Les Schwab Tire Center Storm Report

7105 Old Meridian RD. Falcon Colorado

Prepared For:

SFP-E, LLC PO Box 5350 20900 Cooley Road Bend, OR 97701

Prepared By:

Cushing Terrell

Zack Graham, PE 411 E Main ST #101 Bozeman, MT 59715 (406) 922-7137 www.cushingterrell.com

Cushing Terrell Project No. LSCO_21WIN PCD FILLING NO. : PPR-21-023 JULY, 21, 2021

TABLE OF CONTENTS

1.0 CONTENTS

2.0	GENE	RAL LOCATION AND DESCRIPTION	3
2.1	Loca	ation	3
2.2	Des	cription of Property	3
2.3	Exis	ting PLD Condition Assessment	3
3.0	DRAIN	IAGE BASINS	4
3.1	Refe	erence Reports and Manuals	4
3.2	Exis	ting Drainage Basins	4
3	.2.1	BASIN X	4
3.3	Prop	posed Drainage Basins	4
3	.3.1	BASIN A	4
3	.3.2	BASIN B	5
3	.3.3	BASIN C	5
3	.3.4	BASIN D	5
3	.3.5	BASIN E	5
4.0	DRAIN	IAGE DESGIN CRITERIA	6
4.1	Dev	elopment Criteria Reference	6
4.2	Hyd	rologic Criteria	6
5.0	DRAIN	IAGE FACILITY DESIGN	6
6.0	FOUR	STEP PROCESS	7
6.1	Step	o 1 Employ Runoff Reduction Methods	7
6.2	Step	o 2 Stabilize Drainageways	7
6.3	Step	3 Provide Water Quality Capture Volume	8
6.4	Step	o 4 Consider Need for Industrial and Commercial BMPs	9
7.0	CONC	LUSIONS	9

LIST OF TABLES

Table 3.1	4
Table 3.2	5

APPENDICES

APPENDIX A: HYDROLOGIC CALCULATION	
APPENDIX B: BASIN MAPS	
APPENDIX C: FEMA FIRMETTE	
APPENDIX D: WEB SOIL SURVEY	
APPENDIX E: MERIDIAN CROSSING STORM REPORT	
APPENDIX F: PLD SITE PHOTOS	

Design Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

[Zack Graham, PE #39039]

10/11/21

Date

Owner/Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

DocuSigned by: George Bunting 603618E0C89B42D...

George Bunting,

SFP-E, LLC

P.O. BOX 5350 Bend OR 97708

El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E.

County Engineer / ECM Administrator

Conditions:

APPROVED Engineering Department — 10/18/2021 4:23:50 PM dsdnijkamp EPC Planning & Community Development Department

10/11/21

Date

2.0 GENERAL LOCATION AND DESCRIPTION

2.1 Location

The project site is located at 7105 N Meridian Rd, Falcon, Colorado and falls within El Paso County. The parcel is part of the larger Meridian Crossing Development, which includes the existing stormwater system infrastructure, including the treatment pond to the south. The site is located on the northeast side of the intersection of Meridian Rd and N Meridian Rd. The site is located to north of the existing storm water treatment facilities maintained by the Meridian Crossing Development and an existing storm line runs along the south west property line of the site. The property lies within the NE 1/4 of Section 12, Township 13 S, Range 65 West of the Sixth Principal Meridian.

2.2 Description of Property

The existing site consists of an undeveloped 2.48 acre lot covered with native grasses and shrubs. In areas taken from the ALTA Survey the site consists of roughly 12% impervious road and sidewalk area with the remaining 88% being the native vegetation. There are no stream crossings or significant waterways located within the area being developed by this project. The site is accessed via the existing private roads that are centered on the north east and south east property lines of the site. These roads will provide means of vehicular ingress and egress. The site falls entirely with the Falcon Major Drainage Basin as identified by the Falcon Drainage Basin Planning Study dated September 2015.

The topography of the existing site consists of a roughly consistent grade which directs flow from the north of the site towards the south at slopes ranging from 2-5%. There is an existing storm PLD pond located to the south of the neighboring lot that ultimately then out falls to the existing detention pond WU. The site is not located in a floodway or flood plain and is designated as area of minimal flood hazard (Zone X) per FEMA FIRM panel 08041C0561G.

2.3 Existing PLD Condition Assessment

Runoff from this site will be collected via proposed curb and gutter and be routed overland to the existing Porous Landscape Detention pond. In field observations on 1/5/2021 and 06/18/2021 this pond has been determined to need maintenance as prescribed in the operation and maintenance manual that is included as appendix H of the Meridian Crossing Final Drainage Report (MCFDR). This full report is located as appendix E of this report. Specifically, we recommend the pond should be cleared of Debris and Litter and that landscaping should be removed and replaced for portions of the pond where the existing landscaping is failing. Photos showing the condition for this PLD are included in Appendix F of this report.

3.0 DRAINAGE BASINS

3.1 Reference Reports and Manuals

- Meridian Crossing Final Drainage Report (MCFDR)
- Colorado Springs Drainage Criteria (CSDC)
- El Paso County Drainage Criteria Manual (EPCSCM)
- Mile High Flood Control District Criteria Manual (MHFC)

3.2 Existing Drainage Basins

See appendix B for drainage maps showing basin locations, and appendix A for full drainage calculation sheets.

3.2.1 BASIN X

Basin X is the sole existing basin that consists of the entire 2.48 acres site. The flow path of this basin is from north to south into the existing private drive at design points 1 and 2. Once leaving the property across the existing private drive runoff enters the adjacent lot. The groundcover of this basin is primarily native grasses but also contains a portion of the private drive. After flowing across the southern property, the runoff enters the PLD (porous landscape detention) before being captured by the existing outlet structure and being routed to detention pond WU. The rational calculation for the basin is shown below in table 3.1

RATIONAL CALC EXISTING									
Basin	% Impervious	C5	C100	Area	TC	I 5 year	l 100 yesr	Q 5	Q 100
Х	12	0.28	0.42	2.48	25	2.6	4.5	1.81	4.69
TOTAL	12	0.28	0.42	2.48				1.81	4.69

Table 3.1

3.3 Proposed Drainage Basins

See appendix B for drainage maps showing basin locations, and appendix A for full drainage calculation sheets. In general, all basins flow to the south and outlet on the existing private road. These basins then flow through the neighboring property to the south and outfall at the existing PLD pond following the historic route. The exception to this being basin A which follows the historic drainage pattern for this area of the site and flows to Old Meridian Road where it is captured by existing storm infrastructure.

3.3.1 BASIN A

Basin A consists of the proposed sidewalk connection and the landscaping along old meridian road. The runoff for this basin is captured by the curb and gutter and directed to the existing curb inlets in Old Meridian Road following the historic route.

3.3.2 BASIN B

Basin B consists of a portion of the building roof flows which are released at grade via downspouts along the rear of the structure and the south west portion of the side parking and drive aisles. These flows are then conveyed to the private road on the south of the site at design point 1. The flows then follow the historic path across the private drive into the neighboring site and ultimately the PLD pond.

3.3.3 BASIN C

Basin C consists of the parking, and drive aisles located along a portion of the front and east sides of the building. The flows are collected by curb and gutter and directed via a curb cut and concrete channel to the sidewalk chase at design point 3. The flows then follow the historic path across the private drive into the neighboring site and ultimately the PLD pond.

3.3.4 BASIN D

Basin D consists of the remainder of the roof flows which are released at grade via downspouts along the rear of the structure and the drive aisle and parking off the rear of the building. These flows are captured by curb and gutter and directed to the sidewalk chase at design point 2. The flows then follow the historic path across the private drive into the neighboring site and ultimately the PLD pond.

3.3.5 BASIN E

Basin E consists of the existing private drive on the north east edge of the site and a small portion on the landscaping adjacent to it. These flows are captured in the existing curb and gutter and are routed to the PLD through this existing curb.

RATIONAL CALC PROPOSED									
Basin	% Impervious	C5	C100	Area	TC*	l 5 year	l 100 year	Q 5	Q 100
А	8	0.15	0.4	0.20	5	5.2	9	0.16	0.72
В	88	0.80	0.89	0.54	6	5	<mark>8.8</mark>	2.16	4.23
С	54	0.52	0.68	1.01	11	3.7	7	1.94	4.81
D	90	0.82	0.9	0.56	5	5.2	9	2.39	4.54
E	87	0.79	0.88	0.17	5	5.2	9	0.70	1.35
TOTAL	68			2.48				7.35	15.64

|--|

*Minimum value of 5 min used

4.0 DRAINAGE DESGIN CRITERIA

4.1 Development Criteria Reference

This report was prepared using the City of Colorado Springs Drainage Criteria (CSDC) chapter 6 and the Mile High Flood District Criteria Manual. In creating this report reference was made to the "Meridian Crossing Final Drainage Report" which is included in Appendix E and describes the existing stormwater quality treatment and detention facilities that will be used by this project.

4.2 Hydrologic Criteria

Because the site in question is under 100 acres, the rational method was used to determine the peak stormwater runoff for all basins. For the purposes of sizing proposed stormwater structures, the major 100-year storm as described in the CSDC was used. The rational method coefficients for these calculations were selected from Table 6-6 of the CSDC. Time of concentration was calculated per CSDC section 3.2 (See appendix A for calculation). All rainfall values were taken from Figure 6-6 of the CSDC.

5.0 DRAINAGE FACILITY DESIGN

The drainage facilities proposed for this project consist of curb and gutter, concrete channels, and sidewalk chases designed to collect the additional flows generated by development of the site. These facilities flow south following the historic route to the existing western PLD treatment facility. This PLD consists of a grassy swale and contains and outlet structure which outlets into a storm network under old meridian road that then discharges into a swale located to the west. This swale conveys water to the detention pond known as pond WU (page 11 of MCFDR).

The design and calculations of this existing stormwater treatment and detention facility are not within the scope of this report and can be found in the "Meridian Crossing Final Drainage Report" which is included in Appendix E.

The treatment facility is described as a "Porous Landscape Detention" (PLD) and is described in detail on page 16 of the referenced report. This facility was sized to include flows created by the future development we are now proposing. The proposed Les Schwab site can be described as the northern half of basin D-2 using the terminology of the referenced report. The assumed imperviousness for the tributary area to the PLD used in the referred report was 82% (see appendix E of MCFDR) our proposed design has a percent imperviousness of 68%. For the entire D-2 basin as described in the referenced report the assumed post development flows generated are 23.4 CFS for the minor event and 43.9 CFS for the major event (page 11). The Les Schwab site makes up roughly half of this basin (49%) and generates 7.35 CFS in the minor event and 15.64 CFS in the major event. These flows are well within the expected values for 49% of the basin which would be 11.5 CFS for minor and 21.5 CFS for major storm. No improvements are proposed for this PLD or detention pond WU which are both owned and maintained by Park Place Enterprises, LLC.

6.0 FOUR STEP PROCESS

6.1 Step 1 Employ Runoff Reduction Methods

To reduce runoff peak flows and volume our site discharges to the preexisting grass lined PLD pond that infiltrates / treats the stormwater. Our site also uses a compact design for impervious areas with a total percent imperviousness of 68% which is 14% lower than design imperviousness used by the "Meridian Crossing Final Drainage Report" which sized the facilities for this project.

6.2 Step 2 Stabilize Drainageways

The internal drainageways to the Les Schwab site are stabilized via the use of concrete curb and gutter, concrete channels, and sidewalk chases. Once water leaves the site it flows overland to the existing PLD channel and ultimately to the existing pond WU through storm sewer and a grass lined swale.

Because the design for the overall development calls for overland flow from the Les Schwab site across the adjacent property to the southeast and ultimately to the water quality treatment pond on that property, we evaluated the erosion potential due to runoff across the adjacent property. The adjacent property is characterized by fine to course sandy loam soils with sparce native prairie grasses as indicated in the photo below:

In the existing condition, the existing road separating the two lots tends to concentrate runoff from the Les Schwab site at the approaches to the adjacent property such that the existing condition for runoff from the Les Schwab site should be considered shallow/concentrated flow as it flows through the adjacent property. Signs of light erosion are evident where runoff transitions from shallow/concentrated flow into the existing pond as indicated in the photo below:

This also shows that the vegetation in this pond could use maintenance to increase the overall density and efficacy of the growth.

While the proposed development will increase peak runoff flowrates and overall runoff volume, based on TR-55, the velocity of the shallow/concentrated condition does not increase, rather the flow widens over a larger area. The average slope across the adjacent lot is 1.5%. Based on Figure 3-1 of TR-55, this correlates to a velocity of 2 ft/sec. The maximum permissible velocity, for non-colloidal (assumed conservative condition) sandy loam, is 1.75 ft/s per Table 7-3 of Chow. However, because of the vegetative condition, the direction of flow is not direct across the gradually sloped surface resulting in a slower than 2 ft/s velocity. This is evidenced by lack of erosion in the existing condition. Based on the above analysis, I do not expect a general increase in erosion on the adjacent property beyond what might occur in the existing condition.

6.3 Step 3 Provide Water Quality Capture Volume

Water quality Capture Volume is provided by the existing southern Porous Landscape Detention. The design of this facility is not within the scope of this report but in summary the pond has a design capacity of 4,568 CF and is sized to provide water quality treatment for a post development basin D-2 with an 82% imperviousness. Please see the "Meridian Crossing Final Drainage Report" located in appendix E for more information regarding this pond.

6.4 Step 4 Consider Need for Industrial and Commercial BMPs

No industrial or commercial BMPs are proposed for this site. Potential pollutants such as oil fluids etc. are stored and handled inside the building and captured by floor drains directed to a sand oil separator before being outlet to the sanitary system. The outdoor storage of the site contains only used car tires which do not present the need for spill prevention or a roofed enclosure any more than a typical parking lot. The proposed CMU walls serve solely for visual screening / theft prevention.

7.0 CONCLUSIONS

The proposed design meets the design assumptions utilized in the "Meridian Crossing Final Drainage Report" that is included in Appendix E. The "West PLD", which this site is drains to, assumed a developed condition with a percent impervious area of 82%. The proposed design has a percent impervious area of 68%. Therefore, the anticipated peak runoff and water quality volume is less than what the PLD "West PLD" was originally designed to detain and treat from this development and no additional stormwater quality treatment or detention volume is required for this project.

APPENDIX A: HYDROLOGIC AND HYDRAULIC CALCULATIONS

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jul 20 2021

5 YEAR CONC CHANNEL

= 0.19
= 1.940
= 0.95
= 2.04
= 5.38
= 0.17
= 5.00
= 0.25

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

100 YEAR CONC CHANNEL

Rectangular	
-------------	--

	Highlighted	
= 5.00	Depth (ft)	= 0.34
= 0.50	Q (cfs)	= 4.810
	Area (sqft)	= 1.70
= 1.00	Velocity (ft/s)	= 2.83
= 0.50	Wetted Perim (ft)	= 5.68
= 0.016	Crit Depth, Yc (ft)	= 0.31
	Top Width (ft)	= 5.00
	EGL (ft)	= 0.46
Known Q		
= 4.81		
	= 5.00 = 0.50 = 1.00 = 0.50 = 0.016 Known Q = 4.81	Highlighted= 5.00 Depth (ft)= 0.50 Q (cfs)Area (sqft)= 1.00 Velocity (ft/s)= 0.50 Wetted Perim (ft)= 0.016 Crit Depth, Yc (ft)Top Width (ft)EGL (ft)Known Q= 4.81

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

CROSS PAN 5 YEAR

Trapezoidal

Trapezoidal		Highlighted	
Bottom Width (ft)	= 7.33	Depth (ft)	= 0.15
Side Slopes (z:1)	= 8.00, 8.00	Q (cfs)	= 1.940
Total Depth (ft)	= 0.33	Area (sqft)	= 1.28
Invert Elev (ft)	= 10.00	Velocity (ft/s)	= 1.52
Slope (%)	= 0.50	Wetted Perim (ft)	= 9.75
N-Value	= 0.016	Crit Depth, Yc (ft)	= 0.13
		Top Width (ft)	= 9.73
Calculations		EGL (ft)	= 0.19
Compute by:	Known Q		
Known Q (cfs)	= 1.94		

Tuesday, Jul 20 2021

Reach (ft)

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jul 20 2021

CROSS PAN 100 YEAR

Trapezoidal

Trapezoidal		Highlighted	
Bottom Width (ft)	= 7.33	Depth (ft)	= 0.24
Side Slopes (z:1)	= 8.00, 8.00	Q (cfs)	= 4.810
Total Depth (ft)	= 0.33	Area (sqft)	= 2.22
Invert Elev (ft)	= 10.00	Velocity (ft/s)	= 2.17
Slope (%)	= 0.50	Wetted Perim (ft)	= 11.20
N-Value	= 0.016	Crit Depth, Yc (ft)	= 0.22
		Top Width (ft)	= 11.17
Calculations		EGL (ft)	= 0.31
Compute by:	Known Q		
Known Q (cfs)	= 4.81		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jul 20 2021

SINGLE SIDEWALK CHASE CAPACITY

ĸectangular		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.33
Total Depth (ft)	= 0.33	Q (cfs)	= 1.711
,		Area (sqft)	= 0.66
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.59
Slope (%)	= 0.50	Wetted Perim (ft)	= 2.66
N-Value	= 0.016	Crit Depth, Yc (ft)	= 0.29
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 0.43
Compute by:	Q vs Depth		
No. Increments	= 1		

Cushina	Subject:	RUSLE Calculation			Page:	1
Torroll	Project No.	LSCO_20FAL	By:	RW	Date:	7.15.2021
lellell	Project Name	ELES SCHWAB TIRE CENTER	_		_	

Overland Velocity Calc							
SLOPE	SLOPE VELOCITY						
0.015 1.98							

 $\begin{array}{ll} \mbox{Figure 3-1 (average velocities for estimating travel} \\ \mbox{time for shallow concentrated flow):} \\ \mbox{Unpaved} & \mbox{V} = 16.1345 \ (s)^{0.5} \\ \mbox{Paved} & \mbox{V} = 20.3282 \ (s)^{0.5} \end{array}$

where

V= average velocity (ft/s) s = slope of hydraulic grade line (watercourse slope, ft/ft)

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$I_{100} = -2.52 \ln(D) + 12.735$
$I_{50} = -2.25 \ln(D) + 11.375$
$I_{25} = -2.00 \ln(D) + 10.111$
$I_{10} = -1.75 \ln(D) + 8.847$
$I_5 = -1.50 \ln(D) + 7.583$
$I_2 = -1.19 \ln(D) + 6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

Cushing Terrell

Subject:	RATIONAL METHO	Page:		
Project No.	LSCO_20FAL	By:	RW	Date:
Project Nam	LES SCHWAB TIRE	CENTER		

1 7.15.2021

RATIONAL CALC EXISTING												
Basin	% Impervious	C5	C100	Area	TC	l 5 year	I 100 yesr	Q 5	Q 100			
Х	12	0.28	0.42	2.48	25	2.6	4.5	1.81	4.69			
TOTAL	12	0.28	0.42	2.48				1.81	4.69			

RATIONAL CALC PROPOSED												
Basin	% Impervious	C5	C100	Area	TC*	l 5 year	I 100 year	Q 5	Q 100			
А	8	0.15	0.4	0.20	5	5.2	9	0.16	0.72			
В	88	0.80	0.89	0.54	6	5	8.8	2.16	4.23			
С	54	0.52	0.68	1.01	11	3.7	7	1.94	4.81			
D	90	0.82	0.9	0.56	5	5.2	9	2.39	4.54			
E	87	0.79	0.88	0.17	5	5.2	9	0.70	1.35			
TOTAL	68		0.77	2.48				7.35	15.64			

*Minimum value of 5 min used

	Proposed Time of Concentration												
	C	VERLA	ND			Concentrated Flow							
BASIN	C5	L	S	ti	Ν	S	R	V	L	tc	Тс		
Α	0.15	33	9	4.9	0	0	0	0	0	0	5		
В	0.80	51	0.5	5.0	0.016	0.005	0.5	4.15	297	1.2	6		
С	0.52	51	0.5	9.7	0.016	0.005	0.5	4.15	418	1.7	11		
D	0.82	161	3.5	4.4	0.016	0.005	0.5	4.15	101	0.4	5		
E	0.79	30	4	2.0	0.016	0.025	0.5	9.28	100	0.2	2		

	Existing Time of Concentration												
OVERLAND Concentrated Flow													
BASIN	C5	L	S	ti	Ν	S	R	V	L	tc	Тс		
Х	0.28	307	3	25.1	0	0	0	0	0	0	25		

APPENDIX B: BASIN MAPS

LEGEND

►--►--►--►--►-- TIME OF CONCENTRATION FLOW PATH BASIN LIMITS

cushingterrell.com 800.757.9522

CENTER **RE** SCHW LES

7105 N MERIDIAN RD FALCON, CO

DESIGN

TION

CONSTRUC

FOR

© 2021 | ALL RIGHTS RESERVED

PRELIMINAR

SITE DEVELOPMENT PLANS

07.21.2021 DRAWN BY | WALKER CHECKED BY | GRAHAM REVISIONS

EXISTING BASIN MAP

PCD FILE NO. PPR-21-023

PCD FILE NO. PPR-21-023

BASIN MAP **D**.2

EXISTING

09.01.2021 DRAWN BY | WALKER CHECKED BY | GRAHAM REVISIONS

SITE DEVELOPMENT PLANS

© 2021 | ALL RIGHTS RESERVED

 \mathbf{m} SCHWAI 7105 N MERIDIAN RD. FALCON, CO LES

CENTER IRE

Tires LES SCHWAB

cushingterrell.com 800.757.9522

LEGEND

►--►--►--►--►-- TIME OF CONCENTRATION FLOW PATH BASIN LIMITS

Cushing Terrell

APPENDIX C: FEMA FIRMETTE

National Flood Hazard Layer FIRMette

Legend

104°36'53"W 38°56'17"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 8041C0553G 0.2% Annual Chance Flood Hazard, Areas 12/7/2018 of 1% annual chance flood with average depth less than one foot or with drainage Zone A areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D 397FEET - — – – Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall EL PASO COUNTY AREA OF MINIMAL FLOOD HAZARD 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** Mase Flood Elevation Line (BFE) Limit of Study T13S R65W S012 Jurisdiction Boundary T13S R64W, S007 **Coastal Transect Baseline** OTHER Profile Baseline FEATURES Hydrographic Feature 08041C0561G **Digital Data Available** eff. 12/7/2018 No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 4/14/2021 at 9:15 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. Zone AE Zone AE This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, 6805 1 FEET legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 104°36'15"W 38°55'49"N Feet 1:6.000 unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2.000 n

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

APPENDIX D: WEB SOIL SURVEY

USDA Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	0.3	13.1%
9	Blakeland-Fluvaquentic Haplaquolls	A	2.2	86.9%
Totals for Area of Intere	st		2.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX E: MERIDIAN CROSSING STORM REPORT

MERIDIAN CROSSING FINAL DRAINAGE REPORT EL PASO COUNTY, COLORADO

July 2008

PREPARED FOR:

Park Place Enterprises

15 Miranda Road Colorado Springs, CO 80906

PREPARED BY:

Springs Engineering

31 N. Tejon, Suite 315 Colorado Springs, CO 80903 719.227.7388

PROJECT NO. 057-07-032

CERTIFICATIONS

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

Charlene M. Sammons, P.E. #36727

Developer's Statement:

By (signature rises, LLC Title: Address:

El Paso County's Statement:

Filed in accordance with Section 51.1 of the El Paso Land Development Code, as amended.

John McCarty, County Engineer/Director

<u>8-/9-08</u> Date

Conditions:

Table of Contents

,

Í

Duinboon	2
I MITS OF STUDY	
Emilis of Study	2
EXISTING CONDITIONS	2
GENERAL LOCATION	
Land Use	3
TOPOGRAPHY AND FLOODPLAINS	3
GEOLOGY	
CLIMATE	
NATURAL HAZARDS ANALYSIS	
DRAINAGE DESIGN CRITERIA	
SCS HYDROGRAPH METHOD	
RATIONAL METHOD	
WATER QUALITY CRITERIA	
STREET CAPACITY	8
DRAINAGE BASINS.	8
EVICTING DD 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D	9
EXISTING DEVICE ANALYSIS	
DEVELOPED DE ANACE ANALYZIC	
DEVELOPED DESIGN POINTS	
PAINACE FACH ITY DEGLOY	
ACTIVAGE FACILITY DESIGN	
GENERAL CONCEPT	. 15
STORM SYSTEMS	
DETENTION POND WH	
PROPOSED WATER OLIVIER D	
UI TIMATE DESIGN	
DOWNSTREAM FACILITIES	
RAINAGE FEES, COST ESTIMATE & MAINTENANCE	
MAINTENANCE	
DRAINAGE FEES	
PROPOSED FACILITIES ESTIMATE	
ROSION CONTROL	
GENERAL CONCEPT	
SILT FENCE	20
EROSION BALES	20
	20
VEHICLE TRACKING CONTROL	20
VEHICLE TRACKING CONTROL	

List of Figures

Figure 1: Vicinity Map	_
Figure 2: SCS Soils Map	5
Figure 3: FEMA Floodplain Map	6
Figure 4: Proposed SCS Drainage Map	
Figure 5: Existing Drainage Plan	
Figure 6: Proposed Drainage Plan	BACK POCKET
	BACK POCKET

Appendix

Appendix A: Existing HEC-1 Calculations

Appendix B: Proposed HEC-1 Calculations

Appendix C: Existing Rational Calculations

Appendix D: Proposed Rational Calculations

Appendix E: StormCAD Calculations

Appendix F: Channel and Culvert Calculations

Appendix G: Water Quality Pond Calculations

Appendix H: Operations and Maintenance Manual

Appendix I: Ultimate Design StormCAD Calculations

EXECUTIVE SUMMARY

The purpose of this Preliminary Drainage Report (PDR) and Final Drainage Report (FDR) is to present final drainage design and improvements for Meridian Crossing, located at the northeast corner of Meridian Road and Old Meridian Road, in the Falcon Highlands development. Runoff quantities and proposed facilities have been calculated using the current City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM). Existing facilities have been analyzed to ensure they are able to function as designed with the new facilities and construction.

This report encompasses approximately 9.5 acres of proposed commercial development in the southeast corner of the Falcon Highlands development. A proposed collector (Flower Road) will traverse the site, connecting Meridian Road to McLaughlin Road. This development will also include improvements to McLaughlin Road.

Flower Road and McLaughlin Road are to be designed as Non-Residential Collectors, per the El Paso County Criteria Manual, with a design speed of 40 miles per hour (mph) and a posted speed of 35 mps. Curb and gutter will be installed along both of these roads.
INTRODUCTION

The Meridian Crossing subdivision is a 9.5 acre commercial development located on the northwest side of the Town of Falcon. Meridian Crossing is located east and south of Falcon Highlands Market Place Filing No. 1 and adjacent to the southeast side of the "New" Meridian Road alignment. Existing development occurring in the area includes the Falcon Highlands subdivision to the west, the Beckett at Woodmen Hills development to the east and the Falcon Highlands Market Place to the west.

The area containing Meridian Crossing has been studied as part of the Falcon Area Drainage Basin Planning Study (DBPS)-Preliminary Design Report by URS, dated December 15, 2000 and Falcon Highlands Master Drainage and Development Plan (MDDP) by URS, dated October 2004.

Purpose

The purpose of the following Final Drainage Report (FDR) is to present the final design drainage improvements for the Meridian Crossing commercial development. Drainage improvements will include curb inlets, roadside ditches, and Water Quality Capture Ponds.

Runoff quantities and proposed facilities have been calculated using the current City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM) Volumes I and II.

Limits of Study

The Meridian Crossing FDR details the hydrology and hydraulics for the West Tributary of the Falcon Basin. Storm flow is routed by and from the proposed site and then directed through the proposed and future developments to US Highway 24. This includes an analysis of the storm systems, which includes the culverts and inlets along Meridian Road and Rolling Thunder Way. The area of study is bounded by Flower Road to the north and east, Meridian Road to the north and west, Old Meridian Road to the west and McLaughlin Road on the south

2

EXISTING CONDITIONS

General Location

The proposed Meridian Crossing is approximately 9.5 acres and is located at the southeast corner of Meridian Road and Old Meridian Road in Falcon, Colorado, Section 12, Township 13 South, Range 65 West of the 6th Principal Meridian. Currently, the site is zoned CR.

Falcon Highlands, Woodmen Hills, Falcon Vista, Meridian Ranch, Elkhorn Estates and Falcon Hills are all developments within a 5-mile radius of the site.

Land Use

The proposed site has just recently been rezoned to a Commercial Regional (CR) zone.

Topography and Floodplains

The topography of the surrounding area is typical of a high desert, short prairie grass with relatively flat slopes generally ranging from 2% to 4%. The area generally drains to the south. The site combines with the outlet flow of Detention Pond WU prior to crossing through the existing box culverts at Highway 24. Existing drainage swales convey these flows.

The Flood Insurance Rate Map (FIRM No. 08041C0575-F dated 3/17/99) indicates that there is a floodplain north and east of the proposed site (Falcon Basin Middle Tributary). FEMA has approved a LOMR for the Middle Tributary Floodplain (Case No. 06-08-B427P, with an effective date of November 3, 2006). This flow will now be contained within a storm drainage system and detention pond, which realigns the floodplain to the east of the site. (See Figure 3: Floodplain Map) The floodplain ties in with the FIRM after the detention pond at McLaughlin Road.

Geology

Soil Conservation Service soil survey records indicate the project area is covered by soils classified in the Blakeland Series, which are categorized in the Hydrological Group B.

The Blakeland (8) loamy sand is a deep, excessively drained soil that can exceed depths of 60 inches. Permeability of this soil is rapid with an effective rooting depth of 60 inches. This soil has good potential for urban development. The available water capacity is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate.

The Blakeland (9) complex soil is comprised of approximately 60 percent Blakeland loamy sand, 30 percent Fluvaquentic Haplaquolls and 10 percent other soils. This soil is found more in sloping areas. It is deep and somewhat excessively drained. It formed in sandy alluvium and eolian material derived from arkosic sedimentary rock. Permeability of Blakeland soils is rapid, with an effective rooting depth of 60 inches. The available water capacity is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate. The Fluvaquentic Haplaquolls are generally located in swale areas, and are deep, poorly drained soils. They formed in alluvium derived from arkosic sedimentary rock.

The Blakeland soil is well suited to wildlife habitat, home sites, streets and roads. This soil needs to be protected from erosion when vegetation has been removed from building sites. The Fluvaquentic Haplaquolls soil is good for wetlands. This soil has poor potential for home sites. The main limitation of this soil is the high water table and potential for flooding.

Note: (#) indicated Soil Conservation Survey soil classification number. See Figure 2: SCS Soils Map.

Climate

Mild summers and winters, light precipitation; high evaporation and moderately high wind velocities characterize the climate of the study area.

The average annual monthly temperature is 48.4 F with an average monthly low of 30.3 F in the winter and an average monthly high of 68.1 F in the summer. Two years in ten will have a maximum temperature higher than 98 F and a minimum temperature lower than -16 F. Precipitation averages 15.73 inches annually, with 80% of this occurring during the months of April through September. The average annual Class A pan evaporation is 45 inches.

Natural Hazards Analysis

Natural hazards analysis indicates that there is high ground water, potentially expansive claystone bedrock and wetlands located on or near the proposed site. Refer to the Geologic Hazards Evaluation Retail Site Woodmen Road and Meridian Road report by Entech Engineering. Usually, in areas where high ground water is an issue, underdrains are built to help alleviate the problem. However, since the proposed site is a commercial development, construction will be done as slab-on-grade and no basements. If lower levels are built, an underdrain system would be required. Wetland areas in the site have been identified and approved by Corps of Engineers. A mitigation plan for the site has been approved and implementation began in the fall of 2005. A copy of this plan is on file with the Falcon Highlands Metropolitan District.

Soils in this area are cohesionless, sloughing of steep banks during drilling and/or excavation could occur. By siting improvements in a manner that provides an opportunity to lay the banks of excavations back at a 1:1 slope during construction, the problems associated with sloughing soils can be minimized.

4

DRAINAGE DESIGN CRITERIA

SCS Hydrograph Method

Hydrologic modeling was used to the West Tributary of the Falcon Basin, which routes through Meridian Crossing. Modeling was completed using The United States Army Corps of Engineers Hydrologic Engineering Center-HEC-1 version 4.1. The Soil Conservation Service (SCS) (since renamed National Resources Conservation Service (NRCS)) curve number method was selected for calculating the runoff volume from the drainage basins per the Drainage Criteria Manual (DCM). The precipitation data, basin delineation, CN runoff coefficients, and time of concentrations were taken from the Falcon Basin DBPS. Modifications have been performed on the original data, as new developments have been built and boundary lines have changed. The model has been updated to reflect the most current changes occurring in the Falcon area. The existing models in the appendix are those which were included in the FDR for Pond WU, as this report updated and modified the existing conditions of the West Tributary as originally analyzed in the Falcon Basin DBPS. Below is a summary of major design points entering the Falcon Highlands development, through the site, and where the flows exit the Falcon Highlands site. The Falcon Highlands Master Drainage Development Plan (MDDP) corrected an area in the volume of the Woodmen Hills detention pond (Pond W).

The West Tributary was analyzed in the MDDP/PDR/FDR for Falcon Highlands Filing No. 1. This report made the assumption that Pond WU would capture flows from Basins W-39, W-40, W-41 and W-42. With the construction of Meridian Road, flows from Basin W-42 do not release into the detention pond and instead combine with the outflow from the pond. With this change in routing, actual design point locations have changed slightly. The existing DBPS analysis and this report show design point WU as the flow at Highway 24 as it passes through the existing box culverts. The proposed DBPS analysis and the Market Place report have Design Point WU as the flows entering the pond with the pond release flows as the Highway 24 flows. This report made the change, as stated previously, Basin W-42 no longer enters the pond, but combines at Highway 24 and a design point was needed to evaluate flows at this location. See the table below for a summary of major design points through the West Tributary in the Falcon Highlands development. Pond WU will release at less than historic rates for both, the 5-year and 100-year events.

Design	Exi	sting*	Pro	posed	Location		
Point	5-Yr	100-Yr	5-Yr	100-Yr			
WS	137	1575	145	1705	Woodmen		
WT	143 1621		244	1867	Tamlin Road (Removed)		
Pond WU			118	1313	Highway 24/Pond Outlet		
WU	148	1648	135	1339	Highway 24 (Pr Condition)		
WV	149	1640	135	1338	Falcon Highway		

^{*}Existing flows have been modified per the approved Falcon Highlands Final Drainage Report for Regional Detention Pond WU. This report adjusted routing for Basin W-42 and has modified the existing flows at Design Point WU. The "existing" flows which will be the target in this report are those existing flows which have been identified in the previous mentioned report, not those which were stated in the DBPS.

Rational Method

Because the Meridian Crossing is less than 100 acres, the rational method was used to estimate stormwater runoff for basins, and to size inlets, culverts and ditches, as required by the current

City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM). The rational method coefficients "C" were selected from Table 5-1 of the DCM, the time of concentration was calculated per DCM requirements and intensities for each basin were calculated from storm intensity curve formulas provided by the City of Colorado Springs. The rational method was used to determine onsite flows. Rational Method results are shown in Appendix B and C.

Water Quality Criteria

The water quality capture volume (WQCV) was calculated based on equations found in the Drainage Criteria Manual Volume 2, Stormwater quality Policies, Procedures and Best Management Practices (BMP's). The WQCV allows suspended sediment and absorbed pollutants to settle out of the water and improve the overall quality of runoff leaving the facility and reduce the potential for erosion. The positive impact on water quality is significant see appendix for proposed pond calculations.

Street Capacity

Street capacity is based on the DCM criteria, as stated in Chapter 6. Capacity of the streets (Flower Road and McLaughlin Road) will be based on the minor and major storms. Minor storm criteria is based on pavement encroachment and the major storm criteria is based on allowable depth and pavement encroachment. In all cases, flow encroachment shall not extend past the right-of-way (R.O.W.). Mannings equation will be used to determine the street capacity based on the following criteria from the DCM. Flower and McLaughlin Roads are both collector roads. Both streets shall meet the following criteria from the Table 6-1 in the DCM:

Roadway	Use of st	reet in storm	Cross flow in streets for storm				
Classification	Initial	Major	Initial	Major			
Collector	No curb overtopping. Flow spread must be limited to a max. 20 foot spread from each curb face	Residential dwellings, public, commercial and industrial buildings shall not be inundated at the ground line. The depth of water at the gutter flow line shall not exceed 12 inches.	Where cross pans are allowed, depth of flow shall not exceed 6 inches at flow line.	12 inches of depth at gutter flow line.			

8

DRAINAGE BASINS

Existing Drainage Analysis

Since the site is currently undeveloped, the existing drainage analysis was determined by analyzing existing runoff quantities and patterns. The site is covered predominantly with grasses. Existing storm runoff is generally from the north to the south through natural drainage swales, as well as gutter flow in a previously constructed roadway (Meridian Road). (Sce Figure 5: Existing Drainage Plan) On-site basins, being smaller than 100 acres, were analyzed using the rational method. See below for a brief discussion of each of these basins.

- Basin E-1 (2.18 acres) consists of the southeast half of Meridian Road, at a high point in the road adjacent to Pond MN. Basin E-1 slopes to the south to design point 1. An existing at grade inlet intercepts this flow. Any flow-by from this inlet will be directed onto Old Meridian Road. The remainder of the flow will continue east along Old Meridian Road, which allows street flow to runoff into an existing roadside ditch. This flow then enters a temporary culvert under Old Meridian Road. Basin E-1 produces runoff quantities of 9.4 cfs and 17.6 cfs for the 5-year and 100-year storms.
- Basin E-2 (8.76 acres) consists of an area just east of Old Meridian Road and between Meridian Road and McLaughlin Road. This area is currently undeveloped. Basin E-2 slopes to the southwest to design point 2. Currently, a temporary culvert exists to transfer flow from the east side of Old Meridian Road to the south side. An estimated 13.7 cfs and 31.4 cfs are produced for the 5-year and 100-year storms.
- Basin E-3 (13.96 acres) consists of an area northeast of Old Meridian and McLaughlin Roads in the "Town of Falcon". The flow from this basin will be directed towards the intersection of State Highway 24 and Meridian Road, where it is conveyed under an existing culvert under Old Meridian Road. This flow is directed towards the existing structure at Design Point 6. The basin generates 16.4 cfs and 37.5 cfs for the 5-year and 100-year storms.
- Basin E-4 (2.15 acres) consists of the east half of Meridian Road from Old Meridian Road to the right-in access point to the south. Basin E-4 slopes to the south. Flow from this basin will be conveyed through curb and gutter to the right in access drive, where a sump inlet intercepts the flow. An 18-inch rcp will then release into a temporary channel along Meridian Road, which conveys the flow to design point 6. An estimated 9.3 cfs and 17.5 cfs are produced for the 5-year and 100-year storms.
- Basin E-5 (9.41 acres) consists of an undeveloped native area just east and south of the Falcon Highlands detention pond (Pond WU). Runoff from this basin combines with flows from design point 7 and the detention pond outlet and crosses under US Highway 24 through existing culverts at design point 8. Basin E-5 generates 12.1 cfs and 27.8 cfs for the 5-year and 100-year storms.
- Basin E-6 (2.62 acres) consists of the west half of Meridian Road from the right-in access point to Highway 24. Basin E-6 slopes to the south to design point 4. Runoff will flow south via curb and gutter along this section of Meridian Road. A sump inlet at

the low point, just before Highway 24, intercepts the runoff. This inlet connects to the box culvert under Meridian Road. This flow will continue to the existing box culverts at Highway 24. The Falcon Highlands detention pond also discharges to the existing culvert at Highway 24. However, the detention pond was designed to release flows at 80% of historic flow. The existing culvert under Highway 24 will have enough capacity, because the peak discharge from design point 7 will occur long before the peak discharge of the pond. An estimated 11.6 cfs and 21.7 cfs are produced for the 5-year and 100-year storms.

- Basin E-7 (2.32 acres) consists of the east half of Meridian Road from the right-in access point south to Highway 24. Basin E-7 slopes to the south to design point 15. Runoff will flow south through curb and gutter along this section of Meridian Road. A sump inlet intercepts this flow and connects to the box culvert under Meridian Road. An estimated 10.5 cfs and 19.7 cfs are produced from Basin E-7 for the 5-year and 100-year storms.
- Basin E-8 (23.89 acres) consists of the area south of Old Meridian Road and east of Meridian Road. This area is currently undeveloped. This flow sheetflows across the basin to design point 6. A concrete box culvert conveys the flow under Meridian Road to the existing culvert under Highway 24. An estimated 32.2 cfs and 73.7 cfs are produced for the 5-year and 100-year storms.

Existing Design Points

- Design Point 1 is an existing 15' on-grade inlet in Meridian Road, north of Old Meridian Road. This inlet intercepts flow from Basin E-1, street flow from Meridian Road, south of Pond MN to Old Meridian Road. The inlet releases the flow into a temporary ditch along Old Meridian Road, which conveys the flow to Design Point 2. Flows at this location are 9.4 and 17.6 cfs.
- Design Point 2 collects flow from Basin E-2 and combines it with the flow in the temporary channel from DP-1. A temporary 24-inch culvert under Old Meridian Road conveys the flow to the south towards Design Point 6. This design point has flows of 22.9 and 48.7 cfs.
- Design Point 3 is an existing 20' sump inlet that intercepts the street flow in Meridian Road from Basin D-4. The inlet releases flows into an existing temporary roadside ditch along Meridian Road to Design Point 6. Flows at this location are 9.3 and 17.5 cfs.
- Design Point 4 is an existing 25' sump inlet used to intercept the west side of Meridian Road, north of Highway 24 (Basin E-6). This flow enters the existing storm system and is conveyed to Design Point 7. This design point has flows of 11.6 and 21.7 cfs.
- Design Point 5 is an existing 20' sump inlet in Meridian Road opposite Design Point 4. This inlet intercepts street flow from Basin E-7 and combines with flows in the storm system under Meridian Road. Flows are released at Design Point 7. The design point generates flows of 10.5 and 19.7 cfs.

- Design Point 6 combines flows from Basins E-3 and E-8 with flows from Design Points 2 and 3. Two 12' (W) x 3' (H) reinforced concrete box culverts (RCBC's) convey the flow under Meridian Road to Design Point 7. Flows generated at this design point are 67.8 and 149.7 cfs.
- Design Point 7 is the location where the storm system releases flows. It is the combined flow from Design Points 4, 5 and 6. Once released, flows will continue through an existing ditch to Design Point 8 at Highway 24. Flows at this location are 67.0 and 148.5 cfs.
- Design Point 8 combines the flow from Basin E-5 with flows from Design Point 7 and Detention Pond WU. There are three 12' (W) x 6' (H) RCBC's under Highway 24 to convey flows. These flows will continue towards the south, in a FEMA floodplain, along their existing paths. Flows generated at this location are 147.7 and 1286.1 cfs. This design point corresponds to Design Point WU in the HEC models.

Developed Drainage Analysis

The proposed site was studied in the Falcon Basin DBPS. Efforts have been made to comply with the recommendations set forth in the approved DBPS. The flows in the commercial development will combine with the outlet flows of Detention Pond WU and continue under Highway 24 through the existing box culverts. Figure 6: Developed Drainage Plan illustrates the basin boundaries used for the rational hydrologic model.

Basins D-1 and D-4 through D-7 do not have any changes from the corresponding, existing basins (E-1 and E-4 through E-7), as they have already been developed and the drainage structures have been designed. Basin E-2, a proposed commercial site (Meridian Crossing, whose preliminary plan has been approved by the Board of County Commissioners (BOCC)), the proposed site and adjacent roadways, has been divided into five new developed basins. Changes to Basins D-3 and D-8, is the assumption that these basins will be developed in the future as commercial use. The description of these basins follows.

- Basin D-2 (5.14 acres) consists of approximately the south half of the Meridian Crossing commercial development. It is anticipated for this basin to drain towards the south, where it will be intercepted by a proposed water quality facility (Porous Landscape Detention PLD). This storm system will release flows into a temporary drainage swale through Basin D-8. This drainage pattern is consistent with the approved Master Drainage Development Plan Amendment to Falcon Highlands, which shows these flows reaching the existing box culvert under Highway 24 at design point 8. This basin generates 23.4 cfs and 43.9 cfs for the 5-year and 100-year storm events.
- Basin D-3 (11.49 acres) consists of an area northeast of Old Meridian Road and McLaughlin Road in the "Town of Falcon". It is assumed that this area will be developed as commercial use in the future. The flow from this basin will be directed towards the intersection of Highway 24 and Meridian Road, where it is conveyed under a proposed culvert under Old Meridian Road. The flow is directed towards the existing structure at DP-6. The basin generates 34.7 and 65.1 cfs for the 5 and 100-year events.

intercepted by the temporary grated lid on the proposed manhole at DP-Z This flow will ultimately reach Highway 24. Flows at this location are 4.7 and 8.9 cfs.

- Design Point X is the released flow from the East PLD. Flow from this area combines with a storm system in Old Meridian Road via a 30" rcp. Flows generated in this location are 16.9 cfs and 31.8 cfs.
- Design Point Z is the flow from DP-B, DP-X intercepted flow from inlet 1 and the flow-by from inlet 1 combined with the released flow from the West PLD (Basin D-2). A 36" rcp connects and conveys this flow to a temporary culvert under Old Meridian Road which will release flows into a temporary ditch. Flows at this junction are 44.6 cfs and 83.8 cfs.
- Design Point Y is a proposed 54" rcp which releases flows across Old Meridian Road. The proposed pipe will replace an existing culvert, which is currently undersized, and intercepts flows from D-3. This design point has a flow of 34.7 cfs and 65.1 cfs. There is no corresponding design point in the Market Place Filing No. 1 drainage report.
- Design Point 3 is an existing 20' sump inlet that intercepts the street flow in Meridian Road from Basin D-4. The inlet currently combines with DP-Z and flows into an existing temporary roadside ditch along Meridian Road to Design Point 6. Flows at this location are 9.3 and 17.5 cfs. This design point corresponds to Design Point 13 in the Market Place FDR.
- Design Point E is the combination of D-3 and DP-Z. Flows are released into a temporary channel which conveys flows to a roadside ditch along Meridian Road. This flow is conveyed all the way to Design Point DP-8 at Highway 24 where flows are released from the Falcon Highlands site. Flows intercepted at this location are 46.938.3 cfs and 58.2 cfs. The Market Place Filing No. 1 report does not have any corresponding design points.
- Design Point 4 is an existing 25' sump inlet used to intercept the west side of Meridian Road, north of Highway 24 (Basin D-6). This flow enters the existing storm system and is conveyed to Design Point 7. This design point has flows of 11.6 and 21.7 cfs. This design point corresponds to Design Point 16 in the Market Place FDR. There is no difference in the drainage flows.
- Design Point 5 is an existing 20' sump inlet in Meridian Road opposite Design Point 4. This inlet intercepts street flow from Basin D-7 and combines with flows in the storm system under Meridian Road. Flows are released at Design Point 7. The design point generates flows of 10.5 and 19.7 cfs. This location corresponds to Design Point 15 in the Market Place FDR. There are no changes in the flows.
- Design Point 6 combines flow from Basin D-8 with DP-E and DP-Y. Two 12' (W) x 3' (H) reinforced concrete box culverts (RCBC's) convey the flow under Meridian Road to Design Point 7. Flows generated at this design point are 127.7 and 239.9 cfs. This location corresponds to Design Point 17 in the Market Place FDR. This report calculated flows to be 157.9 and 300.6 cfs.

DRAINAGE FACILITY DESIGN

General Concept

Meridian Crossing is located completely within the West Tributary of the Falcon Drainage Basin. The site drains towards the southwest where it is directed towards an existing drainage structure under Highway 24. This structure has been analyzed to ensure it still properly functions with the developed flow released here. The flow from these structures will continue along an existing swale to the south. There are two water quality facilities proposed for the site, prior to flows exiting.

Storm Systems

There has been one storm system previously installed with the construction of Meridian Road. This system was designed in the Market Place Filing No. 1 FDR. One new culvert and a temporary culvert have been proposed with the development of this site. StormCAD and CulvertMaster calculations have been included at the end of the report analyzing all of these facilities to ensure they are still adequate for the developed flow associated with this development.

The first system is an existing system located at the intersection of Meridian Road and Highway 24. This system was initially designed in the Market Place Filing No. 1 FDR. The system has been analyzed to ensure it will still function properly with the development of The Shoppes at Falcon. A 20-foot sump inlet is located at DP-5 in Meridian Road. This inlet intercepts 10 cfs and 19 cfs. A 25-foot sump inlet is located on the other side of Meridian Road at DP-4. This inlet intercepts 12 and 22 cfs. Both of these inlets connect to an existing 12'(W) x 3' (H) box culvert under Meridian Road via 24-inch rcp's. This structure intercepts a total flow of 127.7 and 239.9 cfs. This system releases flows into an existing channel parallel to Highway 24 at DP-7. Flows at this location are 140.2 cfs and 264.8 cfs. The channel conveys this flow to DP-8 at Highway 24, where the flow exits Falcon Highlands and continues on its existing path to the south.

Channel Improvements

The temporary channel from DP-Z has a 100-year flow of 73.3 cfs from the proposed storm system. The channel will be shaped similarly to the roadside ditch along the southeast side of Meridian Road, which it connects to. Velocity is this channel is 3.2 ft/s with a flow depth of 1.8 feet. A temporary drainage easement will be recorded on the final plat to accommodate this channel.

The existing roadside ditch along Basin D-7 is located east of Meridian Road from the right-in access point south to Highway 24. The ditch will carry the 100-year storm (88.2 cfs) at a depth of 1.8 feet to DP-6. The velocity in this channel is 5.5 fps. This channel will also be removed upon development of Basin D-8 and the construction of an internal storm drain system.

There is a series of onsite temporary swales in lots 3, 4 and 5. These swales will be utilized to ensure flows are conveyed to the west PLD. Once these lots develop, the swales will no longer be necessary and will be removed. Also, located outside of the Meridian Crossing right-of-way

along Old Meridian Road are 3 temporary swales, which convey flows to storm inlets. These swales will be removed upon the construction of Old Meridian Road.

Detention Pond WU

Based on the current configuration of the basins, Pond WU does work as intended. The 5-year release rate is less than the existing flow rate. Refer to the table earlier in the report for flow rates at major design points. Based on the current analysis of the hydrology for the area no modifications will be necessary to the outlet structure of the detention pond as previously assumed. The 100-year storm also functions properly and has a release rate lower than the existing flows.

Proposed Water Quality Pond

Based on the City of Colorado Springs/El Paso County DCM Volume 2, a water quality pond is needed, as the development area is greater than 1.0 acre. There will be two water quality capture ponds (WQCP), which will be porous landscape detention (PLD). Both ponds structures will be located between the northern right of way of McLaughlin road and the proposed curb and gutter for lots 5 and 6. This will enable the ponds to be used for final construction of each of the building sites. The east and west pond combine for a total 8200 square feet.

Ultimate Design

Currently, there is evidence that Old Meridian Road will be improved. If this situation does not happen, there is an "ultimate design" scenario to account for this. Meridian Crossing will be responsible for installing curb and gutter and sidewalk for the portion of Old Meridian Road which fronts their property. The rcp stub behind inlet DP-1 will be extended via 18"rcp to the existing culvert under Old Meridian Road. A 5' type R inlet will be installed to catch the flows of Old Meridian Road (see appendix item I for StormCAD calculations). A 5' manhole will be installed to connect the new and existing pipes. The existing culvert will continue to convey the flow through an existing swale, which releases flows into the roadside swale along Meridian Road. This flow still reaches an ultimate location of DP-8, where all flows leave the Falcon Highlands development.

Downstream Facilities

Falcon West Tributary

Detention Pond WU discharges below the historical rate as described in the Falcon Highlands Filing No. 1 PDR and the Falcon Basin DBPS. Just downstream of Pond WU outlet works is an existing bridge at SH 24. At Highway 24 near Pond WU, triple 12' x 6' RCBC's were installed in 1999. This facility conveys the 1239 cfs 100-year design flow. An analysis of these structures in included in the appendix. The DBPS recommended installing a lined channel with geotextile fabric and grade control drop structures. Currently, this area has no real definable channels, but flows are allowed to spread once they are released through the structure at SH 24. This area is within a FEMA designated floodplain. Historic flows as stated in the DBPS are 1518 cfs.

Downstream of SH 24, flows follow a FEMA floodplain to Falcon Highway. At Falcon Highway there is a 36-inch cmp culvert that is inadequate to carry the 100-year design flow.

DRAINAGE FEES, COST ESTIMATE & MAINTENANCE

Maintenance

The streets and major improvements within this site will be maintained by the Meridian Crossing Property Owners Association (POA) for ownership and maintenance. This includes the roads, drainage facilities, and water quality ponds. The Falcon Highlands Metropolitan District will own and operate water and wastewater systems. The remaining utilities (gas, phone, electric, cable, etc) will be owned and maintained by their respective companies. Easements will be issued to ensure each entity is able to access and maintain their facilities.

Drainage Fees

Г

The proposed development is located within the Falcon Basin. The proposed commercial site encompasses approximately 9.5 acres. Fees will be based on 9.0 acres (95% imperviousness due to commercial development).

Drainage fees in the Falcon Basin are \$6,925 and bridge fees are \$2,659. Based on these numbers and an impervious area of 9.0 acres fees for this development are \$62,325 for drainage and \$25,261 for bridge fees. This gives a total fee of \$87,586.

DRAINAGE UNITS COST QUANTITY COST 5' STORM MANHOLE EA 2,800 1 2,800 30" RCP LF 55 435 23,922 36" RCP LF 65 60 3,900 RIPRAP LF 80 105 8,400 SUBTOTAL DRAINAGE CY 45 30 1,350 GRADING AND EROSION S40,375 5 57,600 CUEARING AND GRUBBING AC \$800 9.5 \$7,600 VATER QUALITY PONDS EA 3,000 2 6,000 CURB BACKFILL LF 2.50 3200 8,000 MAY BALE CHECKS EA 10 37 370 VEHICLE TRACKING CONTROL EA 2.600 4 800 SUBTOTAL GRAD MULCH AC 3,500 1 1.500 UNLET PROTECTORS EA 200 4 800 SUBTOTAL GRADING & EROSION S100,770 3100,7770 3100,7770 <t< th=""><th>ITEM</th><th>TID IT OF</th><th>UNIT</th><th></th><th>ITEM</th></t<>	ITEM	TID IT OF	UNIT		ITEM
STORM MANHOLE EA 2.800 1 2.800 30" RCP LF 55 435 23,925 42" RCP LF 65 60 3,900 42" RCP LF 80 105 8,400 SUBTOTAL DRAINAGE CY 45 30 1,350 GRADING AND EROSION SUBTOTAL DRAINAGE S40,375 540,375 CLEARING AND GRUBBING AC \$800 9.5 \$7,600 CLEARING AND GRUBBING AC \$800 9.5 \$7,600 WATER QUALITY PONDS EA 3,000 2 6,000 USE SEEDING AND MULCH LF 2.50 3200 8,000 MISC SEEDING AND MULCH AC 3,500 6 21,000 INLET PROTECTORS EA 10 37 370 VEHICLE TRACKING CONTROL EA 1,500 1 1,500 SUBTOTAL GRADING & EROSION S100,770 S100,770 3100,770 ULTIMATE DRAINAGE EA 2,800 1	DRAINAGE	UNITS	COST	QUANTITY	COST
S' STORM MANHOLE EA 2,800 1 2,800 30" RCP LF 55 435 23,925 42" RCP LF 65 60 3,900 42" RCP LF 80 105 8,400 RIPRAP CY 45 30 1,350 SUBTOTAL DRAINAGE - - \$40,375 GRADING AND EROSION - - \$40,375 CONTROL - - - \$40,375 CLEARING AND GRUBBING AC \$800 9,5 \$7,600 WATER QUALITY PONDS EA 3,000 2 6,000 MISC SEEDING AND MULCH LF 2.50 3200 8,000 MISC SEEDING AND MULCH AC 3,500 6 21,000 INLET PROTECTORS EA 10 37 370 VEHICLE TRACKING CONTROL EA 10 37 370 SUBTOTAL GRADING & EROSION LF 5 1800 9,0000 SUBTOTAL GRA					
Let EA 2,800 1 2,800 30" RCP LF 55 435 23,922 42" RCP LF 65 60 3,900 RIPRAP LF 80 105 8,400 SUBTOTAL DRAINAGE CY 45 30 1,350 GRADING AND EROSION S40,375 \$40,375 CONTROL State \$40,375 CLEARING AND GRUBBING AC \$800 9,5 \$7,600 WATER QUALITY PONDS EA 3,000 2 6,000 MISC SEEDING AND MULCH AC 3,500 6 21,000 MISC SEEDING AND MULCH AC 3,500 6 21,000 INLET PROTECTORS EA 10 37 3700 VEHICLE TRACKING CONTROL EA 1,500 1 1,500 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 CORR BACKFILL LF 2,800 1 3,500 SUBTOTAL GRADING & EROSION <	5' STORMANANIJOLE				
JUNCP LF 55 415 2,000 36" RCP LF 655 60 3,900 42" RCP LF 80 1005 8,400 SUBTOTAL DRAINAGE CY 45 30 1,350 GRADING AND EROSION SUBTOTAL DRAINAGE \$40,375 \$40,375 GRADING AND EROSION State \$40,375 \$600 \$1,350 CLEARING AND GRUBBING AC \$800 9.5 \$7,600 CLEARING AND GRUBBING AC \$300 2 6,000 WATER QUALITY PONDS EA 3,000 2 6,000 MISC SEEDING AND MULCH AC 3,500 6 21,000 MISC SEEDING AND MULCH AC 3,500 6 21,000 INLET PROTECTORS EA 10 37 370 VEHICLE TRACKING CONTROL EA 1,500 1 1,500 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 CONTROL LF 40 25	30" PCP	EA	2,800	1	2 800
JUNCP LF 65 60 3.900 RIPRAP LF 80 105 8.400 SUBTOTAL DRAINAGE CY 45 30 1.350 GRADING AND EROSION S40,375 \$40,375 \$40,375 CONTROL CONTROL S40,375 \$100,770 CLEARING AND GRUBBING AC \$800 9.5 \$7,600 CALTRWORK CY 3.50 13300 46,550 WATER QUALITY PONDS EA 3.000 2 6,000 MISC SEEDING AND MULCH AC 3,500 6 21,000 MAY BALE CHECKS EA 10 37 370 VEHICLE TRACKING CONTROL EA 1,000 1 1,500 SILT FENCING LF 5 1800 9,000 CONTROL EA 2,800 1 2,800 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 CONTROL EA 2,800 1 2,800	36" PCD	LF	55	435	2,000
LF 80	10" ROP	LF	65	60	23,925
INITRAP CY 45 30 1,350 SUBTOTAL DRAINAGE 30 1,350 340,375 GRADING AND EROSION 2 \$40,375 CONTROL 2 2 \$40,375 CLEARING AND GRUBBING AC \$800 9.5 \$7,600 EARTHWORK CY 3.50 13300 46,550 WATER QUALITY PONDS EA 3,000 2 6,000 MISC SEEDING AND MULCH LF 2.50 3200 8,000 MISC SEEDING AND MULCH AC 3,500 6 21,000 INLET PROTECTORS EA 10 37 370 VEHICLE TRACKING CONTROL EA 200 4 800 SUBTOTAL GRADING & EROSION 0 1 1,500 1 1,500 SUBTOTAL GRADING & EROSION 0 1 1,500 1 1,500 SUBTOTAL GRADING & EROSION 0 1 1,500 1 1,500 SUBTOTAL GRADING & EROSION 0 1 <td< td=""><td></td><td>LF</td><td>80</td><td>105</td><td>3,900</td></td<>		LF	80	105	3,900
SUBTOTAL DRAINAGE 30 1,30 GRADING AND EROSION CONTROL \$40,375 CLEARING AND GRUBBING AC \$800 9.5 \$7,600 CLEARING AND GRUBBING AC \$800 9.5 \$7,600 EARTHWORK CY 3.50 13300 46,550 WATER QUALITY PONDS EA 3,000 2 6,000 CURB BACKFILL LF 2.50 3200 8,000 MAY BALE CHECKS EA 10 37 3700 INLET PROTECTORS EA 10 37 3700 VEHICLE TRACKING CONTROL EA 1,500 1 1,500 SILT FENCING LF 5 1800 9,000 CONTROL EA 2,800 1 2,800 SUBTOTAL GRADING & EROSION LF 40 259 10,360 SUBTOTAL URATE DRAINAGE EA 2,800 1 2,800 SUBTOTAL ULTIMATE DRAINAGE EA 3,500 1 3,500 SUBTOTAL ULTIMATE	RIPRAP	CY	45		0,400
GRADING AND EROSION CONTROL 340,375 CLEARING AND GRUBBING AC \$800 9.5 \$7,600 CLEARING AND GRUBBING AC \$800 9.5 \$7,600 WATER QUALITY PONDS EA 3,000 2 6,000 CURB BACKFILL LF 2.50 3200 8,000 MAY BALE CHECKS EA 10 37 370 INLET PROTECTORS EA 10 37 370 VEHICLE TRACKING CONTROL EA 1,500 1 1,500 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 CONTROL EA 2,800 1 2,800 ULTIMATE DRAINAGE S100,770 1 3,500 1 3,500 5' STORM MANHOLE EA 2,800 1 2,800 1 3,500 SUBTOTAL ULTIMATE DRAINAGE EA 3,500 1 3,500 1 3,500 SUBTOTAL ULTIMATE DRAINAGE EA 3,500 1 3,500 \$16,660	SUBTUTAL DRAINAGE				1,350
STADING AND EROSION AC \$800 9.5 \$7,600 CLEARING AND GRUBBING AC \$800 9.5 \$7,600 EARTHWORK CY 3.50 13300 46,550 WATER QUALITY PONDS EA 3,000 2 6,000 MISC SEEDING AND MULCH LF 2.50 3200 8,000 HAY BALE CHECKS EA 10 37 370 INLET PROTECTORS EA 200 4 800 SILT FENCING CONTROL EA 1,500 1 1,500 SILT FENCING LF 5 1800 9,000 2,000 4 800 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 2,000 1 1,500 1 1,500 1 1,500 1 1,500 1 1,500 1 1,500 1 1,500 1 1,500 1 1,500 1 1,500 1 1,500 1 1,500 1 1,500	GRADING AND EDGOLOU				940,375
CUNTROL AC \$800 9.5 \$7,600 EARTHWORK CY 3.50 13300 46,550 WATER QUALITY PONDS EA 3,000 2 6,000 CURB BACKFILL LF 2.50 3200 8,000 MISC SEEDING AND MULCH AC 3,500 6 21,000 HAY BALE CHECKS EA 10 37 370 INLET PROTECTORS EA 200 4 800 SILT FENCING LF 5 1800 9,000 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 CONTROL EA 2,800 1 2,800 30" RCP LF 40 259 10,360 SUBTOTAL ULTIMATE DRAINAGE S10,770 \$16,660 \$16,660 SUBTOTAL DRAINAGE & EROSION S16,660 \$16,660 \$16,660 SUBTOTAL ULTIMATE DRAINAGE S16,660 \$16,660 \$16,660	CONTROL				
CLEARING AND GRUBBING AC \$800 9.5 \$7,600 EARTHWORK CY 3.50 13300 46,550 WATER QUALITY PONDS EA 3,000 2 6,000 CURB BACKFILL LF 2.50 3200 8,000 MISC SEEDING AND MULCH AC 3,500 6 21,000 HAY BALE CHECKS EA 10 37 370 INLET PROTECTORS EA 200 4 800 VEHICLE TRACKING CONTROL EA 1,500 1 1,500 SILT FENCING LF 5 1800 9,000 CONTROL EA 2,800 1 2,800 SUBTOTAL GRADING & EROSION LF 40 259 10,360 S' STORM MANHOLE EA 2,800 1 2,800 30" RCP LF 40 259 10,360 SUBTOTAL ULTIMATE DRAINAGE S10,500 \$16,660 \$16,660 SUBTOTAL DRAINAGE & EROSION S16,660 \$16,660 <	CONTROL			1	
EARTHWORK CY 3:00 9:5 \$7,600 WATER QUALITY PONDS EA 3:000 2 6:000 CURB BACKFILL LF 2:50 3200 8:000 MISC SEEDING AND MULCH AC 3:500 6 21:000 HAY BALE CHECKS EA 10 37 370 INLET PROTECTORS EA 200 4 800 SILT FENCING CONTROL EA 1,500 1 1,500 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 CONTROL EA 2,800 1 2,800 SUBTOTAL GRADING & EROSION \$100,770 ULTIMATE DRAINAGE \$100,770 ULTIMATE DRAINAGE \$100,770 SUBTOTAL ULTIMATE DRAINAGE \$10,360 \$10,360 SUBTOTAL ULTIMATE DRAINAGE \$16,660 \$16,660 SUBTOTAL ULTIMATE DRAINAGE \$157,805 \$10,505 Engineering (1	CLEARING AND GRUBBING	AC	0083		
WATER QUALITY PONDS Image: Fragment and the system of the sy	EARTHWORK	CY	3 50	9.5	\$7,600
CURB BACKFILL LF 3,000 2 6,000 MISC SEEDING AND MULCH AC 3,500 6 21,000 HAY BALE CHECKS EA 10 37 370 INLET PROTECTORS EA 200 4 800 VEHICLE TRACKING CONTROL EA 200 4 800 SILT FENCING LF 5 1800 9,000 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 CONTROL EA 2,800 1 2,800 SUBTOTAL GRADING & EROSION LF 40 259 10,360 SUBTOTAL ULTIMATE DRAINAGE EA 3,500 1 2,800 SUBTOTAL ULTIMATE DRAINAGE EA 3,500 1 3,500 SUBTOTAL ULTIMATE DRAINAGE S16,660 SUBTOTAL DRAINAGE & EROSION S16,660 SUBTOTAL DRAINAGE & EROSION S157,805 Engineering (10%) Engineering (10%) EA S157,605 S1645,704	WATER QUALITY PONDS	FA	3.50	13300	46,550
MISC SEEDING AND MULCH AC 3200 8,000 HAY BALE CHECKS EA 3,500 6 21,000 INLET PROTECTORS EA 10 37 370 VEHICLE TRACKING CONTROL EA 200 4 800 SILT FENCING EA 1,500 1 1,500 SUB TOTAL GRADING & EROSION LF 5 1800 9,000 CONTROL EA 2,800 1 2,800 SUB TOTAL GRADING & EROSION S100,770 1 2,800 1 2,800 SUB TOTAL URATE DRAINAGE S100,770 1 2,800 1 2,800 1 2,800 SUB TOTAL ULTIMATE DRAINAGE EA 2,800 1 2,800 1 3,500 SUB TOTAL ULTIMATE DRAINAGE EA 3,500 1 3,500 1 3,500 SUB TOTAL DRAINAGE & EROSION S16,660 SUB TOTAL DRAINAGE & EROSION S16,660 S16,660 SUB TOTAL DRAINAGE & EROSION S157,805 S157,805 S16,660	CURB BACKFILL	15	3,000	2	6,000
HAY BALE CHECKS INDEX 3,500 6 21,000 INLET PROTECTORS EA 10 37 370 VEHICLE TRACKING CONTROL EA 200 4 800 SILT FENCING EA 1,500 1 1,500 SILT FENCING LF 5 1800 9,000 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 CONTROL EA 2,800 1 2,800 ULTIMATE DRAINAGE 5' STORM MANHOLE 5' STORM MANHOLE 5' TYPE R INLET EA 3,500 1 2,800 5' TYPE R INLET EA 3,500 1 3,500 1 3,500 SUBTOTAL DRAINAGE SUBTOTAL DRAINAGE \$16,660 \$16,660 \$16,660 \$16,660 SUBTOTAL DRAINAGE & EROSION S157,805 \$157,805 \$157,805 \$167,805	MISC SEEDING AND MULCH	AC	2.50		8,000
INLET PROTECTORS LA 10 37 370 VEHICLE TRACKING CONTROL EA 200 4 800 SILT FENCING LF 5 1800 9,000 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 CONTROL EA 2,800 1 2,800 ULTIMATE DRAINAGE 5' STORM MANHOLE \$100,770 ULTIMATE DRAINAGE 2,800 1 2,800 5' STORM MANHOLE EA 2,800 1 2,800 30" RCP LF 40 259 10,360 SUBTOTAL ULTIMATE DRAINAGE S16,660 \$16,660 \$16,660 SUBTOTAL DRAINAGE & EROSION S157,805 \$157,805 \$157,805 Engineering (10%) 645,704 \$45,704 \$45,704	HAY BALE CHECKS	FA		6	21,000
VEHICLE TRACKING CONTROL EA 200 4 800 SILT FENCING LF 5 1 1,500 1 1,500 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 9,000 CONTROL	INLET PROTECTORS	FA	10	37	370
SILT FENCING LR 1,500 1 1,500 SUBTOTAL GRADING & EROSION LF 5 1800 9,000 CONTROL \$100,770 \$100,770 \$100,770 ULTIMATE DRAINAGE \$100,770 \$100,770 5' STORM MANHOLE EA 2,800 1 2,800 5' STORM MANHOLE EA 2,800 1 2,800 5' TYPE R INLET EA 3,500 1 3,500 SUBTOTAL ULTIMATE DRAINAGE \$16,660 \$16,660 \$16,660 SUBTOTAL DRAINAGE & EROSION \$157,805 \$157,805 \$157,805 Engineering (10%) £45,704 \$45,704 \$45,704	VEHICLE TRACKING CONTROL		200	4	800
SUBTOTAL GRADING & EROSION Li 5 1800 9,000 CONTROL \$100,770 \$100,770 \$100,770 ULTIMATE DRAINAGE EA 2,800 1 3,500 1 3,500 1 3,500 1 3,500 1 3,500 1 3,500 1 3,500 2 3,500 2 3,500 2 3,500 2 3,500 2 3,500 2 3,500 2 3,500 2 3,500 2 3,500 2 3,500 2 3,500 2 3,500 2 3,500	SILT FENCING		1,500	1	1,500
CONTROL \$100,770 ULTIMATE DRAINAGE 5' STORM MANHOLE 5' STORM MANHOLE 2,800 1 2,800 5' STORM MANHOLE EA 2,800 1 2,800 1 2,800 5' TYPE R INLET EA 3,500 1 3,500 1 3,500 SUBTOTAL ULTIMATE DRAINAGE S16,660 \$16,660 \$16,660 \$16,660 SUBTOTAL DRAINAGE & EROSION S157,805 \$157,805 \$157,805 \$157,805	SUBTOTAL GRADING & EROSION		5	1800	9,000
ULTIMATE DRAINAGE \$100,770 5' STORM MANHOLE EA 2,800 1 2,800 30" RCP LF 40 259 10,360 5' TYPE R INLET EA 3,500 1 3,500 SUBTOTAL ULTIMATE DRAINAGE \$16,660 \$16,660 \$16,660 SUBTOTAL DRAINAGE & EROSION \$157,805 \$157,805 Engineering (10%) £45,704 \$45,704	CONTROL				
ULTIMATE DRAINAGE EA 2,800 1 3,600 1 3,500 1 3,500 1 3,500 1 3,500 1 3,500 1 3,500<					\$100,770
5' STORM MANHOLE EA 2,800 1 2,800 30" RCP LF 40 259 10,360 5' TYPE R INLET EA 3,500 1 3,500 SUBTOTAL ULTIMATE DRAINAGE \$16,660 \$16,660 \$16,660 SUBTOTAL DRAINAGE & EROSION \$157,805 \$157,805 Engineering (10%) \$45,704 \$45,704	ULTIMATE DRAINAGE				
30" RCP LF 2,800 1 2,800 5' TYPE R INLET LF 40 259 10,360 SUBTOTAL ULTIMATE DRAINAGE EA 3,500 1 3,500 SUBTOTAL DRAINAGE \$16,660 \$16,660 \$16,660 SUBTOTAL DRAINAGE & EROSION \$157,805 \$157,805 Engineering (10%) \$157,805 \$157,805	5' STORM MANHOLE	FA	2 000		
5' TYPE R INLET Li 40 259 10,360 SUBTOTAL ULTIMATE DRAINAGE EA 3,500 1 3,500 SUBTOTAL ULTIMATE DRAINAGE \$16,660 \$16,660 \$16,660 SUBTOTAL DRAINAGE & EROSION \$157,805 \$157,805 Engineering (10%) \$157,201 \$157,201	30" RCP		2,800	1	2,800
SUBTOTAL ULTIMATE DRAINAGE 3,500 1 3,500 SUBTOTAL DRAINAGE & EROSION \$16,660 \$16,660 \$157,805 Engineering (10%) \$157,805 \$157,805	5' TYPE R INLET	FA	40	259	10,360
SUBTOTAL DRAINAGE & EROSION \$16,660 CONTROL \$157,805 Engineering (10%) \$157,201	SUBTOTAL ULTIMATE DRAINAGE	-+=`+-		1	3,500
SOBTOTAL DRAINAGE & EROSION \$157,805 Engineering (10%) \$157,201					\$16,660
Engineering (10%) \$157,805	SUBTOTAL DRAINAGE & EROSION				
Engineering (10%)	CONTROL				\$157.00-
Engineering (10%)					\$157,805
					\$15 704

Proposed Facilities Estimate

Z:\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\FDR.doc

1	
Contingency (10%)	I I
	\$15,781
TOTAL	
	\$189,367

.

.

EROSION CONTROL

General Concept

During construction, best management practices for erosion control will be employed based on El Paso County criteria and the erosion control plan.

Ditches will be designed to meet El Paso County criteria for slope and velocity, keeping velocities below scouring levels.

During construction, best management practices (BMP) for erosion control will be employed based on El Paso County Criteria. BMP's will be utilized as deemed necessary by the contractor and/or engineer and are not limited to measures shown on the construction drawing The contractor shall minimize the amount of area disturbed during all construction activities.

In general the following shall be applied in developing the sequence of major activities:

- Install downslope and sideslope perimeter BMP's before land disturbing activity occurs.
- Do not disturb an area until it is necessary for construction activity to proceed.
- Cover or stabilize as soon as possible. •
- Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- The construction of filtration BMP's should wait until the end of the construction project • when upstream drainage areas have been stabilized.
- Do not remove temporary perimeter controls until after all upstream areas are stabilized.

Silt Fence

Silt fence will be placed along downstream limits of disturbed areas. This will prevent suspended sediment from leaving the site during infrastructure construction. Silt fencing is to remain in place until vegetation is reestablished.

Erosion Bales

Erosion bales will be placed ten (10) feet from the inlet of all culverts and inlets during construction to prevent culverts from filling with sediment. Erosion bales will remain in place until vegetation is reestablished in graded roadside ditches and channels. Erosion bale ditch checks will be used on slopes greater than 1% to reduce flow velocities until vegetation is

Vehicle Tracking Control

This BMP is used to stabilize construction entrances, roads, parking areas and staging areas to prevent the tracking of sediment from the construction site. A vehicle tracking control (VIC) is to be used at all locations where vehicles exit the construction site onto public roads, loading and unloading areas, storage and staging areas, where construction trailers are to be located, any construction area that receives high vehicular traffic, construction roads and parking areas. VTC's should not be installed in areas where soils erode easily or are wet.

Sedimentation Pond

This BMP is used to detain runoff which has become laden with sediment long enough to allow the sediment to settle out. As the construction area is larger than 1 acre, a temporary sediment basin is required per Volume 2 of the Drainage Criteria Manual. The basin will be located in the area of the proposed water quality pond, as this area will need to be excavated and an embankment built. A temporary 8" pvc underdrain will be installed to drain this basin during construction.

REFERENCE MATERIALS

- "City of Colorado Springs/El Paso County Drainage Criteria Manual" September 1987, Revised November 1991, Revised October 1994.
- "City of Colorado Springs/El Paso County Drainage Criteria Manual, Volume 2: Stormwater Quality Policies, Procedures and Best Management Practices" November 1, 2002.
- 3. Soils Survey of El Paso County Area, Natural Resources Conservation Services of Colorado.
- 4. Flood Insurance Rate Study for El Paso County, Colorado and Incorporated Areas. Federal Emergency Management Agency, Revised March 17, 1997.
- 5. Falcon Area Drainage Basin Planning Study Preliminary Design Report, December 2000. Prepared by URS Corp.
- Master Development Drainage Plan, and Preliminary Drainage Report and Final Drainage Report for Falcon Highland Filing No. 1, October 2004. Prepared by URS Corp.
- Floodplain Modification Study and Application for Conditional Letter of Map Revision for the Middle Tributary of the Falcon Basin-Regency Center, January 2005. Prepared by URS Corp.
- 8. Amendment to Falcon Highlands Master Drainage Development Plan, September 2005. Prepared by URS Corp.
- 9. Falcon Highlands Market Place Filing No. 1 Preliminary and Final Drainage Report, December 22, 2005. Prepared by URS Corp.

l

1***	********	*******	*******	********	***
*	FLOOD H	YDROGRAPH	PACKAGE	(HEC-1)	*
*		JUN	1998		*
*		VERSION	4.1		*
*					*
*	RUN DATE	28SEP0	7 TIME	11:57:06	*
*					*

***	* * * * * * * * * * * * * * * * * * * *	* * *
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*	· · · ·	*
***	******************************	***

.

х	х	XXXXXXX	XX	XXX		х
х	Х	х	х	х		XX
х	х	x	х			х
XXXX	XXXX	XXXX	х		XXXXX	х
х	Х	х	х			х
х	х	х	Х	х		х
х	X XXXXXXX		XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HECIDB, AND HECIKW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 01. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-1	INPUT						PAGE	1	
LINE	ID	1	2.		4.	5.		7	8.	9	10			
1	ID	FALCON	BASTN !	5-YR/ 24-	-HOUR FLO	OOD/ EXIS	STING CON	IDITIONS						
2	ID	UI	PPER EAS	T TRIBUTA	ARY (WOOI	DMEN HILI	LS) BASEL	ON CLON	IR APPROV	VED 2/2/9	99			
3	1D TD	IN	NCLUDING	2 EXIST	ING SCS	STOCK PON	NDS, WEST	WOODMEN	HILLS I	POND				
5	ID	N.	DET	ENTION PO	OND AT M	5 2	JUELED R	5 HISTOR	IC IO ACC	JOUNT FUR	(
6	ID	NC	DTE: NO O	CULVERT A	AT STAPL	ETON & ME	ERIDIAN,	TEMP CUI	VERTS A	MERIDIA	N N			
1	1D *D7A	GRAM	DOW	NSTREAM (OF WOODM	EN HILLS	DRIVE (I	DIVERSION	4)					
8	IT	5 1	14JUL99	800	300									
9	10	5												
10	кк	W 1												
11	KM BA	0479												
13	PB	2.6												
14	IN	15	0015	0020		0000								•
15	PC	.0188	.0210	.0233	.0045	.0080	.0080	.0100	.0120	.0143	.0165			
17	PC	.0750	.1000	.4000	.7000	.7250	.7500	.7650	.7800	.7900	.8000			
18	PC	.8100	.8200	.8250	.8300	.8350	.8400	.8450	-8500	.8550	.8600			
20	PC	.9013	.9050	.9083	.9115	.9148	.9180	.9210	.9240	.9270	.9300			
21	PC	.9325	.9350	.9375	.9400	.9425	.9450	.9475	.9500	.9525	.9550			
22	PC	.95/5	.9600	.9625	.9650	.9675	.9700	.9725	.9750	.9775	.9800			
24	PC	.9938	.9950	.9963	.9975	.9988	1.000							
25	LS	097	60											
20	00	.057												
27	KK													
29	RK	1519	.0263	.035		TRAP	5	4						•
30	кк	W2												
31	KM													
32	BA	.0278	60											
34	UD	.160	00											
35	KK	67.75												
36	KM	114												
37	HC	2												
38	KK													
39	KM	161	0151	025		TDAD	c	4						
40	KK	404	.0151	.035		INAF	5	4						
41	KK	W3												
43	BA	.0498												
44	LS	139	61											
10	02													
46	кк	WB												
47	KM													
48	HC	2												
49	KK													
50	KM RK	823	.0279	.035		TRAP	5	4		54				
52	KM	W4												
54	BA	.0054												
55 56	LS UD	.044	62											
57	KK KM													
59	RK	1078	.0482	.035		TRAP	5	4						
60	кк	W5												
61	KM													
62	BA LS	.0159	60											
64	UD	.075												
65	кк	WC												
66 67	KM	3												•
01	nc	3												
68 69	KK													
70	RK	557	.0449	.035		TRAP	10	4						
71	ĸĸ	WA												
72	KM													
73	BA	.0486	50											
75	UD	.085	00											

.

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 2 of 40 7/23/2008

76 77 78	KK KM RK	592	.0372	.035	TRAP	5	4	
79 80	KK KM	W7						
81 82 83	BA LS UD	.0217	60					
84 85	KK KM							
86	RK	464	.1466	.035	TRAP	5	4	
87 88 89	KK KM HC	₩D 2						
90 91	KK	D-E						
92	RK	1044	.0479	.035	TRAP	5	4	
93 94 95	KK KM BA	W8 .0286						
96 97	LS UD	.069	60					
98 99	KK KM							
100	RK	1449	.0504	.035	TRAP	5	4	
101 102 103	KK KM BA	.0402						
104 105	LS UD	.097	61					
106 107	КК КМ	WE						
108	HC	3						
109 110 111	KK KM RK	£-F 789	.0038	.035	TRAP	5	4	
112	KK	W10						
114 115	BA LS	.0431	61					
116	UD	.096						
118 119	KM RK	824	.0388	.035	TRAP	5	4	
120	KK KM	W11						
122 123	BA LS	.0314	60					
124	rk Ud	.077 พร						
126 127	KM	4						
128	KK	F-G						
130	RK	2319	.0211	.035	TRAP	10	4	
131 132 133	KK KM	W12						
133 134 135	LS UD	.095	60					
136	KK							
138	RK	2478	.0307	.035	TRAP	5	4	
139 140	KK KM BD	W14						
142	LS UD	.135	61					
144 145	KK KM							
146	RK	81	0.0001	.035	TRAP	5	4	
147 148 149	KK KM RA	W13						
150	LS		61					

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 3 of 40 7/23/2008

151	UD	.182							
100		HC.							
152	KM	MG							•
154	HC	4							
166	vv	C-4							
156	KM	G-n							
157	RK	2632	.0217	.035	TRAP	15	4		
158	ĸĸ								
159	KM								
160	RK	2447	.0372	.035	TRAP	5	4		
161	ĸĸ	W15							
162	KM								
163	BA	.0881	<i>c</i> 1						
164		141	61						
100	02								
166	KK								
168	RK	1763	.0289	.035	TRAP	5	4		
169	KK	WH							
171	HC	2							
172	KK	W16							
174	BA	.0292							
175	LS		61						
176	UD	.092							
177	KK								
178	KM		00.00	0.25		c			
179	RK	1345	.0260	.035	TRAP	5	4		
180	KK	W17							
181	KM	0104							
182	LS	.0104	60						
184	UD	.085							
195	KK	wit							
186	KM								
187	HC	2							
188	кк	I-M							
189	KM								
190	RK	2650	.0370	.035	TRAP	15	4		
191	KK	W19							
192	KM								
193 194	BA	.0428	61						
195	UD	.083							
196	KM								
198	RK	881	.0329	.035	TRAP	5	4		
100	vv	H 20							
200	KM	420							
201	BA	.0315							
202		.071	61						
204	KK	WJ							
205	HC	2							
207	KK KM								
209	RK	3061	.0235	.035	TRAP	5	4		
21.0	~~~	ພວາ							
210	KM	W21							
212	BA	.1347							
213		156	60						
214	02								
215	KK	WK							
210 217	KM HC	2							
		-							
218	KK								
220	RK	487	.0246	.035	TRAP	5	4		
201		200							
221	KK KM	W22							
223	BA	.0086							
224	LS	.055	63						
664	00								

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 4 of 40 7/23/2008

776	кк	WT.							
227	КМ								
228	нс	2							
		-							
229	кк								
230	KM								
231	BK	1786	0297	.035	TRAP	5	4		
231	144	1,00	.0251	.035	1131	0	•		
232	KK	W23							
233	KM								
234	BD.	0244							
235	LS		60						
236	UD UD	112	00						
230	00	.112							
237	ĸĸ	w18							
238	KM								
239	BA	1251							
235	LS	.1251	60						
240	10	189	00						
242	кк	WM							
243	КM								
244	HC	5							
245	кк	M-N							
246	КM								
247	RK	1345	.0149	.035	TRAP	20	4		
248	KK	W24							
249	KM								
250	BA	.0442							
251	LS		60						
252	UD	.140							
253	KK	W25							
254	KM								
255	BA	.0957	~						
200	12	107	61						
257	UD	.197							
250	VV	WM							
259	KM	HIN							
255	KM HC	3							
200	nç	5							
261	кк	N-P							
262	KM								
263	RK	1589	.017	.035	TRAP	20	4		
200									
264	KK	W28							
265	KM								
266	BA	.0397							
267	LS		63						
268	UD	.128							
269	KK								
270	KM								
271	RK	1345	.0208	.035	TRAP	5	4		
272	KK	W 30							
273	KM								
274	BA	.0509							
275	LS		63						
276	UD	.123							
277	KK								
218	KM DV	1070	0034	0.25	πολο	E	4		
219	KV	1019	.00/4	.035	IRAF	5	3		
280	VV	₩ 20							
281	KM	M23							
282	BA	.0409							
283	LS		63						
284	UD	.145							
285	кк	₩31							
286	KM								
287	BA	.0123							
288	LS		63				•		
289	UD	.073							
<u></u>									
290	KK	WO							
291	KM								
292	нс	4							
293	ww.	0-P							
293	1/14	0-P							
274	NM DV	2160	0226	035	TRAP	5	4		
ردع	RK.	2109	-0220		inni	5	-		
296	кк	₩26							
297	KM								
298	BA	.0301							
299	LS		63						
300	UD	062							

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 5 of 40 7/23/2008

301 302	KK KM					-			
303	RK	4662	.0225	.035	TRAP	5	4		
304	KM	WZ7							
306	BA	.1633							
307 308	LS UD	.253	60						
309	кк	W32							
310	KM	0000							
311	LS	.0890	60						
313	UD	.170							
314	KK	WP							
315 316	KM HC	5							
317	ĸĸ	P-0							
318	KM			0.05		05			
319	RK	1925	.0182	.035	TRAP	25	4		
320 321	KK KM	W33A							
322 323	BA LS	.1261	60						
324	UD	.186							
325	кк	WP1							
326 327	KM HC	2							
200	~~~~	R1.0							
329	KM	F1-Q							
330	RK	3000	.020	.035	TRAP	25	4		
331	KK KM	W33B							
333	BA	.1360	60						
335	UD	.225	60						
336	кк	W34A							
337	KM	1261							
339	LS	.1201	60						
340	UD	.173							
341	KK	34A-P2							
343	RK	2550	.0176	.035	TRAP	25	4		
344	кк	W34B							
345 346	KM BA	1766							
347	LS	.1700	60						
348	UD	.224							
349	кк	WP2							
350	KM HC	2							
352	кк	P2-0							
353	KM	2640	0.21	035	ΤΟΛΟ	25	4		
224		2040	.021	.035	INA	25	•		
355 356	KK KM	W34C							
357	BA	.1625	60						
359	UD	.244	60						
360	кк	WO							
361	KM	-							
362	nc	1							
363 364	KK KM	Q-Q1			•				
365	RK	2940	.022	.035	TRAP	25	4		
366	KK	W36A							
368	BA	.1429							
369	LS	224	60						
570	00	- 2 3 4							
371 372	KK KM	WQ1							+
373	HC	2							
374	кк	Q1-R							
375 376	KM RK	3400	.022	.035	TRAP	25	4		

.

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 6 of 40 7/23/2008

377 378	KK KM	₩36B									
380 381	LS UD	.306	60								
382 383	KK KM	W35A									
385 386	LS UD	.187	60								
387 388 389	KK KM RK	35A-WR	023	035	TRAP	25	۵				
390	KK	W35B	.025	.035	IIII	20					
392 393 394	BA LS	.1507 0 259	60								
395 396	КК	WR									
397 398	нс	4 WR-S									
399 400	KM RK	2922	.0168	.035	TRAP	25	4				
401 402 403	KK KM BA	W37A									
404 405	LS UD	.185	60						-	,	
406 407 408	KK KM RK	37 A- S	.014	.035	TRAP	25	4				
409 410	KK KM	W37B									
411 412 413	BA LS UD	.1636	61								
414 415	KK KM	WS									
416 417	нс кк	3 S-T									
418 419	KM RK	3653	.0164	.035	TRAP	25	4				
420 421 422	KK KM BA	W38									
423 424	LS UD	.190	62								
425 426 427	KK KM RK	2922	.0171	.035	TRAP	5	4				
428 429	KK KM	W 39									
430 431 432	BA LS UD	.1833	60								
433 434	KK KM	W4 0									
435 436 437	BA LS UD	.0964 .165	60								
438 439	KK KM	WT									
440 441	нс	4 T-U									
442 443	KM RK	1125	.0098	.035	TRAP	25	4				
444	KK KM	W41									
446 447 448	BA LS UD	.117	60								
449 450	KK	₩42									
451 452	BA	.0581	81								

l

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 7 of 40 7/23/2008

4	53	UD	.127								
4:	54 55	KK KM BK	U-V 2656	0184	035	TR	AP	5	4		
4	57	KK LUL	WIT	.0104	.000			Ū			
4	58 59	KM HC	3								
4 4 4	60 61 62	KK KM RK	2215	.0181	.035	TR	AP	25	4		
4	63	кк	W43								
4	64 65	км BA	.1457								•
4	66 67	LS UD	.169	61							
4	68	KK KM	WV								
4	70	HC	2								
4	71 72	КК КМ	V-W								
4	73	RK	487	.0103	.035	TR	AP	25	4		
4 4	74 75	KK KM	W45								
4 4	76 77	BA LS	.1931	61							
4	78	UD	.189								
4	79 80	KK KM	ww								
4	82	KK HC	2 W-X								
4	83 84	KM RK	1542	.0149	.035	TR	AP	5	4		
4	85 86	KK	M1								
4	97 88	BA LS	.0665	60							
4	89	UD	.108								
4 4 4	90 91 92	KK KM RK	650	.0308	.035	TR	AP	5	4		
4	93 94	KK KM	M2								
4	95 96	BA LS	.0273	60							
4	97	UD	.114								
4	198 199	KK KM	MB								
	500	кк	2								
	502 503	KM RK	928	.0302	.035	TF	AP	5	4		·
5	504 505	кк КМ	M4								
5	506 507	BA LS	.0346	60							
,	508	UD	.121								
	509 510 511	KK KM RK	406	.0197	.02	TI	RAP	40	0		
5	512 513	KK KM	мз								
1	514 . 515	BA LS	.0149	60							
1	516	UD	.076								
-	517 518 519	КК КМ НС	MC 3								
1	520	кк									
	521 522	KM RK	1902	.0231	.035	T	RAP	5	4		
:	523	кк	M5								
	∋∠4 525 526	BA	.0176	40							
	527	LS UD	.108	69							

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 8 of 40 7/23/2008

528 529	KK KM								
530	RK	1717	.0186	.02	ŤRAP	40	0		
531	KK	M6							
533	BA	.0637							
534	LS		65						
535	0D	.233							
536	KK	MD							
537	KM	2							
220	пç	5							
539	КК								
540 541	RK	2841	.019	.035	TRAP	5	4		
542 543	KK KM	M7							
544	BA	.0524							
545	LS	170	69						
340	00	.170							
547	KK								
548	KM RK	1044	.0268	.02	TRAP	40	0		
550 551	KK	M 8							
552	BA	.0370							
553	LS	125	61						
554	uD	.120				-			
555	KK	ME							
556 557	KM HC	2							
001		2							
558	KK								
560	RK	2992	.0187	.035	TRAP	5	4		
•									
561 562	KK KM	M9							
563	BA	.0169							
564		087	69						
000	00								
566	KK								
568	RK	3433	.0253	.03	TRAP	5	4		
6.60	WW	M1 3 B							
570	KM	MIZA							
571	BA	.0658	60						
572	LS UD	.159	60						
574	KK KM	M12B							
576	BA	.1481							
577 578	LS	.219	60						
579 580	KK KM	MF							
581	HC	5							
582	ĸĸ								
583	KM								
584	RK	2586	.0224	.035	TRAP	10	4		
585	KK	M13							•
586	KM	0614							
588	LS	.0014	64						
589	UD	.165							
590	кк								
591	КМ			0.5.5		-			
592	RK	1700	.01	.035	TRAP	6	4		
593	КК	M14							
594 595	KM RA	1.624							
222	pri		64						
596	LS								
596 597	LS UD	.228							
596 597 598	ls Ud KK	.228 MG							,
596 597 598 599	LS UD KK KM	.228 MG							
596 597 598 599 600	LS UD KK KM HC	.228 MG 2							
596 597 598 599 600 601	LS UD KK KM HC KK	. 228 MG 2 PONDW							

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 9 of 40 7/23/2008

.

603 604 605 606	SV SE SQ RS	0 968 0 1	.68 969 8 ELEV	1.5 970 15.5 968	235 971 41	3.6 972 84.4	4.9 973 110	6.3 974 138	7.34 975 152	7.34 976 205
607 608 609	KK KM HC	МН 2								
610 611 612	KK KM RK	1276	.0212	.035		TRAP	15	4		
613 614 615	KK KM DT	MH-P2 DI DIVRT1	VERT FLO	W TO PON	D 2 VIA	TWIN 23x4	7 ARCH C	CMPS UND	ER MERIE	IAN
616 617	DI DQ	0	39 39	72 70	152 80	263 80	318 80	377 85	442 85	591 90
618 619 620 621 622	KK KM BA LS UD	M15 .1242 .203	64							
623 624 625	KK KM HC	MI 2								
626 627 628	KK KM RK	1995	.0165	.035		TRAP	15	4		
629 630 631	KK KM BA	м19 .0499		•						
632 633	LS UD	.159	61							
634 635 636	KK KM HC	МЈ 2								
637 638 639	KK KM RK	2215	.0158	.035		TRAP	15	4		
640 641 642 643	KK KM BA LS	M10 .0581	62							
645 646 647	KK KM RK	м10-к 3150	.0255	.03		TRAP	5	4		
648 649 650 651 652	KK KM BA LS UD	M11A .1067 .231	61							
653 654 655	КК КМ НС	м к 2								
656 657 658	KK KM RK	МК-К1 2300	.260	.03		TRAP	5	4		
659 660 661 662	KK KM BA LS	M11B .0879	60							
663 664	UD	.150								
665 666	KM RK	2400	.025	.03		TRAP	5	4		
667 668	KK KM	M11C								
669 670	BA LS	.0933	60							
671 672	KK UD	.160 MK1								
673 674	KM HC	3								
675 676	KK KM	K1-ML					-			
677	RK	1821	.028	.035		TRAP	5	4		

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 10 of 40 7/23/2008

678	кк	M16					
679	KM						
681	BA LS	.042	60				
682	UD	.139	00				
600	vv	MT					
684	кк КМ	ML					
685	HC	2					
686	ĸĸ						
687	КМ						
688	RK	2099	.02	.035	TRAP	5	4
689	ĸĸ	M17					
690	KM	0765					
695 0AT	BA LS	.u/65	61				
693	UD	.133	•1				
694	ĸĸ	мм					
695	КM						
696	HC	2					
697	кк						
698	КМ		a	0.5-5			
699	RK	2320	.0121	.035	TRAP	10	4
700	кк	M18					
701	KM	063					
703	LS	.001	61				
704	UD	.142					
705	КК	•					
706	КM						
707	RK	2122	.017	.035	TRAP	5	4
708	кк	M 20					
709	КМ						
710	BA	.1341	£1				
712	UD	.211	01				
74.0							
713	KK KM	MN					
715	HC	4					
716	K.F.						
717	KM						
718	RK	1531	.0202	.035	TRAP	25	4
719	кк	M/21					
720	КM						
721	BA	.0241	63				
723	UD	.125	01				
	-						
724 725	KK KM						
726	RK	1322	.0212	.035	TRAP	5	4
797	~~	¥23					
728	KK KM	M2 3					
729	BA	.0461					
730	LS	120	60				
121	UD	.120					
732	КК	MO					
733 734	км нс	3					
	*10	L.					
735	KK						
136 737	KM RK	974	.0133	.035	TRAP	25	4
-		- / •					-
738	KK	M2 4					
740	BA	.0776					
741	LS		60				
742	UD	.125					
743	кк	MP					
744	KM	2					
140	нс	2					
746	KK						
747 748	км RK	290	.0138	.035	TRAP	25	4
		270					•
749	KK	M25					
749 750 751	KK KM BA	M25					
749 750 751 752	KK KM BA LS	M25	60				

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 11 of 40 7/23/2008

754	KK	MQ							
755	KM	2							
120	нĻ	2							
757	KK								
758	KM	2205	0126	0.25					
/59	RK	3305	.0136	.035	TRAP	25	4		
760	кк	M26							
761	KM								
762	BA	.1779	65						
764	UD UD	.250	65						
	05								
765	KK	MR							
766	KM	2							
101	HC	2							
768	ĸĸ	W44							
769	KM								
770	BA	.0384	C 0						
772		141	60						
	00								
773	KK								
774	KM	2020	0149	025	77 D B D	c .			
115	T.A.	2029	.0140	.055	INAL	5	4		
776	KK	W47							
777	KM								
778	BA	.0541	60						
780	UD	148	00						
•									
781	KK								
782	KM	1420	0000	0.75					
783	RK	1438	.0223	.035	TRAP	5	4		
784	КК	W46							
785	KM								
786	BA	.0418	61						
788	10	154	01						
	02								
789	KK	M27							
790	KM	0500							
791	BA LS	.0528	60						
793	UD	.132	•••						
794	KK	WX							
796	HC	6							
797	KK								
798	KM PK	2563	0125	035	TDAD	40	4		
	nuv	2000	.0125	.055	INAF	40	4		
800	KK	W48							
801	KM	1170							
802	BA LS	.11/9	61						
804	UD	.091							
805	KK								
807	RK	2400	.0188	.035	TRAP	5	4		
808	KK	W49							
809	KM BA	2651							
811	LS	.2001	61						
812	UD	.181							
813	KK KM	WZ							
815	HC	3							
816	KK								
818	RK	800	.0125	.035	TRAP	40	4		
					••••		-		
819	КК	W 50							
820	KM D N	1061							
822	LS	.1901	61						
823	UD	.145	-						
0.0.4									
⊎∠4 825	KK KM	WAB							
826	HC	2							
827	KK								
020	KM								

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 12 of 40 7/23/2008

829	RK	742	.0108	.035	TRAP	40	4		
830	кк	W51							
831	KM								
832	BA	.0546	63						
833	UD	.172	63						
0.75	VV	MAG							
836	KM	WAC							
837	HC	2							
838	кк								
839	КM								
840	RK	638	.0345	.035	TRAP	40	4		
841	KK	W52							
842	KM	0499							
844	LS	.0455	63						
845	UD	.109							
846	KK								
847	KM		0005	0.00		~			
848	KK	11/1	.0205	.035	IKAP	5	4		
849	кк	W 53							
850 851	KM BA	.0531							
852	LS		63						
823	UU	.120							
854	KK	WAD							
855 856	KM HC	2							
		-							
857 858	KK KM								
859	RK	290	.0310	.035	TRAP	10	4		
960	~~~	tar ⊑ A							
861	KM	W 34							
862	BA	.0078	60						
864	UD	.050	60						
0.65									
866	KK KM	WAE							
867	HC	3							
868	кк								
869	КM	1005		0.77		4.0			
870	RK	1925	.0052	.035	TRAP	40	4		
871	KK	W56							
872	KM BA	.1831							
874	LS		60						
875	UD	.191							
876	КК	WAF							
878 878	KM HC	2							
0.25		-							
879 880	KK KM								
881	RK	1032	.0155	.035	TRAP	40	4		
882	кк	W62							
883	KM	0000							
885 885	BA LS	.0750	60						
886	UD	.090							
887	кк								
888	KM								
889	RK	2169	.0203	.035	TRAP	5	4		
890	KK	W 63							
891 892	КМ ВА	,047							
893	LS		60						
894	UD	.109							
895	кк								
896 897	KM RK	1450	.0131	.035	TRAP	5	4		
	110	1455			1101	5	•		
898 899	KK KM	W61							
900	BA	.192							
901 902	LS	. 251	60						
546	55	.291							
903	KK	WAH							

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 13 of 40 7/23/2008

904 905	КМ HC	3										
906	KK											
907 908	KM RK	1241	.0153	.035		TRAP	5	4				
909	KK	₩57										
911	BA	.0732										
912	LS	140	60									
913	00	.140										
914	KK											
915	RK	5903	.0254	.035		TRAP	5	4				
017	ĸĸ	11 59										
918	KM											
919 920	BA	.2296	60									
921	UD	.251										
922	кк	WAI										
923	КM	-										
924	нс	د										
925	KK											
920	RK	232	.0086	.035		TRAP	15	4				
928	ĸĸ	FIA										
929	КМ	5111										
930 931	BA LS	.1151	60									
932	UD	.234										
933	кк	E1A-EA										
934 935	KM	4000	022	035		TDAD	5					
555	KK.	4000	.022	.055		INAP	5	4				
936 937	KK KM	E1B										
938	BA	.1665										
939 940	LS UD	0 .233	60									
941 942	KK KM	EA										
943	HC	2										
944	KK	EA-EB										
945 946	KIM RK	1900	.022	.035		TRAP	5	4				
947	VV	50										
948	KM	62										
949	BA	.104	50									
951	UD	.149	00									
952	кк	EB										
953	КМ											
954	нс	2										
955 956	KK	POND1	OUTE FLOW	THROUGH	SCS POND	1						
957	sv	0	.01	.28	1.12	2.70	5.18	6.00	6.94			
958 959	SE	945.5 0	946	948	950	952	954 48 5	954.5 176 4	955 351 4			
960	RS	1	ELEV	945.5								
961	KK											
962 963	KM RK	1300	0192	035		TPAD	5	4				
203	1.40	1300	.0152	.055		1144	5					
964 965	KK KM	E3										
966	BA	.090	60									
967 968	UD	.128	60									
969	кк	MH-P2										
970	KM	DIVER 1	ETRIEVE D	IVERSION	FROM W.	MERIDIA	N RD DI1	сн				
9/1	DR	DIVKTI										
972 973	KK KM	EC										
974	HC	3										
975	кк	POND2										
976 977	KM SV	1 0	ROUTE FLOW	1.11	SCS POND 3.19	2 6.89	9.52	11.08	12.82	14.72	16.70	
978	SE	920	922	924	926	928	929	929.5	930	930.5	931	
3/9	50	U	v	0	U	U	U	20	00.0	100.2	ວ ∪ວ.4	

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 14 of 40 7/23/2008
980	RS	1	ELEV	920			
981	кк						
982 983	KM RK	1700	.0141	.035	TRAP	5	4
0.9.4	vv	FIC					
985	KM	510					
986 987	BA LS	.0845	60				
988	UD	.200					
989	KK	1C-ED1					
990	KM	2450	000	0.75	77D N D		4
991	KK	3450	.022	.035	IRAP	5	4
992 993	KK	E4					
994	BA	.127					
995 996	LS	.200	60				
998	KM	EDI					
999	HC	2					
1000	кк	ED1-ED					
1001 1002	KM RK	450	.0178	.03	TRAP	5	4
1000							
1003	KK KM	E2					
1005	BA	.094	60				
1000	UD	.160	00				
1008	ĸĸ	FD					
1009	KM	-					
1010	HC	3					
1011	KK						
1012	KM RK	950	.0211	.035	TRAP	10	4
1014	VV	63					
1014	KK KM	FC					
1016	BA	.0446	50				
1018	UD	.139	60				
1019	ĸĸ	EF					
1020	KM	~					
1021	HC	2					
1022	KK						
1023	RK	1500	.0127	.035	TRAP	10	4
1025	KY	£10					
1026	KM	-					
1027 1028	BA LS	.029	60				
1029	ŪD	.158	•••				
1030	кк	EF					
1031	KM	~					
1032	нс	2					
1033	KK	F-G					
1034	RK	950	.0074	.035	TRAP	15	4
1036	ĸĸ	Fé					
1037	KM	20					
1038	BA	.119	£0				
1040	UD	.228					
1041	кк	£7					
1042	KM						
1043	BA LS	.031	60				
1045	UD	.082					
1046	кк						
1047	KM	1100	0100	035	TRAP	5	4
TOHO	R.K.	1100	.0100	.055	INT	5	7
1049 1050	KK KM	EG1					
1051	HC	2					
1052	кк	G1-G					
1053	KM	1250	0176	0.25	מגסיי	c	^
1054	ĸĸ	1650	_01/0	.035	IKAP	2	4

\\Se-srv01\projects\\057-Park Place Enterprises\\07-032-Meridian Crossing\Reports\FDR\CALCS\\SCS Calcs\\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 15 of 40 7/23/2008

1	055	KK	E9								
1	057	BA	.077	<i>c</i> 0							
1	L058 L059	LS UD	.207	60							
1	1060	кк									
j	1061	KM	1500	0.080	0.3	TOND	5	^			
	002	RK.	1300	,0000	.05	INF	5	1			
1	L063 L064	KK KM	E11								
:	1065 1066	BA LS	.045	60							
	1067	UD	.195								
:	1068	кк	E12								
	1069 1070	KM BA	.092								
	1071	LS UD	.156	60							
	1072										
	1073	KM	EG								
	1075	HC	5								
	1076	KK KM	E13								
	1078	BA	.0165	60							
	1079 1080	LS UD	.252	60							
	1081	кк	E14								
	1082	KM BA	0051								
	1083	LS	.0051	60							
	1085	UD	.153								
	1086 1087	KK KM									
	1088	RK	279	.0108	.03	TRAP	5	4			
	1089	KK	EH								
	1090	HC	3								
	1092	кк									
	1093	KM BK	2400	.0204	.035	TRAP	10	4			
	1095	кк	F19								
	1096	КM									
	1097 1098	BA LS	.0406	62							
	1099	UD	.127								
	1100	KK	EJ1								
	1102	HC	2								
	1103	кк	J1-K								
	1104 1105	KM RK	4013	.013	.035	TRAP	10	4			
	1106	ĸĸ	F15								
	1107	КМ									
	1108	BA LS	.0355	63							
	1110	UD	.097								
	1111	KK									
	1112	RK	951	.0189	.035	TRAP	5	4			
	1114	KK	E16								
	1115 1116	KM BA	.0307								
	1117	LS	100	63						-	
	1110	00	.100								
	1119	KK KM	El								
	1121	HC	2								
	1122	KK KM									
	1124	RK	1334	.0105	.035	TRAP	5	4			
	1125	кк	E17								
	1126 1127	KM BA	.0312								
	1128	LS	007	63							
	1122	00	.051								

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 16 of 40 7/23/2008

1130 1131 1132	KK KM RK	1728	.0145	.035	TRAP	5	4			
1133 1134 1135 1136 1137	KK KM BA LS UD	E18 .0488 .180	63							
1138 1139 1140	КК КМ НС	EJ2 3								
1141 1142 1143	KK KM RK	4221	.0123	.035	TRAP	20	4			
1144 1145 1146 1147 1148	KK KM BA LS UD	E23 .1683 .250	62							
1149 1150 1151 1152 1153	KK KM BA LS UD	E24 .140 .371	63							
1154 1155 1156	КК КМ НС	ЕК 4								
1157 1158 1159	KK KM RK	2817	.0149	.035	TRAP	25	4			
1160 1161 1162 1163 1164	KK KM BA LS UD	E21 .0873 .183	60							
1165 1166 1167	KK KM RK	1647	.0121	.035	TRAP	5	4			
1168 1169 1170 1171 1172	KK KM BA LS UD	E20 .0771 .219	62							
1173 1174 1175	KK KM RK	569	.0141	.035	TRAP	5	4			
1176 1177 1178 1179 1180	KK KM BA LS UD	E22 .0677 .240	61							
1181 1182 1183	KK KM HC	EL 3								
1184 1185 1186	KK KM RK	2041	.0162	.035	TRAP	25	4			
1187 1188 1189 1190 1191	KK KM BA LS UD	E25 .1665 .176	61							
1192 1193 1194	КК КМ НС	ЕМ 3						-		
1195 1196 1197	KK KM RK	928	.0108	.035	TRAP	40	4			
1198 1199 1200 1201 1202	KK KM BA LS UD	E26 .0361 .096	63							
1203 1204 1205	KK KM HC	EN 2								

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 17 of 40 7/23/2008

1206	KK						
1207	KM	1000	0105	0.07		10	
1208	КK	1832	.0126	.035	TRAP	40	4
1209	KV	F 27					
1209	KM	627					
1211	BA	. 1236					
1212	LS	.1200	63				
1213	UD	.172					
1210	00						
1214	KK	EO					
1215	КM						
1216	HC	2					
1217	KK						
1218	KM						
1219	RK	1625	.0133	.035	TRAP	5	3
1220	KK	W55					
1221	KM						
1222	BA	.0452	60				
1224	11D CT	003	00				
1224	υu	.095					
1225	ĸĸ	WAC.					
1226	KM	nno.					
1227	HC	2					
'		2					
1228	ĸĸ						
1229	KM						
1230	RK	2025	.0109	.035	TRAP	5	4
		-					
1231	KK	W59					
1232	KM						
1233	BA	.0705					
1234	LS		60				
1235	UD	.200					
1236	KK	WAJ					
1237	KM						
1238	HC	4					
1239	KK						
1240	KM	1 45 0	0104	0.25	777 7 7	40	
1241	RK	1450	.0124	.035	TRAP	40	4
1242	ĸĸ	F28					
1243	KM	520					
1244	RA	.0718					
1245	LS		61				
1246	UD	.223	01				
	55						
1247	KK						
1248	КМ						
1249	RK	2064	.0165	.035	TRAP	40	4
1250	KK	E29					
1251	KM						
1252	BA	.0465					
1253	LS		61				
1254	UD	.166					
1255	KK	EZZ					
1256	KM	, c	COMBINE E2	9 & E30 AT DP ZZ			
1257	HC	2					
1258	KK	W60					
1259	KM	0711					
1260	BA	.0711	60				
1262	122	100	60				
1202	UD	.182					
1263	кк	77					
1264	KM		COMBINE AT	L AT DP 77			
1265	HC	્રે					
1266	22	5					

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 18 of 40 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 20 of 40 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfa125.doc Page 22 of 40 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 23 of 40 7/23/2008

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 24 of 40 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 26 of 40 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 27 of 40 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 28 of 40 7/23/2008

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION

******* * * FLOOD HYDROGRAPH PACKAGE (HEC-1) JUN 1998 VERSION 4.1 . U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104 * ÷ RUN DATE 28SEP07 TIME 11:57:06 * ******

FALCON BASIN 5-YR/ 24-HOUR FLOOD/ EXISTING CONDITIONS
UPPER EAST TRIBUTARY (WOODMEN HILLS) BASED ON CLOMR APPROVED 2/2/99
INCLUDING 2 EXISTING SCS STOCK PONDS, WEST WOODMEN HILLS POND
NOTE: M1-M4 (PAINT BRUSH HILLS) MODELED AS HISTORIC TO ACCOUNT FOR
DETENTION POND AT MC
NOTE: NO CULVERT AT STAPLETON & MERIDIAN, TEMP CULVERTS AT MERIDIAN
DOWNSTREAM OF WOODMEN HILLS DRIVE (DIVERSION)

9 IO OUTPUT CONTROL VARIABLES IPRNT IPLOT

- 5 PRINT CONTROL 0 PLOT CONTROL
- QSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH TIME DATA IΤ

JORAPH 11ML	DAIA	
NMIN	5	MINUTES IN COMPUTATION INTERVAL
IDATE	14JUL99	STARTING DATE
ITIME	0800	STARTING TIME
NQ	300	NUMBER OF HYDROGRAPH ORDINATES
NDDATE	15JUL99	ENDING DATE
NDTIME	0855	ENDING TIME
ICENT	19	CENTURY MARK

COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS

ENGLISH UNITS

1

DRAINAGE AREA	SQUARE MILES
PRECIPITATION DEPTH	INCHES
LENGTH, ELEVATION	FEET
FLOW	CUBIC FEET PER SECOND
STORAGE VOLUME	ACRE-FEET
SURFACE AREA	ACRES
TEMPERATURE	DEGREES FAHRENHEIT

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

OPERATION	STATION	PEAK	TIME OF	AVERAGE	FLOW FOR MAXI	MUM PERIOD	BASIN	MAXIMUM	TIME OF
				6-HOUR	24-HOUR	72-HOUR	INDA	JINGE	MAA SIAGE
HYDROGRAPH AT	W1	5.	5.83	1.	ο.	ο.	.05		
ROUTED TO		4.	5,92	1.	٥.	0.	.05		
HYDROGRAPH AT	W2	2.	5,83	0.	0.	0.	. 03		
2 COMBINED AT	WA	6	5 92	1	0	0			
ROUTED TO	ЧĄ	0.	5.92	1.	0.	0.	.08		
HYDROGRAPH AT		θ.	5.92	1.	0.	0.	.08		
2 COMBINED AT	W3	5.	5.83	1.	0.	0.	.05		
	WB	11.	5.92	2.	1.	1.	.13		
ROUTED TO		10.	5.92	2.	1.	1.	.13		
HYDROGRAPH AT	₩4	1.	5.75	0.	0.	0.	.01		
ROUTED TO		1.	5.83	0.	0.	0.	.01		
HYDROGRAPH AT	W 5	2.	5.75	0.	0.	0.	.02		
3 COMBINED AT	WC	11.	5.92	2.	1.	1.	.15		
ROUTED TO						- *			

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 30 of 40 7/23/2008

			11.	5.92	2.	1.	1.	.15	
н	YDROGRAPH AT	W6	5.	5.83	1.	0.	0.	.05	
R	OUTED TO		5.	5.83	1.	0.	0.	.05	
н	YDROGRAPH AT	W 7	2.	5.75	0.	0.	0.	.02	
R	OUTED TO		2.	5.83	0.	0.	0.	.02	
2	COMBINED AT	WD	7.	5.83	1.	0.	ο.	.07	
R	OUTED TO	D-E	6.	5.83	1.	0.	0.	.07	
н	YDROGRAPH AT	W 8	з.	5.75	0.	0.	0.	.03	
R	OUTED TO		з.	5.83	0.	0.	0.	.03	
н	IYDROGRAPH AT	W9	5.	5.83	1.	0.	0.	.04	
3	COMBINED AT	WE	14.	5.83	2.	1.	1.	.14	
R	ROUTED TO	E-F	13.	5.92	2.	1.	1.	.14	
н	IYDROGRAPH AT	W10	5.	5.83	1.	0.	0.	.04	
P	ROUTED TO		5.	5.83	1.	0.	ο.	.04	
Н	YDROGRAPH AT	W11	з.	5.75	0.	0.	0.	.03	
4	COMBINED AT	WF	29.	5.92	5.	2.	2.	.36	
F	ROUTED TO	F-G	28.	6.00	5.	2.	2.	.36	
H	IYDROGRAPH AT	W12	4.	5.83	1.	0.	٥.	.04	
F	ROUTED TO		4.	5.92	1.	0.	0.	.04	
ł	YDROGRAPH AT	W14	5.	5.83	1.	0.	0.	.05	
F	ROUTED TO		5.	5,92	1.	ο.	0.	.05	
ł	HYDROGRAPH AT	W13	10.	5.92	2.	1.	1.	.11	
4	4 COMBINED AT	WG	43.	6.00	8.	3.	3.	.56	
F	ROUTED TO	G-H	41.	6.08	8.	3.	3.	.56	
F	ROUTED TO		39.	6.17	8.	3.	з.	.56	
F	HYDROGRAPH AT	W15	10.	5.83	1.	1.	1.	.09	
I	ROUTED TO		9.	5.92	1	1.	1.	.09	
:	2 COMBINED AT	WH	43.	6.17	9.	4.	4.	. 65	
I	HYDROGRAPH AT	W16	4.	5.83	0.	ο.	0.	.03	
1	ROUTED TO		з.	5.92	0.	0.	0.	.03	
1	HYDROGRAPH AT	W17	2.	5.83	0.	0.	0.	.02	
:	2 COMBINED AT	WI	5.	5.83	1.	0.	0.	.05	

Į

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 31 of 40 7/23/2008

	ROUTED TO	I-M	5.	6.00	1.	0.	0.	.05	
	HYDROGRAPH AT	W19	5.	5.75	1.	0.	0.	.04	
	ROUTED TO		5.	5.83	1.	0.	0.	.04	
	HYDROGRAPH AT	W20	5.	5.75	ο.	0.	0.	.03	
	2 COMBINED AT	WJ	9.	5.83	1.	0.	0.	- 07	
	ROUTED TO		9.	6.00	1.	0.	0.	.07	
	HYDROGRAPH AT	W21	11.	5.83	2.	1.	1.	.13	
	2 COMBINED AT	WK	18.	5.92	3.	1.	1.	.21	
	ROUTED TO		16.	5.92	3.	1.	1.	.21	
	HYDROGRAPH AT	₩22	2.	5.75	0.	Ο.	0.	.01	
	2 COMBINED AT	WL	17.	5.92	3.	1.	1.	.22	
	ROUTED TO		17.	6.00	з.	1.	1.	.22	
	HYDROGRAPH AT	W23	2.	5.83	0.	0.	٥.	.02	
	HYDROGRAPH AT	W18	9.	5.92	2.	1.	1.	.13	
	5 COMBINED AT	ŴM	66.	6.08	15.	б.	ō.	1.06	
	ROUTED TO	M-N	65.	6.17	15.	6.	б.	1.06	
	HYDROGRAPH AT	W24	4.	5.83	1.	0.	٥.	.04	
	HYDROGRAPH AT	W25	8.	5.92	1.	1.	1.	.10	
	3 COMBINED AT	WN	70.	6.17	17.	7.	7.	1,20	
	ROUTED TO	N-P	67	6.25	16	7	7	1 20	
	HYDROGRAPH AT	W28	7	5.83	1	0	0	04	
	ROUTED TO	#20	۰.	5.00	1	0.	0.	.04	
	HYDROGRAPH AT	M20		5.92	1.	0.	0.	.04	
-	ROUTED TO	N 30	9.	5.03	1.	0.	0.	.05	
-	HYDROGRAPH AT	1420	8.	5,92	1.	0.	0.	.05	
	HYDROGRAPH AT	W29	÷.	5.83	1.	0.	0.	.04	
÷	4 COMBINED AT	W31	3.	5.75 •	0.	0.	0.	.01	
•	ROUTED TO	WO	20.	5.92	3.	1.	1.	.14	
•	HYDROGRAPH AT	0-P	20.	6.00	3.	1.	1.	.14	
+	ROUTED TO	W26	7.	5.75	1.	υ.	0.	.03	
÷	HYDROGRAPH AT		6.	6.08	1.	υ.	0.	.03	
•	HYDROGRAPH AT	W27	10.	6.00	2.	1.	1.	.16	
+		W32	7.	5,92	1.	Ο.	0.	.09	

•

÷

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 32 of 40 7/23/2008

	5 COMBINED AT	WP	88.	6.17	23.	10.	9.	1.63		
	ROUTED TO	P-Q	87.	6.25	23.	10.	9.	1.63		
	HYDROGRAPH AT	W33A	9.	5.92	2.	1.	1.	.13		
	2 COMBINED AT	WP1	91.	6.25	24.	10.	10.	1.75		
	ROUTED TO	P1-Q	90.	6.33	24.	10.	10.	1.75		
÷	HYDROGRAPH AT	W33B	9.	5.92	2.	1.	1.	.14		
÷	HYDROGRAPH AT	W34A	9.	5.92	2.	1.	1.	.13		
F	ROUTED TO	34A-P2	9.	6.08	2.	1.	1.	.13		
÷	HYDROGRAPH AT	W34B	11.	5.92	2.	1.	1.	.18		
÷	2 COMBINED AT	WP2	18.	6.00	4.	2.	2.	.30		
+	ROUTED TO	P2-Q	18.	6.17	4.	2.	2.	.30		
+	HYDROGRAPH AT	W34C	10.	6.00	2.	1.	1.	- .16		
+	4 COMBINED AT	WQ	114.	6.25	32.	13.	13.	2.36		
+	ROUTED TO	Q-Q1	113.	6.33	32.	13.	13.	2.36		
+	HYDROGRAPH AT	W36A	9.	5.92	2.	1.	1.	.14		
+	2 COMBINED AT	WQ1	118,	6.33	33.	14.	14.	2.50		
+	ROUTED TO	Q1-R	117.	6.42	33.	14.	14.	2.50		
+	HYDROGRAPH AT	W36B	10.	6.00	2.	1.	1.	.19		
+	HYDROGRAPH AT	W35A	7.	5.92	1.	1.	1.	.10		
+	ROUTED TO	35A-WR	6.	6.25	1.	1.	1.	.10		
+	HYDROGRAPH AT	W35B	9.	6.00	2.	1.	1.	.15		
+	4 COMBINED AT	WR	131.	6.42	38.	17.	16.	2.94		
+	ROUTED TO	WR-S	130.	6.50	38.	16.	16.	2.94		
+	HYDROGRAPH AT	W37A	8.	5.92	1.	1.	1.	.11		
+	ROUTED TO	37A-S	8.	6.00	1.	1.	1.	.11		
+	HYDROGRAPH AT	W37B	13.	5,92	2.	1.	1.	.16		
+	3 COMBINED AT	ws	137.	6.50	42.	18.	17.	3.21		
+	ROUTED TO	S-T	134.	6.67	42.	18.	17.	3.21		
+	HYDROGRAPH AT	W 38	10.	5.92	2.	1.	1.	.09		
+	ROUTED TO		9.	6.08	2.	1.	1.	.09		
+	HYDROGRAPH AT	W39	11.	6.00	2.	1.	1.	.18		

HYDROGRAPH AT

i

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 33 of 40 7/23/2008

	W40	7.	5.83	1.	1.	1.	.10
4 COMBINED AT	WT	143.	6.58	46.	20.	19.	3.59
ROUTED TO	T-U	142.	6.67	46.	20.	19.	3.59
HYDROGRAPH AT	W41	6.	5.83	1.	0.	0.	.06
HYDROGRAPH AT	W42	50.	5.75	5.	2.	2.	.06
ROUTED TO	U-V	49.	5.83	5.	2.	2.	.06
3 COMBINED AT	WU	148.	6.67	51.	22.	21.	3.70
ROUTED TO		146.	6.75	51.	22.	21.	3.70
HYDROGRAPH AT	W43	13.	5.83	2.	1.	1.	.15
2 COMBINED AT	wv	149.	6.75	53.	23.	22.	3.85
ROUTED TO	V-W	148.	6.75	53.	23.		3.85
HYDROGRAPH AT	. n w45	17	5,92		1	1	. 19
2 COMBINED AT	515J	150	6 75	5.		22	4.04
ROUTED TO	WW.	152.	0,/0		24. 24	23.	4.04
HYDROGRAPH AT	₩-X	149.	0.83	55.	24.	23.	4.04
ROUTED TO	M1	1.	5.83	1.	υ.	0.	.07
HYDROGRAPH AT	20	٥.	5.83	1.	U.	0.	.07
2 COMBINED AT	M2	3.	5.83	υ.	U.	0.	.03
ROUTED TO	MB	9.	5.83	1.	1.	0.	.09
HYDROGRAPH AT		θ.	5.92	1.	1.	0.	.09
ROUTED TO	M4	3.	5.83	0.	0.	0.	.03
HYDROGRAPH AT		3.	5.83	0.	0.	0.	.03
3 COMBINED AT	МЗ	2.	5.75	0.	0.	0.	.01
ROUTED TO	MC	11.	5.83	2.	1.	1.	.14
HYDROGRAPH AT		11.	6,00	2.	1.	1.	.14
ROUTED TO	M 5	6.	5.75	1.	0.	0.	.02
HYDROCPADE AT		6.	5,92	1.	0.	0.	.02
3 COMBINED AT	Me	10.	5.92	2.	1.	1.	.06
BOUTED TO	MD	26.	5.92	4.	2.	2.	.22
KUULLU IU		25.	6.08	4.	2.	2.	.22
HIDKUGKAPN AT	M7	16.	5.83	2.	1.	1.	.05
KUUIED TO		15.	5.92	2.	1.	1.	.05
HIDROGRAPH AT	M8	4.	5.83	1.	0.	0.	.04

+

+

+

+

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 34 of 40 7/23/2008

2 COMBINED AT	ME	18.	5.83	2.	1.	1.	.09		
ROUTED TO		18.	6.00	2.	1.	1.	.09		
HYDROGRAPH AT	м9	٦.	5.75	1.	ο.	0.	.02		
ROUTED TO		6.	5.92	1.	ο.	0.	.02		
HYDROGRAPH AT	M 12A	5.	5.83	1.	0.	0.	.07		
HYDROGRAPH AT	M12B	10.	5.92	2.	1.	1.	.15		
5 COMBINED AT	MF	59.	6.00	10.	4.	4.	.54		
ROUTED TO		57.	6.08	10.	4.	4.	.54		
HYDROGRAPH AT	M13	10.	5.83	1.	1.	0.	.06		
ROUTED TO		9.	6.00	1.	1.	0.	.06		
HYDROGRAPH AT	M14	22.	5.92	4.	1.	1.	.16		
2 COMBINED AT	MG	30.	5.92	• 5.	2.	2.	.22		
ROUTED TO	PONDW	9.	6.50	5.	2.	2.	.22		
2 COMBINED AT								969.11	6.50
ROUTED TO	MH	64.	6.08	14.	6.	5.	.11		
DIVERSION TO		62.	6.17	14.	6.	5.	.77		
HYDROCRAPH AT	DIVRT1	61.	6.17	14.	6.	5.	.77		
MUDDOGDADU AT	MH-P2	1.	6.17	Ο.	0.	0.	.77		
HIDROGRAPH AI	M15	18.	5.92	3.	1.	1.	.12		
Z COMBINED AT	MI	18.	5.92	3.	1.	1.	.89		
ROUTED TO		17.	6.00	3.	1.	1.	.89		
HYDROGRAPH AT	M19	5.	5,83	1.	0.	0.	.05		
2 COMBINED AT	MJ	20.	6.00	3.	1.	1.	.94		
ROUTED TO		20.	6.08	3.	1.	1.	.94		
HYDROGRAPH AT	M 10	8.	5.83	1.	0.	0.	.06		
ROUTED TO	M10-K	8.	5.92	1.	0.	٥.	.06		
HYDROGRAPH AT	MIIA	8.	5.92	2.	1.	1.	.11		
2 COMBINED AT	МК	16.	5.92	3.	1.	1.	.16		
ROUTED TO	MK-K1	16.	6.00	3.	1.	1.	.16		
HYDROGRAPH AT	M11B	7.	5.83	1.	0.	0.	.09		
ROUTED TO	118-к1	7.	6.00	1.	0.	٥.	.09		
HYDROGRAPH AT	M11C	7.	5.83	1.	1.	0.	.09		

3 COMBINED AT

+

+

+

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 35 of 40 7/23/2008

		MK1	27.	6.00	5.	2.	2.	.35	
÷	ROUTED TO	K1-ML	26.	6.00	5.	2.	2.	.35	
ŀ	HYDROGRAPH AT	M16	4.	5.83	1.	ο.	0.	.04	
	2 COMBINED AT	MI.	28.	6.00	5.	2.	2.	. 39	
+	ROUTED TO		28.	6.08	5.	2.	2.	. 39	
	HYDROGRAPH AT	M1 7	9	5 83	,	0	0	08	
Ŧ	2 COMBINED AT	H1,		5.05			· · ·		
+	ROUTED TO	MM	31.	6.08	7.	3.	з.	.40	
+	HYDROGRAPH AT		29.	6.17	7.	3.	3.	.46	
ŧ	BOUTED TO	M18	7.	5.83	1.	0.	0.	.06	
+			6.	6.00	1.	0.	0.	.06	
+	HIDROGRAPH AI	M20	11.	5.92	2.	1.	1.	.13	
+	4 COMBINED AT	MN -	57.	6.17	13.	5.	5.	1,60	
+	ROUTED TO		55.	6.25	13.	5.	5.	1.60	
+	HYDROGRAPH AT	M21	3.	5,83	0.	0.	0.	.02	
+	ROUTED TO		з.	5.92	0.	0.	0.	.02	
+	HYDROGRAPH AT	M23	4.	5.83	1.	٥.	0.	.05	
+	3 COMBINED AT	MO	57.	6.25	14.	6.	5.	1.67	
+	ROUTED TO		56.	6.25	14.	6.	5.	1.67	
+	HYDROGRAPH AT	M24	7.	5.83	1.	ο.	0.	.08	
+	2 COMBINED AT	MP	58.	6.25	15.	6.	6.	1.75	
+	ROUTED TO		57.	6.25	15.	6.	6.	1.75	
	HYDROGRAPH AT	M25	1	5.83	0.	0.	0.	.01	
•	2 COMBINED AT	MO		6.05	15	6	6	1 76	
•	ROUTED TO	nQ		0.20		· ·	· · ·	1.70	
+	HYDROGRAPH AT		57.	6.42	15.	۰.	۰.	1./0	
+	2 COMBINED AT	M26	26.	5.92	4.	2.	2.	.18	
+	HYDROGRAPH AT	MR	66.	6.42	18.	8.	7.	1.94	
+	ROUTED TO	W44	3.	5.83	1.	0.	0.	.04	
+	UVDBOCDEDU AT		3.	6.00	1.	0.	0.	.04	
+	HIDROGRAPH AT	W47	4.	5,83	1.	0.	0.	.05	
•	ROUTED TO		4.	5.92	1.	0.	0.	.05	
+	HYDROGRAPH AT	W46	4.	5.83	1.	0.	0.	.04	
+	HYDROGRAPH AT	M2 7	5.	5.83	1.	0.	0.	.05	

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 36 of 40 7/23/2008

6 COMBINED AT	WX	192.	6.75	76.	33.	31.	6.17	
ROUTED TO		191.	6.83	76.	32.	31.	6.17	
HYDROGRAPH AT	W48	14.	5.83	2.	1.	1.	.12	
ROUTED TO		14.	5.92	2.	1.	1.	.12	
HYDROGRAPH AT	W49	24.	5.92	4.	2.	2.	.27	
3 COMBINED AT	WZ	199.	6.83	81.	35.	34.	6.55	
ROUTED TO		196.	6.92	81.	35.	34.	6.55	
HYDROGRAPH AT	W50	11.	5.83	2.	1.	1.	.11	
2 COMBINED AT	WAB	198.	6.92	83.	35.	34.	6.66	
ROUTED TO		198.	6.92	83.	35.	34.	6.66	
HYDROGRAPH AT	W51	7.	5.83	1.	0.	0.	.05	
2 COMBINED AT	WAC	199.	6.92	83.	36.	34.	6.71	
ROUTED TO		198.	6.92	83.	36.	34.	6.71	
HYDROGRAPH AT	W52	9.	5.83	۱.	0.	0.	.05	
ROUTED TO		8.	5.83	1.	0.	0.	.05	
HYDROGRAPH AT	W53	8.	5.83	1.	0.	0.	.05	
2 COMBINED AT	WAD	16.	5.83	2.	1.	1.	.10	
ROUTED TO		14.	5.83	2.	1.	1.	.10	
HYDROGRAPH AT	W54	1.	5.75	0.	0.	ο.	.01	
3 COMBINED AT	WAE	200.	6.92	85.	37.	35.	6.82	
ROUTED TO		199.	7.00	85.	36.	35.	6.82	
HYDROGRAPH AT	W56	13.	5.92	2.	1.	1.	.18	
2 COMBINED AT	WAF	202.	7.00	87.	37.	36.	7.01	
ROUTED TO		200.	7.00	87.	37.	36.	7.01	
HYDROGRAPH AT	W62	7.	5.83	1.	0.	0.	.08	
ROUTED TO		7.	5,92	1.	0.	0.	.08	
HYDROGRAPH AT	W63	5.	5.83	1.	0.	0.	.05	
ROUTED TO		4.	5.92	1.	0.	0.	.05	
HYDROGRAPH AT	W61	11.	6.00	3.	1.	1.	.19	
3 COMBINED AT	WAH	22.	5.92	4.	2.	2.	.31	
ROUTED TO		21.	6.00	4 .	2.	2.	.31	
HYDROGRAPH AT	W57	6.	5.83	1.	0.	0.	.07	

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 37 of 40 7/23/2008

+

ROUTED TO		6.	6.25	1.	0.	0.	.07			
HYDROGRAPH AT	W58	13.	6.00	3.	1.	1.	.23			
3 COMBINED AT	WAI	35.	6.00	8.	3.	3.	. 62			
ROUTED TO		34.	6.00	8.	3.	3.	.62			
HYDROGRAPH AT	E1A	7.	5.92	2.	1.	1.	.12			
ROUTED TO	E1A-EA	7.	6.17	1.	1.	1.	.12			
HYDROGRAPH AT	Ē1B	10.	5.92	2.	1.	1.	.17			
2 COMBINED AT	EA	13.	6.17	4.	2.	1.	.28			
ROUTED TO	EA-EB	13.	6.25	4.	2.	1.	.28			
HYDROGRAPH AT	E2	9.	5.83	1.	1.	1.	.10			
2 COMBINED AT	EB	16.	6.25	5.	2.	2.	.39			
ROUTED TO	POND1	2.	14.92	2.	1.	1.	. 39			
ROUTED TO								952.08	14.92	
HYDROGRAPH AT		2.	15.00	2.	1.	1.	.39			
HYDROGRAPH AT	E3	8.	5.83	1.	0.	0.	.09			
2 COMPLIED AT	MH-P2	61.	6.17	14.	6.	5.	.00			
DOUTED TO	EC	64.	6.17	15.	7.	7.	.48			
ROOTED TO	POND2	6.	19.83	6.	2.	2.	. 48	929.13	19.83	
ROUTED TO		б.	20.00	6.	2.	2.	.48			
HYDROGRAPH AT	E1C	б.	5.92	1.	0.	0.	.08			
ROUTED TO	1C-ED1	5.	6.17	1.	0.	0.	.08			
HYDROGRAPH AT	E4	9.	5.92	2.	1.	1.	.13			
2 COMBINED AT	ED1	10.	6.17	3.	1.	1.	.21			
ROUTED TO	ED1-ED	10.	6.17	3.	1.	1.	.21			
HYDROGRAPH AT	E5	٦.	5,83	1.	1.	0.	.09			
3 COMBINED AT	ED	15.	5.92	7.	4.	з.	.78			
ROUTED TO		14.	5.92	7.	4.	3.	.78			
HYDROGRAPH AT	E8	4.	5.83	1.	0.	0.	.04			
2 COMBINED AT	EE	18.	5.92	7.	4.	4.	.83			
ROUTED TO		17.	6.00	7.	4.	4.	.83			
HYDROGRAPH AT	E10	2.	5.83	0.	0.	٥.	.03			
2 COMBINED AT	EF	19.	6.00	7.	4.	4.	.85			

. .

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 38 of 40 7/23/2008

+

ROUTED TO	F-G	18.	6.08	7.	4.	4.	.85		
HYDROGRAPH AT	E6	7.	5.92	2.	1.	1.	.12		
HYDROGRAPH AT	E7	з.	5.75	0.	0.	0.	.03		
ROUTED TO		з.	5.92	0.	0.	0.	.03		
2 COMBINED AT	EG1	10.	5.92	2.	1.	1.	.15		
ROUTED TO	G1-G	10.	6.00	2.	1.	1.	.15		
HYDROGRAPH AT	E9	5.	5.92	1.	0.	0.	.08		
ROUTED TO		5.	6.00	1.	0.	0.	.08		
HYDROGRAPH AT	E11	3.	5.92	1.	٥.	ο.	.05		
HYDROGRAPH AT	E12	7.	5.83	1.	1.	0.	.09		
5 COMBINED AT	EG	37.	6.08	10.	6.	6.	1.22		
HYDROGRAPH AT	£13	1.	6.00	0.	0.	0.	.02		
HYDROGRAPH AT	E14	0.	5.83	0.	٥.	0.	.01	·	
ROUTED TO		0.	5.92	0.	0.	0.	.01		
3 COMBINED AT	EH	39.	6.00	10.	6.	6.	1.24		
ROUTED TO		39.	6.17	10.	6.	6.	1.24		
HYDROGRAPH AT	E19	6.	5.83	1.	0.	0.	.04		
2 COMBINED AT	EJ1	39.	6.17	10.	6.	6.	1.28		
ROUTED TO	J1-K	39.	6.25	10.	6.	6.	1.28		
HYDROGRAPH AT	E15	6.	5.83	1.	0.	0.	.04		
ROUTED TO		6.	5.83	1.	٥.	0.	.04		
HYDROGRAPH AT	E16	5.	5.83	1.	0.	0.	.03		
2 COMBINED AT	EI	11.	5.83	1.	0.	0.	.07		
ROUTED TO		10.	5.92	1.	0.	0.	.07		
HYDROGRAPH AT	E17	5.	5.83	1.	0.	0.	.03		
ROUTED TO		5.	5.92	1.	0.	0.	.03		
HYDROGRAPH AT	E18	6.	5.92	1.	٥.	٥.	.05		
3 COMBINED AT	EJ2	22.	5.92	3.	1.	1.	.15		
ROUTED TO		19.	6.25	3.	1.	1.	.15		
HYDROGRAPH AT	E 23	15.	5.92	3.	1.	1.	.17		
HYDROGRAPH AT	E24	11.	6.08	3.	1.	1.	.14		

4 COMBINED AT

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 39 of 40 7/23/2008

	EK	76.	6.25	18.	10.	9.	1.74	
ROUTED TO		69.	6.42	18.	9.	9.	1.74	
HYDROGRAPH AT	E21	6.	5.92	1.	0.	0.	.09	
ROUTED TO		6.	6.00	1.	0.	0.	.09	
HYDROGRAPH AT	E20	8.	5.92	1.	1.	1.	.08	
ROUTED TO		7.	6.00	1.	1.	1.	.08	
HYDROGRAPH AT	E22	5.	5.92	1.	0.	0.	.07	
3 COMBINED AT	EL	18.	6.00	3.	1.	1.	.23	
ROUTED TO		17.	6.08	З.	1.	1.	.23	
HYDROGRAPH AT	E25	15.	5.92	3.	1.	1.	.17	
3 COMBINED AT	ЕМ	85.	6.33	24.	12.	11.	2.13	
ROUTED TO		84.	6.42	24.	12.	11.	2.13	
HYDROGRAPH AT	E26	б.	5.83	1.	0.	0.	.04	
2 COMBINED AT	EN	85.	6.42	25.	12.	12.	2.17	
ROUTED TO		84.	6.50	24.	12.	12.	2.17	
HYDROGRAPH AT	E27	17.	5.83	2.	1.	1.	.12	
2 COMBINED AT	EO	87.	6.50	26.	13.	13.	2.29	
ROUTED TO		84.	6.58	26.	13.	12	2.29	
HYDROGRAPH AT	W55	5.	5.83	1.	0.	0.	.05	
2 COMBINED AT	WAG	85.	6.58	27.	13.	13.	2.34	
ROUTED TO		84.	6.58	27.	13.	13.	2.34	
HYDROGRAPH AT	W59	5.	5.92	1.	0.	0.	.07	
4 COMBINED AT	WAJ	269.	7.00	122.	54.	52.	10.03	
ROUTED TO		267.	7.00	122.	54.	52.	10.03	
HYDROGRAPH AT	E28	6.	5.92	1.	0.	0.	.07	
ROUTED TO		6.	6.17	1.	0.	0.	.07	
HYDROGRAPH AT	E29	4.	5.83	1.	0.	Ο.	.05	
2 COMBINED AT	EZZ	7.	6.17	2.	1.	1.	.12	
HYDROGRAPH AT	W60	5.	5.92	1.	0.	0.	.07	
3 COMBINED AT	ZZ	271.	7.00	125.	55.	53.	10.22	

*** NORMAL END OF HEC-1 ***

.

FLOC	ND HYDROGRAPH	PACKAGE	(HEC-1)
1 000	JUN INDICOLULI	1998	(
	VERSION	4.1	

***	*******************************	***
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*
***	* * * * * * * * * * * * * * * * * * * *	***

х	х	XXXXXXX	XX	XXX		х
х	х	х	х	х		XX
х	х	х	х			х
XXXX	XXX	XXXX	х		XXXXX	х
х	х	х	х			х
Х	х	х	х	х		х
х	х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HECIDB, AND HECIKW.

.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1	ID	FALCON	BASTN 1	00-YB/ 2	4-HOUR	LOOD/ EX	ISTING C	ONDITION	s		
2	ID	UP	PER EAST	TRIBUTA	RY (WOOI	MEN HILL	S) BASED	ON CLOM	R APPROV	ÆD 2/2/9	9
3	ID	IN	CLUDING	2 EXISTI	NG SCS S	TOCK PON	DS, WEST	WOODMEN	HILLS H	POND	
4		NO	DETE: MI-M	4 (PAINI NTION PO	ND AT M	TLLS/ MO	DELED AS	HISTORI	C TO ACC	JUNI FUR	
6	ID	NO	TE: NO C	ULVERT A	T STAPLE	TON & ME	RIDIAN,	TEMP CUL	VERTS AT	MERIDIA	N
7	ID		DOWN	STREAM O	F WOODM	EN HILLS	DRIVE (D	IVERSION)		
8	*DIA TT	GRAM 5 1	4.πII.99	800	300						
9	10	5									
10	VV	W1									
11	KM										
12	BA	.0479									
13	PB	4.4									
14	IN	15	0015	0030	0045	0060	0080	0100	0120	0143	0165
16	PC	.0188	.0210	.0233	.0255	.0278	.0320	.0390	.0460	.0530	.0600
17	PC	.0750	.1000	.4000	.7000	.7250	.7500	.7650	.7800	.7900	.8000
18	PC	.8100	.8200	.8250	.8300	.8350	.8400	.8450	.8500	.8550	.8600
20	PC	9013	9050	9083	9115	9148	.8825	9210	9240	9270	9300
21	PC	.9325	.9350	.9375	.9400	.9425	.9450	.9475	.9500	.9525	.9550
22	PC	.9575	.9600	.9625	.9650	.9675	.9700	.9725	.9750	.9775	.9800
23	PC	.9813	.9825	.9838	.9850	.9863	.9875	.9888	.9900	.9913	.9925
24	LS	.9930	.9950 60	.9963	.9973	.9900	1.000				
26	UD	.097									
22	VV										
28	KM										
29	RK	1519	.0263	.035		TRAP	5	4			
2.0											
30	KK. KM	WZ									
32	BA	.0278									
33	LS		60								
34	UD	.160									
35	кк	WA									
36	KM	_									
37	HC	2									
38	кк										
39	КМ										
40	RK	464	.0151	.035		TRAP	5	4			
41	кк	W 3									
42	KM										
43	BA	.0498	<i>c</i> 1								
44 45	LS UD	.139	91								
	02										
46	KK	WB									
47	KM HC	2									
49	KK										
50 51	KM RK	823	0279	.035		TRAP	5	4		54	
52	KK	W4									
53 54	KM BA	0054									
55	LS		62								
56	UD	.044									
57	кк										
58	KM										
59	RK	1078	.0482	.035		TRAP	5	4			
60	KK	85									
61	KM										
62	BA	.0159									
63 64	LS	075	60								
04	00	.075									
65	KK	WC									
66	KM	2								•	
0/	HC	3									
68	КК										
69 70	KM		0.446	0.75		90 × 0	10	,			
10	КK	55/	.0449	.035		TKAP	10	4			
71	КК	W6									
72	KM										
73	BA	.0486	60								
75	UD	.085									
74											
76 77	KK KM										
78	RK	592	.0372	.035		TRAP	5	4			

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 2 of 41 7/23/2008

79 80 81 82 83 KK KM BA LS UD W7 .0217 60 .074 84 85 KK KM RK 86 464 .1466 .035 TRAP 5 4 KK KM HC 87 WD 88 89 2 KK KM RK 90 D-E 91 92 1044 .0479 .035 TRAP 5 4 93 94 95 96 97 KK KM BA LS UD **W**8 .0286 60 .069 KK KM RK 98 99 100 TRAP 5 1449 .0504 .035 4 101 KK KM BA LS UD **W**9 102 103 .0402 104 105 61 .097 106 кк WE 107 108 КМ HC 3 109 кк E-F 110 KM RK 789 .0038 TRAP 4 111 .035 5 KK KM BA LS UD 112 ₩10 113 114 115 116 .0431 61 .096 KK KM RK 117 118 119 .0388 TRAP 824 .035 5 4 120 KK KM BA LS UD **W1**1 121 122 123 124 .0314 60 .077 125 KK KM HC WF 126 127 4 KK KM RK 128 F-G 129 130 2319 .0211 .035 TRAP 10 4 131 132 133 134 135 KK KM BA LS UD **W**12 .0398 60 .095 136 137 138 KK KM RK .0307 2478 .035 TRAP 5 4 139 140 KK KM BA LS UD W14 141 142 143 .0473 61 .135 KK KM RK 144 145 146 81 0.0001 .035 TRAP 5 147 KK KM BA LS UD W13 148 149 150 151 .1123 61 .182 152 153 154 KK KM HC WG 4

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 3 of 41 7/23/2008

155 156	KK KM	G- 1	н						
157	RK	263	2 .0217	.035	TRAP	15	4		
158	KK	(
160	RF	244	7 .0372	.035	TRAP	5	4		
161	KF	(W1	.5						
162 163	KM BA	1 .088	1						
164	LS	5 14	61						
165	01	, 14							
166 167	KI KI	1							
168	RF	(176	.0289	.035	TRAP	5	4		
169	KI KI	K WH	I						
171	HC	2	2						
172	Kł	< W1	16						
173 174	K1 B/	4 A029	92						
175 176	LS	s D.09	61						
127		,	-						
178	KI	4				_			
179	RI	K 134	15 .0260	.035	TRAP	5	4		
180 181	KI KI	K W1 M	17						
182	BJ L	A .016	34 60						
184	U	D .08	35						
185	К	K WI	I						
186 187	K1 H0	M C	2						
188	K	K I-	-м						
189 190	K	M K 26'	50 0370	035	TRAP	15	4		
101		и м	10				-		
191	ĸ	M NI	19						
193	B. Li	A .04/ S	28 61						
195	U	D .01	83						
196 197	K	K M							
198	R	K 8	81 .0329	.035	TRAP	5	4		
199	K	K W	20						
200	B	M A .03	15						
202 203	L U	S D.0	61 71						
204	к	K W	J						
205 206	K	M C	2						
200		v	-						
208	K	M				-			
209	R	K 30	61 .0235	.035	TRAP	5	4		
210 211	K K	K W M	21						
212 213	B	A13 .S	47 60						
214	U	D.1	56						
215	к	K W	к						
210	R H	IC	2	•					
218	к	ĸ							
219 220	R	CM RK 4	87 .0246	.035	TRAP	5	4		
221	-	(K W	122						
222	ĸ	0M							
223	E I	in .00	63						
225	τ	ю . 0							
226 227	P P	CM CM	IL.						
228	F	1C	2						

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 4 of 41 7/23/2008

229	кк								
230	KM RK	1786	.0297	.035	TRAP	5	4		
232 233	KK KM	W23							
234	BA	.0244							
235	LS	112	60						
200									
237	KK	W18							
239	BA	.1251							
240	LS	199	60						
241	00	.105							
242	KK	WM							
243	HC	5							
245	ĸĸ	M-N							
246	KM								
247	RK	1345	.0149	.035	TRAP	20	4		
248	кк	W24							
249	KM BA	0447							
251	LS	.0112	60						
252	UD	.140							
253	кк	₩25							
254 255	KM RA	.0957							
256	LS	.0557	61						
257	UD	.197						-	
258	кк	WN							
259 260	KM HC	3							
		-							
261 262	KK KM	N-P							
263	RK	1589	.017	.035	TRAP	20	4		
264	кк	W 28							
265	KM								
266	BA LS	.0397	63						
268	UD	.128							
269	кк								
270	KM	1345	0000	0.25		c	4		
271	KK	1345	.0208	.035	TRAF	5	4		
272	KK	W 30							
274	BA	.0509							
275	LS	122	63						
270	00	.125							
277	KK KM								
279	RK	1078	.0074	.035	TRAP	5	4		
280	кк	W2.9							
281	КM	-							
282 283	BA LS	.0409	63						
284	UD	.145							
285	кк	W31							
286	KM	0122							
288	BA LS	.0123	63						
289	UD	.073							
290	кк	NO							
291	KM	4							
292	nc.	ч							
293 294	KK	0-P							
295	RK	2169	.0226	.035	TRAP	5	4		
296	кк	W26							
297	KM	120							
298	BA	.0301	63						
300	UD	.062	05						
301	ĸĸ								
302	KM					-			
303	RK	4662	.0225	.035	TRAP	5	4		
304	кк	W27							

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 5 of 41 7/23/2008

305 306 307 308	KM BA LS UD	.1633 .253	60					
309 310 311 312 313	KK KM BA LS	₩32 .0890 170	60					
314 315 316	KK KM HC	WP 5						
317 318 319	KK KM RK	P-Q 1925	.0182	.035	TRAP	25	4	
320 321 322 323 324	KK KM BA LS UD	W33A .1261 .186	60					
325 326 327	КК КМ НС	WP1 2						
328 329 330	KK KM RK	P1-Q 3000	.020	.035	TRAP	25	4	
331 332 333 334 335	KK KM BA LS UD	W33B .1360 .225	60					
336 337 338 339 340	KK KM BA LS UD	W34A .1261 .173	60					
341 342 343	KK KM RK	34A-P2 2550	.0176	.035	TRAP	25	4	
344 345 346 347 348	KK KM BA LS UD	W34B .1766 .224	60					
349 350 351	KK KM HC	WP2 2 P2-0						
353 354 355	KM RK KK	2640 W34C	.021	.035	TRAP	25	4	
356 357 358 359	KM BA LS UD	.1625	60					
360 361 362	KK KM HC	WQ 4						
363 364 365 366	KM RK KK	2940 W36A	.022	.035	TRAP	25	4	
367 368 369 370	KM BA LS UD	.1429	60					
371 372 373	KK KM HC	WQ1 2						
374 375 376	KK KM RK	Q1-R 3400	.022	.035	TRAP	25	4	
378 379 380	KM BA LS	.1918	60					

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 6 of 41 7/23/2008

381	UD	.306								
382	кк	W35A								
383	KM									
384	BA	.0958								
385	LS	107	60							
396	00	.18/								
387	кк	35A-WR								
388	KM									
389	RK	3/15	.023	.035	TR	AP	25	4		
390	KK	W35B								
391	KM									
392	BA	.1507								
393		259	60							
554	00	.255								
395	KK	WR								
396	KM									
397	HC	4								
398	кк	WR-S								
399	KM									
400	RK	2922	.0168	.035	TR	AP	25	4		
401	кк	W37A								
402	KM									
403	BA	.1138	<i>a</i> -							
404		185	60							
405	00	.105								
406	KK	37A-S								
407	KM			0.05	• <u>-</u>		25			
408	RK	1430	.014	.035	TR	AP	25	4		
409	KK	W37B								
410	KM									
411	BA	.1636	~							
412	LS	218	61							
415	00	.210								
414	KK	WS								
415	KM	-								
416	HC	3								
417	кк	S-T								
418	КM									
419	RK	3653	.0164	.035	TF	RAP	25	4		
420	кк	W38								
421	KM									
422	BA	.0907	~~							
423	LS	100	62							
424	00	.190								
425	KK									
426	КM						_			
427	RK	2922	.0171	.035	TH	RAP	5	4		
428	кк	W39								
429	КM									
430	BA	.1833	~~							
43L 432	LS	251	60							
4.56	00	.231								
433	КК	W40								
434	KM	0064								•
435 436	BA LS	.0964	60							
437	UD	.165	55							
438	KK	WT								
440	км HC	4								
		-								
441	KK	T-U								
442	KM PF	1125	. 0098	. 035	Ŧ	RAP	25	4		
773	L/	1123	.0090		1			-		
444	кк	W41								
445	KM	0.001								
446 447	BA LS	.0601	60							
448	UD	.117	00							
449	KK	W42								
450 451	KM BA	.0581								
452	LS		81							
453	UD	.127								
454	KK	11-11								
455	KM	. v								
456	RK	2656	.0184	.035	т	RAP	5	4		

١

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 7 of 41 7/23/2008

457	кк	WU							
458	KM								
459	HC	3							
460	KK								
461	KM								
462	RK	2215	.0181	.035	TRAP	25	4		
463	KK	₩43							
464	KM								
465	BA	.1457							
466	LS		61						
467	UD	.169							
468	KK	WV							
469	KM								
470	HC	2							
471	кк	V-W							
472	КM								
473	RK	487	.0103	.035	TRAP	25	4		
474	ĸĸ	W45							
475	KM								
476	BA	.1931							
477	LS		61						
478	UD	.189							
479	KK	ww							
480	KM								
481	HC	2							
482	KK	W-X							
483	КM		•			-			
484	RK	1542	.0149	.035	TRAP	5	4		
485	KK	MI							
486	KM								
487	BA	.0665							
488	LS	100	60						
469	00	.108							
400	1/1/								
490	KN KN								
492	RK	650	0308	035	TRAP	5	4		
452		000	.0500	.055	1144	Ũ	•		
									,
493	ĸĸ	M2							
493 494	KK KM	M2							
493 494 495	KK KM BA	M2							
493 494 495 496	KK KM BA LS	M2 .0273	60						
493 494 495 496 497	KK KM BA LS UD	M2 .0273 .114	60						
493 494 495 496 497	KK KM BA LS UD	M2 .0273 .114	60		HEC-1 INPUT				PAGE 13
493 494 495 496 497	KK KM BA LS UD	M2 .0273 .114	60		HEC-1 INPUT				PAGE 13
493 494 495 496 497 LINE	KK KM BA LS UD ID.	M2 .0273 .114	60		HEC-1 INPUT	6	7	89	PAGE 13
493 494 495 496 497 LINE	KK KM BA LS UD ID.	м2 .0273 .114 1.	60 2	3	HEC-1 INPUT	6	7	89	PAGE 13
493 494 495 496 497 LINE	KK KM BA LS UD ID.	M2 .0273 .114	60 2		HEC-1 INPUT	6	7	ê9	PAGE 13
493 494 495 496 497 LINE	KK KM BA LS UD ID,	м2 .0273 .114 1. MB	60 2	3	HEC-1 INPUT	6	7	.89	PAGE 13
493 494 495 496 497 LINE 498 499	KK KM BA LS UD ID. KK KK	м2 .0273 .114 1. MB	60 2	3	HEC-1 INPUT	6	7	89	PAGE 13
493 494 495 496 497 LINE 498 499 500	KK KM BA LS UD ID. KK KM HC	M2 .0273 .114 1. MB 2	60 2	3	HEC-1 INPUT	6	7	.89	PAGE 13
493 494 495 496 497 LINE 498 499 500	KK KM BA LS UD ID. KK KM HC	M2 .0273 .114 1. MB 2	60 2	3	HEC-1 INPUT	6	7	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501	KK KM BA LS UD ID. KK KK KK	M2 .0273 .114 1. MB 2	60 2	3	HEC-1 INPUT	6	7	.89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502	KK KM BA LS UD ID. ID. KK KM HC KK KM	M2 .0273 .114 1. MB 2	60 2	3	HEC-1 INPUT	6	7	.89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503	KK KM BA LS UD ID. KK KM HC KK KM RK	м2 .0273 .114 1. мв 2 928	60 2	3	HEC-1 INPUT 45 TRAP	6	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503	KK KM BA LS UD ID. KK KM HC KK KK KM KK	н2 .0273 .114 1 мв г 928 	60 2	.035	HEC-1 INPUT 45 TRAP	6	4		PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504	KK KM BA LS UD ID. KK KM HC KK KK KK	н2 .0273 .114 1. МВ 2 928 М4	60 2	3	HEC-1 INPUT 45 TRAP	6	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505	KK KM BA LS UD ID. KK KM HC KK KM KK KK KK	н2 .0273 .114 1. МВ 2 928 M4	60 2 .0302	3	HEC-1 INPUT 45 TRAP	5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 506	KK KM BA LS UD ID. ID. KK KM HC KK KM KK KM KK KM SA	н2 .0273 .114 1 мв 2 928 м4 .0346	60 2 .0302	.035	HEC-1 INPUT 45 TRAP	6 5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 506 507	KK BA LS UD ID. KK KM HC KK KM BA LS	M2 .0273 .114 1k MB 2 928 M4 .0346	60 2 .0302 60	3	HEC-1 INPUT 45 TRAP	5	4	89	PAGE 13
493 494 495 497 LINE 498 499 500 501 502 503 504 505 506 507 508	KK KM BA LS UD ID. KK KM HC KK KM KK KM KK KM SA LS UD	н2 .0273 .114 1. МВ 2 928 м4 .0346 .121	60 2 .0302 60	3	HEC-1 INPUT 45 TRAP	5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508	KK KM LS UD ID. KK KM HC KK KM KK KM BA LS UD	н2 .0273 .114 1 мв 2 928 м4 .0346 .121	60 2 .0302 60	3	HEC-1 INPUT 45 TRAP	б 5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510	KK KM BA LS UD ID. KK KM HC KK KM KM LS UD KK	M2 .0273 .114 1. MB 2 928 M4 .0346 .121	60 2 .0302 60	3	HEC-1 INPUT 45 TRAP	6	4	89	PAGE 13
493 494 495 497 LINE 498 499 500 501 502 503 504 505 506 507 508 507 508 509 511	KK KM BA LS UD ID. KK M K KK KM A LS UD KK M K	н2 .0273 .114 1. МВ 2 928 м4 .0346 .121	60 2 .0302 60 0197	.035	HEC-1 INPUT 45 TRAP	5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511	KK KM BA LS UD ID. KK KM HC KK KM KK KM KK KM KM KM KM KM KM KM KM	н2 .0273 .114 1 мв 2 928 м4 .0346 .121 406	60 2 .0302 60 .0197	.035	HEC-1 INPUT 45 TRAP TRAP	5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512	KK KM BA LS UD ID. KK KM RK KM RK KM KK KK KM KK KK KK KK KK KK KK KK KK	M2 .0273 .114 1. MB 2 928 M4 .0346 .121 406 M3	60 2 .0302 60 .0197	.035	НЕС-1 INPUT 45 ТRAP ТRAP	5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 506 506 506 506 507 508 509 510 511 512 513	KK KM BA LS UD ID. KK KM HC KK KM KK KM RK KK KM RK KK KM RK KK KM RK KK	м2 .0273 .114 1. МВ 2 928 M4 .0346 .121 406 M3	60 2 .0302 60 .0197	.035	HEC-1 INPUT 45 TRAP TRAP	5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514	KK KM BA LS UD ID. ID. KK KM HC KK KM BA LS UD KK KM KM KM KM KM BA	M2 .0273 .114 1k MB 2 928 M4 .0346 .121 406 M3 .0149	60 2 .0302 60 .0197	.035	HEC-1 INPUT 45 TRAP TRAP	6 5 40	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 513 515	KK KM BA LS UD ID. KK KM KM KK KM KK KM KK KK KM KK KK KK	M2 .0273 .114 1k MB 2 928 M4 .0346 .121 406 M3 .0149	60 2 .0302 60 .0197 60	.035	НЕС-1 INPUT 45 ТRAP ТRAP	5	4		PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 516	KK KM BA LS UD ID. KK KM HC KK KM KK KM RK KK KM RK KK KM BA LS UD	M2 .0273 .114 1. MB 2 928 M4 .0346 .121 406 M3 .0149 .076	60 2 .0302 60 .0197 60	.035	HEC-1 INPUT 45 TRAP TRAP	5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516	KK KM BA LS UD ID. ID. KK KM HC KK KM BA LS UD KK KM KM KK KM BA LS UD	M2 .0273 .114 1, MB 2 928 M4 .0346 .121 406 M3 .0149 .076	60 2 .0302 60 .0197 60	.035	HEC-1 INPUT 45 TRAP TRAP	6 5 40	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517	KK KM BA LS UD ID. KK KM RK KM RK KM KK KM KK KM RK KK KM BA LS UD KK KM KM KM KM KM KM KM KM KM KM KM KM	M2 .0273 .114 1. MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC	60 2 60 .0197 60	.035	HEC-1 INPUT 45 TRAP TRAP	5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518	KK KM LS UD ID. ID. KK KM HC KK KM KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KM	н2 .0273 .114 1 мв 2 928 м4 .0346 .121 406 м3 .0149 .076 мС	60 2 .0302 60 .0197 60	.035	HEC-1 INPUT 45 TRAP TRAP	5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 519	KK KM BA LS UD ID. ID. KK KM HC KK KM KM KK KM BA LS UD KK KM KM KK KM KK KM KK KK KM KK KM KK KM KK KM KK KM KK KM KK KM K	M2 .0273 .114 1, MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC 3	60 2 .0302 60 .0197 60	.035	HEC-1 INPUT 45 TRAP TRAP	6 5 40	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519	KK KM BA LS UD ID. KK KM KM KK KM KK KM BA LS UD KK KK KM BA LS UD KK KM KM KM KM KM KM KM KM KM KM KM KM	M2 .0273 .114 1. MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC 3	60 2 60 .0197 60	.035	НЕС-1 INPUT 45 ТRAP ТRAP	5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520	KK KM LS UD ID. ID. KK KM HC KK KM KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KM	M2 .0273 .114 1. MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC 3	60 2 .0302 60 .0197 60	.035	HEC-1 INPUT 45 TRAP TRAP	5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521	KK KM BA LS UD ID. KK KM HC KK KM HC KK KM KM KM KK KM KK KM KK KM KK KK KM KK KK	M2 .0273 .114 1. MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC 3	60 2 .0302 60 .0197 60	.035	HEC-1 INPUT 45 TRAP TRAP	6 5 40	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522	KK KM BA LS UD ID. KK KM RK KM RK KM BA LS UD KK KM BA LS UD KK KM KM KM KM KM KM KM KM KM KM KM KM	M2 .0273 .114 1. MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC 3 1902	60 2 60 .0197 60 .0231	.035	HEC-1 INPUT 45 TRAP TRAP	6 5 40	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522	KK KM IS UD ID. ID. KK KM HC KK KM KM KM KM KM KM KM KM KM KK KM KM	н2 .0273 .114 1. мв 2 928 м4 .0346 .121 406 м3 .0149 .076 мс 3 1902	60 2 .0302 60 .0197 60 .0231	.035	HEC-1 INPUT 45 TRAP TRAP TRAP	5 40 5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 522 523	KK KM BA LS UD ID. KK KM HC KK KM HC KK KM KM HC KK KM KK KM KK KK KK KK KK KK KK KK KK	M2 .0273 .114 1, MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC 3 1902 M5	60 2 .0302 60 .0197 60 .0231	.035	HEC-1 INPUT 45 TRAP TRAP TRAP	6 5 40 5	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524	KK KM BA LS UD ID. KK KM RK KM RK KM BA LS UD KK KM BA LS UD KK KM KM KM KM KK KM KK KM KK KM KK KM KK KM KK KM KK KM KM	M2 .0273 .114 .114 1. MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC 3 1902 M5	60 2 60 .0197 60 .0231	.035	НЕС-1 INPUT 45 ТRAP ТRAP	6 5 40	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 523 524 525	KK KM BA LS UD ID. KK KM HC KK KM HC KK KM KM KM KM KM KM KM KK KM KM KK KM KK KM KK KK	M2 .0273 .114 1. MB 2 928 M4 .0346 .121 406 M3 .0149 .076 MC 3 1902 M5 .0176	60 2 .0302 60 .0197 60 .0231	.035	HEC-1 INPUT 45 TRAP TRAP TRAP	5 40	4	89	PAGE 13
493 494 495 496 497 LINE 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 522 522 522 524 522 526	KK KM BA LS UD ID. KK KM HC KK KM KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KM BA LS UD KK KM KK KM KM HC KK KM KM HC KK KM KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KK KM HC KK KK KM HC KK KK KM HC KK KK KM HC KK KK KM HC KK KK KM HC KK KK KM HC KK KK KM HC KK KK KM HC KK KK KM HC KK KK KK KK KK KK KK KK KK KK KK KK KK	н2 .0273 .114 1, МВ 2 928 M4 .0346 .121 406 M3 .0149 .076 МС 3 1902 M5 .0176	60 2 .0302 60 .0197 60 .0231	.035 .02	HEC-1 INPUT 45 TRAP TRAP TRAP	6 5 40 5	4	89	PAGE 13

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 8 of 41 7/23/2008

528	KK										
529	KM							•			
530	RK	1717	.0186	.02		TRAP	40	0			
531	KK	M6									
532	KM	0.007									
533	BA	.0637	65								
534	LS	222	65								
535	UD	.233									
626		MD									
536	KK	MD									
537	KM UC	2									
228	нÇ	3									
E 2 0	vv										
540	KM										
541	BK	2841	019	035		TRAP	5	4			
511	.u.						-				
542	KK	M7									
543	KM										
544	BA	.0524									
545	LS		69								
546	UD	.170									
547	ĸĸ										
548	KM										
549	RK	1044	.0268	.02		TRAP	40	0			
550	KK	M 8									
551	КМ										
552	BA	.0370									
553	LS		61								
554	UD	.126									
555 -	KK	ME									
556	КM										
557	HC	2									
558	KK										
559	KM										
560	RK	2992	.0187	.035		TRAP	5	4			
561	KK	M9									
562	KM										
563	BA	.0169									
564	LS		69								
565	UĎ	.087									
566	KK										
567	KM	2422	0050	0.2			F				
268	KK	3433	.0253	.03		TRAP	5	4			
F.CO	1212										
569	KK IOI	MIZA									
570	RM DI	0.050									
5/1	BA	.0656	60								
572	12	150	00								
5/3	00	-139									
574	KK	M12B									
575	KM	H120									
576	BA	1481									
577	LS		60								
- · ·	20										
579	кк	MF									
580	KM										
581	HC	5									
582	KK										
583	KM										
584	RK	2586	.0224	.035		TRAP	10	4			
585	KK	M13									
586	KM										
587	BA	.0614									
588	LS		64								
589	UD	.165									
590	KK										
591	KM			0.25		#D • •	~				
592	RK	1700	.01	.035		TRAP	ю	4			
500											
593	KK	M14									
594	KM	1 () (
595	BA	.1624	<i></i>								
590 507	72	220	04								
140	UD	.228									
598		MC									
590	KIN	MG									
600	uc	2									
000	nç	2									
601	кк	PONDW									
602	KM		OODMEN H	ILLS DETEN	TION PC	ND WEST	(FROM FDR	WH FLG	F4)		
603	SV		. 68	1.5	235	3.6	4.9	6.3	7.34	7.34	
604	SE	968	969	970	971	972	973	974	975	976	

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 9 of 41 7/23/2008

680 681 682	BA LS UD	.042 .139	60				
683 684 685	KK KM HC	ML 2					
686 687 688	KK KM RK	2099	.02	.035	TRAP	5	4
689 690 691 692 693	KK KM BA LS UD	M17 .0765 .133	61				
694 695 696	KK KM HC	MM 2					
697 698 699	KK KM RK	2320	.0121	.035	TRAP	10	4
700 701 702 703 704	KK KM BA LS UD	м18 .061 .142	61				
705 706 707	KK KM RK	2122	.017	.035	TRAP	5	4
708 709 710 711 712	KK KM BA LS UD	M20 .1341 .211	61				
713 714 715	КК КМ НС	MIN 4					
716 717 718	KK KM RK	1531	.0202	.035	TRAP	25	4
719 720 721 722 723	KK KM BA LS UD	M21 .0241 .125	61				
724 725 726	KK KM RK	1322	.0212	.035	TRAP	5	4
727 728 729 730 731	KK KM BA LS UD	M23 .0461 .120	60				
732 733 734	кк КМ НС	мо 3					
735 736 737	KK KM RK	974	.0133	.035	TRAP	25	4
738 739 740 741 742	KK KM BA LS UD	M24 .0776 .125	60				
743 744 745	KK KM HC	MP 2					
746 747 748	KK KM RK	290	.0138	.035	TRAP	25	4
749 750 751 752 753	KK KM BA LS UD	M25 .0105 .130	60				
754	кк	MQ					

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 11 of 41 7/23/2008 755 756 КМ HC 2 757 758 759 KK KM RK 3305 .0136 .035 TRAP 25 4 760 761 762 KK KM BA LS UD M26 .1779 763 764 65 .250 765 кк MR 766 767 KM HC 2 KK KM BA 768 W44 769 770 771 772 .0384 LS UD 60 .141 773 774 775 КК КМ RK 2029 .0148 .035 TRAP 5 4 776 KK KM BA LS UD W47 777 778 779 .0541 60 .148 780 781 кк KM RK 782 1438 .0223 .035 TRAP 5 4 783 кк 784 W46 KM BA LS UD 785 786 787 .0418 61 788 .154 789 790 KK KM BA LS UD M27 791 792 .0528 60 793 .132 794 KK WΧ 795 KM HC 796 б 797 кк 798 799 КМ RK 2563 .0125 .035 TRAP 40 4 800 801 KK KM BA LS UD W48 802 .1179 61 803 804 .091 кк 805 806 807 KM RK 2400 .0188 .035 TRAP 5 4 808 KK KM BA LS UD W49 809 810 811 812 .2651 61 .181 KK KM HC 813 ₩Z 814 815 3 KK KM RK 816 817 818 800 .0125 .035 TRAP 40 4 819 KK KM BA LS UD ₩50 820 821 .1061 822 61 823 .145 KK KM HC 824 WAB 825 826 2 827 кк 828 829 KM RK 742 .0108 .035 TRAP 40 4

830 831 832 833	KK KM BA LS	₩51 .0546	63				
834 835 836 837	KK KM HC	.172 WAC 2					
838 839 840	KK KM RK	638	.0345	.035	TRAP	40	4
841 842 843 844 845	KK KM BA LS UD	W52 .0499 .109	63				
846 847 848	KK KM RK	1171	.0205	.035	TRAP	5	4
849 850 851 852 853	KK KM BA LS UD	W53 .0531 .156	63				
854 855 856	KK KM HC	WAD 2					
857 858 859	KK KM RK	290	.0310	.035	TRAP	10	4
860 861 862 863 864	KK KM BA LS UD	W54 .0078 .050	60				
865 866 867	KK KM HC	WAE 3					
868 869 870	KK KM RK	1925	.0052	.035	TRAP	40	4
871 872 873 874 875	KK KM BA LS UD	W56 .1831 .191	60				
876 877 878	КК КМ НС	WAF 2					
879 880 881	KK KM RK	1032	.0155	.035	TRAP	40	4
882 883 884 885 886	KK KM BA LS UD	W62 .0750 .090	60				
887 888 889	KK KM RK	2169	.0203	.035	TRAP	5	4
890 891 892 893 894	KK KM BA LS UD	W63 .047 .109	60				
895 896 897	KK KM RK	1450	.0131	.035	TRAP	5	4
898 899 900 901 902	KK KM BA LS UD	₩61 .192 .251	60				
903 904 905	KK KM HC	WAH 3					

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Cales\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 13 of 41 7/23/2008

906	KK											
907	KM											
908	RK	1241	.0153	.035		TRAP	5	4				
909	KK	W57										
910	KM DA	0722										
912	LS	.0752	60									
913	UD	.140										
914	KK											
915	KM						_					
916	RK	5903	.0254	.035		TRAP	5	4				
017	vv	M5.0										
919	KM	M JO										
919	BA	.2296										
920	LS		60									
921	UD	.251										
922	KK	WAI										
923	NM NC	з										
524	ne	5										
925	кк											
926	KM											
927	RK	232	.0086	.035		TRAP	15	4				
928	KK	EIA										
929	RA RA	1151										
931	LS	.1151	60									
932	ŰD	.234										
933	KK	E1A-EA										
934	KM						~					
935	RK	4000	.022	.035		TRAP	5	4				
076	WW	F19										
930	KM	LID										
938	BA	.1665										
939	LS	0	60									
940	UD	.233										
941	KK	EA										
942	NM HC	2										
245	110	2										
944	KK	EA-EB										
945	KM											
946	RK	1900	.022	.035		TRAP	5	4				
					HEC-1 I	NPUT						PAGE 24
LINE	TD.	1 .		3	4	5	6	7		9	10	
bind												
947	KK	E2										
948	КМ											
949	BA	.104	60									
950	10	1/9	60									
331												
952	KK	EB										
953	KM											
954	HC	2										
0.5.5		DOMDI										
955	<u>ки</u>	PONDI		THROUGH	SCS PONT	1						
957	SV	o í	.01	.28	1.12	2.70	5.18	6.00	6.94			-
958	SE	945.5	946	948	950	952	954	954.5	955			
959	SQ	0	0	0	0	0	48.5	176.4	351.4			
960	RS	1	ELEV	945.5								
0.61												
961	KK											
963	RK NM	1300	0192	.035		TRAP	5	4				
505		2000					-	-				
964		E3										
	кк											
965	KK KM											
965 966	КК КМ ВА	.090	60									
965 966 967	KK KM BA LS	.090	60									
965 966 967 968	KK KM BA LS UD	.090	60									
965 966 967 968 969	KK KM BA LS UD KK	.090 .128 MH-P2	60									
965 966 967 968 969 970	KK KM BA LS UD KK	.090 .128 MH-P2	60 RETRIEVE I	DIVERSION	FROM W.	MERIDIA	N RD DIT	сн				
965 966 967 968 969 970 971	KK KM BA LS UD KK KM DR	.090 .128 MH-P2 F DIVRT1	60 RETRIEVE I	DIVERSION	FROM W.	MERIDIA	N RD DIT	сн				
965 966 967 968 969 970 971	KK BA LS UD KK KM DR	.090 .128 MH-P2 JUVRT1	60 RETRIEVE I	DIVERSION	FROM W.	MERIDIA	N RD DIT	сн				
965 966 967 968 969 970 971 972 973	KK BA LS UD KK KM DR	.090 .128 MH-P2 F DIVRT1 EC	60 RETRIEVE I	DIVERSION	FROM W.	MERIDIA	N RD DIT	сн				
965 966 967 968 969 970 971 972 973 974	KK BA LS UD KK KM DR KK KM	.090 .128 MH-P2 I DIVRT1 EC 3	60 RETRIEVE I	DIVERSION	FROM W.	MERIDIA	N RD DIT	сн				
965 966 967 968 970 971 972 973 973 974	KK BA LS UD KK KM DR KK KM	.090 .128 MH-P2 H DIVRT1 EC 3	60 RETRIEVE I	DIVERSION	FROM W.	MERIDIA	N RD DIT	сн				
965 966 967 968 970 971 971 972 973 974 975	KK KM BA LS UD KK KM DR KK KM HC KK	.090 .128 MH-P2 F DIVRT1 EC 3 POND2	60 RETRIEVE I	DIVERSION	FROM W.	MERIDIA	N RD DIT	гсн				
965 966 967 969 970 971 972 973 974 975 976 976	KK KM BA LS UD KK KM DR KK KM HC KK	.090 .128 MH-P2 JUVRT1 EC 3 POND2	60 RETRIEVE I	DIVERSION THROUGH	FROM W.	MERIDIA	N RD DIT	сн	12.00	14.20	16 70	

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 14 of 41 7/23/2008
												-
978	SE	920	922	924	926	928	929	929.5	930	930.5	931	
979	SQ	0	0	0	0	0	0	25	86.5	186.2	308.4	
980	RS	1	ELEV	920								
981	KK											
982	KM											
983	RK	1700	.0141	.035		TRAP	5	4				
984	кк	E1C										
985	KM	210										
986	BA	.0845										
987	LS	200	60									
988	ŲD	.200										
989	KK	1C-ED1										
990	KM						-					
991	RK	3450	.022	.035		TRAP	5	4				
992	KK	E4										
993	KM											
994	BA	.127	60									
995	10	200	60									
	00											
997	KK	ED1										
998	KM	2										
359	ne	2										
1000	кк	ED1-ED										
1001	KM	45.0	0170	0.2			-	4				
1002	RK	450	.0178	.03		TRAP	5	4				
1003	KK	£5										
1004	KM											
1005	BA	.094	CO									
1005	ud Ud	.160	60									
1008	KK	ED										
1009	KM HC	э										
1010	ne	5										
1011	КК											
1012	KM	050	0011	0.25			10					
1013	KK	950	.0211	.035		TRAP	10	મ				
1014	KK	ΕB										
1015	KM											•
1016	BA	.0446	60									
1018	UD	.139	00									
1019	KK	EE										
1020	HC	2										
1022	КК											
1023	KM RK	1500	0127	035		TRAP	10	4				
1025	КК	E10										
1026	KM BA	029										
1028	LS	.029	60									
1029	UD	.158										
1020	1010	-										
1030	KM	Er										
1032	HC	2										
1033	KK KM	F-G										
1035	RK	950	.0074	.035		TRAP	15	4				
1036	KK	E6										
1037	BA	.119										
1039	LS		60									
1040	UD	.228						•				
1041	кк	E7										
1042	КM	-										
1043	BA	.031										
1044	LS	082	60									
1033	00	.002										
1046	KK											
1047	KM	1100	0100	0.25		TORD	c	٨				
1040	ĸĸ	1100	.0100	.055		TRAP	3	4				
1049	кк	EG1										
1050	KM	•										
1001	nC	2										
1052	КК	G1-G										

ľ

.

 \\Se-srv01\projects\\057-Park Place Enterprises\\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

 FDR\xfal2100.doc
 Page 15 of 41
 7/23/2008

1204	KM								
1205	HC	2							
1206	KK								
1207	KW.								
1200	EL-L	1022	0126	0.35	TD ND	40	4		
1208	R.R.	10.52	.0120	.055	INA	40	4		
1209	KK	E27							
1210	KM								
1211	BA	1236							
1212	1.0		63						
1212	10		0.5						
1213	UD	.172							
1214	KK	EO							
1215	KM								
1216	HC	2							
1217	KK								
1218	KM								
1210	DK	1625	0122	035	TOND	5	3		
1219	RR.	1025	.0155	.035	1000	5	5		
1220	KK	W55							
1221	KM								
1222	BA	.0452							
1223	LS		60						
1224	UD	.093							
1000	05	.050							
1225	~~	wac							
1225	rr.	WAG							
1226	KM								
1227	HC	2							
1228	KK								
1229	KM								
1230	RK	2025	.0109	.035	TRAP	5	4		
								•	
1231	кк	W59							
1222	KM.								
1232	101	0705							
1233	BR	.0705	<u> </u>						
1234	LS		60						
1235	UD	.200							
1236	KK	WAJ							
1237	KM								
1238	HC	4							
1200									
1239	ĸĸ								
1240	KM								
1240	nn n	1450	0104	0.35	<i>m</i>D N D	4.0			
1241	RK	1450	.0124	.035	IRAP	40	4		
1242	KK	E28							
1243	KM								
1244	BA	.0718							
1245	LS		61						
1246	UD	.223							
1247	KK								
1248	KM								
1249	RK.	2064	.0165	.035	TRAP	40	4		
		2001							
1250	KK	F29							
1250		62.9							
1201	KM								
1252	BA	.0465							
1253	LS		61						
1254	UD	.166							
1255	KK	EZZ							
		C	OMBINE E29	9 & E30 AT DP 22					
1256	KM	<u> </u>							
1256 1257	KM HC	2							
1256 1257	KM HC	2							
1256 1257 1258	KM HC	2 100 100							
1256 1257 1258 1259	KM HC KK	2 ₩60							
1256 1257 1258 1259	KM HC KK KM	2 w60							
1256 1257 1258 1259 1260	KM HC KK BA	2 ₩60 .0711	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
1256 1257 1258 1259 1260 1261	KM HC KK KM BA LS	2 ₩60 .0711	60						
1256 1257 1258 1259 1260 1261 1262	KM HC KK BA LS UD	2 w60 .0711 .182	60						
1256 1257 1258 1259 1260 1261 1262	km hc km ba Ls UD	2 ₩60 .0711 .182	60						
1256 1257 1258 1259 1260 1261 1262 1263	KM HC KK BA LS UD KK	2 w60 .0711 .182 22	60						
1256 1257 1258 1259 1260 1261 1262 1263 1263	KM HC KK BA LS UD KK	2 w60 .0711 .182 22	60 Combine al.	L AT DP ZZ					
1256 1257 1258 1259 1260 1261 1262 1263 1263 1264 1265	KM HC KM BA LS UD KK KM HC	2 w60 .0711 .182 22 3	60 Combine al	L AT DP ZZ					

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 18 of 41 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 19 of 41 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 23 of 41 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 24 of 41 7/23/2008

•

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 26 of 41 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 28 of 41 7/23/2008

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION

1**	***************************************	**	*****	*
*		*	•	*
*	FLOOD HYDROGRAPH PACKAGE (HEC-1)	*	* U.S. ARMY CORPS OF ENGINEERS	*
*	JUN 1998	*	 HYDROLOGIC ENGINEERING CENTER 	÷
*	VERSION 4.1	*	* 609 SECOND STREET	*
*		*	 DAVIS, CALIFORNIA 95616 	*
*	RUN DATE 28SEP07 TIME 11:49:21	*	* (916) 756-1104	*
*		*	•	*
**	***************************************	**	******	

 FALCON BASIN 100-YR/24-HOUR FLOOD/ EXISTING CONDITIONS

 UPPER EAST TRIBUTARY (MOODMEN HILLS) BASED ON CLOWR APPROVED 2/2/99

 INCLUDING 2 EXISTING SCS STOCK PONDS, WEST WOODMEN HILLS POND

 NOTE: MI-M4 (PAINT BRUSH HILLS) MODELED AS HISTORIC TO ACCOUNT FOR

 DETENTION POND AT MC

 NOTE: NO CULVERT AT STAPLETON & MERIDIAN, TEMP CULVERTS AT MERIDIAN

 DOWNSTREAM OF WOODMEN HILLS DRIVE (DIVERSION)

 OUTPUT CONTROL

 IPRNT
 5

 PRINT CONTROL

 IPLOT
 0

 PLOT CONTROL

 QSCAL
 0.

-

IT	HYDROGRAPH TIME	DATA	
	NMIN	5	MINUTES IN COMPUTATION INTERVAL
	IDATE	14JUL99	STARTING DATE
	ITIME	0800	STARTING TIME
	NQ	300	NUMBER OF HYDROGRAPH ORDINATES
	NDDATE	15JUL99	ENDING DATE
	NDTIME	0855	ENDING TIME
	ICENT	19	CENTURY MARK
	COMPUTATION IN	TERVAL	.08 HOURS
	TOTAL TIN	E BASE	24.92 HOURS

ENGLISH UNITS

9 IO

DRAINAGE AREA	SQUARE MILES
PRECIPITATION DEPTH	INCHES
LENGTH, ELEVATION	FEET
FLOW	CUBIC FEET PER SECOND
STORAGE VOLUME	ACRE-FEET
SURFACE AREA	ACRES
TEMPERATURE	DEGREES FAHRENHEIT

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

.

	000010101		PEAK	TIME OF	AVERAGE FI	OW FOR MAXIN	IUM PERIOD	ERIOD BASIN AREA		TIME OF
	OPERATION	STATION	FLOW	PEAK	6-HOUR	24-HOUR	72-HOUR	AREA	STAGE	MAX STAGE
	HYDROGRAPH AT	Wl	40.	5.75	4.	1.	1.	.05		
	ROUTED TO		37.	5.83	4.	1.	1.	.05		
÷	HYDROGRAPH AT	W2	20.	5.83	2.	1.	1.	.03		
÷	2 COMBINED AT	ŴA	57.	5.83	б.	2.	2.	.08		
÷	ROUTED TO		55.	5.83	6.	2.	2.	.08		
÷	HYDROGRAPH AT	W3	39.	5.83	4.	1.	1.	.05		
+	2 COMBINED AT	WB	95.	5.83	10.	3.	3.	.13		
÷	ROUTED TO		91.	5.83	10.	3.	3.	.13		
÷	HYDROGRAPH AT	w4	б.	5.75	0.	0.	0.	.01		
+	ROUTED TO		6.	5.75	0.	0.	0.	.01		
÷	HYDROGRAPH AT	W 5	15.	5.75	1.	0.	0.	.02		
+	3 COMBINED AT	WC	105.	5.83	11.	4.	4.	.15		
+	ROUTED TO		103.	5.83	11.	4.	4.	.15		
+	HYDROGRAPH AT	Wő	43.	5.75	4.	1.	1.	.05		
+	ROUTED TO		40.	5.75	4.	1.	1.	.05		
+	HYDROGRAPH AT	W7	20.	5,75	2.	1.	1.	.02		
+	ROUTED TO		20.	5.75	2.	1.	1.	. 02		
+	2 COMBINED AT	WD	60.	5.75	5.	2.	2.	.07		
+	ROUTED TO	D- E	55.	5.75	5.	2.	2.	.07		
+	HYDROGRAPH AT	WB	27.	5,75	2.	1.	1.	.03		
+	ROUTED TO		24.	5.75	2.	1.	1.	.03		
+	HYDROGRAPH AT	W 9	36.	5.75	3.	1.	1.	.04		
+	3 COMBINED AT	WE	114.	5.75	11.	4.	4.	.14		
+	ROUTED TO	Ē-F	108.	5.83	11.	4.	4.	.14		·
+	HYDROGRAPH AT	W10	39.	5,75	3.	1.	1.	.04		
+	ROUTED TO		36.	5.75	4.	1.	1.	.04		
+	HYDROGRAPH AT	W11	29.	5.75	2.	1.	1.	.03		
+	4 COMBINED AT	WF	265.	5.83	28.	10.	9.	.36		

ROUTED TO

1

+

+ +

+ +

+ + +

> + +

÷ ÷

+

+ +

> + +

> +

+ +

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 31 of 41 7/23/2008

		F-G	255.	5.83	28.	10.	9.	.36	
	HYDROGRAPH AT	W12	33.	5.75	3.	1.	1.	.04	
	ROUTED TO		32.	5.83	3.	1.	1.	.04	
	HYDROGRAPH AT	W14	38.	5.83	4.	1.	1.	.05	
	ROUTED TO		37.	5,83	4.	1.	1.	.05	
,	HYDROGRAPH AT	W13	80.	5,83	9.	3.	з.	.11	
	4 COMBINED AT	WG	403.	5.83	44.	15.	14.	.56	
÷	ROUTED TO	G-H	382.	5.92	44.	15.	14.	.56	
÷	ROUTED TO		368.	5.92	44.	15.	14.	.56	
÷	HYDROGRAPH AT	W 15	70.	5.83	7.	2.	2.	.09	
٠	ROUTED TO		66.	5.83	7.	2.	2.	.09	
÷	2 COMBINED AT	WH	428.	5.92	51.	17.	17.	.65	
+	HYDROGRAPH AT	W16	27.	5.75	2.	1.	1.	.03	
+	ROUTED TO		24.	5.83	2.	1.	1.	.03	
+	HYDROGRAPH AT	W17	16.	5.75	1.	0.	٥.	.02	
+	2 COMBINED AT	WI	38.	5.75	4.	1.	1.	.05	
+	ROUTED TO	I-M	37.	5.83	4.	1.	1.	.05	
+	HYDROGRAPH AT	W19	41.	5.75	3.	1.	1.	.04	
	ROUTED TO		37	5 75	3	1	1	04	
	HYDROGRAPH AT	W20		5 75	3	1	1	.01	
	2 COMBINED AT	W T	52.	5.75	5.	2	2	.05	
+	ROUTED TO	мJ	65.	5.00	<i>c</i>	2.	2.	.07	
+	HYDROGRAPH AT		65.	5.83	0.	2.	2.	.07	
+	2 COMBINED AT	W21	96.	5.83	10.	з.	5.	.15	
+	ROUTED TO	WK	161.	5.83	16.	6.	5.	.21	
+	HYDROGRAPH AT		156.	5.83	16.	6.	5.	.21	
+	2 COMBINED AT	W 22	10.	5.75	1.	0.	0.	.01	
+	ROUTED TO	WL	161.	5.83	17.	6.	б.	.22	
+	HYDROGRAPH AT		147.	5.83	17.	ó.	6.	.22	
+	HYDROGRAPH AT	W23	19.	5.75	2.	1.	1.	.02	
÷	5 COMBINED AT	W18	80.	5.83	9.	з.	3.	.13	
+	ROUTED TO	WM	690.	5.92	83.	28.	27.	1.06	
+		M-N	673.	5.92	83.	28.	27.	1.06	

+ +

+

+ + +

> + + +

> > +

+ +

+ +

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 32 of 41 7/23/2008

+	HYDROGRAPH AT	W24	33.	5.83	3.	1.	1.	.04	
+	HYDROGRAPH AT	W 25	64.	5,83	8.	3.	3.	.10	
+	3 COMBINED AT	WN	756.	5.92	94.	32.	31.	1.20	
+	ROUTED TO	N-P	722.	5.92	94.	32.	31.	1.20	
+	HYDROGRAPH AT	W28	36.	5.83	4.	1.	1.	.04	
+	ROUTED TO		35.	5.83	4.	1.	1.	.04	
+	HYDROGRAPH AT	W 30	46.	5.83	5.	2.	2.	.05	
	ROUTED TO		46	5.83	5	2	2	. 05	
	HYDROGRAPH AT	M.20	37	5.00	4	1	1	04	
+	HYDROGRAPH AT	W29	.,.	5.05	4.	···	±-	.01	
+	4 COMBINED AT	w31	14.	5.75	1.	0.		.01	
+	ROUTED TO	WO	127.	5.83	13.	4.	4.	.14	
+	HYDROGRAPH AT	0-P	118.	5.83	13.	4.	4.	.14	
+	ROUTED TO	W26	36.	5.75	3.	1.	1.	.03	
+	HYDROGRAPH AT		35.	5.92	3.	1.	1.	.03	
+	HYDROGRAPH AT	W27	89.	5.92	12.	4.	4.	.16	
+	5 COMPINED M	W 32	61.	5.83	7.	2.	2.	.09	
+	DOUTRE TO	WP	1012.	5.92	128.	44.	43.	1.63	
+	ROUTED TO	₽-Q	950.	5.92	128.	44.	43.	1.63	
+	HYDROGRAPH AT	W33A	82.	5.83	10.	3.	3.	.13	
+	2 COMBINED AT	WP1	1023.	5.92	138.	47.	46.	1.75	
+	ROUTED TO	P1-Q	1007.	6.00	137.	47.	46.	1.75	
+	HYDROGRAPH AT	W33B	78.	5.92	10.	4.	3.	.14	
+	HYDROGRAPH AT	W34A	86.	5.83	10.	3.	3.	.13	
+	ROUTED TO	34A-P2	82.	5.92	9.	3.	3.	.13	
+	HYDROGRAPH AT	W34B	101.	5.92	13.	5.	4.	.18	
+	2 COMBINED AT	WP2	183.	5.92	23.	8.	8.	.30	
+	ROUTED TO	₽2-Q	175.	6.00	23.	8.	8.	.30	
+	HYDROGRAPH AT	W34C	90.	5.92	12.	4.	4.	.16	
+	4 COMBINED AT	WQ	1325.	6.00	181.	63.	61.	2.36	
+	ROUTED TO	Q-Q1	1284.	6.00	181.	63.	60.	2.36	
+	HYDROGRAPH AT	 W36A	81.	5.92	11.	4.	4.	.14	
÷	2 COMBINED AT	w01	1352	6.00	191.	66.	64.	2.50	
		•• ¥ +					~		

 \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

 FDR\xfal2100.doc
 Page 33 of 41
 7/23/2008

+	ROUTED TO	Q1-R	1311.	6.08	190.	66.	64.	2.50	
+	HYDROGRAPH AT	W36B	91.	6.00	14.	5.	5.	.19	
+	HYDROGRAPH AT	W35A	62.	5.83	7.	2.	2.	.10	
+	ROUTED TO	35A-WR	58.	6.00	7.	2.	2.	.10	
+	HYDROGRAPH AT	W35B	81.	5.92	11.	4.	4.	.15	
+	4 COMBINED AT	WR	1497.	6.08	222.	78.	75.	2.94	
+	ROUTED TO	WR-S	1475.	6.08	222.	77.	75.	2.94	
+	HYDROGRAPH AT	W37A	74.	5.83	9.	з.	з.	.11	
+	ROUTED TO	37A-S	71.	5.92	9.	з.	з.	.11	
+	HYDROGRAPH AT	W37B	102.	5.92	13.	5.	4.	.16	
+	3 COMBINED AT	WS	1575.	6.08	242.	85.	82.	3.21	
+	ROUTED TO .	S-T	1522.	6.17	242.	85.	81.	3.21	
+	HYDROGRAPH AT	W 38	67.	5.83	8.	3.	3.	.09	
+	ROUTED TO		66.	5.92	8.	3.	3.	.09	
+	HYDROGRAPH AT	W 39	100.	5.92	14.	5.	5.	.18	
+	HYDROGRAPH AT	W40	67.	5.83	7.	3.	2.	.10	
	4 COMBINED AT	64 TO 1	1621	6 17	269	95.	91.	3.59	
	ROUTED TO	T-U	1613	6 17	269	95	91	3 59	
*	HYDROGRAPH AT	1-0 W41	1015.	5.02	209.	2	2	0.5	
+	HYDROGRAPH AT	W41	45.	5.05		2.	2.	.00	
+	ROUTED TO	W42	125.	5.75	13.	4.	4.	.00	
+	3 COMBINED AT	0-0	122.	5.65	13.	4.	•.	.00	
+	ROUTED TO	WU	1648.	6.17	285.	100.	96.	3.70	
+	HYDROGRAPH AT		1612.	6.17	285.	100.	96.	3.70	
+	2 COMBINED AT	W43	108.	5.83	12.	4.	4.	.15	
+	ROUTED TO	WV	1640.	6.17	296.	104.	100.	3.85	
+	HYDROGRAPH AT	V-W	1621.	6.17	296.	104.	100.	3.85	
+	2 COMBINED AT	W45	134.	5.83	16.	5.	5.	.19	
+	ROUTED TO	WW	1663.	6.17	311.	109.	105.	4.04	
+	HYDROGRAPH AT	W-X	1621.	6.25	311.	109.	105.	4.04	
+	ROUTED TO	М1	52.	5.75	5.	2.	2.	.07	
+			50.	5.83	5.	2.	2.	.07	

HYDROGRAPH AT

+ +

> > \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 34 of 41 7/23/2008

		M2	21.	5.75	2.	1.	1.	.03		
	2 COMBINED AT	MB	70.	5.83	7.	2.	2.	.09		
	ROUTED TO		70.	5.83	7.	2.	2.	.09		
	HYDROGRAPH AT	M4	26.	5.83	3.	1.	1.	.03		
	ROUTED TO		26.	5.83	3.	1.	1.	.03		
	HYDROGRAPH AT	мз	14.	5.75	1.	٥.	0.	.01		
	3 COMBINED AT	MC	105.	5.83	11.	4.	4.	.14		
	ROUTED TO		102.	5.83	11.	4.	4.	.14		
÷	HYDROGRAPH AT	M5	24.	5.75	2.	1.	1.	.02		
F	ROUTED TO		23.	5.83	2.	1.	1.	.02		
ŀ	HYDROGRAPH AT	M6	51.	5.92	7.	2.	2.	.06		
+	3 COMBINED AT	MD	175.	5.83	20.	7.	6.	.22		
÷	ROUTED TO		170.	5.92	20.	7.	6.	.22		
+	HYDROGRAPH AT	M7	63.	5.03	7.	2.	2.	.05		
+	ROUTED TO		61.	5.83	7.	2.	2.	.05		
+	HYDROGRAPH AT	M8	30.	5.83	3.	1.	1.	.04		
+	2 COMBINED AT	ME	91.	5.83	10.	3.	3.	.09		
+	ROUTED TO		89.	5.92	10.	з.	з.	.09		
+	HYDROGRAPH AT	M9	25.	5.75	2.	1.	1.	.02		
+	ROUTED TO		23.	5.83	2.	1.	1.	.02		
+	HYDROGRAPH AT	M12A	47.	5.83	5.	2.	2.	.07		
+	HYDROGRAPH AT	M12B	86.	5.92	11.	4.	4.	.15		
+	5 COMBINED AT	MF	401.	5.92	47.	16.	15.	.54		
+	ROUTED TO		388.	5.92	47.	16.	15.	.54		
+	HYDROGRAPH AT	M13	56.	5.83	6.	2.	2.	.06		
+	ROUTED TO		53.	5.92	6.	2.	2.	.06		
+	HYDROGRAPH AT	M14	122.	5.92	16.	5.	5.	.16		
+	2 COMBINED AT	MG	176.	5.92	22.	7.	7.	.22		
+ +	ROUTED TO	PONDW	16.	7.00	16.	7.	7.	.22	970.02	7.00
+	2 COMBINED AT	мн	403.	5.92	63.	23.	22.	.77		
+	ROUTED TO		385.	6.00	63.	23.	22.	.77		
+	DIVERSION TO	DIVRT1	85.	6.00	43.	18.	18.	.77		

+ +

> + +

> > <u>.</u>

÷ + +

+

÷ +

+ .

÷

+ .

 \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

 FDR\xfal2100.doc
 Page 35 of 41
 7/23/2008

+	HYDROGRAPH AT	MH-P2	300.	6.00	20.	5.	5.	.77	
+	HYDROGRAPH AT	M 15	101.	5.83	12.	4.	4.	.12	
+	2 COMBINED AT	MI	388.	5.92	32.	9.	9.	.89	
+	ROUTED TO		378.	6.00	32.	9.	9.	.89	
+	HYDROGRAPH AT	M19	38.	5.83	4.	1.	1.	.05	
+	2 COMBINED AT	MJ	397.	6.00	36.	10.	10.	.94	
+	ROUTED TO		381.	6.00	36.	10.	10.	.94	
+	HYDROGRAPH AT	M 10	54.	5.75	5.	2.	2.	.06	
+	ROUTED TO	M10-K	53.	5.83	5.	2.	2.	.06	
+	HYDROGRAPH AT	M11A	65.	5.92	9.	3.	3.	.11	
+	2 COMBINED AT	МК	115.	5,83	14.	5.	4.	.16	
+	ROUTED TO	MK-K1	111.	5.92	14.	5.	4.	.16	
+	HYDROGRAPH AT	M11B	64.	5.83	7.	2.	2.	.09	
+	NUTED TO	11B-K1	58.	5.92	7.	2.	2.	.09	
+	AIDROGRAPH AI	MIIC	66.	5.83	7.	2.	2.	.09	
+	POLITED TO	MK1	230.	5.83	27.	9.	9.	.35	
+	HYDROGRAPH AT	K1-ML	225.	5.92	27.	9.	9.	. 35	
+	2 COMBINED AT	M16	31.	5.83	3.	1.	1.	.04	
+	BOUTED TO	ML	247.	5.92	30.	10.	10.	. 39	
+	HYDROGRAPH AT		240.	5.92	30.	10.	10.	.39	
+	2 COMBINED AT	M17	61.	5.83	б.	2.	2.	.08	
+	ROUTED TO	MM	282.	5.92	36.	13.	12.	.46	
+	HYDROGRAPH AT		268.	6.00	36.	12.	12.	.46	
+	ROUTED TO	M18	48.	5.83	5.	2.	2.	.06	
+	HYDROGRAPH AT		45.	5.92	5.	2.	2.	.06	
+	4 COMBINED AT	M20	85.	5.83	11.	4.	4.	.13	
+	ROUTED TO	MN	747.	6.00	88.	28.	27.	1.60	
+	HYDROGRAPH AT		724.	6.00	88.	28.	27.	1.60	
+	ROUTED TO	M21	19.	5.83	2.	1.	1.	.02	
+	HYDROGRAPH AT		19.	5.83	2.	1.	1.	.02	
+		M23	34.	5.83	3.	1.	1.	.05	

.

3 COMBINED AT

+ +

> + + + +

> > + +

+ + + ÷

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 36 of 41 7/23/2008

+		MO	747.	6.00	93.	30.	29.	1.67	
+	ROUTED TO		724.	6.00	93.	30.	29.	1.67	
+	HYDROGRAPH AT	M24	58.	5.83	6.	2.	2.	.08	
+	2 COMBINED AT	MP	744.	6,00	99.	32.	31.	1.75	
+	ROUTED TO		736.	6.00	99.	32.	31.	1.75	
+	HYDROGRAPH AT	M25	8.	5.83	1.	٥.	٥.	.01	
+	2 COMBINED AT	MQ	739.	6.00	100.	32.	31.	1.76	
+	ROUTED TO		734.	6.08	99.	32.	31.	1.76	
+	HYDROGRAPH AT	M2.6	139.	5.92	18.	6.	6.	.18	
+	2 COMBINED AT	MR	825.	6.08	117.	38.	37.	1.94	
+	HYDROGRAPH AT	W44	28.	5.83	3.	1.	1.	.04	
+	ROUTED TO		27.	5.92	з.	1.	1.	.04	
+	HYDROGRAPH AT	W47	39.	5.83	4.	1.	1.	.05	
+	ROUTED TO		36.	5.83	4.	1.	1.	.05	
+	HYDROGRAPH AT	W 46	32.	5.83	3.	1.	1.	.04	
+	HYDROGRAPH AT	M27	39.	5.83	4.	1.	1.	.05	
+	6 COMBINED AT	WX	2398.	6.17	442.	153.	147.	6.17	
+	ROUTED TO		2323.	6.25	441.	152.	147.	6.17	
+	HYDROGRAPH AT	W 4 B	108.	5.75	10.	3.	З.	.12	
+	ROUTED TO		102.	5.83	10.	3.	з.	.12	
+	HYDROGRAPH AT	W49	189.	5,83	21.	7.	٦.	.27	
+	3 COMBINED AT	WZ	2392.	6.17	471.	163.	157.	6.55	
+	ROUTED TO		2383.	6.25	471.	163.	157.	6.55	
+	HYDROGRAPH AT	W 50	83.	5.83	9.	3.	3.	.11	
+	2 COMBINED AT	WAB	2399.	6.25	480.	166.	160.	6.66	
+	ROUTED TO		2396.	6.25	480.	166.	160.	6.66	
+	HYDROGRAPH AT	W51	46.	5.83	5.	2.	2.	.05	
+	2 COMBINED AT	WAC	2406.	6.25	484.	168.	161.	6.71	
+	ROUTED TO		2402.	6.25	485.	168.	161.	6.71	
+	HYDROGRAPH AT	w52	48.	5.75	5.	2.	1.	.05	
+	ROUTED TO		46.	5.83	5.	2.	1.	.05	
+	HYDROGRAPH AT	W53	47.	5.83	5.	2.	2.	.05	

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 37 of 41 7/23/2008

+	2 COMBINED AT	WAD	92.	5.83	9.	3.	З.	.10			
+	ROUTED TO		92.	5.83	9.	3.	3.	.10			
+	HYDROGRAPH AT	W 54	8.	5.75	1.	0.	ο.	.01			
+	3 COMBINED AT	WAE	2419.	6.25	494.	171.	165.	6.82			
+	ROUTED TO		2396.	6.25	493.	171.	164.	6.82			
+	HYDROGRAPH AT	W56	116.	5.83	14.	5.	5.	.18			
+	2 COMBINED AT	WAF	2426.	6,25	506.	175.	169.	7.01			
+	ROUTED TO		2405.	6,25	506.	175.	169.	7.01			
+	HYDROGRAPH AT	W62	64.	5.75	6.	2.	2.	.08			
+	ROUTED TO		61.	5.83	6.	2.	2.	.08	•		
+	HYDROGRAPH AT	W 63	36.	5.75	4.	1.	1.	. 05			
	ROUTED TO		36	5 83	4	1	1	05			
	HYDROGRAPH AT	ម្មតា	105	5 92	14	5		19			
	3 COMBINED AT	WAU	100.	5 03	24	٥.	•	- 1			
+	ROUTED TO	*An	190.	5.03	24.	o.	0.	.51			
+	HYDROGRAPH AT	2457	185.	5.92	24.	0.	°.				
+	ROUTED TO	N O 1	54.	5.05	б. с	2.	2.	.07			
•	HYDROGRAPH AT	115.0	126	6.00		۷.	۷.	.07			
+	3 COMBINED AT	M28	126.	5.92	17.	٥.	٥.	.23			
+	ROUTED TO	WAI	345.	5.92	46.	16.	15.	. 62			
+	HYDROGRAPH AT		341.	5.92	47.	16.	15.	.62			
+	ROUTED TO	EIA	65.	5.92	9.	3.	3.	.12			
+	HYDROGRAPH AT	E1A-EA	64.	6.00	9.	3.	3.	.12			
+	2 COMBINED AT	E1B	94.	5.92	13.	4.	4.	.17			
+	BOUTED TO	EA	147.	5.92	21.	7.	7.	.28			
+	HYDROGRAPH AT	EA-EB	145.	6.00	21.	7.	7.	.28			
+	2 COMBINED AT	E2	75.	5.83	8.	3.	3.	.10			
+	2 CONDINED RI	EB	187.	5.92	29.	10.	10.	.39			•
+ +	KOUIED IO	POND1	101.	6.25	23.	9.	8.	.39	954.20	6.25	
+	ROUTED TO		95.	6.25	23.	9.	8.	.39			
+	HYDROGRAPH AT	E3	67.	5.83	7.	2.	2.	.09			
+	HYDROGRAPH AT	MH-P2	85.	5.92	43.	18.	18.	.00			

•

3 COMBINED AT

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 38 of 41 7/23/2008

+		EC	187.	6.25	72.	29.	28.	.48		
+ +	ROUTED TO	POND2	95.	7.17	55.	24.	23.	.48	930.04	7.17
+	ROUTED TO		94.	7.25	55.	24.	23.	.48		
+	HYDROGRAPH AT	EIC	52.	5.83	б.	2.	2.	.08		
+	ROUTED TO	1C-ED1	50.	6.00	б.	2.	2.	.08		
+	HYDROGRAPH AT	Ė4	78.	5.83	10.	3.	3.	.13		
+	2 COMBINED AT	ED1	123.	5.92	16.	5.	5.	.21		
+	ROUTED TO	ED1-ED	121.	5.92	16.	б.	5.	.21		
+	HYDROGRAPH AT	E 5	66.	5.83	7.	2.	2.	.09		
+	3 COMBINED AT	ED	174.	5.92	72.	32.	31.	.78		
+	ROUTED TO		172.	5.92	72.	32.	31.	.78		
+	HYDROGRAPH AT	E 8	33.	5.83	3.	1.	1.	.04		
+	2 COMBINED AT	EE	196.	5.92	75.	33.	32.	.83		
+	ROUTED TO		192.	5.92	75.	33.	32.	.83		
+	HYDROGRAPH AT	E10	21.	5.83	2.	1.	1.	.03		
+	2 COMBINED AT	EF	208.	5.92	77.	34.	33.	.85		
+	ROUTED TO	F-G	199.	5.92	77.	34.	33.	.85		
+	HYDROGRAPH AT	E6	68.	5.92	9.	3.	3.	.12		
+	HYDROGRAPH AT	£7	28.	5.75	2.	1.	1.	.03		
+	ROUTED TO		25.	5.83	2.	1.	1.	.03		
+	2 COMBINED AT	EG1	89.	5.83	11.	4.	4.	.15		
+	ROUTED TO	G1-G	87.	5.92	11.	4.	4.	.15		
+	DOUTED TO	E9	46.	5.83	6.	2.	2.	.08		
+	HADDOCDADH AT		46.	5.92	6.	2.	2.	.08		
+	UNDROCEBEN AT	E11	28.	5.83	3.	1.	1.	.05		
+	5 COMBINED MT	E12	66.	5.83	7.	2.	2.	.09		
+	HYDROGRAPH AT	EG	409.	5.92	103.	43.	42.	1.22		
+	HYDROGRAPH AT	E13	9.	5.92	1.	0.	0.	.02		
+	ROUTED TO	E14	4.	5.83	0.	0.	0.	.01		
+	3 COMBINED AT		4.	5.83	Ο.	0.	0.	.01		
+	ROUTED TO	EH	421.	5.92	105.	44.	42.	1.24		
+			398.	5.92	105.	44.	42.	1.24		

•

 \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

 FDR\xfal2100.doc
 Page 39 of 41
 7/23/2008

HYDROGRAPH AT	E19	35.	5.83	4.	1.	1.	.04	
2 COMBINED AT	EJ1	421.	5.92	108.	45.	43.	1.28	
ROUTED TO	J1-K	411.	6.00	107.	45.	43.	1.28	
HYDROGRAPH AT	E15	36.	5.75	3.	1.	1.	.04	
ROUTED TO		33.	5.83	3.	1.	1.	.04	
HYDROGRAPH AT	E16	31.	5.75	3.	1.	1.	.03	
2 COMBINED AT	EI	63.	5.75	6.	2.	2.	.07	
ROUTED TO		61.	5.83	6.	2.	2.	.07	
HYDROGRAPH AT	E1 7	32.	5.75	3.	1.	1.	.03	
ROUTED TO		31.	5.83	3.	1.	1.	.03	
HYDROGRAPH AT	E18	40.	5.83	4.	2.	1.	.05	
3 COMBINED AT	EJ2	132.	5.83	13.	4.	4.	.15	
ROUTED TO		119.	6.00	13.	4.	4.	.15	
HYDROGRAPH AT	E23	108.	5.92	14.	5.	5.	.17	
HYDROGRAPH AT	E24	74.	6.00	13.	4.	4.	.14	
4 COMBINED AT	EK	698.	6.00	147.	59.	56.	1.74	
ROUTED TO		671.	6.08	146.	58.	56.	1.74	
HYDROGRAPH AT	E21	57.	5.83	7.	2.	2.	.09	
ROUTED TO		55.	5.92	7.	2.	2.	.09	
HYDROGRAPH AT	E20	51.	5.92	7.	2.	2.	.08	
ROUTED TO		51.	5.92	7.	2.	2.	.08	
HYDROGRAPH AT	E22	41.	5.92	5.	2.	2.	.07	
3 COMBINED AT	EL	147.	5.92	19.	6.	6.	.23	
ROUTED TO		140.	6.00	19.	б.	6.	.23	
HYDROGRAPH AT	E25	121.	5.83	13.	5.	4.	.17	
3 COMBINED AT	EM	845.	6.00	177.	69.	67.	2.13	
ROUTED TO		834.	6.08	177.	69.	67.	2.13	
HYDROGRAPH AT	E26	37.	5.75	3.	1.	1.	.04	
2 COMBINED AT	EN EN	840.	6.08	180.	70.	68.	2.17	
ROUTED TO		826.	6.08	179.	70.	68.	2.17	
HYDROGRAPH A	E27	104.	5.83	11.	4.	4.	.12	

.

+

+ + +

+

+

+ + + + +

+ + +

+

+

2 COMBINED AT

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 40 of 41 7/23/2008

+		EO	863.	6.08	189.	74.	71.	2.29
+	ROUTED TO		835.	6.08	189.	74.	71.	2.29
+	HYDROGRAPH AT	W 55	38.	5.75	3.	1.	1.	.05
+	2 COMBINED AT	WAG	841.	6.08	192.	75.	72.	2.34
+	ROUTED TO		833.	6.17	192.	75.	72.	2.34
+	HYDROGRAPH AT	W 59	43.	5.83	5.	2.	2.	. 07
+	4 COMBINED AT	WAJ	3321.	6.25	749.	268.	259.	10.03
+	ROUTED TO		3310.	6.25	749.	268.	259.	10.03
+	HYDROGRAPH AT	E28	44.	5.92	6.	2.	2.	.07
+	ROUTED TO		44.	6.00	6.	2.	2.	.07
+	HYDROGRAPH AT	E29	35.	5.83	4.	1.	1.	.05
+	2 COMBINED AT	EZZ	69.	5.92	9.	З.	3.	.12
+	HYDROGRAPH AT	W 60	47.	5.83	5.	2.	2.	.07
+ 1	3 COMBINED AT	22	3350.	6.25	763.	274.	263.	10.22

•

*** NORMAL END OF HEC-1 ***

.

.

1**	·*************************************	***	***************************************	
٠		*	*	
*	FLOOD HYDROGRAPH PACKAGE (HEC-1)	*	 U.S. ARMY CORPS OF ENGINEERS 	1
*	JUN 1998	•	 HYDROLOGIC ENGINEERING CENTER 	1
*	VERSION 4.1	*	* 609 SECOND STREET	1
٠		*	 * DAVIS, CALIFORNIA 95616 	1
*	RUN DATE 20MAY08 TIME 08:48:57	*	* (916) 756-1104	,
*		*	•	
		***	****	**

Х	X XXXXXXX		XX	XXX		х
x	х	х	х	х		XX
х	х	х	х			х
XXXX	XXX	XXXX	х		XXXXX	х
х	Х	х	х			х
х	х	х	х	х		х
Х	х	XXXXXXX	XX	XXX		XXX

.

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HECIDB, AND HECIKW.

1

1

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-1	INPUT				-		PAGE	1
LINE	ID	1	2.	3 .	4		6		8	9	10		
,	TD	FALCON	нісніа	NDS PREL	THINARY I	BATNAGE	PLAN - P	ASED ON	DBPS MOI	EL E1008	O.LO		
1	ID	1711001	DETENT	TON DOND	37 WIT /1	DETWEEN C	U 24 AMP	TAMITN	PDI D IIOI				
2	10		DETENT	TON FOND	AL NO (1	VIII Ch		CALL					
3	ID		2 fear	, 5 iear	and 100	iear Sto	rm Event	S (24nr	SCOTM)				
4	10		Basins	W40 & W4	z revised	a due to	Meridian	Crossin	d dever	pmenc			
	*DIA	GRAM											
5	IT	5 2	25MAY05	800	300								
6	IO	5											
7	JR	PREC	1	1.2381	2.0952								
8	KK	W1											
9	KM												
10	BA	.0479											
11	PB	2.1											
12	IN	15											
13	PC	.0005	.0015	.0030	.0045	.0060	.0080	.0100	.0120	.0143	.0165		
14	PC	0188	0210	0233	0255	0278	0320	0390	0460	0530	.0600		
14	PC	0750	1000	4000	7000	7250	7500	7650	7900	7900	8000		
15	PC	.0750	.1000	.4000	.7000	. 72.50	.,,,,,,,	. / 050	. 1000	9550	.0000		
10	PC	.8100	.8200	.0250	.8300	.8350	.0400	.0450	. 8300	.0330	2075		
17	PC	.3638	.8675	.8/13	.8/50	.8/88	.8825	.8503	.8900	.8938	.89/5		
18	PC	.9013	.9050	.9083	.9115	.9148	.9180	.9210	.9240	.9270	.9300		
19	PC	.9325	.9350	.9375	.9400	.9425	.9450	.9475	.9500	.9525	.9550		
20	PC	.9575	.9600	.9625	.9650	.9675	.9700	.9725	.9750	.9775	.9800		
21	PC	.9813	.9825	.9838	.9850	.9863	.9875	.9888	.9900	.9913	.9925		
22	PC	.9938	.9950	.9963	.9975	.9988	1.000						
23	LS		60										
24	UD	.097											
24	02												
25	KK												
26	KM												
27	RK	1519	.0263	.035		TRAP	5	4					
20	VV	613											
28	KK IOI	₩2											
29	r.m												
30	BA	.0278											
31	LS		60										
32	UD	.160											
33	KK	WA											
34	КM												
35	HC	2											
36													
20	17												
37	NM DK	151	0151	0.25		TRAD	c	1					
38	KK	404	.0151	.055		INA							
39	KK	W 3											
40	KM												
41	BA	.0498											
42	LS		61										
43	UD	.139											
	00	•••			HEC-1	INPUT						PAGE	2
LINE	ID.		2	3	4.		6.		в.		10		
44	кк	WB											
45	KM												

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc 7/23/2008 Page 1 of 19

46	HC	2							
47	кк								
48	КM								
49	RK	823	.0279	.035	TRAP	5	4	54	
50	кк	W4							
51	KM								
52	BA	.0054	62						
54	UD	.044	02						
55 56	KK								
57	RK	1078	.0482	.035	TRAP	5	4		
50									
58	KK KM	W 5							
60	BA	.0159							
61	LS	0.75	60						
62	υD	.075							
63	KK	WC							
64 65	KM	з							
05	IIÇ.	5							
66	KK								
ь/ 68	KM RK	557	.0449	.035	TRAP	10	4		
	••••						-		
69 70	KK KM	W6							
71	BA	.0486							
72	LS		60						
/3	UD	.085							
74	кк								
75 76	KM BK	592	0372	035	TRAP	5	Δ		
10		552	.0372	.055	IIGH	5	4		
77	KK	W 7							
78 79	KM BA	.0217							-
80	LS		60						
81	UD	.074							
82	кк								
83	KM								
01	10 IV	464	1455	0.25	7010	5	4		
84	RK	464	.1466	.035	TRAP HEC-1 INPUT	5	4		PAGE 3
84	RK	464	.1466	.035	TRAP HEC-1 INPUT	5	4		PAGE 3
84 LINE	RK ID	464	.1466	.035	TRAP HEC-1 INPUT	5	4	8910	PAGE 3
84 LINE	RK ID	464	.1466 2	.035	TRAP HEC-1 INPUT	5	4	9910	PAGE 3
84 LINE 85 86	RK ID KK KM	464 1 WD	.1466 2	.035	TRAP HEC-1 INPUT	5	4	910	PAGE 3
84 LINE 85 86 87	RK ID KK KM HC	464 1 WD 2	.1466	.035	TRAP HEC-1 INPUT	5	4	910	PAGE 3
84 LINE 85 86 87 88	RK ID KK KM HC KK	464 1 WD 2 D-F	.1466	.035	TRAP HEC-1 INPUT	5	4	910	PAGE 3
84 LINE 85 86 87 88 89	RK ID KK KM HC KK KM	464 1 WD 2 D-E	.1466	.035	TRAP HEC-1 INPUT	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90	RK ID KK KM HC KK KM RK	464 1 WD 2 D-E 1044	.1466 2 .0479	.035	TRAP HEC-1 INPUT 5 TRAP	5	4		PAGE 3
84 LINE 85 86 87 88 89 90 90	RK ID KK KM HC KK KM RK KK	464 1 WD 2 D-E 1044 W8	.1466 2 .0479	.035 3 .035	TRAP HEC-1 INPUT 45 TRAP	5	4	8910	PAGE 3
84 LINE 85 86 87 88 89 90 90 91 92	RK ID KK KM HC KK KM RK KM	464 1 WD 2 D-E 1044 W8	.1466 2 .0479	.035	TRAP HEC-1 INPUT 45 TRAP	5	4	8910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 92 93 94	RK ID KK KM HC KK KM RK KM BA BA	464 WD 2 D-E 1044 W0 .0286	.1466 2 .0479	.035	TRAP HEC-1 INPUT 45 TRAP	5	4	8910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95	RK ID KK KM HC KK KM RK KM BA LS UD	464 1 WD 2 D-E 1044 W8 .0286 .069	.1466 2 .0479 60	.035	TRAP HEC-1 INPUT 45 TRAP	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 06	RK ID KK KM HC KK KM RK KM BA LS UD	464 WD 2 D-E 1044 W8 .0286 .069	.1466 2 .0479 60	.035	TRAP HEC-1 INPUT 45 TRAP	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97	RK ID KK KM HC KK KM RK KM BA LS UD KK KM	464 1 WD 2 D-E 1044 w8 .0286 .069	.1466 2 .0479 60	.035	TRAP HEC-1 INPUT 45 TRAP	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 98	RK ID KK KM HC KK KM BA LS UD KK KM KK KM	464 1 WD 2 D-E 1044 w8 .0286 .069 1449	.1466 2 .0479 60 .0504	.035 3 .035 .035	TRAP HEC-1 INPUT 45 TRAP	5 5 5	4 7 4 4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	RK ID KK KM HC KK KM RK KM BA LS UD KK KM KK KK	464 1 WD 2 D-E 1044 w8 .0286 .069 1449 W9	.1466 2 .0479 60 .0504	.035 3 .035 .035	TRAP HEC-1 INPUT 45 TRAP	5	4 4 4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 93 94 95 96 97 98 99 100	RK ID KK KM HC KK KM RK KM BA LS UD KK KM RK	464 1. WD 2 D-E 1044 W8 .0286 .069 1449 W9	.1466 2 .0479 60 .0504	.035 3 .035 .035	TRAP HEC-1 INPUT 45 TRAP TRAP	5	4 4 4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 100 100	RK ID KK KM RC KK KM RK KM RK KM RK KK KK KK KK KK	464 1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402	.1466 2 .0479 60 .0504	.035 3 .035 .035	TRAP HEC-1 INPUT 45 TRAP TRAP	5	4 4 4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	RK ID KK KM RK KM RK BA LS UD KK KM RK KM BA LS UD UD	464 1 WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097	.1466 2 .0479 60 .0504 61	.035 3 .035 .035	TRAP HEC-1 INPUT 45 TRAP TRAP	5	4 4 4		PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	RK ID KK KM HC KK KM RK KM BA LS UD KK KM RK KK KM BA LS UD	464 1 WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097	.1466 2 .0479 60 .0504 61	.035 3 .035 .035	TRAP HEC-1 INPUT 45 TRAP TRAP	5	4 4 4		PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 96 97 98 99 100 101 102 103 104 105	RK ID KK KM HC KK KM RK KM BA LS UD KK KM KK KM KK KM	464 1 WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE	.1466 2 .0479 60 .0504 61	.035	TRAP HEC-1 INPUT 45 TRAP TRAP	5	4 4 4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	RK ID KK KM HC KK KM RK KM BA LS UD KK KM KK KM KK KM HC	464 1 WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3	.1466 2 .0479 60 .0504 61	.035	TRAP HEC-1 INPUT 45 TRAP TRAP	5	4 4 4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	RK ID KK KM HC KK KM BA LS UD KK KM RK KM BA LS UD KK KM KM KM KM KM	464 1 WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F	.1466 2 .0479 60 .0504 61	.035	TRAP HEC-1 INPUT 45 TRAP TRAP	5	4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	RK ID KK KM HC KK KM RK KM BA LS UD KK KM BA LS UD KK KM HC KK	464 1 WD 2 D-E 1044 w8 .0286 .069 1449 w9 .0402 .097 WE 3 E-F	.1466 2 .0479 60 .0504 61	.035	TRAP HEC-1 INPUT 45 TRAP TRAP	5	4 4 4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	RK ID KK KM HC KK KM RK KM BA LS UD KK KM BA LS UD KK KM HC KK KM KM KK	464 1 WD 2 D-E 1044 w8 .0286 .069 1449 w9 .0402 .097 WE 3 E-F 789	.1466 2 .0479 60 .0504 61 .0038	.035 .035 .035 .035	TRAP HEC-1 INPUT 45 TRAP TRAP	5 5 5	4 4 4 4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	RK ID KK KM HC KK KM RK KM BA LS UD KK KM BA LS UD KK KM HC KK KM KK KK	464 1 WD 2 D-E 1044 w8 .0286 .069 1449 w9 .0402 .097 WE 3 E-F 789 w10	.1466 2 .0479 60 .0504 61 .0038	.035 3 .035 .035	TRAP HEC-1 INPUT 45 TRAP TRAP	5 5 5	4 4 4 4	910	PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112	RK ID KK KM HC KK KM RK KM BA LS UD KK KM BA LS UD KK KM KM KM KK KM KK KM KK KM KK KK KK	464 1 WD 2 D-E 1044 w8 .0286 .069 1449 w9 .0402 .097 WE 3 E-F 789 w10 .0431	.1466 2 .0479 60 .0504 61 .0038	.035 3 .035 .035	TRAP HEC-1 INPUT 45 TRAP TRAP	5 5 5	4 4 4 4	910	PAGE 3
84 LINE 85 86 87 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113	RK ID KK KM HC KK KM RK KM BA LS UD KK KM HC KK KM KM HC KK KM HC LS LS LS LS LS LS LS LS LS LS LS LS LS	464 1. WD 2 D-E 1044 W8 .0286 .069 1449 W9 .0402 .097 WE 3 E-F 789 W10 .0431	.1466 2 .0479 60 .0504 61 .0038 61	.035 3 .035 .035	TRAP HEC-1 INPUT 45 TRAP TRAP	5 6 5 5	4 4 4		PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	RK ID KK KM HC KK KM RK KM BA LS UD KK KM BA LS UD KK KM HC KK KM HC KK KM HC KK KM HC KK KM HC KK KM KM KK KM KK KM KK KM KK KM KK KM KK KK	464 1. WD 2 D-E 1044 W8 .0286 .0699 1449 W9 .0402 .097 WE 3 E-F 789 W10 .0431 .096	.1466 2 .0479 60 .0504 61 .0038 61	.035 3 .035 .035	TRAP HEC-1 INPUT 45 TRAP TRAP	5 5 5	4 4 4		PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	RK ID KK KM HC KK KM RK KM BA LS UD KK KM BA LS UD KK KM HC KK KM HC KK KM KK KM KK KK KK KK KK KK KK KK KK	464 1. WD 2 D-E 1044 W8 .0286 .0699 1449 W9 .0402 .097 WE 3 E-F 789 W10 .0431 .096	.1466 2 .0479 60 .0504 61 .0038 61	.035 .035 .035 .035	TRAP HEC-1 INPUT 45 TRAP TRAP	5	4 4 4		PAGE 3
84 LINE 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 117	RK ID KK KM HC KK KM RK KM BA LS UD KK KM BA LS UD KK KM HC KK KM BA LS UD KK KM HC KK KM KM KK KM KK KK KM KK KK KK KK KK	464 1. WD 2 D-E 1044 W8 .0286 .0699 1449 W9 .0402 .097 WE 3 E-F 789 W10 .0431 .096	.1466 2 .0479 60 .0504 61 .0038 61	.035 .035 .035 .035	TRAP HEC-1 INPUT 45 TRAP TRAP	5	4 4 4		PAGE 3

1

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 2 of 19 7/23/2008

118	KK	WII								
119	KM									
120	BA	.0314								
121	LS		60							
122	UD	.077								
123	KK	WE								
124	KM									
125	HC	4								
					HEC-1 INPUT					PAGE 4
										1100 4
TIME	TD	1	2	3	4 5	6	7	P	9 10	
LINE	10		2						9	
126	KK	F-G								
127	KM									
128	RK	2319	.0211	.035	TRAP	10	4			
129	KK	W12								
130	KM									
131	BA	.0398								
132	LS		60							
133	UD	.095								
134	KK									
135	KM									
136	DV	2479	0307	035	TOAD	5				
150	KK	24/0	.0307	.055	INNE	5	-			
107										
137	KK	W14								
138	KM									
139	BA	.0473								
140	LS		61							
141	UD	.135								
					•					
142	KK									
143	КM									
144	RK	81	0.0003	.035	TRAP	5	4			
						-	-			
145	XX	W13								
145	KM	N 15								
140	- CP1	1122								
147	DA LC	.1125	61							
148	12	1.00	61							
149	αU	.182								
150	KK	WG								
151	KM									
152	HC	4								
153	KK	G-H								
154	KM									
155	RK	2632	.0217	.035	TRAP	15	4			
156	КК									,
157	KM									
158	PK IGI	2447	0372	035	TRAP	5	a			
150	INIX	211/	.05/2	.055	itou	5	1			
100		141 C								
159	~~	W12								
160	KM									
161	BA	.0881								
162	LS		61							
163	UD	.141								
164	KK									
165	KM									
166	RK	1763	.0289	.035	TRAP	5	4			
					HEC-1 INPUT					PAGE 5
LINE	ID.	1 .	2 .	3	4 5	6	7	8	.9	
167	ĸĸ	WH								
168	101	-								
160	N.M.	2								
169	HC	2								
120										
1/0	KK	W16								
171	KM									
172	BA	.0292								
173	LS		61							
174	UD	.092								
175	KK									
176	KM									
177	RK	1345	.0260	.035	TRAP	5	4			
-						-	-			-
178	кк	₩17								
179	км									
190	101	0194								
181	T C	.0104	60							
182	10	005	00							
102	00	.000								
1.9.2		шŦ								
104	KK ISI	W 1								
184	KM	-								
T82	HC	2								

f

1

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 3 of 19 7/23/2008

186	KK	I-M						
187	KM							
188	BK	2650	0370	035	TRAP	15	4	
100		2000					-	
100	22	W1 0						
189	NN IN	W19						
190	KM							
191	BA	.0428						
192	LS		61					
193	UD	.083						
104	× v							
194	ICIN ICIN							
195	KM D			0.05		~		
196	RK	881	.0329	.035	TRAP	5	4	
197	KK	W20						
198	KM							
199	BA	.0315						
200	LS		61					
201	10	071	••					
201	00	.071						
202	1017	64 T						
202	NN.	NJ						
203	KM							
204	HC	2						
205	KK							
206	KM							
207	PK	3061	0235	035	TRAP	5	4	
207	1.1.	5001	.0255	.033	NEC-1 INDUP	5	-	PACE 6
					HEC-1 INPUT			PAGE 0
LINE	ID		2	3	4	6	7 8	910
208	KK	W21						
200	KM I							
209	NP1	1 7 4 7						
210	BA	.134/						
211	LS		60					
212	UD	.156						
213	KK	WK						
214	KM							
215	HC	2						
215	110	-						
21.0	VV							
216	KK							
217	KM					_		
218	RK	487	.0246	.035	TRAP	5	4	
219	KK	W22						
220	KM							
221	BA	0086						
222	TS		63					
222	13	055	0.5					
223	0D	.055						
224	KK	WL						
225	KM							
226	HC	2						
227	ĸĸ							
220	KM.							
220	TU-1	1700	0007	0.25		-		
229	KK	1/86	.0297	.035	TRAP	5	4	
230	KK	W23						
231	KM							
232	BA	.0244						
233	LS		60					
234	UD	.112						
	02							
236	~~	សេខ						
200		M10						
230	км 							
231	BA	.1251						
238	LS		60					
239	UD	.189						
240	KK	WM						
241	км							
242	HC	5						
474	110	5						
242	1010							
243	KK	M-N						
244	KM					_		
245	RK	1345	.0149	.035	TRAP	20	4	
246	KK	W24						-
247	КM							
248	AA	.0442						
2/0	10		60					
249	12	1 * 0	10U					
250	UD	.140						
					HEC-1 INPUT			PAGE 7
LINE	ID.	1 .		3 .		6		.910
251	ĸĸ	W 25						
252	100	•• 2.3						
222	n.rl	0057						
203	BA	.095/	<i>c</i> 1					
2.54	LS		61					

i

k

1

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 4 of 19 7/23/2008

256	KK	WN							
257	КМ								
258	HC	3							
250	1010	N D							
259	KK	N-P							
261	RK	1589	.017	.035	TRAP	20	4		
						• •	-		
262	KK	W28							
263	KM								
264	BA	.0397							
265	LS		63						
266	UD	.128							
267	KK								
268	KM								
269	RK	1345	.0208	.035	TRAP	5	4		
270	KK	W 30							
271	KM								
272	BA	.0509	63						
273	10	123	63						
2/4	00	.125							
275	кк								
276	KM								
277	RK	1078	.0074	.035	TRAP	5	4		
278	KK	W29							
279	KM	0400							
280	BA	.0409	63						
282	10	.145	05						
	65								
283	KK	W31							
284	KM								
285	BA	.0123							
286	LS		63						
267	UD	.073							
288	ĸĸ	80							
289	КМ								
290	HC	4							
				H	EC-1 INPUT				PAGE 8
			_				_		
LINE	ID		2			6	7	.89	10
291	KK.	0-P							
291 292	KK	0-P							
291 292 293	KK KM RK	0-P 2169	.0226	.035	TRAP	5	4		
291 292 293	KK KM RK	0-P 2169	.0226	.035	TRAP	5	4		
291 292 293 294	KK KM RK KK	0-P 2169 W26	.0226	.035	TRAP	5	4		
291 292 293 294 295	KK KM RK KK	О-Р 2169 W26	.0226	.035	TRAP	5	4		
291 292 293 294 295 296	KK KM RK KK KM BA	0-P 2169 W26 .0301	.0226	.035	TRAP	5	4		
291 292 293 294 295 296 297 288	KK KM RK KM BA LS	0-P 2169 W26 .0301	.0226	.035	TRAP	5	4		
291 292 293 294 295 296 297 298	KK KM RK KM BA LS UD	O-P 2169 W26 .0301 .062	. 0226 63	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299	KK KM RK KM BA LS UD KK	O-P 2169 W26 .0301 .062	. 0226 63	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300	KK KM RK KM BA LS UD KK KM	0-P 2169 W26 .0301 .062	. 0226 63	.035	TRAP	5	4		
291 292 293 295 296 297 298 299 300 301	KK KM RK KM BA LS UD KK KM RK	0-P 2169 W26 .0301 .062 4662	.0226 63 .0225	.035	TRAP TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301	KK KM RK KM BA LS UD KK KM RK	0-P 2169 W26 .0301 .062 4662	.0226 63 .0225	.035	TRAP TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 301	KK KM RK KM BA LS UD KK KM RK KK	0-P 2169 W26 .0301 .062 4662 W27	. 0226 63 . 0225	.035 .035	TRAP TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 301 302 303	KK KM RK KM BA LS UD KK KM RK KM KM	0-P 2169 W26 .0301 .062 4662 W27	.0226 63 .0225	.035 .035	TRAP TRAP	5	4		
291 292 293 295 296 297 298 299 300 301 301 302 303 304	KK KM RK KM BA LS UD KK KM KM KK KM BA BA	0-P 2169 W26 .0301 .062 4662 W27 .1633	.0226 63 .0225	.035 .035	TRAP TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	KK KM RK KM BA LS UD KK KM RK KM BA LS LS	0-P 2169 w26 .0301 .062 4662 w27 .1633 253	.0226 63 .0225 60	.035 .035	TRAP TRAP	5	4		·
291 292 293 294 295 296 297 298 299 300 301 301 302 303 304 305 306	KK KM KK KM BA LS UD KK KM RK KM BA LS UD	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253	.0226 63 .0225 60	.035 .035	TRAP TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307	KK KM RK KM BA LS UD KK KM RK KM LS UD KK	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32	.0226 63 .0225 60	.035 .035	TRAP TRAP	5	4		
291 292 293 295 296 297 298 299 300 301 302 303 304 305 306 307 308	KK KM RK KM BA LS UD KK KM RK KM BA LS UD KK KM	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32	.0226 63 .0225 60	.035 .035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309	KK KM RK KM BA LS UD KK KM BA LS UD KK KM BA	0-P 2169 w26 .0301 .062 4662 w27 .1633 .253 w32 .0890	.0226 63 .0225 60	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 301 302 303 304 305 306 307 308 309 310	KK KM RK KM BA LS UD KK KM BA LS UD KK KM BA LS LS	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890	.0226 63 .0225 60	.035 .035	тгар тгар	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 306 307 308 309 310 311	KK KM RK KM BA LS UD KK KM RK KM BA LS UD KK KM BA LS UD	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170	. 0226 63 . 0225 60 60	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 306 307 308 309 310 311	KK KM RK KM BA LS UD KK KM RK KM BA LS UD KK KM BA LS UD	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170	.0226 63 .0225 60 60	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312	KK KM KK BA LS UD KK KM BA LS UD KK KM BA LS UD KK KM KM KM	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP	.0226 63 .0225 60 60	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 301 302 303 304 305 306 307 308 309 310 311 312 313 314	KK KM RK LS UD KK KM BA LS UD KK KM BA LS UD KK KM BA LS UD KK KM KM KM KM	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5	.0226 63 .0225 60 60	.035	тгар	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314	KK KM RK KM BA LS UD KK KM RK KM BA LS UD KK KM BA LS UD KK KM HC	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5	. 0226 63 . 0225 60 60	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	KK KM RK KM BA LS UD KK KM RK KM BA LS UD KK KM KM KM KM KK KM KK	0-P 2169 w26 .0301 .062 4662 w27 .1633 .253 w32 .0890 .170 wP 5 P-Q	.0226 63 .0225 60 60	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316	KK KM RK LS UD KK KM BA LS UD KK MA LS UD KK MA LS UD KK MA KM KM KM	0-P 2169 w26 .0301 .062 4662 w27 .1633 .253 w32 .0890 .170 wP 5 P-Q	.0226 63 .0225 60 60	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317	KK KM RK BA LS UD KK KM BA LS UD KK KM BA LS UD KK KM KM KK KK KK KK KK KK KK	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5 P-Q 1925	.0226 63 .0225 60 60	.035	TRAP TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 309 310 311 312 313 314 315 316 317	KK KM RK KM BA LS UD KK KM RK KM BA LS UD KKM BA LS UD KKM HC KM HC KKM RK	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5 P-Q 1925	.0226 63 .0225 60 60 .0182	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 319	KK KM RK KM BA LS UD KK KM RK KM BA LS UD KK MA LS UD KK MA KM K KM KK KM KK KK KK KK KK KK	O-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5 P-Q 1925 W33A	.0226 63 .0225 60 60 .0182	.035	TRAP TRAP TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320	KK KM RK LS UD KK KM BA LS UD KK MA LS UD KK MA LS UD KK MA KM K K K K K K K K K K K K K K K K K	0-P 2169 w26 .0301 .062 4662 w27 .1633 .253 w32 .0890 .170 wP 5 P-Q 1925 w33A .1261	.0226 63 .0225 60 60 .0182	.035	TRAP TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321	KK KM RK KM BA LS UD KK KM RK KM BA LS UD KK MA BA LS UD KK MA KM HC KK MA LS LS LS LS LS LS LS LS LS LS LS LS LS	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5 P-Q 1925 W33A .1261	.0226 63 .0225 60 60 .0182	.035	тгар тгар	5	4		·
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322	KK KN RK RK BAALS UD KK KK RK KK BALS UD KK KA BALS UD KK KK KK KK BALS UD KK KK KK KK BALS UD	O-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5 P-Q 1925 W33A .1261 .186	.0226 63 .0225 60 60 .0182 60	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322	KK KM RK KM BA LS UD KKM RK KM BA LS UD KKM BA LS UD KKM C KKM RK KM BA LS UD	0-P 2169 w26 .0301 .062 4662 w27 .1633 .253 w32 .0890 .170 wP 5 P-Q 1925 w33A .1261 .186	.0226 63 .0225 60 .0182 60	.035	TRAP	5	4		
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	KK KN KK KA KK KA KK KA LS UD KK KA KK	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5 P-Q 1925 W33A .1261 .186 WP1	.0226 63 .0225 60 60 .0182 60	.035	TRAP	5	4		·
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324	KK KM BA LS UD KK KM RK KK BA LS UD KK MA SA	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5 P-Q 1925 W33A .1261 .186 WP1 2	.0226 63 .0225 60 .0182 60	.035	TRAP	5	4		· ·
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325	KK KK KK BA LS U KK KA S LS U KK KK KK KK KK KK BA LS U KK KK A S LS U KK KK KK KK KK KK KK BA LS U KK KK HC KK KK KK BA LS U KK KK HC	O-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5 P-Q 1925 W33A .1261 .186 WP1 2	.0226 63 .0225 60 .0182 60	.035	TRAP	5	4		· ·
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325	KK KM RK KM BA LS UD KKM RK KM BA LS UD KKM BA LS UD KKM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK KM RK	0-P 2169 w26 .0301 .062 4662 w27 .1633 .253 w32 .0890 .170 wP 5 P-Q 1925 w33A .1261 .186 wP1 2 P1-0	.0226 63 .0225 60 .0182 60	.035	TRAP	5	4		·
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327	KK	0-P 2169 W26 .0301 .062 4662 W27 .1633 .253 W32 .0890 .170 WP 5 P-Q 1925 W33A .1261 .186 WP1 2 P1-Q	.0226 63 .0225 60 60 .0182 60	.035	TRAP	5	4		· ·

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 5 of 19 7/23/2008

328	RK	3000	.020	.035	TRAP	25	4			
329	кк	W33B								
330	KM									
331	BA	.1360								
332	LS		60							
333	UD	.225								
					HEC-1 INPUT					PAGE 9
LINE	ID	1	2			6	7	89	10	
334	ĸĸ	W34A								
335	KM									
336	BA	.1418								
337	LS		60							
338	UD	.173								
339	кк	34A-P2								
340	КМ									
341	RK	2550	.0176	.035	TRAP	25	4			
342	KK	W34B								
343	KM									
344	BA	.1766	60							
345		. 224	60							
510	00									
347	KK	WP2								
348	KM NC	2								
545	110	-								
350	KK	P2-Q								
351	KM	0.040	0.01	0.75		25				
352	KK	2040	.021	.035	IRAP	25	4			
353	KK	W34C								
354	KM									
355	BA	.1625	CA							
356		244	60							
557	05									
358	КК	WQ								
359	KM									
360	нс	4								
361	KK	Q-Q1								
362	KM	2040	022	0.25	TPAP	25	4			
363	RK	2940	.022	.035	IKAP	25	4			
364	KK	W36A								
365	КM									
366	BA	,1429	60							
368	UD	.234	00							
369	KK	WQ1								
370	KM HC	2								
		-								
372	KK	Q1-R								
373	KM PK	3400	022	035	TRAP	25	4			
1/4	m	5400	.022	.055	HEC-1 INPUT	20	•			PAGE 10
						~	-	<u> </u>	10	
LINE	10.							•••••••		
375	KK	W36B								
377	BA	.1918								
378	LS		60							
379	UD	.306								
380	кк	W35A								
381	KM									
382	BA	.0958								
383	LS	107	60							
304	00	.107								
385	KK	35A-WR								
386	KM	2715	022	025	71 0 A D	25	٨			
307	ĸĸ	2112	.023		INAL	20	7			
388	кк	W35B								
389	KM	1507								
391	BA LS	0.1207	60							
392	UD	.259								
202										
394	KM	M.C.								
395	HC	4								
79 <i>6</i>		MD - C								
230	ĸĸ	WK-S								

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 6 of 19 7/23/2008

397 398	KM RK	2922	.0168	.035		TRAP	25	4				
200	~~~	57278										
399	KK KM	W3/A										
401	BA	.1138										
402	LS		60									
403	UD	.185										
		27. C										
404	KM	3/A-5										
406	RK	1430	.014	.035		TRAP	25	4				
407	KK	W37B										
408	KM PA	1626										
409	LS	.1000	90									
411	UD	.218										
412	KK	WS										
413	KM HC	2										
414	ne	5			HEC-1	INPUT						PAGE 11
LINE	ID		2.	3	4			7	8	9	10	
415	кк	5 - T										
416	KM											
417	RK	3653	.0164	.035		TRAP	25	4				
410	272	970										
410	KM	W 20										
420	BA	.0907										
421	LS		62									
422	UD	.190										
422	VV											
423	KM											
425	RK	2922	.0171	.035		TRAP	5	4				
426	KK	W39										
427	5A	1833										
429	LS	.1000	76									
430	UD	.251										
431	KK	W40										
433	BA	.0706										
434	LS		92									
435	UD	.165										
476	vv	ы <i>т</i>										
437	KM											
438	HC	4										
439	KK	T-U										
440	RK	1125	.0098	.035		TRAP	25	4				
442	KK	W41										
443	KM BA	0.501										
444	LS	.0001	83									
446	UD	.117										
447	KK	POND										
448	KM HC	2										
• • •		~										
450	кк	DIVOUT										
451	KM	DIVERT	35.8 CI	FS (2-YR	HISTORIC	FLOW)	FROM DETEN	VTION PO	ND			
452	DT	DIVERT	0	35.8								
453	DI	0	35.8									
131	24		50.0		HEC-1	INPUT						PAGE 12
						-		_				
LINE	ID.	1.	2		4.		56.		8.		10	
455	кк	PONDWU										
456	KM	R	EGIONAL	DETENTIO	N POND	Q5=94,	Q100=1214	_				
457	SV	0.0	0.006	.09	.40	1.19	9 3.31	7.12	11.50	16.05		
458	SV	20.76	25.61	30.61	35.77	40.99	יר ר	~ ~ ~		74		
459	5E CF	10.3	24	27	73	20	- ∠⊥ 9	22	23	24		
461	SO SO	23 0	20	27.40	46.66	67.7	7 81.84	249.51	544.89	923.33		
462	SQ	1090.5	1212.93	1323.91	1426.18	1521.5	3					
463	RS	1	ELEV	16.5								
161		P-977										
465	KM	5-WU										
466	RK	2215	.0181	.035		TRA	P 25	4				

1

1

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 7 of 19 7/23/2008

	467	KK	DIVIN							
	407	141	DETRIC	m 35 0 0	CC DIVERT	TH CHANNEL				
	468	n.m	REINIE	/E 33.0 C	ro Diveri	ED IN CIPANISE				
	469	DR	DIVERT							
	470	KK	W423							
	470	144								
	4/1	KM								
	472	BA	.0127							
	473	LS		92						
	474	ID	100	22						
	4 / 4	00	.160							
	475	KK	42A-WU							
	176	KM.								
	470	NH DI	1070	0000	012	MD 3 D				
	477	RK	19/0	.0090	.013	TRAP	4	4		
	478	KK	W42							
	170	101								
	479	run -								
	480	BA	.0519							
	481	LS		92						
	482	מוז	127							3
	402	00								
	483	KK	W42B							
	484	КM								
	485	RA	0195							
	100	10	.0190							
	480	12		92						
	487	UD	.180							
	488	ĸĸ	42B-WIT							
	400	101	120							
	489	KM.								
	490	RK	2770	.0100	.013	TRAP	4	4		
	401	VV	WIT I							
	491	KK								
	492	KM								
	493	HC	5							
	494	KK	0-v							
	495	KM								
	496	RK	2200	.0145	.035	TRAP	25	4		
	150					HEC-1 INPUT				PAGE 13
						HEC I INTOI				1162 15
	LINE	ID.	1 .			4	6	7	8	10
	497	KK	₩43							
	498	KM								
	100	BA	1457							
	100	501	.1457	C A						
	500	LS		64						
	501	UD	.169							
	500	1/1/	LIT /							
	302	KK.	пv							
	503	KM								
	504	HC	2							
	505	~~~	17.17							
	505	NN.	v-n							
	506	KM								
	507	RK	487	.0103	.035	TRAP	25	4		
	50.9	~~~	w a c							
	508	ĸĸ	M43							
	509	КM								
	510	BA	.1931							
	511	LS		61						
	510	10	100	~ *						
	312	00	.109							
	513	KK	WW							
	514	KM								
	515	нс	2							
	515	10	2							
	210	22								
L										
	SCI	HEMATIC DI	AGRAM O	F STREAM	NETWORK					
INDUT										
LINE	(III) DOT	T T N/-	1-	->> ->-	STON OF .	NIMP FLOP				
LINE	(V) ROU	TING	(->) DIVER	USION OR I	POMP FLOW				
NO.	(.) CON	NECTOR	(<) RETUR	N OF DIVE	ERTED OR PUMPED H	FLOW			
	,		, ·							
8	W1									
	v									
	v									
	*									
~ ~										
25										
25										
25	•									
25		L1 1	,							
25 28		W2	2							
25 28		W 2	2							
25 28		W2	2							
25 28 33	WA	W2	2							
25 28 33	WA .	¥2	2							
25 28 33		W2	-							
25 28 33	WA . V V	W2	-							

1

39

44

47

WЗ

.

:

.

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 8 of 19 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 9 of 19 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 10 of 19 7/23/2008

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 11 of 19 7/23/2008

FALCON HIGHLANDS PRELIMINARY DRAINAGE PLAN - BASED ON DBPS MODEL F100FNLQ ** DETENTION POND AT WU (BETWEEN SH 24 AND TAMLIN RD)

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 12 of 19 7/23/2008

** 2 Year, 5 Year and 100 Year Storm Events (24hr Storm)
**Basins W40 & W42 revised due to Meridian Crossing development 6 10 OUTPUT CONTROL VARIABLES 5 PRINT CONTROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE IPRNT IPLOT OSCAL HYDROGRAPH TIME DATA IT DATA 5 MINUTES IN COMPUTATION INTERVAL 25MAY 5 STARTING DATE 0800 STARTING TIME 300 NUMBER OF HYDROGRAPH ORDINATES 26MAY 5 ENDING DATE 0855 ENDING TIME 19 CENTURY MARK NMIN IDATE ITIME NQ NDDATE NDTIME ICENT COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS ENGLISH UNITS DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH LENGTH, ELEVATION INCHES FEET CUBIC FEET PER SECOND ACRE-FEET FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE ACRES DEGREES FAHRENHEIT MULTI-PLAN OPTION JP NPLAN 1 NUMBER OF PLANS MULTI-RATIO OPTION JR RATIOS OF PRECIPITATION 1.00 1.24 2.10 1.00

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RA RATIO 1 1.00	TIOS APPL RATIO 2 1.24	IED TO PREC RATIO 3 2.10	IPITATION
HYDROGRAPH AT +	W1	.05	1	FLOW TIME	1. 5.83	5. 5.83	40. 5.75	
ROUTED TO +		.05	1	FLOW TIME	0. 6.00	4. 5.92	37. 5.83	
HYDROGRAPH AT +	W2	.03	1	FLOW TIME	0. 5.92	2. 5.83	20. 5.83	
2 COMBINED AT +	WA	.08	1	FLOW TIME	1. 6.00	6. 5.92	57. 5.83	
ROUTED TO +		.00	1	FLOW TIME	1. 6.08	6. 5.92	55. 5.83	
HYDROGRAPH AT +	W3	.05	1	FLOW TIME	1. 5.83	5. 5.83	39. 5.83	
2 COMBINED AT +	WB	.13	1	FLOW TIME	1. 6.08	11. 5.92	95. 5.83	
ROUTED TO +		.13	1	FLOW TIME	1. 6.17	10. 5.92	91. 5.83	
HYDROGRAPH AT +	W4	.01	1	FLOW TIME	0. 5.75	1. 5.75	6. 5.75	
ROUTED TO +		.01	1	FLOW TIME	0, 5.92	1. 5.83	6. 5.75	

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 13 of 19 7/23/2008

HYDROGRAPH AT +	W 5	.02	1	FLOW TIME	0. 5.83	2. 5.75	15. 5.75
3 COMBINED AT +	WC	.15	1	FLOW TIME	1. 6.17	11. 5.92	105. 5.83
ROUTED TO +		.15	1	FLOW TIME	1. 6.25	11. 5.92	103. 5.83
HYDROGRAPH AT +	W6	.05	1	FLOW TIME	1. 5.83	5. 5.83	43. 5.75
ROUTED TO +		.05	1	FLOW TIME	0. 5.92	5. 5.83	40. 5.75
HYDROGRAPH AT +	W 7	.02	1	FLOW TIME	0, 5.83	2. 5.75	20. 5.75
ROUTED TO +		.02	1	FLOW TIME	0. 5.83	2. 5.83	20. 5.75
2 COMBINED AT +	WD	.07	1	FLOW TIME	1. 5.83	7. 5.83	60. 5.75
ROUTED TO +	D-E	.07	1	FLOW TIME	1. 5.92	6. 5.83	55. 5.75
HYDROGRAPH AT +	W8	.03	1	FLOW TIME	0. 5.83	3. 5.75	27. 5.75
ROUTED TO +		.03	1	FLOW TIME	0. 5.92	3. 5.83	24. 5.75
HYDROGRAPH AT +	W9	.04	1	FLOW TIME	1. 5.83	5. 5.83	36. 5.75
3 COMBINED AT +	WE	.14	1	FLOW TIME	1. 5.92	14. 5.83	114. 5.75
ROUTED TO +	E-F	.14	1	FLOW TIME	1. 6.08	13. 5.92	108. 5.83
HYDROGRAPH AT +	W 10	.04	1	FLOW TIME	1. 5.83	5. 5.83	39. 5.75
ROUTED TO +		.04	1	FLOW TIME	1. 5.92	5. 5.83	36. 5.75
HYDROGRAPH AT +	W11	.03	1	FLOW TIME	0. 5.83	3. 5.75	29. 5.75
4 COMBINED AT +	WE	.36	1	FLOW TIME	3. 6.08	29. 5.92	265. 5.83
ROUTED TO +	F-G	.36	1	FLOW TIME	3. 6.25	28. 6.00	255. 5.83
HYDROGRAPH AT + .	W12	.04	1	FLOW TIME	0. 5.83	4. 5.83	33. 5.75
ROUTED TO		.04	1	FLOW TIME	0. 6.17	4. 5.92	32. 5.83
HYDROGRAPH AT +	W14	.05	1	FLOW TIME	1. 5.83	5. 5.83	38. 5.83
ROUTED TO		.05	1	FLOW TIME	1. 5.92	5. 5.92	37. 5.83
HYDROGRAPH AT +	W13	.11	1	FLOW	2.	10.	80.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 14 of 19 7/23/2008

.

HYDROGRAPH AT +	W33B	.14	1	FLOW TIME	1. 6.33	9. 5.92	78. 5.92
HYDROGRAPH AT +	W34A	.14	1	FLOW TIME	1. 6.33	10. 5.92	96. 5.83
ROUTED TO +	34A-P2	.14	1	FLOW TIME	1. 6.33	10. 6.08	93. 5.92
HYDROGRAPH AT +	W34B	.18	1	FLOW TIME	1. 6.33	11. 5.92	101. 5.92
2 COMBINED AT +	WP2	, 32	1	FLOW TIME	2. 6.33	20. 6.00	195. 5.92
ROUTED TO +	P2-Q	. 32	1	FLOW TIME	2. 6.75	19. 6.17	186. 6.00
HYDROGRAPH AT +	W34C	.16	1	FLOW TIME	1. 6,33	10. 6.00	90. 5.92
4 COMBINED AT +	ŴQ	2.37	1	FLOW TIME	19. 6.92	115. 6.25	1336. 6.00
ROUTED TO +	Q-Q1 .	2.37	1	FLOW TIME	19. 7.08	114. 6.33	1294. 6.00
HYDROGRAPH AT +	W36A	.14	1	FLOW TIME	1. 6.33	9. 5.92	81. 5.92
2 COMBINED AT +	WQ1	2.51	1	FLOW TIME	20. 7.08	118. 6.33	1363. 6.00
ROUTED TO +	Q1-R	2.51	1	FLOW TIME	20. 7.25	117. 6.42	1320. 6.08
HYDROGRAPH AT +	W36B	.19	1	FLOW TIME	1. 6.42	10. 6.00	91. 6.00
HYDROGRAPH AT +	W35A	.10	1	FLOW TIME	1. 6.33	7. 5.92	62. 5.83
ROUTED TO +	35A-WR	.10	1	FLOW TIME	1. 6.92	6. 6.25	58. 6.00
HYDROGRAPH AT +	W35B	.15	1	FLOW TIME	1. 6.42	9. 6.00	81. 5.92
4 COMBINED AT +	WR	2.95	1	FLOW TIME	22. 7.17	132. 6.42	1506. 6.08
ROUTED TO +	WR-S	2.95	1	FLOW TIME	22. 7.33	131. 6.50	1485. 6.08
HYDROGRAPH AT +	W37A	.11	1	flow Time	1. 6.33	8. 5.92	74. 5.83
ROUTED TO +	37 A- S	.11	1	FLOW TIME	1. 6.58	8. 6.00	71. 5.92
HYDROGRAPH AT +	W37B	.16	1	FLOW TIME	145. 5.83	201. 5.83	410. 5.83
3 COMBINED AT +	WS	3.23	1	FLOW TIME	145. 5.83	201. 5.83	1705. 6.08
ROUTED TO	5-T	3.23	1	FLOW TIME	140. 5.92	197. 5.92	1632. 6.17
HYDROGRAPH AT +	W38	.09	1	FLOW TIME	2. 5.92	10. 5.92	67. 5.83

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 17 of 19 7/23/2008
+		.09	1	FLOW TIME	2. 6.25	9. 6.08	66. 5.92	
HYDROGRAPH AT +	W39	.18	1	FLOW TIME	49. 5.92	85. 5.92	251. 5.92	
HYDROGRAPH AT +	W40	.07	1	FLOW TIME	76. 5.75	102. 5.75	201. 5.75	
4 COMBINED AT	WT	3.57	1	FLOW TIME	244. 5.92	359. 5.83	1867. 6.08	
+	T-U	3.57	1	flow Time	243. 5.92	358. 5.92	1821. 6.17	
+ 2 COMBINED AT	W41	.06	1	FLOW TIME	40. 5.75	60. 5,75	142. 5.75	
+ DIVERSION TO	POND	3.63	1	FLOW	264. 5.92	392. 5.83	1839. 6.17	
+ HYDROGRAPH AT	DIVERT	3.63	1	FLOW TIME	36. 5.58 229	36. 5.50	36. 5.42	
ROUTED TO	PONDWU	3.63	1	TIME	5.92	223.	6.17	
			** 1	TIME PEAK STAU STAGE	6.17 GES IN FEET * 20.68	6.08 • 7.42	6.33 26.90	
ROUTED TO +	B-WU	3.63	1	FLOW TIME	116. 10.58	219. 9.92	1298. 8.75	
HYDROGRAPH AT +	DIVIN	.00	1	FLOW TIME	36. 5.58	36. 5.50	36. 5.42	
HYDROGRAPH AT +	W42A	.01	1	FLOW TIME	13. 5.83	19. 5.83	35. 5.75	
ROUTED TO	42A-WU	.01	1	FLOW TIME	13. 6.17	18. 6.17	35. 6.08	
HYDROGRAPH AT +	W42	.05	1	FLOW TIME	60. 5.75	81. 5.75	156. 5.75	
+ ROUTED TO	W42B	. 02	1	FLOW TIME	21. 5.83	28. 5.83	5 4. 5.75	
+ 5 COMBINED AT	42B-WU	. 02	1	FLOW TIME	20. 5.92	27. 5.92	54. 5.83	
+ Routed to +	₩0 U-V	3.72	1	TIME	135.	258. 9.92 253.	1339. 8.75	
HYDROGRAPH AT +	W43	.15	1	TIME	10.67	24.	8.75	
2 COMBINED AT +	WV	3.86	1	TIME FLOW	5.92 135. 10.67	5.83 254.	5.83 1338. 8 75	
ROUTED TO +	V-W	3.86	1	FLOW TIME	133. 10.75	249. 10.00	1334. 8.75	
HYDROGRAPH AT +	W45	.19	1	FLOW	3.	17.	134.	

ROUTED TO

•

MERIDIAN CROSSING FILING NO. 1 - FDR - EXISTING CONDITIONS SURFACE ROUTING

DESIGN	CONTRIBUTING	CA(equi	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		l(5)	l(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
1	E-1	1.96	2.07	6.4	4.8	8.5	9.4	17.6
				1		TRAVEL T	IME	
		1.96	2.07	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					265	4.2	1.1	7.4
2	DP-1	1.96	2.07	7.4	4.6	8.1	22.9	48.7
	E-2	3.07	3.94			TRAVEL T	IME	
		5.03	6.01	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					1500	4.7	5.3	12.7
3	E-4	1.94	2.04	6.3	4.8	8.5	9.3	17.5
						TRAVEL T	IME	
		1.94	2.04	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					900	4.1	3.7	9.9
5	E-7	2.09	2.20	5.4	5.0	8.9	10.5	19.7
						TRAVEL T	IME	
		2.09	2.20	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					347	2.0	2.9	8.3
4	E-6	2.36	2.49	5.8	4.9	8.7	11.6	21.7
						TRAVEL T	IME	
		2.36	2.49	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					62	9.0	0.1	5.9
6	DP-2	5.03	6.01	16.1	3.4	6.0	67.8	149.7
	DP-3	1.94	2.04		•	· · · · · · · · ·		
	E-8	8.36	10.75					
	E-3	4.89	6.28			TRAVEL 1	IME	
		20.21	25.09	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					36	1.5	0.4	16.5
7	DP-6	20.21	25.09	16.5	3.3	5.9	67.0	148.5
	DP-5 (INLET)	0.00	0.08					
	DP-4 (INLET)	0.00	0.00	_	T	TRAVEL		1
		20.21	25.17	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				<u> </u>	139	8.4	0.3	16.8
8	DP-7	20.21	25.17	16.8	3.3	5.9	147.7	1286.1
	POND WU*	19.44	188.25					
1	WEST TRIB CHAN.	1.96	2.07					
	E-5	3.29	4.23					
		44.04	040.70	T.mo/A	1 on att /4			T Time (mir)
		44.91	219.72	1 ype/now		velocity (Ips)		1. nune (min) 17 0
L	1	1		1	10	1 3.0	L <u><u></u> <u></u> <u></u></u>	1 17.0

* VALUES WERE OBTAINED FROM THE APPROVED MARKET PLACE FILING NO. 1 DRAINAGE REPORT

EXISTING Rational Calcs

Î

2

ļ

Î

MERIDIAN CROSSING FILING NO. 1 - FDR - EXISTING CONDITIONS INLET CALCULATIONS

									đ) 100		
do	Inlet size L(i)	INLET TYPE	CROSS SLOPE	STREET SLOPE	Q(5)	Q(100)	õ	CA(eqv.)	B	CA(eqv.)	DEPTH (max)	SPREAD	ō	CA(eqv.)	8F B	CA(eqv.)	DEPTH (max)	SPREAD
-	15	FLOW-BY	2.0%	1.0%	ი	18	6.4	1.34	3	0.62	0.42	16.7	10.8	1.27	7	0.80	0.51	21.1
5	20	SUMP	2.0%	SAG	6	17	9.3	1.94	0	0.00	0.50		17.5	2.04	0	0.00	0.50	
4	25	SUMP	2.0%	SAG	12	22	11.6	2.36	0	0.00	0.50		21.7	2.49	0	0.00	0.50	
5	20	SUMP	2.0%	SAG	5	20	10.5	2.09	0	0.00	0.50		18.9	2.12	-	0.08	0.50	

e

7/23/2008 3:40 PM

.

.

MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS (RATIONAL METHOD Q=CIA)

	COMMENTS																	
ITΥ	100	ı/hr)	8.5	9.0	6.0	8.5	6.6	8.7	8.9	6.9	9.1	9.1	9.1	7.3	7.2		•6	.67
VTENS	Is	in/hr) (ii	4.8	5.1	3.4	4.8	3.7	4.9	5.0	3.8	5.1	5.1	5.1	4.1	4.0		4	1.5
<u>۲</u> ۲	OTAL	(imin) (i	6.4	5.2	16.1	6.3	13.0	5.8	5.4	11.7	5.0	5.0	5.0	10.1	10.4		co+Tcc	
	Tcc T	(min)	5.7	4.3	10.4	5.6	7.3	5.1	4.7	7.7	4.0	1.7	1.7	9.4	9.4		*3 To	,
NEL	/elocity	(fps)	2.5	2.6	2.2	2.5	2.3	2.8	2.8	2.8	2.2	4.0	4.0	1.4	1.4		*2	20
CHAN	Slope V	(%)	1.6%	1.8%	1.2%	1.6%	1.4%	2.0%	2.0%	2.0%	1.2%	4.0%	4.0%	0.5%	0.5%			•
	Length	(¥)	867	675	1,370	848	1.020	873	197	1.315	525	400	400	800	800	Η		
	Tco	(min)	0.7	0.9	5.7	0.7	5.8	0.7	0.7	40	0.7	0.7	0.7	0.7	0.9		. 1*	•
AND	Slope	(¥)	2.0%	2.0%	2.0%	2.0%	10.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%			•
VERI	Length	(¥)	S	0	20	5	60	5	5	10	S	5	5	5	10			
0	Ű		06.0	06.0	0.25	0.90	0.25	06.0	0.90	0.25	06.0	06.0	0.00	0.00	06.0			
HTED	C100		0.95	0.95	0.95	0.95	0.45	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95			-
WEIGH	ت ت		06.0	06.0	06.0	06.0	0.35	06.0	06.0	06 0	06.0	06.0	06.0	06.0	0.00			-
AREA	TOTAL	(Ac)	218	514	11 49	215	941	2.62	232	23.89	3.68	0.47	0.30	0.48	1 63			65.80
	(vi	100 YR	2 0.7	4 88	10.92	2 04	4 23	2.49	0000	22.20	3 50	0 40	0 37	0.45	1.55		ò	ÿ
	CAfem	5 YR	1 06	4.63	10.34	194	1 20	3.6	00 0	21 50	2.12	0.38	0.35	043	1 47		ē	
FLOWS	Oten	(cfs)	176	0.11	1 29	175	2.71	212	10.7	1555	31.8	3.6	46	13	11.2		V*1*∪	
OTAL	č	(cfs)	10	724	247	100	121	116	201	0.01 0.01	160	01	8	8	59		V#1#√	
	NISAR		-	-	7-7			2.4						1-	D-20		Formula:	L'Ultimite.

 $T_{co} = 1.87*(1.1-C5)*(1.2.0.5)*((S^{1}100)^{0.0}.33) (DCM page 5-11) V_{cc} = 20*S^{0.5} (USDCM RO-4) V_{cc} = 10^{10}/V_{c1}/60 V_{c2} = 1/V^{1}/60 V_{c2} = 1/V^{1}/60 V_{c2} V_{c$

• • • • • • • •

Developed Rational Cales

7/23/2008 3:41 PM

MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS SURFACE ROUTING

DESIGN	CONTRIBUTING	CA(equi	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		I(5)	l(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
1	D-1	1.96	2.07	6.4	4.8	8.5	9.4	17.6
						TRAVEL T	IME	
		1.96	2.07	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					250	4.2	1.0	7.4
J	D-10	0.38	0.40	5.0	5.1	9.1	3.7	7.(
	D-11	0.35	0.37			TRAVEL T	IME	
		0.73	0.77	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Gutter	820	5.0	2.7	7.7
В	D-12	0.43	0.45	10.1	4.1	7.3	4.7	8.9
	DP-J	0.73	0.77					
						TRAVEL T	IME	
		1.16	1.22	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	40	1.8	0.4	10.5
х	D-9	3.31	3.50	5.0	5.1	9.1	16.9	31.8
						TRAVEL T	IME	
		3.31	3.50	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Pipe	420	7.9	0.9	5.9
Z	D-2	4.63	4.88	10.5	4.0	7.2	44.6	83.6
	DP-X	3.31	3.50)				
	Inlet 1 Flowby	0.62	0.80					
	Inlet 1	1.34	1.27					·····
	DP-B	1.16	1.22	>		TRAVEL 1	IME 👘	
		11.06	11.67	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
<u>.</u>				Channel	725	3.8	3.2	13.6
Y	D-3	10.34	10.92	16.1	3.4	6.0	34.7	65.
					•	TRAVEL	ГІМЕ	
		10.34	10.92	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	895	2.4	6.2	22.3
3	D-4	1.94	2.04	6.3	4.8	8.5	9.3	17.
						TRAVEL	ГІМЕ	
		1.94	2.04	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
						0.0	0.0	6.3

DESIGN	CONTRIBUTING	C A (e q u i	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		l(5)	I(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
E	DP-3	1.94	2.04	13.6	3.6	6.4	46.9	88.2
	DP-Z	11.06	11.67			TRAVEL T	IME	
		12.99	13.71	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	750	5.8	2.1	15.8
5	D-7	2.09	2.20	5.4	5.0	8.9	10.5	19.7
						TRAVEL T	IME	
		2.09	2.20	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
· · · · · · · · · · · · · · · · · · ·					150	2.0	1.3	6.6
4	D-6	2.36	2.49	5.8	4.9	8.7	11.6	21.7
						TRAVEL T	IME	
		2.36	2.49	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					85	9.0	0.2	6.0
6	D-8	21.50	22.70	22.3	2.8	5.1	127.7	239.9
	DP-E	12.99	13.71					
	DP-Y	10.34	10.92			TRAVEL 1	IME	
		44.83	47.33	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Pipe	36	10.0	0.1	22.4
7	DP-6	44.83	47.33	22.4	2.8	5.1	140.2	264.8
	DP-5 (INLET)	2.09	2.49					
	DP-4 (INLET)	2.36	2.49			TRAVEL	ГІМЕ	
		49.28	52.30	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	110	8.4	0.2	22.6
8	DP-7	49.28	52.30	22.6	2.8	5.0	209.4	1243.5
	POND WU*	19.44	188.25					
	WEST TRIB CHAN.	1.96	2.07					
	D-5	3.29	4.23		.	TRAVEL	TIME	
		73.98	246.86	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
1				1	83	5.8	0.2	22.8

* VALUES WERE OBTAINED FROM THE APPROVED MARKET PLACE FILING NO. 1 DRAINAGE REPORT

** VALUES WERE OBTAINED FROM LOWES DRAINAGE REPORT

MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS INLET CALCULATIONS

	SPREAD					
	DEPTH	(111dA)	0.51	0.50	0.50	0:20
Q100	CA(eqv.)		0.80	00.0	0,00	0.08
	85		7	0	0	0.7
	CA(eqv.)		1 27	2.04	2.49	2.12
	ð		10.8	17.5	21.7	18.9
	SPREAD		16.7			
	DEPTH	(max)	0.42	0.50	0.50	0.50
	CA(eqv.)		0.62	00.0	00.00	0.00
Ť	FB		3	0	0	0
	CA(eqv.)		134	101	3.96	2.09
	ō		64	0 3	11.6	10.5
	Q(100)		18	17		20
	Q(5)		ð	. 0	64	1 0
	STREET	SLOPE	1 0%		CV0	SAG
	CROSS	SLOPE	20%	20 7 /00 C	1 0%	2.0%
	INLET TYPE		CLOW BV		LINDS	SUMP
	Inlet size L(i)		16	0	2U 9E	20
	dD			- 6	2	4 0

7/23/2008 3:41 PM

MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS PIPE ROUTING

DESIGN		CA(equi	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	CONTRIBUTING BASINS	CA(5)	CA(100)		l(5)	I(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
1	INLET DP-1	1.34	1.27	6.4	4.8	8.5	6	11
						TRAVEL T	IME	
		1.34	1.27	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				18" RCP	270	7.1	0.6	7.0
Х	DP-X	3.31	3.50	5.0	5.1	9.1	. 17	32
						TRAVEL T	IME	
		3.31	3.50	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				30" RCP	400	7.1	0.9	5.9
Z	DP-B	1.16	1.22	10.5	4.0	7.2	37	69
	DP-2	4.63	4.88					
	DP-X	3.31	3.50			TRAVEL 1	IME	
		9.10	9.60	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				36" RCP	400	7.1	0.9	11.4

STREET CAPACITY

FOR 1/2 STREET SECTION **VERTICAL CURB**

	Т																
y	12.0	17.0	20.8	24.1	26.9	29.5	31.8	34.0	12.0	17.0	20.8	24.1	26.9	29.5	31.8	34.0	
(L ^{max}	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	
MOIT	0.5	-							0.5								
i ype	^								>								
c	0.016								0.016								
Slope	0.02								0.02								
Slope	0.5%	1.0%	1.5%	2.0%	2.5%	3.0%	3.5%	4.0%	0.5%	1.0%	1.5%	2.0%	2.5%	3.0%	3.5%	4.0%	
Formula	Q=171.7 S ^{m2}								Q=171.7 S ^{1/2}								
	Residential								Collector/Arterial								

STREET CAPACITY **RAMP CURB**

FOR 1/2 STREET SECTION

County ramp curb is 6" Comments 15.9 17.8 19.5 11.3 13.8 8.0 þ Q_{max} 10W 0.5 Type ድ 0.016 c Slope 0.02 0.5% 1.0% 2.0% 3.0% Slope Q=112.6 S^{1/2} Formula Residential

20.0 <u>22222222</u> 3.15%

-

07/23/08 03:52:00 R3/Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 1

Analysis Results Scenario: 100-year

Note:

The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

ïtle: Proiect Engine	Old Meridia er: Charlene Sa	n Road ammons								
roject Date:	11/14/07									
comments:	Storm in Ok	d Meridian R	oad for M	leridian C	rossing	Storm S	ewer			
Scenario Sur	mmary									
Scenario		100-year								
Physical Pro	perties Alternat	Base-Physi	cal Prope	erties						
Catchments	Alternative	Catchments	s-100-yea	ır						
System Flow	s Alternative	Base-Syste	m Flows							
Structure He	adlosses Alterr	Base-Struct	ture Head	llosses						
Boundary Co	onditions Altern	Base-Bound	dary Con	ditions						
Design Cons	straints Alternat	Base-Desig	n Constra	aints						
Capital Cost	Alternative	Base-Cost								
User Data A	Iternative	Base-User	Data							
Network Inve	entory		-							
Number of F	Pipes	4		Number of	of Inlets	;	2			
- Circular Pi	pes:	4		- Grate Ir	ilets:		0			
- Box Pipes:		0		- Curb In	ets:		0			
- Arch Pipes		0		- Combin	ation In	lets:	0			
- Vertical Ell	iptical Pipes:	0		- Slot Inle	ets:		0			
- Horizontal	Elliptical Pipes:	0		- Grate Ir	ilets in	Ditch:	0			
Number of J	lunctions	2		- Generic	: Inlets:		2			
Number of C	Dutlets	1								
Circular Pipe 30 inch	es Inventory	426.11	ft	42 inch	····		1	67.58 ft		
36 inch		5.58	ft							
Total Lengt	h	599.27	′ft							
Generic Inle	t Inventory									
Default 100	%	2								
	Jur	nction elem	ents for	network	with o	utlet: 0-	.1			
Label	HydraulicHydra	ulic Gravity	Headloss	System	System	System	System	System S	System	
	Grade Grad Line In Line (ft) (ft	de Element OutHeadloss) (ft)	Method /	Additional Flow (cfs)	Known Flow (cfs)	Rational Flow (cfs)	Intensity (in/hr)	low Time (min) (CA (acres)	
DP-7	3 841 13 3 840	07 1.06	Standau	0.00	0.00	72.94	8.64	6.22	8.38	
MH	3,842.25 3,841	.42 0.83	Standar	0.00	0.00	73.34	8.68	6.09	8.38	
		iniet ele	ements f	or netwo	rk with	ı outlet:	0-1			
Label	Inlet	Total	Total	Total B	ypass (Capture	Hydraulic	Hydraulic	Gravity	Headio
2300.		Systemini Flow	Flow	BypassedT Flow (cfs)	arget E	fficiency (%)	Grade Line In	Grade Line Out	Element Headloss	Metho S
			(013)			465.5	19			AL
East WQP	Generic Defai	JIE 1 32.00	32.00	0.00	N/A	100.0	5,844.85	5,844.85	0.00	ADSOI
West WQP	Generic Defau	ult 1 44.27	44.27	0.00	N/A	100.0	3,842.28	5,842.28	0.00	Absoli

Analysis Results Scenario: 100-year

			C	utlet: O	-1				
Label	Hydraulic Grade Line In (ft)	Hydraulic Grade f Line Outh (ft)	Gravity Element A leadloss (ft)	System dditional Flow (cfs)	System Known Flow (cfs)	System Rational Flow (cfs)	System IntensityF (in/hr)	System low Tim (min)	System e CA (acres)
0-1	3,836.40	3,836.40	0.00	0.00	0.00	72.41	8.57	6.40	8.38

Pipe elements for network with outlet: O-1

Label	Section Shape	Section Size	Length (ft)	NumberCo of Sections	onstructed Slope (ft/ft)	Energy Slope (ft/ft)	Total System Flow (cfs)	Average Velocity (ft/s)	Upstream Invert Elevation (ft)	Downstream Invert Elevation (ft)	Hydraulic Grade Line In (ft)	Hydraulic Grade Line Out (ft)
P-4	Circular	30 inch	26.11	1	0.008	0.006	32.00	6.52	3,842.25	6,839.05	3,844.85	3,842.25
P-5	Circular	36 inch	5.58	1	0.047	0.004	44.27	6.26	5,839.11	6,838.85	3,842.28	3,842.25
P-8	Circular	42 inch	60.40	1	0.011	0.005	73.34	7.67	3,838.05	6,837.39	3,841.42	5,841.13
P-9	Circular	42 inch	07.18	1	0.009	0.008	72.94	10.03	5,837.39	6,836.40	3,840.07	3,838.71

Scenario: 100-year

Combined Pipe/Node Report

S (ft/ft)	0.008	0.047	0.011	0.009
Dn. Invert (ft)	6,839.05	6,838.85	6,837.39	6,836.40
HGL (f)	6,842.25	6,842.25	6,841.13	6,838.71
Э. Э. Э. Э. Э. Э. Э. Э. Э. Э. Э. Э. Э.	6,843.00	6,843.00	6,841.75	6,841.00
Up. (ft)	6,842.25	6,839.11	6,838.05	6,837.39
Ъ́च€)	6,844.85	6,842.28	6,841.42	6,840.07
₽õ∰€	6,845.00	6,843.00	6,843.00	6,841.75
Avg. v (ft/s)	6.52	6.26	7.67	10.03
C (cfs)	35.54	43.97	05.16	96.69
Size	30 inch	36 inch	42 inch	42 inch
Up.Inlet Rat. Q (cfs)	32.00	44.27	N/A	N/A
Up. Calc. Sys. CA (acres)	3.50	4.88	8.38	8.38
Up. Area acres)	3.50	4.88	N/A	N/A
Up. Inlet Rat. Coef.	1.00	1.00	N/A	N/A
Up. Inlet Area (acres)	3.50	4.88	N/A	A/A
⊐€)	426.11	5.58	60.40	107.18
Dn. Node	ΗM	MH	DP-Z	<u>6</u>
Node Node	East WQP	West WQf	MH	DP-Z
Label	Р 4	P-5	æ d	6-d

•

Project Engineer: Chartene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Title: Old Meridian Road z:\...\drivcalcs\storm cad\meridian crossing.stm 07/23/08 03:54:23 PM

© Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Profile Scenario: 100-year

Profile: West Pond

Scenario: 100-year

Station (ft)

Profile Scenario: 100-year

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

> © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 z:\...\fdr\calcs\storm cad\meridian crossing.stm 07/23/08 03:55:07 PM

Title: Old Meridian Road

Analysis Results Scenario: 100-year

Scenario SummaryScenario100-yearPhysical Properties AlternativeBase-Physical PropertiesCatchments AlternativeCatchments-100-yearSystem Flows AlternativeBase-System FlowsStructure Headlosses AlternBase-Structure HeadlosseBoundary Conditions AlternBase-Design Constraints AlternativeDesign Constraints AlternativeBase-CostUser Data AlternativeBase-CostUser Data AlternativeBase-User DataNetwork Inventory1Number of Pipes:2- Circular Pipes:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:1- Mumber of Outlets1Circular Pipes Inventory1	s ber of Inlets 3 te Inlets: 0 b Inlets: 2 nbination Inlets: 0 Inlets: 0 te Inlets: 0 te Inlets: 0 te Inlets: 0
Scenario100-yearPhysical Properties AlternativeBase-Physical PropertiesCatchments AlternativeCatchments-100-yearSystem Flows AlternativeBase-System FlowsStructure Headlosses AlternBase-Structure HeadlosseBoundary Conditions AlternBase-Boundary ConditionsDesign Constraints AlternativeBase-Design ConstraintsCapital Cost AlternativeBase-CostUser Data AlternativeBase-User DataNetwork InventoryNumber of Pipes- Circular Pipes:2- Grati- Com- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:1- Mumber of Outlets1Circular Pipes Inventory124 inch185.50 ft	s ber of Inlets 3 te Inlets: 0 b Inlets: 2 nbination Inlets: 0 Inlets: 0 Inlets: 0 te Inlets: 0 te Inlets: 0
Physical Properties Alternative Catchments Alternative System Flows Alternative Structure Headlosses Altern Base-System FlowsBase-System FlowsStructure Headlosses Altern Boundary Conditions Altern Design Constraints Alternative User Data AlternativeBase-Design Constraints Base-Cost Base-User DataNumber of Pipes5Numt - Circular Pipes:- Arch Pipes: - Horizontal Elliptical Pipes: Number of Junctions0- Com - Slot - Grad- Ketwork Inventory0- Com - Slot- Circular Pipes: - Number of Junctions0- Grad - Grad- Circular Pipes: - Horizontal Elliptical Pipes: Number of Outlets0- Grad - Grad- Kither of Dipes Inventory1- Grad - Grad- Kither of Dipes Inventory- Grad - Grad- Grad - Grad- Kither of Dipes Inventory- Grad - Grad- Grad - Grad- Circular Pipes Inventory- G	s ber of Inlets 3 te Inlets: 0 b Inlets: 2 nbination Inlets: 0 Inlets: 0 te Inlets: 0 te Inlets: 0
Catchments Alternative System Flows Alternative Structure Headlosses Alterr Boundary Conditions Altern Design Constraints Alternative User Data Alternative Number of PipesBase-Design Constraints Base-Cost Base-User DataNetwork InventoryNumber of Pipes5Numt Corr- Circular Pipes: - Vertical Elliptical Pipes: - Horizontal Elliptical Pipes:0- Corr Corr- Vertical Elliptical Pipes: - Number of Outlets0- Graf Corr- Circular Pipes: - Vertical Elliptical Pipes: - Horizontal Elliptical Pipes: 	s ber of Inlets 3 te Inlets: 0 b Inlets: 2 nbination Inlets: 0 Inlets: 0 te Inlets: 0 te Inlets: 0 te Inlets: 0
System Flows Alternative Structure Headlosses Alterr Boundary Conditions Alterr Design Constraints Alternati Vapital Cost AlternativeBase-Structure Headlosses Base-Design Constraints Base-Cost Base-Cost Base-User DataNetwork InventoryNumber of Pipes5Numt Cora- Circular Pipes:2- Grat - Cor - Vertical Elliptical Pipes:0- Cor - Slot - Grat- Number of Outlets11	s ber of Inlets 3 te Inlets: 0 b Inlets: 2 nbination Inlets: 0 Inlets: 0 te Inlets: 0 te Inlets: 0 te Inlets: 0
Structure Headlosses AlterrBase-Structure HeadlossesBoundary Conditions AlternBase-Boundary ConditionsDesign Constraints AlternatiBase-Design ConstraintsCapital Cost AlternativeBase-CostUser Data AlternativeBase-User DataNumber of Pipes5- Circular Pipes:2- Grati- Corn- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Grati- GeratiNumber of Junctions2- Grati- GeratiNumber of Junctions2- Grati- GeratiNumber of Junctions2- Stot- Gerati- Number of Junctions1- Circular Pipes Inventory- Gerati- 24 inch185.50 ft	s ber of Inlets 3 te Inlets: 0 b Inlets: 2 nbination Inlets: 0 Inlets: 0 te Inlets: 0 te Inlets in Ditch: 0
Boundary Conditions Altern Base-Boundary Conditions Design Constraints Alternative Base-Design Constraints Capital Cost Alternative Base-Cost User Data Alternative Base-User Data Network Inventory Image: Constraints Number of Pipes 5 Numt - Circular Pipes: 2 - Grad - Arch Pipes: 0 - Cond - Vertical Elliptical Pipes: 0 - Slot - Horizontal Elliptical Pipes: 0 - Grad Number of Outlets 1 Image: Cond 2 - Grad - Slot - Horizontal Elliptical Pipes: 0 - Grad Number of Junctions 2 - Gen Number of Outlets 1 Image: Circular Pipes Inventory 24 inch 185.50 ft 1	ber of Inlets 3 te Inlets: 0 b Inlets: 2 nbination Inlets: 0 Inlets: 0 Inlets: 0 te Inlets in Ditch: 0
Design Constraints Alternative Base-Design Constraints Capital Cost Alternative Base-Cost User Data Alternative Base-User Data Network Inventory Number of Pipes - Circular Pipes: 2 - Box Pipes: 3 - Arch Pipes: 0 - Vertical Elliptical Pipes: 0 - Horizontal Elliptical Pipes: 0 - Mumber of Junctions 2 - Circular Pipes Inventory 1	ber of Inlets 3 te Inlets: 0 b Inlets: 2 nbination Inlets: 0 Inlets: 0 te Inlets in Ditch: 0
Capital Cost Alternative User Data AlternativeBase-Cost Base-User DataNetwork InventoryNumber of Pipes5- Circular Pipes:2- Box Pipes:3- Arch Pipes:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Grad- GradNumber of Junctions2- Circular Pipes Inventory1	ber of Inlets 3 te Inlets: 0 b Inlets: 2 nbination Inlets: 0 Inlets: 0 te Inlets in Ditch: 0
User Data Alternative Base-User Data Network Inventory 1 Number of Pipes 5 Number - Circular Pipes: 2 - Grat - Box Pipes: 3 - Curt - Arch Pipes: 0 - Con - Vertical Elliptical Pipes: 0 - Slot - Horizontal Elliptical Pipes: 0 - Grat Number of Junctions 2 - Gen Number of Outlets 1 - Gen Circular Pipes Inventory 24 inch 185.50 ft	ber of Inlets 3 te Inlets: 0 b Inlets: 2 nbination Inlets: 0 Inlets: 0 te Inlets in Ditch: 0
Network Inventory Number of Pipes 5 Numt - Circular Pipes: 2 - Grail - Box Pipes: 3 - Curl - Arch Pipes: 0 - Con - Vertical Elliptical Pipes: 0 - Slot - Horizontal Elliptical Pipes: 0 - Grail Number of Junctions 2 - Gen Number of Outlets 1 - Gen Circular Pipes Inventory 185.50 ft - 185.50 ft	ber of Inlets 3 te Inlets: 0 b Inlets: 2 nbination Inlets: 0 Inlets: 0 te Inlets in Ditch: 0
Number of Pipes5Number- Circular Pipes:2- Grai- Box Pipes:3- Curl- Arch Pipes:0- Con- Vertical Elliptical Pipes:0- Slot- Horizontal Elliptical Pipes:0- GraiNumber of Junctions2- GenNumber of Outlets1Circular Pipes Inventory24 inch185.50 ft	ber of Inlets 3 be Inlets: 0 be Inlets: 2 obination Inlets: 0 Inlets: 0 te Inlets: 0 te Inlets: 0
- Circular Pipes: 2 - Grat - Box Pipes: 3 - Curl - Arch Pipes: 0 - Con - Vertical Elliptical Pipes: 0 - Slot - Horizontal Elliptical Pipes: 0 - Grat Number of Junctions 2 - Gen Number of Outlets 1 - Gen Circular Pipes Inventory 185.50 ft - Gen	te Inlets: 0
- Box Pipes: 3 - Curl - Arch Pipes: 0 - Con - Vertical Elliptical Pipes: 0 - Slot - Horizontal Elliptical Pipes: 0 - Grad Number of Junctions 2 - Gen Number of Outlets 1 - Gen Circular Pipes Inventory - 185.50 ft - 185.50 ft	b Inlets: 2 nbination Inlets: 0 Inlets: 0 te Inlets in Ditch: 0
- Arch Pipes: 0 - Con - Vertical Elliptical Pipes: 0 - Slot - Horizontal Elliptical Pipes: 0 - Grain Number of Junctions 2 - Gen Number of Outlets 1 - Gen Circular Pipes Inventory 24 inch 185.50 ft	nbination Inlets: 0 Inlets: 0 te Inlets in Ditch: 0
- Vertical Elliptical Pipes: 0 - Slot - Horizontal Elliptical Pipes: 0 - Gra Number of Junctions 2 - Gen Number of Outlets 1 - Circular Pipes Inventory 24 inch 185.50 ft	Inlets: 0 te Inlets in Ditch: 0
- Horizontal Elliptical Pipes: 0 - Gra Number of Junctions 2 - Ger Number of Outlets 1 Circular Pipes Inventory 24 inch 185.50 ft	te Inlets in Ditch: 0
Number of Junctions 2 - Ger Number of Outlets 1 Circular Pipes Inventory 24 inch 185.50 ft	
Number of Outlets 1 Circular Pipes Inventory 24 inch 185.50 ft	eric Inlets: 1
Circular Pipes Inventory 24 inch 185.50 ft	
24 inch 185.50 ft	
Total Length 185.50 ft	·····
Box Pipes Inventory	
6 x 3 ft 366.02 ft	
Total Length 366.02 ft	
Curb Inlet Inventory	
Type R 10' 2	
Generic Inlet Inventory	
Default 100% 1	· · · · · · · · · · · · · · · · · · ·
Inlet elements for net	work with outlet: DP-7

	Systemin	iterceptedB	ypassedTarget	Efficiency	Grade	Grade	Element Method
	Flow	Flow	Flow	(%)	Line In	Line Out	Headloss
	(cfs)	(cfs)	(cfs)		(ft)	(ft)	(ft)
DP-4	Curb Type R 10' 22.05	22.05	0.00 N/A	100.0	3,818.78	3,818.78	0.00 Absolut
DP-5	Curb Type R 10' 19.80	19.80	0.00 N/A	100.0	3,818.70	3,818.70	0.00 Absolut
DP-6	Generic Default 1:50.69	250.69	0.00 N/A	100.0	3,817.78	3,817.78	0.00 Absolut

 Title: Meridian Crossing
 Project Engineer: 0

 z:\...\fdr\calcs\storm cad\meridian rd-sta 200.stm
 StormCAD

 07/23/08
 03:56:30 R®/Bentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] +1-203-755-1666 Page 1 of 2

Analysis Results Scenario: 100-year

			c	Outlet:	DP-7					-		
Label	Hydraulic Grade Line In (ft)	CHydrauli Grade Line Ou (ft)	c Gravity Element tHeadlos: (ft)	Syster Addition s Flow (cfs)	n Syster nalKnowr Flow (cfs)	n Systen n Rationa Flow (cfs)	n Systen al Intensi (in/hr)	n System tyFlow Tim) (min)	i System ie CA (acres)	-		
DP-7	3,814.44	3,814.4	4 0.00	0.0	0.00	273.30) 5.2	1 22.65	5 52.02	-		
		Juncti	on elem	ents fo	r networ	k with o	outlet: D	P-7				
Label	Hydrautio Grade Line In (ft)	CHydraul Grade Line Ou (ft)	ic Gravity Element tHeadlos (ft)	Headlos Methoo s	ss Syster Additiou Flow (cfs)	n Systen nalKnow Flow (cfs)	m System n Rationa / Flow (cfs)	n System al Intensity (in/hr)	System Flow Tin (min)	System ne CA (acres)		
J-1	3,817.71	3,817.7	1 0.00	Absolu	it 0.0	0.0	262.00	0 5.25	22.36	6 49.53	-	
J-2	3,817.08	5,817.0	3 0.00	Absolu	it 0.0	0.0	0 273.54	4 5.22	22.6	52.02	_	
	<u></u>		Pipe	eleme	nts for r	network	with ou	itlet: DP-7	7			
Label	Section Shape	Section Size	Length Nu (ft) Se	imberCo of ctions	onstructe Slope (ft/ft)	dEnergy Slope (ft/ft)	Total A System Flow (cfs)	AverageUp Velocity I (ft/s) Ele	streanDo invert evation E (ft)	wnstrear Invert levation (ft)	Hydraulic Grade Line In (ft)	Hydraulic Grade Line Out (ft)
P-1	Circular	24 inch	94.00	1 0	.009043	008925	19.80	7.56 3,8	317.10 6	,816.25	3,818.70	3,817.76
P-2	Circular	24 inch	91.50	1 0	.016940	014085	22.05	8.96 3,8	317.10 6	,815.55	3,818.78	3,816.86
P-3	Box	6 x 3 ft	28.85	2 0	.005199	005093	:50.69	8.63 3,8	815.40 6	,815.25	3,817.78	3,817.71
P-4	Box	6 x 3 ft	33.50	2 0	.005243	005221	:62.00	8.76 3,8	815.25 6	,814.55	3,817.71	3,817.08
P-5	Box	6 x 3 ft	20.66	2 0	.005324	004607	:73.54	9.31 3,8	314.55 6	,814.44	3,817.08	3,816.82

Scenario: 100-year

Combined Pipe/Node Report

S (fruit)	0.016940	0.009043	1.005199	0.05243	1.005324
Dn. (ft)	6,815.55	6,816.25	6,815.25	6,814.55	6,814.44
€ €€ €	6,816.86	6,817.76	6,817.71	6,817.08	6,816.82
₽°₽ ₽°₽ €	6,819.50	6,820.00	6,820.00	6,819.50	6,818.44
Up. Invert (ft)	6,817.10	6,817.10	6,815.40	6,815.25	6,814.55
HGL (#) = HGL	6,818.78	6,818.70	6,817.78	6,817.71	6,817.08
₽₽ ₽₽ ₽	6,821.16	6,821.16	6,820.00	6,820.00	6,819.50
Avg. (ft/s)	8.96	7.56	8.63	8.76	9.31
Cfs)	29.44	21.51	296.71	297.96	300.25
Size	24 inch	24 inch	6×3 ft	6 x 3 ft 3	6 x 3 ft :
Up.Inlet Rat. Q (cfs)	22.05	19.80	250.69	N/A	N/A
Up. Calc. Sys. CA (acres)	2.49	2.20	47.33	49.53	52.02
Up. Inlet Area (acres)	2.49	2.20	47.33	N/A	A/A
Up. Inlet Rat. Coef.	1.00	1.00	1.00	N/A	N/A
Up. Inlet Area	2.49	2.20	47.33	A/A	N/A
(€ –	91.50	94.00	28.85	133.50	20.66
Dn. Node	J-2	-ر 1	۲-۲	J-2	DP-7
Node Node	DP-4	DP-5	DP-6	۲-۲	J-2
Label	P-2	P-1	P-3	P-4	P-5

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Title: Meridian Crossing z:\... \fdr\calcs\storm cad\meridian rd-sta 200.stm 07/23/08 03:55:52 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Profile: Sump Inlet Left

Scenario: 100-year

z:\...\fdr\calcs\storm cad\meridian rd-sta 200.stm 07/23/08 03:57:06 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Title: Meridian Crossing

Station (ft)

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Profile

Analysis Results Scenario: 100-year

6.17 3,844.00 6,843.25 3,844.97 3,843.96

	_		1	Outlet: C)-1							
Label	Hydraulio Grade Line In (ft)	Hydraulic Grade Line Out (ft)	: Gravity Element Headloss (ft)	System Additiona s Flow (cfs)	Systen IlKnowr Flow (cfs)	n Syster n Ration Flow (cfs)	n Sysi al Inter (in/	tem Sj nsityFlo ′hr) (ystem S w Time (min) (System CA acres)		
0-1	3,843.25	3,843.25	0.00	0.00	0.00	7.3	58	3.28	7.22	0.88		
			Pipe	element	s for n	etwork	with	outlet:	0-1			
Label	Section Shape	Section Le Size	ength Nur (ft) (Sec	nberCons of Si tions (1	tructed ope t/ft)	Energy Slope S (ft/ft)	Total A ystem Flow (cfs)	Average Velocity (ft/s)	Upstrea Inver Elevati (ft)	a fðownstr t Inver on Elevati (ft)	eanhlydraulio nt Grade on Line In (ft)	Hydraulic Grade Line Out (ft)
P-1	Circular	18 inct :5	7.00	1	0.011	0.011	7.61	6.16	3,847.2	28 6,844.	50 3,848.35	3,845.42

0.017 0.012 7.39

1

-

P-2

Circular 24 inct 45.00

Project Engineer: Charlene Sammons Title: Old Meridian Road z:\...\reports\fdr\calcs\storm cad\ultimate.stm StormCAD v5.6 [05.06.012.00] 07/23/08 03:58:23 RWBentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

Scenario: 100-year Profile

1

Profile: Ultimate Design Scenario: 100-year

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Title: Old Meridian Road z:\...\reports\fdr\calcs\storm cad\ultimate.stm 07/23/08 03:58:59 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Existing Channel along Highway 24 ROW

Channel Calculator

Given Input Data:

4

Shape	Trapezoidal
Solving for	Depth of Flow
Flowrate	65.1000 cfs
Slope	0.0090 ft/ft
Manning's n	0.0350
Height	36.0000 in
Bottom width	480.0000 in
Left slope	0.2500 ft/ft (V/H)
Right slope	0.2500 ft/ft (V/H)

Computed Results:

Depth	6.8903 in
Velocity	2.6805 fps
Full Flowrate	1129.3728 cfs
Flow area	24.2864 ft2
Flow perimeter	536.8189 in
Hydraulic radius	6.5148 in
Top width	535.1224 in
Area	156.0000 ft2
Perimeter	776.8636 in
Percent full	19.1397 %

Critical Information

Critical depth	5.1448 in
Critical slope	0.0241 ft/ft
Critical velocity	3.6400 fps
Critical area	17.8847 ft2
Critical perimeter	522.4254 in
Critical hydraulic radius	4.9297 in
Critical top width	521.1587 in
Specific energy	0.6859 ft
Minimum energy	0.6431 ft
Froude number	0.6404
Flow condition	Subcritical

Existing Temporary Channel along Meridian Road (DP-E)

Channel Calculator

Given Input Data:

Shape	Trapezoidal
Solving for	Depth of Flow
Flowrate	88.2000 cfs
Slope	0.0200 ft/ft
Manning's n	0.0350
Height	36.0000 in
Bottom width	0.0000 in
Left slope	0.2500 ft/ft (V/H)
Right slope	0.1667 ft/ft (V/H)

Computed Results:

5.5023 fps
49.2362 cfs
.6.0296 ft2
219.2720 in
.0.5269 in
214.8480 in
14.9946 ft2
367.3687 in
59.6872 %

Critical Information

Critical depth	21.7023 in
Critical slope	0.0190 ft/ft
Critical velocity	5.3939 fps
Critical area	16.3519 ft2
Critical perimeter	221.4655 in
Critical hydraulic radius	10.6322 in
Critical top width	216.9973 in
Specific energy	2.2611 ft
Minimum energy	2.7128 ft
Froude number	1.0252
Flow condition	Supercritical

Proposed Temporary Channel from Old Meridian Road (DP-Z)

Channel Calculator

Given Input Data:

2

Shape	Trapezoidal
Solving for	Depth of Flow
Flowrate	73.3000 cfs
Slope	0.0050 ft/ft
Manning's n	0.0350
Height	36.0000 in
Bottom width	60.0000 in
Left slope	0.2500 ft/ft (V/H)
Right slope	0.2500 ft/ft (V/H)

Computed Results:

Depth	21.9888 in
Velocity	3.2444 fps
Full Flowrate	219.3674 cfs
Flow area	22.5927 ft2
Flow perimeter	241.3242 in
Hydraulic radius	13.4813 in
Top width	235.9103 in
Area	51.0000 ft2
Perimeter	356.8636 in
Percent full	61.0800 %

Critical Information

Critical depth		16.0014 in
Critical slope		0.0192 ft/ft
Critical velocity		5.3195 fps
Critical area	••	13.7795 ft2
Critical perimeter	• •	191.9505 in
Critical hydraulic radius		10.3373 in
Critical top width	••	188.0108 in
Specific energy		1.9960 ft
Minimum energy		2.0002 ft
Froude number	••	0.5336
Flow condition		Subcritical

Culvert Designer/Analyzer Report Highway 24 - DP WU

N/A

Analysis Co	mponent					
Storm Even	t C	Check	Discharge		1,241.00	cfs
Peak Discha	inge Method: User-Spe	cified				
Design Disc	harge 1,2	41.00 cfs	Check Discharg	e	1,241.00	cfs
Tailwater pr	operties: Trapezoidal (Channel	· · · · · · · · · · · · · · · · · · ·			
Tailwater co	inditions for Check Sto	rm.				
Tailwater co Discharge	nditions for Check Sto 1,2	rm. 41.00 cfs	Bottom Elevatio	'n	6,813.00	ft
Tailwater co Discharge Depth	onditions for Check Sto 1,2	orm. 241.00 cfs 3.82 ft	Bottom Elevatio Velocity	n	6,813.00 7.78	ft ft/s
Tailwater co Discharge Depth	nditions for Check Sto 1,2 Description	orm. 241.00 cfs 3.82 ft Discharg	Bottom Elevatio Velocity e HW Elev.	n Velocity	6,813.00 7.78	ft ft/s
Tailwater cc Discharge Depth Name Culvert-1	Description 3-12 x 6 ft Box	0rm. 241.00 cfs 3.82 ft Discharg 1.240.93 c	Bottom Elevatio Velocity e HW Elev.	n Velocity 8.71 ft/s	6,813.00 7.78	ft ft/s

1,240.93 cfs 6,818.87 ft

Total

Culvert Designer/Analyzer Report Highway 24 - DP WU

Component:Culvert-1

Culvert Summary					
Computed Headwater Eleva	6,818.87	ft	Discharge	1,240.93	cfs
Inlet Control HW Elev.	6,818.37	ft	Tailwater Elevation	6,816.82	ft
Outlet Control HW Elev.	6,818.87	ft	Control Type	Outlet Control	
Headwater Depth/Height	0.96				
Grades					
Upstream Invert	6,813.10	ft	Downstream Invert	6,812.87	ft
Length	47.00	ft	Constructed Slope	0.005000	ft/ft
Hydraulic Profile					
Profile	S1		Depth, Downstream	3.96	ft
Slope Type	Steep		Normal Depth	2.78	ft
Flow Regime	Subcritical		Critical Depth	3.33	ft
Velocity Downstream	8.71	ft/s	Critical Slope	0.002971	ft/ft
· · · · · · · · · · · · · · · · · · ·			<u></u>		
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	12.00	ft
Section Size	12 x 6 ft		Rise	6.00	ft
Number Sections	3				
Outlet Control Properties					
Outlet Control HW Elev.	6,818.87	ft	Upstream Velocity Head	1.54	ft
Ke	0.50		Entrance Loss	0.77	ft
Inlet Control Properties					
Inlet Control HW Elev	6.818.37	ft	Flow Control	N/A	
Inlet Type 45° wingwall fl	ares - offset	-	Area Full	216.0	ft2
K	0.49700		HDS 5 Chart	13	
Μ	0.66700		HDS 5 Scale	1	
С	0.03020		Equation Form	2	
	0.00500				

.

Culvert Designer/Analyzer Report McLaughlin Bridge

Component:Culvert-1

Culvert Summary					
Computed Headwater Eler	vi 104.17	ft	Discharge	623.40	cfs
Inlet Control HW Elev.	104.17	ft	Tailwater Elevation	N/A	ft
Outlet Control HW Elev.	103.98	ft	Control Type	Inlet Control	
Headwater Depth/Height	1.39				
Grades					
Upstream Invert	100.00	ft	Downstream Invert	100.00	ft
Length	50.00	ft	Constructed Slope	0.010000	ft/ft
· · · ·					
Hydraulic Profile	·				
Profile	S2		Depth, Downstream	1.99	ft
Slope Type	Steep		Normal Depth	1.76	ft
Flow Regime	Supercritical		Critical Depth	2.49	ft
Velocity Downstream	11.21	ft/s	Critical Slope	0.003719	ft/ft
<u>. </u>					
				· · · · · · · · · · · ·	
Section				·	
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 3 ft		Rise	3.00	ft
Number Sections	4				
Outlet Control Properties					
Outlet Control HW Elev.	103.98	ft	Upstream Velocity Head	1.24	ft
Ke	0.20		Entrance Loss	0.25	ft
· · · · ·					
			· · · · · · · · · · · · · · · · · · ·		
Inlet Control Properties					
Inlet Control HW Elev.	104.17	ft	Flow Control	N/A	
Inlet Type 90° headwal	l w 45° bevels		Area Full	84.0	ft2
к	0.49500		HDS 5 Chart	10	
Μ	0.66700		HDS 5 Scale	2	
C	0.03140		Equation Form	2	
Y	0.82000				

Culvert Designer/Analyzer Report **Old Meridian Road - DP Y**

N/A

.

Analysis Co	omponent					
Storm Ever	nt	Check	Discharge		65.10	cfs
			-			
Peak Disch	arge Method: User-Sp	ecified				
Design Dis	charge	34.70 cfs	Check Dischar	ge	65.10	cfs
T - 11	· · · · · · · · · · · · · · · · · · ·	Channel				
l alwater pi		Channel	<u> </u>			
Tailwater pi	onditions for Check St	orm.				
Tailwater pr Tailwater co Discharge	onditions for Check St	orm. 65.10 cfs	Bottom Elevation	on	6,813.00	ft
Tailwater pi Tailwater co Discharge Depth	onditions for Check St	orm. 65.10 cfs 0.89 ft	Bottom Elevatio Velocity	on	6,813.00 3.45	ft ft/s
Taiwater pi Taiwater ci Discharge Depth Name	onditions for Check St Description	orm. 65.10 cfs 0.89 ft Discha	Bottom Elevatio Velocity rge HW Elev.	on Velocity	6,813.00 3.45	ft ft/s
Tailwater pi Tailwater co Discharge Depth Name Culvert-1	Description 1-54 inch Circular	orm. 65.10 cfs 0.89 ft Discha	Bottom Elevation Velocity rge HW Elev. I cfs 6,824.75 ft	on Velocity 9.95 ft/s	6,813.00 3.45	ft ft/s

65.11 cfs 6,824.75 ft

Total

Culvert Designer/Analyzer Report Old Meridian Road - DP Y

Component:Culvert-1

Culvert Summary					
Computed Headwater Eleva	6,824.75	ft	Discharge	65.11	cfs
Inlet Control HW Elev.	6,824.43	ft	Tailwater Elevation	6.813.89	ft
Outlet Control HW Elev.	6,824.75	ft	Control Type	Entrance Control	
Headwater Depth/Height	0.83	_			
Grades					
	6,821.00	Ħ	Downstream Invert	6,820.50	ft
Length	50.00	ft	Constructed Slope	0.010000	ft/ft
Profile	S2		Depth, Downstream	1.94	ft
Slope Type	Steep		Normal Depth	1.78	ft
Flow Regime	Supercritical		Critical Depth	2.35	ft
Velocity Downstream	9.95	ft/s	Critical Slope	0.003794	ft/ft
Section	· · · · · · · · · · · · · · · · · · ·				
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Concrete		Span	4.50	ft
Section Size	54 inch		Rise	4.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	6,824.75	ft	Upstream Velocity Hea	ad 0.93	ft
Ке	0.50		Entrance Loss	0.47	ft
				·	
Inlet Control Properties					
Inlet Control HW Elev.	6,824.43	ft	Flow Control	N/A	
Inlet Type Square edge	w/headwali		Area Full	15.9	ft2
к	0.00980		HDS 5 Chart	1	
М	2.00000		HDS 5 Scale	1	
C	0.03980		Equation Form	1	
Y	0.67000				

Culvert Designer/Analyzer Report Old Meridian Road - DP Y

Component:Weir

Hydraulic Component(s): Roadway (Constant Elevation)					
Discharge	0.00	cfs	Allowable HW Elevation	6,824.75	ft
Roadway Width	44.00	ft	Overtopping Coefficient	2.90	US
Length	150.00	ft	Crest Elevation	6,825.35	ft
Headwater Elevation	N/A	ft	Discharge Coefficient (Cr)	2.90	
Submergence Factor (Kt)	1.00				

Sta (ft)	Elev. (ft)
0.00	6,825.35
150.00	6,825.35

 Title: Falcon Highlands Commercial Site
 Project Engineer: csammons

 z:\.../reports\fdr\calcs\culverts\highway 24.cvm
 Springs Engineering
 CulvertMaster v3.1 [03.01.010.00]

 07/23/08
 03:49:43 RMBentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666
 Page 3 of 3
Culvert	Diameter	No of Barrels	Slope	Velocity	Riprap Width	Riprap Length	H	Riprap Siz
	(ii)		(%)	ft/s	ft	ų		
DP. V	54		1.20%	10.5	13.5	21.5	3.78 L	
DP-Z	42	1	0.90%	10.0	10.5	18.5	3.44 L	

Į

Í

CULVERT PROTECTION

7/23/2008

.

.

Design Procedure Form: Porous Landscape Detention (PLD)

Designer:	Thomas Roberts	
Company:	Springs Engineering	
Date:	July 23, 2008	
Project:	Merdian Crossing East Pond	
Location:	Falcon, CO	
1. Basin Sto A) Tributa B) Contril C) Water (WQ(D) Design 2. PLD Surfa (from 360	rage Volume ($I_a = 100\%$ if all paved and roofed areas u/s of PLD) ry Area's Imperviousness Ratio (i = $I_a / 100$) buting Watershed Area Including the PLD (Area) Quality Capture Volume (WQCV) CV = 0.8 * (0.91 * $I^3 - 1.19 * I^2 + 0.78 * I$)) h Volume: Vol _{PLD} = (WQCV / 12) * Area acc Area (A _{PLD}) and Average Depth (d_{av}) 10.24 square feet to 7200.48 square feet)	$I_{a} = \frac{79.00}{0.79} \%$ i = 0.79 Area = 167,616 square feet WQCV = 0.26 watershed inches Vol = 3,600 cubic feet $A_{PLD} = 3,600$ square feet
(d _{av} : = (Vo	ol / A _{PLD}), Min=0.5', Max=1.0')	d _{av} =feet
 Braining c Based on Check box Check box Check box Check box Check box Check box Inderdra Does tribupetroleum present, s hardware 	of PLD (Check A, or B, or C, answer D) answers to 3A through 3D, check the appropriate method x if subgrade is heavy or expansive clay x if subgrade is silty or clayey sand x if subgrade is well-draining soil X x if underdrains are not desirable or ains are not feasible at this site. tary catchment contain land uses that may have products, greases, or other chemicals uch as gas station, yes no store, restaurant, etc.? X	Infiltration to Subgrade with Permeable Membrane: 3(C) checked and 3(E) = no Underdrain with Impermeable Liner: 3(A) checked or 3(E) = yes Underdrain with Non-Woven Geotextile Fabric: 3(B) checked and 3(E) = no 16-Mil. Impermeable Membrane with No Underdrain: 3(D) checked - Evapotranspiration only <u>x</u> Other: <u>Type D Inlet</u>
 4. Sand/Pea A) Heavy Perfor B) Silty or Perfor C) No Po (NRCS) D) Under E) Other: 	t Mix and Gravel Subbase (See Figure PLD-1) or Expansive Clay (NRCS Group D Soils) Present; rated HDPE Underdrain Used. r Clayey Sand (NRCS Group C Soils) Present; rated HDPE Underdrain Used. tential For Contamination And Well-Draining S Group A or B Soils) Are Present; Underdrains Elliminated. drains Are Not Desirable Or Are Not Feasible At This Site.	18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer. 16-Mil. Impermeable Liner and a 3" to 4" Perforated HDPE Underdrain. 18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer and a 3" to 4" Perforated HDPE Underdrain w/ Non-Woven Pemeable Membrane. 18" Minimum Depth Sand-Peat Mix with Non-Woven Pemeable Membrane and No Underdrain (Direct Infiltration). 18" Minimum Depth Sand-Peat Mix with An Additional 18" Minimum Depth Sand-Peat Mix with An Additional 18" Minimum Layer Sand-Peat Mix or Sand-Class 'A' Compost Bottom Layer (Total Sand-Peat Depth of 36"). 16-Mil. Impermeable Liner Used. x Other: See Detail on Sheet 8
INO[62]		

Í

1

Í

east pond-PLD SiziColorado Springs-El Paso County 2-Year Duration=15 min, Inten=2.49 in/hrPrepared by {enter your company name here}Page 2HydroCAD® 8.00s/n 004515© 2006HydroCAD Software Solutions LLC7/23/2008

Pond Pond: East PLD

Inflow Area Inflow Outflow Primary	a = = = =	3.680 ac, Inf 8.32 cfs @ 6.50 cfs @ 6.50 cfs @	low Depth = 0.56 0.09 hrs, Volume 0.27 hrs, Volume 0.27 hrs, Volume	6" for 2-Year eve = 0.172 af = 0.134 af = 0.134 af	nt , Atten= 22%, Lag=	10.7 min	
Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 6,844.47' @ 0.27 hrs Surf.Area= 3,394 sf Storage= 4,371 cf							
Plug-Flow detention time= 12.8 min calculated for 0.134 af (78% of inflow) Center-of-Mass det. time= 10.8 min (20.9 - 10.0)							
Volume	Inve	rt Avail.Sto	rage Storage D	escription			
#1	6,843.00	0' 9,7	28 cf Custom S	tage Data (Pyrami	dal) Listed below		
Elevation	Ş	Surf Area	Inc Store	Cum Store	Mot Area		
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)	(sa-ft)		
6,843.00		2,200	0	0	2 200		
6,844.00		3,300	2.731	2.731	3,320		
6,846.00		3,700	6,996	9,728	3,939		
Device F	Routing	Invert	Outlet Devices				
#1 F	Primary	6,845.50'	3.00' x 3.00' Ho	riz. Orifice/Grate	Limited to weir flow	C = 1.000	
#2 F	Primary	6,843.60'	2.50' W x 1.25'	H Vert. Orifice/Gra	te $C = 0.600$	0 1.000	
Primary OutFlow Max=6.49 cfs @ 0.27 hrs HW=6,844.47' (Free Discharge)							

-2=Orifice/Grate (Orifice Controls 6.49 cfs @ 2.99 fps)

east pond-PLD SiziColorado Springs-El Paso County 5-Year Duration=15 min, Inten=3.42 in/hrPrepared by {enter your company name here}Page 5HydroCAD® 8.00s/n 004515© 2006HydroCAD Software Solutions LLC7/23/2008

Pond Pond: East PLD

Inflow Ar Inflow Outflow Primary	Inflow Area = 3.680 ac, Inflow Depth = 0.77" for 5-Year event Inflow = 11.42 cfs @ 0.09 hrs, Volume= 0.236 af Outflow = 9.65 cfs @ 0.26 hrs, Volume= 0.198 af, Atten= 16%, Lag= Primary = 9.65 cfs @ 0.26 hrs, Volume= 0.198 af							
Routing I	Routing by Stor-Ind method. Time Span= $0.00-12.00$ hrs. dt= 0.01 hrs / 3							
Peak Elev= 6,844.73' @ 0.26 hrs Surf.Area= 3,446 sf Storage= 5,288 cf								
Plug-Flov	Plug-Flow detention time= 10.5 min calculated for 0.198 af (84% of inflow)							
Center-of-Mass det. time= 9.4 min (19.4 - 10.0)								
1/-1			• -					
volume	Volume Invert Avail.Storage Storage Description							
#1 6,843.00' 9,728 cf Custom Stage Data (Pyramidal) Listed below								
Elevatio	n•	Surf.Area	Inc.Store	Cum.Store	Wet.Area			
(feet	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sa-ft)			
6,843.0	0	2,200	0	0	2.200			
6,844.0	0	3,300	2,731	2,731	3.320			
6,846.0	0	3,700	6,996	9,728	3,939			
Device	Routing	Invert	Outlet Devices					
#1	Primary	6,845.50'	3.00' x 3.00' Hor	iz. Orifice/Grate	Limited to weir flow	C = 1.000		
#2	Primary	6,843.60'	2.50' W x 1.25' H	Vert. Orifice/Gra	ate C= 0.600			
Primary OutFlow Max=9.63 cfs @ 0.26 hrs HW=6,844.73' (Free Discharge)								

2=Orifice/Grate (Orifice Controls 9.63 cfs @ 3.41 fps)

east pond-PLD Sizi Colorado Springs-El Paso County 5-Year Duration=15 min, Inten=3.42 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 6 7/23/2008

Pond Pond: East PLD

east pond-PLD Sizi Colorado Springs-El Paso County 5-Year Duration=15 min,	Inten=3.42 in/hr
Prepared by {enter your company name here}	Page 7
HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC	7/23/2008

.

Pond Pond: East PLD

east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 8 7/23/2008

Pond Pond: East PLD

Inflow An Inflow Outflow Primary	rea = = 2 = 1 = 1	3.680 ac, Inf 20.30 cfs @ 6.97 cfs @ 6.97 cfs @	low Depth = 1.37 0.09 hrs, Volume 0.26 hrs, Volume 0.26 hrs, Volume	" for 100-Year € = 0.420 af = 0.382 af = 0.382 af	, Atten= 16%, Lag=	10.4 min	
Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 6,845.51' @ 0.26 hrs Surf.Area= 3,603 sf Storage= 8,024 cf							
Plug-Flow detention time= 8.7 min calculated for 0.382 af (91% of inflow) Center-of-Mass det. time= 7.8 min (17.8 - 10.0)							
Volume	Inver	t Avail.Sto	orage Storage D	escription			
#1	6,843.00)' 9,7	28 cf Custom S	tage Data (Pyram	idal) Listed below		
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	Wet Area		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)		
6,843.0	00	2,200	0	0	2,200		
6,844.0	0	3,300	2,731	2,731	3,320		
6,846.0	00	3,700	6,996	9,728	3,939		
Device	Routing	invert	Outlet Devices				
#1	Primary	6,845.50'	3.00' x 3.00' Ho	riz. Orifice/Grate	Limited to weir flow	C= 1.000	
#2	Primary	6,843.60'	2.50' W x 1.25'	H Vert. Orifice/Gra	nte C= 0.600		
Primary	Primary OutFlow Max=16.92 cfs @ 0.26 hrs HW=6,845.51' (Free Discharge)						

-1=Orifice/Grate (Weir Controls 0.04 cfs @ 0.33 fps) -2=Orifice/Grate (Orifice Controls 16.88 cfs @ 5.40 fps)

east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hrPrepared by {enter your company name here}Page 9HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008

east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hrPrepared by {enter your company name here}Page 10HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: East PLD

Designer:	Thomas Roberts					
Company:	Springs Engineering					
Date:	July 23, 2008					
Project:	Meridian Crossing West Pond					
Location:	Falcon, CO					
1. Basin Stor A) Tributa	rage Volume ($l_a = 100\%$ if all paved and roofed areas u/s of PLD) ry Area's Imperviousness Ratio (i = l_a / 100)	$i_a = 82.00 \%$ i = 0.82 %				
B) Contril	buting Watershed Area Including the PLD (Area)	Area = 200,821 square feet				
C) Water (WQ(D) Design	Quality Capture Volume (WQCV) CV = 0.8 * (0.91 * l^3 - 1.19 * l^2 + 0.78 * l)) n Volume: Vol _{PLD} = (WQCV / 12) * Area	WQCV = <u>0.27</u> watershed inches Vol = <u>4,568</u> cubic feet				
2. PLD Surfa (from 456	ace Area (A _{PLD}) and Average Depth (d _{av}) 67.86 square feet to 9135.72 square feet)	$A_{PLD} = $ 4,600 square feet				
(d _{av} : = (Vo	ol / A _{PLD}), Min=0.5', Max≏1.0')	d _{av} = <u>0.99</u> feet				
3. Draining o Based on	of PLD (Check A, or B, or C, answer D) answers to 3A through 3D, check the appropriate method	Infiltration to Subgrade with Permeable Membrane: 3(C) checked and 3(E) = no				
A) Check bo B) Check bo C) Check bo	IX if subgrade is heavy or expansive clay IX if subgrade is silty or clayey sand IX if subgrade is well-draining soil X	Underdrain with Impermeable Liner: 3(A) checked or 3(E) = yes				
D) Check bo if underdr	ax if underdrains are not desirable or rains are not feasible at this site.	Underdrain with Non-Woven Geotextile Fabric: 3(B) checked and 3(E) = no 16 Mil Impermeable Membrane with No Underdrain:				
E) Does trib petroleum present, s hardware	utary catchment contain land uses that may have n products, greases, or other chemicals such as gas station, yes no e store, restaurant, etc.? x	3(D) checked - Evapotranspiration only x Other: Type D Inlet				
4. Sand/Pea	at Mix and Gravel Subbase (See Figure PLD-1)	18" Minimum Deoth Sand-Peat Mix with 8" Gravel Laver, 16-Mil.				
Perfo	orated HDPE Underdrain Used.	Impermeable Liner and a 3" to 4" Perforated HDPE Underdrain.				
B) Silty o Perfo	or Clayey Sand (NRCS Group C Soils) Present; orated HDPE Underdrain Used.	18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer and a 3" to 4" Perforated HDPE Underdrain w/ Non-Woven Pemeable Membrane.				
C) No Po (NRC	otential For Contamination And Well-Draining S Group A or B Soils) Are Present; Underdrains Elliminated.	18" Minimum Depth Sand-Peat Mix with Non-Woven Pemeable Membrane and No Underdrain (Direct Infiltration).				
D) Unde	erdrains Are Not Desirable Or Are Not Feasible At This Site.	18" Minimum Depth Sand-Peat Mix with An Additional 18" Minimum Layer Sand-Peat Mix or Sand-Class 'A' Compost Bottom Layer (Total Sand-Peat Depth of 36"). 16-Mil. Impermeable Liner Used.				
E) Other	r.	x Other: See Detail on Sheet 8				
Notos	······					
notes.						

٠

west pond-PLD Sizi	Colorado Springs-El Paso County 2-Year	Duration=6 min,	Inten=3.56 in/hr
Prepared by {enter you	r company name here}		Page 2
HydroCAD® 8.00 s/n 0045	515 © 2006 HydroCAD Software Solutions LLC		7/23/2008

Pond Pond: West PLD

Inflow Area Inflow Outflow Primary	a = 3 = 11 = 11 = 11	3.680 ac, Inf .93 cfs @ .81 cfs @ .81 cfs @	low Depth = 0.32 0.10 hrs, Volume 0.10 hrs, Volume 0.10 hrs, Volume	for 2-Year eve = 0.098 af = 0.098 af = 0.098 af	nt , Atten= 1%, Lag= 0.2 min		
Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 6,841.48' @ 0.10 hrs Surf.Area= 148 sf Storage= 133 cf							
Plug-Flow detention time= 0.2 min calculated for 0.098 af (100% of inflow) Center-of-Mass det. time= 0.2 min (5.7 - 5.5)							
Volume	Invert	Avail.Sto	brage Storage De	escription			
#1	6,840.00'	6,0	185 cf Custom S	tage Data (Prisma	itic) Listed below		
Elevation	Su	Irf.Area	inc.Store	Cum.Store	•		
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)			
6,840.00		20	0	0			
6,841.00		100	60	60			
6,842.00		200	150	210			
6,843.00		1,500	850	1,060			
6,844.50		5,200	5,025	6,085			
Device F	Routing	Invert	Outlet Devices				
#1 F	Primary	6,842.85'	3.00' x 3.00' Ho	riz. Orifice/Grate	Limited to weir flow C= 1.000		
#2 F	Primary	6,840.00'	2.50' W x 1.00'	H Vert. Orifice/Gra	ate C= 0.600		
Primary OutFlow Max=11.74 cfs @ 0.10 hrs HW=6,841.47' (Free Discharge)							

1=Orifice/Grate (Controls 0.00 cfs) **2=Orifice/Grate** (Orifice Controls 11.74 cfs @ 4.70 fps)

I

west pond-PLD SiziColorado Springs-El Paso County 2-Year Duration=6 min, Inten=3.56 in/hrPrepared by {enter your company name here}Page 3HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008

west pond-PLD SiziColorado Springs-El Paso County 2-Year Duration=6 min, Inten=3.56 in/hrPrepared by {enter your company name here}Page 4HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: West PLD

west pond-PLD SiziColorado Springs-El Paso County 5-Year Duration=6 min, Inten=4.88 in/hrPrepared by {enter your company name here}Page 5HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: West PLD

Inflow Area Inflow Outflow Primary	a = = = =	3.680 ac, Inf 16.39 cfs @ 15.20 cfs @ 15.20 cfs @	low Depth = 0.44 0.09 hrs, Volume 0.11 hrs, Volume 0.11 hrs, Volume	" for 5-Year = 0.13 = 0.13 = 0.13	r event 35 af 35 af, Atten= 7%, Lag= 0.6 min 35 af
Routing by Peak Elev	/ Stor-In = 6,842.	d method, Time 11' @ 0.11 hrs	e Span= 0.00-12.0 Surf.Area= 340 :	0 hrs, dt= 0.01 sf Storage= 3	1 hrs / 3 302 cf
Plug-Flow	detentio	n time= 0.2 mi	n calculated for 0.	134 af (100% /	of inflow)
Center-of-	Mass de	t. time= 0.2 mi	n (5.7 - 5.5)	·	
Volume	Inve	ert Avail.Sto	orage Storage D	escription	
#1	6,840.0	0' 6,0	85 cf Custom S	tage Data (Pri	ismatic) Listed below
Elevation		Surf.Area	Inc.Store	Cum.Store	
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)	
6,840.00		20	0	0	
6,841.00		100	60	60	
6,842.00		200	150	210	
6,843.00		1,500	850	1,060	
6,844.50		5,200	5,025	6,085	
Device F	Routing	Invert	Outlet Devices		
#1 F	rimary	6,842.85'	3.00' x 3.00' Ho	riz. Orifice/Gr	rate Limited to weir flow C= 1,000
#2 F	Primary	6,840.00'	2.50' W x 1.00'	H Vert. Orifice	e/Grate C= 0.600
Primary C	outFlow	Max=15.16 cfs	s@0.11 hrs HW:	=6,842.10' (F	ree Discharge)

-1=Orifice/Grate (Controls 0.00 cfs) -2=Orifice/Grate (Orifice Controls 15.16 cfs @ 6.06 fps) west pond-PLD SiziColorado Springs-El Paso County 5-YearDuration=6 min, Inten=4.88 in/hrPrepared by {enter your company name here}Page 6HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008

west pond-PLD SiziColorado Springs-El Paso County 5-Year Duration=6 min, Inten=4.88 in/hrPrepared by {enter your company name here}Page 7HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: West PLD

west pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 8 7/23/2008

Pond Pond: West PLD

Inflow Are Inflow Outflow Primary	a = = 2 = 2 = 2	3.680 ac, Inf 9.14 cfs @ 5.15 cfs @ 5.15 cfs @	low Depth = 0.78 0.09 hrs, Volume 0.11 hrs, Volume 0.11 hrs, Volume	3" for 100- ≽= 0. ≽= 0. ≥= 0.	-Year ev .240 af .239 af, .239 af	ent Atten= 14%, Lag= 1	l. 0 min
Routing by Peak Elev	/ Stor-Ind = 6,843.1	method, Time 3' @ 0.11 hrs	e Span= 0.00-12.0 Surf.Area= 1,80	10 hrs, dt= 0. 9 sf Storag	.01 hrs / je= 1,479	3 9 cf	
Plug-Flow Center-of-	detention Mass det	time= 0.7 min time= 0.7 min tureil Sta	n calculated for 0. n (6.2 - 5.5)	239 af (100%	% of inflo	(w)	
Volume			brage Storage D	escription			
#1	6,840.00	6,0	85 cf Custom S	tage Data (I	Prismati	c) Listed below	
Elevation (feet)	S	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store	e)		
6,840.00		20	0	(n n		
6,841.00		100	60	6	0 0		
6,842.00		200	150	210	Ď		
6,843.00		1,500	850	1.060	Ď		
6,844.50		5,200	5,025	6,08	5		
Device F	Routing	Invert	Outlet Devices				
#1 F #2 F	Primary Primary	6,842.85' 6,840.00'	3.00' x 3.00' Ha 2.50' W x 1.00'	riz. Orifice/0 H Vert. Orifi	Grate ice/Grate	Limited to weir flow e C= 0.600	C= 1.000
Primary O	utFlow M	Max=25.05 cfs	6 @ 0.11 hrs HW	=6,843.12'	(Free Di	scharge)	

-1=Orifice/Grate (Weir Controls 5.58 cfs @ 1.71 fps) -2=Orifice/Grate (Orifice Controls 19.46 cfs @ 7.79 fps)

west pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 9 7/23/2008

Pond Pond: West PLD

west pond-PLD SiColorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hrPrepared by {enter your company name here}Page 10HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008

Pond Pond: West PLD

.

OPERATION AND MAINTENANCE MANUAL MERIDIAN CROSSING PARK PLACE ENTERPRISES EL PASO COUNTY, COLORADO

May 2008

PREPARED FOR:

Park Place Enterprises

15 Miranda Road Colorado Springs, CO 80906

PREPARED BY:

Springs Engineering

31 N. Tejon Street Suite 315 Colorado Springs, CO 80903

PROJECT NO. 07-057-0032

Table of Contents

TABLE OF CONTENTS	1
INTRODUCTION	2
GENERAL LOCATION AND DESCRIPTION	2
DESCRIPTION OF CONSTRUCTION	2
FACILITIES	2
INSPECTION AND MAINTENANCE	2
POROUS LANDSCAPE DETENTION FACILITY	2
OPERATION & MAINTENANCE LOG	4

.

1

.

.

.

Introduction

This Operation and Maintenance Plan is being submitted on behalf of Park Place Enterprises for a development known as Meridian Crossing in Falcon, Colorado. The purpose of this Operation and Maintenance Manual (O&M) is to identify facilities which are to be maintained by the Meridian Crossing Properties Owners Association (POA) and the frequency with which these items are to be maintained.

General Location and Description

Meridian Crossing is currently zoned CR and the proposed development includes 6 commercial lots, proposed water quality facilities, streets, and utilities.

Meridian Crossing is approximately 9.5 acres and is located north of the intersection of Meridian Road and Old Meridian Road in Falcon, Colorado, Section 12, Township 13 South, Range 65 West of the 6th Principal Meridian.

Description of Construction

Construction will consist of site grading, utility installation, and road paving. Approximately 9.5 acres of the site will be graded for construction of the proposed commercial units. Erosion control will be provided prior to construction.

Facilities

Water quality facilities will be owned and maintained by the POA. Water and sanitary sewer will be maintained by the Falcon Highlands Metropolitan District. All other utilities are to be maintained by their respective owners.

Inspection and Maintenance

A thorough inspection of the permanent structures shall be performed every 30 days as well as after any significant rain or snowmelt event. Inspectors are to look for any significant deterioration of the facilities including:

- Erosion of channels and side slopes.
- Accumulated trash or debris.

Repairs and removal of debris shall occur as soon as practical.

Porous Landscape Detention Facility

Lawn mowing and vegetative care shall be performed routinely, as aesthetic requirements demand. This shall limit unwanted vegetation. Irrigated turf grass shall be between 2 and 4 inches in height and non irrigated native turf grasses shall be 4 to 6 inches in height. Debris and litter removal shall be performed routinely, as aesthetic requirements demand. Removal of debris and litter from any detention area minimizes clogging of the sand media. Landscaping removal and replacement shall be done every 5 to 10 years depending on infiltration rates needed to drain the area in 12 hours or less. Over time the sandy loam

sandy loam turf will clog. The layer will need to be replaced, along with all turf and other vegetation growing on the surface, to rehabilitate infiltration rates. Bin-annual inspections of the hydraulic performance of the area will need to be performed. This will determine if the sand media is allowing acceptable infiltration.

An Operation and Maintenance Log follows.

Operation & Maintenance Log

THE SHOPPES AT FALCON OPERATION AND MAINTENANCE LOG

(Record inspections, items found maintenance and corrective actions taken. Also record any training received by Contractor personnel with regard to erosion control, materials handling and any inspections by outside agencies)

DATE	ITEM	SIGNATURE OF PERSON MAKING ENTRY
	······	
.		
ļ		

Appendix I: Ultimate Design StormCAD Calculations

 Title: Old Meridian Road
 Project Engineer: Charlene Sammons

 z:\...\reports\fdr\calcs\storm cad\ultimate.stm
 StormCAD v5.6 [05.06.012.00]

 07/24/08
 03:02:30 KWBentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666
 Page 1 of 1

Analysis Results Scenario: 100-year

Note:

The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

Title:	Old Meridian Road
Project Engineer:	Charlene Sammons
Project Date:	11/14/07
Comments:	Storm in Old Meridian Road for Meridian Crossing Storm Sewer

Scenario Summary			
Scenario	100-year		
Physical Properties Alternat	Base-Physical Prop	erties	
Catchments Alternative	Catchments-100-ye	ar	
System Flows Alternative	Base-System Flows	i	
Structure Headlosses Alterr	Base-Structure Hea	dlosses	
Boundary Conditions Altern	Base-Boundary Cor	nditions	
Design Constraints Alternat	Base-Design Const	raints	
Capital Cost Alternative	Base-Cost		
User Data Alternative	Base-User Data		
Network Inventory			
Number of Pipes	4	Number of Inlets	2
- Circular Pipes:	4	- Grate Inlets:	0
- Box Pipes:	0	- Curb Inlets:	2
- Arch Pipes:	0	- Combination Inlets:	0
 Vertical Elliptical Pipes: 	0	- Slot Inlets:	0
- Horizontal Elliptical Pipes:	0	- Grate Inlets in Ditch:	0
Number of Junctions	2	- Generic Inlets:	0
Number of Outlets	1		

Circular Pipes Inventory

18 inch	274.57 ft	24 inch	55.00 ft
Total Length	329.57 ft		

2

Curb Inlet Inventory

Type R 10'

Inlet elements for network with outlet: 0-1										
Label	Inlet	Total Systemir Flow (cfs)	Total ntercepted Flow (cfs)	Total Bypassed Flow (cfs)	Bypass Target	Capture HydraulicHydraulic GravityHeadloss Efficiency Grade Grade Element Method (%) Line In Line OutHeadloss (ft) (ft) (ft)				
DP-1	Curb Type R	7.61	7.61	10.28	DP-A	42.5 3,848.83 3,848.83 0.00 Absolut				
DP-A	Curb Type R	9.39	2.10	14.37	<automat< td=""><td>12.8 3,846.39 3,846.08 0.31 Standar</td></automat<>	12.8 3,846.39 3,846.08 0.31 Standar				

Junction elements for network with outlet: O-1										
Label	Hydraulic Grade Line In (ft)	Hydraulic Grade E Line OutH (ft)	Gravity I Element leadloss (ft)	Headloss Method A	System dditional Flow (cfs)	System Known Flow (cfs)	System Rational Flow (cfs)	System Intensityf (in/hr)	System low Tim (min)	System e CA (acres)
J-1	3,847.76	3,847.46	0.30	Standar	0.00	0.00	7.55	8.50	6.59	0.88
J-3	3,844.91	3,844.91	0.00	Absolut	0.00	0.00	9.30	8.13	7.63	1.13

 Title: Old Meridian Road
 Project Engineer: 0

 z:\.../reports\fdr\calcs\storm cad\ultimate.stm
 StormCAD

 07/24/08
 03:03:15
 R3/Bentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] +1-203-755-1666 Page 1 of 2

Analysis Results Scenario: 100-year

Outlet: O-1										
Label	Hydraulic Grade Line In (ft)	Hydraulic Grade I Line OutH (ft)	Gravity Element A leadloss (ft)	System dditional Flow (cfs)	System Known Flow (cfs)	System Rational Flow (cfs)	System IntensityF (in/hr)	System low Tim (min)	System e CA (acres)	
0-1	3,843.10	3,843.10	0.00	0.00	0.00	9.22	8.06	7.83	1.13	

Pipe elements for network with outlet: O-1

Label	Section Shape	Section Size	Length (ft)	NumberCo of Sections	onstructeo Slope (ft/ft)	Energy Slope (ft/ft)	Total System Flow (cfs)	Average Velocity (ft/s)	Upstream Invert Elevation (ft)	ownstreat Invert Elevation (ft)	rhlydraulio Grade Line In (ft)	Hydraulic Grade Line Out (ft)
P-1	Circular	18 inch	71.21	1	0.012	0.011	7.61	6.31	3,847.76	6,846.90	3,848.83	3,847.79
P-2	Circular	18 inch	17.16	1	0.009	0.009	7.55	5.53	3,846.40	6,845.29	3,847.46	3,846.39
P-3	Circular	18 inch	86.20	1	0.009	0.009	9.39	6.33	3,844.90	6,844.13	3,846.08	3,845.29
P-17	Circular	24 inct	55.00	1	0.007	0.010	9.30	4.62	3,843.50	6,843.10	3,844.91	3,844.19

Scenario: 100-year

Combined Pipe/Node Report

S (ft/ft)	0.012	0.009	0.009	0.007
Dn. Invert (ft)	6,846.90	6,845.29	6,844.13	6,843.10
HGL Out	6,847.79	6,846.39	6,845.29	6,844.19
Dn. Gr. ⊟lev.	6,849.48	6,847.69	6,846.00	6,846.10
Up. Invert (ft)	6,847.76	6,846.40	6,844.90	6,843.50
HGL In (ft)	6,848.83	6,847.46	6,846.08	6,844.91
Up. Gr (ft)	6,851.76	6,849.48	6,847.69	6,846.00
Avg. v (ft/s)	6.31	5.53	6.33	4.62
Q Full (cfs)	11.54	10.22	9.93	10.45
Size	18 inch	18 inch	18 inch	24 inch
Up.Inlet Rat. Q (cfs)	17.89	N/A	6.63	N/A
Up. Calc. Sys. CA (acres)	0.88	0.88	1.13	1.13
Up. Inlet Area (acres)	2.07	N/A	0.80	N/A
Up. Inlet Rat. Coef.	1.00	N/A	1.00	N/A
Up. Inlet Area (acres)	2.07	N/A	0.80	A/A
(¥) د	71.21	117.16	86.20	55.00
Dn. Node	۲-۲	DP-A	J-3	ç -
Node.	DP-1	ا ۔	DP-A	<u>ب</u>
Label	P-1	P-2	P-3	P-17

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

© Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Title: Old Meridian Road z:\...\reports\fdr\calcs\storm cad\utitimate.stm 07/24/08 03:03:33 PM

Scenario: 100-year Profile

Profile: Ultimate Scenario: 100-year

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

© Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 z:\...\reports\fdr\calcs\storm cad\ultimate.stm 07/24/08 03:05:24 PM

Title: Old Meridian Road

APPENDIX F: PLD SITE PHOTOS

