EL PASO COUNTY, COLORADO

JANUARY 2022

Prepared for:

Challenger Homes Jim Byers 8605 Explorer Drive, Suite 250 Colorado Springs, Colorado, 80920

CIVIL CONSULTANTS, INC.

212 N. Wahsatch Avenue, Suite 305 Colorado Springs, CO 80903 (719) 955-5485

> Project #09-014 PCD Project # SF XX-XXX

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin.

Virgil A. Sanchez, P.E. #37160 For and on Behalf of M&S Civil Consultants, Inc

DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all the requirements specified in this drainage report and plan.

BY:

Jim Byers, VP of Community Development

TITLE:_____ DATE:

ADDRESS: **Challenger Homes** 8605 Explorer Drive, Suite 250 Colorado Springs, CO 80920

EL PASO COUNTY'S STATEMENT

Filed in accordance with the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

BY:_____ DATE:____

Jennifer Irvine, P.E. County Engineer / ECM Administrator

TABLE OF CONTENTS

PURPOSE	4
GENERAL LOCATION AND DESCRIPTION	4
SOILS	4
HYDROLOGIC CALCULATIONS	4
HYDRAULIC CALCULATIONS	5
FLOODPLAIN STATEMENT	5
DRAINAGE CRITERIA	5
EXISTING DRAINAGE CONDITIONS	5
FOUR STEP PROCESS	6
PROPOSED DRAINAGE CHARACTERISTICS	6
EROSION CONTROL	10
CONSTRUCTION COST OPINION	10
DRAINAGE & BRIDGE FEES	11
SUMMARY	11
REFERENCES	12

APPENDIX

Vicinity Map Soils Map FIRM Panel Hydrologic Calculations Hydraulic Calculations Background Drainage Maps

PURPOSE

State whether this report is approved or still being reviewed.

This document is the Final Drainage Report for Copper Chase at Sterling Ranch. This site was previously discussed, in the "Final Drainage Report for Sterling Ranch Filing No. 2" prepared by JR Engineering, dated August 2021. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual.

GENERAL LOCATION AND DESCRIPTION

Copper Chase at Sterling Ranch is located within the Southeast quarter of Section 32 and within the Southwest quarter of Section 33, Township 12 south, Range 65 West and a portion of the Northeast quarter of Section 5, Township 13, Range 65 West, all west of the 6th Principal Meridian, in unincorporated El Paso County, Colorado. Sterling Ranch Filing No. 2 infrastructure encompasses the boundary of the site. The site is bound to the north by existing Vollmer Road, existing Alzada Drive, and existing Bynum Drive. The site is bound to the southwest by existing Marksheffel Road and to the southeast by existing Sterling Ranch Road. Copper Chase at Sterling Ranch lies within the Sand Creek Drainage Basin. Flows from this site are tributary to Sand Creek.

Roads are not existing. Roads are currently under construction or approved, ready for

Copper Chase at Sterling Ranch consists of 19.65 acres and is presently sparse, consisting of native grasses. Existing site terrain generally slopes fron construction. Please revise. rates that vary between 1.9% and 4.4%.

Copper Chase at Sterling Ranch is currently zoned RS-5000 for Residential Sub-Urban and is proposed to be PUD, or Planned Unit Development. Improvements proposed for the site include paved streets, utilities, and storm drainage improvements, as normally constructed for a planned unit development.

SOILS

Soils for this project are delineated by the map in the appendix as Blakeland Loamy Sand (8) and Columbine Gravelly Sandy Loam (19). Both are characterized as Hydrologic Soil Types "A". Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area". Due to recent bulk grading activities, vegetation is sparse, consisting of native grasses and weeds.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Urban Storm Drainage Criteria Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual. The relevant data sheets are included in the appendix of this report.

FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain as determined by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0533 G, effective date December 7th, 2018.

DRAINAGE CRITERIA

This drainage analysis has been prepared in accordance with the current El Paso County Drainage Criteria Manual, Volumes I & II, dated October 31, 2018, City of Colorado Springs Drainage Criteria Manual, Volumes I & II, dated May 2014, including subsequent updates. El Paso County has also adopted Chapter 6 and Section 3.2.1 of Chapter 13 in the City of Colorado Springs & El Paso County Drainage Criteria Manual Volumes I and II, dated May 2014. (Appendix I of the El Paso County's Engineering Criteria Manual (ECM), Adopted January 2015). In addition to the ECM, the Urban Storm Drainage Criteria Manuals, Volumes 1-3, published by the Urban Drainage and Flood Control District (Volumes 1 & 2 dated January 2016, Volume 3 dated November 2010 and updates). Calculations were performed to determine runoff quantities for the 5-year and 100-year frequency storms for developed conditions using the Rational Method.

EXISTING DRAINAGE CONDITIONS

The Copper Chase at Sterling Ranch site consists of 19.65 acres and is situated west of the Sand Creek Channel. This area was previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996. More recently the area was studied in the "Final Drainage Report for Sterling Ranch Filing No. 2" prepared by JR Engineering, LLC, dated August 2021 (henceforth referred to as "Sterling Ranch Filing No. 2 FDR"), and "Master Development Drainage Report for Sterling Ranch Filing No. 2 FDR"), and "Master Development Drainage Report for Sterling Ranch and portions of the surrounding areas (with the exception of the existing Barbarick Subdivision), have already been bulk graded (refer to Sterling Ranch Filing No. 2: Grading, Erosion, and Stormwater Quality Control Plan, dated March 2018). Refer to the Final Drainage Report for Sterling Ranch Filing No 2 by JR Engineering, LLC for information on historic conditions and overlot drainage patterns and analysis. Supporting text and calculation excerpts can be found in the Background section of the Appendix.

Include existing drainage calculations in appendix. Address if there is or is not any offsite flows entering site.

FOUR STEP PROCESS

Step 1 Employ Runoff Reduction Practices - Roof drains will be directed to side yard swales and, whenever possible, to grass lined swales to aid in minimizing direct connection of impervious surfaces. Residential lots are proposed to include open spaces and lawn areas, which helps minimize directly connected impervious areas and therefore reduces runoff volumes.

Step 2 Treat And S Revise paragraph, flows exiting project site are not reduced to predevelopment conditions. Offsite sub-reg pond W-5 will treat and release flows with other Sterling Ranch developments to predevelopment conditions.

on downstream drainageways.

"with PCD Filing No. SF1820"

Step 3 Stabilize Stream Channels Provide Water Quality Capture Volume (WQCV) - An existing Full Spectrum Detention Facility was planned and constructed to handle tributary flows for this site (see Sterling Ranch Filing No 2 FDR, Pond W-5) which will incorporate water quality capture volumes that are intended to slowly drain in 40 hours and excess urban runoff volumes that are intended to drain within 72 hours. Channel stabilization has been provided at the outlet of the aforementioned pond.

Step 4 Consider Need for Selecting Industrial and Commercial BMP's – A Stormwater Management Plan will be implemented which will include property housekeeping practices, spill containment procedures, and coverage of storage/handling areas to mitigate the potential for erosion across the site and protect downstream waters. Specialized BMP's are not required since there aren't commercial/industrial areas being implemented with this project.

PROPOSED DRAINAGE CHARACTERISTICS

General Concept Drainage Discussion

The following is a description of the onsite basins, offsite flows and the overall drainage characteristics for the development of Copper Chase at Sterling Ranch. The development of Copper Chase at Sterling Ranch consists of paved streets, parking, and lots typical of a Planned Unit Development (PUD). Surface runoff is routed via roof drains and side lot swales between the lots to either the back or front of the lots. Surface runoff from the back of the lots and open spaces is directed by swales to low points within area drainage basins. Surface runoff directed to the front of the lots is conveyed within the streets to proposed CDOT Type R at-grade inlets or to low points equipped with proposed CDOT Type R sump inlets. In the event of clogging or inlet failure at low points, emergency overflow routes have been designed to convey runoff to either a downstream inlet, existing Bynum Drive, or existing Sterling Ranch Road (see the Proposed Drainage Map for emergency overflow arrows and general drainage patterns). Runoff captured by area drainage inlets or CDOT Type R inlets is conveyed underground by a proposed private storm sewer system to the southern corner of the parcel. Ultimately, the proposed storm sewer system ties into an existing Type I manhole within the right of way of existing Sterling Ranch Road. All existing storm drainage improvements within Storling Ranch Road were constructed with the Sterling Ranch Filing No. 2 infrastructure. Ultimately, runoff from the proposed development is conveyed to existing Sterling ranch Pond W-5, a subregional Full spectrum Detention Facility constructed along the southern boundary of

> Emergency overflow arrows not shown on map. Please add/turn on.

Include statement that a final analysis of Pond W5 will be provided with FDR with the Final Plat submittal. Sterling Ranch. (Refer to Pond W4 & W5 Tributary Area Exhibit by JR Engineering, included in the Background section of the Appendix).

The following detailed drainage discussion provides an overview of the proposed development and ensures that no major modification of the proposed improvements is necessary due to the assumptions meeting that of the previously submitted Final Drainage Report for Sterling Ranch Filing No 2. Surface flow is designated as Design Points (DP). Captured flow within the storm sewer system is designated as Pipe Runs (PR). Flow bypassing the inlets is designated as flowby (FB).

Detailed Drainage Discussion (Design Points)

Design Point 1 (Q5=4.4 cfs, Q100=11.8 cfs)

Basin A consists of 3.59 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=4.4 and Q100=11.8 cfs) flows from north to south through the lots and onto Blue Feather Point, a public roadway. The flow is conveyed to the southwest within the curb and gutter to a proposed 5' atgrade CDOT Type R inlet (IN-1, Q5=2.5 and Q100=3.8 cfs) where a portion enters PR1, a proposed private 18" RCP storm sewer. Flowby bypassing this inlet (Q5=1.9 cfs, Q100=8.0 cfs) continues to downstream infrastructure.

Design Point 2 (Q5=4.9 cfs, Q100=11.4 cfs)

Basin B consists of 3.40 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=4.9 and Q100=11.4 cfs) flows from the lots and onto Blue Feather Point and Lost Trail Point (two public roadways). The flow is conveyed within the streets via curb and gutter to a proposed 15' at-grade CDOT Type R inlet (IN-2, Q5=4.9 and Q100=9.7 cfs) where it enters PR2, a proposed private 18" RCP storm sewer. PR1 and PR2 join flows and are directed southeast within PR3, an 18" RCP private storm sewer. Flowby bypassing this inlet (Q5=0.0 cfs, Q100=1.7 cfs) continues to downstream infrastructure.

Design Point 3 (Q5=3.7 cfs, Q100=11.8 cfs)

Basin C consists of 1.02 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=1.8 and Q100=3.9 cfs) flows from the lots and onto Blue Feather Point, a public roadway. The flow is conveyed southeast in the curb and gutter, combining with **FB-IN1**, to a proposed 5' at-grade CDOT Type R inlet (**IN-3**, **Q5=2.3 and Q100=3.9 cfs**). Intercepted flow enters **PR4**, a proposed private 18" RCP storm sewer. Flowby bypassing this inlet (Q5=1.4 cfs, Q100=7.9 cfs) continues to downstream infrastructure.

Design Point 4 (Q5=4.7 cfs, Q100=12.0 cfs)

Basin D consists of 2.90 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=4.8 and Q100=10.5 cfs) flows from the lots and onto Salt Fork Point, a public roadway. The flow is conveyed southeast in the curb and gutter, combining with **FB-IN2**, to a proposed 15' at-grade CDOT Type R inlet (**IN-4**, **Q5=4.7 and Q100=10.0 cfs**). Intercepted flow enters **PR5**, a proposed private 18" RCP storm sewer. **PR3**, **PR4**, and **PR5** join flows and continue southeast in **PR12**, a proposed 24" RCP private storm sewer. Flowby bypassing this inlet (Q5=0.0 cfs, Q100= 2.0 cfs) continues to downstream infrastructure.

Design Point 5 (Q5=1.8 cfs, Q100=5.6 cfs)

Basin E consists of 0.89 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=2.1 and Q100=4.2 cfs) flows from north to south through the lots and onto Blue Feather Point, a public roadway. The flow is conveyed southeast in the curb and gutter, combining with FB-IN4, to a proposed 15' sump CDOT Type R at Design Point 9.

Design Point 6 (Q5=4.2 cfs, Q100=10.0 cfs)

Basin F consists of 2.58 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=4.2 and Q100=10.0 cfs) flows from the lots and onto Blue Feather Point, a public roadway. The flow is conveyed southeast in the curb and gutter to a proposed 15' at-grade CDOT Type R inlet (IN-6, **Q5=4.2** and **Q100=8.9** cfs) where it enters **PR6** to **PR9**, a proposed private 18" RCP storm sewer segment. Flowby bypassing this inlet (Q5=0.0 cfs, Q100=1.1 cfs) continues east to downstream infrastructure located offsite on Bynum Drive.

Flows do not match hydrology spreadsheet

Design Point 7 (Q5=4.3 cfs, Q100=8.7 cfs)

Basin G consists of 1.65 acres of paved roadway and residential lots. Runoff produced within this basin (Q5=4.3 and Q100=8.7 cfs) flows to the curb and gutter of Bynum Drive, a public roadway, and combines with FB-IN6, FB-INA1, FB-INA4, and FB-INA3 for peak rates of Q5=4.9 and Q100=20.0 cfs in the 5 and 100 year events, respectively. A portion of the flow is then captured by existing 15' atgrade CDOT Type R inlet (IN-A5, Q5=4.9 and Q100=13.3 cfs) where it enters 1.3, an existing public 36," RCP storm sewer. Flowby bypassing this inlet (Q5=0.0 cfs, Q100=6.7 cfs) continues to downstream infrastructure located on existing Starling Darch Dood

From drainage map, appears to tie into 30" rcp before the 36" rcp

Design Point 8 (Q5= 1.0 cfs, Q100=3.9 cfs)

Basin H consists of 1.22 acres of residential lots, open space, and landscaping. Runoff produced within this basin (Q5=1.0 and Q100=3.9 cfs) flows from north to south through the lots, entering a proposed triangular, earthen swale. This 2' deep swale with 3:1 side slopes directs the flow southeast, where it enters a proposed Type II manhole with a NEENAH R-4351C Beehive Grate (IN-8, Q5=1.0 and Q100=3.9 cfs) at its end. PR10, a proposed 18" RCP private storm sewer directs intercepted flows south. In the case of inlet failure or clogging, the inundated area will overflow southeast onto Blue Feather Point and be conveyed to the sump inlet (IN-5) at DP 9. A weir-orifice analysis for this grate is provided in the Appendix. or is is Salt Fork Point at

Design Point 9 (Q5=4.0 cfs, Q100=10.5 cfs)

Basin I consists of 1.40 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=2.4 and Q100=5.2 cfs) drains from northwest to southeast to the curb and gutter of Salt Fork Point, a public roadway, combining with surface flows from **Design Point 5** at peak rates of 4.0 and 10.5 cfs in the 5 and 100 year events, respectively. The flow is then captured by proposed 15' sump CDOT Type R inlet (IN-5, Q5=4.0 and Q100=10.5 cfs). Intercepted flows enter PR11, a proposed private 24" RCP storm sewer. In the case of inlet failure or clogging, flows can overtop the curb and fl Flows would overtop the crown c

Design Point 10 (Q5=2.2 cfs, Q100=4.3 cfs)

Basin J consists of 0.89 acres of residential lots and paved roadway. Runoff product (Q5=2.2 and Q100=4.3 cfs) drains to the curb and gutter of Salt Fork Point, a public roadway. The flow is then directed south and is captured by proposed 15' sump CDOT Type R inlet at Design Point 11.

enter IN 9, then overtop c&g to fl Tract E.

this point?

label on proposed

drainage map

or state provide Final P

Include

calcula

Design Point 11 (Q5=5.4 cfs, Q100=16.7 cfs)

Basin K consists of 1.07 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=1.9 and Q100=4.2 cfs) drains from west to east to the curb and gutter of Salt Fork Point. The flow is conveyed in the curb and gutter where it combines with flows from **Design Point 10** and **FB-IN3** and is captured by proposed 15' sump CDOT Type R inlet (IN-9, Q5=5.4 and Q100=16.7 cfs). Intercepted flow enters **PR13**, a proposed private 30" RCP storm sewer where flows from **PR9** and **PR12** combine at a Type I junction manhole. Flows continue south in **PR14**, a proposed 42" RCP private storm sewer that ties into the existing 42" RCP storm sewer (private) and Type I manhole in the right of way of existing-Sterling Ranch Road (**PR14**: Q5=26.0, Q100=60.5 cfs). Flows anticipated in the FDR for Sterling Ranch Filing No. 2 by JR Engineering at this pipe location are Q5=27.5 cfs and Q100=60.6 cfs.

Storm design model in appendix has a 48" rcp.

Drainage map & table

accomodate the increas

flows?

shows 48" rcp

Design Point 12 (Q5=1.1 cfs, Q100=3.3 cfs)

Basin L consists of 1.21 acres of residential lots and open space at the rear of the lots. Runoff produced within this basin (Q5=1.1 and Q100=3.3 cfs) drains to the curb and gutter of Bynum Drive and Sterling Ranch Road, two existing, public roadways. The flow is then directed southeast and is captured by an existing 15' CDOT Type R at grade inlet at **Design Point 15** and enters **1.5**, a public 42" RCP storm sewer.

a excluded? If so, discuss the applicable

Design Point 13 (Q5=0.3 cfts; @f00=1.6 cfs)

Basin M consists of 0.64 acres of residential lots and open space. Runoff produced within this oasm (Q5=0.3 and Q100=1.6 cfs) drains to the curb and gutter of Sterling Ranch Road, an existing-public roadway. The flow is then directed southeast and is captured by downstream infrastructure on Marksheffel Road.

Design Point 14 (Q5=3.0 cfs, Q100=5.4 cfs)

Basin A4 consists of 0.64 acres of <u>existing</u> public roadway (Alzada Drive). Runoff produced within this basin (Q5=3.0 and Q100=5.4 cfs) drains from northwest to southeast to an existing 10' CDOT Type R at grade inlet (IN-A4: Q5=3.0, Q100=4.8 cfs). Flow bypassing this inlet (Q5=0.0 cfs, Q100=0.6 cfs) continues to downstream infrastructure.

Design Point 15 (Q5=5.1 cfs, Q100=19.8 cfs)

Basin A8 consists of 0.75 acres of public roadway. Runoff produced within this basin (Q5=3.0 and Q100=5.5 cfs) drains within the existing curb and gutter of Sterling Ranch Road, combining with **FB**-**INA6, FB-INA15, DP 12,** and **FB-INA5. Basin A6A** consists of 0.53 acres of area with a similar imperviousness to commercial areas. Runoff from this basin (Q5=2.2, Q100=4.1 cfs) drains to the curb and gutter of Sterling Ranch Road and combines with the aforementioned flows at peak rates of Q5=5.1 and Q100=19.8 cfs in the 5 and 100 year events, respectively. Runoff is collected in an existing 15' CDOT Type R at grade inlet (**IN-A8: Q5=5.1, Q100=13.6 cfs**). JR Engineering anticipated surt How much bypass did the of Q5=3.0 cfs and Q100=12.5 cfs, and intercepted and pipe flows of Q5=3.0 cfs, and Q100 Flow bypassing this inlet (Q5=0.0 cfs, Q100=6.2 cfs) continues to downstream infrastructure.

Design Point 16 (Q5=7.7 cfs, Q100=22.8 cfs)

Basin A11 consists of 2.79 acres of public roadway and landscaped right of way of existing Markshettel Road. Runoff produced within this basin (Q5=7.4 and Q100=14.2 cfs) drains from northwest to southeast in the curb and gutter, combining with **DP13**, **FB-INA8** and **FB-INA9** at peak rates of Q5=7.7 and Q100=20.5 cfs in the 5 and 100 year events, respectively. Runoff is collected at the existing 15' CDOT Type R at grade inlet (**IN-A11: Q5=7.6, Q100=14.7 cfs**). JR Engineering anticipated surface flows of Q5=9.5 cfs and Q100=18.1 cfs at this location, and intercepted flows of Q5=8.9 cfs and Q100=13.8 cfs.

Intercepted flow enters pipe run 1.7, and combines with flows from 1.6 in 1.8 at peak rates of Q5=60.8 cfs and Q100=124.8 cfs. Pipe flows of Q5=68.8 cfs and Q100=125.0 cfs were originally anticipated. Flows bypassing the inlet (Q5=0.1 cfs, Q100=8.1 cfs) continue to downstream infrastructure.

Missing Basin A6.

EROSION CONTROL

what downstream infrastructure? And does that infrastructure include WQ treatment and detention (if needed)?

It is the policy of the El Paso County that a grading and erosion control plan be submitted with the drainage report. Bulk grading was completed with approval of "Sterling Ranch Filing No. 2: Grading, Erosion, and Stormwater Quality Plan", dated March 2018. Grading and Erosion control operations are currently finished. A Grading and Erosion Control plan for the proposed development is being concurrently submitted with this report.

CONSTRUCTION COST OPINION – COPPER CHASE AT STERLING RANCH

Drainage Facilities:

Constructi	on Cost I	Estima	te (Non-Rein	nbursa	able)
Item	Amount	Unit	Unit Cost		Total Cost
5' CDOT Type R Inlet	2	EA	\$ 6,500.00	\$	13,000.00
15' CDOT Type R Inlet	5	EA	\$ 13,000.00	\$	65,000.00
Type I MH	1	EA	\$ 9,800.00	\$	9,800.00
Type II MH	5	EA	\$ 6,000.00	\$	30,000.00
Beehive Grate Inlet	1	EA	\$ 5,000.00	\$	5,000.00
18" RCP	905	LF	\$ 45.00	\$	40,725.00
24" RCP	443	LF	\$ 81.00	\$	35,883.00
30" RCP	20	LF	\$ 100.00	\$	2,000.00
42" RCP	37	LF	\$ 166.00	\$	6,142.00
Tot	\$	207,550.00			

Will review cost estimate with FDR/Final Plat submittal.

DRAINAGE & BRIDGE FEES – COPPER CHASE AT STERLING RANCH

This site is within the Sand Creek Drainage Basin. The 2021 Drainage and Bridge Fees per El Paso County for the Copper Chase at Sterling Ranch site are as follows:

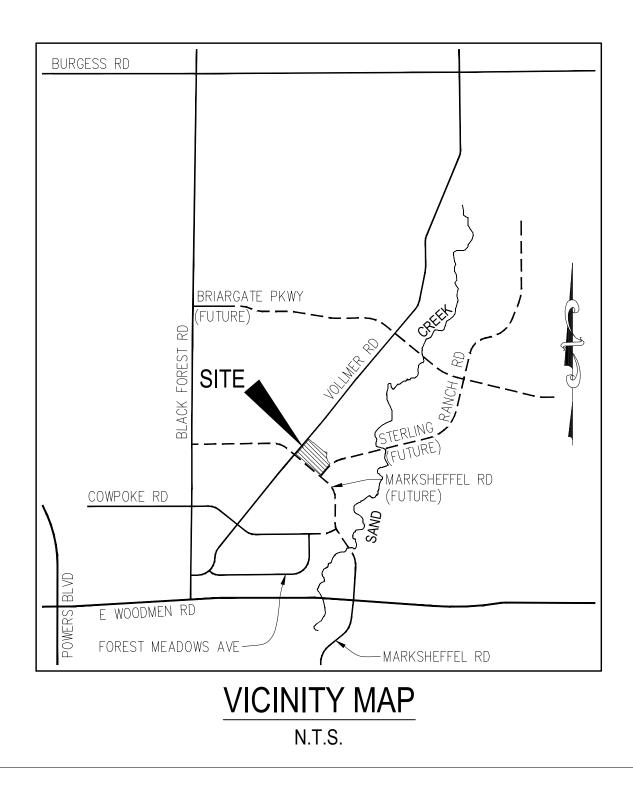
Per Copper Chase at	Sterling Ra	nch S	ite Boundar	y – Total Area	= 19.651 A	Acre	s
COPPER CHASE A							
Drainage Fees:	19.651	Х	58.7%	\$20,387	=	\$	235,166.84
Bridge Fees:	19.651	х	58.7%	\$8,339	=	\$	<u>96,191.51</u>
					Total	\$	331,358.35

It should be noted that these fees are provided in this Final Drainage Report for informational purposes only.

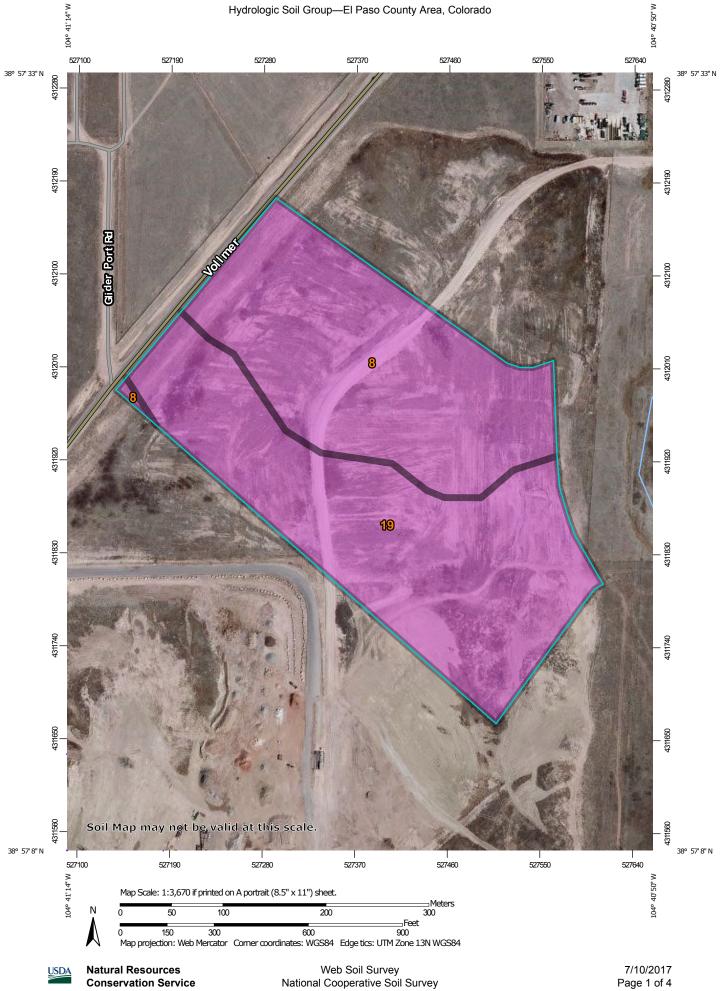
M & S Civil Consultants, Inc. (M & S) cannot and does not guarantee the construction cost will not vary from these opinions of probable costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular. The above is only an estimate of the facility cost and drainage basin fee amounts in 2021.

SUMMARY

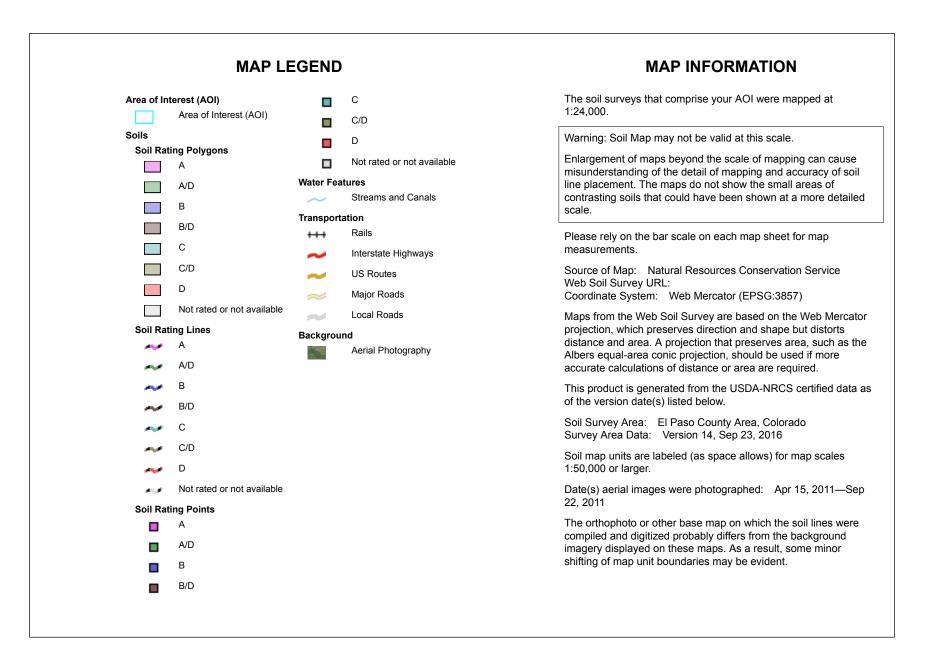
Development of this site will not adversely affect the surrounding developments per this final drainage report with no negative impacts to the neighboring developments. The proposed and existing drainage facilities will adequately convey, detain, and route runoff from tributary and onsite flows to the Sand Creek Drainage channel via proposed onsite and existing offsite drainage improvements. Full Spectrum Detention and Water Quality Ponds will be used to discharge developed flows into Sand Creek per the Urban Drainage criteria flow rates. Care will be taken during construction to accommodate overland flow routes onsite and temporary drainage conditions. The development of the Copper Chase at Sterling Ranch project shall not adversely affect adjacent or downstream property.


Include discussion on who will be maintaining private facilities.

REFERENCES


- 1.) "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I & II".
- 2.) "Urban Storm Drainage Criteria Manuals, Volumes 1-3".
- NRSC Web Soil Survey Map for El Paso County. <u>http://websoilsurvey.nrcs.usda.gov</u>. Accessed September 29th, 2020.
- 4.) Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Effective date December 7th, 2018. Accessed October 4th, 2021.
- 5.) "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996
- 6.) "Final Drainage Report for Sterling Ranch Filing No. 2", dated August 2021, by JR Engineering
- 7.) "Master Development Drainage Plan for Sterling Ranch", (MDDP) prepared by M&S Civil Consultants, Inc., dated December 2017.

APPENDIX


VICINITY MAP

SOILS MAP

Conservation Service

Hydrologic Soil Group

Hydrol	Hydrologic Soil Group— Summary by Map Unit — El Paso County Area, Colorado (CO625)												
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI									
8	Blakeland loamy sand, 1 to 9 percent slopes	A	13.7	46.4%									
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	15.8	53.6%									
Totals for Area of Inter	est		29.5	100.0%									

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

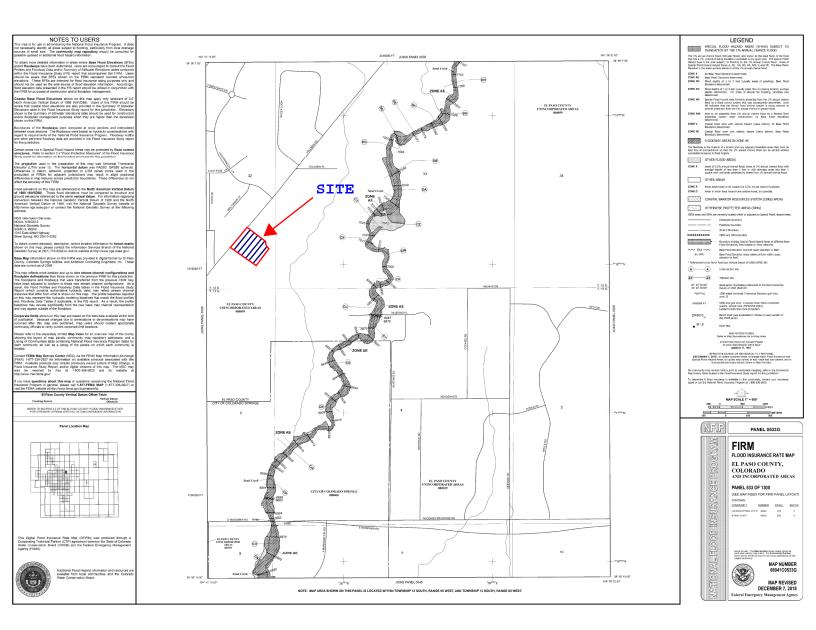
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

FIRM PANEL

HYDROLOGIC CALCULATIONS

COPPER CHASE AT STERLING RANCH PROPOSED CONDITIONS (Area Runoff Coefficient Summary)

				STREETS		D	EVELOPME	ENT	OPEN SP.	ACE / LAND	SCAPING		
BASIN	TOTAL AREA (SF)	TOTAL AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀
Α	156397.009	3.59	0.00	0.90	0.96	2.28	0.45	0.59	1.31	0.09	0.36	0.32	0.51
В	148304.6808	3.40	0.00	0.90	0.96	3.00	0.45	0.59	0.40	0.09	0.36	0.41	0.56
С	44335.8117	1.02	0.00	0.90	0.96	1.02	0.45	0.59	0.00	0.09	0.36	0.45	0.59
D	126236.9571	2.90	0.00	0.90	0.96	2.90	0.45	0.59	0.00	0.09	0.36	0.45	0.59
Е	38846.7466	0.89	0.21	0.90	0.96	0.68	0.45	0.59	0.00	0.09	0.36	0.56	0.68
F	112434.6262	2.58	0.00	0.90	0.96	2.18	0.45	0.59	0.40	0.09	0.36	0.39	0.55
G	71700.54	1.65	0.44	0.90	0.96	1.21	0.45	0.59	0.00	0.09	0.36	0.57	0.69
Н	53106.3075	1.22	0.00	0.90	0.96	0.39	0.45	0.83	0.83	0.12	0.39	0.23	0.53
I	60953.98	1.40	0.00	0.90	0.96	1.40	0.45	0.59	0.00	0.09	0.36	0.45	0.59
J	38881.001	0.89	0.30	0.90	0.96	0.59	0.45	0.59	0.00	0.09	0.36	0.60	0.71
K	46538.1625	1.07	0.00	0.90	0.96	1.07	0.45	0.59	0.00	0.09	0.36	0.45	0.59
L	52574.1933	1.21	0.00	0.90	0.96	0.52	0.45	0.59	0.69	0.09	0.36	0.24	0.46
М	28034.2781	0.64	0.00	0.90	0.96	0.06	0.45	0.59	0.58	0.09	0.36	0.12	0.38
A4	24837.432	0.64	0.64	0.90	0.96	0.00	0.45	0.59	0.00	0.09	0.36	0.90	0.96
A6	N/A	1.37		REFER T	O "FINAL DR.	AINAGE REPO	ORT FOR STE	ERLING RANC	H NO. 2" FOR	DETAILS		0.58	0.70
A6A	N/A	0.53		REFER T	O "FINAL DR.	AINAGE REPO	ORT FOR STE	ERLING RANC	H NO. 2" FOR	DETAILS		0.81	0.88
A8	32551.5217	0.75	0.75	0.90	0.96	0.00	0.45	0.59	0.00	0.09	0.39	0.90	0.96
A11	121476.1738	2.79	2.22	0.90	0.96	0.00	0.45	0.59	0.57	0.09	0.39	0.73	0.84

COPPER CHASE AT STERLING RANCH PROPOSED CONDITIONS (Area Drainage Summary)

·																	
From Area Runo	ff Coefficient Sum	nary			OVERLA	4ND		ST	REET / CH	ANNEL FLO)W	Time of T	ravel (T _t)	INTEN	SITY *	TOTAL	FLOWS
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	T _t	TOTAL	CHECK	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	From DCI	M Table 5-1		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
A	3.59	0.32	0.51	0.32	100	10.5	6.5	860	1.7%	2.6	5.4	11.9	15.3	3.9	6.5	4.4	11.8
В	3.40	0.41	0.56	0.41	100	1.4	11.2	735	1.6%	2.5	4.9	16.1	14.6	3.6	6.0	4.9	11.4
С	1.02	0.45	0.59	0.45	100	2.0	9.3	520	2.5%	3.2	2.7	12.1	13.4	3.8	6.5	1.8	3.9
D	2.90	0.45	0.59	0.45	100	2.2	9.0	795	1.9%	2.8	4.7	13.8	15.0	3.6	6.1	4.8	10.5
E	0.89	0.56	0.68	0.56	100	2.0	7.8	340	1.9%	2.8	2.0	9.9	12.4	4.1	7.0	2.1	4.2
F	2.58	0.39	0.55	0.39	100	13.0	5.5	855	2.7%	3.3	4.3	9.8	15.3	4.2	7.0	4.2	10.0
G	1.65	0.57	0.69	0.57	100	4.0	6.1	290	2.8%	3.4	1.4	7.5	12.2	4.6	7.7	4.3	8.7
Н	1.22	0.23	0.53	0.23	100	3.3	10.6	655	2.1%	2.2	5.0	15.6	14.2	3.6	6.0	1.0	3.9
Ι	1.40	0.45	0.59	0.45	100	2.7	8.5	760	2.1%	2.9	4.4	12.8	14.8	3.8	6.3	2.4	5.2
J	0.89	0.60	0.71	0.60	100	2.0	7.2	470	1.4%	2.4	3.3	10.5	13.2	4.1	6.8	2.2	4.3
K	1.07	0.45	0.59	0.45	100	3.0	8.2	460	2.0%	2.8	2.7	10.9	13.1	4.0	6.7	1.9	4.2
L	1.21	0.24	0.46	0.24	100	3.5	10.2	655	1.2%	2.2	4.9	15.2	14.2	3.6	6.0	1.1	3.3
М	0.64	0.12	0.38	0.12	100	4.0	11.2	195	3.2%	1.3	2.6	13.7	11.6	3.9	6.6	0.3	1.6
A4	0.64	0.90	0.96	0.90	100	1.8	3.0	350	2.3%	3.0	1.9	4.9	12.5	5.2	8.7	3.0	5.4
A6	1.37	0.58	0.70				REFER	TO "FINAL DR	AINAGE REPO	ORT FOR STE	RLING RANCI	H NO. 2" FOR	DETAILS			3.3	6.6
A6A	0.53	0.81	0.88				REFER	TO "FINAL DR	AINAGE REPO	ORT FOR STE	RLING RANCI	H NO. 2" FOR	DETAILS			2.2	4.1
A8	0.75	0.90	0.96	0.90	100	1.5	3.2	600	1.2%	2.2	4.5	7.7	13.9	4.5	7.6	3.0	5.5
A11	2.79	0.73	0.84	0.73	100	0.9	6.8	1315	2.2%	3.0	7.3	14.2	17.9	3.6	6.1	7.4	14.2

* Intensity equations assume a minimum travel time of 5 minutes.

Calculated by: <u>CVW</u> Date: <u>12/8/2021</u> Checked by: <u>VAS</u>

COPPER CHASE AT STERLING RANCH PROPOSED CONDITIONS (Surface Routing Summary)

	From Area Runoff Coefficient Summary				OVER	RLAND		PIPE	/ CHA	NNEL FLO)W	Time of Travel (T_t)	INTEN	SITY *	TOTAL	FLOWS	
DESIGN POINT	CONTRIBUTING BASINS	CA5	CA100	C ₅	Length	Height	T _C	Length	Slope	Velocity	T _t	TOTAL	I5	I ₁₀₀	Q5	Q ₁₀₀	COMMENTS
					(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	
1	Basin A	1.14	1.82	Bas	sin A Te wa	is used	11.9					11.9	3.9	6.5	4.4	11.8	CDOT TYPE R AT-GRADE 5' INLET (IN-1)
2	Basin B	1.39	1.92	Bas	sin B Tc wa	s used	14.6					14.6	3.6	6.0	4.9	11.4	CDOT TYPE R AT-GRADE 15' INLET (IN-2)
3	Basin C FB-IN1 Sum:	0.46 0.50 0.96	0.60 1.23 1.83	Bas	sin C Tc wa	s used	12.1					12.1	3.8	6.5	3.7	11.8	CDOT TYPE R AT-GRADE 5' INLET (IN-3)
4	Basin D FB-IN2 Sum:	1.30 0.0 1.31	1.71 0.29 2.00	Desigr	n Point 2 Te	was used	14.6					14.6	3.6	6.0	4.7	12.0	CDOT TYPE R AT-GRADE 15' INLET (IN-4)
5	Basin E FB-IN4 Sum:	0.50 0.0 0.50	0.60 0.33 0.93	Desi	gn Point 4 w	vas used	14.6					14.6	3.6	6.0	1.8	5.6	CDOT TYPE R SUMP 15' INLET (IN-5)
6	Basin F	1.02	1.43	Ba	sin F Tc was	s used	9.8					9.8	4.2	7.0	4.2	10.0	CDOT TYPE R 15' AT-GRADE INLET (IN-6)
7	Basin G FB-IN6 FB-INA1 FB-INA4 FB-INA3	0.94 0.00 0.05 0.00 0.45 1.44	1.13 0.16 0.40 0.10 1.69 3.48	Wei	ighted Tc wa	as used	16.0					16.0	3.4	5.7	4.9	20.0	EX CDOT TYPE R 15' AT-GRADE INLET (IN-A5)
8	Basin H	0.27	0.65	Bas	sin H Tc wa	is used	14.2					14.2	3.6	6.0	1.0	3.9	BEEHIVE GRATE SUMP INLET (IN-8)
9	Basin I DP 5 Sum:	0.63 0.50 1.13	0.83 0.93 1.76	Design	n Point 5 Tc	was used	14.6					14.6	3.6	6.0	4.0	10.5	CDOT TYPE R SUMP 15' INLET (IN-5)
10	Basin J	0.54	0.64	Ba	sin J Tc was	s used	10.5					10.5	4.1	6.8	2.2	4.3	CDOT TYPE R SUMP 15' INLET (IN-9)
11	Basin K FB-IN3 DP 10 Sum:	0.48 0.4 0.54 1.40	0.63 1.32 0.64 2.59	Desig	gn Point 3 w	vas used	12.1					12.1	3.8	6.5	5.4	16.7	CDOT TYPE R SUMP 15' INLET (IN-9)
12	Basin L	0.29	0.55	Bas	sin L Tc was	s used	14.2					14.2	3.6	6.0	1.1	3.3	EX CDOT TYPE R 15' AT-GRADE INLET (IN-A8)
13	Basin M	0.08	0.25	Bas	in M Tc wa	as used	11.6					11.6	3.9	6.6	0.3	1.6	EX CDOT TYPE R 15' AT-GRADE INLET (IN-A11)
14	Basin A4	0.58	0.62	Bas	in A4 Tc wa	as used	5.0					5.0	5.2	8.7	3.0	5.4	EX CDOT TYPE R 10' AT-GRADE INLET (IN-A4)

COPPER CHASE AT STERLING RANCH PROPOSED CONDITIONS (Surface Routing Summary)

	From Area Runoff Coefficient Summary				OVER	LAND		PIPE	E / CHA	NNEL FLO	W	Time of Travel (T_t)	INTEN	SITY *	TOTAL I	FLOWS	
DESIGN POINT	CONTRIBUTING BASINS	CA5	CA100	C ₅	Length	Height	T _C	Length	Slope	Velocity	Tt	TOTAL	I ₅	I ₁₀₀	Q5	Q ₁₀₀	COMMENTS
					(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	
15	Basin A8	0.67	0.72	Bas	in A8 Tc wa	is used	13.9					13.9	3.6	6.1	5.1	19.8	EX CDOT TYPE R 15' AT-GRADE INLET
	FB-INA6	0.00	0.17														(IN-A8)
	Basin A6A	0.43	0.47														
	FB-INA15	0.00	0.24														
	DP 12	0.29	0.55														
	FB-INA5	0.01	1.10														
		1.40	3.25														
16	Basin A11	2.05	2.35	Basi	n All Tc w	as used	14.2					14.2	3.6	6.1	7.7	22.8	EX CDOT TYPE R 15' AT-GRADE INLET
	FB-INA8	0.00	1.11														(IN-A11)
	DP 13	0.08	0.25														
	FB-INA9	0.00	0.06														
		2.13	3.77														

* Intensity equations assume a minimum travel time of 5 minutes.

Calculated by: CVW Date: 12/8/2021

Checked by: VAS

COPPER CHASE AT STERLING RANCH PROPOSED CONDITIONS

(Storm Sewer Routing Summary)

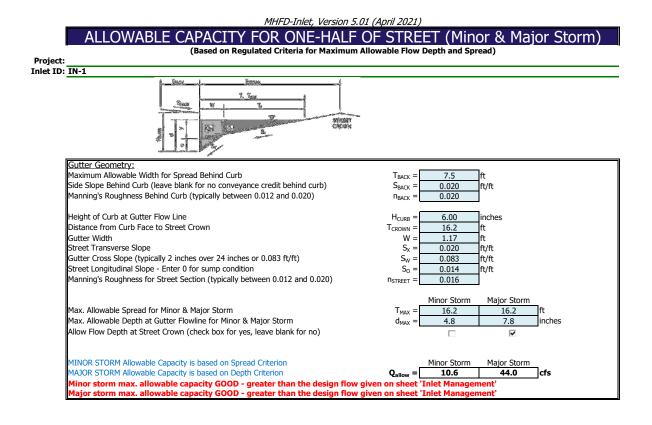
					Inten	sity*	Fl	ow
PIPE	Contributing Pipes/Design Points	Equivalent CA 5	Equivalent CA 100	Maximum T _C	Ι,	I 100	Q 5	Q 100
PR1	DP1 (IN-1)	0.65	0.59	11.9	3.9	6.5	2.5	3.8
PR2	DP2 (IN-2)	1.38	1.62	14.6	3.6	6.0	4.9	9.7
PR3	PR1, PR2	2.02	2.21	14.4	3.6	6.0	7.3	13.3
PR4	DP3 (IN-3)	0.64	0.65	14.6	3.6	6.0	2.3	3.9
PR5	DP4 (IN-4)	1.31	1.67	14.6	3.6	6.0	4.7	10.0
PR6	DP6 (IN-6)	1.01	1.27	10.0	4.1	6.9	4.2	8.8
PR7	PR6	1.01	1.27	10.3	4.1	6.9	4.1	8.7
PR8	PR7	1.01	1.27	10.5	4.1	6.8	4.1	8.7
PR9	PR8	1.01	1.27	10.8	4.0	6.7	4.1	8.6
PR10	DP8 (IN-8)	0.27	0.65	14.2	3.6	6.0	1.0	3.9
PR11	PR10, DP9 (IN-5)	1.39	2.38	14.2	3.6	6.0	5.0	14.4
PR12	PR3, PR4, PR5	3.98	4.53	15.3	3.5	5.9	13.9	26.6
PR13	PR11, DP11 (IN-9)	2.79	4.97	12.1	3.8	6.5	10.7	32.1
PR14	PR9, PR12, PR13	7.78	10.78	16.9	3.3	5.6	26.0	60.5
1.0	IN-A1, IN-A2	1.45	1.47	9.7	4.2	7.0	6.1	10.3
1.1	IN-A4, IN-A3	3.27	3.10	15.5	3.5	5.8	11.4	18.1
1.2	1.0, 1.1	4.72	4.57	14.1	3.6	6.1	17.1	27.7
1.3	1.2, IN-A5, IN-A6	6.87	7.54	15.4	3.5	5.8	23.9	44.1
1.4	1.3, PR14	14.65	18.32	17.0	3.3	5.6	48.8	102.5
1.5	DP15 (IN-A8), 1.4	16.05	20.75	17.1	3.3	5.6	53.4	115.8
1.6	IN-A9, 1.5	16.69	21.48	17.4	3.3	5.5	55.1	119.0
1.7	DP16 (IN-A11), IN-A10	4.95	4.98	17.5	3.3	5.5	16.3	27.5
1.8	1.7, 1.6	21.65	26.46	24.1	2.8	4.7	60.8	124.8

* Intensity equations assume a minimum travel time of 5 minutes.

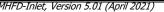
DP - Design Point

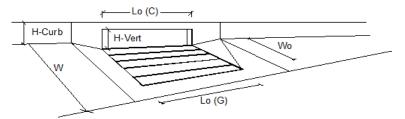
EX - Existing Design Point

PR - Pipe Run

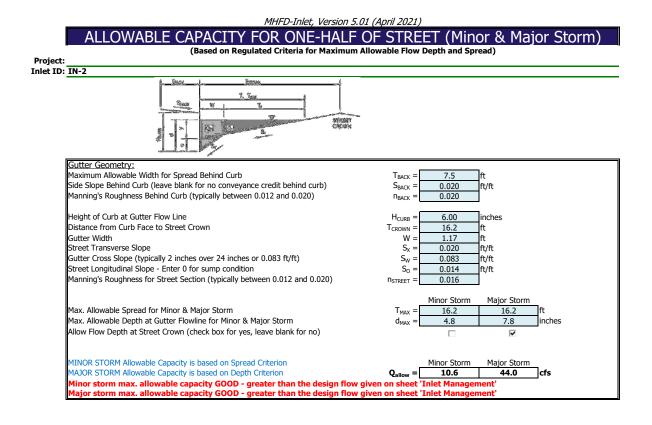

FB- Flow By from Design Point IN- Proposed Inlet

IN-A(#)- Existing Inlet

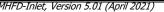

Calculated by: CVW Date: 12/8/2021 Checked by: VAS

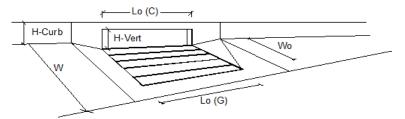

Overall Im	perviousne	ss of Copper	Chase at Sterling	Ranch
Contributing Basins	Area (Acres)	<i>C</i> ₅	Impervious % (I)	(Acres)*(I)
A	3.59	0.32	44	157.39
В	3.40	0.41	58	198.10
С	1.02	0.45	65	66.16
D	2.90	0.45	65	188.37
Ε	0.89	0.56	73	65.32
F	2.58	0.39	56	144.57
G (on site portion)	0.47	0.57	260	122.39
Н	1.22	0.23	26	31.15
Ι	1.40	0.45	65	90.96
J	0.89	0.60	77	68.52
K	1.07	0.45	65	69.44
L	1.21	0.24	32	38.43
М	0.64	0.12	12	7.99
Totals	21.3			1248.79
Imperviousness of Site	58.7	%		

HYDRAULIC CALCULATIONS

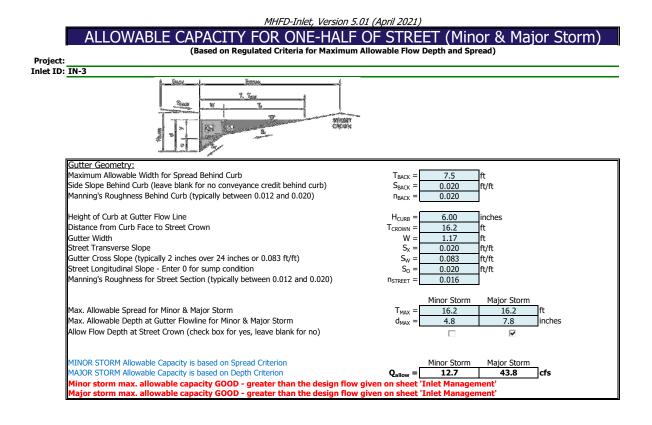


INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

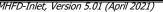


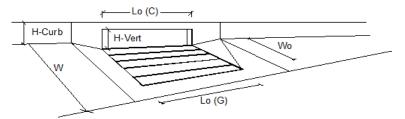


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	2.5	3.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	1.9	8.0	cfs
Capture Percentage = Q_a/Q_o =	C% =	57	33	%

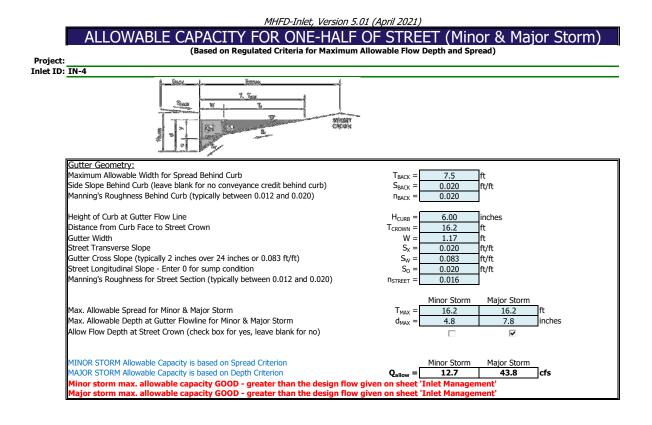


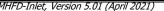
INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

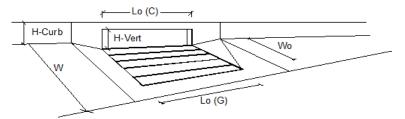


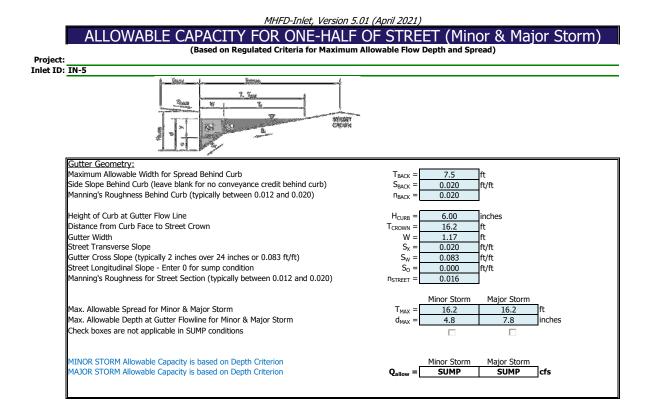


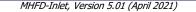
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.9	9.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	1.7	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	85	%

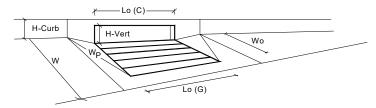



INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

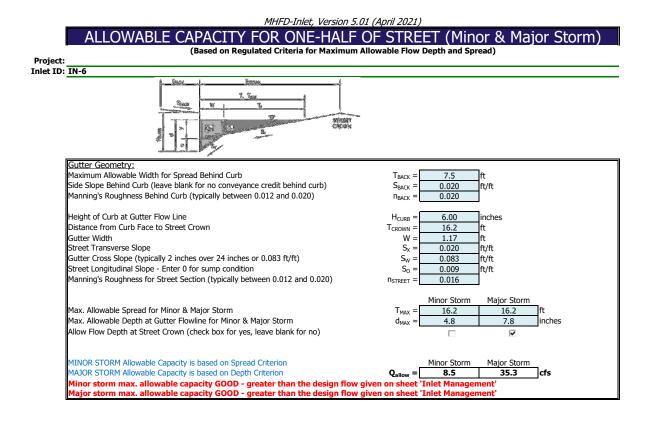


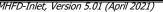

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 =$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.3	3.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	1.4	7.9	cfs
Capture Percentage = Q_a/Q_o =	C% =	63	33	%

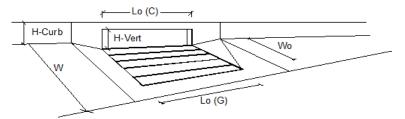




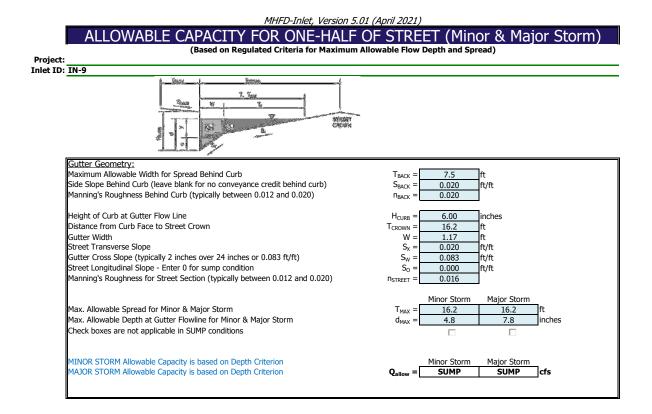
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	4.7	10.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	2.0	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	83	%

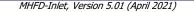


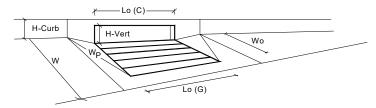

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)



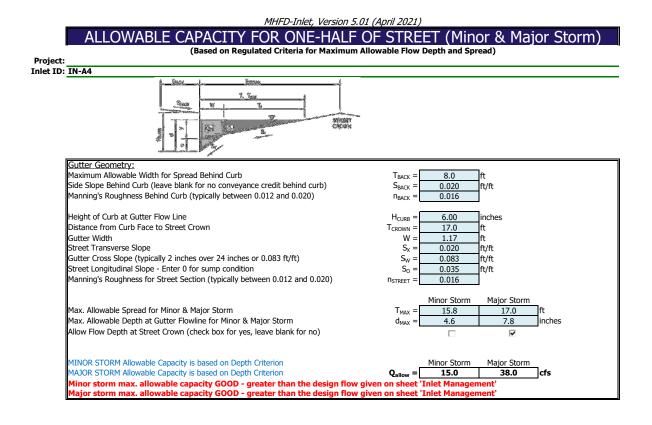
Design Information (Input)	- 5	MINOR	MAJOR	-
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	7.8	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.55	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.45	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.70	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	Grate	,		-
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.8	21.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.0	10.5	cfs

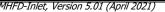


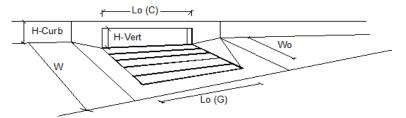



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.2	8.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.1	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	89	%

		NEEHAH				Increment	
Width	N/A	Area (sq. ft)	1.2	Open Area x 50%		0.6 sq. ft	0.125
Length	N/A	Blockage	0.5				
Perimeter	5.2	Blockage	3	Available Perimete	er	2.2 ft	
FG Elevation	Head			Orifice Flow We	eir Flow		
6997	0			0.00	0.00		
6997.125	0.125			1.02	0.30		
6997.25	0.25			1.44	0.85		
6997.375	0.375			1.77	1.57		
6997.5	0.5			2.04	2.41		
6997.625	0.625			2.28	3.37		
6997.75	0.75			2.50	4.43		
6997.875	0.875			2.70	5.58		
6998	1			2.89	6.82		
6998.125	1.125			3.06	8.14		
6998.25	1.25			3.23	9.53		
6998.375	1.375			3.39	11.00		
6998.5	1.5			3.54	12.53		
6998.625	1.625			3.68	14.13		
6998.75	1.75			3.82	15.79		
6998.875	1.875			3.96	17.51		
6999	2			4.09	19.29		
6999.125	2.125			4.21	21.13		
6999.25	2.25			4.33	23.02		
6999.375	2.375			4.45	24.96		
6999.5	2.5			4.57	26.96		
6999.625	2.625			4.68	29.01		
6999.75	2.75			4.79	31.10		
6999.875	2.875			4.90	33.25		
7000	3			5.00	35.44		
7000.125	3.125			5.11	37.68		
7000.25	3.25			5.21	39.96		

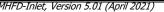

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

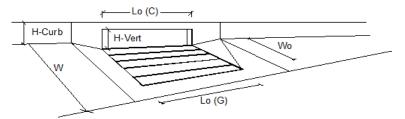


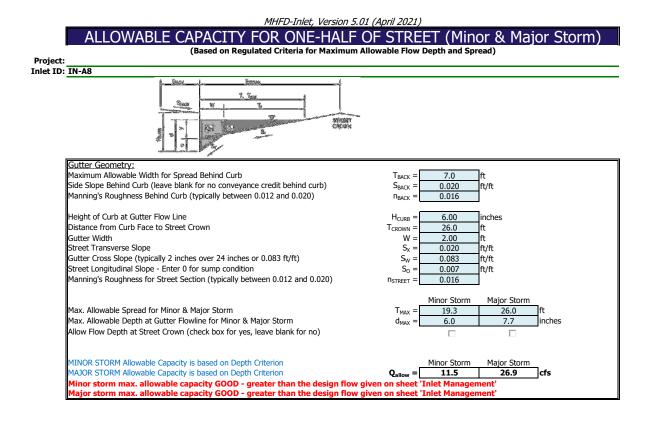


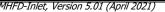
	MINOR	MAJOR	
Type =			٦
· · ·			inches
		1	
		7.8	inches
Fonding Depth =			Verride Depths
L (G) -			Ifeet
		1	feet
			icet
			-
			_
		,	-
$C_0(G) =$		/	
			feet
			inches
			inches
			degrees
			feet
$C_{o}(C) =$	0.67	0.67	
	MINOR	MAJOR	
d _{Grate} =	N/A	N/A	ft
	0.30	0.55	ft
	0.45	0.74	
		-	
Grate			-4
	MINOR	MAJOR	
Q _a =	6.8	21.4	cfs
$Q_{PEAK REQUIRED} =$	5.4	16.7	cfs
Per flows	from DE	2 10	
	Q peak required =	$\begin{array}{c} a_{local} \\ no = \\ \hline no = \\ no = \\ \hline no = \\ no = \\ no = \\ no = \\ \hline no = \\ no \\$	$\begin{array}{c} A_{local} = & 3.00 & 3.00 \\ N_{0} = & 1 & 1 \\ N_{0} = & 1 & 1 \\ \hline 1 & N_{0} & N_{0} \\ \hline 1 &$

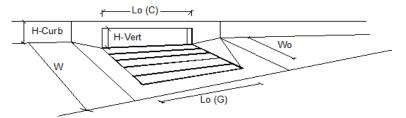

& 11, Q5 is 7.6 cfs.

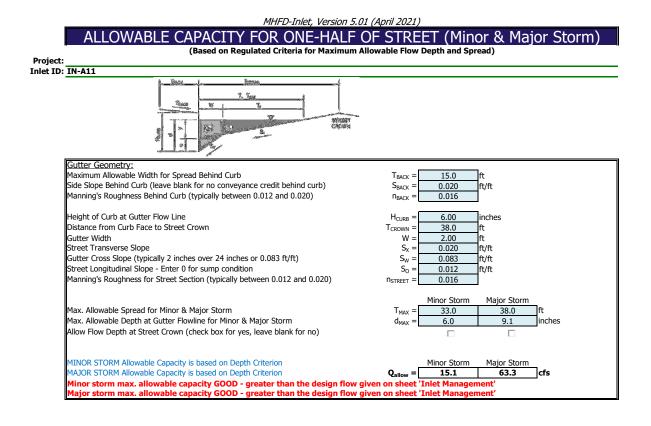


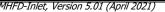


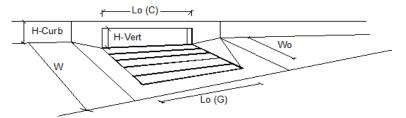

Design Information (Input)	1	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.0	4.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.6	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	89	%



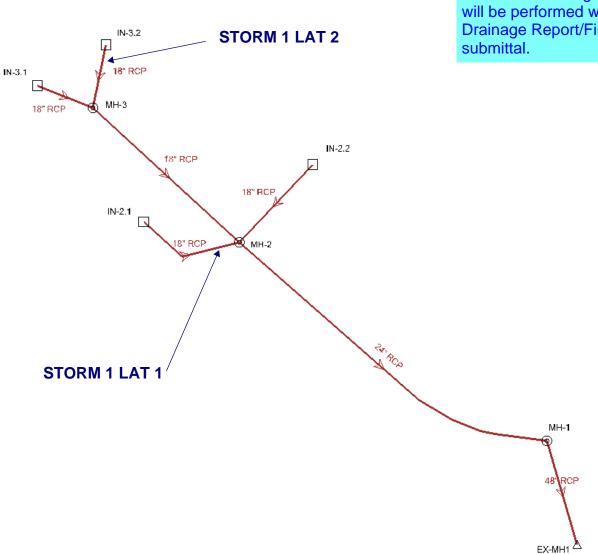


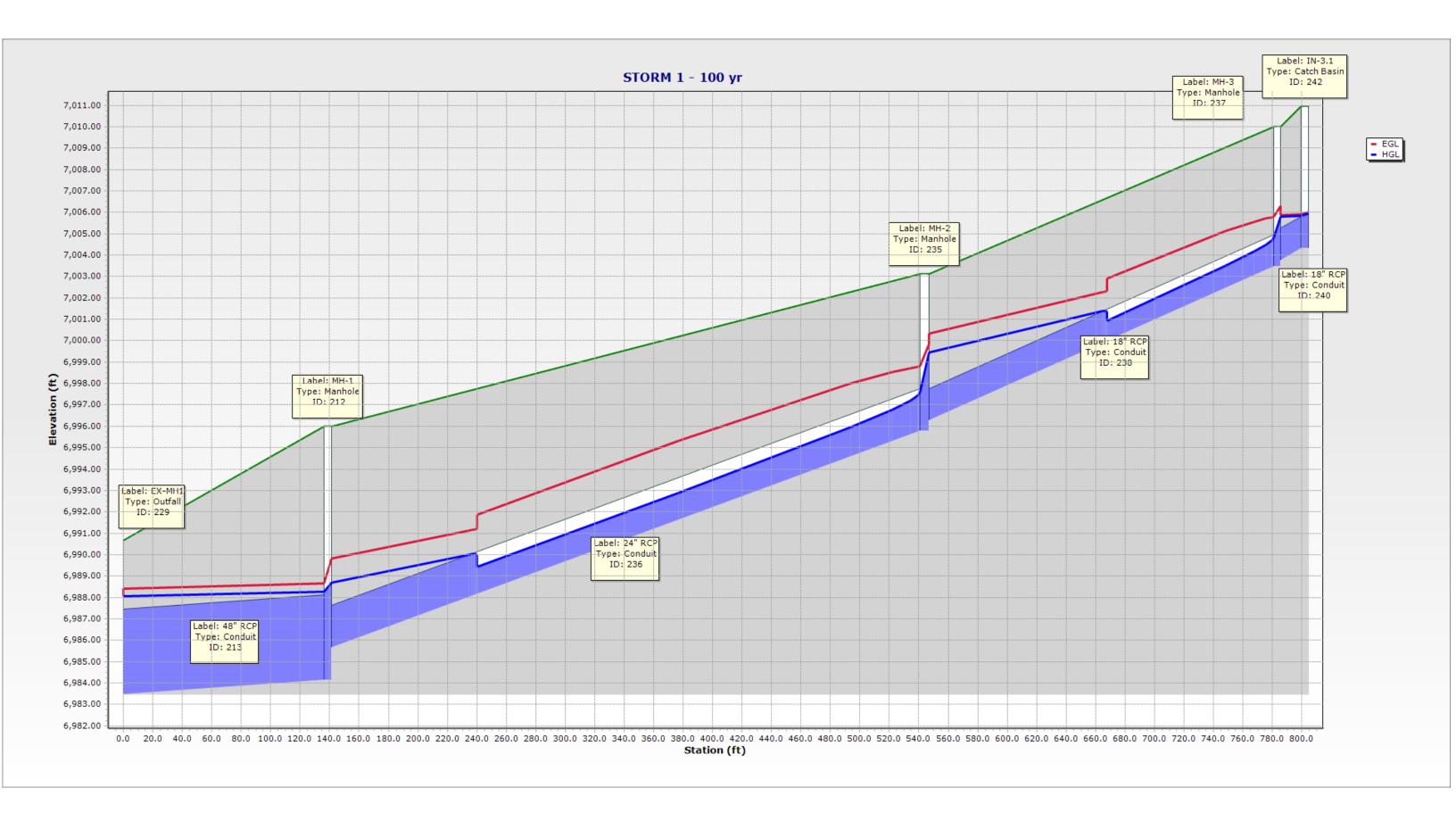

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	4.9	13.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	6.5	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	67	%

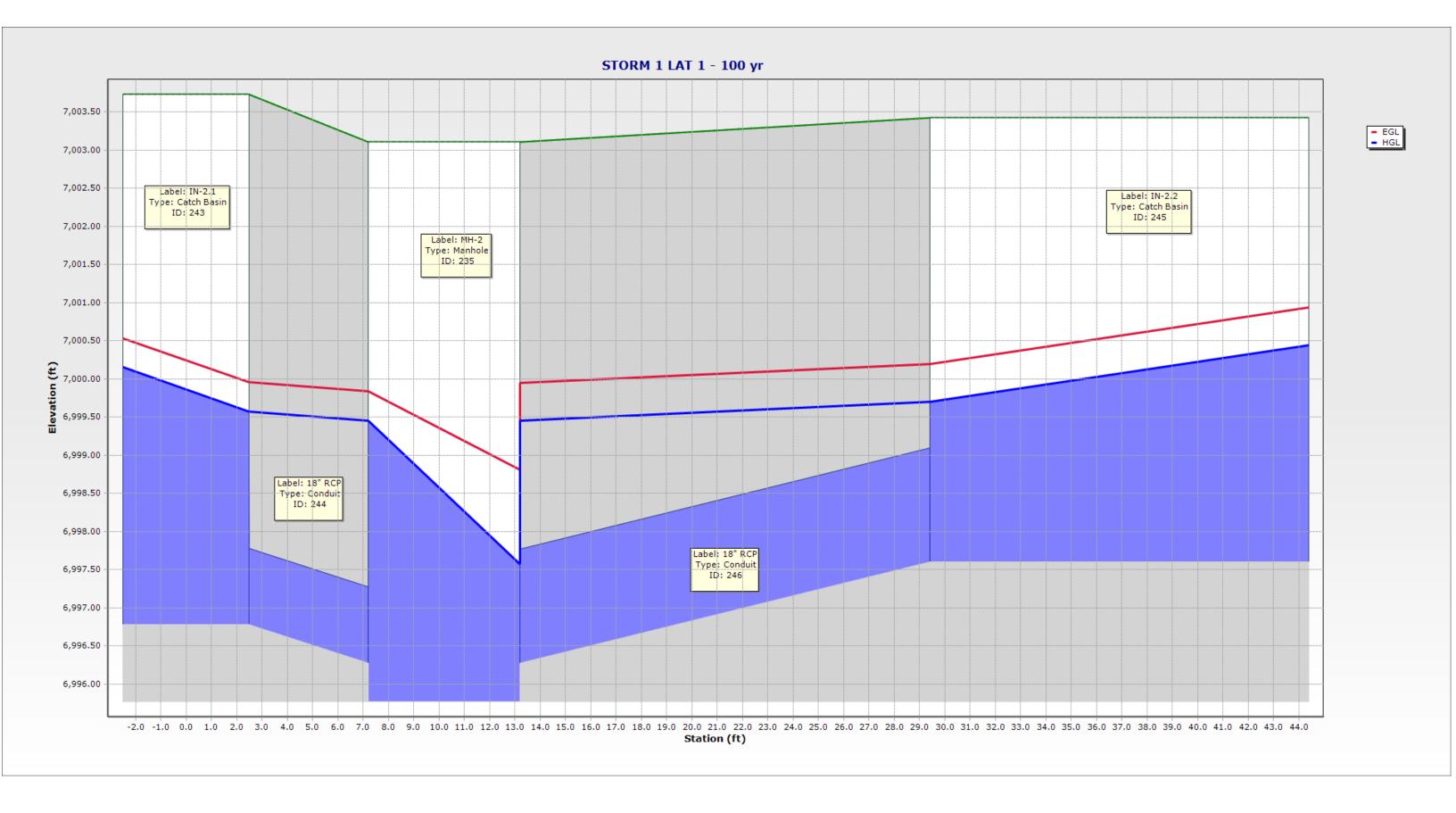


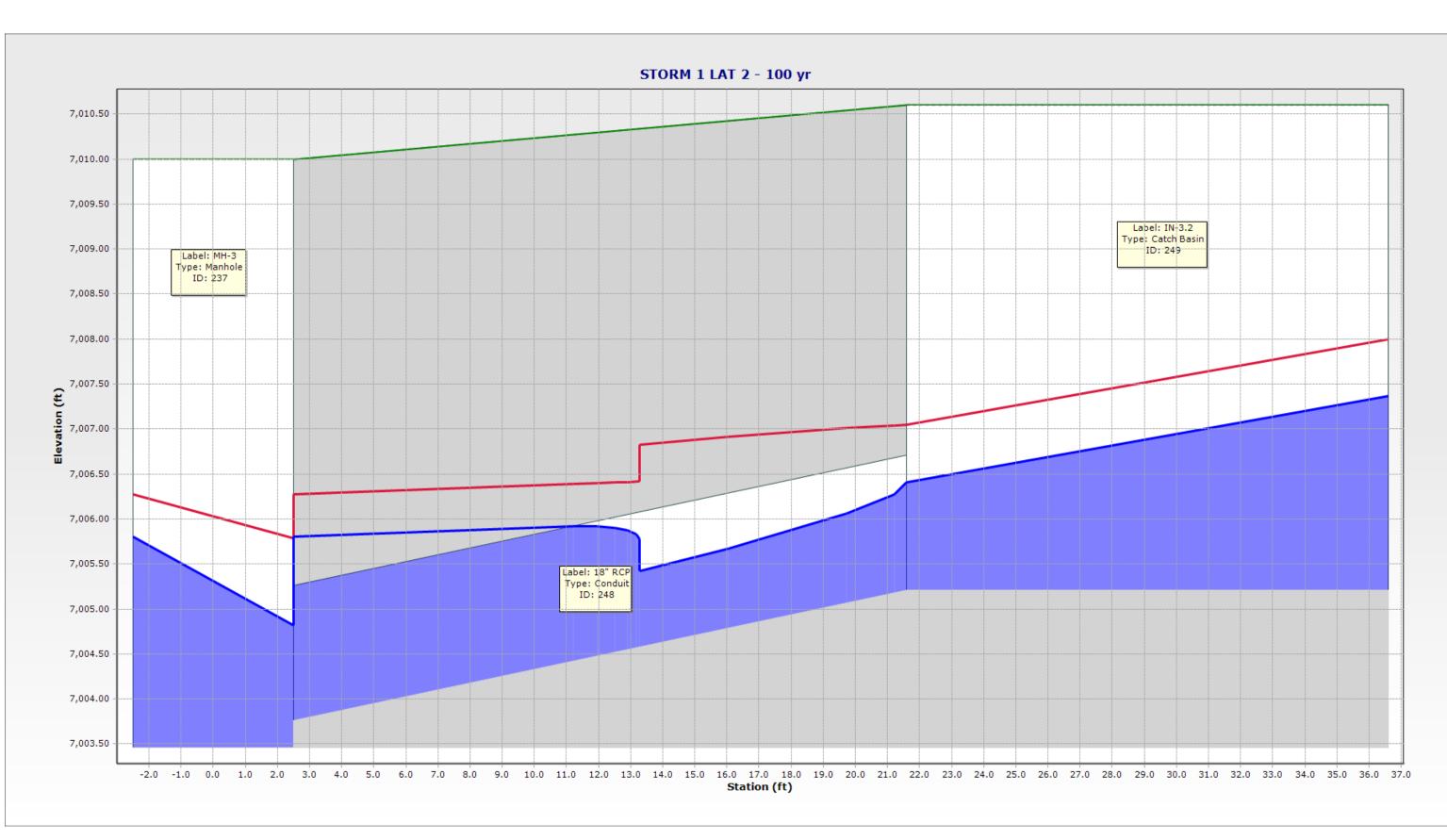


Design Information (Input)	1	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.1	13.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	6.2	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	69	%

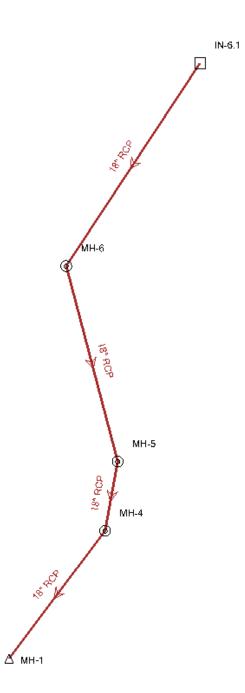


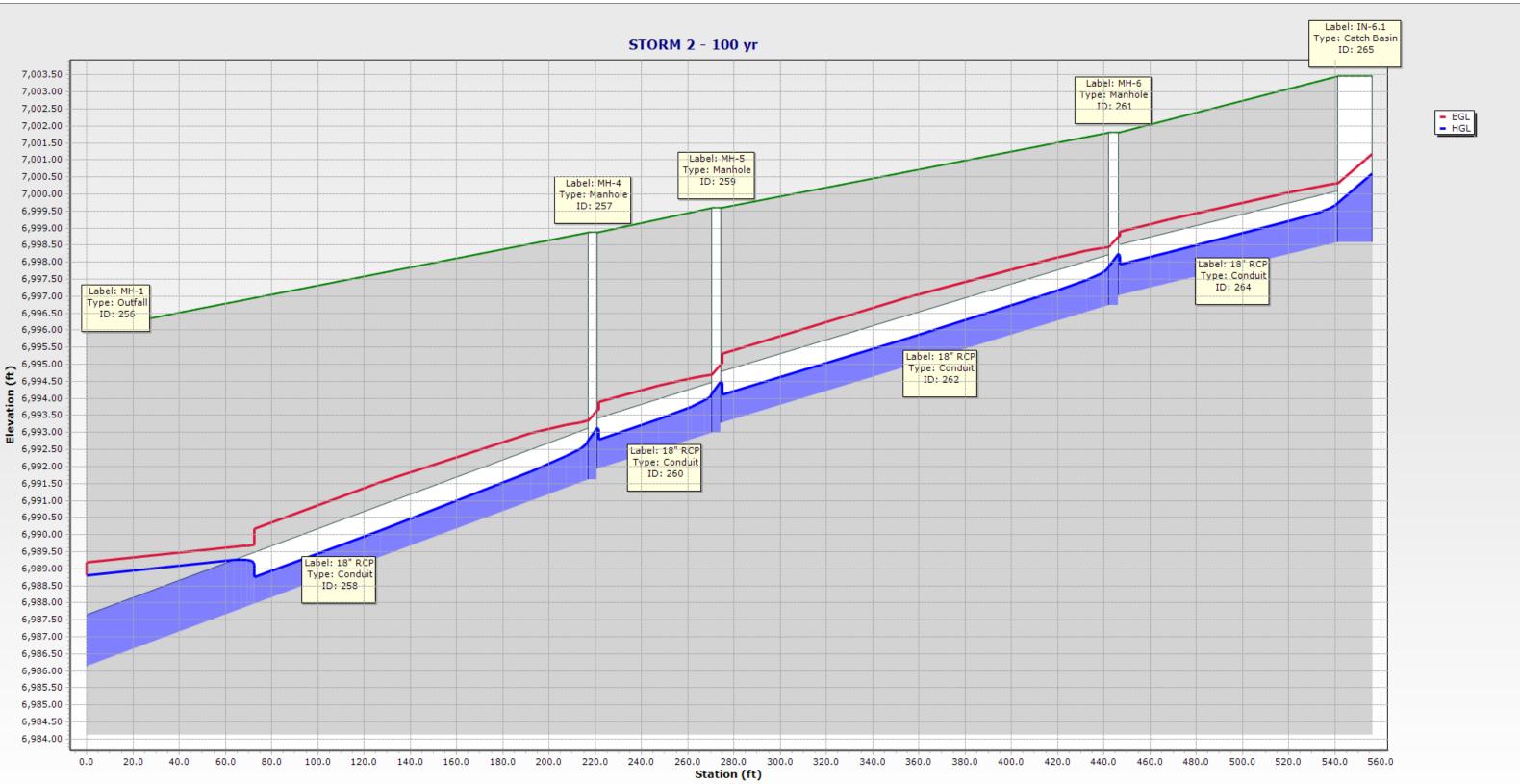



Design Information (Input)	1	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.6	14.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.1	8.1	cfs
Capture Percentage = Q_a/Q_o =	C% =	98	65	%


STORM 1 NETWORK LAYOUT

Cursory review only was done on storm sewer design. Final review will be performed with Final Drainage Report/Final Plat submittal.

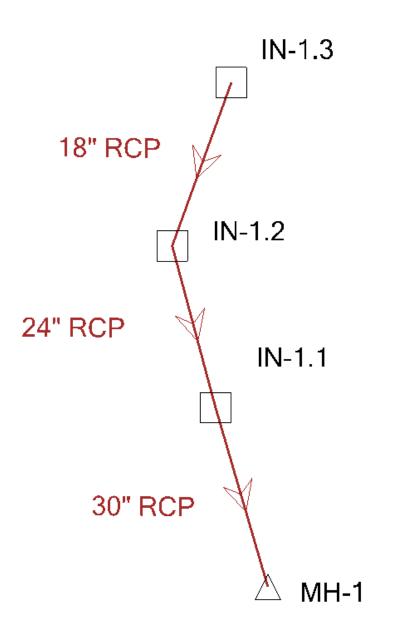

STORM 1: 100 YR FLEX TABLE

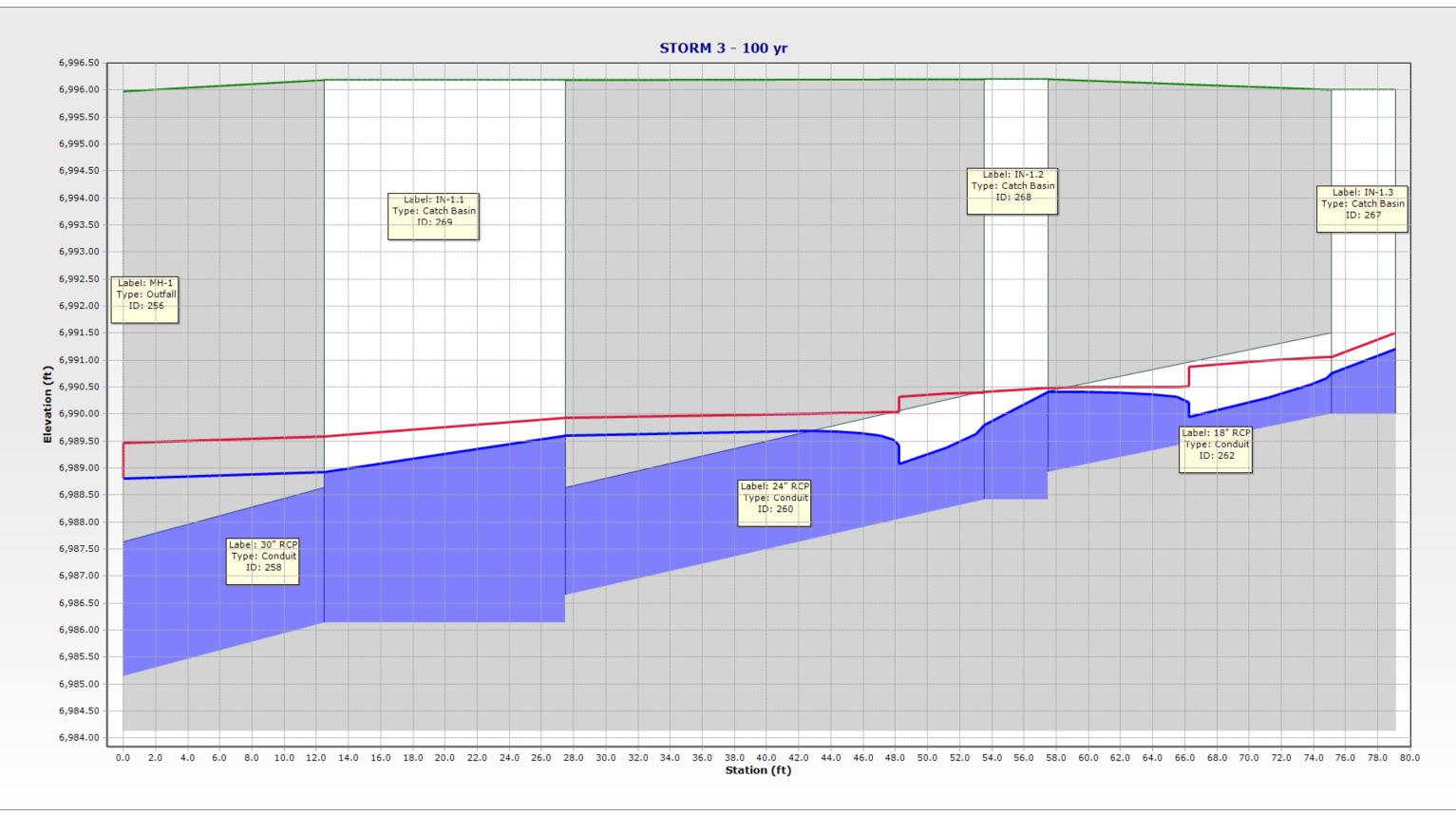

Label	ID	Upstream Structure	Flow (cfs)	Flow / Capacity (Design) (%)	Length (Unified) (ft)	Velocity (ft/s)	Froude Number (Normal)	Depth (Normal) (ft)	Depth (Critical) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss (ft)
48" RCP	213	MH-1	60.50	60.1	138.6	4.81	1.094	2.24	2.34	6,988.65	6,988.40	6,988.29	6,988.04	0.25
24" RCP	236	MH-2	26.60	74.4	405.2	12.47	2.084	1.29	1.80	6,998.81	6,989.82	6,997.57	6,988.70	8.87
18" RCP	238	MH-3	13.30	73.1	239.5	11.25	2.191	0.95	1.36	7,005.79	7,000.33	7,004.82	6,999.45	5.37
18" RCP	240	IN-3.1	3.80	21.1	18.7	2.15	2.449	0.47	0.75	7,005.90	7,005.88	7,005.83	7,005.81	0.02
18" RCP	244	IN-2.1	3.90	49.0	10.2	4.97	2.863	0.49	0.84	6,999.96	6,999.84	6,999.58	6,999.45	0.12
18" RCP	246	IN-2.2	10.00	42.7	26.7	5.66	3.097	0.68	1.22	7,000.19	6,999.95	6,999.70	6,999.45	0.24
18" RCP	248	IN-3.2	9.70	41.4	29.1	12.64	3.106	0.67	1.20	7,007.05	7,006.28	7,006.41	7,005.81	0.60
Upstream Structure Hydraulic Grade Line (In) (ft)	Upstream Structure Velocity (In- Governing) (ft/s)	Upstream Structure Headloss Coefficient	Upstream Structure Headloss (ft)	(Start) (ft)	Elevation Ground (Stop) (ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Conduit Description						
6,988.70	8.47	1.160	0.42		6,995.98	6,983.46	-	Circle - 48.0 in						
6,999.45	4.97	1.520	1.88	6,995.98	7,003.11	6,985.65		Circle - 24.0 in						
7,005.81	5.49	1.020	0.99	7,003.11	7,010.00	6,996.27		Circle - 18.0 in						
7,005.94	2.15	1.500	0.11	7,010.00	7,010.95	7,003.76		Circle - 18.0 in						
7,000.15	4.97	1.500	0.57	7,003.11	7,003.73	6,996.27		Circle - 12.0 in						
7,000.44	5.66	1.500	0.75	7,003.11	7,003.42	6,996.27		Circle - 18.0 in						
7,007.36	6.39	1.500	0.95	7,010.00	7,010.60	7,003.76	7,005.21	Circle - 18.0 in						

FlexTable: Conduit Table

StormCAD [10.03.03.44] Page 1 of 1

STORM 2 NETWORK LAYOUT


STORM 2: 100 YR FLEX TABLE


Label	ID	Upstream	Flow	Flow / Capacity	Length (Unified)	Velocity	Froude Number	Depth (Normal)	Depth (Critical)	Energy Grade	Energy Grade	Hydraulic Grade	Hydraulic Grade	Headloss
		Structure	(cfs)	(Design)	(ft)	(ft/s)	(Normal)	(ft)	(ft)	Line (In)	Line (Out)	Line (In)	Line (Out)	(ft)
				(%)						(ft)	(ft)	(ft)	(ft)	
18" RCP	258	MH-4	8.80	53.0	219.0	9.54	2.143	0.78	1.15	6,993.34	6,989.19	6,992.77	6,988.80	3.97
18" RCP	260	MH-5	8.80	59.5	53.4	8.74	1.873	0.83	1.15	6,994.70	6,993.65	6,994.13	6,993.13	0.99
18" RCP	262	MH-6	8.80	59.2	171.8	8.76	1.883	0.83	1.15	6,998.44	6,995.01	6,997.87	6,994.49	3.38
18" RCP	264	IN-6.1	8.80	68.3	104.4	7.85	1.581	0.91	1.15	7,000.31	6,998.75	6,999.74	6,998.23	1.50
Upstream	Upstream	Upstream	Upstream	Elevation Ground	Elevation Ground	Invert (Start)	Invert (Stop)	Conduit	Ĩ					
Structure	Structure	Structure	Structure	(Start)	(Stop)	(ft)	(ft)	Description						
Hydraulic Grade	Velocity (In-	Headloss	Headloss	(ft)	(ft)									
Line (In)	Governing)	Coefficient	(ft)											
(ft)	(ft/s)													
6,993.13	5.74	0.640	0.37	6,995.98	6,998.87	6,986.14	6,991.62	Circle - 18.0 in						
6,994.49	5.74	0.640	0.37	6,998.87	6,999.60	6,991.92	6,992.98	Circle - 18.0 in						
6,998.23	5.74	0.640	0.37	6,999.60	7,001.80	6,993.28	6,996.72	Circle - 18.0 in						
7,000.59	6.06	1.500	0.86	7,001.80	7,003.01	6,997.02	6,998.59	Circle - 18.0 in						

FlexTable: Conduit Table

StormCAD [10.03.03.44] Page 1 of 1

STORM 3 NETWORK LAYOUT

STORM 3: 100 YR FLEX TABLE

Label	ID	Upstream Structure	Flow (cfs)	Flow / Capacity (Design) (%)	Length (Unified) (ft)	Velocity (ft/s)	Froude Number (Normal)	Depth (Normal) (ft)	Depth (Critical) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss (ft)
30" RCP	258	IN-1.1	32.10	35.0	20.0	6.54	3.428	1.02	1.93	6,989.59	6,989.46	6,988.92	6,988.80	0.12
24" RCP	260	IN-1.2	14.40	28.4	35.5	13.89	3.337	0.73	1.37	6,990.40	6,989.93	6,989.79	6,989.60	0.19
18" RCP	262	IN-1.3	3.90	16.6	21.6	9.84	3.192	0.41	0.76	6,991.05	6,990.49	6,990.76	6,990.42	0.34
Upstream Structure Hydraulic Grade Line (In) (ft)	Upstream Structure Velocity (In- Governing) (ft/s)	Upstream Structure Headloss Coefficient	Upstream Structure Headloss (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Conduit Description						
6,989.60 6,990.42	4.58 2.21	1.020 1.020	0.68 0.63	6,995.98 6,996.19	6,996.19 6,996.20	6,985.14 6,986.64	,	Circle - 30.0 in Circle - 24.0 in						
6,991.20	4.37	1.500	0.45	6,996.20	6,996.00	6,988.92	6,990.00	Circle - 18.0 in	ļ					

FlexTable: Conduit Table

StormCAD [10.03.03.44] Page 1 of 1

BACKGROUND

Final Drainage Report Sterling Ranch Filing No. 2

Sub-basin A3 ($Q_5=11.1$ cfs, $Q_{100}=24.7$ cfs) consists of approximately 6.76 acres and is the north western most portion of the Sterling Ranch Filing No. 2 Phase 1 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type-R on-grade inlet at DP 3. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1 & A2.

Sub-basin A4 ($Q_5=3.7$ cfs, $Q_{100}=7.4$ cfs) consists of approximately 1.51 acres and is the southern portion of Alzada Drive and this basin is primarily single-family residential(Copper Chase at Sterling Ranch) and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 10' Type-R on-grade inlet at DP 4. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A3.

Sub-basin A5 (Q_5 =4.1 cfs, Q_{100} =8.3 cfs) consists of approximately 1.70 acres and is the western portion of Bynum Drive. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 5. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A4.

Sub-basin A6A ($Q_5=2.2$ cfs, $Q_{100}=4.1$ cfs) consists of approximately 0.53 acres. This basin will serve as a tract including mail kiosks, parking, landscaping and sidewalks. Runoff from this sub-basin will sheet flow to DP 6A where it flows via curb and gutter to the 15' Type R inlet at DP6. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A5.

Sub-basin A6 ($Q_5=3.3$ cfs, $Q_{100}=6.6$ cfs) consists of approximately 1.37 acres and is the eastern portion of Bynum Drive. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R inlet on-grade inlet at DP 6. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A6A.

Sub-basin A7 ($Q_5=27.5$ cfs, $Q_{100}=60.6$ cfs) represents the future Copper Chase at Sterling Ranch development and consists of approximately 19.00 acres. This basin is primarily single-family residential and open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 36" RCP storm sewer stub at DP 7 with sediment control structure. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A6. Prior to being developed, storm runoff from this sub-basin will overland flow to temporary swales, where the flows will be captured by an interim 36" FES and piped to Pond W5.

Sub-basin A8 ($Q_5=3.0$ cfs, $Q_{100}=6.3$ cfs) consists of approximately 1.48 acres and is the south western portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 8. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A7.

Sub-basin A9 ($Q_5=1.9$ cfs, $Q_{100}=3.7$ cfs) consists of approximately 0.61 acres and is the south eastern portion of Sterling Ranch Road. This basin is comprised primarily of the proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 9. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A8.

Final Drainage Report Sterling Ranch Filing No. 2

Sub-basin A10 ($Q_5=9.2$ cfs, $Q_{100}=17.3$ cfs) consists of approximately 2.61 acres and is the south eastern portion of Marksheffel Road. This basin is comprised primarily of the proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 10. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A9.

Sub-basin A11 ($Q_5=9.5$ cfs, $Q_{100}=18.1$ cfs) consists of approximately 2.89 acres and is the north portion of Marksheffel Road. This basin is comprised primarily of the proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 11. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A10.

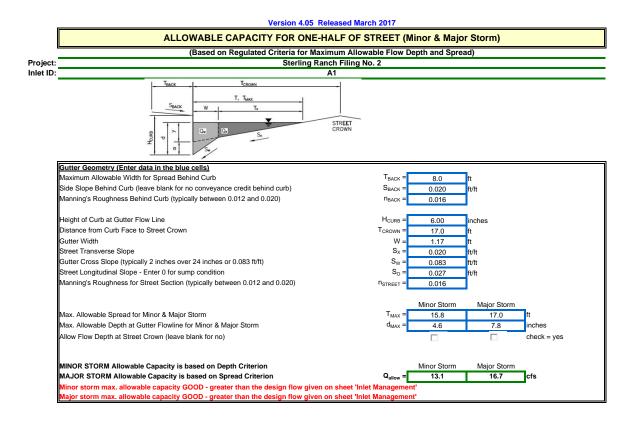
Sub-basin A12 ($Q_5=1.9$ cfs, $Q_{100}=9.5$ cfs) consists of approximately 3.87 acres and represents the open space area between the Sterling Ranch Filing No. 2 Phases 1 & 2 developments. This basin is primarily open space. This basin also contains a 50' and 30' gas easement that contain 3 major gas lines. Runoff from this sub-basin will be conveyed via sheet flow and earthen swale to an area inlet at DP 12. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A11.

Sub-basin A13 ($Q_5=15.7$ cfs, $Q_{100}=34.6$ cfs) consists of approximately 9.65 acres and is the northern portion of the future Sterling Ranch Phase 2 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be captured by a storm sewer stub at DP 13. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A12. Prior to being developed, storm runoff from this sub-basin will overland flow to temporary swales, where the flows will be captured by an interim 36" FES and piped to Pond W5.

Sub-basin A14 ($Q_5=16.0$ cfs, $Q_{100}=37.9$ cfs) consists of approximately 11.76 acres and is the proposed future school site on the northern side of Sterling Ranch Road. Runoff from this sub-basin will be routed to a 36" RCP storm sewer stub at DP 14. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A13. Prior to being developed, storm runoff from this sub-basin will overland flow to Sterling Ranch Road, where the flows will be captured by inlets and piped to Pond W5.

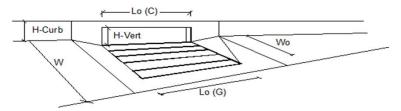
Sub-basin A15 ($Q_5=5.4$ cfs, $Q_{100}=11.7$ cfs) consists of approximately 2.91 acres and is the north eastern portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 15. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A14.

Sub-basin A16 (Q_5 =4.4 cfs, Q_{100} =9.6 cfs) consists of approximately 2.34 acres and is the south eastern portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 16. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A15.


Sub-basin A17 ($Q_5=1.4$ cfs, $Q_{100}=4.7$ cfs) consists of approximately 1.76 acres and is the open space located along the western portion of the sterling Ranch Phase 2 development south of Sterling Ranch Road. This basin is primarily single-family open space with a small amount of lot runoff. Runoff from this sub-basin will be captured by a future Type C inlet at DP 17 and coveyed via sheet flow

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

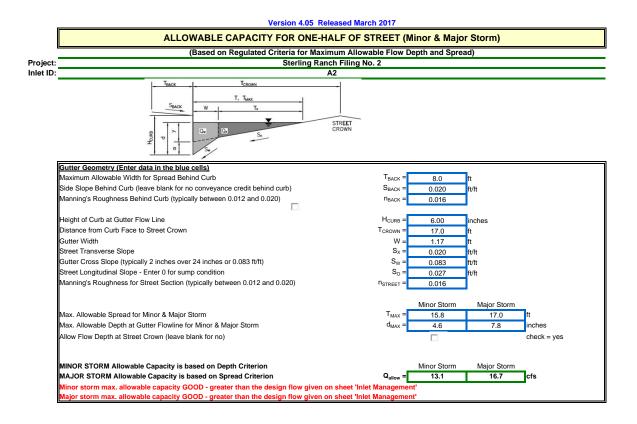
Subdivision: Location: esign Storm:	El Paso Co	anch Fil ounty	ing No.	2												Са	oject N Projec culate Checke [t No.: d By: d By:	2518	8.01	nch Su	bdivis	sion	
		1		DIRF	CT RU	NOFF	-		T)TAL F	RUNOF	F	STRF	et/sw	/ALF		PIF				/EL TIN	ΛF		
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)		Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS	
	1	A1	2.06	0.51	9.7	1.0	05 4.17	4.4					0.2	0.04	3.3	4.2	1.01	2.0	18	652 5	3.6 7.2	3.0 0.0	Dion-grade inlet, carryover flow to DP 5	
	2	A2	0.82	0.53	9.1	0.4	44 4.27	1.9								1.9	0.44	2.0	18	27	5.8	0.1	On-grade inlet Piped to DP 1.0	
	1.0								9.7	1.45	4.17	6.0				6.0	1.45	3.0	18		9.1	0.6	5 Sum of DP 1 & DP 2, piped to DP 1.2	
	3	A3	6.76	0.47	15.0	3.1	16 3.53	11.1						0.47		9.5	2.69	4.7	18		12.2	2.1 0.0	I On-grade inlet, carryover flow to DP 5 D Piped to DP 1.1	
	4	A4	1.51	0.60	10.2	0.9	91 4.10	3.7					0.1	0.03	2.9	3.6	0.88	4.7	18	395 0	3.4	1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1	
	1.1								15.0	3.57	3.52	12.6				12.6	3.57	1.0	24	74	7.4	0.2	2 Sum of DP 3 & DP 4, piped to DP 1.2	
	1.2								15.2	5.02	3.50	17.6				17.6	5.02	3.3	24	319	12.5	0.4	4 Sum of DP 1.0 & DP 1.1, piped to DP 1.3	
	6A	A6A	0.53	0.81	5.0	0.4	43 5.17	2.2															Overland Flow to DP1.3A	
	6	A6	1.37	0.58	10.0	0.7	79 4.14	3.3								3.3	0.79	2.0	18	0	6.7	0.0	On-grade inlet Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A	
	1.3A								10.0	1.22	4.14	5.0				5.0	1.22	1.0	24	36	5.7	0.1	I Sum of DP 6 & DP 6A, piped to DP 1.3	
	5	A5	1.70	0.59	9.9	0.9	99 4.14	4.1	17.0	1.53	3.33	5.1				5.1	1.53	2.0	18	0	7.6	0.0	On-grade inlet Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3	
	1.3								17.0	7.77	3.33	25.9				25.9	7.77	1.1	36	620	9.2	1.1	Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4 Future storm infrastructure from Copper Chase Subdivision	
	7	A7	19.00	0.45	18.3	8.5	55 3.22	27.5								27.5	8.55	1.5	42	20	10.3	0.0	Piped to DP 1.4	
	1.4								18.4	16.32	3.22	52.5				52.5	16.32	0.5	48	26	8.2	0.1	Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade inlet, carryover flow to DP 11	
	8	A8	1.48	0.56	13.9	0.8	33 3.63	3.0								3.0	0.83	2.0	18	20	6.6	0.1	Piped to DP 1.5	
	1.5								18.4	17.15	3.21	55.1				55.1	17.15	0.5	48	91	8.3	0.2	2 Sum of DP 1.4 & DP 8, piped to DP 1.6 On-grade inlet	
	9	A9	0.61	0.73	8.7	0.4	44 4.34	1.9			4.34					2.1	0.48	2.0	18				Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6	
	1.6	<u> </u>								17.63	3.20	56.4	0.5	0.11	1.5		17.63			955	2.4	0.2	2 Sum of DP 1.5 & DP 9, piped to DP 1.8 On-grade inlet, carryover flow to DP 20	
	10	A10	2.61			1		9.2					0.6	0.15	1.5	8.7				118 1049	9.5 2.4	0.2	2 Piped to DP 1.7 I On-grade inlet, carryover flow to DP 21	
	11	A11	2.89	0.76	8.7	2.2	20 4.34	9.5								8.9							Piped to DP 1.7	
	1.7	-									4.34					17.3							Sum of DP 10 & DP 11, piped to DP 1.8	
	1.8	000	17.00	0.40	14.0		25 2 22	12.0		21.63	3.18	68.8					21.63				14.4		5 Sum of DP 1.6 & DP 1.7, piped to DP 2.7 Future flow released from Barbarick Subdivision	
	0S2	OS2 A12	17.00 3.87		14.0 11.9											13.8							Piped to DP 2.0 Type C inlet Piped to DP 2.0	
	12 2.0	A12	3.07	0.13	11.9	0.4	1) J.00	1.9		6.74	3.45	22.2				23.2							I sum of DP OS2 & DP 12, Piped to DP 2.1	
	13	A13	0 45	0.45	14.0	1.2	34 3.62	15.7	13.7	0.74	J.4J	∠J.Z				15.7					9.1		Puture storm infrastructure from Sterling Ranch Phase 2 Piped to DP 2.1	


STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

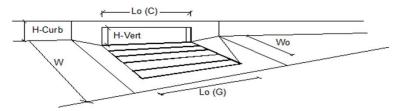
	Sterling Ran El Paso Cour 100-Year		g No. 2													Ca	oject N Projec alculate Checke	t No.: d By:	2518 AAM	3.01	nch S	ubdivi	sion
	DIRECT RUNOFF TOTAL RUNOFF														ALE	1	PIPE				/EL TI	MF	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Qstreet/swale (CfS)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1	2.06	0.65	9.7	1.34	7.01	9.4					2.8	0.40	3.3	6.6	0.94	2.0	18	-652 5	3.6 8.2	3.0 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.66	9.1	0.54	7.17	3.9					0.1	0.01	3.3	3.8	0.53	2.0	18	639 27	3.6 7.0	2.9	On-grade inlet, carryover flow to DP 6 Piped to DP 1.0
	1.0								9.7	1.47	7.00	10.3				10.3	1.47		18		10.6	0.5	Sum of DP 1 & DP 2 piped to DP 1 2
	3	A3	6.76	0.62	15.0	4.17	5.92	24.7					10.0	1.69	2.9	14.7	2.48		18	426	3.4 13.6	2.1	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	4	A4	1.51					7.4					1.6	0.24	2.9		0.84			395		1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	1.1	7.4	1.01	0.71	10.2	1.00	0.00	7.1	15.0	2 22	5.91	19.7				19.7	3.33						Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.1		5.89					28.2	4.80					1	Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.88	5.0	0.47	8.68	4.1	13.1	4.00	3.07	20.2				20.2	4.00	3.3	24	317	13.7	0.4	Overland Flow to DP1.3A
									10.0	0.0/	(04	(7	1.3	0.18	0.7	5.4	0.78	2.0	10	696 0		7.0	On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	6	A6	1.37	0.70	10.0	0.95	6.94	6.6	10.0		6.94	6.7				5.4 8.7				36		1	
	1.3A	4.5	1 70	0.70		1 10	(05	0.0	10.0		6.94	8.7	6.5	1.17	0.7		1.25		24	664	1.7	6.6	Sum of DP 6 & DP 6A, piped to DP 1.3 On-grade inlet, carryover flow to DP 8
	5	A5	1.70	0.70	9.9	1.19	6.95	8.3	17.0		5.59	19.6				13.1	2.34		18	0			Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	8.39	5.59	46.9				46.9	8.39		36				Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4 Future storm infrastructure from Copper Chase Subdivision
	7	A7	19.00	0.59	18.3	11.21	5.41	60.6								60.6	11.21		42		12.7		Piped to DP 1.4
	1.4									19.60			1.9	0.41	0.7	105.9	19.60		48	26 195	1.7	1.9	Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade inlet, carryover flow to DP 11
	8	A8	1.48	0.70	13.9	1.04	6.10	6.3	23.7		4.76					10.6	2.23		18	20			Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
	1.5					-				21.83			0.3	0.05	0.7	103.9	21.83		48	91 140	1.7	1.4	Sum of DP 1.4 & DP 8, piped to DP 1.6 On-grade inlet, carryover flow to DP 11
	9	A9	0.61	0.83	8.7	0.51	7.29	3.7	21.2		5.04	4.8				4.5	0.89		18	13		1	Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								23.9	22.72	4.74	107.7	4.5	0.59	1.5	107.7	22.72	0.5	48	955	24	65	Sum of DP 1.5 & DP 9, piped to DP 1.8 On-grade inlet, carryover flow to DP 20
	10	A10	2.61	0.88	7.9	2.29	7.53	17.3					6.1	0.90	1.5	12.8	1.70	2.5	18	118 1049	10.3	0.2	Piped to DP 1.7 On-grade inlet, carryover flow to DP 21
	11	A11	2.89	0.86	8.7	2.48	7.28	18.1	10.6	2.94	6.77	19.9				13.8	2.04	2.5	18		10.4		Sum of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7
	1.7								10.6	3.74	6.77	25.3				25.3	3.74	1.0	24	8	8.1	0.0	Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								24.0	26.45	4.72	125.0				125.0	26.45	2.0	54	517	17.0	0.5	Sum of DP 1.6 & DP 1.7, piped to DP 2.7 Future flow released from Barbarick Subdivision
	OS2	OS2	17.00	0.62	12.0	10.54	3.71	39.1								39.1	10.54	1.0	30	787	9.5	1.4	Piped to DP 2.0 Type C inlet
	12	A12	3.87	0.38	11.9	1.47	6.49	9.5								9.5	1.47	2.0	18	17	8.9	0.0	Piped to DP 2.0
	2.0								13.4	12.01	6.20	74.5				74.5	12.01	1.0	48	52	11.6	0.1	Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	9.65	0.59	14.0	5.69	6.08	34.6								34.6	5.69	1.5	30	200	11.0	0.3	Future storm infrastructure from Sterling Ranch Phase 2 Piped to DP 2.1

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

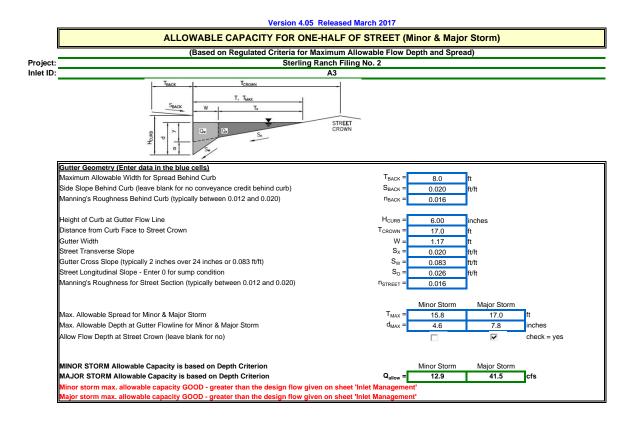


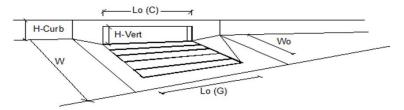
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.2	6.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.2	2.8	cfs
Capture Percentage = Q _a /Q _o =	C% =	95	70	%


STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision: Location: esign Storm:	El Paso Co		ing No.	2												Pi Calci	roject ulatec ieckec	No.:	25188 AAM		iubdiv	rision
	1	1		מוח	ECT RU	NOEE			т		UNOF	-	CTDEE	T/SWAL	E		PIP	-	1/ 3/ 2	TRAVEL T	INTE	
		-		DIRI		NOFF						r .		1/SVVAL	.C	<u> </u>	PIP	Έ.	(Sé	IKAVELI		
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	(%) adole (%)	Upipe (CTS)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft) Velocity (fps)		
	1	A1	2.06	0.51	9.7	1.05	6 4.17	4.4					0.2	0.04	3.3	4.2	1.01	2.0	18	652 3. 5 7.	6 3 2 0	.0 On-grade inlet, carryover flow to DP 5 .0 Piped to DP 1.0
	2	A2	0.82	0.53	9.1	0.44	4.27	1.9								1.9	0.44	2.0	18	27 5.		On-grade inlet
	1.0								9.7	1.45	4.17	6.0				6.0	1.45	3.0	18	335 9.	1 0	
	3	A3	6 76	0.47	15 0	3 16	3.53	11.1						0.47	2.9		2.69		18	426 3.	4 2	2.1 On-grade inlet, carryover flow to DP 5 3.0 Piped to DP 1.1
	4	A4	1.51) 10.2								0.1	0.03	2.9		0.88			395 3. 0 9.	4 1	9 On-grade inlet, carryover flow to DP 5 0.0 Piped to DP 1.1
	1.1								15.0	3 57	3.52	12.6					3.57					.2 Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.2			17.6					5.02			319 12.		0.4 Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.81	5.0	0.43	5.17	2.2														Overland Flow to DP1.3A
	6	A6	1.37		3 10.0			3.3								3.3	0.79	2.0	18	0 6.	7 0	On-grade inlet).0 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.22	4.14	5.0					1.22		24	36 5.		1.1 Sum of DP 6 & DP 6A, piped to DP 1.3
	5	A5	1.70	0.59	9.9	0.99	4.14	4.1	17.0		3.33	5.1					1.53		18	07.		On-grade inlet 0.0 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	7.77	3.33	25.9			2	25.9	7.77	1.1	36	620 9.		.1 Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.45	5 18.3	8.55	3.22	27.5							2	27.5	8.55	1.5	42	20 10.		Future storm infrastructure from Copper Chase Subdivision 0.0 Piped to DP 1.4
	1.4								18.4	16.32	3.22	52.5			5	52.5 ⁻	16.32	0.5	48	26 8.	2 0	.1 Sum of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1.48	0.56	5 13.9	0.83	3.63	3.0								3.0	0.83	2.0	18	20 6.	6 0	On-grade inlet, carryover flow to DP 11).1 Piped to DP 1.5
	1.5								18.4	17.15	3.21	55.1			5	5.1 ·	17.15	0.5	48	91 8.	3 0	.2 Sum of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.73	8 8.7	0.44	4.34	1.9	8.7	0.48	4.34	2.1				2.1	0.48	2.0	18	13 5.	8 0	On-grade inlet).0 Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								18.6	17.63	3.20	56.4			5	6.4 ·	17.63	0.5	48	95 8.	3 0	0.2 Sum of DP 1.5 & DP 9, piped to DP 1.8
	10	A10	2.61	0.79	7.9	2.05	6 4.49	9.2						0.11	1.5	8.7	1.94	2.5	18		5 0	2.2 Piped to DP 1.7
	11	A11	2.89	0.76	8.7	2.20	4.34	9.5					0.6	0.15	1.5	8.9	2.05	2.5	18	1049 2. 0 9.		.1 On-grade inlet, carryover flow to DP 21 .0 Piped to DP 1.7
	1.7								8.7	3.99	4.34	17.3			1	7.3	3.99	1.0	24	87.	9 0	.0 Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								18.8	21.63	3.18	68.8			6	8.8	21.63	2.0	54	517 14.	4 0).6 Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	OS2	OS2	17.00	0.49	14.0	6.25	5 2.20	13.8							1	3.8	6.25	1.0	30	787 7.	5 1	Future flow released from Barbarick Subdivision .7 Piped to DP 2.0
	12	A12	3.87	0.13	3 11.9	0.49	3.86	1.9								1.9	0.49	2.0	18	17 5.	6 0	Type C inlet .1 Piped to DP 2.0
	2.0								15.7	6.74	3.45	23.2			2	23.2	6.74	1.0	48	52 8.	4 0	1.1 Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	9.65	0.45	5 14.0	4.34	3.62	15.7							1	5.7	4.34	1.5	30	200 9.	1 0	Future storm infrastructure from Sterling Ranch Phase 2 1.4 Piped to DP 2.1

Subdivision: Location: sign Storm:	El Paso Coun	ch Filing Ity	j No. 2													Ca	oject N Projec alculate Checke	t No.: d By:	2518 AAM	8.01	inch S	Subdivi	sion
				DIR	ECT RU	JNOFF			T	OTAL F	RUNOF	F	STRE	ET/SW	ALE		PIP				/EL T	IME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t_c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t	REMARKS
	1	A1	2.06	0.65	9.7	1.34	7.01	9.4					2.8	0.40	3.3	6.6	0.94	2.0	18	652 5	8.	2 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.66	9.1	0.54	7.17	3.9					0.1	0.01	3.3	3.8	0.53	2.0	18	639 27	3. 7.	6 2.9 0 0.1	On-grade inlet, carryover flow to DP 6 Piped to DP 1.0
	1.0								9.7	1.47	7.00	10.3				10.3	1.47	3.0	18	335	10.	6 0.5	Sum of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.62	15.0	4.17	5.92	24.7					10.0	1.69	2.9	14.7	2.48			426	3. 13.	4 2.1 6 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	4	A4	1.51		10.2		6.88	7.4					1.6	0.24	2.9	5.8	0.84			395	3.	4 1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	1.1								15.0	3,33	5.91	19.7				19.7	3.33				8.		Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.1		5.89					28.2	4.80						Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.88	5.0	0.47	8.68	4.1	10.1		0.07	20.2				20.2	1.00	0.0	21	017	10.	, 0.1	Overland Flow to DP1.3A
	6	A6	1.37	0.70		0.95	6.94	6.6	10.0	0.96	6.94	6.7	1.3	0.18	0.7	5.4	0.78	2.0	18	696 0	1.	7 7.0	On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A	710	1.57	0.70	10.0	0.75	0.74	0.0	10.0		6.94	8.7				8.7	1.25						Sum of DP 6 & DP 6A, piped to DP 1.3
	5	A5	1.70	0.70	9.9	1.19	6.95	8.3			5.59		6.5	1.17	0.7	13.1	2.34			664 0	1.	7 6.6	On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3	7.5	1.70	0.70	7.7	1.17	0.75	0.5	17.0		5.59					46.9	8.39				10.		Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.59	10.2	11.21	5.41	60.6	17.0	0.37	3.37	40.7				60.6	11.21				12.		Future storm infrastructure from Copper Chase Subdivision Piped to DP 1.4
		K/	17.00	0.37	10.5	11.21	5.41	00.0	10.4	10 / 0	F 40	105.0											
	1.4	4.0	1.40	0.70	10.0	1.04	(10	()		19.60			1.9	0.41	0.7	105.9	19.60			26 195	1.	7 1.9	Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade inlet, carryover flow to DP 11
	8	A8	1.48	0.70	13.9	1.04	6.10	6.3			4.76					10.6	2.23						Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
	1.5									21.83			0.3	0.05	0.7		21.83			140	1.	7 1.4	Sum of DP 1.4 & DP 8, piped to DP 1.6 On-grade inlet, carryover flow to DP 11
	9	A9	0.61	0.83	8.7	0.51	7.29	3.7			5.04	4.8				4.5	0.89				7.3		Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								23.9	22.72	4.74	107.7	4.5	0.59	1.5	107.7	22.72			95 955	2.	4 6.5	Sum of DP 1.5 & DP 9, piped to DP 1.8 On-grade inlet, carryover flow to DP 20
	10	A10	2.61				7.53						6.1	0.90	1.5	12.8	1.70			1049		4 7.1	Piped to DP 1.7 On-grade inlet, carryover flow to DP 21
	11	A11	2.89	0.86	8.7	2.48	7.28	18.1	10.6		6.77					13.8	2.04				1		Sum of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7
	1.7								10.6		6.77					25.3	3.74	1.0	24		8.		Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								24.0	26.45	4.72	125.0				125.0	26.45	2.0	54	517	17.0	0 0.5	Sum of DP 1.6 & DP 1.7, piped to DP 2.7 Future flow released from Barbarick Subdivision
	OS2	OS2	17.00	0.62	12.0	10.54	3.71	39.1							<u> </u>	39.1	10.54	1.0	30	787	9.	5 1.4	Piped to DP 2.0 Type C inlet
	12	A12	3.87	0.38	11.9	1.47	6.49	9.5								9.5	1.47	2.0	18	17	8.	9 0.0	Piped to DP 2.0
	2.0								13.4	12.01	6.20	74.5				74.5	12.01	1.0	48	52	11.0	6 0.1	Sum of DP OS2 & DP 12, Piped to DP 2.1 Future storm infrastructure from Sterling Ranch Phase 2
	13	A13	9.65	0.59	14.0	5.69	6.08	34.6								34.6	5.69	1.5	30	200	11.0	0 0.3	Piped to DP 2.1

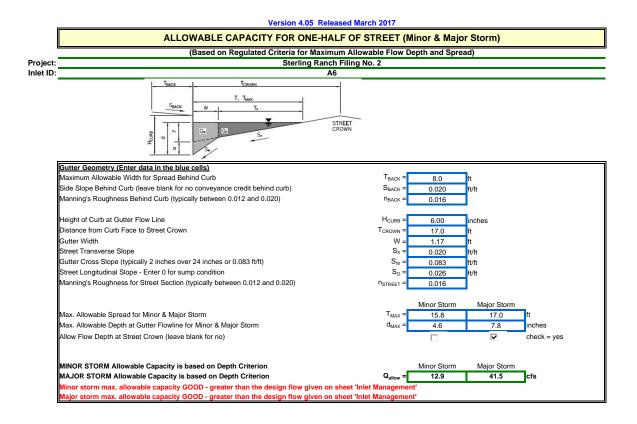

Version 4.05 Released March 2017


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.9	3.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	97	%

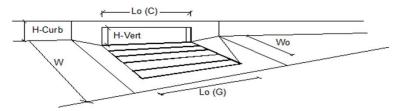
Subdivision: Location: esign Storm:	El Paso Co		ing No.	2												Ca	oject Na Projec Iculate Checke	t No.: d By: d By:	25188	8.01	nch Su	bdivisi	ion
				DIRE	CT RU	NOFE			Τſ	OTAL F		F	STRF	ET/SV	/ΔI F		PIF				EL TIN	٨F	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1	2.06	0.51	9.7	1.05	4.17	4.4					0.2	0.04		4.2	1.01			652 5	3.6 7.2	3.0 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.53	9.1	0.44	4.27	1.9								1.9	0.44	2.0	18	27	5.8	0.1	On-grade inlet Piped to DP 1.0
	1.0								9.7	1.45	4.17	6.0				6.0	1.45	3.0	18	335	9.1	0.6	Sum of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.47	15.0	3.16	3.53	11.1						0.47	2.9	9.5	2.69	4.7	18		12.2	0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	4	A4	1.51	0.60	10.2	0.91	4.10	3.7					0.1	0.03	2.9	3.6	0.88	4.7	18	395 0	3.4 9.2	1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	1.1								15.0	3.57	3.52	12.6				12.6	3.57	1.0	24	74	7.4	0.2	Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.2	5.02	3.50	17.6				17.6	5.02	3.3	24	319	12.5	0.4	Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.81	5.0	0.43	5.17	2.2															Overland Flow to DP1.3A
	6	A6	1.37	0.58	10.0	0.79	4.14	3.3								3.3	0.79	2.0	18	0	6.7	0.0	On-grade inlet Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.22	4.14	5.0				5.0	1.22	1.0	24	36	5.7	0.1	Sum of DP 6 & DP 6A, piped to DP 1.3
	5	A5	1.70	0.59	9.9	0.99	4.14	4.1	17.0	1.53	3.33	5.1				5.1	1.53	2.0	18	0	7.6	0.0	On-grade inlet Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	7.77	3.33	25.9				25.9	7.77	1.1	36	620	9.2	1.1	Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.45	18.3	8.55	3.22	27.5								27.5	8.55	1.5	42	20	10.3	0.0	Future storm infrastructure from Copper Chase Subdivision Piped to DP 1.4
	1.4								18.4	16.32	3.22	52.5				52.5	16.32	0.5	48	26	8.2	0.1	Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade inlet, carryover flow to DP 11
	8	A8	1.48	0.56	13.9	0.83	3.63	3.0								3.0	0.83	2.0	18	20	6.6	0.1	Piped to DP 1.5
	1.5								18.4	17.15	3.21	55.1				55.1	17.15	0.5	48	91	8.3	0.2	Sum of DP 1.4 & DP 8, piped to DP 1.6 On-grade iniet
	9	A9	0.61	0.73	8.7	0.44	4.34	1.9	8.7	0.48	4.34	2.1				2.1	0.48	2.0	18	13	5.8	0.0	Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								18.6	17.63	3.20	56.4	0.5	0.11	1.5	56.4	17.63	0.5	48	95 955	8.3	0.2	Sum of DP 1.5 & DP 9, piped to DP 1.8 On-grade inlet, carryover flow to DP 20
	10	A10	2.61	0.79	7.9	2.05	4.49	9.2						0.11		8.7	1.94	2.5	18		9.5		Piped to DP 1.7 On-grade inlet, carryover flow to DP 21
	11	A11	2.89	0.76	8.7	2.20	4.34	9.5					0.0	0.10	1.5	8.9	2.05	2.5	18	0	9.4	0.0	Piped to DP 1.7
	1.7								8.7	3.99	4.34	17.3				17.3	3.99	1.0	24	8	7.9	0.0	Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								18.8	21.63	3.18	68.8				68.8	21.63	2.0	54	517	14.4	0.6	Sum of DP 1.6 & DP 1.7, piped to DP 2.7 Future flow released from Barbarick Subdivision
	OS2	OS2	17.00	0.49	14.0	6.25	2.20	13.8								13.8	6.25	1.0	30	787	7.5	1.7	Piped to DP 2.0 Type C inlet
	12	A12	3.87	0.13	11.9	0.49	3.86	1.9								1.9	0.49	2.0	18	17	5.6	0.1	Piped to DP 2.0
	2.0								15.7	6.74	3.45	23.2				23.2	6.74	1.0	48	52	8.4	0.1	Sum of DP OS2 & DP 12, Piped to DP 2.1 Future storm infrastructure from Sterling Ranch Phase 2
	13	A13	9.65	0.45	14.0	4.34	3.62	15.7								15.7	4.34	1.5	30	200	9.1	0.4	Piped to DP 2.1

ubdivision: <u>S</u> Location: <u>E</u> ign Storm: <u>1</u>	I Paso Cour		g No. 2													Са	oject Na Project alculateo Checkeo r	: No.: 2 d By: 7	25188 AAM	8.01	inch S	ubdivi	ision
				DIF	RECT RU	JNOFF			Τ	OTAL F	RUNOF	F	STREE	T/SW/	ALE .		PIPE	-	17 37 2		/EL TI	ME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	(in/hr)	Q (cfs)	tc (min)	C*A (ac)	(in/hr)	Q (cfs)	Q _{street/swak} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1 A2	2.06			1.34 0.54	7.01	9.4 3.9					2.8 0.1	0.40 0.01	3.3 3.3	6.6 3.8	0.94	2.0	18 18	652 5 639 27	8.2	0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.0 On-grade inlet, carryover flow to DP 6 Piped to DP 1.0
	1.0								9.7	1.47	7.00	10.3	10.0	1.69	2.9	10.3	1.47	3.0	18	335 426	10.6	0.5	Sum of DP 1 & DP 2, piped to DP 1.2 On-grade inlet, carryover flow to DP 5
	3 4	A3 A4	6.76 1.51				5.92 6.88	24.7 7.4					1.6	0.24	2.9	14.7 5.8	2.48 0.84		18 18	395	13.6 3.4 10.7	1.9	Piped to DP 1.1 On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	1.1 1.2								15.0 15.1		5.91 5.89					19.7 28.2	3.33 4.80		24 24				Sum of DP 3 & DP 4, piped to DP 1.2 Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A 6	A6A A6	0.53				8.68 6.94	4.1	10.0	0.06	6.94	6.7	1.3	0.18	0.7	5.4	0.78	2.0	18	696	1.7	7.0	Overland Flow to DP1.3A On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.25	6.94	8.7	6.5	1.17	0.7	8.7	1.25	1.0	24	36 664	6.7	0.1	Sum of DP 6 & DP 6A, piped to DP 1.3 On-grade inlet, carryover flow to DP 8
	5 1.3	A5	1.70	0.70	9.9	1.19	6.95	8.3	17.0 17.0		5.59 5.59					13.1 46.9	2.34 8.39	2.0 1.1	18 36			1	Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3 Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4 Future storm infrastructure from Copper Chase Subdivision
	7	A7	19.00	0.59	18.3	11.21	5.41	60.6	18.4	19.60	5.40	105.9				60.6 105.9	11.21 19.60	1.5 0.5	42 48			1	Pipel to DP 1.4 Sum of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1.48	0.70	13.9	1.04	6.10	6.3		2.63			1.9	0.41	0.7	10.6	2.23		18		9.1	0.0	On-grade inlet, carryover flow to DP 11 Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
	1.5 9	A9	0.61	0.83	8.7	0.51	7.29	3.7	23.7	21.83 0.95	4.76 5.04		0.3	0.05	0.7	103.9 4.5	21.83 0.89		48 18	140	1.7	1.4	Sum of DP 1.4 & DP 8, piped to DP 1.6 On-grade inlet, carryover flow to DP 11 Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6 10	A10	2.61	0.88	7.9	2.29	7.53	17.3	23.9	22.72	4.74	107.7	4.5	0.59	1.5	107.7 12.8	22.72 1.70		48 18	955 118	2.4 10.3	6.5 0.2	Sum of DP 1.5 & DP 9, piped to DP 1.8 On-grade inlet, carryover flow to DP 20 Piped to DP 1.7
	11 1.7	A11	2.89	0.86	8.7	2.48	7.28	18.1	10.6	2.94	6.77 6.77		6.1	0.90	1.5	13.8 25.3	2.04		18 24		10.4	0.0	On-grade inlet, carryover flow to DP 21 Sum of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7 Sum of DP 10 & DP 11, piped to DP 1.8
	1.8									26.45						125.0	26.45	2.0	54	517	17.0	0.5	Sum of DP 1.6 & DP 1.7, piped to DP 2.7 Future flow released from Barbarick Subdivision
	0\$2 12	OS2 A12	17.00 3.87				3.71 6.49	39.1 9.5								39.1 9.5	10.54 1.47		30 18	787	1	1	Piped to DP 2.0 Type C inlet Piped to DP 2.0
	2.0 13	A13		0.59		5.69	6.08	34.6	13.4	12.01	6.20	74.5				74.5 34.6	12.01 5.69		48				Sum of DP OS2 & DP 12, Piped to DP 2.1 Future storm infrastructure from Sterling Ranch Phase 2 Piped to DP 2.1

Version 4.05 Released March 2017


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	9.5	14.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.6	10.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	86	60	%

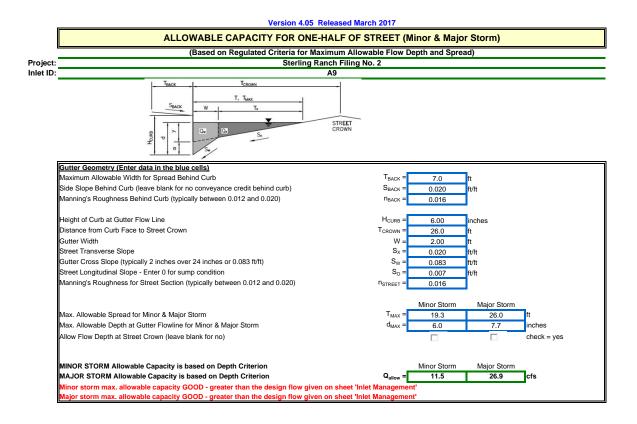
Subdivision: Location: Design Storm:	El Paso Cou		ng No. :	2												Ca	oject N Projec Iculate Checke	t No.: d By:	2518	8.01	nch Si	ubdivi	ision
5																			1/5/2	21			
				DIRE	CT RUI	NOFF			TC	OTAL R	UNOF	F	STRE	et/SW	/ALE		PI	PE	1	TRA∖	/EL TI	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1	2.06	0.51	9.7	1.05	4.17	4.4					0.2	0.04	3.3	4.2	1.01	2.0	18	652 5	3.6	5 3. 2 0.	0 On-grade inlet, carryover flow to DP 5 0 Piped to DP 1.0
	2	A2	0.82	0.53	9.1	0.44	4.27	1.9								1.9	0.44	2.0	18	27	5.8		On-grade inlet 1 Piped to DP 1.0
	1.0								9.7	1.45	4.17	6.0				6.0	1.45	3.0	18	335	9.1	0.	6 Sum of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.47	15.0	3.16	3.53	11.1					1.6	0.47	2.9	9.5		1		426	3.4	1 2.	1 On-grade inlet, carryover flow to DP 5 0 Piped to DP 1.1
	4	A4	1.51				4.10						0.1	0.03	2.9	3.6		1		395	3.4	1.1.1	9 On-grade inlet, carryover flow to DP 5 9 Piped to DP 1.1
	1.1								15.0	3.57	3 52	12.6				12.6							2 Sum of DP 3 & DP 4, piped to DP 1.2
	1.2									5.02						17.6						1	4 Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.81	5.0	0.43	5.17	2.2	10.2	0.02	0.00					17.0	0.02	0.0		017		. 0.	Overland Flow to DP1.3A
	6	A6	1.37					3.3								3.3	0.79	2.0	18	0	6.7	7 0.	On-grade inlet 0 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.22	4.14	5.0				5.0							1 Sum of DP 6 & DP 6A, piped to DP 1.3
	5	A5	1.70	0.59	9.9	0.99	4.14	4.1		1.53						5.1		1					On-grade inlet 0 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3									7.77						25.9		1			1	1	1 Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.45	18.3	8.55	3.22	27.5								27.5		1				1	Future storm infrastructure from Copper Chase Subdivision O Piped to DP 1.4
	1.4		17.00	0.10	10.0	0.00	U.LL	2710	18.4	16.32	3 22	52.5					16.32						1 Sum of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1.48	0.56	13.9	0.83	3.63	3.0	10.1	10.02	U.LL	02.0				3.0		1					On-grade inlet, carryover flow to DP 11 1 Piped to DP 1.5
	1.5	7.0		0.00	10.7	0.00	0.00	0.0	18.4	17.15	3 21	55 1				55.1					1		2 Sum of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.73	87	0.44	4.34	1.9		0.48						2.1							On-grade inlet O Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6	7.7	0.01	0.75	0.7	0.11	4.04	1.7		17.63							17.63					1	2 Sum of DP 1.5 & DP 9, piped to DP 1.8
	10	A10	2.61	0.79	79	2.05	4.49	9.2	10.0	17.00	5.20	50.4	0.5	0.11	1.5	8.7				955	2.4	6.	2 Don-grade inlet, carryover flow to DP 20 2 Piped to DP 1.7
	11	A11	2.89			2.20		9.5					0.6	0.15	1.5	8.9				1049	2.4	1 7.	1 On-grade inlet, carryover flow to DP 21 O Piped to DP 1.7
	1.7		2.07	0.70	0.7	2.20	34	7.5	87	3.99	4 34	17 2				17.3		1					0 Sum of DP 10 & DP 11, piped to DP 1.8
	1.7									21.63							21.63				14.4		6 Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	0\$2	OS2	17.00	0.49	14.0	6.25	2.20	13.8	10.0	21.03	J. 10	00.0				13.8							Future flow released from Barbarick Subdivision 7 [Piped to DP 2.0
	12	A12	3.87				3.86	1.9								13.0							Type C Inlet 1 Piped to DP 2.0
	2.0	MIZ	3.07	0.13	11.9	0.49	5.00	1.9	15.7	6.74	3 15	<u> </u>				23.2					1	1	1 Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	0.65	0.45	14.0	1 24	3.62	15.7	13.7	0.74	3.43	2J.Z				15.7							Future storm infrastructure from Sterling Ranch Phase 2 4 Piped to DP 2.1


X:\2510000.all\2518801\Excel\Drainage\2518801_Proposed Conditions.xlsm

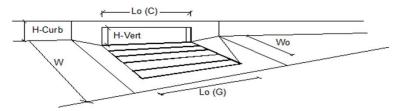
Subdivision: Location: sign Storm:	El Paso Cour	ch Filin nty	g No. 2													Ca	oject Na Project alculated Checked E	t No.: d By: d By:	2518	8.01	nch Su	ubdivi	sion
		1		DIR	ECT RI	JNOFF			T	OTAL R	UNO	FF	STRE	ET/SW/	ALE		PIPE			TRAV	'EL TIN	ЛЕ	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMAR
	1	A1	2.06	0.65	9.7	1.34	7.01	9.4					2.8	0.40	3.3	6.6	0.94	2.0	18	652 5	3.6 8.2		On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.66	9.1	0.54	7.17	3.9					0.1	0.01	3.3	3.8	0.53	2.0	18	639 27			On-grade inlet, carryover flow to DP 6 Piped to DP 1.0
	1.0								9.7	1.47	7.00	10.3				10.3	1.47	3.0	18	335	10.6	0.5	Sum of DP 1 & DP 2, piped to DP 1.2
													10.0	1.69	2.9					426	3.4	2.1	On-grade inlet, carryover flow to DP 5

1	A1	2.06	0.65	9.7	1.34	7.01	9.4							6.6	0.94	2.0	18	5 8.2	0.0	Piped to DP 1.0
2	A2	0.82	0.66	9.1	0.54	7.17	3.9				0.1	0.01	3.3	3.8	0.53	2.0	18	639 3.6 27 7.0	2.9 0.1	On-grade inlet, carryover flow to DP 6 Piped to DP 1.0
								9.7	1 47 7 00	10.2										
1.0								9.7	1.47 7.00	10.3	10.0	1 69	2.9	10.3	1.47	3.0	18	335 10.6 426 3.4	0.5	Sum of DP 1 & DP 2, piped to DP 1.2 On-grade inlet, carryover flow to DP 5
3	A3	6.76	0.62	15.0	4.17	5.92	24.7							14.7	2.48	4.7	18	36 13.6	0.0	Piped to DP 1.1
4	A4	1 5 1	0.71	10.2	1.08	6.88	7.4				1.6	0.24	2.9	5.8	0.84	4.7	18	395 3.4	1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
4	A4	1.51	0.71	10.2	1.00	0.00	7.4							5.0						
1.1								15.0	3.33 5.91	19.7				19.7	3.33	1.0	24	74 8.1	0.2	2 Sum of DP 3 & DP 4, piped to DP 1.2
1.2								15.1	4.80 5.89	28.2				28.2	4.80	3.3	24	319 13.9	0.4	4 Sum of DP 1.0 & DP 1.1, piped to DP 1.3
6A	A6A	0.53	0.88	5.0	0.47	8.68	4.1													Overland Flow to DP1.3A
											1.3	0.18	0.7					696 1.7	7.0	On-grade inlet, carryover flow to DP 8 On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
6	A6	1.37	0.70	10.0	0.95	6.94	6.6	10.0	0.96 6.94	6.7				5.4	0.78	2.0	18	0 7.7	0.0	Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
1.3A								10.0	1.25 6.94	8.7				8.7	1.25	1.0	24	36 6.7	0.1	I Sum of DP 6 & DP 6A, piped to DP 1.3
											6.5	1.17	0.7					664 1.7	6.6	5 On-grade inlet, carryover flow to DP 8
5	A5	1.70	0.70	9.9	1.19	6.95	8.3	17.0	3.51 5.59	19.6				13.1	2.34	2.0	18	0 9.4	0.0	Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
1.3								17.0	8.39 5.59	46.9				46.9	8.39	1.1	36	620 10.7	1.0	D Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
7		40.00	0.50	10.0		E 14										4.5				Future storm infrastructure from Copper Chase Subdivision
 1	A7	19.00	0.59	18.3	11.21	5.41	60.6							60.6	11.21	1.5	42	20 12.7	0.0	D Piped to DP 1.4
1.4								18.4	19.60 5.40	105.9				105.9	19.60	0.5	48	26 9.2	0.0	Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade inlet, carryover flow to DP 11
8	A8	1.40	0.70	12.0	1.04	6.10	()	23.7	2.63 4.76	10.5	1.9	0.41	0.7	10.6	2.23	2.0	18	195 1.7 20 9.1	1.9	P On-grade inlet, carryover flow to DP 11 D Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
ð	Að	1.48	0.70	13.9	1.04	0.10	0.3	23.1	2.03 4.70	12.5				10.6	2.23	2.0	18	20 9.1	0.0	J Sum of Sub-basin A8 & Carryover nows from DP5, DP 6 & DP 15, Piped to DP 1.5
1.5								23.7	21.83 4.76	103.9				103.9	21.83	0.5	48	91 9.2	0.2	2 Sum of DP 1.4 & DP 8, piped to DP 1.6
9	Α9	0.61	0.83	8.7	0.51	7.29	37	21.2	0.95 5.04	4.8	0.3	0.05	0.7	4.5	0.89	2.0	18			On-grade inlet, carryover flow to DP 11 D Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
,	A7	0.01	0.05	0.7	0.51	1.27	5.7													
1.6								23.9	22.72 4.74	107.7			4.5	107.7	22.72	0.5	48	95 9.1	0.2	2 Sum of DP 1.5 & DP 9, piped to DP 1.8
10	A10	2.61	0.88	7.9	2.29	7.53	17.3				4.5	0.59	1.5	12.8	1.70	2.5	18	955 2.4 118 10.3	6.5 0.2	On-grade inlet, carryover flow to DP 20 2 Piped to DP 1.7
											6.1	0.90	1.5					1049 2.4	7.1	On-grade inlet, carryover flow to DP 21
11	A11	2.89	0.86	8.7	2.48	7.28	18.1	10.6	2.94 6.77	19.9				13.8	2.04	2.5	18	0 10.4	0.0	D Sum of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7
1.7								10.6	3.74 6.77	25.3				25.3	3.74	1.0	24	8 8.1	0.0	Sum of DP 10 & DP 11, piped to DP 1.8
1.8								24.0	26.45 4.72	125.0				125.0	26.45	2.0	54	517 17.0	0.5	Sum of DP 1.6 & DP 1.7, piped to DP 2.7
								2110	20.10 11/2	120.0										Future flow released from Barbarick Subdivision
OS2	OS2	17.00	0.62	12.0	10.54	3.71	39.1							39.1	10.54	1.0	30	787 9.5	1.4	4 Piped to DP 2.0 Type C inlet
12	A12	3.87	0.38	11.9	1.47	6.49	9.5							9.5	1.47	2.0	18	17 8.9	0.0	D Piped to DP 2.0
2.0								13 /	12.01 6.20	74.5				74.5	12 01	1.0	10	52 11 4	0.1	1 Sum of DP OS2 & DP 12, Piped to DP 2.1
 2.0									12.01 0.20	/4.3										Future storm infrastructure from Sterling Ranch Phase 2
13	A13	9.65	0.59	14.0	5.69	6.08	34.6							34.6	5.69	1.5	30	200 11.0		Piped to DP 2.1

Version 4.05 Released March 2017


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.3	5.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	81	%

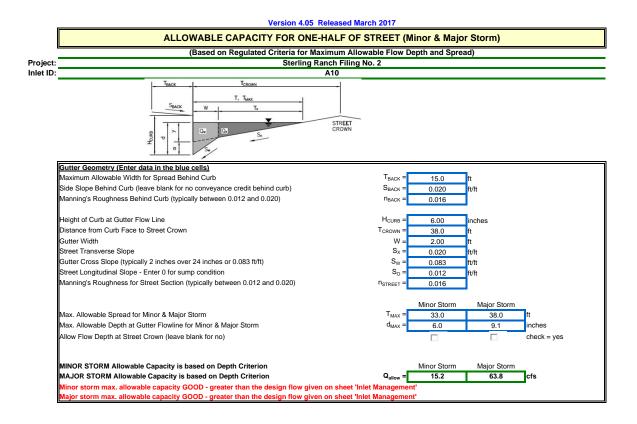
Subdivision: Location: Design Storm:	El Paso Cou		ng No. 2													Cal	ject Na Project culateo heckeo	: No.: d By:	2518		nch Sul	bdivis	sion
																	C	Date:	1/5/2	21			
		1		DIREC	CT RUN	NOFF			TO	TAL R	UNOF	F	STREE	T/SW	ALE		PIP	ΡĒ		TRAV	'EL TIN	ΛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1	2.06	0.51	9.7	1.05	4.17	4.4					0.2	0.04	3.3	4.2	1.01	2.0	18	652 5	3.6 7.2	3.0	IOn-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.53	9.1	0.44	4.27	1.9								1.9	0.44	2.0	18	27	5.8	0.1	On-grade inlet Piped to DP 1.0
	1.0								9.7	1.45	4.17	6.0				6.0	1.45	3.0	18	335	9.1	0.6	Sum of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.47	15.0	3.16	3.53	11.1					1.6	0.47	2.9	9.5		4.7		426		2.1	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	4	A4	1.51	0.60				3.7					0.1	0.03	2.9	3.6		4.7		395	3.4	1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	1.1	74	1.51	0.00	10.2	0.71	4.10	5.7	15.0	3.57	2 5 2	12.6				12.6		1.0					2 Sum of DP 3 & DP 4, piped to DP 1.2
	1.1									5.02						17.6		3.3					Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.81	5.0	0.43	5.17	2.2	10.2	3.0Z	3.00	17.0				17.0	0.02	3.3	24	319	12.0	0.4	Overland Flow to DP1.3A
	6	A6A		0.58	10.0			3.3								3.3	0.79	2.0	18	0	47	0.0	On-grade inlet Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
		Ao	1.37	0.58	10.0	0.79	4.14	3.3	10.0	1.00	4.14	5.0											
	1.3A	45	4 70	0.50		0.00				1.22		5.0				5.0		1.0					Sum of DP 6 & DP 6A, piped to DP 1.3 On-grade inlet
	5	A5	1.70	0.59	9.9	0.99	4.14	4.1	17.0	1.53		5.1				5.1		2.0					Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	7.77	3.33	25.9				25.9							Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4 Future storm infrastructure from Copper Chase Subdivision
	7	A7	19.00	0.45	18.3	8.55	3.22	27.5			_					27.5		1.5					Piped to DP 1.4
	1.4								18.4	16.32	3.22	52.5				52.5	16.32	0.5	48	26	8.2	0.1	Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade inlet, carryover flow to DP 11
	8	A8	1.48	0.56	13.9	0.83	3.63	3.0								3.0	0.83	2.0		20	6.6		Piped to DP 1.5
	1.5								18.4	17.15	3.21	55.1				55.1	17.15	0.5	48	91	8.3	0.2	2 Sum of DP 1.4 & DP 8, piped to DP 1.6 On-grade inlet
	9	A9	0.61	0.73	8.7	0.44	4.34	1.9	8.7	0.48	4.34	2.1				2.1	0.48	2.0	18	13	5.8	0.0	Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								18.6	17.63	3.20	56.4	0.5	0.11	1.5	56.4	17.63	0.5	48	95 955			2 Sum of DP 1.5 & DP 9, piped to DP 1.8 On-grade inlet, carryover flow to DP 20
	10	A10	2.61	0.79	7.9	2.05	4.49	9.2						0.15		8.7	1.94	2.5	18		9.5	0.2	Piped to DP 1.7 On-grade inlet, carryover flow to DP 21
	11	A11	2.89	0.76	8.7	2.20	4.34	9.5					0.0	0.15	1.5	8.9	2.05	2.5	18			0.0	Piped to DP 1.7
	1.7								8.7	3.99	4.34	17.3				17.3	3.99	1.0	24	8	7.9	0.0	Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								18.8	21.63	3.18	68.8				68.8	21.63	2.0	54	517	14.4	0.6	5 Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	OS2	OS2	17.00	0.49	14.0	6.25	2.20	13.8								13.8	6.25	1.0	30	787	7.5	1.7	Future flow released from Barbarick Subdivision Piped to DP 2.0
	12	A12	3.87	0.13	11.9	0.49	3.86	1.9								1.9	0.49	2.0	18	17	5.6	0.1	Type C inlet Piped to DP 2.0
	2.0								15.7	6.74	3.45	23.2				23.2	6.74	1.0	48	52	8.4	0.1	Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	9.65	0.45	14.0	4.34	3.62	15.7								15.7	4.34	1.5	30	200	9.1	0.4	Future storm infrastructure from Sterling Ranch Phase 2 Piped to DP 2.1


Subdivision:	Sterling Ranch Filing No. 2
Location:	El Paso County

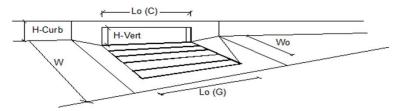
Project Name: <u>Sterling Ranch Subdivision</u> Project No.: <u>25188.01</u> Calculated By: <u>AAM</u>

sign Storm:	100-Year																Checke I	d By: Date:	1/5/2	!1		
			r r	DIRI	ECT RL	JNOFF			Т	otal f	RUNOFF		STREE	T/SW/	ALE .		PIPI	E		TRAVEL T	ME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Qstreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft) Velocity (fps)	t _t (min)	REMARKS
	1	A1	2.06	0.65	9.7	1.34	7.01	9.4					2.8	0.40	3.3	6.6	0.94		18		5 3.0 2 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.66	9.1	0.54	7.17	3.9					0.1	0.01	3.3	3.8	0.53	2.0	18		5 2.9	On-grade inlet, carryover flow to DP 6 Piped to DP 1.0
	1.0								9.7	1.47	7.00	10.3				10.3	1.47	3.0	18	335 10.0	6 0.5	Sum of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.62	15.0	4.17	5.92	24.7					10.0	1.69	2.9	14.7	2.48			426 3.4	1 2.1	On-grade inlet, carryover flow to DP 5
	4	A4		0.71	10.2		6.88	7.4					1.6	0.24	2.9	5.8	0.84	4.7	18	395 3.4 0 10.3	1.9 0.0	Piped to DP 1.1 On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	1.1								15.0	3.33	5.91	19.7				19.7	3.33	1.0	24	74 8.1	0.2	Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.1	4.80	5.89	28.2				28.2	4.80	3.3	24	319 13.9	0.4	Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.88	5.0	0.47	8.68	4.1														Overland Flow to DP1.3A
	6	A6	1.37	0.70	10.0	0.95	6.94	6.6	10.0	0.96	6.94	6.7	1.3	0.18	0.7	5.4	0.78	2.0	18			On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.25	6.94	8.7				8.7	1.25	1.0	24	36 6.	0.1	Sum of DP 6 & DP 6A, piped to DP 1.3
	5	A5	1.70	0.70	9.9	1.19	6.95	8.3	17.0	3.51	5.59	19.6	6.5	1.17	0.7	13.1	2.34	2.0	18	664 1.1 0 9.4	7 6.6 1 0.0	On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	8.39	5.59	46.9				46.9	8.39	1.1	36	620 10.3	1.0	Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.59	18.3	11.21	5.41	60.6								60.6	11.21	1.5	42	20 12.	0.0	Future storm infrastructure from Copper Chase Subdivision Piped to DP 1.4
	1.4								18.4	19.60	5.40 1	05.9				105.9	19.60	0.5	48	26 9.2	2 0.0	Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade iniet, carryover flow to DP 11
	8	A8	1.48	0.70	13.9	1.04	6.10	6.3	23.7	2.63	4.76	12.5	1.9	0.41	0.7	10.6	2.23	2.0	18	195 1. 20 9.	/ 1.9 I 0.0	On-grade inlet, carryover flow to DP 11 Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
	1.5								23.7	21.83	4.76 1	03.9		0.05		103.9	21.83	0.5	48	91 9.2	0.2	Sum of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.83	8.7	0.51	7.29	3.7	21.2	0.95	5.04	4.8	0.3	0.05	0.7	4.5	0.89	2.0	18	140 1.3 13 7.3	7 1.4 3 0.0	On-grade inlet, carryover flow to DP 11 Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								23.9	22.72	4.74 1	07.7	4.5	0.50	1.5	107.7	22.72	0.5			0.2	Sum of DP 1.5 & DP 9, piped to DP 1.8 On-grade inlet, carryover flow to DP 20
	10	A10	2.61	0.88	7.9	2.29	7.53	17.3					4.5	0.59		12.8	1.70	2.5	18	118 10.3	3 0.2	Piped to DP 1.7
	11	A11	2.89	0.86	8.7	2.48	7.28	18.1	10.6	2.94	6.77	19.9	6.1	0.90	1.5	13.8	2.04	2.5	18	0 10.4	+ 7.1 + 0.0	On-grade inlet, carryover flow to DP 21 Sum of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7
	1.7								10.6	3.74	6.77	25.3				25.3	3.74	1.0	24	8 8.	0.0	Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								24.0	26.45	4.72 1	25.0				125.0	26.45	2.0	54	517 17.0	0.5	Sum of DP 1.6 & DP 1.7, piped to DP 2.7 Future flow released from Barbarick Subdivision
	OS2	OS2	17.00	0.62	12.0	10.54	3.71	39.1								39.1	10.54	1.0	30	787 9.5	5 1.4	Piped to DP 2.0 Type C inlet
	12	A12	3.87	0.38	11.9	1.47	6.49	9.5								9.5	1.47	2.0	18	17 8.9	0.0	Piped to DP 2.0
	2.0								13.4	12.01	6.20	74.5				74.5	12.01	1.0	48	52 11.0	5 0.1	Sum of DP OS2 & DP 12, Piped to DP 2.1 Future storm infrastructure from Sterling Ranch Phase 2
	13	A13	9.65	0.59	14.0	5.69	6.08	34.6								34.6	5.69	1.5	30	200 11.0	0.3	Piped to DP 2.1

Version 4.05 Released March 2017

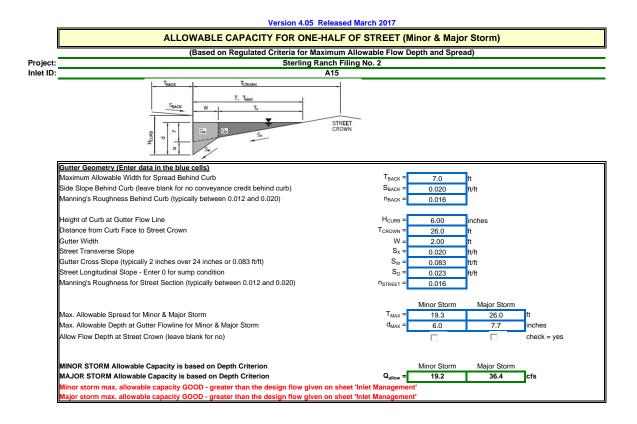

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.1	4.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	94	%

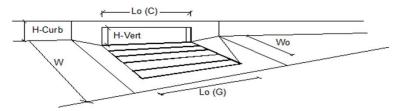
Subdivision: Location: Design Storm:	El Paso Cou		ng No. 2	2											Ca	oject N Proje alculat Check	ct No. ed By:	: 2518 AAN	38.01 1	anch	Subd	livisi	ion
				DIRE	CT RUI				TC	TAL R		F	STRF	et/swale	—	P	IPE	-		VEL 1	TIME		
				DIKL		NOT I												(Se					
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac) Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)			t _t (min)	REMARKS
	1	A1	2.06	0.51	9.7	1.05	4.17	4.4					0.2	0.04 3	3 4.2	2 1.0	1 2.0	0 1	65 3	2 3 5 7	3.6 7.2	3.0 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.53	9.1	0.44	4.27	1.9							1.9	0.4	4 2.0	0 1	3 2	27 5			On-grade inlet Piped to DP 1.0
	1.0								97	1.45	4 17	6.0			6.0								Sum of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.47	15.0	3.16	3.53	11.1	7.1	1.45	4.17	0.0	1.6	0.47 2					42		3.4	2.1	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	4	A4	1.51					3.7					0.1	0.03 2					39	5 3	3.4	1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
		A4	1.51	0.00	10.2	0.91	4.10	3.7	45.0	0.57	0.50	10.4											
	1.1									3.57		12.6			12.6								Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.2	5.02	3.50	17.6			17.6	5.02	2 3.3	3 2	4 31	9 12	2.5		Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.81				2.2											-				Overland Flow to DP1.3A On-grade inlet
	6	A6	1.37	0.58	10.0	0.79	4.14	3.3							3.3	3 0.79	9 2.0	0 1	3	0 6			Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.22	4.14	5.0			5.0) 1.2	2 1.0	2	4 3	6 5	5.7	0.1	Sum of DP 6 & DP 6A, piped to DP 1.3 On-grade inlet
	5	A5	1.70	0.59	9.9	0.99	4.14	4.1	17.0	1.53	3.33	5.1			5.1	1.5	3 2.0	0 1	3	0 7	7.6	0.0	Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	7.77	3.33	25.9			25.9	7.7	7 1.1	1 3	6 62	9	9.2	1.1	Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4 Future storm infrastructure from Copper Chase Subdivision
	7	A7	19.00	0.45	18.3	8.55	3.22	27.5							27.5	5 8.5	5 1.5	5 43	2 2	0 10).3	0.0	Piped to DP 1.4
	1.4								18.4	16.32	3.22	52.5			52.5	5 16.3	2 0.5	5 4	3 2	8 8	3.2	0.1	Sum of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1.48	0.56	13.9	0.83	3.63	3.0							3.0	0.8	3 2.0	0 1	3 2	0 6	5.6	0.1	On-grade inlet, carryover flow to DP 11 Piped to DP 1.5
	1.5								18.4	17.15	3.21	55.1			55.1	17.1	5 0.5	5 4	3 9	1 8	3.3	0.2	Sum of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.73	8.7	0.44	4.34	1.9	8.7	0.48	4.34	2.1			2.1	0.4	3 2.0	0 1	3 1	3 5	5.8	0.0	On-grade inlet Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								18.6	17.63	3.20	56.4			56.4	17.63	3 0.5	5 4	3 9	5 8	3.3	0.2	Sum of DP 1.5 & DP 9, piped to DP 1.8
	10	A10	2.61	0.79	7.9	2.05	4.49	9.2					0.5	0.11 1.	5 8.7	1.9	4 2.5	5 1	95 3 11	52 89	2.4 9.5	6.5 0.2	On-grade inlet, carryover flow to DP 20 Piped to DP 1.7
	11	A11	2.89	0.76	8.7	2.20	4.34	9.5					0.6	0.15 1.	5 8.9	2.0	5 2.5	5 18	104 3		2.4 9.4	7.1 0.0	On-grade inlet, carryover flow to DP 21 Piped to DP 1.7
	1.7								8.7	3.99	4.34	17.3			17.3								Sum of DP 10 & DP 11, piped to DP 1.8
	1.8									21.63		68.8				3 21.6				7 14			Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	0\$2	OS2	17.00	0.49	14.0	6.25	2.20	13.8			5.15	00.0			13.8								Future flow released from Barbarick Subdivision Piped to DP 2.0
	12	A12	3.87		11.9		3.86	1.9							1.9					7 5			Type C inlet Piped to DP 2.0
	2.0	7112	3.07	0.13	11.7	0.77	5.00	1.7	15.7	6.74	3 /5	23.2			23.2								Sum of DP OS2 & DP 12, Piped to DP 2.1
		A12	0.75	0.45	14.0	4.24	2 / 2	15 7	10.7	0.74	3.43	23.Z											Future storm infrastructure from Sterling Ranch Phase 2
	13	A13	7.05	U.45	14.0	4.34	3.02	15.7							15.7	4.34	4 1.5	5 3	20	<i>i</i> ul 9	7.1	U.4	Piped to DP 2.1


Project Name: <u>Sterling Ranch Subdivision</u> Project No.: <u>25188.01</u>

Subdivision:	Sterling	Ranch	Filing	No. 2

Location:	Sterling Rand El Paso Coun	ty	j No. 2													С	Project alculatec	d By:	2518 AAM	8.01				
sign Storm:	100-Year																Checked D	d By: Date:	1/5/2	21				
				DIR	ECT RU	JNOFF			TC	DTAL F	UNOF	F	STREE	ET/SW	ALE		PIPE			TRA	VEL TI	ME		
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	÷	REMARKS
	1	A1	2.06	0.65	9.7	1.34	7.01	9.4					2.8	0.40	3.3	6.6	0.94	2.0	18	652 5	5 8.2	2 0.	0.0 Pipe	-grade inlet, carryover flow to DP 5 ed to DP 1.0
	2	A2	0.82	0.66	9.1	0.54	7.17	3.9					0.1	0.01	3.3	3.8	0.53	2.0	18	639 27	9 3.6 7 7.0	2. 0 0.	2.9 On-).1 Pipe	-grade inlet, carryover flow to DP 6 ed to DP 1.0
	1.0								9.7	1.47	7.00	10.3				10.3	1.47	3.0	18	335	5 10.6	0.).5 Sum	n of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.62	15.0	4.17	5.92	24.7					10.0	1.69	2.9	14.7				426	5 3.4	2.	2.1 On-	-grade inlet, carryover flow to DP 5 ed to DP 1.1
	4	A4		0.71				7.4					1.6	0.24	2.9	5.8		4.7		395	5 3.4	1.	1.9 On-	-grade inlet, carryover flow to DP 5 ed to DP 1.1
	1.1								15.0	3.33	5.91	19.7				19.7	3.33	1.0	24	74	4 8.1	0.).2 Sum	m of DP 3 & DP 4, piped to DP 1.2
	1.2								15.1	4.80	5.89	28.2				28.2	4.80	3.3	24	319	9 13.9	0.).4 Sum	m of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.88	5.0	0.47	8.68	4.1															Ove	erland Flow to DP1.3A
	6	A6	1.37	0.70	10.0	0.95	6.94	6.6	10.0	0.96	6.94	6.7	1.3	0.18	0.7	5.4	0.78	2.0	18	696 (6 1.7 0 7.7	7. 0.	7.0 On-).0 Sum	-grade inlet, carryover flow to DP 8 m of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.25	6.94	8.7				8.7	1.25	1.0	24		6 6.7	0.).1 Sum	n of DP 6 & DP 6A, piped to DP 1.3
	5	A5	1.70	0.70	9.9	1.19	6.95	8.3	17.0	3.51	5.59	19.6	6.5	1.17	0.7	13.1	2.34	2.0	18	664	4 1.7 0 9.4	6. 0.	5.6 On-).0 Sum	-grade inlet, carryover flow to DP 8 n of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	8.39	5.59	46.9				46.9	8.39	1.1	36	620	0 10.7	1.		m of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.59	18.3	11.21	5.41	60.6								60.6	11.21	1.5	42	20	0 12.7	0.	Futi 0.0 Pipe	ture storm infrastructure from Copper Chase Subdivision ed to DP 1.4
	1.4								18.4	19.60	5.40	105.9				105.9	19.60	0.5	48		5 9.2	2 0.).0 Sum	m of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1.48	0.70	13.9	1.04	6.10	6.3	23.7	2.63	4.76	12.5	1.9	0.41	0.7	10.6	2.23	2.0	18	195 20	5 1.7 0 9.1	1. 0.	1.9 On-).0 Sum	grade inited, carrypover flow to DP 11 m of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
	1.5								23.7	21.83	4.76	103.9				103.9	21.83	0.5	48		1 9.2	2 0.).2 Sum	m of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.83	8.7	0.51	7.29	3.7	21.2	0.95	5.04	4.8	0.3	0.05	0.7	4.5	0.89	2.0	18	140 13				-grade inlet, carryover flow to DP 11 n of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								23.9	22.72	4.74	107.7				107.7	22.72	0.5	48		5 9.1	0.).2 Sum	m of DP 1.5 & DP 9, piped to DP 1.8
	10	A10	2.61	0.88	7.9	2.29	7.53	17.3					4.5	0.59		12.8	1.70	2.5	18	955 118	5 2.4 8 10.3	6. 0.	5.5 On- 0.2 Pipe	-grade inlet, carryover flow to DP 20 ed to DP 1.7
	11	A11	2.89	0.86	8.7	2.48	7.28	18.1	10.6	2.94	6.77	19.9	6.1	0.90	1.5	13.8	2.04	2.5	18	1049	9 2.4 0 10.4	/. 0.	7.1 On-).0 Sum	-grade inlet, carryover flow to DP 21 m of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7
	1.7								10.6	3.74	6.77	25.3				25.3	3.74	1.0	24	8	3 8.1	0.).0 Sum	n of DP 10 & DP 11, piped to DP 1.8
	1.8								24.0	26.45	4.72	125.0				125.0	26.45	2.0	54	517	7 17.0	0.		m of DP 1.6 & DP 1.7, piped to DP 2.7
	OS2	OS2	17.00	0.62	12.0	10.54	3.71	39.1								39.1	10.54	1.0	30	787	7 9.5	i 1.	I.4 Pipe	ture flow released from Barbarick Subdivision ed to DP 2.0
	12	A12	3.87	0.38	11.9	1.47	6.49	9.5								9.5	1.47	2.0	18	17	7 8.9	0.		be C inlet ed to DP 2.0
	2.0								13.4	12.01	6.20	74.5				74.5	12.01	1.0	48	52	2 11.6	0.).1 Sum	m of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	9.65	0.59	14.0	5.69	6.08	34.6								34.6	5.69	1.5	30	200	0 11.0	0.		ture storm infrastructure from Sterling Ranch Phase 2 ed to DP 2.1

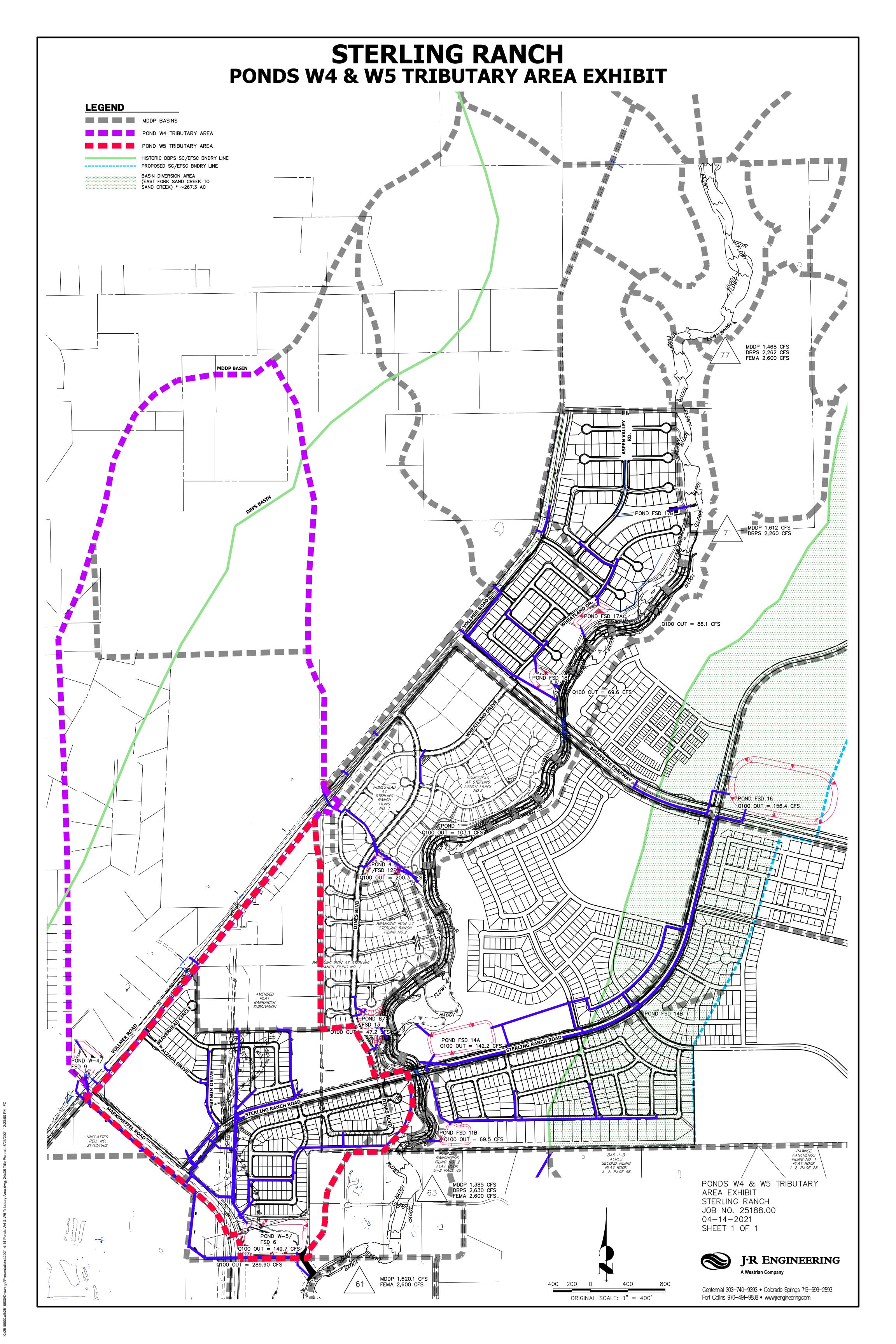

Version 4.05 Released March 2017

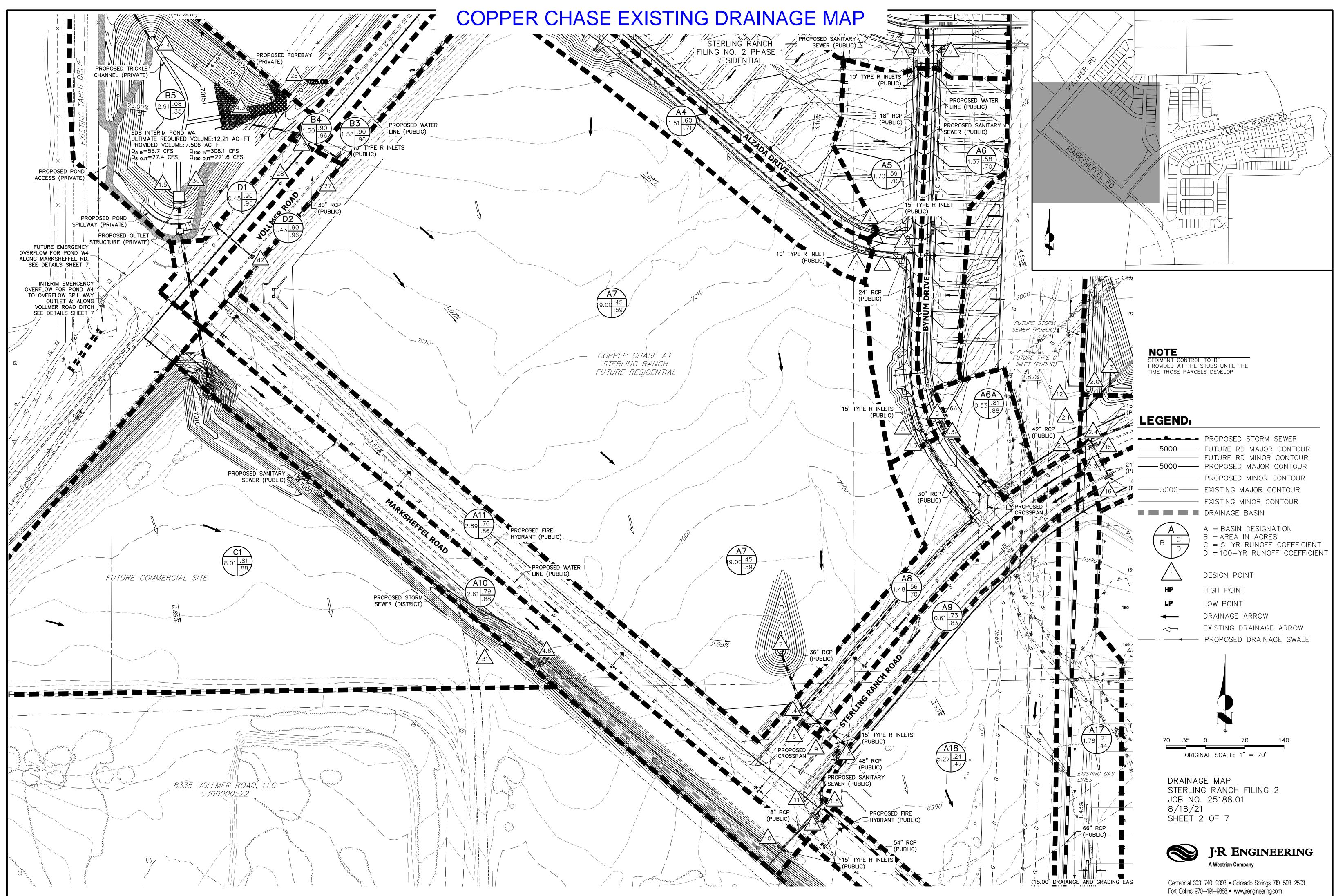

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.7	12.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.5	4.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	94	74	%

Subdivision:	Storling Do	oob Fili	ing No. 1													Pro	oject Na Project	ame:	Sterlin	ng Ran	ich Sul	odivisi	on
Location:	El Paso Cou		ing ivo. 4	2												Cal	culáteo	d By:		0.01			
Design Storm:	5-Year															C	hecked E	d By: Date:	8/16/	21			
				DIRE	CT RUI	NOFF			TC)TAL R	UNOF	F	STREE	T/SW	ALE		PIP	ΡĒ		TRAVE	EL TIN	1E	
											_												
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	2.1								15.9	11.08	3.44	38.1				38.1	11.08	1.6	48	65	11.4	0.1	Sum of DP 2.0 & DP 13, piped to DP 2.5
	OS3	OS3	28.70	0.49	19.0	14.06	1.25	17.6								17.6	14.06						Future flow released from Barbarick Subdivision Piped to DP 2.2
	14	A14	11.76			4.59										16.0							Future flow released from School Site Piped to DP 2.2
	2.2								20.5	18.65	3.05	56.9					18.65						' Sum of DP OS3 & DP 14, piped to DP 2.3
	15	A15	2.91	0.52	14.9	1.52	3.53	5.4								5.4		1.3		35	6.5	0.1	On-grade inlet
	16	A16	2.34	0.54				4.4					0.1	0.04	0.8	4.3				697	1.8	6.5	On-grade inlet, carryover flow to DP 9 Piped to DP 2.3
	2.3								15.0	2.73	3.52	9.6				9.6					7.6		Sum of DP 15 & DP 16, piped to DP 2.4
	2.4									21.38							21.38						Sum of DP 2.2 & DP 2.3, piped to DP 2.5
	2.5									32.46		96.6					32.46				15.8		Sum of DP 2.1 & DP 2.4 piped to DP 2.6
	17	A17	1.76	0.21	13.7	0.38	3.66	1.4								1.4		1.0	18	24			Type C inlet Piped to DP 2.6
	2.6								21.6	32.84	2.98	97.8				97.8	32.84						Sum of DP 2.5 & DP 17, piped to DP 2.7
	2.7									54.47							54.47	0.6		220			Sum of DP1.8 & DP 2.6, piped to DP 2.8
	18	A18	5.27	0.24	16.4	1.28	3.38	4.3								4.3				24			Area inlet Piped to DP 2.6
	19	A19	31.85			14.33											14.33				22.0		Area inlet Piped to DP 2.6
	2.8								25.8	70.08	2.71	189.8					70.08				12.1	0.2	Sum of DP 2.7, DP 18 & DP 19, piped to DP 3.0.
	3.0								25.8	70.08	2.71	189.8	189.8	70.08	0.5					584	1.4	6.9	Detention Pond Trickle channel conveyance to DP 3.2
	20	A20	1.83	0.81	8.0	1.48	4.47	6.6	8.0	1.59	4.47	7.1				7.1	1.59	1.0	24	105	6.4		On-grade inlet Sum of Sub-basin A20 & carryover flow from DP 10, piped to DP 3.0
	21	A21	1.93	0.82	8.7	1.57	4.33	6.8	8.7	1.72	4.33	7.4	0.1	0.03	1.5	7.3	1.68	2.5	18	0	9.0	0.0	On-grade inlet Sum of Sub-basin A21 & carryover flow from DP 11, piped to DP 2.9
	2.9								8.7	3.27	4.33	14.2				14.2	3.27	2.0	24	58	9.8		Sum of DP 20 & DP 21,piped to DP 3.1
	3.1								8.7	3.27	4.33	14.2	14.2	3.27	0.5					568	1.4	6.7	Detention Pond Trickle channel conveyance to DP 3.2
	22	A22	8.68	0.11	23.3	0.95	2.86	2.7															Detention Pond Overland flow to DP 3.2
	OS4	OS4	5.08			1.02		2.6					2.6	1.02	13.0					113	5.4		Existing topography Overland flow to DP 4.1
	3.2								29.8	75.32	2.49	187.5											Outlet Structure Sum of DP 3.0, DP 3.1, DP 22 & DP OS4, outlet structure release to DP 4.8
	Pond W5									1.45		3.6				3.6	1.45	2.0	48	58	6.2	0.2	Outlet structure release to DP 4.8
	23	B1	2.98	0.90	17.6	2.68	3.29	8.8					0.4	0.12	2.0		2.56			1399	2.0	12.0	On-grade inlet Piped to DP 4.0

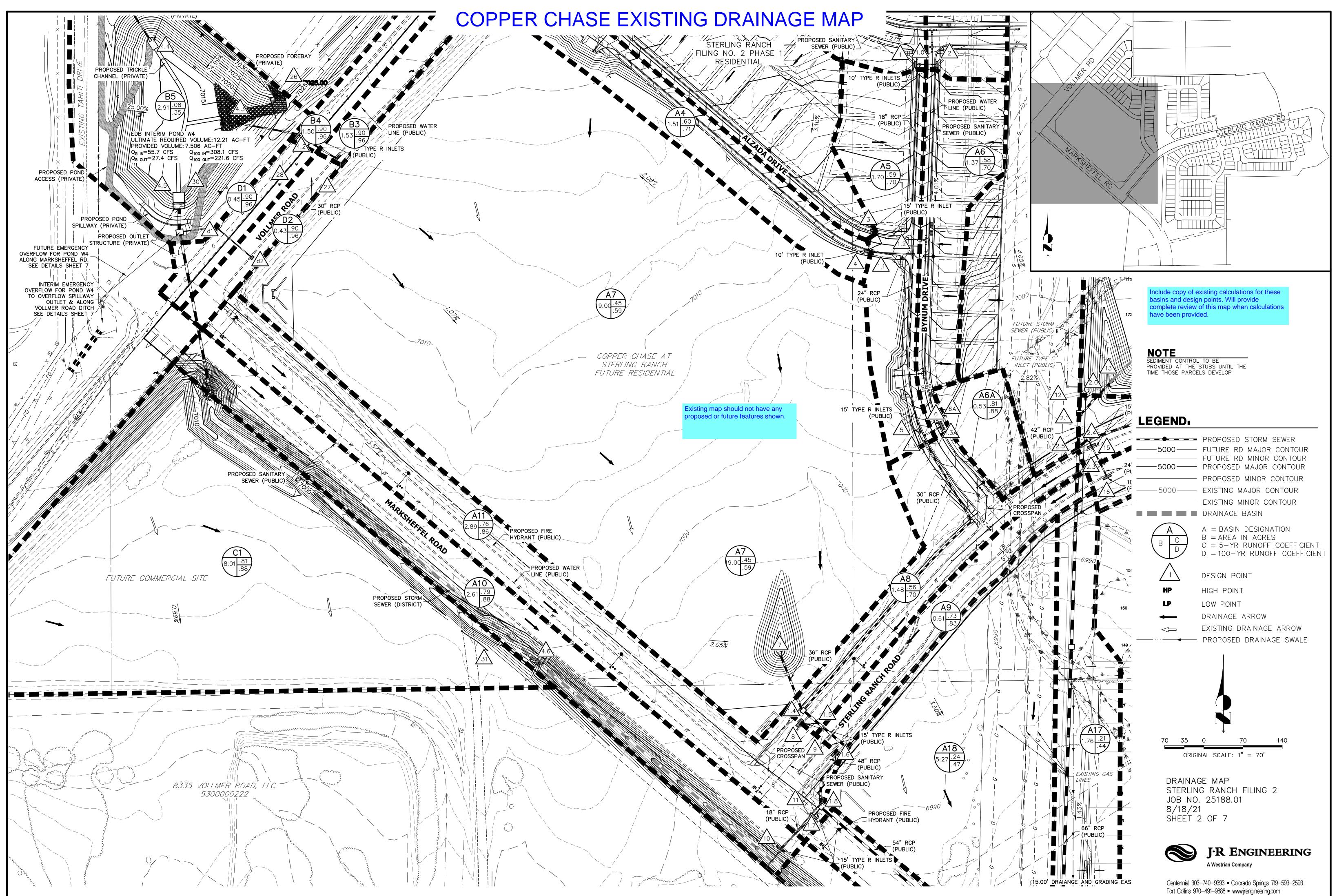
Subdivision: Location: sign Storm:	El Paso Cour	ch Filin Ity	g No. 2													Ca	oject N Projec alculate Checke	t No.: d By:	25188 AAM	8.01	inch S	ubdiv	ision
				DIR	FCT RI	UNOFF			Т	OTAL F		FF	STRF	ET/SW	ALE		PIPI	F		TRA	/EL TI	MF	
				Dire					<u> </u>				JIKE	21/344					s)	110.11			
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	2.1								14.3	17.70	6.02	106.6				106.6	17.70	1.6	48	65	15.1	0.1	Sum of DP 2.0 & DP 13, piped to DP 2.5
	OS3	OS3	28.70	0.62	15.0	17.79	2.75	48.9								48.9	17.79		30		10.0	1	Future flow released from Barbarick Subdivision Piped to DP 2.2
	14	A14	11.76				5.86									37.9	6.47		30				Future flow released from School Site Piped to DP 2.2
	2.2									24.26	5 72	138 7				138.7	24.26		48			1	3 Sum of DP OS3 & DP 14, piped to DP 2.3
	15	A15	2.91	0.68	14.9	1.98	5.93	11.7		21120	0.72	10011	1.4	0.24	0.7	10.3	1.74		18	724	1.7	7.2	On-grade inlet, carryover flow to DP 8 Piped to DP 2.3
	16	A16	2.34				5.96						2.6	0.44	0.8	7.0	1.17		18	697	1.8	6.5	Prove a construction of the construction of th
	2.3	7110	2.01	0.07			0.70	7.0	15.0	2 91	5.91	17.2				17.2	2.91		48	15			Sum of DP 15 & DP 16, piped to DP 2.4
	2.4									27.17						151.9	27.17		48				Sum of DP 2.2 & DP 2.3, piped to DP 2.5
	2.5									44.87						250.7	44.87		60		20.1	1	Sum of DP 2.1 & DP 2.4 piped to DP 2.6
	17	A17	1.76	0.44	13.7	0.77	6.14	4.7								4.7	0.77		18				Type C inlet Piped to DP 2.6
	2.6									45.64	5.49	250.4				250.4	45.64		60				, where the second seco
	2.7									72.10						336.8	72.10	0.6	78		13.7	1	Sum of DP1.8 & DP 2.6, piped to DP 2.8
	18	A18	5.27	0.47	16.4	2.47	5.68	14.0)							14.0	2.47		18	24			Area inlet Piped to DP 2.6
	19	A19	31.85	0.59	25.8	18.79	4.55	85.4	l I							85.4	18.79	1.0	18	24	48.4	0.0	Area inlet Piped to DP 2.6
	2.8								25.8	93.36	4.55	424.4				424.4	93.36	0.6	78			0.2	Sum of DP 2.7, DP 18 & DP 19, piped to DP 3.0.
	3.0								25.8	93.36	4.55	424.4	424.4	93.36	0.5					564	1.4	6.6	Detention Pond Trickle channel conveyance to DP 3.2
	20	A20	1.83	0.89	8.0	1.63	7.50	12.2	2 14.4	2.22	6.02	13.4	2.3	0.38	1.5	11.1	1.84	1.0	24	105	7.2	0.2	On-grade inlet Sum of Sub-basin A20 & carryover flow from DP 10, piped to DP 3.0
	21	A21	1.93	0.90	8.7	1.73	7.28	12.6	5 15.8	2.63	5.77	15.2	3.3	0.57	1.5	11.9	2.06	2.5	18	0	10.2	2 0.0	On-grade inlet Sum of Sub-basin A21 & carryover flow from DP 11, piped to DP 2.9
	2.9								15.8	3.91	5.77	22.5				22.5	3.91	2.0	24		11.0	0.1	Sum of DP 20 & DP 21,piped to DP 3.1
	3.1								15.8	3.91	5.77	22.5	22.5	3.91	0.5					568	1.4	6.7	Detention Pond Trickle channel conveyance to DP 3.2
	22	A22	8.68	0.37	23.3	3.21	4.80	15.4	1														Detention Pond Overland flow to DP 3.2
	OS4	OS4	5.08	0.40	29.5	2.03	4.21	8.5	5				8.5	2.03	13.0					113	5.4	0.3	Existing topography Overland flow to DP 3.2
	3.2								29.8	102.50	4.18	428.2											Outlet Structure Sum of DP 3.0, DP 3.1, DP 22 & DP OS4, outlet structure release to DP 4.8
	Pond W5								29.8	34.84	4.18	145.5				145.5	34.84	2.0	48		17.5	i 0.1	Outlet structure release to DP 4.8
	23	B1	2.98	0.96	17.6	2.86	5.51	15.8	3				3.6	0.65	2.0	12.2	2.21	0.5	30	1394 88	5.7	0.3	On-grade inlet Piped to DP 4.0
	24	B2	3.89	0.96	17.6	3.73	5.51	20.6	ò				6.5	1.17	2.0	14.1	2.56	2.0	30	1394 0			On-grade inlet Piped to DP 4.0

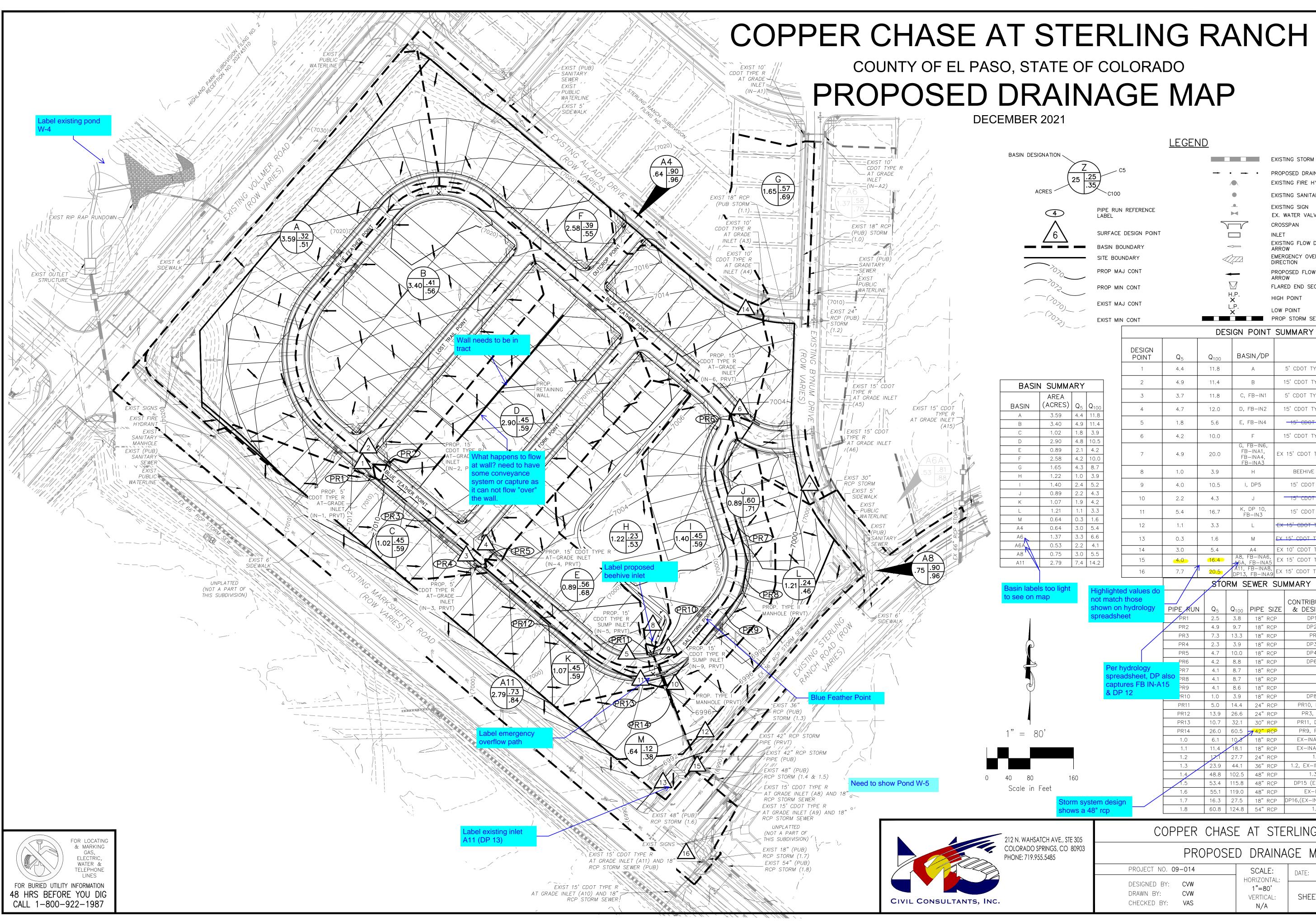
Version 4.05 Released March 2017

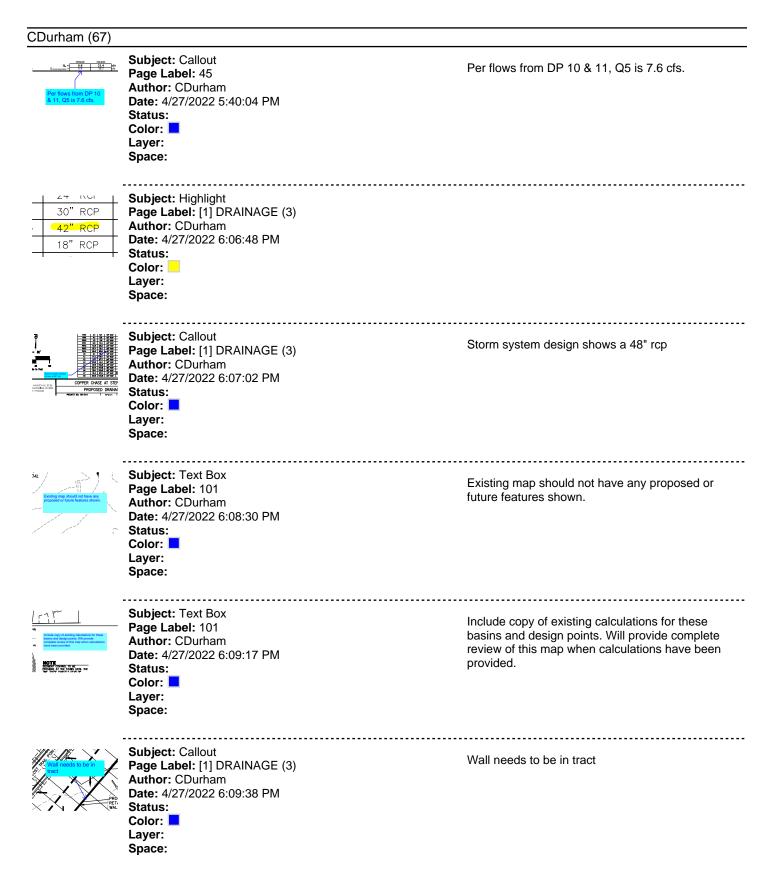

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	5.4	10.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	88	%


EXISTING PIPE COMPARISON: 5 YR EVENT

Subdivision: Location: esign Storm:	El Paso Col		ng No. :	2												Cal	Project culate hecke	ame: 9 t No.: 2 d By: 7 d By: Date: 1	25188 AAM	3.01	ch Sul	odivisi	ion
		<u> </u>		DIDE	CT RU	NOEE			T		RUNOF	c	CTDE	et/sv	/A1 E		PIF	-		TRAVE		16	
				DIKL								1		L173V			1.11					IL	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1	2.06	0.51	9.7	1.05	4.17	4.4					0.2	0.04	3.3	4.2	1.01	2.0	18	652 5	3.6 7.2	3.0 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.53	9.1	0.44	4.27	1.9								1.9	0.44	2.0	18	27	5.8	0.1	On-grade inlet Piped to DP 1.0
	1.0								97	1 45	4.17	6.0				6.0			18		9.1		' Sum of DP 1 & DP 2, piped to DP 1.2
	3	42	676	0.47	15.0	2 14	2 5 2	11.1	7.1	1.43	4.17	0.0	1.6	0.47	2.9				18	426	3.4 12.2	2.1	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	4	A3 A4	6.76			2 0.91	3.53 4.10	3.7					0.1	0.03	2.9		2.69 0.88		18	395	3.4	1.9	Piped to DP 1.1 On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
		A4	1.01	0.00	10.2	0.91	4.10	3.7															
	1.1										3.52					12.6			24		7.4		Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.2	5.02	3.50	17.6				17.6	5.02	3.3	24	319	12.5	0.4	Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53				5.17	2.2															Overland Flow to DP1.3A On-grade inlet
	6	A6	1.37	0.58	10.0	0.79	4.14	3.3								3.3	0.79		18		6.7		Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.22	4.14	5.0				5.0	1.22	1.0	24	36	5.7		Sum of DP 6 & DP 6A, piped to DP 1.3 On-grade inlet
	5	A5	1.70	0.59	9.9	0.99	4.14	4.1	17.0	1.53	3.33	5.1				5.1	1.53	2.0	18	0	7.6	0.0	Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	7.77	3.33	25.9				25.9	7.77	1.1	36	620	9.2	1.1	Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4 Future storm infrastructure from Copper Chase Subdivision
	7	A7	19.00	0.45	18.3	8.55	3.22	27.5								27.5	8.55	1.5	42	20	10.3	0.0	Piped to DP 1.4
	1.4								18.4	16.32	3.22	52.5				52.5	16.32	0.5	48	26	8.2	0.1	Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade inlet, carryover flow to DP 11
	8	A8	1.48	0.56	13.9	0.83	3.63	3.0								3.0	0.83	2.0	18	20	6.6	0.1	Piped to DP 1.5
	1.5								18.4	17.15	3.21	55.1				55.1	17.15	0.5	48	91	8.3	0.2	Sum of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.73	8.7	0.44	4.34	1.9	8.7	0.48	4.34	2.1				2.1	0.48	2.0	18	13	5.8	0.0	On-grade inlet Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								18.6	17.63	3.20	56.4				56.4	17.63	0.5	48		8.3	0.2	Sum of DP 1.5 & DP 9, piped to DP 1.8
	10	A10	2.61	0.79	7.9	2.05	4.49	9.2						0.11		8.7	1.94	2.5	18		2.4 9.5	0.2	On-grade inlet, carryover flow to DP 20 Piped to DP 1.7
	11	A11	2.89	0.76	8.7	2.20	4.34	9.5					0.6	0.15	1.5	8.9	2.05	2.5	18	1049 0	2.4 9.4		On-grade inlet, carryover flow to DP 21 Piped to DP 1.7
	1.7								8.7	3.99	4.34	17.3				17.3	3.99	1.0	24	8	7.9	0.0	Sum of DP 10 & DP 11, piped to DP 1.8
	1.8										3.18						21.63		54		14.4		Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	OS2	OS2	17.00	0.49	14.0	6.25	2.20	13.8							1	13.8	6.25		30		7.5		Future flow released from Barbarick Subdivision Piped to DP 2.0
	12	A12	3.87					1.9								1.9	0.49		18		5.6		Type C inlet Piped to DP 2.0
	2.0		5.67	2.10		5.77	2.00	,	15 7	6 74	3.45	23.2				23.2	6.74		48		8.4		Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	0.75	0.45	140	4.24	3.62	15.7	10.7	0.74	5.45	2J.Z				15.7				200	9.1		Future storm infrastructure from Sterling Ranch Phase 2 Piped to DP 2.1


EXISTING PIPE COMPARISON: 100 YR EVENT


Could allo sha ha sa	Charline Dee	- F []]	- N - 0													Pr	oject N					Subo	divis	ion
Subdivision:	El Paso Cour	ch Filing htv	y ino. 2													Ca	Projec alculate	d Bv:	2518 AAM	8.01				
sign Storm:	100-Year																Checke	d By:						
																	I	Date:	1/5/2	21				
		I		DIR	ECT RI	UNOFF			1	OTAL F		FF	STRE	ET/SW	ALE	I	PIPI	F		TRA	AVEL T	IMF		
					LOTIN							-	JINE	21/344				1			WEE I		-	
													(S)						Pipe Size (inches)					
	int			Coeff.									, (cfs)						(inc		ps) /	<u> </u>		
Description	Design Point	₽	ac)	f Co	(c	Û	(j	_	Ê	Û	ir)	_	swale	(ac)	Slope (%)	Q _{pipe} (cfs)	Û	(%)	ize	Length (ft)	felocity (fps)			REMARKS
	sign	Basin ID	Area (ac)	Runoff ((min)	C*A (ac)	(in/hr)	Q (cfs)	(min)	C*A (ac)	(in/hr)	Q (cfs)	O _{street/s}	₫ (a	в	be ((C*A (ac)	Slope	e Si	gth	oci a:	į	(min)	
	De	Bas	Are	Rui	د ل	C*'	I (i	0 (tc	C*'	I (i) 0		C*A		Q	ŝ	Slo	Pip			+	÷	
	1	A1	2.06	0.65	9.7	1.34	7.01	9.4					2.8	0.40	3.3	6.6	0.94	2.0	18	65	52 3. 5 8.			On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	I	AT	2.00	0.00	9.7	1.34	7.01	9.4					0.1	0.01	3.3	0.0	0.94	2.0	10	63		6	2.9	On-grade inlet, carryover flow to DP 6
	2	A2	0.82	0.66	9.1	0.54	7.17	3.9					0.1	0.01	0.0	3.8	0.53	2.0	18	2	27 7.	.0 (0.1	Piped to DP 1.0
	1.0								9.7	1.47	7.00	10.3	10.0	1.69	2.0	10.3	1.47	3.0	18	33 42				Sum of DP 1 & DP 2, piped to DP 1.2 On-grade inlet, carryover flow to DP 5
	3	A3	6.76	0.62	15.0	4.17	5.92	24.7					10.0	1.09	2.9	14.7	2.48	4.7	18	42	20 3. 36 13.	6 (2.1	Piped to DP 1.1
	0							2					1.6	0.24	2.9					39	95 3.	.4	1.9	On-grade inlet, carryover flow to DP 5
	4	A4	1.51	0.71	10.2	1.08	6.88	7.4								5.8	0.84	4.7	18		0 10.	.7 (0.0	Piped to DP 1.1
	1.1								15.0	2 22	5.91	19.7				19.7	3.33	1.0	24	7	74 8.	1 1	0.2	Sum of DP 3 & DP 4, piped to DP 1.2
	1.1								15.0	3.33	0.91	19.7				19.7	3.33	1.0	24		/4 0.		0.2	Sull of DP 3 & DP 4, piped to DP 1.2
	1.2								15.1	4.80	5.89	28.2				28.2	4.80	3.3	24	31	19 13.	.9 (0.4	Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	<i>(</i>)		0.50	0.00	- 0	0.47	0.40																	Overlag d Flave to DD1 04
	6A	A6A	0.53	0.88	5.0	0.47	8.68	4.1					13	0.18	0.7					69	96 1.	7 .		Overland Flow to DP1.3A On-grade inlet, carryover flow to DP 8
	6	A6	1.37	0.70	10.0	0.95	6.94	6.6	10.0	0.96	6.94	6.7		0.10	0.7	5.4	0.78	2.0	18		0 7.			Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
																				_		_		
	1.3A								10.0	1.25	6.94	8.7	6.5	1 17	0.7	8.7	1.25	1.0	24	3 66	36 6. 54 1	./ (0.1	Sum of DP 6 & DP 6A, piped to DP 1.3 On-grade inlet, carryover flow to DP 8
	5	A5	1.70	0.70	9.9	1.19	6.95	8.3	17.0	3.51	5.59	19.6	0.5	1.17	0.7	13.1	2.34	2.0	18		0 9.	4 (0.0	Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	8.39	5.59	46.9				46.9	8.39	1.1	36	62	20 10.	.7		Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.59	18.3	11.21	5.41	60.6								60.6	11.21	1.5	42	2	20 12.	7 (Future storm infrastructure from Copper Chase Subdivision Piped to DP 1.4
			17.00	0.07	10.0		0.11	00.0								00.0			12	-			0.0	
	1.4								18.4	19.60	5.40	105.9				105.9	19.60	0.5	48		26 9.	.2 (0.0	Sum of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1.48	0.70	13.9	1.04	6.10	6.3	23.7	2 4 2	4.76	12.5	1.9	0.41	0.7	10.6	2.23	2.0	18	19	95 1. 20 9.			On-grade inlet, carryover flow to DP 11 Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
	0	Ao	1.40	0.70	13.9	1.04	0.10	0.3	23.7	2.03	4.70	12.0				10.0	2.23	2.0	10	2	20 9.		0.0	Sull of Sub-basin A6 & Callyover nows notifibers, DP 6 & DP 15, Piped to DP 1.5
	1.5								23.7	21.83	4.76	103.9				103.9	21.83	0.5	48		91 9.	2 (0.2	Sum of DP 1.4 & DP 8, piped to DP 1.6
	0	4.0	0.(1	0.00		0.51	7 00	0.7	01.0	0.05	F 0.4	4.0	0.3	0.05	0.7	4.5	0.00		10		40 1.			On-grade inlet, carryover flow to DP 11
	9	A9	0.61	0.83	8.7	0.51	7.29	3.7	21.2	0.95	5.04	4.8				4.5	0.89	2.0	18	1	13 7.	.3 (0.0	Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								23.9	22.72	4.74	107.7				107.7	22.72	0.5	48	9	95 9.	.1 (0.2	Sum of DP 1.5 & DP 9, piped to DP 1.8
													4.5	0.59	1.5					95		.4 (6.5	On-grade inlet, carryover flow to DP 20
	10	A10	2.61	0.88	7.9	2.29	7.53	17.3					6.1	0.90	1.5	12.8	1.70	2.5	18		18 10. 19 2.			Piped to DP 1.7 On-grade inlet, carryover flow to DP 21
	11	A11	2.89	0.86	8.7	2.48	7.28	18.1	10.6	2.94	6.77	19.9	0.1	0.90	1.5	13.8	2.04	2.5	18		+9 2. 0 10.			Sum of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7
	1.7								10.6	3.74	6.77	25.3				25.3	3.74	1.0	24		8 8.	.1 (0.0	Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								24.0	26.45	4 72	125.0				125.0	26.45	2.0	54	51	17 17.	0 0	0.5	Sum of DP 1.6 & DP 1.7, piped to DP 2.7
		1							24.0	20.40		0.0					20.40	2.0	54					Future flow released from Barbarick Subdivision
	OS2	OS2	17.00	0.62	12.0	10.54	3.71	39.1								39.1	10.54	1.0	30	78	37 9.	.5		Piped to DP 2.0
	12	A12	3.87	0.38	11.9	1.47	6.49	9.5								9.5	1.47	2.0	18	- 1	17 0			Type C inlet Piped to DP 2.0
	12	AIZ	3.67	0.38	11.9	1.47	0.49	9.5								9.5	1.47	2.0	18	⊢	17 8.	.7 (0.0	ripeu to Dr 2.0
	2.0								13.4	12.01	6.20	74.5				74.5	12.01	1.0	48	5	52 11.	.6 (0.1	Sum of DP OS2 & DP 12, Piped to DP 2.1
	10	4.50	c / -	0.55	4.4.6	F / -	1.00										F / -							Future storm infrastructure from Sterling Ranch Phase 2
	13	A13	9.65	0.59	14.0	5.69	6.08	34.6	1		1				1	34.6	5.69	1.5	30	20	JU 11.	.0 (0.3	Piped to DP 2.1


DRAINAGE MAPS

							LEGEN	<u>D</u>					
510	GNATION	$\overline{\ }$	\sim								EXIST	ING STORM SEWER PIPE	
		F	<u>Z</u>	.25	C	5			• –	- •	PROP	OSED DRAINAGE SWALE	
^ ۵	CRES -	\mathcal{A}		.35	\ ~ · -							ING FIRE HYDRANT	
4(JRES		J		≻C100				•			ING SANITARY MANHOLE	
	4	>			PE RUN BEL	REFERENCE						'ING SIGN WATER VALVE	
	\wedge							5				SPAN	
	6	7				DESIGN POINT					INLET EXIST	ING FLOW DIRECTION	
									\sim		ARRO		
	` >				TE BOUI			<			DIREC	CTION	
	->_`		\checkmark	Pr	OP MA	J CONT		-			ARRO		
		<u>`</u>		PR	OP MIN	CONT			₩ Н.Р.			ED END SECTION	
)	_	EX	IST MA	J CONT			X L.P.			POINT	
		>, >,		EX	IST MIN	CONT	I		X			STORM SEWER PIPE	
								DE	SIGN	POINT	SU	MMARY	
						DESIGN							
					-	POINT	Q ₅	Q ₁₀₀	BA	SIN/DP		STRUCTURE	
					F	1	4.4	11.8		A		5' CDOT TYPE R AT-GRADE	
Ν	I SUN	1MA	RY			2	4.9	11.4		В		5' CDOT TYPE R AT-GRADE	
	ARE (ACRE					3	3.7	11.8		FB-IN1		5' CDOT TYPE R AT-GRADE	
_	(ACRE 3.59		Q ₅ 4.4	Q ₁₀₀ 11.8		4	4.7	12.0		FB-IN2	1	5' CDOT TYPE R AT-GRADE	. ,
	3.40 1.02		4.9 1.8	11.4 3.9		5	1.8	5.6	Ε,	FB-IN4	-	-15' CDOT TYPE R SUMP I	
	2.90		4.8	3.9 10.5		6	4.2	10.0		F FB-IN6,	1	5' CDOT TYPE R AT-GRADE	E INLET (IN-6)
	0.89 2.58		2.1 4.2	4.2 10.0		7	4.9	20.0	FE	B−INA1, B−INA4,	EX	15' CDOT TYPE R AT-GRAD	DE INLET (IN-A5)
_	1.65		4.2	8.7		8	1.0	3.9		B <u>-INA3</u> H		BEEHIVE GRATE SUMP IN	FT (IN-8)
	1.22 1.40		1.0 2.4	3.9 5.2	-	9	4.0	10.5		, DP5		15' CDOT TYPE R SUMP IN	. ,
	0.89		2.7	4.3		10	2.2	4.3			-	15' CDOT TYPE R SUMP II	
	1.07 1.21		1.9 1.1	4.2 3.3		10	5.4	4.3		J DP 10,		15 CDOT TYPE R SUMP II 15' CDOT TYPE R SUMP II	
	0.64	-	0.3	1.6						B-IN3		15 CDOT TYPE R SUMP II 15' CDOT TYPE R AT-GRAE	· · ·
_	0.64 1.37		3.0 3.3	5.4 6.6		12	1.1	3.3		L		15' CDOT TYPE R AT-GRAD	/
	0.53	5	2.2	4.1		13	0.3	1.6 5.4		M 		15 CDOT TYPE R AT-GRAD	
	0.75 2.79		3.0 7.4	5.5 14.2		15	4.0	(16.4	_ 4 6A,	FB-INA6, FB-INA5	, EX	15' CDOT TYPE R AT-GRAD	, <i>,</i> ,
					'	16	7.7	20.5	A11,	FB—INA8, , FB—INA9		15' CDOT TYPE R AT-GRAD	E INLET (IN-A11)
l el	s too li	ght		Hiał	nliahte	d values do		810	RM S	EWER	SUN	MMARY	
	nap			not	match	those	_/ /	1				CONTRIBUTING PIPES	
					wn on eadshe	hydrology eet	PIPE RUN	Q ₅ 2.5	Q ₁₀₀ 3.8	PIPE S		& DESIGN POINTS DP1 (IN-1)	
							PR2	4.9	9.7	18" R(CP	DP2 (IN-2)	
							PR3 PR4	7.3	13.3 3.9	18" RG		PR1, PR2 DP3 (IN-3)	
							PR5	4.7	10.0	18" R(CP	DP4 (IN-4)	
>						ydrology	PR6 PR7	4.2	8.8 8.7	18" R(DP6 (IN-6) PR6	
						dsheet, DP a res FB IN-A	also PR8	4.1	8.7	18" R(CP	PR7	
					& DP		PR9 7R10	4.1	8.6 3.9	18" RG		PR8 DP8 (IN-8)	
							PR11	5.0	14.4	24" R	CP	PR10, DP9 (IN-5)	
							PR12 PR13	13.9 10.7	26.6 32.1	24" R 30" R		PR3, PR4, PR5 PR11, DP11 (IN-9)	
3()'						PR14	26.0	60.5	42" R	CP	PR9, PR12, PR13	
							1.0	6.1 11.4	10.3 18.1	18" R(EX-INA1, EX-INA2 EX-INA4, EX-INA3	
							1.2	17.1	27.7	24" R	CP	1.0, 1.1	
		1	I 60				1.3 1.4	23.9 48.8	44.1 102.5	36" R(1.2, EX-INA5, EX-INA6 1.3, PR14	
F	- eet	I	00				1.5 1.6	53.4	115.8	48" R(CP	DP15 (EX-INA8), 1.4 EX-INA9, 1.5	
	_	Stor	m sv	stem	desig	n	1.6 1.7	55.1 16.3	119.0 27.5	48" R(DP16,(EX-INA11), EX-INA10	
				48" r			1.8	60.8	124.8	54" R(CP	1.7, 1.6	
						C		СНЛ	٢F	AT C	TE	RLING RANCH	
	TCH AVE								JL		<u>ור</u>		
	PRINGS, (5.5485	3 00	30903				PRC	POS	SED	DRA	INA	AGE MAP	
J	2.0100			┢		PROJECT NO	D. 09-014			SCALE	•	DATE: 12/09/21	
						DESIGNED E	BY: CVW			HORIZONT	AL:	DATE. 12/09/21	
						DRAWN BY:	CVW			1"=80' VERTICA		SHEET 1 OF 1	PDM
						CHECKED B	Y: VAS			N/A			
_													

PUDSP22002-R1-Drainage Report - Preliminary.pdf Markup Summary

and Same	Subject: Callout Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/27/2022 6:10:10 PM Status: Color: Layer: Space:	Label existing inlet A11 (DP 13)
	Subject: Callout Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/27/2022 6:10:26 PM Status: Color: Layer: Space:	Label proposed beehive inlet
4.0 7 7	Subject: Highlight Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/27/2022 6:10:56 PM Status: Color: Layer: Space:	
3.4 16.4 A 20.5 DF	Subject: Highlight Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/27/2022 6:10:59 PM Status: Color: Layer: Space:	
30 43 43 54 121 14 120 64 164 121 14 120 64 164 121 14 120 64 164 16 16 17 7 205 16 16 17 7 205 17 100 16 17 7 205 100 16 16 17 7 205 100 16 16 16 16 16 11 16 16 16 16 16 12 16 16 16 16 16 12 16	Subject: Callout Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/27/2022 6:11:20 PM Status: Color: Layer: Space:	Highlighted values do not match those shown on hydrology spreadsheet
	Subject: Callout Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/27/2022 6:12:25 PM Status: Color: Layer: Space:	Per hydrology spreadsheet, DP also captures FB IN-A15 & DP 12

(Q5=4.4 ; public roa grade CE	Subject: Highlight Page Label: 7 Author: CDurham Date: 4/28/2022 10:09:13 AM Status: Color: Layer: Space:	public
All reternal toack are update accordingly update accordingly private downet	Subject: Callout Page Label: 7 Author: CDurham Date: 4/28/2022 10:09:35 AM Status: Color: Layer: Space:	All internal roads are private, please update accordingly.
(Q5=4.9 ו <mark>public</mark> roa CDOT T <u>י</u>	Subject: Highlight Page Label: 7 Author: CDurham Date: 4/28/2022 10:10:35 AM Status: Color: Layer: Space:	public
ff produced , a public roa proposed 5'	Subject: Highlight Page Label: 7 Author: CDurham Date: 4/28/2022 10:11:46 AM Status: Color: Layer: Space:	public
noff produce , a public roa a proposed 1	Subject: Highlight Page Label: 7 Author: CDurham Date: 4/28/2022 10:12:28 AM Status: Color: Layer: Space:	public
(Q5=2.1 public) roa proposed	Subject: Highlight Page Label: 8 Author: CDurham Date: 4/28/2022 10:18:58 AM Status: Color: Layer: Space:	public

oduced withi , a <mark>public</mark> ro:)OT Type R	Subject: Highlight Page Label: 8 Author: CDurham Date: 4/28/2022 10:19:50 AM Status: Color: Layer: Space:	public
<text><text><text><text><text></text></text></text></text></text>	Subject: Callout Page Label: 8 Author: CDurham Date: 4/28/2022 10:22:48 AM Status: Color: Layer: Space:	Flows do not match hydrology spreadsheet
oduced with a public ro Q5=4.9 and	Subject: Highlight Page Label: 8 Author: CDurham Date: 4/28/2022 10:23:18 AM Status: Color: Layer: Space:	public
	Subject: Highlight Page Label: 8 Author: CDurham Date: 4/28/2022 10:25:55 AM Status: Color: Layer: Space:	
<text><text><text><text><section-header><section-header><text></text></section-header></section-header></text></text></text></text>	Subject: Callout Page Label: 8 Author: CDurham Date: 4/28/2022 10:28:49 AM Status: Color: Layer: Space:	From drainage map, appears to tie into 30" rcp before the 36" rcp
(Q5=2.4 an a public roa the 5 and 1	Subject: Highlight Page Label: 8 Author: CDurham Date: 4/28/2022 10:32:33 AM Status: Color: Layer: Space:	public

 A second s	Subject: Callout Page Label: 8 Author: CDurham Date: 4/28/2022 10:35:30 AM Status: Color: Layer: Space:	Flows would overtop the crown of the road, enter IN 9, then overtop c&g to flow through Tract E.
ff produced , a public roa inlet at Desig	Subject: Highlight Page Label: 8 Author: CDurham Date: 4/28/2022 10:35:57 AM Status: Color: Layer: Space:	public
	Subject: Callout Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/28/2022 10:41:44 AM Status: Color: Layer: Space:	Blue Feather Point
	Subject: Callout Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/28/2022 10:42:16 AM Status: Color: Layer: Space:	Label emergency overflow path
where the strength of the stre	Subject: Callout Page Label: 9 Author: CDurham Date: 4/28/2022 10:47:41 AM Status: Color: Layer: Space:	Storm design model in appendix has a 48" rcp.
sewer that of existing- ing Ranch	Subject: Line Page Label: 9 Author: CDurham Date: 4/28/2022 10:48:17 AM Status: Color: Layer: Space:	

consists of 1.21 acres is basin (Q5=1.1 and (bad, two existing, pub 15' CDOT Type R at	Subject: Line Page Label: 9 Author: CDurham Date: 4/28/2022 10:48:59 AM Status: Color: Layer: Space:	
1 and Q100= ig, <mark>public</mark> roa e R at grade	Subject: Highlight Page Label: 9 Author: CDurham Date: 4/28/2022 10:49:04 AM Status: Color: Layer: Space:	public
lots. Renoff produced an Drose and Steffin while 42° RCP arem Drast equipy maps 3, 1026 and while have a set of the s	Subject: Callout Page Label: 9 Author: CDurham Date: 4/28/2022 10:50:05 AM Status: Color: Layer: Space:	Drainage map & table shows 48" rcp
within this ba in existing pul infrastructure	Subject: Line Page Label: 9 Author: CDurham Date: 4/28/2022 10:50:38 AM Status: Color: Layer: Space:	
)100=5.4 cfs) c of existing pub c) drains from n 0100-4.9 cfc)	Subject: Line Page Label: 9 Author: CDurham Date: 4/28/2022 10:51:43 AM Status: Color: Layer: Space:	
nd FB-INA5.	Subject: Line Page Label: 9 Author: CDurham Date: 4/28/2022 10:53:53 AM Status: Color: Layer: Space:	

a with a similar rain to the orb an existen 15 an existen 15 and a Horn much typpass did the JR Other report existence of the starm of conclusion that the increases in Rese? Increases in Rese?	Subject: Text Box Page Label: 9 Author: CDurham Date: 4/28/2022 10:56:54 AM Status: Color: Layer: Space:	How much bypass did the JR report anticipate? Can the storm system and downstream inlet accomodate the increase in flows?
Denied and 2022 fram. Well strift with TERE From Denie account PERCHARE AT A PARLING RANCH g blain. The 2011 Doining and Helge Free per 11 Pare Ca are an fallow. Romolog. — Tand Area = 10.601 Area	Subject: Callout Page Label: 11 Author: CDurham Date: 4/28/2022 11:03:05 AM Status: Color: Layer: Space:	Should use 2022 fees. Will verify with FDR/Final Plat submittal.
20° BCP 42° BCP Tota Will review cost estimate with PDR/Final Plat submittal.	Subject: Text Box Page Label: 10 Author: CDurham Date: 4/28/2022 11:03:45 AM Status: Color: Layer: Space:	Will review cost estimate with FDR/Final Plat submittal.
Supporting text and calculation excerpts Address if there is or is not any offsite flows entering site.	Subject: Text Box Page Label: 5 Author: CDurham Date: 4/28/2022 11:05:38 AM Status: Color: Layer: Space:	Address if there is or is not any offsite flows entering site.
Cursory review only was done on atoms sever design. Final review will be proformed with Final submitted to the several several submitted several several several several submitted several several several several submitted several	Subject: Text Box Page Label: 54 Author: CDurham Date: 4/28/2022 11:11:15 AM Status: Color: Layer: Space:	Cursory review only was done on storm sewer design. Final review will be performed with Final Drainage Report/Final Plat submittal.
d with the Sterling Ranch Filing No. scorwyrd to cuisting Sterling ranch ned alwag the waltern bonadary with Includes statement that a final manylesis of Proof NS with the Final Plat submittel.	Subject: Text Box Page Label: 6 Author: CDurham Date: 4/28/2022 11:12:26 AM Status: Color: Layer: Space:	Include statement that a final analysis of Pond W5 will be provided with FDR with the Final Plat submittal.

	Subject: Callout Page Label: 8 Author: CDurham Date: 4/28/2022 11:13:07 AM Status: Color: Layer: Space:	Include design calculations for swale or state they will be provided in FDR with Final Plat submittal
Contents were write young were then a to be the owner is of the property densing or could project shall not already strength or density include discussion on who will be interfaciently private laddhess.	Subject: Text Box Page Label: 11 Author: CDurham Date: 4/28/2022 11:13:20 AM Status: Color: Layer: Space:	Include discussion on who will be maintaining private facilities.
Intercepted flow er cfs and Q100–124 Flows bypassing th Missing Basin A6. EROSION CONT	Author: CDurham	Missing Basin A6.
A4 0.64 3.0 6.4 A6 137 3.5 6.6 A6 0.75 3.0 6.7 A1 2.77 2.4 14.2 Brain bakes too light is see on mig 5.66 1.6	Subject: Callout Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/28/2022 11:16:13 AM Status: Color: Layer: Space:	Basin labels too light to see on map
5' GOT THE & AT-GAUGE MALT (N-1) 10' GOT THE & AT-GAUGE MALT (N-2) 10' GOT THE & AT-GAUGE MALT (N-2) 10' GOT THE & AT-GAUGE MALT (N-3) 10' GOT THE & AT-GAUGE MALT (N-4)	Subject: Line Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/28/2022 11:17:42 AM Status: Color: Layer: Space:	
1 10 ft GODT INTE & AT-AGAGE ALT (0+4) 2 10 ft GODT INTE & AT-AGAGE ALT (0+4) 1 10 ft GOTT INTE & AM HALL (0+4) 2 10 ft GOTT INTE & AM HALL (0+4) 1 10 ft GOTT INTE & AM HALL (0+4) 2 10 ft GOTT INTE & AM HALL (0+4) 1 10 ft GOTT INTE & AM HALL (0+4) 2 10 ft GOTT INTE & AM HALL (0+4) 1 10 ft GOTT INTE & AL-GOLDE ALT (0+4) 2 10 ft GOTT INTE & AL-GOLDE ALT (0+4) 10 ft GOTT INTE & AL-GOLDE ALT (0+4)	Subject: Line Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/28/2022 11:17:56 AM Status: Color: Layer: Space:	

MCK STIMMARLA MCK STIMMARLA MCK STIMMARLA	Subject: Line Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/28/2022 11:18:08 AM Status: Color: Layer: Space:	
Image: 1 to dot more it auto must be to all Image: 1 to dot more it auto must be to all Image: 1 to all must be to all must be to all Image: 1 to all must be	Subject: Line Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/28/2022 11:18:17 AM Status: Color: Layer: Space:	
unitation	Subject: Callout Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/28/2022 11:19:06 AM Status: Color: Layer: Space:	Delete these items as structures are not at these design points.
Label existing pond W-4	Subject: Callout Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/28/2022 11:20:40 AM Status: Color: Layer: Space:	Label existing pond W-4
Need to show Pond W-5	Subject: Text Box Page Label: [1] DRAINAGE (3) Author: CDurham Date: 4/28/2022 11:20:59 AM Status: Color: Layer: Space:	Need to show Pond W-5
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Subject: Text Box Page Label: 6 Author: CDurham Date: 4/28/2022 11:23:28 AM Status: Color: Layer: Space:	Revise paragraph, flows exiting project site are not reduced to predevelopment conditions. Offsite sub-reg pond W-5 will treat and release flows with other Sterling Ranch developments to predevelopment conditions.

Change to Preimoury Drandge Report COPPER CI	Subject: Callout Page Label: 1 Author: CDurham Date: 4/28/2022 12:47:36 PM Status: Color: Layer: Space:	Change to Preliminary Drainage Report.
<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	Subject: Callout Page Label: 4 Author: CDurham Date: 4/28/2022 9:19:04 AM Status: Color: Layer: Space:	State whether this report is approved or still being reviewed.
ng Ranch Filing 1 by existing Vo 5 southwest by	Subject: Highlight Page Label: 4 Author: CDurham Date: 4/28/2022 9:33:05 AM Status: Color: Layer: Space:	existing
infrastructure er oad <mark>, existing</mark> Alz , Marksheffel R	Subject: Highlight Page Label: 4 Author: CDurham Date: 4/28/2022 9:33:08 AM Status: Color: Layer: Space:	, existing
boundary o existing By southeast b	Subject: Highlight Page Label: 4 Author: CDurham Date: 4/28/2022 9:33:16 AM Status: Color: Layer: Space:	existing
Vollmer Road by <mark>existing</mark> Ma Sterling Ranch	Subject: Highlight Page Label: 4 Author: CDurham Date: 4/28/2022 9:33:19 AM Status: Color: Layer: Space:	existing

Bynum Drive. by existing Ste Basin. Flows fr	Subject: Highlight Page Label: 4 Author: CDurham Date: 4/28/2022 9:33:23 AM Status: Color: Layer: Space:	existing
ang 51 West and a pusition of 4b Northeast and a set of the 0th Phraped Northeast and Phraped Northeast and Phraped Northeast and Phraped Northeast Northeast Annual Northeast Annual Northeast A	Subject: Callout Page Label: 4 Author: CDurham Date: 4/28/2022 9:34:10 AM Status: Color: Layer: Space:	Roads are not existing. Roads are currently under construction or approved, ready for construction. Please revise.
Itimately, the of existing Sta were construct	Subject: Line Page Label: 6 Author: CDurham Date: 4/28/2022 9:40:06 AM Status: Color: Layer: Space:	
have a single a set of the end of the set of	Subject: Callout Page Label: 6 Author: CDurham Date: 4/28/2022 9:40:11 AM Status: Color: Layer: Space:	Emergency overflow arrows not shown on map. Please add/turn on.
e right of way of existing Sterling Ranc g Ranch Road were constructed with the im the proposed development is conveye am Detention Facility constructed along 6 are being	Subject: Callout Page Label: 6 Author: CDurham Date: 4/28/2022 9:40:27 AM Status: Color: Layer: Space:	are being
drainage patterns and analysis. S section of the Appendix. Include existing drainage calculations in appendix.	Subject: Text Box Page Label: 5 Author: CDurham Date: 4/28/2022 9:42:27 AM Status: Color: Layer: Space:	Include existing drainage calculations in appendix.

_____ Subject: Callout Page Label: [1] DRAINAGE (3) Author: CDurham Date: 5/2/2022 9:37:14 AM Status: Color: Layer: Space:

What happens to flow at wall? need to have some conveyance system or capture as it can not flow "over" the wall.

Glenn Reese -	EPC Stormwater (9)	
09-014 SF XX-XXX PUDSP222	Subject: SW - Textbox with Arrow Page Label: 1 Author: Glenn Reese - EPC Stormwater Date: 4/25/2022 5:10:59 PM Status: Color: ■ Layer: Space:	PUDSP222
<text><text><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></text></text>	Subject: SW - Highlight Page Label: 8 Author: Glenn Reese - EPC Stormwater Date: 4/25/2022 5:59:41 PM Status: Color: Layer: Space:	where it enters 1.3, an existing public 36" RCP storm sewer
and Q100=20.0 / cxisting 15" at- n existing public is to downstream abail on proposed abail on proposed	Subject: SW - Textbox with Arrow Page Label: 8 Author: Glenn Reese - EPC Stormwater Date: 4/25/2022 6:01:25 PM Status: Color: ■ Layer: Space:	label on proposed drainage map
N-8, Q5=1.0 and cepted flows south. onto Blue Feather is grate is provided	Subject: SW - Highlight Page Label: 8 Author: Glenn Reese - EPC Stormwater Date: 4/25/2022 6:03:48 PM Status: Color: Layer: Space:	Blue Feather
-S. QS-1.9 and pred flows south. to Blue Feather grate is provided or is is Salt Fork Point at this point? within this basin 'Salt Fork Point, 0 and 105 ab in	Subject: SW - Textbox with Arrow Page Label: 8 Author: Glenn Reese - EPC Stormwater Date: 4/25/2022 6:04:03 PM Status: Color: ■ Layer: Space:	or is is Salt Fork Point at this point?

An and a second se	Subject: SW - Highlight Page Label: 10 Author: Glenn Reese - EPC Stormwater Date: 4/25/2022 6:09:10 PM Status: Color: Layer: Space:	Flows bypassing the inlet (Q5=0.1 cfs, Q100=8.1 cfs) continue to downstream infrastructure.
A so May explosion of Q6-603. It do not a solution of the dot of	Subject: SW - Textbox with Arrow Page Label: 10 Author: Glenn Reese - EPC Stormwater Date: 4/25/2022 6:09:54 PM Status: Color: ■ Layer: Space:	what downstream infrastructure? And does that infrastructure include WQ treatment and detention (if needed)?
<text><text><text><text><text><text></text></text></text></text></text></text>	Subject: SW - Textbox with Arrow Page Label: 9 Author: Glenn Reese - EPC Stormwater Date: 4/25/2022 6:12:03 PM Status: Color: ■ Layer: Space:	Is there WQ treatment for this runoff, or is it to be a excluded? If so, discuss the applicable exclusion.
Insh Roburn de WQCY (Schöllin Bruinagerary) oc de rund fan de proposition and solution of effective in the developed dancing from the site in or antique ways	Subject: SW - Textbox with Arrow Page Label: 6 Author: Glenn Reese - EPC Stormwater Date: 4/27/2022 9:48:11 AM Status: Color: ■ Layer: Space:	"with PCD Filing No. SF1820"