AMENDMENT TO THE
 PRELIMINARY DRAINAGE REPORT
 for WINDERMERE

Colorado Springs, CO
January 20, 2020

Prepared for:
Windsor Ridge Homes
4164 Austin Bluffs Pkwy \#361
Colorado Springs, CO 80918
Contact: James Todd Stephens
(719) 200-9594

Prepared by:
Drexel, Barrell \& Co.
3 South Seventh Street
Colorado Springs, CO 80905
Contact: Tim McConnell, P.E. (719) 260-0887

IABLE OF CONTENTS

1.0 CERTIFICATION STATEMENTS 1
2.0 PURPOSE 2
3.0 GENERAL SITE DESCRIPTION 2
4.0 EXISTING HYDROLOGY 3
5.0 PROPOSED HYDROLOGY (RATIONAL METHOD) \& HYDRAULIC SUMMARY 3
6.0 PROPOSED DETENTION/WATER QUALITY FACILITIES 8
7.0 FOUR-STEP PROCESS 10
8.0 GEOTECHNICAL HAZARDS 11
9.0 CONCLUSIONS 12
10.0 REFERENCES. 12
APPENDICES
DRAINAGE REPORT BY CLASSIC
VICINITY MAP
SOILS MAP
FLOODPLAIN MAP
DRAINAGE CALCULATIONS
DRAINAGE MAP

PRELIMINARY DRAINAGE REPORT
 for
 WINDERMERE
 Colorado Springs, Colorado

1.0 CERTIFICATION STATEMENTS

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports, and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omission on my part in preparing this report.

Tim D. McConnell, P.E.
Date
Colorado P.E. License No. 33797
For and on Behalf of Drexel, Barrell \& Co.

DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

Business Name: Windsor Ridge Homes

By:
Title:
James Todd Stephens
Date
Address:
Colorado Springs, CO 80918

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

2.0 PURPOSE

This report is prepared by Drexel, Barrel \& Co in support of the Windermere Preliminary Plan Amendment. The purpose of this report is to identify onsite and offsite drainage patterns, storm sewer, inlet locations, and areas tributary to the site, and to safely route developed storm water runoff to adequate outfall facilifies.

3.0 GENERAL SITE DESCRIPTION

Location

The site is located at the northwest corner of N . Carefree Cir. and Marksheffel Rd. - the E 1/2 of Section 29, Township 13S, Range 65 W of the 6 th P.M., El Paso County, Colorado.

The site is bound on the west by Antelope Ridge Dr., on the north by the Chateau at Antelope Ridge subdivision, on the east by Marksheffel Rd., and on the south by N . Carefree Cir.

Site Conditions

The site is approximately 55.2 acres in size and is proposed as a single family home subdivision. The proposed site development includes approximately 203 single-family residences and will be developed in two filings. The site is currently undeveloped and is covered with native grass and vegetation. The site is located within the Sand Creek Drainage Basin. Historically, this site drains in all directions with a large hill in the southern half of the site and an existing temporary detention facility located at the northern end. There is a large roadside ditch adjacent to Marksheffel Road (M.D.D.P. DP-1x) that routes off-site (non-tributary to site facilities) runoff to the existing 24" CMP storm culvert under Marksheffel Road. This site was studied as part of the previously approved "Master Development Drainage Plan for Hilltop Subdivision El Paso County, Colorado" by URS Greiner, Inc. last revised February 1998.

Soils
According to the Soil Survey of El Paso County Area, Colorado, prepared by the U.S. Department of Agriculture Soil Conservation Service, the site is underlain by Truckton sandy loam, a type 'A' hydrologic soil. See appendix for map.

Climate

This area of El Paso County can be described as the foothills, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry, and summers relatively warm and dry. Precipitation ranges from 12 to 14 inches per year, with the majority of this moisture occurring in the spring and summer in the form of rainfall. Thunderstorms are common during the summer months.

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel \#08041C0543 G (December 7, 2018) the project site is within a designated Zone X area described as "areas determined to be outside 500-year floodplain". A firmette map is included in the appendix.

4.0 EXISTING HYDROLOGY

This report is an amendment to the "Preliminary Drainage Report for Windermere," by Classic Consulting Engineers \& Surveyors, October 2014. The existing conditions have not changed. An existing detention facility located at the north end of the project has already been capturing flows from the Chateau at Antelope Ridge subdivision to the north. This temporary facility will be replaced with an expanded pond of larger capacity as part of this development. The expanded facility will meet current drainage criteria, including concrete forebays at all piped inflows, a concrete trickle channel at the bottom, an outlet structure and pipe that will reduce the release of flows, and a reinforced spillway on the east side of the facility.

Please refer to excerpts from the "Preliminary Drainage Report for Windermere," by Classic Consulting Engineers \& Surveyors, October 2014 in the appendix for existing conditions description and drainage maps.

5.0 PROPOSED HYDROLOGY (RATIONAL METHOD) \& HYDRAULIC SUMMARY

For the purposes of site specific analysis, the project site has been divided into several grouped drainage basins as shown on the proposed drainage plan in the appendix. A-, B-, and C-group basins represent the flows generated onsite. A number of offsite basins were also considered as part of this analysis and are described below.

The Rational Method was used to determine runoff quantities for the 5- and 100-year storm recurrence intervals. Mile High Flood District design software (MHFD-Detention v.4.03 and MHFD-Inlet) and Flowmaster were also used to identify pond and storm system sizing (see appendix for calculations). See below for a summary runoff table and description of each design point.

Rational Method Runoff Summary

Onsite A-group basins and offsite Basins D-13, D-14, D-15, CT and WS represent flows that are captured by the full spectrum detention facility at the north end of the site.

Existing Design Point 7 (DP7) (Q5 $\mathrm{Q}_{5} 20.0$ cfs and $Q_{100}=41.6 \mathrm{cfs}$) represents flows generated by offsite basins D-13 and D-14 of Pronghorn Meadows Subdivision and Antelope Ridge Drive, on the west side of this project development. These flows were established by the "Preliminary Drainage Report for Windermere," by Classic Consulting Engineers \& Surveyors, October 2014. An existing 25' Type R curb inlet intercepts these flows and discharges to the east across Antelope Ridge Dr. This inlet and piping is to remain.

BASIN	AREA (AC)	Q5 (cfs)	Q100 (cfs)
A1	2.07	4.7	10.9
A2	4.61	8.8	20.5
A3	1.67	4.8	10.2
A4	1.01	1.7	4.0
A5	1.98	4.3	10.1
A6	3.73	7.0	16.3
A7	1.56	3.0	7.0
A8	2.96	6.1	14.2
A9	1.86	4.0	9.2
A10	4.00	7.5	17.5
A11	2.67	5.3	12.5
A12	9.46	9.2	39.9
B1	3.62	7.9	18.4
B2	2.94	6.2	14.6
B3	4.00	7.9	18.3
B4	0.43	0.3	1.9
C1	4.24	4.3	18.1
C2	0.83	1.1	3.9
C3	1.40	1.8	5.8
C4	0.11	0.1	0.5

DP	AREA (AC)	Q5 (cfs)	Q100 (cfs)
A	2.07	4.7	10.9
Ex. 8	14.10	26.7	55.4
B	4.61	8.8	20.5
C	20.38	34.2	73.3
D	21.39	35.4	76.0
E	1.98	4.3	10.1
F	27.10	43.0	93.7
G	1.56	3.0	7.0
H	2.96	6.1	14.2
I	1.86	4.0	9.2
J	6.38	12.7	29.6
K	33.48	51.1	112.7
L	37.48	56.1	124.4
M	40.15	59.5	132.5
Ex. 24	42.07	111.3	199.7
N	49.61	175.6	355.1
O	3.62	7.9	18.4
P	2.94	6.2	14.6
Q	4.00	7.9	18.3
R	10.99	20.9	49.8
Ex. 4		7.2	14.6
Ex. EXR	0.53	1.7	3.4
S	1.36	10.3	27.2
T	434.39	190.7	637.8
U	1.40	1.8	5.8
V	0.11	0.1	0.5
Ex. 19	3.01	6.9	16.1
Ex. J1	4.37	19.7	49.8
Ex. 20	4.80	21.2	52.6

DP-A represents the flows generated by onsite Basin A1. Runoff from this basin flows to the west, off-site onto Antelope Ridge Dr. towards existing Design Point 8. The flows from Basin Al are $Q_{5}=4.7 \mathrm{cfs}$ and $Q_{100}=10.9 \mathrm{cfs}$.

Existing Design Point 8 (DP-8) was established by the "Preliminary Drainage Report for Windermere," by Classic Consulting Engineers \& Surveyors, October 2014, and is located at a low point on Antelope Ridge Dr. at an existing 10' sump inlet. This design point

A manhole is
 required?

represents combined flows from Basins D-15, offsite DP-7 and nnsite DP-A. The existing inlet is proposed to be replaced in kind (10^{\prime} ' Type R sump inlet) as djurn lane will be installed on Antelope Ridge Dr. for access into the Windermere Subdivision, resulting in the need to adjust the existing inlet. The existing flows currently discharge onto the project site. In the developed condition, the combined flows at DP-8 are $\mathrm{Q}_{5}=26.7$ cfs and $Q_{100}=55.4 \mathrm{cfs}$, will captured in their entirety by the new inlet, and redirected to the north via 6 " RCP storm sewer.

DP-B is located at a proposed 10' double Type R at-grade inlet in Basin A2. The flows leave this inlet via a 24 " storm pipe to the south towards DP-C. This design point captures all the flows from Basin A2. The flows from Basin $A 2$ are $Q_{5}=8.8$ cfs and $Q_{100}=20.5 \mathrm{cfs}$.

DP-C is located at a proposed 10' double Type R at-grade inlet in Basin A3. The flows leave this inlet via a 36 " storm pipe towards DP-D to the northeast. This design point captures all the flows from Basins A1 through A3 and offsite Basins D-13 through D-15. The combined flows at DP-C are $Q_{s}=34.2$ cfs and $Q_{100}=73.3$ cfs.

DP-D is located at a proposed 5 ' single Type R at grade inlet in Basin A4. The flows leave this inlet via a 36 " storm pipe and are conveyed towards DP-F to the northeast. This design point captures all the flows from Basins A1 through A4 and offsite Basins D-13 through $D-15$. The combined flows at DP-D are $Q_{5}=35.4$ cfs and $Q_{100}=76.0 \mathrm{cfs}$.

DP-E is located at a proposed at-grade 10' double Type R inlet in Basin A5. The flows leave this inlet via an 18" storm pipe and are conveyed towards DP-F to the south. This design point captures all the flows from Basin A5. The flows from Basin A5 are $Q_{5}=4.3$ cfs and $Q_{100}=10.1 \mathrm{cfs}$.

DP-F is located at a proposed at-grade 15' triple Type R inlet in Basin A6. The flows leave this inlet via a 36 " storm pipe and are conveyed towards DP-K to the northeast. This design point captures all the flows from Basins A1 through A6 and offsite Basins D-13 through D-15. The combined flows at DP-F are $Q_{5}=43.0 \mathrm{cfs}$ and $Q_{100}=93.7 \mathrm{cfs}$.

DP-G is located at a proposed at-grade 5' single Type R inlet in Basin A7. The flows leave this inlet via an 18" storm pipe and are conveyed towards DP-H to the west. This design point captures all the flows from Basin A7. The flows from Basin A7 are $Q_{5}=3.0$ cfs and $Q_{100}=7.0 \mathrm{cfs}$.

DP-H is located at a proposed at-grade 15 ' triple Type R inlet in Basin A8. The flows leave this inlet via a 24 " storm pipe and are conveyed towards DP-J to the northwest. This design point captures all the flows from Basins A7 and A8. The combined flows at DP-H are $Q_{5}=6.1$ cfs and $Q_{100}=14.2$ cfs.

DP-I is located at a proposed at-grade 10' double Type R inlet in Basin A9. The flows leave this inlet via an 18 " storm pipe and are conveyed towards DP-J to the northeast. This design point captures all the flows from Basin A9. The flows from Basin A9 are $Q_{s}=4.0$ cfs and $Q_{100}=9.2 \mathrm{cfs}$.

DP-J is located at a proposed 18 "x24" $\times 30^{\prime \prime}$ wye in Basin A10. The flows leave this wye via a 30 storm pipe which conveyed the flows towards DP-K. This design point captures all the
flows from Basins A7 through A9. The combined flows at DP-J are Q $_{5}=12.7$ cfs and $Q_{100}=29.6 \mathrm{cfs}$.

DP-K is located at a proposed manhole in Basin A10. The flows leave this manhole via a $48 "$ storm pipe and are conveyed towards DP-L to the northwest. This design point captures all the flows from Basins A1 through A9 and offsite Basins D-13 through D-15. The combined flows at DP-K are $Q_{5}=51.1$ cfs and $Q_{100}=112.7$ cfs.

DP-L is located at a proposed sump 10' double Type R inlet in Basin A10. The flows leave this inlet via a 48" storm pipe and are conveyed towards DP-M to the northeast. This design point captures all the flows from Basins A1 through A10 and offsite Basins D-13 through D-15. The combined flows at DP-L are $Q_{5}=56.1 \mathrm{cfs}$ and $Q_{100}=124.4 \mathrm{cfs}$.

DP-M is located at the proposed sump 15' triple Type R inlet in Basin A11. The flows leave this inlet via a 48" storm pipe and are conveyed into the north Full Spectrum EDB pond. This design point captures all the flows from Basins A1 through A11 and offsite Basins D-13 through D-15. The combined flows at DP-M are $Q_{5}=59.5 \mathrm{cfs}$ and $Q_{100}=132.5 \mathrm{cfs}$.

Existing Design Point 24 (DP24) was established by the "Preliminary Drainage Report for Windermere," by Classic Consulting Engineers \& Surveyors, October 2014, and consists of offsite area tributary to the existing detention facility along the northern project boundary. According to the aforementioned report, the runoff for basin WS was calculated at 2% (historic flow analysis) as all developed runoff is treated and released at historic rates within the Whispering Springs onsite facilities to the north. The tributary runoff for basin CT was calculated at 70%. The combined flows at DP-N are $Q_{5}=111.3$ cfs and $Q_{100}=199.7$ cfs

DP-N is located at the bottom of the north proposed Full Spectrum EDB pond in Basin A12. The flows leave the pond via an outlet structure and a 36" storm pipe which conveys the flows to the roadside ditch along Marksheffel Rd. towards DP-T. This design point reflects all the flows from all "A" basins, offsite basins D-13 through D-15, and offsite flows entering the pond from offsite Basins CT and WS (DP24). The combined flows at DP-N are Q ${ }_{5}=175.6$ cfs and $Q_{100}=355.1$ cfs. The release rates for Pond 1 are $Q_{5}=1.8 \mathrm{cfs}$ and $Q_{100}=66.0 \mathrm{cfs}$.

Onsite B-group basins represent flows that are captured by the full spectrum detention facility on the south end of the site.

DP-O is located at the proposed at-grade 15' triple Type R inlet in Basin B1. The flows leave this inlet via a 24 " storm pipe and are conveyed towards DP-P to the south. This design point captures all the flows from Basin B1. The flows from Basin B1 are $Q_{5}=7.9$ cfs and $Q_{100}=18.4 \mathrm{cfs}$.

DP-P is located at a proposed sump 15' triple Type R inlet in Basin B2. The flows leave this inlet via a 24 " storm pipe and are conveyed towards DP-Q to the south. This design point captures all the flows from Basins B1 and B2. The combined flows at DP-P are $Q_{5}=6.2 \mathrm{cfs}$ and $Q_{100}=14.6 \mathrm{cfs}$.

DP-Q is located at a proposed sump 10' double Type R inlet in Basin B3. The flows leave this inlet via a 24 " storm pipe and are conveyed into the south Full Spectrum EDB pond.

This design point captures all the flows from Basins B1 through B3. The combined flows at $D P-Q$ are $Q_{5}=7.9 \mathrm{cfs}$ and $Q_{100}=18.3 \mathrm{cfs}$.

DP-R is located at the bottom of the south proposed Full Spectrum EDB pond in Basin B4. The flows leave the pond via an outlet structure and an 18" storm pipe where the flows are conveyed to DP-S. This design point captures all the flows from Basins B1 through B4. The combined flows at DP-R are $Q_{5}=20.9 \mathrm{cfs}$ and $Q_{100}=49.8 \mathrm{cfs}$.

Existing Design Point 4 covers runoff from Basin D-16 of the Pronghorn Meadows Subdivision to the west of this project development. An existing 8' sump curb inlet intercepts the runoff ($Q_{5}=7.2 \mathrm{cfs}$ and $Q_{100}=14.6 \mathrm{cfs}$) and directs it via existing $24^{\prime \prime}$ RCP across Antelope Ridge Drive, where it currently discharges into a roadside swale along North Carefree Circle. This 24" RCP is proposed to be extended to the east and connected to the existing storm sewer system at DP-S.

Onsite C-group basins represent flows that leave the project site and are captured by the existing storm system. The discharge of these flows from the site without treatment is permissible under MS4 criteria, since the combined acreage of developed area, outside of County owned right-of-way is less than an acre for each established drainageway.

DP-T is located at the existing 24 " CMP culvert crossing at Marksheffel Road, and represents flows generated by Basin Cl , flows released by the northern detention facility (DP-N) and the offsite flows from MDDP DP-1X. The combined flows at DP-T are $Q_{5}=191.1$ cfs and $Q_{100}=684.1 \mathrm{cfs}$, a portion of which were calculated using the SCS Method. More information of the MDDP flows can be found in the "Preliminary Drainage Report for Windermere," by Classic Consulting Engineers \& Surveyors, October 2014, in the appendix.
DP-S is located at the existing area inlet in Basin C2. The flows leave this inlet via an existing 24 " storm pipe that connects to the existing storm system in N. Carefree Cir., which then carries the flows to the south. This design point reflects all the flows from Basins B1 through B5, offsite Basin EXR, and offsite Basin D-16. The combined flows at DP-S are $Q_{5}=10.3 \mathrm{cfs}$ and $Q_{100}=27.2 \mathrm{cfs}$.

DP-U represents the flows generated Basin $\mathrm{C}_{3}\left(\mathrm{Q}_{5}=1.8 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=5.8 \mathrm{cfs}\right)$, which flow off-site into N . Carefree Cir. The flows are picked up by the existing 15 ' triple at-grade inlet at Existing Design Point 19 in offsite Basin NC2. The flows then leave this inlet via an existing 18 " storm pipe to the east, ultimately converging with the flows from DP-S at an existing manhole, at existing design point Jl.

Flows leave DP-J1 via an existing 24" storm pipe and are carried to the existing 10' sump inlet at Existing DP-20 in offsite Basin NC1. The flows leave this existing inlet via an existing 30" storm pipe and are then carried to the south, ultimately traveling to the south via the Marksheffel Road storm system.

DP-V is located at the north end of the site on Antelope Ridge Dr. and exclusively covers right-of-way. This design point reflects all the flows from Basin C4 that exit the site and flow to the north along the curb and gutter in Antelope Ridge Dr. before being captured by the existing storm system. The flows from Basin C_{3} are $\mathrm{Q}_{5}=0.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=0.5 \mathrm{cfs}$.

6.0 PROPOSED DETENTION/WATER QUALITY FACILITIES

North Detention Facility

The north detention facility has been designed to capture flows from the "A" basins, offsite basins D-13, D-14, D-15, CT and WS. An existing temporary facility located in the same area, that serves the property to the north, will be incorporated into the permanent facility described below.

During the overlot grading of the project, the pond is to excavated to full volume in its entirety and the outlet structure and associated piping installed. An orifice plate for the interim condition (full developed condition within the street right-of-way, but no development of lots) has been designed to be installed at the overlot grading stage, to allow for appropriate WQCV drain time. Once full build out of the project is underway, the orifice plate will be replaced per the final design. See below for description of detention volume and pond characteristics.

A total of 133.15 acres is tributary to this north facility, with a composite imperviousness of 27.8% for the interim condition and 40.7% for the final fully developed condition. Required volumes are listed below.

		Required Volume		
	Imperviousness	WQCV	EURV	100-YR
INTERIM	27.8%	1.60	3.62	6.95
FINAL	40.7%	2.02	5.90	9.94

The actual design pond volume at the proposed spillway stage is 12.6 acre-feet. Concrete forebays with energy dissipaters will be placed where the flows enter the pond on the south and the north sides of the pond. The combined volume of the two forebays will be 3% of the WQCV volume for the pond and will be divided proportionally. The flows will exit the forebays through a notch and into the concrete trickle channel at the bottom of the pond that conveys the flows to the micropool. It will capture then release the flows at a reduced flow rate with the use of a plate with orifice holes into a proposed 36 " pipe, which will release into a ditch that conveys the flows to a 24 " CMP culvert under Marksheffel Rd. after which the flows continue in historic patterns to the east.

In accordance with El Paso County criteria, the modified Type C outlet structure with a permanent micropool will release the WQCV over a 40-hour period. Switching out of the orifice plate will ensure that the WQCV release rate remains within criteria for the interim and developed conditions. The outlet structure will remain in place for the final condition and will result in release rates of $Q_{5}=1.8 \mathrm{cfs}$ and $Q_{100}=66.0 \mathrm{cfs}$.

A 70-ft wide riprap emergency spillway will be located on the east side of the pond. In the event that water overtops the spillway, flow will discharge into the ditch along Marksheffel Rd.

Interim pond calculations are provided in the appendix. Final forebay volumes, micropool surface areas, outlet structures, discharge pipes and spillway design will be
provided at the Final Plat stage.
The pond will have a 15 ' wide maintenance access that will provide access to the pond bottoms, forebays and outlet structures per ECM 3.3.3.K. Private maintenance agreements and O\&M manuals will be established for these ponds as required by the County.

The existing channel along Marksheffel Rd. in the northeast portion of the project site will be aesthetically maintained by Windermere Metropolitan District and will be structurally maintained by the City of Colorado Springs/El Paso County. The slopes of the channel are such that it can be accessed for maintenance along Marksheffel Rd.

South Detention Facility

The south detention facility has been designed to capture flows from the "B" basins.
During the overlot grading of the project, the pond is to excavated to full volume in its entirety and the outlet structure and associated piping installed. An orifice plate for the interim condition (full developed condition within the street right-of-way, but no development of lots) has been designed to be installed at the overlot grading stage, to allow for appropriate WQCV drain time. Once full build out of the project is underway, the orifice plate will be replaced per the final design. See below for description of detention volume and pond characteristics.
south
A total of 11.0 acres is tributary to this noth facility, with a composite imperviousness of 23% for the interim condition and 62.0% for the final fully developed condition. Required volumes are listed below.

		Required Volume		
	Imperviousness	WQCV	EURV	100-YR
INTERIM	23.0%	0.12	0.24	0.49
FINAL	62.5%	0.23	0.84	1.27

The actual design pond volume at the proposed spillway stage is 1.28 acre-feet. A concrete forebay with an energy dissipater will be installed where the flows enter the pond on the west side of the pond. The volume of the forebay will be 3% of the WQCV volume for the pond. The flow will exit the forebay through a notch and into the concrete trickle channel at the bottom of the pond that conveys the flows to the micropool. It will capture then release the flows at a reduced flow rate with the use of a plate with orifice holes into a proposed 24 " pipe, which will be connected to an existing storm inlet at the corner of N . Carefree Circle and Marksheffel Rd, after which the flows continue to the south via the existing storm sewer system.

In accordance with El Paso County criteria, the modified Type C outlet structure with a permanent micropool will release the WQCV over a 40-hour period. Switching out of the orifice plate will ensure that the WQCV release rate remains within criteria for the interim
and developed conditions. The outlet structure will remain in place for the final condition and will result in release rates of $Q_{5}=0.2 \mathrm{cfs}$ and $Q_{100}=9.6 \mathrm{cfs}$.

A 15 -ft wide riprap emergency spillway will be located on the south side of the pond. In the event that water overtops the spillway, flow will discharge into the curb and gutter along N . Carefree Cir., where it is then picked up by the existing storm system.
area of the Type
Interim pond calculations are provided in the appendix. Final forebay volumes, C inlet? micropool surface areas, outlet structures, discharge pipes and spillway design will be provided at the Final Plat stage.

The pond will have a 15 ' wide maintenance access that will provide access to the pond bottoms, forebays and outlet structures per ECM 3.3.3.K. Private maintenance agreements and O\&M manuals will be established for these ponds as required by the County.

7.0 FOUR-STEP PROCESS

This project conforms to the City of Colorado Springs/El Paso County Four Step Process. The process focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

1. Employ Runoff Reduction Practices: Proposed impervious areas on this site (roofs, asphalt/sidewalk) will sheet flow across landscaped ground as much as possible to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets and storm sewer system. This will minimize directly connected impervious areas within the project site.
2. Implement BMP's that provide a Water Quality Capture Volume with slow release: Runoff from this project will be treated through capture and slow release of the WQCV in two permanent Extended Detention Basin facilities designed per current City of Colorado Springs/El Paso County drainage criteria.
3. Stabilize Drainage Ways: Flows from the north pond are released into the ditch alongside Marksheffel Rd. This ditch has previously been stabilized with rip-rap to handle the MDDP flows of 600 cfs. Flows from the south pond are released directly into the existing storm sewer system and no stabilization will be necessary.
4. Implement Site Specific and Other Source Control BMP's: The site is proposed as a residential development, and as such standard household source control will be utilized in order to minimize potential pollutants entering the storm system. Example source control measures consist of: garages for storage of household chemicals, trash receptacles for individual households and in common areas for pet waste. The need for Industrial and Commercial BMP's was considered, however per ECM I.7.2.A the need for industrial and commercial BMPs are not applicable for this project.

8.0 GEOTECHNICAL HAZARDS

In accordance with geotechnical recommendations, the project design is intended to direct runoff away from structures, and into the receiving storm sewer system and water quality/detention basins. This will be accomplished by a variety of means, i.e. curb and gutter and storm sewer.

Per "Soils and Geology Study, Windermere Subdivision" by RMG, October 26, 2020 (Revised January 18, 2021):

10.1 Soil and Rock Design Parameters

TB-6 (Job No. 142206, dated May 28, 2015) and TB-107 (Job No. 162062, last dated February 5, 2019) were located in the general vicinity of the proposed Full Spectrum Detention Basin, Tract A. TB-160 (Job No. 162062, last dated February 5, 2019) was located in the general vicinity of the proposed Private Full Spectrum Extended Detention Basin, Tract B. RMG has performed laboratory tests of soil from across the proposed development. Based upon Field and laboratory testing, the following soil and rock parameters are typical for the soils likely to be encountered, and are recommended for use in detention pond embankment design.

Soil Description	Unit Weight $\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$	Friction Angle (degree)	Active Earth Pressure, Ka	Passive Earth Pressure, Kp	At Rest Earth Pressure, Ko
Silty to Clayey Sand (SC/SM)	105	30	0.33		3.0
Silty Sandstone	110	30	0.33	3.0	0.50
Sandy Claystone/ Siltstone	100	20	0.49	2.0	0.60

10.2 Embankment Recommendations

The proposed detention pond in Tract B is to be excavated approximately 40 plus feet below the surrounding ground surface on the western portion and approximately 11 feet above the surrounding ground surface on the eastern portion. Above grade embankments are to be constructed with $4: 1$ slopes. Embankments should be constructed in accordance with applicable sections of the El Paso County Engineering Criteria Manual, the El Paso County Drainage Criteria Manual, and the El Paso County Land Development Codep

9.0 CONCLUSIONS

The Windermere project has been designed in accordance with El Paso County criteria. The EDB/water quality ponds have been designed to limit the release of storm runoff. This development will not negatively impact the downstream facilities.

10.0 REFERENCES

The sources of information used in the development of this study are listed below:

1. City of Colorado Springs "Drainage Criteria Manual", 2016.
2. Urban Storm Drainage Criteria Manuals, Urban Drainage and Flood Control District. June 2001, Revised October 2019.
3. Soil Survey for Colorado Springs and El Paso County, Colorado, U.S. Department of Agriculture, Soil Conservation Service, June 1980.
4. "Flood Insurance Studies for Colorado Springs and El Paso County, Colorado", prepared by the Federal Emergency Management Agency (FEMA), 2018.
5. "Soils and Geology Study, Windermere Subdivision", prepared by RMG, October 26, 2020, Revised January 18, 2021.
6. "Final Drainage Report for Pronghorn Meadows, Filing 2," prepared by URS, July 2004.
7. "Final Drainage Report and Erosion Control Amendment for Chateau at Antelope Ridge," prepared by URS, September 9, 2002.
8. "Preliminary Drainage Report for Windermere \& Final Drainage Report for Windermere Filing No. 1," prepared by Classic Consulting Engineers \& Surveyors, October 2014.
9. "MDDP for Hilltop Subdivision," prepared by URS Greiner, Inc., November 1, 1996.
10. "Final Drainage Report Marksheffel Road from Constitution Ave. to Dublin Rd.," by CH2M Hill, dated May 2008 and Marksheffel Road Construction Drawings by Wilson \& Company.

APPENDIX

PRELIMINARY DRAINAGE REPORT FOR WINDERMERE
 \&
 FINAL DRAINAGE REPORT FOR WINDERMERE FILING NO. 1

October 2014

Prepared for:
JAMES TODD STEPHENS
c/o WINDSOR RIDGE HOMES 4164 AUSTIN BLUFFS PKWY \#361
COLORADO SPRINGS CO 80918

Prepared by:
 CLASSIC CONSULTING ENGINEERS \& SURVEYORS

6385 CORPORATE DRIVE SUITE 101 COLORADO SPRINGS CO 80919
(719) 785-0790

Job no. 2441.00

PRELIMINARY DRAINAGE REPORT FOR WINDERMERE \& FINAL DRAINAGE REPORT FOR WINDERMERE FILING NO. 1

DRAINAGE REPORT STATEMENT

ENGINEERS STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

$\frac{6 \cdot 18 \cdot 15}{\text { Date }}$

DEVELOPERS STATEMENT:
I, the developer, havereadfand will comply with all of the requirements specified in this drainage report and plan.

Business Name:
By:
Title:
Address:

$$
4164 \text { Austin Bluffs Parkway \#361 }
$$

Colorado Springs, CO 80918

EL PAS COUNTY ONLY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Pasco County Engineerirty C.fiteriz Manual and Land Development Code as amended.

Andre P. Brackin, P.E.
County Engineer / ECM Administrator

Date

Conditions:

TABLE OF CONTENTS:

PURPOSE	Page	1
GENERAL DESCRIPTION	Page	1
EXISTING DRAINAGE CONDITIONS	Page	2
PROPOSED DRAINAGE CHARACTERISTICS	Page	6
EROSION CONTROL PLAN	Page	16
DRAINAGE CRITERIA	Page	16
FLOODPLAIN STATEMENT	Page	16
DRAINAGE AND BRIDGE FEES	Page	16
CONSTRUCTION COST OPINION	Page	17
SUMMARY	Page	18
REFERENCES	Page	19

APPENDICES

VICINITY MAP
SOILS MAP (S.C.S. SURVEY)
F.E.M.A. MAP

REFERENCE MATERIAL FROM ADJACENT STUDIES
EXISTING DRAINAGE CONDITIONS CALCULATIONS
DEVELOPED DRAINAGE CONDITIONS CALCULATIONS
FILING NO. 1 - FULL SPECTRUM EDB FINAL DESIGN
FLLING NO. 2 - FULL SPECTRUM EDB PRELIMINARY DESIGN
COORESPONDANCE FROM YES! COMMUNITIES
DRAINAGE MAP

PRELIMINARY DRAINAGE REPORT FOR WINDERMERE \& FINAL DRAINAGE REPORT FOR WINDERMERE FILING NO. 1

PURPOSE

This document is the Preliminary Drainage Report for the entire Windermere (Filings 1-3) development and the Final Drainage Report for Windermere Filing No. 1. The purpose of this report is to identify onsite and offsite drainage patterns, storm sewer, inlet locations, and areas tributary to the site, and to safely route developed storm water runoff to adequate detention and water quality facilities while releasing storm water at or below historic rates and in accordance with all applicable master drainage plans. This report will discuss the proposed storm system to be built with Filing 1 and the future system to be built with Filings 2 \& 3. A Final Drainage Report will be needed for Filings 2 \& 3 that will discuss the final construction details, and more specifically, the final design details of the proposed sub-regional public detention/water quality facility located at the north end of the site. Preliminary design of the sub-regional public facility is included in this report, along with the final design information for the Filing No. 1 detention/water quality facility located at the south-east corner of the site.

GENERAL DESCRIPTION

Windermere is a 52.07 acre single family home subdivision within the east half of Section 29, Township 13 South, Range 65 West of the $6^{\text {th }}$ Principal Meridian in El Paso County, Colorado. The site is located on the east side of Antelope Ridge Drive just north of North Carefree Circle. The existing Chateau at Antelope Ridge subdivision sits directly north of the site, with Marksheffel Road bordering the east side of the site. The proposed development includes a total of 201 single-family residences and will be developed in three filings. Filing 1 includes 59 residential lots on approximately 15 acres. Filing 2 will include 70 lots on approximately 22 acres, and Filing 3 is 72 lots on approximately 15 acres.

The average soil condition of the entire site and tributary area to the proposed ponds reflects Hydrologic Group "B" (Truckton sandy loam) as determined by the "Soil Survey of El Paso County Area," prepared by the National Cooperative Soil Survey (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The site is located within the Sand Creek Drainage Basin. Historically, this site drains in all directions with a large hill in the southem half of the site and an existing temporary detention facility located at the northern end. There is a large roadside ditch adjacent to Marksheffel Road (M.D.D.P. DP-1X) that routes off-site (non-tributary to site facilities) runoff to the existing 24" CMP storm culvert under Marksheffel Road (Design Point 26). This site has been previously studied as part of the previously approved "Master Development Drainage Plan for Hilltop Subdivision El Paso County, Colorado" by URS Greiner, Inc. last revised February 1998. See below for detailed descriptions of the existing drainage conditions and see appendix for the Existing Conditions Drainage Map.

Design Point 4 - Existing $\left(\mathrm{Q}_{5}=7.2 \mathrm{cfs}, \mathrm{Q}_{100}=14.6 \mathrm{cfs}\right)$ consists of runoff from off-site Basin D-16, 2.73 acres of existing Pronghorn Meadows Subdivision, Antelope Ridge Drive, and North Carefree Circle. An existing 8' curb sump inlet intercepts the runoff with an existing $24^{\prime \prime}$ RCP conveying it directly onto the proposed site where a roadside ditch along N. Carefree Circle drains to the area drain at DP-6 (North West comer of Marksheffel Rd. and N. Carefree Cir.). The Basin D-16 characteristics and size was derived from the previously approved "Final Drainage Report for Pronghorn Meadows Filing 2," by URS, dated July 2004; "Preliminary Drainage Report for Pronghorn Meadows and Final Drainage Report for Pronghorn Meadows Filing No. 1," by URS, dated September 4, 2002; and also using observed field conditions and satellite imagery.

Design Point 6 - Existing $\left(\mathrm{Q}_{5}=18.4 \mathrm{cfs}, \mathrm{Q}_{100}=42.6 \mathrm{cfs}\right)$ consists of runoff from DP-4-EX, Basin EX-R, and Basin EX-A. Basin EX-R is 0.53 acres of existing Marksheffel Rd. and roadside ditch that drain to the existing grated area drain at DP-6. Basin EX-A is 13.20 acres of undeveloped Windermere property with historic runoff of $\mathrm{Q}_{5}=11.3 \mathrm{cfs}$ and $\mathrm{Q}_{100}=28.2 \mathrm{cfs}$. This historic runoff rate from Basin EX-A is used as the allowable release rate for the proposed Filing 1 detention/water quality facility located at this corner of the site. This cumulative historic and existing storm water runoff ($\mathrm{Q}_{5}=18.4 \mathrm{cfs}, \mathrm{Q}_{100}=42.6 \mathrm{cfs}$) at this grated sump area drain inlet does not appear to have been quantified correctly in the design of the downstream Marksheffel Road storm sewer system as the outfall pipe from the existing grated inlet (24 " RCP) only has a capacity of 16 cfs at 0.50% grade. The "Final Drainage Report Marksheffel Road from Constitution Ave. to Dublin Rd.," by CH2M Hill dated May 2008 was approved by El Paso County for the storm sewer improvement design associated with the expansion of Marksheffel Road. Construction plans

for the Marksheffel Rd. improvements were completed by Wilson \& Company Engineers \& Architects in accordance with the Final Drainage Report. On these construction plans (PPRTA Project \#75174, Sheets 12 \& 13) a 24 " RCP (Pipe $6 \mathrm{~b}, \mathrm{Q}_{5}=18.4 \mathrm{cfs}$ and $\mathrm{Q}_{100}=42.6 \mathrm{cfs}$) was constructed to this existing area drain with a capacity listed as 16 cfs . It appears that the historic runoff from the proposed Windermere site (Basin EX-A) was not included in the downstream pipe sizing and construction. The Marksheffel Road Final Drainage Report by CH2M Hill states on page 13 that "Storm pipes are designed to convey the 10 year flow, except at sump locations where they are designed to convey the 100 -year flow." A sump condition exists at this Design Point and at the adjacent N. Carefree Circle median inlet at DP-20. Therefore, it is our belief and understanding that the storm system should convey the entire 100 year historic and existing runoff at this location.

Design Point 7 - Existing ($\mathrm{Q}_{5}=20.0 \mathrm{cfs}, \mathrm{Q}_{100}=41.6 \mathrm{cfs}$) consists of runoff from off-site Basins D-13 \& D-14, 6.79 acres \& 3.88 acres respectively of existing Pronghorn Meadows Subdivision and existing Antelope Ridge Drive. The previous approved reports for Pronghom Meadows and existing field conditions were used to determine the tributary basin sizes and the results are in conformance to the previously approved reports. An existing 25' (field verified) Type R curb inlet intercepts all of this runoff and an existing storm pipe routes flows to the existing inlet at DP-8 prior to day lighting onto the proposed site. This developed runoff does not appear to be detained or treated for storm water quality before being released onto the Windermere site.

Design Point 8 - Existing ($\mathrm{Q}_{5}=5.6 \mathrm{cfs}, \mathrm{Q}_{100}=11.2 \mathrm{cfs}$) consists of runoff from off-site Basin D-15, 1.36 acres of existing Antelope Ridge Drive, and from Basin EX-E, 1.10 acres of on-site undeveloped land that drains onto Antelope Ridge Drive. An existing 10' (field verified) Type R curb inlet intercepts all of this runoff and an existing $36^{\prime \prime}$ storm (Pipe 8) routes the combined runoff ($\mathrm{Q}_{5}=24.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=50.9 \mathrm{cfs}$) directly onto the proposed Windermere site. This runoff drains across the site to Design Point 26. This developed runoff also does not appear to have been detained or treated for water quality prior to relcasing onto the proposed site.

Design Point 19 - Existing ($\mathrm{Q}_{5}=6.7 \mathrm{cfs}, \mathrm{Q}_{100}=12.5 \mathrm{cfs}$) consists of runoff from off-site Basin NC-2, 1.49 acres of existing Antelope Ridge Drive and N. Carefree Circle. An existing 15' Type R at-grade curb inlet just west of Marksheffel Road intercepts a portion of this runoff ($\mathrm{Q}_{5}=4.8 \mathrm{cfs}$ and $\mathrm{Q}_{100}=8.1 \mathrm{cfs}$) and an

existing 18" storm (Pipe 6a) connects with Pipe 6B at an existing storm manhole. Pipe 6C is the 24 " outfall pipe from this connection manhole and contains a combined runoff of $Q_{5}=21.6 \mathrm{cfs}$ and $Q_{100}=47.9 \mathrm{cfs}$. From the Marksheffel Rd. Construction Drawings, the capacity of the system at Pipe 6C is 16 cfs . Pipe 6C connects into the face of the median sump inlet at DP-20.

Design Point 20 - Existing ($\mathrm{Q}_{5}=3.7 \mathrm{cfs}, \mathrm{Q}_{100}=8.0 \mathrm{cfs}$) consists of runoff from off-site Basin NC-1, 0.42 acres of existing N. Carefree Circle and Marksheffel Rd, and the flow-by from the at-grade inlet at Design Point 19. An existing 10' Type R sump median curb inlet intercepts all of this runoff and combines it with that from the incoming Pipe 6C. Pipe 7 represents the existing 30 " outfall pipe from this inlet and contains a historic and existing runoff rate of $\mathrm{Q}_{5}=24.2 \mathrm{cfs}$ and $\mathrm{Q}_{100}=53.3 \mathrm{cfs}$. From the Marksheffel Rd. Construction Drawings, the capacity of the $30^{\prime \prime}$ Pipe 7 is 29 cfs . This runoff continues within the existing Marksheffel Rd. storm system to the south to downstream facilities.

Design Point 24-Existing ($\mathrm{Q}_{5}=111.3 \mathrm{cfs}, \mathrm{Q}_{100}=199.7 \mathrm{cfs}$) consists of off-site tributary area to the existing temporary detention facility located along the northern site boundary. The temporary detention facility was constructed in conjunction with the Chateau at Antelope Ridge subdivision located directly north of the proposed site. The tributary runoff at DP-24 is a combination of developed runoff from the Chateau at Antelope Ridge subdivision and detained release from the Whispering Springs Development, located west of Antelope Ridge Drive and the Chateau at Antelope Ridge subdivision. The "Preliminary Drainage Report for Whispering Springs Development and Final Drainage Report for Whispering Springs Filing No. 1," by Rockwell Consulting, Inc., dated August 2013 details the overall detained and water quality treated runoff that drains directly into the storm sewer system of the Chateau at Antelope Ridge. This runoff is described in this report as Basin WS, 41.47 acres with a release rate of $Q_{5}=47.3 \mathrm{cfs}$ and $\mathrm{Q}_{100}=$ 66.4 cfs (Design Point 10 from Whispering Springs Drainage Report).

DP-24 also contains the developed runoff from Basin CT, 42.07 acres of the existing Chateau at Antelope Ridge subdivision. The Basin CT characteristics and size was derived from the previously approved "Final Drainage Report and Erosion Control for Chateau at Antelope Ridge," by URS, approved January 21, 1999 as well as observed field conditions and satellite imagery. Basin CT produces a developed runoff rate of Q_{5} $=90.8 \mathrm{cfs}$ and $\mathrm{Q}_{100}=184.7 \mathrm{cfs}$ that drains to DP-24 and into the existing and proposed detention/water quality facility.

Design Point 25 - Existing $\left(Q_{s}=117.5 \mathrm{cfs}, \mathrm{Q}_{100}=215.1 \mathrm{cfs}\right)$ consists of the total existing runoff into the existing temporary detention facility located along the northern site boundary. This runoff consists of DP24, Basins EX-D (6.19 acres of on-site undeveloped land) and EX-F (3.15 acres of temporary detention pond area). Per the Hilltop Subdivision M.D.D.P., detention of developed runoff is required in order to maintain historic release rates under Marksheffel Road and to the east to the main Sand Creek channel. An existing $48^{\prime \prime}$ CMP serves as the temporary facility's outfall along with a riprap lined emergency overall spillway. The discharge pipe and portions of the embankment are located outside of the Tract A Temporary Detention Facility.

Design Point 26-Existing ($\mathrm{Q}_{5}=138.3 \mathrm{cfs}, \mathrm{Q}_{100}=266.9 \mathrm{cfs}$) consists of the total existing runoff to the existing 24" CMP Marksheffel Road culvert crossing from the north-west. This runoff is comprised of the DP-25 storm water and that from Basins EX-B and EX-C, 7.30 acres and 24.28 acres respectively of on-site undeveloped land that drains directly east to the Marksheffel Road ditch. This runoff quantity does not include that from the upstream Marksheffel Road ditch, described in the Hilltop MDDP as Design Point 1X. Per the Hilltop MDDP the existing runoff within the Marksheffel Rd. ditch is $Q_{5}=144 \mathrm{cfs}$ and $\mathrm{Q}_{100}=$ 481 cfs. However, with the "Final Drainage Report and Erosion Control Plans for Chateau at Antelope Ridge El Paso County, Colorado," by URS, dated December 18, 1998 discusses the Marksheffel Road ditch design and assumptions used; varying the flow within the ditch from 420 to 714.5 cfs . As stated in this previous report "these flows were added as each design point without considering routing to give a worst case scenario." This large range of flow rates was used as a very conservative channel design and does not reflect the actual (routed) flow within the Marksheffel ditch. The same December 1998 report included a HEC model to more accurately define the ditch runoff and determine the allowable release rate for the temporary pond. The flow of 521 cfs was used as the routed flow in the Marksheffel ditch.

However, the "Final Drainage Report and Erosion Control Amendment for Chateau at Antelope Ridge El Paso County, Colorado," by URS, dated September 9, 2002 was approved by El Paso County and discusses an increase in tributary runoff to this Marksheffel Rd. ditch (north of Barnes Road). This increase of 79 cfs directly transposed to the M.D.D.P. DP-1X results in a $100-\mathrm{yr}$ historic runoff within the Marksheffel Ditch of 600 cfs (estimated 5 year increased flow to 185 cfs).

Page 5

Design Point 26 directly correlates with M.D.D.P. DP-1C, which states a maximum flow rate in existing and developed conditions of $\mathrm{Q}_{5}=250 \mathrm{cfs}$ and $\mathrm{Q}_{100}=852 \mathrm{cfs}$ that crosses under Marksheffel Road. Using a conservative approach by directly adding the M.D.D.P. DP-1X runoff (increased as previously stated) with the quantified DP-26 runoff from the proposed site analysis, a total runoff value can be compared with the M.D.D.P. allowable runoff rate at this culvert crossing of Marksheffel Road. In the current undeveloped conditions, the total runoff is $\mathrm{Q}_{5}=323.3 \mathrm{cfs}$ and $\mathrm{Q}_{100}=866.9 \mathrm{cfs}$. The 5 year \& 100 year storm event runoffs are slightly higher than that quantified in the Chateau at Antelope Ridge Drainage Report due to conservatively assuming runoff drains directly into and out of the temporary facility at DP-25 since an outlet structure restricting runoff does not exist. The proposed developed conditions will ensure the runoff at DP-26 is less than the allowable rates per the M.D.D.P. ($\mathrm{Q}_{5}=250 \mathrm{cfs}, \mathrm{Q}_{100}=852 \mathrm{cfs}$).

PROPOSED DRAINAGE CONDITIONS

Developed runoff from Windermere Development will be conveyed into the proposed storm sewer systems as shown on the Developed Conditions Drainage Map, and will outfall into two separate Public Full Spectrum Extended Detention Basin (EDB) Water Quality Facilities. All curb inlets are CDOT Type R, storm pipes are reinforced concrete pipe (RCP), and curbs are El Paso County Type A (6 " vertical curb) and El Paso County Type C (ramp curb).

Per current El Paso County Drainage Criteria for stormwater capacity within street sections, the following applies:

Street Type	Allowable - Initial Storm (5 yr)	Allowable-Major Storm (100 yr)
Residential w/Ramp Curb	Flow spread to crown. Maximum of 20 cfs per side.	12 " maximum depth at flowline with no adjacent flooding.
Residential w/Vertical Curb	6" allowable depth at flowline. Maximum of 34 cfs per side.	$12 "$ maximum depth at flowline with no adjacent flooding.
Collector Street	6" allowable depth at flowline, maximum of 34 cfs per side, no overtopping of crown.	$12 "$ maximum depth at flowline with no adjacent flooding.

For more exact allowable curb capacities for each curb and roadway type at varying street slopes the Curb Capacity Equations were used as shown on the charts located in the front of the Drainage Criteria Manual. At no times is curb capacity an issue due to the placement of at-grade inlets when needed.

Drainage from individual lots is assumed to travel in side-lot swales to the street. A detailed description of the developed runoff for Windermere, including the final design of Filing No. 1 is as follows:

Design Point $1\left(\mathrm{Q}_{5}=13.1 \mathrm{cfs}, \mathrm{Q}_{100}=26.2 \mathrm{cfs}\right)$ consists of runoff from Basin $\mathrm{C}, 4.20$ acres of Filing No. 1 single family home lots, and the two Pronghorn Meadows Circle roadways. A proposed 15' at-grade inlet will intercept a portion of this runoff while the remaining continues within the curb and gutter to Design Point 2. Pipe $1\left(24^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=8.9 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=15.6 \mathrm{cfs}\right)$ conveys the intercepted runoff south toward the detention/water quality facility at Design Point 5. As is typical throughout the proposed Windermere subdivision, all developed flows are within allowable street capacities for both 5 yr and 100 year events. For the minor event storm, the curb capacity of ramp curb at 1.5% is 13.8 cfs .

Design Point $2\left(Q_{5}=12.4 \mathrm{cfs}, \mathrm{Q}_{100}=27.3 \mathrm{cfs}\right)$ consists of runoff from Basin B, 2.72 acres of Filing No. 1 single family home lots and adjacent residential roadways, and the flow-by from the at-grade inlet at DP-1. A proposed 15' sump inlet will intercept this runoff and combine with that from Pipe 1. Pipe 2 ($30^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=20.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=41.9 \mathrm{cfs}$) conveys the combined runoff south toward the detention/water quality facility at Design Point 5 .

Design Point $3\left(Q_{5}=9.1 \mathrm{cfs}, \mathrm{Q}_{100}=18.2 \mathrm{cfs}\right)$ consists of runoff from Basin A, 3.35 acres of Filing No. 1 single family home lots and adjacent residential roadways. A proposed 10^{\prime} sump inlet will intercept this runoff and a $24^{\prime \prime}$ RCP (Pipe 3a) will connect to the storm main from DP-2. Pipe 3b ($36^{\prime \prime}$ RCP, $Q_{5}=27.6$ cfs and $\mathrm{Q}_{100}=55.5 \mathrm{cfs}$) conveys the combined runoff from the Filing No. 1 development into the proposed Full Spectrum Extended Detention Basin at Design Point 5.

Design Point $4\left(Q_{5}=7.2 \mathrm{cfs}, \mathrm{Q}_{100}=14.6 \mathrm{cfs}\right)$ is exactly as described within the Existing Conditions portion of this report. The existing 24" RCP will be extended with a proposed $24^{\prime \prime}$ RCP (Pipe 4) and connected directly into the downstream Marksheffel Road storm sewer system.

Design Point $5\left(Q_{5}=28.1 \mathrm{cfs}, \mathrm{Q}_{100}=56.8 \mathrm{cfs}\right)$ is the Filing No. 1 developed runoff into the proposed Private Full Spectrum Extended Detention Basin. This storm water consists of that from Pipe 3b and Basin P, 0.60 acres of the detention facility itself. The facility was designed using the sizing spreadsheet (See Appendix) and criteria from the Urban Drainage and Flood Control District (UDFCD). A total of 10.87 acres of Windermere Filing No. 1 is tributary to this facility, with a composite impervious value of 73.3%. A required Excess Urban Runoff Volume (EURV) of 0.893 acre-feet is required. This volume is provided under the top of oudet box opening (elevation 6570.00, within the orifice plate of the outlet box).

A concrete box forebay will be placed at the Pipe 3b entry point into the facility. Per the UDFCD sizing spreadsheet a 6 " notch in the vertical wall of the forebay box is required. All pond structure details are included in the Filing No. 1 construction drawings. A 6' wide concrete trickle channel at 1.0% grade will be installed down the center of the basin to convey the low flows to the outlet box and limit erosion within the bottom of the facility. A 3.0% minimum basin bottom slope into the trickle channel is provided as per the UDFCD requirements.

The bottom of the detention basin is at an elevation of 6562.50 with the EURV provided at the elevation 6570.00. A 6 ' wide outlet box (4 ' deep opening) is proposed with a top of box at this 6570.00 elevation. For a Full Spectrum facility, the outlet box orifice holes within the front plate are to drain the EURV in 72 hours, resulting in the necessary orifice hole sizing of 1 column of 3/4" diameter circular holes. A 2.5 ' deep concrete bottom micropool is to be installed within the outlet structure, with a surface area of 107 square feet. A removable trash screen of $12^{\prime \prime}$ in width will be placed in front of the orifice plate to help prevent the orifice holes from clogging. A 24 " RCP outlet, Pipe 5 , will convey the facility's restricted release ($Q_{5}=0.63$ $\mathrm{cfs}, \mathrm{Q}_{100}=9.77 \mathrm{cfs}$) (historic from site is $\mathrm{Q}_{5}=11.3 \mathrm{cfs}, \mathrm{Q}_{100}=28.2 \mathrm{cfs}$) to the existing 24" storm sewer pipe of the Marksheffel Road storm sewer system. See Design Point 6 for continued discussion of downstream system.

A 20^{\prime} length emergency spillway located at elevation 6571.00 will pass the entire incoming 100 -year storm event (56.8 cfs) at a flood depth less than $1.0^{\prime}\left(0.84^{\prime}\right.$ using equation $\mathrm{Q}=\mathrm{CLH}^{\wedge} 0.5$ from the DCM$)$. Per the El Paso County Drainage Criteria Manual (DCM), the top of the pond berm shall be 2.0 ' higher than the flood depth water surface elevation, in this case at 6574.00 . This emergency spillway will only be utilized in the case of a complete outlet box failure and will be constructed of riprap rock buried under top soil and re-

vegetated. Also, a 15^{\prime} wide maintenance access road at 15% grade will be installed to the bottom of the facility from the interior roadway, Grizedale Terrace. By utilizing the Full Spectrum Outlet box design, the minor storm event release rates are significantly below historic levels, and the 100 -year event is less than a third of the historic (allowable) runoff rate of the proposed site (Basin EX-A $\mathrm{Q}_{5}=11.3 \mathrm{cfs}, \mathrm{Q}_{100}=28.2 \mathrm{cfs}$).

Maintenance of the Private detention/water quality structures and aesthetic maintenance of the facility will be by either the home owner's association or Windermere Metropolitan District 1 as is to be determined.

Initially, as a part of the early grading permit, a temporary sediment pond will be constructed in the same location as the ultimate detention and stormwater quality facility. The temporary sediment basin outlet pipe will ultimately be replaced with a formal outlet structure at the time of Filing No. 1 public street and storm construction. The storm outfalls into the ultimate pond will also be constructed along with the proposed perimeter retaining walls.

Design Point $6\left(\mathrm{Q}_{5}=3.4 \mathrm{cfs}, \mathrm{Q}_{100}=7.1 \mathrm{cfs}\right)$ consists of runoff from Basin R, 1.18 acres of existing Marksheffel Road, adjacent roadside swale, and proposed home lots that drain in the same pattem as existing Basin EX-R. The existing type D grated area drain must remain due to existing electric vaults being installed lower than the roadway intersection. However, this inlet must be relocated to the east in order to construct the N. Carefree sidewalk. The new Type D inlet intercepts all of this runoff and an $18{ }^{\prime \prime}$ RCP conveys it to the storm outfall from the proposed detention/water quality facility at DP-5. Pipe 6 b (24" RCP, $\mathrm{Q}_{5}=10.3 \mathrm{cfs}, \mathrm{Q}_{100}=29.4 \mathrm{cfs}$) is the combined runoff rate from the Pond Outfall (Pipe 5), DP-6, and off-site DP-14 (Pipe 4). This 24 " RCP connects to the existing $24^{\prime \prime}$ RCP of the Marksheffel Rd. storm system. Per the Existing Conditions analysis of this report, the allowable historic runoff rate to the existing $24^{\prime \prime} \mathrm{RCP}$ is $\mathrm{Q}_{5}=18.4 \mathrm{cfs}$ and $\mathrm{Q}_{100}=42.6 \mathrm{cfs}$. As stated in the Existing Conditions section, the existing storm sewer system constructed with the Marksheffel Road improvements does not have the capacity (listed as 16 cfs) to convey even the reduced detained runoff. See Design Point 19 for continued discussion of the existing Marksheffel Road storm system.

Design Point $7\left(\mathrm{Q}_{5}=20.0 \mathrm{cfs}, \mathrm{Q}_{100}=41.6 \mathrm{cfs}\right)$ is the same as described in the Existing Conditions section of this report.

Design Point $8\left(\mathrm{Q}_{5}=7.7 \mathrm{cfs}, \mathrm{Q}_{100}=15.1 \mathrm{cfs}\right)$ consists of runoff from off-site Basin $\mathrm{D}-15,1.36$ acres of existing Antelope Ridge Drive, and from Basin E, 1.47 acres of the back yards of proposed single family home lots that drains onto Antelope Ridge Drive. The runoff at this location in the developed conditions is slightly higher than in the existing conditions; however the existing inlet and storm pipe have adequate capacity. The existing 10 ' Type R curb inlet intercepts all of this runoff and an existing $36^{\prime \prime}$ storm (Pipe 8) the previously daylighted onto the proposed site will be extended east within Borrowdale Lane and eventually to the detention/water quality facility at DP-25. This 36 " Pipe 8 conveys runoff of $\mathrm{Q}_{5}=26.4 \mathrm{cfs}$ and $Q_{100}=54.1 \mathrm{cfs}$.

Design Point 9 ($\mathrm{Q}_{5}=12.9 \mathrm{cfs}, \mathrm{Q}_{100}=26.0 \mathrm{cfs}$) consists of runoff from Basin I, 4.44 acres of Filing No. 3 single family home lots and Ryedale Way. A proposed 20^{\prime} at-grade inlet will intercept a portion of this runoff while the remaining continues within the curb and gutter to Design Point 10. Pipe 9 (24 " RCP, $\mathrm{Q}_{5}=$ 9.0 cfs and $\mathrm{Q}_{100}=16.0 \mathrm{cfs}$) conveys the intercepted runoff to the $36^{\prime \prime}$ main from DP-8 (Pipe $1036^{\prime \prime}$ RCP, Q_{5} $=32.4 \mathrm{cfs}$ and $\mathrm{Q}_{100}=64.7 \mathrm{cfs}$). At no times within the proposed site is curb capacity an issue due to the placement of these at-grade storm inlets. For the minor event storm, the curb capacity of ramp curb at 4.0% is above the maximum of 20.0 cfs .

Design Point $10\left(Q_{5}=5.6 \mathrm{cfs}, \mathrm{Q}_{100}=13.5 \mathrm{cfs}\right)$ consists of runoff from Basin $\mathrm{N}, 0.58$ acres of Filing No. 3 single family home lots and Borrowdale Lane, and the flow-by from DP-9. A proposed 15' at-grade inlet will intercept the majority of this runoff while the remaining continues within the curb and gutter to Design Point 11. Pipe 11 ($18{ }^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=4.3 \mathrm{cfs}$ and $\mathrm{Q}_{100}=8.5 \mathrm{cfs}$) conveys the intercepted runoff to the at-grade inlet at DP-11.

Design Point $11\left(\mathrm{Q}_{5}=11.2 \mathrm{cfs}, \mathrm{Q}_{100}=24.8 \mathrm{cfs}\right)$ consists of runoff from Basin J, 3.30 acres of single family home lots and Patterdale Place, and the flow-by from DP-10. A proposed 10' at-grade inlet will intercept a portion of this runoff while the remaining continues within the curb and gutter to the sump inlet at Design Point 15. Pipe $12\left(24^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=9.8 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=16.4 \mathrm{cfs}\right)$ conveys the intercepted runoff from this atgrade inlet and that from the at-grade at DP-10 (Pipe 11) to the storm main. The outfall main (Pipe 13, 42" $\mathrm{RCP}, \mathrm{Q}_{5}=38.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=75.5 \mathrm{cfs}$) continues east within Borrowdale Lane and ultimately to the proposed detention/water quality facility at DP-25.

Design Point $12\left(\mathrm{Q}_{5}=11.0 \mathrm{cfs}, \mathrm{Q}_{100}=22.4 \mathrm{cfs}\right)$ consists of runoff from Basin $\mathrm{K}, 3.74$ acres of single family home lots and Pronghorn Meadows Circle. A proposed 20' at-grade inlet will intercept a portion of this runoff while the remaining continues within the curb and gutter to the sump inlet at Design Point 15. Pipe $16\left(24^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=8.7 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=15.4 \mathrm{cfs}\right)$ conveys the intercepted runoff and connects to the $60^{\prime \prime} \mathrm{RCP}$ storm main that drains into the detention/water quality facility at Design Point 25. For the minor event storm, the curb capacity of ramp curb at 1.5% is 13.8 cfs .

Design Point $14\left(Q_{5}=12.3 \mathrm{cfs}, \mathrm{Q}_{100}=24.5 \mathrm{cfs}\right)$ consists of runoff from Basins $F \& Q, 2.85$ acres and 1.70 acres respectively of single family home lots and adjacent residential roadways. A proposed 20^{\prime} at-grade inlet will intercept a portion of this runoff while the remaining continues within the curb and gutter to the sump inlet at Design Point 15. Pipe 14 ($24^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=8.8 \mathrm{cfs}$ and $\mathrm{Q}_{100}=15.1 \mathrm{cfs}$) conveys the intercepted runoff from this at-grade inlet and connects to the $42^{\prime \prime}$ storm main (Pipe $15, \mathrm{Q}_{5}=45.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=87.4$ cfs).

Design Point $15\left(Q_{5}=20.5 \mathrm{cfs}, \mathrm{Q}_{100}=50.7 \mathrm{cfs}\right)$ consists of runoff from Basin $\mathrm{G}, 3.97$ acres of single family home lots and adjacent residential roadways, and the flow-by runoff from the at-grade inlets at Design Points 11,12 , \& 14. A proposed 20 ' sump inlet will intercept all of this runoff with a 42 " RCP lateral connecting with the $42^{\prime \prime}$ main within Borrowdale Lane at a proposed storm manhole.

Design Point $16\left(\mathrm{Q}_{5}=10.4 \mathrm{cfs}, \mathrm{Q}_{100}=20.8 \mathrm{cfs}\right)$ consists of runoff from Basin $\mathrm{L}, 3.86$ acres of single family home lots, the Ryedale Way cul-de-sac, and Pronghom Meadows Circle. A proposed 10' at-grade inlet will intercept a portion of this runoff while the remaining continues within the curb and gutter to the sump inlet at Design Point 17. Pipe $17\left(18^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=6.5 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=9.3 \mathrm{cfs}\right)$ conveys the intercepted runoff and connects to the 60 " RCP storm main (Pipe 22, $\mathrm{Q}_{5}=78.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=158.1 \mathrm{cfs}$) that drains into the detention/water quality facility at Design Point 23/25. For the minor event storm, the curb capacity of ramp curb at 1.5% is 13.8 cfs .

Design Point $17\left(\mathrm{Q}_{5}=7.8 \mathrm{cfs}, \mathrm{Q}_{100}=19.1 \mathrm{cfs}\right)$ consists of runoff from Basin $\mathrm{H}, 1.42$ acres of single family home lots and adjacent residential roadways, and the flow-by runoff from the at-grade inlet at Design Point 16. A proposed 10 ' sump inlet will intercept all of this runoff with a 24 " RCP (Pipe 20) connecting with the $42^{\prime \prime}$ lateral to DP-15. The $42^{\prime \prime}$ lateral combines with the 42 " Borrowdale Lane main at a storm manhole at

the roadway intersection. Pipe $18\left(60^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=67.7 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=141.5 \mathrm{cfs}\right)$ conveys the combined runoff to the north to DP-23.

Design Point $19\left(\mathrm{Q}_{5}=10.4 \mathrm{cfs}, \mathrm{Q}_{100}=20.7 \mathrm{cfs}\right)$ consists of runoff from off-site Basin NC-2, 1.49 acres of existing Antelope Ridge Drive and N. Carefree Circle, and from Basin D, 1.75 acres of landscaped areas and single family home lots. For arterial streets in the minor storm event, the maximum street capacity is $6^{\prime \prime}$ depth at flowline with 34 cfs per side while maintaining at least (1) 10 ' lane width free of water. For the major storm event the maximum street flow is $8^{\prime \prime}$ depth at flowline dependant on street grade. An existing 15 ' Type R at-grade curb inlet (at approx. 4% street grade) intercepts a portion of this runoff ($\mathrm{Q}_{5}=9.0 \mathrm{cfs}$ and $\mathrm{Q}_{100}=12.8 \mathrm{cfs}$) and an existing 18 " storm (Pipe 6a) connects with Pipe 6B at an existing storm manhole. Pipe 6C is the $24^{\prime \prime}$ outfall pipe from this connection manhole and contains a combined runoff of $Q_{5}=17.5$ cfs and $\mathrm{Q}_{100}=39.7 \mathrm{cfs}$. The storm water in the existing Marksheffel Road storm sewer system is less in the developed conditions than in the existing conditions due to the over-detention of the proposed development runoff at DP-5. Per the Marksheffel Rd. Construction Drawings, the capacity of the system at Pipe 6C is 16 cfs . Pipe 6C connects into the face of the median sump inlet at DP-20.

Design Point $20\left(Q_{5}=4.5 \mathrm{cfs}, \mathrm{Q}_{100}=11.3 \mathrm{cfs}\right)$ consists of runoff from off-site Basin NC-1, 0.42 acres of existing N. Carefree Circle and Marksheffel Rd, and the flow-by from the at-grade inlet at Design Point 19. An existing 10^{\prime} Type R sump curb inlet intercepts all of this runoff and combines it with that from the incoming Pipe 6C. Pipe 7 represents the existing 30" outfall pipe from this inlet and contains a developed runoff rate of $\mathrm{Q}_{5}=21.2 \mathrm{cfs}$ and $\mathrm{Q}_{100}=48.9 \mathrm{cfs}$ (less than in the existing conditions). From the Marksheffel Rd. Construction Drawings, the capacity of the 30 " Pipe 7 is 29 cfs . This runoff continues within the existing Marksheffel Rd. storm system to the south to downstream facilities.

Design Point 20-DS ($\mathrm{Q}_{5}=33.8 \mathrm{cfs}, \mathrm{Q}_{100}=84.5 \mathrm{cfs}$) This design point quantifies the worst case surface storm runoff downstream of Design Point 20 if the existing Marksheffel Road storm system is at full capacity and the proposed facility overtops the emergency spillway. The quantity is a combination of the surface runoff at Design Point 20 and the theoretical difference in the listed capacity of Pipe 6C (16 cfs) and the total un-detained proposed developed runoff; which is a difference of $\mathrm{Q}_{5}=29.3 \mathrm{cfs}$ and $\mathrm{Q}_{100}=73.2 \mathrm{cfs}$. As previously mentioned, the allowable street runoff for arterial streets in the minor storm event is a max. $6^{\prime \prime}$ depth at flowline with 34 cfs per side while maintaining at least (1) 10 ' lane width free of water. For the

major storm event the maximum street flow is $8^{\prime \prime}$ depth at flowline dependant on street grade. Flowmaster gutter calculations are included in the Appendix of this report. The capacity of the arterial roadway (Marksheffel Rd.) downstream of the existing Marksheffel and N. Carefree intersection maintains acceptable flow depths, spreads, and overall flow rates as defined in the current Drainage Criteria Manual in the event of an entire $100-\mathrm{yr}$ storm overtopping the spillway.

Design Point $23\left(\mathrm{Q}_{5}=83.8 \mathrm{cfs}, \mathrm{Q}_{100}=173.0 \mathrm{cfs}\right)$ consists of the total runoff from the Windermere development that drains into the northem proposed Public Full Spectrum Extended Detention Basin and Water Quality Facility to be constructed with Filing 2. A Final Drainage Report will be completed with Windermere Filings $2 \& 3$ that further detail the detention/water quality facility and address any changes made to this Preliminary Drainage Report for Filings 2 \& 3. DP-23 represents the runoff from 49.32 acres (including Pond Basin M) of proposed Windermere on-site developed land at a calculated impervious value of 60.88%. A forebay will be constructed at this 60 " RCP entry point into the facility with a concrete low flow trickle channel draining to the outlet box micropool.

As the existing temporary detention facility is located on property not owned or controlled by the Windermere developer, please find in the appendix a letter from the Tract A owner (Yes! Communities) acknowledging their willingness to work with the Windermere developer in converting this existing temporary private facility into a public facility.

Design Point $24\left(Q_{5}=111.3 \mathrm{cfs}, \mathrm{Q}_{100}=199.7 \mathrm{cfs}\right)$ is described in the Existing Conditions section of this report. A forebay will be constructed at this channel entry point in the facility with a concrete low flow trickle channel within the middle of the pond bottom. For the design purposes of the proposed EDB facility at DP-25, this tributary runoff was calculated at the following impervious values: Basin WS 41.47 acres @ 2% (historic flow analysis since all developed runoff is treated and released at historic rates with Whispering Springs on-site facilities) and Basin CT 42.07 acres @ 70% (interpolated from previous reports and satellite imagery).

Design Point $25\left(\mathrm{Q}_{5}=185.7 \mathrm{cfs}, \mathrm{Q}_{100}=353.3 \mathrm{cfs}\right)$ consists of the combination of the existing tributary runoff (DP-24) with the developed runoff from the proposed Windermere site (DP-23) that collect in this proposed Public Full Spectrum Extended Detention Basin (EDB) Water Quality Facility. Per the Hilltop

Subdivision M.D.D.P., detention of developed runoff is required in order to maintain historic release rates under Marksheffel Road and to the east to the main Sand Creek channel. As mentioned in the Existing Conditions Section, there is currently a temporary detention pond located in this area constructed with the Chateau at Antelope Ridge development to the north. This facility was to be removed when the large regional Sand Creek detention facility was constructed to the south. This facility is no longer a feasible option due to multiple ownerships and lack of planned development to the east of Marksheffel Road. Therefore this permanent facility will ensure acceptable downstream runoff tates and the statement of this facility being temporary in the Chateau reports no longer applies. This Public EDB facility will be required with the development of Windermere Filing No. 2 and a Final Drainage Report will be completed at that time that will provide the final design of this facility. The following pond design/analysis has been completed with this Preliminary Drainage Report for Windermere:

The Extended Detention Basin (EDB) facility was designed using the sizing spreadsheet (See Appendix) and criteria from the Urban Drainage and Flood Control District (UDFCD). A total of 132.86 acres of land is tributary to this facility at a composite imperviousness of 45.4%. An Excess Urban Runoff Volume (EURV) of 6.548 acre-feet is required. This volume is provided under the top of outlet box opening (elevation 6576.50, within the orifice plate of the outlet box).

Forebays will be constructed at both Design Points 23 \& 24 and will likely consist of riprap berms with small outlet pipes draining a concrete bottom forebay. Final details will be provided with the Windermere Filing No. 2 Final Drainage Report. An 8^{\prime} wide concrete trickle channel at 0.50% grade will be installed down the center of the basin to convey the low flows to the outlet box and limit erosion within the bottom of the facility. A 3.0% minimum basin bottom slope into the trickle channel is provided as per the UDFCD requirements.

The bottom of the detention basin is at an elevation of 6571.00 with the EURV provided at the elevation 6576.50. A 20 ' wide outlet box (4 ' deep opening) is proposed with a top of box at this 6576.50 elevation. For a Full Spectrum facility, the outlet box orifice holes within the front plate are to drain the EURV in 72 hours, resulting in the necessary orifice hole sizing of 1 column of $1-7 / 8^{\prime \prime}$ diameter circular holes. A 2.5 , deep concrete bottom micropool is to be installed within the outlet structure. A removable trash screen of $35^{\prime \prime}$ in width will be placed in front of the orifice plate to help prevent the orifice holes from clogging. A

54 " RCP outlet, Pipe 23, will convey the facility's restricted release ($\mathrm{Q}_{2}=3.22 \mathrm{cfs}, \mathrm{Q}_{100}=80.70 \mathrm{cfs}$) to the adjacent Marksheffel Road ditch, which drains to the existing 24" CMP culvert under Marksheffel Road (DP-26).

A 115 ' length emergency spillway located at elevation 6579.00 will pass the entire incoming 100 -year storm event (353.3 cfs) at a flood depth less than 1.0'. Per the El Paso County Drainage Criteria Manual (DCM), the top of the pond berm shall be 2.0 ' higher than the flood depth water surface elevation, in this case at 6582.00. This emergency spillway will only be utilized in the case of a complete outlet box failure and will be constructed of riprap rock buried under top soil and re-vegetated. Also, a 15 ' wide maintenance access road at 12% grade will be installed to the bottom of the facility as per the DCM. By utilizing the Full Spectrum Outlet box design, the release rates are significantly below historic levels. A maximum allowable release rate from this facility can be conservatively calculated as the direct difference between the release rates at M.D.D.P. Design Points $1 \mathrm{C} \& 1 \mathrm{X} ; \mathrm{Q}_{5}=65 \mathrm{cfs}$ and $\left.\mathrm{Q}_{100}=252 \mathrm{cfs}\right)$.

Maintenance of the Public detention/water quality structures is by El Paso County. Aesthetic maintenance of the facility will be by either the home owner's association or Windermere Metropolitan District 1 as is to be determined.

Design Point $26\left(\mathrm{Q}_{5}=7.6 \mathrm{cfs}, \mathrm{Q}_{100}=90.9 \mathrm{cfs}\right)$ consists of the total developed runoff to the existing 24 " CMP Marksheffel Road culvert crossing from the north-west (proposed facility release and Basin S, 4.52 acres of single family homes and Marksheffel Road ditch). This runoff quantity does not include that from the upstream Marksheffel Road ditch.

Design Point 26 directly correlates with M.D.D.P. DP-1C, which states a maximum flow rate in existing and developed conditions of $Q_{5}=250 \mathrm{cfs}$ and $\mathrm{Q}_{100}=852 \mathrm{cfs}$ that crosses under Marksheffel Road. Using a conservative approach by directly adding the M.D.D.P. DP-1X runoff (increased as previously stated) with the quantified DP-26 runoff from the proposed site analysis, a total runoff value can be compared with the M.D.D.P. allowable runoff rate at this culvert crossing of Marksheffel Road. In the proposed developed conditions, the total runoff is $\mathrm{Q}_{5}=192.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=690.9 \mathrm{cfs}$. The proposed development and construction of a large public regional detention/water quality facility releases runoff to downstream

Page 15
facilities below historic and allowable rates and therefore will not be detrimental to any downstream facilities.

EROSION CONTROL PLAN

Erosion control measures will be installed per the approved grading/erosion control plans and in accordance with the El Paso County Drainage Criteria Manual.

DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso Country Drainage Criteria Manual, as revised in November 1991 and October 1994. Stormwater quality analysis and Extended Detention Basin (EDB) design are per the Urban Drainage and Flood Control District Manual and UDBMP Version 3.01 spreadsheet. The Rational Method was used to estrmate stormwater runoff to the proposed inlets, storm sewer pipes, and detention/water quality facilities.

FLOODPLAIN STATEMENT

No portion of this site is located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C 0543F effective date, March 17, 1997 (See Appendix).

DRAINAGE AND BRIDGE FEES FILING NO. 1

The Windermere development is located in the Sand Creek Basin and consists of a total acreage of 52.068 acres with a total of 201 single family home lots (3.86 DU/Acre). Filing No. 1 will be platted at this time and contains a total of 14.957 acres. The 2014 El Paso County Drainage Fees are $\$ 15,000$ per impervious acrea and the Bridge Fees are $\$ 4,544$ per impervious acre. An impervious value of $4 \mathrm{DU} /$ Acre was applied (38\%).

Drainage Fees Filing 1:

$\$ 15,000$ /acre x 5.684 acres
\$85,260.00
Bridge Fees Filing 1:
$\$ 4,544 /$ acre x 5.684 acres
\$25,828.10

TOTALS:

 \$ 111,088.10Fees or use of existing credits are due prior to plat recordation. Prior to issuance of building permits a plat will need to be recorded and appropriate drainage facility and erosion control assurances will need to be posted.

CONSTRUCTION COST OPINION - WINDERMERE FILING NO. 1

Private Drainage Facilities Non-Reimbursable

ITEM	DESCRIPTION
1.	Retaining Walls in Private Pond (Face foot)
2.	Geotextile Fabric (Erosion Control) (Under riprap)
3.	Rip Rap, d50 Size from $6^{\prime \prime}$ to $24^{\prime \prime}$
4.	Detention Facility Construction
5.	Detention Outlet Structure
6.	Detention Emergency Spillway
	SUB TOTAL
	10\% ENGINEERING
	5\% CONTINGENCIES
	TOTAL

	UNIT				
QUANTITY		COST		COST	
$1,789.00$	FF	$\$$	35	$\$ 62,615.00$	
192.00		$\$$	5	$\$$	
	SY	$\$$	960.00		
192.00	CY	$\$$	98	$\$ 18,816.00$	
$1,760.00$	CY	$\$$	11	$\$ 19,360.00$	
1.00	EA	$\$ 18,000$	$\$ 18,000.00$		
1.00	EA	$\$ 2,000$	$\$ 2,000.00$		
				$\$ \mathbf{1 2 1 , 7 5 1 . 0 0}$	
				$\$ \mathbf{1 2 , 1 7 5 . 1 0}$	
				$\$ \mathbf{6 , 0 8 7 . 5 5}$	
				$\$ \mathbf{1 4 0 , 0 1 3 . 6 5}$	

Public Drainage Facilities Non-Reimbursable

1.	10^{\prime} Type R Inlet	1 EACH	\$6,680/EA	\$	6,680.00
2.	15' Type R Inlet	2 EACH	\$7,422/EA	\$	14,844.00
3.	Grated Inlet	1 EACH	\$3,440/EA	\$	3,440.00
4.	$18^{\prime \prime}$ RCP Storm Drain	54 LF	\$53/LF	\$	2,862.00
5.	24" RCP Storm Drain	1,144 LF	\$58/LF	\$	66,352.00
6.	30" RCP Storm Drain	44 LF	\$77/LF	\$	3,388.00
7.	36" RCP Storm Drain	66 LF	\$95/LF	\$	6,270.00
8.	36" FES	1 EA	\$1,200/EA	\$	1,200.00
9.	Type I Storm MH (slab)	2 EACH	\$4,575/EA	\$	9,150.00
10.	Type I Storm MH (box)	1 EACH	\$7,160/EA	\$	7,160.00

SUB-TOTAL
 10\% ENGINEERING
 5% CONTINGENCIES
 TOTAL

$$
\begin{array}{rr}
\$ & 121,346.00 \\
\$ & 12,134.60 \\
\$ & 6,067.30 \\
\hline & \mathbf{1 3 9}, 547.90 \\
\hline
\end{array}
$$

Classic Consulting Engineers \& Surveyors cannot and does not guarantee that the construction cost will not vary from these opinions of probable construction costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular.

SUMMARY

Runoff for the proposed Windermere development is collected in on-site storm sewer systems and routed to two Public Full Spectrum Extended Detention Basin Water Quality facilities. This report describes the final design of the Filing No. 1 storm sewer system and detention/water quality pond. Preliminary design for the storm system and large regional facility at the north end of the site is included in the report. A final drainage report is required with the future Filing $2 \& 3$ of Windermere that will discuss final design of such facilities. The use of Full Spectrum outlet structures provides a release rate from the proposed facilities much less than historic and therefore the proposed Windermere development does not cause any downstream facility constraints. This report/development is in compliance with the Master Development Drainage Plan for Hilltop Subdivision, the Sand Creek Drainage Basin Planning Study, and the El Paso County Drainage Criteria Manual.

PREPARED BY:

Classic Consulting Engineers \& Surveyors, LLC

Matthew Larson
Project Engineer
mal/244100/REPORTS/PDR-FDR-FIL1.doc

REFERENCES

1. City of Colorado Springs/County of El Paso Drainage Criteria Manual dated October 1991.
2. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corp, dated March 1996.
3. "Master Development Drainage Plan for Hilltop Subdivision El Paso County, Colorado," by URS Greiner, Inc. prepared November 1, 1996 (last revised February 1998)
4. "Preliminary Drainage Report for Whispering Springs Development and Final Drainage Report for Whispering Springs Filing No. 1," by Rockwell Consulting, Inc. dated August 2013.
5. "Final Drainage Report and Erosion Control for Chateau at Antelope Ridge," by URS, dated December 1998.
6. "Preliminary Drainage Report for Pronghorn Meadows and Final Drainage Report for Pronghorn Meadows Filing No. 1," by URS, dated September 4, 2002.
7. "Final Drainage Report for Pronghorn Meadows Filing 2," by URS, dated July 2004.
8. "Final Drainage Report for Pronghorn Meadows Filing 3," by URS, dated May 2005.
9. 'North Carefree Circle Developed Drainage Basins Map,' by URS, dated February 2003.
10. "Final Drainage Report Marksheffel Road from Constitution Ave. to Dublin Rd.," by CH2M Hill, dated May 2008 and Marksheffel Road Construction Drawings by Wilson \& Company.
11. Drainage Criteria Manual (Volume 3) latest revision April 2008, Urban Drainage and Flood Criteria District.

APPENDIX

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

VICINITY MAP

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

SOILS MAP (S.C.S SURVEY)

Map Unit Legend

El Paso County Area, Colorado (CO625)				
Map Unit Symbol	Map Unit Name	Acres In AOI	Percent of AOI	
97	Truckton sandy loam, 3 to 9 percent slopes	261.8	100.0%	
Totals for Area of Interest		261.8	$\mathbf{1 0 0 . 0 \%}$	

F.E.M.A. MAP

REFERENCE MATERIAL FROM ADJACENT STUDIES

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf com) URVEYORS

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

o． \qquad岕

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

EXISTING DRAINAGE CONDITIONS CALCULATIONS

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

ION）7ヨココヨHSXY甘VW O1＇ISIXヨ	6997	$\varepsilon 8 \varepsilon 1$	$69^{\prime \prime}$	192	8＇92	D6＇9s	St ${ }^{\text {PS }}$		92
ONOd O1＇ SIX $^{\text {a }}$	LSIZ	GLLI	$69^{\prime \prime}$	192	8＇G2	88＇¢ \dagger	96＊＊		GZ
ONOd OL $\exists 115-3 \pm 0$	L＇66l		69°	49＇2	8＇G2	29＇で	てでで	10 NISV8＋SM NISVE	¢ 2
	08	LE	988	86	¢¢	060	92%		02
	¢＇で	L＇9	98^{8}	86^{\prime}	¢＇S	でし	\downarrow ¢ \downarrow	で⿹N NIS甘8	61
	でい	9 G	999	$9 L^{\prime} \mathcal{L}$	¢＇Zl	89^{\prime}	OS ${ }^{\circ}$	J－X ${ }^{\text {－}}$ NISVG 8 SL－O NISVG	8
	9 しt	002	bS 9	ひし¢	L＇81	OS＇L	269	DL－O NISV8 \％EL－o NISVG	L
	9 で	－81	019	£ ¢ ¢	£＇Gし	869	$\angle E^{\prime} \mathrm{G}$		9
	9 －	$て ゙ L$		W＇b	86	66°	EL＇	91－d NIS甘も	\dagger
eziS 10ju！	（001）0	（c）0	（001）	（S） 1	O1 wnulxew	（001）$V 5$ נuejeninnby	（c）$\forall 3$ ұนәןеп！！nbョ	suiseg 6u！pnqułu00	（s） $3 u!0_{\mathrm{d}}$ u6ised
	MOI		K！！suepu｜						
								7VW	
								PI／t0／0I	： $31 \forall 0$
								00．1ヶtz	：y3awnn 800
							387W4GINIM		

dJ¢ „9E X ${ }^{\text {¢ }}$	6.09	$L \downarrow て$	t9．9	てし¢	L＇81	$81^{\prime} 6$	$26^{\circ} \mathrm{L}$	LSIXE－8－90 \％	8
¢OY．OE X ${ }^{\text {P }}$	$\varepsilon \varepsilon ¢$	でって	$90^{\circ} 9$	เV＇¢	GGl	088	$60^{\circ} \mathrm{L}$	1SIX3－02－d0＋ 99 ヨdld	L
¢J¢ „ちて Xヨ	$6{ }^{\circ} \mathrm{L}$	9＇レて	909	เゼ¢	GS	06.2	カ®＇9	$99 \mathrm{Jdld}+\mathrm{eg}$ ヨdld	9
dJy „૪Z $\times 3$	97%	781	01．9	$\varepsilon \square^{\circ} \varepsilon$	\＆$¢$	86.9	LES	9－dO	99
dJy ． 81 ＇Xヨ	1.8	$8{ }^{\circ}$	988	$86^{\prime \prime}$	\mathcal{G}	160	$\angle 6.0$		e9
＊＊Z！S ed！d	（001）0	（c） 0	（001）	（c）	01 unw！xew	$\begin{gathered} \text { (001) } \forall 0 \\ \text { juәן } \end{gathered}$		su！seg 6u！nnq！uu00	uny od！d
	MOIJ		Kı｜sueyul						
							7VW		
							＊I／E0／01		： $31 \forall 0$
							00＇18\％Z		：$¢ \exists$ awnn 80%
							Jd马WXJaNIM		： 3 WYN 80Γ

JOB NAME:	NDER				
JOB NUMBER:	11.00				
DATE:	03/14				
CALCULATED BY:					
DESIGN POINT	EX. 19			EAR FLOW	
Q(100)	12.5	I(100)	8.9		
DEPTH	0.35	Fr	2.46	Inlet size ? L(i) =	15
SPREAD	11.0	L(1)	20.8	If Li < L(2) then $\mathrm{Qi}=$	9
CROSS SLOPE	2.0\%	L(2)	12.5	If $\mathrm{Li}>\mathrm{L}(2)$ then $\mathrm{Qi}=$	8
STREET SLOPE	4.0\%	L(3)	44.7	$F B=$	4.4
				CA(eqv.) $=$	0.50
				R FLOW	
Q(5)	6.7	I(5)	5.0		
DEPTH	0.30	Fr	2.35	Inlet size ? L(i) =	15
SPREAD	8.8	L(1)	15.8	If $\mathrm{Li}<\mathrm{L}(2)$ then $\mathrm{Qi}=$	6
CROSS SLOPE	2.0\%	L(2)	9.5	If $\mathrm{Li}>\mathrm{L}(2)$ then $\mathrm{Qi}=$	5
STREET SLOPE	4.0\%	L(3)	33.9	$\mathrm{FB}=$	1.9
				CA(eqv.) $=$	0.37

DEVELOPED DRAINAGE CONDITIONS CALCULATIONS

960	06.0	190	ヤL＇	Y
960	06.0	－L＇0	$0 \varepsilon^{\prime} \varepsilon$	Γ
960	$06^{\circ} 0$	て，	ガも	I
960	060	\＆bO	でし	H
S6\％	06.0	$29^{\circ} 0$	$\angle 6.1$	\bigcirc
S6\％	06.0	$9{ }^{\circ} \mathrm{O}$	98.	\pm
960	06.0	$1 て ゙ 0$	LT＇し	\exists
020	$09^{\circ} 0$	80＇	GL＇	0
960	060	OL＇	Oでゅ	0
960	06.0	$99^{\circ} 0$	ZL゙Z	G
S60	06.0	880	SEE	\forall
（001） 5	（c） 3	（כ७）$\forall \exists \pm \forall$	$\begin{gathered} (\supset \forall) \forall \exists \forall \forall \\ 7 \forall \perp O \perp \end{gathered}$	NISV8
VG～SNOIIION09 0ヨd07ヨ＾ヨコ				
TVW				： 18 वヨ⿺𠃊ากัวาช
¢I／E0／0I				：$\exists \downarrow \square 0$
00\％1ヵカ				： y BGWกN 80\％
TูनW2FaNIM				：$\exists \mathrm{WYN}$ 8OC

t＇zz	0＇L	208	DS＇力	S＇L	$\varepsilon\urcorner$	0%	\％0＇t	966	$\varepsilon ¢$	1	05	90	LLZ	Et＇	Y
LOZ	ع0l	เย＇8	897	89	¢ $\stackrel{1}{ }$	L＇s	\％レ＇て	OLb	$\varepsilon \varsigma$	8	¢ 16	90	09%	02%	r
$0 \cdot 92$	6 Zl	86.2	$6 \mathrm{~b}^{\text {b }}$	84	$\varepsilon \checkmark$	89	\％8 2	008	¢ $¢$	8	OZL	90	97 \％	L8＇\％	I
06	¢＇t	しで8	29.6	12	6.1	ε＇\downarrow	\％¢	087	\＆＇s	1	OS	90	01.1	860	H
t＇zz	14	29＇L	62%	68	6.	$\varepsilon \downarrow$	\％¢！	088	02 L	26	061	90	962	89^{\prime}	9
681	－6	29＇8	$\angle 8^{\prime}$	69	$\mathrm{s} \cdot$	09	\％6\％	oss	$\square \nabla$	02	02	szo	612	06.	\pm
98	です	88.8	00＇G	ts	9＇1	$\varepsilon{ }^{\circ} \downarrow$	\％${ }^{\prime}$	00t	6 6	\dagger	09	90	160	¢80	\exists
98	6 6	098	28\％	$1 \cdot 9$	でし	69	\％6．	06\％	6 b	L	001	90	$66^{\circ} 0$	280	0
c9z	L＇El	S1．8	65^{\prime} b	\＆＇L	02	¢9	\％¢＇ε	062	$\varepsilon \varsigma$	1	OS	90	てZ๕	98%	0
¢ 81	で6	206	015	0 ＇s	でて	¢＇¢	\％¢て	StL	tib	\downarrow	01	90	50\％	08＇	θ
て＇81	16	OL＇L	66 \＆	LOL	でて	て＇s	\％ZZ	089	S8	9	021	90	Ls ${ }^{\prime}$	LてZ	
$\begin{aligned} & \begin{array}{c} (S 10) \\ (001) O \\ S M O 7-1 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (sjo) } \\ & \text { (g)O } \\ & 7 \forall 101 \end{aligned}$	$\begin{gathered} (\mathrm{J} / \mathrm{LU!}) \\ (00 \mathrm{I})! \\ \lambda \perp I S! \end{gathered}$	II／U！ （G） INI	$\begin{gathered} \text { (ulw) } \\ \mid \forall 101 \\ 01 \end{gathered}$	$\begin{gathered} \text { (ulim) } \\ 01 \\ \mathrm{MO}^{-} \end{gathered}$		$\begin{gathered} \text { (\%) } \\ \text { adois } \\ 1 \quad 1 \end{gathered}$	（घ） 6иәา IS	$\begin{gathered} \text { u!lu) } \\ \circ 1 \end{gathered}$			（g）	$(001) \forall 0$	（c） 80 13IHOIIM	IS
\qquad ： $190.07 \forall 0$ ：$\exists 1 \forall 0$															

（чગทด｜әнәчร） ION）｜ə ${ }^{2}$	9＇06	92	69	892	8＇G7	£ย6 6	$68^{\prime} \mathrm{Z}$	S NISVE＋¢Z Jdld	97
	£ ¢ ¢	L981	$69 *$	192	89	6¢＇SL	0602	$t \tau \cdot d Q+\varepsilon \tau \cdot d 0$	SZ
ONOd OL \exists IlS－370	L＇661	£＇ルし	$69{ }^{\circ}$	$1{ }^{4} 2$	8＇S2	29＇で	てでで	13 NISVE＋SM NISVE	bて
ONOd O1 \exists İJWYヨONM	O＇ELI	$8 ¢ 8$	88°	262	9.02	L＇て£	てZ＇8Z	W NISVE＋ZZ ヨdld	$\varepsilon 乙$
ไə｜u｜ue！pau duins 6uls！\times ］． 01	£＇レا	S＇t	098	18＇	L＇9	เモ＇レ	E6＇0		02
	LOZ	\＄0\％	098	18\％	$1 \cdot 9$	じて	91.2	O NISV8＋て－ON NISVE	61
	1.61	82	969	168	£＇レا	SL＇Z	86^{\prime}	$91-\mathrm{da} \mathrm{Kq}_{\text {－MOİ }}+\mathrm{H}$ NISVE	4
	800	－ 01	569	168	£＇レレ	662	$99^{\prime} 2$	7NIS甘G	91
	L＇OG	¢＇02	969	16.8			－て＇ 9		§
	¢＇もて	$\varepsilon \downarrow$	569	$16 ¢$	£ \downarrow	£¢＇	$\square \varepsilon$	O NISVE＋\ddagger NISVG	\dagger
	ャてZ	0＇ll	208	bs＇t	G＇L	L＇Z	$\varepsilon \square^{\prime} \mathrm{C}$	Y NISVE	て，
	8 ＇tc	て＇しし	86 L	$66^{\prime \prime}$	8.2	で¢	$6 \mathrm{~b}^{\prime}$	Ol－da Kq－MOly＋¢ NISVE	11
	（001）0	（c）0	（001）	（c）	01 سnuluxew	（00L）$\forall 3$ 	（c）$\vee \mathrm{O}$ 	suıseg Bu！̧nqujuoう	（s） 3 uliod ubisen
	MOIJ		Kısuapu						
							$7 \mathrm{TV}$		： 1 0 031＊ากวาษว
								00.1 thz	：ygawnn 80%
							T8FW8GONIM		： 3 WVN 80¢

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	WINDERMERE				
	2441.00				
	10/03/14				
	MAL				
DEVELOPED CONDITIONS ~ PIPE TRAVEL TIMES					
		STREE	CHANN	LOW	
PIPE RUN	Pipe Diameter (f)	Length (f)	Slope (\%)	Velocity (fps)	$\begin{gathered} \mathrm{Tc} \\ (\mathrm{~min}) \end{gathered}$
1	2.0	220	1.0\%	7.2	0.5
3b	3.0	60	1.0\%	9.5	0.1
4	2.0	750	4.0\%	14.4	0.9
8	3.0	300	3.0\%	16.4	0.3
10	3.0	270	4.0\%	18.9	0.2
15	3.5	250	4.0\%	21.0	0.2
18	5.0	155	0.5\%	9.4	0.3
22	5.0	490	0.5\%	9.4	0.9

JOBNAME: JOB NUMBER: DATE: CALCULATED BY:	WINDERMERE				
	2441.00				
	3/14				
	MAL				
DESIGN POINT	1		100 YEAR FLOW		
Q(100)	26.2	I(100)	8.2		
DEPTH	0.52	Fr	1.68	Inlet size ? L(i) =	15
SPREAD	19.5	L(1)	25.3	If $\mathrm{Li}<\mathrm{L}(2)$ then $\mathrm{Qi}=$	16
CROSS SLOPE	2.0\%	L(2)	15.2	If $\mathrm{Li}>\mathrm{L}(2)$ then $\mathrm{Qi}=$	16
STREET SLOPE	1.5\%	L(3)	54.2	FB $=$	11
				CA(eqv.) $=$	1.31
		5 YEAR FLOW			
Q(5)	13.1	1(5)	4.6		
DEPTH	0.42	Fr	1.60	Inlet size ? L(i) =	15
SPREAD	14.8	L(1)	18.1	If Li < $\mathrm{L}(2)$ then $\mathrm{Qi}=$	11
CROSS SLOPE	2.0\%	L(2)	10.9	If $\mathrm{Li}>\mathrm{L}(2)$ then $\mathrm{Q} \mathbf{i}=$	9
STREET SLOPE	1.5\%	L(3)	38.9	FB $=$	4
				CA(eqv.)	0.90

JOB NAME:	WINDERMERE
JOB NUMBER:	2441.00
DATE:	$10 / 03 / 14$
CALCULATED BY:	MAL

DESIGN POINT	9	100 YEAR FLOW			
Q(100)	26.0	I(100)	8.0		
DEPTH	0.44	Fr	2.63	Inlet size ? L(i) =	20
SPREAD	15.5	L(1)	31.4	If $\mathrm{Li}<\mathrm{L}(2)$ then $\mathrm{Qi}=$	17
CROSS SLOPE	2.0\%	L(2)	18.9	If $\mathrm{Li}>\mathrm{L}(2)$ then $\mathrm{Qi}=$	16
STREET SLOPE	4.0\%	L(3)	67.3	FB $=$	10
				CA(eqv.) $=$	1.25

5 YEAR FLOW

Q(5)	12.9	I(5)	4.5		
DEPTH	0.36	Fr	2.49	Inlet size ? L(i) =	20
SPREAD	11.8	L(1)	22.6	If Li $<\mathrm{L}(2)$ then $\mathrm{Qi}=$	11
CROSS SLOPE	2.0\%	L(2)	13.6	If $\mathrm{Li}>\mathrm{L}(\mathbf{2})$ then $\mathrm{Q} \mathrm{i}=$	9
STREET SLOPE	4.0\%	L(3)	48.4	$\mathrm{FB}=$	4
				CA(eqv.) $=$	0.85

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	WINDER 2441.00 $10 / 03 / 14$ $M A L$				
DESIGN POINT	10			EAR FLOW	
Q(100)	13.5	I(100)	8.0		
DEPTH	0.36	Fr	2.48	Inlet size ? L(i) =	15
SPREAD	11.5	L(1)	22.0	If $\mathrm{Li}<\mathrm{L}(2)$ then $\mathrm{Qi}=$	9
CROSS SLOPE	2.0\%	L(2)	13.2	If $\mathrm{Li}>\mathrm{L}(2)$ then $\mathrm{Qi}=$	9
STREET SLOPE	4.0\%	L(3)	47.1	FB $=$	5
				CA(eqv.) $=$	0.62

		5 YEAR FLOW			
Q(5)	5.6	1 (5)	4.5		
DEPTH	0.28	Fr	2.28	Inlet size ? L $(\mathrm{i})=$	15
SPREAD	7.8	L(1)	13.6	If Li < L(2) then $\mathrm{Qi}=$	6
CROSS SLOPE	2.0\%	L(2)	8.2	If Li> L(2) then Qi=	4
STREET SLOPE	4.0\%	L(3)	29.2	FB $=$	1
				CA(eqv.) $=$	0.29

Classic Consulting

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	WINDERMERE				
	2441.00				
	10/03/14				
	MAL				
DESIGN POINT	11		100 YEAR FLOW		
Q(100)	24.8	I(100)	8.0		
DEPTH	0.44	Fr	2.63	Inlet size ? L(i) =	10
SPREAD	15.5	L(1)	31.4	If Li < L (2) then $\mathrm{Qi}=$	8
CROSS SLOPE	2.0\%	L(2)	18.9	If $\mathrm{Li}>\mathrm{L}(2)$ then $\mathrm{Qi}=$	12
STREET SLOPE	4.0\%	L(3)	67.3	FB $=$	17
				$C A($ eqv. $)=$	2.12
		5 YEAR FLOW			
Q(5)	11.2	1(5)	4.5		
DEPTH	0.34	Fr	2.45	Inlet size ? L(i) =	10
SPREAD	10.8	L(1)	20.3	If Li < $\mathrm{L}(2)$ then $\mathrm{Qi}=$	6
CROSS SLOPE	2.0\%	L(2)	12.2	If $\mathrm{Li}>\mathrm{L}$ (2) then Qi $=$	6
STREET SLOPE	4.0\%	L(3)	43.4	FB $=$	6
				CA(eqv.) $=$	1.26

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	WINDERMERE				
	2441.00				
	10/03/14				
	MAL				
DESIGN POINT	14		100 YEAR FLOW		
Q(100)	24.5	I(100)	6.9		
DEPTH	0.44	Fr	2.63	Inlet size ? L(i) =	20
SPREAD	15.5	L(1)	31.4	If Li < L(2) then Qi $=$	16
CROSS SLOPE	2.0\%	L2)	18.9	If $\mathrm{Li}>\mathrm{L}(2)$ then $\mathrm{Qi}=$	15
STREET SLOPE	4.0\%	L(3)	67.3	FB $=$	9
				CA(eqv.) $=$	1.36
		5 YEAR FLOW			
Q(5)	12.3	1(5)	3.9		
DEPTH	0.35	Fr	2.47	Inlet size ? L(i) =	20
SPREAD	11.3	L(1)	21.4	If Li < L (2) then Qi $=$	11
CROSS SLOPE	2.0\%	L(2)	12.9	If $\mathrm{Li}>\mathrm{L}(2)$ then $\mathrm{Qi}=$	9
STREET SLOPE	4.0\%	L(3)	45.9	FB $=$	3
				$\mathrm{CA}(\mathrm{eqv}$. $)=$	0.89

| JOB NAME:
 JOB NUMBER:
 DATE: WINDERMERE
 CALCULATED BY: 2441.00
 MAL \mathbf{l} |
| :--- | :--- |

DESIGN POINT	16		100 YEAR FLOW		
Q(100)	20.8	$1(100)$	6.9		
DEPTH	0.48	Fr	1.65	Inlet size ? L(i) =	10
SPREAD	17.5	L(1)	22.2	If Li < L(2) then Qi $=$	9
CROSS SLOPE	2.0\%	L(2)	13.4	If $\mathrm{Li}>\mathrm{L}(2)$ then $\mathrm{Qi}=$	11
STREET SLOPE	1.5\%	L(3)	47.6	FB $=$	11
				$\mathrm{CA}(\mathrm{eqv}$. $)=$	1.64

		5 YEAR FLOW			
Q(5)	10.4	1(5)	3.9		
DEPTH	0.38	Fr	1.55	Inlet size ? L(i) =	10
SPREAD	12.8	L(1)	15.2	If Li $<\mathrm{L}$ (2) then $\mathrm{Qi}=$	7
CROSS SLOPE	2.0\%	L(2)	9.2	If $\mathrm{Li}>\mathrm{L}(2)$ then $\mathrm{Qi}=$	6
STREET SLOPE	1.5\%	L(3)	32.7	FB $=$	4
				CA(eqv.) $=$	1.00

Design Point 20.DS

Worksheet for Gutter - Syr

Project Description

Solve For Spread
Input Data

Channel Slope	0.02800	$\mathrm{ft} / \mathrm{ft}$
Discharge	33.80	ft / s
Gutter Width	2.00	ft
Gutter Cross Slope	0.08	ffft
Road Cross Slope	0.02	ffft
Roughness Coefficient	0.013	

Results

Spread 20.07 ft
Flow Area $\quad 4.15 \mathrm{ft}^{2}$
Depth 0.53 ft
Gutter Depression 0.13 ft

Velocity $8.14 \mathrm{ft} / \mathrm{s}$
Solve For
Input Data
Channel Slope
Discharge
Gutter Width
Gutter Cross Slope
Road Cross Slope
Roughness Coefficient
Spread
Results
Fepthen Area
Gutter Depression
Velocity

FILING NO. 1FULL SPECTRUM EDB FINAL DESIGN You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) SURVEYORS

JOB NAME: WINDERMERE
JOB NUMBER: 2441.00
DATE: 10/04/14
CALCULATED BY: MAL
FILING NO. 1 POND - VOLUME TO SPILLWAY
| POND SIZING WITH PONDPACK EQUATION:
NSERT POND DESIGN SIZE INFO: (RED)

AREA (BTM to TOP):		
	-	acres
-	-	acres
435	0.010	acres
488	0.011	acres
4,247	0.098	acres
5,558	0.128	acres
6,866	0.158	acres
8,219	0.189	acres
10,977	0.252	acres
	-	acres
	-	acres
	-	acres

PRELIMINARY SIZE:

VOLUME $=1 / 3\left\{(\mathrm{EL} 2-\mathrm{EL} 1)^{*}\left(\mathrm{~A} 1+\mathrm{A} 2+\left((\mathrm{A} 1 * \mathrm{~A} 2)^{\wedge} .5\right)\right)\right\}$

-	AC-FT	from	6,563	to	6,563	
-	AC-FT	from	6,563	to	6,563	-
0.00	AC-FT	from	6,563	to	6,563	0.00
0.05	AC-FT	from	6,563	to	6,564	0.06
0.22	AC-FT	from	6,564	to	6,566	0.28
0.28	AC-FT	from	6,566	to	6,568	0.56
0.34	AC-FT	from	6,568	to	6,570	0.90
0.22	AC-FT	from	6,570	to	6,571	1.12
-	AC-FT	from	6,571	to	-	1.12
-	AC-FT	from	-	to	-	1.12
-	AC-FT	from	-	to	-	1.12

*SIZING IS FOR PRELIMINARY PURPOSES ONLY.

APPROXIMATE SURFACE AREA REQUIREMENT

POND DEPTH (FT)	$$			SURFACE AREA (SF)
4	1.12	$=$	48,873	12,218
6	1.12	=	48,873	8,146
8	1.12	=	48,873	6,109
10	1.12	=	48,873	4,887

FILING NO. 1-5 YEAR

Project Summary	
Title	WINDERMERE -
Engineer	MLARG NO. 1
Company	CCES
Date	$10 / 3 / 2014$
Notes	WINDERMERE - FILING NO. 1
	5 YEAR POND ROUTING W/ STORMWATER QUALITY

Table of Contents

PO-1 (IN)	Level Pool Pond Routing Summary	3
FIL-1	Modified Rational Hydrograph	4

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

FILING NO. 1-5 YEAR

Subsection: Master Network Summary

Catchments Summary

		Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ${ }^{3} / \mathrm{s}$)
FIL-1	Base		5	0.617	0.180	20.50

Node Summary

Label										
Scenario							Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow ($\left.\mathrm{ft}^{3} / \mathrm{s}\right)$
 $0-1$ Base 5 0.607 0.550 0.63										

Pond Summary							
	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak flow ($\mathrm{ft}^{3} / \mathrm{s}$)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
PO-1 (IN)	Base	5	0.619	0.200	20.50	(N/A)	(N/A)
PO-1 (OUT)	Base	5	0.607	0.550	0.63	6,568.19	0.599

Subsection: Level Pool Pond Routing Summary
Label: PO-1 (IN)

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface,	$6,562.50 \mathrm{ft}$
Initial)	0.000 ac -ft
Volume (Initial)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial Outlet)	$0.00 \mathrm{ft}^{3 / \mathrm{s}}$
Flow (Initial Infiltration)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial, Total)	0.050 hours $^{\text {Time Increment }}$

Return Event: 5 years
Storm Event: CO SPRINGS - 5 Year

Inflow/Outflow Hydrograph Summary				
Flow (Peak In)	$20.50 \mathrm{ft}^{3} / \mathrm{s}$	Time to Peak (Flow, In)	0.200 hours	
Flow (Peak Outlet)	$0.63 \mathrm{ft}^{3} / \mathrm{s}$	Time to Peak (Flow, Outlet)	0.550 hours	

Elevation (Water Surface,	$6,568.19 \mathrm{ft}$
Peak)	$0.599 \mathrm{ac}-\mathrm{ft}$
Volume (Peak)	
Mass Balance (ac-ft)	$0.000 \mathrm{ac}-\mathrm{ft}$
Volume (Initial)	$0.619 \mathrm{ac}-\mathrm{ft}$
Volume (Total Inflow)	0.000 ac -ft
Volume (Total Infiltration)	$0.607 \mathrm{ac}-\mathrm{ft}$
Volume (Total Outlet	0.010 ac -ft
Outflow)	-0.002 ac -ft
Volume (Retained)	0.3%
Volume (Unrouted)	
Error (Mass Balance)	

FILING NO. 1-5 YEAR

Subsection: Modified Rational Hydrograph
Label: FIL-1

Return Event: 5 years
Storm Event: CO SPRINGS - 5 Year

FILING NO. 1-5 YEAR

Index

F

FIL-1 (Modified Rational Hydrograph, 5 years)... 4

M

Master Network Summary... 2
P

PO-1 (IN) (Level Pool Pond Routing Summary, 5 years)... 3

100-YR - FILING NO. 1

Project Summary	
Title	WINDERMERE -
FILNG NO. 1	
Engineer	MLARSON
Company	CCES
Date	10/3/2014
	WINDERMERE - FILING NO. 1
Notes	100 YEAR POND ROUTING W/ STORMWATER QUALITY

Table of Contents

	Master Network Summary	2
PO-1 (IN)	Level Pool Pond Routing Summary	3
FIL-1	Modified Rational Graph	4

FIL-1
Modified Rational Graph 4

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

100-YR - FILING NO. 1

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow ($\left.\mathrm{ft}^{3} / \mathrm{s}\right)$
FIL-1	Base	100	1.126		0.180

Node Summary

		Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ${ }^{3 / s}$)
0-1	Base		100	1.063	0.450	9.77

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Fow (ft ${ }^{3 / \mathrm{s} \text {) }) ~}$	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
PO-1 (IN)	Base	100	1.130	0.200	46.07	(N/A)	(N/A)
PO-1 (OUT)	Base	100	1.063	0.450	9.77	6,570.61	1.043

Subsection: Level Pool Pond Routing Summary Label: PO-1 (IN)

Infiltration	
Infiluation Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	6,562.50 ft
Volurne (Initial)	0.000 ac -ft
Flow (Initial Outtet)	$0.00 \mathrm{ft}^{3 / \mathrm{s}}$
Flow (Initial Infitration)	$0.00 \mathrm{ft}^{3 / \mathrm{s}}$
Flow (Initial, Total)	$0.00 \mathrm{ft}^{3 / \mathrm{s}}$
Time Increment	0.050 hours

Return Event: 100 years Storm Event: CO SPRINGS - 100 Year

Inflow/Outflow Hydrograph Summary			
Flow (Peak In)	$46.07 \mathrm{ft}^{3} / \mathrm{s}$	Time to Peak (Flow, In)	0.200 hours
Flow (Peak Outlet)	$9.77 \mathrm{ft}^{3} / \mathrm{s}$	Time to Peak (Flow, Outlet)	0.450 hours
Elevation (Water Surface, Peak)	6,570.61 ft		
Volume (Peak)	1.043 ac -ft		
Mass Balance (ac-ft)			
Volume (Initial)	$0.000 \mathrm{ac}-\mathrm{ft}$		
Volume (Total Inflow)	1.130 ac -ft		
Volume (Total Infiltration)	$0.000 \mathrm{ac}-\mathrm{ft}$		
Volume (Total Outlet Outflow)	$1.063 \mathrm{ac}-\mathrm{ft}$		
Volume (Retained)	$0.065 \mathrm{ac}-\mathrm{ft}$		
Volume (Unrouted)	-0.001 ac-ft		
Error (Mass Balance)	0.1 \%		

Subsection: Modified Rational Graph Label: FIL-1

Return Event: 100 years
Storm Event: CO SPRINGS - 100 Year

Method Type	Method T
Time of Duration (Modified Rational, Critical)	0.300 hours

[1]			[2]		
Time of Concentration (Modified Rational, Composite)	0.180	hours	Time of Duration (Modified Rational, Critical) Intensity (Modified Rational,	0.300	hours
Intensity (Modified Rational, Peak) Flow (Modified Rational, Peak) 7.109	in/h	Critical) Fow (Modified Rational, Critical)	46.07	$\mathrm{ft} / \mathrm{s} / \mathrm{h}$	

[3]					
First Outflow Breakpoint (Modified Rational, Method T)	0.379 hours				
Flow (Modified Rational, Allowable)	$25.80 \mathrm{ft}^{3} / \mathrm{s}$				
[4]			[5]		
Second Outflow Breakpoint (Modified Rational)	0.279	hours	Storage (Modified Rational, Estimated)	0.524	ac-ft
Flow (Modified Rational, Allowable)	25.80	$\mathrm{ft}^{3} \mathrm{~s}$			

100-YR - FILING NO. 1

Index

F
FIL-1 (Modified Rational Graph, 100 years)... 4

M

Master Network Summary... 2
P

PO-1 (IN) (Level Pool Pond Routing Summary, 100 years)... 3

FILING NO. 2 -

FULL SPECTRUM EDB PRELIMINARY DESIGN

\qquad

FILING 2 - EURV (TOP OF BOX)
POND SIZING WITH PONDPACK EQUATION:
ISERT POND DESIGN SIZE INFO: (RED)

AREA (BTM to TOP):		
	-	acres
4,724	0.11	acres
7,502	0.17	acres
49,737	1.14	acres
135,006	3.10	acres
153,596	3.53	acres
	-	acres
	-	acres
	-	acres
	-	acres
	-	acres
	-	acres

PRELIMINARY SIZE:
VOLUME $=1 / 3\left\{(E L 2-E L 1)^{*}\left(A 1+A 2+\left((A 1 * A 2)^{\wedge} .5\right)\right)\right\}$
CUMMULATIVE VOLUME:

-	AC-FT	from	6,571	to	6,571	
0.14	AC-FT	from	6,571	to	6,572	0.14
1.16	AC-FT	from	6,572	to	6,574	1.30
4.04	AC-FT	from	6,574	to	6,576	5.34
1.64	AC-FT	from	6,576	to	6,577	6.98
.	AC-FT	from	6,577	to	-	6.98
-	AC-FT	from	-	to	-	6.98
-	AC-FT	from	-	to	-	6.98
-	AC-FT	from	-	to	-	6.98
-	AC-FT	from	-	to	-	6.98
-	AC-FT	from	-	to	-	6.98

*SIZING IS FOR PRELIMINARY PURPOSES ONLY.

PPROXIMATE SURFACE AREA REQUIREMENT

POND DEPTH (FT)	$$			$\begin{gathered} \hline \text { SURFACE AREA } \\ \text { (SF) } \end{gathered}$
4	6.98	=	\#\#\#\#\#\#	75,980
6	6.98	=	\#\#\#\#\#\#	50,653
8	6.98	=	\#\#\#\#\#\#	37,990
10	6.98	=	\#\#\#\#\#\#	30,392

JOB NAME: WINDERMERE
JOB NUMBER: 2441.00
DATE: 10/04/14
CALCULATED BY: MAL
FILING 2 VOLUME TO SPILLWAY
POND SIZING WITH PONDPACK EQUATION:
ISERT POND DESIGN SIZE INFO: (RED)

POND ELEVATION : (from lowest to highest)

AREA (BTM to TOP):	
	-
4,724	0.108
acres	
acres	
7,502	0.172
acres	
49,737	1.142
acres	
135,006	3.099
198,782	4.563
216,813	4.977
	acres
	acres
	-
	acres
	-
	acres
	-
	acres

PRELIMINARY SIZE:
VOLUME $=1 / 3\left\{(E L 2-E L 1)^{*}\left(A 1+A 2+\left((A 1 * A 2)^{\wedge} .5\right)\right)\right\}$

-	AC-FT	from	6,571	to	6,571	
0.14	AC-FT	from	6,571	to	6,572	0.14
1.16	AC-FT	from	6,572	to	6,574	1.30
4.04	AC-FT	from	6,574	to	6,576	5.34
7.54	AC-FT	from	6,576	to	6,578	12.88
4.72	AC-FT	from	6,578	to	6,579	17.60
-	AC-FT	from	6,579	to	-	17.60
-	AC-FT	from	-	to	-	17.60
-	AC-FT	from	-	to	-	17.60
-	AC-FT	from	-	to	-	17.60
-	AC-FT	from	-	to	-	17.60

*SIZING IS FOR PRELIMINARY PURPOSES ONLY.

.PPROXIMATE SURFACE AREA REQUIREMENT

POND DEPTH (FT)	$$			SURFACE AREA (SF)
4	17.60	=	\#\#\#\#\#	191,654
6	17.60	=	\#\#\#\#\#\#	127,769
8	17.60	=	\#\#\#\#\#\#	95,827
10	17.60	=	\#\#\#\#\#\#	76,661

FILING NO. 2-5 YEAR

Project Summary	
Title	WINDERMERE -
Engineer	MLARSON
Company	CCES
Date	10/3/2014
Notes	WINDERMERE - FILNG NO. 2
	5 YEAR POND ROUTING W/ STORMWATER QUALTY

Table of Contents

	Master Network Summary	2
PO-1 (IN)	Level Pool Pond Routing Summary	3
DP-24	Modified Rational Graph	4

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

FILING NO. 2-5 YEAR

Subsection: Master Network Summary

Catchments Summary

Node Summary

		Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Fow ($\mathrm{ft}^{3 / \mathrm{s}}$)
0-1	Base		5	5.168	0.950	3.21

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ${ }^{3 / 5}$)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
$\mathrm{PO}-1$ (IN)	Base	5	7.080	0.450	171.74	(N/A)	(N/A)
PO-1 (OUT)	Base	5	5.168	0.950	3.21	6,576.46	6.898

FILING NO. 2-5 YEAR

Subsection: Level Pool Pond Routing Summary
Label: PO-1 (IN)
Return Event: 5 years

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface,	$6,571.00 \mathrm{ft}$
Initial)	$0.000 \mathrm{ac-ft}$
Volume (Initial)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial Outtet)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial Infiltration)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial, Total)	0.050 hours

Inflow/Outflow Hydrograph Summary			
Flow (Peak In)	$171.74 \mathrm{ft}^{3} / \mathrm{s}$	Time to Peak (Flow, In)	0.450 hours
Flow (Peak Outlet)	$3.21 \mathrm{ft}^{3} / \mathrm{s}$	Time to Peak (Flow, Outlet)	0.950 hours

Elevation (Water Surface,	$6,576.46 \mathrm{ft}$
Peak)	$6.898 \mathrm{ac}-\mathrm{ft}$
Volume (Peak)	
Mass Balance (ac-ft)	$0.000 \mathrm{ac}-\mathrm{ft}$
Volume (Initial)	$7.080 \mathrm{ac}-\mathrm{ft}$
Volume (Total Inflow)	$0.000 \mathrm{ac}-\mathrm{ft}$
Volume (Total Infiltration)	$5.168 \mathrm{ac}-\mathrm{ft}$
Volume (Total Outlet	$1.893 \mathrm{ac}-\mathrm{ft}$
Outfiow)	$-0.018 \mathrm{ac}-\mathrm{ft}$
Volume (Retained)	0.3%
Volume (Unrouted)	
Error (Mass Balance)	

FILING NO. 2-5 YEAR

Subsection: Modified Rational Graph
Return Event: 5 years
Label: DP-24
Storm Event: CO SPRINGS - 5 Year

Method Type	Method T
Time of Duration (Modified Rational, Critical)	0.500 hours

$\left.\begin{array}{lllllll}\hline \text { [3] } & & & & & & \\ \hline \begin{array}{l}\text { First Outflow Breakpoint } \\ \text { (Modified Rational, Method }\end{array} & 0.700 \text { hours } & & & \\ \begin{array}{l}\text { 7 }\end{array} & 55.00 & \mathrm{ft} / \mathrm{s} / \mathrm{s}\end{array}\right)$

FILING NO. 2-5 YEAR
Index
D
DP-24 (Modified Rational Graph, 5 years)... 4
M
Master Network Summary... 2

P

PO-1 (IN) (Level Pool Pond Routing Summary, 5 years)... 3

FILING 2-100 YEAR

Project Summary	
Title	WINDERMERE -
Engineer	MILNG NO. 2
Company	MLARSON
Date	CCES
	10/3/2014
	WINDERMERE - FIUNG NO. 2
Notes	100 YEAR POND ROUTING W/ STORMWATER QUALTTY

Table of Contents

PO-1 (IN)	Level Pool Pond Routing Summary	3
DP-24	Modified Rational Graph	4

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

FILING 2-100 YEAR
Subsection: Master Network Summary

Catchments Summary					
Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Fow ($\mathrm{ft}^{3 / \mathrm{s}}$)
DP-23	Base	100	5.847	0.343	142.39
DP-24	Base	100	7.620	0.430	185.05

Node Summary

		Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Fow ($\mathrm{ft}^{3 / \mathrm{s}}$)
0-1	Base	100	11.046	0.800	80.66

Pond Summary							
Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Fow ($\mathrm{f}^{3} / \mathrm{s}$)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
PO-1 (IN)	Base	100	13.499	0.450	327.44	(N / A)	(N / A)
PO-1 (OUT)	Base	100	11.046	0.800	80.66	6,577.68	11.595

Subsection: Level Pool Pond Routing Summary
Label: PO-1 (IN)

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface,	$6,571.00 \mathrm{ft}$
Initial)	$0.000 \mathrm{ac}-\mathrm{ft}$
Volume (Initial)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial Outlet)	$0.00 \mathrm{ft}^{3 / \mathrm{s}}$
Flow (Initial Infiltration)	$0.00 \mathrm{ft}^{3} / \mathrm{s}$
Flow (Initial, Total)	0.050 hours

Return Event: 100 years
Storm Event: CO SPRINGS - 100 Year

Inflow/Outflow Hydrograph Summary									
Flow (Peak In)	$327.44 \mathrm{ft}^{3 / \mathrm{s}}$	Time to Peak (Flow, In)	0.450 hours						
Flow (Peak Outlet)	$80.66 \mathrm{ft}^{3 / \mathrm{s}}$	Time to Peak (Flow, Outlet)	0.800 hours						

Elevation (Water Surface,	$6,577.68 \mathrm{ft}$
Peak)	$11.595 \mathrm{ac}-\mathrm{ft}$
Volume (Peak)	
Mass Balance (ac-ft)	$0.000 \mathrm{ac}-\mathrm{ft}$
Volume (Initial)	$13.499 \mathrm{ac}-\mathrm{ft}$
Volume (Total Inflow)	$0.000 \mathrm{ac}-\mathrm{ft}$
Volume (Total Infiltration)	$11.046 \mathrm{ac}-\mathrm{ft}$
Volume (Total Outlet	$2.415 \mathrm{ac}-\mathrm{ft}$
Outflow)	$-0.038 \mathrm{ac}-\mathrm{ft}$
Volume (Retained)	0.3%
Volume (Unrouted)	
Error (Mass Balance)	

FILING 2-100 YEAR

Subsection: Modified Rational Graph Label: DP-24

Return Event: 100 years
Storm Event: CO SPRINGS - 100 Year

Method Type	Method T
Time of Duration (Modified 0.500 hours Rational, Critical)	

FILING 2-100 YEAR

Index

D

DP-24 (Modified Rational Graph, 100 years)... 4
M
Master Network Summary... 2

P
PO-1 (IN) (Level Pool Pond Routing Summary, 100 years)... 3

COORESPONDANCE FROM YES! COMMUNITIES

You created this PDF from an application that is not licensed to print to novaPDF printer (http//www novapdf.com) URVEYORS

September 18, 2014

El Paso County
Development Services
2880 International Circle
Suite 110
Colorado Springs, CO 80910

ATTN: Ms. Kari Parsons - Project Manager/Planner II

RE: Proposed Windermere Development Public Detention and Stormwater Quality Facility

Dear Ms. Parsons:

Based upon a meeting with Mr. Campbell of Classic Consulting Engineers and Surveyors, LLC, a proposal was presented to create a regional public detention and SWQ facility in an area where our existing private facility currently resides. Based upon the multiple private and public drainage facilities (both existing and proposed) that drain to this area, we support the creation of one public facility.

While not required for the Windermere's initial Phase 1 area, we will continue to work with the adjacent southerly owner and their representatives as Phase 2 and 3 develop to support this effect.

If you have any questions or comments, please do not hesitate to call.

Sincerely,

Wally Moreland
 Managing Director
 YES! Communities

Ag/244100/public detention swq facility.doco
CC: Kyle R Campbell

YESI Communities, $240115^{\text {th }}$ Street, Suite 200, Denver, CO 80202

Fax: (303) 468-0525

DRAINAGE MAP

	WINDERMERE COLORADO SPRINGS, CO	Drexel, Barrell \& Co. Engineers • Surveyors	
			VMAP

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 15, Oct 10, 2017
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 15, 2011-Jun 17, 2014

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
97	Truckton sandy loam, 3 to 9 percent slopes	A	56.4	100.0%
Totals for Area of Interest	$\mathbf{5 6 . 4}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Mr. Tim McConnell, PE
Principal / Regional Manager
Drexel, Barrell \& Co.
3 S. $7^{\text {th }}$ Street
Colorado Springs, CO 80905

Re: Proposed Windermere Development Pubic Detention and Stormwater Quality Facility

Dear Mr. McConnell,

Following to our recent correspondence, this is to confirm that YES Communities (YES) has no objection to proceeding forward with design and construction of a public detention pond and stormwater quality facility in conjunction with the proposed Windermere residential development currently under design. The specific property in question is owned by YES and is situated in the southwest quadrant of the intersection of Barnes Road on the north, and Marksheffel Road on the east. It is platted as Chateau at Antelope Ridge, Filing No. 2 in El Paso County, Colorado. The proposed pond location will be within Tract A, as situated on the south side of the property and which is currently used for storm water conveyance and detention. The Windermere property is located adjacent to the east, south, and west sides of Tract A.

It is understood that no adverse impacts to the existing homes and other infrastructure improvements within the YES property will be incurred with the proposed pond construction. The pond will serve local area drainage requirements from both the YES and Windermere properties. All pond improvements will be constructed and paid for by the Windermere developer. No financial burdens or liabilities will be incurred by YES with the work as proposed.

Please let us know if any additional information should be required. Thank you,
Sincerely,

YES Communities

Craig P. Schellbach, PE
Development Manager
c: Mike Askins

5605 N. MacArthur Blvd.; Suite 280; Irving, TX 75038
972-379-9610: | Email: cschellbach@yescommunities.com

PROJECT INFORMATION							
PROJECT:	Windermere						
PROJECT NO:	21187-01						
DESIGN BY:	SBN					Drexel, Barrell \& Co.	
REV. BY:	TDM						
AGENCY:	El Paso County						
REPORT TYPE:	Final						
DATE:	1/19/2021						
Soil Type: A							
			C2*	C5*	C10*	C100*	\% IMPERV
Landscape/Lawn				0.15		0.50	0
Residential (<1/8 acre)				0.45		0.59	65
Asphalt/Sidewalk				0.90		0.96	100
PROPOSED							
SUB-BASIN	SURFACE DESIGNATION	AREA	COMPOSITE RUNOFF COEFFICIENTS				\% IMPERV
		ACRE	C2	C5	C10	C100	
A1	Landscape/Lawn	0.00		0.15		0.50	0
	Residential (<1/8 acre)	2.07		0.45		0.59	65
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.45		0.59	65\%
TOTAL A1		2.07					
A2	Landscape/Lawn	0.00		0.15		0.50	0
	Residential (<1/8 acre)	4.61		0.45		0.59	65
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.45		0.59	65\%
TOTAL A2		4.61					
A3	Landscape/Lawn	0.00		0.15		0.50	0
	Residential (<1/8 acre)	1.67		0.45		0.59	65
	AsphaltSidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.45		0.59	65\%
TOTAL A3		1.67					
A4	Landscape/Lawn	0.00		0.15		0.50	0
	Residential (<1/8 acre)	1.01		0.45		0.59	65
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.45		0.59	65\%
TOTAL A4		1.01					
A5	Landscape/Lawn	0.00		0.15		0.50	0
	Residential (<1/8 acre)	1.98		0.45		0.59	65
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.45		0.59	65\%
TOTAL A5		1.98					
A6	Landscape/Lawn	0.00		0.15		0.50	0
	Residential (<1/8 acre)	3.73		0.45		0.59	65
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.45		0.59	65\%
TOTAL A6		3.73					
A7	Landscape/Lawn	0.00		0.15		0.50	0
	Residential (<1/8 acre)	1.56		0.45		0.59	65
	AsphaltSidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.45		0.59	65\%
TOTAL A7		1.56					
A8	Landscape/Lawn	0.00		0.15		0.50	0
	Residential (<1/8 acre)	2.96		0.45		0.59	65
	Asphalt/Sidewalk	0.00		0.90		0.96	100
	WEIGHTED AVERAGE			0.45		0.59	65\%
TOTAL A8		2.96					

A9	Landscape/Lawn	0.00	0.15	0.50	0
	Residential (<1/8 acre)	1.86	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.45	0.59	65\%
TOTAL A9		1.86			
A10	Landscape/Lawn	0.00	0.15	0.50	0
	Residential (<1/8 acre)	4.00	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.45	0.59	65\%
TOTAL A10		4.00			
A11	Landscape/Lawn	0.00	0.15	0.50	0
	Residential (<1/8 acre)	2.67	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.45	0.59	65\%
TOTAL A11		2.67			
A12	Landscape/Lawn	7.50	0.15	0.50	0
	Residential (<1/8 acre)	1.96	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.21	0.52	13\%
TOTAL A12		9.46			
B1	Landscape/Lawn	0.00	0.15	0.50	0
	Residential (<1/8 acre)	3.62	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.45	0.59	65\%
TOTAL B1		3.62			
B2	Landscape/Lawn	0.00	0.15	0.50	0
	Residential (<1/8 acre)	2.94	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.45	0.59	65\%
TOTAL B2		2.94			
B3	Landscape/Lawn	0.00	0.15	0.50	0
	Residential (<1/8 acre)	4.00	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.45	0.59	65\%
TOTAL B3		4.00			
B4	Landscape/Lawn	0.43	0.15	0.50	0
	Residential (<1/8 acre)	0.00	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.15	0.50	0\%
TOTAL B4		0.43			
C1	Landscape/Lawn	3.25	0.15	0.50	0
	Residential (<1/8 acre)	0.99	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.22	0.52	15\%
TOTAL C1		4.24			
C2	Landscape/Lawn	0.50	0.15	0.50	0
	Residential (<1/8 acre)	0.33	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.27	0.54	26\%
TOTAL C2		0.83			
C3	Landscape/Lawn	0.74	0.15	0.50	0
	Residential (<1/8 acre)	0.66	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.29	0.54	31\%
TOTAL C3		1.40			
C4	Landscape/Lawn	0.11	0.15	0.50	0
	Residential (<1/8 acre)	0.00	0.45	0.59	65
	Asphalt/Sidewalk	0.00	0.90	0.96	100
	WEIGHTED AVERAGE		0.15	0.50	0\%
TOTAL C4		0.11			
NC2	Landscape/Lawn	0.27	0.15	0.50	0
	Residential (<1/8 acre)	0.00	0.45	0.59	65
	Asphalt/Sidewalk	1.34	0.90	0.96	100

PROJECT INFORMATION	
PROJECT:	Windermere
PROJECT NO:	$21187-01$
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	EI Paso County
REPORT TYPE:	Final
DATE:	$1 / 19 / 2021$

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

| | S | 0.46 | 0.67 | 1.36 | | | | | | | | |
| :---: |

PROJECT INFORMATION

PROJECT:	Windermere
PROJECT NO:	$21187-01$
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	$1 / 19 / 2021$

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

PROPOSED \quad -	RUNOFF		5 YR STORM		C*A	1 (IN/HR)	Q (CFS)
			DIRECT RUNOFF				
	$\begin{aligned} & \hline \text { DESIGN } \\ & \text { POINT } \end{aligned}$	AREA (AC)	RUNOFF COEFF	t_{c} (MIN)			
A1	A	2.07	0.45	5.3	0.93	5.02	4.7
	8	14.10	0.61	18.7	8.56	3.12	26.7
A2	B	4.61	0.45	9.2	2.07	4.23	8.8
A3		1.67	0.56	5.0	0.93	5.10	4.8
	C	20.38	0.56	20.1	11.38	3.01	34.2
A4		1.01	0.45	12.4	0.45	3.76	1.7
	D	21.39	0.55	20.3	11.84	2.99	35.4
A5	E	1.98	0.45	6.0	0.89	4.85	4.3
A6		3.73	0.45	9.6	1.68	4.17	7.0
	F	27.10	0.53	20.4	14.41	2.98	43.0
A7	G	1.56	0.45	9.1	0.70	4.26	3.0
A8	H	2.96	0.45	7.3	1.33	4.58	6.1
A9	I	1.86	0.45	6.6	0.84	4.73	4.0
	J	6.38	0.45	8.1	2.87	4.42	12.7
	K	33.48	0.52	20.8	17.28	2.96	51.1
A10		4.00	0.45	9.7	1.80	4.16	7.5
	L	37.48	0.51	21.0	19.08	2.94	56.1
A11		2.67	0.45	8.0	1.20	4.45	5.3
	M	40.15	0.51	21.1	20.28	2.94	59.5
A12		9.46	0.21	7.4	2.01	4.56	9.2
	N	49.61	0.45	21.8	22.29	2.88	175.6
North Pond Release							1.8
B1	0	3.62	0.45	6.1	1.63	4.84	7.9
B2	P	2.94	0.45	6.6	1.32	4.72	6.2
B3	Q	4.00	0.45	8.4	1.80	4.36	7.9
B4		0.43	0.15	5.5	0.06	4.99	0.3
	R	10.99	0.44	8.6	4.82	4.34	20.9
South Pond Release							0.3
C2		0.83	0.27	5.8	0.22	4.91	1.1
	S						10.3
C1		4.24	0.22	7.2	0.93	4.61	4.3
	T						191.1
C3	U	1.40	0.29	8.9	0.41	4.29	1.8
C4	V	0.11	0.15	5.0	0.02	5.10	0.1
NC2	19	3.01	0.55	9.7	1.65	4.14	6.9
	J1	4.37	0.52	10.0	2.29	4.11	19.7
NC1		0.43	0.85	5.0	0.36	5.10	1.9
	20	4.80	0.55	10.0	2.65	4.09	21.2

Depth Increment $=$									
Stage - Storage Description	$\begin{gathered} \text { Stage } \\ (\mathrm{t}) \\ \hline \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { Optional } \\ \text { Override } \\ \text { Stage (ft) } \end{array}$	Length (ft)	$\begin{gathered} \text { Width } \\ (\mathrm{t}) \end{gathered}$	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{t}^{2}\right) \end{aligned}$	$\begin{array}{\|l} \hline \text { Optional } \\ \text { Override } \\ \text { Area }\left(\mathrm{ft}^{2}\right) \\ \hline \end{array}$	$\begin{aligned} & \text { Area } \\ & \text { (acre) } \end{aligned}$	$\begin{gathered} \text { Volume } \\ \left(\left(\mathrm{t}^{3}\right)\right. \end{gathered}$	$\begin{aligned} & \text { Volume } \\ & (\mathrm{ac-ft}) \end{aligned}$
Top of Micropool	--	0.00	--	--	--	250	0.006		
6572	--	0.50	--	--	--	7,926	0.182	2,044	0.047
6576	--	4.50	--	--	--	135,531	3.111	288,957	6.634
6578	--	6.50	--	-	--	209,825	4.817	634,313	14.562
6579	--	7.50	--	--	--	220,020	5.051	849,236	19.496
6580	--	8.50	--	--	--	225,118	5.168	1,071,805	24.605
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	-	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	-	--				
	--		--	--	--				
	--		--	--	--				
	-		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		-	--	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		--	--	\cdots				
	\cdots		\cdots	\cdots					
	\cdots		\cdots	\cdots	\cdots				
	\cdots		--	--	\cdots				
	--		--	--	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		\cdots	--	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		-	-	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		--	--	--				
	--		\cdots	-	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		--	--	\cdots				
	\cdots		\cdots	--	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		\cdots	--	-				
	\cdots		\cdots	\cdots	\cdots				
	--		--	--	-				
	\cdots		\cdots	\cdots	\cdots				
	--			--	--				

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional)

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)

Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice $=$ Vertical Orifice Diameter $=$	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches
	N/A	N/A	
	N/A	N/A	
	N/A	N/A	

Calculated Parameters for Vertical Orifice

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Overflow Weir Front Edge Height, Ho =	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stag feet
	4.30	N/A	
Overflow Weir Front Edge Length =	6.75	N/A	
Overflow Weir Grate Slope =	0.00	N/A	$\mathrm{H}: \mathrm{V}$
Horiz. Length of Weir Sides $=$	6.75	N/A	feet
Overflow Grate Open Area \% =	70\%	N/A	\%, grate open area/total area
Debris Clogging \% =	50\%	N/A	\%

0 ft) H
Grate Op
Overflow
Overflow
Stage $=0 \mathrm{ft}$)

Of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ Overflow Weir Slope Length Grate Open Area / 100-yr Orifice Area = Overflow Grate Open Area w/o Debris verflow Grate Open Area w/ Debris =

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)

Half-Central Angle of Restrictor Plate on Pipe =

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	6.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	70.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=\\|}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft) =	1.602	3.621	2.490	3.458	4.288	6.502	8.568	11.344	21.093
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	2.490	3.458	4.288	6.502	8.568	11.344	21.093
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.8	1.5	2.2	19.7	39.5	65.5	155.5
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.02	0.15	0.30	0.49	1.17
Peak Inflow Q (cfs) =	N/A	N/A	22.7	31.8	39.4	67.0	90.6	122.0	226.5
Peak Outflow Q (cfs) $=$	0.8	1.1	0.9	1.0	1.1	2.0	15.5	34.0	77.5
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.7	0.5	0.1	0.4	0.5	0.5
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.0	0.4	1.0	2.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97\% of Inflow Volume (hours) =	38	63	51	62	70	88	87	85	77
Time to Drain 99\% of Inflow Volume (hours) =	40	66	54	65	74	93	94	93	90
Maximum Ponding Depth (ft) =	2.33	3.39	2.74	3.21	3.56	4.35	4.69	4.98	6.08
Area at Maximum Ponding Depth (acres) =	1.52	2.30	1.82	2.16	2.42	3.00	3.26	3.51	4.45
Maximum Volume Stored (acre-ft) $=$	1.606	3.631	2.292	3.208	4.008	6.175	7.207	8.190	12.569

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.01	0.54
	0:15:00	0.00	0.00	0.91	1.47	1.84	1.25	1.65	1.55	3.11
	0:20:00	0.00	0.00	4.01	5.49	6.58	4.24	5.09	5.31	8.55
	0:25:00	0.00	0.00	11.35	16.56	20.89	10.88	13.63	15.09	26.20
	0:30:00	0.00	0.00	19.01	27.62	34.57	31.94	43.54	52.69	101.40
	0:35:00	0.00	0.00	22.34	31.76	39.35	54.51	74.24	95.73	180.28
	0:40:00	0.00	0.00	22.67	31.80	39.30	65.22	88.41	117.03	216.70
	0:45:00	0.00	0.00	21.69	30.22	37.20	66.95	90.60	122.02	226.46
	0:50:00	0.00	0.00	20.22	28.16	34.50	64.58	86.76	117.96	220.31
	0:55:00	0.00	0.00	18.92	26.36	32.21	60.23	80.57	110.01	207.40
	1:00:00	0.00	0.00	17.79	24.71	30.16	55.72	74.38	102.45	194.54
	1:05:00	0.00	0.00	16.78	23.16	28.33	51.68	68.76	95.67	182.97
	1:10:00	0.00	0.00	15.87	22.02	27.12	47.60	63.18	87.96	169.18
	1:15:00	0.00	0.00	14.98	20.96	26.16	44.06	58.40	80.56	155.02
	1:20:00	0.00	0.00	14.07	19.77	24.92	40.80	53.91	73.59	140.87
	1:25:00	0.00	0.00	13.17	18.50	23.28	37.54	49.41	66.69	126.60
	1:30:00	0.00	0.00	12.26	17.21	21.46	34.22	44.85	60.06	113.04
	1:35:00	0.00	0.00	11.39	15.97	19.68	30.95	40.37	53.70	100.08
	1:40:00	0.00	0.00	10.61	14.71	18.06	27.79	36.03	47.60	87.87
	1:45:00	0.00	0.00	10.07	13.73	17.01	24.91	32.14	42.14	77.98
	1:50:00	0.00	0.00	9.70	12.98	16.23	22.90	29.47	38.25	70.70
	1:55:00	0.00	0.00	9.23	12.31	15.48	21.39	27.41	35.28	64.65
	2:00:00	0.00	0.00	8.66	11.64	14.65	20.07	25.63	32.67	59.23
	2:05:00	0.00	0.00	7.94	10.73	13.48	18.47	23.52	29.86	53.65
	2:10:00	0.00	0.00	7.13	9.65	12.09	16.67	21.21	26.86	47.92
	2:15:00	0.00	0.00	6.34	8.58	10.73	14.89	18.92	23.95	42.40
	2:20:00	0.00	0.00	5.59	7.56	9.43	13.17	16.70	21.16	37.17
	2:25:00	0.00	0.00	4.89	6.60	8.21	11.54	14.61	18.52	32.19
	2:30:00	0.00	0.00	4.24	5.70	7.07	9.99	12.59	15.97	27.34
	2:35:00	0.00	0.00	3.61	4.85	6.00	8.48	10.64	13.46	22.58
	2:40:00	0.00	0.00	3.01	4.03	4.98	7.02	8.74	11.00	17.92
	2:45:00	0.00	0.00	2.45	3.26	4.02	5.63	6.91	8.61	13.41
	2:50:00	0.00	0.00	1.94	2.56	3.16	4.30	5.17	6.32	9.23
	2:55:00	0.00	0.00	1.54	2.03	2.54	3.10	3.61	4.26	6.44
	3:00:00	0.00	0.00	1.27	1.68	2.12	2.30	2.66	3.01	4.71
	3:05:00	0.00	0.00	1.07	1.42	1.80	1.80	2.07	2.28	3.50
	3:10:00	0.00	0.00	0.91	1.20	1.52	1.46	1.67	1.76	2.62
	3:15:00	0.00	0.00	0.78	1.02	1.29	1.19	1.35	1.38	1.97
	3:20:00	0.00	0.00	0.66	0.86	1.09	0.99	1.12	1.09	1.47
	3:25:00	0.00	0.00	0.56	0.72	0.91	0.81	0.91	0.85	1.10
	3:30:00	0.00	0.00	0.46	0.60	0.75	0.66	0.74	0.67	0.86
	3:35:00	0.00	0.00	0.38	0.49	0.61	0.54	0.60	0.55	0.69
	3:40:00	0.00	0.00	0.31	0.39	0.48	0.44	0.48	0.44	0.55
	3:45:00	0.00	0.00	0.25	0.31	0.38	0.35	0.38	0.36	0.43
	3:50:00	0.00	0.00	0.19	0.24	0.30	0.27	0.29	0.28	0.33
	3:55:00	0.00	0.00	0.14	0.18	0.22	0.20	0.22	0.21	0.24
	4:00:00	0.00	0.00	0.10	0.13	0.16	0.15	0.16	0.15	0.16
	4:05:00	0.00	0.00	0.07	0.09	0.11	0.10	0.11	0.10	0.10
	4:10:00	0.00	0.00	0.04	0.05	0.07	0.06	0.06	0.06	0.05
	4:15:00	0.00	0.00	0.02	0.03	0.03	0.03	0.03	0.03	0.02
	4:20:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically, The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area $\left[\mathrm{ft}^{2}\right]$	Area [acres]	Volume [ft ${ }^{3}$]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway, where applicable)

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Fillration BMP)				Calculated Parameters for Under	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =		ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid $=$		$\begin{aligned} & \hline \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	$7.639 \mathrm{E}-02$	ft^{2}
Depth at top of Zone using Orifice Plate =	4.26	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width =	N/A	eet
Orifice Plate: Orifice Vertical Spacing =	17.00	inches	Elliptical Slot Centroid =	N/A	eet
Orifice Plate: Orifice Area per Row $=$	11.00	sq. inches (use rectangular openings)	Elliptical Slot Area =	N/A	t^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional)

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)

Invert of Vertical Orifice $=$ Depth at top of Zone using Vertical Orifice $=$ Vertical Orifice Diameter $=$	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches
	N/A	N/A	
	N/A	N/A	
	N/A	N/A	

Calculated Parameters for Vertical Orifice

	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected	
Vertical Orifice Area $=$	N/A	N/A	ft^{2}
Vertical Orifice Centroid $=$	N/A	N/A	,

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage feet
Overflow Weir Front Edge Height, $\mathrm{Ho}=$Overflow Weir Front Edge Length $=$	4.30	N/A	
	6.75	N/A	
Overflow Weir Grate Slope =	0.00	N/A	H:V
Horiz. Length of Weir Sides =	6.75	N/A	feet
Overflow Grate Open Area \% =	70\%	N/A	\%, grate open area/total area
Debris Clogging \% =	50\%	N/A	

Calculated Parameters for Overflow Weir		
Zone 3 Weir	Not Selected	
4.30	N/A	feet
6.75	N/A	feet
4.51	N/A	
31.89	N/A	ft^{2}
15.95	N/A	ft^{2}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)
Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

	Calculated Parameters for Spillway	
Spillway Design Flow Depth	$=0.92$	feet
Stage at Top of Freeboard	$=$	7.92
feet		
Basin Area at Top of Freeboard	$=5.10$	acres
Basin Volume at Top of Freeboard	$=21.63$	acre-ft

Routed Hydrograph Results Design Storm Return Period $=$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft) $=$	2.016	5.899	4.497	6.048	7.280	9.553	11.773	14.673	24.739
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	4.497	6.048	7.280	9.553	11.773	14.673	24.739
CUHP Predevelopment Peak Q (cfs) $=$	N/A	N/A	0.8	1.5	2.2	19.7	39.5	65.5	155.5
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.02	0.15	0.30	0.49	1.17
Peak Inflow Q (cfs) $=$	N/A	N/A	49.7	67.5	81.3	119.9	153.1	194.1	328.3
Peak Outflow Q (cfs) $=$	1.0	1.8	1.6	1.8	7.1	24.1	40.8	66.0	142.3
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	1.2	3.3	1.2	1.0	1.0	0.9
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) $=$	N/A	N/A	N/A	N/A	0.2	0.7	1.2	2.0	2.3
Max Velocity through Grate $2(\mathrm{fps})=$	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97\% of Inflow Volume (hours) $=$	38	66	59	68	71	69	67	65	58
Time to Drain 99\% of Inflow Volume (hours) =	40	71	63	73	76	76	75	74	71
Maximum Ponding Depth (ft) $=$	2.59	4.26	3.63	4.19	4.50	4.82	5.06	5.36	6.46
Area at Maximum Ponding Depth (acres) $=$	1.71	2.94	2.47	2.88	3.10	3.38	3.59	3.84	4.77
Maximum Volume Stored (acre-ft) $=$	2.027	5.908	4.179	5.675	6.602	7.673	8.510	9.625	14.322

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.36	0.04	1.79
	0:15:00	0.00	0.00	3.08	5.00	6.25	4.23	5.56	5.23	10.12
	0:20:00	0.00	0.00	13.14	17.90	21.44	13.80	16.49	17.30	26.88
	0:25:00	0.00	0.00	30.66	42.63	52.55	30.88	36.34	39.63	63.05
	0:30:00	0.00	0.00	45.29	62.58	76.42	71.90	90.87	105.93	182.48
	0:35:00	0.00	0.00	49.73	67.51	81.32	107.92	137.85	170.57	291.56
	0:40:00	0.00	0.00	47.91	63.71	75.93	119.95	153.06	194.08	328.34
	0:45:00	0.00	0.00	44.07	58.40	69.54	114.40	145.18	187.45	316.92
	0:50:00	0.00	0.00	40.20	53.69	63.58	105.69	133.45	173.09	295.78
	0:55:00	0.00	0.00	36.96	49.53	58.54	95.83	120.06	156.63	269.02
	1:00:00	0.00	0.00	34.36	45.90	54.36	86.58	107.86	142.18	245.44
	1:05:00	0.00	0.00	31.94	42.41	50.36	78.54	97.42	130.44	226.56
	1:10:00	0.00	0.00	29.07	39.07	46.52	70.75	87.32	116.74	202.55
	1:15:00	0.00	0.00	26.20	35.81	43.15	62.99	77.18	101.65	174.91
	1:20:00	0.00	0.00	23.94	33.02	40.41	55.46	67.36	86.68	147.99
	1:25:00	0.00	0.00	22.32	30.87	37.66	49.65	60.11	75.37	128.19
	1:30:00	0.00	0.00	20.99	29.03	34.83	44.84	54.08	66.61	112.29
	1:35:00	0.00	0.00	19.78	27.32	32.19	40.54	48.71	59.23	98.82
	1:40:00	0.00	0.00	18.61	25.24	29.74	36.55	43.71	52.56	86.64
	1:45:00	0.00	0.00	17.44	22.91	27.40	32.88	39.08	46.30	75.30
	1:50:00	0.00	0.00	16.27	20.63	25.12	29.34	34.59	40.27	64.48
	1:55:00	0.00	0.00	14.58	18.46	22.72	25.91	30.27	34.55	54.33
	2:00:00	0.00	0.00	12.67	16.36	20.15	22.71	26.24	29.27	45.03
	2:05:00	0.00	0.00	10.49	13.70	16.81	18.57	21.17	23.09	34.65
	2:10:00	0.00	0.00	8.50	11.14	13.76	14.27	16.13	17.24	25.81
	2:15:00	0.00	0.00	6.92	9.08	11.30	11.13	12.53	13.11	19.56
	2:20:00	0.00	0.00	5.68	7.45	9.30	8.91	10.00	10.25	15.09
	2:25:00	0.00	0.00	4.66	6.10	7.63	7.17	8.02	8.04	11.62
	2:30:00	0.00	0.00	3.81	4.99	6.23	5.77	6.44	6.31	8.96
	2:35:00	0.00	0.00	3.09	4.06	5.04	4.63	5.16	4.92	6.83
	2:40:00	0.00	0.00	2.48	3.26	4.02	3.67	4.08	3.80	5.17
	2:45:00	0.00	0.00	2.00	2.59	3.18	2.89	3.20	2.95	3.99
	2:50:00	0.00	0.00	1.61	2.04	2.51	2.27	2.51	2.33	3.13
	2:55:00	0.00	0.00	1.29	1.62	1.99	1.81	2.00	1.87	2.52
	3:00:00	0.00	0.00	1.01	1.27	1.56	1.43	1.58	1.48	1.98
	3:05:00	0.00	0.00	0.77	0.96	1.20	1.10	1.21	1.14	1.51
	3:10:00	0.00	0.00	0.56	0.71	0.89	0.82	0.90	0.84	1.10
	3:15:00	0.00	0.00	0.39	0.50	0.62	0.58	0.63	0.59	0.76
	3:20:00	0.00	0.00	0.25	0.33	0.40	0.38	0.41	0.38	0.48
	3:25:00	0.00	0.00	0.14	0.20	0.23	0.22	0.24	0.22	0.26
	3:30:00	0.00	0.00	0.06	0.11	0.11	0.11	0.11	0.10	0.11
	3:35:00	0.00	0.00	0.02	0.04	0.03	0.03	0.03	0.03	0.02
	3:40:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically, The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area $\left[\mathrm{ft}^{2}\right]$	Area [acres]	Volume [ft ${ }^{3}$]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway, where applicable)

	\square	\square	\square	\square	-	

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional) 1

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)

Invert of Vertical Orifice $=$ Depth at top of Zone using Vertical Orifice $=$ Vertical Orifice Diameter $=$	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches
	N/A	N/A	
	N/A	N/A	
	N/A	N/A	

Calculated Parameters for Vertical Orifice

	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected	
Vertical Orifice Area $=$	N/A	N/A	ft^{2}
Vertical Orifice Centroid $=$	N/A	N/A	feet

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)
 Overflow Weir Front Edge Lenth Overflow Weir Grate Slope $=$ Horiz. Length of Weir Sides = Overflow Grate Open Area $\%=$ Debris Clogging \% =

Zone 3 Weir	Not Selected	
6.75	N/A	ft (relative to basin bottom at Stag
3.00	N/A	feet
0.00	N/A	H:V
3.00	N/A	feet
70\%	N/A	\%, grate open area/total area
50\%	N/A	\%

$=0 \mathrm{ft}) \quad$ Height of Grate Upper Edge, H_{t}	$=$
Overflow Weir Slope Length	$=$
Grate Open Area $/ 100-\mathrm{yr}$ Orifice Area	$=$
Overflow Grate Open Area w/o Debris	$=$
Overflow Grate Open Area w/ Debris	$=$

Calculated Parameters for Overflow Weir

Zone 3 Weir	Not Selected
6.75	Neet
3.00	$\mathrm{~N} / \mathrm{A}$
feet	
2.01	$\mathrm{~N} / \mathrm{A}$
6.30	$\mathrm{~N} / \mathrm{A}$
ft^{2}	
3.15	$\mathrm{~N} / \mathrm{A}$
ft^{2}	

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)
Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

Depth to Invert of Outlet Pipe = Circular Orifice Diameter $=$	Zone 3 Circular	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches
	2.83	N/A	
	24.00	N/A	

	Zone 3 Circular	Not Selected	
Outlet Orifice Area =	3.14	N/A	ft^{2}
Outlet Orifice Centroid =	1.00	N/A	feet
Restrictor Plate on Pipe =	N/A	N/A	dians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	7.65	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	15.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface $=$	1.00	feet

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.45	feet
Stage at Top of Freeboard =	9.10	feet
Basin Area at Top of Freeboard =	0.35	acres
Basin Volume at Top of Freeboard =	1.66	acre-ft

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=\\|}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft) =	0.117	0.235	0.150	0.212	0.269	0.438	0.598	0.816	1.585
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.150	0.212	0.269	0.438	0.598	0.816	1.585
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.1	0.3	0.3	3.1	5.9	9.6	21.6
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.03	0.28	0.54	0.87	1.97
Peak Inflow Q (cfs) $=$	N/A	N/A	2.5	3.6	4.5	7.8	10.9	15.0	27.9
Peak Outflow Q (cfs) $=$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	11.2
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.4	0.3	0.0	0.0	0.0	0.5
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Plate	Plate	Plate	jverflow Weir:
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.8
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97\% of Inflow Volume (hours) =	38	52	43	50	56	70	82	96	102
Time to Drain 99\% of Inflow Volume (hours) =	40	56	46	54	60	77	90	106	115
Maximum Ponding Depth (ft) =	2.18	3.09	2.36	2.82	3.19	4.19	5.02	6.01	7.32
Area at Maximum Ponding Depth (acres) $=$	0.11	0.15	0.12	0.14	0.15	0.18	0.20	0.23	0.27
Maximum Volume Stored (acre-ft) $=$	0.118	0.236	0.137	0.197	0.251	0.417	0.574	0.789	1.119

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.10
	0:15:00	0.00	0.00	0.18	0.29	0.36	0.25	0.31	0.30	0.51
	0:20:00	0.00	0.00	0.64	0.84	0.99	0.63	0.73	0.78	1.27
	0:25:00	0.00	0.00	1.88	2.91	3.80	1.71	2.23	2.54	4.60
	0:30:00	0.00	0.00	2.47	3.61	4.51	5.91	8.58	10.83	21.75
	0:35:00	0.00	0.00	2.22	3.20	4.01	7.82	10.90	14.96	27.90
	0:40:00	0.00	0.00	1.94	2.74	3.43	7.45	10.44	14.37	26.80
	0:45:00	0.00	0.00	1.66	2.36	2.95	6.45	8.97	12.77	24.29
	0:50:00	0.00	0.00	1.44	2.05	2.53	5.68	7.82	11.02	21.57
	0:55:00	0.00	0.00	1.24	1.75	2.15	4.81	6.61	9.43	18.63
	1:00:00	0.00	0.00	1.06	1.48	1.82	4.05	5.53	8.03	16.07
	1:05:00	0.00	0.00	0.94	1.30	1.64	3.38	4.58	6.78	13.93
	1:10:00	0.00	0.00	0.84	1.19	1.53	2.83	3.84	5.57	11.53
	1:15:00	0.00	0.00	0.74	1.06	1.44	2.43	3.31	4.67	9.63
	1:20:00	0.00	0.00	0.65	0.93	1.26	2.06	2.79	3.85	7.85
	1:25:00	0.00	0.00	0.56	0.80	1.06	1.72	2.30	3.12	6.27
	1:30:00	0.00	0.00	0.48	0.68	0.87	1.38	1.82	2.43	4.84
	1:35:00	0.00	0.00	0.40	0.57	0.70	1.06	1.37	1.79	3.50
	1:40:00	0.00	0.00	0.35	0.47	0.59	0.78	0.97	1.21	2.31
	1:45:00	0.00	0.00	0.33	0.42	0.54	0.59	0.72	0.85	1.63
	1:50:00	0.00	0.00	0.32	0.39	0.51	0.50	0.59	0.67	1.24
	1:55:00	0.00	0.00	0.29	0.36	0.48	0.45	0.53	0.56	0.99
	2:00:00	0.00	0.00	0.26	0.34	0.44	0.42	0.48	0.50	0.83
	2:05:00	0.00	0.00	0.20	0.27	0.35	0.33	0.38	0.37	0.60
	2:10:00	0.00	0.00	0.16	0.21	0.27	0.25	0.29	0.27	0.42
	2:15:00	0.00	0.00	0.12	0.16	0.21	0.19	0.22	0.20	0.29
	2:20:00	0.00	0.00	0.09	0.12	0.16	0.14	0.16	0.15	0.21
	2:25:00	0.00	0.00	0.07	0.09	0.12	0.11	0.12	0.12	0.16
	2:30:00	0.00	0.00	0.05	0.07	0.09	0.08	0.09	0.09	0.12
	2:35:00	0.00	0.00	0.04	0.05	0.07	0.06	0.07	0.06	0.09
	2:40:00	0.00	0.00	0.03	0.04	0.05	0.05	0.05	0.05	0.07
	2:45:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.04	0.05
	2:50:00	0.00	0.00	0.01	0.02	0.02	0.02	0.03	0.02	0.03
	2:55:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.02
	3:00:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically, The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area $\left[\mathrm{ft}^{2}\right]$	Area [acres]	Volume [ft ${ }^{3}$]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway, where applicable)

	\square	\square	\square	\square	-	

Depth Increment $=$	ft								
Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area $\left(\mathrm{ft}^{2}\right)$	Optional Override Area $\left(\mathrm{ft}^{2}\right)$	$\begin{gathered} \text { Area } \\ \text { (acre) } \end{gathered}$	Volume $\left(\mathrm{ft}^{3}\right)$	Volume (ac-ft)
Top of Micropool	--	0.00	--	--	--	40	0.001		
6574	--	3.00	--	--	--	6,420	0.147	9,690	0.222
6577	--	6.00	--	--	--	10,026	0.230	34,359	0.789
6580	--	9.00	--	--	--	14,401	0.331	70,999	1.630
6580.5	--	9.50	--	--	--	18,235	0.419	79,158	1.817
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	-	--				
	--		--	--	\cdots				
	\cdots		--	--	\cdots				
	--		\cdots	\cdots	\cdots				
	--		--	--	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		--	--	--				
	\cdots		\cdots	\cdots	--				
	\cdots		--	--	\cdots				
	--		\cdots	\cdots	\cdots				
	--		--	--	--				
	\cdots		\cdots	\cdots	\cdots				
	--		\cdots	\cdots	\cdots				
	--		--	--	--				
	--		--	--	\cdots				
	--		\cdots	\cdots	\cdots				
	--		\cdots	--	\cdots				
	--		\cdots	\cdots	\cdots				
	--		\cdots	\cdots	\cdots				
	--		--	--	--				
	--		--	\cdots	\cdots				
	--		\cdots	\cdots	\cdots				
	--		--	-	--				
	--		\cdots	\cdots	\cdots				
	\cdots		--	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		--	--	--				
	$\stackrel{-}{--}$		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		--	--	--				
	\cdots		\cdots	\cdots	\cdots				

DETENTION BASIN OUTLET STRUCTURE DESIGN

		ft (distance below the filtration media surface) inches	Calculated Parameters for Underdrain		
Underdrain Orifice Invert Depth =	N/A		Underdrain Orifice Area = Underdrain Orifice Centroid $=$	N/A	$\begin{aligned} & \overline{\mathrm{ft}^{2}} \\ & \text { feet } \end{aligned}$
Underdrain Orifice Diameter =	N/A			N/A	

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				alculated Parameters for Plate	
Invert of Lowest Orifice $=$	0.00	```ft (relative to basin bottom at Stage =0 ft) ft (relative to basin bottom at Stage = 0 ft) inches sq. inches (diameter = 1-5/16 inches)```	WQ Orifice Area per Row = Elliptical Half-Width $=$ Elliptical Slot Centroid = Elliptical Slot Area $=$	$9.236 \mathrm{E}-03$	t^{2}
Depth at top of Zone using Orifice Plate $=$	6.24			N/A	feet
Orifice Plate: Orifice Vertical Spacing	26.50			N/A	t
Orifice Plate: Orifice Area per Row $=$	1.33			N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional)

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)

Invert of Vertical Orifice $=$ Depth at top of Zone using Vertical Orifice $=$ Vertical Orifice Diameter $=$	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches
	N/A	N/A	
	N/A	N/A	
	N/A	N/A	

Calculated Parameters for Vertical Orifice

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)
 Overflow Weir Front Edge Lenth Overflow Weir Grate Slope $=$ Horiz. Length of Weir Sides = Overflow Grate Open Area $\%=$ Debris Clogging \% =

Zone 3 Weir	Not Selected	
6.75	N/A	ft (relative to basin bottom at Stag
3.00	N/A	feet
0.00	N/A	H:V
3.00	N/A	feet
70\%	N/A	\%, grate open area/total area
50\%	N/A	\%

$=0 \mathrm{ft}) \quad$ Height of Grate Upper Edge, H_{t}	$=$
Overflow Weir Slope Length	$=$
Grate Open Area $/ 100-\mathrm{yr}$ Orifice Area	$=$
Overflow Grate Open Area w/o Debris	$=$
Overflow Grate Open Area w/ Debris	$=$

Calculated Parameters for Overflow Weir

Zone 3 Weir	Not Selected
6.75	Neet
3.00	$\mathrm{~N} / \mathrm{A}$
feet	
2.01	$\mathrm{~N} / \mathrm{A}$
6.30	$\mathrm{~N} / \mathrm{A}$
ft^{2}	
3.15	$\mathrm{~N} / \mathrm{A}$
ft^{2}	

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)
Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

Depth to Invert of Outlet Pipe = Circular Orifice Diameter $=$	Zone 3 Circular	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches
	2.83	N/A	
	24.00	N/A	

	Zone 3 Circular	Not Selected	
Outlet Orifice Area =	3.14	N/A	ft^{2}
Outlet Orifice Centroid =	1.00	N/A	feet
Restrictor Plate on Pipe =	N/A	N/A	dians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	7.65	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	15.00	feet
	4.00	H:V
Freeboard above Max Water Surface $=$	1.00	feet

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.79	feet
Stage at Top of Freeboard =	9.44	feet
Basin Area at Top of Freeboard =	0.41	acres
Basin Volume at Top of Freeboard =	1.79	acre-ft

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=\\|}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft) =	0.224	0.844	0.586	0.771	0.918	1.115	1.308	1.545	2.367
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.586	0.771	0.918	1.115	1.308	1.545	2.367
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.1	0.3	0.3	3.1	5.9	9.6	21.6
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.03	0.28	0.54	0.87	1.97
Peak Inflow Q (cfs) =	N/A	N/A	12.2	16.1	19.6	24.5	29.7	34.7	53.5
Peak Outflow Q (cfs) $=$	0.1	0.3	0.2	0.2	0.3	1.8	4.1	9.6	27.1
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	1.0	0.8	0.6	0.7	1.0	1.3
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.2	0.6	1.5	3.1
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97\% of Inflow Volume (hours) =	38	72	62	70	76	79	77	76	70
Time to Drain 99\% of Inflow Volume (hours) =	40	78	66	75	81	85	84	84	81
Maximum Ponding Depth (ft) =	3.02	6.24	4.92	5.76	6.38	6.90	7.03	7.26	7.93
Area at Maximum Ponding Depth (acres) $=$	0.15	0.24	0.20	0.22	0.24	0.26	0.26	0.27	0.29
Maximum Volume Stored (acre-ft) =	0.225	0.845	0.556	0.734	0.879	1.007	1.041	1.103	1.295

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.02	1.13
	0:15:00	0.00	0.00	2.00	3.25	4.03	2.71	3.31	3.30	5.21
	0:20:00	0.00	0.00	6.51	8.34	9.73	6.09	7.01	7.62	10.97
	0:25:00	0.00	0.00	12.20	16.15	19.57	12.07	13.69	14.75	22.40
	0:30:00	0.00	0.00	11.98	15.63	18.17	24.52	29.71	34.07	53.50
	0:35:00	0.00	0.00	9.28	11.84	13.69	23.34	27.89	34.65	52.94
	0:40:00	0.00	0.00	7.18	8.86	10.18	19.12	22.87	27.99	42.83
	0:45:00	0.00	0.00	5.25	6.74	7.87	14.04	16.65	21.53	33.21
	0:50:00	0.00	0.00	3.94	5.29	5.96	11.25	13.27	16.60	25.93
	0:55:00	0.00	0.00	3.02	3.98	4.58	8.10	9.44	12.43	19.32
	1:00:00	0.00	0.00	2.59	3.36	3.99	5.97	6.83	9.44	14.71
	1:05:00	0.00	0.00	2.44	3.14	3.82	4.92	5.60	8.07	12.77
	1:10:00	0.00	0.00	2.05	3.05	3.75	4.06	4.60	5.88	9.06
	1:15:00	0.00	0.00	1.85	2.81	3.73	3.63	4.10	4.70	7.05
	1:20:00	0.00	0.00	1.72	2.54	3.38	3.05	3.43	3.46	5.06
	1:25:00	0.00	0.00	1.66	2.38	2.88	2.75	3.10	2.80	4.02
	1:30:00	0.00	0.00	1.61	2.30	2.59	2.34	2.63	2.37	3.33
	1:35:00	0.00	0.00	1.59	2.24	2.41	2.11	2.37	2.14	2.96
	1:40:00	0.00	0.00	1.58	1.91	2.30	1.98	2.23	2.05	2.84
	1:45:00	0.00	0.00	1.58	1.73	2.24	1.91	2.15	2.01	2.78
	1:50:00	0.00	0.00	1.58	1.62	2.21	1.88	2.11	2.01	2.78
	1:55:00	0.00	0.00	1.25	1.56	2.11	1.86	2.10	2.01	2.78
	2:00:00	0.00	0.00	1.06	1.44	1.86	1.86	2.09	2.01	2.78
	2:05:00	0.00	0.00	0.60	0.82	1.07	1.07	1.20	1.15	1.59
	2:10:00	0.00	0.00	0.34	0.47	0.60	0.61	0.69	0.66	0.91
	2:15:00	0.00	0.00	0.17	0.25	0.32	0.32	0.36	0.35	0.48
	2:20:00	0.00	0.00	0.08	0.13	0.16	0.17	0.19	0.18	0.24
	2:25:00	0.00	0.00	0.03	0.05	0.05	0.06	0.07	0.06	0.09
	2:30:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.00
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically, The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area $\left[\mathrm{ft}^{2}\right]$	Area [acres]	Volume [ft ${ }^{3}$]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \end{gathered}$ [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							from the S-A-V table on Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,
							applicable)

Figure 8-7. Inlet Capacity Chart Continuous Grade Conditions, Residential (Local) (Attached and Detached Sidewalk)

Street Section Data: \quad Street Width Flowline to Flowline $=34^{\text {, }}$

Type of Curb and Gutter: $\quad \mathrm{D}-10-\mathrm{R}=8^{\prime \prime}$ vertical
Type $16=6$ " vertical
Minor Storm

\longrightarrow Single Type 16
-은—Double Type 16
\%Triple Type 16
\rightarrow - Double Type R
\longrightarrow-Triple Type R

Major Storm

\longrightarrow Single Type 16
\longrightarrow - Single Type R
—Triple Type 16

一믄-Double Type 16

- - Double Type R

The standard street section parameters as defined in Chapter 7 must apply to use these charts. For non-standard sections, the inlet capacity shall be calculated using the UDFCD spreadsheets. The maximum spread width is limited by the curb height based on no curb overtopping during a minor storm and flow being contained within the public right-of-way during the major storm. Calculations were done using UD-Inlet $3.00 . \mathrm{xls}$, Mar., 2011 with the default clogging factors.

Figure 8-7. Inlet Capacity Chart Continuous Grade Conditions, Residential (Local) (Attached and Detached Sidewalk)

Street Section Data: \quad Street Width Flowline to Flowline $=34^{\prime}$
Type of Curb and Gutter: $\quad \mathrm{D}-10-\mathrm{R}=8^{\prime \prime}$ vertical
Type $16=6$ " vertical
Minor Storm

\longrightarrow Single Type 16
-는- Double Type 16

- Triple Type 16
$\longrightarrow-$ Single Type R
\longrightarrow - Double Type R $\quad-$-Triple Type R
Major Storm

The standard street section parameters as defined in Chapter 7 must apply to use these charts. For non-standard sections, the inlet capacity shall be calculated using the UDFCD spreadsheets. The maximum spread width is limited by the curb height based on no curb overtopping during a minor storm and flow being contained within the public right-of-way during the major storm. Calculations were done using UD-Inlet 3.00 .xls, Mar., 2011 with the default clogging factors.

Figure 8-11. Inlet Capacity Chart Sump Conditions, Curb Opening (Type R) Inlet

$$
\begin{aligned}
& A(0): Q_{100}=17.5 C+(2) 10 \text { inlets } \\
& A \|: Q_{100}=12.4 C S \rightarrow 15^{\prime} \text { intent } \\
& \text { By: Q } Q_{100}=14.6 G \text { SS } \rightarrow 15 \text { inlet } \\
& \text { By: } Q_{100}=13.3+f 5 \rightarrow 15 \text { inlet }
\end{aligned}
$$

Notes:

1. The standard inlet parameters must apply to use this chart.

Figure 7-7. Street Capacity Charts Residential (Detached Sidewalk)

These charts shall only be used for the standard street sections as shown. The capacity shown is based on $1 / 2$ the street section as calculated by the UD-Inlet spreadsheets. Minor storm capacities are based on no crown overtopping, curb height or maximum allowable spread widths. Major storm capacities are based on flow being containing within the public right-of-way, including conveyance capacity behind the curb. The UDFCD Safety Reduction Factor was applied. An 'nstreet' of 0.016 and ' $n_{\text {back' }}$ of 0.020 was used. Calculations were done using UD-Inlet 3.00.xls, March, 2011.

