FINAL DRAINAGE REPORT FOR SADDLEHORN RANCH – FILING 5 EARLY GRADING

Prepared For: ROI Property Group, LLC 2495 Rigdon Street Napa, CA 94558 (707) 365-6891

> November 21, 2023 Project No. 25142.07

Prepared By: JR Engineering, LLC 5475 Tech Center Drive Colorado Springs, CO 80919 719-593-2593

El Paso County PCD File No.: EGP226

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

25043 Bryan Law, Colorado P.E. # 25043 For and On Behalf of JR Engineering, LLC

Date

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

ROI Property Group, LLC

By:

BULL Mm (BILL GUMAN REPRESENTATIVE

Title: Address:

2495 Rigdon Street Napa, CA 94558

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Joshua Palmer, P.E. County Engineer/ ECM Administrator Date

Conditions:

CONTENTS

PURPOSE	0
GENERAL LOCATION AND DESCRIPTION	0
LOCATION DESCRIPTION OF PROPERTY FLOODPLAIN STATEMENT	1
DRAINAGE BASINS AND SUB-BASINS	1
Existing Major Basin Descriptions Existing Sub-basin Drainage Proposed Sub-basin Drainage Early Grading Drainage	3 3
DRAINAGE DESIGN CRITERIA	6
Development Criteria Reference Hydrologic Criteria Hydraulic Criteria	6
DRAINAGE FACILITY DESIGN	7
GENERAL CONCEPT SPECIFIC DETAILS Four Step Process to Minimize Adverse Impacts of Urbanization Water Quality Erosion Control Plan Operation & Maintenance Drainage and Bridge Fees	7 7 8 8 8
SUMMARY	9
REFERENCES:	10

APPENDICES

- A. Figures and Exhibits
- B. Hydrologic Calculations
- C. Hydraulic Calculations
- D. Detention and Water Quality Calculations
- E. Reference Materials
- F. Drainage Maps

LIST OF TABLES:

- 1. Major Drainageway Naming Convention
- 2. Major Drainageway Ex. 100-Year Flow Comparison
- 3. Pond Summary
- 4. Sediment Basin Summary

Purpose

This document is the Final Drainage report for Filing 5 of Saddlehorn Ranch Early Grading. The purpose of this report is to:

- 1. Identify on-site and off-site drainage patterns.
- 2. Recommend storm water facilities to collect and convey storm runoff from the proposed development during early grading operations to appropriate discharge and/or detention locations.
- 3. Recommend water quality and detention facilities to control discharge release rates to below historic.
- 4. Demonstrate compliance with surrounding major drainage basin planning studies, master development drainage plans and flood insurance studies.

GENERAL LOCATION AND DESCRIPTION

Location

The proposed Saddlehorn Ranch Filing 5, known as "Filing 5" from herein, is a parcel of land located in Section 3 and 10, Township 13 South, Range 64 West of the 6th Principal Meridian in El Paso County, Colorado. Saddlehorn Ranch is an 824 acre, rural, single family-development. Filing 5 is 126.73 acres and is comprised of 41 lots of the overall Saddlehorn Ranch development. Saddlehorn Ranch is bound by Judge Orr Road to the North and Curtis Road to the West. To the East, Saddlehorn Ranch is bound by undeveloped land owned by Brent Houser Enterprises, LLC. To the south, Saddlehorn Ranch is bound by undeveloped properties owned by Carolyn Gudzunas and Faye Reynolds. Filing 5 is bound by future Filing 4 to the north, Drainageway MS-06 to the west, and unplatted vacant land to the east and to the south. A vicinity map is presented in Appendix A.

Currently, there are two major Drainageway that will receive flows from Filing 5: Gieck Ranch (WF-R7A) and Haegler Ranch Main Stem 6 (MS-06). These Drainageways were analyzed, both hydrologically and hydraulically, in the following reports:

- Haegler Ranch Basin Drainage Basin Planning Study (DBPS), May 2009.
- Santa Fe Springs Haegler Ranch Drainage Basin Letter of Map Revision, June 2004.
- Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch, May 2020.
- Geick Ranch Drainage Basin Planning Study (DBPS), October 2007

The impact of these Drainageways and planning studies on the proposed development will be discussed later in the report.

Description of Property

Filing 5 is currently unoccupied and undeveloped. The existing ground cover is sparse vegetation and open space, typical of a Colorado rolling range land condition. In general, Filing 5 slopes from south to southeast and the existing drainageways follow this topography.

Per a NRCS web soil survey of the area, Filing 5 is made up of Group A soils. Group A soils have a high infiltration rate when thoroughly wet. A NRCS soil survey map has been presented in Appendix A.

Floodplain Statement

Based on the FEMA FIRM Map number 08041C0558G, dated December 7, 2018, Filing 5 lies within Zone AE and Zone X. Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. All proposed early grading improvements within Filing 5 will occur in Zone X. A LOMR/CLOMR will be included with the Filing 5 plat and construction documents. This LOMR/CLOMR will reflect all floodplain modifications proposed within Filing 5 in the ultimate condition. No floodplain modifications or drainageway improvements are proposed with the early grading improvements. The FIRM Map has been presented in Appendix A.

DRAINAGE BASINS AND SUB-BASINS

Existing Major Basin Descriptions

Filing 5 lies within Haegler Ranch Drainage Basin based on the "*Haegler Ranch Drainage Basin Planning Study*" prepared by URS Corporation in May 2009.

The Haegler Ranch Drainage Basin covers approximately 16.6 square miles in unincorporated El Paso County, CO. The Haegler Ranch Drainage Basin is tributary to Black Squirrel Creek. In its existing condition, the basin is comprised of rolling rangeland with poor vegetative cover associated with Colorado's semi-arid climate. The natural Drainageways within the basin are typically shallow and wide with poorly defined flow paths in most areas. Anticipated land use for the basin includes residential and commercial development. Residential developments will range from 0.125 - 5 acre lots with a mix of low, medium and high density developments.

As part of its drainage research, JR Engineering reviewed the following drainage studies, reports and LOMRs:

- Haegler Ranch Drainage Basin Planning Study prepared by URS Corporation in May 2009
- Santa Fe Springs Haegler Ranch Drainage Basin Letter of Map Revision prepared by Tri-Core Engineering in June 2004.
- Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch, prepared by JR Engineering, May 2020.
- Gieck Ranch Drainage Basin Planning Study (DBPS), October 2007

The "*Haegler Ranch Drainage Basin Planning Study*" was used to establish a stormwater management plan for the existing and future stormwater infrastructure needs within the Haegler Ranch Drainage Basin. Based on provided drainage maps and analysis, in the existing condition Haegler Ranch contributes a total of 710 cfs onto the site. Of the 710 cfs, 590 cfs crosses Curtis Road in an existing 24" CMP onto the site. Major Drainageway MS-06 conveys the stormwater through the site and to its off-site confluence with Major Drainageway MS-05. The remaining 210 cfs crosses Curtis Road in an existing 36" CMP onto the site. Major Drainageway MS-05. Both Curtis Road culverts are undersized for existing and future flows and overtopping occurs locally near the culvert crossings.

Based on flood impacts, stream stability and cost effectiveness, this study recommended a sub-regional detention approach. This allows future development anywhere in the basin with the construction of an associated sub-regional pond. However, based on the *Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch*, Filing 5 will utilize one on-site full spectrum water quality and detention ponds instead. This full spectrum detention pond will limit developed discharge into Drainageway MS-06 to less than historic rates.

The Santa Fe Springs – Haegler Ranch Drainage Basin LOMR was executed on Haegler Ranch Tributary 2, 3, and 4. The LOMR revised the onsite effective flood zone from Zone A to Zone AE. See FIRM Map Panel 08041C0558G for limits of LOMR study and revised flood zones, presented in Appendix E.

The Gieck Ranch Drainage Basin covers approximately 22 square miles and begins approximately five miles northeast of the Town of Falcon and travels approximately 15 miles to the southeast. The Gieck Ranch Drainage Basin is tributary to Black Squirrel Creek which drains south to the Arkansas River near the city of Pueblo, Colorado. The majority of the area within the basin is undeveloped and is characterized as rolling range land typically associated with Colorado's semi-arid climates. Anticipated land use for the basin includes residential, industrial, agricultural and commercial development. Residential developments will range from 0.125 - 5 acre lots with a mix of low, medium and high density developments.

See Table 2 for comparison of Drainageway identification and the naming convention used within the context of this report. See Table 3 for a comparison of 100-year flows as calculated in the aforementioned DBPS and LOMR. An existing conditions drainage map is presented in Appendix E.

Major Drainageway Naming Conventions									
Saddlehorn Ranch MDDP/PDR: Per Haegler Ranch DBPS:		Per Geick Ranch DBPS:	Per Sante Fe Springs LOMR:						
MS-06	Main Stem (MS- 06)	N/A*	Haegler Ranch Tributary 3						

Table 1: Major Drainageway Naming Convention

WF-R7A	N/A*	West Fork (Middle)/WF-R7A	N/A*

Table 2. Major	Drainageway - E	x 100-Year	Flow C	omnarison
1 able 2. Wajor	Diamageway – D	A. 100-10ai	TIOW C	omparison

	Major Drainag	geways: 100-Year Flo	ow Comparison	
Drainageway Name	Contributing Area (sq. mi.)	Q ₁₀₀ Per Haegler Ranch DBPS:	Q ₁₀₀ Per Geick Ranch DBPS:	Q ₁₀₀ Per Sante Fe Springs LOMR:
MS-06 @ Curtis Road	1.05	590 cfs	N/A*	505 cfs
WF-R7A @ Judge Orr Road	1.50	N/A*	1,017 cfs	N/A*

*N/A: Flow regime outside limits of study.

The *Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch* proposed the overall drainage facility design for Saddlehorn Ranch. Within the context of this report, onsite drainage basins the associated full spectrum water quality pond were established. As it pertains to Filing 5, two full spectrum water quality ponds are recommended. Roadside ditches and local street culverts will be utilized to capture and convey Filing 5's runoff to the water quality ponds. Both ponds A and B will discharge into Drainageway MS-06, while a portion of the proposed lots will release directly into Drainageway WF-R7A. All ponds are full spectrum and will release at less than historic rates. See the Saddlehorn Filing 5 Final Drainage Report for all pond calculations and drainageway modeling.

Existing Sub-basin Drainage

On-site, existing sub-basin drainage patterns are generally from northeast to southwest, following the general slope of the existing grade. On-site areas flow directly into these drainageways, which also bypass off-site flows through the site.

On-site, existing drainage basins were established based upon existing topography and the limits of the 100-year floodplain. These existing sub-basins were analyzed in the *Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch*. An existing drainage map has been provided in Appendix E.

Sub-basin H2 is comprised of rolling rangeland and runoff flows southwest to Drainageway MS-06 as represented by Design Point 4 (Q100=91.1 cfs).

Proposed Sub-basin Drainage

The proposed Filing 5 basin delineation is as follows;

Basin A consists solely of Basin A1 for a total of 15.08 acres. In its existing condition, Basin A is rolling rangeland and runoff generally flows southeast towards the southern property line where it will flow across adjacent property and ultimately outfall into Drainageway MS-06. In the proposed condition,

Basin A will be rural 2.5 acre lots, paved roadway, and will include Pond A. In the early grading phase, runoff from this basin will be collected in roadside ditches and conveyed to Sediment Basin 2 in the southeast corner of the Filing 5 development. The watershed area of Pond A is 15.08 acres, and in the major event, the pond receives 10.4 cfs of flow. In the proposed condition, Sediment Basin 2 will be converted to Pond A. Pond A will be a full spectrum water quality and detention pond, and will release at less than historic rates into Drainageway MS-06.

Basin B consists of Sub-basins B1-B5 combining for a total of 59.24 acres. In its existing condition, Basin B is rolling rangeland and runoff generally flows southwest to Drainageway MS-06. In the proposed condition, Basin B will be rural 2.5 acre lots and paved roadway, flowing ultimately to Pond B. In the early grading phase, runoff from this basin will be collected in roadside ditches and conveyed west to Sediment Basin 1 located in the south west corner of the Filing 5 development. In the proposed condition, Sediment Basin 1 will be converted to Pond B. The watershed area of Pond B is 60.42 acres, and in the major event the pond receives 34.3 cfs of flow. Pond B will be a full spectrum water quality and detention pond, and will release at less than historic rates into Drainageway MS-06.

Basin C consists of Sub-basins C1-C2 combining for a total of 5.45 acres. In its existing condition, Basin C is rolling rangeland and runoff generally flows south west towards Drainageway MS-06. In the proposed condition, Basin C will be rural 2.5 acre lots and paved roadway. Runoff from this basin will be collected in road side ditches and conveyed to the existing Pond C located in the southern portion of the Filing 4 development along Del Cambre Trail. Pond C is a full spectrum water quality and detention pond, and will release at less than historic rates into Drainageway MS-06. All calculations pertaining to Pond C can be found in the *Final Drainage Report for Saddlehorn Ranch – Filing 3*, prepared by JR Engineering, February 4, 2022.

Basin UD consists of Sub-basins UD1-UD4 combining for a total of 46.99 acres. In their existing condition, these basins are rolling rangeland. Runoff from Basins UD2, UD3, & UD 4 generally flows south and west to Drainageway MS-06. Basin UD1 flows east to Drainageway WF-R7A. In the proposed condition, these basins will be rural 2.5 acre lots with an Imperviousness = 6.2% and will be excluded from permanent stormwater quality management per Section I.7.1.B.5 of the ECM – Stormwater Quality Policy and Procedures.

Basin OS consists of Sub-basins OS1-OS4 combining for a total of 10.55 acres. These basins are offsite, and will remain undeveloped rangeland throughout the duration of the project. Runoff from Sub-basins OS1-OS4 generally flows from northeast to southwest on to the Saddlehorn site. Runoff from Sub-basins OS1& OS2 will be treated by Sediment Basin 1. Runoff from Sub-basin OS3 will be treated by Sediment Basin 2. Runoff from Sub-basin OS4 will not be treated by on-site water quality treatment per Section I.7.1.B.7 of the ECM – Stormwater Quality Policy and Procedures.

A summary table of proposed basin parameters and flow rates are presented in Appendix B.

In the ultimate conditions, Basin A runoff will overland flow into Pond A, or be captured by roadside swales and conveyed to the proposed Pond A. In the ultimate conditions, Basin B will be captured in roadside swales and conveyed to the proposed Pond B. Both full spectrum ponds will release treated

flows at less than historic rates to minimize adverse downstream impacts, and both will discharge into Drainageway MS-06. See the Filing 5 Final Drainage Report for all pond calculations and drainageway modeling.

See Table 3 below for proposed Filing 5 pond parameters.

Tributary Sub-Basin	Pond Name	Tributary Acres	WQ Volume (ac-ft)	Total Detention Volume (ac-ft)	Provided Volume (ac-ft)	Maximum 100-Year Discharge (cfs)
А	Pond A	15.08	0.085	0.199	0.279	7.5
В	Pond B	60.42	0.382	1.144	1.295	21.6

Table 3: Pond Summary

Early Grading Drainage

During early grading operations, runoff will be captured in roadside ditches and conveyed into one of two sediment basins. Basin A runoff will be conveyed to Sediment Basin 2. Basin B runoff will be conveyed to Sediment Basin 1. Sediment Basin 1 is designed to treat a tributary area of 60.51 acre, 20.98 acre of disturbed area, and 39.53 acre of undisturbed area. The required volume of Sediment Basin 1 in order to treat the 60.51 acre is 1.321 Ac-ft. Sediment Basin 1 exceeds this with a provided volume of 2.243 Ac-ft. Sediment Basin 1 was designed to drain its entire volume within 40 hrs via a temporary outlet structure. This temporary outlet structure was designed as a singular column with five 1.25" dia holes allowing for water to drain.

Sediment Basin 2 is designed to treat a tributary area of 18.20 acre, 1.55 acre of disturbed area, and 16.65 acre of undisturbed area. The required volume of Sediment Basin 2 in order to treat the 18.20 acre is 0.255 Ac-ft. Sediment Basin 2 has a provided volume of 0.279 Ac-ft. Sediment Basin 2 was designed to drain its entire volume within 40 hrs via a temporary outlet structure. This temporary outlet structure was designed as a singular column with five 1.25" dia holes allowing for water to drain.

Once the project progresses past this early grading phase, both Sediment Basin 1 and Sediment Basin 2 will be replaced by full spectrum water quality detention ponds. Sediment Basin 1 will be replaced by Pond B, and Sediment Basin 2 will be converted to Pond A. Each pond will be fitted with a concrete forebay along with appropriately sized riprap. The water will then drain through a concrete trickle channel to the proposed permanent outlet structure. Both temporary outlet structures will be replaced with permanent outlet structures, each with appropriately sized riprap spreaders. Both ponds will release treated flows at less than historic rates to minimize adverse impacts downstream. Both ponds will discharge into Major Drainageway MS-06. The final design for both Pond A and Pond B will be included in the Final drainage Report.

See Table 4 below for proposed Filing 5 Early Grading sediment basin parameters

Tributary Sub-Basin	Sediment Basin Name	Tributary Acres	Total Detention Volume (ac- ft)	Provided Volume (ac- ft)	Maximum Discharge (cfs)
A	Sediment Basin 2	18.20	0.255	0.279	0.0385
В	Sediment Basin 1	60.51	1.321	2.243	0.2000

DRAINAGE DESIGN CRITERIA

Development Criteria Reference

Storm drainage analysis and design criteria for the project were taken from the "*City of Colorado Spring/El Paso County Drainage Criteria Manual*" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "*Urban Storm Drainage Criteria Manual*" Volumes 1 - 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County.

Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Rational Method calculations were prepared, in accordance with Section 13.3.2.1. of the CCSDCM, for the sub-basins that directly impact the sizing of ditches and local street culverts. Rational method calculations are presented in Appendix B.

Urban Drainage and Flood Control District's UD-Detention, Version 4.06 workbook was used for pond sizing. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. Pond sizing spreadsheets are presented in Appendix D for reference only. See the Saddlehorn Filing 5 Final Drainage Report for all pond calculations.

Hydraulic Criteria

Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used for roadside ditch design. Ditches were checked for velocity and capacity per the CCS/EPCDCM Section 12.3.2.2. In order to check both capacity and velocity, a cross section analysis was performed on the roadside swales using the basin's maximum runoff Q and the proposed uniform slope of the swale. Swale cross sections have been presented in Appendix C.

Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used for local road crossing culvert design. Culvert size was determined based on 100-year flows and hydraulic criteria from EPCDCM Chapter 9 –Culvert Design. All local road crossing culvert design reports are presented in Appendix C.

DRAINAGE FACILITY DESIGN

General Concept

The proposed stormwater conveyance system was designed to convey the developed Filing 5 runoff during interim early grading to one of two Sediment Basins via roadside ditches and local street culverts. These Sediment Basins were designed to release at less than historic rates to minimize adverse impacts downstream during early grading. No early grading shall be conducted in the floodplain, and no drainageway improvements are proposed in the early grading phase of this development.

The proposed early grading improvements are over designed for the current state of the project site. The roadside swales along with the proposed culverts are designed to treat runoff for the completed development. During early grading operations, the site will have minimal composite impervious surfaces without the proposed roads and vacant lots. This will allow more runoff to infiltrate the ground, reducing the amount of runoff that needs to be caught by the roadside swales and sediment basins.

Once the project progresses past early grading operations, Sediment Basin 1 and Sediment Basin 2 will each be converted into Pond B and Pond A respectively. The temporary outlet structures will be replaced with permanent outlet structures. Each Pond will have a concrete forebay and trickle channel. Both ponds will release treated flows at less than historic rates to minimize adverse impacts downstream. Both ponds will discharge into Major Drainageway MS-06. The final design for Ponds A and B will be included in the Final Drainage report.

Specific Details

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume (WQCV), and consider the need for Industrial Commercial BMP's.

Step 1, Reducing Runoff Volumes: The development of the project site is proposed single family residential lots (2.5 ac. min.) with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. Roadways utilize soil riprap lined roadside ditches further disconnecting impervious areas. These practices will also allow for increased infiltration and reduce runoff volume.

Step 2, Stabilize Drainageways: Filing 5 utilizes roadside ditches with culvert crossings throughout. These roadside ditches direct the on-site development flows to the proposed detention ponds within the

project that releases at or below historic rates into Drainageway MS-06. Based upon the proposed reduction in released flows compared to the pre-developed flows, no impacts to downstream Drainageway MS-06 or Drainageway WF-R7A are anticipated.

Step 3, Provide WQCV: Runoff from this development in the ultimate condition, shall be treated through capture and slow release of the WQCV in a full spectrum water quality and detention pond that is designed per current El Paso County drainage criteria. In the early grading condition, sediment basins shall be utilized as treatment methods temporarily.

Step 4 Consider the need for Industrial and Commercial BMP's: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative are prepared in conjunction with this report. Site specific temporary source control BMPs as well as permanent BMP's are detailed in this plan and narrative to protect receiving waters.

Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention are provided for all developed basins. Outlet structure release rates are limited to less than historic rates to minimize adverse impacts to downstream stormwater facilities. Complete pond and outlet structure designs have been included in Appendix D for reference only. See the Saddlehorn Filing 5 Final Drainage Report for all pond calculations.

Erosion Control Plan

The El Paso County Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate must be submitted since this project is disturbing more than 1 acre. The Early Grading Erosion Control Plans for Filing 5 have been submitted concurrently with this report.

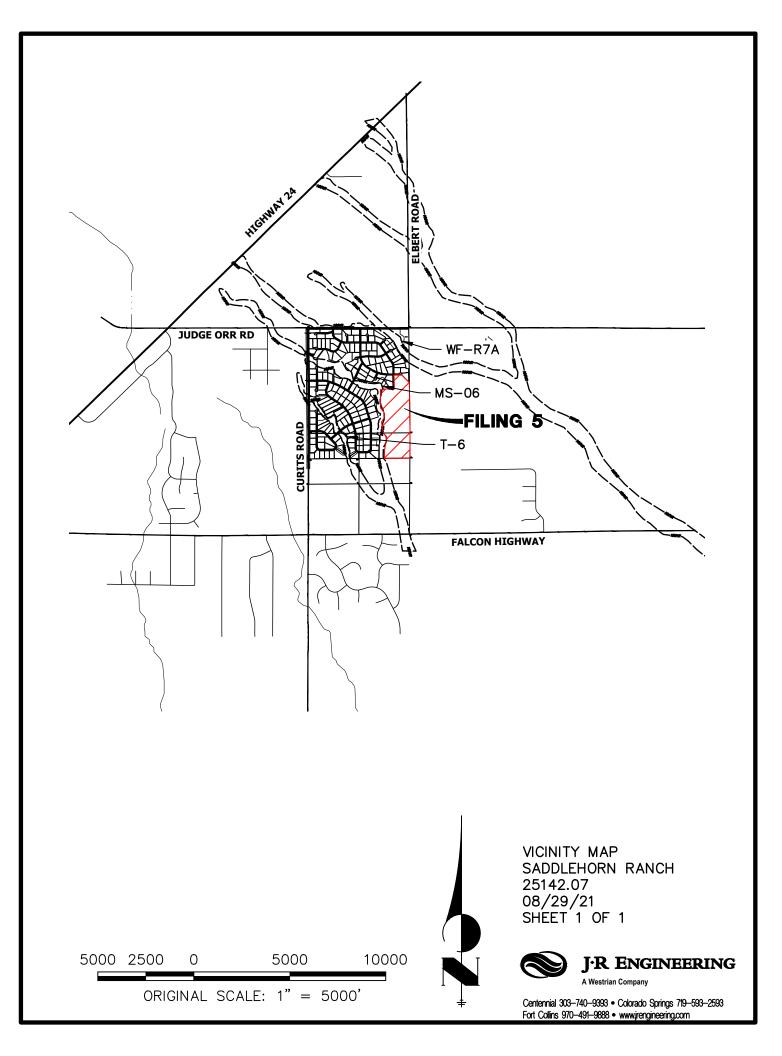
Operation & Maintenance

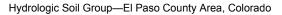
In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within the any platted County ROW will be owned and maintained by El Paso County. All proposed drainage structures within easements or tracts will be owned and maintained by the Saddlehorn Ranch Metropolitan District. Vegetation in the natural and improved portions of Drainageway MS-06 with the Filing 5 improvements is the responsibility of the Saddlehorn Ranch Metropolitan District. This includes all mowing, seeding and weed control activities. An Inspection & Maintenance Plan is submitted concurrently with this drainage report that details the required maintenance activities and intervals to ensure proper function of all stormwater infrastructure in the future.

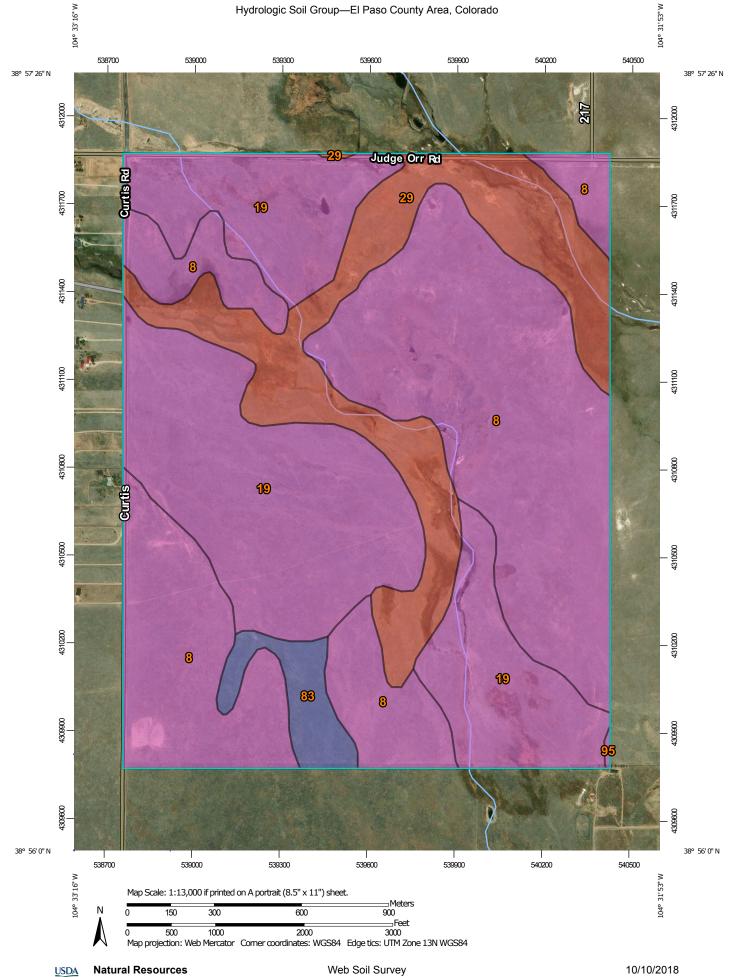
Drainage and Bridge Fees

Drainage and Bridge Fees are not due with the early grading permit application. An estimate of basin fees for the proposed development within Haegler Ranch drainage basin will be calculated and provided with the Filing 5 Final Drainage Report.

SUMMARY

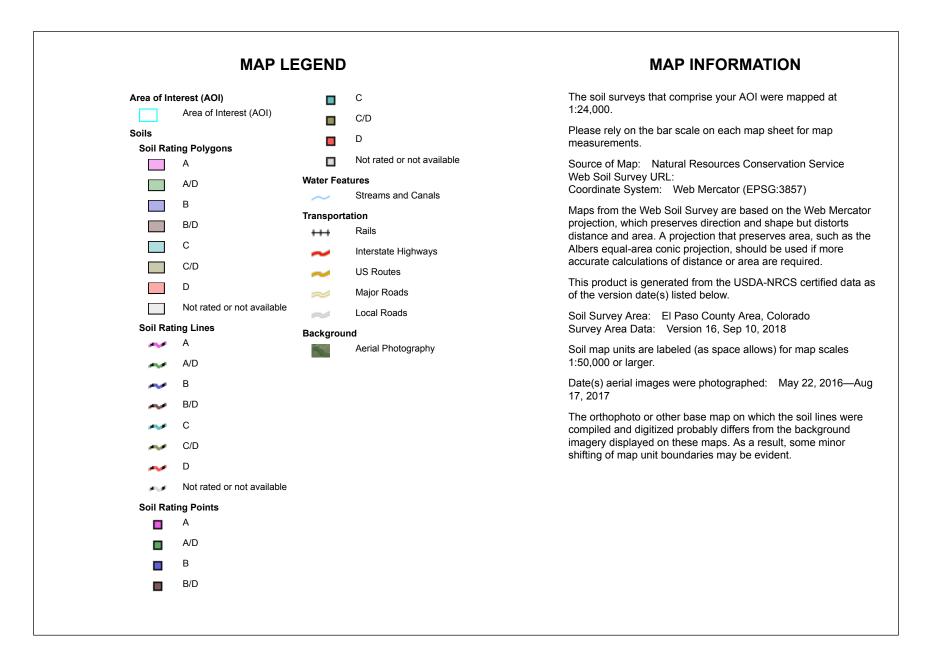

The proposed development remains consistent with pre-development drainage conditions with the construction of the recommended drainage improvements, including ditches, culverts and sediment basins. The proposed development will not adversely affect the offsite major drainageways or surrounding development. No early grading shall be proposed in the floodplain or in the drainageway. See Saddlehorn Filing 5 Final Drainage Report for all detention pond calculations and for all drainageway modeling. This report meets the latest El Paso County Drainage Criteria requirements for this site and is in accordance with the PDR/MDDP for Saddlehorn Ranch.


REFERENCES:


- <u>City of Colorado Springs Drainage Criteria Manual Volume 1</u>, City of Colorado Springs, CO, May 2014.
- 2. <u>Urban Storm Drainage Criteria Manual</u>, Urban Drainage and Flood Control District, Latest Revision.
- <u>Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch</u>, JR Engineering, May 2020.
- 4. <u>Haegler Ranch Drainage Basin Planning Study</u>, URS Corporation, May 2009.
- 5. <u>The Santa Fe Springs Haegler Ranch Drainage Basin LOMR</u>, Federal Emergency Management Agency, October 20, 2004.
- 6. Final Drainage Report for Saddlehorn Ranch Filing 3, JR Engineering, February 4, 2022

APPENDIX A

FIGURES AND EXHIBITS



National Cooperative Soil Survey

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	388.3	44.6%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	307.3	35.3%
29	Fluvaquentic Haplaquolls, nearly level	D	150.0	17.2%
83	Stapleton sandy loam, 3 to 8 percent slopes	В	24.6	2.8%
95	Truckton loamy sand, 1 to 9 percent slopes	A	0.6	0.1%
Totals for Area of Inter	est		870.8	100.0%

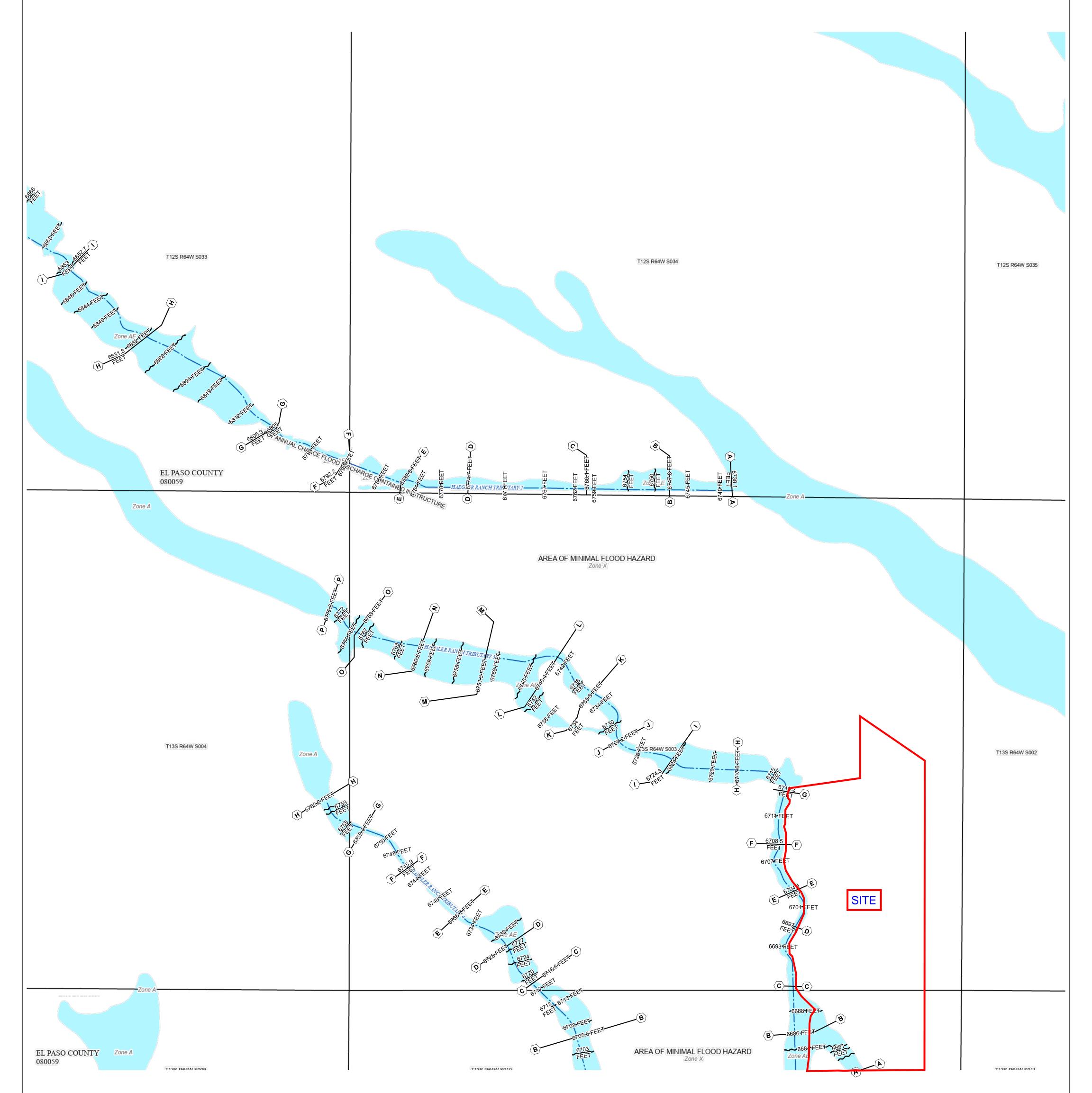
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

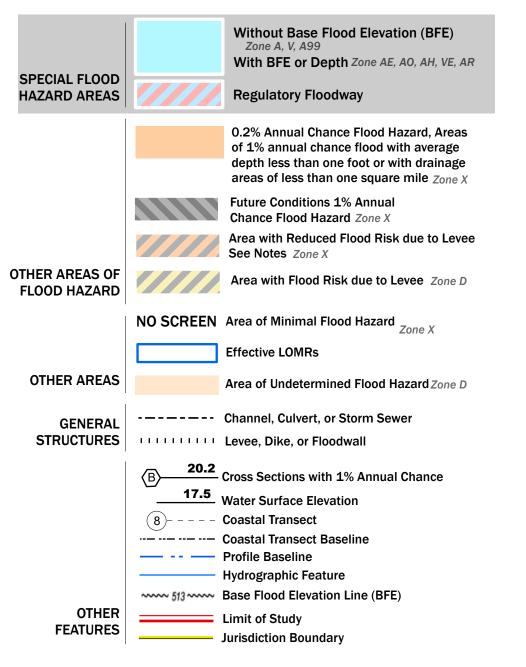
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options


Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

104°31'52.11"W 38°56'8.43"N

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR DRAFT FIRM PANEL LAYOUT

NOTES TO USERS

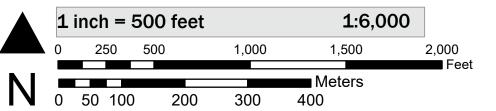
For information and questions about this Flood Insurance Rate Map (FIRM), available products associated with this FIRM, including historic versions, the current map date for each FIRM panel, how to order products, or the National Flood Insurance Program (NFIP) in general, please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at https://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website.

Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number listed above.

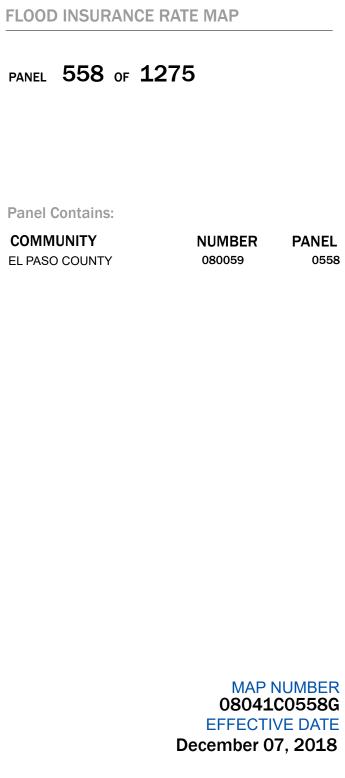
For community and countywide map dates, refer to the Flood Insurance Study Report for this jurisdiction.

To determine if flood insurance is available in this community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Basemap information shown on this FIRM was provided in digital format by the United States Geological Survey (USGS). The basemap shown is the USGS National Map: Orthoimagery. Last refreshed October, 2020.


This map was exported from FEMA's National Flood Hazard Layer (NFHL) on 8/21/2023 7:15 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. For additional information, please see the Flood Hazard Mapping Updates Overview Fact Sheet at https://www.fema.gov/media-library/assets/documents/118418

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date.


SCALE

Map Projection: GCS, Geodetic Reference System 1980; Vertical Datum: NAVD88

For information about the specific vertical datum for elevation features, datum conversions, or vertical monuments used to create this map, please see the Flood Insurance Study (FIS) Report for your community at https://msc.fema.gov

NATIONAL FLOOD INSURANCE PROGRAM National Flood Insurance Program **FEMA** COMMUNITY EL PASO COUNTY and the second

APPENDIX B

HYDROLOGIC CALCULATIONS

COMPOSITE % IMPERVIOUS CALCULATIONS

Subdivision: <u>Saddlehorn Ranch Filing 5 Early Grading</u> Location: <u>El Paso County</u>

Project Name:	Saddlehorn Ranch
Project No.:	25142.07
Calculated By:	WKN
Checked By:	TBD
Date:	8/22/23

			Paved Roads	ŝ	2.5	Acre Rural I	ots		Lawns		Basins Total
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
A1	14.64	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	14.64	2.0%	2.0%
B1	12.57	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	12.57	2.0%	2.0%
B2	12.64	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	12.64	2.0%	2.0%
B3	10.83	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	10.83	2.0%	2.0%
B4	9.16	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	9.16	2.0%	2.0%
B5	14.04	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	14.04	2.0%	2.0%
C1	1.26	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	1.26	2.0%	2.0%
C2	4.19	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	4.19	2.0%	2.0%
UD1	8.14	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	8.14	2.0%	2.0%
UD2	25.14	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	25.14	2.0%	2.0%
UD3	11.46	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	11.46	2.0%	2.0%
UD4	2.68	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	2.68	2.0%	2.0%
OS1	0.59	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	0.59	2.0%	2.0%
OS2	0.68	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	0.68	2.0%	2.0%
OS3	3.56	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	3.56	2.0%	2.0%
OS4	5.72	45%	0.00	0.0%	6.2%	0.00	0.0%	2%	5.72	2.0%	2.0%
TOTAL	137.31										2.0%

Land Use or Surface	Percent	Runoff Coefficients											
Characteristics	Impervious	2.9	ear	ar 5-year		10-	year	25-year		50-year		100-year	
		HSG A&#</th><th>HSG C&D</th><th>HSGA88</th><th>HSG C&D</th><th>HSG A&B</th><th>HSG C&D</th><th>HSG A88</th><th>HSG C&D</th><th>HSG A&B</th><th>HSG C&D</th><th>HSG A&B</th><th>HSG CB</th></tr><tr><td>Business</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Commercial Areas</td><td>95</td><td>0.79</td><td>0.80</td><td>0.81</td><td>0.82</td><td>0.83</td><td>0.84</td><td>0.85</td><td>0.87</td><td>0.87</td><td>0.88</td><td>0.88</td><td>0.89</td></tr><tr><td>Neighborhood Areas</td><td>70</td><td>0.45</td><td>0.49</td><td>0.49</td><td>0.53</td><td>0.53</td><td>0.57</td><td>0.58</td><td>0.62</td><td>0.60</td><td>0.65</td><td>0.62</td><td>0.68</td></tr><tr><td>Residential</td><td></td><td></td><td></td><td>2</td><td>2</td><td>a</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>1/8 Acre or less</td><td>65</td><td>0.41</td><td>0.45</td><td>0.45</td><td>0.49</td><td>0.49</td><td>0.54</td><td>0.54</td><td>0.59</td><td>0.57</td><td>0.62</td><td>0.59</td><td>0.65</td></tr><tr><td>1/4 Acre</td><td>40</td><td>0.23</td><td>0.28</td><td>0.30</td><td>0.35</td><td>0.36</td><td>0.42</td><td>0.42</td><td>0.50</td><td>0.46</td><td>0.54</td><td>0.50</td><td>0.58</td></tr><tr><td>1/3 Acre</td><td>30</td><td>0.18</td><td>0.22</td><td>0.25</td><td>0.30</td><td>0.32</td><td>0.38</td><td>0.39</td><td>0.47</td><td>0.43</td><td>0.52</td><td>0.47</td><td>0.57</td></tr><tr><td>1/2 Acre</td><td>25</td><td>0.15</td><td>0.20</td><td>0.22</td><td>0.28</td><td>0.30</td><td>0.36</td><td>0.37</td><td>0.46</td><td>0.41</td><td>0.51</td><td>0.46</td><td>0.56</td></tr><tr><td>1 Acre</td><td>20</td><td>0.12</td><td>0.17</td><td>0.20</td><td>0.26</td><td>0.27</td><td>0.34</td><td>0.35</td><td>0.44</td><td>0.40</td><td>0.50</td><td>0.44</td><td>0.55</td></tr><tr><td>Industrial</td><td></td><td></td><td></td><td></td><td>2</td><td>s</td><td></td><td></td><td></td><td></td><td></td><td>S</td><td>Q</td></tr><tr><td>Light Areas</td><td>80</td><td>0.57</td><td>0.60</td><td>0.59</td><td>0.63</td><td>0.63</td><td>0.66</td><td>0.66</td><td>0.70</td><td>0.68</td><td>0.72</td><td>0.70</td><td>0.74</td></tr><tr><td>Heavy Areas</td><td>90</td><td>0.71</td><td>0.73</td><td>0.73</td><td>0.75</td><td>0.75</td><td>0.77</td><td>0.78</td><td>0.80</td><td>0.80</td><td>0.82</td><td>0.81</td><td>0.83</td></tr><tr><td>Parks and Cemeteries</td><td>7</td><td>0.05</td><td>0.09</td><td>0.12</td><td>0.19</td><td>0.20</td><td>0.29</td><td>0.30</td><td>0.40</td><td>0.34</td><td>0.46</td><td>0.39</td><td>0.52</td></tr><tr><td>Playgrounds</td><td>13</td><td>0.07</td><td>0.13</td><td>0.16</td><td>0.23</td><td>0.24</td><td>0.31</td><td>0.32</td><td>0.42</td><td>0.37</td><td>0.48</td><td>0.41</td><td>0.54</td></tr><tr><td>Railroad Yard Areas</td><td>40</td><td>0.23</td><td>0.28</td><td>0.30</td><td>0.35</td><td>0,36</td><td>0.42</td><td>0.42</td><td>0.50</td><td>0.46</td><td>0.54</td><td>0.50</td><td>0.58</td></tr><tr><td>Undeveloped Areas</td><td></td><td>- i</td><td></td><td></td><td>1</td><td></td><td>i i</td><td></td><td>- D</td><td></td><td></td><td>8</td><td>52 52</td></tr><tr><td>Historic Flow Analysis- Greenbelts, Agriculture</td><td>2</td><td>0.03</td><td>0.05</td><td>0.09</td><td>0.16</td><td>0.17</td><td>0.26</td><td>0.76</td><td>0.38</td><td>0.31</td><td>0.45</td><td>0.36</td><td>0.51</td></tr><tr><td>Pasture/Meadow</td><td>0</td><td>0.02</td><td>0.04</td><td>0.08</td><td>0.15</td><td>0.15</td><td>0.25</td><td>0.25</td><td>0.37</td><td>0.30</td><td>0.44</td><td>0.35</td><td>0.50</td></tr><tr><td>Forest</td><td>0</td><td>0.02</td><td>0.04</td><td>0.08</td><td>0.15</td><td>0.15</td><td>0.25</td><td>0.25</td><td>0.37</td><td>0.30</td><td>0.44</td><td>0.35</td><td>0.50</td></tr><tr><td>Exposed Rock</td><td>100</td><td>0.89</td><td>0.89</td><td>0.90</td><td>0.90</td><td>0.92</td><td>0.92</td><td>0.94</td><td>0.94</td><td>0.95</td><td>0.95</td><td>0.96</td><td>0.96</td></tr><tr><td>Offsite Flow Analysis (when landuse is undefined)</td><td>45</td><td>0.26</td><td>0.31</td><td>0.32</td><td>0.37</td><td>0.38</td><td>0.44</td><td>0.44</td><td>0.51</td><td>0.48</td><td>0.55</td><td>0.51</td><td>0.59</td></tr><tr><td>Streets</td><td></td><td></td><td></td><td>Sec. 1</td><td></td><td>S</td><td></td><td></td><td></td><td></td><td></td><td>S</td><td></td></tr><tr><td>Paved</td><td>100</td><td>0.89</td><td>0.89</td><td>0.90</td><td>0.90</td><td>0.92</td><td>0.92</td><td>0.94</td><td>0.94</td><td>0.95</td><td>0.95</td><td>0.96</td><td>0.96</td></tr><tr><td>Gravel</td><td>80</td><td>0.57</td><td>0.60</td><td>0.59</td><td>0.63</td><td>0.63</td><td>0.66</td><td>0.66</td><td>0.70</td><td>0.68</td><td>0.72</td><td>0.70</td><td>0.74</td></tr><tr><td>Drive and Walks</td><td>100</td><td>0.89</td><td>0.89</td><td>0.90</td><td>0.90</td><td>0.92</td><td>0.92</td><td>0.94</td><td>0.94</td><td>0.95</td><td>0.95</td><td>0.96</td><td>0.96</td></tr><tr><td>Roofs</td><td>90</td><td>0.71</td><td>0.73</td><td>0.73</td><td>0.75</td><td>0.75</td><td>0.77</td><td>0.78</td><td>0.80</td><td>0.80</td><td>0.82</td><td>0.81</td><td>0.83</td></tr><tr><td>Lawins</td><td>0</td><td>0.02</td><td>0.04</td><td>0.08</td><td>0.15</td><td>0.15</td><td>0.25</td><td>0.25</td><td>0.37</td><td>0.30</td><td>0.44</td><td>0.35</td><td>0.50</td></tr></tbody></table>											

2.5 Acre Rural Lots - Comp. % Impervious Calculation											
Total Area (ac)	Area (ac) - Roofs (90%)	Area (ac)- Drives (100%)	Area (ac) - Lawns (2%)								
2.50	0.068	0.046	2.39								
Comp % Imperviousness		6.20%									

Roads w/ Roadside Ditches - Comp. % Impervious Calculation												
Area* (ac)	Area - Ditch (5%)	Area - Roads (100%)										
0.2124	0.1320	0.0804										
Comp % Imperviousness 0.41												

*Area based on 250 LF roadway from CL to outside edge of roadside ditch The above conservatively rounded to 45%.

COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

bdivision: Saddlehorn Ranch Filing 5 Early Grading Location: El Paso County

Project Name: Saddlehorn Ranch Project No.: 25142.07 Calculated By: WKN Checked By: TBD Date: 8/22/23

		Basins Total	Hydr	ologic Soil (Group	Hydr	ologic Soil (Group	Mir	nor Coeffici	ents	Ma	jor Coeffici		Basins Total	
Basin ID	Total Area (ac)	Weighted % Imp.	Area A (ac)	Area B (ac)	Area C/D (ac)	% A (ac)	% B (ac)	% C/D (ac)	$C_{5,A}$	C _{5,B}	C _{5,C/D}	C _{100,A}	C _{100,B}	C _{100,C/D}	Basins Total Weighted C_5	Weighted C ₁₀₀
A1	14.64	2.0%	14.64	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
B1	12.57	2.0%	12.57	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
B2	12.64	2.0%	12.64	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
B3	10.83	2.0%	10.83	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
B4	9.16	2.0%	9.16	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
B5	14.04	2.0%	14.04	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
C1	1.26	2.0%	1.26	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
C2	4.19	2.0%	4.19	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
UD1	8.14	2.0%	8.14	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
UD2	25.14	2.0%	25.14	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
UD3	11.46	2.0%	11.46	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
UD4	2.68	2.0%	2.68	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
OS1	0.59	2.0%	0.59	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
OS2	0.68	2.0%	0.68	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
OS3	3.56	2.0%	3.56	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
OS4	5.72	2.0%	5.72	0.00	0.00	100%	0%	0%	0.01	0.01	0.05	0.13	0.44	0.49	0.01	0.13
TOTAL	137.31	2.0%	137.31	0.00	0.00	100%	0%	0%							0.01	0.13

Table 6-4. Runoff coefficient equations based on NRCS soil group and storm return period

NRCS			Storm Return Period														
Soil Group	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year										
A	C _A = 0.84 <i>i</i> ^{1.302}	C _A = 0.86 <i>i</i> ^{1.276}	C _A = 0.87 <i>i</i> ^{1.232}	C _A = 0.84 <i>i</i> ^{1.124}	C _A = 0.85 <i>i</i> +0.025	C _A = 0.78 <i>i</i> +0.110	C _A = 0.65 <i>i</i> +0.254										
в	C _B = 0.84 <i>i</i> ^{1.169}	C _B = 0.86 <i>i</i> ^{1.088}	C _B = 0.81 <i>i</i> +0.057	C _B = 0.63 <i>i</i> +0.249	C _B = 0.56 <i>i</i> +0.328	C _B = 0.47 <i>i</i> +0.426	C _B = 0.37 <i>i</i> +0.536										
C/D	Cc.D= 0.83i ^{1.122}	C _{CD} = 0.82 <i>i</i> +0.035	C _{CD} = 0.74 <i>i</i> +0.132	C _{CD} = 0.56 <i>i</i> +0.319	C _{CD} = 0.49 <i>t</i> +0.393	C _{CD} = 0.41 <i>i</i> +0.484	C _{CD} = 0.32 <i>i</i> +0.588										

Where:

i = % imperviousness (expressed as a decimal)

 C_d = Runoff coefficient for Natural Resources Conservation Service (NRCS) HSG A soils

CB = Runoff coefficient for NRCS HSG B soils

 C_{CD} = Runoff coefficient for NRCS HSG C and D soils.

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Saddlehorn Ranch Filing 5 Early Grading

Location: El Paso County

Project No.:	25142.07
Calculated By:	WKN
Checked By:	TBD
Date:	8/22/23

		SUB-E	BASIN			INITI	AL/OVER	LAND		Т	RAVEL TIM	E								
		DA	TA				(T _i)				(T _t)			(U	(URBANIZED BASINS)					
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c			
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)			
A1	14.64	А	2%	0.01	0.13	300	4.8%	20.4	1330	2.9%	7.0	1.2	18.6	39.0	1630.0	39.7	39.0			
B1	12.57	А	2%	0.01	0.13	282	4.9%	19.6	1160	1.3%	15.0	1.7	11.5	31.2	1442.0	44.3	31.2			
B2	12.64	А	2%	0.01	0.13	20	20.0%	3.3	1561	4.6%	15.0	3.2	8.1	11.4	1581.0	38.7	11.4			
B3	10.83	А	2%	0.01	0.13	300	2.0%	27.2	1117	3.1%	15.0	2.6	7.0	34.3	1417.0	37.1	34.3			
B4	9.16	А	2%	0.01	0.13	300	3.3%	23.1	997	1.5%	15.0	1.8	9.0	32.1	1297.0	40.3	32.1			
B5	14.04	А	2%	0.01	0.13	41	9.0%	6.1	3242	1.6%	15.0	1.9	28.9	35.1	3283.0	72.4	35.1			
C1	1.26	А	2%	0.01	0.13	143	2.4%	17.7	184	1.0%	15.0	1.5	2.0	19.7	327.0	29.0	19.7			
C2	4.19	А	2%	0.01	0.13	154	3.0%	17.1	455	1.0%	15.0	1.5	5.1	22.1	609.0	33.8	22.1			
UD1	8.14	А	2%	0.01	0.13	300	3.6%	22.4	267	5.5%	7.0	1.6	2.7	25.1	567.0	27.7	25.1			
UD2	25.14	А	2%	0.01	0.13	300	1.7%	28.7	367	4.1%	7.0	1.4	4.3	33.0	667.0	28.9	28.9			
UD3	11.46	А	2%	0.01	0.13	300	1.8%	28.2	810	1.3%	7.0	0.8	16.7	44.8	1110.0	38.2	38.2			
UD4	2.68	А	2%	0.01	0.13	300	5.1%	19.9	360	2.1%	7.0	1.0	5.9	25.8	660.0	30.1	25.8			
OS1	0.59	А	2%	0.01	0.13	50	5.1%	8.1	670	7.1%	7.0	1.9	6.0		720.0		14.1			
OS2	0.68	A	2%	0.01	0.13	50	1.1%	13.5	345	7.4%	7.0	1.9	3.0				16.6			
OS3	3.56	A	2%	0.01	0.13	50	4.0%	8.8	180	3.4%	7.0	1.3	2.3				11.2			
OS4	5.72	А	2%	0.01	0.13	50	2.1%	10.9	180	3.2%	7.0	1.3	2.4	13.3	230.0	27.5	13.3			

NOTES:

 $t_c = t_i + t_t$

Where:

 t_e = computed time of concentration (minutes)

ti = overland (initial) flow time (minutes)

 t_t = channelized flow time (minutes).

L, L, $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$

Where:

 t_t = channelized flow time (travel time, min) L_t = waterway length (ft) S_0 = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = K $\sqrt{S_0}$ K = NRCS conveyance factor (see Table 6-2).

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$ Equation 6-2

Where:

Where:

Equation 6-4

 L_t = length of channelized flow path (ft)

i = imperviousness (expressed as a decimal) $S_t = \text{slope of the channelized flow path (ft/ft)}.$

 t_i = overland (initial) flow time (minutes) C_5 = runoff coefficient for 5-year frequency (from Table 6-4) L_i = length of overland flow (ft) $S_o =$ average slope along the overland flow path (ft/ft). $t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1.

	Table 0-2. INICO COnvey	ance factors, K
Equation 6-3	Type of Land Surface	Conveyance Factor, K
	Heavy meadow	2.5
	Tillage/field	5
	Short pasture and lawns	7
	Nearly bare ground	10
	Grassed waterway	15
	Paved areas and shallow paved swales	20

Table 6-2. NRCS Conveyance factors, K

Equation 6-5

Use a minimum te value of 5 minutes for urbanized areas and a minimum te value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

	Saddlehorn Ranch Filing 5 Early Grading
Location:	El Paso County
Design Storm:	5-Year

Project Name: Saddlehorn Ranch Project No.: 25142.07 Calculated By: WKN Checked By: TBD Date: 8/22/23

				DIREC	T RUN	IOFF			TO	TAL RI	JNOF	-		SWALE			PI	ΡE		TRAV	'EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	B1	12.57	0.01	21.2	0.08	2 42	0.2					0.2	0.08						791	2.1	6.3	Roadside Swale Swale conveyance to DP 1.0
	2	B2	12.64		11.4		3.94						0.3	0.08	1.1					0	2.1	0.0	Roadside Swale Swale conveyance to DP 1.0
	1.0	DZ	12.04	0.01	11.4	0.00	3.74	0.5	37.4	0.16	2.15	0.3	0.3	0.16	2.99					804	3.5	3.9	Sum of DP 1 and DP 2
	3	B3	10.83	0.01	24.2	0.06	2 20	0.1	37.4	0.10	2.15	0.3	0.1	0.06	1.0					0	2.0	0.0	Swale conveyance to DP 1.1 Roadside Swale Swale conveyance to DP 1.1
	1.1	БЭ	10.63	0.01	34.3	0.00	2.20	0.1	41.3	0.22	2.00	0.4	0.4	0.22	1.0					513	2.0	4.3	Sum of DP 1.0 & DP 3
	4	B4	0.14	0.01	22.1	0.05	2 20	0.1	41.3	0.22	2.00	0.4	0.1	0.05	1.9					0	2.7	0.0	Swale conveyance to DP 1.2 Roadside Swale
	4	D4	9.10	0.01	32.1	0.05	2.30	0.1	45.6	0.27	1.05	0.5	0.5	0.27	0.6					488	1.5	5.3	Swale conveyance to DP 1.2 Sum of DP 1.1 & DP 4
	5	B5	14.04	0.01	25.1	0.08	2.25	0.2	43.0	0.27	1.00	0.5	0.2	0.08	1.1					0	2.1	0.0	Swale conveyance to DP 1.3 Swale
	1.3	DO	14.04	0.01	30.1	0.06	2.20	0.2	50.8	0.25	1.69	0.6	0.6	0.35	0.5					466	1.4	5.5	Overland conveyance to DP 1.3 Sum of DP 1.3 and DP 5 Sheet flow into Sediment Basin 1
	C1	C1	1.26	0.01	10.7	0.01	2 11	0.02	50.8	0.35	1.09	0.0	0.03	0.01	1.9						2.7		Roadside Swale
	C2	C2	4.19		22.1		2.94						0.1	0.03	1.9						2.7		Swale conveyance to Pond C. See Filing 4 for calculations Roadside Swale Swale conveyance to Pond C. See Filing 4 for calculations
	11	A1	15.08				2.94																Overland Flow Sheet flow into Sediment Basin 2
		UD1	8.14				2.07																Overland Flow Sheet flow into Drainageway WF-R7A
		UD2	25.14				2.54																Overland Flow Sheet flow into Drainageway MS-06
		UD3	11.46				2.12																Overland Flow Sheet flow into Drainageway MS-06
		UD4	2.68		25.8		2.71																Overland Flow Sheet flow into Drainageway MS-06
	OS1	OS1	0.59		14.1		3.61									l							Overland Flow from Off-Site Basin Sheet flows to Basin B2
	OS2	OS2	0.68	0.01	16.6	0.00	3.37	0.00															Overland Flow from Off-Site Basin Sheet flows to Basin B3
	OS3	OS3	3.56			0.02																	Overland Flow from Off-Site Basin Sheet flows to Basin A1
	OS4	OS4	5.72	0.01	13.3	0.03	3.70	0.1															Overland Flow from Off-Site Basin Sheet flows to Basin UD4

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision Location Design Storm	: El Pas	o Cour		Filing 5	Early	Gradin	g									Са	oject N Projec Iculate Checke	t No.: d By:	25142 WKN TBD	2.07	Ranc	h	
				DIRE	CT RUI	NOFF			T	otal f	RUNO	F		SWALE			PI	PE		TRAV	'EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
													6.4	1.58						791	2.1	6.3	Roadside Swale
	1	B1	12.57	0.13	31.2	1.58	4.07	6.4					10.5	4 50							0.1		Swale conveyance to DP 1.0
	2	B2	12.64	0.13	11 /	1.59	6.61	10.5					10.5	1.59	1.1					0	2.1	0.0	Roadside Swale Swale conveyance to DP 1.0
	2	DZ	12.04	0.15	11.4	1.57	0.01	10.5					11.4	3.17	2.99					804	3.5	3.9	Sum of DP 1 and DP 2
	1.0								37.4	3.17	3.61	11.4									_		Swale conveyance to DP 1.1
	3	B3	10.83	0.10	24.2	1.27	2.02	5.2					5.2	1.36	1.0					0	2.0	0.0	Roadside Swale
	3	B3	10.83	0.13	34.3	1.36	3.83	5.Z					15.2	4.53	1.0					513	2.0	4 3	Swale conveyance to DP 1.1 Sum of DP 1.0 & DP 3
	1.1								41.3	4.53	3.36	15.2	10.2							0.0	2.0		Swale conveyance to DP 1.2
	1												4.6	1.15	1.9					0	2.7	0.0	Roadside Swale
	4	B4	9.16	0.13	32.1	1.15	3.99	4.6					177	E 40	0.4					488	1 5	E 1	Swale conveyance to DP 1.2 Sum of DP 1.1 & DP 4
	1.2								45.6	5.68	3 11	177	17.7	5.68	0.6					400	1.5	0.3	Swale conveyance to DP 1.3
													6.7	1.77	1.1					0	2.1	0.0	Swale
	5	B5	14.04	0.13	35.1	1.77	3.77	6.7															Overland conveyance to DP 1.3
	1.3								E0.0	7.45	2 02	21.1	21.1	7.45	0.5					466	1.4	5.5	Sum of DP 1.3 and DP 5 Sheet flow into Sediment Basin 1
	1.3								50.6	7.40	2.03	21.1	0.8	0.16	1.9						2.7		Roadside Swale
	C1	C1	1.26	0.13	19.7	0.16	5.22	0.8					0.0	0.10	,						2.7		Swale conveyance to Pond C. See Filing 4 for calculations
													2.6	0.53	1.9						2.7		Roadside Swale
	C2	C2	4.19	0.13	22.1	0.53	4.93	2.6												ļ			Swale conveyance to Pond C. See Filing 4 for calculations Overland Flow
	11	A1	15.08	0.13	39.0	1.96	3.50	6.9															Sheet flow into Sediment Basin 2
																							Overland Flow
	UD1	UD1	8.14	0.13	25.1	1.03	4.61	4.7															Sheet flow into Drainageway WF-R7A
	UD2	כחוו	25.14	0.13	<u> </u>	3.17	4.26	13.5															Overland Flow Sheet flow into Drainageway MS-06
	UDZ	UDZ	23.14	0.13	20.9	3.17	4.20	13.5															Overland Flow
	UD3	UD3	11.46	0.13	38.2	1.44	3.55	5.1															Sheet flow into Drainageway MS-06
			2.40	0.10	25.0	0.05	4																Overland Flow
	UD4	UD4	2.68	0.13	25.8	0.35	4.54	1.6															Sheet flow into Drainageway MS-06 Overland Flow from Off-Site Basin
	OS1	OS1	0.59	0.13	14.1	0.07	6.06	0.4															Sheet flows to Basin B2
																				1			Overland Flow from Off-Site Basin
	OS2	OS2	0.68	0.13	16.6	0.09	5.66	0.5								I			ļ				Sheet flows to Basin B3
	OS3	OS3	3.56	0.13	11.2	0.45	6.66	3.0															Overland Flow from Off-Site Basin Sheet flows to Basin A1
	555		5.50	0.10	11.2	0.40	0.00											1					Overland Flow from Off-Site Basin
	OS4	OS4	5.72	0.13	13.3	0.72	6.21	4.5															Sheet flows to Basin UD4

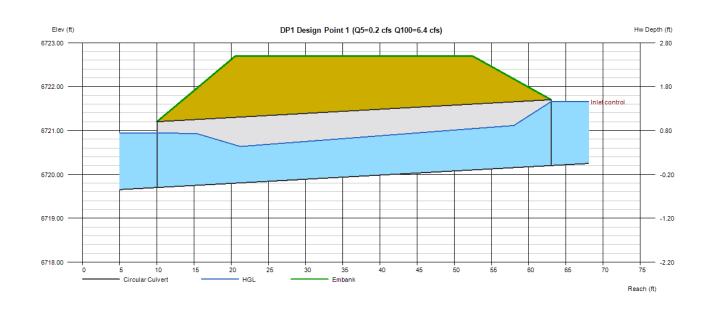
Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

APPENDIX C

HYDRAULIC CALCULATIONS

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 22 2023


DP1 Design Point 1 (Q5=0.2 cfs Q100=6.4 cfs)

= 6719.70 = 53.00 = 0.94 = 6720.20 = 18.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.20 = 6.40 = (dc+D)/2
= Circular	Highlighted	
= 18.0		= 6.40
= 1	()	= 6.40
= 0.012	Qovertop (cfs)	= 0.00
 Circular Concrete 	Veloc Dn (ft/s)	= 4.10
 Groove end projecting (C) 	Veloc Up (ft/s)	= 5.25
= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6720.94
	HGL Up (ft)	= 6721.18
	Hw Elev (ft)	= 6721.66
= 6722.69	Hw/D (ft)	= 0.97
	 = 53.00 = 0.94 = 6720.20 = 18.0 = Circular = 18.0 = 1 = 0.012 = Circular Concrete = Groove end projecting (C) = 0.0045, 2, 0.0317, 0.69, 0.2 	= 53.00 Qmin (cfs)= 0.94 Qmax (cfs)= 6720.20 Tailwater Elev (ft)= 18.0 Utal (cfs)= 18.0 Qtotal (cfs)= 18.0 Qtotal (cfs)= 1 Qpipe (cfs)= 0.012 Qovertop (cfs)= Groove end projecting (C)Veloc Dn (ft/s)= $0.0045, 2, 0.0317, 0.69, 0.2$ HGL Dn (ft)HGL Up (ft)Hw Elev (ft)

Top Width (ft) Crest Width (ft)

=	6722.69
=	32.00
=	20.00

Qpipe (cfs)	= 6.40
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 4.10
Veloc Up (ft/s)	= 5.25
HGL Dn (ft)	= 6720.94
HGL Up (ft)	= 6721.18
Hw Elev (ft)	= 6721.66
Hw/D (ft)	= 0.97
Flow Regime	= Inlet Control

Culvert Report

Crest Width (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 22 2023

DP1.0 Design Point 1.0 (Q5=0.3 cfs Q100=11.4 cfs)

= 20.00

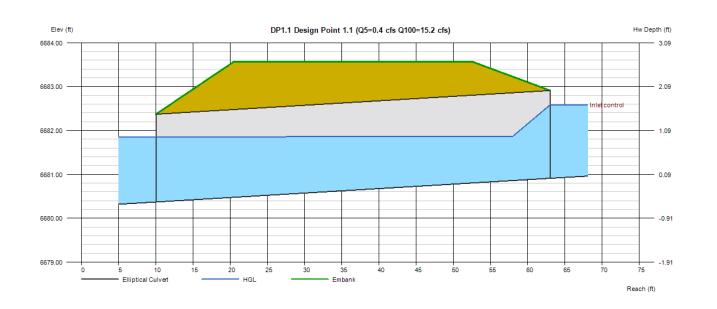
Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6708.83 = 58.00 = 1.83 = 6709.89 = 24.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.30 = 11.40 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 11.40
No. Barrels	= 1	Qpipe (cfs)	= 11.40
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	 Circular Concrete 	Veloc Dn (ft/s)	= 4.22
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 5.73
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6710.44
		HGL Up (ft)	= 6711.10
Embankment		Hw Elev (ft)	= 6711.65
Top Elevation (ft)	= 6712.90	Hw/D (ft)	= 0.88
Top Width (ft)	= 32.00	Flow Regime	= Inlet Control

Elev (ft) DP1.0 Design Point 1.0 (Q5=0.3 cfs Q100=11.4 cfs) Hw Depth (ft) 6713.00 - 3.11 6712.00 2.11 Inlet control 6711.00 1.11 6710.00 0.11 6709.00 -0.89 6708.00 -1.89 6707.00 --2.89 'n 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 - Circular Culvert HGI - Embank Reach (ft)

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 22 2023


DP1.1 Design Point 1.1 (Q5=0.4 cfs Q100=15.2 cfs)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6680.37 = 53.00 = 1.02 = 6680.91 = 24.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.40 = 15.20 = (dc+D)/2
Shape	= Elliptical	Highlighted	
Span (in)	= 38.0	Qtotal (cfs)	= 15.20
No. Barrels	= 1	Qpipe (cfs)	= 15.20
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Horizontal Ellipse Concrete	Veloc Dn (ft/s)	= 3.66
Culvert Entrance	= Square edge w/headwall (H)	Veloc Up (ft/s)	= 6.37
Coeff. K,M,c,Y,k	= 0.01, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6681.85
		HGL Up (ft)	= 6681.87
Embankment		Hw Elev (ft)	= 6682.58
Top Elevation (ft)	= 6683.57	Hw/D (ft)	= 0.84

Top Width (ft) Crest Width (ft)

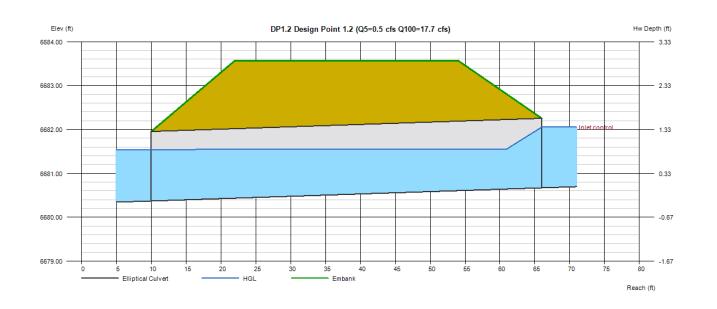
=	6683.57
=	32.00
=	20.00

Qtotal (cts)	=	15.20
Qpipe (cfs)	=	15.20
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	3.66
Veloc Up (ft/s)	=	6.37
HGL Dn (ft)	=	6681.85
HGL Up (ft)	=	6681.87
Hw Elev (ft)	=	6682.58
Hw/D (ft)	=	0.84
Flow Regime	=	Inlet Control

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

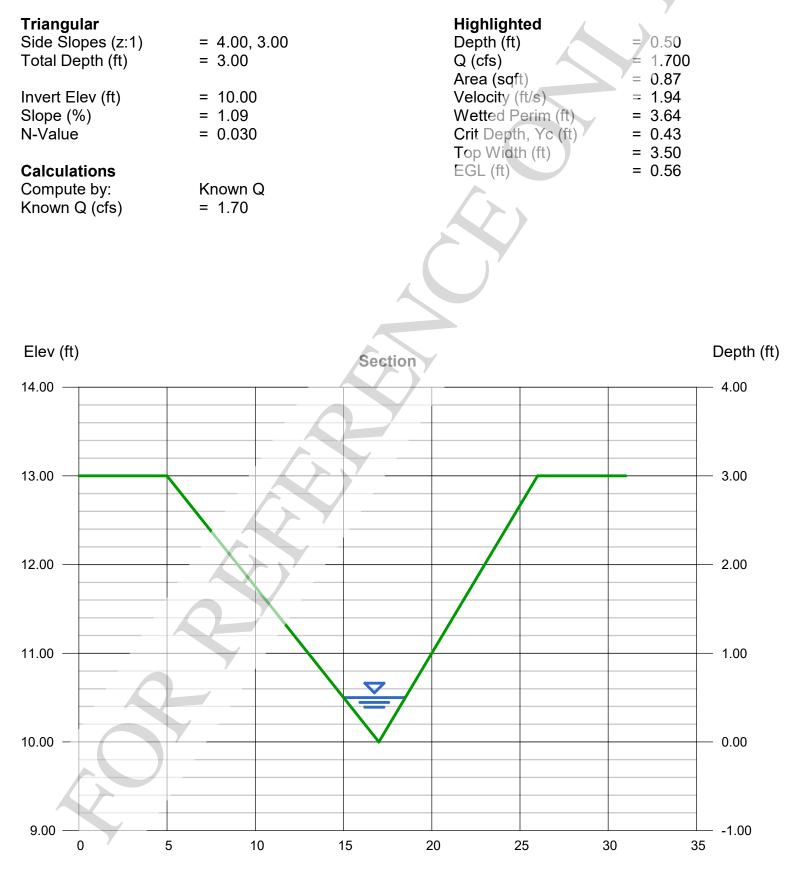
Tuesday, Aug 22 2023


DP1.2 Design Point 1.2 (Q5=0.5 cfs Q100=17.7 cfs)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6680.37 = 56.00 = 0.54 = 6680.67 = 19.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.50 = 17.70 = (dc+D)/2
Shape	= Elliptical	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 17.70
No. Barrels	= 2	Qpipe (cfs)	= 17.70
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	 Horizontal Ellipse Concrete 	Veloc Dn (ft/s)	= 3.41
Culvert Entrance	= Square edge w/headwall (H)	Veloc Up (ft/s)	= 4.87
Coeff. K,M,c,Y,k	= 0.01, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6681.54
		HGL Up (ft)	= 6681.56
Embankment		Hw Elev (ft)	= 6682.05
Top Elevation (ft)	= 6683.57	Hw/D (ft)	= 0.87

Т Top Width (ft) Crest Width (ft)

=	6683.57
=	32.00
=	20.00


Qpipe (cfs)	= 17.70
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 3.41
Veloc Up (ft/s)	= 4.87
HGL Dn (ft)	= 6681.54
HGL Up (ft)	= 6681.56
Hw Elev (ft)	= 6682.05
Hw/D (ft)	= 0.87
Flow Regime	= Inlet Control

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Jul 21 2023

DP 1 Swale (5-Year)(FR:0.48)

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Jul 21 2023

DP 1 Swale (100-Year)(FR:0.56)

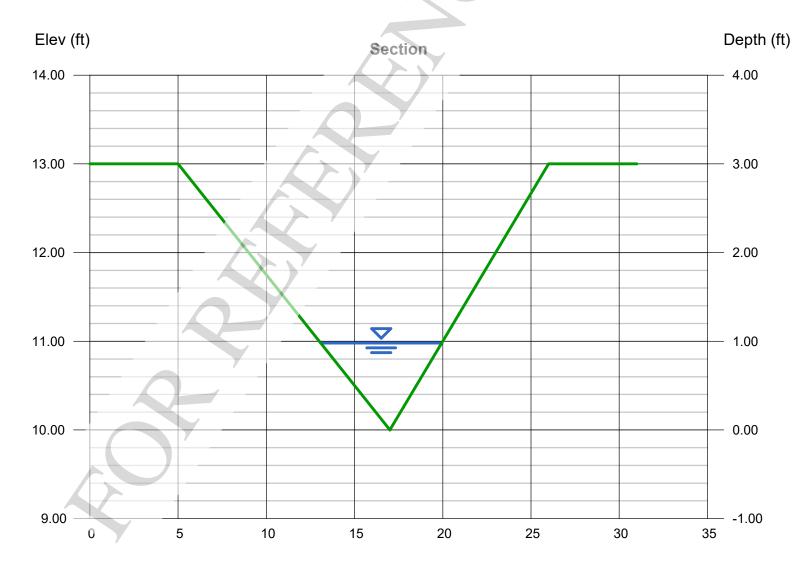
Triangular Side Slopes (z:1)

Total Depth (ft)

Invert Elev (ft)

Slope (%)

N-Value

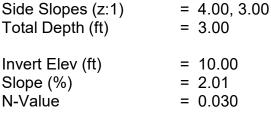

= 4.00, 3.00 = 3.00 = 10.00 = 1.09

= 1.09= 0.030

Calculations

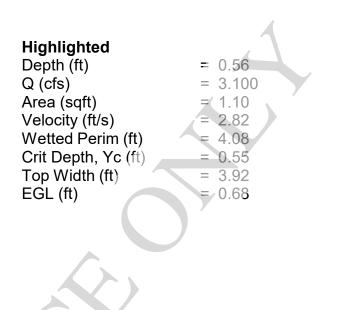
Compute by:Known QKnown Q (cfs)= 10.50

Highlighted		Y
Depth (ft)	- -	0.98
Q (cfs)	Ŧ	10.50
Area (sqft)	/	3.36
Velocity (ft/s)	=	3.12
Wetted Perim (ft)	=	7.14
Crit Depth, Yc (ft)	=	0.90
Top Width (ft)	=	6.86
EGL (ft)	=	1.13



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, May 8 2023


DP 1.0 Swale (5-Year)(FR:0.66)

Triangular

Calculations

Compute by:	Known Q
Known Q (cfs)	= 3.10

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, May 8 2023

DP 1.0 Swale (100-Year)(FR:0.76)

Triangular Side Slopes (z:1)

Total Depth (ft)

Invert Elev (ft)

Slope (%)

N-Value

= 4.00, 3.00= 3.00 = 10.00 = 2.01

= 0.030

Calculations Compute by:

Known Q Known Q (cfs) = 18.70

Highlighted	
Depth (ft)	= 1.09
Q (cfs)	= 18.70
Area (sqft)	= 4.16
Velocity (ft/s)	= 4.50
Wetted Perim (ft)	= 7.94
Crit Depth, Yc (ft)	= 1.13
Top Width (ft)	= 7.63
EGL (ft)	= 1.40

Elev (ft) Depth (ft) Section 14.00 -4.00 13.00 -- 3.00 12.00 -- 2.00 11.00 -- 1.00 10.00 -- 0.00 9.00 -1.00 5 10 20 0 15 25 30 35

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, May 8 2023

-1.00

35

DP 1.1 Swale (5-Year)(FR:0.50)

Triangular Side Slopes (z:1)

Total Depth (ft)

Invert Elev (ft)

Slope (%)

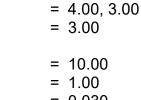
N-Value

Elev (ft)

14.00 -

13.00 -

12.00 -


11.00 -

10.00 -

9.00

5

10

= 0.030

Calculations

Known Q Compute by: Known Q (cfs) = 4.10

Highlighted	
Depth (ft)	= 0.70
Q (cfs)	= 4.100
Area (sqft)	= 1.71
Velocity (ft/s)	= 2.39
Wetted Perim (ft)	= 5.10
Crit Depth, Yc (ft)	= 0.62
Top Width (ft)	= 4.90
EGL (ft)	= 0.79

15

20

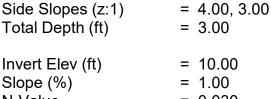
25

30

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, May 8 2023

DP 1.1 Swale (100-Year)(FR:0.56)


Triangular

Total Depth (ft)

Invert Elev (ft)

Slope (%)

N-Value

= 0.030

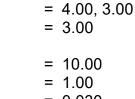
Calculations

Compute by: Known Q Known Q (cfs) = 24.90

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, May 8 2023

DP 1.2 Swale (5-Year)(FR:0.50)

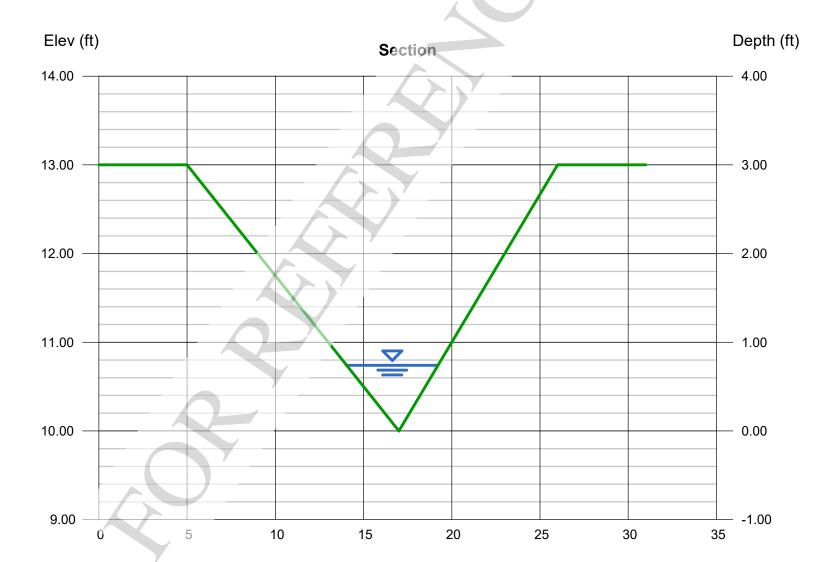

Triangular Side Slopes (z:1)

Total Depth (ft)

Invert Elev (ft)

Slope (%)

N-Value



= 0.030

Calculations

Known Q Compute by: Known Q (cfs) = 4.60

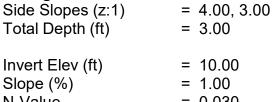
Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	= 0.74 = 4.600 = 1.92 = 2.40 = 5.39 = 0.65 = 5.18
Top Width (ft)	= 5.18
EGL (ft)	= 0.83

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, May 8 2023

DP 1.2 Swale (100-Year)(FR:0.56)

Triangular

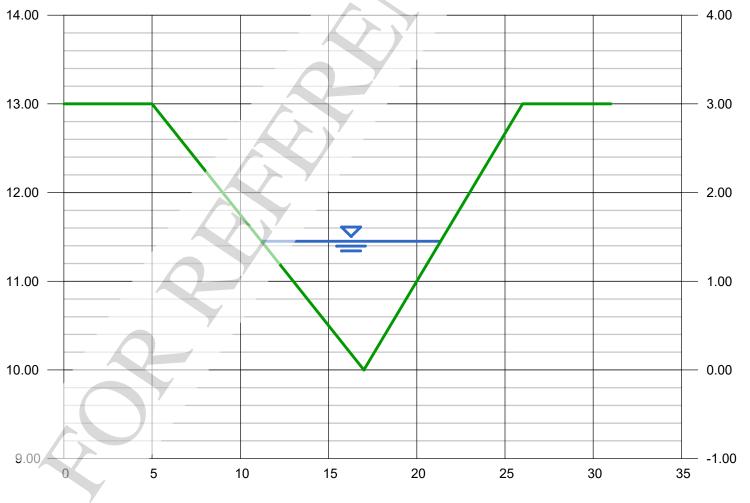

Total Depth (ft)

Invert Elev (ft)

Slope (%)

N-Value

Elev (ft)


= 0.030

Calculations

Compute by:	Known Q
Known Q (cfs)	= 28.40

Highlighted	
Depth (ft)	= 1.45
Q (cfs)	= 28.40
Area (sqft)	<i>≠</i> 7.36
Velocity (ft/s)	= 3.86
Wetted Perim (ft)	= 10.56
Crit Depth, Yc (ft)	= 1.33
Top Width (ft)	= 10.15
EGL (ft)	= 1.68

Depth (ft)

Section

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, May 8 2023

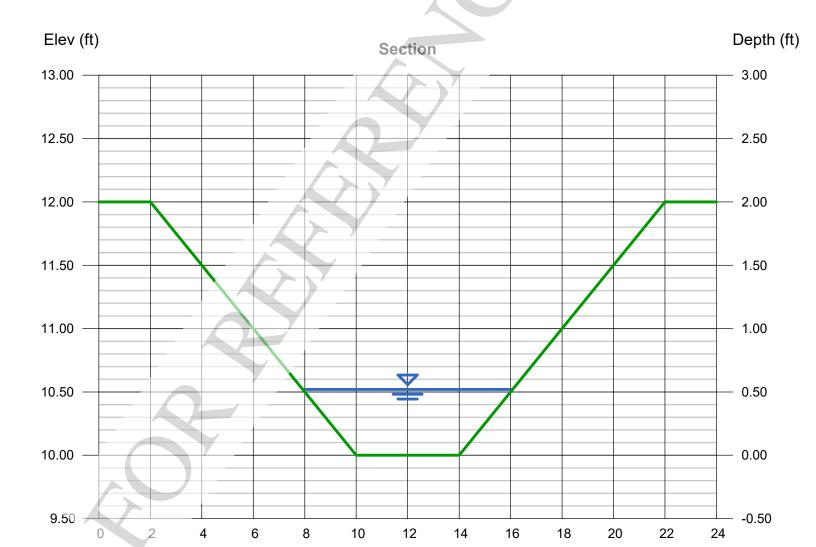
DP 1.3 Swale (5-Year)(FR:0.44)

Trapez	oidal
Bottom	Width

Tupozoldul	
Bottom Width (ft)	= 4.00
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 2.00
Invert Elev (ft)	= 10.00
Slope (%)	= 0.50
	- 0.030

= 0.030

Known Q


= 5.70

Calculations

N-Value

Compute by: Known Q (cfs)

Highlighted	
Depth (ft)	= 0.52
Q (cfs)	= 5.700
Area (sqft)	= 3.16
Velocity (ft/s)	= 1.80
Wetted Perim (ft)	= 8.29
Crit Depth, Yc (ft)	= 0.36
Top Width (ft)	= 8.16
EGL (ft)	= 0.57

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Known Q

= 34.30

Monday, May 8 2023

DP 1.3 Swale (100-Year)(FR:0.46)

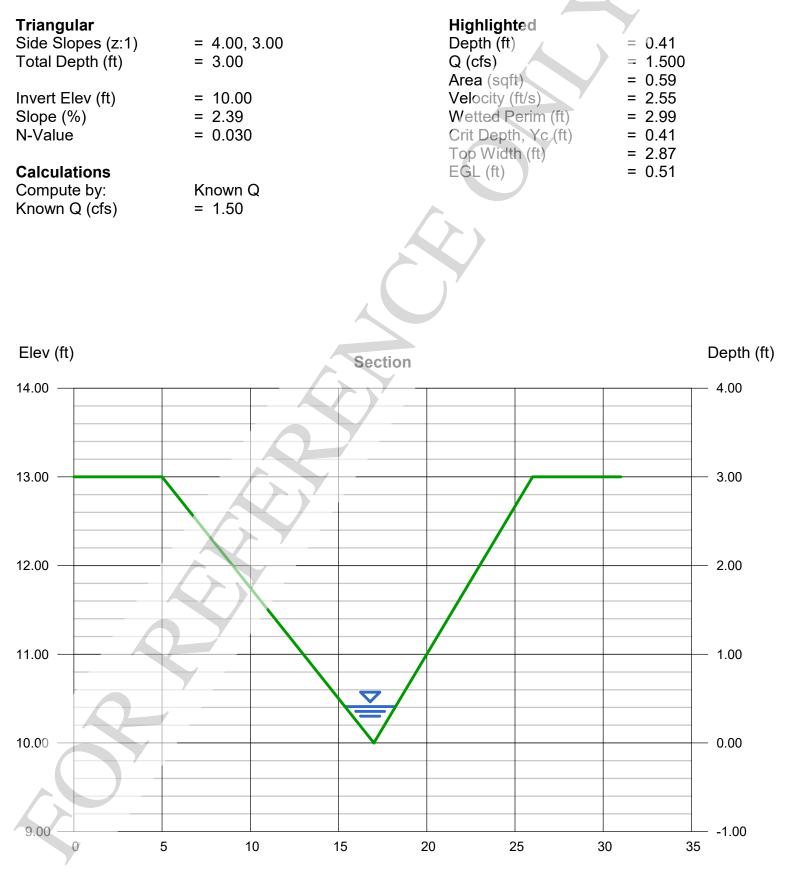
Trapezoidal

Bottom Width (ft)	= 4.00
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 2.00
Invert Elev (ft)	= 10.00
Slope (%)	= 0.50
N-Value	= 0.030

Calculations

Compute by: Known Q (cfs)

Highlighted		7
Depth (ft)	=	1.27
Q (cfs)	=	34.30
Area (sqft)	=	11.53
Velocity (ft/s)	=	2.97
Wetted Perim (ft)	=	14.47
Crit Depth, Yc (ft)	=	0.97
Top Width (ft)		14.16
EGL (ft)	=	1.41

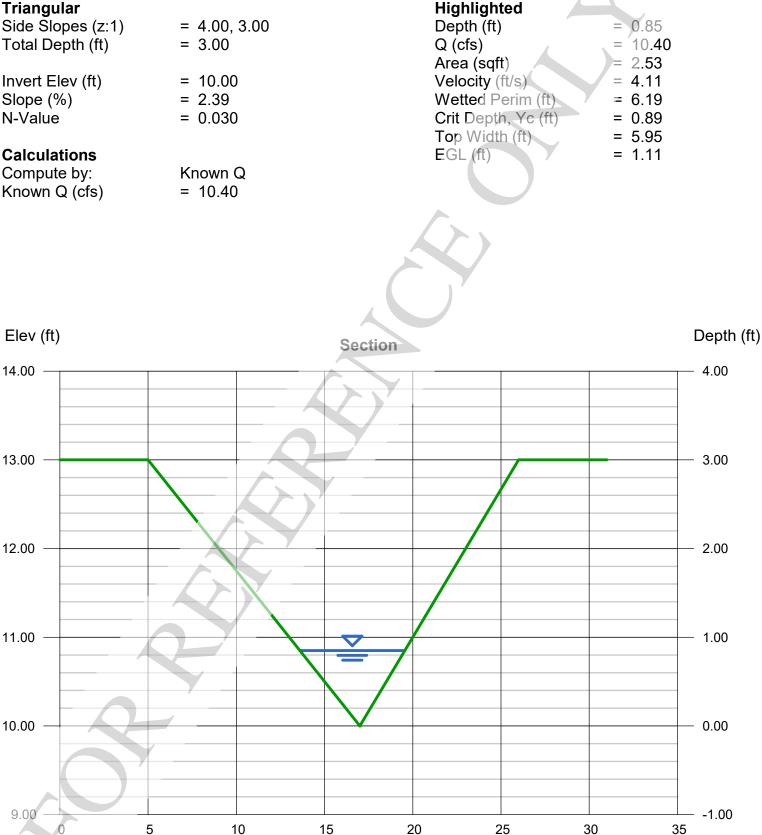

Elev (ft) Depth (ft) Section 13.00 -3.00 12.50 -- 2.50 12.00 - 2.00 11.50 -- 1.50 11.00 -- 1.00 10.50 -- 0.50 10.00 -- 0.00 9.50 -0.50 4 6 8 12 20 0 2 10 14 16 18 22 24

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, May 8 2023

DP 11 Swale (5-Year)(FR:0.70)

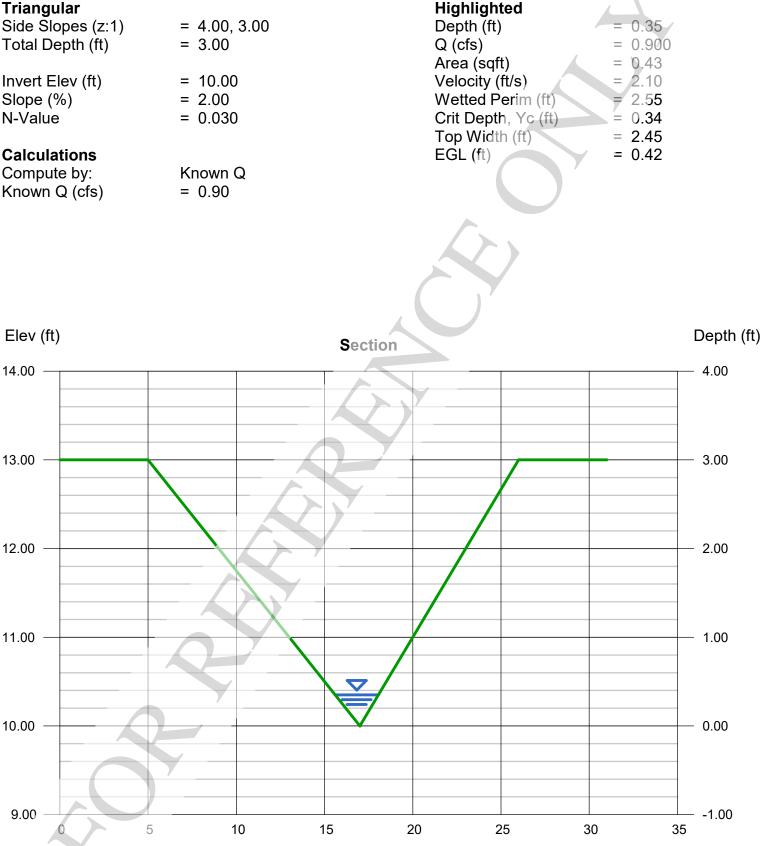


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, May 8 2023

DP 11 Swale (100-Year)(FR:0.79)

Triangular



Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP C2 Swale (5-Year)(FR:0.63)

Triangular

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Jul 21 2023

DP C2 Swale (100-Year)(FR:0.68)

Triangular Side Slopes (z:1)

 $\begin{array}{rcl} &=& 4.00, \, 3.00 \\ &=& 3.00 \\ &=& 10.00 \\ &=& 2.00 \\ &=& 0.030 \end{array}$

Calculations

Total Depth (ft)

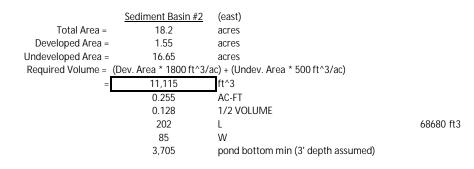
Invert Elev (ft)

Slope (%)

N-Value

Compute by:Known QKnown Q (cfs)= 4.80

Highlighted	
Depth (ft)	= 0.66
Q (cfs)	= 4.800
Area (sqft)	= 1.52
Velocity (ft/s)	= 3.15
Wetted Perim (ft)	= 4.81
Crit Depth, Yc (ft)	= 0.66
Top Width (ft)	= 4.62
EGL (ft)	= 0.81



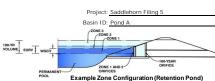
APPENDIX D

WATER QUALITY AND DETENTION CALCULATIONS

Saddlehorn-2514207 Required Sediment Pond Volumes 11/21/2023

Sediment Basin #1 (west) Total Area = 60.51 acres Developed Area = 20.98 acres Undeveloped Area = 39.53 acres Required Volume = (Dev. Area * 1800 ft^3/ac) + (Undev. Area * 500 ft^3/ac) 57,529 ft^3 AC-FT 1.321 0.660 1/2 VOLUME 228 L 118560 ft3 130 W 19,176 pond bottom min (3' depth assumed)

Saddlehorn (25142.07) Orifice Sizing


Solution	5 1.25	1 Column - 5 holes Inch diameter holes	
Equates to a	1.23	sq. in. hole	
Equates to a	1.25	diam. hole (in)	
	0.0400	cfs	per hole
	Assuming	5	holes
Drain Time 40 hrs	0.1998	cfs	over 40 hr
	28771	cf	
Top 1/2	0.661	ac-ft	
Basin Total Volume:	1.321	ac-ft	
Sediment Basin #1		_	

Saddlehorn (25142.07) Orifice Sizing

Sediment Basin #2			
Basin Total Volume:	0.255	ac-ft	
Top 1/2	0.128	ac-ft	
	5554	cf	
Drain Time 40 hrs	0.0386	cfs	over 40 hrs
	Assuming	5	holes
	0.0077	cfs	per hole
Equates to a	1.25	diam. hole (in)	
Equates to a	1.23	sq. in. hole	
Solution	5	1 Column - 5 holes	
	1.25	Inch diameter holes	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Depth Increment =

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	15.08	acres
Watershed Length =	1,659	ft
Watershed Length to Centroid =	794	ft
Watershed Slope =	0.048	ft/ft
Watershed Imperviousness =	10.10%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblorddo orban nydro	graphinocoda	
Water Quality Capture Volume (WQCV) =	0.085	acre-feet
Excess Urban Runoff Volume (EURV) =	0.112	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.055	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.094	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.126	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.330	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.534	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.822	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	1.456	acre-feet
Approximate 2-yr Detention Volume =	0.067	acre-feet
Approximate 5-yr Detention Volume =	0.092	acre-feet
Approximate 10-yr Detention Volume =	0.121	acre-feet
Approximate 25-yr Detention Volume =	0.164	acre-feet
Approximate 50-yr Detention Volume =	0.221	acre-feet
Approximate 100-yr Detention Volume =	0.358	acre-feet

Define	Zones	and	Basi	in	Geom	netry
		7	Zone	1	Volum	e (W

Jerine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.085	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.027	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.245	acre-feet
Total Detention Basin Volume =	0.358	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	

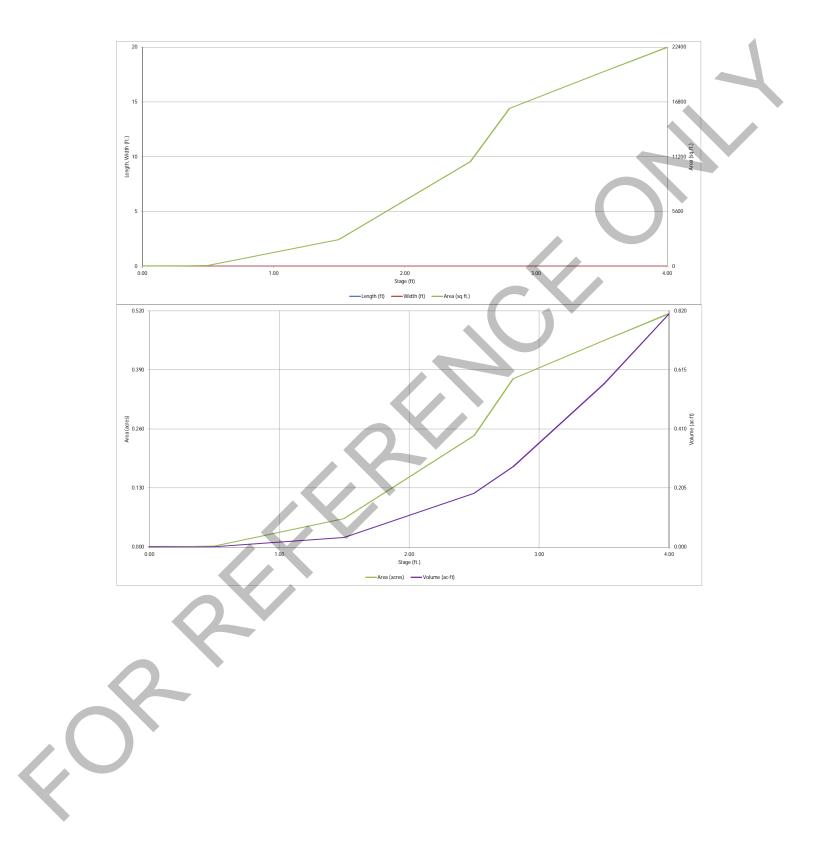
user

user

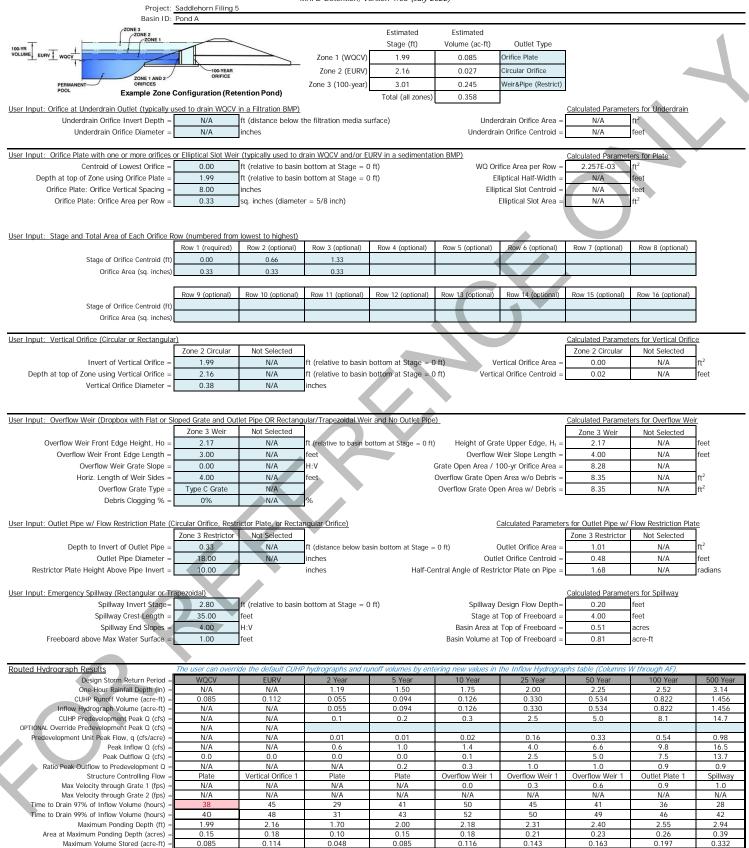
user

user

user 🗸


Initial Surcharge Area $(A_{ISV}) =$ Surcharge Volume Length $(L_{ISV}) =$ user ft 2 Surcharge Volume Width (WISV) = user Depth of Basin Floor (H_{FLOOR}) = user Length of Basin Floor (L_{FLOOR}) Width of Basin Floor (W_{FLOOR}) = Area of Basin Floor (A_{FLOOR}) : Volume of Basin Floor (V_{FLOOR}) user Depth of Main Basin (H_{MAIN}) Length of Main Basin (L_{MAIN}) = Width of Main Basin (W_{MAIN}) = user user Area of Main Basin (V_{MAR}) = user ft² Volume of Main Basin (V_{MAR}) = user ft³ Calculated Total Basin Volume (V_{total}) = user acre-fe

ion Pond)		Stage - Storage	Stage	Override	Length	Width	Area	Override Area (ft ²)	Area	Volume (ft 3)	Volume (ac-ft)	1
		Description Top of Micropool	(ft) 	Stage (ft) 0.00	(ft)	(ft)	(ft ²)	36 Area (It	(acre) 0.001	(11)	(ac-n)	1
											0.000	1
		6661.83		0.33				50	0.001	14	0.000	1
		6662		0.50				75	0.002	25	0.001	1
		6663	~~	1.50				2,724	0.063	1,424	0.033	
		6664		2.50				10,676	0.245	8,124	0.187	
		6664.3		2.80				16,135	0.370	12,146	0.279	
		6665		3.50				19,821	0.455	24,730	0.568	1
		6665.5		4.00				22,375	0.514	35,279	0.810	
Optional User	Overrides											
	acre-feet											1
	acre-feet											1
	inches								7			1
1.50	inches											1
	inches											1
	inches											1
	inches											1
	inches						-					1
	inches											1
	manas											1
												1
												1
		-			-							1
							-					1
												1
					-							1
												1
												1
					-							1
												1
												1
												1
												1
			-									1
												1
												1
												1
												1
												1
			1									1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
		-										1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
												1
					: :							1
												1
											-	
												1


Stage - Storage Stage Override Length Width Area Override Area Volume Volume

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

MHFD-Detention, Version 4.06 (July 2022)

Outflow Hydrograph Workbook Filename:

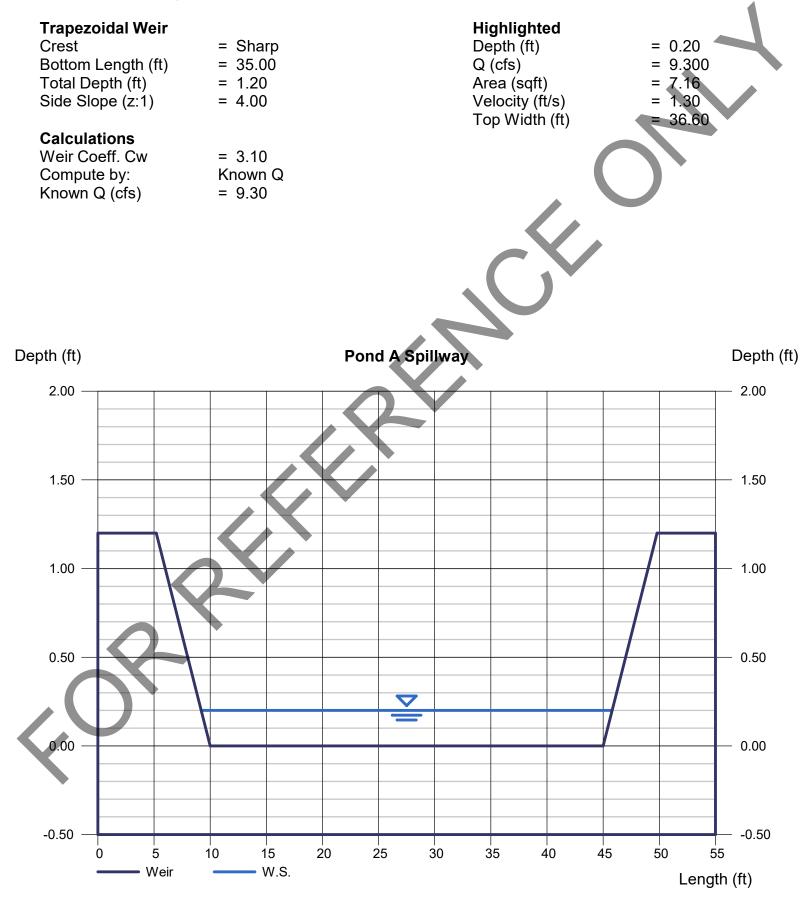
	The user can ov									
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	0:15:00	0.00	0.00	0.02	0.04	0.05	0.03	0.04	0.04	0.06
	0:20:00	0.00	0.00	0.08	0.11	0.13	0.08	0.10	0.10	0.14
	0:25:00	0.00	0.00	0.32	0.69	1.00	0.25	0.43	0.55	0.99
	0:30:00	0.00	0.00	0.56	1.04	1.41	2.14	3.88	5.33	9.66
	0:35:00	0.00	0.00	0.58	1.05	1.42	3.67	5.98	8.87	14.81
	0:40:00	0.00	0.00	0.56	0.99	1.34	4.00	6.57	9.81	16.41
	0:45:00	0.00	0.00	0.51	0.90	1.21	3.85	6.29	9.70	16.50
	0:50:00	0.00	0.00	0.47	0.82	1.10	3.57	5.79	8.95	15.57
	0:55:00	0.00	0.00	0.44	0.76	1.01	3.23	5.24	8.17	14.37
	1:00:00 1:05:00	0.00	0.00	0.40	0.69	0.93	2.94	4.77	7.50	13.34
	1:10:00	0.00	0.00	0.38	0.64	0.85	2.66	4.33 3.90	6.87 6.19	12.44 11.26
	1:15:00	0.00	0.00	0.33	0.55	0.79	2.40	3.55	5.61	10.24
	1:20:00	0.00	0.00	0.30	0.51	0.69	2.00	3.23	5.09	9.27
	1:25:00	0.00	0.00	0.28	0.47	0.63	1.81	2.92	4.59	8.34
	1:30:00	0.00	0.00	0.25	0.47	0.56	1.63	2.92	4.10	7.45
	1:35:00	0.00	0.00	0.23	0.42	0.50	1.44	2.31	3.63	6.58
	1:40:00	0.00	0.00	0.23	0.34	0.45	1.44	2.01	3.16	5.73
	1:45:00	0.00	0.00	0.20	0.31	0.42	1.10	1.74	2.74	4.98
	1:50:00	0.00	0.00	0.19	0.30	0.39	0.99	1.57	2.44	4.46
	1:55:00	0.00	0.00	0.18	0.28	0.37	0.91	1.44	2.23	4.06
	2:00:00	0.00	0.00	0.16	0.26	0.34	0.84	1.33	2.05	3.70
	2:05:00	0.00	0.00	0.15	0.24	0.31	0.77	1.21	1.87	3.36
	2:10:00	0.00	0.00	0.13	0.21	0.28	0.70	1.10	1.69	3.04
	2:15:00	0.00	0.00	0.12	0.19	0.25	0.63	0.99	1.52	2.72
	2:20:00	0.00	0.00	0.11	0.16	0.22	0.56	0.88	1.35	2.42
	2:25:00	0.00	0.00	0.09	0.14	0.19	0.49	0.77	1.19	2.13
	2:30:00	0.00	0.00	0.08	0.12	0.16	0.42	0.66	1.02	1.84
	2:35:00	0.00	0.00	0.07	0.10	0.13	0.35	0.55	0.86	1.55
	2:40:00	0.00	0.00	0.05	0.08	0.11	0.29	0.45	0.70	1.26
	2:45:00	0.00	0.00	0.04	0.06	0.08	0.22	0.34	0.53	0.98
	2:50:00 2:55:00	0.00	0.00	0.03	0.04	0.05	0.16	0.24	0.37	0.69
	3:00:00	0.00	0.00	0.02	0.03	0.04	0.10	0.14	0.22	0.42
	3:05:00	0.00	0.00	0.02	0.02	0.03	0.03	0.07	0.12	0.24
	3:10:00	0.00	0.00	0.02	0.02	0.02	0.02	0.04	0.04	0.10
	3:15:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.03	0.07
	3:20:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.04
	3:25:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.03
	3:30:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	3:35:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:40:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:45:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00						
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

イ

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

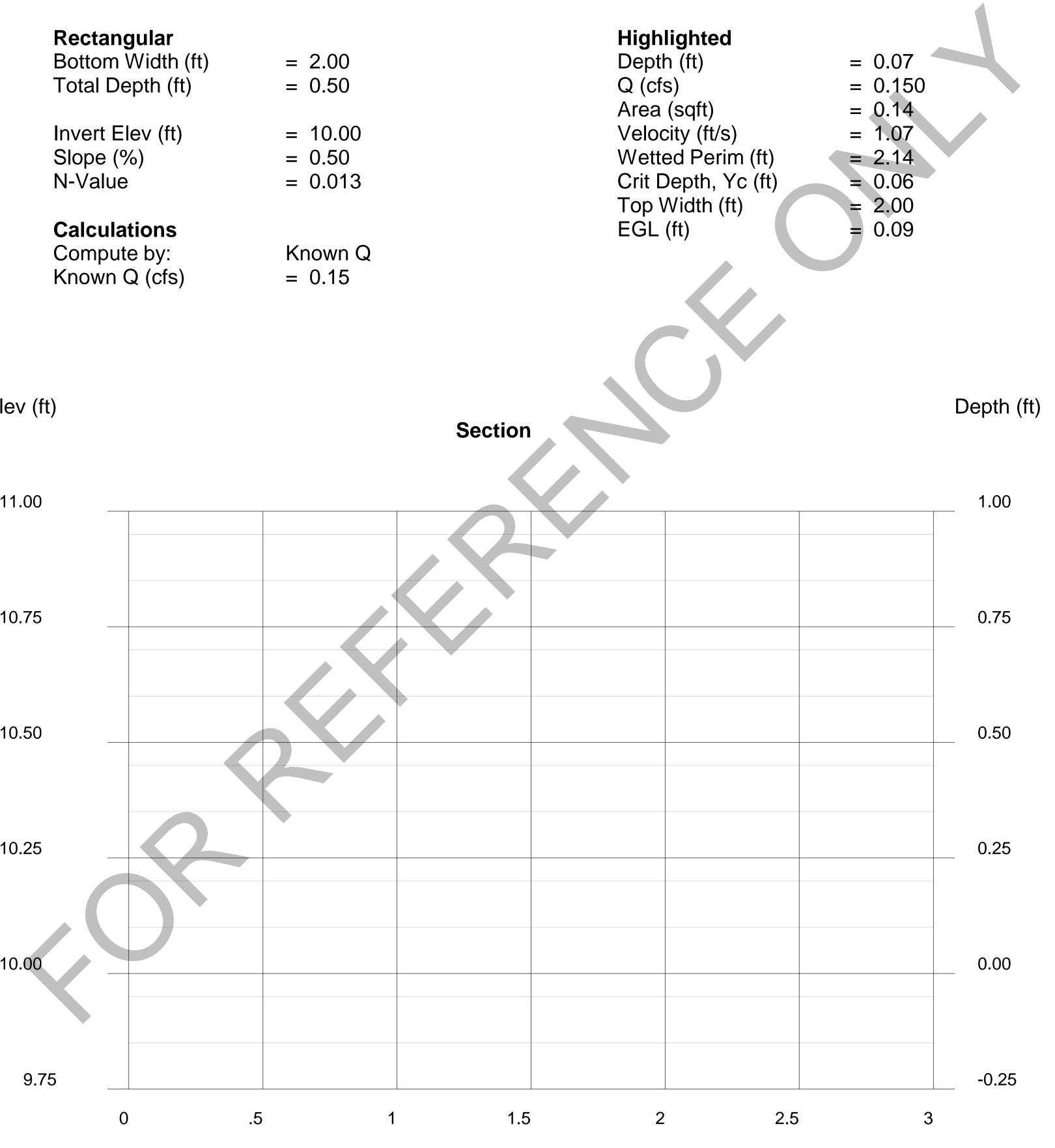
	The user should graphically con	npare the summa	ary S-A-V-D tabl	e to the full S-A-	V-D table in the	chart to confirm		y transition points.
	Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
	Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
		0.50	75	0.002	25	0.001	0.01	For bank mouths, include the
		1.00	1,400	0.032	393	0.009	0.02	For best results, include the stages of all grade slope
		1.50	2,724	0.063	1,424	0.033	0.03	changes (e.g. ISV and Floor)
	WQCV	1.30	6,620	0.152	3,714	0.085	0.04	from the S-A-V table on
	WQCV	2.00	6,700	0.154	3,780	0.087	0.04	Sheet 'Basin'.
	EURV	2.16	7,972	0.183	4,954	0.114	0.04	Also include the inverts of all
		2.50	10,676	0.245	8,124	0.187	7.45	outlets (e.g. vertical orifice,
	100-YR	2.55	11,586	0.266	8,681	0.199	7.53	overflow grate, and spillway, where applicable).
		3.00	17,188	0.395	15,478	0.355	17.76	where applicable).
		3.50	19,821	0.455	24,730	0.568	74.32	
								-
								1
			1	1	1			1
								r
								1
								4
								-
								-
								-
								-
								-
								1
								1
								1
								1
								1
								-
								-
								-
								-
								1
								1
								1
]
]
								1
								4
								4
			<u> </u>					4
								1
								1
								4
								-
								1
								1
· · · · · · · · · · · · · · · · · · ·								-
								-
								1
								4
								4
								1
								4
\blacksquare								4
			<u> </u>	-	-	-		1
]
								4
				1	1	1	1	1


PO Equation 3-1		BAY VOLU a(0.91/ ³ -1.19/ ² ur drain time)	ME REQUIREM +0.781/)	IENTS	
Proposed Forebay	I=.101	WQCV=	0.067578		
Equation 3-3 Proposed Forebay	3 V=(WC A= 15.08 A	2CV/12)A cres V=	0.085		
		F WQCV	02(1)		
		y Total Volume			
Volume R	equired For Pro	posed Forebay	= 0.003 AC-FT	111 CF	
Volume F	Provided For Pro	posed Forebay	= 0.008 AC-FT	365 CF	
Q ₁₀₀ Discharges	2% OF Q ₁₀₀)	
Q ₁₀₀ Proposed Forebay =	.02*7.5 CFS= .	15 CFS			

Weir Report

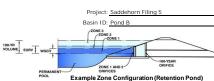
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Mar 25 2022


Pond A Spillway

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Aug 24 2022


Pond A Trickle Channel

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Depth Increment =

Water school Informatio

tersned information						
Selected BMP Type =	EDB					
Watershed Area =	60.42	acres				
Watershed Length =	3,478	ft				
Watershed Length to Centroid =	1,805	ft				
Watershed Slope =	0.023	ft/ft				
Watershed Imperviousness =	11.50%	percent				
Percentage Hydrologic Soil Group A =	100.0%	percent				
Percentage Hydrologic Soil Group B =	0.0%	percent				
Percentage Hydrologic Soil Groups C/D =	0.0%	percent				
Target WQCV Drain Time =	40.0	hours				
Location for 1-hr Rainfall Depths = User Input						

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblorddo orban nyare	graphinoceae	
Water Quality Capture Volume (WQCV) =	0.379	acre-feet
Excess Urban Runoff Volume (EURV) =	0.531	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.279	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.454	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.602	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.442	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	2.273	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	3.438	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	5.999	acre-feet
Approximate 2-yr Detention Volume =	0.320	acre-feet
Approximate 5-yr Detention Volume =	0.438	acre-feet
Approximate 10-yr Detention Volume =	0.572	acre-feet
Approximate 25-yr Detention Volume =	0.768	acre-feet
Approximate 50-yr Detention Volume =	1.006	acre-feet
Approximate 100-yr Detention Volume =	1.563	acre-feet

Define	Zones	and	Basi	in	Geome	etry
		ž	Zone	1	Volume	(W0

Jenne Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.379	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.152	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.033	acre-feet
Total Detention Basin Volume =	1.563	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

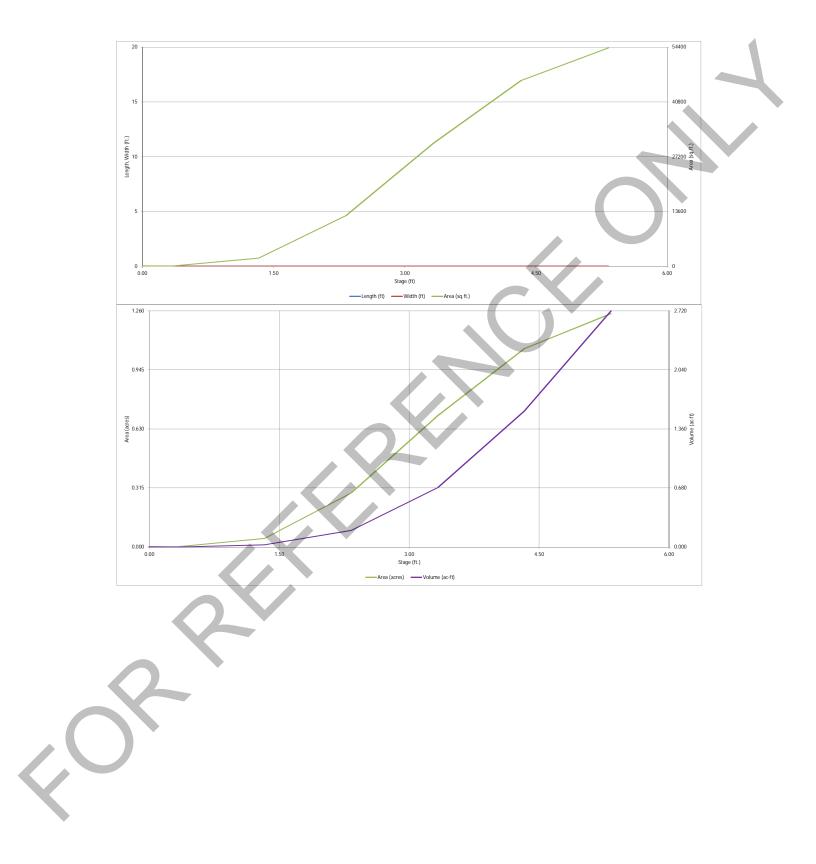
fft i

user

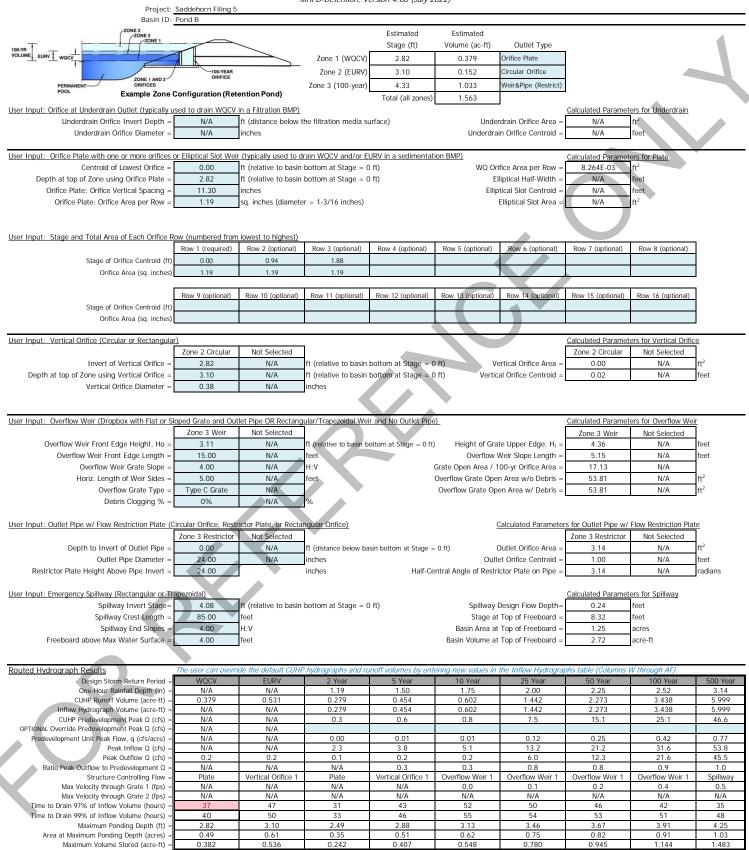
user

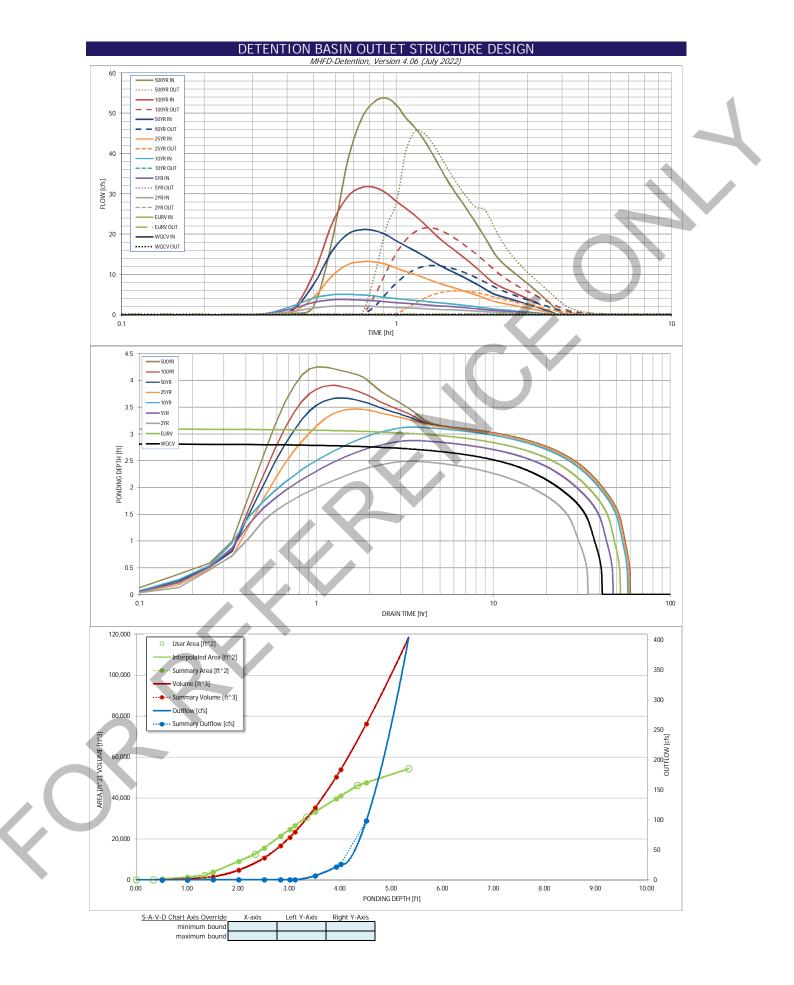
user

user


user 🗸

Initial Surcharge Area $(A_{ISV}) =$ Surcharge Volume Length $(L_{ISV}) =$ user Surcharge Volume Width (WISV) = user Depth of Basin Floor (H_{FLOOR}) = user Length of Basin Floor (L_{FLOOR}) Width of Basin Floor (W_{FLOOR}) = Area of Basin Floor (A_{FLOOR}) = Volume of Basin Floor (V_{FLOOR}) user Depth of Main Basin (H_{MAIN}) = Length of Main Basin (L_{MAIN}) = Width of Main Basin (W_{MAIN}) = user user Area of Main Basin (V_{MAR}) = user ft² Volume of Main Basin (V_{MAR}) = user ft³ Calculated Total Basin Volume (V_{total}) = user acre-fe


n Pond)							Ontingel			
	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				36	0.001		
	6675		0.33				50	0.001	14	0.000
	6676		1.33				1,986	0.046	1,032	0.024
	6677		2.33				12,572	0.289	8,311	0.191
	6678		3.33				30,573	0.702	29,884	0.686
	6679		4.33				46,107	1.058	68,223	1.566
	6680		4.33				54,237	1.245	118,395	2.718
	0000		3.33				34,237	1.240	110,393	2.710
	-									
ptional User Overrides										
acre-feet										
acre-feet										
1.19 inches				-						
1.50 inches										
1.75 inches										
2.00 inches										
2.25 inches										
2.52 inches						-				
inches					,					
liules					-					
						4				
	-						-			
								P		
						-				
				-						
				-						
						-				
									1	1
									<u> </u>	l
		-								
		-								
				1						
									1	1
								I		1
$\langle \rangle$										
				1 1 1						
$\langle \langle$				1 1 1						
$\langle \langle \rangle$										
$\langle \rangle$					 					
$\langle \rangle$					 					
						••• •• •• •• •• •• •• •• •• •• •• •• ••				


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

MHFD-Detention, Version 4.06 (July 2022)

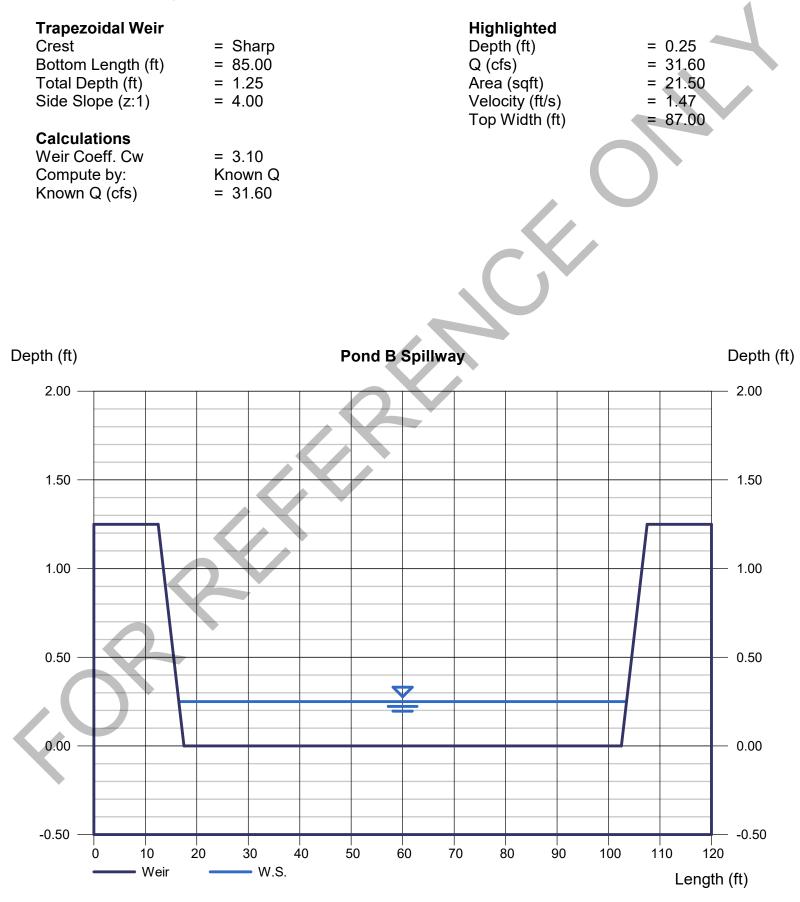
Outflow Hydrograph Workbook Filename:

	Inflow Hydrogi	raphs								
								n a separate prog		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02
	0:20:00	0.00	0.00	0.22	0.30	0.36	0.23	0.28	0.29	0.40
	0:25:00	0.00	0.00	0.85	1.57	2.17	0.72	1.10	1.32	2.23
	0:30:00	0.00	0.00	1.73	3.13	4.24	4.42	7.67	10.34	18.52
	0:35:00	0.00	0.00	2.18	3.76	5.02	9.68	15.88	22.71	38.59
	0:40:00	0.00	0.00	2.26	3.82 3.73	5.10 4.97	12.56 13.23	20.11 21.17	29.50 31.65	48.94 52.96
	0:50:00	0.00	0.00	2.22	3.54	4.97	13.23	20.90	31.61	53.78
	0:55:00	0.00	0.00	1.99	3.28	4.33	12.56	19.89	30.26	52.00
	1:00:00	0.00	0.00	1.87	3.07	4.06	11.59	18.33	28.16	48.82
	1:05:00	0.00	0.00	1.78	2.91	3.83	10.76	17.06	26.39	46.45
	1:10:00 1:15:00	0.00	0.00	1.68 1.58	2.75 2.58	3.62 3.43	10.05 9.33	15.90 14.75	24.68 22.85	43.79
	1:15:00	0.00	0.00	1.58	2.58	3.43	9.33	14.75	22.85	40.63 37.41
	1:25:00	0.00	0.00	1.41	2.29	3.07	7.95	12.51	19.30	34.39
	1:30:00	0.00	0.00	1.35	2.19	2.91	7.40	11.64	17.88	31.84
	1:35:00	0.00	0.00	1.29	2.08	2.75	6.92	10.86	16.65	29.57
	1:40:00	0.00	0.00	1.23	1.96	2.59	6.47	10.13	15.50	27.47
	1:45:00 1:50:00	0.00	0.00	1.16	1.84 1.72	2.43	6.02 5.58	9.41 8.70	14.37 13.26	25.44 23.44
	1:55:00	0.00	0.00	1.03	1.72	2.27	5.14	7.99	12.16	21.48
	2:00:00	0.00	0.00	0.95	1.47	1.94	4.70	7.28	11.07	19.54
	2:05:00	0.00	0.00	0.87	1.33	1.76	4.25	6.56	9.97	17.60
	2:10:00	0.00	0.00	0.79	1.21	1.60	3.79	5.84	8.87	15.68
	2:15:00 2:20:00	0.00	0.00	0.73	1.12	1.49 1.39	3.42	5.27 4.87	8.00	14.19
	2:25:00	0.00	0.00	0.68	0.98	1.39	3.15 2.95	4.87	7.38 6.88	13.08 12.16
	2:30:00	0.00	0.00	0.59	0.91	1.21	2.75	4.26	6.43	11.34
	2:35:00	0.00	0.00	0,54	0.84	1.12	2.57	3.98	6.01	10.57
	2:40:00	0.00	0.00	0.50	0.78	1.03	2.40	3.71	5.60	9.83
	2:45:00 2:50:00	0.00	0.00	0.46	0.72	0.95	2.23	3.44	5.19	9.12
	2:55:00	0.00	0.00	0.43	0.66	0.87	2.06	3.18 2.92	4.81 4.42	8.44
	3:00:00	0.00	0.00	0.36	0.55	0.72	1.73	2.67	4.04	7.11
	3:05:00	0.00	0.00	0.32	0.49	0.65	1.57	2.42	3.66	6.44
	3:10:00	0.00	0.00	0.29	0.44	0.58	1.40	2.16	3.28	5.78
	3:15:00	0.00	0.00	0.25	0.39	0.51	1.24	1.91	2.91	5.12
	3:20:00 3:25:00	0.00	0.00	0.22	0.34	0.44	1.08 0.93	1.66	2.53 2.15	4.47 3.81
	3:30:00	0.00	0.00	0.16	0.23	0.30	0.75	1.16	1.78	3.15
	3:35:00	0.00	0.00	0.13	0.18	0.24	0.61	0.92	1.40	2.50
	3:40:00	0.00	0.00	0.10	0.14	0.17	0.45	0.67	1.03	1.85
	3:45:00	0.00	0.00	0.07	0.09	0.12	0.30	0.43	0.67	1.21
	3:50:00	0.00	0.00	0.05	0.07	0.09	0.17	0.23	0.37	0.71
	4:00:00	0.00	0.00	0.05	0.05	0.08	0.10	0.14	0.21	0.44
	4:05:00	0.00	0.00	0.04	0.05	0.06	0.06	0.08	0.10	0.19
	4:10:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.07	0.13
	4:15:00 4:20:00	0.00	0.00	0.03	0.03	0.04	0.04	0.05	0.05	0.09
	4:25:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.04
	4:30:00 4:35:00	0.00	0.00	0.01 0.01	0.02	0.02	0.02	0.02	0.02	0.03
	4:40:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	4:45:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
-	4:50:00 4:55:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01 0.01	0.01	0.01 0.01
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
	0.50	379	0.009	51	0.001	0.03	Far hard an other is the state
		1,347	0.031	482	0.011	0.05	For best results, include the stages of all grade slope
	1.00	3,786	0.087	1,523	0.035	0.03	changes (e.g. ISV and Floor)
	1.50	9,079	0.208	4,739	0.109	0.08	from the S-A-V table on
	2.00 2.50	15,632	0.208	10,708	0.109	0.14	Sheet 'Basin'.
WOCV	2.50	21,392	0.491	16,632	0.382	0.14	Also include the inverts of all
WQCV	3.00	21,392	0.565	20,775	0.382	0.18	outlets (e.g. vertical orifice,
EURV	3.00	26,433	0.607	23,328	0.536	0.17	overflow grate, and spillway,
EUKV	3.10	33,214	0.762	35,305	0.811	6.96	where applicable).
100-YR	3.91	39,583	0.909	50,229	1.153	21.71	
100 11	4.00	40,981	0.941	53,854	1.236	25.86	
	4.50	47,489	1.090	76,179	1.749	98.81	
]
							P
							4
							1
							1
							4
		ļ					4
							4
							4
							4
							4
							4
							4
							4
				*			4
							4
				<u> </u>		<u> </u>	1
							1
				1		1	1
							1
				İ			1
							1
]
							J
							1
							1
							1
							1
							1
							4
							4
							4
							4
							1
							1
						ļ	4
				<u> </u>		1	1
				1		1	1
]
							4
							4
				<u> </u>			1
]
							4
							4
						1	


POND B FOREBAY VOLUME REQUIREMENTS
Equation 3-1 $WQCV = a(0.91/^{3}-1.19/^{2}+0.781/)$
a=1 (40 hour drain time)
Proposed Forebay
Equation 3-3 V=(WQCV/12)A
Proposed Forebay A= 60.42 Acres V= 0.379
3% OF WQCV
Forebay Total Volume= .03(V)
Volume Required For Proposed Forebay= 0.011 AC-FT 496 CF
Volume Provided For Proposed Forebay= 0.014 AC-FT 620 CF
Q ₁₀₀ Discharges 2% OF Q ₁₀₀
Q_{100} Proposed Forebay = .02*31.6 CFS= 0.63 CFS
K CR R L L L L L L L L L L L L L L L L L

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Mar 29 2022

Pond B Spillway

APPENDIX E

REFERENCE MATERIALS

Issue Date: OCT 2 0 2004

Federal Emergency Management Agency

Case No.: 04-08-0587P

LOMR-APP

Washington, D.C. 20472

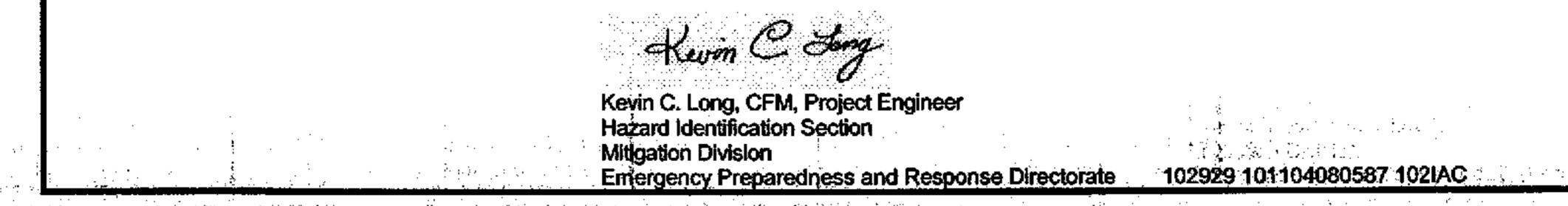
Effective Date: FEB 1 6 2005

LETTER OF MAP REVISION **DETERMINATION DOCUMENT (CONTINUED)**

PUBLIC NOTIFICATION OF REVISION

Within 90 days of the second publication in the local newspaper, a citizen may request that we reconsider this determination. Any request for reconsideration must be based on scientific or technical data. Therefore, this letter will be effective only after the 90-day appeal period has elapsed and we have resolved any appeals that we receive during this appeal period. Until this LOMR is effective, the revised BFEs presented in this LOMR may be changed.

A notice of changes will be published in the Federal Register. This information also will be published in your local newspaper on or about the dates listed below.


LOCAL NEWSPAPER

Page 4 of 4

Name: El Paso County News Dates: 11/10/2004 11/17/2004

PUBLIC NOTIFICATION									
FLOODING SOURCE	LOCATION OF REFERENCED ELEVATION	BFE (FEET NGVD) EFFECTIVE REVISED		MAP PANEL NUMBER(\$)					
Haegler Ranch Tributary 2	Approximately 310 feet upstream of confluence with Geick Ranch West Tributary	None	6,735	08041C0575 F					
	Approximately 3,140 feet upstream of confluence with Geick Ranch West Tributary	None	6,779	08041C0575 F					
Haegler Ranch Tributary 3	Approximately 8,100 feet downstream of Curtis Road	None	6,672	08041C0575 F					
naegier Kanor muutary 5	Approximately 300 feet upstream of Curtis Road	None	6,769	08041C0575 F					
Hocolor Banch Tributon A	Approximately 4,000 feet downstream of Curtis Road	None	6,688	08041C0575 F					
laegler Ranch Tributary 4	Approximately 300 feet upstream of Curtis Road	None	6,758	08041C0575 F					
			•						

you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2677 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional information about the NFIP is available on our website at http://www.fema.gov/nfip.

and the second

CHANGES ARE MADE IN DETERMINATIONS OF BASE FLOOD ELEVATIONS FOR THE UNINCORPORATED AREAS OF EL PASO COUNTY, COLORADO, UNDER THE NATIONAL FLOOD INSURANCE PROGRAM

On March 17, 1997, the Department of Homeland Security's Federal Emergency Management Agency identified Special Flood Hazard Areas (SFHAs) in the unincorporated areas of El Paso County, Colorado, through issuance of a Flood Insurance Rate Map (FIRM). The Mitigation Division has determined that modification of the elevations of the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood) for certain locations in this community is appropriate. The modified Base Flood Elevations (BFEs) revise the FIRM for the community.

The changes are being made pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (Public Law 93-234) and are in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, Public Law 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65.

A hydraulic analysis was performed to incorporate new hydrologic, hydraulic, and topographic data for Haegler Ranch Tributary 2 from approximately 310 feet upstream to approximately 3,140 feet upstream of the confluence with Geick Ranch West Tributary; for Haegler Ranch Tributary 3 from approximately 8,100 feet downstream to approximately 400 feet upstream of Curtis Road; and for Haegler Ranch Tributary 4 from approximately 4,100 feet downstream to approximately 400 feet upstream of Curtis Road. This has resulted in increases and decreases in SFHA width and increased BFEs for the above-mentioned tributaries. The table below indicates existing and modified BFEs for selected locations along the affected lengths of the flooding source(s) cited above.

	Existing BFE	'Modified BFE
Location	(feet)*	(feet)*
Haegler Ranch Tributary 2:		
Approximately 310 feet upstream of confluence with		
Geick Ranch West Tributary	None	6,735
Approximately 3,140 feet upstream of confluence with		
Geick Ranch West Tributary	None	6,779
Haegler Ranch Tributary 3:		
Approximately 8,100 feet downstream of Curtis Road	None	6,672
Approximately 300 feet upstream of Curtis Road	None	6,769
Haegler Ranch Tributary 4:		
Approximately 4,000 feet downstream of Curtis Road	None	6,688
Approximately 300 feet upstream of Curtis Road	None	6,758

*National Geodetic Vertical Datum, rounded to nearest whole foot

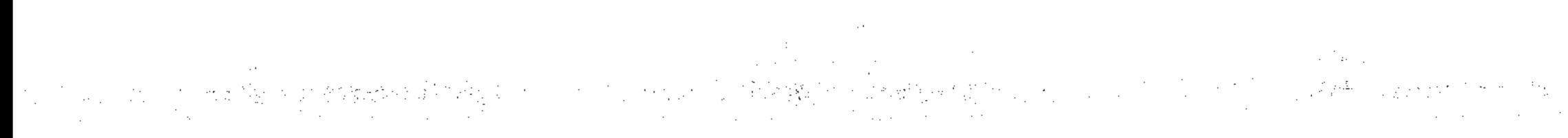
Under the above-mentioned Acts of 1968 and 1973, the Mitigation Division must develop criteria for floodplain management. To participate in the National Flood Insurance Program (NFIP), the community must use the modified BFEs to administer the floodplain management measures of the NFIP. These modified BFEs will also be used to calculate the appropriate flood insurance premium rates for new buildings and their contents and for the second layer of insurance on existing buildings and contents.

Upon the second publication of notice of these changes in this newspaper, any person has 90 days in which he or she can request, through the Chief Executive Officer of the community, that the Mitigation Division reconsider the determination. Any request for reconsideration must be based on knowledge of changed conditions or new scientific or technical data. All interested parties are on notice that until the 90-day period elapses, the Mitigation Division's determination to modify the BFEs may itself be changed.

a da baran bara da bara da baran da ba Da baran baran baran baran da Da baran baran da baran da baran da baran da baran da baran baran da baran da baran da baran da baran baran da

Any person having knowledge or wishing to comment on these changes should immediately notify:

The Honorable Chuck Brown Chairman, El Paso County Board of Commissioners 27 Vermijo Avenue Colorado Springs, CO 80903-2208


·

. . . .

2

-

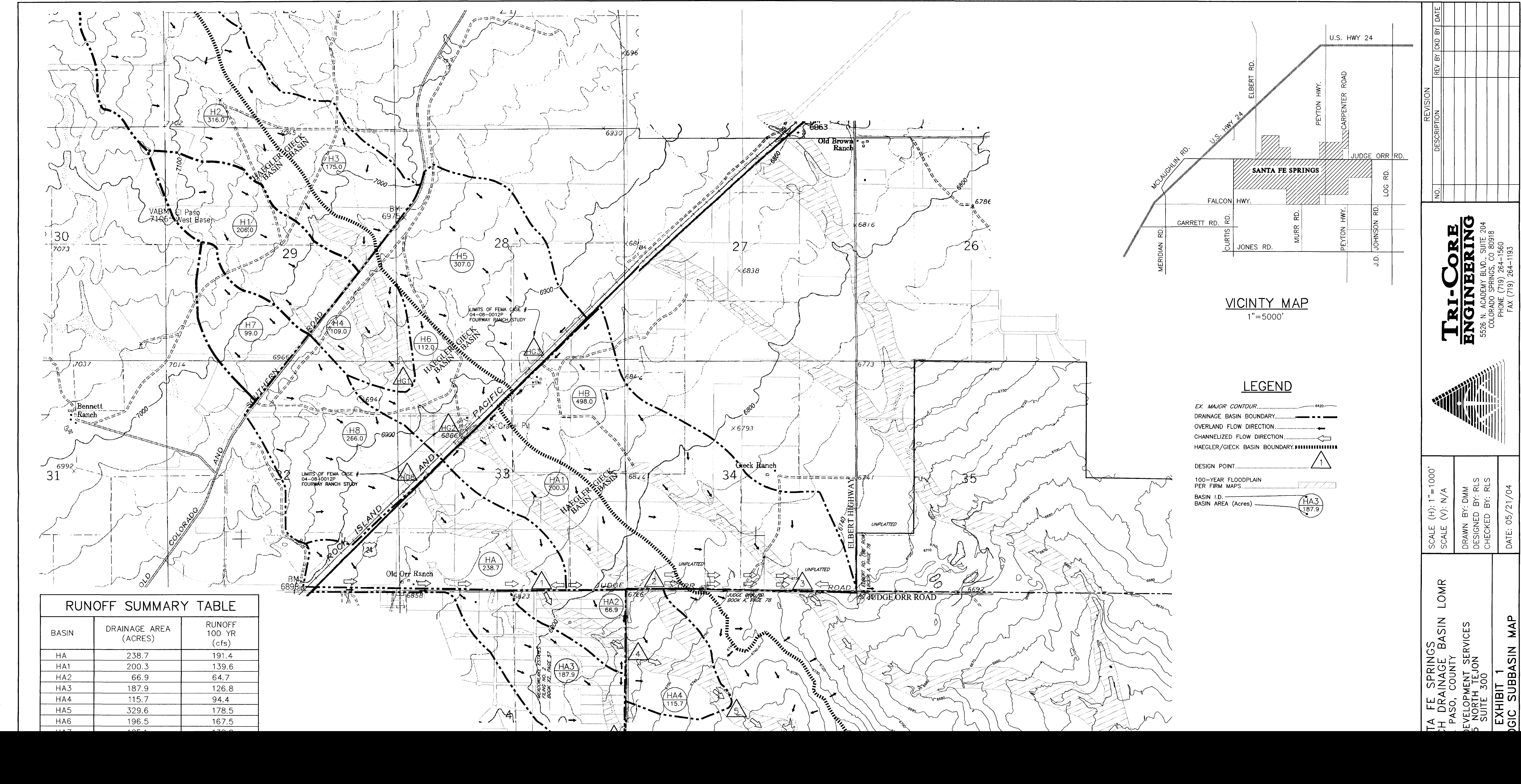
.

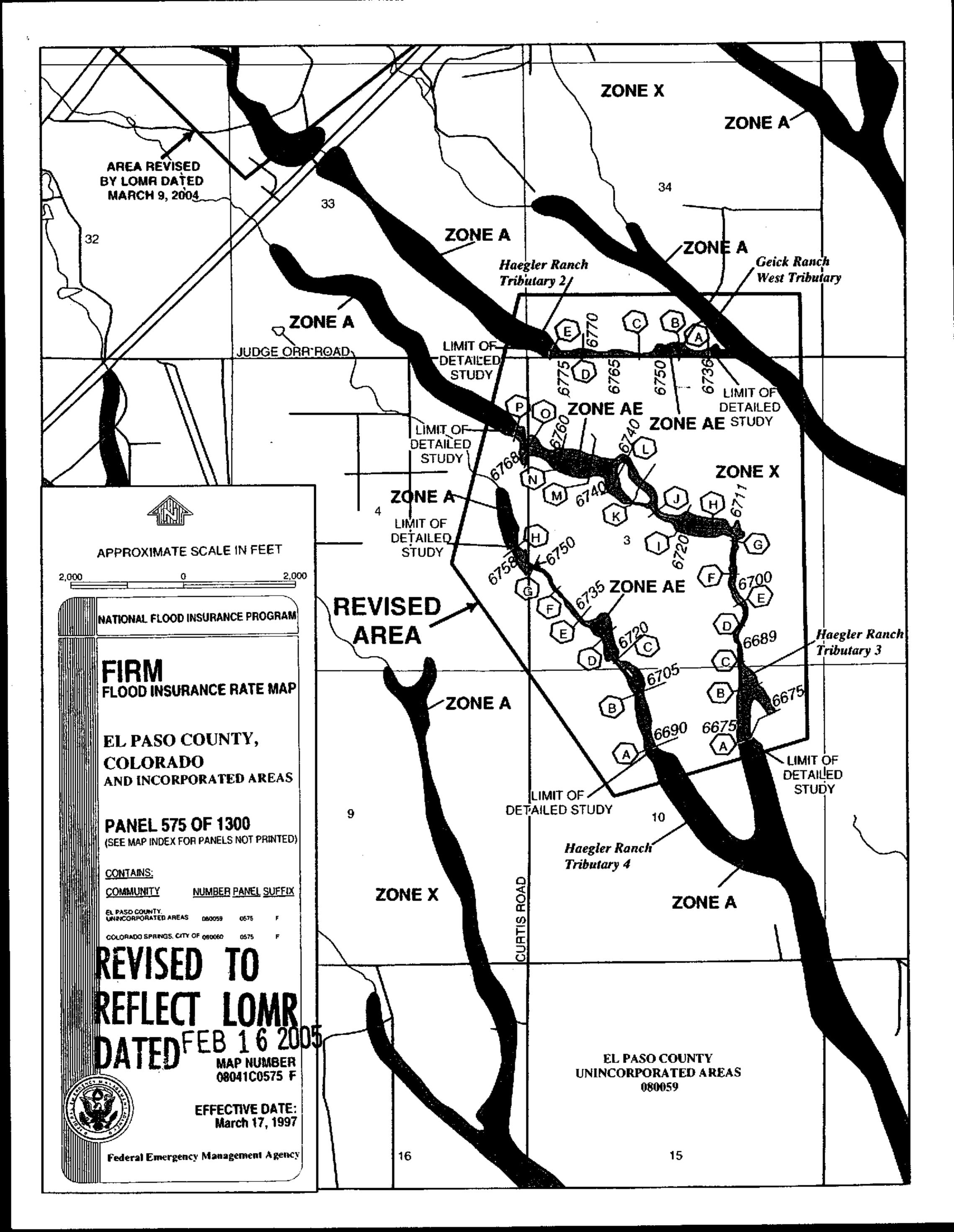
Flooding Source and Location	Drainage Area (square miles)	Pea <u>10-Year</u>	k Discharges (cu 50-Year	bic feet per second 100-Year	nd) <u>500-Y</u> e
Haegler Ranch Tributary 2 At the confluence with Geick Ranch West Tributary	1.47	1	1	592	1
Haegler Ranch Tributary 3 At approximately 2,300 feet upstream of the confluence with Haegler Ranch Tributary 4	1.09	1	1	505	1
Haegler Ranch Tributary 4 At approximately 3,700 feet upstream of the confluence with Haegler Ranch Tributary 3	0.60	1	1	1 30	1

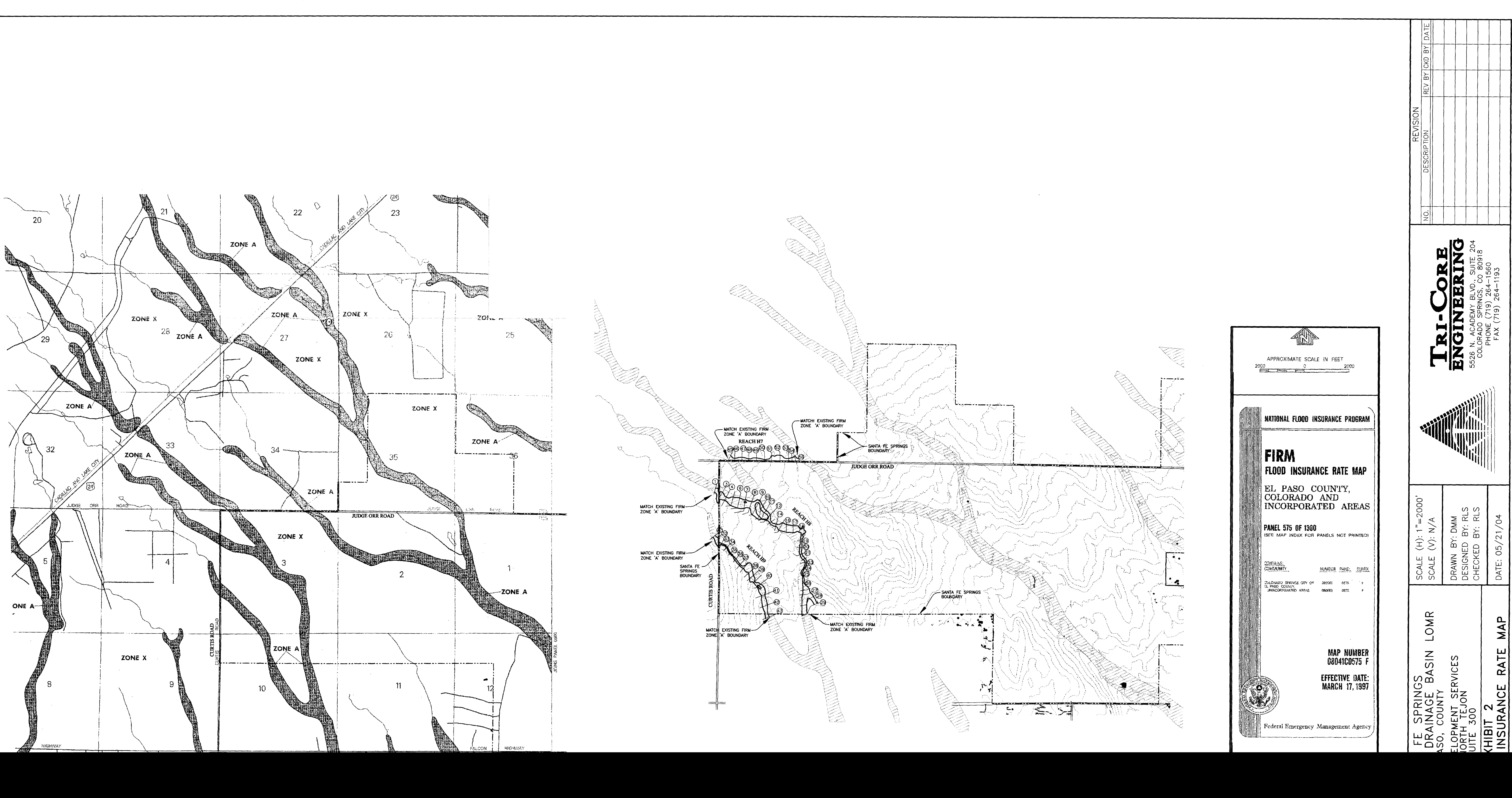
•

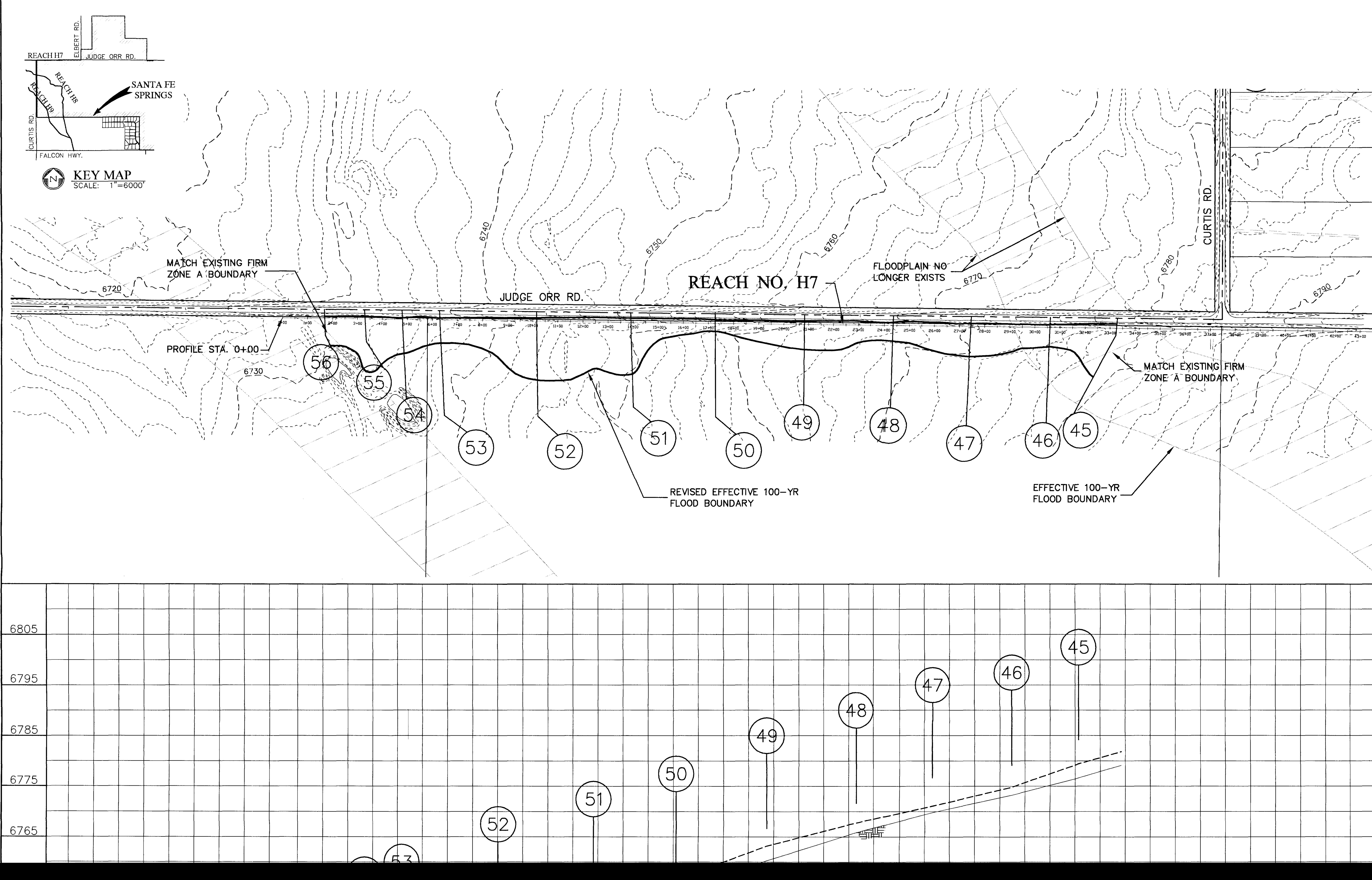
1 Data Not Available

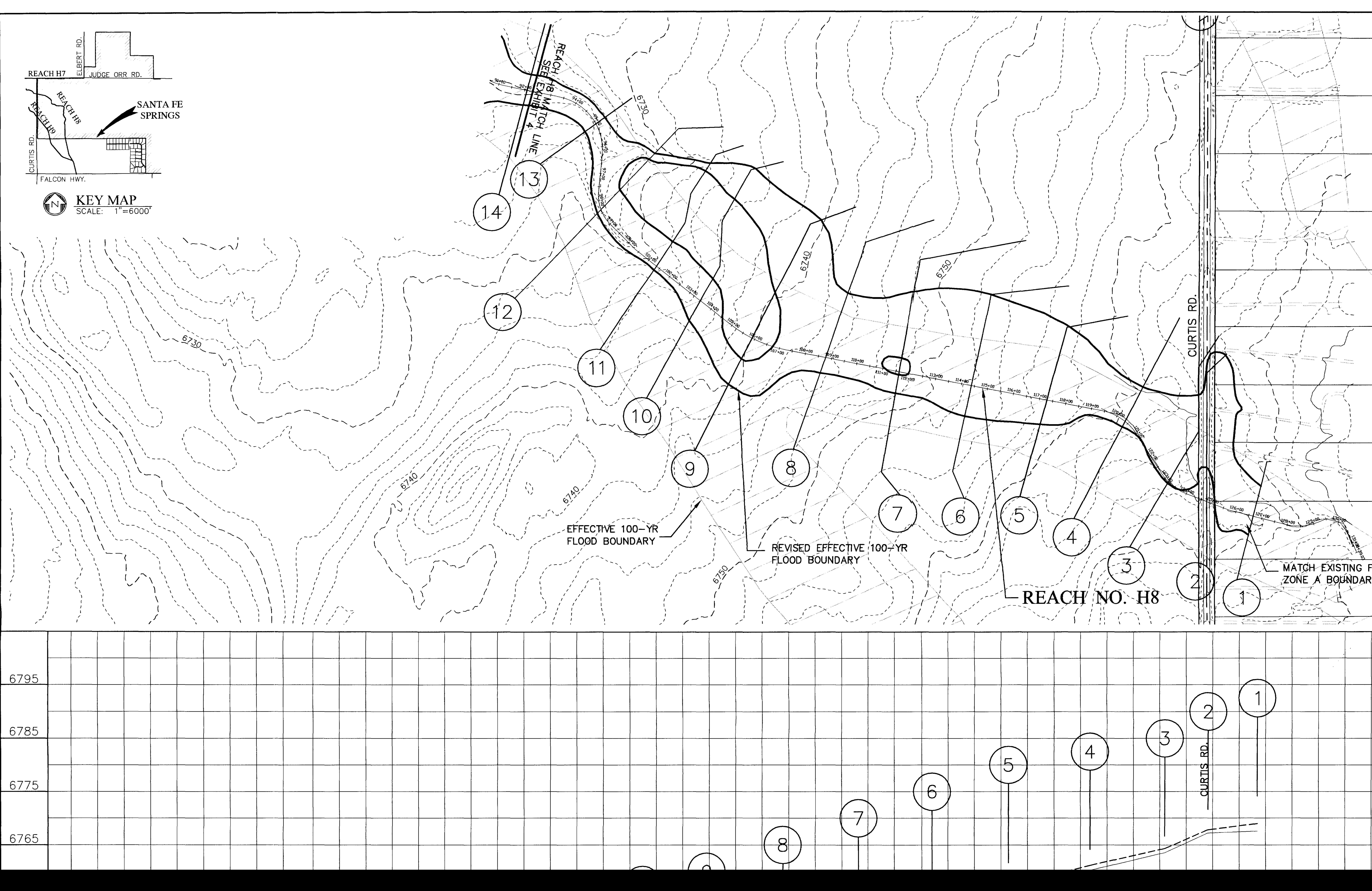
.

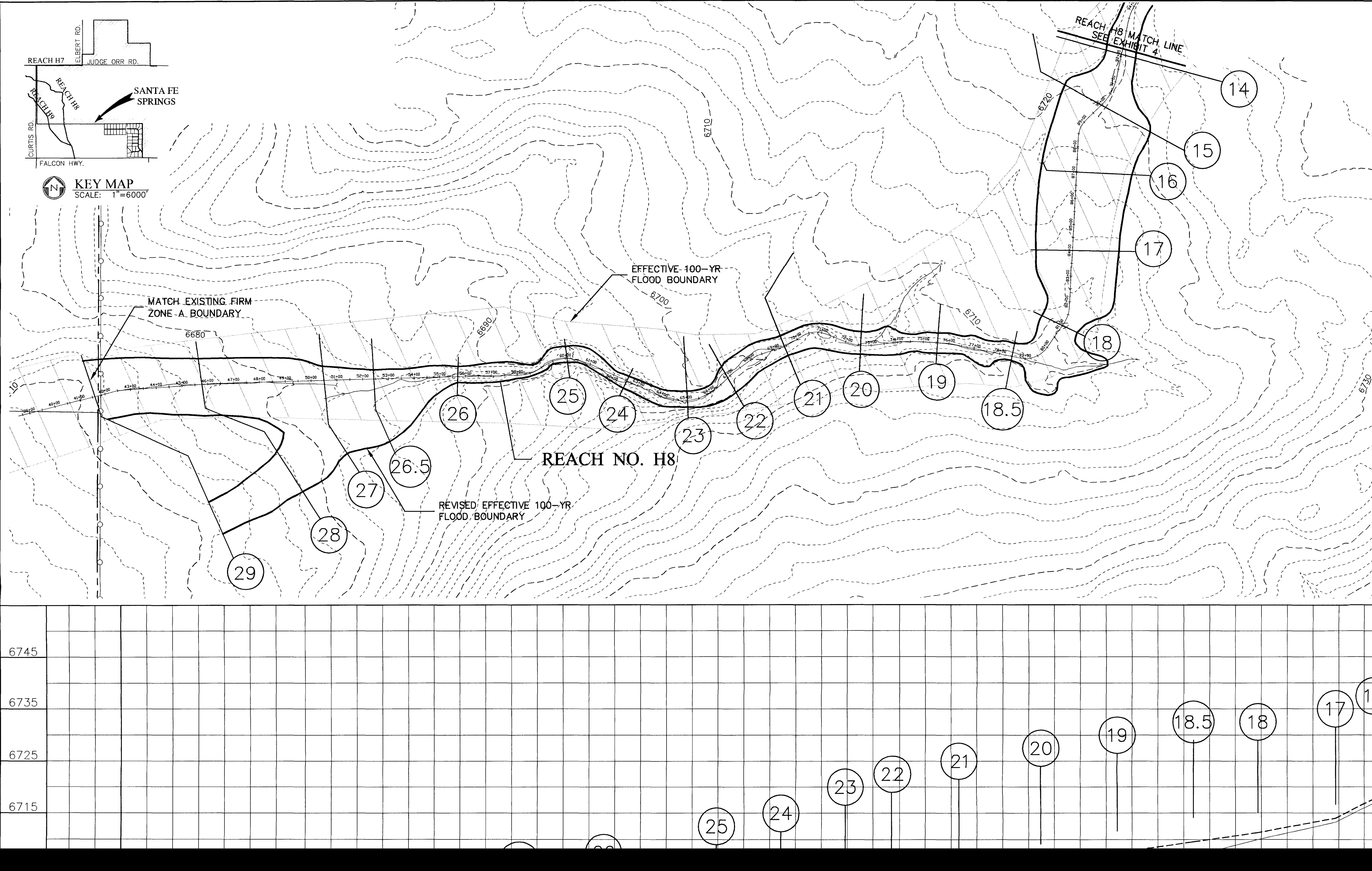

Table 3. Summary of Discharges


REVISED TO REFLECT LOMR Dated Feb 1 6 2005

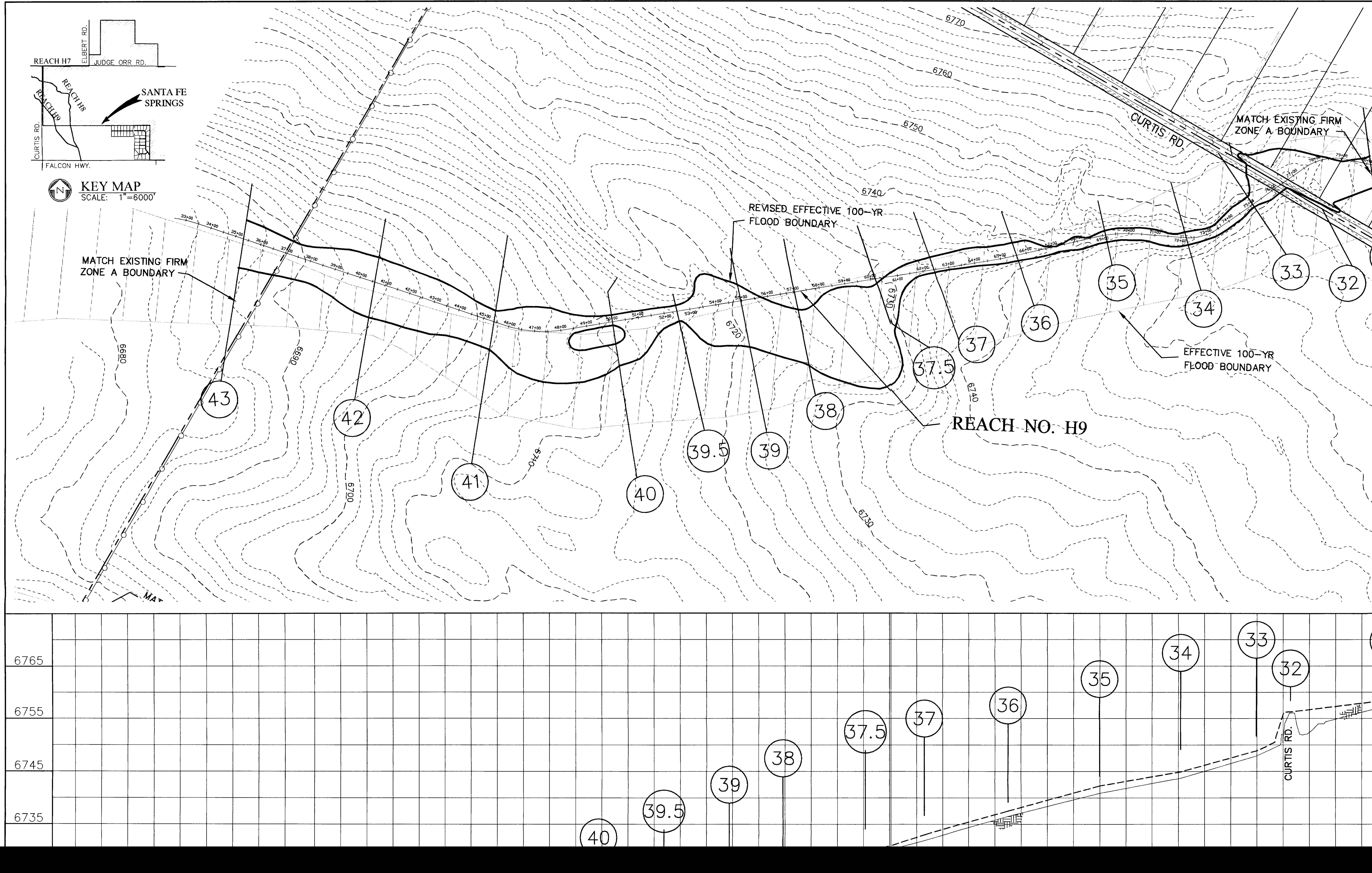

. .



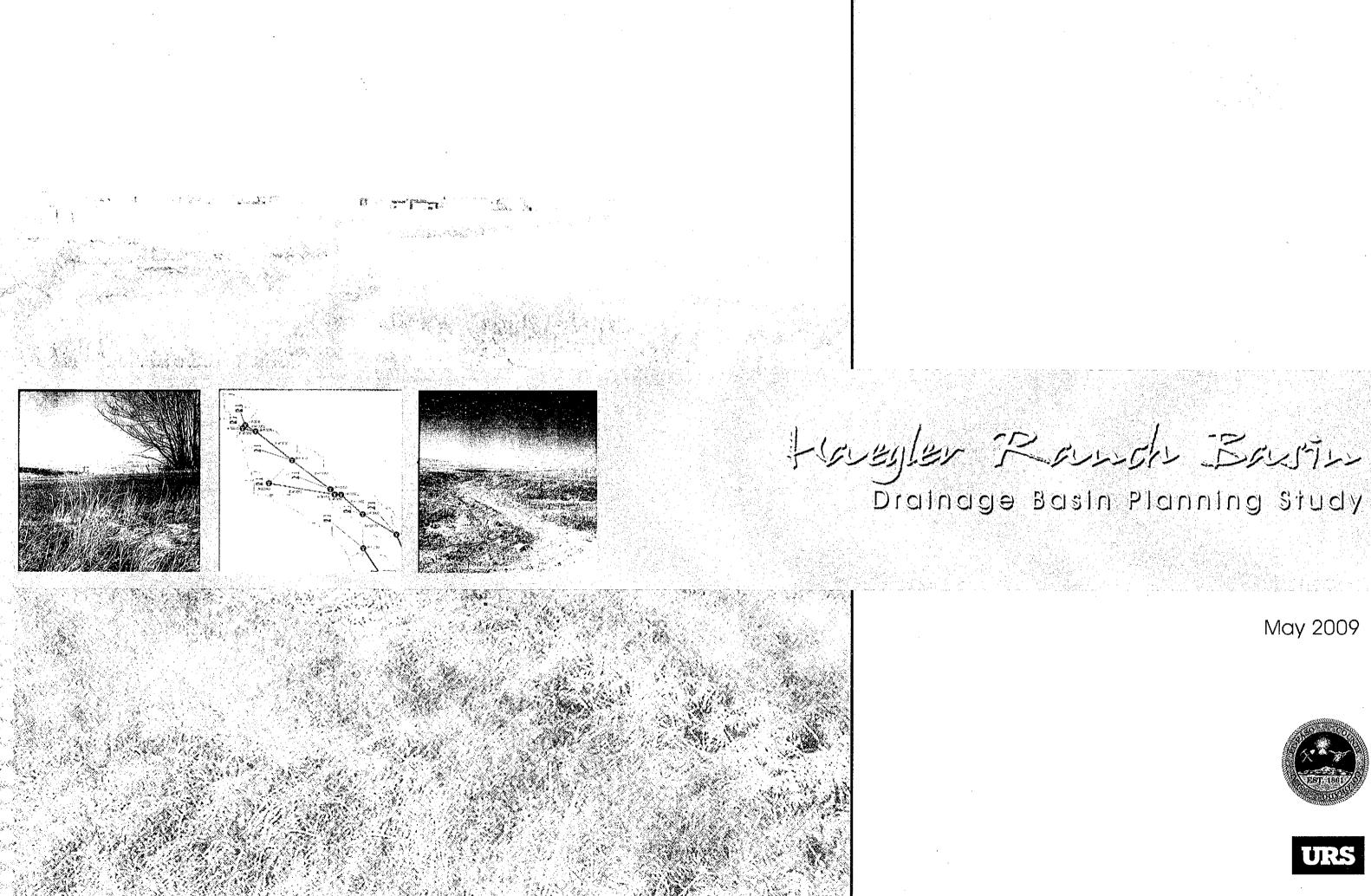




ANTA FE SPRINGS ANTA FE SPRINGS ANTA FE SPRINGS ANTA FE SPRINGS ANTA FE SPRINGS CALE (H): 1"=200' SCALE (H): 1"=200' SC
--

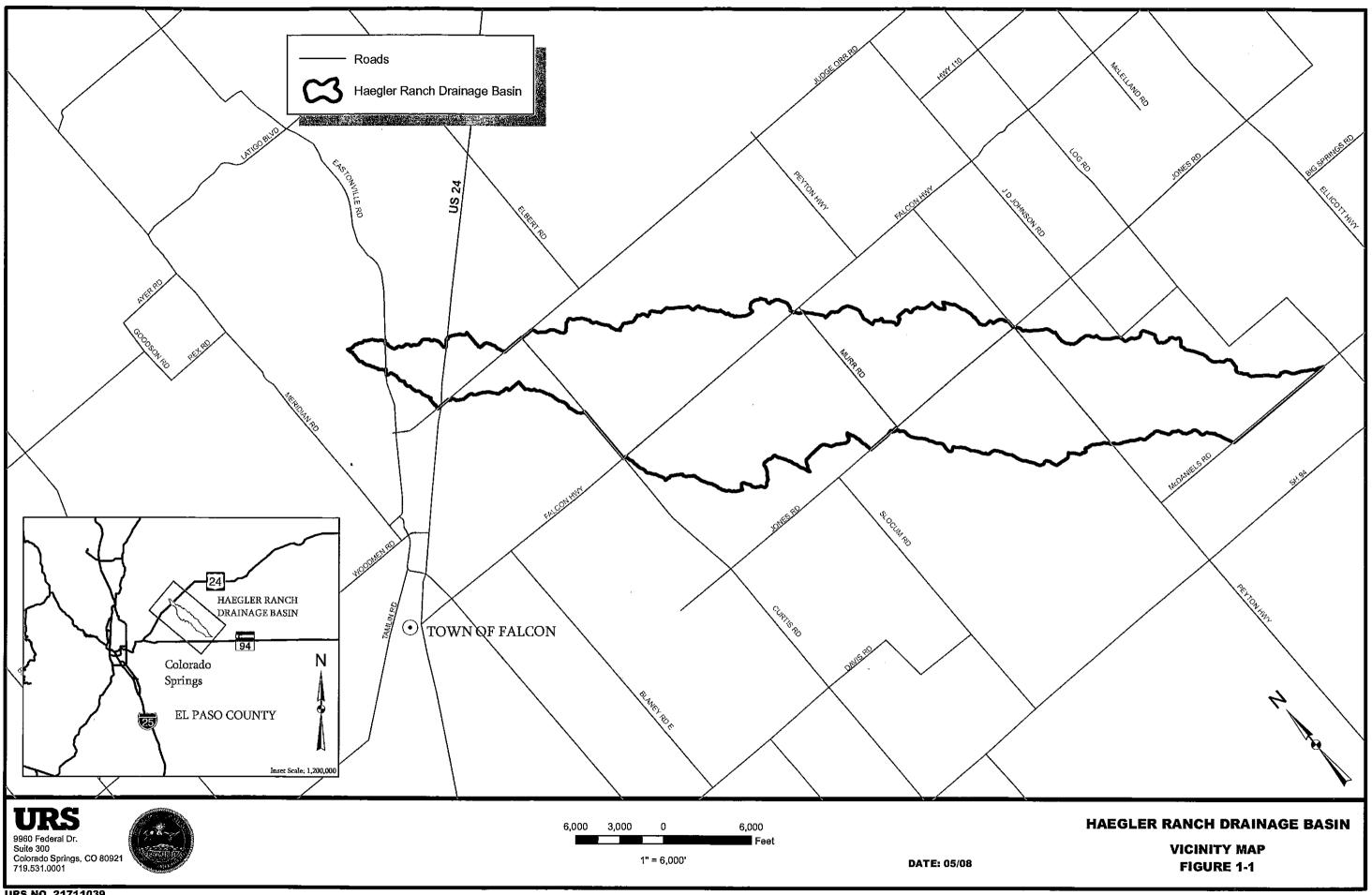


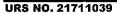
		REVISION	DESCRIPTION REV BY CKD BY DATE		
	GRAPHIC SCAL 0 0 100 1 inch = 200 ft.			ADEMY BLVD., SUITE 204	E (719) 264–1560 (719) 264–1193
				EDDD 5526 N. AC	H H H H H H H H H H H H H H H H H H H
FIRM			ALE (U): 1 = 10 $ALE (V): 1 = 10$	AWN BY: KMV SIGNED BY: RLS ECKED BY: RLS	ATE: 06/04/04
		6785	BASIN LOMR	VICES 300 0903 CHI	AIN BOUNDARY PD
		6765 L		OPMENT SERVENDON, SUITE RINGS, CO 8(E FLOODPL WAMA

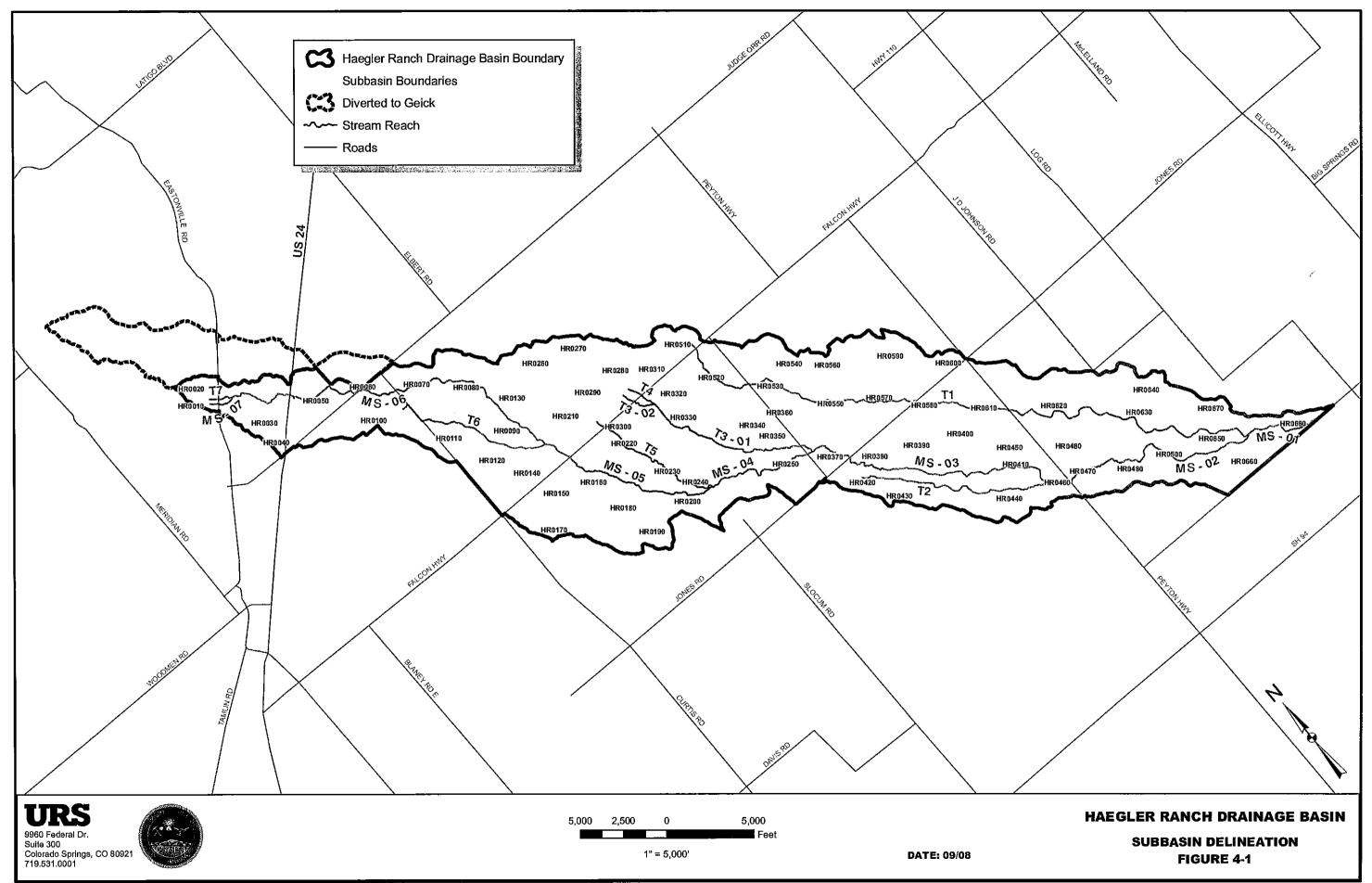


$\left \begin{array}{c c} \\ \hline \end{array} \\ \hline $ \\ \hline } \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \\ \hline } \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline } \\ \hline \end{array} \\ \\ \\ \\ \hline \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\	22

I	REVISION NO. DESCRIPTION REV BY CKD BY DATE NO. DESCRIPTION REV BY CKD BY DATE
	Description Description Endemy BLVD., SUIFE 204 Escen Academy BLVD., SUIFE 204 Colorado SPRINGS, co 80918 PHONE (719) 264–1560 FAX (719) 264–1193
6745	SCALE (H): 1"=200' SCALE (V): 1"=10' SCALE (V): 1"=10' DRAWN BY: KMV DRAWN BY: RMV DESIGNED BY: RLS CHECKED BY: RLS DATE: 06/04/04
	FE SPRINGS DRAINAGE BASIN LOMR ASO COUNTY ASO COUNTY ELOPMENT SERVICES TEJON, SUITE 300 SPRINGS, CO 80903 AR FLOOPPLAIN BOUNDARY ILE WORKMAP


				81+00
				APHIC
6755 6735		6765		
E SPRINGS RAINAGE BASIN LOM		SCALE (H): SCALE (V):	·	
DPMENT SERVICES JON, SUITE 300 RINGS, CO 80903		DESIGNED	ж MV MV KMV К NV К NV К NV К NV К NV К NV К МV К М	
E FLOODPLAIN BOUNI E WORKMAP	DARY	9	4/04	COLORADO SPRINGS, CO 8091 PHONE (719) 264–1560 FAX (719) 264–1193




May 2009

Facility Number	Road Crossing	Channel	Existing Size	Existing 100-yr Flow (cfs)	Deficiency
633	Sagecreek Road	N/A	24" CMP	N/A	N/A
634	Sagecreek Road	N/A	24" CMP	N/A	N/A
701	Curtis Road	N/A	18" CMP	N/A	N/A
702	Curtis Road	Tributary 6 (T6)	36" CMP	120	Overtops
703	Curtis Road	Main Stem (MS-06)	24" CMP	590	Overtops
704	Judge Orr Road	Main Stem (MS-06)	Blocked Culvert	540	Overtops
705	Judge Orr Road	N/A	18" CMP	N/A	N/A
706	US 24	N/A	20" Steel Pipe	N/A	N/A
707	US 24	N/A	24" CMP	N/A	N/A
801	Pedestrain Bridge	Main Stem (MS-06)	Bridge	350	Meets Capacity
802	US24	Main Stem (MS-06)	2-66" CMPs	350	Meets Capacity
803	Eastonville Road	Main Stem (MS-07)	27"X21" CMP	25	Overtops
804	Eastonville Road	Tributary 7 (T7)	18" CMP	99	Overtops

 Table 5-3 Existing Hydraulic Deficiencies

Note: 69 Structures were cataloged and located. N/A indicates that the structure was not analyzed because it was not on one of the main channels.

5.14. Results

Hydraulic conditions from the hydraulic model results are summarized in Table 5-4. This includes channel velocity, flow depth, and top width for existing conditions at key locations. Water surface profiles for Haegler Ranch Drainage Basin for the 100-year recurrence interval flood for the existing conditions are presented in Figure 5-4 the HEC-RAS model for Haegler Ranch Drainage Basin for the existing conditions is provided in Appendix B.

The approximate 100-year floodplain as seen in Figure 5-4 varies from a contained floodplain with in a defined channel to a wide floodplain with shallow flooding. Three areas were designated as flooding: 1) the approximate 100-year floodplain as delineated by HEC-RAS, 2) split flow flooding that was estimated from HEC-RAS elevation upstream and contours, and 3) shallow areas connected to the floodplain with less than 1 foot of flooding.

. . .

Key Location	Reach and	HEC-RAS Result	Recurrence Intervals			
Key Location	Station	HLC-KAJ Kesut	2-yr	5-уг	10-yr	10
		Channel velocity (ft/sec)	1.1	1.63	1.98	2
Main stem at US 24	MS-06 72276	Water surface depth in channel (ft)	1.36	2.44	3.24	6
	12210	Top width (ft)	18.23	24.85	29.7	25
		Channel velocity (ft/sec)	3.33	4.09	1.76	3
Main stem at Judge Orr Road	MS-06 67666	Water surface depth in channel (ft)	0.52	1.04	1.05	1
	07000	Top width (ft)	174.53	534.34	535.52	56
		Channel velocity (ft/sec)	1.05	1.6	2.04	3
Main stem at Falcon Highway	MS-05 52353 MS-03 33189	Water surface depth in channel (ft)	1.79	3.69	4.96	5
		Top width (ft)	31.42	83.76	556.41	59
		Channel velocity (ft/sec)	2.45	3.7	1.27	2
Main stem at Jones Road		Water surface depth in channel (ft)	3.2	5.83	9.25	1(
		Top width (ft)	47.98	105.51	580.28	66
· · · · · · · · · · · · · · · · · · ·		Channel velocity (ft/sec)	0.16	0.4	0.59	1
Main stem at Peyton Highway	MS-02 18474	Water surface depth in channel (ft)	4.14	4.35	4.51	5
	10-7-	Top width (ft)	813.21	871.68	882.22	92
		Channel velocity (ft/sec)	0.62	1.02	1.47	
Southeast Tributary at Jones Road	T1 22297	Water surface depth in channel (ft)	2.45	3.52	3.59	3
		Top width (ft)	197.35	345.68	351.74	37
	T1 16611	Channel velocity (ft/sec)	1.67	2.25	2.65	4
Southeast Tributary at Peyton Highway		Water surface dcpth in channel (ft)	0.08	0.17	0.24	0
		Top width (ft)	239.82	241.36	242.51	24
		Channel velocity (ft/sec)	3.44	0.11	0.18	0
Southeast Tributary at Confluencc with Main stem	T1 410	Water surface depth in channel (ft)	1.69	2.01	2.01	2
	410	Top width (ft)	31.89	1169.3	1169.3	11
· ·	L	Channel velocity (ft/sec)	2.68	3.85	19.89	1
At Confluence with Geick Basin	MS-01 82	Water surface depth in channel (ft)	1.45	2.17	1.11	2
zaom	02	Top width (ft)	75.88	255.32	60.67	2

Table 5-4 Existing Conditions HEC-RAS Model

100-yr
2.92 6.49
255.62
3.48
1.35 569.34
3.59
5.74
592.33
2.51
10.46
667.17
1.43 5.15
925.27
3.2
3.82
372.17
4.05
0.51 247.41
0.67
2.01
1169.3
17.33
2.36
262.84

Grass channels are designed for depths and velocities to be within the limits of allowable shear stress. Grass lined channels are limited to 1.0 psf shear stress. If calculated shear stress is above this, drop structures must be added to flatten the natural slope of the channel.

Using these criteria, several channel sections were developed to accommodate a range of future flow rates from 100 cfs to 3500 cfs, as shown in Table 6-2. The approximate channel sections were used in the alternatives to accommodate future flows as necessary,

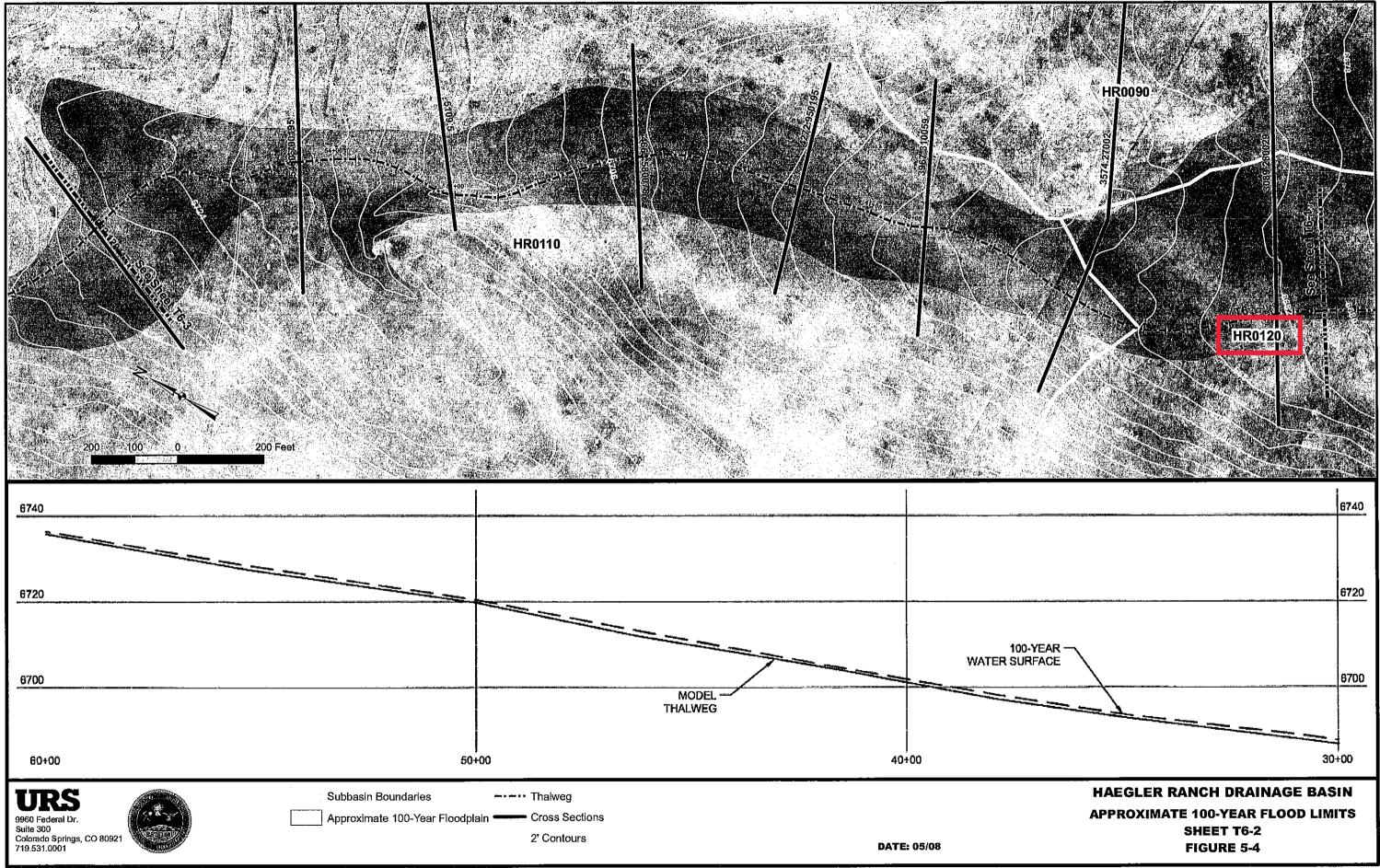
A.		Grass	
(cfs)	Sideslope	Bottom	Depth
	(h:v)	(ft)	(ft)
300	4	6	5
500	4	8	5
600	4	15	5
800	4	20	5
900	4	25	5
1000	4	30	5
1500	4	50	5
2000	4	80	5
3000	4	120	5
3500	4	140	5

Table 6-2 Channel Dimensions based on Flow Rates

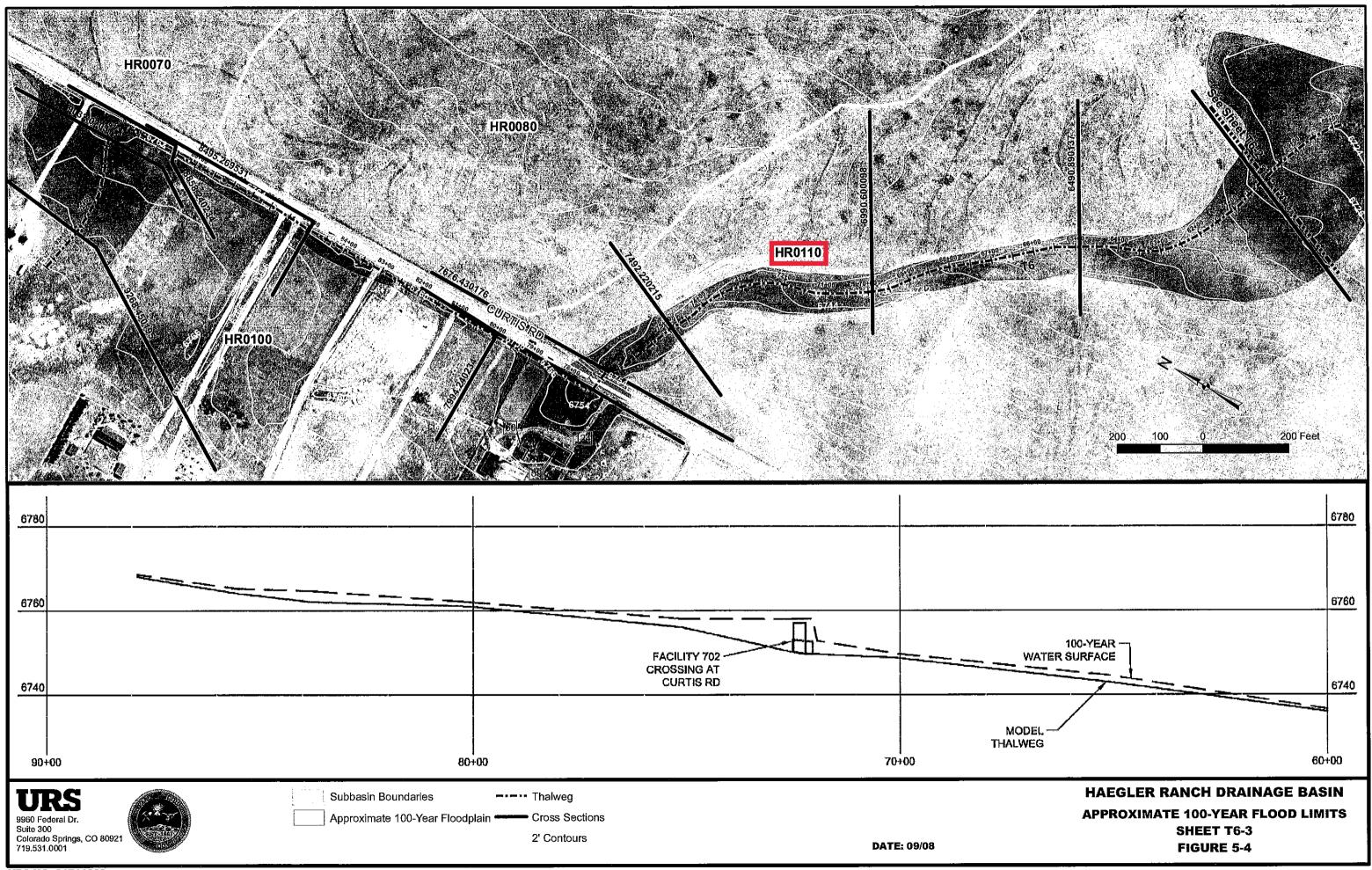
6.2.2. Culvert Design

Culvert sizes for use in alternative evaluation were estimated based on full flow capacity of reinforced concrete pipe with a minimum slope of 0.50% and concrete end sections. For flows up to 300 cfs single RC pipe culverts with a maximum of 72" diameter were used. For greater flows, multiple RC pipes or 6-foot by 6-foot concrete box culverts with headwalls and flared wingwalls were used. Proposed culverts sizes based on existing flow rates are listed in Table 6-3.

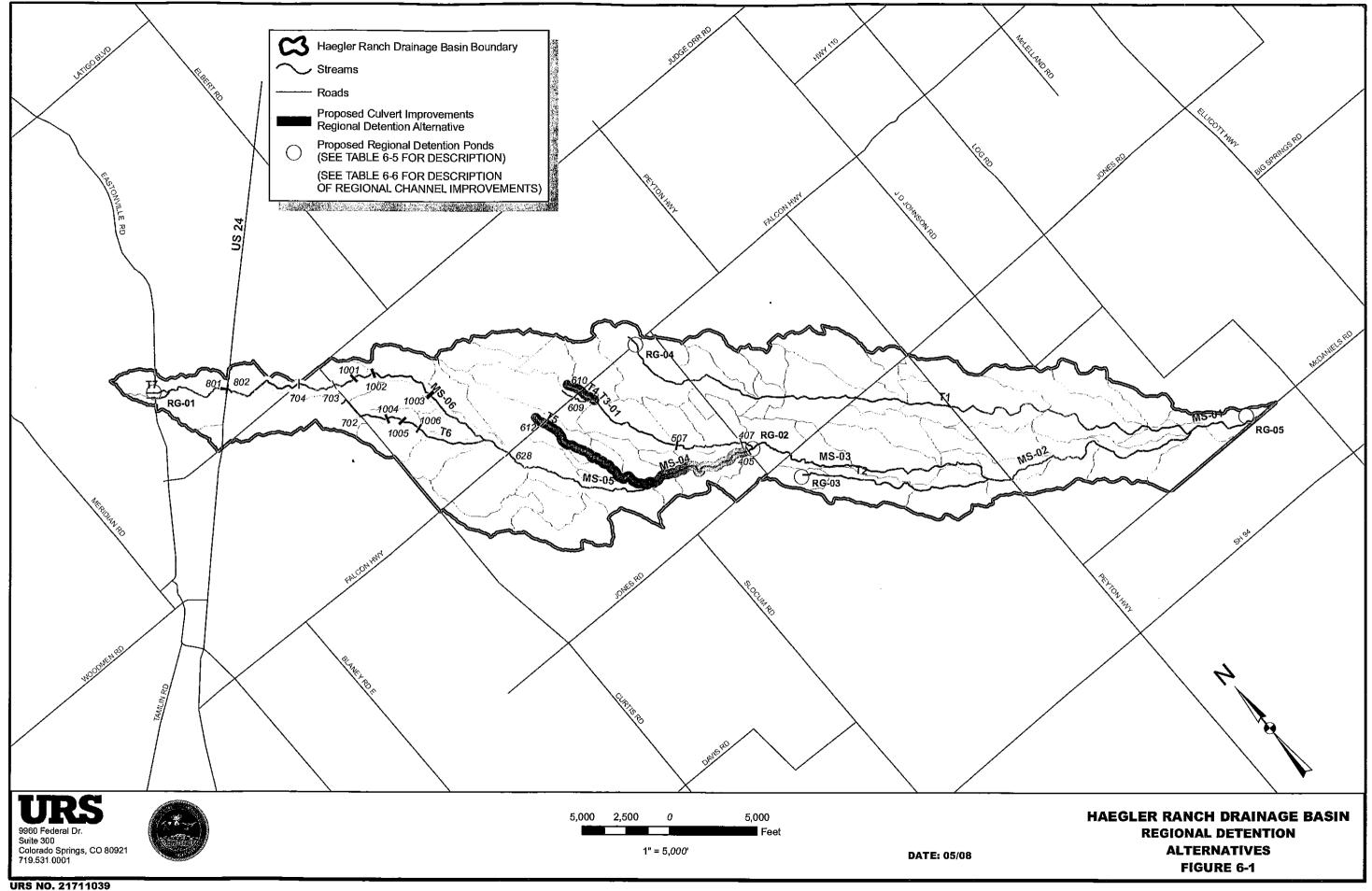
Facility Number	Road Crossing	Channel	Existing Size	Existing 100-yr Flow (cfs)	Deficiency	Necessary Facility
N/A	Peyton Highway	Tributary 1 (T1)	No Culvert	500	Overtops	2-72" RCPs
N/A	Falcon Highway	Tributary 1 (T1)	No Culvert	33	Overtops	36" RCP
301	Peyton Highway	Main Stem (MS-02)	2-33"X48" CMPs	2,500	Overtops	7-6'X6' RCBs
401	Jones Road	Tributary 1 (T1)	2-24" CMPs	370	Overtops	6'X6' RCB
403	Jones Road	Main Stem (MS-03)	3-60" CMPs	2,300	Overtops	6-6'X6' RCBs

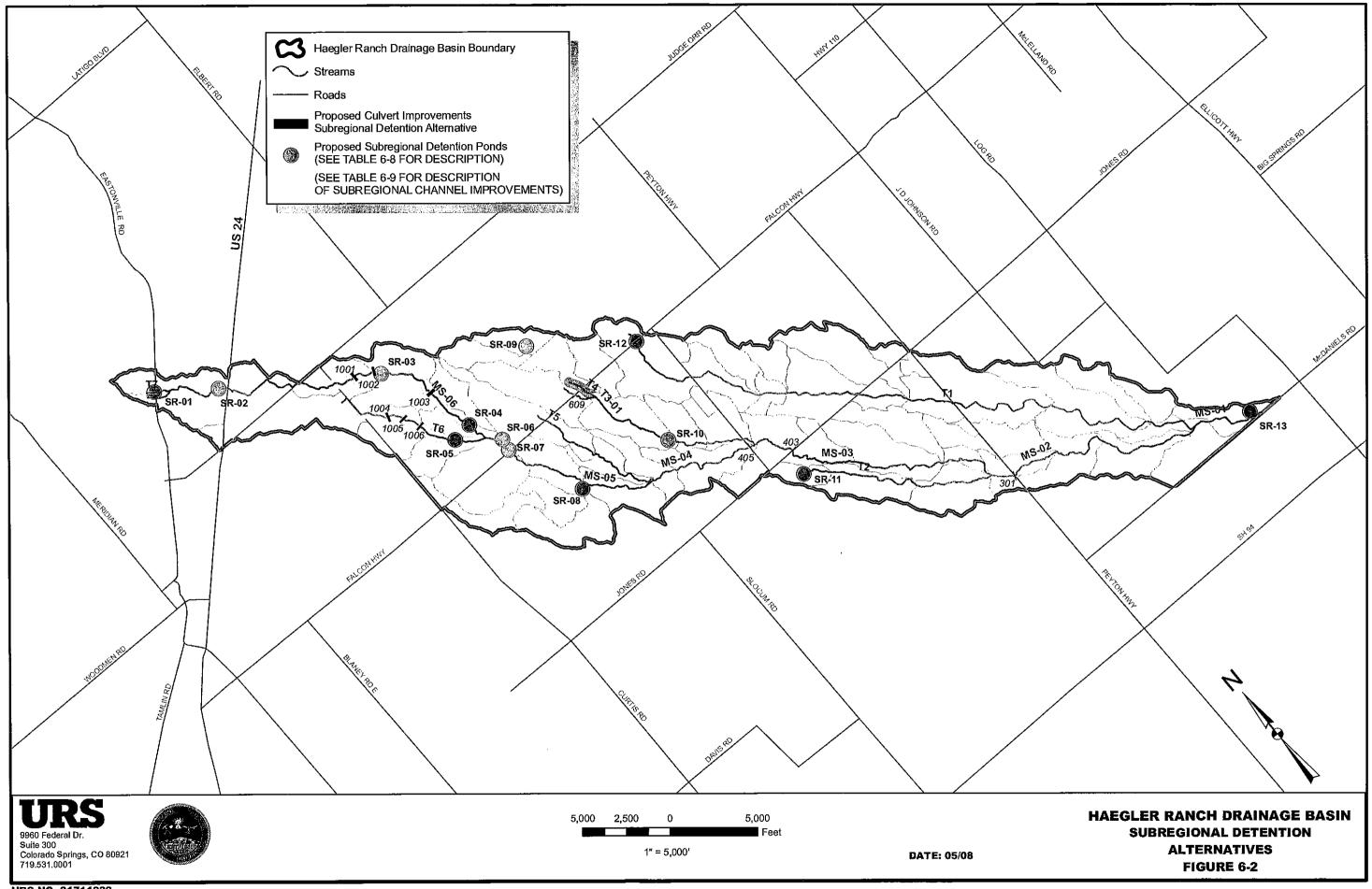

Facility Number	Road Crossing	Channel	Existing Size	Existing 100-yr Flow (cfs)	Deficiency	Necessary Facility
405	Murr Road	Main Stem (MS-04)	66" RCP	1,700	Overtops	5-6'X6' RCBs
407	Murr Road	Tributary 3 (T3-01)	66" RCP	670	Overtops	2-6'X6' RCBs
507	Peerless Farms Road	Tributary 3 (T3-01)	60'' CMP	600	Overtops	2-6'X6' RCBs
509	Murr Road	Tributary 1 (T1)	2-15" RCPs	220	Overtops	66" RCP
601	Whiting Way	Tributary 1 (T1)	24" CMP	220	Overtops	66" RCP
604	, Max Road	Tributary 1 (T1)	18" CMP	220	Overtops	66" RCP
609	Falcon Highway	Tributary 3 (T3-02)	18" CMP	180	Overtops	66" RCP
610	Falcon Highway	Tributary 4 (T4)	24" CMP	200	Overtops	66" RCP
612	Falcon Highway	Tributary 5 (T5)	24" CMP	150	Overtops	60" RCP
628	Falcon Highway	Main Stem (MS-05)	2-60" CMPs	1,000	Overtops	3-6'X6' RCBs
702	Curtis Road	Tributary 6 (T6)	36" CMP	120	Overtops	54" RCP
703	Curtis Road	Main Stem (MS-06)	24" CMP	590	Overtops	2-6'X6' RCBs
704	Judge Orr Road	Main Stem (MS-06)	Blocked Culvert	540	Overtops	2-72" RCPs
801	Pedestrain Bridge	Main Stem (MS-06)	Bridge	350	Meets Capacity	Existing Bridge
802	US24	Main Stem (MS-06)	2-66'' CMPs	350	Meets Capacity	Existing Culvert
803	Eastonville Road	Main Stem (MS-07)	27"X21" CMP	25	Overtops	30" RCP
804	Eastonville Road	Tributary 7 (T7)	18" CMP	99	Overtops	48" RCP

6.2.3. Detention Design

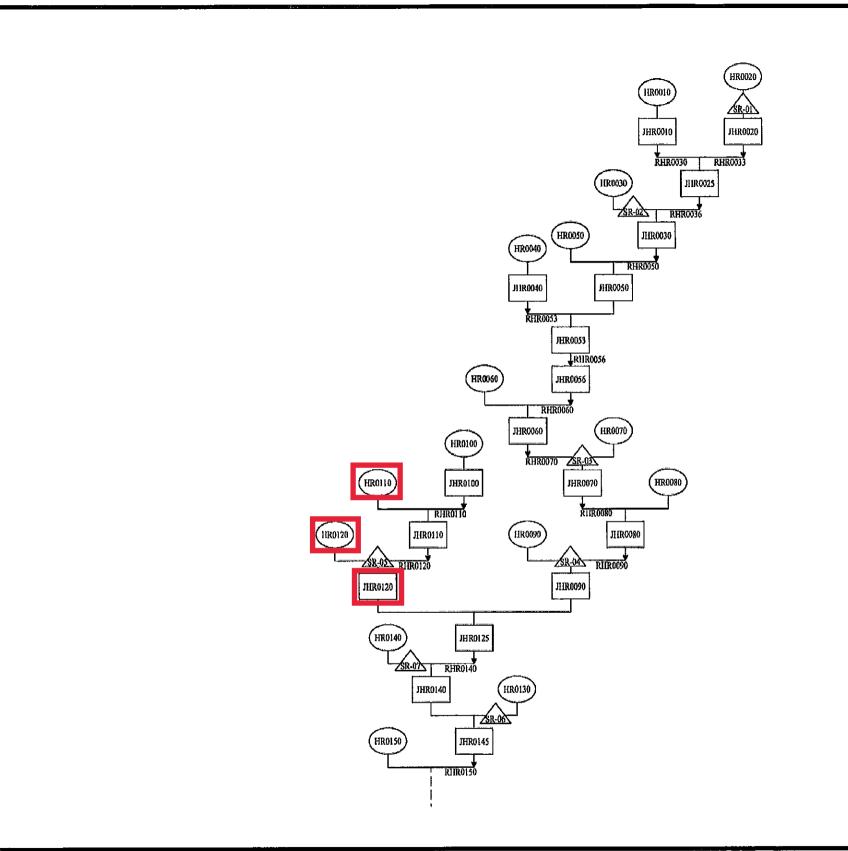

All detention pond design is based on Chapter 10, Storage, of the UDFCD SDCM. All ponds were assumed to be "full spectrum" per the SDCM. For final design to be performed later, some of the ponds may be separated into a water quality pond and an off-line major detention pond.

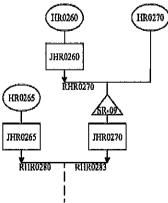
For the Regional Detention Alternative, either the simplified full spectrum sizing method or the hydrograph method was used to size the facility. If the contributing area is less than 160 acres and no


Haegler Ranch Drainage Basin Planning Study



URS NO. 21711039




URS NO. 21711039

URS NO. 21711039

URS

9960 Federal Dr. Sulte 300 Colorado Springs, CO 80921 719.531.0001

URS NO. 21711039

DATE: 05/08

HAEGLER RANCH DRAINAGE BASIN SUBREGIONAL DETENTION ALTERNATIVE SHEET 1 FIGURE 6-3

6.4.1. Channel & Culvert Costs

Channel costs for each alternative are based on cubic yards of excavation, plus the cost of the channel lining and drop structures. These costs are presented in Table 6-13 and Table 6-14.

Table 6-13	Regional Detention	Alternative Channel	Cost Estimates

tructure Cost
none
2,539,000
589,000
268,000
548,000
636,000
,302,000
127,000
\$36,000
370,000
222,000
253,000
5,888,000
,066,000
,033,000
,988,000

(See Tables C6 and C7 in Appendix C for details)

Table 6-14 Sub-Regional Detention Alternative Channel Cost Estimates

Channel	Design Flow (cfs)	Channel Length (ft)	Total Cost	Drop Structure Cost
Main Stem (MS-05)	2,000	1,560	\$224,000	\$367,000
Main Stem (MS-06)	600	3,120	\$162,000	\$295,000
Main Stem (MS-06)	1,000	4,535	\$331,000	\$375,000
Main Stem (MS-06)	800	3,190	\$188,000	\$368,000
Tributary 3 (T3-01)	600	5,000	\$259,000	\$422,000
Tributary 3 (T3-02)	500	420	\$18,000	\$37,000
Tributary 4 (T4)	500	940	\$40.000	\$74.000
Tributary 6 (T6)	500	4,280	\$179,000	\$333,000
Tributary 6 (T6)	300	1,400	\$55,000	\$107,000
Sub-Total			\$1,456,000	\$2,374,000
30% Construction Con	itingency		\$430,000	\$712,000
15% Engineering Cont	tingency		\$218,000	\$356,000
Total			\$2,111,000	\$3,442,000

Culverts costs are based on a per linear foot of pipe with two flared end sections or two wing walls, as appropriate, complete-in-place. Culvert costs for each alternative are presented in Table 6-15 and Table 6-16.

Table 6-15 Regional Detention Alternative Roadway Crossing Cost Estimate Sumary

Facility Number	Road Crossing	Channel	Existing Size	Proposed 100-yr Flow (cfs)	Necessary Facility for Proposed 100- year Flow	Estimated Cost
405	Murr Road	Main Stem (MS-04)	66" RCP	3,400	9-6'X6' RCBs	\$256,000
507	Peerless Farms Road	Tributary 3 (T3-01)	60" CMP	1200	4-6'X6' RCBs	\$139,000
609	Falcon Highway	Tributary 3 (T3-02)	18" CMP	460	2-66" RCPs	\$51,600
610	Falcon Highway	Tributary 4 (T4)	24" CMP	570	2-72" RCPs	\$51,000
612	Falcon Highway	Tributary 5 (T5)	24" CMP	240	72" RCP	\$26,000
628	Falcon Highway	Main Stem (MS-05)	2-60" CMPs	2,200	6-6'X6' RCBs	\$243,000
702	Curtis Road	Tributary 6 (T6)	36" CMP	140	60" RCP	\$29,000
703	Curtis Road	Main Stem (MS-06)	24" CMP	890	3-6'X6' RCBs	\$142,000
704	Judge Orr Road Future Pastura Street	Main Stem (MS-06)	Blocked Culvert	830	3-6'X6' RCBs	\$185,000
1001	Future Arroyo Hondo Blvd. N.	Main Stem (MS-06) Main Stem (MS-06)	N/A N/A	930 930	3-6'X6' RCBs	\$99,000
1003	Future Arroyo Hondo Blvd. N	Main Stem (MS-06)	N/A	1500	4-6'X6' RCBs	\$143,000
1004	Future Pastura Street	Tributary 6 (T6)	N/A	440	2-66" RCPs	\$43,000
1005	Future El Vado Road	Tributary 6 (T6)	N/A	440	2-66" RCPs	\$43,000
1006	Future Socorro Trail	Tributary 6 (T6)	N/A	440	2-66" RCPs	\$43,000
Sub-Total						\$1,591,000
30% Cons	truction Contingency					\$477,000
15% Engin	neering Contingency					\$239,000
Total	<u></u>			· ·		\$2,307,000

(See Table C4 in Appendix C for details)

(See Tables C6 and C8 in Appendix C for details)

Facility Number			Proposed 100-yr Flow (cfs)	Necessary Facility for Proposed 100-year Flow	Estimated Cost
301	Peyton Highway	Main Stem (MS-02)	3,370 .	9-6'X6' RCBs	\$402,000
403	Jones Road	Main Stem (MS-03)	2,970	8-6'X6' RCBs	\$358,000
405	Murr Road	Main Stem (MS-04)	2,870	8-6'X6' RCBs	\$283,000
609	Falcon Highway	Tributary 3 (T3-02)	460	2-6'X6' RCBs	\$106,000
N/A	Falcon Highway	Tributary 1 (T1)	110	2 - 36" RCP	\$20,000
1001	Future Pastura Street	Main Stem (MS-06)	610	2-6'X6' RCBs	\$107,000
1002	Future Arroyo Hondo Blvd. N.	Main Stem (MS-06)	610	2-6'X6' RCBs	\$87,000
1003	Future Arroyo Hondo Blvd. N.	Main Stem (MS-06)	530	2-6'X6' RCBs	\$87,000
1004	Future Pastura Street	Tributary 6 (T6)	440	2-66" RCPs	\$43,000
1005	Future El Vado Road	Tributary 6 (T6)	440	2-66" RCPs	\$43,000
1006	Future Socorro Trail	Tributary 6 (T6)	440	2-66" RCPs	\$43,000
Sub-Total				<u> </u>	\$1,582,000
30% Constru	ction Contingency				\$475,000
15% Engine	ering Contingency			· · · · · ·	\$237,000
Total					\$2,294,000

Table 6-16 Sub-Regional Detention Roadway Crossing Cost Estimate Summary

Table 6-18 Sub-Regional Detent Facility Storage (AF) **Including Construc** SR-01 10 SR-02 5 SR-03 16 SR-04 25 24 SR-05 SR-06 9 SR-07 5 SR-08 5 SR-09 20 23 SR-10 2 SR-11 SR-12 9 SR-13 3 Total

(See Table C1 in Appendix C for details)

6.4.3. Other Costs

Design Engineering costs are also included as 15% of the construction costs. Construction contingencies (30%) include such items as utility relocations, mobilization, temporary erosion control, and construction engineering.

6.4.4. Conceptual Alternative Costs

The total estimated capital costs for each alternative are based on the sum of the cost of the proposed facilities, plus costs for engineering and construction contingencies. These costs are listed in Table 6-19.

Table 6-19 Conceptual Alternative Costs						
	Regional Alternative	Subregional Alternative				
Detention Ponds	\$5,048,000	\$9,780,000				
Channel Improvements	\$10,737,000	\$2,110,000				
Drop Structures	\$9,988,000	\$3,442,000				
Roadway Crossing Culverts	\$2,307,000	\$2,294,000				
Total	\$28,080,000	\$17,627,000				

(See Tables C5 in Appendix C for details)

6.4.2. Detention Pond Costs

The cost of detention ponds, both regional and subregional, is based on the cubic yards of excavation, an estimated outlet structure, and the cost of the land required for the facility. These costs are presented in Table 6-17 and Table 6-18.

Table 6-17	Regional Detention Pond C	Cost Summary

Facility	Storage (AF)	Total Cost Including Construction and Engineering Contingencies
RG-01 9.02	9.02	\$542,000
RG-02 64.52	64.52	\$4,053,000
RG-03 0.04	0.04	\$146,000
RG-04 1.07	1.07	\$160,000
RG-05 0.03	0.03	\$146,000
Total		\$5,048,000

(See Tables C1 in Appendix C for details)

tion Pond Cost Summary					
Total Cost					
ction and Engineering Contingencies					
\$899,000					
\$640,000					
\$868,000					
\$1,453,000					
\$1,557,000					
\$547,000					
\$524,000					
\$326,000					
\$861,000					
\$1,069,000					
\$182,000					
\$477,000					
\$376,000					
\$9,780,000					

. .

May 2009 Page 65 impacted by site development, utility, roadway and landscape construction activities have in some cases negatively affected downstream areas.

El Paso County has enacted an erosion control ordinance to address these problems. In general, it is the responsibility of the entity conducting any land disturbance activity to properly control surface runoff, erosion and sedimentation during and after the activity. Technical criteria identifying measures which help mitigate the impacts of erosion and sedimentation are available and being used throughout the region. Minimum requirements must be developed to properly control erosion.

Erosion control is necessary to prevent environmental degradation caused by wind or water-borne soil. The following minimum criteria and standards are intended to prevent excessive erosion. El Paso County as well as other affected agencies will enforce the Clean Water Act standards if the planned erosion control measures fail to perform satisfactorily. Proper installation and maintenance is necessary to achieve the desired function of erosion control measures. By paying attention to quality, reinstallation can be avoided. General requirements for erosion control are as follows:

- 1. Any land disturbing activity shall be conducted so as to effectively reduce unacceptable erosion and resulting sedimentation.
- 2. All land disturbing activities shall be designed, constructed, and completed in such a manner that the exposure time of disturbed land shall be limited to the shortest possible period of time.
- 3. Sediment caused by accelerated soil erosion and runoff shall be intercepted by erosion control measures such as hay bales, silt fences and / or sediment ponds, and contained within the site.
- 4. Any facility designed and constructed to convey storm runoff shall be designed to be non-erosive.
- 5. Erosion control measures will be used prior to and during construction.

Temporary erosion control measures are required during construction, and permanent erosion control measures are required for all developments. Maintenance of erosion control measures is the responsibility of the property owner.

Various structures have been proposed in this plan to help control localized erosion and sedimentation problems. It is important that the erosion control plan for any land disturbing activity be strictly adhered to and maintained so that the above minimum criteria can be achieved in the Haegler Ranch Basin.

7.4. Operations and Maintenance

Maintenance of drainage way facilities is essential in preventing long term degradation of the creek and overbank areas. Along the drainageway, clearing of debris and dead vegetation should be considered within the low flow area of the creek and its tributaries. On the overbanks, limited maintenance of the existing vegetative cover is recommended. Semi-annual clearing of trash and debris at roadway crossings is also recommended to increase the effectiveness of the crossings. Sediments cleared from the channel or culvert should not be left on the overbank. This disturbs the native vegetation, creates a potential water quality concern if the dredgings are subsequently washed into the drainageway by natural erosion, and reduces the capacity of the overbank. In those reaches designated to be selectively

lined and the floodplain preserved, maintenance activities should be carried out with the least disturbances to native vegetation that is practical.

Similar practices should be employed when removing sediment from detention basins. Although some channels degrade and others agrade, all detention basins will collect sediment and agrade. The use of an easily accessible concrete lined forebay in the final design of a detention facility can make the cleaning of the larger debris and trash more easily accomplished with motorized equipment. If forebays are provided, they will need clearing semi-annually and after major storm events. More frequent routine maintenance may be required depending on the type of development upstream and the access provided to the public. Plan for annual removal of sediment and debris from the detention area of a facility with a forebay.

Deposition in drainage facilities of wind-blown trash and debris, should be expected in this region. This means that regular maintenance, even without rainfall events, should be performed.

7.5. Drainage and Bridge Fee Calculations

The cost estimates and basin fee calculation for the major drainageways, tributary drainageways, roadway culverts, regional detention basins, and related improvements for the Sub-Regional Detention Facilities are presented in Table 7-2. The sub-regional detention capital construction cost estimates include the cost for the construction of the embankment, water quality, and outlet structures. Bridges in the Sub-Regional Detention Alternative are presented in Table 7-3. The cost estimates include engineering and construction costs for the entire Haegler Ranch Basin as presented on the Conceptual Design Drawings in Appendix D. These estimates do not include costs for local or initial systems, and therefore no costs attributable to local or minor drainage systems have been computed in the estimation of the drainage basin fee. These systems are expected to be provided with proposed development. Costs associated with utility relocations have not been estimated but would be included in construction contingencies. A review of utility maps indicates that the majority of the potential relocations occur at the roadway crossings. Land acquisition costs for the detention facilities were not included for calculation of fees per Appendix L of the El Paso County Criteria Manual.

Unplatted acreage within Haegler Ranch was obtained from El Paso County, and is shown in Figure 7-1. A total of 8,953 acres is estimated to be currently unplatted and subject to future development. This unplatted land is projected to have an average imperviousness of approximately 15%, corresponding to approximately 1,343 unplatted impervious acres. All drainage and bridge fees are calculated per *impervious* acre. (See Appendix D for an unplatted area breakdown by subbasin and average imperviousness calculations.)

Reimbursable costs calculated for the Haegler Ranch Basin are listed in Table 7-4. These costs are based on improvements required under existing conditions. The term "reimbursable costs" used on Table 7-4 means those costs that have been used in estimation of drainage basin fees. Costs considered "non-reimbursable" are costs for the replacement of existing, undersized culverts, or costs to rehabilitate or maintain an existing lined segment of drainageway. For the most part, all of the drainageway costs for Haegler Ranch Basin are considered reimbursable.

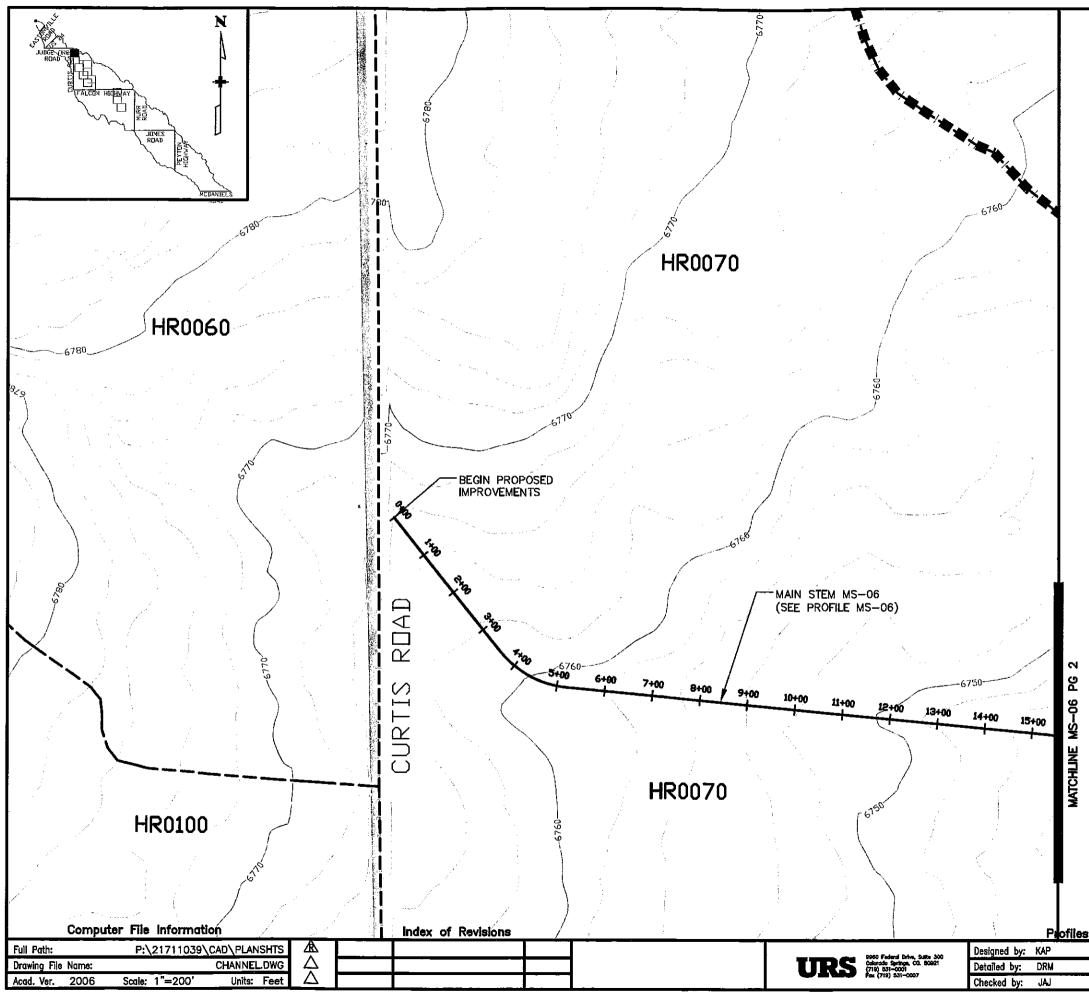
The calculated drainage basin fee presented in Table 7-2 is \$7,633 per impervious acre, and the bridge fee is \$1,126 per impervious acre, as shown in Table 7-3.

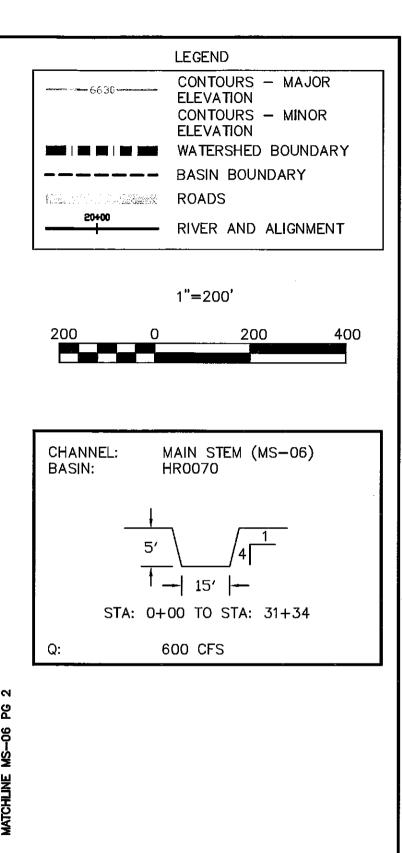
Table 7-2 Drainage Basin Fec Calculations

		Channel Improvemen			
Channel	Basins	Channel Construction Cost	Drop Structure Construction Cost	Contingency Cost	Total Cost
Main Stem (MS-05)	HR0200	\$224,000	\$363,600	\$264,420	\$852,020
Main Stem (MS-06)	HR0070	\$162,000	\$295,400	\$205,830	\$633,230
Main Stem (MS-06)	HR0080	\$331,000	\$374,500	\$317,475	\$1,022,975
Main Stem (MS-06)	HR0090	\$188,000	\$368,000	\$250,200	\$806,200
Tributary 3 (T3-01)	HR0330	\$259,000	\$422,000	\$306,450	\$987,450
Tributary 3 (T3-02)	HR0300	\$18,000	\$37,000	\$24,750	\$79,750
Tributary 4 (T4)	HR0300	\$40,000	\$74,000	\$51,300	\$165,300
Tributary 6 (T6)	HR0110	\$179,000	\$333,000	\$230,400	\$742,400
Tributary 6 (T6)	HR0120	\$55,000	\$106,500	\$72,675	\$234,175
Subtotal Channel Cost	S				\$5,553,500
		Culvert Improvement	ls		
			Culvert		
			Construction	Contingency	
Culvert	Road Crossing	Channel	Cost	Cost	Total Cost
609	Falcon Highway	Tributary 3 (T3-02)	\$106,301	\$47,836	\$154,137
N/A	Falcon Highway	Tributary 1 (T1)	\$19,500	\$8,775	\$28,275
1001	Future Pastura Street	Main Stem (MS-06)	\$106,301	\$47,836	\$154,137
- 1002	Future Arroyo Hondo Blvd. N.	Main Stem (MS-06)	\$87,301	\$39,286	\$126,587
1003	Future Arroyo Hondo Blvd. N.	Main Stem (MS-06)	\$87,301	\$39,286	\$126,587
1004	Future Pasture Street	Tributary 6 (T6)	\$51,000	\$22,950	\$73,950
1005	Future El Vado Road	Tributary 6 (T6)	\$19,500	\$8,775	\$28,275
1006	Future Socorro Trail	Tributary 6 (T6)	\$42,800	\$19,260	\$62,060
Subtotal Culvert Costs					\$754,007
		Detention Improvemen	nts		
				Contingency	
Facility	Storage (AF)	Construction Cost		Cost	Total Cost
SR-01	10	\$296,701		\$133,516	\$430,217
SR-02	5	\$207,949	· · ·= ·	\$93,577	\$301,525
SR-03	16	\$186,252		\$83,814	\$270,066
SR-04	25	\$390,182		\$175,582	\$565,764
SR-05	24	\$455,235		\$204,856	\$660,091
SR-06	9	\$140,670	···	\$63,301	\$203,971
SR-07	5	\$162,046		\$72,921	\$234,967
SR-08	5	\$87,489		\$39,370	\$126,860
SR-09	20	\$188,250		\$84,713	\$272,963
SR-10	23	\$331,635		\$149,236	\$480,871
SR-11	2	\$56,880		\$25,596	\$82,476
SR-12	9	\$108,987		\$49,044	\$158,031
SR-13	3	\$107,812		\$48,515	\$156,327
Subtotal Detention Co.		φ107,012	J	ψτ0,515	\$3,944,129
Total Cost		<u></u>			
Total Unplatted Imp	arvious A cros		· · · · ·	<u> </u>	\$10,251,636
			<u> </u>		1,343
Fee Per Impervious A	Acre				\$7,633

Table 7-3 Bridge Fce Calculation

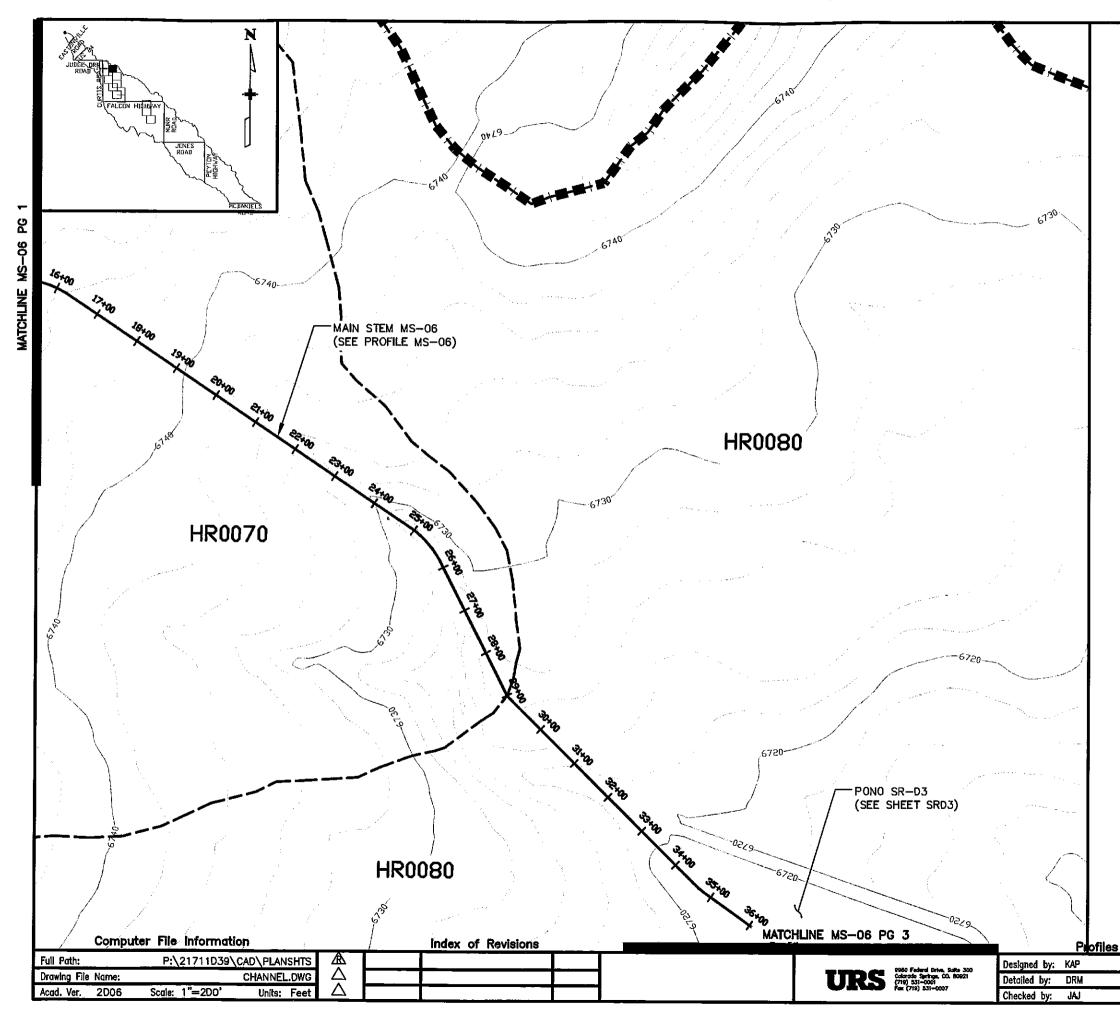
301	Peyton Highway	Main Stem (MS-02)	401,710	\$180,770	\$582,480
403	Jones Road	Main Stem (MS-03)	358,123	\$161,155	\$519,278
405	Murr Road	Main Stem (MS-04)	282,941	\$127,323	\$410,264
Subtotal		\$1,512,022			
Total Co		\$1,512,022			
Total Un		1,343			
Bridge F		\$1,126			

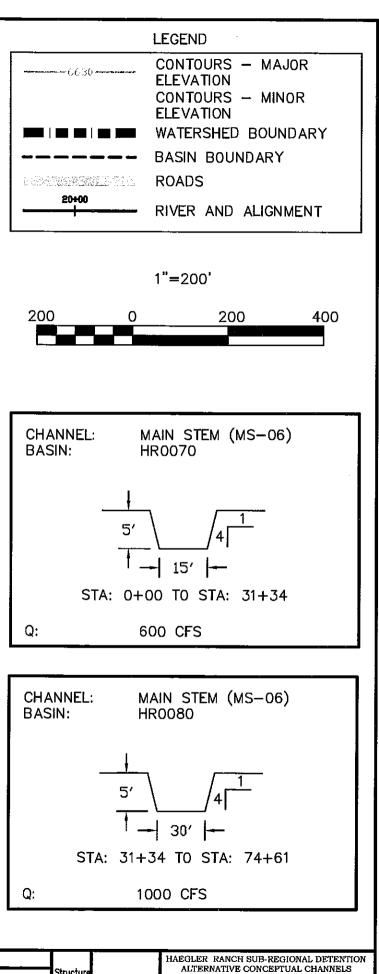

May 2009 Page 69


,

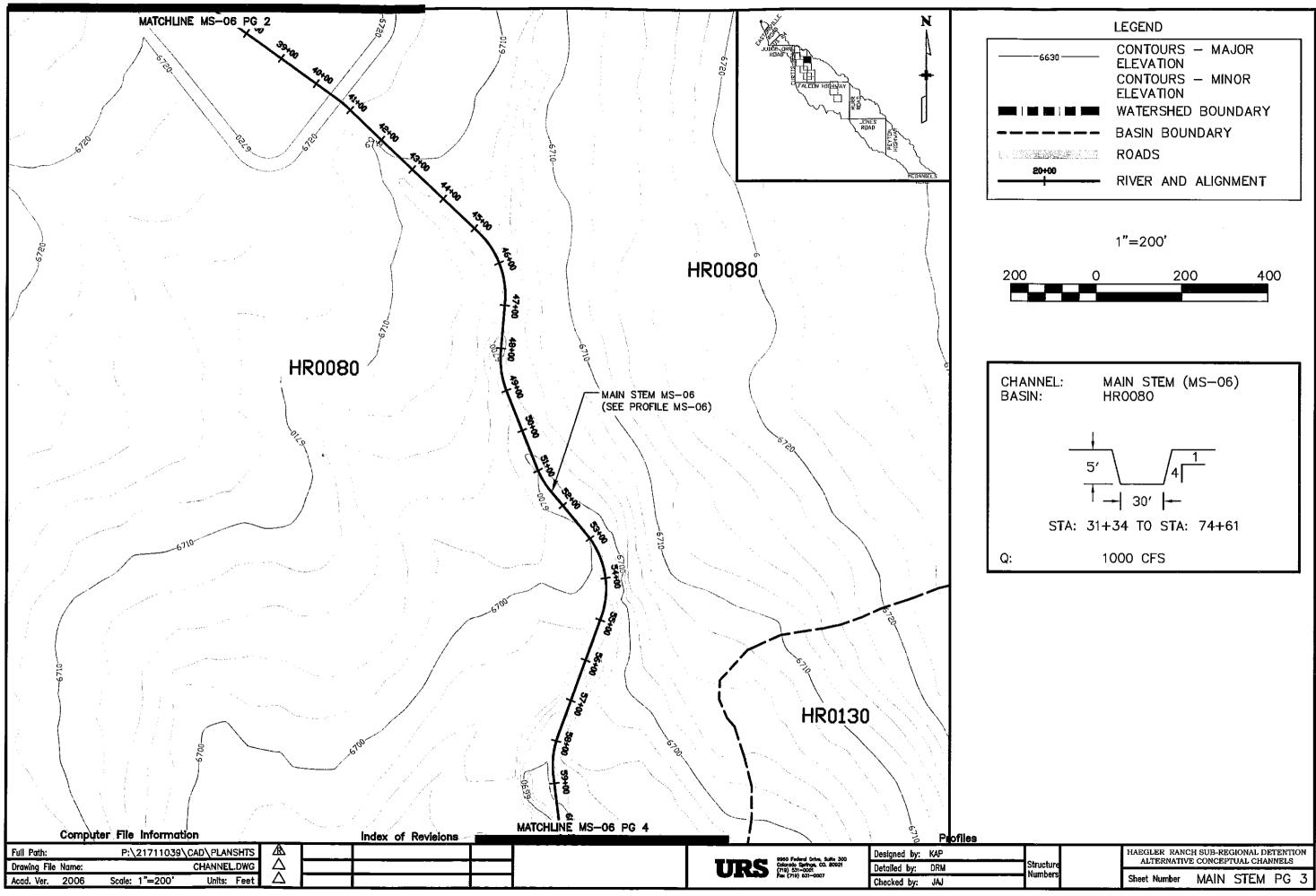
		7-4 Reimbursable			
	Reimbi	irsable Culvert Impro	vements Culvert		
			Construction	Contingency	
Culvert	Road Crossing	Channel	Cost	Cost	Total Cost
N/A	Peyton Highway	Tributary 1 (T1)	\$51,000	\$22,950	\$73,950
N/A	Falcon Highway	Tributary 1 (T1)	\$9,7580	\$4,388	\$14,138
301	Peyton Highway	Main Stem (MS-02)	\$314,535	\$141,541	\$456,076
401	Jones Road	Tributary 1 (T1)	\$53,111	\$23,900	\$77,011
403	Jones Road	Main Stem (MS-03)	\$270,947	\$121,926	\$392,874
405	Murr Road	Main Stem (MS-04)	\$180,371	\$81,167	\$261,538
407	Murr Road	Tributary 3 (T3-01)	\$77,801	\$35,011	\$112,812
507	Peerless Farms Road	Tributary 3 (T3-01)	\$115,801	\$52,111	\$167,912
509	Murr Road	Tributary 1 (T1)	\$19,300	\$8,685	\$27,985
601	Whiting Way	Tributary 1 (T1)	\$23,500	\$10,575	\$34,075
604	Max Road	Tributary 1 (T1)	\$19,300	\$8,685	\$27,985
609	Falcon Highway	Tributary 3 (T3-02)	\$25,600	\$11,520	\$37,120
610	Falcon Highway	Tributary 4 (T4)	\$23,500	\$10,575	\$34,075
612	Falcon Highway	Tributary 5 (T5)	\$21,200	\$9,540	\$30,740
628	Falcon Highway	Main Stem (MS-05)	\$154,741	\$69,633	\$30,740 \$224,375
702	Curtis Road	Tributary 6 (T6)			a
702	Curtis Road	Main Stem (MS-06)	\$23,150	\$10,418	\$33,568
703			\$125,301	\$56,386	\$181,687
	Judge Orr Road	Main Stem (MS-06)	\$83,200	\$37,440	\$120,640
803	Eastonville Road	Main Stem (MS ¹ 07)	\$9,680	\$4,356	\$14,036
804	Eastonville Road	Tributary 7 (T7)	\$14,980	\$6,741	\$21,721
Subtotal Channel Costs					\$2,344,315
	Reimbur	sable Detention Impr	ovements		
Facility	Storage (AF)	Construction		Contingency	
SR-01	10	Construction Cost		Cost	Total Cost
SR-02	5	<u>\$296,701</u> \$207,949		\$133,516	\$430,217
SR-02	16	\$186,252		\$93,577 \$83,814	\$301,525 \$270,066
SR-04	25	\$390,182		\$175,582	\$565,764
SR-05	24	\$455,235		\$204,856	\$660,091
SR-06	9	\$140,670		\$63,301	\$203,971
SR-07	5	\$162,046		\$72,921	\$234,967
SR-08	5	\$87,489		\$39,370	\$126,860
SR-09	20	\$188,250		\$84,713	\$272,963
SR-10	23	\$331,635		\$149,236	\$480,871
SR-11	2	\$56,880		\$25,596	\$82,476
SR-12	9	\$108,987		\$49,044	\$158,031
OD 12					W156 707
SR-13 Subtotal Detention Cost	3	\$107,812		\$48,515	\$156,327 \$3,944,129

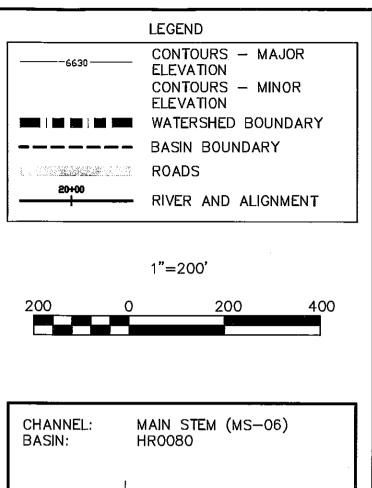
Table 7-4 Reimbursable Costs

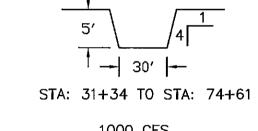

Haegler Ranch Drainage Basin Planning Study .

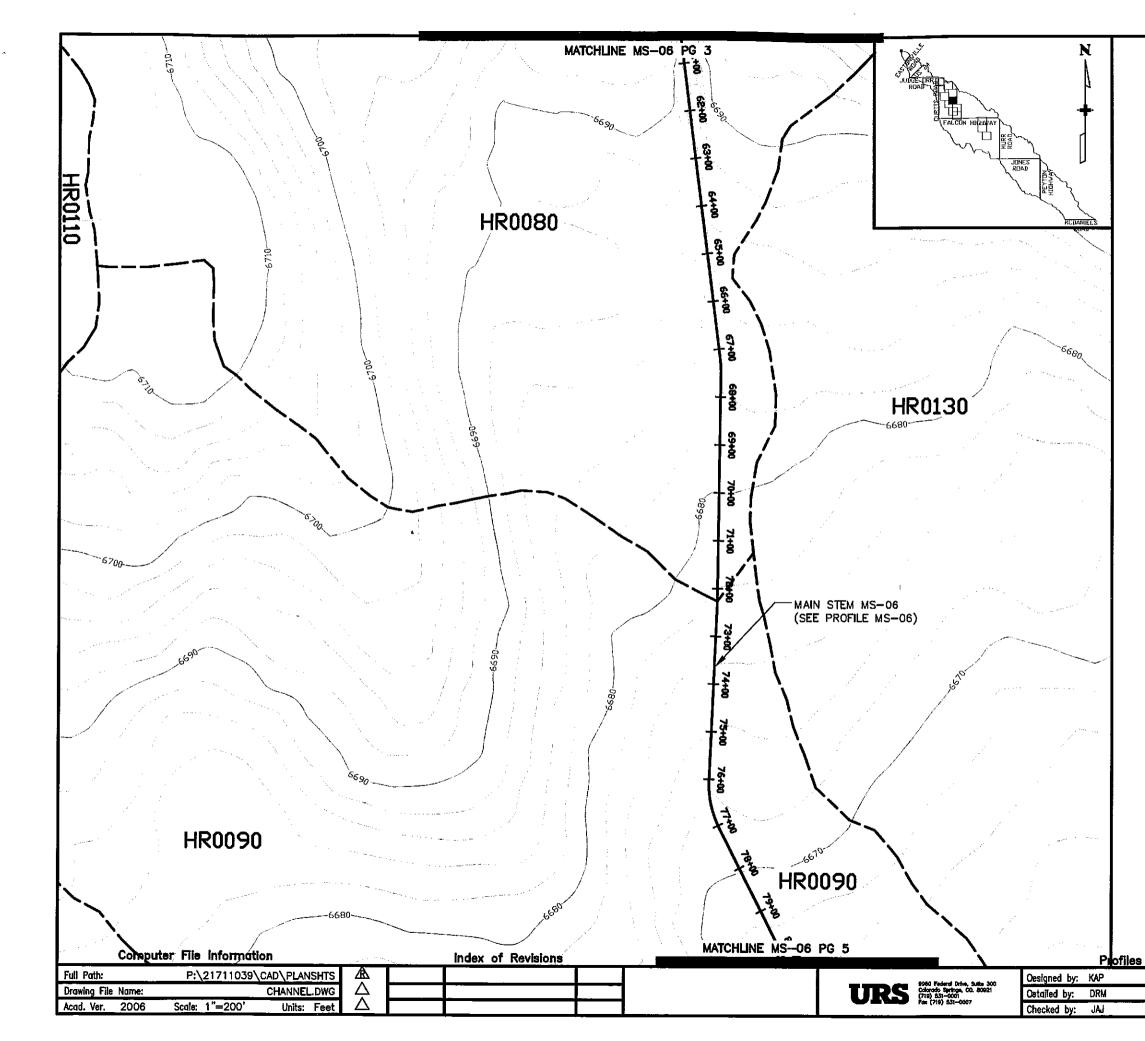


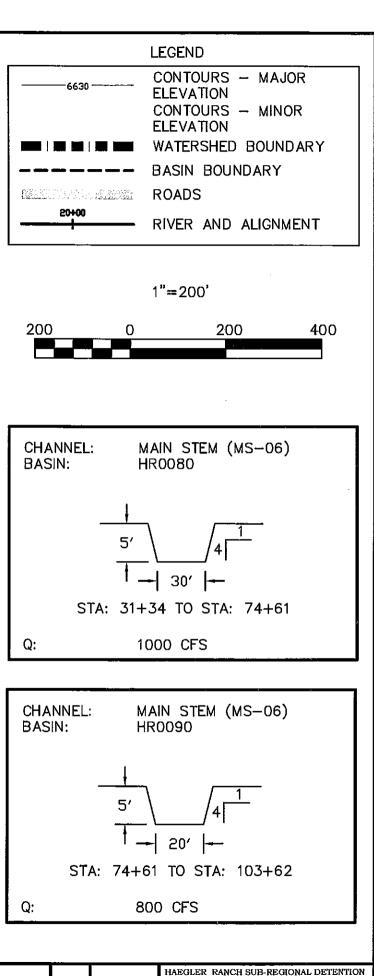
HAEGLER RANCH SUB-REGIONAL DETENTION ALTERNATIVE CONCEPTUAL CHANNELS Structur lumbe MAIN STEM PG Sheet Number

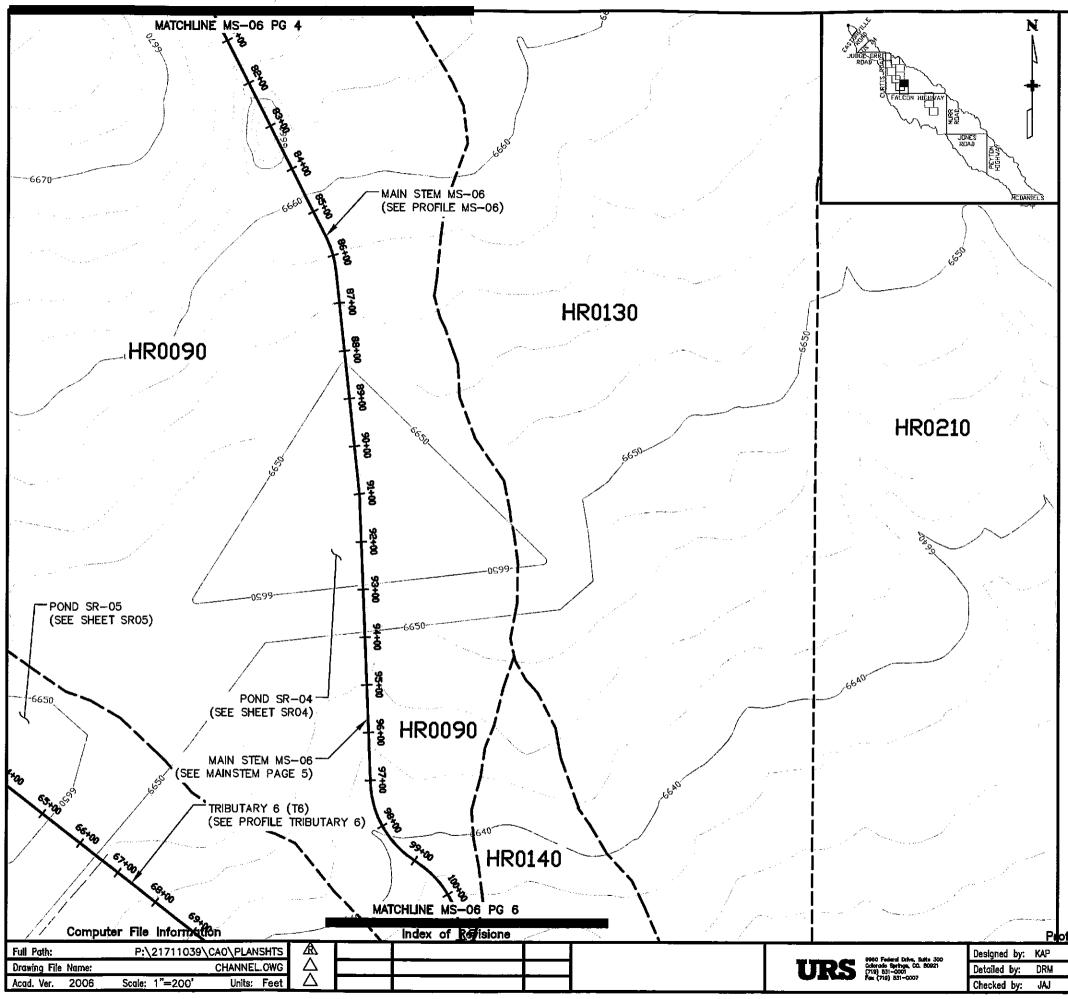

g 90 Ś MATCHLINE

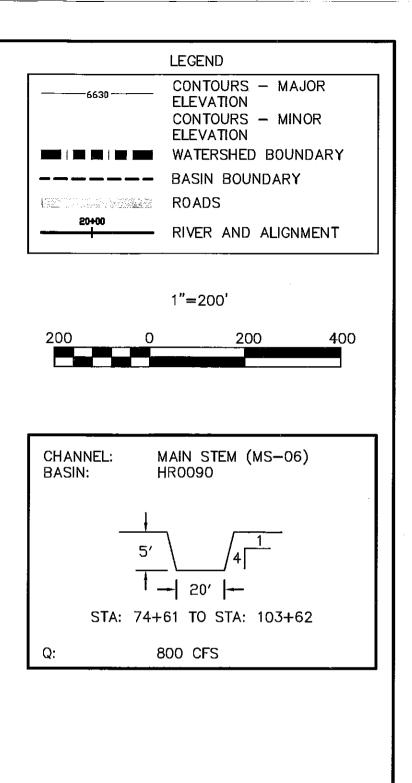


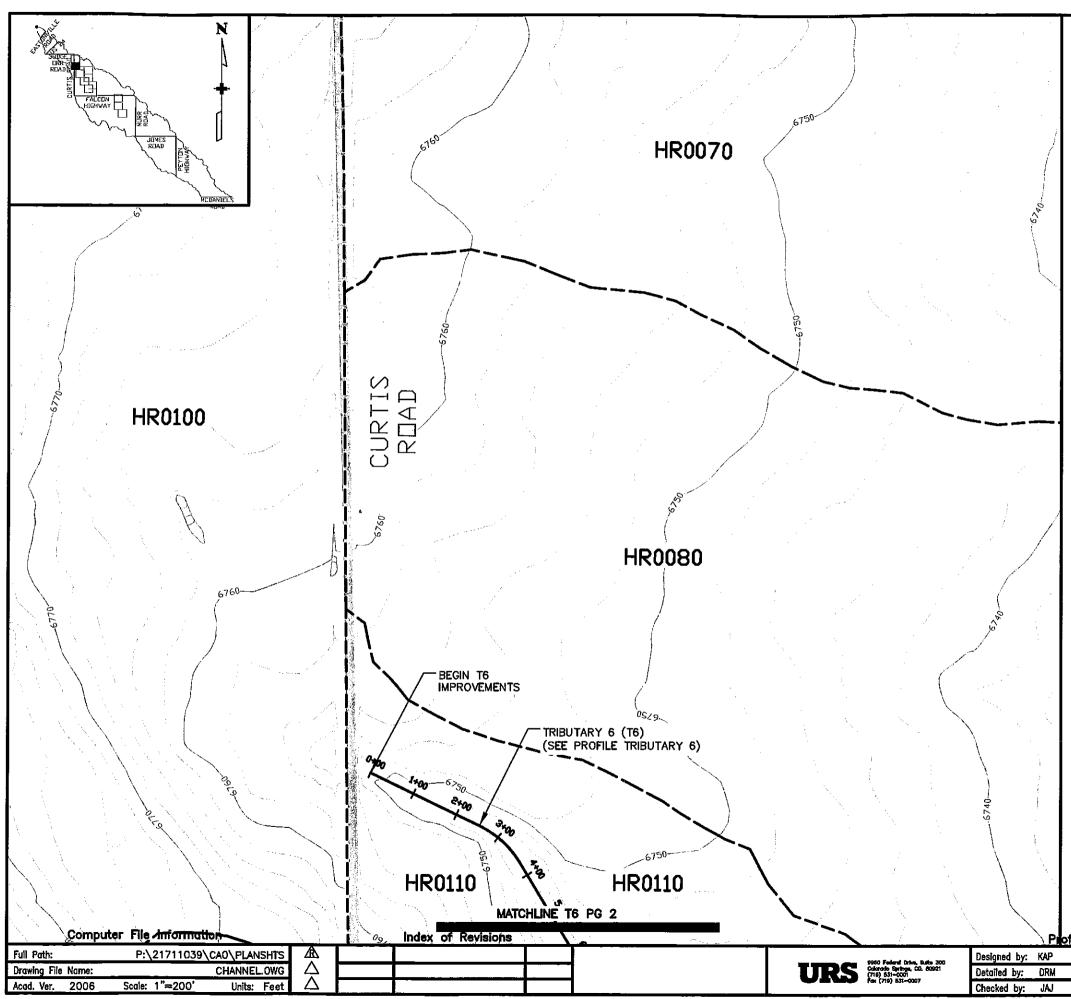



Structure ALTERNATIVE CO Numbers Sheet Number M

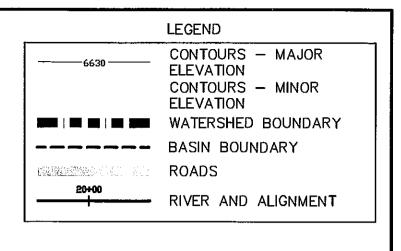

ALTERNATIVE CONCEPTUAL CHANNELS Sheet Number MAIN STEM PG 2



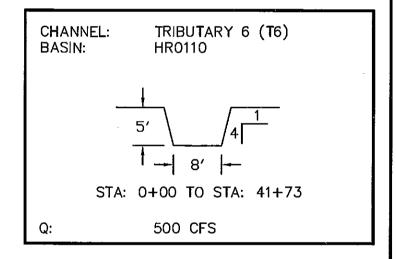


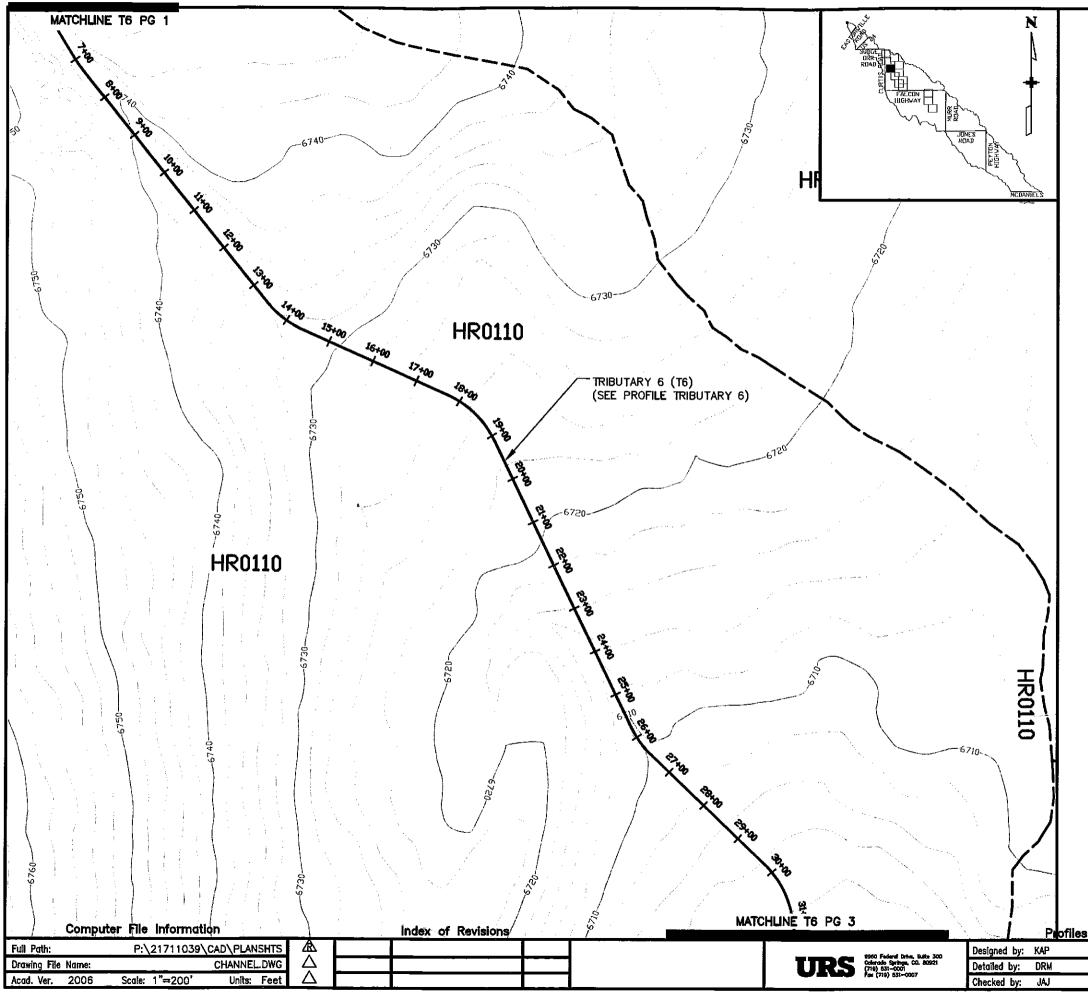


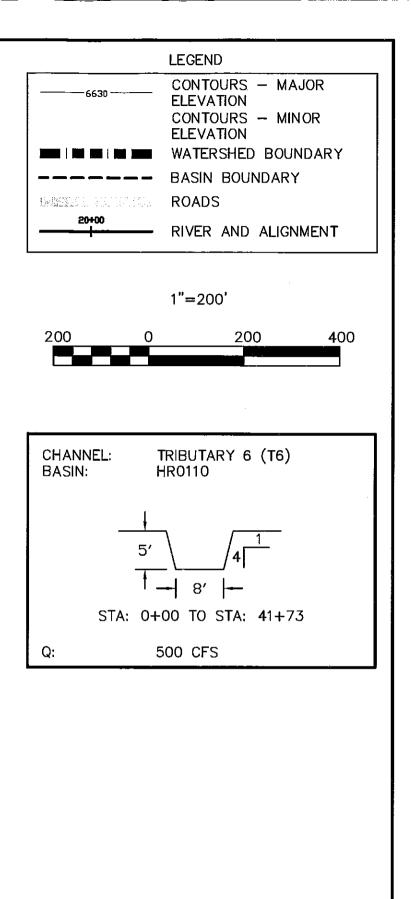
Structure Numbers Sheet Number MAIN STEM PG 4



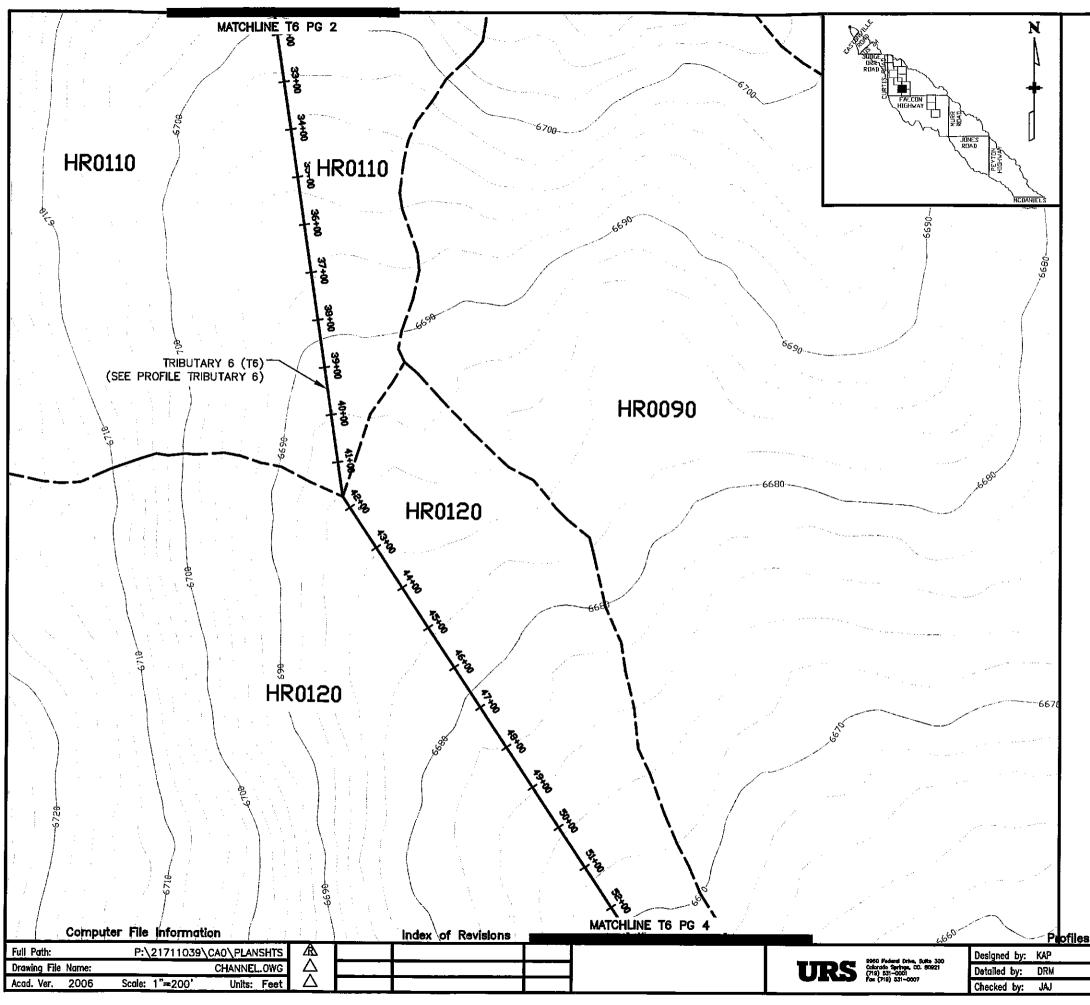
rre					ON
rs	Sheet Number	MAIN	STEM	PG	5
		ALTERNATIV	ALTERNATIVE CONCEP	ALTERNATIVE CONCEPTUAL CHAR	m

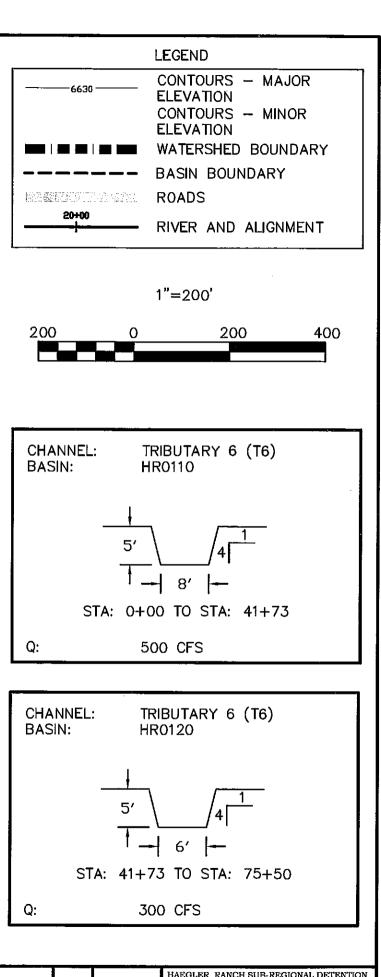




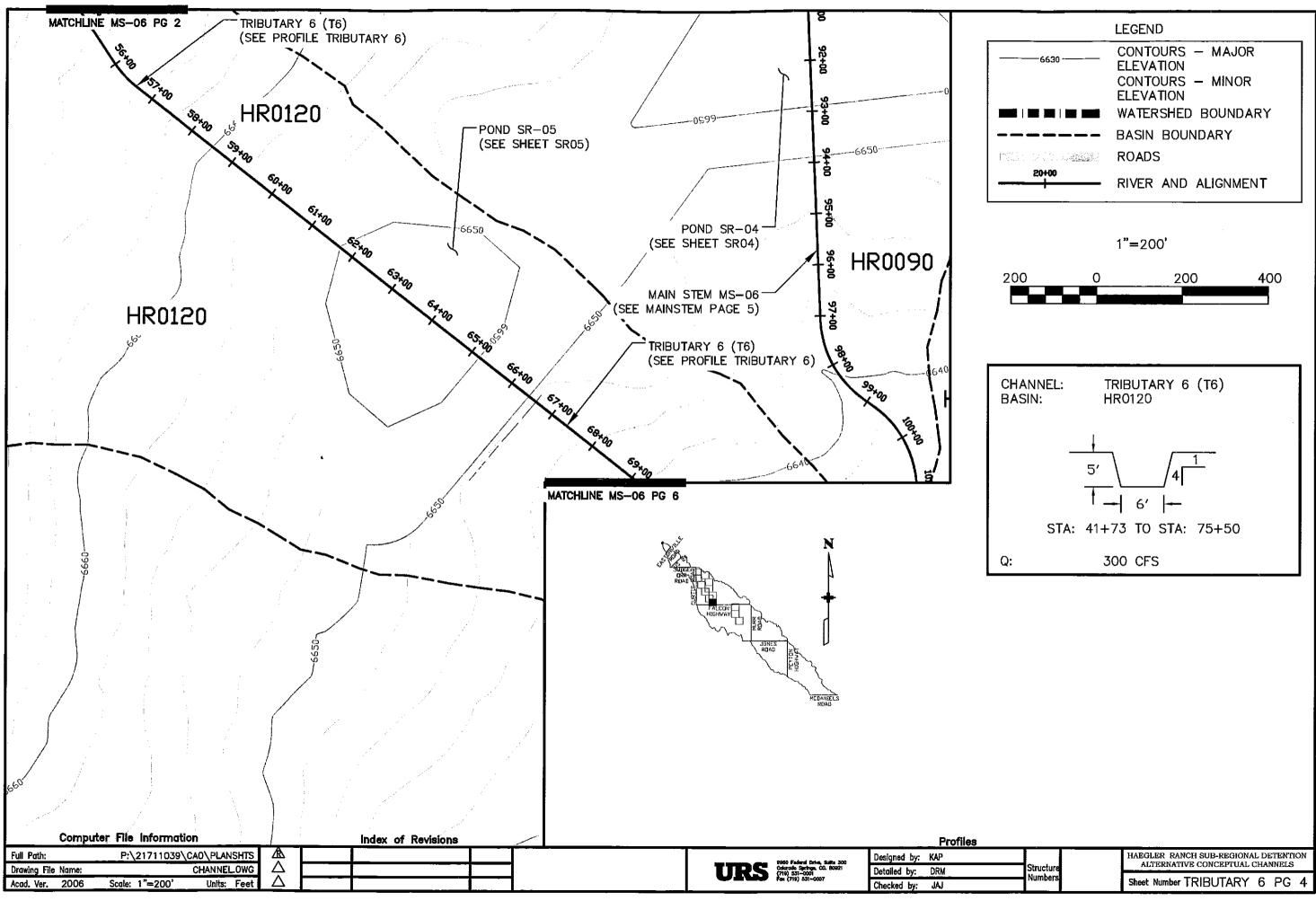

1"=200'

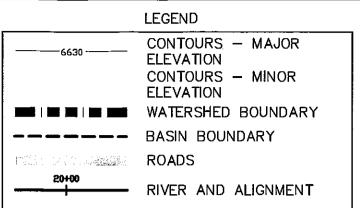
HAEGLER RANCH SUB-REGIONAL DETENTION			
ALTERNATIVE CONCEPTIONAL CULANNELS	iles		
Suuciai		Structure	
Numbers Sheet Number TRIBUTARY 6 PG 1		Numbers	Sheet Number TRIBUTARY 6 PG 1

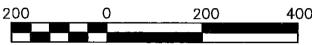


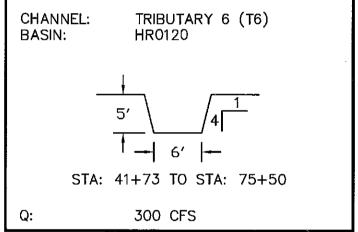


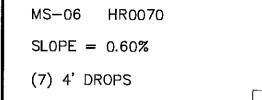
 Structure
 HAEGLER RANCH SUB-REGIONAL DETENTION

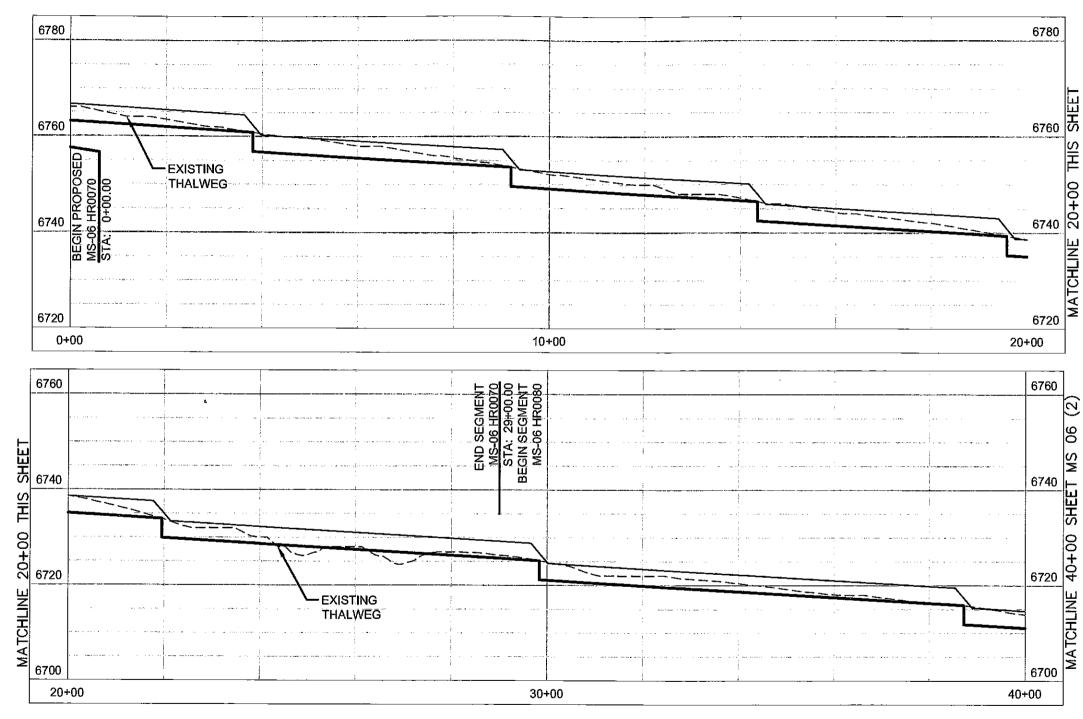

 Numbers
 ALTERNATIVE CONCEPTUAL CHANNELS


 Sheet Number TRIBUTARY 6 PG 2






HAEGLER RANCH SUB-REGIONAL DETENTION ALTERNATIVE CONCEPTUAL CHANNELS umber sheet Number TRIBUTARY 6 PG 3



MS-06 HR0080

SLOPE = 0.60%

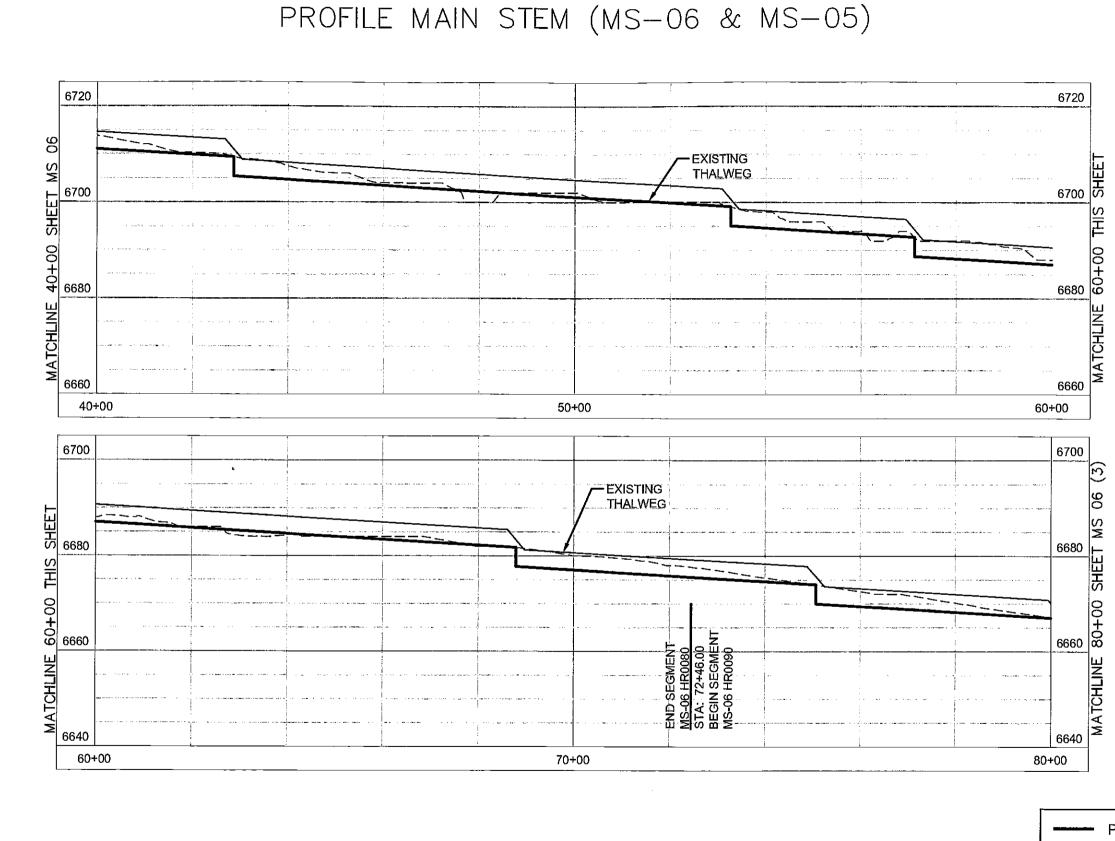
(7) 4' DROPS

PROFILE MAIN STEM (MS-06 & MS-05)

Computer File Information	Index of Revisions		Profiles	
Full Path: P:\21711039\CAD\PLANSHTS Drawing File Name: MAINSTEM PROFILES_PRDPOSED.DWG		DEPASO COUNTE DEPARTMENT OF TRANSPORTATION DEPARTMENT OF TRANSPORTATION	Sufes soo Designed by: KAP Descripted by: DBM	HAEGLER RANCH SUB-REGIONAL DETENTION ALTERNATIVE CONCEPTUAL PROFILES
Acad. Ver. 20D6 Scale: 1"=2D' Units: Feet			7 Detailed by: DRM Structure 7 Checked by:	Sheet Number MS 06

|--|

 PROPOSED DROP STRUCTURE
 EXISTING THALWEG
 HYDRAULIC GRADE LINE


SLOPE = 0.60%

(7) 4' DROPS

MS-06 HR0090

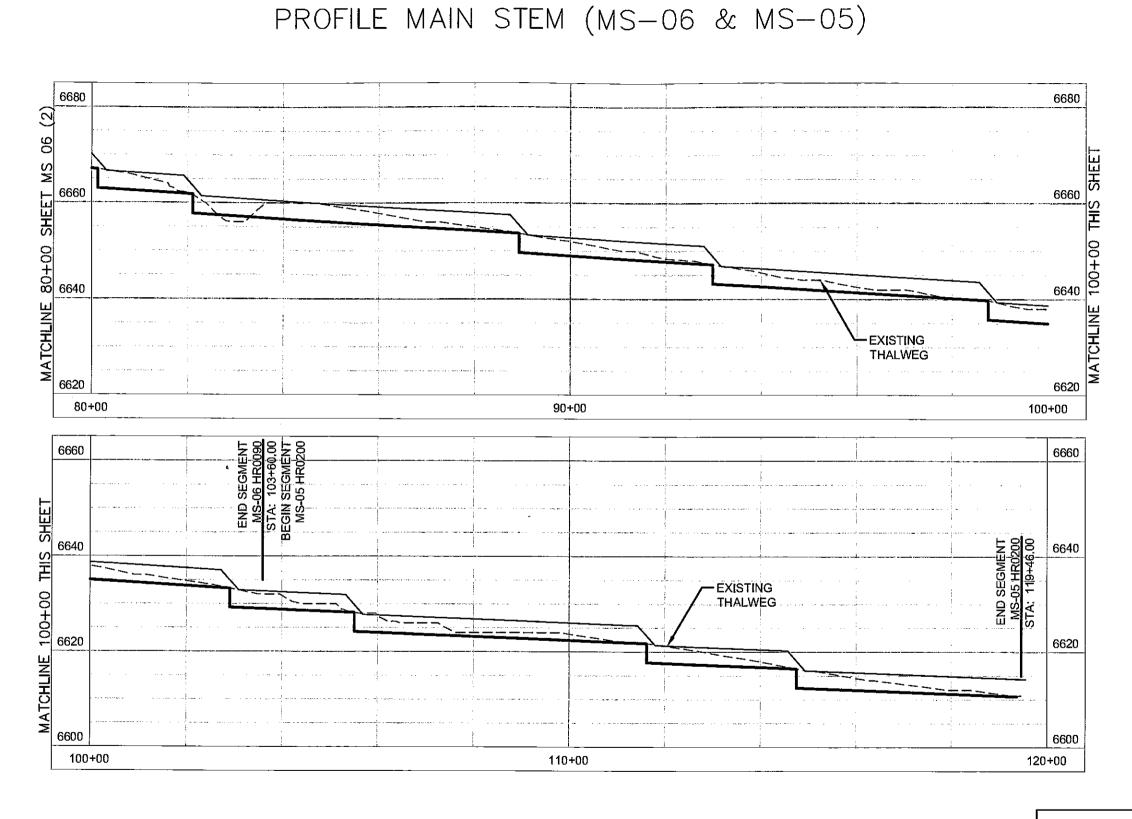
SLOPE = 0.60%

(8) 4' DROPS

Computer File Information	Index of Revisions	Profiles
Full Path: P:\21711039\CAD\PLANSHTS A Drawing File Name: MAINSTEM PROFILES_PROPOSE0.0WG \Brianglematrix	EL PASO COUNTA EL DASO COUNTA	Designed by: KAP HAEGLER RANCH SUB-REGIONAL DETENTION Detailed by: DRM Structure
Acad. Ver. 2006 Scale: 1"=20' Units: Feet	DEPARTMENT OF TRANSPORTATION UP TRANSPORTATION UP TO TRANSPORTATION	Checked by: Numbers Sheet Number MSO6 (2)

LEGEND

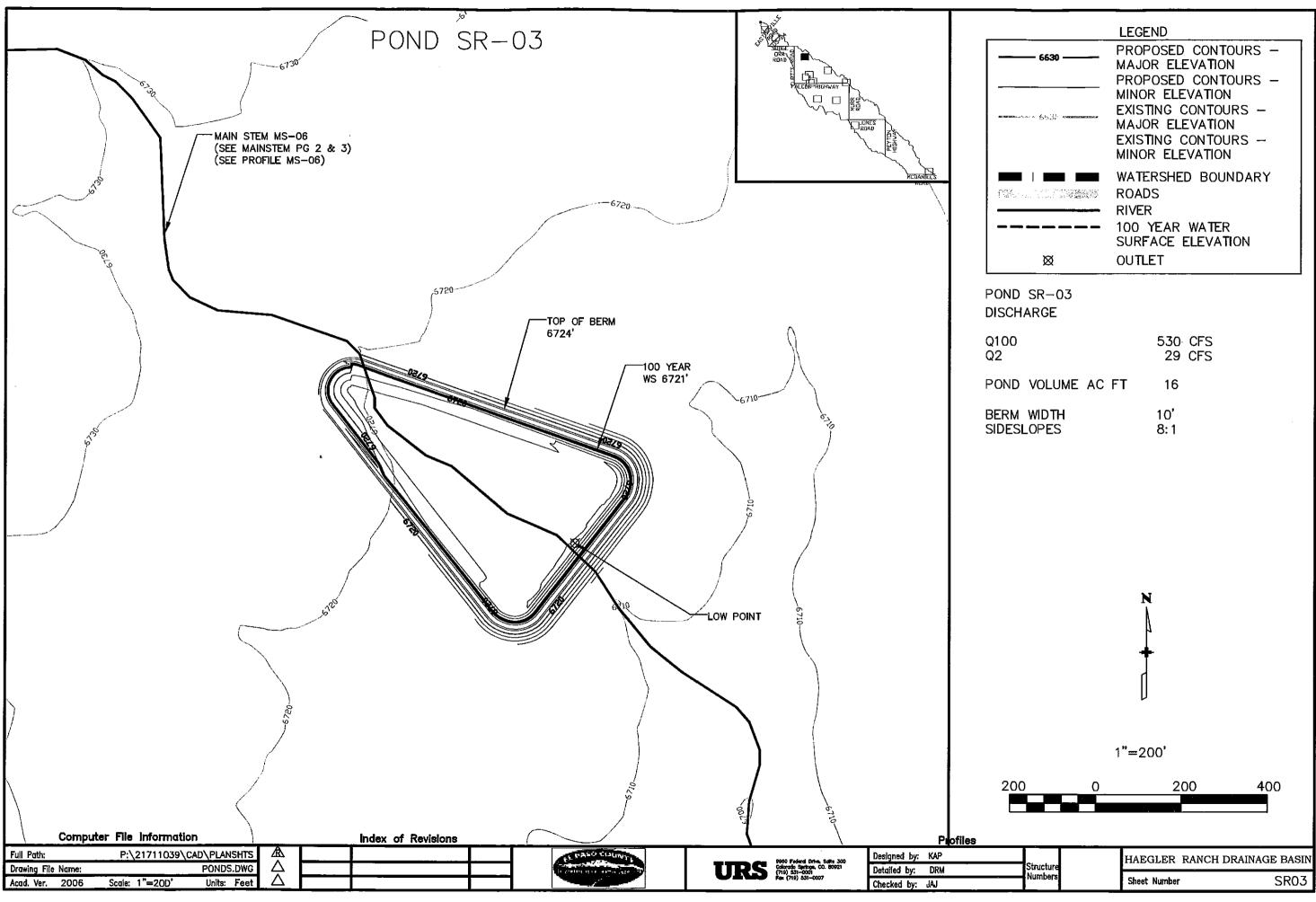
----- PROPOSED DROP STRUCTURE ---- EXISTING THALWEG ------ HYDRAULIC GRADE LINE

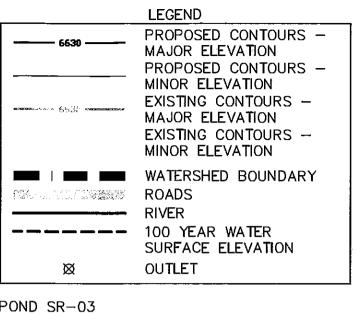

SLOPE = 0.60%

(8) 4' DROPS

MS-05 HR0200

SLOPE = 0.40%

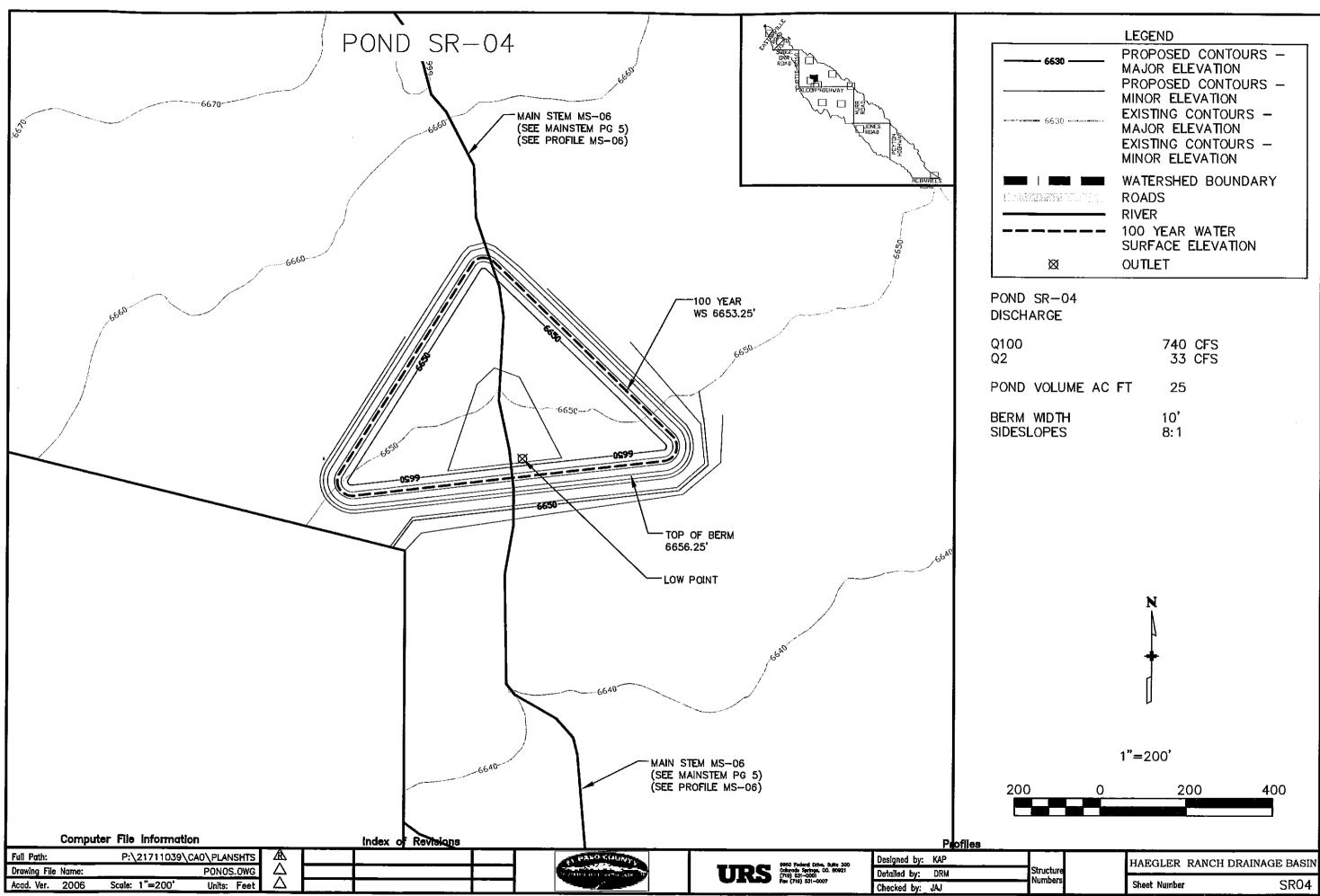

(4) 4' DROPS

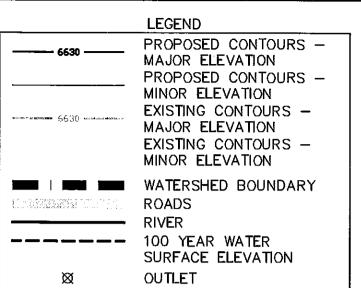


Full Path: P:\21711039\CAD\PLANSHTS A Designed by: KAP Drawing File Name: MAINSTEM PROFILES_PROPOSED.DWG A Designed by: KAP		Computer File Information	Index of Revisione	Profilss
Acad. Ver. 2006 Scale: $1=20^{\circ}$ Units: Feet Δ Checked by:	F	Drawing File Name: MAINSTEM PROFILES_PROPOSED.DWG		Detailed by: DRM Structure ALTERNATIVE CONCEPTUAL PROFILES

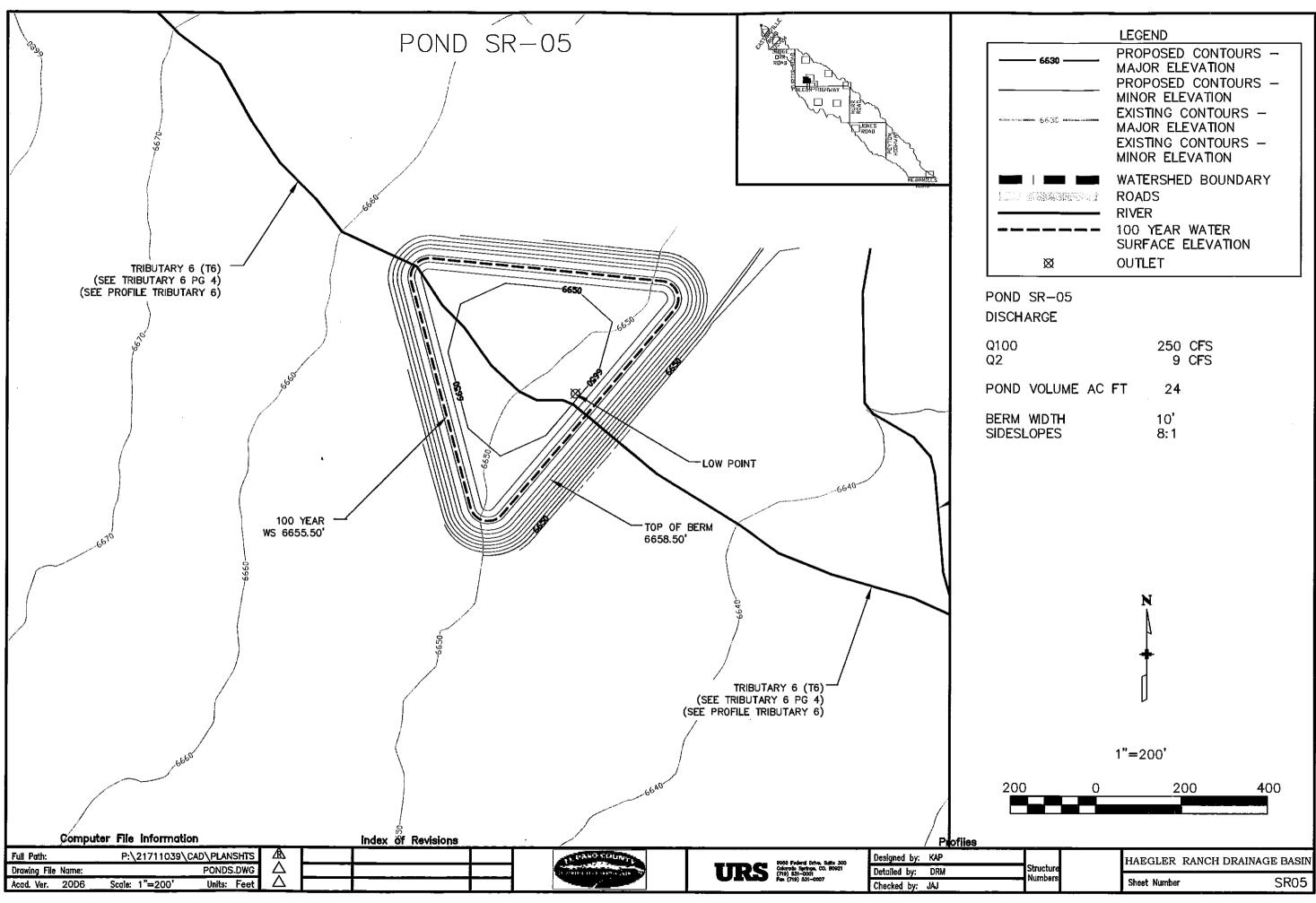
LEGEND

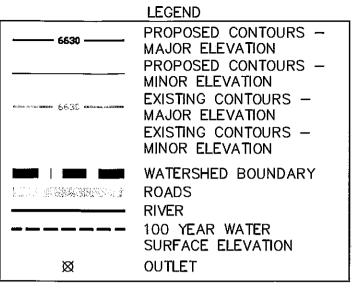
PROPOSED DROP STRUCTURE
 EXISTING THALWEG
 HYDRAULIC GRADE LINE





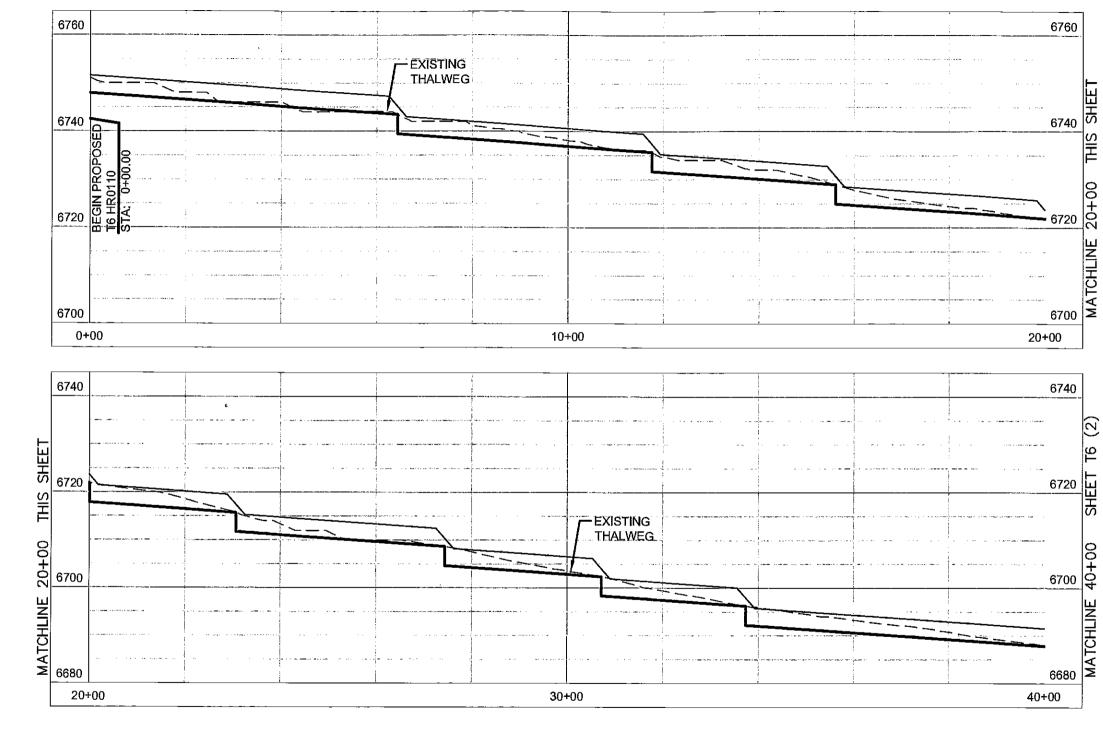
Q100	530 CFS
Q2	29 CFS
POND VOLUME AC FT	16
BERM WIDTH	10'
SIDESLOPES	8:1





Q100	740 CFS
Q2	33 CFS
POND VOLUME AC FT	25
BERM WIDTH	10'
SIDESLOPES	8:1

Q100	250 CFS
Q2	9 CFS
POND VOLUME AC FT	24
BERM WIDTH	10'
SIDESLOPES	8:1



T6 HR0110

SLOPE = 0.70%

(9) 4' DROPS

PROFILE TRIBUTARY 6 (T6)

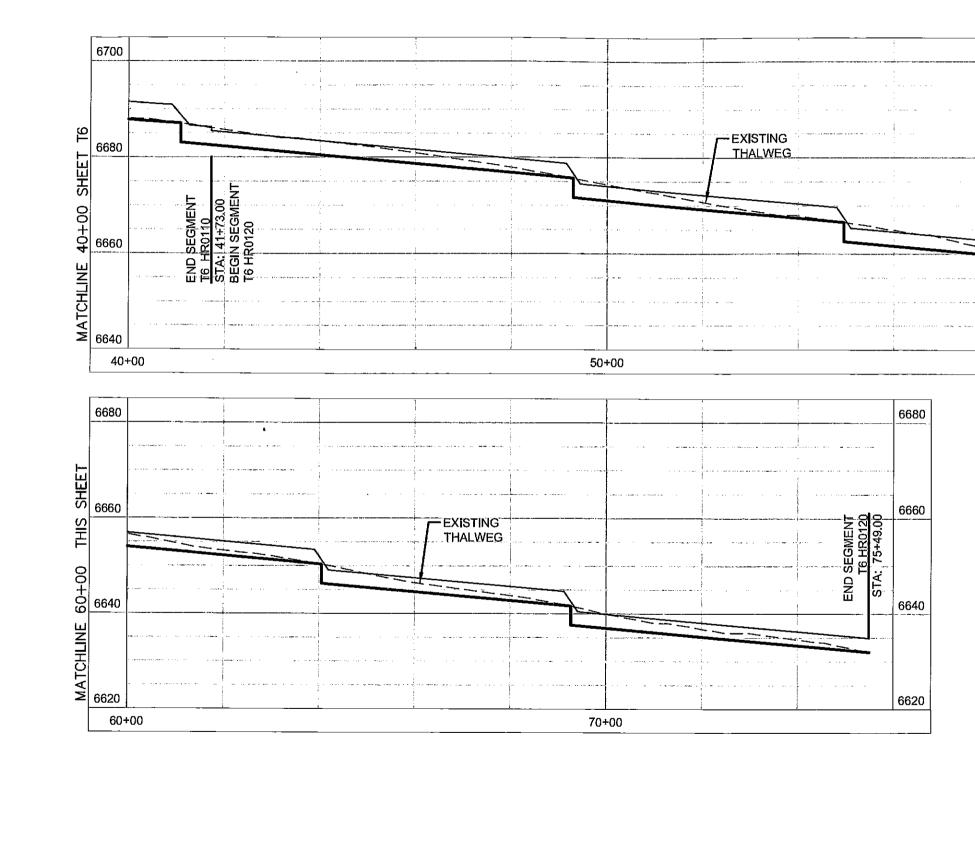
Computer File information	index of Revisions	Profilee					
Full Path: P:\21711039\CAD\PLANSHTS	EL PASO COUNTL	Designed by: KAP	HAEGLER RANCH SUB-REGIONAL DETENTION				
Drawing File Name:T PROFILE SHEETS 6_PROPOSED.0WG \triangle	OF PARTMENT OF TRANSPORTATION	Description of a series of a series of a series by Detailed by: DRM Structure	ALTERNATIVE CONCEPTUAL PROFILES				
Acad. Ver. 2006 Scale: 1"⇔20' Units: Feet 🛆		re (ne) as1-0007 Checked by:	Sheet Number T6				

	0/40			
Г Т6 (2)				
SHEET	6720		-	
40+00	6700			
MATCHLINE 40+00				
Σ	6680			
	00	40+		

LEGEND

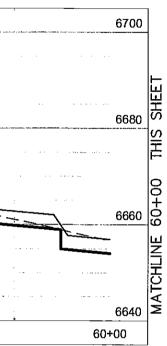
PROPOSED DROP STRUCTURE ---- EXISTING THALWEG HYDRAULIC GRADE LINE

T6 HR0110

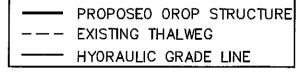

SLOPE = 0.70%

(9) 4' OROPS

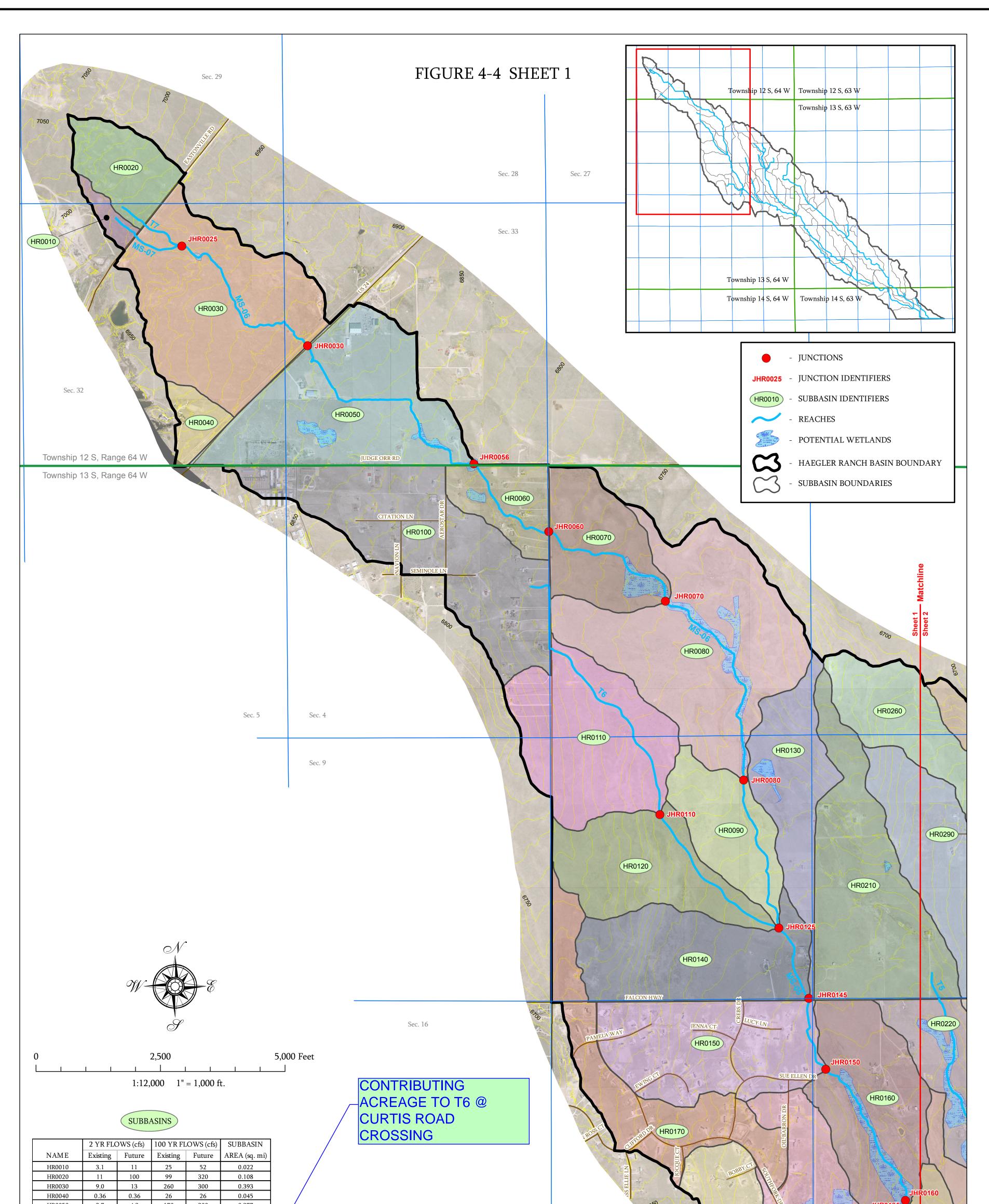
T6 HR0120


SLOPE = 0.90%

(6) 4' DROPS

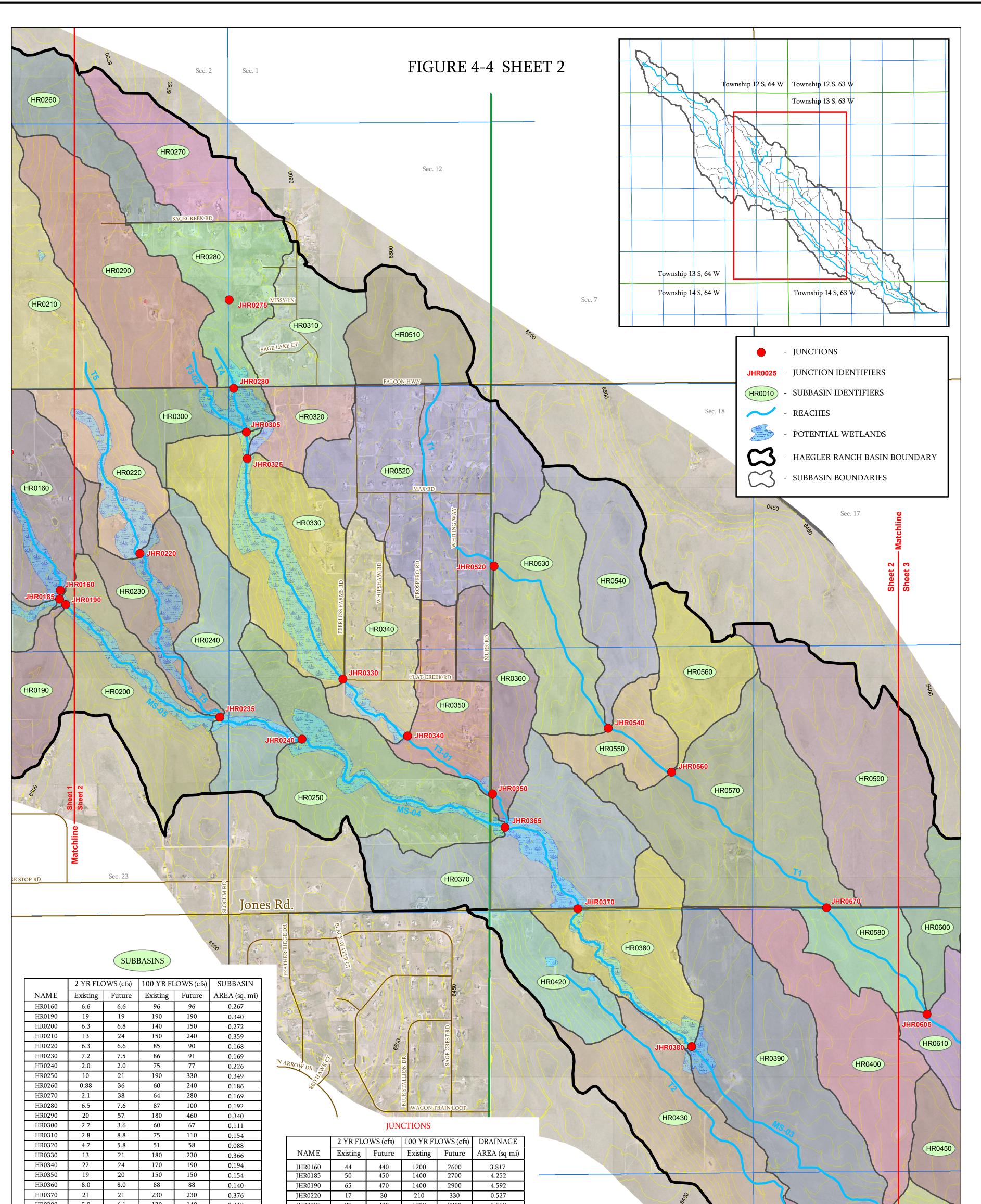


PROFILE TRIBUTARY 6 (T6)


ļ	Computer File Information	Index of Revisione	Profiles
l	Full Path: P:\21711039\CAD\PLANSHTS	A EL PASO COUNTL	Designed by: KAP
l	Drawing File Name: T PROFILE SHEETS 6_PROPOSED.OWG	DEPARTMENT OF TRANSPORTATION	URS Control Server to Accel International Detailed by: DRM
l	Acad. Ver. 2006 Scale: 1"=20' Units: Feet		For (719) 331-0007 Checked by:

LEGEND

Structure Numbers T6 (2)



HR0050	2.7	4.3	170	200	0.377									6650	E P T	JHR0185	JHR0190
HR0060	2.0	3.5	54	66	0.101	_ /	, ,										
HR0070	5.4	210	99	580	0.180				II INI	CTIONS					HF	R0180	
HR0080	2.5	190	87	970	0.482				JUIN					Sec. 15	CALLEY CT		All and a set
HR0090	0.95	11	44	160	0.154	K		2 YR FLO	DWS (cfs)	100 YR FI	LOWS (cfs)	DRAINAGE]				
HR0100	4.3	5.8	120	140	0.394		NAME	Existing	Future	Existing	Future	AREA (sq. mi)					
HR0110	1.9	72	84	420	0.310	I		0				-					
HR0120	2.0	4.0	73	150	0.226		JHR0025	14	110	120	370	0.130	4			$\langle \cdot \rangle$	
HR0130	0.27	15	29	180	0.185		JHR0030	21	120	350	630	0.523	1				
HR0140	3.5	6.4	110	140	0.283		JHR0056	24	120	540	830	0.945		Sec 22			
HR0150	21	21	210	210	0.290		JHR0060	25	120	590	890	1.046		CONTRIBUTING		R0190	HR0200
HR0160	6.6	6.6	96	96	0.267		JHR0070	28	210	660	930	1.226					
HR0170	15	17	130	150	0.241		JHR0080	29	340	720	1500	1.708		ACREAGE TO			
HR0180	6.4	6.4	85	85	0.194		JHR0110	6.1	72	200	440	0.704					125
HR0190	19	19	190	190	0.340		JHR0125	37	410	980	2100	2.792		MS-06 @			
HR0200	6.3	6.8	140	150	0.272		JHR0145	39	420	1100	2400	3.260		CURTIS ROAD	A A A		
HR0210	13	24	150	240	0.359		JHR0150	42	440	1100	2600	3.550					
HR0220	6.3	6.6	85	90	0.168		JHR0160	44	440	1200	2600	3.817		CROSSING	Т		$(\land
HR0260	0.88	36	60	240	0.186		JHR0185	50	450	1400	2700	4.252]				
HR0290	20	57	180	460	0.340		JHR0190	65	470	1400	2900	4.592	J				
																00	

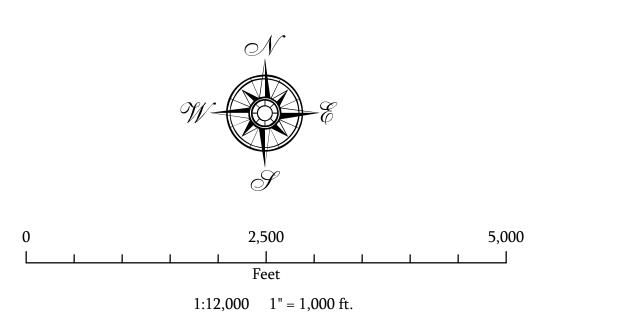
URS NO. 21711039

DATE: 09/08



HR0380	5.9	6.1	130	140	0.212	JHR0235	87	480	1700	3300	5.560	
HR0390	31	34	280	310	0.457	JHR0240	88	470	1700	3400	5.786	JHR0430 JHR0400 H
HR0400	18	18	160	160	0.290	JHR0275	2.9	69	120	480	0.355	Sec. 31
HR0410	7.4	8.4	68	77	0.084	JHR0280	6.5	75	200	570	0.547	
HR0420	1.8	2.5	59	70	0.124	JHR0305	29	96	400	870	0.998	
HR0430	4.7	4.7	90	90	0.295	JHR0325	36	110	490	1000	1.240	
HR0440	5.5	5.5	130	130	0.357	JHR0330	44	120	600	1200	1.606	
HR0450	9.5	9.5	85	85	0.140	JHR0340	49	130	640	1300	1.800	
HR0510	0.35	19	33	140	0.157	JHR0350	52	130	670	1400	1.954	
HR0520	23	24	200	210	0.488	JHR0365	150	600	2200	4800	8.229	W E E HR0440
HR0530	1.2	1.2	76	80	0.258	JHR0370	150	600	2300	5000	8.605	
HR0540	0.30	0.30	37	37	0.206	JHR0380	150	600	2300	5000	8.817	
HR0550	0.56	0.57	50	51	0.110	JHR0400	170	600	2400	5300	9.564	
HR0560	0.22	0.22	25	25	0.150	JHR0430	5.6	6.7	150	150	0.419	La 123 La la
HR0570	8.6	8.9	170	180	0.453	JHR0520	23	43	220	350	0.645	0 2,500 5,000
HR0580	10	11	96	98	0.124	JHR0540	24	44	270	420	1.109	
HR0590	2.2	2.2	84	84	0.408	JHR0560	25	44	300	460	1.369	Feet
HR0600	1.4	1.4	41	41	0.128	JHR0570	29	48	370	520	1.822	1:12,000 1" = 1,000 ft.
HR0610	5.7	5.8	100	110	0.202	JHR0605	33	52	480	630	2.482	

URS NO. 21711039


DATE: 09/08

HR0410	7.4	8.4	68	77	0.084
HR0440	5.5	5.5	130	130	0.357
HR0450	9.5	9.5	85	85	0.140
HR0460	4.0	4.0	76	76	0.109
HR0470	7.3	7.6	73	77	0.102
HR0480	0.86	0.86	34	34	0.244
HR0490	9.2	9.8	210	220	0.312
HR0500	3.3	3.4	140	150	0.326
HR0580	10	11	96	98	0.124
HR0590	2.2	2.2	84	84	0.408
HR0600	1.4	1.4	41	41	0.128
HR0610	5.7	5.8	100	110	0.202
HR0620	1.9	1.9	110	120	0.647
HR0630	2.2	2.2	86	86	0.616
HR0640	0.88	0.88	37	37	0.237
HR0650	4.2	4.3	45	46	0.092
HR0660	0.87	0.87	52	52	0.296
HR0670	0.63	0.63	31	31	0.153
HR0680	11	12	110	120	0.206

JUNCTIONS

	2 YR FLC	OWS (cfs)	100 YR FL	OWS (cfs)	DRAINAGE
NAME	Existing	Future	Existing	Future	AREA (sq. mi)
JHR0400	170	600	2400	5300	9.564
JHR0445	180	590	2500	5400	10.424
JHR0465	180	570	2600	5400	10.673
JHR0480	180	570	2600	5400	11.019
JHR0490	180	570	2600	5500	11.331
JHR0605	33	52	480	630	2.482
JHR0610	34	52	500	650	2.684
JHR0620	35	53	560	700	3.331
JHR0640	38	54	670	780	4.184
JHR0655	190	570	3200	5600	15.933
JHR0685	190	550	3200	5600	16.588
HAEGLER	190	550	3200	5600	16.588

URS NO. 21711039

DATE: 09/08

MASTER DEVELOPMENT DRAINAGE PLAN and PRELIMINARY DRAINAGE REPORT FOR SADDLEHORN RANCH

Prepared For: ROI Property Group, LLC 2495 Rigdon Street Napa, CA 94558 (707) 365-6891

> May 8, 2020 Project No. 25142.00

Prepared By: JR Engineering, LLC 5475 Tech Center Drive Colorado Springs, CO 80919 719-593-2593

El Paso County PCD File No. SP-19-006

 $X:\2510000.all\2514200\Word\Reports\Drainage\Saddlehorn\ Ranch\ MDDP.PDR.docx$

Per a NRCS web soil survey of the area, the site is made up of Type A, B and D soils. Type A soils cover roughly 80% of the site while Type B soils cover 3% and Type D cover the remaining 17% of the site. Group A soils have a high infiltration rate when thoroughly wet. Type B soils have a moderate infiltration when thoroughly wet. Type D soils have a very slow infiltration rate when thoroughly wet and have a high shrink-swell potential. A NRCS soil survey map has been presented in Appendix A.

Two existing wells are located in the southwest corner of the site. A 12" Cherokee Metropolitan District waterline runs through the site just south of the northern property line. Approximately a mile south of the Curtis Road and Judge Orr Road intersection, a two lane dirt road proceeds from Curtis Road east towards approximate center of the site. A water tank, pond and windmill are located within Major Drainageway MS-06 at the end of the dirt road.

Floodplain Statement

Based on the FEMA FIRM Map number 08041C0558G, dated December 7, 2018, the site lies within Zone A, Zone AE, and Zone X. Zone A is defined as areas subject to inundation by the 1-percent-annual-chance flood determined using approximate methodologies because BFEs have not been established. Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. All proposed development within the site will occur in Zone X.

In the northeast corner of the site, proposed development borders the Zone A boundary of the Geick Ranch West Tributary (WF-R7). At time of Final Drainage Report for this future phase of the development, a LOMR will be presented to establish base flood elevations (BFEs) for all lots that border the current Zone A boundary. The current FIRM Map has been presented in Appendix A.

DRAINAGE BASINS AND SUBBASINS

Major Basin Descriptions

The site lies within two major drainage basins: the Gieck Ranch Drainage Basin based on the "*Gieck Ranch Drainage Basin Planning Study*" (DBPS) prepared by Drexel, Barrell & Co. in October, 2007 and revised in February 2010 and the Haegler Ranch Drainage Basin based on the "*Haegler Ranch Drainage Basin Planning Study*" prepared by URS Corporation in May 2009.

The Gieck Ranch Drainage Basin covers approximately 22 square miles and begins approximately five miles northeast of the Town of Falcon and travels approximately 15 miles to the southeast. The Gieck Ranch Drainage Basin is tributary to Black Squirrel Creek which drains south to the Arkansas River near the city of Pueblo, Colorado. The majority of the area within the basin is undeveloped and is characterized as rolling range land typically associated with Colorado's semi-arid climates.

Anticipated land use for the basin includes residential, industrial, agricultural and commercial development. Residential developments will range from 0.125 - 5 acre lots with a mix of low, medium and high density developments.

The Haegler Ranch Drainage Basin covers approximately 16.6 square miles in unincorporated El Paso County, CO. The Haegler Ranch Drainage Basin is tributary to Black Squirrel Creek. In its existing condition, the basin is comprised of rolling rangeland with poor vegetative cover associated with Colorado's semi-arid climate. The natural drainageways within the basin are typically shallow and wide with poorly defined flow paths in most areas. Anticipated land use for the basin includes residential and commercial development. Residential developments will range from 0.125 - 5 acre lots with a mix of low, medium and high density developments.

As part of its drainage research, JR Engineering reviewed the following drainage studies, reports and LOMRs:

- Gieck Ranch Drainage Basin Planning Study prepared by Drexel, Barrell & Co. in October, 2007 and revised in February 2010. (Not adopted by El Paso County as of July 2019)
- Haegler Ranch Drainage Basin Planning Study prepared by URS Corporation in May 2009
- Santa Fe Springs Haegler Ranch Drainage Basin Letter of Map Revision prepared by Tri-Core Engineering in June 2004.

Existing Gieck Ranch Drainage Basin

The "*Gieck Ranch Drainage Basin Planning Study*" evaluated existing and future drainage conditions, identified future improvements, and established basin and bridge fees for the Gieck Ranch Drainage Basin. It should be noted that as of today the "*Gieck Ranch Drainage Basin Planning Study*" has not yet been approved and adopted by the County. All referenced information from the aforementioned report is presented for information purposes only.

Based upon provided drainage maps and analysis, Gieck Ranch discharges a total of 1,017 cfs onto the site within Major Drainageway Gieck Ranch West Fork Reach 7A (WF-R7A). An existing 66" CMP and 36" CMP convey the offsite flow across Judge Orr Road onto the site. The existing culverts at Judge Orr Road are undersized for existing and future flows resulting in localized overtopping. The DBPS recommends the culvert be upsized to four -12' x 5' box culverts. The culvert will not be upsized within the context of this report and development. The culvert is owned by El Paso County and timing of the recommended improvements will be controlled by the County. The overtopping at the intersection of WF-R7A is not contained within the 100-year floodplain. Therefore, at time of Final Drainage Report, berming will be provided that will protect proposed lots from overtopping flows. An overtopping analysis is presented in Appendix D and the limits of overtopping are presented on the existing and proposed drainage maps in Appendix F.

Based on existing channel analysis, the *Gieck Ranch DBPS* recommends WF-R7A channel improvements approximately 200' upstream and 300' downstream of the culvert crossing at Judge Orr Road (50' bottom width, 10:1 side slopes and vegetative augmentation). The recommended

channel improvements result from upsizing the culvert at Judge Orr Road, requiring the channel to be lowered. The channel improvements were not recommended due to existing channel instability. Existing velocities in the channel were found to be 2.19 ft/s, as presented in Appendix E. Per the MS4 permit requirements, the onsite reach of WF-R7A will be analyzed for channel stability with the corresponding Final Drainage Report for that phase of the development. At the time of Final Drainage Report, any necessary improvements to WF-R7A to satisfy the MS4 permit will be evaluated. It should be noted that the onsite reach of WF-R7A, where the aforementioned channel improvements were recommended, is comprised of jurisdictional wetlands which will limit the allowable improvements. Coordination with the Army Corps of Engineers will be required to grant permission to disturb the jurisdictional wetlands. Recommended channel improvements from the *Gieck Ranch DBPS* are presented in Appendix E.

Existing Haegler Ranch Drainage Basin

The "*Haegler Ranch Drainage Basin Planning Study*" was used to establish a stormwater management plan for the existing and future stormwater infrastructure needs within the Haegler Ranch Drainage Basin. Based on provided drainage maps and analysis, in the existing condition Haegler Ranch contributes a total of 710 cfs onto the site. Of the 710 cfs, 590 cfs crosses Curtis Road in an existing 24" CMP onto the site. Major Drainageway MS-06 conveys the stormwater through the site and to its off-site confluence with Major Drainageway MS-05. The remaining 210 cfs crosses Curtis Road in an existing 36" CMP onto the site. Major Drainageway MS-05. Both Curtis Road culverts are undersized for existing and future flows and overtopping occurs locally near the culvert crossings. Overtopping at the intersection of Curtis Road and T-6 is contained within the 100-year floodplain and will not affect proposed lots. The overtopping at the intersection of MS-06 and Curtis Road is not contained within the 100-year floodplain limits. Therefore, at time of Final Drainage Report, berming will be provided that will protect proposed lots from overtopping flows. An overtopping analysis is presented in Appendix D and the limits of overtopping are presented on the existing and proposed drainage maps in Appendix F.

The culverts are not proposed to be upsized within the context of this report and development. The culverts are owned by El Paso County and timing of the recommended improvements will be controlled by the County.

Furthermore, the *Haegler Ranch DBPS* recommends channel improvements within drainageways MS-06 and T-6. Per the *Haegler Ranch DBPS*, all recommended channel sections are trapezoidal with side slopes of 4:1 and a maximum depth of five feet. Within the limits of the site, three (3) channel bottom widths are recommended for MS-06. The first reach, from station 0+00 - 31+34, is proposed with a 15' bottom width, the second reach from 31+34 to 74+61, MS-06 is proposed with a 30' bottom width, and the last reach from station 74+61 - 103+62 is proposed with a 20' channel bottom. The *Haegler Ranch DBPS* recommends Major Drainageway T-6 be improved to a trapezoidal channel with an 8' bottom width, 4:1 side slopes and depth of 5'. Drop structures have

also been recommended within MS-06 and T-6. These improvements will not occur within the context of this report or development. However, due to the addition of culvert crossings within MS-06 and T-6, channel improvements are anticipated up and downstream of the proposed culverts. The extent of these channel improvements will be addressed with corresponding Final Drainage Reports for those phases of the development. At that time, channel stability will be evaluated and any necessary improvements will be proposed. Recommended channel improvements from the *Haegler Ranch DBPS* are presented in Appendix E.

Based on flood impacts, stream stability and cost effectiveness, this study recommended a subregional detention approach. This allows future development anywhere in the basin with the construction of an associated sub-regional pond. Within the boundary of Saddlehorn Ranch, the DBPS recommended a total of three (3) sub-regional ponds. Based on discussion with El Paso County, the site will utilize full spectrum water quality and detention ponds instead. These full spectrum detention ponds will limit developed discharge into the drainageways to less than historic rates. Future, upstream development will also require full spectrum detention in accordance with current El Paso County criteria, which is an effective alternative to the sub-regional pond approach.

The Santa Fe Springs – Haegler Ranch Drainage Basin LOMR was executed on Haegler Ranch Tributary 2, 3, and 4. The LOMR revised the onsite effective flood zones from Zone A to Zone AE for the three drainageways. Upstream stretches of Tributary 3 and 4 are classified Zone A but those channel reaches are off site. All stretches of Tributary 3 and 4 onsite are Zone AE. See FIRM Map Panel 080059-0575G for limits of LOMR study and revised flood zones, presented in Appendix E.

Existing Sub-basin Drainage

On-site, existing drainage patterns are generally from northwest to southeast by way of existing, natural drainageways (MS-06, T-6, WF-R7A). On-site areas flow directly into these drainageways which also bypass off-site flows through the site. Offsite flows within the major drainageways that pass through the site will influence the on-site culvert designs and any channel improvements.

On-site, existing drainage basins were established based upon existing topography and the limits of 100-year floodplain. The site was divided into eleven existing sub-basins. See Table 1 below for summary of existing drainage sub-basins and corresponding peak flows. An existing drainage map is provided in Appendix F.

EXISTING BASIN SUMMARY TABLE										
Tributary Sub-Basin	Area (acres)	Percent Impervious	Q ₅ (cfs)	Q ₁₀₀ (cfs)						
G1	10.1	2.0%	0.00	0.1						
G2	87.6	2.0%	1.5	76.4						
H1	166.5	2.0%	0.1	81.0						
H2	111.1	2.0%	0.2	91.1						
H3	118.9	2.0%	0.9	64.1						
H4	63.3	2.0%	1.4	73.2						
H5	53.2	2.0%	0.3	28.2						
H6	87.6	2.0%	0.2	110.1						
CH1	23.9	2.0%	5.4	21.0						
CH2	84.2	2.0%	2.6	33.7						
CH3	19.1	2.0%	0.1	6.5						
Total	825.4	N/A	12.7	585.4						

Table 1: Existing Drainage Basin Summary

The existing condition of the three major drainageways are discussed below;

Existing Geick Ranch West Fork Reach 7A (WF-R7A)

The first major drainageway is the Gieck Ranch West Fork Reach 7A (WF-R7A), per the *Gieck Ranch DBPS*. WF-R7A crosses onto the site along Judge Orr Road, approximately ¹/₄ mile west of the intersection with Elbert Road. Discharge from the developed site into this drainageway will be limited to historic rates via a full spectrum detention pond prior to discharge. This drainageway includes jurisdictional wetlands and the entire drainageway onsite is classified Zone A. Access to the drainage way will be provided from internal roadways and along an equestrian trail will be constructed adjacent to the drainageway. The equestrian train can be utilized for maintenance equipment as well.

Existing Haegler Ranch Main Stem (MS-06)

The second drainageway is the Haegler Ranch Main Stem (MS-06), per the *Haegler Ranch DBPS*, which crosses onto the site along Curtis Road, approximately 1,600' south of the intersection with Judge Orr Road. MS-06 flows south towards its offsite confluence with Black Squirrel Creek. MS-06 exits the site along the southern property line. Discharge from the developed site into this drainageway will be limited to historic rates via a full spectrum detention pond prior to discharge. This drainageway includes non-jurisdiction wetlands and the entire drainageway is classified Zone AE. Access to the channel will be provided at the culvert crossing of MS-06 and San Isidro Trail via

a 15' wide maintenance and access road that will proceed from San Isidro trail to the channel bottom. From here, access through the channel is achievable with existing grades within the channel. Furthermore, an equestrian trail will be constructed adjacent to the drainageway that can be utilized for maintenance equipment as well. The road alignments are displayed on the proposed drainage map presented in Appendix F.

Existing Haegler Ranch Tributary 6 (T-6)

The third drainageway is the Haegler Ranch Tributary 6 (T-6), per the *Haegler Ranch DBPS*, which crosses onto the site along Curtis Road, approximately ³/₄ mile south of the intersection with Judge Orr Road. T-6 conveys flows south through the site and towards its off-site confluence with Black Squirrel Creek. Discharge from the developed site into this drainageway will be limited to historic rates via a full spectrum detention pond prior to discharge. This drainageway is absent of any on-site wetlands and the entire drainageway is classified Zone AE. Access to the channel will be provided at the culvert crossing of T-6 and Del Cerro Trail via a 15' wide maintenance and access road that will proceed from Del Cerro Trail to the channel bottom. From here, access through the channel is achievable with existing grades within the channel. Furthermore, an equestrian trail will be constructed adjacent to the drainageway that can be utilized for maintenance equipment as well. The road alignments are displayed on the proposed drainage map presented in Appendix F.

The Santa Fe Springs – Haegler Ranch Drainage Basin LOMR was executed on three Haegler Ranch basin drainageways. Two of the drainageways that were evaluated pass through the proposed development. These drainageways are the: Haegler Ranch Tributary 3 & 4. Within the boundary of the proposed development, Haegler Ranch Tributary 3 and 4 are synonymous with Main Stem 6 and Tributary 6 from the *Haegler Ranch DBPS*. The purpose of the LOMR was to revise the flood hazard depicted in the current Flood Insurance Study. Additionally, the LOMR provided existing, 100-year velocities within the drainageways that will be utilized in the design of any potential channel improvements. A FIRM panel with the limits of the detailed study as well as BFEs has been presented in Appendix E.

See Table 2 for comparison of drainageway identification and the naming convention used within the context of this report. See Table 3 for a comparison of 100-year flows as calculated in the aforementioned DBPS' and LOMR. An existing conditions drainage map is presented in Appendix F.

Table 2: Major Drainageways

Major Drainageway Naming Conventions											
Saddlehorn Ranch MDDP/PDR:	Per Haegler Ranch DBPS:	Per Geick Ranch DBPS:	Per Sante Fe Springs LOMR:								
WF-R7A	N/A*	West Fork (Middle)/WF- R7A	N/A*								
MS-06	Main Stem (MS- 06)	N/A*	Haegler Ranch Tributary 3								
T-6	Tributary 6 (T-6)	N/A*	Haegler Ranch Tributary 4								

Table 3: Major Drainageways - Ex. 100-Year Flow Comparison

I	Major Drainag	eways: 100-Year Flo	ow Comparison	
Drainageway Name	Contributing Area (sq. mi.)	Q ₁₀₀ Per Haegler Ranch DBPS:	Q ₁₀₀ Per Geick Ranch DBPS:	Q ₁₀₀ Per Sante Fe Springs LOMR:
WF-R7A @ Judge Orr Road	1.50	N/A*	1,017 cfs	N/A*
MS-06 @ Curtis Road	1.05	451 cfs	N/A*	505 cfs
T-6 @ Curtis Road	0.39	120 cfs	N/A*	130 cfs

*N/A: Flow regime outside limits of study.

Proposed Sub-basin Drainage

The proposed basin delineation is as follows;

Basin A is approximately 9.2 acres and in its existing condition is rolling rangeland. Runoff generally flows southeast away from Drainageway MS-06. In the proposed condition, Basin A will be rural 2.5 acre lots and roadway. Runoff from this basin will be collected in road side swales and conveyed south along Barrosito Drive to Pond A. Pond A, while considered temporary in this MDDP, will need to meet Full Spectrum Detention Criteria unless deviations are approved in the Final Drainage Report for this future filing. It is anticipated that Barrosito Drive will be extended south as part of the development of the adjacent parcel to the south. The most logical place for a permanent Full Spectrum pond is located approximately 1,000 feet south at the future road crossing with MS-06. When that pond is constructed, the Saddlehorn Metropolitan District No. 1 will remove Pond A. The peak flow rate for Basin A in the 5 and 100-year storm are 9.5 cfs and 20.7 cfs, respectively. However, Pond A will discharge at less than historic rates.

Basin B is approximately 60.4 acres and in its existing condition is rolling rangeland. Runoff generally flows southwest across the basin towards Drainageway MS-06. In the proposed condition, Basin B will be rural 2.5 acre lots, paved roadway and will include Pond B. Runoff from this basin will be collected in road side swales and conveyed south along Barrosito Drive to Pond B. The peak flow rate for Basin B in the 5 and 100-year storm are 9.9 cfs and 46.3 cfs, respectively. However, Pond B will discharge at less than historic rates. A portion of Basin B is inundated by the existing 100-year floodplain, however; at time of final platting berming will be constructed to reduce the floodplain limits within the drainageway tract and a corresponding LOMR will be executed on this stretch of channel to establish the revised floodplain.

Basin C is approximately 102.5 acres and in its existing condition is rolling rangeland. Runoff generally flows southwest across the basin towards Drainageway MS-06. In the proposed condition, Basin C will be rural 2.5 acre lots, paved roadway and will include Pond C. Runoff from this basin will be collected in road side swales and conveyed south along Barrosito Drive and Del Cambre Drive to Pond C. The peak flow rate for Basin C in the 5 and 100-year storm are 15.8 cfs and 69.4 cfs, respectively. However, Pond C will discharge at less than historic rates.

Basin D is approximately 99.2 acres and in its existing condition is rolling rangeland. Runoff generally flows east across the basin towards Drainageway WF-R7A. In the proposed condition, Basin D will be rural 2.5 acre lots, paved roadway and will include Pond D. Runoff from this basin will be collected in road side swales and conveyed east along Barrosito drive to Pond D. The peak flow rate for Basin D in the 5 and 100-year storm are 29.4 cfs and 95.4 cfs, respectively. However, Pond D will discharge at less than historic rates. A portion of Basin D is inundated by the existing 100-year floodplain, however; at time of final platting berming will be constructed to reduce the floodplain limits within the drainageway tract and a corresponding LOMR will be executed on this stretch of channel to establish the base flood elevations.

Basin E is approximately 11.6 acres and in its existing condition is rolling rangeland. Runoff generally flows east across the basin towards Drainageway MS-06. In the proposed condition, Basin E will be rural 2.5 acre lots, paved roadway and will include Pond E. Runoff from this basin will be collected in road side swales and conveyed southwest along San Isidro Trail to Pond E. The peak flow rate for Basin E in the 5 and 100-year storm are 2.0 cfs and 9.9 cfs, respectively. However, Pond E will discharge at less than historic rates.

Basin F is approximately 117.4 acres and in its existing condition is rolling rangeland. Runoff generally flows southeast across the basin towards Drainageway MS-06. In the proposed condition, Basin F will be rural 2.5 acre lots, paved roadway and will include Pond F. Runoff from this basin will be collected in road side swales and conveyed southwest along Benito Wells Trail to Pond F. The peak flow rate for Basin F in the 5 and 100-year storm are 17.0 cfs and 69.9 cfs, respectively. However, Pond F will discharge at less than historic rates.

Basin G is approximately 39.9 acres and in its existing condition is rolling rangeland. Runoff generally flows south across the basin towards Drainageway T-6. In the proposed condition, Basin G will be rural 2.5 acre lots, paved roadway and will include Pond G. Runoff from this basin will be collected in road side swales and conveyed southwest along El Raiceno Trail to Pond G. The peak flow rate for Basin G in the 5 and 100-year storm are 6.1 cfs and 25.3, respectively. However, Pond G will discharge at less than historic rates.

Basin H is approximately 30.7 acres and in its existing condition is rolling rangeland. Runoff generally flows east across the basin towards Drainageway T-6. In the proposed condition, Basin H will be rural 2.5 acre lots, paved roadway and will include Pond H. Runoff from this basin will be collected in road side swales and conveyed north along Rosalia Place to Pond H. The peak flow rate for Basin H in the 5 and 100-year storm are 3.7 cfs and 17.9 cfs, respectively. However, Pond H will discharge at less than historic rates.

Basin I is approximately 46.6 acres and in its existing condition is rolling rangeland. Runoff generally flows east across the basin towards Drainageway T-6. In the proposed condition, Basin I will be rural 2.5 acre lots, paved roadway and will include Pond I. Runoff from this basin will be collected in road side swales and conveyed south down Carrizo Springs Trail and east down Zaragoza Trail to Pond I. The peak flow rate for Basin I in the 5 and 100-year storm are 15.9 cfs and 63.1 cfs, respectively. However, Pond I will discharge at less than historic rates.

Basin J is approximately 10.1 acres and in its existing condition is rolling rangeland. This basin will not be developed and will remain in its existing condition, per Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedures this basin will not be detained in a full spectrum water quality and detention pond. Runoff generally flows east across the basin towards Drainageway T-6. In the proposed condition, Basin J will be an undeveloped tract. Undeveloped runoff from this basin will follow existing drainage patterns and sheet flow into Drainageway WF-R7A. The peak flow rate for Basin J in the 5 and 100-year storm are 3.0 cfs and 10.5 cfs, respectively.

Basins CH1, CH2 and CH3 are existing drainageway basins that will remain undeveloped in the proposed condition. There will be no development within Basin CH1-CH3, however; Basin CH2 & CH3 will require channel grading to accommodate proposed culverts. The scope of this grading will leave the channels in an undeveloped condition per Section I.7.1.B.7 and therefore will be excluded from permanent stormwater management. Basin CH1 contains jurisdictional wetlands. Basin CH2 contains non-jurisdictional wetlands. There are no wetlands located in Basin CH3. Peak flow rates for proposed undeveloped basins are presented in Appendix B.

Basins UD1-UD11 acre comprised of rural 2.5+ acre residential lots and will follow existing drainage patterns in the proposed condition. Development in these basins will be limited to a maximum of 10% impervious development via a plat covenant. Therefore, these basins can be excluded from permanent stormwater detention per Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedures (2.5+ acre lots with imperviousness less than 10% can be excluded from

permanent stormwater management practices). Therefore, Basins UD1-UD11 will not be included in the developments permanent stormwater management facilities. A Permanent BMP applicability form is presented in Appendix D to justify these exclusions. A map detailing each development site and any exclusion is presented in Appendix F. Basin UD1 flows directly into Major Drainageway WF-R7A. Basins UD2, UD2.1, UD2.2, UD3, UD4, UD5 and UD8 flow directly into Major Drainageway MS-06. Basins UD6, UD7, UD9, and UD9.1 flow directly into Major Drainageway T-6. Basins UD8.1, UD10, and UD11 follow existing drainage patterns as well but flow directly off-site prior to being captured in major drainageways. A portion of Basin UD2.2 is inundated by the existing 100-yr floodplain. However, at time of final drainage report, lot lines will be adjusted outside floodplain limits. Furthermore, a portion of Basin UD10 is inundated by the existing 100-year floodplain, however; at time of final platting berming will be constructed to reduce the floodplain limits within the drainageway tract and a corresponding LOMR will be executed on this stretch of channel to establish the revised floodplain.

In addition to undeveloped lot areas, a small portion of Del Cerro Trail (portion of Basins UD9 & UD9.1) and San Isidro Trail (a portion of Basin UD5) will be allowed to directly discharge into Drainageway T-6 and MS-06, respectively, and excluded from the developments permanent stormwater management facilities. Per Section I.7.1.C.1, the County may exclude up to 20 percent, not to exceed 1 acre, of the applicable development site area from permanent stormwater management. Approximately, 16,240 ft² of Del Cerro Drive and 14,000 ft² square feet of San Isidro Trail, totaling 0.08% of the total development area, will be excluded from stormwater management, which is significantly less than the 20% limit.

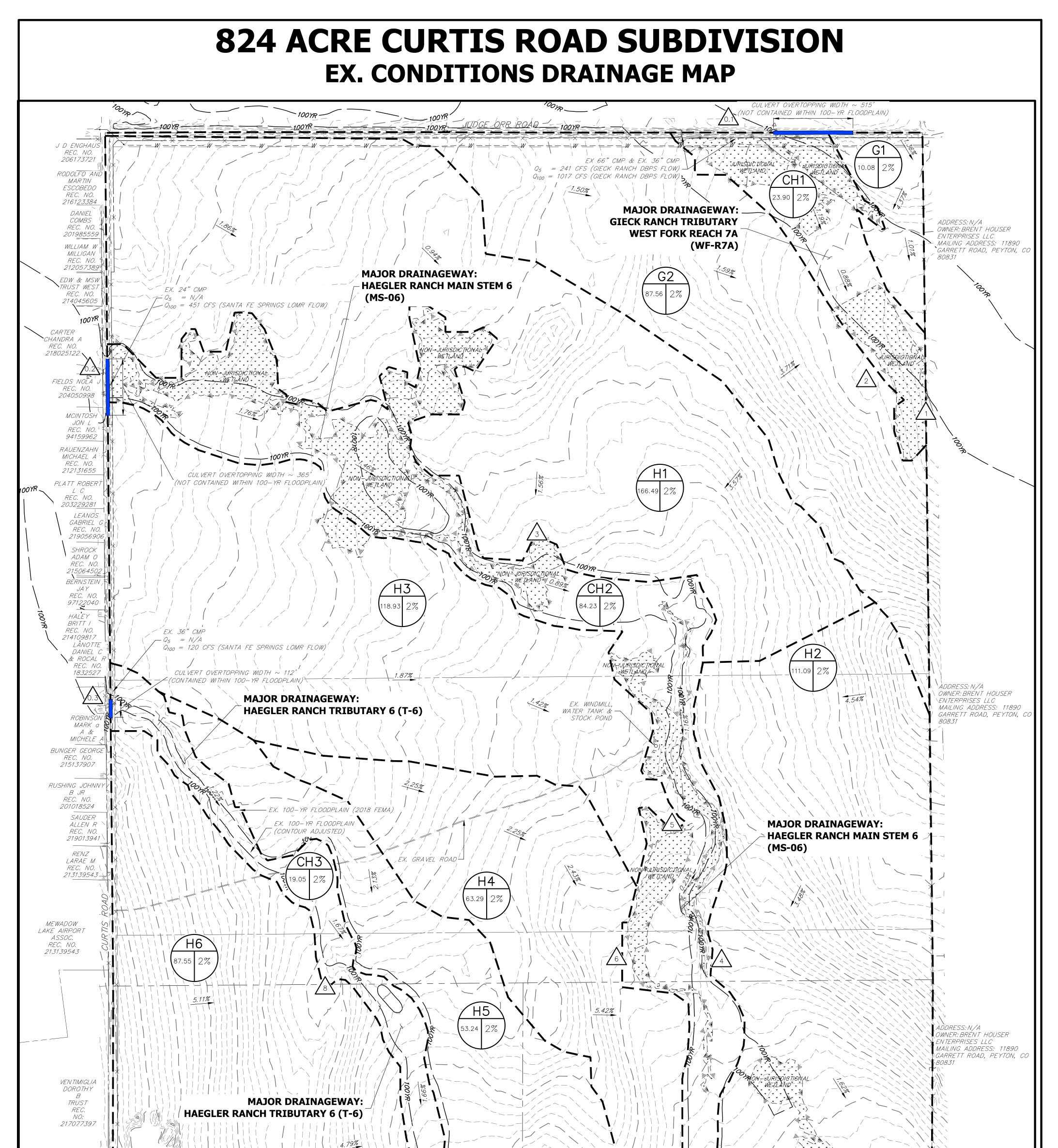
A summary of all basin parameters has been presented in Appendix B.

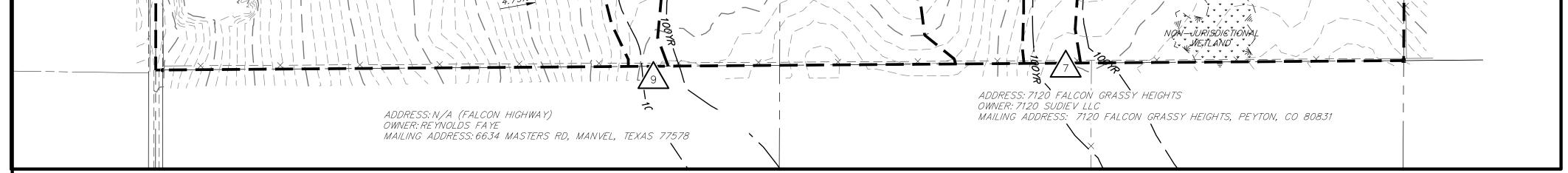
Developed basin's runoff will be captured in roadside ditches and conveyed to a full spectrum water quality and detention pond per El Paso County DCM Volume 1. Each full spectrum pond will release treated flows at less than historic rates to minimize adverse impacts downstream. Pond D will discharge into Major Drainageway WF-7A, Pond B, C, E, and F will discharge into Major Drainageway T-6. Due to existing topography, Pond A will discharge into open space south of the site. Based on existing topography in the area, this flow will eventually be captured off-site by Major Drainageway MS-06.

See Table 4 for comparison of proposed pond parameters including a comparison of proposed basin discharge versus existing discharge.

Table 4: Pond Summary	1
-----------------------	---

		POND	SUMMARY	TABLE			
Tributary Sub- Basin	Pond Name	Tributary Acres	WQ Volume (ac-ft)	100-Year Volume (ac-ft)	Provided Volume (ac-ft)	100-Year Peak Discharge (cfs)	Ex. 100- Year Peak Discharge (cfs)
А	POND A	9.2	0.20	1.14	1.14	2.5	2.8
В	POND B	60.4	0.35	1.46	2.17	18.9	21.0
С	POND C	102.5	0.64	2.69	2.77	26.0	28.9
D	POND D	99.2	0.59	2.86	2.97	47.7	53.0
E	POND E	11.6	0.05	0.23	0.39	4.7	5.2
F	POND F	117.4	0.65	3.20	3.35	50.7	56.3
G	POND G	39.9	0.34	1.36	1.62	10.1	11.2
Н	POND H	30.7	0.16	0.70	1.18	10.5	11.7
I	POND I	46.6	0.25	1.09	1.41	26.8	29.8


DRAINAGE DESIGN CRITERIA


Development Criteria Reference

Storm drainage analysis and design criteria for the project were taken from the "*City of Colorado Spring/El Paso County Drainage Criteria Manual*" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "*Urban Storm Drainage Criteria Manual*" Volumes 1 - 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County, as well as the July 2019 El Paso County Engineering Criteria Manual update.

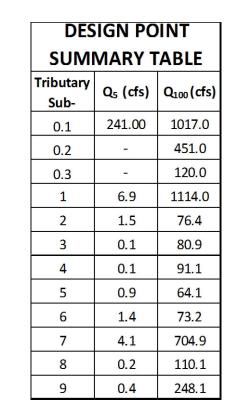
Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using CUHP Version 2.0.0, developed by Urban Drainage and Flood Control District. The model utilizes the raingage classified as "a design storm by temporal distribution of one-hour rain depths with area correction factors". The following Colorado Springs rainfall depths were utilized in the model: 2.52 inches for 1-hour 100-year depth and 3.5 inches for 6-hour 100-year depth. EPA SWMM 5.1 was utilized to route runoff flow rates for the sizing of stormwater storage facilities. The CUHP calculations and SWMM model are presented in Appendix B.

LEGEND

BASIN DESIGNATION

I.D.: BASIN IDENTIFIER A: BASIN AREA B: % IMPERVIOUS



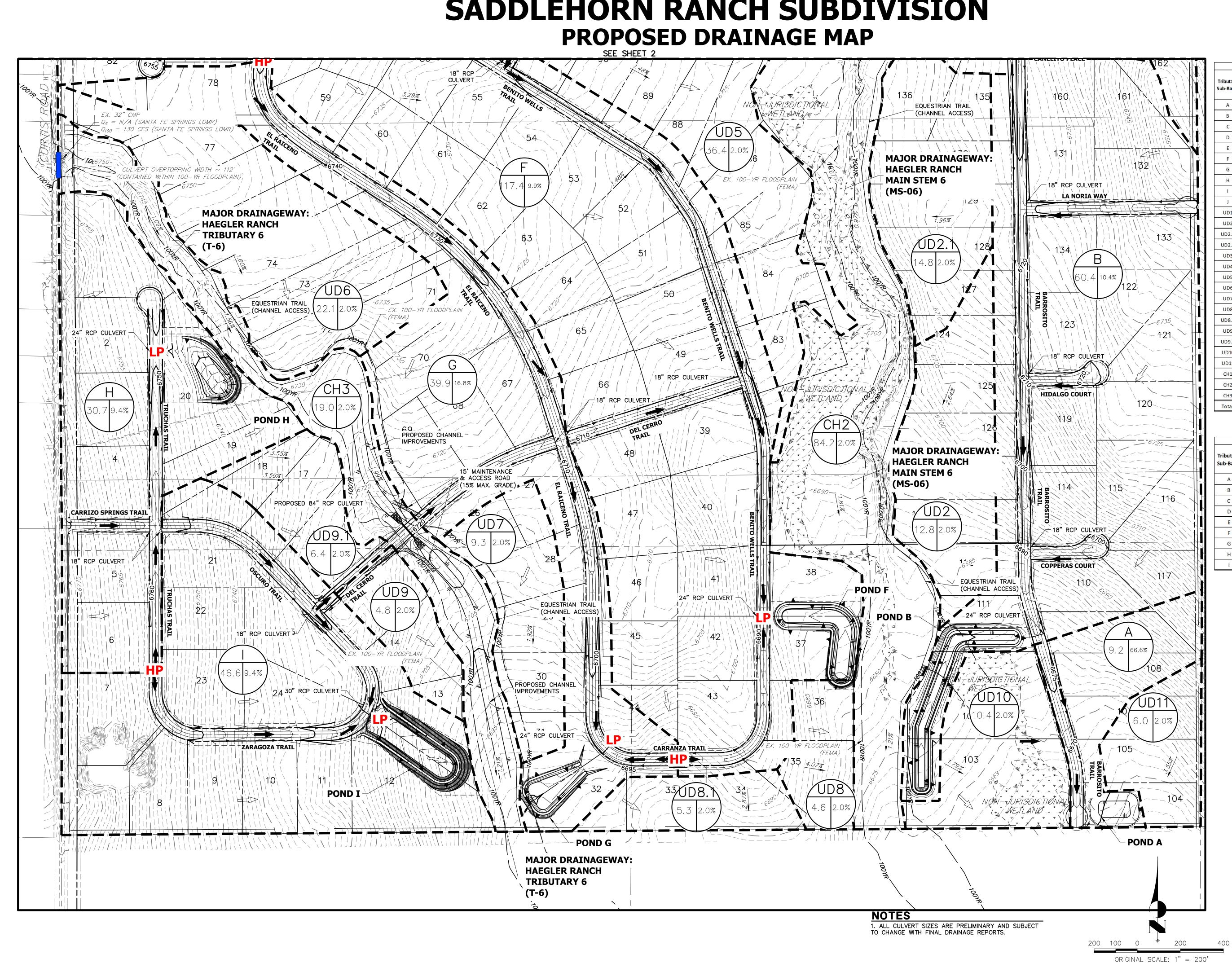
DESIGN POINT

BASIN DELINEATION

- ---6100-- EXISTING INDEX CONTOURS
- ----- EXISTING INTERMEDIATE CONTOURS
- EXISTING FLOW DIRECTION

E	BASIN S	UMMAR	TABLE	
Tributary Sub-Basin	Area (acres)	Percent Impervious	Q₅ (cfs)	Q ₁₀₀ (cfs)
G1	10.1	2.0%	0.00	0.1
G2	87.6	2.0%	1.5	76.4
H1	166.5	2.0%	0.1	81.0
H2	111.1	2.0%	0.2	91.1
H3	118.9	2.0%	0.9	64.1
H4	63.3	2.0%	1.4	73.2
H5	53.2	2.0%	0.3	28.2
H6	87.6	2.0%	0.2	110.1
CH1	23.9	2.0%	5.4	21.0
CH2	84.2	2.0%	2.6	33.7
CH3	19.1	2.0%	0.1	<mark>6.5</mark>
Total	825.4	N/A	12.7	585.4

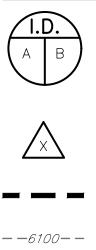
EX. DRAINAGE MAP 824 CURTIS ROAD 25142.00 5/8/20 SHEET 1 OF 1


300

ORIGINAL SCALE: 1" = 300'

600

300 150 0

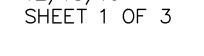


SADDLEHORN RANCH SUBDIVISION

	BASIN	SUMMARY T	ABLE	
Tributary Sub-Basin	Area (acres)	Composite Percent Impervious	Q₅ (cfs)	Q ₁₀₀ (cfs)
Α	9.2	66.6%	9.5	20.7
В	60.4	10.4%	9.9	<mark>46.3</mark>
С	102.5	11.4%	15. <mark>8</mark>	69.4
D	99.2	10.8%	29.4	<mark>95.4</mark>
E	11.6	11.6%	2.0	9. <mark>9</mark>
F	117.4	9.9%	17.0	69.9
G	39.9	16.8%	6.1	25.3
Н	30.7	9.4%	3.7	17.9
I	46.6	9.4%	15.9	63.1
J	10.1	2.0%	3.0	10.5
UD1	12.4	2.0%	0.3	13.9
UD2	12.8	2.0%	0.1	7.7
UD2.1	14.8	2.0%	0.1	14.7
UD2.2	7.2	2.0%	0.1	5.5
UD3	13.4	2.0%	0.2	13.1
UD4	4.8	2.0%	<mark>0.03</mark>	3.4
UD5	<mark>36.4</mark>	2.0%	4.1	27.4
UD6	22.1	2.0%	0.1	12. <mark>4</mark>
UD7	9.3	2.0%	0.7	7.4
UD8	4.6	2.0%	0.03	3.3
UD8.1	5.3	2.0%	<mark>0.1</mark>	<mark>5.6</mark>
UD9	4.8	2.0%	0.1	4.2
UD9.1	6.4	2.0%	0.2	8.1
UD10	10.4	2.0%	0.1	6.7
UD11	6	2.0%	0.02	4.3
CH1	23.9	2.0%	5.4	21.0
CH2	84.2	2.0%	2.6	33.7
CH3	19.0	2.0%	0.1	6.5
Total	825.4	N/A	126.7	627.3

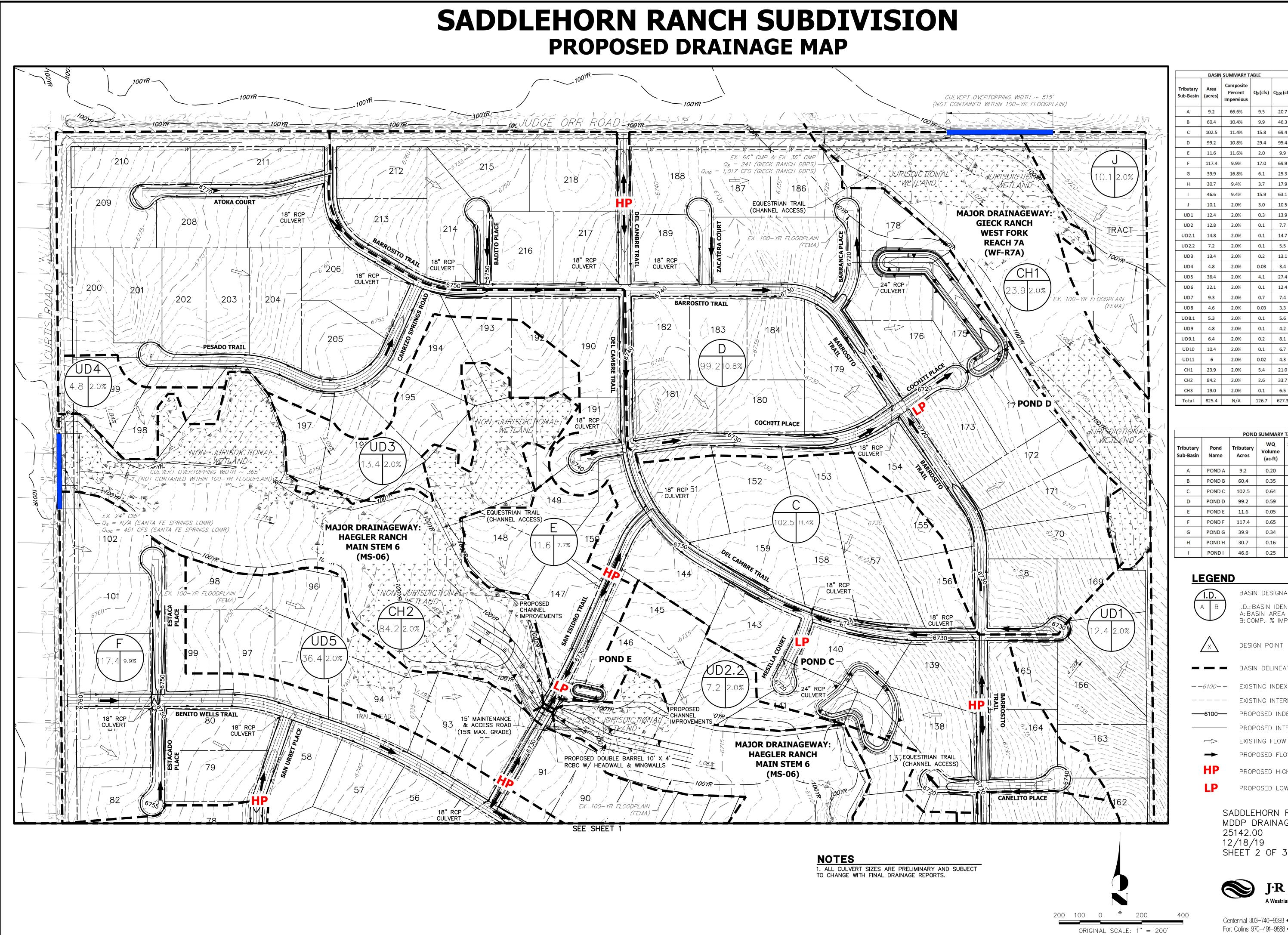
		POND	SUMMARY	TABLE			
Tributary Sub-Basin	Pond Name	Tributary Acres	WQ Volume (ac-ft)	100-Year Volume (ac-ft)	Provided Volume (ac-ft)	100-Year Peak Discharge (cfs)	Ex. 100- Year Peak Discharge (cfs)
A	POND A	9.2	0.20	1.14	1.14	2.5	2.8
В	POND B	<mark>60.4</mark>	0.35	1.46	2.17	18.9	21.0
С	POND C	102.5	0.64	2.69	2.77	26.0	28.9
D	POND D	99.2	0.59	2.86	2.97	47.7	53.0
E	POND E	11.6	0.05	0.23	0.39	4.7	5.2
F	POND F	117.4	0.65	3.20	3.35	50.7	56.3
G	POND G	39.9	0.34	1.36	1.62	10.1	11.2
н	POND H	30.7	0.16	0.70	1. <mark>18</mark>	10.5	11.7
I	PONDI	46.6	0.25	1.09	1.41	26.8	29.8

LEGEND



BASIN DESIGNATION I.D.:BASIN IDENTIFIER A:BASIN AREA B:COMP. % IMPERVIOUS

DESIGN POINT


BASIN DELINEATION

- ---6100-- EXISTING INDEX CONTOURS ---- EXISTING INTERMEDIATE CONTOURS
- - PROPOSED INTERMEDIATE CONTOURS
- EXISTING FLOW DIRECTION \Rightarrow PROPOSED FLOW DIRECTION →
- HP PROPOSED HIGH POINT
- LP PROPOSED LOW POINT
- SADDLEHORN RANCH SUBDIVISION MDDP DRAINAGE MAP 25142.00 12/18/19

J·R ENGINEERING A Westrian Company

D	99.2	10.8%	29.4	95.	.4			
E	11.6	11.6%	2.0	9.	9			
F	117.4	9.9%	17.0	<mark>6</mark> 9.	.9			
G	<u>39.</u> 9	16.8%	<mark>6.1</mark>	25.	.3			
н	30.7	9.4%	3.7	17.	.9			
I	<u>46.6</u>	9.4%	15.9	63.	.1			
J	10.1	2.0%	3.0	10	.5			
UD1	12.4	2.0%	0.3	13.	.9			
UD2	12.8	2.0%	0.1	7.	7			
UD2.1	14.8	2.0%	0.1	14.	.7			
UD2.2	7.2	2.0%	<mark>0</mark> .1	5.	5			
UD3	13.4	2.0%	0.2	13.	.1			
UD4	4.8	2.0%	0.03	3.	4			
UD5	36.4	2.0%	4.1	27.	.4			
UD6	22.1	2.0%	0.1	12.	.4			
UD7	9.3	2.0%	0.7	7.	4			
UD8	<mark>4.</mark> 6	2.0%	0.03	3.	3			
UD8.1	5.3	2.0%	<mark>0.1</mark>	5.	6			
UD9	4.8	2.0%	0.1	4.	2			
UD9.1	6.4	2.0%	0.2	8.	1			
UD10	10.4	2.0%	0.1	6.	7			
UD11	6	2.0%	0.02	4.	3			
CH1	23.9	2.0%	5.4	21.	.0			
CH2	84.2	2.0%	2.6	33.	.7			
CH3	<u>19.0</u>	2.0%	<mark>0.1</mark>	6.	5			
Total	825.4	N/A	126.7	627	.3			
	·	PO		MARY	TABLE			
			W		100-Year	Provided	100-Year	Ex. 100-
Tributary Sub-Basin	Pond Name		Volu		Volume	Volume	Peak Discharge	Year Peak Discharge
			(ac	-ft)	(ac-ft)	(ac-ft)	(cfs)	(cfs)
А	POND	A 9.2	0.2	20	1.14	1.14	2.5	2.8
В	POND	B 60.4	0.3	35	1.46	2.17	18.9	21.0
С	POND	C 102.5	0.0	64	2.69	2.77	26.0	28.9
D	POND	D 99.2	0.5	59	2.86	2.97	47.7	53.0
E	POND	E 11.6	0.0	05	0.23	0.39	4.7	5.2

56.3

11.2

11.7

50.7

10.1

10.5

BASIN SUMMARY TABL

Composite

Impervious

66.6%

10.4%

9.2

Percent Q5 (cfs) Q100 (cfs

9.5 20.7

9.9 46.3

	G	Ε	Ν	D
_	а			v.

POND G

POND I

BASIN DESIGNATION I.D.: BASIN IDENTIFIER A: BASIN AREA B: COMP. % IMPERVIOUS

DESIGN POINT

117.4 0.65

30.7 0.16

46.6 0.25

39.9

0.34

3.20

1.36

0.70

3.35

1.62

1.18

1.09 1.41 26.8 29.8

	BASIN DELINEATION
-6100— —	EXISTING INDEX CONTOURS
	EXISTING INTERMEDIATE CONTOURS
-6100	PROPOSED INDEX CONTOURS
	PROPOSED INTERMEDIATE CONTOURS
	EXISTING FLOW DIRECTION
-	PROPOSED FLOW DIRECTION
HP	PROPOSED HIGH POINT
LP	PROPOSED LOW POINT

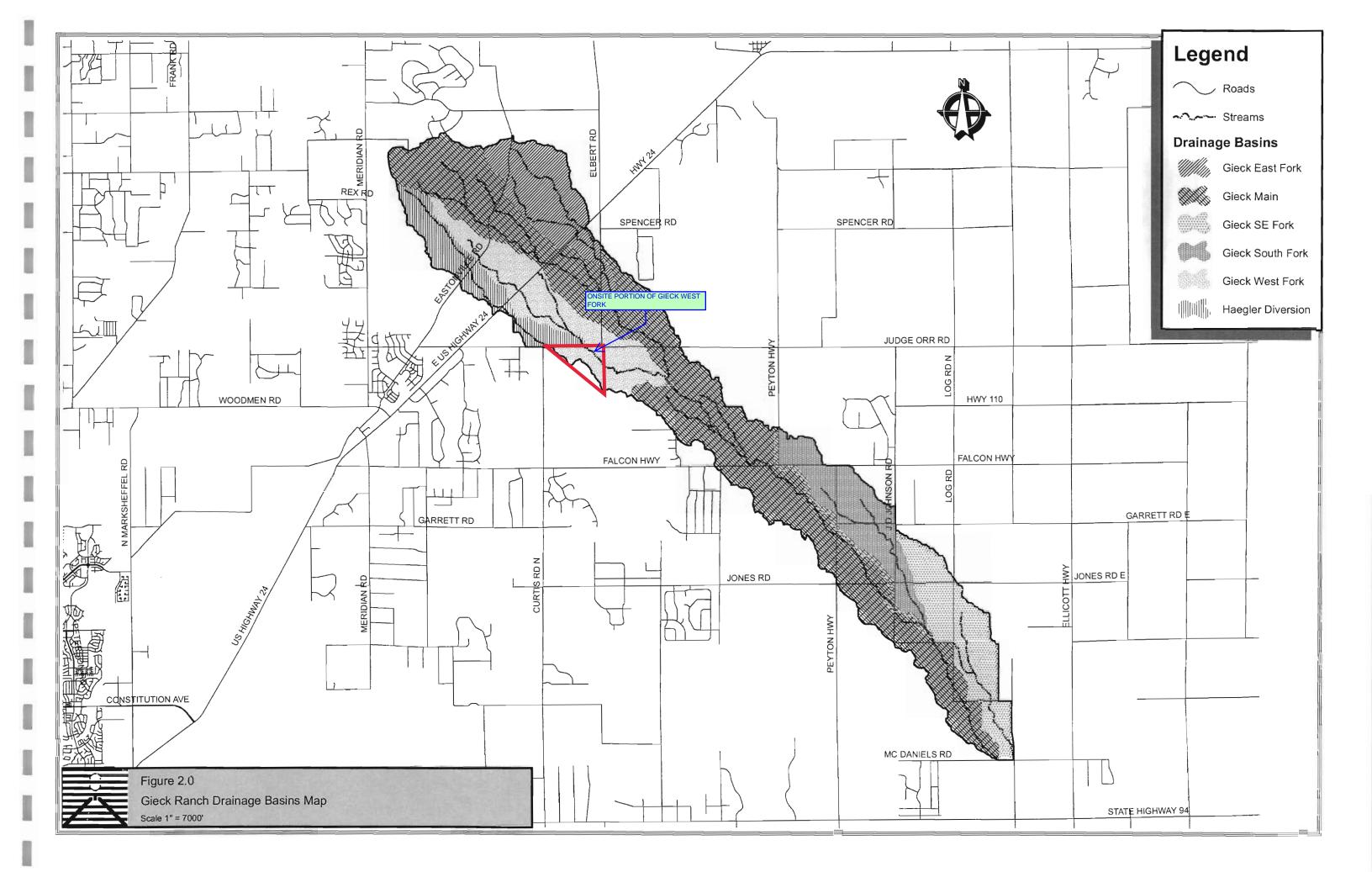
SADDLEHORN RANCH MDDP DRAINAGE MAP 25142.00 12/18/19 SHEET 2 OF 3

J·R ENGINEERING A Westrian Company

GIECK RANCH DRAINAGE BASIN PLANNING STUDY El Paso County, Colorado

Volume 1 – Final Report

October 1, 2007 Revised: February 10, 2010


PREPARED FOR:

 $\widehat{\mu}_{i}^{(0)}$

975 Ford LP, LLP 118 North Tejon Street, Suite 213 Colorado Springs, CO 80903 (719) 491-4169 Contact: Neil McLeod

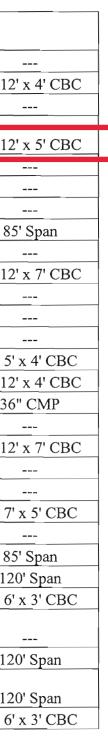
PREPARED BY:

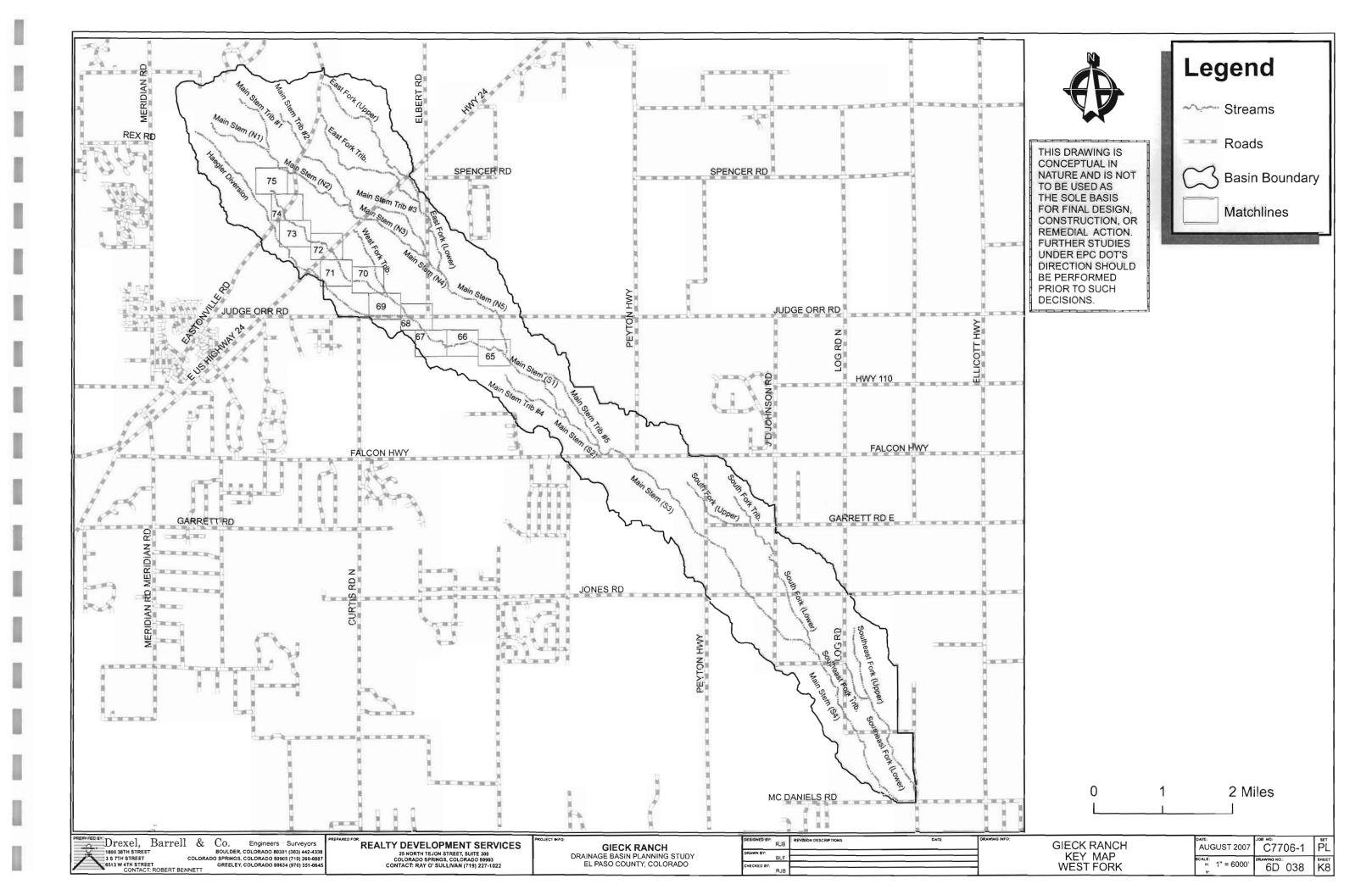
Drexel, Barrell & Co. 3 S. 7th Street Colorado Springs, CO 80905 (719) 260-0887 Contact: James A. Brzostowicz , P.E. DBC Project Number: C-7706-2

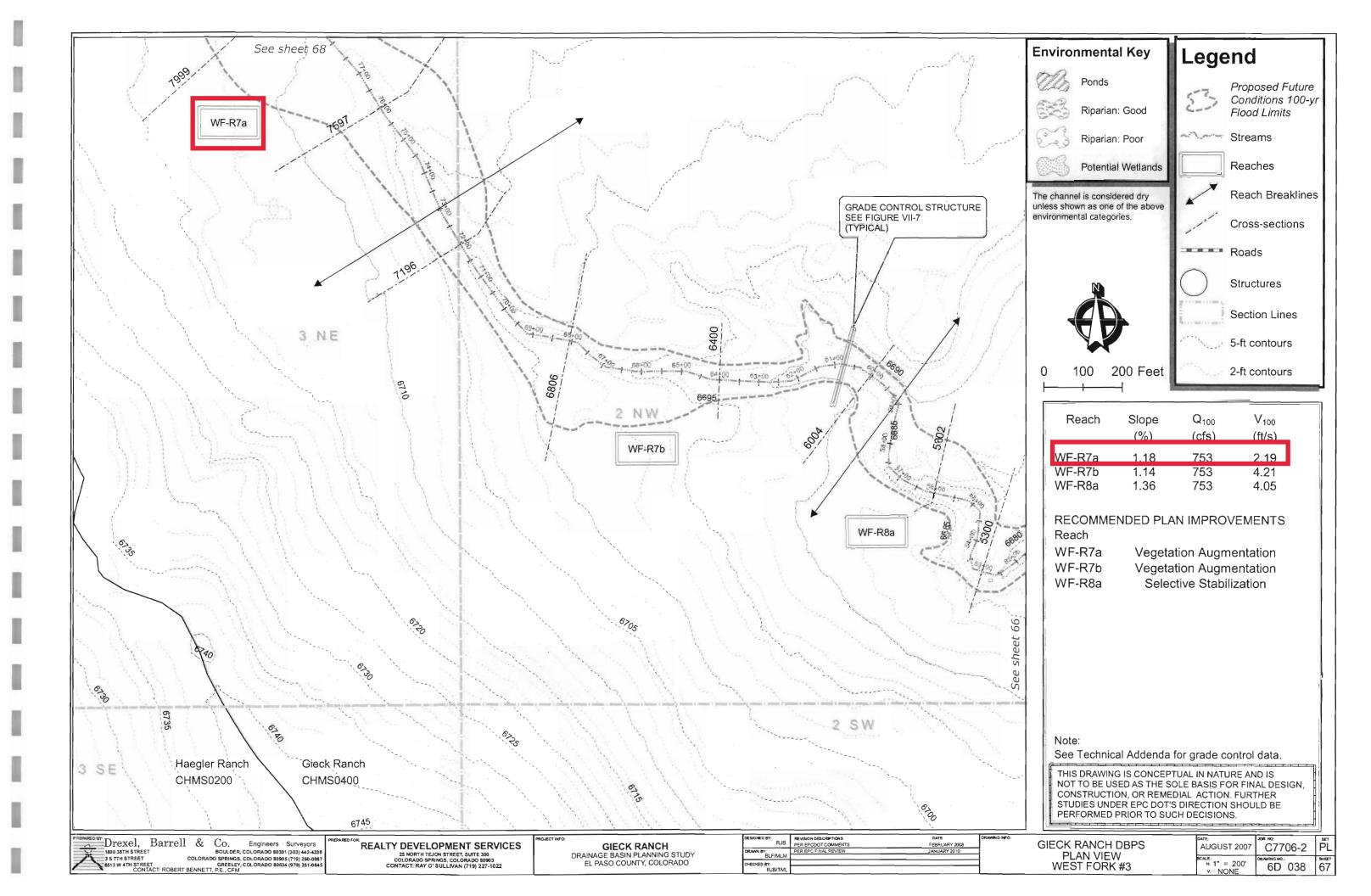
			Accumulative	Existing	Future	%	Existing	Future	%
Design		Hydrologic	Accumulative	Peak Flow	Peak Flow	Difference	Volume	Volume	Difference
Point ID	Design Point Location	Element	(mi^2)	(cfs)	(cfs)	Peak Flow	(ac-ft)	(ac-ft)	Volume
1	Haegler Diversion at Eastonville Road	HD-J2	0.8	431	1060	146%	77	96	25%
2	West Fork at Eastonville Road	WF-J1	0.3	146	389	166%	29	39	33%
3	Main Channel at Eastonville Road	MS-J4	1.3	730	1233	69%	112	135	20%
4	Haegler Diversion at Highway 24	HD-J4	1.3	521	1223	135%	97	121	24%
5	West Fork at Highway 24	WF-J3	0.4	224	605	170%	49	62	26%
6	Main Channel at Highway 24 CONTRIBUTING ACREAGE TO WE	MS-J6	2.5	997	1896	90%	194	225	16%
7	East Fork at Highway 24	EF-J4	1.2	1054	1113	6%	124	126	1%
8	Main Channel at Elbert Road	MS-J7	3.0	1010	1896	88%	220	253	15%
9	Fast Fork at Filtert Road	EF-16	2.1	1120	1172	5%	183	187	2%
10	West Fork at Judge Orr Road	WF-J6	\rightarrow 1.5	1017	2213	117%	244	291	19%
11	Confluence of East Fork and Main Channel	MS-J9	5.7	1817	3068	69%	429	467	9%
12	Main Channel at Judge Orr Road	MS-J11	6.7	1968	3383	72%	487	564	16%
13	Confluence of West Fork and Main Channel	MS-J12	11.2	2732	6104	123%	805	993	23%
14	Main Channel at Falcon Highway	MS-J16	13.4	3045	6784	_123%	936	1191	27%
15	Main Channel at Peyton Highway	MS-J19	15.1	3200	6946	117%	1012	1269	25%
16	Main Channel at Jones Road	MS-J20	15.6	3250	7056	117%	1040	1308	26%
17	South Fork at Jones Road	SF-J4	1.3	454	454	0%	133	133	0%
18	Confluence of South Fork and Main Channel	MS-J22	17.9	3650	7392	103%	1210	1489	23%
19	Southeast Fork at McDaniels Road	SE-J3	2.4	547	546	0%	210	210	0%
20	Main Channel at McDaniels Road	MS-J29	19.6	3791	7525	99%	1293	1597	23%
21	Total Combined Outfall	SE-J3 plus MS-J29	22.0	4326	7687	78%	1503	1807	20%

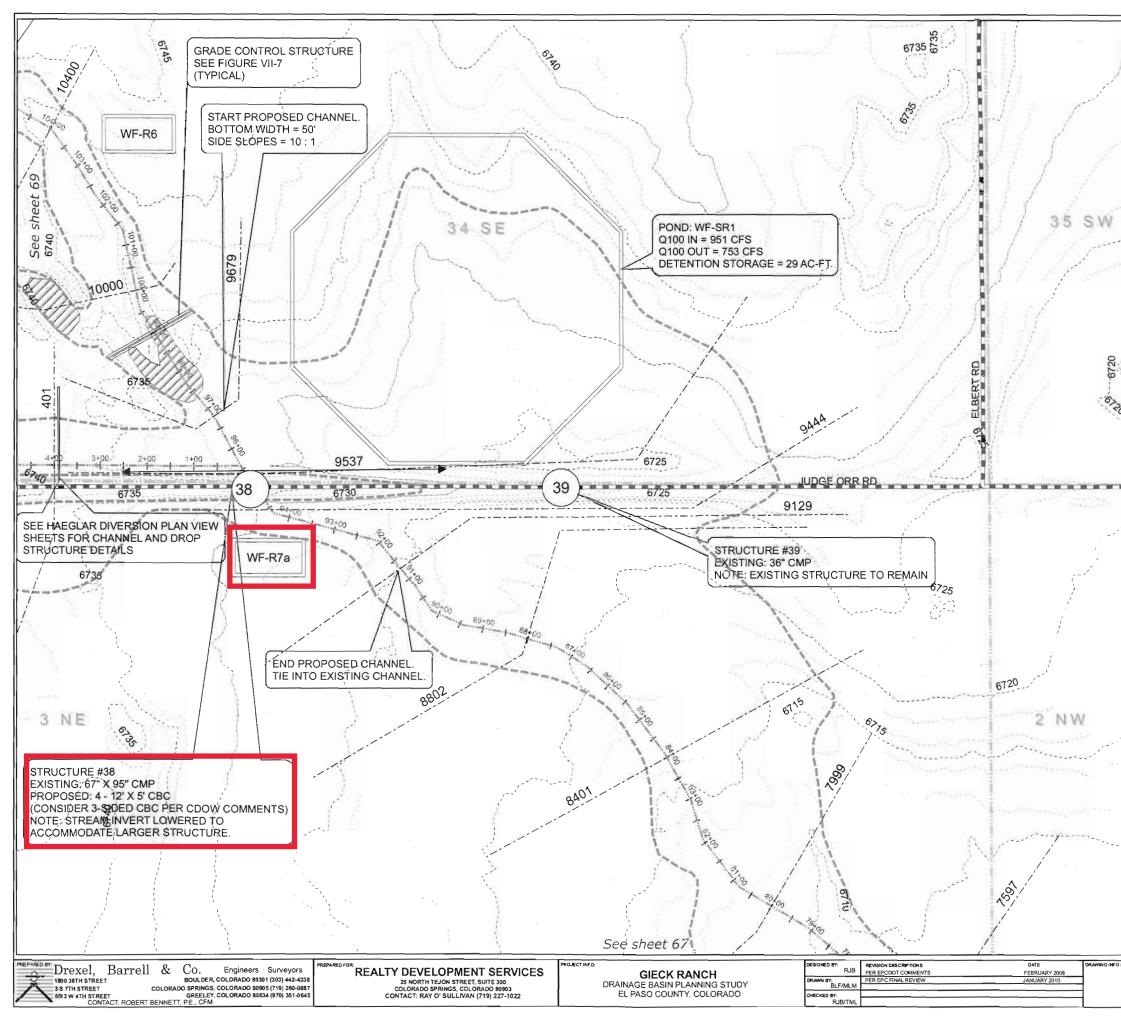
Table 6.4: Summary of Flows at Selected Design Points - 100-year Storm Event

The 100-year storm event future undetained peak flow is estimated to increase by 78% over the existing peak flow while the future volume of runoff is estimated to increase by 20%. During the hydrologic analysis it was observed that the Black Squirrel Creek lies very close to the eastern boundary of the Gieck Ranch Basin from Falcon Highway downstream to Log Road. It is possible that flow from Black Squirrel Creek could spill into the Gieck Ranch Basin during extreme storm events. The flows in Black Squirrel Creek in this area are expected to be more than 5,000 cfs for the 100-year event. If the Black Squirrel Creek were to overflow its' banks and flow into the Gieck Ranch Basin it could increase the flows shown in the above tables. Possible improvements to address this potential problem include channel improvements to increase the Black Squirrel Creek conveyance in this area or constructing berms on the east bank to prevent overflow.

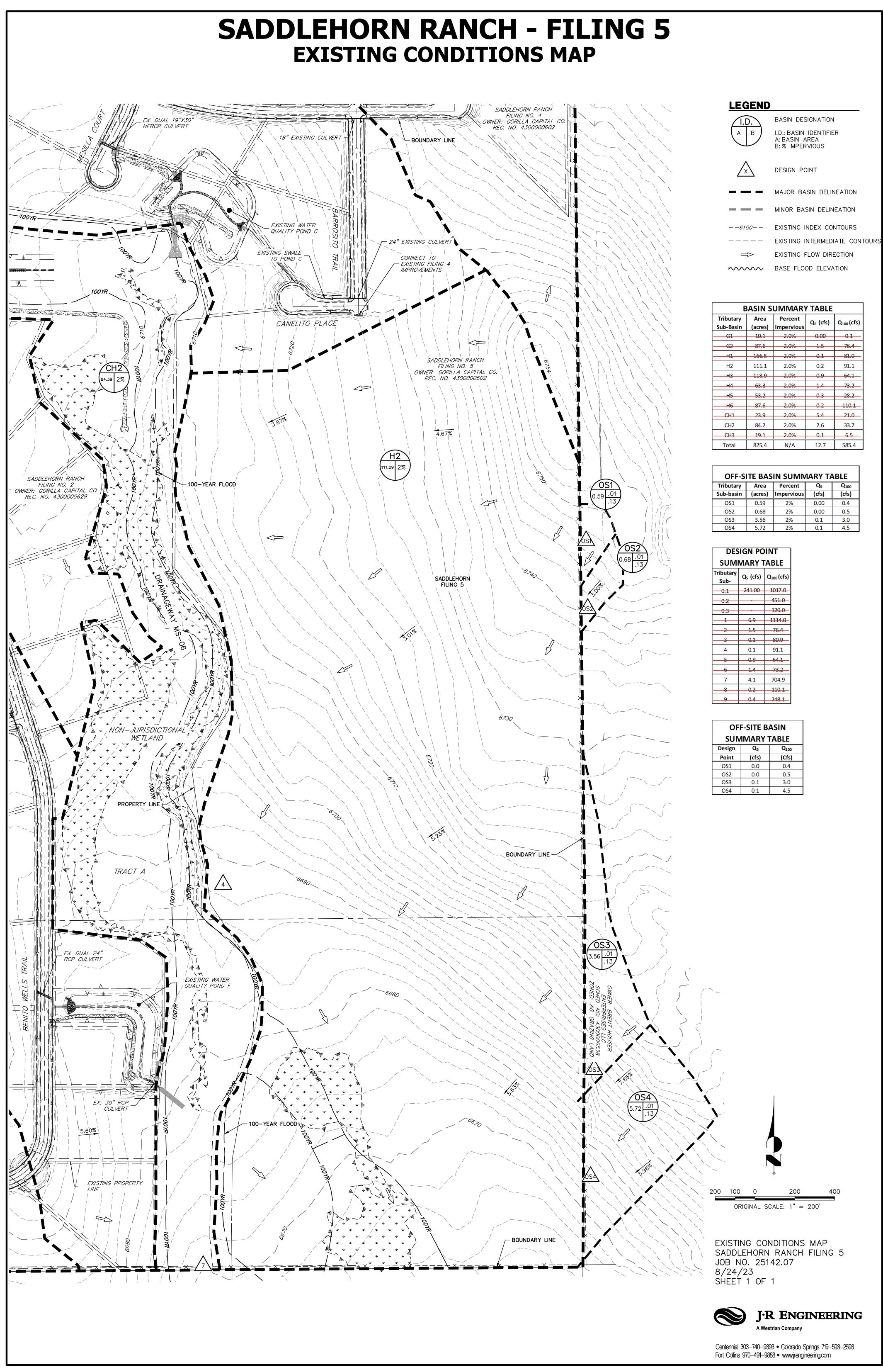

35	Elbert Road south of structure 34	24" CMP	Good	100%	Y	
36	Elbert Road at Main Channel	2 - 48" CMP	Good	19%	N	3 - 12
37	Elbert Road south of structure 36	24" CMP	Poor	55%	Y	
		671 - 051				
38	Judge Orr Road at West Fork	CMP	Good	20%	<u> </u>	4 - 12
39	Judge Orr Road east of structure 38	36" CMP	Good	100%	Y	
40	Judge Orr Road west of structure 41	24" CMP	Poor	90%	Y	
41	Judge Orr Road at Main Channel	Bridge	Good	100%	Y	
42	Falcon Hwy at Main Channel	Bridge	Good	57%	N	85
43	Peyton Road at headwaters of South Fork	24" CMP	Fair	75%	Y	
44	Peyton Road at Main Channel	4 - 24" RCP	Good	2%	N	5 - 12
45	Peyton Road south of structure 44	36" CMP	Poor	100%	Y	
46	Peyton Road south of structure 45	24" CMP	Good	100%	Y	
47	East Garrett Road west of structure 48	24" CMP	Poor	100%	Y	
48	East Garrett Road at South Fork	48" CMP	Good	14%	N	2 - 5'
49	J.D. Johnson Road at South Fork	4 - 42" RCP	Good	63%	N	2 - 12
50	J.D. Johnson Road south of structure 49	30" CMP	Fair	56%	N	36
51	J.D. Johnson Road south of structure 50	30" CMP	Fair	100%	Y	
52	Jones Road at Main Channel	60" CMP	Fair	4%	N	6 - 12
53	J.D. Johnson Road at Jones Road	30" CMP	Fair	55%	Y	
54	Jones Road east of J.D. Johnson Road	30" CMP	Good	73%	Y	
55	Jones Road at South Fork	36" CMP	Good	6%	N	2 - 7'
56	Jones Road east of structure 55	30" CMP	Fair	67%	Y	
57	J.D. Johnson Road at Main Channel US of structure 58	3 - 60" RCP	Good	14%	N	85
58	J.D. Johnson Road at Main Channel	30" CMP	Good	1%	N	12
59	J.D. Johnson Road and Log Road	24" CMP	Fair	23%	N	2 - 6'
		48" CMP				
60	Main Channel at private driveway	(est.)	Unknown	2%	<u>N.E.</u>	
61	Log Road at Main Channel	Bridge	Good	36%	N	12
		30" x 48"				
<u>6</u> 2	McDaniel Road at Main Channel	Oval CMP	Good	1%	<u>N</u>	12
63	Log Road and McDaniels Road	24" CMP	Good	2%	<u>N</u>	5 - 6'


* Road over-topping not included


** Allowable road over-topping included in adequacy analysis

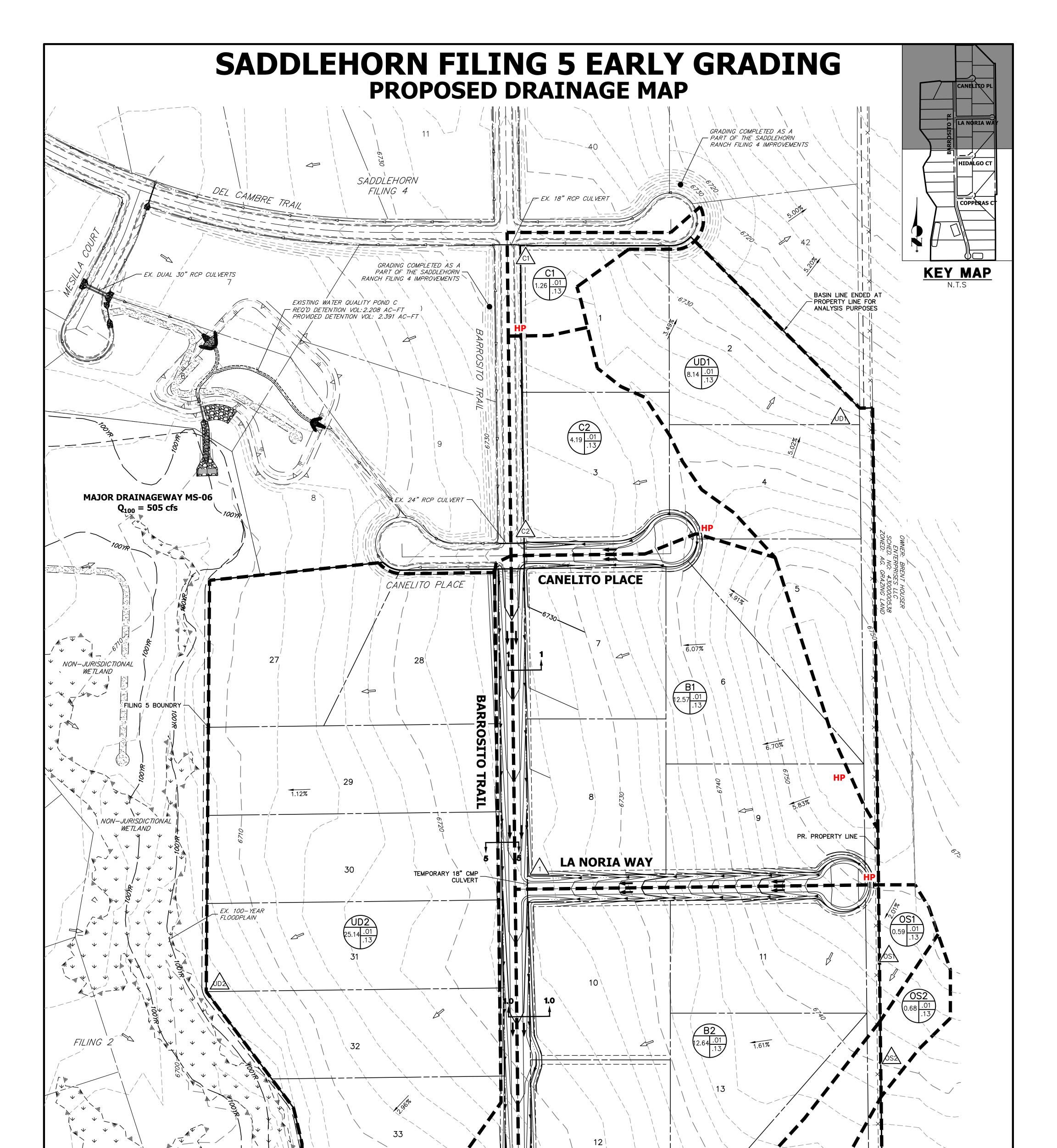

*** Based on proposed (with selected drainage basin plan) flows

N.E. Not Evaluated, not EPCDOT responsibility



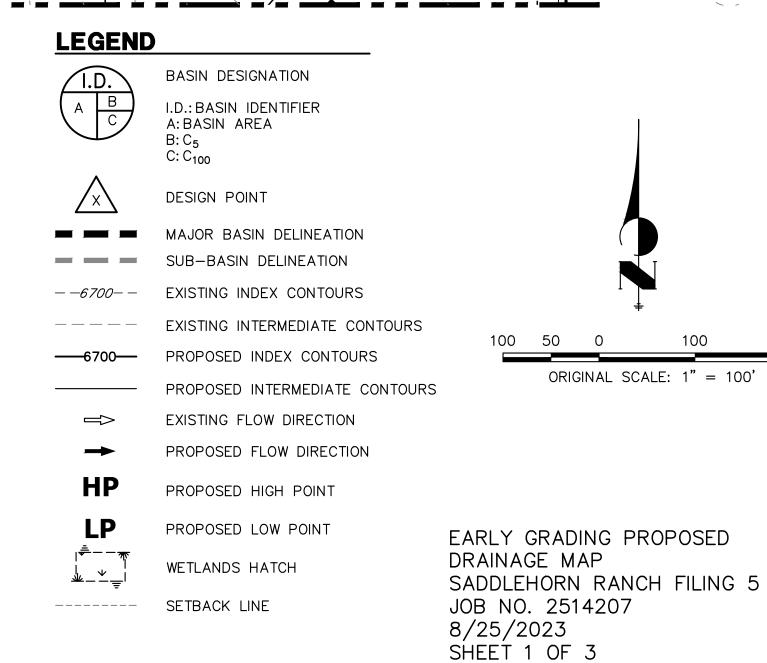
							_
/	En	viror	nmenta	l Key	Lege	end	
Į	0	Z	Ponds			Proposed Future	
	679	R	Riparian	Good	25	Conditions 100-yr Flood Limits	
đ	C	es o	Riparian	Poor	~~~~	Streams	
1		S	Potential	Wetlands		Reaches	
1			el is conside wn as one o	ered dry of the above	~	Reach Breaklines	
			ntal categor			Cross-sections	
				- 1	3000	Roads	
-			N	- 1	\bigcirc	Structures	
		4			[]	Section Lines	
					and a sure	5-ft contours	
0	0	1	100 2	00 Feet	and a surger	2-ft contours	
	- 1 	_					
-		R	each	Slope	Q ₁₀₀	V ₁₀₀	
	1 12			•		(ft/s)	
,-			De	(%) 1.04	(cfs)	(ft/s)	
			R7a	(%)	(cfs)	. ,	
		WF- REC Rea WF-	R7a COMMEI ch	(%) 1 04 1.18 NDED PLA Selec	(cfs) 608 753	2.45 2.19 DVEMENTS	
		WF- REC Rea WF-	·R7a COMMEl ich -R6	(%) 1 04 1.18 NDED PLA Selec	(cfs) 753 N IMPRC	2.45 2.19 DVEMENTS	
		WF- REC Rea WF- WF-	R7a COMMEI ch -R6 -R7a DRAWING TO BE US ISTRUCTIC DIES UNDE	(%) 1.04 1.18 NDED PLA Selec Vegeta SIS CONCEP ED AS THE SO N, OR REME	(cfs) 753 N IMPRC tive Stabi tion Augn	2.4E 2.19 OVEMENTS ilization nentation ure and is OR FINAL DESIGN, N. FURTHER SHOULD BE	
	GI	WF- Rea WF WF WF	R7a COMMEI ch -R6 -R7a DRAWING TO BE US ISTRUCTIC DIES UNDE	(%) 1.04 1.18 NDED PLA Selec Vegeta Sisconception ED AS THE SC N, OR REME ER EPC DOT'S PRIOR TO SUC DBPS	(cfs) 753 N IMPRC tive Stabi tion Augn TUAL IN NATI DLE BASIS F DIAL ACTION CH DECISION	2.4E 2.19 DVEMENTS ilization nentation URE AND IS OR FINAL DESIGN, N. FURTHER I SHOULD BE VS.	

APPENDIX F

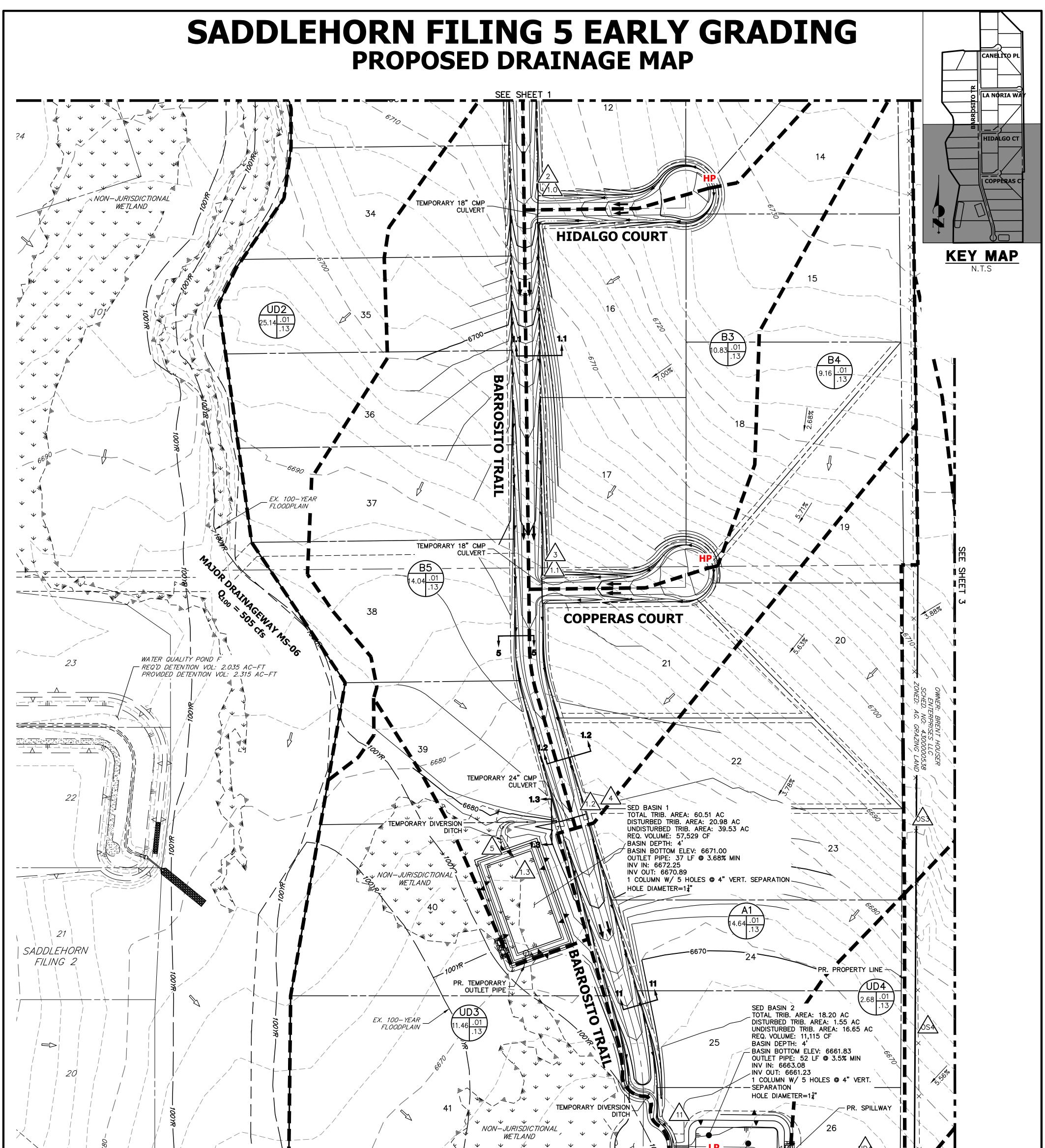

DRAINAGE MAPS & PLANS

OFF-SITE BASIN SUMMARY TABLE									
Tributary	Area	Percent	Q₅	Q ₁₀₀					
Sub-basin	(acres)	Impervious	(cfs)	(cfs)					
OS1	0.59	2%	0.00	0.4					
OS2	0.68	2%	0.00	0.5					
OS3	3.56	2%	0.1	3.0					
OS4	5.72	2%	0.1	<mark>4.5</mark>					

DES	DESIGN POINT							
SUM	SUMMARY TABLE							
Tributary Sub-	Q₅ (cfs)	Q ₁₀₀ (cfs)						
0.1	241.00	1017.0						
0.2	_	451.0						
	-	120.0						
1	<u>6.9</u>	1114.0						
2	1.5	76.4						
3	0.1	80.9						
4	0.1	91.1						
5	0.9	64.1						
6	1.4	73.2						
7	4.1	704.9						
8	0.2	110.1						
9	0.4	248.1						


OFF-SITE BASIN							
SUMMARY TABLE							
Design	Q₅	Q ₁₀₀					
Point	(cfs)	(Cfs)					
OS1	0.0	0.4					
OS2	0.0	0.5					
OS3	0.1	3.0					
OS4	0.1	4.5					

FILING 5 - SUB-BASIN SUMMARY TABLE									
Tributary	Area	Percent			t _c	Q₅	Q 100		
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)		
A1	14.64	2%	0.01	0.13	39.0	0.3	6.9		
B1	12.57	2%	0.01	0.13	31.2	0.2	6.4		
B2	12.64	2%	0.01	0.13	11.4	0.3	10.5		
B3	10.83	2%	0.01	0.13	34.3	0.1	5.2		
B4	9.16	2%	0.01	0.13	32.1	0.1	4.6		
B5	14.04	2%	0.01	0.13	35.1	0.2	6.7		
C1	1.26	2%	0.01	0.13	19.7	0.02	0.8		
C2	4.19	2%	0.01	0.13	22.1	0.1	2.6		
UD1	8.14	2%	0.01	0.13	25.1	0.1	4.7		
UD2	25.14	2%	0.01	0.13	28.9	0.4	13.5		
UD3	11.46	2%	0.01	0.13	38.2	0.1	5.1		
UD4	2.68	2%	0.01	0.13	25.8	0.1	1.5		
OS1	0.59	2%	0.01	0.13	14.1	0.00	0.4		
OS2	0.68	2%	0.01	0.13	16.6	0.00	0.5		
OS3	3.56	2%	0.01	0.13	11.2	0.1	3.0		
OS4	5.72	2%	0.01	0.13	13.3	0.1	4.5		


FILING 5 - DESIGN							
POINT SUMMARY							
Design	Q₅	Q ₁₀₀					
Point	(cfs)	(Cfs)					
1	0.2	6.4					
2	0.3	10.5					
3	0.1	5.2					
4	0.1	4.6					
5	0.2	6. 7					
11	0.3	6.9					
C1	0.02	0.8					
C2	0.1	2.6					
UD1	0.1	4.7					
UD2	0.4	13.5					
UD3	0.1	5.1					
UD4	0.1	1.6					
1.0	0.3	11.4					
1.1	0.4	15.2					
1.2	0.5	17.7					
1.3	0.6	21.1					
OS1	0.00	0.4					
OS2	0.00	0.5					
OS3	0.1	3.0					
OS4	0.1	4.5					

SEE SHEET 2

200

999 / / /	/ / / / / / / / / / / / / / / / / / / /	↓ / × <u>/</u> 	/ / / /	 	/ 100 TX	×	/	/ / 	- <u></u> x		CUL DMPLETED SEE FILING ∛ ↓	$-DE-SAC NOT TO BEWITH EARLY GRADING -5 CD'S FOR DETAILS- \frac{1}{2}$			
		, , ,	,				\mathbf{i}	\leq			$\langle \rangle$		WATER QUAL	ITY POND A	
													LEGE	ND	
													(1.D.	BASIN DESIGNATION	
														I.D.: BASIN IDENTIFIER	
													C	A: BASIN AREA B: C_5	
									FILI	NG 5 - DE	SIGN]		C: C ₁₀₀	
	FILIN	IG 5 - SUI	B-BASIN		ΙΔΡΥ ΤΔ	BIF							\bigwedge	DESIGN POINT	
Tributor							0		Design	Q ₅	Q ₁₀₀				
Tributary	Area	Percent			τ _c	Q₅	Q ₁₀₀		Point	(cfs)	(Cfs)			MAJOR BASIN DELINEATI	UN
Sub-basin		Impervious		C ₁₀₀	(min)	(cfs)	(cfs)		1	0.2	6.4			SUB-BASIN DELINEATION	l
A1	14.64	2%	0.01	0.13	<u>39.</u> 0	0.3	6.9		2	0.3	10.5		0700	EVICTING INDEX CONTOU	
B1	12.57	2%	0.01	0.13	31.2	0.2	6.4		3	0.1	5.2		6700-	EXISTING INDEX CONTOU	к»

----6700----

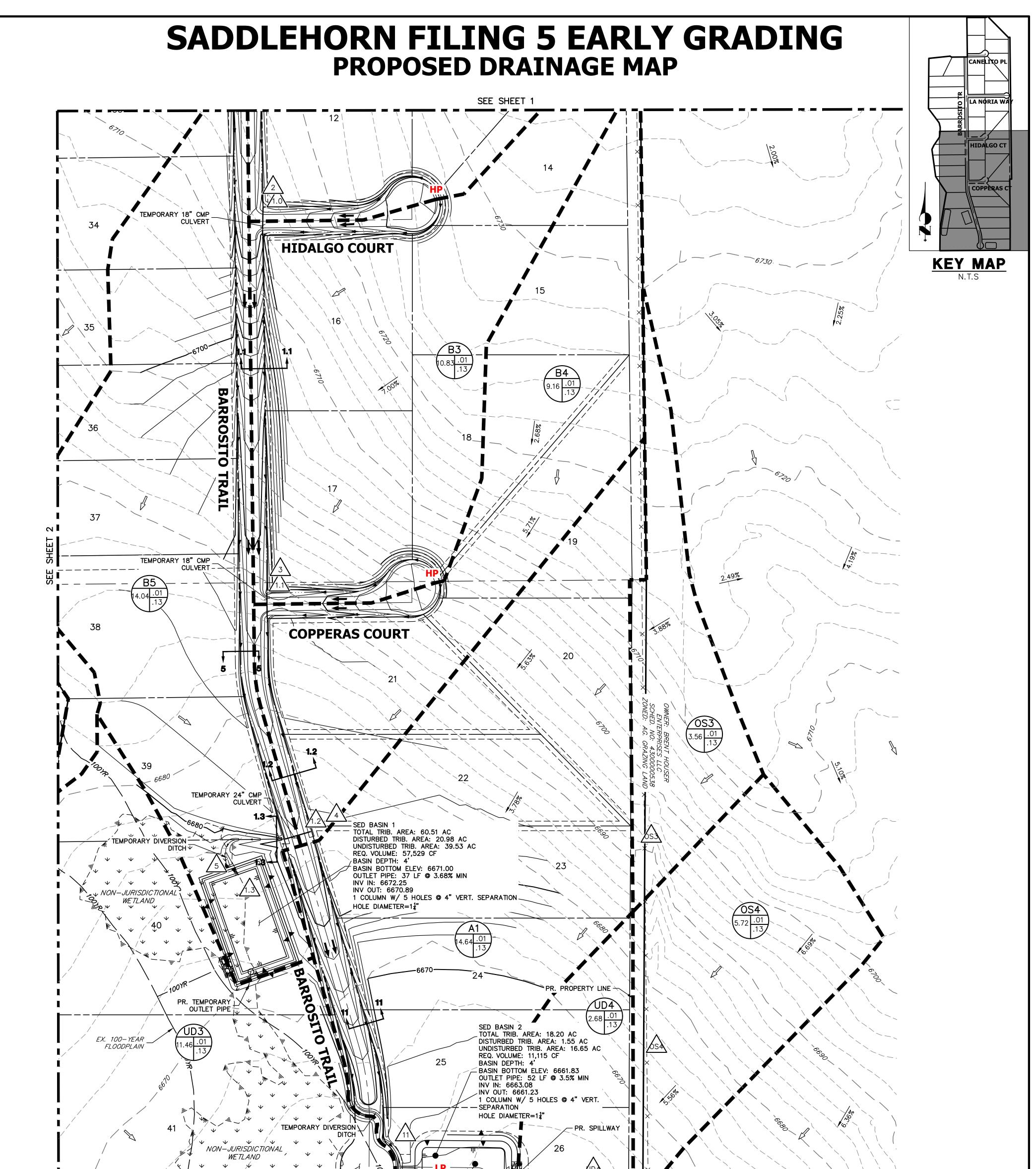
 \Rightarrow

➡

HP

LP

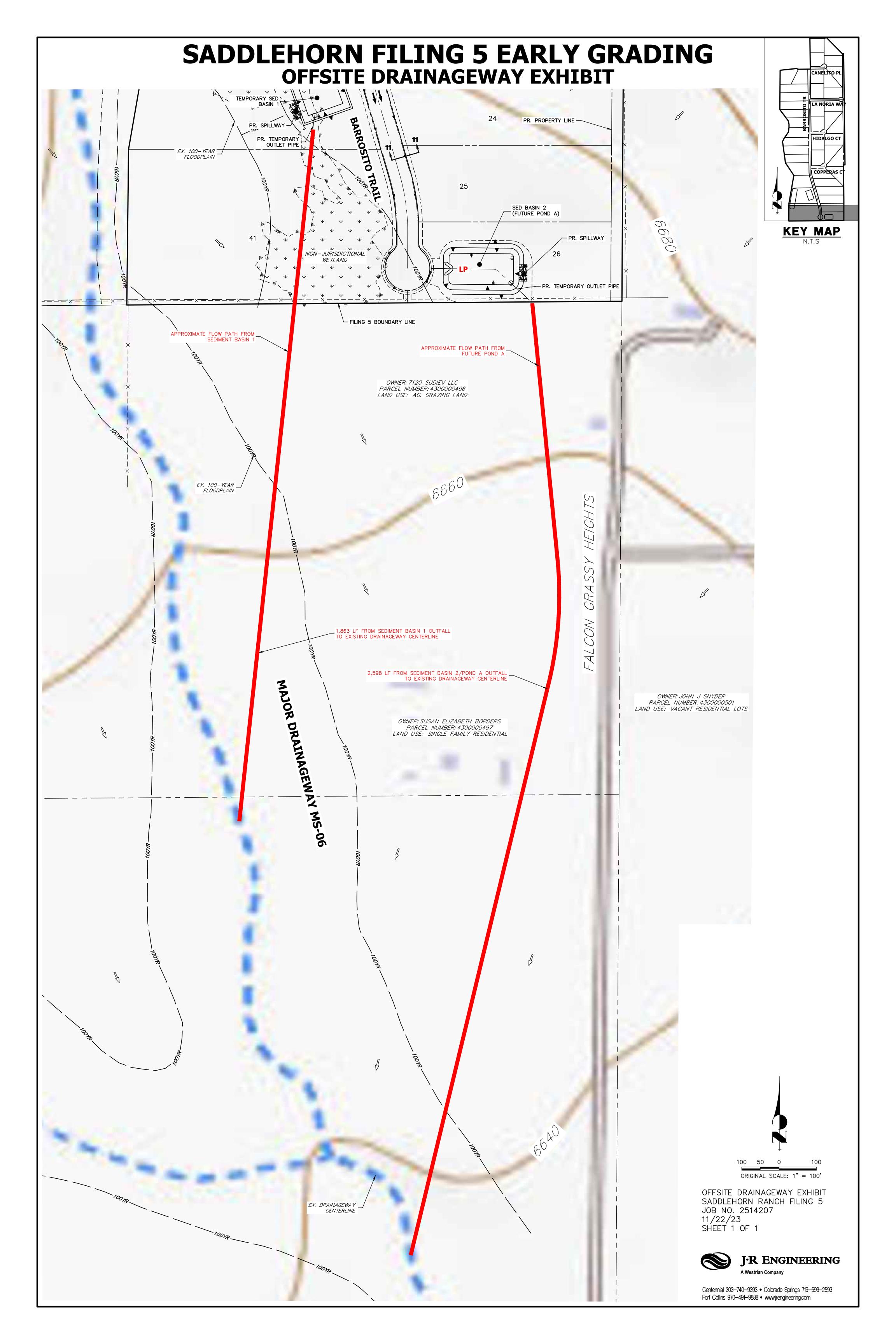
₩_<u></u>__



	FILING 5 - SUB-BASIN SUMMARY TABLE								
Tributary	Area	Percent			tc	Q₅	Q 100		
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)		
A1	14.64	2%	0.01	0.13	39.0	0.3	6.9		
B1	12.57	2%	0.01	0.13	31.2	0.2	6.4		
B2	12.64	2%	0.01	0.13	11.4	0.3	10.5		
B3	10.83	2%	0.01	0.13	34.3	0.1	5.2		
B4	9.16	2%	0.01	0.13	32.1	0.1	4.6		
B5	14.04	2%	0.01	0.13	35.1	0.2	6.7		
C1	1.26	2%	0.01	0.13	19.7	0.02	0.8		
C2	4.19	2%	0.01	0.13	22.1	0.1	2.6		
UD1	8.14	2%	0.01	0.13	25.1	0.1	4.7		
UD2	25.14	2%	0.01	0.13	28.9	0.4	13.5		
UD3	11.46	2%	0.01	0.13	38.2	0.1	5.1		
UD4	2.68	2%	0.01	0.13	25.8	0.1	1.5		
OS1	0.59	2%	0.01	0.13	14.1	0.00	0.4		
OS2	0.68	2%	0.01	0.13	16.6	0.00	0.5		
OS3	3.56	2%	0.01	0.13	11.2	0.1	3.0		
OS4	5.72	2%	0.01	0.13	13.3	0.1	<mark>4.5</mark>		

FILIN	FILING 5 - DESIGN									
POINT SUMMARY										
Design	Design Q5 Q100									
Point	(cfs)	(Cfs)								
1	0.2	6.4								
2	0.3	10.5								
3	0.1	5.2								
4	0.1	4.6								
5	0.2	6.7								
11	0.3	6.9								
C1	0.02	0.8								
C2	0.1	2.6								
UD1	0.1	4.7								
UD2	0.4	13.5								
UD3	0.1	5.1								
UD4	0.1	1.6								
1.0	0.3	11.4								
1.1	0.4	15.2								
1.2	0.5	17.7								
1.3	0.6	21.1								
OS1	0.00	0.4								
OS2	0.00	0.5								
OS3	0.1	3.0								
OS4	0.1	4.5								

EXISTING INDEX CONTOURS	
EXISTING INTERMEDIATE CONTOURS	
PROPOSED INDEX CONTOURS	
PROPOSED INTERMEDIATE CONTOURS	∔
EXISTING FLOW DIRECTION	100 50 0 100 200
PROPOSED FLOW DIRECTION	ORIGINAL SCALE: 1" = 100'
PROPOSED HIGH POINT	
PROPOSED LOW POINT	EARLY GRADING PROPOSED DRAINAGE MAP
WETLANDS HATCH	SADDLEHORN RANCH FILING 5
SETBACK LINE	JOB NO. 2514207 8/25/2023 SHEET 2 OF 3


 COMPLETED WITH EA SEE FILING 5 CD'S	C NOT TO BE	- PR. TEMPORARY OUTLET PIPE
		LEGEND
		I.D. BASIN DESIGNATION
		A B I.D.: BASIN IDENTIFIER A: BASIN AREA

FILING 5 - SUB-BASIN SUMMARY TABLE								
Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀	
Sub-basin	(acres)	Impervious	C5	C ₁₀₀	(min)	(cfs)	(cfs)	
A1	14.64	2%	0.01	0.13	<mark>39.0</mark>	0.3	6.9	
B1	12.57	2%	0.01	0.13	31.2	0.2	6.4	
B2	12.64	2%	0.01	0.13	11.4	0.3	10.5	
B3	10.83	2%	0.01	0.13	34.3	0.1	5.2	
B4	9.16	2%	0.01	0.13	32.1	0.1	4.6	
B5	14.04	2%	0.01	0.13	35.1	0.2	6.7	
C1	1.26	2%	0.01	0.13	19.7	0.02	0.8	
C2	4.19	2%	0.01	0.13	22.1	0.1	2.6	
UD1	8.14	2%	0.01	0.13	25.1	0.1	4.7	
UD2	25.14	2%	0.01	0.13	28.9	0.4	13.5	
UD3	11.46	2%	0.01	0.13	38.2	0.1	5.1	
UD4	2.68	2%	0.01	0.13	25.8	0.1	1.5	
OS1	0.59	2%	0.01	0.13	14.1	0.00	0.4	
OS2	0.68	2%	0.01	0.13	<u>16.6</u>	0.00	0.5	
OS3	3.56	2%	0.01	0.13	11.2	0.1	3.0	
OS4	5.72	2%	0.01	0.13	13.3	0.1	4.5	

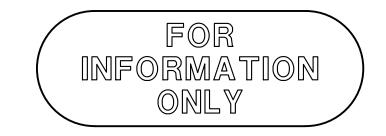
FILING 5 - DESIGN							
POINT SUMMARY							
Design	Q₅	Q ₁₀₀					
Point	(cfs)	(Cfs)					
1	0.2	6.4					
2	0.3	10.5					
3	0.1	5.2					
4	0.1	4.6					
5	0.2	6.7					
11	0.3	6.9					
C1	0.02	0.8					
C2	0.1	2.6					
UD1	0.1	4.7					
UD2	0.4	13.5					
UD3	0.1	5.1					
UD4	0.1	1.6					
1.0	0.3	11.4					
1.1	0.4	15.2					
1.2	0.5	17.7					
1.3	0.6	21.1					
OS1	0.00	0.4					
OS2	0.00	0.5					
OS3	0.1	3.0					
OS4	0.1	4.5					

			L'AN N	$\langle \rangle$			
<u>LEGEND</u>							
(1.D.	BASIN DESIGNATION						
A B C	I.D.: BASIN IDENTIFIER A: BASIN AREA B: C ₅ C: C ₁₀₀						
\mathbf{X}	DESIGN POINT						
	MAJOR BASIN DELINEATION						
	SUB-BASIN DELINEATION						
6700	EXISTING INDEX CONTOURS						
	EXISTING INTERMEDIATE CONTOURS						
6700	PROPOSED INDEX CONTOURS						
	PROPOSED INTERMEDIATE CONTOURS			-	ŧ		
	EXISTING FLOW DIRECTION	100	50	0	100	200	
→	PROPOSED FLOW DIRECTION	ORIGINAL SCALE: 1" = 100'					
HP	PROPOSED HIGH POINT						
LP	PROPOSED LOW POINT		EARLY GRADING PROPOSED DRAINAGE MAP				
₩_ <u>+</u> 	WETLANDS HATCH	SA	SADDLEHORN RANCH FILIN JOB NO. 2514207				
	SETBACK LINE	8/	8/25/2023 SHEET 3 OF 3				

SADDLEHORN RANCH - FILING 5 PERMANENT APPLICABILITY MAP

LEGEND

- BASIN DELINEATION
- ---6100-- EXISTING INDEX CONTOURS
- ----- EXISTING INTERMEDIATE CONTOURS
- - PROPOSED INTERMEDIATE CONTOURS
 - HP PROPOSED HIGH POINT
 - LP PROPOSED LOW POINT



AREA DETAINED IN PBMP

AREA NOT DETAINED IN PBMP PER SECTION I.7.1.B.5 (RURAL 2.5+ ACRE LOTS W/ IMPERVIOUSNESS < 10%)

MS4 PERMIT EXCULSION AREAS SADDLEHORN RANCH FILING 5 JOB NO. 25142.07 09/06/2023 SHEET 1 OF 1

