Mesa Ridge East Master Development Drainage Plan Update City of Fountain El Paso County, Colorado

> Prepared for: Nor'wood Development 111 South Tejon Suite 222 Colorado Springs, Colorado 80903

7175 West Jefferson Avenue, Suite 2200 Lakewood, Colorado 80235 Ph: (303)692-0369

Kiowa Project No. 21027

May 20, 2022

TABLE OF CONTENTS

Table	of Contentsii	Í
I.	PROJECT DESCRIPTION 1	
II.	PURPOSE OF UPDATE 1	
III.	PREVIOUS REPORTS	5
IV.	EXISTING ENVIRONMENT	5
۷.	HYDROLOGY	;
VI.	SUB-BASIN DESCRIPTIONS	ļ
VII.	LAND USE AND SOILS	,
VIII.	HYDROLOGY ANALYSIS	,
IX.	HISTORIC HYDROLOGY ANALYSIS	,
Х.	REGIONAL DETENTION HYDROLOGY	5
XI.	HYDRAULICS	,
XII.	WETLAND RESOURCE EVALUATION)
XIII.	FLOODPLAIN	
XIV.	PROPOSED DRAINAGE FACILITIES 11	
XV.	REFERENCES 17	,
Appe	ndix Table of Contents	5

List of Figures and Tables (Refer to the Appendix Table of Contents)

ENGINEER'S STATEMENT:

The attached master development drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Kiowa Engineering Corporation, 7175 West Jefferson Avenue #2200, Lakewood CO 80235

Stephen A. Brown	
Registered Engineer # 40190	

Date

DEVELOPER'S STATEMENT:

I, the Developer, have read and will comply with all of the requirements specified in this drainage report and plan.

BY:_____

Date

ADDRESS: 111 South Tejon Street #222 Colorado Springs, CO 80903

CITY OF FOUNTAIN

Filed in accordance with City of Fountain subdivision ordinances and regulations.

City Engineer

Dated

I. PROJECT DESCRIPTION

Mesa Ridge Development is a master planned community located in northeast Fountain, Colorado. The master planned land includes open space, parks, drainage, residential, office, commercial, a business park, and a regional town center. The majority of the development is located on the land that lies east of Fountain Mesa Road, west of Marksheffel Road, north of C&S Road, and south of Mesa Ridge Parkway. The development lies within and adjacent to the West Fork Jimmy Camp Creek Drainage Basin. The watershed has been noted as the Jimmy Camp Creek Drainage Basin in past drainage basin planning studies. The major basins of Jimmy Camp Creek in the Mesa Ridge Development include the west basin, C&S basin located in the center, and West Fork Jimmy Camp Creek basin located in the east portion. The west basin (tributary to Hale Reservoir) has been developed and is not included in this study per discussion with the City of Fountain. Currently the reservoir and associated storm outfall are under redesign by Applegate Group. The remainder of the development within the study property is in the planning stages. The Mesa Ridge East development is entirely within the developer's property, therefor no stakeholder involvement was necessary other than coordination with the City of Fountain.

An annexation plan and overall development plan for the undeveloped portion of the development was approved by the City in 2008 and covered the portion of the Cross Creek development project that was formerly in unincorporated El Paso County. The total acreage subject to master planning in this study covers approximately 522 acres.

The property subject to ongoing development is located in portions of Sections 27, 28 and 29 of Township 15 South, Range 65 West of the 6th Principal Meridian. The watershed area subject to master drainage planning is bounded on the west by the boundary of the C&S basin, Fontaine Boulevard on the north, south by C & S Road and on the east by Marksheffel Road (see Vicinity Map in Appendix). The watershed contains areas within the City of Fountain, City of Colorado Springs and unincorporated El Paso County. The total watershed area tributary to the south boundary of the Mesa Ridge property covers 3738 acres. The project site is shown on Figure 1 of the Appendix.

II. PURPOSE OF UPDATE

The Cross Creek master development drainage plan (MDDP) covers the area that now is owned and being developed as "Mesa Ridge" by Nor'wood Development and was first submitted to the City of Fountain and El Paso County in 2002. The MDDP formed the basis for the preparation of final drainage reports for the developed west portion. Drainage infrastructure such as roadway culverts, storm sewer collection and outfall systems as well as detention in the west basins were at the time of development of these filings constructed and are currently functioning. Nor'wood purchased the undeveloped portions of Cross Creek in 2005 and began the process of annexing the eastern half of the Cross Creek Development to the City of Fountain, along with processing an Overall Development Plan (ODP). The annexation and ODP were approved in 2005 and along with this approval the Cross Creek MDDP was updated and submitted to the City as the "Mesa Ridge Master Development Drainage Plan Update". Similar to the Cross Creek MDDP, the Mesa Ridge MDDP update was reviewed by the City of Fountain and not formally approved but formed the basis for final drainage planning, design and construction for the developed west area. **It is therefore the purpose of this study to evaluate the major drainage infrastructure for the areas remaining to be developed so that future filings within the Mesa Ridge Development can proceed to final planning stages using the technical information provided in the updated MDDP.**

Several issues have caused the need for the update to the MDDP as well and are summarized below as follows:

1. The City of Fountain formally adopted the used of full spectrum detention (FSD) for all new detention basins within the City. The design criteria and methods established in the Mile High Flood District Storm Drainage Criteria Manual, Volume 3 have been adopted by the City and have now been applied in this MDDP update.

2. Stormwater runoff from areas upstream of the Mesa Ridge Development have been separated from the Fountain Mutual Irrigation Canal (FMIC) by providing conveyance under the canal. It is assumed the canal does not intercept upstream existing or developed storm flows. Conveyances under the canal for the project property include outflow from the Glen at Widefield detention at DP 1031 and the West Fork Jimmy Camp Creek flows at DP 3110 located along Mesa Ridge Parkway.

3. The most recent ODP prepared for the Mesa Ridge development as discussed above changed the land uses for development for those sub-watersheds that lay to the east of the west basins that are tributary to Hale Reservoir. This study will reconfirm the watershed limits and sub-basin boundaries and examine and refine possible regional FSD alternatives. Land uses, drainage planning and roadway layouts for the undeveloped portions of the Mesa Ridge development have been revised. This information was used to more accurately model the hydrologic characteristics of the watershed and to better define the sizes as well as the location of proposed roadway culverts and detention basins. It should however be expected that modifications in the size and location of the major drainageway facilities and FSD's as shown herein may occur depending upon the actual development of the land within the Mesa

Ridge development. In particular, the locations of the regional FSD's may be shifted as alternatives are analyzed as part of the land development process.

III. PREVIOUS REPORTS

Reports and plans reviewed in the process of preparing this final drainage plan are included in the References section of this report. In the past the City of Fountain reviewed and informally approved MDDP reports but did not provide official signature. Therefor many of the following drainage studies allowed development to proceed without City signatures.

The West Fork Jimmy Camp Creek DBPS (Reference 5) identifies feasible stormwater management plans to satisfy the existing and future needs within the West Fork Jimmy Camp Creek Drainage Basin. Drainage and bridge fees for the county portions of the West Fork Jimmy Camp Creek basin were also established in the DBPS. Data from Cross Creek at Mesa Ridge MDDP (reference 6) regarding drainage onto the site from areas north of Mesa Ridge Parkway was taken into consideration in modeling the "1200" and "3200" basins.

IV. EXISTING ENVIRONMENT

The existing land in the Mesa Ridge East Development is undeveloped and was used primarily for cattle grazing in the past. The landscape is composed of broad, fertile bottomlands with a high groundwater table and intervening uplands. Vegetation consists largely of native grasses typical of the high plains prairie, along with small amounts of tree and shrub cover. The drainageways are wide and shallow, poorly defined, and prone to sheet flow during major storm events. There is little evidence of significant erosion and water quality issues. No ponds or formal conveyance elements are found on the property.

Base mapping and topography for the project were developed from aerial photography in 2001 and referenced to the NAVD 88 elevation datum. Structure inventory was based on the 2013 Mesa Ridge MDDP (reference 8) and verified in the field in 2022.

V. HYDROLOGY

The offsite and onsite hydrology for the site was estimated using the methods outlined in the City of Colorado Springs Storm Drainage Criteria Manual (adopted by City of Fountain). Topography for the site was compiled at a two-foot contour interval and a horizontal scale of one inch to 400-feet. This topography was used to verify the onsite subbasin boundaries. Offsite sub-basin boundaries were determined using the above referenced reports, the City of Colorado Springs FIMS mapping base, and the USGS quadrangle maps for the area. Field inspections were also carried out in order to confirm or refine subdivision

limits. Presented on Hydrologic Sub-basin Map (Exhibit 1 of Appendix) are the basin divides and other related hydrologic data for the developed condition.

Developed condition peak discharges for the sub-basins and design points shown on the Hydrologic Sub-basin Map were determined for the 5-year and 100-year recurrence intervals. The DBPS and previous MDDPs used the 24-hour storm duration with a Type IIA rainfall distribution and 100-year depth of 4.4 inches. This study applies the Colorado Springs criteria of the 2-hour storm for tributary areas under 15 square miles. The Drainage Area Reduction Factor (DARF) was used for the West Fork Jimmy Camp Creek basin. Rainfall depths for the 5-year and 100-year storms were 1.59 and 3.39 inches, respectively. Full rainfall data is included in the Appendix. Previous calculated historic flows in DBPS studies (reference 3 and 5) used the 24-hour storm. The subsequent criteria change required reevaluation of the historic conditions in this study as discussed in Section VII of this report.

VI. SUB-BASIN DESCRIPTIONS

The study area is drained by two major sub-watersheds noted in the hydrologic analysis by sub-basins designated as C&S (1200 basins) and the West Fork of Jimmy Camp Creek (3200 basins). The 3200 basin designation is consistent with the sub-basins delineated in the West Fork Jimmy Camp Creek Drainage Basin Planning Study and cover the majority of the undeveloped land remaining within the Development.

As seen on Exhibits 1 and 2 of the Appendix, a future Powers Boulevard extended through the development is shown. Per City of Fountain, the alignment with a 210' wide area was to be considered as open space for the hydrology analysis of this report. The need for future construction of Powers in this area is currently undetermined. A separate hydrology model was developed to reflect runoff from the imperviousness of the roadway and is included in this report for informational purposes only. Based on a preliminary cross section design, it was assumed that the impervious road surface comprised approximately 50 percent of the area, with the remaining area designated as grassland open space. Only the C and S basin (1000s) developed conditions hydrology model was adjusted for roadway imperviousness since the alignment is almost exclusively located in this basin. The CN numbers for affected subbasins were adjusted and an output comparison to the model reflecting open space for Powers Boulevard is included in Appendix C. This comparison indicated minor increases to 100-year runoff flows which did not impact design of the downstream FSD facilities in the model. An increase in developed 100-year flows at C and S Road (DP1250B) from 141cfs to 166 cfs was noted. Final design of Powers Boulevard through the Mesa Ridge East development may include detention and water quality facilities in the median and therefore have no impact on the proposed conditions hydrology of the

downstream areas. The existing Mesa Ridge Parkway along the north of the development drains to proposed conveyances and FSD facilities.

The "1200" basins outfall to two existing drainage swales located south of C & S Road. The 100-year historic discharge from design point 1260 was calculated at 341 cubic feet per second for this study in the 2-hour storm simulation. Design Point 1260 discharges through two 35-inch by 24-inch corrugated metal pipes under C & S Road to the south as noted on Exhibit 2. The inlets and outlets of these culverts are damaged and are both partially filled with sediment. The 100-year historic rate at design point 1250 was estimated to be 229 cubic feet per second in this MDDP. The corrugated metal pipes that exist at design point 1250 are inadequate to convey the discharge at design point 1250. The drainageways associated with the "1200" basins are generally poorly defined and have no base flow, however are currently stable and well vegetated. The major drainageway within the 1200 sub-basins is the channel that extends from proposed Powers Boulevard open space at design point 1210 to C & S Road at design point 1260. This drainageway has little or no low flow invert as it passes through the Nor'wood property and there are no improved bank linings such as riprap presently installed along the drainageway.

The "3200" basins discharge into West Fork Jimmy Camp Creek at design point 3280 (corresponding to design point 5011 in the DBPS, reference 5). The 100-year historic discharge at this location was estimated to be 3,745 cubic feet per second. Existing conditions 100-year flows for this study using the 2-hour storm were estimated at 2,988 cfs. Eventually, flow from these sub-basins makes its way to Jimmy Camp Creek via the West Fork. The drainageways associated with the "3200" basins south of Mesa Ridge Parkway are generally poorly defined and have no base flow. The portion of the West Fork Jimmy Camp Creek drainageway south of Mesa Ridge Parkway has a very wide and shallow floodplain. The approximate limits of the existing FEMA 100-year floodplain are shown on Exhibit 2 (reference 9). The drainageways associated with the 3200 basins have no base flow and are currently stable and well vegetated. The major drainageway within the 3200 sub-basins is West Fork Jimmy Camp Creek that extends from proposed Mesa Ridge Parkway at design point 3110 to Marksheffel Road at design point 3280. This drainageway has little or no base flow as it passes through the property and there are no improved bank linings such as riprap presently installed along the drainageway. There are three 36-inch culverts under Marksheffel Road (DP 3280/5011) that have little or no capacity to convey the flow carried by this drainageway without overtopping of Marksheffel Road.

The routing of runoff at design point 2160 to design point 3110 also represents a change to the hydrologic model from the original MDDP (reference 6). For this MDDP, runoff

at design point 2160 is routed in the existing channel north of Mesa Ridge Parkway to the West Fork Jimmy Camp Creek bridge and drainageway. The diversion will eliminate the need for a culvert to convey runoff at design point 2160 under Mesa Ridge Parkway. Runoff from design point 2160 would be combined with the runoff from design point 3110 at the bridge crossing under Mesa Ridge Parkway.

VII. LAND USE AND SOILS

Curve numbers for the sub-watersheds used in this study are consistent with the values used in previous studies. The curve numbers for the existing developed sub-watersheds were determined by measurement of the impervious areas of the topographic mapping referenced above. The time of concentration for each sub-watershed was recalculated for the majority of the sub-watersheds that make up the site. The time of concentration was calculated using the methods outlined in Reference 2. The developed condition land uses assumed in the hydrologic modeling are presented on Figure 2. The land uses shown on Figure 2 have been updated in this MDDP to be in conformance with the approved Mesa Ridge Overall Development Plan. The soils within the study are presented on Figure 3. Curve numbers were determined for existing conditions from Table 6-9 ARC I and for developed conditions from Table 6-10 ARC II per Colorado Springs criteria. Existing and developed condition weighted curve number calculations for each sub-basin are included in the Appendix.

VIII. HYDROLOGY ANALYSIS

Due to the size and complexity of the watershed in the study area, computer program calculation including HEC-HMS is preferred to the Rational Method. The Mile High Flood District and the City of Colorado Springs drainage manuals recommend an area limit of between 90 and 130 acres for Rational Method use. Larger basin runoff peak flows will tend to be significantly overestimated and fail to correctly model more complex systems, particularly those with detention elements. Therefor HEC-HMS is used per criteria for the overall C &S and West Fork Jimmy Camp Creek basins to determine major drainage conveyance and 100-year volume for FSD facilities. The Rational Method should be used to determine onsite hydrology for individual Final Drainage Reports other than the overall basin conveyance system descripted by this report.

The hydrologic analysis for this project was done with the U. S. Army Corps of Engineers HEC-HMS v4.8 software. This computer model was used to estimate peak discharges for the 2-hour storm duration per City of Colorado Springs criteria for a basins less than 15 square miles. The 5- and 100-year frequencies were modeled. This method was

used because it allows for routing of the runoff through the existing storm sewer systems and through the existing and proposed detention facilities. The study area was modeled assuming the fully developed condition with detention. Existing condition flows as estimated in the previous studies and through estimations conducted as part of this study were established at the key design points along C & S Road and Marksheffel Road. The existing flows were used to determine the level of flow attenuation and associated detention volume criteria necessary for the maintenance of pre-development rates due to the increase in runoff affected by the development of Mesa Ridge. It was found that without detention storage within the Mesa Ridge development that historic flow rates at the south property line cannot be maintained. Storm water facilities along the major drainageways south of C & S Road do not have sufficient capacity to safely convey the developed runoff through the downstream watershed to Jimmy Camp Creek.

IX. HISTORIC HYDROLOGY ANALYSIS

The established historic conditions peak flows used in previous studies were based on previous criteria with the 24-hour storm simulation. The change in current criteria to the 2-hour storm required reanalysis for C&S and West Fork Jimmy Camp Creek basins. However previous models of the historic analysis were not available to rerun 2-hour storm simulations. Therefore the developed conditions models for the most recent 2013 Mesa Ridge MDDP (reference 8) were altered to reflect undeveloped land use and no detention for the Mesa Ridge development. This provides a simulation of predeveloped conditions for the site using the 2-hour storm and reflects current conditions of the upstream/offsite portions of the basins. Use of the 2013 MDDP models (reference 8) was also necessary reflect conveyance of upstream basin flows under the Fountain Mutual Irrigation Canal. The key design points of interest along C&S road (DPs 1250 and 1260) and Marksheffel Road (DP 3280) provide target design flows for the Mesa Ridge developed hydrology.

Results of the onsite historic analysis, referred to as existing conditions, are shown in Table 1 below.

		2-hour Storm		24-hour	⁻ Storm
Design Point	Location	100yr	5yr	100yr	5yr
1250	C&S Road	250	46	186	35
1260	C&S Road	341	61	340	48
3280	Marksheffel Road	2988	462	3745	992

Table 1: Existing Conditions Peak Flows (cfs)

As seen from the table, peak flows for the 2-hour storm simulation compare reasonably well with those of the 24-hour storm. The exception is for the West Fork Jimmy Camp Creek peak flows at DP 3280 where the effects 2-storm are more pronounced for a much larger basin area. The Type IIA storm has a greater rainfall depth and different distribution compared to the 2-hour storm.

X. REGIONAL DETENTION HYDROLOGY

Stormwater detention storage was determined through an iterative process where an initial volume was calculated based on the changes of SCS curve numbers between the existing and developed condition. The initial volume was refined using the HEC-HMS model resulting in the storage volumes summarized in this report. The proposed development condition was modeled with sufficient detention storage so that the flow rates were maintained to existing levels or less at C & S Road and Marksheffel Road. The routing elements were modeled as open channels. The latest roadway and land use configuration for the Mesa Ridge development was used when the sub-basin boundaries were determined. Presented on Exhibits 1 and 2 in the Appendix are the basin divides, routing elements, and peak flow data at each of the key design points within the study area.

Regional detention basins within the Mesa Ridge development have been modeled so that the peak discharges at the development's south property line are maintained to the existing condition levels. The inflow and outflow characteristics and storage volumes for each are summarized on Exhibits 1 and 2.

Five regional full spectrum detention basins are proposed for the areas of Mesa Ridge remaining to be developed. These facilities operate as FSD's and as flood control measures that limit the rates of discharge for the 5-year and 100-year recurrence intervals. The water quality capture volume (WQCV) and excess urban runoff volume (EURV) were determined using the methods described in the MHFD Storm Drainage Criteria Manual, Volume 3. The 100-year storage volume was obtained using the HEC-HMS hydrograph model assuming that the EURV pool is empty at the time of the 5- or 100-year storm event. The WQCV and UERV are included in all FSD facilities of this study. The detention discharge curves in the HEC-HMS models were taken from the MHFD spreadsheets included in Appendix D. Land use data contained in this study was used to estimate the rates of imperviousness for each subwatershed within the study area. These FSDs are noted on Exhibits 1 and 2 as FSD basins A, B, C, E, and G.

Detention Basins C and E are proposed to replace the two regional detention basins designated as basins 5021 and 5011 in reference 5 and 8. The reconfiguration consolidation of detention basins 5011 and 5021 into Detention Basin C was made possible because of the

changes in the proposed roadways within this area of the Mesa Ridge development. The hydrologic effect of FSD basins C and E is to maintain the developed discharge at design point 3280 to existing levels.

The input data and output for the computer modeling for this hydrologic analysis is included in the Appendix. Peak flow data for the proposed development condition with detention is summarized on Exhibits 1 and 2 contained in the map pocket of this report. Presented in Table 2 is a summary of the discharges at each sub-basin and at design points for the developed with detention condition.

		2-hour Storm		
Design Point	Location	100yr	5yr	
C&S BASIN				
DB 1031	GLEN DETENTION OUTFLOW	45	15	
R1031	GLEN DETENTION CONVEYANCE	44	15	
DP1210	MESA RIDGE UPPER BASINS	241	78	
R1210	MESA RIDGE FLOWS INTO FSD G	246	74	
DP1225	CROSS CREEK AVENUE	164	23	
R1225A	CONVEYANCE FSD G OUTFLOW	164	23	
DP1260	C&S ROAD	332	39	
DB1250-B	C&S ROAD FSD B OUTFLOW	148	23	
WEST FORK JIMMY CAMP CREEK BASIN				
DP3110	INLFOW FROM GLEN AND WIDEFIELD	2835	429	
R3110	WEST FORK JIMY CAMP CREEK CONVEYANCE	2794	428	
R3200	WEST FORK JIMY CAMP CREEK CONVEYANCE	2830	429	
DP3280	MARCKSHEFFEL ROAD	2982	435	

Table 2: Developed Conditions Peak Flows (cfs)

(See Exhibit 1 Hydrology Map)

XI. HYDRAULICS

The sizing of the storm sewer outfall lines and roadway culverts was accomplished through an iterative procedure. Using the HEC-HMS results at each design point, storm sewers were sized assuming a minimum slope. The required storm sewer data was input into the HEC-HMS model and the model recompiled. The hydraulic capacity of the existing and proposed storm sewer systems and channels is summarized on Exhibit 2. The several existing culverts under Marksheffel Road and C & S Road do not have adequate capacity to convey the 5-year undeveloped discharge. At some locations, a 5-year capacity facility has been sized. The refinement of the size, slope and location of these outfall lines will occur when the individual subdivision drainage reports are prepared. Presented on Exhibit 2 are

the sizes, types and location of the proposed storm water facilities for the Mesa Ridge development.

XII. WETLAND RESOURCE EVALUATION

The Mesa Ridge Development project area is undeveloped land that was historically used for agricultural and ranching purposes. The landscape is composed of broad, fertile bottomlands with a high groundwater table and intervening uplands. Vegetation consists of largely of native grasses and herbs typical of the high plains prairie, along with small amounts of tree and shrub cover.

On the north border of the site is the Fountain Mutual Irrigation Canal dating back to the late 1800s and still in use today. Along with two existing manmade ponds, there is evidence of former water diversions in the form of dry ditches. Irrigation water is no longer delivered to the project area.

The U.S.G.S. Fountain Quadrangle identifies two 'blue line' streams in the project area (see Figure 4). These blue line streams are typically considered waters of the U.S. until determined otherwise. The westerly drainage was determined to be non-jurisdictional per U.S.A.C.E. Action No. 2002 00504. The other 'blue line' drainage is the West Fork of Jimmy Camp Creek which has an indistinct connection to Jimmy Camp Creek. To date, no Jurisdictional Determination has been conducted on the West Fork.

The West Fork Jimmy Camp Creek supports a wetland channel composed of sedges and rushes. At times, water is present in the channel, but at other times the channel is dry. Until a Jurisdictional Determination is conducted, the wetland channel along the West Fork should be considered a potential jurisdictional waterway with adjacent jurisdictional wetlands.

Several riparian zones exist on the site: below the FMIC Canal, around one of the dry, unused stock ponds, and along the West Fork of Jimmy Camp Creek. Riparian areas generally consist of mature plains cottonwoods, with a sparse understory of currant, chokecherry and snowberry.

Projects within areas of current and former irrigation facilities, such as the FMIC Canal, the two dry off channel stock ponds, and the various relic irrigation overflow ditches will most likely not require permits.

It is recommended that consultation with the U.S.A.C.E. should occur prior to final design for the West Fork of Jimmy Camp Creek with a formal Jurisdictional Determination Request. As an ordinary high water mark is lacking downstream from Marksheffel Road, a clear connection to Jimmy Camp Creek is not apparent, and wetlands are not present, it is possible that the agency may determine the West Fork to be a non-jurisdictional waterway where permits will not be required. Until a Jurisdictional Determination has been processed, the West Fork and adjacent wetlands should be considered a jurisdictional waterway where a permit would be required for construction activities.

XIII. FLOODPLAIN

The West Fork of Jimmy Camp Creek is shown as a Zone AE (detailed) floodplain on the Flood Insurance Rate Map (FIRM) 08041C0958G dated December 7, 2018 (see Appendix A). Figure 5 in the Appendix shows the floodplain boundary location at the east portion of the property along the West Fork of Jimmy Camp Creek. The proposed relocation and channelization of the West Fork of Jimmy Camp Creek shown on Exhibit 2 was taken from the DBPS and will require FEMA approval of a Conditional Letter of Map Revision (CLOMR) prior construction and a Letter of Map Revision (LOMR) post construction.

XIV. PROPOSED DRAINAGE FACILITIES

No drainage and bridge fees will be established for the property within the Mesa Ridge East development and no drainage and bridge fees will be due as the property is platted. All proposed drainage facilities identified by this MDDP within the Mesa Ridge East development are planned to be constructed and paid for by the Developer or Metropolitan District and will be dedicated to and maintained by the City of Fountain. Phasing of development will determine implementation of the drainage facilities downstream to maintain flows to existing levels. This includes primarily FSD facilities and associated conveyances.

Four Step Process

City of Colorado Springs criteria requires a Four Step Process "for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways and implementing long-term source controls". Future development in Mesa Ridge East should use the following steps to comply with this concept.

Step 1-Employ Runoff Reduction Practices: Runoff from pavement and buildings to be directed to pervious surfaces such as grass and landscaping were ever possible to result in Minimizing Directly Connected Impervious Areas (MDCIA). The pervious surfaces will also provide the opportunity for runoff to infiltrate into the ground. The FSD facilities will also provide additional area for infiltration and runoff reduction.

Step 2-Implement BMPs that Provide a WQCV with Slow Release: The FSD facilities will be constructed to treat and provide the slow release of flows from the site.

Step 3-Stabilize Drainageways: The West Fork Jimmy Camp Creek and other drainageways in Mesa Ridge East will be channelized with buried soil riprap or erosion control fabric to mitigate erosion. Check structures will be added to the drainageways to

create a more stable channel slopes. Riprap protection will also be needed at FSD pipe outlets to further prevent erosion during storm events due to pond discharge into the channel.

Step 4-Implement Site Specific and Other Source Control BMPs: The potential pollutant sources for a commercial and residential development include: parked vehicles, deicing chemicals/snow storage, waste storage/disposal practices and landscapes (fertilizers, herbicides, pesticides, excessive irrigation). Examples of onsite source control BMPs for the development should include on site containment of pollutant spills due to vehicle maintenance or commercial operations. The application of fertilizers, pesticides and other chemicals should be done per manufacturer's recommendations.

Full Spectrum Detention

The primary conclusion of this MDDP is that full spectrum detention will be required to maintain the historic flow conditions at the Development's south property line and to be in conformance with City of Fountain drainage criteria. Five FSD facilities are proposed within the development. All the FSD facilities lay within the City of Fountain. As discussed above, the detention basins shown within the West Fork Jimmy Camp Creek basin (FSD basins C and E) is a consolidation of the two detention basins that were identified in the DBPS for this property. All proposed detention basin sites are shown on Exhibits 1 and 2. As final development planning in the basin occurs, the locations of the regional FSD basins might need to be altered somewhat from those locations shown on Exhibits 1 and 2.

The storage and outflow data for each of the detention basins are presented on Exhibits 1 and 2. FSD basins will be designed to be in conformance with the City's storm drainage technical criteria. Each FSD basin will be required to have forebays, low flow channel, outlet structure and pipe, and an emergency spillway. The outlet structures will incorporate water quality and EURV elements to the facilities as required by criteria. Easements or tracts dedicated for access and maintenance will be established at each detention basin site. Access roads are planned to be incorporated into the multi-use trail system discussed in one of the following sections of this report.

Drainageways

The City of Colorado Springs and El Paso County Drainage Criteria Manuals were used in the development of conveyance structures for the major drainageways within the Mesa Ridge East development. The City of Colorado Springs storm drainage criteria was supplemented by the Urban Storm Drainage Criteria Manual, Volumes I, II, and III prepared by the Mile High Flood District. As seen on Exhibit 2 and 3, both riprap lined channels and storm sewer pipes are recommended for conveyances within the development. Size calculations for the conveyances are based on 100-year developed flows of the hydrology model and are included in the Appendix. A minimum pipe size of 42" in diameter is required for trunk storm sewer systems per City of Fountain criteria. Equivalent conveyance structures may be substituted during final design.

Consistent with the selective improvement measures from the DBPS, the West Fork Jimmy Camp Creek 100-year floodplain will be channelized along the east portion of the site. Based on hydraulic analysis during final design, channel embankments should be either reinforced with erosion control fabric or buried riprap lining (see Exhibit 3). Check structures or other approved grade control structures should be designed along the channel bottom to maintain a stable channel slope per Figure 12-4 of the Colorado Springs Drainage Criteria Manual (reference 16). The final design will require Army Corps approval to address and mitigate existing wetland resources. In addition, channelization and relocation of the existing West Fork Jimmy Camp Creek floodplain will require CLOMR/LOMR approval by FEMA.

Drop and Check Structures

Drop and check structures in the West Fork Jimmy Camp Creek DBPS have been sited along the drainageways in order to maintain the channel invert at a stable gradient or to reduce the slope of the channel gradient so that lower velocities result along the drainageways (reference 5, see experts in the Appendix). When determining the location of check structures, a degraded slope of approximately 0.15% per Figure 12-4 of Colorado Springs criteria should be used. This assumption allows for the design to accommodate future channel degradation without modifying the existing channel sections wherever the wetland resources are proposed to remain. This assumption is consistent with the conceptual check structure siting used in the DBPS. The checks should be designed to allow for a maximum drop height of two feet once the stable slope has been reached. Taller grade control structures may be used per criteria. In the segments to be selectively lined, check structures will protect the native vegetation from the detrimental effects of stream invert head-cutting. A typical check structure detail is presented on Exhibit 3.

Additional check structures may be used for the various small drainageways shown on Exhibits 1 and 2 in the appendix. This may reduce the amount of riprap lining by decreasing channel velocities below the requirement for riprap protection (see Exhibit 3 detail).

The capacity of the existing culvert crossing of Marksheffel Road (DP 3280) is inadequate to convey 100-year flows from the Mesa Ridge Development to the downstream

channel leading to Jimmy Camp Creek. The West Fork Jimmy Camp Creek DBPS (reference 5) proposed a 75' span bridge to provide adequate conveyance. Coordination will be needed with the City of Fountain and EL Paso County regarding design and construction of the crossing. The invert of the channel at the crossing location upstream of Marksheffel road on the property will likely need to be lowered to accommodate the invert of the crossing structure. As noted on the preliminary plan of the DBPS, one or more grouted sloping boulder drops may be required to lower the upstream channel on the property. An option of raising the roadway should be considered to reduce lowering of the channel.

Roadway Crossings

Summarized on Exhibit 2 are the size, type and location of roadway crossings along the major drainageways. The location of future arterials and collector streets was obtained from the current development plan for the Mesa Ridge development. A maximum 100-year headwater to depth ratio of 1.5 was assumed in the sizing of the major roadway culverts. As discussed previously, the inadequate capacity of the existing crossing structure at Marksheffel Road will need to be coordinated with EL Paso County.

As shown on Exhibit 2, the three major discharges from the Mesa Ridge East development will need to be adequately conveyed under C&S and Marksheffel Roads. Conveyance of West Fork Jimmy Camp Creek flows (100yr 2,967cfs) will require a crossing similar the existing 70' span bridge upstream bridge at Mesa Ridge Parkway. Per the DBPS, drop structures will be needed to lower the channel invert and allow for conveyance under a proposed Marksheffel bridge. The DBPS also includes a formal channel to convey flows to Jimmy Camp Creek. The bridge and downstream channel elements are outside of the development property and will need to coordinated with El Paso County.

The Conveyance of FSD B flows at DP1250B and FSD A flows at DP1260 will likely require replacement of the existing twin 35"x24" CMPs at each location under C&S Road. Existing culverts at both locations are either partially or fully buried and barely functioning. If restored, the conveyance capacity of each arch pipe is approximately 30 cfs, or 60 cfs total. Therefore replacement pipes have been sized at both locations as shown on Exhibit 1 and 2.

Multi Use Trails

Trails for access to the major drainageways need to be incorporated into the design of the improvements. For the Mesa Ridge development, multi-purpose trails that can be used for open space, channel maintenance and utility access is recommended. The siting of a trail along a drainageway should be carried out taking into account hydraulic considerations, utilities in the area, access to dedicated parks and roadway crossings. Maintenance access to the drainageway, FSD facilities, and existing utilities within the drainageway corridor can offer a multiple use aspect to a trail project.

Maintenance and Revegetation

Maintenance of drainageway facilities is essential in preventing long term degradation of the drainageway and overbank areas. Along the drainageway, clearing of debris and dead vegetation should be considered within the low flow area of the creek and its tributaries. On the overbanks, limited maintenance of the existing vegetative cover is recommended wherever possible. Yearly clearing of trash and debris at roadway crossings is also recommended to ensure the design capacity of the crossing, and to enhance the crossings for trail users if a trail exists. Caution should be taken when clearing culverts of sediment so as not to leave the dredged soil within the channel or overbank area. This disturbs the native vegetation and creates a potential water quality concern if the dredged material is subsequently washed into the drainageway by natural erosion. In those reaches designated to be selectively lined and the floodplain preserved, maintenance activities should be carried out while minimizing the disturbances to native vegetation. All proposed drainage facilities identified by this MDDP within the Mesa Ridge East development are planned to be constructed and paid for by the Developer or Metropolitan District and will be dedicated to and maintained by the City of Fountain.

Right-of-Way

It will be required that drainage channels and conveyances within the development which pass through the basin will be within dedicated tracts, easements or right-of-ways. For those segments of the drainageway where floodplain preservation is the recommended plan, a combination of open space dedication (such as park-land and greenbelts), in combination with a more narrow dedicated maintenance right-of-way along the low flow area of the drainageway should be obtained through the land development process. The dedication of easements and right-of-way for the drainageways and detention basins would be accomplished at the time of development planning and platting of the parcels that lie adjacent to or upstream of the stormwater facility.

Impact to Downstream Facilities

With the use of regional FSD basins within the Mesa Ridge development and offsite from the property, the impact upon downstream peak discharges is mitigated. At the south property line of the development, the peak discharges in the proposed condition with FSD are less than the pre-development condition as established in Reference 6. South of C & S

Road runoff from the Mesa Ridge development (and from areas offsite from Cross Creek tributary to design point 1260), will be conveyed through the Unseth subdivisions by means of an existing riprap channel. The drainageway facilities within the Unseth subdivisions have been designed to convey a discharge of 340 cfs beginning at design 1260. These channels may experience a longer duration of runoff associated with the runoff that will be carried through the Unseth subdivision. With FSD peak discharge at design points 1260 will be reduced from the levels estimated in Reference 6. However, the effect of FSD will be to reduce the peak discharges at this location from the existing levels estimated and listed in this report. The introduction of regional FSD basins in the watershed may extend duration of runoff flowing in the drainageways south of C & S Road.

The impact of developed runoff upon the West Fork Jimmy Camp Creek drainageway will be insignificant with respect to discharge. The 100-year detained discharge at design point 3280 (design point 5011 in the DBPS) will be reduced compared to the existing condition flow presented in the DBPS. At this time there is no defined West Fork Jimmy Camp Creek drainageway through the Mesa Ridge development, or downstream of Marksheffel Road. With the construction of the channel through Mesa Ridge as well as the outfall channel to Jimmy Camp Creek, the impact of the developed flow upon the area adjacent to these segments of West Fork Jimmy Camp Creek will be mitigated. The impact to the Jimmy Camp Creek drainageway with respect to peak discharge will also be minimal as long as the regional FSD concepts proposed in this study are implemented.

The combined outfall to Jimmy Camp Creek from both the Mesa Ridge East and Hale Reservoir basin will be decreased compared to existing flows according to proposed drainageway and detention plans for both areas. The current improvement design for Hale reservoir under design by the Applegate Group will reduce 100yr discharge to 210cfs from the existing 1320 cfs (Applegate Group correspondence 2022). As noted previously, propose conditions discharge from Mesa Ridge East drainageways which eventually outfall to Jimmy Camp Creek will either match or decrease compared to existing conditions flows.

The development of properties resulting in the increased imperviousness area and installation of detention facilities can increase the potential for downstream channel degradation due to increased runoff volume over a longer period of time. The discharge of cleaner water due to traditional water quality treatment can further increase downstream erosion. For this reason the Mile High Flood District developed full spectrum detention with an excess urban runoff volume (EURV) element. This design was intended to mitigate erosion from traditional detention facilities (reference 11, volume 2, section 3.2). However consideration of increased erosion to downstream channels should be evaluated during final design and mitigation measures may be indicated.

XV. REFERENCES

- 1. <u>Soil Survey for El Paso County</u>, Colorado, dated June 1981.
- 2. <u>City of Colorado Springs Drainage Criteria Manual</u>, prepared by City of Colorado Springs, January 2021.
- 3. <u>Jimmy Camp Creek Drainage Basin Planning Study</u> prepared by Kiowa Engineering, approved March 2015.
- 4. <u>The Glen at Widefield Master Development Drainage Plan</u>, prepared by Kiowa Engineering Corp., December 1999. Approval status unknown.
- 5. <u>West Fork Jimmy Camp Creek Drainage Basin Planning Study</u>, prepared by Kiowa Engineering Corp., approved March 2004.
- 6. <u>Cross Creek at Mesa Ridge Master Development Drainage Plan</u> prepared by Rockwell-Minchow Consultants, Inc. dated January 1999. Reviewed and approved without signature by City of Fountain.
- 7. <u>Master Development Drainage Plan Update</u>, Cross Creek Development prepared by Kiowa Engineering for Nearon Properties, June 2004. Reviewed and approved without signature by City of Fountain.
- 8. <u>Mesa Ridge Development Master Development Drainage Plan Update</u> prepared by Kiowa Engineering for Nor'wood Development, January 2013. Reviewed and approved without signature by City of Fountain.
- 9. <u>El Paso County and City of Fountain Flood Insurance Study</u>, FEMA, December 2018.
- 10. <u>Preliminary Hydrology for Hale Reservoir Rehabilitation</u>, Applegate Group 2021, correspondence with Dave Breindel. (see Appendix A2)
- 11. <u>Urban Storm Drainage Criteria Manual</u>, Volumes 1, 2, 3, Mile High Flood District, January 2016.
- 12. <u>Drainage Criteria Manual Volume 1</u>, City of Colorado Springs, revised 2021.

APPENDIX TABLE OF CONTENTS

APPENDIX A1: Figures and Reference APPENDIX A2: Reference Excepts and Correspondence APPENDIX B1: Existing Conditions Hydrology APPENDIX B2: NCRS Curve Numbers for Pre-Development (ARC I) APPENDIX C1: Developed Hydrology APPENDIX C2: Developed Hydrology with Powers Roadway APPENDIX D: Full Spectrum Detention Design Imperviousness Calcs MHFD Detention Calcs APPENDIX E: Culvert Design APPENDIX F: Channel Design

APPENDIX G: Exhibits

Exhibit 1 Hydrologic Subbasin Map Exhibit 2 Proposed Facilities Map Exhibit 3 Improvement Design Details

APPENDIX A1: Figures and Reference Figure 1 Project Vicinity Figure 2 Hydrology Land Use Map Figure 3 Soils Map Figure 4 Wetland Resources Figure 5 Flood Hazard Areas FIRM Drainageway Photo Log

SITE	IAND	USE	LEGEND	

LAND U	JSE SCS	Curve Number
OS/P/D	OPEN SPACE/PARKS/DRAINAGE	61-74
RL	RESIDENTIAL - LOW DENSITY	68-79
RLM	RESIDENTIAL - LOW/MEDIUM DENSITY	75–83
RMH	RESIDENTIAL - MEDIUM/HIGH DENSITY	85-90
RH	RESIDENTIAL – HIGH DENSITY	85-90
COM/OFF	COMMERCIAL/OFFICE	92-95
SCHOOL	SCHOOL	77–85
ROADWAY	ROADWAY	98-98

Engineering Corporation 7175 West Jefferson Avenue, Suite 2200 [303] 692-0369
MESA RIDGE DEVELOPMENT MASTER DEVELOPMENT DRAINAGE PLAN SOILS MAP FOUNTAIN, COLORADO
Project No.: 21027 Date: 04/05/2022 Design: SAB Drawn: MTR Check: SAB Revisions:
Fig. 3

Engineering Corporation 7175 West Jefferson Avenue, Suite 2200 (303) 692-0369
MESA RIDGE DEVELOPMENT MASTER DEVELOPMENT DRAINAGE PLAN FLOOD HAZARD AREAS FOUNTAIN, COLORADO
Project No.: 21027 Date: 04/05/2022 Design: SAB Drawn: MTR Check: SAB Revisions:
Fig. 5

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or loodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services

NOAA, N/NGS12 National Geodetic Survey

SSMC-3, #9202 1315 East-West Highway

Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

f you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

> El Paso County Vertical Datum Offset Table **Vertical Datum**

Flooding Source

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

Mesa Ridge East Drainageway Photo Log

Downstream Mesa Ridge Pkwy Bridge facing south.

WF Jimmy Camp Creek invert facing south.

WF Jimmy Camp Creek invert facing north.

WF Jimmy Camp Creek invert facing north.

Invert along Marksheffel Rd. facing southwest.

Mesa Ridge East Drainageway Photo Log

WF JCC flowpath looking west.

DP 1250 C&S road crossing and channel to north

Downstream of DP 1250 along Valley Ranch Rd.

Crossing of Valley Ranch Rd towards Jimmy Camp Creek

APPENDIX A2: Figures and Reference Excepts West Fork Jimmy Camp Creek DBPS Preliminary Plan West Fork Jimmy Camp Creek DBPS Typical Details Cottages Drainage Map Powers Blvd Conceptual Design Applegate Group 2021 Correspondence

WEST FORK JIMMY CAMP CREEK DRAINAGE BASIN PLANNING STUDY

Π

Π

[]

Π

Prepared for:

New Generation Homes, Inc. 3 Widefield Boulevard Colorado Springs, CO 80911

Prepared by:

Kiowa Engineering Corporation 1604 South 21st Street Colorado Springs, CO 80904

KIOWA Project No. 98.93 wfjc*.doc

> June 1999 July 2000 November 2000 October 17, 2003

The Cottages at Mesa Ridge Preliminary Drainage Report

August 2021 HR Green Project No: 200541

Prepared For:

Goodwin Knight Contact: Bryan D. Kniep 8605 Explorer Drive, Suite 250 Colorado Springs, CO 80920

Prepared By:

HR Green Development, LLC Contact: Ken Huhn, PE khuhn@hrgreen.com (720) 602-4965 > HRGREEN.COM

Memorandum

To: Brandy Williams/Fountain City Engineer
From: Scott Asher/Wilson & Company
CC: Maureen Paz de Araujo, Kelly Fredell
Date: 10/14/2020
Re: South Powers Boulevard Design Criteria

The purpose of this memorandum is to memorialize the agreements and direction for the South Powers Boulevard design criteria in order for the City of Fountain to provide consistent direction as the area continues to develop.

Powers Boulevard is planned to be an expressway facility with full access control that will provide for an alternate high capacity north-south facility through El Paso County. The roadway will be designed as a 70 MPH facility with a posted speed of 65 MPH. Due to the high speed nature of the facility a minimum of 300' of right of way will be required for the mainline portions of the roadway. The right of way width will increase at the full access locations. The following exhibit illustrates the typical section for the South Powers corridor. Note that there is 87 feet from edge of pavement to allow for slope grading, clear zone requirements and roadside drainage facilities.

Due to the nature of transportation projects it is anticipated that the 300' corridor for the roadway will likely be unused for several years before construction of the roadway would progress. Through conversations with CDOT and FHWA it is recommended that the future corridor right of way is not used for uses that are inconsistent with the ultimate transportation use. Trail and bikeway facilities could be constructed at the edges of right of way or crossing perpendicular to the right of way in areas that are planned for pedestrian access. It is not desirable to have trail or pedestrian facilities with in the foot print of the roadway as shown in the typical section.

As development plans move forward and the Powers Boulevard Corridor becomes more defined, the City will share development plans and annexation agreement language with CDOT to comment on and ensure compatibility with the Powers Boulevard Corridor plan.

Powers Boulevard Design Criteria to use in the review and approval of development plans is shown in the following exhibit.

		Design Criteria Table	
Criteria	Unit	Value	Source
Jurisdiction		CDOT	
Roadway Type		Freeway/Expressway	
Design Speed	mph	70	
Posted Speed	mph	65	
Design Vehicle		WB-67	CDOT RDG 2018, Table 9-3
Hadaaatal			
Horizontal	b	730	COOT DOC 2010 Table 2.4
Stopping Signt Distance (SSD)	nt A	730	CDOT RDG 2018, Table 3-1
SSD Downgrade (3%, 6%, 9%)	nt (h	//1, 825, 891	CDOT RDG 2018, Table 3-1
SSD Upgrade (3%, 6%, 9%)	ft ft	690, 658, 631	CDOT RDG 2018, Table 3-1
Passing Signt Distance	nt (1200	CDOT NDG 2018, Table 3-1
Horizontal Radius	π	3150 @6% of 8% max	CDOT M-Standard M-203-11
Vertical			
K-Value, Crest		247	CDOT RDG 2018, Table 3-1
K-Value, Sag		181	CDOT RDG 2018, Table 3-1
Superelevation Max		emax 8% table, use 6% maximum	CDOT M-Standard M-203-11
Clearance under Road Bridge	ft	16.5	CDOT RDG 2018, Table 3-3
Min Flowline Grade	%	0.005	CDOT RDG 2018, Page 3-30
Max Grade (Level)	%	3% Rural, 4% Urban	CDOT RDG 2018, Table 3-4
Min Length of Vertical Curve	ft	300	
Cross Section Elements			
Geometric Design Type		Type A	
Number of lanes		4	
Lane Width	ft	12	CDOT RDG 2018, Table 4-1
Outside shoulder min	ft	10	CDOT RDG 2018, Table 4-1
Inside shoulder min	ft	4	CDOT RDG 2018, Table 4-1
ROW Width	ft	300	CDOT RDG 2018, Table 4-1
Access Control		Full	CDOT RDG 2018, Table 4-1
Curb Type		None	CDOT RDG 2018, Page 4-10
Z Slope	ft	12	CDOT RDG 2018, Figure 4-1,4-2
Slope Ratio		Z then 4:1/3:1(Rolling/Mountainous)	CDOT RDG 2018, Table 4-2
Tapare			
Full Deceleration Length	ft	820	CDOT RDG 2018. Table 9-7
Storage Length	ft	Depends on traffic	CDOT RDG 2018, Table 9-8
Acceleration Length	ft	1620 (from stop condition)	CDOT RDG 2018, Table 9-9
Taper Ratio		25:1, 70:1 where lengths exceed 1300ft	CDOT RDG 2018, Table 9-10

RE: Mesa Ridge MDDP

Dave Breindel <davebreindel@applegategroup.com> To Steve Brown

Steve – see the table below; let me know if this gets what you need for your submittal to Fountain. As discussed, the estimated peak flows are preliminary. I'm still working on design of the service spillway standpipe/riser to meet water quality treatment requirements and will keep you updated as we move forward.

	Outflow Reservoi	from Hale r (DB8075)
Source	5-yr	100-yr
Preliminary Hydrology for Hale Reservoir Rehabilitation (Applegate, 2021) - Developed Conditions*,1	39 cfs ²	210 cfs
Cross Creek at Mesa Ridge MDDP (Kiowa, 2013) - Developed Conditions	7 cfs	255 cfs
Cross Creek at Mesa Ridge MDDP (Rockwell, 1999)	N/A	539 cfs ³
West Fork Jimmy Camp Creek DBPS (Kiowa, 2004)	N/A	1320 cfs ⁴

Notes

*Colorado Springs 2-hour Design Storm with NOAA Atlas 14 rainfall data.

1. Assumes starting water surface elevation at normal pool (elevation 5622) and service spillway fully operational.

2. Design of service spillway standpipe to be updated based on required WQCV and EURV drain times - TO BE REVISED.

3. Historic 100-year flow at C&S Road.

4. 100-year flow based on existing development with detention and no diversion by FMIC ditch.

APPENDIX B: Existing Conditions Hydrology MEC-HMS Model Schematics Table 1 CN Values Calculation Table 2 Time of Concentration Calculation HEC HMS Peak Flow Results NOAA Atlas 14 Precipitation Colorado Springs 2hr Storm Distributions Colorado Springs NCRS Curve Numbers for Pre-Development (ARC I)

Table B1 Mesa Ridge MDDP Existing Conditions CN Values

		La	nd Use			
			Range	eland		
			В	С	HEC-HMS	
Basin	Area (ac)	Area (Sq Miles)	63	74	CN	Abstraction
C&S Bas	in					
E1010	12.8	0.020	0.001	0.019	73.2	0.366
E1020	26.24	0.041	0.033	0.008	65.5	0.527
E1030	12.8	0.020	0.006	0.014	70.8	0.412
E1011	14.4	0.022	0.022	0.000	63.0	0.587
E1210	40.3	0.063	0.049	0.014	65.5	0.528
E1211	32.1	0.050	0.017	0.033	70.2	0.425
E1225	45.7	0.071	0.021	0.050	70.8	0.413
E1230	18.1	0.028	0.000	0.028	74.0	0.351
E1240	28.9	0.045	0.000	0.045	74.0	0.351
E1250	29.8	0.047	0.000	0.047	74.0	0.351
E1260	32.0	0.050	0.000	0.050	74.0	0.351
E1270	43.3	0.068	0.000	0.068	74.0	0.351
Totals	336.5	0.526				
West For	rk Jimmy C	amp Creek Basi	n			
SB3220	41.6	0.065	0.024	0.035	69.5	0.439
SB3240	44.0	0.069	0.017	0.052	71.3	0.403
SB3250	20.1	0.031	0.000	0.031	74.0	0.351
SB3265	58.3	0.091	0.041	0.050	69.0	0.448
SB3275	59.8	0.093	0.007	0.086	73.1	0.368
Totals	223.8	0.3				

Table B2

	Sub-Basin Data					Time of C	Concentra	tion Esti	mate l	Unde	veloped					
Basin / Design				Ini	tial/Overland Tir	ne (t _i)			Trave	el Tim	ne (t _t)		Comp.		Final t.	HECHMS
Point	Contributing Basins	Area	C ₅	Length	Slope	t _i	Length	Slope	Land Type	Cv	Velocity	t _t	t _c		,	Lag (.6Tc)
E1011		14.38ac	0.16	400lf	6.1%	18.9 min.	100lf	6.1%	SP	7	1.7 ft/sec	1.0 min.	19.8 min.		19.8 min.	11.9
E1210		40.29ac	0.16	500lf	8.0%	19.3 min.	2100lf	8.0%	SP	7	2.0 ft/sec	17.7 min.	37.0 min.		37.0 min.	22.2
E1211		32.06ac	0.16	500lf	7.0%	20.1 min.	820lf	7.0%	SP	7	1.9 ft/sec	7.4 min.	27.5 min.		27.5 min.	16.5
E1225		45.74ac	0.16	500lf	8.3%	19.0 min.	2250lf	8.3%	SP	7	2.0 ft/sec	18.6 min.	37.7 min.		37.7 min.	22.6
E1230		18.08ac	0.16	500lf	7.2%	20.0 min.	380lf	7.2%	SP	7	1.9 ft/sec	3.4 min.	23.3 min.		23.3 min.	14.0
E1240		28.93ac	0.16	500lf	3.2%	26.1 min.	1192lf	3.2%	SP	7	1.3 ft/sec	15.8 min.	41.9 min.		41.9 min.	25.2
E1250		29.81ac	0.16	500lf	5.7%	21.6 min.	1100lf	5.7%	SP	7	1.7 ft/sec	11.0 min.	32.6 min.		32.6 min.	19.6
E1260		32.03ac	0.16	500lf	5.7%	21.6 min.	680lf	5.7%	SP	7	1.7 ft/sec	6.8 min.	28.4 min.		28.4 min.	17.0
E1270		43.30ac	0.16	500lf	5.1%	22.4 min.	1730lf	5.1%	SP	7	1.6 ft/sec	18.2 min.	40.6 min.		40.6 min.	24.4
SB3240		44.00ac	0.16	500lf	2.0%	30.5 min.	1620lf	4.0%	SP	7	1.4 ft/sec	19.3 min.	49.8 min.		49.8 min.	29.9
SB3250		20.14ac	0.16	500lf	1.5%	33.6 min.	780lf	1.0%	SP	7	0.7 ft/sec	18.6 min.	52.2 min.		52.2 min.	31.3
SB3265		58.29ac	0.16	500lf	2.5%	28.4 min.	1910lf	2.8%	SP	7	1.2 ft/sec	27.2 min.	55.5 min.		55.5 min.	33.3
SB3275		59.76ac	0.16	500lf	2.1%	29.9 min.	1785lf	3.2%	SP	7	1.3 ft/sec	23.8 min.	53.6 min.		53.6 min.	32.2

Equations:

 t_i (Overland) = 0.395(1.1-C₅)L^{0.5} S^{-0.333}

 C_5 = Runoff coefficient for 5-year

L = Length of overland flow (ft)

- S = Slope of flow path (ft/ft)
- tc Check = (L/180)+10 (Developed Cond. Only)

L = Overall Length

Velocity (Travel Time) = CvS^{0.5} Cv = Conveyance Coef (see table) S = Watercourse slope (ft/ft)

Table 6-7: Conveyance Coef (City CS DCM, Vol 1)

Type of Land Surface	Land Type	Cv
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

Table B3 C&S (Center) Basin Existing Conditions HEC-HMS Results

	Drainage Area	5-Year Peak Flow	100-Year Peak Flow
Element	Miles ²	cfs	cfs
E1011	0.022	11	56
R1011	0.022	10	54
E1210	0.063	10	62
DP1210	0.085	16	103
R1210	0.085	16	103
E1225	0.071	19	83
DP1225A	0.156	35	182
E1010	0.020	5	53
R1010	0.020	5	53
E1030	0.020	6	30
R1030	0.020	6	30
E1020	0.041	16	67
DP1030	0.081	24	109
DB1031 The Glen	0.081	17	57
R1031	0.081	17	57
DP1225	0.237	35	216
R1225A	0.237	35	214
E1260	0.050	17	76
E1270	0.047	12	59
DP1265	0.097	26	131
DP1260	0.334	61	341
E1211	0.050	13	67
R1211	0.050	13	67
E1230	0.028	11	48
R1230	0.028	11	47
E1250	0.047	14	67
E1240	0.045	11	55
DP1250	0.170	46	229
E1251	0.136	16	217

E=Subbasin

R=Routing

DP= Design Point

DB=Detention

Table B3 West Fork Jimmy Camp Creek Basin Existing Conditions HEC-HMS Results

	Drainage Area	5-Year Peak Flow	100-Year Peak Flow
Element	Square Miles	cfs	cfs
DP3110	3.38	428	2829
R3110	3.38	427	2794
SB3220	0.07	15	84
DP3220	0.07	15	84
SB3200	0.01	2	19
DP3200	3.45	431	2812
R3200	3.45	430	2797
SB3265	0.06	6	45
R3265	0.06	6	45
SB3240	0.05	8	39
R3240	0.05	8	39
SB3250	0.09	20	84
DP3250	0.20	30	164
R3250	0.20	30	163
SB3275	0.07	13	62
DP3275	0.27	42	222
DP3280	3.72	462	2988

E=Subbasin R=Routing

DP= Design Point

DB=Detention

Precipitation Frequency Data Server

Location name: Colorado Springs, Colorado, USA* Latitude: 38.7286°, Longitude: -104.6783° Elevation: 5771.51 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

NOAA Atlas 14, Volume 8, Version 2

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	-based po	int precip	itation fre	quency es	stimates v	vith 90% c	onfidenc	e interva	lls (in inc	hes) ¹
Duration				Average	recurrence	interval (yea	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.253 (0.208-0.314)	0.305 (0.250-0.377)	0.396 (0.323-0.492)	0.479 (0.388-0.598)	0.604 (0.475-0.794)	0.708 (0.541-0.943)	0.820 (0.603-1.12)	0.942 (0.660-1.32)	1.11 (0.746-1.61)	1.25 (0.812-1.83)
10-min	0.371 (0.304-0.459)	0.446 (0.365-0.553)	0.579 (0.473-0.720)	0.701 (0.569-0.875)	0.884 (0.696-1.16)	1.04 (0.793-1.38)	1.20 (0.883-1.64)	1.38 (0.966-1.94)	1.63 (1.09-2.36)	1.83 (1.19-2.68)
15-min	0.452 (0.371-0.560)	0.544 (0.446-0.674)	0.707 (0.577-0.878)	0.855 (0.693-1.07)	1.08 (0.849-1.42)	1.26 (0.967-1.68)	1.47 (1.08-2.00)	1.68 (1.18-2.36)	1.99 (1.33-2.88)	2.24 (1.45-3.27)
30-min	0.655 (0.538-0.811)	0.786 (0.644-0.974)	1.02 (0.833-1.27)	1.23 (1.00-1.54)	1.56 (1.23-2.05)	1.82 (1.40-2.43)	2.11 (1.55-2.89)	2.43 (1.70-3.41)	2.87 (1.92-4.16)	3.23 (2.09-4.72)
60-min	0.851 (0.699-1.05)	1.00 (0.819-1.24)	1.28 (1.05-1.59)	1.55 (1.26-1.94)	1.98 (1.57-2.62)	2.34 (1.80-3.14)	2.75 (2.03-3.78)	3.20 (2.25-4.52)	3.85 (2.59-5.60)	4.39 (2.84-6.41)
2-hr	1.05 (0.865-1.29)	1.21 (1.00-1.49)	1.54 (1.27-1.91)	1.87 (1.53-2.32)	2.40 (1.92-3.18)	2.86 (2.22-3.83)	<mark>3.39</mark> (2.52-4.64)	3.97 (2.82-5.59)	4.83 (3.28-6.99)	5.55 (3.63-8.05)
3-hr	1.15 (0.954-1.41)	1.31 (1.09-1.61)	1.66 (1.36-2.04)	2.01 (1.64-2.48)	2.59 (2.10-3.45)	3.13 (2.44-4.18)	3.73 (2.79-5.11)	4.41 (3.15-6.21)	5.43 (3.71-7.84)	6.28 (4.13-9.08)
6-hr	1.32 (1.10-1.60)	1.49 (1.24-1.81)	1.86 (1.54-2.27)	2.25 (1.86-2.77)	2.93 (2.39-3.88)	3.55 (2.79-4.73)	4.25 (3.22-5.81)	5.06 (3.65-7.10)	6.27 (4.33-9.02)	7.29 (4.84-10.5)
12-hr	1.46 (1.23-1.77)	1.68 (1.41-2.03)	2.11 (1.77-2.57)	2.56 (2.12-3.12)	3.29 (2.70-4.32)	3.96 (3.13-5.22)	4.71 (3.58-6.36)	5.55 (4.03-7.70)	6.80 (4.72-9.69)	7.85 (5.25-11.2)
24-hr	1.63 (1.38-1.96)	1.91 (1.61-2.29)	2.43 (2.04-2.93)	2.93 (2.44-3.55)	3.72 (3.05-4.79)	4.41 (3.50-5.74)	5.17 (3.95-6.90)	6.02 (4.39-8.26)	7.25 (5.07-10.2)	8.26 (5.58-11.7)
2-day	1.84 (1.57-2.20)	2.18 (1.85-2.60)	2.79 (2.36-3.34)	3.35 (2.82-4.03)	4.20 (3.45-5.34)	4.92 (3.92-6.32)	5.70 (4.38-7.52)	6.55 (4.81-8.88)	7.75 (5.46-10.8)	8.74 (5.95-12.3)
3-day	1.99 (1.70-2.37)	2.34 (2.00-2.79)	2.97 (2.53-3.55)	3.55 (3.00-4.26)	4.44 (3.66-5.61)	5.19 (4.15-6.63)	5.99 (4.62-7.87)	6.87 (5.07-9.28)	8.11 (5.74-11.3)	9.13 (6.26-12.8)
4-day	2.13 (1.82-2.53)	2.49 (2.13-2.95)	3.13 (2.67-3.73)	3.72 (3.15-4.45)	4.63 (3.83-5.84)	5.40 (4.33-6.88)	6.22 (4.82-8.15)	7.13 (5.28-9.60)	8.42 (5.98-11.7)	9.46 (6.51-13.2)
7-day	2.54 (2.19-3.00)	2.92 (2.51-3.45)	3.61 (3.09-4.27)	4.24 (3.61-5.04)	5.20 (4.32-6.50)	6.01 (4.85-7.61)	6.88 (5.36-8.95)	7.83 (5.84-10.5)	9.19 (6.58-12.7)	10.3 (7.14-14.3)
10-day	2.90 (2.50-3.40)	3.32 (2.86-3.90)	4.06 (3.49-4.79)	4.74 (4.05-5.62)	5.76 (4.79-7.16)	6.61 (5.36-8.33)	7.52 (5.88-9.73)	8.51 (6.37-11.3)	9.90 (7.12-13.6)	11.0 (7.69-15.3)
20-day	3.83 (3.33-4.48)	4.41 (3.83-5.15)	5.39 (4.66-6.31)	6.23 (5.36-7.34)	7.45 (6.21-9.13)	8.43 (6.86-10.5)	9.44 (7.42-12.1)	10.5 (7.91-13.8)	12.0 (8.66-16.2)	13.1 (9.23-18.1)
30-day	4.60 (4.01-5.34)	5.30 (4.62-6.17)	6.48 (5.63-7.56)	7.46 (6.44-8.75)	8.84 (7.38-10.7)	9.91 (8.08-12.2)	11.0 (8.66-13.9)	12.1 (9.15-15.8)	13.6 (9.89-18.4)	14.8 (10.4-20.3)
45-day	5.57 (4.88-6.45)	6.43 (5.63-7.46)	7.84 (6.84-9.11)	8.99 (7.79-10.5)	10.5 (8.82-12.7)	11.7 (9.59-14.4)	12.9 (10.2-16.2)	14.1 (10.7-18.3)	15.6 (11.4-20.9)	16.7 (11.9-22.8)
60-day	6.40 (5.62-7.39)	7.40 (6.49-8.55)	8.99 (7.86-10.4)	10.3 (8.93-12.0)	12.0 (10.0-14.3)	13.2 (10.8-16.1)	14.5 (11.4-18.1)	15.7 (11.9-20.2)	17.2 (12.6-22.9)	18.3 (13.1-24.9)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Table 3: 2hr Rainfall Data C&S Basin

	NOAA Atlas 14 2HR 100yr Depth =	3.39	NOAA Atlas 14 2HR 10yr Depth =	1.54
	CS 2Hr 100yr Distribution 0-1 miles	100yr	CS 2Hr 5yr Distribution 0-1 miles	10yr
min	Fraction of Total Depth	CUM In	Fraction of Total Depth	CUM In
0	0.000	0.000	0.000	0.000
5	0.014	0.047	0.014	0.022
10	0.046	0.156	0.046	0.071
15	0.079	0.268	0.079	0.122
20	0.120	0.407	0.120	0.185
25	0.179	0.607	0.179	0.276
30	0.258	0.875	0.258	0.397
35	0.421	1.427	0.421	0.648
40	0.712	2.414	0.712	1.096
45	0.824	2.793	0.824	1.269
50	0.892	3.024	0.892	1.374
55	0.935	3.170	0.935	1.440
60	0.972	3.295	0.972	1.497
65	1.004	3.404	1.004	1.546
70	1.018	3.451	1.018	1.568
75	1.030	3.492	1.030	1.586
80	1.041	3.529	1.041	1.603
85	1.052	3.566	1.052	1.620
90	1.063	3.604	1.063	1.637
95	1.072	3.634	1.072	1.651
100	1.082	3.668	1.082	1.666
105	1.091	3.698	1.091	1.680
110	1.100	3.729	1.100	1.694
115	1.109	3.760	1.109	1.708
120	1.119	3.793	1.119	1.723

Table 3: 2hr Rainfall Data West Fork Jimmy Camp Creek Basin

	NOAA Atlas 14 2HR 100yr Depth =	3.39	NOAA Atlas 14 2HR 10yr Depth =	1.54
	CS 2Hr 100yr Distribution 1-5 miles	100yr	CS 2Hr 10yr Distribution 1-5 miles	5yr
min	Fraction of Total Depth	CUM In	Fraction of Total Depth	CUM In
0	0.000	0.000	0.000	0.000
5	0.014	0.047	0.014	0.022
10	0.044	0.149	0.044	0.068
15	0.076	0.258	0.076	0.117
20	0.116	0.393	0.116	0.179
25	0.176	0.597	0.176	0.271
30	0.249	0.844	0.249	0.383
35	0.396	1.342	0.396	0.610
40	0.655	2.220	0.655	1.009
45	0.756	2.563	0.756	1.164
50	0.824	2.793	0.824	1.269
55	0.866	2.936	0.866	1.334
60	0.901	3.054	0.901	1.388
65	0.934	3.166	0.934	1.438
70	0.948	3.214	0.948	1.460
75	0.962	3.261	0.962	1.481
80	0.973	3.298	0.973	1.498
85	0.984	3.336	0.984	1.515
90	0.995	3.373	0.995	1.532
95	1.006	3.410	1.006	1.549
100	1.017	3.448	1.017	1.566
105	1.026	3.478	1.026	1.580
110	1.036	3.512	1.036	1.595
115	1.045	3.543	1.045	1.609
120	1.054	3.573	1.054	1.623
			DARF Adjusted	

APPENDIX B2: NCRS Curve Numbers for Pre-Development (ARC I)

		Undrologia		Pre-Development CN			
Fully Developed Urban Areas (vegetation established) ¹	Treatment	Condition	% I	HSG A	HSG B	HSG C	HSG D
Open space (lawns, parks, golf courses, cemeteries, etc.):							
Poor condition (grass cover < 50%)				47	61	72	77
Fair condition (grass cover 50% to 75%)				29	48	61	69
Good condition (grass cover > 75%)				21	40	54	63
Impervious areas:							
Paved parking lots, roofs, driveways, etc. (excluding right-of-way				95	95	95	95
Streets and roads:							
Paved; curbs and storm sewers (excluding right-of-way)				95	95	95	95
Paved; open ditches (including right-of-way)				67	77	83	85
Gravel (including right-of-way)				57	70	77	81
Dirt (including right-of-way)				52	66	74	77
Western desert urban areas:							
Natural desert landscaping (pervious areas only)				42	58	70	75
Artificial desert landscaping (impervious weed barrier, desert				01	01	01	01
shrub with 1- to 2-inch sand or gravel mulch and basin borders)				91	91	91	91
Developing Urban Areas ¹	Treatment ²	Hydrologic Condition ³	% I	HSG A	HSG B	HSG C	HSG D
Newly graded areas (pervious areas only, no vegetation)				58	72	81	87
Cultivated Agricultural Lands ¹	Treatment	Hydrologic Condition	% I	HSG A	HSG B	HSG C	HSG D
	Bare soil			58	72	81	87
Fallow	Crop residue	Poor		57	70	79	85
	cover (CR)	Good		54	67	75	79
	Straight row	Poor		52	64	75	81
	(SR)	Good		46	60	70	77
	SR + CR	Poor		51	63	74	79
		Good		43	56	66	70
	Contract (C)	Poor		49	61	69	75
	Contoured (C)	Good		44	56	66	72
Row crops	C + CD	Poor		48	60	67	74
	C + CR	Good		43	54	64	70
	Contoured &	Poor		45	54	63	66
	terraced (C&T)	Good		41	51	60	64
	C0 T . CD	Poor		44	53	61	64
	C&T+CR	Good		40	49	58	63
	60	Poor		44	57	69	75
	24	Good		42	56	67	74
		Poor		43	56	67	72
	SK + CK	Good		39	52	63	69
	C	Poor		42	54	66	70
Small grain	C	Good		40	53	64	69
Silidii graili	C + CR Boor	Poor		41	53	64	69
	C + CK POOI	Good		39	52	63	67
	COT	Poor		40	52	61	66
	Cal	Good		38	49	60	64
	CQ.T. CD	Poor		39	51	60	64
	C&I+CR	Good		37	48	58	63
	6.0	Poor		45	58	70	77
	эк	Good		37	52	64	70
	C	Poor		43	56	67	70
close-seeded of broadcast legumes or rotation meadow	Ľ	Good		34	48	60	67
	C9.7	Poor		42	53	63	67
	CAI	Good		30	46	57	63

Table 6-9. NRCS Curve Numbers for Pre-Development Thunderstorms Conditions (ARC I)

Table 6-9. (continued)

Other Agricultural Lands ¹	Treatment	Hydrologic Condition	% I	HSG A	HSG B	HSG C	HSG D
		Poor		47	61	72	77
Pasture, grassland, or range—continuous forage for grazing ⁴		Fair		29	48	61	69
Si dzing	Treatment Hydrologic Condition %1 HSG A HSG B HSG C HSG C inuous forage for inuous forage for Fair 29 48 61 69 Good 21 40 54 63 cted from grazing 15 37 51 60 with brush the Fair 18 35 49 58 Good 36 53 66 72 rd or tree farm) ⁶ Good 26 45 58 Good 15 34 49 58 Good 17 37 52 61 Good 19 39 53 61 Good 15 34 49 58 eways, and G	63					
Meadow—continuous grass, protected from grazing and generally mowed for hay				15	37	51	60
		Poor		28	46	58	67
Brush—brush-weed-grass mixture with brush the major element ⁵		Fair		18	35	49	58
inajor element		Good		15	28	44	53
		Poor		36	53	66	72
Woods—grass combination (orchard or tree farm) ⁶		Fair		24	44	57	66
		Good		17	37	52	61
		Poor		26	45	58	67
Woods ⁷		Fair		19	39	53	61
		Good		15	34	49	58
Farmsteads—buildings, lanes, driveways, and surrounding lots				38	54	66	72
Arid and Semi-arid Rangelands ¹	Treatment	Hydrologic Condition ⁸	% I	HSG A	HSG B	HSG C	HSG D
		Poor			63	74	85
Herbaceous—mixture of grass, weeds, and low- growing bruch with bruch the minor element		Fair			F 1		77
	ars grass, protected from grazing d for hay 15 37 51 grass mixture with brush the ination (orchard or tree farm) ⁶ Fair 18 35 49 Good 15 28 44 57 Good 15 28 44 Good 36 53 66 Fair 24 44 57 Good 17 37 52 Good 19 39 53 Fair 15 34 49 gs, lanes, driveways, and 38 54 66 angelands ¹ Treatment Hydrologic Condition ⁸ %1 HSG A HSG B HSG C e of grass, weeds, and low- brush the minor element Fair 51 64 Good Fair	//					
		Good			41	64 54	70
Oak-aspen—mountain brush mixture of oak brush,		Good Poor			41 45	64 54 54	77 70 61
Oak-aspen—mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and		Good Poor Fair		 	41 45 28	64 54 54 36	70 61 42
Oak-aspen—mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and other brush	 	Fair Good Poor Fair Good	 	 	41 45 28 15	64 54 54 36 23	70 61 42 28
Oak-aspen—mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and other brush	 	Fair Good Poor Fair Good Poor	 	 	51 41 45 28 15 56	64 54 54 36 23 70	77 70 61 42 28 77
Oak-aspen—mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and other brush Pinyon-juniper—pinyon, juniper, or both; grass	 	Fair Good Poor Fair Good Poor Fair	 	 	41 45 28 15 56 37	64 54 36 23 70 53	77 70 61 42 28 77 63
Oak-aspen—mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and other brush Pinyon-juniper—pinyon, juniper, or both; grass understory	 	Fair Good Poor Fair Good Fair Good	 	 	51 41 45 28 15 56 37 23	64 54 36 23 70 53 40	77 70 61 42 28 77 63 51
Oak-aspen—mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and other brush Pinyon-juniper—pinyon, juniper, or both; grass understory	 	Fair Good Poor Fair Good Poor Fair Good Poor	 	 	41 45 28 15 56 37 23 46	64 54 36 23 70 53 40 63	77 70 61 42 28 77 63 51 70
Oak-aspen—mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and other brush Pinyon-juniper—pinyon, juniper, or both; grass understory Sagebrush with grass understory	 	Fair Good Fair Good Poor Fair Good Poor Fair		 	51 41 45 28 15 56 37 23 46 30	64 54 36 23 70 53 40 63 42	77 70 61 42 28 77 63 51 70 49
Oak-aspen—mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and other brush Pinyon-juniper—pinyon, juniper, or both; grass understory Sagebrush with grass understory	 	Fair Good Poor Fair Good Poor Fair Good Fair Good		 	51 41 45 28 15 56 37 23 46 30 18	64 54 36 23 70 53 40 63 42 27	77 70 61 42 28 77 63 51 70 49 34
Oak-aspen—mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and other brush Pinyon-juniper—pinyon, juniper, or both; grass understory Sagebrush with grass understory Desert shrub—major plants include saltbush,	 	Fair Good Poor Fair Good Poor Fair Good Poor Fair Good Poor		 42	51 41 45 28 15 56 37 23 46 30 18 58	64 54 36 23 70 53 40 63 42 27 70	77 70 61 42 28 77 63 51 70 49 34 75
Oak-aspen—mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and other brush Pinyon-juniper—pinyon, juniper, or both; grass understory Sagebrush with grass understory Desert shrub—major plants include saltbush, greasewood, creosotebush, blackbrush, bursage, palo	 	Fair Good Poor Fair Good Poor Fair Good Poor Fair Good Poor Fair		 42 34	51 41 45 28 15 56 37 23 46 30 18 58 52	64 54 36 23 70 53 40 63 42 27 70 64	77 70 61 42 28 77 63 51 70 49 34 75 72

^{1.} Average runoff condition, and Ia = 0.1S.

² Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

^{3.} Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and

(e) degree of surface roughness. Poor: Factors impair infiltration and tend to increase runoff. Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

^{4.} Poor: <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Good: > 75% ground cover and lightly or only occasionally grazed.

^{5.} Poor: <50% ground cover. Fair: 50 to 75% ground cover. Good: >75% ground cover.

⁶ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

^{7.} Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

⁸ Poor: <30% ground cover (litter, grass, and brush overstory). Fair: 30 to 70% ground cover. Good: > 70% ground cover.

APPENDIX C1: Developed Hydrology

HEC-HMS Model Schematics

Table 1 CN Values Calculation

Table 2 Time of Concentration Calculation

HEC HMS Input and Output

NOAA Atlas 14 Precipitation

Colorado Springs 2hr Storm Distributions

Colorado Springs NCRS Curve Numbers for Development (ARC II)

Developed C&S Basin HEC-HMS Report

Developed WF JCC Basin HEC-HMS Report

Table 1 **HEC-HMS Developed CN Values**

				Land Use (Sq Miles) B or C Soils																	
			OP/	P/D	F	٦L	RL	M	RM	IH	R	Н	COM	/OFF	L	L	Sc	hool			
		_	В	С	В	С	В	С	В	С	В	С	В	С	В	С	В	С			
Basin	Area (ac)	Area Miles ²	61	74	68	79	75	83	85	90	85	90	92	94	68	79	77	85	CN	Abstraction	Notes
C&S Bas	in																				
E1010		0.020																	73.2	0.366	(1)
E1020		0.041																	80.0	0.250	(1)
E1030		0.020																	88.8	0.126	(1)
E1011	14.4	0.022							0.022										85.0	0.176	
E1210	40.3	0.063	0.007	0.007					0.049										81.1	0.233	
E1211	32.1	0.050	0.001	0.013			0.017	0.020											77.8	0.286	
E1225	45.7	0.071	0.004	0.013			0.017	0.038											78.3	0.277	
E1230	18.1	0.028		0.008				0.020											80.5	0.243	
E1240	28.9	0.045		0.009				0.036											81.2	0.231	
E1250	29.8	0.047						0.009								0.038			79.8	0.254	
E1260	32.0	0.050		0.006				0.040								0.004			81.6	0.225	
E1270	58.9	0.092		0.007								0.032						0.053	85.9	0.164	
Totals	300	0.550																			
West Fo	rk Jimmy C	amp Creek Ba	asin																		
SB3220	39.8	0.062									0.008	0.019	0.017	0.018					91.0	0.099	
SB3240	30.0	0.047					0.008	0.039											81.7	0.224	
SB3250	48.6	0.076	0.013	0.022								0.026					0.005	0.010	79.0	0.265	
SB3265	58.3	0.091					0.073	0.018											76.6	0.306	
SB3275	45.5	0.071		0.005				0.067											82.4	0.213	
Totals	222.3	0.347																			

(1) Data and model from Cross Creek MDDP 4/20/2022

Table C2

Developed Tc

	Sub-Basin Data				Time of Concentration Estimate Developed									
Basin / Design	Design		Init	ial/Overl	and Time (t _i)	Travel Time (t _t)						Comp.	Final t _c	HECHMS
Point	Area	C₅	Length	Slope	t _i	Length	Slope	Land Type	Cv	Velocity	t _t	t _c		Lag (.6Tc)
E1011	14.38ac	0.66	50lf	6.1%	3.1 min.	450lf	6.1%	PV	20	4.9 ft/sec	1.5 min.	5.0 min.	5.0 min.	3.0
E1210	40.29ac	0.66	50lf	8.0%	2.9 min.	2550lf	8.0%	PV	20	5.6 ft/sec	7.5 min.	10.4 min.	10.4 min.	6.2
E1211	32.06ac	0.66	50lf	7.0%	3.0 min.	1270lf	7.0%	PV	20	5.3 ft/sec	4.0 min.	7.0 min.	7.0 min.	4.2
E1225	45.74ac	0.66	50lf	8.3%	2.8 min.	2700lf	8.3%	PV	20	5.8 ft/sec	7.8 min.	10.6 min.	10.6 min.	6.4
E1230	18.08ac	0.66	50lf	7.2%	3.0 min.	830lf	7.2%	PV	20	5.4 ft/sec	2.6 min.	5.5 min.	5.5 min.	3.3
E1240	28.93ac	0.66	50lf	3.2%	3.9 min.	1642lf	3.2%	PV	20	3.6 ft/sec	7.6 min.	11.5 min.	11.5 min.	6.9
E1250	29.81ac	0.66	50lf	5.7%	3.2 min.	1550lf	5.7%	PV	20	4.8 ft/sec	5.4 min.	8.6 min.	8.6 min.	5.2
E1260	32.03ac	0.66	50lf	5.7%	3.2 min.	1130lf	5.7%	PV	20	4.8 ft/sec	4.0 min.	7.1 min.	7.1 min.	4.3
E1270	58.93ac	0.66	50lf	3.7%	3.7 min.	2910lf	3.7%	PV	20	3.9 ft/sec	12.5 min.	16.2 min.	16.2 min.	9.7
SB3240	29.96ac	0.66	50lf	3.5%	3.7 min.	1770lf	4.0%	PV	20	4.0 ft/sec	7.4 min.	11.1 min.	11.1 min.	6.7
SB3250	48.65ac	0.66	50lf	2.2%	4.4 min.	1770lf	1.0%	PV	20	2.0 ft/sec	14.8 min.	19.1 min.	19.1 min.	11.5
SB3265	58.29ac	0.66	50lf	8.1%	2.8 min.	2060lf	2.8%	PV	20	3.3 ft/sec	10.3 min.	13.1 min.	13.1 min.	7.9
SB3275	45.54ac	0.66	50lf	2.8%	4.0 min.	1935lf	3.2%	PV	20	3.6 ft/sec	9.0 min.	13.1 min.	13.1 min.	7.8

Equations:

- t_i (Overland) = 0.395(1.1-C₅)L^{0.5} S^{-0.333}
- C_5 = Runoff coefficient for 5-year
- L = Length of overland flow (ft)
- S = Slope of flow path (ft/ft)
- tc Check = (L/180)+10 (Developed Cond. Only)

L = Overall Length

Velocity (Travel Time) = CvS^{0.5} Cv = Conveyance Coef (see table) S = Watercourse slope (ft/ft)

Table 6-7: Conveyance Coef (City CS DCM, Vol 1)

Type of Land Surface	Land Type	Cv
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

Table C3 C&S (Center) Basin Developed Conditions HEC-HMS Results

	Drainage Area	5-Year Peak Flow	100-Year Peak Flow		
Element	Miles ²	cfs	cfs		
E1270	0.092	84	245		
E1260	0.050	44	140		
DP1265	0.142	119	372		
E1010	0.020	5	35		
R1010	0.020	5	34		
E1030	0.007	3	10		
E1020	0.041	16	61		
R1030	0.007	3	10		
DP1030	0.068	21	80		
DB1031 The Glen	0.068	15	45		
E1011	0.022	28	86		
R1011	0.022	24	77		
E1210	0.063	56	179		
DP1210	0.085	79	246		
R1210	0.085	74	239		
E1225	0.071	48	173		
DB1225 G	0.156	9	133		
R1031	0.068	15	44		
DP1225	0.224	23	164		
R1225A	0.224	23	164		
DB1260-A	0.142	17	206		
DP1260	0.366	39	332		
E1211	0.050	40	132		
R1211	0.050	39	131		
E1230	0.028	27	92		
R1230	0.028	24	78		
E1250	0.047	37	125		
E1240	0.045	36	121		
DP1250	0.170	136	454		
DB1250-B	0.170	23	148		
E1251	0.136	27	177		

E=Subbasin R=Routing DP= Design Point DB=Detention

4/20/2022

Table C3 West Fork Jimmy Camp Creek Basin Developed Conditions HEC-HMS Results

	Drainage Area	5-Year Peak Flow	100-Year Peak Flow
Element	Square Miles	cfs	cfs
DP3110	3.376	429	2835
R3110	3.376	428	2794
SB3200	0.013	2	19
SB3220	0.065	55	178
DB3220 E	0.065	1	33
DP3200	3.454	430	2830
R3200	3.454	429	2819
SB3265	0.091	69	254
R3265	0.091	69	244
SB3250	0.076	35	149
SB3240	0.047	32	127
R3240	0.047	32	119
DP3250A	0.214	135	513
R3250	0.214	131	484
SB3275	0.071	46	182
DP3275	0.285	168	654
DB3280 C	0.285	7	177
DP3280	3.739	435	2982

E=Subbasin

R=Routing DP= Design Point DB=Detention 5/20/2022 Precipitation Frequency Data Server

Location name: Colorado Springs, Colorado, USA* Latitude: 38.7286°, Longitude: -104.6783° Elevation: 5771.51 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

NOAA Atlas 14, Volume 8, Version 2

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Average	recurrence	interval (yea	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.253 (0.208-0.314)	0.305 (0.250-0.377)	0.396 (0.323-0.492)	0.479 (0.388-0.598)	0.604 (0.475-0.794)	0.708 (0.541-0.943)	0.820 (0.603-1.12)	0.942 (0.660-1.32)	1.11 (0.746-1.61)	1.25 (0.812-1.83)
10-min	0.371 (0.304-0.459)	0.446 (0.365-0.553)	0.579 (0.473-0.720)	0.701 (0.569-0.875)	0.884 (0.696-1.16)	1.04 (0.793-1.38)	1.20 (0.883-1.64)	1.38 (0.966-1.94)	1.63 (1.09-2.36)	1.83 (1.19-2.68)
15-min	0.452 (0.371-0.560)	0.544 (0.446-0.674)	0.707 (0.577-0.878)	0.855 (0.693-1.07)	1.08 (0.849-1.42)	1.26 (0.967-1.68)	1.47 (1.08-2.00)	1.68 (1.18-2.36)	1.99 (1.33-2.88)	2.24 (1.45-3.27)
30-min	0.655 (0.538-0.811)	0.786 (0.644-0.974)	1.02 (0.833-1.27)	1.23 (1.00-1.54)	1.56 (1.23-2.05)	1.82 (1.40-2.43)	2.11 (1.55-2.89)	2.43 (1.70-3.41)	2.87 (1.92-4.16)	3.23 (2.09-4.72)
60-min	0.851 (0.699-1.05)	1.00 (0.819-1.24)	1.28 (1.05-1.59)	1.55 (1.26-1.94)	1.98 (1.57-2.62)	2.34 (1.80-3.14)	2.75 (2.03-3.78)	3.20 (2.25-4.52)	3.85 (2.59-5.60)	4.39 (2.84-6.41)
2-hr	1.05 (0.865-1.29)	1.21 (1.00-1.49)	1.54 (1.27-1.91)	1.87 (1.53-2.32)	2.40 (1.92-3.18)	2.86 (2.22-3.83)	<mark>3.39</mark> (2.52-4.64)	3.97 (2.82-5.59)	4.83 (3.28-6.99)	5.55 (3.63-8.05)
3-hr	1.15 (0.954-1.41)	1.31 (1.09-1.61)	1.66 (1.36-2.04)	2.01 (1.64-2.48)	2.59 (2.10-3.45)	3.13 (2.44-4.18)	3.73 (2.79-5.11)	4.41 (3.15-6.21)	5.43 (3.71-7.84)	6.28 (4.13-9.08)
6-hr	1.32 (1.10-1.60)	1.49 (1.24-1.81)	1.86 (1.54-2.27)	2.25 (1.86-2.77)	2.93 (2.39-3.88)	3.55 (2.79-4.73)	4.25 (3.22-5.81)	5.06 (3.65-7.10)	6.27 (4.33-9.02)	7.29 (4.84-10.5)
12-hr	1.46 (1.23-1.77)	1.68 (1.41-2.03)	2.11 (1.77-2.57)	2.56 (2.12-3.12)	3.29 (2.70-4.32)	3.96 (3.13-5.22)	4.71 (3.58-6.36)	5.55 (4.03-7.70)	6.80 (4.72-9.69)	7.85 (5.25-11.2)
24-hr	1.63 (1.38-1.96)	1.91 (1.61-2.29)	2.43 (2.04-2.93)	2.93 (2.44-3.55)	3.72 (3.05-4.79)	4.41 (3.50-5.74)	5.17 (3.95-6.90)	6.02 (4.39-8.26)	7.25 (5.07-10.2)	8.26 (5.58-11.7)
2-day	1.84 (1.57-2.20)	2.18 (1.85-2.60)	2.79 (2.36-3.34)	3.35 (2.82-4.03)	4.20 (3.45-5.34)	4.92 (3.92-6.32)	5.70 (4.38-7.52)	6.55 (4.81-8.88)	7.75 (5.46-10.8)	8.74 (5.95-12.3)
3-day	1.99 (1.70-2.37)	2.34 (2.00-2.79)	2.97 (2.53-3.55)	3.55 (3.00-4.26)	4.44 (3.66-5.61)	5.19 (4.15-6.63)	5.99 (4.62-7.87)	6.87 (5.07-9.28)	8.11 (5.74-11.3)	9.13 (6.26-12.8)
4-day	2.13 (1.82-2.53)	2.49 (2.13-2.95)	3.13 (2.67-3.73)	3.72 (3.15-4.45)	4.63 (3.83-5.84)	5.40 (4.33-6.88)	6.22 (4.82-8.15)	7.13 (5.28-9.60)	8.42 (5.98-11.7)	9.46 (6.51-13.2)
7-day	2.54 (2.19-3.00)	2.92 (2.51-3.45)	3.61 (3.09-4.27)	4.24 (3.61-5.04)	5.20 (4.32-6.50)	6.01 (4.85-7.61)	6.88 (5.36-8.95)	7.83 (5.84-10.5)	9.19 (6.58-12.7)	10.3 (7.14-14.3)
10-day	2.90 (2.50-3.40)	3.32 (2.86-3.90)	4.06 (3.49-4.79)	4.74 (4.05-5.62)	5.76 (4.79-7.16)	6.61 (5.36-8.33)	7.52 (5.88-9.73)	8.51 (6.37-11.3)	9.90 (7.12-13.6)	11.0 (7.69-15.3)
20-day	3.83 (3.33-4.48)	4.41 (3.83-5.15)	5.39 (4.66-6.31)	6.23 (5.36-7.34)	7.45 (6.21-9.13)	8.43 (6.86-10.5)	9.44 (7.42-12.1)	10.5 (7.91-13.8)	12.0 (8.66-16.2)	13.1 (9.23-18.1)
30-day	4.60 (4.01-5.34)	5.30 (4.62-6.17)	6.48 (5.63-7.56)	7.46 (6.44-8.75)	8.84 (7.38-10.7)	9.91 (8.08-12.2)	11.0 (8.66-13.9)	12.1 (9.15-15.8)	13.6 (9.89-18.4)	14.8 (10.4-20.3)
45-day	5.57 (4.88-6.45)	6.43 (5.63-7.46)	7.84 (6.84-9.11)	8.99 (7.79-10.5)	10.5 (8.82-12.7)	11.7 (9.59-14.4)	12.9 (10.2-16.2)	14.1 (10.7-18.3)	15.6 (11.4-20.9)	16.7 (11.9-22.8)
60-day	6.40 (5.62-7.39)	7.40 (6.49-8.55)	8.99 (7.86-10.4)	10.3 (8.93-12.0)	12.0 (10.0-14.3)	13.2 (10.8-16.1)	14.5 (11.4-18.1)	15.7 (11.9-20.2)	17.2 (12.6-22.9)	18.3 (13.1-24.9)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Table 3: 2hr Rainfall Data C&S Basin

	NOAA Atlas 14 2HR 100yr Depth =	3.39	NOAA Atlas 14 2HR 10yr Depth =	1.54
	CS 2Hr 100yr Distribution 0-1 miles	100yr	CS 2Hr 5yr Distribution 0-1 miles	10yr
min	Fraction of Total Depth	CUM In	Fraction of Total Depth	CUM In
0	0.000	0.000	0.000	0.000
5	0.014	0.047	0.014	0.022
10	0.046	0.156	0.046	0.071
15	0.079	0.268	0.079	0.122
20	0.120	0.407	0.120	0.185
25	0.179	0.607	0.179	0.276
30	0.258	0.875	0.258	0.397
35	0.421	1.427	0.421	0.648
40	0.712	2.414	0.712	1.096
45	0.824	2.793	0.824	1.269
50	0.892	3.024	0.892	1.374
55	0.935	3.170	0.935	1.440
60	0.972	3.295	0.972	1.497
65	1.004	3.404	1.004	1.546
70	1.018	3.451	1.018	1.568
75	1.030	3.492	1.030	1.586
80	1.041	3.529	1.041	1.603
85	1.052	3.566	1.052	1.620
90	1.063	3.604	1.063	1.637
95	1.072	3.634	1.072	1.651
100	1.082	3.668	1.082	1.666
105	1.091	3.698	1.091	1.680
110	1.100	3.729	1.100	1.694
115	1.109	3.760	1.109	1.708
120	1.119	3.793	1.119	1.723

Table 3: 2hr Rainfall Data West Fork Jimmy Camp Creek Basin

	NOAA Atlas 14 2HR 100yr Depth =	3.39	NOAA Atlas 14 2HR 10yr Depth =	1.54
	CS 2Hr 100yr Distribution 1-5 miles	100yr	CS 2Hr 10yr Distribution 1-5 miles	5yr
min	Fraction of Total Depth	CUM In	Fraction of Total Depth	CUM In
0	0.000	0.000	0.000	0.000
5	0.014	0.047	0.014	0.022
10	0.044	0.149	0.044	0.068
15	0.076	0.258	0.076	0.117
20	0.116	0.393	0.116	0.179
25	0.176	0.597	0.176	0.271
30	0.249	0.844	0.249	0.383
35	0.396	1.342	0.396	0.610
40	0.655	2.220	0.655	1.009
45	0.756	2.563	0.756	1.164
50	0.824	2.793	0.824	1.269
55	0.866	2.936	0.866	1.334
60	0.901	3.054	0.901	1.388
65	0.934	3.166	0.934	1.438
70	0.948	3.214	0.948	1.460
75	0.962	3.261	0.962	1.481
80	0.973	3.298	0.973	1.498
85	0.984	3.336	0.984	1.515
90	0.995	3.373	0.995	1.532
95	1.006	3.410	1.006	1.549
100	1.017	3.448	1.017	1.566
105	1.026	3.478	1.026	1.580
110	1.036	3.512	1.036	1.595
115	1.045	3.543	1.045	1.609
120	1.054	3.573	1.054	1.623
			DARF Adjusted	

Table 6-10. NRCS Curve Numbers for Frontal Storms & Thunderstorms for Developed Conditions (ARCII)

		II. dealers to		Pre-Development CN			
Fully Developed Urban Areas (vegetation established) ¹	Treatment	Condition	% I	HSG A	HSG B	HSG C	HSG D
Open space (lawns, parks, golf courses, cemeteries, etc.):							
Poor condition (grass cover < 50%)				68	79	86	89
Fair condition (grass cover 50% to 75%)				49	69	79	84
Good condition (grass cover > 75%)				39	61	74	80
Impervious areas:							
Paved parking lots, roofs, driveways, etc. (excluding right-of-way				98	98	98	98
Streets and roads:							
Paved; curbs and storm sewers (excluding right-of-way)				98	98	98	98
Paved; open ditches (including right-of-way)				83	89	92	93
Gravel (including right-of-way)				76	85	89	91
Dirt (including right-of-way)				72	82	87	89
Western desert urban areas:		1					
Natural desert landscaping (pervious areas only)				63	77	85	88
Artificial desert landscaping (impervious weed barrier, desert				96	96	96	96
Urban districts:	1						
Commercial and husiness			85	20	۵2	Q٨	95
Inductrial			72	0.5	00	01	02
Residential districts by average let size:			12	10	00	91	95
			65	77	05	00	02
1/8 acre of less (town houses)			05		85	90	92
1/4 acre			38	61	75	83	8/
1/3 acre			30	57	72	81	86
1/2 acre			25	54	70	80	85
1 acre			20	51	68	79	84
2 acres			12	46	65	//	82
Developing Urban Areas ¹	Treatment ²	Hydrologic Condition ³	% I	HSG A	HSG B	HSG C	HSG D
Newly graded areas (pervious areas only, no vegetation)				77	86	91	94
Cultivated Agricultural Lands ¹	Treatment	Hydrologic Condition	% I	HSG A	HSG B	HSG C	HSG D
	Bare soil			77	86	91	94
Fallow	Crop residue	Poor		76	85	90	93
	cover (CR)	Good		74	83	88	90
	Straight row	Poor		72	81	88	91
	(SR)	Good		67	78	85	89
		Poor		71	80	87	90
	SR + CR	Good		64	75	82	85
		Poor		70	79	84	88
	Contoured (C)	Good		65	75	82	86
Row crops		Poor		69	78	83	87
	C + CR	Good		64	74	81	85
	Contoured &	Poor		66	74	80	82
	terraced (C&T)	Good		62	71	78	81
		Poor		65	73	79	81
	C&T+ CR	Good		61	70	77	80
		Poor		65	76	84	88
	SR	Good		63	75	83	87
		Poor		64	75	83	86
	SR + CR	Good		60	72	80	84
	<u> </u>	Poor		63	74	82	85
	С	Good		61	73	81	84
Small grain	<u> </u>	Poor		62	72	<u>81</u>	2/I
	C + CR Poor	Good		60	73	00	04
	<u> </u>	Boor		61	72	70	00
	C&T	Good		E0 01	72	79	02
	<u> </u>	Boor		59	70	70	01
	C&T+ CR	Cood		50	/1	78	10
	1	6000		58	90	11	80

Other Agricultural Lands ¹	Treatment	Hydrologic Condition	% I	HSG A	HSG B	HSG C	HSG D
		Poor		68	79	86	89
Pasture, grassland, or range—continuous forage for grazing ⁴		Fair		49	69	79	84
		Good		39	61	74	80
Meadow—continuous grass, protected from grazing and generally mowed for hay				30	58	71	78
		Poor		48	67	77	83
Brush—brush-weed-grass mixture with brush the major element ⁵		Fair		35	56	70	77
, , , , , , , , , , , , , , , , , , ,		Good		30	48	65	73
		Poor		57	73	82	86
Woods—grass combination (orchard or tree farm) ⁶		Fair		43	65	76	82
		Good		32	58	72	79
		Poor		45	66	77	83
Woods ⁷		Fair		36	60	73	79
		Good		30	55	70	77
Farmsteads—buildings, lanes, driveways, and surrounding lots				59	74	82	86
Arid and Semi-arid Rangelands ¹	Treatment	Hydrologic Condition ⁸	% I	HSG A	HSG B	HSG C	HSG D
		Poor			80	87	93
Herbaceous—mixture of grass, weeds, and low-growing brush,		Fair			71	81	89
with brush the minor element		Good			62	74	85
Oak schon, mountain bruch mixture of oak bruch, schon		Poor			66	74	79
mountain mahagany, hittor bruch, maple, and other bruch		Fair			48	57	63
mountain manogany, bitter brush, maple, and other brush		Good			30	41	48
		Poor			75	85	89
Pinyon-juniper—pinyon, juniper, or both; grass understory		Fair			58	73	80
		Good			41	61	71
		Poor			67	80	85
Sagebrush with grass understory		Fair			51	63	70
		Good			35	47	55
Desert shrub—major plants include saltbush, greasewood,		Poor		63	77	85	88
creosotebush, blackbrush, bursage, palo verde, mesquite, and		Fair		55	72	81	86
cactus		Good		49	68	79	84
Ia = 0.1 S							
^{2.} Crop residue cover applies only i f residue i s on at least 5% of the surface through	out the year.						
³ Hydraulic condition is based on combination factors that affect infiltration and rur amount of grass or close-seeded legumes, (d) percent of residue cover on the land s tend to increase runoff. Good: Factors encourage average and better than average in a	noff, including (a) den urface (good $\ge 20\%$), nfiltration and tend t	nsity and canopy o and (e) degree of o decrease runof	of vegeta f surface f.	tive areas, (b roughness. F) amount of oor: Factors	year- round c impair infiltra	over, (c) ition and

Table 6-10. (continued)

⁴ Poor: <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Good: > 75% ground cover and I ightly or only occasional ⁵ Poor: <50% ground cover. Fair: 50 to 75% ground cover. Good: >75% ground cover.

^{6.} CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods

^{7.} Poor: Forest I i tter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest I i tter covers the soil. Good: Woods are protected from grazing, and I i tter and brush adequately cover the soil.

^{8.} Poor: <30% ground cover (I i tter, grass, and brush overstory). Fair: 30 to 70% ground cover. Good: > 70% ground cover.

4.6 Lag Time

While the NRCS curve numbers are used to calculate the volume of runoff and magnitude of losses, to transform the volume of runoff into a hydrograph using the NRCS dimensionless unit hydrograph, the lag time must be specified. The lag time is defined as the time from the centroid of the rainfall distribution of a storm to the peak discharge produced by the watershed. For this Manual, the lag time is defined as a fraction of the time of concentration (t_c) as shown in Equation 6-13.

 $t_{lag} = 0.6 \cdot t_c$

(Eq. 6-13)

Project: 1000s_C_and_S_Developed **Simulation Run:** 2hr CS 100yr **Simulation Start:** 31 December 2999, 24:00 **Simulation End:** 1 January 3000, 02:00

HMS Version: 4.8 Executed: 19 May 2022, 18:44

Global Parameter Summary - Subbasin

$Area (ft^2)$							
Element Name	$Area (ft^2)$						
E1270	0.09						
E1260	0.05						
Ειοιο	0.02						
E1030	0.01						
E1020	0.04						
Ειοιι	0.02						
E1210	0.06						
E1225	0.07						
E1211	0.05						
E1230	0.03						
E1250	0.05						
E1240	0.04						
E1251	0.14						

	Downstream							
Element Name	Downstream							
E1270	Dp1265							
E1260	Dp1265							
Ειοιο	Rioio							
Е1030	R1030							
E1020	Dp1030							
Ειοιι	Rioii							
E1210	Dp1210							
E1225	Db1225 g							
E1211	R1211							
E1230	R1230							
E1250	Dp1250							
E1240	Dp1250							

5/19/22, 12:46 PM

Standard Report

	Loss Rate: Scs		
Element Nam	e Percent Impervious Area	Curve Number	Initial Abstraction
E1270	0	85.9	0.16
E1260	0	81.6	0.23
Ειοιο	0	73.2	0.73
E1030	0	80	0.13
E1020	0	88.8	0.5
Ειοιι	0	85	0.18
E1210	0	82.4	0.21
E1225	0	78.3	0.28
E1211	0	79	0.21
E1230	0	81.3	0.23
E1250	0	79.8	0.25
E1240	0	81.8	0.22
E1251	0	74	Not Specified

Transform: Scs

Element Name	Lag	Unitgraph Type
E1270	9.7	Standard
E1260	4.3	Standard
Ειοιο	4.62	Standard
E1030	22.98	Standard
E1020	28.02	Standard
Ειοιι	3	Standard
E1210	6.2	Standard
E1225	6.4	Standard
E1211	4.2	Standard
E1230	3.3	Standard
E1250	5.2	Standard
E1240	6.9	Standard
E1251	11.64	Standard

Global Parameter Summary - Reach

Downstream					
Element Name	Downstream				
Rioio	Dp1030				
R1030	Dp1030				
Rioii	Dp1210				
R1210	Db1225 g				
R1031	Dp1225				
R1225a	Dp1260				
R1211	Dp1250				
R1230	Dp1250				

Standard Report

Route: Kinematic Wave

Element Name	Method	Channel	Length (ft)	Energy Slope	Mannings n	Shape	Number of Subreaches	Width (ft)	Side Slope	Initial Variable	Index Parameter Type
Rioio	Kinematic Wave	Kinematic Wave	450	0.02	0.01	Circular	5	3	Not Specified	Combined Inflow	Index Celerity
R1030	Kinematic Wave	Kinematic Wave	400	0.02	0.01	Circular	5	3	Not Specified	Combined Inflow	Index Celerity
Rioii	Kinematic Wave	Kinematic Wave	1350	0.04	0.01	Circular	5	3	Not Specified	Combined Inflow	Index Celerity
R1210	Kinematic Wave	Kinematic Wave	600	0.03	0.04	Trapezoid	2	20	4	Combined Inflow	Index Celerity
R1031	Kinematic Wave	Kinematic Wave	2180	0.03	0.05	Trapezoid	5	20	Ю	Combined Inflow	Index Celerity
R1225a	Kinematic Wave	Kinematic Wave	2090	0.03	0.04	Trapezoid	5	20	4	Combined Inflow	Index Celerity
R1211	Kinematic Wave	Kinematic Wave	1700	0.01	0.01	Circular	5	3	Not Specified	Combined Inflow	Index Celerity
R1230	Kinematic Wave	Kinematic Wave	1500	0.02	0.01	Circular	5	3	Not Specified	Combined Inflow	Index Celerity

Global Results Summary

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
E1270	0.09	245.17	01Jan3000, 00:50	2.23
E1260	0.05	140.45	01Jan3000, 00:40	1.97
Dp1265	0.14	371.89	01Jan3000, 00:45	2.14
Ειοιο	0.02	34.6	01Jan3000, 00:45	I.2I
Rioio	0.02	33.94	01Jan3000, 00:45	1.18
E1030	0.01	9.69	01Jan3000, 01:05	1.8
E1020	0.04	60.47	01Jan3000, 01:10	1.87
R1030	0.01	9.66	01Jan3000, 01:05	1.79
Dp1030	0.07	79.59	01Jan3000, 01:05	1.66
DB1031 The Glen	0.07	44.46	01Jan3000, 01:35	1.09
Ειοιι	0.02	85.54	01Jan3000, 00:40	2.21
Rioii	0.02	76.88	01Jan3000, 00:40	2.2
E1210	0.06	179.28	01Jan3000, 00:45	2.01
Dp1210	0.09	245.61	01Jan3000, 00:45	2.06
R1210	0.09	239.45	01Jan3000, 00:45	2.05
E1225	0.07	172.74	01Jan3000, 00:45	1.75
Db1225 g	0.16	133.07	01Jan3000, 01:05	1.22
R1031	0.07	44.37	01Jan3000, 01:40	0.9
Dp1225	0.22	163.88	01Jan3000, 01:10	1.12
R1225a	0.22	163.63	01Jan3000, 01:15	1.05
DB1260 - A	0.14	205.61	01Jan3000, 01:00	1.51
Dp1260	0.37	331.81	01Jan3000, 01:05	1.23
E1211	0.05	131.89	01Jan3000, 00:40	1.84
R1211	0.05	130.84	01Jan3000, 00:45	1.83
E1230	0.03	91.59	01Jan3000, 00:40	1.95
R1230	0.03	77.57	01Jan3000, 00:45	I.94
E1250	0.05	125.23	01Jan3000, 00:45	1.85
E1240	0.04	120.74	01Jan3000, 00:45	1.96
Dp1250	0.17	454.38	01Jan3000, 00:45	1.89
DB1250 - B	0.17	148.13	01Jan3000, 01:05	1.26
E1251	0.14	177.06	01Jan3000, 00:55	1.22

Project: 1000s_C_and_S_Developed **Simulation Run:** 2hr CS 5yr **Simulation Start:** 31 December 2999, 24:00 **Simulation End:** 1 January 3000, 02:00

HMS Version: 4.8 Executed: 19 May 2022, 18:47

Global Parameter Summary - Subbasin

Area (ft*)						
Element Name	Area (ft²)					
E1270	0.09					
E1260	0.05					
Ειοιο	0.02					
E1030	0.01					
E1020	0.04					
Ειοιι	0.02					
E1210	0.06					
E1225	0.07					
E1211	0.05					
E1230	0.03					
E1250	0.05					
E1240	0.04					
E1251	0.14					

Downstream						
Element Name	Downstream					
E1270	Dp1265					
E1260	Dp1265					
Ειοιο	Rioio					
Е1030	R1030					
E1020	Dp1030					
Ειοιι	Rioii					
E1210	Dp1210					
E1225	Db1225 g					
E1211	R1211					
E1230	R1230					
E1250	Dp1250					
E1240	Dp1250					

5/19/22, 12:48 PM

Standard Report

	Loss Rate: Scs		
Element Nam	e Percent Impervious Area	Curve Number	Initial Abstraction
E1270	0	85.9	0.16
E1260	0	81.6	0.23
Ειοιο	0	73.2	0.73
E1030	0	80	0.13
E1020	0	88.8	0.5
Ειοιι	0	85	0.18
E1210	0	82.4	0.21
E1225	0	78.3	0.28
E1211	0	79	0.21
E1230	0	81.3	0.23
E1250	0	79.8	0.25
E1240	0	81.8	0.22
E1251	0	74	Not Specified

Transform: Scs

Element Name	Lag	Unitgraph Type
E1270	9.7	Standard
E1260	4.3	Standard
Ειοιο	4.62	Standard
E1030	22.98	Standard
E1020	28.02	Standard
Ειοιι	3	Standard
E1210	6.2	Standard
E1225	6.4	Standard
E1211	4.2	Standard
E1230	3.3	Standard
E1250	5.2	Standard
E1240	6.9	Standard
E1251	11.64	Standard

Global Parameter Summary - Reach

	Downstream					
Element Name	Downstream					
Rioio	Dp1030					
R1030	Dp1030					
Rioii	Dp1210					
R1210	Db1225 g					
R1031	Dp1225					
R1225a	Dp1260					
R1211	Dp1250					
R1230	Dp1250					

Standard Report

Route: Kinematic Wave

Element Name	Method	Channel	Length (ft)	Energy Slope	Mannings n	Shape	Number of Subreaches	Width (ft)	Side Slope	Initial Variable	Index Parameter Type
Rioio	Kinematic Wave	Kinematic Wave	450	0.02	0.01	Circular	5	3	Not Specified	Combined Inflow	Index Celerity
R1030	Kinematic Wave	Kinematic Wave	400	0.02	0.01	Circular	5	3	Not Specified	Combined Inflow	Index Celerity
Rioii	Kinematic Wave	Kinematic Wave	1350	0.04	0.01	Circular	5	3	Not Specified	Combined Inflow	Index Celerity
R1210	Kinematic Wave	Kinematic Wave	600	0.03	0.04	Trapezoid	2	20	4	Combined Inflow	Index Celerity
R1031	Kinematic Wave	Kinematic Wave	2180	0.03	0.05	Trapezoid	5	20	Ю	Combined Inflow	Index Celerity
R1225a	Kinematic Wave	Kinematic Wave	2090	0.03	0.04	Trapezoid	5	20	4	Combined Inflow	Index Celerity
R1211	Kinematic Wave	Kinematic Wave	1700	0.01	0.01	Circular	5	3	Not Specified	Combined Inflow	Index Celerity
R1230	Kinematic Wave	Kinematic Wave	1500	0.02	0.01	Circular	5	3	Not Specified	Combined Inflow	Index Celerity

Global Results Summary

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
E1270	0.09	83.68	01Jan3000, 00:50	0.73
E1260	0.05	44.17	01Jan3000, 00:45	0.59
Dp1265	0.14	118.53	01Jan3000, 00:45	0.68
Ειοιο	0.02	4.61	01Jan3000, 00:50	0.2
Rioio	0.02	4.57	01Jan3000, 00:50	0.17
E1030	0.01	3.05	01Jan3000, 01:05	0.56
E1020	0.04	16.14	01Jan3000, 01:15	0.5
R1030	0.01	3.03	01Jan3000, 01:05	0.55
Dp1030	0.07	20.86	01Jan3000, 01:10	0.41
DB1031 The Glen	0.07	14.85	01Jan3000, 01:30	0.3
Ειοιι	0.02	28.07	01Jan3000, 00:40	0.71
Rioii	0.02	23.87	01Jan3000, 00:40	0.71
E1210	0.06	55.5	01Jan3000, 00:45	0.61
Dp1210	0.09	78.8	01Jan3000, 00:45	0.63
R1210	0.09	74.07	01Jan3000, 00:45	0.63
E1225	0.07	47.46	01Jan3000, 00:45	0.48
Db1225 g	0.16	9.34	01Jan3000, 02:00	0.06
R1031	0.07	14.77	01Jan3000, 01:40	0.23
Dp1225	0.22	23.28	01Jan3000, 01:45	0.11
R1225a	0.22	23.24	01Jan3000, 01:55	0.08
DB1260 - A	0.14	17.25	01Jan3000, 01:25	0.17
Dp1260	0.37	38.47	01Jan3000, 01:50	0.11
E1211	0.05	39.95	01Jan3000, 00:45	0.54
R1211	0.05	38.74	01Jan3000, 00:45	0.53
E1230	0.03	26.77	01Jan3000, 00:40	0.58
R1230	0.03	24.37	01Jan3000, 00:45	0.57
E1250	0.05	36.84	01Jan3000, 00:45	0.53
E1240	0.04	36.2	01Jan3000, 00:45	0.59
Dp1250	0.17	136.15	01Jan3000, 00:45	0.55
DB1250 - B	0.17	23.08	01Jan3000, 01:15	0.19
E1251	0.14	27.43	01Jan3000, 00:55	0.21
Project: 2000_3000_WFJJC_Developed Simulation Run: CS 2hr 100yr Simulation Start: 31 December 2999, 24:00 Simulation End: 1 January 3000, 02:00

HMS Version: 4.8 Executed: 19 May 2022, 18:37

5/19/22, 12:40 PM

Global Parameter Summary - Subbasin

	Area (ff")
Element Name	Area (fl²)
E2010	0.12
E2020	0.06
E2030	0.02
E2045	0.06
E2040	0.03
E2050	0.02
E2060	0.02
E2070	0.07
E2080	0.06
E2090	0.02
E2110	0.03
E2100	0.1
E2120	0.05
E2130	0.01
E2140	0.01
E2150	0.01
E2160	0.01
E3000	0.42
E3005	0.24
E3015	0.11
E3010	0.22
E3012	0.21
E3020	0.19
E3025	0.26
E3030	0.26
E3035	0.16
E3040	0.12
E3050	0.07
E3060	0.12
E3070	0.08
E3080	0.05
E3090	0.05
E3100	0.1
Е3110	0.02
Sb3200	0.01
Sb3220	0.07
Sb3265	0.09
Sb3250	0.08
Sb3240	0.05
Sb3275	0.07

file:///Q:/2021/21027 Mesa Ridge MDDP/Documents/HEC-HMS/2021 Revised/2000_3000_WFJJC_Developed/100yr WFJCC.html

	Downstream
Element Name	Downstream
E2010	R2020
E2020	Dp2020
E2030	Dp2040
E2045	R2040
E2040	Dp2040
E2050	Dp2060
E2060	Dp2060
E2070	R2080
E2080	Dp2080
E2090	Dp2090
E2110	R2101
E2100	Dp2100
E2120	Dp2120
E2130	Dp2130
E2140	Dp2160
E2150	Dp2160
E2160	Dp2160
Е3000	Dp3000
E3005	Dp3000
E3015	Dp3020
Е3010	R3012
E3012	Junction - 2
E3020	R3025
E3025	Junction - 2
E3030	Dp3030
E3035	Dp3030
E3040	Dp3040
Е3050	Dp3050
E3060	Db3061
Е3070	Dp3070
E3080	R3080
Е3090	Dp3090
Е3100	Db3101
Е3110	Dp3110
Sb3200	Dp3200
Sb3220	Db3220 e
Sb3265	R3265
Sb3250	Dp3250a
Sb3240	R3240
Sb3275	Dp3275

5/19/22, 12:40 PM

Standard Report

Loss Rate: Scs					
Element Name	Percent Impervious Area	Curve Number	Initial Abstraction		
E2010	0	75	Not Specified		
E2020	0	75	Not Specified		
E2030	0	71	Not Specified		
E2045	0	85	Not Specified		
E2040	0	71	Not Specified		
E2050	0	71	Not Specified		
E2060	0	73.1	Not Specified		
E2070	0	75	Not Specified		
E2080	0	71	Not Specified		
E2090	0	75	Not Specified		
E2110	0	71	Not Specified		
E2100	0	75.3	Not Specified		
E2120	0	69	Not Specified		
E2130	0	69	Not Specified		
E2140	0	69	Not Specified		
E2150	0	76.3	Not Specified		
E2160	0	92	Not Specified		
Е3000	0	81	Not Specified		
E3005	0	81	Not Specified		
E3015	0	81	Not Specified		
Е3010	0	82	Not Specified		
E3012	0	82	Not Specified		
E3020	0	93	Not Specified		
E3025	0	93	Not Specified		
E3030	0	79	Not Specified		
E3035	0	79	Not Specified		
E3040	0	72.3	Not Specified		
E3050	0	87.3	Not Specified		
Е3060	0	79	Not Specified		
E3070	0	79.3	Not Specified		
Е3080	0	79.2	Not Specified		
E3090	0	79	Not Specified		
Е3100	0	82.9	Not Specified		
Е3110	0	90	Not Specified		
Sb3200	0	74	Not Specified		
Sb3220	0	91	Not Specified		
Sb3265	0	84.8	0.18		
Sb3250	0	79	0.27		
Sb3240	0	81.7	0.22		
Sb3275	0	82.2	0.22		

5/19/22, 12:40 PM

Standard Report

	Transform: Scs	
Element Name	Lag	Unitgraph Type
E2010	21	Standard
E2020	22.56	Standard
E2030	13.98	Standard
E2045	15.48	Standard
E2040	16.08	Standard
E2050	19.8	Standard
E2060	15.18	Standard
E2070	27.78	Standard
E2080	14.82	Standard
E2090	24.84	Standard
E2110	19.74	Standard
E2100	28.92	Standard
E2120	17.28	Standard
E2130	13.08	Standard
E2140	9.6	Standard
E2150	15.54	Standard
E2160	9.72	Standard
E3000	24.84	Standard
E3005	16.2	Standard
E3015	12.6	Standard
Е3010	16.8	Standard
E3012	28.2	Standard
E3020	21.6	Standard
E3025	13.8	Standard
Е3030	20.4	Standard
E3035	9.6	Standard
E3040	17.64	Standard
Е3050	22.26	Standard
E3060	15.42	Standard
E3070	29.16	Standard
Е3080	21.3	Standard
E3090	24.66	Standard
Е3100	18.18	Standard
Е3110	28.32	Standard
Sb3200	8.1	Standard
Sb3220	12.72	Standard
Sb3265	7.9	Standard
Sb3250	11.5	Standard
Sb3240	6.7	Standard
Sb3275	7.8	Standard

_

Global Parameter Summary - Reach

Downstream			
Element Name	Downstream		
R2020	Dp2020		
R2030	Dp2040		
R2040	Dp2040		
R2050	Dp2060		
R2090	Dp2090		
R2080	Dp2080		
R2100	Dp2100		
R2101	Dp2100		

5/19/22, 12:40 PM	Standard Report
R2120	Junction - 1
R2130	Dp2130
R2160	Dp3110
R3015	Dp3020
R3012	Junction - 2
R3025	Junction - 2
R3030	Dp3030
R3040	Dp3040
R3050	Dp3050
R3070	Dp3070
R3071	Junction - 3
R3080	Dp3090
R3100	Dp3102
R3110	Dp3200
R3200	Dp3280
R3265	Dp3250a
R3240	Dp3250a
R3250	Dp3275

Standard Report

Route: Kinematic Wave												
Element Name	Method	Channel	Length (ft)	Energy Slope	Mannings n	Shape	Number of Subreaches	Width (ft)	Side Slope	Initial Variable	Index Parameter Type	Inde Celer
R2020	Kinematic Wave	Kinematic Wave	800	0.03	0.05	Trapezoid	5	20	ю	Combined Inflow	Index Celerity	7
R2030	Kinematic Wave Kinematic	Kinematic Wave Kinomatic	800	0.03	0.05	Trapezoid	5	20	8	Combined Inflow	Index Celerity Index	7
R2040	Wave	Wave	1200	0.03	0.04	Trapezoid	5	20	8	Inflow	Celerity	7
R2050	Kinematic Wave	Kinematic Wave	600	0.03	0.03	Trapezoid	5	20	3	Combined Inflow	Index Celerity	7
R2090	Kinematic Wave	Kinematic Wave	500	0.02	0.03	Trapezoid	5	30	3	Combined Inflow	Index Celerity	7
R2080	Kinematic Wave	Kinematic Wave	1220	0.04	0.04	Trapezoid	5	ю	5	Combined Inflow	Index Celerity	7
R2100	Kinematic Wave	Kinematic Wave	1800	0.02	0.03	Trapezoid	5	60	4	Combined Inflow	Index Celerity	7
R2101	Kinematic Wave	Kinematic Wave	900	0.03	0.04	Trapezoid	5	40	5	Combined Inflow	Index Celerity	7
R2120	Kinematic Wave	Kinematic Wave	1000	0.03	0.04	Trapezoid	5	40	5	Combined Inflow	Index Celerity	7
R2130	Kinematic Wave	Kinematic Wave	550	0.05	0.04	Trapezoid	5	8	3	Combined Inflow	Index Celerity	7
R2160	Kinematic Wave	Kinematic Wave	1580	0.03	0.04	Trapezoid	5	20	4	Combined Inflow	Index Celerity	7
R3015	Kinematic Wave	Kinematic Wave	3200	0.03	0.04	Trapezoid	5	15	3	Combined Inflow	Index Celerity	7
R3012	Kinematic Wave	Kinematic Wave	2600	0.03	0.04	Trapezoid	5	15	3	Combined Inflow	Index Celerity	7
R3025	Kinematic Wave	Kinematic Wave	2600	0.04	0.04	Trapezoid	5	15	3	Combined Inflow	Index Celerity	7
R3030	Kinematic Wave	Kinematic Wave	3000	0.05	0.04	Trapezoid	5	20	ю	Combined Inflow	Index Celerity	7
R3040	Kinematic Wave	Kinematic Wave	1450	0.03	0.03	Trapezoid	5	30	5	Combined Inflow	Index Celerity	7
R3050	Kinematic Wave	Kinematic Wave	2850	0.01	0.03	Trapezoid	5	ю	7	Combined Inflow	Index Celerity	7
R3070	Kinematic Wave	Kinematic Wave	2000	0.01	0.04	Trapezoid	5	30	ю	Combined Inflow	Index Celerity	7
R3071	Kinematic Wave	Kinematic Wave	2050	0.01	0.04	Trapezoid	5	30	ю	Combined Inflow	Index Celerity	7
R3080	Kinematic Wave	Kinematic Wave	1650	0.01	0.04	Trapezoid	5	30	ю	Combined Inflow	Index Celerity	7
R3100	Kinematic Wave	Kinematic Wave	350	0.01	0.03	Trapezoid	5	ю	ю	Combined Inflow	Index Celerity	7
R3110	Kinematic Wave	Kinematic Wave	2620	0.01	0.03	Trapezoid	5	50	4	Combined Inflow	Index Celerity	7
R3200	Kinematic Wave	Kinematic Wave	1630	0.01	0.03	Trapezoid	5	50	4	Combined Inflow	Index Celerity	7
R3265	Kinematic Wave	Kinematic Wave	1225	0.02	0.03	Trapezoid	5	15	4	Combined Inflow	Index Celerity	7
R3240	Kinematic Wave	Kinematic Wave	1250	0.01	0.03	Trapezoid	5	15	4	Combined Inflow	Index Celerity	7
R3250	Kinematic Wave	Kinematic Wave	1213	0.01	0.03	Trapezoid	5	30	4	Combined Inflow	Index Celerity	7

Global Results Summary

5/19/22, 12:40 PM

Standard Report

E2010	0.12	129.59	01Jan3000, 01:05	1.21
R2020	0.12	127.18	01Jan3000, 01:05	1.18
E2020	0.06	61.52	01Jan3000, 01:05	1.19
Dp2020	0.19	188.71	01Jan3000, 01:05	1.18
R2030	0.19	187.49	01Jan3000, 01:10	1.15
E2030	0.02	21.21	01Jan3000, 00:55	1.03
E2045	0.06	120.3	01Jan3000, 00:55	1.96
R2040	0.06	117.52	01Jan3000, 01:00	1.9
E2040	0.03	24.78	01Jan3000, 01:00	1.02
Dp2040	0.29	328.71	01Jan3000, 01:05	1.29
R2050	0.29	327.17	01Jan3000, 01:05	1.27
E2050	0.02	17.14	01Jan3000, 01:05	0.99
E2060	0.02	26.21	01Jan3000, 01:00	1.14
Dp2060	0.34	367.37	01Jan3000, 01:05	1.25
R2090	0.34	365.39	01Jan3000, 01:05	1.24
E2070	0.07	59.59	01Jan3000, 01:15	1.13
R2080	0.07	59.46	01Jan3000, 01:15	1.09
E2080	0.06	55.73	01Jan3000, 01:00	1.03
Dp2080	0.12	98.86	01Jan3000, 01:05	1.06
E2090	0.02	17.89	01Jan3000, 01:10	1.17
Dp2090	0.48	481.69	01Jan3000, 01:05	1.19
Db2091	0.48	436.28	01Jan3000, 01:15	1.16
R2100	0.48	432.05	01Jan3000, 01:20	1.11
E2110	0.03	29.18	01Jan3000, 01:05	0.99
R2101	0.03	28.74	01Jan3000, 01:10	0.94
E2100	0.1	82.86	01Jan3000, 01:15	1.13
Dp2100	0.61	540.45	01Jan3000, 01:15	1.1
E2120	0.05	38.03	01Jan3000, 01:00	0.9
Dp2120	0.66	568.97	01Jan3000, 01:15	1.09
R2120	0.66	563.79	01Jan3000, 01:15	1.06
Junction - 1	0.66	563.79	01Jan3000, 01:15	1.06
R2130	0.66	562.38	01Jan3000, 01:20	1.05
E2130	0.01	9.26	01Jan3000, 00:55	0.93
Dp2130	0.67	566.49	01Jan3000, 01:20	1.05
E2140	0.01	7.36	01Jan3000, 00:50	0.95
E2150	0.01	19.27	01Jan3000, 00:55	1.34
E2160	0.01	37.88	01Jan3000, 00:50	2.63
Dp2160	0.7	589.82	01Jan3000, 01:15	1.08
R2160	0.7	587.01	01Jan3000, 01:20	1.04
E3000	0.42	526	01Jan3000, 01:10	1.55
E3005	0.24	380.62	01Jan3000, 00:55	1.65
Dp3000	0.66	856.81	01Jan3000, 01:05	1.59
R3015	0.66	855.87	01Jan3000, 01:05	1.52
E3015	0.11	197.15	01Jan3000, 00:55	1.68
Dp3020	0.77	991.84	01Jan3000, 01:05	1.54
E3010	0.22	357-95	01Jan3000, 01:00	1.72
R3012	0.22	355.64	01Jan3000, 01:00	1.65
E3012	0.21	256.15	01Jan3000, 01:10	1.57
E3020	0.19	419.78	01Jan3000, 01:00	2.59
R3025	0.19	416.05	01Jan3000, 01:05	2.5
E3025	0.26	724.12	01Jan3000, 00:50	2.69
Junction - 2	1.65	2538.31	01Jan3000, 01:00	1.85
Db3021	1.65	1652.09	01Jan3000, 01:20	1.11
R3030	1.65	1636.66	01Jan3000, 01:25	1.04
E3030	0.26	332.06	01Jan3000, 01:05	1.47
E3035	0.16	299.64	01Jan3000, 00:50	1.56

5/19/22, 12:40 PM			Standard Report	
Dp3030	2.07	1873.97	01Jan3000, 01:25	1.14
Db3031	2.07	1826.31	01Jan3000, 01:25	1.08
R3040	2.07	1811.03	01Jan3000, 01:30	1.06
E3040	0.12	112.55	01Jan3000, 01:00	1.08
Dp3040	2.18	1856.42	01Jan3000, 01:30	1.06
R3050	2.18	1838.06	01Jan3000, 01:30	0.98
E3050	0.07	129.97	01Jan3000, 01:05	2.07
Dp3050	2.26	1898.37	01Jan3000, 01:30	I.0I
E3060	0.12	177.42	01Jan3000, 00:55	1.52
Db3061	0.12	150.74	01Jan3000, 01:05	I.45
R3070	0.12	147.32	01Jan3000, 01:15	1.31
E3070	0.08	81.06	01Jan3000, 01:15	1.37
Dp3070	0.2	228.38	01Jan3000, 01:15	1.34
R3071	0.2	227.27	01Jan3000, 01:20	1.19
Junction - 3	2.45	2099.19	01Jan3000, 01:30	1.03
E3080	0.05	67.13	01Jan3000, 01:05	I.47
R3080	0.05	66.16	01Jan3000, 01:10	1.34
E3090	0.05	62	01Jan3000, 01:10	1.42
Dp3090	0.11	128.16	01Jan3000, 01:10	1.38
Db3091	0.11	104.22	01Jan3000, 01:20	1.19
Dp3092	2.56	2201.99	01Jan3000, 01:30	1.04
R3100	2.56	2187.35	01Jan3000, 01:30	1.03
Е3100	0.1	156.19	01Jan3000, 01:00	1.77
Db3101	0.1	111.05	01Jan3000, 01:15	1.65
Dp3102	2.65	2283.26	01Jan3000, 01:30	1.05
E3110	0.02	30.57	01Jan3000, 01:10	2.19
Dp3110	3.38	2834.78	01Jan3000, 01:30	1.05
R3110	3.38	2794.4	01Jan3000, 01:35	0.98
Sb3200	0.01	18.94	01Jan3000, 00:50	1.24
Sb3220	0.07	177.92	01Jan3000, 00:50	2.5
Db3220 e	0.07	33.05	01Jan3000, 01:30	0.8
Dp3200	3.45	2829.97	01Jan3000, 01:35	0.98
R3200	3.45	2818.58	01Jan3000, 01:35	0.93
Sb3265	0.09	254.22	01Jan3000, 00:45	2.16
R3265	0.09	244.25	01Jan3000, 00:50	2.12
Sb3250	0.08	148.88	01Jan3000, 00:50	1.75
Sb3240	0.05	127.34	01Jan3000, 00:45	1.96
R3240	0.05	119.4	01Jan3000, 00:50	1.89
Dp3250a	0.21	512.54	01Jan3000, 00:50	1.94
R3250	0.21	483.45	01Jan3000, 00:50	I.9
Sb3275	0.07	181.58	01Jan3000, 00:45	1.98
Dp3275	0.28	653.97	01Jan3000, 00:50	1.92
Db3280 c	0.28	177.43	01Jan3000, 01:20	0.97
Dp3280	3.74	2982.37	01Jan3000, 01:35	0.94

Project: 2000_3000_WFJJC_Developed Simulation Run: CS 2hr 5yr Simulation Start: 31 December 2999, 24:00 Simulation End: 1 January 3000, 02:00

HMS Version: 4.8 Executed: 19 May 2022, 18:29

Global Parameter Summary - Subbasin

$Area (ft^2)$				
Element Name	Area (fl²)			
E2010	0.12			
E2020	0.06			
E2030	0.02			
E2045	0.06			
E2040	0.03			
E2050	0.02			
E2060	0.02			
E2070	0.07			
E2080	0.06			
E2090	0.02			
E2110	0.03			
E2100	0.1			
E2120	0.05			
E2130	0.01			
E2140	0.01			
E2150	0.01			
E2160	0.01			
E3000	0.42			
E3005	0.24			
E3015	0.11			
E3010	0.22			
E3012	0.21			
E3020	0.19			
E3025	0.26			
E3030	0.26			
E3035	0.16			
E3040	0.12			
E3050	0.07			
E3060	0.12			
E3070	0.08			
E3080	0.05			
E3090	0.05			
Е3100	0.1			
E3110	0.02			
Sb3200	0.01			
Sb3220	0.07			
Sb3265	0.09			
Sb3250	0.08			
Sb3240	0.05			
Sb3275	0.07			

file:///Q:/2021/21027 Mesa Ridge MDDP/Documents/HEC-HMS/2021 Revised/2000_3000_WFJJC_Developed/5yr WFJCC.html

	Downstream
Element Name	Downstream
E2010	R2020
E2020	Dp2020
E2030	Dp2040
E2045	R2040
E2040	Dp2040
E2050	Dp2060
E2060	Dp2060
E2070	R2080
E2080	Dp2080
E2090	Dp2090
E2110	R2101
E2100	Dp2100
E2120	Dp2120
E2130	Dp2130
E2140	Dp2160
E2150	Dp2160
E2160	Dp2160
Е3000	Dp3000
E3005	Dp3000
E3015	Dp3020
Е3010	R3012
E3012	Junction - 2
E3020	R3025
E3025	Junction - 2
E3030	Dp3030
E3035	Dp3030
E3040	Dp3040
E3050	Dp3050
E3060	Db3061
E3070	Dp3070
E3080	R3080
E3090	Dp3090
Е3100	Db3101
E3110	Dp3110
Sb3200	Dp3200
Sb3220	Db3220 e
Sb3265	R3265
Sb3250	Dp3250a
Sb3240	R3240
Sb3275	Dp3275

5/19/22, 12:34 PM

Standard Report

Loss Rate: Scs					
Element Name	Percent Impervious Area	Curve Number	Initial Abstraction		
E2010	0	75	Not Specified		
E2020	0	75	Not Specified		
E2030	0	71	Not Specified		
E2045	0	85	Not Specified		
E2040	0	71	Not Specified		
E2050	0	71	Not Specified		
E2060	0	73.1	Not Specified		
E2070	0	75	Not Specified		
E2080	0	71	Not Specified		
E2090	0	75	Not Specified		
E2110	0	71	Not Specified		
E2100	0	75-3	Not Specified		
E2120	0	69	Not Specified		
E2130	0	69	Not Specified		
E2140	0	69	Not Specified		
E2150	0	76.3	Not Specified		
E2160	0	92	Not Specified		
Е3000	0	81	Not Specified		
E3005	0	81	Not Specified		
E3015	0	81	Not Specified		
Е3010	0	82	Not Specified		
E3012	0	82	Not Specified		
E3020	0	93	Not Specified		
E3025	0	93	Not Specified		
E3030	0	79	Not Specified		
E3035	0	79	Not Specified		
E3040	0	72.3	Not Specified		
E3050	0	87.3	Not Specified		
E3060	0	79	Not Specified		
E3070	0	79.3	Not Specified		
E3080	0	79.2	Not Specified		
Е3090	0	79	Not Specified		
Е3100	0	82.9	Not Specified		
Езно	0	90	Not Specified		
Sb3200	0	74	Not Specified		
Sb3220	0	91	Not Specified		
Sb3265	0	84.8	0.18		
Sb3250	0	79	0.27		
Sb3240	0	81.7	0.22		
Sb3275	0	82.2	0.22		

5/19/22, 12:34 PM

Standard Report

	Transform: Scs	
Element Name	Lag	Unitgraph Type
E2010	21	Standard
E2020	22.56	Standard
E2030	13.98	Standard
E2045	15.48	Standard
E2040	16.08	Standard
E2050	19.8	Standard
E2060	15.18	Standard
E2070	27.78	Standard
E2080	14.82	Standard
E2090	24.84	Standard
E2110	19.74	Standard
E2100	28.92	Standard
E2120	17.28	Standard
E2130	13.08	Standard
E2140	9.6	Standard
E2150	15.54	Standard
E2160	9.72	Standard
E3000	24.84	Standard
E3005	16.2	Standard
E3015	12.6	Standard
Е3010	16.8	Standard
E3012	28.2	Standard
E3020	21.6	Standard
E3025	13.8	Standard
E3030	20.4	Standard
E3035	9.6	Standard
E3040	17.64	Standard
E3050	22.26	Standard
E3060	15.42	Standard
E3070	29.16	Standard
E3080	21.3	Standard
E3090	24.66	Standard
E3100	18.18	Standard
Е3110	28.32	Standard
Sb3200	8.1	Standard
Sb3220	12.72	Standard
Sb3265	7.9	Standard
Sb3250	11.5	Standard
Sb3240	6.7	Standard
Sb3275	7.8	Standard

_

Global Parameter Summary - Reach

Downstream											
Element Name	Downstream										
R2020	Dp2020										
R2030	Dp2040										
R2040	Dp2040										
R2050	Dp2060										
R2090	Dp2090										
R2080	Dp2080										
R2100	Dp2100										
R2101	Dp2100										

5/19/22, 12:34 PM	Standard Report
R2120	Junction - 1
R2130	Dp2130
R2160	Dp3110
R3015	Dp3020
R3012	Junction - 2
R3025	Junction - 2
R3030	Dp3030
R3040	Dp3040
R3050	Dp3050
R3070	Dp3070
R3071	Junction - 3
R3080	Dp3090
R3100	Dp3102
R3110	Dp3200
R3200	Dp3280
R3265	Dp3250a
R3240	Dp3250a
R3250	Dp3275

Standard Report

					Route:	Kinematic Wa	ve					
Element Name	Method	Channel	Length (ft)	Energy Slope	Mannings n	Shape	Number of Subreaches	Width (ft)	Side Slope	Initial Variable	Index Parameter Type	Inde Celer
R2020	Kinematic Wave	Kinematic Wave	800	0.03	0.05	Trapezoid	5	20	ю	Combined Inflow	Index Celerity	7
R2030	Kinematic Wave	Kinematic Wave	800	0.03	0.05	Trapezoid	5	20	8	Combined Inflow	Index Celerity	7
R2040	Kinematic Wave	Kinematic Wave	1200	0.03	0.04	Trapezoid	5	20	8	Combined Inflow	Index Celerity	7
R2050	Kinematic Wave	Kinematic Wave	600	0.03	0.03	Trapezoid	5	20	3	Combined Inflow	Index Celerity	7
R2090	Kinematic Wave	Kinematic Wave	500	0.02	0.03	Trapezoid	5	30	3	Combined Inflow	Index Celerity	7
R2080	Kinematic Wave	Kinematic Wave	1220	0.04	0.04	Trapezoid	5	ю	5	Combined Inflow	Index Celerity	7
R2100	Kinematic Wave	Kinematic Wave	1800	0.02	0.03	Trapezoid	5	60	4	Combined Inflow	Index Celerity	7
R2101	Kinematic Wave	Kinematic Wave	900	0.03	0.04	Trapezoid	5	40	5	Combined Inflow	Index Celerity	7
R2120	Kinematic Wave	Kinematic Wave	1000	0.03	0.04	Trapezoid	5	40	5	Combined Inflow	Index Celerity	7
R2130	Kinematic Wave	Kinematic Wave	550	0.05	0.04	Trapezoid	5	8	3	Combined Inflow	Index Celerity	7
R2160	Kinematic Wave	Kinematic Wave	1580	0.03	0.04	Trapezoid	5	20	4	Combined Inflow	Index Celerity	7
R3015	Kinematic Wave	Kinematic Wave	3200	0.03	0.04	Trapezoid	5	15	3	Combined Inflow	Index Celerity	7
R3012	Kinematic Wave	Kinematic Wave	2600	0.03	0.04	Trapezoid	5	15	3	Combined Inflow	Index Celerity	7
R3025	Kinematic Wave	Kinematic Wave	2600	0.04	0.04	Trapezoid	5	15	3	Combined Inflow	Index Celerity	7
R3030	Kinematic Wave	Kinematic Wave	3000	0.05	0.04	Trapezoid	5	20	ю	Combined Inflow	Index Celerity	7
R3040	Kinematic Wave	Kinematic Wave	1450	0.03	0.03	Trapezoid	5	30	5	Combined Inflow	Index Celerity	7
R3050	Kinematic Wave	Kinematic Wave	2850	0.01	0.03	Trapezoid	5	ю	7	Combined Inflow	Index Celerity	7
R3070	Kinematic Wave	Kinematic Wave	2000	0.01	0.04	Trapezoid	5	30	ю	Combined Inflow	Index Celerity	7
R3071	Kinematic Wave	Kinematic Wave	2050	0.01	0.04	Trapezoid	5	30	ю	Combined Inflow	Index Celerity	7
R3080	Kinematic Wave	Kinematic Wave	1650	0.01	0.04	Trapezoid	5	30	ю	Combined Inflow	Index Celerity	7
R3100	Kinematic Wave	Kinematic Wave	350	0.01	0.03	Trapezoid	5	ю	ю	Combined Inflow	Index Celerity	7
R3110	Kinematic Wave	Kinematic Wave	2620	0.01	0.03	Trapezoid	5	50	4	Combined Inflow	Index Celerity	7
R3200	Kinematic Wave	Kinematic Wave	1630	0.01	0.03	Trapezoid	5	50	4	Combined Inflow	Index Celerity	7
R3265	Kinematic Wave	Kinematic Wave	1225	0.02	0.03	Trapezoid	5	15	4	Combined Inflow	Index Celerity	7
R3240	Kinematic Wave	Kinematic Wave	1250	0.01	0.03	Trapezoid	5	15	4	Combined Inflow	Index Celerity	7
R3250	Kinematic Wave	Kinematic Wave	1213	0.01	0.03	Trapezoid	5	30	4	Combined Inflow	Index Celerity	7

Global Results Summary

5/19/22, 12:34 PM

Standard Report

E2010	0.12	17.85	01Jan3000, 01:10	0.18
R2020	0.12	17.76	01Jan3000, 01:15	0.17
E2020	0.06	8.49	01Jan3000, 01:15	0.18
Dp2020	0.19	26.25	01Jan3000, 01:15	0.17
R2030	0.19	25.92	01Jan3000, 01:20	0.16
E2030	0.02	2.04	01Jan3000, 01:05	0.12
E2045	0.06	28.41	01Jan3000, 01:00	0.49
R2040	0.06	28.03	01Jan3000, 01:05	0.47
E2040	0.03	2.41	01Jan3000, 01:10	0.11
Dp2040	0.29	52.45	01Jan3000, 01:10	0.22
R2050	0.29	51.83	01Jan3000, 01:10	0.21
E2050	0.02	1.71	01Jan3000, 01:15	0.11
E2060	0.02	3.05	01Jan3000, 01:05	0.15
Dp2060	0.34	56.46	01Jan3000, 01:10	0.2
R2090	0.34	56.08	01]an3000, 01:15	0.2
E2070	0.07	8.46	01Jan3000, 01:20	0.16
R2080	0.07	8.46	01Jan3000, 01:25	0.15
E2080	0.06	5.42	01Jan3000, 01:05	0.12
Dn2080	0.12	12.49	01Jan3000 01:20	0.13
Ep2000	0.02	2 51	Ollan2000 01:15	0.17
Dr2000	0.48	2.91	01Jan 3000, 01:15	0.18
Dhaoa	0.48	60.47		0.17
B1100	0.48	69.47	01Jan2000, 01:20	0.17
Eauo	0.48	09.31		0.15
Barar	0.03	2.91		0.11
R2101	0.03	2.9	01Jan3000, 01:20	0.09
E2100	0.1	12	01jan3000, 01:20	0.17
Dp2100	0.61	83.82	01Jan3000, 01:25	0.15
E2120	0.05	3.12	01Jan3000, 01:10	0.08
Dp2120	0.66	86.32	01Jan3000, 01:25	0.15
R2120	0.66	85.53	01Jan3000, 01:25	0.14
Junction - 1	0.66	85.53	01Jan3000, 01:25	0.14
R2130	0.66	84.97	01Jan3000, 01:30	0.13
E2130	0.01	0.72	01Jan3000, 01:05	0.09
Dp2130	0.67	85.37	01Jan3000, 01:30	0.13
E2140	0.01	0.54	01Jan3000, 01:00	0.09
E2150	0.01	2.8	01Jan3000, 01:00	0.22
E2160	0.01	12.72	01Jan3000, 00:50	0.87
Dp2160	0.7	88.74	01Jan3000, 01:25	0.15
R2160	0.7	88.71	01Jan3000, 01:30	0.13
E3000	0.42	105.1	01Jan3000, 01:10	0.32
E3005	0.24	74.83	01Jan3000, 01:00	0.34
Dp3000	0.66	169.76	01Jan3000, 01:05	0.33
R3015	0.66	169.08	01Jan3000, 01:15	0.3
E3015	0.11	38.34	01Jan3000, 00:55	0.35
Dp3020	0.77	195.03	01Jan3000, 01:10	0.31
E3010	0.22	74.21	01Jan3000, 01:00	0.38
R3012	0.22	72.6	01Jan3000, 01:05	0.35
E3012	0.21	54.08	01Jan3000, 01:15	0.34
E3020	0.19	142.99	01Jan3000, 01:05	0.89
R3025	0.19	142.35	01Jan3000, 01:05	0.84
E3025	0.26	252.41	01Jan3000, 00:55	0.93
Junction - 2	1.65	625.23	01Jan3000, 01:05	0.48
Db3021	1.65	232.36	01Jan3000, 01:45	0.2
R3030	1.65	232.33	01Jan3000, 01:50	0.17
E3030	0.26	58.57	01Jan3000, 01:05	0.27
E3035	0.16	48.55	01Jan3000, 00:55	0.3
				-

5/19/22, 12:34 PM			Standard Report	
Dp3030	2.07	264.22	01Jan3000, 01:40	0.2
Db3031	2.07	263.29	01Jan3000, 01:50	0.17
R3040	2.07	263.28	01Jan3000, 01:50	0.16
E3040	0.12	12.42	01Jan3000, 01:10	0.13
Dp3040	2.18	268.47	01Jan3000, 01:50	0.16
R3050	2.18	268.31	01Jan3000, 01:55	0.13
E3050	0.07	35.02	01Jan3000, 01:05	0.56
Dp3050	2.26	277.44	01Jan3000, 01:55	0.14
E3060	0.12	30.84	01Jan3000, 01:00	0.29
Db3061	0.12	25.88	01Jan3000, 01:10	0.27
R3070	0.12	25.63	01Jan3000, 01:25	0.22
E3070	0.08	14.92	01Jan3000, 01:20	0.26
Dp3070	0.2	39.95	01Jan3000, 01:20	0.23
R3071	0.2	39.8	01Jan3000, 01:35	0.18
Junction - 3	2.45	310.65	01Jan3000, 01:45	0.15
E3080	0.05	12.04	01Jan3000, 01:10	0.28
R3080	0.05	11.9	01Jan3000, 01:20	0.23
E3090	0.05	11.12	01Jan3000, 01:15	0.26
Dp3090	0.11	22.27	01Jan3000, 01:20	0.25
Db3091	0.11	15.64	01Jan3000, 01:40	0.17
Dp3092	2.56	325.92	01Jan3000, 01:45	0.15
R3100	2.56	325.78	01Jan3000, 01:45	0.14
E3100	0.1	33.44	01Jan3000, 01:05	0.4
Db3101	0.1	27.28	01Jan3000, 01:15	0.37
Dp3102	2.65	340.6	01Jan3000, 01:40	0.15
E3110	0.02	9.21	01Jan3000, 01:10	0.66
Dp3110	3.38	428.84	01Jan3000, 01:35	0.15
R3110	3.38	428.15	01Jan3000, 01:45	0.12
Sb3200	0.01	2.16	01Jan3000, 00:55	0.18
Sb3220	0.07	55.43	01Jan3000, 00:55	0.8
Db3220 e	0.07	1.28	01Jan3000, 02:00	0.03
Dp3200	3.45	429.95	01Jan3000, 01:45	0.12
R3200	3.45	429.12	01Jan3000, 01:45	0.1
Sb3265	0.09	68.77	01Jan3000, 00:50	0.62
R3265	0.09	68.74	01Jan3000, 00:50	0.6
Sb3250	0.08	34.6	01Jan3000, 00:55	0.43
Sb3240	0.05	31.91	01Jan3000, 00:45	0.52
R3240	0.05	31.69	01Jan3000, 00:50	0.5
Dp3250a	0.21	134.52	01Jan3000, 00:50	0.52
R3250	0.21	131.22	01Jan3000, 00:55	0.49
Sb3275	0.07	45.85	01Jan3000, 00:50	0.53
Dp3275	0.28	167.75	01Jan3000, 00:55	0.5
Db3280 c	0.28	6.55	01Jan3000, 02:00	0.02
Dp3280	3.74	434.59	01Jan3000, 01:45	0.I

APPENDIX C2: Developed Hydrology with Powers Roadway CN Calculations with Powers Blvd Roadway Model Comparison Powers Blvd Roadway vs Opens Space

Table 3	
HEC-HMS Developed CN Values with Powe	rs Blvd Roadway

Land Use (Sq Miles) B or C Soils																							
			OP/	P/D	ł	٦L	RI	M	RM	1H	F	RΗ	COM/C	OFF	I	_L	School		Powers	s Blvd ²			
		_	В	С	В	С	В	С	В	С	В	С	В	С	В	С	В	С	В	С			
Basin	Area (ac)	Area Miles ²	61	74	68	79	75	83	85	90	85	90	92	94	68	79	77	85	80	86	CN	Abstraction	Notes
C&S Bas	sin																						
E1010		0.020																			73.2	0.366	(1)
E1020		0.041																			80.0	0.250	(1)
E1030		0.020																			88.8	0.126	(1)
E1011	14.4	0.022							0.022												85.0	0.176	
E1210	40.3	0.063							0.049										0.007	0.007	84.6	0.183	
E1211	32.1	0.050	0.001	0.005			0.017	0.020												0.008	79.7	0.255	
E1225	45.7	0.071	0.004	0.013			0.017	0.038													78.3	0.277	
E1230	18.1	0.028						0.020												0.008	83.8	0.193	
E1240	28.9	0.045						0.036												0.009	83.6	0.196	
E1250	29.8	0.047						0.009								0.038					79.8	0.254	
E1260	32.0	0.050		0.006				0.040								0.004					81.6	0.225	
E1270	58.9	0.092		0.007								0.032						0.053			85.9	0.164	
Totals	300	0.550																					
West Fo	rk Jimmy C	amp Creek Ba	asin																				
SB3220	39.8	0.062									0.008	0.019	0.017	0.018							91.0	0.099	
SB3240	30.0	0.047					0.008	0.039													81.7	0.224	
SB3250	48.6	0.076	0.013	0.022								0.026					0.005	0.010			79.0	0.265	
SB3265	58.3	0.091					0.073	0.018													76.6	0.306	
SB3275	45.5	0.071						0.067												0.005	83.2	0.202	
Totals	222.3	0.347																					

(1) Data and model from Cross Creek MDDP (2) Powers BLVD CN assumes 50% roadway (98), 50% open space (B 61,C 74)

Table 4C&S (Center) BasinDeveloped Conditions HEC-HMS Peak Flow Comparison with Powers Blvd Roadway

	100yr flows with Powers Open Space	100yr flows with Powers Roadway	Increase due to Roadway
Element	cfs	cfs	-
E1270	245	245	0
E1260	140	140	0
DP1265	372	372	0
E1010	35	35	0
R1010	34	34	0
E1030	10	10	0
E1020	61	61	0
R1030	10	10	0
DP1030	80	80	0
DB1031 The Glen	45	45	0
E1011	86	86	0
R1011	77	77	0
E1210	174	193	19
DP1210	241	260	19
R1210	235	253	19
E1225	173	173	0
DB1225 G	132	140	8
R1031	44	44	0
DP1225	163	168	5
R1225A	163	167	5
DB1260-A	206	206	0
DP1260	331	337	6
E1211	125	132	8
R1211	124	132	7
E1230	91	100	10
R1230	77	85	8
E1250	125	125	0
E1240	120	129	9
DP1250	446	470	24
DB1250-B	141	166	26
E1251	177.1	177	0

E=Subbasin

R=Routing DP= Design Point DB=Detention

4/20/2022

APPENDIX D: Full Spectrum Detention Design

Imperviousness Calcs

MHFD Detention Calcs

(Note: Used for WQCV, EURV, and discharge curves only. See HEC-HMS for 100yr Volume calcs)

D

Mesa Ridge MDDP FSD A Runoff Coeficient and Percent Impervious Calculation

				RLM	Area 1	l Land	Use	LL	Area 2 Land Use		l Use	OS	Area 3	Area 3 Land Use		RH	Area 4 Land Use		Use	SC	Area 5	Land	Use	
Basin / DP	Basin or DP ((DP contribu basins)	Area ıting	Soil Type	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	Basin % Imperv
1260	1,395,306 sf	32.03ac	С	30%	29.43ac	92%	28%	20%	2.60ac	8%	2%	2%		0%	0%	65%		0%	0%	60%		0%	0%	29.2%
1270	2,567,180 sf	58.93ac	С	30%		0%	0%	20%		0%	0%	2%	4.49ac	8%	0%	65%	20.79ac	35%	23%	60%	33.65ac	57%	34%	57.3%
FSD A-DB1260	1260, 1270	90.97ac	С	30%	29.43ac	32%	10%	20%	2.60ac	3%	1%	2%	4.49ac	5%	0%	65%	20.79ac	23%	15%	60%	33.65ac	37%	22%	47.4%
Land Use		Abb	%]																				
Open Space		OS	2%																					
Large Lot		LL	20%																					
Residential - Low Density	2-3 DU/AC	RL	25%																					
Residential - Low/Medium	n Density 4-6 DU/AC	RLM	30%																					
Residential - Medium/High	h Density 4-8 DU/AC	RMH	40%																					
Residential - High Density	8+ DU/AC	RH	65%																					
Commercial/Office		OFF	80%																					
Business Park		BP	80%																					
50000		ડા	60%	J																				

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: Mesa Ridge MDDP

Basin ID:	FSD A - 126	0												
ZONE 3					load for WO	-V and				JAAC fo	r 100.ur	Volum	~	
100-177	2NE 1	1		, c	seu ioi wQu	Lv anu	LOUN	Jilly, se	e nec-i	101510	гтооуг	volum	e	
VOLUME EUNY WOCY							_							
		100-YE	AR		Depth Increment =	1.00	ft							
PERMANENT ORFIC	1 AND 2	uninu					Optional				Optional			
PCOL Example Zone C	Configuratio	n (Retentio	on Pond)		Stage - Storage	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (# ²)	Override Area (ft ²)	Area (acre)	Volume (# 3)	Volume (acaff)
Watershed Information					Top of Micropool		0.00				200	0.005	(10)	(ac it)
Colorbad DMD Tures	EDB				Top of Theropool		1.00				1.000	0.000	600	0.014
Selected BMP Type =	EDB						1.00	-			1,000	0.025	000	0.014
Watershed Area =	90.97	acres					2.00				13,000	0.298	7,600	0.174
Watershed Length =	2,000	ft					3.00				45,000	1.033	36,600	0.840
Watershed Length to Centroid =	800	ft					4.00			-	50,000	1.148	84,100	1.931
Watershed Slope =	0.023	ft/ft					5.00				55,000	1.263	136,600	3.136
Watershed Imperviousness =	47.40%	percent					6.00				60,000	1.377	194,100	4.456
Percentage Hydrologic Soil Group A =	0.0%	percent					7.00			-	65,000	1.492	256,600	5.891
Percentage Hydrologic Soil Group B =	0.0%	percent					8.00	-			70,000	1.607	324,100	7.440
Percentage Hydrologic Soil Groups C/D =	100.0%	percent					9.00			-	75,000	1.722	396,600	9.105
Target WQCV Drain Time =	40.0	hours					10.00				80,000	1.837	474,100	10.884
Location for 1-hr Rainfall Depths =	Denver - Capi	itol Building				-		-		-				
After providing required inputs above inc	luding 1-bour	rainfall												
depths, click 'Run CUHP' to generate run	off hydrograph	is using												
the embedded Colorado Urban Hydro	graph Procedu	ure.	Optional Use	er Overrides										
Water Quality Capture Volume (WOCV) =	1 511	acre-feet		acre-feet										
Evcess Lirban Runoff Volume (ELIRV) -	4.062	acre-feet		acre-feet				-						
2-vr Rupoff Volume (P1 = 1 10 -)	4 709	acre-feet	1 10	inchee										
2 yr Kunon Volume (F1 - 1.13 III.) = 5-yr Runoff Volume (B1 - 1 F -)	5.944	acre-foot	1.15	inches										
	0.010		1.50	inches		-								
10-yr Kunon volume (P1 = 1./5 In.) =	0.081	acre-feet	1./5	incries				-						
25-yr Runott Volume (P1 = 2 in.) =	10.838	acre-feet	2.00	inches						-			⊢−−−	
50-yr Runoff Volume (P1 = 2.25 in.) =	12.770	acre-feet	2.25	Inches									⊢	
100-yr Runoff Volume (P1 = 2.52 in.) =	15.141	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = 3.1 in.) =	19.683	acre-feet	3.10	inches		-		-		-				
Approximate 2-yr Detention Volume =	3.575	acre-feet												
Approximate 5-yr Detention Volume =	5.386	acre-feet						-					ΓΤ	
Approximate 10-yr Detention Volume =	6.142	acre-feet												
Approximate 25-yr Detention Volume =	6.669	acre-feet						-						
Approximate 50-yr Detention Volume =	6.918	acre-feet								-				
Approximate 100-yr Detention Volume =	7.934	acre-feet												
		_												
Define Zones and Basin Geometry														
Select Zone 1 Storage Volume (Required) -		acre-feet				-		-	-	_				
Select Zone 1 Storage Volume (Required) =		acro foot												
Select Zone 2 Storage Volume (Optional) =		acre-leet				-		-					<u> </u>	
Select Zone 3 Storage Volume (Optional) =		acre-reet						-						
Total Detention Basin Volume =		acre-feet											⊨	
Initial Surcharge Volume (ISV) =	user	ft 3											-	
Initial Surcharge Depth (ISD) =	user	ft						-						
Total Available Detention Depth (H _{total}) =	user	ft												
Depth of Trickle Channel (H _{TC}) =	user	ft						-						
Slope of Trickle Channel (STC) =	user	ft/ft												
Slopes of Main Basin Sides (Smain) =	user	H:V						-		-				
Basin Length-to-Width Ratio (R _{L/W}) =	user									-				
		-												
Initial Surcharge Area (A _{ISV}) =	user	ft ²												
Surcharge Volume Length (Lisy) =	user	ft												
Surcharge Volume Width (Wisy) =	user	ft												
Depth of Basin Floor (He oog) =	user	ft												
Length of Basin Floor $(1_{ROOP}) =$	user	ft												
Width of Basin Floor (Wagoon) =	user	ft.												
Area of Basis Floor (MHOOR) =	user	a 2												
Volumo of Paria Flags (V	user	нс ф 3												
Dopth of Main Ploor (V _{FLOOR}) =	user	н. Ф						-		-				
Depth of Main Basin (H _{MAIN}) =	user	ι ι Α											┝───┤	
Length of Main Basin $(L_{MAIN}) =$	user	IT .						-					⊢	
width of Main Basin $(W_{MAIN}) =$	user	ιτ • 2						-					⊢−−−−	
Area of Main Basin (A _{MAIN}) =	user	π" • ?											⊢	
Volume of Main Basin (V _{MAIN}) =	user	π°											⊢	
Calculated Total Basin Volume (V_{total}) =	user	acre-feet												
								-						
								-						
						-								
										-				
										-				
													⊨	
										-				
										-				
													⊨	
								-		-				
										-				
													┝───┤	
								-		-			I	
						-		-						
						-		-						
								-		-				
						-		-						
						-		-		-			\vdash	
								-		-				
								-						
								-		-				

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

	Stage	Area	Area	Volume	Volume	Total	
Stage - Storage Description	Stage	Area 24		volume	Volume	Outflow	
	[π]	[#-]	[acres]	[ft"]	[ac-π]	[CTS]	
	1.00	1,000	0.023	600	0.014	0.13	For best results, include the
	2.00	13,000	0.298	7,600	0.174	0.19	stages of all grade slope
	3.00	45,000	1.033	36,600	0.840	0.52	changes (e.g. ISV and Floor)
	3.35	46,750	1.073	52,656	1.209	0.60	Sheet 'Basin'
	4.00	50,000	1.148	84,100	1.931	0.71	
	5.00	55,000	1.263	136,600	3.136	1.86	Also include the inverts of all
	5.03	55,150	1.266	138,252	3.174	1.88	outlets (e.g. vertical orifice,
	6.00	60,000	1.377	194,100	4.456	24.04	overflow grate, and spillway,
	7.00	65,000	1.492	256,600	5.891	111.08	where applicable).
	8.00	70,000	1.607	324,100	7.440	120.36	
	9.00	75,000	1.722	396,600	9.105	378.56	
	10.00	80,000	1.837	474,100	10.884	870.16	
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
						1	1
]
							4
							4
							1
						1	1
]
							4
							4
							1
	1]
							4
							4
							1
							1
]
							4
							4
						l	1

Mesa Ridge MDDP FSD B Runoff Coeficient and Percent Impervious Calculation

				RMH	Area	1 Land	Use	RLM	Area 2	Land U	Jse	OS	Area 3	Land	Use	RH	Area 4	Land	Use	LL	LL Area 5 Land Use			
Basin / DP	Basin or DP A (DP contributing	rea basins)	Soil Type	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	Basin % Imperv
1250-С	1,298,390 sf	29.81ac	С	40%		0%	0%	30%	5.74ac	19%	6%	2%		0%	0%	65%		0%	0%	20%	24.06ac	81%	16%	21.9%
1240-С	1,260,367 sf	28.93ac	С	40%		0%	0%	30%	25.34ac	88%	26%	2%	3.60ac	12%	0%	65%		0%	0%	20%		0%	0%	26.5%
1230-С	787,679 sf	18.08ac	С	40%		0%	0%	30%	14.81ac	82%	25%	2%	3.27ac	18%	0%	65%		0%	0%	20%		0%	0%	24.9%
1211-B	483,400 sf	11.10ac	В	40%		0%	0%	30%	10.66ac	96%	29%	2%	0.44ac	4%	0%	65%		0%	0%	20%		0%	0%	28.9%
1211-C	913,261 sf	20.97ac	С	40%		0%	0%	30%	18.00ac	86%	26%	2%	2.96ac	14%	0%	65%		0%	0%	20%		0%	0%	26.0%
FSD B -DB1250	1250, 1240, 1230, 1211	108.89ac	С	40%	0.00ac	0%	0%	30%	74.56ac	68%	21%	2%	10.27ac	9%	0%	65%	0.00ac	0%	0%	20%	24.06ac	22%	4%	25.1%
Land Uso		Abb	0/2																					
Open Space		05	70 2%																					
Large Lot		LL	20%																					
Residential - Low Density	2-3 DU/AC	RL	25%																					
Residential - Low/Medium	n Density 4-6 DU/AC	RLM	30%																					
Residential - Medium/Hig	h Density 4-8 DU/AC	RMH	40%																					
Residential - High Density	8+ DU/AC	RH	65%																					
Commercial/Office		OFF	80%																					
Business Park		BP	80%																					
School		SC	60%																					

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: Mesa Ridge	MDDP	,		, ,							
Basin ID: FSD B - 125	50										
(20NE 3 -20NE 2		Lised for W	OCV ar	d FLIRV	/ only:	ee HFC		for 100	vr Volu	me	
20NE 1		Oseci IOI W			only, s		. 111115		yi volu	me	
VOLUME EURY WOCY	\vdash										
	100-YEAR	Depth Increment =	1.00	ft							
PERMANENT ORIFICES	ummut.		-	Optional				Optional			
Example Zone Configuratio	n (Retention Pond)	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
Watershed Information		Top of Micropool		0.00	-			200	0.005		
Selected BMP Type = EDB				1.00				1,000	0.023	600	0.014
Watershed Area = 108.89	acres			2.00				13.000	0.298	7,600	0.174
Watershed Length = 3,100	ft			3.00				36,000	0.826	32,100	0.737
Watershed Length to Centroid = 1,400	ft			4.00				69,200	1.589	84,700	1.944
Watershed Slope = 0.034	ft/ft			5.00	-	-		73,600	1.690	156,100	3.584
Watershed Imperviousness = 25.10%	percent			6.00				78,100	1.793	231,950	5.325
Percentage Hydrologic Soil Group A = 0.0%	percent			7.00				82,800	1.901	312,400	7.172
Percentage Hydrologic Soil Group B = 10.0%	percent			8.00	-			87,600	2.011	397,600	9.128
Percentage Hydrologic Soil Groups C/D = 90.0%	percent			9.00				92,600	2.126	487,700	11.196
Target WQCV Drain Time = 40.0	hours			10.00		-		97,600	2.241	582,800	13.379
Location for 1-hr Rainfall Depths = Denver - Cap	itol Building										
After providing required inputs above including 1-hour depths, click 'Run CLIHP' to generate runoff bydrogrant	rainfall				-		-				
the embedded Colorado Urban Hydrograph Proced	ure. Ontional User Overrides										
Water Quality Capture Volume (WOCV) = 1.227	acre-feet				-						
Excess Urban Runoff Volume (EURV) = 2.479	acre-feet acre-feet						-				
2-yr Runoff Volume (P1 = 1.19 in.) = 3.527	acre-feet 1.19 inches										
5-yr Runoff Volume (P1 = 1.5 in.) = 5.884	acre-feet 1.50 inches										
10-yr Runoff Volume (P1 = 1.75 in.) = 8.033	acre-feet 1.75 inches				-		-				
25-yr Runoff Volume (P1 = 2 in.) = 10.785	acre-feet 2.00 inches										
50-yr Runoff Volume (P1 = 2.25 in.) = 13.073	acre-feet 2.25 inches										
100-yr Runoff Volume (P1 = 2.52 in.) = 16.085	acre-feet 2.52 inches										
500-yr Runoff Volume (P1 = 3.1 in.) = 21.527	acre-feet 3.10 inches				-						
Approximate 2-yr Detention Volume = 2.067	acre-feet										
Approximate 5-yr Detention Volume = 3.560	acre-feet				-						
Approximate 10-yr Detention Volume = 4.285	acre-feet						-				
Approximate 25-yr Detention Volume = 4.909	acre-reet				-		-				
Approximate 30-yr Detention Volume - 5.140	acre-feet				-						
Approximate 100 yr Detendori Volume - 0.425											
Define Zones and Basin Geometry											
Zone 1 Volume (WQCV) = 1.227	acre-feet										
Zone 2 Volume (EURV - Zone 1) = 1.252	acre-feet										
Zone 3 Volume (100-year - Zones 1 & 2) = 3.945	acre-feet										
Total Detention Basin Volume = 6.423	acre-feet				-	-					
Initial Surcharge Volume (ISV) = user	ft ³				-	-					
Initial Surcharge Depth (ISD) = user	ft						-				
Total Available Detention Depth (H _{total}) = user	ft				-						
Depth of Trickle Channel (H _{TC}) = user	ft										
Slope of Trickle Channel (S _{TC}) = user	ft/ft										
Slopes of Main Basin Sides (S _{main}) = user	H:V				-						
Basin Length-to-Width Ratio $(R_{L/W}) = User$					-						
Initial Surcharge Area (Area) =	ft 2				-		-				
Surcharge Volume Length (Lisu) = Liser	- n. A										
Surcharge Volume Width $(W_{SU}) = User$	- ¹⁰				-						
Depth of Basin Floor (H _{R OOR}) = user	ft										
Length of Basin Floor (L _{FLOOR}) = user	ft										
Width of Basin Floor (W _{FLOOR}) = user	ft										
Area of Basin Floor (A _{FLOOR}) = user	ft ²										
Volume of Basin Floor (V _{FLOOR}) = user	ft ³						-				
Depth of Main Basin (H _{MAIN}) = user	ft										
Length of Main Basin (L _{MAIN}) = user	ft										
Width of Main Basin (W _{MAIN}) = user	ft										
Area of Main Basin (A _{MAIN}) = user	ft-						-				
volume of Main Basin (V _{MAIN}) = user	IL arra faat										<u> </u>
Calculateu Total Basiri Volume (V _{total}) = User	auterleet				-		-				
					-						
					-						
					-						
					-		-				
					-		-				
					-						
					-						
					-		-				
					-		-				
							-				
					-		-				
								1		i	<u> </u>

acre	1.227	Zone 1 Volume (WQCV) =
acre	1.252	Zone 2 Volume (EURV - Zone 1) =
acre	3.945	Zone 3 Volume (100-year - Zones 1 & 2) =
acre	6.423	Total Detention Basin Volume =
ft ³	user	Initial Surcharge Volume (ISV) =
ft	user	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth (H _{total}) =
ft	user	Depth of Trickle Channel (H _{TC}) =
ft/fi	user	Slope of Trickle Channel (STC) =
H:V	user	Slopes of Main Basin Sides (Smain) =
1	user	Basin Length-to-Width Ratio (R. ov) =

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

	Stage	Area	Area	Volume	Volume	Total	1
Stage - Storage Description	[A]	102	[nerreal	10141110	[as ft]	Outflow	
	լոյ	[π]		[ft]		[0.12	
	1.00	1,000	0.023	600	0.014	0.13	For best results, include the
	2.00	13,000	0.298	7,600	0.174	0.29	stages of all grade slope changes (e.g. ISV and Floor)
-	3.00	36,000	0.826	32,100	0.737	0.46	from the S-A-V table on
	3.49	52,268	1.200	53,725	1.233	0.51	Sheet 'Basin'.
	4.00	69,200	1.589	84,700	1.944	1.23	
-	4.34	70,696	1.623	108,482	2.490	21.40	Also include the inverts of all outlets (e.g. vertical orifice
	5.00	73,600	1.090	221.050	5.304	21.17	overflow grate, and spillway,
	7.00	82 800	1.795	312 400	7 172	98.06	where applicable).
-	8.00	87,600	2.011	397,600	9.128	105.97	
-	9.00	92,600	2.126	487,700	11.196	326.93	•
	10.00	97,600	2.241	582,800	13.379	751.54	
				,			
							4
							4
	-						
-	ł – – – – – – – – – – – – – – – – – – –						
-	ł – – – – – – – – – – – – – – – – – – –						
							•
-							•
							l
							4
							4
-							{
							4
							1
]
]
							4
							1
							1
							4
							4
			-	-			1
							1
							4
							1
							1
]
							4
							4
							1
			l	l	l		1

Mesa Ridge FSD C Runoff Coeficient and Percent Impervious Calculation

				RMH	Area 1	l Land	Use	RLM	Area	2 Land I	Jse	OS	Area 3	Land	Use	RH	Area 4	Land	Use	SC	Area 5	Land	Use	
Basin / DP	Basin or DP A (DP contributing	lrea basins)	Soil Type	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	Basin % Imperv
3275-C	1,983,769 sf	45.54ac	С	40%		0%	0%	30%	37.38ac	82%	25%	2%	8.16ac	18%	0%	65%		0%	0%	60%		0%	0%	25.0%
3265-B	2,038,872 sf	46.81ac	В	40%		0%	0%	30%	46.81ac	100%	30%	2%		0%	0%	65%		0%	0%	60%		0%	0%	30.0%
3265-C	500,061 sf	11.48ac	С	40%		0%	0%	30%	11.48ac	100%	30%	2%		0%	0%	65%		0%	0%	60%		0%	0%	30.0%
3250-В	462,743 sf	11.20ac	С	40%		0%	0%	30%		0%	0%	2%		0%	0%	65%		0%	0%	60%	11.20ac	100%	60%	60.0%
3250-С	1,656,318 sf	37.50ac	С	40%	16.60ac	44%	18%	30%		0%	0%	2%		0%	0%	65%		0%	0%	60%	20.90ac	56%	33%	51.1%
3240-В	226,130 sf	5.19ac	В	40%		0%	0%	30%	5.19ac	100%	30%	2%		0%	0%	65%		0%	0%	60%		0%	0%	30.0%
3240-С	1,078,991 sf	24.77ac	С	40%		0%	0%	30%	24.77ac	100%	30%	2%		0%	0%	65%		0%	0%	60%		0%	0%	30.0%
FSD C -DB3280	3275, 3265, 3250, 3240	182.49ac	С	40%	16.60ac	9%	4%	30%	125.63ac	69%	21%	2%	8.16ac	4%	0%	65%	0.00ac	0%	0%	60%	32.10ac	18%	11%	34.9%

Land Use	Abb	%
Open Space	OS	2%
Residential - Low Density 2-3 DU/AC	RL	25%
Residential - Low/Medium Density 4-6 DU/AC	RLM	30%
Residential - Medium/High Density 4-8 DU/AC	RMH	40%
Residential - High Density 8+ DU/AC	RH	65%
Commercial/Office	OFF	80%
Business Park	BP	80%
School	SC	60%

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Used for WQCV and EURV only; see HEC-HMS for 100-year volume

MHFD-Detention, Version 4.04 (February 2021)

100-YB	20NE 3 20NE 2 20NE 1	
VOLUME EURV WOCV		
PERMANENT	ZONE 1 AND 2 ORIFICES	ORIFICE

Depth Increment = 1.00 ft

POOL Example Zone	Configurati	on (Retention Pond)
Watershed Information		
Selected BMP Type =	EDB	
Watershed Area =	182.19	acres
Watershed Length =	4,300	ft
Watershed Length to Centroid =	2,300	ft
Watershed Slope =	0.022	ft/ft
Watershed Imperviousness =	34.90%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	34.3%	percent
Percentage Hydrologic Soil Groups C/D =	65.7%	percent

Target WQCV Drain Time = 40.0 hours After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the ophyddod Colorade Libbas bydrograph Procedure

the embedded Colorado Urban Hydro	graph Proced	ure.	Optional Use	r Overr
Water Quality Capture Volume (WQCV) =	2.520	acre-feet		acre-f
Excess Urban Runoff Volume (EURV) =	6.106	acre-feet		acre-fi
2-yr Runoff Volume (P1 = 1.19 in.) =	7.235	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	11.205	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	14.844	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	19.478	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	23.300	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	28.276	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.1 in.) =	37.509	acre-feet	3.10	inches
Approximate 2-yr Detention Volume =	4.971	acre-feet		
Approximate 5-yr Detention Volume =	7.684	acre-feet		
Approximate 10-yr Detention Volume =	9.450	acre-feet		
Approximate 25-yr Detention Volume =	10.580	acre-feet		
Approximate 50-yr Detention Volume =	11.070	acre-feet		
Approximate 100-yr Detention Volume =	13.135	acre-feet		

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	2.520	acre-feet
Zone 2 Volume (EURV - Zone 1) =	3.586	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	7.029	acre-feet
Total Detention Basin Volume =	13.135	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (Htotal) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft 2
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft 2
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acr

acre-feet

on Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
		Top of Micropool		0.00				475	0.011		
				1.00				1,200	0.028	837	0.019
				2.00				12,000	0.275	7,437	0.171
				3.00				108,565	2.492	67,719 170 EOE	1.555
				5.00	_		_	121 635	2.040	297 826	6.837
				6.00				121,035	2.949	422.868	9.708
				7.00				135,447	3.109	554,815	12,737
				8.00				142,632	3.274	693,854	15.929
				9.00				150,000	3.444	840,170	19.288
				10.00				157,559	3.617	993,950	22.818
Optional Use	er Overrides										
	acre-feet										
	acre-feet										
1.19	incnes										
1.50	inches										
2.00	inches				_		-				
2.25	inches										
2.52	inches										
3.10	inches									l	
	-										
		-					-				
							-				
					-						
					-						
		-									
			-		-		-				
					-		-				
					-		-				
					-		-				
											. –

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points

The user should graphically e	ompare are sami					in it captares an	ney dansidon pointes
Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
	1.00	1,200	0.028	837	0.019	0.17	For best results, include the
	2.00	12,000	0.275	7,437	0.171	0.24	stages of all grade slope changes (e.g. ISV and Floor)
	3.00	108,565	2.492	67,719	1.555	0.87	from the S-A-V table on
	3.3/	110,949	2.547	108,329	2.487	0.99	Sheet 'Basin'.
	4.66	119,381	2.741	256.853	5.897	1.99	Also include the inverts of all
	5.00	121,635	2.792	297,826	6.837	12.81	outlets (e.g. vertical orifice,
	6.00	128,448	2.949	422,868	9.708	98.27	overflow grate, and spillway,
	7.00	135,447	3.109	554,815	12.737	137.17	where applicable).
	8.00	142,632	3.274	693,854	15.929	148.97	
	9.00	150,000	3.444	840,170	19.288	189.59	
	10.00	157,559	3.017	993,950	22.818	619.07	
							1

Mesa Ridge FSD E Runoff Coeficient and Percent Impervious Calculation

				RMH	Area	1 Land	Use	RLM	Area 2	Land U	Jse	OS	Area 3	Land	Use	RH	Area 4	Land	Use	OFF	Area 5	Land	Use	
Basin / DP	Basin or DP A (DP contributing	lrea basins)	Soil Type	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	Basin % Imperv
3220-B 3220-C FSD E -DB3220	847,503 sf 964,593 sf 3220,	19.46ac 22.14ac 41.60ac	B C C	40% 40% 40%	4.13ac	0% 0% 10%	0% 0% 4%	30% 30% 30%	0.00ac	0% 0% 0%	0% 0% 0%	2% 2% 2%	0.00ac	0% 0% 0%	0% 0% 0%	65% 65% 65%	5.37ac 11.97ac 17.34ac	28% 54% 42%	18% 35% 27%	80% 80% 80%	9.96ac 10.18ac 20.13ac	51% 46% 48%	41% 37% 39%	58.9% 71.9% 69.8%
Land Use		Abb	%																					
Open Space		OS	2%																					
Residential - Low Density	2-3 DU/AC	RL	25%																					
Residential - Low/Medium	n Density 4-6 DU/AC	RLM	30%																					
Residential - Medium/High	h Density 4-8 DU/AC	RMH	40%																					
Residential - High Density	8+ DU/AC	RH	65%																					

OFF

BP

SC

80%

80% 60%

Commercial/Office

Business Park

School

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project:	Mesa Ridge	MDDP		11110	betention, version	1.01 (100)	<i>uury 2021)</i>							
Basin ID:	FSD E - 322	20												
ZONE 3	2 IONE 1	\sim			Used for W	QCV ar	nd EUR	/ only;	see HE	C-HMS	for 100	yr Volu	me	
VOLUME EURY WOCY														
+ + + +		100 YEA	R		Depth Increment =	1.00	θ.							
PERMANENT ORIFI	LI AND 2	ORUFICE	l n Danal)		Change Changes	Channe	Optional	Laurable	146 data	A.r	Optional	A	Volumo	Maluma
Example zone	Configuratio	on (Retentio	on Pona)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
Watershed Information		-			Top of Micropool		0.00	-			200	0.005		
Selected BMP Type =	EDB	-					1.00	-			1,000	0.023	600	0.014
Watershed Area =	41.60	acres					2.00				13,000	0.298	7,600	0.174
Watershed Length = Watershed Length to Centroid =	1,200	ft					4.00			-	40,000	1.033	76,600	1.758
Watershed Slope =	0.020	ft/ft					5.00	-			50,000	1.148	124,100	2.849
Watershed Imperviousness =	69.80%	percent					6.00				55,000	1.263	176,600	4.054
Percentage Hydrologic Soil Group A =	0.0%	percent					7.00				60,000	1.377	234,100	5.374
Percentage Hydrologic Soil Group B =	47.0%	percent					8.00				65,000	1.492	296,600	6.809
Target WOCV Drain Time =	40.0	hours					10.00			-	75,000	1.722	436.600	10.023
Location for 1-hr Rainfall Depths =	Denver - Cap	itol Building						-						
After providing required inputs above in	cluding 1-hour	rainfall				-		-		-				
depths, click 'Run CUHP' to generate run the embedded Colorado Lithan Hydr	noff hydrograph	hs using											L	
Weter Overlite Centure Veterre (MOCO)		lane.	Optional Use	er Overrides										
Excess Urban Runoff Volume (EURV) =	2.994	acre-feet		acre-feet				-		-				
2-yr Runoff Volume (P1 = 1.19 in.) =	2.978	acre-feet	1.19	inches				-		-				
5-yr Runoff Volume (P1 = 1.5 in.) =	4.023	acre-feet	1.50	inches										
10-yr Runoff Volume (P1 = 1.75 in.) =	4.909	acre-feet	1.75	inches										
25-yr Runoff Volume (P1 = 2 in.) =	5.901	acre-feet	2.00	inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	6.814 7.881	acre-feet	2.25	inches										
500-yr Runoff Volume (P1 = 2.52 ln.) =	10.039	acre-feet	3.10	inches						-				
Approximate 2-yr Detention Volume =	2.514	acre-feet	L	-										
Approximate 5-yr Detention Volume =	3.436	acre-feet												
Approximate 10-yr Detention Volume =	4.120	acre-feet						-						
Approximate 25-yr Detention Volume =	4.404	acre-feet						-						
Approximate 50-yr Detention Volume =	4.552	acre-feet						-						
Approximate 100 fr Detendor Volume -	11050													
Define Zones and Basin Geometry														
Zone 1 Volume (WQCV) =	0.950	acre-feet												
Zone 2 Volume (EURV - Zone 1) =	2.043	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) =	1.905	acre-feet												
I otal Detention Basin Volume = Initial Surcharge Volume (ISV) =	4.898	acre-reet						-						
Initial Surcharge Depth (ISD) =	user	ft						-		-				
Total Available Detention Depth (H _{total}) =	user	ft						-						
Depth of Trickle Channel $(H_{TC}) =$	user	ft						-						
Slope of Trickle Channel (S _{TC}) =	user	ft/ft												
Slopes of Main Basin Sides (S _{main}) =	user	H:V												
busin congor to Materiado (NDW) -	usei							-						
Initial Surcharge Area (A _{ISV}) =	user	ft ²						-		-				
Surcharge Volume Length (L_{ISV}) =	user	ft						-						
Surcharge Volume Width (W _{ISV}) =	user	ft												
Depth of Basin Floor (H _{FLOOR}) =	user	ft +												
Width of Basin Floor (W _{R OOP}) =	user	ft						-						
Area of Basin Floor (A _{FLOOR}) =	user	ft ²						-						
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³				-		1						
Depth of Main Basin (H _{MAIN}) =	user	ft											ļ]	
Length of Main Basin (L _{MAIN}) =	user	ft +												
Area of Main Basin (WMAIN) =	user	ft ²						-		-			l	
Volume of Main Basin (V _{MAIN}) =	user	ft ³						-						
Calculated Total Basin Volume (V _{total}) =	user	acre-feet						-						
								-						
								-						
								-						
								-						
								-						
								-		-			[]	
													\vdash	
							-							
								-						
										-				

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

	Stage	Area	Area	Volume	Volume	Total	1
Stage - Storage Description	stage			3-	T and	Outflow	
	լπյ	[#-]	[acres]	[ft"]	[ac-ft]	[CTS]	
	1.00	1,000	0.023	600	0.014	0.12	For best results, include the
	2.00	13,000	0.298	7,600	0.174	0.24	stages of all grade slope
	3.00	40,000	0.918	34,100	0.783	0.37	changes (e.g. 15V and Floor)
	3.19	40,950	0.940	41,790	0.959	0.39	Sheet 'Basin'.
	4.00	45,000	1.033	76,600	1.758	0.93	
	5.00	50,000	1.148	124,100	2.849	1.35	Also include the inverts of all
	5.13	50,650	1.163	130,642	2.999	1.40	outlets (e.g. vertical orifice,
	6.00	55,000	1.263	176,600	4.054	8.70	overflow grate, and spillway,
	7.00	60,000	1.377	234,100	5.374	31.43	
	8.00	65,000	1.492	296,600	6.809	33.71	
	9.00	70,000	1.607	364,100	8.359	165.44	
	10.00	75,000	1.722	436,600	10.023	431.56	
	-						
	-						
	-						
	-						
	-						
	-						
	-						
	-						
	1						•
							•
]
							ļ
							ļ
							ļ
							4
							4
							1
]
							4
							1
							1
							4
							4
							1
]
							4
							1
			<u> </u>		<u> </u>]
							4
							4
		1	1	1	1		1

Mesa Ridge MDDP FSD G Runoff Coeficient and Percent Impervious Calculation

			1		RLM Area 1 Land Use RMH Area 2 Land Use OS Area 3 Land Use RH Area		Area 4	Land	Use	SC	Area 5 Land Use		Use											
Basin / DP	Basin or DP (DP contributin	Area g basins)	Soil Type	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	Basin % Imperv
1225-В	480,887 sf	11.04ac	В	30%	11.04ac	100%	30%	40%		0%	0%	2%	2.39ac	22%	0%	65%		0%	0%	60%		0%	0%	30.4%
1225-C	1,511,698 sf	34.70ac	С	30%	26.41ac	76%	23%	40%		0%	0%	2%	8.29ac	24%	0%	65%		0%	0%	60%		0%	0%	23.3%
1011-В	626,495 sf	14.38ac	В	30%		0%	0%	40%	14.38ac	100%	40%	2%		0%	0%	65%		0%	0%	60%		0%	0%	40.0%
1210-В	1,512,890 sf	34.73ac	В	30%		0%	0%	40%	32.60ac	94%	38%	2%	2.13ac	6%	0%	65%		0%	0%	60%		0%	0%	37.7%
1210-С	241,973 sf	5.55ac	С	30%		0%	0%	40%	2.14ac	38%	15%	2%	3.42ac	62%	1%	65%		0%	0%	60%		0%	0%	16.6%
FSD G-DB1225	1225, 1011, 1210	100.41ac	С	30%	35.06ac	35%	10%	40%	49.12ac	49%	20%	2%	16.23ac	16%	0%	65%	0.00ac	0%	0%	60%	0.00ac	0%	0%	30.4%
Land Use		Abb	%	1																				
Open Space		OS	2%																					
Large Lot		LL	20%																					
Residential - Low Density	2-3 DU/AC	RL	25%																					
Residential - Low/Medium	n Density 4-6 DU/AC	RLM	30%																					
Residential - Medium/Hig	h Density 4-8 DU/AC	RMH	40%																					
Residential - High Density	8+ DU/AC	RH	65%																					
Commercial/Office		OFF	80%																					
Business Park		BP	80%																					
School		SC	60%																					

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: Mesa Ridge MDDP

Basin ID:	FSD G&H -	1225												
ZONE 3	2				Used for \	NQCV a	and EU	RV only	; see H	EC-HM	S for 10	0yr Vo	lume	
100-177 - 1	ONET	1	-			-								
VOLUME EUNY WOCY							_							
	/	100-YEA	A		Depth Increment =	1.00	e la							
PERMANENT ORIFIC	1 AND 2	ORIFICE			Dependicinent	1.00	Optional				Optional			
POOL Example Zone (Configuratio	n (Retentio	on Pond)		Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Watershed Information					Top of Micropool	(it)	0.00	(it)	(it)	(10)	200	0.005	(11)	(ac-ic)
watershed information		1			тор от містороог	-	0.00	-	-	-	200	0.005		
Selected BMP Type =	EDB	-					1.00			-	1,000	0.023	600	0.014
Watershed Area =	100.41	acres					2.00			-	6,000	0.138	4,100	0.094
Watershed Length =	2,600	ft					3.00		-		60,000	1.377	37,099	0.852
Watershed Length to Centroid =	800	ft					4.00			-	65,000	1.492	99,599	2.286
Watershed Slope =	0.025	ft/ft					5.00				70,000	1.607	167,099	3.836
Watershed Imperviousness =	30.40%	percent					6.00			-	75,000	1.722	239,599	5.500
Percentage Hydrologic Soil Group A =	0.0%	percent					7.00				80,000	1.837	317,099	7.280
Percentage Hydrologic Soil Group B =	48.9%	percent					8.00				85,000	1.951	399,599	9.174
Percentage Hydrologic Soil Groups C/D =	51.1%	percent					9.00				90,000	2.066	487.099	11.182
Target WOCV Drain Time -	40.0	bours					10.00			-	95,000	2 181	570 500	13 306
Location for 1 br Rainfall Donths -	Domior Can	itol Ruilding					10.00				55,000	2.101	373,333	15.500
	Deriver cap	icor bananing												
After providing required inputs above inc depths, click 'Rup CLINP' to generate rup	cluding 1-hour	rainfall								-		<u> </u>		
the embedded Colorado Urban Hydro	on nyurograpi oranh Proced	ure	_					-		-		I		
the embedded colorado orban nyare	graphinocca		Optional Use	r Overndes								<u> </u>		
Water Quality Capture Volume (WQCV) =	1.278	acre-feet		acre-feet								L		
Excess Urban Runoff Volume (EURV) =	2.952	acre-feet		acre-feet						-				
2-yr Runoff Volume (P1 = 1.19 in.) =	3.451	acre-feet	1.19	inches				-		-		L		
5-yr Runoff Volume (P1 = 1.5 in.) =	5.536	acre-feet	1.50	inches										
10-yr Runoff Volume (P1 = 1.75 in.) =	7.489	acre-feet	1.75	inches										
25-yr Runoff Volume (P1 = 2 in.) =	10.081	acre-feet	2.00	inches								1		
50-yr Runoff Volume (P1 = 2.25 in.) =	12.154	acre-feet	2.25	inches										
100-vr Runoff Volume (P1 = 2.52 in) =	14,888	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = 3.1 in) =	19 973	acre-feet	3 10	inches										
Approximate 2x/r Detection Volume	2 2 2 1 2	acre-foot	5.10	Turicas									'	┝───┤
Approximate 2-yr Detention volume =	2.31/	acre-leet						-						
Approximate 5-yr Detention Volume =	3.600	acre-teet										1	'	
Approximate 10-yr Detention Volume =	4.637	acre-feet				-		-	-	-		 	<u> </u>	
Approximate 25-yr Detention Volume =	5.287	acre-feet										L		
Approximate 50-yr Detention Volume =	5.548	acre-feet												
Approximate 100-yr Detention Volume =	6.666	acre-feet												
Define Zones and Basin Geometry														
Zone 1 Volume (WQCV) =	1.278	acre-feet												
Zone 2 Volume (FURV - Zone 1) =	1.674	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) =	3 714	acre-feet												
Tabel Detertion Basis Values	5.714	acre feet												
Total Detention Basin Volume =	0.000	acre-ieet						-				<u> </u>		
Initial Surcharge Volume (ISV) =	user	π-						-		-		<u> </u>		
Initial Surcharge Depth (ISD) =	user	ft										L		
Total Available Detention Depth (H _{total}) =	user	ft										L		
Depth of Trickle Channel (H _{TC}) =	user	ft												
Slope of Trickle Channel (STC) =	user	ft/ft												
Slopes of Main Basin Sides (Smain) =	user	H:V												
Basin Length-to-Width Ratio (R _{L/W}) =	user									-				
		-												
Initial Surcharge Area (A _{ISV}) =	user	ft ²												
Surcharge Volume Length (Lisv) =	user	ft												
Surcharge Volume Width (Wasy) =	user	ft												
Depth of Basin Floor (Harrow) =	user	A						-						
Longth of Basin Floor (1) =	user	нс Ф												
Width of Desig Floor (W	usei	μ. 										<u> </u>		
width of basin Floor (W _{FLOOR}) =	user	n. 2						-				1	'	
Area of Basin Floor (A _{FLOOR}) =	user	ft í										ļ		
Volume of Basin Floor (V _{FLOOR}) =	user	ft '										L	L	
Depth of Main Basin $(H_{MAIN}) =$	user	ft												
Length of Main Basin $(L_{MAIN}) =$	user	ft										L		
Width of Main Basin (W_{MAIN}) =	user	ft						-				L		
Area of Main Basin (A _{MAIN}) =	user	ft ²						-						7
Volume of Main Basin (V _{MAIN}) =	user	ft ³												
Calculated Total Basin Volume (V _{total}) =	user	acre-feet												
		-						-						
												I		
								-		-				
												1	'	
								-		-				
												1	'	
								-		-				
								-						
												1	'	
								-		-				
								-						
												<u> </u>	⁻	
								-		-		1		
								-				<u> </u>	L	
								-		-		1		
								-						
						-						<u> </u>	<u> </u>	
								-		-		1		
									-					
												I		
								-		-			'	
												L		

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

	Stage	Area	Area	Volume	Volume	Total	
Description	[#]	re 21	[acros]	res 31	[ac.ft]	Outflow	
	[IG]	1.000	0.022	(10)	[ac-it]	0.12	
	1.00	1,000	0.023	600	0.014	0.12	For best results, include the
	2.00	6,000	0.138	4,100	0.094	0.17	stages of all grade slope changes (e.g., ISV and Floor)
	3.00	60,000	1.377	37,099	0.852	0.49	from the S-A-V table on
	3.31	61,550	1.413	55,940	1.284	0.56	Sheet 'Basin'.
	4.00	65,000	1.492	99,599	2.286	0.68	
	4.44	57,200	1.543	128,683	2.954	1.46	Also include the inverts of all
	5.00	70,000	1.007	230 500	5.500	38.45	overflow grate, and spillway,
	7.00	80,000	1.722	317 099	7 280	106.43	where applicable).
	8.00	85,000	1.951	399,599	9.174	136.83	
	9.00	90,000	2.066	487,099	11.182	453.97	
	10.00	95,000	2.181	579,599	13.306	983.05	
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							1
							1
							1
	1						1
							4
							4
							-
							4
							1
							4
							1
							1
							-
							4
]
							4
							1
		İ	İ		İ	l	1

APPENDIX E: Culvert Design

Project: Mesa Ridge MDDP ID: RI031		MHFD-Culvert, Versio	n 4.00 (May 2020)	
10: R1031 Image: state of the	Project:	Mesa Ridge MDDP		
Any interest Image: Solid Type: Image:	ID:	R1031		
Image: state of the state				
Image: Second Procession of				
Image: Self Type: Self Type: Image: Self Type: Self Type: Image: Self Type: Self Type: Design Discharge Q =		GROLE		
$\frac{1}{1 + 1 + 1} + \frac{1}{1 + 1} + $		H BOX		
Soli Type: Using Adjusted Dimeter to calculate protection type. Design Information: Design Discharge Circular Curvet: Barrel Magniture in Inches Intel Edge Type (Droose from pull-down list) Design Discharge Other Edge Type (Droose from pull-down list) Design Discharge Other Edge Type (Droose from pull-down list) Design Discharge Outlet Edge Type (Droose from pull-down list) Design Discharge Outlet Edge Type (Droose from pull-down list) Number of Barrels Intel Edge Type (Droose from pull-down list) Number of Barrels Barrel Height (Disc) in Feet Barrel Height (Disc) Conflictent Barrel Height (Disc) Conflictent Sol = 0.002 Revert Height Calculated Results: Calculated Results: Calculated Results: Calculated Control Headwater Design Interact Long (Different Barrane Lase Conflictent Barrane Lase Conflictent Barrane Lase Conflictent Barrane Lase Conflictent Barane Lase Conflictent Barane Lase Conflicte		н () р		
Image: Solid Type: Solid Type: Image: Solid Type: Discretion Solid Type: Discretion Discretion Solid Type: Discretion Discretion Barel Discretion Q =				
Soli Type: Construction Soli Type: Construction Design Information: Design Discharge Design Discharge Q =		Ĩ→ w < Ī		
Soli Type: Soli Type: Soli Type: Consider Design Information: Design Discharge Design Discharge Q = 44 Circular Outvett: Barel Diameter in Inches Inst Edge Type (Discose from pull-down list) D = 42 Square Edge with Headwald D = 42 Box Culvett: D = 42 Box Culvet: D = 42 D = 42 orches Square Edge with Headwald D = 42 D = 42 orches D = 42 </td <td></td> <td></td> <td></td> <td></td>				
Soling: Soling: Calculated function Soling: Design Discharge Q =		L L Lo		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	- HW			
Soli Type: Soli Type: Oscil Type: Soli Type: Design Education Soli Type: Design Education Design Education Design Education Design Education Design Education Design Education Office Design Education Design Education Design Education <td>• •</td> <td></td> <td></td> <td></td>	• •			
Solit Type: Outse for the service of the service o	Ŧ			
A Soli Type:				
Design Discharge Q =	T			
Soli Type:				
June 1000000000000000000000000000000000000			Soil Type:	
Design Discharge Q = 44 Barel Baneter in Inches Design Discharge Q = 44 Groular Culvert: Barel Baneter in Inches Design Discharge Q = 44 Groular Culvert: Barel Height (Rise) in Feet Barel Height (Rise) in Feet Barel Height (Rise) in Feet Barel Woldh (Say) in Feet Barel Woldh (Sa		898,808,57	Choose One:	
Junc Number Design Information: 0 =			Q Sandy	
Supercritical Flow Using Adjusted Diameter to calculate protection type. Design Discharge Q = 44 drs Circular Culver: Barrel Diameter in Inches D = 42 Inches Dist D = 42 Inches Inches OR: D = 42 Inches Inches Dist D = 542 Inches Inches Dist Dist Dist Dist Dist Dist Dist Dist			RIPRAP Non-Sandy	
Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information: Q Q 44 ds Circular Culvert: Barrel Diameter in Inches Intel Edge Type (Choose from pull-down list) D.= 42 Inches Date: Barrel Height (Rise) in Feet: H Rise) 08: 08: Box Culvert: Barrel Height (Rise) in Feet: H (Rise) = 07 1 Number of Barrels # Barrels # Barrels 100 n.t n.t Outet Elevation Og Stope So 0.0012 n.t 100 n.t Outer Length L 920 n.t 100 n.t Mannings Roughness n 0.012 n.t 100 n.t Edit Loss Coefficient ks 0.1 n.t 102.2 n.t Ventor Chass Elevation Ys n.t 102.2 n.t 102 n.t Edit Loss Coefficient ks 1.1 9.62 n.t n.t 1.55 n.t Culvert Cross Scetional Area Available Xs 1.55 n.t 1.55				
Design Information: Design Discharge Q = 44 ds Circular Culvert: Barrel Diameter in Inches Intel Edge Type (Choose from pull-down list) D = 42 Inches Square Edge with Headwall Box Culvert: Barrel Height (Rise) in Feet Intel Edge Type (Choose from pull-down list) D = 42 Inches Square Edge with Headwall Box Culvert: Barrel Height (Rise) in Feet Intel Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 ft Number of Barrels Intel Edge Type (Choose from pull-down list) Number of Barrels Image: Barrels Intel Edge Type (Choose from pull-down list) Image: Barrels Intel Edge Type (Choose from pull-down list) Image: Barrels Intel Edge Type (Choose from pull-down list) Number of Barrels Image: Barrels Intel Edge Type (Choose from pull-down list) Image: Barrels Intel Edge Type (Choose from pull-down list) Image: Barrels Intel Edge Type (Choose from pull-down list) Image: Barrels Intel Edge Type (Choose from pull-down list) Number of Barrels Image: Barrels Intel Edge Type (Choose from pull-down list) Image: Barrels Intel Edge Type (Choose from pull-down list) Image: Barrels Intel Edge Type (Choose from pull-down list) Calculated Results Image: Barrels Intel Edge		Supercritical	Flow! Using Adjusted Diameter to calculate prot	ection type.
Design Discharge $Q = 44$ dsDisign Discharge $Q = 44$ dsCircular Culvert: Bartel Bartel Night (Rise) in Feet Barrel Widt (Span) in Feet Intel Elevation 08 Barrel Widt (Span) in Feet Intel Elevation 09 Culvert Length R H (Rise) = R R H (Rise) = R R R H (Rise) = R R H br>H (Rise) = R R R H (Rise) = R R R H (Rise) = R R R H (Rise) = R R R R H (Rise) = R 	Design Inform	nation:		
Using traducting $Q = 4\pi$ $Q = 4\pi$ $Q = 4\pi$ $Q = 4\pi$ Circular Culvert:Barrel Diameter in Inches Intet Edge Type (Choose from pull-down list) $D = 42$ inchesBox Culvert:Barrel Height (Rise) in Feet Intet Edge Type (Choose from pull-down list) $D = 42$ inchesBox Culvert:Barrel Height (Rise) in Feet Intet Edge Type (Choose from pull-down list) N N Number of Barrels Intet Edge Type (Choose from pull-down list) H (Rise) $= 100$ R Number of Barrels Intet Edge Type (Choose from pull-down list) R 100 R Number of Barrels Intet Edge Type (Choose from pull-down list) R 100 R Number of Barrels Intet Edge Type (Choose from pull-down list) R 100 R Number of Barrels Intet Edge Type (Choose from pull-down list) R 100 R Number of Barrels Intet Edge Type (Choose from pull-down list) R 100 R Number of Barrels Intel Societticent Vistors Coefficient R R 100 R Automobile Channel Velocity V T R R Calculated Results: Culvert Crista Depth $Y_c = 1.55$ R^2 R^2 Calculated Results: Culvert Crista Depth $Y_c = 1.55$ R^2 R^2 Calculated Results: Culvert Crista Depth $Y_c = 1.55$ R^2 R^2 Calculated Results: Culvert Crista Coefficient $R_c = 4.56$ R^2 R^2 Calculated Results: Culvert Crista Coefficient $R_c = 0.56$	<u></u>	Docian Dischargo		
Circular Culvert: Barrel Diameter in Inches Linkt Edge Type (Choose from pull-down list) OR: Box Culvert: Barrel Hogh (Rise) in Feet Barrel Hogh (Rise) in Feet Barrel Hogh (Rise) in Feet Intel Edge Type (Choose from pull-down list) Number of Barrels Intel Edge Type (Choose from pull-down list) Number of Barrels Edge Title Edge Type (Choose from pull-down list) Number of Barrels Edge Title Edge Type (Choose from pull-down list) Culvest Cornal Degth Culvert formal Degth Culvert formal Degth Edve Title = 0.50.50 Ref Culvert formal Degth Culvert formal Degth Edve Title = 0.50.50 Ref Culvert formal Degth Culvert Cornal Degth Edve Title = 0.50.50 Ref Culvert formal Degth Culvert Cornal Headwater Design Headwater Edge Headwater/Rise Ratio HWU = 1.14 Culvet Control Headwater Design Headwater Edge Headwater/Rise Ratio HWU = 1.120 Ref */s K Headwater Stream Edge M HWU = 1.120 Ref */s Ref *		Design Discharge	$Q = \frac{44}{Cts}$	
Circular Culvert: Intel Edge Type (Choose from pull-down list) OR Barel Diameter in Inches Intel Edge Type (Choose from pull-down list) DR Barel Midth (Span) in Feet Barel Width (Span) in Feet Intel Edge Type (Choose from pull-down list) Number of Barels Intel Edge Type (Choose from pull-down list) Culvert Corns Sectional Area Available Culvert Corns Sectional Area Available Culvert Corns Sectional Area Available Culvert Corns Sectional Area Available Culvert Corns Depth Culvert Corns Coefficient Fricton Loss Coefficient Fric				
Barrel Diameter in Inches Intel: Edge Type (Choose from pull-down list) OB: DOE: Box Culvert: Barrel Height (Rise) in Feet Barrel Height (Rise) in Feet Intel Edge Type (Choose from pull-down list) Number of Barrels Intel Edge Type (Choose from pull-down list) River Critical Outputs Culvert Critical Outputs Culvert Critical Depth Culvert Critical Depth Froude Number Entrance Loss Coefficient Sum of All Loss Coefficients Headwater: Intel Control Headwater Design Headwater (Dig Headwater/Rise Ratio Headwater/Diameter OIG Headwater River (Diameter '2.5) Toilwater/Diameter OIG Headwater Hwy = 1.1.4 Adjusted Diameter Coult Velocity Headwater (Diameter OIG) Headwater (Diameter OIG) Headwater (Diameter OIG) Headwater (Diameter Coult of Multiple Barrels Length of Riprap Protection at Downstream End HHEP Riprap Type Headwater (Diameter OIG) HHEP Riprap Type Headwater (Diameter OIG) HHEP Riprap Type Headwater (Diameter OIG) Headwater (Diameter OIG) Headw	Circular Culvert			
Inlet Edge Type (Choose from pull-down list) OB: Box Culvet: Barrel Height (Rise) in Feet Barrel Height (Rise) in Feet Barrel Height (Rise) in Feet Inlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Elevation OB Stope Culvert Length Manning's Roughness Bend Loss Coefficient Culvert Length Max Allowable Channel Velocity Calculated Results: Culvert Cross Sectional Area Available Culvert Cross Sectificient Friction Loss Coefficient Friction Loss Coefficient Headwater: Inter Control Headwater Pow(Diameter ^2.5.) Tailwater/Dameter Culvet Protection: Resy Area at Max Channel Velocity Culvet Protection: Culvet Control Headwater Pow(Diameter ^2.5.) Tailwater/Dameter Culvet Control Headwater Culvet Protection: Resy Area at Max Channel Velocity Culvet Protection: Resy Area at Max Channel Velocity Culvet Protection: Resy Area at Max Channel Velocity Culvet Protection: Resy Area at Max Channel Velocity Pow Area at Max Channel Veloc	I	Barrel Diameter in Inches	D = 42 inches	
ORORORBox Culvett:ORRend Height (Rise) in FeetBarrel Height (Rise) in FeetORInter ElevationNumber of BarrelsInter Elevation OB StopeCulvet LengthManning's RoughnessBox Culvet Close from pull-down list)Number of BarrelsInter Elevation OB StopeCulvet LengthManning's RoughnessBox Culvet Close ScetificientKTaiwater Surface ElevationYL ElevationMax Allowable Channel VelocityVCalculated Results:Culvet Crista DepthYL ElevationHW, =On of IL Loss CoefficientKCulvet Crista DepthYL =Culvet Crista DepthYL =Production at Downstream EndHeadwaterHW, =3.13ftCulvet Crista Culvet Plotection:Inter Control HeadwaterHW, =3.13The transmitter OR Headwater/Rise RatioHW, =3.13 </td <td>I</td> <td>Inlet Edge Type (Choose from pull-down list)</td> <td>Square Edge with Headwall</td> <td></td>	I	Inlet Edge Type (Choose from pull-down list)	Square Edge with Headwall	
Dex Cuiver: Bord Width (Span) in Feet H (Rise) OR Barrel Width (Span) in Feet H (Rise) T Intel Edge Type (Choose from pull-down list) W (Span) T Number of Barrels # Barrels 1 Intel Edge Type (Choose from pull-down list) So 0.011 T Number of Barrels # Barrels 1 T Outlet Elevation QB Slope So 0.011 T Culvert Length L 2.20 T T Manning's Roughness n 0.012 T T Bend Loss Coefficient k= 1 0 T Tailwater Surface Elevation YL T T T Calculated Results: Culvert Normal Depth YL T T T Culvert Normal Depth YL T T Supercriticall Headwater: Int Supercriticall T T T Galculated Results: Culvert Normal Depth YL E T T Galculated Results: Supercriticall	0.0		Square Edge with fieldwall	
Box Curvet: Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Evation QB Slope Outlet Evation QB Slope Curver Length Barrel Might Reveal Barrel Might Reveal Outlet Evation QB Slope Curver Length Barrel Might Reveal Barrel Might Reveal Curver Length Barrel Might Reveal Barrel	Box Culuarte			
barrel Height (Bise) in Feet H (Rise) = fft Barrel Widt (Span) in Feet W (Span) = fft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels 1 Inlet Elevation QB Slope So = 0.011 ft/ft Manning's Roughness n n = 0.012 Culvet Lievation QB Slope So = 0.011 ft/ft Manning's Roughness n n = 0.012 Elev In = 0.012 ft Barl Loss Coefficient k = 1 Tailwater Surface Elevation Y t, Eventon = 102 ft Culvert Normal Depth Y = 102 ft Culvert Normal Depth Y = 102 ft Culvert Normal Depth Y = 1.55 ft Culvert Normal Depth Y = 1.74 Supercriticall Entrance Loss Coefficient k = 6.09 ft Friction Loss Coefficient k = 6.09 ft Headwater: Inlet Control Headwater Alies k = 6.09 ft Loudet Control Headwater HW = 1.3.13 ft Outlet Protection: How Y = 1.32 ft Headwater Surface Elevation HW = 1.3.28 ft Elevitor Headwater Circles Ratio HW = 1.3.28 ft Headwater Surface Headwater Alies Ratio HW = 1.3.29 ft Flow (Diameter ^2.5) Culter Control Headwater Alies Ratio HW = 1.3.29 ft Headwater Surface Height Y = 1.72 ft Tailwater Surface Height Y = 1.72 ft Headwater Liest Control Headwater Alies Ratio HW = 1.3.29 ft Headwater Circle Headwater Alies Ratio HW = 1.3.20 ft Hw = 1.14 ft Design Headwater Circle Headwater Alies Ratio HW = 1.3.20 ft Hw = 1.14 ft Minimum Theoretical Rippa Size down in a fill control Headwater Alies Ratio HW = 1.14 ft Width of Rippa Protection at Downstream End T = 6 ft Minimum Theoretical Rippa Size down in a fill control ft down from Size Ratio Height T in the Minimal Rippa Size down in the Minimal Rippa Size down in the Minimal Rippa Size down in the Minimal Rippa Size down in the Minimal Rippa Size down in the Minimal Rippa Size down in the Minimal Rippa Size down in the Minimal Rippa Size down in the Minimal Rippa Size down in the Minimal Rippa Size down in the Minimal Rippa Size down in the Minimal Rippa Size down in the Minimum Theoretical Rip	box cuivert:			
Barrel W(Span) in Fect $W(Span) = 1$ ft Inlet Edge Type (Choose from pull-down list) Number of Barrels $\ddagger 1$ and 100 ft Inlet Elevation QR Slope $So = 10.01$ ft Quitet Elevation QR Slope $So = 0.01$ ft Manning's Roughness $n = 0.012$ ft Manning's Roughness $n = 0.012$ ft Manning's Roughness $n = 0.012$ ft Manning's Roughness $n = 0.012$ ft Manning's Roughness $n = 0.012$ ft Manning's Roughness $n = 0.012$ ft Manning's Roughness $n = 0.012$ ft Max Allowable Channel Velocity $V = 7$ ft/s Calculated Results: Culvert Cross Sectional Area Available $A = 0.62$ ft Culvert Cross Sectional Area Available $Y_{n} = 1.55$ ft Culvert Ornal Depth $Y_{c} = 0.55$ ft Culvert Ornal Depth $Y_{c} = 0.50$ ft Culvert Ornal Depth $Y_{c} = 0.50$ ft Culvert Ornal Depth $Y_{c} = 0.50$ ft Culvert Ornal Readwater $Y_{c} = 0.50$ ft Headwater: Intet Control Headwater Outer $Y_{c} = 0.50$ ft Headwater $Y_{c} = 0.50$ ft Headwater Diameter QR Headwater/Rise Ratio $HW_{c} = 0.13$ ft Outlet Ornot Headwater Ogg Headwater/Rise Ratio $HW_{c} = 0.70$ ft Flow (Claimeter $^{2}.5)$ $Q/D^{-2.5} = 0.70$ ft How Area at Max Channel Velocity $Y_{c} = 0.70$ ft How Area at Max Channel Velocity $Y_{c} = 0.70$ ft Mith of Riprap Protection at Downstream End $Y_{c} = 0.75$ ft Minimum Theoretical Riprap Size 0 ft Minimum Theoretical Riprap Size 0 ft MHFD Riprap Type $Y_{c} = 0$ ft		Barrel Height (Rise) in Feet	H (Rise) =ft	
Inlet Edge Type (Choose from pull-down list)Number of Barrels# Barrels1Inlet ElevationInlet Elevation100Outlet Elevation $\underline{0}$ SlopeSo0.01Culvert LengthL920Bend Loss Coefficientk, a1Exit Loss Coefficientk, a1Exit Loss Coefficientk, a1Exit Loss Coefficientk, a1Culvert Critical DepthY.1.55Froude NumberFr =1.74Supercritical!K, a4.59Friction Loss Coefficientk, a4.59Friction Loss Coefficientk, a4.59Friction Loss Coefficientk, a4.59Friction Loss Coefficientk, a4.59Sum of All Loss Coefficientsk, a4.59Headwater:Inlet Control HeadwaterHW, a3.13Outlet Control Headwater1.141.14Outlet Control Headwater / Rise RatioHW a1.122Outlet Protection:Flow Area & Ala Channel VelocityY, a4.59Flow Area & Alax Channel VelocityY, a4.591.14Outlet Protection:Flow Area & Alax Channel VelocityY, a4.59Flow Area & Alax Channel VelocityY, a4.591.14Mich of Riprap ProtectionI/(2*tan(0)) a6.701.14Culvert Oroto Headwater / Rise RatioHW a1.131.14Outlet Protection:Flow Area & Alax Channel VelocityY, a6.70Flow Ar		Barrel Width (Span) in Feet	W (Span) = ft	
Number of Barrels# Barrels# BarrelsInlet ElevationCulvert LengthInloOutlet Elevation QB SlopeSo0.01Culvert LengthL920Bend Loss Coefficientk0Exit Loss Coefficientk102Barrels = Inlo102thMax Allowable Channel VelocityV7Calculated Results:Culvert from DepthY. EbestionCulvert Normal DepthY. Ebestion102Culvert Normal DepthY. E1.14Friction Loss Coefficientk = 0Friction Loss Coefficientk = 0.962Friction Loss CoefficientK = 0.962Friction Loss Coefficientk = 4.59Friction Loss Coefficientsk = 4.59Headwater:Inlet Control HeadwaterOutlet Protection:Q/D^22.5Flow/Poameter^2.5.5Tailwater Signap ProtectionFlow/Poameter^2.5.5Tailwater Conduit for Multiple BarrelsHeadwater/Diameter OB Headwater/Rise RatioHW/ DHow Area at Nax Channel VelocityX = 6.29Micht Max Channel VelocityK = 6.29Micht Max Channel VelocityK = 6.29Risk Channel VelocityK = 6.22Micht Mittighe BarrelsK = 6.22Length of Riprap ProtectionL = 6.72Minimum Theoretical Riprap SizeM = 0.72Minimum Theoretical Riprap SizeM = 0.72Minimum Theoretical Riprap SizeM = 0.72Minimum Theoretical Riprap SizeM = 0.74Minimum Theoretical Riprap Size <td></td> <td>Inlet Edge Type (Choose from pull-down list)</td> <td></td> <td></td>		Inlet Edge Type (Choose from pull-down list)		
Number of Barrels# BarrelsImage: BevitionInlet Elevation QB SlopeImage: Bevition QB SlopeImage: Bevition QB SlopeCulvert LengthL = 920Manning's Roughnessn = 0.012Bend Loss Coefficientk, = 1Tailwater Sufface ElevationV_Lewaton P Max Allowable Channel VelocityV = 7Calculated Results: $n = 0.012$ Culvert Cross Sectional Area Available $A = 0.012$ Culvert Cross Sectional Area Available $Y_n = 0.55$ Culvert Cross Sectional Area Available $Y_n = 0.55$ Culvert Cross Coefficient $k_s = 0.50$ Friction Loss Coefficient $k_s = 0.50$ Friction Loss Coefficients $k_s = 0.50$ Sum of All Loss Coefficients $k_s = 0.50$ Inlet Control HeadwaterHW = 003.98Meadwater/Diameter <u>OB</u> Headwater/Rise RatioHW = 013.98Design Headwater Play and Protection $V_r = 0.22$ Flow/(Diameter ^2.5.5) $T_1/2^*$ Tailwater Surface HeightTailwater Joing Factor $V_r = 0.22$ Flow/(Diameter 2.5.5) $T_1/2^*$ Tailwater Surface HeightTailwater Joing Factor $V_r = 0.22$ Flow/(Diameter 7.5.5) $T_1/2^*$ Tailwater Surface HeightTailwater Surface Height $V_r = 0.22$ Tailwater Joing Protection $V_r = 0.22$ Width of Riprap Protection $V_r = 0.22$ Minimum Theoretical Riprap Size d_{op} minimal Riprap SizeMinimum Theoretical Riprap Size d_{op} minimal Riprap TypeMinimum Theoretical Riprap Size d_{op} mini				
Number 0 bartes Intel Elevation QB Slope Outlet Elevation QB Slope Culvert Length Manning's Roughness Bend Loss Coefficient Tailwater Surface Elevation Max Allowable Channel Velocity Calculated Results: Culvert Cross Sectional Area Available Culvert Cross Sectificients Headwater: Intet Control Headwater Design Headwater / Breadwater / Rise Ratio Headwater/Diameter Og Headwater / Rise Ratio Headwater/Diameter Og Headwater / Rise Ratio Headwater/Diameter Og Headwater / Rise Ratio Headwater/Diameter for Supercritical Forw Nominal Riprap Protection at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Minimum Theore		Number of Develo	# Develo	
Indet Elevation QB Slope Culvet Length B anning's Roughness B and Loss Coefficient B anning's Roughness B and Loss Coefficient B anning's Roughness B and Loss Coefficient B anning's Roughness B and Loss Coefficient B and Los		Number of Barreis	# Barrels = 1	
Outlet Elevation <u>OB</u> SlopeSo0.01ft/ftCulvert LengthL $=$ 20.01ftManning's Roughnessn $=$ 0.012ftBend Loss Coefficientk ₀ $=$ 0ftExt Loss Coefficientk ₁ $=$ 102ftMax Allowable Channel VelocityV $=$ 7ft/2Calculated Results:Culvert Normal DepthY ₁ $=$ 1.55ftCulvert Critical DepthY ₂ $=$ 2.07ftFroude NumberFr $=$ 1.74Supercritical!Friction Loss Coefficientk ₂ $=$ 6.09ftHeadwater:Intel Control HeadwaterHW ₁ $=$ 3.13ftOutlet Control HeadwaterHW ₂ $=$ 3.98ftDesign Headwater ID1.14103.98ftHeadwater/Diameter OB Headwater/Rise RatioHW/2 $=$ $=$ Cultet Protection: $P(D^2, 2, 5) =$ $P(D^2, 5, 7)$ $P(D^2, 5, 7)$ Tailwater Surface HeightY ₁ $=$ $=$ $P(D^2, 5, 7)$ Tailwater Joinmeter OL $P(D^2, 5, 7)$ $P(D^2, 5, 7)$ $P(D^2, 5, 7)$ Cultet Protection: $P(D^2, 5, 7)$ $P(D^2, 5, 7)$ $P(D^2, 5, 7)$ Tailwater Surface HeightY ₁ $P(D^2, 5, 7)$ $P(D^2, 5, 7)$ Tailwater Surface HeightY ₁ $P(D^2, 5, 7)$ $P(D^2, 5, 7)$ Tailwater Surface HeightY ₁ $P(D^2, 5, 7)$ $P(D^2, 5, 7)$ Tailwater Surface Height <td< td=""><td></td><td>Inlet Elevation</td><td>Elev IN = 100 ft</td><td></td></td<>		Inlet Elevation	Elev IN = 100 ft	
Culvert Length $h = \frac{920}{0}$ ft Manning's Roughness $h = 0.012$ Bend Loss Coefficient $h = 0.012$ Exit Loss Coefficient $h = 0.012$ Tailwater Surface Elevation V_1 Evention $h = 0.012$ Max Allowable Channel Velocity $v = 7$ ft/s Calculated Results: Culvert Cross Sectional Area Available $A = \frac{9.62}{1.55}$ ft Culvert Cross Sectional Area Available $V_1 = \frac{9.62}{1.55}$ ft Culvert Crotical Depth $V_2 = \frac{9.62}{1.55}$ ft Culvert Crotical Depth $V_2 = \frac{9.62}{1.55}$ ft Culvert Crotical Depth $V_2 = \frac{9.62}{1.55}$ ft Froude Number $Fr = \frac{1.74}{0.50}$ Supercritical! Froude Number $h = \frac{1.74}{5}$ Supercritical! Headwater: Inlet Control Headwater $h = \frac{1.92}{0.00}$ ft Headwater Elevation $h = \frac{1.313}{0.00}$ ft Design Headwater Elevation $h = \frac{1.32}{0.00}$ ft Outlet Protection: Flow/(Diameter ^2.5) $(Q/D^2.5 = \frac{1.92}{1.120}$ ft Tailwater Surface Height $Y_1 = \frac{1.120}{0.00}$ ft Tailwater GR Headwater (Rise Ratio $h W / D = \frac{1.120}{0.00}$ ft Tailwater Joinenter $\frac{0.62}{0.00}$ ft Culter for figrap Protection $V_1 = \frac{1.20}{0.00}$ ft Midth of Rigrap Protection in How $h = \frac{2.52}{0.00}$ ft Adjusted Diameter for Supercritical Flow $h = \frac{1.1}{0.00}$ ft Midth of Rigrap Protection in $V_2 = \frac{1.1}{0.00}$ ft Midth of Rigrap Protection in $V_2 = \frac{1.1}{0.00}$ ft Midth of Rigrap Protection in $V_2 = \frac{1.1}{0.00}$ ft Midth of Rigrap Protection in $V_3 = \frac{1.1}{0.00}$ ft Midth of Rigrap Protection in $V_4 = \frac{1.1}{0.00}$ ft Midth of Rigrap Protection in $V_5 = \frac{1.1}{0.00}$ ft Midth of Rigrap Protection in $V_5 = \frac{1.1}{0.00}$ ft Midth of Rigrap Protection in $V_5 = \frac{1.1}{0.00}$ ft Midth of Rigrap Protection in $V_5 = \frac{1.1}{0.00}$ ft Minna Theoretical Rigrap Size $h_{0.00}$ minual $\frac{1}{0.00}$ in $\frac{1}{0.00}$ ft Minum Theoretical Rigrap Size $h_{0.00}$ minual $\frac{1}{0.00}$ in $\frac{1}{0.00}$ ft MiFD Rigrap Type V_5 ft Culter for V_5 for V_5 for V_5 for V_5 ft Culter for V_5 for V_5 for V_5 for V_5 ft Mifth Rigrap Fortection V_5 ft Culter for V_5 for V_5 fo		Outlet Elevation OR Slope	So = 0.01 ft/ft	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Culvert Lenath	L = 920 ft	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Manning's Poughness	p = 0.012	
bein Loss Coefficient Tailwater Surface Elevation Max Allowable Channel Velocity Calculated Results: Culvert Cross Sectional Area Available Culvert Cross Sectional Area Available Culvert Cross Sectional Area Available Culvert Cross Sectional Area Available Culvert Critical Depth Froude Number Entrance Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficients Headwater: Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Outlet Protection: Flow/(Diameter^2.5) Tailwater/Diameter OR Headwater/Rise Ratio Outlet Protection: Flow/(Diameter^2.5) Tailwater/Diameter Expansion Factor Flow Area at Max Channel Velocity Width of Riprap Protection at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size MHFD Riprap Type MED Allows Coefficient Flow Minimum Theoretical Riprap Size MHFD Riprap Type		Part Loss Coefficient	k = 0.012	
Exit Loss Coefficient $K_r =$ 1Tailwater Surface Elevation Y_t Beestion 102 Max Allowable Channel Velocity $V =$ 7 Tailwater Surface Elevation $V =$ 7 Calculated Results: $A =$ 9.62 Culvert Cross Sectional Area Available $A =$ 9.62 Culvert Normal Depth $Y_r =$ 1.55 Culvert Normal Depth $V_r =$ 2.07 Froude Number $Fr =$ 1.74 SupercriticallEntrance Loss Coefficient $k_c =$ Friction Loss Coefficient $k_c =$ 6.59 Sum of All Loss Coefficients $k_s =$ 6.09 Headwater:Inlet Control Headwater $HW_r =$ Design Headwater Elevation $HW_r =$ 1.33 Headwater/Diameter QR Headwater/Rise Ratio $HW_r =$ 1.20 Tailwater/Diameter 2.5) $Q/D^2.5 =$ 1.92 Tailwater/Diameter 2.5) $1/(2*tan(\Theta)) =$ 6.70 Flow Area at Max Channel Velocity $A_c =$ $W_{eq} =$ Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ T_c Length of Riprap Protection at Downstream End $T =$ 6 ft Adjusted Diameter for Supercritical Flow $Da =$ 2.52 ft Minimum Theoretical Riprap Size d_{on} nominal = 6 in Minimum Riprap Size d_{on} nominal = 6 in MHFD Riprap TypeType = VL VL			κ _b – 0	
Tailwater Surface Elevation $Y_{t, Elevation} =$ 102ftMax Allowable Channel Velocity $V =$ 7ft/sCalculated Results:Culvert Cross Sectional Area Available $A =$ 9.62ft^2Culvert Cross Sectional Area Available $Y_n =$ 1.55ftCulvert Critical Depth $Y_c =$ 2.07ftFroude Number $Fr =$ 1.74Supercritical!Entrance Loss Coefficient $k_e =$ 0.50ftFriction Loss Coefficients $k_e =$ 6.09ftHeadwater:Inlet Control HeadwaterHW ₁ =3.13ftOutlet Control HeadwaterHW ₂ =3.98ftHeadwater:HW =1.14ftOutlet Protection:Fr =1.92ft ^{6.5} /sFlow/(Diameter ^2.5)Q/D^2.5 =1.92ft ^{6.5} /sTailwater/DiameterPresign Headwater/Rise RatioHW =1.14Outlet Protection:Fr/c11/(2*tan(6)) =6.70Flow Area at Max Channel Velocity $A_e =$ 6.22ftWidth of Riprap Protection at Downstream EndT6ftAdjusted Diameter for Supercritical Flow $A_e =$ 0.52ftMinimum Theoretical Riprap Size $A_{agninn =}$ 1inMinimum Theoretical Riprap Size $A_{agninn =}$ 6inMHFD Riprap TypeType =VLVL		Exit Loss Coefficient	$k_x = 1$	
Max Allowable Channel Velocity $V = 7$ ft/sCalculated Results: Culvert Cross Sectional Area Available $A = 9.62$ Ttft² 1.55Culvert Normal Depth $Y_n = 1.55$ ft² 2.07Culvert Critical Depth $Y_n = 2.07$ Froude Numberft² 1.74Froude Number $Fr = 1.74$ Supercritical!Entrance Loss Coefficient $k_s = 4.59$ Sum of All Loss Coefficients $k_s = 6.09$ Sum of All Loss Coefficients $k_s = 6.09$ Headwater:Inlet Control HeadwaterDesign Headwater ElevationHW $_{0} = 3.13$ 1.14Headwater/Diameter ORHW $_{0} = 1.14$ Outlet Protection: $Q/D^2.5 = 1.92$ Tailwater/Diameter ORFlow/(Diameter^2.5) $T_{1}(2*tan(9)) = 6.70$ How Area at Max Channel VelocityHow Area at Max Channel Velocity $A_r = 6.29$ C.70How Area at Max Channel Velocity $A_r = 6.29$ TtWidth of Riprap Protection at Downstream End $T = 6$ TtAdjusted Diameter for Supercritical Flow Minimum Theoretical Ripra Size A_{0} minimal G_{0} mini		Tailwater Surface Elevation	Y _{t, Elevation} = 102 ft	
Calculated Results: Image: constraint function of the second		Max Allowable Channel Velocity	V = 7 ft/s	
Calculated Results: Culvert Cross Sectional Area Available A = 9.62 t^2 Culvert Normal Depth Y ₀ = 1.55 t^2 Culvert Normal Depth Y ₀ = 1.55 t^2 Culvert Normal Depth Y ₀ = 1.55 t^2 Culvert Critical Depth Y ₀ = 1.55 t^2 Froude Number Fr = 1.74 Supercritical! Entrance Loss Coefficient k _e = 0.50 t^2 Sum of All Loss Coefficients k _e = 6.09 t^2 Headwater: Inlet Control Headwater HW ₀ = 3.13 t^2 Outlet Control Headwater On Headwater / Rise Ratio HW = 103.98 t^2 Headwater/Diameter 0000 Headwater/Rise Ratio HW = 1.14 Outlet Protection: $Q/D^2.5 =$ 1.92 $t^{0.5}/s$ Tailwater Surface Height Y ₁ = 1.120 t^1/s Tailwater/Diameter 0.2.5) $Q/D^2.5 =$ 1.92 $t^{0.5}/s$ Tailwater/Diameter Maco HW = 3.20 t^2 Expansion Factor $1/(2*tan(0)) =$ 6.70 </th <th></th> <th></th> <th></th> <th></th>				
Calculated Results: Culvert Cross Sectional Area Available A = 9.62 ft² Culvert Cross Sectional Area Available Y _n = 1.55 ft Culvert Crotical Depth Y _n = 1.55 ft Culvert Crotical Depth Y _n = 0.62 ft²² Froude Number Fr 2.07 ft Forude Number Fr = 0.50 Frittion Loss Coefficient K _s = 0.50 ft Sum of All Loss Coefficients K _s = 6.09 ft Headwater: Inlet Control Headwater HW ₀ = 3.13 ft Outlet Control Headwater Control Headwater / Rise Ratio HW ₀ = 1.14 103.98 ft Design Headwater/Diameter OR Headwater/Rise Ratio HW = 103.98 ft 1.120 ft Tailwater/Diameter OLS Q/D^2.5 = 1.92 ft ^{0.5} /s ft ft Tailwater/Diameter Conduit for Multiple Barrels W _t = 6.70 ft ft Headwater for Supercritical Flow W _{eff} = - ft ft Guidet Gonina I Conduit for Multiple Barrels W	Calaulata d Da	L		
Culvert Cross Sectional Area Available $A = 9.62$ ft ⁴ Culvert Critical Depth $Y_n = 1.55$ ft t Culvert Critical Depth $Y_c = 2.07$ ft $Y_c = 2.07$ ft $Y_c = 2.07$ ft $Y_c = 1.74$ Supercritical! Froude Number $F_r = 1.74$ Supercritical! Friction Loss Coefficient $k_e = 0.50$ ft $Y_c = 0.50$ ft $Y_c = 1.74$ Supercritical! Headwater: Inlet Control Headwater $HW_1 = 3.13$ ft $HW_2 = 3.98$ ft $HW_2 = 3.98$ ft $HW_2 = 3.98$ ft $HW_2 = 1.14$ f	Calculated Re	<u>suits:</u>		
Culvert Normal Depth Culvert Critical Depth Froude Number Entrance Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Sum of All Loss Coefficients Headwater: Inlet Control Headwater Outlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter <u>OR</u> Headwater/Rise Ratio Uttlet Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Factor Flow Area at Max Channel Velocity Width of Riprap Protection at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size MHFD Riprap Type MHFD Riprap Type MHFD Riprap Type Minimum Theoretical Riprap Size MHFD Riprap Type Minimum Theoretical Riprap Size MHFD Riprap Type MHFD Riprap Type MHFD Riprap Type Minimum Theoretical Riprap Size MHFD Riprap Type MHFD Riprap Type MHFD Riprap Type MHFD Riprap Type MINIMUM Theoretical Riprap Size MHFD Riprap Type MINIMUM Signap Size MINIMUM Sign		Culvert Cross Sectional Area Available	A = 9.62 ft ²	
Culvert Critical Depth $Y_c =$ 2.07 ftFroude Number $Fr =$ 1.74 Supercritical!Entrance Loss Coefficient $k_e =$ 4.59 Sum of All Loss Coefficients $k_s =$ 6.09 Headwater:Inlet Control Headwater $W_0 =$ Outlet Control Headwater $W_0 =$ 3.98 Design Headwater / Diameter OR Headwater/Rise Ratio $HW_0 =$ 1.32 Outlet Protection: $Q/D^2.5 =$ 1.92 Flow/(Diameter^2.5) $Q/D^2.5 =$ 1.92 Tailwater Surface Height $Y_t =$ 11.20 Tailwater /Diameter OL $Y_t =$ 11.20 Flow Area at Max Channel Velocity $A_t =$ 6.29 Width of Riprap Protection at Downstream End $U_p =$ 11 Minimum Theoretical Riprap Size d_{20} minine 1 Mininum Theoretical Riprap Size d_{20} minine 1 Mininum Theoretical Riprap Size d_{20} minine 1 Mininum Riprap Size d_{20} minine 1 MHFD Riprap TypeType = VL		Culvert Normal Depth	Y _n = 1.55 ft	
Froude Number $F_r =$ 1.20 $Supercritical!$ Froude Number $F_r =$ 1.74 $Supercritical!$ Entrance Loss Coefficient $K_s =$ 0.50 ft Sum of All Loss Coefficients $K_s =$ 0.50 ft Headwater:Inlet Control Headwater $HW_r =$ 3.13 ft Outlet Control Headwater $HW_0 =$ 3.98 ft Design Headwater Elevation $HW =$ 103.98 ft Headwater/Diameter <u>OR</u> Headwater/Rise Ratio $HW/D =$ 1.14 Outlet Protection: $Fow/(Diameter^2.5)$ $Q/D^2.5 =$ 1.92 Flow/(Diameter^2.5) $Q/D^2.5 =$ 1.92 $ft^{0.5}/s$ Tailwater/Diameter $Yt/D =$ 3.20 $ft^{0.5}/s$ Expansion Factor $1/(2*tan(0)) =$ 6.70 Flow Area at Max Channel Velocity $A_s =$ 6.29 ft^2 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $ ft$ Length of Riprap Protection at Downstream End $T =$ ft ft Adjusted Diameter for Supercritical Flow $Da =$ 2.52 ft Minimum Theoretical Riprap Size d_{s0} minine 1 in Nominal Riprap Size d_{s0} minine 1 in MHFD Riprap TypeType $Type =$ VL		Culvert Critical Depth	$Y_c = 2.07$ ft	
Induct NumberIn =1.74Super Critical:Entrance Loss Coefficientke =0.50Sum of All Loss Coefficientske = $\frac{1}{4.59}$ Headwater:Inlet Control HeadwaterHW; = $\frac{3.13}{3.98}$ Outlet Control HeadwaterHW; = $\frac{3.98}{3.98}$ ftDesign Headwater ElevationHW = 103.98 ftHeadwater/Diameter <u>OR</u> Headwater/Rise RatioHW = 103.98 ftOutlet Protection:HW/D = 1.14 ftOutlet Protection:Q/D^2.5 = 1.92 ft ^{0.5} /sTailwater Surface HeightYt = 11.20 ftTailwater Channel VelocityYt = 11.20 ftWidth of Riprap ProtectionLength of Riprap Protection $V_{eq} =$ -Width of Riprap Protection at Downstream EndT= 6 ftAdjusted Diameter for Supercritical Flow d_{50} nominal $\frac{1}{6}$ ininMHFD Riprap TypeType =VL V_{L} 1		Froude Number	Er – 1 74 Superer	iticall
Endrance Loss Coefficient $k_e =$ 0.50 Friction Loss Coefficients $k_r =$ 4.59 Sum of All Loss Coefficients $k_s =$ 6.09 Headwater:Inlet Control Headwater $W_0 =$ Outlet Control Headwater $W_0 =$ 3.13 Design Headwater Elevation $HW_0 =$ 3.98 Headwater/Diameter OR Headwater/Rise Ratio $HW =$ 103.98 Outlet Protection: $V_t =$ 1.14 Outlet Protection: $V_t =$ 11.20 Flow/(Diameter^2.5) $Y_t =$ 11.20 Tailwater/Diameter $Y_t/D =$ 3.20 Expansion Factor $1/(2*tan(G)) =$ 6.29 Flow Area at Max Channel Velocity $A_t =$ 6.29 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $-$ Length of Riprap Protection at Downstream End $T =$ 6 Adjusted Diameter for Supercritical Flow d_{50} nominal = 1 Nominal Riprap Size d_{50} nominal = 6 MHFD Riprap Type $Y_t =$ $Y_t =$				lucal:
Friction Loss Coefficient $k_r =$ 4.59 Sum of All Loss Coefficients $k_s =$ 6.09 Headwater:Inlet Control Headwater $HW_r =$ Outlet Control Headwater $HW_r =$ 3.13 Design Headwater Elevation $HW =$ 3.98 Headwater/Diameter OR Headwater/Rise Ratio $HW =$ 103.98 Outlet Protection: $HW/D =$ 1.14 Outlet Protection: $Y_t =$ 11.20 Flow/(Diameter^2.5) $Y_t =$ 11.20 Tailwater/Diameter $Y_t/D =$ 3.20 Expansion Factor $1/(2*tan(\Theta)) =$ 6.70 Flow Area at Max Channel Velocity $A_t =$ 6.29 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ -Length of Riprap Protection at Downstream End $T =$ 6 Adjusted Diameter for Supercritical Flow d_{50} mini=1Minimum Theoretical Riprap Size d_{50} nominal= 6 MHFD Riprap TypeType = VL		Entrance Loss Coefficient	$k_{e} = 0.50$	
Sum of All Loss Coefficients $k_s = 6.09$ ftHeadwater:Inlet Control Headwater $HW_1 = 3.13$ ftOutlet Control Headwater $HW_0 = 3.98$ ftDesign Headwater Elevation $HW = 103.98$ ftHeadwater/Diameter <u>OR</u> Headwater/Rise Ratio $HW = 103.98$ ftOutlet Protection: $Flow/(Diameter^2.5)$ $Q/D^2.5 = 1.92$ ft ^{0.5} /sTailwater Surface Height $Y_t = 11.20$ ftTailwater/Diameter $Yt/D = 3.20$ ft ^{0.5} /sExpansion Factor $1/(2*tan(6)) = 6.70$ ftFlow Area at Max Channel Velocity $A_r = 6.29$ ft²Width of Equivalent Conduit for Multiple Barrels $W_{eq} = -$ ftLength of Riprap Protection $L_p = 11$ ftMinimum Theoretical Riprap Size d_{s_0} min=1Nominal Riprap Size d_{s_0} nominal=1MHFD Riprap TypeType = VLVL		Friction Loss Coefficient	k _f = 4.59	
Headwater:Inlet Control Headwater $HW_1 =$ 3.13 ftOutlet Control Headwater $HW_0 =$ 3.98 ftDesign Headwater Elevation $HW =$ 103.98 ftHeadwater/Diameter <u>OR</u> Headwater/Rise Ratio $HW/D =$ 1.14 Outlet Protection: $Flow/(Diameter^{2.5})$ $Q/D^{2.5} =$ 1.92 Flow/(Diameter^{2.5}) $Y_t =$ 11.20 Tailwater/Diameter $Y_t =$ 11.20 Expansion Factor $1/(2*tan(0)) =$ 6.70 Flow Area at Max Channel Velocity $M_e =$ $-$ Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $-$ Length of Riprap Protection at Downstream End $T =$ 6 Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size d_{50} nominalNominal Riprap Size d_{50} nominal 6 MHFD Riprap Type $Type =$ VL		Sum of All Loss Coefficients	k _s = 6.09 ft	
Headwater:HW1 = 3.13 ftOutlet Control HeadwaterHW0 = 3.98 ftDesign Headwater ElevationHW = 103.98 ftHeadwater/Diameter OR Headwater/Rise RatioHW = 103.98 ftOutlet Protection:Flow/(Diameter^2.5) $Q/D^2.5 =$ 1.92 Flow/(Diameter/Diameter OR Headwater/Rise RatioY t = 11.20 Outlet Protection: $Y_t =$ 11.20 ftFlow/Indexter/Diameter $Y_t =$ 11.20 ftTailwater/Diameter $Y_t =$ 11.20 ftTailwater/Diameter $Y_t =$ 11.20 ftFlow Area at Max Channel Velocity $A_t =$ 6.29 ft²Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ -ftLength of Riprap Protection $L_p =$ 11 ftWidth of Riprap Protection at Downstream EndT = 6 ftAdjusted Diameter for Supercritical Flow d_{s0} nominal 11 inMinimum Theoretical Riprap Size d_{s0} nominal = 6 inNominal Riprap Size d_{s0} nominal = 6 in				
Index detailsHW1 = 3.13 ftInlet Control HeadwaterHW0 = 3.98 ftOutlet Control Headwater ElevationHW = 103.98 ftHeadwater/Diameter <u>OR</u> Headwater/Rise RatioHW = 103.98 ftOutlet Protection:Flow/(Diameter^2.5) $Q/D^2.5 =$ 1.92 ft ^{0.5} /sTailwater Surface HeightYt = 11.20 ftTailwater/DiameterYt/D = 3.20 ftExpansion Factor $1/(2*tan(\Theta)) =$ 6.70 ft²Flow Area at Max Channel Velocity $A_t =$ 6.29 ft²Width of Riprap Protection at Downstream EndT = 6 ftAdjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size d_{50} mini=1inMHFD Riprap TypeType =VLinin	Headwater			
Intercontion readwater $HW_1 =$ 3.13 ItOutlet Control Headwater $HW_0 =$ 3.98 ftDesign Headwater / Diameter <u>OR</u> Headwater/Rise Ratio $HW =$ 103.98 ftOutlet Protection: $HW/D =$ 1.14 1.14 Outlet Protection: $Q/D^2.5 =$ 1.92 $ft^{0.5}/s$ Tailwater Surface Height $Y_t =$ 11.20 ftTailwater/Diameter $Y/D =$ 3.20 ftExpansion Factor $1/(2*tan(6)) =$ 6.70 ft²Flow Area at Max Channel Velocity $A_t =$ 6.29 ft²Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $-$ ftLength of Riprap Protection at Downstream End $T =$ 6 ftAdjusted Diameter for Supercritical Flow $Da =$ 2.52 ftMinimum Theoretical Riprap Size d_{50} nominal 6 inMHFD Riprap TypeType = VL VL	i icauwatei.	Inlat Control Hoodwater	HW/ - 212 A	
Outlet Control Headwater $HW_0 =$ 3.98 ftDesign Headwater Elevation $HW =$ 103.98 ftHeadwater/Diameter <u>OR</u> Headwater/Rise Ratio $HW =$ 103.98 ftOutlet Protection: $Q/D^2.5 =$ 1.92 ft^{0.5}/sTailwater Surface Height $Y_t =$ 11.20 ftTailwater/Diameter $Yt/D =$ 3.20 ftExpansion Factor $1/(2*tan(\Theta)) =$ 6.70 ft²Flow Area at Max Channel Velocity $A_t =$ 6.29 ft²Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $-$ ftLength of Riprap Protection $Da =$ 2.52 ftAdjusted Diameter for Supercritical Flow $Da =$ 2.52 ftMinimum Theoretical Riprap Size d_{50} nominal 6 inMHFD Riprap TypeType = VL VL			π	
Design Headwater ElevationHW =103.98ftHeadwater / Diameter <u>OR</u> Headwater/Rise RatioHW =1.14ftOutlet Protection: $HW/D =$ 1.14Outlet Protection: $Q/D^{2.5} =$ 1.92ft ^{0.5} /sTailwater Surface Height $Y_t =$ 11.20ftTailwater/Diameter $Y_tD =$ 3.20ftExpansion Factor $1/(2*tan(\Theta)) =$ 6.70ft²Flow Area at Max Channel Velocity $A_t =$ 6.29ft²Width of Riprap Protection $L_p =$ 11ftWidth of Riprap Protection at Downstream EndT =6ftAdjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size d_{50} nominal d_{50} nominalftMHFD Riprap TypeType =VLVL	I	Outlet Control Headwater	$HW_0 = 3.98$ ft	
Headwater/Diameter OR Headwater/Rise Ratio $HW/D =$ 1.14Outlet Protection: Flow/(Diameter^2.5) Tailwater Surface Height $Q/D^2.5 =$ 1.92 $ft^{0.5}/s$ Tailwater/Diameter Expansion Factor $Y_t =$ 11.20 ft Toilwater/Diameter Expansion Factor $Y/D =$ 3.20 $ft^{0.5}/s$ Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection Width of Riprap Protection at Downstream End $W_{eq} =$ $-$ Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size $Da =$ 2.52 ft MHFD Riprap TypeType = VL T e		Design Headwater Elevation	HW = 103.98 ft	
Outlet Protection: $Q/D^2.5 =$ 1.92 $ft^{0.5}/s$ Tailwater Surface Height $Y_t =$ 11.20 ft Tailwater/Diameter $Y/D =$ 3.20 ft Expansion Factor $1/(2*tan(e)) =$ 6.70 ft^2 Flow Area at Max Channel Velocity $A_t =$ 6.29 ft^2 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ ft Length of Riprap Protection $U_p =$ 11 ft Mith of Riprap Protection at Downstream End $T =$ 6 ft Adjusted Diameter for Supercritical Flow $Da =$ 2.52 ft Minimum Theoretical Riprap Size d_{50} nominal 6 inMHFD Riprap TypeType = VL VL		Headwater/Diameter OR Headwater/Rise Ratio	HW/D = 1.14	
Outlet Protection:Q/D^2.5 = 1.92flow/(Diameter^2.5)Tailwater Surface HeightYt = 11.20ftTailwater/DiameterExpansion Factor1/(2*tan(G)) = 6.70Flow Area at Max Channel VelocityWidth of Riprap ProtectionWeg = -ftLength of Riprap Protection at Downstream EndT = 6ftAdjusted Diameter for Supercritical FlowMainimum Theoretical Riprap SizeMHFD Riprap TypeType = VL		<u></u>		
Outlet Protection: $Q/D^2.5 =$ 1.92 $ft^{0.5}/s$ Tailwater Surface Height $Y_t =$ 11.20 ft Tailwater/Diameter $Y/D =$ 3.20 ft Expansion Factor $1/(2*tan(\Theta)) =$ 6.70 ft^2 Flow Area at Max Channel Velocity $A_t =$ 6.29 ft^2 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $ ft$ Length of Riprap Protection $L_p =$ 11 ft Width of Riprap Protection at Downstream End $T =$ 6 ft Adjusted Diameter for Supercritical Flow $Da =$ 2.52 ft Nominal Riprap Size d_{50} nominal 1 inMHFD Riprap TypeType = VL VL	Outlot Ducto			
How/(Diameter^2.5) $Q/D^2.5 =$ 1.92 $ft^{0.3}/s$ Tailwater Surface Height $Y_t =$ 11.20 ft Tailwater/Diameter $Y_t D =$ 3.20 ft Expansion Factor $1/(2*tan(G)) =$ 6.70 ft^2 Flow Area at Max Channel Velocity $A_t =$ 6.29 ft^2 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $ ft$ Length of Riprap Protection $L_p =$ 11 ft Width of Riprap Protection at Downstream End $T =$ 6 ft Adjusted Diameter for Supercritical Flow $Da =$ 2.52 ft Nominal Riprap Size d_{50} nominal 1 inMHFD Riprap TypeType = VL VL	Outlet Protection			
Tailwater Surface Height $Y_t =$ 11.20ftTailwater/Diameter $Y_t/D =$ 3.20ftExpansion Factor $1/(2*tan(\Theta)) =$ 6.70 ftFlow Area at Max Channel Velocity $A_t =$ 6.29 ft²Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ -ftLength of Riprap Protection $L_p =$ 11ftWidth of Riprap Protection at Downstream EndT =6ftAdjusted Diameter for Supercritical Flow $D_a =$ 2.52ftMinimum Theoretical Riprap Size d_{50} nominal1inNominal Riprap Size d_{50} nominal=6inMHFD Riprap TypeType =VLVL		How/(Diameter^2.5)	$Q/D^2.5 = 1.92$ ft ^{0.3} /s	
Tailwater/DiameterYt/D =3.20Expansion Factor $1/(2*tan(\Theta)) =$ 6.70 Flow Area at Max Channel Velocity $A_t =$ 6.29 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $-$ Length of Riprap Protection $L_p =$ 11Width of Riprap Protection at Downstream EndT = 6 Adjusted Diameter for Supercritical Flow $Da =$ 2.52 Minimum Theoretical Riprap Size d_{50} min=1Nominal Riprap Size d_{50} nominal= 6 MHFD Riprap TypeType =VL	I	Tailwater Surface Height	Y _t = 11.20 ft	
Expansion Factor $1/(2*tan(0)) = 6.70$ Flow Area at Max Channel Velocity $A_t = 6.29$ Width of Equivalent Conduit for Multiple Barrels $W_{eq} = -$ Length of Riprap Protection $L_p = 11$ Width of Riprap Protection at Downstream End $T = 6$ Adjusted Diameter for Supercritical Flow $Da = 2.52$ Minimum Theoretical Riprap Size d_{50} min =Nominal Riprap Size d_{50} nominal =MHFD Riprap Type $Type = VL$		Tailwater/Diameter	Yt/D = 3.20	
Flow Area at Max Channel VelocityFlow Area at Max Channel Velocity $A_t = 6.29$ Width of Equivalent Conduit for Multiple Barrels $W_{eq} = -$ Length of Riprap Protection $L_p = 11$ Width of Riprap Protection at Downstream End $T = 6$ Adjusted Diameter for Supercritical Flow $Da = 2.52$ Minimum Theoretical Riprap Size d_{50} min=Nominal Riprap Size d_{50} nominal=MHFD Riprap Type $Type = VL$	I	Expansion Factor	$1/(2*tan(\Theta)) = 6.70$	
Now recently recently $r_{\rm ec} = \frac{0.22}{10}$ Width of Equivalent Conduit for Multiple Barrels $W_{\rm ec} = \frac{1}{10}$ Length of Riprap Protection $L_p = \frac{11}{10}$ Width of Riprap Protection at Downstream End $T = \frac{6}{6}$ Adjusted Diameter for Supercritical Flow $Da = \frac{2.52}{10}$ Adjusted Diameter for Supercritical Flow $Da = \frac{2.52}{10}$ Nominal Riprap Size d_{50} nominalMHFD Riprap Type $Type = \frac{VL}{10}$		Flow Area at Max Channel Velocity	$A_{\rm c} = -6.20$	
width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ -ftLength of Riprap Protection $L_p =$ 11ftWidth of Riprap Protection at Downstream EndT =6ftAdjusted Diameter for Supercritical FlowDa =2.52ftMinimum Theoretical Riprap Size d_{50} min=1inNominal Riprap Size d_{50} nominal=6inMHFD Riprap TypeType =VL VL	I	Midth of Fourierland Conduits for Multiple Day	nt - 0.29 Ht	
Length of Riprap Protection $L_p =$ 11ftWidth of Riprap Protection at Downstream EndT =6ftAdjusted Diameter for Supercritical FlowDa =2.52ftMinimum Theoretical Riprap Size d_{50} min=1inNominal Riprap Size d_{50} nominal=6inMHFD Riprap TypeType =VL VL		wiath of Equivalent Conduit for Multiple Barrels	$w_{eq} = - ft$	
Width of Riprap Protection at Downstream EndT = 6ftAdjusted Diameter for Supercritical Flow $Da = 2.52$ ftMinimum Theoretical Riprap Size d_{50} min=1Nominal Riprap Size d_{50} nominal=6MHFD Riprap TypeType = VL		Length of Riprap Protection	L _p =11 ft	
Adjusted Diameter for Supercritical Flow $Da =$ 2.52ftMinimum Theoretical Riprap Size d_{50} min=1inNominal Riprap Size d_{50} nominal=6inMHFD Riprap TypeType =VL	I	Width of Riprap Protection at Downstream End	T = 6 ft	
Adjusted Diameter for Supercritical Flow $Da =$ 2.52ftMinimum Theoretical Riprap Size d_{50} min=1inNominal Riprap Size d_{50} nominal=6inMHFD Riprap TypeType =VL		• •		
Adjusted blameter for supercritical rlow $Da = 2.52$ rtMinimum Theoretical Riprap Size d_{50} min=1inNominal Riprap Size d_{50} nominal=6inMHFD Riprap TypeType = VLVL		Adjusted Dispeter for Consumitient Flam		
Minimum Theoretical Riprap Size a_{50} min= 1 in Nominal Riprap Size d_{50} nominal= 6 in MHFD Riprap Type Type = VL	I	Aujusted Diameter for Supercritical Flow	Da = 2.52 ft	
Nominal Riprap Sized_{50} nominal=6inMHFD Riprap TypeType =VL		Minimum Theoretical Riprap Size	$a_{50} min = 1$ in	
MHFD Riprap Type Type VL	I	Nominal Riprap Size	d ₅₀ nominal= 6 in	
		MHFD Riprap Type	Type = VL	
	I	r · r - 7r -	/F	

	MHFD-Culvert, Versi	on 4.00 (May 2020)
Project:	Mesa Ridge MDDP	
ID:	SB3265	
	000100	
	CIRCLE	
	н () р	
		-
	Ĩ <u>→</u> w → Ī	
	L	b
- HW		
-		
Ŧ		
Ţ		
		Soil Type:
	20808080	Choose One:
		Sandy
		RIPRAP Mon-Sandy
	Supercritica	I Flow! Using Adjusted Rise to calculate protection type.
Design Inform	nation:	
2 Colgin Inform	Design Discharge	0 - 196 of a
	Design Discharge	Q = 186 CTS
Circular Culvert	::	
	Barrel Diameter in Inches	D = inches
	Inlet Edge Type (Choose from null-down list)	
0.0		
Box Culvort		05
BOX Culvert:		
	Barrel Height (Rise) in Feet	H (Rise) = 4 ft
	Barrel Width (Span) in Feet	W (Span) = 6 ft
	Inlet Edge Type (Choose from pull-down list)	Square Edge w/ 30-75 deg. Flared Wingwall
	Number of Barrols	# Barrolc - 1
	Talat Elevation	
	Intel Elevation	Elev IN = 100 II
	Outlet Elevation <u>OR</u> Slope	So = 0.025 ft/ft
	Culvert Length	L = 80 ft
	Manning's Roughness	n = 0.012
	Bend Loss Coefficient	$k_{\rm b} = 0$
	Exit Loss Coefficient	k. = 1
	Tailwater Surface Elevation	V
		It, Elevation – 102 It
	Max Allowable Channel Velocity	V = / ft/s
Calculated Re	sults:	
	Culvert Cross Sectional Area Available	A = 24.00 ft ²
	Culvert Normal Depth	$Y_{1} = 155$ ff
	Culvert Avinal Depth	$V = 2.10$ θ
		$I_{c} = 3.10$ It
	Froude Number	Fr = 2.82 Supercritical!
	Entrance Loss Coefficient	k _e = 0.20
	Friction Loss Coefficient	k _f = 0.26
	Sum of All Loss Coefficients	$k_{c} = 1.46$ ft
		5
Hooduretow		
Headwater:		
	Inlet Control Headwater	$HW_{I} = 4.99$ ft
	Outlet Control Headwater	HW _o = 3.36 ft
	Design Headwater Elevation	HW = 104.99 ft
	Headwater/Diameter OB Headwater/Bise Batio	
	Treadwater/Diameter OK Treadwater/Kise Katio	HW/H= 1.25
0		
Outlet Protection	on:	
	Flow/(Span * Rise^1.5)	$Q/WH^{1.5} = 3.88$ ft ^{0.5} /s
	Tailwater Surface Height	$Y_t = 4.00$ ft
	Tailwater/Rise	Yt/H = 1.00
	Expansion Factor	$1/(2*tan(\Theta)) = 6.65$
	Flow Area at May Channel Velocity	$\Delta = 2657$
	Midth of Fault alart Crashit for Multiple Day	
	width of Equivalent Conduit for Multiple Barrels	$vv_{eq} = -$ ft
	Length of Riprap Protection	$L_p = 12$ ft
	Width of Riprap Protection at Downstream End	T = 8 ft
	• •	H
	Adjusted Dise for Supercritical Flow	
	Aujusteu Rise IVI Superchildi FIVW	$\Box d = 2.78 \qquad IL \\ d min = 2 \qquad im$
		u_{50} IIII ≥ 2 III
	Nominal Riprap Size	a ₅₀ nominai= <u>6</u> in
	MHFD Riprap Type	Type = VL

Existing twin 24"x34" Arch CMP HY8 Capacity Analysis

DP 1250B and DP1260

Yeames: CASE Existing Arch CMP Parametar Value Units Ø DISCHARGE DATA Units Discharge Method Minimum, Design, and Maximum ▼ Duplicate Culvert Minimum Flow 70.000 cfs Ø TAILWATER DATA Value Units Channel Type Trapezoidal Channel ✓ Bottom Width 10.000 ft Side Slope (H:V) 3.000 ft Side Slope (H:V) 3.000 ft Rating Curve View Ø Ø ROADWAY DATA Constant Roadway Elevation ft Rating Curve View Ø Inlet Configuration Ø Inlet Depression? No ✓ Ø Inlet Depression? No ✓ Ø Streight Site Data Input Option ft Roadway Surface Paved Top Width 10.000 ft	rossing Properties			Culvert Properties				
Parameter Value Units ② DISCHARGE DATA Duplicate Culvert Discharge Method Minimum, Design, and Maximum Minimum Flow 10.000 cfs Occupant State Occolo in Occupant State 	lame: C&S Existing Arch (CMP		Culvert 1 Culvert 1 (Copy)	Add Culvert			
⑦ DISCHARGE DATA Discharge Method Minimum, Design, and Maximum ✓ Discharge Method Minimum, Design, and Maximum ✓ Minimum Flow 10.000 cfs Dasign Flow 70.000 cfs Ø TAILWATER DATA ✓ Channel Type Trapezoidal Channel ✓ Bottom Width 10.000 ft Side Slope (H:V) 3.000 _:11 Channel Slope 0.0200 ft/ft Manning's n (channel) 0.025 O Channel Invert Elevation 90.000 ft Rating Curve View ✓ Ø ROADWAY DATA ✓ Ø Crest Length 35.000 ft Crest Length 35.000 ft Roadway Station 104.000 ft Roadway Station 104.000 ft Roadway Station 104.000 ft Top Width 30.000 ft Top Width 30.000 ft Roadway Station 104.000 ft Crest Elevation 104.000 ft	Parameter	Value	Units		Duplicate Culvert			
Discharge Method Minimum, Design, and Maximum ▼ Minimum Flow 10.000 cfs Design Flow 70.000 cfs ? TALLWATER DATA Channel Type Trapezoidal Channel ▼ Bottom Width 10.000 ft Side Slope (H:V) 3.000 _1:1 Channel Slope 0.0200 ft/ft Side Slope (H:V) 3.000 _1:1 Channel Invert Elevation 99.000 ft Rating Curve View ? ROADWAY DATA Ratodway Profile Shape Constant Roadway Elevation ▼ First Roadway Potifie Shape Constant Roadway Elevation ↑ First Roadway Station 0.000 ft Crest Length 35.000 ft Crest Length 104.000 ft Roadway Surface Paved ▼ Top Width 30.000 ft Constant Roadway Elevation ↑ Top Width 30.000 ft Roadway Surface Paved ▼ Top Width 30.000 ft Constant Roadway Station 104.000 ft Roadway Surface Paved ▼ Top Width 30.000 ft Constant Roadway Elevation ↑ Top Width 30.000 ft Constant Roadway Station 104.000 ft Roadway Surface Paved ♥ Top Width 30.000 ft Constant Roadway ft Top Width 30.000 ft Constant Roadway ft Top Width 30.000 ft Constant Roadway ft Top Width 30.000 ft Constant Roadway Station 104.000 ft Roadway Surface Paved ♥ Top Width 30.000 ft Constant Roadway ft Top Width 30.000 ft Constant Roadway ft Top Width 30.000 ft Constant Roadway Station 104.000 ft Top Width 30.000 ft Constant Roadway Station 104.000 ft Const Elevation 100.000 ft Constant Roadway Station 104.000 ft Constant Constant Constant Roadway Station 100.000 ft Constant Constant Const	🥜 DISCHARGE DATA				Delete Culvert			
Minimum Flow 10.000 cfs Design Flow 70.000 cfs Maximum Flow 70.000 cfs Ø TAILWATER DATA Image: Culvert Data Image: Culvert Data Channel Type Trapezoidal Channel ✓ Bottom Width 10.000 ft Side Slope (H:V) 3.000 _:11 Channel Slope 0.0200 ft/ft Manning's n (channel) 0.025 Image: Culvert Type Channel Invert Elevation 90.000 ft Rating Curve View Image: Culvert Type Ø ROADWAY DATA Image: Culvert Type Straight Image: Culvert Type First Roadway Station 0.000 ft Site Data Input Option Culvert Invert Data Roadway Surface Paved Image: Culvert Type Stre Data Input Option Culvert Invert Data Top Width 30.000 ft Site Data Input Option Culvert Invert Data Image: Culvert Station Top Width 30.000 ft Outlet Station 57.000 ft	Discharge Method	Minimum, Design, and Maximum	~		Delete Culvert			
Design Flow 70.000 cfs Maximum Flow 70.000 cfs Maximum Flow 70.000 cfs Maximum Flow 70.000 cfs Maximum Flow 70.000 cfs Maximum Flow 70.000 cfs Maximum Flow Trapezoidal Channel ✓ Stde Slope (H:V) 3.000 ft Side Slope (H:V) 3.000 ft/ft Manning's n (channel) 0.025 Intersteine Ochannel Invert Elevation 99.000 ft Rating Curve View Inter Configuration Headwall (Ke=0.5) ✓ Roadway Profile Shape Constant Roadway Elevation ✓ Inter Configuration Headwall (Ke=0.5) ✓ Site Data Input Option ft Site Data Input Option Culvert Invert Data ✓ Roadway Surface Paved ✓ Inter Elevation 100.000 ft Top Width 30.000 ft Outlet Elevation 57.000 ft	Minimum Flow	10.000	cfs	Parameter	Value		Units	1
Maximum Flow 70.000 cfs Image: Channel Type Trapezoidal Channel Image: Channel Type Pipe Arch Image: Channel Type Bottom Width 10.000 ft Side Slope (H:V) 3.000 _:1 Side Slope (H:V) 3.000 _:1 Size Define Span 35.000 in Channel Slope 0.0200 ft/ft Span 35.000 in Channel Invert Elevation 90.000 ft Manning's n 0.025 in Rating Curve View Image: Curve Type Straight Image: Curve Type Straight Image: Curve Type Roadway Profile Shape Constant Roadway Elevation Image: Curve Type Straight Image: Curve Type First Roadway Station 0.000 ft Site Data Input Option Culvert Invert Data Image: Curve Type Site Data Input Option Culvert Invert Data Image: Curve Type State Data Input Option ft Top Width 30.000 ft Outlet Station 57.000 ft Outlet Elevation 90.000 ft Outlet Elevation 99.000	Design Flow	70.000	cfs	2 CULVERT DATA				
⑦ TAILWATER DATA Channel Type Trapezoidal Channel Stotom Width 10.000 10.000 ft Side Slope (H:V) 3.000 _:1 Side Slope (H:V) 3.000 _:1 Channel Slope 0.0200 ft/ft Manning's n (channel) 0.025	Maximum Flow	70.000	cfs	Name	Culvert 1			
Channel Type Trapezoidal Channel ✓ Bottom Width 10.000 ft Side Slope (H:V) 3.000 _:1 Side Slope (H:V) 3.000 _:1 Channel Slope 0.0200 ft/ft Manning's n (channel) 0.025	7 TAILWATER DATA			Shape	Pipe Arch	T		
Bottom Width 10.000 ft Side Slope (H:V) 3.000 _:1 Side Slope (H:V) 3.000 _:1 Channel Slope 0.0200 ft/ft Manning's n (channel) 0.025	Channel Type	Trapezoidal Channel	-	Material	Steel or Aluminum	-		
Side Slope (H:V) 3.000 _:1 Channel Slope 0.0200 ft/ft Manning's n (channel) 0.025 O channel Invert Elevation 99.000 ft Manning's n (channel) 0.025 O ROADWAY DATA Roadway Profile Shape Constant Roadway Elevation ▼ First Roadway Station 0.000 ft Stee Data Input Option Culvert Invert Data ▼ Crest Length 35.000 ft Roadway Surface Paved ▼ Top Width Outlet Station 57.000 ft Outlet Elevation Top Width	Bottom Width	10.000	ft	Size	Define			
Channel Slope 0.0200 ft/ft Manning's n (channel) 0.025 in Channel Invert Elevation 99.000 ft Manning's n 0.025 in Q ROADWAY DATA 0.025 in Roadway Profile Shape Constant Roadway Elevation ▼ Q Culvert Type Straight ▼ in First Roadway Station 0.000 ft Q Inlet Depression? No ▼ Crest Length 35.000 ft Site Data Input Option Culvert Invert Data ▼ Roadway Surface Paved Inlet Station 20.000 ft Top Width 30.000 ft Outlet Station 57.000 ft	Side Slope (H:V)	3.000	_:1	Span	35.000	_	in	
Manning's n (channel) 0.025 in Channel Invert Elevation 99.000 ft Manning's n 0.025 1 Manning's n 0.025 1 Manning's n 0.025 1 O ROADWAY DATA ✓ 2 Roadway Profile Shape Constant Roadway Elevation ▼ 1 First Roadway Station 0.000 ft Orest Length 35.000 ft Roadway Surface Paved ✓ Top Width 30.000 ft Outlet Station 57.000 ft Outlet Station 57.000 ft Outlet Station 99.000 ft	Channel Slope	0.0200	ft/ft	Rise	24.000		in	
Channel Invert Elevation 99.000 ft Rating Curve View View ? ROADWAY DATA Constant Roadway Elevation Image: Constant Roadway Elevation Roadway Profile Shape Constant Roadway Elevation Image: Constant Roadway Elevation First Roadway Station 0.000 ft Crest Length 35.000 ft Roadway Surface Paved Image: Constant Roadway Elevation Top Width 30.000 ft Outlet Elevation 57.000 ft Outlet Elevation 57.000 ft	Manning's n (channel)	0.025		2 Embedment Depth	0.000		in	
View View ? ROADWAY DATA Roadway Profile Shape Constant Roadway Elevation First Roadway Station 0.000 ft Crest Length 35.000 ft Roadway Surface Paved Top Width 30.000 ft Outlet Elevation 57.000 ft Outlet Elevation 57.000 ft	Channel Invert Elevation	99.000	ft	Manning's n	0.025			
? ROADWAY DATA Roadway Profile Shape Constant Roadway Elevation First Roadway Station 0.000 ft ? Inlet Configuration Headwall (Ke=0.5) ▼ ? Inlet Depression? No ? STEE DATA * ? STEE DATA * Site Data Input Option Culvert Invert Data ? Crest Elevation 104.000 ft Inlet Station ? Outlet Station 100.000 ft Outlet Station ? Outlet Elevation \$7,000 ? Outlet Elevation \$9,000	Rating Curve	View		2 Culvert Type	Straight	-		
Roadway Profile Shape Constant Roadway Elevation ▼ First Roadway Station 0.000 ft Crest Length 35.000 ft Roadway Surface Paved ▼ Top Width 30.000 ft	ROADWAY DATA			Inlet Configuration	Headwall (Ke=0.5)	-		
First Roadway Station 0.000 ft Crest Length 35.000 ft Crest Elevation 104.000 ft Roadway Surface Paved Inlet Station Top Width 30.000 ft	Roadway Profile Shape	Constant Roadway Elevation	•	Inlet Depression?	No	•		
Crest Length 35.000 ft Crest Elevation 104.000 ft Roadway Surface Paved Inlet Station 20.000 ft Top Width 30.000 ft Outlet Station 57.000 ft	First Roadway Station	0.000	ft	2 SITE DATA		_		1
Crest Elevation 104.000 ft Roadway Surface Paved Inlet Station 20.000 ft Top Width 30.000 ft Outlet Station 57.000 ft	Crest Length	35.000	ft	Site Data Input Option	Culvert Invert Data	-		
Roadway Surface Paved Inlet Elevation 100.000 ft Top Width 30.000 ft Outlet Station 57.000 ft Outlet Elevation 99.000 ft Duttet Elevation 100.000 ft	Crest Elevation	104.000	ft	Inlet Station	20.000		ft	
Top Width 30.000 ft Outlet Station 57.000 ft Outlet Elevation 99.000 ft 1000 1000 ft 1000 1000 ft 1000 1000 ft 1000<	Roadway Surface	Paved	•	Inlet Elevation	100.000		ft	
Outlet Elevation 99.000 ft	Top Width	30.000	ft	Outlet Station	57.000		ft	
				Outlet Elevation	99.000		ft	•

Summary of Flows at Crossing - C&S Existing Arch CMP

Headwater	lotal	Culvert 1	Culvert 1	Roadway	:eration
Elevation	Discharge	Discharge	(Copy)	Discharge	
100.86	10.00	5.01	5.01	0.00	7
101.46	23.00	11.50	11.50	0.00	3
101.99	36.00	18.00	18.00	0.00	4
102.65	49.00	24.51	24.51	0.00	4
103.52	62.00	31.00	31.00	0.00	4
104.03	70.00	34.16	34.16	1.45	26
104.15	88.00	34.89	34.89	18.06	6
104.22	101.00	35.24	35.24	30.23	4
104.27	114.00	35.56	35.56	42.75	4
104.32	127.00	35.84	35.84	55.27	4
104.37	140.00	36.09	36.09	67.62	3
104.00	67.99	33.99	33.99	0.00	ertoppi

APPENDIX F: Channel Design

<u>APPENDIX G: Exhibits</u> Exhibit 1 Hydrologic Subbasin Map Exhibit 2 Proposed Facilities Map Exhibit 3 Improvement Design Details

SUMM
DESIGN POINT
3280
1250 1260
SUMM
DESIGN POINT
3280
1250 1260

SUMMAR	Y OF DEVELOPED DESIGN POINT D	ISCHAR	GES (2-HOUR	STORM W	TH FSD)
DESIGN POINT	LOCATION	DRAIN. Acres	AGE AREA Square Miles	5 Year CFS	100 Year CFS
C&S BASI	N				
DB 1031	GLEN DETENTION OUTFLOW	43	0.068	15	45
R1031	GLEN DETENTION CONVEYANCE	43	0.068	15	44
DP1210	MESA RIDGE UPPER BASINS	54	0.085	78	241
R1210	MESA RIDGE FLOWS INTO FSD G	54	0.085	74	246
DP1225	CROSS CREEK AVENUE	143	0.224	23	164
R1225	CONVEYANCE FSD G OUTFLOW	143	0.224	23	164
DP1260	C&S ROAD	255	0.366	39	332
DB1250B	C&S ROAD FSD B OUTFLOW	109	0.170	23	148
WEST FORK	JIMMY CAMP CREEK BASIN				
DP3110	INLFOW FROM GLEN AND WIDEFIELD	2161	3.376	429	2835
R3110	WEST FORK JIMY CAMP CREEK CONVEYANCE	2161	3.376	428	2794
R3200	WEST FORK JIMY CAMP CREEK CONVEYANCE	2210	3.454	429	2830
DP3280	MARCKSHEFFEL ROAD	2392	3.738	435	2982

NOTE: TOPOGRAPHY USED IN THIS MDDP MAY NOT REFLECT THE EXISTING CONDITIONS FOR ALL AREAS OF THE DRAINAGE BASINS.

> VICINITY MAP SCALE: NOT TO SCALE

ARY OF EXISTING DISCHARGES (2-HOUR STORM)							
LOCATION	5 Year	100 Year					
WF JIMMY CAMP CREEK © MARKSHEFFEL ROAD	462 cfs	2988 cfs					
@ C & S ROAD	46 cfs	229 cfs					
◎ C & S ROAD	61 cfs	341 cfs					

MARY OF HISTORIC DISCHARGES (24-HOUR STORM)

LOCATION	5 Year	100 Year
WF JIMMY CAMP CREEK @ MARKSHEFFEL ROAD	992 cfs	3745 cfs
@ C & S ROAD	35 cfs	186 cfs
@ C & S ROAD	48 cfs	340 cfs

(1) AREA ABOVE FOUNTAIN MUTUAL IRRIGATION CANAL ASSUMED TRIBUTARY TO MESA RIDGE PROPERTY. FMIC CANAL ASSUMED TO CONVEY IRRIGATION FLOW ONLY.

	Engineering Corporation	7175 West Jefferson Avenue, Suite 2200 Lakewood, Colorado 80235 (303) 692-0369	
MESA RIDGE DEVELOPMENT	MASTER DEVELOPMENT DRAINAGE PLAN	HYDROLOGIC PROPOSED CONDITIONS SUB-BASIN MAP FOUNTAIN, COLORADO	
Project No Date: Design: Drawn: Check: Revisions	o.: 2 OCTOB SAB MTR SAB : MAY 20	1027 ER 12, 2021 D, 2022	
EX	HII	3IT 1	

SUMMARY OF DEVELOPED DESIGN P LOCATION DESIGN POINT C&S BASIN DB 1031 GLEN DETENTION OUTFLOW R1031 GLEN DETENTION CONVEYANCE DP1210 MESA RIDGE UPPER BASINS R1210 MESA RIDGE FLOWS INTO FSD G DP1225 CROSS CREEK AVENUE R1225 CONVEYANCE FSD G OUTFLOW DP1260 C&S ROAD DB1250B C&S ROAD FSD B OUTFLOW WEST FORK JIMMY CAMP CREEK BASIN DP3110 INLFOW FROM GLEN AND WIDEFIELD R3110 WEST FORK JIMY CAMP CREEK CONVE R3200 WEST FORK JIMY CAMP CREEK CONVE DP3280 MARCKSHEFFEL ROAD

1000

SCALE: 1"=500'

LEGEND

	PROJECT BOUNDARY
1250	DESIGN POINT
	MAJOR DRAINAGE BASIN BOUNDARY
	DRAINAGE SUBBASIN BOUNDARY
	100 YR FLOODPLAIN
	FLOW DIRECTION
	DRAINAGE CONVEYANCE

VICINITY MAP SCALE: NOT TO SCALE

OINT DISCHARGES (2-HOUR STORM WITH FSD)					
	DRAIN/ Acres	AGE AREA Square Miles	5 Year CFS	100 Year CFS	
	43	0.068	15	45	
	43	0.068	15	44	
	54	0.085	78	241	
	54	0.085	74	246	
	143	0.224	23	164	
	143	0.224	23	164	
	255	0.366	39	332	
	109	0.170	23	148	
	2161	3.376	429	2835	
/EYANCE	2161	3.376	428	2794	
/EYANCE	2210	3.454	429	2830	
	2392	3.738	435	2982	

Production Production Production Concord of the second	
MESA RIDGE DEVELOPMENT MASTER DEVELOPMENT DRAINAGE PLAN PROPOSED FACILITIES DESIGN FOUNTAIN, COLORADO	
Project No.:21027Date:OCTOBER 12, 2021Design:SABDrawn:MTRCheck:SAB	
Revisions: MAY 20, 2022	
EXHIBIT 2	

WEST FORK JIMMY CAMP CREEK CHANNEL EMBANKMENT DETIALS (PROVIDED FOR INFORMATION, REFER TO WEST FORK JIMMY CAMP CREEK DPBS)

GRASSLINED BANK DETAIL

OUBLE NETTED EROSION

MESA RIDGE EAST CONVEYANCE CHANNELS

-PROPOSED GRADE, TYP

6" THICK TOPSOIL LAYER, TYP.

—SOIL RIPRAP (65% RIPRAP/35% TOPSOIL MIX) OVER COMPACTED NATIVE SUBGRADE. LAYER THICKNESS SHALL BE 2xD₅₀.

SEED MIX

ţ	ols/acre
lrosum hirsuta oua curtipendula yron trachycaulum trachycaulu: yron smithii	2.0 3.0 2.0 4.0
	11.0 lbs

NO SCALE (FROM WEST FORK JIMMY CAMP CREEK DBPS)

