Les Schwab Tire Center Storm Report

7105 Old Meridian RD. Falcon Colorado

Prepared For:

SFP-E, LLC PO Box 5350 20900 Cooley Road Bend, OR 97701

Prepared By:

Cushing Terrell

Zack Graham, PE 411 E Main ST #101 Bozeman, MT 59715 (406) 922-7137 www.cushingterrell.com

Cushing Terrell Project No. LSCO_21WIN PCD FILLING NO. : PPR-21-023 JULY, 21, 2021

TABLE OF CONTENTS

1.0 CONTENTS

2.0	GENE	RAL LOCATION AND DESCRIPTION	3
2.1	Loca	ation	3
2.2	Des	cription of Property	3
2.3		ting PLD Condition Assessment	
3.0		IAGE BASINS	
3.1	Refe	erence Reports and Manuals	4
3.2	Exis	ting Drainage Basins	4
3	.2.1	BASIN X	4
3.3	Prop	posed Drainage Basins	4
3	.3.1	BASIN A	4
3	.3.2	BASIN B	5
3	.3.3	BASIN C	5
3	.3.4	BASIN D	5
3	.3.5	BASIN E	5
4.0	DRAIN	IAGE DESGIN CRITERIA	6
4.1	Dev	elopment Criteria Reference	6
4.2	Hyd	rologic Criteria	6
5.0		IAGE FACILITY DESIGN	
6.0		STEP PROCESS	
6.1		o 1 Employ Runoff Reduction Methods	
6.2	Step	o 2 Stabilize Drainageways	7
6.3	Step	3 Provide Water Quality Capture Volume	8
6.4	Step	o 4 Consider Need for Industrial and Commercial BMPs	9
7.0	CONC	LUSIONS	9

LIST OF TABLES

Table 3.1	4
Table 3.2	5

APPENDICES

APPENDIX A: HYDROLOGIC CALCULATION	
APPENDIX B: BASIN MAPS	
APPENDIX C: FEMA FIRMETTE	
APPENDIX D: WEB SOIL SURVEY	
APPENDIX E: MERIDIAN CROSSING STORM REPORT	
APPENDIX F: PLD SITE PHOTOS	

es Schwab Tire Center Drainage Report Pro

2.0 GENERAL LOCATION AND DESCRIPTION

2.1 Location

The project site is located at 7105 N Meridian Rd, Falcon, Colorado and falls within signature block. The parcel is part of the larger Meridian Crossing Development, which inclue Please see attach stormwater system infrastructure, including the treatment pond to the south. The document for on the northeast side of the intersection of Meridian Rd and N Meridian Rd. The reference. Please to north of the existing storm water treatment facilities maintained by the M Development and an existing storm line runs along the south west property line and stamped for fin property lies within the NE 1/4 of Section 12, Township 13 S, Range 65 West of the Approval.

before this with design engineer signature block, owner signature block, and County signature block. Please see attached document for reference. Please submit them signed and stamped for final

Please place a page

2.2 Description of Property

The existing site consists of an undeveloped 2.48 acre lot covered with native grasses and shrubs. In areas taken from the ALTA Survey the site consists of roughly 12% impervious road and sidewalk area with the remaining 88% being the native vegetation. There are no stream crossings or significant waterways located within the area being developed by this project. The site is accessed via the existing private roads that are centered on the north east and south east property lines of the site. These roads will provide means of vehicular ingress and egress. The site falls entirely with the Falcon Major Drainage Basin as identified by the Falcon Drainage Basin Planning Study dated September 2015.

The topography of the existing site consists of a roughly consistent grade which directs flow from the north of the site towards the south at slopes ranging from 2-5%. There is an existing storm PLD pond located to the south of the neighboring lot that ultimately then out falls to the existing detention pond WU. The site is not located in a floodway or flood plain and is designated as area of minimal flood hazard (Zone X) per FEMA FIRM panel 08041C0561G.

2.3 Existing PLD Condition Assessment

Runoff from this site will be collected via proposed curb and gutter and be routed overland to the existing Porous Landscape Detention pond. In field observations on 1/5/2021 and 06/18/2021 this pond has been determined to need maintenance as prescribed in the operation and maintenance manual that is included as appendix H of the Meridian Crossing Final Drainage Report (MCFDR). This full report is located as appendix E of this report. Specifically, we recommend the pond should be cleared of Debris and Litter and that landscaping should be removed and replaced for portions of the pond where the existing landscaping is failing. Photos showing the condition for this PLD are included in Appendix F of this report.

3.0 DRAINAGE BASINS

3.1 Reference Reports and Manuals

- Meridian Crossing Final Drainage Report (MCFDR)
- Colorado Springs Drainage Criteria (CSDC)
- El Paso County Drainage Criteria Manual (EPCSCM)
- Mile High Flood Control District Criteria Manual (MHFC)

3.2 Existing Drainage Basins

See appendix B for drainage maps showing basin locations, and appendix A for full drainage calculation sheets.

3.2.1 BASIN X

Basin X is the sole existing basin that consists of the entire 2.48 acres site. The flow path of this basin is from north to south into the existing private drive at design points 1 and 2. Once leaving the property across the existing private drive runoff enters the adjacent lot. The groundcover of this basin is primarily native grasses but also contains a portion of the private drive. After flowing across the southern property, the runoff enters the PLD (porous landscape detention) before being captured by the existing outlet structure and being routed to detention pond WU. The rational calculation for the basin is shown below in table 3.1

RATIONAL CALC EXISTING									
Basin	% Impervious	C5	C100	Area	TC	l 5 year	l 100 yesr	Q 5	Q 100
Х	12	0.28	0.42	2.48	25	2.6	4.5	1.81	4.69
TOTAL	12	0.28	0.42	2.48				1.81	4.69

Table 3.1

3.3 Proposed Drainage Basins

See appendix B for drainage maps showing basin locations, and appendix A for full drainage calculation sheets. In general, all basins flow to the south and outlet on the existing private road. These basins then flow through the neighboring property to the south and outfall at the existing PLD pond following the historic route. The exception to this being basin A which follows the historic drainage pattern for this area of the site and flows to Old Meridian Road where it is captured by existing storm infrastructure.

3.3.1 BASIN A

Basin A consists of the proposed sidewalk connection and the landscaping along old meridian road. The runoff for this basin is captured by the curb and gutter and directed to the existing curb inlets in Old Meridian Road following the historic route.

3.3.2 BASIN B

Basin B consists of a portion of the building roof flows which are released at grade via downspouts along the rear of the structure and the south west portion of the side parking and drive aisles. These flows are then conveyed to the private road on the south of the site at design point 1. The flows then follow the historic path across the private drive into the neighboring site and ultimately the PLD pond.

3.3.3 BASIN C

Basin C consists of the parking, and drive aisles located along a portion of the front and east sides of the building. The flows are collected by curb and gutter and directed via a curb cut and concrete channel to the sidewalk chase at design point 3. The flows then follow the historic path across the private drive into the neighboring site and ultimately the PLD pond.

3.3.4 BASIN D

Basin D consists of the remainder of the roof flows which are released at grade via downspouts along the rear of the structure and the drive aisle and parking off the rear of the building. These flows are captured by curb and gutter and directed to the sidewalk chase at design point 2. The flows then follow the historic path across the private drive into the neighboring site and ultimately the PLD pond.

3.3.5 BASIN E

Basin E consists of the existing private drive on the north east edge of the site and a small portion on the landscaping adjacent to it. These flows are captured in the existing curb and gutter and are routed to the PLD through this existing curb.

	RATIONAL CALC PROPOSED								
Basin	% Impervious	C5	C100	Area	TC*	I 5 year	l 100 year	Q 5	Q 100
Α	8	0.15	0.4	0.20	5	5.2	9	0.16	0.72
В	88	0.80	0.89	0.54	6	5	8.8	2.16	4.23
С	54	0.52	0.68	1.01	11	3.7	7	1.94	4.81
D	90	0.82	0.9	0.56	5	5.2	9	2.39	4.54
E	87	0.79	0.88	0.17	5	5.2	9	0.70	1.35
TOTAL	68			2.48				7.35	15.64

Table	e 3.2

*Minimum value of 5 min used

4.0 DRAINAGE DESGIN CRITERIA

4.1 Development Criteria Reference

This report was prepared using the City of Colorado Springs Drainage Criteria (CSDC) chapter 6 and the Mile High Flood District Criteria Manual. In creating this report reference was made to the "Meridian Crossing Final Drainage Report" which is included in Appendix E and describes the existing stormwater quality treatment and detention facilities that will be used by this project.

4.2 Hydrologic Criteria

Because the site in question is under 100 acres, the rational method was used to determine the peak stormwater runoff for all basins. For the purposes of sizing proposed stormwater structures, the major 100-year storm as described in the CSDC was used. The rational method coefficients for these calculations were selected from Table 6-6 of the CSDC. Time of concentration was calculated per CSDC section 3.2 (See appendix A for calculation). All rainfall values were taken from Figure 6-6 of the CSDC.

5.0 DRAINAGE FACILITY DESIGN

The drainage facilities proposed for this project consist of curb and gutter, concrete channels, and sidewalk chases designed to collect the additional flows generated by development of the site. These facilities flow south following the historic route to the existing western PLD treatment facility. This PLD consists of a grassy swale and contains and outlet structure which outlets into a storm network under old meridian road that then discharges into a swale located to the west. This swale conveys water to the detention pond known as pond WU (page 11 of MCFDR).

The design and calculations of this existing stormwater treatment and detention facility are not within the scope of this report and can be found in the "Meridian Crossing Final Drainage Report" which is included in Appendix E.

The treatment facility is described as a "Porous Landscape Detention" (PLD) and is described in detail on page 16 of the referenced report. This facility was sized to include flows created by the future development we are now proposing. The proposed Les Schwab site can be described as the northern half of basin D-2 using the terminology of the referenced report. The assumed imperviousness for the tributary area to the PLD used in the referred report was 82% (see appendix E of MCFDR) our proposed design has a percent imperviousness of 68%. For the entire D-2 basin as described in the referenced report the assumed post development flows generated are 23.4 CFS for the minor event and 43.9 CFS for the major event (page 11). The Les Schwab site makes up roughly half of this basin (49%) and generates 7.35 CFS in the minor event and 15.64 CFS in the major event. These flows are well within the expected values for 49% of the basin which would be 11.5 CFS for minor and 21.5 CFS for major storm. No improvements are proposed for this PLD or detention pond WU which are both owned and maintained by Park Place Enterprises, LLC.

6.0 FOUR STEP PROCESS

6.1 Step 1 Employ Runoff Reduction Methods

To reduce runoff peak flows and volume our site discharges to the preexisting grass lined PLD pond that infiltrates / treats the stormwater. Our site also uses a compact design for impervious areas with a total percent imperviousness of 68% which is 14% lower than design imperviousness used by the "Meridian Crossing Final Drainage Report" which sized the facilities for this project.

6.2 Step 2 Stabilize Drainageways

The internal drainageways to the Les Schwab site are stabilized via the use of concrete curb and gutter, concrete channels, and sidewalk chases. Once water leaves the site it flows overland to the existing PLD channel and ultimately to the existing pond WU through storm sewer and a grass lined swale.

Because the design for the overall development calls for overland flow from the Les Schwab site across the adjacent property to the southeast and ultimately to the water quality treatment pond on that property, we evaluated the erosion potential due to runoff across the adjacent property. The adjacent property is characterized by fine to course sandy loam soils with sparce native prairie grasses as indicated in the photo below:

In the existing condition, the existing road separating the two lots tends to concentrate runoff from the Les Schwab site at the approaches to the adjacent property such that the existing condition for runoff from the Les Schwab site should be considered shallow/concentrated flow as it flows through the adjacent property. Signs of light erosion are evident where runoff transitions from shallow/concentrated flow into the existing pond as indicated in the photo below:

This also shows that the vegetation in this pond could use maintenance to increase the overall density and efficacy of the growth.

While the proposed development will increase peak runoff flowrates and overall runoff volume, based on TR-55, the velocity of the shallow/concentrated condition does not increase, rather the flow widens over a larger area. The average slope across the adjacent lot is 1.5%. Based on Figure 3-1 of TR-55, this correlates to a velocity of 2 ft/sec. The maximum permissible velocity, for non-colloidal (assumed conservative condition) sandy loam, is 1.75 ft/s per Table 7-3 of Chow. However, because of the vegetative condition, the direction of flow is not direct across the gradually sloped surface resulting in a slower than 2 ft/s velocity. This is evidenced by lack of erosion in the existing condition. Based on the above analysis, I do not expect a general increase in erosion on the adjacent property beyond what might occur in the existing condition.

6.3 Step 3 Provide Water Quality Capture Volume

Water quality Capture Volume is provided by the existing southern Porous Landscape Detention. The design of this facility is not within the scope of this report but in summary the pond has a design capacity of 4,568 CF and is sized to provide water quality treatment for a post development basin D-2 with an 82% imperviousness. Please see the "Meridian Crossing Final Drainage Report" located in appendix E for more information regarding this pond.

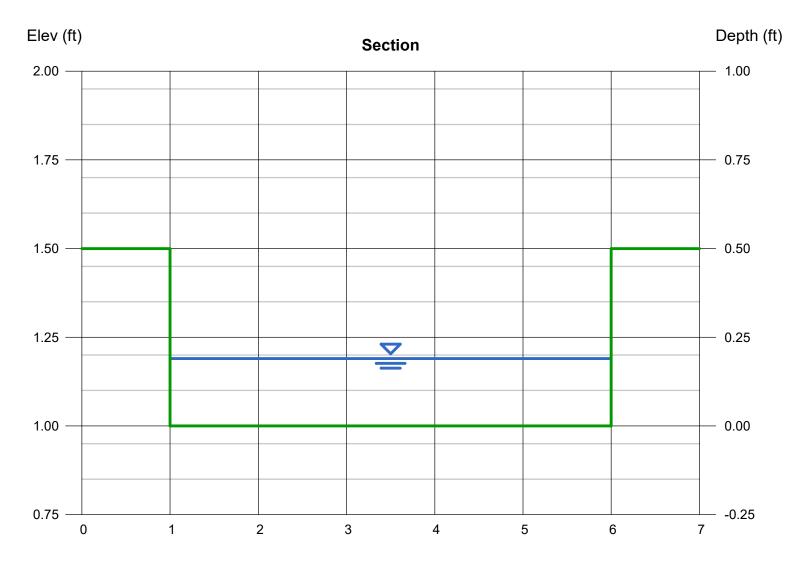
6.4 Step 4 Consider Need for Industrial and Commercial BMPs

No industrial or commercial BMPs are proposed for this site. Potential pollutants such as oil fluids etc. are stored and handled inside the building and captured by floor drains directed to a sand oil separator before being outlet to the sanitary system. The outdoor storage of the site contains only used car tires which do not present the need for spill prevention or a roofed enclosure any more than a typical parking lot. The proposed CMU walls serve solely for visual screening / theft prevention.

7.0 CONCLUSIONS

The proposed design meets the design assumptions utilized in the "Meridian Crossing Final Drainage Report" that is included in Appendix E. The "West PLD", which this site is drains to, assumed a developed condition with a percent impervious area of 82%. The proposed design has a percent impervious area of 68%. Therefore, the anticipated peak runoff and water quality volume is less than what the PLD "West PLD" was originally designed to detain and treat from this development and no additional stormwater quality treatment or detention volume is required for this project.

APPENDIX A: HYDROLOGIC AND HYDRAULIC CALCULATIONS

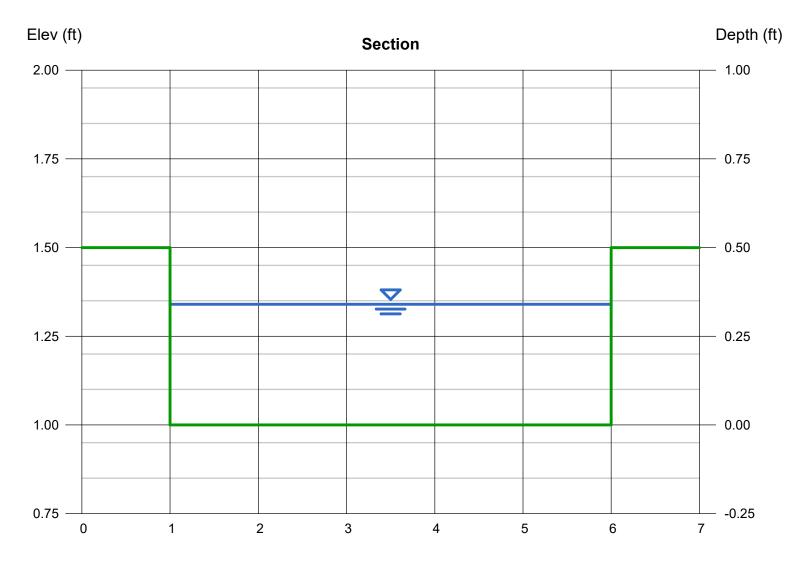

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jul 20 2021

5 YEAR CONC CHANNEL

Rectangular		Highlighted	
Bottom Width (ft)	= 5.00	Depth (ft)	= 0.19
Total Depth (ft)	= 0.50	Q (cfs)	= 1.940
		Area (sqft)	= 0.95
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.04
Slope (%)	= 0.50	Wetted Perim (ft)	= 5.38
N-Value	= 0.016	Crit Depth, Yc (ft)	= 0.17
		Top Width (ft)	= 5.00
Calculations		EGL (ft)	= 0.25
Compute by:	Known Q		
Known Q (cfs)	= 1.94		

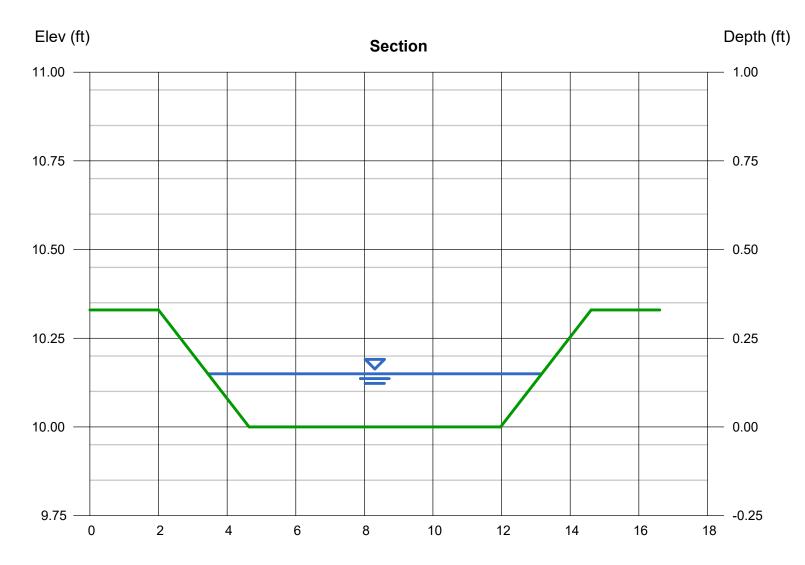


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

100 YEAR CONC CHANNEL

Rectangular	,

Rectangular		Highlighted
Bottom Width (ft)	= 5.00	Depth (ft) = 0.34
Total Depth (ft)	= 0.50	Q (cfs) = 4.810
		Area (sqft) = 1.70
Invert Elev (ft)	= 1.00	Velocity (ft/s) = 2.83
Slope (%)	= 0.50	Wetted Perim (ft) = 5.68
N-Value	= 0.016	Crit Depth, Yc (ft) = 0.31
		Top Width (ft) = 5.00
Calculations		EGL (ft) = 0.46
Compute by:	Known Q	
Known Q (cfs)	= 4.81	


Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

CROSS PAN 5 YEAR

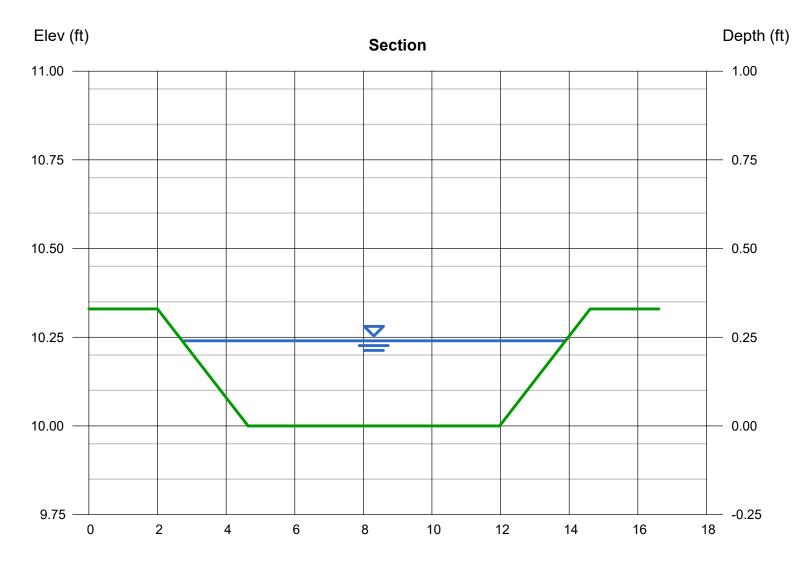
Trapezoidal

Trapezoidal		Highlighted	
Bottom Width (ft)	= 7.33	Depth (ft)	= 0.15
Side Slopes (z:1)	= 8.00, 8.00	Q (cfs)	= 1.940
Total Depth (ft)	= 0.33	Area (sqft)	= 1.28
Invert Elev (ft)	= 10.00	Velocity (ft/s)	= 1.52
Slope (%)	= 0.50	Wetted Perim (ft)	= 9.75
N-Value	= 0.016	Crit Depth, Yc (ft)	= 0.13
		Top Width (ft)	= 9.73
Calculations		EGL (ft)	= 0.19
Compute by:	Known Q		
Known Q (cfs)	= 1.94		

Tuesday, Jul 20 2021

Reach (ft)

Channel Report

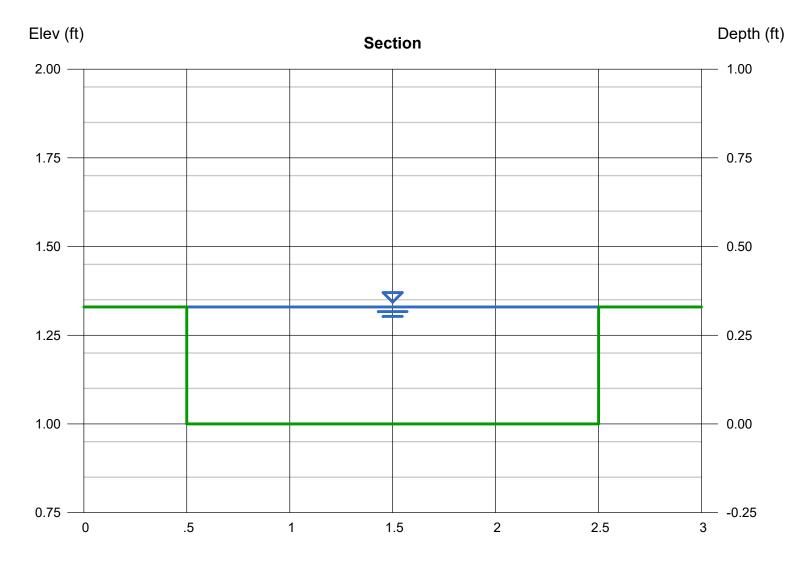

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jul 20 2021

CROSS PAN 100 YEAR

Trapezoidal

Trapezoidal		Highlighted	
Bottom Width (ft)	= 7.33	Depth (ft)	= 0.24
Side Slopes (z:1)	= 8.00, 8.00	Q (cfs)	= 4.810
Total Depth (ft)	= 0.33	Area (sqft)	= 2.22
Invert Elev (ft)	= 10.00	Velocity (ft/s)	= 2.17
Slope (%)	= 0.50	Wetted Perim (ft)	= 11.20
N-Value	= 0.016	Crit Depth, Yc (ft)	= 0.22
		Top Width (ft)	= 11.17
Calculations		EGL (ft)	= 0.31
Compute by:	Known Q		
Known Q (cfs)	= 4.81		



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jul 20 2021

SINGLE SIDEWALK CHASE CAPACITY

Rectangular		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.33
Total Depth (ft)	= 0.33	Q (cfs)	= 1.711
		Area (sqft)	= 0.66
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.59
Slope (%)	= 0.50	Wetted Perim (ft)	= 2.66
N-Value	= 0.016	Crit Depth, Yc (ft)	= 0.29
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 0.43
Compute by:	Q vs Depth		
No. Increments	= 1		

Cushing Subject Terrell	t: RUSLE	Calculation			Page:	1	
Terrell Project	No. LSCO	20FAL	By:	RW	Date:	7.15.2021	
Project	: Name LES SC	HWAB TIRE CENT	ER		_		

Overland Velocity Calc						
SLOPE	VELOCITY					
0.015	1.98					

 $\begin{array}{ll} \mbox{Figure 3-1 (average velocities for estimating travel} \\ \mbox{time for shallow concentrated flow):} \\ \mbox{Unpaved} & \mbox{V} = 16.1345 \ (s)^{0.5} \\ \mbox{Paved} & \mbox{V} = 20.3282 \ (s)^{0.5} \end{array}$

where

V= average velocity (ft/s) s = slope of hydraulic grade line (watercourse slope, ft/ft)

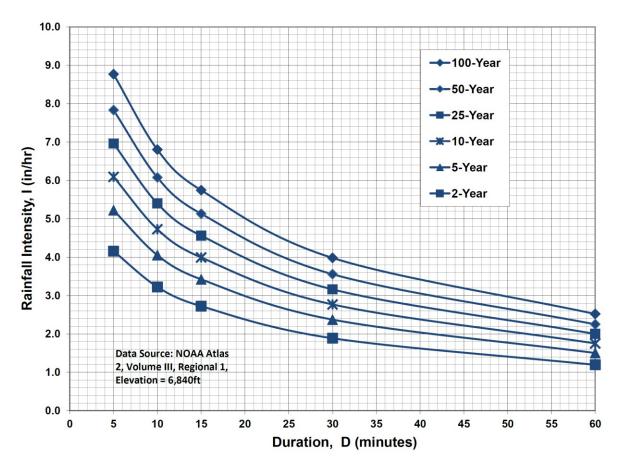


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$I_{100} = -2.52 \ln(D) + 12.735$
$I_{50} = -2.25 \ln(D) + 11.375$
$I_{25} = -2.00 \ln(D) + 10.111$
$I_{10} = -1.75 \ln(D) + 8.847$
$I_5 = -1.50 \ln(D) + 7.583$
$I_2 = -1.19 \ln(D) + 6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

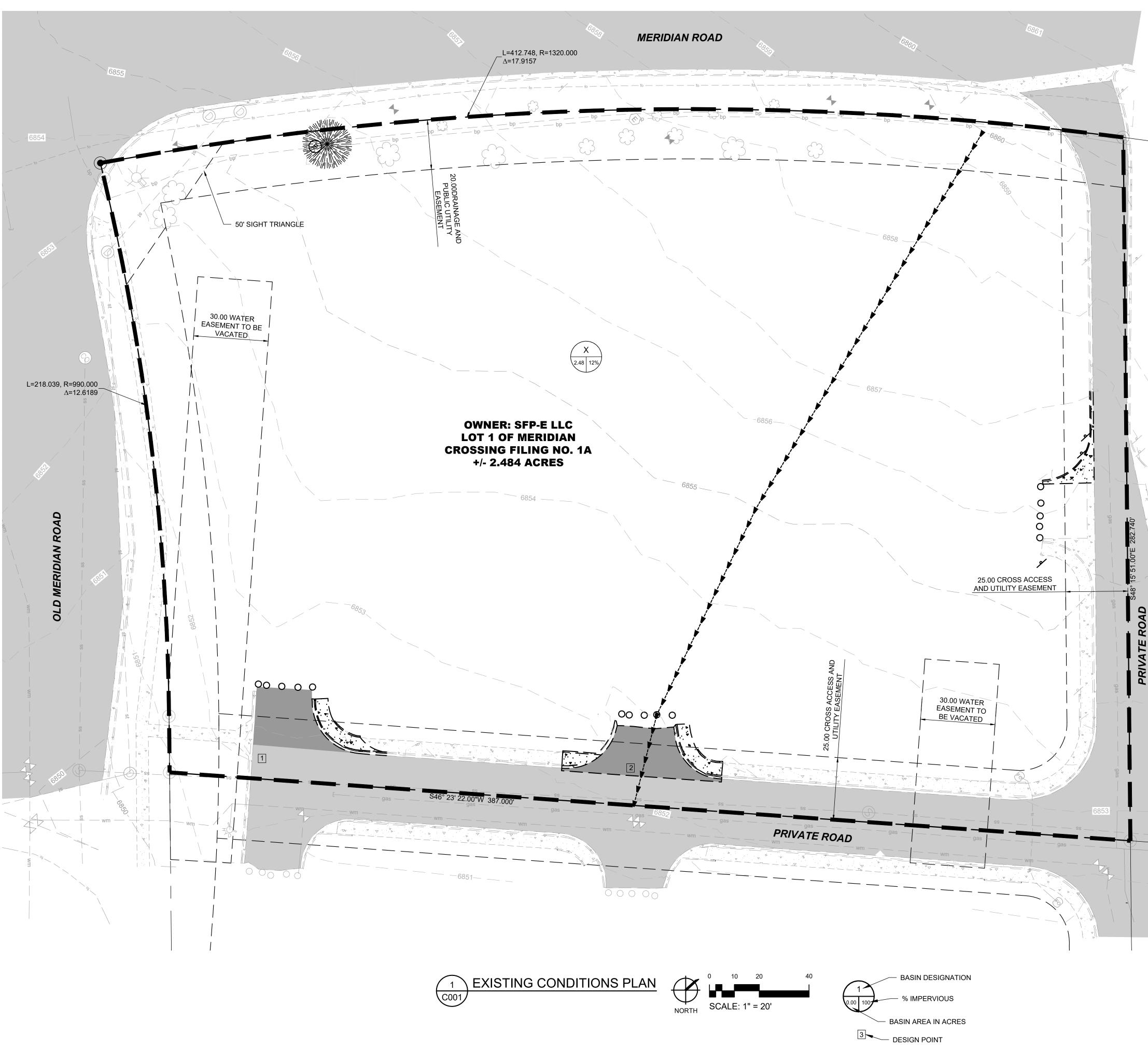
Cushing Terrell

Subject:	RATIONAL METH	Page:	
Project No.	LSCO_20FAL	Date:	7
Project Nam			

1 7.15.2021

			RA	TIONAL	CALC EXIS	TING			
Basin	% Impervious	C5	C100	Area	TC	l 5 year	l 100 yesr	Q 5	Q 100
Х	12	0.28	0.42	2.48	25	2.6	4.5	1.81	4.69
TOTAL	12	0.28	0.42	2.48				1.81	4.69

	RATIONAL CALC PROPOSED								
Basin	% Impervious	C5	C100	Area	TC*	l 5 year	I 100 year	Q 5	Q 100
А	8	0.15	0.4	0.20	5	5.2	9	0.16	0.72
В	88	0.80	0.89	0.54	6	5	8.8	2.16	4.23
С	54	0.52	0.68	1.01	11	3.7	7	1.94	4.81
D	90	0.82	0.9	0.56	5	5.2	9	2.39	4.54
E	87	0.79	0.88	0.17	5	5.2	9	0.70	1.35
TOTAL	68		0.77	2.48				7.35	15.64


*Minimum value of 5 min used

Proposed Time of Concentration											
	C	VERLA	ND				Concentrat	ed Flow			
BASIN	C5	L	S	ti	Ν	S	R	V	L	tc	Тс
А	0.15	33	9	4.9	0	0	0	0	0	0	5
В	0.80	51	0.5	5.0	0.016	0.005	0.5	4.15	297	1.2	6
С	0.52	51	0.5	9.7	0.016	0.005	0.5	4.15	418	1.7	11
D	0.82	161	3.5	4.4	0.016	0.005	0.5	4.15	101	0.4	5
E	0.79	30	4	2.0	0.016	0.025	0.5	9.28	100	0.2	2

	Existing Time of Concentration											
	(OVERLA	ND		Concentrated Flow							
BASIN	C5	L	S	ti	Ν	N S R V L tc					Тс	
Х	0.28	307	3	25.1	0 0 0 0 0 0							

APPENDIX B: BASIN MAPS

LEGEND

►--►--►--►--►-- TIME OF CONCENTRATION FLOW PATH BASIN LIMITS

cushingterrell.com 800.757.9522

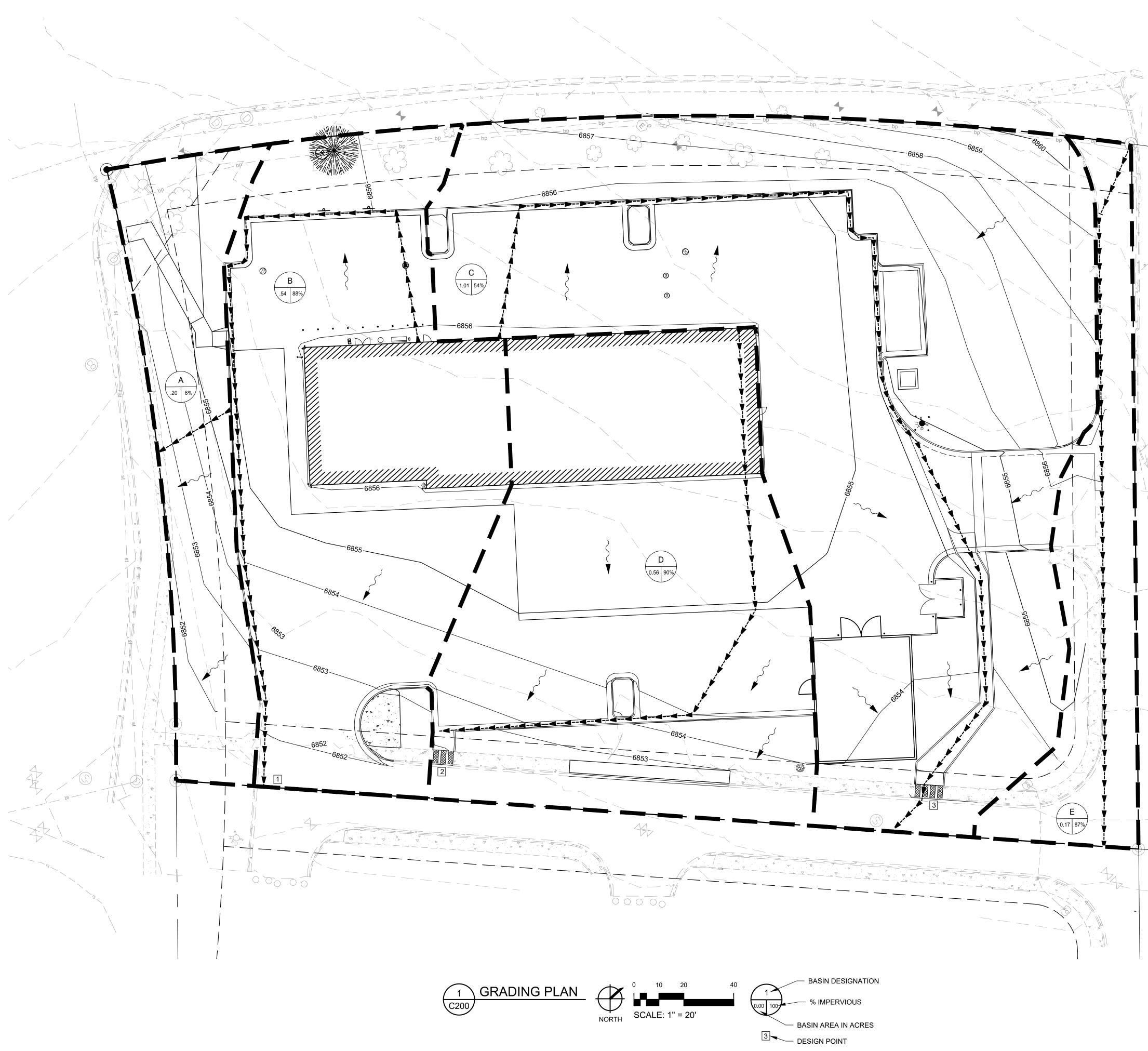
CENTER **RE** SCHW LES

7105 N MERIDIAN RD FALCON, CO

DESIGN

TION

CONSTRUC


© 2021 | ALL RIGHTS RESERVED

PRELIMINAR

SITE DEVELOPMENT PLANS

07.21.2021 DRAWN BY | WALKER CHECKED BY | GRAHAM REVISIONS

FOR EXISTING BASIN MAP

PCD FILE NO. PPR-21-023

BASIN MAP **D**.2

EXISTING

09.01.2021 DRAWN BY | WALKER CHECKED BY | GRAHAM REVISIONS

SITE DEVELOPMENT PLANS

© 2021 | ALL RIGHTS RESERVED

 \mathbf{m} SCHWAI 7105 N MERIDIAN RD. FALCON, CO LES

CENTER IRE

Tires LES SCHWAB

cushingterrell.com 800.757.9522

LEGEND

►--►--►--►--►-- TIME OF CONCENTRATION FLOW PATH BASIN LIMITS

Cushing Terrell

APPENDIX C: FEMA FIRMETTE

National Flood Hazard Layer FIRMette

Legend

104°36'53"W 38°56'17"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 8041C0553G 0.2% Annual Chance Flood Hazard, Areas 12/7/2018 of 1% annual chance flood with average depth less than one foot or with drainage Zone A areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D 397FEET - — – – Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall EL PASO COUNTY AREA OF MINIMAL FLOOD HAZARD 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** Mase Flood Elevation Line (BFE) Limit of Study T13S R65W S012 Jurisdiction Boundary T13S R64W, S007 **Coastal Transect Baseline** OTHER Profile Baseline FEATURES Hydrographic Feature 08041C0561G **Digital Data Available** eff. 12/7/2018 No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 4/14/2021 at 9:15 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. Zone AE Zone AE This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, 6805 1 FEET legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 104°36'15"W 38°55'49"N Feet 1:6.000 unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2.000 n

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

APPENDIX D: WEB SOIL SURVEY

USDA Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	0.3	13.1%
9	Blakeland-Fluvaquentic Haplaquolls	A	2.2	86.9%
Totals for Area of Intere	est		2.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX E: MERIDIAN CROSSING STORM REPORT

MERIDIAN CROSSING FINAL DRAINAGE REPORT EL PASO COUNTY, COLORADO

July 2008

PREPARED FOR:

Park Place Enterprises

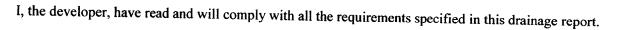
15 Miranda Road Colorado Springs, CO 80906

PREPARED BY:

Springs Engineering

31 N. Tejon, Suite 315 Colorado Springs, CO 80903 719.227.7388

PROJECT NO. 057-07-032


CERTIFICATIONS

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

Charlene M. Sammons, P.E. #36727

Developer's Statement:

By (signature rises, LLC Title: Address: <u>80</u>90[

El Paso County's Statement:

Filed in accordance with Section 51.1 of the El Paso Land Development Code, as amended.

John McCarty, County Engineer/Director

<u>8-/9-08</u> Date

Conditions:

Table of Contents

,

Í

INTRODUCTION	2
Purpose Limits of Study	
	2
EXISTING CONDITIONS	2
GENERAL LOCATION	
LAND USE	3
GEOLOGY	
CLIMATE Natural Hazards Anal ysis	
	4
DRAINAGE DESIGN CRITERIA	
SCS HYDROGRAPH METHOD	
SCS HYDROGRAPH METHOD Rational Method	
WATER QUALITY CRITERIA STREET CAPACITY	8
DRAINAGE BASINS.	8
DRAINAGE BASINS	9
EXISTING DRAINAGE ANALYSIS EXISTING DESIGN POINTS	
EXISTING DESIGN POINTS DEVELOPED DRAINAGE ANALYSIS	
DEVELOPED DRAINAGE ANALYSIS	
	10
ORAINAGE FACILITY DESIGN	
GENERAL CONCEPT	-
DETENTION POND WU PROPOSED WATER QUALITY POND	
	16
RAINAGE FEES, COST ESTIMATE & MAINTENANCE	
MAINTENANCE	
PROPOSED FACILITIES ESTIMATE	
ROSION CONTROL	
GENERAL CONCEPT	
GENERAL CONCEPT	20
EROSION BALES	20
	20
VEHICLE TRACKING CONTROL	

List of Figures

Figure 1: Vicinity Map Figure 2: SCS Soils Map	_
Figure 6: Proposed Drainage Plan	BACK POCKET
	BACK POCKET

Appendix

Appendix A: Existing HEC-1 Calculations

Appendix B: Proposed HEC-1 Calculations

Appendix C: Existing Rational Calculations

Appendix D: Proposed Rational Calculations

Appendix E: StormCAD Calculations

Appendix F: Channel and Culvert Calculations

Appendix G: Water Quality Pond Calculations

Appendix H: Operations and Maintenance Manual

Appendix I: Ultimate Design StormCAD Calculations

EXECUTIVE SUMMARY

The purpose of this Preliminary Drainage Report (PDR) and Final Drainage Report (FDR) is to present final drainage design and improvements for Meridian Crossing, located at the northeast corner of Meridian Road and Old Meridian Road, in the Falcon Highlands development. Runoff quantities and proposed facilities have been calculated using the current City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM). Existing facilities have been analyzed to ensure they are able to function as designed with the new facilities and construction.

This report encompasses approximately 9.5 acres of proposed commercial development in the southeast corner of the Falcon Highlands development. A proposed collector (Flower Road) will traverse the site, connecting Meridian Road to McLaughlin Road. This development will also include improvements to McLaughlin Road.

Flower Road and McLaughlin Road are to be designed as Non-Residential Collectors, per the El Paso County Criteria Manual, with a design speed of 40 miles per hour (mph) and a posted speed of 35 mps. Curb and gutter will be installed along both of these roads.

INTRODUCTION

The Meridian Crossing subdivision is a 9.5 acre commercial development located on the northwest side of the Town of Falcon. Meridian Crossing is located east and south of Falcon Highlands Market Place Filing No. 1 and adjacent to the southeast side of the "New" Meridian Road alignment. Existing development occurring in the area includes the Falcon Highlands subdivision to the west, the Beckett at Woodmen Hills development to the east and the Falcon Highlands Market Place to the west.

The area containing Meridian Crossing has been studied as part of the Falcon Area Drainage Basin Planning Study (DBPS)-Preliminary Design Report by URS, dated December 15, 2000 and Falcon Highlands Master Drainage and Development Plan (MDDP) by URS, dated October 2004.

Purpose

The purpose of the following Final Drainage Report (FDR) is to present the final design drainage improvements for the Meridian Crossing commercial development. Drainage improvements will include curb inlets, roadside ditches, and Water Quality Capture Ponds.

Runoff quantities and proposed facilities have been calculated using the current City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM) Volumes I and II.

Limits of Study

The Meridian Crossing FDR details the hydrology and hydraulics for the West Tributary of the Falcon Basin. Storm flow is routed by and from the proposed site and then directed through the proposed and future developments to US Highway 24. This includes an analysis of the storm systems, which includes the culverts and inlets along Meridian Road and Rolling Thunder Way. The area of study is bounded by Flower Road to the north and east, Meridian Road to the north and west, Old Meridian Road to the west and McLaughlin Road on the south

2

EXISTING CONDITIONS

General Location

The proposed Meridian Crossing is approximately 9.5 acres and is located at the southeast corner of Meridian Road and Old Meridian Road in Falcon, Colorado, Section 12, Township 13 South, Range 65 West of the 6th Principal Meridian. Currently, the site is zoned CR.

Falcon Highlands, Woodmen Hills, Falcon Vista, Meridian Ranch, Elkhorn Estates and Falcon Hills are all developments within a 5-mile radius of the site.

Land Use

The proposed site has just recently been rezoned to a Commercial Regional (CR) zone.

Topography and Floodplains

The topography of the surrounding area is typical of a high desert, short prairie grass with relatively flat slopes generally ranging from 2% to 4%. The area generally drains to the south. The site combines with the outlet flow of Detention Pond WU prior to crossing through the existing box culverts at Highway 24. Existing drainage swales convey these flows.

The Flood Insurance Rate Map (FIRM No. 08041C0575-F dated 3/17/99) indicates that there is a floodplain north and east of the proposed site (Falcon Basin Middle Tributary). FEMA has approved a LOMR for the Middle Tributary Floodplain (Case No. 06-08-B427P, with an effective date of November 3, 2006). This flow will now be contained within a storm drainage system and detention pond, which realigns the floodplain to the east of the site. (See Figure 3: Floodplain Map) The floodplain ties in with the FIRM after the detention pond at McLaughlin Road.

Geology

Soil Conservation Service soil survey records indicate the project area is covered by soils classified in the Blakeland Series, which are categorized in the Hydrological Group B.

The Blakeland (8) loamy sand is a deep, excessively drained soil that can exceed depths of 60 inches. Permeability of this soil is rapid with an effective rooting depth of 60 inches. This soil has good potential for urban development. The available water capacity is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate.

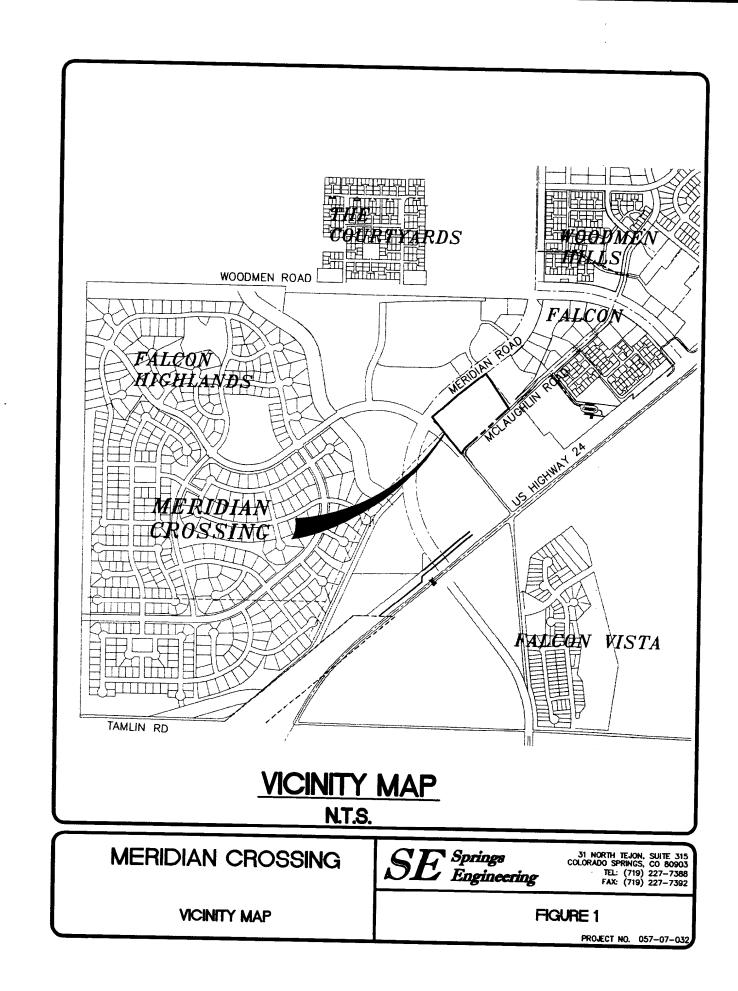
The Blakeland (9) complex soil is comprised of approximately 60 percent Blakeland loamy sand, 30 percent Fluvaquentic Haplaquolls and 10 percent other soils. This soil is found more in sloping areas. It is deep and somewhat excessively drained. It formed in sandy alluvium and eolian material derived from arkosic sedimentary rock. Permeability of Blakeland soils is rapid, with an effective rooting depth of 60 inches. The available water capacity is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate. The Fluvaquentic Haplaquolls are generally located in swale areas, and are deep, poorly drained soils. They formed in alluvium derived from arkosic sedimentary rock.

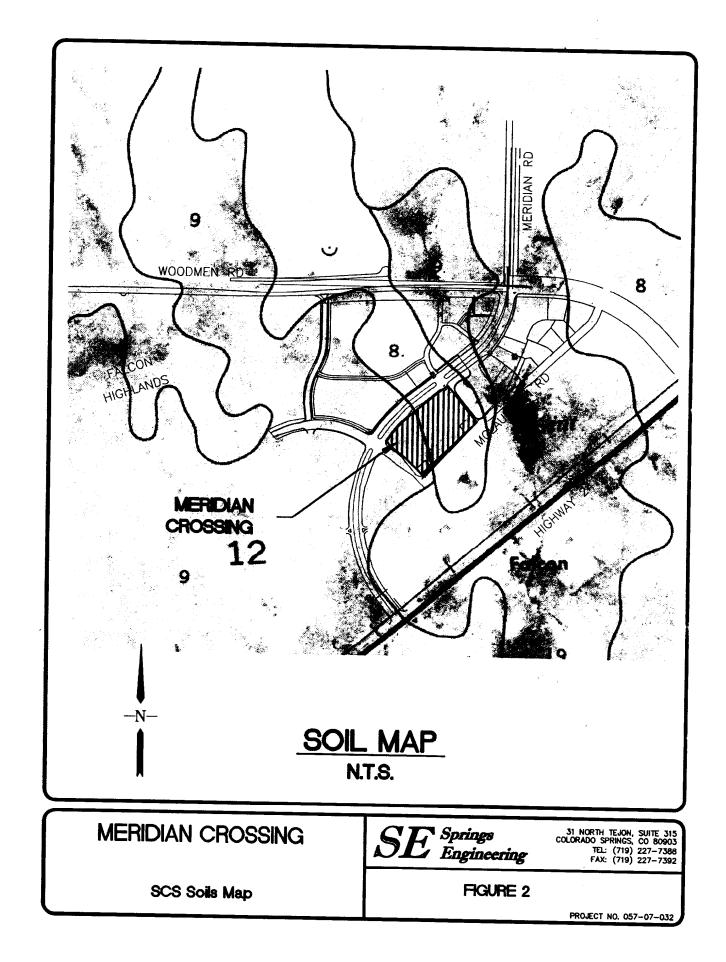
The Blakeland soil is well suited to wildlife habitat, home sites, streets and roads. This soil needs to be protected from erosion when vegetation has been removed from building sites. The Fluvaquentic Haplaquolls soil is good for wetlands. This soil has poor potential for home sites. The main limitation of this soil is the high water table and potential for flooding.

Note: (#) indicated Soil Conservation Survey soil classification number. See Figure 2: SCS Soils Map.

Climate

Mild summers and winters, light precipitation; high evaporation and moderately high wind velocities characterize the climate of the study area.


The average annual monthly temperature is 48.4 F with an average monthly low of 30.3 F in the winter and an average monthly high of 68.1 F in the summer. Two years in ten will have a maximum temperature higher than 98 F and a minimum temperature lower than -16 F. Precipitation averages 15.73 inches annually, with 80% of this occurring during the months of April through September. The average annual Class A pan evaporation is 45 inches.


Natural Hazards Analysis

Natural hazards analysis indicates that there is high ground water, potentially expansive claystone bedrock and wetlands located on or near the proposed site. Refer to the Geologic Hazards Evaluation Retail Site Woodmen Road and Meridian Road report by Entech Engineering. Usually, in areas where high ground water is an issue, underdrains are built to help alleviate the problem. However, since the proposed site is a commercial development, construction will be done as slab-on-grade and no basements. If lower levels are built, an underdrain system would be required. Wetland areas in the site have been identified and approved by Corps of Engineers. A mitigation plan for the site has been approved and implementation began in the fall of 2005. A copy of this plan is on file with the Falcon Highlands Metropolitan District.

Soils in this area are cohesionless, sloughing of steep banks during drilling and/or excavation could occur. By siting improvements in a manner that provides an opportunity to lay the banks of excavations back at a 1:1 slope during construction, the problems associated with sloughing soils can be minimized.

4

DRAINAGE DESIGN CRITERIA

SCS Hydrograph Method

Hydrologic modeling was used to the West Tributary of the Falcon Basin, which routes through Meridian Crossing. Modeling was completed using The United States Army Corps of Engineers Hydrologic Engineering Center-HEC-1 version 4.1. The Soil Conservation Service (SCS) (since renamed National Resources Conservation Service (NRCS)) curve number method was selected for calculating the runoff volume from the drainage basins per the Drainage Criteria Manual (DCM). The precipitation data, basin delineation, CN runoff coefficients, and time of concentrations were taken from the Falcon Basin DBPS. Modifications have been performed on the original data, as new developments have been built and boundary lines have changed. The model has been updated to reflect the most current changes occurring in the Falcon area. The existing models in the appendix are those which were included in the FDR for Pond WU, as this report updated and modified the existing conditions of the West Tributary as originally analyzed in the Falcon Basin DBPS. Below is a summary of major design points entering the Falcon Highlands development, through the site, and where the flows exit the Falcon Highlands site. The Falcon Highlands Master Drainage Development Plan (MDDP) corrected an area in the volume of the Woodmen Hills detention pond (Pond W).

The West Tributary was analyzed in the MDDP/PDR/FDR for Falcon Highlands Filing No. 1. This report made the assumption that Pond WU would capture flows from Basins W-39, W-40, W-41 and W-42. With the construction of Meridian Road, flows from Basin W-42 do not release into the detention pond and instead combine with the outflow from the pond. With this change in routing, actual design point locations have changed slightly. The existing DBPS analysis and this report show design point WU as the flow at Highway 24 as it passes through the existing box culverts. The proposed DBPS analysis and the Market Place report have Design Point WU as the flows entering the pond with the pond release flows as the Highway 24 flows. This report made the change, as stated previously, Basin W-42 no longer enters the pond, but combines at Highway 24 and a design point was needed to evaluate flows at this location. See the table below for a summary of major design points through the West Tributary in the Falcon Highlands development. Pond WU will release at less than historic rates for both, the 5-year and 100-year events.

Design	Exi	sting*	Pro	posed	Location		
Point	5-Yr	100-Yr	5-Yr	100-Yr			
ws	137	1575	145	1705	Woodmen		
WT	143	1621	244	1867	Tamlin Road (Removed)		
Pond WU			118	1313	Highway 24/Pond Outlet		
WU	148	1648	135	1339	Highway 24 (Pr Condition)		
WV	149	1640	135	1338	Falcon Highway		

^{*}Existing flows have been modified per the approved Falcon Highlands Final Drainage Report for Regional Detention Pond WU. This report adjusted routing for Basin W-42 and has modified the existing flows at Design Point WU. The "existing" flows which will be the target in this report are those existing flows which have been identified in the previous mentioned report, not those which were stated in the DBPS.

Rational Method

Because the Meridian Crossing is less than 100 acres, the rational method was used to estimate stormwater runoff for basins, and to size inlets, culverts and ditches, as required by the current

City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM). The rational method coefficients "C" were selected from Table 5-1 of the DCM, the time of concentration was calculated per DCM requirements and intensities for each basin were calculated from storm intensity curve formulas provided by the City of Colorado Springs. The rational method was used to determine onsite flows. Rational Method results are shown in Appendix B and C.

Water Quality Criteria

The water quality capture volume (WQCV) was calculated based on equations found in the Drainage Criteria Manual Volume 2, Stormwater quality Policies, Procedures and Best Management Practices (BMP's). The WQCV allows suspended sediment and absorbed pollutants to settle out of the water and improve the overall quality of runoff leaving the facility and reduce the potential for erosion. The positive impact on water quality is significant see appendix for proposed pond calculations.

Street Capacity

Street capacity is based on the DCM criteria, as stated in Chapter 6. Capacity of the streets (Flower Road and McLaughlin Road) will be based on the minor and major storms. Minor storm criteria is based on pavement encroachment and the major storm criteria is based on allowable depth and pavement encroachment. In all cases, flow encroachment shall not extend past the right-of-way (R.O.W.). Mannings equation will be used to determine the street capacity based on the following criteria from the DCM. Flower and McLaughlin Roads are both collector roads. Both streets shall meet the following criteria from the Table 6-1 in the DCM:

Roadway	Use of st	reet in storm	Cross flow in streets for storm				
Classification Collector	Initial No curb overtopping. Flow spread must be limited to a max. 20 foot spread from each curb face	Major Residential dwellings, public, commercial and industrial buildings shall not be inundated at the ground line. The depth of water at the gutter	Cross flow in st Initial Where cross pans are allowed, depth of flow shall not exceed 6 inches at flow line.	Major 12 inches of depth at gutter flow line.			
		flow line shall not exceed 12 inches.					

8

DRAINAGE BASINS

Existing Drainage Analysis

Since the site is currently undeveloped, the existing drainage analysis was determined by analyzing existing runoff quantities and patterns. The site is covered predominantly with grasses. Existing storm runoff is generally from the north to the south through natural drainage swales, as well as gutter flow in a previously constructed roadway (Meridian Road). (Sce Figure 5: Existing Drainage Plan) On-site basins, being smaller than 100 acres, were analyzed using the rational method. See below for a brief discussion of each of these basins.

- Basin E-1 (2.18 acres) consists of the southeast half of Meridian Road, at a high point in the road adjacent to Pond MN. Basin E-1 slopes to the south to design point 1. An existing at grade inlet intercepts this flow. Any flow-by from this inlet will be directed onto Old Meridian Road. The remainder of the flow will continue east along Old Meridian Road, which allows street flow to runoff into an existing roadside ditch. This flow then enters a temporary culvert under Old Meridian Road. Basin E-1 produces runoff quantities of 9.4 cfs and 17.6 cfs for the 5-year and 100-year storms.
- Basin E-2 (8.76 acres) consists of an area just east of Old Meridian Road and between Meridian Road and McLaughlin Road. This area is currently undeveloped. Basin E-2 slopes to the southwest to design point 2. Currently, a temporary culvert exists to transfer flow from the east side of Old Meridian Road to the south side. An estimated 13.7 cfs and 31.4 cfs are produced for the 5-year and 100-year storms.
- Basin E-3 (13.96 acres) consists of an area northeast of Old Meridian and McLaughlin Roads in the "Town of Falcon". The flow from this basin will be directed towards the intersection of State Highway 24 and Meridian Road, where it is conveyed under an existing culvert under Old Meridian Road. This flow is directed towards the existing structure at Design Point 6. The basin generates 16.4 cfs and 37.5 cfs for the 5-year and 100-year storms.
- Basin E-4 (2.15 acres) consists of the east half of Meridian Road from Old Meridian Road to the right-in access point to the south. Basin E-4 slopes to the south. Flow from this basin will be conveyed through curb and gutter to the right in access drive, where a sump inlet intercepts the flow. An 18-inch rcp will then release into a temporary channel along Meridian Road, which conveys the flow to design point 6. An estimated 9.3 cfs and 17.5 cfs are produced for the 5-year and 100-year storms.
- Basin E-5 (9.41 acres) consists of an undeveloped native area just east and south of the Falcon Highlands detention pond (Pond WU). Runoff from this basin combines with flows from design point 7 and the detention pond outlet and crosses under US Highway 24 through existing culverts at design point 8. Basin E-5 generates 12.1 cfs and 27.8 cfs for the 5-year and 100-year storms.
- Basin E-6 (2.62 acres) consists of the west half of Meridian Road from the right-in access point to Highway 24. Basin E-6 slopes to the south to design point 4. Runoff will flow south via curb and gutter along this section of Meridian Road. A sump inlet at

the low point, just before Highway 24, intercepts the runoff. This inlet connects to the box culvert under Meridian Road. This flow will continue to the existing box culverts at Highway 24. The Falcon Highlands detention pond also discharges to the existing culvert at Highway 24. However, the detention pond was designed to release flows at 80% of historic flow. The existing culvert under Highway 24 will have enough capacity, because the peak discharge from design point 7 will occur long before the peak discharge of the pond. An estimated 11.6 cfs and 21.7 cfs are produced for the 5-year and 100-year storms.

- Basin E-7 (2.32 acres) consists of the east half of Meridian Road from the right-in access point south to Highway 24. Basin E-7 slopes to the south to design point 15. Runoff will flow south through curb and gutter along this section of Meridian Road. A sump inlet intercepts this flow and connects to the box culvert under Meridian Road. An estimated 10.5 cfs and 19.7 cfs are produced from Basin E-7 for the 5-year and 100-year storms.
- Basin E-8 (23.89 acres) consists of the area south of Old Meridian Road and east of Meridian Road. This area is currently undeveloped. This flow sheetflows across the basin to design point 6. A concrete box culvert conveys the flow under Meridian Road to the existing culvert under Highway 24. An estimated 32.2 cfs and 73.7 cfs are produced for the 5-year and 100-year storms.

Existing Design Points

- Design Point 1 is an existing 15' on-grade inlet in Meridian Road, north of Old Meridian Road. This inlet intercepts flow from Basin E-1, street flow from Meridian Road, south of Pond MN to Old Meridian Road. The inlet releases the flow into a temporary ditch along Old Meridian Road, which conveys the flow to Design Point 2. Flows at this location are 9.4 and 17.6 cfs.
- Design Point 2 collects flow from Basin E-2 and combines it with the flow in the temporary channel from DP-1. A temporary 24-inch culvert under Old Meridian Road conveys the flow to the south towards Design Point 6. This design point has flows of 22.9 and 48.7 cfs.
- Design Point 3 is an existing 20' sump inlet that intercepts the street flow in Meridian Road from Basin D-4. The inlet releases flows into an existing temporary roadside ditch along Meridian Road to Design Point 6. Flows at this location are 9.3 and 17.5 cfs.
- Design Point 4 is an existing 25' sump inlet used to intercept the west side of Meridian Road, north of Highway 24 (Basin E-6). This flow enters the existing storm system and is conveyed to Design Point 7. This design point has flows of 11.6 and 21.7 cfs.
- Design Point 5 is an existing 20' sump inlet in Meridian Road opposite Design Point 4. This inlet intercepts street flow from Basin E-7 and combines with flows in the storm system under Meridian Road. Flows are released at Design Point 7. The design point generates flows of 10.5 and 19.7 cfs.

- Design Point 6 combines flows from Basins E-3 and E-8 with flows from Design Points 2 and 3. Two 12' (W) x 3' (H) reinforced concrete box culverts (RCBC's) convey the flow under Meridian Road to Design Point 7. Flows generated at this design point are 67.8 and 149.7 cfs.
- Design Point 7 is the location where the storm system releases flows. It is the combined flow from Design Points 4, 5 and 6. Once released, flows will continue through an existing ditch to Design Point 8 at Highway 24. Flows at this location are 67.0 and 148.5 cfs.
- Design Point 8 combines the flow from Basin E-5 with flows from Design Point 7 and Detention Pond WU. There are three 12' (W) x 6' (H) RCBC's under Highway 24 to convey flows. These flows will continue towards the south, in a FEMA floodplain, along their existing paths. Flows generated at this location are 147.7 and 1286.1 cfs. This design point corresponds to Design Point WU in the HEC models.

Developed Drainage Analysis

The proposed site was studied in the Falcon Basin DBPS. Efforts have been made to comply with the recommendations set forth in the approved DBPS. The flows in the commercial development will combine with the outlet flows of Detention Pond WU and continue under Highway 24 through the existing box culverts. Figure 6: Developed Drainage Plan illustrates the basin boundaries used for the rational hydrologic model.

Basins D-1 and D-4 through D-7 do not have any changes from the corresponding, existing basins (E-1 and E-4 through E-7), as they have already been developed and the drainage structures have been designed. Basin E-2, a proposed commercial site (Meridian Crossing, whose preliminary plan has been approved by the Board of County Commissioners (BOCC)), the proposed site and adjacent roadways, has been divided into five new developed basins. Changes to Basins D-3 and D-8, is the assumption that these basins will be developed in the future as commercial use. The description of these basins follows.

- Basin D-2 (5.14 acres) consists of approximately the south half of the Meridian Crossing commercial development. It is anticipated for this basin to drain towards the south, where it will be intercepted by a proposed water quality facility (Porous Landscape Detention PLD). This storm system will release flows into a temporary drainage swale through Basin D-8. This drainage pattern is consistent with the approved Master Drainage Development Plan Amendment to Falcon Highlands, which shows these flows reaching the existing box culvert under Highway 24 at design point 8. This basin generates 23.4 cfs and 43.9 cfs for the 5-year and 100-year storm events.
- Basin D-3 (11.49 acres) consists of an area northeast of Old Meridian Road and McLaughlin Road in the "Town of Falcon". It is assumed that this area will be developed as commercial use in the future. The flow from this basin will be directed towards the intersection of Highway 24 and Meridian Road, where it is conveyed under a proposed culvert under Old Meridian Road. The flow is directed towards the existing structure at DP-6. The basin generates 34.7 and 65.1 cfs for the 5 and 100-year events.

intercepted by the temporary grated lid on the proposed manhole at DP-Z This flow will ultimately reach Highway 24. Flows at this location are 4.7 and 8.9 cfs.

- Design Point X is the released flow from the East PLD. Flow from this area combines with a storm system in Old Meridian Road via a 30" rcp. Flows generated in this location are 16.9 cfs and 31.8 cfs.
- Design Point Z is the flow from DP-B, DP-X intercepted flow from inlet 1 and the flow-by from inlet 1 combined with the released flow from the West PLD (Basin D-2). A 36" rcp connects and conveys this flow to a temporary culvert under Old Meridian Road which will release flows into a temporary ditch. Flows at this junction are 44.6 cfs and 83.8 cfs.
- Design Point Y is a proposed 54" rcp which releases flows across Old Meridian Road. The proposed pipe will replace an existing culvert, which is currently undersized, and intercepts flows from D-3. This design point has a flow of 34.7 cfs and 65.1 cfs. There is no corresponding design point in the Market Place Filing No. 1 drainage report.
- Design Point 3 is an existing 20' sump inlet that intercepts the street flow in Meridian Road from Basin D-4. The inlet currently combines with DP-Z and flows into an existing temporary roadside ditch along Meridian Road to Design Point 6. Flows at this location are 9.3 and 17.5 cfs. This design point corresponds to Design Point 13 in the Market Place FDR.
- Design Point E is the combination of D-3 and DP-Z. Flows are released into a temporary channel which conveys flows to a roadside ditch along Meridian Road. This flow is conveyed all the way to Design Point DP-8 at Highway 24 where flows are released from the Falcon Highlands site. Flows intercepted at this location are 46.938.3 cfs and 58.2 cfs. The Market Place Filing No. 1 report does not have any corresponding design points.
- Design Point 4 is an existing 25' sump inlet used to intercept the west side of Meridian Road, north of Highway 24 (Basin D-6). This flow enters the existing storm system and is conveyed to Design Point 7. This design point has flows of 11.6 and 21.7 cfs. This design point corresponds to Design Point 16 in the Market Place FDR. There is no difference in the drainage flows.
- Design Point 5 is an existing 20' sump inlet in Meridian Road opposite Design Point 4. This inlet intercepts street flow from Basin D-7 and combines with flows in the storm system under Meridian Road. Flows are released at Design Point 7. The design point generates flows of 10.5 and 19.7 cfs. This location corresponds to Design Point 15 in the Market Place FDR. There are no changes in the flows.
- Design Point 6 combines flow from Basin D-8 with DP-E and DP-Y. Two 12' (W) x 3' (H) reinforced concrete box culverts (RCBC's) convey the flow under Meridian Road to Design Point 7. Flows generated at this design point are 127.7 and 239.9 cfs. This location corresponds to Design Point 17 in the Market Place FDR. This report calculated flows to be 157.9 and 300.6 cfs.

DRAINAGE FACILITY DESIGN

General Concept

Meridian Crossing is located completely within the West Tributary of the Falcon Drainage Basin. The site drains towards the southwest where it is directed towards an existing drainage structure under Highway 24. This structure has been analyzed to ensure it still properly functions with the developed flow released here. The flow from these structures will continue along an existing swale to the south. There are two water quality facilities proposed for the site, prior to flows exiting.

Storm Systems

There has been one storm system previously installed with the construction of Meridian Road. This system was designed in the Market Place Filing No. 1 FDR. One new culvert and a temporary culvert have been proposed with the development of this site. StormCAD and CulvertMaster calculations have been included at the end of the report analyzing all of these facilities to ensure they are still adequate for the developed flow associated with this development.

The first system is an existing system located at the intersection of Meridian Road and Highway 24. This system was initially designed in the Market Place Filing No. 1 FDR. The system has been analyzed to ensure it will still function properly with the development of The Shoppes at Falcon. A 20-foot sump inlet is located at DP-5 in Meridian Road. This inlet intercepts 10 cfs and 19 cfs. A 25-foot sump inlet is located on the other side of Meridian Road at DP-4. This inlet intercepts 12 and 22 cfs. Both of these inlets connect to an existing 12'(W) x 3' (H) box culvert under Meridian Road via 24-inch rcp's. This structure intercepts a total flow of 127.7 and 239.9 cfs. This system releases flows into an existing channel parallel to Highway 24 at DP-7. Flows at this location are 140.2 cfs and 264.8 cfs. The channel conveys this flow to DP-8 at Highway 24, where the flow exits Falcon Highlands and continues on its existing path to the south.

Channel Improvements

The temporary channel from DP-Z has a 100-year flow of 73.3 cfs from the proposed storm system. The channel will be shaped similarly to the roadside ditch along the southeast side of Meridian Road, which it connects to. Velocity is this channel is 3.2 ft/s with a flow depth of 1.8 feet. A temporary drainage easement will be recorded on the final plat to accommodate this channel.

The existing roadside ditch along Basin D-7 is located east of Meridian Road from the right-in access point south to Highway 24. The ditch will carry the 100-year storm (88.2 cfs) at a depth of 1.8 feet to DP-6. The velocity in this channel is 5.5 fps. This channel will also be removed upon development of Basin D-8 and the construction of an internal storm drain system.

There is a series of onsite temporary swales in lots 3, 4 and 5. These swales will be utilized to ensure flows are conveyed to the west PLD. Once these lots develop, the swales will no longer be necessary and will be removed. Also, located outside of the Meridian Crossing right-of-way

along Old Meridian Road are 3 temporary swales, which convey flows to storm inlets. These swales will be removed upon the construction of Old Meridian Road.

Detention Pond WU

Based on the current configuration of the basins, Pond WU does work as intended. The 5-year release rate is less than the existing flow rate. Refer to the table earlier in the report for flow rates at major design points. Based on the current analysis of the hydrology for the area no modifications will be necessary to the outlet structure of the detention pond as previously assumed. The 100-year storm also functions properly and has a release rate lower than the existing flows.

Proposed Water Quality Pond

Based on the City of Colorado Springs/El Paso County DCM Volume 2, a water quality pond is needed, as the development area is greater than 1.0 acre. There will be two water quality capture ponds (WQCP), which will be porous landscape detention (PLD). Both ponds structures will be located between the northern right of way of McLaughlin road and the proposed curb and gutter for lots 5 and 6. This will enable the ponds to be used for final construction of each of the building sites. The east and west pond combine for a total 8200 square feet.

Ultimate Design

Currently, there is evidence that Old Meridian Road will be improved. If this situation does not happen, there is an "ultimate design" scenario to account for this. Meridian Crossing will be responsible for installing curb and gutter and sidewalk for the portion of Old Meridian Road which fronts their property. The rcp stub behind inlet DP-1 will be extended via 18"rcp to the existing culvert under Old Meridian Road. A 5' type R inlet will be installed to catch the flows of Old Meridian Road (see appendix item I for StormCAD calculations). A 5' manhole will be installed to connect the new and existing pipes. The existing culvert will continue to convey the flow through an existing swale, which releases flows into the roadside swale along Meridian Road. This flow still reaches an ultimate location of DP-8, where all flows leave the Falcon Highlands development.

Downstream Facilities

Falcon West Tributary

Detention Pond WU discharges below the historical rate as described in the Falcon Highlands Filing No. 1 PDR and the Falcon Basin DBPS. Just downstream of Pond WU outlet works is an existing bridge at SH 24. At Highway 24 near Pond WU, triple 12' x 6' RCBC's were installed in 1999. This facility conveys the 1239 cfs 100-year design flow. An analysis of these structures in included in the appendix. The DBPS recommended installing a lined channel with geotextile fabric and grade control drop structures. Currently, this area has no real definable channels, but flows are allowed to spread once they are released through the structure at SH 24. This area is within a FEMA designated floodplain. Historic flows as stated in the DBPS are 1518 cfs.

Downstream of SH 24, flows follow a FEMA floodplain to Falcon Highway. At Falcon Highway there is a 36-inch cmp culvert that is inadequate to carry the 100-year design flow.

DRAINAGE FEES, COST ESTIMATE & MAINTENANCE

Maintenance

The streets and major improvements within this site will be maintained by the Meridian Crossing Property Owners Association (POA) for ownership and maintenance. This includes the roads, drainage facilities, and water quality ponds. The Falcon Highlands Metropolitan District will own and operate water and wastewater systems. The remaining utilities (gas, phone, electric, cable, etc) will be owned and maintained by their respective companies. Easements will be issued to ensure each entity is able to access and maintain their facilities.

Drainage Fees

Г

The proposed development is located within the Falcon Basin. The proposed commercial site encompasses approximately 9.5 acres. Fees will be based on 9.0 acres (95% imperviousness due to commercial development).

Drainage fees in the Falcon Basin are \$6,925 and bridge fees are \$2,659. Based on these numbers and an impervious area of 9.0 acres fees for this development are \$62,325 for drainage and \$25,261 for bridge fees. This gives a total fee of \$87,586.

LINUTO	UNIT		ITEM
UNITS	<u> </u>	QUANTITY	COST
	2,800	1	2.800
	55	435	23,925
	65	60	3.900
	80	105	8,400
CY	45	30	1,350
			\$40.375
			·····
	\$800	95	\$7,600
	3.50		46,550
	3,000	2	6,000
	2.50	3200	8.000
AC	3,500		21,000
EA	10		370
	200		800
	1,500	1	1,500
	5	1800	9,000
			\$100,770
-+			
		1	2,800
		259	10,360
-+	3,500	1	3,500
-+			\$16,660
			\$457 0C-
			\$157,805
			\$15,781
	UNITS EA LF LF CY AC CY EA LF LF LF LF LF LF EA LF EA EA EA EA LF EA EA LF	UNITS COST EA 2,800 LF 55 LF 65 LF 80 CY 45 AC \$800 CY 3.50 EA 3.000 LF 2.50 AC 3,500 EA 10 EA 10 EA 1,500 LF 5 LF 5 EA 2,800 LF 40	UNITS COST QUANTITY EA 2,800 1 LF 55 435 LF 65 60 LF 80 105 CY 45 30 AC \$800 9.5 CY 3.50 13300 EA 3,000 2 LF 2.50 3200 AC 3,500 6 EA 10 37 EA 200 4 EA 1,500 1 LF 5 1800 EA 2,800 1 LF 40 259

Proposed Facilities Estimate

Z:\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\FDR.doc

1	
Contingency (10%)	I
	\$15,781
TOTAL	
	\$189,367

.

.

.

EROSION CONTROL

General Concept

During construction, best management practices for erosion control will be employed based on El Paso County criteria and the erosion control plan.

Ditches will be designed to meet El Paso County criteria for slope and velocity, keeping velocities below scouring levels.

During construction, best management practices (BMP) for erosion control will be employed based on El Paso County Criteria. BMP's will be utilized as deemed necessary by the contractor and/or engineer and are not limited to measures shown on the construction drawing The contractor shall minimize the amount of area disturbed during all construction activities.

In general the following shall be applied in developing the sequence of major activities:

- Install downslope and sideslope perimeter BMP's before land disturbing activity occurs.
- Do not disturb an area until it is necessary for construction activity to proceed.
- Cover or stabilize as soon as possible. •
- Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- The construction of filtration BMP's should wait until the end of the construction project • when upstream drainage areas have been stabilized.
- Do not remove temporary perimeter controls until after all upstream areas are stabilized.

Silt Fence

Silt fence will be placed along downstream limits of disturbed areas. This will prevent suspended sediment from leaving the site during infrastructure construction. Silt fencing is to remain in place until vegetation is reestablished.

Erosion Bales

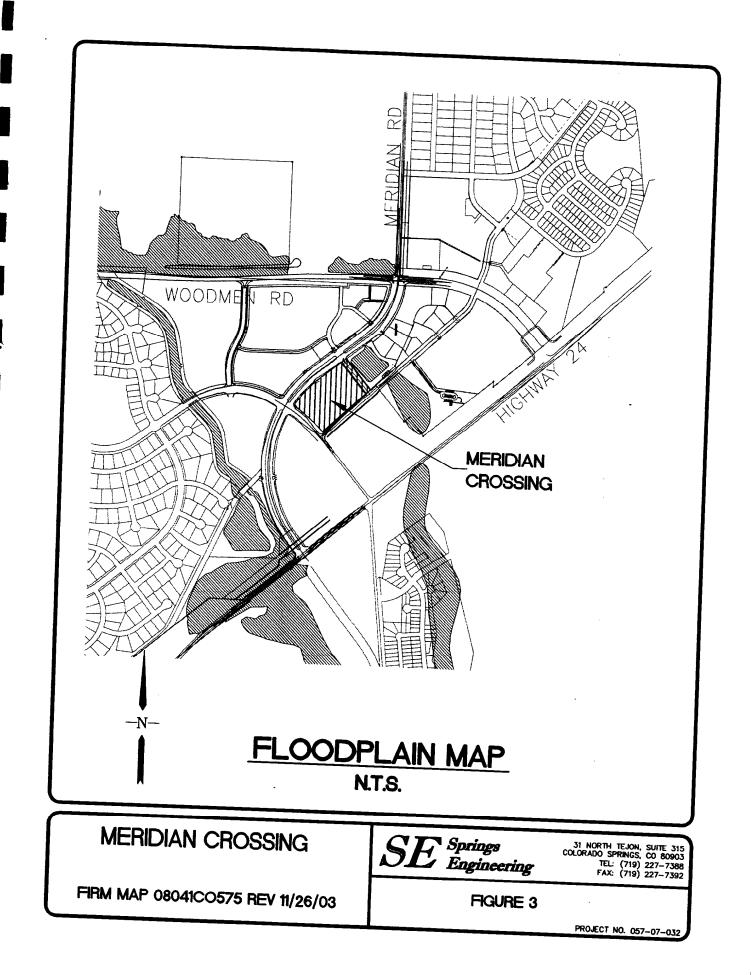
Erosion bales will be placed ten (10) feet from the inlet of all culverts and inlets during construction to prevent culverts from filling with sediment. Erosion bales will remain in place until vegetation is reestablished in graded roadside ditches and channels. Erosion bale ditch checks will be used on slopes greater than 1% to reduce flow velocities until vegetation is

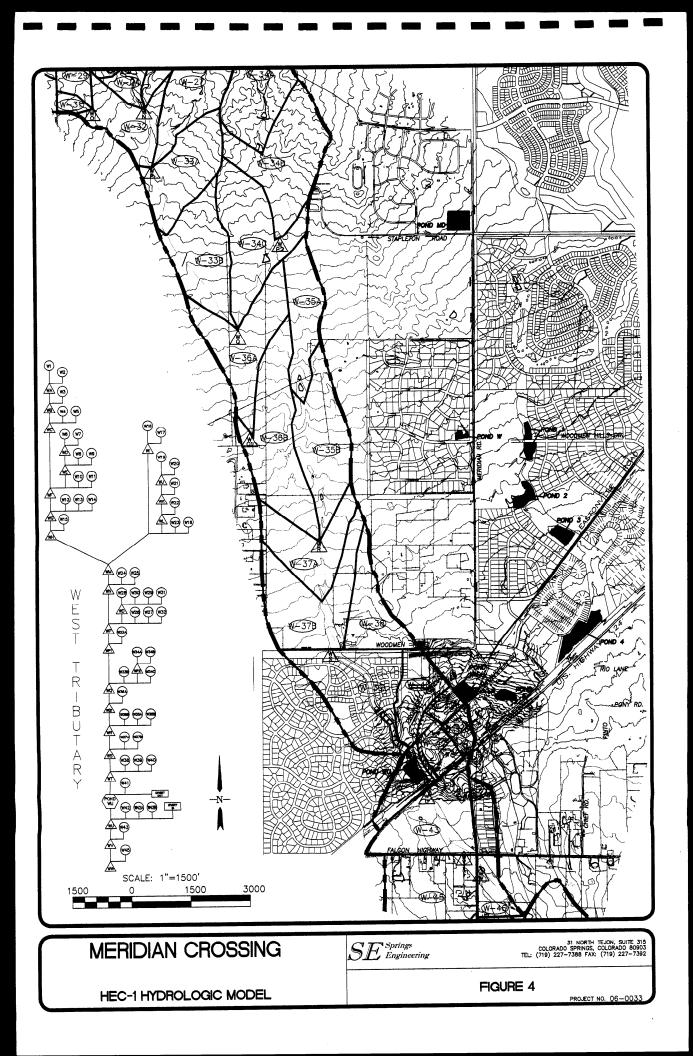
Vehicle Tracking Control

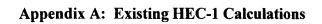
This BMP is used to stabilize construction entrances, roads, parking areas and staging areas to prevent the tracking of sediment from the construction site. A vehicle tracking control (VIC) is to be used at all locations where vehicles exit the construction site onto public roads, loading and unloading areas, storage and staging areas, where construction trailers are to be located, any construction area that receives high vehicular traffic, construction roads and parking areas. VTC's should not be installed in areas where soils erode easily or are wet.

Sedimentation Pond

This BMP is used to detain runoff which has become laden with sediment long enough to allow the sediment to settle out. As the construction area is larger than 1 acre, a temporary sediment basin is required per Volume 2 of the Drainage Criteria Manual. The basin will be located in the area of the proposed water quality pond, as this area will need to be excavated and an embankment built. A temporary 8" pvc underdrain will be installed to drain this basin during construction.


REFERENCE MATERIALS


- "City of Colorado Springs/El Paso County Drainage Criteria Manual" September 1987, Revised November 1991, Revised October 1994.
- "City of Colorado Springs/El Paso County Drainage Criteria Manual, Volume 2: Stormwater Quality Policies, Procedures and Best Management Practices" November 1, 2002.
- 3. Soils Survey of El Paso County Area, Natural Resources Conservation Services of Colorado.
- 4. Flood Insurance Rate Study for El Paso County, Colorado and Incorporated Areas. Federal Emergency Management Agency, Revised March 17, 1997.
- 5. Falcon Area Drainage Basin Planning Study Preliminary Design Report, December 2000. Prepared by URS Corp.
- Master Development Drainage Plan, and Preliminary Drainage Report and Final Drainage Report for Falcon Highland Filing No. 1, October 2004. Prepared by URS Corp.
- Floodplain Modification Study and Application for Conditional Letter of Map Revision for the Middle Tributary of the Falcon Basin-Regency Center, January 2005. Prepared by URS Corp.
- 8. Amendment to Falcon Highlands Master Drainage Development Plan, September 2005. Prepared by URS Corp.
- 9. Falcon Highlands Market Place Filing No. 1 Preliminary and Final Drainage Report, December 22, 2005. Prepared by URS Corp.



l

ł				
ŧ.	FLOOD H	YDROGRAPH	PACKAGE	(HEC-1)
ŧ.		JUN	1998	
ł		VERSION	4.1	
ł				
r.	RUN DATE	20055007	TIME	11:57:06

*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*

.

Х	Х	XXXXXXX	XXX	XXX		х
Х	Х	х	х	х		XX
х	х	x	х			х
XXXXXXX		XXXX	х		XXXXX	х
х	х	х	х			х
Х	х	х	х	х		х
х	Х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HECIDB, AND HECIKW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-1	INPUT						PAGE	1	
LINE	ID.	1.	2.	3.		5.	6		8	9.	10			
1	ID		N BASIN											
2 3	ID ID		PPER EAS								99			
4	ID		OTE: M1-1								2			
5	ID	•			OND AT MO									
6	ID	N	OTE: NO (MERIDI	AN			
7	ID		DOW	NSTREAM (OF WOODMI	EN HILLS	DRIVE (I	DIVERSIO	4)					
		AGRAM												
8 9	IT IO	5	14JUL99	800	300									
·	••													
10	KK	W1												
11	KM	0.470												
12 13	BA PB	.0479 2.6												
14	IN	15												
15	PC	.0005	.0015	.0030	.0045	.0060	.0080	.0100	.0120	.0143	.0165			
16	PC	.0188	.0210	.0233	.0255	.0278	.0320	.0390	.0460	.0530	.0600			
17	PC	.0750	.1000	.4000	.7000	.7250	.7500	.7650	.7800	.7900	.8000			
18	PC	.8100	.8200	.8250	.8300	.8350	.8400	.8450	.8500	.8550	.8600			
19 20	PC PC	.8638	.8675	.8713	.8750	.8788	.8825	.8863	.8900	.8938	-8975			
20	PC PC	.9013 .9325	.9050 .9350	.9083 .9375	.9115	.9148 .9425	.9180 .9450	.9210 .9475	.9240 .9500	.9270 .9525	.9300 .9550			
22	PC	.9575	.9600	.9625	.9650	.9675	.9700	.9725	.9750	.9775	.9800			
23	PC	.9813	.9825	.9838	.9850	.9863	.9875	.9888	.9900	.9913	.9925			
24	PC	.9938	.9950	.9963	.9975	.9988	1.000							
25	LS		60											
26	UD	.097												
27	KK													
28	KM													
29	RK	1519	.0263	.035		TRAP	5	4						
30	KK	W2												
31	KM	0030												
32 33	BA LS	.0278	60											
34	UD	.160	00											
••	00													
35	KK	WA												
36	KM													
37	HC	2												
38	KK													
39	KM													
40	RK	464	.0151	.035		TRAP	5	4						
								•						
41	КК	W 3												
42	KM													
43 44	BA LS	.0498	61											
45	UD	.139	01											
46	KK	WB												
47	KM													
48	HC	2												
49	кк													
50	KM													
51	RK	823	.0279	.035		TRAP	5	4		54				
52	KK	W4												
53 54	KM BA	.0054												
55	LS	.0034	62											
56	UD	.044												
57	KK													
58	KM	1070	0400	495			-							
59	RK	1078	.0482	.035		TRAP	5	4						
60	КК	W5												
61	KM													
62	BA	.0159												
63	LS		60											
64	UD	.075												
65	КК	WC												
66	KM													•
67	нс	3												
68	KK													
69 70	KM RK	557	.0449	.035		TRAP	10	4						
,0	R.K.	221	.0449	.035		IKAP	10	4						
71	кк	W6												
72	KM													
73	BA	.0486												
74	LS		60											
75	UD	.085												

.

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 2 of 40 7/23/2008

76 77 78	KK KM RK	592	.0372	.035	TRAP	5	4			
79 80 81 82 83	KK KM BA LS UD	W7 .0217 .074	60							
84 85 86	KK KM RK	464	.1466	.035	TRAP	5	4			
87 88 89	КК КМ НС	₩D 2								
90 91 92	KK KM RK	D-E 1044	.0479	.035	TRAP	5	4			
93 94 95 96 97	KK KM BA LS UD	W8 .0286 .069	60							
98 99 100	KK KM RK	1449	.0504	.035	TRAP	5	4			
101 102 103 104 105	KK KM BA LS UD	₩9 .0402 .097	61							
106 107 108	KK KM HC	WE 3								
109 110 111	KK KM RK	E-F 789	.0038	.035	TRAP	5	4			
112 113 114 115 116	KK KM BA LS UD	w10 .0431 .096	61							
117 118 119	KK KM RK	824	.0388	.035	TRAP	5	4			
120 121 122 123 124	KK KM BA LS UD	W11 .0314 .077	60							
125 126 127	КК КМ НС	WF 4								
128 129 130	KK KM RK	F-G 2319	.0211	.035	TRAP	10	4			
131 132 133 134 135	KK KM BA LS UD	W12 .0398 .095	60							
136 137 138	KK KM RK	2478	.0307	.035	TRAP	5	4		· .	
139 140 141 142 143	KK KM BA LS UD	W14 .0473 .135	61							
144 145 146	KK KM RK	81	0.0001	.035	TRAP	5	4			
147 148 149 150	KK KM BA LS	W13 .1123	61							

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 3 of 40 7/23/2008

151	UD	.182							
152	кк	.182 WG							
153 154	KM HC	4							
155 156 157	KK KM RK	G-н 2632	.0217	.035	TRAP	15	4		
158 159 160	KK KM RK	2447	.0372	.035	TRAP	5	4		
161 162	KK KM	W15							
162 163 164 165	BA LS UD	.0881	61						
166 167 168	KK KM RK	1763	.0289	.035	TRAP	5	4		
169 170 171	KK KM HC	WH 2							
172	кк	w16							
173 174 175 176	KM BA LS UD	.0292 .092	61						
177 178 179	KK KM RK	1345	.0260	.035	TRAP	5	4		
180 181	KK KM	W17							
182 183 184	BA LS UD	.0184 .085	60						
185 186 187	KK KM HC	WI 2							
188 189 190	KK KM RK	I- M 2650	.0370	.035	TRAP	15	4		
191 192	KK KM	W19							
193 194 195	BA LS UD	.0428 .083	61						
196 197 198	KK KM RK	881	.0329	.035	TRAP	5	4		
199 200	KK KM	W 20							
201 202 203	BA LS UD	.0315	61						
204 205 206	KK KM HC	WJ 2							
207 208 209	KK KM RK	3061	.0235	.035	TRAP	5	4		
210	KK	W21				ů.	-		
211 212 213	KM BA LS	.1347	60						
214	UD	.156 WK							
215 216 217	KM HC	2							·
218 219 220	KK KM RK	487	.0246	.035	TRAP	5	4		
221 222	KK KM	W 22							
223 224	BA LS	.0086	63						
225	UD	.055							

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 4 of 40 7/23/2008

226	KK	WL					
227	KM						
228	HC	2					
229	КК						
230 231	KM RK	1786	.0297	.035	TRAP	5	4
232 233	KK KM	W23					
234	BA	.0244					
235 236	LS UD	112	60				
230	00	.112					
237	KK	W18					
238 239	KM BA	.1251					
240	LS		60				
241	UD	.189					
242	кк	WM					
243 244	KM HC	5					
244	nc.	5					
245	КК	M-N					
246 247	KM RK	1345	.0149	.035	TRAP	20	4
248 249	KK KM	W24					
250	BA	.0442					
251 252	LS UD	.140	60				
253	KK	W25					
254 255	KM BA	.0957					
256	LS		61				
257	UD	.197					
258	кк	WN					
259 260	KM HC	3					
261	KK	N-P					
262 263	KM RK	1589	.017	.035	TRAP	20	4
			. –	-			
264 265	KK KM	W28					
266	BA	.0397					
267 268	LS UD	.128	63				
		.120					
269	KK						
270 271	KM RK	1345	.0208	.035	TRAP	5	4
272 273	KK KM	W 30					
274	BA	.0509					
275	LS		63				
276	UD	.123					
277	KK						
278 279	KM RK	1078	.0074	.035	TRAP	5	4
						5	-
280	KK	₩29					
281 282	KM BA	.0409					
283	LS		63				
284	UD	.145					
285	кк	W 31					
286	KM	.0123					
287 288	BA LS	.0123	63				
289	UD	.073					
290	кк	WO					
291	KM						
292	HC	4					
293	кк	0-P					
294	KM		0000	A35	10 T T	E	л
295	RK	2169	.0226	.035	TRAP	5	4
296	KK	₩26					
297 298	KM BA	.0301					
299	LS		63				
300	UD	.062					

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 5 of 40 7/23/2008

301	кк								
302	KM								
303	RK	4662	.0225	.035	TRAP	5	4		
304	кк	W27							
305 306	KM BA	.1633							
307	LS	.1035	60						
308	UD	.253							
309	кк	W 32							
310	KM								
311 312	BA LS	.0890	60						
313	UD	.170	00						
	KK	WP							
31 4 315	KM								
316	HC	5							
317	KK	P-Q							
318	KM								
319	RK	1925	.0182	.035	TRAP	25	4		
320	KK	W33A							
321 322	KM BA	.1261							
323	LS		60						
324	UD	.186							
325	KK	WP1							
326	KM	2							
327	HC	2							
328	KK	P1-Q							
329 330	KM RK	3000	.020	.035	TRAP	25	4		
331	кк	W33B							
331	KM	NJJB							
333	BA	.1360							
334 335	LS UD	.225	60						
336 337	KK KM	W34A							
338	BA	.1261							
339 340	LS UD	.173	60						
341 342	KM KM	34A-P2							
343	RK	2550	.0176	.035	TRAP	25	4		
344	кк	W34B							
345	KM								
346 347	BA LS	.1766	60						
348	UD	.224	00						
349	кк	WP2							
350	KM								
351	HC	2							
352	KK	P2-Q							
353 354	KM RK	2640	0.21	.035	TRAP	25	4		
			1		11/LE	25			
355 356	KK KM	W34C							
357	BA	.1625							
358 359	LS UD	.244	60						
360 361	KK KM	WQ							
362	HC	4							
363	кк	Q-Q1							
364	KM				•				
365	RK	2940	.022	.035	TRAP	25	4		
366	кк	W36A							
367 368	KM BA	.1429							
369	LS		60						
370	UD	.234							
371	кк	WQ1							
372 373	KM HC	2							
374 375	KK KM	Q1-R							
375	RK	3400	.022	.035	TRAP	25	4		

-

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 6 of 40 7/23/2008

377 378	KK KM	₩36B								
379	BA	.1918								
380	LS UD	.306	60							
381										
382 383	KK KM	W35A								
384	BA	.0958								
385	LS	107	60							
386	UD	.187								
387		35A-WR								
388 389	KM RK	3715	.023	.035	TRAP	25	4			
390 391	KK KM	W35B								
392	BA	.1507								
393 394	LS UD	0 .259	60							
395 396	KK KM	WR								
397	HC	4								
398	кк	WR-S								
399	KM					~~				
400	RK	2922	.0168	.035	TRAP	25	4			
401	кк	W37A								
402 403	KM BA	.1138								
404	LS		60						-	
405	UD	.185								
406	KK	37 A- S								
407 408	KM RK	1430	.014	.035	TRAP	25	4			
409	кк	W37B								
410	KM	#3/D								
411	BA	.1636	61							
412 413	LS UD	.218	01							
414	кк	WS								
415	KM									
416	HC	3								
41 7	КК	S-T								
418 419	KM RK	3653	.0164	.035	TRAP	25	4			
420 421	KK KM	W38								
422	BA	.0907								
423 424	LS UD	.190	62							
425 426	KK KM									
427	RK	2922	.0171	.035	TRAP	5	4			
428	кк	W 39								
429	KM									
430 431	BA LS	.1833	60						,	
432	UD	.251								
433	кк	W4 0								
434 435	KM BA	.0964								
436	LS		60							
437	UD	.165								
438	кк	WT								
439 440	KM HC	4	•							
441 442	KK KM	T −U								
443	RK	1125	.0098	.035	TRAP	25	4			
444	кк	W41								
445	KM									
446 447	BA LS	.0601	60							
448	UD	.117								
449	кк									
450	KM									
451 452	BA LS	.0581	81							

l

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 7 of 40 7/23/2008

453	UD	107							
453	кк	.127 U-V							
455 456	KM RK	2656	.0184	.035	TRAP	5	4		
457	кк	WU							
458 459	KM HC	3							
460	кк								
461 462	KM RK	2215	.0181	.035	TRAP	25	4		
463 464	KK KM	W43							
465 466	BA	.1457	61						
467	UD	.169							
468 469	KK KM	WV							
470	HC	2							
471 472	KK KM	V-W							
473	RK	487	.0103	.035	TRAP	25	4		
474 475 476	КК КМ ВА	W45							
477 478	LS UD	.189	61						
479	кк	.105 WW						-	
480 481	KM HC	2							
482	кк	W-X							
483 484	KM RK	1542	.0149	.035	TRAP	5	4		
485 486	KK KM	м1							
480 487 488	BALS	.0665	60						
489	UD	.108							
490 491	KK KM								
492 493	rk K	650 M2	.0308	.035	TRAP	5	4		
494 495	KM BA	.0273							
496 497	LS UD	.114	60						
498	КК	MB							
499 500	км HC	2							
501	KK								
502 503	KM RK	928	.0302	.035	TRAP	5	4		
504 505	кк КМ	M4							
506 507	BA LS	.0346	60						
508	UD	.121							
509 510	KK KM	100	0103	62	***	40	0		
511 512	RK KK	406 M3	.0197	.02	TRAP	40	v		
512 513 514	KM	.0149							
515 516	. BA LS UD	.076	60						
517	кк	MC							
518 519	KM HC	3							
520	KK								
521 522	KM RK	1902	.0231	.035	TRAP	5	4		
523 524	KK KM	M5							
525 526	BA	.0176	69						
527	UD	.108							÷

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 8 of 40 7/23/2008

528 529 530	KK KM RK	1717	.0186	.02	ŤRAP	40	0		
531 532 533 534 535	KK KM BA LS UD	M6 .0637 .233	65						
536 537 538	KK KM HC	MD 3							
539 540 541	KK KM RK	2841	.019	.035	TRAP	5	4		
542 543 544 545 546	KK KM BA LS UD	M7 .0524 .170	69						
547 548 549	KK KM RK	1044	.0268	.02	TRAP	40	0		
550 551 552 553 554	KK KM BA LS UD	M8 .0370 .126	61						
555 556 557	KK KM HC	МЕ 2							
558 559 560	KK KM RK	2992	.0187	.035	TRAP	5	4		
561 562 563 564 565	KK KM BA LS UD	M9 .0169 .087	69						
566 567 568	KK KM RK	3433	.0253	.03	TRAP	5	4		
569 570 571 572 573	KK KM BA LS UD	M12A .0658 .159	60						
574 575 576 577 578	KK KM BA LS UD	M12B .1481 .219	60						
579 580 581	KK KM HC	MF 5							
582 583 584	KK KM RK	2586	.0224	.035	TRAP	10	4		
585 586 587 588 588	KK KM BA LS UD	м13 .0614 .165	64						
590 591 592	KK KM RK	1700	.01	.035	TRAP	6	4		
593 594 595 596 597	KK KM BA LS UD	M14 .1624 .228	64						
598 599 600	KK KM HC	MG 2							
601 602	KK KM	PONDW W	oodmen h	ILLS DETEN	TION POND WEST (FROM FDR	WH FLG F4)		

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 9 of 40 7/23/2008

.

603 604 605 606	SV SE SQ RS	0 968 0 1	.68 969 8 ELEV	1.5 970 15.5 968	235 971 41	3.6 972 84.4	4.9 973 110	6.3 974 138	7.34 975 152	7.34 976 205
607 608 609	KK KM HC	МН 2								
610 611 612	KK KM RK	1276	.0212	.035		TRAP	15	4		
613 614 615 616	KK KM DT DI	DIVRT1 0	90 39	72	152	TWIN 23x4 263	318	377	442	591
617 618 619 620 621	DQ KK KM BA LS	0 M15 .1242	39	70	80	80	80	85	85	90
622 623 624 625	UD KK KM HC	.203 MI 2								
626 627 628	KK KM RK	1995	.0165	.035		TRAP	15	4		
629 630 631 632 633	KK KM BA LS UD	м19 .0499 .159	61							
634 635 636	КК КМ НС	MJ 2								
637 638 639	KK KM RK	2215 M10	.0158	.035		TRAP	15	4		
640 641 642 643 644	KK KM BA LS UD	.0581 .102	62							
645 646 647	KK KM RK	M10-К 3150	.0255	.03		TRAP	5	4		
648 649 650 651 652	KK KM BA LS UD	M11A .1067 .231	61							
653 654 655	КК КМ НС	М К 2								
656 657 658	KK KM RK	MK-K1 2300	.260	.03		TRAP	5	4		
659 660 661 662 663	KK KM BA LS UD	M11B .0879 .150	60							
664 665 666	KK KM RK	11B-K1 2400	.025	.03		TRAP	5	4		
667 668 669 670 671	KK KM BA LS UD	M11C .0933 .160	60							
672 673 674	KK KM HC	мк1 З								
675 676 677	KK KM RK	к1-мL 1821	.028	.035		TRAP	5	4		

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 10 of 40 7/23/2008

678 679		КК КМ	M16					
680 681		BA LS	.042	60				
682		UD	.139	00				
683 684		KK KM	ML					
684 685		км HC	2					
686		кк						
687 688		KM RK	2099	.02	.035	TRAP	5	4
689		кк	M17					
690 691		KM BA	.0765					
692 693		LS UD	.133	61				
694		кк	мм					
695 696		KM HC	2					
697		кк						
698 699		KM RK	2320	.0121	.035	TRAP	10	4
700		кк	M18				1.0	•
701		КM						
702 703		BA LS	.061	61				
704		UD	.142					
705 706		KМ	•.					
707		RK	2122	.017	.035	TRAP	5	4
708 709		KK KM	M 20					
710 711		BA LS	.1341	61				
712		UD	.211					
713 714		кк КМ	MIN					
714		HC	4					
716		KK						
717 718		KM RK	1531	.0202	.035	TRAP	25	4
719		кк	M21					
720 721		KM BA	.0241					
722 723		LS UD	.125	61				
724		кк						
725 726		KM RK	1322	.0212	.035	TRAP	5	4
727		кк	M23				5	•
728		KМ						
729 730		BA LS	.0461	60				
731		UD	.120					
732 733		KK KM	MO					
734		HC	3					
735 736		KK KM						
737		RK	974	.0133	.035	TRAP	25	4
738 739		KK KM	M2 4					
740		BA	.0776	~				
741 742		LS UD	.125	60				
743		кк	MP					
744 745		KM HC	2					
746		кк						
747 748		км RK	290	.0138	.035	TRAP	25	4
749		кк	M25					-
750 751	l.	KM BA	.0105					
752		LS UD	.130	60				
		00	.120					

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 11 of 40 7/23/2008

754 755 756	KK KM HC	MQ 2							
757 758 759	KK KM RK	3305	.0136	.035	TRAP	25	4		
760 761 762 763 764	KK KM BA LS UD	M26 .1779 .250	65						
765 766 767	KK KM HC	MR 2							
768 769 770 771 772	KK KM BA LS UD	₩44 .0384 .141	60						
773 774 775	KK KM RK	2029	.0148	.035	TRAP	5	4		
776 777 778 779 780	KK KM BA LS UD	W47 .0541 .148	60						
781 782 783	KK KM RK	1438	.0223	.035	TRAP	5	4		
784 785 786 787 788	KK KM BA LS UD	W46 .0418 .154	61						
789 790 791 792 793	KK KM BA LS UD	M27 .0528 .132	60						
794 795 796	KK KM HC	WX 6							
797 798 799	KK KM RK	2563	.0125	.035	TRAP	40	4		
800 801 802 803 804	KK KM BA LS UD	₩48 .1179 .091	61						
805 806 807	KK KM RK	2400	.0188	.035	TRAP	5	4		
808 809 810 811 812	KK KM BA LS UD	W49 .2651 .181	61						
813 814 815	KK KM HC	WZ 3							
816 817 818	KK KM RK	800	.0125	.035	TRAP	40	4		
819 820 821 822 823	KK KM BA LS UD	W50 .1061 .145	61						
824 825 826	КК КМ НС	WAB 2							
827 828	KK KM								

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 12 of 40 7/23/2008

829	RK	742	.0108	.035	TRAP	40	4		
830	кк	W51							
831	KM								
832 833	BA LS	.0546	63						
834	UD	.172							
835	кк	WAC							
836	KM								
837	HC	2							
838	KK								
839 840	KM RK	638	.0345	.035	TRAP	40	4		
			.0315	.000	mui	10	1		
841 842	KK KM	₩52							
843	BA	.0499							
844 845	LS UD	.109	63						
		.105							
846 847	KK KM								
848	RK	1171	.0205	.035	TRAP	5	4		
849	кк	W53							
850	KM								
851 852	BA LS	.0531	63						
853	UD	,156							
854	кк	WAD							
855	KM								
856	HC	2							
857	KK								
858 859	KM RK	290	.0310	.035	TRAP	10	4		
860 861	KK KM	₩54							
862	BA	.0078	60						
863 864	LS UD	.050	60						
865	кк	WAE							
866	КM								
867	HC	3							
868	кк								
869 870	KM RK	1925	.0052	.035	TRAP	40	4		
			.0052	.055	INAF	40	4		
871 872	KK KM	₩56							
873	BA	.1831							
874 875	LS UD	.191	60						
876 877	KK KM	WAF							
878	нс	2							
879	кк								
880	KM	1000	0155	0.25		**	,		
881	RK	1032	.0155	.035	TRAP	40	4		
882	KK	₩62							
883 884	KM BA	.0750							
885 886	LS UD	.090	60						
		.090							
887 888	KK KM								
889	RK	2169	.0203	.035	TRAP	5	4		
890	кк	W63							
891	KM								
892 893	BA LS	.047	60						
894	UD	.109	••						
895	кк								
896	KM	1450	0101	0.25		e			
897	RK	1450	.0131	.035	TRAP	5	4		
898	KK KM	W61							
899 900	KM BA	.192							
901 902	LS UD	.251	60						
903	KK	WAH							

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 13 of 40 7/23/2008

904	EM.											
904 905	КМ HC	3										
906	KK											
907	KM						_					
908	RK	1241	.0153	.035		TRAP	5	4				
909	кк	W 57										
910 911	KM BA	.0732										
912	LS		60									
913	UD	.140										
914	КК											
915 916	KM RK	5903	.0254	.035		TRAP	5	4				
						11.51		•				
917 918	KK KM	W 58										
919	BA	.2296										
920 921	LS UD	.251	60									
922 923	KK KM	WAI										
924	HC	3										
925	KK											
926	KM											
927	ŔK	232	.0086	.035		TRAP	15	4				
928 929	KK KM	E1A										
930	BA	.1151										
931 932	LS UD	0 .234	60									
933 934	KK KM	E1A-EA										
935	RK	4000	.022	.035		TRAP	5	4				
936	кк	E1B										
937	KM											
938 939	BA LS	.1665	60									
940	UD	.233										
941	кк	EA										
942 943	KM HC	2										
944 945	KK KM	EA-EB										
946	RK	1900	.022	.035		TRAP	5	4				
947	кк	E2										
948 949	KM BA	.104										
950	LS	0	60									
951	UD	.149										
952	кк	EB										
953 954	КМ HC	2										
955 956	KK KM	POND1 R	OUTE FLOW	THROUGH	SCS POND	1						
957 958	SV SE	0	.001E FLOW .01 946	.28	1.12 950	2.70	5.18 954	6.00 954.5	6.94			
959	SQ	0	0	0	930	0		50110				
960	RS	1	ELEV	945.5								
961	кк											
962 963	KM RK	1300	.0192	.035		TRAP	5	4				
064	VV	53										
964 965	KK KM											
966 967	BA LS		60									
968	UD		00									
969	кк	MH-P2										
970 971	KM		ETRIEVE D	IVERSION	FROM W.	MERIDIA	N RD DIT	СН				
972 973	KK KM											
974	HC	3										
975	кк	POND2										
976 977	KM SV	F	OUTE FLOW	THROUGH	SCS POND	2	0.50	11 00	12.02	14 70	16 70	
978	SE	920		924	926	928	929	929.5	930	930.5	931	
979	SQ	0	0	0	0	0	0	25	86.5	186.2	308.4	

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 14 of 40 7/23/2008

980	RS	1	ELEV	920					
981 982	KK KM				TO X O	E	4		
983 984 985	rk KK KM	1700 E1C	.0141	.035	TRAP	5	4		
986 987 988	BA LS UD	.0845	60						
989 990 991	KK KM RK	1C-ED1 3450	.022	.035	TRAP	5	4		
992 993 994 995 996	KK KM BA LS UD	E4 .127 .200	60						
997 998 999	KK KM HC	ED1 2							
1000 1001 1002	KK KM RK	ED1-ED 450	.0178	.03	TRAP	5	4		
1003 1004 1005 1006 1007	KK KM BA LS UD	E5 .094 .160	60						
1008 1009 1010	KK KM HC	ED 3							
1011 1012 1013	KK KM RK	950	.0211	.035	TRAP	10	4		
1014 1015 1016 1017 1018	KK KM BA LS UD	E8 .0446 .139	60						
1019 1020 1021	KK KM HC	EE 2							
1022 1023 1024	KK KM RK	1500	.0127	.035	TRAP	10	4		
1025 1026 1027 1028 1029	KK KM BA LS UD	E10 .029 .158	60						
1030 1031 1032	KK KM HC	EF 2							
1033 1034 1035	KK KM RK		.0074	.035	TRAP	15	4		
1036 1037 1038 1039 1040	KK KM BA LS UD	.119	60						
1041 1042 1043 1044 1045	KK KM BA LS UD	.031	60						
1046 1047 1048	KK KM RK		.0100	.035	TRAP	5	4		
1049 1050 1051	KK KM HC	EG1							
1052 1053 1054	KK KM RK	G1-G	_0176	.035	TRAP	5	4		

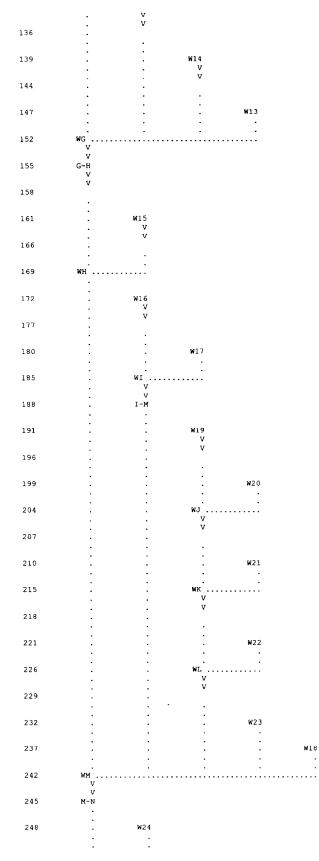
.

\\Se-srv01\projects\\057-Park Place Enterprises\\07-032-Meridian Crossing\Reports\FDR\CALCS\\SCS Calcs\\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 15 of 40 7/23/2008

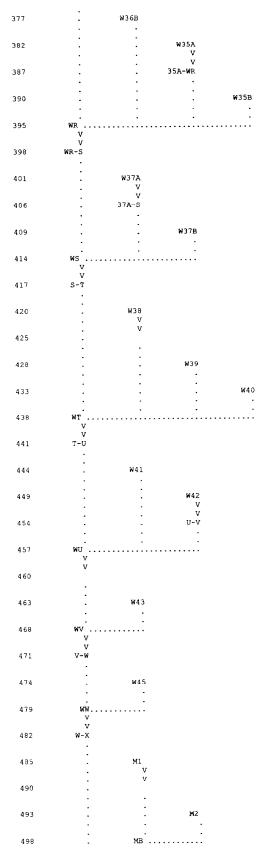
1055 1056 1057	KK KM BA	E9 .077	60						
1058 1059	LS UD	.207	80						
1060 1061 1062	KK KM RK	1500	.0080	.03	TRAP	5	4		
1063 1064 1065 1066 1067	KK KM BA LS UD	E11 .045 .195	60						
1068 1069 1070 1071 1072	KK KM BA LS UD	E12 .092 .156	60						
1073 1074 1075	КК КМ НС	EG 5							
1076 1077 1078 1079 1080	KK KM BA LS UD	E13 .0165 .252	60						
1081 1082 1083 1084 1085	KK KM BA LS UD	E14 .0051 .153	60						
1086 1087 1088	KK KM RK	279	.0108	.03	TRAP	5	4		
1089 1090 1091	KK KM HC	EH 3							
1092 1093 1094	KK KM RK	2400	.0204	.035	TRAP	10	4		
1095 1096 1097 1098 1099	KK KM BA LS UD	E19 .0406 .127	62						
1100 1101 1102	KK KM HC	EJ1 2							
1103 1104 1105	KK KM RK	J1-K 4013	.013	.035	TRAP	10	4		
1106 1107 1108 1109 1110	KK KM BA LS UD	E15 .0355 .097	63						
1111 1112 1113	KK KM RK	951	.0189	.035	TRAP	5	4		
1114 1115 1116 1117 1118	KK KM BA LS UD	E16 .0307 .100	63						
1119 1120 1121	KK KM HC	E1 2							
1122 1123 1124	KK KM RK	1334	.0105	.035	TRAP	5	4		
1125 1126 1127 1128 1129	KK KM BA LS UD	E17 .0312 .097	63						

•

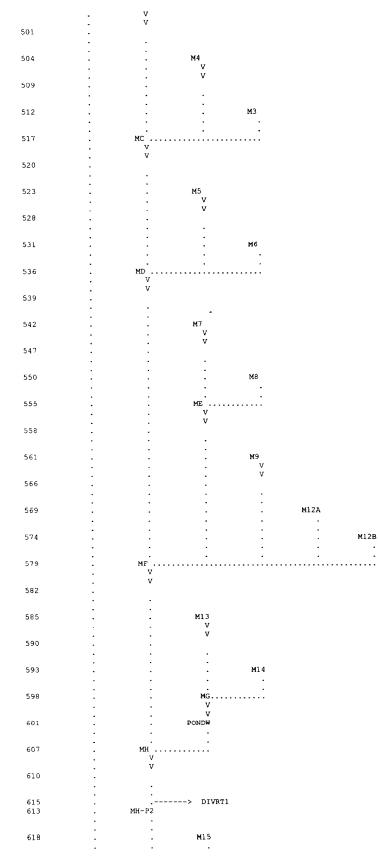
\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 16 of 40 7/23/2008


1120									
1130 1131 1132	KK KM RK	1728	.0145	.035	TRAP	5	4		
1133 1134	KK KM	E18							
1135 1136	BA LS	.0488	63						
1137	UD	.180	00						
1138	КК	EJ2							
1139 1140	КМ HC	3							
1141	кк								
1142 1143	KM RK	4221	.0123	.035	TRAP	20	4		
1144	кк	E23							
1145 1146	KM BA	.1683							
1147 1148	LS UD	.250	62						
1149	КК	E24							
1150 1151	KM BA	.140							
1152	LS		63						
1153	UD	.371							·
1154 1155	KK KM	EK							
1156	HC	4							
1157 1158	KK KM								
1159	RK	2817	.0149	.035	TRAP	25	4		
1160 1161	KK KM	E21							
1162 1163	BA LS	.0873	60						
1164	UD	.183							
1165 1166	KK KM								
1167	RK	1647	.0121	.035	TRAP	5	4		
1168 1169	KK KM	E20							
1170 1171	BA LS	.0771	62						
1172	UD	.219	02						
1173 1174	KK KM								
1175	RK	569	.0141	.035	TRAP	5	4		
1176 1177	KK	E22							
1178	KM BA	.0677							
1179 1180	LS UD	.240	61						
1181	кк	EL							
1182 1183	KM HC	3							
1184	ĸĸ								
1185 1186	KM RK	2041	.0162	.035	TRAP	25	4		
1187	кк	E25							
1188 1189	KM BA	.1665							
1190 1191	LS	. 176	61						
1192	кк	EM							
1193 1194	KM HC	3							
1194	кк	5							
1195 1196 1197	KM RK	928	.0108	.035	TRAP	40	4		
1197	кк	523 E26	10100		11431		•		
1199	KM								
1200 1201	BA LS	.0361	63						
1202	UD	.096							
1203 1204	KK KM	EN							
1205	HC	2							

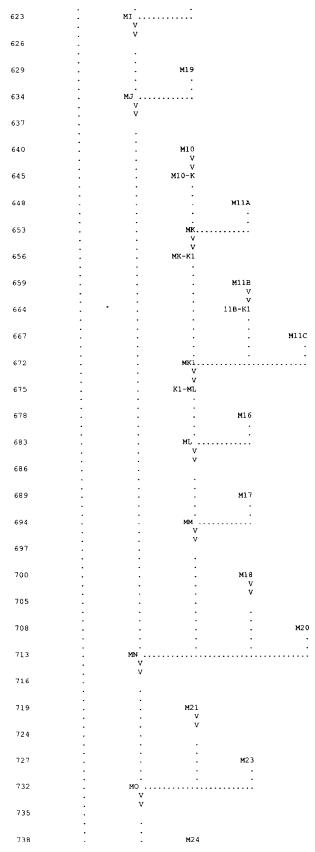
\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 17 of 40 7/23/2008


1206								
	KK							
1207	KM							
1208	RK	1832	.0126	.035	TRAP	40	4	
1209	кк	E27						
1210	КM							
		1276						
1211	BA	.1236						
1212	LS		63					
1213	UD	.172						
1214	KK	EO						
1215	KM							
1215	HC	2						
1210	HC	2						
1217	KK							
1218	KM							
1219	RK	1625	.0133	.035	TRAP	5	3	
1220	KK	W 55						
1221	KM							
1222	BA	.0452						
1223	LS		60					
1224	UD	.093						
1005		61 A.C.						
1225	KK	WAG						
1226	KM							
1227	HC	2						
1228	KK							
1229	KM							
		2025	01.00	035	TD ND	E	4	
1230	RK	2025	.0109	.035	TRAP	5	4	
1231	KK	W59						
1232	KM							
1233	BA	.0705						
1234	LS		60					
	UD	200	60					
1235	UD	.200						
1236	KK	WAJ						
1237	KM							
1238	HC	4						
		•						
1239	кк							
1240	КM					• -		
1241	RK	1450	.0124	.035	TRAP	40	4	
1242	KK	E28						
1243	КM							
1244	BA	.0718						
1244	LS		61					
		222	01					
1246	UD	.223						
1247	KK							
1248	KM							
1249	RK	2064	.0165	.035	TRAP	40	4	
							-	
1250	KK	E29						
		E29						
1251	KM							
1252	BA	.0465						
1253	LS		61					
1254	UD	.166						
1255	KK	EZZ						
1256	KM		OMBINE ES	29 & E30 AT DP	44			
1257	HC	2						
1258	KK	W60						
	KM							
1259		0711						
1259	BA	.0711						
1260	LS		60					
1260 1261		.182						
1260	UD							
1260 1261	UD							
1260 1261 1262		77						
1260 1261 1262 1263	кк	ZZ		77 97 97				
1260 1261 1262 1263 1264	KK KM	C	OMBINE AL	LL AT DP ZZ				
1260 1261 1262 1263	кк		OMBINE AJ	LL AT DP ZZ				

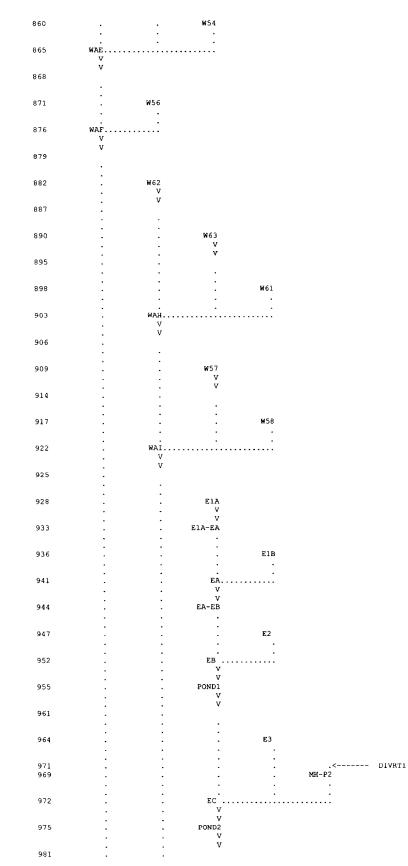
.


\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 18 of 40 7/23/2008

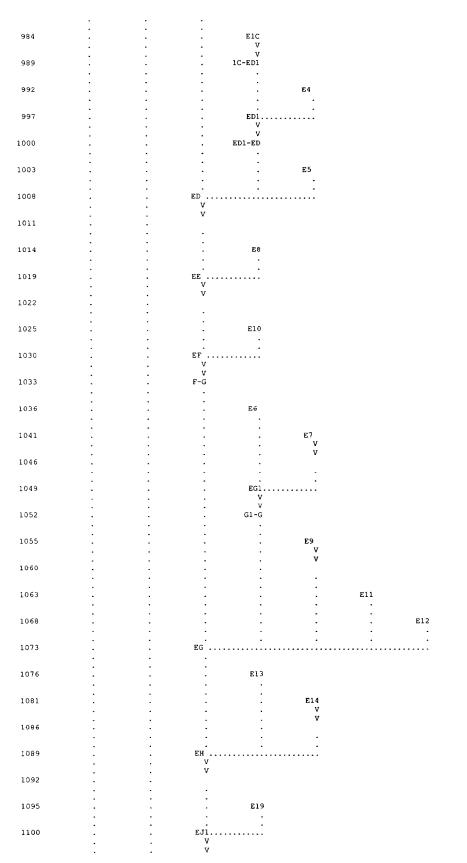
\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 20 of 40 7/23/2008

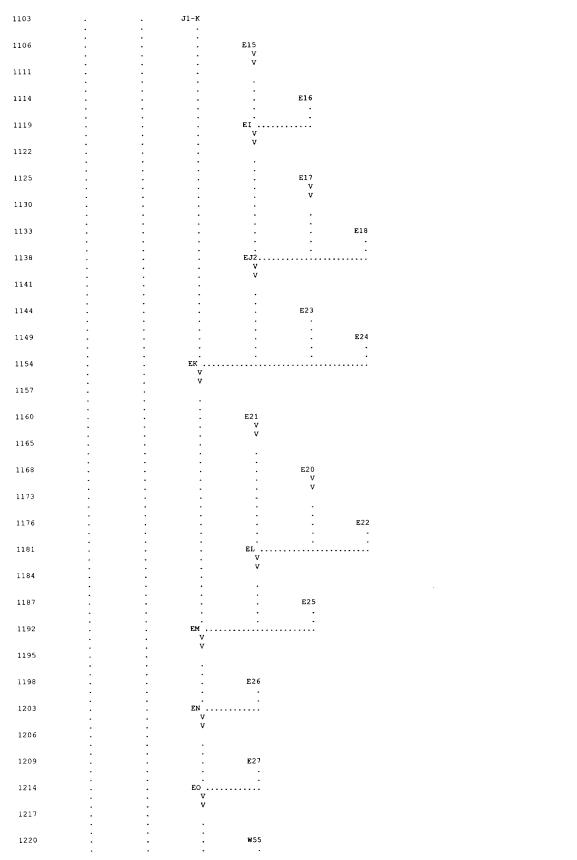


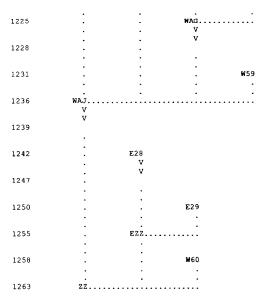
\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfa125.doc Page 22 of 40 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 23 of 40 7/23/2008


.


\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 24 of 40 7/23/2008


\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 26 of 40 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 27 of 40 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 28 of 40 7/23/2008

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION

******* * * FLOOD HYDROGRAPH PACKAGE (HEC-1) JUN 1998 VERSION 4.1 . U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104 * ÷ RUN DATE 28SEP07 TIME 11:57:06 * ******

FALCON BASIN 5-YR/ 24-HOUR FLOOD/ EXISTING CONDITIONS
 UPPER EAST TRIBUTARY (WOODMEN HILLS) BASED ON CLOMR APPROVED 2/2/99
 INCLUDING 2 EXISTING SCS STOCK PONDS, WEST WOODMEN HILLS POND
 NOTE: M1-M4 (PAINT BRUSH HILLS) MODELED AS HISTORIC TO ACCOUNT FOR
 DETENTION POND AT MC
 NOTE: NO CULVERT AT STAPLETON & MERIDIAN, TEMP CULVERTS AT MERIDIAN
 DOWNSTREAM OF WOODMEN HILLS DRIVE (DIVERSION)

9 IO OUTPUT CONTROL VARIABLES IPRNT IPLOT

- 5 PRINT CONTROL 0 PLOT CONTROL
- QSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH TIME DATA IΤ

OGRAPH TIME	DATA	
NMIN	5	MINUTES IN COMPUTATION INTERVAL
IDATE	14JUL99	STARTING DATE
ITIME	0800	STARTING TIME
NQ	300	NUMBER OF HYDROGRAPH ORDINATES
NDDATE	15JUL99	ENDING DATE
NDTIME	0855	ENDING TIME
ICENT	19	CENTURY MARK

COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS

ENGLISH UNITS

1

DRAINAGE AREA	SQUARE MILES
PRECIPITATION DEPTH	INCHES
LENGTH, ELEVATION	FEET
FLOW	CUBIC FEET PER SECOND
STORAGE VOLUME	ACRE-FEET
SURFACE AREA	ACRES
TEMPERATURE	DEGREES FAHRENHEIT

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

OPERATION	STATION	PEAK FLOW	TIME OF PEAK	AVERAGE	FLOW FOR MAXIMUM PERIOD		BAS IN AREA	MAXIMUM	TIME OF
of high 100	STATION	T DOM	TEAK	6-HOUR	24-HOUR	72-HOUR	AREA	STAGE	MAX STAGE
HYDROGRAPH AT	W1	5.	5.83	1.	ο.	ο.	.05		
ROUTED TO		4.	5,92	1.	٥.	0.	.05		
HYDROGRAPH AT	W 2	2.	5.83	٥.	ο.	0.	.03		
2 COMBINED AT	WA	6.	5.92	1.	0.	0.	.08		
ROUTED TO		6.	5.92	1.	0.	0.	.08		
HYDROGRAPH AT	W3	5.	5.83	1.	٥.	0.	.05		
2 COMBINED AT	WB	11.	5.92	2.	1.	1.	.13		
ROUTED TO		10.	5.92	2.	1.	1.	.13		
HYDROGRAPH AT	W4	1.	5.75	0.	0.	0.	.01		
ROUTED TO		1.	5.83	0.	0.	0.	.01		
HYDROGRAPH AT	W5	2.	5.75	0.	0.	0.	.02		
3 COMBINED AT	WC	11.	5.92	2.	1.	1.	.15		
ROUTED TO									

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 30 of 40 7/23/2008

		11.	5.92	2.	1.	1.	.15		
HYDROGRAPH AT	W6	5.	5.83	1.	0.	0.	.05		
ROUTED TO		5.	5.83	1.	0.	0.	.05		
HYDROGRAPH AT	W 7	2.	5.75	0.	0.	0.	.02		
ROUTED TO		2.	5.83	0.	ο.	0.	.02		
2 COMBINED AT	WD	7.	5.83	1.	ο.	٥.	.07		
ROUTED TO	D-E	6.	5.83	1.	0.	0.	.07		
HYDROGRAPH AT	W 8	з.	5.75	0.	0.	0.	.03	,	
ROUTED TO		3.	5.83	٥.	0.	0.	.03		
HYDROGRAPH AT	W 9	5.	5.83	1.	0.	0.	.04		
3 COMBINED AT									
ROUTED TO	WE	14.	5.83	2.	1.	1.	.14		
HYDROGRAPH AT	E-F	13.	5.92	2.	1.	1.	.14		
ROUTED TO	W10	5.	5.83	1.	٥.	0.	.04		
HYDROGRAPH AT		5.	5.83	1.	0.	0.	.04		
	W11	3.	5.75	0.	0.	0.	.03		
4 COMBINED AT	WF	29.	5.92	5.	2.	2.	.36		
ROUTED TO	F-G	28.	6.00	5.	2.	2.	.36		
HYDROGRAPH AT	W12	4.	5.83	1.	٥.	û.	.04		
ROUTED TO		4.	5.92	1.	0.	0.	.04		
HYDROGRAPH AT	W14	5.	5.83	1.	0.	0.	.05		
ROUTED TO		5.	5.92	1.	٥.	0.	.05		
HYDROGRAPH AT	W13	10.	5.92	2.	1.	1.	.11		
4 COMBINED AT	WG	43.	6.00	8.	3.	3.	.56		
ROUTED TO	G-H	41.	6.08	8.	3.	3.	.56		
ROUTED TO		39.	6.17	8.	з.	З.	.56		
HYDROGRAPH AT	W15	10.	5.83	1.	1.	1.	.09		
ROUTED TO		9.	5.92	1	1.	1.	.09		
2 COMBINED AT	WH	43.	6.17	9.	4.	4.	.65		
HYDROGRAPH AT									
ROUTED TO	W16	4.	5.83	0.	0.	0.	.03		
HYDROGRAPH AT		3.	5.92	0.	0.	0.	.03		
2 COMBINED AT	W17	2.	5.83	0.	0.	0.	.02		
	WI	5.	5.83	1.	0.	0.	.05		

Į

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 31 of 40 7/23/2008

+	ROUTED TO	I-M	5.	6.00	1.	0.	0.	.05	
	HYDROGRAPH AT	W19	5.	5.75	1.	0.	0.	.04	
	ROUTED TO		5.	5.83	1.	0.	0.	.04	
•	HYDROGRAPH AT	1120							
÷	2 COMBINED AT	W20	5.	5.75	0.	0.	0.	.03	
+	ROUTED TO	МJ	9.	5.83	1.	0.	0.	.07	
+	HYDROGRAPH AT		9.	6.00	1.	0.	0.	.07	
+	2 COMBINED AT	W21	11.	5.83	2.	1.	1.	.13	
+	ROUTED TO	WK	18.	5.92	3.	1.	1.	.21	
+	HYDROGRAPH AT		16.	5.92	3.	1.	1.	.21	
+		W22	2.	5.75	0.	0.	0.	.01	
+	2 COMBINED AT	WL	17.	5.92	3.	1.	1.	.22	
+	ROUTED TO		17.	6.00	з.	1.	1.	.22	
+	HYDROGRAPH AT	W23	2.	5.83	0.	0.	٥.	.02	
+	HYDROGRAPH AT	W18	9.	5.92	2.	1.	1.	.13	
+	5 COMBINED AT	WM	66.	6.08	15.	6.	б.	1.06	
+	ROUTED TO	M-N	65.	6.17	15.	6.	6.	1.06	
+	HYDROGRAPH AT	W24	4.	5.83	1.	0.	٥.	.04	
+	HYDROGRAPH AT	W25	8.	5.92	1.	1.	1.	.10	
+	3 COMBINED AT	WN	70.	6.17	17.	7.	7.	1.20	
+	ROUTED TO	N-P	67.	6.25	16.	7.	7.	1.20	
+	HYDROGRAPH AT	W28	7.	5.83	1.	0.	0.	.04	
+	ROUTED TO		6.	5.92	1.	0.	0.	.04	
+	HYDROGRAPH AT	W 30	9.	5.83	1.	0.	0.	.05	
+	ROUTED TO		8.	5,92	1.	0.	0.	.05	
+	HYDROGRAPH AT	W29	6.	5.83	1.	0.	0.	.04	
	HYDROGRAPH AT	W31	3.	5.75	0.	0.	0.	.01	
+	4 COMBINED AT								
+	ROUTED TO	WO	20.	5.92	3.	1.	1.	.14	
+	HYDROGRAPH AT	0-P	20.	6.00	3.	1.	1.	.14	
+	ROUTED TO	W26	7.	5.75	1.	0.	0.	.03	
+	HYDROGRAPH AT		6.	6.08	1.	0.	0.	.03	
+	HYDROGRAPH AT	W27	10.	6.00	2.	1.	1.	.16	
+		W32	7.	5.92	1.	ο.	0.	.09	

•

÷

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 32 of 40 7/23/2008

+	5 COMBINED AT	WP	88.	6.17	23.	10.	9.	1.63
+	ROUTED TO	P-Q	87.	6.25	23.	10.	9.	1.63
+	HYDROGRAPH AT	W33A	9.	5.92	2.	1.	1.	.13
+	2 COMBINED AT	WP1	91.	6.25	24.	10.	10.	1.75
+	ROUTED TO	P1-Q	90.	6.33	24.	10.	10.	1.75
	HYDROGRAPH AT	W33B	9.	5.92	2.	1.	1.	.14
+	HYDROGRAPH AT							
+	ROUTED TO	W34A	9.	5.92	2.	1.	1.	.13
+	HYDROGRAPH AT	34A-P2	9.	6.08	2.	1.	1.	.13
+	2 COMBINED AT	W34B	11.	5.92	2.	1.	1.	.18
+	ROUTED TO	WP2	18.	6.00	4.	2.	2.	.30
+		P2-Q	18.	6.17	4.	2.	2.	.30
+	HYDROGRAPH AT	W34C	10.	6.00	2.	1.	1.	.16
+	4 COMBINED AT	WQ	114.	6.25	32.	13.	13.	2.36
+	ROUTED TO	Q-Q1	113.	6.33	32.	13.	13.	2.36
+	HYDROGRAPH AT	W36A	9.	5.92	2.	1.	1.	.14
+	2 COMBINED AT	WQ1	118.	6.33	33.	14.	14.	2.50
+	ROUTED TO	Q1-R	117.	6.42	33.	14.	14.	2.50
+	HYDROGRAPH AT	W36B	10.	6.00	2.	1.	1.	.19
+	HYDROGRAPH AT	W35A	7.	5.92	1.	1.	1.	.10
+	ROUTED TO	35A-WR	6.	6.25	1.	1.	1.	.10
+	HYDROGRAPH AT	W35B	9.	6.00	2.	1.	1.	.15
	4 COMBINED AT				38.	17.	16.	2.94
+	ROUTED TO	WR	131.	6.42				
+	HYDROGRAPH AT	WR-S	130.	6.50	38.	16.	16.	2.94
+	ROUTED TO	W37A	8.	5,92	1.	1.	1.	.11
+	HYDROGRAPH AT	37A-S	8.	6.00	1.	1.	1.	.11
+	3 COMBINED AT	W37B	13.	5.92	2.	1.	1.	.16
+		WS	137.	6.50	42.	18.	17.	3.21
+	ROUTED TO	S-T	134.	6.67	42.	18.	17.	3.21
+	HYDROGRAPH AT	W38	10.	5.92	2.	1.	1.	.09
+	ROUTED TO		9.	6.08	2.	1.	1.	.09
+	HYDROGRAPH AT	W39	11.	6.00	2.	1.	1.	.18
	UNDDOCDADU AT							

HYDROGRAPH AT

i

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 33 of 40 7/23/2008

	W40	7.	5.83	1.	1.	1.	.10
4 COMBINED AT	WT	143.	6.58	46.	20.	19.	3.59
ROUTED TO							
HYDROGRAPH AT	T-U	142.	6.67	46.	20.	19.	3.59
HYDROGRAPH AT	W41	6.	5.83	1.	0.	0.	.06
ROUTED TO	₩42	50.	5.75	5.	2.	2.	.06
3 COMBINED AT	U-V	49.	5.83	5.	2.	2.	.06
ROUTED TO	WU	148.	6.67	51.	22.	21.	3.70
HYDROGRAPH AT		146.	6.75	51.	22.	21.	3.70
	W43	13.	5.83	2.	1.	1.	.15
2 COMBINED AT	WV	149.	6.75	53.	23.	22.	3.85
ROUTED TO	V-W	148.	6.75	53.	23.	22.	3.85
HYDROGRAPH AT	₩45	17.	5.92	з.	¹ .	1.	.19
2 COMBINED AT	WW	152.	6.75	56.	24.	23.	4.04
ROUTED TO	W-X	149.	6.83	55.	24.	23.	4.04
HYDROGRAPH AT	M1	7.	5.83	1.	0.	0.	.07
ROUTED TO		6.	5.83	1.	0.	0.	.07
HYDROGRAPH AT	M2	3.	5.83	٥.	0.	0.	.03
2 COMBINED AT	MB	9.	5.83	1.	1.	0.	.09
ROUTED TO		8.	5.92	1.	1.	0.	.09
HYDROGRAPH AT	M4	3.	5.83	0.	0.	0.	.03
ROUTED TO		3.	5.83	0.	0.	0.	.03
HYDROGRAPH AT	M3	2.	5.75	0.	0.	0.	.01
3 COMBINED AT	MC	11.	5.83	2.	1.	1.	.14
ROUTED TO		11.	6.00	2.	1.	1.	.14
HYDROGRAPH AT	M5	6.	5.75	1.	0.	0.	.02
ROUTED TO		6.	5.92	1.	0.	0.	.02
HYDROGRAPH AT	M6	10.	5.92	2.	1.	1.	.06
3 COMBINED AT	MD	26.	5.92	4.	2.	2.	.22
ROUTED TO	ι.υ	25.	6.08	4.	2.	2.	.22
HYDROGRAPH AT	22					1.	.05
ROUTED TO	M7	16.	5.83	2.	1.		
HYDROGRAPH AT		15.	5.92	2.	1.	1.	.05
	M 8	4.	5.83	1.	0.	0.	.04

+

+

+

+

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 34 of 40 7/23/2008

2 COMBINED AT	ME	18.	5.83	2.	1.	1.	.09		
ROUTED TO		18.	6.00	2.	1.	1.	.09		
HYDROGRAPH AT	M9	7.	5.75	1.	0.	0.	.02		
ROUTED TO		6.	5.92	1.	0.	0.	.02		
YDROGRAPH AT	M12A	5.	5.83	1.	0.	0.	.07		
IYDROGRAPH AT	M12B	10.	5.92	2.	1.	1.	.15		
COMBINED AT	MF	59.	6.00	10.	4.	4.	.54		
OUTED TO		57.	6.08	10.	4.	4.	.54		
HYDROGRAPH AT	M13	10.	5.83	1.	1.	0.	.06		
NOUTED TO		9.	6.00	1.	1.	0.	.06		
IYDROGRAPH AT	M14	22.	5.92	4.	1.	1.	.16		
2 COMBINED AT	MG	30.	5.92 .	5.	2.	2.	.22		
ROUTED TO	PONDW	9.	6.50	5.	2.	2.	.22		
2 COMBINED AT	101121							969.11	6.50
ROUTED TO	МН	64.	6.08	14.	6.	5.	.77		
		62.	6.17	14.	6.	5.	.77		
DIVERSION TO	DIVRT1	61.	6.17	14.	6.	5.	.77		
YDROGRAPH AT	MH-P2	1.	6.17	0.	0.	0.	.77		·
IYDROGRAPH AT	M15	18.	5.92	3.	1.	1.	.12		
2 COMBINED AT	MI	18.	5.92	3.	1.	1.	.89		
ROUTED TO		17.	6.00	з.	1.	1.	.89		
HYDROGRAPH AT	M19	5.	5,83	1.	0.	0.	. 05		
2 COMBINED AT	MJ	20.	6.00	3.	1.	1.	.94		
ROUTED TO		20.	6.08	3.	1.	1.	.94		
HYDROGRAPH AT	M10	8.	5.83	1.	0.	0.	.06		
ROUTED TO	M10-K	8.	5.92	1.	0.	Ο.	.06		
HYDROGRAPH AT	M11A	8.	5.92	2.	1.	1.	.11		
2 COMBINED AT	МК	16.	5.92	3.	1.	1.	.16		
ROUTED TO	MK-K1	16.	6.00	3.	1.	1.	.16		
HYDROGRAPH AT	M11B	7.	5.83	1.	0.	0.	.09		
ROUTED TO	11B-K1	7.	6.00	1.	0.	٥.	.09		
HYDROGRAPH AT	M11C	7.	5.83	1.	1.	0.	.09		
3 COMBINED AT									

3 COMBINED AT

+

+

+

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 35 of 40 7/23/2008

+		MK1	27.	6.00	5.	2.	2.	.35	
+	ROUTED TO	K1-ML	26.	6.00	5.	2.	2.	.35	
+	HYDROGRAPH AT	M16	4.	5.83	1.	Ο.	0.	.04	
+	2 COMBINED AT	ML	28.	6.00	5.	2.	2.	. 39	
+	ROUTED TO		28.	6.08	5.	2.	2.	. 39	
+	HYDROGRAPH AT	M17	9.	5.83	1.	ο.	٥.	.08	
+	2 COMBINED AT	MM	31.	6.08	7.	3.	3.	.46	
+	ROUTED TO		29.	6.17	7.	3.	3.	.46	
+	HYDROGRAPH AT	M18	7.	5,83	1.	0.	٥.	.06	
+	ROUTED TO		6.	6.00	1.	0.	٥.	.06	
+	HYDROGRAPH AT	M2.0	11.	5.92	2.	1.	1.	.13	
+	4 COMBINED AT	MN -	57.	6.17	13.	5.	5.	1,60	
+	ROUTED TO		55.	6.25	13.	5.	5.	1.60	
+	HYDROGRAPH AT	M21	3.	5,83	0.	0.	0.	.02	
+	ROUTED TO		3.	5.92	0.	0.	0.	.02	
+	HYDROGRAPH AT	M23	4.	5.83	1.	٥.	0.	.05	
+	3 COMBINED AT	MO	57.	6.25	14.	6.	5.	1.67	
+	ROUTED TO		56.	6.25	14.	6.	5.	1.67	
+	HYDROGRAPH AT	M24	7.	5.83	1.	ο.	0.	.08	
+	2 COMBINED AT	MP	58.	6.25	15.	6.	б.	1.75	
+	ROUTED TO		57.	6.25	15.	6.	6.	1.75	
+	HYDROGRAPH AT	M25	1.	5.83	0.	0.	0.	.01	
+	2 COMBINED AT	MQ	58.	6.25	15.	6.	6.	1.76	
+	ROUTED TO		57.	6.42	15.	6.	6.	1.76	
+	HYDROGRAPH AT	M26	26.	5.92	4.	2.	2.	.18	
+	2 COMBINED AT	MR	66.	6.42	18.	8.	7.	1.94	
+	HYDROGRAPH AT	W44	3.	5.83	1.	0.	0.	.04	
+	ROUTED TO		3.	6.00	1.	0.	0.	.04	
+	HYDROGRAPH AT	W47	4.	5.83	1.	0.	0.	.05	
ł	ROUTED TO		4.	5.92	1.	0.	ο.	.05	
+	HYDROGRAPH AT	W46	4.	5.83	1.	0.	ο.	.04	
+	HYDROGRAPH AT	M 27	5.	5.83	1.	0.	0.	.05	

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 36 of 40 7/23/2008

	6 COMBINED AT	WX	192.	6.75	76.	33.	31.	6.17	
	ROUTED TO		191.	6.83	76.	32.	31.	6.17	
	HYDROGRAPH AT	W48	14.	5.83	2.	1.	1.	.12	
	ROUTED TO		14.	5.92	2.	1.	1.	.12	
	HYDROGRAPH AT	W49	24.	5,92	4.	2.	2.	.27	
	3 COMBINED AT	WZ	199.	6.83	81.	35.	34.	6.55	
	ROUTED TO		196.	6.92	61.	35.	34.	6.55	
	HYDROGRAPH AT	W 50	11.	5.83	2.	1.	1.	.11	
	2 COMBINED AT	WAB	198.	6.92	83.	35.	34.	6.66	
	ROUTED TO		198.	6.92	83.	35.	34.	6.66	
	HYDROGRAPH AT	W51	7.	5.83	1.	0.	0.	.05	
	2 COMBINED AT -	WAC	199.	6.92	83.	36.	34.	6.71	
	ROUTED TO		198.	6.92	83.	36.	34.	6.71	
	HYDROGRAPH AT	W52	9.	5.83	۱.	0.	0.	.05	
	ROUTED TO		8.	5.83	1.	0.	0.	.05	
	HYDROGRAPH AT	W53	8.	5.83	1.	0.	0.	.05	
	2 COMBINED AT	WAD	16.	5.83	2.	1.	1.	.10	
	ROUTED TO		14.	5.83	2.	1.	1.	.10	
	HYDROGRAPH AT	W54	1.	5.75	0.	0.	0.	.01	
	3 COMBINED AT	WAE	200.	6.92	85.	37.	35.	6.82	
	ROUTED TO		199.	7.00	85.	36.	35.	6.82	
	HYDROGRAPH AT	W56	13.	5.92	2.	1.	1.	.18	
	2 COMBINED AT	WAF	202.	7.00	87.	37.	36.	7.01	
	ROUTED TO		200.	7.00	87.	37.	36.	7.01	
	HYDROGRAPH AT	W62	7.	5.83	1.	0.	0.	.08	
	ROUTED TO		7.	5.92	1.	0.	0.	.08	
	HYDROGRAPH AT	W63	5.	5.83	1.	0.	0.	.05	
	ROUTED TO HYDROGRAPH AT		4.	5.92	1.	0.	0.	.05	
	3 COMBINED AT	W61	11.	6.00	3.	1.	1.	.19	
•	ROUTED TO	WAH	22.	5.92	4.	2.	2.	.31	
•	HYDROGRAPH AT		21.	6.00	4 -	2.	2.	.31	
÷	MIDNOGRAFII AI	W 57	б.	5.83	1.	0.	0.	.07	

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 37 of 40 7/23/2008

+

ROUTED TO		6.	6.25	1.	0.	0.	.07			
HYDROGRAPH AT	W 58	13.	6.00	3.	1.	1.	.23			
3 COMBINED AT	WAI	35.	6.00	8.	3.	з.	. 62			
ROUTED TO		34.	6.00	8.	з.	3.	.62		·	
HYDROGRAPH AT	E1A	٦.	5.92	2.	1.	1.	.12			
ROUTED TO	E1A-EA	7.	6.17	1.	1.	1.	.12			
HYDROGRAPH AT	E1B	10.	5.92	2.	1.	1.	.17			
2 COMBINED AT	EA	13.	6.17	4.	2.	1.	.28			
ROUTED TO	EA-EB	13.	6.25	4.	2.	1.	.28			
HYDROGRAPH AT	E2	9.	5.83	1.	1.	1.	.10			
2 COMBINED AT	EB	16.	6.25	5.	2.	2.	.39			
ROUTED TO	POND1	2.	14.92	2.	1.	1.	.39	952.08	14.92	
ROUTED TO		2.	15.00	2.	1.	1.	.39			
HYDROGRAPH AT	E3	8.	5.83	1.	0.	0.	.09			
HYDROGRAPH AT	MH-P2	61.	6.17	14.	6.	5.	.00			
3 COMBINED AT	EC	64.	6.17	15.	7.	7.	.48			
ROUTED TO	POND2	6.	19.83	6.	2.	2.	. 48	929.13	19.83	
ROUTED TO		6.	20.00	6.	2.	2.	.48		19100	
HYDROGRAPH AT	ElC	6.	5.92	1.	0.	0.	.08			
ROUTED TO	1C-ED1	5.	6.17	1.	0.	0.	.08			
HYDROGRAPH AT	E4	9.	5.92	2.	1.	1.	.13			
2 COMBINED AT	ED1	10.	6.17	3.	1.	1.	.21			
ROUTED TO	ED1-ED	10.	6.17	3.	1.	1.	.21			
HYDROGRAPH AT	E5	7.	5.83	1.	1.	0.	.09			
3 COMBINED AT	ED	15.	5.92	7.	4.	з.	.78			
ROUTED TO		14.	5.92	7.	4.	3.	.78			
HYDROGRAPH AT	E8	4.	5.83	1.	0.	0.	.04			
2 COMBINED AT	EE	18.	5.92	7.	4.	4.	.83			
ROUTED TO		17.	6.00	7.	4.	4.	.83			
HYDROGRAPH AT	E10	2.	5.83	0.	0.	٥.	.03			
2 COMBINED AT	EF	19.	6.00	7.	4.	4.	.85			

. .

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 38 of 40 7/23/2008

+

ROUTED TO	F-G	18.	6.08	7.	4.	4.	.85		
HYDROGRAPH AT	E6	7.	5.92	2.	1.	1.	.12		
HYDROGRAPH AT	E7	3.	5.75	0.	0.	0.	.03		
ROUTED TO		3.	5.92	0.	0.	0.	.03		
2 COMBINED AT	EG1	10.	5.92	2.	1.	1.	.15		
ROUTED TO	G1-G	10.	6.00	2.	1.	1.	.15		
HYDROGRAPH AT	E9	5.	5.92	1.	0.	0.	.08		
ROUTED TO		5.	6.00	1.	0.	0.	.08		
HYDROGRAPH AT	E11	3.	5.92	1.	٥.	0.	.05		
HYDROGRAPH AT	E12	7.	5.83	1.	1.	0.	.09		
5 COMBINED AT	EG	37.	6.08	10.	6.	6.	1.22		
HYDROGRAPH AT	E13	1.	6.00	0.	0.	0.	.02		
HYDROGRAPH AT	E14	0.	5.83	0.	٥.	0.	.01		
ROUTED TO		0.	5.92	0.	0.	0.	.01		
3 COMBINED AT	EH	39.	6.00	10.	6.	б.	1.24		
ROUTED TO		39.	6.17	10.	6.	б.	1.24		
HYDROGRAPH AT	E19	6.	5.83	1.	0.	0.	.04		
2 COMBINED AT	EJ1	39.	6.17	10.	6.	6.	1.28		
ROUTED TO	J1-K	39.	6.25	10.	6.	6.	1.28		
HYDROGRAPH AT	E15	б.	5.83	1.	٥.	0.	.04		
ROUTED TO		б.	5.83	1.	0.	٥.	.04		
HYDROGRAPH AT	E16	5.	5.83	1.	0.	0.	.03		
2 COMBINED AT	EI	11.	5.83	1.	0.	0.	.07		
ROUTED TO		10.	5,92	1.	0.	0.	.07		
HYDROGRAPH AT	E17	5.	5.83	1.	0.	0.	.03		
ROUTED TO		5.	5.92	1.	0.	0.	.03		
HYDROGRAPH AT	E18	6.	5.92	1.	٥.	٥.	.05		
3 COMBINED AT	EJ2	22.	5.92	3.	1.	1.	.15		
ROUTED TO		19.	6.25	3.	1.	1.	.15		
HYDROGRAPH AT	E 23	15.	5.92	3.	1.	1.	.17		
HYDROGRAPH AT	E24	11.	6.08	3.	1.	1.	.14		
A COMBINED AT									

4 COMBINED AT

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 39 of 40 7/23/2008

		£Κ	76.	6.25	18.	10.	9.	1.74	
	ROUTED TO		69.	6.42	18.	9.	9.	1.74	
	HYDROGRAPH AT	E21	6.	5.92	1.	ο.	ο.	.09	
	ROUTED TO		6.	6.00	1.	0.	ο.	.09	
	HYDROGRAPH AT	E20	8.	5.92	1.	1.	1.	.08	
	ROUTED TO		7.	6.00	1.	1.	1.	.08	
	HYDROGRAPH AT	E22	5.	5.92	1.	0.	0.	.07	
	3 COMBINED AT	EL	18.	6.00	3.	1.	1.	.23	
	ROUTED TO		17.	6.08	3.	1.	1.	.23	
	HYDROGRAPH AT	E25	15.	5.92	3.	1.	1.	.17	
	3 COMBINED AT	EM	85.	6.33	24.	12.	11.	2.13	
	ROUTED TO		84.	6.42	24.	12.	11.	2.13	
	HYDROGRAPH AT	E26	б.	5.83	1.	0.	0.	.04	
	2 COMBINED AT	EN	85.	6.42	25.	12.	12.	2.17	
	ROUTED TO		84.	6,50	24.	12.	12.	2.17	
	HYDROGRAPH AT	E27	17.	5.83	2.	1.	1.	.12	
	2 COMBINED AT	EO	87.	6.50	26.	13.	13.	2.29	
	ROUTED TO		84.	6.58	26.	13.	12	2.29	
	HYDROGRAPH AT	W 55	5.	5.83	1.	0.	0.	.05	
	2 COMBINED AT	WAG	85.	6.58	27.	13.	13.	2.34	
÷	ROUTED TO		84.	6.58	27.	13.	13.	2.34	
	HYDROGRAPH AT	W59	5.	5.92	1.	0.	0.	.07	
- -	4 COMBINED AT	WAJ	269.	7.00	122.	54.	52.	10.03	
	ROUTED TO		267.		122.	54.	52.	10.03	
+	HYDROGRAPH AT	E28	6.	5.92	1.	0.	0.	.07	
	ROUTED TO	525	6.	6.17	1.	0.	0.	.07	
+	HYDROGRAPH AT	E29	4.	5,83	1.	0.	o.	.05	
+	2 COMBINED AT	EZZ	ч. 7.	6.17	2.	1.	1.	.12	
+	HYDROGRAPH AT	W60	5.	5.92	1.	0.	0.	.07	
+	3 COMBINED AT								
+		ZZ	271.	7.00	125.	55.	53.	10.22	

*** NORMAL END OF HEC-1 ***

.

FLOOF	HYDROGRAPH	PACKAGE	(HEC-1)
1 0001	JUN (ULLI)	1998	(
	VERSION		

***	*******************************	***
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*
***	* * * * * * * * * * * * * * * * * * * *	***

х	х	XXXXXXX	XX	ххх		Х
х	х	х	х	х		XX
х	х	х	х			х
XXXX	XXX	XXXX	х		XXXXX	х
х	х	х	х			х
х	х	х	х	х		х
х	х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HECIDB, AND HECIKW.

.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1 2 3	ID ID ID	UF	N BASIN 1 PPER EAST WCLUDING	TRIBUTA	RY (WOOI	MEN HILL	S) BASEL	ON CLON	IR APPROV		9
4	ID		DTE: M1-M	4 (PAINT	BRUSH I	(ILLS) MO					
5 6	ID ID	NC	DETE DTE: NO C	NTION PO			RIDIAN.	TEMP CUI	VERTS AT	MERIDIA	N
7	ID					EN HILLS					
8 9	*DIA IT IO	GRAM 5 1 5	L4JUL99	800	300						
10	KK	W1									
11 12	KM BA	.0479									
13	PB	4.4									
14 15	IN PC	15 .0005	.0015	.0030	.0045	.0060	.0080	.0100	.0120	.0143	.0165
16	PC	.0188	.0210	.0233	.0255	.0278	.0320	.0390	.0460	.0530	.0600
17	PC	.0750	.1000	.4000	.7000	.7250	.7500	.7650	.7800	.7900	.8000
18 19	PC PC	.8100 .8638	.8200	.8250 .8713	.8300 .8750	.8350 .8788	.8400 .8825	.8450 .8863	.8500 .8900	.8550 .8938	.8600 .8975
20	PC	.9013	.9050	.9083	.9115	.9148	.9180	.9210	.9240	.9270	.9300
21	PC	.9325	.9350	.9375	.9400	.9425	.9450	.9475 .9725	.9500 .9750	.9525	.9550
22 23	PC PC	.9575 .9813	.9600 .9825	.9625 .9838	.9650 .9850	.9675 .9863	.9700 .9875	.9888	.9900	.9775 .9913	.9800 .9925
24	PC	.9938	.9950	.9963	.9975	.9988	1.000				
25 26	LS UD	.097	60								
27	КК										
28 29	KM RK	1519	.0263	.035		TRAP	5	4			
30	ĸĸ	W2						-			
31	КM										
32 33	BA LS	.0278	60								
34	UD	.160									
35 36	KK KM	WA									
37	HC	2									
38 39	KK KM										
40	RK	464	.0151	.035		TRAP	5	4			
41	кк	W 3									
42	KM	0.400									
43 44	BA LS	.0498	61								
45	UD	.139									
46 47	KK KM	WB									
48	HC	2									
49	кк										
50 51	KM RK	823	.0279	.035		TRAP	5	4		54	
52	кк	W4									
53 54	KM BA	.0054									
55	LS		62								
56	UD	.044									
57	KK										
58 59	KM RK	1078	.0482	.035		TRAP	5	4			
60	кк	W 5									
61	KM										
62 63	BA LS	.0159	60								
64	UD	.075									
65	кк	WC									
66	КM										
67	HC	3									
68 69	KK KM										
70	RK	557	.0449	.035		TRAP	10	4			
71	КК	W6									
72 73	KM BA	.0486									
74	LS		60								
75	UD	.085									
76 77	KK										
77 78	KM RK	592	.0372	.035		TRAP	5	4			

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 2 of 41 7/23/2008

79 80 81 82 83 KK KM BA LS UD W7 .0217 60 .074 84 85 KK KM RK 86 464 .1466 .035 TRAP 5 4 KK KM HC 87 WD 88 89 2 KK KM RK 90 D-E 91 92 1044 .0479 .035 TRAP 5 4 93 94 95 96 97 KK KM BA LS UD **W**8 .0286 60 .069 KK KM RK 98 99 100 TRAP 5 1449 .0504 .035 4 101 KK KM BA LS UD **W**9 102 103 .0402 104 105 61 .097 106 кк WE 107 108 КМ HC 3 109 кк E-F 110 KM RK 789 .0038 TRAP 4 111 .035 5 KK KM BA LS UD 112 ₩10 113 114 115 116 .0431 61 .096 KK KM RK 117 118 119 .0388 TRAP 824 .035 5 4 120 KK KM BA LS UD **W1**1 121 122 123 124 .0314 60 .077 125 KK KM HC WF 126 127 4 KK KM RK 128 F-G 129 130 2319 .0211 .035 TRAP 10 4 131 132 133 134 135 KK KM BA LS UD **W**12 .0398 60 .095 136 137 138 KK KM RK .0307 2478 .035 TRAP 5 4 139 140 KK KM BA LS UD W14 141 142 143 .0473 61 .135 KK KM RK 144 145 146 81 0.0001 .035 TRAP 5 147 KK KM BA LS UD W13 148 149 150 151 .1123 61 .182 152 153 154 KK KM HC WG 4

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 3 of 41 7/23/2008

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
157 NR 282 .02.7 .035 TRAP 1.5 4 158 NR 24.7 .037 .035 TRAP 5 4 158 NR 24.7 .037 .035 TRAP 5 4 158 NR 41.3 .0292 .025 TRAP 5 4 158 NR .141 .0299 .035 TRAP 5 4 157 NR .158 .0299 .035 TRAP 5 4 157 NR .158 .0299 .035 TRAP 5 4 157 NR .155 .0299 .035 TRAP 5 4 157 NR .155 .0299 .035 TRAP 15 4 157 NR .157 .014 .014 .014 .014 158 NR .014 .015 .780P 15 4 159 NR .014 .015 .780P 15 4 161 NR .015 .780P 15 4 162 NR .015 .780P 15 4 164 .015 <			G-H								
150 160 160 160 160 160 160 160 160 160 16			2622	0217	0.25	TDAD	15	4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	157	RK	2632	.0217	.035	TRAP	15	4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	158	KK									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	160	RK	2447	.0372	.035	TRAP	5	4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	161	vv	W15								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			M13								
164 L5 61 165 KK 176.1 0.289 0.035 TRAP 5 4 171 KK 176.1 0.289 0.35 TRAP 5 4 171 KK 116.1 0.289 0.35 TRAP 5 4 171 KK 116.1 0.280 0.35 TRAP 5 4 171 KK 116.1 0.280 0.35 TRAP 5 4 171 KK 116.1 0.280 0.35 TRAP 5 4 172 KK 116.1 0.280 0.35 TRAP 5 4 180 KK 171.1 0.392 0.35 TRAP 15 4 181 KK 117.1 0.392 0.35 TRAP 5 4 186 KK 174.1 0.393 176.2 177.2 4 186 KK 114.2 0.393 TRAP 5 4 186 10.47 0.395 TRAP			.0881								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	164	LS		61							
	165	UD	.141								
	166	××									
160 RK 1723 0.229 0.35 TRAP 5 4 170 RK MH 100 100 100 100 100 171 RK M15 100 100 100 100 100 175 LK M16 100 100 100 100 100 174 LK M17 100 100 100 100 100 176 LK M17 100 100 100 100 100 175 LK M17 100 100 100 100 100 181 KK M17 100 100 100 100 100 184 CO 100 100 100 100 100 100 184 KK M17 100 100 100 100 100 184 CO 100 100 100 100 100 100 195 KK M10 100 100 100 100 100											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1763	.0289	.035	TRAP	5	4			
171 HC 2 172 KK W16 174 BK 0.922 175 CO 0.922 176 CO 0.922 177 KK 14 180 KK 14 181 KK 14 182 BA 0.014 183 KK W1 184 CO 0.035 TRAP 5 185 SKK W1 60 1 184 CO 0.035 TRAP 5 4 185 SKK W1 1 1 1 186 SKK W1 1 1 1 187 SKK W19 1 1 1 188 SKK W19 1 1 1 199 KK W19 1 1 1 199 KK W10 1 1 1 199 KK W10 1 1 1 199 KK </td <td></td> <td></td> <td>WH</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			WH								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/1	nc	2								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		KK	₩16								
175 LS 6 176 UU .0260 .035 TRAP 5 4 180 KK M17 60 60 60 60 181 KK M17 60 60 60 60 182 KK M17 60 60 60 60 184 UU .005 7 7 6 60 185 KK M1 60 60 60 60 185 KK M1 60 60 60 60 196 KK M19 60 61 60 61 60 195 UD .083 61 61 61 61 61 196 KK M10 61 61											
176 UD .032 177 NK 178 NK 1345 .0260 .035 TRAP 5 4 180 KK W17			.0292	~							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			092	61							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0	00									
179 RK 1345 .0260 .035 TRAP 5 4 180 KK W17	177	КК									
180 KK W17 181 KM 0.0184 181 LD 0.005 185 LD 0.005 186 KK M1 186 KK M2 187 KK M1 188 C.01370 0.035 TRAP 15 189 KK M19							_				
151 KM .0144 60 162 BA .0144 60 163 LS .085 60 164 LS .085 60 165 KK MI 186 KK I-M 189 KK I-M 189 KK MI 189 KK MI 190 RK 2650 .0370 .035 TRAP 15 4 191 KK MI .0428 61 .0329 .035 TRAP 5 4 193 BA .0428 61 .0329 .035 TRAP 5 4 190 RK W20 .035 TRAP 5 4 201 BA .0115 61 .0235 .035 TRAP 5 4 2020 RK W3 .0235 .035 TRAP 5 4 211 RM .1347 .00 .0015 .00 .000 .000 .000 .000	179	RK	1345	.0260	.035	TRAP	5	4			
151 KM .0144 60 162 BA .0144 60 163 LS .085 60 164 LS .085 60 165 KK MI 186 KK I-M 189 KK I-M 189 KK MI 189 KK MI 190 RK 2650 .0370 .035 TRAP 15 4 191 KK MI .0428 61 .0329 .035 TRAP 5 4 193 BA .0428 61 .0329 .035 TRAP 5 4 190 RK W20 .035 TRAP 5 4 201 BA .0115 61 .0235 .035 TRAP 5 4 2020 RK W3 .0235 .035 TRAP 5 4 211 RM .1347 .00 .0015 .00 .000 .000 .000 .000	190	ĸĸ	W17								
182 BA .0164 183 LS .005 184 UD .005 185 KK WI 187 KK 2 188 KK 1-H 189 KK 2 190 KK 2550 .0370 .035 TRAP 15 4 191 KK NH9 .0428 .011 .0			H1/							,	
194 UD .005 185 KK NT 186 KK NT 189 RK I-H 190 RK 2650 .0370 .035 TRAP 15 4 191 KK M19 .0428 61 .0428 .0428 .0428 194 LS .0428 .01 .0329 .035 TRAP 5 4 196 RK W20 .035 TRAP 5 4 197 RK 881 .0329 .035 TRAP 5 4 199 KK W20 .035 .035 TRAP 5 4 2001 EA .0315 61 .0235 .035 TRAP 5 4 2010 KK W20 .035 .035 TRAP 5 4 2020 RK 3061 .0235 .035 TRAP 5 4 2101 KK W21 .036 .035 TRAP 5 4			.0184								
185 1867 KK MC N1 2 188 189 KK MC 1-M 2 189 190 KK MC 1-M 2 181 192 KK MC 193 193 193 193 KK MC 0.033 194 193 LS .0428 100 195 193 KK MC 0.033 194 193 LS .035 195 193 KK MC 0.033 196 193 KK MC 0.035 199 200 KK MC 0.035 199 201 KK MC 0.035 199 202 KK MC 0.035 203 LD .011 204 KK MC 2 205 KK MC 2 206 KK MC .035 210 KK MC .035 211 KM MC 2 212 KK MC .035 213 KK MC .035 214 LO .035 225 KM MA .0036 221 <				60							
186 NM 2 188 KK I-M 190 KK 19 191 KK N19 192 KK N19 193 BA 0428 194 15 4 195 U0 0.033 196 KK N19 197 RK 881 0.029 0.035 TRAP 5 4 199 KK 881 0.0329 0.035 TRAP 5 4 200 KK 881 0.0329 0.035 TRAP 5 4 200 KK 881 0.0329 0.035 TRAP 5 4 201 BA 0.015 61 202 203 10 70 2020 LS 0.015 61 203 10 71 71 210 KK W1 21 21 71 60 71 71 213 EA .1347 60 72 71 71 71 <td>184</td> <td>UD</td> <td>.085</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	184	UD	.085								
186 NM 2 188 KK I-M 190 KK 19 191 KK N19 192 KK N19 193 BA 0428 194 15 4 195 U0 0.033 196 KK N19 197 RK 881 0.029 0.035 TRAP 5 4 199 KK 881 0.0329 0.035 TRAP 5 4 200 KK 881 0.0329 0.035 TRAP 5 4 200 KK 881 0.0329 0.035 TRAP 5 4 201 BA 0.015 61 202 203 10 70 2020 LS 0.015 61 203 10 71 71 210 KK W1 21 21 71 60 71 71 213 EA .1347 60 72 71 71 71 <td>105</td> <td>vv</td> <td>wт</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	105	vv	wт								
187 HC 2 188 KK I-M 189 KK 2650 .0370 .035 TRAP 15 4 191 KK W19 .0428 .015 .016 .016 .016 193 NN .0428 .012 .035 TRAP 5 4 194 LS .0428 .035 TRAP 5 4 199 KK 881 .0329 .035 TRAP 5 4 199 KK 881 .0329 .035 TRAP 5 4 199 KK NU .0315 61 .0235 .035 TRAP 5 4 200 KK NU .0235 .035 TRAP 5 4 201 BA .0215 .035 TRAP 5 4 2020 KK NU .0235 .035 TRAP 5 4 210 KK 1.0215 .0235 .035 TRAP 5 4			4 1								
188 KK I-H 199 KK W19 191 KK W19 193 BA .0428 194 L5 .03 195 KK W19 193 BA .0428 194 L5 .03 195 KK W20 197 RK 881 .029 .035 198 KK W20 2001 KK W20 2012 KK 202 KK W20 203 UD .071 204 KK MJ 205 KK 206 KK MJ 213 KK 214 UD 215 KK MA <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			2								
189 KK W19 191 KK W19 192 KK 0.428 193 BA 0.0428 194 LS 0.033 195 KK 881 199 KK W20 200 KK W20 201 BA 0.315 202 BA 0.315 203 UD .011 204 KK W20 205 KK W30 206 HC 2 207 KK W21 218 KK W21 211 KK W12 212 KK W1 213 LS .1347 214 UD .156 215 KK W1 221 KK W2 221 KK W2 222 EK 487 .0246 .035 213 LS .1347 60 .1347 2214 UD .1347											
190 RK 2650 .0370 .035 TRAP 15 4 191 KK N19 .0428 .61 .0428 .61 195 UD .083 .61 .0329 .035 TRAP 5 4 196 KK 881 .0329 .035 TRAP 5 4 199 KK 881 .0329 .035 TRAP 5 4 199 KK 801 .0329 .035 TRAP 5 4 199 KK 801 .0329 .035 TRAP 5 4 200 KK W20 .015 61 .0235 .035 TRAP 5 4 205 KM W20 .0235 .035 TRAP 5 4 210 KK W21 .1347 60 .1347 60 214 UD .156 .0246 .035 TRAP 5 4 211 KK 222 .0246 .035 TRAP <td< td=""><td></td><td></td><td>I-M</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			I-M								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2650	0270	0.25	20.30	16				
192 NM 193 BA .0428 194 LS .61 195 UD .083 196 KK 197 KM 198 KK 199 KK 200 KM 201 BA 202 LS 203 UD 204 KK KK MJ 205 KM 206 HC 207 KK XM .025 208 KM 209 RK 210 NK 211 NM 212 SK 213 LS 214 UD 215 KK 216 KK 217 HC 2218 KK	190	KK	2050	.0370	.035	IRAP	19	4			
192 NM 193 BA .0428 194 LS .61 195 UD .083 196 KK 197 KM 198 KK 199 KK 200 KM 201 BA 202 LS 203 UD 204 KK KK MJ 205 KM 206 HC 207 KK XM .025 208 KM 209 RK 210 NK 211 NM 212 SK 213 LS 214 UD 215 KK 216 KK 217 HC 2218 KK	191	KK	W19								
194 LS 61 195 UD 0.083 197 KK 081 0.329 0.35 TRAP 5 4 199 KK 020 KK 020 KK 020 KK 020 200 KK W20 KK 0315 61 0315 61 202 LS 61 0 201 BA 0.0315 61 203 UD .071 7 KK WJ 7 7 204 KK WJ 2 7 7 7 7 205 KM 2 7 7 7 7 7 205 KM 2 7 60 7 7 7 60 7 214 UD .156 60 7 7 60 7 7 7 7 7 60 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7											
195 UD .083 196 KK 197 KK 198 KK 199 KK 200 KK 201 BA 202 LS 203 UD 204 KK 205 KK 206 HC 207 KK 208 KK 209 RK 201 KK 202 LS 203 UD 204 KK 205 KM 206 HC 207 KK 208 KK 209 RK 210 KK 211 KK 212 BA 213 LS 214 UD 215 KK 216 KK 217 HC 223 BA 224 LS 225 UD 226 KK <td></td> <td></td> <td>.0428</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			.0428								
196 197 198 KK KM 0.029 0.035 TRAP 5 4 199 200 KK W20 61 61 61 61 61 202 LS 0.071 61 61 61 61 61 205 KK WJ 61 61 61 61 61 206 KK WJ 61 61 61 61 61 206 KK WJ 61 61 61 61 61 207 KK WZ 61 61 61 61 61 208 KK 3061 .0235 .035 TRAP 5 4 210 KK WZ 60 61 61 61 61 211 KK WK 1.1347 60 61 61 61 61 2113 KK 487 .0246 .035 TRAP 5 4 221 KK 487 .0246 .035 TRAP 5 4 <t< td=""><td></td><td></td><td>000</td><td>61</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			000	61							
197 KM 881 .0329 .035 TRAP 5 4 199 KK W20 .0315 61 .0315 </td <td>192</td> <td>UD</td> <td>.083</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	192	UD	.083								
197 KM 881 .0329 .035 TRAP 5 4 199 KK W20 .0315 61 .0315 </td <td>196</td> <td>KK</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	196	KK									
199 KK W20 201 BA .0315 202 LS .0315 203 UD .071 204 KK WJ 205 KK 206 HC 2 207 KK 208 KK 209 RK 3061 .0235 .035 208 KM 2 209 RK 3061 .0235 .035 210 KK W21 R .021 211 RM .1347 60 .156 215 KK WK .2 .2 214 UD .156 .156 216 KM .2 .2 229 RK 487 .0246 .035 221 KK W22 .2 .2 223 BA .0086 63 224 LS .055 .2 225 UD .055 .2		KM									
200 KM .0315 202 LS .0315 203 UU .071 204 KK MJ 205 KM 206 HC 2 207 KK 208 KM 209 RK 3061 .0235 .035 209 RK 3061 .0235 .035 TRAP 5 4 210 KK W21 .0215 .035 TRAP 5 4 210 KK W21 .0215 .035 TRAP 5 4 211 KM .0235 .035 TRAP 5 4 213 LS .036 .035 TRAP 5 4 215 KK MK .0246 .035 TRAP 5 4 219 RK 487 .0246 .035 TRAP 5 4 222 KM .0366 .63 .035 .035 .035 .035 224 LS	198	RK	881	.0329	.035	TRAP	5	4			
200 KM .0315 202 LS .0315 203 UU .071 204 KK MJ 205 KM 206 HC 2 207 KK 208 KM 209 RK 3061 .0235 .035 209 RK 3061 .0235 .035 TRAP 5 4 210 KK W21 .0215 .035 TRAP 5 4 210 KK W21 .0215 .035 TRAP 5 4 211 KM .0235 .035 TRAP 5 4 213 LS .036 .035 TRAP 5 4 215 KK MK .0246 .035 TRAP 5 4 219 RK 487 .0246 .035 TRAP 5 4 222 KM .0366 .63 .035 .035 .035 .035 224 LS	100	vv	MOO								
201 BA .0315 202 LS 61 203 UD .071 204 KK WJ 205 KM 206 HC 2 207 KK 208 KM 209 RK 3061 .0235 .035 210 KK W21			W 20								
203 UD .071 204 KK WJ 205 KM 206 HC 2 207 KK 208 KM 209 RK 3061 .0235 .035 TRAP 5 4 210 KK W21 1 </td <td></td> <td></td> <td>.0315</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			.0315								
204 KK WJ 205 KN 2 207 KK 2 209 KX 3061 .0235 .035 TRAP 5 4 210 KK W21 .0235 .035 TRAP 5 4 210 KK W21 .0235 .035 TRAP 5 4 211 KM .1347 .035 60				61							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	203	UD	.071								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	204	кк	W.T								
206 HC 2 207 KK 208 KM 209 RK 3061 .0235 .035 TRAP 5 4 210 KK W21											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2								
208 KM 3061 .0235 .035 TRAP 5 4 210 KK W21											
209 RK 3061 .0235 .035 TRAP 5 4 210 KK W21											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		rm Rk	3061	.0235	.035	TRAP	5	4			
211 KM 212 BA .1347 213 LS 60 214 UD .156 215 KK WK 216 KM 217 HC 2 218 KK 219 KM 220 RK 487 .0246 .035 TRAP 5 4 221 KK W22 222 KM 223 BA .0086 63 222 KM LS 63 63 225 UD .055 226 KK WL KM 226 KK NL	200	1111	2201			1141	5	•			
211 KM 212 BA .1347 213 LS 60 214 UD .156 215 KK WK 216 KM 217 HC 2 218 KK 219 KM 220 RK 487 .0246 .035 TRAP 5 4 221 KK W22 222 KM 223 BA .0086 63 222 KM LS 63 63 225 UD .055 226 KK WL KM 226 KK NL			W21								
213 LS 60 214 UD .156 215 KK WK 216 KM 217 HC 2 218 KK 219 KM 220 RK 487 .0246 .035 TRAP 5 4 221 KK W2 222 KM 223 BA .0086 63 224 LS 63 63 225 UD .055 226 KK WL 400 .000 .000 .000	211										
214 UD .156 215 KK WK 216 KM 2 218 KK 2 218 KK 2 219 KM 487 .0246 .035 TRAP 5 4 220 RK 487 .0246 .035 TRAP 5 4 221 KK W22 222 KM 223 BA .0086 63 224 LS 63 63 225 UD .055 226 KM NL 226 KK NL .0255 .055 .055 .055 .055			.1347	C 0							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	213 214		.156	60							
216 KM 217 HC 2 218 KK 219 KM 220 RK 487 .0246 .035 TRAP 5 4 221 KK .022 KM .223 BA .0086 63 .224 LS .055 .226 KM .227 KM	LL1	00	.150								
217 HC 2 218 KK 219 KM 220 RK 487 .0246 .035 TRAP 5 4 221 KK W22 .0246 .035 TRAP 5 4 221 KK W22 .0246 .035 TRAP 5 4 222 KM .0086 .023 .024 .035 .035 224 LS 63 .055 .055 .055 .055 226 KK WL			WK								
218 KK 219 KM 220 RK 221 KK 222 KM 223 BA 224 LS 225 UD 226 KK 227 KM	216	KM									
219 KM 220 RK 487 .0246 .035 TRAP 5 4 221 KK W2 222 KM 223 BA .0086 224 LS 63 225 UD .055 226 KK WL 227 KM	217	HC	2								
219 KM 220 RK 487 .0246 .035 TRAP 5 4 221 KK W2 222 KM 223 BA .0086 224 LS 63 225 UD .055 226 KK WL 227 KM	218	ĸĸ									
220 RK 487 .0246 .035 TRAP 5 4 221 KK W22 222 KM 223 BA .0086 224 LS 63 225 UD .055 226 KK NL 227 KM											
221 KK W22 222 KM 223 BA .0086 224 LS 63 225 UD .055 226 KK NL 227 KM		RK	487	.0246	.035	TRAP	5	4			
222 KM 223 BA 224 LS 225 UD 226 KK 227 KM											
223 BA .0086 224 LS 63 225 UD .055 226 KK NL 227 KM			W22								
224 LS 63 225 UD .055 226 KK NL 227 KM	222		0006								
225 UD .055 226 KK WL 227 KM	223	LS	.0086	63							
226 KK NL 227 KM			.055								
227 KM											
227 KM 228 HC 2			WL								
220 R. 2		KM	2								
	220	nC	2								

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 4 of 41 7/23/2008

229	KK								
230 231	KM RK	1786	.0297	.035	TRAP	5	4		
231	i.i.	1,00	.025.	.055		•	•		
232	KK	W23							
233 234	KM BA	.0244							
235	LS	,0244	60						
236	UD	.112							
237	кк	W18							
238	KM								
239	BA	.1251							
240	LS UD	.189	60						•
241	00	.109							
242	KK	WM							
243 244	KM HC	5							
211	110	5							
245	KK	M-N							
246 247	KM RK	1345	.0149	.035	TRAP	20	4		
248 249	KK KM	W24							
250	BA	.0442							
251	LS		60						
252	UD	.140							
253	кк	W25							
254	KM								
255 256	BA LS	.0957	61						
257	UD	.197						•	
55.0	1/1/								
258 259	KK KM	WN							
260	HC	3							
261	кк	N-P							
262	KM	IN - 2							
263	RK	1589	.017	.035	TRAP	20	4		
264	кк	W28							
265	KM								
266 267	BA LS	.0397	63						
268	UD	.128	05						
269 270	KK KM								
271	RK	1345	.0208	.035	TRAP	5	4		
020	101	5120							
272 273	KK KM	W30							
274	BA	.0509							
275 276	LS UD	.123	63						
277	KK								
278 279	KM RK	1078	.0074	.035	TRAP	5	4		
280 281	KK KM	W29							
282	BA	.0409							
283 284	LS UD	.145	63						
285	KK	W31							
286 287	KM BA	.0123							
288	LS		63						
289	UD	.073							
290	KK	WO							
291	KM	4							
292	нс	4							
293	KK	0-P							
294 295	KM RK	2169	.0226	.035	TRAP	5	4		
						~	•		
296	KK	W26							
297 298	KM BA	.0301							
299	LS		63						
300	UD	.062							
301	KK								
301 302	кк		0225	0.25	mb 3 b	c	A		
301	KK	4662	.0225	.035	TRAP	5	4		
301 302	кк	4662 W27	.0225	.035	TRAP	5	4		

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 5 of 41 7/23/2008

305	КМ	1.600							
306 307	BA LS	.1633	60						
308	UD	.253	00						
508	00	.235							
309	KK	W32							
310	KM								
311	BA	.0890							
312 313	LS UD	.170	60						•
515	05	.1.0							
314	кк	WP							
315	КM								
316	HC	5							
317	кк	P-Q							
318	КM								
319	RK	1925	.0182	.035	TRAP	25	4		
320	кк	W33A							
321	KM								
322	BA	.1261							
323	LS		60						
324	UD	.186							
325	кк	WP1							
326	KM								
327	HC	2							
328	кк	P1-Q							
329	KM								
330	RK	3000	.020	.035	TRAP	25	4		
331	KK	W33B							
332	KM	# 55D					•		
333	BA	.1360							
334	LS	225	60						
335	UD	.225							
336	кк	W34A							
337	KM								
338	BA	.1261	60						
339 340	LS UD	.173	60						
341	KK	34A-P2							
342 343	KM RK	2550	.0176	.035	TRAP	25	4		
545	1	2000	.01/0	.000		20	•		
344	KK	W34B							
345	KM	1766							
346 347	BA LS	.1766	60						
348	UD	.224							
240									
349 350	KK KM	WP2							
351	HC	2							
352	KK	P2-Q							
353 354	KM RK	2640	.021	.035	TRAP	25	4		
355	KK	W34C							
356 357	КМ ВА	.1625							
358	LS		60						
359	UD	.244							
360	кк	WQ							
361	KM	μų							
362	HC	4							
363 364	KK KM	Q-Q1							
365	RK	2940	.022	.035	TRAP	25	4		
366	KK KM	W36A							
367 368	BA	.1429							
369	LS		60						
370	UD	.234							
371	кк	WQ1							
372	KM								
373	HC	2							
374	кк	Q1-R							
374	KM	AT-V							
376	RK	3400	.022	.035	TRAP	25	4		
377	кк	W36B							
378	KM								
379	BA								
380	LS		60						

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 6 of 41 7/23/2008

381	UD	,306								
382 383	KK KM	W35A								
384 385	BA LS	.0958	60							
386	UD	.187								
387 388	KM	35A-WR		0.05			25			
389	RK	3715	.023	.035		TRAP	25	4		
390 391	KK KM	W35B								
392 393	BA LS	.1507	60							
394 395	UD KK	.259 WR								
395 396 397	KM HC	ик 4								
398	кк	WR-S								
399 400	KM RK	2922	.0168	.035		TRAP	25	4		
401	кк	W37A		.000		IIUU	20	•		
402 403	KM BA	.1138								
404 405	LS UD	.185	60							
406	кк	37A-S								
407 408	KM RK	1430	.014	.035	-	TRAP	25	4		
409	КК	W37B								
410 411	KM BA	.1636								
412 413	LS UD	.218	61							
414	КК	WS								
415 416	КМ HC	3								
417	кк	S-T								
418 419	KM RK	3653	.0164	.035		TRAP	25	4		
420	КК	W38								
421 422	KM BA	.0907								
423 424	LS UD	.190	62							
425	КК									
426 427	KM RK	2922	.0171	.035		TRAP	5	4		
428 429	KK KM	W39								
429 430 431	BA	.1833	60							
432	UD	.251	00							
433 434	KK KM	W40								
435 436	BA	.0964	60							
437	UD	.165								
438 439	KK KM	WT								
440	HC	4								
441 442	KK KM	T-U								
443	RK	1125	.0098	.035		TRAP	25	4		
444 445	KK KM	W41								
446 447	BA LS	.0601	60							
448	UD	.117								
449 450	кк км	W42								
451 452	BA LS	.0581	81							
453 454	UD KK	.127 U-V								
455	KM		0104	0.35		ית א נו ית	c	,		
456	RK	2656	.0184	.035		TRAP	5	4		

١

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 7 of 41 7/23/2008

457 458 459	КК КМ НС	WU 3							
460 461 462	KK KM RK	2215	.0181	.035	TRAP	25	4		
463	КК	₩43							
464 465	KM BA	.1457	<i>.</i>						
466 467	LS UD	.169	61						
468	КК	WV							
469 470	KM HC	2							
471	кк	V-W							
472 473	KM RK	487	.0103	.035	TRAP	25	4		
474	кк	W45							
475 476	KM BA	.1931							
477 478	LS UD	.189	61						
479	кк	WW							
480 481	КМ HC	2							
482	KK	w-X							
483 484	KM RK	1542	.0149	.035	TRAP	5	4		
485	KK	M1							
486 487	KM BA	.0665							
488 489	LS UD	.108	60						
490 491	KK KM								
492	RK	650	.0308	.035	TRAP	5	4		
493 494	KK KM	M2							
495									
	BA LS	.0273	60						
496 497	BA LS UD	.0273	60		HEC-1 INPUT				PAGE 13
496	LS UD	.114		3	HEC-1 INPUT	6	7	89	
496 497 LINE 498	LS UD ID. KK	.114		3		6	7	89	
496 497 LINE	LS UD ID.	.114		3		6	7	89	
496 497 LINE 498 499 500 501	LS UD ID. KK KM HC KK	.114 1. MB		3		6	7	89	
496 497 LINE 498 499 500	LS UD ID. KK KM HC	.114 1. MB		3		6	7	89	
496 497 LINE 498 499 500 501 502 503 504	LS UD ID. KK KM HC KK KM RK	.114 1. MB 2	2.		45			89	
496 497 LINE 498 499 500 501 502 503 504 505 506	LS UD ID. KK KM HC KK KM RK KK KM BA	.114 1. MB 2 928	.0302		45			89	
496 497 LINE 498 499 500 501 502 503 503 504 505	LS UD ID. KK KM HC KK KM RK KK KK	.114 1. MB 2 928 M4	2.		45			89	
496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509	LS UD ID. KK KM HC KK KK KK BA LS UD KK	.114 1. MB 2 928 M4 .0346	.0302		45			89	
496 497 LINE 498 499 500 501 502 503 504 505 506 507 508	LS UD ID. KK KM HC KK KK KK KM BA LS UD	.114 1. MB 2 928 M4 .0346	.0302		45			89	
496 497 LINE 498 499 500 501 502 503 504 505 506 507 506 507 506 507 506 507 508 509 510 511	LS UD ID. KK KM HC KK KM BA LS UD KK KM RK KK	.114 1. MB 2 928 M4 .0346 .121	.0302	.035	45 TRAP	5	4	89	
496 497 LINE 498 499 500 501 502 503 504 505 506 506 507 508 509 510 511 512 513 514	LS UD ID. KK KM HC KK KM BA LS UD KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KK	.114 MB 2 928 M4 .0346 .121 406	.0302 60 .0197	.035	45 TRAP	5	4	89	
496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513	LS UD ID. KK KM HC KK KM RK KM LS UD KK KM RK KM KK KM	.114 MB 2 928 M4 .0346 .121 406 M3	.0302	.035	45 TRAP	5	4	89	
496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517	LS UD ID. KK KM HC KK KM RK KM KK KM KK KM LS UD KK	.114 MB 2 928 M4 .0346 .121 406 M3 .0149	.0302 60 .0197	.035	45 TRAP	5	4	89	
496 497 LINE 498 499 500 501 502 503 504 505 506 506 507 508 509 510 511 512 513 514 515 516	LS UD ID. KK KM HC KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KK	.114 MB 2 928 M4 .0346 .121 406 M3 .0149 .076	.0302 60 .0197	.035	45 TRAP	5	4	89	
496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 507 508 509 510 511 512 513 514 515 516 517 518	LS UD ID. KK KM HC KK KM RK KM BA SUD KK KM KM KK KM KK KM KK	.114 MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC	.0302 60 .0197	.035	45 TRAP	5	4	89	
496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520	LS UD ID. KK KM HC KK KM BA LS UD KK MA LS UD KK MA HC KK	.114 MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC 3 1902	.0302 60 .0197	.035	45 TRAP	5	4	89	
496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524	LS UD ID. KK KM HC KK KM KK KM KK KM KK KM SA SUD KK KM SA SUD KK KM KK KK KK KK KK KK KK KK KK KK KK	.114 MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC 3	.0302 60 .0197 60	.035 .02	45 ТRAP ТRAP	5	4	89	
496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522	LS UD ID. KKMC KKMK KKMBASUD KKMASUSU KKMASUSU KKMASUSU KKMAK KKMAKKKKKKKKKKKKKKKKKKKKKKKKKKKK	.114 MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC 3 1902	.0302 60 .0197 60	.035 .02	45 ТRAP ТRAP	5	4	89	

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 8 of 41 7/23/2008

528 529 530	KK KM RK	1717	.0186	.02	TRAP	40	0		
531 532 533 534 535	KK KM BA LS UD	м6 .0637 .233	65						
536 537 538	KK KM HC	MD 3							
539 540 541	KK KM RK	2841	.019	.035	TRAP	5	4		
542 543 544 545 546	KK KM BA LS UD	M7 .0524 .170	69						
547 548 549	KK KM RK	1044	.0268	.02	TRAP	40	0		
550 551 552 553 554	KK KM BA LS UD	M8 .0370 .126	61						
555 - 556 557	КК КМ НС	ME 2							
558 559 560	KK KM RK	2992	.0187	.035	TRAP	5	4		
561 562 563 564 565	KK KM BA LS UD	M9 .0169 .087	69						
566 567 568	KK KM RK	3433	.0253	.03	TRAP	5	4		
569 570 571 572 573	KK KM BA LS UD	M12A .0658 .159	60						
574 575 576 577	KK KM BA LS	м12в .1481	60						
579 580 581	KK KM HC	MF 5							
582 583 584	KK KM RK	2586	.0224	.035	TRAP	10	4		
585 586 587 588 589	KK KM BA LS UD	M13 .0614 .165	64						
590 591 592	KK KM RK	1700	.01	.035	TRAP	б	4		
593 594 595 596 597	KK KM BA LS UD	M14 .1624 .228	64						
598 599 600	KK KM HC	м д 2							
601 602 603 604	KK KM SV SE	PONDW 1 0 968		ILLS DETENT 1.5 970	TON POND WEST 235 3.6 971 972	(FROM FDR 4.9 973	6.3 7	.34 7.34 975 976	

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 9 of 41 7/23/2008

680 681 682	BA LS UD	.042 .139	60				
683 684 685	KK KM HC	ML 2					
686 687 688	KK KM RK	2099	.02	.035	TRAP	5	4
689 690 691 692 693	KK KM BA LS UD	M17 .0765 .133	61				
694 695 696	KK KM HC	MM 2					
697 698 699	KK KM RK	2320	.0121	.035	TRAP	10	4
700 701 702 703 704	KK KM BA LS UD	м18 .061 .142	61				
705 706 707	KK KM RK	2122	.017	.035	TRAP	5	4
708 709 710 711 712	KK KM BA LS UD	M20 .1341 .211	61				
713 714 715	KK KM HC	MN 4					
716 717 718	KK KM RK	1531	.0202	.035	TRAP	25	4
719 720 721 722 723	KK KM BA LS UD	M21 .0241 .125	61				
724 725 726	KK KM RK	1322	.0212	.035	TRAP	5	4
727 728 729 730 731	KK KM BA LS UD	M23 .0461 .120	60				
732 733 734	КК КМ НС	мо 3					
735 736 737	KK KM RK	974	.0133	.035	TRAP	25	4
738 739 740 741 742	KK KM BA LS UD	M24 .0776 .125	60				
743 744 745	KK KM HC	MP 2					
746 747 748	KK KM RK	290	.0138	.035	TRAP	25	4
749 750 751 752 753	KK KM BA LS	M25 .0105	60				
753 754	UD KK	.130 MQ					

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 11 of 41 7/23/2008 755 756 КМ HC 2 757 758 759 KK KM RK 3305 .0136 .035 TRAP 25 4 760 761 762 KK KM BA LS UD M26 .1779 763 764 65 .250 765 кк MR 766 767 KM HC 2 KK KM BA 768 W44 769 770 771 772 .0384 LS UD 60 .141 773 774 775 КК КМ RK 2029 .0148 .035 TRAP 5 4 776 KK KM BA LS UD W47 777 778 779 .0541 60 .148 780 781 кк KM RK 782 1438 .0223 .035 TRAP 5 4 783 кк 784 W46 KM BA LS UD 785 786 787 .0418 61 788 .154 789 790 KK KM BA LS UD M27 791 792 .0528 60 793 .132 794 KK WΧ 795 KM HC 796 б 797 кк 798 799 КМ RK 2563 .0125 .035 TRAP 40 4 800 801 KK KM BA LS UD W48 802 .1179 61 803 804 .091 кк 805 806 807 KM RK 2400 .0188 .035 TRAP 5 4 808 KK KM BA LS UD W49 809 810 811 812 .2651 61 .181 KK KM HC 813 ₩Z 814 815 3 KK KM RK 816 817 818 800 .0125 .035 TRAP 40 4 819 KK KM BA LS UD ₩50 820 821 .1061 822 61 823 .145 KK KM HC 824 WAB 825 826 2 827 кк 828 829 KM RK 742 .0108 .035 TRAP 40 4

830							
	кк	W51					
831	КМ	05.44					
832 833	BA LS	.0546	63				
834	UD	.172					
835	кк	WAC					
836	KM						
837	HC	2					
838	кк						
839	KM						
840	RK	638	.0345	.035	TRAP	40	4
841	ĸĸ	₩52					
842	KM						
843 844	BA LS	.0499	63				
845	UD	.109	65				
	1717						
846 847	KK KM						
848	RK	1171	.0205	.035	TRAP	5	4
849	кк	W 53					
850	KM						
851	BA	.0531	~~				
852 853	LS UD	.156	63				
854 855	KK KM	WAD					
855 856	KM HC	2					
		-					
857 858	KK KM						
859	RK	290	.0310	.035	TRAP	10	4
860 861	KK KM	W54					
862	BA	.0078					
863	LS		60				
864	UD	.050					
865	KK	WAE					
866 867	KM HC	3					
007	nc	3					
868	KK						
869 870	KM RK	1925	.0052	.035	TRAP	40	4
					INT	-10	4
871	KK	₩56					
872 873	KM BA	.1831					
874	LS		60				
875	UD	.191					
876	кк	WAF					
877	КМ						
878	HC	2					
879	кк						
880	КM			007			
881	RK	1032	.0155	.035	TRAP	40	4
882	кк	W62					
883	KM						
884 885	BA LS	.0750	60				
886	UD	.090	00				
887 888	KK KM						
	RK	2169	.0203	.035	TRAP	5	4
889							
		5.7 C O					
890	KK KM	W 63					
890 891 892	KM BA	W63 .047					
890 891 892 893	KM BA LS	.047	60				
890 891 892 893 894	KM BA LS UD		60				
890 891 892 893 894 895	KM BA LS UD KK	.047	60				
890 891 892 893 894 895 896	KM BA LS UD KK KM	.047 .109		.035	TPAD	5	А
890 891 892 893 894 895 896 896	KM BA LS UD KK KM RK	.047 .109 1450	60 .0131	.035	TRAP	5	4
890 891 892 893 894 895 896 897 898	KM BA LS UD KK KM RK	.047 .109		.035	TRAP	5	4
890 891 892 893 894 895 896 897 898 899	KM BA LS UD KK KM RK KK	.047 .109 1450 W61		.035	TRAP	5	4
890 891 892 893 894 895 896 897 898 899 900 901	KM BA LS UD KK KM RK KM BA LS	.047 .109 1450 w61 .192		.035	TRAP	5	4
890 891 892 893 894 895 896 897 898 899 900	KM BA LS UD KK KM RK KK KK KK BA	.047 .109 1450 W61	.0131	.035	TRAP	5	4
890 891 892 893 894 895 896 897 899 900 901 902 903	KM BA LS UD KK KM RK KM BA LS UD KK	.047 .109 1450 w61 .192	.0131	.035	TRAP	5	4
890 891 892 893 894 895 896 897 898 899 900 901 902	KM BA LS UD KK KM RK KM BA LS UD	.047 .109 1450 w61 .192 .251	.0131	.035	TRAP	5	4

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Cales\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 13 of 41 7/23/2008

906	КК											
907	КM											
908	RK	1241	.0153	.035	T	TRAP	5	4				
909	KK	W57										
910	KM	.0732										
911 912	BA LS	.0752	60									
913	UD	.140	00									
515	00											
914	кк											
915	KM											
916	RK	5903	.0254	.035	1	TRAP	5	4				
917	KK	W58										
918	KM	2205										
919 920	BA LS	.2296	60									
921	UD	.251	00									
922	KK	WAI										
923	KM											
924	HC	3										
925	KK											
926 927	KM RK	232	.0086	.035	,	TRAP	15	4				
521	KK	232	.0000	.055			10	•				
928	ĸĸ	ElA										
929	КМ											
930	BA	.1151										
931	LS	0	60									
932	UD	.234										
022	VV	E1A-EA										
933 934	KK KM	LIN-LA										
935	RK	4000	.022	.035		TRAP	5	4				
936	KK	E1B										
937	KM											
938	BA	.1665										
939	LS	0	60									
940	UD	.233										
941	KK	EA										
942	KM											
943	HC	2										
944	кк	EA-EB										
945	KK KM	EA-EB		0.25		mp x p	r					
	кк		.022	.035		TRAP	5	4				PAGE 24
945	KK KM	EA-EB	.022	.035	HEC-1 IN		5	4				PAGE. 24
945	KK KM RK	EA-EB 1900				PUT			8	9	10	PAGE. 24
945 946	KK KM RK	EA-EB 1900			HEC-1 IN	PUT			8	9	10	PAGE. 24
945 946 LINE	KK KM RK ID.	EA-EB 1900			HEC-1 IN	PUT			8	9	10	PAGE. 24
945 946 LINE 947	KK KM RK ID. KK	EA-EB 1900			HEC-1 IN	PUT			8	9	10	PAGE. 24
945 946 LINE 947 948	KK KM RK ID. KK	EA-EB 1900 1 E2			HEC-1 IN	PUT			8	9	10	PAGE. 24
945 946 LINE 947 948 949	KK KM RK ID. KK KM BA	EA-EB 1900 1 E2 .104	2		HEC-1 IN	PUT			8	9	10	PAGE. 24
945 946 LINE 947 948 949 950	KK KM RK ID. KK KM BA LS	EA-EB 1900 1 E2 .104 0			HEC-1 IN	PUT			8	9	10	PAGE. 24
945 946 LINE 947 948 949	KK KM RK ID. KK KM BA	EA-EB 1900 1 E2 .104	2		HEC-1 IN	PUT			8	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 951	KK KM RK ID. KK KM BA LS	EA-EB 1900 1 E2 .104 0	2		HEC-1 IN	PUT			8	9	10	PAGE. 24
945 946 LINE 947 948 949 950 951 951 952 953	KK KM ID. KK KM BA LS UD KK KM	EA-EB 1900 1 E2 .104 0 .149 EB	2		HEC-1 IN	PUT			8	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 951	KK KM RK ID. KK KM LS UD KK	EA-EB 1900 1 E2 .104 0 .149	2		HEC-1 IN	PUT			e	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 951 952 953 954	KK KM RK ID. KK KM HC	EA-EB 1900 1 E2 .104 0 .149 EB 2	2		HEC-1 IN	PUT			8	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955	KK KM RK ID. KK KM HC KK	EA-EB 1900 1 E2 .104 0 .149 EB 2 POND1	60	3	HEC-1 IN	PUT			8	9	10	PAGE. 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956	KK KM RK ID. KK BA LS UD KK KM HC KK	EA-EB 1900 1 E2 .104 0 .149 EB 2 POND1 R	60 OUTE FLOR	a Through	HEC-1 IN	PUT 5	6	7		9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 956 957	KK KM RK ID. KK KM HC KK	EA-EB 1900 1 E2 .104 0 .149 EB 2 POND1	60 001111 FLO	a Through	HEC-1 IN 4 SCS POND 1.12	1 2.70	6		6.94 955	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 955 956 957 958 959	KK KM RK ID. KK BA LS UD KK KM HC SV SE SQ	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 R POND1 R 945.5 0 945.5	60 60 01TE FL06 .01 946 0	M THROUGH .28 948 0	HEC-1 IN 4 SCS POND 1.12	1 2.70 952	5.18	6.00	6.94	9	10	page 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958	KK KM RK ID. KK BA LS UD KK KM HC KK SS SE	EA-EB 1900 1 E2 .104 0 .149 EB 2 POND1 R 0 945.5	60 60 00TE FLO4 .01 946	* THROUGH .28 948	HEC-1 IN 4 SCS POND 1.12 950	1 2.70 952		6.00 954.5	6.94 955	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 959 960	KK KM RK ID. KK KM BA LS UD KK KM KC KK SV SE SQ RS	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 R POND1 R 945.5 0 945.5	60 60 01TE FL06 .01 946 0	M THROUGH .28 948 0	HEC-1 IN 4 SCS POND 1.12 950	1 2.70 952		6.00 954.5	6.94 955	9	10	page 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 956 957 958 959 960 961	KK KM RK ID. KK KM HC SV SE SQ RS KK	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 R POND1 R 945.5 0 945.5	60 60 01TE FL06 .01 946 0	M THROUGH .28 948 0	HEC-1 IN 4 SCS POND 1.12 950	1 2.70 952		6.00 954.5	6.94 955	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962	KK KM RK ID. KK BA LS UD KK KM HC KK KM SV SE SQ RS KK	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 Rv 0 945.5 0 1	60 00000000000000000000000000000000000	 THROUGH .28 948 0 945.5 	HEC-1 IN 4 SCS POND 1.12 950 0	1 2.70 952 0	5.18 954 48.5	6.00 954.5 176.4	6.94 955	9	10	page. 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 956 957 958 959 960 961	KK KM RK ID. KK KM HC SV SE SQ RS KK	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 R POND1 R 945.5 0 945.5	60 00000000000000000000000000000000000	M THROUGH .28 948 0	HEC-1 IN 4 SCS POND 1.12 950 0	1 2.70 952		6.00 954.5	6.94 955	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 950 959 960 961 962 963 964	KK KM RK ID. KK KM BA LS UD KK KM HC KK KM SV SE SQ RS SQ RS KK KK KK	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 Rv 0 945.5 0 1	60 00000000000000000000000000000000000	 THROUGH .28 948 0 945.5 	HEC-1 IN 4 SCS POND 1.12 950 0	1 2.70 952 0	5.18 954 48.5	6.00 954.5 176.4	6.94 955	9	10	page 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 963 964 965	KK KM RK ID. KK KM BA LS UD KK KM KC KK KM RK KK KK KK	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 Ru 0 945.5 0 1 1 1300 E3	60 00000000000000000000000000000000000	 THROUGH .28 948 0 945.5 	HEC-1 IN 4 SCS POND 1.12 950 0	1 2.70 952 0	5.18 954 48.5	6.00 954.5 176.4	6.94 955	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 955 956 957 958 959 960 961 962 963 964 965 966	KK KM RK ID. KK BA LS UD KK KM HC SV SE SQ RS KK KK KM RK KM RK KM RK	EA-EB 1900 1 E2 .104 0 .149 EB 2 POND1 Ru 0 945.5 0 1 1300	60 00UTE FLOM .01 946 0 ELEV .0192	 THROUGH .28 948 0 945.5 	HEC-1 IN 4 SCS POND 1.12 950 0	1 2.70 952 0	5.18 954 48.5	6.00 954.5 176.4	6.94 955	9	10	page. 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 961 962 963 964 965 966 967	KK KM RK ID. KK BA LS UD KK KM HC KK KM SV SE SQ RS KK KM KK KM LS LS	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 R 0 945.5 0 1 1300 E3 .090	60 00000000000000000000000000000000000	 THROUGH .28 948 0 945.5 	HEC-1 IN 4 SCS POND 1.12 950 0	1 2.70 952 0	5.18 954 48.5	6.00 954.5 176.4	6.94 955	9	10	page 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 955 956 957 958 959 960 961 962 963 964 965 966	KK KM RK ID. KK BA LS UD KK KM HC SV SE SQ RS KK KM RK KM RK KM RK	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 Ru 0 945.5 0 1 1 1300 E3	60 00UTE FL04 .01 946 0 ELEV .0192	 THROUGH .28 948 0 945.5 	HEC-1 IN 4 SCS POND 1.12 950 0	1 2.70 952 0	5.18 954 48.5	6.00 954.5 176.4	6.94 955	9	10	page 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 961 962 963 964 965 966 967	KK KM RK ID. KK BA LS UD KK KM HC KK KM SV SE SQ RS KK KM KK KM ES LS	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 Ru 0 945.5 0 1 1 300 E3 .090 .128 MH-P2	60 OUTE FLO .01 946 0 ELEV .0192 60	W THROUGH .28 948 0 945.5 .035	HEC-1 IN 4 SCS POND 1.12 950 0	1 5 1 2.70 952 0 TRAP	5.18 954 48.5	6.00 954.5 176.4 4	6.94 955	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 956 957 958 959 960 961 962 963 964 962 963 964 965 966 967 968 969 970	KK KM RK ID. KK BA LS UD KK KM HC KK KM RC SV SE SQ SV SE SQ SV SE SQ SV SE SQ SV SE SQ SV KK KM KM KM KM KM KM KM KM KM KM KM KM	EA-EB 1900 1 E2 .104 0 .149 EB 2 POND1 Ru 0 945.5 0 1 1300 E3 .090 .128 MH-P22 R	60 OUTE FLO .01 946 0 ELEV .0192 60	W THROUGH .28 948 0 945.5 .035	HEC-1 IN 4 SCS POND 1.12 950 0	1 5 1 2.70 952 0 TRAP	5.18 954 48.5	6.00 954.5 176.4 4	6.94 955	9	10	page 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 961 962 963 964 965 966 967 968 969	KK KM RK ID. KK BA LS UD KK KM HC KK KM RC SV SE SQ SV SE SQ SV SE SQ SV SE SQ SV SE SQ SV KK KM KM KM KM KM KM KM KM KM KM KM KM	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 Ru 0 945.5 0 1 1 300 E3 .090 .128 MH-P2	60 OUTE FLO .01 946 0 ELEV .0192 60	W THROUGH .28 948 0 945.5 .035	HEC-1 IN 4 SCS POND 1.12 950 0	1 5 1 2.70 952 0 TRAP	5.18 954 48.5	6.00 954.5 176.4 4	6.94 955	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 963 964 965 966 965 966 969 970 971	KK KM RK ID. KK KM BA LS UD KK KM SV SE SQ RS SQ RS KK KM RK KM RK RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK RK RK RK RK RK RK RK RK RK RK RK RK	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 Ru 0 945.5 0 1 1 300 E3 .090 .128 MH-P2 R DIVRT1	60 OUTE FLO .01 946 0 ELEV .0192 60	W THROUGH .28 948 0 945.5 .035	HEC-1 IN 4 SCS POND 1.12 950 0	1 5 1 2.70 952 0 TRAP	5.18 954 48.5	6.00 954.5 176.4 4	6.94 955	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 961 962 963 964 965 966 967 968 966 967 968 969 970 971	KK KM RK ID. KK BA LS UD KK KM HC KM KM KK KM RK KK KM RK KK KM KK KK KK KK KK KK KK KK KK KK KK	EA-EB 1900 1 E2 .104 0 .149 EB 2 POND1 Ru 0 945.5 0 1 1300 E3 .090 .128 MH-P22 R	60 OUTE FLO .01 946 0 ELEV .0192 60	W THROUGH .28 948 0 945.5 .035	HEC-1 IN 4 SCS POND 1.12 950 0	1 5 1 2.70 952 0 TRAP	5.18 954 48.5	6.00 954.5 176.4 4	6.94 955	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 961 962 963 964 965 966 967 968 969 970 971 972 973	KK KM RK ID. KK KM BA LS UD KK KM HC KK KM SV SE SQ RS KK KM RK KM RK KM RK KK KM RK KK KM RK	EA-EB 1900 1. E2 .104 0 .149 EB 2 POND1 Rv 0 945.5 0 1 1300 E3 .090 .128 MH-P2 R DIVRT1 EC	60 OUTE FLO .01 946 0 ELEV .0192 60	W THROUGH .28 948 0 945.5 .035	HEC-1 IN 4 SCS POND 1.12 950 0	1 5 1 2.70 952 0 TRAP	5.18 954 48.5	6.00 954.5 176.4 4	6.94 955	9	10	page 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 961 962 963 964 965 966 967 968 966 967 968 969 970 971 972 973 974	KK KM RK ID. KK KM BA LS UD KK KM HC KK KM SV SE SQ RS SX KM RK KM BA LS UD KK KM RK KM RK KM KM HC KK KM KM KM KM KM KM KM KM KM KM KM KM	EA-EB 1900 1 E2 .104 0 .149 EB 2 POND1 R 0 945.5 0 1 1 300 E3 .090 .128 MH-P2 DIVRT1 EC	60 OUTE FLO .01 946 0 ELEV .0192 60	W THROUGH .28 948 0 945.5 .035	HEC-1 IN 4 SCS POND 1.12 950 0	1 5 1 2.70 952 0 TRAP	5.18 954 48.5	6.00 954.5 176.4 4	6.94 955	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 961 962 963 964 965 966 967 968 969 970 971 971 972 973 974 975	KK KM RK ID. KK KM BA LS UD KK KM HC KK KM SV SE SQ RS KK KM RK KM BA LS UD KK KKM RK KM KM KK KM KM KK KM KM KM KK KM KM KM	EA-EB 1900 1 E2 .104 0 .149 EB 2 POND1 R 0 945.5 0 1 1300 E3 .090 .128 MH-P2 R DIVRT1 EC 3 POND2	60 CUTE FLO9 .01 946 0 ELEV .0192 60 ETRIEVE	<pre># THROUGH</pre>	HEC-1 IN 4 SCS POND 1.12 950 0	1 5 952 0 TRAP MERIDIAN	5.18 954 48.5	6.00 954.5 176.4 4	6.94 955	9	10	PAGE 24
945 946 LINE 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 961 962 963 964 965 966 967 968 966 967 968 969 970 971 972 973 974	KK KM RK ID. KK KM BA LS UD KK KM HC KK KM SV SE SQ RS SX KM RK KM BA LS UD KK KM RK KM RK KM KM HC KK KM KM KM KM KM KM KM KM KM KM KM KM	EA-EB 1900 1 E2 .104 0 .149 EB 2 POND1 Ru 0 945.5 0 1300 E3 .090 .128 MH-P2 R DIVRT1 EC 3 POND2 R	60 CUTE FLO9 .01 946 0 ELEV .0192 60 ETRIEVE	W THROUGH 28 948 0 945.5 .035 DIVERSION	HEC-1 IN 4 SCS POND 1.12 950 0	1 5 1 2.70 952 0 TRAP MERIDIAN 2	5.18 954 48.5 5 RD DIT	6.00 954.5 176.4 4	6.94 955			PAGE 24

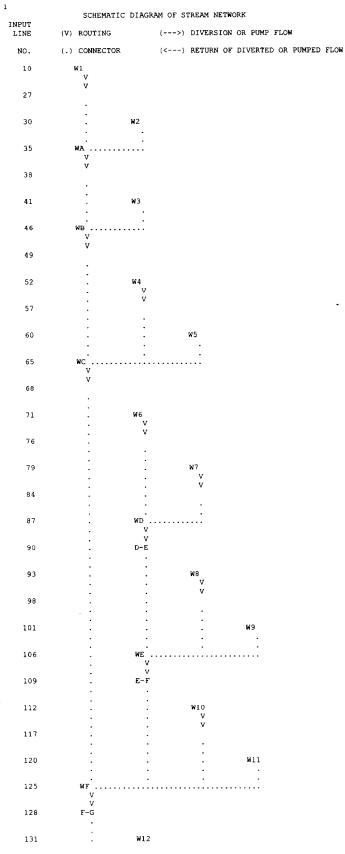
1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 14 of 41 7/23/2008

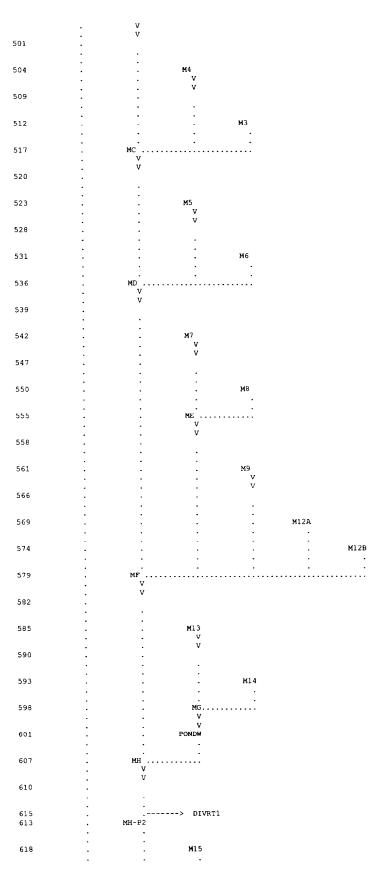
978 979 980	SE SQ RS	920 0 1	922 0 ELEV	924 0 920	926 0	928 0	929 0	929.5 25	930 86.5	930.5 186.2	931 308.4	
981 982 983	KK KM RK	1700	.0141	.035		TRAP	5	4				
984 985 986 987 988	KK KM BA LS UD	E1C .0845 .200	60									
989 990 991	KK KM RK	1C-ED1 3450	.022	.035		TRAP	5	4				
992 993 994 995 996	KK KM BA LS UD	E4 .127 .200	60									
997 998 999	КК КМ НС	ED1 2										
1000 1001 1002	KK KM RK	ED1-ED 450	.0178	.03		TRAP	5	4				
1003 1004 1005 1006 1007	KK KM BA LS UD	E5 .094 .160	60									
1008 1009 1010	KK KM HC	ED 3										
1011 1012 1013	KK KM RK	950	.0211	.035		ŤŔĂ₽	10	4				
1014 1015 1016 1017 1018	KK KM BA LS UD	EB .0446 .139	60									
1019 1020 1021	KK KM HC	EE 2										
1022 1023 1024	KK Km RK	1500	.0127	.035		TRAP	10	4				
1025 1026 1027 1028 1029	KK KM BA LS UD	E10 .029 .158	60									
1030 1031 1032	KK KM HC	EF 2										
1033 1034 1035	KK KM RK	F-G 950	.0074	.035		TRAP	15	4				
1036 1037 1038 1039 1040	KK KM BA LS UD	E6 .119 .228	60									
1041 1042 1043 1044 1045	KK KM BA LS UD	.031	60									
1046 1047 1048	KK KM RK		.0100	.035		TRAP	5	4				
1049 1050 1051	KK KM HC											
1052	KK	G1-G										

ľ

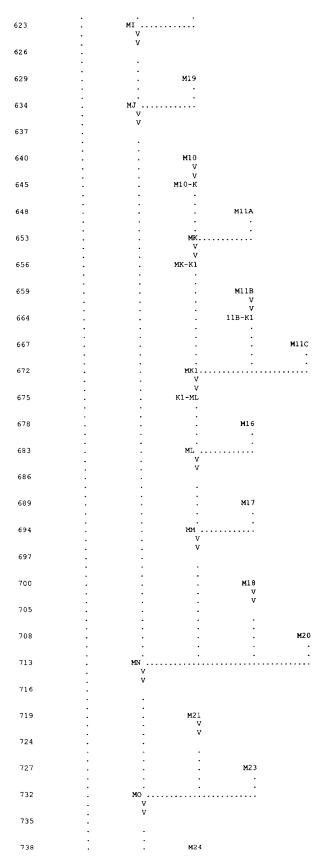
.


 \\Se-srv01\projects\\057-Park Place Enterprises\\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

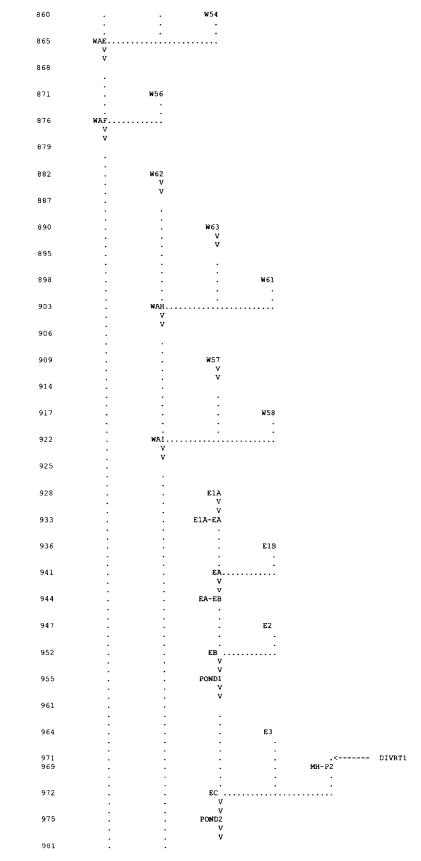
 FDR\xfal2100.doc
 Page 15 of 41
 7/23/2008

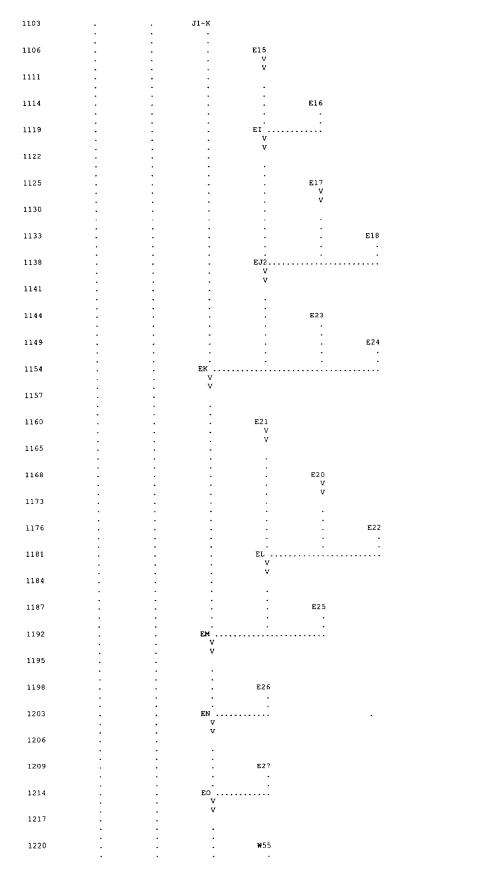

120 4 1205	KM HC	2						
1206 1207 1208	KK KM RK	1832	.0126	.035	TRAP	40	4	
1209 1210 1211 1212 1213	KK KM BA LS UD	E27 .1236 .172	63					
1214 1215 1216	КК КМ НС	E0 2						
1217 1218 1219	KK KM RK	1625	.0133	.035	TRAP	5	3	
1220 1221 1222 1223 1224	KK KM BA LS UD	W55 .0452 .093	60					
1225 1226 1227	КК КМ НС	WAG 2						
1228 1229 1230	KK KM RK	2025	.0109	.035	TRAP	5	4	
1231 1232 1233 1234 1235	KK KM BA LS UD	W59 .0705 .200	60					
1236 1237 1238	КК КМ НС	WAJ 4						
1239 1240 1241	KK KM RK	1450	.0124	.035	TRAP	40	4	
1242 1243 1244 1245 1246	KK KM BA LS UD	E28 .0718 .223	61					
1247 1248 1249	KK KM RK	2064	.0165	.035	TRAP	40	4	
1250 1251 1252 1253 1254	KK KM BA LS UD	E29 .0465 .166	61					
1255 1256 1257	KK KM HC	EZZ C 2	OMBINE E29	& E30 AT DP 22				
1258 1259 1260 1261 1262	KK KM BA LS UD	w60 .0711 .182	60					
1263 1264 1265 1266	KK KM HC ZZ	22 3	COMBINE ALL	AT DP ZZ				

1

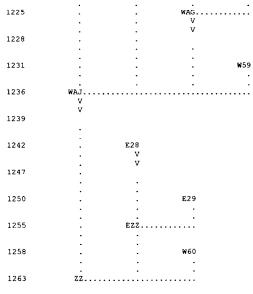

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 18 of 41 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 19 of 41 7/23/2008


\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 23 of 41 7/23/2008


\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 24 of 41 7/23/2008

•


.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 26 of 41 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 28 of 41 7/23/2008

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION

1**	***************************************	**	*****	*
*		*	•	*
*	FLOOD HYDROGRAPH PACKAGE (HEC-1)	*	* U.S. ARMY CORPS OF ENGINEERS	*
*	JUN 1998	*		÷
*	VERSION 4.1	*	* 609 SECOND STREET	*
*		*	 DAVIS, CALIFORNIA 95616 	*
*	RUN DATE 28SEP07 TIME 11:49:21	*	* (916) 756-1104	*
*		*	•	*
**	***************************************	**	******	

 FALCON BASIN 100-YR/24-HOUR FLOOD/ EXISTING CONDITIONS

 UPPER EAST TRIBUTARY (MOODMEN HILLS) BASED ON CLOWR APPROVED 2/2/99

 INCLUDING 2 EXISTING SCS STOCK PONDS, WEST WOODMEN HILLS POND

 NOTE: MI-M4 (PAINT BRUSH HILLS) MODELED AS HISTORIC TO ACCOUNT FOR

 DETENTION POND AT MC

 NOTE: NO CULVERT AT STAPLETON & MERIDIAN, TEMP CULVERTS AT MERIDIAN

 DOWNSTREAM OF WOODMEN HILLS DRIVE (DIVERSION)

 OUTPUT CONTROL

 IPRNT
 5

 PRINT CONTROL

 IPLOT
 0

 PLOT CONTROL

 QSCAL
 0.

-

IT	HYDROGRAPH TIME DATA		
	NMIN	5	MINUTES IN COMPUTATION INTERVAL
	IDATE 14JUL	99	STARTING DATE
	ITIME 08	00	STARTING TIME
	NQ 3	00	NUMBER OF HYDROGRAPH ORDINATES
	NDDATE 15JUL	99	ENDING DATE
	NDTIME 08	55	ENDING TIME
	ICENT	19	CENTURY MARK
	COMPUTATION INTERVA	L	.08 HOURS
	TOTAL TIME BAS	E	24.92 HOURS

ENGLISH UNITS

9 IO

DRAINAGE AREA	SQUARE MILES
PRECIPITATION DEPTH	INCHES
LENGTH, ELEVATION	FEET
FLOW	CUBIC FEET PER SECOND
STORAGE VOLUME	ACRE-FEET
SURFACE AREA	ACRES
TEMPERATURE	DEGREES FAHRENHEIT

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

.

+	OPERATION	STATION	PEAK FLOW	TIME OF PEAK	AVERAGE FLA	OW FOR MAXIMUN 24-HOUR	M PERIOD 72-HOUR	BAS IN AREA	MAX IMUM STAGE	TIME OF MAX STAGE
+	HYDROGRAPH AT	W1	40.	5.75	4.	1.	1.	.05		
+	ROUTED TO		37.	5.83	4.	1.	1.	.05		
+	HYDROGRAPH AT	W2	20.	5.83	2.	1.	1.	.03		
+	2 COMBINED AT	WA	57.	5.83	6.	2.	2.	.08		
+	ROUTED TO		55.	5,83	6.	2.	2.	.08		
+	HYDROGRAPH AT	W3	39.	5.83	4.	1.	1.	.05		
+	2 COMBINED AT	WB	95.	5.83	10.	3.	3.	.13		
+	ROUTED TO		91.	5.83	10.	3.	3.	.13		
+	HYDROGRAPH AT	W4	6.	5.75	0.	0.	0.	.01		
+	ROUTED TO		6.	5.75	0.	0.	0.	.01		
+	HYDROGRAPH AT	W5	15.	5.75	1.	0.	0.	.02		
+	3 COMBINED AT	WC	105.	5.83	11.	4.	4.	.15		
+	ROUTED TO		103.	5.83	11.	4.	4.	.15		
+	HYDROGRAPH AT	W6	43.	5.75	4.	1.	1.	.05		
+	ROUTED TO		40.	5.75	4.	1.	1.	.05		
+	HYDROGRAPH AT	W7	20.	5.75	2.	1.	1.	.02		
+	ROUTED TO		20.	5.75	2.	1.	1.	.02		
+	2 COMBINED AT ROUTED TO	WD	60.	5.75	5.	2.	2.	.07		,
+	HYDROGRAPH AT	D-E	55.	5.75	5.	2.	2.	.07		
+	ROUTED TO	WB	27.	5,75	2.	1.	1.	.03		
+	HYDROGRAPH AT		24.	5.75	2.	1.	1.	.03		
+	3 COMBINED AT	W 9	36.	5.75	3.	1.	1.	.04		
+	ROUTED TO	WE	114.	5.75	11.	4 -	4.	.14		
+	HYDROGRAPH AT	E-F	108.		11.	4.	4.	.14		
+	ROUTED TO	W10	39.		3.	1.	1.	.04		
+	HYDROGRAPH AT		36.		4.	1.	1.	.04		
+	4 COMBINED AT	W11	29.		2.	1.	1. 9.	.03		
+	ROUTED TO	WF	265.	5.83	28.	10.	у.	.36		

ROUTED TO

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 31 of 41 7/23/2008

+		F-G	255.	5.83	28.	10.	9.	.36	
+	HYDROGRAPH AT	W12	33.	5.75	з.	1.	1.	.04	
+	ROUTED TO		32.	5.83	3.	1.	1.	.04	
+	HYDROGRAPH AT	W14	38.	5.83	4.	1.	1.	.05	
+	ROUTED TO		37.	5,83	4.	1.	1.	.05	
+	HYDROGRAPH AT	W1 3	80.	5,83	9.	з.	з.	.11	
+	4 COMBINED AT	WG	403.	5.83	44.	15.	14.	.56	
+	ROUTED TO	G-H	382.	5.92	44.	15.	14.	.56	
	ROUTED TO	•	368.	5.92	44.	15.	14.	.56	
*	HYDROGRAPH AT								
+	ROUTED TO	W15	70.	5.83	7.	2.	2.	.09	
+	2 COMBINED AT		66.	5.83	7.	2.	2.	.09	
+	HYDROGRAPH AT	WH	428.	5.92	51.	17.	17.	.65	
+	ROUTED TO	W16	27.	5.75	2.	1.	1.	.03	
+			24.	5.83	2.	1.	1.	.03	
+	HYDROGRAPH AT	W17	16.	5.75	1.	0.	0.	.02	
+	2 COMBINED AT	WI	38.	5.75	4.	1.	1.	.05	
+	ROUTED TO	I-M	37.	5.83	4.	1.	1.	.05	
+	HYDROGRAPH AT	W19	41.	5.75	з.	1.	1.	.04	
+	ROUTED TO		37.	5.75	з.	1.	1.	.04	
+	HYDROGRAPH AT	W 20	32.	5.75	з.	1.	1.	.03	
+	2 COMBINED AT	WJ	69.	5.75	6.	2.	2.	.07	
+	ROUTED TO		65.	5.83	6.	2.	2.	.07	
+	HYDROGRAPH AT	W21	96.	5.83	10.	3.	3.	.13	
	2 COMBINED AT	WK	161.	5.03	16.	6.	5.	.21	
	ROUTED TO	H A							
+	HYDROGRAPH AT		156.	5.83	16.	6.	5.	.21	
+	2 COMBINED AT	W22	10.	5.75	1.	0.	0.	.01	
+	ROUTED TO	WL	161.	5.83	17.	6.	б.	.22	
+	HYDROGRAPH AT		147.	5.83	17.	б.	6.	.22	
+		W23	19.	5.75	2.	1.	1.	.02	
t	HYDROGRAPH AT	W18	80.	5.83	9.	з.	3.	.13	
+	5 COMBINED AT	WM	690.	5.92	83.	28.	27.	1.06	
+	ROUTED TO	M-N	673.	5,92	83.	28.	27.	1.06	

+ +

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 32 of 41 7/23/2008

+	HYDROGRAPH AT	W24	33.	5.83	3.	1.	1.	.04		
+	HYDROGRAPH AT	W25	64.	5,83	8.	3.	3.	.10		
+	3 COMBINED AT	WN	756.	5.92	94.	32.	31.	1.20		
+	ROUTED TO	N-P	722.	5.92	94.	32.	31.	1.20		
+	HYDROGRAPH AT	W28	36.	5.83	4.	1.	1.	.04		
+	ROUTED TO	.20	35.	5.83	4.	1.	1.	.04		
	HYDROGRAPH AT	W30	46.	5.83	5.	2.	2.	.05		
+	ROUTED TO	N 30				2.		.05		
+	HYDROGRAPH AT		46.	5.83	5.		2.			
+	HYDROGRAPH AT	W29	37.	5.83	4.	1.	1.	.04		
+	4 COMBINED AT	W31	14.	5.75	1.	0.	0.	.01		
+	ROUTED TO	WO	127.	5.83	13.	4.	4.	.14		
+	HYDROGRAPH AT	0-P	118.	5.83	13.	4.	4.	.14		
+	ROUTED TO	W26	36.	5.75	3.	1.	1.	.03	·	·
+			35.	5.92	3.	1.	1.	.03		
+	HYDROGRAPH AT	W27	89.	5,92	12.	4.	4.	.16		
+	HYDROGRAPH AT	₩32	61.	5.83	7.	2.	2.	.09		
+	5 COMBINED AT	WP	1012.	5.92	128.	44.	43.	1.63		
+	ROUTED TO	P-Q	950.	5.92	128.	44.	43.	1.63		
+	HYDROGRAPH AT	W33A	82.	5.83	10.	3.	3.	.13		
+	2 COMBINED AT	WP1	1023.	5.92	138.	47.	46.	1.75		
+	ROUTED TO	P1-Q	1007.	6.00	137.	47.	46.	1.75		
+	HYDROGRAPH AT	W33B	78.	5.92	10.	4.	з.	.14		
+	HYDROGRAPH AT	W 34A	86.	5.83	10.	3.	3.	.13		
+	ROUTED TO	34A-P2	82.	5.92	9.	3.	3.	.13		
+	HYDROGRAPH AT	W 34B	101.	5.92	13.	5.	4.	.18		
+	2 COMBINED AT	WP2	183.	5.92	23.	θ.	8.	.30		
+	ROUTED TO	₽2-Q	175.	6.00	23.	8.	8.	.30		
+	HYDROGRAPH AT	w34C	90.	5.92	12.	4.	4.	.16		
+	4 COMBINED AT	WQ	1325.	6.00	181.	63.	61.	2.36		
÷	ROUTED TO	Q-Q1	1284.	6.00	181.	63.	60.	2.36		
•	HYDROGRAPH AT	W36A	81.	5.92	11.	4.	4.	.14		
T	2 COMBINED AT									
+		WQ1	1352.	6.00	191.	66.	64.	2.50		

 \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

 FDR\xfal2100.doc
 Page 33 of 41
 7/23/2008

+	ROUTED TO	Q1-R	1311.	6.08	190.	66.	64.	2.50	
+	HYDROGRAPH AT	W36B	91.	6.00	14.	5.	5.	.19	
+	HYDROGRAPH AT	W35A	62.	5.83	7.	2.	2.	.10	
+	ROUTED TO	35A-WR	58.	6.00	7.	2.	2.	.10	
+	HYDROGRAPH AT	W35B	81.	5,92	11.	4.	4.	.15	
+	4 COMBINED AT	WR	1497.	6.08	222.	78.	75.	2.94	
+	ROUTED TO	WR-S	1475.	6.08	222.	77.	75.	2.94	
+	HYDROGRAPH AT	W37A	74.	5.83	9.	3.	3.	.11	
	ROUTED TO	37A-S	71.	5.92	9.	3.	3.	.11	
+	HYDROGRAPH AT				13.	5.	4.	.16	
+	3 COMBINED AT	W37B	102.	5.92					
+	ROUTED TO .	WS	1575.	6.08	242.	85.	82.	3.21	
+	HYDROGRAPH AT	S-T	1522.	6.17	242.	85.	81.	3.21	
+	ROUTED TO	W38	67.	5.83	8.	3.	3.	.09	
+	HYDROGRAPH AT		66.	5.92	8.	3.	3.	.09	
+	HYDROGRAPH AT	W39	100.	5.92	14.	5.	5.	.18	
+	4 COMBINED AT	W40	67.	5.83	7.	3.	2.	.10	
+		WT	1621.	6.17	269.	95.	91.	3.59	
+	ROUTED TO	T-U	1613.	6.17	269.	95.	91.	3.59	
+	HYDROGRAPH AT	W41	45.	5.83	5.	2.	2.	.06	
+	HYDROGRAPH AT	W42	125.	5.75	13.	4.	4.	.06	
+	ROUTED TO	U-V	122.	5.83	13.	4.	4.	.06	
+	3 COMBINED AT	WU	1648.	6.17	285.	100.	96.	3.70	
+	ROUTED TO		1612.	6.17	285.	100.	96.	3.70	
+	HYDROGRAPH AT	W43	108.	5.83	12.	4.	4.	.15	
+	2 COMBINED AT	WV	1640.	6.17	296.	104.	100.	3.85	
+	ROUTED TO	V-W	1621.	6.17	296.	104.	100.	3.85	
+	HYDROGRAPH AT	W45	134.	5.83	16.	5.	5.	.19	
+	2 COMBINED AT	WW	1663.	6.17	311.	109.	105.	4.04	
+	ROUTED TO	₩-X	1621.	6.25	311.	109.	105.	4.04	
+	HYDROGRAPH AT	М1	52.	5.75	5.	2.	2.	.07	
+	ROUTED TO		50.	5.83	5.	2.	2.	.07	
	HYDROGRAPH AT								

HYDROGRAPH AT

> > \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 34 of 41 7/23/2008

+		M2	21.	5.75	2.	1.	1.	.03		
	2 COMBINED AT	MB	70.	5.83	7.	2.	2.	.09		
	ROUTED TO	FID								
+	HYDROGRAPH AT		70.	5.83	7.	2.	2.	.09		
+	ROUTED TO	M4	26.	5.83	3.	1.	1.	.03		
+	HYDROGRAPH AT		26.	5.83	3.	1.	1.	.03		
+		мз	14.	5.75	1.	0.	0.	.01		
+	3 COMBINED AT	MC	105.	5.83	11.	4.	4.	.14		
+	ROUTED TO		102.	5.83	11.	4.	4.	.14		
+	HYDROGRAPH AT	M5	24.	5.75	2.	1.	1.	.02		
+	ROUTED TO		23.	5.83	2.	1.	1.	.02	·	
+	HYDROGRAPH AT	M6	51.	5.92	7.	2.	2.	.06		
+	3 COMBINED AT	MD	175.	5.83	20.	7.	6.	.22		
• •	ROUTED TO		170.	5.92	20.	7.	6.	.22		
+	HYDROGRAPH AT	M7	63.	5.83	7.	2.	2.	.05		
+	ROUTED TO		61.	5.83	7.	2.	2.	.05		
	HYDROGRAPH AT	MO				1.	1.			
+	2 COMBINED AT	M8	30.	5.83	3.			.04		
+	ROUTED TO	ME	91.	5.83	10.	3.	3.	.09		
+	HYDROGRAPH AT		89.	5.92	10.	З.	3.	.09		
+	ROUTED TO	M9	25.	5.75	2.	1.	1.	.02		
+			23.	5.83	2.	1.	1.	.02	•	
+	HYDROGRAPH AT	M12A	47.	5.83	5.	2.	2.	.07		
+	HYDROGRAPH AT	M12B	86.	5.92	11.	4.	4.	.15		
+	5 COMBINED AT	MF	401.	5.92	47.	16.	15.	.54		
+	ROUTED TO		388.	5.92	47.	16.	15.	.54		
+	HYDROGRAPH AT	M13	56.	5.83	6.	2.	2.	.06		
+	ROUTED TO		53.	5.92	6.	2.	2.	.06		
+	HYDROGRAPH AT	M14	122.	5.92	16.	5.	5.	.16		
+	2 COMBINED AT	MG	176.	5.92	22.	7.	7.	.22		
	ROUTED TO	PONDW	16.	7.00	16.	7.	7.	.22		
+ +		1 0110	10.		10.	<i>.</i>	· ·		970.02	7.00
+	2 COMBINED AT	МН	403.	5.92	63.	23.	22.	.77		
+	ROUTED TO		385.	6.00	63.	23.	22.	.77		
+	DIVERSION TO	DIVRT1	85.	6.00	43.	18.	18.	.77		

 \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

 FDR\xfal2100.doc
 Page 35 of 41
 7/23/2008

+	HYDROGRAPH AT	MH-P2	300.	6.00	20.	5.	5.	.77	
+	HYDROGRAPH AT	M 15	101.	5.83	12.	4.	4.	.12	
+	2 COMBINED AT	MI	388.	5.92	32.	9.	9.	.89	
+	ROUTED TO		378.	6.00	32.	9,	9.	.89	
+	HYDROGRAPH AT	M19	38.	5.83	4.	1.	1.	.05	
+	2 COMBINED AT	MJ	397.	6.00	36.	10.	10.	.94	
+	ROUTED TO		381.	6.00	36.	10.	10.	.94	
+	HYDROGRAPH AT	M 10	54.	5.75	5.	2.	2.	.06	
+	ROUTED TO	M10-K	53.	5.83	5.	2.	2.	.06	
+	HYDROGRAPH AT	M11A	65.	5.92	9.	3.	3.	.11	
+	2 COMBINED AT	МК	115.	5.83	14.	5.	4.	.16	
+	ROUTED TO	MK-K1	111.	5.92	14.	5.	4.	.16	
+	HYDROGRAPH AT	M11B	64.	5.83	7.	2.	2.	.09	
+	ROUTED TO	11B-K1	58.	5.92	7.	2.	2.	.09	
+	HYDROGRAPH AT	MIIC	66.	5.83	7.	2.	2.	.09	
+	3 COMBINED AT	MK1	230.	5.83	27.	9.	9.	.35	
+	ROUTED TO	K1-ML	225.	5.92	27.	9.	9.	.35	
+	HYDROGRAPH AT	M16	31.	5.83	3.	1.	1.	.04	
+	2 COMBINED AT	ML	247.	5.92	30.	10.	10.	.39	
+	ROUTED TO		240.	5.92	30.	10.	10.	. 39	
+	HYDROGRAPH AT	M17	61.	5.83	б.	2.	2.	.08	
+	2 COMBINED AT	MM	282.	5.92	36.	13.	12.	.46	
+	ROUTED TO		268.	6.00	36.	12.	12.	.46	
+	HYDROGRAPH AT	M18	48.	5.83	5.	2.	2.	.06	
+	ROUTED TO		45.	5.92	5.	2.	2.	.06	
+	HYDROGRAPH AT	M20	85.	5.83	11.	4.	4.	.13	
+	4 COMBINED AT	MN	747.	6.00	88.	28.	27.	1.60	
+	ROUTED TO		724.	6.00	88.	28.	27.	1.60	
+	HYDROGRAPH AT	M21	19.	5.83	2.	1.	1.	.02	
+	ROUTED TO		19.	5.83	2.	1.	1.	.02	
+	HYDROGRAPH AT	M23	34.	5,83	3.	1.	1.	.05	
	3 COMBINED AT								

.

3 COMBINED AT

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 36 of 41 7/23/2008

+		MO	747.	6.00	93.	30.	29.	1.67	
+	ROUTED TO		724.	6.00	93.	30.	29.	1.67	
+	HYDROGRAPH AT	M24	58.	5.83	6.	2.	2.	.08	
+	2 COMBINED AT	MP	744.	6.00	99.	32.	31.	1.75	
+	ROUTED TO		736.	6.00	99.	32.	31.	1.75	
+	HYDROGRAPH AT	M25	8.	5.83	1.	٥.	٥.	.01	
+	2 COMBINED AT	MQ	739.	6.00	100.	32.	31.	1.76	
+	ROUTED TO		734.	6.08	99.	32.	31.	1.76	
+	HYDROGRAPH AT	M26	139.	5.92	18.	6.	б.	.18	
+	2 COMBINED AT	MR	825.	6.08	117.	38.	37.	1.94	
+	HYDROGRAPH AT	W 4 4	28.	5.83	3.	1.	1.	.04	
+	ROUTED TO		27.	5.92	з.	1.	1.	.04	
+	HYDROGRAPH AT	W47	39.	5.83	4.	1.	1.	.05	
+	ROUTED TO		36.	5.83	4.	1.	1.	.05	
+	HYDROGRAPH AT	W46	32.	5.83	3.	1.	1.	.04	
	HYDROGRAPH AT	M27	39.	5.83	4.	1.	1.	.05	
Ţ	6 COMBINED AT	WX	2398.	6.17	442.	153.	147.	6.17	
+	ROUTED TO	WX							
+	HYDROGRAPH AT		2323.	6.25	441.	152.	147.	6.17	
+	ROUTED TO	W48	108.	5.75	10.	3.	3.	.12	
+	HYDROGRAPH AT		102.	5.83	10.	3.	3.	.12	
+	3 COMBINED AT	W49	189.	5,83	21.	7.	7.	.27	
+	ROUTED TO	WZ	2392.	6.17	471.	163.	157.	6.55	
+	HYDROGRAPH AT		2383.	6.25	471.	163.	157.	6.55	
+		W 50	83.	5.83	9.	3.	3.	.11	
+	2 COMBINED AT	WAB	2399.	6.25	480.	166.	160.	6.66	
+	ROUTED TO		2396.	6.25	480.	166.	160.	6.66	
+	HYDROGRAPH AT	W 51	46.	5.83	5.	2.	2.	.05	
+	2 COMBINED AT	WAC	2406.	6.25	484.	168.	161.	6,71	
+	ROUTED TO		2402.	6.25	485.	168.	161.	6.71	
+	HYDROGRAPH AT	W52	48.	5.75	5.	2.	1.	.05	
+	ROUTED TO		46.	5.83	5.	2.	1.	.05	
+	HYDROGRAPH AT	₩53	47.	5.83	5.	2.	2.	.05	

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 37 of 41 7/23/2008

+	2 COMBINED AT	WAD	92.	5.83	9.	3.	з.	.10		
+	ROUTED TO		92.	5.83	9.	3.	3.	.10		
+	HYDROGRAPH AT	W54	8.	5.75	1.	0.	0.	.01		
+	3 COMBINED AT	WAE	2419.	6.25	494.	171.	165.	6.82		
+	ROUTED TO		2396.	6.25	493.	171.	164.	6.82		
	HYDROGRAPH AT	200								
+	2 COMBINED AT	W56	116.	5.83	14.	5.	5.	.18		
+	ROUTED TO	WAF	2426.	6,25	506.	175.	169.	7.01		
+	HYDROGRAPH AT		2405.	6.25	506.	175.	169.	7.01		
+		W62	64.	5.75	6.	2.	2.	.08		
+	ROUTED TO		61.	5.83	6.	2.	2.	.08		
+	HYDROGRAPH AT	W 63	36.	5.75	4.	1.	1.	.05		
+	ROUTED TO		36.	5.83	4.	1.	1.	.05		
+	HYDROGRAPH AT	W61	105.	5.92	14.	5.	5.	.19		
+	3 COMBINED AT	HAW	190.	5.83	24.	8.	8.	.31		
+	ROUTED TO		183.	5.92	24.	8.	8.	.31		
+	HYDROGRAPH AT	W57	54.	5.83	6.	2.	2.	.07		
	ROUTED TO		51.	6.00	6.	2.	2.	.07		
•	HYDROGRAPH AT									
+	3 COMBINED AT	W58	126.	5.92	17.	б.	6.	.23		
+	ROUTED TO	WAI	345.	5.92	46.	16.	15.	. 62		
+	HYDROGRAPH AT		341.	5.92	47.	16.	15.	.62		
+		ElA	65.	5.92	9.	з.	3.	.12		
+	ROUTED TO	E1A-EA	64.	6.00	9.	3.	3.	.12		
+	HYDROGRAPH AT	E1B	94.	5.92	13.	4.	4.	.17		
+	2 COMBINED AT	EA	147.	5.92	21.	7.	7.	.28		
+	ROUTED TO	EA-EB	145.	6.00	21.	7.	7.	.28		
+	HYDROGRAPH AT	E2	75.	5.83	8.	3.	3.	.10		
+	2 COMBINED AT	EB	187.	5.92	29.	10.	10.	. 39		•
+	ROUTED TO	POND1	101.	6.25	23.	9.	8.	. 39		
+	ROUTED TO								954.20	6.25
+			95.	6.25	23.	9.	8.	.39		
+	HYDROGRAPH AT	E3	67.	5.83	7.	2.	2.	.09		
+	HYDROGRAPH AT	MH-P2	85.	5.92	43.	18.	18.	.00		
	3 COMBINED AT									

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 38 of 41 7/23/2008

+		EC	187.	6.25	72.	29.	28.	. 48	
+	ROUTED TO	POND2	95.	7.17	55.	24.	23.	.48	930.04 7.17
+	ROUTED TO		94.	7.25	55.	24.	23.	.48	· ·
+	HYDROGRAPH AT	EIC	52.	5.83	6.	2.	2.	.08	
+	ROUTED TO	1C-ED1	50.	6.00	6.	2.	2.	.08	
+	HYDROGRAPH AT	E4	78.	5.83	10.	3.	3.	.13	
+	2 COMBINED AT	ED1	123.	5.92	16.	5.	5.	.21	
+	ROUTED TO	ED1-ED	121.	5.92	16.	6.	5.	.21	
+	HYDROGRAPH AT 3 COMBINED AT	E 5	66.	5.83	7.	2.	2.	.09	
+	ROUTED TO	ED	174.	5,92	72.	32.	31.	.78	
+	HYDROGRAPH AT		172.	5.92	72.	32.	31.	.78	
+	2 COMBINED AT	E8	33.	5.83	3.	1.	1.	.04	
+	ROUTED TO	EE	196.	5,92	75.	33.	32.	.83	
+	HYDROGRAPH AT		192.	5.92	75.	33.	32.	.83	
+	2 COMBINED AT	E10	21.	5.83	2.	1. 34.	1. 33.	.03	
+	ROUTED TO	EF F-G	208. 199.	5.92 5.92	77.	34.	33.	.85	
, +	HYDROGRAPH AT	E6	68.	5.92	9.	3.	3.	.12	
+	HYDROGRAPH AT	£7	28.	5.75	2.	1.	1.	.03	
+	ROUTED TO		25.	5.83	2.	1.	1.	.03	
+	2 COMBINED AT	EG1	89.	5.83	11.	4.	4.	.15	
+	ROUTED TO	G1-G	87.	5.92	11.	4.	4.	.15	
+	HYDROGRAPH AT	E9	46.	5.83	6.	2.	2.	.08	
+	ROUTED TO		46.	5.92	6.	2.	2.	.08	
+	HYDROGRAPH AT	E11	28.	5.83	3.	1.	1.	.05	
+	HYDROGRAPH AT	E 12	66.	5.83	7.	2.	2.	.09	
+	5 COMBINED AT	EG	409.	5.92	103.	43.	42.	1.22	
+	HYDROGRAPH AT	E13	9.	5.92	1.	0.	0.	.02	
+	HYDROGRAPH AT	E14	4.	5.83	0.	0.	0.	.01	
+	ROUTED TO 3 COMBINED AT		4.	5.83	Ο.	0.	0.	.01	
+	ROUTED TO	EH	421.	5.92	105.	44.	42.	1.24	
+			398.	5.92	105.	44.	42.	1.24	

·

 \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

 FDR\xfal2100.doc
 Page 39 of 41
 7/23/2008

	HYDROGRAPH AT	E19	35.	5.83	4.	1.	1.	.04	
	2 COMBINED AT	EJ1	421.	5.92	108.	45.	43.	1.28	
	ROUTED TO	J1-K	411.	6.00	107.	45.	43.	1.28	
	HYDROGRAPH AT	E15	36.	5.75	3.	1.	1.	.04	
	ROUTED TO		33.	5.83	3.	1.	1.	.04	
	HYDROGRAPH AT	E16	31.	5.75	3.	1.	1.	.03	
	2 COMBINED AT	EI	63.	5.75	6.	2.	2.	.07	
	ROUTED TO		61.	5,83	6.	2.	2.	.07	
	HYDROGRAPH AT	E1 7	32.	5.75	3.	1.	1.	.03	
	ROUTED TO		31.	5.83	3.	1.	1.	.03	
	HYDROGRAPH AT	E 18	40.	5.83	4.	2.	1.	.05	
	3 COMBINED AT	EJ2	132.	5.83	13.	4.	4.	.15	
	ROUTED TO		119.	6.00	13.	4.	4.	.15	
	HYDROGRAPH AT	E 23	108.	5.92	14.	5.	5.	.17	
	HYDROGRAPH AT	E24	74.	6.00	13.	4.	4.	.14	
	4 COMBINED AT	EK	698.	6.00	147.	59.	56.	1.74	
	ROUTED TO		671.	6.08	146.	58.	56.	1.74	
	HYDROGRAPH AT	E21	57.	5.83	7.	2.	2.	.09	
÷	ROUTED TO		55.	5.92	7.	2.	2.	.09	
+	HYDROGRAPH AT	E20	51.	5.92	7.	2.	2.	.08	
ŀ	ROUTED TO		51.	5.92	7.	2.	2.	.08	
+	HYDROGRAPH AT	E22	41.	5.92	5.	2.	2.	.07	
+	3 COMBINED AT	EL	147.	5.92	19.	6.	6.	.23	
+	ROUTED TO		140.	6.00	19.	б.	6.	.23	
+	HYDROGRAPH AT	E 25	121.	5.83	13.	5.	4.	.17	
+	3 COMBINED AT	EM	845.	6.00	177.	69.	67.	2.13	
+	ROUTED TO		834.	6.08	177.	69.	67.	2.13	
+	HYDROGRAPH AT	E26	37.	5.75	3.	1.	1.	.04	
+	2 COMBINED AT	EN	840.	6.08	180.	70.	68.	2.17	
+	ROUTED TO		826.	6.08	179.	70.	68.	2.17	
+	HYDROGRAPH AT 2 COMBINED AT	E27	104.	5.83	11.	4.	4.	.12	
	Z COMDINED AL								

.

+

+ + +

+

+

+ + + + +

+ + +

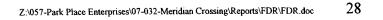
+

+

2 COMBINED AT

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 40 of 41 7/23/2008

+		EO	863.	6.08	189.	74.	71.	2.29	
+	ROUTED TO		835.	6.08	189.	74.	71.	2.29	
+	HYDROGRAPH AT	W 55	38.	5.75	з.	1.	1.	.05	
+	2 COMBINED AT	WAG	841.	6.08	192.	75.	72.	2.34	
+	ROUTED TO		833.	6.17	192.	75.	72.	2.34	
+	HYDROGRAPH AT	W 59	43.	5.83	5.	2.	2.	. 07	
+	4 COMBINED AT	WAJ	3321.	6.25	749.	268.	259.	10,03	
+	ROUTED TO		3310.	6.25	749.	268.	259.	10.03	
	HYDROGRAPH AT								
+	ROUTED TO	E28	44.	5.92	6.	2.	2.	.07	
+			44.	6.00	б.	2.	2.	.07	
+	HYDROGRAPH AT	E29	35.	5.83	4.	1.	1.	.05	
+	2 COMBINED AT	EZZ	69.	5.92	9.	3.	3.	.12	
+	HYDROGRAPH AT	₩60	47.	5.83	5.	2.	2.	.07	
+ 1	3 COMBINED AT	22	3350.	6.25	763.	274.	263.	10.22	


•

*** NORMAL END OF HEC-1 ***

.

.

1**	*****************************	***	*****************************	
٠		*	*	
*	FLOOD HYDROGRAPH PACKAGE (HEC-1)	*	 U.S. ARMY CORPS OF ENGINEERS 	1
*	JUN 1998	•	 HYDROLOGIC ENGINEERING CENTER 	1
*	VERSION 4.1	*	* 609 SECOND STREET	1
٠		*	 * DAVIS, CALIFORNIA 95616 	1
*	RUN DATE 20MAY08 TIME 08:48:57	*	* (916) 756-1104	,
*		*	•	
		***	****	**

XXXXXXX	XX	XXX		х
х	х	х		XX
х	х			х
XXXX	х		XXXXX	х
х	х			х
х	х	х		х
XXXXXXX	XX	XXX		XXX
	x x xxxx x x x	x x x x xxxx x x x x x x x	X X X X X XXXX X X X X X X X	x x x x x xxxx x x xxxx x x x x x

.

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HECIDB, AND HECIKW.

1

1

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-1	INPUT				-		PAGE	1
LINE	ID	1.	2.	3 .	4.	5	6		8	9	10		
1	ID	FALCO	N HIGHLA	NDS PREL	THINARY	DRAINAGE	PLAN - P	ASED ON	DBPS MOT	EL E1008	O.LA		
2	ID					BETWEEN S							
3	ID					Year Sto							
4	ID					d due to				oment			
3	*DIA		500100						,				
5	IT		25MAY05	800	300								
6	IO	5											
7	JR	PREC	1	1.2381	2.0952								
8	KK	W 1											
9	KM												
10	BA	.0479											
11	PB	2.1											
12	IN	15											
13	PC	.0005	.0015	.0030	.0045	.0060	.0080	.0100	.0120	.0143	.0165		
14	PC	.0188	.0210	.0233	.0255	.0278	.0320	.0390	.0460	.0530	.0600		
15	PC	.0750	.1000	.4000	.7000	.7250	.7500	.7650	.7800	.7900	.8000		
16	PC	.8100	.8200	.8250	.8300	.8350	.8400	.8450	.8500	.8550	.8600		
17	PC	.3638	.8675	.8713	.8750	.8788	.8825	.8863	.8900	.8938	.8975		
18	PC	.9013	.9050	.9083	.9115	.9148	,9180	,9210	.9240	.9270	.9300		
19	PC	.9325	.9350	.9375	.9400	.9425	.9450	.9475	.9500	.9525	.9550		
20	PC	.9575	.9600	.9625	.9650	.9675	.9700	.9725	.9750	.9775	.9800		
21	PC	.9813	.9825	.9838	.9850	.9863	.9875	.9888	.9900	.9913	.9925		
	PC	.9938	.9950	.9963	.9975	.9988	1.000						
22	LS	. 9930	. 9950	. 9903	. 9973	. 5500	1.000						
23		.097	60										
24	UD	.097											
25	KK												
26	KM												
27	RK	1519	.0263	.035		TRAP	5	4					
28	KK	W2											
29	KM												
30	BA	.0278											
31	LS	.02.70	60										
32	UD	.160	00										
52	50	.100											
33	KK	WA											
34	KM												
35	HC	2											
36	KK												
37	КM												
38	RK	464	.0151	.035		TRAP	5	4					
39	KK	W 3											
40	KM												
41	BA	.0498											
42	LS		61										
43	UD	.139											
					HEC-	INPUT						PAGE	2
LINE	ID.	1	2	3	4	5.	6.	7.	8.	9.	10		
44	KK	WB											
45	КM												

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc 7/23/2008 Page 1 of 19

46	HC	2							
47	кк	د							
48 49	KM RK	823	.0279	.035	TRAP	5	4	54	
50 51	KK KM	W4							
52 53	BA LS	.0054	62						
54	UD	.044	02						
55	KK KM								
56 57	RK	1078	.0482	.035	TRAP	5	4		
58	кк	₩5							
59 60	KM BA	.0159	6.0						
61 62	LS UD	.075	60						
63	кк	WC							
64 65	KM HC	3							
66	кк								
67 68	KM RK	557	.0449	.035	TRAP	10	4		
69	кк	WG							
70 71	КМ ВА	.0486							
72 73	LS UD	.085	60						
74	кк								
75 76	KM RK	592	.0372	.035	TRAP	5	4		
77	кк	W 7							
78 79	KM BA	.0217							
80	LS		60						
81	UD	.074							
82	кк								
83	KM					_			
83 84	KM RK	464	.1466	.035	TRAP HEC-1 INPUT	5	4		PAGE 3
	RK				HEC-1 INPUT				PAGE 3
84 Line	RK ID	1.			HEC-1 INPUT			8910	PAGE 3
84 LINE 85 86	RK ID KK KM	l. WD			HEC-1 INPUT				PAGE 3
84 LINE 85 86 87	RK ID KK KM HC	l. WD 2			HEC-1 INPUT			9910	PAGE 3
84 LINE 85 86 87 88 89	RK ID KK KM HC KK KM	l. WD			HEC-1 INPUT	6	7	8910	PAGE 3
84 LINE 85 86 87 88 89 90	RК ID КК НС КК	l. WD 2			HEC-1 INPUT			8910	PAGE 3
84 LINE 85 86 87 88 89 90 90	RK ID KK KM HC KK KM RK KK	l. WD 2 D-E	2	3	HEC-1 INPUT	6	7	8910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93	RK ID KK KM HC KK KM RK KK KM BA	1. ₩D 2 D-E 1044	.0479	3	HEC-1 INPUT	6	7	8910	PAGE 3
84 LINE 85 86 87 88 89 90 90 91 92	RK ID KK KM HC KK KM KK KM		2	3	HEC-1 INPUT	6	7	9910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96	RK ID KK KM HC KK KM RK KM LS UD KK	WD 2 D-E 1044 W8 .0286	.0479	3	HEC-1 INPUT	6	7	8910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 93 94 95	RK ID KK KM HC KK KM RK KM BA LS UD	WD 2 D-E 1044 W8 .0286	.0479	3	HEC-1 INPUT	6	7	8910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 99	RK ID KK KM HC KK KM RK UD KK KM RK KK KK	1. WD 2 D-E 1044 W8 .0286 .069	2 .0479 60	3	HEC-1 INPUT	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 98 99 90 100 101	RK ID KK KM HC KK KM RK KM LS UD KK KM RK KM RK KM BA	WD 2 D-E 1044 W8 .0286 .069 1449	2 .0479 60 .0504	3	HEC-1 INPUT	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 93 94 95 96 97 98 98 99 100	RK ID KK KM HC KK KM RK KM BA LS UD KK KM RK	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9	2 .0479 60	3	HEC-1 INPUT	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 98 97 98 99 100 101 102 103	RK ID KK KM HC KK KM RK KM BA LS UD KK KM KK KM LS UD KK	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402	2 .0479 60 .0504	3	HEC-1 INPUT	5	4	8910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 98 99 1000 101 102 103	RK ID KK KM HC KK KM RK KM LS UD KK KM RK KM RK KM LS UD	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097	2 .0479 60 .0504	3	HEC-1 INPUT	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 90 100 101 102 103 104 105 106 107	RK ID KK KM HC KK KM RK KM BA LS UD KK KM KK KM HC KK	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE	2 .0479 60 .0504	3	HEC-1 INPUT	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 97 98 99 100 101 102 103 104 105 106	RK ID KK KM HC KK KM RK KM KM KK KM BA LS UD KK KM BA LS UD KK KM HC	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3	2 .0479 60 .0504	3	HEC-1 INPUT	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	RK ID KK KM HC KK KM RK KM BA LS UD KK KM KK KM HC KK KM KK KK KK	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F	2 .0479 60 .0504 61	3 .035 .035	HEC-1 INPUT 45 TRAP TRAP	5	4	8910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112	RK ID KK KM HC KK KM RK KM RK KK KM KK KM HC KK KM RK	l. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F 789	.0479 60 .0504 61 .0038	3 .035 .035	HEC-1 INPUT 45 TRAP TRAP	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113	RK ID KK KM HC KK KM RK KM RK KK KM HC KK KM KK KK KK KK	l. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F 789 W10	2 .0479 60 .0504 61	3 .035 .035	HEC-1 INPUT 45 TRAP TRAP	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	RK ID KK KK KM RK KM RK KM BA LS UD KK KM BA LS UD KK KM HC KK KM BA LS UD KK KM KM BA LS UD	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F 789 W10 .0431	.0479 60 .0504 61 .0038	3 .035 .035	HEC-1 INPUT 45 TRAP TRAP	5	4	910	
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113	RK ID KK KM RK KM RK KM BA LS UD KK KM BA LS UD KK KM HC KK KM HC KK KM HC LS LS LS LS LS LS LS LS LS LS LS LS LS	1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F 789 W10 .0431	.0479 60 .0504 61 .0038	3 .035 .035	HEC-1 INPUT 45 TRAP TRAP	5	4	910	

1

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 2 of 19 7/23/2008

118	кк	W 11							
119	KM								
120 121	BA LS	.0314	60						
122	UD	.077	00						
123	кк	WE							
124	KM								
125	HC	4			HEC-1 INPUT				PAGE 4
							_		
LINE	ID.	1.	2	3		6	7	.8910)
126 127	KK KM	F-G							
128	RK	2319	.0211	.035	TRAP	10	4		
129	KK	W12							
130	KM								
131 132	BA LS	.0398	60						
133	UD	.095							
134	кк								
135 136	KM RK	2478	.0307	.035	TRAP	5	4		
			.0507	.000	INI	5	•		
137 138	KK KM	W14							
139	BA	.0473							
140 141	LS UD	.135	61						
					•				
142 143	KK KM								
144	RK	81	0.0001	.035	TRAP	5	4		•
145	KK	W13							
146 147	KM BA	.1123							
148	LS		61						
149	UD	.182							
150	кк	WG							
151 152	KM HC	4							
153 154	KK KM	G-H							
155	RK	2632	.0217	.035	TRAP	15	4		
156	кк								
157 158	KM RK	2447	.0372	.035	TRAP	5	4		
			.0312	.055	nou	5	1		
159 160	KK KM	W15							
161	BA	.0881							
162 163	LS UD	.141	61						
164	кк								
164	KM								
166	RK	1763	.0289	.035	TRAP HEC-1 INPUT	5	4		PAGE 5
				_			_		
LINE	ID.	1.	2.			6			0 .
167	кк	WH							
168	KM								
169	HC	2							
170	KK	W16							
171 172	KM BA	.0292							
173	LS		61						
174	UD	.092							
175 176	KK KM								
177	RK	1345	.0260	.035	TRAP	5	4		
178	КК	W17							•
179	KM								
190 181	BA LS	.0184	60						
182	UD	.085							
183	кк	WI							
184 185	KM HC	2							
_ • •		-							

f

1

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 3 of 19 7/23/2008

186 187 188	KK KM RK	I-M 2650	.0370	.035	TRAP	15	4		
189 190 191 192 193	KK KM BA LS UD	W19 .0428 .083	61						
194 195 196	KK KM RK	881	.0329	.035	TRAP	5	4		
197 198 199 200 201	KK KM BA LS UD	W20 .0315 .071	61						
202 203 204	КК КМ НС	ŴJ 2							
205 206 207	KK KM RK	3061	.0235	.035	TRAF HEC-1 INPUT	5	4		PAGE 6
LINE	ID	1.	2	3			7	.89	10
208 209 210 211 212	KK KM BA LS UD	W21 .1347 .156	60						
213 214 215	KK KM HC	WК 2							
216 217 218	KK KM RK	487	.0246	.035	TRAI	<u> </u>	4		
219 220 221 222 223	KK KM BA LS UD	₩22 .0086 .055	63						
224 225 226	KK KM HC	WL 2							
227 228 229	KK KM RK	1786	.0297	.035	TRA	P 5	4		
230 231 232 233 233 234	KK KM BA LS UD	W23 .0244 .112	60						
235 236 237 238 239	KK KM BA LS UD	W18 .1251 .189	60						
240 241 242	KK KM HC	₩М 5							
243 244 245	KK KM RK	M-N 1345	.0149	.035	TRA	P 20	4		
246 247 248 249 250	KK KM BA LS UD	W24 .0442 .140	60						
LINE			2.	3.	HEC-1 INPUT		7	89	PAGE 7
251 252 253 254 255	KK KM BA LS UD	W25 .0957 .197	61						

i

k

1

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 4 of 19 7/23/2008

256 257 258	KK KM HC	WN 3							
259 260 261	KK KM RK	N-P 1589	.017	.035	TRAP	20	4		
262 263 264 265 266	KK KM BA LS UD	W28 .0397 .128	63						
267 268 269	KK KM RK	1345	.0208	.035	TRAP	5	4		
270 271 272 273 274	KK KM BA LS UD	W30 .0509 .123	63						
275 276 277	KK KM RK	1078	.0074	.035	TRAP	5	4		
278 279 280 281 282	KK KM BA LS UD	W29 .0409 .145	63						
283 284 285 286 287	KK KM BA LS UD	W31 .0123 .073	63						
288 289	KK KM HC	WO 4							PAGE 8
290	nc	4		HI	CC-1 INPUT				
290 LINE			2		EC-1 INPUT	6	7	.89	
			.0226			б	4	.89	
LINE 291 292	ID KK KM	l 0-P		3	.,45			.89	
291 292 293 294 295 296 297	ID KK KM RK KK BA LS	1 O-P 2169 W26 .0301	.0226	3	.,45			.89	
291 292 293 294 295 296 297 298 299 300	ID KK KM RK KM BA LS UD KK	0-P 2169 W26 .0301 .062	- 0226 63	3	45 TRAP	5	4	.89	
LINE 291 292 293 295 296 297 298 299 300 301 302 303 304 305	ID KK KM RK KM BA LS KK KM KM KK KM BA LS	1 0-P 2169 w26 .0301 .062 4662 w27 .1633	.0226 63 .0225	3	45 TRAP	5	4	.89	
LINE 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310	ID KK KM RK KM BA LS UD KK KM RK KM BA LS UD KK KM BA LS	1 O-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890	. 0226 63 . 0225 60	3	45 TRAP	5	4	.89	
LINE 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 311 312	ID KK KM BA LS UD KK KM BA LS UD KK KM BA LS UD KK KM KM	1 O-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP	. 0226 63 . 0225 60	3	45 TRAP	5	4	.89	
LINE 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316	ID KK KM RK KM BA LS UD KK KM RK KM BA LS UD KK KM HC KK	1 O-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5 P-Q	.0226 63 .0225 60 60	.035	45 TRAP TRAP	5	4	.89	
LINE 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321	ID KK KM RK KM BA LS UD KK KM BA LS UD KK KM BA LS UD KK KM KC KK KM RK KK KM RK LS LS	1 O-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5 P-Q 1925 W33A .1261	. 0226 63 . 0225 60 60 . 0182	.035	45 TRAP TRAP	5	4	.89	

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 5 of 19 7/23/2008

328	RK	3000	.020	.035	TRAP	25	4		
329	кк	W33B							
330	КM								
331	BA	.1360	60						
332 333	LS UD	.225	00						
					HEC-1 INPUT				PAGE 9
LINE	ID			3		6		8	.10
334	кк	W34A							
335	KM								
336 337	BA LS	.1418	60						
338	UD	.173							
339	кк	34A-P2							
340	KM								
341	RK	2550	.0176	.035	TRAP	25	4		
342	KK	W34B							
343 344	KM BA	.1766							
345	LS		60						
346	UD	.224							
347	КК	WP2							
348 349	KM HC	2							
549	110	2							
350	KK	P2-Q							
351 352	KM RK	2640	.021	.035	TRAP	25	4		
353	VV	W34C							
353 354	KK KM	MDAC							
355	BA	.1625	60						
356 357	LS UD	.244	60						
358 359	KK KM	WQ							
360	HC	4							
361	KK	Q-Q1							
362	KM		077	0.75	110 1 0	25	4		
363	RK	2940	.022	.035	TRAP	25	4		
364	KK	W36A							
365 366	KM BA	.1429							
367	LS		60						
368	UD	.234							
369	KK	WQ1							
370 371	KM HC	2							
372 373	KK KM	Q1-R							
374	RK	3400	.022	.035	TRAP	25	4		PAGE 10
					HEC-1 INPUT				PAGE 10
LINE	ID.	1.	2	3	4	6	7	.89	10
375	KK	W36B							
376 377	KM BA	.1918							
378	LS UD	200	60						
379	υD	.306							
380	KK KM	W35A							
381 382	BA	.0958							
383 384	LS UD	.187	60						
385 386	KK KM	35A-WR							
387	RK	3715	.023	.035	TRAP	25	4		
388	кк	W35B							
389	KM								
390 391	BA LS	.1507 0	60						
392	UD	.259	00						
393	кк	WR							
394	KM								
395	HC	4							
396	KK	WR-S							

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 6 of 19 7/23/2008

397	КM										
398	RK	2922	.0168	.035	TRAP	25	4				
399	кк	W37A									
400	КМ										
401	BA	.1138	60								
402 403	LS UD	.185	60								
404	KK	37A-S									
405 406	KM RK	1430	.014	.035	TRAP	25	4				
407	KK	W37B									
408 409	KM BA	.1636									
410	LS		90								
411	UD	.218									
412	KK	WS									
413	KM										
414	HC	3									
					HEC-1 INPUT						PAGE 11
LINE	ID	1.	2		4 5 .		7	8.	9	10	
415	кк	5-T									
416	KM	5.									
417	RK	3653	.0164	.035	TRAP	25	4				
418	кк	W38									
419	KM	100									
420	BA	.0907									
421 422	LS UD	.190	62								
422	00	.190									
423	KK										
424 425	KM RK	2922	.0171	.035	TRAP	5	4				
425	KK	2922	.01/1	.055	1104	5	3				
426	KK	W39									
427 428	KM BA	.1833									
429	LS	.1055	76								
430	UÐ	.251									
431	кк	W4 0									
432	KM	W4 0									
433	BA	.0706									
434	LS UD	.165	92								
435	00	.165									
436	КК	WT									
437 438	KM HC	4									
450		•									
439	KK	T-U									
440 441	KM RK	1125	.0098	.035	TRAP	25	4				
	144	1100					•				
442	KK	W41									
443 444	KM BA	.0601									
445	LS		83								
446	UD	.117									
447	кк	POND									
448	КM	10112									
449	HC	2									
450	кк	DIVOUT									
451	KM		35.8 CF	S (2-YR	HISTORIC FLOW)	FROM DETEN	NTION PO	ND			
452	DŤ		0	35.8							
453 454	DI DQ	0	35.8 35.8								
434	DQ	v	55.0		HEC-1 INPUT						PAGE 12
							-				
LINE	ID.	1	2.				•••••	8.		10	
455		PONDWU		0000000-		0100-101 ·					·
456 457	KM SV	0.0		DETENTIO	ON POND Q5=94, .40 1.19		7.12	11.50	16.05		
458	SV	20.76	25.61	30.61	35.77 40.99						
459	SE	16.5		18	19 20		22	23	24		
460 461	SE SQ	25 0		27 27.40	28 29 46.66 67.77		249.51	544.89	923.33		
462	SQ	1090.5	1212.93	1323.91	1426.18 1521.53						
463	RS	1	ELEV	16.5							
464	кк	B≁WU									
465	КM										
466	RK	2215	.0181	.035	TRAF	25	4				

1

1

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 7 of 19 7/23/2008

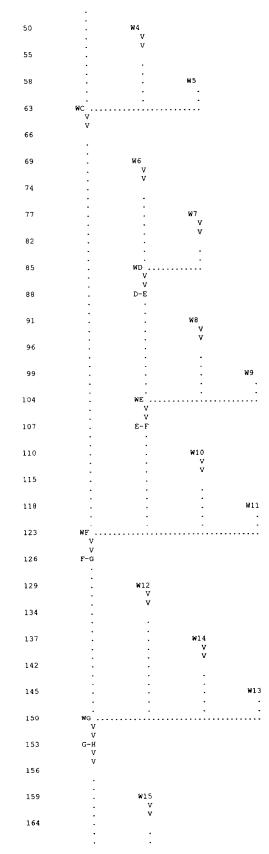
	467	KK	DIVIN						
	468	KM DR	RETRIEN DIVERT	VE 35.8 (CFS DIVERT	ED IN CHANNEL			
	469	DR	DIVENI						
	470	KK	W42A						
	471	KM							
	472	BA	.0127						
	473	LS	100	92					
	474	UD	.180						
	475	кк	42A-WU						
	476	KM							
	477	RK	1970	.0090	.013	TRAP	4	4	
	478 479	KK KM	W42						
	480	BA	.0519						
	481	LS		92					
	482	UD	.127						\$
	483 484	KK KM	W42B						
	485	BA	.0195						
	486	LS		92					
	487	UD	.180						
	488 489	KK KM	42B-WU						
	490	RK	2770	,0100	.013	TRAP	4	4	
	491	KK	WU						
	492	KM	5						
	493	HC	5						
	494	KK	U-V						
	495	KM							
	496	RK	2200	.0145	.035	TRAP HEC-1 INPUT	25	4	PAGE 13
1						NEC-1 INFOI			TAGE 15
	LINE	ID.	1 .			4 5	6	7	 .10
	407								
	497 498	KK KM	W43						
	499	BA	.1457						
	500	LS		64					
	501	UD	.169						
	502	кк	WV						
	503	KM	nv						
	504	HC	2						
	505	KK KM	V-W						
	506 507	RK	487	.0103	.035	TRAP	25	4	
	508	KK	W45						
	509	KM	1001						
	510 511	BA LS	.1931	61					
	512	UD	.189	••					
	513	KK KM	WW						
	514 515	HC	2						
	516	ZZ	-						
1									
	SCHE	EMATIC DI	AGRAM 0	F STREAM	NETWORK				
INPUT LINE	(V) ROUT	ING	(->ו הדער	RSION OR P	IMP FLOW			
pinc	(1) 1001								
NO.	(.) CONNE	ECTOR	(<-) RETU	RN OF DIVE	RTED OR PUMPED	FLOW		
<u> </u>									
8	W1 V								
	v								
25									
	•								
28	•	W 2	,						
28		#2	-						
33			••						
	v v								
36	v								

39

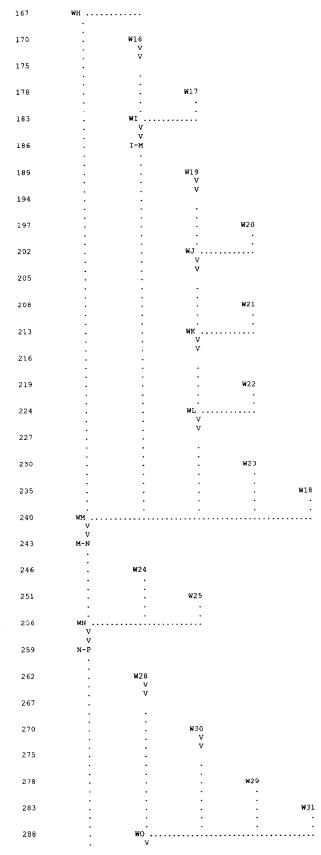
44

47

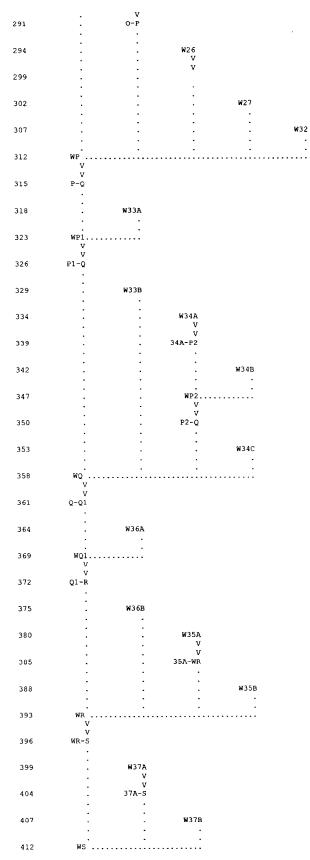
WЗ


.

:


.

.


\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 8 of 19 7/23/2008


\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 9 of 19 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 10 of 19 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 11 of 19 7/23/2008

FALCON HIGHLANDS PRELIMINARY DRAINAGE PLAN - BASED ON DBPS MODEL F100FNLQ ** DETENTION POND AT WU (BETWEEN SH 24 AND TAMLIN RD)

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 12 of 19 7/23/2008

** 2 Year, 5 Year and 100 Year Storm Events (24hr Storm)
**Basins W40 & W42 revised due to Meridian Crossing development 6 10 OUTPUT CONTROL VARIABLES 5 PRINT CONTROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE IPRNT IPLOT OSCAL HYDROGRAPH TIME DATA IT DATA 5 MINUTES IN COMPUTATION INTERVAL 25MAY 5 STARTING DATE 0800 STARTING TIME 300 NUMBER OF HYDROGRAPH ORDINATES 26MAY 5 ENDING DATE 0855 ENDING TIME 19 CENTURY MARK NMIN IDATE ITIME NQ NDDATE NDTIME ICENT COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS ENGLISH UNITS DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH LENGTH, ELEVATION INCHES FEET CUBIC FEET PER SECOND ACRE-FEET FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE ACRES DEGREES FAHRENHEIT MULTI-PLAN OPTION JP NPLAN 1 NUMBER OF PLANS MULTI-RATIO OPTION JR RATIOS OF PRECIPITATION 1.00 1.24 2.10 1.00

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN			RATIO 2		IPITATION
HYDROGRAPH AT +	W1	.05	1	FLOW TIME	1. 5.83	5. 5.83	40. 5.75	
ROUTED TO +		.05	1	FLOW TIME	0. 6.00	4. 5.92	37. 5.83	
HYDROGRAPH AT +	W2	.03	1	FLOW TIME	0. 5.92	2. 5.83	20. 5.83	
2 COMBINED AT +	WA	.08	1	FLOW TIME	1. 6.00	6. 5.92	57. 5.83	
ROUTED TO +		.08	1	FLOW TIME	1. 6.08	6. 5.92	55. 5.83	
HYDROGRAPH AT +	W3	.05	1	FLOW TIME	1. 5.83	5. 5.83	39. 5.83	
2 COMBINED AT +	WB	.13	1	FLOW TIME	1. 6.08	11. 5.92		
ROUTED TO +		.13	1	FLOW TIME	1. 6.17	10. 5.92	91. 5.83	
HYDROGRAPH AT +	W4	.01	1	FLOW TIME	0. 5.75	1. 5.75	6. 5.75	
ROUTED TO +		.01	1	FLOW TIME	0, 5.92	1. 5.83	6. 5.75	

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 13 of 19 7/23/2008

HYDROGRAPH AT +	W 5	.02	1	FLOW TIME	0. 5.83	2. 5.75	15. 5.75
3 COMBINED AT +	WC	.15	1	FLOW TIME	1. 6.17	11. 5.92	105. 5.83
ROUTED TO +		.15	1	FLOW TIME	1. 6.25	11. 5.92	103. 5.83
HYDROGRAPH AT +	W6	.05	1	FLOW TIME	1. 5.83	5. 5.83	43. 5.75
ROUTED TO +		.05	1	FLOW TIME	0. 5.92	5. 5.83	40. 5.75
HYDROGRAPH AT +	W7	.02	1	FLOW TIME	0. 5.83	2. 5.75	20. 5.75
ROUTED TO +		.02	1	FLOW TIME	0. 5.83	2. 5.83	20. 5.75
2 COMBINED AT +	WD	.07	1	FLOW TIME	1. 5.83	7. 5.83	60. 5.75
ROUTED TO +	D-E	.07	1	FLOW TIME	1. 5.92	6. 5.83	55. 5.75
HYDROGRAPH AT +	W 8	.03	1	FLOW TIME	0. 5.83	3. 5.75	27. 5.75
ROUTED TO +		.03	1	FLOW TIME	0. 5.92	3. 5.83	2 4. 5.75
HYDROGRAPH AT +	W9	.04	1	FLOW TIME	1. 5.83	5. 5.83	36. 5.75
3 COMBINED AT +	WE	.14	1	FLOW TIME	1. 5.92	14. 5.83	114. 5.75
ROUTED TO +	E-F	.14	1	FLOW TIME	1. 6.08	13. 5.92	108. 5.83
HYDROGRAPH AT +	W10	.04	1	FLOW TIME	1. 5.83	5. 5.83	39. 5.75
ROUTED TO +		.04	1	FLOW TIME	1. 5.92	5. 5.83	36. 5.75
HYDROGRAPH AT +	W11	.03	1	FLOW TIME	0. 5.83	3. 5.75	29. 5.75
4 COMBINED AT +	WE	.36	1	FLOW TIME	3. 6.08	29. 5.92	265. 5.83
ROUTED TO +	F-G	.36	1	FLOW TIME	3. 6.25	28. 6.00	255. 5.83
HYDROGRAPH AT + .	W12	.04	1	FLOW TIME	0. 5.83	4. 5.83	33. 5.75
ROUTED TO + HYDROGRAPH AT		.04	1	FLOW TIME	0. 6.17	4. 5.92	32. 5.83
ROUTED TO	W14	.05	1	FLOW TIME	1. 5.83	5. 5.83	38. 5.83
+ +		.05	1	FLOW TIME	1. 5.92	5. 5.92	37. 5.83
+	W13	.11	1	FLOW	2.	10.	80.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 14 of 19 7/23/2008

.

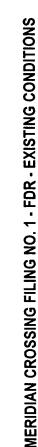
HYDROGRAPH AT +	W33B	.14	1	FLOW TIME	1. 6.33	9. 5.92	78. 5.92	
HYDROGRAPH AT +	W34A	.14	1	FLOW TIME	1. 6.33	10. 5.92	96. 5.83	
ROUTED TO +	34A-P2	.14	1	FLOW TIME	1. 6.33	10. 6.08	93. 5.92	
HYDROGRAPH AT +	W34B	.18	1	FLOW TIME	1. 6.33	11. 5.92	101. 5.92	
2 COMBINED AT +	WP2	. 32	1	FLOW TIME	2. 6.33	20. 6.00	195. 5.92	
ROUTED TO +	P2-Q	. 32	1	FLOW TIME	2. 6.75	19. 6.17	186. 6.00	
HYDROGRAPH AT +	W34C	.16	1	FLOW TIME	1. 6,33	10. 6.00	90. 5.92	
4 COMBINED AT +	WQ	2.37	1	FLOW TIME	19. 6.92	115. 6.25	1336. 6.00	
ROUTED TO +	Q-Q1 .	2.37	1	FLOW TIME	19. 7.08	114. 6.33	1294. 6.00	
HYDROGRAPH AT +	W36A	.14	1	FLOW TIME	1. 6.33	9. 5.92	81. 5.92	
2 COMBINED AT +	WQ1	2.51	1	FLOW TIME	20. 7.08	118. 6.33	1363. 6.00	
ROUTED TO +	Q1-R	2.51	1	FLOW TIME	20. 7.25	117. 6.42	1320. 6.08	
HYDROGRAPH AT +	W36B	.19	1	FLOW TIME	1. 6.42	10. 6.00	91. 6.00	
HYDROGRAPH AT +	W35A	.10	1	FLOW TIME	1. 6.33	7. 5.92	62. 5.83	
ROUTED TO +	35A-WR	.10	1	FLOW TIME	1. 6.92	6. 6.25	58. 6.00	
HYDROGRAPH AT +	W35B	.15	1	FLOW TIME	1. 6.42	9. 6.00	81. 5.92	
4 COMBINED AT +	WR	2.95	1	FLOW TIME	22. 7.17	132. 6.42	1506. 6.08	
ROUTED TO +	WR-S	2.95	1	FLOW TIME	22. 7.33	131. 6.50	1485. 6.08	
HYDROGRAPH AT +	W37A	.11	1	FLOW TIME	1. 6.33	8. 5.92	74. 5.83	
ROUTED TO +	37 A- 5	.11	1	FLOW TIME	1. 6.58	8. 6.00	71. 5.92	
HYDROGRAPH AT +	W37B	.16	1	FLOW TIME	145. 5.83	201. 5.83	410. 5.83	
3 COMBINED AT +	WS	3.23	1	FLOW TIME	145. 5.83	201. 5.83	1705. 6.08	
ROUTED TO +	5-T	3.23	1	FLOW TIME	140. 5.92	197. 5.92	1632. 6.17	
HYDROGRAPH AT +	W38	.09	1	FLOW TIME	2. 5.92	10. 5.92		

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 17 of 19 7/23/2008

ROUTED TO +		.09	1	FLOW TIME	2. 6.25	9. 6.08	66. 5.92	
HYDROGRAPH AT +	W39	.18	1	FLOW TIME	49. 5.92	85. 5.92	251. 5.92	
HYDROGRAPH AT +	W40	.07	1	FLOW TIME	76. 5.75	102. 5.75	201. 5.75	
4 COMBINED AT +	WT	3.57	1	FLOW TIME	244. 5.92	359. 5.83	1867. 6.08	
ROUTED TO +	T-U	3.57	1	FLOW TIME	243. 5.92	358. 5.92	1821. 6.17	
HYDROGRAPH AT +	W41	.06	1	FLOW TIME	40. 5.75	60. 5,75	142. 5.75	
2 COMBINED AT +	POND	3.63	1	FLOW TIME	264. 5.92	392. 5.83	1839. 6.17	
DIVERSION TO +	DIVERT	3.63	1	FLOW TIME	36. 5.58	36. 5.50	36. 5.42	
HYDROGRAPH AT + -	DIVOU	3.63	1	FLOW TIME	229. 5.92	356. 5.83	1804. 6.17	
ROUTED TO +	PONDWU	3.63	1	FLOW TIME	118. 6.17	223. 6.08	1313. 6.33	
			** 1	PEAK STAGE STAGE TIME	S IN FEET * 20.68 5.92	* 7.42 6.08	26.90 6.33	
ROUTED TO +	B-WU	3.63	1	FLOW TIME	116. 10.58	219. 9.92	1298. 8.75	
HYDROGRAPH AT +	DIVIN	.00	1	FLOW TIME	36. 5.58	36. 5.50	36. 5.42	
HYDROGRAPH AT +	W42A	.01	1	FLOW TIME	13. 5.83	18. 5.83	35. 5.75	
ROUTED TO +	42A-WU	.01	1	FLOW TIME	13. 6.17	18. 6.17	35. 6.08	
HYDROGRAPH AT +	W 42	.05	1	FLOW TIME	60. 5.75	81. 5.75	156. 5.75	
HYDROGRAPH AT +	W42B	.02	1	FLOW TIME	21. 5.83	28. 5.83	54. 5.75	
ROUTED TO +	42B-WU	.02	1	FLOW TIME	20. 5.92	27. 5.92	54. 5.83	
5 COMBINED AT +	WU	3.72	1	FLOW TIME	135. 10.58	256. 9.92	1339. 8.75	
ROUTED TO +	U-V	3.72	1	FLOW TIME	135. 10.67	253. 10.00	1333. 8.75	
HYDROGRAPH AT +	W43	.15	1	FLOW TIME	7. 5.92	24. 5.83	132. 5.83	
2 COMBINED AT +	WV	3.86	1	FLOW TIME	135. 10 .67	254. 10.00	1338. 8.75	
ROUTED TO +	V-W	3.86	1	FLOW TIME	133. 10.75		1334. 8.75	
HYDROGRAPH AT	W45			FLOW		17.		

•

MERIDIAN CROSSING FILING NO. 1 - FDR - EXISTING CONDITIONS SURFACE ROUTING


DESIGN	CONTRIBUTING	CA(equi	valent)	Тс	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		l(5)	l(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
1	E-1	1.96	2.07	6.4	4.8	8.5	9.4	17
						TRAVEL T	IME	
		1.96	2.07	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min
					265	4.2	1.1	7.
2	DP-1	1.96	2.07	7.4	4.6	8.1	22.9	48
	E-2	3.07	3.94			TRAVEL T	IME	
		5.03	6.01	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min
]			1500	4.7	5.3	12
3	E-4	1.94	2.04	6.3	4.8	8.5	9.3	17
						TRAVEL T	IME	
		1.94	2.04	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min
					900	4.1	3.7	9
5	E-7	2.09	2.20	5.4	5.0	8.9	10.5	19
					· · · · · · · · · · · · · · · · · · ·	TRAVEL T	IME	
		2.09	2.20	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (mir
					347	2.0	2.9	8
4	E-6	2.36	2.49	5.8	4.9	8.7	11.6	2 [.]
						TRAVEL 1		
		2.36	2.49	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min
					62	9.0	0.1	5
6	DP-2	5.03	6.01	16.1	3.4	6.0	67.8	14
	DP-3	1.94	2.04					L
	E-8	8.36	10.75					
	E-3	4.89	6.28			TRAVEL	ГІМЕ	
		20.21	25.09	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (mir
					36	1.5	0.4	16
7	DP-6	20.21	25.09	16.5	3.3	5.9	67.0	14
	DP-5 (INLET)	0.00	0.08			A		
	DP-4 (INLET)	0.00	0.00			TRAVEL	TIME	•
		20.21	25.17	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (mi
					139	8.4	0.3	16
8	DP-7	20.21	25.17	16.8	3.3	5.9	147.7	128
	POND WU*	19.44	188.25					
	WEST TRIB CHAN.	1.96	2.07					
	E-5	3.29	4.23				·····	
						TRAVEL	TIME	
		44.91	219.72	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (mi
					83	5.8	0.2	17

* VALUES WERE OBTAINED FROM THE APPROVED MARKET PLACE FILING NO. 1 DRAINAGE REPORT

EXISTING Rational Calcs

Î

2

ļ

Î

MERIDIAN CROSSING FILING NO. 1 - FDR - EXISTING CONDITIONS INLET CALCULATIONS

									ð						Ø	Q °°		
h	Inlet size L(i)	INLET TYPE	CROSS	STREET	Q(5)	Q(100)	ð	CA(eqv.)	FB	CA(eqv.)	DEPTH (max)	SPREAD	ö	CA(eqv.)	EB	CA(eqv.)	DEPTH (max)	SPREAD
11-	15	FLOW-BY	2.0%	1.0%	б	18	6.4	1.34	3	0.62	0.42	16.7	10.8	1.27	7	0.80	0.51	21.1
\uparrow	20	SUMP	2.0%	SAG	6	17	9.3	1.94	0	0.00	0.50		17.5	2.04	0	0.00	0.50	
F	25	SUMP	2.0%	SAG	12	22	11.6	2.36	0	0.00	0.50		21.7	2.49	0	0.00	0.50	
+-	20	SUMP	2.0%	SAG	õ	20	10.5	2.09	0	0.00	0.50		18.9	2.12	1	0.08	0.50	

e

7/23/2008 3:40 PM

.

.

MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS (RATIONAL METHOD Q=CIA)

		T		Т		Т	Т	Т	Т	Т	7	1	Т	Т	1		1		
	COMMENTS																		
ISITY	1100	(in/hr)	8.5	9.0	6.0	8.5	6.6	8.7	8.9	6.9	9.1	9.1	9.1	7.3	7.2			9 *	2.67
INTENSITY	Is	(in/hr)	4.8	5.1	3.4	4.8	3.7	4.9	5.0	3.8	5.1	5.1	5.1	4.1	4.0			*	1.5
Tc	TOTAL	(min)	6.4	5.2	16.1	6.3	13.0	5.8	5.4	11.7	5.0	5.0	5.0	10.1	10.4			Tco+Tcc	
	Tcc	(min)	5.7	4.3	10.4	5.6	7.3	5.1	4.7	7.7	4.0	1.7	1.7	9.4	9.4			ţ,	
CHANNEL	Velocity	(fps)	2.5	2.6	2.2	2.5	2.3	2.8	2.8	2.8	2.2	4.0	4.0	1.4	1.4			ç4	20
CHAI	Slope	(%)	1.6%	1.8%	1.2%	1.6%	1.4%	2.0%	2.0%	2.0%	1.2%	4.0%	4.0%	0.5%	0.5%				
	Length	(IJ)	867	675	1,370	848	1,020	873	197	1,315	525	400	400	800	800				
	Tco	(min)	0.7	6.0	5.7	0.7	5.8	0.7	0.7	4.0	0.7	0.7	0.7	0.7	0.9			*1	
AND	Slope	(ft)	2.0%	2.0%	2.0%	2.0%	10.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%				
OVERLAND	Length	(¥)	5	[20	5	60	5	5	10	5	5	5	5	10				
	ပိ		06.0	Ľ	Ľ	Ľ	L	Ľ	Ľ	Ľ	06.0	Ľ	06.0	0.00	Ĺ			_	-
WEIGHTED	C100		0.95	0.95	0.95	0.95	0.45	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95				-
WEIG	ပိ		06.0	06.0	06.0	06.0	0.35	06.0	06.0	06.0	06.0	06.0	0.00	06.0	06.0				_
AREA	TOTAL	(Ac)	2.18	5.14	11.49	215	941	2.62	232	23.89	368	0.42	0.39	0.48	1 63				65.80
	uiv)	100 YR	2 07	4 88	10.92	2 04	4 23	2.49	2 20	22.70	3 50	0.40	0.37	0.45	1.55			1/0	- ,
	CAfemity	5 YR	1 96	4 63	10.34	1 94	3 29	2.36	2.09	21.50	331	0.38	0.35	043	1 47			1/0	,
FLOWS	Oten	(cfs)	17.6	9.1	65.1	175	77.8	217	197	1555	31.8	36	3.4	33	11 2			C*I*A	
TOTAL FLOWS	č	(c f s)	04	17.2	147	93	101	191	105	80.8	169	01	8	8	59		T	C*I*A	-
	NISAR		Ē		4 6 6	40		90						51-0	0-U	24-24		Formula:	

 $T_{co} = 1.87*(1.1-C5)*(1.2.0.5)*((S^{1}100)^{0.0}.33) (DCM page 5-11) V_{cc} = 20*S^{0.5} (USDCM RO-4) V_{cc} = 10^{10}/V_{c1}/60 V_{c2} = 1/V^{1}/60 V_{c2} = 1/V^{1}/60 V_{c2} = 126.65*1.50)/(10+Tc)^{0.76} (City Letter of 1/7/2003) U_{100} = (26.65*2.67)/(10+Tc)^{0.76} (City Letter of 1/7/2003)$

• • • • • • • • •

Developed Rational Cales

7/23/2008 3:41 PM

MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS SURFACE ROUTING

DESIGN	CONTRIBUTING	CA(equi	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		I(5)	l(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
1	D-1	1.96	2.07	6.4	4.8	8.5	9.4	17.6
						TRAVEL T	IME	
		1.96	2.07	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					250	4.2	1.0	7.4
J	D-10	0.38	0.40	5.0	5.1	9.1	3.7	7.0
	D-11	0.35	0.37			TRAVEL T	IME	
		0.73	0.77	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Gutter	820	5.0	2.7	7.7
В	D-12	0.43	0.45	10.1	4.1	7.3	4.7	8.9
	DP-J	0.73	0.77				· · · ·	
						TRAVEL 1	IME	<u>.</u> ' '' i
	l f	1.16	1.22	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	40	1.8	0.4	10.
х	D-9	3.31	3.50	5.0	5.1	9.1	16.9	31.
						TRAVEL	IME	
		3.31	3.50	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Pipe	420	7.9	0.9	5.9
Z	D-2	4.63	4.88	10.5	4.0	7.2	44.6	83.
	DP-X	3.31	3.50					
	Inlet 1 Flowby	0.62	0.80					
	inlet 1	1.34	1.27	,				
	DP-B	1.16	1.22	2		TRAVEL	ГІМЕ 🔆	
		11.06	11.67	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	725	3.8	3.2	13.6
Y	D-3	10.34	10.92	16.1	3.4	6.0	34.7	65.
						TRAVEL	TIME	
		10.34	10.92	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	895	2.4	6.2	22.
3	D-4	1.94	2.04	6.3	4.8	8.5	9.3	17
						TRAVEL	TIME	
		1.94	2.04	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min
						0.0	0.0	6.

DESIGN	CONTRIBUTING	CA(equi	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		l(5)	l(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
E	DP-3	1.94	2.04	13.6	3.6	6.4	46.9	88.2
	DP-Z	11.06	11.67			TRAVEL T	IME	
	[12.99	13.71	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	750	5.8	2.1	15.8
5	D-7	2.09	2.20	5.4	5.0	8.9	10.5	19.7
						TRAVEL 1	IME	
	[2.09	2.20	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					150	2.0	1.3	6.6
4	D-6	2.36	2.49	5.8	4.9	8.7	11.6	21.7
						TRAVEL	IME	
		2.36	2.49	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					85	9.0	0.2	6.0
6	D-8	21.50	22.70	22.3	2.8	5.1	127.7	239.9
	DP-E	12.99	13.71					
	DP-Y	10.34	10.92			TRAVEL	ГІМЕ	
		44.83	47.33	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Pipe	36	10.0	0.1	22.4
7	DP-6	44.83	47.33	22.4	2.8	5.1	140.2	264.8
	DP-5 (INLET)	2.09	2.49					
	DP-4 (INLET)	2.36	2.49			TRAVEL	TIME	I
		49.28	52.30	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channe	110	8.4	0.2	22.6
8	DP-7	49.28	52.30	22.6	2.8	5.0	209.4	1243.5
	POND WU*	19.44	188.25					
	WEST TRIB CHAN.	1.96	2.07					
	D-5	3.29	4.23			TRAVEL	TIME	· · · · · · · · · · · · · · · · · · ·
		73.98	246.86	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					83	5.8	0.2	22.8

* VALUES WERE OBTAINED FROM THE APPROVED MARKET PLACE FILING NO. 1 DRAINAGE REPORT

** VALUES WERE OBTAINED FROM LOWES DRAINAGE REPORT

MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS INLET CALCULATIONS

					. 1			
	DEPTH SPREAD (max)		21.1					
	DEPTH (max)		0.51	0.50	0.30	0 0.50	6.50	
Q100	CA(eqv.)		0.80	00.0	7.5 2.04 0.1	00,00	0.06	0.00
	F8		7		U			V 4
	CA(eqv.) FB		10.8 1.27		2.04	217 249 0	Ŀ	•
	ð		10.8		07 671	21.7	0.01	۰. ۵
	DEPTH SPREAD (max)		16.7		00 1 020 1 1/			
	DEPTH (max)		0.42		0.50	0.50	2 - C	nc.h
	CA(eqv.)		0.62		ö	0.00 0.50		00.0
Ĵ	FB		1 1 34 3		94 0	c		
	CA(eqv.)		134		2	3.36		2.09
	ō				93 194 0	11.8		10.5
	Q(100)		4		10 JAC 1 9 17	C40 10		20
	Q(5)		0		σ	10	Ţ	-0
	STREET (2	/00/		SAG		500	SAG
	CROSS SLOPE		700.0	0/07	%∪ C	1.00%	0/77	2.0%
	INLET TYPE				WIC DWA	C1/10/2	UNIC	SUMP
	Inlet size L(i) INLET TYPE		34	0	UC	2 2 2 2	4 1 40	5 20 20 SUMP 2.0% SAG 10 10 20
	ЪР					0	4	5

7/23/2008 3:41 PM

MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS PIPE ROUTING

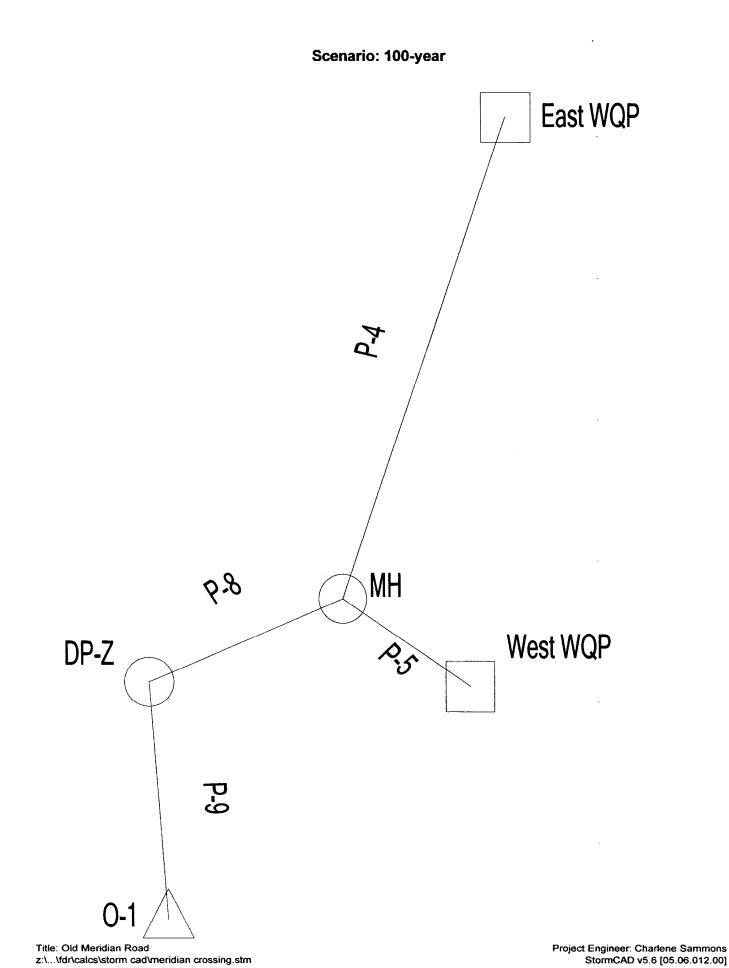
DESIGN		CA(equiv	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	CONTRIBUTING BASINS	CA(5)	CA(100)		l(5)	I(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
1	INLET DP-1	1.34	1.27	6.4	4.8	8.5	6	11
						TRAVEL T	IME	
		1.34	1.27	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				18" RCP	270	7.1	0.6	7.0
Х	DP-X	3.31	3.50	5.0	5.1	9.1	. 17	32
						TRAVEL T	IME	
		3.31	3.50	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				30" RCP	400	7.1	0.9	5.9
Z	DP-B	1.16	1.22	10.5	4.0	7.2	37	69
	DP-2	4.63	4.88					
	DP-X	3.31	3.50			TRAVEL T	IME	
		9.10	9.60	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				36" RCP	400	7.1	0.9	11.4

STREET CAPACITY

FOR 1/2 STREET SECTION **VERTICAL CURB**

Comments																
σ	12.0	17.0	20.8	24.1	26.9	29.5	31.8	34.0	12.0	17.0	20.8	24.1	26.9	29.5	31.8	34.0
Q _{max}	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34
tiow	0.5	-							0.5							
1 ype	>								>							
c	0.016								0.016							
Slope	0.02								0.02							
Slope	0.5%	1.0%	1.5%	2.0%	2.5%	3.0%	3.5%	4.0%	0.5%	1.0%	1.5%	2.0%	2.5%	3.0%	3.5%	4.0%
Formula	Q=171.7 S ¹¹²								Q=171.7 S ¹¹²							
	Residential								Collector/Arterial							

STREET CAPACITY **RAMP CURB**


FOR 1/2 STREET SECTION

County ramp curb is 6" Comments 15.9 17.8 19.5 11.3 13.8 8.0 þ Q_{max} 10W 0.5 Type ድ 0.016 c Slope 0.02 0.5% 1.0% 2.0% 3.0% Slope Q=112.6 S^{1/2} Formula Residential

20.0 <u>22222222</u> 3.15%

-

07/23/08 03:52:00 R3/Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 1

Analysis Results Scenario: 100-year

Note:

The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

mments:	Storm in (Old Me									
cenario Su	mmary										
cenario		100)-year		·						
hysical Pro	operties Altern	at Ba	se-Physic	al Prope	rties						
atchments	Alternative	Ca	tchments	-100-yea	r						
ystem Flo	ws Alternative	Ba	se-Syster	n Flows							
	eadlosses Alte										
loundary C	onditions Alte	m Ba	se-Bound	lary Cond	ditions						
esign Con	straints Altern	at Ba	se-Desig	n Constra	aints						
Capital Cos	t Alternative		se-Cost								
Jser Data	Alternative	Ва	se-User I	Data							
letwork Inv	entory										
umber of	Pipes	4			Number	of Inlets		2			
Circular P	-	4			- Grate In	nlets:		0			
Box Pipes	5:	0			- Curb In	lets:		0			
Arch Pipe	S:	0			- Combin	ation In	lets:	0			
Vertical E	lliptical Pipes:	0			- Slot Ink	ets:		0			
Horizonta	I Elliptical Pipe	es: 0			- Grate I	nlets in I	Ditch:	0			
Number of	Junctions	2			- Generic	c Inlets:		2			
Number of	Outlets	1									
Circular Pip	es Inventory										
30 inch 36 inch	es Inventory		426.11 5.58 599 27	ft	42 inch			1	167.58 ft		
30 inch 36 inch Fotal Lengi	th			ft	42 inch			1	167.58 ft		
30 inch 36 inch Fotal Lengt Generic Info	th et Inventory		5.58	ft	42 inch			1	167.58 ft		
30 inch 36 inch Fotal Lengt Generic Info	th et Inventory	2	5.58	ft	42 inch			1	167.58 ft		
30 inch 36 inch Fotal Lengt Generic Info	th et Inventory 0%		5.58 599.27	ft		with o	utlet: O-		167.58 ft		
30 inch 36 inch Fotal Lengt Generic Info	th et Inventory 0% J HydraulicHyd Grade G Line In Lin	unctio Iraulic rade e Outl	5.58 599.27 on element Gravity H Element Headloss	ft ft ents for leadloss Method A	network System Additional Flow	System Known Flow	System Rational Flow	1 System		CA	
30 inch 36 inch Fotal Lengi Generic Info Default 100 Label	th et Inventory D% J HydraulicHyc Grade G Line In Lin (ft)	unction Iraulic rade e Outl (ft)	5.58 599.27 on eleme Gravity H Element Headloss (ft)	ft ft ents for leadloss Method A	network System	System Known	System Rational	1 System Intensity	System S	CA	
30 inch 36 inch Fotal Lengi Generic Inh Default 100 Label DP-Z	th et Inventory 0% J HydraulicHyd Grade G Line In Lin	unction draulic rade e Outl (ft) 40.07	5.58 599.27 on element Gravity H Element Headloss (ft) 1.06	ft ft ents for leadloss Method /	network System Idditional Flow (cfs)	System Known Flow (cfs)	System Rational Flow (cfs)	1 System Intensity (in/hr)	System S Flow Time (min)	e CA (acres)	
30 inch 36 inch Fotal Lengi Generic Inh Default 100 Label DP-Z	th et Inventory D% J HydraulicHyc Grade G Line In Lin (ft) 3,841.13 3,8	unctio rade e Outl (ft) 40.07 41.42	5.58 599.27 on element Element Headloss (ft) 1.06 0.83	ft ft ents for leadloss Method / Standai	network System Vdditional Flow (cfs) 0.00 0.00	System Known Flow (cfs) 0.00 0.00	System Rational Flow (cfs) 72.94 73.34	1 System Intensity (in/hr) 8.64 8.68	System S Flow Time (min) 6.22	e CA (acres) 	
30 inch 36 inch Total Lengi Generic Inh Default 100	th et Inventory D% J HydraulicHyc Grade G Line In Lin (ft) 3,841.13 3,8	unction draulic rade e Outl (ft) 40.07 41.42	5.58 599.27 on element Headloss (ft) 1.06 0.83 Inlet ele	ft ft ents for leadloss Method / Standar Standar	network System Additional Flow (cfs) 0.00 0.00 0.00 0.00 0.00	System Known Flow (cfs) 0.00 0.00 wrk with	System Rational Flow (cfs) 72.94 73.34 outlet: Capture	1 System Intensity (in/hr) 8.64 8.68 0-1 Hydraulic Grade	System S Flow Time (min) 6.22 6.09 CHydraulic	e CA (acres) 8.38 8.38 8.38	Me
30 inch 36 inch Total Lengi Generic Inh Default 100 Label DP-Z MH	th et Inventory 0% J HydraulicHyc Grade G Line In Lin (ft) 3,841.13 3,8 3,842.25 3,8 Inlet	unction draulic rade e Outl (ft) 40.07 41.42	5.58 599.27 on element Headloss (ft) 1.06 0.83 Inlet ele Total SystemInt Flow (cfs)	ft ft ents for leadloss Method / Standar Standar Total ercepted Flow	network System Idditional Flow (cfs) 0.00 0.00 0.00 0r netwo Total E typassed Flow	System Known Flow (cfs) 0.00 0.00 ork with ypass (rarget E	System Rational Flow (cfs) 72.94 73.34 outlet: Capture fficiency (%)	1 System Intensityl (in/hr) 8.64 8.68 O-1 Hydraulic Grade Line In (ft)	System 3 Flow Time (min) 6.22 6.09 CHydraulic Grade Line Out	CA (acres) 8.38 8.38 Gravity Element Headloss	Me S

Analysis Results Scenario: 100-year

			C	outlet: O	-1				
Label	Grade	Hydraulic Grade E Line OutH (ft)	Element A	ditional			System IntensityF (in/hr)		
0-1	3,836.40	3,836.40	0.00	0.00	0.00	72.41	8.57	6.40	8.38

Pipe elements for network with outlet: O-1

Label	Section Shape	Section Size	Length (ft)	NumbeiCo of Sections	onstructeo Siope (ft/ft)		Total / System Flow (cfs)	Velocity	Invert	ownstreat Invert Elevation (ft)	Grade	Hydraulic Grade Line Out (ft)
P-4	Circular	30 incł	-26.11	1	0.008	0.006	32.00	6.52	3,842.25	6,839.05	3,844.85	3,842.25
P-5	Circular	36 inch	5.58	1	0.047	0.004	44.27	6.26	3,839.11	6,838.85	3,842.28	3,842.25
P-8	Circular	42 inct	60.40	1	0.011	0.005	73.34	7.67	3,838.05	6,837.39	3,841.42	3,841.13
P-9	Circular	42 inch	07.18	1	0.009	0.008	72.94	10.03	5,837.39	6,836.40	3,840.07	3,838.71

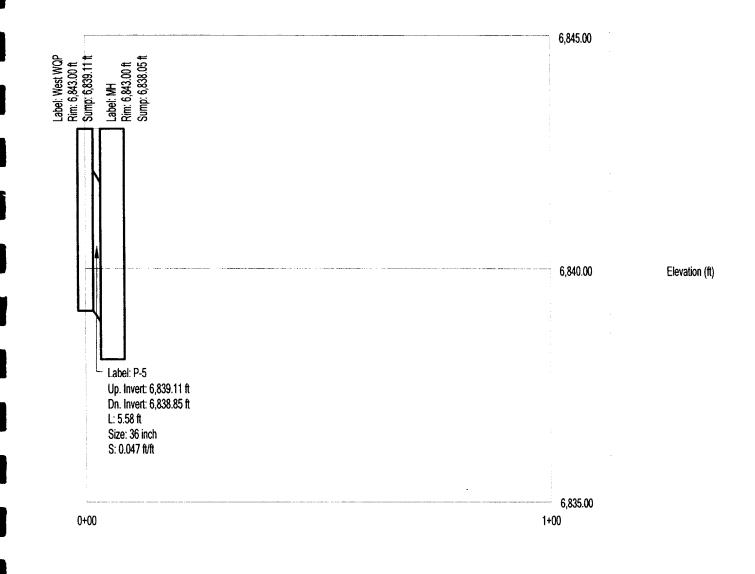
Scenario: 100-year

Combined Pipe/Node Report

£	908	0.047	111	60
(LTR)	_	-	_	-
Dn. Invert (ft)	6,839.05		6,837.39	6,836.40
HG Out €	6,842.25	6,842.25	6,841.13	6,838.71
(f) (f) (f)	6,843.00	6,843.00	6,841.75	6,841.00
Up. Invert (ft)	6,842.25	8 6,839.11	6,838.05	6,837.39
HGL €	6,844.8	6,842.28	6,841.42	6,840.07
a ₽ E	6,845.00	6,843.00	6,843.00	6,841.75
Avg. v (ft/s)	6.52	6.26	7.67	10.03
C Full (cfs)	35.54	143.97	105.16	96.69
Size	32.00 30 inch 35.54 6.52	44.27 36 inch 143.97 6.26	N/A 42 inch 105.16 7.67	N/A 42 inch 96.69 10.03
Up.Inlet Rat. Q (cfs)	32.00	44.27	N/A	N/A
Up. Calc. Sys. CA (acres)	3.50			8.38
Up. Inlet Area (acres)		4.88		
Up. Inlet Rat. Coef.		1.00		
Up. Inlet Area (acres)		4.88		N/A
⊐€	426.11	5.58	60.40	107.18
Dn. Node			N	
Node Node	East WQP MH		HW	Z
abel	44	P-5	Р-8	6-d

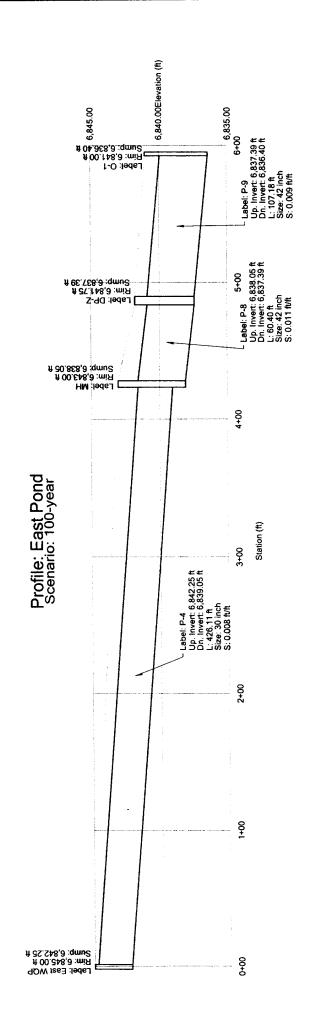
•

Project Engineer: Chartene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1


Title: Old Meridian Road z:\...\dr\calcs\storm cad\meridian crossing.stm 07/23/08 03:54:23 PM

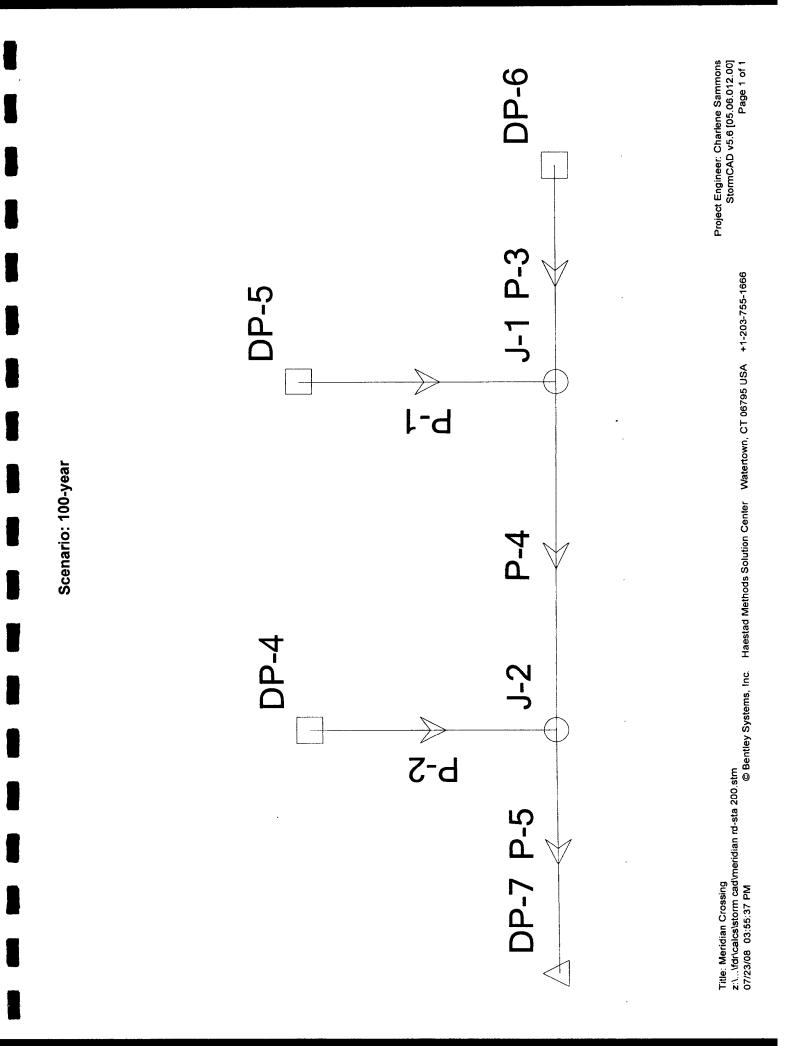
© Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Profile Scenario: 100-year


Profile: West Pond

Scenario: 100-year

Station (ft)


Profile Scenario: 100-year

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

> © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 z:\...\fdr\calcs\storm cad\meridian crossing.stm 07/23/08 03:55:07 PM

Title: Old Meridian Road

Analysis Results Scenario: 100-year

cenario Summary				
	100			
Scenario	100-year	Descention -		
Physical Properties Alternat	-			
Catchments Alternative	Catchments-10	•		
System Flows Alternative	Base-System F			
Structure Headlosses Alterr				
Boundary Conditions Altern	•			
Design Constraints Alternat		Constraints		
Capital Cost Alternative	Base-Cost			
User Data Alternative	Base-User Dat	(a		
Network Inventory				
Number of Pipes	5	Number of Inlets	3	
- Circular Pipes:	2	- Grate Inlets:	0	•
- Box Pipes:	3	- Curb Inlets:	2	
- Arch Pipes:	0	- Combination Inlets:	0	
- Vertical Elliptical Pipes:	0	- Slot Inlets:	0	
- Horizontal Elliptical Pipes:	0	- Grate Inlets in Ditch:	0	
Number of Junctions	2	- Generic Inlets:	1	
Number of Outlets	1		•	
Circular Pipes Inventory			<u></u>	<u> </u>
24 inch	185.50 ft			
Total Length	185.50 ft			
Box Pipes Inventory		· ····································		
6 x 3 ft	366.02 ft			
Total Length	366.02 ft			
Curb Inlot investory	·····			
Curb Inlet Inventory				
Type R 10'	2			
Generic Inlet Inventory				
Default 100%	1			
		nts for network with outlet: I		

	Systemin	nterceptedE	BypassedFarge	Grade	Grade	Element Method	
	Flow (cfs)	Flow (cfs)	Flow (cfs)	(%)	Line In (ft)	Line Outl (ft)	leadloss (ft)
DP-4	Curb Type R 10' 22.05	22.05	0.00 N/A	100.0	3,818.78	3,818.78	0.00 Absolut
DP-5	Curb Type R 10' 19.80	19.80	0.00 N/A	100.0	5,818.70	3,818.70	0.00 Absolut
DP-6	Generic Default 1:50.69	250.69	0.00 N/A	100.0	3,817.78	3,817.78	0.00 Absolut

 Title: Meridian Crossing
 Project Engineer: 0

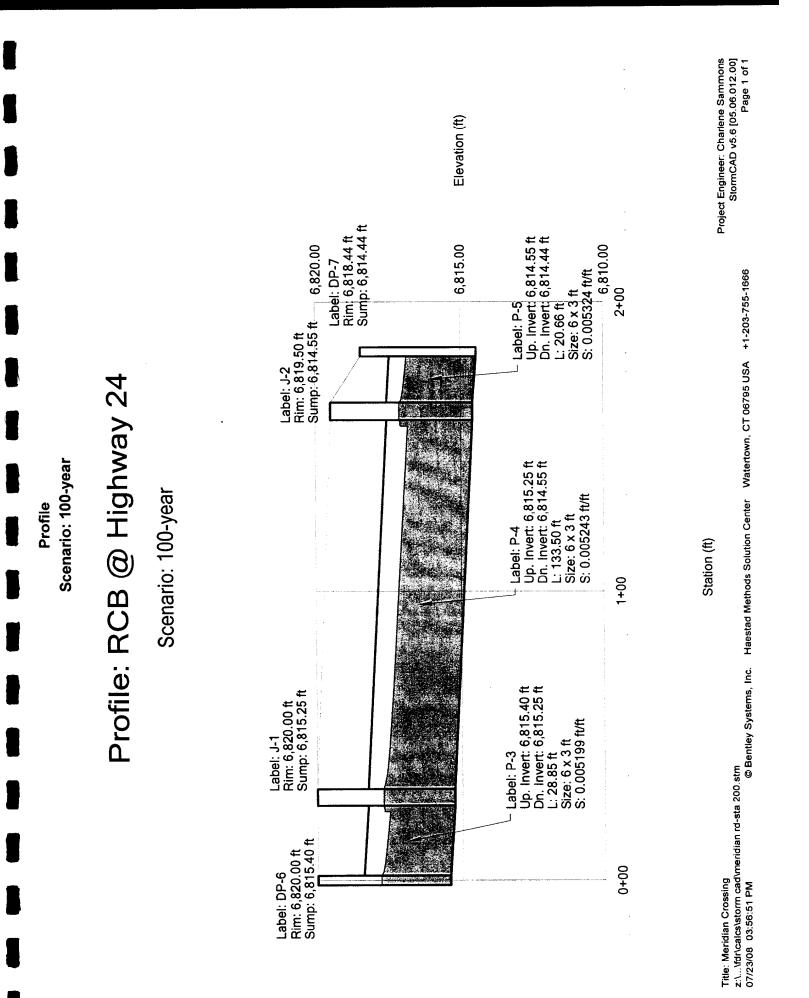
 z:\...\fdr\calcs\storm cad\meridian rd-sta 200.stm
 StormCAD

 07/23/08
 03:56:30 R®/Bentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] +1-203-755-1666 Page 1 of 2

Analysis Results Scenario: 100-year

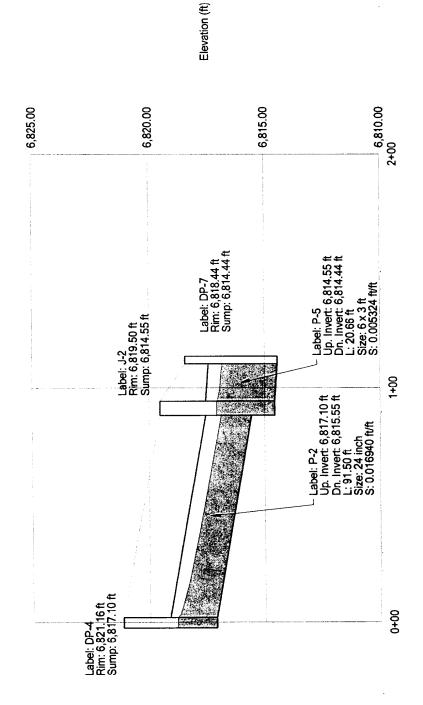
			C	Dutlet: [DP-7					-		
Label	Grade		Element	Addition		n Rationa		System yFlow Tim (min)		-		
DP-7	3,814.44	3,814.44	0.00	0.0	0.00	273.30) 5.21	22.65	5 52.02	-		
		Juncti	on elem	ents for	networ	k with c	outlet: DF	P-7				
Label	Grade		Element	Method		nalKnowi Flow	n Rational Flow	System Intensity (in/hr)	Flow Tim			
J-1	3,817.71	3,817.71	0.00	Absolu	t 0.0	0.00	262.00	5.25	22.36	49.53	-	
J-2	5,817.08	5,817.08	0.00	Absolu	t 0.0	0.00	273.54	5.22	22.61	52.02	_	
			Pipe	eleme	nts for r	network	with out	llet: DP-7	7			
Label	Section Shape	Section I Size	(ft)		nstructeo Slope (ft/ft)		SystemV	verageUp elocity l (ft/s) Ele	nvert	Invert	Grade	Hydraulic Grade Line Out (ft)
P-1	Circular	24 inch	94.00	1 0	.009043	008925	19.80	7.56 3,8	817.10 6	,816.25	3,818.70	3,817.76
P-2	Circular	24 inch	91.50	10	.0169 4 0	014085	22.05	8.96 3,8	817.10 6	,815.55	3,818.78	3,8 16.86
P-3	Box	6 x 3 ft	28.85	20	.005199	005093	:50.69	8.63 3,8	815.40 6	,815.25	3,817.78	3,817.71
P-4	Box	6 x 3 ft			.005243			8.76 3,8	815.25 6	,814.55	3,817.71	3,817.08
P-5	Box	6 x 3 ft	20.66	20	.005324	004607	:73.54	9.31 3,8	314.55 6	,814.44	3,817.08	3,816.82


Scenario: 100-year

Combined Pipe/Node Report

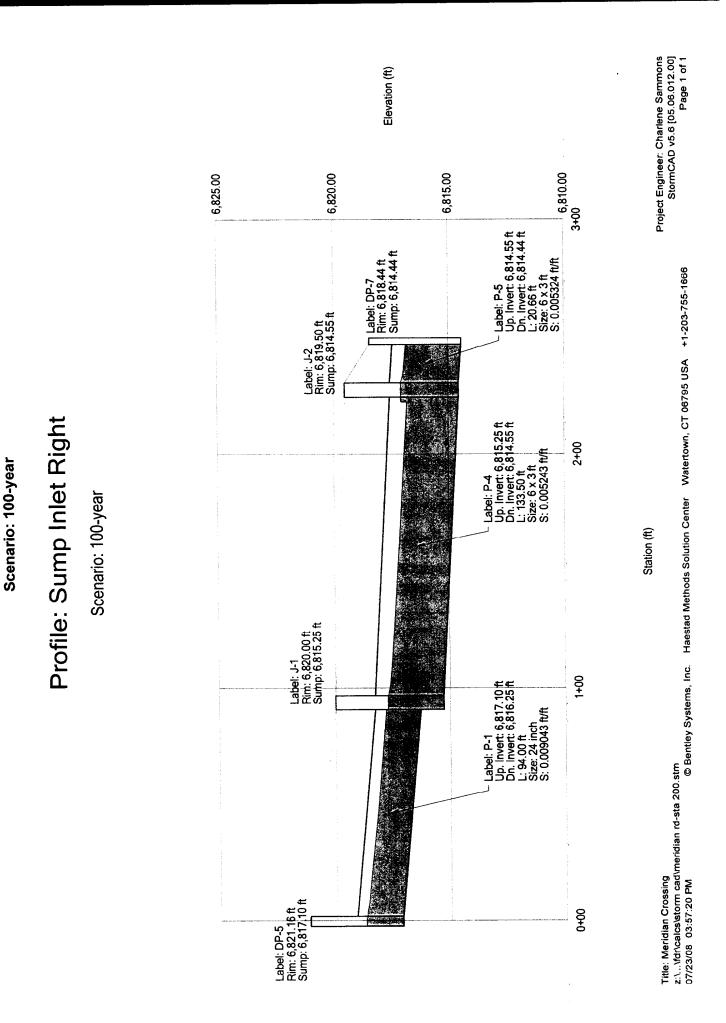
¢€	016940 009043 005199 005243 005324
S (th/ft)	
Dn. (ft)	6,815.551,016940 6,816.251,009043 6,815.251,005199 6,814.551,005243 6,814.441,005223
₽ E E E	6,816.86 6,817.76 6,817.71 6,817.08 6,817.08 6,816.82
дод €€	6,819.50 6,820.00 6,820.00 6,819.50 6,818.44
Up. Invert (ft)	6,817.10 6,817.10 6,815.40 6,815.25 6,814.55
HGL (#)	6,818.78 6,818.70 6,817.78 6,817.71 6,817.71
да e e e e f f	2.05 24 inch 29.44 8.96 6.821.16 9.80 24 inch 21.51 7.56 6.821.16 0.69 6 x 3 ft 296.71 8.63 6.820.00 N/A 6 x 3 ft 297.96 8.76 6.820.00 N/A 6 x 3 ft 300.25 9.31 6.819.50
Avg. v (ft/s)	8.96 7.56 8.63 8.76 9.31
Cfs)	29.44 21.51 296.71 297.96 300.25
Size	22.05 24 inch 29.44 8.96 19.80 24 inch 21.51 7.56 250.69 6 x 3 ft 296.71 8.63 N/A 6 x 3 ft 297.96 8.76 N/A 6 x 3 ft 300.25 9.31
Up.Inlet Rat. Q (cfs)	22.05 19.80 250.69 N/A N/A
Up. Calc. Sys. CA (acres)	2.49 2.20 47.33 49.53 52.02
ea et b	1.00 2.49 1.00 2.20 1.00 47.33 N/A N/A N/A N/A
Up. Inlet Rat. Coef.	
Up. Inlet Area (acres)	2.49 2.20 47.33 N/A N/A
<u>چ</u> ر	91.50 94.00 28.85 133.50 20.66
Label Up. Dn. Node Node	J-2 J-1 J-2 DP-7
Node.	P-2 DP-4 J-2 P-1 DP-5 J-1 P-3 DP-6 J-1 P-4 J-1 J-2 P-5 J-2 DP-7
Label	P-2 P-1 P-4 P-4

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

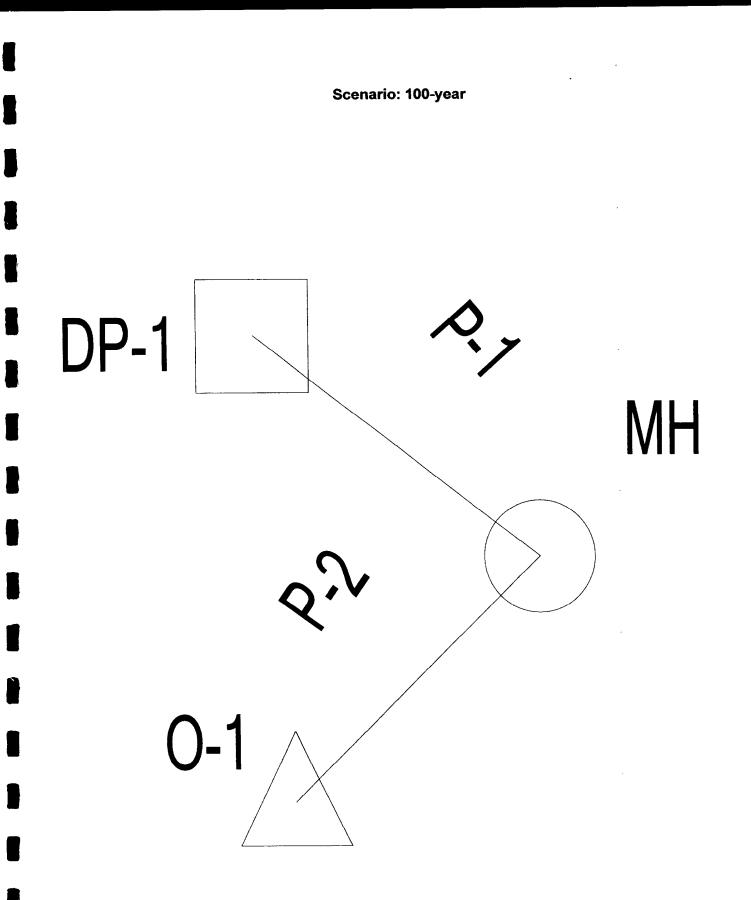

Title: Meridian Crossing z:\...\fdr\calcs\storm cad\meridian rd-sta 200.stm 07/23/08 03:55:52 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Profile: Sump Inlet Left

Scenario: 100-year



z:\...\fdr\calcs\storm cad\meridian rd-sta 200.stm 07/23/08 03:57:06 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666


Title: Meridian Crossing

Station (ft)

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Profile

Analysis Results Scenario: 100-year

6.17 3,844.00 6,843.25 3,844.97 3,843.96

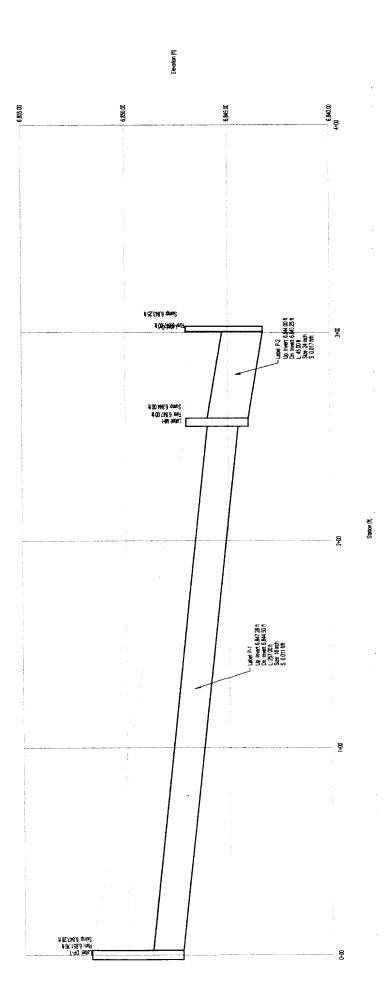
			c	utlet: O	.1						_		
Label	Hydraulio Grade Line In (ft)		Element A			Ration Flow	al Inte (in	ensityFk	w Tim		-		
0-1	3,843.25	3,843.25	0.00	0.00	0.00) 7.3	5	8.28	7.22	0.88	-		
			Pipe e	elements	s for n	etwork	with	outlet:	0-1				
Label	Section Shape	SectionLei Size (ngth Num ft) oi Secti	f Slo		Slope S		Velocity	/ İnve	rt Invition Elev	/ert	Grade	Hydraulic Grade Line Out (ft)
P-1	Circular	18 inct :57	.00	1 ().011	0.011	7.61	6.16	5 3,847	.28 6,84	4.50	3,848.35	3,845.42

0.017 0.012 7.39

1

-

P-2


Circular 24 inct 45.00

Project Engineer: Charlene Sammons Title: Old Meridian Road z:\...\reports\fdr\calcs\storm cad\ultimate.stm StormCAD v5.6 [05.06.012.00] 07/23/08 03:58:23 RWBentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

Scenario: 100-year Profile

1

Profile: Ultimate Design Scenario: 100-year

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Title: Old Meridian Road z:\...\reports\fdr\calcs\storm cad\ultimate.stm 07/23/08 03:58:59 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Existing Channel along Highway 24 ROW

Channel Calculator

Given Input Data:

4

Shape	Trapezoidal
Solving for	Depth of Flow
Flowrate	65.1000 cfs
Slope	0.0090 ft/ft
Manning's n	0.0350
Height	36.0000 in
Bottom width	480.0000 in
Left slope	0.2500 ft/ft (V/H)
Right slope	0.2500 ft/ft (V/H)

Computed Results:

Depth	6.8903 in
Velocity	2.6805 fps
Full Flowrate	1129.3728 cfs
Flow area	24.2864 ft2
Flow perimeter	536.8189 in
Hydraulic radius	6.5148 in
Top width	535.1224 in
Area	156.0000 ft2
Perimeter	776.8636 in
Percent full	19.1397 %

Critical Information

Critical depth	5.1448 in
Critical slope	0.0241 ft/ft
Critical velocity	3.6400 fps
Critical area	17.8847 ft2
Critical perimeter	522.4254 in
Critical hydraulic radius	4.9297 in
Critical top width	521.1587 in
Specific energy	0.6859 ft
Minimum energy	0.6431 ft
Froude number	0.6404
Flow condition	Subcritical

Existing Temporary Channel along Meridian Road (DP-E)

Channel Calculator

Given Input Data:

Shape	Trapezoidal
Solving for	Depth of Flow
Flowrate	88.2000 cfs
Slope	0.0200 ft/ft
Manning's n	0.0350
Height	36.0000 in
Bottom width	0.0000 in
Left slope	0.2500 ft/ft (V/H)
Right slope	

Computed Results:

Depth	21.4874 in
Velocity	5.5023 fps
Full Flowrate	349.2362 cfs
Flow area	16.0296 ft2
Flow perimeter	219.2720 in
Hydraulic radius	10.5269 in
Top width	214.8480 in
Area	44.9946 ft2
Perimeter	367.3687 in
Percent full	59.6872 %

Critical Information

Critical depth	21.7023 in
Critical slope	0.0190 ft/ft
Critical velocity	5.3939 fps
Critical area	16.3519 ft2
Critical perimeter	221.4655 in
Critical hydraulic radius	10.6322 in
Critical top width	216.9973 in
Specific energy	2.2611 ft
Minimum energy	2.7128 ft
Froude number	1.0252
Flow condition	Supercritical

Proposed Temporary Channel from Old Meridian Road (DP-Z)

Channel Calculator

Given Input Data:

2

Shape	Trapezoidal
Solving for	Depth of Flow
Flowrate	73.3000 cfs
Slope	0.0050 ft/ft
Manning's n	0.0350
Height	36.0000 in
Bottom width	60.0000 in
Left slope	0.2500 ft/ft (V/H)
Right slope	0.2500 ft/ft (V/H)

Computed Results:

Depth	21.9888 in
Velocity	3.2444 fps
Full Flowrate	219.3674 cfs
Flow area	22.5927 ft2
Flow perimeter	241.3242 in
Hydraulic radius	13.4813 in
Top width	235.9103 in
Area	51.0000 ft2
Perimeter	356.8636 in
Percent full	61.0800 %

Critical Information

Critical depth	16.0014 in
Critical slope	0.0192 ft/ft
Critical velocity	5.3195 fps
Critical area	13.7795 ft2
Critical perimeter	191.9505 in
Critical hydraulic radius	10.3373 in
Critical top width	188.0108 in
Specific energy	1.9960 ft
Minimum energy	2.0002 ft
Froude number	0.5336
Flow condition	Subcritical

Culvert Designer/Analyzer Report Highway 24 - DP WU

N/A

Analysis Coi	mponent					
Storm Even	t C	Check	Discharge		1,241.00	cfs
Peak Discha	inge Method: User-Spe	ecified				
Design Disc	charge 1,2	41.00 cfs	Check Discha	rge	1,241.00	cfs
T						
Tailwater pro	operties: Trapezoidal C	Channel		<u></u>		
	operties: Trapezoidal C					
	nditions for Check Sto		Bottom Eleva	tion	6,813.00	ft
Tailwater co	nditions for Check Sto	rm.	Bottom Eleva Velocity	tion	6,813.00 7.78	
Tailwater co Discharge	nditions for Check Sto	rm. 41.00 cfs	Velocity	tion Velocity	•	
Tailwater co Discharge Depth	nditions for Check Sto 1,2	rm. 41.00 cfs 3.82 ft	Velocity rge HW Elev.	Velocity	•	

1,240.93 cfs 6,818.87 ft

Total

Culvert Designer/Analyzer Report Highway 24 - DP WU

Component:Culvert-1

6,818.87	ft	Discharge	1,240.93	cfs
6,818.37	ft	Tailwater Elevation	6,816.82	ft
6,818.87	ft	Control Type	Outlet Control	
0.96				
6,813.10	ft	Downstream Invert	6,812.87	ft
47.00	ft	Constructed Slope	0.005000	ft/ft
S1		Depth, Downstream	3.96	ft
Steep		Normal Depth	2.78	ft
Subcritical		Critical Depth	3.33	ft
8.71	ft/s	Critical Slope	0.002971	ft/ft
Box		Mannings Coefficient	0.013	
Concrete		Span	12.00	ft
12 x 6 ft		Rise	6.00	ft
3				
6,818.87	ft	Upstream Velocity Head	1.54	ft
0.50		Entrance Loss	0.77	ft
6 010 27	#	Elow Control		
	-			
0.03020		Equation Form	2	
	6,818.37 6,818.87 0.96 6,813.10 47.00 51 Steep Subcritical 8.71 Box Concrete 12 x 6 ft 12 x 6 ft 3 6,818.87 0.50 6,818.37 lares - offset 0.49700 0.66700	6,813.10 ft 47.00 ft S1 Steep Subcritical 8.71 ft/s Box Concrete 12 x 6 ft 3 6,818.87 ft 0.50 6,818.37 ft lares - offset 0.49700 0.66700	6,818.37 ft Tailwater Elevation 6,818.87 ft Control Type 0.96 0.96 6,813.10 ft Downstream Invert 47.00 ft Constructed Slope S1 Depth, Downstream Steep Normal Depth Subcritical Critical Depth 8.71 ft/s Critical Slope Box Mannings Coefficient Concrete Span 12 x 6 ft Rise 3	6,818.37 ft Tailwater Elevation 6,816.82 6,818.87 ft Control Type Outlet Control 0.96 0.96 0utlet Control 6,813.10 ft Downstream Invert 6,812.87 47.00 ft Constructed Slope 0.005000 S1 Depth, Downstream 3.96 Steep Normal Depth 2.78 Subcritical Critical Depth 3.33 8.71 ft/s Critical Slope 0.002971 Box Mannings Coefficient 0.013 Concrete Span 12.00 12 x 6 ft Rise 6.00 3

.

Culvert Designer/Analyzer Report McLaughlin Bridge

Component:Culvert-1

Culvert Summary					
Computed Headwater Elev	104.17	ft	Discharge	623.40	cfs
Inlet Control HW Elev.	104.17	ft	Tailwater Elevation	N/A	ft
Outlet Control HW Elev.	103.98	ft	Control Type	Inlet Control	
Headwater Depth/Height	1.39				
Grades			<u></u>		
Upstream Invert	100.00	ft	Downstream Invert	100.00	ft
Length	50.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.99	ft
Slope Type	Steep		Normal Depth	1.76	ft
Flow Regime	Supercritical		Critical Depth	2.49	ft
Velocity Downstream	11.21	ft/s	Critical Slope	0.003719	ft/ft
Section				· · · · · · · · · · · · · · · · · · ·	
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 3 ft		Rise	3.00	ft
Number Sections	4				
Outlet Control Properties					
Outlet Control HW Elev.	103.98	ft	Upstream Velocity Head	1.24	ft
Ке	0.20		Entrance Loss	0.25	ft
Inlet Control Properties			· · · · · · · · · · · · · · · · · · ·		
Inlet Control HW Elev.	104.17	ft	Flow Control	N/A	
Inlet Type 90° headwall	w 45° bevels		Area Full	84.0	ft2
к	0.49500		HDS 5 Chart	10	
М	0.66700		HDS 5 Scale	2	
С	0.03140		Equation Form	2	
Y	0.82000				

Culvert Designer/Analyzer Report **Old Meridian Road - DP Y**

N/A

.

Analysis Co	mponent					
Storm Even	t	Check	Discharge		65.10	cfs
Peak Discha	arge Method: User-Sp	pecified	-			
Design Disc	charge	34.70 cfs	Check Discharg	ge	65.10	cfs
Tailwater pr	operties: Trapezoidal	Channel				
Tailwater pr	operties: Trapezoidal	Channel				
	operties: Trapezoidal		· · · · · · · · · · · · · · · · · · ·			
			Bottom Elevatio		6,813,00	ft
Tailwater co		torm.	Bottom Elevatio Velocity	on	6,813.00 3.45	
Tailwater co Discharge		torm. 65.10 cfs	Velocity	on Velocity		
Tailwater co Discharge Depth	onditions for Check St	torm. 65.10 cfs 0.89 ft	Velocity rge HW Elev.			

65.11 cfs 6,824.75 ft

Total

Culvert Designer/Analyzer Report Old Meridian Road - DP Y

Component:Culvert-1

Culvert Summary					
Computed Headwater Ele	Vi 6,824.75	ft	Discharge	65.11	cfs
Inlet Control HW Elev.	6,824.43	ft	Tailwater Elevation	6,813.89	ft
Outlet Control HW Elev.	6,824.75	ft	Control Type	Entrance Control	
Headwater Depth/Height	0.83			••••••••••••••••••••••••••••••••••••••	
Grades			·····		··
Upstream Invert	6,821.00	ft	Downstream Invert	6,820.50	ft
Length	50.00	ft	Constructed Slope	0.010000	
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.94	ft
Slope Type	Steep		Normal Depth	1.78	
Flow Regime	Supercritical		Critical Depth	2.35	
Velocity Downstream	9.95	ft/s	Critical Slope	0.003794	
Section	·				
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Concrete		Span	4.50	ft
Section Size	54 inch		Rise	4.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	6,824.75	ft	Upstream Velocity Hea	d 0.93	ft
Ke	0.50		Entrance Loss	0.47	ft
Inlet Control Properties					
Inlet Control HW Elev.	6,824.43	ft	Flow Control	N/A	
Inlet Type Square edg	e w/headwall		Area Full	15.9	ft2
к	0.00980		HDS 5 Chart	10.5	
м	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

Culvert Designer/Analyzer Report Old Meridian Road - DP Y

Component:Weir

Discharge	0.00	cfs	Allowable HW Elevation	6,824.75	ft
Roadway Width	44.00	ft	Overtopping Coefficient	2.90	US
Length	150.00	ft	Crest Elevation	6,825.35	ft
Headwater Elevation	N/A	ft	Discharge Coefficient (Cr)	2.90	
Submergence Factor (Kt)	1.00				

Sta (ft)	Elev. (ft)
0.00	6,825.35
150.00	6,825.35

 Title: Falcon Highlands Commercial Site
 Project Engineer: csammons

 z:\.../reports\fdr\calcs\culverts\highway 24.cvm
 Springs Engineering
 CulvertMaster v3.1 [03.01.010.00]

 07/23/08
 03:49:43 RMBentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666
 Page 3 of 3

Culvert	Diameter	No of Barrels	Slope	Velocity	Slope Velocity Riprap Width Riprap Length	Riprap Length	Ripra	Riprap Size
	(ii)		(%)	ft/s	ft	ft		
ŊP.Y	54	-	1.20%		13.5	21.5	3.78 L	
DP-Z	42	-	0.90%	10.0	10.5	18.5	3.44 L	

Į

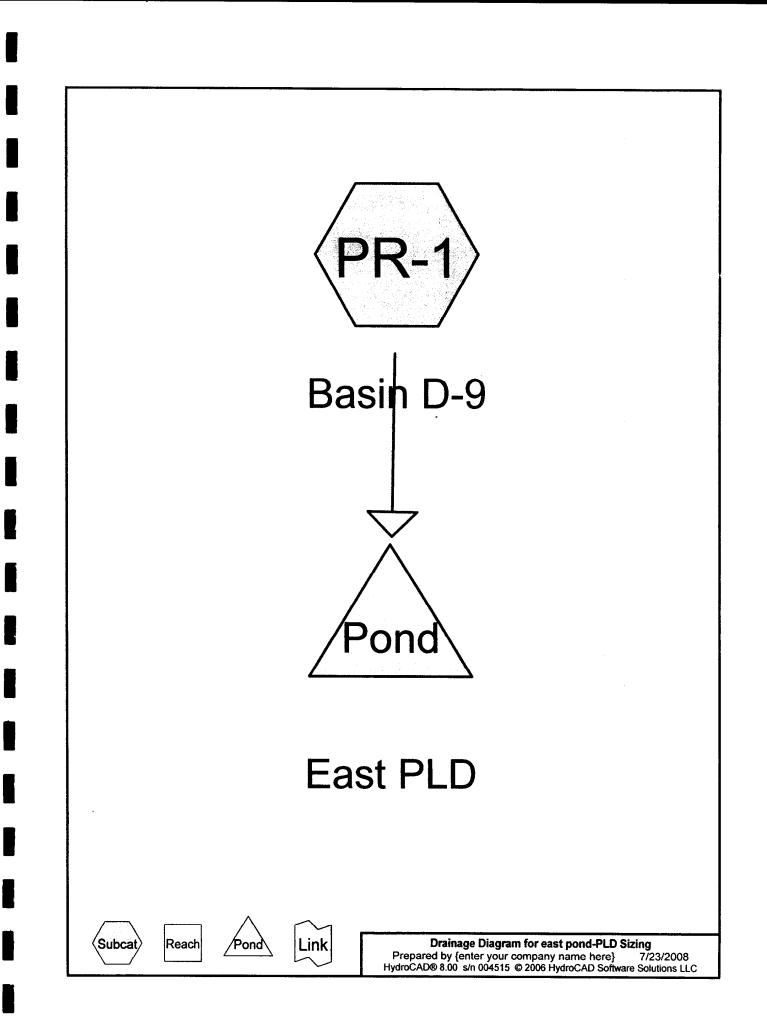
Í

CULVERT PROTECTION

7/23/2008

.

.

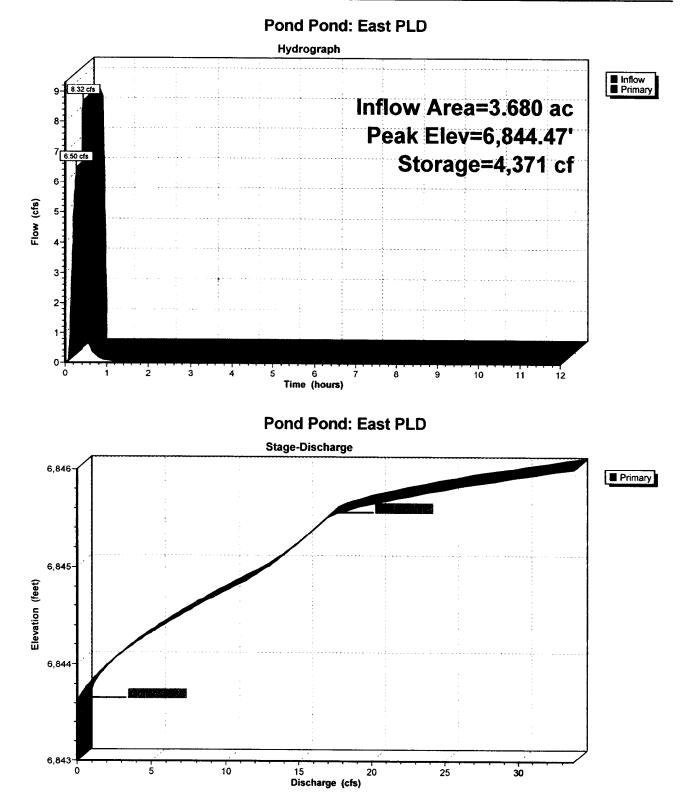

Design Procedure Form: Porous Landscape Detention (PLD)

Designer:	Thomas Roberts	
Company:	Springs Engineering	
Date:	July 23, 2008	
Project:	Merdian Crossing East Pond	
Location:	Falcon, CO	
A) Tributa B) Contril C) Water (WQC D) Design 2. PLD Surfa	rage Volume ($I_a = 100\%$ if all paved and roofed areas u/s of PLD) ry Area's Imperviousness Ratio (i = $I_a / 100$) buting Watershed Area Including the PLD (Area) Quality Capture Volume (WQCV) CV = 0.8 * (0.91 * $I^3 - 1.19 * I^2 + 0.78 * I$)) h Volume: Vol _{PLD} = (WQCV / 12) * Area ace Area (A _{PLD}) and Average Depth (d_{av}) 20.24 square feet to 7200.48 square feet)	$I_{a} = \frac{79.00}{0.79} \%$ i = 0.79 Area = 167,616 square feet WQCV = 0.26 watershed inches Vol = 3,600 cubic feet $A_{PLD} = 3,600$ square feet
(d _{av} : = (Vo	ol / A _{PLD}), Min=0.5', Max=1.0')	d _{av} =feet
 Based on A) Check box B) Check box C) Check box D) Check box if underdra E) Does tribupetroleum present, s 	of PLD (Check A, or B, or C, answer D) answers to 3A through 3D, check the appropriate method x if subgrade is heavy or expansive clay x if subgrade is silty or clayey sand x if subgrade is well-draining soil X x if underdrains are not desirable or ains are not feasible at this site. tary catchment contain land uses that may have products, greases, or other chemicals uch as gas station, yes no store, restaurant, etc.? X	Infiltration to Subgrade with Permeable Membrane: 3(C) checked and 3(E) = no Underdrain with Impermeable Liner: 3(A) checked or 3(E) = yes Underdrain with Non-Woven Geotextile Fabric: 3(B) checked and 3(E) = no 16-Mil. Impermeable Membrane with No Underdrain: 3(D) checked - Evapotranspiration only <u>x</u> Other: <u>Type D Inlet</u>
 A) Heavy Perfor B) Silty or Perfor C) No Po (NRC) 	t Mix and Gravel Subbase (See Figure PLD-1) or Expansive Clay (NRCS Group D Soils) Present; rated HDPE Underdrain Used. r Clayey Sand (NRCS Group C Soils) Present; rated HDPE Underdrain Used. tential For Contamination And Well-Draining S Group A or B Soils) Are Present; Underdrains Elliminated. drains Are Not Desirable Or Are Not Feasible At This Site.	18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer. 16-Mil. Impermeable Liner and a 3" to 4" Perforated HDPE Underdrain. 18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer and a 3" to 4" Perforated HDPE Underdrain w/ Non-Woven Pemeable Membrane. 18" Minimum Depth Sand-Peat Mix with Non-Woven Pemeable Membrane and No Underdrain (Direct Infiltration). 18" Minimum Depth Sand-Peat Mix with An Additional 18" Minimum Depth Sand-Peat Mix with An Additional 18" Minimum Layer Sand-Peat Mix or Sand-Class 'A' Compost Bottom Layer (Total Sand-Peat Depth of 36"). 16-Mil. Impermeable Liner Used. x Other: See Detail on Sheet 8
INO[62]		

Í

1

Í

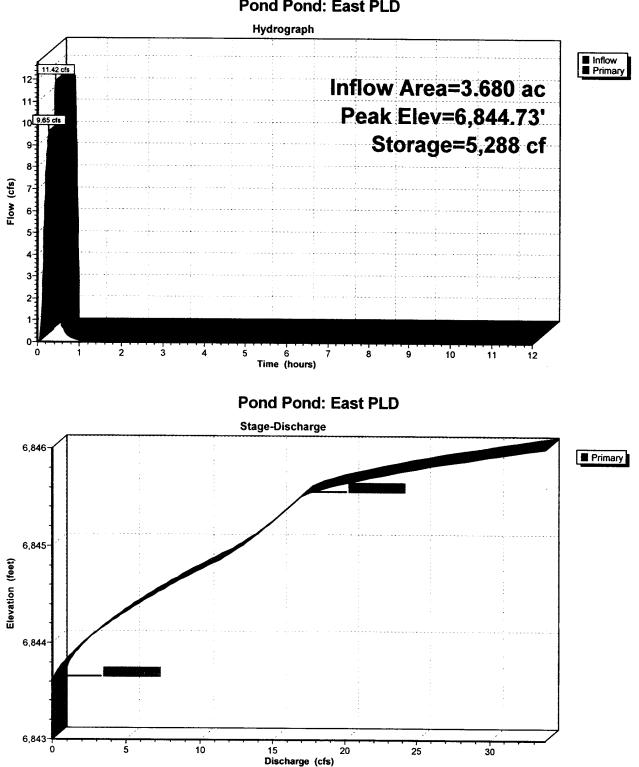


east pond-PLD SiziColorado Springs-El Paso County 2-Year Duration=15 min, Inten=2.49 in/hrPrepared by {enter your company name here}Page 2HydroCAD® 8.00s/n 004515© 2006HydroCAD Software Solutions LLC7/23/2008

Pond Pond: East PLD

Inflow Area = Inflow = Outflow = Primary =	8.32 cfs @ 6.50 cfs @	flow Depth = 0.5 0.09 hrs, Volum 0.27 hrs, Volum 0.27 hrs, Volum	e= 0.134 a	af af, Atten= 22%, Lag	= 10.7 min			
Routing by Sto Peak Elev= 6,8	Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 6,844.47' @ 0.27 hrs Surf.Area= 3,394 sf Storage= 4,371 cf							
Center-of-Mass	Plug-Flow detention time= 12.8 min calculated for 0.134 af (78% of inflow) Center-of-Mass det. time= 10.8 min (20.9 - 10.0)							
		orage Storage [
#1 6,84	3.00' 9,7	28 cf Custom	Stage Data (Pyran	nidal) Listed below				
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)				
6,843.00	2,200	0	0	2,200				
6,844.00	3,300	2,731	2,731	3,320				
6,846.00	3,700	6,996	9,728	3,939				
0,010.00	0,700	0,000	9,720	3,939				
Device Routi	ng Invert	Outlet Devices						
#1 Prima	ry 6,845.50'	3.00' x 3.00' H	oriz. Orifice/Grate	Limited to weir flow	w C= 1 000			
#2 Prima	ry 6,843.60'		H Vert. Orifice/G					
Primary OutFlow Max=6.49 cfs @ 0.27 hrs HW=6,844.47' (Free Discharge)								

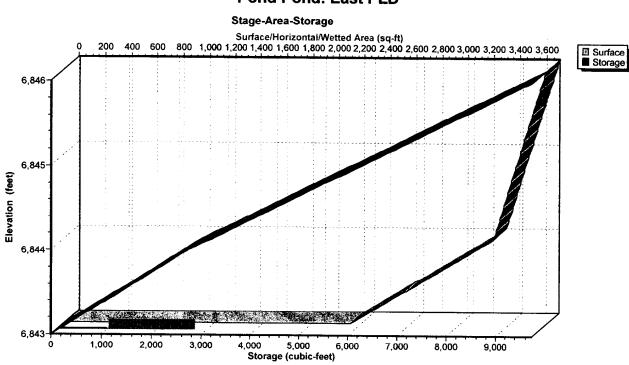
-2=Orifice/Grate (Orifice Controls 6.49 cfs @ 2.99 fps)


east pond-PLD SiziColorado Springs-El Paso County 5-Year Duration=15 min, Inten=3.42 in/hrPrepared by {enter your company name here}Page 5HydroCAD® 8.00s/n 004515© 2006HydroCAD Software Solutions LLC7/23/2008

Pond Pond: East PLD

Inflow Area = Inflow = Outflow = Primary =	11.42 cfs @ 9.65 cfs @	flow Depth = 0.77 0.09 hrs, Volume 0.26 hrs, Volume 0.26 hrs, Volume	e= 0.198 a	f f, Atten= 16%, Lag=	10.4 min	
Routing by Stor-	Ind method, Time	e Span= 0.00-12.0	00 hrs, dt= 0.01 hrs	\$/3		
Peak Elev= 6,84	4.73' @ 0.26 hrs	Surf.Area= 3,44	6 sf Storage= 5,2	288 cf		
Plug-Flow deten Center-of-Mass	tion time= 10.5 m det. time= 9.4 mi	nin calculated for (n(19.4 - 10.0)	0.198 af (84% of in	flow)		
Volume In	vert Avail.Sto	orage Storage D	escription			
#1 6,843	.00' 9,7	28 cf Custom S	itage Data (Pyram	idal) Listed below		
Elevation ·	Surf.Area	Inc.Store	Cum.Store	Wet.Area		
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)		
6,843.00	2,200	0	0	2,200		
6,844.00	3,300	2,731	2,731	3,320		
6,846.00	3,700	6,996	9,728	3,939		
Device Routing						
#1 Primar			riz. Orifice/Grate	Limited to weir flow	C= 1.000	
#2 Primar	6,843.60'	2.50' W x 1.25'	H Vert. Orifice/Gr	ate C= 0.600		
Primary OutFlow Max=9.63 cfs @ 0.26 hrs HW=6,844.73' (Free Discharge)						

2=Orifice/Grate (Orifice Controls 9.63 cfs @ 3.41 fps)

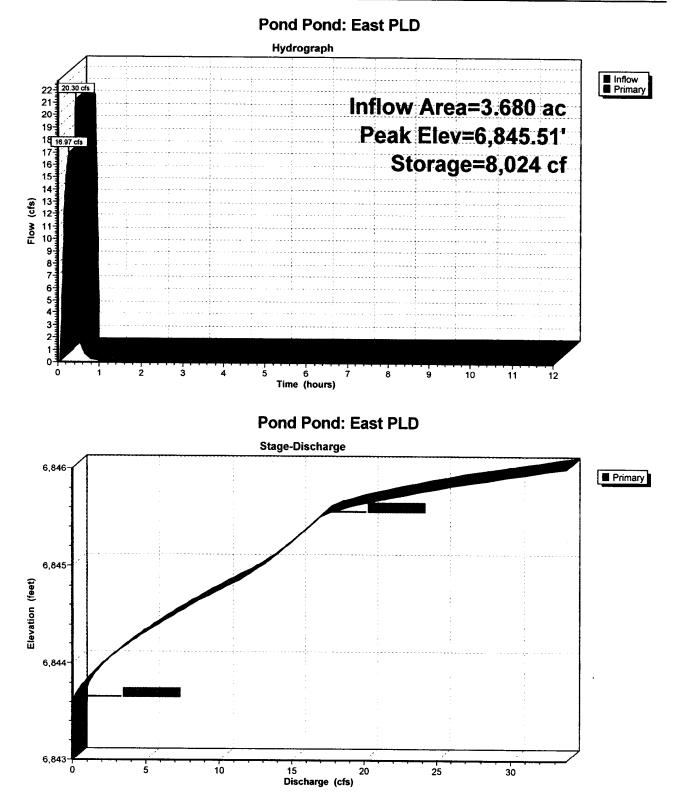

east pond-PLD Sizi Colorado Springs-El Paso County 5-Year Duration=15 min, Inten=3.42 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 6 7/23/2008

Pond Pond: East PLD

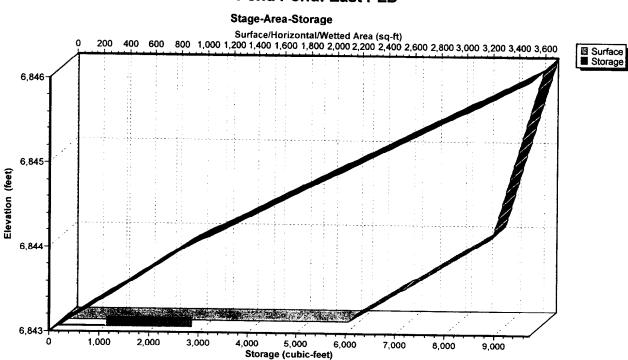
east pond-PLD Sizi Colorado Springs-El Paso County 5-Year Duration=15 min,	Inten=3.42 in/hr
Prepared by {enter your company name here}	Page 7
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC	7/23/2008

.

Pond Pond: East PLD

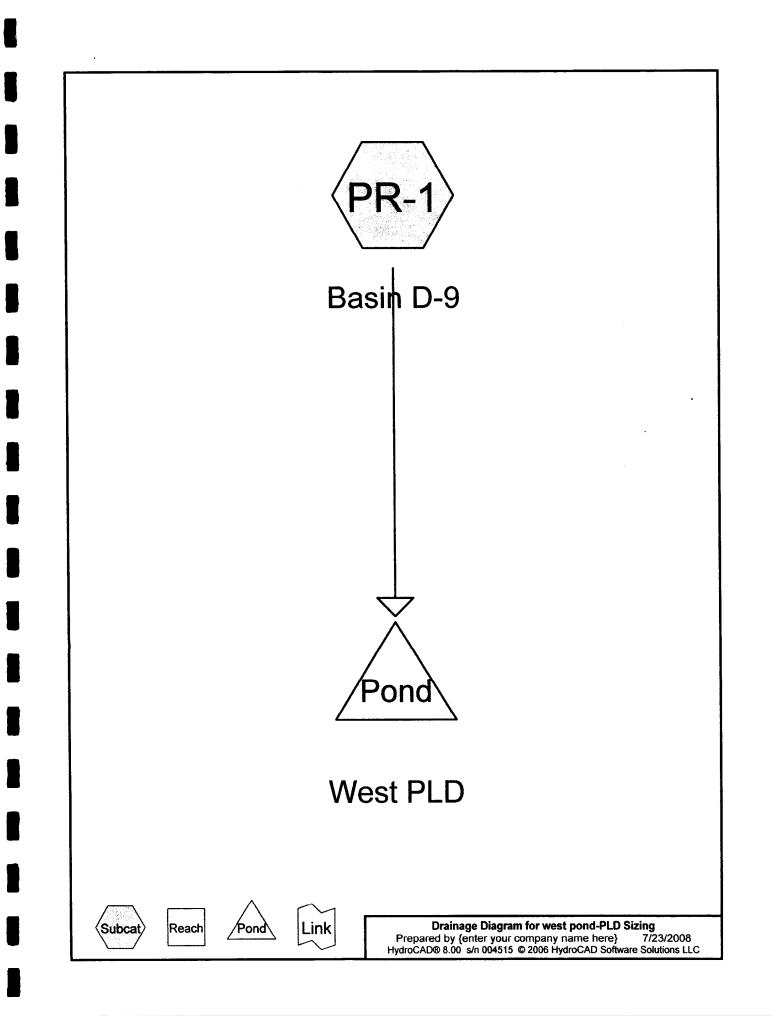

east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 8 7/23/2008

Pond Pond: East PLD


Inflow Area = Inflow = Outflow = Primary =	20.30 cfs 16.97 cfs	 @ 0.09 hrs, \ @ 0.26 hrs, \ 	/olume= 0	-Year event .420 af .382 af, Atten= 16%, .382 af	, Lag= 10.4 min	
Routing by S Peak Elev=	Stor-Ind method, 6,845.51' @ 0.2	, Time Span= 0.0 6 hrs Surf.Area	0-12.00 hrs, dt= 0 = 3,603 sf Storag	.01 hrs / 3 je= 8,024 cf		
Plug-Flow de Center-of-Ma Volume	ass det. time= 7	7.8 min (17.8 - 10		of inflow)		
		ail.Storage Stor			· · · · · · · · · · · · · · · · · · ·	
#1 6	,843.00'	9,728 cf Cus	tom Stage Data (Pyramidal) Listed be	low	
Elevation (feet)	Surf.Area (sq-ft)					
6,843.00	2,200			0 2,200		
6,844.00	3,300					
6,846.00	3,700		•	,		
Device Ro	uting	nvert Outlet De	vices	•		
	•			Grate Limited to we	eir flow C= 1.000	
#2 Pri	mary 6,84	3.60' 2.50' W x	1.25' H Vert. Orif	ice/Grate C= 0.600		
Primary OutFlow Max=16.92 cfs @ 0.26 hrs HW=6,845.51' (Free Discharge)						

-1=Orifice/Grate (Weir Controls 0.04 cfs @ 0.33 fps) -2=Orifice/Grate (Orifice Controls 16.88 cfs @ 5.40 fps)

east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hrPrepared by {enter your company name here}Page 9HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008

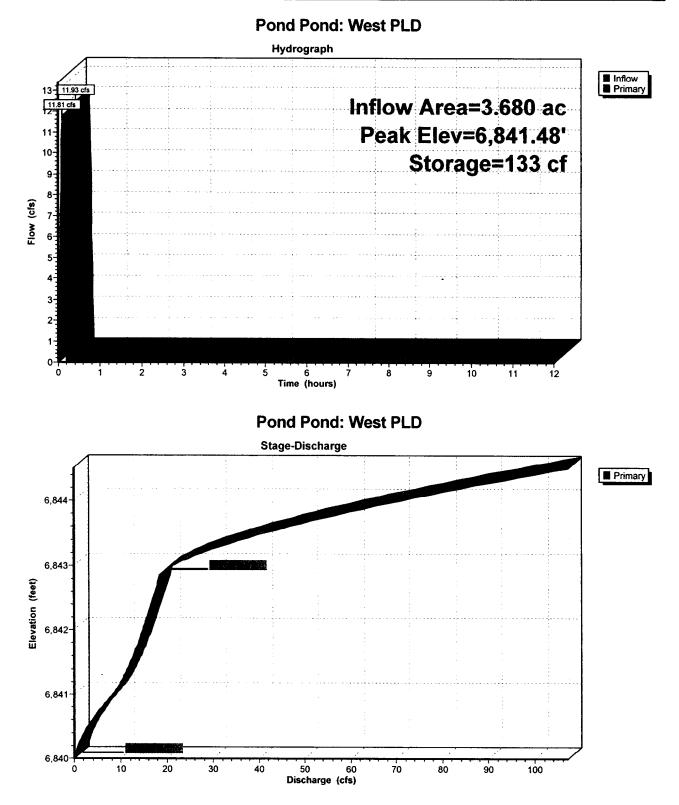

east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hrPrepared by {enter your company name here}Page 10HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: East PLD

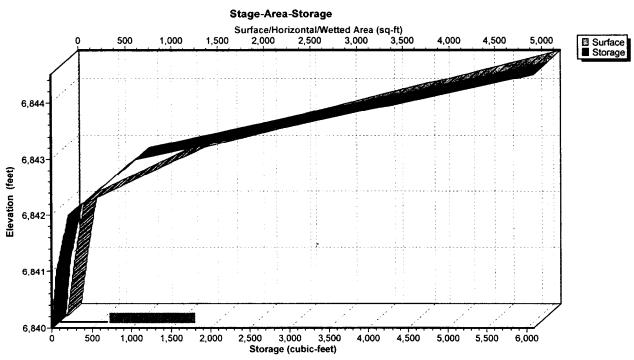
Designer:	Thomas Roberts	
Company:	Springs Engineering	
Date:	July 23, 2008	
Project:	Meridian Crossing West Pond	
Location:	Falcon, CO	
	rage Volume ($l_a = 100\%$ if all paved and roofed areas u/s of PLD) ry Area's Imperviousness Ratio (i = l_a / 100)	$i_a = 82.00 \%$ i = 0.82 %
B) Contril	buting Watershed Area Including the PLD (Area)	Area = 200,821 square feet
(wqa	Quality Capture Volume (WQCV) CV = 0.8 * (0.91 * l^3 - 1.19 * l^2 + 0.78 * l)) n Volume: Vol _{PLD} = (WQCV / 12) * Area	WQCV = <u>0.27</u> watershed inches Vol = <u>4,568</u> cubic feet
	ace Area (A _{PLD}) and Average Depth (d _{av}) 67.86 square feet to 9135.72 square feet)	A _{PLD} =4,600square feet
(d _{av} : = (Vo	ol / A _{PLD}), Min=0.5', Max≏1.0')	d _{av} = <u>0.99</u> feet
-	of PLD (Check A, or B, or C, answer D) answers to 3A through 3D, check the appropriate method	Infiltration to Subgrade with Permeable Membrane: 3(C) checked and 3(E) = no
B) Check bo	ix if subgrade is heavy or expansive clay ix if subgrade is silty or clayey sand ix if subgrade is well-draining soil x	Underdrain with Impermeable Liner: 3(A) checked or 3(E) = yes
	ax if underdrains are not desirable or rains are not feasible at this site.	Underdrain with Non-Woven Geotextile Fabric: 3(B) checked and 3(E) = no 16-Mil. Impermeable Membrane with No Underdrain:
petroleum present, s	utary catchment contain land uses that may have n products, greases, or other chemicals such as gas station, yes no e store, restaurant, etc.? x	3(D) checked - Evapotranspiration only x Other: Type D Inlet
	at Mix and Gravel Subbase (See Figure PLD-1) y or Expansive Clay (NRCS Group D Soils) Present;	18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer. 16-Mil.
	orated HDPE Underdrain Used.	Impermeable Liner and a 3" to 4" Perforated HDPE Underdrain.
	or Clayey Sand (NRCS Group C Soils) Present; orated HDPE Underdrain Used.	18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer and a 3" to 4" Perforated HDPE Underdrain w/ Non-Woven Pemeable Membrane.
	otential For Contamination And Well-Draining S Group A or B Soils) Are Present; Underdrains Elliminated.	18" Minimum Depth Sand-Peat Mix with Non-Woven Pemeable Membrane and No Underdrain (Direct Infiltration).
D) Unde	erdrains Are Not Desirable Or Are Not Feasible At This Site.	18" Minimum Depth Sand-Peat Mix with An Additional 18" Minimum Layer Sand-Peat Mix or Sand-Class 'A' Compost Bottom Layer (Total Sand-Peat Depth of 36"). 16-Mil. Impermeable Liner Used.
E) Other	r.	x Other: See Detail on Sheet 8
Notes:	······	
notes.		

٠

west pond-PLD Sizi	Colorado Springs-El Paso County 2-Year	Duration=6 min, Inten=3.56 in/hr
Prepared by {enter you	r company name here}	Page 2
HydroCAD® 8.00 s/n 0045	15 © 2006 HydroCAD Software Solutions LLC	7/23/2008


Pond Pond: West PLD

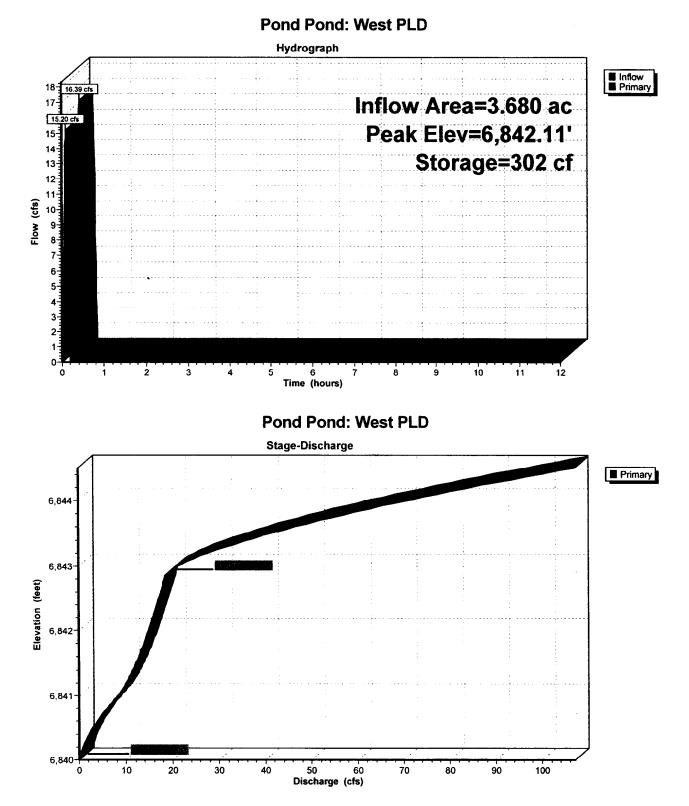
Inflow Area = Inflow = Outflow = Primary =	11.93 cfs @ 0 11.81 cfs @ 0	ow Depth = 0.32" 0.10 hrs, Volume= 0.10 hrs, Volume= 0.10 hrs, Volume=	0.098 af 0.098 af	, Atten= 1%, Lag= 0.2 min
		Span= 0.00-12.00 Surf.Area= 148 st		
Center-of-Mass	det. time= 0.2 mir	calculated for 0.09 (5.7 - 5.5) rage Storage De	·	low)
#1 6,840			age Data (Prisma	tic) Listed below
#1 0,040	0,00		iye Data (Fiisilia	tic) Listed below
Elevation	Surf.Area	Inc.Store	Cum.Store	-
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
6,840.00	20	0	0	
6,841.00	100	60	60	
6,842.00	200	150	210	
6,843.00	1,500	850	1,060	
6,844.50	5,200	5,025	6,085	
Device Routing	g Invert	Outlet Devices	•	
#1 Primar	y 6,842.85'	3.00' x 3.00' Hor	iz. Orifice/Grate	Limited to weir flow C= 1.000
#2 Primar	y 6,840.00'	2.50' W x 1.00' H	Vert. Orifice/Gra	te C= 0.600
Primary OutFlo	w Max=11 74 cfs	@ 0.10 hrs HW=	6 841 47' (Free I)ischarge)
	ate (Controls 0.0			


1=Orifice/Grate (Controls 0.00 cfs) **2=Orifice/Grate** (Orifice Controls 11.74 cfs @ 4.70 fps)

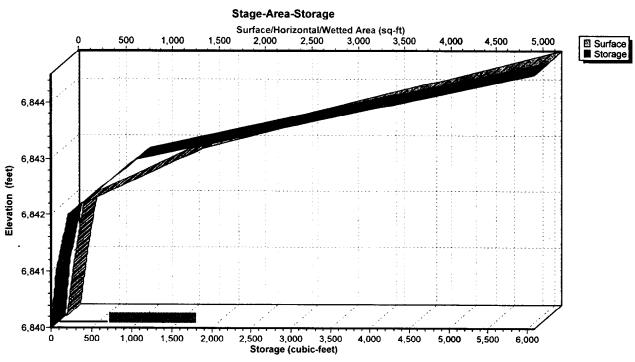
I

west pond-PLD SiziColorado Springs-El Paso County 2-Year Duration=6 min, Inten=3.56 in/hrPrepared by {enter your company name here}Page 3HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008

west pond-PLD SiziColorado Springs-El Paso County 2-Year Duration=6 min, Inten=3.56 in/hrPrepared by {enter your company name here}Page 4HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008


Pond Pond: West PLD

west pond-PLD SiziColorado Springs-El Paso County 5-Year Duration=6 min, Inten=4.88 in/hrPrepared by {enter your company name here}Page 5HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008

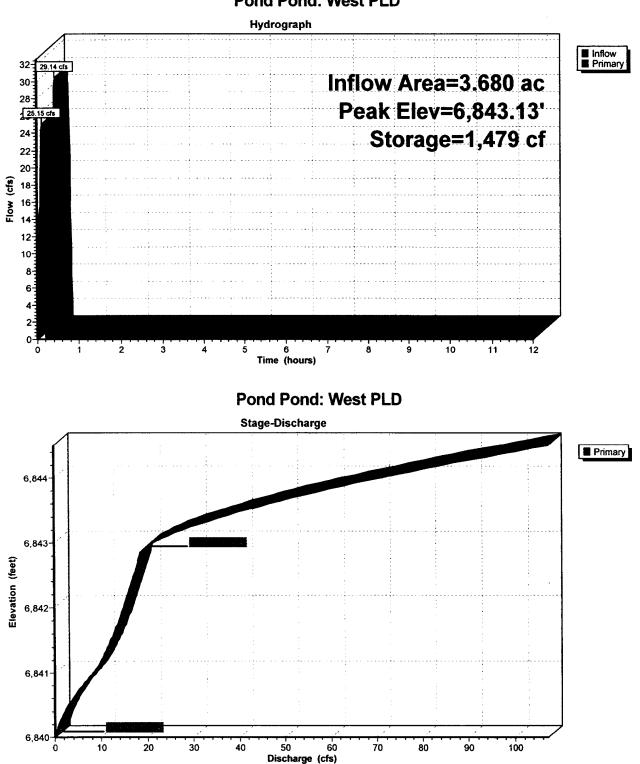

Pond Pond: West PLD

Inflow Are Inflow Outflow Primary	= 16 = 15	.39 cfs @ .20 cfs @	low Depth = 0.4 0.09 hrs, Volum 0.11 hrs, Volum 0.11 hrs, Volum	ne= 0.135 af	, Atten= 7%, Lag= 0.6 min
				.00 hrs, dt= 0.01 hrs) sf Storage= 302 d	
Center-of-	Mass det. 1	time= 0.2 mi	n (5.7 - 5.5)).134 af (100% of in	flow)
Volume	Invert		orage Storage		
#1	6,840.00'	6,0	85 cf Custom	Stage Data (Prisma	tic) Listed below
Elevation		rf.Area	Inc.Store	Cum.Store	
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)	
6,840.00		20	0	0	
6,841.00		100	60	60	
6,842.00		200	150	210	
6,843.00		1,500	850	1,060	
6,844.50	1	5,200	5,025	6,085	
Device f	Routing	Invert	Outlet Devices	5	
#1 F	Primary	6,842.85	3.00' x 3.00' H	oriz. Orifice/Grate	Limited to weir flow C= 1.000
#2 F	Primary	6,840.00'		H Vert. Orifice/Gra	
		ax=15.16 cfs Controls 0.0		V=6,842.10' (Free	Discharge)

-1=Orifice/Grate (Controls 0.00 cfs) -2=Orifice/Grate (Orifice Controls 15.16 cfs @ 6.06 fps) west pond-PLD SiziColorado Springs-El Paso County 5-YearDuration=6 min, Inten=4.88 in/hrPrepared by {enter your company name here}Page 6HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008

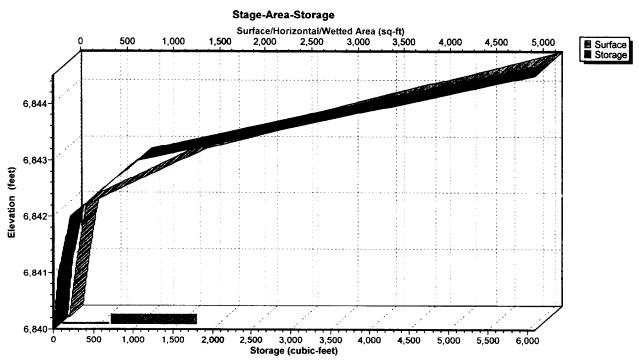
west pond-PLD SiziColorado Springs-El Paso County 5-Year Duration=6 min, Inten=4.88 in/hrPrepared by {enter your company name here}Page 7HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: West PLD

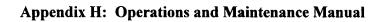

west pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 8 7/23/2008

Pond Pond: West PLD

Inflow A	rea =	3.680 ac. Infl	low Depth = 0.78	" for 100-Yea	r event
Inflow	=		0.09 hrs, Volume		
Outflow	=		0.11 hrs, Volume		
Primary			0.11 hrs, Volume		af, Atten= 14%, Lag= 1.0 min
i inneary	_	20.10 018 @	o. i i i i i s, voiuine	= 0.239	a
Pouting	by Stor I	ad mothod Time	e Span= 0.00-12.0		
Dook El	Dy 3101-11	$12^{\circ} \otimes 0.11$ hrs	: Span= 0.00-12.0	0 nrs, at= 0.01 n 0 of _ 0terraria	
FEAK EN	ev- 0,043		Surf.Area= 1,80	9 st Storage= 1	,4/9 cf
Diug Ela	w dotopti	on timor 0.7 min	a a la viata di fa a O d	000 . (/ 000/)	· · · · · ·
			n calculated for 0.	239 at (100% of	inflow)
Center-o	or-mass d	et. time= 0.7 mir	1 (6.2 - 5.5)		
			<u> </u>	•	
Volume			rage Storage D		Ma
#1	6,840.	00' 6,08	85 cf Custom S	tage Data (Prisr	natic) Listed below
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
				oun.otore	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
(fee 6,840.0	et)				
	et) 00	<u>(sq-ft)</u> 20	(cubic-feet) 0	(cubic-feet) 0	
6,840.0 6,841.0	et) 00 00	<u>(sq-ft)</u> 20 100	(cubic-feet) 0 60	(cubic-feet) 0 60	
6,840.0 6,841.0 6,842.0	et) 20 20 20	(sq-ft) 20 100 200	(cubic-feet) 0 60 150	(cubic-feet) 0 60 210	
6,840.0 6,841.0 6,842.0 6,843.0	et) 00 00 00 00 00	(sq-ft) 20 100 200 1,500	(cubic-feet) 0 60 150 850	(cubic-feet) 0 60 210 1,060	
6,840.0 6,841.0 6,842.0	et) 00 00 00 00 00	(sq-ft) 20 100 200	(cubic-feet) 0 60 150	(cubic-feet) 0 60 210	
6,840.0 6,841.0 6,842.0 6,843.0 6,844.5	et) 20 20 20 20 50	(sq-ft) 20 100 200 1,500 5,200	(cubic-feet) 0 60 150 850 5,025	(cubic-feet) 0 60 210 1,060	
6,840.0 6,841.0 6,842.0 6,843.0 6,844.5 Device	et) 20 20 20 20 50 Routing	(sq-ft) 20 100 200 1,500 5,200 Invert	(cubic-feet) 0 60 150 850 5,025 Outlet Devices	(cubic-feet) 0 60 210 1,060 6,085	
6,840.0 6,841.0 6,842.0 6,843.0 6,844.5 Device #1	et) 20 20 20 20 50 Routing Primary	(sq-ft) 20 100 200 1,500 5,200 Invert 6,842.85'	(cubic-feet) 0 60 150 850 5,025 Outlet Devices 3.00' x 3.00' Ho	(cubic-feet) 0 60 210 1,060 6,085 riz. Orifice/Grate	
6,840.0 6,841.0 6,842.0 6,843.0 6,844.5 Device	et) 20 20 20 20 50 Routing	(sq-ft) 20 100 200 1,500 5,200 Invert	(cubic-feet) 0 60 150 850 5,025 Outlet Devices 3.00' x 3.00' Ho	(cubic-feet) 0 60 210 1,060 6,085	
6,840.0 6,841.0 6,842.0 6,843.0 6,844.5 <u>Device</u> #1 #2	et) 00 00 00 00 50 Routing Primary Primary	(sq-ft) 20 100 200 1,500 5,200 Invert 6,842.85' 6,840.00'	(cubic-feet) 0 60 150 850 5,025 Outlet Devices 3.00' x 3.00' Ho	(cubic-feet) 0 60 210 1,060 6,085 riz. Orifice/Grate H Vert. Orifice/G	irate C= 0.600


-1=Orifice/Grate (Weir Controls 5.58 cfs @ 1.71 fps) -2=Orifice/Grate (Orifice Controls 19.46 cfs @ 7.79 fps)

west pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 9 7/23/2008



Pond Pond: West PLD

west pond-PLD SiColorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hrPrepared by {enter your company name here}Page 10HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: West PLD

.

OPERATION AND MAINTENANCE MANUAL MERIDIAN CROSSING PARK PLACE ENTERPRISES EL PASO COUNTY, COLORADO

May 2008

PREPARED FOR:

Park Place Enterprises

15 Miranda Road Colorado Springs, CO 80906

PREPARED BY:

Springs Engineering

31 N. Tejon Street Suite 315 Colorado Springs, CO 80903

PROJECT NO. 07-057-0032

Table of Contents

TABLE OF CONTENTS	1
INTRODUCTION	2
GENERAL LOCATION AND DESCRIPTION	2
DESCRIPTION OF CONSTRUCTION	2
FACILITIES	2
INSPECTION AND MAINTENANCE	2
POROUS LANDSCAPE DETENTION FACILITY	2
OPERATION & MAINTENANCE LOG	4

.

1

.

.

.

Introduction

This Operation and Maintenance Plan is being submitted on behalf of Park Place Enterprises for a development known as Meridian Crossing in Falcon, Colorado. The purpose of this Operation and Maintenance Manual (O&M) is to identify facilities which are to be maintained by the Meridian Crossing Properties Owners Association (POA) and the frequency with which these items are to be maintained.

General Location and Description

Meridian Crossing is currently zoned CR and the proposed development includes 6 commercial lots, proposed water quality facilities, streets, and utilities.

Meridian Crossing is approximately 9.5 acres and is located north of the intersection of Meridian Road and Old Meridian Road in Falcon, Colorado, Section 12, Township 13 South, Range 65 West of the 6th Principal Meridian.

Description of Construction

Construction will consist of site grading, utility installation, and road paving. Approximately 9.5 acres of the site will be graded for construction of the proposed commercial units. Erosion control will be provided prior to construction.

Facilities

Water quality facilities will be owned and maintained by the POA. Water and sanitary sewer will be maintained by the Falcon Highlands Metropolitan District. All other utilities are to be maintained by their respective owners.

Inspection and Maintenance

A thorough inspection of the permanent structures shall be performed every 30 days as well as after any significant rain or snowmelt event. Inspectors are to look for any significant deterioration of the facilities including:

- Erosion of channels and side slopes.
- Accumulated trash or debris.

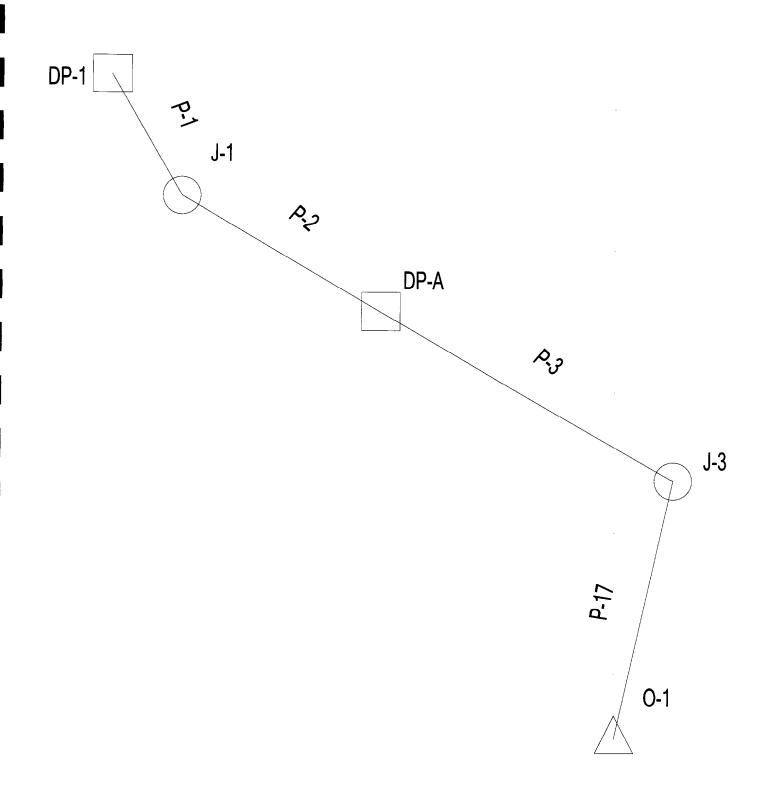
Repairs and removal of debris shall occur as soon as practical.

Porous Landscape Detention Facility

Lawn mowing and vegetative care shall be performed routinely, as aesthetic requirements demand. This shall limit unwanted vegetation. Irrigated turf grass shall be between 2 and 4 inches in height and non irrigated native turf grasses shall be 4 to 6 inches in height. Debris and litter removal shall be performed routinely, as aesthetic requirements demand. Removal of debris and litter from any detention area minimizes clogging of the sand media. Landscaping removal and replacement shall be done every 5 to 10 years depending on infiltration rates needed to drain the area in 12 hours or less. Over time the sandy loam

sandy loam turf will clog. The layer will need to be replaced, along with all turf and other vegetation growing on the surface, to rehabilitate infiltration rates. Bin-annual inspections of the hydraulic performance of the area will need to be performed. This will determine if the sand media is allowing acceptable infiltration.

An Operation and Maintenance Log follows.


Operation & Maintenance Log

THE SHOPPES AT FALCON OPERATION AND MAINTENANCE LOG

(Record inspections, items found maintenance and corrective actions taken. Also record any training received by Contractor personnel with regard to erosion control, materials handling and any inspections by outside agencies)

DATE	ITEM	SIGNATURE OF PERSON MAKING ENTRY
		•
	······································	

Appendix I: Ultimate Design StormCAD Calculations

 Title: Old Meridian Road
 Project Engineer: Charlene Sammons

 z:\...\reports\fdr\calcs\storm cad\ultimate.stm
 StormCAD v5.6 [05.06.012.00]

 07/24/08
 03:02:30 KWBentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666
 Page 1 of 1

Analysis Results Scenario: 100-year

Note:

The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

Title:	Old Meridian Road
Project Engineer:	Charlene Sammons
Project Date:	11/14/07
Comments:	Storm in Old Meridian Road for Meridian Crossing Storm Sewer

Scenario Summary			
Scenario	100-year		
Physical Properties Alternat	Base-Physical P	roperties	
Catchments Alternative	Catchments-100	-year	
System Flows Alternative	Base-System Flo) WS	
Structure Headlosses Alterr	Base-Structure H	leadlosses	
Boundary Conditions Altern	Base-Boundary	Conditions	
Design Constraints Alternat	Base-Design Co	nstraints	
Capital Cost Alternative	Base-Cost		
	_		
User Data Alternative	Base-User Data		
User Data Alternative	Base-User Data		
User Data Alternative Network Inventory	Base-User Data		
	Base-User Data	Number of Inlets	2
Network Inventory Number of Pipes		Number of Inlets - Grate Inlets:	2 0
Network Inventory Number of Pipes - Circular Pipes:	4		-
Network Inventory Number of Pipes - Circular Pipes: - Box Pipes:	4	- Grate Inlets:	0
Network Inventory Number of Pipes - Circular Pipes: - Box Pipes: - Arch Pipes:	4 4 0	- Grate Inlets: - Curb Inlets:	0
Network Inventory Number of Pipes - Circular Pipes: - Box Pipes: - Arch Pipes: - Vertical Elliptical Pipes:	4 4 0 0 0 0	- Grate Inlets: - Curb Inlets: - Combination Inlets:	- 0 2 0
Network Inventory	4 4 0 0 0 0	- Grate Inlets: - Curb Inlets: - Combination Inlets: - Slot Inlets:	0 2 0 0

Circular Pipes Inventory

18 inch	274.57 ft	24 inch	55.00 ft
Total Length	329.57 ft		

2

Curb Inlet Inventory

Type R 10'

		Inie	et elemen	ts for ne	etwork wi	th outlet: O-1
Label	Inlet	Total Systemir Flow (cfs)	Total ntercepted Flow (cfs)	Total Sypassed Flow (cfs)	Bypass Target	Capture HydraulicHydraulic GravityHeadloss Efficiency Grade Grade Element Method (%) Line In Line OutHeadloss (ft) (ft) (ft)
DP-1 DP-A	Curb Type R Curb Type R		7.61 2.10	10.28 14.37	DP-A <automati< td=""><td>42.5 3,848.83 3,848.83 0.00 Absolut 12.8 3,846.39 3,846.08 0.31 Standar</td></automati<>	42.5 3,848.83 3,848.83 0.00 Absolut 12.8 3,846.39 3,846.08 0.31 Standar

		Junctio	n eleme	ents for	network	with o	utlet: O	-1		
Label	Grade	Hydraulic Grade E Line OutH (ft)	Element I	leadloss Method A	System Idditional Flow (cfs)	System Known Flow (cfs)	System Rational Flow (cfs)	System IntensityF (in/hr)	System low Tim (min)	System e CA (acres)
J-1	3,847.76	3,847.46	0.30	Standar	0.00	0.00	7.55	8.50	6.59	0.88
J-3	3,844.91	3,844.91	0.00	Absolut	0.00	0.00	9.30	8.13	7.63	1.13

 Title: Old Meridian Road
 Project Engineer: 0

 z:\.../reports\fdr\calcs\storm cad\ultimate.stm
 StormCAD

 07/24/08
 03:03:15
 R3/Bentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] +1-203-755-1666 Page 1 of 2

Analysis Results Scenario: 100-year

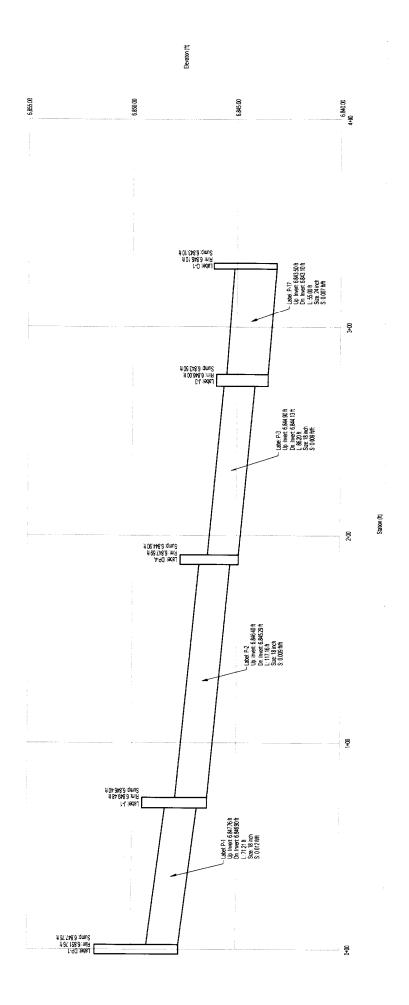
			c	Outlet: O	-1				
Label	Grade	CHydraulic Grade Line Outh (ft)	Element A	ditional			System IntensityF (in/hr)	low Tim	
0-1	3,843.10	3,843.10	0.00	0.00	0.00	9.22	8.06	7.83	1.13

Pipe elements for network with outlet: O-1

Label	Section Shape	Section Size	Length (ft)	NumberCo of Sections	onstructe Slope (ft/ft)	Energy Slope (ft/ft)	Total System Flow (cfs)	Velocity	Invert	ownstream Invert Elevation (ft)	Grade	Hydraulic Grade Line Out (ft)
P-1	Circular	18 inch	71.21	1	0.012	0.011	7.61	6.31	3,847.76	6,846.90	3,848.83	3,847.79
P-2	Circular	18 inch	17.16	1	0.009	0.009	7.55	5.53	3,846.40	6,845.29	3,847.46	3,846.39
P-3	Circular	18 incł	86.20	1	0.009	0.009	9.39	6.33	3,844.90	6,844.13	3,846.08	3,845.29
P-17	Circular	24 inct	55.00	1	0.007	0.010	9.30	4.62	3,843.50	6,843.10	3,844.91	3,844.19

Scenario: 100-year

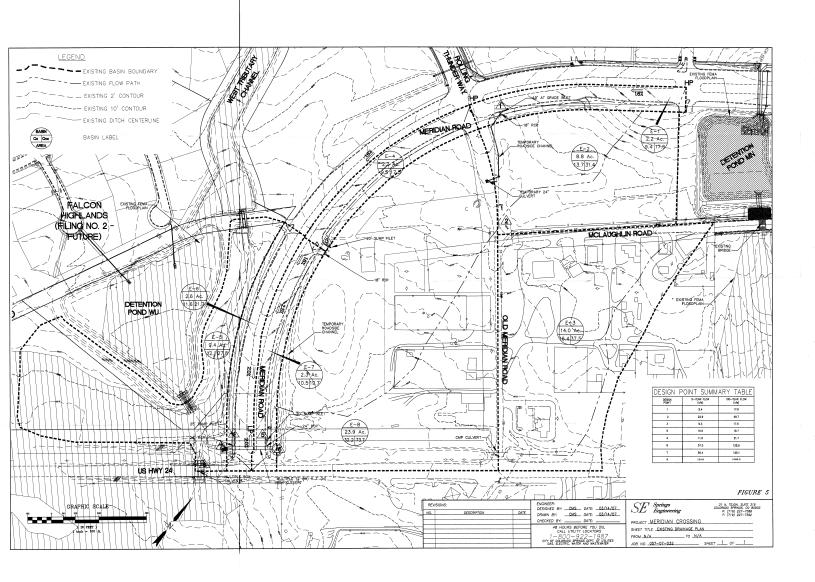
Combined Pipe/Node Report

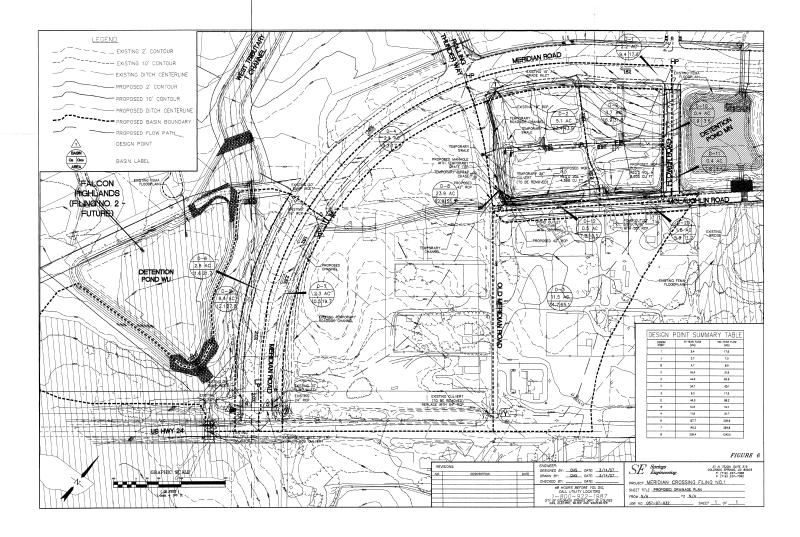

Label	Label Up. Node	Dn. Node	() ا	Up. Inlet	Up. Inlet Rat.	Up. Inlet	Up. Calc. Sys. CA	Up.Inlet Rat. Q	Size	Q Avg. Full v	Avg.	ې م ا	₽ ₽ ₽	Up. Invert	Gr.	HGL Out	Dn. Invert	S (ft/ft)
				acres)		acres)	(acies)	(clb)		(cis)	(sui)	(ft)	(11)	(II)	E	Ê	Ê)	
P-1	P-1 DP-1 J-1		71.21	71.21 2.07	1.00		0.88	17.89	17.89 18 inch 11.54 6.31	11.54	6.31		6,851.76 6,848.83 6,847.76	6,847.76	6,849.48	6,847.79	6,846.90	0.012
P-2	J-1	P-2 J-1 DP-A	117.16	N/A		N/A	0.88	N/A	N/A 18 inch 10.22 5.53	10.22	5.53		6,849.48 6,847.46 6,846.40	6,846.40	6,847.69	6,846.39	6,845.29	0.009
P-3	DP-A		86.20	0.80	1.00		1.13	6.63	6.63 18 inch 9.93 6.33	9.93	6.33	6,847.69	6,846.08 6,844.90	6,844.90	6,846.00	6,845.29	6,844.13	0.009
P-17 J-3 0-1	J-3	0-1	55.00			N/A	1.13	N/A	24 inch	10.45	4.62	6,846.00	N/A 24 inch 10.45 4.62 6,846.00 6,844.91 6,843.50	6,843.50	6,846.10	6,844.19	6,843.10	0.007

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

© Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Title: Old Meridian Road z:\...\reports\fdr\calcs\storm cad\utitimate.stm 07/24/08 03:03:33 PM

Scenario: 100-year Profile


Profile: Ultimate Scenario: 100-year



Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

© Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 z:\...\reports\fdr\calcs\storm cad\ultimate.stm 07/24/08 03:05:24 PM

Title: Old Meridian Road

APPENDIX F: PLD SITE PHOTOS

