PRELIMINARY DRAINAGE REPORT COPPER CHASE AT STERLING RANCH

EL PASO COUNTY, COLORADO

AUGUST 2023

Prepared for:

Challenger Communities, LLC
Jim Byers
8605 Explorer Drive, Suite 250
Colorado Springs, Colorado, 80920

Prepared by:

CIVIL CONSULTANTS, INC.

212 N. Wahsatch Avenue, Suite 305 Colorado Springs, CO 80903 (719) 955-5485

> Project #09-014 PCD Project # PUDSP222

PRELIMINARY DRAINAGE REPORT COPPER CHASE AT STERLING RANCH

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin.

Virgil A. Sanchez, P.E. #37160

For and on Behalf of M&S Civil Consultants, Inc

DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all the requirements specified in this drainage report and plan.

BY:

Jim Byers, VP of Community Development

TITLE: DATE: 08/03/23

ADDRESS: Challenger Communities, LLC

> 8605 Explorer Drive, Suite 250 Colorado Springs, CO 80920

EL PASO COUNTY'S STATEMENT

Filed in accordance with the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

	Approved	
BY:	By: Gilbert LaForce, P.E.	DATE:
	Engineering Manager	
	Date: 10/10/2023 7:38:14 AM El Paso County Department of Public Works	strator
	El Paso County Department of Public Works	

PRELIMINARY DRAINAGE REPORT COPPER CHASE AT STERLING RANCH

TABLE OF CONTENTS

PURPOSE	4
GENERAL LOCATION AND DESCRIPTION	4
SOILS	4
HYDROLOGIC CALCULATIONS	4
HYDRAULIC CALCULATIONS	5
FLOODPLAIN STATEMENT	5
DRAINAGE CRITERIA	5
EXISTING DRAINAGE CONDITIONS	5
FOUR STEP PROCESS	6
PROPOSED DRAINAGE CHARACTERISTICS	6
EROSION CONTROL	10
CONSTRUCTION COST OPINION	10
DRAINAGE & BRIDGE FEES	11
SUMMARY	11
REFERENCES	12

APPENDIX

Vicinity Map Soils Map FIRM Panel

Existing Drainage Conditions Discussion (By Others)
Existing Hydrologic Calculations (By Others)
Proposed Hydrologic Calculations
Existing Hydraulic Calculations (By Others)
Proposed Hydraulic Calculations
Background
Existing Drainage Maps (By Others)
Proposed Drainage Map

PRELIMINARY DRAINAGE REPORT COPPER CHASE AT STERLING RANCH

PURPOSE

This document is the Final Drainage Report for Copper Chase at Sterling Ranch. This site was previously discussed, in the approved "Final Drainage Report for Sterling Ranch Filing No. 2" prepared by JR Engineering, approved November 2021. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual.

GENERAL LOCATION AND DESCRIPTION

Copper Chase at Sterling Ranch is located within the Southeast quarter of Section 32 and within the Southwest quarter of Section 33, Township 12 south, Range 65 West and a portion of the Northeast quarter of Section 5, Township 13, Range 65 West, all west of the 6th Principal Meridian, in unincorporated El Paso County, Colorado. Sterling Ranch Filing No. 2 infrastructure encompasses the boundary of the site. The site is bound to the north by under-construction Vollmer Road, Alzada Drive, and Bynum Drive. The site is bound to the southwest by existing Marksheffel Road and to the southeast by existing Sterling Ranch Road. Copper Chase at Sterling Ranch lies within the Sand Creek Drainage Basin. Flows from this site are tributary to Sand Creek.

Copper Chase at Sterling Ranch consists of 19.65 acres and is presently undeveloped. Vegetation is sparse, consisting of native grasses. Existing site terrain generally slopes from north to southeast at grade rates that vary between 1.9% and 4.4%.

Copper Chase at Sterling Ranch is currently zoned RS-5000 for Residential Sub-Urban and is proposed to be PUD, or Planned Unit Development. Improvements proposed for the site include paved streets, utilities, and storm drainage improvements, as normally constructed for a planned unit development.

SOILS

Soils for this project are delineated by the map in the appendix as Blakeland Loamy Sand (8) and Columbine Gravelly Sandy Loam (19). Both are characterized as Hydrologic Soil Types "A". Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area". Due to recent bulk grading activities, vegetation is sparse, consisting of native grasses and weeds.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Urban Storm Drainage Criteria Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual. The relevant data sheets are included in the appendix of this report.

FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain as determined by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0533 G, effective date December 7th, 2018.

DRAINAGE CRITERIA

This drainage analysis has been prepared in accordance with the current El Paso County Drainage Criteria Manual, Volumes I & II, dated October 31, 2018, City of Colorado Springs Drainage Criteria Manual, Volumes I & II, dated May 2014, including subsequent updates. El Paso County has also adopted Chapter 6 and Section 3.2.1 of Chapter 13 in the City of Colorado Springs & El Paso County Drainage Criteria Manual Volumes I and II, dated May 2014. (Appendix I of the El Paso County's Engineering Criteria Manual (ECM), Adopted January 2015). In addition to the ECM, the Urban Storm Drainage Criteria Manuals, Volumes 1-3, published by the Urban Drainage and Flood Control District (Volumes 1 & 2 dated January 2016, Volume 3 dated November 2010 and updates). Calculations were performed to determine runoff quantities for the 5-year and 100-year frequency storms for developed conditions using the Rational Method.

EXISTING DRAINAGE CONDITIONS

The Copper Chase at Sterling Ranch site consists of 19.65 acres and is situated west of the Sand Creek Channel. This area was previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996. More recently the area was studied in the "Final Drainage Report for Sterling Ranch Filing No. 2" prepared by JR Engineering, LLC, approved November 2021 (henceforth referred to as "Sterling Ranch Filing No. 2 FDR"), and "Master Development Drainage Report for Sterling Ranch Filing Nos. 1 & 2", prepared by M&S Civil Consultants, dated December 2017. Copper Chase at Sterling Ranch and portions of the surrounding areas (with the exception of the existing Barbarick Subdivision), have already been bulk graded (refer to Sterling Ranch Filing No. 2: Grading, Erosion, and Stormwater Quality Control Plan, dated March 2018). Offsite flows in this condition are diverted by the exterior roadways and do not enter the site. Refer to the Final Drainage Report for Sterling Ranch Filing No 2 by JR Engineering, LLC for information on historic conditions and overlot drainage patterns and analysis. The existing condition discussion, calculations, and maps for this site come directly from the proposed condition discussion, calculations, and maps within the Sterling Ranch Filing No. 2 FDR. Supporting text, calculation, and map excerpts for the existing conditions can be found in the appendix under the following sections: "Existing Drainage Conditions Discussion", "Existing Hydrologic Calculations", "Existing Hydraulic Calculations", "Background", and "Existing Drainage Maps".

FOUR STEP PROCESS

- **Step 1 Employ Runoff Reduction Practices** Roof drains will be directed to side yard swales and, whenever possible, to grass lined swales to aid in minimizing direct connection of impervious surfaces. Residential lots are proposed to include open spaces and lawn areas, which helps minimize directly connected impervious areas and therefore reduces runoff volumes.
- Step 2 Treat And Slowly Release the WQCV (Stabilize Drainageways) —at rates less than predevelopment conditions. With the offsite, sub-regional, full spectrum detention facility (Pond W-5) in place, the runoff from the proposed planned unit development and other areas of Sterling Ranch developments (see Pond W-5 tributary area in Appendix) will be treated and reduced to predevelopment conditions. The developed discharge from the site is not anticipated to have negative effects on downstream drainageways.
- Step 3 Stabilize Stream Channels Provide Water Quality Capture Volume (WQCV) An existing Full Spectrum Detention Facility was planned and constructed to handle tributary flows for this site (see Sterling Ranch Filing No 2 FDR with PCD Filing No. SF1820, Pond W-5) which will incorporate water quality capture volumes that are intended to slowly drain in 40 hours and excess urban runoff volumes that are intended to drain within 72 hours. Channel stabilization has been provided at the outlet of the aforementioned pond.
- **Step 4** Consider Need for Selecting Industrial and Commercial BMP's A Stormwater Management Plan will be implemented which will include property housekeeping practices, spill containment procedures, and coverage of storage/handling areas to mitigate the potential for erosion across the site and protect downstream waters. Specialized BMP's are not required since there aren't commercial/industrial areas being implemented with this project.

PROPOSED DRAINAGE CHARACTERISTICS

General Concept Drainage Discussion

The following is a description of the onsite basins, offsite flows and the overall drainage characteristics for the development of Copper Chase at Sterling Ranch. The development of Copper Chase at Sterling Ranch consists of paved streets, parking, and lots typical of a Planned Unit Development (PUD). Surface runoff is routed via roof drains and side lot swales between the lots to either the back or front of the lots. Surface runoff from the back of the lots and open spaces is directed by swales to low points within area drainage basins. Surface runoff directed to the front of the lots is conveyed within the streets to proposed CDOT Type R at-grade inlets or to low points equipped with proposed CDOT Type R sump inlets. In the event of clogging or inlet failure at low points, emergency overflow routes have been designed to convey runoff to either a downstream inlet, existing Bynum Drive, or Sterling Ranch Road (see the Proposed Drainage Map for emergency overflow arrows and general drainage patterns). Runoff captured by area drainage inlets or CDOT Type R inlets is conveyed underground by a proposed private storm sewer system to the southern corner of the parcel. Ultimately, the proposed storm sewer system ties into an existing Type I manhole within the right of way of Sterling Ranch Road. All existing storm drainage improvements within Sterling Ranch Road are being constructed with the Sterling Ranch Filing No. 2 infrastructure. Ultimately, runoff from the proposed development is conveyed to existing Sterling ranch Pond W-5, a subregional Full spectrum Detention Facility constructed along the southern boundary of Sterling Ranch. (Refer to Pond W4 & W5 Tributary Area Exhibit by JR Engineering, included in the Background section of the Appendix). A final analysis of Pond W-5 will be included with the final plat submittal.

The following detailed drainage discussion provides an overview of the proposed development and ensures that no major modification of the proposed improvements is necessary due to the assumptions meeting that of the previously submitted Final Drainage Report for Sterling Ranch Filing No 2. Surface flow is designated as Design Points (DP). Captured flow within the storm sewer system is designated as Pipe Runs (PR). Flow bypassing the inlets is designated as flowby (FB).

Detailed Drainage Discussion (Design Points)

Design Point 1 (Q5=4.4 cfs, Q100=11.8 cfs)

Basin A consists of 3.59 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=4.4 and Q100=11.8 cfs) flows from north to south through the lots and onto Blue Feather Loop, a public roadway. The flow is conveyed to the southwest within the curb and gutter to a proposed 5' atgrade CDOT Type R inlet (IN-1, Q5=2.5 and Q100=3.8 cfs) where a portion enters PR1, a proposed private 18" RCP storm sewer. Flowby bypassing this inlet (Q5=1.9 cfs, Q100=8.0 cfs) continues to downstream infrastructure.

Design Point 2 (Q5=4.9 cfs, Q100=11.4 cfs)

Basin B consists of 3.40 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=4.9 and Q100=11.4 cfs) flows from the lots and onto Blue Feather Loop and Lost Trail Drive (two public roadways). The flow is conveyed within the streets via curb and gutter to a proposed 15' at-grade CDOT Type R inlet (**IN-2**, **Q5=4.9** and **Q100=9.7** cfs) where it enters **PR2**, a proposed private 18" RCP storm sewer. **PR1** and **PR2** join flows and are directed southeast within **PR3**, an 18" RCP private storm sewer. Flowby bypassing this inlet (Q5=0.0 cfs, Q100=1.7 cfs) continues to downstream infrastructure.

Design Point 3 (Q5=3.7 cfs, Q100=11.8 cfs)

Basin C consists of 1.02 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=1.8 and Q100=3.9 cfs) flows from the lots and onto Blue Feather Loop, a public roadway. The flow is conveyed southeast in the curb and gutter, combining with **FB-IN1**, to a proposed 5' at-grade CDOT Type R inlet (**IN-3**, **Q5=2.3** and **Q100=3.9** cfs). Intercepted flow enters **PR4**, a proposed private 18" RCP storm sewer. Flowby bypassing this inlet (Q5=1.4 cfs, Q100=7.9 cfs) continues to downstream infrastructure.

Design Point 4 (Q5=4.7 cfs, Q100=12.0 cfs)

Basin D consists of 2.90 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=4.8 and Q100=10.5 cfs) flows from the lots and onto Salt Fork Drive, a public roadway. The flow is conveyed southeast in the curb and gutter, combining with **FB-IN2**, to a proposed 15' at-grade CDOT Type R inlet (**IN-4**, **Q5=4.7** and **Q100=10.0** cfs). Intercepted flow enters **PR5**, a proposed private 18" RCP storm sewer. **PR3**, **PR4**, and **PR5** join flows and continue southeast in **PR12**, a proposed 24" RCP private storm sewer. Flowby bypassing this inlet (Q5=0.0 cfs, Q100= 2.0 cfs) continues to downstream infrastructure.

Design Point 5 (Q5=1.8 cfs, Q100=5.6 cfs)

Basin E consists of 0.89 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=2.1 and Q100=4.2 cfs) flows from north to south through the lots and onto Blue Feather Loop, a public roadway. The flow is conveyed southeast in the curb and gutter, combining with **FB-IN4**, to a proposed 15' sump CDOT Type R at **Design Point 9**.

Design Point 6 (Q5=4.2 cfs, Q100=10.0 cfs)

Basin F consists of 2.58 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=4.2 and Q100=10.0 cfs) flows from the lots and onto Blue Feather Loop, a public roadway. The flow is conveyed southeast in the curb and gutter to a proposed 15' at-grade CDOT Type R inlet (**IN-6**, **Q5=4.2 and Q100=8.9 cfs**) where it enters **PR6** to **PR9**, a proposed private 18" RCP storm sewer segment. Flowby bypassing this inlet (Q5=0.0 cfs, Q100=1.1 cfs) continues east to downstream infrastructure located offsite on Bynum Drive.

Design Point 7 (Q5=4.9 cfs, Q100=20.0 cfs)

Basin G consists of 1.65 acres of paved roadway and residential lots. Runoff produced within this basin (Q5=4.3 and Q100=8.7 cfs) flows to the curb and gutter of Bynum Drive, a public roadway, and combines with **FB-IN6**, **FB-INA1**, **FB-INA4**, and **FB-INA3** for peak rates of Q5=4.9 and Q100=20.0 cfs in the 5 and 100 year events, respectively. A portion of the flow is then captured by an existing 15' at-grade CDOT Type R inlet (**IN-A5**, **Q5=4.9** and **Q100=13.3** cfs) where it enters **1.3A**, an existing public 30" RCP storm sewer. A manhole redirects the flow south into **1.3**, a public 36" RCP storm sewer. Flowby bypassing this inlet (Q5=0.0 cfs, Q100=6.7 cfs) continues to downstream infrastructure located on existing Sterling Ranch Road.

Design Point 8 (Q5= 1.0 cfs, Q100=3.9 cfs)

Basin H consists of 1.22 acres of residential lots, open space, and landscaping. Runoff produced within this basin (Q5=1.0 and Q100=3.9 cfs) flows from north to south through the lots, entering a proposed triangular, earthen swale. This 2' deep swale with 3:1 side slopes directs the flow southeast, where it enters a proposed 3' CDOT Type C at grade area inlet (IN-8, Q5=1.0 and Q100=3.9 cfs) at its end. Design calculations for this swale shall be provided with the Final Drainage Report and Final Plat submittal. PR10, a proposed 18" RCP private storm sewer directs intercepted flows south. In the case of inlet failure or clogging, the inundated area will overflow southeast onto Blue Feather Loop and be conveyed to the sump inlet (IN-5) at DP 9. A weir-orifice analysis for this grate is provided in the Appendix.

Design Point 9 (Q5=4.0 cfs, Q100=10.5 cfs)

Basin I consists of 1.40 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=2.4 and Q100=5.2 cfs) drains from northwest to southeast to the curb and gutter of Salt Fork Drive, a public roadway, combining with surface flows from **Design Point 5** at peak rates of 4.0 and 10.5 cfs in the 5 and 100 year events, respectively. The flow is then captured by proposed 15' sump CDOT Type R inlet (**IN-5**, **Q5=4.0** and **Q100=10.5** cfs). Intercepted flows enter **PR11**, a proposed private 24" RCP storm sewer. In the case of inlet failure or clogging, flows would overtop the crown of the road, enter **IN-9**, then overtop the curb and gutter to flow through Tract E.

Design Point 10 (Q5=2.2 cfs, Q100=4.3 cfs)

Basin J consists of 0.89 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=2.2 and Q100=4.3 cfs) drains to the curb and gutter of Blue Feather Loop, a public roadway. The flow is then directed south and captured by proposed 15' sump CDOT Type R inlet at **Design Point 11**.

Design Point 11 (Q5=5.4 cfs, Q100=16.7 cfs)

Basin K consists of 1.07 acres of residential lots and paved roadway. Runoff produced within this basin (Q5=1.9 and Q100=4.2 cfs) drains from west to east to the curb and gutter of Blue Feather Loop. The flow is conveyed in the curb and gutter where it combines with flows from **Design Point 10** and **FB-IN3** and is captured by proposed 15' sump CDOT Type R inlet (**IN-9**, **Q5=5.4 and Q100=16.7 cfs**). Intercepted flow enters **PR13**, a proposed private 30" RCP storm sewer where flows from **PR9** and **PR12** combine at a Type I junction manhole. Flows continue south in **PR14**, a proposed 42" RCP private storm sewer that ties into the existing 42" RCP storm sewer (private) and Type I manhole in the right of way of Sterling Ranch Road (**PR14**: Q5=26.0, Q100=60.5 cfs). Flows anticipated in the FDR for Sterling Ranch Filing No. 2 by JR Engineering at this pipe location are Q5=27.5 cfs and Q100=60.6 cfs.

Design Point 12 (Q5=1.1 cfs, Q100=3.3 cfs)

Basin L consists of 1.21 acres of residential lots and open space at the rear of the lots. Runoff produced within this basin (Q5=1.1 and Q100=3.3 cfs) drains to the curb and gutter of Bynum Drive and Sterling Ranch Road, public roadways. The flow is then directed southeast and is captured by an existing 15' CDOT Type R at grade inlet (**IN-A8**) at **Design Point 15** and enters **1.5**, a public 48" RCP storm sewer.

Design Point 13 (Q5=0.3 cfs, Q100=1.6 cfs)

Basin M consists of 0.64 acres of residential lots and open space. Runoff produced within this basin (Q5=0.3 and Q100=1.6 cfs) drains to the curb and gutter of Sterling Ranch Road, an under-construction public roadway. The flow is then directed southeast and is captured by existing 15' CDOT Type R at grade inlet (**IN-A11**) on Marksheffel Road.

Design Point 14 (Q5=3.0 cfs, Q100=5.4 cfs)

Basin A4 consists of 0.64 acres of public roadway (Alzada Drive). Runoff produced within this basin (Q5=3.0 and Q100=5.4 cfs) drains from northwest to southeast to an existing 10' CDOT Type R at grade inlet (IN-A4: Q5=3.0, Q100=4.8 cfs). Flow bypassing this inlet (Q5=0.0 cfs, Q100=0.6 cfs) continues to downstream infrastructure.

Design Point 15 (Q5=5.1 cfs, Q100=19.8 cfs)

Basin A8 consists of 0.75 acres of public roadway. Runoff produced within this basin (Q5=3.0 and Q100=5.5 cfs) drains within the curb and gutter of Sterling Ranch Road, combining with FB-INA6, FB-INA15, DP 12, and FB-INA5. Basin A6 consists of 1.37 acres of public roadway and existing residential lots. A majority of the flow is intercepted by a 15' CDOT Type R inlet (IN-A6: Q5=3.3, Q100=5.4 cfs) and enter the system through a 24" RCP public storm sewer, discharging into 1.3A. 100 yr flowby of 1.3 cfs bypasses the inlet and is intercepted by downstream infrastructure at Design Point 15. Basin A6A consists of 0.53 acres of area with a similar imperviousness to commercial areas. Runoff from this basin (Q5=2.2, Q100=4.1 cfs) drains to the curb and gutter of Sterling Ranch Road and combines with the aforementioned flows at peak rates of Q5=5.1 and Q100=19.8 cfs in the 5 and 100 year events, respectively. Runoff is collected in an existing 15' CDOT Type R at grade inlet (IN-A8: Q5=5.1, Q100=13.6 cfs). JR Engineering anticipated surface flows of Q5=3.0 cfs and Q100=12.5 cfs, and intercepted and pipe flows of Q5=3.0 cfs, and Q100=10.6 cfs. Flow bypassing this inlet (Q5=0.0 cfs, Q100=6.2 cfs) continues to downstream infrastructure.

Design Point 16 (Q5=7.7 cfs, Q100=22.8 cfs)

Basin A11 consists of 2.79 acres of public roadway and landscaped right of way of Marksheffel Road. Runoff produced within this basin (Q5=7.4 and Q100=14.2 cfs) drains from northwest to southeast in the curb and gutter combining with **DP13**, **FB-INA8** and **FB-INA9** at peak rates of Q5=7.7 and Q100=20.5

cfs in the 5 and 100 year events, respectively. Runoff is collected at the existing 15' CDOT Type R at grade inlet (IN-A11: Q5=7.6, Q100=14.7 cfs). JR Engineering anticipated surface flows of Q5=9.5 cfs and Q100=18.1 cfs at this location, and intercepted flows of Q5=8.9 cfs and Q100=13.8 cfs. Intercepted flow enters pipe run 1.7, and combines with flows from 1.6 in 1.8 at peak rates of Q5=60.8 cfs and Q100=124.8 cfs. Pipe flows of Q5=68.8 cfs and Q100=125.0 cfs were originally anticipated. Flows bypassing the inlet (Q5=0.1 cfs, Q100=8.1 cfs) continue to downstream infrastructure. Flows previously anticipated by this inlet prior to Copper Chase development by JR Engineering were Q5=0.6 cfs & Q100=6.1 cfs, representing a 33% increase. Downstream pipe sizes are greater than 54" past this point (up to 78" prior to discharging into Pond W-5). Based on JR's 125.0 cfs, 100 yr design flow of 1.8, the increase in bypassed flows represents a 1.6% downstream increase. This increase has been determined to be well within the ~5% human error potentially introduced into the calculations along with other conservative factors built in to the equations. The calculated HGL by JR at the manhole tie in location is 6982.33', and is located 5.83' below finished grade. As such, the downstream facilities leading to Pond W-5 are anticipated to accommodate the additional bypass. A conveyance exhibit is provided for reference from JR's report in the Drainage Map section of the Appendix.

EROSION CONTROL

It is the policy of the El Paso County that a grading and erosion control plan be submitted with the drainage report. Bulk grading was completed with approval of "Sterling Ranch Filing No. 2: Grading, Erosion, and Stormwater Quality Plan", dated March 2018. Grading and Erosion control operations are currently finished. A Grading and Erosion Control plan for the proposed development is being concurrently submitted with this report.

CONSTRUCTION COST OPINION – COPPER CHASE AT STERLING RANCH

Drainage Facilities:

Constructi	on Cost F	Estima	te (Non-Reim	bursa	ıble)
Item	Amount	Unit	Unit Cost		Total Cost
5' CDOT Type R Inlet	2	EA	\$ 6,500.00	\$	13,000.00
15' CDOT Type R Inlet	5	EA	\$ 13,000.00	\$	65,000.00
Type I MH	1	EA	\$ 9,800.00	\$	9,800.00
Type II MH	5	EA	\$ 6,000.00	\$	30,000.00
3' CDOT Type C Inlet	1	EA	\$ 5,000.00	\$	5,000.00
18" RCP	905	LF	\$ 45.00	\$	40,725.00
24" RCP	443	LF	\$ 81.00	\$	35,883.00
30" RCP	20	LF	\$ 100.00	\$	2,000.00
42" RCP	37	LF	\$ 166.00	\$	6,142.00
Tot	al Cost:			\$	207,550.00

DRAINAGE & BRIDGE FEES - COPPER CHASE AT STERLING RANCH

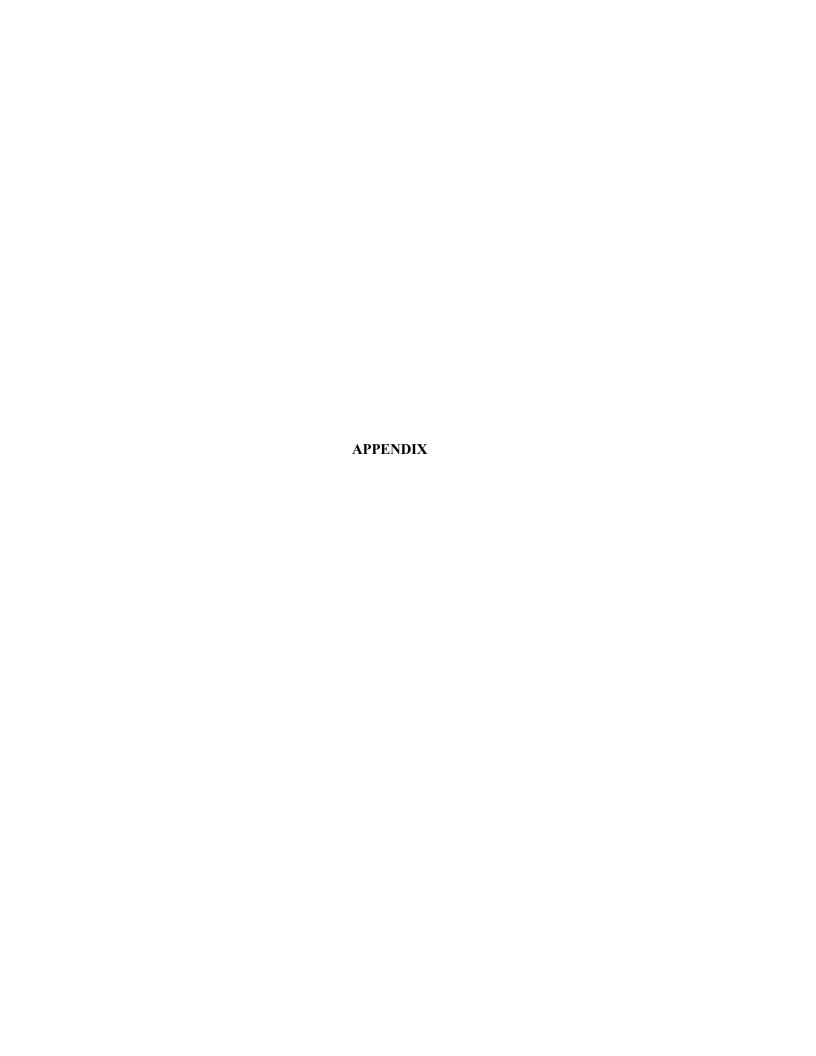
This site is within the Sand Creek Drainage Basin. The 2023 Drainage and Bridge Fees per El Paso County for the Copper Chase at Sterling Ranch site are as follows:

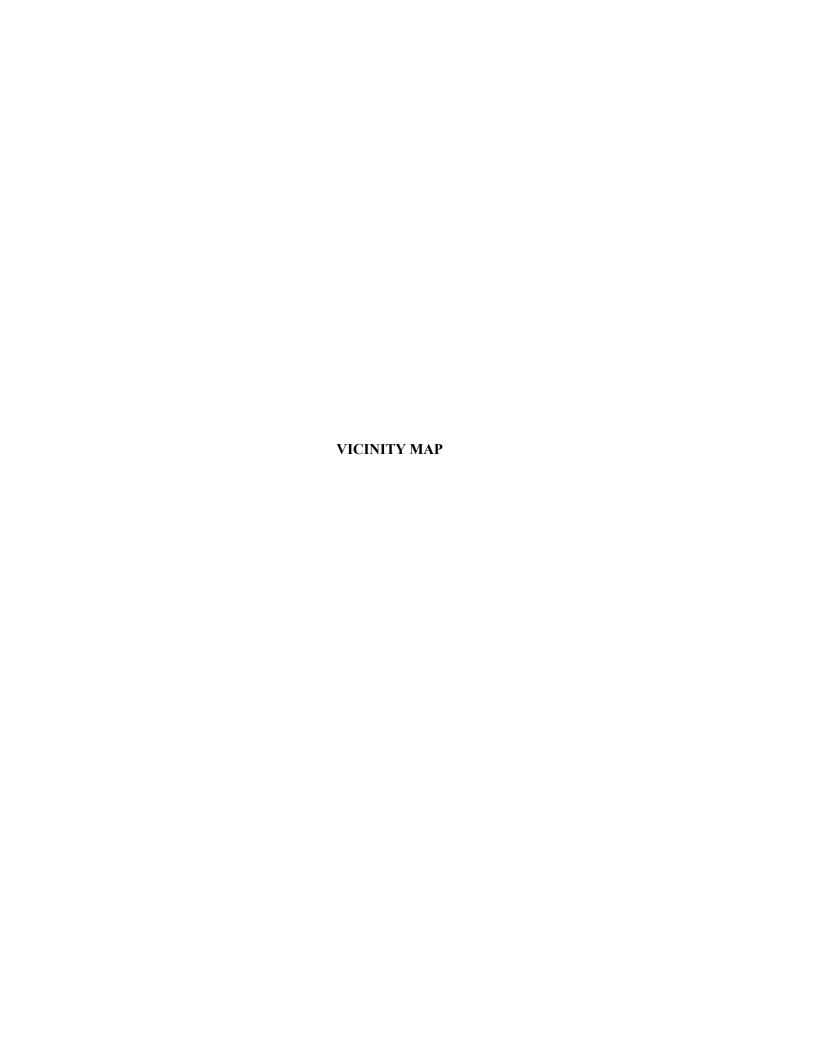
Per Copper Chase at Sterling Ranch Site Boundary – Total Area = 19.651 Acres

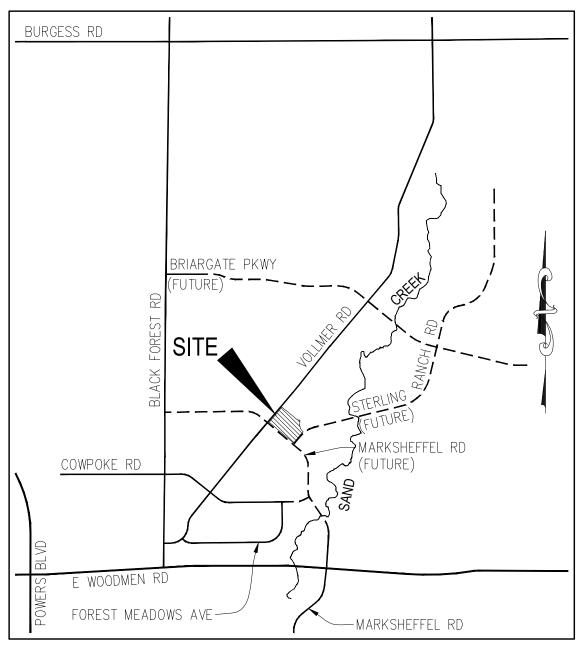
COPPER CHASE AT STERLING RANCH FEES:

						Total	\$ 387,165.34
Bridge Fees:	19.651	X	58.7%	X	\$9,743	=	\$ 112,386.84
Drainage Fees:	19.651	X	58.7%	X	\$23,821	=	\$ 274,778.50

It should be noted that these fees are provided in this Final Drainage Report for informational purposes only.


M & S Civil Consultants, Inc. (M & S) cannot and does not guarantee the construction cost will not vary from these opinions of probable costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular. The above is only an estimate of the facility cost and drainage basin fee amounts in 2023.

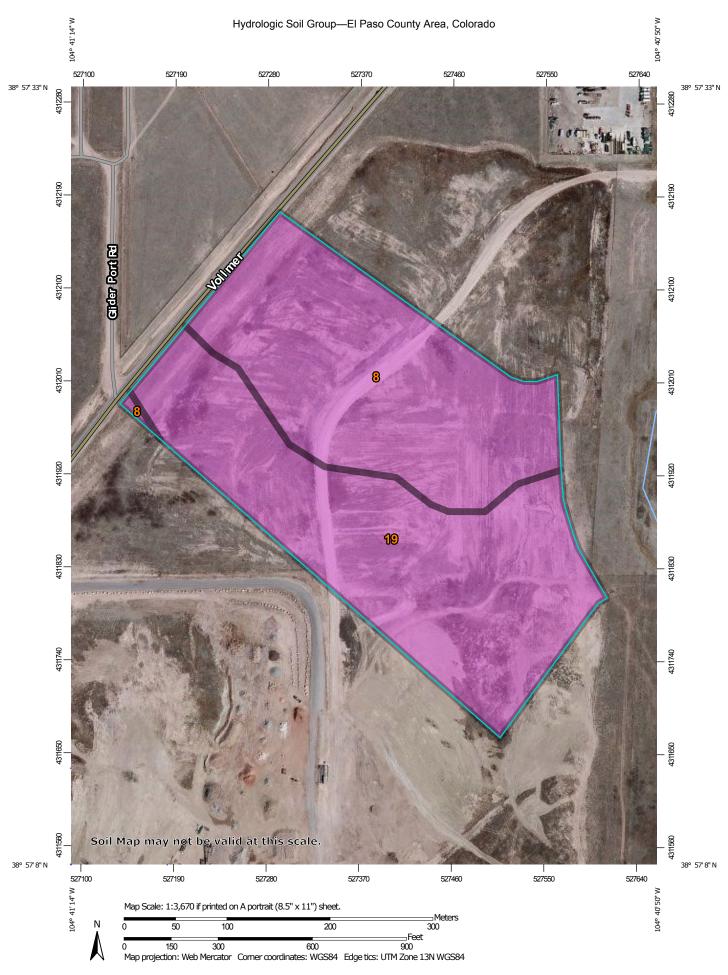

SUMMARY


Development of this site will not adversely affect the surrounding developments per this final drainage report with no negative impacts to the neighboring developments. The proposed and existing drainage facilities will adequately convey, detain, and route runoff from tributary and onsite flows to the Sand Creek Drainage channel via proposed onsite and existing offsite drainage improvements. Full Spectrum Detention and Water Quality Ponds will be used to discharge developed flows into Sand Creek per the Urban Drainage criteria flow rates. Sterling Ranch Metropolitan District No. 1 will own and maintain the private facilities. Care will be taken during construction to accommodate overland flow routes onsite and temporary drainage conditions. The development of the Copper Chase at Sterling Ranch project shall not adversely affect adjacent or downstream property.

REFERENCES

- 1.) "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I & II".
- 2.) "Urban Storm Drainage Criteria Manuals, Volumes 1-3".
- 3.) NRSC Web Soil Survey Map for El Paso County. http://websoilsurvey.nrcs.usda.gov. Accessed September 29th, 2020.
- 4.) Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Effective date December 7th, 2018. Accessed October 4th, 2021.
- 5.) "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996
- 6.) "Final Drainage Report for Sterling Ranch Filing No. 2", dated November 2021, by JR Engineering
- 7.) "Master Development Drainage Plan for Sterling Ranch", (MDDP) prepared by M&S Civil Consultants, Inc., dated December 2017.





VICINITY MAP

N.T.S.

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D **Soil Rating Polygons** Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016 C/D Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. D Not rated or not available Date(s) aerial images were photographed: Apr 15, 2011—Sep 22. 2011 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Hydrol	ogic Soil Group— Summa	ry by Map Unit — El Pas	so County Area, Colorado	(CO625)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	А	13.7	46.4%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	15.8	53.6%
Totals for Area of Inter	rest		29.5	100.0%

Description

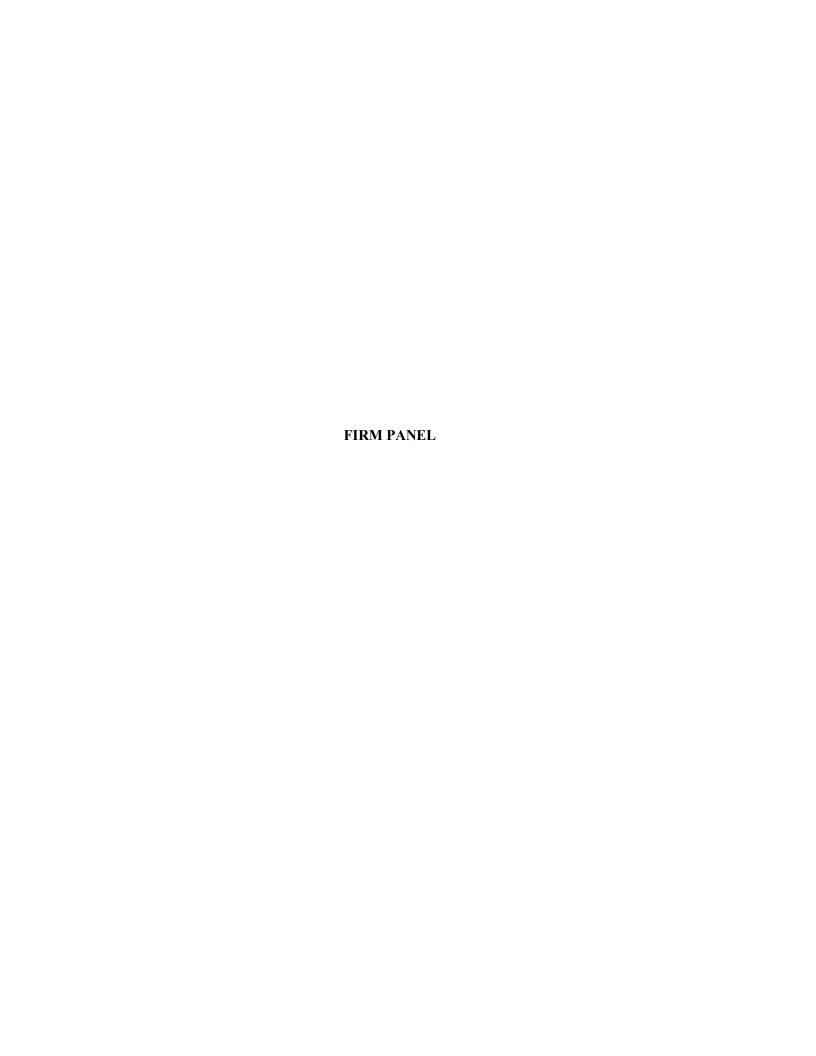
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

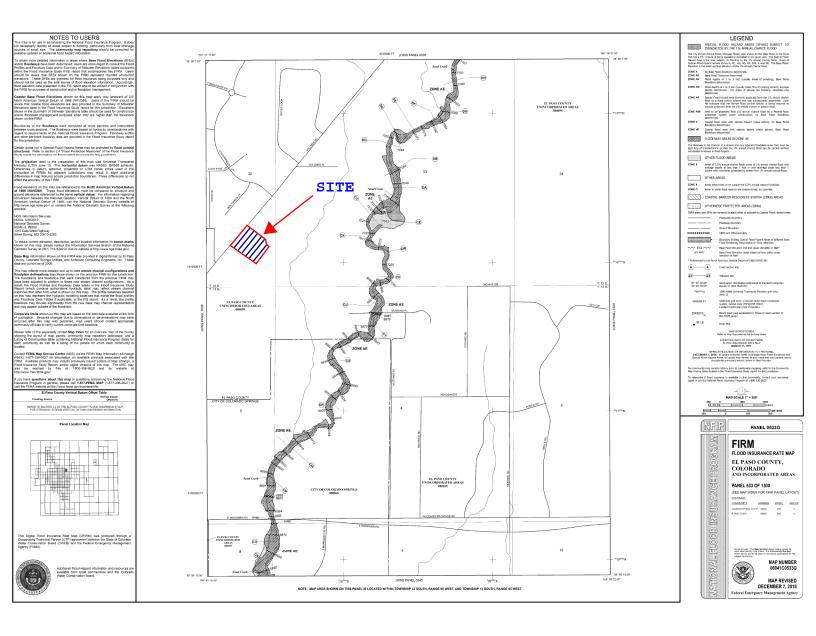
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

EXISITNG DRAINAGE CONDITIONS DISCUSSION (BY J.R. ENGINEERING, APPROVED NOVEMBER 2021)

Final Drainage Report Sterling Ranch Filing No. 2

Basin A consists of Sub-Basins A1-A22 combining for a total of 123.19 acres. This basin represents all 49.5387 acres of the proposed Sterling Ranch Filing 2 development. This basin is primarily single-family residential, roadway and minor open space. This basin also contains future commercial sites, the future Sterling Ranch Phase 2 development, the proposed Copper Chase at Sterling Ranch Development and a proposed school site. Stormwater runoff is conveyed via public streets where it is captured via a series of on-grade and sump inlets. Runoff is then piped to a proposed onsite Full Spectrum Detention Pond W5. From the detention pond, the treated flows are then released directly into the Sand Creek Drainageway at below historic rates.

Off-Site Conveyance

The existing drainage patterns on the west side of Vollmer Road will not change due to the development of Sterling Ranch. Vollmer Road construction will address the roadside ditch flows along the west side of the road and will install drainage culverts where indicated in this report. The majority of the flows from the west side of Vollmer Road are to be routed in the historical direction to the southwest along the roadway to proposed Pond W-4. Runoff produced from the remaining offsite watershed located along the west edge of the existing development will be routed along the west side of Vollmer Road to the southwest corner of the existing development and a proposed Pond W-4. At the northwest corner of Tahiti Drive and Vollmer Road a 54" RCP will be installed to collect and convey runoff under proposed Marksheffel Road before ultimately discharging into Sand Creek. Runoff reaching the development along the south boundary line of the Barbarick Subdivision will be conveyed through and around the proposed site by proposed temporary swales and proposed storm sewer until it ultimately reaches Pond W-5. At the time of final for Sterling Ranch Filing No. 2 Phase 2, JR will coordinate with Barbarick to determine a more specific design solution for conveying the flows from their site. In general, the sand filter and double barrel 24" RCP will discharge onto the Sterling Ranch Phase 2 site where it will be picked up in a sump inlet structure and conveyed through a 48" RCP through the Sterling Ranch Storm system to Pond W5. The eastern Barbarick EDB discharge pipe will be connected into a structure and into a 36" RCP where the flows will be routed to Pond W5. Specific design details can be found within the Sterling Ranch Phase 2 drainage report. Runoff reaching the northern boundary of Phase I at proposed Briargate Parkway will be redirected around the site via a temporary swale to Sand Creek. BMP's will be installed to prevent erosion of the temporary swale. The intention of the drainage design for Sterling Ranch is to not adversely affect any adjacent property within the developed flows from Sterling Ranch.

Sub-basin A1 (Q_5 =4.4 cfs, Q_{100} =9.4 cfs) consists of approximately 2.06 acres and is the northern most portion of the Sterling Ranch Filing No. 2 Phase 1 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter then captured by a 10' on-grade inlet at DP 1. From here, the flow is piped to Pond W5.

Sub-basin A2 (Q_5 =1.9 cfs, Q_{100} =3.9 cfs) consists of approximately 0.82 acres and is the north eastern most portion of the Sterling Ranch Filing No. 2 Phase 1 development. This basin is primarily singlefamily residential and minor open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter then captured by a 10' Type R on-grade inlet at DP 2. From here, the flow is piped to Pond W5.

Final Drainage Report Sterling Ranch Filing No. 2

Sub-basin A3 (Q_5 =11.1 cfs, Q_{100} =24.7 cfs) consists of approximately 6.76 acres and is the north western most portion of the Sterling Ranch Filing No. 2 Phase 1 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type-R on-grade inlet at DP 3. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1 & A2.

Sub-basin A4 (Q_5 =3.7 cfs, Q_{100} =7.4 cfs) consists of approximately 1.51 acres and is the southern portion of Alzada Drive and this basin is primarily single-family residential (Copper Chase at Sterling Ranch) and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 10' Type-R on-grade inlet at DP 4. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A3.

Sub-basin A5 (Q_5 =4.1 cfs, Q_{100} =8.3 cfs) consists of approximately 1.70 acres and is the western portion of Bynum Drive. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R ongrade inlet at DP 5. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A4.

Sub-basin A6A (Q_5 =2.2 cfs, Q_{100} =4.1 cfs) consists of approximately 0.53 acres. This basin will serve as a tract including mail kiosks, parking, landscaping and sidewalks. Runoff from this sub-basin will sheet flow to DP 6A where it flows via curb and gutter to the 15' Type R inlet at DP6. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A5.

Sub-basin A6 (Q_5 =3.3 cfs, Q_{100} =6.6 cfs) consists of approximately 1.37 acres and is the eastern portion of Bynum Drive. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R inlet on-grade inlet at DP 6. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A6A.

Sub-basin A7 (Q_5 =27.5 cfs, Q_{100} =60.6 cfs) represents the future Copper Chase at Sterling Ranch development and consists of approximately 19.00 acres. This basin is primarily single-family residential and open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 36" RCP storm sewer stub at DP 7 with sediment control structure. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A6. Prior to being developed, storm runoff from this sub-basin will overland flow to temporary swales, where the flows will be captured by an interim 36" FES and piped to Pond W5.

Sub-basin A8 (Q_5 =3.0 cfs, Q_{100} =6.3 cfs) consists of approximately 1.48 acres and is the south western portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 8. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A7.

Sub-basin A9 (Q_5 =1.9 cfs, Q_{100} =3.7 cfs) consists of approximately 0.61acres and is the south eastern portion of Sterling Ranch Road. This basin is comprised primarily of the proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 9. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A8.

Final Drainage Report Sterling Ranch Filing No. 2

Sub-basin A10 (Q_5 =9.2 cfs, Q_{100} =17.3 cfs) consists of approximately 2.61 acres and is the south eastern portion of Marksheffel Road. This basin is comprised primarily of the proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R ongrade inlet at DP 10. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A9.

Sub-basin A11 (Q_5 =9.5 cfs, Q_{100} =18.1 cfs) consists of approximately 2.89 acres and is the north portion of Marksheffel Road. This basin is comprised primarily of the proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 11. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A10.

Sub-basin A12 (Q_5 =1.9 cfs, Q_{100} =9.5 cfs) consists of approximately 3.87 acres and represents the open space area between the Sterling Ranch Filing No. 2 Phases 1 & 2 developments. This basin is primarily open space. This basin also contains a 50' and 30' gas easement that contain 3 major gas lines. Runoff from this sub-basin will be conveyed via sheet flow and earthen swale to an area inlet at DP 12. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A11.

Sub-basin A13 (Q_5 =15.7 cfs, Q_{100} =34.6 cfs) consists of approximately 9.65 acres and is the northern portion of the future Sterling Ranch Phase 2 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be captured by a storm sewer stub at DP 13. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A12. Prior to being developed, storm runoff from this sub-basin will overland flow to temporary swales, where the flows will be captured by an interim 36" FES and piped to Pond W5.

Sub-basin A14 (Q_5 =16.0 cfs, Q_{100} =37.9 cfs) consists of approximately 11.76 acres and is the proposed future school site on the northern side of Sterling Ranch Road. Runoff from this sub-basin will be routed to a 36" RCP storm sewer stub at DP 14. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A13. Prior to being developed, storm runoff from this sub-basin will overland flow to Sterling Ranch Road, where the flows will be captured by inlets and piped to Pond W5.

Sub-basin A15 ($Q_5=5.4$ cfs, $Q_{100}=11.7$ cfs) consists of approximately 2.91 acres and is the north eastern portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 15. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A14.

Sub-basin A16 (Q_5 =4.4 cfs, Q_{100} =9.6 cfs) consists of approximately 2.34 acres and is the south eastern portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 16. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A15.

Sub-basin A17 (Q_5 =1.4 cfs, Q_{100} =4.7 cfs) consists of approximately 1.76 acres and is the open space located along the western portion of the sterling Ranch Phase 2 development south of Sterling Ranch Road. This basin is primarily single-family open space with a small amount of lot runoff. Runoff from this sub-basin will be captured by a future Type C inlet at DP 17 and coveyed via sheet flow

EXISTING HYDROLOGIC CALCULATIONS (BY J.R. ENGINEERING, APPROVED NOVEMBER 2021)

EXISITNG CONDITIONS COMPOSITE % IMPERVIOUS & RUNOFF COEFFICIENT SUMMARY BY J.R. ENGINEERING (APPROVED NOVEMBER 2021)

Subdivision:	Sterling Ranch Filing No. 2	Project Name: Sterling Ranch Subdivision	
_ocation:	El Paso County	Project No.: 25188.01	
		Calculated By: AAM	
		Checked By:	
		Date: 8/16/21	

						Re	sidentia	l (65% lm	pervious)	Light I	Industria	ıl (80% In	npervious)	Lawns	/Pasture	e (0% lm _l	pervious)	Daala	o Total	
	Total	Str	eets (10	0% Impe	ervious)	9		•	% Impervious)			, ,	pervious)	Sc	•	% Imperv	,		s Total hted C	Basins Total
	Area (ac)			Δ	M/-1-l-t-d	2.5 Acı	re Reside	, , ,	6 Impervious)	G	ravel (80)% Imper	,		Open S	pace (12	,		lues	Weighted %
Basin ID		C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C_5	C ₁₀₀	Area (ac)	Weighte d % Imp.	C ₅	C ₁₀₀	Imp.
A1	2.06	0.90	0.96	0.48	23.3%	0.45	0.59	1.34	42.3%	0.59	0.70	0.00	0.0%	0.08	0.35	0.24	0.0%	0.51	0.65	65.6%
A2	0.82	0.90	0.96	0.20	24.4%	0.45	0.59	0.56	44.4%	0.59	0.70	0.00	0.0%	0.08	0.35	0.06	0.0%	0.53	0.66	68.8%
A3	6.76	0.90	0.96	1.32	19.5%	0.45	0.59	4.16	40.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.28	0.0%	0.47	0.62	59.5%
A4	1.51	0.90	0.96	0.51	33.8%	0.45	0.59	1.00	43.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.60	0.71	76.8%
A5	1.70	0.90	0.96	0.51	30.0%	0.45	0.59	1.19	45.5%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.59	0.70	75.5%
A6	1.37	0.90	0.96	0.39	28.5%	0.45	0.59	0.98	46.5%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.58	0.70	75.0%
A6A	0.53	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.53	95.0%	0.08	0.35	0.00	0.0%	0.81	0.88	95.0%
A7	19.00	0.90	0.96	0.00	0.0%	0.45	0.59	19.00	65.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.45	0.59	65.0%
A8	1.48	0.90	0.96	0.74	50.0%	0.45	0.59	0.29	12.7%	0.59	0.70	0.00	0.0%	0.08	0.35	0.45	0.0%	0.56	0.70	62.7%
А9	0.61	0.90	0.96	0.48	78.7%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.13	0.0%	0.73	0.83	78.7%
A10	2.61	0.90	0.96	2.25	86.2%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.36	0.0%	0.79	0.88	86.2%
A11	2.89	0.90	0.96	2.40	83.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.49	0.0%	0.76	0.86	83.0%
A12	3.87	0.90	0.96	0.00	0.0%	0.45	0.59	0.50	8.4%	0.59	0.70	0.00	0.0%	0.08	0.35	3.37	0.0%	0.13	0.38	8.4%
A13	9.65	0.90	0.96	0.00	0.0%	0.45	0.59	9.65	65.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.45	0.59	65.0%
A14	11.76	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.00	0.0%	0.39	0.55	11.76	55.0%	0.39	0.55	55.0%
A15	2.91	0.90	0.96	1.57	54.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.34	0.0%	0.52	0.68	54.0%
A16	2.34	0.90	0.96	1.30	55.6%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.04	0.0%	0.54	0.69	55.6%
A17	1.76	0.90	0.96	0.00	0.0%	0.45	0.59	0.64	23.6%	0.59	0.70	0.00	0.0%	0.08	0.35	1.12	0.0%	0.21	0.44	23.6%
A18	5.27	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	1.18	21.3%	0.08	0.35	4.09	0.0%	0.24	0.47	21.3%
A19	31.85	0.90	0.96	0.00	0.0%	0.45	0.59	31.85	67.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.45	0.59	67.0%
A20	1.83	0.90	0.96	1.63	89.1%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.20	0.0%	0.81	0.89	89.1%
A21	1.93	0.90	0.96	1.73	89.6%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.20	0.0%	0.82	0.90	89.6%
A22	8.68	0.90	0.96	0.00	0.0%	0.45	0.59	0.70	5.2%	0.59	0.70	0.00	0.0%	0.08	0.35	7.98	0.0%	0.11	0.37	5.2%
B1	2.98	0.90	0.96	2.98	100.0%	0.59	0.70	0.00	0.0%	0.20	0.44	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
B2	3.89	0.90	0.96	3.89	100.0%	0.59	0.70	0.00	0.0%	0.20	0.44	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
В3	1.53	0.90	0.96	1.53	100.0%	0.59	0.70	0.00	0.0%	0.20	0.44	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
B4	1.50	0.90	0.96	1.50	100.0%	0.59	0.70	0.00	0.0%	0.20	0.44	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
B5	2.91	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.20	0.44	0.00	0.0%	0.08	0.35	2.91	0.0%	0.08	0.35	0.0%

EXISITNG CONDITIONS COMPOSITE % IMPERVIOUS & RUNOFF COEFFICIENT SUMMARY BY J.R. ENGINEERING (APPROVED NOVEMBER 2021)

	Total Area (ac)	Str	eets (10	10% Impe	rvious)	Neighb	orhood	Àrea (70'	pervious) % Impervious) 6 Impervious)	Com	mercial		npervious) pervious) vious)		hool (55'	e (0% Imp % Imperv pace (129		Weigl	s Total nted C ues	Basins Total Weighted %
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighte d % Imp.	C ₅	C ₁₀₀	Imp.
C1	8.01	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	8.01	95.0%	0.08	0.35	0.00	0.0%	0.81	0.88	95.0%
C2	5.06	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	5.06	95.0%	0.08	0.35	0.00	0.0%	0.81	0.88	95.0%
D1	0.45	0.90	0.96	0.45	100.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
D2	0.43	0.90	0.96	0.43	100.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
OS20	308.00	0.90	0.96	3.36	1.1%	0.59	0.70	157.32	4.6%	0.20	0.44	2.38	0.6%	0.09	0.36	144.94	0.0%	0.13	0.40	6.3%
OS21A	20.26	0.90	0.96	1.13	5.6%	0.59	0.70	19.13	8.5%	0.20	0.44	0.00	0.0%	0.09	0.36	0.00	0.0%	0.13	0.40	14.1%
OS21B	8.71	0.90	0.96	0.00	0.0%	0.59	0.70	8.71	9.0%	0.20	0.44	0.00	0.0%	0.09	0.36	0.00	0.0%	0.13	0.40	9.0%
OS2	17.00	0.90	0.96	0.00	0.0%	0.49	0.62	17.00	70.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.00	0.0%	0.49	0.62	70.0%
OS3	28.70	0.90	0.96	0.00	0.0%	0.49	0.62	28.70	70.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.00	0.0%	0.49	0.62	70.0%
OS4	5.08	0.90	0.96	0.00	0.0%	0.20	0.40	5.08	15.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.00	0.0%	0.20	0.40	15.0%
TOTAL (A1-A22,OS2-4)	173.97																			57.6%
TOTAL (B1-B5, OS20-21B)	349.78																			9.4%
TOTAL (C1-C2)	13.07																			95.0%
TOTAL	537.70																			27.9%

EX**EXTISTONCONDET IONUSIARE ACREMO SE LECOTE REPORT DE ARTÉMO DE SULVANO DE L'ENCOMBER 2021)**BY J.R. ENGINEERING (APPROVED NOVEMBER 2021)

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision:	Sterling Ranch Filing No. 2
Location:	El Paso County

Project Name: Sterling Ranch Subdivision

Project No.: 25188.01

Calculated By: AAM
Checked By:

Date: 8/16/21

		SUB-E	BASIN			INITIA	AL/OVER	LAND			TRAVEL TII	ME			tc CHECK		
		DA	TA				(T _i)				(T _t)			(L	irbanized b <i>a</i>	ASINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C_5	C ₁₀₀	L	So	t _i	L_t	S_t	K	VEL.	t_t	COMP. t_c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
A1	2.06	Α	66%	0.51	0.65	100	2.5%	7.8	388	3.0%	20.0	3.5	1.9	9.7	488.0	16.9	9.7
A2	0.82	Α	69%	0.53	0.66	100	2.5%	7.6	183	1.0%	20.0	2.0	1.5	9.1	283.0	15.9	9.1
A3	6.76	Α	60%	0.47	0.62	100	2.5%	8.4	1186	2.3%	20.0	3.0	6.5	15.0	1286.0	23.4	15.0
A4	1.51	Α	77%	0.60	0.71	78	2.0%	6.3	795	2.9%	20.0	3.4	3.9	10.2	873.0	16.9	10.2
A 5	1.70	Α	76%	0.59	0.70	100	2.5%	6.9	645	3.1%	20.0	3.5	3.1	9.9	745.0	16.3	9.9
A6	1.37	Α	75%	0.58	0.70	100	2.5%	7.0	632	3.1%	20.0	3.5	3.0	10.0	732.0	16.3	10.0
A6A	0.53	Α	95%	0.81	0.88	100	2.0%	4.2	30	2.0%	20.0	2.8	0.2	4.3	130.0	10.0	5.0
A7	19.00	Α	65%	0.45	0.59	100	2.5%	8.7	1419	1.5%	20.0	2.4	9.7	18.3	1519.0	25.6	18.3
A8	1.48	Α	63%	0.56	0.70	80	2.0%	6.9	646	0.6%	20.0	1.5	7.0	13.9	726.0	23.2	13.9
A9	0.61	Α	79%	0.73	0.83	15	2.0%	2.1	661	0.7%	20.0	1.7	6.6	8.7	676.0	19.2	8.7
A10	2.61	Α	86%	0.79	0.88	15	2.0%	1.7	1357	3.4%	20.0	3.7	6.1	7.9	1372.0	17.2	7.9
A11	2.89	Α	83%	0.76	0.86	16	2.0%	1.9	1357	2.8%	20.0	3.3	6.8	8.7	1373.0	18.4	8.7
A12	3.87	Α	8%	0.13	0.38	100	5.0%	10.3	267	3.4%	15.0	2.8	1.6	11.9	367.0	26.9	11.9
A13	9.65	Α	65%	0.45	0.59	100	2.5%	8.7	934	2.1%	20.0	2.9	5.4	14.0	1033.6	20.9	14.0
A14	11.76	А	55%	0.39	0.55	100	2.0%	10.2	867	2.0%	20.0	2.8	5.1	15.3	967.0	22.8	15.3
A15	2.91	А	54%	0.52	0.68	34	2.0%	4.8	1621	1.8%	20.0	2.7	10.1	14.9	1655.0	29.0	14.9
A16	2.34	А	56%	0.54	0.69	35	2.0%	4.8	1594	1.8%	20.0	2.7	9.9	14.7	1629.0	28.4	14.7
A17	1.76	А	24%	0.21	0.44	100	5.0%	9.4	403	1.1%	15.0	1.6	4.3	13.7	503.0	27.2	13.7
A18	5.27	Α	21%	0.24	0.47	100	2.0%	12.3	703	2.0%	20.0	2.8	4.1	16.4	803.0	29.3	16.4
A19	31.85	Α	67%	0.45	0.59	100	2.5%	8.7	2675	1.7%	20.0	2.6	17.1	25.8	2775.0	33.2	25.8
A20	1.83	Α	89%	0.81	0.89	15	2.0%	1.6	936	1.5%	20.0	2.4	6.4	8.0	951.0	16.8	8.0
A21	1.93	Α	90%	0.82	0.90	15	2.0%	1.6	1049	1.5%	20.0	2.4	7.1	8.7	1064.0	17.4	8.7
A22	8.68	А	5%	0.11	0.37	185	3.0%	16.9	540	0.5%	20.0	1.4	6.4	23.3	725.0	38.2	23.3
B1	2.98	А	100%	0.90	0.96	17	2.0%	1.2	2561	1.7%	20.0	2.6	16.4	17.6	2578.0	23.2	17.6
B2	3.89	А	100%	0.90	0.96	17	2.0%	1.2	2561	1.7%	20.0	2.6	16.4	17.6	2578.0	23.2	17.6
В3	1.53	Α	100%	0.90	0.96	17	2.0%	1.2	1394	2.0%	20.0	2.8	8.2	9.4	1411.0	16.1	9.4
В4	1.50	Α	100%	0.90	0.96	17	2.0%	1.2	1394	2.0%	20.0	2.8	8.2	9.4	1411.0	16.1	9.4

BY J.R. ENGINEERING (APPROVED NOVEMBER 2021)

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Filing No. 2 Location: El Paso County

Project Name: Sterling Ranch Subdivision

Project No.: 25188.01

Calculated By: AAM Checked By:

Date: 8/16/21

		SUB-I	BASIN			INITI	AL/OVERI	LAND			TRAVEL TII	ME			tc CHECK		
		DA	ATA				(T _i)				(T _t)			(U	RBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	So	t _i	L _t	S_t	Κ	VEL.	t _t	COMP. t_c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
B5	2.91	Α	0%	0.08	0.35	170	14.0%	10.1	259	0.5%	20.0	1.4	3.1	13.1	429.0	32.8	13.1
C1	8.01	А	95%	0.81	0.88	100	2.0%	4.2	965	2.0%	20.0	2.8	5.7	9.9	1065.0	14.9	9.9
C2	5.06	А	95%	0.81	0.88	100	2.0%	4.2	627	2.0%	20.0	2.8	3.7	7.9	727.0	13.2	7.9
D1	0.45	А	95%	0.81	0.88	17	2.0%	1.7	180	0.1%	20.0	0.6	5.3	7.0	197.0	14.6	7.0
D2	0.43	А	95%	0.81	0.88	17	2.0%	1.7	180	0.1%	20.0	0.6	5.3	7.0	197.0	14.6	7.0
OS20	308.00	А	6%	0.13	0.40	300	4.0%	19.2	6670	5.0%	10.0	2.2	49.7	68.9	6970.0	75.2	68.9
OS21A	20.26	А	14%	0.13	0.40	300	2.0%	24.1	2673	2.0%	10.0	1.4	31.5	55.6	2973.0	52.3	52.3
OS21B	8.71	А	9%	0.13	0.40	100	2.0%	13.9	1167	1.5%	15.0	1.8	10.6	24.5	1267.0	39.9	24.5
OS2	17.00	А	70%	0.49	0.62	300	1.0%	19.1	3020	1.5%	15.0	1.8	27.4	46.5	3320.0	36.0	36.0
OS3	28.70	Α	70%	0.49	0.62	300	1.0%	19.1	4340	1.0%	15.0	1.5	48.2	67.3	4640.0	52.6	52.6
OS4	5.08	Α	15%	0.20	0.40	300	1.0%	28.1	900	5.0%	10.0	2.2	6.7	34.9	1200.0	29.5	29.5

NOTES:

 $t_c = t_i + t_t$

Equation 6-2

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_s^{0.33}}$

Equation 6-3

Where:

 t_c = computed time of concentration (minutes)

 t_i = overland (initial) flow time (minutes)

 t_t = channelized flow time (minutes).

 $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$

Where:

 t_i = overland (initial) flow time (minutes)

C₅ = runoff coefficient for 5-year frequency (from Table 6-4)

 $L_i = \text{length of overland flow (ft)}$

 S_0 = average slope along the overland flow path (ft/ft).

 $t_c = (26 - 17i) + \frac{\Sigma_t}{60(14i + 9)\sqrt{S_t}}$ Equation 6-4

Equation 6-5

Where

 t_t = channelized flow time (travel time, min)

 L_t = waterway length (ft) S_o = waterway slope (ft/ft)

 V_t = travel time velocity (ft/sec) = K $\sqrt{S_o}$

K = NRCS conveyance factor (see Table 6-2).

Where:

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1.

 L_t = length of channelized flow path (ft)

i = imperviousness (expressed as a decimal) S_t = slope of the channelized flow path (ft/ft).

Use a minimum t_e value of 5 minutes for urbanized areas and a minimum t_e value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration

Table 6-2. NRCS Conveyance factors, K

Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

EXISTING CENTETING NEWSURFACE ON THE ROUTING SUMMEARN (5 YEAR) BY J.R. ENGINEERING (APPROVED NOVEMBER 2021)

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision:	Sterling Ranch Filing No. 2
Location:	El Paso County
Desian Storm:	5-Year

Project Name: Sterling Ranch Subdivision
Project No.: 25188.01
Calculated By: AAM
Checked By:

Date: 8/16/21

				DIRE	CT RUN	NOFF			TC	OTAL RU	JNOF	F	STRE	ET/SW	ALE		PIP	Έ		TRAV	EL TIN	1E	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)	O (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1	2.06	0.51	9.7	1.05	4.17	4.4					0.2	0.04	3.3	4.2	1.01	2.0	18	652 5		3.0 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.53	9.1	0.44	4.27	1.9								1.9	0.44	2.0	18	27	5.8	0.1	On-grade inlet Piped to DP 1.0
	1.0								9.7	1.45	4.17	6.0				6.0	1.45	3.0	18		9.1	0.6	Sum of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.47	15.0	3.16	3.53	11.1					1.6	0.47	2.9	9.5	2.69	4.7	18	426 36	3.4 12.2	2.1 0.0	Sum of DP 1 & DP 2, piped to DP 1.2 On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	4	A4	1.51		10.2		4.10	3.7					0.1	0.03	2.9	3.6		4.7		395	3.4 9.2	1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	1.1								15.0	3.57	3.52	12.6				12.6	3.57	1.0			7.4		Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.2	5.02	3.50	17.6				17.6	5.02	3.3	24	319	12.5	0.4	Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.81	5.0	0.43	5.17	2.2															Overland Flow to DP1.3A
	6	A6	1.37	0.58	10.0	0.79	4.14	3.3								3.3	0.79	2.0	18	0	6.7	0.0	On-grade inlet Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.22	4.14	5.0				5.0	1.22	1.0	24	36	5.7	0.1	Sum of DP 6 & DP 6A, piped to DP 1.3
	5	A 5	1.70	0.59	9.9	0.99	4.14	4.1	17.0	1.53	3.33	5.1				5.1	1.53						On-grade inlet Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	7.77	3.33	25.9				25.9	7.77	1.1	36	620	9.2	1.1	Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.45	18.3	8.55	3.22	27.5								27.5	8.55	1.5	42	20	10.3	0.0	Future storm infrastructure from Copper Chase Subdivision Piped to DP 1.4
	1.4								18.4	16.32	3.22	52.5				52.5	16.32	0.5	48	26	8.2	0.1	Sum of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1.48	0.56	13.9	0.83	3.63	3.0								3.0	0.83	2.0	18	20	6.6	0.1	On-grade inlet, carryover flow to DP 11 Piped to DP 1.5
	1.5								18.4	17.15	3.21	55.1				55.1	17.15	0.5	48	91	8.3	0.2	Sum of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.73	8.7	0.44	4.34	1.9	8.7	0.48	4.34	2.1				2.1	0.48	2.0	18	13	5.8	0.0	On-grade inlet Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								18.6	17.63	3.20	56.4				56.4	17.63	0.5	48	95	8.3	0.2	Sum of DP 1.5 & DP 9, piped to DP 1.8
	10	A10	2.61	0.79	7.9	2.05	4.49	9.2						0.11		8.7	1.94	2.5	18	955 118	9.5	0.2	On-grade inlet, carryover flow to DP 20 Piped to DP 1.7
	11	A11	2.89	0.76	8.7	2.20	4.34	9.5					0.6	0.15	1.5	8.9	2.05	2.5	18	1049 0	2.4 9.4	7.1 0.0	On-grade inlet, carryover flow to DP 21 Piped to DP 1.7
	1.7								8.7	3.99	4.34	17.3				17.3	3.99	1.0	24	8	7.9	0.0	Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								18.8	21.63	3.18	68.8				68.8	21.63	2.0	54	517	14.4	0.6	Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	OS2	OS2	17.00	0.49	14.0	6.25	2.20	13.8								13.8	6.25	1.0	30	787	7.5	1.7	Future flow released from Barbarick Subdivision Piped to DP 2.0
	12	A12	3.87	0.13	11.9	0.49	3.86	1.9								1.9	0.49	2.0	18	17	5.6	0.1	Type C inlet Piped to DP 2.0
	2.0								15.7	6.74	3.45	23.2				23.2	6.74	1.0	48	52	8.4	0.1	Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	9.65	0.45	14.0	4.34	3.62	15.7								15.7	4.34	1.5	30	200	9.1		Future storm infrastructure from Sterling Ranch Phase 2 Piped to DP 2.1

Page 1 of 3 8/19/2021

EXISTING CEXASTING NSUSUFIAEACOECULTING PROUTING SUSUFIAEARN) (5 YEAR) BY J.R. ENGINEERING (APPROVED NOVEMBER 2021)

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision:	Sterling Ranch Filing No. 2
Location:	El Paso County
Design Storm:	5-Year

Project Name: Sterling Ranch Subdivision
Project No.: 25188.01
Calculated By: AAM
Checked By: 244.03

Date: 8/16/21

				DIRE	CT RUN	NOFF			TC	OTAL R	UNOF	F	STRE	ET/SW	ALE		PIP	PΕ		TRAV	EL TI	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	O (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t. (min)	REMARKS
	2.1								15.9	11.08	3.44	38.1				38.1	11.08		48	65	11.4	4 C	0.1 Sum of DP 2.0 & DP 13, piped to DP 2.5
	OS3	OS3	28.70	0.49	19.0	14.06	1.25	17.6								17.6	14.06	1.0	30	719	8.0) 1	Future flow released from Barbarick Subdivision 1.5 Piped to DP 2.2
	14	A14	11.76	0.39	15.3	4.59	3.49	16.0								16.0	4.59	1.0	30	20	7.8	3 0	Future flow released from School Site 0.0 Piped to DP 2.2
	2.2								20.5	18.65	3.05	56.9				56.9	18.65						1.0 Sum of DP OS3 & DP 14, piped to DP 2.3
	15	A15	2.91	0.52	14.9	1 52	3 53	5.4								5.4			18		6.5	5 (On-grade inlet 0.1 Piped to DP 2.3
	16	A16	2.34				3.55	4.4					0.1	0.04	0.8	4.3				697	1.8	3 6	6.5 On-grade inlet, carryover flow to DP 9 0.0 Piped to DP 2.3
	2.3	AIO	2.34	0.34	14.7	1.23	3.33	4.4	15.0	2.73	2 52	9.6				9.6							0.1 Sum of DP 15 & DP 16, piped to DP 2.4
	2.4									21.38							21.38						0.0 Sum of DP 2.2 & DP 2.3, piped to DP 2.5
	2.5								21.6	32.46	2.98	96.6					32.46						0.9 Sum of DP 2.1 & DP 2.4 piped to DP 2.6 Type C inlet
	17	A17	1.76	0.21	13.7	0.38	3.66	1.4								1.4							0.1 Piped to DP 2.6
	2.6								21.6	32.84	2.98	97.8				97.8	32.84	2.0	60	32	15.8	3 0	0.0 Sum of DP 2.5 & DP 17, piped to DP 2.7
	2.7								21.6	54.47	2.97	162.0				162.0	54.47	0.6	78	220	11.5	5 0	0.3 Sum of DP1.8 & DP 2.6, piped to DP 2.8 Area inlet
	18	A18	5.27	0.24	16.4	1.28	3.38	4.3								4.3	1.28	1.0	18	24	5.6	5 0	0.1 Piped to DP 2.6 Area inlet
	19	A19	31.85	0.45	25.8	14.33	2.71	38.8								38.8	14.33	1.0	18	24	22.0) (0.0 Piped to DP 2.6
	2.8								25.8	70.08	2.71	189.8				189.8	70.08	0.6	78		12.1	1 0	0.2 Sum of DP 2.7, DP 18 & DP 19, piped to DP 3.0.
	3.0								25.8	70.08	2.71	189.8	189.8	70.08	0.5					584	1.4	4 6	6.9 Detention Pond Trickle channel conveyance to DP 3.2
	20	A20	1.83	0.81	8.0	1.48	4.47	6.6	8.0	1.59	4.47	7.1				7.1	1.59	1.0	24	105	6.4	4 0	On-grade inlet 0.3 Sum of Sub-basin A20 & carryover flow from DP 10, piped to DP 3.0
	21	A21	1.93	0.82	8.7	1.57	4.33	6.8	8.7	1.72	4.33	7.4	0.1	0.03	1.5	7.3	1.68	2.5	18				On-grade inlet 0.0 Sum of Sub-basin A21 & carryover flow from DP 11, piped to DP 2.9
	2.9								8.7	3.27	4.33	14.2				14.2	3.27	2.0	24	58	9.8		0.1 Sum of DP 20 & DP 21,piped to DP 3.1
	3.1									3.27			14.2	3.27	0.5					568		4 6	6.7 Detention Pond Trickle channel conveyance to DP 3.2
	22	A22	8.68	0.11	23.3	0.05	2.86	2.7	0.7	5.27	1.00	17.2										T	Detention Pond Overland flow to DP 3.2
	OS4	OS4	5.08				2.51	2.6					2.6	1.02	13.0					113	5.4	4 (0.3 Existing topography Overland flow to DP 4.1
		U34	5.08	0.20	29.5	1.02	2.31	∠.0	20.0	75.22	2.40	107.5											Outlet Structure
	3.2									75.32						0 :	4.45	0.5			, .	+	Sum of DP 3.0, DP 3.1, DP 22 & DP OS4, outlet structure release to DP 4.8
	Pond W5								29.8	1.45	2.49	3.6	0.4	0.12	2.0	3.6				1399	6.2 2.0) 12	0.2 Outlet structure release to DP 4.8 2.0 On-grade inlet 0.3 Piped to DP 4.0
	23	B1	2.98	0.90	17.6	2.68	3.29	8.8								8.4	2.56	0.5	30	88	5.1	1 (0.3 Piped to DP 4.0

X:\2510000.all\2518801\Excel\Drainage\2518801_Proposed Conditions.xlsm Page 2 of 3 8/19/2021

EXISTING CEXISTING SURFACE QUITING SUMMAREANDO YEAR) BY J.R. ENGINEERING (APPROVED NOVEMBER 2021)

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision:	Sterling Ranch Filing No. 2
Location:	El Paso County
esign Storm:	100-Year

Project Name: Sterling Ranch Subdivision
Project No.: 25188.01
Calculated By: AAM
Checked By: B/16/21

				DIR	ECT RU	JNOFF			TC	OTAL F	RUNOF	F	STREE	T/SW	ALE		PIPE			TRA	VEL TI	IME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreevswale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)		7
	1	A1	2.06	0.65	9.7	1.34	7.01	9.4					2.8	0.40	3.3	6.6	0.94		18	652 5	8.2	2 0.	.0 On-grade inlet, carryover flow to DP 5 .0 Piped to DP 1.0
	2	A2	0.82	0.66	9.1	0.54	7.17	3.9					0.1	0.01	3.3	3.8	0.53	2.0	18	639 27		6 2.	.9 On-grade inlet, carryover flow to DP 6 .1 Piped to DP 1.0
	1.0								9.7	1.47	7.00	10.3				10.3	1.47	3.0	18	335	10.6	6 0.	.5 Sum of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.62	15.0	4.17	5.92	24.7					10.0	1.69		14.7	2.48	4.7	18	36	13 6	6 0	.1 On-grade inlet, carryover flow to DP 5 .0 Piped to DP 1.1
	4	A4	1.51	0.71	10.2	1.08	6.88	7.4					1.6	0.24	2.9	5.8	0.84	4.7	18	395 C	3.4	4 1. 7 0.	.9 On-grade inlet, carryover flow to DP 5 .0 Piped to DP 1.1
	1.1								15.0	3.33	5.91	19.7				19.7	3.33	1.0	24	74	8.1	1 0.	.2 Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.1	4.80	5.89	28.2				28.2	4.80	3.3	24	319	13.9	9 0.	.4 Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.88	5.0	0.47	8.68	4.1															Overland Flow to DP1.3A
	6	A6	1.37	0.70	10.0	0.95	6.94	6.6	10.0	0.96	6.94	6.7	1.3	0.18	0.7	5.4	0.78	2.0	18	696 C	7.7	7 7. 7 0.	.0 On-grade inlet, carryover flow to DP 8 .0 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.25	6.94	8.7				8.7	1.25	1.0	24	36	6.7	7 0.	.1 Sum of DP 6 & DP 6A, piped to DP 1.3 .6 On-grade inlet, carryover flow to DP 8
	5	A5	1.70	0.70	9.9	1.19	6.95	8.3	17.0	3.51	5.59	19.6	6.5	1.17	0.7	13.1	2.34	2.0	18	664 C		7 6. 4 0.	.6 On-grade inlet, carryover flow to DP 8 .0 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	8.39	5.59	46.9				46.9	8.39	1.1	36	620	10.7	7 1.	.0 Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.59	18.3	11.21	5.41	60.6								60.6	11.21	1.5	42	20	12.7	7 0.	Future storm infrastructure from Copper Chase Subdivision .0 Piped to DP 1.4
	1.4								18.4	19.60	5.40	105.9				105.9	19.60	0.5	48	26	9.2	2 0.	.0 Sum of DP 1.3 & DP 7, piped to DP 1.5 .9 On-grade inlet, carryover flow to DP 11
	8	A8	1.48	0.70	13.9	1.04	6.10	6.3	23.7	2.63	4.76	12.5	1.9	0.41	0.7	10.6	2.23	2.0	18	195 20	9.1	7 1. 1 0.	.9 On-grade inlet, carryover flow to DP 11 .0 Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
	1.5								23.7	21.83	4.76	103.9				103.9	21.83	0.5	48		9.2	2 0.	.2 Sum of DP 1.4 & DP 8, piped to DP 1.6 .4 On-grade inlet, carryover flow to DP 11
	9	A9	0.61	0.83	8.7	0.51	7.29	3.7	21.2	0.95	5.04	4.8	0.3	0.05	0.7	4.5	0.89	2.0	18	140 13) 1.7 3 7.3	7 1. 3 0.	.4 On-grade inlet, carryover flow to DP 11 .0 Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								23.9	22.72	4.74	107.7				107.7	22.72	0.5	48		9.1	1 0.	.2 Sum of DP 1.5 & DP 9, piped to DP 1.8 .5 On-grade inlet, carryover flow to DP 20
	10	A10	2.61	0.88	7.9	2.29	7.53	17.3					4.5	0.59		12.8	1.70	2.5	18	955 118	10.3	3 0.	.2 Piped to DP 1.7
	11	A11	2.89	0.86	8.7	2.48	7.28	18.1	10.6	2.94	6.77	19.9	6.1	0.90	1.5	13.8	2.04	2.5	18	1049 C	2.4	4 7. 4 0.	.1 On-grade inlet, carryover flow to DP 21 .0 Sum of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7
	1.7								10.6	3.74	6.77	25.3				25.3	3.74	1.0	24	8	8.1	1 0.	.0 Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								24.0	26.45	4.72	125.0				125.0	26.45	2.0	54	517	7 17.0	0.	.5 Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	OS2	OS2	17.00	0.62	12.0	10.54	3.71	39.1								39.1	10.54	1.0	30	787	9.5	5 1.	Future flow released from Barbarick Subdivision 4 Piped to DP 2.0
	12	A12	3.87	0.38	11.9	1.47	6.49	9.5								9.5	1.47	2.0	18	17	8.9	9 0.	Type C inlet .0 Piped to DP 2.0
	2.0								13.4	12.01	6.20	74.5				74.5	12.01	1.0	48	52	11.6	6 0.	.1 Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	9.65	0.59	14.0	5.69	6.08	34.6								34.6	5.69	1.5	30	200	11.0	0.	Future storm infrastructure from Sterling Ranch Phase 2 .3 Piped to DP 2.1

X:\2510000.all\2518801\Excel\Drainage\2518801_Proposed Conditions.xlsm Page 1 of 3 8/19/2021

EXISTING CONDINONSUSURACEOUPING ROUMAG'S (MMXEAR) 00 YEAR) BY J.R. ENGINEERING (APPROVED NOVEMBER 2021)

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision:	Sterling Ranch Filing No. 2
Location:	El Paso County
sign Storm:	100-Year

Project Name: Sterling Ranch Subdivision Project No.: 25188.01 Calculated By: AAM

Checked By:

Date: 8/16/21

Description :0						- 0															
Description Description Description	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min) C*A (ac)	l (in/hr)	O (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
2.1								14.3 17.70	6.02	106.6				106.6	17.70	1.6	48	65	15.1	0.1	Sum of DP 2.0 & DP 13, piped to DP 2.5
OS3	OS3	28.70	0.62	15.0	17.79	2.75	48.9							48.9	17.79	1.0	30	719	10.0	1.2	Future flow released from Barbarick Subdivision Piped to DP 2.2
14	A14	11.76	0.55	15.3	6.47	5.86	37.9							37.9	6.47	1.0	30	20	9.5	0.0	Future flow released from School Site Piped to DP 2.2
2.2								16.2 24.26	5.72	138.7				138.7	24.26	1.5	48	773	15.5	0.8	Sum of DP OS3 & DP 14, piped to DP 2.3
	A1F	2.01	0.70	14.0	1.00	F 02	11.7				1.4	0.24	0.7				10	724	1.7	7.2	Sum of DP OS3 & DP 14, piped to DP 2.3 On-grade inlet, carryover flow to DP 8
	A15		0.68		1.98	5.93	11.7				2.6	0.44	0.8	10.3	1.74		18	697	1.8	6.5	Piped to DP 2.3 On-grade inlet, carryover flow to DP 9
16	A16	2.34	0.69	14.7	1.61	5.96	9.6							7.0	1.17	2.0	18	12	8.2	0.0	Piped to DP 2.3
2.3								15.0 2.91	5.91	17.2				17.2	2.91	1.6	48	15	9.0	0.0	Sum of DP 15 & DP 16, piped to DP 2.4
2.4								17.0 27.17	5.59	151.9				151.9	27.17	1.6	48	19	16.2	0.0	Sum of DP 2.2 & DP 2.3, piped to DP 2.5
2.5								17.1 44.87	7 5.59	250.7				250.7	44.87	2.0	60	839	20.1	0.7	Sum of DP 2.1 & DP 2.4 piped to DP 2.6
	A17	1 76	0.44	12.7	0.77	6.14	4.7							4.7	0.77						Type C inlet Piped to DP 2.6
2.6	All	1.70	0.44	13.7	0.77	0.14		17.7 45.64	1 5.49	250.4				250.4	45.64						Sum of DP 2.5 & DP 17, piped to DP 2.7
2.7								24.5 72.10	0 4.67	336.8				336.8	72.10	0.6					Sum of DP1.8 & DP 2.6, piped to DP 2.8
	A18	5 27	0 47	16.4	2.47	5.68	14.0							14.0	2.47		18		7.9		Area inlet Piped to DP 2.6
							85.4							85.4							Area inlet Piped to DP 2.6
	A19	31.85	0.59	25.8	18.79	4.55									18.79		18		48.4		·
2.8								25.8 93.36	4.55	424.4	424.4	93.36	0.5	424.4	93.36	0.6	78	145 564	13.9	6.6	Sum of DP 2.7, DP 18 & DP 19, piped to DP 3.0. Detention Pond
3.0								25.8 93.36	4.55	424.4		0.38	1.5								Trickle channel conveyance to DP 3.2 On-grade inlet
20	A20	1.83	0.89	8.0	1.63	7.50	12.2	14.4 2.22	6.02	13.4			1.5	11.1	1.84	1.0	24	105	7.2	0.2	Sum of Sub-basin A20 & carryover flow from DP 10, piped to DP 3.0
21	A21	1.93	0.90	8.7	1.73	7.28	12.6	15.8 2.63	5.77	15.2	3.3	0.57	1.5	11.9	2.06	2.5	18	0	10.2	0.0	On-grade inlet Sum of Sub-basin A21 & carryover flow from DP 11, piped to DP 2.9
2.9								15.8 3.91	1 5.77	22.5				22.5	3.91	2.0	24	58	11.0	0.1	Sum of DP 20 & DP 21,piped to DP 3.1
											22.5	3.91	0.5	LL.O	0.71	2.0		568			7 Detention Pond
3.1								15.8 3.91	5.77	22.5											Trickle channel conveyance to DP 3.2 Detention Pond
22	A22	8.68	0.37	23.3	3.21	4.80	15.4				8.5	2.03	13.0					113	5.4	0.3	Overland flow to DP 3.2 Existing topography
OS4	OS4	5.08	0.40	29.5	2.03	4.21	8.5				0.0	2.00	.0.0						0.4	0.0	Overland flow to DP 3.2 Outlet Structure
3.2								29.8 102.50	4.18	428.2											Sum of DP 3.0, DP 3.1, DP 22 & DP OS4, outlet structure release to DP 4.8
Pond W5								29.8 34.84	4.18	145.5				145.5	34.84	2.0			17.5	0.1	Outlet structure release to DP 4.8
23	B1	2.98	0.96	17.6	2.86	5.51	15.8				3.6	0.65	2.0	12.2	2.21	0.5	30	1394 88	2.1 5.7	11.0	On-grade inlet Piped to DP 4.0
24	B2	3,89	0.96	17.6	3,73	5.51	20.6				6.5	1.17	2.0	14.1	2.56	2.0	30	1394 0	2.1 9.7	11.0	On-grade inlet Piped to DP 4.0

X:\2510000.all\2518801\Excel\Drainage\2518801_Proposed Conditions.xlsm Page 2 of 3 8/19/2021

(Area Runoff Coefficient Summary)

				STREETS		D.	EVELOPME	NT	OPEN SP.	ACE / LAND	SCAPING		
BASIN	TOTAL AREA (SF)	TOTAL AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀
A	156397.009	3.59	0.00	0.90	0.96	2.28	0.45	0.59	1.31	0.09	0.36	0.32	0.51
В	148304.6808	3.40	0.00	0.90	0.96	3.00	0.45	0.59	0.40	0.09	0.36	0.41	0.56
C	44335.8117	1.02	0.00	0.90	0.96	1.02	0.45	0.59	0.00	0.09	0.36	0.45	0.59
D	126236.9571	2.90	0.00	0.90	0.96	2.90	0.45	0.59	0.00	0.09	0.36	0.45	0.59
E	38846.7466	0.89	0.21	0.90	0.96	0.68	0.45	0.59	0.00	0.09	0.36	0.56	0.68
F	112434.6262	2.58	0.00	0.90	0.96	2.18	0.45	0.59	0.40	0.09	0.36	0.39	0.55
G	71700.54	1.65	0.44	0.90	0.96	1.21	0.45	0.59	0.00	0.09	0.36	0.57	0.69
Н	53106.3075	1.22	0.00	0.90	0.96	0.39	0.45	0.83	0.83	0.12	0.39	0.23	0.53
I	60953.98	1.40	0.00	0.90	0.96	1.40	0.45	0.59	0.00	0.09	0.36	0.45	0.59
J	38881.001	0.89	0.30	0.90	0.96	0.59	0.45	0.59	0.00	0.09	0.36	0.60	0.71
K	46538.1625	1.07	0.00	0.90	0.96	1.07	0.45	0.59	0.00	0.09	0.36	0.45	0.59
L	52574.1933	1.21	0.00	0.90	0.96	0.52	0.45	0.59	0.69	0.09	0.36	0.24	0.46
M	28034.2781	0.64	0.00	0.90	0.96	0.06	0.45	0.59	0.58	0.09	0.36	0.12	0.38
A4	24837.432	0.64	0.64	0.90	0.96	0.00	0.45	0.59	0.00	0.09	0.36	0.90	0.96
A6	N/A	1.37		REFER T	O "FINAL DR	AINAGE REP	ORT FOR STE	RLING RANC	H NO. 2" FOR	DETAILS		0.58	0.70
A6A	N/A	0.53		REFER T	O "FINAL DR	AINAGE REP	ORT FOR STE	RLING RANC	H NO. 2" FOR	DETAILS		0.81	0.88
A8	32551.5217	0.75	0.75	0.90	0.96	0.00	0.45	0.59	0.00	0.09	0.39	0.90	0.96
A11	121476.1738	2.79	2.22	0.90	0.96	0.00	0.45	0.59	0.57	0.09	0.39	0.73	0.84

(Area Drainage Summary)

From Area Runoff	Coefficient Sumn	nary			OVERL.	1ND		ST	REET / CH	ANNEL FLO	OW .	Time of T	ravel (T ₁)	INTEN	SITY *	TOTAL	FLOWS
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	T _t	TOTAL	CHECK	I ₅	I ₁₀₀	Q_5	Q ₁₀₀
	(Acres)	From DCM	M Table 5-1		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
A	3.59	0.32	0.51	0.32	100	10.5	6.5	860	1.7%	2.6	5.4	11.9	15.3	3.9	6.5	4.4	11.8
В	3.40	0.41	0.56	0.41	100	1.4	11.2	735	1.6%	2.5	4.9	16.1	14.6	3.6	6.0	4.9	11.4
\boldsymbol{c}	1.02	0.45	0.59	0.45	100	2.0	9.3	520	2.5%	3.2	2.7	12.1	13.4	3.8	6.5	1.8	3.9
D	2.90	0.45	0.59	0.45	100	2.2	9.0	795	1.9%	2.8	4.7	13.8	15.0	3.6	6.1	4.8	10.5
E	0.89	0.56	0.68	0.56	100	2.0	7.8	340	1.9%	2.8	2.0	9.9	12.4	4.1	7.0	2.1	4.2
F	2.58	0.39	0.55	0.39	100	13.0	5.5	855	2.7%	3.3	4.3	9.8	15.3	4.2	7.0	4.2	10.0
\boldsymbol{G}	1.65	0.57	0.69	0.57	100	4.0	6.1	290	2.8%	3.4	1.4	7.5	12.2	4.6	7.7	4.3	8.7
H	1.22	0.23	0.53	0.23	100	3.3	10.6	655	2.1%	2.2	5.0	15.6	14.2	3.6	6.0	1.0	3.9
I	1.40	0.45	0.59	0.45	100	2.7	8.5	760	2.1%	2.9	4.4	12.8	14.8	3.8	6.3	2.4	5.2
J	0.89	0.60	0.71	0.60	100	2.0	7.2	470	1.4%	2.4	3.3	10.5	13.2	4.1	6.8	2.2	4.3
K	1.07	0.45	0.59	0.45	100	3.0	8.2	460	2.0%	2.8	2.7	10.9	13.1	4.0	6.7	1.9	4.2
L	1.21	0.24	0.46	0.24	100	3.5	10.2	655	1.2%	2.2	4.9	15.2	14.2	3.6	6.0	1.1	3.3
M	0.64	0.12	0.38	0.12	100	4.0	11.2	195	3.2%	1.3	2.6	13.7	11.6	3.9	6.6	0.3	1.6
A4	0.64	0.90	0.96	0.90	100	1.8	3.0	350	2.3%	3.0	1.9	4.9	12.5	5.2	8.7	3.0	5.4
A6	1.37	0.58	0.70				REFER '	TO "FINAL DR	AINAGE REPO	ORT FOR STE	RLING RANCI	H NO. 2" FOR	DETAILS			3.3	6.6
A6A	0.53	0.81	0.88				REFER '	TO "FINAL DR	AINAGE REPO	ORT FOR STE	RLING RANCI	H NO. 2" FOR	DETAILS			2.2	4.1
A8	0.75	0.90	0.96	0.90	100	1.5	3.2	600	1.2%	2.2	4.5	7.7	13.9	4.5	7.6	3.0	5.5
A11	2.79	0.73	0.84	0.73	100	0.9	6.8	1315	2.2%	3.0	7.3	14.2	17.9	3.6	6.1	7.4	14.2

^{*} Intensity equations assume a minimum travel time of 5 minutes.

Calculated by: CVW
Date: 12/8/2021
Checked by: VAS

(Surface Routing Summary)

	From Area Runoff Coefficient Summary				OVER	RLAND		PIPI	E / CHA	NNEL FLO)W	Time of Travel (T ₁)	INTEN	SITY *	TOTAL I	FLOWS	
DESIGN POINT	CONTRIBUTING BASINS	CA ₅	CA ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	T _t	TOTAL	I ₅	I ₁₀₀	Q ₅	Q ₁₀₀	COMMENTS
					(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	
1	Basin A	1.14	1.82	Bas	sin A Tc wa	is used	11.9					11.9	3.9	6.5	4.4	11.8	CDOT TYPE R AT-GRADE 5' INLET (IN-1)
2	Basin B	1.39	1.92	Bas	sin B Tc wa	s used	14.6					14.6	3.6	6.0	4.9	11.4	CDOT TYPE R AT-GRADE 15' INLET (IN-2)
3	Basin C	0.46	0.60	Bas	sin C Tc wa	s used	12.1					12.1	3.8	6.5	3.7	11.8	CDOT TYPE R AT-GRADE 5' INLET
	FB-IN1	0.50	1.23														(IN-3)
	Sum:	0.96	1.83														
4	Basin D	1.30	1.71	Design	Point 2 Tc	was used	14.6					14.6	3.6	6.0	4.7	12.0	CDOT TYPE R AT-GRADE 15' INLET
	FB-IN2	0.0	0.29														(IN-4)
	Sum:	1.31	2.00														
5	Basin E	0.50	0.60	Desig	gn Point 4 v	vas used	14.6					14.6	3.6	6.0	1.8	5.6	CDOT TYPE R SUMP 15' INLET
	FB-IN4	0.0	0.33														(IN-5)
_	Sum:	0.50	0.93			<u> </u>											
6	Basin F	1.02	1.43	Bas	sin F Tc wa	s used	9.8					9.8	4.2	7.0	4.2	10.0	CDOT TYPE R 15' AT-GRADE INLET (IN-6)
7	Basin G	0.94	1.13	Wei	ghted Tc w	as used	16.0					16.0	3.4	5.7	4.9	20.0	EX CDOT TYPE R 15' AT-GRADE INLET
	FB-IN6	0.00	0.16				1										(IN-A5)
	FB-INA1	0.05	0.40														
	FB-INA4	0.00	0.10														
	FB-INA3	0.45	1.69														
		1.44	3.48														
8	Basin H	0.27	0.65	Bas	sin H Tc wa	s used	14.2					14.2	3.6	6.0	1.0	3.9	CDOT TYPE C 3' AT- GRADE INLET (IN-8)
9	Basin I	0.63	0.83	Design	Point 5 Tc	was used	14.6					14.6	3.6	6.0	4.0	10.5	CDOT TYPE R SUMP 15' INLET
	DP 5	0.50	0.93														(IN-5)
	Sum:	1.13	1.76														
10	Basin J	0.54	0.64	Ba	sin J Tc was	s used	10.5					10.5	4.1	6.8	2.2	4.3	
11	Basin K	0.48	0.63	Desis	gn Point 3 v	vas used	12.1					12.1	3.8	6.5	5.4	16.7	CDOT TYPE R SUMP 15' INLET
	FB-IN3	0.4	1.32				1						3.0	0.5	3.7	10.7	(IN-9)
	DP 10	0.54	0.64														(>)
	Sum:	1.40	2.59														
12	Basin L	0.29	0.55	Bas	sin L Tc wa	s used	14.2					14.2	3.6	6.0	1.1	3.3	
					<u> </u>												
13	Basin M	0.08	0.25	Bas	sin M Tc wa	as used	11.6					11.6	3.9	6.6	0.3	1.6	
14	Basin A4	0.58	0.62	Bas	in A4 Tc wa	as used	5.0					5.0	5.2	8.7	3.0	5.4	EX CDOT TYPE R 10' AT-GRADE INLET (IN-A4)

(Surface Routing Summary)

	From Area Runoff Coefficient Summary				OVER	LAND		PIPE	/ CHA	NNEL FLO	W	Time of Travel (T ,)	INTEN	SITY *	TOTAL	FLOWS	
DESIGN POINT	CONTRIBUTING BASINS	CA ₅	CA ₁₀₀	C ₅	Length	Height	T_{C}	Length	Slope	Velocity	T _t	TOTAL	I ₅	I ₁₀₀	Q_5	Q_{100}	COMMENTS
					(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	
15	Basin A8	0.67	0.72	Bas	in A8 Tc wa	is used	13.9					13.9	3.6	6.1	5.1	19.8	EX CDOT TYPE R 15' AT-GRADE INLET
	FB-INA6	0.00	0.17														(IN-A8)
	Basin A6A	0.43	0.47														
	FB-INA15	0.00	0.24														
	DP 12	0.29	0.55														
	FB-INA5	0.01	1.10														
		1.40	3.25														
16	Basin A11	2.05	2.35	Basi	n A11 Tc w	as used	14.2					14.2	3.6	6.1	7.7	22.8	EX CDOT TYPE R 15' AT-GRADE INLET
	FB-INA8	0.00	1.11														(IN-A11)
	DP 13	0.08	0.25														
	FB-INA9	0.00	0.06														
		2.13	3.77														

* Intensity equations assume a minimum travel time of 5 minutes.

Calculated by: CVW
Date: 6/16/2022

Checked by: VAS

(Storm Sewer Routing Summary)

					Inten	sity*	Fl	ow
PIPE	Contributing Pipes/Design Points	Equivalent CA 5	Equivalent CA ₁₀₀	Maximum T _C	I 5	I 100	Q 5	Q 100
PR1	DP1 (IN-1)	0.65	0.59	11.9	3.9	6.5	2.5	3.8
PR2	DP2 (IN-2)	1.38	1.62	14.6	3.6	6.0	4.9	9.7
PR3	PR1, PR2	2.02	2.21	14.4	3.6	6.0	7.3	13.3
PR4	DP3 (IN-3)	0.64	0.65	14.6	3.6	6.0	2.3	3.9
PR5	DP4 (IN-4)	1.31	1.67	14.6	3.6	6.0	4.7	10.0
PR6	DP6 (IN-6)	1.01	1.27	10.0	4.1	6.9	4.2	8.8
PR7	PR6	1.01	1.27	10.3	4.1	6.9	4.1	8.7
PR8	PR7	1.01	1.27	10.5	4.1	6.8	4.1	8.7
PR9	PR8	1.01	1.27	10.8	4.0	6.7	4.1	8.6
PR10	DP8 (IN-8)	0.27	0.65	14.2	3.6	6.0	1.0	3.9
PR11	PR10, DP9 (IN-5)	1.39	2.38	14.2	3.6	6.0	5.0	14.4
PR12	PR3, PR4, PR5	3.98	4.53	15.3	3.5	5.9	13.9	26.6
PR13	PR11, DP11 (IN-9)	2.79	4.97	12.1	3.8	6.5	10.7	32.1
PR14	PR9, PR12, PR13	7.78	10.78	16.9	3.3	5.6	26.0	60.5
1.0	IN-A1, IN-A2	1.45	1.47	9.7	4.2	7.0	6.1	10.3
1.1	IN-A4, IN-A3	3.27	3.10	15.5	3.5	5.8	11.4	18.1
1.2	1.0, 1.1	4.72	4.57	14.1	3.6	6.1	17.1	27.7
1.3A	1.2, IN-A5, IN-A6	6.87	7.54	15.4	3.5	5.8	23.9	44.1
1.3	1.3A	6.87	7.54	15.4	3.5	5.8	23.9	44.1
1.4	1.3, PR14	14.65	18.32	17.0	3.3	5.6	48.8	102.5
1.5	DP15 (IN-A8), 1.4	16.05	20.75	17.1	3.3	5.6	53.4	115.8
1.6	IN-A9, 1.5	16.69	21.48	17.4	3.3	5.5	55.1	119.0
1.7	DP16 (IN-A11), IN-A10	4.95	4.98	17.5	3.3	5.5	16.3	27.5
1.8	1.7, 1.6	21.65	26.46	24.1	2.8	4.7	60.8	124.8

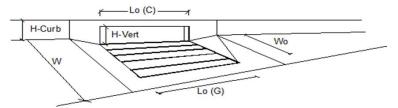
* Intensity equations assume a minimum travel time of 5 minutes.

DP - Design Point
EX - Existing Design Point
PR - Pipe Run

FB- Flow By from Design Point

IN- Proposed Inlet IN-A(#)- Existing Inlet

Calculated by: CVW
Date: 6/16/2022
Checked by: VAS

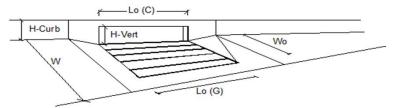

Overall Im	perviousne	ss of Copper	Chase at Sterling	Ranch
Contributing Basins	Area (Acres)	C 5	Impervious % (I)	(Acres)*(I)
A	3.59	0.32	44	157.39
В	3.40	0.41	58	198.10
С	1.02	0.45	65	66.16
D	2.90	0.45	65	188.37
E	0.89	0.56	73	65.32
F	2.58	0.39	56	144.57
G (on site portion)	0.47	0.57	260	122.39
Н	1.22	0.23	26	31.15
I	1.40	0.45	65	90.96
J	0.89	0.60	77	68.52
K	1.07	0.45	65	69.44
L	1.21	0.24	32	38.43
М	0.64	0.12	12	7.99
Totals	21.3			1248.79
Imperviousness of Site	58.7	%		

EXISTING HYDRAULIC CALCULATIONS (BY J.R. ENGINEERING, APPROVED NOVEMBER 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: Α1 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 17.0 Gutter Width w 1.17 Street Transverse Slope $\textbf{S}_{\textbf{X}}$ 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.027 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Spread Criterion 13.1 16.7 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A1 5/15/2020, 9:24 AM

Version 4.05 Released March 2017

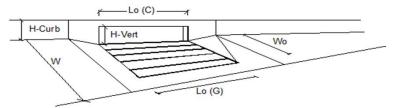

Design Information (Input)	CDOT Type R Curb Opening		MINOR	MAJOR	_
Type of Inlet	CDOT Type it Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to con	ntinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (0	Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be gr	eater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit G	Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	vable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	4.2	6.6	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.2	2.8	cfs
Capture Percentage = Q _a /Q _o =		C% =	95	70	%

UD-Inlet_v4.05.xlsm, A1 5/15/2020, 9:24 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: A2 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 17.0 Gutter Width w 1.17 Street Transverse Slope $\textbf{S}_{\textbf{X}}$ 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.027 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Spread Criterion 13.1 16.7 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A2 5/15/2020, 9:24 AM

Version 4.05 Released March 2017

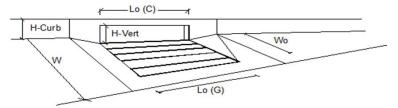

Design Information (Input)	CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	obor type it dails opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to co	ntinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	e or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be g	reater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit	Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	Curb Opening (typical min. value = 0.1)	$C_f - C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allo	wable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	1.9	3.8	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	97	%

UD-Inlet_v4.05.xlsm, A2 5/15/2020, 9:24 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: А3 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 17.0 Gutter Width w 1.17 Street Transverse Slope $\textbf{S}_{\textbf{X}}$ 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.026 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storn MAJOR STORM Allowable Capacity is based on Depth Criterion 12.9 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A3 5/15/2020, 9:24 AM

Version 4.05 Released March 2017

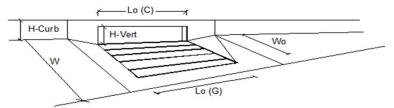

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.5	14.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.6	10.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	86	60	%

UD-Inlet_v4.05.xlsm, A3 5/15/2020, 9:24 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: Α6 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 17.0 Gutter Width w 1.17 Street Transverse Slope $\textbf{S}_{\textbf{X}}$ 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.026 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storn MAJOR STORM Allowable Capacity is based on Depth Criterion 12.9 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A6 5/15/2020, 9:24 AM

Version 4.05 Released March 2017

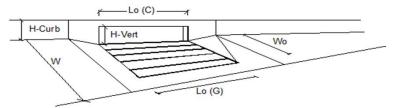

Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening ▼	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	3.3	5.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	81	%

UD-Inlet_v4.05.xlsm, A6 5/15/2020, 9:24 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: Α8 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 26.0 Gutter Width w 2.00 Street Transverse Slope $\textbf{S}_{\textbf{X}}$ 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.007 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 26.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A8 5/15/2020, 9:24 AM

Version 4.05 Released March 2017

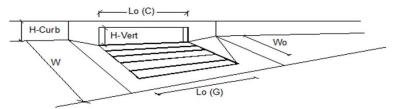

Design Information (Input) Type of Inlet CDOT Type R Curb Opening ▼	Type =	MINOR CDOT Type R	MAJOR Curb Opening	7
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.0	10.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	85	%

UD-Inlet_v4.05.xlsm, A8 5/15/2020, 9:24 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: Α9 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 26.0 Gutter Width w 2.00 Street Transverse Slope $\textbf{S}_{\textbf{X}}$ 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.007 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 26.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 26.9 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A9 5/15/2020, 9:24 AM

Version 4.05 Released March 2017

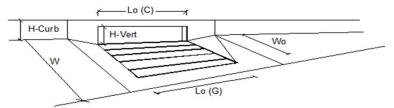

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C_f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	2.1	4.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	94	%

UD-Inlet_v4.05.xlsm, A9 5/15/2020, 9:24 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: A10 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 15.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 38.0 Gutter Width w 2.00 Street Transverse Slope $\textbf{S}_{\textbf{X}}$ 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.012 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 33.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 63.8 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A10 5/15/2020, 9:24 AM

Version 4.05 Released March 2017


Design Information (Input) Type of Inlet CDOT Type R Curb Opening ▼	Type =	MINOR CDOT Type R	MAJOR Curb Opening	7
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.7	12.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.5	4.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	94	74	%

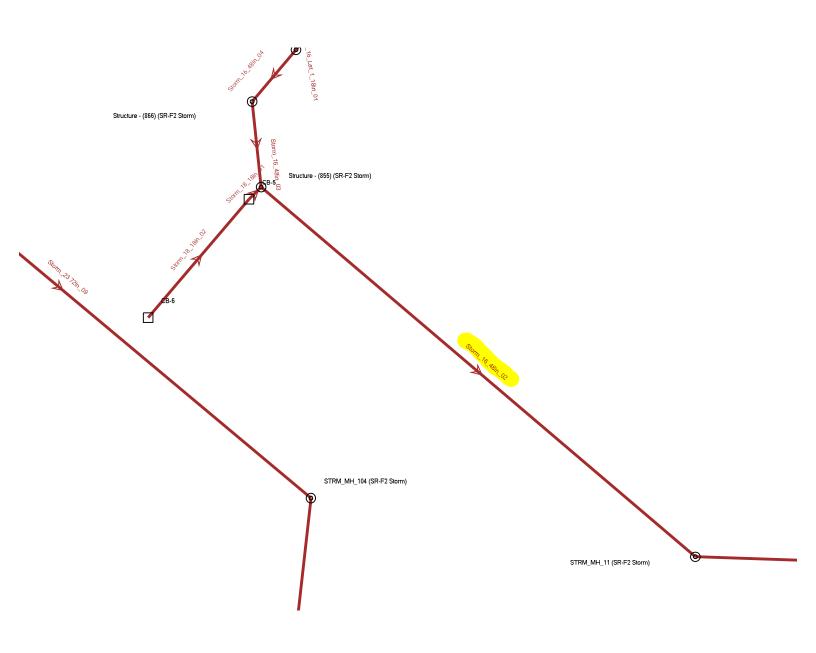
UD-Inlet_v4.05.xlsm, A10 5/15/2020, 9:24 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: A15 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 26.0 Gutter Width w 2.00 Street Transverse Slope $\textbf{S}_{\textbf{X}}$ 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.023 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 26.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm 36.4 MAJOR STORM Allowable Capacity is based on Depth Criterion 19.2 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A15 5/15/2020, 9:24 AM

Version 4.05 Released March 2017

Design Information (Input)	CDOT Trans B Courb Consider		MINOR	MAJOR	_
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to con	tinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (0	Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)	$L_o =$	15.00	15.00	ft
Width of a Unit Grate (cannot be gr	eater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit G	Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)	$C_{f}C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allow	able Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity		Q =	5.4	10.3	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	$Q_b =$	0.0	1.4	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	88	%

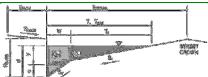

UD-Inlet_v4.05.xlsm, A15 5/15/2020, 9:24 AM

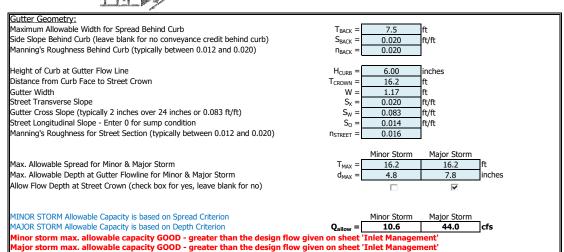
Scenario: 100-YEAR Current Time Step: 0.000 h FlexTable: Conduit Table

			Length				Capacity	Hydraulic	Hydraulic
	Flow	Diameter	(User	Slope	Manning's	Velocity	(Full	Grade	Grade
Label	(cfs)	(in)	Defined)	(Calculated)	n	(ft/s)	Flow)	Line (In)	Line
	()	()	(ft)	(ft/ft)		()	(cfs)	(ft)	(Out) (ft)
Storm 17 48in 01	151.90	48.0	15.6	-0.020	0.013	17.70	202.74	6,990.38	6,989.68
Storm 14 66in 05	250.70	66.0	354.4	-0.014	0.013	17.68	397.24	6,985.83	6,982.04
Storm 20 48in 01	139.30	48.0	57.9	-0.020	0.013	17.42	203.30	6,964.17	6,962.31
Storm 17 48in 05	138.70	48.0	292.3	-0.020	0.013	17.39	203.11	7,001.66	6,996.18
Storm 23 54in 11	233.40	54.0	333.6	-0.014	0.013	16.67	232.65	6,996.60	6,991.45
Storm 23 54in 12	233.40	54.0	412.3	-0.014	0.013	16.67	232.63	7,004.71	6,998.44
Storm 17Lat2 36in 01	37.90	36.0	110.1	-0.040	0.013	16.24	133.20	7,006.00	7,003.91
Storm_14_48in_06	106.60	48.0	59.3	-0.017	0.013	15.42	187.87	6,990.60	6,988.91
Storm_17_48in_04	138.70	48.0	82.9	-0.014	0.013	15.23	172.06	6,995.63	6,994.99
Storm_17_48in_03	138.70	48.0	150.3	-0.014	0.013	15.21	171.79	6,994.44	6,992.83
CO-6	74.50	48.0	9.5	-0.021	0.013	15.20	208.41	6,991.39	6,991.40
Storm_17_48in_02	138.70	48.0	102.0	-0.014	0.013	15.09	170.08	6,992.28	6,991.01
Storm_19_Lat 2_18in_01	19.70	18.0	76.7	-0.049	0.013	14.72	23.16	7,006.74	7,003.66
Storm_23 54in_10	233.40	54.0	298.5	-0.014	0.013	14.68	232.69	6,986.54	6,982.33
Storm_23 54in_09	233.40	54.0	402.5	-0.015	0.013	14.68	240.88	6,981.49	6,975.82
Storm_23 54in_08	233.40	54.0	567.0	-0.015	0.013	14.68	240.76	6,974.99	6,967.00
Storm_23 54in_05 Storm 23 54in 13	233.40 233.40	54.0 54.0	120.0 265.9	-0.015 -0.005	0.013 0.013	14.68 14.68	240.88 138.03	6,962.34 7,015.89	6,960.65 7,011.98
Storm_23 54in_13	233.40	54.0 54.0	93.0	-0.005	0.013	14.68	240.46	6,965.32	6,964.01
Storm 18 18in 01	25.30	18.0	22.4	-0.059	0.013	14.32	25.59	6,984.40	6,983.10
Storm 23 54in 14	221.60	54.0	43.7	-0.005	0.013	13.93	136.36	7,019.46	7,018.90
Storm 19 24in 05	30.00	24.0	177.0	-0.030	0.013	13.74	39.18	7,002.90	6,997.04
Storm 19 24in 04	30.00	24.0	144.7	-0.030	0.013	13.74	39.18	6,997.59	6,994.14
Storm_14_36in_07	34.60	36.0	76.3	-0.020	0.013	12.31	94.31	6,991.91	6,991.40
Storm_14_72in_03	336.80	72.0	74.5	-0.005	0.013	11.91	306.40	6,977.10	6,976.63
Storm_14_72in_02	336.80	72.0	127.9	-0.005	0.013	11.91	299.58	6,976.08	6,975.27
Storm_19_18in_06	10.30	18.0	339.5	-0.040	0.013	11.81	20.95	7,016.29	7,003.66
Storm_17_48in_06	138.70	48.0	22.6	-0.020	0.013	11.04	202.28	7,002.97	7,002.76
Storm_14_84in_01	424.40	84.0	107.3	-0.005	0.013	11.03	453.09	6,974.79	6,974.32
Storm_14_66in_04 Storm 23 66in 02	250.70 243.40	66.0 66.0	512.4 549.0	-0.012 -0.002	0.013 0.013	10.55	366.67 138.58	6,981.61 6,957.00	6,978.75 6,954.11
Storm 23 66in 03	243.40	66.0	167.7	-0.002	0.013	10.24 10.24	139.63	6,958.28	6,957.40
Storm 19 Lat 1 18in 01	8.70	18.0	36.4	-0.030	0.013	10.18	18.18	6,994.36	6,994.14
Storm 16 48in 02	125.00	48.0	348.6	-0.024	0.013	9.95	220.31	6,982.33	6,979.69
Storm_23_84in_02	382.70	84.0	27.0	-0.003	0.013	9.94	347.91	6,951.54	6,951.16
Storm_23_84in_01	382.70	84.0	200.4	-0.003	0.013	9.94	325.38	6,953.31	6,952.64
Storm_19_30in_03	46.90	30.0	165.0	-0.024	0.013	9.55	64.17	6,993.43	6,991.28
Storm_15_42in_01-E	85.40	42.0	63.9	-0.004	0.013	8.88	65.41	6,975.73	6,975.27
Storm_16_48in_03	107.70	48.0	50.4	-0.020	0.013	8.57	203.42	6,983.38	6,983.10
Storm_16_48in_04	107.70	48.0	42.5	-0.020	0.013	8.57	203.12	6,984.19	6,983.95
Storm 23 three 42in_ 04 Storm_21_48in_02	243.40 105.90	42.0 48.0	258.8 25.8	-0.008 -0.030	0.013 0.013	8.43 8.43	264.00 248.66	6,960.38 6,986.94	6,958.69 6,986.80
Storm 19 Lat 2 18in 02	14.70	18.0	35.3	-0.030	0.013	8.32	12.86	7,008.40	7,007.71
Storm_21_48in_01	103.90	48.0	57.3	-0.030	0.013	8.27	248.76	6,986.27	6,985.97
Storm 16 48in 05	103.90	48.0	26.8	-0.020	0.013	8.27	203.11	6,984.90	6,984.76
Storm 15 18in 02-W	14.00	18.0	25.5	-0.049	0.013	7.92	23.36	6,975.72	6,975.27
Storm_18_18in_02	12.80	18.0	82.7	-0.050	0.013	7.24	23.47	6,987.22	6,985.99
Storm_19_Lat 3_18in_02	3.80	18.0	29.3	-0.020	0.013	7.05	14.90	7,016.96	7,016.97
Storm_17_36in_07	48.90	36.0	9.8	-0.020	0.013	6.92	94.31	7,003.97	7,003.91
STRM_29_01	11.80	18.0	66.2	-0.008	0.013	6.68	9.40	7,019.74	7,018.90
Storm_19_36in_02	46.90	36.0	144.5	-0.006	0.013	6.63	51.15	6,990.59	6,989.88
Storm_19_36in_01	46.90	36.0	302.2	-0.006	0.013	6.63	51.04	6,989.53	6,988.04
Storm_16_42in_01 Storm_28_30in_01	125.00 12.20	42.0 30.0	158.3 90.0	-0.002 -0.007	0.013 0.013	6.50 6.44	90.47 34.60	6,979.36 7,044.41	6,978.75 7,044.53
Storm 21 42in 03	60.60	42.0	101.2	-0.007	0.013	6.30	71.15	6,988.41	6,988.04
Storm 21 Lat 1 18in 01	10.60	18.0	19.4	-0.005	0.013	6.00	7.16	6,986.99	6,986.80
Storm 28 30in 01	26.10	30.0	35.4	-0.003	0.013	5.99	25.78	7,044.53	7,044.20
Storm 22 30in 01	29.10	30.0	113.0	-0.005	0.013	5.93	29.03	7.022.08	7,021.51
Storm_17_Lat_1_24in_01	17.20	24.0	8.8	-0.006	0.013	5.47	17.03	6,991.06	6,991.01
Storm_26 24in_01	14.50	24.0	80.7	-0.010	0.013	4.62	22.68	7,022.43	7,022.10
Storm_19_Lat 3_18in_01	6.60	18.0	6.0	-0.020	0.013	3.73	14.84	7,016.99	7,016.97
Storm_22_30in_02	13.70	30.0	79.4	-0.009	0.013	2.79	38.24	7,022.22	7,022.13
Storm_16_Lat_1_18in_01	4.50	18.0	13.2	-0.020	0.013	2.55	15.01	6,984.79	6,984.76
STRM_29_02	4.10	18.0	79.6	-0.027	0.013	2.32	17.27	7,020.00	7,019.88
Storm_17_Lat_1_24in_02	7.00	24.0	53.4	-0.007	0.013	2.23	18.29	6,991.23	6,991.18
Storm_25 30in_01	10.00	30.0	28.2	0.005	0.013	2.04	29.93	6,960.67	6,960.65

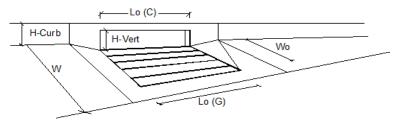
X:\2510000.all\2518801\StormCAD\2518801 StormCAD Model.stsw

Sterling Ranch 5yr





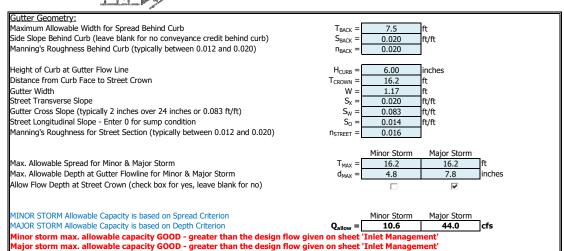
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

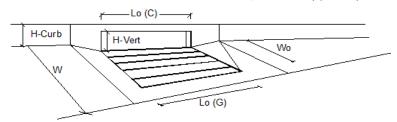
Project: Inlet ID: IN-1

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)



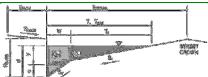

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C_f - $G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_f - C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.5	3.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	1.9	8.0	cfs
Capture Percentage = Q_a/Q_o =	C% =	57	33	%

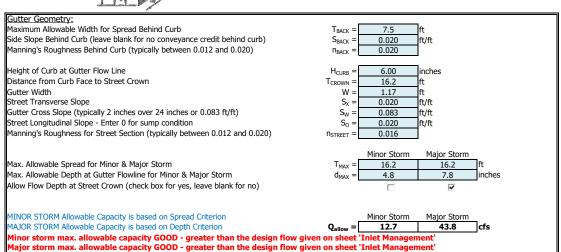
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

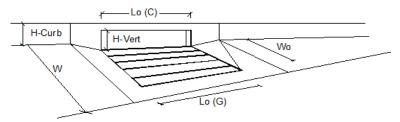
Project: Inlet ID: IN-2

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)



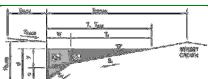

Design Information (Input) CDOT Type R Curb Opening	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C_f - $G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_f - $C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.9	9.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	1.7	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	85	%

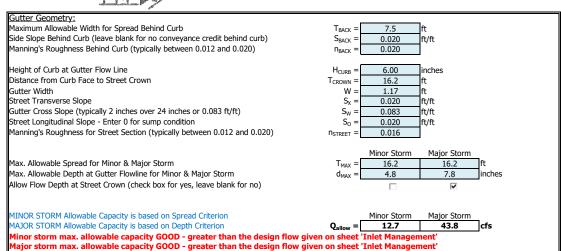
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

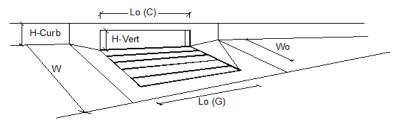
Project: Inlet ID: IN-3

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)



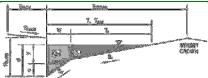

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	Major	
Total Inlet Interception Capacity	Q =	2.3	3.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	1.4	7.9	cfs
Capture Percentage = Q_a/Q_o =	C% =	63	33	%

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

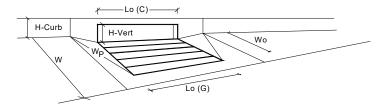
Project: Inlet ID: IN-4

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)


Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	Major	
Total Inlet Interception Capacity	Q =	4.7	10.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	2.0	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	83	%

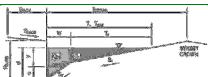
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

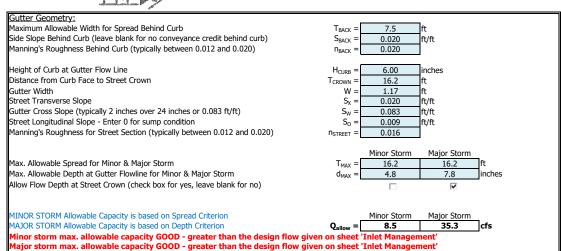
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project:

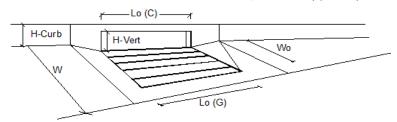
Inlet ID: IN-5

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 7.5 TBACK : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} : 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 n_{RACK} Height of Curb at Gutter Flow Line H_{CURB} 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 16.2 Gutter Width 1.17 Street Transverse Slope S_X 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_{W} \\$ 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 16.2 16.2 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm $d_{\text{MAX}} \\$ 4.8 7.8 inches Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Major Storm SUMP Minor Storm SUMP

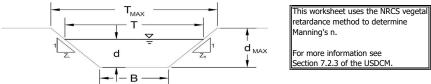

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

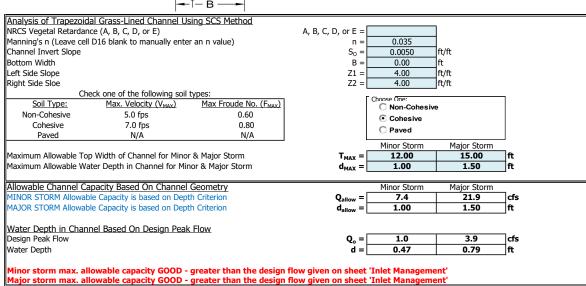


Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	7.8	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	0.30	0.55	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.45	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.70	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q ₂ =	6.8	21.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.0	10.5	cfs


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

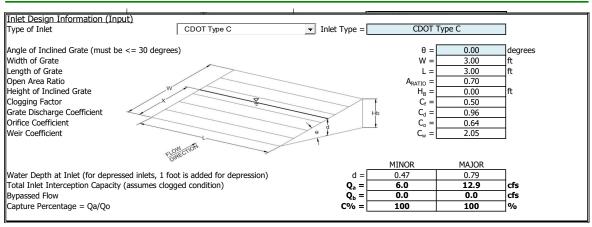
Project: Inlet ID: IN-6

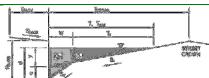

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

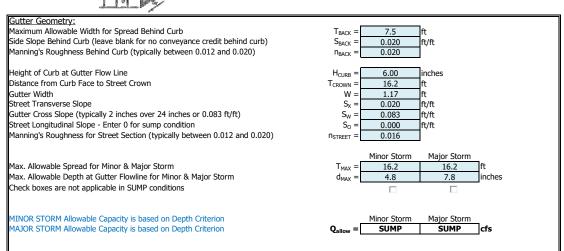


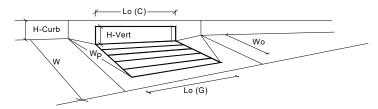
Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	Major	
Total Inlet Interception Capacity	Q =	4.2	8.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	1.1	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	89	%

AREA INLET IN A SWALE

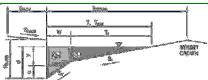

IN-8

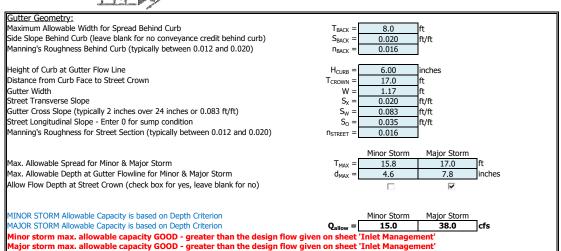

MHFD-Inlet, Version 5.01 (April 2021) AREA INLET IN A SWALE


IN-8

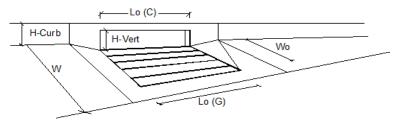

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: IN-9

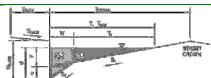

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

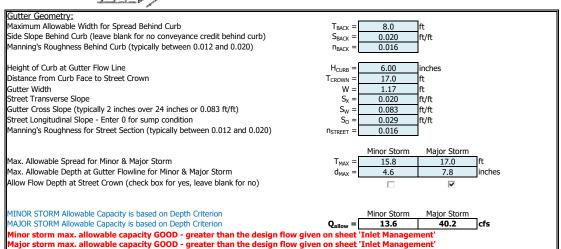


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	7.8	inches
Grate Information	-	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.55	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.45	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.70	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
L		MINOR	MAJOR	٦.
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.8	21.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.4	16.7	cfs

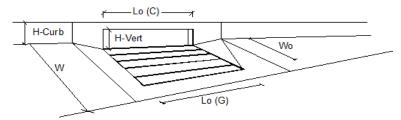

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: IN-A4

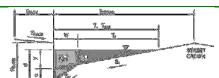

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

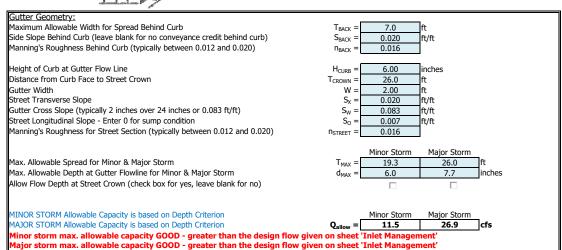


Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C_f - $G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	Major	
Total Inlet Interception Capacity	Q =	3.0	4.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.6	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	89	%

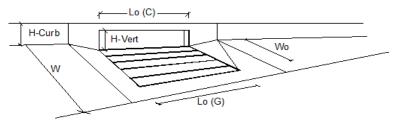

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: IN-A5


INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

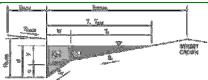


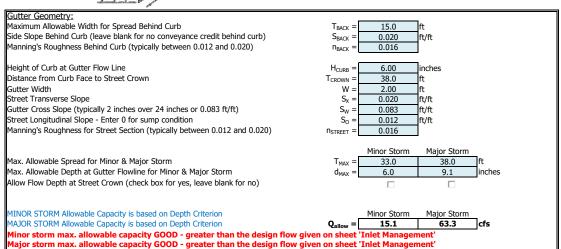
Design Information (Input) CDOT Type R Curb Opening	_	MINOR	Major	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C_f - $G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.9	13.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	6.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	67	%


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

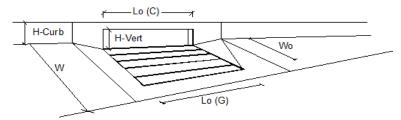
Project: IN-A8

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

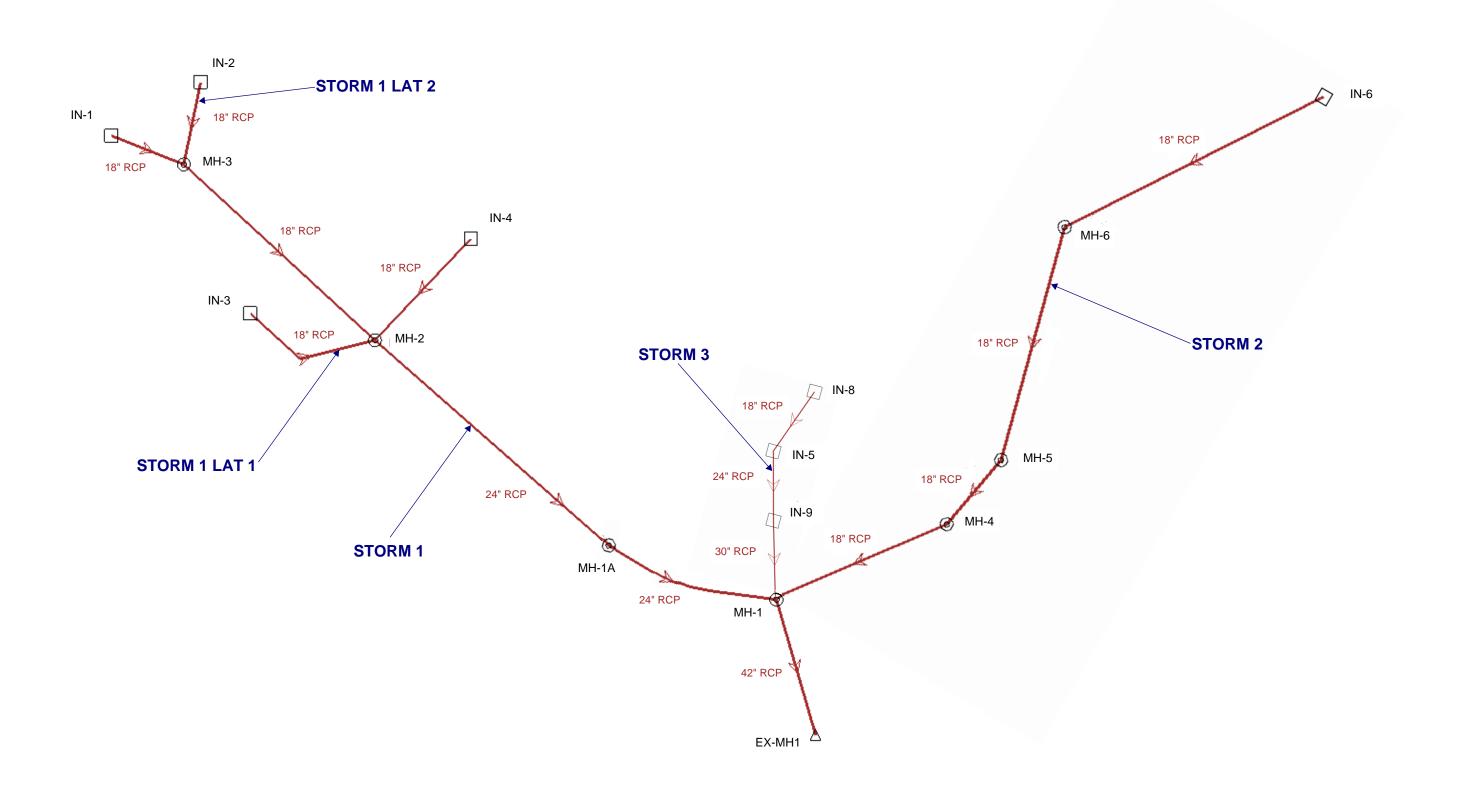


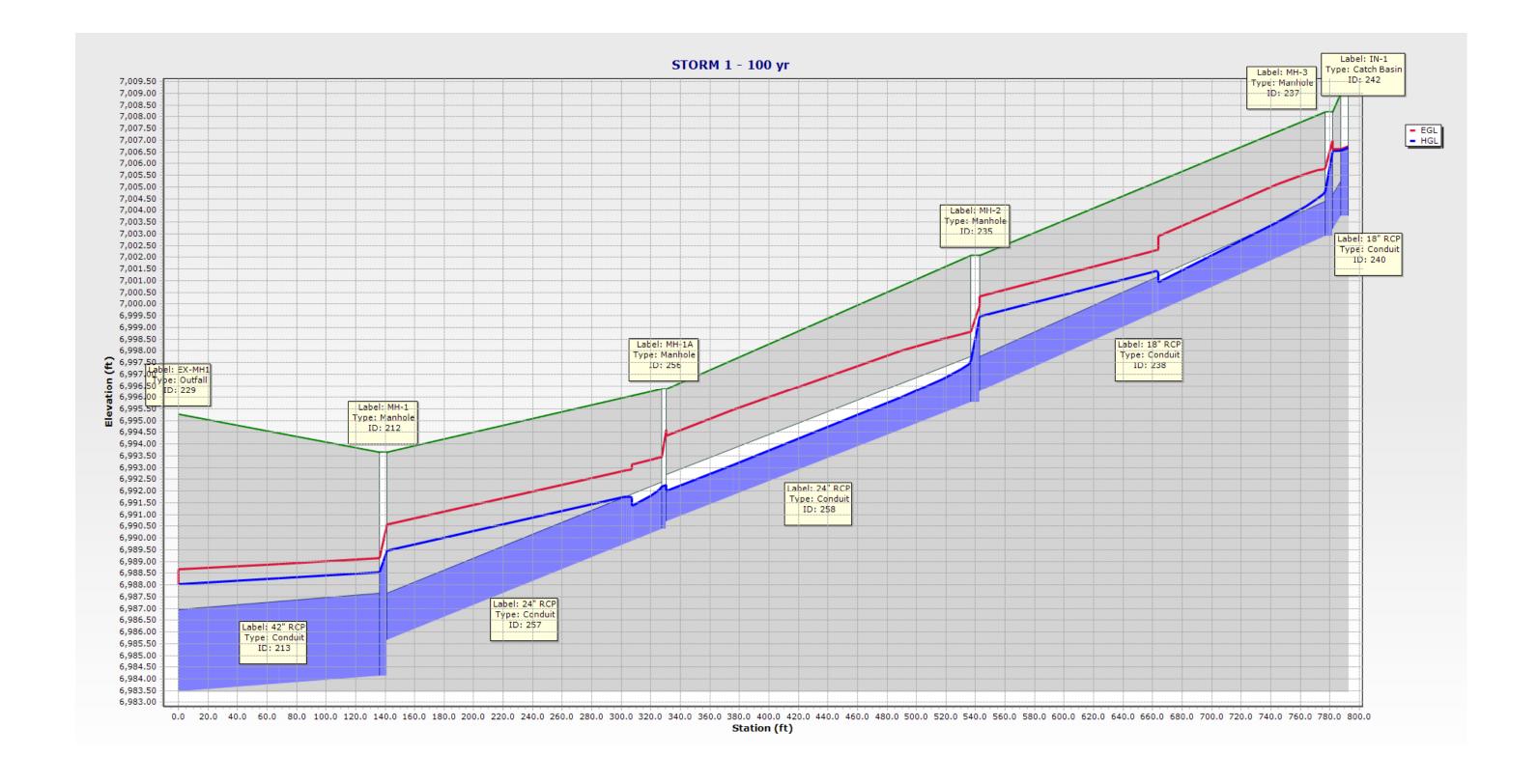

Design Information (Input) CDOT Type R Curb Opening	_	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	5.1	13.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	6.2	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	69	%

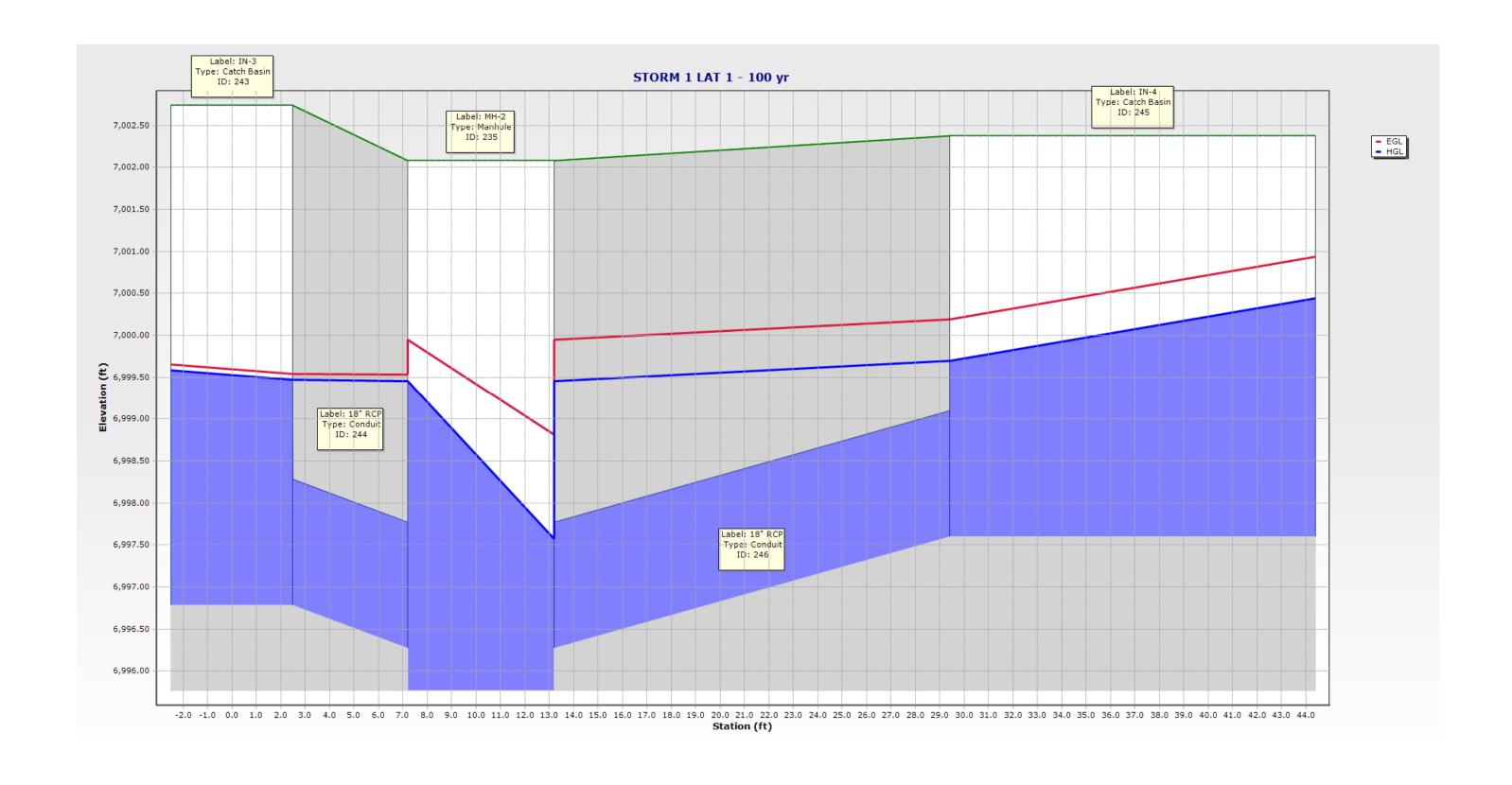
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

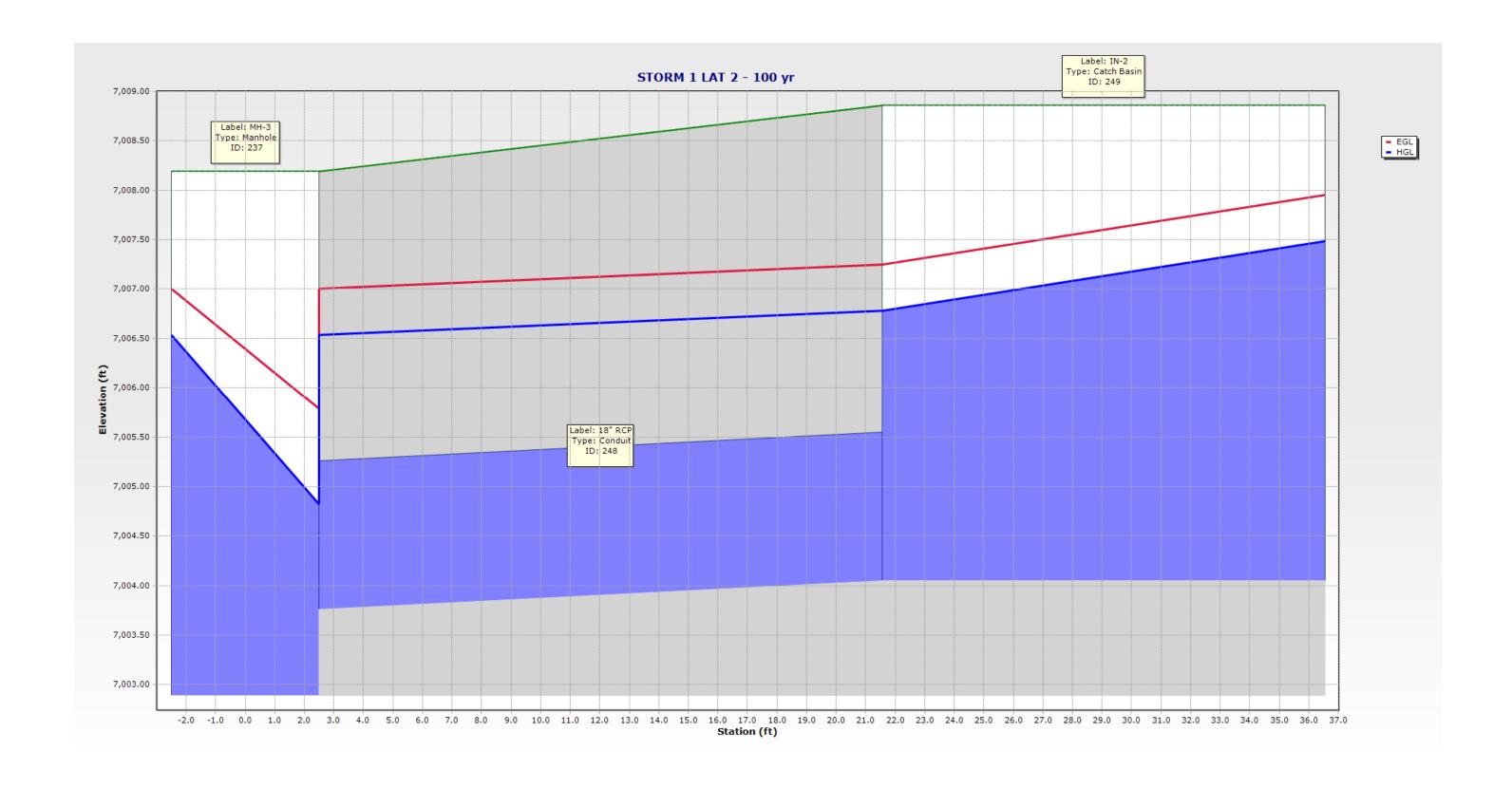

Project:

Inlet ID: IN-A11




INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)




Design Information (Input) CDOT Type R Curb Opening	_	MINOR	Major	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C_f - $G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_f - C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.6	14.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.1	8.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	98	65	%

STORM NETWORK LAYOUT

STORM 1: 100 YR FLEX TABLE

7,003.75 Circle - 18.0 in

6,996.78 Circle - 18.0 in

6,997.60 Circle - 18.0 in

7,004.05 | Circle - 18.0 in

6,990.40 Circle - 24.0 in

6,995.77 Circle - 24.0 in

6,984.14 Circle - 42.0 in

Conduit FlexTable: STRM - 100YR

7,003.19

6,996.27

6,996.27

7,003.76

6,985.64

6,990.71

6,983.46

Labe	I	ID	Upstream Structure	Flow Flow (cfs)	ow / Capacity I (Design) (%)	Length (Unified) (ft)	Velocity (ft/s)	Froude Number	Depth (Normal) (ft)	Depth (Critical) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
18" RCP		238	MH-3	13.30	76.2	239.5	11.25	(N/A)	0.95	1.36	7,005.79	7,000.33	7,004.82	6,999.45
18" RCP		240	IN-1	3.80	15.8	10.7	2.15	(N/A)	0.47	0.75	7,006.63	7,006.61	7,006.56	7,006.53
18" RCP		244	IN-3	3.90	16.6	10.2	2.21	(N/A)	0.41	0.76	6,999.54	6,999.53	6,999.47	6,999.45
18" RCP		246	IN-4	10.00	42.7	26.7	5.66	(N/A)	0.68	1.22	7,000.19	6,999.95	6,999.70	6,999.45
18" RCP		248	IN-2	9.70	92.4	29.1	5.49	(N/A)	0.67	1.20	7,007.25	7,007.00	7,006.78	7,006.53
24" RCP		257	MH-1A	26.60	74.3	190.2	12.48	(N/A)	1.28	1.80	6,993.44	6,990.59	6,992.20	6,989.48
24" RCP		258	MH-2	26.60	75.9	211.0	12.26	(N/A)	1.30	1.80	6,998.81	6,994.35	6,997.57	6,992.01
42" RCP		213	MH-1	60.50	85.9	138.6	6.29	(N/A)	(N/A)	2.44	6,989.16	6,988.65	6,988.54	6,988.04
Headloss (ft)	Upstream Structure Hydraulic Grad Line (In) (ft)	Upstrear Structure de Velocity (1 Governin (ft/s)	e Structure In- Headloss	Upstream Structure Headloss (ft)	Elevation Grou (Start) (ft)	nd Elevation Grour (Stop) (ft)	Invert (Star (ft)	t) Invert (Stop (ft)) Conduit Descriptio					
5.37	7,006.	.53	5.49 1.770	1.73	1 7,002.	08 7,008.3	.9 6,996	5.27 7,002	.89 Circle - 18.0	in				

7,009.00

7,002.74

7,002.38

7,008.86

6,996.37

7,002.08

6,993.66

0.02

0.01

0.24

0.25

2.72

5.56

0.50

7,006.67

6,999.58

7,000.44

7,007.49

6,992.26

6,999.45

6,989.48

2.15

2.21

5.66

5.49

12.26

5.66

8.47

1.500

1.500

1.500

1.500

0.050

1.520

1.520

0.11

0.11

0.75

0.70

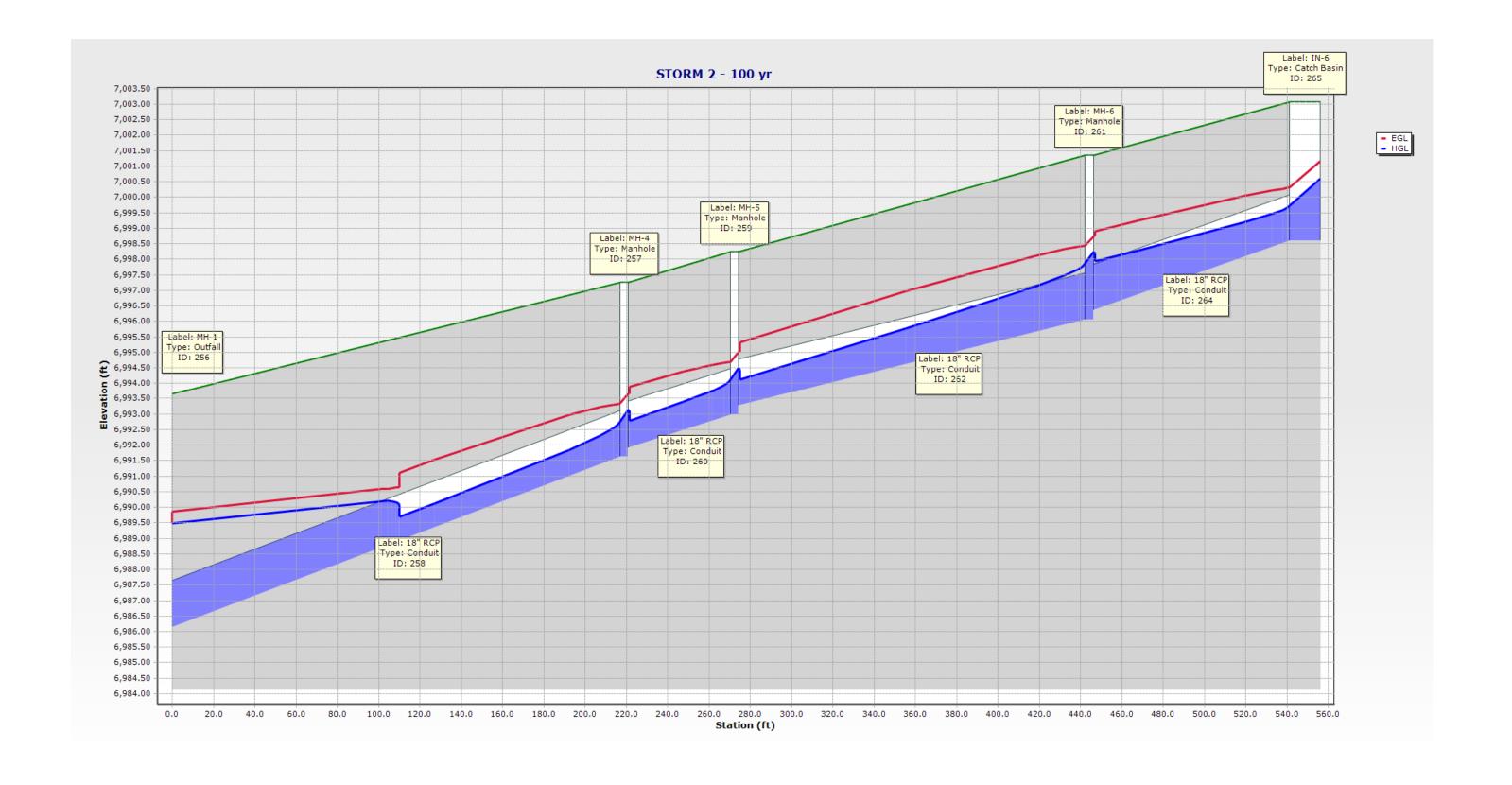
0.06

1.88

0.93

7,008.19

7,002.08

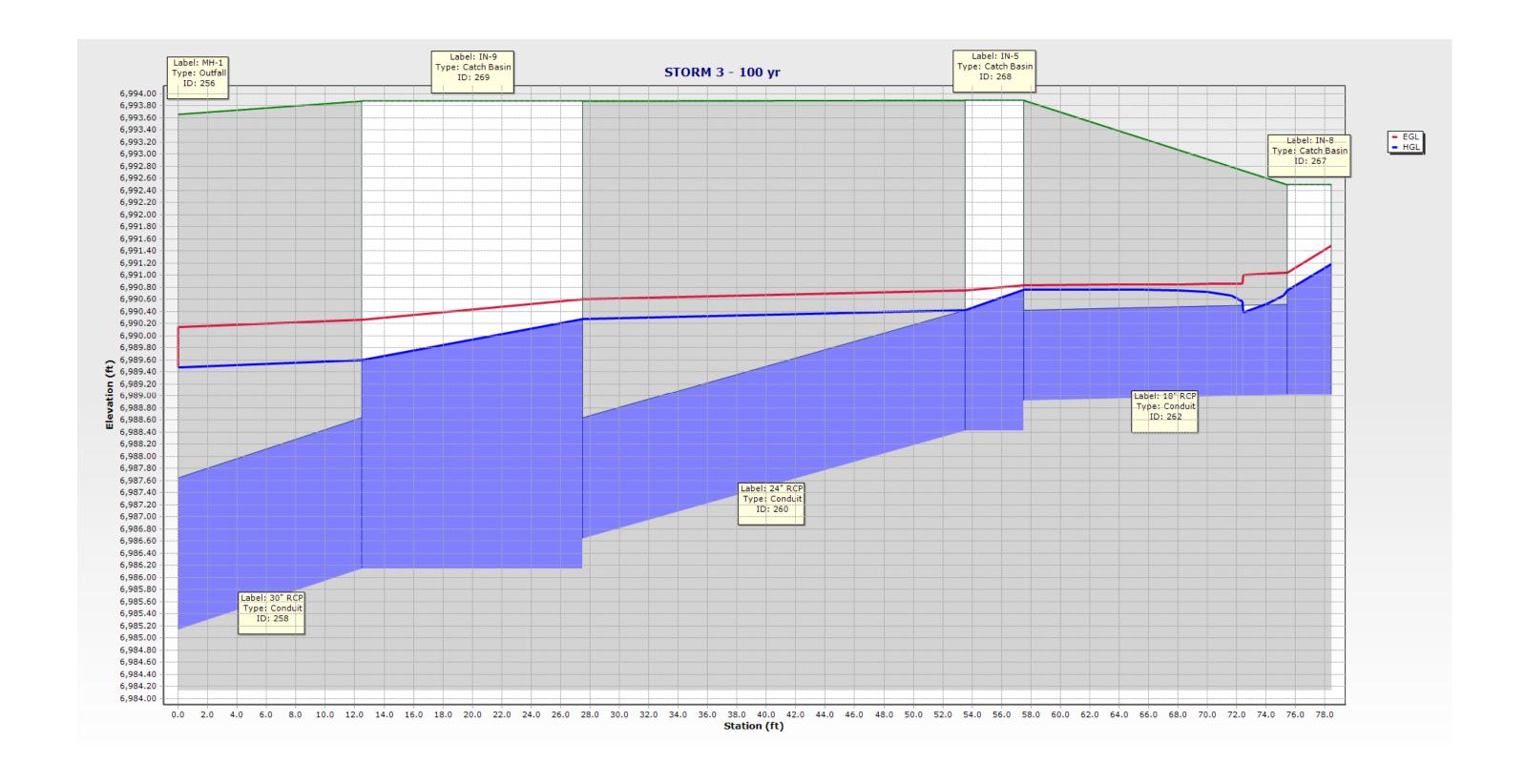

7,002.08

7,008.19

6,993.66

6,996.37

6,995.29



STORM 2: 100 YR FLEX TABLE

Conduit FlexTable: STRM 2-100YR

Label	ID	Upstream Structure	Flow (cfs)	Flow / Capacity (Design) (%)	Length (Unified) (ft)	Velocity (ft/s)	Froude Number	Depth (Normal) (ft)	Depth (Critical) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss (ft)
18" RCP 18" RCP 18" RCP	260	MH-4 MH-5 MH-6	8.80 8.80 8.80	53.0 59.5 66.0	219.0 53.4 171.8	9.54 8.74 8.76	(N/A) (N/A) (N/A)	0.78 0.83 0.83	1.15 1.15 1.15	6,993.34 6,994.70 6,998.44	6,989.87 6,993.65 6,995.01	6,992.77 6,994.13 6,997.87	6,989.48 6,993.13 6,994.49	3.29 0.99 3.38
18" RCP	264	IN-6	8.80	57.2	104.4	7.85	(N/A)	0.91	1.15	7,000.31	6,998.75		·	1.50
Upstream Structure Hydraulic Grade Line (In) (ft)	Upstream Structure Velocity (In- Governing) (ft/s)	Upstream Structure Headloss Coefficient	Upstream Structure Headloss (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Conduit Description						
6,993.13 6,994.49	5.74 5.74	0.640 0.640	0.37 0.37	6,993.66 6,997.26	6,997.26 6,998.24	6,986.14 6,991.92		Circle - 18.0 in Circle - 18.0 in						
6,998.23 7,000.59	5.74 6.06	0.640 1.500	0.37 0.86	6,998.24 7,001.35	7,001.35 7,003.07	6,993.28 6,996.35	-	Circle - 18.0 in Circle - 18.0 in						

3.29 0.99 3.38 1.50


STORM 3: 100 YR FLEX TABLE

Conduit FlexTable: STRM 3-100YR

Label	ID	Upstream Structure	Flow (cfs)	Flow / Capacity (Design) (%)	Length (Unified) (ft)	Velocity (ft/s)	Froude Number	Depth (Normal) (ft)	Depth (Critical) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
30" RCP	258	IN-9	32.10	35.0	20.0	6.54	(N/A)	1.02	1.93	6,990.27	6,990.14	6,989.60	6,989.48
24" RCP	260	IN-5	14.40	28.4	35.5	4.58	(N/A)	0.73	1.37	6,990.75	6,990.61	6,990.42	6,990.28
18" RCP	262	IN-8	3.90	54.4	21.4	9.84	(N/A)	0.41	0.76	6,991.04	6,990.83	6,990.75	6,990.76
Upstream Structure Hydraulic Grade Line (In) (ft)	Upstream Structure Velocity (In- Governing) (ft/s)	Upstream Structure Headloss Coefficient	Upstream Structure Headloss (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Conduit Description					
6,990.28	4.58	1.020	0.68	6,993.66	6,993.88	6,985.14	6,986.14	Circle - 30.0 in					
6,990.76	2.21	1.020	0.33	6,993.88	6,993.89	6,986.64	6,988.42	Circle - 24.0 in					
6,991.19	4.37	1.500	0.45	6,993.89	6,992.50	6,988.92	6,989.02	Circle - 18.0 in					

Headloss (ft)

> 0.12 0.14 -0.01

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision: Sterling Ranch Filing No. 2 Location: El Paso County Design Storm: 5-Year

Project Name: Sterling Ranch Subdivision
Project No.: 25188.01
Calculated By: AAM
Checked By: 175/21

				DIRE	CT RUI	NOFF			TC	OTAL F	RUNOF	F	STRE	ET/SWA	LE		PIPI	E		TRAV	EL TIN	ΛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)	O (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	
	1	A1	2.06	0.51	9.7	1.05	4.17	4.4					0.2	0.04	3.3	4.2	1.01	2.0	18	652 5	3.6 7.2	3.0 0.0	O On-grade inlet, carryover flow to DP 5 O Piped to DP 1.0
	2	A2		0.53			4.27									1,9		2.0		27			On-grade inlet 1 Piped to DP 1.0
		712	0.02	0.00	7.1	0.11	1.27	1.7	0.7	1 45	4 17									225	0.1		Compact DD 1 o DD 2 or local to DD 1 o
	1.0								9.7	1.45	4.17	6.0	1.6	0.47	2.9	6.0		3.0		426	3.4	2.1	6 Sum of DP 1 & DP 2, piped to DP 1.2 1 On-grade inlet, carryover flow to DP 5 D Piped to DP 1.1
	3	A3	6.76				3.53						0.1	0.03	2.9	9.5	2.69	4.7	-	395	3.4	1.9	O Piped to DP 1.1 9 On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	4	A4	1.51	0.60	10.2	0.91	4.10	3.7							-	3.6	0.88	4.7	18	0			
	1.1								15.0	3.57	3.52	12.6			_	12.6	3.57	1.0	24	74	7.4	0.2	2 Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.2	5.02	3.50	17.6				17.6	5.02	3.3	24	319	12.5	0.4	4 Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.81	5.0	0.43	5.17	2.2															Overland Flow to DP1.3A
	6	A6	1.37	0.58	10.0	0.79	4.14	3.3								3.3	0.79	2.0	18	0	6.7	0.0	On-grade inlet D Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.22	4.14	5.0				5.0	1.22	1.0	24	36	5.7	0.1	1 Sum of DP 6 & DP 6A, piped to DP 1.3
	5	A 5	1.70	0.59	9.9	0.99	4.14	4.1	17.0	1.53	3.33	5.1				5.1	1.53	2.0	18	0	7.6	0.0	On-grade inlet D Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	7.77	3.33	25.9				25.9	7.77	1.1	36	620	9.2	1.1	1 Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.45	18.3	8.55	3.22	27.5								27.5							Future storm infrastructure from Copper Chase Subdivision D Piped to DP 1.4
	1.4								18.4	16.32	3.22	52.5				52.5							·
	8	A8	1.48	0.56	13.0	0.83	3.63	3.0			3122	-				3.0				20	6.6	0.1	1 Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade inlet, carryover flow to DP 11 1 Piped to DP 1.5
	1.5	710	1.40	0.00	10.7	0.00	3.03	3.0	10 /	17 15	2 21	55.1					17.15						2 Sum of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.73	0.7	0.44	4.34	1.9		0.48						2.1		2.0					On-grade inlet Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
		А9	0.01	0.73	8.7	0.44	4.34	1.9															
	1.6								18.6	17.63	3.20	56.4	0.5	0.11	1.5		17.63			95 955	2.4	6.5	2 Sum of DP 1.5 & DP 9, piped to DP 1.8 6 On-grade inlet, carryover flow to DP 20 2 Piped to DP 1.7
	10	A10		0.79			4.49						0.6	0.15	1.5	8.7		2.5		1049	2.4	7.1	2 Piped to DP 1.7 On-grade inlet, carryover flow to DP 21 Piped to DP 1.7
	11	A11	2.89	0.76	8.7	2.20	4.34	9.5								8.9	2.05	2.5	18	0	9.4	0.0	D Piped to DP 1.7
	1.7									3.99					_	17.3	3.99	1.0					0 Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								18.8	21.63	3.18	68.8			_	68.8	21.63	2.0	54	517	14.4	0.6	6 Sum of DP 1.6 & DP 1.7, piped to DP 2.7 Future flow released from Barbarick Subdivision
	OS2	OS2	17.00	0.49	14.0	6.25	2.20	13.8								13.8	6.25	1.0	30	787	7.5	1.7	7 Piped to DP 2.0 Type C inlet
	12	A12	3.87	0.13	11.9	0.49	3.86	1.9								1.9	0.49	2.0	18	17	5.6	0.1	Piped to DP 2.0
	2.0								15.7	6.74	3.45	23.2				23.2	6.74	1.0	48	52	8.4	0.1	1 Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	9.65	0.45	14.0	4.34	3.62	15.7								15.7	4.34	1.5	30	200	9.1	0.4	Future storm infrastructure from Sterling Ranch Phase 2 4 Piped to DP 2.1

Page 1 of 3 5/21/2021 X:\2510000.all\2518801\Excel\Drainage\2518801_Proposed Conditions.xlsm

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Sterling Ranch Subdivision
Project No.: 25188.01
Calculated By: AAM
Checked By: Date: 8/16/21

Subdivision: Sterling Ranch Filing No. 2 Location: El Paso County Design Storm: 5-Year

				DIRE	CT RU	NOFF			TC)TAL R	UNOF	F	STRE	ET/SW	ALE		PIF	PE		TRAV	EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	2.1								15.9	11.08	3.44	38.1				38.1	11.08	1.6	48	65	11.4	0.1	Sum of DP 2.0 & DP 13, piped to DP 2.5
	OS3	OS3	28.70	0.49	19.0	14.06	1.25	17.6								17.6	14.06	1.0	30	719	8.0	1.5	Future flow released from Barbarick Subdivision Piped to DP 2.2
	14	A14	11.76	0.39	15.3	4.59	3.49	16.0								16.0	4.59	1.0	30	20	7.8	0.0	Future flow released from School Site Diped to DP 2.2
	2.2								20.5	18.65	3.05	56.9				56.9	18.65	1.5				1.0	Sum of DP OS3 & DP 14, piped to DP 2.3
	15	A15	2.91	0.52	14 9	1.52	3.53	5.4								5.4	1.52	1.3		35	6.5	0.	On-grade inlet
	16	A16	2.34				3.55	4.4					0.1	0.04	0.8		1.21			697	1.8	6.5	On-grade inlet, carryover flow to DP 9 Piped to DP 2.3
	2.3	7110	2.01	0.04	14.7	1.20	3.33	4.4	15.0	2.73	3.52	9.6					2.73						Sum of DP 15 & DP 16, piped to DP 2.4
	2.4									21.38							21.38						D Sum of DP 2.2 & DP 2.3, piped to DP 2.5
	2.5									32.46							32.46						P Sum of DP 2.1 & DP 2.4 piped to DP 2.6
	17	A17	1 76	0.21	13.7	0.38	3.66	1.4									0.38						Type C inlet Piped to DP 2.6
	2.6	7117	1.70	0.21	10.7	0.50	3.00	11	21.6	32.84	2 98	97.8					32.84						D Sum of DP 2.5 & DP 17, piped to DP 2.7
	2.7									54.47							54.47						3 Sum of DP1.8 & DP 2.6, piped to DP 2.8
	18	A18	5.27	0.24	16.4	1.28	3.38	4.3								4.3							Area inlet Piped to DP 2.6
	19	A19	31.85			14.33											14.33						Area inlet Piped to DP 2.6
	2.8								25.8	70.08	2.71	189.8					70.08				12.1		Sum of DP 2.7, DP 18 & DP 19, piped to DP 3.0. Detention Pond
	3.0								25.8	70.08	2.71	189.8	189.8	70.08	0.5					584	1.4	6.9	Detention Pond Trickle channel conveyance to DP 3.2
	20	A20	1.83	0.81	8.0	1 48	4.47	6.6		1.59						7 1	1.59	1.0	24	105	6.4	0.3	On-grade inlet 3 Sum of Sub-basin A20 & carryover flow from DP 10, piped to DP 3.0
	21	A21	1.93				4.33	6.8		1.72			0.1	0.03	1.5		1.68						On-grade inlet Sum of Sub-basin A21 & carryover flow from DP 11, piped to DP 2.9
	2.9		1.70	0.02	3.7			0.0		3.27							3.27						Sum of DP 20 & DP 21,piped to DP 3.1
	3.1									3.27			14.2	3.27	0.5		0.27	2.0	2-1	568			Detention Pond Trickle channel conveyance to DP 3.2
	22	A22	8 68	0.11	23.3	0.95	2.86	2.7	0.7	5.27	1.55	17.2											Detention Pond Overland flow to DP 3.2
	OS4	OS4	5.08		29.5		2.51	2.6					2.6	1.02	13.0					113	5.4	0.3	3 Existing topography Overland flow to DP 4.1
	3.2		0.00	0.20	27.0		2.01	2.0	29.8	75.32	2.49	187.5											Outlet Structure Sum of DP 3.0, DP 3.1, DP 22 & DP OS4, outlet structure release to DP 4.8
	Pond W5									1.45						3.6	1.45	2.0	48	58	6.2	0.2	2 Outlet structure release to DP 4.8
	23	B1	2.98	0.90	17.6	2.68	3.29	8.8					0.4	0.12	2.0		2.56		30	1399	2.0	12.0	On-grade inlet Piped to DP 4.0

Page 2 of 3 8/19/2021

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision: Sterling Ranch Filing No. 2
Location: El Paso County
ssign Storm: 100-Year

Project Name: Sterling Ranch Subdivision
Project No.: 25188.01
Calculated By: AAM
Checked By: Date: 1/5/21

				DIR	ECT RU	JNOFF			T	OTAL F	RUNO	F	STRE	ET/SWALE		PIF	PΕ		TR.	AVE	TIME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreevswale (cfs)	C*A (ac) Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	length (ft)	Length (i.t)	Velocity (fps) t _t (min)	REMARKS
	1	A1	2.06	0.65	9.7	1.34	7.01	9.4					2.8	0.40 3.	6.0	0.94	4 2.0	18	6	52	3.6 3.0 8.2 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.66	9.1	0.54	7.17	3.9					0.1	0.01 3.	3.8	0.53	3 2.0	18	6	39 27	3.6 2.9 7.0 0.1	On-grade inlet, carryover flow to DP 6 Piped to DP 1.0
	1.0								9.7	1.47	7.00	10.3			10.3	3 1.4	7 3.0	18	3 3	135	10.6 0.5	Sum of DP 1 & DP 2 pined to DP 1 2
	3	A3	6.76	0.62	15.0	4.17	5.92	24.7					10.0	1.69 2.	9 14.	2.48			4.	26 36	3.4 2.1 3.6 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	4	A4	1.51										1.6	0.24 2.					3	195	3.4 1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	1.1			-					15.0	3.33	5.91	19.7			19.							Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.1	4.80	5.89	28.2			28.2	4.80	3.3					Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.88	5.0	0.47	8.68	4.1														Overland Flow to DP1.3A
	6	A6	1.37	0.70			6.94	6.6	10.0	0.96	6.94	6.7	1.3	0.18 0.	7 5.4	0.78	3 2.0	18	6'	96	1.7 7.0 7.7 0.0	On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.25	6.94	8.7			8.							
	5	A5	1.70	0.70	9.9	1.19	6.95	8.3	17.0		5.59		6.5	1.17 0.	7				6	64 0	1.7 6.6 9.4 0.0	Sum of DP 6 & DP 6A, piped to DP 1.3 On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	8.39	5.59	46.9			46.9	8.3	9 1.1	36	5 6			Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.59	18.3	11.21	5.41	60.6							60.6							Future storm infrastructure from Copper Chase Subdivision Piped to DP 1.4
	1.4								18.4	19.60	5.40	105.9			105.9	19.60	0.5	48	3	26	9.2 0.0	Sum of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1.48	0.70	13.9	1.04	6.10	6.3		2.63			1.9	0.41 0.					1	95	1.7 1.9	On-grade inlet, carryover flow to DP 11 Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
	1.5								23.7	21.83	4.76	103.9			103.9	21.8	3 0.5	48	3	91	9.2 0.2	Sum of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.83	8.7	0.51	7.29	3.7		0.95			0.3	0.05 0.					1.	40 13	1.7 1.4 7.3 0.0	On-grade inlet, carryover flow to DP 11 Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								23.9	22.72	4.74	107.7			107.	22.7	2 0.5	48				Sum of DP 1.5 & DP 9, piped to DP 1.8
	10	A10	2.61	0.88	7.9	2.29	7.53	17.3					4.5	0.59 1.	12.8	3 1.70	2.5	18	9	955 18	2.4 6.5 10.3 0.2	On-grade inlet, carryover flow to DP 20 Piped to DP 1.7
	11	A11	2.89	0.86	8.7	2.48	7.28	18.1	10.6	2.94	6.77	19.9	6.1	0.90 1.	5 13.8	3 2.04	4 2.5		10)49	2.4 7.1	On-grade inlet, carryover flow to DP 21 Sum of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7
	1.7								10.6						25.3							Sum of DP 10 & DP 11, piped to DP 1.8
	1.8									26.45					125.0							Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	OS2	OS2	17.00	0.62	12.0	10.54	3.71	39.1							39.				7			Future flow released from Barbarick Subdivision Piped to DP 2.0
	12	A12		0.38											9.1							Type C inlet Piped to DP 2.0
	2.0								13.4	12.01	6.20	74.5			74.							Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	9.65	0.59	14.0	5.69	6.08	34.6							34.0							Future storm infrastructure from Sterling Ranch Phase 2 Piped to DP 2.1

Page 1 of 3 5/21/2021

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision: Sterling Ranch Filing No. 2	
Location: El Paso County	
sign Storm: 100-Year	

Project Name: Sterling Ranch Subdivision
Project No.: 25188.01
Calculated By: AAM
Checked By: 1/44.731

Date:	8/16/21

				DIR	ECT RU	JNOFF			1	TOTAL F	RUNO	FF	STRE	ET/SW	ALE		PIP	E		TRA	AVEL	ΓIME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swate} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Lenath (ft)	Velocity (fns)	t _t (min)	REMARKS
	2.1								14.3	17.70	6.02	106.6				106.6	17.70	1.6	48	é	65 15	.1 0.1	1 Sum of DP 2.0 & DP 13, piped to DP 2.5
	OS3	OS3	28.70	0.62	15.0	17.79	2.75	48.9								48.9	17.79	1.0	30	71	19 10	.0 1.2	Future flow released from Barbarick Subdivision 2 Piped to DP 2.2
	14	A14	11.76	0.55	15.3	6.47	5.86	37.9								37.9	6.47	1.0	30	2	20 9	.5 0.0	Future flow released from School Site D Piped to DP 2.2
	2.2								16.2	24.26	5.72	139.7				138.7	24.26	1.5	18			5 0.9	R Sum of DP OS3 & DP 14 injury to DP 2.3
	15	445	2.01	0.68	140	1.00	5.93	11.7	10.2	24.20	5.72	130.7	1.4	0.24	0.7				10	72	24 1	.7 7.2	8 Sum of DP OS3 & DP 14, piped to DP 2.3 2 On-grade inlet, carryover flow to DP 8 1 Piped to DP 2.3
		A15	2.91										2.6	0.44	0.8	10.3	1.74			69	97 1	.8 6.5	Piped to DP 2.3 Piped to DP 2.3 Piped to DP 2.3
	16	A16	2.34	0.69	14.7	1.61	5.96	9.6								7.0							
	2.3								15.0	2.91	5.91	17.2				17.2	2.91	1.6	48	1	15 9	.0 0.0	D Sum of DP 15 & DP 16, piped to DP 2.4
	2.4								17.0	27.17	5.59	151.9				151.9	27.17	1.6	48	1	19 16	.2 0.0	D Sum of DP 2.2 & DP 2.3, piped to DP 2.5
	2.5								17.1	44.87	5.59	250.7				250.7	44.87	2.0	60	83	39 20	.1 0.7	7 Sum of DP 2.1 & DP 2.4 piped to DP 2.6
	17	A17	1.76	0.44	13.7	0.77	6.14	4.7								4.7	0.77	1.0	18	2	24 5	.7 0.1	Type C inlet 1 Piped to DP 2.6
	2.6								17.7	45.64	5.49	250.4				250.4	45.64	2.0	60	3	32 20	.2 0.0	D Sum of DP 2.5 & DP 17, piped to DP 2.7
	2.7								24.5	72.10	4.67	336.8				336.8	72.10	0.6	78	22	20 13	.7 0.3	3 Sum of DP1.8 & DP 2.6, piped to DP 2.8
	18	A18	5 27	0.47	16.4	2.47	5.68	14.0								14.0							Area inlet 1 Piped to DP 2.6
	19	A19	31.85			18.79										85.4	18.79						Area inlet Piped to DP 2.6
		AIT	31.03	0.37	23.0	10.77	4.55	03.4	25.0	02.24	4.55	404.4											
	2.8									93.36			424.4	93.36	0.5	424.4	93.36	0.6	78				2 Sum of DP 2.7, DP 18 & DP 19, piped to DP 3.0. 6 Detention Pond
	3.0								25.8	93.36	4.55	424.4	2.3	0.38	1.5						+	+	Trickle channel conveyance to DP 3.2 On-grade inlet
	20	A20	1.83	0.89	8.0	1.63	7.50	12.2	14.4	2.22	6.02	13.4	3.3	0.57	1.5	11.1	1.84	1.0	24	10	05 7	.2 0.2	2 Sum of Sub-basin A20 & carryover flow from DP 10, piped to DP 3.0 On-grade inlet
	21	A21	1.93	0.90	8.7	1.73	7.28	12.6	15.8	2.63	5.77	15.2	0.0	0.07	1.0	11.9	2.06	2.5	18		0 10	.2 0.0	Sum of Sub-basin A21 & carryover flow from DP 11, piped to DP 2.9
	2.9								15.8	3.91	5.77	22.5	22.5	2.01	0.5	22.5	3.91	2.0	24				1 Sum of DP 20 & DP 21,piped to DP 3.1
	3.1								15.8	3.91	5.77	22.5	22.5	3.91	0.5					56	68 1	.4 6.7	Detention Pond Trickle channel conveyance to DP 3.2
	22	A22	8.68	0.37	23.3	3.21	4.80	15.4															Detention Pond Overland flow to DP 3.2
	OS4	OS4		0.40			4.21	8.5					8.5	2.03	13.0					11	13 5	.4 0.3	3 Existing topography Overland flow to DP 3.2
	3.2		2.30	20				5.0	29 R	102.50	4 18	428 2											Outlet Structure Sum of DP 3.0, DP 3.1, DP 22 & DP OS4, outlet structure release to DP 4.8
	Pond W5									34.84						145.5	34.84	2.0	48	-	50 17	5 01	1 Outlet structure release to DP 4.8
		D1	2.00	0.04	17 /	2.04	F F4	15.0		34.04	4.10	145.5	3.6	0.65	2.0					139	94 2 88 5	.1 11.0	On-grade inlet 3 Piped to DP 4.0
	23	B1		0.96									6.5	1.17	2.0	12.2				139	94 2	.1 11.0	O On-grade inlet
	24	B2	3.89	0.96	17.6	3.73	5.51	20.6								14.1	2.56	2.0	30		0 9	.7 0.0	D Piped to DP 4.0

Page 2 of 3 8/19/2021

EXISTING CONDITIONS PREPARED THIS SHOW COME (5 YEAR) BY J.R. ENGINEERING (APPROVED NOVEMBER 2021)

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision:	Sterling Ranch Filing No. 2
	El Paso County
Design Storm:	5-Year

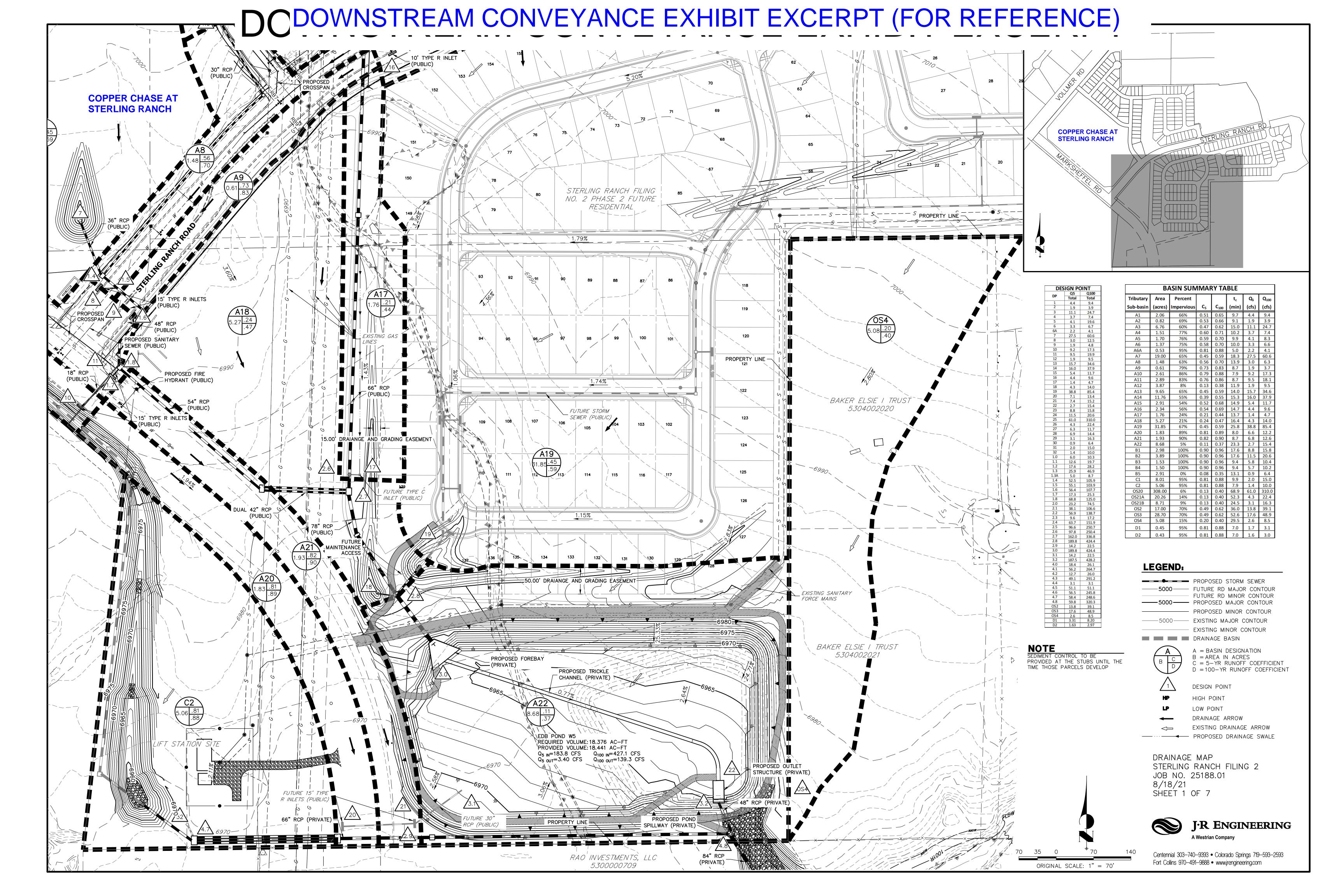
Project Name: Sterling Ranch Subdivision
Project No.: 25188.01
Calculated By: AAM
Checked By:

Date: 1/5/21

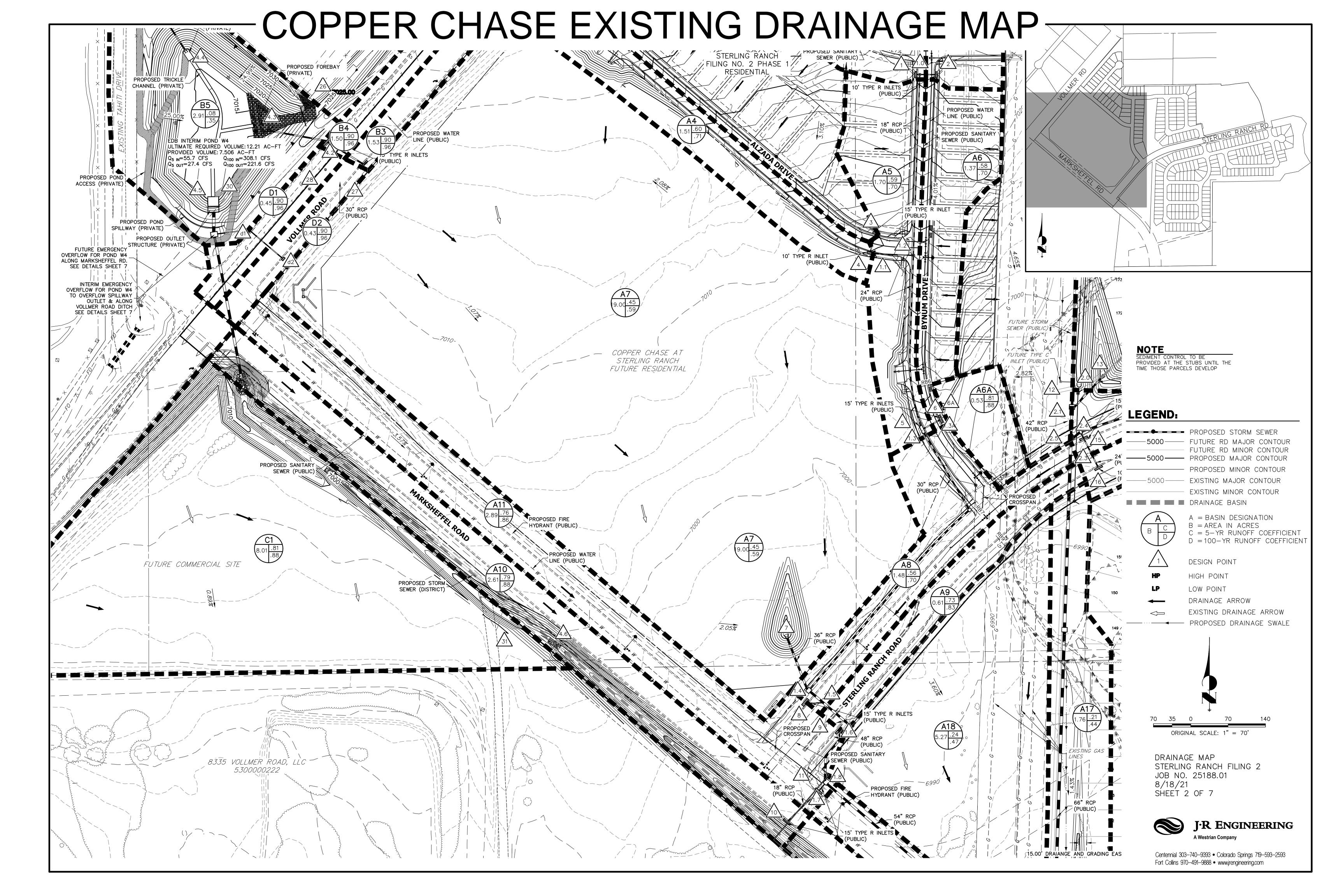
STREET \$\begin{align*} \begin{align*} align*					DIRE	CT RUN	NOFF			TC	TAL R	UNOF	F	STRE	ET/SWA	\LE		PIP	Έ		TRA	/EL TIN	ΜE	
2 A2 0.02 0.53 91 0.44 427 19	STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_{c} (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)			
2 A 2 0 28 0 39 91 0 44 427 19 9		1	A1	2.06	0.51	9.7	1.05	4.17	4.4					0.2			4.2	1.01		18	652 5	3.6 7.2	3. 0.	.0) On-grade inlet, carryover flow to DP 5 .0) Piped to DP 1.0
3		2	A2	0.82	0.53	9.1	0.44	4.27	1.9								1.9	0.44	2.0	18	27	5.8	0.	On-grade inlet .1 Piped to DP 1.0
A		1.0								9.7	1.45	4.17	6.0				6.0	1.45	3.0	18			0.	.6 Sum of DP 1 & DP 2, piped to DP 1.2
1.1		3	А3	6.76	0.47	15.0	3.16	3.53	11.1								9.5	2.69	4.7	18			2. 0.	.1 On-grade inlet, carryover flow to DP 5 .0 Piped to DP 1.1
1.2 1.5		4	A4	1.51	0.60	10.2	0.91	4.10	3.7					0.1	0.03	2.9	3.6	0.88	4.7	18		3.4 9.2	1. 0.	.9 On-grade inlet, carryover flow to DP 5 .0 Piped to DP 1.1
6 A A6A 0.53 0.81 5.0 0.43 5.17 2.2		1.1								15.0	3.57	3.52	12.6				12.6	3.57	1.0	24	74	7.4	0.	.2 Sum of DP 3 & DP 4, piped to DP 1.2
6 A6 137 0.58 100 0.79 4.14 3.3		1.2								15.2	5.02	3.50	17.6				17.6	5.02	3.3	24	319	12.5	0.	.4 Sum of DP 1.0 & DP 1.1, piped to DP 1.3
1.3A		6A	A6A	0.53	0.81	5.0	0.43	5.17	2.2															Overland Flow to DP1.3A
5 A5 1.70 0.59 9.9 0.99 4.14 4.1 17.0 15.3 3.3 5.1 5.1 1.53 2.0 18 0 7.6 0.0 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3 1.3		6	A6	1.37	0.58	10.0	0.79	4.14	3.3								3.3	0.79	2.0	18	C	6.7	0.	.0. Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
5 A5 1.70 0.59 9.9 0.99 4.14 4.1 17.0 153 3.33 5.1 5.1 1.53 2.0 18 0 7.6 0.0 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3 1.3		1.3A								10.0	1.22	4.14	5.0				5.0	1.22	1.0	24	36	5.7	0.	.1 Sum of DP 6 & DP 6A, piped to DP 1.3
7 A7 19.00 0.45 18.3 8.55 3.22 27.5		5	A5	1.70	0.59	9.9	0.99	4.14	4.1	17.0	1.53	3.33	5.1				5.1	1.53	2.0	18	C	7.6	0.	.0. Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
7 A7 19.00 0.45 18.3 8.55 3.22 27.5		1.3								17.0	7.77	3.33	25.9				25.9	7.77	1.1	36	620	9.2	1.	.1 Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
8 A8 1.48 0.56 13.9 0.83 3.63 3.0		7	A7	19.00	0.45	18.3	8.55	3.22	27.5								27.5	8.55	1.5	42	20	10.3	0.	.0 Piped to DP 1.4
8 A8 1.48 0.56 13.9 0.83 3.63 3.0		1.4								18.4	16.32	3.22	52.5				52.5	16.32	0.5	48	26	8.2	0.	.1 Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade inlet, carryover flow to DP 11
9 A9 0.61 0.73 8.7 0.44 4.34 1.9 8.7 0.48 4.34 2.1 2.1 0.48 2.0 18 13 5.8 0.0 Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6 1.6 18.6 17.63 3.20 56.4 56.4 17.63 0.5 48 95 8.3 0.2 Sum of DP 1.5 & DP 9, piped to DP 1.8 10 A10 2.61 0.79 7.9 2.05 4.49 9.2 0.5 4.49 9.2 0.6 0.15 1.5 8.7 1.94 2.5 18 118 9.5 0.2 Piped to DP 1.7 11 A11 2.89 0.76 8.7 2.20 4.34 9.5 0.6 8.7 3.99 4.34 17.3 17.3 3.99 1.0 24 8 7.9 0.0 Sum of DP 1.6 & DP 1.7 piped to DP 1.7 1.7 0.5 0.5 0.11 1.5 8.9 2.05 2.5 18 0 9.4 0.0 Piped to DP 1.7 1.8 0.6 0.79 7.9 2.05 4.34 9.5 0.2 Piped to DP 1.7 piped to DP 1.7 1.9 0.6 0.15 1.5 8.9 2.05 2.5 18 0 9.4 0.0 Piped to DP 1.7 piped to DP 1.7 1.0 0.0 0.49 14.0 6.25 2.20 13.8 68.8 68.8 68.8 13.8 68.8 13.8 68.8 13.8 68.8 13.8 6.25 1.0 30 787 7.5 1.7 Piped to DP 2.0 Type C inlet 1.8 0.0 0.9 Sum of DP 1.5 & DP 1.7 piped to DP 2.7 Piped to DP 2.7 Piped to DP 2.0 Type C inlet		8	A8	1.48	0.56	13.9	0.83	3.63	3.0								3.0	0.83	2.0	18	20	6.6	0.	.1 Piped to DP 1.5
1.6		1.5								18.4	17.15	3.21	55.1				55.1	17.15	0.5	48	91	8.3		On-grade inlet
11 A11 2.89 0.76 8.7 2.20 4.34 9.5 0.6 0.15 1.5 8.9 2.05 2.5 18 0 9.4 0.0 Piped to DP 1.7 1.7 8.7 3.99 4.34 17.3 17.3 3.99 1.0 24 8 7.9 0.0 Sum of DP 10 & DP 11, piped to DP 1.8 1.8 18.8 21.63 3.18 68.8 68.8 68.8 68.8 68.8 68.8 68.8 6		9	A9	0.61	0.73	8.7	0.44	4.34	1.9															
11 A11 2.89 0.76 8.7 2.20 4.34 9.5 0.6 0.15 1.5 8.9 2.05 2.5 18 0 9.4 0.0 Piped to DP 1.7 1.7 8.7 3.99 4.34 17.3 17.3 3.99 1.0 24 8 7.9 0.0 Sum of DP 10 & DP 11, piped to DP 1.8 1.8 18.8 21.63 3.18 68.8 68.8 68.8 68.8 68.8 68.8 68.8 6										18.6	17.63	3.20	56.4	0.5	0.11	1.5				48	95 955	8.3	0. 6.	.2 Sum of DP 1.5 & DP 9, piped to DP 1.8 .5 On-grade inlet, carryover flow to DP 20
1.7 8.7 3.99 4.34 17.3 17.3 3.99 1.0 24 8 7.9 0.0 Sum of DP 10 & DP 11, piped to DP 1.8 1.8 18.8 21.63 3.18 68.8 68.8 21.63 2.0 54 517 14.4 0.6 Sum of DP 1.6 & DP 1.7, piped to DP 2.7 OS2 OS2 17.00 0.49 14.0 6.25 2.20 13.8 13.8 6.25 1.0 30 787 7.5 1.7 Piped to DP 2.0 13.8 6.25 1.0 30 787 7.5 1.7 Piped to DP 2.0 Type C inlet														0.6	0.15	1.5					1049	9.5	7.	.2 Piped to DP 1.7 .1 On-grade inlet, carryover flow to DP 21
1.8 18.8 21.63 3.18 68.8 68.8 21.63 2.0 54 517 14.4 0.6 Sum of DP 1.6 & DP 1.7, piped to DP 2.7			A11	2.89	0.76	8.7	2.20	4.34	9.5	0	0.00	4.0:	47.											
OS2 OS2 17.00 0.49 14.0 6.25 2.20 13.8 13.8 6.25 1.0 30 787 7.5 1.7 Piped to Dr P2.0 Type C inlet																								
Type C inlet			OSS	17.00	0.40	14.0	4 25	2 20	12.0	18.8	21.63	3.18	68.8			1								Future flow released from Barbarick Subdivision
		12	A12	3.87	0.49				1.9							1	1.9	0.49						Type C inlet
2.0 15.7 6.74 3.45 23.2 23.2 6.74 1.0 48 52 8.4 0.1 Sum of DP OS2 & DP 12, Piped to DP 2.1			AIZ	3.07	0.13	11.7	0.47	3.00	1.7	15.7	6.74	3 45	23.2											
2.0 13.7 0.74 3.43 23.2 23.2 0.74 1.0 40 32 0.74 0.75 0.76 0.75 0			A13	9 65	0.45	14 N	4 34	3 62	15.7	13.7	5.74	5.45	23.2											Future storm infrastructure from Sterling Ranch Phase 2

Page 1 of 3 5/21/2021

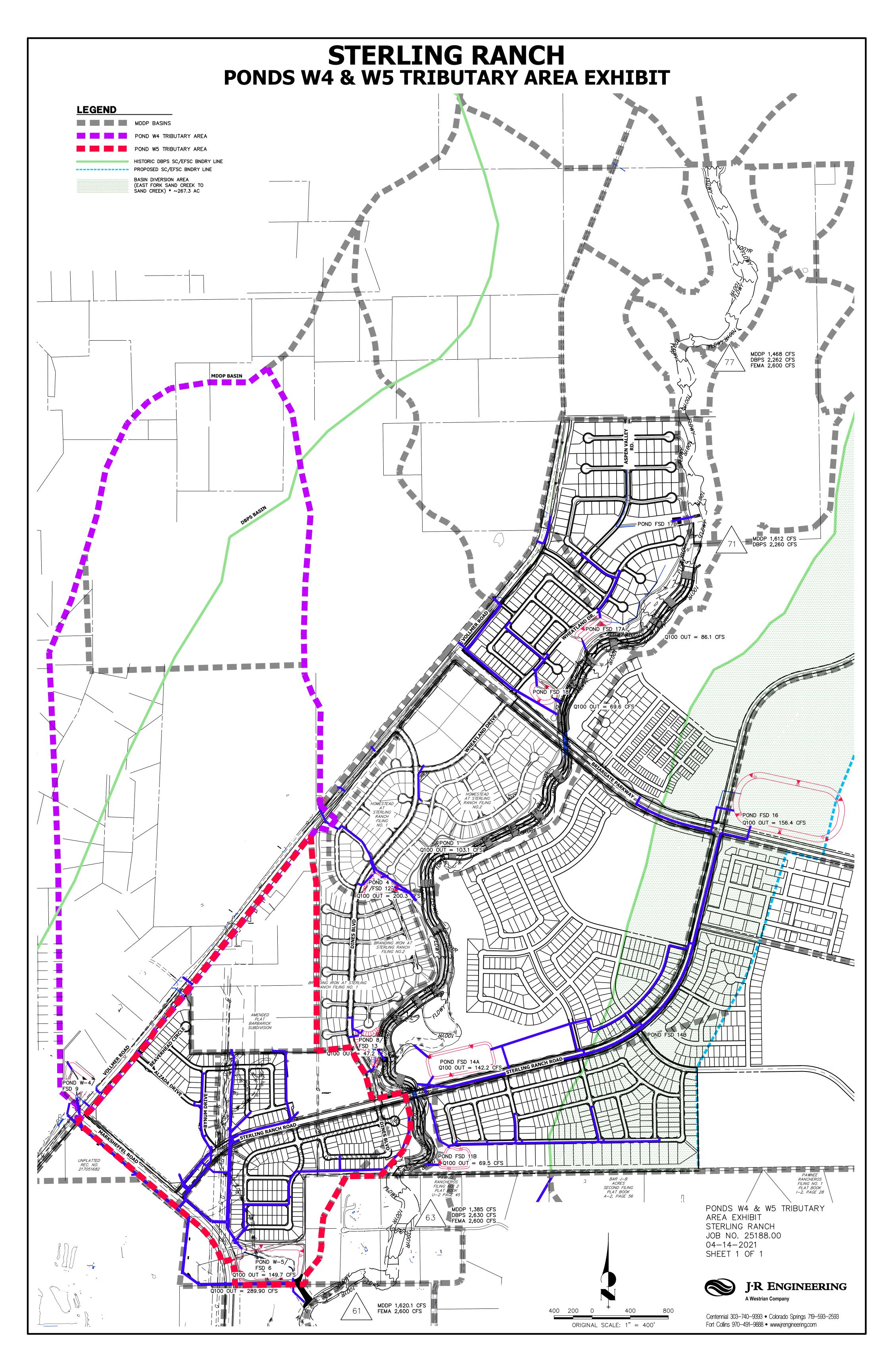
EXISTING CONSISTEMS PIPE ROUTING PUNICOMITARISON (NO YEAR) BY J.R. ENGINEERING (APPROVED NOVEMBER 2021)


STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

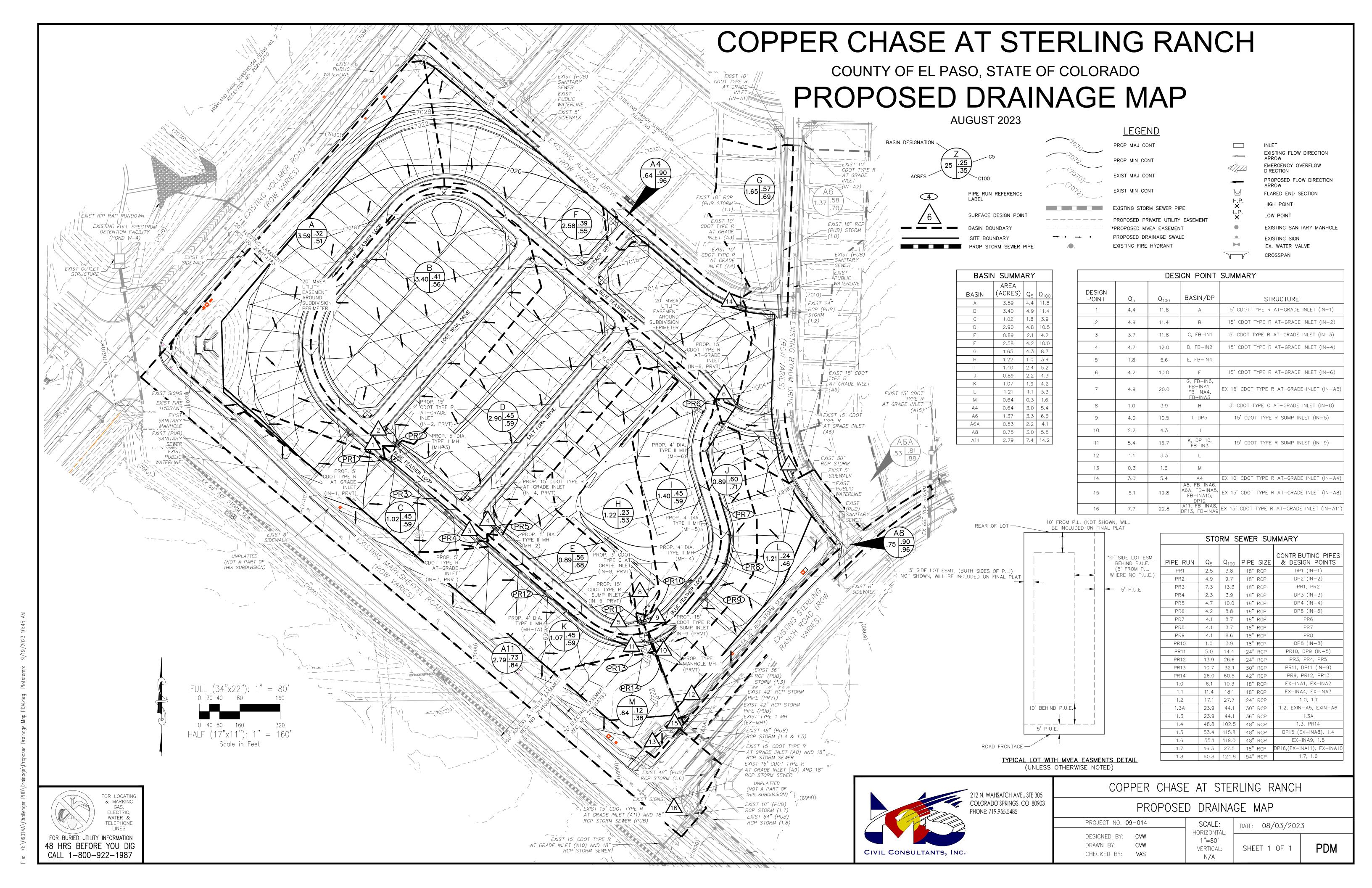
Subdivision:	Sterling Ranch Filing No. 2
Location:	El Paso County
esian Storm:	100-Year


Project Name: Sterling Ranch Subdivision
Project No.: 25188.01
Calculated By: AAM
Checked By: Date: 1/5/21

				DIR	ECT RL	JNOFF			TC)TAL F	RUNOF	F	STREE	T/SW	ALE		PIPE			TRAV	/EL TII	ME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfS)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1	2.06	0.65	9.7	1.34	7.01	9.4					2.8	0.40	3.3	6.6	0.94	2.0	18	652 5	8.2	0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.66	9.1	0.54	7.17	3.9					0.1	0.01	3.3	3.8	0.53	2.0	18	639 27	3.6 7.0	2.9	On-grade inlet, carryover flow to DP 6 Piped to DP 1.0
	1.0								9.7	1.47	7.00	10.3				10.3	1.47	3.0	18	335	10.6	0.5	Sum of DP 1 & DP 2, piped to DP 1.2
	3	А3	6.76	0.62	15.0	4.17	5.92	24.7					10.0	1.69	2.9	14.7	2.48	4.7	18	426 36	3.4	2.1 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	4	A4			10.2	1.08	6.88	7.4					1.6	0.24	2.9	5.8	0.84		18	395 0	3.4	1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	1.1								15.0	3.33	5.91	19.7				19.7	3.33						Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.1		5.89					28.2	4.80						Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.88	5.0	0.47	8.68	4.1															Overland Flow to DP1.3A
	6	A6	1.37		10.0	0.95	6.94	6.6	10.0	0.96	6.94	6.7	1.3	0.18	0.7	5.4	0.78	2.0	18	696 0			On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0		6.94					8.7	1.25			36			·
	5	A5	1.70	0.70	9.9	1.19	6.95	8.3			5.59		6.5	1.17	0.7	13.1	2.34		18	664	1.7 9.4	6.6	Sum of DP 6 & DP 6A, piped to DP 1.3 On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0		5.59					46.9	8.39						Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19 00	0.59	18.3	11 21	5.41	60.6								60.6	11.21						Future storm infrastructure from Copper Chase Subdivision Piped to DP 1.4
	1.4								18 4	19 60	5.40	105 9				105.9	19.60						Sum of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1 48	0.70	13.9	1.04	6.10	6.3	23.7				1.9	0.41	0.7	10.6	2.23		18	195	1.7	1.9	On-grade inlet, carryover flow to DP 11 Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
	1.5	7.0	1110	0.70	10.7	1101	0.10	0.0	23.7							103.9	21.83		48				
	9	А9	0.61	0.83	8.7	0.51	7.29	3.7	21.2				0.3	0.05	0.7	4.5	0.89			140	1.7	1.4	Sum of DP 1.4 & DP 8, piped to DP 1.6 On-grade inlet, carryover flow to DP 11 Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6	7.7	0.01	0.00	0.7	0.51	7.27	3.7	23.9							107.7	22.72		48				· · · ·
	10	A10	2.61	0.88	7.9	2.29	7.53	17.3	23.7	22.12	4.74	107.7	4.5	0.59	1.5	12.8	1.70			955	2.4	6.5	Sum of DP 1.5 & DP 9, piped to DP 1.8 On-grade inlet, carryover flow to DP 20 Piped to DP 1.7
	11	A11	2.89			2.48	7.28	18.1	10.6	2 0/1	6.77	10 0	6.1	0.90	1.5	13.8	2.04		18	1049	2.4	7.1	On-grade inlet, carryover flow to DP 21 Sum of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7
	1.7	AII	2.07	0.00	0.7	2.40	7.20	10.1	10.6		6.77					25.3	3.74		24				Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								24.0							125.0	26.45						Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	OS2	OS2	17.00	0.62	12.0	10.54	3.71	39.1	24.0	20.40	7.12	123.0				39.1	10.54						Future flow released from Barbarick Subdivision Piped to DP 2.0
	12	A12			11.9		6.49	9.5								9.5	1.47						Type C inlet Piped to DP 2.0
	2.0	MIZ	3.07	0.30	11.7	1.47	0.47	7.0	13 /	12.01	6.20	74.5				74.5	12.01						Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	0.65	0.50	14.0	5.69	6.08	34.6	13.4	12.01	0.20	74.5				34.6	5.69						Sum of DP 052 & DP 12, Piped to DP 2.1 Future storm infrastructure from Sterling Ranch Phase 2 Piped to DP 2.1
	13	AIS	9.05	0.59	14.0	5.09	0.08	34.6							ш	34.0	5.09	1.5	30	200	11.0	0.3	ripeu to Dr 2.1


X:\2510000.all\2518801\Excel\Drainage\2518801_Proposed Conditions.xlsm Page 1 of 3 5/21/2021 EXISTING DRAINAGE MAP (BY J.R. ENGINEERING, APPROVED NOVEMBER 2021)

X:\2510000.all\2518801\Drawings\Sheet Dwgs\Dra



X:\2510000.all\2518801\Drawings\Sheet Dwgs\Drainage Maps\Pr

X:\2510000.all\2518800\Drawings\Presentations\2021-4-14 Ponds W4 & W5 Tributary Area.dwg, 24x36 Title Portrait, 6/23/202

