.00	0.00	0.40	0.69	0.93	2.94	4.77	7.50	13.34
	1:05:00	0.00	0.00	0.38	0.64	0.85	2.66	4.33	6.87	12.44
	1:10:00	0.00	0.00	0.35	0.60	0.79	2.40	3.90	6.19	11.26
	1:15:00	0.00	0.00	0.33	0.55	0.75	2.19	3.55	5.61	10.24
	1:20:00	0.00	0.00	0.30	0.51	0.69	2.00	3.23	5.09	9.27
	1:25:00	0.00	0.00	0.28	0.47	0.63	1.81	2.92	4.59	8.34
	1:30:00	0.00	0.00	0.25	0.42	0.56	1.63	2.61	4.10	7.45
	1:35:00	0.00	0.00	0.23	0.38	0.50	1.44	2.31	3.63	6.58
	1:40:00	0.00	0.00	0.21	0.34	0.45	1.26	2.01	3.16	5.73
	1:45:00	0.00	0.00	0.20	0.31	0.42	1.10	1.74	2.74	4.98
	1:50:00	0.00	0.00	0.19	0.30	0.39	0.99	1.57	2.44	4.46
	1:55:00	0.00	0.00	0.18	0.28	0.37	0.91	1.44	2.23	4.06
	2:00:00	0.00	0.00	0.16	0.26	0.34	0.84	1.33	2.05	3.70
	2:05:00	0.00	0.00	0.15	0.24	0.31	0.77	1.21	1.87	3.36
	2:10:00	0.00	0.00	0.13	0.21	0.28	0.70	1.10	1.69	3.04
	2:15:00	0.00	0.00	0.12	0.19	0.25	0.63	0.99	1.52	2.72
	2:20:00	0.00	0.00	0.11	0.16	0.22	0.56	0.88	1.35	2.42
	2:25:00	0.00	0.00	0.09	0.14	0.19	0.49	0.77	1.19	2.13
	2:30:00	0.00	0.00	0.08	0.12	0.16	0.42	0.66	1.02	1.84
	2:35:00	0.00	0.00	0.07	0.10	0.13	0.35	0.55	0.86	1.55
	2:40:00	0.00	0.00	0.05	0.08	0.11	0.29	0.45	0.70	1.26
	2:45:00	0.00	0.00	0.04	0.06	0.08	0.22	0.34	0.53	0.98
	2:50:00	0.00	0.00	0.03	0.04	0.05	0.16	0.24	0.37	0.69
	2:55:00	0.00	0.00	0.02	0.03	0.04	0.10	0.14	0.22	0.42
	3:00:00	0.00	0.00	0.02	0.02	0.03	0.05	0.07	0.12	0.24
	3:05:00	0.00	0.00	0.02	0.02	0.03	0.03	0.04	0.07	0.15
	3:10:00	0.00	0.00	0.01	0.02	0.02	0.02	0.03	0.04	0.10
	3:15:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.03	0.07
	3:20:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.04
	3:25:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.03
	3:30:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	3:35:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:40:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:45:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

POND A FOREBAY VOLUM E REQUIREM ENTS

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Pond A Spillway

Trapezoidal Weir

Crest	$=$ Sharp
Bottom Length (ft)	$=35.00$
Total Depth (ft)	$=1.20$
Side Slope $(\mathrm{z}: 1)$	$=4.00$

Calculations

Weir Coeff. Cw
Compute by:
Known Q (cfs)
$=3.10$
Known Q
$=9.30$

Highlighted
Depth (ft)
$=0.20$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Top Width (ft)

Depth (ft)
Pond A Spillway
Depth (ft)

Pond A Trickle Channel

Rectangular	
Bottom Width (ft)	$=2.00$
Total Depth (ft)	$=0.50$
	$=10.00$
Invert Elev (ft)	$=0.50$
Slope (\%)	$=0.013$
N-Value	
Calculations	Known Q
Compute by:	$=0.15$

Elev (ft)

Highlighted

Depth (ft)	$=0.07$
Q (cfs)	$=0.150$
Area (sqft)	$=0.14$
Velocity (ft/s)	$=1.07$
Wetted Perim (ft)	$=2.14$
Crit Depth, Yc (ft)	$=0.06$
Top Width (ft)	$=2.00$
EGL (ft)	$=0.09$

MHFD-Detention, Version 4.06 (July 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN

Underdrain Orifice Area	$=$Calculated Parameter Underdrain Orifice Centroid
$=$$\mathrm{N} / \mathrm{A}$	

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Centroid of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row	8.264E-03	ft^{2}
Depth at top of Zone using Orifice Plate	2.82	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	11.30	inche	Elliptical Slot Centroid	N/A	
Orifice Plate: Orifice Area per Row $=$	1.19	sq. inches (diameter $=1-3 / 16$ inches)	Elliptical Slot Area $=$	N/A	

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.94	1.88					
Orifice Area (sq. inches)	1.19	1.19	1.19					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)

	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	3.11	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	4.36	N/A
Overflow Weir Front Edge Length =	15.00	N/A	Overflow Weir Slope Length $=$	5.15	N/A
Overflow Weir Grate Slope =	4.00	N/A	Grate Open Area / 100-yr Orifice Area $=$	17.13	N/A
Horiz. Length of Weir Sides $=$	5.00	N/A	feet Overflow Grate Open Area w/o Debris =	53.81	N/A
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris $=$	53.81	N/A
Debris Clogging \% =	0\%	N/A			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Calculated Parameters for Spillway		
Spillway Design Flow Depth=	0.24	feet
Stage at Top of Freeboard =	8.32	feet
Basin Area at Top of Freeboard =	1.25	acres
Basin Volume at Top of Freeboard $=$	2.72	acre-ft

Routed Hydrograph Results	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) $=$	0.379	0.531	0.279	0.454	0.602	1.442	2.273	3.438	5.999
nflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.279	0.454	0.602	1.442	2.273	3.438	5.999
CUHP Predevelopment Peak Q (cfs) $=$	N/A	N/A	0.3	0.6	0.8	7.5	15.1	25.1	46.6
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) $=$	N/A	N/A	0.00	0.01	0.01	0.12	0.25	0.42	0.77
Peak Inflow Q (cfs) $=$	N/A	N/A	2.3	3.8	5.1	13.2	21.2	31.6	53.8
Peak Outflow Q (cfs) =	0.2	0.2	0.1	0.2	0.2	6.0	12.3	21.6	45.5
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.3	0.3	0.8	0.8	0.9	1.0
Structure Controlling Flow $=$	Plate	Vertical Orifice 1	Plate	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.1	0.2	0.4	0.5
Max Velocity through Grate 2 (fps) $=$	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	37	47	31	43	52	50	46	42	35
Time to Drain 99\% of Inflow Volume (hours) =	40	50	33	46	55	54	53	51	48
Maximum Ponding Depth (ft) =	2.82	3.10	2.49	2.88	3.13	3.46	3.67	3.91	4.25
Area at Maximum Ponding Depth (acres) $=$	0.49	0.61	0.35	0.51	0.62	0.75	0.82	0.91	1.03
Maximum Volume Stored (acre-ft) $=$	0.382	0.536	0.242	0.407	0.548	0.780	0.945	1.144	1.483

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02
	0:15:00	0.00	0.00	0.05	0.08	0.10	0.07	0.09	0.08	0.14
	0:20:00	0.00	0.00	0.22	0.30	0.36	0.23	0.28	0.29	0.40
	0:25:00	0.00	0.00	0.85	1.57	2.17	0.72	1.10	1.32	2.23
	0:30:00	0.00	0.00	1.73	3.13	4.24	4.42	7.67	10.34	18.52
	0:35:00	0.00	0.00	2.18	3.76	5.02	9.68	15.88	22.71	38.59
	0:40:00	0.00	0.00	2.26	3.82	5.10	12.56	20.11	29.50	48.94
	0:45:00	0.00	0.00	2.22	3.73	4.97	13.23	21.17	31.65	52.96
	0:50:00	0.00	0.00	2.12	3.54	4.70	13.14	20.90	31.61	53.78
	0:55:00	0.00	0.00	1.99	3.28	4.33	12.56	19.89	30.26	52.00
	1:00:00	0.00	0.00	1.87	3.07	4.06	11.59	18.33	28.16	48.82
	1:05:00	0.00	0.00	1.78	2.91	3.83	10.76	17.06	26.39	46.45
	1:10:00	0.00	0.00	1.68	2.75	3.62	10.05	15.90	24.68	43.79
	1:15:00	0.00	0.00	1.58	2.58	3.43	9.33	14.75	22.85	40.63
	1:20:00	0.00	0.00	1.49	2.42	3.24	8.61	13.59	21.01	37.41
	1:25:00	0.00	0.00	1.41	2.29	3.07	7.95	12.51	19.30	34.39
	1:30:00	0.00	0.00	1.35	2.19	2.91	7.40	11.64	17.88	31.84
	1:35:00	0.00	0.00	1.29	2.08	2.75	6.92	10.86	16.65	29.57
	1:40:00	0.00	0.00	1.23	1.96	2.59	6.47	10.13	15.50	27.47
	1:45:00	0.00	0.00	1.16	1.84	2.43	6.02	9.41	14.37	25.44
	1:50:00	0.00	0.00	1.10	1.72	2.27	5.58	8.70	13.26	23.44
	1:55:00	0.00	0.00	1.03	1.59	2.11	5.14	7.99	12.16	21.48
	2:00:00	0.00	0.00	0.95	1.47	1.94	4.70	7.28	11.07	19.54
	2:05:00	0.00	0.00	0.87	1.33	1.76	4.25	6.56	9.97	17.60
	2:10:00	0.00	0.00	0.79	1.21	1.60	3.79	5.84	8.87	15.68
	2:15:00	0.00	0.00	0.73	1.12	1.49	3.42	5.27	8.00	14.19
	2:20:00	0.00	0.00	0.68	1.05	1.39	3.15	4.87	7.38	13.08
	2:25:00	0.00	0.00	0.63	0.98	1.30	2.95	4.55	6.88	12.16
	2:30:00	0.00	0.00	0.59	0.91	1.21	2.75	4.26	6.43	11.34
	2:35:00	0.00	0.00	0.54	0.84	1.12	2.57	3.98	6.01	10.57
	2:40:00	0.00	0.00	0.50	0.78	1.03	2.40	3.71	5.60	9.83
	2:45:00	0.00	0.00	0.46	0.72	0.95	2.23	3.44	5.19	9.12
	2:50:00	0.00	0.00	0.43	0.66	0.87	2.06	3.18	4.81	8.44
	2:55:00	0.00	0.00	0.39	0.60	0.80	1.89	2.92	4.42	7.77
	3:00:00	0.00	0.00	0.36	0.55	0.72	1.73	2.67	4.04	7.11
	3:05:00	0.00	0.00	0.32	0.49	0.65	1.57	2.42	3.66	6.44
	3:10:00	0.00	0.00	0.29	0.44	0.58	1.40	2.16	3.28	5.78
	3:15:00	0.00	0.00	0.25	0.39	0.51	1.24	1.91	2.91	5.12
	3:20:00	0.00	0.00	0.22	0.34	0.44	1.08	1.66	2.53	4.47
	3:25:00	0.00	0.00	0.19	0.28	0.37	0.93	1.41	2.15	3.81
	3:30:00	0.00	0.00	0.16	0.23	0.30	0.77	1.16	1.78	3.15
	3:35:00	0.00	0.00	0.13	0.18	0.24	0.61	0.92	1.40	2.50
	3:40:00	0.00	0.00	0.10	0.14	0.17	0.45	0.67	1.03	1.85
	3:45:00	0.00	0.00	0.07	0.09	0.12	0.30	0.43	0.67	1.21
	3:50:00	0.00	0.00	0.05	0.07	0.09	0.17	0.23	0.37	0.71
	3:55:00	0.00	0.00	0.05	0.06	0.08	0.10	0.14	0.21	0.44
	4:00:00	0.00	0.00	0.04	0.05	0.07	0.08	0.10	0.14	0.29
	4:05:00	0.00	0.00	0.04	0.05	0.06	0.06	0.08	0.10	0.19
	4:10:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.07	0.13
	4:15:00	0.00	0.00	0.03	0.03	0.04	0.04	0.05	0.05	0.09
	4:20:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.04	0.05
	4:25:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.04
	4:30:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	4:35:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	4:40:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	4:45:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	4:50:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	4:55:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

POND B FOREBAY VOLUM E REQUIREM ENTS

Pond B Trickle Channel

Rectangular	
Bottom Width (ft)	$=4.00$
Total Depth (ft)	$=0.50$
	$=10.00$
Invert Elev (ft)	$=0.50$
Slope (\%)	$=0.013$
N-Value	
Calculations	Known Q
Compute by:	$=0.63$

Elev (ft)

Highlighted

Depth (ft)	$=0.10$
$\mathrm{Q}(\mathrm{cfs})$	$=0.630$
Area (sqft)	$=0.40$
Velocity (ft/s)	$=1.58$
Wetted Perim (ft)	$=4.20$
Crit Depth, Yc (ft)	$=0.10$
Top Width (ft)	$=4.00$
EGL (ft)	$=0.14$

Weir Report

Pond B Spillway

Trapezoidal Weir	
Crest	$=$ Sharp
Bottom Length (ft)	$=85.00$
Total Depth (ft)	$=1.25$
Side Slope $(\mathrm{z}: 1)$	$=4.00$
Calculations	$=3.10$
Weir Coeff. Cw	Known Q
Compute by:	$=31.60$

Depth (ft)
Pond B Spillway
Depth (ft)

APPENDIX E

REFERENCE MATERIALS

APPENDIX F

DRAINAGE MAPS \& PLANS

SADDLEHORN RANCH - FILING 5 PERMANENT APPLICABILITY MAP

LEGEND

\qquad
--6100-- EXISTING INDEX CONTOURS Existing intermedate contours PROPosed Index contours proposed intermedate contours proposed high point
proposed low point
area detalned in pbmp
AREA NOT DETAINED IN PBMP
PER SECTION
PER SECTION $1.7 .1 . \operatorname{B.} 5$
(RURAL $2.5+$ ACRE LOTS $w / ~$
(RURAL 2.5+ ACRE LOTS
MMPERVOUSNESS $<10 \%$)

定
\qquad

MS4 PERMIT EXCULSION AREAS SADDLEHORN RANCH FILING 5 JOB NO. 25142.07 $9 / 1 / 2022$
SHEET 1 OF

SADDLEHORN RANCH - FILING 5

EXISTING CONDITIONS MAP

