# PRELIMINARY/FINAL DRAINAGE REPORT FOR PINE VIEW ESTATES

JUNE 2020

Prepared for:

Alice Owens 18430 Lost Ranger Road Peyton, CO 80831

Prepared By:

**ATAMOUN** ENGINEERING

321 W. Henrietta Ave, Suite A Woodland Park, CO 80863 719-426-2124

SP-20-004

PCD FILE NO's: SP-20-\_\_\_\_ SF-20-\_\_\_\_ SF-20-019

#### PRELIMINARY/FINAL DRAINAGE REPORT PINE VIEW ESTATES

#### **Engineer's Statement:**

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according the criteria established for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

#### **<u>Certification Statement:</u>**

This report and plan for the preliminary and final drainage design for the <u>PINE VIEW ESTATES</u> was prepared by me (or under my direct supervision) in accordance with the provisions of City of Colorado Springs/El Paso County Drainage Criteria Manual Volumes 1 and 2 Drainage Design and Technical Criteria for the owners thereof. I understand that El Paso County does not and will not assume liability for drainage facilities designed by others.

David L. Mijares, Colorado PE #40510 For and on behalf of Catamount Engineering Date

#### **Developer's Statement:**

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

<u>John Jennings</u> hereby certifies that the drainage facilities for <u>PINE VIEW ESTATES</u> shall be constructed according to the design presented in this report. I understand that El Paso County does not and will not assume liability for the drainage facilities designed and or certified by my engineer and that the El Paso County reviews drainage plans pursuant to Colorado Revised Statues, Title 30, Article 28; but cannot, on behalf of <u>PINE VIEW ESTATES</u>, guarantee that final drainage design review will absolve <u>ALICE OWENS</u> and/or their successors and/or assigns of future liability for improper design. I further understand that approval of the final plat does not imply approval of my engineer's drainage design.

| Alic         | e Owens                |
|--------------|------------------------|
| Business Nar | le                     |
| By:          |                        |
| Title:       |                        |
| Address:     | 18430 Lost Ranger Road |

Peyton, CO 80831

#### El Paso County:

Filed in accordance with the requirements of the El Paso County land Development Code and the Drainage Criteria manual Volumes 1 and 2, and the El Paso County Engineering Criteria Manual, latest revision.

Jennifer Irvine, PE County Engineer/ECM Administrator Date

Conditions:

### PRELIMINARY/FINAL DRAINAGE REPORT for PINE VIEW ESTATES

#### **PURPOSE**

The purpose of this drainage report is to identify existing drainage patterns, quantify developed storm water runoff, and establish outfall scenarios from the proposed development.

#### **GENERAL LOCATION AND DESCRIPTION**

The subject 38.828 acres consists of unplatted land to be developed into 7 rural residential lots (RR-5 zoning) located within the SW ¼ of the NW ¼ of Section 13, Township 11 South, Range 64 West of the 6<sup>th</sup> principal meridian in unincorporated El Paso County. The parcel is bounded to the north by unplatted land, to the east and south by platted RR-5 residential lots within Peyton Pines Filing No. 4, and to the west by unplatted agricultural land. Access to the parcel is from existing Red Barn Road to the east of the parcel, a gravel county local roadway.

The parcel is located on a ridge within the Bijou Creek drainage. The westerly portion of the parcel sheet flows west to an unnamed tributary of West Bijou Creek within the adjacent agriculturally zoned unplatted parcel at slopes between 2% and 6%. The southeasterly portion of the parcel sheet flows east to an unnamed tributary of West Bijou Creek within adjacent 5-acre residential parcels at slopes between 2% and 5%. The northeasterly portion of the parcel sheet flows north at slopes between 2% and 5% through a historic stock pond and continues north to an unnamed tributary of West Bijou Creek. The site is located within the Bijou Creek Basin.

Existing soils on the site consist of Brusset loam, hydrologic soil group B (86.8%), and Peyton -Pring complex, hydrologic soil group B (13.2%) as determined by the Natural Resources Conservation Service Web Soil Survey. The site is vegetated with native grasses. Moderate shrub and tree cover are evident and increases within the westerly portions of the site

No portion of the site lies within an F.E.M.A. designated floodplain per FIRM 08041C0350 G, effective December 07, 2018. A firmette exhibiting the parcel has been included in the appendix of this report.

#### **EXISTING DRAINAGE CONDITIONS**

No existing studies on the site or overall basin have been identified. The parcel exists on a minor ridge between two unnamed tributaries of West Bijou Creek generally draining to the north. Parcel was historically used for agricultural grazing and an existing minor stock pond exists within the northerly reach of Basin E1. The stock pond was not used in hydrologic calculations. As the parcel is located on a ridge between minor tributaries, no significant offsite runoff enters the parcel.

Basin E1 (11.5 Acres,  $Q_2=0.7$  cfs,  $Q_5=2.5$  cfs,  $Q_{10}=5.5$  cfs,  $Q_{25}=9.6$  cfs,  $Q_{50}=12.9$  cfs, and  $Q_{100}=16.7$  cfs) consists of that portion within the westerly portion of the parcel that sheetflow west to the westerly unnamed tributary of West Bijou Creek.

Basin E2 (12.47 Acres,  $Q_2=0.6$  cfs,  $Q_5=2.4$  cfs,  $Q_{10}=5.2$  cfs,  $Q_{25}=9.1$  cfs,  $Q_{50}=12.2$  cfs, and  $Q_{100}=15.9$  cfs) consists of the southeasterly portion of the parcel that sheet flows easterly to the easterly unnamed tributary of West Bijou Creek.

Basin E3 (14.77 Acres,  $Q_2=0.8$  cfs,  $Q_5=2.9$  cfs,  $Q_{10}=6.4$  cfs,  $Q_{25}=11.2$  cfs,  $Q_{50}=15.1$  cfs, and  $Q_{100}=19.6$  cfs) consists of the central and northerly portion of the parcel that flows northerly to the historic stock pond prior to release to the easterly unnamed tributary of West Bijou Creek.

### **DEVELOPED DRAINAGE BASINS**

The majority of the area within developed basins was modeled as agricultural land. A 1 acre developed area was assumed for each lot located in respective basins. Proposed roadway and shoulders were modeled as gravel where proposed.

Basin A1 (11.57 Acres,  $Q_2=1.1$  cfs,  $Q_5=3.3$  cfs,  $Q_{10}=6.6$  cfs,  $Q_{25}=11.0$  cfs,  $Q_{50}=14.7$  cfs, and  $Q_{100}=18.8$  cfs) represents portions of the proposed residential lots within the westerly portion of the parcel (Historic Basin E1). Runoff generated within the basin will sheetflow east in the historic pattern.

Basin A2 (14.42 Acres,  $Q_2=1.5$  cfs,  $Q_5=4.0$  cfs,  $Q_{10}=7.5$  cfs,  $Q_{25}=12.4$  cfs,  $Q_{50}=16.3$  cfs, and  $Q_{100}=20.8$  cfs) represents portions of the proposed residential lots and the southerly half of the proposed roadway within the southeasterly portion of the parcel (Historic Basin E2). Runoff generated within the basin will sheetflow north and be conveyed in the proposed roadside ditch easterly to the existing roadside ditch within the ROW of existing Red Barn Road. Runoff will be conveyed in the ditch to the easterly unnamed tributary of West Bijou Creek.

Basin A3 (11.34 Acres,  $Q_2=1.2$  cfs,  $Q_5=3.1$  cfs,  $Q_{10}=6.1$  cfs,  $Q_{25}=10.1$  cfs,  $Q_{50}=13.4$  cfs, and  $Q_{100}=17.1$  cfs) represents portions of the proposed residential lots and the westerly portion of the northern half of the proposed roadway within the central and northern portion of the parcel (Historic Basin E3). Runoff generated within the basin will sheetflow north to the existing stock pond within the northerly portion of the development. Runoff from Basin A3 will continue to the existing easterly reach of the unnamed tributary of West Bijou Creek.

Basin A4 (1.48 Acres, Q<sub>2</sub>=0.3 cfs, Q<sub>5</sub>=0.6 cfs, Q<sub>10</sub>=1.1 cfs, Q<sub>25</sub>=1.8 cfs, Q<sub>50</sub>=2.3 cfs, and Q<sub>100</sub>=2.9 cfs) represents portions of the proposed residential lots and the easterly portion of the northerly half of the proposed roadway within the easterly portion of the ROW and represents the portion of historic Basin E2 truncated by the proposed roadway. Runoff generated within the basin will sheetflow northeasterly to the unnamed easterly tributary of West Bijou Creek.

The rational methodology was utilized in analyzing on-site basins for development of on-site improvements. The minor increase in impervious area due to roadway and homesite development within the 38.83-acre subdivision would not substantially impact historic drainage

patterns. Detention is not typically pursued in rural development scenarios unless undetained upstream development would negatively affect the development. A significant portion of runoff generated within typical rural development does not flow directly into County stormwater systems, but leaves improved areas as sheetflow into undeveloped and vegetated portions of lots and infiltrates into the ground. The site was analyzed for Site-Level Low Impact Development (LID) Design Credit by Impervious Reduction Factor (IRF) exhibiting reductions from proposed building site, assuming a 5,000-sf impervious footprint per lot, and gravel roadways outfalling to substantial receiving pervious areas.

See Appendix for Calculations.

### WATER QUALITY/4-STEP PROCESS

The development addresses Low Impact Development strategies primarily through the utilization of large impervious areas and utilization of landscape swales receiving runoff generated within impervious roadways.

#### Step 1-Employ Runoff Reduction Practices

Impervious areas generated within the development will flow across pervious disconnected areas prior to offsite discharge. Runoff generated within roadway improvements will be directed to grassed roadside ditches and conveyed to grassed channels no curb or storm sewer improvements are proposed with the development.

#### Step2-Stabilize Drainageway

Proposed channel improvements are designed at sizes and grades allowing development as grass lined swales rather than hard-sided improvements. The unnamed tributaries of West Bijou Creek adjacent to the project are not directly adjacent to the parcel and reduced runoff due to substantial conveyance across both onsite and offsite pervious area at relatively flat grades will mitigate minor increases in impervious area with 5-acre lot development prior to affecting the drainageways.

#### Step3-Provide Water Quality Capture Volume

Permanent water quality facility is not proposed for development of 5 acre lots per the requirements of El Paso County Engineering Criteria Manual Section I.7.1B. Runoff reduction (IRF) indicates effective site imperviousness of 0.7%.

#### Step4-Consider Need for Industrial and Commercial BMP's

A Grading, Erosion Control, and Stormwater Quality Plan and narrative have been submitted concurrently for the development and will be subject to county approval prior to any soil disturbance. The erosion control plan included specific source control BMP's as well as defined overall site management practices for the construction period. No industrial or Commercial density development is proposed.

### COST ESTIMATE

No drainage improvements are proposed with development of 5-acre residential lots.

### **DRAINAGE FEE CALCULATION**

The development proposes to plat 38.828 acres within El Paso County, all contained within the Bijou Creek Drainage Basin. The Bijou Creek Drainage Basin has not been studied and no drainage or bridge fees have been adopted.

### **DRAINAGE METHODOLOGY**

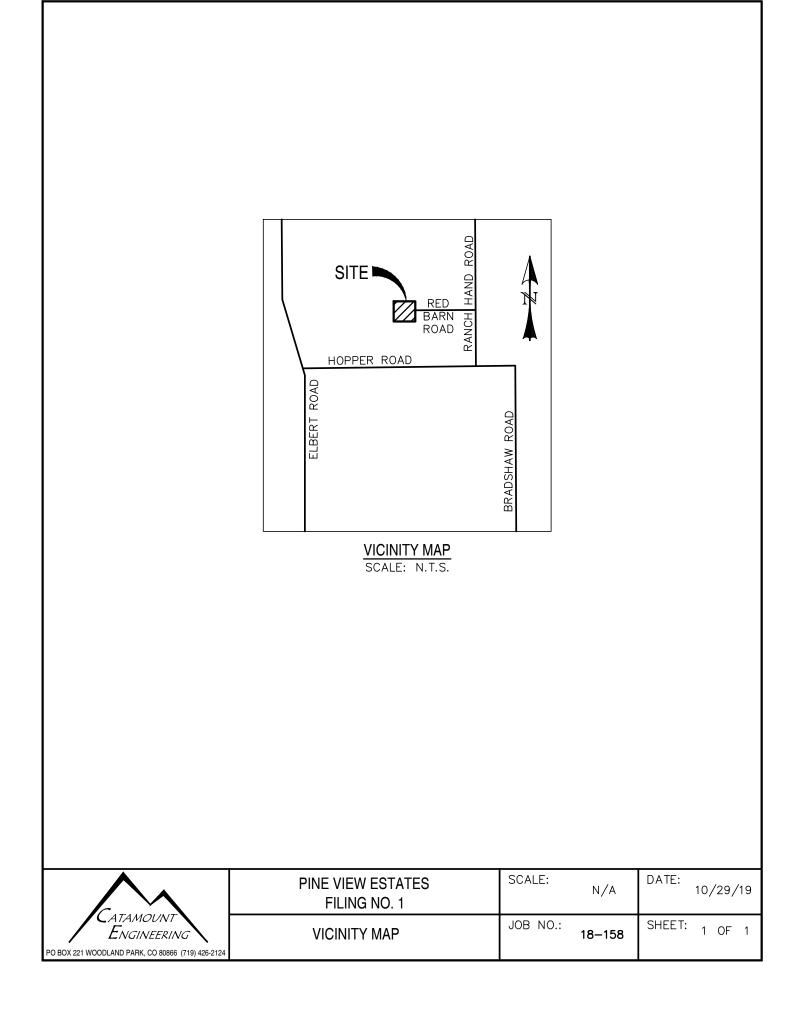
This drainage report was prepared in accordance to the criteria established in the El Paso County Drainage Criteria Manual Volumes 1 and 2, as revised May 2014.

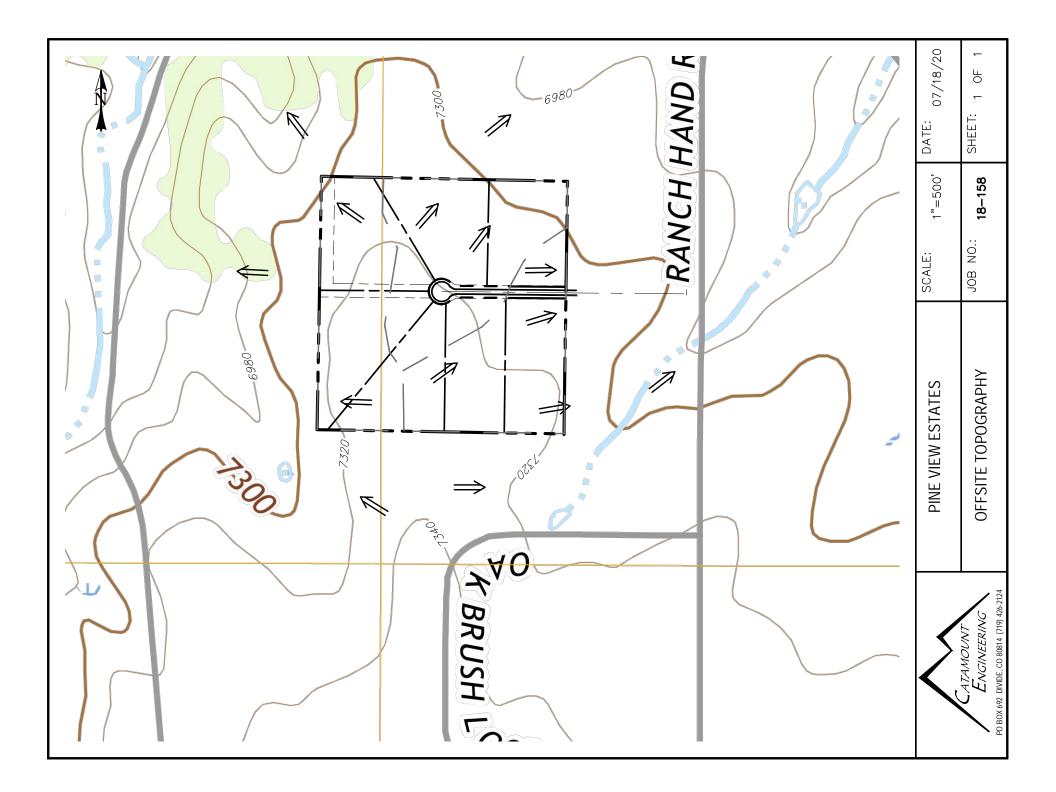
The rational method for drainage basin study areas of less than 100 acres was utilized in the onsite analysis. For the Rational Method, flows were calculated for the 2, 5, 10, 25, 50, and 100year recurrence intervals. The average runoff coefficients, 'C' values, are taken from Table 6-6 and the Intensity-Duration-Frequency curves are taken from Figure 6-5 of the City Drainage Criteria Manual. Time of concentration for overland flow and storm drain or gutter flow are calculated per Section 3.2 of the City Drainage Criteria Manual. Calculations for the Rational Method are shown in the Appendix of this report.

#### **SUMMARY**

The Pine View Estates development consists of large lot development with minor increases in impervious areas consistent with surrounding development. The development will not adversely affect downstream properties or facilities.

### **REFERENCES:**

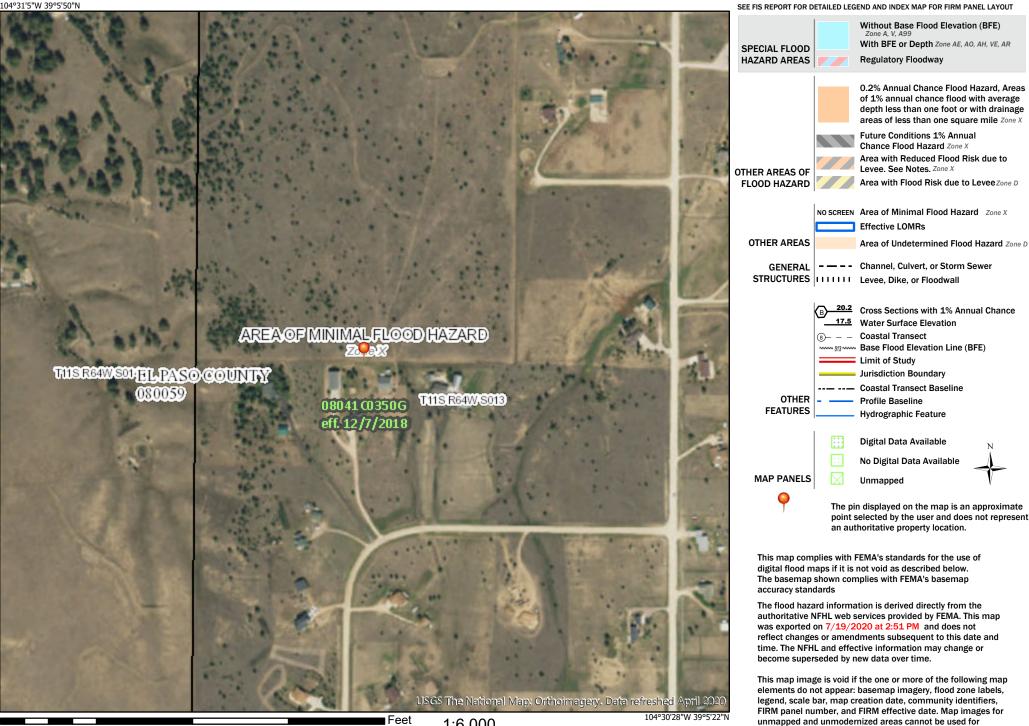

County of El Paso Drainage Criteria Manual Volumes 1 and 2, revised May 2014


Flood Insurance rate map 08041C00350 G, December 07. 2018

Natural Resources Conservation Service Web Soil Survey

## APPENDIX

## PROPOSED HYDROLOGY






# National Flood Hazard Layer FIRMette



#### Legend



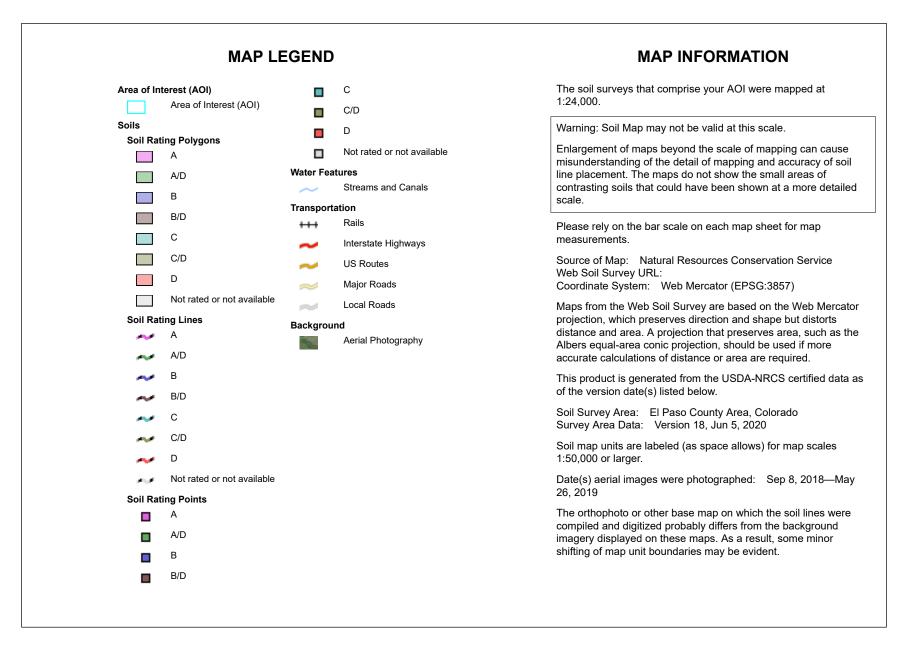
250


500

1,000

1,500

1:6,000 2,000


regulatory purposes.



USDA Natural Resources

**Conservation Service** 

Web Soil Survey National Cooperative Soil Survey





## Hydrologic Soil Group

| Map unit symbol          | Map unit name                                   | Rating | Acres in AOI | Percent of AOI |
|--------------------------|-------------------------------------------------|--------|--------------|----------------|
| 14                       | Brussett loam, 1 to 3 percent slopes            | В      | 19.7         | 54.5%          |
| 15                       | Brussett loam, 3 to 5 percent slopes            | В      | 11.7         | 32.3%          |
| 67                       | Peyton sandy loam, 5 to<br>9 percent slopes     | В      | 0.0          | 0.0%           |
| 68                       | Peyton-Pring complex, 3<br>to 8 percent slopes  | В      | 0.3          | 0.7%           |
| 69                       | Peyton-Pring complex, 8<br>to 15 percent slopes | В      | 4.5          | 12.4%          |
| Totals for Area of Inter | rest                                            | 1      | 36.2         | 100.0%         |

## Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

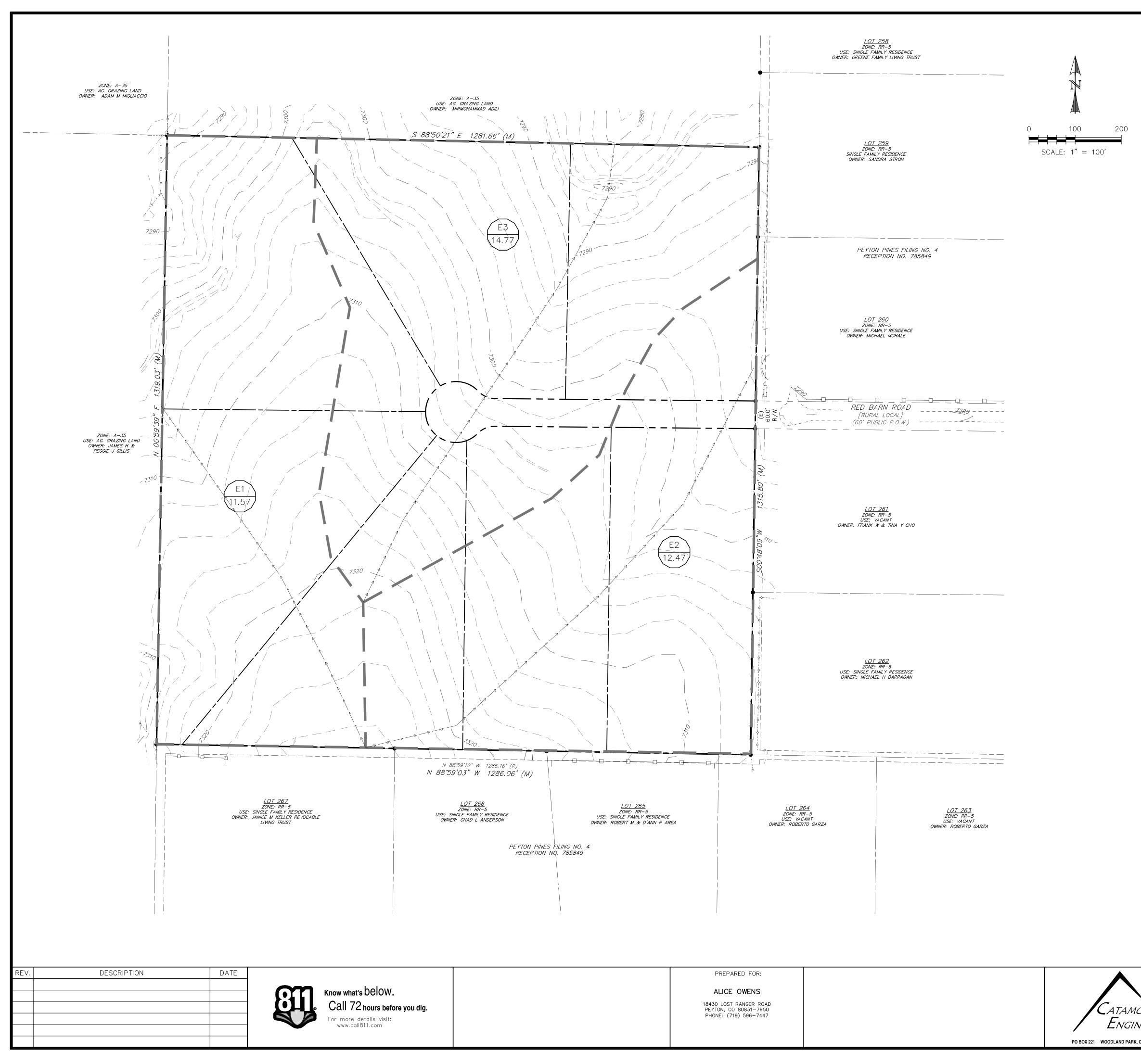
### **Rating Options**

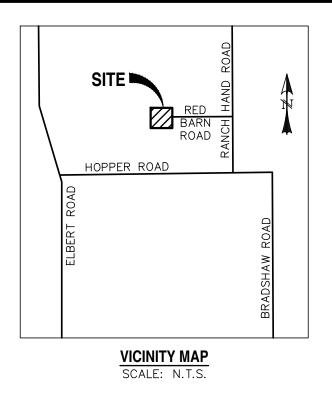
Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher Only next page is existing. The page after that is Proposed. Please revise to clarify EXISTING HYDROLOGY

|                   |               |                |                |                 |                 |                 |                  |        |               |       |        | CO     | NVEY | ANCE  | тс       |       | TT    |                |                | INTEN           | SITY            |                 |                  |                       | Т   | OTAL            | FLOW            | S               |                  |
|-------------------|---------------|----------------|----------------|-----------------|-----------------|-----------------|------------------|--------|---------------|-------|--------|--------|------|-------|----------|-------|-------|----------------|----------------|-----------------|-----------------|-----------------|------------------|-----------------------|-----|-----------------|-----------------|-----------------|------------------|
| BASIN             | AREA<br>TOTAL | C <sub>2</sub> | C <sub>5</sub> | C <sub>10</sub> | C <sub>25</sub> | C <sub>50</sub> | C <sub>100</sub> | Length | Height        | TI    | Length | Height | Cv   | Slope | Velocity | тс    | TOTAL | I <sub>2</sub> | I <sub>5</sub> | I <sub>10</sub> | I <sub>25</sub> | I <sub>50</sub> | I <sub>100</sub> | <b>Q</b> <sub>2</sub> | Q5  | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub> | Q <sub>100</sub> |
|                   | (Acres)       |                |                |                 |                 |                 |                  | (ft)   | ( <b>ft</b> ) | (min) | (ft)   | (ft)   |      |       | (fps)    | (min) | (min) | (in/hr)        | (in/hr)        | (in/hr)         | (in/hr)         | (in/hr)         | (in/hr)          | (c.f.s.)              |     |                 | (c.f.s.)        | (c.f.s.)        | (c.f.s.)         |
| E1<br>AGRICULTURE | 11.57         | 0.03           | 0.09           | 0.17            | 0.26            | 0.31            | 0.36             | 200    | 4             | 21.7  | 664    | 32     | 5    | 4.8%  | 1.1      | 10.1  | 31.8  | 1.9            | 2.4            | 2.8             | 3.2             | 3.6             | 4.0              | 0.7                   | 2.5 | 5.5             | 9.6             | 12.9            | 16.7             |
| E2<br>AGRICULTURE | 12.47         | 0.03           | 0.09           | 0.17            | 0.26            | 0.31            | 0.36             | 200    | 8             | 17.3  | 1019   | 26     | 5    | 2.6%  | 0.8      | 21.3  | 38.6  | 1.7            | 2.1            | 2.5             | 2.8             | 3.2             | 3.5              | 0.6                   | 2.4 | 5.2             | 9.1             | 12.2            | 15.9             |
| E3<br>ACRICULTURE | 14.77         | 0.03           | 0.09           | 0.17            | 0.26            | 0.31            | 0.36             | 200    | 5             | 20.2  | 943    | 36     | 5    | 3.8%  | 1.0      | 16.1  | 36.3  | 1.8            | 2.2            | 2.6             | 2.9             | 3.3             | 3.7              | 0.8                   | 2.9 | 6.4             | 11.2            | 15.1            | 19.6             |
|                   |               |                |                |                 |                 |                 |                  |        |               |       |        |        |      |       |          |       |       |                |                |                 |                 |                 |                  |                       |     |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |               |       |        |        |      |       |          |       |       |                |                |                 |                 |                 |                  |                       |     |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |               |       |        |        |      |       |          |       |       |                |                |                 |                 |                 |                  |                       |     |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |               |       |        |        |      |       |          |       |       |                |                |                 |                 |                 |                  |                       |     |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |               |       |        |        |      |       |          |       |       |                |                |                 |                 |                 |                  |                       |     |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |               |       |        |        |      |       |          |       |       |                |                |                 |                 |                 |                  |                       |     |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |               |       |        |        |      |       |          |       |       |                |                |                 |                 |                 |                  |                       |     |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |               |       |        |        |      |       |          |       |       |                |                |                 |                 |                 |                  |                       |     |                 |                 |                 |                  |

Calculated by: DLM Date: 7/16/2020

|                   |               |                |                |                 |                 |                 |                  |        |        |       |        | CO     | NVEY | ANCE  | гс       |       | TT    |         |                | INTEN           | SITY            |                 |                  | TOTAL FLOWS           |          |                 |                 |                 |                  |
|-------------------|---------------|----------------|----------------|-----------------|-----------------|-----------------|------------------|--------|--------|-------|--------|--------|------|-------|----------|-------|-------|---------|----------------|-----------------|-----------------|-----------------|------------------|-----------------------|----------|-----------------|-----------------|-----------------|------------------|
| BASIN             | AREA<br>TOTAL | C <sub>2</sub> | C <sub>5</sub> | C <sub>10</sub> | C <sub>25</sub> | C <sub>50</sub> | C <sub>100</sub> | Length | Height | TI    | Length | Height | Cv   | Slope | Velocity | тс    | TOTAL | $I_2$   | I <sub>5</sub> | I <sub>10</sub> | I <sub>25</sub> | I <sub>50</sub> | I <sub>100</sub> | <b>Q</b> <sub>2</sub> | Q5       | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub> | Q <sub>100</sub> |
|                   | (Acres)       |                |                |                 |                 |                 |                  | (ft)   | (ft)   | (min) | (ft)   | (ft)   |      | (%)   | (fps)    | (min) | (min) | (in/hr) | (in/hr)        | (in/hr)         | (in/hr)         | (in/hr)         | (in/hr)          | (c.f.s.)              | (c.f.s.) | (c.f.s.)        | (c.f.s.)        | (c.f.s.)        | (c.f.s.)         |
| A1                | 11.57         | 0.05           | 0.11           | 0.19            | 0.28            | 0.33            | 0.37             | 100    | 2      | 15.1  | 764    | 31     | 5    | 4.1%  | 1.0      | 12.6  | 27.8  | 2.1     | 2.6            | 3.0             | 3.5             | 3.9             | 4.4              | 1.1                   | 3.3      | 6.6             | 11.0            | 14.7            | 18.8             |
| RESIDENTIAL       | 2.00          | 0.12           | 0.20           | 0.27            | 0.35            | 0.40            | 0.44             |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
| AGRICULTURE       | 9.57          | 0.03           | 0.09           | 0.17            | 0.26            | 0.31            | 0.36             |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
| A2                | 14.42         | 0.06           | 0.12           | 0.20            | 0.29            | 0.34            | 0.38             | 100    | 4      | 11.9  | 1041   | 23     | 5    | 2.2%  | 0.7      | 23.3  | 35.2  | 1.8     | 2.2            | 2.6             | 3.0             | 3.4             | 3.8              | 1.5                   | 4.0      | 7.5             | 12.4            | 16.3            | 20.8             |
| RESIDENTIAL       | 3.00          | 0.12           | 0.20           | 0.27            | 0.35            | 0.40            | 0.44             |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
| GRAVEL            | 0.29          | 0.57           | 0.59           | 0.63            | 0.66            | 0.68            | 0.70             |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
| AGRICULTURE       | 11.13         | 0.03           | 0.09           | 0.17            | 0.26            | 0.31            | 0.36             | 100    | 2      | 15.0  | 074    | 25     | ~    | 2.60/ | 0.0      | 17.1  | 22.1  | 1.0     | 2.4            | 2.0             | 2.2             | 2.6             | 1.0              | 1.0                   | 2.1      | (1              | 10.1            | 12.4            | 17.1             |
| A3<br>RESIDENTIAL | 11.34<br>1.75 | 0.05<br>0.12   | 0.12<br>0.20   | 0.19<br>0.27    | 0.28<br>0.35    | 0.33<br>0.40    | 0.38<br>0.44     | 100    | 2      | 15.0  | 974    | 35     | 5    | 3.6%  | 0.9      | 17.1  | 32.1  | 1.9     | 2.4            | 2.8             | 3.2             | 3.6             | 4.0              | 1.2                   | 3.1      | 6.1             | 10.1            | 13.4            | 17.1             |
| GRAVEL            | 0.22          | 0.12           | 0.20           | 0.27            | 0.55            | 0.40            | 0.44             |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
| AGRICULTURE       | 9.37          | 0.03           | 0.09           | 0.05            | 0.00            | 0.00            | 0.36             |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
| A4                | 1.48          | 0.09           | 0.15           | 0.22            | 0.30            | 0.35            | 0.40             | 100    | 2      | 14.6  | 299    | 6      | 5    | 2.0%  | 0.7      | 7.0   | 21.6  | 2.4     | 3.0            | 3.5             | 4.0             | 4.5             | 5.0              | 0.3                   | 0.6      | 1.1             | 1.8             | 2.3             | 2.9              |
| RESIDENTIAL       | 0.25          | 0.12           | 0.20           | 0.27            | 0.35            | 0.40            | 0.44             |        | _      |       |        | ~      | -    |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
| GRAVEL            | 0.11          | 0.57           | 0.59           | 0.63            | 0.66            | 0.68            | 0.70             |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
| AGRICULTURE       | 1.12          | 0.03           | 0.09           | 0.17            | 0.26            | 0.31            | 0.36             |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 | -               |                 |                  | -      |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 | -                |                       |          | -               | -               |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |
|                   |               |                |                |                 |                 |                 |                  |        |        |       |        |        |      |       |          |       |       |         |                |                 |                 |                 |                  |                       |          |                 |                 |                 |                  |


Calculated by: DLM Date: 7/16/2020


Date: 7/16/2020

# HYDRAULIC CALCULATIONS

| Site-Level Low Impact Development (LID) Design Effective Impervious Calculator                  |                 |                              |               |                   |                       |                        |                |                |               |               |     |               |     |     |
|-------------------------------------------------------------------------------------------------|-----------------|------------------------------|---------------|-------------------|-----------------------|------------------------|----------------|----------------|---------------|---------------|-----|---------------|-----|-----|
| Site-Level                                                                                      |                 | LID Credi                    | -             |                   | -                     | -                      |                | -              | ous car       | culator       |     |               |     |     |
| User Input                                                                                      |                 |                              | UD            | -BMP (Version     | 3.06, Novem           | ber 2016)              |                |                |               |               |     |               |     |     |
|                                                                                                 |                 |                              |               |                   |                       |                        |                |                |               |               |     |               |     |     |
| Calculated cells                                                                                |                 |                              |               | Designer:         |                       | Miajres                |                |                |               |               |     |               |     |     |
| ***Design Storm: 1-Hour Rain Depth WQCV Event                                                   | 1.19            | inches                       |               | Company:<br>Date: |                       | 10unt Engin<br>9, 2020 | eering         |                |               |               |     |               |     |     |
| ***Minor Storm: 1-Hour Rain Depth 10-Year Event                                                 | 1.19            | inches                       |               | Project:          | ,                     | /iew Estates           |                |                |               |               |     |               |     |     |
| ***Major Storm: 1-Hour Rain Depth 100-Year Event                                                | 2.52            | inches                       |               | Location:         | Peyto                 |                        | •              |                |               |               |     |               |     |     |
| Optional User Defined Storm CUHP                                                                |                 |                              |               |                   |                       |                        |                |                |               |               |     |               |     |     |
| (CUHP) NOAA 1 Hour Rainfall Depth and Frequency<br>for User Defined Storm 100-Year Event        |                 |                              |               |                   |                       |                        |                |                |               |               |     |               |     |     |
| Max Intensity for Optional User Defined Storm 0                                                 |                 |                              |               |                   |                       |                        |                |                |               |               |     |               |     |     |
| TE INFORMATION (USER-INPUT)                                                                     |                 |                              |               |                   |                       |                        |                |                |               |               |     |               |     |     |
| Sub-basin Identifier                                                                            | A1              | A2                           | A3            | A4                |                       |                        |                |                |               |               |     |               |     |     |
| Receiving Pervious Area Soil Type                                                               | Loam            | Loam                         | Loam          | Loam              |                       |                        |                |                |               |               |     |               |     |     |
| Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)                                                  | 11.570          | 14.420                       | 11.340        | 1.480             |                       |                        |                |                |               |               |     |               |     |     |
| Directly Connected Impervious Area (DCIA, acres)                                                | 0.000           | 0.000                        | 0.000         | 0.000             |                       |                        |                |                |               |               |     |               |     |     |
| Unconnected Impervious Area (UIA, acres)                                                        | 0.230           | 0.630                        | 0.420         | 0.140             |                       |                        |                |                |               |               |     |               |     |     |
| Receiving Pervious Area (RPA, acres)                                                            | 11.340          | 13.790                       | 10.920        | 1.340             |                       |                        |                |                |               |               |     |               |     |     |
| Separate Pervious Area (SPA, acres)                                                             | 0.000           | 0.000                        | 0.000         | 0.000             |                       |                        |                |                |               |               |     |               |     |     |
| RPA Treatment Type: Conveyance (C),<br>Volume (V), or Permeable Pavement (PP)                   | с               | с                            | с             | с                 |                       |                        |                |                |               |               |     |               |     |     |
| CALCULATED RESULTS (OUTPUT)                                                                     |                 |                              |               |                   |                       |                        |                |                |               |               |     |               |     |     |
| Total Calculated Area (ac, check against input)                                                 | 11.570          | 14.420                       | 11.340        | 1.480             |                       |                        |                |                |               |               |     |               |     |     |
| Directly Connected Impervious Area (DCIA, %)                                                    | 0.0%            | 0.0%                         | 0.0%          | 0.0%              |                       |                        |                |                |               |               |     |               |     |     |
| Unconnected Impervious Area (UIA, %)<br>Receiving Pervious Area (RPA, %)                        | 2.0%            | 4.4%<br>95.6%                | 3.7%<br>96.3% | 9.5%<br>90.5%     |                       |                        |                |                |               |               |     |               |     |     |
| Receiving Pervious Area (RPA, %)<br>Separate Pervious Area (SPA, %)                             | 98.0%           | 95.6%                        | 96.3%         | 0.0%              |                       |                        |                |                |               |               |     |               |     |     |
| A <sub>8</sub> (RPA / UIA)                                                                      | 49.304          | 21.889                       | 26.000        | 9.571             |                       |                        |                |                |               |               |     |               |     |     |
| I, Check                                                                                        | 0.020           | 0.040                        | 0.040         | 0.090             |                       |                        |                |                |               |               |     |               |     |     |
| f / I for WQCV Event:                                                                           | 0.4             | 0.4                          | 0.4           | 0.4               |                       |                        |                |                |               |               |     |               |     |     |
| f / I for 10-Year Event:                                                                        | 0.4             | 0.4                          | 0.4           | 0.4               |                       |                        |                |                |               |               |     |               |     |     |
| f / I for 100-Year Event:                                                                       | 0.2             | 0.2                          | 0.2           | 0.2               |                       |                        |                |                |               |               |     |               |     |     |
| f / I for Optional User Defined Storm CUHP:                                                     |                 |                              |               |                   |                       |                        |                |                |               |               |     |               |     |     |
| IRF for WQCV Event:                                                                             | 0.09            | 0.17                         | 0.17          | 0.39              |                       |                        |                |                |               |               |     |               |     |     |
| IRF for 10-Year Event:<br>IRF for 100-Year Event:                                               | 0.09            | 0.18                         | 0.18          | 0.39              |                       |                        |                |                |               |               |     |               |     |     |
| IRF for Optional User Defined Storm CUHP:                                                       | 0.05            | 0.10                         | 0.10          | 0.42              |                       |                        |                |                |               |               |     |               |     |     |
| Total Site Imperviousness: Itotal                                                               | 2.0%            | 4.4%                         | 3.7%          | 9.5%              |                       |                        |                |                | 1             |               |     | 1             |     |     |
| Effective Imperviousness for WQCV Event:                                                        | 0.2%            | 0.8%                         | 0.6%          | 3.7%              |                       |                        |                |                |               |               |     |               |     |     |
| Effective Imperviousness for 10-Year Event:                                                     | 0.2%            | 0.8%                         | 0.6%          | 3.7%              |                       |                        |                |                |               |               |     |               |     |     |
| Effective Imperviousness for 100-Year Event:                                                    | 0.2%            | 0.8%                         | 0.7%          | 3.9%              | -                     |                        |                |                |               |               |     |               |     |     |
| Effective Imperviousness for Optional User Defined Storm CUHP:                                  |                 |                              |               |                   |                       |                        |                |                |               |               |     |               |     |     |
| LID / EFFECTIVE IMPERVIOUSNESS CREDITS                                                          |                 |                              |               |                   |                       |                        |                |                |               |               |     |               |     |     |
| WQCV Event CREDIT: Reduce Detention By:                                                         | 91.0%           | 81.6%                        | 81.7%         | 57.2%             | N/A                   | N/A                    | N/A            | N/A            | N/A           | N/A           | N/A | N/A           | N/A | N/A |
| 10-Year Event CREDIT**: Reduce Detention By:                                                    | -14989.9%       | 152.2%                       | 179.4%        | 77.0%             | N/A                   | N/A                    | N/A            | N/A            | N/A           | N/A           | N/A | N/A           | N/A | N/A |
| 100-Year Event CREDIT**: Reduce Detention By:<br>User Defined CUHP CREDIT: Reduce Detention By: | -10882.4%       | 150.9%                       | 178.0%        | 74.1%             | N/A                   | N/A                    | N/A            | N/A            | N/A           | N/A           | N/A | N/A           | N/A | N/A |
| Total Site Effective Impe                                                                       |                 | perviousness:<br>WQCV Event: | 3.7%<br>0.7%  |                   | Notes:<br>* Use Green | -Ampt averag           | e infiltration | rate values fi | om Table 3-3  |               |     |               |     |     |
| Total Site Effective Imper                                                                      |                 |                              | 0.7%          |                   | ** Flood cont         | trol detention         | volume crec    | lits based on  | empirical equ | ations from S |     | ter of USDCM  |     |     |
| Total Site Effective Imperv                                                                     |                 |                              | 0.7%          |                   |                       |                        |                |                |               |               |     | ation purpose |     |     |
| Total Site Effective Imperviousness for Option                                                  | ai user Detined | a storm COHP:                |               | I                 |                       |                        |                |                |               |               |     |               |     |     |

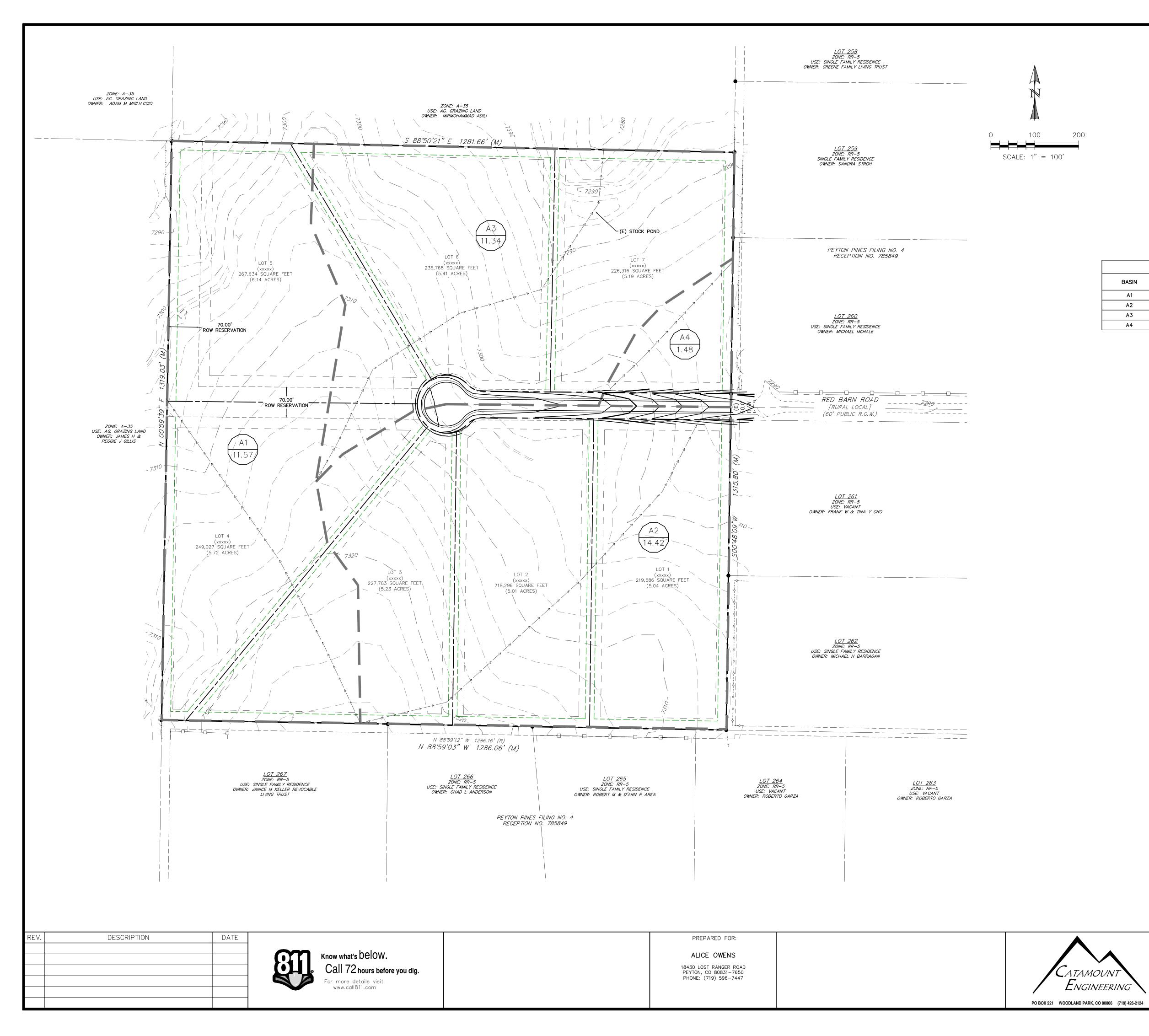
# DRAINAGE MAPS

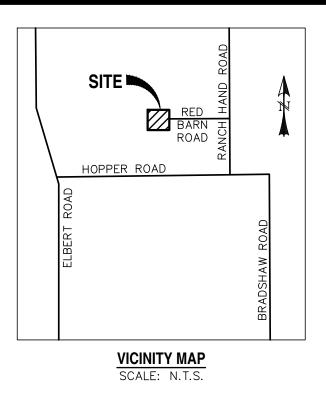




|       | EXISTING DRAINAGE BASINS |          |          |           |           |           |           |  |  |  |  |
|-------|--------------------------|----------|----------|-----------|-----------|-----------|-----------|--|--|--|--|
| BASIN | AREA (ACRES)             | Q2 (CFS) | Q5 (CFS) | Q10 (CFS) | Q25 (CFS) | Q50 (CFS) | Q100 (CFS |  |  |  |  |
| E1    | 11.57                    | 0.7      | 2.5      | 5.5       | 9.6       | 12.9      | 16.7      |  |  |  |  |
| E2    | 12.47                    | 0.6      | 2.4      | 5.2       | 9.1       | 12.2      | 15.9      |  |  |  |  |
| E3    | 14.77                    | 0.8      | 2.9      | 6.4       | 11.2      | 15.1      | 19.6      |  |  |  |  |

(E) (P)


\_\_\_\_


**LEGEND** 

EXISTING

PROPOSED BOUNDARY

|                             | PINE VIEW ESTATES   | DESIGNED BY: DLM | DRAWN BY:      |
|-----------------------------|---------------------|------------------|----------------|
| $\mathbf{M}$                |                     | SCALE: 1"=150'   | DATE: 07/09/20 |
| MOUNT                       |                     | JOB NUMBER       | SHEET          |
| RK, CO 80866 (719) 426-2124 | EXISTING CONDITIONS | 18–158           | 1 OF 1         |
|                             |                     |                  |                |





| PROPOSED DRAINAGE BASINS |              |          |          |           |           |           |            |  |  |
|--------------------------|--------------|----------|----------|-----------|-----------|-----------|------------|--|--|
| BASIN                    | AREA (ACRES) | Q2 (CFS) | Q5 (CFS) | Q10 (CFS) | Q25 (CFS) | Q50 (CFS) | Q100 (CFS) |  |  |
| A1                       | 11.57        | 1.1      | 3.3      | 6.6       | 11.0      | 14.7      | 18.8       |  |  |
| A2                       | 14.42        | 1.5      | 4.0      | 7.5       | 12.4      | 16.3      | 20.8       |  |  |
| A3                       | 11.34        | 1.2      | 3.1      | 6.1       | 10.1      | 13.4      | 17.1       |  |  |
| A4                       | 1.48         | 0.3      | 0.6      | 1.1       | 1.8       | 2.3       | 2.9        |  |  |

|                                  | LEGEND                              |                |                |
|----------------------------------|-------------------------------------|----------------|----------------|
|                                  | EXISTING<br>PROPOSED                |                | (E)<br>(P)     |
|                                  | BOUNDARY                            |                |                |
|                                  | RIGHT-OF-<br>LOT LINE               | •WAY •         |                |
|                                  | EASEMENT<br>(E) CONTO<br>(E) CONTO  |                | 6820—          |
| PROP                             | (P) CONTO<br>(P) CONTO<br>(P) CONTO |                | 6820           |
|                                  |                                     |                |                |
|                                  | PINE VIEW ESTATES                   | DESIGNED BY:   | DRAWN BY:      |
| $\land$                          |                                     | SCALE: 1"=150' | DATE: 07/09/20 |
|                                  | EXISTING CONDITIONS                 | JOB NUMBER     | SHEET          |
| EERING<br>0 80866 (719) 426-2124 |                                     | 18–158         | 1 OF 1         |