Les Schwab Tire Center Storm Report

7105 Old Meridian RD. Falcon Colorado

Prepared For:

SFP-E, LLC PO Box 5350 20900 Cooley Road Bend, OR 97701

Prepared By:

Cushing Terrell

Zack Graham, PE 411 E Main ST #101 Bozeman, MT 59715 (406) 922-7137 www.cushingterrell.com

Cushing Terrell Project No. LSCO_21WIN PCD FILLING NO.: PPR-21-023 JULY, 21, 2021

TABLE OF CONTENTS

1.0 CONTENTS

2.0	GENERAL LOCATION AND DESCRIPTION	3
2.1	Location	3
2.2	Description of Property	3
3.0	DRAINAGE BASINS	2
3.1	Reference Reports and Manuals	
3.2	Existing Drainage Basins	2
3.	2.1 BASIN X	
3.3	Proposed Drainage Basins	∠
3	3.1 BASIN A	∠
3	3.2 BASIN B	
3	3.3 BASIN C	
3	3.4 BASIN D	
3	3.5 BASIN E	5
4.0	DRAINAGE DESGIN CRITERIA	
4.1	Development Criteria Reference	6
4.2	Hydrologic Criteria	6
5.0	DRAINAGE FACILITY DESIGN	6
6.0	FOUR STEP PROCESS	7
6.1	Step 1 Employ Runoff Reduction Methods	7
6.2	Step 2 Stabilize Drainageways	7
6.3	Step 3 Provide Water Quality Capture Volume	8
6.4	Step 4 Consider Need for Industrial and Commercial BMPs	<u>C</u>
LIS	ST OF TABLES	
Table 3	3.1	2
Table 3	3.2	5
AF	PPENDICES	
	IDIX A: HYDROLOGIC CALCULATION	
	IDIX B: BASIN MAPS	
	IDIX C: FEMA FIRMETTE	
	IDIX D: WEB SOIL SURVEY	
	IDIX E: MERIDIAN CROSSING STORM REPORT	
APPEN	IDIX F: PLD SITE PHOTOS	15

2.0 GENERAL LOCATION AND DESCRIPTION

2.1 Location

The project site is located at 7105 N Meridian Rd, Falcon, Colorado and falls within El Paso County. The parcel is part of the larger Meridian Crossing Development, which includes the existing stormwater system infrastructure, including the treatment pond to the south. The site is located on the northeast side of the intersection of Meridian Rd and N Meridian Rd. The site is located to north of the existing storm water treatment facilities maintained by the Meridian Crossing Development and an existing storm line runs along the south west property line of the site. The property lies within the NE ¼ of Section 12, Township 13 S, Range 65 West of the Sixth Principal Meridian.

2.2 Description of Property

The existing site consists of an undeveloped 2.48 acre lot covered with native grasses and shrubs. In areas taken from the ALTA Survey the site consists of roughly 12% impervious road and sidewalk area with the remaining 88% being the native vegetation. There are no stream crossings or significant waterways located within the area being developed by this project. The site is accessed via the existing private roads that are centered on the north east and south east property lines of the site. These roads will provide means of vehicular ingress and egress. The site falls entirely with the Falcon Major Drainage Basin as identified by the Falcon Drainage Basin Planning Study dated September 2015.

The topography of the existing site consists of a roughly consistent grade which directs flow from the north of the site towards the south at slopes ranging from 2-5%. There is an existing storm PLD pond located to the south of the neighboring lot that ultimately then out falls to the existing detention pond WU. The site is not located in a floodway or flood plain and is designated as area of minimal flood hazard (Zone X) per FEMA FIRM panel 08041C0561G.

2.3 Existing PLD Condition Assessment

Runoff from this site will be collected via proposed curb and gutter and be routed overland to the existing Porous Landscape Detention pond. In field observations on 1/5/2021 and 06/18/2021 this pond has been determined to need maintenance as prescribed in the operation and maintenance manual that is included as appendix H of the Meridian Crossing Final Drainage Report (MCFDR). This full report is located as appendix E of this report. Specifically, we recommend the pond should be cleared of Debris and Litter and that landscaping should be removed and replaced for portions of the pond where the existing landscaping is failing. Photos showing the condition for this PLD are included in Appendix F of this report.

3.0 DRAINAGE BASINS

3.1 Reference Reports and Manuals

- Meridian Crossing Final Drainage Report (MCFDR)
- Colorado Springs Drainage Criteria (CSDC)
- El Paso County Drainage Criteria Manual (EPCSCM)
- Mile High Flood Control District Criteria Manual (MHFC)

3.2 Existing Drainage Basins

See appendix B for drainage maps showing basin locations, and appendix A for full drainage calculation sheets.

3.2.1 BASIN X

Basin X is the sole existing basin that consists of the entire 2.48 acres site. The flow path of this basin is from north to south into the existing private drive at design points 1 and 2. Once leaving the property across the existing private drive runoff enters the adjacent lot. The groundcover of this basin is primarily native grasses but also contains a portion of the private drive. After flowing across the southern property, the runoff enters the PLD (porous landscape detention) before being captured by the existing outlet structure and being routed to detention pond WU. The rational calculation for the basin is shown below in table 3.1

RATIONAL CALC EXISTING Q 100 Basin % Impervious C5 C100 Area TC I 5 year I 100 yesr Q 5 Х 0.42 2.48 25 2.6 12 0.28 4.5 1.81 4.69 TOTAL 12 0.28 0.42 2.48 1.81 4.69

Table 3.1

3.3 Proposed Drainage Basins

See appendix B for drainage maps showing basin locations, and appendix A for full drainage calculation sheets. In general, all basins flow to the south and outlet on the existing private road. These basins then flow through the neighboring property to the south and outfall at the existing PLD pond following the historic route. The exception to this being basin A which follows the historic drainage pattern for this area of the site and flows to Old Meridian Road where it is captured by existing storm infrastructure.

3.3.1 BASIN A

Basin A consists of the proposed sidewalk connection and the landscaping along old meridian road. The runoff for this basin is captured by the curb and gutter and directed to the existing curb inlets in Old Meridian Road following the historic route.

3.3.2 BASIN B

Basin B consists of a portion of the building roof flows which are released at grade via downspouts along the rear of the structure and the south west portion of the side parking and drive aisles. These flows are then conveyed to the private road on the south of the site at design point 1. The flows then follow the historic path across the private drive into the neighboring site and ultimately the PLD pond.

3.3.3 BASIN C

Basin C consists of the parking, and drive aisles located along a portion of the front and east sides of the building. The flows are collected by curb and gutter and directed via a curb cut and concrete channel to the sidewalk chase at design point 3. The flows then follow the historic path across the private drive into the neighboring site and ultimately the PLD pond.

3.3.4 BASIN D

Basin D consists of the remainder of the roof flows which are released at grade via downspouts along the rear of the structure and the drive aisle and parking off the rear of the building. These flows are captured by curb and gutter and directed to the sidewalk chase at design point 2. The flows then follow the historic path across the private drive into the neighboring site and ultimately the PLD pond.

3.3.5 BASIN E

Basin E consists of the existing private drive on the north east edge of the site and a small portion on the landscaping adjacent to it. These flows are captured in the existing curb and gutter and are routed to the PLD through this existing curb.

RATIONAL CALC PROPOSED I 100 year Basin % Impervious C5 C100 Area TC* I 5 year Q 5 Q 100 8 0.15 0.4 0.20 5 5.2 9 0.16 0.72 В 88 0.80 0.89 0.54 6 5 8.8 2.16 4.23 4.81 C 54 0.52 0.68 1.01 11 3.7 7 1.94 4.54 D 90 0.82 0.9 0.56 5 5.2 9 2.39 5 Ε 87 0.79 0.88 0.17 5.2 9 0.70 1.35 15.64 TOTAL 68 2.48 7.35

Table 3.2

^{*}Minimum value of 5 min used

4.0 DRAINAGE DESGIN CRITERIA

4.1 Development Criteria Reference

This report was prepared using the City of Colorado Springs Drainage Criteria (CSDC) chapter 6 and the Mile High Flood District Criteria Manual. In creating this report reference was made to the "Meridian Crossing Final Drainage Report" which is included in Appendix E and describes the existing stormwater quality treatment and detention facilities that will be used by this project.

4.2 Hydrologic Criteria

Because the site in question is under 100 acres, the rational method was used to determine the peak stormwater runoff for all basins. For the purposes of sizing proposed stormwater structures, the major 100-year storm as described in the CSDC was used. The rational method coefficients for these calculations were selected from Table 6-6 of the CSDC. Time of concentration was calculated per CSDC section 3.2 (See appendix A for calculation). All rainfall values were taken from Figure 6-6 of the CSDC.

5.0 DRAINAGE FACILITY DESIGN

The drainage facilities proposed for this project consist of curb and gutter, concrete channels, and sidewalk chases designed to collect the additional flows generated by development of the site. These facilities flow south following the historic route to the existing western PLD treatment facility. This PLD consists of a grassy swale and contains and outlet structure which outlets into a storm network under old meridian road that then discharges into a swale located to the west. This swale conveys water to the detention pond known as pond WU (page 11 of MCFDR).

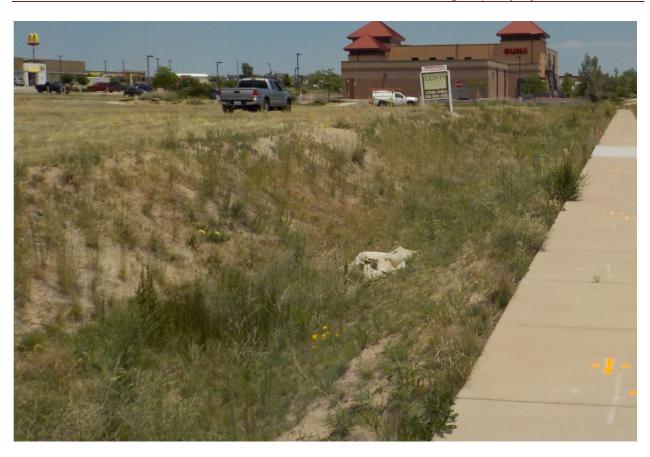
The design and calculations of this existing stormwater treatment and detention facility are not within the scope of this report and can be found in the "Meridian Crossing Final Drainage Report" which is included in Appendix E.

The treatment facility is described as a "Porous Landscape Detention" (PLD) and is described in detail on page 16 of the referenced report. This facility was sized to include flows created by the future development we are now proposing. The proposed Les Schwab site can be described as the northern half of basin D-2 using the terminology of the referenced report. The assumed imperviousness for the tributary area to the PLD used in the referred report was 82% (see appendix E of MCFDR) our proposed design has a percent imperviousness of 68%. For the entire D-2 basin as described in the referenced report the assumed post development flows generated are 23.4 CFS for the minor event and 43.9 CFS for the major event (page 11). The Les Schwab site makes up roughly half of this basin (49%) and generates 7.35 CFS in the minor event and 15.64 CFS in the major event. These flows are well within the expected values for 49% of the basin which would be 11.5 CFS for minor and 21.5 CFS for major storm. No improvements are proposed for this PLD or detention pond WU which are both owned and maintained by Park Place Enterprises, LLC.

6.0 FOUR STEP PROCESS

6.1 Step 1 Employ Runoff Reduction Methods

To reduce runoff peak flows and volume our site discharges to the preexisting grass lined PLD pond that infiltrates / treats the stormwater. Our site also uses a compact design for impervious areas with a total percent imperviousness of 68% which is 14% lower than design imperviousness used by the "Meridian Crossing Final Drainage Report" which sized the facilities for this project.


6.2 Step 2 Stabilize Drainageways

The internal drainageways to the Les Schwab site are stabilized via the use of concrete curb and gutter, concrete channels, and sidewalk chases. Once water leaves the site it flows overland to the existing PLD channel and ultimately to the existing pond WU through storm sewer and a grass lined swale.

Because the design for the overall development calls for overland flow from the Les Schwab site across the adjacent property to the southeast and ultimately to the water quality treatment pond on that property, we evaluated the erosion potential due to runoff across the adjacent property. The adjacent property is characterized by fine to course sandy loam soils with sparce native prairie grasses as indicated in the photo below:

In the existing condition, the existing road separating the two lots tends to concentrate runoff from the Les Schwab site at the approaches to the adjacent property such that the existing condition for runoff from the Les Schwab site should be considered shallow/concentrated flow as it flows through the adjacent property. Signs of light erosion are evident where runoff transitions from shallow/concentrated flow into the existing pond as indicated in the photo below:

This also shows that the vegetation in this pond could use maintenance to increase the overall density and efficacy of the growth.

While the proposed development will increase peak runoff flowrates and overall runoff volume, based on TR-55, the velocity of the shallow/concentrated condition does not increase, rather the flow widens over a larger area. The average slope across the adjacent lot is 1.5%. Based on Figure 3-1 of TR-55, this correlates to a velocity of 2 ft/sec. The maximum permissible velocity, for non-colloidal (assumed conservative condition) sandy loam, is 1.75 ft/s per Table 7-3 of Chow. However, because of the vegetative condition, the direction of flow is not direct across the gradually sloped surface resulting in a slower than 2 ft/s velocity. This is evidenced by lack of erosion in the existing condition. Based on the above analysis, I do not expect a general increase in erosion on the adjacent property beyond what might occur in the existing condition.

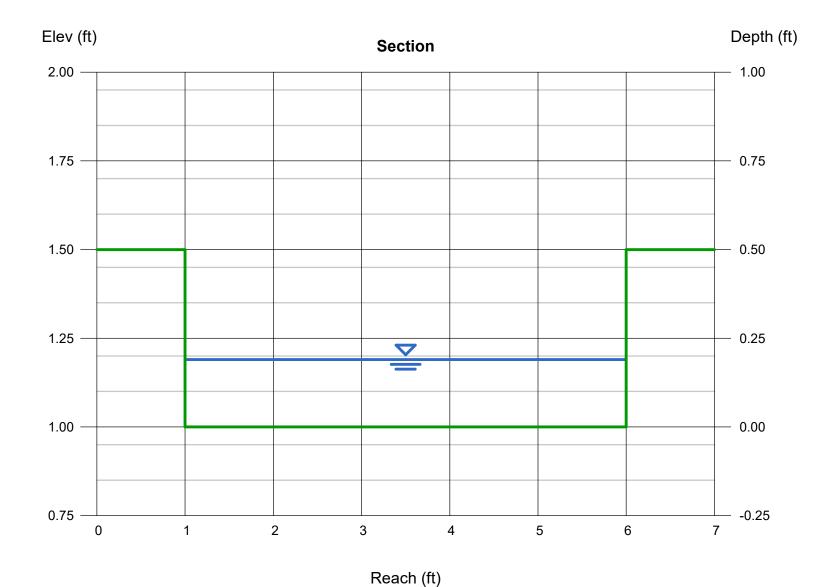
6.3 Step 3 Provide Water Quality Capture Volume

Water quality Capture Volume is provided by the existing southern Porous Landscape Detention. The design of this facility is not within the scope of this report but in summary the pond has a design capacity of 4,568 CF and is sized to provide water quality treatment for a post development basin D-2 with an 88% imperviousness. Please see the "Meridian Crossing Final Drainage Report" located in appendix E for more information regarding this pond.

6.4 Step 4 Consider Need for Industrial and Commercial BMPs

No industrial or commercial BMPs are proposed for this site. Potential pollutants such as oil fluids etc. are stored and handled inside the building and captured by floor drains directed to a sand oil separator before being outlet to the sanitary system. The outdoor storage of the site contains only used car tires which do not present the need for spill prevention or a roofed enclosure any more than a typical parking lot. The proposed CMU walls serve solely for visual screening / theft prevention.

Unresolved. In a conclusion narrative placed after section 6.4 determine whether design will be compliant with originally proposed conditions. If there is an increase in runoff determine whether it is a negligible amount.

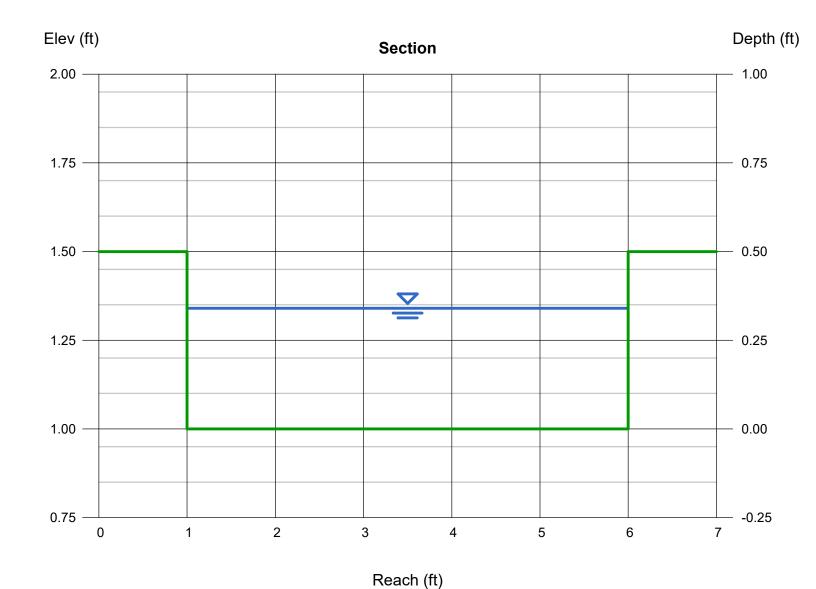

APPENDIX A: HYDROLOGIC AND HYDRAULIC CALCULATIONS

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jul 20 2021

5 YEAR CONC CHANNEL

	Highlighted	
= 5.00	Depth (ft)	= 0.19
= 0.50	Q (cfs)	= 1.940
	Area (sqft)	= 0.95
= 1.00	Velocity (ft/s)	= 2.04
= 0.50	Wetted Perim (ft)	= 5.38
= 0.016	Crit Depth, Yc (ft)	= 0.17
	Top Width (ft)	= 5.00
	EGL (ft)	= 0.25
Known Q	. ,	
= 1.94		
	= 0.50 = 1.00 = 0.50 = 0.016	= 5.00 = 0.50 Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) = 0.50 Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Known Q



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jul 20 2021

100 YEAR CONC CHANNEL

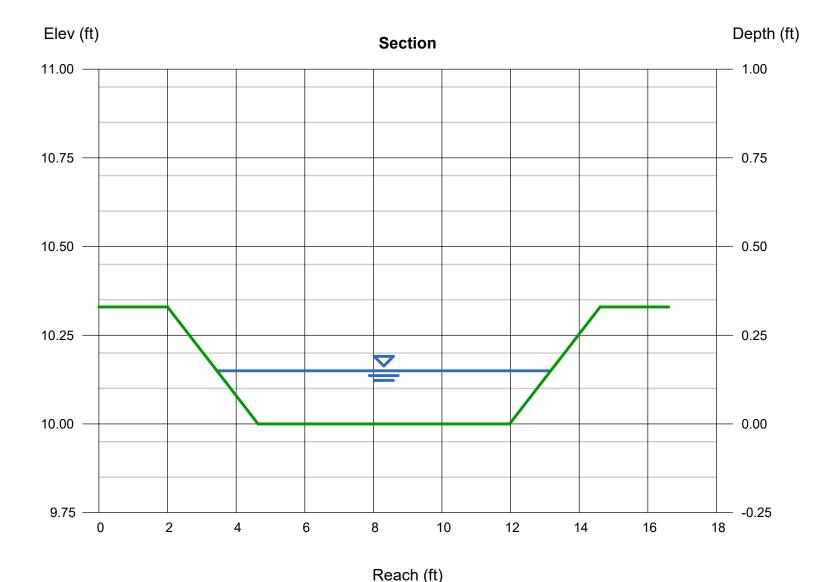
Rectangular		Highlighted	
Bottom Width (ft)	= 5.00	Depth (ft)	= 0.34
Total Depth (ft)	= 0.50	Q (cfs)	= 4.810
, , ,		Area (sqft)	= 1.70
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.83
Slope (%)	= 0.50	Wetted Perim (ft)	= 5.68
N-Value	= 0.016	Crit Depth, Yc (ft)	= 0.31
		Top Width (ft)	= 5.00
Calculations		EGL (ft)	= 0.46
Compute by:	Known Q		
Known Q (cfs)	= 4.81		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jul 20 2021

CROSS PAN 5 YEAR

Trapezoi	dal
----------	-----


Bottom Width (ft) = 7.33 Side Slopes (z:1) = 8.00, 8.00 Total Depth (ft) = 0.33 Invert Elev (ft) = 10.00 Slope (%) = 0.50 N-Value = 0.016

Calculations

Compute by: Known Q Known Q (cfs) = 1.94

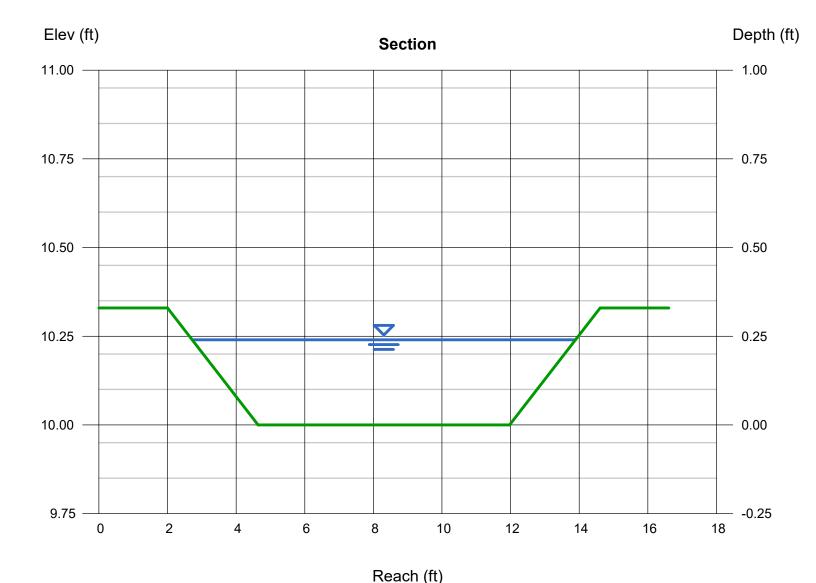
Highlighted

= 0.15Depth (ft) Q (cfs) = 1.940Area (sqft) = 1.28Velocity (ft/s) = 1.52 Wetted Perim (ft) = 9.75Crit Depth, Yc (ft) = 0.13Top Width (ft) = 9.73EGL (ft) = 0.19

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jul 20 2021

CROSS PAN 100 YEAR


Trapezoidal

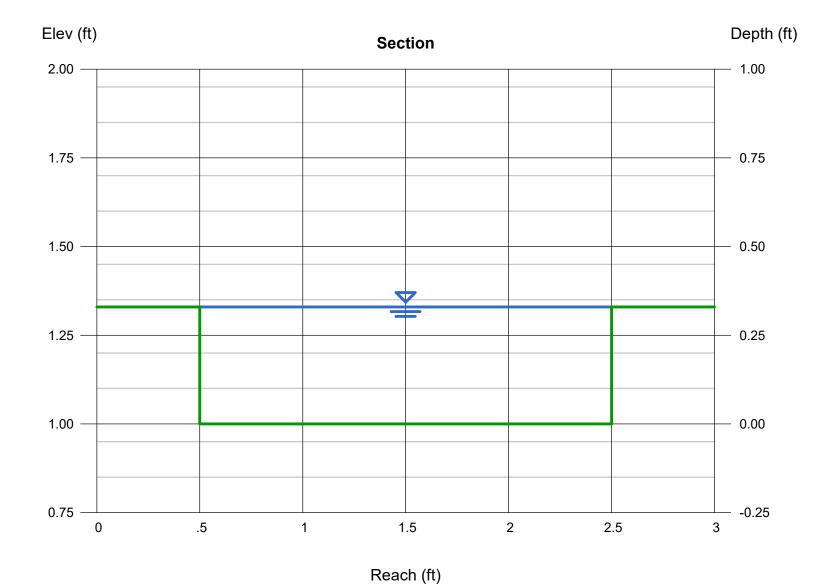
Bottom Width (ft) = 7.33 Side Slopes (z:1) = 8.00, 8.00 Total Depth (ft) = 0.33 Invert Elev (ft) = 10.00 Slope (%) = 0.50 N-Value = 0.016

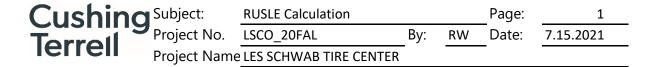
Calculations

Compute by: Known Q Known Q (cfs) = 4.81 Highlighted

= 0.24Depth (ft) Q (cfs) = 4.810 Area (sqft) = 2.22Velocity (ft/s) = 2.17Wetted Perim (ft) = 11.20 Crit Depth, Yc (ft) = 0.22Top Width (ft) = 11.17 EGL (ft) = 0.31

No. Increments


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Tuesday, Jul 20 2021

SINGLE SIDEWALK CHASE CAPACITY

= 1

Rectangular		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.33
Total Depth (ft)	= 0.33	Q (cfs)	= 1.711
		Area (sqft)	= 0.66
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.59
Slope (%)	= 0.50	Wetted Perim (ft)	= 2.66
N-Value	= 0.016	Crit Depth, Yc (ft)	= 0.29
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 0.43
Compute by:	Q vs Depth		

Overland Velocity Calc								
SLOPE VELOCITY								
0.015	1.98							

Figure 3-1 (average velocities for estimating travel time for shallow concentrated flow):

Unpaved $V = 16.1345 (s)^{0.5}$ Paved $V = 20.3282 (s)^{0.5}$

where

V= average velocity (ft/s) s = slope of hydraulic grade line (watercourse slope, ft/ft)

Chapter 6 Hydrology

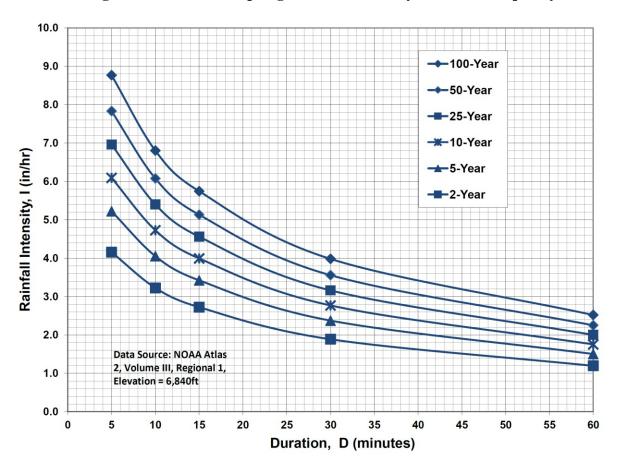


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations

 $I_{100} = -2.52 \ln(D) + 12.735$

 $I_{50} = -2.25 \ln(D) + 11.375$

 $I_{25} = -2.00 \ln(D) + 10.111$

 $I_{10} = -1.75 \ln(D) + 8.847$

 $I_5 = -1.50 \ln(D) + 7.583$

 $I_2 = -1.19 \ln(D) + 6.035$

Note: Values calculated by equations may not precisely duplicate values read from figure.

Subject:	RATIONAL MET	HOD CALCUI	LATIONS	Page:	1	
Project No.	LSCO_20FAL	Ву:	RW	Date:	7.15.2021	
Project Nam	LES SCHWAR TII	RE CENTER				

	RATIONAL CALC EXISTING														
Basin	% Impervious	C5	C100	Area	TC	I 5 year	I 100 yesr	Q 5	Q 100						
Х	12	0.28	0.42	2.48	25	2.6	4.5	1.81	4.69						
TOTAL	12	0.28	0.42	2.48				1.81	4.69						

	RATIONAL CALC PROPOSED														
Basin	% Impervious	C5	C100	Area	TC*	I 5 year	I 100 year	Q 5	Q 100						
Α	8	0.15	0.4	0.20	5	5.2	9	0.16	0.72						
В	88	0.80	0.89	0.54	6	5	8.8	2.16	4.23						
С	54	0.52	0.68	1.01	11	3.7	7	1.94	4.81						
D	90	0.82	0.9	0.56	5	5.2	9	2.39	4.54						
Е	87	0.79	0.88	0.17	5	5.2	9	0.70	1.35						
TOTAL	68		0.77	2.48				7.35	15.64						

^{*}Minimum value of 5 min used

	Proposed Time of Concentration														
	C	VERLA	ND			Concentrated Flow									
BASIN	C5	L	S	ti	N	S	R	V	L	tc	Tc				
Α	0.15	33	9	4.9	0	0	0	0	0	0	5				
В	0.80	51	0.5	5.0	0.016	0.005	0.5	4.15	297	1.2	6				
С	0.52	51	0.5	9.7	0.016	0.005	0.5	4.15	418	1.7	11				
D	0.82	161	3.5	4.4	0.016	0.005	0.5	4.15	101	0.4	5				
E	0.79	30	4	2.0	0.016	0.025	0.5	9.28	100	0.2	2				

	Existing Time of Concentration														
	C	ND			Concentrated Flow										
BASIN	C5	L	S	ti	N	S	R	V	L	tc	Tc				
Х	X 0.28 307 3 25.1 0 0 0 0 0 0														

APPENDIX B: BASIN MAPS

3 DESIGN POINT

DESIGN

© 2021 | ALL RIGHTS RESERVED

SITE DEVELOPMENT PLANS

07.21.2021 DRAWN BY | WALKER CHECKED BY | GRAHAM REVISIONS

EXISTING BASIN MAP

DESIGN

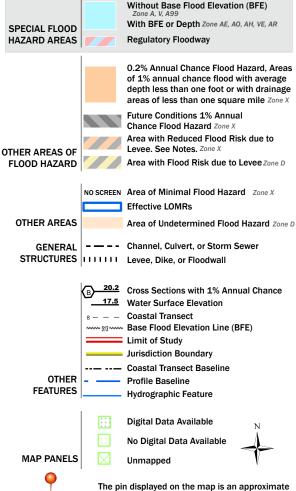
SITE DEVELOPMENT PLANS

07.21.2021 DRAWN BY | WALKER CHECKED BY | GRAHAM REVISIONS

EXISTING BASIN MAP

APPENDIX C: FEMA FIRMETTE

National Flood Hazard Layer FIRMette



Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 4/14/2021 at 9:15 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

APPENDIX D: WEB SOIL SURVEY

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Sep 11, 2018—Oct 20. 2018 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI		
8	Blakeland loamy sand, 1 to 9 percent slopes	Α	0.3	13.1%		
9	Blakeland-Fluvaquentic Haplaquolls	A	2.2	86.9%		
Totals for Area of Interest			2.5	100.0%		

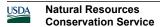
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

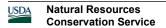
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

APPENDIX E: MERIDIAN CROSSING STORM REPORT

MERIDIAN CROSSING FINAL DRAINAGE REPORT EL PASO COUNTY, COLORADO

July 2008

PREPARED FOR:

Park Place Enterprises

15 Miranda Road Colorado Springs, CO 80906

PREPARED BY:

Springs Engineering 31 N. Tejon, Suite 315 Colorado Springs, CO 80903 719.227.7388

PROJECT NO. 057-07-032

CERTIFICATIONS

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

Charlene M. Sammons, P.E. #36727

Developer's Statement:

I, the developer, have read and will comply with all the requirements specified in this drainage report.

By (signature): Devel Place Contemporaries Address: 15 Mispada Dd.

Coporpolo Spanes, Cosopol

El Paso County's Statement:

Filed in accordance with Section 51.1 of the El Paso Land Development Code, as amended.

John McCarty, County Engineer/Director

7/9/08 Date

Conditions:

Table of Contents

INTRODUCTION	
Purpose	***************************************
PURPOSELIMITS OF STUDY	
EXISTING CONDITIONS	
EXISTING CONDITIONS	
GENERAL LOCATION	
LAND USETOPOGRAPHY AND FLOODPLAINS	
GEOLOGYCLIMATE	
CLIMATENATURAL HAZARDS ANALYSIS	4
DRAINAGE DESIGN CRITERIA	
SCS HYDROGRAPH METHOD	
DRAINAGE BASINS	
EXISTING DRAINAGE ANALYSISEXISTING DESIGN POINTS	9
EXISTING DESIGN POINTS DEVELOPED DRAINAGE ANALYSIS	9
DEVELOPED DESIGN POINTS	11
DRAINAGE FACILITY DESIGN	12
GENERAL CONCEPT	15
GENERAL CONCEPTSTORM SYSTEMS	15
DETENTION POND WIJ	15
PROPOSED WATER QUALITY PONDULTIMATE DESIGN	16
ULTIMATE DESIGN DOWNSTREAM FACILITIES	16
DOWNSTREAM FACILITIES	16
DRAINAGE FEES, COST ESTIMATE & MAINTENANCE	16
MAINTENANCE	18
MAINTENANCE	18
THOUSE ESTIMATE	
EROSION CONTROL	20
GENERAL CONCEPT	
REFERENCE MATERIALS	∠ 1

List of Figures

Figure 1:	Vicinity Map	
0	- 1 op ood oo Didiidge Mai)	_
	Entiting Diamage I all	D
Figure 6:	Proposed Drainage Plan	BACK POCKET
-	1	····· BACK POCKET

Appendix

Appendix A: Existing HEC-1 Calculations
Appendix B: Proposed HEC-1 Calculations
Appendix C: Existing Rational Calculations
Appendix D: Proposed Rational Calculations
Appendix E: StormCAD Calculations
Appendix F: Channel and Culvert Calculations
Appendix G: Water Quality Pond Calculations
Appendix H: Operations and Maintenance Manual
Appendix I: Ultimate Design StormCAD Calculations

EXECUTIVE SUMMARY

The purpose of this Preliminary Drainage Report (PDR) and Final Drainage Report (FDR) is to present final drainage design and improvements for Meridian Crossing, located at the northeast corner of Meridian Road and Old Meridian Road, in the Falcon Highlands development. Runoff quantities and proposed facilities have been calculated using the current City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM). Existing facilities have been analyzed to ensure they are able to function as designed with the new facilities and construction.

This report encompasses approximately 9.5 acres of proposed commercial development in the southeast corner of the Falcon Highlands development. A proposed collector (Flower Road) will traverse the site, connecting Meridian Road to McLaughlin Road. This development will also include improvements to McLaughlin Road.

Flower Road and McLaughlin Road are to be designed as Non-Residential Collectors, per the El Paso County Criteria Manual, with a design speed of 40 miles per hour (mph) and a posted speed of 35 mps. Curb and gutter will be installed along both of these roads.

INTRODUCTION

The Meridian Crossing subdivision is a 9.5 acre commercial development located on the northwest side of the Town of Falcon. Meridian Crossing is located east and south of Falcon Highlands Market Place Filing No. 1 and adjacent to the southeast side of the "New" Meridian Road alignment. Existing development occurring in the area includes the Falcon Highlands subdivision to the west, the Beckett at Woodmen Hills development to the east and the Falcon Highlands Market Place to the west.

The area containing Meridian Crossing has been studied as part of the Falcon Area Drainage Basin Planning Study (DBPS)-Preliminary Design Report by URS, dated December 15, 2000 and Falcon Highlands Master Drainage and Development Plan (MDDP) by URS, dated October 2004.

Purpose

The purpose of the following Final Drainage Report (FDR) is to present the final design drainage improvements for the Meridian Crossing commercial development. Drainage improvements will include curb inlets, roadside ditches, and Water Quality Capture Ponds.

Runoff quantities and proposed facilities have been calculated using the current City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM) Volumes I and II.

Limits of Study

The Meridian Crossing FDR details the hydrology and hydraulics for the West Tributary of the Falcon Basin. Storm flow is routed by and from the proposed site and then directed through the proposed and future developments to US Highway 24. This includes an analysis of the storm systems, which includes the culverts and inlets along Meridian Road and Rolling Thunder Way. The area of study is bounded by Flower Road to the north and east, Meridian Road to the north and west, Old Meridian Road to the west and McLaughlin Road on the south

EXISTING CONDITIONS

General Location

The proposed Meridian Crossing is approximately 9.5 acres and is located at the southeast corner of Meridian Road and Old Meridian Road in Falcon, Colorado, Section 12, Township 13 South, Range 65 West of the 6th Principal Meridian. Currently, the site is zoned CR.

Falcon Highlands, Woodmen Hills, Falcon Vista, Meridian Ranch, Elkhorn Estates and Falcon Hills are all developments within a 5-mile radius of the site.

Land Use

The proposed site has just recently been rezoned to a Commercial Regional (CR) zone.

Topography and Floodplains

The topography of the surrounding area is typical of a high desert, short prairie grass with relatively flat slopes generally ranging from 2% to 4%. The area generally drains to the south. The site combines with the outlet flow of Detention Pond WU prior to crossing through the existing box culverts at Highway 24. Existing drainage swales convey these flows.

The Flood Insurance Rate Map (FIRM No. 08041C0575-F dated 3/17/99) indicates that there is a floodplain north and east of the proposed site (Falcon Basin Middle Tributary). FEMA has approved a LOMR for the Middle Tributary Floodplain (Case No. 06-08-B427P, with an effective date of November 3, 2006). This flow will now be contained within a storm drainage system and detention pond, which realigns the floodplain to the east of the site. (See Figure 3: Floodplain Map) The floodplain ties in with the FIRM after the detention pond at McLaughlin Road.

Geology

Soil Conservation Service soil survey records indicate the project area is covered by soils classified in the Blakeland Series, which are categorized in the Hydrological Group B.

The Blakeland (8) loamy sand is a deep, excessively drained soil that can exceed depths of 60 inches. Permeability of this soil is rapid with an effective rooting depth of 60 inches. This soil has good potential for urban development. The available water capacity is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate.

The Blakeland (9) complex soil is comprised of approximately 60 percent Blakeland loamy sand, 30 percent Fluvaquentic Haplaquolls and 10 percent other soils. This soil is found more in sloping areas. It is deep and somewhat excessively drained. It formed in sandy alluvium and eolian material derived from arkosic sedimentary rock. Permeability of Blakeland soils is rapid, with an effective rooting depth of 60 inches. The available water capacity is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate. The Fluvaquentic Haplaquolls are generally located in swale areas, and are deep, poorly drained soils. They formed in alluvium derived from arkosic sedimentary rock.

The Blakeland soil is well suited to wildlife habitat, home sites, streets and roads. This soil needs to be protected from erosion when vegetation has been removed from building sites. The Fluvaquentic Haplaquolls soil is good for wetlands. This soil has poor potential for home sites. The main limitation of this soil is the high water table and potential for flooding.

Note: (#) indicated Soil Conservation Survey soil classification number. See Figure 2: SCS Soils Map.

Climate


Mild summers and winters, light precipitation; high evaporation and moderately high wind velocities characterize the climate of the study area.

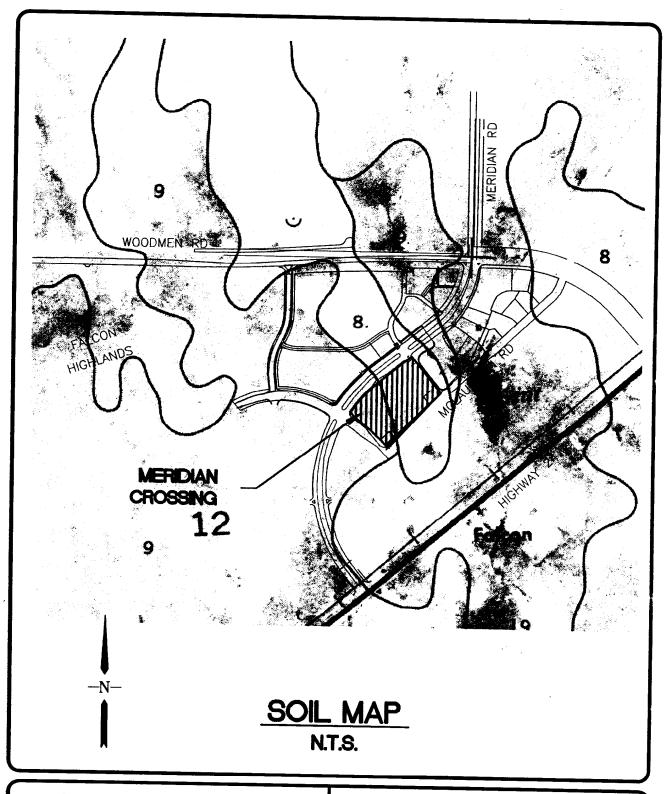
The average annual monthly temperature is $48.4 \, \text{F}$ with an average monthly low of $30.3 \, \text{F}$ in the winter and an average monthly high of $68.1 \, \text{F}$ in the summer. Two years in ten will have a maximum temperature higher than $98 \, \text{F}$ and a minimum temperature lower than $-16 \, \text{F}$. Precipitation averages 15.73 inches annually, with 80% of this occurring during the months of April through September. The average annual Class A pan evaporation is 45 inches.

Natural Hazards Analysis

Natural hazards analysis indicates that there is high ground water, potentially expansive claystone bedrock and wetlands located on or near the proposed site. Refer to the Geologic Hazards Evaluation Retail Site Woodmen Road and Meridian Road report by Entech Engineering. Usually, in areas where high ground water is an issue, underdrains are built to help alleviate the problem. However, since the proposed site is a commercial development, construction will be done as slab-on-grade and no basements. If lower levels are built, an underdrain system would be required. Wetland areas in the site have been identified and approved by Corps of Engineers. A mitigation plan for the site has been approved and implementation began in the fall of 2005. A copy of this plan is on file with the Falcon Highlands Metropolitan District.

Soils in this area are cohesionless, sloughing of steep banks during drilling and/or excavation could occur. By siting improvements in a manner that provides an opportunity to lay the banks of excavations back at a 1:1 slope during construction, the problems associated with sloughing soils can be minimized.

MERIDIAN CROSSING


SE Springs Engineering

31 NORTH TEJON, SUITE 315 COLORADO SPRINGS, CO 80903 TEL: (719) 227-7388 FAX: (719) 227-7392

VICINITY MAP

FIGURE 1

PROJECT NO. 057-07-032

MERIDIAN CROSSING

SE Springs
Engineering

31 NORTH TEJON, SUITE 315 COLORADO SPRINGS, CO 80903 TEL: (719) 227-7388 FAX: (719) 227-7392

SCS Soils Map

FIGURE 2

PROJECT NO. 057-07-032

DRAINAGE DESIGN CRITERIA

SCS Hydrograph Method

Hydrologic modeling was used to the West Tributary of the Falcon Basin, which routes through Meridian Crossing. Modeling was completed using The United States Army Corps of Engineers Hydrologic Engineering Center-HEC-1 version 4.1. The Soil Conservation Service (SCS) (since renamed National Resources Conservation Service (NRCS)) curve number method was selected for calculating the runoff volume from the drainage basins per the Drainage Criteria Manual (DCM). The precipitation data, basin delineation, CN runoff coefficients, and time of concentrations were taken from the Falcon Basin DBPS. Modifications have been performed on the original data, as new developments have been built and boundary lines have changed. The model has been updated to reflect the most current changes occurring in the Falcon area. The existing models in the appendix are those which were included in the FDR for Pond WU, as this report updated and modified the existing conditions of the West Tributary as originally analyzed in the Falcon Basin DBPS. Below is a summary of major design points entering the Falcon Highlands development, through the site, and where the flows exit the Falcon Highlands site. The Falcon Highlands Master Drainage Development Plan (MDDP) corrected an area in the volume of the Woodmen Hills detention pond (Pond W).

The West Tributary was analyzed in the MDDP/PDR/FDR for Falcon Highlands Filing No. 1. This report made the assumption that Pond WU would capture flows from Basins W-39, W-40, W-41 and W-42. With the construction of Meridian Road, flows from Basin W-42 do not release into the detention pond and instead combine with the outflow from the pond. With this change in routing, actual design point locations have changed slightly. The existing DBPS analysis and this report show design point WU as the flow at Highway 24 as it passes through the existing box culverts. The proposed DBPS analysis and the Market Place report have Design Point WU as the flows entering the pond with the pond release flows as the Highway 24 flows. This report made the change, as stated previously, Basin W-42 no longer enters the pond, but combines at Highway 24 and a design point was needed to evaluate flows at this location. See the table below for a summary of major design points through the West Tributary in the Falcon Highlands development. Pond WU will release at less than historic rates for both, the 5-year and 100-year events.

Design	Exi	sting*	Pro	posed	Location
Point	5-Yr	100-Yr	5-Yr		
WS	137	1575	145	1705	Woodmen
WT	143	1621	244	1867	Tamlin Road (Removed)
Pond WU			118	1313	Highway 24/Pond Outlet
WU	148	1648	135	1339	Highway 24 (Pr Condition)
WV	149	1640	135	1338	Falcon Highway

^{*}Existing flows have been modified per the approved Falcon Highlands Final Drainage Report for Regional Detention Pond WU. This report adjusted routing for Basin W-42 and has modified the existing flows at Design Point WU. The "existing" flows which will be the target in this report are those existing flows which have been identified in the previous mentioned report, not those which were stated in the DBPS.

Rational Method

Because the Meridian Crossing is less than 100 acres, the rational method was used to estimate stormwater runoff for basins, and to size inlets, culverts and ditches, as required by the current

City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM). The rational method coefficients "C" were selected from Table 5-1 of the DCM, the time of concentration was calculated per DCM requirements and intensities for each basin were calculated from storm intensity curve formulas provided by the City of Colorado Springs. The rational method was used to determine onsite flows. Rational Method results are shown in Appendix B and C.

Water Quality Criteria

The water quality capture volume (WQCV) was calculated based on equations found in the Drainage Criteria Manual Volume 2, Stormwater quality Policies, Procedures and Best Management Practices (BMP's). The WQCV allows suspended sediment and absorbed pollutants to settle out of the water and improve the overall quality of runoff leaving the facility and reduce the potential for erosion. The positive impact on water quality is significant see appendix for proposed pond calculations.

Street Capacity

Street capacity is based on the DCM criteria, as stated in Chapter 6. Capacity of the streets (Flower Road and McLaughlin Road) will be based on the minor and major storms. Minor storm criteria is based on pavement encroachment and the major storm criteria is based on allowable depth and pavement encroachment. In all cases, flow encroachment shall not extend past the right-of-way (R.O.W.). Mannings equation will be used to determine the street capacity based on the following criteria from the DCM. Flower and McLaughlin Roads are both collector roads. Both streets shall meet the following criteria from the Table 6-1 in the DCM:

Roadway	Use of sti	reet in storm	Cross flow in streets for storm		
Classification Collector	Initial No curb	Major	Initial Majo		
Conceion	overtopping. Flow spread must be limited to a max. 20 foot spread from each curb face	Residential dwellings, public, commercial and industrial buildings shall not be inundated at the ground line. The depth of water at the gutter flow line shall not exceed 12 inches.	Where cross pans are allowed, depth of flow shall not exceed 6 inches at flow line.	12 inches of depth at gutter flow line.	

DRAINAGE BASINS

Existing Drainage Analysis

Since the site is currently undeveloped, the existing drainage analysis was determined by analyzing existing runoff quantities and patterns. The site is covered predominantly with grasses. Existing storm runoff is generally from the north to the south through natural drainage swales, as well as gutter flow in a previously constructed roadway (Meridian Road). (See Figure 5: Existing Drainage Plan) On-site basins, being smaller than 100 acres, were analyzed using the rational method. See below for a brief discussion of each of these basins.

- Basin E-1 (2.18 acres) consists of the southeast half of Meridian Road, at a high point in the road adjacent to Pond MN. Basin E-1 slopes to the south to design point 1. An existing at grade inlet intercepts this flow. Any flow-by from this inlet will be directed onto Old Meridian Road. The remainder of the flow will continue east along Old Meridian Road, which allows street flow to runoff into an existing roadside ditch. This flow then enters a temporary culvert under Old Meridian Road. Basin E-1 produces runoff quantities of 9.4 cfs and 17.6 cfs for the 5-year and 100-year storms.
- Basin E-2 (8.76 acres) consists of an area just east of Old Meridian Road and between Meridian Road and McLaughlin Road. This area is currently undeveloped. Basin E-2 slopes to the southwest to design point 2. Currently, a temporary culvert exists to transfer flow from the east side of Old Meridian Road to the south side. An estimated 13.7 cfs and 31.4 cfs are produced for the 5-year and 100-year storms.
- Basin E-3 (13.96 acres) consists of an area northeast of Old Meridian and McLaughlin Roads in the "Town of Falcon". The flow from this basin will be directed towards the intersection of State Highway 24 and Meridian Road, where it is conveyed under an existing culvert under Old Meridian Road. This flow is directed towards the existing structure at Design Point 6. The basin generates 16.4 cfs and 37.5 cfs for the 5-year and 100-year storms.
- Basin E-4 (2.15 acres) consists of the east half of Meridian Road from Old Meridian Road to the right-in access point to the south. Basin E-4 slopes to the south. Flow from this basin will be conveyed through curb and gutter to the right in access drive, where a sump inlet intercepts the flow. An 18-inch rcp will then release into a temporary channel along Meridian Road, which conveys the flow to design point 6. An estimated 9.3 cfs and 17.5 cfs are produced for the 5-year and 100-year storms.
- Basin E-5 (9.41 acres) consists of an undeveloped native area just east and south of the Falcon Highlands detention pond (Pond WU). Runoff from this basin combines with flows from design point 7 and the detention pond outlet and crosses under US Highway 24 through existing culverts at design point 8. Basin E-5 generates 12.1 cfs and 27.8 cfs for the 5-year and 100-year storms.
- Basin E-6 (2.62 acres) consists of the west half of Meridian Road from the right-in access point to Highway 24. Basin E-6 slopes to the south to design point 4. Runoff will flow south via curb and gutter along this section of Meridian Road. A sump inlet at

the low point, just before Highway 24, intercepts the runoff. This inlet connects to the box culvert under Meridian Road. This flow will continue to the existing box culverts at Highway 24. The Falcon Highlands detention pond also discharges to the existing culvert at Highway 24. However, the detention pond was designed to release flows at 80% of historic flow. The existing culvert under Highway 24 will have enough capacity, because the peak discharge from design point 7 will occur long before the peak discharge of the pond. An estimated 11.6 cfs and 21.7 cfs are produced for the 5-year and 100-year storms.

- Basin E-7 (2.32 acres) consists of the east half of Meridian Road from the right-in access point south to Highway 24. Basin E-7 slopes to the south to design point 15. Runoff will flow south through curb and gutter along this section of Meridian Road. A sump inlet intercepts this flow and connects to the box culvert under Meridian Road. An estimated 10.5 cfs and 19.7 cfs are produced from Basin E-7 for the 5-year and 100-year storms.
- Basin E-8 (23.89 acres) consists of the area south of Old Meridian Road and east of Meridian Road. This area is currently undeveloped. This flow sheetflows across the basin to design point 6. A concrete box culvert conveys the flow under Meridian Road to the existing culvert under Highway 24. An estimated 32.2 cfs and 73.7 cfs are produced for the 5-year and 100-year storms.

Existing Design Points

- Design Point 1 is an existing 15' on-grade inlet in Meridian Road, north of Old Meridian Road. This inlet intercepts flow from Basin E-1, street flow from Meridian Road, south of Pond MN to Old Meridian Road. The inlet releases the flow into a temporary ditch along Old Meridian Road, which conveys the flow to Design Point 2. Flows at this location are 9.4 and 17.6 cfs.
- Design Point 2 collects flow from Basin E-2 and combines it with the flow in the temporary channel from DP-1. A temporary 24-inch culvert under Old Meridian Road conveys the flow to the south towards Design Point 6. This design point has flows of 22.9 and 48.7 cfs.
- Design Point 3 is an existing 20' sump inlet that intercepts the street flow in Meridian Road from Basin D-4. The inlet releases flows into an existing temporary roadside ditch along Meridian Road to Design Point 6. Flows at this location are 9.3 and 17.5 cfs.
- Design Point 4 is an existing 25' sump inlet used to intercept the west side of Meridian Road, north of Highway 24 (Basin E-6). This flow enters the existing storm system and is conveyed to Design Point 7. This design point has flows of 11.6 and 21.7 cfs.
- Design Point 5 is an existing 20' sump inlet in Meridian Road opposite Design Point 4. This inlet intercepts street flow from Basin E-7 and combines with flows in the storm system under Meridian Road. Flows are released at Design Point 7. The design point generates flows of 10.5 and 19.7 cfs.

- Design Point 6 combines flows from Basins E-3 and E-8 with flows from Design Points 2 and 3. Two 12' (W) x 3' (H) reinforced concrete box culverts (RCBC's) convey the flow under Meridian Road to Design Point 7. Flows generated at this design point are 67.8 and 149.7 cfs.
- Design Point 7 is the location where the storm system releases flows. It is the combined flow from Design Points 4, 5 and 6. Once released, flows will continue through an existing ditch to Design Point 8 at Highway 24. Flows at this location are 67.0 and 148.5 cfs.
- Design Point 8 combines the flow from Basin E-5 with flows from Design Point 7 and Detention Pond WU. There are three 12' (W) x 6' (H) RCBC's under Highway 24 to convey flows. These flows will continue towards the south, in a FEMA floodplain, along their existing paths. Flows generated at this location are 147.7 and 1286.1 cfs. This design point corresponds to Design Point WU in the HEC models.

Developed Drainage Analysis

The proposed site was studied in the Falcon Basin DBPS. Efforts have been made to comply with the recommendations set forth in the approved DBPS. The flows in the commercial development will combine with the outlet flows of Detention Pond WU and continue under Highway 24 through the existing box culverts. Figure 6: Developed Drainage Plan illustrates the basin boundaries used for the rational hydrologic model.

Basins D-1 and D-4 through D-7 do not have any changes from the corresponding, existing basins (E-1 and E-4 through E-7), as they have already been developed and the drainage structures have been designed. Basin E-2, a proposed commercial site (Meridian Crossing, whose preliminary plan has been approved by the Board of County Commissioners (BOCC)), the proposed site and adjacent roadways, has been divided into five new developed basins. Changes to Basins D-3 and D-8, is the assumption that these basins will be developed in the future as commercial use. The description of these basins follows.

- Basin D-2 (5.14 acres) consists of approximately the south half of the Meridian Crossing commercial development. It is anticipated for this basin to drain towards the south, where it will be intercepted by a proposed water quality facility (Porous Landscape Detention PLD). This storm system will release flows into a temporary drainage swale through Basin D-8. This drainage pattern is consistent with the approved Master Drainage Development Plan Amendment to Falcon Highlands, which shows these flows reaching the existing box culvert under Highway 24 at design point 8. This basin generates 23.4 cfs and 43.9 cfs for the 5-year and 100-year storm events.
- Basin D-3 (11.49 acres) consists of an area northeast of Old Meridian Road and McLaughlin Road in the "Town of Falcon". It is assumed that this area will be developed as commercial use in the future. The flow from this basin will be directed towards the intersection of Highway 24 and Meridian Road, where it is conveyed under a proposed culvert under Old Meridian Road. The flow is directed towards the existing structure at DP-6. The basin generates 34.7 and 65.1 cfs for the 5 and 100-year events.

- intercepted by the temporary grated lid on the proposed manhole at DP-Z This flow will ultimately reach Highway 24. Flows at this location are 4.7 and 8.9 cfs.
- Design Point X is the released flow from the East PLD. Flow from this area combines with a storm system in Old Meridian Road via a 30" rcp. Flows generated in this location are 16.9 cfs and 31.8 cfs.
- Design Point Z is the flow from DP-B, DP-X intercepted flow from inlet 1 and the flow-by from inlet 1 combined with the released flow from the West PLD (Basin D-2).
 A 36" rcp connects and conveys this flow to a temporary culvert under Old Meridian Road which will release flows into a temporary ditch. Flows at this junction are 44.6 cfs
- Design Point Y is a proposed 54" rcp which releases flows across Old Meridian Road. The proposed pipe will replace an existing culvert, which is currently undersized, and intercepts flows from D-3. This design point has a flow of 34.7 cfs and 65.1 cfs. There is no corresponding design point in the Market Place Filing No. 1 drainage report.
- Design Point 3 is an existing 20' sump inlet that intercepts the street flow in Meridian Road from Basin D-4. The inlet currently combines with DP-Z and flows into an existing temporary roadside ditch along Meridian Road to Design Point 6. Flows at this location are 9.3 and 17.5 cfs. This design point corresponds to Design Point 13 in the Market Place FDR.
- Design Point E is the combination of D-3 and DP-Z. Flows are released into a temporary channel which conveys flows to a roadside ditch along Meridian Road. This flow is conveyed all the way to Design Point DP-8 at Highway 24 where flows are released from the Falcon Highlands site. Flows intercepted at this location are 46.938.3 cfs and 58.2 cfs. The Market Place Filing No. 1 report does not have any corresponding design points.
- Design Point 4 is an existing 25' sump inlet used to intercept the west side of Meridian Road, north of Highway 24 (Basin D-6). This flow enters the existing storm system and is conveyed to Design Point 7. This design point has flows of 11.6 and 21.7 cfs. This design point corresponds to Design Point 16 in the Market Place FDR. There is no difference in the drainage flows.
- Design Point 5 is an existing 20' sump inlet in Meridian Road opposite Design Point 4. This inlet intercepts street flow from Basin D-7 and combines with flows in the storm system under Meridian Road. Flows are released at Design Point 7. The design point generates flows of 10.5 and 19.7 cfs. This location corresponds to Design Point 15 in the Market Place FDR. There are no changes in the flows.
- Design Point 6 combines flow from Basin D-8 with DP-E and DP-Y. Two 12' (W) x 3' (H) reinforced concrete box culverts (RCBC's) convey the flow under Meridian Road to Design Point 7. Flows generated at this design point are 127.7 and 239.9 cfs. This location corresponds to Design Point 17 in the Market Place FDR. This report calculated flows to be 157.9 and 300.6 cfs.

DRAINAGE FACILITY DESIGN

General Concept

Meridian Crossing is located completely within the West Tributary of the Falcon Drainage Basin. The site drains towards the southwest where it is directed towards an existing drainage structure under Highway 24. This structure has been analyzed to ensure it still properly functions with the developed flow released here. The flow from these structures will continue along an existing swale to the south. There are two water quality facilities proposed for the site, prior to flows exiting.

Storm Systems

There has been one storm system previously installed with the construction of Meridian Road. This system was designed in the Market Place Filing No. 1 FDR. One new culvert and a temporary culvert have been proposed with the development of this site. StormCAD and CulvertMaster calculations have been included at the end of the report analyzing all of these facilities to ensure they are still adequate for the developed flow associated with this development.

The first system is an existing system located at the intersection of Meridian Road and Highway 24. This system was initially designed in the Market Place Filing No. 1 FDR. The system has been analyzed to ensure it will still function properly with the development of The Shoppes at Falcon. A 20-foot sump inlet is located at DP-5 in Meridian Road. This inlet intercepts 10 cfs and 19 cfs. A 25-foot sump inlet is located on the other side of Meridian Road at DP-4. This inlet intercepts 12 and 22 cfs. Both of these inlets connect to an existing 12'(W) x 3' (H) box culvert under Meridian Road via 24-inch rcp's. This structure intercepts a total flow of 127.7 and 239.9 cfs. This system releases flows into an existing channel parallel to Highway 24 at DP-7. Flows at this location are 140.2 cfs and 264.8 cfs. The channel conveys this flow to DP-8 at Highway 24, where the flow exits Falcon Highlands and continues on its existing path to the south.

Channel Improvements

The temporary channel from DP-Z has a 100-year flow of 73.3 cfs from the proposed storm system. The channel will be shaped similarly to the roadside ditch along the southeast side of Meridian Road, which it connects to. Velocity is this channel is 3.2 ft/s with a flow depth of 1.8 feet. A temporary drainage easement will be recorded on the final plat to accommodate this channel.

The existing roadside ditch along Basin D-7 is located east of Meridian Road from the right-in access point south to Highway 24. The ditch will carry the 100-year storm (88.2 cfs) at a depth of 1.8 feet to DP-6. The velocity in this channel is 5.5 fps. This channel will also be removed upon development of Basin D-8 and the construction of an internal storm drain system.

There is a series of onsite temporary swales in lots 3, 4 and 5. These swales will be utilized to ensure flows are conveyed to the west PLD. Once these lots develop, the swales will no longer be necessary and will be removed. Also, located outside of the Meridian Crossing right-of-way

along Old Meridian Road are 3 temporary swales, which convey flows to storm inlets. These swales will be removed upon the construction of Old Meridian Road.

Detention Pond WIJ

Based on the current configuration of the basins, Pond WU does work as intended. The 5-year release rate is less than the existing flow rate. Refer to the table earlier in the report for flow rates at major design points. Based on the current analysis of the hydrology for the area no modifications will be necessary to the outlet structure of the detention pond as previously assumed. The 100-year storm also functions properly and has a release rate lower than the existing flows.

Proposed Water Quality Pond

Based on the City of Colorado Springs/El Paso County DCM Volume 2, a water quality pond is needed, as the development area is greater than 1.0 acre. There will be two water quality capture ponds (WQCP), which will be porous landscape detention (PLD). Both ponds structures will be located between the northern right of way of McLaughlin road and the proposed curb and gutter for lots 5 and 6. This will enable the ponds to be used for final construction of each of the building sites. The east and west pond combine for a total 8200 square feet.

Ultimate Design

Currently, there is evidence that Old Meridian Road will be improved. If this situation does not happen, there is an "ultimate design" scenario to account for this. Meridian Crossing will be responsible for installing curb and gutter and sidewalk for the portion of Old Meridian Road which fronts their property. The rcp stub behind inlet DP-1 will be extended via 18"rcp to the existing culvert under Old Meridian Road. A 5' type R inlet will be installed to catch the flows of Old Meridian Road (see appendix item I for StormCAD calculations). A 5' manhole will be installed to connect the new and existing pipes. The existing culvert will continue to convey the flow through an existing swale, which releases flows into the roadside swale along Meridian Road. This flow still reaches an ultimate location of DP-8, where all flows leave the Falcon Highlands development.

Downstream Facilities

Falcon West Tributary

Detention Pond WU discharges below the historical rate as described in the Falcon Highlands Filing No. 1 PDR and the Falcon Basin DBPS. Just downstream of Pond WU outlet works is an existing bridge at SH 24. At Highway 24 near Pond WU, triple 12' x 6' RCBC's were installed in 1999. This facility conveys the 1239 cfs 100-year design flow. An analysis of these structures in included in the appendix. The DBPS recommended installing a lined channel with geotextile fabric and grade control drop structures. Currently, this area has no real definable channels, but flows are allowed to spread once they are released through the structure at SH 24. This area is within a FEMA designated floodplain. Historic flows as stated in the DBPS are 1518 cfs.

Downstream of SH 24, flows follow a FEMA floodplain to Falcon Highway. At Falcon Highway there is a 36-inch cmp culvert that is inadequate to carry the 100-year design flow.

DRAINAGE FEES, COST ESTIMATE & MAINTENANCE

Maintenance

The streets and major improvements within this site will be maintained by the Meridian Crossing Property Owners Association (POA) for ownership and maintenance. This includes the roads, drainage facilities, and water quality ponds. The Falcon Highlands Metropolitan District will own and operate water and wastewater systems. The remaining utilities (gas, phone, electric, cable, etc) will be owned and maintained by their respective companies. Easements will be issued to ensure each entity is able to access and maintain their facilities.

Drainage Fees

The proposed development is located within the Falcon Basin. The proposed commercial site encompasses approximately 9.5 acres. Fees will be based on 9.0 acres (95% imperviousness due to commercial development).

Drainage fees in the Falcon Basin are \$6,925 and bridge fees are \$2,659. Based on these numbers and an impervious area of 9.0 acres fees for this development are \$62,325 for drainage and \$25,261 for bridge fees. This gives a total fee of \$87,586.

Proposed Facilities Estimate

ITEM	UNITS	UNIT COST	QUANTITY	ITEM COST
DRAINAGE			QUANTITI	COST
5' STORM MANHOLE	-			
30" RCP	LF EA	2,800	1	2,800
36" RCP		55	435	23,92
42" RCP	LF	65	60	3,900
RIPRAP	LF	80	105	8,400
SUBTOTAL DRAINAGE	CY	45	30	1,350
The state of the s				\$40,375
GRADING AND EROSION CONTROL				
CLEARING AND GRUBBING	AC	\$800	9.5	27.000
EARTHWORK	CY	3.50	13300	\$7,600
WATER QUALITY PONDS	EA	3,000	13300	46,550
CURB BACKFILL	LF	2.50	3200	6,000
MISC SEEDING AND MULCH	AC	3,500	5200	8,000
HAY BALE CHECKS	EA	10	37	21,000
INLET PROTECTORS	EA	200	4	370
VEHICLE TRACKING CONTROL	EA	1,500	1	800
SILT FENCING	LF	5	1800	1,500
SUBTOTAL GRADING & EROSION CONTROL			1800	9,000
III TIMATE DE ANTIGE				\$100,770
ULTIMATE DRAINAGE 5' STORM MANHOLE				
30" RCP	EA	2,800	1	2,800
5' TYPE R INLET	LF	40	259	10,360
SUBTOTAL ULTIMATE DRAINAGE	EA	3,500	1	3,500
DIVANAGE				\$16,660
SUBTOTAL DRAINAGE & EROSION CONTROL				
				\$157,805
Engineering (10%)				\$15,781

Contingency (10%)	
TOTAL	\$15,781
TOTAL	ļ
	\$189,367

EROSION CONTROL

General Concept

During construction, best management practices for erosion control will be employed based on El Paso County criteria and the erosion control plan.

Ditches will be designed to meet El Paso County criteria for slope and velocity, keeping velocities below scouring levels.

During construction, best management practices (BMP) for erosion control will be employed based on El Paso County Criteria. BMP's will be utilized as deemed necessary by the contractor and/or engineer and are not limited to measures shown on the construction drawing The contractor shall minimize the amount of area disturbed during all construction activities.

In general the following shall be applied in developing the sequence of major activities:

- Install downslope and sideslope perimeter BMP's before land disturbing activity occurs.
- Do not disturb an area until it is necessary for construction activity to proceed.
- Cover or stabilize as soon as possible.
- Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- The construction of filtration BMP's should wait until the end of the construction project when upstream drainage areas have been stabilized.
- Do not remove temporary perimeter controls until after all upstream areas are stabilized.

Silt Fence

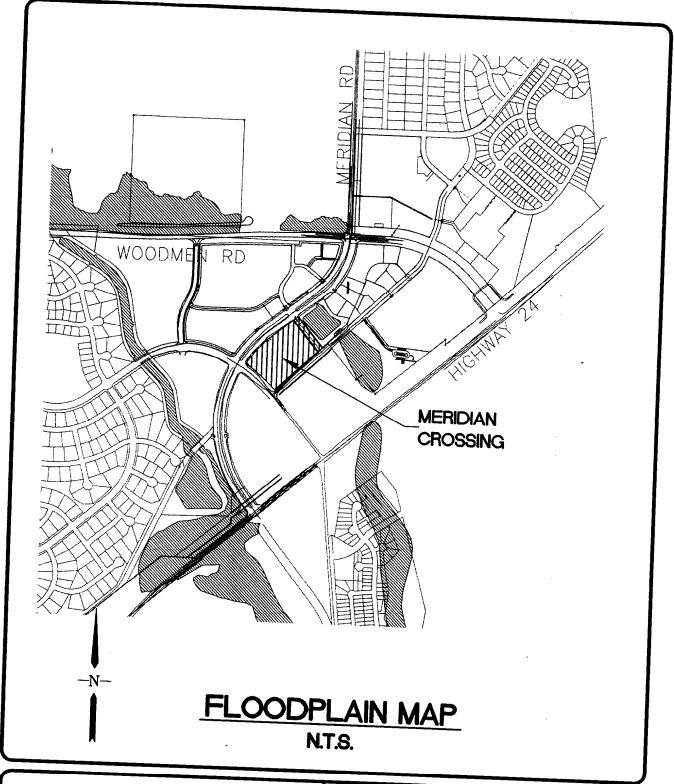
Silt fence will be placed along downstream limits of disturbed areas. This will prevent suspended sediment from leaving the site during infrastructure construction. Silt fencing is to remain in place until vegetation is reestablished.

Erosion Bales

Erosion bales will be placed ten (10) feet from the inlet of all culverts and inlets during construction to prevent culverts from filling with sediment. Erosion bales will remain in place until vegetation is reestablished in graded roadside ditches and channels. Erosion bale ditch checks will be used on slopes greater than 1% to reduce flow velocities until vegetation is

Vehicle Tracking Control

This BMP is used to stabilize construction entrances, roads, parking areas and staging areas to prevent the tracking of sediment from the construction site. A vehicle tracking control (VIC) is to be used at all locations where vehicles exit the construction site onto public roads, loading and unloading areas, storage and staging areas, where construction trailers are to be located, any construction area that receives high vehicular traffic, construction roads and parking areas. VTC's should not be installed in areas where soils erode easily or are wet.


Sedimentation Pond

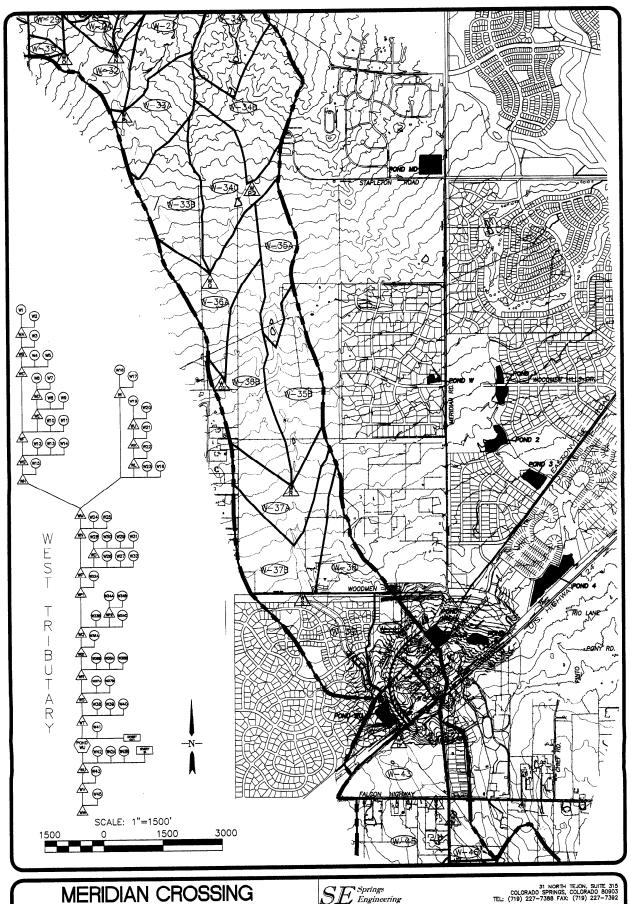
This BMP is used to detain runoff which has become laden with sediment long enough to allow the sediment to settle out. As the construction area is larger than 1 acre, a temporary sediment basin is required per Volume 2 of the Drainage Criteria Manual. The basin will be located in the area of the proposed water quality pond, as this area will need to be excavated and an embankment built. A temporary 8" pvc underdrain will be installed to drain this basin during construction

REFERENCE MATERIALS

- "City of Colorado Springs/El Paso County Drainage Criteria Manual" September 1987, Revised November 1991, Revised October 1994.
- "City of Colorado Springs/El Paso County Drainage Criteria Manual, Volume 2: Stormwater Quality Policies, Procedures and Best Management Practices" November 1, 2002.
- 3. Soils Survey of El Paso County Area, Natural Resources Conservation Services of Colorado.
- Flood Insurance Rate Study for El Paso County, Colorado and Incorporated Areas.
 Federal Emergency Management Agency, Revised March 17, 1997.
- Falcon Area Drainage Basin Planning Study Preliminary Design Report, December 2000. Prepared by URS Corp.
- Master Development Drainage Plan, and Preliminary Drainage Report and Final Drainage Report for Falcon Highland Filing No. 1, October 2004. Prepared by URS Corp.
- Floodplain Modification Study and Application for Conditional Letter of Map Revision for the Middle Tributary of the Falcon Basin-Regency Center, January 2005. Prepared by URS Corp.
- Amendment to Falcon Highlands Master Drainage Development Plan, September 2005.
 Prepared by URS Corp.
- Falcon Highlands Market Place Filing No. 1 Preliminary and Final Drainage Report, December 22, 2005. Prepared by URS Corp.

Figure 3: FEMA Floodplain Map

MERIDIAN CROSSING


SE Springs
Engineering

31 NORTH TEJON, SUITE 315 COLORADO SPRINGS, CO 80903 TEL: (719) 227-7388 FAX: (719) 227-7392

FIRM MAP 08041C0575 REV 11/26/03

FIGURE 3

PROJECT NO. 057-07-032

MERIDIAN CROSSING

SE Springs
COLORADO SPRINGS. COLORADO SPRINGS.

Appendix A: Existing HEC-1 Calculations

* FLOOD HYDROGRAPH PACKAGE (HEC-1) * JUN 1998 * VERSION 4.1 * * RUN DATE 28SEP07 TIME 11:57:06 * *

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINCLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

HEC-1 INPUT PAGE 1

```
LINE
                      ID.....1....2....3.....4.....5.....6.....7.....8.....9.....10
                               FALCON BASIN 5-YR/ 24-HOUR FLOOD/ EXISTING CONDITIONS
UPPER EAST TRIBUTARY (WOODMEN HILLS) BASED ON CLOMR APPROVED 2/2/99
INCLUDING 2 EXISTING SCS STOCK PONDS, WEST WOODMEN HILLS POND
                      ID
                     ID
ID
    2
                     ID
                                    NOTE: M1-M4 (PAINT BRUSH HILLS) MODELED AS HISTORIC TO ACCOUNT FOR DETENTION POND AT MC
                      ID
ID
                                    NOTE: NO CULVERT AT STAPLETON & MERIDIAN, TEMP CULVERTS AT MERIDIAN DOWNSTREAM OF WOODMEN HILLS DRIVE (DIVERSION)
                      *DIAGRAM
IT
                                   5 14JUL99
                                                       800
                                                                   300
    9
                      10
   10
11
                      KK
KM
                                W1
   12
13
14
15
                      ва
                              .0479
                             2.6
15
.0005
                      PB
                      IN
PC
                                                     .0030
                                          .0015
                                                                 .0045
                                                                            .0060
                                                                                        .0080
                                                                                                    .0100
                                                                                                               .0120
                                                                                                                           .0143
                                                                                                                                       .0165
                                                                                                               .0460
.7800
.8500
                                                                                                                           .0530
.7900
.8550
                             .0188
                                         .0210
                                                     .0233
                                                                 .0255
                                                                            .0278
                                                                                        .0320
                                                                                                   .0390
                                                                                                                                      .0600
   16
17
18
19
20
21
22
23
24
25
                      PC
PC
PC
PC
                                                     .4000
.8250
                                                                                                                                      .8000
                                         .1000
                                                                 .7000
                                                                            .7250
                                                                                        .7500
                                                                                                    .7650
                                                                                        .8400
                                                                                                    .8450
                              .8638
                                          .8675
                                                     .8713
                                                                 .8750
                                                                            .8788
                                                                                        .8825
                                                                                                    .8863
                                                                                                               .8900
.9240
                                                                                                                           .8938
.9270
                                                                                                                                       .8975
                     PC
PC
PC
PC
PC
                              .9013
                                         .9050
                                                     .9083
                                                                .9115
                                                                            .9148
                                                                                        .9180
                                                                                                   .9210
                                                                                                                                      .9300
                                                     .9375
                                                                .9400
                                                                                                   .9475
                                                                                                               .9500
.9750
                                                                                                                           .9525
                             .9325
                                          . 9350
                                                                            .9425
                                                                                        .9450
                                                                                                                                       .9550
                              .9575
                                         .9600
                                                     .9625
                                                                .9650
                                                                            .9675
                                                                                        .9700
                                                                                                                                       .9800
                              .9813
                                          .9825
                                                     .9838
.9963
                                                                .9850
.9975
                                                                            .9863
                                                                                       .9875
1.000
                                                                                                    .9888
                                                                                                               .9900
                                                                                                                           .9913
                                                                                                                                      .9925
                              .9938
                                         .9950
                                                                            ,9988
                                             60
   26
                      UD
                               .097
   27
28
                      KK
                      KM
   29
                      RK
                               1519
                                         .0263
                                                      .035
                                                                             TRAP
   30
                      KK
                                W2
   31
                      KM
   32
                      ва
                              .0278
   33
34
                      LS
UD
                                              60
                               .160
   35
                      КK
                                WA
   36
37
                      KM
HC
   38
                      KK
   39
40
                      KМ
                                          .0151
                      RK
                                464
                                                       .035
                                                                              TRAP
   41
42
43
                      кк
                                W3
                      KM
                              .0498
                      BA
                      LS
   44
45
                                              61
                                .139
   46
                      КK
                                WB
   47
48
                      KM
                      HC
                                   2
   49
                      кĸ
   50
                      KM
   51
                      RK
                                          .0279
                                823
                                                       .035
                                                                              TRAP
                                                                                                                                54
   52
                      кк
   53
54
55
56
                      KM
BA
                              .0054
                      LS
UD
                                              62
                                .044
   57
                      KK
                      KM
RK
   58
59
                               1078
                                          .0482
                                                       .035
                                                                              TRAP
                      KK
KM
BA
   60
                                W5
   61
62
                              .0159
   63
64
                      LS
UD
                                              60
                                .075
   65
                      KK
                                WC
   66
67
                      KM
HC
   68
                      KK
   69
70
                      KM
RK
                                 557
                                          .0449
                                                       .035
                                                                              TRAP
                                                                                            10
                      кĸ
   71
72
73
74
75
                                 W6
                      KM
BA
                              .0486
                                              60
                                .085
```

76 77 78	KK KM RK	592	.0372	.035	1	TRAP	5	4
79 80 81 82 83	KK KM BA LS UD	W7 .0217 .074	60					
84 85 86	KK KM RK	464	.1466	.035	7	TRAP	5	4
87 88 89	KK KM HC	W D 2						
90 91 92	KK KM RK	D-E 1044	.0479	.035	•	TRAP	5	4
93 94 95 96 97	KK KM BA LS UD	.0286 .069	60					
98 99 100	KK KM RK	1449	.0504	.035		TRAP	5	4
101 102 103 104 105	KK KM BA LS UD	w9 .0402 .097	61					
106 107 108	KK KM HC	WE 3						
109 110 111	KK KM RK	E-F 789	.0038	.035		TRAP	5	4
112 113 114 115 116	KK KM BA LS UD	W10 .0431 .096	61					
117 118 119	KK KM RK	824	.0388	.035		TRAP	5	4
120 121 122 123 124	KK KM BA LS UD	W11 .0314 .077	60					
125 126 127	KK KM HC	WF 4						
128 129 130	KK KM RK	F-G 2319	.0211	.035		TRAP	10	4
131 132 133 134 135	KK KM BA LS UD	W12 .0398 .095	60					
136 137 138	KK KM RK	2478	.0307	.035		TRAP	5	4
139 140 141 142 143	KK KM BA LS UD	W14 .0473 .135	61					
144 145 146	KK KM RK	81	0.0001	.035		TRAP	5	4
147 148 149 150	KK KM BA LS	W13	61					

151	UD	.182					
152 153 154	KK KM HC	WG 4					
155 156	KK KM	G-H					
157	RK	2632	.0217	.035	TRAP	15	4
158 159 160	KK KM RK	2447	.0372	.035	TRAP	5	4
161 162	KK	W15					
163	KM BA	.0881	61				
164 165	LS UD	.141	61				
166 167 168	KK KM RK	1763	.0289	.035	TRAP	5	4
169	KK	WH					
170 171	KM HC	2					
172 173	KK KM	W16					
174 175	BA LS	.0292	61				
176	UD	.092					
177 178	KK KM						
179	RK	1345	.0260	.035	TRAP	5	4
180 181	KK KM	W17					
182 183	BA LS	.0184	60				
184	UD	.085					
185 186	KK KM	WI					
187	HC	2					
188 189	KK KM	I-M					
190	RK	2650	.0370	.035	TRAP	15	4
191 192	KK KM	W19					
193 194	BA LS	.0428	61				
195	UD	.083					
196 197	KK KM						
198	RK	881	.0329	.035	TRAP	5	4
199 200	KK KM	W20					
201 202	BA LS	.0315	61				
203	UD	.071					
204 205	KK KM	WJ -					
206	HC	2					
207 208 209	KK KM RK	3061	0235	.035	TRAP	5	4
210	KK	W21	.0233	.033	1101	ŭ	•
211 212	KM BA	.1347					
213 214	LS UD	.156	60				
215	KK	WK					
216 217	KM HC	2					
218	KK	•					
219 220	KM RK	487	.0246	.035	TRAP	5	4
221	KK	W22					
222 223	KM BA	.0086					
224 225	LS UD	.055	63				

226	KK	WL							
227	KM								
228	HC	2							
229	KK								
230	KM								
		1706	0207	026	מאמים	5	4		
231	RK	1786	.0297	.035	TRAP	3	4		
232	KK	W23							
233	KM								
234	BA	.0244							
	LS	.0211	60						
235			60						
236	UD	.112							
237	KK	W18							
238	KM								
239	BA	.1251							
		.1231	60						
240	LS		60						
241	UD	.189							
242	KK	WM							
243	KM								
244	HC	5							
211	110	,							
245	KK	M-N							
246	KM								
247	RK	1345	.0149	.035	TRAP	20	4		
248	KK	W24							
249	KM	-127							
		0.4.4.2							
250	BA	.0442							
251	LS		60						
252	מט	.140							
253	KK	W25							
254	KM	423							
		0057							
255	BA	.0957							
256	LS		61						
257	UD	.197							
258	KK	WN							
259	KM	••••							
		-							
260	HC	3							
261	KK	N-P							
262	KM								
263	RK	1589	.017	.035	TRAP	20	4		
203		1505	.01.	.000			•		
264	KK	W28							
		W/20							
265	KM								
266	BA	.0397							
267	LS		63						
268	UD	.128							
200	00								
269	KK								
270	KM								
271	RK	1345	.0208	.035	TRAP	5	4		
272	KK	W30							
		**30							
273	KM	0500							
274	BA	.0509							
275	LS		63						
276	UD	.123							
		.123							
277		.123							
	KK	.123							
	KK KM	.123							
278	KM		0024	035	TDAD	د	4		
		1078	.0074	.035	TRAP	5	4		
278 279	KM RK	1078	.0074	.035	TRAP	5	4		
278 279 280	KM RK KK		.0074	.035	TRAP	5	4		
278 279 280 281	KM RK KK KM	1078 ₩29	.0074	.035	TRAP	5	4		
278 279 280 281	KM RK KK KM	1078 ₩29	.0074	.035	TRAP	5	4		
278 279 280 281 282	KM RK KK KM BA	1078		.035	TRAP	5	4		
278 279 280 281 282 283	KM RK KK KM BA LS	1078 ₩29 .0409	.0074	.035	TRAP	5	4		
278 279 280 281 282	KM RK KK KM BA	1078 ₩29		.035	TRAP	5	4		
278 279 280 281 282 283 284	KM RK KK KM BA LS UD	1078 W29 .0409		.035	TRAP	5	4		
278 279 280 281 282 283 284	KM RK KK KM BA LS UD	1078 ₩29 .0409		.035	TRAP	5	4		
278 279 280 281 282 283 284 285 286	KM RK KK KM BA LS UD KK	1078 W29 .0409 .145 W31		.035	TRAP	5	4		
278 279 280 281 282 283 284 285 286 287	KM RK KK KM BA LS UD	1078 W29 .0409		.035	TRAP	5	4		
278 279 280 281 282 283 284 285 286 287	KM RK KK KM BA LS UD KK KM BA	1078 W29 .0409 .145 W31	63	.035	TRAP	5			
278 279 280 281 282 283 284 285 286 287 288	KM RK KM BA LS UD KK KM BA LS	1078 W29 .0409 .145 W31		.035	TRAP	5	4		
278 279 280 281 282 283 284 285 286 287	KM RK KK KM BA LS UD KK KM BA	1078 W29 .0409 .145 W31	63	.035	TRAP	5			
278 279 280 281 282 283 284 285 286 287 288	KM RK KM BA LS UD KK KM BA LS UD	1078 W29 .0409 .145 W31 .0123 .073	63	.035	TRAP	5			
278 279 280 281 282 283 284 285 286 287 288 289	KM RK KK KM BA LS UD KK KM BA LS UD	1078 W29 .0409 .145 W31	63	.035	TRAP	5			
278 279 280 281 282 283 284 285 286 287 288 289 290 291	KM RK KK KM BA LS UD KK KM BA LS UD	1078 W29 .0409 .145 W31 .0123 .073	63	.035	TRAP	5			
278 279 280 281 282 283 284 285 286 287 288 289 290 291	KM RK KK KM BA LS UD KK KM BA LS UD	1078 W29 .0409 .145 W31 .0123 .073	63	.035	TRAP	5			
278 279 280 281 282 283 284 285 286 287 288 289	KM RK KK KM BA LS UD KK KM BA LS UD	1078 W29 .0409 .145 W31 .0123 .073	63	.035	TRAP	5			
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292	KM RK KK KM BA LS UD KK KM BA LS UD KK KM HC	1078 W29 .0409 .145 W31 .0123 .073 W0	63	.035	TRAP	5			
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292	KM RK KK KM BA LS UD KK KM BA LS UD KK KM HC	1078 W29 .0409 .145 W31 .0123 .073	63	.035	TRAP	5			
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294	KM RK KK KM BAA LS UD KK KM BA LS UD KK KM KM HC KK KM	1078 W29 .0409 .145 W31 .0123 .073 W0 4 O-P	63						
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292	KM RK KK KM BA LS UD KK KM BA LS UD KK KM HC	1078 W29 .0409 .145 W31 .0123 .073 W0	63	.035	TRAP	5			
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295	KM RK KM BA LS UD KK KM BA LS UD KK KM KM HC	1078 W29 .0409 .145 W31 .0123 .073 W0 4 O-P 2169	63						
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295	KM RK KK KM BA LS UD KK KM BA LS UD KK KM KM HC KK KM RK	1078 W29 .0409 .145 W31 .0123 .073 W0 4 O-P	63						
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295	KM RK KK KM BA LS UD KK KM BA LS UD KK KM KM HC KK KM RK	1078 W29 .0409 .145 W31 .0123 .073 W0 4 O-P 2169	63						
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295	KM KK KM BA LS UD KK KM BA LS UD KK KM KM HC KM KM KM KM KM KM KM KM KM	1078 W29 .0409 .145 W31 .0123 .073 W0 4 O-P 2169 W26	63						
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295	KM RK KK KM BA LS UD KK KM BA LS UD KK KM KM KC KM KM KM KM KM KM KM KM KM KM KM KM KM	1078 W29 .0409 .145 W31 .0123 .073 W0 4 O-P 2169	63						
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298	KM RK KK KM BA LS UD KK KM HC KK KM RK KM RK KM RK KM RK	1078 W29 .0409 .145 W31 .0123 .073 W0 4 O-P 2169 W26 .0301	63						
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295	KM RK KK KM BA LS UD KK KM BA LS UD KK KM KM KC KM KM KM KM KM KM KM KM KM KM KM KM KM	1078 W29 .0409 .145 W31 .0123 .073 W0 4 O-P 2169 W26	63						

301	KK						
302 303	KM RK	4662	.0225	.035	TRAP	5	4
304 305	KK KM	W27					
306	BA	.1633					
307 308	LS UD	.253	60				
309	KK	W32					
310	KM						
311 312	BA LS	.0890	60				
313	UD	.170					
314	KK	WP					
315 316	KM HC	5					
317	KK						
317	KM	P-Q					
319	RK	1925	.0182	.035	TRAP	25	4
320 321	KK KM	W33A					
322	BA	.1261					
323 324	LS UD	.186	60				
325	KK	WP1					
326	KM						
327	HC	2					
328 329	KK KM	P1-Q					
330	RK	3000	.020	.035	TRAP	25	4
331	KK	W33B					
332 333	KM BA	.1360					
334 335	LS UD	.225	60				
336	ĸĸ	W34A					
337 338	KM BA	.1261					
339	LS		60				
340	ŪĎ	.173					
341 342	KK KM	34A-P2					
343	RK	2550	.0176	.035	TRAP	25	4
344	KK	W34B					
345 346	KM BA	.1766					
347 348	LS UD	.224	60				
349	KK	WP2					
350	KM						
351	HC	2					
352 353	KK KM	P2-Q					
354	RK	2640	.021	.035	TRAP	25	4
355	KK	W34C					
356 357	KM BA	.1625					
358 359	LS UD	.244	60				
360 361	KK KM	WQ					
362	HC	4					
363 364	KK KM	Q-Q1			•		
365	RK	2940	.022	.035	TRAP	25	4
366	KK	W36A					
367 368	KM BA	.1429					
369 370	LS UD	.234	60				
371	KK						
372	KM	_					
373	HC	2					
374 375	KK KM						
376	RK		.022	.035	TRAP	25	4

377 378 379 380 381	KK KM BA LS UD	₩36B .1918 .306	60				
382 383 384 385 386	KK KM BA LS UD	W35A .0958 .187	60				
387 388 389	KK KM RK	35A-WR 3715	.023	.035	TRAP	25	4
390 391 392 393 394	KK KM BA LS UD	W35B .1507 0 .259	60				
395 396 397	KK KM HC	WR 4					
398 399 4 00	KK KM RK	WR-S 2922	.0168	.035	TRAP	25	4
401 402 403 404 405	KK KM BA LS UD	w37A .1138 .185	60				
406 407 408	KK KM RK	37A-S	.014	.035	TRAP	25	4
409 410 411 412 413	KK KM BA LS UD	W37B .1636 .218	61				
414 415 416	KK KM HC	W S					
417 418 419	KK KM RK	S-T 3653	.0164	.035	TRAP	25	4
420 421 422 423 424	KK KM BA LS UD	w38 .0907 .190	62				
425 426 427	KK KM RK	2922	.0171	.035	TRAP	5	4
428 429 430 431 432	KK KM BA LS UD	w39 .1833 .251	60				
433 434 435 436 437	KK KM BA LS UD	W40 .0964 .165	60				
438 439 440	KK KM HC	WT					
441 442 443	KK KM RK	T-U 1125	.0098	.035	TRAP	25	4
444 445 446 447 448	KK KM BA LS UD	.0601	60				
449 450 451 452	KK KM BA LS		81				

453	UD	.127					
454 455	KK KM	u-v					
456	RK	2656	.0184	.035	TRAP	5	4
457 458	KK KM	WU					
459	HC	3					
460 461	KK KM						
462	RK	2215	.0181	.035	TRAP	25	4
463	KK	W43					
464 465	KM BA	.1457					
466 467	LS UD	.169	61				
468	KK	WV					
469 470	KM HC	2					
471	KK	V-W					
472 473	KM RK	487	.0103	.035	TRAP	25	4
474	KK	W4 5					
475 476	KM BA	.1931					
477 4 78	LS UD	.189	61				
479	KK	WW					
480 481	KM HC	2					
482	KK	W-X					
483 484	KM RK	1542	.0149	.035	TRAP	5	4
485	KK	м1					-
486 487	KM BA	.0665					
488 489	LS UD	.108	60				
490	KK	.100					
491 492	KM RK	650	.0308	.035	TRAP	5	4
493	KK	M2	.0300	.033	IIAI	,	1
494	KM	.0273					
495 496	BA LS		60				
497	UD	.114					
498 499	KK KM	МВ					
500	HC	2					
501 502	KK KM					-	
503	RK	928	.0302	.035	TRAP	5	4
504 505	KK KM	M4					
506 507	BA LS	.0346	60				
508	UD	.121					
509 510	KK						
511	RK	406	.0197	.02	TRAP	40	0
512 513	KK KM	M3					
514 . 515	BA LS	.0149	60				
516	ŪD	.076					
517 518	KK KM	MC					
519	HC	3					
520 521	KK KM					_	
522	RK	1902	.0231	.035	TRAP	5	4
523 524	KK KM	М5					
525 526	BA LS	.0176	69				
527	UD	.108					

528 529 530	KK KM RK	1717	.0186	.02	TRAP	40	0
531 532 533 534 535	KK KM BA L5 UD	M6 .0637 .233	65				
536 537 538	KK KM HC	M D					
539 540 541	KK KM RK	2841	.019	.035	TRAP	5	4
542 543 544 545 546	KK KM BA LS UD	M7 .0524 .170	69				
547 548 549	KK KM RK	1044	.0268	.02	TRAP	40	0
550 551 552 553 554	KK KM BA LS UD	M8 .0370 .126	61				
555 556 557	КК КМ НС	ME 2					
558 559 560	KK KM RK	2992	.0187	.035	TRAP	5	4
561 562 563 564 565	KK KM BA LS UD	M9 .0169 .087	69				
566 567 568	KK KM RK	3433	.0253	.03	TRAP	5	4
569 570 571 572 573	KK KM BA LS UD	M12A .0658 .159	60				
574 575 576 577 578	KK KM BA LS UD	M12B .1481 .219	60				
579 580 581	KK KM HC	MF 5					
582 583 584	KK KM RK	2586	.0224	.035	TRAP	10	4
585 586 587 588 589	KK KM BA LS UD	M13	64				
590 591 592	KK KM RK	1700	.01	.035	TRAP	6	4
593 594 595 596 597	KK KM BA LS UD	M14 .1624 .228	64				
598 599 600	KK KM HC	MG 2					
601 602	KK KM	PONDW W	OODMEN	HILLS DETENT	ION POND WEST	(FROM FDR	WH FLG

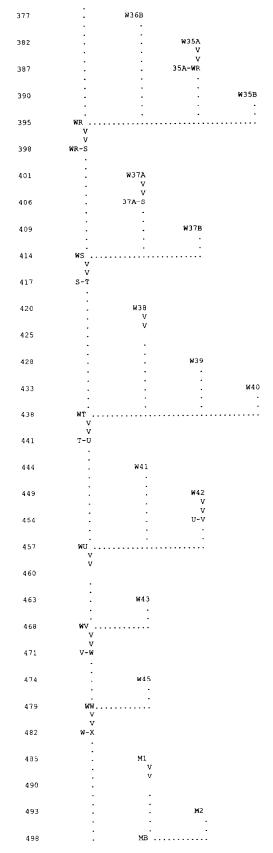
Mile	603 604 605 606	SV SE SQ RS	0 968 0 1	.68 969 8 ELEV	1.5 970 15.5 968	235 971 41	3.6 972 84.4	4.9 973 110	6.3 974 138	7.34 975 152	7.34 976 205
Math	608	KM									
DIVERT FLOW TO POIND 2 VIA TWIN 23x47 RACH CMPS UNDER MERIDIAN 100 101 101 100	611	KM	1276	.0212	.035		TRAP	15	4		
615				VERT FLOW	TO POND	2 VIA	TWIN 23x47	ARCH	CMPS UNDE	R MERID	IAN
618			DIVRT1	90							
619	617	DQ	0	39	70	80	80	80	85	85	90
620 BA 1242 621 LS 622 UD .203 640 623 KK MI 625 KC 626 KK 627 KM 628 RK 1995 .0165 .035 TRAP 15 4 629 KK M19 630 KM 630 KM 630 KM 633 UD .159 631 KK MJ 633 KK MJ 634 KK MJ 635 KM 636 KC 2 637 KK 638 KK M10 641 KK MJ 641 KM 641 KM 641 KM 641 KM 644 KK MJ 644 KM 647 RK 3150 .0255 .03 TRAP 5 4 648 KK M11A 650 BA .1067 651 LS 652 UD .231 653 KK 654 KM 655 KK MI1A 655 KK MI1B 655 KK MI1B 656 KK MI1B 657 KM 658 KK MI1B 659 KK MI1B 650 BA .0879 661 BA .0879 662 LS 663 UD .150 664 KK M11B 665 KK MI1B 6666 KK MI1B 667 KK M11B 668 KK M11B 669 BA .0879 661 BA .0879 662 LS 663 UD .150 664 KK I1B-K1 6666 KK MI1C 6668 KM 667 KK MI1C 667 KK MI1C 668 KK MI1C 668 KK MI1C 668 KK MI1C 669 BA .0833 60 671 UD .160 672 KK MK MI1C 673 KK MK 674 KK MI1C 675 KK MK 674 KK MI1C 675 KK MK 675 KK MK 677 KK 677			M15								
622	620	BA	.1242	64							
624 KK K M10 KK M11			.203								
625 HC 2 626 KK 627 628 RK 1995 .0165 .035 TRAP 15 4 629 KK M19 6310 BA .0499 6310 BA .0499 632 LS 633 WD .159 61 633 MM 636 HC 2 636 RK M10 636 HC 2 637 638 RK 2215 .0158 .035 TRAP 15 4 640 KK M10 641 RM 641 RM 641 RM 641 RM 641 RM 650 BA .1067 653 BA .1067 653 KK M8 M8 655 HC 2 653 KK MK MK 655 HC 2 656 KK MK MK 655 HC 2 657 RM 658 RK 2300 .255 .03 TRAP 5 4 660 BM 651 BA .0899 60 661 BA .0899 60 662 LS 663 WD .150 664 KK 118-K1 665 RM 666 RM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 RM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 RM 669 BA .0933 60 60 671 UD .160 672 KK M11C 668 RM 669 BA .0933 RM 1667 RK 116 RM 1667 RM 1667 RK 116 RM 1667 RM 1667 RK 116 RM 1667 R			MI								
627			2								
628 RK 1995 .0165 .035 TRAP 15 4 629 KK M19 631 BA .0499 632 LS 633 UD .159 61 634 KK MJ 635 KM 636 HC 2 637 KK 638 KM 638 KM 639 RK 2215 .0158 .035 TRAP 15 4 640 KK M10 642 BA .0581 62 62 644 UD .102 62 62 644 UD .102 62 645 KM 647 RK 3150 .0255 .03 TRAP 5 4 648 KK M10 K M10 664 KM 655 HC 2 653 KK M11A 655 HC 2 656 KK MK M5 654 KM 655 HC 2 656 KK MK M5 654 KM 655 HC 2 656 KK MK M5 655 HC 2 657 KM 658 RK 2000 .260 .03 TRAP 5 4 668 KM 669 BA .0879 660 C63 UD .150 660 667 KK M11B 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11B 660 KM 666 RK 2000 .260 .03 TRAP 5 4 667 KK M11B 660 KM 665 HC 2 668 KK MK M11B 660 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11B 666 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11B 666 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11B 666 KM 666 RK 2400 .025 .03 TRAP 5 4											
630			1995	.0165	.035		TRAP	15	4		
630			M19								
633 UD .159 634 KK MJ 636 HC 2 637 KK 638 MM 639 RK 2215 .0158 .035 TRAP 15 4 640 KK M10 641 KM 641 KM 641 KM 642 BA .0581 62 643 LS 62 644 UD .102 645 KK M10-K 646 KM 647 RK 3150 .0255 .03 TRAP 5 4 648 KK M11A 649 KM 650 BA .1067 651 LS 61 652 UD .231 653 KK MK - KI 654 KM 655 HC 2 656 KK MK-KI 657 KM 668 RK 2300 .260 .03 TRAP 5 4 669 KM 661 BA .0879 662 LS 60 663 UD .150 664 KK M11B 665 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KM 668 RK 2400 .025 .03 TRAP 5 4 667 KM 668 RK 2400 .025 .03 TRAP 5 4 667 KM 668 RK 2400 .025 .03 TRAP 5 4 667 KM 668 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MX1 673 KM 674 HC 3			.0499								
635 RM 636 HC 2 637 638 KM 639 RK 2215 .0158 .035 TRAP 15 4 640 KK M10 641 NM 642 BA .0581 643 LS 62 644 UD .102 645 KK M10-K 646 KM 647 RK 3150 .0255 .03 TRAP 5 4 648 KK M11A 650 BA .1067 651 LS 652 UD .231 653 KK MK 654 RM 655 HC 2 656 KK MK-K1 667 KM 668 RK 2300 .260 .03 TRAP 5 4 669 KM 660 KM 661 BA .0879 662 LS 663 664 KK 11B-K1 665 KM 666 RM 666 RM 667 KM 666 RM 667 KM 668 RK 2400 .025 .03 TRAP 5 4 667 KM 668 RM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 673 KM 674 HC 3			.159	61							
636	634	KK	МJ								
637			2								
638											
640 KK M10 641 KM 642 BA .0581 62 62 644 UD .102 62 646 KK M10-K 646 KM 647 RK 3150 .0255 .03 TRAP 5 4 649 KM 650 BA .1067 651 LS 652 UD .231 653 KK MK 654 KM 655 HC 2 656 KK M565 HC 2 656 KK M11B 650 KM 661 BA .0879 662 LS 60 663 UD .150 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 669 BA .0933 670 LS 60 671 UD .160 667 KK MK1 MK1 MK1 MK1 MK1 MK1 MK1 MK1 MK1	638	KM	2215	.0158	.035		TRAP	15	4		
641 KM 642 BA .0581 643 LS .0581 644 UD .102 645 KK M10-K 646 KM 647 RK 3150 .0255 .03 TRAP 5 4 648 KK M11A 649 KM 650 BA .1067 651 LS .61 652 UD .231 653 KK MK 655 HC 2 656 KK MK-K1 657 KM 661 BA .0879 662 LS .60 663 UD .150 664 KK 11B-K1 665 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 669 BA .0933 670 LS .60 671 UD .160 672 KK MK1 674 HC 3 675 KK K1-ML									•		
643 LS 62 644 UD .102 645 KK M10-K 646 KM 647 RK 3150 .0255 .03 TRAP 5 4 648 KK M11A 649 KM 650 BA .1067 651 LS 61 652 UD .231 653 KK MK-K1 655 HC 2 656 KK MK-K1 657 KM 658 RK 2300 .260 .03 TRAP 5 4 660 KM 661 BA .0879 662 LS 60 663 UD .150 664 KK 11B-K1 665 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 673 KM 674 HC 3 675 KK K1-ML	641	KM									
645	643	LS		62							
646											
648	646	KM						_			
649 KM 650 BA .1067 651 LS 61 652 UD .231 653 KK MK 654 KM 655 HC 2 656 KK MK-K1 657 KM 658 RK 2300 .260 .03 TRAP 5 4 659 KK M11B 660 KM 661 BA .0879 662 LS 60 663 UD .150 664 KK 11B-K1 665 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 674 HC 3				.0255	.03		TRAP	5	4		
651 LS 61 652 UD .231 653 KK MK 654 KM 655 HC 2 656 KK MK-K1 657 KM 658 RK 2300 .260 .03 TRAP 5 4 659 KK M11B 660 KM 661 BA .0879 662 LS 60 663 UD .150 664 KK 11B-K1 665 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 674 HC 3	649	KM									
653			.1067	61							
654	652	UD	.231								
655 HC 2 656 KK MK-K1 657 KM 658 RK 2300 .260 .03 TRAP 5 4 659 KK M1B 660 KM 661 BA .0879 662 LS 60 663 UD .150 664 KK 11B-K1 665 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M1C 668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 673 KM 674 HC 3			MK								
657 KM 658 RK 2300 .260 .03 TRAP 5 4 659 KK M11B 660 KM 661 BA .0879 662 LS 60 663 UD .150 664 KK 11B-K1 665 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 673 KM 674 HC 3		HC	2								
658 RK 2300 .260 .03 TRAP 5 4 659 KK M11B 660 KM 661 BA .0879 662 LS 60 663 UD .150 664 KK 11B-K1 665 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 674 HC 3			MK-K1								
660			2300	.260	.03		TRAP	5	4		
661 BA .0879 662 LS 60 663 UD .150 664 KK 11B-K1 665 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 673 KM 674 HC 3			M11B								
663 UD .150 664 KK 11B-K1 665 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 674 HC 3	661	BA	.0879	60							
665 KM 666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 673 KM 674 HC 3			.150	•							
666 RK 2400 .025 .03 TRAP 5 4 667 KK M11C 668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 673 KM 674 HC 3			11B-K1								
668 KM 669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 673 KM 674 HC 3 675 KK K1-ML 676 KM			2400	.025	.03		TRAP	5	4		
669 BA .0933 670 LS 60 671 UD .160 672 KK MK1 674 HC 3 675 KK K1-ML 676 KM			M11C								
671 UD .160 672 KK MK1 673 KM 674 HC 3 675 KK K1-ML 676 KM	669	BA	.0933	60							
673 KM 674 HC 3 675 KK K1-ML 676 KM			.160	60							
674 HC 3 675 KK K1-ML 676 KM			MK1								
676 KM			3								
			K1-ML								
			1821	.028	.035		TRAP	5	4		

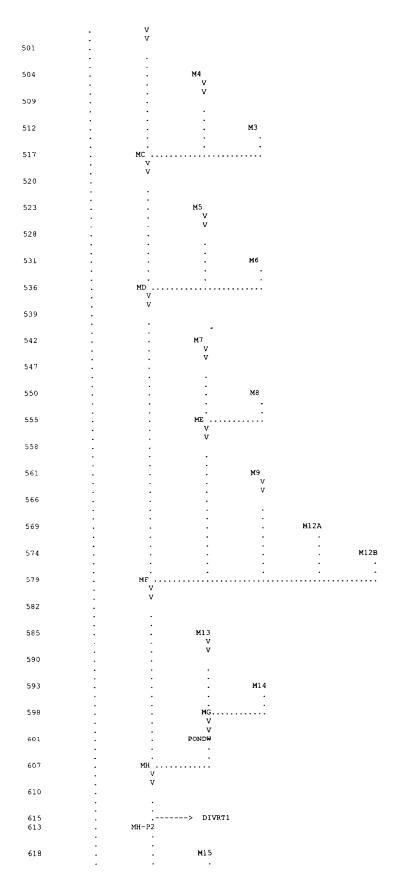
678	KK	M16							•
679 680	KM BA	.042							
681	LS		60						
682	UD	.139							
683	KK	ML							
684 685	KM HC	2							
		_							
686 687	KK KM								
688	RK	2099	.02	.035	TRAP	5	4		
689	KK	M17							
690	KM								,
691 692	BA LS	.0765	61						
693	UD	.133							
694	KK	MM							
695	KM								
696	HC	2							
697	KK								
698 699	KM RK	2320	.0121	.035	TRAP	10	4		
700 701	KK KM	M18							
702	BA	.061							
703 704	LS UD	.142	61						•
		•.							
705 706	KK KM								
707	RK	2122	.017	.035	TRAP	5	4		
708	KK	M 20							
709	KM								
710 711	BA LS	.1341	61						
712	UD	.211							
713	ĸĸ	MN							
714 715	KM HC	4							
		4							
716 717	KK KM								
718	RK	1531	.0202	.035	TRAP	25	4		
719	KK	M 21							
720	KM								
721 722	BA LS	.0241	61						
723	UD	.125							
724	KK								
725	KM	1222	0010	0.25		-			
726	RK	1322	.0212	.035	TRAP	5	4		
727	KK	M23							
728 729	KM BA	.0461							•
730 731	LS UD	.120	60						
732 733	KK KM	MO							
734	HC	3							
735	KK								
736	KM								
737	RK	974	.0133	.035	TRAP	25	4		
738	KK	M24							
739 740	KM BA	.0776							
741	LS		60						
742	ŪĎ	.125							
743	KK	MP							
744 745	KM HC	2							
746 747	KK KM								
748	RK	290	.0138	.035	TRAP	25	4		
749	KK	M 25							
750 751	KM BA	.0105							
752	LS		60						
753	UD	.130							

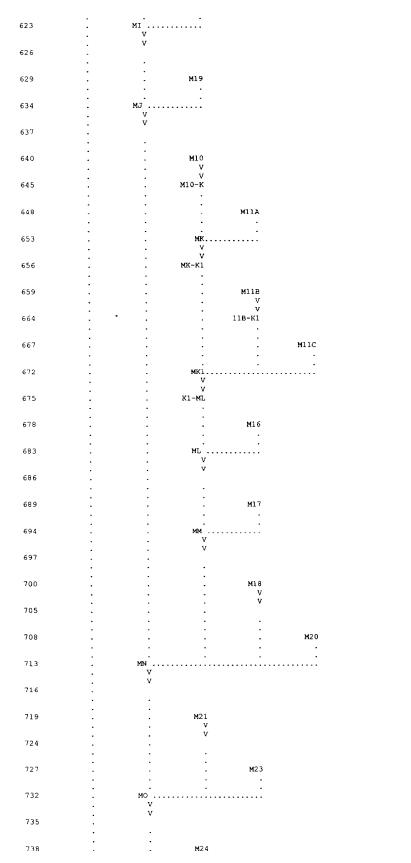
754 755 756	KK KM HC	MQ 2					
757 758 759	KK KM RK	3305	.0136	.035	TRAP	25	4
760 761 762 763 764	KK KM BA LS UD	M26 .1779 .250	65				
765 766 767	KK KM HC	MR 2					
768 769 770 771 772	KK KM BA LS UD	w44 .0384 .141	60				
773 774 775	KK KM RK	2029	.0148	.035	TRAP	5	4
776 777 778 779 780	KK KM BA LS UD	W47 .0541 .148	60				
781 782 783	KK KM RK	1438	.0223	.035	TRAP	5	4
784 785 786 787 788	KK KM BA LS UD	W46 .0418 .154	61				
789 790 791 792 793	KK KM BA LS UD	M27 .0528 .132	60				
79 4 795 796	KK KM HC	W X					
797 798 799	KK KM RK	2563	.0125	.035	TRAP	40	4
800 801 802 803 804	KK KM BA LS UD	W 48 .1179 .091	61				
805 806 807	KK KM RK	2400	.0188	.035	TRAP	5	4
808 809 810 811 812	KK KM BA LS UD	w49 .2651 .181	61				
813 814 815	KK KM HC	WZ 3					
816 817 818	KK KM RK	800	.0125	.035	TRAP	40	4
819 820 821 822 823	KK KM BA LS UD	W50 .1061 .145	61				
824 825 826	KK KM HC	WAB					
827 828	KK KM						

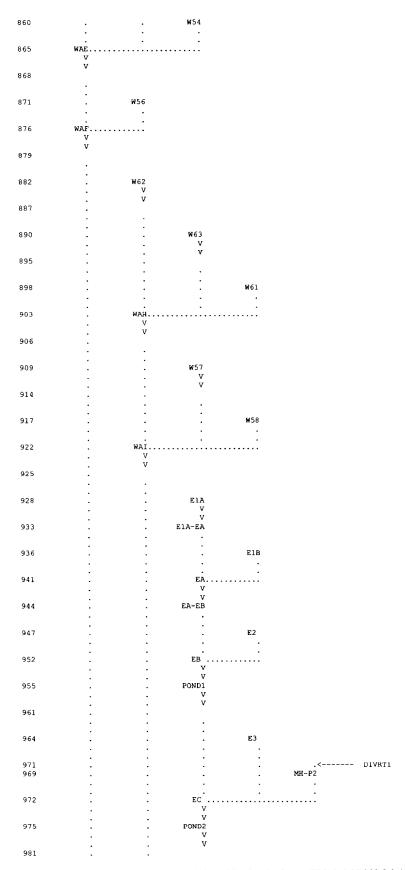
829	RK	742	.0108	.035	TRAF	40	4
830	KK	W51					
831 832	KM BA	.0546					
833	LS		63				
834	UD	.172					
835	KK	WAC					
836 837	KM HC	2					
838 839	KK KM						
840	RK	638	.0345	.035	TRA	40	4
841	KK	W52					
842 843	KM BA	.0499					
844	LS		63				
845	UD	.109					
846	KK						
847 848	KM RK	1171	.0205	.035	TRAI	. 5	4
849 850	KK KM	W53					
851	BA	.0531	6.3				
852 853	LS UD	.156	63				
054	VV	MAD					
854 855	KK KM	WAD					
856	HC	2					
857	KK						
858 859	KM RK	290	.0310	.035	TRA	P 10	4
			.0010	.033			•
860 861	KK KM	₩54					
862	BA	.0078					
863 864	LS UD	.050	60				
865 866	KK KM	WAE					
867	HC	3					
868	KK						
869 870	KM RK	1925	.0052	.035	TRA	P 40	4
6,0	KK	1323	.0032	.033	1100	10	7
871 872	KK KK	W56					
873	BA	.1831					
874 875	LS UD	.191	60				
876 877	KK KM	WAF					
878	HC	2					
879	KK						
880	KM	1032	0155	.035	TRA	P 40	4
881	RK	1032	.0155	.033	INA	_ 10	7
882 883	KK KM	₩62					
884	BA	.0750					
885 886	LS UD	.090	60				
887 888	KK KM						
889	RK	2169	.0203	.035	TRA	.P 5	4
890	KK	W63					
891	KM						
892 893	BA LS	.047	60				
894	UD	.109					
895	ĸĸ						
896 897	KM RK	1450	.0131	.035	TRA	LP 5	4
					-14	_	•
898 899	KK KM	W61					
900	BA	.192					
901 902	UD LS	.251	60				
903	KK	WAH					

904 905	КМ HC	3									
906 907	KK KM										
908	RK	1241	.0153	.035		TRAP	5	4			
909	KK	W57									
910 911	юм ВА	.0732									
912	LS	.0732	60								
913	UD	.140									
914	KK										
915 916	KM RK	5903	.0254	.035		TRAP	5	4			
917	KK	W 58									
918 919	KM BA	7786									
920	LS	.2296	60								
921	UD	.251									
922 923	KK KM	WAI									
923	HC	3									
925	KK										
926	KM	222	0006	025		mp.s.p.					
927	RK	232	.0086	.035		TRAP	15	4			
928	KK	ElA									
929	KM										
930	BA	.1151	60								
931 932	LS UD	.234	60								
350	02										
933	KK	E1A-EA									
934	KM	4000	200	005			_				
935	RK	4000	.022	.035		TRAP	5	4			
936	KK	E1B									
937	KM										
938	BA	.1665									
939 940	LS UD	233	60								
340	OD	.233									
941	KK	EA									
942	KM										
943	HC	2									
944	KK	EA-EB									
945	KM										
946	RK	1900	.022	.035		TRAP	5	4			
947	KK	E2									
948	KM	55									
949	BA	.104									
950	LS	0	60								
951	UD	.149									
952	KK	EB									
953	KM										
954	HC	2									
955	KK	POND1									
956	KM		OUTE FLOW	THROUGH	SCS POND	1					
957	sv	0	.01	.28	1.12	2.70	5.18	6.00	6.94		
958 959	SE SQ	945.5		9 48 0	950 0	952 0	954 48.5	954.5 176.4	955 351.4		
960	RS	1	ELEV	945.5	U	U	48.5	1/6.4	351.4		
	-	_	*****								
961	KK										
962 963	KM RK	1300	.0192	.035		TRAP	5	4			
903	rt.	1300	.0192	.033		IKAP	3	4			
964	KK	E3									
965	KM										
966 967	BA LS	.090	60								
968	UD	.128	00								
969	KK	MH-P2			PP 014 41						
970 971	KM DR	DIVRT1	ETRIEVE D	IVERSION	FROM W.	MERIDIA	N RD DI	TCH			
J. 1	DR	~~*****									
972	KK	EC									
973	KM	_									
974	HC	3									
975	KK	POND2									
976	KM	E	ROUTE FLOW				_				
977 978	SV SE	920		1.11 924	3.19 926	6.89 928		11.08 929.5	12.82 930	14.72 930.5	16.70 931
979	SQ	920		0	0	928	929	25	86.5	186.2	308.4
	- 4	•	-	-	-	-	-				

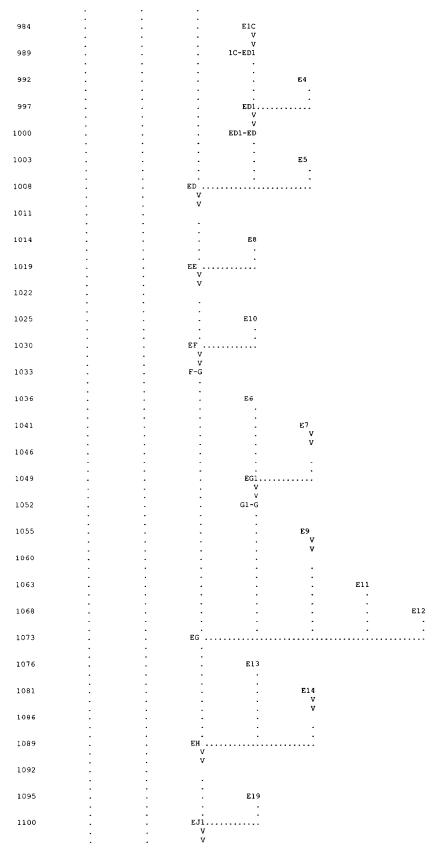

980	RS	1	ELEV	920			
981 982 983	KK KM RK	1700	.0141	.035	TRAP	5	4
984 985 986 987 988	KK KM BA LS UD	E1C .0845 .200	60				
989 990 991	KK KM RK	1C-ED1 3450	.022	.035	TRAP	5	4
992 993 994 995 996	KK KM BA LS UD	£4 .127 .200	60				
997 998 999	KK KM HC	ED1					
1000 1001 1002	KK KM RK	ED1-ED 450	.0178	.03	TRAP	5	4
1003 1004 1005 1006 1007	KK KM BA LS UD	E5 .094 .160	60				
1008 1009 1010	KK KM HC	ED 3					
1011 1012 1013	КМ КМ КК	950	.0211	.035	TRAP	10	4
1014 1015 1016 1017 1018	KK KM BA LS UD	E8 .0446 .139	60				
1019 1020 1021	KK KM HC	EE 2					
1022 1023 1024	KK KM RK	1500	.0127	.035	TRAP	10	4
1025 1026 1027 1028 1029	KK KM BA LS UD	.029	60				
1030 1031 1032	KK KM HC	EF 2					
1033 1034 1035	KK KM RK	F-G 950	.0074	.035	TRAP	15	4
1036 1037 1038 1039 1040	KK KM BA LS UD	E6 .119 .228	60				
1041 1042 1043 1044 1045	KK KM BA LS UD	£7 .031 .082	60				
1046 1047 1048	KK KM RK	1100	.0100	.035	TRAP	5	4
1049 1050 1051	KK KM HC	EG1					
1052 1053 1054	KK KM RK	G1-G 1650	_0176	.035	TRAP	5	4


1055 1056 1057 1058	KK KM BA LS	E9	60						•
1059 1060 1061	KK KM	.207							
1062	RK	1500	.0080	.03	TRAP	5	4		
1063 1064	KK KM	E11							
1065	BA	.045							
1066 1067	LS UD	.195	60						
1068	KK	E12							
1069 1070	KM BA	.092							
1071 1072	LS UD	.156	60						
1073	кк	EG							
1074	KM								
1075	HC	5							
1076 1077	КК КМ	E13							
1078 1079	BA LS	.0165	60						
1080	UD	.252							
1081 1082	KK KM	E14							•
1083	BA	.0051	60						
1084 1085	LS UD	.153	60						
1086	KK								
1087 1088	KM RK	279	.0108	.03	TRAP	5	4		
1089	ĸĸ	EH							
1090 1091	KM HC	3							
1092	KK								
1093 1094	KM RK	2400	.0204	.035	TRAP	10	4		
			.0204	.033	TIME	10	•		
1095 1096	KK KM	E19							
1097 1098	BA LS	.0406	62						
1099	UD	.127							
1100 1101	KK KM	EJ1							
1102	HC	2							
1103 1104	KK KM	J1-K							
1105	RK	4013	.013	.035	TRAP	10	4		
1106	KK	E15							
1107 1108	KM BA	.0355							
1109 1110	UD LS	.097	63						
1111	кк								
1112 1113	KM RK	951	.0189	.035	TRAP	5	4		
1114	KK	E16							
1115 1116	KM BA	.0307							
1117	LS UD	.100	63						-
1118									
1119 1120	KK KM	EI							
1121	HC	2							
1122 1123	KK KM								
1124	RK	1334	.0105	.035	TRAP	5	4		
1125 1126	KK KM	E17							
1127 1128	BA LS	.0312	63						
1129	UD	.097							


1130 1131 1132	KK KM RK	1728	.0145	.035	TRAP	5	4		
1133	KK	E18							
1134 1135	KM BA	.0488							
1136	LS		63						
1137	UD	.180							
1138 1139	KK KM	EJ2							
1140	HC	3							
1141	KK								
1142 1143	KM RK	4221	.0123	.035	TRAP	20	4		
1144 1145	KK KM	E23							
1146 1147	BA LS	.1683	62						
1148	UD	.250							
1149	KK	E24							
1150 1151	KM BA	.140							
1152 1153	LS UD	.371	63						
1154 1155	KK KM	EK							
1156	HC	4							
1157	KK								
1158 1159	KM RK	2817	.0149	.035	TRAP	25	4		
1160	KK	E21							
1161 1162	KM BA	.0873							
1163	LS		60						
1164	ŪĎ	.183							
1165 1166	KK KM								
1167	RK	1647	.0121	.035	TRAP	5	4		
1168	KK	E20							
1169 1170	KM BA	.0771							
1171 1172	LS UD	.219	62						
1173 1174	KK KM					_			
1175	RK	569	.0141	.035	TRAP	5	4		
1176 1177	KK KM	E22							
1178	BA	.0677							
1179 1180	LS UD	.240	61						
1181	ĸĸ	EL							
1182 1183	KM HC	3							
		3							
1184 1185	KK KM								
1186	RK	2041	.0162	.035	TRAP	25	4		
1187 1188	KK KM	E25							
1189	BA	.1665							
1190 1191	LS UD	.176	61						
1192	KK	EM							
1193	KM HC	3							
1194		3							
1195 1196	KK KM								
1197	RK	928	.0108	.035	TRAP	40	4		
1198	KK	E26							
1199 1200	KM BA	.0361							
1201 1202	LS UD	.096	63						
1203	KK	EN							
1204	KM HC	2							
1205									


1206 1207 1208	KK KM RK	1832	.0126	.035	TRAP	40	4
1209	KK	E27					
1210	KM						
1211 1212	BA LS	.1236	63				
1213	UD	.172	••				
1214	KK	EO					
1215 1216	KM HC	2					
		2					
1217	KK						
1218 1219	KM RK	1625	.0133	.035	TRAP	5	3
1220 1221	KK KM	W 55					
1222	BA	.0452					
1223 1224	LS UD	.093	60				
1224	OD	.093					
1225	KK	WAG					
1226 1227	KM HC	2					
1228 1229	KK KM						
1230	RK	2025	.0109	.035	TRAP	5	4
1231	KK	W 59					
1232	KM						
1233	BA	.0705					
1234 1235	LS UD	.200	60				
1236 1237	KK KM	WAJ					
1238	HC	4					
1239	KK						
1240	KM						
1241	RK	1450	.0124	.035	TRAP	40	4
1242	KK	E28					
1243	KM	0710					
1244 1245	BA LS	.0718	61				
1246	UD	.223					
1247	KK						
1248	км						
1249	RK	2064	.0165	.035	TRAP	40	4
1250	KK	E29					
1251	KM						
1252 1253	BA LS	.0465	61				
1254	UD	.166	••				
1255	KK	EZZ					
1256	юм		OMBINE E29	& E30 AT DP	ZZ		
1257	HC	2					
1258	KK	W60					
1259	KM						
1260 1261	BA LS	.0711	60				
1262	UD	.182					
1263	КK	zz					
1264	KM	C	OMBINE ALL	AT DP ZZ			
1265	HC	3					
1266	22						

		v			
136		v			
139		:	W14		
133		:	v v		
144					
147		•		W13	
		•	•	:	
152	v	• • • • • • • • • • • • • • • • • • • •			
155	G-H				
150	v v				
158					
161		W15 V			
166		v			
	•				
169	WH				
172	•	W16			
		v v			
177	•				
180	•	•	W17		
185	:	wi			
100	:	v v			
188		I-M			
191			W19		
			v v		
196	•				
199			•	W20	
204		:	WJ	•	
204	•	•	V V		
207					
210			·	W21	
		•	•		
215	•	•	wk		
218	:	•	v		
221	•	•		W22	
221	:		:		
226	•	:	WL		
229	:	:	v		
			•		
232	:	:		W23	
237		:	:		W18
240		÷	<i>:</i>	•	
242	WM V V			•••••	
245	M-N -				
248	•	W24			
-	•	•			



\\Se-srv01\projects\\057-Park Place Enterprises\\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 26 of 40 7/23/2008

1103		. J1-	к		
1106	:	•	. E15		
1111	:		. v . v		
	:		: :	71.5	
1114		•	· · ·	E16	
1119			. EI . V		
1122	•	•	. v		
1125	•	•		E17 V	
1130	•	•	:	v	
1133	•	•	:	•	E18
			: ::	:	
1138	•	•	. EJ2 . V		• • • • • • • • • • • • • • • • • • • •
1141	:				
1144				E23	
1149		-	: :	•	E24
1154		. Ek	· · · · · · · · · · · · · · · · · · ·		
	•		v v		
1157	•				
1160	:		. E21 . V	•	
1165	· ·		· ·		
1168	•		:	E20 V	
1173	:	•		v	
1176	•	•		:	E22
	:	•	:		:
1181		•	. EL		
1184	:				
1187	•	•		. E25	
1192	:	. E1	м		
1195	•	:	v v		
			. E20	•	
1198	•				
1203		. E	N V V		
1206	· ·				
1209	·	:	. E2		
1214	· ·	. E	0		
1217	•	•	v v		
	· ·				
1220			. W5:	5	

	•	•	•	
1225			WAG	
			V	
	•		v	
1228				
		•		
1231			•	W59
			•	
			•	
1236	WAJ			
	V			
	v			
1239				
	•			
1242	•	E28		
	•	V		
	•	V		
1247	•			
	•	•		
	•	•	700	
1250	•	•	E29	
	•	•	•	
1055	•	EZZ	•	
1255	•	£44		
	•	•		
1258	•	•	W 60	
1230	•	•	-00	
	•	•	•	
1263	zz	•	•	
1203	22			

FLOOD HYDROGRAPH PACKAGE (HEC-1)
JUN 1998 JUN 1998 VERSION 4.1 RUN DATE 28SEP07 TIME 11:57:06 ***********

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

FALCON BASIN 5-YR/ 24-HOUR FLOOD/ EXISTING CONDITIONS

UPPER EAST TRIBUTARY (MODDMEN HILLS) BASED ON CLOMR APPROVED 2/2/99

INCLUDING 2 EXISTING SCS STOCK PONDS, WEST WOODMEN HILLS POND

NOTE: M1-M4 (PAINT BRUSH HILLS) MODELED AS HISTORIC TO ACCOUNT FOR

DETERNION POND AT MC

NOTE: NO CULVERT AT STAPLETON & MERIDIAN, TEMP CULVERTS AT MERIDIAN

DOWNSTREAM OF WOODMEN HILLS DRIVE (DIVERSION)

9 IO OUTPUT CONTROL VARIABLES

5 PRINT CONTROL 0 PLOT CONTROL IPRNT IPLOT

OSCAL 0. HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA

5 14JUL99 MINUTES IN COMPUTATION INTERVAL NMIN

IDATE STARTING DATE STARTING TIME ITIME 0800

NQ NDDATE NUMBER OF HYDROGRAPH ORDINATES ENDING DATE

300 15JUL99

ENDING TIME CENTURY MARK NDTIME 0855

ICENT 19

COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS

ENGLISH UNITS
DRAINAGE AREA

SQUARE MILES INCHES

PRECIPITATION DEPTH LENGTH, ELEVATION FEET

FLOW STORAGE VOLUME CUBIC FEET PER SECOND ACRE-FEET

SURFACE AREA TEMPERATURE ACRES DEGREES FAHRENHEIT

> RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

OPERATION	STATION	PEAK FLOW	TIME OF PEAK	AVERAGE	FLOW FOR MAXIM	UM PERIOD	BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE
		1 00		6-HOUR	24-HOUR	72-HOUR	ANDA	STAGE	
HYDROGRAPH AT	W1	5.	5.83	1.	0.	0.	.05		•
ROUTED TO		4.	5.92	1.	ο.	٥.	.05		
HYDROGRAPH AT	W2	2.	5.83	0.	0.	0.	.03		
2 COMBINED AT	WA	6.	5.92	1.	0.	٥.	.08		
ROUTED TO		6.	5.92	1.	0.	0.	.08		
HYDROGRAPH AT	W 3	5.	5.83	1.	٥.	0.	.05		
2 COMBINED AT	WB	11.	5.92	2.	1.	1.	.13		
ROUTED TO		10.	5.92	2.	1.	1.	.13		
HYDROGRAPH AT	W4	1.	5.75	0.	٥.	0.	.01		
ROUTED TO		1.	5.83	0.	0.	0.	.01		
HYDROGRAPH AT	W 5	2.	5.75	0.	0.	0.	.02		
3 COMBINED AT	WC	11.	5.92	2.	1.	1.	.15		
ROUTED TO									

+			11.	5.92	2.	1.	1.	.15
+	HYDROGRAPH AT	W6	5.	5.83	1.	0.	0.	.05
+	ROUTED TO		5.	5.83	1.	0.	0.	.05
+	HYDROGRAPH AT	W 7	2.	5.75	0.	0.	0.	.02
+	ROUTED TO		2.	5.83	0.	0.	0.	.02
+	2 COMBINED AT	WD	7.	5.83	1.	٥.	٥.	.07
+	ROUTED TO	D-E	6.	5.83	1.	0.	0.	.07
+	HYDROGRAPH AT	W 8	3.	5.75	0.	0.	0.	.03
+	ROUTED TO		3.	5.83	0.	0.	0.	.03
+	HYDROGRAPH AT	W9	5.	5.83	1.	0.	0.	.04
+	3 COMBINED AT	WE	14.	5.83	2.	1.	1.	.14
+	ROUTED TO	E-F	13.	5.92	2.	1.	1.	.14
+	HYDROGRAPH AT	W10	5.	5.83	1.	0.	0.	.04
+	ROUTED TO		5.	5.83	1.	0.	0.	.04
+	HYDROGRAPH AT	Wll	3.	5.75	0.	0.	0.	.03
+	4 COMBINED AT	WF	29.	5.92	5.	2.	2.	.36
+	ROUTED TO	F-G	28.	6.00	5.	2.	2.	.36
+	HYDROGRAPH AT	W 12	4.	5.83	1.	0.	0.	.04
+	ROUTED TO		4.	5.92	1.	0.	0.	.04
+	HYDROGRAPH AT	W14	5.	5.83	1.	0.	0.	.05
+	ROUTED TO		5.	5.92	1.	0.	0.	.05
+	HYDROGRAPH AT	W13	10.	5.92	2.	1.	1.	.11
+	4 COMBINED AT	₩G	43.	6.00	8.	3.	3.	.56
+	ROUTED TO	G-H	41.	6.08	8.	3.	3.	.56
+	ROUTED TO		39.	6.17	8.	3.	3.	.56
+	HYDROGRAPH AT	W15	10.	5.83	1.	1.	1.	.09
+	ROUTED TO		9.	5.92	1	1.	1.	.09
+	2 COMBINED AT	WH	43.	6.17	9.	4.	4.	.65
+	HYDROGRAPH AT	W16	4.	5.83	0.	0.	0.	.03
+	ROUTED TO		3.	5.92	0.	0.	0.	.03
+	HYDROGRAPH AT	W17	2.	5.83	0.	0.	0.	.02
+	2 COMBINED AT	WI	5.	5.83	1.	0.	0.	.05

+	ROUTED TO	I-M	5.	6.00	1.	0.	0.	.05
+	HYDROGRAPH AT	W19	5.	5.75	1.	0.	0.	.04
+	ROUTED TO		5.	5.83	1.	0.	0.	.04
+	HYDROGRAPH AT	W20	5.	5.75	0.	0.	0.	.03
+	2 COMBINED AT	WJ	9.	5.83	1.	0.	0.	-07
	ROUTED TO							
+	HYDROGRAPH AT		9.	6.00	1.	0.	0.	.07
+	2 COMBINED AT	W21	11.	5.83	2.	1.	1,	.13
+	ROUTED TO	WK	18.	5.92	3.	1.	1.	.21
+	HYDROGRAPH AT		16.	5.92	3.	1.	1.	.21
+		₩22	2.	5.75	0.	0.	0.	.01
+	2 COMBINED AT	WL	17.	5.92	3.	1.	1.	.22
+	ROUTED TO		17.	6.00	3.	1.	1.	.22
+	HYDROGRAPH AT	W23	2.	5.83	0.	0.	0.	.02
+	HYDROGRAPH AT	W18	9.	5.92	2.	1.	1.	.13
+	5 COMBINED AT	WM	66.	6.08	15.	6.	ó.	1.06
+	ROUTED TO	M-N	65.	6.17	15.	6.	6.	1.06
+	HYDROGRAPH AT	W24	4.	5.83	1.	0.	0.	.04
+	HYDROGRAPH AT	W25	8.	5.92	1.	1.	1.	.10
+	3 COMBINED AT	WN	70.	6.17	17.	7.	7.	1.20
	ROUTED TO				16.	7.	7.	
+	HYDROGRAPH AT	N-P	67.	6.25				1.20
+	ROUTED TO	W28	7.	5.83	1.	0.	0.	.04
+	HYDROGRAPH AT		6.	5.92	1.	0.	0.	.04
+	ROUTED TO	W 30	9.	5.83	1.	0.	0.	.05
+			8.	5.92	1.	0.	0.	.05
+	HYDROGRAPH AT	W29	6.	5.83	1.	0.	0.	.04
+	HYDROGRAPH AT	W31	3.	5.75	0.	0.	0.	.01
+	4 COMBINED AT	WO	20.	5.92	3.	1.	1.	.14
+	ROUTED TO	0-P	20.	6.00	3.	1.	1.	.14
+	HYDROGRAPH AT	W 26	7.	5.75	1.	0.	0.	.03
+	ROUTED TO		6.	6.08	1.	0.	0.	.03
+	HYDROGRAPH AT	W 27	10.	6.00	2.	1.	1.	.16
+	HYDROGRAPH AT	W32	7.	5,92	1.	0.	0.	.09

+	5 COMBINED AT	WP	88.	6.17	23.	10.	9.	1.63
+	ROUTED TO	P-Q	87.	6.25	23.	10.	9.	1.63
+	HYDROGRAPH AT	W33A	9.	5.92	2.	1.	1.	.13
+	2 COMBINED AT	WP1	91.	6.25	24.	10.	10.	1.75
+	ROUTED TO	P1-Q	90.	6.33	24.	10.	10.	1.75
+	HYDROGRAPH AT	W33B	9.	5.92	2.	1.	1.	.14
+	HYDROGRAPH AT	W34A	9.	5.92	2.	1.	1.	.13
+	ROUTED TO	34A-P2	9.	6.08	2.	1.	1.	.13
+	HYDROGRAPH AT	W34B	11.	5.92	2.	1.	1.	.18
+	2 COMBINED AT	WP2	18.	6.00	4.	2.	2.	.30
+	ROUTED TO	P2-Q	18.	6.17	4.	2.	2.	.30
+	HYDROGRAPH AT	W34C	10.	6.00	2.	1.	1.	.16
+	4 COMBINED AT	WQ	114.	6.25	32.	13.	13.	2.36
+	ROUTED TO	Q-Q1	113.	6.33	32.	13.	13.	2.36
+	HYDROGRAPH AT	W36A	9.	5.92	2.	1.	1.	.14
+	2 COMBINED AT	WQ1	118.	6.33	33.	14.	14.	2.50
+	ROUTED TO	Q1-R	117.	6.42	33.	14.	14.	2.50
+	HYDROGRAPH AT	W36B	10.	6.00	2.	1.	1.	.19
+	HYDROGRAPH AT	W35A	7.	5.92	1.	1.	1.	.10
+	ROUTED TO	35A-WR	6.	6.25	1.	1.	1.	.10
+	HYDROGRAPH AT	W35B	9.	6.00	2.	1.	1.	.15
+	4 COMBINED AT	WR	131.	6.42	38.	17.	16.	2.94
+	ROUTED TO	WR-S	130.	6.50	38.	16.	16.	2.94
+	HYDROGRAPH AT	₩37A	8.	5.92	1.	1.	1.	.11
+	ROUTED TO	37A-S	8.	6.00	1.	1.	1.	.11
+	HYDROGRAPH AT	W37B	13.	5.92	2.	1.	1.	.16
+	3 COMBINED AT	ws	137.	6.50	42.	18.	17.	3.21
+	ROUTED TO	S-T	134.	6.67	42.	18.	17.	3.21
+	HYDROGRAPH AT	W38	10.	5.92	2.	1.	1.	.09
+	ROUTED TO		9.	6.08	2.	1.	1.	.09
+	HYDROGRAPH AT	W 39	11.	6.00	2.	1.	1.	.18
	HYDROGRAPH AT							

5 COMBINED AT

+		W 40	7.	5.83	1.	1.	1.	.10
+	4 COMBINED AT	WT	143.	6.58	46.	20.	19.	3.59
+	ROUTED TO	T-U	142.	6.67	46.	20.	19.	3.59
+	HYDROGRAPH AT	W41	6.	5.83	1.	0.	0.	.06
+	HYDROGRAPH AT	W42	50.	5.75	5.	2.	2.	.06
+	ROUTED TO	U-V	49.	5.83	5.	2.	2.	.06
+	3 COMBINED AT	WU	148.	6.67	51.	22.	21.	3.70
+	ROUTED TO		146.	6.75	51.	22.	21.	3.70
+	HYDROGRAPH AT	W43	13.	5.83	2.	1.	1.	.15
+	2 COMBINED AT	WV	149.	6.75	53.	23.	22.	3.85
+	ROUTED TO	V-W	148.	6.75	53.	23.	22.	3.85
+	HYDROGRAPH AT	₩4 5	17.	5.92	3.	1.	1.	.19
+	2 COMBINED AT	WW	152.	6.75	56.	24.	23.	4.04
+	ROUTED TO	w-x	149.	6.83	55.	24.	23.	4.04
+	HYDROGRAPH AT	Ml	7.	5.83	1.	0.	0.	.07
+	ROUTED TO		6.	5.83	1.	0.	0.	.07
+	HYDROGRAPH AT	M 2	3.	5.83	٥.	0.	0.	.03
+	2 COMBINED AT	MB	9.	5.83	1.	1.	0.	.09
+	ROUTED TO		8.	5.92	1.	1.	0.	.09
+	HYDROGRAPH AT	M4	3.	5.83	0.	0.	0.	.03
+	ROUTED TO		3.	5.83	0.	0.	0.	.03
+	HYDROGRAPH AT	м3	2.	5.75	0.	0.	0.	.01
+	3 COMBINED AT	MC	11.	5.83	2.	1.	1.	.14
+	ROUTED TO		11.	6.00	2.	1.	1.	.14
+	HYDROGRAPH AT	M 5	6.	5.75	1.	0.	0.	.02
+	ROUTED TO		6.	5.92	1.	0.	0.	.02
+ .	HYDROGRAPH AT	м6	10.	5.92	2.	1.	1.	.06
+	3 COMBINED AT	MD	26.	5.92	4.	2.	2.	.22
+	ROUTED TO		25.	6.08	4.	2.	2.	.22
+	HYDROGRAPH AT	м7	16.	5.83	2.	1.	1.	.05
+	ROUTED TO		15.	5.92	2.	1.	1.	.05
+	HYDROGRAPH AT	м 8	4.	5.83	1.	0.	0.	.04

+	2 COMBINED AT	ME	18.	5.83	2.	1.	1.	.09		,
+	ROUTED TO		18.	6.00	2.	1.	1.	.09		
	HYDROGRAPH AT	мэ	7.	5.75	1.	0.	0.	.02		
+	ROUTED TO	Ma	6.	5.92	1.	0.	0.	.02		
+	HYDROGRAPH AT	111.02	5.	5.83	1.	0.	0.	.07		
+	HYDROGRAPH AT	M12A						.15		
+	5 COMBINED AT	M12B	10.	5.92	2.	1.	1.			•
+	ROUTED TO	MF	59.	6.00	10.	4.	4.	.54		
+	HYDROGRAPH AT		57.	6.08	10.	4.	4.	.54		
+	ROUTED TO	M13	10.	5.83	1.	1.	0.	.06		
+	HYDROGRAPH AT		9.	6.00	1.	1.	0.	.06		
+	2 COMBINED AT	M14	22.	5.92	4.	1.	1.	.16		
+	ROUTED TO	MG	30.	5.92	• 5.	2.	2.	.22		
++	KOOTED TO	PONDW	9.	6.50	5.	2.	2.	.22	969.11	6.50
+	2 COMBINED AT	мн	64.	6.08	14.	6.	5.	.77		
+	ROUTED TO		62.	6.17	14.	6.	5.	.77		
+	DIVERSION TO	DIVRT1	61.	6.17	14.	6.	5.	.77		
+	HYDROGRAPH AT	MH-P2	1.	6.17	0.	0.	0.	.77		
+	HYDROGRAPH AT	M15	18.	5.92	3.	1.	1.	.12		
+	2 COMBINED AT	MI	18.	5.92	3.	1.	1.	.89		
+	ROUTED TO		17.	6.00	3.	1.	1.	.89		
+	HYDROGRAPH AT	M 19	5.	5.83	1.	0.	0.	. 05		
+	2 COMBINED AT	мJ	20.	6.00	3.	1.	1.	.94		
+	ROUTED TO		20.	6.08	3.	1.	1.	.94		
+	HYDROGRAPH AT	M 10	8.	5.83	1,	0.	0.	.06		
+	ROUTED TO	M10-K	8.	5.92	1.	0.	0.	.06		
+	HYDROGRAPH AT	M11A	8.	5.92	2.	1.	1.	.11		
+	2 COMBINED AT	мк	16.	5.92	3.	1.	1.	.16		
· +	ROUTED TO	MK-K1	16.	6.00	3.	1.	1.	.16		•
· •	HYDROGRAPH AT	M11B	7.	5.83	1.	0.	0.	.09		
·	ROUTED TO	11B-K1	7.	6.00	1.	0.	0.	.09		
	HYDROGRAPH AT	M11C	7.	5.83	1.	1.	0.	.09		
т	3 COMBINED AT	HIIC	1.	J.03	4.	••	.	.05		

+		MK1	27.	6.00	5.	2.	2.	.35
	ROUTED TO	K1-ML	26.	6.00	5.	2.	2.	.35
+	HYDROGRAPH AT	M16	4.	5.83	1.	0.	0.	.04
+	2 COMBINED AT	ML	28.	6.00	5.	2.	2.	.39
+	ROUTED TO		28.	6.08	5.	2.	2.	.39
+	HYDROGRAPH AT	M17	9.	5.83	1.	ο.	٥.	.08
+	2 COMBINED AT	MM	31.	6.08	7.	3.	3.	.46
+	ROUTED TO		29.	6.17	7.	3.	3.	.46
+	HYDROGRAPH AT	M18	7.	5.83	1.	0.	0.	.06
+	ROUTED TO		6.	6.00	1.	0.	٥.	.06
+	HYDROGRAPH AT	M20	11.	5.92	2.	1.	1.	.13
+	4 COMBINED AT	MN -	57.	6.17	13.	5.	5.	1.60
+	ROUTED TO		55.	6.25	13.	5.	5.	1.60
+	HYDROGRAPH AT	M21	3.	5,83	0.	0.	0.	.02
+	ROUTED TO		3.	5.92	0.	٥.	0.	.02
+	HYDROGRAPH AT	M23	4.	5.83	1.	٥.	0.	.05
+	3 COMBINED AT	МО	57.	6.25	14.	6.	5.	1.67
+	ROUTED TO		56.	6.25	14.	6.	5.	1.67
+	HYDROGRAPH AT	M24	7.	5.83	1.	0.	0.	.08
+	2 COMBINED AT	MP	58.	6.25	15.	6.	6.	1.75
+	ROUTED TO		57.	6.25	15.	6.	6.	1.75
+	HYDROGRAPH AT	M25	1.	5.83	0.	0.	0.	.01
+	2 COMBINED AT	MQ	58.	6.25	15.	6.	6.	1.76
+	ROUTED TO		57.	6.42	15.	6.	6.	1.76
+	HYDROGRAPH AT	M26	26.	5.92	4.	2.	2.	.18
+	2 COMBINED AT	MR	66.	6.42	18.	8.	7.	1.94
+	HYDROGRAPH AT	W44	3.	5.83	1.	0.	О.	.04
+	ROUTED TO		3.	6.00	1.	0.	0.	.04
+	HYDROGRAPH AT	W47	4.	5.83	1.	0.	0.	.05
•	ROUTED TO		4.	5.92	1.	0.	0.	. 05
+	HYDROGRAPH AT	W46	4.	5.83	1.	0.	0.	.04
+	HYDROGRAPH AT	M27	5.	5.83	1.	0.	0.	.05

+	6 COMBINED AT	WX	192.	6.75	76.	33.	31.	6.17
+	ROUTED TO		191.	6.83	76.	32.	31.	6.17
+	HYDROGRAPH AT	W48	14.	5.83	2.	1.	1.	.12
+	ROUTED TO		14.	5.92	2.	1.	1.	.12
+	HYDROGRAPH AT	W4 9	24.	5.92	4.	2.	2.	.27
+	3 COMBINED AT	wz	199.	6.83	81.	35.	34.	6.55
+	ROUTED TO		196.	6.92	81.	35.	34.	6.55
+	HYDROGRAPH AT	W 50	11.	5.83	2.	1.	1.	.11
+	2 COMBINED AT	WAB	198.	6.92	83.	35.	34.	6.66
+	ROUTED TO		198.	6.92	83.	35.	34.	6.66
+	HYDROGRAPH AT	W 51	7.	5.83	1.	0.	0.	.05
+	2 COMBINED AT	WAC	199.	6.92	83.	36.	34.	6.71
+	ROUTED TO		198.	6.92	83.	36.	34.	6.71
+	HYDROGRAPH AT	W52	9.	5.83	1.	0.	0.	.05
+	ROUTED TO		8.	5.83	1.	0.	0.	.05
+	HYDROGRAPH AT	W 53	8.	5.83	1.	0.	0.	.05
+	2 COMBINED AT	WAD	16.	5.83	2.	1.	1.	.10
+	ROUTED TO		14.	5.83	2.	1.	1.	.10
+	HYDROGRAPH AT	W54	1.	5.75	0.	0.	0.	.01
+	3 COMBINED AT	WAE	200.	6.92	85.	37.	35.	6.82
+	ROUTED TO		199.	7.00	85.	36.	35.	6.82
+	HYDROGRAPH AT	W56	13.	5.92	2.	1.	1.	.18
+	2 COMBINED AT	WAF	202.	7.00	87.	37.	36.	7.01
+	ROUTED TO		200.	7.00	87.	37.	36.	7.01
+	HYDROGRAPH AT	W62	7.	5.83	1.	0.	0.	.08
+	ROUTED TO		7.	5,92	1.	0.	0.	.08
+	HYDROGRAPH AT	W63	5.	5.83	1.	0.	0.	.05
+	ROUTED TO		4.	5.92	1.	0.	0.	.05
+	HYDROGRAPH AT	W 61	11.	6.00	3.	1.	1.	.19
+	3 COMBINED AT	HAW	22.	5.92	4.	2.	2.	.31
+	ROUTED TO		21.	6.00	4.	2.	2.	.31
+	HYDROGRAPH AT	W 57	6.	5.83	1.	0.	0.	.07

+	ROUTED TO		6.	6.25	1.	0.	0.	.07		
+	HYDROGRAPH AT	W 58	13.	6.00	3.	1.	1.	.23		
	3 COMBINED AT	WAI	35.	6.00	8.	3.	з.	. 62		
+	ROUTED TO	WILL								
+	HYDROGRAPH AT		34.	6.00	8.	3.	3.	.62		
+	ROUTED TO	E1A	7.	5.92	2.	1.	1.	.12		
+		E1A-EA	7.	6.17	1.	1.	1.	.12		
+	HYDROGRAPH AT	E1B	10.	5.92	2.	1.	1.	.17		
+	2 COMBINED AT	EA	13.	6.17	4.	2.	1.	.28		
+	ROUTED TO	EA-EB	13.	6.25	4.	2.	1.	.28		•
+	HYDROGRAPH AT	E2	9.	5.83	1.	1.	1.	.10		
+	2 COMBINED AT	EB	16.	6.25	5.	2.	2.	.39		
+	ROUTED TO	POND1	2.	14.92	2.	1.	1.	.39		
+	DOVIMED MO								952.08	14.92
+	ROUTED TO		2.	15.00	2.	1.	1.	.39		
+	HYDROGRAPH AT	E3	8.	5.83	1.	0.	0.	.09		
+	HYDROGRAPH AT	MH-P2	61.	6.17	14.	6.	5.	.00		
+	3 COMBINED AT	EC	64.	6.17	15.	7.	7.	.48		
ŧ	ROUTED TO	POND2	6.	19.83	6.	2.	2.	. 48		
+	ROUTED TO								929.13	19.83
+			6.	20.00	6.	2.	2.	.48		
+	HYDROGRAPH AT	ElC	6.	5.92	1.	0.	0.	.08		
+	ROUTED TO	1C-ED1	5.	6.17	1.	0.	0.	.08		
+	HYDROGRAPH AT	E4	9.	5.92	2.	1.	1.	.13		
+	2 COMBINED AT	ED1	10.	6.17	3.	1.	1.	.21		
+	ROUTED TO	ED1-ED	10.	6.17	3.	1.	1.	.21		
+	HYDROGRAPH AT	E5	7.	5.83	1.	1.	٥.	.09		
+	3 COMBINED AT	ED	15.	5.92	7.	4.	3.	.78		
	ROUTED TO	22			7.	4.	3.	.78		
+	HYDROGRAPH AT		14.	5.92						
+	2 COMBINED AT	E8	4.	5.83	1.	0.	0.	.04		
+	ROUTED TO	EE	18.	5.92	7.	4.	4.	.83		
+			17.	6.00	7.	4.	4.	.83		
+	HYDROGRAPH AT	E10	2.	5.83	0.	0.	٥.	.03		
+	2 COMBINED AT	EF	19.	6.00	7.	4.	4.	.85		

+	ROUTED TO	F-G	18.	6.08	7.	4.	4.	.85
+	HYDROGRAPH AT	E6	7.	5.92	2.	1.	1.	.12
+	HYDROGRAPH AT	E7	3.	5.75	0.	0.	0.	.03
+	ROUTED TO		3.	5.92	0.	0.	0.	.03
+	2 COMBINED AT	EG1	10.	5.92	2.	1.	1.	.15
+	ROUTED TO	G1-G	10.	6.00	2.	1.	1.	.15
+	HYDROGRAPH AT	E9	5.	5.92	1.	0.	0.	.08
+	ROUTED TO		5.	6.00	1.	0.	0.	.08
+	HYDROGRAPH AT	E11	3.	5.92	1.	0.	0.	.05
+	HYDROGRAPH AT	E12	7.	5.83	1.	1.	0.	.09
+	5 COMBINED AT	EG	37.	6.08	10.	6.	6.	1.22
+	HYDROGRAPH AT	£13	1.	6.00	0.	0.	0.	.02
+	HYDROGRAPH AT	E14	0.	5.83	0.	٥.	0.	.01
+	ROUTED TO		0.	5.92	0.	0.	0.	.01
+	3 COMBINED AT	EH	39.	6.00	10.	6.	6.	1.24
+	ROUTED TO		39.	6.17	10.	6.	6.	1.24
+	HYDROGRAPH AT	E19	6.	5.83	1.	0.	0.	.04
+	2 COMBINED AT	EJ1	39.	6.17	10.	6.	6.	1.28
+	ROUTED TO	J1-K	39.	6.25	10.	6.	6.	1.28
+	HYDROGRAPH AT	E15	6.	5.83	1.	0.	0.	.04
+	ROUTED TO		6.	5.83	1.	0.	0.	.04
+	HYDROGRAPH AT	E16	5.	5.83	1.	0.	0.	.03
+	2 COMBINED AT	EI	11.	5.83	1.	0.	0.	.07
+	ROUTED TO		10.	5.92	1.	0.	0.	.07
+	HYDROGRAPH AT	E17	5.	5.83	1.	0.	0.	.03
+	ROUTED TO		5.	5.92	1.	0.	0.	.03
+	HYDROGRAPH AT	E18	6.	5.92	1.	٥.	0.	.05
+	3 COMBINED AT	EJ2	22.	5.92	3.	1.	1.	.15
+	ROUTED TO		19.	6.25	3.	1.	1.	.15
+	HYDROGRAPH AT	E2 3	15.	5.92	3.	1.	1.	.17
+	HYDROGRAPH AT	E24	11.	6.08	3.	1.	1.	.14
	4 COMBINED AT							

ROUTED TO

+		£Κ	76.	6.25	18.	10.	9.	1.74
+	ROUTED TO		69.	6.42	18.	9.	9.	1.74
+	HYDROGRAPH AT	E21	6.	5.92	1.	0.	0.	.09
+	ROUTED TO		6.	6.00	1.	0.	0.	.09
+	HYDROGRAPH AT	E20	8.	5.92	1.	1.	1.	.08
+	ROUTED TO		7.	6.00	1.	1.	1.	.08
+	HYDROGRAPH AT	E22	5.	5.92	1.	0.	0.	.07
+	3 COMBINED AT	EL	18.	6.00	3.	1.	1.	.23
+	ROUTED TO		17.	6.08	3.	1.	1.	.23
+	HYDROGRAPH AT	E25	15.	5.92	3.	1.	1.	.17
+	3 COMBINED AT	ЕМ	85.	6.33	24.	12.	11.	2.13
+	ROUTED TO		84.	6.42	24.	12.	11.	2.13
+	HYDROGRAPH AT	E26	6.	5.83	1.	0.	0.	.04
+	2 COMBINED AT	EN	85.	6.42	25.	12.	12.	2.17
+	ROUTED TO	LN	84.	6.50	24.	12.	12.	2.17
+	HYDROGRAPH AT	£27	17.	5.83	2.	1.	1.	.12
	2 COMBINED AT	EO	87.	6.50	26.	13.	13.	2.29
+	ROUTED TO	EO						
+	HYDROGRAPH AT		84.	6.58	26.	13.	12	
+	2 COMBINED AT	W55	5.	5.83	1.	0.	0.	.05
+	ROUTED TO	WAG	85.	6.58	27.	13.	13.	2.34
+	HYDROGRAPH AT		84.	6.58	27.	13.	13.	2.34
+	4 COMBINED AT	₩59	5.	5.92	1.	0.	0.	.07
+	ROUTED TO	WAJ	269.	7.00	122.	54.	52.	10.03
+	HYDROGRAPH AT		267.	7.00	122.	54.	52.	10.03
+	ROUTED TO	E28	6.	5.92	1.	0.	0.	.07
+	HYDROGRAPH AT		6.	6.17	1.	0.	0.	.07
+	2 COMBINED AT	E29	4.	5.83	1.	0.	0.	.05
+	HYDROGRAPH AT	EZZ	7.	6.17	2.	1.	1.	.12
+		W60	5.	5.92	1.	0.	0.	.07
+	3 COMBINED AT	ZZ	271.	7.00	125.	55.	53.	10.22

*** NORMAL END OF HEC-1 ***

FLOOD HYDROGRAPH PACKAGE (HEC-1)
JUN 1998
VERSION 4.1
RUN DATE 28SEP07 TIME 11:49:21

1********

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

*

X	Х	XXXXXXX	XX	XXX		Х
Х	х	х	x	x		XX
Х	х	х	х			X
XXX	XXXX	XXXX	х		XXXXX	X
Х	х	X	x			Х
Х	Х	х	Х	X		Х
Х	Х	XXXXXXX	XX.	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1 2 3 4 5 6 7	ID ID ID ID	IN NO	OTE: NO C	TRIBUTA 2 EXISTI 4 (PAINT INTION PO ULVERT A	ARY (WOOL ING SCS S BRUSH I OND AT MO AT STAPLE	MEN HILL STOCK PON HILLS) MC	S) BASED DS, WEST DELED AS RIDIAN,	ON CLOM WOODMEN HISTORI	R APPROV HILLS I C TO ACC VERTS A1	POND COUNT FOR	R
8 9	IT IO		1 4 JUL99	800	300						
10 11	KK KM	Wl									
12	BA	.0479									
13 14	PB IN	4.4 15									
15	PC	.0005	.0015	.0030	.0045	.0060	.0080	.0100	.0120	.0143	.0165
16	PC	.0188	.0210	.0233	.0255	.0278	.0320	.0390	.0460	.0530	.0600
17 18	PC PC	.0750 .8100	.1000 .8200	.4000 .8250	.7000 .8300	.7250 .8350	.7500 .8400	.7650 .8450	.7800 .8500	.7900 .8550	.8000
19	PC	.8638	.8675	.8713	.8750	.8788	.8825	.8863	.8900	.8938	.8975
20 21	PC PC	.9013 .9325	.9050 .9350	.9083 .9375	.9115 .9400	.9148 .9425	.9180 .9450	.9210 .9475	.9240	.9270 .9525	.9300
22	PC	.9575	.9600	.9625	.9650	.9675	.9700	.9725	.9750	.9775	.9800
23 24	PC PC	.9813 .9938	.9825 .9950	.9838 .9963	.9850 .9975	.9863 .9988	.9875 1.000	.9888	.9900	.9913	.9925
25	LS	. 5530	60	.9903	. 9973	. 9900	1.000				
26	UD	.097									
27 28	KK KM						_				
29 30	rk KK	1519 W2	.0263	.035		TRAP	5	4			
31	K.K. KM	W.Z									
32	BA	.0278	60								
33 34	LS UD	.160	60								
35	KK	WA									
36 37	KM HC	2									
38	кк										
39 40	KM RK	464	.0151	.035		TRAP	5	4			
41 42	KK KM	W 3									
43	BA	.0498									
44 45	LS UD	.139	61								
46	KK	WB									
47 48	KM HC	2									
49	KK										
50 51	KM RK	823	.0279	.035		TRAP	5	4		54	
			.0219	.033		INAF	3	•		34	
52 53	KK KM	W4									
54	BA	.0054									
55 56	LS UD	.044	62								
57	KK										
58	KM										
59	RK	1078	.0482	.035		TRAP	5	4			
60	KK KM	W 5									
61 62	BA	.0159									
63 64	LS UD	.075	60								
65 66	KK KM	WC									
67	нс	3								•	
68	KK										
69 70	KM RK	557	.0449	.035		TRAP	10	4			
71	KK	W 6									
72 73	KM BA	.0486									
74	LS		60								
75	ŪD	.085									
76	KK										
77 78	KM RK	592	.0372	.035		TRAP	5	4			
, ,	M	332					3	•			

79 80 81 82 83	KK KM BA LS UD	W7 .0217 .074	60				
84 85 86	KK KM RK	464	.1466	.035	TR	AP 5	4
87 88 89	KK KM HC	WD 2					
90 91 92	KK KM RK	D-E 1044	.0479	.035	TR	AP 5	4
93 94 95 96 97	KK KM BA LS UD	.0286 .069	60				
98 99 100	KK KM RK	1449	.0504	.035	TR	AP 5	4
101 102 103 104 105	KK KM BA LS UD	w9 .0402 .097	61				
106 107 108	KK KM HC	WE					
109 110 111	KK KM RK	E-F 789	.0038	.035	TR	LAP 5	4
112 113 114 115 116	KK KM BA LS UD	W10 .0431 .096	61				
117 118 119	KK KM RK	824	.0388	.035	TF	RAP 5	4
120 121 122 123 124	KK KM BA LS UD	W11 .0314 .077	60				
125 126 127	KK KM HC	WF					
128 129 130	KK KM RK	F-G 2319	.0211	.035	TE	RAP 10	4
131 132 133 134 135	KK KM BA LS UD	w12 .0398 .095	60				
136 137 138	KK KM RK	2478	.0307	.035	T	RAP 5	4
139 140 141 142 143	KK KM BA LS UD	W14 .0473 .135	61				
144 145 146	KK KM RK	81	0.0001	.035	T	RAP 5	4
147 148 149 150 151	KK KM BA LS UD	W13 .1123 .182	61				
152 153 154	KK KM HC	₩G					

155 156 157	KK KM RK	G-н 2632	.0217	.035	TRAP	15	4
158 159 160	KK KM RK	2447	.0372	.035	TRAP	5	4
161 162 163 164 165	KK KM BA LS UD	W15 .0881 .141	61				
166 167 168	KK KM RK	1763	.0289	.035	TRAP	5	4
169 170 171	KK KM HC	WH 2					
172 173 174 175 176	KK KM BA LS UD	W16 .0292 .092	61				
177 178 179	KK KM RK	1345	.0260	.035	TRAP	5	4
180 181 182 183 184	KK KM BA LS UD	W17 .0184 .085	60				
185 186 187	KK KM HC	W I					
188 189 190	KK KM RK	I-M 2650	.0370	.035	TRAP	15	4
191 192 193 194 195	KK KM BA LS UD	W19 .0428 .083	61				
196 197 198	KK KM RK	881	.0329	.035	TRAP	5	4
199 200 201 202 203	KK KM BA LS UD	W20 .0315 .071	61				
204 205 206	KK KM HC	W J					
207 208 209	KK KM RK	3061	.0235	.035	TRAP	5	4
210 211 212 213 214	KK KM BA LS UD	W21 .1347 .156	60				
215 216 217	KK KM HC	wk 2		•			
218 219 220	KK KM RK	487	.0246	.035	TRAP	5	4
221 222 223 224 225	KK KM BA LS UD	W22 .0086 .055	63				
226 227 228	KK KM HC	WL 2					

229	KK							
230	KM	1706	0207	026	TRAP	5	4	
231	RK	1786	.0297	.035	IKAP	3	4	
232	KK	W23						
233	KM	0044						
234 235	BA LS	.0244	60					
236	UD	.112	•					
237 238	KK KM	W18						
239	BA	.1251						
240	LS		60					
241	UD	.189						
242	KK	WM						
243	KM							
244	HC	5						
245	KK	M-N						
246	KM							
247	RK	1345	.0149	.035	TRAP	20	4	
248	KK	W24						
249	KM							
250 251	BA LS	.0442	60					
252	UD	.140						
253 254	KK KM	W25						
255	BA	.0957						
256	LS		61					
257	UD	.197						
258	KK	WN						
259	KM	_						
260	HC	3						
261	KK	N-P						
262	KM							
263	RK	1589	.017	.035	TRAP	20	4	
264	KK	W28						
265	KM	0207						
266 267	BA LS	.0397	63					
268	UD	.128						
260	1616							
269 270	KK KM							
271	RK	1345	.0208	.035	TRAP	5	4	
272	KK	W30						
273	KM	1130						
274	BA	.0509						
275 276	LS UD	.123	63					
276	OD	.123						
277	KK							
278 279	KM RK	1078	.0074	.035	TRAP	5	4	
	1441					-	-	
280	KK	W29						
281 282	KM BA	.0409						
283	LS		63					
284	UD	.145						
285	кк	W31						
286	KM							
287 288	BA LS	.0123	63					
289	UD	.073	03					
290 291	KK KM	WO						
292	HC.	4						
293 294	KK KM	0-P						
295	RK	2169	.0226	.035	TRAP	5	4	
	VV	ພາເ						
296 297	KK KM	W26						
298	BA	.0301						
299 300	LS	.062	63					
500	UD	.002						
301	KK							
302 303	KM RK	4662	.0225	.035	TRAP	5	4	
	1111					-	•	
304	KK	W27						

305 306 307 308	KM BA LS UD	.1633	60					
309 310 311 312 313	KK KM BA LS UD	W32 .0890 .170	60					
314 315 316	KK KM HC	W P 5						
317 318 319	KK KM RK	P-Q 1925	.0182	.035	1	TRAP	25	4
320 321 322 323 324	KK KM BA LS UD	W33A .1261 .186	60					
325 326 327	KK KM HC	WP1 2						
328 329 330	KK KM RK	P1-Q 3000	.020	.035		TRAP	25	4
331 332 333 334 335	KK KM BA LS UD	w33B .1360 .225	60					•
336 337 338 339 340	KK KM BA LS UD	W34A .1261 .173	60					
341 342 343	KK KM RK	34A-P2 2550	.0176	.035		TRAP	25	4
344 345 346 347 348	KK KM BA LS UD	w34B .1766 .224	60					
349 350 351	KK KM HC	W P2						
352 353 354	KK KM RK	P2-Q 2640	.021	.035		TRAP	25	4
355 356 357 358 359	KK KM BA LS UD	W34C .1625 .244	60					
360 361 362	KK KM HC	WQ 4						
363 364 365	KK KM RK	Q-Q1 2940	.022	.035		TRAP	25	4
366 367 368 369 370	KK KM BA LS UD	W36A .1429 .234	60					
371 372 373	KK KM HC	WQ1 2						
374 375 376	KK KM RK	Q1-R 3400	.022	.035		TRAP	25	4
377 378 379 380	KK KM BA LS	W36B	60					

381	UD	.306								
382	KK	W35A								
383	KM	0050								
384 385	BA LS	.0958	60							
386	UD	.187	00							
300	UD	,								
387	KK	35A-WR								
388	KM									
389	RK	3715	.023	.035		TRAP	25	4		
390	KK	W35B								
391 392	KM BA	.1507								
393	LS	.1307	60							
394	UD	.259								
395	KK	WR								
396	KM									
397	HC	4								
398	KK	WR-S								
399	KM									
400	RK	2922	.0168	.035		TRAP	25	4		
401 402	KK	W37A								
402	KM BA	.1138								
404	LS		60							
405	UD	.185								
406	KK	37A-S								
407	KM	1.430	.014	.035	-	TRAP	25	4		
408	RK	1430	.014	.033		IIVI	23	7		
409	KK	W37B								
410	KM									
411	BA	.1636								
412	LS		61							
413	UD	.218								
414	KK	WS								
415	KM									
416	HC	3								
417	KK	S-T								
418	KM	2652		225			0.5			
419	RK	3653	.0164	.035		TRAP	25	4		
420	KK	W38								
421	KM									
422	BA	.0907								
423	LS		62							
424	UD	.190								
425	vv									
425 426	KK KM									
427										
	RK	2922	.0171	.035		TRAP	5	4		
	RK	2922	.0171	.035		TRAP	5	4		
428	KK	2922 ₩39	.0171	.035		TRAP	5	4		
429	KK KM	W39	.0171	.035		TRAP	5	4	•	
429 430	KK KM BA			.035		TRAP	5	4	•	
429 430 431	KK KM BA LS	W39	.0171	.035		TRAP	5	4		
429 430 431 432	KK KM BA LS UD	W39 .1833 .251		.035		TRAP	5	4	·	
429 430 431 432	KK KM BA LS UD	W39		.035		TRAP	5	4		
429 430 431 432 433 434	KK KM BA LS UD KK KM	W39 .1833 .251 W40		.035		TRAP	5	4		
429 430 431 432 433 434 435	KK KM BA LS UD KK KM BA	W39 .1833 .251	60	.035		TRAP	5	4	·	
429 430 431 432 433 434 435 436	KK KM BA LS UD KK KM BA LS	W39 .1833 .251 W40 .0964		.035		TRAP	5	4		
429 430 431 432 433 434 435 436 437	KK KM BA LS UD KK KM BA LS UD	W39 .1033 .251 W40 .0964 .165	60	.035		TRAP	5	4		
429 430 431 432 433 434 435 436 437	KK KM BA LS UD KK KM BA LS UD KK	W39 .1833 .251 W40 .0964	60	.035		TRAP	5	4		
429 430 431 432 433 434 435 436 437 438 439	KK KM BA LS UD KK KM BA LS UD KK KM	W39 .1833 .251 W40 .0964 .165	60	.035		TRAP	5	4		
429 430 431 432 433 434 435 436 437	KK KM BA LS UD KK KM BA LS UD KK	W39 .1033 .251 W40 .0964 .165	60	.035		TRAP	5	4		
429 430 431 432 433 434 435 436 437 438 439 440	KK KM BA LS UD KK KM BA LS UD KK KM HC	W39 .1833 .251 W40 .0964 .165 WT	60	.035		TRAP	5	4		
429 430 431 432 433 434 435 436 437 438 439 440	KK KM BA LS UD KK KM BA LS UD KK KM	W39 .1833 .251 W40 .0964 .165	60	.035		TRAP	5	4		
429 430 431 432 433 434 435 436 437 438 439 440	KK KM BA LS UD KK KM BA LS UD KK KM HC KK	W39 .1833 .251 W40 .0964 .165 WT	60	.035		TRAP	5	4		
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443	KK KM BA LS UD KK KM BA LS UD KK KM HC KK KM RK	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125	60							
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443	KK KM BA LS UD KK KM BA LS UD KK KM HC KK KM HC	W39 .1833 .251 W40 .0964 .165 WT 4 T-U	60							
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443	KK KM BA LS UD KK KM BA LS UD KK KM HC KK KM HC KK KM KK KM	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125 W41	60							
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445	KK KM BA LS UD KK KM BA LS UD KK KM HC KK KM KK KM KK KM BA	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125	60							
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443	KK KM BA LS UD KK KM BA LS UD KK KM HC KK KM HC KK KM KK KM	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125 W41	60							
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448	KK KM BA LS UD	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125 W41 .0601	60							
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448	KK KM BA LS UD KK KM BA LS UD KK KM HC KK KM RK KM KK KM KM	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125 W41	60							
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 445 446 447 448	KK KM BA LS UD KK KM KM KK KM KK KM KK KM KK KM KK KM KK KM KM	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125 W41 .0601 .117	60							
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450	KK KM BA LS UD KK KM BA	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125 W41 .0601	60 60 60							
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 445 446 447 448	KK KM BA LS UD KK KM KM KK KM KK KM KK KM KK KM KK KM KK KM KM	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125 W41 .0601 .117	60							
429 430 431 432 433 434 435 436 437 438 449 441 442 443 444 445 446 447 448 449 450 451 452 453	KK KM BA LS UD KK KM BK KK KM BK LS UD KK KM BLS UD KK KM BLS UD KK KM BLS UD KK KM BK LS UD	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125 W41 .0601 .117 W42 .0581	60 60 60							
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 453 454 455 467 477 488 499 490 490 490 490 490 490 490	KK KM BA LS KM BA LS KM BA LS UD KK	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125 W41 .0601 .117 W42	60 60 60							
429 430 431 432 433 434 435 436 437 438 449 441 442 443 444 445 446 447 448 449 450 451 452 453	KK KM BA LS UD KK KM BK KK KM BK LS UD KK KM BLS UD KK KM BLS UD KK KM BLS UD KK KM BK LS UD	W39 .1833 .251 W40 .0964 .165 WT 4 T-U 1125 W41 .0601 .117 W42 .0581	60 60 60							

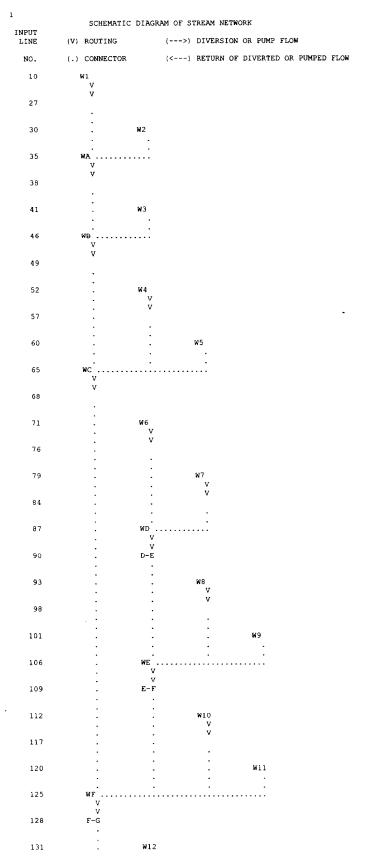
457 458	KK KK									
459	но	3								
460	KK									
461 462	KD RK		.0181	.035	TRAP	25	4			
463	K									
464 465	KN BA									
466	LS		61							
467	UI	.169								
468	K									
469 470	KI H									
471 472	KI KI									
473	RI		.0103	.035	TRAP	25	4			
474	K	C W45								
475	KI	1								
476 477	B) Ls		61							
478	บ									
479	K	C WW								
480	KI	4								
481	н	2								
482 483	KI KI									
484	Ri		.0149	.035	TRAP	5	4			
485	K	к н1								
486	Ю	M								
487 488	B. L.		60							
489	Ü									
490	к	к								
491 492	KI R		.0308	.035	TRAP	5	4			
772		. 030	.0500	.033	114.6	•	•			
493 494	K									
494 495	K B	M A0273	40							·
494 495 496	K B L	M A .0273 S	60							·
494 495	K B	M A .0273 S	60		HEC-1 INPUT					PAGE 13
494 495 496	K 8 L U	M A .0273 S D .114		3	HEC-1 INPUT	6	7	8	910	PAGE 13
494 495 496 497	K 8 L U	M A .0273 S D .114		3		6	7	8	910	PAGE 13
494 495 496 497 LINE	K B L U I	M		3		6	7	8	910	PAGE 13
494 495 496 497 LINE	K B L U I	M A .0273 S D .114 D1 K MB M		3		6	7	8	910	PAGE 13
494 495 496 497 LINE 498 499 500	K B L U I K K K	M0273 D .114 D		3		6	7	8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502	K B L U I I K K K H K K K K K K K K K K K K K K	M	2.		45.			8	910	PAGE 13
494 495 496 497 LINE 498 499 500	K B L U I I K K K H K K K K K K K K K K K K K K	M		.035		6	7	8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504	К В L U I К К К К К К К К К К К К К К К К К К	M A . 0273 S S D .114 D	2.		45.			8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505	К В Ц Ц Ц К К К К К К К К К К К К К К К	M A0273 S S .114 D1 K MB C 2 K K MK 928 K M4 M	.0302		45.			8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507	K BL U I K K K K K K K K K K K K K K K K K K	M	.0302		45.			8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506	K BL U I K K K K K K K K K K K K K K K K K K	M	.0302		45.			8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508	K B L U I K K K K K K K K K K K K K K K K K K	M	.0302		45.			8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 506 507 508	K B L U K K K K K K K K K K K K K K K K K K	M	.0302		45.			8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511	K B U I K K K K K K K K K K K K K K K K K K	M	.0302	.035	45. TRAP	5	4	8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 511 512 513	K B L U K K K K K K K K K K K K K K K K K K	M	.0302	.035	45. TRAP	5	4	8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514	K B L U K K K K K K K K K K K K K K K K K K	M	.0302	.035	45. TRAP	5	4	8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 511 512 513	K B L U K K K K K K K K K K K K K K K K K K	M	.0302	.035	45. TRAP	5	4	8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516	K B B B B B B B B B B B B B B B B B B B	M	.0302	.035	45. TRAP	5	4	8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 511 512 513 514 515 516 517 518	K B U U K K K K K K K K K K K K K K K K	M A .0273 S	.0302	.035	45. TRAP	5	4	8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516	K B L L U I I K K K K K K K K K K K K K K K K K	M	.0302	.035	45. TRAP	5	4	8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520	K B L L U I I K K K K K K K K K K K K K K K K K	M A .0273 S	.0302	.035	45. TRAP	5	4	8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516	K B B B B B B B B B B B B B B B B B B B	M	.0302	.035	45. TRAP	5	4	8	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521	K B B B B B B B B B B B B B B B B B B B	M	.0302	.035	TRAP	40	0	8	910	PAGE 13
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 511 512 513 514 515 516 517 518 519 520 521 522 523 524	K B L L U I I K K K H K K K R R K K K K K K K K K K K	M	.0302 60 .0197 60	.035	TRAP	40	0	89	910	PAGE 13
494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 522 523	K B B B B B B B B B B B B B B B B B B B	M	.0302	.035	TRAP	40	0	8(910	PAGE 13

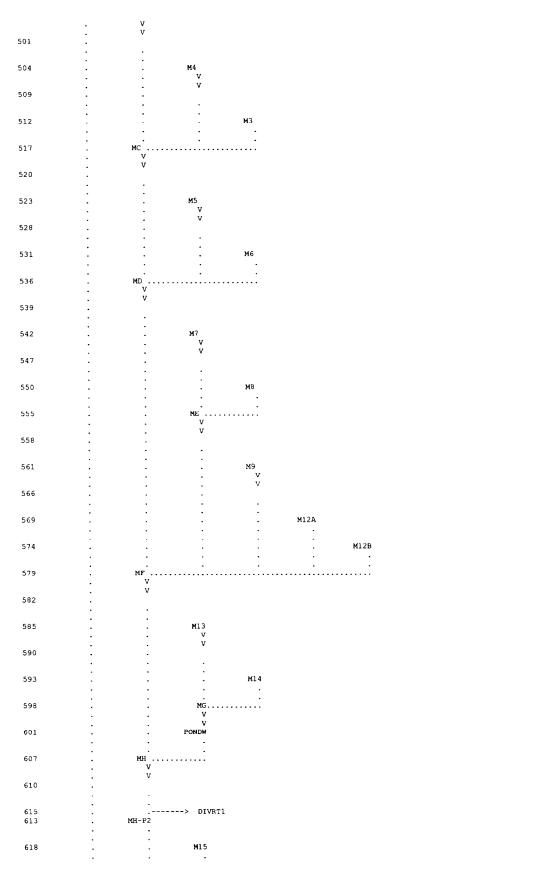
528	KK									
529 530	KM RK	1717	.0186	.02	TRA	P 40	0			
531 532	KK KM	М6								
533 534	BA LS	.0637	65							
535	UD	.233								
536 537 538	KK KM HC	MD 3								
539	KK	v								
540 541	KM RK	2841	.019	.035	TRA	L P 5	4			
542	KK	м7								
543 544	KM BA	.0524	69							
545 546	LS UD	.170	69							
547 548	KK KM									
549	RK	1044	.0268	.02	TRA	AP 40	O			
550 551	KK KM	M8								
552 553	BA LS	.0370	61							
554	UD	.126								
555 - 556	KK KM	ME								
557 558	HC KK	2								
559 560	KM RK	2992	.0187	.035	TR	\ ₽ 5	4			
561	KK	M9	.0107	.000	***					
562 563	KM BA	.0169								
564 565	LS UD	.087	69							
		.007								
566 567	KK KM									
568	RK	3433	.0253	.03	TR	AP 5	4			
569 570	KK KM	M12A								
571 572	BA LS	.0658	60							
573	UD	.159								
574 5 75	KK KM	M12B								
576 577	BA LS	.1481	60							
579	KK	MF								
580 581	KM HC	5								
582	KK									
583 584	KM RK	2586	.0224	.035	TP	AP 10) 4			
585	KK	M13								
586 587	KM BA	.0614								
588 589	LS UD	.165	64							
590	KK									
591 592	KM RK	1700	.01	.035	TF	AP (6 4			
593	кк	M14								
594 595	KM BA	.1624								
596 597	LS UD	.228	64							
598	кк	MG								
599 600	KM HC	2								
601	KK	PONDW	OODMEN !!!	TITE DEMEN	TION DOND	FCT (FDOM	EDD MR EL	G FAY		
602 603	KM SV	0	.68	1.5		3.6 4.	9 6.3	7.34	7.34	
604	SE	968	969	970	971	972 97	3 974	975	976	

680	BA	.042						
681 682	LS UD	.139	60					
002	OD	.133						
683	KK	ML						
684 685	KM HC	2						
686 687	KK KM							
688	RK	2099	.02	.035	TR	AP 5	4	
689	KK	M17						
690	KM							
691 692	BA LS	.0765	61					
693	UD	.133	V1					
694	KK	MM						
695	KM							
696	HC	2						
697	KK							
698 699	KM RK	2320	.0121	.035	TR.	AP 10	4	
			.0121	.033	***		•	
700 701	KK KM	M18						
702	BA	.061						
703 704	LS UD	.142	61					
		**45						
705 706	KK KM							•
707	R.K	2122	.017	.035	TR	AP 5	4	
708	KK	M20						
709	KM	M2.0						
710 711	BA LS	.1341	61					
712	UD	.211	91					
713	KK	MN						
714	KM	MIN						
715	HC	4						
716	KK							
717	KM	1521	0202	225				
718	RK	1531	.0202	.035	TR	AP 25	5 4	•
719	KK	M21						
720 721	KM BA	.0241						
722	LS		61					
723	UD	.125						
724	KK							
725 726	KM RK	1322	.0212	.035	TF	AP 5	5 4	
727 728	KK KM	M23						
729	BA	.0461	60					
730 731	LS UD	.120	60					
732 733	KK KM	MO						
734	HC	3						
735	KK							
736 737	KM RK	974	.0133	.035	TI	AP 2	5 4	
			.0133	.033	11	2	. 1	
738 739	KK KM	M24						
740	BA	.0776						
741 742	LS UD	.125	60					
743 744	KK KM	MP						
745	HC	2						
746	KK							
747	KM							
748	RK	290	.0138	.035	T	RAP 2	5 4	
749	KK	M25						
750 751	KM BA	.0105						
752	LS		60					
753	UD	.130						
754	KK	MQ						

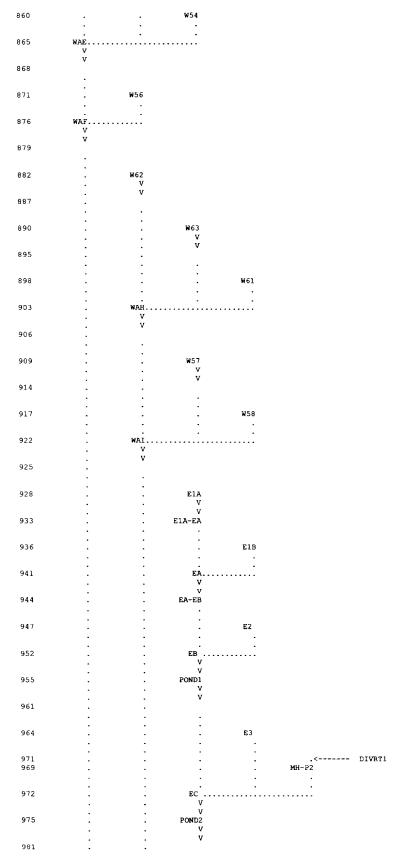
755 756	KM HC	2								
757	VV									
757 758	KK KM									
759	RK	3305	.0136	.035	T	RAP	25	4		
7.50										
760 761	KK KM	M26								
762	BA	.1779								
763	LS		65							
764	UD	.250								
765	KK	MR								
766	KM									
767	HC	2								
768	KK	W44								
769	KM									
770	BA	.0384								
771 772	LS UD	.141	60							
	••									
773	KK									
774 775	KM RK	. 2029	.0148	.035	т	'RAP	5	4		
775	M	. 2023	.0140	.055	•	. van	•	•		
776	KK	W47								
777 778	KM BA	.0541								
779	LS	.0341	60							
780	UD	.148								
791	vv									
781 782	KK KM									
783	RK	1438	.0223	.035	1	RAP	5	4		
704	****	El A C								
784 785	KK KM	W46								
786	BA	.0418								
787	LS		61							
788	UD	,154								
789	KK	M27								
790	KM									
791 792	BA LS	.0528	60							
792 793	UD	.132	60							
	-									
794	KK	WX								
795 796	KM HC	6								
		-								
797	KK									
798 799	KM RK	2563	.0125	.035	•	TRAP	40	4		
, 55	1111	2505	.0123	.000			••	•		
800	KK	W48								
801 802	KM BA	.1179								
803	LS		61							
804	UD	.091								
805	KK									
805 806	KK KM									
807	RK	2400	.0188	.035	•	TRAP	5	4		
200	****	F2.4.0								
808 809	KK KM	W49								
810	BA	.2651								
811	LS	101	61							
812	UD	.181								
813	KK	WZ								
814	KM									
815	HC	3								
816	KK									
817	KM									
818	RK	800	.0125	.035		TRAP	40	4		
819	KK	W50								
820	KM									
821 822	BA LS	.1061	61							
822 823	UD	.145	9.1							
824 825	KK KM	WAB								
825 826	HC HC	2								
827 828	KK KM									
828	RK	742	.0108	.035		TRAP	40	4		

830 831 832 833 834	KK KM BA LS UD	W51 .0546 .172	63				
835 836 837	KK KM HC	WAC 2					
838 839 840	KK KM RK	638	.0345	.035	TRAP	40	4
841 842 843 844 845	KK KM BA LS UD	W52 .0499 .109	63				
846 847 848	KK KM RK	1171	.0205	.035	TRAP	5	4
849 850 851 852 853	KK KM BA LS UD	w53 .0531 .156	63				
854 855 856	KK KM HC	WAD 2					
857 858 859	KK KM RK	290	.0310	.035	TRAP	10	4
860 861 862 863 864	KK KM BA LS UD	W54 .0078 .050	60				
865 866 867	KK KM HC	WAE 3					
868 869 870	KK KM RK	1925	.0052	.035	TRAP	40	4
871 872 873 874 875	KK KM BA LS UD	.1831 .191	60				
876 877 878	KK KM HC	WAF 2					
879 880 881	KK KM RK	1032	.0155	.035	TRAP	40	4
882 883 884 885 886	KK KM BA LS UD	.0750 .090	60				
887 888 889	KK KM RK	2169	.0203	.035	TRAP	5	4
890 891 892 893	KK KM BA LS UD	W63 .047 .109	60				
895 896 897	KK KM RK	1450	.0131	.035	TRAP	5	4
898 899 900 901 902	KK KM BA LS UD	.192 .251	60				
903 904 905	KK KM HC	WAH 3					


```
KK
KM
RK
907
908
                        1241
                 KK
KM
BA
LS
909
                         W57
910
911
912
                        .0732
                                     60
913
                 UD
                        .140
                 KM
RK
915
916
                        5903
                                                                TRAP
                                                                             5
                 KK
KM
BA
917
                         W58
918
                        .2296
919
920
921
                 LS
                                     60
                         .251
922
                 КK
                          WAI
923
924
                 KM
HC
                            3
                 KK
KM
RK
925
927
                         232
                                  .0086
                                             .035
                                                                TRAP
                                                                            15
928
                 ĸĸ
                         ElA
                 KM
BA
929
                        .1151
930
                 LS
                         .234
                                     60
932
                 KK
 933
                      E1A-EA
                 KM
RK
 935
                        4000
                                   .022
                                             .035
                                                                TRAP
                                                                             5
                  KK
KM
BA
936
937
                          E1B
                        .1665
 938
                  LS
UD
 939
                         .233
 940
 941
                  KK
                           EΑ
                 KM
HC
 942
                            2
 943
 944
                  KK
                        EA-EB
945
946
                  KM
RK
                         1900
                                                                TRAP
                                   .022
                                             .035
                                                      HEC-1 INPUT
                                                                                                                           PAGE. 24
LINE
                  ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
 947
948
                  KK
KM
                          E2
                         .104
 949
950
                  BA
LS
                                      60
                         .149
 951
                  UD
                  KK
KM
 952
                           EΒ
 953
 954
                  НC
                             2
 955
                  KK
                        POND1
                  KM
SV
SE
 956
957
                              ROUTE FLOW THROUGH SCS POND 1
                             0
                                   .01
946
0
ELEV
                                              .28
948
                                                      1.12
950
                                                                2.70
                                                                          5.18
954
48.5
                                                                                   6.00
954.5
                                                                                              6.94
                        945.5
                                                                  952
                                                                                               955
 958
                  SQ
                             0
                                                                                             351.4
                                            945.5
 960
 961
                  кĸ
                  KM
RK
                         1300
                                  .0192
 963
                                             .035
                                                                 TRAP
 964
                   ĸк
                           E3
 965
966
                  KM
BA
                          .090
                  LS
UD
 967
                                      60
 968
                          .128
 969
                   KK
                        MH-P2
                  KM
DR
                              RETRIEVE DIVERSION FROM W. MERIDIAN RD DITCH
 970
 971
 972
                   KK
                           EC
 973
                  KM
HC
 974
 975
976
                  KK
KM
                        POND2
                              ROUTE FLOW THROUGH SCS POND 2
0 .21 1.11 3.19 6.89
                                                                           9.52 11.08 12.82 14.72 16.70
```


906

1


978 979 980	SE SQ RS	920 0 1	922 0 ELEV	924 0 920	926 0	928 0	929 0	929.5 25	930 86.5	930.5 186.2	931 308.4
981 982 983	KK KM RK	1700	.0141	.035		TRAP	5	4			
984 985 986 987 988	KK KM BA LS UD	E1C .0845 .200	60								
989 990 991	KK KM RK	1C-ED1 3450	.022	.035		TRAP	5	4			
992 993 994 995 996	KK KM BA LS UD	£4 .127 .200	60								
997 998 999	KK KM HC	ED1									
1000 1001 1002	KK KM RK	ED1-ED 450	.0178	.03		TRAP	5	4			
1003 1004 1005 1006 1007	KK KM BA LS UD	£5 .094 .160	60								
1008 1009 1010	KK KM HC	ED 3									
1011 1012 1013	KK KM RK	950	.0211	.035		TRAP	10	4			
1014 1015 1016 1017 1018	KK KM BA LS UD	.0446	60								
1019 1020 1021	KK KM HC	EE 2									
1022 1023 1024	KK KM RK	1500	.0127	.035		TRAP	10	4			
1025 1026 1027 1028 1029	KK KM BA LS UD	E10 .029 .158	60								
1030 1031 1032	KK KM HC	EF 2									
1033 1034 1035	KK KM RK	F-G 950	.0074	.035		TRAP	15	4			
1036 1037 1038 1039 1040	KK KM BA LS UD	E6 .119 .228	60								
1041 1042 1043 1044 1045	KK KM BA LS UD KK	.031	60								
1047 1048	KM RK	1100	.0100	.035		TRAP	5	4			
1049 1050 1051	KK KM HC	2									
1052	KK	G1-G									

1204 1205	KM HC	2								
1206	KK									
1207	KM									
1208	RK	1832	.0126	.035	TRAP	40	4			
1209	KK	E27								
1210	KM	627								
1211	BA	.1236								
1212	LS		63							
1213	UD	.172								
1014	100	50								
1214 1215	KK KM	EO								
1216	HC	2								
1217	KK									٠
1218	KM					_	_			
1219	RK	1625	.0133	.035	TRAP	5	3			
1220	KK	W55								
1221	км									
1222	BA	.0452								
1223	LS		60							
1224	UD	.093								
1225	KK	WAG								
1225	KM	MAG								
1227	HC	2								
1228	KK									
1229	KM	2025	0100	035	mp v b	5	4			
1230	RK	2025	.0109	.035	TRAP	5	4	•		
1231	KK	W59								
1232	KM									
1233	BA	.0705								
1234	LS		60							
1235	UD	.200								
1236	кĸ	WAJ								
1237	КМ									
1238	HC	4								
1239	KK									
1240	KM									
1241	RK	1450	.0124	.035	TRAP	40	4			
1242	KK	E28								
1243 1244	KM BA	.0718								
1245	LS	.0.10	61							
1246	UD	.223								
1247	KK									
1248 1249	KM RK	2064	.0165	.035	TRAP	40	4			
****	****	2307					-			
1250	KK	E29								
1251	KM									
1252	BA	.0465	æ i							
1253 1254	LS UD	.166	61							
1234	OD	.100								
1255	KK	EZZ								
1256	KM		OMBINE E2	9 & E30 AT DP ZZ						
1257	HC	2								
1258	KK	W60								
1259	KM									
1260	BA	.0711								
1261	LS		60							
1262	UD	.182								
1262	Nr.	77								
1263 1264	KK KM	22	OMBINE AT	L AT DP ZZ						
1265	HC	3	AL							
1266	ZZ	-								

623	:	мі			
023		v			
626	•	v			
020	:				
		•			
629			M19		
634	•	мJ V	• • • • • • •		
	:	v			
637					
	•	•			
640	•	·	M10		
	•	•	V		
645	•	•	V M10-K		
*			•		
640	•	•	•	W113	
648		•		M11A	
653	•	•	М К V		
		•	v		
656		•	MK-K1		
	•	•	•		
659		•		M11B	
	•			V	
664	•	•		V 11B-K1	
664		•		IIB-KI	
		•		•	
667	•	•	-	•	M11C
	:	•	•	•	
672	•	•			• • • • • • •
	•	•	v v		
675	:		K1-ML		
		•	•		
678	•	•	•	M16	
0,0		:	:		
	•	•			
683	•	•	M⊥		
	•		v.		
686	•				
689		•		M17	
	•	•	•	•	
694		•	мм		
			V		
697	•	•	V		
037	:				
			•		
700	•	•	-	M18 V	
	•	· ·	:	v	
705	•	•	•		
	•	•			
708		•		•	M20
	•	•	•	•	•
713	:	MN			
		V			
716	•	v			
,10	•	•			
	•	•			
719	•	:	M21 V		
	·	-	v		
724	•	•			
		-	:		
727				M23	
		•	•	•	
732		мо			
		V			
735	•	V			
, 33		-			
	-				
738	•	•	M24		

1103		. J1-K			
1106	:	· :	E15		
1111	•	·	v v		
1114		·	•	E16	
1119	•		EI.	· ·	
1122		:	v v		
	:	· · · · · ·	:		
1125	· ·			E17 V V	
1130			•	-	
1133	•			•	E18
1138		• • •	EJ2 V		
1141	•	: :	v		
1144	•	:	•	E23	
1149		:			E24
1154	•	. EK			
1157	•	. v			
1160	•	• • •	E 21		
1165			V		
1168		: :		E20	
				v	
1173					
1176	•		•	•	£22 •
1181	•		, ET		• • • • • • • • • • • • • • • • • • • •
1184					
1187	:			E25	
1192	:	. EM	•		
1195	:	. V			
1198	•		E2		
1203	:				
1206		. ,			
1209	•		. E2	7	
1214		. EO			
1217		. ,	,		
	· ·	:		E	
1220		•	. ₩5 ·	5	

		•		
1225			WAG	
			V	
			٧	
1228	•	•		
ILLU	•	•		
	•	•	•	
1231	•	•	•	W59
1231	•	•	•	W 33
	•	•	•	
			•	
1236	WAJ	• • • • • • • • • • •	• • • • • • • • • • • • •	• • • • • • •
	V			
	v			
1239				
1242		E28		
		V		
		V		
1247				
		_		
1250	•	•	E29	
1230	•	•	B27	
	•	•	•	
1055	•		•	
1255	•	EZZ		
	•	•		
	•	•		
1258	•	•	W 60	
	•	•	•	
			•	
1263	7.7			

FLOOD HYDROGRAPH PACKAGE (HEC-1)
JUN 1998
VERSION 4.1
RUN DATE 28SEP07 TIME 11:49:21

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

FALCON BASIN 100-YR/ 24-HOUR FLOOD/ EXISTING CONDITIONS

UPPER EAST TRIBUTARY (WOODMEN HILLS) BASED ON CLOWR APPROVED 2/2/99
INCLUDING 2 EXISTING SCS STOCK PONDS, WEST WOODMEN HILLS POND

NOTE: MI-M4 (PAINT BRUSH HILLS) MODELED AS HISTORIC TO ACCOUNT FOR

DETENTION POND AT MC

NOTE: NO CULVERT AT STAPLETON 4 MERIDIAN, TEMP CULVERTS AT MERIDIAN

DOWNSTREAM OF WOODMEN HILLS DRIVE (DIVERSION)

9 IO OUTPUT CONTROL VARIABLES

IPRNT 5 PRINT CONTROL

IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA NMIN 5 MINUTES IN COMPUTATION INTERVAL STARTING DATE IDATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES 0800 300 ITIME NQ NDDATE ENDING DATE ENDING TIME 15JUL99 0855 ICENT 19 CENTURY MARK

COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS

LISH UNITS
DRAINAGE AREA
PRECIPITATION DEPTH
LENGTH, ELEVATION
FEET
FLOW
STORAGE VOLUME
SURFACE AREA
TEMPERATURE
DEGREES FAHRENHEIT

RUNOFF SUMMARY
FLOW IN CUBIC FEET PER SECOND
TIME IN HOURS, AREA IN SQUARE MILES

1

	TIME IN HOURS, AREA IN SQUARE MILES									
			PEAK	TIME OF	AVERAGE FL	OW FOR MAXIN	TUM PERIOD	BASIN	MAXIMUM	TIME OF
+	OPERATION	STATION	FLOW	PEAK	6-HOUR	24-HOUR	72-HOUR	AREA	STAGE	MAX STAGE
+	HYDROGRAPH AT	W1	40.	5.75	4.	1.	1.	.05		
+	ROUTED TO		37.	5.83	4.	1.	1.	.05		
+	HYDROGRAPH AT	W2	20.	5.83	2.	1.	1.	.03		•
+	2 COMBINED AT	WA	57.	5.83	6.	2.	2.	.08		
+	ROUTED TO		55.	5.83	6.	2.	2.	.08		
+	HYDROGRAPH AT	w3	39.	5.83	4.	1.	1.	.05		
+	2 COMBINED AT	WB	95.	5.83	10.	3.	3.	.13		
+	ROUTED TO		91.	5.83	10.	3.	3.	.13		
+	HYDROGRAPH AT	W4	6.	5.75	0.	0.	0.	.01		
+	ROUTED TO		6.	5.75	0.	0.	0.	.01		
+	HYDROGRAPH AT	W 5	15.	5.75	1.	0.	0.	.02		
+	3 COMBINED AT	WC	105.	5.83	11.	4.	4.	.15		
+	ROUTED TO		103.	5.83	11.	4.	4.	.15		•
+	HYDROGRAPH AT	Wő	43.	5.75	4.	1.	1.	.05		
+	ROUTED TO		40.	5.75	4.	1.	1.	.05		
+	HYDROGRAPH AT	W 7	20.	5.75	2.	1.	1.	.02		
+	ROUTED TO		20.	5.75	2.	1.	1.	.02		
+	2 COMBINED AT	WD	60.	5.75	5.	2.	2.	.07		
+	ROUTED TO	D-E	55.	5.75	5.	2.	2.	.07		
+	HYDROGRAPH AT	W8	27.	5.75	2.	1.	1.	.03		
+	ROUTED TO		24.	5.75	2.	1.	1.	.03		
+	HYDROGRAPH AT	₩9	36.	5.75	3.	1.	1.	.04		
+	3 COMBINED AT	WE	114.	5.75	11.	4.	4.	.14		
+	HYDROGRAPH AT	E- £	108.	5.83	11.	4.	4.	.14		
+	ROUTED TO	W10	39.	5.75	3.	1.	1.	.04		
+	HYDROGRAPH AT		36.	5.75	4.	1.	1.	.04		
+	4 COMBINED AT	W11	29.	5.75	2.	1.	1.	.03		
+	ROUTED TO	WF	265.	5.83	28.	10.	9.	.36		,

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 31 of 41 7/23/2008

+		F-G	255.	5.83	28.	10.	9.	.36
+	HYDROGRAPH AT	W12	33.	5.75	3.	1.	1.	.04
+	ROUTED TO		32.	5.83	3.	1.	1.	.04
+	HYDROGRAPH AT	W14	38.	5.83	4.	1.	1.	.05
+	ROUTED TO		37.	5.83	4.	1.	1.	.05
+	HYDROGRAPH AT	W13	80.	5.83	9.	3.	3.	.11
+	4 COMBINED AT	WG	403.	5.83	44.	15.	14.	.56
+	ROUTED TO	G-H	382.	5.92	44.	15.	14.	.56
+	ROUTED TO		368.	5.92	44.	15.	14.	.56
+	HYDROGRAPH AT	W15	70.	5.83	7.	2.	2.	.09
+	ROUTED TO		66.	5.83	7.	2.	2.	.09
+	2 COMBINED AT	WH	428.	5.92	51.	17.	17.	.65
+	HYDROGRAPH AT	W16	27.	5.75	2.	1.	1.	.03
+	ROUTED TO		24.	5.83	2.	1.	1.	.03
+	HYDROGRAPH AT	W17	16.	5.75	1.	0.	0.	.02
+	2 COMBINED AT	WI	38.	5.75	4.	1.	1.	.05
+	ROUTED TO	I-M	37.	5.83	4.	1.	1.	.05
+	HYDROGRAPH AT	W19	41.	5.75	3.	1.	1.	.04
+	ROUTED TO		37.	5.75	3.	1.	1.	.04
+	HYDROGRAPH AT	W 20	32.	5.75	3.	1.	1.	.03
+	2 COMBINED AT	WJ	69.	5.75	6.	2.	2.	.07
+	ROUTED TO		65.	5.83	6.	2.	2.	.07
+	HYDROGRAPH AT	W21	96.	5.83	10.	3.	3.	.13
+	2 COMBINED AT	wĸ	161.	5.83	16.	6.	5.	.21
+	ROUTED TO		156.	5.83	16.	6.	5.	.21
+	HYDROGRAPH AT	W 22	10.	5.75	1.	0.	0.	.01
+	2 COMBINED AT	WL	161.	5.83	17.	6.	6.	.22
+	ROUTED TO		147.	5.83	17.	6.	6.	.22
+	HYDROGRAPH AT	W23	19.	5.75	2.	1.	1.	.02
ŧ	HYDROGRAPH AT	W18	80.	5.83	9.	3.	3.	.13
+	5 COMBINED AT	WM	690.	5.92	83.	28.	27.	1.06
+	ROUTED TO	M-N	673.	5.92	83.	28.	27.	1.06

+	HYDROGRAPH AT	W24	33.	5.83	3.	1.	1.	.04
+	HYDROGRAPH AT	W25	64.	5.83	8.	3.	3.	.10
+	3 COMBINED AT	WN	756.	5.92	94.	32.	31.	1.20
+	ROUTED TO	N-P	722.	5.92	94.	32.	31.	1.20
+	HYDROGRAPH AT	W28	36.	5.83	4.	1.	1.	.04
+	ROUTED TO		35.	5.83	4.	1.	1.	.04
+	HYDROGRAPH AT	W 30	46.	5.83	5.	2.	2.	.05
+	ROUTED TO		46.	5.83	5.	2.	2.	.05
+	HYDROGRAPH AT	W 29	37.	5.83	4.	1.	1.	.04
+	HYDROGRAPH AT	W31	14.	5.75	1.	0.	0.	.01
+	4 COMBINED AT	WO	127.	5.83	13.	4.	4.	.14
+	ROUTED TO	O-P	118.	5.83	13.	4.	4.	.14
+	HYDROGRAPH AT	W26	36.	5.75	3.	1.	1.	.03
+	ROUTED TO		35.	5.92	3.	1.	1.	. 03
+	HYDROGRAPH AT	W27	89.	5.92	12.	4.	4.	.16
+	HYDROGRAPH AT	W32	61.	5.83	7.	2.	2,	.09
+	5 COMBINED AT	₩₽	1012.	5.92	128.	44.	43.	1.63
+	ROUTED TO	P-Q	950.	5.92	128.	44.	43.	1.63
+	HYDROGRAPH AT	W33A	82.	5.83	10.	3.	3.	.13
+	2 COMBINED AT	WP1	1023.	5.92	138.	47.	46.	1.75
+	ROUTED TO	P1-Q	1007.	6.00	137.	47.	46.	1.75
+	HYDROGRAPH AT	W 33B	78.	5.92	10.	4.	3.	.14
+	HYDROGRAPH AT	W34A	86.	5.83	10.	3.	3.	.13
+	ROUTED TO	34A-P2	82.	5.92	9.	3.	3.	.13
+	HYDROGRAPH AT	W34B	101.	5.92	13.	5.	4.	.18
+	2 COMBINED AT	WP2	183.	5.92	23.	8.	8.	.30
+	ROUTED TO	P2-Q	175.	6.00	23.	8.	8.	.30
+	HYDROGRAPH AT	W 34C	90.	5.92	12.	4.	4.	.16
+	4 COMBINED AT	WQ	1325.	6.00	181.	63.	61.	2.36
+	ROUTED TO	Q-Q1	1284.	6.00	181.	63.	60.	2.36
+	HYDROGRAPH AT	W36A	81.	5.92	11.	4.	4.	.14
+	2 COMBINED AT	WQ1	1352.	6.00	191.	66.	64.	2.50

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 33 of 41 7/23/2008

	ROUTED TO			c 00	100	66	64	2.50
+	HYDROGRAPH AT	Q1-R	1311.	6.08	190.	66.	64.	2.50
+	HYDROGRAPH AT	W36B	91.	6.00	14.	5.	5.	.19
+	ROUTED TO	W35A	62.	5.83	7.	2.	2.	.10
+		35A-WR	58.	6.00	7.	2.	2.	.10
+	HYDROGRAPH AT	W 35B	81.	5.92	11.	4.	4.	.15
+	4 COMBINED AT	WR	1497.	6.08	222.	78.	75.	2.94
+	ROUTED TO	WR-S	1475.	6.08	222.	77.	75.	2.94
+	HYDROGRAPH AT	W37A	74.	5.83	9.	3.	3.	.11
+	ROUTED TO	37A-S	71.	5.92	9.	3.	з.	.11
+	HYDROGRAPH AT	W 37B	102.	5.92	13.	5.	4.	.16
+	3 COMBINED AT	WS	1575.	6.08	242.	85.	82.	3.21
+	ROUTED TO .	S-T	1522.	6.17	242.	85.	81.	3.21
+	HYDROGRAPH AT	w38	67.	5,83	8.	3.	3.	.09
	ROUTED TO	#30			8.	3.	3.	.09
+	HYDROGRAPH AT		66.	5.92				
+	HYDROGRAPH AT	W39	100.	5.92	14.	5.	5.	.18
+	4 COMBINED AT	W40	67.	5.83	7.	3.	2.	.10
+	ROUTED TO	WT	1621.	6.17	269.	95.	91.	3.59
+		T-U	1613.	6.17	269.	95.	91.	3.59
+	HYDROGRAPH AT	W41	45.	5.83	5.	2.	2.	.06
+	HYDROGRAPH AT	W42	125.	5.75	13.	4.	4.	.06
+	ROUTED TO	u-v	122.	5.83	13.	4.	4.	.06
+	3 COMBINED AT	WU	1648.	6.17	285.	100.	96.	3.70
+	ROUTED TO		1612.	6.17	285.	100.	96.	3.70
+	HYDROGRAPH AT	W43	108.	5.83	12.	4.	4.	.15
+	2 COMBINED AT	WV	1640.	6.17	296.	104.	100.	3.85
+	ROUTED TO	V-W	1621.	6.17	296.	104.	100.	3.85
+	HYDROGRAPH AT	W45	134.	5.83	16.	5.	5.	.19
	2 COMBINED AT	ww	1663.	6.17	311.	109.	105.	4.04
· •	ROUTED TO	W-X	1621.		311.	109.	105.	4.04
	HYDROGRAPH AT				5.	2.	2.	.07
+	ROUTED TO	M1	52.					
+	HYDROGRAPH AT		50.	5.83	5.	2.	2.	.07

+		M2	21.	5.75	2.	1.	1.	.03		
+	2 COMBINED AT	мв	70.	5.83	7.	2.	2.	.09		
+	ROUTED TO		70.	5.83	7.	2.	2.	.09		
+	HYDROGRAPH AT	M4	26.	5.83	3.	1.	1.	.03		
+	ROUTED TO		26.	5.83	3.	1.	1.	.03		
+	HYDROGRAPH AT	мз	14.	5.75	1.	٥.	0.	.01		
+	3 COMBINED AT	MC	105.	5.83	11.	4.	4.	.14		
+	ROUTED TO		102.	5.83	11.	4.	4.	.14		
+	HYDROGRAPH AT	м5	24.	5.75	2.	1.	1.	.02		
+	ROUTED TO		23.	5.83	2.	1.	1.	.02		
+	HYDROGRAPH AT	м6	51.	5.92	7.	2.	2.	.06		
.+	3 COMBINED AT	MD	175.	5.83	20.	7.	6.	.22		
+	ROUTED TO		170.	5.92	20.	7.	6.	.22		
+	HYDROGRAPH AT	м7	63.	5.83	7.	2.	2.	.05		
+	ROUTED TO		61.	5.83	7.	2.	2.	.05		
+	HYDROGRAPH AT	м8	30.	5.83	3.	1.	1.	.04		
+	2 COMBINED AT	ME	91.	5.83	10.	3.	3.	.09		
+	ROUTED TO		89.	5.92	10.	3.	3.	.09		
+	HYDROGRAPH AT	м 9	25.	5.75	2.	1.	1.	.02		
+	ROUTED TO		23.	5.83	2.	1.	1.	.02	•	
+	HYDROGRAPH AT	M12A	47.	5.83	5.	2.	2.	.07		
+	HYDROGRAPH AT	M12B	86.	5.92	11.	4.	4.	.15		
+	5 COMBINED AT	MF	401.	5.92	47.	16.	15.	.54		
+	ROUTED TO		388.	5.92	47.	16.	15.	.54		
+	HYDROGRAPH AT	M13	56.	5.83	6.	2,	2.	.06		
+	ROUTED TO		53.	5.92	6.	2.	2.	.06		
+	HYDROGRAPH AT	M14	122.	5.92	16.	5.	5.	.16		
+	2 COMBINED AT	MG	176.	5.92	22.	7.	7.	.22		
+	ROUTED TO	PONDW	16.	7.00	16.	7.	7.	.22	970.02	7.00
+	2 COMBINED AT	мн	403.	5.92	63.	23.	22.	.77		
+	ROUTED TO		385.	6.00	63.	23.	22.	.77	•	
+	DIVERSION TO	DIVRT1	85.	6.00	43.	18.	18.	.77		

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 35 of 41 7/23/2008

+	HYDROGRAPH AT	MH-P2	300.	6.00	20.	5.	5.	.77
+	HYDROGRAPH AT	M15	101.	5.83	12.	4.	4.	.12
+	2 COMBINED AT	MI	388.	5.92	32.	9.	9.	.89
+	ROUTED TO		378.	6.00	32.	9,	9.	.89
+	HYDROGRAPH AT	M19	38.	5.83	4.	1.	1.	.05
+	2 COMBINED AT	МJ	397.	6.00	36.	10.	10.	.94
+	ROUTED TO		381.	6.00	36.	10.	10.	.94
+	HYDROGRAPH AT	M 10	54.	5.75	5.	2.	2.	.06
+	ROUTED TO	M10-K	53.	5.83	5.	2.	2.	.06
+	HYDROGRAPH AT	MllA	65.	5.92	9.	3.	3.	.11
+	2 COMBINED AT	МК	115.	5,83	14.	5.	4.	.16
+	ROUTED TO	MK-K1	111.	5.92	14.	5.	4.	.16
+	HYDROGRAPH AT	M11B	64.	5.83	7.	2.	2.	.09
+	ROUTED TO	11B-K1	58.	5.92	7.	2.	2.	.09
+	HYDROGRAPH AT	MllC	6 6.	5.83	7.	2.	2.	.09
+	3 COMBINED AT	MK1	230.	5.83	27.	9.	9.	.35
+	ROUTED TO	K1-ML	225.	5.92	27.	9.	9.	.35
+	HYDROGRAPH AT	M16	31.	5.83	3.	1.	1.	.04
+	2 COMBINED AT	ML	247.	5.92	30.	10.	10.	.39
+	ROUTED TO	112	240.	5.92	30.	10.	10.	.39
	HYDROGRAPH AT	M17	61.	5.83	6.	2.	2.	.08
+	2 COMBINED AT							
+	ROUTED TO	MM	282.	5.92	36.	13.	12.	.46
+	HYDROGRAPH AT		268.	6.00	36.	12.	12.	.46
+	ROUTED TO	M18	48.	5.83	5.	2.	2.	.06
+	HYDROGRAPH AT		45.	5.92	5.	2.	2.	.06
+	4 COMBINED AT	M20	85.	5.83	11.	4.	4.	.13
+	ROUTED TO	MN	747.	6.00	88.	28.	27.	1.60
+	HYDROGRAPH AT		724.	6.00	88.	28.	27.	1.60
+	ROUTED TO	M21	19.		2.	1.	1.	.02
+	HYDROGRAPH AT		19.			1.	1.	.02
+	3 COMBINED AT	M23	34.	5.83	3.	1.	1.	.05
	· -							

+		MO	747.	6.00	93.	30.	29.	1.67
+	ROUTED TO		724.	6.00	93.	30.	29.	1.67
+	HYDROGRAPH AT	M24	58.	5.83	6.	2.	2.	.08
+	2 COMBINED AT	MP	744.	6.00	99.	32.	31.	1.75
+	ROUTED TO		736.	6.00	99.	32.	31.	1.75
+	HYDROGRAPH AT	M25	8.	5.83	1.	0.	0.	.01
+	2 COMBINED AT	MQ	739.	6.00	100.	32.	31.	1.76
+	ROUTED TO		734.	6.0B	99.	32.	31.	1.76
+	HYDROGRAPH AT	M26	139.	5.92	18.	6.	6.	.18
+	2 COMBINED AT	MR	825.	6.08	117.	38.	37.	1.94
+	HYDROGRAPH AT	W44	28.	5.83	3.	1.	1.	.04
+	ROUTED TO		27.	5.92	3.	1.	1.	.04
+	HYDROGRAPH AT	W47	39.	5.83	4.	1.	1.	.05
+	ROUTED TO		36.	5.83	4.	1.	1.	.05
+	HYDROGRAPH AT	W 46	32.	5.83	3.	1.	1.	.04
+	HYDROGRAPH AT	M27	39.	5.83	4.	1.	1.	.05
	6 COMBINED AT	WX	2398.	6.17	442.	153.	147.	6.17
,	ROUTED TO	****	2323.	6.25	441.	152.	147.	6.17
+	HYDROGRAPH AT	MAD	108.	5.75	10.	3.	3.	.12
+	ROUTED TO	W48						
+	HYDROGRAPH AT		102.	5.83	10.	3.	3.	.12
+	3 COMBINED AT	W49	189.	5.83	21.	7.	7.	.27
+	ROUTED TO	WZ	2392.	6.17	471.	163.	157.	6.55
+	HYDROGRAPH AT		2383.	6.25	471.	163.	157.	6.55
+	2 COMBINED AT	W 50	83.		9.	3.	3,	.11
+	ROUTED TO	WAB	2399.	6.25	480.	166.		6.66
+	HYDROGRAPH AT		2396.	6.25	480.	166.	160.	6.66
+	2 COMBINED AT	W51	46.	5.83	5.	2.	2.	.05
+	ROUTED TO	WAC	2406.	6.25	484.	168.	161.	6.71
+			2402.	6.25	485.	168.	161.	6.71
+	HYDROGRAPH AT	W 52	48.	5.75	5.	2.	1.	.05
+	ROUTED TO		46.	5.83	5.	2.	1.	.05
+	HYDROGRAPH AT	W53	47.	5.83	5.	2.	2.	.05

+	2 COMBINED AT	WAD	92.	5.83	9.	3,	3.	.10		
+	ROUTED TO		92.	5.83	9.	3.	3,	.10		
+	HYDROGRAPH AT	W54	8.	5.75	1.	0.	0.	.01		•
+	3 COMBINED AT	WAE	2419.	6.25	494.	171.	165.	6.82		
+	ROUTED TO		2396.	6.25	493.	171.	164.	6.82		
+	HYDROGRAPH AT	W 56	116.	5.83	14.	5.	5.	.18		
+	2 COMBINED AT	WAF	2426.	6.25	506.	175.	169.	7.01		
+	ROUTED TO		2405.	6.25	506.	175.	169.	7.01		
+	HYDROGRAPH AT	W62	64.	5.75	6.	2.	2.	.08		
+	ROUTED TO		61.	5.83	6.	2.	2.	.08		,
+	HYDROGRAPH AT	W63	36.	5.75	4.	1.	1.	.05		
+	ROUTED TO		36.	5.83	4.	1.	1.	.05		
+	HYDROGRAPH AT	W61	105.	5.92	14.	5.	5.	.19		
+	3 COMBINED AT	HAW	190.	5.83	24.	8.	8.	.31		
+	ROUTED TO		183.	5.92	24.	8.	8.	.31		
+	HYDROGRAPH AT	W 57	54.	5.83	6.	2.	2.	.07		
+	ROUTED TO		51.	6.00	6.	2.	2.	.07		
+	HYDROGRAPH AT	W 58	126.	5.92	17.	6.	6.	.23		
+	3 COMBINED AT	WAI	345.	5.92	46.	16.	15.	. 62		
+	ROUTED TO		341.	5.92	47.	16.	15.	.62		
+	HYDROGRAPH AT	ElA	65.	5.92	9.	3.	3.	.12		•
+	ROUTED TO	E1A-EA	64.	6.00	9,	3.	3.	.12		
	HYDROGRAPH AT	E1B	94.	5,92	13.	4.	4.	.17		
+	2 COMBINED AT	EA	147.	5.92	21.		7.	.28		
	ROUTED TO		145.	6.00	21.			.28		
+	HYDROGRAPH AT	EA-EB								
+	2 COMBINED AT	E2	75.	5.83	8.	3.	3.	.10		
+	ROUTED TO	EB	187.	5.92	29.	10.	10.	.39		
+		POND1	101.	6.25	23.	9.	8.	.39	954.20	6.25
+	ROUTED TO		95.	6.25	23.	9.	8.	.39		
+	HYDROGRAPH AT	E 3	67.	5.83	7.	2.	2.	.09		
•	HYDROGRAPH AT	MH-P2	85.	5.92	43.	18.	18.	.00		
	3 COMBINED AT									

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 38 of 41 7/23/2008

+		EC	187.	6.25	72.	29.	28.	.48		
+	ROUTED TO	POND2	95.	7.17	55.	24.	23.	.48	930.04	7.17
+	ROUTED TO		94.	7.25	55.	24.	23.	.48		
+	HYDROGRAPH AT	ElC	52.	5.83	6.	2.	2.	.08		
+	ROUTED TO	1C-ED1	50.	6.00	6.	2.	2.	.08		
+	HYDROGRAPH AT	E4	78.	5.83	10.	3.	3.	.13		
+	2 COMBINED AT	ED1	123.	5.92	16.	5.	5.	.21		
+	ROUTED TO	ED1-ED	121.	5.92	16.	6.	5.	.21		
+	HYDROGRAPH AT	£ 5	66.	5.83	7.	2.	2.	.09		
+	3 COMBINED AT	€D	174.	5.92	72.	32.	31.	.78		
+	ROUTED TO		172.	5.92	72.	32.	31.	.78		
+	HYDROGRAPH AT	E8	33.	5.83	3.	1.	1.	.04		
+	2 COMBINED AT	ΕE	196.	5.92	75.	33.	32,	.83		
+	ROUTED TO		192.	5.92	75.	33.	32.	.83		
+	HYDROGRAPH AT	E10	21.	5.83	2.	1.	1.	.03		
+	2 COMBINED AT	EF	208.	5.92	77.	34.	33.	.85		
+	ROUTED TO	F-G	199.	5.92	77.	34.	33.	.85		
+	HYDROGRAPH AT	E 6	68.	5.92	9.	3.	3.	.12		
+	HYDROGRAPH AT	£7	28.	5.75	2.	1.	1.	.03		
+	ROUTED TO		25.	5.83	2.	1.	1.	.03		
+	2 COMBINED AT	EG1	89.	5.83	11.	4.	4.	.15		
+	ROUTED TO	G1-G	87.	5.92	11.	4.	4.	.15		
+	HYDROGRAPH AT	E9	46.	5.83	6.	2.	2.	.08		
+	ROUTED TO		46.	5.92	6.	2.	2.	.08		
+	HYDROGRAPH AT	£11	28.	5.83	3.	1.	1.	.05		
+	HYDROGRAPH AT	E12	66.	5,83	7.	2.	2.	.09		
+	5 COMBINED AT	EG	409.	5.92	103.	43.	42.	1.22		
+	HYDROGRAPH AT	E13	9.	5.92	1.	0.	0.	.02		
+	HYDROGRAPH AT	E14	4.	5.83	0.	0.	0.	.01		
+	ROUTED TO		4.	5.83	0.	0.	0.	.01		
+	3 COMBINED AT	EH	421.	5.92	105.	44.	42.	1.24		
+	ROUTED TO		398.	5.92	105.	44.	42.	1.24		

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 39 of 41 7/23/2008

+	HYDROGRAPH AT	E19	35.	5.83	4.	1.	1.	.04
+	2 COMBINED AT	EJ1	421.	5.92	108.	45.	43.	1.28
+	ROUTED TO	J1-K	411.	6.00	107.	45.	43.	1.28
+	HYDROGRAPH AT	E15	36.	5.75	3.	1.	1.	.04
+	ROUTED TO		33.	5.83	3.	1.	1.	.04
+	HYDROGRAPH AT	E16	31.	5.75	3.	1.	1.	.03
+	2 COMBINED AT	EI	63.	5.75	6.	2.	2.	.07
+	ROUTED TO		61.	5,83	6.	2.	2.	.07
+	HYDROGRAPH AT	E1 7	32.	5.75	3.	1.	1.	.03
+	ROUTED TO		31.	5.83	3.	1.	1.	.03
+	HYDROGRAPH AT	E18	40.	5.83	4.	2.	1.	.05
+	3 COMBINED AT	EJ2	132.	5.83	13.	4.	4.	.15
+	ROUTED TO		119.	6.00	13.	4.	4.	.15
+	HYDROGRAPH AT	E23	108.	5.92	14.	5.	5.	.17
+	HYDROGRAPH AT	E24	74.	6.00	13.	4.	4.	.14
+	4 COMBINED AT	EK	698.	6.00	147.	59.	56.	1.74
+	ROUTED TO		671.	6.08	146.	58.	56.	1.74
+	HYDROGRAPH AT	E21	57.	5.83	7.	2.	2.	.09
+	ROUTED TO		55.	5.92	7.	2.	2.	.09
+	HYDROGRAPH AT	E20	51.	5.92	7.	2.	2.	.08
+	ROUTED TO		51.	5.92	7.	2.	2.	.08
+	HYDROGRAPH AT	E22	41.	5.92	5.	2,	2.	.07
+	3 COMBINED AT	EL	147.	5.92	19.	6.	6.	.23
+	ROUTED TO		140.	6.00	19.	6.	6.	.23
+	HYDROGRAPH AT	E 25	121.	5.83	13.	5.	4.	.17
+	3 COMBINED AT	EM	845.	6.00	177.	69.	67.	2.13
+	ROUTED TO		834.	6.08	177.	69.	67.	2.13
+	HYDROGRAPH AT	E26	37.	5.75	3.	1.	1.	.04
+	2 COMBINED AT	EN	840.	6.08	180.	70.	68.	2.17
+	ROUTED TO		826.	6.08	179.	70.	68.	2.17
+	HYDROGRAPH AT	E27	104.	5.83	11.	4.	4.	.12
	2 COMBINED AT							

+		EO	863.	6.08	189.	74.	71.	2.29
+	ROUTED TO		835.	6.08	189.	74.	71.	2.29
+	HYDROGRAPH AT	W 55	38.	5.75	3.	1.	1.	.05
+	2 COMBINED AT	WAG	841.	6.08	192.	75.	72.	2.34
+	ROUTED TO		833.	6.17	192.	75.	72.	2.34
+	HYDROGRAPH AT	W 59	43.	5.83	5.	2.	2.	.07
+	4 COMBINED AT	WAJ	3321.	6.25	749.	268.	259.	10.03
+	ROUTED TO		3310.	6.25	749.	268.	259.	10.03
+	HYDROGRAPH AT	E28	44.	5.92	6.	2.	2.	.07
+	ROUTED TO		44.	6.00	6.	2.	2.	.07
+	HYDROGRAPH AT	E29	35.	5.83	4.	1.	1.	.05
+	2 COMBINED AT	EZZ	69.	5.92	9.	3.	3.	.12
+	HYDROGRAPH AT	W 60	47.	5.83	5.	2.	2.	.07
+	3 COMBINED AT	22	3350.	6.25	763.	274.	263.	10.22

*** NORMAL END OF HEC-1 ***

Appendix B: Proposed HEC-1 Calculations

* FLOOD HYDROGRAPH PACKAGE (HEC-1)
* JUN 1998
* VERSION 4.1
* RUN DATE 20MAY08 TIME 08:48:57

1

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

........

PAGE 1

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1	ID				IMINARY D					EL F100	MLQ		
2	ID				AT WU (E								
3	ID				and 100								
4	ID		Basins	W40 & W4	2 revised	due to	Meridian	Crossin	ng develo	pment			
	*DIA	GRAM											
5	IT	5 2	5MAY05	800	300								
6	10	5											
7	JR	PREC	1	1.2381	2.0952								
8	KK	W1											
9	KM												
10	BA	.0479											
11	PB	2.1											
12	IN	15											
13	PC	.0005	.0015	.0030	.0045	.0060	.0080	.0100	.0120	.0143	.0165		
14	PC	.0188	.0210	.0233	.0255	.0278	.0320	.0390	.0460	.0530	.0600		
15	PC	.0750	.1000	.4000	.7000	.7250	.7500	.7650	.7800	.7900	.8000		
		.8100	.8200	.8250	.8300	.8350	.8400	.8450	.8500	.8550	.8600		
16	PC						.8825		.8900	.8938	.8975		
17	PC	.3638	.8675	.8713	.8750	.8788		.8863					
18	PC	.9013	.9050	.9083	.9115	.9148	.9180	.9210	.9240	.9270	.9300		
19	PC	.9325	.9350	.9375	.9400	.9425	.9450	.9475	.9500	.9525	.9550		
20	PC	.9575	.9600	.9625	.9650	.9675	.9700	.9725	.9750	.9775	.9800		
21	PC	.9813	.9825	.9838	.9850	.9863	.9875	.9888	.9900	.9913	.9925		
22	PC	.9938	.9950	.9963	.9975	.9988	1.000						
23	LS		60										
24	UD	.097											
25	KK												
26	KM												
27	RK	1519	.0263	.035		TRAP	5	4					
28	KK	W2											
29	KM												
30	BA	.0278											
31	LS		60										
32	UD	.160											
33	KK	WA											
34	KM												
35	HC	2										-	
36	· KK												
37	KM												
38	RK	464	.0151	.035		TRAP	5	4					
39	KK	W 3											
40	KM												
41	BA	.0498											
42	LS		61										
43	UD	.139											
	35				HEC-1	INPUT						PAGE	
LINE	ID.	1.	2	3	4.	5.	6.	7.	8	9.	10		
44	KK	WB											
45	K/M												

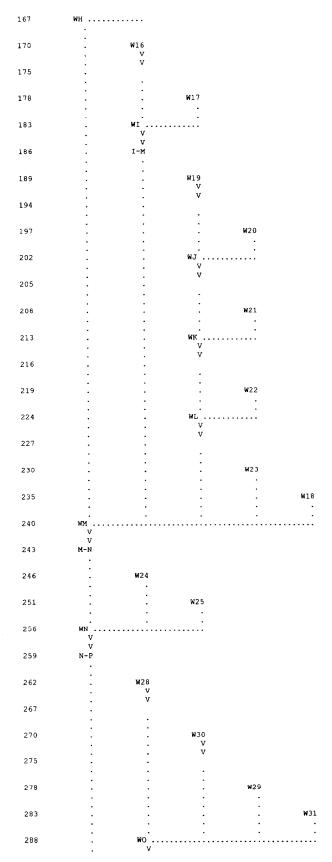
46	HC	2							
47	KK								
48	KM	000	0070	025	mn a n			E.A.	
49	RK	823	.0279	.035	TRAP	5	4	54	
50 51	KK KM	W4							
52	BA	.0054							
53 54	LS UD	.044	62						•
		.044							
55 56	KK KM								
57	RK	1078	.0482	.035	TRAP	5	4		
58	кк	W 5							
59	KM								
60 61	BA LS	.0159	60						
62	UD	.075							
63	KK	WC							
64	KM								
65	HC	3							
66	KK								
67 68	KM RK	557	.0449	.035	TRAP	10	4		
69	KK	W6							
70	KM	WO							
71 72	BA LS	.0486	60						
73	UD	.085	00			•			
74	KK								
75	KM					_			
76	RK	592	.0372	.035	TRAP	5	4		
77	KK	W 7							
78 79	KM BA	.0217							
80 81	LS UD	.074	60						
		.074							
82	KK								
0.3	EOM.								
83 84	KM RK	464	.1466	.035	TRAP	5	4		
		464	.1466	.035	TRAP HEC-1 INPUT	5	4	97	AGE 3
	RK				HEC-1 INPUT			P#	AGE 3
84	RK	1.			HEC-1 INPUT				AGE 3
84 LINE 85	RK ID. KK				HEC-1 INPUT				AGE 3
84	RK	1.			HEC-1 INPUT				AGE 3
84 LINE 85 86	RK ID. KK KM	l.			HEC-1 INPUT				AGE 3
84 LINE 85 86 87 88 89	RK ID. KK KM HC KK KM	1. WD 2 D-E	2	3	HEC-1 INPUT45	6	7		AGE 3
84 LINE 85 86 87 88 89	RK ID. KK KM HC KK KM KK KM	WD 2 D-E 1044			HEC-1 INPUT				AGE 3
84 LINE 85 86 87 88 89 90	RK ID. KK KM HC KK KM RK	1. WD 2 D-E	2	3	HEC-1 INPUT45	6	7		AGE 3
84 LINE 85 86 87 88 89 90	RK ID. KK KM HC KK KM RK KK KM BA	WD 2 D-E 1044	.0479	3	HEC-1 INPUT45	6	7		AGE 3
84 LINE 85 86 87 88 89 90 91 92 93	RK ID. KK KM HC KK KM RK KM LS	1. WD 2 D-E 1044 W8 .0286	2	3	HEC-1 INPUT45	6	7		AGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95	RK KK KM HC KK KM RK KK KM BA LS UD	1. WD 2 D-E 1044 W8	.0479	3	HEC-1 INPUT45	6	7		AGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95	RK ID. KK KM HC KK KM RK KM LS	1. WD 2 D-E 1044 W8 .0286	.0479	3	HEC-1 INPUT45 TRAP	5	4		AGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95	RK ID. KK KM HC KK KM RK LS UD KK	1. WD 2 D-E 1044 W8 .0286	.0479	3	HEC-1 INPUT45	6	7		AGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98	KK KM HC KK KM RK LS UD KK KM RK KM KK KM KK KM KK KM KK KM KK KM KK	1. WD 2 D-E 1044 W8 .0286	.0479	.035	HEC-1 INPUT45 TRAP	5	4		AGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98	RK KK KM HC KK KM RK KK KM BA LS UD KK KM RK	1. WD 2 D-E 1044 W8 .0286 .069	.0479	.035	HEC-1 INPUT45 TRAP	5	4		AGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98	RK KM HC KK KM RK KM BA LS UD KK KM RK KM RK	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402	.0479	.035	HEC-1 INPUT45 TRAP	5	4		
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98	KK KM HC KK KM RK KM BA LS UD KK KM RK	1. WD 2 D-E 1044 W8 .0286 .069	.0479	.035	HEC-1 INPUT45 TRAP	5	4		
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	KK KM HC KK KM RK KM BA LS UD KK KM	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402	.0479	.035	HEC-1 INPUT45 TRAP	5	4		
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98	KK KM HC KK KM RK KM BA LS UD KK KM RK KM RK	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402	.0479	.035	HEC-1 INPUT45 TRAP	5	4		
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	RK KK KM HC KK KM BA LS UD KK KM RK UD KK KM BA LS UD	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE	.0479	.035	HEC-1 INPUT45 TRAP	5	4		
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	KK KM HC KK KM HC KK KM BA LS UD KK KM RK KM RK KM KK KM RK KM KK KM	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F	.0479 60 .0504	.035	HEC-1 INPUT45 TRAP TRAP	5	4		
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	KK KM HC KK KM BA LS UD KK KM BA LS UD KK KM KM KK KM KM KK KK	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE	.0479	.035	HEC-1 INPUT45 TRAP	5	4		
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	KK KM HC KK KM RK KM BA LS UD KK KM RK KM RK KM RK KM RK KM RK KM	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F	.0479 60 .0504	.035	HEC-1 INPUT45 TRAP TRAP	5	4		
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	KK KM HC KK KM RK KM BA LS UD KK KM RK	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F 789	.0479 60 .0504 61	.035	HEC-1 INPUT45 TRAP TRAP	5	4		
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	KK KM HC KK KM RK KM BA LS UD KK KM	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F 789 W10	.0479 60 .0504	.035	HEC-1 INPUT45 TRAP TRAP	5	4		
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	KK KM HC KK KM HC KK KM RK KM	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F 789 W10	.0479 60 .0504 61	.035	HEC-1 INPUT45 TRAP TRAP	5	4		
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	KK KM HC KK KM RK KM BA LS UD KK KM	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F 789 W10	.0479 60 .0504 61	.035	HEC-1 INPUT45 TRAP TRAP	5	4		

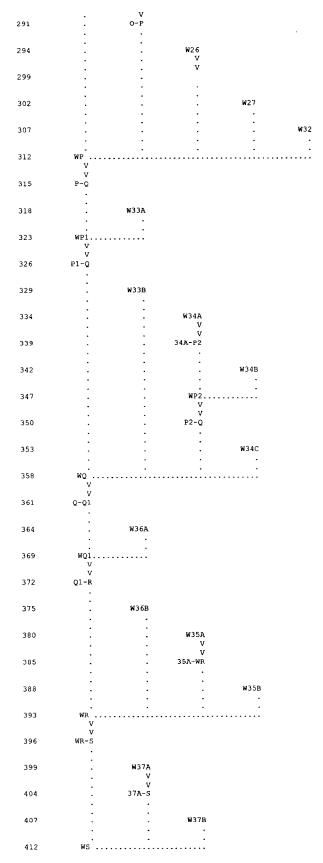
1

	118	KK	W11										
	119 120	KM BA	.0314										
	121	LS		60									,
	122	UD	.077										
	123	KK	WF										
	124 125	KM HC	4										
1						HEC-1 IN	1PUT						PAGE 4
	LINE	ID	1.	2	3	4	5	6	7	8	9	10	
	126 127	KK KM	F-G										
	128	RK	2319	.0211	.035		TRAP	10	4				
	129	KK	W12										
	130	KM											
	131 132	BA LS	.0398	60									
	133	UD	.095										
	134	KK											
	135 136	KM RK	2478	.0307	.035		TRAP	5	4				
	137	KK	W14										
	138	KM											
	139 140	BA LS	.0473	61									
	141	UD	.135			_							
	142	KK											
	143 144	KM RK	81	0.0001	.035		TRAP	5	4				•
	145 146	KK KM	W13										
	147 148	BA LS	.1123	61									
	149	UD	.182										
	150	KK	WG										
	151 152	KM HC	4										
	153	KK	G-H										
	154	KM											
	155	RK	2632	.0217	.035		TRAP	15	4				
	156 157	KK KM											
	158	RK	2447	.0372	.035		TRAP	5	4				
	159	KK	W15										
	160 161	KM BA	.0881										
	162	LS		61									
	163	UD	.141										
	164 165	KK KM											
	166	RK	1763	.0289	.035		TRAP	5	4				
1						HEC-1 I							PAGE 5
	LINE	ID	1.	2	3	4	5	6	7	8	9	.10	•
	167	кк	WH										
	168	KM											
	169	HC	2										
	170 171	KK KM	W16										
	172	BA	.0292										
	173 174	LS UD	.092	61									
	175	ĸĸ											
	176	KM	1345	02.00	025		mp x to	e	A				
	177	RK	1345	.0260	.035		TRAP	5	4				
	178 179	KK KM	W17										
	180 181	BA LS	.0184	60									
	182	UD	.085	00									
	183	KK	WI										
	184 185	KM HC	2										

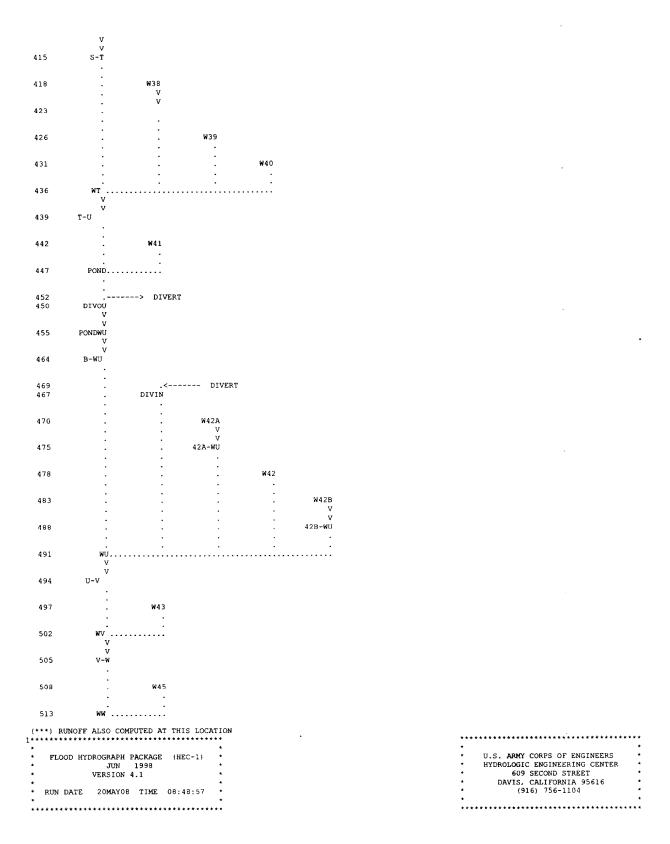
186	KK	I-M							•
187	KM								
188	RK	2650	.0370	.035	TR	AP 15	4		
189	KK	W19							
190	KM BA	.0428							
191	LS	.0420	61						
192	UD	.083	01						
193	OD	.003							
194	KK								
195	KM								
196	RK	881	.0329	.035	TR.	AP 5	4		
150	***	001	.0323	.033	110		•		
197	KK	W20							
198	KM								
199	BA	.0315							,
200	LS		61						
201	UD	.071							
202	KK	WJ							
203	KM								
204	HC	2							
205	KK								
206	KM	2061	0025	025					
207	RK	3061	.0235	.035	TR		4		DACE 6
					HEC-1 INPU	r			PAGE 6
1 THE	TD	,	2	3	4			8910	
LINE	10				4				
208	KK	W21							
209	KM	1121							
210	BA	.1347							
211	LS		60						
212	UD	.156							
213	KK	WK							
214	KM								
215	HC	2							
216	KK								
217	KM								
218	RK	487	.0246	.035	TR	AP 5	4		
219	KK	W22							
220	KM								
221	BA	.0086							
222	LS		63						
223	UD	.055							
204	1414	5.27							
224	KK	WL							
225	KM	2							
226	HC	2							
227	KK								
228	KM								
229	RK	1786	.0297	.035	TE	AP 5	5 4		
22					••		•		
230	KK	W23							
231	KM								
232	BA	.0244							
233	LS		60						_
234	UD	.112							-
235	KK	W18							
236	KM	105.							
237	BA	.1251							
238 239	LS UD	.189	60						
239	Uυ	.109							
240	KK	WM							
241	KM	****							
242	HC	5							
243	KK	M-N							
244	KM								
245	RK	1345	.0149	.035	TI	RAP 20	0 4		
246	KK	W24							
247	KM	0.4.6							
248	BA	.0442							
249	LS	140	60						
250	UD	.140			HEC-1 INP	iT.			PAGE 7
					UPC-1 IND	,,			t AGE /
LINE	TD	1	2	3	A	5	6 7	8910	
TIME	ID.						~ /		
251	KK	W25							
252	KM								
253	BA	.0957							
254	LS		61						
255	UD	.197							

1


256 257 258	KK KM HC	WN 3									
259 260 261	KK KM RK	N-P 1589	.017	.035	TRAP	20	4				
262 263 264 265 266	KK KM BA LS UD	W28 .0397 .128	63								
267 268 269	KK KM RK	1345	.0208	.035	TRAP	5	4				
270 271 272 273 274	KK KM BA LS UD	W30 .0509 .123	63								
275 276 277	KK KM RK	1078	.0074	.035	TRAP	5	4			,	
278 279 280 281 282	KK KM BA LS UD	W29 .0409 .145	63								
283 284 285 286 287	KK KM BA LS UD	w31 .0123 .073	63								
288 289 290	KK KM HC	₩O 4			WEG 1 INDUM					PAGE	a
LINE	ID	1	2		HEC-1 INPUT	6	7	89	10	FAGE	•
291 292 293	KK KM RK	O-P 2169	.0226	.035	TRAP	5	4				
294 295 296 297 298	KK KM BA LS UD	W26 .0301 .062	63								
299 300 301	KK KM RK	4662	.0225	.035	TRAP	5	4				
302 303 304 305 306	KK K M BA LS UD	W27 .1633 .253	60								
307 308 309 310 311	KK KM BA LS UD	W32 .0890 .170	60								
312 313 314	KK KM HC	W P 5								•	
315 316 317	KK KM RK	P-Q 1925	.0182	.035	TRAP	25	4				
318 319 320 321 322	KK KM BA LS UD	w33A .1261 .186	60								
323 324 325	KK KM HC	WP1 2									
326	KK	P1-Q									


328	RK	3000	.020	.035	TR	LAP	25	4			
329	KK	W33B									
330	KM										
331 332	BA LS	.1360	60								
333	UD	.225	•								
					HEC-1 INPU	JT					PAGE 9
LINE	10	1	2	3	4	. 5	6	7	. 8 9	10	
LINE	10										
334 335	KK KM	W34A									
336	BA	.1418									
337	LS		60								
338	UD	.173									
339	KK	34A-P2									
340	KM	2550	0176	025	mr		2.5	4			
341	RK	2550	.0176	.035	11	RAP	25	4			
342	KK	W34B									
343	KM.	.1766									
344 345	BA LS	.1700	60								
346	UD	.224									
347	KK	WP2									
348	KM										
349	HC	2									
350	ĸĸ	P2-Q									
351	км										
352	RK	2640	.021	.035	Ti	RAP	25	4			
353	KK	W34C									
354	KM										
355	BA	.1625	60								-
356 357	LS UD	.244	00								
358 359	KK KM	WQ									
360	HC	4									
261	VV	0.01									
361 362	KK KM	Q-Q1									
363	RK	2940	.022	.035	T	RAP	25	4			
364	KK	W36A									
365	KM	WJUA									
366	BA	.1429									
367 368	LS UD	.234	60								*
369 370	KK KM	WQl									
371	HC	2									
372 373	KK KM	Q1-R									
374	RK	3400	.022	.035		'RAP	25	4			
					HEC-1 INP	TUT					PAGE 10
LINE	ID.	1 .		3	4	5	6	7	8	10	
375	KK	W36B									
376	KM										
377	BA	.1918	60								•
378 379	LS UD	.306	60								
380 381	KK KM	W35A									
382	BA	.0958									
383	LS	107	60								
384	ΔD	.187									
385	KK	35A-WR									
386 387	KM RK	3715	.023	.035	1	rap	25	4			
					•						
388	KK KM	W35B									
389 390	KM BA	.1507									
391	LS	0	60								
392	UD	.259									
393	KK	WR									
394	KM	4									
395	HC	4									
396	KK	WR-S									

```
KM
RK
                                                                                        25
                                      2922
                                               .0168
                                                         .035
                                                                            TRAP
              398
              399
                               KK
                                      W37A
                               KM
BA
              400
                                     .1138
              401
              402
                                      .185
                               UD
              403
                               KK
              404
                                     37A-S
                                      1430
                                                .014
                                                         .035
                                                                             TRAP
                                                                                        25
              406
                               RK
                               KK
              407
                                      W37B
                               KM
              408
                               BA
                                     .1636
              409
              410
                                      .218
              411
                               UD
                               KK
              412
                                       WS
                               KM
              413
              414
                               HC
                                          3
                                                                                                                                      PAGE 11
1
                                                                   HEC-1 INPUT
                               ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
             LINE
              415
                               KK
                                       5-T
              416
                               KМ
               417
                               RK
                                      3653
                                               .0164
                                                          .035
                                                                                        25
               418
                                       W38
               419
                               KM
                               BA
                                      .0907
                                                   62
               421
                               UD
                                       .190
               423
                               KK
                               КМ
               424
               425
                               RK
               426
                                кĸ
                                       W39
               427
                                KM
               428
                               BA
                                      .1833
               429
                                LS
                                                   76
                               UD
                                       .251
               430
               431
                               KK
KM
                                        W40
               432
               433
                                BA
                                      .0706
                               LS
UD
               434
                                                   92
               435
               436
                                ΚK
               437
438
               439
                                KK
                                    T-U
               440
441
                                KM
RK
                                       1125
               442
                                KK
                                        W41
               443
444
                                KM
BA
                                      .0601
               445
                                LS
UD
                                                   83
                                       .117
               446
               447
                                KK
                                       POND
                                KM
HC
               449
               450
                                KK
                                      DIVOUT
                                KM
DT
DI
                                      DIVERT 35.8 CFS (2-YR HISTORIC FLOW) FROM DETENTION POND DIVERT 0 35.8
               451
                                     DIVERT
               452
                                                 35.8
                                                35.8
               454
                                DQ
                                                                    HEC-1 INPUT
                                                                                                                                       PAGE 12
              LINE
                                ID. \dots 1. \dots 2. \dots 3. \dots 4. \dots 5. \dots 6. \dots 7. \dots 8. \dots 9. \dots 10
                                KK PONDWU
               455
                                            REGIONAL DETENTION POND Q5=94, Q100=1214
0 0.006 .09 .40 1.19 3.31
6 25.61 30.61 35.77 40.99
5 17 18 19 20 21
                                KM
SV
SV
SE
               456
457
                                         0.0
                                                                                                 7.12
                                                                                                        11.50
               458
459
                                      20.76
                                                   26
0
                                                                            29
67.77
                460
                                         25
                                                             27
                                                                      28
                                                         27.40
                                                                   46.66
                                                                                      81.84 249.51 544.89 923.33
               461
                                so
                                           0
                                SQ
RS
                                     1090.5 1212.93 1323.91 1426.18 1521.53
1 ELEV 16.5
                462
               463
                                 ĸĸ
                                      B-WU
               464
               465
466
                                KM
RK
                                       2215
                                               .0181
                                                           .035
                                                                              TRAP
                                                                                          25
```


```
DIVIN
RETRIEVE 35.8 CFS DIVERTED IN CHANNEL
                              KK
KM
DR
             467
468
             469
             470
471
472
                              KK
KM
BA
LS
UD
                                    .0127
             473
474
                                                 92
                                     .180
             475
                              ĸĸ
                                  42A-WU
             476
477
                              KM
RK
                                     1970
                                            .0090
                                                     .013
                                                                       TRAP
              478
                              кĸ
                                      W42
                              KM
BA
LS
UD
             479
480
                                    .0519
                                                 92
              482
                                     .127
                              KK
              483
                                     W42B
              484
                              BA
                                    .0195
              485
                              LS
UD
              486
                                     .180
              487
              488
                              KK
KM
                                   42B-WU
              489
                              RK
                                     2770
                                            .0100
                                                       .013
                                                                          TRAP
              490
              491
                              KK
                                       WU
                              KM
              492
              493
                              НC
                              KK
                                    U-V
              494
              495
                              KM
                                     2200
                                              .0145
                                                        .035
                                                                           TRAP
                                                                                      25
                                                                 HEC-1 INPUT
                                                                                                                                   PAGE 13
1
                               ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
             LINE
                               KK
KM
              497
                                      W43
              498
499
                               BA
LS
UD
                                     .1457
              500
                                      .169
                               KK
KM
              502
                                       wv
              503
                                         2
              505
                               KK
                                       V-W
              506
                               KM
               507
                               RK
                                       487
                                                                                       25
               508
                               KK
                                       W45
                               KM
BA
LS
UD
              509
510
                                     .1931
                                                  61
              511
               512
                                      .189
               513
                               KM
HC
ZZ
              514
515
                    SCHEMATIC DIAGRAM OF STREAM NETWORK
  INPUT
               (V) ROUTING
                                       (--->) DIVERSION OR PUMP FLOW
   LINE
                                       (<---) RETURN OF DIVERTED OR PUMPED FLOW
    NO.
               (.) CONNECTOR
     25
      28
                                 ₩2
      33
      36
      39
      44
                  WB
      47
```

50	:	W4		
55	-	v v		
55	·			
58	•	•	W 5	
63	: WC		:	
03	Λ			
66				
69		W 6		
		v		
74	•			
77	•	•	พ7 V	
82	:	•	v	
02	:	:	:	
85	:	WD		
88		D-E V		
		•		
91	•	•	w8	
96		•	V	
99	•	•	-	W 9
	•		•	
104		WE		• • • • • • •
107	•	V E-F		
110	•		W10	
110	:	•	¥10 V	
115				
118		•		W11
	•	•		•
123	WF			•••••
126	F-G			
129	:	W12		
	•	W12 V V		
134	•	•		
137			W14	
142	•	:	v v	
142	•			
145				W13
150	wg			
150	A A A			
153	G-H V V			
156				
159		W15		
***	:	v v		
164				
	•	•		

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc
Page 11 of 19
7/23/2008

** 2 Year, 5 Year and 100 Year Storm Events (24hr Storm) **Basins W40 & W42 revised due to Meridian Crossing development

6 10 OUTPUT CONTROL VARIABLES 5 PRINT CONTROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE IPRNT IPLOT OSCAL

HYDROGRAPH TIME DATA IT

DATA
5 MINUTES IN COMPUTATION INTERVAL
25MAY 5 STARTING DATE
0800 STARTING TIME
300 NUMBER OF HYDROGRAPH ORDINATES
26MAY 5 ENDING DATE
0855 ENDING TIME
19 CENTURY MARK NMIN IDATE ITIME NQ NDDATE

NDTIME

COMPUTATION INTERVAL TOTAL TIME BASE 24.92 HOURS

ENGLISH UNITS
DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH LENGTH, ELEVATION INCHES FEET CUBIC FEET PER SECOND ACRE-FEET FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE ACRES
DEGREES FAHRENHEIT

MULTI-PLAN OPTION JΡ NPLAN

1

1 NUMBER OF PLANS

MULTI-RATIO OPTION JR

RATIOS OF PRECIPITATION 1.00 1.24 2.10

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RATIO 1	TIOS APPL RATIO 2 1.24		IPITATION
HYDROGRAPH AT	W1	.05	1	FLOW TIME	1. 5.83	5. 5.83		
ROUTED TO		.05	1	FLOW TIME	0. 6.00	4. 5.92	37. 5.83	
HYDROGRAPH AT +	W2	.03	1	FLOW TIME	0. 5.92	2. 5.83	20. 5.83	
2 COMBINED AT	WA	.08	1	FLOW TIME	1. 6.00	6. 5.92	57. 5.83	
ROUTED TO		.08	1	FLOW TIME	1. 6.08	6. 5.92		
HYDROGRAPH AT +	WЗ	.05	. 1	FLOW TIME	1. 5.83	5. 5.83		
2 COMBINED AT +	WB	.13	1	FLOW TIME	1. 6.08			
ROUTED TO +		.13	1	FLOW TIME	1. 6.17	10. 5.92		
HYDROGRAPH AT	W4	.01	1	FLOW TIME	0. 5.75	1. 5.75	6. 5.75	
ROUTED TO		.01	1	FLOW TIME	0. 5.92	1. 5.83	6. 5.75	

HYDROGRAPH AT +	w 5	.02	1	FLOW TIME	0. 5.83	2. 5.75	15. 5.75
3 COMBINED AT	WC	.15	1	FLOW TIME	1. 6.17	11. 5.92	105. 5.83
ROUTED TO		.15	1	FLOW TIME	1. 6.25	11. 5.92	103. 5.83
HYDROGRAPH AT	W 6	.05	1	FLOW TIME	1. 5.83	5. 5.83	43. 5.75
ROUTED TO		.05	1	FLOW TIME	0. 5.92	5. 5.83	40. 5.75
HYDROGRAPH AT	w 7	.02	1	FLOW TIME	0. 5.83	2. 5.75	20. 5.75
ROUTED TO		.02	1	FLOW TIME	0. 5.83	2. 5.83	20. 5.75
2 COMBINED AT	WD	.07	1	FLOW TIME	1.	7. 5.83	60. 5.75
ROUTED TO	D-E	.07	1	FLOW	1.	6.	55.
HYDROGRAPH AT	ws	.03	1	TIME FLOW	5.92	5.83	27.
ROUTED TO		.03	1	TIME FLOW	5.83	5.75 3.	5.75
HYDROGRAPH AT	W 9	.04	1	TIME FLOW	5.92	5.83	5.75 36.
3 COMBINED AT	WE	.14	1	TIME FLOW	5.83	5.83	5.75
ROUTED TO				TIME	5.92	5.83	5.75
+	E-F	.14	1	FLOW TIME	1. 6.08	13. 5.92	108. 5.83
HYDROGRAPH AT +	W 10	.04	1	flow TIME	1. 5.83	5. 5.83	39. 5.75
ROUTED TO +		.04	1	FLOW TIME	1. 5.92	5. 5.83	36. 5.75
HYDROGRAPH AT +	W11	.03	1	FLOW TIME	0. 5.83	3. 5.75	29. 5.75
4 COMBINED AT	ME	.36	1	FLOW TIME	3. 6.08	29. 5.92	265. 5.83
ROUTED TO	F-G	.36	1	FLOW TIME	3. 6.25	28. 6.00	255. 5.83
HYDROGRAPH AT	W12	.04	1	FLOW TIME	0. 5.83	4. 5.83	33. 5.75
ROUTED TO		.04	1	FLOW TIME	0. 6.17	4. 5.92	
HYDROGRAPH AT	W14	.05	1	FLOW TIME	1. 5.83		38. 5.83
ROUTED TO		.05	1	FLOW TIME		5. 5. 5.92	
HYDROGRAPH AT	W13	.11	1	FLOW	2.	10.	80.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 14 of 19 7/23/2008

HYDROGRAPH AT +	W33B	.14	1	FLOW TIME	1. 6.33	9. 5.92	78. 5.92
HYDROGRAPH AT +	W34A	.14	1	FLOW TIME	1. 6.33	10. 5.92	96. 5.83
ROUTED TO +	34A-P2	.14	1	FLOW TIME	1. 6.33	10. 6.08	93. 5.92
HYDROGRAPH AT +	W34B	.18	1	FLOW TIME	1. 6.33	11. 5.92	101. 5.92
2 COMBINED AT + ROUTED TO	WP2	.32	1	FLOW TIME	2. 6.33	20. 6.00	195. 5.92
+ HYDROGRAPH AT	P2-Q	.32	1	FLOW TIME	2. 6.75	19. 6.17	186. 6.00
4 COMBINED AT	W34C	.16	1	FLOW TIME	1. 6.33	10. 6.00	90. 5.92
+ ROUTED TO	MÕ	2.37	1	FLOW TIME	19. 6.92	115. 6.25	1336. 6.00
+ HYDROGRAPH AT	Q-Q1 ·	2.37	1	FLOW TIME	19. 7.08	114. 6.33	6.00
2 COMBINED AT	W36A	.14	1	FLOW TIME	1. 6.33	9. 5.92	
+ ROUTED TO	WQ1	2.51	1	FLOW TIME	7.08	118.	6.00
HYDROGRAPH AT	Q1-R W36B	2.51	1	FLOW TIME FLOW	20. 7.25	117. 6.42	6.08
HYDROGRAPH AT	W35A	.10	1	TIME	6.42		6.00
ROUTED TO	35A- W R	.10	1	TIME FLOW	6.33 1.	5.92 6.	5.83 58.
HYDROGRAPH AT	W35B	.15	1	TIME FLOW	6.92	9.	81.
4 COMBINED AT	WR	2.95	1	TIME FLOW TIME	22. 7.17	6.00 132. 6.42	5.92 1506. 6.08
ROUTED TO	WR-S	2.95	1	FLOW TIME		131. 6.50	
HYDROGRAPH AT	W37A	.11	1	FLOW TIME	1. 6.33	8. 5.92	74. 5.83
ROUTED TO	37A-S	.11	1	FLOW TIME	1. 6.58	8. 6.00	71. 5.92
HYDROGRAPH AT	W37B	.16	1	FLOW TIME	145. 5.83	201. 5.83	410. 5.83
3 COMBINED AT	WS	3.23	1	FLOW TIME	145. 5.83	201. 5.83	1705. 6.08
ROUTED TO +	S-T	3.23	1	FLOW TIME	140. 5.92	197. 5.92	1632. 6.17
HYDROGRAPH AT +	W38	.09	1	FLOW TIME	2. 5.92	10. 5.92	67. 5.83

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 17 of 19 7/23/2008

ROUTED TO		.09	1	FLOW TIME	2. 6.25	9. 6.08	66. 5.92
HYDROGRAPH AT	W 39	.18	1	FLOW TIME	49. 5.92	85. 5.92	251. 5.92
HYDROGRAPH AT	W4 0	.07	1	FLOW	76.	102.	201.
				TIME	5.75	5.75	5.75
4 COMBINED AT	WT	3.57	1	FLOW TIME	2 44. 5.92	359. 5.83	1867. 6.08
ROUTED TO	T-U	3.57	1	FLOW TIME	243. 5.92	358. 5.92	1821. 6.17
HYDROGRAPH AT	W41	.06	1	FLOW TIME	40. 5.75	60. 5.75	142. 5.75
2 COMBINED AT	POND	3.63	1	FLOW TIME	26 4. 5.92	392. 5.83	1839. 6.17
DIVERSION TO	DIVERT	3.63	1	FLOW TIME	36. 5.58	36. 5.50	36.
				TIME	5.56	5.50	3.42
HYDROGRAPH AT	DIVOU	3.63	1	FLOW TIME	229. 5.92	356. 5.83	1804. 6.17
ROUTED TO +	PONDWU	3.63	1	FLOW TIME	118. 6.17	223. 6.08	1313. 6.33
			**	PEAK STA	GES IN FEET *	•	
			1	STAGE TIME	20.68 5.92	7.42 6.08	26.90 6.33
ROUTED TO							
+	B-WU	3.63	1	FLOW TIME	116. 10.58	219. 9.92	1298. 8.75
HYDROGRAPH AT +	DIVIN	.00	1	FLOW TIME	36. 5.58	36. 5.50	36. 5.42
HYDROGRAPH AT +	W42A	.01	1	FLOW TIME	13. 5.83	19. 5.83	35. 5.75
ROUTED TO	42A-WU	.01	1	FLOW TIME	13. 6.17	18. 6.17	35. 6.08
HYDROGRAPH AT +	W4 2	.05	1	FLOW TIME	60. 5.75	81. 5.75	156. 5.75
HYDROGRAPH AT +	W42B	.02	1	FLOW TIME	21. 5.83	28. 5.83	5 4. 5.75
ROUTED TO	42B-WU	.02	1		22		
				TIME	20. 5.92	5.92	54. 5.83
5 COMBINED AT	WU	3.72	1	FI OM	135. 10.58	256. 9.92	1339. 8.75
ROUTED TO	U-V	3.72	1	FLOW TIME	135. 10.67	253. 10.00	1333. 8.75
HYDROGRAPH AT +	W4 3	.15		FLOW TIME	7. 5. 92	24	
2 COMBINED AT	WV	3.86	1		135. 10. 67		
ROUTED TO	V-M	3.86	1		133.		
HYDROGRAPH AT	W4 5	.19	1	FLOW	3.		134.

MERIDIAN CROSSING FILING NO. 1 - FDR - EXISTING CONDITIONS SURFACE ROUTING

DESIGN	CONTRIBUTING	C A (e q u	ivalent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)	, ,	1(5)	I(100)	Q(5)	Q(100)
1 0 1	5/101110	O. 1(0)	o, .(100)	(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
1	E-1	1.96	2.07	6.4	4.8	8.5	9.4	17.6
<u>'</u>			2.01	0.1	1.0	TRAVELT		17.0
		1.96	2.07	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					265	4.2	1.1	7.4
2	DP-1	1.96	2.07	7.4	4.6	8.1	22.9	48.7
Ì	E-2	3.07	3.94			TRAVEL T	IME	
1		5.03	6.01	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					1500	4.7	5.3	12.7
3	E-4	1.94	2.04	6.3	4.8	8.5	9.3	17.5
						TRAVELT	IME	
		1.94	2.04	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					900	4.1	3.7	9.9
5	E-7	2.09	2.20	5.4	5.0	8.9	10.5	19.7
						TRAVELI	IME	
		2.09	2.20	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					347	2.0	2.9	8.3
4	E-6	2.36	2.49	5.8	4.9	8.7	11.6	21.7
						TRAVEL 1	IME ·	
		2.36	2.49	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					62	9.0	0.1	5.9
6	DP-2	5.03	6.01	16.1	3.4	6.0	67.8	149.7
	DP-3	1.94	2.04					
1	E-8	8.36	10.75			<u></u>		
	E-3	4.89	6.28		-	TRAVEL		I
		20.21	25.09	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
	-				36	1.5	0.4	16.5
7	DP-6	20.21	25.09		3.3	5.9	67.0	148.5
	DP-5 (INLET)	0.00	li .					
	DP-4 (INLET)	0.00	0.00	 	T	TRAVEL		T = - (·)
		20.21	25.17	Type/flow	Length (ft)	Velocity (fps) 8.4	d. Time (min)	T. Time (min) 16.8
8	DP-7	20.21	25.17		3.3	5.9	147.7	1286.1
	POND WU*	19.44	l .	1				
	WEST TRIB CHAN.* E-5	1.96 3.29	1	1				
	E-3	3.29	4.23	·		TRAVEL	TIME	
		44.91	219 72	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
1		44.31	219.12	. Турстком	Lengur (it)		0.2	
			1				1	

^{*} VALUES WERE OBTAINED FROM THE APPROVED MARKET PLACE FILING NO. 1 DRAINAGE REPORT

MERIDIAN CROSSING FILING NO. 1 - FDR - EXISTING CONDITIONS INLET CALCULATIONS

Qio	SA(eqv.) DEPTH SPREAD Qi CA(eqv.) FB CA(eqv.) DEPTH SPREAD (max)	0.42 16.7 10.8 1.27 7 0.80	2.04 0	0.50 21.7 2.49 0 0.00	0.50 18.9 2.12 1 0.08
Q		7 0.80	0.00	0.00	- 0.08
					_
	CA(eqv.)	1.27	5.04	2.49	2.12
	Ö	10.8	17.5	21.7	18.9
	SPREAD	16.7			
	DEPTH (max)	0.42	0.50	0.50	0.50
	CA(eqv.)	0.62	0.00	0.00	0.00
ඊ	85	3	0	0	0
	CA(eqv.)	1.34	1.94	2.36	5.09
	õ	6.4	9.3	11.6	10.5
	Q(100)	18	17	22	20
	Q(5)	6	6	12	10
	STREET SLOPE	1.0%	SAG	SAG	SAG
	CROSS SLOPE	2.0%	2.0%	2.0%	20%
	INLET TYPE	FLOW-BY	SUMP	SUMP	dWIS
	Inlet size L(i)	15	20	25	20
	ОО	_	3	4	ď

7/23/2008 3:40 PM

Appendix D: Proposed Rational Calculations

MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS (RATIONAL METHOD Q=CIA)

		_			_		_	_	_	_			_	-	_	_	,		
OF INTERNATION	COMMENIS																		
INTENSITY	1100	(in/hr)	8.5	9.0					8.9	6.9	9.1	9.1	9.1	7.3	7.2			9.	2.67
INTE	Is	(in/hr)	4.8	5.1	3.4	4.8	3.7	4.9	5.0	3.8	5.1	5.1	5.1	4.1	4.0			*	1.5
Tc	TOTAL	(min)	6.4	5.2	16.1	6.3	13.0	5.8	5.4	11.7	5.0	5.0	5.0	10.1	10.4			Tco+Tcc	
	Тсс	(min)	5.7	4.3	10.4	5.6	7.3	5.1	4.7	1.1	4.0	1.7	1.7	9.4	9.4		ı	÷	
CHANNEL	Velocity	(fps)	2.5	2.6	2.2	2.5	2.3	2.8	2.8	2.8	2.2	4.0	4.0	1.4	1.4			*	2
CHA	Slope	(%)	1.6%	1.8%	1.2%	1.6%	1.4%	2.0%	2.0%	2.0%	1.2%	4.0%	4.0%	0.5%	0.5%				
	Length	(tJ)	298	675	1,370	848	1,020	873	161	1,315	525	400	400	008	800				
	Тсо	(min)	0.7	6.0	5.7	0.7	5.8	0.7	0.7	4.0	0.7	0.7	0.7	0.7	0.9			*1	
OVERLAND	Length Slope	(ft)	2.0%	1	2.0%	2.0%	10.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	7.0%	2.0%				
VER	Length	(¥)	\$	10	20	5	09	5	5	10	S	5	5	5	10				
)	ပ်		06:0	0.90	0.25	06.0	0.25	06.0	0.90	0.25	06.0	06.0	06.0	0.90	0.00				
WEIGHTED	C100		0.95	0.95	0.95	0.95	0.45	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95				•
WEIG	ప		06.0	06.0	06.0	06.0	0.35	06.0	06.0	06.0	06 0	060	06.0	0.00	06.0		-		-
AREA	TOTAL	(Ac)	2.18	5.14	11.49	2.15	9.41	2.62	2.32	23.89	3 68	0.42	0.39	0.48	1.63				65.80
	niv.)	100 YR	2.07	4 88	10.92	2.04	4.23	2.49	2.20	22.70	3 50	0 40	0.37	0.45	1.55			I/O	- -
	CAleguiy	S YR	1 96	463	10.34	194	3 29	2.36	2 09	21.50	3 31	0 38	0.35	0.43	1.47			į	- ÿ
FLOWS	001 O	(cfs)	17.6	43.9	65.1	17.5	27.8	21.7	19.7	155.5	31.8	3.6	3.4	33	11.2			C*1*A	:
TOTAL FLOWS	č	(cfs)	0.4	23.4	34.7	93	121	116	10.5	828	160	0	×	~	59			V*1*7	
	RASIN		Ë	,	1 2	4	2,0	900	2,0	×			1	51.0	D-20			Formula.	

Tco = 1.87*(1.1-C5)*(L^0.5)*((S*100)^-0.33) (DCM page 5-11) Ve = 20*S^0.5 (USDCM RO-4) Tcc = 1/V*L/60 Is = (26.65*1.50)/(10+Tc)^0.76 (City Letter of 1/7/2003) Iloo =(26.65*2.67)/(10+Tc)^0.76 (City Letter of 1/7/2003)

* * * * * *

MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS SURFACE ROUTING

DESIGN	CONTRIBUTING	CA(equi	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		I(5)	I(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
1	D-1	1.96	2.07	6.4	4.8	8.5	9.4	17.6
						TRAVEL T	IME	
		1.96	2.07	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					250	4.2	1.0	7.4
j	D-10	0.38	0.40	5.0	5.1	9.1	3.7	7.0
	D-11	0.35	0.37			TRAVEL T	IME	
		0.73	0.77	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
	:			Gutter	820	5.0	2.7	7.7
В	D-12	0.43	0.45	10.1	4.1	7.3	4.7	8.9
:	DP-J	0.73	0.77					
						TRAVELT	IME	
		1.16	1.22	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	40	1.8	0.4	10.5
Х	D-9	3.31	3.50	5.0	5.1	9.1	16.9	31.8
						TRAVEL 1	TIME	
		3.31	3.50	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Pipe	420	7.9	0.9	5.9
Z	D-2	4.63	4.88	10.5	4.0	7.2	44.6	83.8
	DP-X	3.31	3.50					
	Inlet 1 Flowby	0.62	0.80					
	Inlet 1	1.34	1.27					
	DP-B	1.16	1.22			TRAVEL	ГІМЕ	
		11.06	11.67	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	725	3.8	3.2	13.6
Υ	D-3	10.34	10.92	16.1	3.4	6.0	34.7	65.1
						TRAVEL	TIME	
		10.34	10.92	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	895	2.4	6.2	22.3
3	D-4	1.94	2.04	6.3	4.8	8.5	9.3	17.5
						TRAVEL '	TIME	
		1.94	2.04	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
						0.0	0.0	6.3

DESIGN	CONTRIBUTING	CA(equ	ivalent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		I(5)	I(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
E	DP-3	1.94	2.04	13.6	3.6	6.4	46.9	88.2
	DP-Z	11.06	11.67			TRAVEL T	IME	
]	l f	12.99	13.71	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	750	5.8	2.1	15.8
5	D-7	2.09	2.20	5.4	5.0	8.9	10.5	19.7
						TRAVEL T	IME	
		2.09	2.20	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					150	2.0	1.3	6.6
4	D-6	2.36	2.49	5.8	4.9	8.7	11.6	21.7
						TRAVEL T	IME	
		2.36	2.49	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					85	9.0	0.2	6.0
6	D-8	21.50	22.70	22.3	2.8	5.1	127.7	239.9
	DP-E	12.99	13.71					
	DP-Y	10.34	10.92			TRAVELI	IME	
1		44.83	47.33	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
_				Pipe	36	10.0	0.1	22.4
7	DP-6	44.83	47.33	22.4	2.8	5.1	140.2	264.8
	DP-5 (INLET)	2.09	2.49					
	DP-4 (INLET)	2.36	2.49			TRAVEL 1	TIME	
		49.28	52.30		Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	110	8.4	0.2	22.6
8	DP-7	49.28	52.30	22.6	2.8	5.0	209.4	1243.5
	POND WU*	19.44	188.25					
	WEST TRIB CHAN.	1.96	1				-	
	D-5	3.29	4.23			TRAVEL	T	1
		73.98	246.86	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					83	5.8	0.2	22.8

^{*} VALUES WERE OBTAINED FROM THE APPROVED MARKET PLACE FILING NO. 1 DRAINAGE REPORT

^{**} VALUES WERE OBTAINED FROM LOWES DRAINAGE REPORT

7/23/2008 3:41 PM

MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS INLET CALCULATIONS

									đ							å		
음	Inlet size L(i) INLET TYPE CROSS	INLET TYPE	CROSS	STREET	0(5)	Q(100)	ō	CA(eqv.)	FB	CA(eqv.)	DEPTH (max)	DEPTH SPREAD (max)	ā	CA(eqv.)	F8	CA(eqv.)	DEPTH (max)	SPREAD
			200	_1														
	16	CL OW BY	200	1 0%	σ	18	9.4		134	0.62	0.42	16.7	10.8	1.27	7	0.80	0.51	21.1
	2 6	C. C	700			2		104	V	0.00	0.50		47.5	204	0	00.0	0.50	
~	3 20	SUMP	Z.U%	SHO	6	, ,		5.1			1		1	0	7	And And	0.50	
7	7 J	SAG 1.22 22	2.0%	SAG	12	22	7		0	0.00	0,50				D)	0.00	00.0	
r Lo	5 20 SUMP 2.0% SAG 10 20	SUMP	2.0%	SAG	10	20	10.5	2.0	0.50 0.00 0.00	00:0	0.50		18.9	2.12	0.7	0.08	0.50	

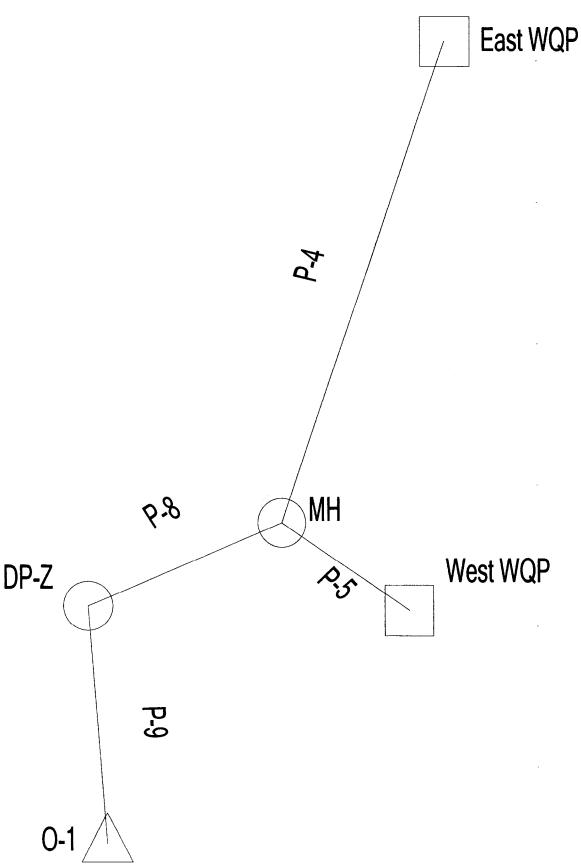
MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS PIPE ROUTING

DESIGN		CA(equi	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	CONTRIBUTING BASINS	CA(5)	CA(100)		l(5)	I(100)	Q(5)	Q(100)
:				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
1	INLET DP-1	1.34	1.27	6.4	4.8	8.5	6	11
						TRAVEL T	IME	
		1.34	1.27	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				18" RCP	270	7.1	0.6	7.0
Х	DP-X	3.31	3.50	5.0	5.1	9.1	. 17	32
						TRAVEL T	IME	
	:	3.31	3.50	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				30" RCP	400	7.1	0.9	5.9
Z	DP-B	1.16	1.22	10.5	4.0	7.2	37	69
	DP-2	4.63	4.88					
	DP-X	3.31	3.50			TRAVEL T	IME	
		9.10	9.60	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
		,		36" RCP	400	7.1	0.9	11.4

STREET CAPACITY

VERTICAL CURB FOR 1/2 STREET SECTION

Comments																
g	12.0	17.0	20.8	24.1	26.9	29.5	31.8	34.0	12.0	17.0	20.8	24.1	26.9	29.5	31.8	34.0
Q _{max}	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34
MOII	0.5								0.5							
l ype	>								>							
c	0.016								0.016							
Slope	0.02								0.02							
Slope	0.5%	1.0%	1.5%	2.0%	2.5%	3.0%	3.5%	4.0%	0.5%	1.0%	1.5%	2.0%	2.5%	3.0%	3.5%	4.0%
Formula	Q=171.7 S ¹⁷²								Q=171.7 S ¹¹²							
	Residential								Collector/Arterial							


STREET CAPACITY

RAMP CURB FOR 1/2 STREET SECTION

	Formula	Slope	Slope	u	l ype	MOIT	Отах	g	Comments
Residential	Q=112.6 S ^{1/2}	0.5%	0.02	0.016	ď	0.5	20	8.0	County ramp curb is 6"
		1.0%					20	11.3	
		1.5%					20	13.8	
		2.0%					20	15.9	
		2.5%					20	17.8	
		3.0%					20	19.5	
		3.15%					20	20.0	

Appendix E: StormCAD Calculations

Scenario: 100-year

Title: Old Meridian Road z:\...\fdr\calcs\storm cad\meridian crossing.stm 07/23/08 03:52:00 RMBentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Analysis Results Scenario: 100-year

Note:

The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

Project Engineer: Charlene Sammons

Old Meridian Road

Project Date:

11/14/07

Comments: Storm in Old Meridian Road for Meridian Crossing Storm Sewer

Scenario Sur	nmary									
Scenario	/**	100-year								
Physical Pro	perties Alternat	•	cal Prope	rties						
Catchments		Catchments								
System Flow	s Alternative	Base-Syste	m Flows							
Structure He	adlosses Alterr	Base-Struck	ture Head	liosses						
Boundary Co	onditions Altern	Base-Boun	dary Cond	ditions						
Design Cons	traints Alternat	Base-Desig	n Constra	aints						
Capital Cost	Alternative	Base-Cost								
User Data A	Iternative	Base-User	Data							
Network Inve	entory									
Number of P	ipes	4		Number	of Inlets		2			
- Circular Pip	oes:	4		- Grate I	nlets:		0			
- Box Pipes:		0		- Curb In	lets:		0			
- Arch Pipes	:	0		- Combin	ation In	lets:	0			
- Vertical Elli	iptical Pipes:	0		- Slot Ink	ets:		0			
- Horizontal	Elliptical Pipes:	0		- Grate I	nlets in I	Ditch:	0			
Number of J	unctions	2		- Generic	c Inlets:		2			
Number of C	Outlets	1								
Circular Pipe	s Inventory									
30 inch		426.11		42 inch			1	67.58 ft		
36 inch		5.58								
Total Length	1	599.27	′ ft							
Generic Inle	t Inventory									
Default 100	%	2								
	.lum	ction elem	anta far			44.4.0	4			
		icuon erem	ents for	HELWORK	with O	utiet: O-	·			
Label	HydraulicHydra Grade Grad	ulic Gravity I de Element	Headloss Method /	System Additional	System Known I	System Rational	System Intensityf	Flow Time	CA	
Label	HydraulicHydra	ulic Gravity l de Element OutHeadloss	Headloss Method /	System	System	System	System		CA	
Label DP-Z	HydraulicHydra Grade Grad Line In Line (nulic Gravity I de Element OutHeadloss) (ft)	Headloss Method /	System Additional Flow	System Known I Flow (cfs)	System Rational Flow	System Intensityf	Flow Time	CA	
	HydraulicHydra Grade Grad Line In Line ((ft) (ft)	nulic Gravity I de Element OutHeadloss) (ft) .07 1.06	Headloss Method /	System Additional Flow (cfs)	System Known I Flow (cfs) 0.00	System Rational Flow (cfs)	System Intensityf (in/hr)	low Time (min)	e CA (acres)	
DP-Z	HydraulicHydra Grade Grad Line In Line ((ft) (ft) 3,841.13 3,840	nulic Gravity I de Element OutHeadloss) (ft) .07 1.06	Headloss Method /	System Additional Flow (cfs)	System Known I Flow (cfs) 0.00	System Rational Flow (cfs) 72.94	System Intensityf (in/hr) 8.64	Flow Time (min) (e CA (acres) 8.38	
DP-Z	HydraulicHydra Grade Grad Line In Line ((ft) (ft) 3,841.13 3,840	ulic Gravity I de Element OutHeadloss) (ft) .07 1.06 .42 0.83	Headloss Method /	System Additional Flow (cfs) 0.00 0.00	System Known I Flow (cfs) 0.00 0.00	System Rational Flow (cfs) 72.94 73.34	System Intensityf (in/hr) 8.64 8.68	Flow Time (min) (e CA (acres) 8.38	
DP-Z	HydraulicHydra Grade Grad Line In Line ((ft) (ft) 3,841.13 3,840	ulic Gravity of the Element OutHeadloss (ft)	Headloss Method / S Standar Standar	System Additional Flow (cfs) 0.00 0.00	System Known I Flow (cfs) 0.00 0.00	System Rational Flow (cfs) 72.94 73.34 outlet:	System Intensityf (in/hr) 8.64 8.68 O-1 Hydraulic Grade	flow Time (min) (6.22 6.09	8.38 8.38 Gravity	Metho
DP-Z MH	HydraulicHydra Grade Grad Line In Line ((ft) (ft) 3,841.13 3,840 3,842.25 3,841	uulic Gravityl de Element OutHeadloss) (ft) .07 1.06 .42 0.83 Inlet ele Total Systemint Flow (cfs)	Standar Standar Standar Total tercepted Flow	System Additional Flow (cfs) 0.00 0.00 Total Esypassed Flow	System Known I Flow (cfs) 0.00 0.00 ork with typass (Farget E	System Rational Flow (cfs) 72.94 73.34 outlet: Capture fficiency (%)	System Intensityf (in/hr) 8.64 8.68 O-1 Hydraulic Grade Line In	6.22 6.09 Hydraulic Grade Line Outl	8.38 8.38 8.38 Gravityl Element Headloss (ft)	Metho

Title: Old Meridian Road

z:\...\fdr\calcs\storm cad\meridian crossing.stm

07/23/08 03:54:03 RMBentiey Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

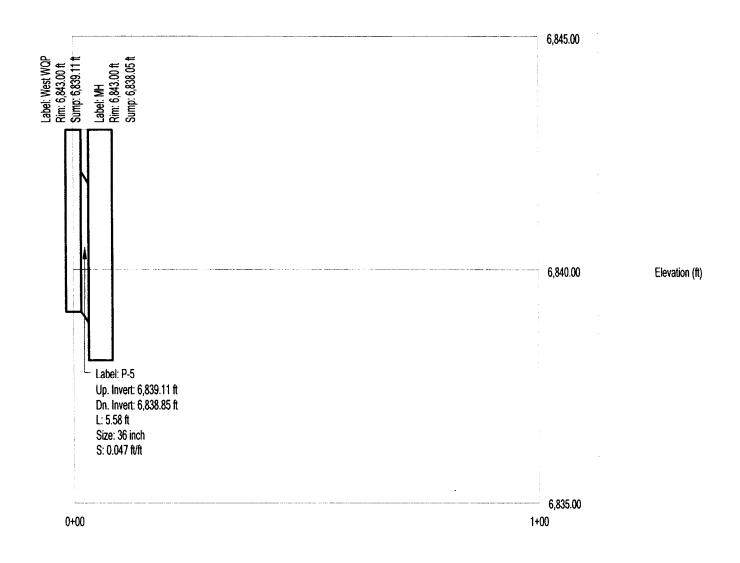
Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 2

Analysis Results Scenario: 100-year

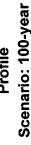
			C	Outlet: O	-1				
Label	Grade	Hydraulic Grade Line Outl (ft)	Element /	Additional			System Intensityf (in/hr)	low Tim	
0-1	3,836.40	3,836.40	0.00	0.00	0.00	72.41	8.57	6.40	8.38

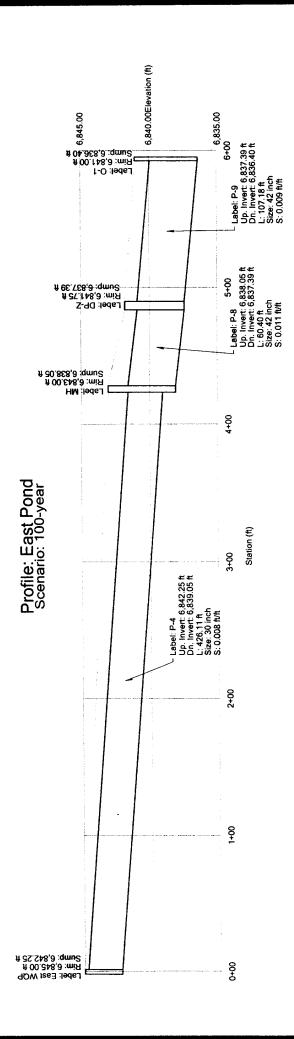
			F	Pipe eleme	nts for	netwo	k with	outlet:	O-1			
Label	Section Shape	Section Size	Length (ft)	NumberCo of Sections	nstructe Slope (ft/ft)			Velocity	Invert	ownstrear Invert Elevation (ft)	Grade	Grade
P-4	Circular	30 inct	-26.11	1	0.008	0.006	32.00	6.52	3,842.25	6,839.05	3,844.85	3,842.25
P-5	Circular	36 inch	5.58	. 1	0.047	0.004	44.27	6.26	3,839.11	6,838.85	3,842.28	3,842.25
P-8	Circular	42 inch	60.40	1	0.011	0.005	73.34	7.67	3,838.05	6,837.39	3,841.42	3,841.13
P-9	Circular	42 inch	07.18	1	0.009	0.008	72.94	10.03	3,837.39	6,836.40	3,840.07	3,838.71

Scenario: 100-year

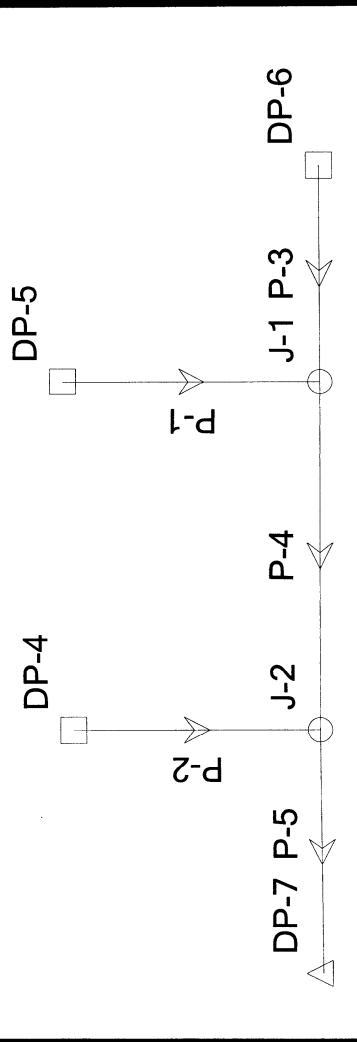

Combined Pipe\Node Report

	Up. Node	Dn. Node	(¥)	Up. Inlet Area (acres)	Up. Inlet Rat. Coef.	Up. Inlet Area (acres)	Up. Calc. Sys. CA (acres)	Up.Inlet Rat. Q (cfs)	Size	Cofs)	Avg.	공 교 교 교 교 교	HĞE (€)	Up. Invert (#)	(# Go. (#)	HGL Out	Dn. Invert (ft)	S (ff/ft)
Eas	P-4 East WOR MH		426.11	3.50		1	3.50	32.00	32.00 30 inch 35.54	35.54	6.52	6,845.00	6,844.85	6,842.25	6,843.00	6,842.25	6,839.05	0.008
Š	West WOR		5.58		1.00	4.88		44.27	44.27 36 inch143.97 6.26	143.97	6.26	6,843.00	6,842.28	6,839.11	6,843.00	6,842.25	6,838.85	0.047
Ξ		DP-Z	60.40					₹ Z	N/A 42 inch 105.16	105.16	7.67	6,843.00	6,841.42	6,838.05	6,841.75	6,841.13	6,837.39	0.011
DP-Z			107.18					A N	N/A 42 inch 96.69 10.03	96.69	10.03	6,841.75	6,840.07	6,837.39	6,841.00	6,838.71	6,836.40	600.0


Profile Scenario: 100-year


Profile: West Pond

Scenario: 100-year



Station (ft)

Scenario: 100-year

Page 1 of 1

Analysis Results Scenario: 100-year

Title: Project Engineer: Charlene Sammons

Meridian Crossing

Project Date:

01/31/05

Comments:

Scenario Summary

Analysis of existing storm system downstream of Meridian Crossing Project in Falcon, CO

Scenario	100-year		
Physical Properties Alternat	Base-Physical Pro	perties	
Catchments Alternative	Catchments-100-y	ear	
System Flows Alternative	Base-System Flow		
Structure Headlosses Alterr	Base-Structure He	adlosses	
Boundary Conditions Altern	Base-Boundary Co	onditions	
Design Constraints Alternat	Base-Design Cons	straints	
Capital Cost Alternative	Base-Cost		
User Data Alternative	Base-User Data		
Network Inventory			
Number of Pipes	5	Number of Inlets	3
- Circular Pipes:	2	- Grate Inlets:	0
- Box Pipes:	3	- Curb Inlets:	2
- Arch Pipes:	0	- Combination Inlets:	0
- Vertical Elliptical Pipes:	0	- Slot Inlets:	0
- Horizontal Elliptical Pipes:		- Grate Inlets in Ditch:	0
Number of Junctions	2	- Generic Inlets:	1
Number of Outlets	1		
Circular Pipes Inventory			
24 inch	185.50 ft		
Total Length	185.50 ft		
Box Pipes Inventory			
6 x 3 ft	366.02 ft		
Total Length	366.02 ft		
Curb Inlet Inventory			
Type R 10'	2		
Generic Inlet Inventory			
Default 100%	1		

		Inlet el	ements fo	or netw	ork wit	th outlet:	DP-7		
Label	Inlet	Total Systemi	Total ntercepted						Gravity Headloss Element Method
		Flow (cfs)	Flow (cfs)	Flow (cfs)		(%)	Line In (ft)	Line Out (ft)	Headloss (ft)
DP-4	Curb Type R 10'	22.05	22.05	0.00	N/A	100.0	3,818.78	3,818.78	0.00 Absolut
DP-5	Curb Type R 10'	19.80	19.80	0.00	N/A	100.0	3,818.70	3,818.70	0.00 Absolut
DP-6	Generic Default	1:50.69	250.69	0.00	N/A	100.0	3,817.78	3,817.78	0.00 Absolut

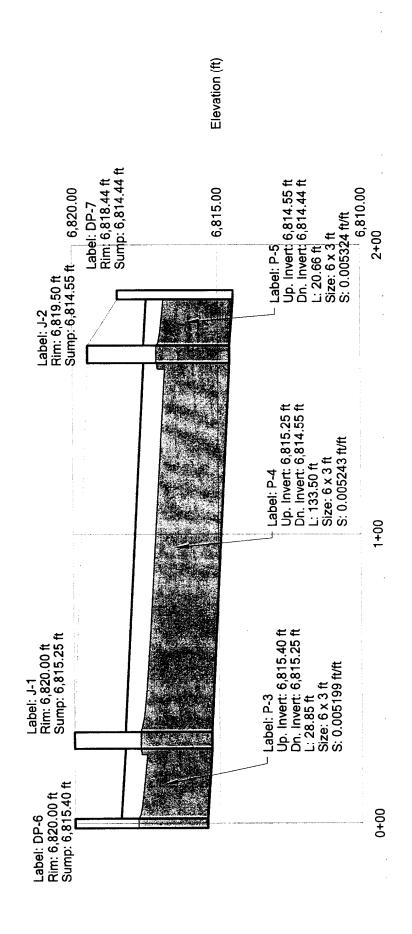
Analysis Results Scenario: 100-year

		0	utlet: DP	-7			
Label	HydraulicHydraulic Grade Grade I Line In Line OutH (ft) (ft)	Element /	Additional	Known			System System Flow Time CA (min) (acres)
DP-7	3,814.44 3,814.44	0.00	0.00	0.00	273.30	5.21	22.65 52.02

		Junctio	on eleme	ents for a	network	with o	ıtlet: DF	P-7		
Label	Hydraulic Grade Line In (ft)		Element	Method A				System Intensityl (in/hr)		
J-1	3,817.71	3,817.71	0.00	Absolut	0.00	0.00	262.00	5.25	22.36	49.53
J-2	3,817.08	3,817.08	0.00	Absolut	0.00	0.00	273.54	5.22	22.61	52.02

			Р	ipe elem	ents for I	network	with o	utlet: D	P-7			
Label	Section Shape	Section Size	Length (ft)	NumberC of Sections	Constructe Slope (ft/ft)			Velocity	Invert	ownstrear Invert Elevation (ft)	Grade	Hydraulic Grade Line Out (ft)
P-1	Circular	24 inch	94.00	1	0.009043	008925	19.80	7.56	3,817.10	6,816.25	3,818.70	3,817.76
P-2	Circular	24 inch	91.50	1	0.016940	014085	22.05	8.96	3,817.10	6,815.55	3,818.78	3,816.86
P-3	Box	6 x 3 ft	28.85	2	0.005199	005093	:50.69	8.63	3,815.40	6,815.25	3,817.78	3,817.71
P-4	Box	6 x 3 ft	33.50	2	0.005243	005221	:62.00	8.76	3,815.25	6,814.55	3,817.71	3,817.08
P-5	Box	6 x 3 ft	20.66	2	0.005324	004607	:73.54	9.31	3,814.55	6,814.44	3,817.08	3,816.82

Combined Pipe\Node Report


S (fruit)	016940	009043	005199	005243	005324
Dn. Invert (ft)	6,815.55 1.0	6,816.25 .009043	6,815.25 0.005199	6,814.55 1.005243	6,814.44 1.005324
HGL (#)	6,816.86	6,817.76	6,817.71	6,817.08	6,816.82
⊕ G ⊕ G	6,819.50	6,820.00	6,820.00	6,819.50	6,818.44
Up. Invert (ft)		6,817.10	6,815.40	6,815.25	6,814.55
HGL In (ff)		6,818.70	6,817.78	6,817.71	6,817.08
Up. Gr Elev. (ft)	6,821.16	6,821.16	6,820.00	6,820.00	6,819.50
Avg. v (ft/s)	96.8	7.56	8.63	8.76	9.31
Pull (cfs)	29.44	21.51	96.71	96.76	100.25
Size	22.05 24 inch 29.44 8.96	19.80 24 inch 21.51 7.56	250.69 6 x 3 ft 296.71 8.63	N/A 6 x 3 ft 297.96 8.76	N/A 6 x 3 ft 300.25 9.31
Up.Inlet Rat. Q (cfs)	22.05	19.80	250.69	A/N	N/A
Up. Calc. Sys. CA (acres)	2.49	2.20	4		52.02
Up. Inlet Area (acres)	2.49	2.20	47.33	A/Z	A/A
Up. Up. Inlet Inlet Rat. Area Coef. (a cacres)	1				N/A N/A
Up. Inlet Area acres)	2.49	2.20	47.33		
J €	91.50	94.00	28.85	133.50	20.66
Label Up. Dn. Node	3-2	-			
Node.	P-2 DP-4 J-2	P.1 DP-5 J-1	P-3 DP-6 J-1	P-4 J-1 J-2	P-5 J-2 DP-7
Label	P-2	9	P-3	P-4	P-5-

Profile

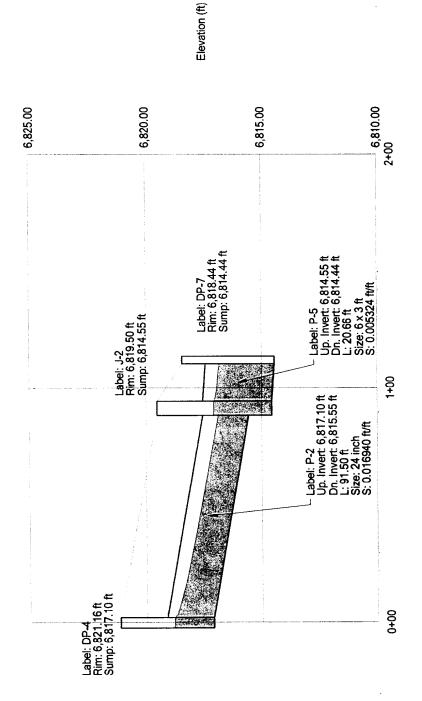
Scenario: 100-year

Profile: RCB @ Highway 24

Scenario: 100-year

Station (ft)

Project Engineer: Charlene Sammons


Title: Meridian Crossing

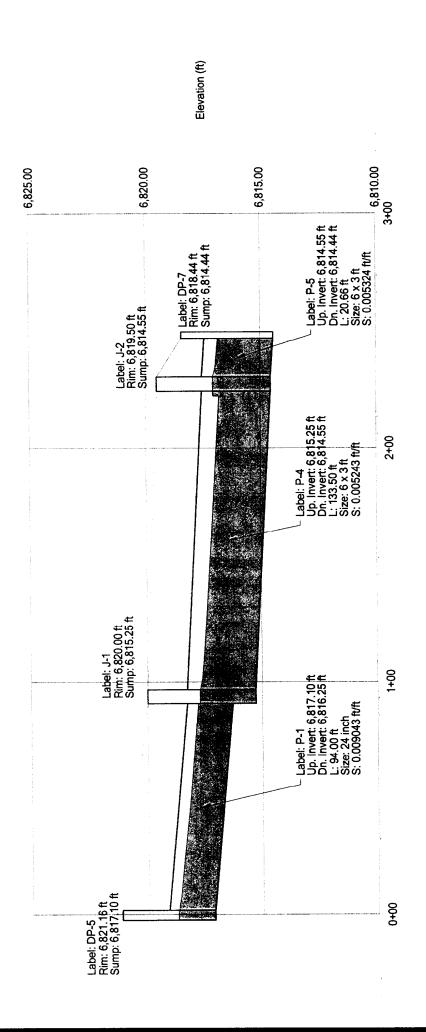
Profile

Scenario: 100-year

Profile: Sump Inlet Left

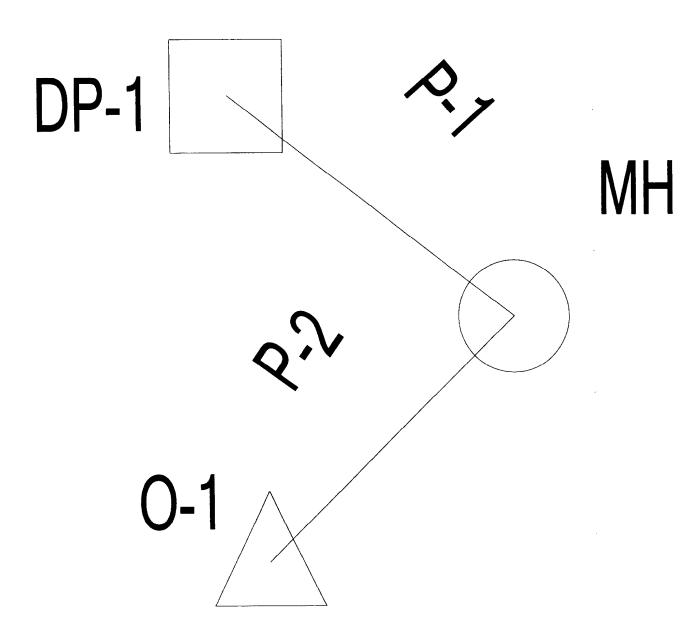
Scenario: 100-year

Station (ft)


Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Profile

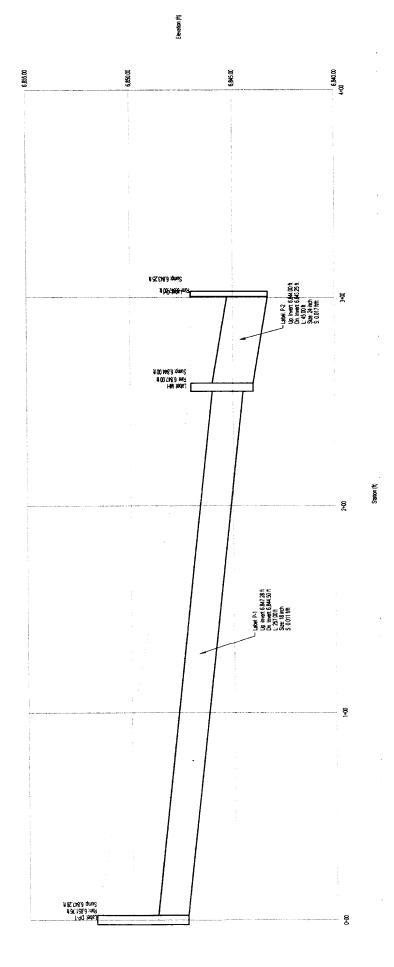
Scenario: 100-year


Profile: Sump Inlet Right

Scenario: 100-year

© Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Title: Meridian Crossing 2:\...\text{IdrAcalcs\storm cad\meridian rd-sta 200.stm 07/23/08 03:57:20 PM © B

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1


Analysis Results Scenario: 100-year

				Outlet: O	.1				
Label	Grade	Hydraulic Grade Line Outl (ft)	Element A	Additional			System Intensityf (in/hr)		
0-1	3,843.25	3,843.25	0.00	0.00	0.00	7.35	8.28	7.22	0.88

1 183 2			F	Pipe elem	ents for (netwo	k with	outlet:	0-1			
Label	Section Shape	Section Size	Length (ft)	NumberC of Sections	onstructed Slope (ft/ft)			Velocity	Invert	lownstread Invert Elevation (ft)	Grade	Grade
P-1	Circular	18 inch	:57.00	1	0.011	0.011	7.61	6.16	3,847.28	6,844.50	3,848.35	3,845.42
P-2	Circular	24 inct	45.00	1	0.017	0.012	7.39	6.17	3,844.00	6,843.25	3,844.97	3,843.96

Scenario: 100-year Profile

Profile: Ultimate Design Scenario: 100-year

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Existing Channel along Highway 24 ROW

Channel Calculator

Given Input Data: Shape Solving for Flowrate Slope Manning's n Height Bottom width Left slope Right slope	Trapezoidal Depth of Flow 65.1000 cfs 0.0090 ft/ft 0.0350 36.0000 in 480.0000 in 0.2500 ft/ft (V/H) 0.2500 ft/ft (V/H)
Computed Results: Depth Velocity Full Flowrate Flow area Flow perimeter Hydraulic radius Top width Area Perimeter Percent full	6.8903 in 2.6805 fps 1129.3728 cfs 24.2864 ft2 536.8189 in 6.5148 in 535.1224 in 156.0000 ft2 776.8636 in 19.1397 %
Critical Information Critical depth Critical slope Critical velocity Critical area Critical perimeter Critical hydraulic radius Critical top width Specific energy Minimum energy Froude number Flow condition	5.1448 in 0.0241 ft/ft 3.6400 fps 17.8847 ft2 522.4254 in 4.9297 in 521.1587 in 0.6859 ft 0.6431 ft 0.6404 Subcritical

Existing Temporary Channel along Meridian Road (DP-E) Channel Calculator

Given Input Data: Shape Solving for Flowrate Slope Manning's n Height Bottom width Left slope	Trapezoidal Depth of Flow 88.2000 cfs 0.0200 ft/ft 0.0350 36.0000 in 0.0000 in 0.2500 ft/ft (V/H)
Right slope	0.1667 ft/ft (V/H)
Computed Results: Depth Velocity Full Flowrate Flow area Flow perimeter Hydraulic radius Top width Area Perimeter Percent full	21.4874 in 5.5023 fps 349.2362 cfs 16.0296 ft2 219.2720 in 10.5269 in 214.8480 in 44.9946 ft2 367.3687 in 59.6872 %
Critical Informatio	
Critical depth	
Critical slope	0.0190 ft/ft

Clitical infolmation	.1
Critical depth	21.7023 in
Critical slope	0.0190 ft/ft
Critical velocity	5.3939 fps
Critical area	16.3519 ft2
Critical perimeter	221.4655 in
Critical hydraulic radius	10.6322 in
Critical top width	216.9973 in
Specific energy	2.2611 ft
Minimum energy	2.7128 ft
Froude number	1.0252
Flow condition	Supercritical

Proposed Temporary Channel from Old Meridian Road (DP-Z)

Channel Calculator

Given	Input	Data:
-------	-------	-------

Shape	Trapezoidal
Solving for	Depth of Flow
Flowrate	73.3000 cfs
Slope	0.0050 ft/ft
Manning's n	0.0350
Height	36.0000 in
Bottom width	60.0000 in
Left slope	0.2500 ft/ft (V/H)
Right slope	0.2500 ft/ft (V/H)

Computed Results:

Depth	21.9888 in
Velocity	3.2444 fps
Full Flowrate	219.3674 cfs
Flow area	22.5927 ft2
Flow perimeter	241.3242 in
Hydraulic radius	13.4813 in
Top width	235.9103 in
Area	51.0000 ft2
Perimeter	356.8636 in
Percent full	61.0800 %

Critical Information

Clicical informacio	11
Critical depth	16.0014 in
Critical slope	0.0192 ft/ft
Critical velocity	5.3195 fps
Critical area	13.7795 ft2
Critical perimeter	191.9505 in
Critical hydraulic radius	10.3373 in
Critical top width	188.0108 in
Specific energy	1.9960 ft
Minimum energy	2.0002 ft
Froude number	0.5336
Flow condition	Subcritical

Culvert Designer/Analyzer Report Highway 24 - DP WU

Analysis Component			
Storm Event	Check	Discharge	1,241.00 cfs
Peak Discharge Method	: User-Specified		
Design Discharge	1,241.00 cfs	Check Discharge	1,241.00 cfs
Tailwater properties: Tra	pezoidal Channel		· · · · · · · · · · · · · · · · · · ·
Tanwater properties. The			
Tailwater conditions for			
		Bottom Elevation	6,813.00 ft

Name	Description	Discharge	HW Elev.	Velocity
Culvert-1	3-12 x 6 ft Box	1,240.93 cfs	6,818.87 ft	8.71 ft/s
Weir	Roadway (Constant E	levation,00 cfs	6,818.87 ft	N/A
Total		1,240.93 cfs	6,818.87 ft	N/A

Culvert Designer/Analyzer Report Highway 24 - DP WU

Component:Culvert-1

Culvert Summary					
Computed Headwater Eleva	6,818.87	ft	Discharge	1,240.93	cfs
Inlet Control HW Elev.	6,818.37	ft	Tailwater Elevation	6,816.82	ft
Outlet Control HW Elev.	6,818.87	ft	Control Type	Outlet Control	
Headwater Depth/Height	0.96				
Grades					
Upstream Invert	6,813.10	ft	Downstream Invert	6,812.87	ft
Length	47.00	ft	Constructed Slope	0.005000	ft/ft
Hydraulic Profile					
Profile	S1		Depth, Downstream	3.96	ft
Slope Type	Steep		Normal Depth	2.78	ft
Flow Regime	Subcritical		Critical Depth	3.33	ft
Velocity Downstream	8.71	ft/s	Critical Slope	0.002971	ft/ft
Section					
Section Shape	Box	·	Mannings Coefficient	0.013	
Section Material	Concrete		Span	12.00	ft
Section Size	12 x 6 ft		Rise	6.00	ft
Number Sections	3				
Outlet Control Properties					
Outlet Control HW Elev.	6,818.87	ft	Upstream Velocity Head	1.54	ft
Ke	0.50	I	Entrance Loss	0.77	ft
Inlet Control Properties					
Inlet Control HW Elev.	6.818.37	ft	Flow Control	N/A	
Inlet Type 45° wingwall fi		-	Area Full	216.0	ft2
К	0.49700		HDS 5 Chart	13	
M	0.66700)	HDS 5 Scale	1	
С	0.03020)	Equation Form	2	
Y	0.83500	ì			

Culvert Designer/Analyzer Report McLaughlin Bridge

Component:Culvert-1

Culvert Summary					
Computed Headwater Elev	104.17	ft	Discharge	623.40	cfs
Inlet Control HW Elev.	104.17	ft	Tailwater Elevation	N/A	ft
Outlet Control HW Elev.	103.98	ft	Control Type	Inlet Control	
Headwater Depth/Height	1.39				
Grades					···
Upstream Invert	100.00	ft	Downstream Invert	100.00	ft
Length	50.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	\$2		Depth, Downstream	1.99	ft
Slope Type	Steep		Normal Depth	1.76	ft
Flow Regime	Supercritical		Critical Depth	2.49	ft
Velocity Downstream	11.21	ft/s	Critical Slope	0.003719	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 3 ft		Rise	3.00	ft
Number Sections	4				
Outlet Control Properties					
Outlet Control HW Elev.	103.98	ft	Upstream Velocity Head	1.24	ft
Ke	0.20		Entrance Loss	0.25	ft
Inlet Control Properties					
Inlet Control HW Elev.	104.17	ft	Flow Control	N/A	
Inlet Type 90° headwall	w 45° bevels		Area Full	84.0	ft2
K	0.49500		HDS 5 Chart	10	
М	0.66700		HDS 5 Scale	2	
С	0.03140		Equation Form	2	
Y	0.82000				

Culvert Designer/Analyzer Report Old Meridian Road - DP Y

Analysis Component			
Storm Event	Check	Discharge	65.10 cfs
Peak Discharge Method:	User-Specified		
Design Discharge	34.70 cfs	Check Discharge	65.10 cfs
Tailwater properties: Trap	pezoidal Channel		
Tailwater properties: Trap Tailwater conditions for C Discharge		Bottom Elevation	6.813.00 ft

Name	Description	Discharge	HW Elev.	Velocity
Culvert-1	1-54 inch Circular	65.11 cfs	6,824.75 ft	9.95 ft/s
Weir	Roadway (Constant El	evation).00 cfs	6,824.75 ft	N/A
Total	***************	65.11 cfs	6,824.75 ft	N/A

Culvert Designer/Analyzer Report Old Meridian Road - DP Y

Component:Culvert-1

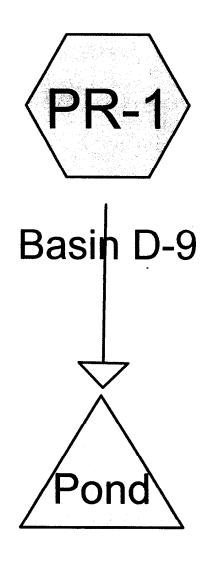
Culvert Summary					
Computed Headwater Elev	6,824.75	ft	Discharge	65.11	cfs
Inlet Control HW Elev.	6,824.43	ft	Tailwater Elevation	6,813.89	ft
Outlet Control HW Elev.	6,824.75	ft	Control Type	Entrance Control	
Headwater Depth/Height	0.83			···	
Grades					
Upstream Invert	6,821.00	ft	Downstream Invert	6,820.50	ft
Length	50.00	ft	Constructed Slope	0.010000	
Hydraulic Profile					
Profile			Depth, Downstream	1.94	ft
Slope Type	Steep		Normal Depth	1.78	••
Flow Regime	Supercritical		Critical Depth	2.35	
Velocity Downstream	9.95	ft/s	Critical Slope	0.003794	
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Concrete		Span	4.50	ft
Section Size	54 inch		Rise	4.50	ft
Number Sections	1				
Outlet Control Properties		-			
Outlet Control HW Elev.	6,824.75	ft	Upstream Velocity Hea	d 0.93	ft
Ke	0.50		Entrance Loss	0.47	ft
Inlet Control Properties					
Inlet Control HW Elev.	6,824.43	ft	Flow Control	N/A	
Inlet Type Square edge	w/headwall		Area Full	15.9	ft2
K	0.00980		HDS 5 Chart	1	
М	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Υ	0.67000				

Culvert Designer/Analyzer Report Old Meridian Road - DP Y

Component:Weir

Discharge	0.00	cfs	Allowable HW Elevation	6,824.75	ft
Roadway Width	44.00	ft	Overtopping Coefficient	2.90	us
Length	150.00	ft	Crest Elevation	6,825.35	ft
Headwater Elevation	N/A	ft	Discharge Coefficient (Cr)	2.90	
Submergence Factor (Kt)	1.00				

Sta (ft)	Elev. (ft)
0.00	6,825.35
150.00	6,825.35


Culvert Outlet Protection
Meridian Crossing - Final Drainage Report

Culvert	Diameter	No of Barrels	Slone	Velocity	Velocity Riprap Width Riprap Length	Riprap Length		Riprap Size
	(in)	1		ft/s	ft.	ff		
> GG	54		1.20%	10.5	13,5	21.5	3.78 L	L
DF-1 DP-2	42	-	0.90%		10.5		3.44 L	L

Appendix G: Water Quality Pond Calculations

Company	Springe Engineering	
Company:	Springs Engineering	
Date:	July 23, 2008	
Project:	Merdian Crossing East Pond	
Location:	Falcon, CO	
1. Basin Stor	rage Volume	, and the second
4) T.: 154.	(l _a = 100% if all paved and roofed areas u/s of PLD)	i _a = <u>79.00</u> %
A) I ributa	ry Area's Imperviousness Ratio (i = I _a / 100)	i = <u>0.79</u>
B) Contrib	buting Watershed Area Including the PLD (Area)	Area = 167,616 square feet
	Quality Capture Volume (WQCV)	WQCV = 0.26 watershed inches
(WQC	$CV = 0.8 * (0.91 * i^3 - 1.19 * i^2 + 0.78 * i))$	
D) Design	n Volume: Vol _{PLD} = (WQCV / 12) * Area	Vol = <u>3,600</u> cubic feet
	ace Area (A _{PLD}) and Average Depth (d _{av}) 00.24 square feet to 7200.48 square feet)	A _{PLD} = 3,600 square feet
(d _{av} : = (Vo	ol / A _{PLD}), M in=0.5', M ax=1.0')	d _{av} =feet
3. Draining o	of PLD (Check A, or B, or C, answer D)	Infiltration to Subgrade with Permeable
	answers to 3A through 3D, check the appropriate method	Membrane: 3(C) checked and 3(E) = no
A) Check box	x if subgrade is heavy or expansive clay x if subgrade is silty or clayey sand	Underdrain with Impermeable
	x if subgrade is saily or clayey sails	Liner: 3(A) checked or 3(E) = yes
		Underdrain with Non-Woven Geotextile Fabric:
•	x if underdrains are not desirable or	3(B) checked and 3(E) = no
ii underdra	ains are not feasible at this site.	16 Mil. Impermosple Membrane with No Underderies
E) Does tribu	stary catchment contain land uses that may have	16-Mil. Impermeable Membrane with No Underdrain: 3(D) checked - Evapotranspiration only
	products, greases, or other chemicals	, , , , , , , , , , , , , , , , , , , ,
	uch as gas station, yes no store, restaurant, etc.?	x Other: Type D inlet
naraware .	Store, restaurant, etc.:	
4.04/0		
4. Sand/Pea	t Mix and Gravel Subbase (See Figure PLD-1)	
A) Heavy	or Expansive Clay (NRCS Group D Soils) Present;	18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer. 16-Mil.
Perfor	rated HDPE Underdrain Used.	Impermeable Liner and a 3" to 4" Perforated HDPE Underdrain.
P) Silty or	Chayou Sand (NIDCS Crown C Saile) Bresset	
	r Clayey Sand (NRCS Group C Soils) Present; rated HDPE Underdrain Used.	18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer and a
		3" to 4" Perforated HDPE Underdrain w/ Non-Woven Pemeable Membrane.
O) N = D=	tooked Con Control of the August 1997	
	tential For Contamination And Well-Draining S Group A or B Soils) Are Present; Underdrains Elliminated.	18" Minimum Depth Sand-Peat Mix with Non-Woven
(o order not b oold, me i resent, orderdrans Emminated.	Pemeable Membrane and No Underdrain (Direct Infiltration).
5 ,		
D) Under	drains Are Not Desirable Or Are Not Feasible At This Site.	18" Minimum Depth Sand-Peat Mix with An Additional 18"
		Minimum Layer Sand-Peat Mix or Sand-Class 'A' Compost Bottom Layer (Total Sand-Peat Depth of 36"). 16-Mil. Impermeable Liner Used.
		, Commence and approved by the minimportroduce cities of the
E) Other:		x Other: See Detail on Sheet 8
Notes:		

Design Procedure Form: Porous Landscape Detention (PLD)

East PLD

Drainage Diagram for east pond-PLD Sizing
Prepared by {enter your company name here} 7/23/2008
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC

east pond-PLD Sizi Colorado Springs-El Paso County 2-Year Duration=15 min, Inten=2.49 in/hr
Prepared by {enter your company name here}
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC
7/23/2008

Pond Pond: East PLD

Inflow Area = 3.680 ac, Inflow Depth = 0.56" for 2-Year event Inflow = 8.32 cfs @ 0.09 hrs, Volume= 0.172 af

Outflow = 6.50 cfs @ 0.27 hrs, Volume= 0.134 af, Atten= 22%, Lag= 10.7 min

Primary = 6.50 cfs @ 0.27 hrs, Volume= 0.134 af

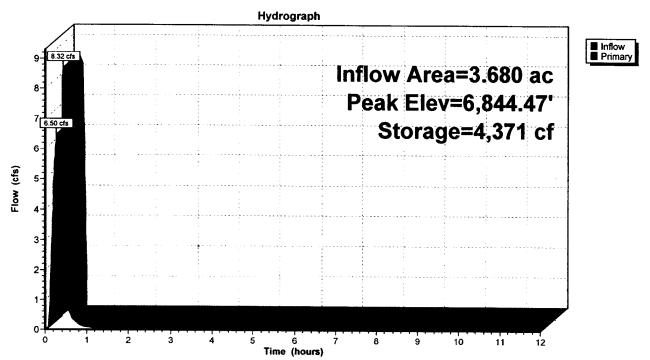
Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 6,844.47' @ 0.27 hrs Surf.Area= 3,394 sf Storage= 4,371 cf

Plug-Flow detention time= 12.8 min calculated for 0.134 af (78% of inflow) Center-of-Mass det. time= 10.8 min (20.9 - 10.0)

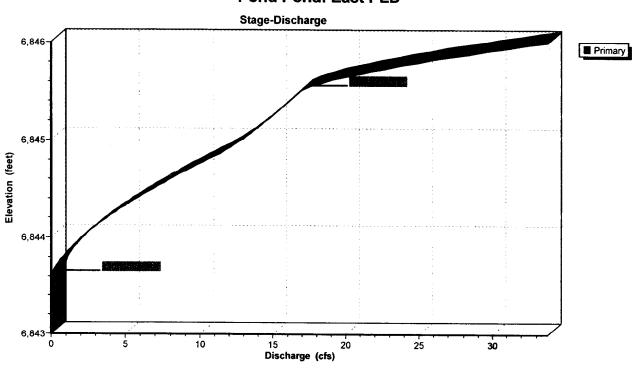
Volume	Inv	ert Avail.	Storage S	Storage D	escription		
#1	6,843.	00'	9,728 cf	Custom S	Stage Data (Pyram	idal) Listed below	
Elevation (fee		Surf.Area (sq-ft)	Inc.S (cubic-	Store feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
6,843.0 6,844.0 6,846.0	0	2,200 3,300 3,700		0 ,731 ,996	0 2,731 9,728	2,200 3,320 3,939	
Device	Routing	Inve	ert Outlet	Devices			
#1 #2	Primary Primary				oriz. Orifice/Grate H Vert. Orifice/Gra	Limited to weir flow te C= 0.600	C= 1.000

Primary OutFlow Max=6.49 cfs @ 0.27 hrs HW=6,844.47' (Free Discharge)

1=Orifice/Grate (Controls 0.00 cfs)


-2=Orifice/Grate (Orifice Controls 6.49 cfs @ 2.99 fps)

east pond-PLD Sizi Colorado Springs-El Paso County 2-Year Duration=15 min, Inten=2.49 in/hr Prepared by {enter your company name here}


HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC

7/23/2008

Pond Pond: East PLD

Pond Pond: East PLD

east pond-PLD Sizi Colorado Springs-El Paso County 5-Year Duration=15 min, Inten=3.42 in/hr Prepared by {enter your company name here}
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC
7/23/2008

Pond Pond: East PLD

Inflow Area = 3.680 ac, Inflow Depth = 0.77" for 5-Year event Inflow = 11.42 cfs @ 0.09 hrs, Volume= 0.236 af

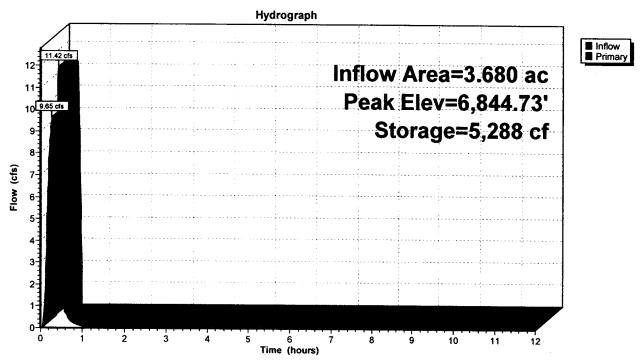
Outflow = 9.65 cfs @ 0.26 hrs, Volume= 0.198 af, Atten= 16%, Lag= 10.4 min

Primary = 9.65 cfs @ 0.26 hrs, Volume= 0.198 af

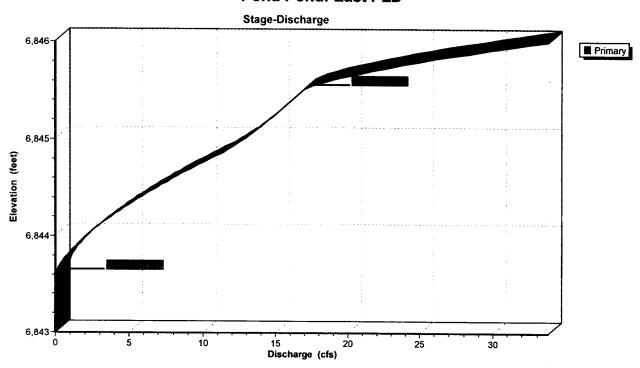
Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 6,844.73' @ 0.26 hrs Surf.Area= 3,446 sf Storage= 5,288 cf

Plug-Flow detention time= 10.5 min calculated for 0.198 af (84% of inflow) Center-of-Mass det. time= 9.4 min (19.4 - 10.0)

Volume	Inve	ert Avail.St	orage Sto	rage Des	cription		
#1	6,843.0	0' 9,7	728 cf Cus	tom Sta	ge Data (Pyrami	dal) Listed below	
Elevation (feet)		Surf.Area (sq-ft)	Inc.Stor		Cum.Store cubic-feet)	Wet.Area (sq-ft)	
6,843.00)	2,200	•	0	0	2,200	
6,844.00)	3,300	2,73	1	2,731	3,320	
6,846.00)	3,700	6,99	6	9,728	3,939	
Device I	Routing	Invert	Outlet De	vices			
#1 1	Primary	6,845.50	3.00' x 3.	00' Horiz	z. Orifice/Grate	Limited to weir flow	C= 1.000
#2 i	Primary	6,843.60			Vert. Orifice/Gra		

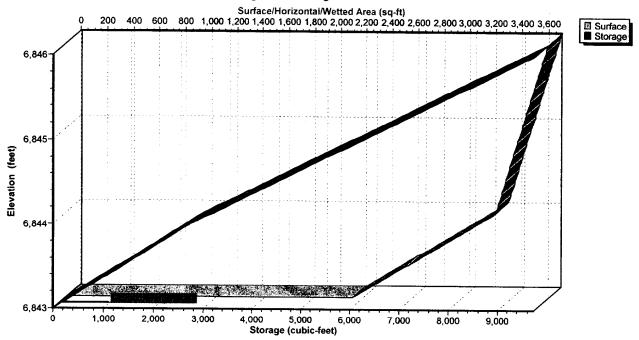

Primary OutFlow Max=9.63 cfs @ 0.26 hrs HW=6,844.73' (Free Discharge)

-1=Orifice/Grate (Controls 0.00 cfs)


-2=Orifice/Grate (Orifice Controls 9.63 cfs @ 3.41 fps)

east pond-PLD Sizi Colorado Springs-El Paso County 5-Year Duration=15 min, Inten=3.42 in/hr Prepared by {enter your company name here}
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC
7/23/2008

Pond Pond: East PLD


Pond Pond: East PLD

east pond-PLD Sizi Colorado Springs-El Paso County 5-Year Duration=15 min, Inten=3.42 in/hr
Prepared by {enter your company name here}
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC
7/23/2008

Pond Pond: East PLD

Stage-Area-Storage

east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hr Prepared by {enter your company name here}

HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC

7/23/2008

Pond Pond: East PLD

Inflow Area = 3.680 ac, Inflow Depth = 1.37" for 100-Year event 20.30 cfs @ 0.09 hrs, Volume= 0.420 af

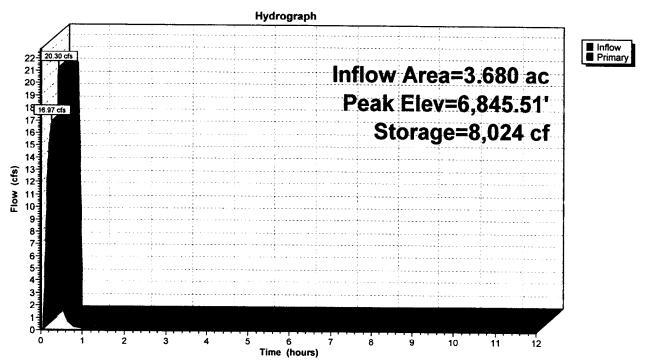
Outflow = 16.97 cfs @ 0.26 hrs, Volume= 0.382 af, Atten= 16%, Lag= 10.4 min

Primary = 16.97 cfs @ 0.26 hrs, Volume= 0.382 af

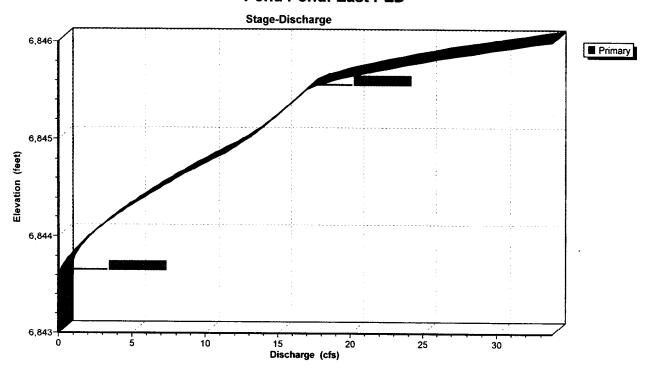
Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 6,845.51' @ 0.26 hrs Surf.Area= 3,603 sf Storage= 8,024 cf

Plug-Flow detention time= 8.7 min calculated for 0.382 af (91% of inflow) Center-of-Mass det. time= 7.8 min (17.8 - 10.0)

Volume	Inv	ert Avail.	Storage	Storage D	escription		
#1	6,843.	00' 8	9,728 cf	Custom S	Stage Data (Pyrami	dal) Listed below	
Elevation (feet		Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
6,843.0	0	2,200		0	0	2,200	
6,844.0	0	3,300		2,731	2,731	3,320	
6,846.0	0	3,700		6,996	9,728	3,939	
Device	Routing	inve	ert Outle	et Devices			
#1	Primary	6,845.5	50' 3.00 '	' x 3.00' Ho	riz. Orifice/Grate	Limited to weir flow	C= 1 000
#2	Primary	6.843.6			H Vert. Orifice/Gra		- 1,700

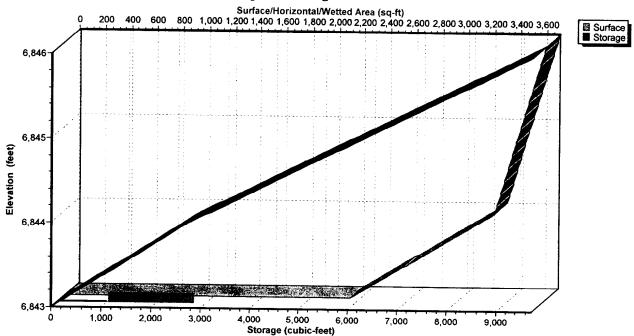

Primary OutFlow Max=16.92 cfs @ 0.26 hrs HW=6,845.51' (Free Discharge)

-1=Orifice/Grate (Weir Controls 0.04 cfs @ 0.33 fps)


-2=Orifice/Grate (Orifice Controls 16.88 cfs @ 5.40 fps)

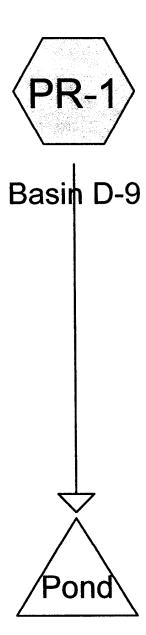
east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hr
Prepared by {enter your company name here}
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC
7/23/2008

Pond Pond: East PLD


Pond Pond: East PLD

east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hr
Prepared by {enter your company name here}
Page 10
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC
7/23/2008

Pond Pond: East PLD


Stage-Area-Storage

Designer:	Thomas Roberts	
Company:	Springs Engineering	
Date:	July 23, 2008	
Project:	Meridian Crossing West Pond	
Location:	Falcon, CO	· ·
		<u> </u>
B) Contril C) Water (WQ0	rage Volume (I _a = 100% if all paved and roofed areas u/s of PLD) ry Area's Imperviousness Ratio (i = I _a / 100) buting Watershed Area Including the PLD (Area) Quality Capture Volume (WQCV) CV = 0.8 * (0.91 * I ³ - 1.19 * I ² + 0.78 * I)) n Volume: Vol _{PLD} = (WQCV / 12) * Area	i _a = 82.00 % i = 0.82 % Area = 200,821 square feet WQCV = 0.27 watershed inches Vol = 4,568 cubic feet
(from 456	ace Area (A_{PLD}) and Average Depth (d_{av}) 57.86 square feet to 9135.72 square feet) ol / A_{PLD}), Min=0.5', Max=1.0')	$A_{PLD} = \underline{\qquad 4,600 \qquad}$ square feet $d_{av} = \underline{\qquad 0.99 \qquad}$ feet
Based on A) Check bo B) Check bo C) Check bo if underdr E) Does tribt petroleum present, s	of PLD (Check A, or B, or C, answer D) answers to 3A through 3D, check the appropriate method x if subgrade is heavy or expansive clay x if subgrade is sitly or clayey sand x if subgrade is well-draining soil x if underdrains are not desirable or ains are not feasible at this site. utary catchment contain land uses that may have n products, greases, or other chemicals such as gas station, yes no store, restaurant, etc.?	Infiltration to Subgrade with Permeable Membrane: 3(C) checked and 3(E) = no Underdrain with Impermeable Liner: 3(A) checked or 3(E) = yes Underdrain with Non-Woven Geotextile Fabric: 3(B) checked and 3(E) = no 16-Mil. Impermeable Membrane with No Underdrain: 3(D) checked - Evapotranspiration only x Other: Type D Inlet
A) Heavy Perfo B) Silty o Perfo C) No Po (NRC	or Expansive Clay (NRCS Group D Soils) Present; or Expansive Clay (NRCS Group D Soils) Present; or Clayey Sand (NRCS Group C Soils) Present; or Clayey Sand (NRCS Group C Soils) Present; orated HDPE Underdrain Used. Obtential For Contamination And Well-Draining S Group A or B Soils) Are Present; Underdrains Elliminated.	18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer. 16-Mil. Impermeable Liner and a 3" to 4" Perforated HDPE Underdrain. 18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer and a 3" to 4" Perforated HDPE Underdrain w/ Non-Woven Pemeable Membrane. 18" Minimum Depth Sand-Peat Mix with Non-Woven Pemeable Membrane and No Underdrain (Direct Infiltration). 18" Minimum Depth Sand-Peat Mix with An Additional 18" Minimum Layer Sand-Peat Mix or Sand-Class 'A' Compost Bottom Layer (Total Sand-Peat Depth of 36"). 16-Mil. Impermeable Liner Used. x Other: See Detail on Sheet 8

Design Procedure Form: Porous Landscape Detention (PLD)

West WQ Pond, PLD 7/23/2008, 3:44 PM

West PLD

Drainage Diagram for west pond-PLD Sizing
Prepared by {enter your company name here} 7/23/2008
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC

west pond-PLD Sizi Colorado Springs-El Paso County 2-Year Duration=6 min, Inten=3.56 in/hr
Prepared by {enter your company name here}
Page 2
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC
7/23/2008

Pond Pond: West PLD

Inflow Area = 3.680 ac, Inflow Depth = 0.32" for 2-Year event 11.93 cfs @ 0.10 hrs, Volume= 0.098 af

Outflow = 11.81 cfs @ 0.10 hrs, Volume= 0.098 af, Atten= 1%, Lag= 0.2 min

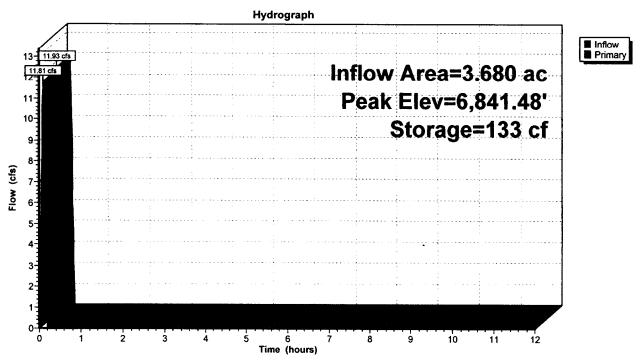
Primary = 11.81 cfs @ 0.10 hrs, Volume= 0.098 af

Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 6,841.48' @ 0.10 hrs Surf.Area= 148 sf Storage= 133 cf

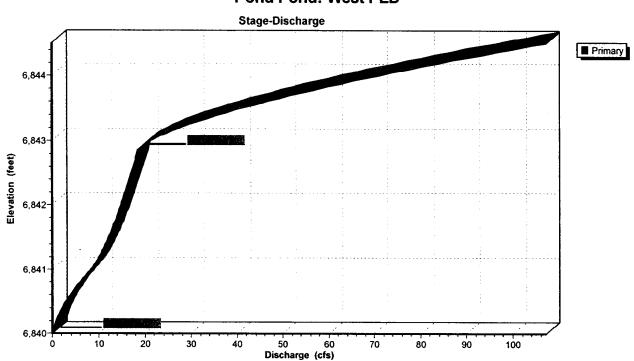
Plug-Flow detention time= 0.2 min calculated for 0.098 af (100% of inflow)

Center-of-Mass det. time= 0.2 min (5.7 - 5.5)

Volume	Inve	ert Avail.S	Storage	Storage [Description		
#1	6,840.0	0' 6	,085 cf	Custom S	Stage Data (Prisma	tic) Listed below	
Elevation (feet)		Surf.Area (sq-ft)		Store	Cum.Store (cubic-feet)		
6,840.00		20	(CUDII	0	(<u>cubic-leet)</u> 0		
6,841.00		100		60	60		
6,842.00)	200		150	210		
6,843.00)	1,500		850	1,060		
6,844.50)	5,200		5,025	6,085		
Device	Routing	Inve	ert Outle	et Devices			
#1	Primary	6,842.8	5' 3.00	' x 3.00' H	oriz. Orifice/Grate	Limited to weir flow	C= 1.000
#2	Primary	6,840.0	0' 2.50	' W x 1.00'	H Vert. Orifice/Gra	nte C= 0.600	

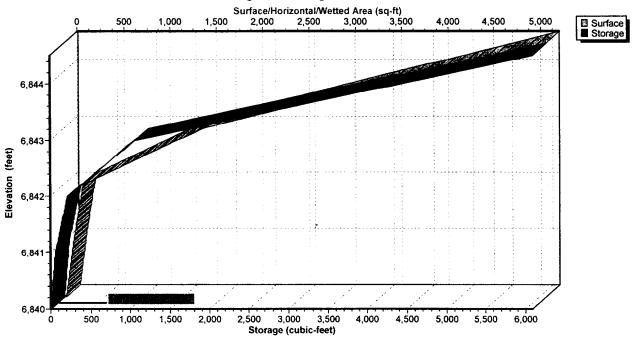

Primary OutFlow Max=11.74 cfs @ 0.10 hrs HW=6,841.47' (Free Discharge)

1=Orifice/Grate (Controls 0.00 cfs)


-2=Orifice/Grate (Orifice Controls 11.74 cfs @ 4.70 fps)

west pond-PLD SiziColorado Springs-El Paso County 2-Year Duration=6 min, Inten=3.56 in/hrPrepared by {enter your company name here}Page 3HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: West PLD


Pond Pond: West PLD

west pond-PLD SiziColorado Springs-El Paso County 2-Year Duration=6 min, Inten=3.56 in/hrPrepared by {enter your company name here}Page 4HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: West PLD

west pond-PLD Sizi Colorado Springs-El Paso County 5-Year Duration=6 min, Inten=4.88 in/hr
Prepared by {enter your company name here}
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC
7/23/2008

Pond Pond: West PLD

Inflow Area = 3.680 ac, Inflow Depth = 0.44" for 5-Year event Inflow = 0.135 af

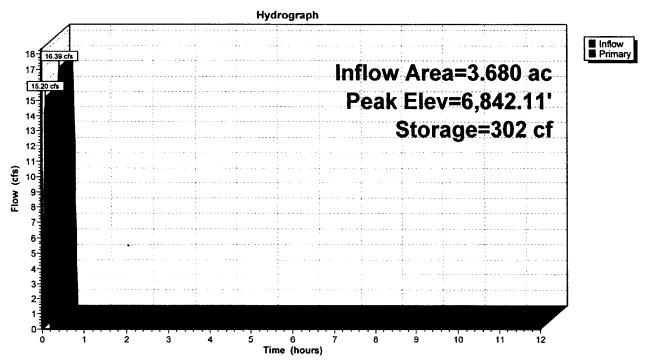
Outflow = 15.20 cfs @ 0.11 hrs, Volume= 0.135 af, Atten= 7%, Lag= 0.6 min

Primary = 15.20 cfs @ 0.11 hrs, Volume= 0.135 af

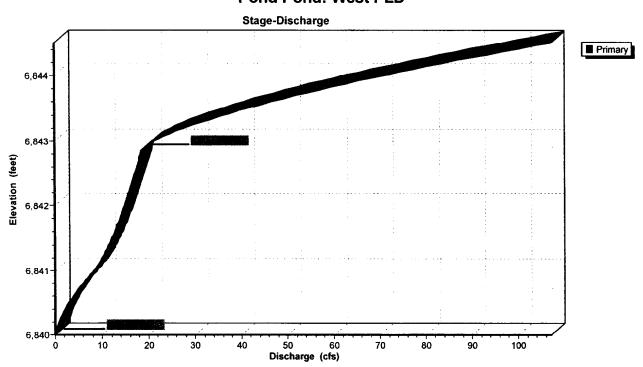
Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 6,842.11' @ 0.11 hrs Surf.Area= 340 sf Storage= 302 cf

Plug-Flow detention time= 0.2 min calculated for 0.134 af (100% of inflow) Center-of-Mass det. time= 0.2 min (5.7 - 5.5)

Volume	Inv	ert Avail.S	torage	Storage D	escription		
#1	6,840.	00' 6	,085 cf	Custom S	tage Data (Prisma	atic) Listed below	
Elevatio		Surf.Area (sq-ft)		Store :-feet)	Cum.Store (cubic-feet)		
6,840.0	00	20		0	0		
6,841.0	00	100		60	60		
6,842.0	00	200		150	210		
6,843.0	00	1,500		850	1,060		
6,844.5	50	5,200		5,025	6,085		
Device	Routing	Inve	rt Outle	et Devices			
#1	Primary	6,842.8	5' 3.00'	x 3.00' Ho	riz. Orifice/Grate	Limited to weir flow	C= 1.000
#2	Primary	6.840.00	o' 2.50'	W x 1.00'	H Vert. Orifice/Gra	ate C= 0.600	

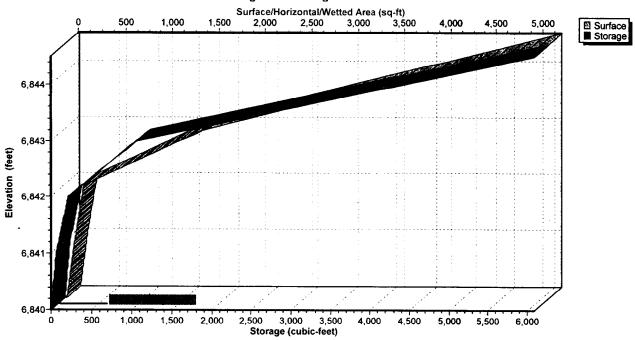

Primary OutFlow Max=15.16 cfs @ 0.11 hrs HW=6,842.10' (Free Discharge)

1=Orifice/Grate (Controls 0.00 cfs)


2=Orifice/Grate (Orifice Controls 15.16 cfs @ 6.06 fps)

west pond-PLD SiziColorado Springs-El Paso County 5-Year Duration=6 min, Inten=4.88 in/hrPrepared by {enter your company name here}Page 6HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: West PLD


Pond Pond: West PLD

west pond-PLD Sizi Colorado Springs-El Paso County 5-Year Duration=6 min, Inten=4.88 in/hr
Prepared by {enter your company name here}
Page 7
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC
7/23/2008

Pond Pond: West PLD

west pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hr Prepared by {enter your company name here}
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC
7/23/2008

Pond Pond: West PLD

Inflow Area = 3.680 ac, Inflow Depth = 0.78" for 100-Year event

Inflow = 29.14 cfs @ 0.09 hrs, Volume= 0.240 af

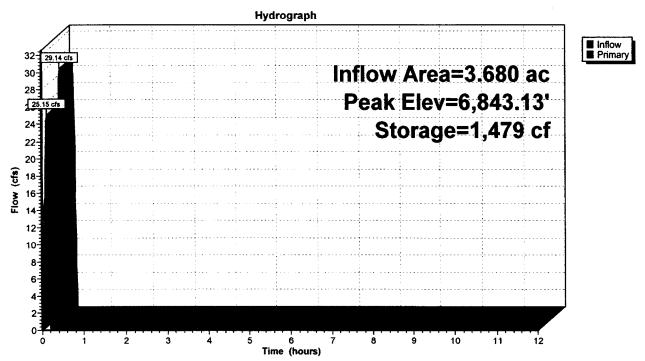
Outflow = 25.15 cfs @ 0.11 hrs, Volume= 0.239 af, Atten= 14%, Lag= 1.0 min

Primary = 25.15 cfs @ 0.11 hrs, Volume= 0.239 af

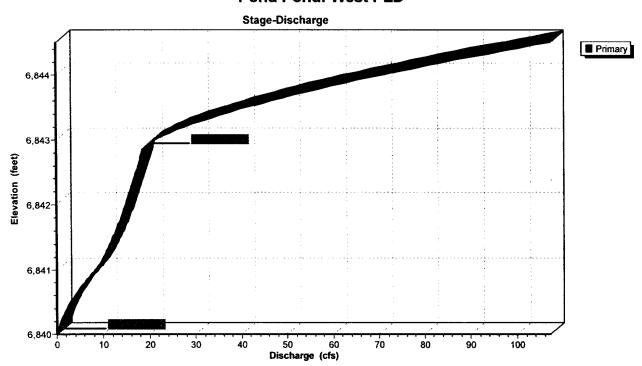
Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 6,843.13' @ 0.11 hrs Surf.Area= 1,809 sf Storage= 1,479 cf

Plug-Flow detention time= 0.7 min calculated for 0.239 af (100% of inflow) Center-of-Mass det. time= 0.7 min (6.2 - 5.5)

Volume	Inve	ert Avail	Storage	Storage	Description		
#1	6,840.0	00'	6,085 cf	Custom	Stage Data (Prisma	tic) Listed below	
Elevation (feet)		Surf.Area (sq-ft)		:Store c-feet)	Cum.Store (cubic-feet)		
6,840.00)	20		0	0		
6,841.00)	100		60	60		
6,842.00)	200		150	210		
6,843.00)	1,500		850	1,060		
6,844.50)	5,200		5,025	6,085		
Device	Routing	Inv	vert Outle	et Device	S		
	Primary Primary	6,842 6,840			loriz. Orifice/Grate O' H Vert. Orifice/Gra	Limited to weir flow te C= 0.600	C= 1.000

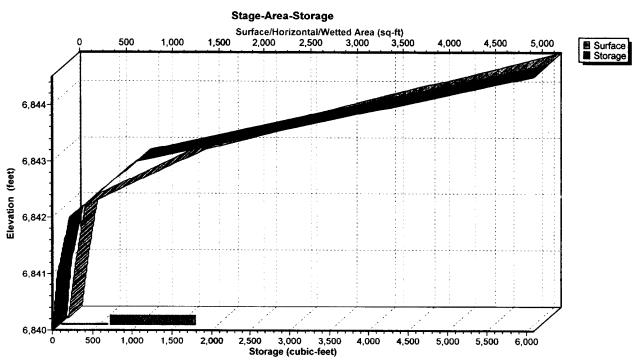

Primary OutFlow Max=25.05 cfs @ 0.11 hrs HW=6,843.12' (Free Discharge)

1=Orifice/Grate (Weir Controls 5.58 cfs @ 1.71 fps)


-2=Orifice/Grate (Orifice Controls 19.46 cfs @ 7.79 fps)

west pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hr
Prepared by {enter your company name here}
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC
7/23/2008

Pond Pond: West PLD



Pond Pond: West PLD

west pond-PLD SiColorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hrPrepared by {enter your company name here}Page 10HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: West PLD

Appendix H: Operations and Maintenance Manual

OPERATION AND MAINTENANCE MANUAL MERIDIAN CROSSING PARK PLACE ENTERPRISES EL PASO COUNTY, COLORADO

May 2008

PREPARED FOR:

Park Place Enterprises

15 Miranda Road Colorado Springs, CO 80906

PREPARED BY:

Springs Engineering

31 N. Tejon Street Suite 315 Colorado Springs, CO 80903

PROJECT NO. 07-057-0032

Table of Contents

TABLE OF CONTENTS	1
INTRODUCTION	2
GENERAL LOCATION AND DESCRIPTION	2
DESCRIPTION OF CONSTRUCTION	2
FACILITIES	2
INSPECTION AND MAINTENANCE	2
POROUS LANDSCAPE DETENTION FACILITY	2
OPERATION & MAINTENANCE LOG	4

Introduction

This Operation and Maintenance Plan is being submitted on behalf of Park Place Enterprises for a development known as Meridian Crossing in Falcon, Colorado. The purpose of this Operation and Maintenance Manual (O&M) is to identify facilities which are to be maintained by the Meridian Crossing Properties Owners Association (POA) and the frequency with which these items are to be maintained.

General Location and Description

Meridian Crossing is currently zoned CR and the proposed development includes 6 commercial lots, proposed water quality facilities, streets, and utilities.

Meridian Crossing is approximately 9.5 acres and is located north of the intersection of Meridian Road and Old Meridian Road in Falcon, Colorado, Section 12, Township 13 South, Range 65 West of the 6th Principal Meridian.

Description of Construction

Construction will consist of site grading, utility installation, and road paving. Approximately 9.5 acres of the site will be graded for construction of the proposed commercial units. Erosion control will be provided prior to construction.

Facilities

Water quality facilities will be owned and maintained by the POA. Water and sanitary sewer will be maintained by the Falcon Highlands Metropolitan District. All other utilities are to be maintained by their respective owners.

Inspection and Maintenance

A thorough inspection of the permanent structures shall be performed every 30 days as well as after any significant rain or snowmelt event. Inspectors are to look for any significant deterioration of the facilities including:

- Erosion of channels and side slopes.
- Accumulated trash or debris.

Repairs and removal of debris shall occur as soon as practical.

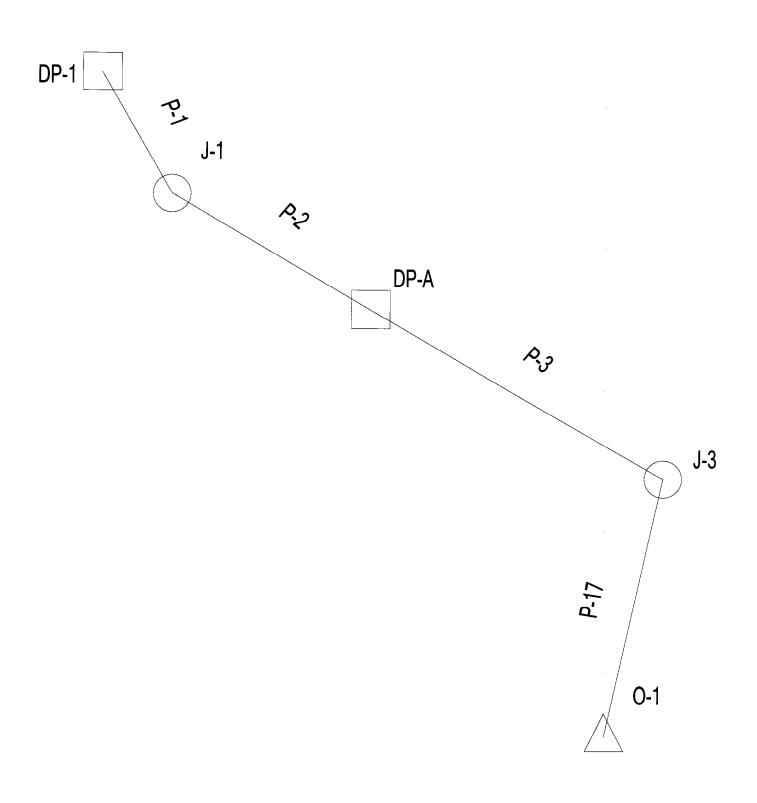
Porous Landscape Detention Facility

Lawn mowing and vegetative care shall be performed routinely, as aesthetic requirements demand. This shall limit unwanted vegetation. Irrigated turf grass shall be between 2 and 4 inches in height and non irrigated native turf grasses shall be 4 to 6 inches in height. Debris and litter removal shall be performed routinely, as aesthetic requirements demand. Removal of debris and litter from any detention area minimizes clogging of the sand media. Landscaping removal and replacement shall be done every 5 to 10 years depending on infiltration rates needed to drain the area in 12 hours or less. Over time the sandy loam

sandy loam turf will clog. The layer will need to be replaced, along with all turf and other vegetation growing on the surface, to rehabilitate infiltration rates. Bin-annual inspections of the hydraulic performance of the area will need to be performed. This will determine if the sand media is allowing acceptable infiltration.

An Operation and Maintenance Log follows.

Operation & Maintenance Log


THE SHOPPES AT FALCON OPERATION AND MAINTENANCE LOG

(Record inspections, items found maintenance and corrective actions taken. Also record any training received by Contractor personnel with regard to erosion control, materials handling and any inspections by outside agencies)

DATE	ITEM	SIGNATURE OF PERSON MAKING ENTRY
		·

Appendix I: Ultimate Design StormCAD Calculations

Scenario: 100-year

Analysis Results Scenario: 100-year

Note:

The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

Title:

Old Meridian Road

Project Engineer: Charlene Sammons

Project Date:

11/14/07

Comments:	Storm in Old Meridian Road for Meridian Crossing Storm Sewer
-----------	--

Scenario	100-year						
Physical Properties Alternation	Base-Physical Pro	perties					
Catchments Alternative	-	Catchments-100-year					
System Flows Alternative	Base-System Flows						
Structure Headlosses Altern	Base-Structure He	•					
Boundary Conditions Altern	Base-Boundary Co	Base-Boundary Conditions					
Design Constraints Alternat	Base-Design Cons	straints					
Capital Cost Alternative	Base-Cost						
User Data Alternative	Base-User Data						
Network Inventory							
Number of Pipes	4	Number of Inlets	2				
- Circular Pipes:	4	- Grate Inlets:	0				
- Box Pipes:	0	- Curb Inlets:	2				
- Arch Pipes:	0	- Combination Inlets:	0				
- Vertical Elliptical Pipes:	0	- Slot Inlets:	0				
- Horizontal Elliptical Pipes:	•	- Grate Inlets in Ditch:	0				
Number of Junctions	2	- Generic Inlets:	0				
Number of Outlets	1		· ·				
Circular Pipes Inventory		-					
18 inch	274.57 ft	24 inch	55.00 f				
Total Length	329.57 ft	24 IIIGI	55.00 ft				
Curb Inlet Inventory							
Type R 10'	2						
	Inlet elements	for network with outlet:	0-1				
Label Inlet 1	otal Total T	otal Bypass Capture I	HydraulicHydraulic (

		Inle	et elemen	its for ne	etwork wi	th outlet:	O-1			
Label	Inlet	Total Systemin Flow (cfs)	Total stercepted Flow (cfs)	Total Bypassed Flow (cfs)	Bypass Target	Capture Efficiency (%)	Grade	Grade	Gravity H Element I Headloss (ft)	Method
DP-1	Curb Type R	7.61	7.61	10.28	DP-A	42.5	3,848.83	3,848.83	0.00	Absolut
DP-A	Curb Type R	9.39	2.10	14.37	<automati< td=""><td>12.8</td><td>3,846.39</td><td>3,846.08</td><td>0.31</td><td>Standar</td></automati<>	12.8	3,846.39	3,846.08	0.31	Standar

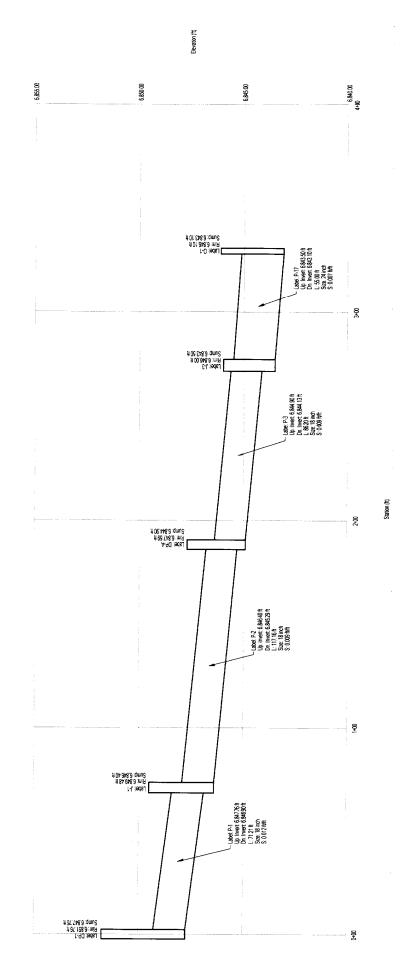
		Juncti	on elem	ents for	network	with o	utlet: O	-1		
Label	Grade	Hydraulic Grade Line Outl (ft)	Element	Method A	System Additional Flow (cfs)	System Known Flow (cfs)	System Rational Flow (cfs)	System IntensityF (in/hr)	System low Tim (min)	System e CA (acres)
J-1	3,847.76	3,847.46	0.30	Standar	0.00	0.00	7.55	8.50	6.59	0.88
J-3	3,844.91	3,844.91	0.00	Absolut	0.00	0.00	9.30	8.13	7.63	1.13

Title: Old Meridian Road z:\...\reports\fdr\calcs\storm cad\ultimate.stm 07/24/08 03:03:15 RMBentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

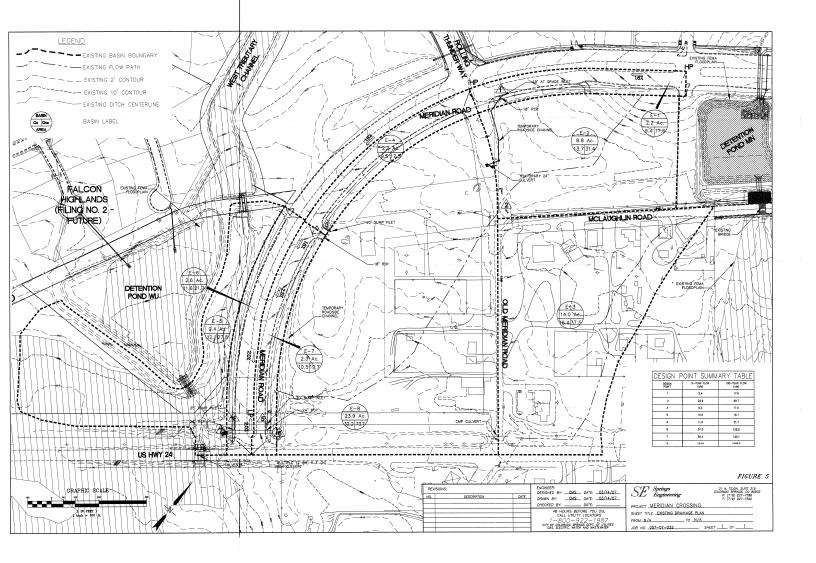
Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 2

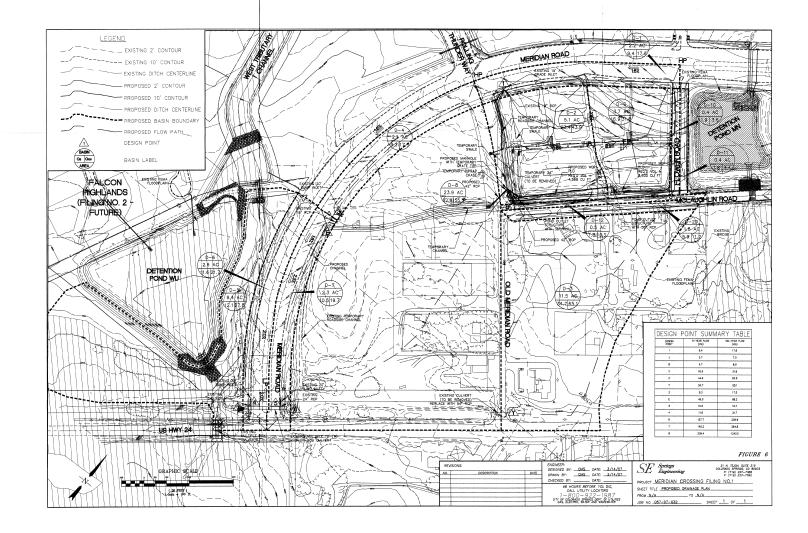
Analysis Results Scenario: 100-year

			(Outlet: O	-1				
Label	Grade	Hydraulic Grade Line Out (ft)	Element /	4 dditional	System Known Flow (cfs)	System Rational Flow (cfs)	System Intensity (in/hr)	low Tim	System e CA (acres)
0-1	3,843.10	3,843.10	0.00	0.00	0.00	9.22	8.06	7.83	1.13


			F	Pipe eleme	ents for	netwo	k with	outlet:	0-1			
Label	Section Shape	Section Size	Length (ft)	NumberCo of Sections	onstructe Slope (ft/ft)			Velocity	Invert	ownstread Invert Elevation (ft)	Grade	Hydraulic Grade Line Out (ft)
P-1	Circular	18 inch	71.21	1	0.012	0.011	7.61	6.31	3,847.76	6,846.90	3,848.83	3,847.79
P-2	Circular	18 inch	17.16	1	0.009	0.009	7.55	5.53	3,846.40	6,845.29	3,847.46	3,846.39
P-3	Circular	18 inch	86.20	1	0.009	0.009	9.39	6.33	3,844.90	6,844.13	3,846.08	3,845.29
P-17	Circular	24 inch	55.00	1	0.007	0.010	9.30	4.62	3,843.50	6,843.10	3,844.91	3,844.19

Scenario: 100-year


Combined Pipe\Node Report


Label	Label Up. Node	Dn. Node	⊕ د	Up. Inlet	Jp. Inlet Rat.	Let Tet	Up. Calc. Sys. CA	Up.Inlet Rat. Q	Size	Avg.	Avg.	ට ු ල	HGL	Up. Invert	Dn. Gr.	HGL	Dn. Invert	S (#/#)
				Area (acres)	Coef.	Area Icres)	(acres)	(cfs)		(cfs)	(fVs)	Elev.	Œ)	Œ)	Elev.	Œ	Œ	
P-1	P-1 DP-1 J-1		71.21	2.07	l	ı	0.88	17.89	17.89 18 inch 11.54 6.31	11.54	6.31	6,851.76	6,848.83	6,847.76	6,849.48	6,847.79	6,846.90	0.012
P-2	7	4	117.16	Υ X			0.88	ď Z	N/A 18 inch 10.22 5.53	10.22	5.53	6,849.48	6,847.46	6,846.40	6,847.69	6,846.39	6,845.29	600.0
P-3	P-3 DP-A J-3		86.20	0.80	1.00	0.80	1.13	6.63	6.63 18 inch 9.93 6.33	9.93	6.33	6,847.69	6,846.08	6,844.90	6,846.00	6,845.29	6,844.13	0.009
P-17	J-3	P-17 J-3 0-1	55.00	N/A			1.13	A/A	24 inch	10.45	4.62	N/A 24 inch 10.45 4.62 6,846.00	6,844.91	6,843.50	6,846.10	6,844.19	6,843.10	0.007

Profile: Ultimate Scenario: 100-year

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

APPENDIX F: PLD SITE PHOTOS

