Reviewed by dsdgrimm 04/23/20195:56:30 PM

Final Drainage Report
Rocky Top Resources
Tract 7 Valley Garden Subdivision
1755 East Las Vegas
El Paso County, Colorado

Prepared for:
Rocky Top Resources
1755 East Las Vegas
Colorado Springs, Colorado 80903
719-579-9103

Prepared by:

1604 South 21st Street Colorado Springs, Colorado 80904 (719) 630-7342

Kiowa Project No. 17066 March 26, 2019

Table of Contents

	Page					
Table	f Contentsii					
Engine	er's Statementiii					
I.	General Location and Description					
II.	Previous Reports1					
III.	Hydrology3					
IV.	Hydraulic Calculations					
v.	Historic Drainage Patterns					
VI.	Site Drainage Plan					
VII.	Floodplain Statement					
VIII.	Grading and Erosion Control.					
IX.	Drainage and Bridge Fees					
X.	Economic Analysis					
XI.	Best Management Plan Selection					
List of	Tables Opinion of Cost — Public and Private Drainage Facilities10					
List of	Gaures					
Figure						
Figure :	Flood Insurance Rate Map8					
~ ~	lix A – Hydrologic Calculations lix B – Hydraulic Calculations					
Map P	ocket – Exhibit 1 Existing Drainage Plan					
	Exhibit 2 Proposed Drainage Plan and Facilities					

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Kiowa Engi	neering Corporation, 1604 South 21 st S	treet, Colorado S	Springs, Colorado 80904
	Richard N. Wray gistered Engineer #19310 shalf of Kiowa Engineering Corporation	Date	
Developer'	s Statement:		
I, the Develoreport and p	oper, have read and will comply with all lan.	ll of the requirem	ents specified in this drainage
BY:		Date	
Prin	ted		
ADDRESS:	Peterson Group, LLC 90 South Cascade Suite 1500 Colorado Springs, Colorado 80903		Should this be the owner of the property?
El Paso Co	unty:		
	ordance with the requirements of the Dy Engineering Criteria Manual and Land		
County 1	Jennifer Irvine, P.E. Engineer/ECM Administrator	Date	

I. General Location and Description of Project

The Rocky Top Resources project is a site development involving a portion of Tract 7 of the Garden Subdivision located in El Paso County, Colorado. The property subject to site development cover approximately 22 acres of the total 44.81 acres. Site development activities as proposed will not require that a re-plat be prepared however a rezone of the property is required.

ESQCP shows 29 acres.

The proposed site improvements will include grading, stormwater detention basin, office building, parking lot(s), onsite individual wastewater system (septic and leach field), landscaping and access driveways. The site presently operates as a waste wood, lawn waste and concrete recycling center. Recycled materials are used to make mulch, fine soil mulch and concrete base course. Approximately 22 acres of the parcel are not used for the active recycling and sales operations.

The site is a 44.8 -acre commercial recycling center site located at 1755 East Las Vegas in El Paso County, Colorado. The site is located within a portion of Sections 28 and 29, Township 14 South, Range 66 West of the 6th Principal Meridian, in Colorado Springs, Colorado. The El Paso County Assessor parcel number is 64291-01-029, 030 and 031. The parcel is legally described as Tract 7 in the Valley Gardens Subdivision. The location of the site is shown on the Vicinity Map (Figure 1). The site is bordered by East Las Vegas Street on the northeast, US Highway 24 Bypass right-of-way on the northwest, Spring Creek on the southeast and Fountain Creek on the southwest.

There are no public streets that will be constructed as part of the development of the site. Access off Las Vegas Avenue has already been designed as part of the City's Spring Creek/Royer Road/Las Vegas Street Roadway Design. The access is shown on the site development plan. A private full spectrum detention basin will be constructed and will be operated and maintained by the property owner and subject to a private detention basin maintenance agreement.

II. Previous Reports and References

The following reports and plans were reviewed agreement and O&M g this drainage report:

- 1) Spring Creek Road/Las Vegas Street Roadway Design Plan, prepared by Felsburg Holt and Ullevig, March 2018.
- 2) City of Colorado Springs and El Paso County Flood Insurance Study prepared by the Federal Emergency Management Agency, dated December 2018.
- 3) City of Colorado Springs and El Paso County Drainage Criteria Manual, most current versions, Volumes 1 and 2.
- 4) Soil Survey of El Paso County Area, Colorado, prepared by United States Department of Agriculture Soil Conservation Service, dated June 1981.

submit a maintenance

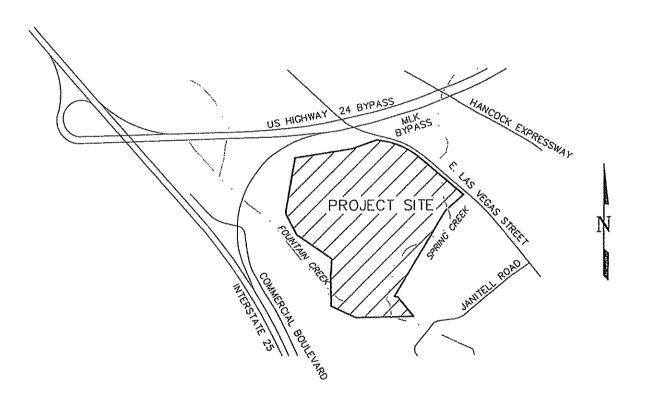


FIGURE 1 VICINITY MAP

Reference 1 was reviewed to assess whether any facilities shown on the design plans would impact the site development. The access off Las Vegas will be constructed as part of the City's roadway improvement project.

Reference 2 was reviewed in order to assess whether the regulatory floodplains for Spring Creek and Fountain Creek impact any of the proposed buildings or the recycling operation itself. As a result of this review, there will be no habitable structures that will be constructed within the 100-year floodplain, and all grading associated with the FSD and site improvements will occur within the 500-year or the 100-year flood fringe. There will be no encroachment of fill into the floodway of either Spring or Fountain Creek.

III. Hydrology

Existing Basin Description: Existing sub-basins have been delineated on Exhibit 1. Four existing condition sub-basins occur within the Rocky Top property. Approximately one-third of the property now drains to the Spring Creek floodplain and the remaining portion of the property drains to the Fountain Creek floodplain. The is only one area of offsite drainage that enters the property at the north boundary which is the slope to the US 24 Bypass on ramp.

Soils within portion of the property subject to the recycling operations are classified to be within Hydrologic Soils Groups (HSG) A and B as shown in the El Paso County Soils Survey. The predominant soil covering 85 percent of the recycling operation are identified as Ustic Torrifluvents (HSG B), that is a loamy soil that is well drained. Soil covering the remainder of the recycling operation is identified as Ellicott (HSG A), loamy coarse sand that is somewhat excessively drained. These soils have a moderate to high infiltration rate when thoroughly wet. These soils have a low to moderate hazard of erosion. The existing vegetation is mostly native grasses within the portion of the property that is not used for the recycling operation. Along the Springs Creek and Fountain Creek drainageways cottonwoods, native shrubs and invasive species such as Russian olive and Dutch elm. There will be no disturbance to these areas as part of the site improvements. Within the active areas of the recycling operations the vegetative cover is sparse and there are numerous haul roads and gravel access drives. Vegetative cover outside of the active area of the recycling operation is 85 percent. Within the operations areas vegetative cover is less than 10 percent. Ground slopes are less than 2 percent in the active operations areas.

Existing Basin Descriptions: Total drainage area estimated to discharge to Fountain Creek and Spring Creek 44.8 acres. Developed runoff from the active area of the recycling operations is now being controlled by a temporary storage bas located near the southwest corner of the property. There is no discharge of runoff from the active portion of the site. The descriptions below are for present development condition and the discharges are for the predevelopment condition.

Sub-basin A: This sub-basin is located at east corner of the property and discharges to the existing temporary storage basin located in sub-basin D. The colorant and colored mulch storage area operations is within this sub-basin. This sub-basin lies within portion of the 100-and 500-year floodplain of Spring Creek however the active portion associated with the colorant storage and processing lies outside of the 500-year floodplain. The colorant storage material is

stored on an existing concrete slab. The sub-basin covers 5.32 acres and has slopes of 1 to 2 percent. The estimated 5- and 100-year discharges are 2.5 and 16.9 cubic feet per second, respectively.

Sub-basin B: This sub-basin is located at south corner of the property and is a direct flow basin to Spring Creek. This sub-basin lies within portion of the 100- and 500-year floodplain of Spring Creek. There are no active operations associated with the recycling within this sub-basin. This sub-basin covers 7.51 acres and has slopes of 2 to 4 percent. The estimated 5- and 100-year discharges are 3.5 and 23.8 cubic feet per second, respectively for the predevelopment condition.

Sub-basin C: This sub-basin is located at south corner of the property and is a direct flow basin to Fountain Creek. This sub-basin lies within portion of the 100- and 500-year floodplain of Spring Creek. There are no active operations associated with the recycling within this sub-basin. This sub-basin covers 3.59 acres and has slopes of 1 to 2 percent. The estimated 5- and 100-year discharges are 1.7 and 11.4 cubic feet per second, respectively for the predevelopment condition.

Sub-basin D: This sub-basin covers the active areas of the recycling operations and discharges to the existing temporary storage basin located in sub-basin B. The retail office, waste concrete storage, waste concrete processing waste wood storage and yard waste storage and processing now existing in this sub-basin. This sub-basin lies within portion of the 500-year floodplain of Fountain Creek. The sub-basin covers 29.42 acres and has slopes of 1 to 2 percent. The estimated 5- and 100-year discharges are 6.9 and 57.2 cubic feet per second, respectively for the pre-development condition.

Proposed Basin Descriptions: Developed runoff from the active area of the recycling operations will be controlled by a proposed full spectrum detention basin. There will be no direct discharge to Spring or Fountain Creek other than from this sub-basin that lies outside of the active area of operations. The descriptions below are for the proposed development condition. The proposed condition sub-basins are shown on Exhibit 2.

Sub-basin 1: This sub-basin covers the active areas of the recycling operations and discharges to the existing temporary storage basin located in sub-basin B. The news retail office, parking area and access driveways, waste concrete storage, waste concrete processing waste wood storage and yard waste storage and processing now existing in this sub-basin. This sub-basin lies within portion of the 500-year floodplain of Fountain Creek. The sub-basin covers 30.45 acres and will have slopes of 1 to 2 percent. The estimated 5- and 100-year discharges are 43.8 and 98.7 cubic feet per second, respectively.

Sub-basin 2: This sub-basin is located at east corner of the property and is a direct flow basin to Spring Creek. This sub-basin lies within portion of the 100- and 500-year floodplain of Spring Creek. There will be no active operations associated with the recycling within this sub-basin. This sub-basin covers 1.4 acres and has slopes of 2 to 4 percent. The estimated 5- and 100-year discharges are .7 and 4.4 cubic feet per second, respectively.

Sub-basin 3: This sub-basin is located at southwest corner of the property and is a direct flow basin to Fountain Creek. This sub-basin lies within portion of the 100- and 500-year floodplain of Fountain Creek. There will be no active operations associated with the recycling within this sub-basin. This sub-basin covers 2.5 acres and has slopes of 2 to 4 percent. The estimated 5- and 100-year discharges are 1.2 and 7.9 cubic feet per second, respectively.

Sub-basin 4: This sub-basin is located at south corner of the property and is a direct flow basin to Fountain Creek. The Fountain Creek Greenway Trail passes through this sub-basin. This sub-basin lies within portion of the 100- and 500-year floodplain of Fountain Creek. There will be no active operations associated with the recycling within this sub-basin. This sub-basin covers 11.49 acres and has slopes of 2 to 5 percent. The estimated 5- and 100-year discharges are 3.6 and 23.6 cubic feet per second, respectively.

IV. Hydrology Calculations

Storm runoff for the site was estimated using the methods outlined in the City of Colorado Springs and El Paso County, Drainage Criteria Manual. Chapters 6 and 12 of DCM Volume 1 was used to assess the hydrologic characteristics of the site and for the design of the FSD. The topography for the site is presented with a one-foot contour interval at a horizontal scale of 1-inch to 100-feet. Exhibit 1 presents the existing drainage patterns for the area and Exhibit 2 presents the developed drainage patterns for the area, including the sub-basins and the corresponding flow rates. The flow rates for the sub-basins were estimated by using the Rational Method. The 5-year and 100-year recurrence intervals were determined. The calculations can be found within Appendix A of this report.

V. Hydraulic Calculations

The sizing of the onsite hydraulic structures was determined using the methods outlined in the City of Colorado Springs and El Paso County, Drainage Criteria Manual. The site will be drained primarily via sheet flow that is the collected within onsite swales and storm sewers. Runoff from the private street section will be collected using curb inlets and conveyed to the proposed FSD. Discharge from the FSD will be an existing swale that outfalls to the Spring Creek floodplain.

The capacities for proposed inlets and culverts were determined assuming inlet control, a 100-year storm and a maximum headwater to depth ratio of 1.2. The hydraulic capacities of the culverts were determined using the Urban Drainage and Flood Control District (UDFCD), UD-Culvert. The FSD outlet pipe is proposed to be reinforced concrete with flared-end section). The outlets of all culverts will be protected with riprap which will be sized to meet the outlet velocity condition at each culvert. The riprap at the outlet of all the culverts has been sized to withstand the forces attributable to the 100-year design discharge. Inlets were sized using the UDFCD's UD-INLET spreadsheets. Hydraulic calculations are contained within Appendix B.

The size of the proposed FSD was determined using UDFCD's UD-Detention spreadsheets. The required water quality capture volume (WQCV), excess urban runoff volume (EURV) and the 100-year storage volume were estimated for the proposed. Per El Paso County

GEC outlet detail shows a 30" pipe. Revise.

requirements, one-half of the WQCV was added to the 100-year storage volume. The FSD'S will be designed in accordance with the City of Colorado Springs DCM Volume 1, in combination with the VDFCD DCM Volumes 2 and 3. The FSD's will have a forebay(s), a low flow trickle channel and an outlet structure that will control the discharge of the WCQV, EURV and 100-year detention volume. Discharge from the FSD's during a 100-year inflow event will be limited to the rates of runoff for Hydrologic Soil Groups A and B. The FSD will have a forebay(s) with the required discharge rate and storage volume per Table T5 of Volume III of the UDFCD DCM. The FSD will concrete trickle channel(s) to carry the discharge from the forebay(s) to the principal outlet structure. The principal outlet structures will have perforated plates that will be designed to control the discharge of the WQCV and the EURV (stages 1 and 2). The 100-year discharge (stage 3), will be controlled to pre-development conditions using a 24-inch RCP with a restrictive orifice plate. An emergency spillway will be provided over the crest of the FSD's embankment sized to convey the maximum 100-year un-detained inflow from sub-basin 1 estimated at 98.7 cubic feet per second. Calculations supporting the design of the FSD's are contained in Appendix B.

Earthwork at the site of the FSD basins will be completed initially to provide for sediment storage during the period of construction and the outlet works blocked accordingly.

VI. Floodplain Statement

The GEC shows grading within a small portion of the 100-year floodplain. Revise.

The Floodplain Insurance Rate Map (FIRM) for El Paso County Flood Insurance Study (FIS) panel 0741G dated December 7, 2018 was reviewed to determine any potential regulatory floodplains within the property. The property is impacted by the 100-year and 500-year floodplains of Fountain and Spring creeks. Only a small portion of the active recycling operations lies within the 500-year floodplain. Grading will not occur within the 100-year floodway of Fountain or Spring creeks. The FSD will lie outside of the 100- and 500-year floodplains. FIRM panel 0741G is shown on Figure 2.

VII. Grading and Erosion Control

A portion is within the 500-year floodplain. Revise.

The primary earth disturbing activity within the Rocky Top site will result from the construction of the FSD, new office building, driveways and parking areas. Outside of the areas of new construction no grading proposed to occur. It is the property owner's responsibility to monitor the condition of the temporary erosion control features. Should any of the erosion control facilities come into disrepair prior to the establishment of the native or natural erosion control measures, the developer is responsible for the maintenance and any associated costs. The developer is also responsible for the clean-up of offsite areas affected by any excessive erosion that may leave the site. Control of erosion from areas disturbed by utility construction or home building will be the responsibility of the respective contractor. All erosion control measures shall be installed and maintained in accordance with Volume 2 of the City/County Drainage Criteria Manual. Final grading and erosion control plans will be provided within the design plans to be prepared for this project.

To obtain more detailed information in areas where Base Flood Elevations (BFE and/or flootways have been determined, users are encouraged to consult the Floot profiles and Floodway Data and/or Summary of Stillwater Elevations tables contains within the Flood Insurance Study (FiS) report that accompanies this FIRM. User within the Flood Insurance Study [Fis] report that accompanies that First, should be aware that BFEs shown on the FIRM represent rounded whole-foo elevations. These BFEs are intended for flood insurance rating purposes only anashould not be used as the sole source of flood deviation information. Accordingly flood elevation data presented in the FIS report should be ublized in conjunction will the FIRM for purposes of construction and/or flood/plain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North merican Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware coastal food elevations are also provided in the Summary of Silliviater Elevations in the Flood Insurance Situdy report for this jurisdiction. Elevations shown in the mary of Stillwater Elevations table should be used for construction and/or summary of Stillwater Elevations table should be used for construction and/or summary of Stillwater Elevations table should be used for construction and/or

Boundaries of the floodways were computed at cross sections and interpolate between cross sections. The floodways were based on hydraulic considerations wit regard to requirements of the National Flood Insurance Program. Floodway width and other pertinent floodway data are provided in the Flood Insurance Study report f

Certain areas not in Special Flood Hazard Areas may be protected by flood cont structures. Refer to section 2.4 "Flood Protection Measures" of the Flood insurar adv report for information on flood control structures for this jurisdiction

e projection used in the preparation of this map was Universal Transversi-reator (UTM) zone 13. The horizontal datum was NAD83, CRS80 spheroid ferences in datum, spheroid, projection or UTM zones zones used in the duction of FIRMs for adjacent jurisdictions may result in slight positional erences in map features across jurisdiction boundaries. These differences do not set the accuracy of this FIRMs.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (RAVD88). These Bood elevations must be compared to structure and round elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1938, visit the National Geodetic Survey website at http://www.ngs.nose.gov/ or contact the National Geodetic Survey at the following address:

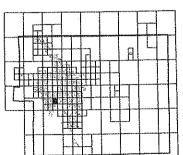
NGS Information Services NOAA, N/NGS12 ational Geodeti SMC-3, #9202

o obtain current elevation, description, and/or location information for beach movem on this map, please contact the Information Services Branch of the Nati eodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov

Base Map information shown on this FIRM was provided in digital format by El Pas County, Colorado Springs Utilidios, City of Fountain, Bureau of Land Managemen National Oceanic and Almospheric Administration, United States Geological Surve

This man referre more detailed and up-to-date stream channel co reations than those shown on the previous FIRM for this kins occupiant detineations than those shown on the previous rinklife it this presence, the floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As seatt, the Flood Profiles and Floodway Data tables in the Flood Insurance Study leport (which contains authoritative hydraufic data) may reflect stream channel stainances that drifter from what is shown on this map. The profile passelines depicted stainces that drifter from what is shown on this map. The profile passelines depicted the profile passelines of the profile stains of the profile passelines depicted the profile passelines of the profile passelines of the profile passelines depicted the profile passelines of the profile passelines of the profile passelines depicted the profile passelines of the profile passelines of the profile passelines depicted the profile passelines of the profile passelines of the profile passelines depicted the profile passelines of the profile passelines of the profile passelines depicted the profile passelines of the profile passelines of the profile passelines depicted the profile passelines of the profile passelines of the profile passelines depicted the profile passelines of the profile passelines of the profile passelines depicted the profile passelines of the astances that uner man what is shown of use may. The problem became opposed the food profile and Floodway Data Tables if applicable, in the FIS report. As a result, the profile arselines may devise significantly from the new base map channel representation.

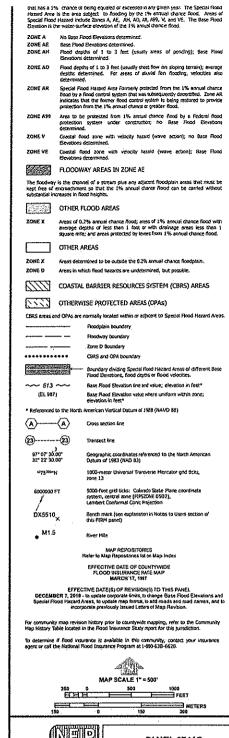
porate limits shown on this map are based on the best data available at the time publication. Because changes due to annexations or de-annexations may have curred after this map was published, map users should contact appropriate mmunity officials to verify current corporate limit locations.


asse refer to the separately printed Map Index for an overview map of the county sowing the layout of map panels; community map repository addresses; and a string of Communities table containing National Flood insurance Program dates for sch community as well as a listing of the panels on which each community is

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-338-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may obe reached by Fax at 1-800-358-3620 and its website at http://www.msc.fema.gov/.

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

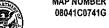
REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD DISURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION IMPORMATION


Pagel Location Mag

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management

It appears that this FIRM is from 1997. Please use the updated 2018 FIRM (<u>o</u>) (c) COLORADO SPRINGS OCKSHII WE STEVENS (O) ZONE AE ZONE AE TYOF (0) (5)5891 (T) / Spring Run SWOODY EVEY ZONE PROTECT SITE Fountain Creek CITY OF COLORADO SPRINGS 080069 CITY OF COLORADO SPRINGS EL PASO COUNTY EL PASO COUNTY UNINCORPORATED AREAS 089059 CITYOF COLORADO SPRINGS 080060 Additional Flood Hazard information and resources are

PANEL 0741G


FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 741 OF 1300

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

COMMUNITY

FIGURE Z

MAP NUMBER

Note: This is a duplicate page

requirements, one-half of the WQCV was added to the 100-year storage volume. The FSD'S will be designed in accordance with the City of Colorado Springs DCM Volume 1, in combination with the UDFCD DCM Volumes 2 and 3. The FSD's will have a forebay(s), a low flow trickle channel and an outlet structure that will control the discharge of the WCQV, EURV and 100-year detention volume. Discharge from the FSD's during a 100-year inflow event will be limited to the rates of runoff for Hydrologic Soil Groups A and B. The FSD will have a forebay(s) with the required discharge rate and storage volume per Table T5 of Volume III of the UDFCD DCM. The FSD will concrete trickle channel(s) to carry the discharge from the forebay(s) to the principal outlet structure. The principal outlet structures will have perforated plates that will be designed to control the discharge of the WQCV and the EURV (stages 1 and 2). The 100-year discharge (stage 3), will be controlled to pre-development conditions using a 24-inch RCP with a restrictive orifice plate. An emergency spillway will be provided over the crest of the FSD's embankment sized to convey the maximum 100-year un-detained inflow from sub-basin 1 estimated at 98.7 cubic feet per second. Calculations supporting the design of the FSD's are contained in Appendix B.

Earthwork at the site of the FSD basins will be completed initially to provide for sediment storage during the period of construction and the outlet works blocked accordingly.

VI. Floodplain Statement

The Floodplain Insurance Rate Map (FIRM) for El Paso County Flood Insurance Study (FIS) panel 0741G dated December 7, 2018 was reviewed to determine any potential regulatory floodplains within the property. The property is impacted by the 100-year and 500-year floodplains of Fountain and Spring creeks. Only a small portion of the active recycling operations lies within the 500-year floodplain. Grading will not occur within the 100-year floodway of Fountain or Spring creeks. The FSD will lie outside of the 100- and 500-year floodplains. FIRM panel 0741G is shown on Figure 2.

VII. Grading and Erosion Control

The primary earth disturbing activity within the Rocky Top site will result from the construction of the FSD, new office building, driveways and parking areas. Outside of the areas of new construction no grading proposed to occur. It is the property owner's responsibility to monitor the condition of the temporary erosion control features. Should any of the erosion control facilities come into disrepair prior to the establishment of the native or natural erosion control measures, the developer is responsible for the maintenance and any associated costs. The developer is also responsible for the clean-up of offsite areas affected by any excessive erosion that may leave the site. Control of erosion from areas disturbed by utility construction or home building will be the responsibility of the respective contractor. All erosion control measures shall be installed and maintained in accordance with Volume 2 of the City/County Drainage Criteria Manual. Final grading and erosion control plans will be provided within the design plans to be prepared for this project.

TABLE 1: TRACT 7 VALLEY GARDEN SUBDIVISION PRIVATE DRAINAGE IMPROVEMENT COST ESTIMATE KIOWA PROJECT NUMBER 17066

ITEM	UNIT COST	UNIT	QUANTITY	TOTAL

PRIVATE DRAINAGE FACILITIES				
EDB DETENTION (1)	\$35,000	AF	3	\$105,000
30-INCH RCP	\$94	LF	150	\$14,100
CDOT TYPE D INLET	\$3,908	EA	2	\$7,816
SUBTOTAL				\$126,916.00
CONTINGENCY (5 %)				\$6,345.80
ENGINEERING (10 %)				\$12,691.60
TOTAL			_	\$145,953.40

⁽¹⁾ PER ACRE FOOT UNIT COST INCLUDES, GRADING, OUTLET STRUCTURE AND OUTLET STORM SEWER, FOREBAY, CONCRETE TRICKLE CHNNEL AND EMERGENCY SPILLWAY

runoff volume (EURV) and the 100-year runoff volume. The FSD is design to operate as an extended detention basin (EDB). The discharge of the WQCV, EURV and the 100-year will be managed by means of a water quality outlet structure. The FSD will have a concrete trickle channel and forebay(s). The FSD has been designed to be on conformance with El Paso County engineering and drainage criteria.

Step 4: Industrial and Commercial BMP's

All chemical and fuels used in the recycling operations that are routinely stored on the site will have spill containment measure provided. A separate spill prevention and containment plan will be prepared by the operators of the facility. Access to the retail mulch, aggregate and soil drop-off and pickup are restricted to designated RAP driveways. Access to areas not part of the recycling operation is limited by the property owner by fencing and signage.

It appears that you are missing pages here. The other three steps of the Four Step Process are missing. Please include those steps.

Appendix A
Hydrologic Calculations
Runoff Coefficient Calculations
Time of Concentration Calculations
Runoff Calculations

KIOWA ENGINEERING CORPORATION

JOB Fred top Pararas

CALCULATED BY DATE 17 OGF

Provide the calculations for your initial flow time.

- Existing Conditions (Fre-development)

多业	Cs	6100	Kelle	1001
A B C	09	136	5.32 7.51 3.59 28.42	15 15 17.5
~	M	11		

1: 56 D T= 1/80 +10

L= 1350' T= 1350/180/+10 = 17.5 min

Runfall Intensity (Figure 6-5)

56 ¥	75	Tian
) W	5.2	8.8
B	5.2	8-8
<i>C.</i>	5.1	8.8
D	2.6	5.4
7		

Chapter 6 of City DCM Vol. 1, Section 3.2.4 Minimum Time of Concentration shows a minimum of 10 minutes for undeveloped areas and a minimum of 5 minutes for urbanized areas. This is not an urbanized area and should have a minimum time of 10 minutes.

(1) 5-6-borden 610 Ac; Te= 5 Him

SUB-WATERSHED RUNOFF CALCULATIONS PRE-DEVELOPMENT CONDITIONS

PROJECT: Rocky Top Resources

PROJECT NO:

17066

RATIONAL METHOD FORMULA: Q=CIA

SUB-BASIN	AREA	RUNOFF C	OEFFICIENTS	RAINFALI	LINTENSITY	RUNOFF	(CFS)
NO.	(AC)	C5	C100	15	1100	Q5	Q100
		······································	-	(INCH	ES/HR)		
Α	5.32	0.09	0.36	5.2	8.8	2.5	16.9
В	7.51	0.09	0.36	5.2	8.8	3.5	23.8
С	3.59	0.09	0.36	5.2	8.8	1.7	11.4
D	29.42	0.09	0.36	2.6	5.4	6.9	57.2

JOB Kady 100 Kesouvel Where is this located in the criteria? Chapter 6 of City DCM Vol. 1, Section 3.2.4 Minimum Time of Concentration shows a minimum of 10 minutes for DATE 3/10/19 CALCULATED BY undeveloped areas and a minimum of 5 minutes for CHECKED BY TOOK urbanized areas. Hydrology - Proposel Conditions Arcales) C5 Goo Telnin) ID I100 045.60 181 3.2 54 .09 34 5 5.2 8.8 150 2 .09 .36 5 52 8.8 2.50 .09 .34 153 3.45 5.T 11.49 Runote Coefficients : SB 1 50% of Ste: Light Industrial C5=.59 Goo:70 50% of Ste a poor to Fair grasses: C5= .30 C100= 50 SSHI WIN Fruits Cont. 5-4R (5= ,5(.59)+,30(.50)= .45 Cuon= ,5(-70)+.50 (-50)=.60 TC: 68 1: L= 1450 Tc= 1450/180+10= 18.1 5B4: L= 950 Tc= 950/190+10 = 15.3 Provide the calculations for your initial flow time. (1) Sub-having < 10Az: TE=5min

SUB-WATERSHED RUNOFF CALCULATIONS PROPOSED DEVELOPMENT CONDITIONS

PROJECT: Rocky Top Resources

PROJECT NO: 17066

RATIONAL METHOD FORMULA: Q=CIA

SUB-BASIN	AREA	RUNOFF C	OEFFICIENTS	RAINFALL	INTENSITY	RUNOFF	(CFS)
NO.	(AC)	C5	C100	15	1100	Q5	Q100
			***************************************	(INCH	ES/HR)		
1	30.45	0.45	0.6	3.2	5.4	43.8	98.7
2	1.4	0.09	0.36	5.2	8.8	0.7	4.4
3	2.5	0.09	0.36	5.2	8.8	1.2	7.9
4	11.49	0.09	0.36	3.45	5.7	3.6	23.6

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

Land Use or Surface	Percent Impervious	Runoff Coefficients											
Characteristics		2-year		5-year		10-year		25-үеаг		50-year		100-уеаг	
		HSG A&B	HSG C&D	HSG A&B	HSG C&O	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG CAD
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial	ļ		***************************************										
Light Areas	80	0.57	0,60	0.59	0.63	0.63	0.66	0.66	0.70	0,68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0,42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas	 									<u> </u>	ļ	<u> </u>	
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	80.0	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0,92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0,32	0,37	0,38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets	 										<u> </u>	<u> </u>	
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0,80	0.80	0.82	0.81	0.83
Lawns	1 - 3	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

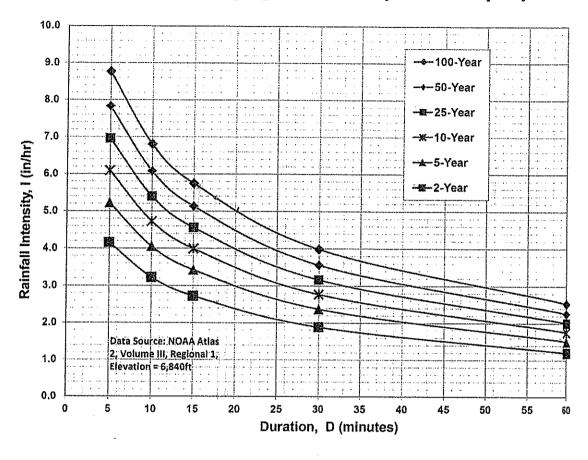


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations

$$I_{100} = -2.52 \ln(D) + 12.735$$

$$I_{50} = -2.25 \ln(D) + 11.375$$

$$I_{25} = -2.00 \ln(D) + 10.111$$

$$I_{10} = -1.75 \ln(D) + 8.847$$

$$I_5 = -1.50 \ln(D) + 7.583$$

$$I_2 = -1.19 \ln(D) + 6.035$$

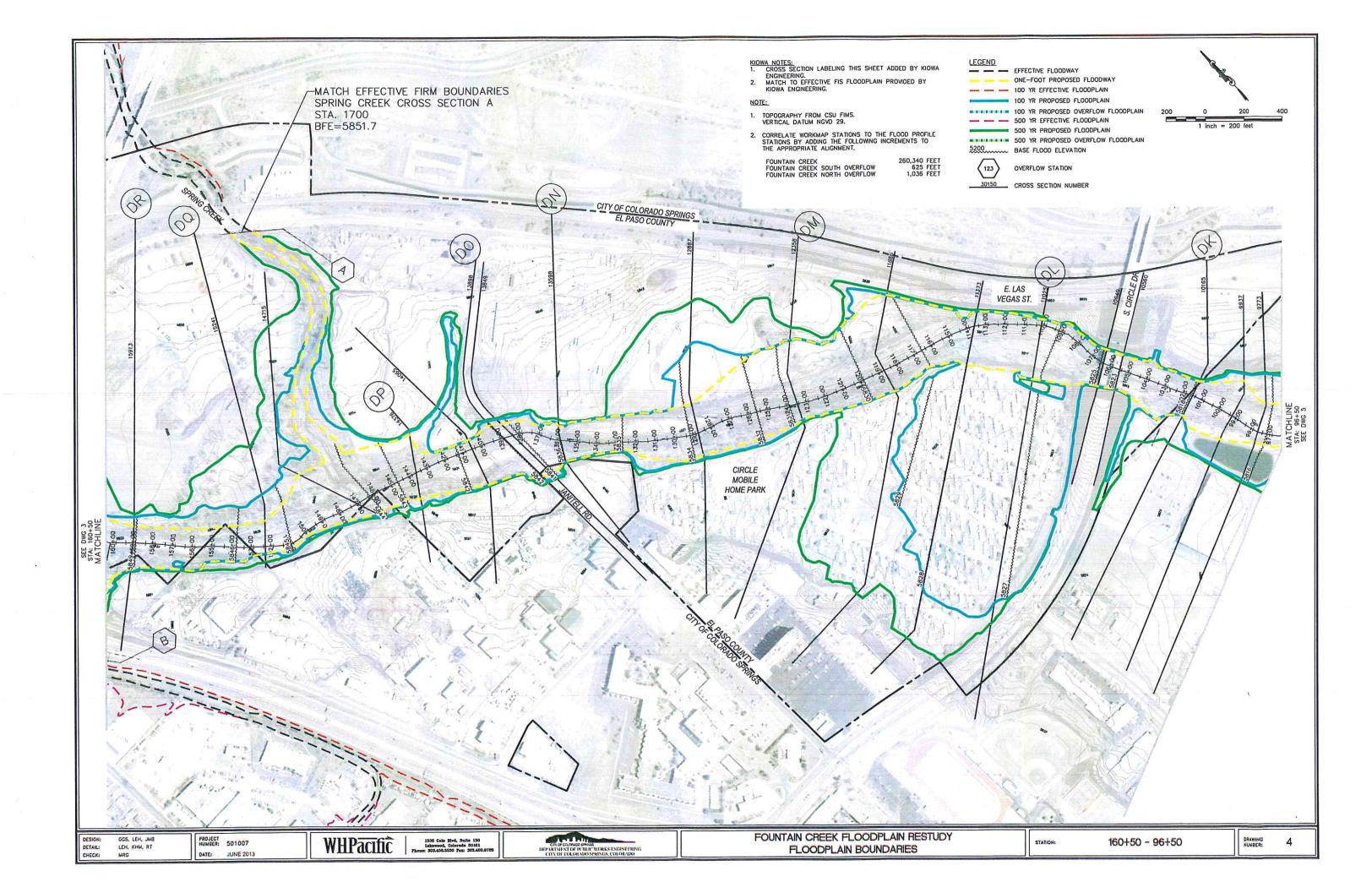

Note: Values calculated by equations may not precisely duplicate values read from figure.

Table 3. Summary of Discharges (Cont'd)

Flooding Source and Location	Drainage Area (Square Miles)	Peak 10-Year	Discharges (C 50-Year	Peak Discharges (Cubic Feet Per Second)	Second) 500-Year	
Sand Creek East Fork Subtributary At confluence with Sand Creek East Fork	5.92	610	1,480	1,970	3,800	
Sand Creek West Fork At confluence with Sand Creek ¹ Above Platte Avenue	5.17	3,459 3,510	4,727 5,490	5,162 6,810	5,542 9,600	•
Security Creek Upstream of confluence with Windmill Gulch	3.7	2,700	4,300	5,400	10,100	
South Shooks Run At confluence with Fountain Creek	7.82	2,640	4,230	5,570	8,000	
South Valley Dry Creek Above confluence with Dry Creek	0.15	7	7	162	229	
Spring Creek At confluence with Fountain Creek	6.7	096	1,790	2,340	4,340	
Spring Run At Interstate 25	3.63	068	1,350	1,660	2,340	
Sutherland Creek At confluence with Fountain Creek	5.09	1,810	3,400	4,700	7,500	
Templeton Gap Floodway At Academy Boulevard	2.49	2,820	4,180	5,040	6,800	
Approximately 2,300 feet above Academy Boulevard	2.14	2,440	3,610	4,340	5,850	

¹Discharges are reduced because of losses at Platte Avenue ²Data not available

Appendix B Hydraulic Calculations

FOUNTAIN CREETE

HEC-RAS Plan: FC_Mar 2013 (Continued)										FOULTK(
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chni	Flow Area	Top Width	Froude # Chi
	5,554,435.65	1 12 1 1 1 1 1 1 1	(cfs)	(ft)	(ft)	(n)	(ft)	(ft/fi)	(fl/s)	(sq ft)	(ft)	The sections of the section of
OF to SOF	17515	10 YR	7900.00	5851.04	5858.87	5856,39	5859.29	0.001224	5.45	2056.30		0.4
OF to SOF	17515	50 YR	14300,00	5851.04	5860.41	5858.45		0.001583	7.08	3105.49		0.4
IOF to SOF	17515	100 YR	18000.00	5851.04	5861.09	5859.11	5861.86	0.001760	7.86	3572.82	799.56	0.4
NOF to SOF	17515	500 YR	29079.86	5851,04	5852.76	5860.70	5863.89	0.002178	9.78	4716.88	821.45	0.5
NOF to SOF	17430	ngagan sa dan meninggal Ngagan sa dan meninggal	Bridge									
TOF III SOI	17430	27-15-1	Bildge	***********								
VOF to SOF	17374	10 YR	7900.00	5851.07	5858.11	5856,01	5858,43	0.001865	5.17	1915.74	658.32	0.4
VOF to SOF	17374	50 YR	14300.00	5851.07	5859.71	5857.84	5860.16	0,001866	6.18	2827.19	671.72	0.4
NOF to SOF	17374	100 YR	18000.00	5851.07	5860.42	5858.23	5860.96	0.001934	6.72	3237.50	677.85	0,4
NOF to SOF	17374	500 YR	29079.86	5851.07	5862.19	5859,43	5862.97	0.002097	8.05	4342.69	809.28	0.4
NOF to SOF	17342	10 YR	7900.00	5851.00	5857.63	5856.99	5858.28	0.003165	7,47	1641,44	576.51	0.9
VOF to SOF	17342	50 YR	14300.00	5851.00	5859.29	5858.15	5860.02	0.002925	8.49	2630.63	602.51	0.5
OF to SOF	17342	100 YR	18000.00	5851.00	5860.00	5858.68	5860.82	0.003005	9.14	3057.05	606.84	0.9
OF to SOF	17342	500 YR	29079.86	5851.00	5861.71	5859.98	5862.82	0.003265	10.81	4117.32		0.4
VOI 10 001	11,542	1000	20070.00	0001.00								
OF to SOF	17264	10 YR	7900.00	5849.90	5856.74	5856.74	5857.99	0.005437	10.07	1199.10	506.45	0.
IOF to SOF	17284	50 YR	14300.00	5849.90	5858.09	5858.09	5859.72	0.006205	12.31	1897.40	541.28	0.1
OF to SOF	17284	100 YR	18000.00	5849.90	5858.72	5858.72	5860.51	0.006367	13.21	2243.93	558.95	0.0
IOF to SOF	17284	500 YR	29079.86	5849.90	5860.20	5860.20	5862.47	0.006942	15.51	3103.63	504.52	0.
IOC COC	17000	10 00	7900.00	5846.00	5853.97	5852,49	5855.77	0.005717	10.77	733.68	201.62	0.1
OF to SOF	17250 17250	10 YR 50 YR	14300.00	5846.00	5856.59	5855.32	5858.54	0.005658	12.03	1622.20	492.72	0.
OF to SOF			18000.00	5846.00	5857.71	5857.40	5859.52	0.005049	12.03	2182.25	507.56	0.
IOF to SOF	17250 17250	100 YR 500 YR	29079.86	5846.00	5859.95	5859.16	5861.86	0.003049	13.25	3379.58		0.
tor to sor	11200	-WV (1)	2507 5.00	2040.00	5058.85	5050.10	5031.00	0.004070	.0.23	33, 0.00		
IOF to SOF	18973	10 YR	7900.00	5846.00	5851.63	5851.31	5853.27	0.015396	10.30	767.02	189.94	0.:
OF to SOF	16973	50 YR	14300.00	5846.00	5853.29	5853.23	5855.93	0.017802	13.03	1097.60	204.59	۵,
VOF to SOF	16973	100 YR	18000.00	5846.00	5854.49	5854.49	5857.21	0.015127	13.27	1408.15	333.23	O.
NOF to SOF	16973	500 YR	29079.86	5846.00	5856.95	5856.95	5859.86	0.011496	14.23	2407.92	451.67	0.
	5.1575 1175		2000.00	50 (5.00	50000	CO 10 00	5851.33	0.000070	5,71	1382.79	314.84	0.
OF to SOF	16872	10 YR	7900.00	5845.00	5850.82	5848.92	5853.66	0.002679 0.002734	6.85	2101.63	377.85	0.
OF to SOF	16672	50 YR	14300.00	5845.00	5852.93	5850.39	5854.67	0.002734	7.49	2476,43	459.04	0.
IOF to SOF	16672	100 YR 500 YR	18000.00 29079.86	5845.00 5845.00	5853.81 5856.15	5851,09 5852.95	5857,31	0.002847	8.76	3597.06	491.92	0.
OF 10 SOF	10072	300 th	28079.80	3042.00	3030.13	3002.00	200,100	5,002047	0.70	3337.00	751.52	
OF to SOF	16643	10 YR	7900.00	5845,00	5850.78	5848,99	5851.23	0,001953	5.51	1624.07	458.18	0
IOF to SOF	16643	50 YR	14300.00	5845.00	5852.95	5850.41	5853.50	0.001710	6.28	2739.78	581.51	0.
OF to SOF	16643	100 YR	18000.00	5845.00	5853.87	5851.06	5854.48	0.001700	6.72	3271.63	602.04	0.4
VOF to SOF	16643	500 YR	29079.86	5845.00	5856.29	5852.78	5857.04	0.001597	7.62	4721.54	627.38	0.4
NOF to SOF	16625		Bridge							-		
NOF to SOF	16607	10 YR	7900.00	5845.00	5850.64	5848.88	5851,01	0.004136	5.08	1618.90	476.35	0.
NOF to SOF	16607	50 YR	14300.00	5845.00	5852.83	5850.24	5853.24	0.002943	5.28	2795.29	569.97	0.
OF to SOF	16607	100 YR	18000.00	5845.00	5853,73	5850.82	5854.20	0.002701	5.58	3314.58	581.52	0.
IOF to SOF	16607	500 YR	29079.86	5845.00	5856,13	5852.26	5856.73	0.002267	6.29	4732.52	612.32	0.
OF to SOF	16560	10 YR	7900.00	5845,00	5848.89	5848.89	5850.40	0.008999	10,17	846,12	281.59	0.
OF to SOF	16560	50 YR	14300.00	5845,00	5850.45	5850.45	5852.52	0.008518	12.15	1341.66	357.77	0.
OF to SOF	16560	100 YR	18000.00	5845.00	5851.50	5851,35	5853.54	0.007024	12.23	1776.52	496.09	O.
OF to SOF	16560	500 YR	29079.86	5845.00	5855.14	5853.25	5856.42	0.002672	10.30	3826.99	591.11	0.
	Serpence (c	ergistrate-										
OF to SOF	16544	10 YR	7900.00	5843.00	5847.68	5847.68	5849.59	0.016934	11.09	712,37	236.42	1.
OF to SOF	16544	50 YR	14300.00	5843.00	5850.23	5849.59	5851.94	0.009038	10.78	1408.89	298.89	0.
OF to SOF	16544	100 YR	18000.00	5843.00	5851.74	5850.42	5853.28	0.006373	10.36 9.82	1948.21 3692.94	451.88	0.
IOF to SOF	16544	500 YR	29079.86	5843.00	5855.12	5852.77	5856,36	0,003454	9.62	3092.94	577.39	<u> </u>
OF to SOF	16431	10 YR	7900.00	5838.70	5847.05	5843.88	5847.80	0.002578	6.96	1135.11	175.60	0.
OF to SOF	16431	50 YR	14300.00	5838.70	5850.20	5846.25	5851.27	0.002542	8.39	1833.51	285.74	0.
OF to SOF	18431	100 YR	18000.00	5838.70	5851.55	5847.34	5852.76	0.002490	9,05	2254.68	358.75	0.
IOF to SOF	16431	500 YR	29079.86	5838.70	5854.67	5850.62	5856.04	0.002259	10.15	3850.74	813,49	0.
Mr	ADADA	140.00	7004 04	C644 A4	5846.06	5843.00	5847.07	0.003338	8.08	978.23	130.30	0.
IOF to SOF	16191 15191	10 YR 50 YR	7900.00 14300.00	5837.00 5837.00	5848.75	5845.73	5850.43	0.003338	10.48	1461.61	254.72	0.
OF to SOF	15191	100 YR	18000.00	5837.00	5850,04	5847.08	5851.93	0.004247	11,28	1843.06		0
OF to SOF	15191	500 YR	29079.86	5837.00	5853,45	5851.22	5855.34	0.903317	12.04	3334.51		0
		48,800,000										
lain DS	15913	10 YR	7900.00	5835.00	5844.97	5842.35	5846.03	0.004141	8,53	1069.94	208.30	0.
lain DS	15913	50 YR	14300.00	5835.00	5847.72	5845.41	5849.21	0.004125	10.40	1681.86	248.32	0.
lain DS	15913	100 YR	18000.00	5835.00	5849.07	5846.48	5850.73	0.004031	11.15	2032.61	270.62	0.
lain DS	15913	500 YR	29400.00	5835.00	5851.87	5849.32	5854.22	0.004519	13.64	2827.58	292.77	Q.
ole De	45544	10.75	7000.00	5831.00	5841.41	5839,00	5842,41	0.007213	8.05	990.11	169.57	. 0.
lain DS lain DS	15241 15241	10 YR 50 YR	7900.00 14300.00	5831.00	5844,12	5839.00	5845.64	0.007213	9,97	1503.65	223.98	0.
fain DS	15241	100 YR	18000.00	5831.00	5845,12	5842.64	5847.03	0.0078817	11.19	1749.88		0.
tein DS	15241	500 YR	29400.00	5831.00	5848,04	5846.29	5850.33	0.007578	12.79	2821.89	596.70	0.
	19154 675 CAUC	essione Male										
tain DS	14715	10 YR	7900.00	5828.82	5840.15	5835.08	5840.60	0.001749	5.50	1623.53	339.83	0.
lain DS	14715	50 YR	14300.00	5828.82	5843.37	5837.75	5843.84	0.001554	6.02	3079.64	513,41	0.

<u>१९८२</u>१९८ ४.८६

KIOWA ENGINEERING CORPORATION	SHEET NO.	2/10/10
	CALCULATED BY	DATE
	SCALE WO Colculato	ons
******************	6 F 115 x 3 3 3 3 1 1 2 3 3 3 3 3 3	* 1 2 7 4 5 5 7 4 1 7 4
hel .		i 3
Total kereage 44.8	ke	
Auto of Ather Recycley	operations = 30.	s A
Impervious turage		2/alus
- Consult pale:	Existing 3.38	3 Her 95
- Keen of blogs were be		90
- Bldg to	180min: 1500	-
	69005F = .1	64
- Concrete Priva		950
- Lasvegus A	10400 = 37V	
- Manapalein	1 10400	2
1 4000	16(50 = 37)	
- Recycled toph	N 80	44tc 80%
Total Tard (TSdqs: 7		
	1 5	0.04
Balance - piles, netice q	vasses papa-to-tai	23.1206
23.5	Ac	2. 1
3.1		
Wtd % Tup = (3.38+,37)	1.95 + .16(90) + 3.4	4(180)+ 23.5(130)
	30,5 kc	2 2
16 = 1		100%
	30-5 = .49 W	
Tuple= 3.38+.16+.37= 3.6	PLA FOR UD-T	retention
The state of the s		

D PRODUCT 207

Y

Table EDB-4. EDB component criteria

	On-Site EDBs for Watersheds up to 1 Impervious Acre ¹	EDBs with Watersheds between 1 and 2 Impervious Acres ¹	EDBs with Watersheds up to 5 Impervious Acres	EDBs with Watersheds over 5 Impervious Acres	EDBs with Watersheds over 20 Impervious Acres
Forebay Release and Configuration		Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch or berm/pipe ² configuration
Minimum Forebay Volume	EDBs should not be used for watersheds	1% of the WQCV	2% of the WQCV	3% of the WQCV	3% of the WQCV
Maximum Forebay Depth	with less than 1 impervious acre.	12 inches	18 inches	18 inches	30 inches
Trickle Channel Capacity	acre. ≥ the maximum possible forebay outlet capacity		≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay oullet capacity
Micropool		Area≥10 ft²	Area ≥ 10 ft²	Area≥10 ft²	Area ≥ 10 st²
Initial Surcharge Volume		Depth ≥ 4 inches	Depth ≥ 4 inches	Depth≥ 4 in. Volume≥ 0.3% WQCV	Depth ≥ 4 in. Volume≥ 0.3% WQCV

¹ EDBs are not recommended for sites with less than 2 impervious acres. Consider a sand filter or rain garden.

² Round up to the first standard pipe size (minimum 8 inches).

KIOW/A	ENGINEERING	CORPORATION
NIOVYA	LINGINEERING	CORPORATION

JOB Party Too Res	Source
SHEET NO.	of 17066
CALCULATED BY	DATE 30019
CHECKED BY	DATE CO
SCALE WATER QUELITY LE	65

To Toble EDB-4, UDFED Vol 3. Waterduck with over 5 imp. Acres (Includes RAF) Foreby Februare : 2% of Undertained Inflow Quadrational = 98.7 : Release = .02(98.7) = 2.0 of Foretry Volume \$.03(waar) = ,015kt = 632 d. Maximum Foretzy doth = 180 Trieble Church Cop: Z Foreby Release 2.0 ets Microppol Area > 1058 Intial Sundange 24", use 6 Yelone = 390(wocy) = .00145 = 63.2 +65

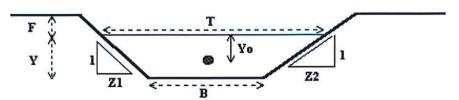
Rocky Top Resoruces Volume Calculation

Stage	Elevation	Area sq. ft.	Area Acres	Avg. Area	Increment	Incremental Volume	Cumulative Volume
0	49	0	0.00				
1	EΛ	4 477	0.10	0.05	1	0.05	0.05
1	50	4,477	0.10	0.29	1	0.29	0.34
2	51	20,885	0.48	0.20	·	0120	5.5 1
				0.52	1	0.52	0.86
3	52	24,510	0.56	0.61	1	0.61	1.47
4	53	28235	0.65	0.01	ı	1 0.0	1.41
,	•	20200	5.00	0.69	1	0.69	2.16
5	54	32060	0.74				
	c c	25007	0.00	0.78	1	0.78	2.94
6	55	35987	0.83	2.34	1	2.34	5.28
7	56	168000	3.86		•	A, V 1	A

Kiowa Corpor	Engineering ration	CLIENT ROPERT	ly Top	Resour	JOB NO DATE CH CHECKED	67066 ECKED	PAGE STORMS DATE STORMS COMPUTED BY
V				Roc	ty To	Storage PEDP.	
5							
L	t					, ,	
) 1	>	Lo	otiz t	1/2 we	c-1		7
* 2	2	FURLY.			7	•	
ı	<u> </u>			51.2	52	. 25	J-54.9
	41 50	5		52	53	- 54	55 59

.

			DETENTION B	3ASIN STAGE-STORAGE TABLE BUILDER	TORAGI	TABLE	SUILDER			Input	Input the optiona	Input the optional override data based on	OU
			a-an	UD-Detention, Version 3.07 (February 2017)	.07 (Febru	iary 2017)			Ļ	the a	the actually		
Project: Rocky Top Resources	ry Top Re	sonrces							1	dime	dimensions of the	of the	
Basin ID: FSD Design Drainage area 29.1 ac	Design D	ainage are	a 29.1 ac						+	puod —	pond in the GEC.	BEC.	
20NE 3 20NE 2 20NE 3		$\left(\right)$	/										
VOLUME EURY WOOT						•							
ZONE 1 AND 2	/"	ORIFICE	*	Depth Increment ≈	0.1	li li							
PODI. Example Zone Configuration (Retention Pond)	figuratio	n (Retenti	on Pond)	Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (#)	Area (ff^2)	Optional Override Area (ff^2)	Area (acre)	Volume (ff*3)	Volume (ac-ft)
Required Volume Calculation				Top of Micropool	0.00		11.2	11.2	126		0.003		
BMP Type =	EDB			NSI	0:50		11.2	11.2	126		0.003	62	0.001
Watershed Area = 3	30.45	acres			09.0		11.2	11.2	126		0.003	74	0.002
Watershed Length = 1	1,350	¥			0.70		11.2	11.2	126		0.003	87	0.002
Watershed Slope = 0	200	机			08.0		11.2	11.2	126		0.003	100	0.002
Watershed Imperviousness = 44	44.00%	percent			0.90		11.2	11.2	126		0.003	112	0.003
Percentage Hydrologic Soil Group A = 14	15.0%	percent			1.00		11.2	11.2	126		0.003	125	0.003
Percentage Hydrologic Soil Group B = 8	85.0%	percent			1.10		29.6	17.2	510		0.012	153	0.004
Percentage Hydrologic Soil Groups C/D =	%0.0	percent			1.20		50.0	23.9	1,195		0.027	236	0.005
Desired WQCV Drain Time =	40.0	hours		e.	1.30		70.4	30.6	2,152		0.049	401	0.009
Location for 1-hr Rainfall Depths = Denver - Capitol Building	ver - Capit	S Building			1.40		8.06	37.2	3,381		0,078	676	0.016
Water Quality Capture Volume (WQCV) = 0.	0.483	acre-feet	Optional User Override		1,50		111.2	43.9	4,882		0.112	1,086	0.025
Excess Urban Runoff Volume (EURV) = 1.	1.429	acre-feet	1-hr Precipitation		1.60		131.6	50.6	6,655		0.153	1,661	0.038
2-yr Runoff Volume (P1 = 1.19 in.) =	1.111	acre-feet	1.19 inches		1.70		152.0	57.2	8,699		0.200	2,426	0.056
5-yr Runoff Volume (P1 = 1.5 in.) = 1.	1.524	acre-feet	1.50 inches		1.80		172.4	63.9	11,016		0.253	3,410	0.078
	2.089	acre-feet	1.75 inches		1.90		192.8	70.6	13,605		0.312	4,639	0.106
25-yr Runoff Volume (P1 = 2 in.) =2.	2.991	acre-feet	2.00 inches		2.00		213.2	77.2	16,466		0.378	6,140	0.141
50-yr Runoff Volume (P1 = 2,25 in.) = 3.	3.648	acre-feet	2.25 inches	Floor	2.01		215.2	77.9	16,767		0.385	906,9	0,145
100-yr Runoff Volume (P1 = 2.52 in.) = 4.	4.499	acre-feet	2.52 inches		2.10		217.3	79.1	17,186		0.395	8,012	0.184
500-yr Runoff Volume (P1 = 3.2 in.) = 6.	6.381	acre-feet	3.20 inches		2.20		218.1	79.9	17,423		0.400	9,743	0.224
Approximate 2-yr Detention Volume =	1.040	acre-feet			2.30		218.9	80.7	17,662		0.405	11,497	0.264
Approximate 5-yr Detention Volume = 1.	1.432	acre-feet			2.40		219.7	81.5	17,903		0.411	13,275	0.305
Approximate 10-yr Detention Volume = 1	1.914	acre-feet			2.50		220.5	82.3	18,144		0.417	15,077	0.346
Approximate 25-yr Detention Volume = 2	2.148	acre-feet			2.60		221.3	83.1	18,387		0.422	16,904	0.388
		acre-feet			2.70		222.1	83.9	18,631		0.428	18,755	0.431
Approximate 100-yr Detention Volume = 2.	2.579	acre-feet			2.80		222.9	84.7	18,877		0.433	20,630	0.474
				Zone 1 (WQCV)	2.83		223.1	84.9	18,951		0.435	21,198	0.487


Stage-Storage Calculation

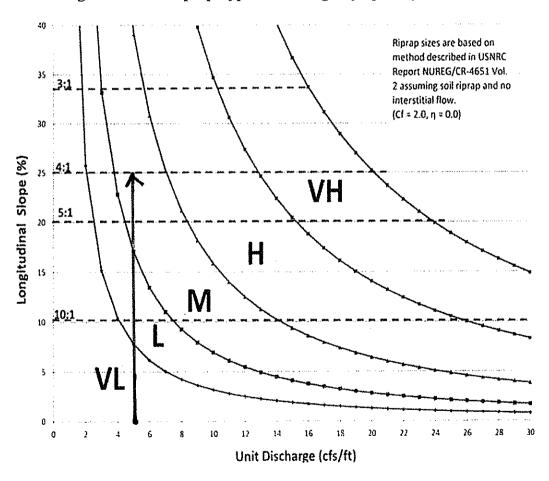
	8	Basin Length-to-Width Ratio (R _{L/w}) =
H:V	7	Slopes of Main Basin Sides (S _{main}) =
fr/ft	0.005	Slope of Trickle Channel (S_{TC}) =
#	0.50	Depth of Trickle Channel (H_{TC}) =
#	7.00	Total Available Detention Depth (H _{total}) =
=	0.50	Initial Surcharge Depth (ISD) =
ft^3	63	Initial Surcharge Volume (ISV) =
acre-feet	2.820	Total Detention Basin Volume =
acre-feet	1.392	Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =
acre-feet	0.946	Zone 2 Volume (EURV - Zone 1) =
acre-feet	0.483	Zone 1 Volume (WQCV) =

ft^2	#	#	#	4	_==	ft^2	ft^3	#	#	<u> </u>	ft^2	ft^3	acre-feet	
126	11.2	11.2	1.01	216.6	78.3	16,964	6,225	4.99	256.5	118.3	30,341	116,502	2.820	
Initial Surcharge Area (A _{ISV}) =	Surcharge Volume Length (L _{ISV}) =	Surcharge Volume Width (W _{ISV}) =	Depth of Basin Floor (H _{FLOOR}) =	Length of Basin Floor (L _{FLOOR}) =	Width of Basin Floor (W _{FLOOR}) =	Area of Basin Floor (A _{FLOOR}) =	Volume of Basin Floor (V _{FLOOR}) =	Depth of Main Basin (H _{MAIN}) =	Length of Main Basin (L _{MAIN}) =	Width of Main Basin (W _{MAIN}) =	Area of Main Basin (A _{MAIN}) =	Volume of Main Basin (V _{MAIN}) =	Calculated Total Basin Volume (V _{total}) =	

Critical Flow Analysis - Trapezoidal Channel

Project: 17066 Rocky Top Resources
Channel ID: Spillway design Q over spillway =100 cfs

Design Information (Input)	
Bottom Width	B = 20.00 ft
Left Side Slope	Z1 = 6.00 ft/ft
Right Side Slope	Z2 = 6.00 ft/ft
Design Discharge	Q = 102.00 cfs
Critical Flow Condition (Calculated)	
Critical Flow Depth	Y = 0.85 ft
Critical Flow Area	A =
Critical Top Width	T = 30.20 ft
Critical Hydraulic Depth	D = 0.71 ft
Critical Flow Velocity	V = 4.78 fps
Froude Number	Fr = 1.00
Critical Wetted Perimeter	P = 30.34 ft
Critical Hydraulic Radius	R = 0.70 ft
Critical (min) Specific Energy	Esc = 1.20 ft
Centroid on the Critical Flow Area	Yoc = 0.37 ft
Critical (min) Specific Force	Fsc = 1.44 kip


Topsoil Cover — Crest Width Varies

Emergency Overflow WSEL — 1' Min. Freeboard

Soil Riprap — >2.5

Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

* TYPE M SOLY RIPEAR

KIOWA ENGINEERING	CORPORATION
-------------------	-------------

esaares
OF
DATE 57019
DATE FEDAL

Type is lulet e entries to EDTS

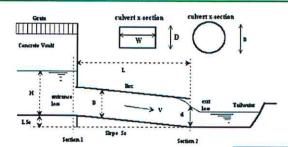
Acome 50ets (1/2 Quo to each inlet)

H= 35'x35' openig; std quete

Q=CBAJZGH C=.6; CB=.75 Q=.6(.75)JZg(2) (5.83) = 29.7cfs low

Tay Type Dinlet 35" x 80" = 19.4 st. Lovel grote: H= 1.5

Q=.6(75(19.4) \\Zq1.0) = 86c3c.:0k


use 30 Rel out: 8 52 deu. Q= 48 cfs

CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

Project: Rocky Top Resources

Basin ID: 30-inch RCP

Status:

Design Information (Input):

Circular Culvert: Barrel Diameter in Inches

Inlet Edge Type (choose from pull-down list)

OR:

Box Culvert: Barrel Height (Rise) in Feet

Barrel Width (Span) in Feet

Inlet Edge Type (choose from pull-down list)

Height (Rise) = ff Width (Span) = ff 1.5 : 1 Bevel w/ 45 Deg. Flared Wingwall

Number of Barrels

Inlet Elevation at Culvert Invert

Outlet Elevation at Culvert Invert OR Slope of Culvert (ft v./ft h.)

Culvert Length in Feet Manning's Roughness Bend Loss Coefficient Exit Loss Coefficient

No =	1	
Inlet Elev =	49.5	ft. elev.
Outlet Elev =	49	ft. elev.
L=	60	ft.
n =	0.012	
K _b =	0	
K _x =	1	

30

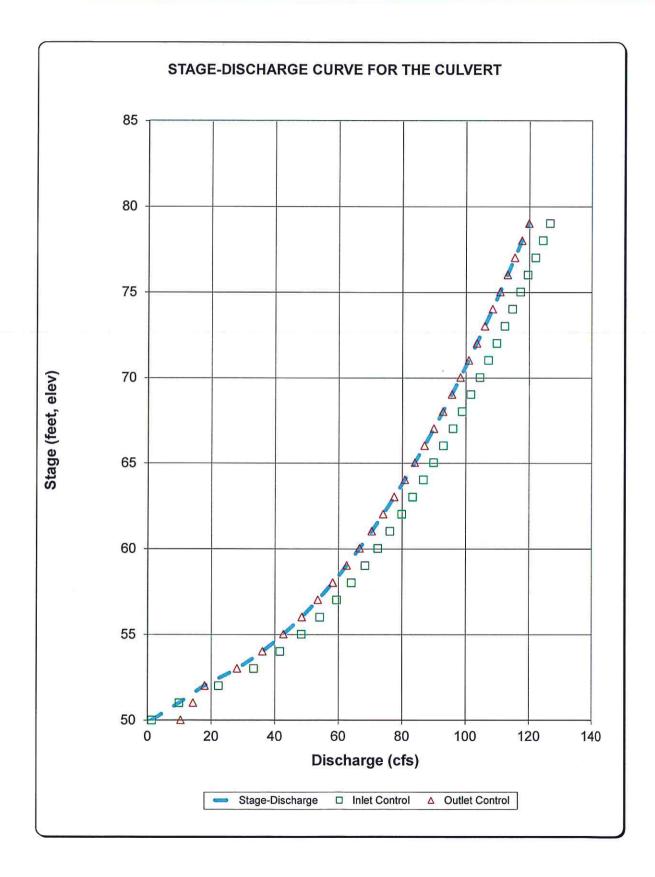
Square End with Headwall

inches

Design Information (calculated):

Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Loss Coefficients
Orifice Inlet Condition Coefficient
Minimum Energy Condition Coefficient

K _e =	0.50	
K _f =	0.47	
K _s =	1.97	
C _d =	0.85	
KE _{low} =	0.0152	

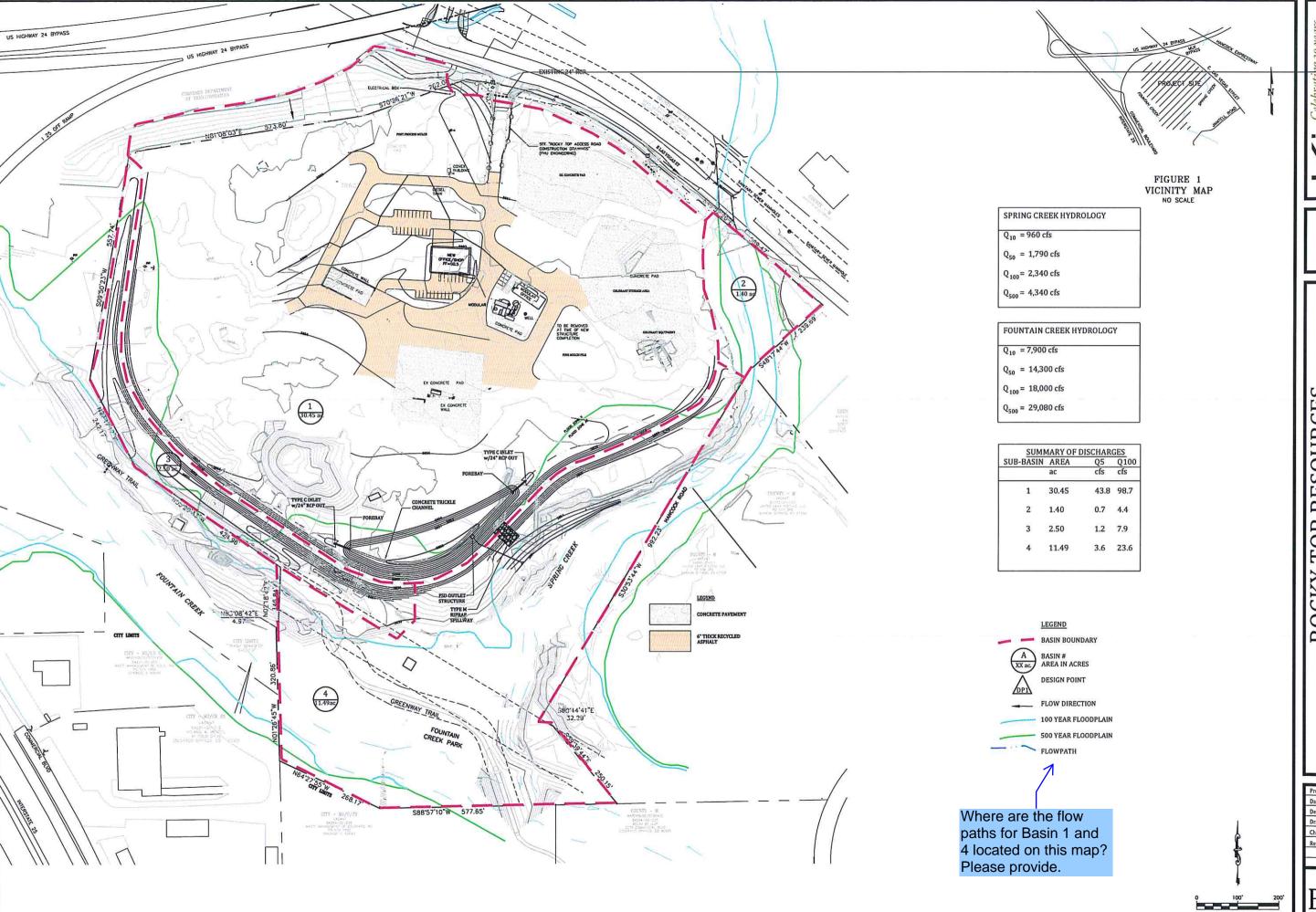

Calculations of Culvert Capacity (output):

Water Surface Elevation (ft., linked)	Tailwater Surface Elevation ft	Culvert Inlet-Control Flowrate cfs	Culvert Outlet-Control Flowrate cfs	Controlling Culvert Flowrate cfs (output)	Inlet Equation Used:	Flow Control Used
50.00	49.00	1.40	10.45	1.40	Min. Energy. Eqn.	INLET
51.00	49.00	10.00	14.34	10.00	Regression Eqn.	INLET
52.00	49.00	22.40	17.99	17.99	Regression Eqn.	OUTLET
53.00	49.00	33,40	28.17	28.17	Regression Eqn.	OUTLET
54.00	49.00	41.70	36.16	36.16	Regression Eqn.	OUTLET
55.00	49.00	48.40	42.77	42.77	Regression Eqn.	OUTLET
56.00	49.00	54.20	48.51	48.51	Regression Eqn.	OUTLET
57.00	49.00	59.50	53,63	53,63	Regression Eqn.	OUTLET
58.00	49.00	64.10	58.29	58.29	Orifice Eqn.	OUTLET
59.00	49.00	68.40	62.63	62.63	Orifice Eqn.	OUTLET
60.00	49.00	72.40	66.67	66.67	Orifice Eqn.	OUTLET
61.00	49.00	76.20	70.48	70.48	Orifice Eqn.	OUTLET
62.00	49.00	79.90	74.09	74.09	Orifice Eqn.	OUTLET
63.00	49.00	83.30	77.54	77.54	Orifice Eqn.	OUTLET
64.00		86.70	80.84	80.84	Orifice Eqn.	OUTLET
65.00		89.90	84.01	84.01	Orifice Eqn.	OUTLET
66.00		93.00	87.07	87.07	Orifice Eqn.	OUTLET
67.00		96.00	90.01	90.01	Orifice Eqn.	OUTLET
68.00		98.90	92.87	92.87	Orifice Eqn.	OUTLET
69.00		101.70	95.65	95.65	Orifice Eqn.	OUTLET
70.00		104.50	98.35	98.35	Orifice Eqn.	OUTLET
71.00		107.20	100.96	100.96	Orifice Eqn.	OUTLET
72.00		109.80	103.52	103.52	Orifice Eqn.	OUTLET
73.00		112.30	106.01	106.01	Orifice Eqn.	OUTLET
74.00		114.80	108.45	108.45	Orifice Eqn.	OUTLET
75.00		117.30	110.84	110.84	Orifice Eqn.	OUTLET
76.00		119.60	113.17	113.17	Orifice Eqn.	OUTLET
77.00		122.00	115.46	115.46	Orifice Eqn.	OUTLET
78.00		124.30	117.70	117.70	Orifice Eqn.	OUTLET
79.00		126.50	119.91	119.91	Orifice Egn.	OUTLET

Processing Time:

00.38 Seconds

Project: Rocky Top Resources
Basin ID: 30-inch RCP



TOP RESOURCES ROCKY TOP RESOURCES EXISTING DRAINAGE PLAN TRACT 7 GARDEN VALLEY SUBDIVISION 1755 EAST LAS VEGAS STREET COLORADO SPRINGS, COLORADO

Date: March 2019 Design: RNW Drawn: EAK Check: RNW EXH.

ROCKY TOP RESOURCES
PROPOSED DRAINAGE PLAN
TRACT 7 VALLEY GARDEN SUBDIVISION
1755 EAST LAS VEGAS STREET
COLORADO SPRINGS, COLORADO

Project No.: 17066

Date: March 2019

Design: RNW

Drawn: EAK

Check: RNW

Revisions:

EXH. 2

Markup Summary

dsdgrimm (18) Subject: Engineer Add PCD File No. PPR 1913 Page Label: 1 Lock: Locked Add PCD File No. PPR 1913 Author: dsdgrimm Date: 4/24/2019 1:39:04 PM Color: Subject: Reviewed By Page Label: 1 Lock: Locked Author: dsdgrimm Date: 4/24/2019 1:39:05 PM Color: Subject: Engineer Should this be the owner of the property? Page Label: 3 Lock: Locked Author: dsdgrimm Date: 4/24/2019 1:39:07 PM Color: Subject: Engineer ESQCP shows 29 acres. Page Label: 4 Lock: Locked Author: dsdgrimm Date: 4/24/2019 1:39:08 PM Color: cess is shown on the site development ructed and will be operated and maint Subject: Engineer submit a maintenance agreement and O&M Page Label: 4 Lock: Locked Author: dsdgrimm Date: 4/24/2019 1:39:09 PM Color: Subject: Engineer A portion is within the 500-year floodplain. Revise. Page Label: 9 Lock: Locked Author: dsdgrimm Date: 4/24/2019 1:39:14 PM Color: Subject: Engineer The GEC shows grading within a small portion of Page Label: 9 the 100-year floodplain. Revise. Lock: Locked Author: dsdgrimm Date: 4/24/2019 1:39:19 PM Color: ■

Subject: Engineer Page Label: 9 Lock: Locked Author: dsdgrimm

Date: 4/24/2019 1:39:20 PM

Color: ■

Subject: Engineer Page Label: 10 Lock: Locked

Author: dsdgrimm Date: 4/24/2019 1:39:21 PM

Color:

It appears that this FIRM is from 1997. Please use

GEC outlet detail shows a 30" pipe. Revise.

the updated 2018 FIRM.

Subject: Engineer Page Label: 11 Lock: Locked

Author: dsdgrimm Date: 4/24/2019 1:39:22 PM

Color:

Note: This is a duplicate page

Subject: Engineer Page Label: 13 Lock: Locked Author: dsdgrimm

Date: 4/24/2019 1:39:23 PM

Color:

It appears that you are missing pages here. The other three steps of the Four Step Process are missing. Please include those steps.

Subject: Engineer Page Label: 15 Lock: Locked Author: dsdgrimm

Date: 4/24/2019 1:39:26 PM

Color: ■

Where is this located in the criteria? Chapter 6 of City DCM Vol. 1, Section 3.2.4 Minimum Time of Concentration shows a minimum of 10 minutes for undeveloped areas and a minimum of 5 minutes for urbanized areas. This is not an urbanized area and should have a minimum time of 10 minutes.

Subject: Engineer Page Label: 15 Lock: Locked Author: dsdgrimm

Date: 4/24/2019 1:39:27 PM

Color:

Provide the calculations for your initial flow time.

Subject: Engineer Page Label: 17 Lock: Locked Author: dsdgrimm

Date: 4/24/2019 1:39:28 PM

Color:

Where is this located in the criteria? Chapter 6 of City DCM Vol. 1, Section 3.2.4 Minimum Time of Concentration shows a minimum of 10 minutes for undeveloped areas and a minimum of 5 minutes for urbanized areas.

Te= 1450/180 +10 = 18.1 Te= 956/180+10 = 15.3 Subject: Engineer Page Label: 17 Lock: Locked Author: dsdgrimm

Date: 4/24/2019 1:39:29 PM

Color:

Provide the calculations for your initial flow time.

Subject: Engineer Page Label: 30 Lock: Locked Author: dsdgrimm

Date: 4/24/2019 1:39:31 PM

Color:

Input the optional override data based on the

actually dimensions of the pond in the GEC.

Subject: Engineer Page Label: 30 Lock: Locked Author: dsdgrimm

Date: 4/24/2019 1:39:32 PM

Provide the UD Spreadsheet calculations for the outlet structure.

Color:

Subject: Engineer Page Label: 38 Lock: Locked Author: dsdgrimm

Date: 4/24/2019 1:39:33 PM

Color:

Where are the flow paths for Basin 1 and 4 located

on this map? Please provide.