

Preliminary Drainage Report US Highway 24 & Peterson Road Intersection

Improvement Project

30% Submittal

Colorado Springs, CO December 4, 2023 Prepared for: City of Colorado Springs 30 South Nevada Avenue, Suite 403, Colorado Springs, CO 80903 (719) 385-5908

Prepared by: HDR Engineering, Inc. Samuel Acosta, PE 5555 Tech Center Drive, Suite 310, Colorado Springs, CO 80919 (719) 272-8894

Engineer's Statement

This report and plan for the drainage design of <u>US Highway 24 & Peterson Road Intersection</u> <u>Improvement Project</u> was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the City of Colorado Springs Drainage Criteria Manual and is in conformity with the master plan of the drainage basin. I understand that the City of Colorado Springs does not and will not assume liability for drainage facilities designed by others. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

SIGNATURE (Affix Seal):_

Colorado P.E. No. _____Date____

City Project Manager's Statement

I hereby certify that the drainage for <u>US Highway 24 & Peterson Road Intersection Improvement</u> <u>Project</u> shall be constructed according to the design presented in this report. I further understand that field changes must be reviewed by the City Review Engineer to ensure conformance with the original design intent. I am employed by and perform engineering services solely for the City of Colorado Springs, and therefore am exempt from Colorado Revised Statute Title 12, Article 120, Part 2 according to § 12-120-203(1), C.R.S.

Name of City Project Manager

Authorized Signature

Date

City of Colorado Springs Statement:

Filed in accordance with Section 7.7.906 of the Code of the City of Colorado Springs, 2001, as amended.

For City Engineer

Date

E	nginee	r's Stat	ement	i
С	ontents	S		ii
1	Proj	ect Des	scription	1
	1.1	Purpos	se	1
	1.2	Study	Area Description	1
	1.3	Previo	us Studies	2
	1.4	Soil Co	onditions	3
	1.5	FEMA	Floodplain	5
2	Des	ign Crit	eria	6
	2.1	Street	Capacity	6
	2.2	Storm	Sewer	7
	2.3	Perma	nent Water Quality	7
3	Hyd	rology.		8
	3.1	Desigr	ı Frequency	8
	3.2	Peak F	lows	8
4	Hyd	raulics		8
	4.1	Existin	g Storm Drain System	9
	4.1.	1 O	fsite Undeveloped Area, Northeast of Project Area	9
	4.1.	2 O	fsite Southbound Peterson, Northwest of Project Area	9
	4.1.	3 Ro	oundabout at North Intersection, North Half of Project Area	9
	4.1.	4 Ro	oundabout at South Intersection, South Half of Project Area	9
	4.1.	5 Do	ownstream	.10
	4.2	Propos	ed Storm Drain Improvements	.10
	4.2.	1 No	orth Peterson Flow System, North End of North Roundabout	.10
	4.2.	2 No	orth Roundabout Flow System, North Roundabout	.11
	4.2.	3 So	outh Roundabout System	.12
	4.2.	4 Do	ownstream System	.12
	4.3	Hydrau	Ilic Calculations	.13
	4.3.	1 St	orm Sewer System	.13
	4.3.	2 SI	vales	.13
5	Wat	er Qua	lity	.13
	5.1	The Fo	our Step Process	.13
	hdrind	.com	5555 Tech Center Drive, Suite 310, Colorado Springs, CO 80919-2371 (719) 272-8800	

ii

FS

	5.2	Water Quality Control Measures	14	
6	Ор	Dperation and Maintenance		
7	Sur	nmary	15	
8	Ref	erences	16	
9	Арр	bendices	17	
	9.1	Drainage Criteria Memo	17	
	9.2	Basin Maps	A	
	9.3	Rainfall Information	B	
	9.4	Rational Method	C	
	9.5	Soil Data Report	D	
	9.6	FEMA FIRM	E	
	9.7	Inlet Calculations	F	
	9.8	StormCAD Analysis	G	
	9.9	FlowMaster Swale Calculations	Н	
	9.10	Colorado Springs Drainage Basin Master Plan	I	
	9.11	Colorado Springs Water Quality Sizing Worksheets	J	
	9.12	Summary of Quantities	K	

Table of Figures

Figure 1: Vicinity Map	2
Figure 2: Hydrologic Soil Group	4
Figure 3: FEMA Regulatory Floodplain	5
Figure 4: Drainage Basin Planning Study Floodplain	6

Table of Tables

ole 1: Street Criteria

1 Project Description

During peak travel hours, the intersection of US Highway 24 and Peterson Road is severely congested. It is situated on the east side of the city and has recently been the focus of a thorough investigation. It is a primary access point for Peterson Space Force Base (SFB) North Gate and currently consists of 2 signalized intersections with no existing pedestrian accommodations. At the east end of the city, this location also provides access west into Colorado Springs and eastbound toward Falcon and unincorporated El Paso County. The project site is mainly located in a largely undeveloped area but there is a residential neighborhood to the west side of the project.

The purpose of the project is to improve the overall flow of traffic at this intersection, add pedestrian accommodations, and improve the overall aesthetic quality in the area. Along with the two roundabouts on either side of US-24, additional roadway, drainage, and traffic improvements will be provided to the eastbound and westbound US-24 on- and off-ramps. The following analysis has determined that proposed improvements will not adversely affect adjacent or downstream properties or existing floodplains.

1.1 Purpose

This report provides a narrative of the existing project area, proposed project improvements and hydrologic and hydraulic analyses of the proposed drainage system.

The project will provide the design and environmental approval necessary to reconstruct the US 24/Peterson Boulevard Interchange to provide a safer, more secure, and more efficient path to the Peterson SFB North Gate. The project will support Peterson SFB access control in routine and emergency operations and take into consideration increased traffic capacity on adjacent roadways due to planned development in the Pikes Peak region. The project will take into account all available modes of transit in the nearby corridors, such as bus and bicycle lanes, sidewalks, and trails.

North of the intersection, the Sand Creek East Fork flows west under Peterson Road toward Sand Creek. Sand Creek flows south under US-24 just west of the project site, parallel to Peterson Road. The most current hydraulic data from the City of Colorado Springs shows no existing floodplain will be impacted by proposed improvements. Hydraulic models for these sections of creek are available on the City of Colorado Springs GIS database.

1.2 Study Area Description

The project is located at the intersection of US-24 and Peterson Road, including access ramps to and from US-24, as shown in Figure 1. The project site is extremely flat and ultimately drains to Sand Creek. Runoff from the north intersection is conveyed to Sand Creek via a roadside swale and runoff at the south intersection is left to sheet flow into a field at the north end of Peterson SFB. Access ramps on both the north and south side and adjacent areas also drain to Sand Creek, including the golf course to the northwest and the parking lot to the southwest.

Figure 1: Vicinity Map

1.3 Previous Studies

Research was conducted into previously completed drainage studies that cover the areas located within or drain to the project limits. Aerial images and offsite contours were reviewed to determine offsite flows that are conveyed to the existing corrugated metal pipe (CMP) culverts that cross underneath the project site.

The Sand Creek Drainage Basin Planning Study from January 2021 documents stormwater runoff peak flows and volumes collected by Sand Creek's tributary basins. The study consists of an in-depth analysis of the hydrology and hydraulic features based on existing and future conditions. Before its confluence with Sand Creek, the Sand Creek East Fork system conveys flows west under Peterson Road via 5 staggered 36" elliptical CMP culverts to the north of the project area. This section of creek then flows south under a 125' wide bridge at US-24/E Platte Ave west of the project limits. The study indicates the existing weir structure at Peterson Road has insufficient capacity to accommodate the 100-year runoff event or future flows due to expected development in the area. The study proposes 10 adjacent 10' x 10' reinforced concrete boxes (RCBs) in order to accommodate future flows at this design point. Despite this insufficiency, hydraulic models from the study show no split flow entering the project area to the south.

1.4 Soil Conditions

Soils information for this report were obtained from the US Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) Websoil Survey.

In most of the project areas, soils are Hydrologic Type A soils (shaded in color purple), as shown in Figure 2. These soils have a high infiltration rate when thoroughly wet and consist mainly of deep, well-drained to excessively drained sands or gravelly sands. At the northwest end of the project limits and continuing offsite to the undeveloped areas northeast, the type B soils (shaded in blue) have a moderate infiltration (low runoff potential) rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. See Figure 2 for the Hydrologic Soils Group Map for more information. The soils report can be found in Appendix 9.5.

Figure 2: Hydrologic Soil Group

FX

1.5 FEMA Floodplain

The project is located next to Sand Creek East Fork, which is designated as a Zone AE floodplain with elevations as shown on the FEMA Flood Insurance Rate Map (FIRM) panel 08041C0754G, effective on December 7, 2018 and shown in Figure 3. The existing culvert where the Zone AE floodplain is shown to cross Peterson Road in Figure 3 will be replaced by a culvert with greater capacity so no rise in water surface elevation is expected at this location due to the proposed improvements. Instead of sheet flow into the field to the southwest of the intersection, runoff at the south roundabout will be re-routed north and west into the existing Zone AE ditch, upstream of the bridge at US-24.

However, since the 2021 Drainage Planning Study mentioned in section 1.3 is more current, conducted by local authorities, and the data is accepted by the City of Colorado Springs, the FEMA floodplain data is assumed to be out of date. Figure 4 on the next page shows the extents of the floodplain from the Drainage Basin Planning Study. While the project site is not located within the Zone AE, the proposed design is expected to alter existing flow patterns and further investigation will be conducted in later phases of the design process.

Figure 3: FEMA Regulatory Floodplain

Figure 4: Drainage Basin Planning Study Floodplain

2 Design Criteria

Improvements were designed in accordance with the City of Colorado Springs Drainage Criteria Manual (DCM). This criteria is supplemented with the Mile High Flood District's (Flood District) Urban Storm Drainage Criteria as needed.

Criteria for the major (100-year) and minor (5-year) storm events have been provided in Appendix 9.1. Development of peak flows and project runoff was in accordance with Chapter 6 of the DCM. Due to the relatively small size of project basins, the Rational Method was used. Runoff coefficients were used from Chapter 6 of the DCM. Rainfall intensity values were taken from NOAA Atlas 14. The precipitation values for the project are 1.30-inches and 2.74-inches for the 5-year and 100-year, 1-hour rainfall events, from Table 6.2 Rainfall Depths of Colorado Springs.

2.1 Street Capacity

Street capacity and surface runoff improvements were designed in accordance with Chapter 7 of the DCM. For spread and depth criteria, both Peterson Road and Space Village Avenue have been classified as Minor Arterials, including the eastbound offramp from US-24. However, US-24 itself is classified as an expressway. The existing intersections currently only have curb and gutter on the southern side of Space Village Ave, but the proposed design will have curb and gutter all the way around the proposed roundabouts. Table 1 on the next page outlines spread and depth criteria for both the major and minor events. It is assumed that the roundabouts and each of their respective exits will be classified as minor arterials with 6-inch tall curbs and gutter with a 2% cross slope.

Criteria	5-Year	100-Year
Allowable Spread	10-feet clear	Contained within ROW
Allowable Ponding	6-inch	0-inch max. at

crown/median

Table 1: Street Criteria

Roundabouts.

Peterson Road.

Space Village Ave

Roadway Central

2.2 Storm Sewer

Depth

Proposed inlets were designed in accordance with Chapter 8 of the DCM. The project uses CDOT standard Type R, Type C, and Type D inlets. On-grade inlets are sized to collect 70-80% of the flow and meet spread and depth criteria for the 5- and 100-year storm event. Type D inlets located at sumps are sized to collect flow from off-site basins. Type R inlets on floating medians are placed with the intent that they will be located in sump locations in order to meet spread and depth criteria. Inlets are designed using the Mile High Flood District UD-Inlet spreadsheet version 4.06, dated August 2018.

Storm sewer improvements were designed in accordance with Chapter 9 of the DCM and incorporate the following guidelines:

- A minimum pipe size of 15-inch for laterals and 18-inch for trunk lines.
- All pipes are reinforced concrete pipe unless otherwise noted.
- Minor storm hydraulic grade line (HGL) must be contained within the pipe.
- Major storm HGL shall be at least 1 foot below final grade along the storm sewer system, measured from the lowest gutter flowline elevation at the adjacent inlets.
- Velocities will be between 3 and 18 feet per second for both, minor and major storm event.
- The storm system analysis is being performed with Bentley's StormCAD version • 10.03.04.53, using the standard method.

2.3 Permanent Water Quality

The project is anticipated to require permanent water quality solutions as part of the roadway improvements, despite a minimal increase in new impervious area and minor area of disturbance. The total disturbance area for this project is listed below:

- Total Area of Proposed Roadway Improvements: 5.70 acres
- Total Disturbance Area Excluding Existing Pavement: 2.74 acres •
- Total Net Impervious Area (Impervious Added minus Impervious Removed): 1.52 acres •

According to the Colorado Springs DCM, this project area is classified as a "Redevelopment Site" because the disturbed area is greater than one acre. Permanent Water Quality will follow criteria, according to DCM four step process.

- **Employ Runoff Reduction Practices**
- Implement BMPs that provide a Water Quality Capture Volume (WQCV) with slow release

- Stabilize Drainageways
- Implement site specific and other control measures

Proposed design will utilize hydrodynamic separators (HDSs) as well as a permanent water quality pond in order to meet DCM criteria for water quality, but not for detention. HDR will investigate the effectiveness of HDSs instead of the pond before the next submittal. Per Colorado Springs criteria, an exemption for stormwater detention may be granted if the downstream receiving waters are shown to have adequate capacity. HDR will perform a hydraulic analysis of the channel in future phases of the project and no rise is expected in the water surface elevation in Sand Creek.

3 Hydrology

Drainage basins were delineated based on existing topography, aerial images, El Paso County LiDAR data, proposed contours, and Google Earth imagery. Basins were delineated for proposed conditions with the assumption that proposed topography will closely match existing outside of proposed contours.

3.1 Design Frequency

Design frequency follows guidelines of the City DCM for the specified roadway classification. Peak flows were estimated using the Rational Method for the Design Storm (5-year), and the Major Storm (100-year).

3.2 Peak Flows

The Site is located at an extremely shallow grade with no existing storm structures to capture runoff. Runoff primarily sheet flows across the site from the northeast to the southwest, and a few CMP culverts convey flows under the roadway at these locations. North of the US-24 overpass, flows are conveyed into the northwest ditch that flows west to Sand Creek East Fork, while south of the overpass, flows continue to sheet flow into a field at the north end of Peterson SFB before eventually joining Sand Creek East Fork further downstream. Large off-site basins northeast of the site generate a significant amount of flow through the project area. The existing 36" CMP located under Peterson Road at the north end of the north intersection is at full capacity capturing the majority of the off-site runoff. The peak flows and the full calculations can be found in the appendices.

4 Hydraulics

The site is located at an extremely shallow grade with no existing storm structures to capture runoff. Runoff primarily sheet flows across the site from the northeast to the southwest, and a few CMP culverts convey flows under the roadway. North of the US-24 overpass, flows are conveyed into the northwest ditch that flows west to Sand Creek East Fork, while south of the overpass, flows continue to sheet flow into a field at the north end of Peterson SFB before eventually joining Sand Creek East Fork further downstream.

4.1 Existing Storm Drain System

The existing site contains a very basic storm system, consisting of a few crossing culverts that convey flows to the westbound roadside ditch on the north side of US-24 or to the field at the north end of Peterson SFB, which ultimately both outlet to Sand Creek East Fork. Each segment of the project is described below.

4.1.1 Offsite Undeveloped Area, Northeast of Project Area

Northeast of the project, there is a large undeveloped area that slopes and drains toward either Peterson Road, north of the project area, or the roadside ditch along the north end of US-24. Flow that reaches Peterson Road is conveyed south along the east edge of the roadway via curb and gutter, while the ditch along the north end of US-24 conveys flow west toward Peterson Road. This area consists of a single motel and parking lot, a portion of a small new housing development at the northeast end, and a large amount of undeveloped land. Runoff from this off-site area sheet flows overland to a 36" CMP culvert that runs west under Peterson Road and into the roadside ditch on the west side of Peterson Road, which outfalls into Sand Creek East Fork further west outside of the project area. This area comprises the majority of the off-site flow. Preliminary calculations show the existing 36" CMP is close to full capacity.

4.1.2 Offsite Southbound Peterson, Northwest of Project Area

This section of paved area is located north of the westbound US-24 on-ramp. It is comprised of the west half of Peterson Road, along the Sand Creek Golf Course, and two small business parking lots at the northwest corner of the project area. Runoff from this location drains south along the west end of Peterson Road via curb and gutter and into the westbound roadside ditch toward East Fork Sand Creek.

4.1.3 Roundabout at North Intersection, North Half of Project Area

There is an existing signalized intersection at Peterson Road and the US-24 on- and off-ramps, respectively. Flows in this area generally flow south along Peterson Road and away from the crown of the road into a roadside swale on either side. Flow from the westbound off-ramp at this intersection drains into the northern ditch and southeast vegetated slope. Flow from the westbound on-ramp drains to the northern ditch and southwest vegetated slope. The southeast slope conveys flow under Peterson Road through an 18" CMP culvert to the southwest slope. Flow in the southwest slope then drains to the northern ditch or roadside swale which brings runoff to Sand Creek East Fork. Flows not captured by either of the southern vegetated slopes at this intersection continue to flow south down Peterson Road under US-24 and toward the South Intersection.

4.1.4 Roundabout at South Intersection, South Half of Project Area

This signalized intersection has a similar layout to the North Intersection. There are also two depressed dirt and grass swales in this location on the west and east side of Peterson Road between US-24 and Space Village Ave. The east ditch captures runoff from the east half of Peterson Road to the north as well as off-site runoff from the southern, eastbound half of US-24 and the north half of Space Village Ave to the RV Storage lot and all the area in between. The grass slope north of the eastbound off-ramp and west of Peterson Road receives runoff from the west half of Peterson Road north of the intersection, the north half of the eastbound off-ramp,

the eastbound side of US-24 west of Peterson Road, and all the area between. The remaining runoff in this area sheet flows across the intersection to the southwest before one of several rundowns directs flow into a field on Peterson SFB southwest of the intersection. A culvert of unknown diameter brings flow from the east ditch to the west ditch, where a 24" CMP culvert conveys flow to the field southwest of the intersection. Additionally, runoff from the parking lot southeast of the intersection collects at the west end of the parking lot where a 24" reinforced concrete pipe (RCP) directs flow under Peterson Road to the same field on Peterson SFB's north end. Flow that is not captured by one of these rundowns or grass slopes continues south along Peterson Road and away from the crown on either side.

4.1.5 Downstream

There are no existing drainage features to capture runoff downstream of the project area. In existing conditions, flow continues south along Peterson Road via a network of conveyance pans on the surface. Flow continues onto Peterson SFB to the south before eventually sheet flowing west into a field where runoff is eventually conveyed to Sand Creek East Fork further downstream of the project area.

4.2 Proposed Storm Drain Improvements

Proposed construction begins just north of the US-24 westbound on and off-ramps at Peterson Road and extends south almost to the Peterson SFB North Gate, including both signalized intersections on either side of US-24 and their turn lanes or ramps at Peterson Road. Proposed roadway improvements consist of the addition of a roundabout on either side of US-24 where the existing signalized intersections are located. Sidewalks are to be added all the way around both roundabouts for pedestrian safety and access from the businesses at the southeast corner of Peterson and Space Village up to the businesses northwest and northeast of US-24 and Peterson. The existing US-24 bridge over Peterson Road will have its sloped sidewalls replaced with vertical retaining walls to make room for added sidewalk on either side of the underpass. Proposed basins and storm improvements can be found in the Basin Maps in Appendix 9.2. Proposed storm improvements will capture and convey design flows through the project area based on existing flow patterns while also meeting Colorado Springs DCM criteria. It is assumed that some minor to moderate regrading will be needed. Where applicable, existing culverts will be replaced with larger storm pipe to accommodate future flows. Curb and gutters are expected to be present at all proposed roadway edges and medians within the project area and assumed to be standard 6" depth. Proposed roadways have been designed at a 2% cross slope. Multiple new networks of catch basins and reinforced concrete pipe (RCP) have been proposed to ensure design flows are adequately captured and conveyed to the outfall. Proposed drainage improvements were difficult to model due to the shallow grades. With larger pipes needed to accommodate design flows, cover depth criteria was difficult to meet. To resolve this issue, the proposed storm design utilizes elliptical pipes and daylights further downstream. Future designs may need to include moderate regrading of the existing swales as well as at the system outfalls in order to ensure DCM criteria is met. Each segment of the project is described below.

4.2.1 North Peterson Flow System, North End of North Roundabout

At the northern end of the project, there are a few large off-site basins that direct flow south into the roadside swale. The existing culvert that conveys flow under Peterson Road at this

hdrinc.com 5555 Tech Center Drive, Suite 310, Colorado Springs, CO 80919-2371 (719) 272-8800 intersection will be replaced with a 45" x 29" elliptical RCP (36" circular equivalent) in order to both increase capacity and meet cover depth criteria. The upstream end of this culvert is positioned to maximize the amount of runoff captured in the ditch. Several Type R inlets are to be placed at the north end of the design to capture runoff from off-site basins to the north and tie into the new culvert. Two additional Type R inlets have also been placed next to the proposed crosswalks to minimize impacts to pedestrians. A flared end section is proposed at the system outfall to the west. In order to meet spread and depth criteria, CDOT Type R inlets will be added on-grade on either side of Peterson Road, north of the intersection to capture off-site flow and convey it to the elliptical RCP, via a manhole between them. It is also important to note that these inlets will be placed directly in front of the proposed sidewalk to minimize runoff in the proposed sidewalk areas.

This proposed storm system is able to capture and convey off-site flows to the existing outfall at the roadside ditch along the north side of the westbound on-ramp. Flows not captured by these Type R inlets continue south to the roundabout and into the on-site system. The elliptical pipe allows this system to meet the 2' minimum cover depth recommended by the Colorado Springs DCM. Similarly, these pipe slopes will need to be even shallower than the existing grades in order to meet cover depth criteria. A minimum design slope of 0.3% was used in developing these storm systems. Riprap will be added at the outfall as outfall protection and energy dissipation.

4.2.2 North Roundabout Flow System, North Roundabout

Runoff from the proposed design is anticipated to roughly match existing conditions – south along Peterson Road and away from the crown of the road to the west and east vegetated slopes on the north side of US-24. Runoff will be captured and conveyed through a series of inlets placed strategically and symmetrically at both the westbound off-ramp and on-ramp and adjacent to proposed pedestrian crossings.

The primary trunk line for this system runs west under the roundabout from the westbound offramp to the vegetated slope south of the westbound on-ramp, roughly where an existing 18" CMP culvert is located. Instead of directing flow north into the ditch to match existing flow patterns, the new system proposes routing flow to a new water quality pond in this swale before outfalling further downstream in the existing swale on the north side of the US-24 westbound on-ramp. This design change was necessary to solve a few different problems: mainly, the pipe would have needed to convey flow to the ditch from a sump inlet and would need to be sloped uphill in order to daylight. Instead, the proposed design conveys flow further downstream until the 36" RCP was able to daylight. The proposed system outlets at an elevation of 6255.78'. Considering the 100-Year Base Flood Elevation (BFE) is 6258.99', a flap gate will likely be needed at the outlet pipe. This is based on best available data from the Sand Creek Drainage Basin Planning Study (DBPS).

This proposed storm system is able to capture and convey off-site flows to the new outfall further downstream in the roadside ditch along the north side of the westbound on-ramp. Flows not captured by these Type R inlets on both the west and east side of the roundabout continue south under US-24 and toward the South Roundabout. This system is also able to meet cover

FX

depth criteria with the 2' minimum cover depth recommended by the Colorado Springs DCM. The minimum design slope of 0.3% was also used in developing this storm system.

4.2.3 South Roundabout System

In this region, runoff is expected to travel south down Peterson Road and away from the crown, southeast toward the proposed roundabout from the eastbound US-24 off-ramp, and west toward the proposed roundabout from Space Village Ave and away from the crown. Runoff will be captured by mostly symmetrically positioned Type R inlets along the roundabout edges and adjacent to pedestrian crossings. Additionally, Type C and D inlets will be added in sump locations northwest, northeast, and southeast of the intersection to capture runoff from eastbound US-24 as well as off-site flow from the east. A Type 13 inlet in a sump will also be placed in the grassy area at the west end of the southwest parking lot, roughly where an existing 24" RCP culvert is located.

Contrary to existing flow patterns, the proposed design consists of one main trunk line that starts southwest of the intersection before draining north to bypass the proposed water quality pond, mentioned in the previous section. There are four main lateral branches:

- The first of these runs west from the Type 13 inlet in the southeast corner of the intersection from the existing parking lot and collects runoff from the Type R inlets in the southeast region of the roundabout.
- The next runs east from the Type R inlets in southwest corner of the roundabout.
- The third runs west from the Type D inlet at the northeast corner of the southern roundabout and collects runoff from the Type R inlets in the northeast region of the southern roundabout.
- The final branch runs north and east and collects runoff from the northwestern region of the southern roundabout.

A series of Type R inlets along the curbs of the roundabout will tie into these main trunk lines. The main trunk line is expected to bypass the proposed water quality detention system which will be located southwest of the northern roundabout and go directly to the outfall. Any flow not captured by this system of inlets will continue south down Peterson Road and into the Downstream System.

4.2.4 Downstream System

Runoff in this region consists of bypass flow from the Southern Roundabout System, runoff from roadway area south of the roundabout that is flowing south and away from the crown of the road, and off-site runoff from the east half of the parking lot area not captured by the sump inlet on its west end. This system is comprised of symmetrically placed Type R inlets on the west and east sides of Peterson Road. Storm pipes will convey runoff from the east inlets to the southwesternmost Type R inlet at the southern extent of the project area before outfalling west to the field or the grassy area on the west side of Peterson Road for water quality treatment.

4.3 Hydraulic Calculations

4.3.1 Storm Sewer System

The storm sewer system is proposed to collect and convey roadway and off-site drainage. Curb inlets collect street runoff and grate inlets are used to collect ditch runoff. The storm sewer system conveys the runoff to proposed water quality features or connects to an existing system. Bentley StormCAD 10.3.4.53 was used to model the storm sewer network. Urban Drainage Flood District UD-Inlet spreadsheet version 4.05 was used to calculate inlet spread and capture. The StormCAD results and inlet spreadsheets are located in Appendices 9.7 and 9.8, respectively. The results in the inlet capacity spreadsheets show no adverse effect on the downstream conditions as all of the inlets are located within the storm sewer network and not immediately adjacent to an outfall location.

Several pipes in the proposed system do not meet velocity requirements. This is due to the constraints of the terrain. Pipes have been placed at minimum slope in order to both maintain flow and meet cover depth criteria. The existing terrain is very flat so there is not much vertical space available to move the pipes.

4.3.2 Swales

The proposed design utilizes 6 existing swales on either side of US-24 to convey off-site and some on-site flows to follow maintain existing drainage patterns. The Colorado Springs DCM recommends ditches should be designed with a minimum of 1-ft of freeboard from the shoulder elevation with 8:1 side slopes or flatter. Although most of the existing swales do not currently meet these criteria, capacity calculations primarily utilized existing data. Velocity and capacity calculations performed with Bentley FlowMaster 10.3.0.3 can be found in Appendix 9.9.

5 of the existing swales utilize a v-shaped section, and 1 is trapezoidal. Side slopes of the existing swales vary between 35.7:1 to as steep as 1.6:1. Since the site is so flat already, several of the existing ditches are less than 1 foot deep, and therefore, do not meet the minimum requirement of 1-ft of freeboard during the 100-year storm. 2 of the ditches do not have capacity for the 100-year event without any freeboard. Future analysis in the next phase of the project should include regraded swales that meet criteria and alternative solutions will need to be explored if regrading is not an option.

5 Water Quality

Permanent water quality requirements are addressed through the Four Step Process outlined in Volume 2 of the Drainage Criteria Manual. This process is applicable to all new and redevelopment projects with construction activities that disturb one acre or greater.

5.1 The Four Step Process

- Step 1: Reduce Runoff LID/MDCIA.
 - This project will be utilizing the existing grass-lined swales as planned infiltration areas (PIAs). The runoff from the roadway will flow through these swales before entering the storm sewer system. This will help to reduce the velocity and

promote some infiltration before entering the storm sewer system. Additionally, the proposed water quality pond in the northwest swale will be used to reduce runoff at the outfall and increase infiltration to meet Green Infrastructure Manual (GIM) criteria.

- Step 2: Control Measures for Water Quality.
 - Two hydrodynamic separators are being constructed as part of this project for water quality. These will be placed in two of the manholes downstream of the permanent water quality pond. The project area as a whole currently has no water quality treatment or detention provided.
- Step 3: Stabilize Drainageways.
 - There is expected to be some channel stabilization as part of this project in the swales adjacent to US-24 as well as at the outfalls. New riprap will also be placed at the pipe outfalls in order to prevent erosion and undercutting.
- Step 4: Site Specific Control Measures (CMs).
 - Site specific CMs should be included as part of the Grading and Erosion Control (GEC) plan which include sweeping, and spill prevention. Both will occur based on requirements from the City of Colorado Springs Stormwater Construction Manual (SCM).

5.2 Water Quality Control Measures

Water Quality is required on this project as the total disturbance area is 6.89 acres. A permanent water quality pond will be located in an existing swale where runoff from the north roundabout will collect. Downstream of the project, the southernmost system is constrained both horizontally and vertically by right of way and existing grades, respectively. Future designs will address water quality concerns in this area. While not all runoff from the project area will pass through the proposed pond, it has been sized to treat the equivalent disturbed area of the whole project. Additionally, there is one hydrodynamic separator located along the main trunk line just upstream of where the proposed pond outfall ties in. And another hydrodynamic separator has been placed at the downstream end of the northernmost system in order to treat runoff at the north end of the project. No detention is provided because the proposed re-development of the roadway does not increase the water surface elevation in Sand Creek due to the rerouting of runoff in the project area.

Initial water quality designs had proposed underground detention at the southwest corner of the south roundabout where water sheet flows under existing conditions. Further investigation determined that this design was not feasible due to size constraints and available space. In order to adequately treat the expected flow at this proposed outfall, 5-137"x87" chambers would have been needed, totaling 46506 ft³ in storage volume. Flow was instead routed north to join flow leaving the proposed water quality pond northwest into the existing swale before outfalling at Sand Creek. The pond was sized to account for the additional runoff that bypasses it, and hydrodynamic separators were added at two manholes downstream of this confluence to provide additional treatment.

6 Operation and Maintenance

The Hydrodynamic Separators do require additional or specialty operations or maintenance (O&M) activities beyond the City's normal O&M for their stormwater drainage system. Please see separate document that includes O&M plans for the proposed pond and Hydrodynamic separators.

7 Summary

Stormwater runoff from the US-24 and Peterson Intersection project should not adversely affect the downstream and surrounding developments, but further investigation will be conducted to confirm this. Stormwater runoff will not adversely affect Sand Creek. This report and findings are in general conformance with prior reports for which this site was the subject.

8 References

Bentley [StormCAD 10.3.4.53]. (2021). Retrieved from <u>https://www.bentley.com/software/openflows-stormcad/</u>

Bentley [FlowMaster 10.3.0.3]. (2020). Retrieved from https://www.bentley.com/software/openflows-flowmaster/

Drainage Criteria Manual, Volumes 1 and 2. City of Colorado Springs, Revised January 2021.

Federal Emergency Management Agency. Flood Insurance Study for El Paso County, Colorado and Incorporated Areas. FIS Number 08041CV007A. Effective Date December 7, 2018.

Flood Insurance Study. El Paso County, Colorado and Incorporated Areas. 08041C0754G. December 7, 2018.

National Oceanic and Atmospheric Association (NOAA) Atlas 14. https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html

Sand Creek Drainage Basin Planning Study. City of Colorado Springs. January 2021. <u>https://coloradosprings.gov/document/scdbpsfinal2021.01.21reduced.pdf</u>

Urban Storm Drainage Criteria Manual, Volumes 1, 2, and 3. August 2018.

Web Soil Survey. https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

9 Appendices

9.1 Drainage Criteria Memo

Memo

Date:	Wednesday, November 22, 2023	
Project:	US-24 and Peterson Road Intersection	
To:	City of Colorado Springs	
From:	Sam Acosta, PE and Maria Barraza, HDR	

Subject: Drainage Design Criteria Memo, Circle Drive Bridges

Design Criteria References

Drainage for US-24 and Peterson Road Intersection has been designed to meet criteria from the City of Colorado Springs Drainage Criteria Manual (DCM) and Urban Drainage and Flood Control District Manual (UDFCD). The references used for the roadway drainage, offsite drainage, and water quality are listed below.

- Drainage Criteria Manual, Volume I and Volume II, City of Colorado Springs, May 2014.
- Urban Storm Drainage Criteria Manual Volume 3, January 2016.
- Flood Insurance Study, El Paso County, Colorado and Incorporated Areas, 08041C0754G, December 7, 2018.
- Sand Creek Drainage Basin Planning Study, Final Report, January 2021.

General Information

The site is located on at the intersection of US-24 and Peterson Road, including access ramps to and from US-24, in Colorado Springs, Colorado. The project scope includes designing two roundabouts on either side of US-24, along with additional roadway, drainage, and traffic improvements to improve the flow of traffic at the intersection. The proposed design will also feature pedestrian accommodations and improve the overall aesthetic quality of the intersection. The project site is extremely flat, and while it all ultimately drains to Sand Creek, runoff from the north intersection is conveyed there via a roadside swale and runoff at the south intersection is left to sheet flow into a field at the north end of Peterson Space Force Base (SFB). Access ramps on both the north and south side and adjacent areas also drain to Sand Creek, including the golf course to the northwest and the parking lot to the southwest. Roadway improvements include replacing the existing signalized intersections with roundabouts. Drainage improvements consist of two separate drainage systems for the north and south intersections, respectively. These systems consist of new curb inlets proposed throughout the site to collect roadway runoff, replacing the existing culvert system and maintaining existing drainage patterns.

Hydrology

Hydrology will be developed for local basins using the Rational Method. This method is accepted in the City of Colorado Springs Drainage Criteria Manual (DCM), Chapter 6, Volume I, for basins less than 130 acres. Soil information will be obtained from the National Resource

Conservation Service (NRCS) Websoil Survey. Rainfall data will be determined by using Figure 6-5, Chapter 6, from the DCM, which is sourced from NOAA Atlas 2 f. Hydrologic criteria has been summarized below in Table 1.0.

Table 1.0 Hydrologic Criteria Summary Table		
Hydrology	City of Colorado Springs Drainage Criteria Manual	
Acceptable Methods	Rational Method for Basin < 130 acres	
Precipitation Data	Figure 6-5 of DCM (NOAA Atlas 2), NOAA Atlas14, or Fountain Creek Rainfall Characterization Study	
Runoff Coefficients	A function of imperviousness per Table 6.6 of DCM (source UDSCM 2001)	
Imperviousness Values	Table 6.6 of DCM (source UDSCM 2001)	

Hydraulics

Roadway Drainage

The proposed on-site drainage system will be designed to capture roadway runoff and convey flows in the storm drain system according to the DCM. For spread and depth criteria, both Peterson Road and Space Village Avenue have been classified as Minor Arterials, including the eastbound offramp from US-24. However, US-24 itself is classified as an expressway or principle arterial spread criteria. The existing intersections currently only have curb and gutter on the southern side of Space Village Ave, but the proposed design will have curb and gutter all the way around the proposed roundabouts. It is assumed that the roundabouts and each of their respective exits will be classified as minor arterials. A summary of the hydraulic criteria has been outlined below in Table 2.0.

Table 2.0 Hydraulic Criteria Summary Table			
Hydraulics	City of Colorado Springs Drainage Criteria Manual		
Pipes			
Design /Check Storms	5-yr /100-yr (Ch. 3, Sect. 4.1/4.2)		
Pipe Sizes	A minimum of 15-inch for laterals and 18-inch for trunk lines		
Velocity	Min: 3 fps for all design flows Max: 18 fps for all design flows		
HGL	Minor storm HGL must be contained within the pipe. Major storm HGL shall be at least 1 foot below final grade along the storm sewer system, measured from the lowest gutter flowline elevation at inlets (Ch. 9, Sect. 7.2 & 7.3)		

Table 2.0 Hydraulic Criteria Summary Table			
Hydraulics	City of Colorado Springs Drainage Criteria Manual		
Material	Reinforced Concrete Pipes (RCP)		
Culverts			
Design /Check Storms	The procedures and data to be used for the design and hydraulic evaluation of culverts shall be consistent with the Culverts and Bridges Chapter of Volume 1 of the DCM. The UDFCD Manual may be used to fill in unavailable data in the DCM (Ch. 11, Sect. 2.1)		
Size	Min size: 18-inch (Ch. 11, Sect. 4.3) Sizing dependent on application ranging from 15-inch – 36-inch (Sect. 9.2.3, Table 9.4)		
Material	Culverts shall be made of reinforced concrete in round or elliptical cross-sections (minimum Class 3) or reinforced concrete box shapes that are either cast-in-place or supplied in precast sections (Ch. 11 Sect. 4.1)		
Velocity	Min: 3 fps checked with 25% of the minor storm event flow Max: Velocity shall not exceed 15 fps in the major storm event		
Allowable HW/D	For all residential, industrial, and collector roadways, the maximum headwater to depth ratio (HW/D) for the major storm design flows will be 1.5 times the culvert opening height (D or H). For culverts through arterial roads and highways, the maximum HW/D ratio for the major storm design flows will be 1.2 times the culvert opening height. HW/D is typically measured from the culvert invert at its centerline. (Ch. 11, Sect. 3.2)		
Outlet Protection	Shall be required when engineer assesses risk of scour holes, gully scour. Outlet protection will be implanted per Ch. 10, Sect. 3.0, DCM in conjunction with UDFCD Manual 1, Energy Dissipation.		
Manholes	······································		
Spacing	18" – 36": Max. 500' 42" – 60": Max. 600' 66" + : Max. 750' Based on corresponding pipe size (Table 9.2, Sect. 6.1, Ch.9)		
Street Spread			
Design/Check	Design: 5-year		
Storms	Uneck: 100-year		
Flow Width	 Minor Artenais. Minor Storm: Minimum 10' lane clear, no conveyance behind curb Major Storm: Flow can spread to crown of road or edge of median curb. Conveyance behind curb allowed but must be contained in ROW Based on Ch. 7, Sect. 7.8, Figure 7-3 		
	 Expressway/Principle Arterial Type I: Minor Storm: No crown overtopping, no conveyance behind curb Major Storm: Flow can spread to crown of road or edge of median curb. Conveyance behind curb allowed but must be contained in ROW Based on Ch. 7, Sect. 7.8, Figure 7-6 		

Table 2.0 Hydraulic Criteria Summary Table			
Hydraulics	City of Colorado Springs Drainage Criteria Manual		
Flow Depth	 Minor Arterials: Minor storm event: 5.82" allowable depth based on a 6" vertical curb. Cross street flow is not allowed. Major storm event: Depth limited to 7.68" at gutter flowline based on a 6" vertical curb, flow must be within right-of-way. Max: 0-inches at the crown or median curb Based on Ch. 7, Sect. 7.3 and Sect. 7.8, Figure 7-3 		
	 Expressway/Principle Arterial Type I: Minor storm event: 6-inches allowable depth based on a 6-inch vertical curb and 0-inches at the crown. Major storm event: Depth limited to 9.12" at gutter flowline based on a 6" vertical curb and 0-inches at street crown, flow must be within right-of-way. Based on Ch. 7, Sect. 7.3 and Sect. 7.8, Figure 7-1 		
Inlets			
Capture	Varies-depending on inlet type, recommends using UD-inlet Spreadsheets from UDFCD. Typically 70%-80% of design flow		
Allowable Types	Curb-opening Inlets: - D-10-R (City of Colorado Springs) - Type R (CDOT) - Type 14 (CCD) Grate Inlets - Type C (CDOT) - Type D (CDOT) Combination Curb - Type 16 (CCD) Other inlets may be used when special circumstances exist but will be evaluated on case-by-case basis.		
Roadside Swales			
Geometry	Dependent on site conditions, but generally (Sect. 6, Ch. 9):		
	Depth: 6"-9" below shoulder		
	Bottom width: 2' minimum		
	Side Slopes: 8:1 or flatter		
Capacity	Major storm: 100-year WSE at least 1' below shoulder elevation		

Storm sewer hydraulics will be evaluated using StormCAD V8i to calculate capacity, velocity, and HGL/EGL. Urban Drainage's UD-Inlet spreadsheet will be used in inlet design and calculating roadway spread and depth. Federal Highways Administration (FHWA) HEC-21 will be used to design bridge deck inlets. HY-8 will be used for culvert design. Bentley Flowmaster will be used to determine ditch capacity.

FEMA

Fountain Creek is the closest waterway located within the project site limits, it underpasses two of the bridges being replaced and is a FEMA regulated channel and included in the Flood Insurance Study, El Paso County, Colorado and Incorporated Areas, 08041C0754G, December 7, 2018. The project is located within a FEMA regulated floodway area (Zone AE). A no rise floodplain permit is anticipated for this project.

Erosion Control

Erosion and sediment control will be developed based on the City of Colorado Springs Drainage Criteria Manual, Volume 2, in conjunction with other recommended resources in the manual. Erosion and sediment control will be provided for construction activity throughout the entirety of the project. It is anticipated this project will be required to meet the new City of Colorado Springs Stormwater Construction Manual expected to be released prior to completion of design.

Water Quality and Detention

The project is located within a the City of Colorado Springs municipal separate storm sewer (MS4) area and will require permanent water quality as part of the roadway improvements. Water quality will be provided according to DCM four step process for Low Impact Design (LID), described below. Above ground BMP's such as extended detention basins are the preferred treatment option, when the space is available and will be used on site. All water quality areas will be designed to meet DCM criteria, outlined below in Table 3.0.

The four step process to minimize adverse impacts of urbanization will be applied, per the DCM, Volume 2.

- Employ Runoff Reduction Practices
- Implement BMPs that provide a Water Quality Capture Volume (WQCM) with slow release
- Stabilize Drainage ways
- Implement site specific and other source control BMPs

According to the Colorado Springs DCM, this project area is classified as a "Redevelopment Site" because the disturbed area is greater than one acre. Permanent Water Quality will follow criteria, according to DCM four step process.

Table 3.0 Water Quality and Detention Criteria Summary Table			
Water Quality/Detention			
Required Detention	On-site (Less than 20 acres): Total storage volume can be calculated using UD-Detention spreadsheets or calculation spreadsheets provided by the City of Colorado Springs Add 50% of the WQCV for multi-level facilities. Do not add WQCV for FSD facilities.		

Table 3.0 Water Quality and Detention Criteria Summary Table			
Release Rates	The release rates from the proposed detention pond must be equal to or less than the estimated pre-development runoff rates. Predevelopment runoff estimates must be based on the appropriate basin parameters, methods, and storm characteristics as described in Chapter 6, Hydrology from the DCM. (Ch. 13, Sect. 4.2.1)		
Freeboard	A minimum freeboard of one foot above the computed water surface elevation when the emergency spillway is conveying its design flow. (Ch. 13, Sect. 5.5)		
Drain Time	WCQV: 40-hour EURV: 68 to 72 hours		
Pond Design Criteria			
Forebay Design	Provides an opportunity for larger particles to settle out in an area that can be easily maintained. Flow path length should be maximized and slope minimized to encourage settling.		
Trickle Channel	A slope between 0.5% - 1%. The lowflow channel must be a minimum of 7 feet wide with a 6" curb head on one or both sides. The concrete bottom m ust be either 8" with fiber mesh reinforcement or 6" with #4 @ 15" O.C. rebar reinforcement.		
Micropool and Outlet Structure	Side slopes may be stabilized slopes of 4:1, or up to 3:1 maximum for constrained sites. Micropool Location: Directly in front of outlet structure. For watersheds with less than 5 impervious acres, the micropool can be located inside the outlet structure. A concrete ramp is required for access. Size: Minimum 2.5 feet in depth with a minimum surface area of 10 SF Install depth gage at outlet structure.		
Vehicular Access	Vehicle access shall be limited by a locking gate or chain. Vehicle access shall be at least 15 feet wide, unless site is constrained and prior approval is obtained.		

9.2 Basin Maps

0 l-0 l-5 Z 0 U 0 L. l-0 Z 4 Z Σ Ш

Z 0 Þ. 0 Þ. 5 Z 0 U 0 L. Þ. 0 Z \succ Z Σ ш 0

9.3 Rainfall Information
Precipitation Frequency Data Server

Location name: Colorado Springs, Colorado, USA* Latitude: 38.8383°, Longitude: -104.719° Elevation: 6206.14 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

NOAA Atlas 14, Volume 8, Version 2

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Average	recurrence	interval (yea	ars)				
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	0.238 (0.199-0.286)	0.288 (0.241-0.348)	0.377 (0.314-0.456)	0.456 (0.378-0.554)	0.573 (0.460-0.729)	0.669 (0.522-0.861)	0.770 (0.578-1.02)	0.878 (0.629-1.19)	1.03 (0.707-1.44)	1.15 (0.765-1.63)	
10-min	0.348 (0.291-0.419)	0.422 (0.353-0.509)	0.552 (0.461-0.668)	0.668 (0.553-0.811)	0.839 (0.673-1.07)	0.979 (0.764-1.26)	1.13 (0.847-1.49)	1.29 (0.922-1.75)	1.51 (1.03-2.11)	1.69 (1.12-2.38)	
15-min	0.424 (0.355-0.511)	0.515 (0.431-0.621)	0.674 (0.562-0.814)	0.815 (0.675-0.989)	1.02 (0.821-1.30)	1.19 (0.932-1.54)	1.38 (1.03-1.82)	1.57 (1.12-2.13)	1.84 (1.26-2.57)	2.06 (1.37-2.91)	
30-min	0.642 (0.538-0.773)	0.777 (0.650-0.937)	1.01 (0.846-1.23)	1.23 (1.01-1.49)	1.54 (1.24-1.96)	1.80 (1.40-2.31)	2.07 (1.55-2.73)	2.36 (1.69-3.21)	2.77 (1.90-3.87)	3.09 (2.06-4.37)	
60-min	0.854 (0.715-1.03)	1.01 (0.844-1.22)	1.29 (1.08-1.56)	1.56 (1.29-1.90)	1.98 (1.60-2.54)	2.34 (1.83-3.03)	2.73 (2.05-3.62)	3.15 (2.27-4.31)	3.77 (2.59-5.29)	4.27 (2.84-6.04)	
2-hr	1.07 (0.900-1.27)	1.24 (1.05-1.48)	1.57 (1.32-1.89)	1.90 (1.59-2.29)	2.42 (1.98-3.11)	2.88 (2.28-3.72)	3.38 (2.57-4.49)	3.95 (2.87-5.38)	4.77 (3.31-6.67)	5.45 (3.65-7.65)	
3-hr	1.18 (0.999-1.40)	1.35 (1.14-1.61)	1.69 (1.43-2.02)	2.04 (1.71-2.45)	2.62 (2.16-3.37)	3.14 (2.50-4.07)	3.72 (2.85-4.94)	4.39 (3.21-5.98)	5.37 (3.75-7.50)	6.19 (4.16-8.65)	
6-hr	1.35 (1.15-1.60)	1.53 (1.30-1.81)	1.90 (1.62-2.26)	2.30 (1.94-2.74)	2.96 (2.48-3.81)	3.58 (2.88-4.62)	4.27 (3.30-5.64)	5.06 (3.73-6.86)	6.24 (4.39-8.68)	7.23 (4.90-10.0)	
12-hr	1.50 (1.29-1.76)	1.72 (1.48-2.02)	2.17 (1.86-2.56)	2.62 (2.23-3.10)	3.36 (2.81-4.26)	4.02 (3.25-5.14)	4.77 (3.71-6.24)	5.61 (4.16-7.53)	6.85 (4.85-9.44)	7.89 (5.38-10.9)	
24-hr	1.67 (1.45-1.95)	1.95 (1.69-2.28)	2.47 (2.13-2.90)	2.98 (2.56-3.51)	3.78 (3.17-4.72)	4.47 (3.63-5.64)	5.24 (4.09-6.77)	6.09 (4.53-8.09)	7.32 (5.22-9.99)	8.34 (5.73-11.4)	
2-day	1.91 (1.67-2.21)	2.23 (1.95-2.59)	2.83 (2.46-3.29)	3.38 (2.92-3.95)	4.22 (3.56-5.21)	4.95 (4.04-6.17)	5.73 (4.50-7.33)	6.58 (4.93-8.66)	7.81 (5.60-10.6)	8.81 (6.10-12.0)	
3-day	2.08 (1.83-2.40)	2.44 (2.14-2.82)	3.08 (2.69-3.57)	3.66 (3.18-4.26)	4.54 (3.83-5.56)	5.28 (4.32-6.54)	6.07 (4.78-7.71)	6.92 (5.20-9.05)	8.14 (5.85-10.9)	9.12 (6.34-12.4)	
4-day	2.23 (1.96-2.57)	2.61 (2.30-3.01)	3.28 (2.88-3.79)	3.88 (3.39-4.51)	4.79 (4.05-5.84)	5.54 (4.55-6.83)	6.34 (5.01-8.03)	7.20 (5.43-9.38)	8.42 (6.07-11.3)	9.40 (6.56-12.7)	
7-day	2.60 (2.31-2.98)	3.02 (2.68-3.47)	3.76 (3.32-4.32)	4.41 (3.87-5.10)	5.38 (4.57-6.50)	6.17 (5.10-7.56)	7.01 (5.57-8.81)	7.91 (5.99-10.2)	9.17 (6.65-12.2)	10.2 (7.14-13.7)	
10-day	2.93 (2.62-3.35)	3.39 (3.02-3.87)	4.18 (3.70-4.79)	4.87 (4.29-5.61)	5.89 (5.02-7.08)	6.72 (5.57-8.19)	7.60 (6.06-9.50)	8.53 (6.48-11.0)	9.83 (7.15-13.0)	10.9 (7.65-14.6)	
20-day	3.87 (3.48-4.39)	4.44 (3.98-5.04)	5.40 (4.83-6.15)	6.23 (5.53-7.12)	7.40 (6.34-8.78)	8.33 (6.95-10.0)	9.29 (7.45-11.5)	10.3 (7.87-13.1)	11.7 (8.53-15.3)	12.7 (9.03-17.0)	
30-day	4.64 (4.19-5.25)	5.33 (4.81-6.03)	6.46 (5.80-7.32)	7.40 (6.61-8.43)	8.71 (7.48-10.3)	9.73 (8.14-11.6)	10.7 (8.65-13.2)	11.8 (9.05-14.9)	13.2 (9.69-17.2)	14.3 (10.2-18.9)	
45-day	5.63 (5.11-6.34)	6.48 (5.87-7.29)	7.83 (7.07-8.84)	8.93 (8.01-10.1)	10.4 (8.96-12.2)	11.5 (9.68-13.7)	12.6 (10.2-15.4)	13.7 (10.6-17.2)	15.1 (11.2-19.6)	16.2 (11.6-21.4)	
60-day	6.48 (5.90-7.27)	7.47 (6.79-8.38)	9.02 (8.17-10.2)	10.3 (9.24-11.6)	11.9 (10.3-13.8)	13.1 (11.0-15.5)	14.3 (11.6-17.3)	15.4 (11.9-19.3)	16.8 (12.4-21.7)	17.9 (12.8-23.5)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration									
— 5-min	— 2-day								
— 10-min	— 3-day								
15-min	— 4-day								
— 30-min	— 7-day								
60-min	— 10-day								
— 2-hr	- 20-day								
— 3-hr	— 30-day								
— 6-hr	— 45-day								
— 12-hr									
— 24-hr									

NOAA Atlas 14, Volume 8, Version 2

Created (GMT): Wed Sep 28 18:09:36 2022

Back to Top

Maps & aerials

Small scale terrain

Precipitation Frequency Data Server

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

FX

9.4 Rational Method

Runoff Coefficients

Corridor / Design Package: US 24 & Peterson System Name: Proposed System

Computed: CB Checked:

Date: 11/7/2023 Date:

Sub Pacin Data					Su	b Area - Pav	vement	Sub Area			
	Sub-Basin Data		Composite	С		(100%)			HSG A-B (1	0%)	WQ CM
		Total									
		Area					Area			Area	Control
Basin ID	Description	(ac)	C₅	C ₁₀₀	C ₅	C ₁₀₀	(ac)	C₅	C ₁₀₀	(ac)	Measure ID
0+37	Alignment 60, Northbound Peterson	0.31	0.90	0.96	0.90	0.96	0.31	0.12	0.39		
0+38	Alignment 60, Southbound Peterson	0.17	0.90	0.96	0.90	0.96	0.17	0.12	0.39		
0+16	Alignment 34, Northbound Peterson	0.53	0.90	0.96	0.90	0.96	0.53	0.12	0.39		
0+18	Alignment 60, Southbound Peterson	0.34	0.90	0.96	0.90	0.96	0.34	0.12	0.39		
1+26	Northbound Peterson, South RAB	0.17	0.12	0.39	1.90	0.96	0.00	0.12	0.39	0.17	
0+25	Northbound Peterson, South RAB	2.54	0.66	0.78	0.90	0.96	1.75	0.12	0.39	0.79	SS
0+82	Eastbound Space Village offramp, inner lane	0.13	0.90	0.96	0.90	0.96	0.13	0.12	0.39		SS
0+88	Eastbound Space Village offramp, outter lane	0.21	0.90	0.96	0.90	0.96	0.21	0.12	0.39		SS
1+10	Northbound Peterson, South RAB	0.14	0.90	0.96	0.90	0.96	0.14	0.12	0.39		SS
1+11	Northbound Peterson, South RAB	0.22	0.90	0.96	0.90	0.96	0.22	0.12	0.39		SS
1+22	Eastbound Space Village offramp	0.50	0.90	0.96	0.90	0.96	0.50	0.12	0.39		SS
2+08	Westbound Space Village onramp, inner lane	0.04	0.90	0.96	0.90	0.96	0.04	0.12	0.39		SS
2+13	Westbound Space Village onramp, outter lane	0.03	0.90	0.96	0.90	0.96	0.03	0.12	0.39		SS
2+32	Westbound Space Village onramp	0.18	0.90	0.96	0.90	0.96	0.18	0.12	0.39		SS
2+64	Westbound Space Villave offramp	0.13	0.90	0.96	0.90	0.96	0.13	0.12	0.39		SS
2+84	Westbound Space Village offramp	0.22	0.90	0.96	0.90	0.96	0.22	0.12	0.39		SS
3+11	Offsite, northeast corner of South RAB	3.24	0.39	0.59	0.90	0.96	1.13	0.12	0.39	2.11	SS
3+43	Offsite, northwest corner of South RAB	1.47	0.40	0.60	0.90	0.96	0.53	0.12	0.39	0.94	SS
3+47	Northbound Peterson, South RAB	0.59	0.81	0.89	0.90	0.96	0.52	0.12	0.39	0.07	SS
3+83	Southbound Peterson, South RAB	0.14	0.90	0.96	0.90	0.96	0.14	0.12	0.39		SS
5+41	Southbound Peterson, North RAB	0.10	0.90	0.96	0.90	0.96	0.10	0.12	0.39		NS
5+32	Offsite, southwest corner of North RAB	1.95	0.39	0.59	0.90	0.96	0.68	0.12	0.39	1.28	NS
5+46	Westbound US 24 onramp	0.10	0.90	0.96	0.90	0.96	0.10	0.12	0.39		NS
5+51	Westbound US 24 onramp	0.13	0.90	0.96	0.90	0.96	0.13	0.12	0.39		NS
5+49	Northbound Peterson, North RAB	0.13	0.90	0.96	0.90	0.96	0.13	0.12	0.39		NS
5+69	FES Outfall for Ditch 5+69	3.17	0.90	0.96	0.90	0.96	3.17	0.12	0.39		
6+51	Offsite, southeast corner of North RAB	1.59	0.50	0.67	0.90	0.96	0.78	0.12	0.39	0.81	NS
6+74	Westbound US 24 offramp	0.15	0.90	0.96	0.90	0.96	0.15	0.12	0.39		NS
6+75	Westbound US 24 offramp	0.15	0.90	0.96	0.90	0.96	0.15	0.12	0.39		NS
6+77	Westbound US 24 offramp	0.30	0.90	0.96	0.90	0.96	0.30	0.12	0.39		NS
7+07	Offsite, northeast corner of North RAB	24.63	0.19	0.44	0.90	0.96	2.21	0.12	0.39	22.42	
7+97	Westbound US 24 onramp, inner lane	0.13	0.90	0.96	0.90	0.96	0.13	0.12	0.39		
8+07	Westbound US 24 onramp, outter lane	0.13	0.90	0.96	0.90	0.96	0.13	0.12	0.39		
8+19	Northbound Peterson, North RAB	0.14	0.90	0.96	0.90	0.96	0.14	0.12	0.39		
8+39	Southbound Peterson, inner lane, North RAB.	0.06	0.90	0.96	0.90	0.96	0.06	0.12	0.39		
8+57	Southbound Peterson, outter lane, North RAB	0.77	0.90	0.96	0.90	0.96	0.77	0.12	0.39		
	Total	45.35					16.33			116.45	

Standard Form SF-1 . Time of Concentration Corridor / Design Package: US 24 & Peterson System Name: Proposed System

	SUB-BASIN DATA				INITIA	AL/OVERLAN	D FLOW		TRAVEL TIME Total							Tc CHE	FINAL Tc						
						(t _i)				(t _i)								(Urba	(min)				
														Type of Land Surface									
					Start	End				Start	End						Travel		Urban	Total			
			Area	Length	Elevation	Elevation	Slope	ti	Length	Elevation	Elevation	Sw			Convey	Velocity	Time	$t_c = t_i + t_t$	(Yes	Length	T _{c max}		
Basin ID	Description	C5	(ac)	(ft)	(ft)	(ft)	(ft/ft)	(min)	(ft)	(ft)	(ft)	(ft/ft)	Cover	Description	Coef (C _v)	(ft/s)	(min)	(min)	/No)	(ft)	(min)	Tc _{max} > t _c	
0+37	Alignment 60, Northbound Peterson	0.90	0.31	60.594	6270.5	6269.9	0.010	2.82	180.138	6269.9	6267.051	0.016	6	Paved areas and shallow paved swales	20	2.52	1.19	4.01	Yes	241	11.34	Check	5.00
0+38	Alignment 60, Southbound Peterson	0.90	0.17	42.75	6269.584	6268.725	0.020	1.88	185.808	6268.73	6264.848	0.021	6	Paved areas and shallow paved swales	20	2.89	1.07	2.95	Yes	229	11.27	Check	5.00
0+16	Alignment 34, Northbound Peterson	0.90	0.53	43.6	6271.228	6270.11	0.026	1.75	364.0	6270.11	6265.578	0.012	6	Paved areas and shallow paved swales	20	2.23	2.72	4.46	Yes	408	12.26	Check	5.00
0+18	Alignment 60, Southbound Peterson	0.90	0.34	29.216	6271.067	6270.67	0.014	1.76	332.918	6270.67	6265.269	0.016	6	Paved areas and shallow paved swales	20	2.55	2.18	3.94	Yes	362	12.01	Check	5.00
1+26	Northbound Peterson, South RAB	0.12	0.17	30.02	6278.057	6277.4	0.022	7.49	339.822	6277.4	6270.002	0.022	3	Short pasture and lawns	7	1.03	5.48	12.97	Yes	370	12.05	Regional Tc	12.05
0+25	Northbound Peterson, South RAB	0.66	2.54	56.2	6278	6275.366	0.047	3.60	524.597	6275.37	6267.968	0.014	3	Short pasture and lawns	7	0.83	10.52	14.11	Yes	581	13.23	Regional Tc	13.23
0+82	Eastbound Space Village offramp, inner lane	0.90	0.13	38.226	6273.52	6272.454	0.028	1.59	250.381	6272.45	6270.569	0.008	6	Paved areas and shallow paved swales	20	1.74	2.40	4.00	Yes	289	11.60	Check	5.00
0+88	Eastbound Space Village offramp, outter lane	0.90	0.21	79.271	6277.78	6276.543	0.016	2.78	142.926	6276.54	6270.861	0.040	6	Paved areas and shallow paved swales	20	3.99	0.60	3.37	Yes	222	11.23	Check	5.00
1+10	Northbound Peterson, South RAB	0.90	0.14	56.175	6278.013	6275.374	0.047	1.62	524.597	6275.37	6267.41	0.015	6	Paved areas and shallow paved swales	20	2.46	3.55	5.17	Yes	581	13.23	Check	5.17
1+11	Northbound Peterson, South RAB	0.90	0.22	43.447	6273.074	6272.091	0.023	1.82	62.265	6272.09	6271.296	0.013	6	Paved areas and shallow paved swales	20	2.26	0.46	2.28	Yes	106	10.59	Check	5.00
1+22	Eastbound Space Village offramp	0.90	0.50	59.089	6276.656	6275	0.028	1.98	255.82	6275	6271.117	0.015	6	Paved areas and shallow paved swales	20	2.46	1.73	3.71	Yes	315	11.75	Check	5.00
2+08	Westbound Space Village onramp, inner lane	0.90	0.04	42.159	6276.322	6274.313	0.048	1.40	67.641	6274.31	6271.923	0.035	6	Paved areas and shallow paved swales	20	3.76	0.30	1.70	Yes	110	10.61	Check	5.00
2+13	Westbound Space Village onramp, outter lane	0.90	0.03	38.681	6275.702	6273.856	0.048	1.34	64.888	6273.86	6272.396	0.023	6	Paved areas and shallow paved swales	20	3.00	0.36	1.70	Yes	104	10.58	Check	5.00
2+32	Westbound Space Village onramp	0.90	0.18	79.014	6278.9	6276.888	0.025	2.36	176.03	6276.89	6274.5	0.014	6	Paved areas and shallow paved swales	20	2.33	1.26	3.62	Yes	255	11.42	Check	5.00
2+64	Westbound Space Villave offramp	0.90	0.13	28.256	6277.8	6276.42	0.049	1.14	218.547	6276.42	6272.356	0.019	6	Paved areas and shallow paved swales	20	2.73	1.34	2.47	Yes	247	11.37	Check	5.00
2+84	Westbound Space Village offramp	0.90	0.22	57.827	6275.448	6273.662	0.031	1.89	93.744	6273.66	6271.955	0.018	6	Paved areas and shallow paved swales	20	2.70	0.58	2.47	Yes	152	10.84	Check	5.00
3+11	Offsite, northeast corner of South RAB	0.39	3.24	80.448	6294.179	6294	0.002	18.81	877.068	6294	6272.229	0.025	3	Short pasture and lawns	7	1.10	13.25	32.06	Yes	958	15.32	Regional Tc	15.32
3+43	Offsite, northwest corner of South RAB	0.40	1.47	85.159	6279.249	6279	0.003	17.47	471.779	6279	6267.108	0.025	3	Short pasture and lawns	7	1.11	7.08	24.54	Yes	557	13.09	Regional Tc	13.09
3+47	Northbound Peterson, South RAB	0.81	0.59	94.209	6284.036	6279.473	0.048	3.05	303.924	6279.47	6272.193	0.024	6	Paved areas and shallow paved swales	20	3.10	1.64	4.68	Yes	398	12.21	Check	5.00
3+83	Southbound Peterson, South RAB	0.90	0.14	54.76	6276.3	6274.508	0.033	1.81	173.845	6274.51	6272.342	0.012	6	Paved areas and shallow paved swales	20	2.23	1.30	3.10	Yes	229	11.27	Check	5.00
5+41	Southbound Peterson, North RAB	0.90	0.10	81.212	6280.248	6277.21	0.037	2.11	99.924	6277.21	6274.616	0.026	6	Paved areas and shallow paved swales	20	3.22	0.52	2.62	Yes	181	11.01	Check	5.00
5+32	Offsite, southwest corner of North RAB	0.39	1.95	18.289	6282.515	6279	0.192	2.06	440	6279	6269.048	0.023	3	Short pasture and lawns	7	1.05	6.97	9.03	Yes	458	12.55	Check	9.03
5+46	Westbound US 24 onramp	0.90	0.10	29.102	6277.47	6275.949	0.052	1.13	102.397	6275.95	6275.394	0.005	6	Paved areas and shallow paved swales	20	1.47	1.16	2.29	Yes	131	10.73	Check	5.00
5+51	Westbound US 24 onramp	0.90	0.13	9.82	6279.624	6279.139	0.049	0.67	252.161	6279.14	6275.479	0.015	6	Paved areas and shallow paved swales	20	2.41	1.74	2.41	Yes	262	11.46	Check	5.00
5+49	Northbound Peterson, North RAB	0.90	0.13	31.12	6280.374	6278.652	0.055	1.15	69.254	6278.65	6273.731	0.071	6	Paved areas and shallow paved swales	20	5.33	0.22	1.36	Yes	100	10.56	Check	5.00
5+69	FES Outfall for Ditch 5+69	0.90	3.17	54.668	6289	6286	0.055	1.52	819.361	6286	6271	0.018	6	Paved areas and shallow paved swales	20	2.71	5.05	6.57	Yes	874	14.86	Check	6.57
6+51	Offsite, southeast corner of North RAB	0.50	1.59	28.499	6289.4	6288.976	0.015	5.05	619.934	6288.98	6276.7	0.020	3	Short pasture and lawns	7	0.99	10.49	15.54	Yes	648	13.60	Regional Tc	13.60
6+74	Westbound US 24 offramp	0.90	0.15	26.312	6279.495	6278.82	0.026	1.36	156.191	6278.82	6275.952	0.018	6	Paved areas and shallow paved swales	20	2.71	0.96	2.32	Yes	183	11.01	Check	5.00
6+75	Westbound US 24 offramp	0.90	0.15	25.864	6280.318	6278.8	0.059	1.02	166.537	6278.8	6276.045	0.017	6	Paved areas and shallow paved swales	20	2.57	1.08	2.10	Yes	192	11.07	Check	5.00
6+77	Westbound US 24 offramp	0.90	0.30	25.519	6289.4	6288.985	0.016	1.55	518.429	6288.99	6276.625	0.024	6	Paved areas and shallow paved swales	20	3.09	2.80	4.35	Yes	544	13.02	Check	5.00
7+07	Offsite, northeast corner of North RAB	0.19	24.63	100	6321.126	6312.6	0.085	8.10	2220.99	6312.6	6275.591	0.017	3	Short pasture and lawns	7	0.90	40.97	49.07	Yes	2321	22.89	Regional Tc	22.89
7+97	Westbound US 24 onramp, inner lane	0.90	0.13	10.56	6280.138	6279.528	0.058	0.66	171.854	6279.53	6276.848	0.016	6	Paved areas and shallow paved swales	20	2.50	1.15	1.80	Yes	182	11.01	Check	5.00
8+07	Westbound US 24 onramp, outter lane	0.90	0.13	39.33	6278.759	6278.435	0.008	2.41	103.049	6278.44	6276.497	0.019	6	Paved areas and shallow paved swales	20	2.74	0.63	3.04	Yes	142	10.79	Check	5.00
8+19	Northbound Peterson, North RAB	0.90	0.14	42.854	6281.175	6280.167	0.024	1.78	180.827	6280.17	6279	0.006	6	Paved areas and shallow paved swales	20	1.61	1.88	3.66	Yes	224	11.24	Check	5.00
8+39	Southbound Peterson, inner lane, North RAB,	0.90	0.06	37.894	6280.071	6279.145	0.024	1.66	51.512	6279.15	6273.39	0.112	6	Paved areas and shallow paved swales	20	6.68	0.13	1.78	Yes	89	10.50	Check	5.00
8+57	Southbound Peterson, outter lane, North RAB	0.90	0.77	44.393	6286.928	6285.881	0.024	1.81	667.663	6285.88	6278.118	0.012	6	Paved areas and shallow paved swales	20	2.16	5.16	6.97	Yes	712	13.96	Check	6.97

Date: 11/7/2023
Date:

Computed: CB Checked:

Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure)

Corridor / Design Package:	US 24 & Peterson	Computed:	CB	Date:	11/7/2023
System Name:	Proposed System	Checked:		Date:	

Design Storm: 5-yr

	DIF	RECT RU	JNOFF					REMARKS
LOCATION	AREA DESIGN	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C.A. (AC)	I IN / HR	a (CFS)	
(1)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(22)
0+37	Alignment 60, Northbound Peterson	0.31	0.90	5.00	0.27	4.52	1.24	
0+38	Alignment 60, Southbound Peterson	0.17	0.90	5.00	0.15	4.52	0.68	
0+16	Alignment 34, Northbound Peterson	0.53	0.90	5.00	0.47	4.52	2.14	
0+18	Alignment 60, Southbound Peterson	0.34	0.90	5.00	0.30	4.52	1.37	
1+26	Northbound Peterson, South RAB	0.17	0.12	12.05	0.02	3.07	0.06	
0+25	Northbound Peterson, South RAB	2.54	0.66	13.23	1.67	2.95	4.92	
0+82	Eastbound Space Village offramp, inner lane	0.13	0.90	5.00	0.12	4.52	0.54	
0+88	Eastbound Space Village offramp, outter lane	0.21	0.90	5.00	0.19	4.52	0.87	
1+10	Northbound Peterson, South RAB	0.14	0.90	5.17	0.12	4.52	0.56	
1+11	Northbound Peterson, South RAB	0.22	0.90	5.00	0.20	4.52	0.90	
1+22	Eastbound Space Village offramp	0.50	0.90	5.00	0.45	4.52	2.03	
2+08	Westbound Space Village onramp, inner lane	0.04	0.90	5.00	0.04	4.52	0.17	
2+13	Westbound Space Village onramp, outter lane	0.03	0.90	5.00	0.02	4.52	0.11	
2+32	Westbound Space Village onramp	0.18	0.90	5.00	0.16	4.52	0.71	
2+64	Westbound Space Villave offramp	0.13	0.90	5.00	0.12	4.52	0.55	
2+84	Westbound Space Village offramp	0.22	0.90	5.00	0.20	4.52	0.91	
3+11	Offsite, northeast corner of South RAB	3.24	0.39	15.32	1.27	2.70	3.43	
3+43	Offsite, northwest corner of South RAB	1.47	0.40	13.09	0.59	2.95	1.74	
3+47	Northbound Peterson, South RAB	0.59	0.81	5.00	0.48	4.52	2.15	
3+83	Southbound Peterson, South RAB	0.14	0.90	5.00	0.13	4.52	0.58	
5+41	Southbound Peterson, North RAB	0.10	0.90	5.00	0.09	4.52	0.39	
5+32	Offsite, southwest corner of North RAB	1.95	0.39	9.03	0.76	3.56	2.72	
5+46	Westbound US 24 onramp	0.10	0.90	5.00	0.09	4.52	0.39	
5+51	Westbound US 24 onramp	0.13	0.90	5.00	0.12	4.52	0.54	
5+49	Northbound Peterson, North RAB	0.13	0.90	5.00	0.12	4.52	0.54	
5+69	FES Outfall for Ditch 5+69	3.17	0.90	6.57	2.85	4.28	28.21	Used for Ditch calc at Culvert Out, added flows from contributing inlets: 8+19,8+39,8+57,8+07, 7+97 and Culvert 7+07
6+51	Offsite, southeast corner of North RAB	1.59	0.50	13.60	0.80	2.95	2.36	
6+74	Westbound US 24 offramp	0.15	0.90	5.00	0.13	4.52	0.60	
6+75	Westbound US 24 offramp	0.15	0.90	5.00	0.13	4.52	0.60	
6+77	Westbound US 24 offramp	0.30	0.90	5.00	0.27	4.52	1.23	
7+07	Offsite, northeast corner of North RAB	24.63	0.19	22.89	4.68	2.39	11.18	
7+97	Westbound US 24 onramp, inner lane	0.13	0.90	5.00	0.12	4.52	0.52	
8+07	Westbound US 24 onramp, outter lane	0.13	0.90	5.00	0.11	4.52	0.52	
8+19	Northbound Peterson, North RAB	0.14	0.90	5.00	0.13	4.52	0.58	
8+39	Southbound Peterson, inner lane, North RAB,	0.06	0.90	5.00	0.05	4.52	0.23	
8+57	Southbound Peterson, outter lane, North RAB	North RAB 0.77 0.90 6.97 0.70 4.28 2.98						
(1) Basin Description linked to C-Value Sheet	=Column 4 x Column 5			(12)	=Intensity	for Tc		
(2) Basin Design Point	=Intensity for Tc			(13)	Sum of Q	6		
(3) Enter the Basin Name from C Value Sheet	=Column 7 x Column 8	(14) Slope of additonal street flow						
(4) Basin Area linked to C-Value Sheet	=Column 6 + Column 21			(15)	Additonal	Street Overlar	nd Flow	

(15) Additonal Street O (16) Design Pipe Flow

(5) Composite C linked to C-Value Sheet Add the Basin Areas (7) to get the combined basin AC (6) Time of Concentration linked to C-Value Sheet

	DIF	RECT RI	JNOFF					REMARKS		
LOCATION	AREA DESIGN	AREA (AC)	RUNOFF COEFF	t _c (MIN)	с.А. (АС)	I IN / HR	Q (CFS)			
(1)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(22)		
0+37	Alignment 60, Northbound Peterson	0.31	0.92	5.00	0.28	9.25	2.60			
0+38	Alignment 60, Southbound Peterson	0.17	0.92	5.00	0.15	9.25	1.42			
0+16	Alignment 34, Northbound Peterson	0.53	0.92	5.00	0.48	9.25	4.48			
0+18	Alignment 60, Southbound Peterson	0.34	0.92	5.00	0.31	9.25	2.86			
1+26	Northbound Peterson, South RAB	0.17	0.20	12.05	0.03	6.26	0.22			
0+25	Northbound Peterson, South RAB	2.54	0.70	13.23	1.77	6.01	10.62			
0+82	Eastbound Space Village offramp, inner lane	0.13	0.92	5.00	0.12	9.25	1.12			
0+88	Eastbound Space Village offramp, outter lane	0.21	0.92	5.00	0.20	9.25	1.82			
1+10	Northbound Peterson, South RAB	0.14	0.92	5.17	0.13	9.25	1.17			
1+11	Northbound Peterson, South RAB	0.22	0.92	5.00	0.20	9.25	1.88			
1+22	Eastbound Space Village offramp	0.50	0.92	5.00	0.46	9.25	4.25			
2+08	Westbound Space Village onramp, inner lane	0.04	0.92	5.00	0.04	9.25	0.35			
2+13	Westbound Space Village onramp, outter lane	0.03	0.92	5.00	0.03	9.25	0.23			
2+32	Westbound Space Village onramp	0.18	0.92	5.00	0.16	9.25	1.49			
2+64	Westbound Space Villave offramp	0.13	0.92	5.00	0.12	9.25	1.15			
2+84	Westbound Space Village offramp	0.22	0.92	5.00	0.21	9.25	1.91			
3+11	Offsite, northeast corner of South RAB	3.24	0.45	15.32	1.46	5.50	8.04			
3+43	Offsite, northwest corner of South RAB	1.47	0.46	13.09	0.68	6.01	4.06			
3+47	Northbound Peterson, South RAB	0.59	0.83	5.00	0.49	9.25	4.55			
3+83	Southbound Peterson, South RAB	0.14	0.92	5.00	0.13	9.25	1.21			
5+41	Southbound Peterson, North RAB	0.10	0.92	5.00	0.09	9.25	0.81			
5+32	Offsite, southwest corner of North RAB	1.95	0.45	9.03	0.88	7.27	6.40			
5+46	Westbound US 24 onramp	0.10	0.92	5.00	0.09	9.25	0.82			
5+51	Westbound US 24 onramp	0.13	0.92	5.00	0.12	9.25	1.12			
5+49	Northbound Peterson, North RAB	0.13	0.92	5.00	0.12	9.25	1.13			
5+69	FES Outfall for Ditch 5+69	3.17	0.92	6.57	2.91	8.75	67.33	Used for Ditch calc at Culvert Out, added flows from contributing inlets: 8+19,8+39,8+57,8+07, 7+97 and Culvert 7+07		
6+51	Offsite, southeast corner of North RAB	1.59	0.55	13.60	0.88	6.01	5.29			
6+74	Westbound US 24 offramp	0.15	0.92	5.00	0.14	9.25	1.26			
6+75	Westbound US 24 offramp	0.15	0.92	5.00	0.13	9.25	1.25			
6+77	Westbound US 24 offramp	0.30	0.92	5.00	0.28	9.25	2.57			
7+07	Offsite, northeast corner of North RAB	24.63	0.26	22.89	6.52	4.87	31.74			
7+97	Westbound US 24 onramp, inner lane	0.13	0.92	5.00	0.12	9.25	1.09			
8+07	Westbound US 24 onramp, outter lane	0.13	0.92	5.00	0.12	9.25	1.08			
8+19	Northbound Peterson, North RAB	0.14	0.92	5.00	0.13	9.25	1.22			
8+39	Southbound Peterson, inner lane, North RAB,	0.06	0.92	5.00	0.05	9.25	0.47			
8+57	Southbound Peterson, outter lane, North RAB	0.77	0.92	6.97	0.71	8.75	6.23			

(1) Basin Description linked to C-Value Sheet

=Column 4 x Column 5 =Intensity for Tc

=Column 7 x Column 8

=Column 6 + Column 21

Add the Basin Areas (7) to get the combined basin AC

(2) Basin Design Point

(3) Enter the Basin Name from C Value Sheet

(4) Basin Area linked to C-Value Sheet

(5) Composite C linked to C-Value Sheet
(6) Time of Concentration linked to C-Value Sheet

(12) =Intensity for Tc(13) Sum of Qs(14) Slope of additonal street flow (15) Additonal Street Overland Flow(16) Design Pipe Flow

		Computed:	CB	Date:	11/7/2023	
		Checked:		Date:		
Time			(in/hr)			
(min)	2 Yr	5 Yr	10 Yr	25 Yr	50 Yr	100 Yr
5	3.47	4.52	5.47	6.88	8.03	9.25
6	3.28	4.28	5.18	6.51	7.60	8.75
7	3.10	4.04	4.89	6.14	7.17	8.26
8	2.91	3.80	4.59	5.77	6.74	7.76
9	2.73	3.56	4.30	5.40	6.31	1.27
10	2.54	3.32	4.01	5.03	5.88	6.50
11	2.44	3.20	3.80	4.84	5.00	0.52
12	2.35	3.07	3.71	4.03	5.44	6.01
13	2.20	2.90	3.00	4.47	5.22	5.75
14	2.10	2.02	3.26	4.20	4 78	5.50
16	2.00	2.70	3.20	4.03	4 70	5.30
17	1.99	2.60	3 15	3.96	4 62	5.32
18	1.96	2.57	3 10	3.89	4 55	5.23
19	1.93	2.52	3.05	3.82	4.47	5.14
20	1.89	2.48	2.99	3.76	4.39	5.05
21	1.86	2.44	2.94	3.69	4.31	4.96
22	1.83	2.39	2.89	3.62	4.23	4.87
23	1.79	2.35	2.83	3.56	4.16	4.78
24	1.76	2.30	2.78	3.49	4.08	4.69
25	1.73	2.26	2.73	3.42	4.00	4.60
26	1.69	2.22	2.67	3.36	3.92	4.51
27	1.66	2.17	2.62	3.29	3.84	4.42
28	1.63	2.13	2.57	3.22	3.77	4.33
29	1.59	2.08	2.51	3.16	3.69	4.24
30	1.56	2.04	2.46	3.09	3.61	4.15
31	1.54	2.02	2.43	3.05	3.57	4.10
32	1.52	1.99	2.40	3.02	3.53	4.06
33	1.51	1.97	2.37	2.98	3.48	4.01
34	1.49	1.94	2.34	2.94	3.44	3.96
35	1.47	1.92	2.31	2.91	3.40	3.92
30	1.45	1.09	2.20	2.07	3.30	3.07
38	1.43	1.07	2.20	2.03	3.32	3.02
30	1.42	1.04	2.22	2.00	3.27	3.73
40	1.40	1.02	2.10	2.70	3 19	3.68
41	1.36	1.73	2.10	2.69	3 15	3.63
42	1.34	1.74	2.10	2.65	3.11	3.59
43	1.33	1.72	2.07	2.61	3.06	3.54
44	1.31	1.69	2.04	2.58	3.02	3.49
45	1.29	1.67	2.02	2.54	2.98	3.45
46	1.27	1.65	1.99	2.50	2.94	3.40
47	1.25	1.62	1.96	2.47	2.90	3.35
48	1.24	1.60	1.93	2.43	2.85	3.30
49	1.22	1.57	1.90	2.39	2.81	3.26
50	1.20	1.55	1.87	2.36	2.77	3.21
51	1.18	1.52	1.84	2.32	2.73	3.16
52	1.16	1.50	1.81	2.28	2.69	3.12
53	1.15	1.47	1.78	2.25	2.64	3.07
54	1.13	1.45	1.75	2.21	2.60	3.02
55 56	1.11	1.42	1.72	2.17	2.50	2.98
57	1.09	1.40	1.09	2.14	2.02	2.93
58	1.07	1.37	1.00	2.10	2.40	2.00
59	1.00	1.32	1.05	2.00	2.43	2.00
60	1.04	1.30	1.57	1.99	2.35	2 74

*Note: Intensity values for the IDF curves were generated from the IDF equations provided on the City of Colorado Springs Drainage Criteria Manual, Volume I, Chapter 6, Figure 6-5.

9/30/22, 1:50 PM

Precipitation Frequency Data Server

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavkovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular PF_graphical Maps_&_aerials

PF tabular

PDS-	based poi	nt precipi	tation free	luency es	timates w	ith 90% co	onfidence	intervals	(in inches	/hour) ¹
Duration				Avera	ge recurren	ce interval (y	/ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	2.86	3.47	4.52	5.47	6.88	8.03	9.25	10.5	12.4	13.8
	(2.40-3.43)	(2.90-4.18)	(3.78-5.47)	(4.55-6.64)	(5.53-8.74)	(6.28-10.3)	(6.95-12.2)	(7.57-14.3)	(8.50-17.3)	(9.20-19.5)
10-min	2.09	2,54	3.32	4.01	5.03	5.88	6.77	7.72	9.06	10.1
	(1.75-2.51)	(2,12-3,05)	(2.77-4.00)	(3.32-4.86)	(4.04-6.40)	(4.59-7.56)	(5.09-8.93)	(5.54-10.5)	(6.22-12.6)	(6.74-14.3)
15-min	1.70	2.06	2.70	3.26	4.09	4.78	5.50	6.28	7.37	8.24
	(1.42-2.04)	(1.73-2.48)	(2.25-3.26)	(2.70-3.95)	(3.29-5.20)	(3.73-6.14)	(4.14-7.26)	(4.50-8.51)	(5.06-10.3)	(5.48-11.6)
30 - min	1.29	1.56	2.04	2.46	3.09	3.61	4.15	4.74	5.56	6.22
	(1.08-1.55)	(1.31-1.88)	(1.70-2.46)	(2.04-2.99)	(2.48-3.93)	(2.82-4.64)	(3.12-5.48)	(3.40-6.42)	(3.82-7.75)	(4.13-8.75)
60-min	0.861	1.02	1.30	1.57	1.99	2.35	2.74	3.17	3.79	4.29
	(0.722-1.03)	(0.851-1.22)	(1.09-1.57)	(1.30-1.91)	(1.61-2.55)	(1.84-3.04)	(2.07-3.63)	(2.28-4.32)	(2.61-5.30)	(2.86-6.05)
2-hr	0.538	0.625	0.792	0.956	1.22	1.45	1.70	1.98	2.40	2.74
	(0.455-0.643)	(0.528-0.748)	(0.667-0.950)	(0.800-1.15)	(0.997-1.56)	(1.15-1.87)	(1.30-2.25)	(1.44-2.70)	(1.67-3.34)	(1.84-3.83)
3-hr	0.396	0.452	0.567	0.684	0.876	1.05	1.25	1.47	1.80	2.07
	(0.336-0.471)	(0.384-0.538)	(0.479-0.677)	(0.574-0.821)	(0.725-1.13)	(0,839-1,36)	(0.956-1.65)	(1.07-1.99)	(1,25-2,50)	(1,39-2,88)
6-hr	0.227	0.257	0.320	0.386	0.497	0.599	0.715	0.847	1.04	1.21
	(0.195-0.269)	(0.220-0.304)	(0.273-0.379)	(0.327-0.460)	(0.416-0.638)	(0.483-0.772)	(0.554-0.943)	(0.625-1.15)	(0.736-1.45)	(0.820-1.68)
12-hr	0.125	0.143	0.181	0.218	0.279	0.334	0.396	0.466	0.569	0.655
	(0.108-0.147)	(0.124-0.169)	(0.155-0.213)	(0.186-0.258)	(0.235-0.354)	(0.271-0.426)	(0.309-0.517)	(0.346-0.624)	(0.403-0.782)	(0.447-0.901)
24 - hr	0.070	0.081	0.103	0.124	0.158	0.187	0,218	0.254	0.305	0.347
	(0.061-0.081)	(0.071-0.095)	(0.090-0.121)	(0.107-0.146)	(0.133-0.197)	(0.152-0.235)	(0.171-0,282)	(0.189-0.336)	(0.217-0.415)	(0.239-0.475)
2-day	0.040	0.047	0.059	0.070	0.088	0.103	0.119	0.137	0.162	0.183
	(0.035-0.046)	(0.041-0.054)	(0.051-0.069)	(0,061-0,082)	(0.074-0.108)	(0.084-0.128)	(0.094-0.152)	(0.103-0.180)	(0.116-0.219)	(0,127-0,248)
3-day	0.029	0.034	0.043	0.051	0.063	0.073	0.084	0.096	0.112	0.126
	(0.026-0.033)	(0.030-0.039)	(0.038-0.050)	(0.044-0.059)	(0.053-0.077)	(0.060-0.090)	(0.066-0.107)	(0.072-0.125)	(0.081-0.151)	(0.088-0.170)
4-day	0.023	0.027	0.034	0.040	0.050	0.058	0.066	0.075	0.087	0.097
	(0.021-0.027)	(0.024-0.031)	(0.030-0.039)	(0.035-0.047)	(0.042-0.060)	(0.047-0.071)	(0.052-0.083)	(0.056-0.097)	(0.063-0.116)	(0.068-0.131)
7 - day	0.015	0.018	0.022	0.026	0.032	0.037	0.042	0.047	0.054	0.060
	(0.014-0.018)	(0.016-0.021)	(0.020-0.026)	(0.023-0.030)	(0.027-0.038)	(0.030-0.045)	(0.033-0.052)	(0.036-0.060)	(0.039-0.072)	(0.042-0.081)
10-day	0.012	0.014	0.017	0.020	0.024	0.028	0.032	0.035	0.041	0.045
	(0.011-0.014)	(0.013-0.016)	(0.015-0.020)	(0.018-0.023)	(0.021-0.029)	(0.023-0.034)	(0.025-0.039)	(0.027-0.045)	(0.030-0.054)	(0.032-0.060)
20-day	0.008	0.009	0.011	0.013	0.015	0.017	0.019	0.021	0.024	0.026
	(0.007-0.009)	(0.008-0.010)	(0.010-0.013)	(0.012-0.015)	(0.013-0.018)	(0.015-0.021)	(0.016-0.024)	(0.016-0.027)	(0.018-0.032)	(0.019-0.035)
30-day	0.006	0.007	0.009	0.010	0.012	0.014	0.015	0.016	0.018	0.020
	(0.006-0.007)	(0.007-0.008)	(0.008-0.010)	(0.009-0.012)	(0.010-0.014)	(0.011-0.016)	(0.012-0.018)	(0.013-0.021)	(0.013-0.024)	(0.014-0.026)
45-day	0.005	0.006	0.007	0.008	0.010	0.011	0.012	0.013	0.014	0.015
	(0.005-0.006)	(0.005-0.007)	(0.007-0.008)	(0.007-0.009)	(0.008-0.011)	(0.009-0.013)	(0.009-0.014)	(0.010-0.016)	(0.010-0.018)	(0.011-0.020)
60-day	0.005	0.005	0.006	0.007	0.008	0.009	0.010	0.011	0.012	0.012
	(0.004-0.005)	(0.005-0.006)	(0.006-0.007)	(0.006-0.008)	(0.007-0.010)	(0.008-0.011)	(0.008-0.012)	(0.008-0.013)	(0.009-0.015)	(0.009-0.016)

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
 Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a diven duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
 Please refer to NOAA Atlas 14 document for more information.
 Densite Table

Back to Top

9.5 Soil Data Report

Hydrologic Soil Group-El Paso County Area, Colorado

National Cooperative Soil Survey

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	18.6	43.9%
10	Blendon sandy loam, 0 to 3 percent slopes	В	7.4	17.3%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	A	0.9	2.1%
96	Truckton sandy loam, 0 to 3 percent slopes	A	14.2	33.4%
97	Truckton sandy loam, 3 to 9 percent slopes	A	1.4	3.2%
Totals for Area of Intere	st		42.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

FS

9.6 FEMA FIRM

	LEGEND	
	SPECIAL FLOOD INZARD AREAS (SFINS) SUBJECT TO IMPORTION BY THE 1% ARMUN. CHANCE FLOOD	
te 2% annu schoolo 2% ocset Anna penal Phoel evalue 5.0	al diance flood (105-year fload), also brown as the lases fload, is the fload chemic of being squared or excession is any pieter year. The fload fload for an analysis to floating by the C's served chemic fload. Hence of floader include lanes J, Jd, Jd, Jd, Jd, Jd, Jd, V, V and VR. The fload fload is addressing brown J, Jd, Jd, Jd, Jd, Jd, V and Jd, V and Jd.	
ONE A	to Base Pool Develops determined.	
ONE AL	Rear Place Devotors deterrined. Fand depte of to 2 fest (unally areas of panding) leave Food Devotors - Solarmines.	
ONE NO	Head depths of 1 to 3 text justicely sheet having sectors j average depths observated. For answ of advant tex housing, velocities also determined.	
ONE AR	Special Food Heard Area Romen's protocole from the 1% annual chances freed by a food portiod potent that was subsequently departition. Zone all relates that the former freed ported system is temp externed to provide prediction free that the service of protoin freed.	
ONE ARE	leta lo la polacial hun (% annual chana find by a Feleral find polacian sydem under condractor, no kan Head limition; administrat,	
ONEV	Dansial Road come with velocity heard (more action); no Rose Road Dansface data strend.	
IN IRC	Dasid first are with which haund (now arter); fast Fired	
7777	Heaton: Beerings	
22228	TUDATINE MUNS IN 2016, NO	
ræ Plaadelae opt. fron of e destandel ins	In the channel of a stream plus any acquirer, footpant amain that the protectioners in that the the annual chance fixed can be carried without reacts in fixed heights.	
	OTHER FLOCE AREAS	
ONE X	Jesse of 3.2% aread charaor front; areas of 2% aread charaor fixed with average depths of less than 1 fixed or with charage areas less than 1 space talle, and areas publicated for events train the armae charaor fixed.	
	OTHER AREAS	
DNE X	letter-determined to be outside the 6-2% annual charact familphoty.	
0.140	Artas in which flood hexands are undetermined, but possible.	
[[]]	COASTAL BARRER RESOURCES SYSTEM (CBRS) AREAG	
1223	OTHORADSE PROTECTED AREAS (OPAu)	
ant and a	d ONs are rorredy tooled within or adjacent to Steolal Plood Halonic Arees.	
	Roobway Inurchey	
	Zere E-Boundary	
	Los de On Bonady	
_	Place Develops, find apple in fixed read Areas of otherwithers Place Develops, fixed apple in fixed relacities.	
~ 513	Base Pload Devolution line and value; elevabor: in Ben?	
(0.00)	 Bose Placed Develops value whole unations within some, allocation in face? 	
Televisian	is the Narih American Netlical Calum of 1998 (MVD-88)	
<u> </u>	Grass section line	
ŋ	-(2) have the	
67° 07° 36. 37° 27 36.	30" Geographic coordinates referenced to the Worth American 30" Eastern of 1983 (AND 87)	
*19=1	 LBED-Invariant Transverse Percetor and box, some 13 	
8000000	YT S800-Rox and totac. Goovado Sarta Pare scandinata turaten, veneni sone (191520AE 6502), Landors Cantonnal Corst; Projection	
DX5510	Anch mark (see exploration in Actors to Learn exclor of M the FBH panel)	
• M1.5	Row Hite	
	une #E.PO275 #ED Data: to Nap Repeatorias int on Hing Index	
	PLODE PAIL AND A THE WAY MARKED 17, 1987	
Lecent Specific	EFFECTIVE DAYS (3) OF REVEXING TO THIS FAMIL ER 7, 2014 - to update corporate limits, to change date Pool Elevations and exil frequent Anexes, to update multiple and create and sub-transmis, and to incorporate previously lexaed Latters of Map Rovision.	
le caneval lap Kidory T I determine	y nap weisse history prior to constructe reapping, wher to the Conversity devicement in the Filled Insurance South report for the substitute. If filled Insurance & available in this community, context your insurance	
piter (all	te National Possil Desirante Program at 1-400-408-4620.	

FX

9.7 Inlet Calculations

MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-8+57</u>	<u>IN-8+07</u>	<u>IN-8+39</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows						
Minor Q _{Known} (cfs)	2.98	0.52	0.23			
Major Q _{Known} (cfs)	6.50	1.13	0.49			

Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked.

Receive Bypass Flow from:	No Bypass Flow Received	IN-8+57	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs) 0.0		0.9	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	3.5	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	3.0	1.4	0.2
Major Total Design Peak Flow, Q (cfs)	6.5	4.6	0.5
Minor Flow Bypassed Downstream, Q _b (cfs)	0.9	0.1	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	3.5	2.1	0.0

MHFD-Inlet, Version 5.03 (August 2023) INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-7+97</u>	<u>IN-8+19</u>
Site Type (Urban or Rural)	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET
Hydraulic Condition	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows		
Minor Q _{Known} (cfs)	0.52	0.58
Major Q _{Known} (cfs)	1.14	1.27
Bypass (Carry-Over) Flow from Upstream		
Receive Bypass Flow from:	IN-8+39	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0
Watershed Characteristics		
Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		
Watershed Profile		
Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		
Minor Storm Rainfall Input		
Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		
Major Storm Rainfall Input	1	
Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	0.5	0.6
Major Total Design Peak Flow, Q (cfs)	1.1	1.3
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.1	0.1

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W. Gutter Width)	W. =	N/A	N/A	ft
Clonging Eactor for a Single Unit Grate (typical min, value = 0.5)	$C_{e}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{\epsilon}(C) =$	0.10	0.10	
Street Hydraulics: $OK - O < Allowable Street Capacity'$	- (-)	MINOR	MAIOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	0. =	3.0	6.5	cfs
Water Spread Width	νο – Τ –	9.3	12.9	
Water Depth at Flowline (outcide of local depression)	d =	3.3	4.1	inches
Water Depth at Street Crown (or at T)	– u –	0.0	4.1	inches
Datio of Cuttor Flow to Docign Flow	CROWN -	0.0	0.0	linches
Ratio of Guiler Flow to Design Flow	L, -	1.3	0.427	ofo
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	1.3	3./	us
Discharge within the Gutter Section w	Q _w =	1./	2.8	CTS
Discharge Benind the Curb Face	QBACK =	0.0	0.0	CTS
Flow Area within the Gutter Section W	$A_W =$	0.42	0.56	sqπ
Velocity within the Gutter Section W	V _W =	4.1	4.9	fps
Water Depth for Design Condition	d _{LOCAL} =	6.3	7.1	inches
Grate Analysis (Calculated)	_	MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (uncloaged) Length of Multiple-unit Grate Inlet	L, =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V. =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R. =	N/A	N/A	
Actual Interception Capacity	0, =	N/A	N/A	cfs
Carry-Over Flow = O_{a} - O_{a} (to be applied to curb opening or next d/s inlet)	Q ₆ =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	3 .0 I	MINOR	MAIOR	10.0
Equivalent Slope S	S =	0.116	0.091	£/£
Required Length L- to Have 100% Interception	-e -=	9.39	15 58	£
Under No-Clogging Condition		MINOR	MA10R	itt
Effective Length of Curb Opening or Slotted Inlet (minimum of L. L_)	, _ ⊢	5.00	5.00	P
	L = 0	3.00	3.00	cfc
Under Cleasing Condition	- iv	MINOD	3.3 MA10P	0.5
Cleasing Coofficient	CurbCooff	1 00	1 00	٦
Clogging Coencient Clogging Easter for Multiple unit Curb Opening or Slatted Inlat	CurbCoert =	0.10	1.00	_
Clogging Factor for Multiple-Unit Curb Opening or Slotted Inlet	curbciog =	0.10	0.10	- <u>-</u>
	Le =	4.50	4.50	_"_
Actual Interception Capacity	Q _a =	2.1	3.0	crs
Carry-Over Flow = Qh(GRATE)-Qa	Q _b =	0.9	3.5	CTS
Summary		MINOR	MAJOR	٦.
I otal Inlet Interception Capacity	Q =	2.1	3.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.9	3.5	cfs
Capture Perceptage - 0 /0	C0/	60	46	0/

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$Q_o =$	1.4	4.6	cfs
Water Spread Width	T =	7.2	12.2	ft
Water Depth at Flowline (outside of local depression)	d =	2.7	3.8	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.702	0.457	
Discharge outside the Gutter Section W, carried in Section T,	0, =	0.4	2.5	cfs
Discharge within the Gutter Section W	Q _w =	1.0	2.1	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _w =	0.32	0.51	sa ft
Velocity within the Gutter Section W	V =	3.1	4.1	fns
Water Depth for Design Condition	diocai =	5.7	6.8	inches
Grate Analysis (Calculated)	-ILLA	MINOR	MAIOR	inches
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E. CONTE =	N/A	N/A	
Inder No-Clogging Condition	-0-GRATE	MINOR	MATOR	_
Minimum Velocity Where Grate Splash-Over Begins	V. =	N/A	N/A	fns
Intercention Pate of Frontal Flow	R =	N/A	N/A	103
Interception Pate of Side Flow	R =	N/A	N/A	
Interception Rate of Side How	0	N/A	N/A	cfc
Under Clogging Condition	Qi -		MA1OP	us
Clogging Coefficient for Multiple-unit Crate Inlet	GrateCooff -	N/A	MAJOR N/A	٦
Clogging Eactor for Multiple unit Crate Inlet	GrateClea -	N/A	N/A	-
Effortive (uncloaged) Length of Multiple unit Crote Inlet		N/A	N/A	A
Minimum Velecity Where Crate Splach Over Regine	L _e -	N/A	N/A	foc
Interception Date of Frontal Flow	V ₀ -	N/A	N/A	iha
Interception Rate of Fionial Flow	Nf -	N/A	N/A	-
A shuel Interception Rate of Side Flow	R _x =	IN/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	crs
Carry-Over Flow = $Q_0 - Q_0$ (to be applied to curb opening or next d/s met)	Q _b =	N/A	N/A	CTS
Curb Opening or Slotted Inlet Analysis (Calculated)	c T	MINUR	MAJUR	A /A
Equivalent Slope S _e	5 _e =	0.137	0.096	π/π
Required Length L_T to Have 100% Interception	$L_T =$	5.92	12.68	π
Under No-Clogging Condition	. г	MINOR	MAJOR	7.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.00	5.00	π,
Interception Capacity	$Q_i =$	1.4	2.8	cts
Under Clogging Condition	F	MINOR	MAJOR	-
Clogging Coefficient	CurbCoeff =	1.00	1.00	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	4.
Effective (Unclogged) Length	L _e =	4.50	4.50	ft
Actual Interception Capacity	$Q_a =$	1.3	2.5	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	0.1	2.1	cfs
<u>Summary</u>	-	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	1.3	2.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.1	2.1	cfs
Capture Perceptage - 0 /0	C0/	02	EE	0/

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Cloaging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	Q ₀ =	0.2	0.5	cfs
Water Spread Width	T =	1.9	3.5	ft
Water Depth at Flowline (outside of local depression)	d =	1.5	1.9	inches
Water Depth at Street Crown (or at T_{Max})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E_ =	1.000	0.961	indirec.
Discharge outside the Gutter Section W, carried in Section T,	0, =	0.0	0.0	rfs
Discharge within the Gutter Section W	Q., =	0.2	0.5	rfs
Discharge Rehind the Curk Face		0.2	0.0	rfe
Flow Area within the Gutter Section W	Am =	0.00	0.0	co ft
Flow Aled Willin the Gutter Section W	N	0.00	25	for
Velocity Within the Guiller Section w	d	0.0	2.5	TPS
Water Depth for Design Condition	ULOCAL -	4.5 MINOR	4.9 MA100	Inches
Grate Analysis (Calculated)	Г	MINUR N/A		٦
I otal Length of Inlet Grate Opening	_ L=	N/A	IN/A	π
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition	v -	MINOR	MAJUK	٦.
Minimum Velocity Where Grate Splash-Over Begins	v _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	_	MINOR	MAJOR	_
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_{f} =$	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	7
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = $Q_0 - Q_a$ (to be applied to curb opening or next d/s inlet)	$Q_{\rm b} =$	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e	S _e =	0.188	0.181	ft/ft
Required Length L_{τ} to Have 100% Interception	L _T =	2.04	3.05	ft
Under No-Clogging Condition	· •	MINOR	MAJOR	
Effective Lenath of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	2.04	3.05	ft
Intercention Canacity	Oi =	0.2	0.5	cfs
Inder Clogging Condition		MINOR	MAIOR	0.5
Clogging Coefficient	CurbCoeff =	1.00	1.00	Г
Clogging Eactor for Multiple-unit Curb Opening or Slotted Inlet		0.10	0.10	-
Effective (Uncloaged) Length		2.04	3.05	- -
Actual Intercention Canacity	~- [_]	0.0	0.05	
	~	0.2	0.5	
Cally-Over Flow = Qh(GRATE)-Qa	V b -1	MINOR	MAIOR	CTS
Summary	o - [٦_4-
Total Inlet Interception Capacity	~_⊢	0.2	0.5	
Total Inlet Carry-Over Flow (flow bypassing inlet)	Qb -	0.0	0.0	cts

Design Information (Input)		MINOR	MATOR	
Type of Inlet			Curb Opening	
l ocal Depression (additional to continuous dutter depression 'a')	al source =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No -	1	1	linenes
Length of a Single Unit Inlet (Grate or Curb Opening)		5.00	5 00	A
Width of a Unit Grate (cannot be greater than W. Gutter Width)	w -	5.00 N/A	5.00	- n.
Clossing Eactor for a Single Unit Crate (trained min. value – 0.5)	C (G) -	N/A	N/A	ii.
Clogging Factor for a Single Unit Grate (typical Init. value = 0.5)	C (C) -	N/A	N/A	-
Clogging Factor for a single onit curb opening (typical min. value = 0.1)	$C_{f}(C) =$	U.IU	0.10	
Suleet Hyuldulics. OK - Q < Allowable Suleet Capacity	0 F	MINOR	MAJOR	afa
Matan Group d Middle	Q ₀ =	0.5	1.1	us e
Water Spread width	1 =	2.2	10.5	π
Water Depth at Flowline (outside of local depression)	d =	1.5	2.0	inches
Water Depth at Street Crown (or at T _{MAX})	u _{crown} =	0.0	0.0	Inches
Ratio of Gutter Flow to Design Flow	E ₀ =	1.000	0.752	
Discharge outside the Gutter Section W, carried in Section I_x	$Q_x =$	0.0	0.3	cts
Discharge within the Gutter Section W	Q _w =	0.5	0.9	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cts
Flow Area within the Gutter Section W	A _W =	0.13	0.21	sq ft
Velocity within the Gutter Section W	V _w =	4.1	4.1	fps
Water Depth for Design Condition	d _{LOCAL} =	4.5	5.0	inches
Grate Analysis (Calculated)	_	MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Cloaging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	La =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V. =	N/A	N/A	fns
Interception Rate of Frontal Flow	R. =	N/A	N/A	
Interception Rate of Side Flow	R. =	N/A	N/A	
Actual Interception Capacity	0. =	N/A	N/A	cfs
Carry-Over Flow = $0 - 0$ (to be applied to curb opening or pext d/s inlet)	0. =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	* D	MINOR	MATOR	60
Equivalent Slope S	S =	0.187	0 142	Ĥ/Ĥ
Required Length L to Have 100% Intercention	L	3 24	5.40	A
Under No-Clogging Condition	LT -	J.24	5.75 MA1OP	ii.
Effective Length of Curb Opening or Slotted Inlet (minimum of L. L.)	ı _F	3 24	5 00	A
Intercention Canacity		0.5	1.00	cfc
Under Cleaging Condition	- vi	U.J MINOD		
Classing Coefficient				7
Clogging Easter for Multiple upit Curb Opening on Clatted Talet	CurbCoerr =	0.10	1.00	-
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet		0.10	0.10	
Articl Introgged) Length	Le =	3.24	4.50	
Actual Interception Capacity	Qa =	0.5	1.1	crs
Carry-Over riow = Q _{h(GRATE)} -Q _a	Q _b =	0.0	<u> </u>	CTS
Summary		MINOR	MAJOR	٦.
Total Inlet Interception Capacity	Q =	0.5	1.1	cts
I otal Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.1	cfs
Capture Percentage = Q_a/Q_o	C% =	100	95	%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$Q_0 =$	0.6	1.3	cfs
Water Spread Width	T =	6.5	11.7	ft
Water Depth at Flowline (outside of local depression)	d =	1.8	2.2	inches
Water Depth at Street Crown (or at T_{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E, =	0.907	0.660	-
Discharge outside the Gutter Section W, carried in Section T	0, =	0.1	0.4	rfs
Discharge within the Gutter Section W	0 =	0.5	0.8	rfs
Discharge Behind the Curch Face	OPACK =	0.0	0.0	rfs
Flow Area within the Gutter Section W	Au =	0.18	0.24	cn ft
Velocity within the Gutter Section W		2.0	35	for
Mater Death for Decign Condition	– wv	2.9	5.5	inchos
	UIOCAI -	H.O	3.Z	Inches
Grate Analysis (Calculated)	F	MINUK		٦
		IN/A	IN/A	π
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	_
Under No-Clogging Condition	.v. E	MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	_
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	7
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	$Q_{\rm b} =$	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S	S _e =	0.171	0.126	ft/ft
Required Length L_{τ} to Have 100% Interception	L _T =	3.48	5.97	ft
Inder No-Clogging Condition	· -	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	3.48	5.00	ft
Intercention Canacity	O, =	0.6	1.2	- rfs
Inder Clogging Condition	54 L	MINOR	MATOR	0.5
Clogging Coefficient	CurbCoeff =	1.00	1 1 00	٦
Clogging Eactor for Multiple-unit Curb Opening or Slotted Inlet		0.10	0.10	-
Effective (Uncloged) Length		2 48	4.50	
Effective (Unclogged) Length	~	0.40	4.50	- ".
Actual Interception Capacity	~	0.0	1.2	CTS
$Carry-Over Flow = Q_{h(GRATE)} - Q_{a}$	Qb - 1		0.1	CTS
Summary	o – F	MINUK	MAJUK	٦_•-
	<u>v</u> =	0.6	1.2	cts
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.1	cfs
(anturo Vorcontado = () /()	C0/	100	0.2	0/-

MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-5+49</u>	<u>IN-5+46</u>	<u>IN-6+75</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	In Sump	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows					
Minor Q _{Known} (cfs)	0.54	0.54	0.60		
Major Q _{Known} (cfs)	1.18	0.85	1.30		

Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked.

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	0.5	0.5	0.6
Major Total Design Peak Flow, Q (cfs)	1.2	0.9	1.3
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	N/A	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	N/A	0.1

MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-6+74</u>	<u>IN-6+77</u>
Site Type (Urban or Rural)	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET
Hydraulic Condition	In Sump	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows		
Minor Q _{Known} (cfs)	0.60	1.23
Major Q _{Known} (cfs)	1.31	2.68
Bypass (Carry-Over) Flow from Upstream		
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0
Watershed Characteristics		
Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		
Watershed Profile		
Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		
Minor Storm Rainfall Input		
Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		
Major Storm Rainfall Input		
Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	0.6	1.2
Major Total Design Peak Flow, Q (cfs)	1.3	2.7
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	0.7

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a.oca =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L. =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W. Gutter Width)	W. =	N/A	N/A	ft
Clogging Eactor for a Single Unit Grate (typical min, value = 0.5)	$G_{1}(G) =$	Ν/Δ	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $= 0.3$)	Gr (C) =	0.10	0.10	
Street Hydraulics: $OK = O < Allowable Street Canacity'$	of (c) =	MINOP	MA10P	
Design Discharge for Half of Street (from Inlet Management)	0 -	0.5	1.2	cfc
	Q ₀ -	0.5	1.2	
Water Spread Width	1=	2.2	8.1	IL inches
Water Depth at Front Crown (or at T	d =	2.3	2.9	inches
Detie of Cutton Flow to Decim Flow	u _{CROWN} =	0.0	0.0	incries
Ratio of Gutter Flow to Design Flow	E ₀ =	0.830	0.646	
Discharge outside the Gutter Section W, carried in Section 1 _x	$Q_x =$	0.1	0.4	cts
Discharge within the Gutter Section W	$Q_w =$	0.4	0.8	cts
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.26	0.36	sq ft
Velocity within the Gutter Section W	V _w =	1.7	2.1	fps
Water Depth for Design Condition	d _{LOCAL} =	5.3	5.9	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _v =	N/A	N/A	
Interception Capacity	0, =	N/A	N/A	cfs
Under Clogging Condition	ci	MINOR	MAIOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Eactor for Multiple-unit Grate Inlet	GrateClog -	N/A	N/A	
Effective (uncloaged) Length of Multiple-unit Grate Inlet		N/A	N/A	ft.
Minimum Velocity Where Grate Splash-Over Begins	V =	N/A	N/A	fnc
Intercention Pate of Frontal Flow	R _c =	N/A	N/A	103
Interception Rate of Fide Flow	P -	N/A	N/A	
	n× -	N/A	N/A	-f-
Actual Interception capacity Carry Over Flow $= 0$, 0, (to be applied to curb expering or paytid/c inlet)	Q		N/A	
Carry-Over flow $= Q_0 Q_0$ (to be applied to curb opening of flext d/s inlet)	Qh -		MAIOD	us
Curb Opening or Siolled Thiel Analysis (Calculated)	c _□	MINUR 0.150	MAJUR	A/A
Equivalent Slope S _e	5 _e -	0.159	0.128	
	$L_T =$	3.19	5.25	π
Under No-Clogging Condition	. –	MINOR	MAJOR	٦.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	3.19	5.00	tt.
Interception Capacity	$Q_i =$	0.5	1.2	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoeff =	1.00	1.00	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	
Effective (Unclogged) Length	L _e =	3.19	4.50	ft
Actual Interception Capacity	Q _a =	0.5	1.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	0.0	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.5	1.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.0	cfs
Capture Percentage $= 0.70$	<u> </u>	100	07	0/

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	reet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C., (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{n}(G) =$	N/A	N/A	
Curb Opening Information	-0(-)	MINOR	MAIOR	
Length of a Unit Curb Opening	L. (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	ца, сол	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H. –	6.00	6.00	inches
Angle of Throat	Theta -	63.40	63.40	degrees
Fide Width for Deproceion Dan (typically the gutter width of 2 feet)	111Cta =	2.00	2.00	foot
Clogging Easter for a Single Curb Opening (typical value 0.10)	$vv_p = -$	2.00	2.00	ICCL
Cuth Opening Weir Coefficient (typical value 2, 2, 2, 7)	$C_{f}(C) = C_{f}(C) = C_{f}(C) = C_{f}(C) = C_{f}(C) = C_{f}(C)$	2.60	2.60	-
Curb Opening Weir Coefficient (typical value 2.5-5.7)	$C_{W}(C) = C_{W}(C) $	3.60	3.00	
	$C_0(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)	I	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	_
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	·
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	1
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	5	MINOR	MAJOR	_
Interception without Clogging	O =	3.8	7.1	cfs
Interception with Clogging	O	3.4	6.4	cfs
Curb Canacity as an Orifice (based on MHED - CSU 2010 Study)	Rewa	MINOR	MAIOR	
Intercention without Clogging	O . =	85	9.8	cfs
Interception with Clogging	Q ₀ –	7.6	8.8	cfs
Curb Opening Capacity as Mixed Flow	Q _{0a} –	MINOR	0.0 MA10P	ci3
Interception without Clogging	0 -[53	7.7	cfc
	Q _{mi} =	1.5	7.7	cis
Enterception with clogging	Q _{ma} =	3.0	7.0 6.4	cis
Resulting Curb Opening Capacity (assumes clogged condition)	Curb -	MINOD	MA100	C13
Resultant Street Conditions	. 1	MINOR	MAJOR	
	L = -	5.00	5.00	reet
Resultant Street Flow Spread (based on street geometry from above)	. !=	15.0	21./	π.,
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	٦.
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	π
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.38	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
	-			
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.4	6.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>O Peak)	O PEAK REQUIRED =	0.5	0.9	cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
l ocal Depression (additional to continuous gutter depression 'a')	a	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	lineneo
Length of a Single Unit Inlet (Grate or Curb Opening)	1. =	5 00	5 00	Ĥ
Width of a Unit Crate (cannot be greater than W. Gutter Width)	w -	N/A	N/A	- n
Cleasing Easter for a Single Unit Crate (typical min, value – 0.5)	C (G) -	N/A	N/A	11
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	G(0) =	0.10	N/A	-
Clogging Factor for a Single Onit Curb Opening (typical min. value = 0.1)	G(C) -	MINOR	0.10 MA10P	
Sileet Hydraulics. $OK - Q < Allowable Sileet CapacityDesign Discharge for Half of Street (from In/ot Management)$	o _[MINOR	MAJOR 1.2	cfc
Mater Careed Width	Q ₀ =	0.0	1.5	
Water Spread Width	1 =	6.7	11.5	ll.
Water Depth at Flowline (outside of local depression)	u =	1.9	2.3	inches
	u _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.876	0.640	
Discharge outside the Gutter Section W, carried in Section T _x	$Q_x =$	0.1	0.5	cts
Discharge within the Gutter Section W	$Q_w =$	0.5	0.8	cts
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.19	0.26	sq ft
Velocity within the Gutter Section W	V _w =	2.7	3.2	fps
Water Depth for Design Condition	$d_{IOCAI} =$	4.9	5.3	inches
Grate Analysis (Calculated)	_	MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition	-	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	
Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (uncloaged) Length of Multiple-unit Grate Inlet	L =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V. =	N/A	N/A	fns
Intercention Rate of Frontal Flow	$R_{f} =$	N/A	N/A	190
Interception Rate of Side Flow	R. =	N/A	N/A	
Actual Intercention Canacity	o [*] =	N/A	N/A	cfs
Carry-Over Flow = $00.$ (to be applied to curb opening or peyt d/s inlet)	$Q_{a} = 0$	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	₹b −	MINOR	MATOR	0.5
Equivalent Slone S	s =	0.165	0.123	£/£
Pequired Length L to Have 100% Intercention	U =	2 55	6.04	A
Linder No Cleasing Condition	LT -	3.33	0.04 MA10P	II
Effective Length of Curb Opening or Slotted Inlet (minimum of L. L.)	, ,		MAJUK E 00	Te-
Energy of Carboling of Source Inter (Intrinsion of L, LT)	L =	3.33	5.00	IL of o
Under Classing Canditian	$Q_i =$	U.D	1.2	us
Under Clogging Condition	Curle Courter	MINOR	MAJOR	7
	curbcoeff =	1.00	1.00	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	4.
Effective (Unclogged) Length	L _e =	3.55	4.50	π
Actual Interception Capacity	$Q_a =$	0.6	1.2	cfs
Carry-Over How = $Q_{h(GRATF)}$ - Q_a	Q _b =	0.0	0.1	cfs
<u>Summary</u>	-	MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	0.6	1.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o	C% =	100	91	%

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C., (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C, (G) =	N/A	N/A	
Curb Opening Information	-0(-)	MINOR	MATOR	1
Length of a Unit Curb Opening	L. (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H .=	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H. –	6.00	6.00	inches
Angle of Throat	Theta -	63.40	63.40	degrees
Side Width for Depression Dap (typically the gutter width of 2 feet)	111Cta =	2.00	2.00	foot
Clogging Eactor for a Single Curb Opening (typical value 0.10)	$vv_p = c (c) = c$	2.00	2.00	leet
Cuth Opening Weir Coefficient (typical value 2.2.2.7)	$C_{f}(C) = C_{f}(C) = C_{f}(C) = C_{f}(C) = C_{f}(C) = C_{f}(C)$	2.60	0.10	-
Curb Opening Weir Coefficient (typical value 2.5-5.7)	$C_{W}(C) = C_{W}(C) $	3.60	3.00	
	$C_0(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)	I	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	r	MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	3.8	7.1	cfs
Interception with Clogging	Q _{wa} =	3.4	6.4	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	O _{oi} =	8.5	9.8	cfs
Interception with Clogging	0 =	7.6	8.8	cfs
Curb Opening Capacity as Mixed Flow	-608	MINOR	MAIOR	
Intercention without Clogging	O =	5.3	7.7	cfs
Interception with Clogging	0 =	4.8	7.0	cfs
Peculting Curb Opening Capacity (accumes clogged condition)	O _{curb} =	3.4	6.4	cfs
Resultant Street Conditions	CCUID	MINOR	MATOR	0.0
Tetal Inlet Length	I – I	5.00	5.00	foot
Total Iniel Length	L = T	3.00	3.00	A
Resultant Street Flow Spread (Dased on Street geometry from above)	- I	15.0	21.7	IL inchos
Resultant Flow Depth at Street Crown	u _{crown} =	0.0	0.0	inches
Low Lload Derfermence Deduction (Coloulated)		MINOD	M4100	
Low Head Performance Reduction (Calculated)	. r	MINOR	MAJOR	7.
Depth for Grate Mildwidth	a _{Grate} =	N/A	N/A	π
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.38	ft
Grated Iniet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A	4
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	J
	-	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.4	6.4	cfs
	0	0.6	13	cfc

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 =$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	````	MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$Q_0 =$	1.2	2.7	cfs
Water Spread Width	T =	5.1	7.4	ft
Water Depth at Flowline (outside of local depression)	d =	2.4	3.1	inches
Water Depth at Street Crown (or at T_{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E, =	0.830	0.659	
Discharge outside the Gutter Section W. carried in Section T.	0, =	0.2	0.9	cfs
Discharge within the Gutter Section W	0 =	1.0	1.8	rfc
Discharge Bahind the Curk Face		0.0	0.0	- cfc
Elow Area within the Gutter Section W		0.0	0.0	
Flow Ared Within the Gutter Section W	~~	2.2/	0.30	SQIL
Velocity within the Gutter Section w	v _w =	3./	4.0	tps in the
Water Depth for Design Condition	ULOCAL =	5.4 MINOR	0.1	inches
Grate Analysis (Calculated)		MINOR	MAJOR	٦.
I otal Length of Inlet Grate Opening		N/A	N/A	, tt
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A]
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	_	MINOR	MAJOR	_
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	י ר
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	י ך
Effective (unclogged) Length of Multiple-unit Grate Inlet	$L_e =$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	٦.
Interception Rate of Side Flow	$R_x =$	N/A	N/A	1
Actual Interception Capacity	Q ₂ =	N/A	N/A	cfs
Carry-Over Flow = $Q_0 - Q_0$ (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	b u	MINOR	MAJOR	
Equivalent Slope S_{a}	S. =	0.160	0.132	ft/ft
Required Length L ₇ to Have 100% Interception	L _T =	5.26	8.55	- n,
Inder No-Clogging Condition	-, _	MINOR	MA1OR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L. L.)	I = [5.00	5.00	٦e
Intercention Canacity	0 =	1.2	21	- fc
Inder Cleasing Condition	ч <u></u>	MINOP	MAIOR	us
Cleasing Coefficient	CurbCooff -	1.00	1.00	7
Clogging Coefficient		0.10	0.10	-
Clogging Factor for Multiple-unit Curb Opening or Siotted Inter		0.10	0.10	- <u>-</u>
Effective (Unclogged) Length		4.50	4.50	_π_
Actual Interception Capacity	Qa =	1.2	2.0	cfs
Carry-Over Flow = $Q_{h(GRATE)} - Q_a$	Q _b =	0.0	0.7	cfs
Summary	а Г	MINOR	MAJOK	٦.
Total Inlet Interception Capacity	Q =	1.2	2.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.7	cfs
Capture Percentage - 0 /0	<u>C0/-</u>	07	74	0/-

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-5+41</u>	<u>IN-3+83</u>	<u>IN-1+22</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	In Sump
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows					
Minor Q _{Known} (cfs)	0.39	0.58	2.03		
Major Q _{Known} (cfs)	0.84	1.26	4.44		

Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked.

Receive Bypass Flow from:	No Bypass Flow Received	IN-5+41	IN-3+83
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.1

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.4	0.6	2.0
Major Total Design Peak Flow, Q (cfs)	0.8	1.3	4.5
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	0.1	N/A

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-2+13</u>	<u>IN-2+32</u>	<u>IN-2+08</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

Minor Q _{Known} (cfs) 0.11 0.71	0.17
Major Q _{Known} (cfs) 0.24 1.56	0.37

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	IN-2+32
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.1

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.1	0.7	0.2
Major Total Design Peak Flow, Q (cfs)	0.2	1.6	0.5
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	0.1	0.0

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-2+64</u>	<u>IN-2+84</u>	<u>IN-3+47</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	In Sump	In Sump
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows				
Minor Q _{Known} (cfs)	0.55	0.91	2.15	
Major Q _{Known} (cfs)	1.20	1.99	4.87	

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	IN-2+64	User-Defined
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.1	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

0.6	0.9	2.2
1.2	2.0	4.9
0.0	N/A	N/A
0.1	N/A	N/A
	0.6 1.2 0.0 0.1	0.6 0.9 1.2 2.0 0.0 N/A 0.1 N/A

Type of Intel. CODT Type R Curb Opening Total Number of Units in the Intel (caste or Curb Opening) Accus = $\frac{1}{3}$ (DOT Type R Curb Opening) Accus =	Design Information (Input)		MINOR	MAIOR	
$ \begin{aligned} \begin{array}{c} cal procession (additional to continuous quitter depression 'a) & a constrained and the procession (additional to continuous quitter depression 'a) & a constrained and the constraint of a Single Unit Intel (Grate or Curb Opening) & No & I & I & I & No & No & No & No & $		Type =	CDOT Type R	Curb Opening	
Total Number of Lutis in the Trate (Grate or Curb Opening) Total Number of Lutis in the Trate (Grate or Curb Opening) With of a Unit Grate (cannot be greater than W, Gutter Witht)) We have been of a Single Unit Carbe (bynam Inn, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed Bester (Gascien (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed CS. C > Street (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed CS. C > Street (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed CS. C > Street (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed CS. C > Street (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed CS. C > Street (Wickal min, value = 0.1) Street Hydralley CS. C > Allowed CS. C > Street (Wickal min, value = 0.1) Street Hydralley CS. C > Street (Wickal min, value = 0.1) Street Hydralley CS. Collision (Wickal min, value = 0.1) Street Hydra	Local Depression (additional to continuous gutter depression 'a')		3.0	3.0	inches
Length of a Single Link Linke (Grade or Curb Opening) Midth of a Unit Grate (cannot be greater than W, Gutter Width) Cogain factor for a Single Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Logging factor for a Single Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N/A}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N}$ Link Grate (typical min, value = 0.1) C (C) = $\frac{N/A}{N}$ Link C (typical min, value = 0.1) C (C) = $\frac{N/A}{N}$ Link C (typical min, value = 0.1) C (C) = $\frac{N/A}{N}$ Link C (typical min, value = 0.1) C (typical min	Total Number of Units in the Inlet (Grate or Curb Opening)	No -	1	1	incirco
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Length of a Single Unit Inlet (Grate or Curb Opening)	1 =	5.00	5.00	A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Width of a Unit Crate (cannot be greater than W. Cutter Width)	w _	5.00 N/A	5.00 N/A	A.
Logging Factor for a single that to the cyplical finit, value = 0.1)C (C) =V/AV/ACorport a Single that Carb Opening (value = 0.1)C (C) =0.100.10Street Hydraulics: Ok 0 < Allowable Street (rom <i>Inite</i> Management) $Q_c =$ 0.40.8Water Depth at Forwin Carbon (rot at Two)defect0.100.0Water Depth at Street Crown (or at Two)defect0.00.0Nater Depth at Street Crown (or at Two)defect0.00.0Discharge outside the Gutter Section W $Q_c =$ 0.00.0Discharge within the Gutter Section W $Q_c =$ 0.00.0Discharge Behind the Cutter Section W $Q_c =$ 0.00.0Discharge Behind the Gutter Section W $Q_w =$ 2.93.3Mater Depth for Design Condition $d_{cocc} =$ 0.00.0Velocity within the Gutter Section W $W_w =$ 2.93.3Velocity within the Gutter Section W $W_w =$ 2.93.3Velocity within the Gutter Section W $W_w =$ 2.93.3Velocity Water Depth for Design Condition $d_{cocc} =$ NANANater Depth for Design Condition $d_{cocc} =$ NANANater Depth for Design Condition $d_{cocc} =$ NANAInterception Rate of Stote FlowRe =NANANoter Nater Section WRe =NANAMinore Kate Section WRe =NANAMater Depth of Design Condition $d_{cocc} =$ NANAInterc	Cleasing Factor for a Cincle Unit Crate (trained min. value		N/A	N/A	
$ \begin{array}{c} \mbox{Loging} ratio r for a single Unit Curb Opening (Upbca min, value = 0.1) \\ Crest Hydraulowales Street Casacity. \\ \mbox{Crest Hydraulowales Street Characity. \\ \mbox{Crest Hydraulowales Street Characity. \\ \mbox{Crest Hydraulowales Hydraulowal$	Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	-
$ \begin{array}{c} \mbox{Protect} control of the distribution of the $	Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Street Hydraulics: $OK - Q < Allowable Street Capacity$	o [MINOR	MAJOR	-6-
Water Depth at Street Flowine (outside of local depression)IfI2.23.9ftWater Depth at Street Crown (or at T_{yx})d_{covn} =1.62.1inchesWater Depth at Street Crown (or at T_{yx})d_{covn} =0.00.0inchesDischarge within the Gutter Section WQ_n =0.40.8d'sDischarge within the Gutter Section WQ_n =0.00.0d'sDischarge within the Gutter Section WQ_n =0.00.0d'sVelocity within the Gutter Section WQ_n =0.00.0d'sVelocity within the Gutter Section WQ_n =0.00.0d'sVelocity within the Gutter Section WQ_n =0.40.8d'sVelocity within the Gutter Section WQ_n =0.40.8d'sValuer Depth for Design FlowL =N/AN/AftRatio of Grate Flow to Design FlowR_care =N/AN/AftInterception Rate of Side FlowR_n =N/AN/AftInterception Rate of Side FlowR_n =N/AN/AftInterception CapacityQ_n =N/AN/AftUnder Cloaging ConditionR_n =N/AN/AftInterception Rate of Side FlowR_n =N/AN/AftInterception Rate of Side FlowR_n =N/AN/AftInterception CapacityQ_n =N/AN/AftInterception CapacityQ_n =N/AN/Aft	Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_0 =$	0.4	0.8	cts
Water Depth at Flowline (outside of local depression)d =1.62.1inchesNater Depth at Street Crow (or at Tr _{NA})d _{Coom} =0.00.00.0inchesStacharge outside the Gutter Section W, carried in Section T,Q, =0.00.01.6csDischarge outside the Gutter Section W, carried in Section T,Q, =0.40.8d'sDischarge within the Gutter Section WQ _N =0.140.23sq ftVelocity within the Gutter Section WQ _N =1.6St.1inchesVelocity within the Gutter Section WQ _N =N/AN/AftValer Debt for Design Conditiond _n =N/AN/AftRatio of Grate Flow to Design FlowL=N/AN/AftInterception Rate of Stole FlowR =N/AN/AftInterception Rate of Stole FlowR =N/AN/AftInterception Rate of Stole FlowR =N/AN/AftClogging Coefficient for Multiple-unit Gr	Water Spread Width	T =	2.2	3.9	ft
Water Depth at Street Crown (or at T _{xx}) $d_{COVN} = 0.0$ 0.0 inchesBischarge vitside the Gutter Section W $C_{r} = 0.0$ 0.0 0.11 dfsDischarge within the Gutter Section W $Q_{r} = 0.4$ 0.8 dfsDischarge within the Gutter Section W $Q_{r} = 0.4$ 0.8 dfsDischarge within the Gutter Section W $Q_{r} = 0.0$ 0.01 dfsVelocity within the Gutter Section W $Q_{r} = 0.4$ 0.8 dfsVelocity within the Gutter Section W $Q_{rr} = 0.4$ 0.8 dfsWater Depth for Design Condition $d_{cox} = 4.6$ 5.1 InchesTotal Length of Inte Crate Opening $L = N/A$ N/AN/ARatio of Grate Follow to Design Flow $E_{r-gaxtt} = N/A$ N/AftsMinmum Velocity Where Grate Splash-Over Begins $V_{s} = N/A$ N/AftsInterception Rate of Frontal Flow $R_{r} = N/A$ N/AftsInterception Rate of Side Flow $R_{r} = N/A$ N/AftsInterception Rate of Frontal Flow $R_{r} = N/A$ N/AftsInterception Rate of Side Flow $R_{r} = N/A$ N/AftsInterception Rate	Water Depth at Flowline (outside of local depression)	d =	1.6	2.1	inches
Ratio of Gutter Flow to Design Flow $E_{0} = 1.000 0.913$ Discharge outbin the Gutter Section W, carried in Section T _x Discharge outbin the Gutter Section W Q _{Acc} = 0.0 0.0 cfs Flow Area within the Gutter Section W Q _{Acc} = 0.14 0.23 sq ft Velocity within the Gutter Section W V $W_{w} = 0.14 0.23$ sq ft Velocity within the Gutter Section W V $W_{w} = 0.14 0.23$ sq ft Velocity within the Gutter Section W V $W_{w} = 0.14 0.23$ sq ft Velocity within the Gutter Section W V $W_{w} = 0.14 0.23$ sq ft Velocity within the Gutter Section W V $W_{w} = 0.14 0.23$ sq ft Velocity within the Gutter Section W V $W_{w} = 0.14 0.23$ sq ft Velocity within the Gutter Section W V $W_{w} = 0.14 0.23$ sq ft Velocity within the Gutter Section W V $W_{w} = 0.14 0.23$ sq ft Velocity within the Gutter Section W V $W_{w} = 0.14 0.23$ sq ft Velocity Wither Grate Opening L = N/A N/A N/A ft Interception Rate of Side Flow N R _x = N/A N/A N/A ft Interception Rate of Side Flow R R = N/A N/A N/A ft Interception Capacity Q = N/A N/A N/A ft Clogging Coefficient for Multiple-unit Grate Inlet GrateCoeff = N/A N/A N/A ft Minorm Velocity Where Grate Splash-Over Begins V ₀ = N/A N/A N/A ft Minore Mator MAIOR Clogging Coefficient for Multiple-unit Grate Inlet GrateCoeff = N/A N/A N/A ft Minore Mator MAIOR Clogging Coefficient for Multiple-unit Grate Inlet GrateCoeff = N/A N/A N/A ft Minore MAIOR Clogging Factor for Multiple-unit Grate Inlet U = N/A N/A N/A ft Minore MAIOR Curb Opening or Slotted Inlet A curb opening or next d/s inlet) Q = N/A N/A N/A ft Interception Rate of Frontal Flow R R = N/A N/A N/A ft Interception Capacity Q = N/A N/A N/A ft Interception Capacity Q = 0.4 0.8 cfs Curb Opening or Slotted Inlet (minimum of L L_1) L = 2.71 4.15 ft Interception Capacity Q = 0.4 0.8 cfs Curb Coefficient Curb Opening or Slotted Inlet (minimum of L, L_1) L = 2.71 4.15 ft Interception Capacity Q = 0.4 0.8 cfs Curb Coefficient Curb Copening or Slotted Inlet (minimum of L, L_1) L = 2.71 4.15 ft Interception Capacity	Water Depth at Street Crown (or at T_{MAX})	d _{CROWN} =	0.0	0.0	inches
Discharge within the Gutter Section W, carried in Section T, $Q_v = 0.0$ 0.1 cfs bischarge within the Gutter Section W $Q_{W} = 0.4$ 0.8 cfs discrete Section W $Q_{W} = 0.14$ 0.23 sq ft Velocity within the Gutter Section W $Q_{W} = 2.9$ 3.3 (ps clock) within the Gutter Section W $V_W = 2.9$ 3.3 (ps clock) within the Gutter Section W $V_W = 2.9$ 3.3 (ps clock) $V_W = 2.9$ $V_$	Ratio of Gutter Flow to Design Flow	E ₀ =	1.000	0.913	
Discharge within the Gutter Section W $Q_{wc} = 0.4$ 0.8 cfs Discharge Behnd the Curb Face $Q_{Docx} = 0.0$ 0.0 0.0 cfs Flow Area within the Gutter Section W $Q_{wc} = 0.14$ 0.23 sq ft Velocity within the Gutter Section W $Q_{wc} = 0.14$ 0.23 sq ft Minor Desion Condition $d_{ncut} = 4.6$ 5.1 inches Grate Analysis (Calculated) $MINOR$ MAJOR Total Length of Desion Condition $d_{ncut} = 4.6$ 5.1 inches Minor Melocity Miner Grate Opening L = N_{A} N_{A} N_{A} ft Ratio of Grate Flow to Design Flow $E_{b-GRATT} = N_{A}$ N_{A} N_{A} ft Interception Rate of Side Flow $R_{v} = N_{A}$ N_{A} N_{A} ft Interception Rate of Side Flow $R_{v} = N_{A}$ N_{A} N_{A} ft Interception Rate of Side Flow $R_{v} = N_{A}$ N_{A} N_{A} ft Interception Grate of Multiple-unit Grate Inlet Clogging Coefficient for Multiple-unit Grate Inlet Clogging Factor for Multiple-unit Grate Inlet Minore Mators $R_{v} = N_{A}$ N_{A} N_{A} ft Minore Mators $R_{v} = N_{A}$ N_{A} N_{A} ft Clogging Coefficient for Multiple-unit Grate Inlet Clogging Grator for Multiple-unit Grate Inlet Clogging Factor for Multiple-unit Grate Inlet Minimum Velocity Where Grate Splash-Over Begins $V_{0} = N_{A}$ N_{A} N_{A} ft Minimum Velocity Where Grate Splash-Over Begins $V_{0} = N_{A}$ N_{A} N_{A} ft Minore Mators $R_{v} = 0.4$ N_{A} N_{A} ft Minore Mators $R_{v} = 0.4$ N_{A} N_{A} ft Minore N_{A} N_{A} $R_{v} = 0.4$ N_{A} N_{A} ft Minore N_{A} N_{A} $R_{v} = 0.4$ N_{A} N_{A} $R_{v} = 0.4$ N_{A} N_{A} $R_{v} = 0.4$ 0.8 Cfs $Carry-Over Flow = Q_{v}-Q_{v}$ (to be applied to curb opening or next ds inlet $CurbCoeff = 0.10$ 0.10 N_{A} R_{A} R_{f} $Carry-Over Flow = Q_{v}-Q_{v}$ (to Dopening or Slotted Inlet (mi	Discharge outside the Gutter Section W, carried in Section T _x	$Q_x =$	0.0	0.1	cfs
Discharge Behind the Curb Face $Q_{DAC} = 0.0$ 0.0 or drs Flow Area within the Gutter Section W $A_{W} = 0.14$ 0.23 sq ft Velocity within the Gutter Section W $W_{W} = 2.9$ 3.3 fps Water Depth for Desion Condition $d_{CCW} = 4.6$ 5.1 inches Grate Analysis (Calculated) $MINOR$ MAJOR Total Length of Intel Grate Opening Total Length of Intel Grate Opening Total Length of Intel Grate Opening Total Length of Intel Grate Opening RIow $E_{orGWT} = 1.0$ MAJOR Minimum Velocity Where Grate Splash-Over Begins Interception Rate of Frontal Flow Minimum Velocity Where Grate Splash-Over Begins Interception Rate of Frontal Flow Clogging Condition Minimum Velocity Where Grate Splash-Over Begins Interception Rate of Frontal Flow Clogging Condition Clogging	Discharge within the Gutter Section W	Q _w =	0.4	0.8	cfs
Flow Area within the Gutter Section W $A_{yz} =$ 0.14 0.23 sq. ft Velocity within the Gutter Section W $V_{yz} =$ 2.9 3.3 fps Water Decht for Desian Condition $d_{10cu} =$ 4.6 5.1 linches Grate Analysis (Calculated) MINOR MAOR NAOR Total Length of Inlet Grate Opening L = N/A N/A Ratio of Grate Flow to Design Flow $E_{orGRATE} =$ N/A N/A RAOR Interception Rate of Frontal Flow Rate of Stote Flow N/A N/A Interception Rate of Frontal Flow Rate of Stote Flow Rate of Stote Flow N/A N/A A Under Clogging Coefficient for Multiple-unit Grate Inlet GrateCoeff = N/A N/A A Clogging Factor for Multiple-unit Grate Inlet GrateCoeff = N/A N/A A Interception Rate of Stote Flow R ₂ = N/A N/A A A Interception Rate of Stote Inlet GrateCoeff = N/A N/A A A A	Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Velocity within the Gutter Section W $V_{W} =$ 2.9 3.3 fps Water Depth for Design Condition $d_{1row} =$ 4.6 5.1 inches Grate Analysis (Calculated) MINOR MAIOR MAIOR Total Length of Intel Grate Opening L = N/A N/A N/A Ratio of Grate Analysis (Calculated) E-GARTE N/A N/A N/A Interception Rate of Fondal Flow R = N/A N/A N/A Interception Rate of Side Flow R = N/A N/A N/A Interception Rate of Fondal Flow R = N/A N/A N/A Under Cloaging Codificient for Multiple-unit Grate Inlet GrateCoeff = N/A N/A Clogging Coefficient for Multiple-unit Grate Inlet GrateCoeff = N/A N/A Interception Rate of Side Flow R = N/A N/A R/A Interception Rate of Side Flow R = N/A N/A R/A Clogging Coefficient for Multiple-unit Grate Inlet GrateCoeff = N/A N/A R/A Interception Rate of Side Flow R = N/A N/A	Flow Area within the Gutter Section W	A _w =	0.14	0.23	sq ft
Water Depth for Design Conditiond.r.cu4.65.1inchesGrate Analysis (Calculated)MINORMAJORMAJORMAJORTotal Length of Inlet Grate OpeningLN/AN/AftRatio of Grate Flow to Design Flow $V_0 = N/A$ N/AN/AMAJORUnder No-Cloaging ConditionMINORMAJORMAJORMinimum Velocity Where Grate Splash-Over Begins $V_0 = N/A$ N/AN/AInterception Rate of Frontal Flow $R_1 = N/A$ N/AN/AInterception Capacity $Q_1 = N/A$ N/AN/AUnder Cloaging ConditionGrateCoeff = N/AN/AN/AClogging Coefficient for Multiple-unit Grate InletGrateCoeff = N/AN/AClogging Coefficient for Multiple-unit Grate InletGrateCoeff = N/AN/AMinimum Velocity Where Grate Splash-Over Begins $V_0 = N/A$ N/AN/AInterception Rate of Frontal Flow $R_1 = N/A$ N/AN/AInterception Rate of Stote Flow $R_2 = N/A$ N/AN/AInterception Rate of Stote Inlet $R_2 = N/A$ N/AN/AInterception Capacity $Q_2 = N/A$ N/AN/AftsCurb Opening or Slotted Inlet Analysis (Calculated) $S_1 = 0.174$ ft/ftEquival Langth L ₁ to Have 100% Interception $L_1 = 2.711$ 4.15ftUnder Clogging Condition $CurbCoeff = 0.100$ 0.100CoffCurb Opening or Slotted Inlet (minimum of L, L ₁)L 2.711 4.15ftUnder Clogging Factor for	Velocity within the Gutter Section W	V _w =	2.9	3.3	fps
Grate Analysis (Calculated) MINOR MAJOR Total Length of Intel Grate Opening L = N/A N/A N/A Ratio of Grate Flow to Design Flow L = N/A N/A N/A Under No-Clogging Condition MINOR MAJOR MAJOR Minimum Velocity Where Grate Splash-Over Begins Vo N/A N/A Interception Rate of Frontal Flow R ₇ = N/A N/A Interception Rate of Side Flow R ₇ = N/A N/A Interception Capacity Q ₁ = N/A N/A Clogging Coefficient for Multiple-unit Grate Inlet GrateCoeff = N/A N/A Grave Coard for Multiple-unit Grate Inlet GrateCoff = N/A N/A Minimum Velocity Where Grate Splash-Over Begins Vo N/A N/A Interception Rate of Frontal Flow R ₇ = N/A N/A Interception Rate of Frontal Flow R ₇ = N/A N/A Interception Capacity Q ₈ = N/A N/A ft GraveOver Flow = Q ₀ , Q ₁ (to be applied to curb opening or next d/s inlet) Q ₈ = N/A N/A	Water Denth for Design Condition	duccau =	4.6	5.1	inches
Direct Prior Direction Constraints L = NIA NIA NIA Ratio of Grate Flow to besign Flow L = NIA NIA N/A N/A Under No-Clogging Condition MINOR MINOR MINOR MINOR Minimum Velocity Where Grate Splash-Over Begins V ₀ = NIA N/A N/A N/A Interception Rate of Side Flow R _x = NIA N/A N/A N/A Interception Capacity Q = NIA N/A N/A Cfs Under Coogenig Condition GrateCoget N/A N/A Cfs Clogging Cotor for Multiple-unit Grate Inlet GrateCoget N/A N/A R Effective (unclogged) Length of Multiple-unit Grate Inlet GrateCoget N/A N/A R Interception Rate of Side Flow R _x = N/A N/A N/A R Interception Rate of Side Flow R _x = N/A N/A R R Interception Rate of Side Flow R _x = N/A N/A R R Interception Rate of Side Flow R _x = N/A N/A R R Curb Opening or Slotted Inlet Analysis (Calculated) R N/A	Grate Analysis (Calculated)	-118.4	MINOR	MATOR	interies
The length of interception Rate of Side Flow the length of the length o	Total Length of Inlet Grate Opening	L – [N/A	N/A	A
Relic of Grade Thotow $V_{o} = \frac{N/A}{N/A}$ N/A Under No-Clogqing ConditionMinimum Velocity Where Grate Splash-Over Begins $V_{o} = \frac{N/A}{N/A}$ N/A Interception Rate of Frontal Flow $R_{v} = \frac{N/A}{N/A}$ N/A N/A Interception Capacity $Q_{v} = \frac{N/A}{N/A}$ N/A N/A Under No-Cloquing ConditionMINORMAJORClogging Coefficient for Multiple-unit Grate InletGrateClog = N/A N/A Clogging Coefficient for Multiple-unit Grate InletGrateClog = N/A N/A Clogging Coefficient for Multiple-unit Grate Inlet $U_{o} = \frac{N/A}{N/A}$ N/A Interception Rate of Frontal Flow $R_{v} = \frac{N/A}{N/A}$ N/A Interception Rate of Frontal Flow $R_{v} = \frac{N/A}{N/A}$ N/A Interception Rate of Side Flow $R_{v} = \frac{N/A}{N/A}$ N/A Interception Rate of Side Flow $R_{v} = \frac{N/A}{N/A}$ N/A Interception Capacity $Q_{a} = \frac{N/A}{N/A}$ N/A Carry-Over Flow = $Q_{v}-Q_{v}$ (to be applied to curb opening or next d/s inlet) $Q_{b} = \frac{N/A}{N/A}$ N/A Curb Opening or Slotted Inlet Analysis (Calculated)MINORMAJOREquivalent Slope Se $S_{e} = 0.187$ 0.174 ft/ftInterception Capacity $Q_{a} = 0.4$ 0.8 cfsCurb Opening or Slotted Inlet (minimum of L, L_T) $L = 2.711$ 4.15 ftInder Chologging ConditionMINORMAJORftClogging CoefficientCurb Opening or Slotted InletCurbClog = 0.10 0.00 Cloggi	Patie of Crate Flow to Decign Flow	E _	N/A	N/A	
$ \begin{array}{c} \text{Inter-Re-Locality McDir Controller} \\ \text{Minimum Velocity Where Grate Splash-Over Begins} \\ \text{Interception Rate of Frontal Flow} \\ \text{Interception Rate of Side Flow} \\ \text{Interception Capacity} \\ \text{Under Clogating Condition} \\ \text{Clogging Coefficient for Multiple-unit Grate Inlet} \\ \text{Clogging Coefficient for Multiple-unit Grate Inlet} \\ \text{Clogging Cacher for Multiple-unit Grate Inlet} \\ \text{Interception Rate of Side Flow} \\ \text{Interception Capacity} \\ \text{Carry-Over Flow = Q_v, Q_v (to be applied to curb opening or next d/s inlet) } \\ \text{Curb Opening or Slotted Inlet Analysis (Calculated)} \\ \text{Equivalent Slope S} \\ \text{Equivalent Slope S} \\ \text{Curb Opening or Slotted Inlet (minimum of L, L_T) \\ \text{Interception Capacity} \\ \text{Carry-Over Flow = Q_v, Gamma Condition} \\ \text{Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) \\ \text{Interception Capacity} \\ \text{Curb Cogating Condition} \\ \text{Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) \\ \text{Interception Capacity} \\ \text{Curb Cogating Condition} \\ \text{Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) \\ \text{Interception Capacity} \\ \text{Curb Cogating Condition} \\ \text{CurbCoeff} = \\ \begin{array}{c} 0.0 \\ $	Kallo of Gidle Flow to Design Flow	Lo-GRATE	IN/A	IN/A	
Minimum velocity where Grate Splash-Over Begins $V_o =$ N/A N/A N/A N/A Interception Rate of Findal Flow $R_z =$ N/A N/A N/A Interception Capacity $Q_z =$ N/A N/A N/A Interception Capacity $Q_z =$ N/A N/A N/A Clogging Coefficient for Multiple-unit Grate InletGrateCog = N/A N/A Clogging Factor for Multiple-unit Grate Inlet $GrateCog =$ N/A N/A Effective (unclogged) Length of Multiple-unit Grate Inlet $U_z =$ N/A N/A Minimum Velocity Where Grate Splash-Over Begins $V_o =$ N/A N/A Interception Rate of Frontal Flow $R_z =$ N/A N/A Interception Rate of Flow $R_z =$ N/A N/A Interception Capacity $Q_a =$ N/A N/A Curb Opening or Slotted Inlet Analysis (Calculated) $MIOR$ $MIOR$ Equivalent Slope Se $S_e =$ 0.187 0.174 Enderception Capacity $Q_z =$ 0.4 0.8 Curb Opening or Slotted Inlet (minimum of L, L_T) $L =$ 2.71 4.15 Interception Capacity $Q_z =$ 0.4 0.8 cfs Under Nocloging CoefficientCurbCoeff = 1.00 1.00 Clogging CoefficientCurbCoeff = 1.00 1.00 Clogging Gractor for Multiple-unit Curb Opening or Slotted Inlet $CurbCoeff =$ 1.00 1.00 Clogging Gractor for Multiple-unit Curb Opening or Slotted Inlet $Curb$	Minimum Valasita Milana Casta Calash Oran Basing	v	MINUR	MAJOR	6
Interception Rate of Frontal Flow $R_{c} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ Interception Capacity $Q_{c} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ Interception Capacity $Q_{c} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ Clogging Coefficient for Multiple-unit Grate Inlet $GrateCog = \frac{N/A}{N/A} \frac{N/A}{N/A}$ Effective (unclogged) Length of Multiple-unit Grate Inlet $GrateCog = \frac{N/A}{N/A} \frac{N/A}{N/A}$ Interception Rate of Frontal Flow $R_{c} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ Interception Rate of Side Flow $R_{c} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ Interception Rate of Frontal Flow $R_{c} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ Interception Rate of Side Flow $R_{c} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ Actual Interception Capacity $Q_{a} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ Equivalent Slope S_{c} Required Length L_{t} to Have 100% Interception L_{c} L_{T} Under No-Clogging Coefficient $Curb Opening or Slotted Inlet (minimum of L_{c} L_{T}) L = \frac{2.71}{2.71} \frac{4.15}{4.15} \text{ ft}Under Clogging Coefficient Curb Opening or Slotted Inlet (minimum of L_{c} L_{T}) L = \frac{2.71}{2.71} \frac{4.15}{4.15} \text{ ft}Under Clogging Coefficient Curb Opening or Slotted Inlet (minimum of L_{c} L_{T}) L = \frac{2.71}{2.71} \frac{4.15}{4.15} \text{ ft}Under Clogging Coefficient Curb Opening or Slotted Inlet (minimum of L_{c} L_{T}) L = \frac{2.71}{2.71} \frac{4.15}{4.15} \text{ ft}Under Clogging Coefficient Curb Opening or Slotted Inlet Curb Opening or Slotted Inlet CurbCoeff = \frac{1.00}{1.00} \frac{1.00}{1.00}Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbCoeff = \frac{1.00}{1.00} \frac{1.00}{1.00}Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbCoeff = \frac{1.00}{0.10} \frac{1.00}{0.10}Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbCoeff = \frac{1.00}{0.0} \frac{1.00}{0.0}Carry-Over Flow Q_{c} = \frac{0.4}{0.8} \text{ cfs}Carry-Over Flow Q_{c} = \frac{0.0}{0.0} \text{ cfs}$	Minimum velocity where Grate Splash-Over Begins	v _o =	N/A	N/A	rps
Interception Rate of Side Flow $R_c = N/A$ N/A N/A Interception Capacity $Q_i = N/A$ N/A N/A Clogging Coefficient for Multiple-unit Grate InletGrateCoeff = N/A N/A Clogging Factor for Multiple-unit Grate Inlet $GrateCoeff = N/A$ N/A Minimum Velocity Where Grate Splash-Over Begins $V_o = N/A$ N/A Minimum Velocity Where Grate Splash-Over Begins $V_o = N/A$ N/A Interception Rate of Frontal Flow $R_i = N/A$ N/A Interception Rate of Side Flow $R_i = N/A$ N/A Actual Interception Capacity $Q_a = N/A$ N/A Carry-Over Flow = $Q_a \cdot Q_a$ (to be applied to curb opening or next d/s inlet) $Q_h = N/A$ N/A Curb Opening or Slotted Inlet Analysis (Calculated)MINORMAIOREquivalent Slope Se $S_e = 0.187$ 0.174 Required Length of Curb Opening or Slotted Inlet (minimum of L, L_T) $L = 2.711$ 4.15 Interception Capacity $Q_i = 0.4$ 0.8 cfsUnder Cloaging ConditionMINORMAJORfdsEffective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) $L = 2.711$ 4.15 Interception Capacity $Q_i = 0.4$ 0.8 cfsClogging CoefficientCurbCoeff = 1.000 1.00 1.00 Clogging CoefficientCurbCoeff = 1.00 1.00 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet $CurbCoeff = 1.00$ 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet $CurbCoeff$	Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	-
Interception Capacity Q, = N/A N/A Cfs Under Cloaging Coefficient for Multiple-unit Grate Inlet GrateCoeff = N/A N/A N/A Effective (uncloaged) Length of Multiple-unit Grate Inlet $Circle = N/A$ N/A N/A Effective (uncloaged) Length of Multiple-unit Grate Inlet $Circle = N/A$ N/A N/A N/A ft Minimum Velocity Where Grate Splash-Over Begins $V_o = N/A$ N/A N/A ft N/A Interception Rate of Side Flow $R_x = N/A$ N/A N/A N/A Actual Interception Capacity $Q_a = N/A$ N/A N/A N/A Cfs Equivalent Slope S _e N/A N/A N/A Cfs Under No-Cloaging Condition $L_r = 2.711$ 4.15 ft N/A N/A N/A Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) $L = 2.711$ 4.15 ft N/A N/A Cfs Carry-Over Flow Equipies $NAOR$ $NAOR$ Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) $L = 2.711$ 4.15 ft N/A N/A Cfs Carry-Over Flow Equipies $NAOR$ $NAOR$ Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) $L = 2.711$ 4.15 ft N/A N/A Cfs Carry-Over Flow Equipies $NAOR$ $NAOR$ $NAOR$ Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) $L = 2.711$ 4.15 ft N/A N/A Cfs Carry-Over Flow = 0.00 $Cologing Condition$ $MINOR$ $MAOREffective Length of Curb Opening or Slotted Inlet CurbCoeff = 1.000 1.000 1.000Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbCoeff = 2.711 4.15 ft N/A CfsCarry-Over Flow = 0.4$ 0.8 $CfsCarry-Over Flow = 0.4$ 0.8 $CfsCarry-Over Flow = 0.00$ 0.0 $CfsCarry-Over Flow = 0.00$ 0.0 $CfsCarry-Over Flow (Order Spassing inlet) Q_{0} = 0.0 0.0 CfsCarry-Over Flow (MAOR)$ $MAOR$	Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Under Clogaing ConditionMINORMAJORClogging Coefficient for Multiple-unit Grate InletGrateCoeff = N/A N/A Clogging Factor for Multiple-unit Grate InletGrateClog = N/A N/A Effective (unclogged) Length of Multiple-unit Grate Inlet $L_e =$ N/A N/A Minimum Velocity Where Grate Splash-Over Begins $V_o =$ N/A N/A N/A Interception Rate of Fortal Flow $R_x =$ N/A N/A N/A Interception Rate of Side Flow $R_x =$ N/A N/A N/A Actual Interception Capacity $Q_a =$ N/A N/A N/A Curb Opening or Slotted Inlet Analysis (Calculated) $Q_h =$ $MINOR$ $MAJOR$ Equivalent Slope S _e $S_e =$ 0.187 0.174 ft/ft Required Length L ₁ to Have 100% Interception $L_T =$ 2.71 4.15 ft Interception Capacity $Q_i =$ 0.4 0.8 cfs Under Clogging Condition $MINOR$ MAJOR $MIOR$ $MIOR$ Effective Length of Curb Opening or Slotted Inlet (minimum of L _r L _T) $L =$ 2.71 4.15 ft Interception Capacity $Q_i =$ 0.4 0.8 cfs $Carry-Over Flow = Q_{urgaxttr} Q_a$ $Q_n =$ 0.4 0.8 cfs Clogging CoefficientCurb Opening or Slotted InletCurbClog = 0.10 0.0 cfs $carry-Over Flow = Q_{urgaxttr} Q_a$ $Q_n =$ 0.4 0.8 cfs Clogging Factor for Multiple-unit Curb Op	Interception Capacity	$Q_i =$	N/A	N/A	cfs
Clogging Coefficient for Multiple-unit Grate Inlet GrateCoeff N/A N/A Clogging Factor for Multiple-unit Grate Inlet GrateColog N/A N/A Minimum Velocity Where Grate Splash-Over Begins V_o N/A N/A N/A Interception Rate of Frontal Flow R_r N/A N/A N/A Interception Rate of Side Flow R_r N/A N/A N/A Actual Interception Capacity Q_a N/A N/A N/A Curb Opening or Slotted Inlet Analysis (Calculated) MINOR MAJOR ft/ft Equivalent Slope S _a Se 0.187 0.174 ft/ft Required Length L _T to Have 100% Interception L _T 2.71 4.15 ft Under Clogging Coefficient CurbCoeff 1.00 1.00 1.00 1.00 Clogging Coefficient CurbCoeff 1.00 1.00 1.00 1.00 1.00 Clogging Coefficient CurbCoeff 1.00 0.10 0.10 65 56 Clogging Coefficient CurbCoeff 1.00 1.00 1.00 1.00 1.00 1.0	Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Factor for Multiple-unit Grate InletGrateClog =N/AN/AEffective (unclogged) Length of Multiple-unit Grate Inlet $L_e =$ N/AN/AMinimum Velocity Where Grate Splash-Over Begins $V_o =$ N/AN/AInterception Rate of Frontal Flow $R_r =$ N/AN/AInterception Rate of Side Flow $R_r =$ N/AN/AActual Interception Capacity $Q_a =$ N/AN/ACarry-Over Flow = $Q_a Q_a$ (to be applied to curb opening or next d/s inlet) $Q_b =$ N/AN/AEquivalent Slope S_aMINORMAJOREquivalent Slope S_a $L_T =$ 2.714.15Interception Capacity $Q_i =$ 0.40.8Clogging CoefficientCurb Opening or Slotted Inlet (minimum of L, L_T)L =2.71Interception Capacity $Q_i =$ 0.100.10Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)L =2.714.15Interception Capacity $Q_i =$ 0.40.8cfsUnder Cloaging CoefficientCurbCoeff =1.001.00Clogging Factor for Multiple-unit Curb Opening or Slotted InletCurbCoeff =0.00.0Clogging CoefficientCurbCoeff =0.00.0cfsCarry-Over Flow = $Q_{b(CRATE)}Q_a$ $Q_b =$ 0.40.8cfsCarry-Over Flow = $Q_{b(CRATE)}Q_a$ $Q_b =$ 0.00.0cfsClogging CoefficientCurbClog =0.00.0cfsClogging CoefficientCurbClog = <td< td=""><td>Clogging Coefficient for Multiple-unit Grate Inlet</td><td>GrateCoeff =</td><td>N/A</td><td>N/A</td><td></td></td<>	Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet $L_e =$ N/AN/AN/AMinimum Velocity Where Grate Splash-Over Begins $V_o =$ N/AN/AN/AInterception Rate of Frontal Flow $R_e =$ N/AN/AfpsInterception Rate of Frontal Flow $R_x =$ N/AN/AN/AInterception Capacity $Q_a =$ N/AN/AN/ACarry-Over Flow = Q_a, Q_a (to be applied to curb opening or next d/s inlet) $Q_h =$ N/AN/AcfsCurb Opening or Slotted Inlet Analysis (Calculated)MINORMAJOREquivalent Slope S_e 0.187 0.174 ft/ftEquivalent Slope S_eS_e = 0.187 0.174 ft/ft 0.174 ftInterception Capacity $Q_d =$ 0.4 0.8 cfsUnder No-Cloaging ConditionMINORMAJORGfsEffective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) $L =$ 2.71 4.15 ftInterception Capacity $Q_d =$ 0.4 0.8 cfsUnder Cloaging ConditionMINORMAJORGfsGfsClogging CoefficientCurb Coeff = 1.00 1.00 1.00 Clogging CoefficientCurb Coeff = 0.0 0.0 0.6 Clogging CoefficientCurb Coeff = 0.4 0.8 cfsCarry-Over Flow = Q_{h(CRATE)}Q_h $Q_h =$ 0.4 0.8 cfsCarry-Over Flow = Q_{h(CRATE)}Q_h $Q_h =$ 0.4 0.8 cfsCarry-Over Flo	Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Minimum Velocity Where Grate Splash-Over Begins $V_0 =$ N/AN/AN/AInterception Rate of Frontal Flow $R_r =$ N/AN/AN/AInterception Rate of Side Flow $R_x =$ N/AN/AN/AActual Interception Capacity $Q_a =$ N/AN/AN/ACarry-Over Flow = $Q_r.Q_a$ (to be applied to curb opening or next d/s inlet) $Q_h =$ N/AN/AcfsCurb Opening or Slotted Inlet Analysis (Calculated)MINORMAJORft/ftEquivalent Slope SeSe =0.1870.174ft/ftRequired Length L _t to Have 100% Interception $L_T =$ 2.714.15ftUnder No-Cloaging ConditionMINORMAJORcfsSeEffective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)L =2.714.15ftInterception CapacityQi =0.40.8cfsSeUnder Cloaging CoefficientCurbCoeff =1.001.001.00Clogging CoefficientCurbCoeff =1.001.001.00Clogging CoefficientCurbCoeff =0.00.0cfsCarry-Over Flow = Q _{h/GRATE} QQa =0.40.8cfsCarry-Over Flow = CorrorQb =0.00.0cfsCogging CoefficientCurbCoeff =0.00.0cfsCogging CoefficientCurbCoeff =0.00.0cfsCarry-Over Flow = Q _{h/GRATE} QQb =0.40.8cfsCarry-Over Flow = Q _{h/GRATE} QQb = <td< td=""><td>Effective (unclogged) Length of Multiple-unit Grate Inlet</td><td>$L_e =$</td><td>N/A</td><td>N/A</td><td>ft</td></td<>	Effective (unclogged) Length of Multiple-unit Grate Inlet	$L_e =$	N/A	N/A	ft
Interception Rate of Frontal Flow $R_r =$ N/AN/AInterception Rate of Side Flow $R_r =$ N/AN/AActual Interception Capacity $Q_a =$ N/AN/ACurb Opening or Slotted Inlet Analysis (Calculated) $Q_b =$ N/AN/AEquivalent Slope S_a $S_e =$ 0.1870.174Required Length L_T to Have 100% Interception $L_T =$ 2.714.15Interception Capacity $Q_a =$ 0.40.8cfsCurb Opening Condition $MINOR$ MAJORMAJOREffective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) $L =$ 2.714.15ftInterception Capacity $Q_a =$ 0.40.8cfsClogging CoefficientCurbCoeff1.001.000.10Clogging CoefficientCurbClog =0.100.101.00Clogging CoefficientCurbClog =0.00.0cfsCarry-Over Flow = Q _{h/GRATE} /Q _h $Q_h =$ 0.40.8cfsCarry-Over Flow = Q _{h/GRATE} /Q _h $Q_h =$ 0.40.8cfsClagging CoefficientCurbCoeff0.00.0cfsClarur-Over Flow = Q _{h/GRATE} /Q _h $Q_h =$ 0.40.8cfsCarry-Over Flow = Q _{h/GRATE} /Q _h $Q_h =$ 0.40.8cfsCarry-Over Flow = Q _{h/GRATE} /Q _h $Q_h =$ 0.00.0cfsClog In Condition $Q_h =$ 0.00.0cfsCarry-Over Flow = Q _{h/GRATE} /Q _h $Q_h =$ 0.00.0cfs	Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Side Flow $R_x =$ N/A N/A Actual Interception Capacity $Q_a =$ N/A N/A N/A Carry-Over Flow = Q_a, Q_a (to be applied to curb opening or next d/s inlet) $Q_h =$ N/A N/A N/A Carry-Over Flow = Q_a, Q_a (to be applied to curb opening or next d/s inlet) $Q_h =$ N/A N/A N/A Equivalent Slope S_e N/A N/A N/A N/A cfs Required Length L, to Have 100% Interception L _T = 2.71 4.15 ft Under No-Clogging Condition MINOR MAJOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T) L = 2.71 4.15 ft Interception Capacity Q_i = 0.4 0.8 cfs Under Cloaging Condition MINOR MAJOR MAJOR Clogging Coefficient CurbCoeff = 1.00 1.00 Clogging Coefficient Curb Coeff = 0.10 0.10 Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbCoeff = 0.10 0.10 Effective (Unclogged) Length Le = 2.71 <	Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	
Actual Interception Capacity Carry-Over Flow = Q_n-Q_n (to be applied to curb opening or next d/s inlet) $Q_n =$ N/A N/A N/A Cfs Curb Opening or Slotted Inlet Analysis (Calculated)MINORMAJORFEquivalent Slope S_e Required Length L _t to Have 100% Interception $L_T =$ 2.71 4.15 ftUnder No-Cloaging Condition Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) $L_T =$ 2.71 4.15 ftInterception Capacity Clogging Coefficient $MINOR$ MAJORcfs $MINOR$ MAJORClogging Coefficient Clogging Capacity $Q_i =$ 0.4 0.8 cfsChycle public $Q_i =$ 0.4 0.0 0.0 0.0 Clogging Coefficient Curbcloged) Length $L_e =$ 2.71 4.15 ftCarry-Over Flow = $Q_{br(GRATE)}Q_n$ $Q_i =$ 0.4 0.8 cfsSummary Total Inlet Interception Capacity Carry-Over Flow = Q_{a/Q_n} $Q_i =$ 0.4 0.8 cfsContract Inlet Carry-Over Flow = Q_{a/Q_n} $Q_i =$ 0.4 0.8 cfsContract Percentage = Q_{a/Q_n} $Q_i =$ 0.4 0.8 cfsCarry-Over Flow = Q_{a/Q_n} $Q_i =$ 0.4 0.8 cfsCarry - Over Flow = Q_{a/Q	Interception Rate of Side Flow	R _v =	N/A	N/A	
Carry-Over Flow = $Q_{\mu}-Q_{\alpha}$ (to be applied to curb opening or next d/s inlet) Q_{h} = N/A N/A cfs Curb Opening or Slotted Inlet Analysis (Calculated)MINORMAJOREquivalent Slope SeSe =0.1870.174Required Length L _T to Have 100% InterceptionL _T =2.714.15Inder No-Clogaing ConditionMINORMAJOREffective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)L =2.714.15Interception CapacityQi =0.40.8cfsUnder Clogaing ConditionMINORMAJORClogging Coefficient1.001.00Clogging CoefficientCurbCoeff =1.001.001.00Clogging Factor for Multiple-unit Curb Opening or Slotted InletCurbClog =0.100.10Effective (Unclogged) LengthLe =2.714.15ftActual Interception CapacityQa =0.40.8cfsCarry-Over Flow = Q_h(GRATE)-QaOh =0.00.0cfsSummaryMINORMAJORCfs55Total Inlet Interception CapacityQb =0.00.0cfsCartyr-Over Flow = Qu/QaC% =0.00.0cfsCapure Percentage = Qu/QaC% =100100%	Actual Interception Capacity	0, =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)Equivalent Slope Se $S_e = 0.187$ 0.174 ft/ftRequired Length L ₁ to Have 100% Interception $L_T = 2.71$ 4.15 ftUnder No-Clogging Condition $MINOR$ MAJOREffective Length of Curb Opening or Slotted Inlet (minimum of L, L _T) $L = 2.71$ 4.15 ftInterception Capacity $Q_i = 0.4$ 0.8 cfsUnder Clogging CoefficientCurbCoeff = 1.00 1.00 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted InletCurbCoeff = 1.00 1.00 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted InletCurbClog = 0.10 0.10 0.10 Clogging Factor for Multiple-unit Curb Opening or Slotted InletCurbClog = 0.4 0.8 cfsCarry-Over Flow = $Q_{h(CRATE)}Q_h$ $Q_h = 0.0$ 0.0 cfsSummaryMINORMAJOR Cfs Total Inlet Interception Capacity $Q_b = 0.0$ 0.0 cfsCartyr-Over Flow (flow bypassing inlet) $Q_b = 0.0$ 0.0 0.0 cfs Capture Percentage = Q_s/Q_h $CP'_{0} = 100$ 100 $9'_{0}$	Carry-Over Flow = O_0 - O_0 (to be applied to curb opening or next d/s inlet)	0 ₆ =	N/A	N/A	cfs
Intervision SolutionIntervision SolutionIntervision SolutionIntervision<	Curb Opening or Slotted Inlet Analysis (Calculated)	C //	MINOR	MAIOR	
Required Length L ₁ to Have 100% Interception $L_{T} = \frac{0.10}{2.71}$ 0.112 Under No-Cloaging Condition $L_{T} = \frac{2.71}{2.71}$ 4.15 ftEffective Length of Curb Opening or Slotted Inlet (minimum of L, L _T) $L = \frac{2.71}{2.71}$ 4.15 ftInterception Capacity $Q_{I} = 0.4$ 0.8 cfsUnder Cloaging ConditionCurbCoeff = 1.00 1.00 0.10 Clogging CoefficientCurbCoeff = 1.00 1.00 0.10 Clogging Factor for Multiple-unit Curb Opening or Slotted InletCurbClog = 0.10 0.10 Effective (Unclogged) Length $L_e = 2.71$ 4.15 ftActual Interception Capacity $Q_a = 0.4$ 0.8 cfsCarry-Over Flow = $Q_{h/GRATE} Q_a$ $Q_h = 0.0$ 0.0 cfs SummaryMINORMAJORftTotal Inlet Interception Capacity $Q_b = 0.0$ 0.0 cfsCapture Percentage = Q_u/Q_a $C_{Y}^{0} = 100$ 100 9_{0}	Equivalent Slope S.	S. =	0.187	0.174	ft/ft
$ \begin{array}{c} \text{Linder Longing Condition} \\ \hline \text{Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)} \\ \hline \text{Interception Capacity} \\ \hline \text{Under Clogging Condition} \\ \hline \text{Clogging Coefficient} \\ \hline \text{Clogging Coefficient} \\ \hline \text{Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet} \\ \hline \text{Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet} \\ \hline \text{Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet} \\ \hline \text{Clogging Coefficient} \\ \hline \text{CurbClog} = \\ \hline \text{CurbClog} = \\ \hline \text{O.10} \\ \hline \text{Clogmatry} \\ \hline \text{Over Flow} = \\ \hline \text{O.4} \\ \hline \text{O.8} \\ \hline \text{Crypture Plow} = \\ \hline \text{O.0} \\ \hline \ O.0$	Required Length L _e to Have 100% Intercention	L = =	2 71	4 15	A
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T) L 2.71 4.15 ft Interception Capacity Q ₁ 0.4 0.8 cfs Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoeff = 1.00 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbCoeff = 0.10 0.10 Effective (Unclogged) Length Le 2.71 4.15 ft Actual Interception Capacity Qa 0.4 0.8 cfs Carry-Over Flow = Q _{b(CRATE)} -Qa Qh 0.0 0.0 cfs Summary MINOR MAJOR Total Inlet Interception Capacity Qa 0.4 0.8 cfs Capture Percentage = Q ₂ /Q ₀ C% = 0.0 0.0 cfs	Under No-Clogging Condition	LT -	MINOP	MATOP	ii.
Literception Capacity $Q_1 = 2.71$ 4.13 ItInterception Capacity $Q_1 = 0.4$ 0.8 cfsUnder Cloaging CoefficientCurbCoeff = 1.00 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted InletCurbClog = 0.10 0.10 Effective (Unclogged) Length $L_e = 2.71$ 4.15 ftActual Interception Capacity $Q_a =$ 0.4 0.8 cfsCarry-Over Flow = $Q_{bt/GRATE} - Q_a$ $Q_b =$ 0.0 0.0 cfsSummaryMINORMAJORTotal Inlet Interception Capacity $Q_b =$ 0.4 0.8 Capture Percentage = Q_u/Q_a $Q_b =$ 0.0 0.0 cfs	Effective Length of Curb Opening or Slotted Inlet (minimum of L. L.)	F	2 71	4 1E	A
Interception capacity $Q_{a} = 0.4$ 0.8 cfs Under Clogging Coefficient $CurbCoeff = 1.00$ 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet $CurbClog = 0.10$ 0.10 Effective (Unclogged) Length $L_{e} = 2.71$ 4.15 ft Actual Interception Capacity $Q_{a} = 0.4$ 0.8 cfs Carry-Over Flow = $Q_{h/GRATE}$ $Q_{b} = 0.0$ 0.0 cfs Summary Total Inlet Carry-Over Flow (flow bypassing inlet) $Q_{b} = 0.0$ 0.0 cfs Capture Percentage = Q_{a}/Q_{0} $C^{\phi}\phi = 100$ 100 9%	Energian of Carb Opening of Sioted Infet (minimum of L, L_T)	L =	2.71	4.15	IL
Under Llogaing Condition MINOR MAIOR Clogging Coefficient CurbCoeff = 1.00 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbClog = 0.10 0.10 Effective (Unclogged) Length $L_e =$ 2.71 4.15 ft Actual Interception Capacity $Q_a =$ 0.4 0.8 cfs Carry-Over Flow = Q _{b(GRATE)} -Q _a $Q_b =$ 0.4 0.8 cfs Summary Total Inlet Carry-Over Flow (flow bypassing inlet) $Q_b =$ 0.0 0.0 cfs Capture Percentage = Q _a /Q _a C9% 100 100 9%		$Q_i =$	0.4	0.8	CTS
Llogging Coethcient CurbCoeff = 1.00 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbColog = 0.10 0.10 Effective (Unclogged) Length Le = 2.71 4.15 ft Actual Interception Capacity Qa = 0.4 0.8 cfs Carry-Over Flow = Q _{MGBATE-} Qa Qh = 0.0 0.0 cfs Summary MINOR MAJOR Total Inlet Interception Capacity Qb = 0.0 0.0 cfs Capture Percentage = Q ₂ /Q ₀ C% = 100 100 %	Under Clogging Condition		MINOR	MAJOR	-
Liogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbClog = 0.10 0.10 Effective (Unclogged) Length L_e = 2.71 4.15 ft Actual Interception Capacity Q_a = 0.4 0.8 cfs Carry-Over Flow = $Q_{hr(GRTF)}-Q_a$ Q_h = 0.0 0.0 cfs Summary MINOR MAJOR Total Inlet Interception Capacity Q_b = 0.0 0.0 cfs Capture Percentage = Q_u/Q_a Q_b = 0.0 0.0 cfs	Clogging Coefficient	CurbCoeff =	1.00	1.00	4
Effective (Unclogged) Length $L_e = 2.71$ 4.15ftActual Interception Capacity $Q_a = 0.4$ 0.8 cfsCarry-Over Flow = $Q_{b(GRATE)}Q_a$ $Q_b = 0.0$ 0.0 cfsSummaryMINORMAJORTotal Inlet Interception Capacity $Q_b = 0.4$ 0.8 cfsCapture Percentage = Q_u/Q_a $C^{\phi} = 100$ 100 9^{ϕ}	Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	
Actual Interception Capacity $Q_a =$ 0.4 0.8 cfsCarry-Over Flow = $Q_{b(GRATE)} Q_a$ $Q_b =$ 0.0 0.0 cfsSummaryMINORMAJORTotal Inlet Interception Capacity $Q =$ 0.4 0.8 cfsTotal Inlet Carry-Over Flow (flow bypassing inlet) $Q_b =$ 0.0 0.0 cfsCapture Percentage = Q_a/Q_a $C^{0}\phi =$ 100 100 9ϕ	Effective (Unclogged) Length	$L_e =$	2.71	4.15	ft
$\begin{array}{c c} Carry-Over Flow = Q_{h/GRATE}-Q_{a} & Q_{b} = & 0.0 & 0.0 & cfs \\ \hline Summary & MINOR & MAJOR \\ \hline Total Inlet Interception Capacity & Q = & 0.4 & 0.8 & cfs \\ \hline Total Inlet Carry-Over Flow (flow bypassing inlet) & Q_{b} = & 0.0 & 0.0 & cfs \\ \hline Capture Percentage = Q_{a}/Q_{a} & C^{0}_{b} = & 100 & 100 & 9_{b} \end{array}$	Actual Interception Capacity	$Q_a =$	0.4	0.8	cfs
Summary MINOR MAJOR Total Inlet Interception Capacity $Q = 0.4$ 0.8 cfs Total Inlet Carry-Over Flow (flow bypassing inlet) $Q_b = 0.0$ 0.0 cfs Capture Percentage = Q_a/Q_a $C_{\phi} = 100$ 100 ϕ_{ϕ}	Carry-Over Flow = $Q_{b(GRATE)} - Q_a$	Q _b =	0.0	0.0	cfs
Total Inlet Interception Capacity $Q = 0.4$ 0.8 cfs Total Inlet Carry-Over Flow (flow bypassing inlet) $Q_b = 0.0$ 0.0 cfs Capture Percentage = Q_a/Q_a $C\% = 100$ 100 $\%$	Summary		MINOR	MAJOR	
Total Inlet Carry-Over Flow (flow bypassing inlet) $Q_b = 0.0$ 0.0 cfs Capture Percentage = Q_a/Q_a $C\% = 100$ 100 $\%$	Total Inlet Interception Capacity	Q =	0.4	0.8	cfs
Capture Percentage = Q_a/Q_a C% = 100 100 %	Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
	Capture Percentage = Q_a/Q_o	C% =	100	100	%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	Q ₀ =	0.6	1.3	cfs
Water Spread Width	Ť =	7.8	11.6	ft
Water Depth at Flowline (outside of local depression)	d =	2.3	2.8	inches
Water Depth at Street Crown (or at T_{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E_ =	0.751	0.551	
Discharge outside the Gutter Section W. carried in Section T.	0, =	0.1	0.6	cfs
Discharge within the Gutter Section W	0 =	0.4	0.7	cfs
Discharge Behind the Curb Face	OPACK =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.25	0.34	sa ft
Velocity within the Gutter Section W	V =	17	21	fns
Water Denth for Design Condition	duocau =	53	5.8	inches
Grate Analysis (Calculated)	GIULAI	MINOR	MATOR	Inches
Total Length of Inlet Grate Opening	1 =	N/A	N/A	Ĥ
Patio of Crate Flow to Decign Flow	E	N/A	N/A	
Under No-Clogging Condition	Lo-GRATE		MA1OP	
Minimum Velocity Where Grate Splach-Over Begins	V -	N/A	MAJOK N/A	fnc
Intercention Pate of Frontal Flow	V ₀ –	N/A	N/A	iha
Interception Nate of Fide Flow	R _f =	N/A	N/A	-
Interception Capacity	N _x =	N/A	N/A	cfc
Under Cleaning Condition	Qi –		MA1OD	us
Classing Coefficient for Multiple unit Crote Inlet	CrotoCooff -	MINOR N/A	MAJOR	7
Clogging Coefficient for Multiple-unit Grate Inlet	GrateClea	N/A	N/A	-
Clogging Factor for Multiple-Unit Grate Inlet	GrateClog =	N/A	N/A	<u> </u>
Effective (unclogged) Length of Multiple-unit Grate Inlet		N/A	N/A	π
Minimum velocity where Grate Splash-Over Begins	v _o =	N/A	N/A	rps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	-
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cts
Carry-Over Flow = $Q_0 - Q_0$ (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	CTS
Curb Opening or Slotted Inlet Analysis (Calculated)	с Г	MINOR	MAJOR	
Equivalent Slope Se	S _e =	0.144	0.108	π/π
Required Length L _T to Have 100% Interception	$L_T =$	3.46	5.86	ft
Under No-Clogging Condition	. –	MINOR	MAJOR	٦.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	3.46	5.00	t,
Interception Capacity	$Q_i =$	0.6	1.2	cts
Under Clogging Condition	- · · -	MINOR	MAJOR	-
Clogging Coefficient	CurbCoeff =	1.00	1.00	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	4.
Effective (Unclogged) Length	L _e =	3.46	4.50	ft
Actual Interception Capacity	Q _a =	0.6	1.2	cfs
Carry-Over Flow = $Q_{b(GRATF)}$ - Q_a	Q _b =	0.0	0.1	cfs
Summary		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	0.6	1.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.1	cfs
Capture Percentage $= 0.10$	C0/	100	02	0/

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.7	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information	-0(-)	MINOR	MAIOR	
Length of a Unit Curb Opening	$I_{-}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches		6.00	6.00	inches
Height of Curb Orifice Throat in Inches	Halanana =	6.00	6.00	inches
Angle of Throat	Theta =	63.40	63.40	dearees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W =	2.00	2.00	feet
Clogging Eactor for a Single Curb Opening (typical value 0.10)	$C_{1}(C) =$	0.10	0.10	icci
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{1}(C) = C_{1}(C) $	3.60	3.60	-
Curb Opening Weir Coefficient (typical value 2.5-5.7)	$C_{w}(C) = C_{w}(C) $	0.67	0.67	-
Carbo Opening Office Coencient (typical value 0.00 - 0.70)	$c_0(c) =$	0.07	0.07	
Grate Flow Analysis (Calculated)	6f	MINOR	MAJOR	٦
	Coer =	N/A	N/A	_
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	٦.
Interception without Clogging	Q _{wi} =	N/A	N/A	cts
Interception with Clogging	Q _{wa} =	N/A	N/A	cts
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	. -	MINOR	MAJOR	- -
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	_	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	_	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	4.3	7.1	cfs
Interception with Clogging	Q _{wa} =	3.9	6.4	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	8.7	9.8	cfs
Interception with Clogging	0 ₀₀ =	7.9	8.8	cfs
Curb Opening Capacity as Mixed Flow	eoa	MINOR	MAJOR	
Interception without Clogging	O _{mi} =	5.7	7.7	cfs
Interception with Clogging				cfc
Resulting Curb Opening Capacity (assumes clogged condition)	O =	5.2	7.0	1115
Resulting curb opening capacity (assumes clogged condition)	Q _{ma} = O _{curb} =	5.2 3.9	7.0 6.4	cfs
Resultant Street Conditions	Q _{ma} = Q_{Curb} =	5.2 3.9 MINOR	7.0 6.4 MAJOR	cfs
Resultant Street Conditions	Q _{ma} = Q _{Curb} =	5.2 3.9 MINOR	7.0 6.4 MAJOR	cfs
Resultant Street Conditions Total Inlet Length Desultant Street Flow Served (based on street geometry from shoup)	Q _{ma} = Q _{Curb} = L =	5.2 3.9 MINOR 5.00 20.0	7.0 6.4 MAJOR 5.00	feet
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above)	Q _{ma} = Q _{Curb} = L = T = d	5.2 3.9 MINOR 5.00 20.0	7.0 6.4 MAJOR 5.00 27.0	feet ft
<u>Resultant Street Conditions</u> Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown	$Q_{ma} =$ $Q_{Curb} =$ L = T = $d_{CROWN} =$	5.2 3.9 MINOR 5.00 20.0 0.0	7.0 6.4 MAJOR 5.00 27.0 0.0	feet ft inches
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown	Q _{ma} = Q _{curb} = L = T = d _{CROWN} =	5.2 3.9 MINOR 5.00 20.0 0.0	7.0 6.4 MAJOR 5.00 27.0 0.0	feet ft inches
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated)	$Q_{ma} =$ $Q_{Curb} =$ L = T = $d_{CROWN} =$	5.2 3.9 MINOR 5.00 20.0 0.0 MINOR	7.0 6.4 MAJOR 5.00 27.0 0.0 MAJOR	feet ft inches
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth	$Q_{ma} =$ $Q_{Curb} =$ L = T = $d_{CROWN} =$ $d_{Grate} =$	5.2 3.9 MINOR 5.00 20.0 0.0 MINOR N/A 0.27	7.0 6.4 MAJOR 5.00 27.0 0.0 MAJOR N/A 0.22	feet ft inches
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Control Lab Defension Control Laboration	$Q_{ma} =$ $Q_{Curb} =$ L = T = $d_{CROWN} =$ $d_{Grate} =$	5.2 3.9 MINOR 5.00 20.0 0.0 MINOR N/A 0.27 N/A	7.0 6.4 MAJOR 5.00 27.0 0.0 MAJOR N/A 0.38 N/A	fcfs feet ft inches ft ft
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Control Performance Reduction Factor for Long Inlets	$\begin{array}{c} Q_{ma} = \\ Q_{Curb} = \end{array}$ $\begin{array}{c} L = \\ T = \\ d_{CROWN} = \end{array}$ $\begin{array}{c} d_{Grate} = \\ d_{Curb} = \\ RF_{Grate} = \end{array}$	5.2 3.9 MINOR 5.00 20.0 0.0 MINOR N/A 0.27 N/A 1.62	7.0 6.4 MAJOR 5.00 27.0 0.0 MAJOR N/A 0.38 N/A	feet ft jinches ft
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets	$\begin{array}{c} Q_{ma} = \\ Q_{Curb} = \end{array}$ $\begin{array}{c} L = \\ T = \\ d_{CROWN} = \end{array}$ $\begin{array}{c} d_{Grete} = \\ d_{Curb} = \\ RF_{Grate} = \\ RF_{Curb} = \end{array}$	5.2 3.9 MINOR 5.00 20.0 0.0 MINOR N/A 0.27 N/A 1.00	7.0 6.4 MAJOR 5.00 27.0 0.0 MAJOR N/A 0.38 N/A 1.00	feet ft inches ft
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Grate Midwidth Strated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets	$\begin{array}{c} Q_{ma} = \\ Q_{Curb} = \end{array}$ $\begin{array}{c} L = \\ T = \\ d_{CROWN} = \end{array}$ $\begin{array}{c} d_{Grate} = \\ RF_{Grate} = \\ RF_{Grate} = \\ RF_{Curb} = \\ RF_{Curb} = \end{array}$	5.2 3.9 MINOR 5.00 20.0 0.0 MINOR N/A 0.27 N/A 1.00 N/A	7.0 6.4 MAJOR 5.00 27.0 0.0 MAJOR N/A 0.38 N/A 1.00 N/A	feet ft inches ft
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets	$\begin{array}{c} Q_{ma} = \\ \mathbf{Q}_{Curb} = \\ \\ \mathbf{L} = \\ \mathbf{T} = \\ \\ \mathbf{d}_{CROWN} = \\ \\ \\ \mathbf{d}_{Grate} = \\ \\ \mathbf{d}_{Curb} = \\ \\ \mathbf{R}F_{Grate} = \\ \\ \mathbf{R}F_{Corb} = \\ \\ \mathbf{R}F_{Combination} = \\ \end{array}$	5.2 3.9 MINOR 5.00 20.0 0.0 MINOR N/A 0.27 N/A 1.00 N/A	7.0 6.4 MAJOR 5.00 27.0 0.0 MAJOR N/A 0.38 N/A 1.00 N/A	feet ft inches ft
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets	$\begin{array}{c} Q_{ma} = \\ Q_{Curb} = \end{array}$ $\begin{array}{c} L = \\ T = \\ d_{CROWN} = \end{array}$ $\begin{array}{c} d_{Grate} = \\ d_{Curb} = \\ RF_{Grate} = \\ RF_{Curb} = \\ RF_{Curb ination} = \end{array}$	5.2 3.9 MINOR 5.00 20.0 0.0 MINOR N/A 0.27 N/A 1.00 N/A MINOR	7.0 6.4 MAJOR 5.00 27.0 0.0 MAJOR N/A 1.00 N/A MAJOR	feet ft inches ft
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Total Inlet Interception Capacity (assumes clogged condition)	$Q_{ma} = \frac{Q_{Curb}}{Q_{Curb}} = \frac{1}{2}$ $L = \begin{bmatrix} T = \\ d_{CROWN} = \end{bmatrix}$ $d_{Grate} = \begin{bmatrix} d_{Curb} = \\ RF_{Grate} = \\ RF_{Curb} = \end{bmatrix}$ $RF_{Curb} = \begin{bmatrix} RF_{Curb} = \\ RF_{Curb} = \end{bmatrix}$	5.2 3.9 MINOR 5.00 20.0 0.0 MINOR N/A 0.27 N/A 1.00 N/A 1.00 N/A 3.9	7.0 6.4 MAJOR 5.00 27.0 0.0 MAJOR N/A 1.00 N/A MAJOR 6.4	feet ft inches ft ft ft

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W. Gutter Width)	W. =	N/A	N/A	ft
Clonging Eactor for a Single Unit Grate (typical min, value = 0.5)	$C_{\epsilon}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{\epsilon}(C) =$	0.10	0.10	
Street Hydraulics: $OK - O < Allowable Street Canacity'$	- (-/	MINOR	MAIOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	0 =	0.1	0.2	cfs
Water Spread Width	чо – т –	1 3	1.7	
Water Depth at Elewline (outside of local depression)	d -	1.5	1.7	inches
Water Depth at Street (rown (or at T)	- u -	1.0	1.9	inches
Datio of Cuttor Flow to Design Flow	CROWN -	1.000	1.000	linches
Ratio of Guiler Flow to Design Flow	L, -	1.000	1.000	ofo
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.0	0.0	us
Discharge within the Gutter Section w	Q _w =	0.1	0.2	CTS
Discharge Benind the Curb Face	QBACK =	0.0	0.0	CTS
Flow Area within the Gutter Section W	A _W =	0.00	0.00	sqπ
Velocity within the Gutter Section W	V _W =	0.0	0.0	fps
Water Depth for Design Condition	d _{LOCAL} =	4.8	4.9	inches
Grate Analysis (Calculated)	-	MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition	_	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L. =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V. =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R. =	N/A	N/A	
Actual Interception Capacity	0, =	N/A	N/A	cfs
Carry-Over Flow = O_{0} - O_{0} (to be applied to curb opening or next d/s inlet)	Q ₆ =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	3 0 J	MINOR	MATOR	1010
Equivalent Slope S	S =	0.208	0.208	Ĥ/Ĥ
Required Length L to Have 100% Intercention	L =	1 31	1.95	ft, ite
Under No-Clogging Condition	-1 -	MINOP	1.95 MA1OP	ii.
Effective Length of Curb Opening or Slotted Inlet (minimum of L. L.)	ı _F	1 31	1.05	P
	L =	0.1	1.95	it ofc
Under Cleasing Condition	Qi =	U.1	0.2	us
		MINUK	MAJUR	-
Clogging Coemcient Clogging Factor for Multiple with Coefficients on Clothad Tale?	CurbCoeff =	1.00	1.00	-
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	
Effective (Unclogged) Length	L _e =	1.31	1.95	π
Actual Interception Capacity	Q _a =	0.1	0.2	cfs
Carry-Over How = $Q_{h(GRATE)} - Q_a$	Q _b =	0.0	0.0	cfs
Summary		MINOR	MAJOR	- -
Total Inlet Interception Capacity	Q =	0.1	0.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Canture Percentage - 0 /0	C0/	100	100	0/

Design Information (Input)		MINOR	MAIOR	
	Type =	CDOT Type R	Curb Opening	
l ocal Depression (additional to continuous gutter depression 'a')	allocut =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No -	1	1	incrica
Length of a Single Unit Inlet (Grate or Curb Opening)	10 -	5.00	5 00	A
Width of a Unit Crate (cannot be greater than W. Cutter Width)	W -	5.00	5.00	£
Clossing Easter for a Single Unit Crate (typical min, value = 0.5)	C (G) -	N/A	N/A	ii.
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) = C_{f}(G) = C_{f}(G)$	0.10	N/A	-
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	U.10	0.10	
Street Hydraulics: $OK - Q < Allowable Street Capacity$	~ F	MINOR	MAJOR	afa
Design Discharge for Hall of Street (from <i>Thet Management</i>)	Q ₀ =	0.7	1.0	us e
water Spread width	1 =	3.3	5.4	π.
Water Depth at Flowline (outside of local depression)	a =	1.8	2.3	inches
water Depth at Street Crown (or at T _{MAX})	a _{crown} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.973	0.825	· · · · · · · · · · · · · · · · · ·
Discharge outside the Gutter Section W, carried in Section T _x	$Q_x =$	0.0	0.3	cfs
Discharge within the Gutter Section W	$Q_w =$	0.7	1.3	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.18	0.26	sq ft
Velocity within the Gutter Section W	$V_W =$	3.9	4.9	fps
Water Depth for Design Condition	$d_{LOCAL} =$	4.8	5.3	inches
Grate Analysis (Calculated)	_	MINOR	MAJOR	_
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition	-	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_{f} =$	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (uncloaged) Length of Multiple-unit Grate Inlet	L. =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V. =	N/A	N/A	fns
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Intercention Rate of Side Flow	R. =	N/A	N/A	
	0, =	N/A	N/A	cfs
Carry-Over Flow = $\Omega_{-}\Omega_{-}$ (to be applied to curb opening or next d/s inlet)	$O_{1} =$	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	4 .6	MINOR	MATOR	60
Equivalent Slone S	S =	0.183	0.158	Ĥ/Ĥ
Required Length L ₌ to Have 100% Intercention	L =	3.86	6.17	ft, it
Linder No-Clogging Condition		MINOP	MA10P	i.
Effective Length of Curb Opening or Slotted Inlet (minimum of L. L.)	ı _F	3.86	5.00	A
Intercention Canacity	0	0.7	1.5	cfe
Under Cleaging Condition	Qi =	U./	1.3	
Cleaning Coofficient	CurbCooff	1.00	1.00	7
Clogging Coefficient	CurbCoerf =	0.10	0.10	-
Clogging Factor for Multiple-unit Curb Opening or Slotted Iniet		0.10	0.10	
A stud Takayaantian Cransite	L _e =	3.60	4.50	
	Qa =	0.7	1.4	crs
Carry-Over Flow = Qh(GRATE)-Qa	Q _b =	0.0	0.1	CTS
<u>Summary</u>	- T	MINOR	MAJOR	٦.
I otal Inlet Interception Capacity	Q =	0.7	1.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.1	cfs
Capture Percentage = Q_a/Q_o	C% =	100	90	%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	T _{ft}
Cloaging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	- '
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	-
Street Hydraulics: OK - O < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	0 ₀ =	0.2	0.5	rfs
Mater Spread Width	т ₌ Г	1.6	3.4	
Water Danth at Flowline (outside of local depression)	d =	1.0	1.8	inchec
Water Depth at Street Crown (or at T)	d_pown	0.0	0.0	inchec
Patia of Cuttor Elow to Decign Flow	F =	1 000	0.0	
Rallo of Guller Flow to Design flow	~ =	1.000	0.570	-
Discher within the Cutter Castion W	~~	0.0	0.0	
Discharge within the Gutter Security w	Q	0.2	0.5	- Cfs
Discharge Benind the Curb Face		0.0	0.0	CTS
Flow Area within the Gutter Section w	Aw -	0.00	0.1/	sq ft
Velocity within the Gutter Section W	v _w =	0.0	3.0	fps
Water Depth for Design Condition	d _{LOCAL} =	4.4	4.8	inches
Grate Analysis (Calculated)	. г	MINOR	MAJOR	_
Total Length of Inlet Grate Opening	_ L=	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	ין
Interception Rate of Side Flow	R _x =	N/A	N/A	7
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Cond <u>ition</u>	_	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	י ר
Cloaging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	1
Effective (uncloaged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	T _{ft}
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	- "
Interception Rate of Side Flow	R _v =	N/A	N/A	-1
Actual Intercention Canacity	0, =	N/A	N/A	- cfe
Carry-Over Flow = $\Omega_{-}\Omega_{-}$ (to be applied to curb opening or next d/s inlet)	0 _b =	N/A	N/A	- CIS Cfe
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MATOR	
Fourivalent Slone S	S. =	0.188	0.183	_
Required Length L - to Have 100% Intercention		1 70	3 10	
Under No. Clossing Condition	E1 - L	MINOP	5.15 MA10P	
Effective Length of Curb Opening or Slotted Inlet (minimum of L. L.)	ı _Г	1 70	3 10	
Intercention Conscibu	<u> </u>	0.2	5.19	
Interception Capacity	Qi -		0.5	CTS
Under Clogging Condition	Curle Craffe		MAJUK	7
Clogging Coefficient	CurbCoen =	1.00	1.00	-
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	4.
Effective (Unclogged) Length		1./9	3.19	ft
Actual Interception Capacity	Q _a =	0.2	0.5	cfs
Carry-Over Flow = $Q_{h(GRATE)}$ - Q_a	Q _b =	0.0	0.0	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.2	0.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Perceptage $= 0.10$	C % -	100	100	0/2

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$Q_0 =$	0.6	1.2	cfs
Water Spread Width	T =	4.3	7.7	ft
Water Depth at Flowline (outside of local depression)	d =	1.8	2.3	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.953	0.756	
Discharge outside the Gutter Section W, carried in Section T,	Q _x =	0.0	0.3	cfs
Discharge within the Gutter Section W	Q_w =	0.5	0.9	cfs
Discharge Behind the Curb Face	OBACK =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.18	0.25	sa ft
Velocity within the Gutter Section W	V =	3.0	3.6	fns
Water Depth for Design Condition	diocal =	4.8	5.3	inches
Grate Analysis (Calculated)	#ILLAN	MINOR	MAIOR	inches
Total Length of Inlet Grate Opening	1 =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E ours =	N/A	N/A	
Under No-Clogging Condition	GRATE	MINOR	MATOR	
Minimum Valocity Where Grate Splach-Over Begins	V =	N/A	N/A	fnc
Intercention Rate of Frontal Flow	R =	N/A	N/A	103
Interception Rate of Fide Flow	P -	N/A	N/A	
Interception Capacity	N _x -	N/A	N/A	cfc
Under Cleasing Condition	Qi -		MA1OP	us
Clogging Coefficient for Multiple-unit Crate Inlet	GrateCoeff -	N/A	MAJOK N/A	٦
Clogging Easter for Multiple-unit Grate Inlet	GrateClea -	N/A	N/A	-
Clogging Factor for Multiple-unit Grate Iniet	Grateciog =	N/A	N/A	<u> </u>
Effective (unclogged) Length of Multiple-unit Grate Iniet		N/A	N/A	- IL fma
Intercention Date of Frental Flow	v _o =	N/A	N/A	ips
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
A shuel Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	crs
Carry-Over Flow = $Q_0 - Q_0$ (to be applied to curb opening or next d/s inlet)	Q _b =	N/A MINOR	N/A	CTS
Curb Opening or Slotted Inlet Analysis (Calculated)	с Г	MINUR	MAJOR	A /A
Equivalent Siope S _e	S _e =	0.179	0.144	π/π
Required Length L_T to Have 100% Interception	$L_T =$	3.32	5.45	ft
Under No-Clogging Condition	. –	MINOR	MAJOR	7.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	3.32	5.00	π
Interception Capacity	Q _i =	0.6	1.2	CTS
Under Clogging Condition	.	MINOR	MAJOR	-
Clogging Coefficient	CurbCoeff =	1.00	1.00	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	4.
Effective (Unclogged) Length	L _e =	3.32	4.50	ft
Actual Interception Capacity	$Q_a =$	0.6	1.1	cfs
Carry-Over Flow = $Q_{h(GRATE)}$ - Q_a	Q _b =	0.0	0.1	cfs
Summary	-	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	0.6	1.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.1	cfs
Capture Percentage $= 0.70$	C0/	100	06	0/

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{n}(G) =$	N/A	N/A	
Curb Opening Information	-0(-)	MINOR	MAIOR	_
Length of a Unit Curb Opening	L. (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	Hatarat =	6.00	6.00	inches
Angle of Throat	Theta =	63.40	63.40	dearees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W =	2.00	2.00	feet
Clogging Eactor for a Single Curb Opening (typical value 0.10)	$C_{1}(C) =$	0.10	0.10	icci
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{1}(C) = C_{1}(C) $	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 2.3-3.7)	$C_{w}(C) = C_{w}(C) = 0$	0.67	0.67	_
Carbo Opening Office Coencient (typical value 0.00 - 0.70)	$c_0(c) =$	0.07	0.07	
Grate Flow Analysis (Calculated)	6f	MINOR	MAJOR	٦
	Coer =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cts
Interception with Clogging	Q _{wa} =	N/A	N/A	cts
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	. -	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	_	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	_	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	7.1	7.1	cfs
Interception with Clogging	Q _{wa} =	6.4	6.4	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	9.8	9.8	cfs
Interception with Clogging	0 ₀₀ =	8.8	8.8	cfs
Curb Opening Capacity as Mixed Flow	coa	MINOR	MAJOR	
Interception without Clogging	O _{mi} =	7.7	7.7	cfs
Interception with Clogging	0 =	7.0	7.0	cfs
Resulting Curb Opening Capacity (accumes clogged condition)	• • • • • • • • • • • • • • • • • • •	7.10	6.4	cfs
Resultant Street Conditions		6.4	0.4	
Resultant Street conditions	Q _{Curb} =	6.4 MINOR	MATOR	
Total Inlet Length	Q _{Curb} =	6.4 MINOR 5.00	MAJOR 5.00	feet
Total Inlet Length Regultant Street Flow Spread (based on street geometry from above)	Qcurb =	6.4 MINOR 5.00	MAJOR 5.00	feet
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above)	Q _{Curb} =	6.4 MINOR 5.00 22.8	MAJOR 5.00 22.8	feet ft
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown	Qcurb = L = T = d _{CROWN} =	6.4 MINOR 5.00 22.8 0.0	MAJOR 5.00 22.8 0.0	feet ft inches
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown	Q curb = L = T = d _{CROWN} =	6.4 MINOR 5.00 22.8 0.0	MAJOR 5.00 22.8 0.0	feet ft inches
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated)	 L = [T = [d _{CROWN} = [6.4 MINOR 5.00 22.8 0.0 MINOR	MAJOR 5.00 22.8 0.0 MAJOR	feet ft inches
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth	$Q_{Curb} =$ $L =$ $T =$ $d_{CROWN} =$ $d_{Grate} =$	6.4 MINOR 5.00 22.8 0.0 MINOR N/A	6.4 MAJOR 5.00 22.8 0.0 MAJOR N/A	feet ft inches
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation	$\begin{array}{c} L = \\ T = \\ d_{CROWN} = \end{array}$	6.4 MINOR 5.00 22.8 0.0 MINOR N/A 0.38 0.38	MAJOR 5.00 22.8 0.0 MAJOR N/A 0.38	feet ft inches ft ft
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets	$\begin{array}{c} L = \\ T = \\ d_{CROWN} = \end{array}$	6.4 MINOR 5.00 22.8 0.0 MINOR N/A 0.38 N/A	MAJOR 5.00 22.8 0.0 MAJOR N/A 0.38 N/A	feet ft inches ft ft
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Grate Midwidth Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets	$\begin{array}{c} L = \\ T = \\ d_{CROWN} = \end{array}$	6.4 MINOR 5.00 22.8 0.0 MINOR N/A 0.38 N/A 1.00	0.4 MAJOR 5.00 22.8 0.0 MAJOR N/A 0.38 N/A 1.00	feet ft inches ft ft
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets	$\begin{array}{c} \textbf{Curb} = \\ \textbf{L} = \\ \textbf{T} = \\ \textbf{d}_{CROWN} = \\ \textbf{d}_{Grate} = \\ \textbf{d}_{Crb} = \\ \textbf{RF}_{Grate} = \\ \textbf{RF}_{Crdb} = \\ \textbf{RF}_{Crotbination} = \\ \end{array}$	6.4 MINOR 5.00 22.8 0.0 MINOR N/A 0.38 N/A 1.00 N/A	MAJOR 5.00 22.8 0.0 MAJOR N/A 0.38 N/A 1.00 N/A	feet ft inches ft ft
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets	$\begin{array}{c} \textbf{C}_{Curb} = \\ L = \\ T = \\ d_{CROWN} = \\ \end{array}$ $\begin{array}{c} d_{Grate} = \\ d_{Curb} = \\ RF_{Grate} = \\ RF_{Curb} = \\ RF_{Combination} = \\ \end{array}$	6.4 MINOR 5.00 22.8 0.0 MINOR N/A 0.38 N/A 1.00 N/A	0.4 MAJOR 5.00 22.8 0.0 MAJOR N/A 0.38 N/A 1.00 N/A	feet ft inches ft ft
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets	$\begin{array}{c} L = \\ T = \\ d_{CROWN} = \\ \end{array}$ $\begin{array}{c} d_{Grate} = \\ d_{Curb} = \\ RF_{Grate} = \\ RF_{Curb} = \\ RF_{Combination} = \\ \end{array}$	6.4 MINOR 5.00 22.8 0.0 MINOR N/A 0.38 N/A 1.00 N/A MINOR	0.4 MAJOR 5.00 22.8 0.0 MAJOR N/A 0.38 N/A 1.00 N/A MAJOR	feet ft inches ft ft
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets	$\begin{array}{c} \mathbf{Q}_{Curb} = \\ \mathbf{L} = \\ \mathbf{T} = \\ \mathbf{d}_{CROWN} = \\ \mathbf{d}_{Grate} = \\ \mathbf{d}_{Curb} = \\ \mathbf{R}F_{Grate} = \\ \mathbf{R}F_{Curb} = \\$	6.4 MINOR 5.00 22.8 0.0 MINOR N/A 1.00 N/A 1.00 N/A MINOR 6.4	0.4 MAJOR 5.00 22.8 0.0 MAJOR N/A 0.38 N/A 1.00 N/A MAJOR 6.4	feet ft inches ft ft cfs

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.7	5.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C., (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{n}(G) =$	N/A	N/A	
Curb Opening Information	-0 (-)	MINOR	MATOR	
Length of a Unit Curb Opening	L. (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	ца, (с) Н. =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H =	6.00	6.00	inches
Angle of Throat	Theta =	63.40	63.40	dearees
Side Width for Depression Pap (typically the gutter width of 2 feet)	W -	2 00	2.00	foot
Clogging Eactor for a Single Curb Opening (typical value 0.10)	C(C) =	0.10	0.10	icci
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{f}(C) = C_{f}(C) = C_{f}(C) = C_{f}(C)$	3.60	3.60	-
Curb Opening Weir Coefficient (typical value 2.3-5.7)	$C_{W}(C) = C_{W}(C) $	0.67	0.67	-
Curb Opening Office Coencient (typical value 0.00 - 0.70)	$C_0(C) =$	0.07	0.07	
Grate Flow Analysis (Calculated)	C	MINOR	MAJOR	٦
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	- T	MINOR	MAJOR	٦.
Interception without Clogging	Q _{wi} =	N/A	N/A	cts
Interception with Clogging	Q _{wa} =	N/A	N/A	cts
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	- .
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	-	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	2.4	5.7	cfs
Interception with Clogging	Q _{wa} =	2.2	5.1	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	7.8	9.2	cfs
Interception with Clogging	Q _{oa} =	7.0	8.3	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	4.0	6.7	cfs
Interception with Clogging	Q _{ma} =	3.6	6.1	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.2	5.1	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	15.0	25.0	ft
Resultant Flow Denth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	CROWN	010	0.0	incines
I ow Head Performance Reduction (Calculated)		MINOR	MATOR	
Denth for Grate Midwidth	d[N/A	N/A	Te .
Denth for Curb Opening Weir Equation	d _{Grate} –	0.18	0.32	н. А
Grated Inlet Performance Reduction Factor for Long Inlets	PF	N/A	0.3Z	-
Curb Opening Performance Reduction Easter for Long Trices	Grate =	1.00	1.00	-
Combination Inlet Performance Reduction Factor for Long Inlets		1.00 N/A	1.00 N/A	-
combination their Performance Reduction Factor for Long Inlets	KF _{Combination} =	IN/A	IN/A	J
		MINOD	MAJOD	
Takal Inlat Interception Connects (converse descedured and divised)	~ 「			ofe
Total The Interception Capacity (assumes clogged condition)	Q₂ =	2.2	5.1	cis
Injet Capacity IS GOOD for Minor and Major Storms (>O Peak)	V PEAK REQUIRED =	2.2	4.9	us

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-0+16</u>	<u>IN-0+18</u>	<u>IN-0+37</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows				
Minor Q _{Known} (cfs)	2.14	1.37	1.24	
Major Q _{Known} (cfs)	4.68	2.98	2.71	

Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked.

Receive Bypass Flow from:	No Bypass Flow Received	User-Defined	IN-0+18
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.1
Major Bypass Flow Received, Q _b (cfs)	0.0	0.2	1.2

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	2.1	1.4	1.3
Major Total Design Peak Flow, Q (cfs)	4.7	3.2	3.9
Minor Flow Bypassed Downstream, Q _b (cfs)	0.5	0.1	0.1
Major Flow Bypassed Downstream, Q _b (cfs)	2.3	1.2	1.8

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-0+38</u>	<u>IN-1+11</u>	<u>IN-0+82</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows				
Minor Q _{Known} (cfs)	0.68	0.90	0.54	
Major Q _{Known} (cfs)	1.48	1.96	1.17	
Major Q _{Known} (cfs)	1.48	1.96	1.17	

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	IN-0+16	User-Defined	User-Defined
Minor Bypass Flow Received, Q _b (cfs)	0.5	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	2.3	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	1.1	0.9	0.5
Major Total Design Peak Flow, Q (cfs)	3.8	2.0	1.2
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	1.7	0.4	0.2

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-0+88</u>	<u>IN-1+10</u>
Site Type (Urban or Rural)	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET
Hydraulic Condition	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows		
Minor Q _{Known} (cfs)	0.87	0.56
Major Q _{Known} (cfs)	1.90	1.23
Bypass (Carry-Over) Flow from Upstream		
Receive Bypass Flow from:	No Bypass Flow Received	User-Defined
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0
Watersned Characteristics		
Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		
Watershed Profile		
Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		
Minor Storm Rainfall Input		
Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		
Major Storm Painfall Input		
Docian Storm Poturn Poriod T (vorc)		
Ope-Hour Procipitation P (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.9	0.6
Major Total Design Peak Flow, Q (cfs)	1.9	1.2
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.5	0.2

INLET ON A CONTI	NUOUS G	RADE		
MHFD-Inlet, Version 5.0	13 (August 2023))		
۲ <u>۲</u> Lo (C) ۲				
H-Curb		_		
Lo (G)				
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	.
Local Depression (additional to continuous gutter depression 'a') Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	3.0	3.0	inches
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	С _г (С) =	N/A 0.10	N/A 0.10	-
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MINOR & MAJOR ST	FORM	MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	Q _o =	2.1	4.7	cfs
Water Spread Width	T =	14.3	18.0	ft
Water Depth at Flowing (outside of local depression) Water Depth at Street Crown (or at T_{Max})	d _{CROWN} =	4.4 0.0	0.1	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.390	0.396	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	1.3	2.8	cfs
Discharge within the Gutter Section W Discharge Behind the Curb Face		0.8	1.9	CTS CTS
Flow Area within the Gutter Section W	A _W =	0.62	0.78	sq ft
Velocity within the Gutter Section W	V _w =	1.4	2.4	fps
Water Depth for Design Condition	d _{LOCAL} =	7.4 MINOR	8.4 MA1OR	inches
Total Length of Inlet Grate Opening	L =	N/A	N/A	Пft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	v -	MINOR	MAJOR	7600
Intercention Rate of Frontal Flow	$R_{f} =$	N/A	N/A N/A	T ^{rps}
Interception Rate of Side Flow	R _x =	N/A	N/A	_
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	MINOK N/A	MAJOK N/A	Г
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	1
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$V_0 =$ $R_f =$	N/A N/A	N/Α N/Δ	fps
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = $Q_0 - Q_a$ (to be applied to curb opening or next d/s inlet)	Q _b =	N/A MINOR	MA1OR	cfs
	S _e =	0.085	0.086	∃ft/ft
Required Length L_{T} to Have 100% Interception	L _T =	7.80	11.78	ft
Under No-Clogging Condition	Г	MINOR	MAJOR	۹۲
Intercention Capacity	Qi =	1.8	2.6	-π cfs
Under Clogging Condition	~ _	MINOR	MAJOR	
Clogging Coefficient	CurbCoeff =	1.00	1.00]
Clogging Factor for Multiple-unit Curb Opening or Siotted Iniet	CurbClog =	0.10 4 50	0.10	- ₊
Actual Interception Capacity	Q _a =	1.7	2.4	cfs
$Carry-Over Flow = Q_{b(GRATF)}-Q_a$	Q _b =	0.5	1.7	cfs
Summary	o =[MINOR 17	MAJOR 74	7.40
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.5	2.3	cfs
Capture Percentage = $0/0$	<u> </u>	70	50	- ~

INLET ON A CONTI	NUOUS G	RADE		
MHFD-Inlet, Version 5.0.	3 (August 2023	3)		
۲ Lo (C) – ۲				
		-		
H-Curb H-Vert		_		
	_			
Lo (G)				
CDOT Type R Curb Opening				
Design Information (Input)		MINOR	MAJOR	
l ype of Inlet	lype =	CDOT Type R	Curb Opening	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	inches
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	_
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10 MINOR	0.10 MA10P	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	0. =	1.4	3.2	cfs
Water Spread Width	τ =	9.9	13.8	ft
Water Depth at Flowline (outside of local depression)	d =	3.3	4.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.641	0.539	
Discharge outside the Gutter Section W, carried in Section I_x	$Q_x =$	0.5	1.5	cts
Discharge Behind the Curb Face	Q _W =	0.9	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.39	0.50	sq ft
Velocity within the Gutter Section W	V _W =	2.3	3.4	fps
Water Depth for Design Condition	d _{LOCAL} =	6.3	7.0	inches
Grate Analysis (Calculated)	. г	MINOR	MAJOR	7.
I otal Length of Inlet Grate Opening Datio of Grate Flow to Decign Flow	L =	N/A	N/A	π
Linder No-Clogging Condition	□-GRATE =	MINOR	MA1OR	
Minimum Velocity Where Grate Splash-Over Begins	V., =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	GrateCooff -	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateClog =	N/A N/A	N/A N/A	_
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_{f} =$	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity Carry-Over Flow = $\Omega - \Omega$ (to be applied to curb opening or peyt d/s inlet)	$Q_a = 0$	N/A N/A	N/A N/A	crs
Curb Opening or Slotted Inlet Analysis (Calculated)	4 6 -	MINOR	MAJOR	
Equivalent Slope S _e	S _e =	0.138	0.119	ft/ft
Required Length L_T to Have 100% Interception	L _T =	5.46	8.87	ft
Under No-Clogging Condition		MINOR	MAJOR	٦.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.00	5.00	ft ofc
Inder Clogging Condition	Qi -	MINOR	2.2 MA1OR	us
Clogging Coefficient	CurbCoeff =	1.00	1.00	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	
Effective (Unclogged) Length	L _e =	4.50	4.50	ft
Actual Interception Capacity	Q _a =	1.3	2.0	cfs
Lafry-Over FIOW = $Q_{h(GRATE)}$ - Q_a	Q _b =		0.8 MA10P	CTS
Total Inlet Interception Capacity	o =[1.3	2.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	1.2	cfs
	~~~~	00		- A


INLET ON A CONTIN	IUOUS G	RADE		
MHFD-Inlet, Version 5.03	' (August 2023)	)		
		_		
H-Curb		_		
		_		
Lo (G)				
CDOT Type R Curb Opening				
Design Information (Input)	<b></b>	MINOR	MAJOR	
l ype of Inlet I ocal Depression (additional to continuous outter depression 'a')	a oca =	3.0	Curb Opening	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = $0.5$ ) Clogging Factor for a Single Unit Curb Opening (typical min. value = $0.1$ )	$C_{f}(G) = C_{f}(C) = C_{f}(C)$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$Q_o =$	1.3	3.9	cfs
Water Spread Width	T =	6.4	9.8	ft
Water Depth at Flowline (outside of local depression) Water Depth at Street Crown (or at Two)	= D	2.4	3.1	inches
Ratio of Gutter Flow to Design Flow	$E_0 =$	0.776	0.652	inches
Discharge outside the Gutter Section W, carried in Section $T_x$	Q _x =	0.3	1.3	cfs
Discharge within the Gutter Section W	Q _w =	1.0	2.5	cfs
Discharge Benind the Curb Face Flow Area within the Gutter Section W	Q _{BACK} =	0.0	0.0	crs sa ft
Velocity within the Gutter Section W	V _w =	3.7	6.4	fps
Water Depth for Design Condition	d _{LOCAL} =	5.4	6.1	inches
Grate Analysis (Calculated)	. г	MINOR	MAJOR	7.
Total Length of Inlet Grate Opening Ratio of Grate Flow to Design Flow	L = F ours =	N/A N/A	N/A N/A	π
Under No-Clogging Condition	GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	_
Interception Rate of Side Flow	$R_x = 0$	N/A N/A	N/A N/A	cfs
Under Clogging Condition	Qi -	MINOR	MAJOR	C13
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet Minimum Velocity Where Grate Splach-Over Regins	L _e =	N/A N/A	N/A N/A	π fos
Interception Rate of Frontal Flow	R _f =	N/A	N/A	105
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	Q _b =	MINOR	MA10R	CTS
Equivalent Slope $S_e$	S _e =	0.150	0.129	ft/ft
Required Length $L_{T}$ to Have 100% Interception	$L_T =$	5.56	9.85	ft
Under No-Clogging Condition		MINOR	MAJOR	<b>A</b>
Interception Capacity	L = Qi =	1.3	2.3	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoeff =	1.00	1.00	4
Liogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	
Actual Interception Capacity	<b>Q</b> ₂ =	1.2	2.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	$\tilde{Q}_{b}$ =	0.1	1.0	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.2	2.1	CTS
Canture Carry-Over Flow (now bypassing inier)	Q _b =	0.1	1.0	



#### INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.03 (August 2023) -Lo (C) -¥ H-Curb H-Vert Wo W Lo (G) CDOT Type R Curb Opening T MAJOR Design Information (Input) Type of Inlet Туре CDOT Type R Curb Opening Local Depression (additional to continuous gutter depression 'a') aLOCAL 3.0 inches Total Number of Units in the Inlet (Grate or Curb Opening) No 1 Length of a Single Unit Inlet (Grate or Curb Opening) L₀ : 5.00 ft Width of a Unit Grate (cannot be greater than W, Gutter Width) Ŵ N/A ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) C_f (G) N/A N/A Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Street Hydraulics: OK - Q < Allowable Street Capacity' 0.10 $C_{f}(C)$ 0.10 MAJOR MINOF Design Discharge for Half of Street (from Inlet Management) cfs Q_o = 1.1 3.8 Water Spread Width т 5.1 7.9 ft Water Depth at Flowline (outside of local depression) d : inches 2.5 3.5 Water Depth at Street Crown (or at $T_{MAX}$ ) 0.0 d_{CROWN} : 0.0 inches Ratio of Gutter Flow to Design Flow E, 0.813 0.692 Discharge outside the Gutter Section W, carried in Section $T_x$ Qx 0.2 1.2 cfs Discharge within the Gutter Section W Qw cfs 0.9 2.6 $\boldsymbol{Q}_{\text{BACK}}$ Discharge Behind the Curb Face 0.0 0.0 cfs Flow Area within the Gutter Section W $\mathsf{A}_{\mathsf{W}}$ 0.30 0.46 sq ft Velocity within the Gutter Section W $V_{W}$ 3.1 5.8 fps Water Depth for Design Condition Grate Analysis (Calculated) 5.5 6.5 inche MINO MAJOF Total Length of Inlet Grate Opening ft N/A L : N/A Ratio of Grate Flow to Design Flow Eo-GRATE = N/A N/A Under No-Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Splash-Over Begins $V_{o}$ N/A N/A fps Interception Rate of Frontal Flow R_f : N/A N/A Interception Rate of Side Flow R. : N/A N/A Interception Capacity Q_i = N/A N/A cfs <u>Under Cloaging Condition</u> Clogging Coefficient for Multiple-unit Grate Inlet MINOR MAJOR GrateCoeff N/A N/A Clogging Factor for Multiple-unit Grate Inlet GrateClog : N/A N/A Effective (unclogged) Length of Multiple-unit Grate Inlet N/A N/A L Minimum Velocity Where Grate Splash-Over Begins V. : N/A N/A fps Interception Rate of Frontal Flow R_f N/A N/A Interception Rate of Side Flow R. : N/A N/A Actual Interception Capacity Q_a = N/A N/A cfs Carry-Over Flow = $Q_{-Q_a}(to be applied to curb opening or next d/s inlet)$ Curb Opening or Slotted Inlet Analysis (Calculated) N/A MINO N/A MAJOI cfs Q_b = Equivalent Slope S_e S_e = 0.138 ft/ft 0.158 Required Length L_T to Have 100% Interception L_T = 4.94 9.01 ft Under No-Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_T$ ) 1 : 4.94 5.00 ft Interception Capacity $Q_i =$ 1.1 2.3 cfs Under Clogging Condition MINOR MAJOR CurbCoeff : Cloaging Coefficient 1.00 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet 0.10 CurbClog : 0.10 Effective (Unclogged) Length 4.50 L_e 4.50 ft Actual Interception Capacity **Q**_a = cfs 1.1 2.1 Carry-Over Flow = $Q_{h(GRATF)}$ -Q cfs 0.0 0.9 Summary MINOR MAJOR Total Inlet Interception Capacity 0 = 1.1 2.1 cfs **Q**_b = Total Inlet Carry-Over Flow (flow bypassing inlet) 0.0 1.7 cfs apture Percentage = $Q_a/Q_a$ % C% 99 56



INLET ON A CONTIN	NUOUS G	RADE		
MHFD-Inlet, Version 5.02	3 (August 2023)	)		
۲Lo (C)۶		-		
H-Curb		_		
Lo (G)				
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a') Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	3.0	3.0	inches
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(G) = C_{f}(C) =$	N/A 0.10	N/A 0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i> )	Q ₀ =	0.9	2.0	cfs
Water Spread Width Water Depth at Flowline (outside of local depression)	= I = b	5.2	7.8	π inches
Water Depth at Street Crown (or at T _{MAX} )	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.891	0.762	
Discharge outside the Gutter Section W, carried in Section $I_x$	Q _x =	0.1	0.5	cfs
Discharge Behind the Curb Face	$Q_w = Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.28	0.36	sq ft
Velocity within the Gutter Section W	V _W =	2.9	4.1	fps
Grate Analysis (Calculated)	ULOCAL -	MINOR	MAJOR	linches
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A MINOR	N/A MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_{f} =$	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	ofo
Under Clogging Condition	$Q_i =$	MINOR	MAJOR	dis
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	<u> </u>
Minimum Velocity Where Grate Splash-Over Begins	L _e =	N/A N/A	N/A N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity Carry-Over Flow = $O_0$ - $O_0$ (to be applied to curb opening or next d/s inlet)	Q _a = O _b =	N/A N/A	N/A N/A	crs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e	S _e =	0.187	0.163	ft/ft
Required Length $L_T$ to Have 100% Interception	$L_T =$	4.04 MINOR	6.08 MA1OR	π
Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_T$ )	L =	4.04	5.00	ft
Interception Capacity	$Q_i =$	0.9	1.6	cfs
Under Clogging Condition Clogging Coefficient	CurbCoeff =	1.00	MAJOR 1.00	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	
Effective (Unclogged) Length	L _e =	4.04	4.50	ft
Actual Interception Capacity Carry-Over Flow = Oncompany-On	Q _a = 0. =	0.9	1.6	crs
Summary	×n -1	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.9	1.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.4	cfs



#### INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.03 (August 2023) -Lo (C) -¥ H-Curb H-Vert Wo W Lo (G) CDOT Type R Curb Opening MAJOR Design Information (Input) Type of Inlet Туре CDOT Type R Curb Opening Local Depression (additional to continuous gutter depression 'a') aLOCAL 3.0 inches Total Number of Units in the Inlet (Grate or Curb Opening) No 1 Length of a Single Unit Inlet (Grate or Curb Opening) L 5.00 ft Width of a Unit Grate (cannot be greater than W, Gutter Width) Ŵ N/A ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) C_f (G) N/A N/A Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Street Hydraulics: OK - Q < Allowable Street Capacity' 0.10 $C_{f}(C)$ 0.10 MAJOR MINOF Design Discharge for Half of Street (from Inlet Management) cfs Q_o = 0.5 1.2 Water Spread Width т 3.7 5.6 ft Water Depth at Flowline (outside of local depression) d : inches 1.9 2.3 Water Depth at Street Crown (or at $T_{MAX}$ ) 0.0 d_{CROWN} : 0.0 inches Ratio of Gutter Flow to Design Flow E, 0.956 0.852 Discharge outside the Gutter Section W, carried in Section $T_x$ Qx 0.0 0.2 cfs Discharge within the Gutter Section W Qw cfs 0.5 1.0 $\boldsymbol{Q}_{\text{BACK}}$ Discharge Behind the Curb Face 0.0 0.0 cfs Flow Area within the Gutter Section W $\mathsf{A}_{\mathsf{W}}$ 0.19 0.25 sq ft Velocity within the Gutter Section W $V_{W}$ 2.8 3.9 fps Water Depth for Design Condition Grate Analysis (Calculated) 4.9 5.3 inche MINO MAJOF Total Length of Inlet Grate Opening N/A ft L : N/A Ratio of Grate Flow to Design Flow Eo-GRATE = N/A N/A Under No-Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Splash-Over Begins $V_{o}$ N/A N/A fps Interception Rate of Frontal Flow R_f : N/A N/A Interception Rate of Side Flow R. : N/A N/A Interception Capacity Q_i = N/A N/A cfs <u>Under Cloaging Condition</u> Clogging Coefficient for Multiple-unit Grate Inlet MINOR MAJOR GrateCoeff N/A N/A Clogging Factor for Multiple-unit Grate Inlet GrateClog : N/A N/A Effective (unclogged) Length of Multiple-unit Grate Inlet N/A N/A L Minimum Velocity Where Grate Splash-Over Begins V. : N/A N/A fps Interception Rate of Frontal Flow R_f N/A N/A Interception Rate of Side Flow R. : N/A N/A Actual Interception Capacity Q_a = N/A N/A cfs Carry-Over Flow = $Q_{-Q_a}(to be applied to curb opening or next d/s inlet)$ Curb Opening or Slotted Inlet Analysis (Calculated) N/A MINO N/A MAJO cfs Q_b = Equivalent Slope S_e S_e = 0.162 ft/ft 0.180 Required Length L_T to Have 100% Interception L_T = 3.24 4.73 ft MINOR Under No-Clogging Condition MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_T$ ) 1 : 3.24 4.73 ft Interception Capacity $Q_i =$ 0.5 1.0 cfs Under Clogging Condition MAJOR MINOR CurbCoeff Cloaging Coefficient 1.00 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet 0.10 CurbClog : 0.10 Effective (Unclogged) Length L_e 3.24 4.50 ft Actual Interception Capacity **Q**_a = cfs 0.5 1.0 Carry-Over Flow = $Q_{h(GRATF)}$ -Q cfs 0.0 0.0 Summary MINOR MAJOF Total Inlet Interception Capacity 0 = 0.5 1.0 cfs **Q**_b = Total Inlet Carry-Over Flow (flow bypassing inlet) 0.0 0.2 cfs apture Percentage = $Q_a/Q_a$ % C% 100 86



#### INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.03 (August 2023) -Lo (C) -¥ H-Curb H-Vert Wo W Lo (G) CDOT Type R Curb Opening MAJOR Design Information (Input) Type of Inlet Туре CDOT Type R Curb Opening Local Depression (additional to continuous gutter depression 'a') aLOCAL 3.0 inches Total Number of Units in the Inlet (Grate or Curb Opening) No 1 Length of a Single Unit Inlet (Grate or Curb Opening) L₀ : 5.00 ft Width of a Unit Grate (cannot be greater than W, Gutter Width) Ŵ N/A ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) C_f (G) N/A N/A Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Street Hydraulics: OK - Q < Allowable Street Capacity' 0.10 $C_{f}(C)$ 0.10 MAJOR MINOF Design Discharge for Half of Street (from Inlet Management) cfs Q_o = 0.9 1.9 Water Spread Width т 7.0 9.4 ft Water Depth at Flowline (outside of local depression) d : inches 2.6 3.2 Water Depth at Street Crown (or at $T_{MAX}$ ) 0.0 d_{CROWN} 0.0 inches Ratio of Gutter Flow to Design Flow E, 0.717 0.630 Discharge outside the Gutter Section W, carried in Section $T_x$ Qx 0.2 0.7 cfs Discharge within the Gutter Section W Qw cfs 0.6 1.2 $\boldsymbol{Q}_{\text{BACK}}$ Discharge Behind the Curb Face 0.0 0.0 cfs Flow Area within the Gutter Section W $\mathsf{A}_{\mathsf{W}}$ 0.32 0.41 sq ft Velocity within the Gutter Section W $V_{W}$ 2.0 2.9 fps Water Depth for Design Condition Grate Analysis (Calculated) 5.6 6.2 inche MINO MAJOF Total Length of Inlet Grate Opening ft N/A L : N/A Ratio of Grate Flow to Design Flow Eo-GRATE = N/A N/A Under No-Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Splash-Over Begins $V_{o}$ N/A N/A fps Interception Rate of Frontal Flow R_f : N/A N/A Interception Rate of Side Flow R. : N/A N/A Interception Capacity Q_i = N/A N/A cfs <u>Under Cloaging Condition</u> Clogging Coefficient for Multiple-unit Grate Inlet MINOR MAJOR GrateCoeff N/A N/A Clogging Factor for Multiple-unit Grate Inlet GrateClog : N/A N/A Effective (unclogged) Length of Multiple-unit Grate Inlet N/A N/A L Minimum Velocity Where Grate Splash-Over Begins V. : N/A N/A fps Interception Rate of Frontal Flow R_f N/A N/A Interception Rate of Side Flow R. : N/A N/A Actual Interception Capacity Q_a = N/A N/A cfs Carry-Over Flow = $Q_{-Q_a}(to be applied to curb opening or next d/s inlet)$ Curb Opening or Slotted Inlet Analysis (Calculated) N/A MINO N/A MAJO cfs Q_b = Equivalent Slope S_e S_e = 0.125 ft/ft 0.140 Required Length L_T to Have 100% Interception L_T = 4.31 6.52 ft Under No-Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_T$ ) 1 : 4.31 5.00 ft Interception Capacity Q, = 0.9 1.5 cfs Under Clogging Condition MINOR MAJOR CurbCoeff Cloaging Coefficient 1.00 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet 0.10 CurbClog : 0.10 Effective (Unclogged) Length L_e 4.31 4.50 ft Actual Interception Capacity **Q**_a = cfs 0.9 1.4 Carry-Over Flow = $Q_{h(GRATF)}$ -Q cfs 0.0 0.2 Summary MINOR MAJOR Total Inlet Interception Capacity 0 = 0.9 1.4 cfs **Q**_b = Total Inlet Carry-Over Flow (flow bypassing inlet) 0.0 0.5 cfs apture Percentage = $Q_a/Q_a$ % C% 100 76



#### INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.03 (August 2023) -Lo (C) -¥ H-Curb H-Vert Wo W Lo (G) CDOT Type R Curb Opening MAJOR Design Information (Input) Type of Inlet Туре CDOT Type R Curb Opening Local Depression (additional to continuous gutter depression 'a') aLOCAL 3.0 inches Total Number of Units in the Inlet (Grate or Curb Opening) No 1 Length of a Single Unit Inlet (Grate or Curb Opening) L₀ : 5.00 ft Width of a Unit Grate (cannot be greater than W, Gutter Width) Ŵ N/A ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) C_f (G) N/A N/A Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Street Hydraulics: OK - Q < Allowable Street Capacity' 0.10 $C_{f}(C)$ 0.10 MAJOR MINOF Design Discharge for Half of Street (from Inlet Management) cfs Q_o = 0.6 1.2 Water Spread Width т 4.7 6.7 ft Water Depth at Flowline (outside of local depression) inches d : 2.1 2.6 Water Depth at Street Crown (or at $T_{MAX}$ ) 0.0 d_{CROWN} 0.0 inches Ratio of Gutter Flow to Design Flow E, 0.888 0.776 Discharge outside the Gutter Section W, carried in Section $T_x$ Qx 0.1 0.3 cfs Discharge within the Gutter Section W Qw cfs 0.5 1.0 $\boldsymbol{Q}_{\text{BACK}}$ Discharge Behind the Curb Face 0.0 0.0 cfs Flow Area within the Gutter Section W $\mathsf{A}_{\mathsf{W}}$ 0.23 0.30 sq ft Velocity within the Gutter Section W $V_{W}$ 2.2 3.2 fps Water Depth for Design Condition Grate Analysis (Calculated) 5.1 5.6 inche MINO MAJOF Total Length of Inlet Grate Opening N/A ft L : N/A Ratio of Grate Flow to Design Flow Eo-GRATE = N/A N/A Under No-Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Splash-Over Begins $V_{o}$ N/A N/A fps Interception Rate of Frontal Flow R_f : N/A N/A Interception Rate of Side Flow R. : N/A N/A Interception Capacity Q_i = N/A N/A cfs <u>Under Cloaging Condition</u> Clogging Coefficient for Multiple-unit Grate Inlet MINOR MAJOR GrateCoeff N/A N/A Clogging Factor for Multiple-unit Grate Inlet GrateClog : N/A N/A Effective (unclogged) Length of Multiple-unit Grate Inlet N/A N/A L Minimum Velocity Where Grate Splash-Over Begins V. : N/A N/A fps Interception Rate of Frontal Flow R_f N/A N/A Interception Rate of Side Flow R. : N/A N/A Actual Interception Capacity Q_a = N/A N/A cfs Carry-Over Flow = $Q_{-Q_a}(to be applied to curb opening or next d/s inlet)$ Curb Opening or Slotted Inlet Analysis (Calculated) N/A MINO N/A MAJOI cfs Q_b = Equivalent Slope S_e S_e = 0.150 ft/ft 0.169 Required Length L_T to Have 100% Interception L_T = 3.27 4.87 ft MINOR Under No-Clogging Condition MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_T$ ) 1 : 3.27 4.87 ft Interception Capacity $Q_i =$ 0.6 1.1 cfs Under Clogging Condition MINOR MAJOR CurbCoeff Cloaging Coefficient 1.00 1.00 Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet 0.10 CurbClog : 0.10 Effective (Unclogged) Length L_e 3.27 4.50 ft Actual Interception Capacity **Q**_a = cfs 0.6 1.0 Carry-Over Flow = $Q_{h(GRATF)}$ -Q cfs 0.0 0.0 Summary MINOR MAJOF Total Inlet Interception Capacity 0 = 0.6 1.0 cfs **Q**_b = Total Inlet Carry-Over Flow (flow bypassing inlet) 0.0 0.2 cfs apture Percentage = $Q_a/Q_a$ % C% 100 85

# MHFD-Inlet, Version 5.03 (August 2023)

# INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-1+26</u>	<u>IN-0+25</u>	<u>IN-3+11</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	AREA	AREA	AREA
Hydraulic Condition	Swale	Swale	Swale
Inlet Type	CDOT Type C	CDOT Type C	CDOT Type C

### **USER-DEFINED INPUT**

User-Defined Design Flows				
Minor Q _{Known} (cfs)	0.06	4.92	3.43	
Major Q _{Known} (cfs)	0.42	11.94	10.49	

#### Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked.

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0

#### Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

### Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

#### Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

### Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

### CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	0.1	4.9	3.4
Major Total Design Peak Flow, Q (cfs)	0.4	11.9	10.5
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	3.9	2.9
Major Flow Bypassed Downstream, Q _b (cfs)	0.1	10.2	9.5

# MHFD-Inlet, Version 5.03 (August 2023)

# INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>IN-3+43</u>	<u>IN-6+51</u>	<u>IN-7+07</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	AREA	AREA	AREA
Hydraulic Condition	Swale	Swale	Swale
Inlet Type	CDOT Type C	CDOT Type C	CDOT Type C

### **USER-DEFINED INPUT**

User-Defined Design Flows					
Minor Q _{Known} (cfs)	1.74	2.36	11.18		
Major Q _{Known} (cfs)	5.26	6.40	52.91		

#### Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0

#### Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

#### Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

### **Minor Storm Rainfall Input**

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

### Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

### CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	1.7	2.4	11.2
Major Total Design Peak Flow, Q (cfs)	5.3	6.4	52.9
Minor Flow Bypassed Downstream, Q _b (cfs)	1.1	1.6	10.1
Major Flow Bypassed Downstream, Q _b (cfs)	3.9	4.7	51.2
		•	

	-	- T	Π			٦
		MAX		This worksheet use	s the NRCS vegeta	al l
				retardance method	to determine	
			f	Manning's n for gra	ass-lined channels.	
	1	=	d MAX			
	ZL	d <u>Z_R</u>	1	An override Mannir	ng's n can be	
	-			entered for other c	hannel materials.	
	-	⊷⊺– B ––––	L			_
Analycic of Tranozoida	al Channol (Grace-Linod	usos SCS Mothod)				
NRCS Vegetal Retardance		uses ses methody		Δ	1	
Manning's n (Leave cell	D16 blank to manually en	ter an n value)	n =	see details below		
Channel Invert Slope			So =	2.9500	ft/ft	
Bottom Width			B =	4.00	ft	
Left Side Slope			Z1 =	14.00	ft/ft	
Right Side Sloe			Z2 =	10.00	ft/ft	
Che	ck one of the following sc	il types:	ľ	Choose One:		
Soil Type:	Max. Velocity (V _{MAX} )	Max Froude No. (F _{MAX} )		Non-Cohesive		
Non-Cohesive	5.0 fps	0.60		Cohesive		
Cohesive	7.0 fps	0.80		Boyod		
Paved	N/A	N/A		Faveu		
				Minor Storm	Major Storm	_
Maximum Allowable Top	Width of Channel for Min	or & Major Storm	T _{MAX} =	28.00	28.00	ft
Maximum Allowable Wat	ter Depth in Channel for M	linor & Major Storm	d _{MAX} =	0.25	0.25	ft
Mariana Channal Ca				M: 01	M : C	
Maximum Allowable Ten	Width	Die TOP WIGUT	т _т	Minor Storm	Major Storm	Tet
Maximum Allowable Top	WIGUI		MAX -	1.00	1.00	- nu 
Flow Area			u =	16.00	16.00	co ft
Wetted Perimeter			P –	28.09	28.09	- 34 TC
Hydraulic Radius			R =	0.57	0.57	ft
Manning's n based on N	RCS Vegetal Retardance		n =	0.062	0.062	
Flow Velocity	·····		V =	28.20	28.20	fps
Velocity-Depth Product			VR =	16.07	16.07	ft^2/s
Hydraulic Depth			D =	0.57	0.57	ft
Froude Number			Fr =	6.57	6.57	
Maximum Flow Based or	n Allowable Water Depth		<b>Q</b> _T =	451.2	451.2	cfs
Maximum Channel Ca	pacity Based On Allowal	ble Water Depth		Minor Storm	Major Storm	7.0
	ter Depth		a _{MAX} =	0.25	0.25	π -
Top width			1 =	10.00	10.00	π
FIOW Ared			A =	1./5	1.75	SQ IL
Hydraulic Padius			P -	0.17	0.17	- IL #
Manning's placed on N	PCS Vegetal Petardance		к – п –	0.17	0.17	11
Flow Velocity			V =	2 17	2 17	fns
Velocity-Depth Product			VR =	0.38	0.38	ft^2/s
Hydraulic Denth			D =	0.18	0.18	ft
Froude Number			Fr =	0.92	0.92	T`
Maximum Flow Based O	n Allowable Water Depth		Q _d =	3.8	3.8	cfs
					•	
Allowable Channel Cap	pacity Based On Channe	el Geometry		Minor Storm	Major Storm	_
MINOR STORM Allowabl	e Capacity is based on De	pth Criterion	$Q_{allow} =$	3.8	3.8	cfs
MAJOR STORM Allowabl	e Capacity is based on De	pth Criterion	d _{allow} =	0.25	0.25	ft
Water Denth in Ch	al Read Or Destar D	ali Elavi				
Water Depth in Chann	iel Based On Design Pea	ak Flow	<b>a</b> 1		0.4	7.4.
Design Peak Flow			Q ₀ =	0.1	0.4	CTS
water Depth			a =	4.50	0.06	π Δ
Top Width			1 =	4.50	5.55	TT an fr
Notted Perimeter			A =	0.09	0.31	SQ IC
Hydraulic Padiuc			P =	UC.F	0.04	
Manning's placed on M	PCS Vegetal Potardance		R =	0.02	0.00	- ¹¹
Flow Velocity			11 = V -	0.275	1.2/5	fnc
Velocity-Depth Product			v =	0.00	0.02	ft^2/c
Hydraulic Depth			VK = D =	0.01	0.00	ft 2/3
Froude Number			5 = Fr =	0.85	1.01	-11
			–	0.00	1.01	

Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'



Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

IN-0+25				
	"			-
MAX MAX		This worksheet use	s the NRCS vegeta	al.
│ <b>╶</b> ──── Ţ ────►		retardance method	to determine	
		Manning's p for gr	n to determine	
			ass-inteu charmeis.	
z d	a MAX	An override Mannir	ad's n can ba	
	<b>*</b>	An override Mannir	ig's n can be	
		entered for other c	nannei materiais.	
	Ш			
Analysis of Tranezoidal Channel (Grass-Lined uses SCS Method)				
NRCS Vegetal Retardance (A. B. C. D. or F)	A. B. C. D. or F =	Α	1	
Manning's n (Leave cell D16 blank to manually enter an n value)	n =	see details helow		
Channel Invert Slope	S	23 7500	ft/ft	
Pottom Width	J0 -	23.7500	A	
Loft Cide Clane	B - 71 -	4.00	A/A	
Dialth Side Slope	21 =	23.75		
Right Side Side	22 =	28.09	π/π	
Check one of the following soil types:	Г	Choose One:		
Soil Type: Max. Velocity (V _{MAX} ) Max Froude No. (F _{MAX} )		🚺 Non-Cohesive		
Non-Cohesive 5.0 fps 0.60		Cohesive		
Cohesive 7.0 fps 0.80		Paved		
Paved N/A N/A	l			
		Minor Storm	Major Storm	
Maximum Allowable Top Width of Channel for Minor & Major Storm	T _{MAX} =	14.00	14.00	ft
Maximum Allowable Water Depth in Channel for Minor & Major Storm	d _{MAX} =	0.90	0.90	ft
Maximum Channel Capacity Based On Allowable Top Width		Minor Storm	Maior Storm	
Maximum Allowable Top Width	Tmax =	14.00	14.00	ft
Water Denth	d =	0.19	0.19	ft
Flow Area	α – Δ –	1 74	1 74	sa ft
Wetted Perimeter	R –	14.01	14.01	
Welleu Fermielei	P –	0.12	0.12	- IL 
Manningle a based on NDCC Variated Datavidance	K –	0.12	0.12	
Manning's n based on NRCS vegetal Retardance	n =	0.345	0.345	-
Flow Velocity	V =	5.23	5.23	rps
Velocity-Depth Product	VR =	0.65	0.65	ft^2/s
Hydraulic Depth	D =	0.12	0.12	ft
Froude Number	Fr =	2.62	2.62	
Maximum Flow Based on Allowable Water Depth	Q _T =	9.1	9.1	cfs
Maximum Channel Capacity Based On Allowable Water Depth	. r	Minor Storm	Major Storm	7~
Maximum Allowable Water Depth	$a_{MAX} =$	0.90	0.90	nt .
Top Width	Τ=	50.66	50.66	ft
Flow Area	A =	24.60	24.60	sq ft
Wetted Perimeter	P =	50.69	50.69	ft
Hydraulic Radius	R =	0.49	0.49	ft
Manning's n based on NRCS Vegetal Retardance	n =	0.060	0.060	
Flow Velocity	V =	74.73	74.73	fps
Velocity-Depth Product	VR =	36.26	36.26	ft^2/s
Hydraulic Depth	D =	0.49	0.49	ft
Froude Number	Fr =	18.90	18.90	
Maximum Flow Based On Allowable Water Depth	<b>O</b> _d =	1,837,9	1,837,9	cfs
	Cu			
· · · · · · · · · · · · · · · · · · ·	-		Major Charma	
Allowable Channel Capacity Based On Channel Geometry	-	Minor Storm	Major Storm	ofe
Allowable Channel Capacity Based On Channel Geometry	o=[	Minor Storm 9 1	Major Storm	
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAIOR STORM Allowable Capacity is based on Top Width Criterion	Q _{allow} =	Minor Storm 9.1 0.19	9.1 0.19	ft
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion	$\mathbf{Q}_{\text{allow}} = \begin{bmatrix} \\ \mathbf{d}_{\text{allow}} \end{bmatrix}$	Minor Storm 9.1 0.19	9.1 0.19	ft
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Denth in Channel Based On Design Peak Flow	Q _{allow} = d _{allow} =	Minor Storm 9.1 0.19	9.1 0.19	ft
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Depth in Channel Based On Design Peak Flow	$\mathbf{Q}_{allow} = \begin{bmatrix} \mathbf{Q}_{allow} \\ \mathbf{d}_{allow} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{allow} \\ \mathbf{Q}_{allow} \end{bmatrix}$	Minor Storm 9.1 0.19	9.1 0.19	ft
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Depth in Channel Based On Design Peak Flow Design Peak Flow	Q _{allow} = d _{allow} = Q _o =	Minor Storm 9.1 0.19 4.9	9.1 0.19	ft
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Depth in Channel Based On Design Peak Flow Design Peak Flow Water Depth	$\mathbf{Q}_{allow} = \begin{bmatrix} \\ \mathbf{d}_{allow} \end{bmatrix} = \begin{bmatrix} \\ \mathbf{Q}_{o} \end{bmatrix} = \begin{bmatrix} \\ \mathbf{d}_{o} \end{bmatrix}$	Minor Storm 9.1 0.19 4.9 0.15	9.1 0.19 11.9 0.21	cfs
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Depth in Channel Based On Design Peak Flow Design Peak Flow Water Depth 6 Top Width	$\mathbf{Q}_{allow} = \begin{bmatrix} \mathbf{Q}_{allow} \\ \mathbf{d}_{allow} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{o} \\ \mathbf{Q}_{o} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{o} \\ \mathbf{Q}_{$	Minor Storm 9.1 0.19 4.9 0.15 11.69	Major Storm           9.1           0.19           11.9           0.21           14.89	cfs ft
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Depth in Channel Based On Design Peak Flow Design Peak Flow Water Depth 6 Top Width Flow Area	$\mathbf{Q}_{allow} = \begin{bmatrix} \\ \mathbf{d}_{allow} \end{bmatrix} = \begin{bmatrix} \\ \mathbf{Q}_{o} \end{bmatrix} = \begin{bmatrix} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} \\ \mathbf{T} \end{bmatrix} = \begin{bmatrix} \\ \mathbf{A} \end{bmatrix} = \begin{bmatrix} $	Minor Storm 9.1 0.19 4.9 0.15 11.69 1.16	11.9           0.21           14.89           1.98	cfs ft ft ft sq ft
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Depth in Channel Based On Design Peak Flow Design Peak Flow Water Depth 6 Top Width Flow Area Wetted Perimeter	$\mathbf{Q}_{allow} = \begin{bmatrix} \mathbf{Q}_{allow} \\ \mathbf{d}_{allow} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{o} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{o} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{o} \\ \mathbf{T} \\ \mathbf{R} \end{bmatrix}$	Minor Storm 9.1 0.19 4.9 0.15 11.69 1.16 11.70	<b>11.9</b> <b>0.21</b> <b>14.89</b> <b>1.98</b> <b>14.90</b>	cfs ft ft ft sq ft ft
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Depth in Channel Based On Design Peak Flow Design Peak Flow Water Depth 6 Top Width Flow Area Wetted Perimeter Hydraulic Radius	$\mathbf{Q}_{allow} = \begin{bmatrix} \mathbf{Q}_{allow} \\ \mathbf{d}_{allow} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{o} = \\ \mathbf{d} = \\ \mathbf{T} = \\ \mathbf{A} = \\ \mathbf{P} = \\ \mathbf{R} = \end{bmatrix}$	Minor Storm 9.1 0.19 4.9 0.15 11.69 1.16 11.70 0.10	11.9 0.19 0.21 14.89 1.98 14.90 0.13	cfs ft ft ft sq ft ft
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Depth in Channel Based On Design Peak Flow Design Peak Flow Water Depth 6 Top Width Flow Area Wetted Perimeter Hydraulic Radius Manning's n based on NRCS Vegetal Retardance		Minor Storm 9.1 0.19 4.9 0.15 11.69 1.16 11.70 0.10 0.369	9.1 0.19 0.19 0.21 14.89 1.98 14.90 0.13 0.315	cfs ft ft ft ft ft ft
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Depth in Channel Based On Design Peak Flow Design Peak Flow Water Depth 6 Top Width Flow Area Wetted Perimeter Hydraulic Radius Manning's n based on NRCS Vegetal Retardance 3 Flow Velocity	$\mathbf{Q}_{allow} = \begin{bmatrix} \mathbf{Q}_{allow} \\ \mathbf{d}_{allow} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{o} = \\ \mathbf{d} = \\ \mathbf{d} = \\ \mathbf{T} = \\ \mathbf{A} = \\ \mathbf{P} = \\ \mathbf{R} = \\ \mathbf{R} = \\ \mathbf{n} = \\ \mathbf{V} = \end{bmatrix}$	Minor Storm 9.1 0.19 4.9 0.15 11.69 1.16 11.70 0.10 0.369 4.22	9.1 9.1 0.19 0.21 14.89 1.98 14.90 0.13 0.315 6.02	cfs ft ft ft sq ft ft ft ft ft ft
Allowable Channel Capacity Based On Channel Geometry         MINOR STORM Allowable Capacity is based on Top Width Criterion         MAJOR STORM Allowable Capacity is based on Top Width Criterion         Water Depth in Channel Based On Design Peak Flow         Design Peak Flow         Water Depth         6 Top Width         Flow Area         Wetted Perimeter         Hydraulic Radius         Manning's n based on NRCS Vegetal Retardance         3 Flow Velocity         Velocity-Depth Product	$\mathbf{Q}_{allow} = \begin{bmatrix} \mathbf{Q}_{allow} \\ \mathbf{d}_{allow} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{o} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{R} \end{bmatrix} = \begin{bmatrix} \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \end{bmatrix} = \begin{bmatrix} \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \end{bmatrix} = \begin{bmatrix} \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \end{bmatrix} = \begin{bmatrix} \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \end{bmatrix} = \begin{bmatrix} \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \end{bmatrix} = \begin{bmatrix} \mathbf{R} \\ \mathbf$	Minor Storm 9.1 0.19 4.9 0.15 11.69 1.16 11.70 0.10 0.369 4.22 0.42	9.1 9.1 0.19 0.21 14.89 1.98 14.90 0.13 0.315 6.02 0.80	cfs ft ft sq ft ft ft ft ft ft ft ft ft^2/s
Allowable Channel Capacity Based On Channel Geometry         MINOR STORM Allowable Capacity is based on Top Width Criterion         MAJOR STORM Allowable Capacity is based on Top Width Criterion         Water Depth in Channel Based On Design Peak Flow         Design Peak Flow         Water Depth         6 Top Width         Flow Area         Wetted Perimeter         Hydraulic Radius         Manning's n based on NRCS Vegetal Retardance         3 Flow Velocity         Velocity-Depth         Product         Hydraulic Depth	$\mathbf{Q}_{allow} = \begin{bmatrix} \mathbf{d}_{allow} \\ \mathbf{d}_{allow} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{o} = \\ \mathbf{d} = \\ \mathbf{T} = \\ \mathbf{C} = \\ \mathbf{R} = \\ $	Minor Storm 9.1 0.19 4.9 0.15 11.69 1.16 11.70 0.10 0.369 4.22 0.42 0.42 0.10	11.9 0.19 0.19 0.19 0.21 14.89 1.98 14.90 0.13 0.315 6.02 0.80 0.13	cfs ft ft sq ft ft ft ft ft ft ft^2/s ft
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Depth in Channel Based On Design Peak Flow Design Peak Flow Water Depth 6 Top Width Flow Area Wetted Perimeter Hydraulic Radius Manning's n based on NRCS Vegetal Retardance 3 Flow Velocity Velocity-Depth Product Hydraulic Depth 4 Froude Number	$      \mathbf{Q}_{allow} = \begin{bmatrix} \\ \mathbf{d}_{allow} \end{bmatrix} = \begin{bmatrix} \\ \mathbf{d}_{allow} \end{bmatrix} $ $      \mathbf{Q}_{o} = \begin{bmatrix} \\ \mathbf{d} = \\ \\ \mathbf{T} = \\ \\ \mathbf{A} = \\ \\ \mathbf{P} = \\ \\ \mathbf{R} = \\ \\ \mathbf{R} = \\ \\ \mathbf{R} = \\ \\ \mathbf{V} = \\ \\ \mathbf{V} = \\ \\ \mathbf{D} = \\ \\ \mathbf{Fr} = \end{bmatrix} $	Minor Storm 9.1 0.19 4.9 0.15 11.69 1.16 11.70 0.10 0.369 4.22 0.42 0.10 2.36	9.1 9.1 0.19 0.19 0.21 14.89 1.98 14.90 0.13 0.315 6.02 0.80 0.13 2.90	cfs ft ft ft sq ft ft ft ft ft ft ft^2/s ft

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' WARNING: MAJOR STORM max. allowable capacity is less than the design flow given on sheet 'Inlet Management'



#### Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

Warning 06: Top Width (T) exceeds max allowable top width (Tmax).





Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

	IN-3+43				
		1			
	- T _{MAX}	-	This workshoot use	the NDCC vegeta	
	T		retardance method	to determine	
			Manning's n for gra	sc-lined channels	
		d			
	$z_{\lambda}$ d $z_{\pi}$	U MAX	An override Mannin	io's n can be	
		<u> </u>	entered for other c	hannel materials.	
	- B				
	Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)				
	NRCS Vegetal Retardance (A, B, C, D, or E)	A, B, C, D, or E =	A		
	Manning's n (Leave cell D16 blank to manually enter an n value)	n =	see details below		
	Channel Invert Slope	$S_0 =$	18.7600	ft/ft	
	Bottom Width	B =	4.00	ft	
arning 01/	Left Side Slope	Z1 =	3.65	ft/ft	
arning 01/	Right Side Sloe	Z2 =	3.50	ft/ft	
	Check one of the following soil types:		Choose One:		
	Soil Type: Max. Velocity (V _{MAX} ) Max Froude No. (F _{MAX} )		C Non-Cohesive		
	Non-Cohesive 5.0 fps 0.60		Cohesive		
	Cohesive 7.0 fps 0.80		Deved		
	Paved N/A N/A		Paveu		
			Minor Storm	Major Storm	
	Maximum Allowable Top Width of Channel for Minor & Major Storm	TMAX =	23.00	23.00	ft
	Maximum Allowable Water Depth in Channel for Minor & Major Storm	d _{MAX} =	2.70	2.70	ft
					-
	Maximum Channel Capacity Based On Allowable Top Width		Minor Storm	Maior Storm	
	Maximum Allowable Top Width	TMAX =	23.00	23.00	ft
	Water Depth	d =	2.66	2.66	ft
	Flow Area	A =	35.87	35.87	sa ft
	Wetted Perimeter	P =	23.73	23.73	ff
	Hydraulic Radius	R =	1.51	1.51	ft
	Manning's n based on NRCS Vegetal Retardance	n =	0.060	0.060	
	Flow Velocity	V -	141 68	141.68	fnc
	Velocity-Denth Product	VR -	214.10	214.19	ft^2/c
	Hydraulic Depth	VR =	1 56	1 56	ft 2/3
	Froude Number	D = Fr =	10.00	10.00	
	Maximum Flow Based on Allowable Water Denth	0-=	5 082 7	5 082 7	cfs
		<b>Z</b> 1	0,002.0	0,001	
	Maximum Channel Canacity Based On Allowable Water Denth		Minor Storm	Major Storm	
	Maximum Allowable Water Depth		2 70	2 70	70
	Ton Width	MAX T	23.31	23.31	н. Н
	Flow Area	1 =	25.51	25.51	in the second se
	Notted Derimeter	A – B –	24.05	34.05	- Sq 10
	Wetteu Feimetei	r =	24.05	24.05	п. А
	nyurdulic Radius	R =	1.55	1.55	IL I
	Manning's fi Daseu on NRCS vegetal Retardance	n = V =	142.00	142.00	fnc
	Flow Velocity	V =	210.21	210.21	tps #AD/a
	Velocity-Depth Product	VR =	219.21	219.21	nt^2/S
	Hydraulic Depth	D =	1.58	1.58	π
	Froude Number Maximum Elow Paced On Allowable Water Donth	Fr =	20.04	20.04	ofo
	Maximum Flow Based On Allowable Water Deput	Qd -	5,271.2	5,271.2	
	Allowable Channel Canacity Record On Channel Coometry		Minor Charma	Major Charma	
	MINOR STORM Allowable Capacity is based on Tan Width Criterian	o –			ofe
	MATOR STORM Allowable Capacity is based on Top Width Criterion	Qallow =	3,062.7	3,062.7	4
	MAJOR STORM Allowable Capacity is based on Top width Chtenon	a _{allow} =	2.00	2.00	լո
	Water Donth in Channel Bread On Design Bask Flau				
	Design Peak Flow	•		F 2	7-6-
	Design Peak Flow	Q ₀ =	1./	5.3	crs
	Water Depth	d =	0.11	0.18	ft
	l op Width	T =	4.76	5.26	^{tt}
	How Area	A =	0.47	0.82	sq ft
	wetted Perimeter	P =	4.79	5.31	π
	Hydraulic Radius	R =	0.10	0.15	ft
	Manning's n based on NRCS Vegetal Retardance	n =	0.366	0.287	4
arning 03	Flow Velocity	V =	3.73	6.45	fps
	Velocity-Depth Product	VR =	0.36	0.99	ft^2/s
	Hydraulic Depth	D =	0.10	0.15	ft
arning 04	Froude Number	Fr =	2.10	2.89	
	Minor storm max. allowable capacity GOOD - greater than the design fl	ow given on sheet	'Inlet Manageme	nt'	
	Major storm max. allowable capacity GOOD - greater than the design fl	ow given on sheet	'Inlet Manageme	nt'	



Warning 01: Sideslope steepness exceeds USDCM Volume I recommendation.

Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

<b>T</b>	This worksh	eet uses the NRCS vegetal	
	retardance r	method to determine	
	Manning's n	for grass-lined channels.	
	d _{MAX}		
	An override	Manning's n can be	
	entered for	other channel materials.	
	1		l
Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)			
NRCS Vegetal Retardance (A. B. C. D. or E)	A. B. C. D. or E = A		
Manning's n (Leave cell D16 blank to manually enter an n value)	n = see details	below	
Channel Invert Slope	$S_0 = 14290$	0 ft/ft	
Bottom Width	B = 4.00	ft ft	
l eft Side Slope	71 = 25.00	ff/ft	
Right Side Sloe	$Z_2 = 5.88$	ft/ft	
Check one of the following soil types:	- Choose One:		
Soil Type: Max, Velocity (V _{MAY} ) Max Froude No. (F _{MAY} )	Non Co	bachro	
Non-Cohesive 5.0 fps 0.60		liesive	
Cohesive 7.0 fps 0.80	Conesi	ve	
Paved N/A N/A	L. Paved		
	Minor Sto	orm Major Storm	
Maximum Allowable Top Width of Channel for Minor & Maior Storm	Tmax = 34.00	34.00	ft
Maximum Allowable Water Depth in Channel for Minor & Major Storm	d _{MAX} = 1.00	1.00	ft
			1
Maximum Channel Capacity Based On Allowable Top Width	Minor Sto	orm Major Storm	
Maximum Allowable Top Width	T _{MAX} = 34.00	34.00	ft
Water Depth	d = 0.97	0.97	ft
Flow Area	A = 18.46	18.46	sq ft
Wetted Perimeter	P = 34.10	34.10	ft
Hydraulic Radius	R = 0.54	0.54	ft
Manning's n based on NRCS Vegetal Retardance	n = 0.060	0.060	
Flow Velocity	V = 62.35	62.35	fps
Velocity-Depth Product	VR = 33.75	33.75	ft^2/s
Hydraulic Depth	D = 0.54	0.54	ft
Froude Number	Fr = 14.91	14.91	
Maximum Flow Based on Allowable Water Depth	$Q_{T} = 1,150.$	9 1,150.9	cfs
Maximum Channel Capacity Based On Allowable Water Depth	Minor Sto	orm Major Storm	1
	$a_{MAX} = 1.00$	1.00	π A
Top wiath	I = 34.88	34.88	π
Flow Area	A = <u>19.44</u>	19.44	sqπ
Wetted Perimeter	P = <u>34.98</u>	34.98	π
Manningla n based on NDCC Vegetal Deterdance	R = 0.56	0.50	
Manining's in Dased on INRCS Vegetal Relardance	11 = 0.000	0.000 62.4E	for
Flow Velocity	V = 03.43	25.45	ips ftA2/c
Welocity-Depth Floudet	VR = <u>33.20</u>	0.56	nt 2/5
Froude Number	D = 0.30 Fr = 14.00	14 00	
Maximum Flow Based On Allowable Water Depth	$O_{1} = 14.90$	5 1.233.5	cfs
	Qd - 1/200	1,20010	
Allowable Channel Capacity Based On Channel Geometry	Minor Str	orm Major Storm	
MINOR STORM Allowable Capacity is based on Top Width Criterion	O ₂ "ev = 1.150.	9 1.150.9	cfs
MAJOR STORM Allowable Capacity is based on Top Width Criterion	$d_{allow} = 0.97$	0.97	ft
	allow		
Water Depth in Channel Based On Design Peak Flow			
Design Peak Flow	Q ₀ = 2.4	6.4	cfs
Water Depth	d = 0.12	0.20	ft
Top Width	T = 7.80	10.33	ft
Flow Area	A = 0.73	1.47	sa ft
Wetted Perimeter	P = 7.81	10.35	ft
Hydraulic Radius	R = 0.09	0.14	ft
Manning's n based on NRCS Vegetal Retardance	n = 0.05	0.351	1
Flow Velocity	V = 3.25	4.36	fps
Velocity-Depth Product	VR = 0.30	0.62	ft^2/s
Hydraulic Depth	D = 0.50	0.14	ft 2,3
Froude Number	Fr = 1.88	2.04	1
	1.00	2.01	1

Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'



Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

	-	- T	Γ			٦
		MAX	·	This worksheet use	s the NRCS vegeta	I
				retardance method	to determine	
			f	Manning's n for gra	ss-lined channels.	
	1	-	d MAX			
	ZL		1	An override Mannir	ig's n can be	
	-			entered for other c	hannel materials.	
	-	⊷Η B ——►	L			
Analysis of Transsidel	Channel (Curses Lined					
Analysis of Trapezoidal	Channel (Grass-Lined	<u>uses SCS Method)</u>			1	
NRCS Vegetal Retardance	(A, B, C, D, OF E)		A, B, C, D, or $E =$	A		
Manning's n (Leave cell D)	to blank to manually en	er an n value)	n =	see details below	A/A	
Channel Invert Slope			S ₀ =	67.5700	11/11 A	
			D =	4.00		
Left Side Slope			21 =	10.00	11/11 A/A	
Right Side Side	, and of the following co	il trimoni	22 =	10.00	ιι/IL	
Cried	Max Volocity (V	Max Froudo No. (F )	Γ	Choose One:		
Soir Type:	Max. Velocity ( $V_{MAX}$ )	Max Froude No. (FMAX)		🖸 Non-Cohesive		
Non-Conesive	5.0 fps	0.60		Cohesive		
Conesive	7.0 fps	0.80		C Paved		
Paved	N/A	N/A	L	Min en Chauna	Maian Channa	
	Midthe of Channel for Min	- 0 Maian Channa	- 1	Minor Storm	Major Storm	<b>_</b> _
Maximum Allowable Top V	Vidth of Channel for Min	or & Major Storm		40.00	40.00	π
Maximum Allowable wate	r Depth in Channel for M	inor & Major Storm	a _{MAX} =	0.90	0.90	π
Maximum Channel Can	aity Deced On Allowed	alo Top Width		Min en Chauna	Maian Channa	
Maximum Channel Capa	ACITY DASED OU Allowal	<u>ble rop width</u>	F	Minor Storm	Major Storm	<b>7</b> 00
Maximum Allowable Top V	vidun			40.00	40.00	π 
Water Depth			d =	0.83	0.83	π
Flow Area			A =	18.28	18.28	sq ft
Wetted Perimeter			P =	40.05	40.05	π
Hydraulic Radius			R =	0.46	0.46	π
Manning's n based on INRO	S vegetal Retardance		n =	0.060	0.060	6
Flow velocity			V =	121.00	121.00	TPS
Velocity-Depth Product			VR =	55.22	55.22	π^2/s
Hydraulic Depth			D =	0.46	0.46	ft
Froude Number Maximum Flaw Based on	Allowable Water Depth		Pr =	31.54	31.54	
Maximum Flow Daseu on A	Allowable water Depth		QT -	2,211.0	2,211.0	cis
Maximum Channel Can	city Bacad On Allowal	alo Wator Dopth		Minor Storm	Major Storm	
Maximum Allowable Wate	r Denth	ble Water Deptil	d =[	0 90	0 90	ft
Ton Width	Depth		₩MAX — T —	43.00	43.00	н. П
Flow Area			Δ -	21.15	21.15	sa ft
Wetted Perimeter			P -	43.06	43.06	ff
Hydraulic Radius			P -	0.49	0.49	- n
Manning's n based on NR(	°S Vegetal Retardance		n –	0.15	0.15	- "
Flow Velocity			V =	127.08	127.08	fns
Velocity-Depth Product			VR =	62 42	62 42	ft^2/s
Hydraulic Depth			л –	0.49	0 49	ft 2,3
Froude Number			5 – Fr –	31.93	31.03	-10
Maximum Flow Based On	Allowable Water Depth		0, =	2.687.6	2.687.6	cfs
			-20	_,	_,	
Allowable Channel Cana	city Based On Channe	l Geometry		Minor Storm	Major Storm	
MINOR STORM Allowable	Capacity is based on To	n Width Criterion	0=	2.211.6	2.211.6	cfs
MAIOR STORM Allowable	Capacity is based on To	n Width Criterion	d	0.83	0.83	ft
			allow			
Water Denth in Channe	l Based On Design Pe	ak Flow				
Design Peak Flow	r bused on besign rea		0. =	11.2	52.9	cfs
Water Denth			- 62 d -	0.15	0.21	ft (1.5
Top Width			и <b>–</b> т –	10.70	12.80	- n -
Flow Area			1 -	1 14	12.03	sa ft
Wetted Perimeter			A - D -	10.71	12.00	- Sq IL
Hydraulic Dadius			F -	0.11	0.12	- F
Manning's placed on NR(	C Vogotal Botardanco		K -	0.11	0.13	
Flow Velocity			II =	0.2/9	0.105	fnc
Volocity Dopth Product				3.04	30.55	the the
Hydraulic Depth				0.11	4.10 0.12	ft ^{2/S}
				5 22	14 40	-1"
Froude Number			rr =	3.34	14.00	1

Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'



Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

# 9.8 StormCAD Analysis

Drainage Report-StormCAD Results	
Element Type:Conduit	
100-yr US-24 and Peterson Intersection Improvements	5

Conduit ID	U/S ID	D/S ID	Mannings n	Material	Conduit Description	Diameter (in)	Span (ft)	Rise (ft)	Length (ft)	Invert (Start) (ft)	Invert (Stop)	Slope (ft/ft)	Flow (cfs)	Capacity (cfs)	Velocity (ft/s)	Depth (ft)	U/S HGL (ft)	D/S HGL (ft)	U/S EGL (ft)	D/S EGL (ft)	Headloss (ft)
P-0+16	IN-0+16	IN_0+18	0.013	Concrete	Ellipse - 3 17 x 2 00 ft		10	1.2	109	6 265 60	6 265 27	0.003	4.68	5 50	2.66	0.8	6 268 53	6 268 30	6 268 64	6 268 /1	0.23
P=0+10	IN-0+10	IN-0+18	0.013	Concrete	Ellipse - 3.17 x 2.00 ft		1.9	1.2	185.8	6 265 17	6 264 44	0.003	4.00	6.33	4.36	0.8 (N/Δ)	6 267 91	6 266 81	6 268 20	6 267 10	1.1
P-0+25	IN-0+25	IN-1+10	0.013	Concrete	Circle - 2.0 ft	18	1.5	1.2	48.1	6 266 43	6 266 29	0.004	11 94	5.5	6.76	(N/A)	6 271 36	6 270 68	6 272 07	6 271 39	0.68
P-0+37	IN-0+37	FES-0+37	0.013	Concrete	Ellipse - 3.17 x 2.00 ft	10	1.9	1.2	44.7	6.264.22	6.264.09	0.003	11.85	5.34	6.75	(N/A)	6.265.87	6.265.15	6.266.58	6.265.92	0.72
P-0+38	IN-0+38	IN-0+37	0.013	Concrete	Ellipse - 3.17 x 2.00 ft		1.9	1.2	83	6.264.47	6.264.22	0.003	1.48	5.6	0.84	0.42	6.266.82	6.266.81	6.266.83	6.266.82	0.02
P-0+82	IN-0+82	IN-0+88	0.013	Concrete	Circle - 2.0 ft	18			24	6,266.76	6,266.52	0.01	1.17	9.9	0.66	0.35	6,270.88	6,270.87	6,270.88	6,270.88	0
P-1+10	IN-1+10	IN-1+11	0.013	Concrete	Circle - 24.0 in	24			58.2	6,266.19	6,265.96	0.004	15.76	13.94	5.02	(N/A)	6,271.61	6,271.31	6,272.00	6,271.70	0.3
P-1+11	IN-1+11	STM-MH-10	0.013	Concrete	Circle - 24.0 in	24			44.6	6,265.76	6,265.58	0.004	17.72	14.03	5.64	(N/A)	6,272.58	6,272.30	6,273.07	6,272.79	0.28
P-2+08	IN-2+08	IN-1+10	0.013	Concrete	Circle - 24.0 in	24			108.1	6,266.82	6,266.39	0.004	2.17	13.97	0.69	0.53	6,270.69	6,270.68	6,270.70	6,270.69	0.01
P-2+13	IN-2+13	IN-2+08	0.013	Concrete	Circle - 2.0 ft	18			42.5	6,268.64	6,268.22	0.01	0.24	10.23	0.14	0.16	6,270.70	6,270.70	6,270.70	6,270.70	0
P-2+32	IN-2+32	IN-2+08	0.013	Concrete	Circle - 24.0 in	24			65.8	6,269.54	6,268.22	0.02	1.56	30.73	5.12	0.31	6,270.70	6,270.70	6,270.71	6,270.70	0
P-2+64	IN-2+64	IN-2+84	0.013	Concrete	Circle - 2.0 ft	18			30.4	6,268.91	6,268.61	0.01	1.2	9.62	0.68	0.36	6,272.05	6,272.05	6,272.06	6,272.06	0
P-2+84	IN-2+84	MH-3+28	0.013	Concrete	Circle - 2.0 ft	18			44.5	6,268.41	6,267.97	0.01	3.19	9.92	1.81	0.58	6,272.23	6,272.18	6,272.28	6,272.23	0.05
P-3+11	IN-3+11	MH-3+28	0.013	Concrete	Circle - 24.0 in	24			47.7	6,268.11	6,267.87	0.005	10.49	15.37	3.34	1.21	6,272.29	6,272.18	6,272.47	6,272.36	0.11
P-3+28	MH-3+28	MH-3+38	0.013	Concrete	Circle - 24.0 in	24			73.8	6,267.77	6,267.40	0.005	18.55	15.48	5.9	(N/A)	6,273.22	6,272.69	6,273.76	6,273.23	0.53
P-3+43	MH-1	IN-3+43	0.013	Concrete	Circle - 24.0 in	24			79.4	6,265.42	6,265.10	0.004	4.44	14.01	1.41	0.77	6,267.89	6,267.85	6,267.92	6,267.89	0.03
P-3+47	IN-3+47	MH-3+28	0.013	Concrete	Circle - 2.0 ft	18			16	6,268.11	6,267.97	0.008	4.87	8.87	2.76	0.79	6,272.22	6,272.18	6,272.34	6,272.30	0.04
P-5+41	IN-5+41	MH-5+03	0.013	Concrete	Circle - 36.0 in	36			253.6	6,262.55	6,261.28	0.005	51.14	46.6	7.23	(N/A)	6,269.19	6,267.66	6,270.00	6,268.48	1.53
P-5+45(1)	IN-5+32	MH-5+21	0.013	Concrete	Circle - 2.0 ft	18			113.5	6,269.32	6,266.49	0.025	0	16.33	0	(N/A)	6,269.32	6,267.08	6,269.32	6,267.08	2.24
P-5+45(2)	MH-5+21	MH-4	0.013	Concrete	Circle - 36.0 in	36			87.4	6,260.76	6,260.41	0.004	51.14	41.03	7.23	(N/A)	6,266.68	6,266.13	6,267.49	6,266.95	0.54
P-5+46	IN-5+46	IN-5+51	0.013	Concrete	Circle - 2.0 ft	18			24.9	6,267.55	6,267.18	0.015	0.85	11.72	3.86	0.27	6,267.90	6,267.78	6,268.02	6,267.81	0.12
P-5+47	MH-5+47	MH-5+71	0.013	Concrete	Circle - 2.0 ft	18			58.9	6,269.00	6,268.41	0.01	1.18	10.09	3.82	0.35	6,270.02	6,270.01	6,270.03	6,270.02	0
P-5+49	IN-5+49	MH-5+47	0.013	Concrete	Circle - 2.0 ft	18			57.7	6,269.78	6,269.20	0.01	1.18	10.29	3.88	0.34	6,270.18	6,270.02	6,270.33	6,270.04	0.16
P-5+51	IN-5+51	FES-5+43	0.013	Concrete	Circle - 2.0 ft	18			25.5	6,266.98	6,266.60	0.015	2.02	12.03	5.06	0.42	6,267.52	6,267.02	6,267.72	6,267.41	0.5
P-5+71	IVITI-5+71	FES-5+40	0.013	Concrete	Circle - 2.0 It	10			107.1	6 270 15	6,200.00	0.015	12.67	10.20	6.2	1.25	6,209.55	6,207.85	6,270.47	6,208.89	1./1
P=0+31	IN-0+31		0.013	Concrete	Circle - 2.0 ft	10			1/4.2	6 270.13	6 270 60	0.014	2 00	0.20	2.26	(N/A)	6 272 20	6 272 25	6 272 46	6 272 42	0.02
P-6+75	IN-0+74	IN-6+51	0.013	Concrete	Circle - 2.0 ft	10			10.0	6 270 49	6 270 35	-0.014	5.29	9.39	2.20	0.08	6 273 16	6 273 11	6 273 30	6 273 25	0.05
P=6+77	IN-6+77	IN-6+74	0.013	Concrete	Circle - 2.0 ft	18			50.7	6 272 07	6 271 57	-0.02	2.68	10.07	4.82	0.53	6 273 42	6 273 39	6 273 46	6 273 42	0.03
P-7+07	H-1	MH-7+87	0.013	Concrete	Ellinse - 3.8 x 2.4 ft	10	3.8	24	149 3	6 273 22	6 272 77	0.003	11 18	35.64	4 32	0.95	6 274 17	6 273 85	6 274 46	6 274 06	0.31
P-7+87	MH-7+87	STM-MH-8+4	0.013	Concrete	Ellipse - 5.0 x 3.2 ft		5	3.2	106.3	6.272.67	6.272.24	0.004	11.18	85.58	4.53	0.8	6.273.79	6.273.80	6.273.91	6.273.85	-0.01
P-7+97	IN-7+97	STM-MH-8+4	0.013	Concrete	Circle - 24.0 in	24	-		13.5	6.272.31	6.272.24	0.005	1.14	13.3	2.59	0.4	6.273.80	6.273.80	6.273.80	6.273.80	0
P-8+03	STM-MH-8+4	CULV-FES-	0.013	Concrete	Ellipse - 5.0 x 3.2 ft		5	3.2	40.3	6,272.14	6,271.98	0.004	21.71	84.99	5.53	1.12	6,273.30	6,273.10	6,273.73	6,273.57	0.2
P-8+07	IN-8+07	STM-MH-8+4	0.013	Concrete	Circle - 24.0 in	24			12.5	6,272.30	6,272.24	0.005	9.39	14.93	5.02	1.15	6,273.82	6,273.80	6,274.03	6,274.00	0.02
P-8+19	IN-8+19	MH-8+29	0.013	Concrete	Circle - 2.0 ft	18			46.9	6,274.73	6,274.24	0.01	1.27	10.47	4.01	0.35	6,275.15	6,274.59	6,275.30	6,274.84	0.56
P-8+29	MH-8+29	IN-8+39	0.013	Concrete	Circle - 2.0 ft	18			19.6	6,273.66	6,273.56	0.005	1.27	7.1	3.04	0.43	6,274.56	6,274.56	6,274.58	6,274.57	0
P-8+39	IN-8+39	IN-8+57	0.013	Concrete	Circle - 2.0 ft	18			31.6	6,273.36	6,273.20	0.005	1.76	7.1	3.33	0.51	6,274.55	6,274.55	6,274.57	6,274.57	0.01
P-8+57	IN-8+57	IN-8+07	0.013	Concrete	Circle - 24.0 in	24			99.5	6,273.00	6,272.50	0.005	8.26	15.53	5.02	1.04	6,274.05	6,273.95	6,274.43	6,274.13	0.1
STM-	IN-1+26	IN-1+10	0.013	Concrete	Circle - 2.0 ft	15			13	6,266.34	6,266.29	0.004	0.42	3.65	0.34	0.29	6,270.68	6,270.68	6,270.68	6,270.68	0
STM-8	MH-4	MH-5+04	0.013	Concrete	Circle - 36.0 in	36			277	6,260.21	6,259.10	0.004	51.14	41.81	7.23	(N/A)	6,265.73	6,264.07	6,266.54	6,264.88	1.66
STM-9	MH-5+04	MH-4+21	0.013	Concrete	Circle - 36.0 in	36			284.6	6,259.00	6,257.86	0.004	51.14	41.83	7.23	(N/A)	6,263.66	6,261.96	6,264.47	6,262.77	1.7
STM-10	MH-4+21	MH-4+11	0.013	Concrete	Circle - 36.0 in	36			271.9	6,257.76	6,256.67	0.004	51.14	41.8	7.23	(N/A)	6,261.55	6,259.92	6,262.37	6,260.74	1.63
STM-11	MH-4+11	FES-OUTFALL	0.013	Concrete	Circle - 36.0 in	36			197.2	6,256.57	6,255.78	0.004	51.14	41.92	7.23	(N/A)	6,259.51	6,258.11	6,260.33	6,259.28	1.41
STM-12	IN-3+43	MH-3+38	0.013	Concrete	Circle - 24.0 in	24			86	6,264.90	6,264.56	0.004	9.7	13.95	3.09	1.23	6,272.86	6,272.69	6,273.01	6,272.84	0.17
STM-13	STM-MH-10	MH-3+38	0.013	Concrete	Circle - 30.0 in	30			179.7	6,265.28	6,264.56	0.004	20.79	25.59	4.24	1.71	6,273.17	6,272.69	6,273.45	6,272.97	0.47
STM-14	IN-0+88	STM-MH-10	0.013	Concrete	Circle - 2.0 ft	18			43.5	6,266.32	6,265.88	0.01	3.07	10.3	1.74	0.56	6,272.33	6,272.30	6,272.38	6,272.34	0.04
STM-15	MH-3+38	STM-MH-11	0.013	Concrete	Circle - 36.0 in	36			55.5	6,264.36	6,264.08	0.005	49.04	45.18	6.94	(N/A)	6,272.49	6,272.16	6,273.23	6,272.91	0.33
STIVI-10	IIN-3+83		0.013	Concrete	Circle - 2.0 ft	18		<u> </u>	5.2	0,208.08	6 262 12	0.02	1.20	12.78	0./1	U.32	0,272.1b	6 270 80	6 272 55	6 271 67	0 00
STIVI-17 STM-18	MH_5+20	INI-5+29	0.013	Concrete	Circle - 30.0 III	30			25.5	6 262 02	6 262 75	0.005	50.3	40.39	7.12	(N/A)	6 270 /0	6 270 26	6 271 20	6 271 05	0.00
STM-19	MH-5+03	MH_5+21	0.013	Concrete	Circle - 36 0 in	36			24.8	6 261 08	6 260 96	0.005	51.5	44.35	7.12	(N/A) (N/Δ)	6 267 26	6 267 08	6 268 07	6 267 90	0.25
STM-20	IN-1+22	MH-1	0.013	Concrete	Circle - 24.0 in	24			36	6.265.98	6.265.62	0.01	4.44	21.25	5.35	0.62	6.267.92	6.267.90	6.267.95	6.267.93	0.02

Drainage Report-StormCAD Results
Element Type:Conduit
5-yr US-24 and Peterson Intersection Improvements

						Diamatan	6 m a m		Longth	Invent	Invert	Clana	Flow	Consoltu	Valasity	Danth					Lloadloss
Conduit ID	U/S ID	D/S ID	Mannings n	Material	Conduit Description	(in)	(f+)	Rise (ft)	(ft)	(Stort) (ft)	(Stop)	(#/#)	(cfc)	(cfc)	(ft/c)	(fr)	(f+)	(f+)	(f+)	U/3 EGL (#)	(ft)
						(in)	(11)		(11)	(Start) (IL)	(ft)	(11/11)	(CIS)	(cis)	(11/5)	(11)	(11)	(11)	(11)	(11)	(11)
P-0+16	IN-0+16	IN-0+18	0.013	Concrete	Ellipse - 3.17 x 2.00 ft		1.9	1.2	109	6,265.60	6,265.27	0.003	2.14	5.59	2.92	0.51	6,266.14	6,266.07	6,266.25	6,266.11	0.07
P-0+18	IN-0+18	IN-0+37	0.013	Concrete	Ellipse - 3.17 x 2.00 ft		1.9	1.2	185.8	6,265.17	6,264.44	0.004	3.51	6.33	3.71	0.62	6,265.79	6,265.40	6,266.00	6,265.48	0.39
P-0+25	IN-0+25	IN-1+10	0.013	Concrete	Circle - 2.0 ft	18			48.1	6,266.43	6,266.29	0.003	4.92	5.5	3.52	1.11	6,267.65	6,267.54	6,267.81	6,267.69	0.11
P-0+37	IN-0+37	FES-0+37	0.013	Concrete	Ellipse - 3.17 x 2.00 ft		1.9	1.2	44.7	6,264.22	6,264.09	0.003	5.43	5.34	3.58	0.94	6,265.10	6,264.83	6,265.33	6,265.16	0.27
P-0+38	IN-0+38	IN-0+37	0.013	Concrete	Ellipse - 3.17 x 2.00 ft		1.9	1.2	83	6,264.47	6,264.22	0.003	0.68	5.6	2.04	0.29	6,265.40	6,265.40	6,265.41	6,265.40	0
P-0+82	IN-0+82	IN-0+88	0.013	Concrete	Circle - 2.0 ft	18			24	6,266.76	6,266.52	0.01	0.54	9.9	3	0.24	6,267.04	6,266.76	6,267.13	6,266.90	0.27
P-1+10	IN-1+10	IN-1+11	0.013	Concrete	Circle - 24.0 in	24			58.2	6,266.19	6,265.96	0.004	6.47	13.94	4.36	0.96	6,267.15	6,266.86	6,267.44	6,267.21	0.29
P-1+11	IN-1+11	STM-MH-10	0.013	Concrete	Circle - 24.0 in	24			44.6	6,265.76	6,265.58	0.004	7.37	14.03	4.52	1.03	6,266.79	6,266.54	6,267.11	6,266.92	0.24
P-2+08	IN-2+08	IN-1+10	0.013	Concrete	Circle - 24.0 in	24			108.1	6,266.82	6,266.39	0.004	0.99	13.97	2.57	0.36	6,267.54	6,267.54	6,267.56	6,267.54	0
P-2+13	IN-2+13	IN-2+08	0.013	Concrete	Circle - 2.0 ft	18			42.5	6,268.64	6,268.22	0.01	0.11	10.23	1.9	0.11	6,268.77	6,268.33	6,268.81	6,268.39	0.44
P-2+32	IN-2+32	IN-2+08	0.013	Concrete	Circle - 24.0 in	24			65.8	6,269.54	6,268.22	0.02	0.71	30.73	4.04	0.21	6,269.83	6,268.43	6,269.93	6,268.68	1.4
P-2+64	IN-2+64	IN-2+84	0.013	Concrete	Circle - 2.0 ft	18			30.4	6,268.91	6,268.61	0.01	0.55	9.62	2.95	0.24	6,269.19	6,268.85	6,269.28	6,268.99	0.33
P-2+84	IN-2+84	MH-3+28	0.013	Concrete	Circle - 2.0 ft	18			44.5	6,268.41	6,267.97	0.01	1.46	9.92	4.02	0.39	6,268.87	6,268.90	6,269.03	6,268.92	-0.03
P-3+11	IN-3+11	MH-3+28	0.013	Concrete	Circle - 24.0 in	24			47.7	6,268.11	6,267.87	0.005	3.43	15.37	3.94	0.64	6,268.90	6,268.90	6,269.04	6,268.97	0
P-3+28	MH-3+28	MH-3+38	0.013	Concrete	Circle - 24.0 in	24			73.8	6,267.77	6,267.40	0.005	7.04	15.48	4.81	0.95	6,268.72	6,268.35	6,269.08	6,268.71	0.37
P-3+43	MH-1	IN-3+43	0.013	Concrete	Circle - 24.0 in	24			79.4	6,265.42	6,265.10	0.004	2.03	14.01	3.18	0.51	6,266.12	6,266.11	6,266.19	6,266.13	0.01
P-3+47	IN-3+47	MH-3+28	0.013	Concrete	Circle - 2.0 ft	18			16	6,268.11	6,267.97	0.008	2.15	8.87	4.13	0.5	6,268.89	6,268.90	6,268.97	6,268.95	-0.01
P-5+41	IN-5+41	MH-5+03	0.013	Concrete	Circle - 36.0 in	36			253.6	6,262.55	6,261.28	0.005	20.56	46.6	6.39	1.39	6,264.00	6,262.83	6,264.57	6,263.31	1.18
P-5+45(1)	IN-5+32	MH-5+21	0.013	Concrete	Circle - 2.0 ft	18			113.5	6,269.32	6,266.49	0.025	0	16.33	0	(N/A)	6,269.32	6,266.49	6,269.32	6,266.49	2.84
P-5+45(2)	MH-5+21	MH-4	0.013	Concrete	Circle - 36.0 in	36			87.4	6,260.76	6,260.41	0.004	20.56	41.03	5.81	1.5	6,262.26	6,261.96	6,262.79	6,262.44	0.3
P-5+46	IN-5+46	IN-5+51	0.013	Concrete	Circle - 2.0 ft	18			24.9	6,267.55	6,267.18	0.015	0.39	11.72	3.07	0.19	6,267.78	6,267.51	6,267.86	6,267.54	0.27
P-5+47	MH-5+47	MH-5+71	0.013	Concrete	Circle - 2.0 ft	18			58.9	6,269.00	6,268.41	0.01	0.54	10.09	3.04	0.24	6,269.27	6,269.28	6,269.37	6,269.28	-0.01
P-5+49	IN-5+49	MH-5+47	0.013	Concrete	Circle - 2.0 ft	18			57.7	6,269.78	6,269.20	0.01	0.54	10.29	3.08	0.23	6,270.05	6,269.43	6,270.14	6,269.58	0.62
P-5+51	IN-5+51	FES-5+43	0.013	Concrete	Circle - 2.0 ft	18			25.5	6,266.98	6,266.60	0.015	0.93	12.03	4.04	0.28	6,267.34	6,266.88	6,267.47	6,267.14	0.46
P-5+71	MH-5+71	FES-5+40	0.013	Concrete	Circle - 2.0 ft	18			107.1	6,268.21	6,266.60	0.015	5.33	12.72	6.88	0.68	6,269.10	6,267.28	6,269.47	6,268.01	1.82
P-6+51	IN-6+51	MH-5+71	0.013	Concrete	Circle - 2.0 ft	18			174.2	6,270.15	6,268.41	0.01	4.79	10.39	5.76	0.72	6,270.99	6,269.28	6,271.34	6,269.60	1.71
P-6+74	IN-6+74	IN-6+75	0.013	Concrete	Circle - 2.0 ft	18			16.6	6,270.86	6,270.69	-0.014	1.83	9.39	4.12	0.45	6,271.51	6,271.53	6,271.61	6,271.58	-0.02
P-6+75	IN-6+75	IN-6+51	0.013	Concrete	Circle - 2.0 ft	18			14.4	6,270.49	6,270.35	0.02	2.43	8.93	4.3	0.53	6,271.44	6,271.45	6,271.51	6,271.49	0
P-6+77	IN-6+77	IN-6+74	0.013	Concrete	Circle - 2.0 ft	18			50.7	6,272.07	6,271.57	-0.01	1.23	10.07	3.86	0.35	6,272.48	6,271.92	6,272.63	6,272.15	0.56
P-7+07	H-1	MH-7+87	0.013	Concrete	Ellipse - 3.8 x 2.4 ft		3.8	2.4	149.3	6,273.22	6,272.77	0.003	11.18	35.64	4.32	0.95	6,274.17	6,273.67	6,274.46	6,274.00	0.5
P-7+87	MH-7+87	STM-MH-8+4	0.013	Concrete	Ellipse - 5.0 x 3.2 ft		5	3.2	106.3	6,272.67	6,272.24	0.004	11.18	85.58	4.53	0.8	6,273.50	6,273.55	6,273.78	6,273.63	-0.05
P-7+97	IN-7+97	STM-MH-8+4	0.013	Concrete	Circle - 24.0 in	24			13.5	6,272.31	6,272.24	0.005	0.52	13.3	2.05	0.27	6,273.55	6,273.55	6,273.55	6,273.55	0
P-8+03	STM-MH-8+4	CULV-FES-	0.013	Concrete	Ellipse - 5.0 x 3.2 ft		5	3.2	40.3	6,272.14	6,271.98	0.004	16.01	84.99	5.03	0.96	6,273.13	6,272.94	6,273.49	6,273.33	0.19
P-8+07	IN-8+07	STM-MH-8+4	0.013	Concrete	Circle - 24.0 in	24			12.5	6,272.30	6,272.24	0.005	4.31	14.93	4.11	0.74	6,273.55	6,273.55	6,273.62	6,273.61	0
P-8+19	IN-8+19	MH-8+29	0.013	Concrete	Circle - 2.0 ft	18			46.9	6,274.73	6,274.24	0.01	0.58	10.47	3.18	0.24	6,275.01	6,274.48	6,275.11	6,274.64	0.53
P-8+29	MH-8+29	IN-8+39	0.013	Concrete	Circle - 2.0 ft	18			19.6	6,273.66	6,273.56	0.005	0.58	7.1	2.42	0.29	6,274.02	6,274.01	6,274.07	6,274.04	0
P-8+39	IN-8+39	IN-8+57	0.013	Concrete	Circle - 2.0 ft	18			31.6	6,273.36	6,273.20	0.005	0.81	7.1	2.67	0.34	6,274.01	6,274.01	6,274.03	6,274.02	0
P-8+57	IN-8+57	IN-8+07	0.013	Concrete	Circle - 24.0 in	24			99.5	6,273.00	6,272.50	0.005	3.79	15.53	4.08	0.67	6,273.68	6,273.60	6,273.93	6,273.67	0.08
STM-	IN-1+26	IN-1+10	0.013	Concrete	Circle - 2.0 ft	15			13	6,266.34	6,266.29	0.004	0	3.65	0	(N/A)	6,267.54	6,267.54	6,267.54	6,267.54	0
STM-8	MH-4	MH-5+04	0.013	Concrete	Circle - 36.0 in	36			277	6,260.21	6,259.10	0.004	20.56	41.81	5.89	1.49	6,261.69	6,260.75	6,262.23	6,261.17	0.94
STM-9	MH-5+04	MH-4+21	0.013	Concrete	Circle - 36.0 in	36			284.6	6,259.00	6,257.86	0.004	20.56	41.83	5.89	1.49	6,260.48	6,259.51	6,261.02	6,259.92	0.97
STM-10	MH-4+21	MH-4+11	0.013	Concrete	Circle - 36.0 in	36			271.9	6,257.76	6,256.67	0.004	20.56	41.8	5.89	1.49	6,259.24	6,258.32	6,259.78	6,258.73	0.92
STM-11	MH-4+11	FES-OUTFALL	0.013	Concrete	Circle - 36.0 in	36			197.2	6,256.57	6,255.78	0.004	20.56	41.92	5.9	1.48	6,258.05	6,257.24	6,258.59	6,257.80	0.82
STM-12	IN-3+43	MH-3+38	0.013	Concrete	Circle - 24.0 in	24			86	6,264.90	6,264.56	0.004	3.77	13.95	3.77	0.71	6,266.07	6,266.05	6,266.13	6,266.09	0.02
STM-13	STM-MH-10	MH-3+38	0.013	Concrete	Circle - 30.0 in	30			179.7	6,265.28	6,264.56	0.004	8.78	25.59	4.73	1.01	6,266.29	6,266.05	6,266.64	6,266.18	0.24
STM-14	IN-0+88	STM-MH-10	0.013	Concrete	Circle - 2.0 ft	18			43.5	6,266.32	6,265.88	0.01	1.41	10.3	4.08	0.37	6,266.77	6,266.46	6,266.93	6,266.54	0.3
STM-15	MH-3+38	STM-MH-11	0.013	Concrete	Circle - 36.0 in	36			55.5	6,264.36	6,264.08	0.005	19.59	45.18	6.16	1.38	6,265.78	6,265.60	6,266.33	6,266.06	0.18
STM-16	IN-3+83	STM-MH-11	0.013	Concrete	Circle - 2.0 ft	18			5.2	6,268.08	6,267.98	0.02	0.58	12.78	3.66	0.22	6,268.36	6,268.20	6,268.46	6,268.39	0.16
STM-17	STM-MH-11	MH-5+29	0.013	Concrete	Circle - 36.0 in	36			149.9	6,263.88	6,263.13	0.005	20.17	46.39	6.33	1.38	6,265.32	6,264.92	6,265.88	6,265.25	0.4
STM-18	MH-5+29	IN-5+41	0.013	Concrete	Circle - 36.0 in	36			35.5	6,262.93	6,262.75	0.005	20.17	44.39	6.13	1.42	6,264.76	6,264.75	6,265.07	6,265.00	0.01
STM-19	MH-5+03	MH-5+21	0.013	Concrete	Circle - 36.0 in	36			24.8	6,261.08	6,260.96	0.005	20.56	43.02	6.02	1.46	6,262.55	6,262.52	6,263.11	6,263.00	0.03
STM-20	IN-1+22	MH-1	0.013	Concrete	Circle - 24.0 in	24			36	6,265.98	6,265.62	0.01	2.03	21.25	4.27	0.42	6,266.47	6,266.15	6,266.65	6,266.29	0.32

# Drainage Report-StormCAD Results Element Type:Manhole 100-yr US-24 and Peterson Intersection Improvements

Manhole ID	Shape	Diameter (in)	Flow (Total Out) (cfs)	Elevation (Rim) (ft)	Invert Out (ft)	Headloss Method	Headloss (ft)
MH-1	Circular Structure	48	4.44	6,272.27	6,265.42	Standard	0.02
MH-3+28	Circular Structure	72	18.55	6,272.18	6,267.77	Standard	0.27
MH-3+38	Circular Structure	72	49.04	6,272.69	6,264.36	Standard	0.37
MH-4	Circular Structure	72	51.14	6,271.79	6,260.21	Standard	0.41
MH-4+11	Circular Structure	60	51.14	6,261.83	6,256.57	Standard	0.41
MH-4+21	Circular Structure	60	51.14	6,264.33	6,257.76	Standard	0.41
MH-5+03	Circular Structure	72	51.14	6,276.67	6,261.08	Standard	0.41
MH-5+04	Circular Structure	60	51.14	6,268.94	6,259.00	Standard	0.41
MH-5+21	Circular Structure	72	51.14	6,273.73	6,260.76	Standard	0.41
MH-5+29	Circular Structure	60	50.3	6,273.91	6,262.93	Standard	0.39
MH-5+47	Circular Structure	60	1.18	6,274.86	6,269.00	Standard	0.01
MH-5+71	Circular Structure	60	12.87	6,276.63	6,268.21	Standard	0.46
MH-7+87	Circular Structure	84	11.18	6,283.73	6,272.67	Standard	0.06
MH-8+29	Circular Structure	60	1.27	6,279.33	6,273.66	Standard	0
STM-MH-8+4	Circular Structure	96	21.71	6,276.63	6,272.14	Standard	0.5
STM-MH-10	Circular Structure	60	20.79	6,272.30	6,265.28	Standard	0.14
STM-MH-11	Circular Structure	60	50.3	6,272.54	6,263.88	Standard	0.39

# Drainage Report-StormCAD Results

Element Type:Manhole

5-yr US-24 and Peterson Intersection Improvements

Manhole ID	Shape	Diameter (in)	Flow (Total Out) (cfs)	Elevation (Rim) (ft)	Invert Out (ft)	Headloss Method	Headloss (ft)
MH-1	Circular Structure	48	2.03	6,272.27	6,265.42	Standard	0.03
MH-3+28	Circular Structure	72	7.04	6,272.18	6,267.77	Standard	0.18
MH-3+38	Circular Structure	72	19.59	6,272.69	6,264.36	Standard	0.27
MH-4	Circular Structure	72	20.56	6,271.79	6,260.21	Standard	0.27
MH-4+11	Circular Structure	60	20.56	6,261.83	6,256.57	Standard	0.27
MH-4+21	Circular Structure	60	20.56	6,264.33	6,257.76	Standard	0.27
MH-5+03	Circular Structure	72	20.56	6,276.67	6,261.08	Standard	0.28
MH-5+04	Circular Structure	60	20.56	6,268.94	6,259.00	Standard	0.27
MH-5+21	Circular Structure	72	20.56	6,273.73	6,260.76	Standard	0.26
MH-5+29	Circular Structure	60	20.17	6,273.91	6,262.93	Standard	0.15
MH-5+47	Circular Structure	60	0.54	6,274.86	6,269.00	Standard	0.05
MH-5+71	Circular Structure	60	5.33	6,276.63	6,268.21	Standard	0.19
MH-7+87	Circular Structure	84	11.18	6,283.73	6,272.67	Standard	0.14
MH-8+29	Circular Structure	60	0.58	6,279.33	6,273.66	Standard	0.01
STM-MH-8+4	Circular Structure	96	16.01	6,276.63	6,272.14	Standard	0.42
STM-MH-10	Circular Structure	60	8.78	6,272.30	6,265.28	Standard	0.17
STM-MH-11	Circular Structure	60	20.17	6,272.54	6,263.88	Standard	0.28

# Drainage Report-StormCAD Results Element Type:Catch Basin 100-yr US-24 and Peterson Intersection Improvements

		Elevation (FL)	Invert Out	Flow (Additional		
Inlet ID	Inlet Type	(ft)	(ft)	Carryover) (cfs)	Headloss Method	Headloss (ft)
IN-0+16	INLET - TYPE R-10'	6,268.62	6,265.60	4.68	Standard	0.01
IN-0+18	INLET - TYPE R-5'	6,268.60	6,265.17	2.98	Standard	0.39
IN-0+25	INLET - TYPE C	6,269.36	6,266.43	11.94	Standard	0.04
IN-0+37	INLET - TYPE R-10'	6,267.06	6,264.22	2.71	Standard	0.93
IN-0+38	INLET - TYPE R-5'	6,267.10	6,264.47	1.48	Standard	0
IN-0+82	INLET - TYPE R-5'	6,270.50	6,266.76	1.17	Standard	0
IN-0+88	INLET - TYPE R-5'	6,270.87	6,266.32	1.9	Standard	0
IN-1+10	INLET - TYPE R-5'	6,270.68	6,266.19	1.23	Standard	0.52
IN-1+11	INLET - TYPE R-5'	6,271.31	6,265.76	1.96	Standard	0.05
IN-1+22	INLET - TYPE R-5'	6,271.13	6,265.98	4.44	Standard	0
IN-1+26	INLET - TYPE 13	6,270.01	6,266.34	0.42	Standard	0
IN-2+08	INLET - TYPE R-5'	6,271.94	6,266.82	0.37	Standard	0.01
IN-2+13	INLET - TYPE R-5'	6,272.40	6,268.64	0.24	Standard	0
IN-2+32	INLET - TYPE R-5'	6,274.34	6,269.54	1.56	Standard	0
IN-2+64	INLET - TYPE R-5'	6,272.37	6,268.91	1.2	Standard	0
IN-2+84	INLET - TYPE R-5'	6,272.05	6,268.41	1.99	Standard	0.01
IN-3+11	INLET - TYPE D	6,272.24	6,268.11	10.49	Standard	0.01
IN-3+43	INLET - TYPE C	6,267.85	6,264.90	5.26	Standard	0.09
IN-3+47	INLET - TYPE R-10'	6,272.21	6,268.11	4.87	Standard	0.01
IN-3+83	INLET - TYPE R-5'	6,272.35	6,268.08	1.26	Standard	0
IN-5+32	INLET - TYPE D	6,272.31	6,269.32	0	Standard	0
IN-5+41	INLET - TYPE R-5'	6,274.33	6,262.55	0.84	Standard	1.07
IN-5+46	INLET - TYPE R-5'	6,275.37	6,267.55	0.85	Standard	0.01
IN-5+49	INLET - TYPE R-5'	6,273.68	6,269.78	1.18	Standard	0.01
IN-5+51	INLET - TYPE R-5'	6,275.49	6,266.98	1.17	Standard	0.26
IN-6+51	INLET - TYPE C	6,275.21	6,270.15	6.4	Standard	0.9
IN-6+74	INLET - TYPE R-5'	6,275.95	6,270.86	1.31	Standard	0.01
IN-6+75	INLET - TYPE R-5'	6,276.06	6,270.64	1.3	Standard	0.18
IN-6+77	INLET - TYPE R-5'	6,276.64	6,272.07	2.68	Standard	0
IN-7+97	INLET - TYPE R-5'	6,276.86	6,272.31	1.14	Standard	0
IN-8+07	INLET - TYPE R-5'	6,276.39	6,272.30	1.13	Standard	0.13
IN-8+19	INLET - TYPE R-5'	6,278.89	6,274.73	1.27	Standard	0.01
IN-8+39	INLET - TYPE R-5'	6,278.81	6,273.36	0.49	Standard	0
IN-8+57	INLET - TYPE R-5'	6,278.00	6,273.00	6.5	Standard	0.5

# Drainage Report-StormCAD Results Element Type:Catch Basin 5-yr US-24 and Peterson Intersection Improvements

		Elevation (FL)	Invert Out	Flow (Additional		
Inlet ID	Inlet Type	(ft)	(ft)	Carryover) (cfs)	Headloss Method	Headloss (ft)
IN-0+16	INLET - TYPE R-10'	6,268.62	6,265.60	2.14	Standard	0.01
IN-0+18	INLET - TYPE R-5'	6,268.60	6,265.17	1.37	Standard	0.28
IN-0+25	INLET - TYPE C	6,269.36	6,266.43	4.92	Standard	0.01
IN-0+37	INLET - TYPE R-10'	6,267.06	6,264.22	1.24	Standard	0.3
IN-0+38	INLET - TYPE R-5'	6,267.10	6,264.47	0.68	Standard	0
IN-0+82	INLET - TYPE R-5'	6,270.50	6,266.76	0.54	Standard	0
IN-0+88	INLET - TYPE R-5'	6,270.87	6,266.32	0.87	Standard	0.02
IN-1+10	INLET - TYPE R-5'	6,270.68	6,266.19	0.56	Standard	0.39
IN-1+11	INLET - TYPE R-5'	6,271.31	6,265.76	0.9	Standard	0.03
IN-1+22	INLET - TYPE R-5'	6,271.13	6,265.98	2.03	Standard	0.01
IN-1+26	INLET - TYPE 13	6,270.01	6,266.34	0	Standard	0
IN-2+08	INLET - TYPE R-5'	6,271.94	6,266.82	0.17	Standard	0.02
IN-2+13	INLET - TYPE R-5'	6,272.40	6,268.64	0.11	Standard	0
IN-2+32	INLET - TYPE R-5'	6,274.34	6,269.54	0.71	Standard	0
IN-2+64	INLET - TYPE R-5'	6,272.37	6,268.91	0.55	Standard	0
IN-2+84	INLET - TYPE R-5'	6,272.05	6,268.41	0.91	Standard	0.02
IN-3+11	INLET - TYPE D	6,272.24	6,268.11	3.43	Standard	0.01
IN-3+43	INLET - TYPE C	6,267.85	6,264.90	1.74	Standard	0.04
IN-3+47	INLET - TYPE R-10'	6,272.21	6,268.11	2.15	Standard	0
IN-3+83	INLET - TYPE R-5'	6,272.35	6,268.08	0.58	Standard	0
IN-5+32	INLET - TYPE D	6,272.31	6,269.32	0	Standard	0
IN-5+41	INLET - TYPE R-5'	6,274.33	6,262.55	0.39	Standard	0.75
IN-5+46	INLET - TYPE R-5'	6,275.37	6,267.55	0.39	Standard	0
IN-5+49	INLET - TYPE R-5'	6,273.68	6,269.78	0.54	Standard	0
IN-5+51	INLET - TYPE R-5'	6,275.49	6,266.98	0.54	Standard	0.17
IN-6+51	INLET - TYPE C	6,275.21	6,270.15	2.36	Standard	0.45
IN-6+74	INLET - TYPE R-5'	6,275.95	6,270.86	0.6	Standard	0.01
IN-6+75	INLET - TYPE R-5'	6,276.06	6,270.64	0.6	Standard	0.09
IN-6+77	INLET - TYPE R-5'	6,276.64	6,272.07	1.23	Standard	0.01
IN-7+97	INLET - TYPE R-5'	6,276.86	6,272.31	0.52	Standard	0
IN-8+07	INLET - TYPE R-5'	6,276.39	6,272.30	0.52	Standard	0.04
IN-8+19	INLET - TYPE R-5'	6,278.89	6,274.73	0.58	Standard	0
IN-8+39	INLET - TYPE R-5'	6,278.81	6,273.36	0.23	Standard	0
IN-8+57	INLET - TYPE R-5'	6,278.00	6,273.00	2.98	Standard	0.33



# 9.9 FlowMaster Swale Calculations

#### Flow Master and Hydraulic Toolbox DITCH PROTECTION CALCULATIONS US24 & Peterson 30% Submission

COMPUTED BY:	CMB	12/12/2023
CHECKED:	NES	12/12/2023

5-YR Capacity Calculations

Ditch	Solve For	Friction Method	Roughness Coefficient	Channel Slope (ft/ft)	Normal Depth (in)	Design Ditch Depth (in)	Left Side Slope (H:V)	Right Side Slope (H:V)	Bottom Width (ft)	5-YR Discharge (cfs)	Flow Area (Sq. ft)	Wetted Perimeter (ft)	Hydraulic Radius (in)	Top Width (ft)	Critical Depth (in)	Critical Slope (ft/ft)	Velocity (fps)	Velocity Head (ft)	Specific Energy (ft)	Froude Number	Flow Type	Max Shear (lb/ft ² )
1+26	Normal Depth	Manning Formula	0.035	0.031	0.9	16.86	23.20	6.00	-	0.06	0.1	2.1	0.4	2.08	0.8	0.057	0.81	0.01	0.08	0.756	Subcritical	0.138
3+11	Normal Depth	Manning Formula	0.035	0.015	3.8	10.00	35.71	8.53	-	3.43	2.2	14.1	1.9	14.10	3.3	0.035	1.53	0.04	0.35	0.298	Subcritical	0.035
3+43	Normal Depth	Manning Formula	0.035	0.040	2.5	2.95	14.43	27.62	-	1.74	0.9	8.8	1.3	8.81	2.5	0.038	1.89	0.06	0.26	1.027	Supercritical	0.538
5+69	Normal Depth	Manning Formula	0.035	0.018	17.9	32.40	2.26	1.56	1.08	28.21	5.9	7.5	9.3	6.78	17.2	0.022	4.82	0.36	1.85	0.913	Subcritical	1.674
6+51	Normal Depth	Manning Formula	0.035	0.024	3.9	5.57	14.29	8.79	-	2.36	1.2	7.5	1.9	7.48	3.6	0.034	1.95	0.06	0.38	0.854	Subcritical	0.485
7+07	Normal Depth	Manning Formula	0.035	0.015	67	8 4 8	7 40	24 88	-	11 18	5.0	18 1	33	18 04	59	0.029	2 2 2	0.08	0.64	0 740	Subcritical	0 523

### 100-YR Capacity Calculations

Ditch	Solve For	Friction Method	Roughness Coefficient	Channel Slope (ft/ft)	Normal Depth (in)	Design Ditch Depth (in)	Left Side Slope (H:V)	Right Side Slope (H:V)	Bottom Width (ft)	100-YR Discharge (cfs)	Flow Area (Sq. ft)	Wetted Perimeter (ft)	Hydraulic Radius (in)	Top Width (ft)	Critical Depth (in)	Critical Slope (ft/ft)	Velocity (fps)	Velocity Head (ft)	Specific Energy (ft)	Froude Number	Flow Type	Max Shear (lb/ft ² )
1+26	Normal Depth	Manning Formula	0.035	0.031	4.8	16.9	23.20	6.00	-	6.00	2.3	11.8	2.4	11.71	4.8	0.031	2.56	0.10	0.50	1.006	Supercritical	0.776
3+11	Normal Depth	Manning Formula	0.035	0.015	5.3	10.0	35.71	8.53	-	8.04	4.3	19.4	2.6	19.41	4.6	0.031	1.89	0.06	0.49	0.711	Subcritical	0.411
3+43	Normal Depth	Manning Formula	0.035	0.040	3.5	3.0	27.62	27.62	-	4.06	1.7	12.1	1.7	12.10	3.6	0.034	2.33	0.08	0.37	1.083	Supercritical	0.739
5+69	Normal Depth	Manning Formula	0.035	0.018	25.9	32.4	2.26	1.56	1.08	67.33	11.2	10.4	12.9	9.33	25.5	0.020	5.99	0.56	2.72	0.962	Subcritical	2.425
6+51	Normal Depth	Manning Formula	0.035	0.024	5.3	5.6	14.29	8.79	-	5.29	2.2	10.2	2.6	10.12	5	0.030	2.39	0.09	0.53	0.898	Subcritical	0.657
7+07	Normal Depth	Manning Formula	0.035	0.015	9.9	8.5	24.88	24.88	-	31.74	11.0	26.7	4.9	26.68	9	0.025	2.88	0.13	0.96	0.790	Subcritical	0.774

# Hydraulic Analysis Report

# **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

# Channel Analysis: DITCH 1+26-5yr

Notes:

# **Input Parameters**

Channel Type: Triangular Side Slope 1 (Z1): 23.2000 ft/ft Side Slope 2 (Z2): 6.0000 ft/ft Longitudinal Slope: 0.0310 ft/ft Manning's n: 0.0350 Flow 0.0600 cfs

# **Result Parameters**

Depth 0.0713 ft Area of Flow 0.0743 ft² Wetted Perimeter 2.0900 ft Hydraulic Radius 0.0355 ft Average Velocity 0.8079 ft/s Top Width 2.0825 ft Froude Number: 0.7540 Critical Depth 0.0694 ft Critical Velocity 0.8540 ft/s Critical Slope: 0.0359 ft/ft Critical Top Width 3.10 ft Calculated Max Shear Stress 0.1380 lb/ft² Calculated Avg Shear Stress 0.0687 lb/ft²

# Hydraulic Analysis Report

# **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

# Channel Analysis: DITCH 1+26-100yr

Notes:

# **Input Parameters**

Channel Type: Triangular Side Slope 1 (Z1): 23.2000 ft/ft Side Slope 2 (Z2): 6.0000 ft/ft Longitudinal Slope: 0.0310 ft/ft Manning's n: 0.0350 Flow 6.0000 cfs

# **Result Parameters**

Depth 0.4011 ft Area of Flow 2.3484 ft^2 Wetted Perimeter 11.7527 ft Hydraulic Radius 0.1998 ft Average Velocity 2.5550 ft/s Top Width 11.7109 ft Froude Number: 1.0055 Critical Depth 0.4377 ft Critical Depth 0.4377 ft Critical Slope: 0.0194 ft/ft Critical Slope: 0.0194 ft/ft Critical Top Width 19.57 ft Calculated Max Shear Stress 0.7758 lb/ft^2 Calculated Avg Shear Stress 0.3865 lb/ft^2
### **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

### Channel Analysis: DITCH 3+11-5yr

Notes:

### **Input Parameters**

Channel Type: Triangular Side Slope 1 (Z1): 35.7100 ft/ft Side Slope 2 (Z2): 8.5300 ft/ft Longitudinal Slope: 0.0150 ft/ft Manning's n: 0.0350 Flow 3.4300 cfs

### **Result Parameters**

Depth 0.3187 ft Area of Flow 2.2467 ft² Wetted Perimeter 14.1222 ft Hydraulic Radius 0.1591 ft Average Velocity 1.5267 ft/s Top Width 14.0991 ft Froude Number: 0.6740 Critical Depth 0.2992 ft Critical Velocity 1.7318 ft/s Critical Slope: 0.0210 ft/ft Critical Top Width 21.26 ft Calculated Max Shear Stress 0.2983 lb/ft² Calculated Avg Shear Stress 0.1489 lb/ft²

### **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

### Channel Analysis: DITCH 3+11-100yr

Notes:

### **Input Parameters**

Channel Type: Triangular Side Slope 1 (Z1): 35.7100 ft/ft Side Slope 2 (Z2): 8.5300 ft/ft Longitudinal Slope: 0.0150 ft/ft Manning's n: 0.0350 Flow 8.0400 cfs

### **Result Parameters**

Depth 0.4386 ft Area of Flow 4.2561 ft^2 Wetted Perimeter 19.4374 ft Hydraulic Radius 0.2190 ft Average Velocity 1.8891 ft/s Top Width 19.4056 ft Froude Number: 0.7108 Critical Depth 0.4207 ft Critical Depth 0.4207 ft Critical Slope: 0.0187 ft/ft Critical Slope: 0.0187 ft/ft Critical Top Width 29.90 ft Calculated Max Shear Stress 0.4106 lb/ft^2 Calculated Avg Shear Stress 0.2050 lb/ft^2

### **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

### Channel Analysis: DITCH 3+43-5yr

Notes:

### **Input Parameters**

Channel Type: Triangular Side Slope 1 (Z1): 14.4300 ft/ft Side Slope 2 (Z2): 24.6200 ft/ft Longitudinal Slope: 0.0400 ft/ft Manning's n: 0.0350 Flow 1.7400 cfs

### **Result Parameters**

Depth 0.2154 ft Area of Flow 0.9060 ft^2 Wetted Perimeter 8.4238 ft Hydraulic Radius 0.1076 ft Average Velocity 1.9205 ft/s Top Width 8.4120 ft Froude Number: 1.0312 Critical Depth 0.2212 ft Critical Velocity 1.8217 ft/s Critical Slope: 0.0347 ft/ft Critical Top Width 9.27 ft Calculated Max Shear Stress 0.5377 lb/ft^2 Calculated Avg Shear Stress 0.2685 lb/ft^2

### **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

### Channel Analysis: DITCH 3+43-100yr

Notes:

#### **Input Parameters**

Channel Type: Triangular Side Slope 1 (Z1): 14.4300 ft/ft Side Slope 2 (Z2): 24.6200 ft/ft Longitudinal Slope: 0.0400 ft/ft Manning's n: 0.0350 Flow 4.0600 cfs

### **Result Parameters**

Depth 0.2960 ft Area of Flow 1.7105 ft^2 Wetted Perimeter 11.5744 ft Hydraulic Radius 0.1478 ft Average Velocity 2.3736 ft/s Top Width 11.5582 ft Froude Number: 1.0873 Critical Depth 0.3104 ft Critical Velocity 2.1581 ft/s Critical Slope: 0.0310 ft/ft Critical Top Width 13.01 ft Calculated Max Shear Stress 0.7388 lb/ft^2 Calculated Avg Shear Stress 0.3689 lb/ft^2

### **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

### Channel Analysis: DITCH 5+69-5yr

Notes:

### **Input Parameters**

Channel Type: Trapezoidal Side Slope 1 (Z1): 2.2600 ft/ft Side Slope 2 (Z2): 1.5600 ft/ft Channel Width 1.08 ft Longitudinal Slope: 0.0180 ft/ft Manning's n: 0.0350 Flow 28.2100 cfs

#### **Result Parameters**

Depth 1.4908 ft Area of Flow 5.8550 ft^2 Wetted Perimeter 7.5268 ft Hydraulic Radius 0.7779 ft Average Velocity 4.8181 ft/s Top Width 6.7749 ft Froude Number: 0.9133 Critical Depth 1.4296 ft Critical Velocity 5.1786 ft/s Critical Slope: 0.0218 ft/ft Critical Top Width 6.54 ft Calculated Max Shear Stress 1.6745 lb/ft^2 Calculated Avg Shear Stress 0.8737 lb/ft^2

### **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

### Channel Analysis: DITCH 5+69-100yr

Notes:

### **Input Parameters**

Channel Type: Trapezoidal Side Slope 1 (Z1): 2.2600 ft/ft Side Slope 2 (Z2): 1.5600 ft/ft Channel Width 1.08 ft Longitudinal Slope: 0.0180 ft/ft Manning's n: 0.0350 Flow 67.3300 cfs

### **Result Parameters**

Depth 2.1593 ft Area of Flow 11.2374 ft^2 Wetted Perimeter 10.4175 ft Hydraulic Radius 1.0787 ft Average Velocity 5.9916 ft/s Top Width 9.3284 ft Froude Number: 0.9620 Critical Depth 2.1224 ft Critical Velocity 6.1795 ft/s Critical Slope: 0.0195 ft/ft Critical Top Width 9.19 ft Calculated Max Shear Stress 2.4253 lb/ft^2 Calculated Avg Shear Stress 1.2116 lb/ft^2

### **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

### Channel Analysis: DITCH 6+51-5yr

Notes:

### **Input Parameters**

Channel Type: Triangular Side Slope 1 (Z1): 14.2900 ft/ft Side Slope 2 (Z2): 8.7900 ft/ft Longitudinal Slope: 0.0240 ft/ft Manning's n: 0.0350 Flow 2.3600 cfs

### **Result Parameters**

Depth 0.3239 ft Area of Flow 1.2108 ft^2 Wetted Perimeter 7.5057 ft Hydraulic Radius 0.1613 ft Average Velocity 1.9491 ft/s Top Width 7.4760 ft Froude Number: 0.8535 Critical Depth 0.3076 ft Critical Velocity 2.1613 ft/s Critical Slope: 0.0316 ft/ft Critical Top Width 7.53 ft Calculated Max Shear Stress 0.4851 lb/ft^2 Calculated Avg Shear Stress 0.2416 lb/ft^2

### **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

### Channel Analysis: DITCH 6+51-100yr

Notes:

### **Input Parameters**

Channel Type: Triangular Side Slope 1 (Z1): 14.2900 ft/ft Side Slope 2 (Z2): 8.7900 ft/ft Longitudinal Slope: 0.0240 ft/ft Manning's n: 0.0350 Flow 5.2900 cfs

### **Result Parameters**

Depth 0.4384 ft Area of Flow 2.2181 ft^2 Wetted Perimeter 10.1588 ft Hydraulic Radius 0.2183 ft Average Velocity 2.3849 ft/s Top Width 10.1186 ft Froude Number: 0.8977 Critical Depth 0.4248 ft Critical Velocity 2.5399 ft/s Critical Slope: 0.0284 ft/ft Critical Top Width 10.40 ft Calculated Max Shear Stress 0.6566 lb/ft^2 Calculated Avg Shear Stress 0.3270 lb/ft^2

### **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

### Channel Analysis: DITCH 7+07-5yr

Notes:

### **Input Parameters**

Channel Type: Triangular Side Slope 1 (Z1): 7.4000 ft/ft Side Slope 2 (Z2): 24.8800 ft/ft Longitudinal Slope: 0.0150 ft/ft Manning's n: 0.0350 Flow 11.1800 cfs

### **Result Parameters**

Depth 0.5588 ft Area of Flow 5.0398 ft^2 Wetted Perimeter 18.0868 ft Hydraulic Radius 0.2786 ft Average Velocity 2.2183 ft/s Top Width 18.0380 ft Froude Number: 0.7396 Critical Depth 0.5309 ft Critical Depth 0.5309 ft Critical Slope: 0.0197 ft/ft Critical Slope: 0.0197 ft/ft Critical Top Width 24.25 ft Calculated Max Shear Stress 0.5230 lb/ft^2 Calculated Avg Shear Stress 0.2608 lb/ft^2

### **Project Data**

Project Title: US24PETERSON Designer: Project Date: Monday, December 11, 2023 Project Units: U.S. Customary Units Notes:

### Channel Analysis: DITCH 7+07-100yr

Notes:

### **Input Parameters**

Channel Type: Triangular Side Slope 1 (Z1): 7.4000 ft/ft Side Slope 2 (Z2): 24.8800 ft/ft Longitudinal Slope: 0.0150 ft/ft Manning's n: 0.0350 Flow 31.7400 cfs

### **Result Parameters**

Depth 0.8264 ft Area of Flow 11.0226 ft^2 Wetted Perimeter 26.7484 ft Hydraulic Radius 0.4121 ft Average Velocity 2.8795 ft/s Top Width 26.6762 ft Froude Number: 0.7894 Critical Depth 0.8059 ft Critical Velocity 3.0282 ft/s Critical Slope: 0.0172 ft/ft Critical Top Width 36.81 ft Calculated Max Shear Stress 0.7735 lb/ft^2 Calculated Avg Shear Stress 0.3857 lb/ft^2





### 9.10 Colorado Springs Drainage Basin Master Plan



 CITY LIMITS BASIN BOUNDARY	1 2 3 4	SMITH CREEK BLACK SQUIRREL CREEK MONUMENT BRANCH MIDDLE TRIBUTARY	21 22 23 24	UNSTUDIED DOUGLAS CREEK DRY CREEK POCKRIMMON NORTH
2014 DCM	5 6 7 8	KETTLE CREEK ELKHORN PINE CREEK COTTONWOOD CREEK	24 25 26 27	ROCKRIMMON NORTH ROCKRIMMON SOUTH POPES BLUFF CAMP CREEK
POST-1987 DCM	8 9 9A 10	SAND CREEK UPPER SAND CREEK PULPIT ROCK	28 29 30 31	BLACK CANYON BALANCED ROCK COLUMBIA ROAD MESA DRAINAGE BASIN
PRE - 1987 DCM	11 11A 11B 12	NORTH SHOOKS RUN TEMPLETON GAP BASIN SHOOKS RUN NORTH TEMPLETON GAP BASIN A ADDENDUM NORTH SHOOKS RUN TEMPLETON GAP BASIN UNSTUDIED MISCELLANEOUS BASIN	32 33 34	WEST FORK JIMMY CAMP CREEK NINETEENTH STREET WESTSIDE BASIN
UNSTUDIED	12 13 14 15	SHOOKS RUN SPRING CREEK PETERSON FIELD	35 36 37	MIDLAND BASIN TWENTY-FIRST STREET SOUTH BEAR CREEK MONUMENT CREEK
BASIN NUMBER	16 17 18 19 20	JIMMY CAMP CREEK LITTLE JOHNSON RESERVOIR WINDMILL GULCH BIG JOHNSON RESERVOIR CREWS GULCH UNSTUDIED	38 39 40 41 42 43 44	MONUMENT CREEK SOUTHWEST AREA UPPER CHEYENNE CREEK, CHEYENNE RUN, AND SPRING RUN STRATTON BASIN FISHERS CANYON SOUTH PINE CREEK FOUNTAIN CREEK ROSWELL



 Project No.:
 17002

 Date:
 7/13/17

 Design:
 RNW

 Drawn:
 EAK

 Check:
 RNW

 Revisions:

# DRAINAGE BASIN PLANNING STUDY INVENTORY

CITY OF COLORADO SPRINGS, COLORADO



1604 South 21st Street Colorado Springs, Colorado 80904 (719) 630-7342



### 9.11 Colorado Springs Water Quality Sizing Worksheets

#### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

#### MHFD-Detention, Version 4.06 (July 2022)

Depth Increment = 0.50 ft

Project:	
Basin ID:	
100-YM E EURY WOCY - 20HE 1 HB 2 - 100-YEAR OWNER	
POOL Example Zone Configuration (Retention Pond)	

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	4.32	acres
Watershed Length =	1,195	ft
Watershed Length to Centroid =	582	ft
Watershed Slope =	0.024	ft/ft
Watershed Imperviousness =	47.00%	percent
Percentage Hydrologic Soil Group A =	87.0%	percent
Percentage Hydrologic Soil Group B =	13.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

### After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	ograph Procedu	ire.	Optional Use	r Overr
Water Quality Capture Volume (WQCV) =	0.071	acre-feet		acre-f
Excess Urban Runoff Volume (EURV) =	0.228	acre-feet		acre-f
2-yr Runoff Volume (P1 = 1.02 in.) =	0.143	acre-feet	1.02	inches
5-yr Runoff Volume (P1 = 1.3 in.) =	0.195	acre-feet	1.30	inches
10-yr Runoff Volume (P1 = 1.57 in.) =	0.245	acre-feet	1.57	inches
25-yr Runoff Volume (P1 = 1.99 in.) =	0.371	acre-feet	1.99	inches
50-yr Runoff Volume (P1 = 2.35 in.) =	0.481	acre-feet	2.35	inches
100-yr Runoff Volume (P1 = 2.74 in.) =	0.627	acre-feet	2.74	inches
500-yr Runoff Volume (P1 = 3.79 in.) =	1.000	acre-feet	3.79	inches
Approximate 2-yr Detention Volume =	0.128	acre-feet		
Approximate 5-yr Detention Volume =	0.172	acre-feet		
Approximate 10-yr Detention Volume =	0.221	acre-feet		
Approximate 25-yr Detention Volume =	0.296	acre-feet		
Approximate 50-yr Detention Volume =	0.344	acre-feet		
Approximate 100-yr Detention Volume =	0.406	acre-feet		

Define	Zones	and	Bas	in	Geome	try
		ž	Zone	1	Volume	(WQ

Zone 1 Volume (WQCV) =	0.071	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.157	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.178	acre-feet
Total Detention Basin Volume =	0.406	acre-feet
Initial Surcharge Volume (ISV) =	9	ft ³
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth (H _{total} ) =	8.00	ft
Depth of Trickle Channel (H _{TC} ) =	0.50	ft
Slope of Trickle Channel (STC) =	0.020	ft/ft
Slopes of Main Basin Sides (Smain) =	4	H:V
Basin Length-to-Width Ratio (R _{L/W} ) =	2	

Initial Surcharge Area $(A_{ISV}) =$	28	ft ²
Surcharge Volume Length $(L_{ISV}) =$	5.3	ft
Surcharge Volume Width (W _{ISV} ) =	5.3	ft
Depth of Basin Floor (H _{FLOOR} ) =	0.43	ft
Length of Basin Floor $(L_{FLOOR}) =$	28.5	ft
Width of Basin Floor $(W_{FLOOR}) =$	16.0	ft
Area of Basin Floor (A _{FLOOR} ) =	457	ft ²
Volume of Basin Floor (V _{FLOOR} ) =	86	ft ³
Depth of Main Basin $(H_{MAIN}) =$	6.74	ft
Length of Main Basin (L _{MAIN} ) =	82.4	ft
Width of Main Basin ( $W_{MAIN}$ ) =	69.9	ft
Area of Main Basin (A _{MAIN} ) =	5,763	ft ²
Volume of Main Basin ( $V_{MAIN}$ ) =	17,616	ft ³
Calculated Total Basin Volume (V _{total} ) =	0.407	acre-feet

	Channe Channen	Channe	Optional	Laundh	MAG JAL	Area	Optional	A	Volumo	Valuese
tion Pond)	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ² )	Area (ft ² )	(acre)	(ft ³ )	(ac-ft)
	Top of Micropool	0.00		5.3	5.3	28		0.001		(
		0.33		53	53	28		0.001	0	0.000
		0.55		5.5	5.5	20		0.001	22	0.000
		0.83		5.3	5.3	28		0.001	23	0.001
	Floor	1.26		28.3	16.0	453		0.010	108	0.002
		1.50		30.4	17.9	545		0.013	228	0.005
		2.00		34.4	21.9	755		0.017	552	0.013
		2.50		38.4	25.9	996		0.023	989	0.023
		3.00		42.4	29.9	1,270		0.029	1,554	0.036
		3.50		46.4	33.9	1,575		0.036	2,264	0.052
	Zone 1 (WQCV)	3.99		50.3	37.9	1,905		0.044	3,115	0.072
		4.00		50.4	37.9	1,912		0.044	3,134	0.072
		4.50		54.4	41.9	2,282		0.052	4,181	0.096
		5.00		58.4	45.9	2,683		0.062	5,421	0.124
		5.50		62.4	49.9	3,116		0.072	6.870	0.158
Ontional User Overrides		6.00		66.4	53.9	3 582		0.082	8 543	0.196
acre-feet	Zone 2 (FURV)	6 38		69.4	57.0	3 957		0.091	9,975	0.229
acre-feet	20110 2 (20111)	6.50		70.4	57.0	4 070		0.004	10.457	0.240
1.02 inchos		7.00		74.4	61.0	4,600		0.004	10,457	0.240
1.02 inches		7.00		79.4	65.0	F 170		0.110	15.071	0.250
1.30 inches	7	7.00		70.4	03.9	5,170		0.119	13,0/1	0.3407
1.37 inches	2011e 3 (100-year)	7.55		02.5	09.9	5,751		0.132	17,002	0.400
1.99 Inches		0.00		02.4	69.9	5,765		0.132	17,605	0.409
2.35 Inches		8.50		86.4	73.9	6,389		0.147	20,840	0.4/8
2.74 Inches		9.00		90.4	77.9	7,046		0.162	24,197	0.555
3.79 inches		9.50		94.4	81.9	7,736		0.1/8	27,891	0.640
		10.00		98.4	85.9	8,457		0.194	31,938	0.733
		10.50		102.4	89.9	9,210		0.211	36,353	0.835
		11.00		106.4	93.9	9,996		0.229	41,154	0.945
		11.50		110.4	97.9	10,813		0.248	46,354	1.064
		12.00		114.4	101.9	11,662		0.268	51,972	1.193
		12.50		118.4	105.9	12,544		0.288	58,022	1.332
		13.00		122.4	109.9	13,457		0.309	64,521	1.481
		13.50		126.4	113.9	14,403		0.331	71,485	1.641
		14.00		130.4	117.9	15,380		0.353	78,929	1.812
		14.50		134.4	121.9	16,389		0.376	86,870	1.994
		15.00		138.4	125.9	17,431		0.400	95,324	2.188
		15.50		142.4	129.9	18,504		0.425	104.306	2.395
		16.00		146.4	133.9	19.610		0.450	113,833	2 613
		16 50		150.4	127.0	20 747		0.476	122 021	2.015
		17.00		154.4	141.0	20,747		0.470	123,521	2.045
		17.00		159.4	141.9	21,910		0.505	145.042	3.090
		17.50		100.4	145.9	23,110		0.551	145,045	3.340
		18.00		162.4	149.9	24,351		0.559	157,708	3.620
		18.50		166.4	153.9	25,616		0.588	1/0,199	3.907
		19.00		170.4	157.9	26,914		0.618	183,330	4.209
		19.50		174.4	161.9	28,243		0.648	197,118	4.525
		20.00		178.4	165.9	29,605		0.680	211,579	4.857
		20.50		182.4	169.9	30,998		0.712	226,728	5.205
		21.00		186.4	173.9	32,423		0.744	242,582	5.569
		21.50		190.4	177.9	33,881		0.778	259,157	5.949
		22.00		194.4	181.9	35,370		0.812	276,468	6.347
		22.50		198.4	185.9	36,891		0.847	294,532	6.762
		23.00		202.4	189.9	38,445		0.883	313,365	7.194
		23.50		206.4	193.9	40,030		0.919	332,982	7.644
		24.00		210.4	197.9	41,648		0.956	353,400	8.113
		24.50		214.4	201.9	43,297		0.994	374,635	8.600
		25.00		218.4	205.9	44,978		1.033	396,703	9.107
		25.50		222.4	209.9	46,692		1.072	419,619	9.633
		26.00		226.4	213.9	48,437		1.112	443,400	10.179
		26.50		230.4	217.9	50,215		1.153	468,061	10.745
		27.00		234.4	221.9	52,024		1.194	493,620	11.332
	L	27.50		238.4	225.9	53,865		1.237	520,091	11.940
		28.50		246.4	233.9	57,644		1.323	575,835	13.219
		29.00		250.4	237.9	59,581		1.368	605,140	13.892
		29.50		254.4	241.9	61,551		1.413	635,421	14.587
		30.00		230.4	243.9	03,332		1.435	000,090	13.305
					L					
		-	-							
	L									
							1			

#### MHFD-Detention_v4-06-North EDB.xlsm, Basin

#### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)



### DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:		141.	HFD-Delention, V	ersion 4.06 (July	2022)				
Basin ID:									
ZONE 3				Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	_		
			Zone 1 (WQCV)	3.99	0.071	Orifice Plate			
	100-YEAR		Zone 2 (EURV)	6.38	0.157	Orifice Plate			
PERMANENT ORIFICES	OHIFICE		Zone 3 (100-year)	7.99	0.178	Weir&Pipe (Restrict)			
POOL Example Zone	Configuration (R	etention Pond)		Total (all zones)	0.406				
User Input: Orifice at Underdrain Outlet (typical	ly used to drain W	OCV in a Filtration E	<u>3MP)</u>			-	Calculated Parame	ters for Underdrai	<u>n</u>
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Underd	Irain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet									
User Input: Orifice Plate with one or more orific	ces or Elliptical Slot	t (relative to basis	d to drain WQCV a	nd/or EURV in a se	dimentation BMP)	an Aren ner Deur	Calculated Parame	ters for Plate	
Centrold of Lowest Orlifice =	6.38	ft (relative to basing the formation of	hottom at Stage =	= 0 ft) - 0 ft)	WQ Onfi	ce Area per Row =	N/A	ft.	
Orifice Plate: Orifice Vertical Spacing =	25.50	inches	i bottom at Stage -	- 010	Ellipti	ical Slot Centroid =	N/A N/A	feet	
Orifice Plate: Orifice Area per Row =	20.000	sa. inches			E	illiptical Slot Area =	N/A	ft ²	
							,	1	
User Input: Stage and Total Area of Each Orific	e Row (numbered	from lowest to high	<u>nest)</u>						-
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	2.13	4.25						_
Orifice Area (sq. inches)	0.00	0.00	0.00						
	Dow O (anting )	Daw 10 (antion 1)	Dow 11 (antian 1)	Days 12 (anti-rail)	Dow 12 (anti-anti-	Dow 14 (antion 1)	Dow 15 (anti-rail)	Dow 16 (antian 1)	7
Stage of Orifice Centroid (ff)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
								-	-
onnee Area (sq. manes)									-
User Input: Vertical Orifice (Circular or Rectance	<u>ular)</u>						Calculated Parame	eters for Vertical O	rifice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin	n bottom at Stage :	= 0 ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basir	n bottom at Stage :	= 0 ft) Vertica	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Drophoy with Flat o	or Sloped Grate and	1 Outlet Pine OR Re	ctangular/Tranezoi	dal Weir and No O	utlet Pine)		Calculated Parame	aters for Overflow	Woir
oser input. overnow weir (bropbox with hit e	Zone 3 Weir	Not Selected			ullet ripe <u>y</u>		Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	6.38	N/A	ft (relative to basin l	bottom at Stage = 0	ft) Height of Grate	e Upper Edge, H _t =	Zone 5 Wei	N/A	feet
Overflow Weir Front Edge Length =		N/A	feet	5	Overflow W	/eir Slope Length =		N/A	feet
Overflow Weir Grate Slope =		N/A	H:V	Gra	ate Open Area / 10	0-yr Orifice Area =		N/A	
Horiz. Length of Weir Sides =		N/A	feet	Ov	erflow Grate Open	Area w/o Debris =		N/A	ft ²
Overflow Grate Type =	Close Mesh Grate	N/A		C	verflow Grate Ope	n Area w/ Debris =		N/A	ft ²
Debris Clogging % =		N/A	%						
Lease Innuity Outlat Dina w/ Flavy Destriction Dist		Doctrictor Disto or	Dootong Jan Orifica	<b>`</b>	6.	leulated Devenenter		/ Flow Doctriction [	late
User Input: Outlet Pipe w/ Flow Restriction Plate	Zone 3 Restrictor	Not Selected	Rectangular Onlice	1	<u>La</u>		Zone 3 Restrictor	Not Selected	hate
Depth to Invert of Outlet Pipe =	Zone 5 Reserved	N/A	ft (distance below b	asin bottom at Stage	= 0  ft O	utlet Orifice Area =	Zone 5 Reserved	N/A	ft ²
Outlet Pipe Diameter =		N/A	inches	j-	Outlet	t Orifice Centroid =		N/A	feet
Restrictor Plate Height Above Pipe Invert =		· · · ·	inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =		N/A	radians
		•							-
User Input: Emergency Spillway (Rectangular or	<u>Trapezoidal)</u>	1					Calculated Parame	ters for Spillway	
Spillway Invert Stage=		ft (relative to basin	n bottom at Stage =	= 0 ft)	Spillway D	esign Flow Depth=		feet	
Spillway Crest Length =		feet			Stage at T	op of Freeboard =		feet	
Spiliway End Siopes =		H:V foot			Basin Area at 1 Basin Volume at 1	op of Freeboard =		acres	
inceptart above max water surrace =					Dubin volutile dl I	op of freeboard =	<u> </u>	Justice it	
Routed Hydrograph Results	The user can over	ride the default CU	HP hydrographs an	d runoff volumes b	ny entering new val	lues in the Inflow H	ydrographs table (0	Columns W throug	h AF).
Design Storm Return Period =	WQCV	EURV N/A	2 Year	5 Year	10 Year	25 Year	2 35	100 Year	500 Year
CUHP Runoff Volume (acre-ft) =	0.071	0.228	0.143	0.195	0.245	0.371	0.481	0.627	1.000
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.143	0.195	0.245	0.371	0.481	0.627	1.000
CUHP Predevelopment Peak Q (cfs) = $OPTIONAL Override Predevelopment Peak Q (cfs)$	N/A	N/A	0.0	0.0	0.0	0.8	1.5	2.5	5.0
Predevelopment Unit Peak Flow, a (cfs/acre) =	N/A N/A	N/A	0.00	0.01	0.01	0.18	0.34	0.57	1.16
Peak Inflow Q (cfs) =	N/A	N/A	1.3	1.8	2.3	4.0	5.3	6.9	11.0
Peak Outflow Q (cfs) =									
Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =						+		<u> </u>	+
Max Velocity through Grate 1 (fps) =								<u> </u>	
Max Velocity through Grate 2 (fps) =									
Time to Drain 97% of Inflow Volume (hours) =								<u> </u>	
Maximum Ponding Depth (ft) =		1				1	1	<u>t                                     </u>	
Area at Maximum Ponding Depth (acres) =									
Maximum Volume Stored (acre-ft) =		L	L	L					1

#### DETENTION BASIN OUTLET STRUCTURE DESIGN



### DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

#### Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.02	0.12	
	0:15:00	0.00	0.00	0.11	0.20	0.27	0.22	0.30	0.32	0.53	
	0:20:00	0.00	0.00	0.47	0.64	0.80	0.58	0.73	0.82	1.22	
	0:20:00	0.00	0.00	1.03	1.42	1.85	1.24	1.60	1.83	3.06	
	0:35:00	0.00	0.00	1.32	1.81	2.27	3.81	5.05	6.55	10.47	
	0:40:00	0.00	0.00	1.29	1.73	2.16	4.01	5.32	6.89	10.97	
	0:45:00	0.00	0.00	1.21	1.64	2.04	3.81	5.03	6.74	10.73	
	0:50:00	0.00	0.00	1.14	1.55	1.92	3.63	4.79	6.43	10.28	
	1.00.00	0.00	0.00	1.07	1.46	1.80	3.35	4.41	5.61	9.64	
	1:05:00	0.00	0.00	0.98	1.32	1.64	2.89	3.79	5.33	8.65	
	1:10:00	0.00	0.00	0.91	1.26	1.56	2.67	3.48	4.84	7.85	
	1:15:00	0.00	0.00	0.85	1.17	1.48	2.45	3.18	4.37	7.06	
	1:20:00	0.00	0.00	0.78	1.08	1.38	2.22	2.86	3.86	6.22	
	1:30:00	0.00	0.00	0.72	1.01	1.26	2.00	2.56	3.40	5.44	
	1:35:00	0.00	0.00	0.65	0.93	1.13	1.63	2.28	2.59	4.78	
	1:40:00	0.00	0.00	0.63	0.86	1.06	1.51	1.91	2.46	3.89	
	1:45:00	0.00	0.00	0.60	0.80	1.01	1.40	1.77	2.25	3.54	
	1:50:00	0.00	0.00	0.58	0.75	0.96	1.30	1.64	2.05	3.21	
	2:00:00	0.00	0.00	0.53	0.70	0.90	1.21	1.51	1.87	2.90	
	2:05:00	0.00	0.00	0.43	0.56	0.72	0.96	1.19	1.45	2.01	
	2:10:00	0.00	0.00	0.36	0.48	0.60	0.81	1.00	1.22	1.85	
	2:15:00	0.00	0.00	0.30	0.40	0.50	0.67	0.82	0.99	1.50	
	2:20:00	0.00	0.00	0.24	0.32	0.41	0.54	0.65	0.78	1.17	
	2:30:00	0.00	0.00	0.20	0.20	0.33	0.42	0.30	0.39	0.67	
	2:35:00	0.00	0.00	0.13	0.18	0.23	0.25	0.30	0.34	0.50	
	2:40:00	0.00	0.00	0.11	0.15	0.19	0.20	0.24	0.27	0.39	
	2:45:00	0.00	0.00	0.09	0.13	0.16	0.17	0.20	0.21	0.30	
	2:55:00	0.00	0.00	0.08	0.10	0.13	0.14	0.16	0.16	0.23	
	3:00:00	0.00	0.00	0.05	0.07	0.09	0.09	0.10	0.10	0.14	
	3:05:00	0.00	0.00	0.04	0.06	0.07	0.07	0.09	0.08	0.11	
	3:10:00	0.00	0.00	0.04	0.05	0.06	0.06	0.07	0.07	0.09	
	3:20:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.05	0.07	
	3:25:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.04	
	3:30:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03	
	3:35:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02	
	3:40:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
4-06-North EDB.xls	m, <b>6un@tOt</b> aruct	ure 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12/12/2023, 3



### 9.12 Summary of Quantities

#### US-24 & PETERSON INTERSECTION IMPROVEMENT 30% COST ESTIMATE

https://www.codot.gov/business/eema/assets/cost-data-book-2023-quarter-1.pdf

https://www.codot.gov/business/eema/assets/2022/2022-cost-data-book.pdf

COS Item Number	Description	Units	Unit Cost	Quantity	Project Cost
202-00000	UNCLASSIFIED EXCAVATION	CY	26.53	406.00	\$10,771.18
220-00035	REMOVAL OF PIPE	LF	96.59	587.00	\$56,698.33
220-00037	REMOVAL OF END SECTION	EACH	532.36	2.00	\$1,064.72
		TON	= 1 = 0	77.00	AF 500 ( (
300-06000	AGGREGATE BASE COURSE (CLASS 6)	TON	/1./2	77.00	\$5,522.44
624-00090		CY	206 14	2579.50	\$0.00 \$531 738 13
625-06060	CONCRETE SLOPE AND DITCH PAVING (REINFORCED) (6 INCH)	CY	1 800 00	27 70	\$49,860,00
			.,		<i>•••••••••••••••••••••••••••••••••••••</i>
630-01150	15 INCH REINFORCED CONCRETE PIPE (COMPLETE IN PLACE)	LF	245.44	13.00	\$3,190.72
630-01180	18 INCH REINFORCED CONCRETE PIPE (COMPLETE IN PLACE)	LF	282.11	996.00	\$280,981.56
630-01240	24 INCH REINFORCED CONCRETE PIPE (COMPLETE IN PLACE)	LF	210.00	725.00	\$152,250.00
630-01300	30 INCH REINFORCED CONCRETE PIPE (COMPLETE IN PLACE)	LF	339.00	180.00	\$61,020.00
630-01360	36 INCH REINFORCED CONCRETE PIPE (COMPLETE IN PLACE)	LF	372.00	1637.00	\$608,964.00
					. ,
630-05018	18 INCH REINFORCED CONCRETE END SECTION (COMPLETE IN PLACE)	EACH	2.738.00	2.00	\$5.476.00
630-05036	36 INCH REINFORCED CONCRETE END SECTION (COMPLETE IN PLACE)	EACH	3,942,00	1.00	\$3.942.00
			-,		
630-20180	23X14 INCH REINFORCED CONCRETE PIPE ELLIPTICAL (COMPLETE IN PLACE)	LF	218.76	424.00	\$92.754.24
630-20360	45X29 INCH REINFORCED CONCRETE PIPE ELLIPTICAL (COMPLETE IN PLACE)	LF	542.67	150.00	\$81,400,50
630-20480	60X38 INCH REINFORCED CONCRETE PIPE ELLIPTICAL (COMPLETE IN PLACE)	LE	750.00	147.00	\$110 250 00
					¢0,200.00
630-25180	23X14 INCH REINFORCED CONCRETE END SECTION ELLIPTICAL (COMPLETE IN PLACE)	FACH	2 035 00	1.00	\$2 035 00
630-25360	45X29 INCH REINFORCED CONCRETE END SECTION ELLIPTICAL (COMPLETE IN PLACE)	FACH	3 183 03	1.00	\$3 183 03
630-25480	60X38 INCH REINFORCED CONCRETE END SECTION ELLIPTICAL (COMPLETE IN PLACE)	FACH	5 424 47	1.00	\$5 424 47
		E/(OII	0,121.17	1.00	φ0, 12 1. 11
636-03050	CDOT TYPE C INI ET (5 ET)	FACH	6 748 81	2 00	\$13 497 62
636-03100		FACH	8 939 94	1.00	\$8 939 94
636-04050		EACH	9 198 64	1.00	\$9 198 64
636-10005		EACH	8 760 55	15.00	\$131 5/3 25
636-10000		EACH	16 307 14	10.00	\$163 071 40
636-10110		EACH	12 073 24	3.00	\$38,010,72
636-13050		EACH	8 370 22	1.00	\$8 370 22
000-10000		LAON	0,070.22	1.00	ψ0,570.22
636-37050	CDOT SLAB BASE MANHOLE (5 ET)	FACH	7 360 40	4.00	\$29.441.60
636-37100	CDOT SLAB BASE MANHOLE (10 FT)	EACH	11 267 02	14.00	\$157,750,88
636-37150	CDOT SLAB BASE MANHOLE (15 FT)	EACH	17 130 08	8.00	\$137,130.00
636-40050	MANHOLE SPECIAL (5 ET)	EACH	10 281 /0	1.00	\$10,281,40
636 40200		EACH	10 281 40	1.00	\$10,201.40
030-40200		LACIT	19,201.40	1.00	\$19,201.40
636 83303		EACH	0 500 00	1.00	\$0,500,00
030-03302		EACH	9,000.00	1.00	φ <del>9</del> ,500.00
906-0001	SOIL RETENTION BLANKET (BIODEGRADABLE STRAW/COCONUT) (CLASS 1)	SY	3.98	415.00	\$1 651 70
907-00111	GEOTEXTILE (DRAINAGE) (CLASS B)	SY	12.20	415.00	\$5.063.00
		<u>.</u>		SUBTOTAL	\$2,819,149.73
				CONTINGENCY	30.00%
				TOTAL	\$ 3.664.894.65
				101712	+ 3,00 1,00 100