# Les Schwab Tire Center Storm Report

EPC STORMWATER REVIEW COMMENTS IN ORANGE BOXES WITH BLACK TEXT



# 7105 Old Meridian RD. Falcon Colorado

Prepared For:

# SFP-E, LLC

PO Box 5350 20900 Cooley Road Bend, OR 97701

Prepared By:



# **Cushing Terrell**

Zack Graham, PE 411 E Main ST #101 Bozeman, MT 59715 (406) 922-7137 www.cushingterrell.com

Cushing Terrell Project No. LSCO\_21WIN

April, 16, 2021

Add the following text: PCD Filling No.:

PPR-21-023

**Cushing Terrell** 

# TABLE OF CONTENTS

# **1.0 CONTENTS**

| 2.0 | GENEF | RAL LOCATION AND DESCRIPTION | 3 |
|-----|-------|------------------------------|---|
| 2.1 | Loca  | ation                        | 3 |
| 2.2 | Dese  | cription of Property         | 3 |
| 3.0 | DRAIN | IAGE BASINS                  | 3 |
| 3.1 | Exist | ting Drainage Basins         | 3 |
| 3.  | 1.1   | BASIN Z                      | 3 |
| 3.2 | Prop  | oosed Drainage Basins        | 4 |
| 3.  | 2.1   | BASIN A                      | 4 |
| 3.  | 2.2   | BASIN B                      | 4 |
| 3.  | 2.3   | BASIN C                      | 4 |
| 3.  | 2.4   | BASIN D                      | 4 |
| 3.  | 2.5   | BASIN E                      | 4 |
| 3.  | 2.6   | BASIN F                      | 4 |
| 3.  | 2.7   | BASIN OS                     | 4 |
| 4.0 | DRAIN | AGE DESGIN CRITERIA          | 5 |
| 4.1 | Dev   | elopment Criteria Reference  | 5 |
| 4.2 | Hyd   | rologic Criteria             | 5 |
| 5.0 | DRAIN | AGE FACILITY DESGIN          | 5 |

# LIST OF TABLES

| Table 3.1 | 3 |
|-----------|---|
| Table 3.2 | 5 |

# **APPENDICES**

| APPENDIX A: HYDROLOGIC CALCULATION         | 7 |
|--------------------------------------------|---|
| APPENDIX B: BASIN MAPS                     | 8 |
| APPENDIX C: SOILS REPORT                   | 9 |
| APPENDIX D: FEMA RIMETTE                   |   |
| APPENDIX E: WEB SOIL SURVEY                |   |
| APPENDIX F: MERIDIAN CROSSING STORM REPORT |   |

# 2.0 GENERAL LOCATION AND DESCRIPTION

# 2.1 Location

The project site is located at 7105 Old Meridian Rd, Falcon, Colorado and falls within El Paso County. The parcel is part of the larger Meridian Crossing Development, which includes the existing stormwater system infrastructure, including the treatment pond to the south. The site is located on the northeast side of the intersection of Meridian Rd and Old Meridian Rd. The site is located to north west of the existing storm water treatment facilities maintained by the Meridian Crossing Development and an existing storm line runs along the south west property line of the site. The property lies within the NE 1/4 of Section 12, Township 13 S, Range 65 West of the Sixth Principal Meridian.

# 2.2 Description of Property

Include a statement about what major drainage basin (Falcon) the site is located in.

The existing site consists of an undeveloped 2.48 acre lot covered with native grasses and shrubs. In areas taken from the ALTA Survey the site consists of roughly 12% impervious road and sidewalk area with the remaining 88% being the native vegetation. There are no stream crossings or significant waterways located within the area being developed by this project. The site is accessed via the existing private roads that are centered on the north east and south east property lines of the site. These roads will provide means of vehicular ingress and egress.

The topography of the existing site consists of a roughly consistent grade which directs flow from the north of the site towards the south at slopes ranging from 2-5%. There is an existing storm line that runs west to east along the southern edge of the site before crossing Old Please include the that ultimately connects to the adjacent detention pond. The site is not located in a flood plain and is designated as area of minimal flood hazard (Zone X).

# panel number the site is located in.

# **3.0 DRAINAGE BASINS**

# 3.1 Existing Drainage Basins

See appendix A for drainage maps showing basin locations.

| S  | 1 | 1 | RΔ | SI  | N | 7 |
|----|---|---|----|-----|---|---|
| э. |   |   | DA | 211 |   | ~ |

Revise to appendix B, per report contents.

state the name/number

of the pond (Pond WU).

-> Basin Z is the sole existing basin that consists on the entire 2.48 acres site. The flow path of this basin is from north to south into the existing private drive. Once leaving the property across the existing private drive runoff enters the adjacent lot. The groundcover of this basin is primarily native grasses but also contains a portion of the private drive. The rational calculation for the basin is shown below in table 3.1 Please revise to show Q5 instead for

|           | Flease revise to show Qo instead for minor   |
|-----------|----------------------------------------------|
|           | storm per EPC's adoption of the City of CS's |
| Table 3.1 | DCMV1 Chapter 6 in Jan 2015.                 |

| 5 11 1 |                        |              |      |      |      |    |           |            |      |       |
|--------|------------------------|--------------|------|------|------|----|-----------|------------|------|-------|
|        | RATIONAL CALC EXISTING |              |      |      |      |    |           |            |      |       |
| ten    | Basin                  | % Impervious | C10  | C100 | Area | TC | l 10 year | l 100 yesr | Q 10 | Q 100 |
|        | Х                      | 12           | 0.33 | 0.42 | 2.48 | 21 | 3.24      | 5.1        | 2.64 | 5.31  |
|        | TOTAL                  | 12           |      |      | 2.48 |    |           |            | 2.64 | 5.31  |
|        |                        |              |      |      |      |    |           |            |      |       |

Per existing conditions drainage report it appears the name of the basin is "X". Change report contents remove inconsis cies.

Please clarify if storm drain system is being proposed or is existing. FAE does not list any storm drain improvements. If storm drain system is existing, update existing drainage conditions narrative to mention that.

# 3.2 Proposed Drainage Basins V

See appendix B for drainage maps showing basin locations. In general, all basins are collected by curb inlets and routed to the existing storm manhole located in the southern corner of the site. This manhole then drains to the existing stormwater pond described in section 5. The exception to this being basin OS which does not have its flows captured and instead follows the historic drainage pattern.

# 3.2.1 BASIN A

label as Pond WU or PLD(s).

Basin A consists of much of the parking lot, drive aisle and the landscaped areas located in front of the building. The runoff for this basin is captured by curb and gutter and directed to the proposed curb inlet at the north corner of the parking lot.

# 3.2.2 BASIN B

Basin B consists of the building roof flows which are conveyed via downspouts to the proposed storm line along the rear of the structure.

# 3.2.3 BASIN C

Basin C consists of the parking, tire storage bullpen, and drive aisles located along the rear of the building. The flows are collected by curb and gutter and directed to the proposed curb inlet at the south corner of the parking.

# 3.2.4 BASIN D

Basin D is a small section of the drive aisle and the southern two parking spaces located in front of the building. This basin also receives flows from a small portion of the landscaping along Meridian Rd. this basin is collected in the proposed curb inlet located at he south west corner of the parking row.

# 3.2.5 BASIN E

Basin E consists of a portion of the south western drive aisle. Runoff is collected in the proposed inlet opposite the building.

# 3.2.6 BASIN F

Basin F consist of the drive aisle on the south end of the site. Runoff is collected by an inlet located just past the southern entrance to the site.

# 3.2.7 BASIN OS

Basin OS contains all areas not captured in the storm system. This basin follows existing drainage patterns and flows to the south into the adjacent lot. The total flows from this basin do not exceed the historic values.

Update drainage letter contents to include design points for existing and proposed conditions. In a conclusion determine whether design will be compliant with originally proposed conditions.

|       | RATIONAL CALC PROPOSED |      |      |      |     |           |            |       |       |  |
|-------|------------------------|------|------|------|-----|-----------|------------|-------|-------|--|
| Basin | % Impervious           | C10  | C100 | Area | TC* | l 10 year | l 100 yesr | Q 10  | Q 100 |  |
| Α     | 49                     | 0.57 | 0.64 | 0.80 | 5   | 6         | 9          | 2.74  | 4.61  |  |
| В     | 100                    | 0.90 | 0.95 | 0.24 | 5   | 6         | 9          | 1.30  | 2.05  |  |
| С     | 98                     | 0.89 | 0.94 | 0.62 | 5   | 6         | 9          | 3.29  | 5.22  |  |
| D     | 52                     | 0.59 | 0.66 | 0.05 | 5   | 6         | 9          | 0.16  | 0.27  |  |
| E     | 100                    | 0.90 | 0.95 | 0.06 | 5   | 6         | 9          | 0.30  | 0.47  |  |
| F     | 100                    | 0.90 | 0.95 | 0.07 | 5   | 6         | 9          | 0.36  | 0.56  |  |
| OS    | 56                     | 0.61 | 0.69 | 0.66 | 5   | 6         | 9          | 2.42  | 4.10  |  |
| TOTAL | 70                     | 0.71 | 0.77 | 2.48 |     |           |            | 10.56 | 17.29 |  |

Table 3.2

\*Due to small basin sizes the minimum time of concentration of 5 minutes was used for proposed basins

# **4.0 DRAINAGE DESGIN CRITERIA**

# 4.1 Development Criteria Reference

This report was prepared using the El Paso County Drainage Criteria Manual (DCM) and the Mile High Flood District Criteria Manual. In creating this report reference was made to the "Meridian Crossing Final Drainage Report" which is included in Appendix F and describes the existing stormwater guality treatment and detention facilities that will be used by this project.

**4.2 Hydrologic Criteria** EPC has adopted City of Colorado Springs Ch. 6. Please update report to reference that criteria and update rational calculations to use table 6-6 runoff coefficients/land use.

peak stormwater runoff for all basins. For the purposes of sizing proposed stormwater structures, the major 100-year storm as described in the DCM was used. The rational method coefficients for these calculations were selected from Table 5-1 of the DCM. Time of concentration was assumed to be the 5-minute minimum value for all proposed basins due to their small size. For the existing basin, Figure 5-2 of the DCM was used to determine the time of concentration. All rainfall values were taken from Figure 5-1 of the DCM.

# **5.0 DRAINAGE FACILITY DESGIN**

The drainage facilities proposed for this project consist of a series of curb inlets and storm manholes designed to collect the additional flows generated by the site and direct them to the existing treatment facility. The connection point to the existing storm infrastructure is the existing stormwater manhole located at the south corner of the site. The water enters the existing storm lines at this location where they are directed to the existing stormwater treatment and detention facility. Describe what happens when the PLD overflows and how SW normally (non-overflow) is routed to Pond WU from the PLD. Referencing a page in the previous report and/or

The design and calculations of this existing stormwater treatment and detention facility are not within the scope of this report and can be found in the "Meridian Crossing Final Drainage Report" which is included in Appendix F. This facility is described as a "Porous Landscape Detention" (PLD) and is described in detail on page 16 of the referenced report. This facility was sized to include flows created by the future development we are now proposing. The proposed

Also explain if you will be utilizing both PLD's shown in the old DR or just the western one.

Cushing Ter For the pond/PLD, please still provide a summary comparison (via text and/or tables) that shows what was designed for in that old report, versus the actual proposed development in terms of Q5, Q100, C, pond/PLD names and capacities.

5

Les Schwab site can be described as the northern half of basin D-2 using the terminology of the referenced report. The assumed runoff coefficient for basin D-2 was 0.95 compared to 0.77 calculated above. No improvements are required for this existing pond and the pond is maintained by Park Place Enterprises, LLC.

Also briefly describe the PLD that will be used and it's features (ex: grassy swale with outlet structure).

Please clarify which pond you are referring to. PLD? Pond WU? In either case, we would like to see a statement like this for both (saying who owns and operates/maintains each and that they are in sufficient currently operating has designed).

Show the "Four-Step Process" for selecting structural BMPs (ECM Section I.7.2 BMP Selection)

Step 4 should include a discussion of the uncovered tire storage bullpen.

-Update report contents to include a list of references that includes all reports/manuals that were used to create drainage letter.

-Update runoff calculations for 5 year and 100 year (time of concentration and runoff coefficients) per CSDCM Vol. 1 Ch. 6. -Provide design point for outfall.



**APPENDIX A: HYDROLOGIC CALCULATION** 



REFE**RENCE : Wright - McLaughlin Engineers, Urban Storm Drainage Criteria Manual, Vol. 1**,

# Denver Regional Council of Governments, Denver, Co. 1977

and the second second

Please refer to CSDCM Vol. 1 Ch. 6 to calculate time of concentration and provide those calculations in the drainage letter.





| Cushina | Subject:      | RATIONAL METHO  | DD CALCULAT | Page: | 1     |         |  |
|---------|---------------|-----------------|-------------|-------|-------|---------|--|
| Torroll | Project No.   | LSCO_20FAL      | By:         | RW    | Date: | 4.14.21 |  |
| lenen   | Project Name: | LES SCHWAB TIRE |             |       |       |         |  |

| RATIONAL CALC EXISTING |              |      |      |      |    |           |            |        |       |
|------------------------|--------------|------|------|------|----|-----------|------------|--------|-------|
| Basin                  | % Impervious | C10  | C100 | Area | TC | l 10 year | I 100 yesr | 🖊 Q 10 | Q 100 |
| Х                      | 12           | 0.33 | 0.42 | 2.48 | 21 | 3.24      | 5,1        | 2.64   | 5.31  |
| TOTAL                  | 12           | 0.33 | 0.42 | 2.48 |    |           |            | 2.64   | 5.31  |



| RATIONAL CALC PROPOSED |              |      |      |      |     |           |            |                      |       |
|------------------------|--------------|------|------|------|-----|-----------|------------|----------------------|-------|
| Basin                  | % Impervious | C10  | C100 | Area | TC* | l 10 year | l 100 yesr | <sup>&gt;</sup> Q 10 | Q 100 |
| Α                      | 49           | 0.57 | 0.64 | 0.80 | 5   | 6         | 9          | 2.74                 | 4.61  |
| В                      | 100          | 0.90 | 0.95 | 0.24 | 5   | 6         | 9          | 1.30                 | 2.05  |
| С                      | 98           | 0.89 | 0.94 | 0.62 | 5   | 6         | 9          | 3.29                 | 5.22  |
| D                      | 52           | 0.59 | 0.66 | 0.05 | 5   | 6         | 9          | 0.16                 | 0.27  |
| E                      | 100          | 0.90 | 0.95 | 0.06 | 5   | 6         | 9          | 0.30                 | 0.47  |
| F                      | 100          | 0.90 | 0.95 | 0.07 | 5   | 6         | 9          | 0.36                 | 0.56  |
| OS                     | 56           | 0.61 | 0.69 | 0.66 | 5   | 6         | 9          | 2.42                 | 4.10  |
| TOTAL                  | 70           | 0.71 | 0.77 | 2.48 |     |           |            | 10.56                | 17.29 |

\*Due to small basin sizes the minimum time of concentration of 5 minutes was used for proposed basins



**APPENDIX B: BASIN MAPS** 







cushingterrell.com 800.757.9522



# CENTER RE $\mathbf{m}$ SCHWA LES

IDIAN RD. MERII I, CO 7105 OLE FALCO

Ō

DESIGN

>

TION

CONSTRUC

FOR

04.16.2021 DRAWN BY | WALKER CHECKED BY | GRAHAM REVISIONS

© 2021 | ALL RIGHTS RESERVED

PRELIMINAR

SITE DEVELOPEMENT PLANS

EXISTING BASIN MAP D.1



- BASIN AREA IN ACRES



cushingterrell.com 800.757.9522



# CENTER IRE SCHWAB LES

7105 OLD MERIDIAN RD. FALCON, CO

DESIGN PRELIMINARY CONSTRUCTION FOR

EXISTING BASIN MAP b D.2

04.16.2021 DRAWN BY | WALKER CHECKED BY | GRAHAM REVISIONS

SITE DEVELOPEMENT PLANS

© 2021 | ALL RIGHTS RESERVED



**APPENDIX C: SOILS REPORT** 

Please remove this report from the Drainage Report file. And submit it as a separate document.

# **Geotechnical Engineering Report**

Proposed Les Schwab Tire Center NEC of Meridian Road and Rolling Thunder Way Falcon, Colorado

# Prepared for:

SFP-E, LLC P.O. Box 5350 Bend, Oregon 97708-5350

# Prepared by: Pickering, Cole & Hivner, LLC PCH Project No. 12.298.16

September 27, 2016

# Pickering, Cole, & Hivner

September 27, 2016

SFP-E, LLC P.O. Box 5350 Bend, Oregon 97708-5350

Attn: Mr. Matt Hannigan

Re: Geotechnical Engineering Report Proposed Les Schwab Tire Center NEC of Meridian Road and Rolling Thunder Way Falcon, Colorado PCH Project No. 12.298.16

Pickering Cole & Hivner, LLC (PCH) has completed a geotechnical engineering investigation for the proposed Les Schwab Tire Center to be located at the northeast corner of the above-referenced intersection in Falcon, Colorado. This study was performed in general accordance with our proposal number P12.333.16, executed August 10, 2016.

This geotechnical summary should be used in conjunction with the entire report for design and/or construction purposes. It should be recognized that specific details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled General Comments should be read for an understanding of the report limitations.

- Subsurface Conditions: The soils at the site consist of silty to clayey sands, fine to coarse sands, and varying layers of lean clays. Sedimentary claystone bedrock was encountered below the sands/clays at depths ranging from about 13 to 18 feet below existing site grades. The bedrock extended to the depths explored. Groundwater was encountered in our building borings immediately after drilling at depths ranging from about 10 to 15 feet below existing site grades. The shallow pavement borings were dry at that time. When checked about three weeks later, groundwater was encountered in the deeper borings at depths ranging from about 4 to 7-½ feet below existing site grades. The shallow pavement borings remained dry at that time. Other specific information regarding the lithology encountered is noted on the attached Boring Logs.
- Shallow Groundwater and Below-Grade Construction: As discussed, groundwater was encountered at the site at depths ranging from about 4 to 7-½ feet below existing site grades. As currently planned the northeast portion of the building will include below-grade maintenance pits (maximum of about 7 feet below planned FFE). We recommend construction be limited to excavation depths as high as practical in these areas in order to reduce the potential for water intrusion, as well as to minimize encountering potentially soft/unstable soil conditions during construction.

We recommend these maintenance pit areas be designed as water-tight structures, designed for buoyancy and hydrostatic pressures. Waterproofing consultants should be contacted for recommendations regarding the design and construction of water-tight below-grade foundations. As an alternative, subsurface drainage systems can be installed to collect subsurface water and maintain dry interior conditions. At a minimum, the drainage system would include installation of a perimeter drain system around and below the foundations of these below grade areas which would empty into the storm sewer or a sump pit where collected water could be discharged via a submersible pump.

- Foundations and Floor Slabs: Based on the information obtained from our subsurface exploration and laboratory testing of selected samples, the site appears suitable for proposed development. The native sand/clay soils encountered near foundation bearing elevations are considered suitable for support of conventional spread footing foundations and slab-on-grade floors at the site. However, areas of soft, unstable or low-density soils may also be encountered in the foundation excavations and may require the need for removal and recompaction/replacement prior to foundation and floor slab construction. Therefore, it is imperative that the soils exposed in foundation excavations be observed by the geotechnical engineer to confirm or modify our recommendations.
- **Pavement Design and Structural Sections**: Design of pavements for the project is based on the procedures outlined in the 1993 *Guideline for Design of Pavement Structures* by the American Association of State Highway and Transportation Officials (AASHTO) using an assumed traffic volume.

Light-duty pavements for automobile parking areas should include a minimum of 5-½ inches of asphalt concrete or, alternately, 5 inches of Portland cement concrete. Paved access drives should be paved with 6-½ inches of asphalt concrete. Heavy-duty pavements such as for driveway entrances, drive isles, heavy truck parking, and other areas where trucks will park and turn should include a minimum of 6 inches of Portland cement concrete.

We appreciate being of service to you in the geotechnical engineering phase of this project, and are prepared to assist you during the construction phases as well. Please do not hesitate to contact us if you have any questions concerning this report or any of our testing, inspection, design and consulting services.

Sincerely, Pickering, Cole & Hivner, LLC Glem P. Ohls

Glenn D. Ohlsen, P.E. Project Engineer

Copies to: Addressee (1 PDF copy)

Andrew J. Garner, P.E. Senior Project Manager

# TABLE OF CONTENTS

| Page No.                                            |
|-----------------------------------------------------|
| Letter of Transmittal ii                            |
| INTRODUCTION                                        |
| PROJECT INFORMATION                                 |
| SITE EXPLORATION PROCEDURES                         |
| Field Exploration2                                  |
| Laboratory Testing2                                 |
| SITE CONDITIONS                                     |
| SUBSURFACE CONDITIONS                               |
| Geology3                                            |
| Soil and Bedrock Conditions4                        |
| Field and Laboratory Test Results4                  |
| Groundwater Conditions4                             |
| ENGINEERING RECOMMENDATIONS                         |
| Geotechnical Considerations4                        |
| Foundation Design and Construction5                 |
| Lateral Earth Pressures6                            |
| Below-grade Construction7                           |
| Seismic Considerations                              |
| Floor Slab Design and Construction8                 |
| Private Pavement Thickness Design & Construction9   |
| Earthwork12                                         |
| General Considerations12                            |
| Site Preparation                                    |
| Subgrade Preparation                                |
| Fill Materials14                                    |
| Compaction Requirements14                           |
| Excavation and Trench Construction14                |
| Additional Design and Construction Considerations15 |
| Exterior Slab Design and Construction15             |
| Underground Utility Systems15                       |
| Concrete Corrosion Protection16                     |
| Surface Drainage16                                  |
| GENERAL COMMENTS                                    |

APPENDIX A: BORING LOCATION DIAGRAM, BORING LOGS

APPENDIX B: LABORATORY TEST RESULTS

APPENDIX C: GENERAL NOTES, PERIMETER DRAIN DETAIL



**GEOTECHNICAL ENGINEERING REPORT** 

PROPOSED LES SCHWAB TIRE CENTER NEC of MERIDIAN ROAD and ROLLING THUNDER WAY FALCON, COLORADO

PCH Project No. 12.298.16 September 27, 2016

# INTRODUCTION

This report contains the results of our geotechnical engineering exploration for the proposed Les Schwab Tire Center to be located at the northeast corner of the intersection of Meridian Road and Rolling Thunder Way in Falcon, Colorado.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil and bedrock conditions
- Groundwater conditions
- Foundation design and construction
- Lateral earth pressures
- Floor slab design and construction
- Pavement structural sections
- Earthwork
- Drainage

The recommendations contained in this report are based upon the results of field and laboratory testing, engineering analyses, our experience with similar subsurface conditions and structures, and our understanding of the proposed project.

# **PROJECT INFORMATION**

We understand that the project will include the development of an approximate 2.5-acre site at the referenced intersection. Development will include construction of a new single-story Les Schwab Tire Center building encompassing approximately 11,878 square feet. We assume construction will include either load bearing CMU or light-gauge steel framed superstructure along with interior steel columns supporting a metal roof system. Reinforced concrete foundations will support the structures. The interior of the structures will include a conventional slab-on-grade with some bays having a recessed slab. Portions of the slab will bear approximately 6-½ to 7 feet below finished floor elevation (FFE). Maximum wall and column loads are anticipated to be on the order of about 3 to 5 kips per lineal foot and 100 to 200 kips,

respectively. We assume that a majority of the site is near rough construction grade, slightly below planned FFE.

Other major site development will include the installation of underground utilities, construction of a trash enclosure, as well as the construction of private asphalt or concrete paved parking areas and site landscape improvements.

If our understanding of the project, or assumptions above, is not accurate, or if you have additional useful information, please inform us as soon as possible.

# SITE EXPLORATION PROCEDURES

The scope of the services performed for this project included site reconnaissance by a field engineer, a subsurface exploration program, laboratory testing and engineering analysis.

**Field Exploration:** As part of this study, we investigated the subsurface conditions on the site with a total of six (6) test borings. Borings were advanced to depths of about 25 to 35 feet below existing site grades with a truck-mounted drilling rig utilizing 4-inch diameter, solid stem auger.

A lithologic log of each boring was recorded by our field representative during the drilling operations. At selected intervals, samples of the subsurface materials were obtained by driving modified California barrel samplers. Penetration resistance measurements were obtained by driving the sample barrel into the subsurface materials with a 140-pound automatic hammer falling 30 inches. The penetration resistance value is a useful index to the consistency, relative density or hardness of the materials encountered.

Groundwater measurements were made in each boring at the time of site exploration and about three weeks later. Borings were loosely backfilled with the auger cuttings upon completion of groundwater measurements.

**Laboratory Testing:** Samples retrieved during the field exploration were returned to the laboratory for observation by the project geotechnical engineer, and were classified in general accordance with the Unified Soil Classification System described in Appendix C. Samples of bedrock were classified in general accordance with the general notes for Rock Classification. At that time, an applicable laboratory-testing program was formulated to determine engineering properties of the subsurface materials. Following the completion of the laboratory testing, the field descriptions were confirmed or modified as necessary, and Boring Logs were prepared. These logs are presented in Appendix A.

Laboratory test results are presented in Appendix B. These results were used for the geotechnical engineering analyses and the development of foundation and earthwork recommendations. Laboratory tests were performed in general accordance with the applicable local or other accepted standards.

Selected soil and bedrock samples were tested for the following engineering properties:

- Water content
- Dry density
- Consolidation/Swell

- Grain size
- Plasticity Index
- Water-soluble sulfates

# SITE CONDITIONS

The site is located at the northeast corner of Meridian Road and Rolling Thunder Way in Falcon, Colorado. The site is generally bordered by Meridian Road to the northwest, Rolling Thunder Way/Old Meridian Road to the southwest, and currently undeveloped lots and asphalt-paved private access roads in the other directions. In general, the surrounding area consists of commercial/retail development. At the time of our field exploration, the ground surface at the site was covered with a low to moderate growth of grass and weeds. The site was generally level, with a slight slope downwards to the south. We anticipate that cuts and fills of up to about 1 to 3 feet could be required to bring the site to construction grades and to provide positive site drainage.

# SUBSURFACE CONDITIONS

**Geology:** Surficial geologic conditions at (or in the vicinity of) the site, as mapped by the U.S. Geological Survey (USGS) (<sup>1</sup>Scott, et al, 1976) and (<sup>2</sup>Madole, R.F., 2003), consist of Eolian Sand of Holocene and Pleistocene Age. These materials are typically described as sand, sandy silt, and sandy clay. Bedrock underlying the surface units consists of the Dawson Formation of Paleocene and Upper Cretaceous Age. This formation generally includes sandstone, claystone and conglomerate.

The site is located just east of mapping completed by the Colorado Geological Survey (<sup>3</sup>Hart, 1972) for potentially swelling soil and bedrock. However, areas of "Low Swell Potential" were mapped to the west of the site. Potentially expansive materials in this category generally include bedrock and some surficial soils.

Due to the gently sloping nature of the site, the potential for other geologic hazards at the site is anticipated to be low. Seismic activity in the area is anticipated to be low, and the property should be relatively stable from a structural standpoint. With proper site grading around proposed structures, erosional problems at the site should be reduced.

<sup>&</sup>lt;sup>1</sup> Scott, G.R., Taylor, R.B., Epis, R.C., and Wobus, R.A., 1976, *Geologic Map of the Pueblo 1 Degree x 2 Degree Quadrangle, South-Central Colorado,* United States Geological Survey, Map MF-775.

<sup>&</sup>lt;sup>2</sup> Madole, R.F., 2003, *Geologic Map of the Falcon, NW 7.5 Minute Quadrangle, El Paso County, Colorado,* United States Geological Survey, Map OF03-08.

<sup>&</sup>lt;sup>3</sup> Hart, Stephen S., 1972, *Potentially Swelling Soil and Rock in the Front Range Urban Corridor, Colorado*, Colorado Geological Survey, Sheet 3 of 4.

**Soil and Bedrock Conditions:** The soils at the site consist of silty to clayey sands, fine to coarse sands, and varying layers of lean clays. Sedimentary claystone bedrock was encountered below the sands/clays at depths ranging from about 13 to 18 feet below existing site grades. The bedrock extended to the depths explored. Other specific information regarding the lithology encountered is noted on the attached Boring Logs.

**Field and Laboratory Test Results:** Field test results indicate that the sand soils vary from medium dense to dense in relative density. The clay soils are very stiff to hard in consistency. Laboratory test results indicate that the clayey soils and claystone bedrock at the site exhibit low expansive potential when inundated in our laboratory.

**Groundwater Conditions:** Groundwater was encountered in our building borings immediately after drilling at depths ranging from about 10 to 15 feet below existing site grades. The shallow pavement borings were dry at that time. *When checked about three weeks later, groundwater was encountered in the deeper borings at depths ranging from about 4 to 7-½ feet below existing site grades.* The shallow pavement borings remained dry at that time.

Based upon review of U.S. Geological Survey Maps (<sup>4</sup>Hillier, et al, 1980), regional groundwater beneath the project area is expected to be encountered in unconsolidated alluvial deposits or in the Dawson Aquifer at depths generally greater than 20 feet below present ground surface.

Zones of perched and/or trapped groundwater, where not already present, may also occur at times in the subsurface soils overlying bedrock, on top of the bedrock surface or within permeable fractures in the bedrock materials. The location and amount of perched water is dependent upon several factors including hydrologic conditions, type of site development, irrigation demands on or adjacent to the site, fluctuations in water features, seasonal and weather conditions.

# The possibility of groundwater fluctuations should be considered when developing design and construction plans for the project.

# ENGINEERING RECOMMENDATIONS

**Geotechnical Considerations:** The site appears suitable for the proposed construction as long as the recommendations included herein are incorporated into the design and construction aspects of the project. Based on our borings, the site should be suitable for the proposed construction, however, the presence of relatively shallow groundwater may impact both the design and construction of the project.

As discussed, groundwater was encountered at the site at depths ranging from about 4 to 7-½ feet below existing site grades. As currently planned the northeast portion of the building will include below-

<sup>&</sup>lt;sup>4</sup>Hillier, Donald E.; and Hutchinson, E. Carter, 1980, *Depth to Water Table (1976-1977) in the Colorado Springs-Castle Rock Area, Front Range Urban Corridor, Colorado*, United States Geological Survey, Map I-857-H.

grade maintenance pits (maximum of about 7 feet below planned FFE). We recommend construction be limited to excavation depths as high as practical in these areas in order to reduce the potential for water intrusion, as well as to minimize encountering potentially soft/unstable soil conditions during construction.

We recommend these maintenance pit areas be designed as water-tight structures, designed for buoyancy and hydrostatic pressures. Waterproofing consultants should be contacted for recommendations regarding the design and construction of water-tight below-grade foundations. As an alternative, subsurface drainage systems can be installed to collect subsurface water and maintain dry interior conditions. At a minimum, the drainage system would include installation of a perimeter drain system around and below the foundations of these below grade areas which would empty into the storm sewer or a sump pit where collected water could be discharged via a submersible pump.

Design and construction recommendations for the foundation system and other earth-connected phases of the project are outlined below.

Foundation Design and Construction: Due to the presence of non- to low expansive soils, spread footing foundations are considered acceptable for support of the structure on this site. Based on the borings advanced on the site, we believe that the native soils will be suitable for support of foundations; however, it is possible that soft, unstable, or low-density soils may also be present, particularly for foundations approaching the groundwater level. *The geotechnical engineer responsible for special inspections should be contacted to observe and evaluate the suitability of the soils beneath foundation excavations at the site, prior to forming for footing construction. If any areas of soft, unstable or low-density soils are observed, removal and recompaction/replacement will be required.* 

| Criteria                                                        | Design Value                          |
|-----------------------------------------------------------------|---------------------------------------|
|                                                                 | Undisturbed native sand/clay soils or |
| Bearing Strata                                                  | properly compacted fill materials     |
|                                                                 | approved by the Geotechnical Engineer |
| Maximum net allowable bearing pressure <sup>1</sup>             | 2,000 psf                             |
| Min. depth below grade, exterior wall footings <sup>2</sup>     | 36 inches                             |
| Min. depth below grade, interior footings <sup>2</sup>          | 12 inches                             |
| Estimated maximum total foundation movement <sup>3</sup>        | 1 inch                                |
| Estimated maximum differential foundation movement <sup>3</sup> | ½ to ¾ inch                           |

The following foundation design criteria may be used for the structural design of foundations:

- 1. The design bearing pressure above applies to dead loads plus one-half of design live load conditions. The design bearing pressure may be increased by 1/3 when considering total loads that include wind or seismic conditions.
- 2. Finished grade is the lowest adjacent grade for perimeter footings and floor level for interior footings.

3. Based on assumed structural loads. Footings should be proportioned to apply relative constant dead load pressure in order to reduce differential movement between adjacent footings.

Foundation movements could occur if water from any source infiltrates the foundation soils; therefore, proper drainage should be provided in the final design and during construction. Failure to maintain proper surface drainage could result in excessive soil-related foundation movement.

**Lateral Earth Pressures:** Earth pressures will be influenced by structural design of the walls, conditions of wall restraint, methods of construction, wetting of backfill materials, and/or compaction and the strength of the materials being restrained. Loads that should be considered by the structural engineer on walls are shown below.



Active earth pressure is commonly used for design of freestanding cantilever retaining walls and assumes wall movement. The "at-rest" condition assumes no wall rotation. Walls with unbalanced backfill levels on opposite sides (i.e. basement walls) should be designed for earth pressures at least equal to those indicated in the following table. The recommended design lateral earth pressures do not include a factor of safety and do not provide for possible hydrostatic pressure on the walls.

| EARTH PRESSURE | COEFFICIENTS |
|----------------|--------------|
|----------------|--------------|

| Earth<br>pressure<br>conditions | Coefficient for backfill<br>type | Equivalent fluid<br>pressure, pcf | Surcharge<br>pressure P <sub>1,</sub><br>psf | Earth pressure<br>P <sub>2,</sub> psf |
|---------------------------------|----------------------------------|-----------------------------------|----------------------------------------------|---------------------------------------|
| Active (Ka)                     | On-site clayey soils - 0.38      | 45                                | (0.38)S                                      | (45)H                                 |
| At-Rest (Ko)                    | On-site clayey soils - 0.54      | 65                                | (0.54)S                                      | (65)H                                 |
| Passive (Kp)                    | On-site clayey soils – 2.3       | 275                               |                                              |                                       |

Conditions applicable to the above conditions include:

• for active earth pressure, wall must rotate about base, with top lateral movements 0.01 Z to 0.02 Z, where Z is wall height

### Geotechnical Engineering Report Les Schwab Tire Center - Falcon, Colorado PCH Project No.: 12.298.16

- for passive earth pressure, wall must move horizontally to mobilize resistance
- uniform surcharge, where S is surcharge pressure
- in-situ soil backfill weight a maximum of 120 pcf
- horizontal backfill, compacted to at least 95 percent of standard Proctor maximum dry density
- loading from heavy compaction equipment not included
- no groundwater acting on wall
- no safety factor included
- ignore passive pressure in frost zone

Backfill placed against structures may consist of the on-site soils processed to a soil-like consistency with maximum particle sizes on the order of 4 to 6 inches. The design equivalent fluid pressures may be reduced if the imported granular soils are used. To calculate the resistance to sliding, a value of 0.35 may be used as the ultimate coefficient of friction between the footing and the underlying soil. If utilizing passive pressure for resistance, a coefficient of 0.30 should be used.

We recommend a perimeter drain be installed at the foundation level to control the water level behind any basement/below-grade walls. *If this is not possible or if the below-grade space is being designed to be watertight, then combined hydrostatic and lateral earth pressures should be calculated for lean clay backfill using an equivalent fluid weighing 90 and 100 pcf for active and at-rest conditions, respectively*. These pressures do not include the influence of surcharge, equipment or floor loading, which should be added. Heavy equipment should not operate within a distance closer than the exposed height of retaining walls to prevent lateral pressures more than those provided.

**Below-grade Construction:** As discussed, groundwater (perched water) was encountered at the site at depths ranging from about 4 to 7-½ feet below existing site grades. As currently planned the northeast portion of the building will include below-grade maintenance pits (maximum of about 7 feet below planned FFE). We recommend construction be limited to excavation depths as high as practical in these areas in order to reduce the potential for water intrusion, as well as to minimize encountering potentially soft/loose soil conditions during construction.

Based on the limited size of the maintenance pits, we believe it is prudent to construct these belowgrade areas to be water-tight. This would include waterproofing the foundation and walls of the pits and designing the pits for buoyancy forces and hydrostatic lateral loading conditions below groundwater depth. Waterproofing consultants should be contacted for recommendations regarding the design and construction of water-tight below-grade foundations.

As an alternative, installation of a perimeter drainage system is recommended around the perimeter of these below-grade spaces. The drainage system should include a trench in which a perforated pipe is placed, sloped at a minimum 1/8 inch per foot to a suitable outlet, such as the storm sewer or a sump and pump system.

In our opinion, the drainage system should consist of a minimum 4-inch diameter perforated or slotted pipe, embedded in free-draining gravel, placed in a trench at least 12 inches in width. The edge of the trench should be sloped at a 1:1 slope beginning at the bottom outside edge of the footing. The trench should not be cut vertically at the edge of the footing. Gravel should extend a minimum of 2 to 3 inches beneath the bottom of the pipe and at least 6 inches above the pipe. The gravel should be encapsulated in a filter fabric prior to placement of foundation backfill. A general detail of this system is included herein. If the pits are designed to be water-tight, the drain system would not be required.

**Seismic Considerations:** Based on the soil conditions encountered in the test holes drilled on the site, we estimate that a Site Class D is appropriate for the site according to the 2009 International Building Code (Table 1613.5.2). This parameter was estimated based on extrapolation of data beyond the deepest depth explored, using methods allowed by the code. Actual shear wave velocity testing/analysis and/or exploration to 100 feet was not performed.

**Floor Slab Design and Construction:** The existing, non- to low expansive soils at the site are generally considered suitable for support of the floor slab. Some movement of a slab-on-grade floor system is still possible should the subgrade soils become elevated in moisture content. We estimate that total slab movement will be about 1-inch. If movement cannot be tolerated, we should be contacted to provide alternatives for additional subgrade preparation or the use of a structural floor system.

To reduce potential slab movements, the subgrade soils should be prepared as outlined in the "Earthwork" section of this report and adequate surface drainage needs to be maintained.

For structural design of concrete slabs-on-grade, a modulus of subgrade reaction of 100 pounds per cubic inch (pci) may be used for floors supported on the on-site soils. Additional floor slab design and construction recommendations are as follows:

- Positive separations and/or isolation joints should be provided between slabs and all foundations, columns or utility lines to allow independent movement.
- Control joints should be provided in slabs to control the location and extent of cracking.
- A minimum 2-inch void space should be constructed above or below non-bearing partition walls placed on the floor slab. If this void space is constructed as a slip joint at the top of the wall, some minor drywall cracking could occur due to slab movement, prior to mobilization of this joint. Special framing details should be provided at doorjambs and frames within partition walls to avoid potential distortion. Partition walls should be isolated from suspended ceilings.
- Interior trench backfill placed beneath slabs should be compacted in accordance with recommended specifications outlined below.

- The use of a vapor retarder should be considered beneath concrete slabs on grade that will be covered with wood, tile, carpet or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer and slab contractor should refer to ACI 302 for procedures and cautions regarding the use and placement of a vapor retarder.
- Floor slabs should not be constructed on frozen subgrade.
- Other design and construction considerations, as outlined in Section 302.1R of the ACI Design Manual, are recommended.

**Private Pavement Thickness Design and Construction:** Design of private pavements for the project is based on the procedures outlined in the 1993 *Guideline for Design of Pavement Structures* by the American Association of State Highway and Transportation Officials (AASHTO). The AASHTO design method takes into account several variables, including subgrade soil and traffic conditions. We assume that there will be no new pavements in the public right-of-way. If public roadway construction is to be included in the project, additional geotechnical investigation and a formal pavement design may be required for those improvements.

- **Subgrade Soil:** The on-site sandy and clayey soils are considered to generally provide good to poor pavement support, respectively. We estimated a design R-value of 5 for flexible pavement (asphalt) thickness design based on the properties of the poorer clayey soils. Likewise, modulus of subgrade reaction (K-value) of 100 pounds per cubic inch (pci) was used for design of rigid concrete pavements.
- Assumed Traffic: We assume that pavements associated with the project will include private drive lanes, driveways, fire lanes, and surface parking for automobiles and light trucks. We assume that private pavements will be surfaced with either asphalt concrete or Portland cement concrete. Any improvements to adjacent public roadways will need to be designed and constructed according to the governing standards.

Based on our experience with similar projects, the following traffic criteria were used for determining pavement thicknesses using a design life of 20 years:

- Driveways and parking stalls maximum daily traffic of 1,000 cars per day (equivalent single-axle loads, ESAL's of 22,000)
- Main site access drives and fire lanes up to 5 trips/day by single-axle delivery trucks per day, 1 combined-axle truck per day and 1 trash truck per day, plus maximum daily traffic of 1,000 cars per day (73,000 ESAL's)

The owner should review these assumptions, and we should be contacted to confirm or modify these resulting pavement sections, if needed.

• **Pavement Sections:** For flexible pavement design a drainage coefficient of 1.0, a terminal serviceability index of 2.0, and an inherent reliability of 85 percent were used. Using, the appropriate ESAL values, environmental criteria and other factors, the design structural numbers (SN) of the pavement sections were determined on the basis of the 1993 AASHTO design equation.

In addition to the flexible pavement design analyses, a rigid pavement design analysis was completed based upon AASHTO design procedures. Along with soil and traffic conditions, rigid pavement design is based on the Modulus of Rupture of the concrete, and other factors previously outlined. A modulus of rupture of 600 psi (working stress 450 psi) was used for pavement concrete. The rigid pavement thickness for each traffic category was determined on the basis of the AASHTO design equation.

We have considered full depth-asphalt paving, a composite section with asphalt concrete over aggregate base course, and full depth rigid concrete sections. Alternatives for flexible and rigid pavements are summarized for each traffic area as follows:

|                       |             |                          | Private Pavement Thickness (Inches) |                                   |  |
|-----------------------|-------------|--------------------------|-------------------------------------|-----------------------------------|--|
| Traffic Area          | Alternative | Asphalt Concrete<br>(AC) | Aggregate Base<br>Course (ABC)      | Portland Cement<br>Concrete (PCC) |  |
| Automobile Parking    | A           | 5-1⁄2                    |                                     |                                   |  |
| and Standard-Duty     | В           | 4                        | 6                                   |                                   |  |
| Parking Only          | С           |                          |                                     | 5                                 |  |
|                       | A           | 6-1⁄2                    |                                     |                                   |  |
| Main Access Drives,   | B1          | 4                        | 9                                   |                                   |  |
| and Heavy-Duty areas  | B2          | 4-1/2                    | 7                                   |                                   |  |
| Delivery truck access | B3          | 5                        | 6                                   |                                   |  |
|                       | С           |                          |                                     | 6                                 |  |

A minimum 6-inch thickness of Portland cement concrete pavement is recommended at the location of dumpsters where trash trucks park and load, and should be considered in other areas with heavy truck traffic. Each alternative should be investigated with respect to current material availability and economic conditions.

• **Subgrade Preparation:** We recommend the pavement areas be rough graded and then thoroughly proof rolled with a loaded tandem axle dump truck, water truck, or other heavy equipment approved by the observing engineer prior to final grading and paving. Particular attention should be

paid to high traffic areas that were rutted and disturbed earlier and to areas where backfilled trenches are located. Areas where unsuitable conditions are located should be repaired by removing and replacing the materials with properly compacted engineered fills.

At a minimum, in order to provide a more uniform subgrade for site pavements, we recommend that all pavements be constructed on a minimum of 12 inches of properly moisture conditioned and recompacted on-site soils. Confirmation of the moisture content and compaction level of the subgrade soils should be confirmed just prior to paving.

 Pavement Materials: Aggregate base course (if used on the site) should consist of a blend of sand and gravel which meets strict specifications for quality and gradation. Use of materials meeting Colorado Department of Transportation (CDOT) Class 5 or 6 specifications is recommended for base course. Aggregate base course should be placed in lifts not exceeding 6 inches and compacted to a minimum of 95 percent of the standard Proctor density (ASTM D698).

Asphalt concrete should be composed of a mixture of aggregate, filler and additives (if required) and approved bituminous material. The asphalt concrete should conform to approved mix designs stating the Hveem properties, optimum asphalt content, and job mix formula and recommended mixing and placing temperatures. Aggregate used in asphalt concrete should meet particular gradations. Material meeting CDOT Grading S or SX specifications or equivalent is recommended for asphalt concrete. Mix designs should be submitted prior to construction to verify their adequacy. Asphalt material should be placed in maximum 3-inch lifts and compacted within a range of 92 to 96 percent of the theoretical maximum (Rice) density (ASTM D2041) or 95 percent Hveem density (ASTM D1560, D1561).

Where rigid pavements are used, the concrete should meet CDOT Class P requirements and be obtained from an approved mix design with the following minimum properties:

| • | Modulus of Rupture @ 28 days | 600 psi minimum               |
|---|------------------------------|-------------------------------|
| • | Strength Requirements        | ASTM C94                      |
| • | Cement Type                  | Type II Portland              |
| • | Entrained Air Content        | 6 to 8%                       |
| • | Concrete Aggregate           | ASTM C33 and CDOT Section 703 |

Concrete should be deposited by truck mixers or agitators and placed a maximum of 90 minutes from the time the water is added to the mix. Other specifications outlined by CDOT should be followed.

Longitudinal and transverse joints should be provided as needed in concrete pavements for expansion/contraction and isolation. The location and extent of joints should be based upon the final pavement geometry. Sawed joints should be cut within 24 hours of concrete placement and

should be a minimum of 25 percent of slab thickness plus 1/4 inch. All joints should be sealed to prevent entry of foreign material and doweled where necessary for load transfer.

- **Compliance:** Recommendations for pavement design and construction presented depend upon compliance with recommended material specifications. To assess compliance, observation and testing should be performed under the observation of the geotechnical engineer.
- **Pavement Performance:** Future performance of pavements constructed on the subgrade at this site will be dependent upon several factors, including:
  - Maintaining stable moisture content of the subgrade soils.
  - Providing for a planned program of preventative maintenance.

The performance of all pavements can be enhanced by minimizing excess moisture, which can reach the subgrade soils. The following recommendations should be considered at minimum:

- Site grading at a minimum 2 percent grade onto or away from pavements.
- Water should not be allowed to pond behind curbs.
- Compaction of any utility trenches for landscaped areas to the same criteria as the pavement subgrade.
- Sealing all landscaped areas in or adjacent to pavements to minimize or prevent moisture migration to subgrade soils.
- Placing compacted backfill against the exterior side of curb and gutter.
- Placing curb, gutter and/or sidewalk directly on subgrade soils without the use of base course materials.

Preventative maintenance should be planned and provided for an ongoing pavement management program in order to enhance future pavement performance. Preventative maintenance activities are intended to slow the rate of pavement deterioration and to preserve the pavement investment.

Preventative maintenance consists of both localized maintenance (e.g. crack sealing and patching) and global maintenance (e.g. surface sealing). Preventative maintenance is usually the first priority when implementing a planned pavement maintenance program and provides the highest return on investment for pavements.

# Earthwork:

**General Considerations:** The following presents recommendations for site preparation, excavation, subgrade preparation and placement of engineered fills on the project.

All earthwork on the project should be observed and evaluated by the geotechnical engineer contracted for special inspection services. The evaluation of earthwork should include observation and testing of engineered fills, subgrade preparation, foundation bearing soils and other geotechnical conditions exposed during the construction of the project.

**Site Preparation:** Strip and remove existing vegetation and other deleterious materials from proposed building and pavement areas. All exposed surfaces should be free of mounds and depressions that could prevent uniform compaction. Stripped materials consisting of vegetation and organic materials should be wasted from the site or used to revegetate landscaped areas or exposed slopes after completion of grading operations.

The site should be initially graded to create a relatively level surface to receive fill and to provide for a relatively uniform thickness of fill beneath proposed building structures. All exposed areas that will receive fill, once properly cleared, should be scarified to a minimum depth of 8 to 12 inches, conditioned to near optimum moisture content and compacted.

Perched groundwater and/or soft subgrade soils may be encountered in foundation excavations. Stabilization of these materials will be required prior to foundation construction, if encountered. Stabilization would likely include placing or "crowding" larger-sized crushed gravel or recycled concrete into the high moisture content, weak clay soils in order to provide for a stable base. We estimate that the amount of aggregate required to build a stable base may be on the order of 18 to 24 inches in thickness. The thickness of this gravel layer may be reduced using a layer bi-axial (or trixial) geogrid reinforcement below the gravel. The removed clays should be replaced with engineered fill consisting of imported granular soils. Engineered fills should be placed as described below. *The geotechnical engineer contracted for special inspection services should be contacted during excavation to provide further guidance based on actual site conditions.* 

It is anticipated that excavations for the proposed construction can be accomplished with conventional, heavy-duty earthmoving equipment. The stability of the site subgrade may also be affected by precipitation, repetitive construction traffic, or other factors. If unstable conditions are encountered or develop during construction, workability may be improved by scarifying and aeration. Overexcavation of wet zones and replacement with granular materials may be necessary.

**Subgrade Preparation:** The engineer should evaluate foundation subgrade soils in order to confirm or modify our recommendations for the bearing soils. All subgrade soils below new fill, slab-on-grade floors, exterior PCC flatwork, and pavements should be scarified to a minimum depth of 12 inches, moisture conditioned and compacted as discussed below just prior to construction of these elements.

**Fill Materials:** Clean on-site soils or approved imported materials may be used as fill material. Imported soils (if required) should conform to the following:

|                  | Percent finer by weight |
|------------------|-------------------------|
| Gradation        | (ASTM C136)             |
| 6"               |                         |
| 3"               |                         |
| No. 4 Sieve      |                         |
| No. 200 Sieve    |                         |
| Liquid Limit     |                         |
| Plasticity Index |                         |

\*Measured on a sample compacted to approximately 95 percent of the ASTM D698 maximum dry density at about optimum water content. The sample is confined under a 500 psf surcharge and submerged.

**Compaction Requirements:** Engineered fill for site development and grading should be placed and compacted in horizontal lifts, using equipment and procedures that will produce recommended moisture contents and densities throughout the lift. Fill soils should be placed and compacted according to the following criteria:

| Item                    | Description                                                        |
|-------------------------|--------------------------------------------------------------------|
| Fill Lift Thickness     | 8 to 12 inches or less in loose thickness                          |
| Compaction Requirements | Clayey soils: 95% of standard Proctor dry density (ASTM D698)      |
|                         | Non-plastic sands: 95% of modified Proctor dry density (ASTM 1557) |
|                         | Clayey soils: Optimum to +4% above optimum moisture content        |
| Moisture Content        | Optimum to +2% above optimum in pavement areas                     |
|                         | Non-plastic sands: -2% below to +2% above optimum                  |

At a minimum, fill soils placed for any sub-excavation fill, site grading, utility trench backfill and foundation backfill should be tested to confirm that earthwork is being performed according to our recommendations and project specifications. Subsequent lifts of fill should not be placed on previous lifts if the moisture content or dry density is determined to be less than specified.

**Excavation and Trench Construction:** Caving sand soils may be encountered in excavations during construction. The individual contractor(s) should be made responsible for designing and constructing stable, temporary excavations as needed to maintain stability of both the excavation sides and bottom. All excavations should be sloped or shored in the interest of safety following local and federal regulations, including current OSHA excavation and trench safety standards.

The soils to be penetrated by the proposed excavations may vary significantly across the site. The contractor should verify that similar conditions exist throughout the proposed area of excavation. If different subsurface conditions are encountered at the time of construction, the actual conditions should be evaluated to determine any excavation modifications necessary to maintain safe conditions.

As a safety measure, it is recommended that all vehicles and soil piles be kept to a minimum lateral distance from the crest of the slope equal to no less than the slope height. The exposed slope face should be protected against the elements.

As discussed, shallow groundwater was encountered at depths ranging from 4 to 7-½ feet below existing site grades. Where excavations penetrate the groundwater, temporary dewatering will be required during excavation, foundation work and backfilling operations for proper construction. Pumping from sumps may be utilized to control water within the excavations.

# Additional Design and Construction Considerations:

**Exterior Slab Design and Construction:** Flatwork will be subject to movement, particularly when bearing on backfill soils adjacent to the foundation and underground utility lines. The amount of movement will be related to the compactive effort used when the fill soils are placed and future wetting of the subgrade soils. The potential for damage would be greatest where exterior slabs are constructed adjacent to the building or other structural elements.

To reduce the potential for damage, we recommend:

- exterior slabs in critical areas be supported on a zone of recompacted soils.
- Supporting of flatwork at building entrances and other critical areas on haunches attached by the building foundations.
- placement of effective control joints on relatively close centers and isolation joints between slabs and other structural elements.
- provision for adequate drainage in areas adjoining the slabs.
- use of designs which allow vertical movement between the exterior slabs and adjoining structural elements.

**Underground Utility Systems:** All underground piping within or near the proposed structure should be designed with flexible couplings, so minor deviations in alignment do not result in breakage or distress. Utility knockouts in foundation walls should be oversized to accommodate differential movements.

It is strongly recommended that a representative of the geotechnical engineer provide full-time observation and compaction testing of trench backfill within building and pavement areas.

### Geotechnical Engineering Report Les Schwab Tire Center - Falcon, Colorado PCH Project No.: 12.298.16

**Concrete Corrosion Protection:** Water-soluble sulfate concentrations of select samples ranged up to 400 parts per million (ppm). ACI rates the measured concentrations as being a low to moderate risk of concrete sulfate attack. Based on these results, Type II Portland cement (or equivalent) should be used for concrete on and below grade. Project concrete should be designed in accordance with the provisions of the *ACI Design Manual*, Section 318, Chapter 4.

**Surface Drainage:** All grades must be adjusted to provide positive drainage away from the structures during construction and maintained throughout the life of the proposed project. Infiltration of water into utility or foundation excavations must be prevented during construction. Landscaped irrigation adjacent to the foundation system should be minimized or eliminated.

Water permitted to pond near or adjacent to the perimeter of the structure (either during or postconstruction) can result in significantly higher soil movements than those discussed in this report. As a result, any estimations of potential movement described in this report cannot be relied upon if positive drainage is not obtained and maintained, and water is allowed to infiltrate the fill and/or subgrade.

**Exposed ground (unpaved, landscaped areas) should be sloped at a minimum of 5 to 10 percent grade for at least 5 feet beyond the perimeter of the building/structure, where possible.** Swales sidewalk chases, area drains may be required to facilitate drainage. Backfill against footings, exterior walls and in utility and sprinkler line trenches should be well compacted and free of all construction debris to reduce the possibility of moisture infiltration. After building construction and prior to project completion, we recommend that verification of final grading be performed to document that positive drainage, as described above, has been achieved.

**Flatwork will be subject to post construction movement due to soil heave/settlement and frost action.** Maximum grades practical should be used for paving and flatwork to prevent areas where water can pond. In addition, allowances in final grades should take into consideration post-construction movement of flatwork, particularly if such movement would be critical. Where paving or flatwork abuts the structure, care should be taken that joints are properly sealed and maintained to prevent the infiltration of surface water.

# Planters located adjacent to the structure should preferably be self-contained. Landscaping in close proximity to the foundation should be limited to well-maintained and timed drip irrigation only. Sprinkler mains and spray heads should be located a minimum of 5 feet away from the building line.

Roof drains should discharge on pavements or be extended away from the structure a minimum of 5 feet through the use of splash blocks or downspout extensions. A preferred alternative is to have the roof drains discharge to storm sewers by solid pipe or daylighted to a detention pond or other appropriate outfall.

### **GENERAL COMMENTS**

PCH should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. PCH should also be retained to provide testing and observation during the excavation, grading, foundation and construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include, either specifically or by implication, any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes are planned in the nature, design, or location of the project as outlined in this report, the conclusions and recommendations contained in this report shall not be considered valid unless PCH reviews the changes, and either verifies or modifies the conclusions of this report in writing.

# APPENDIX A

BORING LOCATION DIAGRAM BORING LOGS




1 PROPOSED BORING LOCATIONS

BORING LOCATION DIAGRAM LES SCHWAB TIRE CENTER FALCON, COLORADO PCH PROJECT NO. 12.298.16 Pickering, Cole, & Hivner, LLC 1070 W. 124<sup>th</sup> Ave., Suite 300 Westminster, CO 80234 (303) 996-2999 PCH

|                               |                                       | Pickering, Cole, & Hivner<br>1070 W. 124 Avenue, Suite 300<br>Westminster, CO. 80234<br>Telephone: 303.996.2999 | BORING NUMBE<br>PAGE 1                  |                 |             |             |            | <b>ER 1</b><br>1 OF 1   |                         |                       |                                          |
|-------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|-------------|-------------|------------|-------------------------|-------------------------|-----------------------|------------------------------------------|
|                               | CLIE                                  | NT _SFP-E, LLC c/o Galloway                                                                                     | PROJECT                                 | NAME            | Les Sch     | wab Tir     | e Cente    | er - Falcon, C          | 0                       |                       |                                          |
|                               | PRO.                                  | JECT NUMBER _ 12.298.16                                                                                         | PROJECT                                 | LOCAT           | ION Me      | eridian F   | Rd. & Ro   | lling Thunde            | er Way                  |                       |                                          |
|                               | DATE                                  | E STARTED _8/17/16 COMPLETED _8/17/16                                                                           | GROUND                                  | SURFA           | CE ELEV     | Not Pr      | ovided     | PROPOSE                 | DELEV                   | Not Pro               | ovided                                   |
|                               | DRIL                                  | LING CONTRACTOR _Elite Drilling                                                                                 | SURFACE                                 | E CONDI         | TIONS _     | Low to I    | noderat    | e growth of             | grass ar                | nd weed               | s                                        |
|                               | DRIL                                  | LING METHOD CME-55/Solid Stem Auger                                                                             | GROUND                                  | WATER           |             | 6:          |            |                         |                         |                       |                                          |
|                               | HAM                                   | MER TYPE Automatic                                                                                              | $ar{but}$ DUF                           | ring dr         |             | 15.00       | ft         |                         |                         |                       |                                          |
|                               | LOG                                   | GED BY _SM CHECKED BY _AG                                                                                       | <b>AFTER DRILLING</b> _7.50 ft - 9/6/16 |                 |             |             |            |                         |                         |                       |                                          |
|                               | GRAPHIC<br>LOG                        | MATERIAL DESCRIPTION                                                                                            |                                         | o DEPTH<br>(ft) | USCS SYMBOL | SAMPLE TYPE | RECOVERY % | PENETRATION<br>blows/in | MOISTURE<br>CONTENT (%) | DRY UNIT WT.<br>(pcf) | SWELL-CONSOL<br>/SURCHARGE<br>LOAD, %psf |
|                               | * * * * * * * * * * * * * * * * * * * | FINE to COARSE SAND with SILT, varies trace clay, brown, light<br>brown, white, moist, medium dense             |                                         | <br><br><br>5   | SW-SM       | СВ          | 100        | 30 / 12                 | 5.8                     | 121                   |                                          |
| 016/12.298.10 LEX             |                                       | 7<br><u>CLAYEY SAND</u> , grey to bluish-grey, moist to wet, medium dense                                       | Ţ                                       | <br><br>        | SC          | CB          | 100        | 38 / 12                 | 11 1                    | 123                   | +0 3/500                                 |
|                               |                                       |                                                                                                                 | -                                       |                 | SC          | CB          | 100        | 46 / 12                 | 12.1                    | 120                   | 10.0000                                  |
|                               |                                       | 17<br><u>CLAYSTONE BEDROCK</u> , varies sandy, brown, dark brown, grey,<br>calcareous, moist to wet, very hard  | ¥                                       | <br>            |             |             |            |                         |                         |                       |                                          |
|                               |                                       |                                                                                                                 |                                         |                 | _           | CB          | 100        | 50 / 7                  | 11 7                    | 125                   |                                          |
| JSERS/PUBLIC/DUC              |                                       |                                                                                                                 |                                         |                 | -           |             |            |                         |                         |                       |                                          |
| arz <i>1</i> /16 09:01 - C:/( |                                       |                                                                                                                 |                                         | <br>            | -           | СВ          | 100        | 50 / 6                  | 10.1                    | 127                   |                                          |
|                               |                                       |                                                                                                                 |                                         | <u> </u>        |             |             |            |                         |                         |                       |                                          |
| J US LAB.C                    |                                       |                                                                                                                 |                                         |                 | -           | СВ          | 100        | 50 / 4                  | 11.5                    | 126                   |                                          |
|                               |                                       |                                                                                                                 |                                         | F -             |             |             |            |                         |                         |                       |                                          |
| פו                            |                                       | 35                                                                                                              |                                         |                 | _           | СВ          | 100        | 50 / 6                  | 15.6                    | 117                   |                                          |
|                               |                                       | Approximate bottom of borehole at 35.0 feet.                                                                    |                                         |                 |             |             |            |                         |                         |                       |                                          |

|                                            |      | Pickering, Cole, & Hivner<br>1070 W. 124 Avenue, Suite 300<br>Westminster, CO. 80234<br>Telephone: 303.996.2999                     | BORING NUMBER 2<br>PAGE 1 OF 1                                |                 |             |             |            |                         |                         |                       |                                          |
|--------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------|-------------|-------------|------------|-------------------------|-------------------------|-----------------------|------------------------------------------|
| c                                          | LIEI | NT _SFP-E, LLC c/o Galloway                                                                                                         | PROJEC                                                        |                 | Les Scł     | nwab Tir    | e Cente    | er - Falcon, (          | 0                       |                       |                                          |
| Р                                          | ROJ  | ECT NUMBER 12.298.16                                                                                                                | PROJEC                                                        | T LOCAT         | ION _Me     | eridian F   | Rd. & Ro   | olling Thunde           | er Way                  |                       |                                          |
| D                                          | ATE  | STARTED _8/17/16   COMPLETED _8/17/16                                                                                               | GROUND SURFACE ELEV. Not Provided PROPOSED ELEV. Not Provided |                 |             |             |            |                         |                         |                       |                                          |
| D                                          | RIL  | LING CONTRACTOR Elite Drilling                                                                                                      | SURFACE CONDITIONS Low to moderate growth of grass and weeds  |                 |             |             |            |                         |                         |                       |                                          |
| D                                          | RIL  | LING METHOD CME-55/Solid Stem Auger                                                                                                 |                                                               | WATER           | LEVELS      | S:          |            |                         |                         |                       |                                          |
| H                                          | AMI  | MER TYPE Automatic                                                                                                                  | ⊥⊻ DU                                                         | RING DR         | ILLING      | 10.001      | ft         |                         |                         |                       |                                          |
|                                            | OGO  | GED BY <u>SM</u> CHECKED BY <u>AG</u>                                                                                               | ▲ FTER DRILLING _7.50 ft - 9/6/16                             |                 |             |             |            |                         |                         |                       |                                          |
| GRAPHIC                                    | FOG  | MATERIAL DESCRIPTION                                                                                                                |                                                               | o DEPTH<br>(ft) | USCS SYMBOL | SAMPLE TYPE | RECOVERY % | PENETRATION<br>blows/in | MOISTURE<br>CONTENT (%) | DRY UNIT WT.<br>(pcf) | SWELL-CONSOL<br>/SURCHARGE<br>LOAD, %psf |
| ON GP                                      |      | <u>CLAYEY SAND</u> , varies to Silty Sand, dark brown, light brown,<br>white, grey, calcareous, moist to wet, medium dense to dense |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| - FALC                                     |      |                                                                                                                                     |                                                               | <u> </u> _      | SC          | СВ          | 100        | 23 / 12                 | 6.9                     | 126                   | -0.2/200                                 |
| CHWAB                                      |      |                                                                                                                                     |                                                               | 5               | SM          | СВ          | 100        | 25 / 12                 | 4.1                     | 117                   |                                          |
| LES SO                                     |      |                                                                                                                                     |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| 2.298.16                                   |      |                                                                                                                                     | Ā                                                             |                 |             |             |            |                         |                         |                       |                                          |
| 2016/1                                     |      |                                                                                                                                     | $\nabla$                                                      | <br>10          | SC          | СВ          | 100        | 50 / 9                  | 8.3                     | 134                   |                                          |
| TS GEO                                     |      |                                                                                                                                     |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| ROJEC                                      |      | 13<br>CLAYSTONE BEDROCK varies sandy grev to bluish-grev moist                                                                      |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| VGINT/F                                    |      | hard to very hard                                                                                                                   |                                                               | 15              | -           | СВ          | 100        | 50 / 9                  | 10.9                    | 119                   | +0.6/1000                                |
| ENTLE                                      |      |                                                                                                                                     |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| IENTS/E                                    |      |                                                                                                                                     |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| DOCUN                                      |      |                                                                                                                                     |                                                               | 20              | -           | СВ          | 100        | 50 / 5                  | 12.2                    | 126                   |                                          |
| RS/PUBLIC                                  |      |                                                                                                                                     |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| C:\USE                                     |      | 25                                                                                                                                  |                                                               | 25              | -           | СВ          | 100        | 50 / 3                  | 10.7                    | 128                   |                                          |
| 9:01 -                                     |      | Approximate bottom of borehole at 25.0 feet.                                                                                        |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| BH COLUMNS - GINT STD US LAB.GDT - 9/27/16 |      |                                                                                                                                     |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| GEOTECH                                    |      |                                                                                                                                     |                                                               |                 |             |             |            |                         |                         |                       |                                          |

|                | Pickering, Cole, & Hivner<br>1070 W. 124 Avenue, Suite 300<br>Westminster, CO. 80234<br>Telephone: 303.996.2999 | BORING NUMBER 3<br>PAGE 1 OF 1                                |                 |             |             |            |                         |                         |                       |                                          |
|----------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------|-------------|-------------|------------|-------------------------|-------------------------|-----------------------|------------------------------------------|
| CLIE           | INT _ SFP-E, LLC c/o Galloway                                                                                   | PROJECT                                                       | NAME            | Les Sch     | nwab Tir    | e Cente    | r - Falcon, C           | 0                       |                       |                                          |
| PRO            | JECT NUMBER 12.298.16                                                                                           | PROJECT                                                       | LOCAT           | ION Me      | eridian F   | Rd. & Ro   | lling Thunde            | er Way                  |                       |                                          |
| DAT            | E STARTED _8/17/16 COMPLETED _8/17/16                                                                           | GROUND SURFACE ELEV. Not Provided PROPOSED ELEV. Not Provided |                 |             |             |            |                         |                         |                       |                                          |
| DRIL           | LING CONTRACTOR _ Elite Drilling                                                                                | SURFACE CONDITIONS Low to moderate growth of grass and weeds  |                 |             |             |            |                         |                         |                       |                                          |
| DRIL           | LING METHOD CME-55/Solid Stem Auger                                                                             | _ GROUND WATER LEVELS:                                        |                 |             |             |            |                         |                         |                       |                                          |
| HAM            | MER TYPE Automatic                                                                                              |                                                               | ring dr         | ILLING      | 11.00       | ft         |                         |                         |                       |                                          |
| LOG            | GED BY <u>SM</u> CHECKED BY <u>AG</u>                                                                           | <b>AFTER DRILLING</b> <u>5.00 ft - 9/6/16</u>                 |                 |             |             |            |                         |                         |                       |                                          |
| GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                            |                                                               | o DEPTH<br>(ft) | USCS SYMBOL | SAMPLE TYPE | RECOVERY % | PENETRATION<br>blows/in | MOISTURE<br>CONTENT (%) | DRY UNIT WT.<br>(pcf) | SWELL-CONSOL<br>/SURCHARGE<br>LOAD, %psf |
|                | SILTY to CLAYEY SAND, brown, grey to bluish-grey, moist,<br>medium dense to dense                               |                                                               |                 | -           |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 | Ţ                                                             | 5               | SM          | СВ          | 100        | 25 / 12                 | 9.5                     | 118                   |                                          |
|                |                                                                                                                 | -                                                             |                 | -           |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 | -           |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 | -           |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 | SM          | СВ          | 100        | 50 / 12                 | 9.5                     | 127                   |                                          |
|                |                                                                                                                 | $\nabla$                                                      |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 | -                                                             |                 | -           |             |            |                         |                         |                       |                                          |
|                | 13<br>CLAYSTONE REDPOCK varies sandy grav to bluish grav moist                                                  |                                                               |                 | -           |             |            |                         |                         |                       |                                          |
|                | very hard                                                                                                       |                                                               |                 | -           | СВ          | 100        | 50 / 6                  | 9.4                     | 123                   | +0.4/1000                                |
| 2              |                                                                                                                 |                                                               |                 |             | 02          |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 | -           |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             | 400        | 50/0                    | 44.4                    | 405                   |                                          |
|                |                                                                                                                 |                                                               | 20              | -           | СВ          | 100        | 50/6                    | 11.1                    | 125                   |                                          |
|                |                                                                                                                 |                                                               |                 | -           |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| 5              | 25<br>Approximate bottom of borehole at 25.0 feet                                                               |                                                               | 25              | -           | CB          | 100        | 50 / 4                  | 10.5                    | 123                   |                                          |
|                | Approximate bottom of borehole at 20.0 feet.                                                                    |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| 0              |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
| 5              |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |
|                |                                                                                                                 |                                                               |                 |             |             |            |                         |                         |                       |                                          |

|                    |         | Pickering, Cole, & Hivner<br>1070 W. 124 Avenue, Suite 300<br>Westminster, CO. 80234<br>Telephone: 303.996.2999 |                                                                           |                 |             |                 |            | Borin                   | g Ni                    | JME<br>PAGE           | <b>ER 4</b><br>1 OF 1                    |
|--------------------|---------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|-------------|-----------------|------------|-------------------------|-------------------------|-----------------------|------------------------------------------|
|                    | CLIE    | NT _SFP-E, LLC c/o Galloway                                                                                     | PROJECT                                                                   | NAME            | Les Sch     | wab Tir         | e Cente    | er - Falcon, C          | 0                       |                       |                                          |
|                    | PROJ    | ECT NUMBER _ 12.298.16                                                                                          | PROJECT                                                                   | LOCAT           | ION _Me     | eridian F       | Rd. & Ro   | lling Thunde            | er Way                  |                       |                                          |
|                    | DATE    | STARTED   8/17/16   COMPLETED   8/17/16                                                                         | GROUND                                                                    | SURFAC          | E ELEV      | . <u>Not Pr</u> | ovided     | PROPOSEI                | DELEV                   | Not Pro               | ovided                                   |
|                    | DRILI   | LING CONTRACTOR _ Elite Drilling                                                                                | SURFACE                                                                   |                 | TIONS _     | Low to r        | noderat    | e growth of g           | grass ar                | d weed                | s                                        |
|                    | DRILI   | LING METHOD CME-55/Solid Stem Auger                                                                             | GROUND                                                                    | WATER           | LEVELS      | S:              |            |                         |                         |                       |                                          |
|                    | намі    | MER TYPE _ Automatic                                                                                            | ${ar ar \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | RING DR         |             | 11.00 f         | ft         |                         |                         |                       |                                          |
|                    | LOGO    | GED BY SM CHECKED BY AG                                                                                         | <b>⊈ AFTER DRILLING</b> _4.00 ft - 9/6/16                                 |                 |             |                 |            |                         |                         |                       |                                          |
|                    | GRAPHIC | MATERIAL DESCRIPTION                                                                                            |                                                                           | o DEPTH<br>(ft) | USCS SYMBOL | SAMPLE TYPE     | RECOVERY % | PENETRATION<br>blows/in | MOISTURE<br>CONTENT (%) | DRY UNIT WT.<br>(pcf) | SWELL-CONSOL<br>/SURCHARGE<br>LOAD, %psf |
|                    |         | <u>CLATET SAND</u> , dark brown, moist, medium dense                                                            | Ā                                                                         | <br><br><br>_ 5 | SC          | СВ              | 100        | 29 / 12                 | 9.8                     | 117                   |                                          |
|                    |         | 7 <u>LEAN CLAY with SAND</u> , grey to bluish-grey, moist, very stiff to hard                                   |                                                                           |                 |             |                 |            |                         |                         |                       |                                          |
|                    |         |                                                                                                                 | Ā                                                                         | 10              | CL          | СВ              | 100        | 32 / 12                 | 10.7                    | 122                   | +1.8/500                                 |
|                    |         |                                                                                                                 |                                                                           | <br><br>15      | CL          | СВ              | 100        | 50 / 8                  | 10.6                    | 117                   | +0.1/1000                                |
|                    |         | 18                                                                                                              |                                                                           |                 |             |                 |            |                         |                         |                       |                                          |
|                    |         | <u>CLAYSIONE BEDROCK</u> , varies sandy, brown, grey to bluisn-grey, olive, dry to moist, hard to very hard     |                                                                           |                 |             | 0.0             | 100        | 50 / 0                  |                         | 405                   |                                          |
|                    |         |                                                                                                                 |                                                                           | 20<br>          | -           | СВ              | 100        | 5076                    | 11.1                    | 125                   |                                          |
| ĹIJO               |         |                                                                                                                 |                                                                           |                 |             |                 |            |                         |                         |                       |                                          |
| 21/10 03:01 - 0./1 |         |                                                                                                                 |                                                                           | <br>            | -           | СВ              | 100        | 50 / 3                  | 10.8                    | 125                   |                                          |
| 10                 |         |                                                                                                                 |                                                                           | <br>_           |             |                 |            |                         |                         |                       |                                          |
| 5                  |         |                                                                                                                 |                                                                           | 30              | -           | СВ              | 100        | 50 / 9                  | 18.1                    | 112                   |                                          |
|                    |         |                                                                                                                 |                                                                           | <br>            |             |                 |            |                         |                         |                       |                                          |
| 5                  |         |                                                                                                                 |                                                                           |                 |             |                 |            |                         |                         |                       |                                          |
|                    |         | 35                                                                                                              |                                                                           | 35              | -           | СВ              | 100        | 50 / 3                  | 10.9                    | 121                   |                                          |
|                    |         | Approximate bottom of borehole at 35.0 feet.                                                                    |                                                                           |                 |             |                 |            |                         |                         |                       |                                          |

|                | Pickering, Cole, & Hivner<br>1070 W. 124 Avenue, Suite 300<br>Westminster, CO. 80234<br>Telephone: 303.996.2999 |                                                              |                 |             |                 | B          | ORING                   | NU                      | MBE<br>PAGE           | <b>R P1</b><br>1 OF 1                    |
|----------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------|-------------|-----------------|------------|-------------------------|-------------------------|-----------------------|------------------------------------------|
| CLIEI          | NT _SFP-E, LLC c/o Galloway                                                                                     | PROJECT                                                      | NAME            | Les Sch     | nwab Tir        | re Cente   | er - Falcon, C          | 0                       |                       |                                          |
| PROJ           | JECT NUMBER 12.298.16                                                                                           | PROJECT                                                      | LOCAT           | ON Me       | eridian F       | Rd. & Ro   | olling Thunde           | r Way                   |                       |                                          |
| DATE           | E STARTED <u>8/17/16</u> COMPLETED <u>8/17/16</u>                                                               | GROUND                                                       | SURFAC          | E ELEV      | . <u>Not Pr</u> | ovided     | PROPOSEI                | DELEV                   | Not Pro               | vided                                    |
| DRIL           | LING CONTRACTOR Elite Drilling                                                                                  | SURFACE CONDITIONS Low to moderate growth of grass and weeds |                 |             |                 |            |                         |                         |                       |                                          |
| DRIL           | LING METHOD CME-55/Solid Stem Auger                                                                             | GROUND                                                       | WATER           | LEVELS      | S:              |            |                         |                         |                       |                                          |
| намі           | MER TYPE _ Automatic                                                                                            | $ar{bar}$ duf                                                | RING DRI        |             | None            |            |                         |                         |                       |                                          |
| LOGO           | GED BY _SM CHECKED BY _AG                                                                                       | AFTER DRILLING                                               |                 |             |                 |            |                         |                         |                       |                                          |
| GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                            |                                                              | o DEPTH<br>(ft) | USCS SYMBOL | SAMPLE TYPE     | RECOVERY % | PENETRATION<br>blows/in | MOISTURE<br>CONTENT (%) | DRY UNIT WT.<br>(pcf) | SWELL-CONSOL<br>/SURCHARGE<br>LOAD, %psf |
|                | <u>SILTY SAND</u> , brown, light brown, white, tan, dry to moist, medium dense                                  |                                                              |                 | SM          | СВ              | 100        | 20 / 12                 | 4.6                     | 122                   |                                          |
|                | 5 SANDY LEAN CLAY, bluish-grey, dry to moist, very stiff                                                        |                                                              | <br><br>5       | CL          | СВ              | 100        | 34 / 12                 | 4.6                     | 116                   |                                          |
|                | Approximate bottom of borehole at 5.0 feet.                                                                     |                                                              |                 |             |                 |            |                         |                         |                       |                                          |

|                | Pickering, Cole, & Hivner<br>1070 W. 124 Avenue, Suite 300<br>Westminster, CO. 80234<br>Telephone: 303.996.2999 |                                                                                                                                                                                                                                            |         |        |                 | B      | ORING                 | NU                                       | MBE<br>PAGE | <b>R P2</b><br>1 OF 1 |  |
|----------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----------------|--------|-----------------------|------------------------------------------|-------------|-----------------------|--|
| CLIE           | NT _SFP-E, LLC c/o Galloway                                                                                     | PROJECT NAME Les Schwab Tire Center - Falcon, CO                                                                                                                                                                                           |         |        |                 |        |                       |                                          |             |                       |  |
| PRO.           | JECT NUMBER 12.298.16                                                                                           | PROJECT LOCATION Meridian Rd. & Rolling Thunder Way                                                                                                                                                                                        |         |        |                 |        |                       |                                          |             |                       |  |
| DAT            | E STARTED _8/17/16 COMPLETED _8/17/16                                                                           | _ GROUND                                                                                                                                                                                                                                   | SURFAC  | E ELEV | . <u>Not Pr</u> | ovided | PROPOSE               | DELEV                                    | Not Pro     | ovided                |  |
| DRIL           | LING CONTRACTOR _Elite Drilling                                                                                 | SURFACE CONDITIONS Low to moderate growth of grass and weeds                                                                                                                                                                               |         |        |                 |        |                       |                                          |             |                       |  |
| DRIL           | LING METHOD CME-55/Solid Stem Auger                                                                             | GROUND WATER LEVELS:                                                                                                                                                                                                                       |         |        |                 |        |                       |                                          |             |                       |  |
| НАМ            | MER TYPE Automatic                                                                                              | \ DUF                                                                                                                                                                                                                                      | RING DR |        | None            |        |                       |                                          |             |                       |  |
| LOG            | GED BY _SM CHECKED BY _AG                                                                                       | AFTER DRILLING None - 9/6/16                                                                                                                                                                                                               |         |        |                 |        |                       |                                          |             |                       |  |
| GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                            | DEPTH<br>(ft)<br>(ft)<br>(ft)<br>blocs symbol<br>sample type<br>sample type<br>sample type<br>blows/in<br>blows/in<br>blows/in<br>blows/in<br>blows/in<br>blows/in<br>blows/in<br>blows/in<br>blows/in<br>blows/in<br>blows/in<br>blows/in |         |        |                 |        | DRY UNIT WT.<br>(pcf) | SWELL-CONSOL<br>/SURCHARGE<br>LOAD, %psf |             |                       |  |
|                | SANDY LEAN CLAY, dark brown, grey to bluish-grey, moist                                                         |                                                                                                                                                                                                                                            |         |        |                 |        |                       |                                          |             |                       |  |
|                | SILTY SAND, white, tan, dry to moist, medium dense                                                              |                                                                                                                                                                                                                                            |         | SM     | СВ              | 100    | 23 / 12               | 8.7                                      | 115         | -0.1/200              |  |
|                | 5                                                                                                               |                                                                                                                                                                                                                                            | 5       | SM     | СВ              | 100    | 18 / 12               | 12.1                                     | 121         |                       |  |
|                | Approximate bottom of borehole at 5.0 feet.                                                                     |                                                                                                                                                                                                                                            |         |        |                 |        |                       |                                          |             |                       |  |

#### APPENDIX B

#### LABORATORY TEST RESULTS





### SWELL/CONSOLIDATION TEST

CLIENT SFP-E, LLC c/o Galloway

PROJECT NUMBER 12.298.16

PROJECT NAME Les Schwab Tire Center - Falcon, CO





### SWELL/CONSOLIDATION TEST

CLIENT SFP-E, LLC c/o Galloway

PROJECT NUMBER 12.298.16

PROJECT NAME Les Schwab Tire Center - Falcon, CO





### SWELL/CONSOLIDATION TEST

CLIENT SFP-E, LLC c/o Galloway

PROJECT NUMBER 12.298.16

PROJECT NAME Les Schwab Tire Center - Falcon, CO





### SWELL/CONSOLIDATION TEST

CLIENT SFP-E, LLC c/o Galloway

PROJECT NUMBER 12.298.16

PROJECT NAME Les Schwab Tire Center - Falcon, CO





CONSOL STRAIN - GINT STD US LAB.GDT - 9/26/16 15:41 - C:/USERS/PUBLIC/DOCUMENTS/BENTLEY/GINT/PROJECTS GEO 2016/12:298.16 LES SCHWAB - FALCON.GPJ

Pickering, Cole, & Hivner 1070 W. 124 Avenue, Suite 300 Westminster, CO. 80234 Telephone: 303.996.2999

### SWELL/CONSOLIDATION TEST

CLIENT SFP-E, LLC c/o Galloway PROJECT NUMBER 12.298.16 PROJECT NAME Les Schwab Tire Center - Falcon, CO

PROJECT LOCATION Meridian Rd. & Rolling Thunder Way

10 8 6 4 SWELL(+) 2 % 0 CONSOLIDATION(-) -2 -4 -6 -8 -10 0.1 10 100 1 APPLIED PRESSURE, ksf Ŷd BOREHOLE DEPTH Classification MC% 4 9.0 SANDY LEAN CLAY(CL) 122 11 Note: Water Added to Sample at 500 psf. Date: 9/6/16



### SWELL/CONSOLIDATION TEST

CLIENT SFP-E, LLC c/o Galloway

PROJECT NUMBER 12.298.16

PROJECT NAME Les Schwab Tire Center - Falcon, CO





### SWELL/CONSOLIDATION TEST

CLIENT SFP-E, LLC c/o Galloway

PROJECT NUMBER 12.298.16

PROJECT NAME Les Schwab Tire Center - Falcon, CO





### **GRAIN SIZE DISTRIBUTION**







CLIENT SFP-E, LLC c/o Galloway

**PROJECT NUMBER** 12.298.16

SUMMARY OF LABORATORY RESULTS

PAGE 1 OF 1

PROJECT NAME Les Schwab Tire Center - Falcon, CO

| LCON.C      | Borehole | Depth  | Soil Description              | Water | Dry   | Swell (+) or<br>Consolidation (-)/ | Water Soluble | Passing Atte      |                 | tterberg Lim     | g Limits            |  |
|-------------|----------|--------|-------------------------------|-------|-------|------------------------------------|---------------|-------------------|-----------------|------------------|---------------------|--|
| vb - FA     | Derendie | Deptil |                               | (%)   | (pcf) | Surcharge (%/psf)                  | (ppm)         | #200 Sieve<br>(%) | Liquid<br>Limit | Plastic<br>Limit | Plasticity<br>Index |  |
| AWH         | 1        | 4      | FINE to COARSE SAND with SILT | 5.8   | 121.4 |                                    |               | 12                | NP              | NP               | NP                  |  |
| S SC        | 1        | 9      | CLAYEY SAND                   | 11.1  | 122.9 | +0.3/500                           |               |                   |                 |                  |                     |  |
| 16 LE       | 1        | 14     | CLAYEY SAND                   | 12.1  | 124.2 |                                    |               |                   |                 |                  |                     |  |
| .298.       | 1        | 19     | CLAYSTONE BEDROCK             | 11.7  | 125.0 |                                    |               |                   |                 |                  |                     |  |
| 16/12       | 1        | 24     | CLAYSTONE BEDROCK             | 10.1  | 127.5 |                                    |               |                   |                 |                  |                     |  |
| 0 20        | 1        | 29     | CLAYSTONE BEDROCK             | 11.5  | 125.7 |                                    |               |                   |                 |                  |                     |  |
| S GE        | 1        | 34     | CLAYSTONE BEDROCK             | 15.6  | 117.2 |                                    |               |                   |                 |                  |                     |  |
| JECT        | 2        | 2      | CLAYEY SAND                   | 6.9   | 126.2 | -0.2/200                           | 0             |                   |                 |                  |                     |  |
| <b>PRO</b>  | 2        | 4      | CLAYEY SAND                   | 4.1   | 117.5 |                                    |               |                   |                 |                  |                     |  |
| GINT        | 2        | 9      | CLAYEY SAND                   | 8.3   | 134.1 |                                    |               |                   |                 |                  |                     |  |
| LEY         | 2        | 14     | CLAYSTONE BEDROCK             | 10.9  | 118.6 | +0.6/1000                          |               |                   |                 |                  |                     |  |
| BENT        | 2        | 19     | CLAYSTONE BEDROCK             | 12.2  | 125.8 |                                    |               |                   |                 |                  |                     |  |
| NTS/        | 2        | 24     | CLAYSTONE BEDROCK             | 10.7  | 127.7 |                                    |               |                   |                 |                  |                     |  |
| INME        | 3        | 4      | CLAYEY SAND to SILTY SAND     | 9.5   | 117.9 |                                    |               |                   |                 |                  |                     |  |
| DOC         | 3        | 9      | SILTY SAND(SM)                | 9.5   | 127.1 |                                    |               | 22                | NP              | NP               | NP                  |  |
| BLIC        | 3        | 14     | CLAYSTONE BEDROCK             | 9.4   | 123.2 | +0.4/1000                          |               |                   |                 |                  |                     |  |
| S/PU        | 3        | 19     | CLAYSTONE BEDROCK             | 11.1  | 125.1 |                                    |               |                   |                 |                  |                     |  |
| JSER        | 3        | 24     | CLAYSTONE BEDROCK             | 10.5  | 123.3 |                                    |               |                   |                 |                  |                     |  |
| -C:\L       | 4        | 4      | CLAYEY SAND                   | 9.8   | 117.3 |                                    |               |                   |                 |                  |                     |  |
| 9:02        | 4        | 9      | SANDY LEAN CLAY(CL)           | 10.7  | 122.4 | +1.8/500                           | 400           | 70                | 39              | 22               | 17                  |  |
| 7/16 (      | 4        | 14     | LEAN CLAY with SAND           | 10.6  | 117.3 | +0.1/1000                          |               |                   |                 |                  |                     |  |
| - 9/2       | 4        | 19     | CLAYSTONE BEDROCK             | 11.1  | 124.7 |                                    |               |                   |                 |                  |                     |  |
| GDT         | 4        | 24     | CLAYSTONE BEDROCK             | 10.8  | 124.9 |                                    |               |                   |                 |                  |                     |  |
| LAB         | 4        | 29     | CLAYSTONE BEDROCK             | 18.1  | 111.8 |                                    |               |                   |                 |                  |                     |  |
| Sn Q        | 4        | 34     | CLAYSTONE BEDROCK             | 10.9  | 121.1 |                                    |               |                   |                 |                  |                     |  |
| UT ST       | P1       | 2      | SILTY SAND (SM)               | 4.6   | 122.5 |                                    |               | 13                | NP              | NP               | NP                  |  |
| 5           | P1       | 4      | SANDY LEAN CLAY               | 4.6   | 115.9 |                                    |               |                   |                 |                  |                     |  |
| <b>IARY</b> | P2       | 2      | SILTY SAND(SM)                | 8.7   | 115.0 | -0.1/200                           |               | 19                | NP              | NP               | NP                  |  |
| MMUS        | P2       | 4      | SILTY SAND                    | 12.1  | 121.2 |                                    |               |                   |                 |                  |                     |  |
| AB          |          |        |                               |       |       |                                    |               |                   |                 |                  |                     |  |

#### APPENDIX C

#### GENERAL NOTES PERIMETER DRAIN DETAIL



### **GENERAL NOTES**

#### **DRILLING & SAMPLING SYMBOLS:**

| SS: | Split Spoon - 1 <sup>3</sup> / <sub>8</sub> " I.D., 2" O.D., unless otherwise noted | HS: | Hollow Stem Auger         |
|-----|-------------------------------------------------------------------------------------|-----|---------------------------|
| ST: | Thin-Walled Tube – 2.5" O.D., unless otherwise noted                                | PA: | Power Auger               |
| RS: | Ring Sampler - 2.42" I.D., 3" O.D., unless otherwise noted                          | HA: | Hand Auger                |
| CB: | California Barrel - 1.92" I.D., 2.5" O.D., unless otherwise noted                   | RB: | Rock Bit                  |
| BS: | Bulk Sample or Auger Sample                                                         | WB: | Wash Boring or Mud Rotary |

The number of blows required to advance a standard 2-inch O.D. split-spoon sampler (SS) the last 12 inches of the total 18-inch penetration with a 140-pound hammer falling 30 inches is considered the "Standard Penetration" or "N-value". For 2.5" O.D. California Barrel samplers (CB) the penetration value is reported as the number of blows required to advance the sampler 12 inches using a 140-pound hammer falling 30 inches, reported as "blows per inch," and is not considered equivalent to the "Standard Penetration" or "N-value".

#### WATER LEVEL MEASUREMENT SYMBOLS:

| WL:  | Water Level  | WS:  | While Sampling        |
|------|--------------|------|-----------------------|
| WCI: | Wet Cave in  | WD:  | While Drilling        |
| DCI: | Dry Cave in  | BCR: | Before Casing Removal |
| AB:  | After Boring | ACR: | After Casing Removal  |

Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. Groundwater levels at other times and other locations across the site could vary. In pervious soils, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels may not be possible with only short-term observations.

DESCRIPTIVE SOIL CLASSIFICATION: Soil classification is based on the Unified Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

| <u>FIN</u>               | E-GRAINED                | SOILS              | COA                      | RSE-GRAIN                | IED SOILS                  | BEDROCK           |                          |                    |  |
|--------------------------|--------------------------|--------------------|--------------------------|--------------------------|----------------------------|-------------------|--------------------------|--------------------|--|
| <u>(CB)</u><br>Blows/Ft. | <u>(SS)</u><br>Blows/Ft. | <u>Consistency</u> | <u>(CB)</u><br>Blows/Ft. | <u>(SS)</u><br>Blows/Ft. | <u>Relative</u><br>Density | (CB)<br>Blows/Ft. | <u>(SS)</u><br>Blows/Ft. | <u>Consistency</u> |  |
| < 3                      | 0-2                      | Very Soft          | 0-5                      | < 3                      | Very Loose                 | < 24              | < 20                     | Weathered          |  |
| 3-5                      | 3-4                      | Soft               | 6-14                     | 4-9                      | Loose                      | 24-35             | 20-29                    | Firm               |  |
| 6-10                     | 5-8                      | Medium Stiff       | 15-46                    | 10-29                    | Medium Dense               | 36-60             | 30-49                    | Medium Hard        |  |
| 11-18                    | 9-15                     | Stiff              | 47-79                    | 30-50                    | Dense                      | 61-96             | 50-79                    | Hard               |  |
| 19-36                    | 16-30                    | Very Stiff         | > 79                     | > 50                     | Very Dense                 | > 96              | > 79                     | Very Hard          |  |
| > 36                     | > 30                     | Hard               |                          |                          | -                          |                   |                          | -                  |  |

**GRAIN SIZE TERMINOLOGY** 

30+

#### **RELATIVE PROPORTIONS OF SAND AND**

| GRAV                                       | <u>EL</u>                       |                                            |                                                                     |
|--------------------------------------------|---------------------------------|--------------------------------------------|---------------------------------------------------------------------|
| Descriptive Terms of<br>Other Constituents | <u>Percent of</u><br>Dry Weight | <u>Major Component</u><br><u>of Sample</u> | Particle Size                                                       |
| Trace                                      | < 15                            | Boulders                                   | Over 12 in. (300mm)                                                 |
| With 15 – 29                               |                                 | Cobbles                                    | 12 In. to 3 In. (300mm to 75 mm)                                    |
| Modifier > 30                              |                                 | Sand<br>Silt or Clay                       | #4 to #200 sieve (4.75mm to 4.75mm)<br>Passing #200 Sieve (0.075mm) |
| RELATIVE PROPORT                           | IONS OF FINES                   | PLASTIC                                    | ITY DESCRIPTION                                                     |
| Descriptive Terms of<br>Other Constituents | <u>Percent of</u><br>Dry Weight | Term                                       | Plasticity Index                                                    |
| Trace                                      | < 5                             | Non-plastic                                | 0                                                                   |
| With                                       | 5 – 12                          | Low                                        | 1-10                                                                |
| Modifiers                                  | > 12                            | Medium                                     | 11-30                                                               |

High

### UNIFIED SOIL CLASSIFICATION SYSTEM

| Criteria f                                                                     | or Assigning Group Symbo                        | ols and Group Names Usin                                                                  | lg Laboratory Tests <sup>▲</sup>           |                            | Soil Classification |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                |                                                 |                                                                                           |                                            |                            | Group<br>Symbol     | Group Name <sup>B</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Coarse Grained Soils                                                           | Gravels                                         | Clean Gravels                                                                             | $Cu \ge 4$ and $1 \le Cc \le 3^{E}$        |                            | GW                  | Well graded gravel <sup>F</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| More than 50% retained                                                         | More than 50% of coarse<br>fraction retained on | Less than 5% fines <sup>c</sup>                                                           | Cu < 4 and/or 1 > Cc > $3^{E}$             |                            | GP                  | Poorly graded gravel <sup>F</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| on No. 200 sieve                                                               | No. 4 sieve                                     | Gravels with Fines More                                                                   | Fines classify as ML or MH                 |                            | GM                  | Silty gravel <sup>F,G, H</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                |                                                 | than 12% fines <sup>c</sup>                                                               | Fines classify as CL or CH                 |                            | GC                  | Clayey gravel <sup>F,G,H</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                | Sands                                           | Clean Sands                                                                               | $Cu \ge 6 \text{ and } 1 \le Cc \le 3^{E}$ | $\leq CC \leq 3^{E}$       |                     | Well graded sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                | 50% or more of coarse<br>fraction passes        | % or more of coarse Less than 5% tines <sup>o</sup> Cu < 6 and/or 1 > Cc > 3 <sup>E</sup> |                                            |                            | SP                  | Poorly graded sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                | No. 4 sieve                                     | Sands with Fines                                                                          | Fines classify as ML or MH                 | es classify as ML or MH SM |                     | Silty sand <sup>G,H,I</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                |                                                 | More than 12% fines <sup>D</sup>                                                          | Fines classify as CL or CH                 |                            | SC                  | Clayey sand <sup>G,H,I</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Fine-Grained Soils                                                             | Silts and Clays                                 | Inorganic                                                                                 | PI > 7 and plots on or above               | "A" line <sup>」</sup>      | CL                  | Lean clay <sup>K,L,M</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 50% or more passes the<br>No. 200 sieve                                        | Liquid limit less than 50                       |                                                                                           | PI < 4 or plots below "A" line             |                            | ML                  | Silt <sup>K,L,M</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                |                                                 | Organic                                                                                   | Liquid limit - oven<br>dried               | < 0.75                     | OL                  | Organic clay <sup>K,L,M,N</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                |                                                 |                                                                                           | Liquid limit - not<br>dried                |                            |                     | Organic silt <sup>K,L,M,O</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                | Silts and Clays                                 | Inorganic                                                                                 | PI plots on or above "A" line              |                            | СН                  | Fat clay <sup>K,L,M</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                | Liquid limit 50 or more                         |                                                                                           | PI plots below "A" line                    |                            | MH                  | Soli Classification   I Group Name <sup>B</sup> Well graded gravel <sup>F</sup> Poorly graded gravel <sup>F</sup> Silty gravel <sup>F,G,H</sup> Clayey gravel <sup>F,G,H</sup> Well graded sand <sup>I</sup> Poorly graded sand <sup>I</sup> Poorly graded sand <sup>I</sup> Clayey sand <sup>G,H,J</sup> Clayey sand <sup>G,H,J</sup> Lean clay <sup>K,L,M</sup> Silt <sup>K,L,M</sup> Organic clay <sup>K,L,M,N</sup> Fat clay <sup>K,L,M</sup> Elastic silt <sup>K,L,M,Q</sup> Organic silt <sup>K,L,M,Q</sup> Peat |  |  |
|                                                                                |                                                 | Organic                                                                                   | Liquid limit - oven dried                  | . 0 75                     | ОН                  | Organic clay <sup>K,L,M,P</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                |                                                 |                                                                                           | Liquid limit - not dried                   | < 0.75                     | ОП                  | Organic silt <sup>K,L,M,Q</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Highly organic soils Primarily organic matter, dark in color, and organic odor |                                                 |                                                                                           |                                            |                            |                     | Peat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

<sup>A</sup>Based on the material passing the 3-in. (75-mm) sieve

- <sup>B</sup> If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- <sup>C</sup> Gravels with 5 to 12% fines require dual symbols: GW-GM well graded gravel with silt, GW-GC well graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- <sup>D</sup>Sands with 5 to 12% fines require dual symbols: SW-SM well graded sand with silt, SW-SC well graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

<sup>E</sup>Cu = 
$$D_{60}/D_{10}$$
 Cc =  $\frac{(D_{30})^2}{D_{10} \times D_{60}}$ 

<sup>F</sup> If soil contains ≥ 15% sand, add "with sand" to group name. <sup>G</sup> If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- <sup>H</sup>If fines are organic, add "with organic fines" to group name.
- <sup>1</sup> If soil contains  $\ge$  15% gravel, add "with gravel" to group name.
- <sup>J</sup> If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- <sup>K</sup> If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- <sup>L</sup> If soil contains  $\ge$  30% plus No. 200 predominantly sand, add "sandy" to group name.
- <sup>M</sup>If soil contains  $\ge$  30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- <sup>N</sup>PI  $\geq$  4 and plots on or above "A" line.
- <sup>o</sup>PI < 4 or plots below "A" line.
- <sup>P</sup> PI plots on or above "A" line.
- <sup>Q</sup>PI plots below "A" line.



#### ROCK CLASSIFICATION (Based on ASTM C-294)

#### Sedimentary Rocks

Sedimentary rocks are stratified materials laid down by water or wind. The sediments may be composed of particles or pre-existing rocks derived by mechanical weathering, evaporation or by chemical or organic origin. The sediments are usually indurated by cementation or compaction.

- **Chert** Very fine-grained siliceous rock composed of micro-crystalline or cyrptocrystalline quartz, chalcedony or opal. Chert is various colored, porous to dense, hard and has a conchoidal to splintery fracture.
- **Claystone** Fine-grained rock composed of or derived by erosion of silts and clays or any rock containing clay. Soft massive and may contain carbonate minerals.
- **Conglomerate** Rock consisting of a considerable amount of rounded gravel, sand and cobbles with or without interstitial or cementing material. The cementing or interstitial material may be quartz, opal, calcite, dolomite, clay, iron oxides or other materials.
- **Dolomite** A fine-grained carbonate rock consisting of the mineral dolomite [CaMg(CO<sub>3</sub>)<sub>2</sub>]. May contain noncarbonate impurities such as quartz, chert, clay minerals, organic matter, gypsum and sulfides. Reacts with hydrochloric acid (HCL).
- **Limestone** A fine-grained carbonate rock consisting of the mineral calcite (CaCO<sub>3</sub>). May contain noncarbonate impurities such as quartz, chert, clay minerals, organic matter, gypsum and sulfides. Reacts with hydrochloric acid (HCL).
- **Sandstone** Rock consisting of particles of sand with or without interstitial and cementing materials. The cementing or interstitial material may be quartz, opal, calcite, dolomite, clay, iron oxides or other material.
- **Shale** Fine-grained rock composed of or derived by erosion of silts and clays or any rock containing clay. Shale is hard, platy, of fissile may be gray, black, reddish or green and may contain some carbonate minerals (calcareous shale).
- Siltstone Fine grained rock composed of or derived by erosion of silts or rock containing silt. Siltstones consist predominantly of silt sized particles (0.0625 to 0.002 mm in diameter) and are intermediate rocks between claystones and sandstones and may contain carbonate minerals.

#### ROCK CLASSIFICATION (Based on ASTM C-294)

#### **Metamorphic Rocks**

Metamorphic rocks form from igneous, sedimentary, or pre-existing metamorphic rocks in response to changes in chemical and physical conditions occurring within the earth's crust after formation of the original rock. The changes may be textural, structural, or mineralogic and may be accompanied by changes in chemical composition. The rocks are dense and may be massive but are more frequently foliated (laminated or layered) and tend to break into platy particles. The mineral composition is very variable depending in part on the degree of metamorphism and in part on the composition of the original rock.

- Marble A recrystallized medium- to coarse-grained carbonate rock composed of calcite or dolomite, or calcite and dolomite. The original impurities are present in the form of new minerals, such as micas, amphiboles, pyroxenes, and graphite.
- **Metaquartzite** A granular rock consisting essentially of recrystallized quartz. Its strength and resistance to weathering derive from the interlocking of the quartz grains.
- Slate A fine-grained metamorphic rock that is distinctly laminated and tends to split into thin parallel layers. The mineral composition usually cannot be determined with the unaided eye.
- Schist A highly layered rock tending to split into nearly parallel planes (schistose) in which the grain is coarse enough to permit identification of the principal minerals. Schists are subdivided into varieties on the basis of the most prominent mineral present in addition to quartz or to quartz and feldspars; for instance, mica schist. Greenschist is a green schistose rock whose color is due to abundance of one or more of the green minerals, chlorite or amphibole, and is commonly derived from altered volcanic rock.
- **Gneiss** One of the most common metamorphic rocks, usually formed from igneous or sedimentary rocks by a higher degree of metamorphism than the schists. It is characterized by a layered or foliated structure resulting from approximately parallel lenses and bands of platy minerals, usually micas or prisms, usually amphiboles, and of granular minerals, usually quartz and feldspars. All intermediate varieties between gneiss and schist and between gneiss and granite are often found in the same areas in which well-defined gneisses occur.

#### ROCK CLASSIFICATION (Based on ASTM C-294)

#### **Igneous Rocks**

Igneous rocks are formed by cooling from a molten rock mass (magma). Igneous rocks are divided into two classes (1) plutonic, or intrusive, that have cooled slowly within the earth; and (2) volcanic, or extrusive, that formed from quickly cooled lavas. Plutonic rocks have grain sizes greater than approximately 1 mm, and are classified as coarse- or medium-grained. Volcanic rocks have grain sizes less than approximately 1 mm, and are classified as fine-grained. Volcanic rocks frequently contain glass. Both plutonic and volcanic rocks may consist of porphyries that are characterized by the presence of large mineral grains in a fine-grained or glassy groundmass. This is the result of sharp changes in rate of cooling or other physico-chemical conditions during solidification of the melt.

**Granite** Granite is a medium- to coarse-grained light-colored rock characterized by the presence of potassium feldspar with lesser amounts of plagioclase feldspars and quartz. The characteristic potassium feldspars are othoclase or microcline, or both; the common plagioclase feldspars are albite and oligoclase. Feldspars are more abundant than quartz. Dark-colored mica (biotite) is usually present, and light-colored mica (muscovite) is frequently present. Other dark-colored ferromagnesian minerals, especially honblende, may be present in amounts less than those of the light-colored constituents.

Quartz-MonzoniteRocks similar to granite but contain more plagioclase feldspar than potassiumand Grano-Dioritefeldspar.

**Basalt** Fine-grained extrusive equivalent of gabbro and diabase. When basalt contains natural glass, the glass is generally lower in silica content than that of the lighter-colored extrusive rocks.

#### LABORATORY TEST SIGNIFICANCE AND PURPOSE

| TEST                                        | SIGNIFICANCE                                                                                                                                                                           | PURPOSE                                                        |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| California Bearing<br>Ratio                 | Used to evaluate the potential strength of subgrade soil, subbase, and base course material, including recycled materials for use in road and airfield pavements.                      | Pavement Thickness<br>Design                                   |
| Consolidation                               | Used to develop an estimate of both the rate and amount of both differential and total settlement of a structure.                                                                      | Foundation Design                                              |
| Direct Shear                                | Used to determine the consolidated drained shear strength of soil or rock.                                                                                                             | Bearing Capacity,<br>Foundation Design,<br>and Slope Stability |
| Dry Density                                 | Used to determine the in-place density of natural, inorganic, fine-grained soils.                                                                                                      | Index Property Soil<br>Behavior                                |
| Expansion                                   | Used to measure the expansive potential of fine-grained soil and to provide a basis for swell potential classification.                                                                | Foundation and Slab<br>Design                                  |
| Gradation                                   | Used for the quantitative determination of the distribution of particle sizes in soil.                                                                                                 | Soil Classification                                            |
| Liquid & Plastic Limit,<br>Plasticity Index | Used as an integral part of engineering classification systems to characterize the fine-grained fraction of soils, and to specify the fine-grained fraction of construction materials. | Soil Classification                                            |
| Permeability                                | Used to determine the capacity of soil or rock to conduct a liquid or gas.                                                                                                             | Groundwater Flow<br>Analysis                                   |
| рН                                          | Used to determine the degree of acidity or alkalinity of a soil.                                                                                                                       | Corrosion Potential                                            |
| Resistivity                                 | Used to indicate the relative ability of a soil medium to carry electrical currents.                                                                                                   | Corrosion Potential                                            |
| R-Value                                     | Used to evaluate the potential strength of subgrade soil, subbase, and base course material, including recycled materials for use in road and airfield pavements.                      | Pavement Thickness<br>Design                                   |
| Soluble Sulfate                             | Used to determine the quantitative amount of soluble sulfates within a soil mass.                                                                                                      | Corrosion Potential                                            |
| Unconfined<br>Compression                   | To obtain the approximate compressive strength of soils that possess sufficient cohesion to permit testing in the unconfined state.                                                    | Bearing Capacity<br>Analysis for<br>Foundations                |
| Water Content                               | Used to determine the quantitative amount of water in a soil mass.                                                                                                                     | Index Property Soil<br>Behavior                                |
|                                             |                                                                                                                                                                                        |                                                                |

#### REPORT TERMINOLOGY (Based on ASTM D653)

*Allowable Soil* The recommended maximum contact stress developed at the interface of the foundation element and the supporting material.

- **Alluvium** Soil, the constituents of which have been transported in suspension by flowing water and subsequently deposited by sedimentation.
- Aggregate Base<br/>CourseA layer of specified material placed on a subgrade or subbase usually beneath slabs or<br/>pavements.
  - **Backfill** A specified material placed and compacted in a confined area.
  - **Bedrock** A natural aggregate of mineral grains connected by strong and permanent cohesive forces. Usually requires drilling, wedging, blasting or other methods of extraordinary force for excavation.
  - **Bench** A horizontal surface in a sloped deposit.
- Caisson (Drilled<br/>Pier or Shaft)A concrete foundation element cast in a circular excavation which may have an enlarged<br/>base. Sometimes referred to as a cast-in-place pier or drilled shaft.
- Coefficient of<br/>FrictionA constant proportionality factor relating normal stress and the corresponding shear stress<br/>at which sliding starts between the two surfaces.
- **Colluvium** Soil, the constituents of which have been deposited chiefly by gravity such as at the foot of a slope or cliff.
- **Compaction** The densification of a soil by means of mechanical manipulation
- Concrete Slab-on-<br/>GradeA concrete surface layer cast directly upon a base, subbase or subgrade, and typically used<br/>as a floor system.
  - **Differential** Unequal settlement or heave between, or within foundation elements of structure.
- *Earth Pressure* The pressure exerted by soil on any boundary such as a foundation wall.
  - **ESAL** Equivalent Single Axle Load, a criteria used to convert traffic to a uniform standard, (18,000 pound axle loads).
- *Engineered Fill* Specified material placed and compacted to specified density and/or moisture conditions under observations of a representative of a geotechnical engineer.
- **Equivalent Fluid** A hypothetical fluid having a unit weight such that it will produce a pressure against a lateral support presumed to be equivalent to that produced by the actual soil. This simplified approach is valid only when deformation conditions are such that the pressure increases linearly with depth and the wall friction is neglected.
- *Existing Fill (or* Materials deposited throughout the action of man prior to exploration of the site.
- **Existing Grade** The ground surface at the time of field exploration.

Man-Made Fill)

#### REPORT TERMINOLOGY (Based on ASTM D653)

| Expansive<br>Potential        | The potential of a soil to expand (increase in volume) due to absorption of moisture.                                                                                              |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Finished Grade                | The final grade created as a part of the project.                                                                                                                                  |  |  |  |
| Footing                       | A portion of the foundation of a structure that transmits loads directly to the soil.                                                                                              |  |  |  |
| Foundation                    | The lower part of a structure that transmits the loads to the soil or bedrock.                                                                                                     |  |  |  |
| Frost Depth                   | The depth at which the ground becomes frozen during the winter season.                                                                                                             |  |  |  |
| Grade Beam                    | A foundation element or wall, typically constructed of reinforced concrete, used to span between other foundation elements such as drilled piers.                                  |  |  |  |
| Groundwater                   | Subsurface water found in the zone of saturation of soils or within fractures in bedrock.                                                                                          |  |  |  |
| Heave                         | Upward movement.                                                                                                                                                                   |  |  |  |
| Lithologic                    | The characteristics which describe the composition and texture of soil and rock by observation.                                                                                    |  |  |  |
| Native Grade                  | The naturally occurring ground surface.                                                                                                                                            |  |  |  |
| Native Soil                   | Naturally occurring on-site soil, sometimes referred to as natural soil.                                                                                                           |  |  |  |
| Optimum Moisture<br>Content   | The water content at which a soil can be compacted to a maximum dry unit weight by a given compactive effort.                                                                      |  |  |  |
| Perched Water                 | Groundwater, usually of limited area maintained above a normal water elevation by the presence of an intervening relatively impervious continuous stratum.                         |  |  |  |
| Scarify                       | To mechanically loosen soil or break down existing soil structure.                                                                                                                 |  |  |  |
| Settlement                    | Downward movement.                                                                                                                                                                 |  |  |  |
| Skin Friction (Side<br>Shear) | The frictional resistance developed between soil and an element of the structure such as a drilled pier.                                                                           |  |  |  |
| Soil (Earth)                  | Sediments or other unconsolidated accumulations of solid particles produced by the physical and chemical disintegration of rocks, and which may or may not contain organic matter. |  |  |  |
| Strain                        | The change in length per unit of length in a given direction.                                                                                                                      |  |  |  |
| Stress                        | The force per unit area acting within a soil mass.                                                                                                                                 |  |  |  |
| Strip                         | To remove from present location.                                                                                                                                                   |  |  |  |
| Subbase                       | A layer of specified material in a pavement system between the subgrade and base course.                                                                                           |  |  |  |
| Subgrade                      | The soil prepared and compacted to support a structure, slab or pavement system.                                                                                                   |  |  |  |





**APPENDIX D: FEMA RIMETTE** 

# National Flood Hazard Layer FIRMette



#### Legend

#### 104°36'53"W 38°56'17"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 8041C0553G 0.2% Annual Chance Flood Hazard, Areas 12/7/2018 of 1% annual chance flood with average depth less than one foot or with drainage Zone A areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D 397FEET - — – – Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall EL PASO COUNTY AREA OF MINIMAL FLOOD HAZARD 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** Mase Flood Elevation Line (BFE) Limit of Study T13S R65W S012 Jurisdiction Boundary T13S R64W, S007 **Coastal Transect Baseline** OTHER Profile Baseline FEATURES Hydrographic Feature 08041C0561G **Digital Data Available** eff. 12/7/2018 No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 4/14/2021 at 9:15 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. Zone AE Zone AE This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, 6805 1 FEET legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 104°36'15"W 38°55'49"N Feet 1:6.000 unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2.000 n

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020



**APPENDIX E: WEB SOIL SURVEY** 



USDA Natural Resources

**Conservation Service** 

Web Soil Survey National Cooperative Soil Survey



## Hydrologic Soil Group

| Map unit symbol             | Map unit name                                  | Rating | Acres in AOI | Percent of AOI |
|-----------------------------|------------------------------------------------|--------|--------------|----------------|
| 8                           | Blakeland loamy sand, 1<br>to 9 percent slopes | A      | 0.3          | 13.1%          |
| 9                           | Blakeland-Fluvaquentic<br>Haplaquolls          | A      | 2.2          | 86.9%          |
| Totals for Area of Interest |                                                |        | 2.5          | 100.0%         |

### Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

### **Rating Options**

Aggregation Method: Dominant Condition

USDA

Component Percent Cutoff: None Specified Tie-break Rule: Higher



**APPENDIX F: MERIDIAN CROSSING STORM REPORT** 

### MERIDIAN CROSSING FINAL DRAINAGE REPORT EL PASO COUNTY, COLORADO

**July 2008** 

**PREPARED FOR:** 

## **Park Place Enterprises**

15 Miranda Road Colorado Springs, CO 80906

**PREPARED BY:** 

Springs Engineering

31 N. Tejon, Suite 315 Colorado Springs, CO 80903 719.227.7388

PROJECT NO. 057-07-032
#### CERTIFICATIONS

#### Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

Charlene M. Sammons, P.E. #36727

Developer's Statement:



By (signature rises, LLC Title: Address:

# El Paso County's Statement:

Filed in accordance with Section 51.1 of the El Paso Land Development Code, as amended.

John McCarty, County Engineer/Director

<u>8-/9-08</u> Date

Conditions:



# **Table of Contents**

,

Í

| Duinboon                                        | 2    |
|-------------------------------------------------|------|
| I MITS OF STUDY                                 |      |
| Emilis of Study                                 | 2    |
| EXISTING CONDITIONS                             | 2    |
| GENERAL LOCATION                                |      |
| Land Use                                        | 3    |
| TOPOGRAPHY AND FLOODPLAINS                      | 3    |
| GEOLOGY                                         |      |
| CLIMATE                                         |      |
| NATURAL HAZARDS ANALYSIS                        |      |
| DRAINAGE DESIGN CRITERIA                        |      |
| SCS HYDROGRAPH METHOD                           |      |
| RATIONAL METHOD                                 |      |
| WATER QUALITY CRITERIA                          |      |
| STREET CAPACITY                                 | 8    |
| DRAINAGE BASINS.                                | 8    |
| EVICTING DD 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D | 9    |
| EXISTING DEVICE ANALYSIS                        |      |
| DEVELOPED DE ANACE ANALYZIC                     |      |
| DEVELOPED DESIGN POINTS                         |      |
| PAINACE FACH ITY DEGLOY                         |      |
| ACTIVAGE FACILITY DESIGN                        |      |
| GENERAL CONCEPT                                 | . 15 |
| STORM SYSTEMS                                   |      |
| DETENTION POND WH                               |      |
| PROPOSED WATER OLIVIER D                        |      |
| UI TIMATE DESIGN                                |      |
| DOWNSTREAM FACILITIES                           |      |
|                                                 |      |
| RAINAGE FEES, COST ESTIMATE & MAINTENANCE       |      |
| MAINTENANCE                                     |      |
| DRAINAGE FEES                                   |      |
| PROPOSED FACILITIES ESTIMATE                    |      |
| ROSION CONTROL                                  |      |
| GENERAL CONCEPT                                 |      |
| SILT FENCE                                      | 20   |
| EROSION BALES                                   | 20   |
|                                                 | 20   |
| VEHICLE TRACKING CONTROL                        | 20   |
| VEHICLE TRACKING CONTROL                        |      |

# **List of Figures**

| Figure 1: Vicinity Map              |             |
|-------------------------------------|-------------|
| Figure 2: SCS Soils Map             | 5           |
| Figure 3: FEMA Floodplain Map       | 6           |
| Figure 4: Proposed SCS Drainage Map |             |
| Figure 5: Existing Drainage Plan    |             |
| Figure 6: Proposed Drainage Plan    | BACK POCKET |
|                                     | BACK POCKET |

# Appendix

Appendix A: Existing HEC-1 Calculations

Appendix B: Proposed HEC-1 Calculations

Appendix C: Existing Rational Calculations

Appendix D: Proposed Rational Calculations

Appendix E: StormCAD Calculations

Appendix F: Channel and Culvert Calculations

Appendix G: Water Quality Pond Calculations

Appendix H: Operations and Maintenance Manual

Appendix I: Ultimate Design StormCAD Calculations

# **EXECUTIVE SUMMARY**

The purpose of this Preliminary Drainage Report (PDR) and Final Drainage Report (FDR) is to present final drainage design and improvements for Meridian Crossing, located at the northeast corner of Meridian Road and Old Meridian Road, in the Falcon Highlands development. Runoff quantities and proposed facilities have been calculated using the current City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM). Existing facilities have been analyzed to ensure they are able to function as designed with the new facilities and construction.

This report encompasses approximately 9.5 acres of proposed commercial development in the southeast corner of the Falcon Highlands development. A proposed collector (Flower Road) will traverse the site, connecting Meridian Road to McLaughlin Road. This development will also include improvements to McLaughlin Road.

Flower Road and McLaughlin Road are to be designed as Non-Residential Collectors, per the El Paso County Criteria Manual, with a design speed of 40 miles per hour (mph) and a posted speed of 35 mps. Curb and gutter will be installed along both of these roads.

#### **INTRODUCTION**

The Meridian Crossing subdivision is a 9.5 acre commercial development located on the northwest side of the Town of Falcon. Meridian Crossing is located east and south of Falcon Highlands Market Place Filing No. 1 and adjacent to the southeast side of the "New" Meridian Road alignment. Existing development occurring in the area includes the Falcon Highlands subdivision to the west, the Beckett at Woodmen Hills development to the east and the Falcon Highlands Market Place to the west.

The area containing Meridian Crossing has been studied as part of the Falcon Area Drainage Basin Planning Study (DBPS)-Preliminary Design Report by URS, dated December 15, 2000 and Falcon Highlands Master Drainage and Development Plan (MDDP) by URS, dated October 2004.

#### Purpose

The purpose of the following Final Drainage Report (FDR) is to present the final design drainage improvements for the Meridian Crossing commercial development. Drainage improvements will include curb inlets, roadside ditches, and Water Quality Capture Ponds.

Runoff quantities and proposed facilities have been calculated using the current City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM) Volumes I and II.

#### Limits of Study

The Meridian Crossing FDR details the hydrology and hydraulics for the West Tributary of the Falcon Basin. Storm flow is routed by and from the proposed site and then directed through the proposed and future developments to US Highway 24. This includes an analysis of the storm systems, which includes the culverts and inlets along Meridian Road and Rolling Thunder Way. The area of study is bounded by Flower Road to the north and east, Meridian Road to the north and west, Old Meridian Road to the west and McLaughlin Road on the south

# **EXISTING CONDITIONS**

#### **General Location**

The proposed Meridian Crossing is approximately 9.5 acres and is located at the southeast corner of Meridian Road and Old Meridian Road in Falcon, Colorado, Section 12, Township 13 South, Range 65 West of the 6<sup>th</sup> Principal Meridian. Currently, the site is zoned CR.

Falcon Highlands, Woodmen Hills, Falcon Vista, Meridian Ranch, Elkhorn Estates and Falcon Hills are all developments within a 5-mile radius of the site.

#### Land Use

The proposed site has just recently been rezoned to a Commercial Regional (CR) zone.

# **Topography and Floodplains**

The topography of the surrounding area is typical of a high desert, short prairie grass with relatively flat slopes generally ranging from 2% to 4%. The area generally drains to the south. The site combines with the outlet flow of Detention Pond WU prior to crossing through the existing box culverts at Highway 24. Existing drainage swales convey these flows.

The Flood Insurance Rate Map (FIRM No. 08041C0575-F dated 3/17/99) indicates that there is a floodplain north and east of the proposed site (Falcon Basin Middle Tributary). FEMA has approved a LOMR for the Middle Tributary Floodplain (Case No. 06-08-B427P, with an effective date of November 3, 2006). This flow will now be contained within a storm drainage system and detention pond, which realigns the floodplain to the east of the site. (See Figure 3: Floodplain Map) The floodplain ties in with the FIRM after the detention pond at McLaughlin Road.

#### Geology

Soil Conservation Service soil survey records indicate the project area is covered by soils classified in the Blakeland Series, which are categorized in the Hydrological Group B.

The Blakeland (8) loamy sand is a deep, excessively drained soil that can exceed depths of 60 inches. Permeability of this soil is rapid with an effective rooting depth of 60 inches. This soil has good potential for urban development. The available water capacity is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate.

The Blakeland (9) complex soil is comprised of approximately 60 percent Blakeland loamy sand, 30 percent Fluvaquentic Haplaquolls and 10 percent other soils. This soil is found more in sloping areas. It is deep and somewhat excessively drained. It formed in sandy alluvium and eolian material derived from arkosic sedimentary rock. Permeability of Blakeland soils is rapid, with an effective rooting depth of 60 inches. The available water capacity is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate. The Fluvaquentic Haplaquolls are generally located in swale areas, and are deep, poorly drained soils. They formed in alluvium derived from arkosic sedimentary rock.

The Blakeland soil is well suited to wildlife habitat, home sites, streets and roads. This soil needs to be protected from erosion when vegetation has been removed from building sites. The Fluvaquentic Haplaquolls soil is good for wetlands. This soil has poor potential for home sites. The main limitation of this soil is the high water table and potential for flooding.

Note: (#) indicated Soil Conservation Survey soil classification number. See Figure 2: SCS Soils Map.

#### Climate

Mild summers and winters, light precipitation; high evaporation and moderately high wind velocities characterize the climate of the study area.

The average annual monthly temperature is 48.4 F with an average monthly low of 30.3 F in the winter and an average monthly high of 68.1 F in the summer. Two years in ten will have a maximum temperature higher than 98 F and a minimum temperature lower than -16 F. Precipitation averages 15.73 inches annually, with 80% of this occurring during the months of April through September. The average annual Class A pan evaporation is 45 inches.

#### Natural Hazards Analysis

Natural hazards analysis indicates that there is high ground water, potentially expansive claystone bedrock and wetlands located on or near the proposed site. Refer to the Geologic Hazards Evaluation Retail Site Woodmen Road and Meridian Road report by Entech Engineering. Usually, in areas where high ground water is an issue, underdrains are built to help alleviate the problem. However, since the proposed site is a commercial development, construction will be done as slab-on-grade and no basements. If lower levels are built, an underdrain system would be required. Wetland areas in the site have been identified and approved by Corps of Engineers. A mitigation plan for the site has been approved and implementation began in the fall of 2005. A copy of this plan is on file with the Falcon Highlands Metropolitan District.

Soils in this area are cohesionless, sloughing of steep banks during drilling and/or excavation could occur. By siting improvements in a manner that provides an opportunity to lay the banks of excavations back at a 1:1 slope during construction, the problems associated with sloughing soils can be minimized.





# **DRAINAGE DESIGN CRITERIA**

#### SCS Hydrograph Method

Hydrologic modeling was used to the West Tributary of the Falcon Basin, which routes through Meridian Crossing. Modeling was completed using The United States Army Corps of Engineers Hydrologic Engineering Center-HEC-1 version 4.1. The Soil Conservation Service (SCS) (since renamed National Resources Conservation Service (NRCS)) curve number method was selected for calculating the runoff volume from the drainage basins per the Drainage Criteria Manual (DCM). The precipitation data, basin delineation, CN runoff coefficients, and time of concentrations were taken from the Falcon Basin DBPS. Modifications have been performed on the original data, as new developments have been built and boundary lines have changed. The model has been updated to reflect the most current changes occurring in the Falcon area. The existing models in the appendix are those which were included in the FDR for Pond WU, as this report updated and modified the existing conditions of the West Tributary as originally analyzed in the Falcon Basin DBPS. Below is a summary of major design points entering the Falcon Highlands development, through the site, and where the flows exit the Falcon Highlands site. The Falcon Highlands Master Drainage Development Plan (MDDP) corrected an area in the volume of the Woodmen Hills detention pond (Pond W).

The West Tributary was analyzed in the MDDP/PDR/FDR for Falcon Highlands Filing No. 1. This report made the assumption that Pond WU would capture flows from Basins W-39, W-40, W-41 and W-42. With the construction of Meridian Road, flows from Basin W-42 do not release into the detention pond and instead combine with the outflow from the pond. With this change in routing, actual design point locations have changed slightly. The existing DBPS analysis and this report show design point WU as the flow at Highway 24 as it passes through the existing box culverts. The proposed DBPS analysis and the Market Place report have Design Point WU as the flows entering the pond with the pond release flows as the Highway 24 flows. This report made the change, as stated previously, Basin W-42 no longer enters the pond, but combines at Highway 24 and a design point was needed to evaluate flows at this location. See the table below for a summary of major design points through the West Tributary in the Falcon Highlands development. Pond WU will release at less than historic rates for both, the 5-year and 100-year events.

| Design  | Exi  | sting* | Pro  | posed  | Location                  |  |  |
|---------|------|--------|------|--------|---------------------------|--|--|
| Point   | 5-Yr | 100-Yr | 5-Yr | 100-Yr |                           |  |  |
| WS      | 137  | 1575   | 145  | 1705   | Woodmen                   |  |  |
| WT      | 143  | 1621   | 244  | 1867   | Tamlin Road (Removed)     |  |  |
| Pond WU |      |        | 118  | 1313   | Highway 24/Pond Outlet    |  |  |
| WU      | 148  | 1648   | 135  | 1339   | Highway 24 (Pr Condition) |  |  |
| WV      | 149  | 1640   | 135  | 1338   | Falcon Highway            |  |  |

\*Existing flows have been modified per the approved Falcon Highlands Final Drainage Report for Regional Detention Pond WU. This report adjusted routing for Basin W-42 and has modified the existing flows at Design Point WU. The "existing" flows which will be the target in this report are those existing flows which have been identified in the previous mentioned report, not those which were stated in the DBPS.

#### **Rational Method**

Because the Meridian Crossing is less than 100 acres, the rational method was used to estimate stormwater runoff for basins, and to size inlets, culverts and ditches, as required by the current

City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM). The rational method coefficients "C" were selected from Table 5-1 of the DCM, the time of concentration was calculated per DCM requirements and intensities for each basin were calculated from storm intensity curve formulas provided by the City of Colorado Springs. The rational method was used to determine onsite flows. Rational Method results are shown in Appendix B and C.

## Water Quality Criteria

The water quality capture volume (WQCV) was calculated based on equations found in the Drainage Criteria Manual Volume 2, Stormwater quality Policies, Procedures and Best Management Practices (BMP's). The WQCV allows suspended sediment and absorbed pollutants to settle out of the water and improve the overall quality of runoff leaving the facility and reduce the potential for erosion. The positive impact on water quality is significant see appendix for proposed pond calculations.

#### **Street Capacity**

Street capacity is based on the DCM criteria, as stated in Chapter 6. Capacity of the streets (Flower Road and McLaughlin Road) will be based on the minor and major storms. Minor storm criteria is based on pavement encroachment and the major storm criteria is based on allowable depth and pavement encroachment. In all cases, flow encroachment shall not extend past the right-of-way (R.O.W.). Mannings equation will be used to determine the street capacity based on the following criteria from the DCM. Flower and McLaughlin Roads are both collector roads. Both streets shall meet the following criteria from the Table 6-1 in the DCM:

| Roadway        | Use of st                                                                                                    | reet in storm                                                                                                                                                                                                | Cross flow in st                                                                                | reets for storm                               |
|----------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Classification | Initial                                                                                                      | Major                                                                                                                                                                                                        | Initial                                                                                         | Major                                         |
| Collector      | No curb<br>overtopping. Flow<br>spread must be<br>limited to a max.<br>20 foot spread from<br>each curb face | Residential dwellings,<br>public, commercial<br>and industrial<br>buildings shall not be<br>inundated at the<br>ground line. The depth<br>of water at the gutter<br>flow line shall not<br>exceed 12 inches. | Where cross pans<br>are allowed, depth<br>of flow shall not<br>exceed 6 inches at<br>flow line. | 12 inches of<br>depth at gutter<br>flow line. |

# DRAINAGE BASINS

# **Existing Drainage Analysis**

Since the site is currently undeveloped, the existing drainage analysis was determined by analyzing existing runoff quantities and patterns. The site is covered predominantly with grasses. Existing storm runoff is generally from the north to the south through natural drainage swales, as well as gutter flow in a previously constructed roadway (Meridian Road). (Sce Figure 5: Existing Drainage Plan) On-site basins, being smaller than 100 acres, were analyzed using the rational method. See below for a brief discussion of each of these basins.

- Basin E-1 (2.18 acres) consists of the southeast half of Meridian Road, at a high point in the road adjacent to Pond MN. Basin E-1 slopes to the south to design point 1. An existing at grade inlet intercepts this flow. Any flow-by from this inlet will be directed onto Old Meridian Road. The remainder of the flow will continue east along Old Meridian Road, which allows street flow to runoff into an existing roadside ditch. This flow then enters a temporary culvert under Old Meridian Road. Basin E-1 produces runoff quantities of 9.4 cfs and 17.6 cfs for the 5-year and 100-year storms.
- Basin E-2 (8.76 acres) consists of an area just east of Old Meridian Road and between Meridian Road and McLaughlin Road. This area is currently undeveloped. Basin E-2 slopes to the southwest to design point 2. Currently, a temporary culvert exists to transfer flow from the east side of Old Meridian Road to the south side. An estimated 13.7 cfs and 31.4 cfs are produced for the 5-year and 100-year storms.
- Basin E-3 (13.96 acres) consists of an area northeast of Old Meridian and McLaughlin Roads in the "Town of Falcon". The flow from this basin will be directed towards the intersection of State Highway 24 and Meridian Road, where it is conveyed under an existing culvert under Old Meridian Road. This flow is directed towards the existing structure at Design Point 6. The basin generates 16.4 cfs and 37.5 cfs for the 5-year and 100-year storms.
- Basin E-4 (2.15 acres) consists of the east half of Meridian Road from Old Meridian Road to the right-in access point to the south. Basin E-4 slopes to the south. Flow from this basin will be conveyed through curb and gutter to the right in access drive, where a sump inlet intercepts the flow. An 18-inch rcp will then release into a temporary channel along Meridian Road, which conveys the flow to design point 6. An estimated 9.3 cfs and 17.5 cfs are produced for the 5-year and 100-year storms.
- Basin E-5 (9.41 acres) consists of an undeveloped native area just east and south of the Falcon Highlands detention pond (Pond WU). Runoff from this basin combines with flows from design point 7 and the detention pond outlet and crosses under US Highway 24 through existing culverts at design point 8. Basin E-5 generates 12.1 cfs and 27.8 cfs for the 5-year and 100-year storms.
- Basin E-6 (2.62 acres) consists of the west half of Meridian Road from the right-in access point to Highway 24. Basin E-6 slopes to the south to design point 4. Runoff will flow south via curb and gutter along this section of Meridian Road. A sump inlet at

the low point, just before Highway 24, intercepts the runoff. This inlet connects to the box culvert under Meridian Road. This flow will continue to the existing box culverts at Highway 24. The Falcon Highlands detention pond also discharges to the existing culvert at Highway 24. However, the detention pond was designed to release flows at 80% of historic flow. The existing culvert under Highway 24 will have enough capacity, because the peak discharge from design point 7 will occur long before the peak discharge of the pond. An estimated 11.6 cfs and 21.7 cfs are produced for the 5-year and 100-year storms.

- Basin E-7 (2.32 acres) consists of the east half of Meridian Road from the right-in access point south to Highway 24. Basin E-7 slopes to the south to design point 15. Runoff will flow south through curb and gutter along this section of Meridian Road. A sump inlet intercepts this flow and connects to the box culvert under Meridian Road. An estimated 10.5 cfs and 19.7 cfs are produced from Basin E-7 for the 5-year and 100-year storms.
- Basin E-8 (23.89 acres) consists of the area south of Old Meridian Road and east of Meridian Road. This area is currently undeveloped. This flow sheetflows across the basin to design point 6. A concrete box culvert conveys the flow under Meridian Road to the existing culvert under Highway 24. An estimated 32.2 cfs and 73.7 cfs are produced for the 5-year and 100-year storms.

### **Existing Design Points**

- Design Point 1 is an existing 15' on-grade inlet in Meridian Road, north of Old Meridian Road. This inlet intercepts flow from Basin E-1, street flow from Meridian Road, south of Pond MN to Old Meridian Road. The inlet releases the flow into a temporary ditch along Old Meridian Road, which conveys the flow to Design Point 2. Flows at this location are 9.4 and 17.6 cfs.
- Design Point 2 collects flow from Basin E-2 and combines it with the flow in the temporary channel from DP-1. A temporary 24-inch culvert under Old Meridian Road conveys the flow to the south towards Design Point 6. This design point has flows of 22.9 and 48.7 cfs.
- Design Point 3 is an existing 20' sump inlet that intercepts the street flow in Meridian Road from Basin D-4. The inlet releases flows into an existing temporary roadside ditch along Meridian Road to Design Point 6. Flows at this location are 9.3 and 17.5 cfs.
- Design Point 4 is an existing 25' sump inlet used to intercept the west side of Meridian Road, north of Highway 24 (Basin E-6). This flow enters the existing storm system and is conveyed to Design Point 7. This design point has flows of 11.6 and 21.7 cfs.
- Design Point 5 is an existing 20' sump inlet in Meridian Road opposite Design Point 4. This inlet intercepts street flow from Basin E-7 and combines with flows in the storm system under Meridian Road. Flows are released at Design Point 7. The design point generates flows of 10.5 and 19.7 cfs.

- Design Point 6 combines flows from Basins E-3 and E-8 with flows from Design Points 2 and 3. Two 12' (W) x 3' (H) reinforced concrete box culverts (RCBC's) convey the flow under Meridian Road to Design Point 7. Flows generated at this design point are 67.8 and 149.7 cfs.
- Design Point 7 is the location where the storm system releases flows. It is the combined flow from Design Points 4, 5 and 6. Once released, flows will continue through an existing ditch to Design Point 8 at Highway 24. Flows at this location are 67.0 and 148.5 cfs.
- Design Point 8 combines the flow from Basin E-5 with flows from Design Point 7 and Detention Pond WU. There are three 12' (W) x 6' (H) RCBC's under Highway 24 to convey flows. These flows will continue towards the south, in a FEMA floodplain, along their existing paths. Flows generated at this location are 147.7 and 1286.1 cfs. This design point corresponds to Design Point WU in the HEC models.

# **Developed Drainage Analysis**

The proposed site was studied in the Falcon Basin DBPS. Efforts have been made to comply with the recommendations set forth in the approved DBPS. The flows in the commercial development will combine with the outlet flows of Detention Pond WU and continue under Highway 24 through the existing box culverts. Figure 6: Developed Drainage Plan illustrates the basin boundaries used for the rational hydrologic model.

Basins D-1 and D-4 through D-7 do not have any changes from the corresponding, existing basins (E-1 and E-4 through E-7), as they have already been developed and the drainage structures have been designed. Basin E-2, a proposed commercial site (Meridian Crossing, whose preliminary plan has been approved by the Board of County Commissioners (BOCC)), the proposed site and adjacent roadways, has been divided into five new developed basins. Changes to Basins D-3 and D-8, is the assumption that these basins will be developed in the future as commercial use. The description of these basins follows.

- Basin D-2 (5.14 acres) consists of approximately the south half of the Meridian Crossing commercial development. It is anticipated for this basin to drain towards the south, where it will be intercepted by a proposed water quality facility (Porous Landscape Detention PLD). This storm system will release flows into a temporary drainage swale through Basin D-8. This drainage pattern is consistent with the approved Master Drainage Development Plan Amendment to Falcon Highlands, which shows these flows reaching the existing box culvert under Highway 24 at design point 8. This basin generates 23.4 cfs and 43.9 cfs for the 5-year and 100-year storm events.
- Basin D-3 (11.49 acres) consists of an area northeast of Old Meridian Road and McLaughlin Road in the "Town of Falcon". It is assumed that this area will be developed as commercial use in the future. The flow from this basin will be directed towards the intersection of Highway 24 and Meridian Road, where it is conveyed under a proposed culvert under Old Meridian Road. The flow is directed towards the existing structure at DP-6. The basin generates 34,7 and 65.1 cfs for the 5 and 100-year events.

intercepted by the temporary grated lid on the proposed manhole at DP-Z This flow will ultimately reach Highway 24. Flows at this location are 4.7 and 8.9 cfs.

- Design Point X is the released flow from the East PLD. Flow from this area combines with a storm system in Old Meridian Road via a 30" rcp. Flows generated in this location are 16.9 cfs and 31.8 cfs.
- Design Point Z is the flow from DP-B, DP-X intercepted flow from inlet 1 and the flow-by from inlet 1 combined with the released flow from the West PLD (Basin D-2). A 36" rcp connects and conveys this flow to a temporary culvert under Old Meridian Road which will release flows into a temporary ditch. Flows at this junction are 44.6 cfs and 83.8 cfs.
- Design Point Y is a proposed 54" rcp which releases flows across Old Meridian Road. The proposed pipe will replace an existing culvert, which is currently undersized, and intercepts flows from D-3. This design point has a flow of 34.7 cfs and 65.1 cfs. There is no corresponding design point in the Market Place Filing No. 1 drainage report.
- Design Point 3 is an existing 20' sump inlet that intercepts the street flow in Meridian Road from Basin D-4. The inlet currently combines with DP-Z and flows into an existing temporary roadside ditch along Meridian Road to Design Point 6. Flows at this location are 9.3 and 17.5 cfs. This design point corresponds to Design Point 13 in the Market Place FDR.
- Design Point E is the combination of D-3 and DP-Z. Flows are released into a temporary channel which conveys flows to a roadside ditch along Meridian Road. This flow is conveyed all the way to Design Point DP-8 at Highway 24 where flows are released from the Falcon Highlands site. Flows intercepted at this location are 46.938.3 cfs and 58.2 cfs. The Market Place Filing No. 1 report does not have any corresponding design points.
- Design Point 4 is an existing 25' sump inlet used to intercept the west side of Meridian Road, north of Highway 24 (Basin D-6). This flow enters the existing storm system and is conveyed to Design Point 7. This design point has flows of 11.6 and 21.7 cfs. This design point corresponds to Design Point 16 in the Market Place FDR. There is no difference in the drainage flows.
- Design Point 5 is an existing 20' sump inlet in Meridian Road opposite Design Point 4. This inlet intercepts street flow from Basin D-7 and combines with flows in the storm system under Meridian Road. Flows are released at Design Point 7. The design point generates flows of 10.5 and 19.7 cfs. This location corresponds to Design Point 15 in the Market Place FDR. There are no changes in the flows.
- Design Point 6 combines flow from Basin D-8 with DP-E and DP-Y. Two 12' (W) x 3' (H) reinforced concrete box culverts (RCBC's) convey the flow under Meridian Road to Design Point 7. Flows generated at this design point are 127.7 and 239.9 cfs. This location corresponds to Design Point 17 in the Market Place FDR. This report calculated flows to be 157.9 and 300.6 cfs.

# DRAINAGE FACILITY DESIGN

# **General Concept**

Meridian Crossing is located completely within the West Tributary of the Falcon Drainage Basin. The site drains towards the southwest where it is directed towards an existing drainage structure under Highway 24. This structure has been analyzed to ensure it still properly functions with the developed flow released here. The flow from these structures will continue along an existing swale to the south. There are two water quality facilities proposed for the site, prior to flows exiting.

#### Storm Systems

There has been one storm system previously installed with the construction of Meridian Road. This system was designed in the Market Place Filing No. 1 FDR. One new culvert and a temporary culvert have been proposed with the development of this site. StormCAD and CulvertMaster calculations have been included at the end of the report analyzing all of these facilities to ensure they are still adequate for the developed flow associated with this

The first system is an existing system located at the intersection of Meridian Road and Highway 24. This system was initially designed in the Market Place Filing No. 1 FDR. The system has been analyzed to ensure it will still function properly with the development of The Shoppes at Falcon. A 20-foot sump inlet is located at DP-5 in Meridian Road. This inlet intercepts 10 cfs and 19 cfs. A 25-foot sump inlet is located on the other side of Meridian Road at DP-4. This inlet intercepts 12 and 22 cfs. Both of these inlets connect to an existing 12'(W) x 3' (H) box culvert under Meridian Road via 24-inch rcp's. This structure intercepts a total flow of 127.7 and 239.9 cfs. This system releases flows into an existing channel parallel to Highway 24 at DP-7. Flows at this location are 140.2 cfs and 264.8 cfs. The channel conveys this flow to DP-8 at Highway 24, where the flow exits Falcon Highlands and continues on its existing path to the south.

# **Channel Improvements**

The temporary channel from DP-Z has a 100-year flow of 73.3 cfs from the proposed storm system. The channel will be shaped similarly to the roadside ditch along the southeast side of Meridian Road, which it connects to. Velocity is this channel is 3.2 ft/s with a flow depth of 1.8 feet. A temporary drainage easement will be recorded on the final plat to accommodate this

The existing roadside ditch along Basin D-7 is located east of Meridian Road from the right-in access point south to Highway 24. The ditch will carry the 100-year storm (88.2 cfs) at a depth of 1.8 feet to DP-6. The velocity in this channel is 5.5 fps. This channel will also be removed upon development of Basin D-8 and the construction of an internal storm drain system.

There is a series of onsite temporary swales in lots 3, 4 and 5. These swales will be utilized to ensure flows are conveyed to the west PLD. Once these lots develop, the swales will no longer be necessary and will be removed. Also, located outside of the Meridian Crossing right-of-way

along Old Meridian Road are 3 temporary swales, which convey flows to storm inlets. These swales will be removed upon the construction of Old Meridian Road.

## **Detention Pond WU**

Based on the current configuration of the basins, Pond WU does work as intended. The 5-year release rate is less than the existing flow rate. Refer to the table earlier in the report for flow rates at major design points. Based on the current analysis of the hydrology for the area no modifications will be necessary to the outlet structure of the detention pond as previously assumed. The 100-year storm also functions properly and has a release rate lower than the existing flows.

# **Proposed Water Quality Pond**

Based on the City of Colorado Springs/El Paso County DCM Volume 2, a water quality pond is needed, as the development area is greater than 1.0 acre. There will be two water quality capture ponds (WQCP), which will be porous landscape detention (PLD). Both ponds structures will be located between the northern right of way of McLaughlin road and the proposed curb and gutter for lots 5 and 6. This will enable the ponds to be used for final construction of each of the building sites. The east and west pond combine for a total 8200 square feet.

# **Ultimate Design**

Currently, there is evidence that Old Meridian Road will be improved. If this situation does not happen, there is an "ultimate design" scenario to account for this. Meridian Crossing will be responsible for installing curb and gutter and sidewalk for the portion of Old Meridian Road which fronts their property. The rcp stub behind inlet DP-1 will be extended via 18"rcp to the existing culvert under Old Meridian Road. A 5' type R inlet will be installed to catch the flows of Old Meridian Road (see appendix item I for StormCAD calculations). A 5' manhole will be installed to connect the new and existing pipes. The existing culvert will continue to convey the flow through an existing swale, which releases flows into the roadside swale along Meridian Road. This flow still reaches an ultimate location of DP-8, where all flows leave the Falcon Highlands development.

# **Downstream Facilities**

# Falcon West Tributary

Detention Pond WU discharges below the historical rate as described in the Falcon Highlands Filing No. 1 PDR and the Falcon Basin DBPS. Just downstream of Pond WU outlet works is an existing bridge at SH 24. At Highway 24 near Pond WU, triple 12' x 6' RCBC's were installed in 1999. This facility conveys the 1239 cfs 100-year design flow. An analysis of these structures in included in the appendix. The DBPS recommended installing a lined channel with geotextile fabric and grade control drop structures. Currently, this area has no real definable channels, but flows are allowed to spread once they are released through the structure at SH 24. This area is within a FEMA designated floodplain. Historic flows as stated in the DBPS are 1518 cfs.

Downstream of SH 24, flows follow a FEMA floodplain to Falcon Highway. At Falcon Highway there is a 36-inch cmp culvert that is inadequate to carry the 100-year design flow.

# DRAINAGE FEES, COST ESTIMATE & MAINTENANCE

### Maintenance

The streets and major improvements within this site will be maintained by the Meridian Crossing Property Owners Association (POA) for ownership and maintenance. This includes the roads, drainage facilities, and water quality ponds. The Falcon Highlands Metropolitan District will own and operate water and wastewater systems. The remaining utilities (gas, phone, electric, cable, etc) will be owned and maintained by their respective companies. Easements will be issued to ensure each entity is able to access and maintain their facilities.

#### **Drainage Fees**

Г

The proposed development is located within the Falcon Basin. The proposed commercial site encompasses approximately 9.5 acres. Fees will be based on 9.0 acres (95% imperviousness due to commercial development).

Drainage fees in the Falcon Basin are \$6,925 and bridge fees are \$2,659. Based on these numbers and an impervious area of 9.0 acres fees for this development are \$62,325 for drainage and \$25,261 for bridge fees. This gives a total fee of \$87,586.

| DRAINAGE     UNITS     COST     QUANTITY     COST       5' STORM MANHOLE     EA     2,800     1     2,800       30" RCP     LF     55     435     23,922       36" RCP     LF     65     60     3,900       RIPRAP     LF     80     105     8,400       SUBTOTAL DRAINAGE     CY     45     30     1,350       GRADING AND EROSION     S40,375     5     57,600       CUEARING AND GRUBBING     AC     \$800     9.5     \$7,600       VATER QUALITY PONDS     EA     3,000     2     6,000       CURB BACKFILL     LF     2.50     3200     8,000       MAY BALE CHECKS     EA     10     37     370       VEHICLE TRACKING CONTROL     EA     2.600     4     800       SUBTOTAL GRAD MULCH     AC     3,500     1     1.500       UNLET PROTECTORS     EA     200     4     800       SUBTOTAL GRADING & EROSION     S100,770     3100,7770     3100,7770 <t< th=""><th>ITEM</th><th>TID IT OF</th><th>UNIT</th><th></th><th>ITEM</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ITEM                        | TID IT OF | UNIT  |          | ITEM      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|-------|----------|-----------|
| STORM MANHOLE     EA     2.800     1     2.800       30" RCP     LF     55     435     23,925       42" RCP     LF     65     60     3,900       42" RCP     LF     80     105     8,400       SUBTOTAL DRAINAGE     CY     45     30     1,350       GRADING AND EROSION     SUBTOTAL DRAINAGE     S40,375     540,375       CLEARING AND GRUBBING     AC     \$800     9.5     \$7,600       CLEARING AND GRUBBING     AC     \$800     9.5     \$7,600       WATER QUALITY PONDS     EA     3,000     2     6,000       USE SEEDING AND MULCH     LF     2.50     3200     8,000       MISC SEEDING AND MULCH     AC     3,500     6     21,000       INLET PROTECTORS     EA     10     37     370       VEHICLE TRACKING CONTROL     EA     1,500     1     1,500       SUBTOTAL GRADING & EROSION     S100,770     S100,770     3100,770       ULTIMATE DRAINAGE     EA     2,800     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DRAINAGE                    | UNITS     | COST  | QUANTITY | COST      |
| S' STORM MANHOLE     EA     2,800     1     2,800       30" RCP     LF     55     435     23,925       42" RCP     LF     65     60     3,900       42" RCP     LF     80     105     8,400       RIPRAP     CY     45     30     1,350       SUBTOTAL DRAINAGE     -     -     \$40,375       GRADING AND EROSION     -     -     \$40,375       CONTROL     -     -     -     \$40,375       CLEARING AND GRUBBING     AC     \$800     9,5     \$7,600       WATER QUALITY PONDS     EA     3,000     2     6,000       MISC SEEDING AND MULCH     LF     2.50     3200     8,000       MISC SEEDING AND MULCH     AC     3,500     6     21,000       INLET PROTECTORS     EA     10     37     370       VEHICLE TRACKING CONTROL     EA     10     37     370       SUBTOTAL GRADING & EROSION     LF     5     1800     9,0000       SUBTOTAL GRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |           |       |          |           |
| Let     EA     2,800     1     2,800       30" RCP     LF     55     435     23,922       42" RCP     LF     65     60     3,900       RIPRAP     LF     80     105     8,400       SUBTOTAL DRAINAGE     CY     45     30     1,350       GRADING AND EROSION     S40,375     \$40,375       CONTROL     State     \$40,375       CLEARING AND GRUBBING     AC     \$800     9,5     \$7,600       WATER QUALITY PONDS     EA     3,000     2     6,000       MISC SEEDING AND MULCH     AC     3,500     6     21,000       MISC SEEDING AND MULCH     AC     3,500     6     21,000       INLET PROTECTORS     EA     10     37     3700       VEHICLE TRACKING CONTROL     EA     1,500     1     1,500       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000       CORR BACKFILL     LF     2,800     1     3,500       SUBTOTAL GRADING & EROSION     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5' STORMANANIJO F           |           |       |          |           |
| JUNCP     LF     55     415     2,000       36" RCP     LF     655     60     3,900       42" RCP     LF     80     1005     8,400       SUBTOTAL DRAINAGE     CY     45     30     1,350       GRADING AND EROSION     SUBTOTAL DRAINAGE     \$40,375     \$40,375       GRADING AND EROSION     State     \$40,375     \$600     \$1,350       CLEARING AND GRUBBING     AC     \$800     9.5     \$7,600       CLEARING AND GRUBBING     AC     \$300     2     6,000       WATER QUALITY PONDS     EA     3,000     2     6,000       MISC SEEDING AND MULCH     AC     3,500     6     21,000       MISC SEEDING AND MULCH     AC     3,500     6     21,000       INLET PROTECTORS     EA     10     37     370       VEHICLE TRACKING CONTROL     EA     1,500     1     1,500       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000       CONTROL     LF     40     25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30" PCP                     | EA        | 2,800 | 1        | 2 800     |
| JUNCP     LF     65     60     3.900       RIPRAP     LF     80     105     8.400       SUBTOTAL DRAINAGE     CY     45     30     1.350       GRADING AND EROSION     S40,375     \$40,375     \$40,375       CONTROL     CONTROL     S40,375     \$100,770       CLEARING AND GRUBBING     AC     \$800     9.5     \$7,600       CALTRWORK     CY     3.50     13300     46,550       WATER QUALITY PONDS     EA     3.000     2     6,000       MISC SEEDING AND MULCH     AC     3,500     6     21,000       MAY BALE CHECKS     EA     10     37     370       VEHICLE TRACKING CONTROL     EA     1,000     1     1,500       SILT FENCING     LF     5     1800     9,000       CONTROL     EA     2,800     1     2,800       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000       CONTROL     EA     1,500     1     1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36" PCD                     | LF        | 55    | 435      | 2,000     |
| LF     80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10" ROP                     | LF        | 65    | 60       | 23,925    |
| INITRAP     CY     45     30     1,350       SUBTOTAL DRAINAGE     30     1,350     340,375       GRADING AND EROSION     2     \$40,375       CONTROL     2     2     \$40,375       CLEARING AND GRUBBING     AC     \$800     9.5     \$7,600       EARTHWORK     CY     3.50     13300     46,550       WATER QUALITY PONDS     EA     3,000     2     6,000       MISC SEEDING AND MULCH     LF     2.50     3200     8,000       MISC SEEDING AND MULCH     AC     3,500     6     21,000       INLET PROTECTORS     EA     10     37     370       VEHICLE TRACKING CONTROL     EA     200     4     800       SUBTOTAL GRADING & EROSION     0     1     1,500     1     1,500       SUBTOTAL GRADING & EROSION     0     1     1,500     1     1,500       SUBTOTAL GRADING & EROSION     0     1     1,500     1     1,500       SUBTOTAL GRADING & EROSION     0     1 <td< td=""><td></td><td>LF</td><td>80</td><td>105</td><td>3,900</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | LF        | 80    | 105      | 3,900     |
| SUBTOTAL DRAINAGE     30     1,30       GRADING AND EROSION<br>CONTROL     \$40,375       CLEARING AND GRUBBING     AC     \$800     9.5     \$7,600       CLEARING AND GRUBBING     AC     \$800     9.5     \$7,600       EARTHWORK     CY     3.50     13300     46,550       WATER QUALITY PONDS     EA     3,000     2     6,000       CURB BACKFILL     LF     2.50     3200     8,000       MAY BALE CHECKS     EA     10     37     3700       INLET PROTECTORS     EA     10     37     3700       VEHICLE TRACKING CONTROL     EA     1,500     1     1,500       SILT FENCING     LF     5     1800     9,000       CONTROL     EA     2,800     1     2,800       SUBTOTAL GRADING & EROSION     LF     40     259     10,360       SUBTOTAL URATE DRAINAGE     EA     2,800     1     2,800       SUBTOTAL ULTIMATE DRAINAGE     EA     3,500     1     3,500       SUBTOTAL ULTIMATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RIPRAP                      | CY        | 45    |          | 0,400     |
| GRADING AND EROSION<br>CONTROL     340,375       CLEARING AND GRUBBING     AC     \$800     9.5     \$7,600       CLEARING AND GRUBBING     AC     \$800     9.5     \$7,600       WATER QUALITY PONDS     EA     3,000     2     6,000       CURB BACKFILL     LF     2.50     3200     8,000       MAY BALE CHECKS     EA     10     37     370       INLET PROTECTORS     EA     10     37     370       VEHICLE TRACKING CONTROL     EA     1,500     1     1,500       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000       CONTROL     EA     2,800     1     2,800       ULTIMATE DRAINAGE     S100,770     1     3,500     1     3,500       5' STORM MANHOLE     EA     2,800     1     2,800     1     3,500       SUBTOTAL ULTIMATE DRAINAGE     EA     3,500     1     3,500     1     3,500       SUBTOTAL ULTIMATE DRAINAGE     EA     3,500     1     3,500     \$16,660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUBTUTAL DRAINAGE           |           |       |          | 1,350     |
| STADING AND EROSION     AC     \$800     9.5     \$7,600       CLEARING AND GRUBBING     AC     \$800     9.5     \$7,600       EARTHWORK     CY     3.50     13300     46,550       WATER QUALITY PONDS     EA     3,000     2     6,000       MISC SEEDING AND MULCH     LF     2.50     3200     8,000       HAY BALE CHECKS     EA     10     37     370       INLET PROTECTORS     EA     200     4     800       SILT FENCING     CONTROL     EA     1,500     1     1,500       SILT FENCING     LF     5     1800     9,000     2,000     4     800       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000     2,000     1     1,500     1     1,500     1     1,500     1     1,500     1     1,500     1     1,500     1     1,500     1     1,500     1     1,500     1     1,500     1     1,500     1     1,500     1     1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GRADING AND EDGOLOU         |           |       |          | 940,375   |
| CUNTROL     AC     \$800     9.5     \$7,600       EARTHWORK     CY     3.50     13300     46,550       WATER QUALITY PONDS     EA     3,000     2     6,000       CURB BACKFILL     LF     2.50     3200     8,000       MISC SEEDING AND MULCH     AC     3,500     6     21,000       HAY BALE CHECKS     EA     10     37     370       INLET PROTECTORS     EA     200     4     800       SILT FENCING     LF     5     1800     9,000       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000       CONTROL     EA     2,800     1     2,800       30" RCP     LF     40     259     10,360       SUBTOTAL ULTIMATE DRAINAGE     S10,770     \$16,660     \$16,660       SUBTOTAL DRAINAGE & EROSION     S16,660     \$16,660     \$16,660       SUBTOTAL ULTIMATE DRAINAGE     S16,660     \$16,660     \$16,660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CONTROL                     |           |       |          |           |
| CLEARING AND GRUBBING     AC     \$800     9.5     \$7,600       EARTHWORK     CY     3.50     13300     46,550       WATER QUALITY PONDS     EA     3,000     2     6,000       CURB BACKFILL     LF     2.50     3200     8,000       MISC SEEDING AND MULCH     AC     3,500     6     21,000       HAY BALE CHECKS     EA     10     37     370       INLET PROTECTORS     EA     200     4     800       VEHICLE TRACKING CONTROL     EA     1,500     1     1,500       SILT FENCING     LF     5     1800     9,000       CONTROL     EA     2,800     1     2,800       SUBTOTAL GRADING & EROSION     LF     40     259     10,360       S' STORM MANHOLE     EA     2,800     1     2,800       30" RCP     LF     40     259     10,360       SUBTOTAL ULTIMATE DRAINAGE     S10,500     \$16,660     \$16,660       SUBTOTAL DRAINAGE & EROSION     S16,660     \$16,660     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CONTROL                     |           |       | 1        |           |
| EARTHWORK     CY     3:00     9:5     \$7,600       WATER QUALITY PONDS     EA     3:000     2     6:000       CURB BACKFILL     LF     2:50     3200     8:000       MISC SEEDING AND MULCH     AC     3:500     6     21:000       HAY BALE CHECKS     EA     10     37     370       INLET PROTECTORS     EA     200     4     800       SILT FENCING     CONTROL     EA     1,500     1     1,500       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000       CONTROL     EA     2,800     1     2,800       SUBTOTAL GRADING & EROSION       \$100,770       ULTIMATE DRAINAGE       \$100,770       ULTIMATE DRAINAGE       \$100,770       SUBTOTAL ULTIMATE DRAINAGE      \$10,360     \$10,360       SUBTOTAL ULTIMATE DRAINAGE      \$16,660     \$16,660       SUBTOTAL ULTIMATE DRAINAGE      \$157,805     \$10,505       Engineering (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CLEARING AND GRUBBING       | AC        | 0083  |          |           |
| WATER QUALITY PONDS     Image: Fragment and the system of the sy | EARTHWORK                   | CY        | 3 50  | 9.5      | \$7,600   |
| CURB BACKFILL     LF     3,000     2     6,000       MISC SEEDING AND MULCH     AC     3,500     6     21,000       HAY BALE CHECKS     EA     10     37     370       INLET PROTECTORS     EA     200     4     800       VEHICLE TRACKING CONTROL     EA     200     4     800       SILT FENCING     LF     5     1800     9,000       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000       CONTROL     EA     2,800     1     2,800       SUBTOTAL GRADING & EROSION     LF     40     259     10,360       SUBTOTAL ULTIMATE DRAINAGE     EA     3,500     1     2,800       SUBTOTAL ULTIMATE DRAINAGE     EA     3,500     1     3,500       SUBTOTAL ULTIMATE DRAINAGE     S16,660     SUBTOTAL DRAINAGE & EROSION     S16,660     SUBTOTAL DRAINAGE & EROSION     S157,805       Engineering (10%)     Engineering (10%)     EA     S157,605     S1645,704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATER QUALITY PONDS         | FA        | 3.50  | 13300    | 46,550    |
| MISC SEEDING AND MULCH     AC     3200     8,000       HAY BALE CHECKS     EA     3,500     6     21,000       INLET PROTECTORS     EA     10     37     370       VEHICLE TRACKING CONTROL     EA     200     4     800       SILT FENCING     EA     1,500     1     1,500       SUB TOTAL GRADING & EROSION     LF     5     1800     9,000       CONTROL     EA     2,800     1     2,800       SUB TOTAL GRADING & EROSION     S100,770     1     2,800     1     2,800       SUB TOTAL URATE DRAINAGE     S100,770     1     2,800     1     2,800     1     2,800       SUB TOTAL ULTIMATE DRAINAGE     EA     2,800     1     2,800     1     3,500       SUB TOTAL ULTIMATE DRAINAGE     EA     3,500     1     3,500     1     3,500       SUB TOTAL DRAINAGE & EROSION     S16,660     SUB TOTAL DRAINAGE & EROSION     S16,660     S16,660       SUB TOTAL DRAINAGE & EROSION     S157,805     S157,805     S16,660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CURB BACKFILL               | 15        | 3,000 | 2        | 6,000     |
| HAY BALE CHECKS     INDEX     3,500     6     21,000       INLET PROTECTORS     EA     10     37     370       VEHICLE TRACKING CONTROL     EA     200     4     800       SILT FENCING     EA     1,500     1     1,500       SILT FENCING     LF     5     1800     9,000       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000       CONTROL     EA     2,800     1     2,800       ULTIMATE DRAINAGE     5' STORM MANHOLE     5' STORM MANHOLE     5' TYPE R INLET     EA     3,500     1     2,800       5' TYPE R INLET     EA     3,500     1     3,500     1     3,500       SUBTOTAL DRAINAGE     SUBTOTAL DRAINAGE     \$16,660     \$16,660     \$16,660     \$16,660       SUBTOTAL DRAINAGE & EROSION     S157,805     \$157,805     \$157,805     \$167,805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MISC SEEDING AND MULCH      | AC        | 2.50  |          | 8,000     |
| INLET PROTECTORS     LA     10     37     370       VEHICLE TRACKING CONTROL     EA     200     4     800       SILT FENCING     LF     5     1800     9,000       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000       CONTROL     EA     2,800     1     2,800       ULTIMATE DRAINAGE     5' STORM MANHOLE     \$100,770       ULTIMATE DRAINAGE     2,800     1     2,800       5' STORM MANHOLE     EA     2,800     1     2,800       30" RCP     LF     40     259     10,360       SUBTOTAL ULTIMATE DRAINAGE     S16,660     \$16,660     \$16,660       SUBTOTAL DRAINAGE & EROSION     S157,805     \$157,805     \$157,805       Engineering (10%)     645,704     \$45,704     \$45,704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HAY BALE CHECKS             | FA        |       | 6        | 21,000    |
| VEHICLE TRACKING CONTROL     EA     200     4     800       SILT FENCING     LF     5     1     1,500     1     1,500       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000     9,000       CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INLET PROTECTORS            | FA        | 10    | 37       | 370       |
| SILT FENCING     LR     1,500     1     1,500       SUBTOTAL GRADING & EROSION     LF     5     1800     9,000       CONTROL     \$100,770     \$100,770     \$100,770       ULTIMATE DRAINAGE     \$100,770     \$100,770       5' STORM MANHOLE     EA     2,800     1     2,800       5' STORM MANHOLE     EA     2,800     1     2,800       5' TYPE R INLET     EA     3,500     1     3,500       SUBTOTAL ULTIMATE DRAINAGE     \$16,660     \$16,660     \$16,660       SUBTOTAL DRAINAGE & EROSION     \$157,805     \$157,805     \$157,805       Engineering (10%)     £45,704     \$45,704     \$45,704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VEHICLE TRACKING CONTROL    |           | 200   | 4        | 800       |
| SUBTOTAL GRADING & EROSION     Li     5     1800     9,000       CONTROL     \$100,770     \$100,770     \$100,770       ULTIMATE DRAINAGE     EA     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     3,500     1     3,500     1     3,500     1     3,500     1     3,500     1     3,500     1     3,500     2     3,500     2     3,500     2     3,500     2     3,500     2     3,500     2     3,500     2     3,500     2     3,500     2     3,500     2     3,500     2     3,500     2     3,500     2     3,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SILT FENCING                |           | 1,500 | 1        | 1,500     |
| CONTROL     \$100,770       ULTIMATE DRAINAGE     5' STORM MANHOLE     5' STORM MANHOLE     2,800     1     2,800       5' STORM MANHOLE     EA     2,800     1     2,800     1     2,800       5' TYPE R INLET     EA     3,500     1     3,500     1     3,500       SUBTOTAL ULTIMATE DRAINAGE     S16,660     \$16,660     \$16,660     \$16,660       SUBTOTAL DRAINAGE & EROSION     S157,805     \$157,805     \$157,805     \$157,805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SUBTOTAL GRADING & EROSION  |           | 5     | 1800     | 9,000     |
| ULTIMATE DRAINAGE     \$100,770       5' STORM MANHOLE     EA     2,800     1     2,800       30" RCP     LF     40     259     10,360       5' TYPE R INLET     EA     3,500     1     3,500       SUBTOTAL ULTIMATE DRAINAGE     \$16,660     \$16,660     \$16,660       SUBTOTAL DRAINAGE & EROSION     \$157,805     \$157,805       Engineering (10%)     £45,704     \$45,704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONTROL                     |           |       |          |           |
| ULTIMATE DRAINAGE     EA     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     2,800     1     3,600     1     3,500     1     3,500     1     3,500     1     3,500     1     3,500     1     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500     3,500<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |           |       |          | \$100,770 |
| 5' STORM MANHOLE     EA     2,800     1     2,800       30" RCP     LF     40     259     10,360       5' TYPE R INLET     EA     3,500     1     3,500       SUBTOTAL ULTIMATE DRAINAGE     \$16,660     \$16,660     \$16,660       SUBTOTAL DRAINAGE & EROSION     \$157,805     \$157,805       Engineering (10%)     \$45,704     \$45,704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ULTIMATE DRAINAGE           |           |       |          |           |
| 30" RCP     LF     2,800     1     2,800       5' TYPE R INLET     LF     40     259     10,360       SUBTOTAL ULTIMATE DRAINAGE     EA     3,500     1     3,500       SUBTOTAL DRAINAGE     \$16,660     \$16,660     \$16,660       SUBTOTAL DRAINAGE & EROSION     \$157,805     \$157,805       Engineering (10%)     \$157,805     \$157,805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5' STORM MANHOLE            | FA        | 2 000 |          |           |
| 5' TYPE R INLET     Li     40     259     10,360       SUBTOTAL ULTIMATE DRAINAGE     EA     3,500     1     3,500       SUBTOTAL ULTIMATE DRAINAGE     \$16,660     \$16,660     \$16,660       SUBTOTAL DRAINAGE & EROSION     \$157,805     \$157,805       Engineering (10%)     \$157,201     \$157,201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30" RCP                     |           | 2,800 | 1        | 2,800     |
| SUBTOTAL ULTIMATE DRAINAGE     3,500     1     3,500       SUBTOTAL DRAINAGE & EROSION     \$16,660     \$16,660     \$157,805       Engineering (10%)     \$157,805     \$157,805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5' TYPE R INLET             | FA        | 40    | 259      | 10,360    |
| SUBTOTAL DRAINAGE & EROSION     \$16,660       CONTROL     \$157,805       Engineering (10%)     \$157,201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SUBTOTAL ULTIMATE DRAINAGE  | -+=`+-    |       | 1        | 3,500     |
| SOBTOTAL DRAINAGE & EROSION \$157,805   Engineering (10%) \$157,201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |           |       |          | \$16,660  |
| Engineering (10%) \$157,805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUBTOTAL DRAINAGE & EROSION |           |       |          |           |
| Engineering (10%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CONTROL                     |           |       |          | \$157.00- |
| Engineering (10%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |           |       |          | \$157,805 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |           |       |          | \$15 704  |

# **Proposed Facilities Estimate**

Z:\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\FDR.doc

| 1                 |           |
|-------------------|-----------|
| Contingency (10%) | I I       |
|                   | \$15,781  |
| TOTAL             |           |
|                   | \$189,367 |

.

.

# **EROSION CONTROL**

#### General Concept

During construction, best management practices for erosion control will be employed based on El Paso County criteria and the erosion control plan.

Ditches will be designed to meet El Paso County criteria for slope and velocity, keeping velocities below scouring levels.

During construction, best management practices (BMP) for erosion control will be employed based on El Paso County Criteria. BMP's will be utilized as deemed necessary by the contractor and/or engineer and are not limited to measures shown on the construction drawing The contractor shall minimize the amount of area disturbed during all construction activities.

In general the following shall be applied in developing the sequence of major activities:

- Install downslope and sideslope perimeter BMP's before land disturbing activity occurs.
- Do not disturb an area until it is necessary for construction activity to proceed.
- Cover or stabilize as soon as possible. •
- Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- The construction of filtration BMP's should wait until the end of the construction project • when upstream drainage areas have been stabilized.
- Do not remove temporary perimeter controls until after all upstream areas are stabilized.

## **Silt Fence**

Silt fence will be placed along downstream limits of disturbed areas. This will prevent suspended sediment from leaving the site during infrastructure construction. Silt fencing is to remain in place until vegetation is reestablished.

#### **Erosion Bales**

Erosion bales will be placed ten (10) feet from the inlet of all culverts and inlets during construction to prevent culverts from filling with sediment. Erosion bales will remain in place until vegetation is reestablished in graded roadside ditches and channels. Erosion bale ditch checks will be used on slopes greater than 1% to reduce flow velocities until vegetation is

#### Vehicle Tracking Control

This BMP is used to stabilize construction entrances, roads, parking areas and staging areas to prevent the tracking of sediment from the construction site. A vehicle tracking control (VIC) is to be used at all locations where vehicles exit the construction site onto public roads, loading and unloading areas, storage and staging areas, where construction trailers are to be located, any construction area that receives high vehicular traffic, construction roads and parking areas. VTC's should not be installed in areas where soils erode easily or are wet.

# **Sedimentation Pond**

This BMP is used to detain runoff which has become laden with sediment long enough to allow the sediment to settle out. As the construction area is larger than 1 acre, a temporary sediment basin is required per Volume 2 of the Drainage Criteria Manual. The basin will be located in the area of the proposed water quality pond, as this area will need to be excavated and an embankment built. A temporary 8" pvc underdrain will be installed to drain this basin during construction.

# **REFERENCE MATERIALS**

- "City of Colorado Springs/El Paso County Drainage Criteria Manual" September 1987, Revised November 1991, Revised October 1994.
- "City of Colorado Springs/El Paso County Drainage Criteria Manual, Volume 2: Stormwater Quality Policies, Procedures and Best Management Practices" November 1, 2002.
- 3. Soils Survey of El Paso County Area, Natural Resources Conservation Services of Colorado.
- 4. Flood Insurance Rate Study for El Paso County, Colorado and Incorporated Areas. Federal Emergency Management Agency, Revised March 17, 1997.
- 5. Falcon Area Drainage Basin Planning Study Preliminary Design Report, December 2000. Prepared by URS Corp.
- Master Development Drainage Plan, and Preliminary Drainage Report and Final Drainage Report for Falcon Highland Filing No. 1, October 2004. Prepared by URS Corp.
- Floodplain Modification Study and Application for Conditional Letter of Map Revision for the Middle Tributary of the Falcon Basin-Regency Center, January 2005. Prepared by URS Corp.
- 8. Amendment to Falcon Highlands Master Drainage Development Plan, September 2005. Prepared by URS Corp.
- 9. Falcon Highlands Market Place Filing No. 1 Preliminary and Final Drainage Report, December 22, 2005. Prepared by URS Corp.



l









| * |          |          |         |          |  |
|---|----------|----------|---------|----------|--|
| * | FLOOD HY | DROGRAPH | PACKAGE | (HEC-1)  |  |
| * |          | JUN      | 1998    |          |  |
| * |          | VERSION  | 4.1     |          |  |
| * |          |          |         |          |  |
| * | RUN DATE | 28SEP0   | 7 TIME  | 11:57:06 |  |
| * |          |          |         |          |  |

| *** | * * * * * * * * * * * * * * * * * * * * | * * * |
|-----|-----------------------------------------|-------|
| *   |                                         | *     |
| *   | U.S. ARMY CORPS OF ENGINEERS            | *     |
| •   | HYDROLOGIC ENGINEERING CENTER           | *     |
| *   | 609 SECOND STREET                       | *     |
| *   | DAVIS, CALIFORNIA 95616                 | *     |
| *   | (916) 756-1104                          | *     |
| *   |                                         | *     |
| *** | * * * * * * * * * * * * * * * * * * * * | ***   |

.

| х    | х   | XXXXXXX  | XX | XXX |       | х   |
|------|-----|----------|----|-----|-------|-----|
| х    | х   | х        | х  | х   |       | XX  |
| х    | х   | х        | х  |     |       | х   |
| XXXX | XXX | XXXX     | х  |     | XXXXX | х   |
| х    | х   | х        | х  |     |       | х   |
| х    | х   | х        | Х  | х   |       | х   |
| х    | х   | XXXXXXXX | XX | XXX |       | XXX |

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HECIDB, AND HECIKW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

|          |            |            |           |           | HEC-1     | INPUT       |           |           |           |           |       | PAGE | 1 |   |
|----------|------------|------------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-------|------|---|---|
| LINE     | ID         | 1          | 2.        |           | 4.        | 5.          |           | 7         | 8.        | 9         | 10    |      |   |   |
| 1        | ID         | FALCON     | BASTN !   | 5-YR/ 24- | -HOUR FLO | OOD/ EXIS   | STING CON | IDITIONS  |           |           |       |      |   |   |
| 2        | ID         | UI         | PPER EAS  | T TRIBUTA | ARY (WOOI | DMEN HILI   | LS) BASEI | ON CLON   | IR APPROV | VED 2/2/9 | 99    |      |   |   |
| 3        | 1D<br>TD   | IN         | NCLUDING  | 2 EXIST   | ING SCS   | STOCK PON   | NDS, WEST | WOODMEN   | HILLS I   | POND      |       |      |   |   |
| 5        | ID         | N.         | DET       | ENTION PO | OND AT M  | 5<br>2      | JUELED R  | 5 HISTOR  | IC IO ACC | JOUNT FUR | (     |      |   |   |
| 6        | ID         | NC         | DTE: NO O | CULVERT A | AT STAPL  | ETON & ME   | ERIDIAN,  | TEMP CUI  | VERTS A   | MERIDIA   | N N   |      |   |   |
| 1        | 1D<br>*D7A | GRAM       | DOW       | NSTREAM ( | OF WOODM  | EN HILLS    | DRIVE (I  | DIVERSION | 4)        |           |       |      |   |   |
| 8        | IT         | 5 1        | 14JUL99   | 800       | 300       |             |           |           |           |           |       |      |   |   |
| 9        | 10         | 5          |           |           |           |             |           |           |           |           |       |      |   |   |
| 10       | кк         | <b>W</b> 1 |           |           |           |             |           |           |           |           |       |      |   |   |
| 11       | KM<br>BA   | 0479       |           |           |           |             |           |           |           |           |       |      |   |   |
| 13       | PB         | 2.6        |           |           |           |             |           |           |           |           |       |      |   |   |
| 14       | IN         | 15         | 0015      | 0020      |           | 0000        |           |           |           |           |       |      |   | • |
| 15       | PC         | .0188      | .0210     | .0233     | .0255     | .0080       | .0080     | .0100     | .0120     | .0143     | .0165 |      |   |   |
| 17       | PC         | .0750      | .1000     | .4000     | .7000     | .7250       | .7500     | .7650     | .7800     | .7900     | .8000 |      |   |   |
| 18       | PC         | .8100      | .8200     | .8250     | .8300     | .8350       | .8400     | .8450     | -8500     | .8550     | .8600 |      |   |   |
| 20       | PC         | .9013      | .9050     | .9083     | .9115     | .9148       | .9180     | .9210     | .9240     | .9270     | .9300 |      |   |   |
| 21       | PC         | .9325      | .9350     | .9375     | .9400     | .9425       | .9450     | .9475     | .9500     | .9525     | .9550 |      |   |   |
| 22       | PC         | .95/5      | .9600     | .9625     | .9650     | .9675       | .9700     | .9725     | .9750     | .9775     | .9800 |      |   |   |
| 24       | PC         | .9938      | .9950     | .9963     | .9975     | .9988       | 1.000     |           |           |           |       |      |   |   |
| 25       | LS         | 097        | 60        |           |           |             |           |           |           |           |       |      |   |   |
| 20       | 00         | .057       |           |           |           |             |           |           |           |           |       |      |   |   |
| 27       | KK         |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 29       | RK         | 1519       | .0263     | .035      |           | TRAP        | 5         | 4         |           |           |       |      |   | • |
| 30       | кк         | W2         |           |           |           |             |           |           |           |           |       |      |   |   |
| 31       | KM         |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 32       | BA         | .0278      | 60        |           |           |             |           |           |           |           |       |      |   |   |
| 34       | UD         | .160       | 00        |           |           |             |           |           |           |           |       |      |   |   |
| 35       | KK         | 67.75      |           |           |           |             |           |           |           |           |       |      |   |   |
| 36       | KM         | 114        |           |           |           |             |           |           |           |           |       |      |   |   |
| 37       | HC         | 2          |           |           |           |             |           |           |           |           |       |      |   |   |
| 38       | KK         |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 39       | KM         | 161        | 0151      | 025       |           | <b>TDAD</b> | c         | 4         |           |           |       |      |   |   |
| 40       | KK         | 404        | .0151     | .035      |           | INAF        | 5         | 4         |           |           |       |      |   |   |
| 41       | KK         | W3         |           |           |           |             |           |           |           |           |       |      |   |   |
| 43       | BA         | .0498      |           |           |           |             |           |           |           |           |       |      |   |   |
| 44       | LS         | 139        | 61        |           |           |             |           |           |           |           |       |      |   |   |
| 10       | 02         |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 46       | кк         | WB         |           |           |           |             |           |           |           |           |       |      |   |   |
| 47       | KM         |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 48       | HC         | 2          |           |           |           |             |           |           |           |           |       |      |   |   |
| 49       | KK         |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 50       | KM<br>RK   | 823        | .0279     | .035      |           | TRAP        | 5         | 4         |           | 54        |       |      |   |   |
|          |            |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 52       | KM         | W4         |           |           |           |             |           |           |           |           |       |      |   |   |
| 54       | BA         | .0054      |           |           |           |             |           |           |           |           |       |      |   |   |
| 55<br>56 | LS<br>UD   | .044       | 62        |           |           |             |           |           |           |           |       |      |   |   |
|          |            |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 57       | KK<br>KM   |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 59       | RK         | 1078       | .0482     | .035      |           | TRAP        | 5         | 4         |           |           |       |      |   |   |
| 60       | кк         | W5         |           |           |           |             |           |           |           |           |       |      |   |   |
| 61       | KM         |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 62       | BA<br>LS   | .0159      | 60        |           |           |             |           |           |           |           |       |      |   |   |
| 64       | UD         | .075       |           |           |           |             |           |           |           |           |       |      |   |   |
| 65       | кк         | WC         |           |           |           |             |           |           |           |           |       |      |   |   |
| 66<br>67 | KM         | 3          |           |           |           |             |           |           |           |           |       |      |   | • |
| 01       | nc         | 3          |           |           |           |             |           |           |           |           |       |      |   |   |
| 68<br>69 | KK         |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 70       | RK         | 557        | .0449     | .035      |           | TRAP        | 10        | 4         |           |           |       |      |   |   |
| 71       | ĸĸ         | ws         |           |           |           |             |           |           |           |           |       |      |   |   |
| 72       | KM         |            |           |           |           |             |           |           |           |           |       |      |   |   |
| 73       | BA         | .0486      | 50        |           |           |             |           |           |           |           |       |      |   |   |
| 75       | UD         | .085       | 00        |           |           |             |           |           |           |           |       |      |   |   |

.

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 2 of 40 7/23/2008

| 76<br>77<br>78    | KK<br>KM<br>RK | 592        | .0372  | .035 | TRAP | 5  | 4 |  |
|-------------------|----------------|------------|--------|------|------|----|---|--|
| 79<br>80          | KK<br>KM       | W7         |        |      |      |    |   |  |
| 81<br>82<br>83    | BA<br>LS<br>UD | .0217      | 60     |      |      |    |   |  |
| 84<br>85          | KK<br>KM       |            |        |      |      |    |   |  |
| 86                | RK             | 464        | .1466  | .035 | TRAP | 5  | 4 |  |
| 87<br>88<br>89    | KK<br>KM<br>HC | ₩D<br>2    |        |      |      |    |   |  |
| 90<br>91          | KK             | D-E        |        |      |      |    |   |  |
| 92                | RK             | 1044       | .0479  | .035 | TRAP | 5  | 4 |  |
| 93<br>94<br>95    | KK<br>KM<br>BA | W8         |        |      |      |    |   |  |
| 96<br>97          | LS<br>UD       | .069       | 60     |      |      |    |   |  |
| 98<br>99          | KK<br>KM       |            |        |      |      |    |   |  |
| 100               | RK             | 1449       | .0504  | .035 | TRAP | 5  | 4 |  |
| 101<br>102<br>103 | KK<br>KM<br>BA | .0402      |        |      |      |    |   |  |
| 104<br>105        | LS<br>UD       | .097       | 61     |      |      |    |   |  |
| 106<br>107        | КК<br>КМ       | WE         |        |      |      |    |   |  |
| 108               | HC             | 3          |        |      |      |    |   |  |
| 109<br>110<br>111 | KK<br>KM<br>RK | £-F<br>789 | .0038  | .035 | TRAP | 5  | 4 |  |
| 112               | KK             | W10        |        |      |      |    |   |  |
| 114<br>115        | BA<br>LS       | .0431      | 61     |      |      |    |   |  |
| 116               | UD             | .096       |        |      |      |    |   |  |
| 118<br>119        | KM<br>RK       | 824        | .0388  | .035 | TRAP | 5  | 4 |  |
| 120               | KK<br>KM       | W11        |        |      |      |    |   |  |
| 122               | BA<br>LS       | .0314      | 60     |      |      |    |   |  |
| 124               | rk<br>Ud       | .077<br>พร |        |      |      |    |   |  |
| 126<br>127        | KM             | 4          |        |      |      |    |   |  |
| 128               | KK             | F-G        |        |      |      |    |   |  |
| 130               | RK             | 2319       | .0211  | .035 | TRAP | 10 | 4 |  |
| 131<br>132<br>133 | KK<br>KM       | W12        |        |      |      |    |   |  |
| 133<br>134<br>135 | LS<br>UD       | .095       | 60     |      |      |    |   |  |
| 136               | KK             |            |        |      |      |    |   |  |
| 138               | RK             | 2478       | .0307  | .035 | TRAP | 5  | 4 |  |
| 139<br>140        | KK<br>KM<br>BD | W14        |        |      |      |    |   |  |
| 142               | LS<br>UD       | .135       | 61     |      |      |    |   |  |
| 144<br>145        | KK<br>KM       |            |        |      |      |    |   |  |
| 146               | RK             | 81         | 0.0001 | .035 | TRAP | 5  | 4 |  |
| 147<br>148<br>149 | KK<br>KM<br>RA | W13        |        |      |      |    |   |  |
| 150               | LS             |            | 61     |      |      |    |   |  |

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 3 of 40 7/23/2008

| 151        | UD       | .182        |            |      |      |    |   |  |   |
|------------|----------|-------------|------------|------|------|----|---|--|---|
| 100        |          | HC.         |            |      |      |    |   |  |   |
| 152        | KM       | MG          |            |      |      |    |   |  | • |
| 154        | HC       | 4           |            |      |      |    |   |  |   |
| 166        | vv       | C-4         |            |      |      |    |   |  |   |
| 156        | KM       | G-n         |            |      |      |    |   |  |   |
| 157        | RK       | 2632        | .0217      | .035 | TRAP | 15 | 4 |  |   |
| 158        | ĸĸ       |             |            |      |      |    |   |  |   |
| 159        | KM       |             |            |      |      |    |   |  |   |
| 160        | RK       | 2447        | .0372      | .035 | TRAP | 5  | 4 |  |   |
| 161        | ĸĸ       | W15         |            |      |      |    |   |  |   |
| 162        | KM       |             |            |      |      |    |   |  |   |
| 163        | BA       | .0881       | <i>c</i> 1 |      |      |    |   |  |   |
| 164        |          | 141         | 61         |      |      |    |   |  |   |
| 100        | 02       |             |            |      |      |    |   |  |   |
| 166        | KK       |             |            |      |      |    |   |  |   |
| 168        | RK       | 1763        | .0289      | .035 | TRAP | 5  | 4 |  |   |
|            |          |             |            |      |      |    |   |  |   |
| 169        | KK       | WH          |            |      |      |    |   |  |   |
| 171        | HC       | 2           |            |      |      |    |   |  |   |
|            |          |             |            |      |      |    |   |  |   |
| 172        | KK       | W16         |            |      |      |    |   |  |   |
| 174        | BA       | .0292       |            |      |      |    |   |  |   |
| 175        | LS       |             | 61         |      |      |    |   |  |   |
| 176        | UD       | .092        |            |      |      |    |   |  |   |
| 177        | KK       |             |            |      |      |    |   |  |   |
| 178        | KM       |             | 00.00      | 0.25 |      | c  |   |  |   |
| 179        | RK       | 1345        | .0260      | .035 | TRAP | 5  | 4 |  |   |
| 180        | KK       | W17         |            |      |      |    |   |  |   |
| 181        | KM       | 0104        |            |      |      |    |   |  |   |
| 182        | LS       | .0104       | 60         |      |      |    |   |  |   |
| 184        | UD       | .085        |            |      |      |    |   |  |   |
| 195        | KK       | wit         |            |      |      |    |   |  |   |
| 186        | KM       |             |            |      |      |    |   |  |   |
| 187        | HC       | 2           |            |      |      |    |   |  |   |
| 188        | кк       | I-M         |            |      |      |    |   |  |   |
| 189        | KM       |             |            |      |      |    |   |  |   |
| 190        | RK       | 2650        | .0370      | .035 | TRAP | 15 | 4 |  |   |
| 191        | KK       | W19         |            |      |      |    |   |  |   |
| 192        | KM       |             |            |      |      |    |   |  |   |
| 193<br>194 | BA       | .0428       | 61         |      |      |    |   |  |   |
| 195        | UD       | .083        |            |      |      |    |   |  |   |
|            |          |             |            |      |      |    |   |  |   |
| 196        | KM       |             |            |      |      |    |   |  |   |
| 198        | RK       | 881         | .0329      | .035 | TRAP | 5  | 4 |  |   |
| 100        | vv       | <b>H</b> 20 |            |      |      |    |   |  |   |
| 200        | KM       | 420         |            |      |      |    |   |  |   |
| 201        | BA       | .0315       |            |      |      |    |   |  |   |
| 202        |          | .071        | 61         |      |      |    |   |  |   |
|            |          |             |            |      |      |    |   |  |   |
| 204        | KK       | WJ          |            |      |      |    |   |  |   |
| 205        | HC       | 2           |            |      |      |    |   |  |   |
|            |          |             |            |      |      |    |   |  |   |
| 207        | KK<br>KM |             |            |      |      |    |   |  |   |
| 209        | RK       | 3061        | .0235      | .035 | TRAP | 5  | 4 |  |   |
| 21.0       | ~~~      | ພວາ         |            |      |      |    |   |  |   |
| 210        | KM       | W21         |            |      |      |    |   |  |   |
| 212        | BA       | .1347       |            |      |      |    |   |  |   |
| 213        |          | 156         | 60         |      |      |    |   |  |   |
| 214        | 02       |             |            |      |      |    |   |  |   |
| 215        | KK       | WK          |            |      |      |    |   |  |   |
| 210<br>217 | KM<br>HC | 2           |            |      |      |    |   |  |   |
|            |          | -           |            |      |      |    |   |  |   |
| 218        | KK       |             |            |      |      |    |   |  |   |
| 220        | RK       | 487         | .0246      | .035 | TRAP | 5  | 4 |  |   |
| 201        |          | 200         |            |      |      |    |   |  |   |
| 221        | KK<br>KM | W22         |            |      |      |    |   |  |   |
| 223        | BA       | .0086       |            |      |      |    |   |  |   |
| 224        | LS       | .055        | 63         |      |      |    |   |  |   |
| 664        | 00       |             |            |      |      |    |   |  |   |

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 4 of 40 7/23/2008

| 776 | кк       | WT.         |       |      |        |    |   |  |  |
|-----|----------|-------------|-------|------|--------|----|---|--|--|
| 227 | КМ       |             |       |      |        |    |   |  |  |
| 228 | нс       | 2           |       |      |        |    |   |  |  |
|     |          | -           |       |      |        |    |   |  |  |
| 229 | кк       |             |       |      |        |    |   |  |  |
| 230 | KM       |             |       |      |        |    |   |  |  |
| 231 | BK       | 1786        | 0297  | .035 | TRAP   | 5  | 4 |  |  |
| 231 | 144      | 1,00        | .0251 | .035 | 1131   | 0  | • |  |  |
| 232 | KK       | W23         |       |      |        |    |   |  |  |
| 233 | KM       |             |       |      |        |    |   |  |  |
| 234 | BD.      | 0244        |       |      |        |    |   |  |  |
| 235 | LS       |             | 60    |      |        |    |   |  |  |
| 236 | UD UD    | 112         | 00    |      |        |    |   |  |  |
| 230 | 00       | .112        |       |      |        |    |   |  |  |
| 237 | ĸĸ       | w18         |       |      |        |    |   |  |  |
| 238 | KM       |             |       |      |        |    |   |  |  |
| 230 | BA       | 1251        |       |      |        |    |   |  |  |
| 235 | LS       | .1251       | 60    |      |        |    |   |  |  |
| 240 | 10       | 189         | 00    |      |        |    |   |  |  |
|     |          |             |       |      |        |    |   |  |  |
| 242 | кк       | WM          |       |      |        |    |   |  |  |
| 243 | КM       |             |       |      |        |    |   |  |  |
| 244 | HC       | 5           |       |      |        |    |   |  |  |
|     |          |             |       |      |        |    |   |  |  |
| 245 | кк       | M-N         |       |      |        |    |   |  |  |
| 246 | КM       |             |       |      |        |    |   |  |  |
| 247 | RK       | 1345        | .0149 | .035 | TRAP   | 20 | 4 |  |  |
|     |          |             |       |      |        |    |   |  |  |
| 248 | KK       | W24         |       |      |        |    |   |  |  |
| 249 | KM       |             |       |      |        |    |   |  |  |
| 250 | BA       | .0442       |       |      |        |    |   |  |  |
| 251 | LS       |             | 60    |      |        |    |   |  |  |
| 252 | UD       | .140        |       |      |        |    |   |  |  |
|     |          |             |       |      |        |    |   |  |  |
| 253 | KK       | W25         |       |      |        |    |   |  |  |
| 254 | KM       |             |       |      |        |    |   |  |  |
| 255 | BA       | .0957       | ~     |      |        |    |   |  |  |
| 200 | 12       | 107         | 61    |      |        |    |   |  |  |
| 257 | UD       | .197        |       |      |        |    |   |  |  |
| 250 | VV       | WM          |       |      |        |    |   |  |  |
| 259 | KM       | H IN        |       |      |        |    |   |  |  |
| 255 | KM<br>HC | 3           |       |      |        |    |   |  |  |
| 200 | nç       | 5           |       |      |        |    |   |  |  |
| 261 | кк       | N-P         |       |      |        |    |   |  |  |
| 262 | KM       |             |       |      |        |    |   |  |  |
| 263 | RK       | 1589        | .017  | .035 | TRAP   | 20 | 4 |  |  |
|     |          |             |       |      |        |    |   |  |  |
| 264 | KK       | ₩28         |       |      |        |    |   |  |  |
| 265 | KМ       |             |       |      |        |    |   |  |  |
| 266 | BA       | .0397       |       |      |        |    |   |  |  |
| 267 | LS       |             | 63    |      |        |    |   |  |  |
| 268 | UD       | .128        |       |      |        |    |   |  |  |
|     |          |             |       |      |        |    |   |  |  |
| 269 | KK       |             |       |      |        |    |   |  |  |
| 270 | KM       |             |       |      |        |    |   |  |  |
| 271 | RK       | 1345        | .0208 | .035 | TRAP   | 5  | 4 |  |  |
|     |          |             |       |      |        |    |   |  |  |
| 272 | KK       | W30         |       |      |        |    |   |  |  |
| 273 | KM       |             |       |      |        |    |   |  |  |
| 2/4 | BA       | .0509       | ~~    |      |        |    |   |  |  |
| 275 | LS       | 100         | 63    |      |        |    |   |  |  |
| 210 | UD       | .123        |       |      |        |    |   |  |  |
| 277 |          |             |       |      |        |    |   |  |  |
| 279 | KK<br>KM |             |       |      |        |    |   |  |  |
| 279 | RK       | 1078        | .0074 | ,035 | TRAP   | 5  | 4 |  |  |
| 2.3 | 111      | 1010        |       | .000 | 11/1/1 | 5  |   |  |  |
| 280 | кк       | ₩29         |       |      |        |    |   |  |  |
| 281 | КМ       |             |       |      |        |    |   |  |  |
| 282 | BA       | .0409       |       |      |        |    |   |  |  |
| 283 | LS       |             | 63    |      |        |    |   |  |  |
| 284 | UD       | .145        |       |      |        |    |   |  |  |
|     |          |             |       |      |        |    |   |  |  |
| 285 | KK       | <b>W</b> 31 |       |      |        |    |   |  |  |
| 286 | KM       | <u></u>     |       |      |        |    |   |  |  |
| 287 | BA       | .0123       |       |      |        |    |   |  |  |
| 288 | LS       |             | 63    |      |        |    | - |  |  |
| 289 | UD       | .073        |       |      |        |    |   |  |  |
| 200 |          | WA.         |       |      |        |    |   |  |  |
| 290 | KK       | WO          |       |      |        |    |   |  |  |
| 291 | KM<br>UC | ,           |       |      |        |    |   |  |  |
| 272 | nu       | 4           |       |      |        |    |   |  |  |
| 293 | кк       | 0-P         |       |      |        |    |   |  |  |
| 294 | KM       | 0.5         |       |      |        |    |   |  |  |
| 295 | RK       | 2169        | .0226 | .035 | TRAP   | 5  | 4 |  |  |
|     |          |             |       |      |        | -  |   |  |  |
| 296 | KK       | ₩26         |       |      |        |    |   |  |  |
| 297 | KM       |             |       |      |        |    |   |  |  |
| 298 | BA       | .0301       |       |      |        |    |   |  |  |
| 299 | LS       |             | 63    |      |        |    |   |  |  |
| 300 | UD       | 062         |       |      |        |    |   |  |  |

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 5 of 40 7/23/2008

| 301<br>302 | KK<br>KM | 4670        | 0225  | 0.25 | #535 | E  |   |  |  |
|------------|----------|-------------|-------|------|------|----|---|--|--|
| 303        | RK<br>KK | 4062<br>w27 | .0225 | .035 | TRAP | 5  | 4 |  |  |
| 305        | KM       | HZ I        |       |      |      |    |   |  |  |
| 306<br>307 | BA       | .1633       | 60    |      |      |    |   |  |  |
| 308        | UD       | .253        |       |      |      |    |   |  |  |
| 309        | КК       | <b>W</b> 32 |       |      |      |    |   |  |  |
| 311        | BA       | .0890       |       |      |      |    |   |  |  |
| 312<br>313 | LS       | .170        | 60    |      |      |    |   |  |  |
| 314        | KK 02    | WD          |       |      |      |    |   |  |  |
| 315        | КМ       |             |       |      |      |    |   |  |  |
| 316        | нс       | 5           |       |      |      |    |   |  |  |
| 317<br>318 | KK<br>KM | ₽-Q         |       |      |      |    |   |  |  |
| 319        | RK       | 1925        | .0182 | .035 | TRAP | 25 | 4 |  |  |
| 320<br>321 | KK<br>KM | W33A        |       |      |      |    |   |  |  |
| 322        | BA       | .1261       | 60    |      |      |    |   |  |  |
| 323        | UD       | .186        | 60    |      |      |    |   |  |  |
| 325        | кк       | WP1         |       |      |      |    |   |  |  |
| 326<br>327 | KM<br>HC | 2           |       |      |      |    |   |  |  |
| 328        | кк       | P1-0        |       |      |      |    |   |  |  |
| 329        | KM       | 3000        | 020   | 035  | TDAD | 25 | 4 |  |  |
| 221        |          | 9000        | .020  | .055 | mon  | 25 | 1 |  |  |
| 331        | KM       | ACCM        |       |      |      |    |   |  |  |
| 333<br>334 | BA<br>LS | .1360       | 60    |      |      |    |   |  |  |
| 335        | UD       | .225        |       |      |      |    |   |  |  |
| 336<br>337 | KK<br>KM | W34A        |       |      |      |    |   |  |  |
| 338        | BA       | .1261       |       |      |      |    |   |  |  |
| 339<br>340 | LS<br>UD | .173        | 60    |      |      |    |   |  |  |
| 341        | кк       | 34A-P2      |       |      |      |    |   |  |  |
| 342<br>343 | KM<br>RK | 2550        | .0176 | .035 | TRAP | 25 | 4 |  |  |
| 344        | кк       | W34B        |       |      |      |    |   |  |  |
| 345        | KM       | 1766        |       |      |      |    |   |  |  |
| 346<br>347 | BA<br>LS | .1/66       | 60    |      |      |    |   |  |  |
| 348        | UD       | .224        |       |      |      |    |   |  |  |
| 349        | KK       | WP2         |       |      |      |    |   |  |  |
| 351        | нс       | 2           |       |      |      |    |   |  |  |
| 352        | KK       | P2-Q        |       |      |      |    |   |  |  |
| 353<br>354 | KM<br>RK | 2640        | .021  | .035 | TRAP | 25 | 4 |  |  |
| 355        | кк       | W34C        |       |      |      |    |   |  |  |
| 356        | KM<br>BA | 1625        |       |      |      |    |   |  |  |
| 358        | LS       | .1625       | 60    |      |      |    |   |  |  |
| 359        | UD       | .244        |       |      |      |    |   |  |  |
| 360<br>361 | KK<br>KM | WQ          |       |      |      |    |   |  |  |
| 362        | HC       | 4           |       |      |      |    |   |  |  |
| 363        | кк       | Q-Q1        |       |      |      |    |   |  |  |
| 364<br>365 | RK       | 2940        | .022  | .035 | TRAP | 25 | 4 |  |  |
| 366        | кк       | W36A        |       |      |      |    |   |  |  |
| 367<br>368 | KM<br>BA | .1429       |       |      |      |    |   |  |  |
| 369        | LS       |             | 60    |      |      |    |   |  |  |
| 370        | UD       | .234        |       |      |      |    |   |  |  |
| 371<br>372 | KK<br>KK | WQ1         |       |      |      |    |   |  |  |
| 373        | HC       | 2           |       |      |      |    |   |  |  |
| 374        | КК       | Q1-R        |       |      |      |    |   |  |  |
| 375<br>376 | KM<br>RK | 3400        | .022  | .035 | TRAP | 25 | 4 |  |  |

.

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 6 of 40 7/23/2008

| 377<br>378<br>379 | KK<br>KM<br>BA | ₩36B                   |       |      |      |    |   |  |   |  |
|-------------------|----------------|------------------------|-------|------|------|----|---|--|---|--|
| 380<br>381        | LS<br>UD       | .306                   | 60    |      |      |    |   |  |   |  |
| 382<br>383<br>384 | КК<br>КМ<br>ВА | W35A<br>.0958          |       |      |      |    |   |  |   |  |
| 385<br>386        | LS<br>UD       | .187                   | 60    |      |      |    |   |  |   |  |
| 387<br>388<br>389 | KK<br>KM<br>RK | 35A-WR<br>3715         | .023  | .035 | TRAP | 25 | 4 |  |   |  |
| 390<br>391<br>392 | KK<br>KM       | W35B                   |       |      |      |    |   |  |   |  |
| 393<br>394        | LS<br>UD       | .259                   | 60    |      |      |    |   |  |   |  |
| 395<br>396<br>397 | КК<br>КМ<br>НС | WR<br>4                |       |      |      |    |   |  |   |  |
| 398<br>399<br>400 | KK<br>KM<br>BK | WR-S                   | 0168  | 035  | TRAP | 25 | 4 |  |   |  |
| 401<br>402        | KK             | W37A                   |       |      |      |    |   |  |   |  |
| 403<br>404<br>405 | BA<br>LS<br>UD | .1138<br>.185          | 60    |      |      |    |   |  | - |  |
| 406<br>407<br>408 | KK<br>KM<br>RK | 37 <b>A-</b> S<br>1430 | .014  | .035 | TRAP | 25 | 4 |  |   |  |
| 409<br>410        | KK<br>KM       | W37B                   |       |      |      |    |   |  |   |  |
| 411<br>412<br>413 | BA<br>LS<br>UD | .1636                  | 61    |      |      |    |   |  |   |  |
| 414<br>415<br>416 | КК<br>КМ<br>НС | WS<br>3                |       |      |      |    |   |  |   |  |
| 417<br>418<br>419 | KK<br>KM<br>RK | S-T<br>3653            | .0164 | .035 | TRAP | 25 | 4 |  |   |  |
| 420<br>421        | KK<br>KM       | W38                    |       |      |      |    |   |  |   |  |
| 422<br>423<br>424 | BA<br>LS<br>UD | .0907<br>.190          | 62    |      |      |    |   |  |   |  |
| 425<br>426<br>427 | KK<br>KM<br>RK | 2922                   | .0171 | .035 | TRAP | 5  | 4 |  |   |  |
| 428<br>429        | КК<br>КМ       | <b>W</b> 39            |       |      |      |    |   |  |   |  |
| 430<br>431<br>432 | BA<br>LS<br>UD | .1833                  | 60    |      |      |    |   |  |   |  |
| 433<br>434        | KK<br>KM       | <b>W4</b> 0            |       |      |      |    |   |  |   |  |
| 435<br>436<br>437 | BA<br>LS<br>UD | .0964                  | 60    |      |      |    |   |  |   |  |
| 438<br>439<br>440 | KK<br>KM<br>HC | WT<br>4                |       |      |      |    |   |  |   |  |
| 441<br>442        | KK<br>KM       | T-U                    | 0000  | 0.25 | TOND | 25 | л |  |   |  |
| 444               | KK             | ¥41                    | .0098 | .035 | INAF | 23 | 4 |  |   |  |
| 445<br>446<br>447 | KM<br>BA<br>LS | .0601                  | 60    |      |      |    |   |  |   |  |
| 448               | UD             | .117                   |       |      |      |    |   |  |   |  |
| 450<br>451<br>452 | KM<br>BA       | .0581                  | 81    |      |      |    |   |  |   |  |
| - 72              | 50             |                        |       |      |      |    |   |  |   |  |

l

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 7 of 40 7/23/2008

| 453               | UD             | .127    |       |      |                  |    |   |   |  |  |
|-------------------|----------------|---------|-------|------|------------------|----|---|---|--|--|
| 454<br>455        | KK<br>KM       | U-V     | 0104  | 0.25 | <b>7</b> 10 3 10 | Ę  |   |   |  |  |
| 400               | RK             | 2000    | .0184 | .035 | IRAP             | 5  | 4 |   |  |  |
| 457<br>458<br>459 | KK<br>KM<br>HC | WU<br>3 |       |      |                  |    |   |   |  |  |
| 460               | KK             |         |       |      |                  |    |   |   |  |  |
| 462               | RK             | 2215    | .0181 | .035 | TRAP             | 25 | 4 |   |  |  |
| 463<br>464        | KK<br>KM       | W43     |       |      |                  |    |   |   |  |  |
| 465               | BA             | .1457   | 61    |      |                  |    |   |   |  |  |
| 467               | UD             | .169    | 01    |      |                  |    |   |   |  |  |
| 468               | KK<br>KM       | WV      |       |      |                  |    |   |   |  |  |
| 470               | нс             | 2       |       |      |                  |    |   |   |  |  |
| 471               | KK             | V-W     |       |      |                  |    |   |   |  |  |
| 473               | RK             | 487     | .0103 | .035 | TRAP             | 25 | 4 |   |  |  |
| 474<br>475        | KK             | W45     |       |      |                  |    |   |   |  |  |
| 476               | BA             | .1931   | 61    |      |                  |    |   |   |  |  |
| 478               | UD             | .189    |       |      |                  |    |   |   |  |  |
| 479<br>480        | KK<br>KM       | WW      |       |      |                  |    |   | • |  |  |
| 481               | HC             | 2       |       |      |                  |    |   |   |  |  |
| 482<br>483        | KK<br>KM       | W-X     |       |      |                  |    |   |   |  |  |
| 484               | RK             | 1542    | .0149 | .035 | TRAP             | 5  | 4 |   |  |  |
| 485<br>486        | KK<br>KM       | M1      |       |      |                  |    |   |   |  |  |
| 487<br>488        | BA<br>LS       | .0665   | 60    |      |                  |    |   |   |  |  |
| 489               | UD             | .108    |       |      |                  |    |   |   |  |  |
| 490<br>491<br>492 | KK<br>KM<br>RK | 650     | .0308 | .035 | TRAP             | 5  | 4 |   |  |  |
| 493               | кк             | M2      |       |      |                  |    |   |   |  |  |
| 494<br>495        | KM<br>BA       | .0273   |       |      |                  |    |   |   |  |  |
| 496<br>497        | LS<br>UD       | .114    | 60    |      |                  |    |   |   |  |  |
| 498               | КК             | MB      |       |      |                  |    |   |   |  |  |
| 499<br>500        | KM<br>HC       | 2       |       |      |                  |    |   |   |  |  |
| 501<br>502        | KK             |         |       |      |                  |    |   |   |  |  |
| 503               | RK             | 928     | .0302 | .035 | TRAP             | 5  | 4 |   |  |  |
| 504<br>505        | КК<br>КМ       | M4      |       |      |                  |    |   |   |  |  |
| 506<br>507        | BA<br>LS       | .0346   | 60    |      |                  |    |   |   |  |  |
| 508               | UD             | .121    |       |      |                  |    |   |   |  |  |
| 509<br>510        | KK<br>KM       |         | _     |      |                  |    |   |   |  |  |
| 511               | RK             | 406     | .0197 | .02  | TRAP             | 40 | 0 |   |  |  |
| 512               | KK<br>KM       | M3      |       |      |                  |    |   |   |  |  |
| 514               | . BA<br>LS     | .0149   | 60    |      |                  |    |   |   |  |  |
| 517               | 0D             | .U/6    |       |      |                  |    |   |   |  |  |
| 518<br>519        | KM<br>HC       | тс<br>3 |       |      |                  |    |   |   |  |  |
| 520               | кк             | Ũ       |       |      |                  |    |   |   |  |  |
| 521<br>522        | KM<br>RK       | 1902    | .0231 | .035 | TRAP             | 5  | 4 |   |  |  |
| 523               | кк             | M5      |       |      | -                |    |   |   |  |  |
| 524<br>525        | KM<br>BA       | .0176   |       |      |                  |    |   |   |  |  |
| 526<br>527        | LS<br>UD       | .108    | 69    |      |                  |    |   |   |  |  |
|                   |                |         |       |      |                  |    |   |   |  |  |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 8 of 40 7/23/2008

| 528<br>529 | KK<br>KM  |            |             |            |                  |          |            |  |  |
|------------|-----------|------------|-------------|------------|------------------|----------|------------|--|--|
| 530        | RK        | 1717       | .0186       | .02        | ŤRAP             | 40       | 0          |  |  |
| 531        | KK        | M6         |             |            |                  |          |            |  |  |
| 533        | BA        | .0637      |             |            |                  |          |            |  |  |
| 534        | LS        |            | 65          |            |                  |          |            |  |  |
| 535        | 0D        | .233       |             |            |                  |          |            |  |  |
| 536        | KK        | MD         |             |            |                  |          |            |  |  |
| 537        | KM        | 3          |             |            |                  |          |            |  |  |
| 330        | пç        | 5          |             |            |                  |          |            |  |  |
| 539        | KK        |            |             |            |                  |          |            |  |  |
| 540        | RK        | 2841       | .019        | .035       | TRAP             | 5        | 4          |  |  |
|            |           |            |             |            |                  |          |            |  |  |
| 542<br>543 | KK        | M7         |             |            |                  |          |            |  |  |
| 544        | BA        | .0524      |             |            |                  |          |            |  |  |
| 545        | LS        | 170        | 69          |            |                  |          |            |  |  |
| 340        | 00        | .170       |             |            |                  |          |            |  |  |
| 547        | KK        |            |             |            |                  |          |            |  |  |
| 548<br>549 | RK<br>RK  | 1044       | .0268       | .02        | TRAP             | 40       | 0          |  |  |
|            |           |            |             |            |                  |          |            |  |  |
| 550<br>551 | KK        | <b>M</b> 8 |             |            |                  |          |            |  |  |
| 552        | BA        | .0370      |             |            |                  |          |            |  |  |
| 553        | LS        | 126        | 61          |            |                  |          |            |  |  |
| 554        | uD        | .120       |             |            |                  | -        |            |  |  |
| 555        | KK        | ME         |             |            |                  |          |            |  |  |
| 556<br>557 | KM<br>HC  | 2          |             |            |                  |          |            |  |  |
|            |           |            |             |            |                  |          |            |  |  |
| 558        | KK        |            |             |            |                  |          |            |  |  |
| 560        | RK        | 2992       | .0187       | .035       | TRAP             | 5        | 4          |  |  |
|            |           |            |             |            |                  |          |            |  |  |
| 561<br>562 | KK<br>KM  | M9         |             |            |                  |          |            |  |  |
| 563        | BA        | .0169      |             |            |                  |          |            |  |  |
| 564<br>565 | LS<br>UD  | .087       | 69          |            |                  |          |            |  |  |
|            | 00        |            |             |            |                  |          |            |  |  |
| 566<br>567 | KK        |            |             |            |                  |          |            |  |  |
| 568        | RK        | 3433       | .0253       | .03        | TRAP             | 5        | 4          |  |  |
| 560        | ĸĸ        | M127       |             |            |                  |          |            |  |  |
| 570        | KM        | MIZA       |             |            |                  |          |            |  |  |
| 571        | BA        | .0658      | 60          |            |                  |          |            |  |  |
| 572        | UD        | .159       | 60          |            |                  |          |            |  |  |
| 6.7.4      |           |            |             |            |                  |          |            |  |  |
| 574        | KK        | MIZB       |             |            |                  |          |            |  |  |
| 576        | BA        | .1481      |             |            |                  |          |            |  |  |
| 577<br>578 | LS<br>UD  | .219       | 60          |            |                  |          |            |  |  |
|            |           |            |             |            |                  |          |            |  |  |
| 579<br>580 | KK<br>KM  | MF         |             |            |                  |          |            |  |  |
| 581        | HC        | 5          |             |            |                  |          |            |  |  |
| 582        | ĸĸ        |            |             |            |                  |          |            |  |  |
| 583        | КM        |            |             |            |                  |          |            |  |  |
| 584        | RK        | 2586       | .0224       | .035       | TRAP             | 10       | 4          |  |  |
| 585        | KK        | M13        |             |            |                  |          |            |  |  |
| 586        | KM<br>B A | 0614       |             |            |                  |          |            |  |  |
| 588        | LS        |            | 64          |            |                  |          |            |  |  |
| 589        | UD        | .165       |             |            |                  |          |            |  |  |
| 590        | KK        |            |             |            |                  |          |            |  |  |
| 591        | KM        | 1700       | 01          | 0.25       | <b>5</b> 10 10   | 5        | 4          |  |  |
| 392        | ĸĸ        | 1/00       | .01         | .035       | IKAP             | o        | *1         |  |  |
| 593        | KK        | M14        |             |            |                  |          |            |  |  |
| 594<br>595 | KM<br>BA  | .1624      |             |            |                  |          |            |  |  |
| 596        | LS        |            | 64          |            |                  |          |            |  |  |
| 597        | UD        | .228       |             |            |                  |          |            |  |  |
| 598        | KK        | MG         |             |            |                  |          |            |  |  |
| 599<br>600 | KM<br>HC  | 2          |             |            |                  |          |            |  |  |
| 000        | нс        | 2          |             |            |                  |          |            |  |  |
| 601        | КК        | PONDW      | 000         |            | TON DOND COOM    | EBON     | NU PLO DA  |  |  |
| 002        | КM        | w          | CODUCTION H | TTTO OFIEN | TTON FOND MEST ( | ENON FOR | an ruo 14/ |  |  |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 9 of 40 7/23/2008

.

| 603<br>604<br>605<br>606        | SV<br>SE<br>SQ<br>RS       | 0<br>968<br>0<br>1    | .68<br>969<br>8<br>ELEV | 1.5<br>970<br>15.5<br>968 | 235<br>971<br>41 | 3.6<br>972<br>84.4 | 4.9<br>973<br>110 | 6.3<br>974<br>138 | 7.34<br>975<br>152 | 7.34<br>976<br>205 |
|---------------------------------|----------------------------|-----------------------|-------------------------|---------------------------|------------------|--------------------|-------------------|-------------------|--------------------|--------------------|
| 607<br>608<br>609               | KK<br>KM<br>HC             | МН<br>2               |                         |                           |                  |                    |                   |                   |                    |                    |
| 610<br>611<br>612               | KK<br>KM<br>RK             | 1276                  | .0212                   | .035                      |                  | TRAP               | 15                | 4                 |                    |                    |
| 613<br>614<br>615               | KK<br>KM<br>DT             | MH-P2<br>DI<br>DIVRT1 | VERT FLO                | W TO PON                  | D 2 VIA          | TWIN 23x4          | 7 ARCH C          | CMPS UND          | ER MERIE           | IAN                |
| 616<br>617                      | DI<br>DQ                   | 0                     | 39<br>39                | 72<br>70                  | 152<br>80        | 263<br>80          | 318<br>80         | 377<br>85         | 442<br>85          | 591<br>90          |
| 618<br>619<br>620<br>621<br>622 | KK<br>KM<br>BA<br>LS<br>UD | M15<br>.1242<br>.203  | 64                      |                           |                  |                    |                   |                   |                    |                    |
| 623<br>624<br>625               | KK<br>KM<br>HC             | MI<br>2               |                         |                           |                  |                    |                   |                   |                    |                    |
| 626<br>627<br>628               | KK<br>KM<br>RK             | 1995                  | .0165                   | .035                      |                  | TRAP               | 15                | 4                 |                    |                    |
| 629<br>630<br>631               | KK<br>KM<br>BA             | м19<br>.0499          |                         | •                         |                  |                    |                   |                   |                    |                    |
| 632<br>633                      | LS<br>UD                   | .159                  | 61                      |                           |                  |                    |                   |                   |                    |                    |
| 634<br>635<br>636               | KK<br>KM<br>HC             | МЈ<br>2               |                         |                           |                  |                    |                   |                   |                    |                    |
| 637<br>638<br>639               | KK<br>KM<br>RK             | 2215                  | .0158                   | .035                      |                  | TRAP               | 15                | 4                 |                    |                    |
| 640<br>641<br>642<br>643        | KK<br>KM<br>BA<br>LS       | M10<br>.0581          | 62                      |                           |                  |                    |                   |                   |                    |                    |
| 645<br>646<br>647               | KK<br>KM<br>RK             | м10-к<br>3150         | .0255                   | .03                       |                  | TRAP               | 5                 | 4                 |                    |                    |
| 648<br>649<br>650<br>651<br>652 | KK<br>KM<br>BA<br>LS<br>UD | M11A<br>.1067<br>.231 | 61                      |                           |                  |                    |                   |                   |                    |                    |
| 653<br>654<br>655               | КК<br>КМ<br>НС             | <b>м</b> к<br>2       |                         |                           |                  |                    |                   |                   |                    |                    |
| 656<br>657<br>658               | KK<br>KM<br>RK             | МК-К1<br>2300         | .260                    | .03                       |                  | TRAP               | 5                 | 4                 |                    |                    |
| 659<br>660<br>661<br>662        | KK<br>KM<br>BA<br>LS       | M11B<br>.0879         | 60                      |                           |                  |                    |                   |                   |                    |                    |
| 663<br>664                      | UD                         | .150                  |                         |                           |                  |                    |                   |                   |                    |                    |
| 665<br>666                      | KM<br>RK                   | 2400                  | .025                    | .03                       |                  | TRAP               | 5                 | 4                 |                    |                    |
| 667<br>668                      | KK<br>KM                   | M11C                  |                         |                           |                  |                    |                   |                   |                    |                    |
| 669<br>670                      | BA<br>LS                   | .0933                 | 60                      |                           |                  |                    |                   |                   |                    |                    |
| 671<br>672                      | KK<br>UD                   | .160<br>MK1           |                         |                           |                  |                    |                   |                   |                    |                    |
| 673<br>674                      | KM<br>HC                   | 3                     |                         |                           |                  |                    |                   |                   |                    |                    |
| 675<br>676                      | KK<br>KM                   | K1-ML                 |                         |                           |                  |                    | -                 |                   |                    |                    |
| 677                             | RK                         | 1821                  | .028                    | .035                      |                  | TRAP               | 5                 | 4                 |                    |                    |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 10 of 40 7/23/2008
| 678        | кк       | M16     |       |      |      |    |   |
|------------|----------|---------|-------|------|------|----|---|
| 679        | KM       | <b></b> |       |      |      |    |   |
| 680<br>681 | BA       | .042    | 60    |      |      |    |   |
| 682        | UD       | .139    | 00    |      |      |    |   |
| 693        | 1212     | MT      |       |      |      |    |   |
| 684        | KK<br>KM | мL      |       |      |      |    |   |
| 685        | HC       | 2       |       |      |      |    |   |
| 686        | KK       |         |       |      |      |    |   |
| 687        | KM       |         |       |      |      |    |   |
| 688        | RK       | 2099    | .02   | .035 | TRAP | 5  | 4 |
| 689        | KK       | M17     |       |      |      |    |   |
| 690        | KM       | 0765    |       |      |      |    |   |
| 695<br>691 | BA<br>LS | .0/65   | 61    |      |      |    |   |
| 693        | UD       | .133    | •1    |      |      |    |   |
| 694        | vv       | ww      |       |      |      |    |   |
| 695        | KM       | 1.11.1  |       |      |      |    |   |
| 696        | HC       | 2       |       |      |      |    |   |
| 697        | ĸĸ       |         |       |      |      |    |   |
| 698        | КM       |         |       |      |      |    |   |
| 699        | RK       | 2320    | .0121 | .035 | TRAP | 10 | 4 |
| 700        | кк       | M18     |       |      |      |    |   |
| 701        | KM       | 0.03    |       |      |      |    |   |
| 702        | BA<br>LS | .061    | 61    |      |      |    |   |
| 704        | ŰD       | .142    | ••    |      |      |    |   |
| 705        | ~~~      | •.      |       |      |      |    |   |
| 706        | KK<br>KM |         |       |      |      |    |   |
| 707        | RK       | 2122    | .017  | .035 | TRAP | 5  | 4 |
| 708        | ĸĸ       | M2.0    |       |      |      |    |   |
| 709        | KM       |         |       |      |      |    |   |
| 710        | BA       | .1341   |       |      |      |    |   |
| 711<br>712 | LS       | ,211    | 61    |      |      |    |   |
| 1+4        | 00       | . 2 1 1 |       |      |      |    |   |
| 713        | кк       | MIN     |       |      |      |    |   |
| 714        | KM<br>HC | Δ       |       |      |      |    |   |
| . 10       |          | -       |       |      |      |    |   |
| 716        | КК       |         |       |      |      |    |   |
| 718        | KM<br>RK | 1531    | .0202 | .035 | TRAP | 25 | 4 |
|            | ••••     |         |       |      |      |    | - |
| 719<br>720 | KK       | M21     |       |      |      |    |   |
| 721        | BA       | .0241   |       |      |      |    |   |
| 722        | LS       |         | 61    |      |      |    |   |
| 723        | UD       | .125    |       |      |      |    |   |
| 724        | кк       |         |       |      |      |    |   |
| 725        | KM       | 1220    | 0010  | 0.25 |      |    |   |
| 126        | RK       | 1322    | .0212 | .035 | TRAP | 5  | 4 |
| 727        | кк       | M2 3    |       |      |      |    |   |
| 728        | KM       | 0.000   |       |      |      |    |   |
| 729        | BA       | .0461   | 60    |      |      |    |   |
| 731        | ŨD       | .120    |       |      |      |    |   |
| 733        | 22       | MO      |       |      |      |    |   |
| 733        | KM       | MO      |       |      |      |    |   |
| 734        | HC       | 3       |       |      |      |    |   |
| 735        | vv       |         |       |      |      |    |   |
| 736        | KM       |         |       |      |      |    |   |
| 737        | RK       | 974     | .0133 | .035 | TRAP | 25 | 4 |
| 738        | VV       | M24     |       |      |      |    |   |
| 739        | KM       | r12 4   |       |      |      |    |   |
| 740        | BA       | .0776   |       |      |      |    |   |
| 741        | LS       | 125     | 60    |      |      |    |   |
| 172        | 00       | 2 3     |       |      |      |    |   |
| 743        | КК       | MP      |       |      |      |    |   |
| 744<br>745 | KM<br>HC | 2       |       |      |      |    |   |
|            |          | -       |       |      |      |    |   |
| 746        | KK       |         |       |      |      |    |   |
| 748        | RK       | 290     | .0138 | .035 | TRAP | 25 | 4 |
| 740        |          |         |       |      |      |    |   |
| 749<br>750 | KK       | M25     |       |      |      |    |   |
| 751        | BA       | .0105   |       |      |      |    |   |
| 752        | LS       |         | 60    |      |      |    |   |
| 760        | 110      | 1 2 0   |       |      |      |    |   |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 11 of 40 7/23/2008

| 754        | KK         | MQ          |            |      |             |    |   |  |  |
|------------|------------|-------------|------------|------|-------------|----|---|--|--|
| 755        | KM         | 2           |            |      |             |    |   |  |  |
| 120        | нÇ         | 2           |            |      |             |    |   |  |  |
| 757        | KK         |             |            |      |             |    |   |  |  |
| 758        | KM         | 2205        | 0126       | 0.05 |             |    |   |  |  |
| /59        | RK         | 3305        | .0136      | .035 | TRAP        | 25 | 4 |  |  |
| 760        | KK         | M26         |            |      |             |    |   |  |  |
| 761        | KM         |             |            |      |             |    |   |  |  |
| 762        | BA         | .1779       | 65         |      |             |    |   |  |  |
| 764        | UD         | .250        | 65         |      |             |    |   |  |  |
|            | 05         |             |            |      |             |    |   |  |  |
| 765        | KK         | MR          |            |      |             |    |   |  |  |
| 766        | KM         | 2           |            |      |             |    |   |  |  |
| 101        | HC         | 2           |            |      |             |    |   |  |  |
| 768        | KK         | W44         |            |      |             |    |   |  |  |
| 769        | KM         |             |            |      |             |    |   |  |  |
| 770        | BA         | .0384       | <b>C</b> 0 |      |             |    |   |  |  |
| 772        |            | 141         | 60         |      |             |    |   |  |  |
|            | 00         |             |            |      |             |    |   |  |  |
| 773        | KK         |             |            |      |             |    |   |  |  |
| 774        | KM         | 2020        | 0149       | 025  |             | c  |   |  |  |
| 115        | 141        | 2029        | .0140      | .055 | INAF        | 5  | 4 |  |  |
| 776        | KK         | W47         |            |      |             |    |   |  |  |
| 777        | KM         |             |            |      |             |    |   |  |  |
| 778        | BA         | .0541       | 60         |      |             |    |   |  |  |
| 780        | UD         | 148         | 00         |      |             |    |   |  |  |
| •          | 00         |             |            |      |             |    |   |  |  |
| 781        | KK         |             |            |      |             |    |   |  |  |
| 782        | KM         | 1420        | 0000       | 0.75 |             |    |   |  |  |
| 783        | RK         | 1438        | .0223      | .035 | TRAP        | 5  | 4 |  |  |
| 784        | KK         | W46         |            |      |             |    |   |  |  |
| 785        | KM         |             |            |      |             |    |   |  |  |
| 786        | BA         | .0418       | 61         |      |             |    |   |  |  |
| 788        | 10         | 154         | 01         |      |             |    |   |  |  |
| ,00        | 02         | ,134        |            |      |             |    |   |  |  |
| 789        | KK         | M27         |            |      |             |    |   |  |  |
| 790        | KM         | 0500        |            |      |             |    |   |  |  |
| 791        | LS         | .0528       | 60         |      |             |    |   |  |  |
| 793        | UD         | .132        | •••        |      |             |    |   |  |  |
|            |            |             |            |      |             |    |   |  |  |
| 794        | KK         | WX          |            |      |             |    |   |  |  |
| 796        | HC         | 6           |            |      |             |    |   |  |  |
|            |            |             |            |      |             |    |   |  |  |
| 797        | KK         |             |            |      |             |    |   |  |  |
| 798        | KM         | 2542        | 0126       | 025  | <b>TDAD</b> | 40 |   |  |  |
| 195        | <b>K</b> L | 2505        | .0125      | .035 | IKAP        | 40 | 4 |  |  |
| 800        | KK         | W48         |            |      |             |    |   |  |  |
| 801        | KM         |             |            |      |             |    |   |  |  |
| 802        | BA         | .1179       | 61         |      |             |    |   |  |  |
| 804        | UD         | .091        | 01         |      |             |    |   |  |  |
|            |            |             |            |      |             |    |   |  |  |
| 805        | KK         |             |            |      |             |    |   |  |  |
| 806        | KM<br>PK   | 2400        | 0199       | 035  | TDAD        | 5  | 4 |  |  |
|            | (NIX       | 2400        |            |      | 11/11       | -  | 1 |  |  |
| 808        | KK         | W49         |            |      |             |    |   |  |  |
| 809        | KM         | 2651        |            |      |             |    |   |  |  |
| 811        | LS         | .2051       | 61         |      |             |    |   |  |  |
| 812        | UD         | .181        |            |      |             |    |   |  |  |
|            |            |             |            |      |             |    |   |  |  |
| 813        | KK         | WZ          |            |      |             |    |   |  |  |
| 815        | HC         | 3           |            |      |             |    |   |  |  |
|            |            | -           |            |      |             |    |   |  |  |
| 816        | KK         |             |            |      |             |    |   |  |  |
| 817        | KM         | 800         | 0125       | 035  | TOAD        | 40 | Λ |  |  |
| 010        | UL I       | 800         | .0123      |      | 1 CAP       | 40 | ч |  |  |
| 819        | КК         | <b>W</b> 50 |            |      |             |    |   |  |  |
| 820        | KM         |             |            |      |             |    |   |  |  |
| 821<br>822 | BA         | .1061       | 61         |      |             |    |   |  |  |
| 823        | UD         | .145        | 01         |      |             |    |   |  |  |
| -          |            |             |            |      |             |    |   |  |  |
| 824        | KK         | WAB         |            |      |             |    |   |  |  |
| 825<br>826 | KM<br>HC   | 2           |            |      |             |    |   |  |  |
| 040        |            | 2           |            |      |             |    |   |  |  |
| 827        | KK         |             |            |      |             |    |   |  |  |
| 828        | KM         |             |            |      |             |    |   |  |  |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 12 of 40 7/23/2008

| 829        | RK       | 742           | .0108 | .035 | TRAP | 40  | 4 |  |  |
|------------|----------|---------------|-------|------|------|-----|---|--|--|
| 830        | кк       | W51           |       |      |      |     |   |  |  |
| 831        | KM       |               |       |      |      |     |   |  |  |
| 832        | BA       | .0546         | 63    |      |      |     |   |  |  |
| 833        | UD       | .172          | 63    |      |      |     |   |  |  |
| 0.75       | VV       | MAG           |       |      |      |     |   |  |  |
| 836        | KM       | WAC           |       |      |      |     |   |  |  |
| 837        | HC       | 2             |       |      |      |     |   |  |  |
| 838        | кк       |               |       |      |      |     |   |  |  |
| 839        | КM       |               |       |      |      |     |   |  |  |
| 840        | RK       | 638           | .0345 | .035 | TRAP | 40  | 4 |  |  |
| 841        | KK       | W52           |       |      |      |     |   |  |  |
| 842        | KM       | 0499          |       |      |      |     |   |  |  |
| 844        | LS       | .0455         | 63    |      |      |     |   |  |  |
| 845        | UD       | .109          |       |      |      |     |   |  |  |
| 846        | KK       |               |       |      |      |     |   |  |  |
| 847        | KM       |               | 0005  | 0.05 |      | ~   |   |  |  |
| 848        | KK       | 11/1          | .0205 | .035 | IKAP | 5   | 4 |  |  |
| 849        | кк       | <b>W</b> 53   |       |      |      |     |   |  |  |
| 850<br>851 | KM<br>BA | .0531         |       |      |      |     |   |  |  |
| 852        | LS       |               | 63    |      |      |     |   |  |  |
| 823        | UU       | .120          |       |      |      |     |   |  |  |
| 854        | KK       | WAD           |       |      |      |     |   |  |  |
| 855<br>856 | KM<br>HC | 2             |       |      |      |     |   |  |  |
|            |          | -             |       |      |      |     |   |  |  |
| 857<br>858 | KK<br>KM |               |       |      |      |     |   |  |  |
| 859        | RK       | 290           | .0310 | .035 | TRAP | 10  | 4 |  |  |
| 860        | vv       | 51 <b>5</b> 1 |       |      |      |     |   |  |  |
| 861        | KM       | M.74          |       |      |      |     |   |  |  |
| 862        | BA       | .0078         | 60    |      |      |     |   |  |  |
| 864        | UD       | .050          | 60    |      |      |     |   |  |  |
| 0.65       | KK.      | WAR           |       |      |      |     |   |  |  |
| 866        | KK<br>KM | WAE           |       |      |      |     |   |  |  |
| 867        | HC       | 3             |       |      |      |     |   |  |  |
| 868        | кк       |               |       |      |      |     |   |  |  |
| 869        | КM       | 1005          |       | 0.77 |      | 4.0 |   |  |  |
| 870        | RK       | 1925          | .0052 | .035 | TRAP | 40  | 4 |  |  |
| 871        | KK       | W56           |       |      |      |     |   |  |  |
| 872        | KM<br>BA | .1831         |       |      |      |     |   |  |  |
| 874        | LS       |               | 60    |      |      |     |   |  |  |
| 875        | UD       | .191          |       |      |      |     |   |  |  |
| 876        | КК       | WAF           |       |      |      |     |   |  |  |
| 878<br>878 | KM<br>HC | 2             |       |      |      |     |   |  |  |
| 0.25       |          | -             |       |      |      |     |   |  |  |
| 879<br>880 | KK<br>KM |               |       |      |      |     |   |  |  |
| 881        | RK       | 1032          | .0155 | .035 | TRAP | 40  | 4 |  |  |
| 882        | кк       | W62           |       |      |      |     |   |  |  |
| 883        | KM       | 0000          |       |      |      |     |   |  |  |
| 885<br>885 | BA<br>LS | .0750         | 60    |      |      |     |   |  |  |
| 886        | UD       | .090          |       |      |      |     |   |  |  |
| 887        | кк       |               |       |      |      |     |   |  |  |
| 888        | КM       |               |       |      |      | -   |   |  |  |
| 889        | RK       | 2169          | .0203 | .035 | TRAP | 5   | 4 |  |  |
| 890        | KK       | <b>W</b> 63   |       |      |      |     |   |  |  |
| 891<br>892 | КМ<br>ВА | .047          |       |      |      |     |   |  |  |
| 893        | LS       |               | 60    |      |      |     |   |  |  |
| 894        | UD       | .109          |       |      |      |     |   |  |  |
| 895        | кк       |               |       |      |      |     |   |  |  |
| 896<br>897 | KM<br>RK | 1450          | .0131 | .035 | TRAP | 5   | 4 |  |  |
|            | 110      | 1455          |       |      | 1101 | 5   | • |  |  |
| 898<br>899 | KK<br>KM | W61           |       |      |      |     |   |  |  |
| 900        | BA       | .192          |       |      |      |     |   |  |  |
| 901<br>902 | LS       | . 251         | 60    |      |      |     |   |  |  |
| 546        | 55       | .291          |       |      |      |     |   |  |  |
| 903        | KK       | WAH           |       |      |      |     |   |  |  |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 13 of 40 7/23/2008

| 904<br>905 | КМ<br>HC | 3              |            |          |          |          |             |                |              |                |              |  |
|------------|----------|----------------|------------|----------|----------|----------|-------------|----------------|--------------|----------------|--------------|--|
| 906        | кк       |                |            |          |          |          |             |                |              |                |              |  |
| 907<br>908 | KM<br>RK | 1241           | .0153      | .035     |          | TRAP     | 5           | 4              |              |                |              |  |
| 909        | KK       | ₩57            |            |          |          |          |             |                |              |                |              |  |
| 911        | BA       | .0732          |            |          |          |          |             |                |              |                |              |  |
| 912        | LS       | 140            | 60         |          |          |          |             |                |              |                |              |  |
| 913        | 00       | .140           |            |          |          |          |             |                |              |                |              |  |
| 914        | KK       |                |            |          |          |          |             |                |              |                |              |  |
| 915<br>916 | RK       | 5903           | .0254      | .035     |          | TRAP     | 5           | 4              |              |                |              |  |
| 017        | KK       | 859            |            |          |          |          |             |                |              |                |              |  |
| 918        | KM       |                |            |          |          |          |             |                |              |                |              |  |
| 919<br>920 | BA       | .2296          | 60         |          |          |          |             |                |              |                |              |  |
| 921        | UD       | .251           | •••        |          |          |          |             |                |              |                |              |  |
| 922        | кк       | WAI            |            |          |          |          |             |                |              |                |              |  |
| 923        | KM       | -              |            |          |          |          |             |                |              |                |              |  |
| 924        | нс       | د              |            |          |          |          |             |                |              |                |              |  |
| 925        | KK       |                |            |          |          |          |             |                |              |                |              |  |
| 920        | RK       | 232            | .0086      | .035     |          | TRAP     | 15          | 4              |              |                |              |  |
| 928        | ĸĸ       | FIA            |            |          |          |          |             |                |              |                |              |  |
| 929        | KM       | 5111           |            |          |          |          |             |                |              |                |              |  |
| 930<br>931 | BA<br>LS | .1151          | 60         |          |          |          |             |                |              |                |              |  |
| 932        | UD       | .234           |            |          |          |          |             |                |              |                |              |  |
| 933        | кк       | E1A-EA         |            |          |          |          |             |                |              |                |              |  |
| 934        | KM<br>RK | 4000           | 022        | 035      |          | TDAD     | 5           |                |              |                |              |  |
| 355        | KK       | 4000           | .022       | .055     |          | INAF     | 5           | 4              |              |                |              |  |
| 936<br>937 | KK       | E1B            |            |          |          |          |             |                |              |                |              |  |
| 938        | BA       | .1665          |            |          |          |          |             |                |              |                |              |  |
| 939<br>940 | LS<br>UD | 0<br>.233      | 60         |          |          |          |             |                |              |                |              |  |
|            |          |                |            |          |          |          |             |                |              |                |              |  |
| 941<br>942 | KK<br>KM | EA             |            |          |          |          |             |                |              |                |              |  |
| 943        | HC       | 2              |            |          |          |          |             |                |              |                |              |  |
| 944        | KK       | EA-EB          |            |          |          |          |             |                |              |                |              |  |
| 945<br>946 | KM<br>RK | 1900           | .022       | .035     |          | TRAP     | 5           | 4              |              |                |              |  |
| 947        | VK       | F 2            |            |          |          |          |             |                |              |                |              |  |
| 948        | KM       | 52             |            |          |          |          |             |                |              |                |              |  |
| 949<br>950 | BA       | .104           | 60         |          |          |          |             |                |              |                |              |  |
| 951        | UD       | .149           | 00         |          |          |          |             |                |              |                |              |  |
| 952        | кк       | EB             |            |          |          |          |             |                |              |                |              |  |
| 953        | KM       | 2              |            |          |          |          |             |                |              |                |              |  |
| 334        | IIC      | 2              |            |          |          |          |             |                |              |                |              |  |
| 955<br>956 | KK<br>KM | POND1          | ROUTE FLOW | THROUGH  | SCS POND | 1        |             |                |              |                |              |  |
| 957        | SV       | 0              | .01        | .28      | 1.12     | 2.70     | 5.18        | 6.00           | 6.94         |                |              |  |
| 958<br>959 | SE<br>SQ | 945.5          | 946        | 948<br>0 | 950      | 952      | 954<br>48.5 | 954.5<br>176.4 | 955<br>351.4 |                |              |  |
| 960        | RS       | 1              | ELEV       | 945.5    |          |          |             |                |              |                |              |  |
| 961        | KK       |                |            |          |          |          |             |                |              |                |              |  |
| 962<br>963 | KM<br>RK | 1300           | .0192      | .035     |          | TRAP     | 5           | 4              |              |                |              |  |
|            |          |                |            |          |          |          |             |                |              |                |              |  |
| 965        | KM       | E 3            |            |          |          |          |             |                |              |                |              |  |
| 966        | BA       | .090           | 60         |          |          |          |             |                |              |                |              |  |
| 968        | UD UD    | .128           | 00         |          |          |          |             |                |              |                |              |  |
| 969        | кк       | MH-P2          |            |          |          |          |             |                |              |                |              |  |
| 970<br>971 | KM       | ן<br>1011 עדיי | RETRIEVE D | VERSION  | FROM W.  | MERIDIA  | N RD DI1    | СН             |              |                |              |  |
| 2.1        |          |                |            |          |          |          |             |                |              |                |              |  |
| 972<br>973 | KK<br>KM | EC             |            |          |          |          |             |                |              |                |              |  |
| 974        | HC       | 3              |            |          |          |          |             |                |              |                |              |  |
| 975        | кк       | POND2          |            |          |          |          |             |                |              |                |              |  |
| 976        | KM<br>SV | 0              | .21        | 1.11     | 3.19     | 6.89     | 9.52        | 11.08          | 12.82        | 14.72          | 16.70        |  |
| 978<br>979 | SE       | 920<br>0       | 922<br>0   | 924<br>0 | 926<br>0 | 928<br>0 | 929<br>0    | 929.5<br>25    | 930<br>86.5  | 930.5<br>186.2 | 931<br>308-4 |  |

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 14 of 40 7/23/2008

| 980          | RS       | 1      | ELEV  | 920  |         |    |   |
|--------------|----------|--------|-------|------|---------|----|---|
| 981          | кк       |        |       |      |         |    |   |
| 982<br>983   | KM<br>RK | 1700   | .0141 | .035 | TRAP    | 5  | 4 |
| 0.9.4        | vv       | FIC    |       |      |         |    |   |
| 985          | KM       | 510    |       |      |         |    |   |
| 986<br>987   | BA<br>LS | .0845  | 60    |      |         |    |   |
| 988          | UD       | .200   |       |      |         |    |   |
| 989          | KK       | 1C-ED1 |       |      |         |    |   |
| 990          | KM       | 2450   | 000   | 0.75 | 77D N D |    | 4 |
| 991          | KK       | 3450   | .022  | .035 | IRAP    | 5  | 4 |
| 992<br>993   | KK       | E4     |       |      |         |    |   |
| 994          | BA       | .127   |       |      |         |    |   |
| 995<br>996   | LS       | .200   | 60    |      |         |    |   |
|              |          |        |       |      |         |    |   |
| 998          | KM       | EDI    |       |      |         |    |   |
| 999          | HC       | 2      |       |      |         |    |   |
| 1000         | кк       | ED1-ED |       |      |         |    |   |
| 1001<br>1002 | KM<br>RK | 450    | .0178 | .03  | TRAP    | 5  | 4 |
| 1000         |          |        |       |      |         |    |   |
| 1003         | KK<br>KM | E2     |       |      |         |    |   |
| 1005         | BA       | .094   | 60    |      |         |    |   |
| 1000         | UD       | .160   | 00    |      |         |    |   |
| 1008         | ĸĸ       | FD     |       |      |         |    |   |
| 1009         | KM       | -      |       |      |         |    |   |
| 1010         | HC       | 3      |       |      |         |    |   |
| 1011         | KK       |        |       |      |         |    |   |
| 1012         | KM<br>RK | 950    | .0211 | .035 | TRAP    | 10 | 4 |
| 1014         | VV       | 63     |       |      |         |    |   |
| 1014         | KK<br>KM | FC     |       |      |         |    |   |
| 1016         | BA       | .0446  | 50    |      |         |    |   |
| 1018         | UD       | .139   | 60    |      |         |    |   |
| 1019         | ĸĸ       | EF     |       |      |         |    |   |
| 1020         | KM       | ~      |       |      |         |    |   |
| 1021         | HC       | 2      |       |      |         |    |   |
| 1022         | KK       |        |       |      |         |    |   |
| 1023         | RK       | 1500   | .0127 | .035 | TRAP    | 10 | 4 |
| 1025         | KY       | £10    |       |      |         |    |   |
| 1026         | KM       | -      |       |      |         |    |   |
| 1027<br>1028 | BA<br>LS | .029   | 60    |      |         |    |   |
| 1029         | ŪD       | .158   | •••   |      |         |    |   |
| 1030         | кк       | EF     |       |      |         |    |   |
| 1031         | KM       | ~      |       |      |         |    |   |
| 1032         | нс       | 2      |       |      |         |    |   |
| 1033         | KK       | F-G    |       |      |         |    |   |
| 1034         | RK       | 950    | .0074 | .035 | TRAP    | 15 | 4 |
| 1036         | ĸĸ       | F6     |       |      |         |    |   |
| 1037         | KM       | 20     |       |      |         |    |   |
| 1038         | BA       | .119   | £0    |      |         |    |   |
| 1040         | UD       | .228   |       |      |         |    |   |
| 1041         | кк       | £7     |       |      |         |    |   |
| 1042         | KM       |        |       |      |         |    |   |
| 1043         | BA<br>LS | .031   | 60    |      |         |    |   |
| 1045         | UD       | .082   |       |      |         |    |   |
| 1046         | кк       |        |       |      |         |    |   |
| 1047         | KM       | 1100   | 0100  | 035  | TRAP    | 5  | 4 |
| TOHO         | R.K.     | 1100   | .0100 | .055 | INT     | 5  | 7 |
| 1049<br>1050 | KK<br>KM | EG1    |       |      |         |    |   |
| 1051         | HC       | 2      |       |      |         |    |   |
| 1052         | кк       | G1-G   |       |      |         |    |   |
| 1053         | KM       | 1250   | 0176  | 0.25 | מגסיי   | c  | ^ |
| 1054         | KK KK    | 1650   | _01/0 | .035 | IKAP    | 2  | 4 |

\\Se-srv01\projects\\057-Park Place Enterprises\\07-032-Meridian Crossing\Reports\FDR\CALCS\\SCS Calcs\\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 15 of 40 7/23/2008

| 1 | 055          | KK       | E9    |            |      |      |    |   |  |   |  |
|---|--------------|----------|-------|------------|------|------|----|---|--|---|--|
| 1 | 057          | BA       | .077  | <i>c</i> 0 |      |      |    |   |  |   |  |
| 1 | L058<br>L059 | LS<br>UD | .207  | 60         |      |      |    |   |  |   |  |
| 1 | 1060         | кк       |       |            |      |      |    |   |  |   |  |
| j | 1061         | KM       | 1500  | 0.080      | 0.3  | TOND | 5  | ^ |  |   |  |
|   | 002          | RK.      | 1300  | ,0000      | .05  | INF  | 5  | 1 |  |   |  |
| 1 | L063<br>L064 | KK<br>KM | E11   |            |      |      |    |   |  |   |  |
| : | 1065<br>1066 | BA<br>LS | .045  | 60         |      |      |    |   |  |   |  |
|   | 1067         | UD       | .195  |            |      |      |    |   |  |   |  |
| : | 1068         | кк       | E12   |            |      |      |    |   |  |   |  |
|   | 1069<br>1070 | KM<br>BA | .092  |            |      |      |    |   |  |   |  |
|   | 1071         | LS<br>UD | .156  | 60         |      |      |    |   |  |   |  |
|   | 1072         |          |       |            |      |      |    |   |  |   |  |
|   | 1073         | KM       | EG    |            |      |      |    |   |  |   |  |
|   | 1075         | HC       | 5     |            |      |      |    |   |  |   |  |
|   | 1076         | KK<br>KM | E13   |            |      |      |    |   |  |   |  |
|   | 1078         | BA       | .0165 | 60         |      |      |    |   |  |   |  |
|   | 1079<br>1080 | LS<br>UD | .252  | 60         |      |      |    |   |  |   |  |
|   | 1081         | кк       | E14   |            |      |      |    |   |  |   |  |
|   | 1082         | KM<br>BA | 0051  |            |      |      |    |   |  |   |  |
|   | 1083         | LS       | .0051 | 60         |      |      |    |   |  |   |  |
|   | 1085         | UD       | .153  |            |      |      |    |   |  |   |  |
|   | 1086<br>1087 | KK<br>KM |       |            |      |      |    |   |  |   |  |
|   | 1088         | RK       | 279   | .0108      | .03  | TRAP | 5  | 4 |  |   |  |
|   | 1089         | KK       | EH    |            |      |      |    |   |  |   |  |
|   | 1090         | HC       | 3     |            |      |      |    |   |  |   |  |
|   | 1092         | кк       |       |            |      |      |    |   |  |   |  |
|   | 1093         | KM<br>BK | 2400  | .0204      | .035 | TRAP | 10 | 4 |  |   |  |
|   | 1095         | кк       | F19   |            |      |      |    |   |  |   |  |
|   | 1096         | КM       |       |            |      |      |    |   |  |   |  |
|   | 1097<br>1098 | BA<br>LS | .0406 | 62         |      |      |    |   |  |   |  |
|   | 1099         | UD       | .127  |            |      |      |    |   |  |   |  |
|   | 1100         | KK       | EJ1   |            |      |      |    |   |  |   |  |
|   | 1102         | HC       | 2     |            |      |      |    |   |  |   |  |
|   | 1103         | кк       | J1-K  |            |      |      |    |   |  |   |  |
|   | 1104<br>1105 | KM<br>RK | 4013  | .013       | .035 | TRAP | 10 | 4 |  |   |  |
|   | 1106         | ĸĸ       | F15   |            |      |      |    |   |  |   |  |
|   | 1107         | КМ       |       |            |      |      |    |   |  |   |  |
|   | 1108         | BA<br>LS | .0355 | 63         |      |      |    |   |  |   |  |
|   | 1110         | UD       | .097  |            |      |      |    |   |  |   |  |
|   | 1111         | KK       |       |            |      |      |    |   |  |   |  |
|   | 1112         | RK       | 951   | .0189      | .035 | TRAP | 5  | 4 |  |   |  |
|   | 1114         | KK       | E16   |            |      |      |    |   |  |   |  |
|   | 1115<br>1116 | KM<br>BA | .0307 |            |      |      |    |   |  |   |  |
|   | 1117         | LS       | 100   | 63         |      |      |    |   |  | - |  |
|   | 1110         | 00       | .100  |            |      |      |    |   |  |   |  |
|   | 1119         | KK<br>KM | El    |            |      |      |    |   |  |   |  |
|   | 1121         | HC       | 2     |            |      |      |    |   |  |   |  |
|   | 1122         | KK<br>KM |       |            |      |      |    |   |  |   |  |
|   | 1124         | RK       | 1334  | .0105      | .035 | TRAP | 5  | 4 |  |   |  |
|   | 1125         | кк       | E17   |            |      |      |    |   |  |   |  |
|   | 1126<br>1127 | KM<br>BA | .0312 |            |      |      |    |   |  |   |  |
|   | 1128         | LS       | 007   | 63         |      |      |    |   |  |   |  |
|   | 1122         | 00       | .051  |            |      |      |    |   |  |   |  |

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 16 of 40 7/23/2008

| 1130<br>1131<br>1132                 | KK<br>KM<br>RK             | 1728                 | .0145 | .035 | TRAP | 5  | 4 |   |  |  |
|--------------------------------------|----------------------------|----------------------|-------|------|------|----|---|---|--|--|
| 1133<br>1134<br>1135<br>1136<br>1137 | KK<br>KM<br>BA<br>LS<br>UD | E18<br>.0488<br>.180 | 63    |      |      |    |   |   |  |  |
| 1138<br>1139<br>1140                 | КК<br>КМ<br>НС             | EJ2<br>3             |       |      |      |    |   |   |  |  |
| 1141<br>1142<br>1143                 | KK<br>KM<br>RK             | 4221                 | .0123 | .035 | TRAP | 20 | 4 |   |  |  |
| 1144<br>1145<br>1146<br>1147<br>1148 | KK<br>KM<br>BA<br>LS<br>UD | E23<br>.1683<br>.250 | 62    |      |      |    |   |   |  |  |
| 1149<br>1150<br>1151<br>1152<br>1153 | KK<br>KM<br>BA<br>LS<br>UD | E24<br>.140<br>.371  | 63    |      |      |    |   |   |  |  |
| 1154<br>1155<br>1156                 | КК<br>КМ<br>НС             | ЕК<br>4              |       |      |      |    |   |   |  |  |
| 1157<br>1158<br>1159                 | KK<br>KM<br>RK             | 2817                 | .0149 | .035 | TRAP | 25 | 4 |   |  |  |
| 1160<br>1161<br>1162<br>1163<br>1164 | KK<br>KM<br>BA<br>LS<br>UD | E21<br>.0873<br>.183 | 60    |      |      |    |   |   |  |  |
| 1165<br>1166<br>1167                 | KK<br>KM<br>RK             | 1647                 | .0121 | .035 | TRAP | 5  | 4 |   |  |  |
| 1168<br>1169<br>1170<br>1171<br>1172 | KK<br>KM<br>BA<br>LS<br>UD | E20<br>.0771<br>.219 | 62    |      |      |    |   |   |  |  |
| 1173<br>1174<br>1175                 | KK<br>KM<br>RK             | 569                  | .0141 | .035 | TRAP | 5  | 4 |   |  |  |
| 1176<br>1177<br>1178<br>1179<br>1180 | KK<br>KM<br>BA<br>LS<br>UD | E22<br>.0677<br>.240 | 61    |      |      |    |   |   |  |  |
| 1181<br>1182<br>1183                 | KK<br>KM<br>HC             | EL<br>3              |       |      |      |    |   |   |  |  |
| 1184<br>1185<br>1186                 | KK<br>KM<br>RK             | 2041                 | .0162 | .035 | TRAP | 25 | 4 |   |  |  |
| 1187<br>1188<br>1189<br>1190<br>1191 | KK<br>KM<br>BA<br>LS<br>UD | E25<br>.1665<br>.176 | 61    |      |      |    |   |   |  |  |
| 1192<br>1193<br>1194                 | КК<br>КМ<br>НС             | ЕМ<br>3              |       |      |      |    |   | - |  |  |
| 1195<br>1196<br>1197                 | KK<br>KM<br>RK             | 928                  | .0108 | .035 | TRAP | 40 | 4 |   |  |  |
| 1198<br>1199<br>1200<br>1201<br>1202 | KK<br>KM<br>BA<br>LS<br>UD | E26<br>.0361<br>.096 | 63    |      |      |    |   |   |  |  |
| 1203<br>1204<br>1205                 | KK<br>KM<br>HC             | EN<br>2              |       |      |      |    |   |   |  |  |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 17 of 40 7/23/2008

| 1206 | KK        |        |            |                  |                |    |   |
|------|-----------|--------|------------|------------------|----------------|----|---|
| 1207 | KM        | 1000   | 0105       | 0.07             |                | 10 |   |
| 1208 | КK        | 1832   | .0126      | .035             | TRAP           | 40 | 4 |
| 1209 | KV        | F 27   |            |                  |                |    |   |
| 1209 | KM        | 627    |            |                  |                |    |   |
| 1211 | BA        | . 1236 |            |                  |                |    |   |
| 1212 | LS        | .1230  | 63         |                  |                |    |   |
| 1213 | UD        | .172   |            |                  |                |    |   |
| 1210 | 00        |        |            |                  |                |    |   |
| 1214 | KK        | EO     |            |                  |                |    |   |
| 1215 | КM        |        |            |                  |                |    |   |
| 1216 | HC        | 2      |            |                  |                |    |   |
|      |           |        |            |                  |                |    |   |
| 1217 | KK        |        |            |                  |                |    |   |
| 1218 | KM        |        |            |                  |                |    |   |
| 1219 | RK        | 1625   | .0133      | .035             | TRAP           | 5  | 3 |
|      |           |        |            |                  |                |    |   |
| 1220 | KK        | W55    |            |                  |                |    |   |
| 1221 | KM        |        |            |                  |                |    |   |
| 1222 | BA        | .0452  | 60         |                  |                |    |   |
| 1224 | 11D<br>CT | 003    | 00         |                  |                |    |   |
| 1224 | υu        | .095   |            |                  |                |    |   |
| 1225 | ĸĸ        | WAC.   |            |                  |                |    |   |
| 1226 | KM        | nno.   |            |                  |                |    |   |
| 1227 | HC        | 2      |            |                  |                |    |   |
|      |           | 2      |            |                  |                |    |   |
| 1228 | ĸĸ        |        |            |                  |                |    |   |
| 1229 | KM        |        |            |                  |                |    |   |
| 1230 | RK        | 2025   | .0109      | .035             | TRAP           | 5  | 4 |
|      |           | -      |            |                  |                |    |   |
| 1231 | KK        | W59    |            |                  |                |    |   |
| 1232 | KM        |        |            |                  |                |    |   |
| 1233 | BA        | .0705  |            |                  |                |    |   |
| 1234 | LS        |        | 60         |                  |                |    |   |
| 1235 | UD        | .200   |            |                  |                |    |   |
|      |           |        |            |                  |                |    |   |
| 1236 | KK        | WAJ    |            |                  |                |    |   |
| 1237 | KM        |        |            |                  |                |    |   |
| 1238 | HC        | 4      |            |                  |                |    |   |
|      |           |        |            |                  |                |    |   |
| 1239 | KK        |        |            |                  |                |    |   |
| 1240 | KM        | 1 45 0 | 0104       | 0.25             | <b>777 7</b> 7 | 40 |   |
| 1241 | RK        | 1450   | .0124      | .035             | TRAP           | 40 | 4 |
| 1242 | ĸĸ        | F28    |            |                  |                |    |   |
| 1243 | KM        | 520    |            |                  |                |    |   |
| 1244 | RA        | .0718  |            |                  |                |    |   |
| 1245 | LS        |        | 61         |                  |                |    |   |
| 1246 | UD        | .223   | 01         |                  |                |    |   |
|      | 55        |        |            |                  |                |    |   |
| 1247 | KK        |        |            |                  |                |    |   |
| 1248 | КМ        |        |            |                  |                |    |   |
| 1249 | RK        | 2064   | .0165      | .035             | TRAP           | 40 | 4 |
|      |           |        |            |                  |                |    |   |
| 1250 | KK        | E29    |            |                  |                |    |   |
| 1251 | KM        |        |            |                  |                |    |   |
| 1252 | BA        | .0465  |            |                  |                |    |   |
| 1253 | LS        |        | 61         |                  |                |    |   |
| 1254 | UD        | .166   |            |                  |                |    |   |
|      |           |        |            |                  |                |    |   |
| 1255 | KK        | EZZ    |            |                  |                |    |   |
| 1256 | KM        | , c    | COMBINE E2 | 9 & E30 AT DP ZZ |                |    |   |
| 1257 | HC        | 2      |            |                  |                |    |   |
|      |           |        |            |                  |                |    |   |
| 1258 | KK        | W60    |            |                  |                |    |   |
| 1259 | KM        | 0711   |            |                  |                |    |   |
| 1260 | BA        | .0711  | 60         |                  |                |    |   |
| 1262 | 122       | 100    | 60         |                  |                |    |   |
| 1202 | UD        | .182   |            |                  |                |    |   |
| 1263 | кк        | 77     |            |                  |                |    |   |
| 1264 | KM        |        | COMBINE AT | L AT DP 77       |                |    |   |
| 1265 | HC        | ્રે    |            |                  |                |    |   |
| 1266 | 22        | 5      |            |                  |                |    |   |
|      |           |        |            |                  |                |    |   |

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 18 of 40 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 20 of 40 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfa125.doc Page 22 of 40 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 23 of 40 7/23/2008

.



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 24 of 40 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 26 of 40 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 27 of 40 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 28 of 40 7/23/2008



(\*\*\*) RUNOFF ALSO COMPUTED AT THIS LOCATION

\*\*\*\*\*\*\* \* \* FLOOD HYDROGRAPH PACKAGE (HEC-1) JUN 1998 VERSION 4.1 . U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104 \* ÷ RUN DATE 28SEP07 TIME 11:57:06 \* \*\*\*\*\*\*

FALCON BASIN 5-YR/ 24-HOUR FLOOD/ EXISTING CONDITIONS
UPPER EAST TRIBUTARY (WOODMEN HILLS) BASED ON CLOMR APPROVED 2/2/99
INCLUDING 2 EXISTING SCS STOCK PONDS, WEST WOODMEN HILLS POND
NOTE: M1-M4 (PAINT BRUSH HILLS) MODELED AS HISTORIC TO ACCOUNT FOR
DETENTION POND AT MC
NOTE: NO CULVERT AT STAPLETON & MERIDIAN, TEMP CULVERTS AT MERIDIAN
DOWNSTREAM OF WOODMEN HILLS DRIVE (DIVERSION)

## 9 IO OUTPUT CONTROL VARIABLES IPRNT IPLOT

- 5 PRINT CONTROL 0 PLOT CONTROL
- QSCAL 0. HYDROGRAPH PLOT SCALE

## HYDROGRAPH TIME DATA IΤ

| JORAPH 11ML | DAIA    |                                 |
|-------------|---------|---------------------------------|
| NMIN        | 5       | MINUTES IN COMPUTATION INTERVAL |
| IDATE       | 14JUL99 | STARTING DATE                   |
| ITIME       | 0800    | STARTING TIME                   |
| NQ          | 300     | NUMBER OF HYDROGRAPH ORDINATES  |
| NDDATE      | 15JUL99 | ENDING DATE                     |
| NDTIME      | 0855    | ENDING TIME                     |
| ICENT       | 19      | CENTURY MARK                    |
|             |         |                                 |

COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS

## ENGLISH UNITS

1

| DRAINAGE AREA       | SQUARE MILES          |
|---------------------|-----------------------|
| PRECIPITATION DEPTH | INCHES                |
| LENGTH, ELEVATION   | FEET                  |
| FLOW                | CUBIC FEET PER SECOND |
| STORAGE VOLUME      | ACRE-FEET             |
| SURFACE AREA        | ACRES                 |
| TEMPERATURE         | DEGREES FAHRENHEIT    |
|                     |                       |

## RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

| OPERATION     | STATION    | PEAK | TIME OF | AVERAGE | FLOW FOR MAXI | MUM PERIOD | BASIN | MAXIMUM | TIME OF   |
|---------------|------------|------|---------|---------|---------------|------------|-------|---------|-----------|
|               |            |      |         | 6-HOUR  | 24-HOUR       | 72-HOUR    | INDA  | JINGE   | MAA SIAGE |
| HYDROGRAPH AT | W1         | 5.   | 5.83    | 1.      | ο.            | ο.         | .05   |         |           |
| ROUTED TO     |            | 4.   | 5,92    | 1.      | ٥.            | 0.         | .05   |         |           |
| HYDROGRAPH AT | W2         | 2.   | 5,83    | 0.      | 0.            | 0.         | . 03  |         |           |
| 2 COMBINED AT | WA         | 6    | 5 92    | 1       | 0             | 0          |       |         |           |
| ROUTED TO     | ЧĄ         | 0.   | 5.92    | 1.      | 0.            | 0.         | .08   |         |           |
| HYDROGRAPH AT |            | θ.   | 5.92    | 1.      | 0.            | 0.         | .08   |         |           |
| 2 COMBINED AT | W3         | 5.   | 5.83    | 1.      | 0.            | 0.         | .05   |         |           |
|               | WB         | 11.  | 5.92    | 2.      | 1.            | 1.         | .13   |         |           |
| ROUTED TO     |            | 10.  | 5.92    | 2.      | 1.            | 1.         | .13   |         |           |
| HYDROGRAPH AT | ₩4         | 1.   | 5.75    | 0.      | 0.            | 0.         | .01   |         |           |
| ROUTED TO     |            | 1.   | 5.83    | 0.      | 0.            | 0.         | .01   |         |           |
| HYDROGRAPH AT | <b>W</b> 5 | 2.   | 5.75    | 0.      | 0.            | 0.         | .02   |         |           |
| 3 COMBINED AT | WC         | 11.  | 5.92    | 2.      | 1.            | 1.         | .15   |         |           |
| ROUTED TO     |            |      |         |         |               | - *        |       |         |           |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 30 of 40 7/23/2008

|   |               |            | 11. | 5.92 | 2. | 1. | 1. | .15  |  |
|---|---------------|------------|-----|------|----|----|----|------|--|
| н | YDROGRAPH AT  | W6         | 5.  | 5.83 | 1. | 0. | 0. | .05  |  |
| R | OUTED TO      |            | 5.  | 5.83 | 1. | 0. | 0. | .05  |  |
| н | YDROGRAPH AT  | <b>W</b> 7 | 2.  | 5.75 | 0. | 0. | 0. | .02  |  |
| R | OUTED TO      |            | 2.  | 5.83 | 0. | 0. | 0. | .02  |  |
| 2 | COMBINED AT   | WD         | 7.  | 5.83 | 1. | 0. | ο. | .07  |  |
| R | OUTED TO      | D-E        | 6.  | 5.83 | 1. | 0. | 0. | .07  |  |
| н | YDROGRAPH AT  | <b>W</b> 8 | з.  | 5.75 | 0. | 0. | 0. | .03  |  |
| R | OUTED TO      |            | з.  | 5.83 | 0. | 0. | 0. | .03  |  |
| н | IYDROGRAPH AT | W9         | 5.  | 5.83 | 1. | 0. | 0. | .04  |  |
| 3 | COMBINED AT   | WE         | 14. | 5.83 | 2. | 1. | 1. | .14  |  |
| R | ROUTED TO     | E-F        | 13. | 5.92 | 2. | 1. | 1. | .14  |  |
| н | IYDROGRAPH AT | W10        | 5.  | 5.83 | 1. | 0. | 0. | .04  |  |
| P | ROUTED TO     |            | 5.  | 5.83 | 1. | 0. | ο. | .04  |  |
| Н | YDROGRAPH AT  | W11        | з.  | 5.75 | 0. | 0. | 0. | .03  |  |
| 4 | COMBINED AT   | WF         | 29. | 5.92 | 5. | 2. | 2. | .36  |  |
| F | ROUTED TO     | F-G        | 28. | 6.00 | 5. | 2. | 2. | .36  |  |
| H | IYDROGRAPH AT | W12        | 4.  | 5.83 | 1. | 0. | ٥. | .04  |  |
| F | ROUTED TO     |            | 4.  | 5.92 | 1. | 0. | 0. | .04  |  |
| ł | YDROGRAPH AT  | W14        | 5.  | 5.83 | 1. | 0. | 0. | .05  |  |
| F | ROUTED TO     |            | 5.  | 5,92 | 1. | ο. | 0. | .05  |  |
| ł | HYDROGRAPH AT | W13        | 10. | 5.92 | 2. | 1. | 1. | .11  |  |
| 4 | 4 COMBINED AT | WG         | 43. | 6.00 | 8. | 3. | 3. | .56  |  |
| F | ROUTED TO     | G-H        | 41. | 6.08 | 8. | 3. | 3. | .56  |  |
| F | ROUTED TO     |            | 39. | 6.17 | 8. | 3. | з. | .56  |  |
| F | HYDROGRAPH AT | W15        | 10. | 5.83 | 1. | 1. | 1. | .09  |  |
| I | ROUTED TO     |            | 9.  | 5.92 | 1  | 1. | 1. | .09  |  |
| : | 2 COMBINED AT | WH         | 43. | 6.17 | 9. | 4. | 4. | . 65 |  |
| I | HYDROGRAPH AT | W16        | 4.  | 5.83 | 0. | ο. | 0. | .03  |  |
| 1 | ROUTED TO     |            | з.  | 5.92 | 0. | 0. | 0. | .03  |  |
| 1 | HYDROGRAPH AT | W17        | 2.  | 5.83 | 0. | 0. | 0. | .02  |  |
| : | 2 COMBINED AT | WI         | 5.  | 5.83 | 1. | 0. | 0. | .05  |  |

Į

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 31 of 40 7/23/2008

|   | ROUTED TO     | I-M         | 5.  | 6.00      | 1.  | 0. | 0. | .05  |  |
|---|---------------|-------------|-----|-----------|-----|----|----|------|--|
|   | HYDROGRAPH AT | W19         | 5.  | 5.75      | 1.  | 0. | 0. | .04  |  |
|   | ROUTED TO     |             | 5.  | 5.83      | 1.  | 0. | 0. | .04  |  |
|   | HYDROGRAPH AT | W20         | 5.  | 5.75      | ο.  | 0. | 0. | .03  |  |
|   | 2 COMBINED AT | WJ          | 9.  | 5.83      | 1.  | 0. | 0. | -07  |  |
|   | ROUTED TO     |             | 9.  | 6.00      | 1.  | 0. | 0. | .07  |  |
|   | HYDROGRAPH AT | W21         | 11. | 5.83      | 2.  | 1. | 1. | .13  |  |
|   | 2 COMBINED AT | WK          | 18. | 5.92      | 3.  | 1. | 1. | .21  |  |
|   | ROUTED TO     |             | 16. | 5.92      | 3.  | 1. | 1. | .21  |  |
|   | HYDROGRAPH AT | ₩22         | 2.  | 5.75      | 0.  | Ο. | 0. | .01  |  |
|   | 2 COMBINED AT | WL          | 17. | 5.92      | 3.  | 1. | 1. | .22  |  |
|   | ROUTED TO     |             | 17. | 6.00      | з.  | 1. | 1. | .22  |  |
|   | HYDROGRAPH AT | W23         | 2.  | 5.83      | 0.  | 0. | ٥. | .02  |  |
|   | HYDROGRAPH AT | W18         | 9.  | 5.92      | 2.  | 1. | 1. | .13  |  |
|   | 5 COMBINED AT | ŴM          | 66. | 6.08      | 15. | б. | ō. | 1.06 |  |
|   | ROUTED TO     | M-N         | 65. | 6.17      | 15. | 6. | б. | 1.06 |  |
|   | HYDROGRAPH AT | W24         | 4.  | 5.83      | 1.  | 0. | ٥. | .04  |  |
|   | HYDROGRAPH AT | W25         | 8.  | 5.92      | 1.  | 1. | 1. | .10  |  |
|   | 3 COMBINED AT | WN          | 70. | 6.17      | 17. | 7. | 7. | 1,20 |  |
|   | ROUTED TO     | N-P         | 67  | 6 25      | 16  | 7  | 7  | 1 20 |  |
|   | HYDROGRAPH AT | W28         | 7   | 5.83      | 1   | 0  | 0  | 04   |  |
|   | ROUTED TO     | #20         | ۰.  | 5.00      | 1   | 0. | 0. | .04  |  |
|   | HYDROGRAPH AT | M20         |     | 5.92      | 1.  | 0. | 0. | .04  |  |
| - | ROUTED TO     | <b>N</b> 30 | 9.  | 5.03      | 1.  | 0. | 0. | .05  |  |
| - | HYDROGRAPH AT | 1420        | 8.  | 5,92      | 1.  | 0. | 0. | .05  |  |
|   | HYDROGRAPH AT | W29         | ÷.  | 5.83      | 1.  | 0. | 0. | .04  |  |
| ÷ | 4 COMBINED AT | W31         | 3.  | 5.75<br>• | 0.  | 0. | 0. | .01  |  |
| • | ROUTED TO     | WO          | 20. | 5.92      | 3.  | 1. | 1. | .14  |  |
| • | HYDROGRAPH AT | 0-P         | 20. | 6.00      | 3.  | 1. | 1. | .14  |  |
| + | ROUTED TO     | W26         | 7.  | 5.75      | 1.  | υ. | 0. | .03  |  |
| ÷ | HYDROGRAPH AT |             | 6.  | 6.08      | 1.  | υ. | 0. | .03  |  |
| • | HYDROGRAPH AT | W27         | 10. | 6.00      | 2.  | 1. | 1. | .16  |  |
| + |               | W32         | 7.  | 5,92      | 1.  | Ο. | 0. | .09  |  |

•

÷

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 32 of 40 7/23/2008

|   | 5 COMBINED AT | WP          | 88.  | 6.17 | 23. | 10. | 9.  | 1.63     |  |  |
|---|---------------|-------------|------|------|-----|-----|-----|----------|--|--|
|   | ROUTED TO     | P-Q         | 87.  | 6.25 | 23. | 10. | 9.  | 1.63     |  |  |
|   | HYDROGRAPH AT | W33A        | 9.   | 5.92 | 2.  | 1.  | 1.  | .13      |  |  |
|   | 2 COMBINED AT | WP1         | 91.  | 6.25 | 24. | 10. | 10. | 1.75     |  |  |
|   | ROUTED TO     | P1-Q        | 90.  | 6.33 | 24. | 10. | 10. | 1.75     |  |  |
| ÷ | HYDROGRAPH AT | W33B        | 9.   | 5.92 | 2.  | 1.  | 1.  | .14      |  |  |
| ÷ | HYDROGRAPH AT | W34A        | 9.   | 5.92 | 2.  | 1.  | 1.  | .13      |  |  |
| F | ROUTED TO     | 34A-P2      | 9.   | 6.08 | 2.  | 1.  | 1.  | .13      |  |  |
| ÷ | HYDROGRAPH AT | W34B        | 11.  | 5.92 | 2.  | 1.  | 1.  | .18      |  |  |
| ÷ | 2 COMBINED AT | WP2         | 18.  | 6.00 | 4.  | 2.  | 2.  | .30      |  |  |
| + | ROUTED TO     | P2-Q        | 18.  | 6.17 | 4.  | 2.  | 2.  | .30      |  |  |
| + | HYDROGRAPH AT | W34C        | 10.  | 6.00 | 2.  | 1.  | 1.  | -<br>.16 |  |  |
| + | 4 COMBINED AT | WQ          | 114. | 6.25 | 32. | 13. | 13. | 2.36     |  |  |
| + | ROUTED TO     | Q-Q1        | 113. | 6.33 | 32. | 13. | 13. | 2.36     |  |  |
| + | HYDROGRAPH AT | W36A        | 9.   | 5.92 | 2.  | 1.  | 1.  | .14      |  |  |
| + | 2 COMBINED AT | WQ1         | 118, | 6.33 | 33. | 14. | 14. | 2.50     |  |  |
| + | ROUTED TO     | Q1-R        | 117. | 6.42 | 33. | 14. | 14. | 2.50     |  |  |
| + | HYDROGRAPH AT | W36B        | 10.  | 6.00 | 2.  | 1.  | 1.  | .19      |  |  |
| + | HYDROGRAPH AT | W35A        | 7.   | 5.92 | 1.  | 1.  | 1.  | .10      |  |  |
| + | ROUTED TO     | 35A-WR      | 6.   | 6.25 | 1.  | 1.  | 1.  | .10      |  |  |
| + | HYDROGRAPH AT | W35B        | 9.   | 6.00 | 2.  | 1.  | 1.  | .15      |  |  |
| + | 4 COMBINED AT | WR          | 131. | 6.42 | 38. | 17. | 16. | 2.94     |  |  |
| + | ROUTED TO     | WR-S        | 130. | 6.50 | 38. | 16. | 16. | 2.94     |  |  |
| + | HYDROGRAPH AT | W37A        | 8.   | 5.92 | 1.  | 1.  | 1.  | .11      |  |  |
| + | ROUTED TO     | 37A-S       | 8.   | 6.00 | 1.  | 1.  | 1.  | .11      |  |  |
| + | HYDROGRAPH AT | W37B        | 13.  | 5,92 | 2.  | 1.  | 1.  | .16      |  |  |
| + | 3 COMBINED AT | ws          | 137. | 6.50 | 42. | 18. | 17. | 3.21     |  |  |
| + | ROUTED TO     | S-T         | 134. | 6.67 | 42. | 18. | 17. | 3.21     |  |  |
| + | HYDROGRAPH AT | <b>W</b> 38 | 10.  | 5.92 | 2.  | 1.  | 1.  | .09      |  |  |
| + | ROUTED TO     |             | 9.   | 6.08 | 2.  | 1.  | 1.  | .09      |  |  |
| + | HYDROGRAPH AT | W39         | 11.  | 6.00 | 2.  | 1.  | 1.  | .18      |  |  |

HYDROGRAPH AT

i

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 33 of 40 7/23/2008

|               | W40        | 7.   | 5.83 | 1.  | 1.        | 1.  | .10  |
|---------------|------------|------|------|-----|-----------|-----|------|
| 4 COMBINED AT | WT         | 143. | 6.58 | 46. | 20.       | 19. | 3.59 |
| ROUTED TO     | T-U        | 142. | 6.67 | 46. | 20.       | 19. | 3.59 |
| HYDROGRAPH AT | W41        | 6.   | 5.83 | 1.  | 0.        | 0.  | .06  |
| HYDROGRAPH AT | W42        | 50.  | 5.75 | 5.  | 2.        | 2.  | .06  |
| ROUTED TO     | U-V        | 49.  | 5.83 | 5.  | 2.        | 2.  | .06  |
| 3 COMBINED AT | WU         | 148. | 6.67 | 51. | 22.       | 21. | 3.70 |
| ROUTED TO     |            | 146. | 6.75 | 51. | 22.       | 21. | 3.70 |
| HYDROGRAPH AT | W43        | 13.  | 5.83 | 2.  | 1.        | 1.  | .15  |
| 2 COMBINED AT | wv         | 149. | 6.75 | 53. | 23.       | 22. | 3.85 |
| ROUTED TO     | V-W        | 148. | 6.75 | 53. | 23.       |     | 3.85 |
| HYDROGRAPH AT | . n<br>w45 | 17   | 5,92 |     | 1         | 1   | . 19 |
| 2 COMBINED AT | 515J       | 150  | 6 75 | 5.  |           | 22  | 4.04 |
| ROUTED TO     | WW.        | 152. | 0,/0 |     | 24.<br>24 | 23. | 4.04 |
| HYDROGRAPH AT | ₩-X        | 149. | 0.83 | 55. | 24.       | 23. | 4.04 |
| ROUTED TO     | M1         | 1.   | 5.83 | 1.  | υ.        | 0.  | .07  |
| HYDROGRAPH AT | 20         | ٥.   | 5.83 | 1.  | U.        | 0.  | .07  |
| 2 COMBINED AT | M2         | 3.   | 5.83 | υ.  | U.        | 0.  | .03  |
| ROUTED TO     | MB         | 9.   | 5.83 | 1.  | 1.        | 0.  | .09  |
| HYDROGRAPH AT |            | θ.   | 5.92 | 1.  | 1.        | 0.  | .09  |
| ROUTED TO     | M4         | 3.   | 5.83 | 0.  | 0.        | 0.  | .03  |
| HYDROGRAPH AT |            | 3.   | 5.83 | 0.  | 0.        | 0.  | .03  |
| 3 COMBINED AT | МЗ         | 2.   | 5.75 | 0.  | 0.        | 0.  | .01  |
| ROUTED TO     | MC         | 11.  | 5.83 | 2.  | 1.        | 1.  | .14  |
| HYDROGRAPH AT |            | 11.  | 6,00 | 2.  | 1.        | 1.  | .14  |
| ROUTED TO     | <b>M</b> 5 | 6.   | 5.75 | 1.  | 0.        | 0.  | .02  |
| HYDROCPADE AT |            | 6.   | 5,92 | 1.  | 0.        | 0.  | .02  |
| 3 COMBINED AT | Me         | 10.  | 5.92 | 2.  | 1.        | 1.  | .06  |
| BOUTED TO     | MD         | 26.  | 5.92 | 4.  | 2.        | 2.  | .22  |
| KUULLU IU     |            | 25.  | 6.08 | 4.  | 2.        | 2.  | .22  |
| HIDKUGKAPN AT | M7         | 16.  | 5.83 | 2.  | 1.        | 1.  | .05  |
| KUUIED TO     |            | 15.  | 5.92 | 2.  | 1.        | 1.  | .05  |
| HIDROGRAPH AT | M8         | 4.   | 5.83 | 1.  | 0.        | 0.  | .04  |

+

+

+

+

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 34 of 40 7/23/2008

| 2 COMBINED AT | ME           | 18. | 5.83 | 2.   | 1. | 1. | .09 |        |      |
|---------------|--------------|-----|------|------|----|----|-----|--------|------|
| ROUTED TO     |              | 18. | 6.00 | 2.   | 1. | 1. | .09 |        |      |
| HYDROGRAPH AT | M9           | ٦.  | 5.75 | 1.   | ο. | 0. | .02 |        |      |
| ROUTED TO     |              | 6.  | 5.92 | 1.   | ο. | 0. | .02 |        |      |
| HYDROGRAPH AT | <b>M</b> 12A | 5.  | 5.83 | 1.   | ο. | 0. | .07 |        |      |
| HYDROGRAPH AT | M12B         | 10. | 5.92 | 2.   | 1. | 1. | .15 |        |      |
| 5 COMBINED AT | MF           | 59. | 6.00 | 10.  | 4. | 4. | .54 |        |      |
| ROUTED TO     |              | 57. | 6.08 | 10.  | 4. | 4. | .54 |        |      |
| HYDROGRAPH AT | M13          | 10. | 5.83 | 1.   | 1. | 0. | .06 |        |      |
| ROUTED TO     |              | 9.  | 6.00 | 1.   | 1. | 0. | .06 |        |      |
| HYDROGRAPH AT | M14          | 22. | 5.92 | 4.   | 1. | 1. | .16 |        |      |
| 2 COMBINED AT | MG           | 30. | 5.92 | • 5. | 2. | 2. | .22 |        |      |
| ROUTED TO     | PONDW        | 9.  | 6.50 | 5.   | 2. | 2. | .22 |        |      |
| 2 COMBINED AT |              |     |      |      |    |    |     | 969.11 | 6.50 |
| ROUTED TO     | MH           | 64. | 6.08 | 14.  | 6. | 5. | .11 |        |      |
| DIVERSION TO  |              | 62. | 6.17 | 14.  | 6. | 5. | .77 |        |      |
| HYDROCRAPH AT | DIVRT1       | 61. | 6.17 | 14.  | 6. | 5. | .77 |        |      |
| MUDDOGDADU AT | MH-P2        | 1.  | 6.17 | Ο.   | 0. | 0. | .77 |        |      |
| HIDROGRAPH AI | M15          | 18. | 5.92 | 3.   | 1. | 1. | .12 |        |      |
| Z COMBINED AT | MI           | 18. | 5.92 | 3.   | 1. | 1. | .89 |        |      |
| ROUTED TO     |              | 17. | 6.00 | 3.   | 1. | 1. | .89 |        |      |
| HYDROGRAPH AT | M19          | 5.  | 5,83 | 1.   | 0. | 0. | .05 |        |      |
| 2 COMBINED AT | MJ           | 20. | 6.00 | 3.   | 1. | 1. | .94 |        |      |
| ROUTED TO     |              | 20. | 6.08 | 3.   | 1. | 1. | .94 |        |      |
| HYDROGRAPH AT | <b>M</b> 10  | 8.  | 5.83 | 1.   | 0. | 0. | .06 |        |      |
| ROUTED TO     | M10-K        | 8.  | 5.92 | 1.   | 0. | ٥. | .06 |        |      |
| HYDROGRAPH AT | MIIA         | 8.  | 5.92 | 2.   | 1. | 1. | .11 |        |      |
| 2 COMBINED AT | МК           | 16. | 5.92 | 3.   | 1. | 1. | .16 |        |      |
| ROUTED TO     | MK-K1        | 16. | 6.00 | 3.   | 1. | 1. | .16 |        |      |
| HYDROGRAPH AT | M11B         | 7.  | 5.83 | 1.   | 0. | 0. | .09 |        |      |
| ROUTED TO     | 118-к1       | 7.  | 6.00 | 1.   | 0. | ٥. | .09 |        |      |
| HYDROGRAPH AT | M11C         | 7.  | 5.83 | 1.   | 1. | 0. | .09 |        |      |

3 COMBINED AT

+

+

+

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 35 of 40 7/23/2008

|   |               | MK1         | 27. | 6.00 | 5.  | 2.  | 2.    | .35  |  |
|---|---------------|-------------|-----|------|-----|-----|-------|------|--|
| ÷ | ROUTED TO     | K1-ML       | 26. | 6.00 | 5.  | 2.  | 2.    | .35  |  |
| ŀ | HYDROGRAPH AT | M16         | 4.  | 5.83 | 1.  | ο.  | 0.    | .04  |  |
|   | 2 COMBINED AT | MI.         | 28. | 6.00 | 5.  | 2.  | 2.    | . 39 |  |
| + | ROUTED TO     |             | 28. | 6.08 | 5.  | 2.  | 2.    | . 39 |  |
|   | HYDROGRAPH AT | M1 7        | 9   | 5 83 | ,   | 0   | 0     | 08   |  |
| Ŧ | 2 COMBINED AT | H1,         |     | 5.05 |     |     | · · · |      |  |
| + | ROUTED TO     | MM          | 31. | 6.08 | 7.  | 3.  | з.    | .40  |  |
| + | HYDROGRAPH AT |             | 29. | 6.17 | 7.  | 3.  | 3.    | .46  |  |
| ŧ | BOUTED TO     | M18         | 7.  | 5.83 | 1.  | 0.  | 0.    | .06  |  |
| + |               |             | 6.  | 6.00 | 1.  | 0.  | 0.    | .06  |  |
| + | HIDROGRAPH AI | M20         | 11. | 5.92 | 2.  | 1.  | 1.    | .13  |  |
| + | 4 COMBINED AT | MN -        | 57. | 6.17 | 13. | 5.  | 5.    | 1,60 |  |
| + | ROUTED TO     |             | 55. | 6.25 | 13. | 5.  | 5.    | 1.60 |  |
| + | HYDROGRAPH AT | M21         | 3.  | 5,83 | 0.  | 0.  | 0.    | .02  |  |
| + | ROUTED TO     |             | з.  | 5.92 | 0.  | 0.  | 0.    | .02  |  |
| + | HYDROGRAPH AT | M23         | 4.  | 5.83 | 1.  | ٥.  | 0.    | .05  |  |
| + | 3 COMBINED AT | MO          | 57. | 6.25 | 14. | 6.  | 5.    | 1.67 |  |
| + | ROUTED TO     |             | 56. | 6.25 | 14. | 6.  | 5.    | 1.67 |  |
| + | HYDROGRAPH AT | M24         | 7.  | 5.83 | 1.  | ο.  | 0.    | .08  |  |
| + | 2 COMBINED AT | MP          | 58. | 6.25 | 15. | 6.  | 6.    | 1.75 |  |
| + | ROUTED TO     |             | 57. | 6.25 | 15. | 6.  | 6.    | 1.75 |  |
|   | HYDROGRAPH AT | M25         | 1   | 5.83 | 0.  | 0.  | 0.    | .01  |  |
| • | 2 COMBINED AT | MO          |     | 6.05 | 15  | 6   | 6     | 1 76 |  |
| • | ROUTED TO     | nQ          |     | 0.20 |     | · · | · · · | 1.70 |  |
| + | HYDROGRAPH AT |             | 57. | 6.42 | 15. | ۰.  | ۰.    | 1./0 |  |
| + | 2 COMBINED AT | M26         | 26. | 5.92 | 4.  | 2.  | 2.    | .18  |  |
| + | HYDROGRAPH AT | MR          | 66. | 6.42 | 18. | 8.  | 7.    | 1.94 |  |
| + | ROUTED TO     | W44         | 3.  | 5.83 | 1.  | 0.  | 0.    | .04  |  |
| + | UVDBOCDEDU AT |             | 3.  | 6.00 | 1.  | 0.  | 0.    | .04  |  |
| + | HIDROGRAPH AT | W47         | 4.  | 5,83 | 1.  | 0.  | 0.    | .05  |  |
| • | ROUTED TO     |             | 4.  | 5.92 | 1.  | 0.  | 0.    | .05  |  |
| + | HYDROGRAPH AT | W46         | 4.  | 5.83 | 1.  | 0.  | 0.    | .04  |  |
| + | HYDROGRAPH AT | <b>M2</b> 7 | 5.  | 5.83 | 1.  | 0.  | 0.    | .05  |  |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 36 of 40 7/23/2008

| 6 COMBINED AT | WX  | 192. | 6.75 | 76. | 33. | 31. | 6.17 |  |
|---------------|-----|------|------|-----|-----|-----|------|--|
| ROUTED TO     |     | 191. | 6.83 | 76. | 32. | 31. | 6.17 |  |
| HYDROGRAPH AT | W48 | 14.  | 5.83 | 2.  | 1.  | 1.  | .12  |  |
| ROUTED TO     |     | 14.  | 5.92 | 2.  | 1.  | 1.  | .12  |  |
| HYDROGRAPH AT | W49 | 24.  | 5.92 | 4.  | 2.  | 2.  | .27  |  |
| 3 COMBINED AT | WZ  | 199. | 6.83 | 81. | 35. | 34. | 6.55 |  |
| ROUTED TO     |     | 196. | 6.92 | 81. | 35. | 34. | 6.55 |  |
| HYDROGRAPH AT | W50 | 11.  | 5.83 | 2.  | 1.  | 1.  | .11  |  |
| 2 COMBINED AT | WAB | 198. | 6.92 | 83. | 35. | 34. | 6.66 |  |
| ROUTED TO     |     | 198. | 6.92 | 83. | 35. | 34. | 6.66 |  |
| HYDROGRAPH AT | W51 | 7.   | 5.83 | 1.  | 0.  | 0.  | .05  |  |
| 2 COMBINED AT | WAC | 199. | 6.92 | 83. | 36. | 34. | 6.71 |  |
| ROUTED TO     |     | 198. | 6.92 | 83. | 36. | 34. | 6.71 |  |
| HYDROGRAPH AT | W52 | 9.   | 5.83 | ۱.  | 0.  | 0.  | .05  |  |
| ROUTED TO     |     | 8.   | 5.83 | 1.  | 0.  | 0.  | .05  |  |
| HYDROGRAPH AT | W53 | 8.   | 5.83 | 1.  | 0.  | 0.  | .05  |  |
| 2 COMBINED AT | WAD | 16.  | 5.83 | 2.  | 1.  | 1.  | .10  |  |
| ROUTED TO     |     | 14.  | 5.83 | 2.  | 1.  | 1.  | .10  |  |
| HYDROGRAPH AT | W54 | 1.   | 5.75 | 0.  | 0.  | ο.  | .01  |  |
| 3 COMBINED AT | WAE | 200. | 6.92 | 85. | 37. | 35. | 6.82 |  |
| ROUTED TO     |     | 199. | 7.00 | 85. | 36. | 35. | 6.82 |  |
| HYDROGRAPH AT | W56 | 13.  | 5.92 | 2.  | 1.  | 1.  | .18  |  |
| 2 COMBINED AT | WAF | 202. | 7.00 | 87. | 37. | 36. | 7.01 |  |
| ROUTED TO     |     | 200. | 7.00 | 87. | 37. | 36. | 7.01 |  |
| HYDROGRAPH AT | W62 | 7.   | 5.83 | 1.  | 0.  | 0.  | .08  |  |
| ROUTED TO     |     | 7.   | 5,92 | 1.  | 0.  | 0.  | .08  |  |
| HYDROGRAPH AT | W63 | 5.   | 5.83 | 1.  | 0.  | 0.  | .05  |  |
| ROUTED TO     |     | 4.   | 5.92 | 1.  | 0.  | 0.  | .05  |  |
| HYDROGRAPH AT | W61 | 11.  | 6.00 | 3.  | 1.  | 1.  | .19  |  |
| 3 COMBINED AT | WAH | 22.  | 5.92 | 4.  | 2.  | 2.  | .31  |  |
| ROUTED TO     |     | 21.  | 6.00 | 4 . | 2.  | 2.  | .31  |  |
| HYDROGRAPH AT | W57 | 6.   | 5.83 | 1.  | 0.  | 0.  | .07  |  |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 37 of 40 7/23/2008

+

| ROUTED TO     |        | 6.  | 6.25  | 1.  | 0. | 0. | .07  |        |       |  |
|---------------|--------|-----|-------|-----|----|----|------|--------|-------|--|
| HYDROGRAPH AT | W58    | 13. | 6.00  | 3.  | 1. | 1. | .23  |        |       |  |
| 3 COMBINED AT | WAI    | 35. | 6.00  | 8.  | 3. | 3. | . 62 |        |       |  |
| ROUTED TO     |        | 34. | 6.00  | 8.  | 3. | 3. | .62  |        |       |  |
| HYDROGRAPH AT | E1A    | 7.  | 5.92  | 2.  | 1. | 1. | .12  |        |       |  |
| ROUTED TO     | E1A-EA | 7.  | 6.17  | 1.  | 1. | 1. | .12  |        |       |  |
| HYDROGRAPH AT | Ē1B    | 10. | 5.92  | 2.  | 1. | 1. | .17  |        |       |  |
| 2 COMBINED AT | EA     | 13. | 6.17  | 4.  | 2. | 1. | .28  |        |       |  |
| ROUTED TO     | EA-EB  | 13. | 6.25  | 4.  | 2. | 1. | .28  |        |       |  |
| HYDROGRAPH AT | E2     | 9.  | 5.83  | 1.  | 1. | 1. | .10  |        |       |  |
| 2 COMBINED AT | EB     | 16. | 6.25  | 5.  | 2. | 2. | .39  |        |       |  |
| ROUTED TO     | POND1  | 2.  | 14.92 | 2.  | 1. | 1. | . 39 |        |       |  |
| ROUTED TO     |        |     |       |     |    |    |      | 952.08 | 14.92 |  |
| HYDROGRAPH AT |        | 2.  | 15.00 | 2.  | 1. | 1. | .39  |        |       |  |
| HYDROGRAPH AT | E3     | 8.  | 5.83  | 1.  | 0. | 0. | .09  |        |       |  |
| 2 COMPLIED AT | MH-P2  | 61. | 6.17  | 14. | 6. | 5. | .00  |        |       |  |
| DOUTED TO     | EC     | 64. | 6.17  | 15. | 7. | 7. | .48  |        |       |  |
| ROOTED TO     | POND2  | 6.  | 19.83 | 6.  | 2. | 2. | . 48 | 929.13 | 19.83 |  |
| ROUTED TO     |        | б.  | 20.00 | 6.  | 2. | 2. | .48  |        |       |  |
| HYDROGRAPH AT | E1C    | б.  | 5.92  | 1.  | 0. | 0. | .08  |        |       |  |
| ROUTED TO     | 1C-ED1 | 5.  | 6.17  | 1.  | 0. | 0. | .08  |        |       |  |
| HYDROGRAPH AT | E4     | 9.  | 5.92  | 2.  | 1. | 1. | .13  |        |       |  |
| 2 COMBINED AT | ED1    | 10. | 6.17  | 3.  | 1. | 1. | .21  |        |       |  |
| ROUTED TO     | ED1-ED | 10. | 6.17  | 3.  | 1. | 1. | .21  |        |       |  |
| HYDROGRAPH AT | E5     | ٦.  | 5,83  | 1.  | 1. | 0. | .09  |        |       |  |
| 3 COMBINED AT | ED     | 15. | 5.92  | 7.  | 4. | з. | .78  |        |       |  |
| ROUTED TO     |        | 14. | 5.92  | 7.  | 4. | 3. | .78  |        |       |  |
| HYDROGRAPH AT | E8     | 4.  | 5.83  | 1.  | 0. | 0. | .04  |        |       |  |
| 2 COMBINED AT | EE     | 18. | 5.92  | 7.  | 4. | 4. | .83  |        |       |  |
| ROUTED TO     |        | 17. | 6.00  | 7.  | 4. | 4. | .83  |        |       |  |
| HYDROGRAPH AT | E10    | 2.  | 5.83  | 0.  | 0. | ٥. | .03  |        |       |  |
| 2 COMBINED AT | EF     | 19. | 6.00  | 7.  | 4. | 4. | .85  |        |       |  |

. .

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 38 of 40 7/23/2008

+

| ROUTED TO     | F-G         | 18. | 6.08 | 7.  | 4. | 4. | .85  |   |  |
|---------------|-------------|-----|------|-----|----|----|------|---|--|
| HYDROGRAPH AT | E6          | 7.  | 5.92 | 2.  | 1. | 1. | .12  |   |  |
| HYDROGRAPH AT | E7          | з.  | 5.75 | 0.  | 0. | 0. | .03  |   |  |
| ROUTED TO     |             | з.  | 5.92 | 0.  | 0. | 0. | .03  |   |  |
| 2 COMBINED AT | EG1         | 10. | 5.92 | 2.  | 1. | 1. | .15  |   |  |
| ROUTED TO     | G1-G        | 10. | 6.00 | 2.  | 1. | 1. | .15  |   |  |
| HYDROGRAPH AT | E9          | 5.  | 5.92 | 1.  | 0. | 0. | .08  |   |  |
| ROUTED TO     |             | 5.  | 6.00 | 1.  | 0. | 0. | .08  |   |  |
| HYDROGRAPH AT | E11         | 3.  | 5.92 | 1.  | ٥. | ο. | .05  |   |  |
| HYDROGRAPH AT | E12         | 7.  | 5.83 | 1.  | 1. | 0. | .09  |   |  |
| 5 COMBINED AT | EG          | 37. | 6.08 | 10. | 6. | 6. | 1.22 |   |  |
| HYDROGRAPH AT | £13         | 1.  | 6.00 | 0.  | 0. | 0. | .02  |   |  |
| HYDROGRAPH AT | E14         | 0.  | 5.83 | 0.  | ٥. | 0. | .01  | · |  |
| ROUTED TO     |             | 0.  | 5.92 | 0.  | 0. | 0. | .01  |   |  |
| 3 COMBINED AT | EH          | 39. | 6.00 | 10. | 6. | 6. | 1.24 |   |  |
| ROUTED TO     |             | 39. | 6.17 | 10. | 6. | 6. | 1.24 |   |  |
| HYDROGRAPH AT | E19         | 6.  | 5.83 | 1.  | 0. | 0. | .04  |   |  |
| 2 COMBINED AT | EJ1         | 39. | 6.17 | 10. | 6. | 6. | 1.28 |   |  |
| ROUTED TO     | J1-K        | 39. | 6.25 | 10. | 6. | 6. | 1.28 |   |  |
| HYDROGRAPH AT | E15         | 6.  | 5.83 | 1.  | 0. | 0. | .04  |   |  |
| ROUTED TO     |             | 6.  | 5.83 | 1.  | ٥. | 0. | .04  |   |  |
| HYDROGRAPH AT | E16         | 5.  | 5.83 | 1.  | 0. | 0. | .03  |   |  |
| 2 COMBINED AT | EI          | 11. | 5.83 | 1.  | 0. | 0. | .07  |   |  |
| ROUTED TO     |             | 10. | 5.92 | 1.  | 0. | 0. | .07  |   |  |
| HYDROGRAPH AT | E17         | 5.  | 5.83 | 1.  | 0. | 0. | .03  |   |  |
| ROUTED TO     |             | 5.  | 5.92 | 1.  | 0. | 0. | .03  |   |  |
| HYDROGRAPH AT | E18         | 6.  | 5.92 | 1.  | ٥. | ٥. | .05  |   |  |
| 3 COMBINED AT | EJ2         | 22. | 5.92 | 3.  | 1. | 1. | .15  |   |  |
| ROUTED TO     |             | 19. | 6.25 | 3.  | 1. | 1. | .15  |   |  |
| HYDROGRAPH AT | <b>E</b> 23 | 15. | 5.92 | 3.  | 1. | 1. | .17  |   |  |
| HYDROGRAPH AT | E24         | 11. | 6.08 | 3.  | 1. | 1. | .14  |   |  |

4 COMBINED AT

+

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal25.doc Page 39 of 40 7/23/2008

|               | EK  | 76.  | 6.25 | 18.  | 10. | 9.  | 1.74  |  |
|---------------|-----|------|------|------|-----|-----|-------|--|
| ROUTED TO     |     | 69.  | 6.42 | 18.  | 9.  | 9.  | 1.74  |  |
| HYDROGRAPH AT | E21 | 6.   | 5.92 | 1.   | 0.  | 0.  | .09   |  |
| ROUTED TO     |     | 6.   | 6.00 | 1.   | 0.  | 0.  | .09   |  |
| HYDROGRAPH AT | E20 | 8.   | 5.92 | 1.   | 1.  | 1.  | .08   |  |
| ROUTED TO     |     | 7.   | 6.00 | 1.   | 1.  | 1.  | .08   |  |
| HYDROGRAPH AT | E22 | 5.   | 5.92 | 1.   | 0.  | 0.  | .07   |  |
| 3 COMBINED AT | EL  | 18.  | 6.00 | 3.   | 1.  | 1.  | .23   |  |
| ROUTED TO     |     | 17.  | 6.08 | З.   | 1.  | 1.  | .23   |  |
| HYDROGRAPH AT | E25 | 15.  | 5.92 | 3.   | 1.  | 1.  | .17   |  |
| 3 COMBINED AT | ЕМ  | 85.  | 6.33 | 24.  | 12. | 11. | 2.13  |  |
| ROUTED TO     |     | 84.  | 6.42 | 24.  | 12. | 11. | 2.13  |  |
| HYDROGRAPH AT | E26 | б.   | 5.83 | 1.   | 0.  | 0.  | .04   |  |
| 2 COMBINED AT | EN  | 85.  | 6.42 | 25.  | 12. | 12. | 2.17  |  |
| ROUTED TO     |     | 84.  | 6.50 | 24.  | 12. | 12. | 2.17  |  |
| HYDROGRAPH AT | E27 | 17.  | 5.83 | 2.   | 1.  | 1.  | .12   |  |
| 2 COMBINED AT | EO  | 87.  | 6.50 | 26.  | 13. | 13. | 2.29  |  |
| ROUTED TO     |     | 84.  | 6.58 | 26.  | 13. | 12  | 2.29  |  |
| HYDROGRAPH AT | W55 | 5.   | 5.83 | 1.   | 0.  | 0.  | .05   |  |
| 2 COMBINED AT | WAG | 85.  | 6.58 | 27.  | 13. | 13. | 2.34  |  |
| ROUTED TO     |     | 64.  | 6.58 | 27.  | 13. | 13. | 2.34  |  |
| HYDROGRAPH AT | W59 | 5.   | 5.92 | 1.   | 0.  | 0.  | .07   |  |
| 4 COMBINED AT | WAJ | 269. | 7.00 | 122. | 54. | 52. | 10.03 |  |
| ROUTED TO     |     | 267. | 7.00 | 122. | 54. | 52. | 10.03 |  |
| HYDROGRAPH AT | E28 | 6.   | 5.92 | 1.   | 0.  | 0.  | .07   |  |
| ROUTED TO     |     | 6.   | 6.17 | 1.   | 0.  | 0.  | .07   |  |
| HYDROGRAPH AT | E29 | 4.   | 5.83 | 1.   | 0.  | Ο.  | .05   |  |
| 2 COMBINED AT | EZZ | 7.   | 6.17 | 2.   | 1.  | 1.  | .12   |  |
| HYDROGRAPH AT | W60 | 5.   | 5.92 | 1.   | 0.  | 0.  | .07   |  |
| 3 COMBINED AT | ZZ  | 271. | 7.00 | 125. | 55. | 53. | 10.22 |  |

\*\*\* NORMAL END OF HEC-1 \*\*\*

.

| FLOC  | ND HYDROGRAPH  | PACKAGE | (HEC-1) |
|-------|----------------|---------|---------|
| 1 000 | JUN INDICOLULI | 1998    | (       |
|       | VERSION        | 4.1     |         |
|       |                |         |         |

| *** | *******************************         | *** |
|-----|-----------------------------------------|-----|
| *   |                                         | *   |
| *   | U.S. ARMY CORPS OF ENGINEERS            | *   |
| *   | HYDROLOGIC ENGINEERING CENTER           | *   |
| *   | 609 SECOND STREET                       | *   |
| *   | DAVIS, CALIFORNIA 95616                 | *   |
| *   | (916) 756-1104                          | *   |
| *   |                                         | *   |
| *** | * * * * * * * * * * * * * * * * * * * * | *** |

| х    | х   | XXXXXXX | XX | XXX |       | х   |
|------|-----|---------|----|-----|-------|-----|
| х    | х   | х       | х  | х   |       | XX  |
| х    | х   | х       | х  |     |       | х   |
| XXXX | XXX | XXXX    | х  |     | XXXXX | х   |
| х    | х   | х       | х  |     |       | х   |
| Х    | х   | х       | х  | х   |       | х   |
| х    | х   | XXXXXXX | XX | XXX |       | XXX |

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HECIDB, AND HECIKW.

.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

| 1          | ID        | FALCON     | BASTN 1    | 00-YB/ 2             | 4-HOUR   | LOOD/ EX | ISTING C | ONDITION | s        |          |       |
|------------|-----------|------------|------------|----------------------|----------|----------|----------|----------|----------|----------|-------|
| 2          | ID        | UP         | PER EAST   | TRIBUTA              | RY (WOOL | MEN HILL | S) BASED | ON CLOM  | R APPROV | ÆD 2/2/9 | 9     |
| 3          | ID        | IN         | CLUDING    | 2 EXISTI             | NG SCS S | TOCK PON | DS, WEST | WOODMEN  | HILLS H  | POND     |       |
| 4          |           | NO         | DETE: MI-M | 4 (PAINI<br>NTION PO | BRUSH I  | TLLS/ MO | DELED AS | HISTORI  | C TO ACC | JUNI FUR |       |
| 6          | ID        | NO         | TE: NO C   | ULVERT A             | T STAPLE | TON & ME | RIDIAN,  | TEMP CUL | VERTS AT | MERIDIA  | N     |
| 7          | ID        |            | DOWN       | STREAM O             | F WOODM  | EN HILLS | DRIVE (D | IVERSION | )        |          |       |
| •          | *DIA      | GRAM       | A THI 00   | 000                  | 200      |          |          |          |          |          |       |
| 9          | 10        | 5          | 400833     | 000                  | 500      |          |          |          |          |          |       |
|            |           |            |            |                      |          |          |          |          |          |          |       |
| 10         | KK        | W1         |            |                      |          |          |          |          |          |          |       |
| 12         | KM<br>BA  | 0479       |            |                      |          |          |          |          |          |          |       |
| 13         | PB        | 4.4        |            |                      |          |          |          |          |          |          |       |
| 14         | IN        | 15         |            |                      |          |          |          |          |          |          |       |
| 15         | PC        | .0005      | .0015      | .0030                | .0045    | .0060    | .0080    | .0100    | .0120    | .0143    | .0165 |
| 17         | PC        | .0750      | .1000      | .4000                | .7000    | .7250    | .7500    | .7650    | .7800    | .7900    | .8000 |
| 18         | PC        | .8100      | .8200      | .8250                | .8300    | .8350    | .8400    | .8450    | .8500    | .8550    | .8600 |
| 19         | PC        | .8638      | .8675      | .8713                | .8750    | .8788    | .8825    | .8863    | .8900    | .8938    | .8975 |
| 20         | PC        | .9013      | .9050      | .9083                | .9115    | .9148    | 9450     | 9210     | .9240    | .9270    | .9300 |
| 22         | PC        | .9575      | .9600      | .9625                | .9650    | .9675    | .9700    | .9725    | .9750    | .9775    | .9800 |
| 23         | PC        | .9813      | .9825      | .9838                | .9850    | .9863    | .9875    | .9888    | .9900    | .9913    | .9925 |
| 24         | PC        | .9938      | .9950      | .9963                | .9975    | .9988    | 1.000    |          |          |          |       |
| 25         | UD        | .097       | 60         |                      |          |          |          |          |          |          |       |
|            |           |            |            |                      |          |          |          |          |          |          |       |
| 27         | KK        |            |            |                      |          |          |          |          |          |          |       |
| 28         | RK        | 1519       | .0263      | .035                 |          | TRAP     | 5        | 4        |          |          |       |
|            |           |            |            |                      |          |          |          |          |          |          |       |
| 30         | KK        | <b>W</b> 2 |            |                      |          |          |          |          |          |          |       |
| 31         | КМ<br>ВА  | 0278       |            |                      |          |          |          |          |          |          |       |
| 33         | LS        | 102/0      | 60         |                      |          |          |          |          |          |          |       |
| 34         | UD        | .160       |            |                      |          |          |          |          |          |          |       |
| 26         | vv        | La A       |            |                      |          |          |          |          |          |          |       |
| 36         | KM        |            |            |                      |          |          |          |          |          |          |       |
| 37         | HC        | 2          |            |                      |          |          |          |          |          |          |       |
| 20         | VV        |            |            |                      |          |          |          |          |          |          |       |
| 39         | KM        |            |            |                      |          |          |          |          |          |          |       |
| 40         | RK        | 464        | .0151      | .035                 |          | TRAP     | 5        | 4        |          |          |       |
|            |           |            |            |                      |          |          |          |          |          |          |       |
| 41         | KK        | W3         |            |                      |          |          |          |          |          |          |       |
| 43         | BA        | .0498      |            |                      |          |          |          |          |          |          |       |
| 44         | LS        |            | 61         |                      |          |          |          |          |          |          |       |
| 45         | UD        | .139       |            |                      |          |          |          |          |          |          |       |
| 46         | KK        | WB         |            |                      |          |          |          |          |          |          |       |
| 47         | KM        |            |            |                      |          |          |          |          |          |          |       |
| 48         | HC        | 2          |            |                      |          |          |          |          |          |          |       |
| 49         | кк        |            |            |                      |          |          |          |          |          |          |       |
| 50         | КМ        |            |            |                      |          |          |          |          |          |          |       |
| 51         | RK        | 823        | .0279      | .035                 |          | TRAP     | 5        | 4        |          | 54       |       |
| 52         | кк        | <b>W</b> 4 |            |                      |          |          |          |          |          |          |       |
| 53         | KM        |            |            |                      |          |          |          |          |          |          |       |
| 54         | BA        | .0054      |            |                      |          |          |          |          |          |          |       |
| 55         |           | 044        | 62         |                      |          |          |          |          |          |          |       |
| 50         | 02        |            |            |                      |          |          |          |          |          |          |       |
| 57         | KK        |            |            |                      |          |          |          |          |          |          |       |
| 58         | KM<br>RK  | 1078       | 0482       | 035                  |          | TRAP     | 5        | 4        |          |          |       |
| 39         | INIV<br>I | 10/0       | .0402      | .055                 |          | IIII     | Ĵ        | 1        |          |          |       |
| 60         | KK        | W5         |            |                      |          |          |          |          |          |          |       |
| 61<br>62   | KM        | 0159       |            |                      |          |          |          |          |          |          |       |
| 63         | LS        | .0155      | 60         |                      |          |          |          |          |          |          |       |
| 64         | UD        | .075       |            |                      |          |          |          |          |          |          |       |
| 65         | 1111      | NC         |            |                      |          |          |          |          |          |          |       |
| 65<br>66   | KM        | NC         |            |                      |          |          |          |          |          |          |       |
| 67         | HC        | 3          |            |                      |          |          |          |          |          | •        |       |
| <b>C</b> D |           |            |            |                      |          |          |          |          |          |          |       |
| ъв<br>69   | KK<br>KM  |            |            |                      |          |          |          |          |          |          |       |
| 70         | RK        | 557        | .0449      | .035                 |          | TRAP     | 10       | 4        |          |          |       |
| 21         |           |            |            |                      |          |          |          |          |          |          |       |
| 71<br>72   | KK<br>KM  | WO         |            |                      |          |          |          |          |          |          |       |
| 73         | BA        | .0486      |            |                      |          |          |          |          |          |          |       |
| 74         | LS        | 0.05       | 60         |                      |          |          |          |          |          |          |       |
| 15         | UD        | .085       |            |                      |          |          |          |          |          |          |       |
| 76         | кк        |            |            |                      |          |          |          |          |          |          |       |
| 77         | KM        |            |            | 005                  |          |          | -        |          |          |          |       |
| 78         | RK        | 592        | .0372      | .035                 |          | TRAP     | 5        | 4        |          |          |       |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 2 of 41 7/23/2008

79 80 81 82 83 KK KM BA LS UD W7 .0217 60 .074 84 85 KK KM RK 86 464 .1466 .035 TRAP 5 4 KK KM HC 87 WD 88 89 2 KK KM RK 90 D-E 91 92 1044 .0479 .035 TRAP 5 4 93 94 95 96 97 KK KM BA LS UD **W**8 .0286 60 .069 KK KM RK 98 99 100 TRAP 5 1449 .0504 .035 4 101 KK KM BA LS UD **W**9 102 103 .0402 104 105 61 .097 106 кк WE 107 108 КМ HC 3 109 кк E-F 110 KM RK 789 .0038 TRAP 4 111 .035 5 KK KM BA LS UD 112 ₩10 113 114 115 116 .0431 61 .096 KK KM RK 117 118 119 .0388 TRAP 824 .035 5 4 120 KK KM BA LS UD **W1**1 121 122 123 124 .0314 60 .077 125 KK KM HC WF 126 127 4 KK KM RK 128 F-G 129 130 2319 .0211 .035 TRAP 10 4 131 132 133 134 135 KK KM BA LS UD **W**12 .0398 60 .095 136 137 138 KK KM RK .0307 2478 .035 TRAP 5 4 139 140 KK KM BA LS UD W14 141 142 143 .0473 61 .135 KK KM RK 144 145 146 81 0.0001 .035 TRAP 5 147 KK KM BA LS UD W13 148 149 150 151 .1123 61 .182 152 153 154 KK KM HC WG 4

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 3 of 41 7/23/2008

| 155<br>156   | KH<br>KD | (<br>1     | G-H         |           |      |      |    |   |  |  |
|--------------|----------|------------|-------------|-----------|------|------|----|---|--|--|
| 157          | RF       | <b>x</b> 2 | 632         | .0217     | .035 | TRAP | 15 | 4 |  |  |
| 158          | KI       | <<br>4     |             |           |      |      |    |   |  |  |
| 160          | RI       | x 2        | 447         | .0372     | .035 | TRAP | 5  | 4 |  |  |
| 161          | KI       | ĸ          | W15         |           |      |      |    |   |  |  |
| 162<br>163   | KN<br>BZ | 4<br>• .0  | 881         |           |      |      |    |   |  |  |
| 164          |          | 5          | 141         | 61        |      |      |    |   |  |  |
| 165          | 01       |            | 141         |           |      |      |    |   |  |  |
| $166 \\ 167$ | KI<br>KI | к<br>И     |             |           |      |      |    |   |  |  |
| 168          | RI       | к 1        | 763         | .0289     | .035 | TRAP | 5  | 4 |  |  |
| 169          | KI       | ĸ          | WH          |           |      |      |    |   |  |  |
| 171          | H        | C          | 2           |           |      |      |    |   |  |  |
| 172          | к        | к          | W16         |           |      |      |    |   |  |  |
| 173<br>174   | KI<br>BJ | M0         | 292         |           |      |      |    |   |  |  |
| 175<br>176   | L        | s<br>D.    | 092         | 61        |      |      |    |   |  |  |
| 177          | v.       |            |             |           |      |      |    |   |  |  |
| 178          | K        | M          |             |           |      |      | ~  |   |  |  |
| 179          | R        | K 1        | 345         | .0260     | .035 | TRAP | 5  | 4 |  |  |
| 180<br>181   | K<br>K   | K<br>M     | W17         |           |      |      |    |   |  |  |
| 182<br>183   | B.       | а<br>с     | 0184        | 60        |      |      |    |   |  |  |
| 184          | U        | D.         | .085        |           |      |      |    |   |  |  |
| 185          | ĸ        | к          | WI          |           |      |      |    |   |  |  |
| 186<br>187   | K<br>H   | M<br>C     | 2           |           |      |      |    |   |  |  |
| 188          | к        | к          | I-M         |           |      |      |    |   |  |  |
| 189<br>190   | K        | M<br>K 2   | 2650        | 0370      | 035  | TRAP | 15 | 4 |  |  |
| 101          | v        | ~          | w10         | • • • • • |      |      |    | - |  |  |
| 191          | ĸ        | M          | W19         |           |      |      |    |   |  |  |
| 193          | B<br>L   | A.U<br>S   | J428        | 61        |      |      |    |   |  |  |
| 195          | U        | D.         | .083        |           |      |      |    |   |  |  |
| 196<br>197   | ĸ        | к<br>м     |             |           |      |      |    |   |  |  |
| 198          | R        | ĸ          | 881         | .0329     | .035 | TRAP | 5  | 4 |  |  |
| 199          | к        | ĸ          | <b>W</b> 20 |           |      |      |    |   |  |  |
| 200          | B        | IA .I      | 0315        |           |      |      |    |   |  |  |
| 202<br>203   | L<br>U   | IS<br>ID   | .071        | 61        |      |      |    |   |  |  |
| 204          | к        | к          | WJ          |           |      |      |    |   |  |  |
| 205<br>206   | K        | CM<br>IC   | 2           |           |      |      |    |   |  |  |
| 207          |          | v          | -           |           |      |      |    |   |  |  |
| 208          | K        | CM<br>CM   |             |           | 0.05 |      | -  |   |  |  |
| 209          | F        | (K         | 3061        | .0235     | .035 | TRAP | 5  | 4 |  |  |
| 210<br>211   | к<br>К   | CK<br>CM   | W21         |           |      |      |    |   |  |  |
| 212<br>213   | E        | BA.        | 1347        | 60        |      |      |    |   |  |  |
| 214          | τ        | JD         | .156        |           |      |      |    |   |  |  |
| 215          | P        | (K         | WK          |           |      |      |    |   |  |  |
| 210          | F        | łC         | 2           |           | •    |      |    |   |  |  |
| 218          | F        | ĸĸ         |             |           |      |      |    |   |  |  |
| 219<br>220   | F        | ΩM<br>αM   | 487         | .0246     | .035 | TRAP | 5  | 4 |  |  |
| 221          | ī        | (K         | W22         |           |      |      |    |   |  |  |
| 222          | ł        | CM<br>AA   | 0096        |           |      |      |    |   |  |  |
| 223          | I        | LS         | 0000        | 63        |      |      |    |   |  |  |
| 225          | t        | JU         | .055        |           |      |      |    |   |  |  |
| 226<br>227   | E<br>E   | KK<br>KM   | WL          |           |      |      |    |   |  |  |
| 228          | H        | HC         | 2           |           |      |      |    |   |  |  |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 4 of 41 7/23/2008

| 229        | кк       |             |       |      |      |    |   |   |   |
|------------|----------|-------------|-------|------|------|----|---|---|---|
| 230        | KM<br>RK | 1786        | .0297 | .035 | TRAP | 5  | 4 |   |   |
|            |          |             |       |      |      |    |   |   |   |
| 232<br>233 | KK<br>KM | W23         |       |      |      |    |   |   |   |
| 234        | BA       | .0244       |       |      |      |    |   |   |   |
| 235        | LS       | 112         | 60    |      |      |    |   |   |   |
| 200        |          |             |       |      |      |    |   |   |   |
| 237        | KK       | W18         |       |      |      |    |   |   |   |
| 239        | BA       | .1251       |       |      |      |    |   |   |   |
| 240        | LS       | 199         | 60    |      |      |    |   |   | • |
| 241        | 00       | .109        |       |      |      |    |   |   |   |
| 242        | KK       | WM          |       |      |      |    |   |   |   |
| 243        | HC       | 5           |       |      |      |    |   |   |   |
| 245        | ĸĸ       | M-N         |       |      |      |    |   |   |   |
| 246        | KM       |             |       |      |      |    |   |   |   |
| 247        | RK       | 1345        | -0149 | .035 | TRAP | 20 | 4 |   |   |
| 248        | кк       | W24         |       |      |      |    |   |   |   |
| 249        | KM<br>BA | 0442        |       |      |      |    |   |   |   |
| 251        | LS       | .0112       | 60    |      |      |    |   |   |   |
| 252        | UD       | .140        |       |      |      |    |   |   |   |
| 253        | кк       | ₩25         |       |      |      |    |   |   |   |
| 254<br>255 | KM<br>RA | .0957       |       |      |      |    |   |   |   |
| 256        | LS       | .0557       | 61    |      |      |    |   |   |   |
| 257        | UD       | .197        |       |      |      |    |   | - |   |
| 258        | кк       | WN          |       |      |      |    |   |   |   |
| 259<br>260 | KM<br>HC | 3           |       |      |      |    |   |   |   |
|            |          | -           |       |      |      |    |   |   |   |
| 261<br>262 | KK<br>KM | N-P         |       |      |      |    |   |   |   |
| 263        | RK       | 1589        | .017  | .035 | TRAP | 20 | 4 |   |   |
| 264        | кк       | <b>W</b> 28 |       |      |      |    |   |   |   |
| 265        | KM       |             |       |      |      |    |   |   |   |
| 266<br>267 | BA<br>LS | .0397       | 63    |      |      |    |   |   |   |
| 268        | UD       | .128        |       |      |      |    |   |   |   |
| 269        | кк       |             |       |      |      |    |   |   |   |
| 270        | KM       | 1.245       | 0000  | 0.05 |      | -  |   |   |   |
| 271        | RK       | 1345        | .0208 | .035 | IRAP | 5  | 4 |   |   |
| 272        | KK       | W30         |       |      |      |    |   |   |   |
| 274        | BA       | .0509       |       |      |      |    |   |   |   |
| 275        | LS       | 122         | 63    |      |      |    |   |   |   |
| 276        | 00       | .125        |       |      |      |    |   |   |   |
| 277        | KK<br>KM |             |       |      |      |    |   |   |   |
| 279        | RK       | 1078        | .0074 | .035 | TRAP | 5  | 4 |   |   |
| 280        | ĸĸ       | W29         |       |      |      |    |   |   |   |
| 281        | КM       | -           |       |      |      |    |   |   |   |
| 282<br>283 | BA<br>LS | .0409       | 63    |      |      |    |   |   |   |
| 284        | UD       | .145        |       |      |      |    |   |   |   |
| 285        | кк       | W31         |       |      |      |    |   |   |   |
| 286        | KM       | 0122        |       |      |      |    |   |   |   |
| 288        | LS       | .0125       | 63    |      |      |    |   |   |   |
| 289        | UD       | .073        |       |      |      |    |   |   |   |
| 290        | кк       | WO          |       |      |      |    |   |   |   |
| 291        | KM       | 4           |       |      |      |    |   |   |   |
| 292        | nc.      | r           |       |      |      |    |   |   |   |
| 293<br>294 | KK       | 0-P         |       |      |      |    |   |   |   |
| 295        | RK       | 2169        | .0226 | .035 | TRAP | 5  | 4 |   |   |
| 296        | кк       | W26         |       |      |      |    |   |   |   |
| 297        | KM       | 120         |       |      |      |    |   |   |   |
| 298        | BA       | .0301       | 63    |      |      |    |   |   |   |
| 300        | UD       | .062        | 05    |      |      |    |   |   |   |
| 301        | ĸĸ       |             |       |      |      |    |   |   |   |
| 302        | KM       |             |       |      |      | -  |   |   |   |
| 303        | RK       | 4662        | .0225 | .035 | TRAP | 5  | 4 |   |   |
| 304        | кк       | W27         |       |      |      |    |   |   |   |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 5 of 41 7/23/2008

| 305<br>306<br>307<br>308        | KM<br>BA<br>LS<br>UD       | .1633                 | 60    |      |      |    |   |  |
|---------------------------------|----------------------------|-----------------------|-------|------|------|----|---|--|
| 309<br>310<br>311<br>312<br>313 | KK<br>KM<br>BA<br>LS       | W32<br>.0890<br>.170  | 60    |      |      |    |   |  |
| 314<br>315<br>316               | KK<br>KM<br>HC             | WP 5                  |       |      |      |    |   |  |
| 317<br>318<br>319               | KK<br>KM<br>RK             | ₽-Q<br>1925           | .0182 | .035 | TRAP | 25 | 4 |  |
| 320<br>321<br>322<br>323<br>324 | KK<br>KM<br>BA<br>LS<br>UD | W33A<br>.1261<br>.186 | 60    |      |      |    |   |  |
| 325<br>326<br>327               | KK<br>KM<br>HC             | WP1<br>2              |       |      |      |    |   |  |
| 328<br>329<br>330               | KK<br>KM<br>RK             | P1-Q<br>3000          | .020  | .035 | TRAP | 25 | 4 |  |
| 331<br>332<br>333<br>334<br>335 | KK<br>KM<br>BA<br>LS<br>UD | W33B<br>.1360<br>.225 | 60    |      |      |    |   |  |
| 336<br>337<br>338<br>339<br>340 | KK<br>KM<br>BA<br>LS<br>UD | W34A<br>.1261<br>.173 | 60    |      |      |    |   |  |
| 341<br>342<br>343               | KK<br>KM<br>RK             | 34A-P2<br>2550        | .0176 | .035 | TRAP | 25 | 4 |  |
| 344<br>345<br>346<br>347<br>348 | KK<br>KM<br>BA<br>LS<br>UD | W34B<br>.1766<br>.224 | 60    |      |      |    |   |  |
| 349<br>350<br>351               | KK<br>KM<br>KK             | WP2<br>2<br>P2=0      |       |      |      |    |   |  |
| 353<br>354<br>355               | KM<br>RK<br>KK             | 2640<br>W34C          | .021  | .035 | TRAP | 25 | 4 |  |
| 356<br>357<br>358<br>359        | KM<br>BA<br>LS<br>UD       | .1625                 | 60    |      |      |    |   |  |
| 360<br>361<br>362               | KK<br>KM<br>HC             | WQ<br>4               |       |      |      |    |   |  |
| 364<br>365<br>366               | KM<br>RK<br>KK             | 2940<br>W36A          | .022  | .035 | TRAP | 25 | 4 |  |
| 367<br>368<br>369<br>370        | KM<br>BA<br>LS<br>UD       | .1429                 | 60    |      |      |    |   |  |
| 371<br>372<br>373               | KK<br>KM<br>HC             | ₩Q1<br>2              |       |      |      |    |   |  |
| 374<br>375<br>376               | KK<br>KM<br>RK             | Q1-R<br>3400          | .022  | .035 | TRAP | 25 | 4 |  |
| 377<br>378<br>379<br>380        | KK<br>KM<br>BA<br>LS       | w36B<br>.1918         | 60    |      |      |    |   |  |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 6 of 41 7/23/2008

| 381        | UD       | .306   |            |       |            |     |    |   |  |   |
|------------|----------|--------|------------|-------|------------|-----|----|---|--|---|
| 382        | кк       | W35A   |            |       |            |     |    |   |  |   |
| 383        | KM       |        |            |       |            |     |    |   |  |   |
| 384        | BA       | .0958  |            |       |            |     |    |   |  |   |
| 385        | LS       | 107    | 60         |       |            |     |    |   |  |   |
| 396        | 00       | .18/   |            |       |            |     |    |   |  |   |
| 387        | кк       | 35A-WR |            |       |            |     |    |   |  |   |
| 388        | KM       |        |            |       |            |     |    |   |  |   |
| 389        | RK       | 3/15   | .023       | .035  | TR         | AP  | 25 | 4 |  |   |
| 390        | KK       | W35B   |            |       |            |     |    |   |  |   |
| 391        | KM       |        |            |       |            |     |    |   |  |   |
| 392        | BA       | .1507  |            |       |            |     |    |   |  |   |
| 393        |          | 259    | 60         |       |            |     |    |   |  |   |
| 554        | 00       | .255   |            |       |            |     |    |   |  |   |
| 395        | KK       | WR     |            |       |            |     |    |   |  |   |
| 396        | KM       |        |            |       |            |     |    |   |  |   |
| 397        | HC       | 4      |            |       |            |     |    |   |  |   |
| 398        | кк       | WR-S   |            |       |            |     |    |   |  |   |
| 399        | KM       |        |            |       |            |     |    |   |  |   |
| 400        | RK       | 2922   | .0168      | .035  | TR         | AP  | 25 | 4 |  |   |
| 401        | кк       | W37A   |            |       |            |     |    |   |  |   |
| 402        | KM       |        |            |       |            |     |    |   |  |   |
| 403        | BA       | .1138  | <i>a</i> - |       |            |     |    |   |  |   |
| 404        |          | 185    | 60         |       |            |     |    |   |  |   |
| 405        | 00       | .105   |            |       |            |     |    |   |  |   |
| 406        | KK       | 37A-S  |            |       |            |     |    |   |  |   |
| 407        | KM       |        |            | 0.05  | • <u>-</u> |     | 25 |   |  |   |
| 408        | RK       | 1430   | .014       | .035  | TR         | AP  | 25 | 4 |  |   |
| 409        | KK       | W37B   |            |       |            |     |    |   |  |   |
| 410        | KM       |        |            |       |            |     |    |   |  |   |
| 411        | BA       | .1636  | ~          |       |            |     |    |   |  |   |
| 412        | LS       | 218    | 61         |       |            |     |    |   |  |   |
| 415        | 00       | .210   |            |       |            |     |    |   |  |   |
| 414        | KK       | WS     |            |       |            |     |    |   |  |   |
| 415        | KM       | -      |            |       |            |     |    |   |  |   |
| 416        | HC       | 3      |            |       |            |     |    |   |  |   |
| 417        | кк       | S-T    |            |       |            |     |    |   |  |   |
| 418        | КM       |        |            |       |            |     |    |   |  |   |
| 419        | RK       | 3653   | .0164      | .035  | TF         | RAP | 25 | 4 |  |   |
| 420        | кк       | W38    |            |       |            |     |    |   |  |   |
| 421        | KM       |        |            |       |            |     |    |   |  |   |
| 422        | BA       | .0907  | ~~         |       |            |     |    |   |  |   |
| 423        | LS       | 100    | 62         |       |            |     |    |   |  |   |
| 424        | 00       | .190   |            |       |            |     |    |   |  |   |
| 425        | KK       |        |            |       |            |     |    |   |  |   |
| 426        | КM       |        |            |       |            |     | _  |   |  |   |
| 427        | RK       | 2922   | .0171      | .035  | TH         | RAP | 5  | 4 |  |   |
| 428        | кк       | W39    |            |       |            |     |    |   |  |   |
| 429        | КM       |        |            |       |            |     |    |   |  |   |
| 430        | BA       | .1833  | ~~         |       |            |     |    |   |  |   |
| 43L<br>432 | LS       | 251    | 60         |       |            |     |    |   |  |   |
| 4.56       | 00       | .231   |            |       |            |     |    |   |  |   |
| 433        | КК       | W40    |            |       |            |     |    |   |  |   |
| 434        | KM       | 0064   |            |       |            |     |    |   |  | • |
| 435<br>436 | BA<br>LS | .0964  | 60         |       |            |     |    |   |  |   |
| 437        | UD       | .165   | 55         |       |            |     |    |   |  |   |
|            |          |        |            |       |            |     |    |   |  |   |
| 438        | KK       | WT     |            |       |            |     |    |   |  |   |
| 440        | км<br>HC | 4      |            |       |            |     |    |   |  |   |
|            |          | -      |            |       |            |     |    |   |  |   |
| 441        | KK       | T-U    |            |       |            |     |    |   |  |   |
| 442        | KM<br>PF | 1125   | . 0098     | . 035 | Ŧ          | RAP | 25 | 4 |  |   |
| 773        | L/       | 1123   | .0090      |       | 1          |     |    | - |  |   |
| 444        | кк       | W41    |            |       |            |     |    |   |  |   |
| 445        | KM       | 0.001  |            |       |            |     |    |   |  |   |
| 446<br>447 | BA<br>LS | .0601  | 60         |       |            |     |    |   |  |   |
| 448        | UD       | .117   | 00         |       |            |     |    |   |  |   |
|            |          |        |            |       |            |     |    |   |  |   |
| 449        | KK       | W42    |            |       |            |     |    |   |  |   |
| 450<br>451 | KM<br>BA | .0581  |            |       |            |     |    |   |  |   |
| 452        | LS       |        | 81         |       |            |     |    |   |  |   |
| 453        | UD       | .127   |            |       |            |     |    |   |  |   |
| 454        | KK       | 11-11  |            |       |            |     |    |   |  |   |
| 455        | KM       | . v    |            |       |            |     |    |   |  |   |
| 456        | RK       | 2656   | .0184      | .035  | т          | RAP | 5  | 4 |  |   |

١

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 7 of 41 7/23/2008

| 457                                                                                                                                                                                                                                                | кк                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WU                                                                                                                                 |                                                |             |                                           |                   |   |     |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-------------------------------------------|-------------------|---|-----|---------|
| 458                                                                                                                                                                                                                                                | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 459                                                                                                                                                                                                                                                | HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                  |                                                |             |                                           |                   |   |     |         |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 460                                                                                                                                                                                                                                                | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 461                                                                                                                                                                                                                                                | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 462                                                                                                                                                                                                                                                | RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2215                                                                                                                               | .0181                                          | .035        | TRAP                                      | 25                | 4 |     |         |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 463                                                                                                                                                                                                                                                | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ₩43                                                                                                                                |                                                |             |                                           |                   |   |     |         |
| 464                                                                                                                                                                                                                                                | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 465                                                                                                                                                                                                                                                | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .1457                                                                                                                              |                                                |             |                                           |                   |   |     |         |
| 466                                                                                                                                                                                                                                                | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    | 61                                             |             |                                           |                   |   |     |         |
| 467                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .169                                                                                                                               |                                                |             |                                           |                   |   |     |         |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 468                                                                                                                                                                                                                                                | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WV                                                                                                                                 |                                                |             |                                           |                   |   |     |         |
| 469                                                                                                                                                                                                                                                | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 470                                                                                                                                                                                                                                                | HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                  |                                                |             |                                           |                   |   |     |         |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 471                                                                                                                                                                                                                                                | кк                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V-W                                                                                                                                |                                                |             |                                           |                   |   |     |         |
| 472                                                                                                                                                                                                                                                | КM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 473                                                                                                                                                                                                                                                | RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 487                                                                                                                                | .0103                                          | .035        | TRAP                                      | 25                | 4 |     |         |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 474                                                                                                                                                                                                                                                | ĸĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W45                                                                                                                                |                                                |             |                                           |                   |   |     |         |
| 475                                                                                                                                                                                                                                                | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 476                                                                                                                                                                                                                                                | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .1931                                                                                                                              |                                                |             |                                           |                   |   |     |         |
| 477                                                                                                                                                                                                                                                | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    | 61                                             |             |                                           |                   |   |     |         |
| 478                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .189                                                                                                                               |                                                |             |                                           |                   |   |     |         |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 479                                                                                                                                                                                                                                                | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ww                                                                                                                                 |                                                |             |                                           |                   |   |     |         |
| 480                                                                                                                                                                                                                                                | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 481                                                                                                                                                                                                                                                | HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                  |                                                |             |                                           |                   |   |     |         |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 482                                                                                                                                                                                                                                                | ĸĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W-X                                                                                                                                |                                                |             |                                           |                   |   |     |         |
| 483                                                                                                                                                                                                                                                | КM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    | •                                              |             |                                           | -                 |   |     |         |
| 484                                                                                                                                                                                                                                                | RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1542                                                                                                                               | .0149                                          | .035        | TRAP                                      | 5                 | 4 |     |         |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 485                                                                                                                                                                                                                                                | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MI                                                                                                                                 |                                                |             |                                           |                   |   |     |         |
| 486                                                                                                                                                                                                                                                | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 487                                                                                                                                                                                                                                                | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .0665                                                                                                                              |                                                |             |                                           |                   |   |     |         |
| 488                                                                                                                                                                                                                                                | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                                                                                                | 60                                             |             |                                           |                   |   |     |         |
| 469                                                                                                                                                                                                                                                | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .108                                                                                                                               |                                                |             |                                           |                   |   |     |         |
| 400                                                                                                                                                                                                                                                | 1/1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 490                                                                                                                                                                                                                                                | KN KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                    |                                                |             |                                           |                   |   |     |         |
| 492                                                                                                                                                                                                                                                | RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 650                                                                                                                                | 0308                                           | 035         | TRAP                                      | 5                 | 4 |     |         |
| 452                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                                                                                                                | .0500                                          | .055        | 1144                                      | Ũ                 | • |     |         |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                |             |                                           |                   |   |     | ,       |
| 493                                                                                                                                                                                                                                                | ĸĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M2                                                                                                                                 |                                                |             |                                           |                   |   |     |         |
| 493<br>494                                                                                                                                                                                                                                         | KK<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M2                                                                                                                                 |                                                |             |                                           |                   |   |     |         |
| 493<br>494<br>495                                                                                                                                                                                                                                  | KK<br>KM<br>BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M2                                                                                                                                 |                                                |             |                                           |                   |   |     |         |
| 493<br>494<br>495<br>496                                                                                                                                                                                                                           | KK<br>KM<br>BA<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M2<br>.0273                                                                                                                        | 60                                             |             |                                           |                   |   |     |         |
| 493<br>494<br>495<br>496<br>497                                                                                                                                                                                                                    | KK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M2<br>.0273<br>.114                                                                                                                | 60                                             |             |                                           |                   |   |     |         |
| 493<br>494<br>495<br>496<br>497                                                                                                                                                                                                                    | KK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M2<br>.0273<br>.114                                                                                                                | 60                                             |             | HEC-1 INPUT                               |                   |   |     | PAGE 13 |
| 493<br>494<br>495<br>496<br>497                                                                                                                                                                                                                    | KK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M2<br>.0273<br>.114                                                                                                                | 60                                             |             | HEC-1 INPUT                               |                   |   |     | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE                                                                                                                                                                                                            | KK<br>KM<br>BA<br>LS<br>UD<br>ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M2<br>.0273<br>.114                                                                                                                | 60                                             |             | HEC-1 INPUT                               | 6                 | 7 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE                                                                                                                                                                                                            | KK<br>KM<br>BA<br>LS<br>UD<br>ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | м2<br>.0273<br>.114<br>1.                                                                                                          | 60<br>2                                        | 3           | HEC-1 INPUT                               | 6                 | 7 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE                                                                                                                                                                                                            | KK<br>KM<br>BA<br>LS<br>UD<br>ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M2<br>.0273<br>.114                                                                                                                | 60<br>2                                        |             | HEC-1 INPUT                               | 6                 | 7 | ê9  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE                                                                                                                                                                                                            | KK<br>KM<br>BA<br>LS<br>UD<br>ID,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | м2<br>.0273<br>.114<br>1.<br>MB                                                                                                    | 60<br>2                                        | 3           | HEC-1 INPUT                               | 6                 | 7 | .89 | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499                                                                                                                                                                                              | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | м2<br>.0273<br>.114<br>1.<br>MB                                                                                                    | 60<br>2                                        | 3           | HEC-1 INPUT                               | 6                 | 7 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500                                                                                                                                                                                       | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M2<br>.0273<br>.114<br>1.<br>MB<br>2                                                                                               | 60<br>2                                        | 3           | HEC-1 INPUT                               | 6                 | 7 | .89 | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500                                                                                                                                                                                       | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M2<br>.0273<br>.114<br>1.<br>MB<br>2                                                                                               | 60<br>2                                        | 3           | HEC-1 INPUT                               | 6                 | 7 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501                                                                                                                                                                                | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M2<br>.0273<br>.114<br>1.<br>MB<br>2                                                                                               | 60<br>2                                        | 3           | HEC-1 INPUT                               | 6                 | 7 | .89 | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502                                                                                                                                                                         | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>ID.<br>KK<br>KM<br>HC<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M2<br>.0273<br>.114<br>1.<br>MB<br>2                                                                                               | 60<br>2                                        | 3           | HEC-1 INPUT                               | 6                 | 7 | .89 | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503                                                                                                                                                                  | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | м2<br>.0273<br>.114<br>1.<br>мв<br>2<br>928                                                                                        | 60<br>2                                        | 3           | HEC-1 INPUT<br>45<br>TRAP                 | 6                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503                                                                                                                                                                  | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KK<br>KM<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | н2<br>.0273<br>.114<br>1<br>мв<br>г<br>928<br>                                                                                     | 60<br>2                                        | .035        | HEC-1 INPUT<br>45<br>TRAP                 | 6                 | 4 |     | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504                                                                                                                                                           | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н2<br>.0273<br>.114<br>1,<br>МВ<br>2<br>928<br>М4                                                                                  | 60<br>2                                        | 3           | HEC-1 INPUT<br>45<br>TRAP                 | 6                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505                                                                                                                                                    | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KK<br>KK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н2<br>.0273<br>.114<br>1.<br>мв<br>2<br>928<br>м4                                                                                  | 60<br>2<br>.0302                               | 3           | HEC-1 INPUT<br>45<br>TRAP                 | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>506                                                                                                                                      | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | н2<br>.0273<br>.114<br>1<br>мв<br>2<br>928<br>м4<br>.0346                                                                          | 60<br>2<br>.0302                               | .035        | HEC-1 INPUT<br>45<br>TRAP                 | 6<br>5            | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>506<br>507                                                                                                                               | KK<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>BA<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346                                                                         | 60<br>2<br>.0302<br>60                         | 3           | HEC-1 INPUT<br>45<br>TRAP                 | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508                                                                                                                                      | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>SA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н2<br>.0273<br>.114<br>1.<br>МВ<br>2<br>928<br>м4<br>.0346<br>.121                                                                 | 60<br>2<br>.0302<br>60                         | 3           | HEC-1 INPUT<br>45<br>TRAP                 | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508                                                                                                                        | KK<br>KM<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н2<br>.0273<br>.114<br>1<br>мв<br>2<br>928<br>м4<br>.0346<br>.121                                                                  | 60<br>2<br>.0302<br>60                         | 3           | HEC-1 INPUT<br>45<br>TRAP                 | δ<br>5            | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510                                                                                                          | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>LS<br>UD<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121                                                                 | 60<br>2<br>.0302<br>60                         | 3           | HEC-1 INPUT<br>45<br>TRAP                 | 6                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>507<br>508<br>509<br>511                                                                                                          | KK KMA<br>BA<br>LS<br>UD<br>ID.<br>KK MA<br>KK<br>KMA<br>LS<br>UD<br>KK MA<br>LS<br>UD<br>KK MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н2<br>.0273<br>.114<br>1.<br>МВ<br>2<br>928<br>M4<br>.0346<br>.121                                                                 | 60<br>2<br>.0302<br>60<br>0197                 | .035        | HEC-1 INPUT<br>45<br>TRAP                 | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511                                                                                                   | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н2<br>.0273<br>.114<br>1<br>мв<br>2<br>928<br>м4<br>.0346<br>.121<br>406                                                           | 60<br>2<br>.0302<br>60<br>.0197                | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP         | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512                                                                                            | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>RK<br>KM<br>RK<br>KM<br>KK<br>KK<br>KM<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3                                                    | 60<br>2<br>.0302<br>60<br>.0197                | .035        | НЕС-1 INPUT<br>45<br>ТRAP<br>ТRAP         | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>506<br>506<br>506<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513                                                                              | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KK<br>KM<br>RK<br>KK<br>KM<br>RK<br>KK<br>KM<br>RK<br>KK<br>KM<br>RK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | м2<br>.0273<br>.114<br>1.<br>МВ<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3                                                    | 60<br>2<br>.0302<br>60<br>.0197                | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP         | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514                                                                                     | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KM<br>KM<br>KM<br>KM<br>BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M2<br>.0273<br>.114<br>1k<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149                                           | 60<br>2<br>.0302<br>60<br>.0197                | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP         | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>513<br>515                                                                       | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KK<br>KM<br>KK<br>KK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M2<br>.0273<br>.114<br>1k<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149                                           | 60<br>2<br>.0302<br>60<br>.0197<br>60          | .035        | НЕС-1 INPUT<br>45<br>ТRAP<br>ТRAP         | 5                 | 4 |     | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>516                                                                              | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KK<br>KM<br>RK<br>KK<br>KM<br>RK<br>KK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076                                   | 60<br>2<br>.0302<br>60<br>.0197<br>60          | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP         | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516                                                                | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KM<br>KK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M2<br>.0273<br>.114<br>1,<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076                                   | 60<br>2<br>.0302<br>60<br>.0197<br>60          | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP         | 6<br>5<br>40      | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517                                                         | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>RK<br>KM<br>RK<br>KM<br>KK<br>KM<br>KK<br>KM<br>RK<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076<br>MC                             | 60<br>2<br>60<br>.0197<br>60                   | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP         | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518                                                         | KK<br>KM<br>LS<br>UD<br>ID.<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н2<br>.0273<br>.114<br>1<br>мв<br>2<br>928<br>м4<br>.0346<br>.121<br>406<br>м3<br>.0149<br>.076<br>мС                              | 60<br>2<br>.0302<br>60<br>.0197<br>60          | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP         | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>519                                                  | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076<br>MC<br>3                        | 60<br>2<br>.0302<br>60<br>.0197<br>60          | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP         | 6<br>5<br>40      | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519                                           | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>KM<br>KK<br>KM<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076<br>MC<br>3                        | 60<br>2<br>60<br>.0197<br>60                   | .035        | НЕС-1 INPUT<br>45<br>ТRAP<br>ТRAP         | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520                                           | KK<br>KM<br>LS<br>UD<br>ID.<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076<br>MC<br>3                        | 60<br>2<br>.0302<br>60<br>.0197<br>60          | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP         | 5                 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521                             | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KK<br>KM<br>KK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076<br>MC<br>3                        | 60<br>2<br>.0302<br>60<br>.0197<br>60          | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP         | 6<br>5<br>40      | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522                      | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>RK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076<br>MC<br>3<br>1902                | 60<br>2<br>60<br>.0197<br>60<br>.0231          | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP         | 6<br>5<br>40      | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522                             | KK<br>KM<br>IS<br>UD<br>ID.<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KK<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н2<br>.0273<br>.114<br>1.<br>мв<br>2<br>928<br>м4<br>.0346<br>.121<br>406<br>м3<br>.0149<br>.076<br>мс<br>3<br>1902                | 60<br>2<br>.0302<br>60<br>.0197<br>60<br>.0231 | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP<br>TRAP | 5<br>40<br>5      | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523               | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>HC<br>KK<br>KM<br>KK<br>KM<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076<br>MC<br>3<br>1902<br>M5          | 60<br>2<br>.0302<br>60<br>.0197<br>60<br>.0231 | .035<br>.02 | HEC-1 INPUT<br>45<br>TRAP<br>TRAP<br>TRAP | 6<br>5<br>40<br>5 | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524        | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>RK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KM<br>KM<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M2<br>.0273<br>.114<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076<br>MC<br>3<br>1902<br>M5  | 60<br>2<br>60<br>.0197<br>60<br>.0231          | .035        | НЕС-1 INPUT<br>45<br>ТRAP<br>ТRAP         | 6<br>5<br>40      | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br>LINE<br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>523<br>524<br>525 | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KK<br>KM<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M2<br>.0273<br>.114<br>1.<br>MB<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076<br>MC<br>3<br>1902<br>M5<br>.0176 | 60<br>2<br>.0302<br>60<br>.0197<br>60<br>.0231 | .035        | HEC-1 INPUT<br>45<br>TRAP<br>TRAP<br>TRAP | 5<br>40           | 4 | 89  | PAGE 13 |
| 493<br>494<br>495<br>496<br>497<br><b>LINE</b><br>498<br>499<br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>522<br>522<br>522<br>524<br>522<br>526 | KK<br>KM<br>BA<br>LS<br>UD<br>ID.<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KK<br>KM<br>KM<br>HC<br>KK<br>KM<br>KM<br>HC<br>KK<br>KM<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KK<br>KM<br>HC<br>KK<br>KK<br>KM<br>HC<br>KK<br>KK<br>KM<br>HC<br>KK<br>KK<br>KM<br>HC<br>KK<br>KK<br>KM<br>HC<br>KK<br>KK<br>KM<br>HC<br>KK<br>KK<br>KM<br>HC<br>KK<br>KK<br>KM<br>HC<br>KK<br>KK<br>KM<br>HC<br>KK<br>KK<br>KM<br>HC<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK | н2<br>.0273<br>.114<br>1,<br>МВ<br>2<br>928<br>M4<br>.0346<br>.121<br>406<br>M3<br>.0149<br>.076<br>МС<br>3<br>1902<br>M5<br>.0176 | 60<br>2<br>.0302<br>60<br>.0197<br>60<br>.0231 | .035<br>.02 | HEC-1 INPUT<br>45<br>TRAP<br>TRAP<br>TRAP | 6<br>5<br>40<br>5 | 4 | 89  | PAGE 13 |

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 8 of 41 7/23/2008

| 528        | KK       |            |          |            |         |               |           |        |      |      |  |
|------------|----------|------------|----------|------------|---------|---------------|-----------|--------|------|------|--|
| 529        | KM       |            |          |            |         |               |           | •      |      |      |  |
| 530        | RK       | 1717       | .0186    | .02        |         | TRAP          | 40        | 0      |      |      |  |
|            |          |            |          |            |         |               |           |        |      |      |  |
| 531        | KK       | M6         |          |            |         |               |           |        |      |      |  |
| 532        | KM       | 0.007      |          |            |         |               |           |        |      |      |  |
| 533        | BA       | .0637      | 65       |            |         |               |           |        |      |      |  |
| 534        | LS       | 222        | 65       |            |         |               |           |        |      |      |  |
| 535        | UD       | .233       |          |            |         |               |           |        |      |      |  |
| 626        |          | MD         |          |            |         |               |           |        |      |      |  |
| 536        | KK       | MD         |          |            |         |               |           |        |      |      |  |
| 537        | KM<br>UC | 2          |          |            |         |               |           |        |      |      |  |
| 228        | ΠÇ       | 3          |          |            |         |               |           |        |      |      |  |
| E 2 0      | vv       |            |          |            |         |               |           |        |      |      |  |
| 540        | KM       |            |          |            |         |               |           |        |      |      |  |
| 541        | BK       | 2841       | 019      | 035        |         | TRAP          | 5         | 4      |      |      |  |
| 511        | .u.      |            |          |            |         |               | -         |        |      |      |  |
| 542        | KK       | M7         |          |            |         |               |           |        |      |      |  |
| 543        | KM       |            |          |            |         |               |           |        |      |      |  |
| 544        | BA       | .0524      |          |            |         |               |           |        |      |      |  |
| 545        | LS       |            | 69       |            |         |               |           |        |      |      |  |
| 546        | UD       | .170       |          |            |         |               |           |        |      |      |  |
|            |          |            |          |            |         |               |           |        |      |      |  |
| 547        | ĸĸ       |            |          |            |         |               |           |        |      |      |  |
| 548        | KM       |            |          |            |         |               |           |        |      |      |  |
| 549        | RK       | 1044       | .0268    | .02        |         | TRAP          | 40        | 0      |      |      |  |
|            |          |            |          |            |         |               |           |        |      |      |  |
| 550        | KK       | <b>M</b> 8 |          |            |         |               |           |        |      |      |  |
| 551        | КМ       |            |          |            |         |               |           |        |      |      |  |
| 552        | BA       | .0370      |          |            |         |               |           |        |      |      |  |
| 553        | LS       |            | 61       |            |         |               |           |        |      |      |  |
| 554        | UD       | .126       |          |            |         |               |           |        |      |      |  |
|            |          |            |          |            |         |               |           |        |      |      |  |
| 555 -      | KK       | ME         |          |            |         |               |           |        |      |      |  |
| 556        | КM       |            |          |            |         |               |           |        |      |      |  |
| 557        | HC       | 2          |          |            |         |               |           |        |      |      |  |
|            |          |            |          |            |         |               |           |        |      |      |  |
| 558        | KK       |            |          |            |         |               |           |        |      |      |  |
| 559        | KM       |            |          |            |         |               |           |        |      |      |  |
| 560        | RK       | 2992       | .0187    | .035       |         | TRAP          | 5         | 4      |      |      |  |
|            |          |            |          |            |         |               |           |        |      |      |  |
| 561        | KK       | M9         |          |            |         |               |           |        |      |      |  |
| 562        | KM       |            |          |            |         |               |           |        |      |      |  |
| 563        | BA       | .0169      |          |            |         |               |           |        |      |      |  |
| 564        | LS       |            | 69       |            |         |               |           |        |      |      |  |
| 565        | UĎ       | .087       |          |            |         |               |           |        |      |      |  |
|            |          |            |          |            |         |               |           |        |      |      |  |
| 566        | KK       |            |          |            |         |               |           |        |      |      |  |
| 567        | KM       | 2422       | 0050     | 0.2        |         |               | F         |        |      |      |  |
| 268        | KK       | 3433       | .0253    | .03        |         | TRAP          | 5         | 4      |      |      |  |
| F.CO       | 1212     |            |          |            |         |               |           |        |      |      |  |
| 569        | KK IOI   | MIZA       |          |            |         |               |           |        |      |      |  |
| 570        | RM<br>DI | 0.050      |          |            |         |               |           |        |      |      |  |
| 5/1        | BA       | .0656      | 60       |            |         |               |           |        |      |      |  |
| 572        | 12       | 150        | 00       |            |         |               |           |        |      |      |  |
| 5/3        | 00       | -139       |          |            |         |               |           |        |      |      |  |
| 574        | KK       | M12B       |          |            |         |               |           |        |      |      |  |
| 575        | KM       | H120       |          |            |         |               |           |        |      |      |  |
| 576        | BA       | 1481       |          |            |         |               |           |        |      |      |  |
| 577        | LS       |            | 60       |            |         |               |           |        |      |      |  |
| - · ·      | 20       |            |          |            |         |               |           |        |      |      |  |
| 579        | кк       | MF         |          |            |         |               |           |        |      |      |  |
| 580        | KM       |            |          |            |         |               |           |        |      |      |  |
| 581        | HC       | 5          |          |            |         |               |           |        |      |      |  |
|            |          |            |          |            |         |               |           |        |      |      |  |
| 582        | KK       |            |          |            |         |               |           |        |      |      |  |
| 583        | KM       |            |          |            |         |               |           |        |      |      |  |
| 584        | RK       | 2586       | .0224    | .035       |         | TRAP          | 10        | 4      |      |      |  |
|            |          |            |          |            |         |               |           |        |      |      |  |
| 585        | KK       | M13        |          |            |         |               |           |        |      |      |  |
| 586        | KM       |            |          |            |         |               |           |        |      |      |  |
| 587        | BA       | .0614      |          |            |         |               |           |        |      |      |  |
| 588        | LS       |            | 64       |            |         |               |           |        |      |      |  |
| 589        | UD       | .165       |          |            |         |               |           |        |      |      |  |
|            |          |            |          |            |         |               |           |        |      |      |  |
| 590        | KK       |            |          |            |         |               |           |        |      |      |  |
| 591        | KM       |            | <b></b>  | 0.25       |         | <b>#D</b> • • | ~         |        |      |      |  |
| 592        | RK       | 1700       | .01      | .035       |         | TRAP          | ю         | 4      |      |      |  |
| 500        |          |            |          |            |         |               |           |        |      |      |  |
| 593        | KK       | M14        |          |            |         |               |           |        |      |      |  |
| 594        | KM       | 1 ( ) (    |          |            |         |               |           |        |      |      |  |
| 595        | BA       | .1624      | <i></i>  |            |         |               |           |        |      |      |  |
| 590<br>507 | 72       | 220        | 04       |            |         |               |           |        |      |      |  |
| 140        | UD       | .228       |          |            |         |               |           |        |      |      |  |
| 598        |          | MC         |          |            |         |               |           |        |      |      |  |
| 590        | KIN      | MG         |          |            |         |               |           |        |      |      |  |
| 600        | uc       | 2          |          |            |         |               |           |        |      |      |  |
| 000        | nç       | 2          |          |            |         |               |           |        |      |      |  |
| 601        | кк       | PONDW      |          |            |         |               |           |        |      |      |  |
| 602        | KM       |            | OODMEN H | ILLS DETEN | TION PC | ND WEST       | (FROM FDR | WH FLG | F4)  |      |  |
| 603        | SV       |            | . 68     | 1.5        | 235     | 3.6           | 4.9       | 6.3    | 7.34 | 7.34 |  |
| 604        | SE       | 968        | 969      | 970        | 971     | 972           | 973       | 974    | 975  | 976  |  |
|            |          |            |          |            |         |               |           |        |      |      |  |

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 9 of 41 7/23/2008
| 680<br>681<br>682               | BA<br>LS<br>UD             | .042<br>.139         | 60    |      |      |    |   |
|---------------------------------|----------------------------|----------------------|-------|------|------|----|---|
| 683<br>684<br>685               | KK<br>KM<br>HC             | ML<br>2              |       |      |      |    |   |
| 686<br>687<br>688               | KK<br>KM<br>RK             | 2099                 | .02   | .035 | TRAP | 5  | 4 |
| 689<br>690<br>691<br>692<br>693 | KK<br>KM<br>BA<br>LS<br>UD | M17<br>.0765<br>.133 | 61    |      |      |    |   |
| 694<br>695<br>696               | KK<br>KM<br>HC             | MM<br>2              |       |      |      |    |   |
| 697<br>698<br>699               | KK<br>KM<br>RK             | 2320                 | .0121 | .035 | TRAP | 10 | 4 |
| 700<br>701<br>702<br>703<br>704 | KK<br>KM<br>BA<br>LS<br>UD | м18<br>.061<br>.142  | 61    |      |      |    |   |
| 705<br>706<br>707               | кк<br>км<br>RK             | 2122                 | .017  | .035 | TRAP | 5  | 4 |
| 708<br>709<br>710<br>711<br>712 | KK<br>KM<br>BA<br>LS<br>UD | M20<br>.1341<br>.211 | 61    |      |      |    |   |
| 713<br>714<br>715               | КК<br>КМ<br>НС             | M2N<br>4             |       |      |      |    |   |
| 716<br>717<br>718               | KK<br>KM<br>RK             | 1531                 | .0202 | .035 | TRAP | 25 | 4 |
| 719<br>720<br>721<br>722<br>723 | KK<br>KM<br>BA<br>LS<br>UD | M21<br>.0241<br>.125 | 61    |      |      |    |   |
| 724<br>725<br>726               | KK<br>KM<br>RK             | 1322                 | .0212 | .035 | TRAP | 5  | 4 |
| 727<br>728<br>729<br>730<br>731 | KK<br>KM<br>BA<br>LS<br>UD | M23<br>.0461<br>.120 | 60    |      |      |    |   |
| 732<br>733<br>734               | кк<br>КМ<br>НС             | мо<br>3              |       |      |      |    |   |
| 735<br>736<br>737               | KK<br>KM<br>RK             | 974                  | .0133 | .035 | TRAP | 25 | 4 |
| 738<br>739<br>740<br>741<br>742 | KK<br>KM<br>BA<br>LS<br>UD | M24<br>.0776<br>.125 | 60    |      |      |    |   |
| 743<br>744<br>745               | KK<br>KM<br>HC             | MP<br>2              |       |      |      |    |   |
| 746<br>747<br>748               | KK<br>KM<br>RK             | 290                  | .0138 | .035 | TRAP | 25 | 4 |
| 749<br>750<br>751<br>752<br>753 | KK<br>KM<br>BA<br>LS<br>UD | M25<br>.0105<br>.130 | 60    |      |      |    |   |
| 754                             | кк                         | MQ                   |       |      |      |    |   |

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 11 of 41 7/23/2008 755 756 КМ HC 2 757 758 759 KK KM RK 3305 .0136 .035 TRAP 25 4 760 761 762 KK KM BA LS UD M26 .1779 763 764 65 .250 765 кк MR 766 767 KM HC 2 KK KM BA 768 W44 769 770 771 772 .0384 LS UD 60 .141 773 774 775 КК КМ RK 2029 .0148 .035 TRAP 5 4 776 KK KM BA LS UD W47 777 778 779 .0541 60 .148 780 781 кк KM RK 782 1438 .0223 .035 TRAP 5 4 783 кк 784 W46 KM BA LS UD 785 786 787 .0418 61 788 .154 789 790 KK KM BA LS UD M27 791 792 .0528 60 793 .132 794 KK WΧ 795 KM HC 796 б 797 кк 798 799 КМ RK 2563 .0125 .035 TRAP 40 4 800 801 KK KM BA LS UD W48 802 .1179 61 803 804 .091 кк 805 806 807 KM RK 2400 .0188 .035 TRAP 5 4 808 KK KM BA LS UD W49 809 810 811 812 .2651 61 .181 KK KM HC 813 ₩Z 814 815 3 KK KM RK 816 817 818 800 .0125 .035 TRAP 40 4 819 KK KM BA LS UD ₩50 820 821 .1061 822 61 823 .145 KK KM HC 824 WAB 825 826 2 827 кк 828 829 KM RK 742 .0108 .035 TRAP 40 4

| 830<br>831<br>832<br>833        | KK<br>KM<br>BA<br>LS       | ₩51<br>.0546         | 63    |      |      |    |   |
|---------------------------------|----------------------------|----------------------|-------|------|------|----|---|
| 834<br>835<br>836<br>837        | KK<br>KM<br>HC             | .172<br>WAC<br>2     |       |      |      |    |   |
| 838<br>83 <del>9</del><br>840   | KK<br>KM<br>RK             | 638                  | .0345 | .035 | TRAP | 40 | 4 |
| 841<br>842<br>843<br>844<br>845 | KK<br>KM<br>BA<br>LS<br>UD | W52<br>.0499<br>.109 | 63    |      |      |    |   |
| 846<br>847<br>848               | KK<br>KM<br>RK             | 1171                 | .0205 | .035 | TRAP | 5  | 4 |
| 849<br>850<br>851<br>852<br>853 | KK<br>KM<br>BA<br>LS<br>UD | ₩53<br>.0531<br>.156 | 63    |      |      |    |   |
| 854<br>855<br>856               | KK<br>KM<br>HC             | WAD<br>2             |       |      |      |    |   |
| 857<br>858<br>859               | KK<br>KM<br>RK             | 290                  | .0310 | .035 | TRAP | 10 | 4 |
| 860<br>861<br>862<br>863<br>864 | KK<br>KM<br>BA<br>LS<br>UD | W54<br>.0078<br>.050 | 60    |      |      |    |   |
| 865<br>866<br>867               | KK<br>KM<br>HC             | WAE<br>3             |       |      |      |    |   |
| 868<br>869<br>870               | KK<br>KM<br>RK             | 1925                 | .0052 | .035 | TRAP | 40 | 4 |
| 871<br>872<br>873<br>874<br>875 | KK<br>KM<br>BA<br>LS<br>UD | W56<br>.1831<br>.191 | 60    |      |      |    |   |
| 876<br>877<br>878               | КК<br>КМ<br>НС             | WAF<br>2             |       |      |      |    |   |
| 879<br>880<br>881               | KK<br>KM<br>RK             | 1032                 | .0155 | .035 | TRAP | 40 | 4 |
| 882<br>883<br>884<br>885<br>886 | KK<br>KM<br>BA<br>LS<br>UD | W62<br>.0750<br>.090 | 60    |      |      |    |   |
| 887<br>888<br>889               | KK<br>KM<br>RK             | 2169                 | .0203 | .035 | TRAP | 5  | 4 |
| 890<br>891<br>892<br>893<br>894 | KK<br>KM<br>BA<br>LS<br>UD | W63<br>.047<br>.109  | 60    |      |      |    |   |
| 895<br>896<br>897               | KK<br>KM<br>RK             | 1450                 | .0131 | .035 | TRAP | 5  | 4 |
| 898<br>899<br>900<br>901<br>902 | KK<br>KM<br>BA<br>LS<br>UD | ₩61<br>.192<br>.251  | 60    |      |      |    |   |
| 903<br>904<br>905               | KK<br>KM<br>HC             | WAH<br>3             |       |      |      |    |   |

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Cales\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 13 of 41 7/23/2008

| 906        | KK        |            |            |          |          |           |          |       |       |       |       |          |
|------------|-----------|------------|------------|----------|----------|-----------|----------|-------|-------|-------|-------|----------|
| 907        | KM        |            |            |          |          |           |          |       |       |       |       |          |
| 908        | RK        | 1241       | .0153      | .035     |          | TRAP      | 5        | 4     |       |       |       |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 909        | KK        | W57        |            |          |          |           |          |       |       |       |       |          |
| 910        | KM<br>DA  | 0732       |            |          |          |           |          |       |       |       |       |          |
| 912        | LS        | .0752      | 60         |          |          |           |          |       |       |       |       |          |
| 913        | UD        | .140       |            |          |          |           |          |       |       |       |       |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 914        | KK        |            |            |          |          |           |          |       |       |       |       |          |
| 915        | KM        |            |            |          |          |           |          |       |       |       |       |          |
| 916        | RK        | 5903       | .0254      | .035     |          | TRAP      | 5        | 4     |       |       |       |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 917        | KK        | W58        |            |          |          |           |          |       |       |       |       |          |
| 918        | KM<br>DN  | 2205       |            |          |          |           |          |       |       |       |       |          |
| 919        | BA<br>IC  | .2290      | 60         |          |          |           |          |       |       |       |       |          |
| 921        | UD        | .251       | 00         |          |          |           |          |       |       |       |       |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 922        | KK        | WAI        |            |          |          |           |          |       |       |       |       |          |
| 923        | KM        |            |            |          |          |           |          |       |       |       |       |          |
| 924        | HC        | 3          |            |          |          |           |          |       |       |       |       |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 925        | KK        |            |            |          |          |           |          |       |       |       |       |          |
| 920        | nn<br>DK  | 232        | 0086       | 035      |          | TRAD      | 15       | 4     |       |       |       |          |
| 321        | KI        | 232        | .0000      | .055     |          | IIIII     | 10       |       |       |       |       |          |
| 928        | кк        | E1A        |            |          |          |           |          |       |       |       |       |          |
| 929        | КM        |            |            |          |          |           |          |       |       |       |       |          |
| 930        | BA        | .1151      |            |          |          |           |          |       |       |       |       |          |
| 931        | LS        | 0          | 60         |          |          |           |          |       |       |       |       |          |
| 932        | UD        | .234       |            |          |          |           |          |       |       |       |       |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 933        | KK        | E1A-EA     |            |          |          |           |          |       |       |       |       |          |
| 934        | KM        | 4000       | 033        | 0.25     |          |           | c        |       |       |       |       |          |
| 935        | RK        | 4000       | .022       | .035     |          | IRAP      | 5        | 4     |       |       |       |          |
| 936        | ĸĸ        | FIR        |            |          |          |           |          |       |       |       |       |          |
| 937        | KM        | 610        |            |          |          |           |          |       |       |       |       |          |
| 938        | BA        | .1665      |            |          |          |           |          |       |       |       |       |          |
| 939        | LS        | 0          | 60         |          |          |           |          |       |       |       |       |          |
| 940        | UD        | .233       |            |          |          |           |          |       |       |       |       |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 941        | KK        | EA         |            |          |          |           |          |       |       |       |       |          |
| 942        | KM        | -          |            |          |          |           |          |       |       |       |       |          |
| 943        | HC        | Z          |            |          |          |           |          |       |       |       |       |          |
| 944        | vv        | FA-FR      |            |          |          |           |          |       |       |       |       |          |
| 945        | KM        | GA-GD      |            |          |          |           |          |       |       |       |       |          |
| 946        | RK        | 1900       | .022       | .035     |          | TRAP      | 5        | 4     |       |       |       |          |
|            |           |            |            |          | HEC-1 I  | NPUT      |          |       |       |       |       | PAGE. 24 |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| LINE       | ID.       | 1.         |            |          | 4        | 5         |          |       |       | 9     | 10    |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 0.47       | WW.       |            |            |          |          |           |          |       |       |       |       |          |
| 947        | KM        | 62         |            |          |          |           |          |       |       |       |       |          |
| 949        | BA        | .104       |            |          |          |           |          |       |       |       |       |          |
| 950        | LS        | 0          | 60         |          |          |           |          |       |       |       |       |          |
| 951        | UD        | .149       |            |          |          |           |          |       |       |       |       |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 952        | KK        | EB         |            |          |          |           |          |       |       |       |       |          |
| 953        | KM        |            |            |          |          |           |          |       |       |       |       |          |
| 954        | HC        | 2          |            |          |          |           |          |       |       |       |       |          |
| 0.5.5      |           | DOMDI      |            |          |          |           |          |       |       |       |       |          |
| 955        | NA<br>104 | PONDI      | OTHER FLOW | TUPOLICU | CCC DONT | 1         |          |       |       |       |       |          |
| 950        | SV        | 0          | 012 1104   | 28       | 1.12     | 2.70      | 5.18     | 6.00  | 6.94  |       |       |          |
| 958        | SE        | 945.5      | 946        | 948      | 950      | 952       | 954      | 954.5 | 955   |       |       |          |
| 959        | so        | 0          | 0          | 0        | 0        | 0         | 48.5     | 176.4 | 351.4 |       |       |          |
| 960        | RS        | 1          | ELEV       | 945.5    |          |           |          |       |       |       |       |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 961        | KK        |            |            |          |          |           |          |       |       |       |       |          |
| 962        | KM        |            |            |          |          |           | -        |       |       |       |       |          |
| 963        | RK        | 1300       | .0192      | .035     |          | TRAP      | 5        | 4     |       |       |       |          |
| 964        | ĸĸ        | F3         |            |          |          |           |          |       |       |       |       |          |
| 965        | KM        | 53         |            |          |          |           |          |       |       |       | •     |          |
| 966        | BA        | .090       |            |          |          |           |          |       |       |       |       |          |
| 967        | LS        |            | 60         |          |          |           |          |       |       |       |       |          |
| 968        | UD        | .128       |            |          |          |           |          |       |       |       |       |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 969        | KK        | MH-P2      |            |          |          |           |          |       |       |       |       |          |
| 970        | KM        | D T VOOD * | GETRIEVE I | VERSION  | FROM W.  | MERIDIA   | N RU DIT | TCH   |       |       |       |          |
| 971        | DR        | DIVRT1     |            |          |          |           |          |       |       |       |       |          |
| 972        | KK        | EC         |            |          |          |           |          |       |       |       |       |          |
| 973        | KM        | 20         |            |          |          |           |          |       |       |       |       |          |
| 974        | HC        | 3          |            |          |          |           |          |       |       |       |       |          |
|            |           |            |            |          |          |           |          |       |       |       |       |          |
| 975        | KK        | POND2      |            |          |          |           |          |       |       |       |       |          |
| 076        |           | -          |            |          | C.C.C    |           |          |       |       |       |       |          |
| 976<br>977 | KM        | F          | ROUTE FLOW | THROUGH  | SCS PON  | 2<br>6 89 | 9.57     | 11 08 | 12 82 | 14 72 | 16 70 |          |

.

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 14 of 41 7/23/2008

|      |          |        |           |      |     |      |     |       |      |       |       | - |
|------|----------|--------|-----------|------|-----|------|-----|-------|------|-------|-------|---|
| 978  | SE       | 920    | 922       | 924  | 926 | 928  | 929 | 929.5 | 930  | 930.5 | 931   |   |
| 979  | SQ       | 0      | 0         | 0    | 0   | 0    | 0   | 25    | 86.5 | 186.2 | 308.4 |   |
| 980  | RS       | 1      | ELEV      | 920  |     |      |     |       |      |       |       |   |
| 981  | KK       |        |           |      |     |      |     |       |      |       |       |   |
| 982  | KM       |        |           |      |     |      |     |       |      |       |       |   |
| 983  | RK       | 1700   | .0141     | .035 |     | TRAP | 5   | 4     |      |       |       |   |
| 984  | кк       | E1C    |           |      |     |      |     |       |      |       |       |   |
| 985  | KM       | 210    |           |      |     |      |     |       |      |       |       |   |
| 986  | BA       | .0845  |           |      |     |      |     |       |      |       |       |   |
| 987  | LS       | 200    | 60        |      |     |      |     |       |      |       |       |   |
| 988  | ŲD       | .200   |           |      |     |      |     |       |      |       |       |   |
| 989  | KK       | 1C-ED1 |           |      |     |      |     |       |      |       |       |   |
| 990  | KM       |        |           |      |     |      | -   |       |      |       |       |   |
| 991  | RK       | 3450   | .022      | .035 |     | TRAP | 5   | 4     |      |       |       |   |
| 992  | KK       | E4     |           |      |     |      |     |       |      |       |       |   |
| 993  | KM       |        |           |      |     |      |     |       |      |       |       |   |
| 994  | BA       | .127   | 60        |      |     |      |     |       |      |       |       |   |
| 995  | 10       | 200    | 60        |      |     |      |     |       |      |       |       |   |
|      | 00       |        |           |      |     |      |     |       |      |       |       |   |
| 997  | KK       | ED1    |           |      |     |      |     |       |      |       |       |   |
| 998  | KM       | 2      |           |      |     |      |     |       |      |       |       |   |
| 359  | ne       | 2      |           |      |     |      |     |       |      |       |       |   |
| 1000 | кк       | ED1-ED |           |      |     |      |     |       |      |       |       |   |
| 1001 | KM       | 45.0   | 0170      | 0.2  |     |      | -   | 4     |      |       |       |   |
| 1002 | RK       | 450    | .0178     | .03  |     | TRAP | 5   | 4     |      |       |       |   |
| 1003 | KK       | £5     |           |      |     |      |     |       |      |       |       |   |
| 1004 | KM       |        |           |      |     |      |     |       |      |       |       |   |
| 1005 | BA       | .094   | <b>CO</b> |      |     |      |     |       |      |       |       |   |
| 1005 | ud<br>Ud | .160   | 60        |      |     |      |     |       |      |       |       |   |
|      |          |        |           |      |     |      |     |       |      |       |       |   |
| 1008 | KK       | ED     |           |      |     |      |     |       |      |       |       |   |
| 1009 | KM<br>HC | э      |           |      |     |      |     |       |      |       |       |   |
| 1010 | ne       | 5      |           |      |     |      |     |       |      |       |       |   |
| 1011 | КК       |        |           |      |     |      |     |       |      |       |       |   |
| 1012 | KM       | 050    | 0011      | 0.25 |     |      | 10  |       |      |       |       |   |
| 1013 | ĸĸ       | 950    | .0211     | .035 |     | TRAP | 10  | મ     |      |       |       |   |
| 1014 | KK       | ΕB     |           |      |     |      |     |       |      |       |       |   |
| 1015 | KM       |        |           |      |     |      |     |       |      |       |       | • |
| 1016 | BA       | .0446  | 60        |      |     |      |     |       |      |       |       |   |
| 1018 | UD       | .139   | 00        |      |     |      |     |       |      |       |       |   |
|      |          |        |           |      |     |      |     |       |      |       |       |   |
| 1019 | KK       | EE     |           |      |     |      |     |       |      |       |       |   |
| 1020 | HC       | 2      |           |      |     |      |     |       |      |       |       |   |
|      |          |        |           |      |     |      |     |       |      |       |       |   |
| 1022 | КК       |        |           |      |     |      |     |       |      |       |       |   |
| 1023 | KM<br>RK | 1500   | 0127      | 035  |     | TRAP | 10  | 4     |      |       |       |   |
|      |          |        |           |      |     |      |     |       |      |       |       |   |
| 1025 | КК       | E10    |           |      |     |      |     |       |      |       |       |   |
| 1026 | KM<br>BA | 029    |           |      |     |      |     |       |      |       |       |   |
| 1028 | LS       | .029   | 60        |      |     |      |     |       |      |       |       |   |
| 1029 | UD       | .158   |           |      |     |      |     |       |      |       |       |   |
| 1020 | 1010     | -      |           |      |     |      |     |       |      |       |       |   |
| 1030 | KM       | Er     |           |      |     |      |     |       |      |       |       |   |
| 1032 | HC       | 2      |           |      |     |      |     |       |      |       |       |   |
|      |          |        |           |      |     |      |     |       |      |       |       |   |
| 1033 | KK<br>KM | F-G    |           |      |     |      |     |       |      |       |       |   |
| 1035 | RK       | 950    | .0074     | .035 |     | TRAP | 15  | 4     |      |       |       |   |
|      |          |        |           |      |     |      |     |       |      |       |       |   |
| 1036 | KK       | E6     |           |      |     |      |     |       |      |       |       |   |
| 1037 | BA       | .119   |           |      |     |      |     |       |      |       |       |   |
| 1039 | LS       |        | 60        |      |     |      |     |       |      |       |       |   |
| 1040 | UD       | .228   |           |      |     |      |     | •     |      |       |       |   |
| 1041 | кк       | E7     |           |      |     |      |     |       |      |       |       |   |
| 1042 | КM       | -      |           |      |     |      |     |       |      |       |       |   |
| 1043 | BA       | .031   |           |      |     |      |     |       |      |       |       |   |
| 1044 | LS       | 082    | 60        |      |     |      |     |       |      |       |       |   |
| 1033 | 00       | .002   |           |      |     |      |     |       |      |       |       |   |
| 1046 | KK       |        |           |      |     |      |     |       |      |       |       |   |
| 1047 | KM       | 1100   | 0100      | 0.25 |     | TORD | c   | ٨     |      |       |       |   |
| 1040 | ĸĸ       | 1100   | .0100     | .055 |     | TRAP | 3   | 4     |      |       |       |   |
| 1049 | кк       | EG1    |           |      |     |      |     |       |      |       |       |   |
| 1050 | KM       | •      |           |      |     |      |     |       |      |       |       |   |
| 1001 | nC       | 2      |           |      |     |      |     |       |      |       |       |   |
| 1052 | КК       | G1-G   |           |      |     |      |     |       |      |       |       |   |

ľ

.

 \\Se-srv01\projects\\057-Park Place Enterprises\\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

 FDR\xfal2100.doc
 Page 15 of 41
 7/23/2008

| 1204                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|-----------------------------------------|------------------|----------------------|-----|---|---|--|
| 1205                                                                                 | HC                                                 | 2                                    |                                         |                  |                      |     |   |   |  |
|                                                                                      |                                                    |                                      |                                         |                  |                      |     |   |   |  |
| 1206                                                                                 | KK                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1207                                                                                 | KW.                                                |                                      |                                         |                  |                      |     |   |   |  |
| 1200                                                                                 | EL-L                                               | 1022                                 | 0126                                    | 0.35             | <b>TD ND</b>         | 40  | 4 |   |  |
| 1208                                                                                 | R.R.                                               | 10.52                                | .0120                                   | .055             | INA                  | 40  | 4 |   |  |
|                                                                                      |                                                    |                                      |                                         |                  |                      |     |   |   |  |
| 1209                                                                                 | KK                                                 | E27                                  |                                         |                  |                      |     |   |   |  |
| 1210                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1211                                                                                 | BA                                                 | 1236                                 |                                         |                  |                      |     |   |   |  |
| 1212                                                                                 | 1.0                                                |                                      | 63                                      |                  |                      |     |   |   |  |
| 1212                                                                                 | 10                                                 |                                      | 0.5                                     |                  |                      |     |   |   |  |
| 1213                                                                                 | UD                                                 | .172                                 |                                         |                  |                      |     |   |   |  |
|                                                                                      |                                                    |                                      |                                         |                  |                      |     |   |   |  |
| 1214                                                                                 | KK                                                 | EO                                   |                                         |                  |                      |     |   |   |  |
| 1215                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1216                                                                                 | HC                                                 | 2                                    |                                         |                  |                      |     |   |   |  |
|                                                                                      |                                                    |                                      |                                         |                  |                      |     |   |   |  |
| 1217                                                                                 | KK                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1218                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1210                                                                                 | DK                                                 | 1625                                 | 0122                                    | 035              | TOND                 | 5   | 3 |   |  |
| 1219                                                                                 | RR.                                                | 1025                                 | .0155                                   | .035             | 1000                 | 5   | 5 |   |  |
|                                                                                      |                                                    |                                      |                                         |                  |                      |     |   |   |  |
| 1220                                                                                 | KK                                                 | W55                                  |                                         |                  |                      |     |   |   |  |
| 1221                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1222                                                                                 | BA                                                 | .0452                                |                                         |                  |                      |     |   |   |  |
| 1223                                                                                 | LS                                                 |                                      | 60                                      |                  |                      |     |   |   |  |
| 1224                                                                                 | UD                                                 | .093                                 |                                         |                  |                      |     |   |   |  |
| 1000                                                                                 | 05                                                 | .050                                 |                                         |                  |                      |     |   |   |  |
| 1225                                                                                 | ~~                                                 | wac                                  |                                         |                  |                      |     |   |   |  |
| 1225                                                                                 | rr.                                                | WAG                                  |                                         |                  |                      |     |   |   |  |
| 1226                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1227                                                                                 | HC                                                 | 2                                    |                                         |                  |                      |     |   |   |  |
|                                                                                      |                                                    |                                      |                                         |                  |                      |     |   |   |  |
| 1228                                                                                 | KK                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1229                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1230                                                                                 | RK                                                 | 2025                                 | .0109                                   | .035             | TRAP                 | 5   | 4 |   |  |
|                                                                                      |                                                    |                                      |                                         |                  |                      |     |   | • |  |
| 1231                                                                                 | кк                                                 | W59                                  |                                         |                  |                      |     |   |   |  |
| 1222                                                                                 | KM.                                                |                                      |                                         |                  |                      |     |   |   |  |
| 1232                                                                                 | 101                                                | 0705                                 |                                         |                  |                      |     |   |   |  |
| 1233                                                                                 | BR                                                 | .0705                                | <u> </u>                                |                  |                      |     |   |   |  |
| 1234                                                                                 | LS                                                 |                                      | 60                                      |                  |                      |     |   |   |  |
| 1235                                                                                 | UD                                                 | .200                                 |                                         |                  |                      |     |   |   |  |
|                                                                                      |                                                    |                                      |                                         |                  |                      |     |   |   |  |
| 1236                                                                                 | KK                                                 | WAJ                                  |                                         |                  |                      |     |   |   |  |
| 1237                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1238                                                                                 | HC                                                 | 4                                    |                                         |                  |                      |     |   |   |  |
| 1200                                                                                 |                                                    |                                      |                                         |                  |                      |     |   |   |  |
| 1239                                                                                 | ĸĸ                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1240                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1240                                                                                 | nn n                                               | 1450                                 | 0104                                    | 0.35             | <b><i>m</i>D N D</b> | 4.0 |   |   |  |
| 1241                                                                                 | RK                                                 | 1450                                 | .0124                                   | .035             | IRAP                 | 40  | 4 |   |  |
|                                                                                      |                                                    |                                      |                                         |                  |                      |     |   |   |  |
| 1242                                                                                 | KK                                                 | E28                                  |                                         |                  |                      |     |   |   |  |
| 1243                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1244                                                                                 | BA                                                 | .0718                                |                                         |                  |                      |     |   |   |  |
| 1245                                                                                 | LS                                                 |                                      | 61                                      |                  |                      |     |   |   |  |
| 1246                                                                                 | UD                                                 | .223                                 |                                         |                  |                      |     |   |   |  |
|                                                                                      |                                                    |                                      |                                         |                  |                      |     |   |   |  |
| 1247                                                                                 | KK                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1248                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1249                                                                                 | RK.                                                | 2064                                 | .0165                                   | .035             | TRAP                 | 40  | 4 |   |  |
|                                                                                      |                                                    | 2001                                 |                                         |                  |                      |     |   |   |  |
| 1250                                                                                 | KK                                                 | F29                                  |                                         |                  |                      |     |   |   |  |
| 1250                                                                                 |                                                    | 62.9                                 |                                         |                  |                      |     |   |   |  |
| 1201                                                                                 | KM                                                 |                                      |                                         |                  |                      |     |   |   |  |
| 1252                                                                                 | BA                                                 | .0465                                |                                         |                  |                      |     |   |   |  |
| 1253                                                                                 | LS                                                 |                                      | 61                                      |                  |                      |     |   |   |  |
| 1254                                                                                 | UD                                                 | .166                                 |                                         |                  |                      |     |   |   |  |
|                                                                                      |                                                    |                                      |                                         |                  |                      |     |   |   |  |
| 1255                                                                                 | KK                                                 | EZZ                                  |                                         |                  |                      |     |   |   |  |
|                                                                                      |                                                    | C                                    | OMBINE E29                              | 9 & E30 AT DP 22 |                      |     |   |   |  |
| 1256                                                                                 | KM                                                 | <u> </u>                             |                                         |                  |                      |     |   |   |  |
| 1256<br>1257                                                                         | KM<br>HC                                           | 2                                    |                                         |                  |                      |     |   |   |  |
| 1256<br>1257                                                                         | KM<br>HC                                           | 2                                    |                                         |                  |                      |     |   |   |  |
| 1256<br>1257<br>1258                                                                 | KM<br>HC                                           | 2<br>100<br>100                      |                                         |                  |                      |     |   |   |  |
| 1256<br>1257<br>1258<br>1259                                                         | KM<br>HC<br>KK                                     | 2<br>₩60                             |                                         |                  |                      |     |   |   |  |
| 1256<br>1257<br>1258<br>1259                                                         | KM<br>HC<br>KK<br>KM                               | 2<br>w60                             |                                         |                  |                      |     |   |   |  |
| 1256<br>1257<br>1258<br>1259<br>1260                                                 | KM<br>HC<br>KK<br>BA                               | 2<br>₩60<br>.0711                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                  |                      |     |   |   |  |
| 1256<br>1257<br>1258<br>1259<br>1260<br>1261                                         | KM<br>HC<br>KK<br>KM<br>BA<br>LS                   | 2<br>₩60<br>.0711                    | 60                                      |                  |                      |     |   |   |  |
| 1256<br>1257<br>1258<br>1259<br>1260<br>1261<br>1262                                 | KM<br>HC<br>KK<br>BA<br>LS<br>UD                   | 2<br>w60<br>.0711<br>.182            | 60                                      |                  |                      |     |   |   |  |
| 1256<br>1257<br>1258<br>1259<br>1260<br>1261<br>1262                                 | km<br>hc<br>km<br>ba<br>Ls<br>UD                   | 2<br>₩60<br>.0711<br>.182            | 60                                      |                  |                      |     |   |   |  |
| 1256<br>1257<br>1258<br>1259<br>1260<br>1261<br>1262<br>1263                         | KM<br>HC<br>KK<br>BA<br>LS<br>UD<br>KK             | 2<br>w60<br>.0711<br>.182<br>22      | 60                                      |                  |                      |     |   |   |  |
| 1256<br>1257<br>1258<br>1259<br>1260<br>1261<br>1262<br>1263<br>1263                 | KM<br>HC<br>KK<br>BA<br>LS<br>UD<br>KK             | 2<br>w60<br>.0711<br>.182<br>22      | 60<br>Combine al.                       | L AT DP ZZ       |                      |     |   |   |  |
| 1256<br>1257<br>1258<br>1259<br>1260<br>1261<br>1262<br>1263<br>1263<br>1264<br>1265 | KM<br>HC<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>HC | 2<br>w60<br>.0711<br>.182<br>22<br>3 | 60<br>Combine al                        | L AT DP ZZ       |                      |     |   |   |  |

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 18 of 41 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 19 of 41 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 23 of 41 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 24 of 41 7/23/2008

•

.



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 26 of 41 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 28 of 41 7/23/2008



(\*\*\*) RUNOFF ALSO COMPUTED AT THIS LOCATION

| 1** | *************************************** | ** | *********                                         |   |  |  |  |  |
|-----|-----------------------------------------|----|---------------------------------------------------|---|--|--|--|--|
| *   |                                         | *  | •                                                 | * |  |  |  |  |
| *   | FLOOD HYDROGRAPH PACKAGE (HEC-1)        | *  | * U.S. ARMY CORPS OF ENGINEERS                    | * |  |  |  |  |
| *   | JUN 1998                                | *  | <ul> <li>HYDROLOGIC ENGINEERING CENTER</li> </ul> | ÷ |  |  |  |  |
| *   | VERSION 4.1                             | *  | * 609 SECOND STREET                               | * |  |  |  |  |
| *   |                                         | *  | <ul> <li>DAVIS, CALIFORNIA 95616</li> </ul>       | * |  |  |  |  |
| *   | RUN DATE 28SEP07 TIME 11:49:21          | *  | * (916) 756-1104                                  | * |  |  |  |  |
| *   |                                         | *  | •                                                 | * |  |  |  |  |
| **  | *************************************** | ** | ******                                            |   |  |  |  |  |

 FALCON BASIN 100-YR/24-HOUR FLOOD/ EXISTING CONDITIONS

 UPPER EAST TRIBUTARY (MOODMEN HILLS) BASED ON CLOWR APPROVED 2/2/99

 INCLUDING 2 EXISTING SCS STOCK PONDS, WEST WOODMEN HILLS POND

 NOTE: MI-M4 (PAINT BRUSH HILLS) MODELED AS HISTORIC TO ACCOUNT FOR

 DETENTION POND AT MC

 NOTE: NO CULVERT AT STAPLETON & MERIDIAN, TEMP CULVERTS AT MERIDIAN

 DOWNSTREAM OF WOODMEN HILLS DRIVE (DIVERSION)

 OUTPUT CONTROL

 IPRNT
 5

 PRINT CONTROL

 IPLOT
 0

 PLOT CONTROL

 QSCAL
 0.

-

| IT | HYDROGRAPH TIME | DATA    |                                 |
|----|-----------------|---------|---------------------------------|
|    | NMIN            | 5       | MINUTES IN COMPUTATION INTERVAL |
|    | IDATE           | 14JUL99 | STARTING DATE                   |
|    | ITIME           | 0800    | STARTING TIME                   |
|    | NQ              | 300     | NUMBER OF HYDROGRAPH ORDINATES  |
|    | NDDATE          | 15JUL99 | ENDING DATE                     |
|    | NDTIME          | 0855    | ENDING TIME                     |
|    | ICENT           | 19      | CENTURY MARK                    |
|    | COMPUTATION IN  | TERVAL  | .08 HOURS                       |
|    | TOTAL TIN       | E BASE  | 24.92 HOURS                     |

ENGLISH UNITS

9 IO

| DRAINAGE AREA       | SQUARE MILES          |
|---------------------|-----------------------|
| PRECIPITATION DEPTH | INCHES                |
| LENGTH, ELEVATION   | FEET                  |
| FLOW                | CUBIC FEET PER SECOND |
| STORAGE VOLUME      | ACRE-FEET             |
| SURFACE AREA        | ACRES                 |
| TEMPERATURE         | DEGREES FAHRENHEIT    |
|                     |                       |

## RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

.

|   | 000000000     |             | PEAK | TIME OF | AVERAGE FI | OW FOR MAXIN | IUM PERIOD | BASIN | MAXIMUM | TIME OF   |
|---|---------------|-------------|------|---------|------------|--------------|------------|-------|---------|-----------|
|   | OPERATION     | STATION     | FLOW | PEAK    | 6-HOUR     | 24-HOUR      | 72-HOUR    | AREA  | STAGE   | MAX STAGE |
|   | HYDROGRAPH AT | Wl          | 40.  | 5.75    | 4.         | 1.           | 1.         | .05   |         |           |
|   | ROUTED TO     |             | 37.  | 5.83    | 4.         | 1.           | 1.         | .05   |         |           |
| ÷ | HYDROGRAPH AT | W2          | 20.  | 5.83    | 2.         | 1.           | 1.         | .03   |         |           |
| ÷ | 2 COMBINED AT | ŴA          | 57.  | 5.83    | б.         | 2.           | 2.         | .08   |         |           |
| ÷ | ROUTED TO     |             | 55.  | 5.83    | 6.         | 2.           | 2.         | .08   |         |           |
| ÷ | HYDROGRAPH AT | W3          | 39.  | 5.83    | 4.         | 1.           | 1.         | .05   |         |           |
| + | 2 COMBINED AT | WB          | 95.  | 5.83    | 10.        | 3.           | 3.         | .13   |         |           |
| ÷ | ROUTED TO     |             | 91.  | 5.83    | 10.        | 3.           | 3.         | .13   |         |           |
| ÷ | HYDROGRAPH AT | w4          | б.   | 5.75    | 0.         | 0.           | 0.         | .01   |         |           |
| + | ROUTED TO     |             | 6.   | 5.75    | 0.         | 0.           | 0.         | .01   |         |           |
| ÷ | HYDROGRAPH AT | <b>W</b> 5  | 15.  | 5.75    | 1.         | 0.           | 0.         | .02   |         |           |
| + | 3 COMBINED AT | WC          | 105. | 5.83    | 11.        | 4.           | 4.         | .15   |         |           |
| + | ROUTED TO     |             | 103. | 5.83    | 11.        | 4.           | 4.         | .15   |         |           |
| + | HYDROGRAPH AT | Wő          | 43.  | 5.75    | 4.         | 1.           | 1.         | .05   |         |           |
| + | ROUTED TO     |             | 40.  | 5.75    | 4.         | 1.           | 1.         | .05   |         |           |
| + | HYDROGRAPH AT | W7          | 20.  | 5,75    | 2.         | 1.           | 1.         | .02   |         |           |
| + | ROUTED TO     |             | 20.  | 5.75    | 2.         | 1.           | 1.         | . 02  |         |           |
| + | 2 COMBINED AT | WD          | 60.  | 5.75    | 5.         | 2.           | 2.         | .07   |         |           |
| + | ROUTED TO     | D- <b>E</b> | 55.  | 5.75    | 5.         | 2.           | 2.         | .07   |         |           |
| + | HYDROGRAPH AT | WB          | 27.  | 5,75    | 2.         | 1.           | 1.         | .03   |         |           |
| + | ROUTED TO     |             | 24.  | 5.75    | 2.         | 1.           | 1.         | .03   |         |           |
| + | HYDROGRAPH AT | <b>W</b> 9  | 36.  | 5.75    | 3.         | 1.           | 1.         | .04   |         |           |
| + | 3 COMBINED AT | WE          | 114. | 5.75    | 11.        | 4.           | 4.         | .14   |         |           |
| + | ROUTED TO     | Ē-F         | 108. | 5.83    | 11.        | 4.           | 4.         | .14   |         | ·         |
| + | HYDROGRAPH AT | W10         | 39.  | 5,75    | 3.         | 1.           | 1.         | .04   |         |           |
| + | ROUTED TO     |             | 36.  | 5.75    | 4.         | 1.           | 1.         | .04   |         |           |
| + | HYDROGRAPH AT | W11         | 29.  | 5.75    | 2.         | 1.           | 1.         | .03   |         |           |
| + | 4 COMBINED AT | WF          | 265. | 5.83    | 28.        | 10.          | 9.         | .36   |         |           |

ROUTED TO

1

+

+ +

+ +

+ + +

> + +

÷ ÷

+

+ +

> + +

> +

+ +

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 31 of 41 7/23/2008

|   |               | F-G         | 255. | 5.83 | 28.      | 10. | 9.  | .36  |  |
|---|---------------|-------------|------|------|----------|-----|-----|------|--|
|   | HYDROGRAPH AT | W12         | 33.  | 5.75 | 3.       | 1.  | 1.  | .04  |  |
|   | ROUTED TO     |             | 32.  | 5.83 | 3.       | 1.  | 1.  | .04  |  |
|   | HYDROGRAPH AT | W14         | 38.  | 5.83 | 4.       | 1.  | 1.  | .05  |  |
|   | ROUTED TO     |             | 37.  | 5,83 | 4.       | 1.  | 1.  | .05  |  |
| , | HYDROGRAPH AT | W13         | 80.  | 5,83 | 9.       | 3.  | з.  | .11  |  |
|   | 4 COMBINED AT | WG          | 403. | 5.83 | 44.      | 15. | 14. | .56  |  |
| ÷ | ROUTED TO     | G-H         | 382. | 5.92 | 44.      | 15. | 14. | .56  |  |
| ÷ | ROUTED TO     |             | 368. | 5.92 | 44.      | 15. | 14. | .56  |  |
| ÷ | HYDROGRAPH AT | <b>W</b> 15 | 70.  | 5.83 | 7.       | 2.  | 2.  | .09  |  |
| ٠ | ROUTED TO     |             | 66.  | 5.83 | 7.       | 2.  | 2.  | .09  |  |
| ÷ | 2 COMBINED AT | WH          | 428. | 5.92 | 51.      | 17. | 17. | .65  |  |
| + | HYDROGRAPH AT | W16         | 27.  | 5.75 | 2.       | 1.  | 1.  | .03  |  |
| + | ROUTED TO     |             | 24.  | 5.83 | 2.       | 1.  | 1.  | .03  |  |
| + | HYDROGRAPH AT | W17         | 16.  | 5.75 | 1.       | 0.  | ٥.  | .02  |  |
| + | 2 COMBINED AT | WI          | 38.  | 5.75 | 4.       | 1.  | 1.  | .05  |  |
| + | ROUTED TO     | I-M         | 37.  | 5.83 | 4.       | 1.  | 1.  | .05  |  |
| + | HYDROGRAPH AT | W19         | 41.  | 5.75 | 3.       | 1.  | 1.  | .04  |  |
|   | ROUTED TO     |             | 37   | 5 75 | 3        | 1   | 1   | 04   |  |
|   | HYDROGRAPH AT | W20         |      | 5 75 | 3        | 1   | 1   | .01  |  |
|   | 2 COMBINED AT | W T         | 52.  | 5.75 | 5.       | 2   | 2   | .05  |  |
| + | ROUTED TO     | мJ          | 65.  | 5.00 | <i>c</i> | 2.  | 2.  | .07  |  |
| + | HYDROGRAPH AT |             | 65.  | 5.83 | 0.       | 2.  | 2.  | .07  |  |
| + | 2 COMBINED AT | W21         | 96.  | 5.83 | 10.      | з.  | 5.  | .15  |  |
| + | ROUTED TO     | WK          | 161. | 5.83 | 16.      | 6.  | 5.  | .21  |  |
| + | HYDROGRAPH AT |             | 156. | 5.83 | 16.      | 6.  | 5.  | .21  |  |
| + | 2 COMBINED AT | <b>W</b> 22 | 10.  | 5.75 | 1.       | 0.  | 0.  | .01  |  |
| + | ROUTED TO     | WL          | 161. | 5.83 | 17.      | 6.  | б.  | .22  |  |
| + | HYDROGRAPH AT |             | 147. | 5.83 | 17.      | ó.  | 6.  | .22  |  |
| + | HYDROGRAPH AT | W23         | 19.  | 5.75 | 2.       | 1.  | 1.  | .02  |  |
| ÷ | 5 COMBINED AT | W18         | 80.  | 5.83 | 9.       | з.  | 3.  | .13  |  |
| + | ROUTED TO     | WM          | 690. | 5.92 | 83.      | 28. | 27. | 1.06 |  |
| + |               | M-N         | 673. | 5.92 | 83.      | 28. | 27. | 1.06 |  |

+ +

+

+ + +

> + + +

> > +

+ +

+ +

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 32 of 41 7/23/2008

| + | HYDROGRAPH AT | W24         | 33.   | 5.83 | 3.   | 1.  | 1.  | .04  |  |
|---|---------------|-------------|-------|------|------|-----|-----|------|--|
| + | HYDROGRAPH AT | <b>W</b> 25 | 64.   | 5,83 | 8.   | 3.  | 3.  | .10  |  |
| + | 3 COMBINED AT | WN          | 756.  | 5.92 | 94.  | 32. | 31. | 1.20 |  |
| + | ROUTED TO     | N-P         | 722.  | 5.92 | 94.  | 32. | 31. | 1.20 |  |
| + | HYDROGRAPH AT | W28         | 36.   | 5.83 | 4.   | 1.  | 1.  | .04  |  |
| + | ROUTED TO     |             | 35.   | 5.83 | 4.   | 1.  | 1.  | .04  |  |
| + | HYDROGRAPH AT | <b>W</b> 30 | 46.   | 5.83 | 5.   | 2.  | 2.  | .05  |  |
|   | ROUTED TO     |             | 46    | 5.83 | 5    | 2   | 2   | . 05 |  |
|   | HYDROGRAPH AT | M.20        | 37    | 5.00 | 4    | 1   | 1   | 04   |  |
| + | HYDROGRAPH AT | W29         | .,.   | 5.05 | 4.   | ··· | ±-  | .01  |  |
| + | 4 COMBINED AT | w31         | 14.   | 5.75 | 1.   | 0.  |     | .01  |  |
| + | ROUTED TO     | WO          | 127.  | 5.83 | 13.  | 4.  | 4.  | .14  |  |
| + | HYDROGRAPH AT | 0-P         | 118.  | 5.83 | 13.  | 4.  | 4.  | .14  |  |
| + | ROUTED TO     | W26         | 36.   | 5.75 | 3.   | 1.  | 1.  | .03  |  |
| + | HYDROGRAPH AT |             | 35.   | 5.92 | 3.   | 1.  | 1.  | .03  |  |
| + | HYDROGRAPH AT | W27         | 89.   | 5.92 | 12.  | 4.  | 4.  | .16  |  |
| + | 5 COMPINED M  | <b>W</b> 32 | 61.   | 5.83 | 7.   | 2.  | 2.  | .09  |  |
| + | DOUTRE TO     | WP          | 1012. | 5.92 | 128. | 44. | 43. | 1.63 |  |
| + | ROUTED TO     | ₽-Q         | 950.  | 5.92 | 128. | 44. | 43. | 1.63 |  |
| + | HYDROGRAPH AT | W33A        | 82.   | 5.83 | 10.  | 3.  | 3.  | .13  |  |
| + | 2 COMBINED AT | WP1         | 1023. | 5.92 | 138. | 47. | 46. | 1.75 |  |
| + | ROUTED TO     | P1-Q        | 1007. | 6.00 | 137. | 47. | 46. | 1.75 |  |
| + | HYDROGRAPH AT | W33B        | 78.   | 5.92 | 10.  | 4.  | 3.  | .14  |  |
| + | HYDROGRAPH AT | W34A        | 86.   | 5.83 | 10.  | 3.  | 3.  | .13  |  |
| + | ROUTED TO     | 34A-P2      | 82.   | 5.92 | 9.   | 3.  | 3.  | .13  |  |
| + | HYDROGRAPH AT | W34B        | 101.  | 5.92 | 13.  | 5.  | 4.  | .18  |  |
| + | 2 COMBINED AT | WP2         | 183.  | 5.92 | 23.  | 8.  | 8.  | .30  |  |
| + | ROUTED TO     | ₽2-Q        | 175.  | 6.00 | 23.  | 8.  | 8.  | .30  |  |
| + | HYDROGRAPH AT | W34C        | 90.   | 5.92 | 12.  | 4.  | 4.  | .16  |  |
| + | 4 COMBINED AT | WQ          | 1325. | 6.00 | 181. | 63. | 61. | 2.36 |  |
| + | ROUTED TO     | Q-Q1        | 1284. | 6.00 | 181. | 63. | 60. | 2.36 |  |
| + | HYDROGRAPH AT | <br>W36A    | 81.   | 5.92 | 11.  | 4.  | 4.  | .14  |  |
| ÷ | 2 COMBINED AT | w01         | 1352  | 6.00 | 191. | 66. | 64. | 2.50 |  |
|   |               | •• ¥ +      |       |      |      |     |     |      |  |

 \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

 FDR\xfal2100.doc
 Page 33 of 41
 7/23/2008

| + | ROUTED TO     | Q1-R        | 1311. | 6.08 | 190. | 66.  | 64.  | 2.50 |  |
|---|---------------|-------------|-------|------|------|------|------|------|--|
| + | HYDROGRAPH AT | W36B        | 91.   | 6.00 | 14.  | 5.   | 5.   | .19  |  |
| + | HYDROGRAPH AT | W35A        | 62.   | 5.83 | 7.   | 2.   | 2.   | .10  |  |
| + | ROUTED TO     | 35A-WR      | 58.   | 6.00 | 7.   | 2.   | 2.   | .10  |  |
| + | HYDROGRAPH AT | W35B        | 81.   | 5.92 | 11.  | 4.   | 4.   | .15  |  |
| + | 4 COMBINED AT | WR          | 1497. | 6.08 | 222. | 78.  | 75.  | 2.94 |  |
| + | ROUTED TO     | WR-S        | 1475. | 6.08 | 222. | 77.  | 75.  | 2.94 |  |
| + | HYDROGRAPH AT | W37A        | 74.   | 5.83 | 9.   | з.   | з.   | .11  |  |
| + | ROUTED TO     | 37A-S       | 71.   | 5.92 | 9.   | з.   | з.   | .11  |  |
| + | HYDROGRAPH AT | W37B        | 102.  | 5.92 | 13.  | 5.   | 4.   | .16  |  |
| + | 3 COMBINED AT | WS          | 1575. | 6.08 | 242. | 85.  | 82.  | 3.21 |  |
| + | ROUTED TO .   | S-T         | 1522. | 6.17 | 242. | 85.  | 81.  | 3.21 |  |
| + | HYDROGRAPH AT | <b>W</b> 38 | 67.   | 5.83 | 8.   | 3.   | 3.   | .09  |  |
| + | ROUTED TO     |             | 66.   | 5.92 | 8.   | 3.   | 3.   | .09  |  |
| + | HYDROGRAPH AT | <b>W</b> 39 | 100.  | 5.92 | 14.  | 5.   | 5.   | .18  |  |
| + | HYDROGRAPH AT | W40         | 67.   | 5.83 | 7.   | 3.   | 2.   | .10  |  |
|   | 4 COMBINED AT | 64 TO 1     | 1621  | 6 17 | 269  | 95.  | 91.  | 3.59 |  |
|   | ROUTED TO     | T-U         | 1613  | 6 17 | 269  | 95   | 91   | 3 59 |  |
| * | HYDROGRAPH AT | 1-0<br>W41  | 1015. | 5.02 | 209. | 2    | 2    | 0.5  |  |
| + | HYDROGRAPH AT | W41         | 45.   | 5.05 |      | 2.   | 2.   | .00  |  |
| + | ROUTED TO     | W42         | 125.  | 5.75 | 13.  | 4.   | 4.   | .00  |  |
| + | 3 COMBINED AT | 0-0         | 122.  | 5.65 | 13.  | 4.   | •.   | .00  |  |
| + | ROUTED TO     | WU          | 1648. | 6.17 | 285. | 100. | 96.  | 3.70 |  |
| + | HYDROGRAPH AT |             | 1612. | 6.17 | 285. | 100. | 96.  | 3.70 |  |
| + | 2 COMBINED AT | W43         | 108.  | 5.83 | 12.  | 4.   | 4.   | .15  |  |
| + | ROUTED TO     | WV          | 1640. | 6.17 | 296. | 104. | 100. | 3.85 |  |
| + | HYDROGRAPH AT | V-W         | 1621. | 6.17 | 296. | 104. | 100. | 3.85 |  |
| + | 2 COMBINED AT | W45         | 134.  | 5.83 | 16.  | 5.   | 5.   | .19  |  |
| + | ROUTED TO     | WW          | 1663. | 6.17 | 311. | 109. | 105. | 4.04 |  |
| + | HYDROGRAPH AT | W-X         | 1621. | 6.25 | 311. | 109. | 105. | 4.04 |  |
| + | ROUTED TO     | М1          | 52.   | 5.75 | 5.   | 2.   | 2.   | .07  |  |
| + |               |             | 50.   | 5.83 | 5.   | 2.   | 2.   | .07  |  |

HYDROGRAPH AT

+ +

> > \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 34 of 41 7/23/2008

|        |               | M2     | 21.  | 5.75 | 2.  | 1.  | 1.  | .03 |        |      |
|--------|---------------|--------|------|------|-----|-----|-----|-----|--------|------|
|        | 2 COMBINED AT | MB     | 70.  | 5.83 | 7.  | 2.  | 2.  | .09 |        |      |
|        | ROUTED TO     |        | 70.  | 5.83 | 7.  | 2.  | 2.  | .09 |        |      |
|        | HYDROGRAPH AT | M4     | 26.  | 5.83 | 3.  | 1.  | 1.  | .03 |        |      |
|        | ROUTED TO     |        | 26.  | 5.83 | 3.  | 1.  | 1.  | .03 |        |      |
|        | HYDROGRAPH AT | мз     | 14.  | 5.75 | 1.  | ٥.  | 0.  | .01 |        |      |
|        | 3 COMBINED AT | MC     | 105. | 5.83 | 11. | 4.  | 4.  | .14 |        |      |
|        | ROUTED TO     |        | 102. | 5.83 | 11. | 4.  | 4.  | .14 |        |      |
| ÷      | HYDROGRAPH AT | M5     | 24.  | 5.75 | 2.  | 1.  | 1.  | .02 |        |      |
| F      | ROUTED TO     |        | 23.  | 5.83 | 2.  | 1.  | 1.  | .02 |        |      |
| ŀ      | HYDROGRAPH AT | M6     | 51.  | 5.92 | 7.  | 2.  | 2.  | .06 |        |      |
| +      | 3 COMBINED AT | MD     | 175. | 5.83 | 20. | 7.  | 6.  | .22 |        |      |
| ÷      | ROUTED TO     |        | 170. | 5.92 | 20. | 7.  | 6.  | .22 |        |      |
| +      | HYDROGRAPH AT | M7     | 63.  | 5.03 | 7.  | 2.  | 2.  | .05 |        |      |
| +      | ROUTED TO     |        | 61.  | 5.83 | 7.  | 2.  | 2.  | .05 |        |      |
| +      | HYDROGRAPH AT | M8     | 30.  | 5.83 | 3.  | 1.  | 1.  | .04 |        |      |
| +      | 2 COMBINED AT | ME     | 91.  | 5.83 | 10. | 3.  | 3.  | .09 |        |      |
| +      | ROUTED TO     |        | 89.  | 5.92 | 10. | з.  | з.  | .09 |        |      |
| +      | HYDROGRAPH AT | M9     | 25.  | 5.75 | 2.  | 1.  | 1.  | .02 |        |      |
| +      | ROUTED TO     |        | 23.  | 5.83 | 2.  | 1.  | 1.  | .02 |        |      |
| +      | HYDROGRAPH AT | M12A   | 47.  | 5.83 | 5.  | 2.  | 2.  | .07 |        |      |
| +      | HYDROGRAPH AT | M12B   | 86.  | 5.92 | 11. | 4.  | 4.  | .15 |        |      |
| +      | 5 COMBINED AT | MF     | 401. | 5.92 | 47. | 16. | 15. | .54 |        |      |
| +      | ROUTED TO     |        | 388. | 5.92 | 47. | 16. | 15. | .54 |        |      |
| +      | HYDROGRAPH AT | M13    | 56.  | 5.83 | 6.  | 2.  | 2.  | .06 |        |      |
| +      | ROUTED TO     |        | 53.  | 5.92 | 6.  | 2.  | 2.  | .06 |        |      |
| +      | HYDROGRAPH AT | M14    | 122. | 5.92 | 16. | 5.  | 5.  | .16 |        |      |
| +      | 2 COMBINED AT | MG     | 176. | 5.92 | 22. | 7.  | 7.  | .22 |        |      |
| +<br>+ | ROUTED TO     | PONDW  | 16.  | 7.00 | 16. | 7.  | 7.  | .22 | 970.02 | 7.00 |
| +      | 2 COMBINED AT | мн     | 403. | 5.92 | 63. | 23. | 22. | .77 |        |      |
| +      | ROUTED TO     |        | 385. | 6.00 | 63. | 23. | 22. | .77 |        |      |
| +      | DIVERSION TO  | DIVRT1 | 85.  | 6.00 | 43. | 18. | 18. | .77 |        |      |

+ +

> + +

> > <u>.</u>

÷ + +

+

÷ +

+ .

÷

+ .

 \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

 FDR\xfal2100.doc
 Page 35 of 41
 7/23/2008

| + | HYDROGRAPH AT | MH-P2       | 300. | 6.00 | 20. | 5.  | 5.  | .77  |  |
|---|---------------|-------------|------|------|-----|-----|-----|------|--|
| + | HYDROGRAPH AT | <b>M</b> 15 | 101. | 5.83 | 12. | 4.  | 4.  | .12  |  |
| + | 2 COMBINED AT | MI          | 388. | 5.92 | 32. | 9.  | 9.  | .89  |  |
| + | ROUTED TO     |             | 378. | 6.00 | 32. | 9.  | 9.  | .89  |  |
| + | HYDROGRAPH AT | M19         | 38.  | 5.83 | 4.  | 1.  | 1.  | .05  |  |
| + | 2 COMBINED AT | MJ          | 397. | 6.00 | 36. | 10. | 10. | .94  |  |
| + | ROUTED TO     |             | 381. | 6.00 | 36. | 10. | 10. | .94  |  |
| + | HYDROGRAPH AT | <b>M</b> 10 | 54.  | 5.75 | 5.  | 2.  | 2.  | .06  |  |
| + | ROUTED TO     | M10-K       | 53.  | 5.83 | 5.  | 2.  | 2.  | .06  |  |
| + | HYDROGRAPH AT | M11A        | 65.  | 5.92 | 9.  | 3.  | 3.  | .11  |  |
| + | 2 COMBINED AT | МК          | 115. | 5,83 | 14. | 5.  | 4.  | .16  |  |
| + | ROUTED TO     | MK-K1       | 111. | 5.92 | 14. | 5.  | 4.  | .16  |  |
| + | HYDROGRAPH AT | M11B        | 64.  | 5.83 | 7.  | 2.  | 2.  | .09  |  |
| + | NUTED TO      | 11B-K1      | 58.  | 5.92 | 7.  | 2.  | 2.  | .09  |  |
| + | AIDROGRAPH AI | MIIC        | 66.  | 5.83 | 7.  | 2.  | 2.  | .09  |  |
| + | POLITED TO    | MK1         | 230. | 5.83 | 27. | 9.  | 9.  | .35  |  |
| + | HYDROGRAPH AT | K1-ML       | 225. | 5.92 | 27. | 9.  | 9.  | . 35 |  |
| + | 2 COMBINED AT | M16         | 31.  | 5.83 | 3.  | 1.  | 1.  | .04  |  |
| + | BOUTED TO     | ML          | 247. | 5.92 | 30. | 10. | 10. | . 39 |  |
| + | HYDROGRAPH AT |             | 240. | 5.92 | 30. | 10. | 10. | .39  |  |
| + | 2 COMBINED AT | M17         | 61.  | 5.83 | б.  | 2.  | 2.  | .08  |  |
| + | ROUTED TO     | MM          | 282. | 5.92 | 36. | 13. | 12. | .46  |  |
| + | HYDROGRAPH AT |             | 268. | 6.00 | 36. | 12. | 12. | .46  |  |
| + | ROUTED TO     | M18         | 48.  | 5.83 | 5.  | 2.  | 2.  | .06  |  |
| + | HYDROGRAPH AT |             | 45.  | 5.92 | 5.  | 2.  | 2.  | .06  |  |
| + | 4 COMBINED AT | M20         | 85.  | 5.83 | 11. | 4.  | 4.  | .13  |  |
| + | ROUTED TO     | MN          | 747. | 6.00 | 88. | 28. | 27. | 1.60 |  |
| + | HYDROGRAPH AT |             | 724. | 6.00 | 88. | 28. | 27. | 1.60 |  |
| + | ROUTED TO     | M21         | 19.  | 5.83 | 2.  | 1.  | 1.  | .02  |  |
| + | HYDROGRAPH AT |             | 19.  | 5.83 | 2.  | 1.  | 1.  | .02  |  |
| + |               | M23         | 34.  | 5.83 | 3.  | 1.  | 1.  | .05  |  |

.

3 COMBINED AT

+ +

> + + + +

> > + +

+ + + ÷

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 36 of 41 7/23/2008

| + |               | MO          | 747.  | 6.00 | 93.  | 30.  | 29.  | 1.67 |  |
|---|---------------|-------------|-------|------|------|------|------|------|--|
| + | ROUTED TO     |             | 724.  | 6.00 | 93.  | 30.  | 29.  | 1.67 |  |
| + | HYDROGRAPH AT | M24         | 58.   | 5.83 | 6.   | 2.   | 2.   | .08  |  |
| + | 2 COMBINED AT | MP          | 744.  | 6,00 | 99.  | 32.  | 31.  | 1.75 |  |
| + | ROUTED TO     |             | 736.  | 6.00 | 99.  | 32.  | 31.  | 1.75 |  |
| + | HYDROGRAPH AT | M25         | 8.    | 5.83 | 1.   | ٥.   | ٥.   | .01  |  |
| + | 2 COMBINED AT | MQ          | 739.  | 6.00 | 100. | 32.  | 31.  | 1.76 |  |
| + | ROUTED TO     |             | 734.  | 6.08 | 99.  | 32.  | 31.  | 1.76 |  |
| + | HYDROGRAPH AT | M2.6        | 139.  | 5.92 | 18.  | 6.   | 6.   | .18  |  |
| + | 2 COMBINED AT | MR          | 825.  | 6.08 | 117. | 38.  | 37.  | 1.94 |  |
| + | HYDROGRAPH AT | W44         | 28.   | 5.83 | 3.   | 1.   | 1.   | .04  |  |
| + | ROUTED TO     |             | 27.   | 5.92 | з.   | 1.   | 1.   | .04  |  |
| + | HYDROGRAPH AT | W47         | 39.   | 5.83 | 4.   | 1.   | 1.   | .05  |  |
| + | ROUTED TO     |             | 36.   | 5.83 | 4.   | 1.   | 1.   | .05  |  |
| + | HYDROGRAPH AT | <b>W</b> 46 | 32.   | 5.83 | 3.   | 1.   | 1.   | .04  |  |
| + | HYDROGRAPH AT | M27         | 39.   | 5.83 | 4.   | 1.   | 1.   | .05  |  |
| + | 6 COMBINED AT | WX          | 2398. | 6.17 | 442. | 153. | 147. | 6.17 |  |
| + | ROUTED TO     |             | 2323. | 6.25 | 441. | 152. | 147. | 6.17 |  |
| + | HYDROGRAPH AT | W 4 B       | 108.  | 5.75 | 10.  | 3.   | З.   | .12  |  |
| + | ROUTED TO     |             | 102.  | 5.83 | 10.  | 3.   | з.   | .12  |  |
| + | HYDROGRAPH AT | W49         | 189.  | 5,83 | 21.  | 7.   | ٦.   | .27  |  |
| + | 3 COMBINED AT | WZ          | 2392. | 6.17 | 471. | 163. | 157. | 6.55 |  |
| + | ROUTED TO     |             | 2383. | 6.25 | 471. | 163. | 157. | 6.55 |  |
| + | HYDROGRAPH AT | <b>W</b> 50 | 83.   | 5.83 | 9.   | 3.   | 3.   | .11  |  |
| + | 2 COMBINED AT | WAB         | 2399. | 6.25 | 480. | 166. | 160. | 6.66 |  |
| + | ROUTED TO     |             | 2396. | 6.25 | 480. | 166. | 160. | 6.66 |  |
| + | HYDROGRAPH AT | W51         | 46.   | 5.83 | 5.   | 2.   | 2.   | .05  |  |
| + | 2 COMBINED AT | WAC         | 2406. | 6.25 | 484. | 168. | 161. | 6.71 |  |
| + | ROUTED TO     |             | 2402. | 6.25 | 485. | 168. | 161. | 6.71 |  |
| + | HYDROGRAPH AT | w52         | 48.   | 5.75 | 5.   | 2.   | 1.   | .05  |  |
| + | ROUTED TO     |             | 46.   | 5.83 | 5.   | 2.   | 1.   | .05  |  |
| + | HYDROGRAPH AT | W53         | 47.   | 5.83 | 5.   | 2.   | 2.   | .05  |  |

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 37 of 41 7/23/2008

| +      | 2 COMBINED AT | WAD          | 92.   | 5.83 | 9.      | 3.   | З.   | .10  |        |      |   |
|--------|---------------|--------------|-------|------|---------|------|------|------|--------|------|---|
| +      | ROUTED TO     |              | 92.   | 5.83 | 9.      | 3.   | 3.   | .10  |        |      |   |
| +      | HYDROGRAPH AT | <b>W</b> 54  | 8.    | 5.75 | 1.      | 0.   | ο.   | .01  |        |      |   |
| +      | 3 COMBINED AT | WAE          | 2419. | 6.25 | 494.    | 171. | 165. | 6.82 |        |      |   |
| +      | ROUTED TO     |              | 2396. | 6.25 | 493.    | 171. | 164. | 6.82 |        |      |   |
| +      | HYDROGRAPH AT | W56          | 116.  | 5.83 | 14.     | 5.   | 5.   | .18  |        |      |   |
| +      | 2 COMBINED AT | WAF          | 2426. | 6,25 | 506.    | 175. | 169. | 7.01 |        |      |   |
| +      | ROUTED TO     |              | 2405. | 6,25 | 506.    | 175. | 169. | 7.01 |        |      |   |
| +      | HYDROGRAPH AT | W62          | 64.   | 5.75 | 6.      | 2.   | 2.   | .08  |        |      |   |
| +      | ROUTED TO     |              | 61.   | 5.83 | 6.      | 2.   | 2.   | .08  | •      |      |   |
| +      | HYDROGRAPH AT | <b>W</b> 63  | 36.   | 5.75 | 4.      | 1.   | 1.   | . 05 |        |      |   |
|        | ROUTED TO     |              | 36    | 5 83 | 4       | 1    | 1    | 05   |        |      |   |
|        | HYDROGRAPH AT | ម្មតា        | 105   | 5 92 | 14      | 5    |      | .00  |        |      |   |
|        | 3 COMBINED AT | WAU          | 100.  | 5 03 | 24      | ٥.   | •    | - 1  |        |      |   |
| +      | ROUTED TO     | *An          | 190.  | 5.03 | 24.     | o.   | 0.   | .51  |        |      |   |
| +      | HYDROGRAPH AT | 2457         | 185.  | 5.92 | 24.     | 0.   | °.   |      |        |      |   |
| +      | ROUTED TO     | <b>N</b> O 1 | 54.   | 5.05 | б.<br>с | 2.   | 2.   | .07  |        |      |   |
| •      | HYDROGRAPH AT | 115.0        | 126   | 6.00 |         | ۷.   | ۷.   | .07  |        |      |   |
| +      | 3 COMBINED AT | M28          | 126.  | 5.92 | 17.     | ٥.   | ٥.   | .23  |        |      |   |
| +      | ROUTED TO     | WAI          | 345.  | 5.92 | 46.     | 16.  | 15.  | . 62 |        |      |   |
| +      | HYDROGRAPH AT |              | 341.  | 5.92 | 47.     | 16.  | 15.  | .62  |        |      |   |
| +      | ROUTED TO     | EIA          | 65.   | 5.92 | 9.      | 3.   | 3.   | .12  |        |      |   |
| +      | HYDROGRAPH AT | E1A-EA       | 64.   | 6.00 | 9.      | 3.   | 3.   | .12  |        |      |   |
| +      | 2 COMBINED AT | E1B          | 94.   | 5.92 | 13.     | 4.   | 4.   | .17  |        |      |   |
| +      | BOUTED TO     | EA           | 147.  | 5.92 | 21.     | 7.   | 7.   | .28  |        |      |   |
| +      | HYDROGRAPH AT | EA-EB        | 145.  | 6.00 | 21.     | 7.   | 7.   | .28  |        |      |   |
| +      | 2 COMBINED AT | E2           | 75.   | 5.83 | 8.      | 3.   | 3.   | .10  |        |      |   |
| +      | 2 CONDINED RI | EB           | 187.  | 5.92 | 29.     | 10.  | 10.  | .39  |        |      | • |
| +<br>+ | KOUIED IO     | POND1        | 101.  | 6.25 | 23.     | 9.   | 8.   | .39  | 954.20 | 6.25 |   |
| +      | ROUTED TO     |              | 95.   | 6.25 | 23.     | 9.   | 8.   | .39  |        |      |   |
| +      | HYDROGRAPH AT | E3           | 67.   | 5.83 | 7.      | 2.   | 2.   | .09  |        |      |   |
| +      | HYDROGRAPH AT | MH-P2        | 85.   | 5.92 | 43.     | 18.  | 18.  | .00  |        |      |   |
|        |               |              |       |      |         |      |      |      |        |      |   |

•

3 COMBINED AT

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 38 of 41 7/23/2008

| +      |               | EC         | 187. | 6.25 | 72.  | 29. | 28. | .48  |        |      |
|--------|---------------|------------|------|------|------|-----|-----|------|--------|------|
| +<br>+ | ROUTED TO     | POND2      | 95.  | 7.17 | 55.  | 24. | 23. | .48  | 930.04 | 7.17 |
| +      | ROUTED TO     |            | 94.  | 7.25 | 55.  | 24. | 23. | .48  |        |      |
| +      | HYDROGRAPH AT | EIC        | 52.  | 5.83 | б.   | 2.  | 2.  | .08  |        |      |
| +      | ROUTED TO     | 1C-ED1     | 50.  | 6.00 | б.   | 2.  | 2.  | .08  |        |      |
| +      | HYDROGRAPH AT | Ė4         | 78.  | 5.83 | 10.  | 3.  | 3.  | .13  |        |      |
| +      | 2 COMBINED AT | ED1        | 123. | 5.92 | 16.  | 5.  | 5.  | .21  |        |      |
| +      | ROUTED TO     | ED1-ED     | 121. | 5.92 | 16.  | б.  | 5.  | .21  |        |      |
| +      | HYDROGRAPH AT | <b>E</b> 5 | 66.  | 5.83 | 7.   | 2.  | 2.  | .09  |        |      |
| +      | 3 COMBINED AT | ED         | 174. | 5.92 | 72.  | 32. | 31. | .78  |        |      |
| +      | ROUTED TO     |            | 172. | 5.92 | 72.  | 32. | 31. | .78  |        |      |
| +      | HYDROGRAPH AT | <b>E</b> 8 | 33.  | 5.83 | 3.   | 1.  | 1.  | .04  |        |      |
| +      | 2 COMBINED AT | EE         | 196. | 5.92 | 75.  | 33. | 32. | .83  |        |      |
| +      | ROUTED TO     |            | 192. | 5.92 | 75.  | 33. | 32. | .83  |        |      |
| +      | HYDROGRAPH AT | E10        | 21.  | 5.83 | 2.   | 1.  | 1.  | .03  |        |      |
| +      | 2 COMBINED AT | EF         | 208. | 5.92 | 77.  | 34. | 33. | .85  |        |      |
| +      | ROUTED TO     | F-G        | 199. | 5.92 | 77.  | 34. | 33. | .85  |        |      |
| +      | HYDROGRAPH AT | E6         | 68.  | 5.92 | 9.   | 3.  | 3.  | .12  |        |      |
| +      | HYDROGRAPH AT | £7         | 28.  | 5.75 | 2.   | 1.  | 1.  | .03  |        |      |
| +      | ROUTED TO     |            | 25.  | 5.83 | 2.   | 1.  | 1.  | .03  |        |      |
| +      | 2 COMBINED AT | EG1        | 89.  | 5.83 | 11.  | 4.  | 4.  | .15  |        |      |
| +      | ROUTED TO     | G1-G       | 87.  | 5.92 | 11.  | 4.  | 4.  | .15  |        |      |
| +      | DOUTED TO     | E9         | 46.  | 5.83 | 6.   | 2.  | 2.  | .08  |        |      |
| +      | HYDROCRABH AT |            | 46.  | 5.92 | 6.   | 2.  | 2.  | .08  |        |      |
| +      | UNDROCEARN AT | E11        | 28.  | 5.83 | 3.   | 1.  | 1.  | .05  |        |      |
| +      | 5 COMBINED MT | E12        | 66.  | 5.83 | 7.   | 2.  | 2.  | .09  |        |      |
| +      | HYDROGRAPH AT | EG         | 409. | 5.92 | 103. | 43. | 42. | 1.22 |        |      |
| +      | HYDROGRAPH AT | E13        | 9.   | 5.92 | 1.   | 0.  | 0.  | .02  |        |      |
| +      | ROUTED TO     | E14        | 4.   | 5.83 | 0.   | 0.  | 0.  | .01  |        |      |
| +      | 3 COMBINED AT |            | 4.   | 5.83 | Ο.   | 0.  | 0.  | .01  |        |      |
| +      | ROUTED TO     | EH         | 421. | 5.92 | 105. | 44. | 42. | 1.24 |        |      |
| +      |               |            | 398. | 5.92 | 105. | 44. | 42. | 1.24 |        |      |

·

 \\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU

 FDR\xfal2100.doc
 Page 39 of 41
 7/23/2008

| HYDROGRAPH AT | E19         | 35.  | 5.83 | 4.   | 1.  | 1.  | .04  |  |
|---------------|-------------|------|------|------|-----|-----|------|--|
| 2 COMBINED AT | EJ1         | 421. | 5.92 | 108. | 45. | 43. | 1.28 |  |
| ROUTED TO     | J1-K        | 411. | 6.00 | 107. | 45. | 43. | 1.28 |  |
| HYDROGRAPH AT | E15         | 36.  | 5.75 | 3.   | 1.  | 1.  | .04  |  |
| ROUTED TO     |             | 33.  | 5.83 | 3.   | 1.  | 1.  | .04  |  |
| HYDROGRAPH AT | E16         | 31.  | 5.75 | 3.   | 1.  | 1.  | .03  |  |
| 2 COMBINED AT | EI          | 63.  | 5.75 | 6.   | 2.  | 2.  | .07  |  |
| ROUTED TO     |             | 61.  | 5.83 | 6.   | 2.  | 2.  | .07  |  |
| HYDROGRAPH AT | <b>E1</b> 7 | 32.  | 5.75 | 3.   | 1.  | 1.  | .03  |  |
| ROUTED TO     |             | 31.  | 5.83 | 3.   | 1.  | 1.  | .03  |  |
| HYDROGRAPH AT | E18         | 40.  | 5.83 | 4.   | 2.  | 1.  | .05  |  |
| 3 COMBINED AT | EJ2         | 132. | 5.83 | 13.  | 4.  | 4.  | .15  |  |
| ROUTED TO     |             | 119. | 6.00 | 13.  | 4.  | 4.  | .15  |  |
| HYDROGRAPH AT | E23         | 108. | 5.92 | 14.  | 5.  | 5.  | .17  |  |
| HYDROGRAPH AT | E24         | 74.  | 6.00 | 13.  | 4.  | 4.  | .14  |  |
| 4 COMBINED AT | EK          | 698. | 6.00 | 147. | 59. | 56. | 1.74 |  |
| ROUTED TO     |             | 671. | 6.08 | 146. | 58. | 56. | 1.74 |  |
| HYDROGRAPH AT | E21         | 57.  | 5.83 | 7.   | 2.  | 2.  | .09  |  |
| ROUTED TO     |             | 55.  | 5.92 | 7.   | 2.  | 2.  | .09  |  |
| HYDROGRAPH AT | E20         | 51.  | 5.92 | 7.   | 2.  | 2.  | .08  |  |
| ROUTED TO     |             | 51.  | 5.92 | 7.   | 2.  | 2.  | .08  |  |
| HYDROGRAPH AT | E22         | 41.  | 5.92 | 5.   | 2.  | 2.  | .07  |  |
| 3 COMBINED AT | EL          | 147. | 5.92 | 19.  | 6.  | 6.  | .23  |  |
| ROUTED TO     |             | 140. | 6.00 | 19.  | б.  | 6.  | .23  |  |
| HYDROGRAPH AT | E25         | 121. | 5.83 | 13.  | 5.  | 4.  | .17  |  |
| 3 COMBINED AT | EM          | 845. | 6.00 | 177. | 69. | 67. | 2.13 |  |
| ROUTED TO     |             | 834. | 6.08 | 177. | 69. | 67. | 2.13 |  |
| HYDROGRAPH AT | E26         | 37.  | 5.75 | 3.   | 1.  | 1.  | .04  |  |
| 2 COMBINED AT | EN EN       | 840. | 6.08 | 180. | 70. | 68. | 2.17 |  |
| ROUTED TO     |             | 826. | 6.08 | 179. | 70. | 68. | 2.17 |  |
| HYDROGRAPH A  | E27         | 104. | 5.83 | 11.  | 4.  | 4.  | .12  |  |

.

+

+ + +

+

+

+ + + + +

+ + +

+

+

2 COMBINED AT

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\Existing from Pond WU FDR\xfal2100.doc Page 40 of 41 7/23/2008

| +      |               | EO          | 863.  | 6.08 | 189. | 74.  | 71.  | 2.29  |
|--------|---------------|-------------|-------|------|------|------|------|-------|
| +      | ROUTED TO     |             | 835.  | 6.08 | 189. | 74.  | 71.  | 2.29  |
| +      | HYDROGRAPH AT | <b>W</b> 55 | 38.   | 5.75 | 3.   | 1.   | 1.   | .05   |
| +      | 2 COMBINED AT | WAG         | 841.  | 6.08 | 192. | 75.  | 72.  | 2.34  |
| +      | ROUTED TO     |             | 833.  | 6.17 | 192. | 75.  | 72.  | 2.34  |
| +      | HYDROGRAPH AT | <b>W</b> 59 | 43.   | 5.83 | 5.   | 2.   | 2.   | . 07  |
| +      | 4 COMBINED AT | WAJ         | 3321. | 6.25 | 749. | 268. | 259. | 10.03 |
| +      | ROUTED TO     |             | 3310. | 6.25 | 749. | 268. | 259. | 10.03 |
| +      | HYDROGRAPH AT | E28         | 44.   | 5.92 | 6.   | 2.   | 2.   | .07   |
| +      | ROUTED TO     |             | 44.   | 6.00 | б.   | 2.   | 2.   | .07   |
| +      | HYDROGRAPH AT | E29         | 35.   | 5.83 | 4.   | 1.   | 1.   | .05   |
| +      | 2 COMBINED AT | EZZ         | 69.   | 5.92 | 9.   | З.   | 3.   | .12   |
| +      | HYDROGRAPH AT | <b>W</b> 60 | 47.   | 5.83 | 5.   | 2.   | 2.   | .07   |
| +<br>1 | 3 COMBINED AT | 22          | 3350. | 6.25 | 763. | 274. | 263. | 10.22 |

•

\*\*\* NORMAL END OF HEC-1 \*\*\*

.

.





| 1** | ·************************************* | *** | ***************************************           |    |
|-----|----------------------------------------|-----|---------------------------------------------------|----|
| ٠   |                                        | *   | *                                                 |    |
| *   | FLOOD HYDROGRAPH PACKAGE (HEC-1)       | *   | <ul> <li>U.S. ARMY CORPS OF ENGINEERS</li> </ul>  | 1  |
| *   | JUN 1998                               | •   | <ul> <li>HYDROLOGIC ENGINEERING CENTER</li> </ul> | 1  |
| *   | VERSION 4.1                            | *   | * 609 SECOND STREET                               | 1  |
| ٠   |                                        | *   | <ul> <li>* DAVIS, CALIFORNIA 95616</li> </ul>     | 1  |
| *   | RUN DATE 20MAY08 TIME 08:48:57         | *   | * (916) 756-1104                                  | ,  |
| *   |                                        | *   | •                                                 |    |
|     |                                        | *** | ****                                              | ** |

| х    | х   | XXXXXXX | XX | XXX |       | х   |
|------|-----|---------|----|-----|-------|-----|
| х    | х   | х       | х  | х   |       | XX  |
| х    | х   | х       | х  |     |       | х   |
| XXXX | XXX | XXXX    | х  |     | XXXXX | х   |
| х    | Х   | х       | х  |     |       | х   |
| х    | х   | х       | х  | х   |       | х   |
| Х    | х   | XXXXXXX | XX | XXX |       | XXX |

.

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HECIDB, AND HECIKW.

1

1

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

|      |          |            |         |          | HEC-1     | INPUT     |          |         |            | -        |       | PAGE | 1 |
|------|----------|------------|---------|----------|-----------|-----------|----------|---------|------------|----------|-------|------|---|
| LINE | ID       | 1          | 2.      | 3 .      | 4         |           | 6        |         | 8          | 9        | 10    |      |   |
| ,    | TD       | FALCON     | нісніа  | NDS PREL | THINARY I | BATNAGE   | PLAN - P | ASED ON | DBPS MOI   | EL F1008 | O.LO  |      |   |
| 1    | ID       | 1711001    | DETENT  | TON DOND | 37 WIT /1 | DETWEEN C | U 24 AMP | TAMITN  | PDI D IIOI |          |       |      |   |
| 2    | 10       |            | DETENT  | TON FOND | AL NO (1  | VIII Ch   |          | CALL    |            |          |       |      |   |
| 3    | ID       |            | 2 fear  | , 5 iear | and 100   | iear Sto  | rm Event | S (24nr | SCOTM)     |          |       |      |   |
| 4    | 10       |            | Basins  | W40 & W4 | z revised | a due to  | Meridian | Crossin | d dever    | pmenc    |       |      |   |
|      | *DIA     | GRAM       |         |          |           |           |          |         |            |          |       |      |   |
| 5    | IT       | 5 2        | 25MAY05 | 800      | 300       |           |          |         |            |          |       |      |   |
| 6    | IO       | 5          |         |          |           |           |          |         |            |          |       |      |   |
| 7    | JR       | PREC       | 1       | 1.2381   | 2.0952    |           |          |         |            |          |       |      |   |
| 8    | KK       | W1         |         |          |           |           |          |         |            |          |       |      |   |
| 9    | KM       |            |         |          |           |           |          |         |            |          |       |      |   |
| 10   | BA       | .0479      |         |          |           |           |          |         |            |          |       |      |   |
| 11   | PB       | 2.1        |         |          |           |           |          |         |            |          |       |      |   |
| 12   | IN       | 15         |         |          |           |           |          |         |            |          |       |      |   |
| 13   | PC       | .0005      | .0015   | .0030    | .0045     | .0060     | .0080    | .0100   | .0120      | .0143    | .0165 |      |   |
| 14   | PC       | 0188       | 0210    | 0233     | 0255      | 0278      | 0320     | 0390    | 0460       | 0530     | .0600 |      |   |
| 14   | PC       | 0750       | 1000    | 4000     | 7000      | 7250      | 7500     | 7650    | 7900       | 7900     | 8000  |      |   |
| 15   | PC       | .0750      | .1000   | .4000    | .7000     | . 72.50   | .,,,,,,, | . / 050 | . 1000     | 9550     | .0000 |      |   |
| 10   | PC       | .8100      | .8200   | .0250    | .8300     | .8350     | .0400    | .0450   | . 8300     | .0330    | 2075  |      |   |
| 17   | PC       | .3638      | .8675   | .8/13    | .8/50     | .8/88     | .8825    | .8503   | .8900      | .8938    | .89/5 |      |   |
| 18   | PC       | .9013      | .9050   | .9083    | .9115     | .9148     | .9180    | .9210   | .9240      | .9270    | .9300 |      |   |
| 19   | PC       | .9325      | .9350   | .9375    | .9400     | .9425     | .9450    | .9475   | .9500      | .9525    | .9550 |      |   |
| 20   | PC       | .9575      | .9600   | .9625    | .9650     | .9675     | .9700    | .9725   | .9750      | .9775    | .9800 |      |   |
| 21   | PC       | .9813      | .9825   | .9838    | .9850     | .9863     | .9875    | .9888   | .9900      | .9913    | .9925 |      |   |
| 22   | PC       | .9938      | .9950   | .9963    | .9975     | .9988     | 1.000    |         |            |          |       |      |   |
| 23   | LS       |            | 60      |          |           |           |          |         |            |          |       |      |   |
| 24   | UD       | .097       |         |          |           |           |          |         |            |          |       |      |   |
| 24   | 02       |            |         |          |           |           |          |         |            |          |       |      |   |
| 25   | KK       |            |         |          |           |           |          |         |            |          |       |      |   |
| 26   | KM       |            |         |          |           |           |          |         |            |          |       |      |   |
| 27   | RK       | 1519       | .0263   | .035     |           | TRAP      | 5        | 4       |            |          |       |      |   |
| 20   | VV       | 612        |         |          |           |           |          |         |            |          |       |      |   |
| 28   | KK IOI   | ₩2         |         |          |           |           |          |         |            |          |       |      |   |
| 29   | r.m      |            |         |          |           |           |          |         |            |          |       |      |   |
| 30   | BA       | .0278      |         |          |           |           |          |         |            |          |       |      |   |
| 31   | LS       |            | 60      |          |           |           |          |         |            |          |       |      |   |
| 32   | UD       | .160       |         |          |           |           |          |         |            |          |       |      |   |
| 33   | KK       | WA         |         |          |           |           |          |         |            |          |       |      |   |
| 34   | КM       |            |         |          |           |           |          |         |            |          |       |      |   |
| 35   | HC       | 2          |         |          |           |           |          |         |            |          |       |      |   |
| 36   |          |            |         |          |           |           |          |         |            |          |       |      |   |
| 20   | 17       |            |         |          |           |           |          |         |            |          |       |      |   |
| 37   | NM<br>DK | 151        | 0151    | 0.25     |           | TRAD      | c        | 1       |            |          |       |      |   |
| 38   | KK       | 404        | .0151   | .055     |           | INA       |          |         |            |          |       |      |   |
| 39   | KK       | <b>W</b> 3 |         |          |           |           |          |         |            |          |       |      |   |
| 40   | KM       |            |         |          |           |           |          |         |            |          |       |      |   |
| 41   | BA       | .0498      |         |          |           |           |          |         |            |          |       |      |   |
| 42   | LS       |            | 61      |          |           |           |          |         |            |          |       |      |   |
| 43   | UD       | .139       |         |          |           |           |          |         |            |          |       |      |   |
|      | 00       | •••        |         |          | HEC-1     | INPUT     |          |         |            |          |       | PAGE | 2 |
| LINE | ID.      |            | 2       | 3        | 4.        |           | 6.       |         | в.         |          | 10    |      |   |
|      |          |            |         |          |           |           |          |         |            |          |       |      |   |
| 44   | кк       | WB         |         |          |           |           |          |         |            |          |       |      |   |
| 45   | KM       |            |         |          |           |           |          |         |            |          |       |      |   |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc 7/23/2008 Page 1 of 19

| 46                                                                                                                                                                                                                                        | HC                                                                                                                                                                                                                                                                                     | 2                                                                                                                                           |                                                         |                              |                                           |                  |                  |      |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------|-------------------------------------------|------------------|------------------|------|--------|
| 47                                                                                                                                                                                                                                        | кк                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                         |                              |                                           |                  |                  |      |        |
| 48                                                                                                                                                                                                                                        | КM                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                         |                              |                                           |                  |                  |      |        |
| 49                                                                                                                                                                                                                                        | RK                                                                                                                                                                                                                                                                                     | 823                                                                                                                                         | .0279                                                   | .035                         | TRAP                                      | 5                | 4                | 54   |        |
| 50                                                                                                                                                                                                                                        | кк                                                                                                                                                                                                                                                                                     | W4                                                                                                                                          |                                                         |                              |                                           |                  |                  |      |        |
| 51                                                                                                                                                                                                                                        | KM                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                         |                              |                                           |                  |                  |      |        |
| 52                                                                                                                                                                                                                                        | BA                                                                                                                                                                                                                                                                                     | .0054                                                                                                                                       | 62                                                      |                              |                                           |                  |                  |      |        |
| 54                                                                                                                                                                                                                                        | UD                                                                                                                                                                                                                                                                                     | .044                                                                                                                                        | 02                                                      |                              |                                           |                  |                  |      |        |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                         |                              |                                           |                  |                  |      |        |
| 55<br>56                                                                                                                                                                                                                                  | KK                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                         |                              |                                           |                  |                  |      |        |
| 57                                                                                                                                                                                                                                        | RK                                                                                                                                                                                                                                                                                     | 1078                                                                                                                                        | .0482                                                   | .035                         | TRAP                                      | 5                | 4                |      |        |
| 50                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                         |                              |                                           |                  |                  |      |        |
| 58                                                                                                                                                                                                                                        | KK<br>KM                                                                                                                                                                                                                                                                               | W 5                                                                                                                                         |                                                         |                              |                                           |                  |                  |      |        |
| 60                                                                                                                                                                                                                                        | BA                                                                                                                                                                                                                                                                                     | .0159                                                                                                                                       |                                                         |                              |                                           |                  |                  |      |        |
| 61                                                                                                                                                                                                                                        | LS                                                                                                                                                                                                                                                                                     | 0.75                                                                                                                                        | 60                                                      |                              |                                           |                  |                  |      |        |
| 62                                                                                                                                                                                                                                        | υD                                                                                                                                                                                                                                                                                     | .075                                                                                                                                        |                                                         |                              |                                           |                  |                  |      |        |
| 63                                                                                                                                                                                                                                        | KK                                                                                                                                                                                                                                                                                     | WC                                                                                                                                          |                                                         |                              |                                           |                  |                  |      |        |
| 64<br>65                                                                                                                                                                                                                                  | KM                                                                                                                                                                                                                                                                                     | з                                                                                                                                           |                                                         |                              |                                           |                  |                  |      |        |
| 05                                                                                                                                                                                                                                        | IIÇ.                                                                                                                                                                                                                                                                                   | 5                                                                                                                                           |                                                         |                              |                                           |                  |                  |      |        |
| 66                                                                                                                                                                                                                                        | KK                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                         |                              |                                           |                  |                  |      |        |
| ь/<br>68                                                                                                                                                                                                                                  | KM<br>RK                                                                                                                                                                                                                                                                               | 557                                                                                                                                         | .0449                                                   | .035                         | TRAP                                      | 10               | 4                |      |        |
|                                                                                                                                                                                                                                           | ••••                                                                                                                                                                                                                                                                                   |                                                                                                                                             |                                                         |                              |                                           |                  | -                |      |        |
| 69<br>70                                                                                                                                                                                                                                  | KK<br>KM                                                                                                                                                                                                                                                                               | W6                                                                                                                                          |                                                         |                              |                                           |                  |                  |      |        |
| 71                                                                                                                                                                                                                                        | BA                                                                                                                                                                                                                                                                                     | .0486                                                                                                                                       |                                                         |                              |                                           |                  |                  |      |        |
| 72                                                                                                                                                                                                                                        | LS                                                                                                                                                                                                                                                                                     |                                                                                                                                             | 60                                                      |                              |                                           |                  |                  |      |        |
| /3                                                                                                                                                                                                                                        | UD                                                                                                                                                                                                                                                                                     | .085                                                                                                                                        |                                                         |                              |                                           |                  |                  |      |        |
| 74                                                                                                                                                                                                                                        | кк                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                         |                              |                                           |                  |                  |      |        |
| 75<br>76                                                                                                                                                                                                                                  | KM<br>BK                                                                                                                                                                                                                                                                               | 592                                                                                                                                         | 0372                                                    | 035                          | TRAP                                      | 5                | Δ                |      |        |
| 10                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                        | 552                                                                                                                                         | .0372                                                   | .055                         | IIGH                                      | 5                | 4                |      |        |
| 77                                                                                                                                                                                                                                        | KK                                                                                                                                                                                                                                                                                     | <b>W</b> 7                                                                                                                                  |                                                         |                              |                                           |                  |                  |      |        |
| 78<br>79                                                                                                                                                                                                                                  | KM<br>BA                                                                                                                                                                                                                                                                               | .0217                                                                                                                                       |                                                         |                              |                                           |                  |                  |      | -      |
| 80                                                                                                                                                                                                                                        | LS                                                                                                                                                                                                                                                                                     |                                                                                                                                             | 60                                                      |                              |                                           |                  |                  |      |        |
| 81                                                                                                                                                                                                                                        | UD                                                                                                                                                                                                                                                                                     | .074                                                                                                                                        |                                                         |                              |                                           |                  |                  |      |        |
| 82                                                                                                                                                                                                                                        | кк                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                         |                              |                                           |                  |                  |      |        |
| 83                                                                                                                                                                                                                                        | KM                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                         |                              |                                           |                  |                  |      |        |
| 01                                                                                                                                                                                                                                        | 10 IV                                                                                                                                                                                                                                                                                  | 464                                                                                                                                         | 1455                                                    | 0.25                         | 7010                                      | 5                | 4                |      |        |
| 84                                                                                                                                                                                                                                        | RK                                                                                                                                                                                                                                                                                     | 464                                                                                                                                         | .1466                                                   | .035                         | TRAP<br>HEC-1 INPUT                       | 5                | 4                |      | PAGE 3 |
| 84                                                                                                                                                                                                                                        | RK                                                                                                                                                                                                                                                                                     | 464                                                                                                                                         | .1466                                                   | .035                         | TRAP<br>HEC-1 INPUT                       | 5                | 4                |      | PAGE 3 |
| 84<br>LINE                                                                                                                                                                                                                                | RK<br>ID                                                                                                                                                                                                                                                                               | 464                                                                                                                                         | .1466                                                   | .035                         | TRAP<br>HEC-1 INPUT                       | 5                | 4                | 8910 | PAGE 3 |
| 84<br>LINE                                                                                                                                                                                                                                | RK<br>ID                                                                                                                                                                                                                                                                               | 464                                                                                                                                         | .1466<br>2                                              | .035                         | TRAP<br>HEC-1 INPUT                       | 5                | 4                | 9910 | PAGE 3 |
| 84<br>LINE<br>85<br>86                                                                                                                                                                                                                    | RK<br>ID<br>KK<br>KM                                                                                                                                                                                                                                                                   | 464<br>1<br>WD                                                                                                                              | .1466<br>2                                              | .035                         | TRAP<br>HEC-1 INPUT                       | 5                | 4                | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87                                                                                                                                                                                                              | RK<br>ID<br>KK<br>KM<br>HC                                                                                                                                                                                                                                                             | 464<br>1<br>WD<br>2                                                                                                                         | .1466                                                   | .035                         | TRAP<br>HEC-1 INPUT                       | 5                | 4                | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88                                                                                                                                                                                                        | RK<br>ID<br>KK<br>KM<br>HC<br>KK                                                                                                                                                                                                                                                       | 464<br>1<br>WD<br>2<br>D-F                                                                                                                  | .1466                                                   | .035                         | TRAP<br>HEC-1 INPUT                       | 5                | 4                | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89                                                                                                                                                                                                  | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM                                                                                                                                                                                                                                                 | 464<br>1<br>WD<br>2<br>D-E                                                                                                                  | .1466                                                   | .035                         | TRAP<br>HEC-1 INPUT                       | 5                | 4                | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90                                                                                                                                                                                            | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK                                                                                                                                                                                                                                           | 464<br>1<br>WD<br>2<br>D-E<br>1044                                                                                                          | .1466<br>2<br>.0479                                     | .035                         | TRAP<br>HEC-1 INPUT<br>5<br>TRAP          | 5                | 4                |      | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>90                                                                                                                                                                                      | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KK                                                                                                                                                                                                                                     | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>W8                                                                                                    | .1466<br>2<br>.0479                                     | .035<br>3<br>.035            | TRAP<br>HEC-1 INPUT<br>45<br>TRAP         | 5                | 4                | 8910 | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>90<br>91<br>92                                                                                                                                                                          | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM                                                                                                                                                                                                                                     | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>W8                                                                                                    | .1466<br>2<br>.0479                                     | .035                         | TRAP<br>HEC-1 INPUT<br>45<br>TRAP         | 5                | 4                | 8910 | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>92<br>93<br>94                                                                                                                                                              | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>BA                                                                                                                                                                                                                         | 464<br><br>WD<br>2<br>D-E<br>1044<br>W0<br>.0286                                                                                            | .1466<br>2<br>.0479                                     | .035                         | TRAP<br>HEC-1 INPUT<br>45<br>TRAP         | 5                | 4                | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95                                                                                                                                                              | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                   | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.069                                                                                   | .1466<br>2<br>.0479<br>60                               | .035                         | TRAP<br>HEC-1 INPUT<br>45<br>TRAP         | 5                | 4                | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95                                                                                                                                                              | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                   | 464<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.069                                                                                        | .1466<br>2<br>.0479<br>60                               | .035                         | TRAP<br>HEC-1 INPUT<br>45<br>TRAP         | 5                | 4                | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>94<br>95<br>96<br>97                                                                                                                                      | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM                                                                                                                                                                                                       | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>w8<br>.0286<br>.069                                                                                   | .1466<br>2<br>.0479<br>60                               | .035                         | TRAP<br>HEC-1 INPUT<br>45<br>TRAP         | 5                | 4                | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98                                                                                                                                            | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KK<br>KM                                                                                                                                                                                                       | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>w8<br>.0286<br>.069<br>1449                                                                           | .1466<br>2<br>.0479<br>60<br>.0504                      | .035<br>3<br>.035<br>.035    | TRAP<br>HEC-1 INPUT<br>45<br>TRAP         | 5<br>5<br>5      | 4<br>7<br>4<br>4 | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99                                                                                                                                      | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KK<br>KK                                                                                                                                                                                           | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>w8<br>.0286<br>.069<br>1449<br>W9                                                                     | .1466<br>2<br>.0479<br>60<br>.0504                      | .035<br>3<br>.035<br>.035    | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5                | 4<br>4<br>4      | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100                                                                                                             | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK                                                                                                                                                                                                 | 464<br>1.<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.069<br>1449<br>W9                                                                    | .1466<br>2<br>.0479<br>60<br>.0504                      | .035<br>3<br>.035<br>.035    | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5                | 4<br>4<br>4      | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>100<br>100                                                                                                                 | RK<br>ID<br>KK<br>KM<br>RC<br>KK<br>KM<br>RK<br>KM<br>RK<br>KM<br>RK<br>KK<br>KK<br>KK<br>KK<br>KK                                                                                                                                                                                     | 464<br>1.<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.069<br>1449<br>W9<br>.0402                                                           | .1466<br>2<br>.0479<br>60<br>.0504                      | .035<br>3<br>.035<br>.035    | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5                | 4<br>4<br>4      | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103                                                                                                          | RK<br>ID<br>KK<br>KM<br>RK<br>KM<br>RK<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>UD                                                                                                                                                                               | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.069<br>1449<br>W9<br>.0402<br>.097                                                    | .1466<br>2<br>.0479<br>60<br>.0504<br>61                | .035<br>3<br>.035<br>.035    | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5                | 4<br>4<br>4      |      | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103                                                                                                          | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                   | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.069<br>1449<br>W9<br>.0402<br>.097                                                    | .1466<br>2<br>.0479<br>60<br>.0504<br>61                | .035                         | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5                | 4<br>4<br>4      |      | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104                                                                                 | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM                                                                                                                                                                               | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.069<br>1449<br>W9<br>.0402<br>.097<br>WE                                              | .1466<br>2<br>.0479<br>60<br>.0504<br>61                | .035                         | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5                | 4<br>4<br>4      | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106                                                                         | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>HC                                                                                                                                                                         | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.069<br>1449<br>W9<br>.0402<br>.097<br>WE<br>3                                         | .1466<br>2<br>.0479<br>60<br>.0504<br>61                | .035                         | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5                | 4<br>4<br>4      | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106                                                                                     | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KM<br>KM<br>KM<br>KM                                                                                                                                                 | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.069<br>1449<br>W9<br>.0402<br>.097<br>WE<br>3<br>E-F                                  | .1466<br>2<br>.0479<br>60<br>.0504<br>61                | .035                         | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5                | 4                | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108                                                                       | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>HC<br>KK                                                                                                                                                             | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>w8<br>.0286<br>.069<br>1449<br>w9<br>.0402<br>.097<br>WE<br>3<br>E-F                                  | .1466<br>2<br>.0479<br>60<br>.0504<br>61                | .035                         | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5                | 4 4 4            | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109                                                    | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>KK                                                                                                                                           | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>w8<br>.0286<br>.069<br>1449<br>w9<br>.0402<br>.097<br>WE<br>3<br>E-F<br>789                           | .1466<br>2<br>.0479<br>60<br>.0504<br>61<br>.0038       | .035<br>.035<br>.035<br>.035 | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5<br>5<br>5      | 4 4 4 4          | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110                                                         | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>HC<br>KK<br>KM<br>KK<br>KK                                                                                                                                           | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>w8<br>.0286<br>.069<br>1449<br>w9<br>.0402<br>.097<br>WE<br>3<br>E-F<br>789<br>w10                    | .1466<br>2<br>.0479<br>60<br>.0504<br>61<br>.0038       | .035<br>3<br>.035<br>.035    | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5<br>5<br>5      | 4 4 4 4          | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112                                           | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KM<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KK<br>KK                                                                                                       | 464<br>1<br>WD<br>2<br>D-E<br>1044<br>w8<br>.0286<br>.069<br>1449<br>w9<br>.0402<br>.097<br>WE<br>3<br>E-F<br>789<br>w10<br>.0431           | .1466<br>2<br>.0479<br>60<br>.0504<br>61<br>.0038       | .035<br>3<br>.035<br>.035    | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5<br>5<br>5      | 4 4 4 4          | 910  | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113                                          | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>HC<br>KK<br>KM<br>HC<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS                                                                         | 464<br>1.<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.069<br>1449<br>W9<br>.0402<br>.097<br>WE<br>3<br>E-F<br>789<br>W10<br>.0431          | .1466<br>2<br>.0479<br>60<br>.0504<br>61<br>.0038<br>61 | .035<br>3<br>.035<br>.035    | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5<br>6<br>5<br>5 | 4<br>4<br>4      |      | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113<br>114                             | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KM<br>KK<br>KK | 464<br>1.<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.0699<br>1449<br>W9<br>.0402<br>.097<br>WE<br>3<br>E-F<br>789<br>W10<br>.0431<br>.096 | .1466<br>2<br>.0479<br>60<br>.0504<br>61<br>.0038<br>61 | .035<br>3<br>.035<br>.035    | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5<br>5<br>5      | 4 4 4            |      | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113<br>114                       | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>HC<br>KK<br>KM<br>HC<br>KK<br>KM<br>KK<br>KM<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK<br>KK                                                                   | 464<br>1.<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.0699<br>1449<br>W9<br>.0402<br>.097<br>WE<br>3<br>E-F<br>789<br>W10<br>.0431<br>.096 | .1466<br>2<br>.0479<br>60<br>.0504<br>61<br>.0038<br>61 | .035<br>.035<br>.035<br>.035 | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5                | 4 4 4            |      | PAGE 3 |
| 84<br>LINE<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116<br>117<br>117 | RK<br>ID<br>KK<br>KM<br>HC<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>HC<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>HC<br>KK<br>KM<br>KM<br>KK<br>KM<br>KK<br>KK<br>KM<br>KK<br>KK<br>KK<br>KK<br>KK                                     | 464<br>1.<br>WD<br>2<br>D-E<br>1044<br>W8<br>.0286<br>.0699<br>1449<br>W9<br>.0402<br>.097<br>WE<br>3<br>E-F<br>789<br>W10<br>.0431<br>.096 | .1466<br>2<br>.0479<br>60<br>.0504<br>61<br>.0038<br>61 | .035<br>.035<br>.035<br>.035 | TRAP<br>HEC-1 INPUT<br>45<br>TRAP<br>TRAP | 5                | 4 4 4            |      | PAGE 3 |

1

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 2 of 19 7/23/2008

| 118   | KK       | WII         |        |      |             |    |   |   |      |        |
|-------|----------|-------------|--------|------|-------------|----|---|---|------|--------|
| 119   | KM       |             |        |      |             |    |   |   |      |        |
| 120   | BA       | .0314       |        |      |             |    |   |   |      |        |
| 121   | LS       |             | 60     |      |             |    |   |   |      |        |
| 122   | UD       | .077        |        |      |             |    |   |   |      |        |
|       |          |             |        |      |             |    |   |   |      |        |
| 123   | KK       | WE          |        |      |             |    |   |   |      |        |
| 124   | KM       |             |        |      |             |    |   |   |      |        |
| 125   | HC       | 4           |        |      |             |    |   |   |      |        |
|       |          |             |        |      | HEC-1 INPUT |    |   |   |      | PAGE 4 |
|       |          |             |        |      |             |    |   |   |      | 1100 4 |
| TIME  | TD       | 1           | 2      | 3    | 4 5         | 6  | 7 | P | 9 10 |        |
| LINE  | 10       |             | 2      |      |             |    |   |   | 9    |        |
|       |          |             |        |      |             |    |   |   |      |        |
|       |          |             |        |      |             |    |   |   |      |        |
| 126   | KK       | F-G         |        |      |             |    |   |   |      |        |
| 127   | KM       |             |        |      |             |    |   |   |      |        |
| 128   | RK       | 2319        | .0211  | .035 | TRAP        | 10 | 4 |   |      |        |
|       |          |             |        |      |             |    |   |   |      |        |
| 129   | KK       | W12         |        |      |             |    |   |   |      |        |
| 130   | KM       |             |        |      |             |    |   |   |      |        |
| 131   | BA       | .0398       |        |      |             |    |   |   |      |        |
| 132   | LS       |             | 60     |      |             |    |   |   |      |        |
| 133   | UD       | .095        |        |      |             |    |   |   |      |        |
|       |          |             |        |      |             |    |   |   |      |        |
| 134   | KK       |             |        |      |             |    |   |   |      |        |
| 135   | KM       |             |        |      |             |    |   |   |      |        |
| 136   | DV       | 2479        | 0307   | 035  | TOAD        | 5  |   |   |      |        |
| 150   | KK       | 24/0        | .0307  | .055 | INH         | 5  | - |   |      |        |
| 107   |          |             |        |      |             |    |   |   |      |        |
| 137   | KK       | W14         |        |      |             |    |   |   |      |        |
| 138   | KM       |             |        |      |             |    |   |   |      |        |
| 139   | BA       | .0473       |        |      |             |    |   |   |      |        |
| 140   | LS       |             | 61     |      |             |    |   |   |      |        |
| 141   | UD       | .135        |        |      |             |    |   |   |      |        |
|       |          |             |        |      | •           |    |   |   |      |        |
| 142   | KK       |             |        |      |             |    |   |   |      |        |
| 143   | КM       |             |        |      |             |    |   |   |      |        |
| 144   | RK       | 81          | 0.0003 | .035 | TRAP        | 5  | 4 |   |      |        |
|       |          |             |        |      |             | -  | - |   |      |        |
| 145   | XX       | <b>W13</b>  |        |      |             |    |   |   |      |        |
| 145   | KM       | <b>N</b> 15 |        |      |             |    |   |   |      |        |
| 140   | - CP1    | 1122        |        |      |             |    |   |   |      |        |
| 147   | DA<br>LC | .1125       | 61     |      |             |    |   |   |      |        |
| 148   | 12       | 1.00        | 61     |      |             |    |   |   |      |        |
| 149   | αU       | .182        |        |      |             |    |   |   |      |        |
|       |          |             |        |      |             |    |   |   |      |        |
| 150   | KK       | WG          |        |      |             |    |   |   |      |        |
| 151   | KM       |             |        |      |             |    |   |   |      |        |
| 152   | HC       | 4           |        |      |             |    |   |   |      |        |
|       |          |             |        |      |             |    |   |   |      |        |
| 153   | KK       | G-H         |        |      |             |    |   |   |      |        |
| 154   | KM       |             |        |      |             |    |   |   |      |        |
| 155   | RK       | 2632        | .0217  | .035 | TRAP        | 15 | 4 |   |      |        |
|       |          |             |        |      |             |    |   |   |      |        |
| 156   | КК       |             |        |      |             |    |   |   |      | ,      |
| 157   | KM       |             |        |      |             |    |   |   |      |        |
| 158   | PK IGI   | 2447        | 0372   | 035  | TRAP        | 5  | a |   |      |        |
| 150   | INIX     | 211/        | .03/2  | .055 | itou        | 5  | 1 |   |      |        |
| 100   |          | 141 C       |        |      |             |    |   |   |      |        |
| 159   | ~~       | W12         |        |      |             |    |   |   |      |        |
| 160   | KM       |             |        |      |             |    |   |   |      |        |
| 161   | BA       | .0881       |        |      |             |    |   |   |      |        |
| 162   | LS       |             | 61     |      |             |    |   |   |      |        |
| 163   | UD       | .141        |        |      |             |    |   |   |      |        |
|       |          |             |        |      |             |    |   |   |      |        |
| 164   | KK       |             |        |      |             |    |   |   |      |        |
| 165   | KM       |             |        |      |             |    |   |   |      |        |
| 166   | RK       | 1763        | .0289  | .035 | TRAP        | 5  | 4 |   |      |        |
|       |          |             |        |      | HEC-1 INPUT |    |   |   |      | PAGE 5 |
|       |          |             |        |      |             |    |   |   |      |        |
| LINE  | ID.      | 1 .         | 2 .    | 3    | 4 5         | 6  | 7 | 8 | .9   |        |
|       |          |             |        |      |             |    |   |   |      |        |
|       |          |             |        |      |             |    |   |   |      |        |
| 167   | ĸĸ       | WH          |        |      |             |    |   |   |      |        |
| 168   | 101      | -           |        |      |             |    |   |   |      |        |
| 160   | N.M.     | 2           |        |      |             |    |   |   |      |        |
| 169   | HC       | 2           |        |      |             |    |   |   |      |        |
| 120   |          |             |        |      |             |    |   |   |      |        |
| 1/0   | KK       | W16         |        |      |             |    |   |   |      |        |
| 171   | KM       |             |        |      |             |    |   |   |      |        |
| 172   | BA       | .0292       |        |      |             |    |   |   |      |        |
| 173   | LS       |             | 61     |      |             |    |   |   |      |        |
| 174   | UD       | .092        |        |      |             |    |   |   |      |        |
|       |          |             |        |      |             |    |   |   |      |        |
| 175   | KK       |             |        |      |             |    |   |   |      |        |
| 176   | KM       |             |        |      |             |    |   |   |      |        |
| 177   | RK       | 1345        | .0260  | .035 | TRAP        | 5  | 4 |   |      |        |
| -     |          |             |        |      |             | -  | - |   |      | -      |
| 178   | кк       | ₩17         |        |      |             |    |   |   |      |        |
| 179   | км       |             |        |      |             |    |   |   |      |        |
| 190   | 101      | 0194        |        |      |             |    |   |   |      |        |
| 181   | T C      | .0104       | 60     |      |             |    |   |   |      |        |
| 182   | 10       | 005         | 00     |      |             |    |   |   |      |        |
| 102   | 00       | .000        |        |      |             |    |   |   |      |        |
| 1.9.2 |          | шŦ          |        |      |             |    |   |   |      |        |
| 104   | KK ISI   | <b>W</b> 1  |        |      |             |    |   |   |      |        |
| 184   | KM       | -           |        |      |             |    |   |   |      |        |
| T82   | HC       | 2           |        |      |             |    |   |   |      |        |

f

1

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 3 of 19 7/23/2008

| 186  | KK         | I-M         |       |      |             |    |     |   | ·      |
|------|------------|-------------|-------|------|-------------|----|-----|---|--------|
| 187  | KM         |             |       |      |             |    |     |   |        |
| 188  | BK         | 2650        | 0370  | 035  | TRAP        | 15 | 4   |   |        |
| 100  |            | 2000        |       |      |             | 10 | •   |   |        |
| 100  | VV         | w1 0        |       |      |             |    |     |   |        |
| 169  | nn.        | W19         |       |      |             |    |     |   |        |
| 190  | KM         |             |       |      |             |    |     |   |        |
| 191  | BA         | .0428       |       |      |             |    |     |   |        |
| 192  | LS         |             | 61    |      |             |    |     |   |        |
| 193  | UD         | .083        |       |      |             |    |     |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 104  | KK.        |             |       |      |             |    |     |   |        |
| 194  |            |             |       |      |             |    |     |   |        |
| 195  | KM<br>Diff |             |       | 0.05 |             | ~  |     |   |        |
| 196  | RK         | 881         | .0329 | .035 | TRAP        | 5  | 4   |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 197  | KK         | W20         |       |      |             |    |     |   |        |
| 198  | KM         |             |       |      |             |    |     |   |        |
| 199  | BA         | .0315       |       |      |             |    |     |   |        |
| 200  | LS         |             | 61    |      |             |    |     |   |        |
| 201  | 10         | 071         | ••    |      |             |    |     |   |        |
| 201  | 00         | .071        |       |      |             |    |     |   |        |
| 000  | 1017       |             |       |      |             |    |     |   |        |
| 202  | KK.        | NJ          |       |      |             |    |     |   |        |
| 203  | KM         |             |       |      |             |    |     |   |        |
| 204  | HC         | 2           |       |      |             |    |     |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 205  | KK         |             |       |      |             |    |     |   |        |
| 206  | KM         |             |       |      |             |    |     |   |        |
| 207  | PK         | 3061        | 0235  | 035  | TRAP        | 5  | 4   |   |        |
| 207  | iuv        | 5001        | .0255 | .033 | UEC 1 TNDUG | 5  | -   |   | DACE 6 |
|      |            |             |       |      | REC-1 INPUT |    |     |   | PAGE 0 |
|      |            |             |       |      |             |    |     |   |        |
| LINE | ID         |             | 2     | 3    | 45          | 6  | 7 8 |   | .10    |
|      |            |             |       |      |             |    |     |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 208  | ĸĸ         | W21         |       |      |             |    |     |   |        |
| 200  | NM N       |             |       |      |             |    |     |   |        |
| 209  | RP1        | 1 7 4 7     |       |      |             |    |     |   |        |
| 210  | BA         | .134/       |       |      |             |    |     |   |        |
| 211  | LŞ         |             | 60    |      |             |    |     |   |        |
| 212  | UD         | .156        |       |      |             |    |     |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 213  | KK         | WK          |       |      |             |    |     |   |        |
| 214  | КM         |             |       |      |             |    |     |   |        |
| 215  | HC         | 2           |       |      |             |    |     |   |        |
| 215  | 110        | -           |       |      |             |    |     |   |        |
| 21.6 | VV         |             |       |      |             |    |     |   |        |
| 216  | KK         |             |       |      |             |    |     |   |        |
| 217  | KM         |             |       |      |             |    |     |   |        |
| 218  | RK         | 487         | .0246 | .035 | TRAP        | 5  | 4   |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 219  | KK         | W22         |       |      |             |    |     |   |        |
| 220  | KM         |             |       |      |             |    |     |   |        |
| 220  | DA.        | 0.086       |       |      |             |    |     |   |        |
| 221  | DA<br>LC   | .0000       | 67    |      |             |    |     |   |        |
| 222  | 12         |             | 63    |      |             |    |     |   |        |
| 223  | UD         | .055        |       |      |             |    |     |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 224  | KK         | WL          |       |      |             |    |     |   |        |
| 225  | KМ         |             |       |      |             |    |     |   |        |
| 226  | HC         | 2           |       |      |             |    |     |   |        |
| 220  | ne         | 2           |       |      |             |    |     |   |        |
| 000  | 1010       |             |       |      |             |    |     |   |        |
| 221  | KK.        |             |       |      |             |    |     |   |        |
| 228  | KM         |             |       |      |             |    |     |   |        |
| 229  | RK         | 1786        | .0297 | .035 | TRAP        | 5  | 4   |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 230  | KK         | W23         |       |      |             |    |     |   |        |
| 231  | KM         |             |       |      |             |    |     |   |        |
| 232  | P.A.       | 0244        |       |      |             |    |     |   |        |
| 232  | DR.<br>TC  |             | 60    |      |             |    |     |   |        |
| 200  | ст<br>С    |             | 00    |      |             |    |     |   |        |
| 234  | υD         | .112        |       |      |             |    |     |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 235  | KK         | W18         |       |      |             |    |     |   |        |
| 236  | KM         |             |       |      |             |    |     |   |        |
| 237  | BA         | .1251       |       |      |             |    |     |   |        |
| 238  | LS         |             | 60    |      |             |    |     |   |        |
| 239  | UD         | .189        |       |      |             |    |     |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 240  | <i>vv</i>  | SIM         |       |      |             |    |     |   |        |
| 240  |            | 411         |       |      |             |    |     |   |        |
| 241  | KM         | -           |       |      |             |    |     |   |        |
| 242  | HC         | 5           |       |      |             |    |     |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 243  | кк         | M-N         |       |      |             |    |     |   |        |
| 244  | KM         |             |       |      |             |    |     |   |        |
| 245  | RK         | 1345        | .0149 | .035 | TRAP        | 20 | 4   |   |        |
|      | ••••       |             |       |      |             |    |     |   |        |
| 246  | ~~~        | <b>W</b> 04 |       |      |             |    |     |   | •      |
| 240  | NN.        | <b>n</b> 24 |       |      |             |    |     |   |        |
| 241  | KM         |             |       |      |             |    |     |   |        |
| 248  | BA         | .0442       |       |      |             |    |     |   |        |
| 249  | LS         |             | 60    |      |             |    |     |   |        |
| 250  | UD         | .140        |       |      |             |    |     |   |        |
|      |            |             |       |      | HEC-1 INPUT |    |     |   | PAGE 7 |
|      |            |             |       |      |             |    |     |   |        |
| LINE | TD         | 1           |       | 3    |             | б. |     | 8 | 10     |
|      | 10.        |             |       |      |             |    |     |   | •      |
|      |            |             |       |      |             |    |     |   |        |
|      |            |             |       |      |             |    |     |   |        |
| 251  | KK         | W25         |       |      |             |    |     |   |        |
| 252  | KM         |             |       |      |             |    |     |   |        |
| 253  | BA         | .0957       |       |      |             |    |     |   |        |
| 254  | LS         |             | 61    |      |             |    |     |   |        |
| 255  | UD         | .197        |       |      |             |    |     |   |        |
| -    |            |             |       |      |             |    |     |   |        |

i

k

1

1

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 4 of 19 7/23/2008

| 256                                                                                                                                                                                                                                                                    | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WN                                                                                                                                                                 |                                                 |                |                      |     |   |     |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------|----------------------|-----|---|-----|-----------|
| 257                                                                                                                                                                                                                                                                    | КМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 258                                                                                                                                                                                                                                                                    | HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                  |                                                 |                |                      |     |   |     |           |
| 250                                                                                                                                                                                                                                                                    | 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N D                                                                                                                                                                |                                                 |                |                      |     |   |     |           |
| 259                                                                                                                                                                                                                                                                    | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N-P                                                                                                                                                                |                                                 |                |                      |     |   |     |           |
| 261                                                                                                                                                                                                                                                                    | RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1589                                                                                                                                                               | .017                                            | .035           | TRAP                 | 20  | 4 |     |           |
|                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                 |                |                      | • • | - |     |           |
| 262                                                                                                                                                                                                                                                                    | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W28                                                                                                                                                                |                                                 |                |                      |     |   |     |           |
| 263                                                                                                                                                                                                                                                                    | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 264                                                                                                                                                                                                                                                                    | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0397                                                                                                                                                              |                                                 |                |                      |     |   |     |           |
| 265                                                                                                                                                                                                                                                                    | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    | 63                                              |                |                      |     |   |     |           |
| 266                                                                                                                                                                                                                                                                    | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .128                                                                                                                                                               |                                                 |                |                      |     |   |     |           |
| 267                                                                                                                                                                                                                                                                    | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 268                                                                                                                                                                                                                                                                    | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 269                                                                                                                                                                                                                                                                    | RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1345                                                                                                                                                               | .0208                                           | .035           | TRAP                 | 5   | 4 |     |           |
|                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 270                                                                                                                                                                                                                                                                    | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>W</b> 30                                                                                                                                                        |                                                 |                |                      |     |   |     |           |
| 271                                                                                                                                                                                                                                                                    | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 272                                                                                                                                                                                                                                                                    | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0509                                                                                                                                                              | 63                                              |                |                      |     |   |     |           |
| 273                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123                                                                                                                                                                | 63                                              |                |                      |     |   |     |           |
| 2/4                                                                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .125                                                                                                                                                               |                                                 |                |                      |     |   |     |           |
| 275                                                                                                                                                                                                                                                                    | кк                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 276                                                                                                                                                                                                                                                                    | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 277                                                                                                                                                                                                                                                                    | RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1078                                                                                                                                                               | .0074                                           | .035           | TRAP                 | 5   | 4 |     | ,         |
|                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 278                                                                                                                                                                                                                                                                    | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W29                                                                                                                                                                |                                                 |                |                      |     |   |     |           |
| 279                                                                                                                                                                                                                                                                    | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0400                                                                                                                                                               |                                                 |                |                      |     |   |     |           |
| 280                                                                                                                                                                                                                                                                    | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0409                                                                                                                                                              | 63                                              |                |                      |     |   |     |           |
| 282                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 145                                                                                                                                                                | 05                                              |                |                      |     |   |     |           |
| -                                                                                                                                                                                                                                                                      | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 283                                                                                                                                                                                                                                                                    | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W31                                                                                                                                                                |                                                 |                |                      |     |   |     |           |
| 284                                                                                                                                                                                                                                                                    | KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 285                                                                                                                                                                                                                                                                    | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0123                                                                                                                                                              |                                                 |                |                      |     |   |     |           |
| 286                                                                                                                                                                                                                                                                    | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    | 63                                              |                |                      |     |   |     |           |
| 287                                                                                                                                                                                                                                                                    | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .073                                                                                                                                                               |                                                 |                |                      |     |   |     |           |
| 288                                                                                                                                                                                                                                                                    | ĸĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                                                                 |                                                 |                |                      |     |   |     |           |
| 289                                                                                                                                                                                                                                                                    | КМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 290                                                                                                                                                                                                                                                                    | HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                  |                                                 |                |                      |     |   |     |           |
|                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                 | H              | EC-1 INPUT           |     |   |     | PAGE 8    |
|                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    | _                                               |                |                      |     | _ |     |           |
| LINE                                                                                                                                                                                                                                                                   | ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    | 2                                               |                |                      | 6   | 7 | .89 | 10        |
|                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
|                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                 |                |                      |     |   |     |           |
| 291                                                                                                                                                                                                                                                                    | KK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0-P                                                                                                                                                                |                                                 |                |                      |     |   |     |           |
| 291<br>292                                                                                                                                                                                                                                                             | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0-P                                                                                                                                                                |                                                 |                |                      |     |   |     |           |
| 291<br>292<br>293                                                                                                                                                                                                                                                      | KK<br>KM<br>RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-P<br>2169                                                                                                                                                        | .0226                                           | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293                                                                                                                                                                                                                                                      | KK<br>KM<br>RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-P<br>2169                                                                                                                                                        | .0226                                           | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294                                                                                                                                                                                                                                               | KK<br>KM<br>RK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-P<br>2169<br>W26                                                                                                                                                 | .0226                                           | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295                                                                                                                                                                                                                                        | KK<br>KM<br>RK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-P<br>2169<br>W26                                                                                                                                                 | .0226                                           | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296                                                                                                                                                                                                                                 | KK<br>KM<br>RK<br>KK<br>KM<br>BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-P<br>2169<br>W26<br>.0301                                                                                                                                        | .0226                                           | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298                                                                                                                                                                                                                   | KK<br>KM<br>RK<br>KM<br>BA<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-P<br>2169<br>W26<br>.0301                                                                                                                                        | . 0226                                          | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298                                                                                                                                                                                                                   | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O-P<br>2169<br>W26<br>.0301<br>.062                                                                                                                                | . 0226<br>63                                    | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299                                                                                                                                                                                                            | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O-P<br>2169<br>W26<br>.0301<br>.062                                                                                                                                | . 0226<br>63                                    | .035           | TRAP                 | 5   | 4 |     | ·         |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300                                                                                                                                                                                                     | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-P<br>2169<br>W26<br>.0301<br>.062                                                                                                                                | . 0226<br>63                                    | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301                                                                                                                                                                                              | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-P<br>2169<br>W26<br>.0301<br>.062                                                                                                                                | .0226<br>63<br>.0225                            | .035           | TRAP<br>TRAP         | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301                                                                                                                                                                                              | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662                                                                                                                        | .0226<br>63<br>.0225                            | . 035<br>. 035 | TRAP<br>TRAP         | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>301                                                                                                                                                                                       | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-P<br>2169<br>w26<br>.0301<br>.062<br>4662<br>w27                                                                                                                 | . 0226<br>63<br>. 0225                          | .035<br>.035   | TRAP<br>TRAP         | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>301<br>302<br>303                                                                                                                                                                         | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27                                                                                                                 | .0226<br>63<br>.0225                            | .035<br>.035   | TRAP<br>TRAP         | 5   | 4 |     |           |
| 291<br>292<br>293<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304                                                                                                                                                                                | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>KM<br>BA<br>BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633                                                                                                        | .0226<br>63<br>.0225                            | .035           | тгар<br>тгар         | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306                                                                                                                                                           | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-P<br>2169<br>w26<br>.0301<br>.062<br>4662<br>w27<br>.1633<br>253                                                                                                 | .0226<br>63<br>.0225<br>60                      | .035<br>.035   | TRAP<br>TRAP         | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>301<br>302<br>303<br>304<br>305<br>306                                                                                                                                                    | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253                                                                                                | .0226<br>63<br>.0225<br>60                      | .035<br>.035   | TRAP<br>TRAP         | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307                                                                                                                                                    | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>LS<br>UD<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32                                                                                         | .0226<br>63<br>.0225<br>60                      | .035<br>.035   | TRAP<br>TRAP         | 5   | 4 |     |           |
| 291<br>292<br>293<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308                                                                                                                                                    | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32                                                                                         | .0226<br>63<br>.0225<br>60                      | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309                                                                                                                                      | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-P<br>2169<br>w26<br>.0301<br>.062<br>4662<br>w27<br>.1633<br>.253<br>w32<br>.0890                                                                                | .0226<br>63<br>.0225<br>60                      | .035<br>.035   | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310                                                                                                                        | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890                                                                                | .0226<br>63<br>.0225<br>60                      | .035<br>.035   | тгар                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>306<br>307<br>308<br>309<br>310<br>311                                                                                                                 | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170                                                                        | . 0226<br>63<br>. 0225<br>60<br>60              | .035           | TRAP                 | 5   | 4 |     | · · · · · |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311                                                                                                                        | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170                                                                        | . 0226<br>63<br>. 0225<br>60<br>60              | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312                                                                                                                 | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-P<br>2169<br>w26<br>.0301<br>.062<br>4662<br>w27<br>.1633<br>.253<br>w32<br>.0890<br>.170<br>wP                                                                  | .0226<br>63<br>.0225<br>60<br>60                | .035           | тгар                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>301<br>302<br>303<br>304<br>305<br>306<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314                                                                                     | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KM<br>KK<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170<br>WP<br>5                                                             | .0226<br>63<br>.0225<br>60<br>60                | .035           | тгар                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314                                                                                                   | KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170<br>WP<br>5                                                             | .0226<br>63<br>.0225<br>60<br>60                | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315                                                                                            | KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>RK<br>KM<br>BA<br>LS<br>UD<br>KK<br>KM<br>KM<br>KM<br>KK<br>KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-P<br>2169<br>w26<br>.0301<br>.062<br>4662<br>w27<br>.1633<br>.253<br>w32<br>.0890<br>.170<br>wP<br>5<br>P-Q                                                      | .0226<br>63<br>.0225<br>60<br>60                | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316                                                                                     | KK KM<br>RK<br>LS<br>UD<br>KK KM<br>BA<br>LS<br>UD<br>KK MA<br>LS<br>UD<br>KK MA<br>LS<br>UD<br>KK MA<br>KM<br>KM<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-P<br>2169<br>w26<br>.0301<br>.062<br>4662<br>w27<br>.1633<br>.253<br>w32<br>.0890<br>.170<br>wP<br>5<br>P-Q                                                      | .0226<br>63<br>.0225<br>60<br>60                | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317                                                                       | KK KM<br>RK<br>LS<br>UD<br>KK KM<br>BA<br>LS<br>UD<br>KK KM<br>BA<br>LS<br>UD<br>KK KM<br>BA<br>LS<br>UD<br>KK KM<br>RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170<br>WP<br>5<br>P-Q<br>1925                                              | .0226<br>63<br>.0225<br>60<br>60                | .035           | TRAP<br>TRAP         | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317                                                                              | KK KM<br>RK<br>KM BA<br>LS<br>UD<br>KK KM RK<br>KM BA<br>LS<br>UD<br>KKM BA<br>LS<br>UD<br>KKM HC<br>KM HC<br>KKM RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170<br>WP<br>5<br>P-Q<br>1925                                              | .0226<br>63<br>.0225<br>60<br>60<br>.0182       | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>319                                                                       | KK KM<br>RK<br>KM BA<br>LS<br>UD<br>KK KM RK<br>KM BA<br>LS<br>UD<br>KK MA<br>LS<br>UD<br>KK MA<br>KM<br>K<br>KM KK<br>KM KK<br>KK KK<br>KK KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170<br>WP<br>5<br>P-Q<br>1925<br>W33A                                      | .0226<br>63<br>.0225<br>60<br>60<br>.0182       | .035           | TRAP<br>TRAP<br>TRAP | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>318<br>319<br>320                                                  | KK KM<br>RK<br>LS<br>UD<br>KK KM<br>BA<br>LS<br>UD<br>KK MA<br>LS<br>UD<br>KK MA<br>LS<br>UD<br>KK MA<br>KM<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-P<br>2169<br>w26<br>.0301<br>.062<br>4662<br>w27<br>.1633<br>.253<br>w32<br>.0890<br>.170<br>wP<br>5<br>P-Q<br>1925<br>w33A<br>.1261                             | .0226<br>63<br>.0225<br>60<br>60<br>.0182       | .035           | TRAP<br>TRAP         | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>318<br>319<br>320<br>321                             | KK KM<br>RK<br>KM BA<br>LS<br>UD<br>KK KM RK<br>KM BA<br>LS<br>UD<br>KK MA<br>BA<br>LS<br>UD<br>KK MA<br>KM<br>HC<br>KK MA<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170<br>WP<br>5<br>P-Q<br>1925<br>W33A<br>.1261                             | .0226<br>63<br>.0225<br>60<br>60<br>.0182       | .035           | тгар<br>тгар         | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>318<br>319<br>320<br>321<br>322                                           | KK KN RK<br>RK<br>BAALS<br>UD<br>KK KK RK KK BALS<br>UD<br>KK KA BALS<br>UD<br>KK KK KK KK BALS<br>UD<br>KK KK KK KK BALS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170<br>WP<br>5<br>P-Q<br>1925<br>W33A<br>.1261<br>.186                     | .0226<br>63<br>.0225<br>60<br>60<br>.0182<br>60 | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>318<br>319<br>320<br>321<br>322                                           | KK KM<br>RK<br>KM BA<br>LS<br>UD<br>KKM RK<br>KM BA<br>LS<br>UD<br>KKM BA<br>LS<br>UD<br>KKM C<br>KKM RK<br>KM BA<br>LS<br>UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-P<br>2169<br>w26<br>.0301<br>.062<br>4662<br>w27<br>.1633<br>.253<br>w32<br>.0890<br>.170<br>wP<br>5<br>P-Q<br>1925<br>w33A<br>.1261<br>.186                     | .0226<br>63<br>.0225<br>60<br>.0182<br>60       | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>318<br>319<br>320<br>321<br>322<br>323                             | KK KN KK KA KK KA KK KA LS UD KK KA KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170<br>WP<br>5<br>P-Q<br>1925<br>W33A<br>.1261<br>.186<br>WP1              | .0226<br>63<br>.0225<br>60<br>60<br>.0182<br>60 | .035           | TRAP                 | 5   | 4 |     | · · ·     |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>318<br>319<br>320<br>321<br>322<br>323<br>324                             | KK KM BA LS<br>UD KK KM RK KK BA LS<br>UD KK MA SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170<br>WP<br>5<br>P-Q<br>1925<br>W33A<br>.1261<br>.186<br>WP1<br>2         | .0226<br>63<br>.0225<br>60<br>.0182<br>60       | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>318<br>319<br>320<br>321<br>322<br>323<br>324<br>325                      | KK KK KK BA LS U KK KA S LS U KK KK KK KK KK KK BA LS U KK KK A S LS U KK KK KK KK KK KK KK BA LS U KK KK HC KK KK KK BA LS U KK KK HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170<br>WP<br>5<br>P-Q<br>1925<br>W33A<br>.1261<br>.186<br>WP1<br>2         | .0226<br>63<br>.0225<br>60<br>.0182<br>60       | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>318<br>319<br>320<br>321<br>322<br>323<br>324<br>325                      | KK KM<br>RK<br>KM BA<br>LS<br>UD<br>KKM RK<br>KM BA<br>LS<br>UD<br>KKM BA<br>LS<br>UD<br>KKM RK<br>KM RK KM RK<br>KM RK KM RK KM RK KM RK<br>KM RK KM RK | 0-P<br>2169<br>w26<br>.0301<br>.062<br>4662<br>w27<br>.1633<br>.253<br>w32<br>.0890<br>.170<br>wP<br>5<br>P-Q<br>1925<br>w33A<br>.1261<br>.186<br>wP1<br>2<br>P1-0 | .0226<br>63<br>.0225<br>60<br>.0182<br>60       | .035           | TRAP                 | 5   | 4 |     |           |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>318<br>319<br>320<br>321<br>322<br>323<br>324<br>325<br>326<br>327 | KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-P<br>2169<br>W26<br>.0301<br>.062<br>4662<br>W27<br>.1633<br>.253<br>W32<br>.0890<br>.170<br>WP<br>5<br>P-Q<br>1925<br>W33A<br>.1261<br>.186<br>WP1<br>2<br>P1-Q | .0226<br>63<br>.0225<br>60<br>60<br>.0182<br>60 | .035           | TRAP                 | 5   | 4 |     |           |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 5 of 19 7/23/2008

| 328   | RK       | 3000   | .020      | .035 | TRAP        | 25 | 4 |    |    |         |
|-------|----------|--------|-----------|------|-------------|----|---|----|----|---------|
| 329   | KK       | W33B   |           |      |             |    |   |    |    |         |
| 330   | KM       |        |           |      |             |    |   |    |    |         |
| 331   | BA       | .1360  |           |      |             |    |   |    |    |         |
| 332   | LS       |        | 60        |      |             |    |   |    |    |         |
| 333   | UD       | .225   |           |      |             |    |   |    |    |         |
|       |          |        |           |      | HEC-1 INPUT |    |   |    |    | PAGE 9  |
| LINE  | ID       | 1      | 2         |      |             | 6  | 7 | 89 | 10 |         |
| 334   | ĸĸ       | W341   |           |      |             |    |   |    |    |         |
| 335   | KM       | 194A   |           |      |             |    |   |    |    |         |
| 336   | BA       | .1418  |           |      |             |    |   |    |    |         |
| 337   | LS       |        | 60        |      |             |    |   |    |    |         |
| 338   | UD       | .173   |           |      |             |    |   |    |    |         |
| 339   | кк       | 34A-P2 |           |      |             |    |   |    |    |         |
| 340   | КМ       |        |           |      |             |    |   |    |    |         |
| 341   | RK       | 2550   | .0176     | .035 | TRAP        | 25 | 4 |    |    |         |
| 342   | KK       | W34B   |           |      |             |    |   |    |    |         |
| 343   | КM       |        |           |      |             |    |   |    |    |         |
| 344   | BA       | .1766  | 60        |      |             |    |   |    |    |         |
| 345   | LS       | . 224  | 60        |      |             |    |   |    |    |         |
|       | •••      |        |           |      |             |    |   |    |    |         |
| 347   | KK       | WP2    |           |      |             |    |   |    |    |         |
| 348   | KM       | 2      |           |      |             |    |   |    |    |         |
| 545   | 110      | -      |           |      |             |    |   |    |    |         |
| 350   | KK       | P2-Q   |           |      |             |    |   |    |    |         |
| 351   | KM       | 0.640  | 0.01      | 0.75 |             | 25 |   |    |    |         |
| 352   | KK       | 2040   | .021      | .035 | IRAP        | 25 | 4 |    |    |         |
| 353   | KK       | W34C   |           |      |             |    |   |    |    |         |
| 354   | KM       |        |           |      |             |    |   |    |    |         |
| 355   | BA       | .1625  | <b>CA</b> |      |             |    |   |    |    |         |
| 356   |          | 244    | 60        |      |             |    |   |    |    |         |
| 557   | 00       |        |           |      |             |    |   |    |    |         |
| 358   | KK       | WQ     |           |      |             |    |   |    |    |         |
| 359   | KM       |        |           |      |             |    |   |    |    |         |
| 360   | RC       | 4      |           |      |             |    |   |    |    |         |
| 361   | KK       | Q-Q1   |           |      |             |    |   |    |    |         |
| 362   | KM       | 2040   | 022       | 0.25 | <b>TPAP</b> | 25 | 0 |    |    |         |
| 363   | RK       | 2940   | .022      | .035 | IKAP        | 25 | 4 |    |    |         |
| 364   | KK       | W36A   |           |      |             |    |   |    |    |         |
| 365   | KM       |        |           |      |             |    |   |    |    |         |
| 366   | BA       | ,1429  | 60        |      |             |    |   |    |    |         |
| 368   | UD       | .234   | 00        |      |             |    |   |    |    |         |
|       |          |        |           |      |             |    |   |    |    |         |
| 369   | KK       | WQ1    |           |      |             |    |   |    |    |         |
| 370   | KM<br>HC | 2      |           |      |             |    |   |    |    |         |
| 0 · 1 |          | -      |           |      |             |    |   |    |    |         |
| 372   | KK       | Q1-R   |           |      |             |    |   |    |    |         |
| 373   | KM<br>PK | 3400   | 022       | 035  | TRAP        | 25 | 4 |    |    |         |
| 374   | KI       | 5400   | .022      | .055 | HEC-1 INPUT | 20 | • |    |    | PAGE 10 |
|       |          |        |           |      |             | ~  | - |    | 10 |         |
| LINE  | 10.      |        |           |      |             |    |   |    | 10 |         |
|       |          |        |           |      |             |    |   |    |    |         |
| 375   | KK       | W36B   |           |      |             |    |   |    |    |         |
| 370   | BA       | .1918  |           |      |             |    |   |    |    |         |
| 378   | LS       |        | 60        |      |             |    |   |    |    |         |
| 379   | UD       | .306   |           |      |             |    |   |    |    |         |
| 380   | кк       | W35A   |           |      |             |    |   |    |    |         |
| 381   | КM       |        |           |      |             |    |   |    |    |         |
| 382   | BA       | .0958  |           |      |             |    |   |    |    |         |
| 383   | LS       | 107    | 60        |      |             |    |   |    |    |         |
| 384   | UD       | .187   |           |      |             |    |   |    |    |         |
| 385   | кк       | 35A-WR |           |      |             |    |   |    |    |         |
| 386   | KM       |        |           |      |             |    |   |    |    |         |
| 387   | RK       | 3715   | .023      | .035 | TRAP        | 25 | 4 |    |    |         |
| 388   | кк       | W35B   |           |      |             |    |   |    |    |         |
| 389   | KM       |        |           |      |             |    |   |    |    |         |
| 390   | BA       | .1507  | 60        |      |             |    |   |    |    |         |
| 392   | UD       | .259   | 00        |      |             |    |   |    |    |         |
| -     |          | -      |           |      |             |    |   |    |    |         |
| 393   | KK       | WR     |           |      |             |    |   |    |    |         |
| 395   | HC       | 4      |           |      |             |    |   |    |    |         |
|       |          |        |           |      |             |    |   |    |    |         |
| 396   | KK       | WR-S   |           |      |             |    |   |    |    |         |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 6 of 19 7/23/2008

| 397<br>398 | KM<br>RK | 2922         | .0168   | .035     |          | TRAP   | 25         | 4        |        |        |    |         |
|------------|----------|--------------|---------|----------|----------|--------|------------|----------|--------|--------|----|---------|
| 200        | ~~~      | 57278        |         |          |          |        |            |          |        |        |    |         |
| 399        | KK<br>KM | W3/A         |         |          |          |        |            |          |        |        |    |         |
| 401        | BA       | .1138        |         |          |          |        |            |          |        |        |    |         |
| 402        | LS       |              | 60      |          |          |        |            |          |        |        |    |         |
| 403        | UD       | .185         |         |          |          |        |            |          |        |        |    |         |
|            |          | 27. C        |         |          |          |        |            |          |        |        |    |         |
| 404        | KM       | 3/A-5        |         |          |          |        |            |          |        |        |    |         |
| 406        | RK       | 1430         | .014    | .035     |          | TRAP   | 25         | 4        |        |        |    |         |
|            |          |              |         |          |          |        |            |          |        |        |    |         |
| 407        | KK       | W37B         |         |          |          |        |            |          |        |        |    |         |
| 408        | KM<br>PA | 1626         |         |          |          |        |            |          |        |        |    |         |
| 409        | LS       | .1000        | 90      |          |          |        |            |          |        |        |    |         |
| 411        | UD       | .218         |         |          |          |        |            |          |        |        |    |         |
|            |          |              |         |          |          |        |            |          |        |        |    |         |
| 412        | KK       | WS           |         |          |          |        |            |          |        |        |    |         |
| 413        | KM<br>HC | 2            |         |          |          |        |            |          |        |        |    |         |
| 414        | ne       | 5            |         |          | HEC-1    | INPUT  |            |          |        |        |    | PAGE 11 |
|            |          |              |         |          |          |        |            |          |        |        |    |         |
| LINE       | ID       |              | 2.      | 3        | 4        |        |            | 7        | 8      | 9      | 10 |         |
|            |          |              |         |          |          |        |            |          |        |        |    |         |
| 415        | кк       | 5 <b>-</b> T |         |          |          |        |            |          |        |        |    |         |
| 416        | KM       |              |         |          |          |        |            |          |        |        |    |         |
| 417        | RK       | 3653         | .0164   | .035     |          | TRAP   | 25         | 4        |        |        |    |         |
| 410        | 272      | 970          |         |          |          |        |            |          |        |        |    |         |
| 410        | KM       | W 20         |         |          |          |        |            |          |        |        |    |         |
| 420        | BA       | .0907        |         |          |          |        |            |          |        |        |    |         |
| 421        | LS       |              | 62      |          |          |        |            |          |        |        |    |         |
| 422        | UD       | .190         |         |          |          |        |            |          |        |        |    |         |
| 422        | VV       |              |         |          |          |        |            |          |        |        |    |         |
| 423        | KM       |              |         |          |          |        |            |          |        |        |    |         |
| 425        | RK       | 2922         | .0171   | .035     |          | TRAP   | 5          | 4        |        |        |    |         |
|            |          |              |         |          |          |        |            |          |        |        |    |         |
| 426        | KK       | W39          |         |          |          |        |            |          |        |        |    |         |
| 427        | 5A       | 1833         |         |          |          |        |            |          |        |        |    |         |
| 429        | LS       | .1000        | 76      |          |          |        |            |          |        |        |    |         |
| 430        | UD       | .251         |         |          |          |        |            |          |        |        |    |         |
|            |          |              |         |          |          |        |            |          |        |        |    |         |
| 431        | KK       | W40          |         |          |          |        |            |          |        |        |    |         |
| 433        | BA       | .0706        |         |          |          |        |            |          |        |        |    |         |
| 434        | LS       |              | 92      |          |          |        |            |          |        |        |    |         |
| 435        | UD       | .165         |         |          |          |        |            |          |        |        |    |         |
| 476        | vv       | ы <i>т</i>   |         |          |          |        |            |          |        |        |    |         |
| 437        | KM       |              |         |          |          |        |            |          |        |        |    |         |
| 438        | HC       | 4            |         |          |          |        |            |          |        |        |    |         |
|            |          |              |         |          |          |        |            |          |        |        |    |         |
| 439        | KK       | T-U          |         |          |          |        |            |          |        |        |    |         |
| 440        | RK       | 1125         | .0098   | .035     |          | TRAP   | 25         | 4        |        |        |    |         |
|            |          |              |         |          |          |        |            |          |        |        |    |         |
| 442        | KK       | W41          |         |          |          |        |            |          |        |        |    |         |
| 443        | KM<br>BA | 0.501        |         |          |          |        |            |          |        |        |    |         |
| 444        | LS       | .0001        | 83      |          |          |        |            |          |        |        |    |         |
| 446        | UD       | .117         |         |          |          |        |            |          |        |        |    |         |
|            |          |              |         |          |          |        |            |          |        |        |    |         |
| 447        | KK       | POND         |         |          |          |        |            |          |        |        |    |         |
| 448        | KM<br>HC | 2            |         |          |          |        |            |          |        |        |    |         |
| • • •      |          | ~            |         |          |          |        |            |          |        |        |    |         |
| 450        | кк       | DIVOUT       |         |          |          |        |            |          |        |        |    |         |
| 451        | KM       | DIVERT       | 35.8 CI | FS (2-YR | HISTORIC | FLOW)  | FROM DETEN | VTION PO | ND     |        |    |         |
| 452        | DT       | DIVERT       | 0       | 35.8     |          |        |            |          |        |        |    |         |
| 453        | DI       | 0            | 35.8    |          |          |        |            |          |        |        |    |         |
| 131        | 24       |              | 50.0    |          | HEC-1    | INPUT  |            |          |        |        |    | PAGE 12 |
|            |          |              |         |          |          | -      |            | _        |        |        |    |         |
| LINE       | ID.      | 1.           | 2       |          | 4.       |        | 56.        |          | 8.     |        | 10 |         |
|            |          |              |         |          |          |        |            |          |        |        |    |         |
| 455        | кк       | PONDWU       |         |          |          |        |            |          |        |        |    |         |
| 456        | KM       | R            | EGIONAL | DETENTIO | N POND   | Q5=94, | Q100=1214  | _        |        |        |    |         |
| 457        | SV       | 0.0          | 0.006   | .09      | .40      | 1.19   | 9 3.31     | 7.12     | 11.50  | 16.05  |    |         |
| 458        | SV       | 20.76        | 25.61   | 30.61    | 35.77    | 40.99  | יר ר       | ~ ~ ~    |        | 74     |    |         |
| 459        | 5E<br>CF | 10.3         | 24      | 27       | 2B<br>13 | 20     | - ∠⊥<br>9  | 22       | 23     | 24     |    |         |
| 461        | SO SO    | 23<br>0      | 20      | 27.40    | 46.66    | 67.7   | 7 81.84    | 249.51   | 544.89 | 923.33 |    |         |
| 462        | SQ       | 1090.5       | 1212.93 | 1323.91  | 1426.18  | 1521.5 | 3          |          |        |        |    |         |
| 463        | RS       | 1            | ELEV    | 16.5     |          |        |            |          |        |        |    |         |
| 161        |          | P-977        |         |          |          |        |            |          |        |        |    |         |
| 465        | KM       | 5-WU         |         |          |          |        |            |          |        |        |    |         |
| 466        | RK       | 2215         | .0181   | .035     |          | TRA    | P 25       | 4        |        |        |    |         |

1

1

•

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 7 of 19 7/23/2008

|                | 467            | KK         | DIVIN      |            |            |                   |      |   |   |         |
|----------------|----------------|------------|------------|------------|------------|-------------------|------|---|---|---------|
|                | 407            | 141        | DETRIC     | m 35 0 0   | CC DIVERT  | TH CHANNEL        |      |   |   |         |
|                | 468            | n.m        | REINIE     | /E 33.0 C  | ro Diveri  | ED IN CIPANISE    |      |   |   |         |
|                | 469            | DR         | DIVERT     |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 470            | KK         | W423       |            |            |                   |      |   |   |         |
|                | 470            | 144        |            |            |            |                   |      |   |   |         |
|                | 4/1            | KM         |            |            |            |                   |      |   |   |         |
|                | 472            | BA         | .0127      |            |            |                   |      |   |   |         |
|                | 473            | LS         |            | 92         |            |                   |      |   |   |         |
|                | 474            | ID         | 100        | 22         |            |                   |      |   |   |         |
|                | 4 / 4          | 00         | .160       |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 475            | KK         | 42A-WU     |            |            |                   |      |   |   |         |
|                | 176            | KM.        |            |            |            |                   |      |   |   |         |
|                | 470            | Ref<br>DV  | 1070       | 0000       | 012        | <b>MD 3 D</b>     |      |   |   |         |
|                | 477            | RK         | 19/0       | .0090      | .013       | TRAP              | 4    | 4 |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 478            | KK         | W42        |            |            |                   |      |   |   |         |
|                | 170            | 101        |            |            |            |                   |      |   |   |         |
|                | 479            | run -      |            |            |            |                   |      |   |   |         |
|                | 480            | BA         | .0519      |            |            |                   |      |   |   |         |
|                | 481            | LS         |            | 92         |            |                   |      |   |   |         |
|                | 482            | מוז        | 127        |            |            |                   |      |   |   | 3       |
|                | 402            | 00         |            |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 483            | KK         | W42B       |            |            |                   |      |   |   |         |
|                | 484            | КM         |            |            |            |                   |      |   |   |         |
|                | 485            | RA         | 0195       |            |            |                   |      |   |   |         |
|                | 100            | 10         | .0190      |            |            |                   |      |   |   |         |
|                | 480            | 12         |            | 92         |            |                   |      |   |   |         |
|                | 487            | UD         | .180       |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 488            | ĸĸ         | 42B-WIT    |            |            |                   |      |   |   |         |
|                | 400            | 101        | 120        |            |            |                   |      |   |   |         |
|                | 489            | KM.        |            |            |            |                   |      |   |   |         |
|                | 490            | RK         | 2770       | .0100      | .013       | TRAP              | 4    | 4 |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 401            | VV         | WIT I      |            |            |                   |      |   |   |         |
|                | 491            | KK         |            |            |            |                   |      |   |   |         |
|                | 492            | KM         |            |            |            |                   |      |   |   |         |
|                | 493            | HC         | 5          |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 494            | KK         | 0-v        |            |            |                   |      |   |   |         |
|                | 495            | KM         |            |            |            |                   |      |   |   |         |
|                | 496            | RK         | 2200       | .0145      | .035       | TRAP              | 25   | 4 |   |         |
|                | 150            |            |            |            |            | HEC-1 INPUT       |      |   |   | PAGE 13 |
|                |                |            |            |            |            | HEC I INTOI       |      |   |   | 1162 15 |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | LINE           | ID.        | 1 .        |            |            | 4                 | 6    | 7 | 8 | 10      |
|                |                |            |            |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 497            | KK         | ₩43        |            |            |                   |      |   |   |         |
|                | 498            | KM         |            |            |            |                   |      |   |   |         |
|                | 100            | BA         | 1457       |            |            |                   |      |   |   |         |
|                | 100            | 501        | .1457      | <b>C A</b> |            |                   |      |   |   |         |
|                | 500            | LS         |            | 64         |            |                   |      |   |   |         |
|                | 501            | UD         | .169       |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 500            | 1/1/       | LIT /      |            |            |                   |      |   |   |         |
|                | 302            | KK.        | пv         |            |            |                   |      |   |   |         |
|                | 503            | KM         |            |            |            |                   |      |   |   |         |
|                | 504            | HC         | 2          |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 505            | ~~~        | 17.17      |            |            |                   |      |   |   |         |
|                | 505            | NN.        | v-n        |            |            |                   |      |   |   |         |
|                | 506            | KM         |            |            |            |                   |      |   |   |         |
|                | 507            | RK         | 487        | .0103      | .035       | TRAP              | 25   | 4 |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 50.9           | ~~~        | w a c      |            |            |                   |      |   |   |         |
|                | 508            | ĸĸ         | M43        |            |            |                   |      |   |   |         |
|                | 509            | КM         |            |            |            |                   |      |   |   |         |
|                | 510            | BA         | .1931      |            |            |                   |      |   |   |         |
|                | 511            | LS         |            | 61         |            |                   |      |   |   |         |
|                | 510            | 10         | 100        | ~ *        |            |                   |      |   |   |         |
|                | 312            | 00         | .109       |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
|                | 513            | KK         | WW         |            |            |                   |      |   |   |         |
|                | 514            | KM         |            |            |            |                   |      |   |   |         |
|                | 515            | нс         | 2          |            |            |                   |      |   |   |         |
|                | 515            | 10         | 2          |            |            |                   |      |   |   |         |
|                | 210            | 22         |            |            |            |                   |      |   |   |         |
| L              |                |            |            |            |            |                   |      |   |   |         |
|                | SCI            | HEMATIC DI | AGRAM O    | F STREAM   | NETWORK    |                   |      |   |   |         |
| INDUT          |                |            |            |            |            |                   |      |   |   |         |
| LINE           | (III) DOT      | T T N/-    | 1-         | ->> ->-    | STON OF .  | NIMP FLOP         |      |   |   |         |
| LINE           | (V) ROU        | TING       | (          | ->) DIVER  | USION OR I | POMP FLOW         |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
| NO.            | (.) CON        | NECTOR     | (<         | ) RETUR    | N OF DIVE  | ERTED OR PUMPED H | FLOW |   |   |         |
|                | ,              |            | <b>,</b> · |            |            |                   |      |   |   |         |
|                |                |            |            |            |            |                   |      |   |   |         |
| 8              | W1             |            |            |            |            |                   |      |   |   |         |
|                | v              |            |            |            |            |                   |      |   |   |         |
|                | v              |            |            |            |            |                   |      |   |   |         |
|                | *              |            |            |            |            |                   |      |   |   |         |
| ~ ~            |                |            |            |            |            |                   |      |   |   |         |
| 25             |                |            |            |            |            |                   |      |   |   |         |
| 25             |                |            |            |            |            |                   |      |   |   |         |
| 25             | •              |            |            |            |            |                   |      |   |   |         |
| 25             |                | L1 1       | ,          |            |            |                   |      |   |   |         |
| 25<br>28       |                | W2         | 2          |            |            |                   |      |   |   |         |
| 25<br>28       |                | <b>W</b> 2 | 2          |            |            |                   |      |   |   |         |
| 25<br>28       |                | W2         | 2          |            |            |                   |      |   |   |         |
| 25<br>28<br>33 | WA             | W2         | 2          |            |            |                   |      |   |   |         |
| 25<br>28<br>33 | WA .           | ¥2         | 2          |            |            |                   |      |   |   |         |
| 25<br>28<br>33 |                | W2         | -          |            |            |                   |      |   |   |         |
| 25<br>28<br>33 | WA .<br>V<br>V | W2         | -          |            |            |                   |      |   |   |         |

1

39

44

47

WЗ

.

:

.

.

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 8 of 19 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 9 of 19 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 10 of 19 7/23/2008



\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 11 of 19 7/23/2008


FALCON HIGHLANDS PRELIMINARY DRAINAGE PLAN - BASED ON DBPS MODEL F100FNLQ \*\* DETENTION POND AT WU (BETWEEN SH 24 AND TAMLIN RD)

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 12 of 19 7/23/2008

\*\* 2 Year, 5 Year and 100 Year Storm Events (24hr Storm)
\*\*Basins W40 & W42 revised due to Meridian Crossing development 6 10 OUTPUT CONTROL VARIABLES 5 PRINT CONTROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE IPRNT IPLOT OSCAL HYDROGRAPH TIME DATA IT DATA 5 MINUTES IN COMPUTATION INTERVAL 25MAY 5 STARTING DATE 0800 STARTING TIME 300 NUMBER OF HYDROGRAPH ORDINATES 26MAY 5 ENDING DATE 0855 ENDING TIME 19 CENTURY MARK NMIN IDATE ITIME NQ NDDATE NDTIME ICENT COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS ENGLISH UNITS DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH LENGTH, ELEVATION INCHES FEET CUBIC FEET PER SECOND ACRE-FEET FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE ACRES DEGREES FAHRENHEIT MULTI-PLAN OPTION JP NPLAN 1 NUMBER OF PLANS MULTI-RATIO OPTION JR RATIOS OF PRECIPITATION 1.00 1.24 2.10 1.00

\*\*\* FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

\*\*\* FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

| OPERATION          | STATION | AREA | PLAN |              | RA<br>RATIO 1<br>1.00 | TIOS APPL<br>RATIO 2<br>1.24 | IED TO PREC<br>RATIO 3<br>2.10 | IPITATION |
|--------------------|---------|------|------|--------------|-----------------------|------------------------------|--------------------------------|-----------|
| HYDROGRAPH AT<br>+ | W1      | .05  | 1    | FLOW<br>TIME | 1.<br>5.83            | 5.<br>5.83                   | 40.<br>5.75                    |           |
| ROUTED TO<br>+     |         | .05  | 1    | FLOW<br>TIME | 0.<br>6.00            | 4.<br>5.92                   | 37.<br>5.83                    |           |
| HYDROGRAPH AT<br>+ | W2      | .03  | 1    | FLOW<br>TIME | 0.<br>5.92            | 2.<br>5.83                   | 20.<br>5.83                    |           |
| 2 COMBINED AT<br>+ | WA      | .08  | 1    | FLOW<br>TIME | 1.<br>6.00            | 6.<br>5.92                   | 57.<br>5.83                    |           |
| ROUTED TO<br>+     |         | .00  | 1    | FLOW<br>TIME | 1.<br>6.08            | 6.<br>5.92                   | 55.<br>5.83                    |           |
| HYDROGRAPH AT<br>+ | W3      | .05  | 1    | FLOW<br>TIME | 1.<br>5.83            | 5.<br>5.83                   | 39.<br>5.83                    |           |
| 2 COMBINED AT<br>+ | WB      | .13  | 1    | FLOW<br>TIME | 1.<br>6.08            | 11.<br>5.92                  | 95.<br>5.83                    |           |
| ROUTED TO<br>+     |         | .13  | 1    | FLOW<br>TIME | 1.<br>6.17            | 10.<br>5.92                  | 91.<br>5.83                    |           |
| HYDROGRAPH AT<br>+ | W4      | .01  | 1    | FLOW<br>TIME | 0.<br>5.75            | 1.<br>5.75                   | 6.<br>5.75                     |           |
| ROUTED TO<br>+     |         | .01  | 1    | FLOW<br>TIME | 0,<br>5.92            | 1.<br>5.83                   | 6.<br>5.75                     |           |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 13 of 19 7/23/2008

| HYDROGRAPH AT<br>+   | <b>W</b> 5  | .02 | 1 | FLOW<br>TIME         | 0.<br>5.83 | 2.<br>5.75  | 15.<br>5.75  |
|----------------------|-------------|-----|---|----------------------|------------|-------------|--------------|
| 3 COMBINED AT<br>+   | WC          | .15 | 1 | FLOW<br>TIME         | 1.<br>6.17 | 11.<br>5.92 | 105.<br>5.83 |
| ROUTED TO<br>+       |             | .15 | 1 | FLOW<br>TIME         | 1.<br>6.25 | 11.<br>5.92 | 103.<br>5.83 |
| HYDROGRAPH AT<br>+   | W6          | .05 | 1 | FLOW<br>TIME         | 1.<br>5.83 | 5.<br>5.83  | 43.<br>5.75  |
| ROUTED TO<br>+       |             | .05 | 1 | FLOW<br>TIME         | 0.<br>5.92 | 5.<br>5.83  | 40.<br>5.75  |
| HYDROGRAPH AT<br>+   | <b>W</b> 7  | .02 | 1 | FLOW<br>TIME         | 0,<br>5.83 | 2.<br>5.75  | 20.<br>5.75  |
| ROUTED TO<br>+       |             | .02 | 1 | FLOW<br>TIME         | 0.<br>5.83 | 2.<br>5.83  | 20.<br>5.75  |
| 2 COMBINED AT<br>+   | WD          | .07 | 1 | FLOW<br>TIME         | 1.<br>5.83 | 7.<br>5.83  | 60.<br>5.75  |
| ROUTED TO<br>+       | D-E         | .07 | 1 | FLOW<br>TIME         | 1.<br>5.92 | 6.<br>5.83  | 55.<br>5.75  |
| HYDROGRAPH AT<br>+   | W8          | .03 | 1 | FLOW<br>TIME         | 0.<br>5.83 | 3.<br>5.75  | 27.<br>5.75  |
| ROUTED TO<br>+       |             | .03 | 1 | FLOW<br>TIME         | 0.<br>5.92 | 3.<br>5.83  | 24.<br>5.75  |
| HYDROGRAPH AT<br>+   | W9          | .04 | 1 | FLOW<br>TIME         | 1.<br>5.83 | 5.<br>5.83  | 36.<br>5.75  |
| 3 COMBINED AT<br>+   | WE          | .14 | 1 | FLOW<br>TIME         | 1.<br>5.92 | 14.<br>5.83 | 114.<br>5.75 |
| ROUTED TO<br>+       | E-F         | .14 | 1 | FLOW<br>TIME         | 1.<br>6.08 | 13.<br>5.92 | 108.<br>5.83 |
| HYDROGRAPH AT<br>+   | <b>W</b> 10 | .04 | 1 | FLOW<br>TIME         | 1.<br>5.83 | 5.<br>5.83  | 39.<br>5.75  |
| ROUTED TO<br>+       |             | .04 | 1 | FLOW<br>TIME         | 1.<br>5.92 | 5.<br>5.83  | 36.<br>5.75  |
| HYDROGRAPH AT<br>+   | W11         | .03 | 1 | FLOW<br>TIME         | 0.<br>5.83 | 3.<br>5.75  | 29.<br>5.75  |
| 4 COMBINED AT<br>+   | WE          | .36 | 1 | FLOW<br>TIME         | 3.<br>6.08 | 29.<br>5.92 | 265.<br>5.83 |
| ROUTED TO<br>+       | F-G         | .36 | 1 | FLOW<br>TIME         | 3.<br>6.25 | 28.<br>6.00 | 255.<br>5.83 |
| HYDROGRAPH AT<br>+ . | W12         | .04 | 1 | FLOW<br>TIME         | 0.<br>5.83 | 4.<br>5.83  | 33.<br>5.75  |
| ROUTED TO            |             | .04 | 1 | FLOW<br>TIME         | 0.<br>6.17 | 4.<br>5.92  | 32.<br>5.83  |
| HYDROGRAPH AT<br>+   | W14         | .05 | 1 | FLOW<br>TIME         | 1.<br>5.83 | 5.<br>5.83  | 38.<br>5.83  |
| ROUTED TO            |             | .05 | 1 | FLOW<br>TI <b>ME</b> | 1.<br>5.92 | 5.<br>5.92  | 37.<br>5.83  |
| HYDROGRAPH AT<br>+   | W13         | .11 | 1 | FLOW                 | 2.         | 10.         | 80.          |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 14 of 19 7/23/2008

.

| HYDROGRAPH AT<br>+ | W33B           | .14  | 1 | FLOW<br>TIME | 1.<br>6.33   | 9.<br>5.92   | 78.<br>5.92   |
|--------------------|----------------|------|---|--------------|--------------|--------------|---------------|
| HYDROGRAPH AT<br>+ | W34A           | .14  | 1 | FLOW<br>TIME | 1.<br>6.33   | 10.<br>5.92  | 96.<br>5.83   |
| ROUTED TO<br>+     | 34A-P2         | .14  | 1 | FLOW<br>TIME | 1.<br>6.33   | 10.<br>6.08  | 93.<br>5.92   |
| HYDROGRAPH AT<br>+ | W34B           | .18  | 1 | FLOW<br>TIME | 1.<br>6.33   | 11.<br>5.92  | 101.<br>5.92  |
| 2 COMBINED AT<br>+ | WP2            | , 32 | 1 | FLOW<br>TIME | 2.<br>6.33   | 20.<br>6.00  | 195.<br>5.92  |
| ROUTED TO<br>+     | P2-Q           | . 32 | 1 | FLOW<br>TIME | 2.<br>6.75   | 19.<br>6.17  | 186.<br>6.00  |
| HYDROGRAPH AT<br>+ | W34C           | .16  | 1 | FLOW<br>TIME | 1.<br>6,33   | 10.<br>6.00  | 90.<br>5.92   |
| 4 COMBINED AT<br>+ | ŴQ             | 2.37 | 1 | FLOW<br>TIME | 19.<br>6.92  | 115.<br>6.25 | 1336.<br>6.00 |
| ROUTED TO<br>+     | Q-Q1 .         | 2.37 | 1 | FLOW<br>TIME | 19.<br>7.08  | 114.<br>6.33 | 1294.<br>6.00 |
| HYDROGRAPH AT<br>+ | W36A           | .14  | 1 | FLOW<br>TIME | 1.<br>6.33   | 9.<br>5.92   | 81.<br>5.92   |
| 2 COMBINED AT<br>+ | WQ1            | 2.51 | 1 | FLOW<br>TIME | 20.<br>7.08  | 118.<br>6.33 | 1363.<br>6.00 |
| ROUTED TO<br>+     | Q1-R           | 2.51 | 1 | FLOW<br>TIME | 20.<br>7.25  | 117.<br>6.42 | 1320.<br>6.08 |
| HYDROGRAPH AT<br>+ | W36B           | .19  | 1 | FLOW<br>TIME | 1.<br>6.42   | 10.<br>6.00  | 91.<br>6.00   |
| HYDROGRAPH AT<br>+ | W35A           | .10  | 1 | FLOW<br>TIME | 1.<br>6.33   | 7.<br>5.92   | 62.<br>5.83   |
| ROUTED TO<br>+     | 35A-WR         | .10  | 1 | FLOW<br>TIME | 1.<br>6.92   | 6.<br>6.25   | 58.<br>6.00   |
| HYDROGRAPH AT<br>+ | W35B           | .15  | 1 | FLOW<br>TIME | 1.<br>6.42   | 9.<br>6.00   | 81.<br>5.92   |
| 4 COMBINED AT<br>+ | WR             | 2.95 | 1 | FLOW<br>TIME | 22.<br>7.17  | 132.<br>6.42 | 1506.<br>6.08 |
| ROUTED TO<br>+     | WR-S           | 2.95 | 1 | FLOW<br>TIME | 22.<br>7.33  | 131.<br>6.50 | 1485.<br>6.08 |
| HYDROGRAPH AT<br>+ | W37A           | .11  | 1 | flow<br>Time | 1.<br>6.33   | 8.<br>5.92   | 74.<br>5.83   |
| ROUTED TO<br>+     | 37 <b>A-</b> 5 | .11  | 1 | FLOW<br>TIME | 1.<br>6.58   | 8.<br>6.00   | 71.<br>5.92   |
| HYDROGRAPH AT<br>+ | W37B           | .16  | 1 | FLOW<br>TIME | 145.<br>5.83 | 201.<br>5.83 | 410.<br>5.83  |
| 3 COMBINED AT<br>+ | WS             | 3.23 | 1 | FLOW<br>TIME | 145.<br>5.83 | 201.<br>5.83 | 1705.<br>6.08 |
| ROUTED TO<br>+     | S-T            | 3.23 | 1 | FLOW<br>TIME | 140.<br>5.92 | 197.<br>5.92 | 1632.<br>6.17 |
| HYDROGRAPH AT<br>+ | W38            | .09  | 1 | FLOW<br>TIME | 2.<br>5.92   | 10.<br>5.92  | 67.<br>5.83   |

\\Se-srv01\projects\057-Park Place Enterprises\07-032-Meridian Crossing\Reports\FDR\CALCS\SCS Calcs\West Trib Pond WU-Hec 1\westtrib.doc Page 17 of 19 7/23/2008

| +                   |           | .09  | 1       | FLOW<br>TIME               | 2.<br>6.25                     | 9.<br>6.08           | 66.<br>5.92           |  |
|---------------------|-----------|------|---------|----------------------------|--------------------------------|----------------------|-----------------------|--|
| HYDROGRAPH AT<br>+  | W39       | .18  | 1       | FLOW<br>TIME               | 49.<br>5.92                    | 85.<br>5.92          | 251.<br>5.92          |  |
| HYDROGRAPH AT<br>+  | W40       | .07  | 1       | FLOW<br>TIME               | 76.<br>5.75                    | 102.<br>5.75         | 201.<br>5.75          |  |
| 4 COMBINED AT       | WT        | 3.57 | 1       | FLOW<br>TIME               | 244.<br>5.92                   | 359.<br>5.83         | 1867.<br>6.08         |  |
| +                   | T-U       | 3.57 | 1       | flow<br>Time               | 243.<br>5.92                   | 358.<br>5.92         | 1821.<br>6.17         |  |
| + 2 COMBINED AT     | W41       | .06  | 1       | FLOW<br>TIME               | 40.<br>5.75                    | 60.<br>5,75          | 142.<br>5.75          |  |
| +<br>DIVERSION TO   | POND      | 3.63 | 1       | FLOW                       | 264.<br>5.92                   | 392.<br>5.83         | 1839.<br>6.17         |  |
| +<br>HYDROGRAPH AT  | DIVERT    | 3.63 | 1       | FLOW<br>TIME               | 36.<br>5.58<br>229             | 36.<br>5.50          | 36.<br>5.42           |  |
| ROUTED TO           | PONDWU    | 3.63 | 1       | TIME                       | 5.92                           | 223.                 | 6.17                  |  |
|                     |           |      | **<br>1 | TIME<br>PEAK STAU<br>STAGE | 6.17<br>GES IN FEET *<br>20.68 | 6.08<br>•<br>7.42    | 6.33<br>26.90         |  |
| ROUTED TO<br>+      | B-WU      | 3.63 | 1       | FLOW<br>TIME               | 116.<br>10.58                  | 219.<br>9.92         | 1298.<br>8.75         |  |
| HYDROGRAPH AT<br>+  | DIVIN     | .00  | 1       | FLOW<br>TIME               | 36.<br>5.58                    | 36.<br>5.50          | 36.<br>5.42           |  |
| HYDROGRAPH AT<br>+  | W42A      | .01  | 1       | FLOW<br>TIME               | 13.<br>5.83                    | 19.<br>5.83          | 35.<br>5.75           |  |
| ROUTED TO           | 42A-WU    | .01  | 1       | FLOW<br>TIME               | 13.<br>6.17                    | 18.<br>6.17          | 35.<br>6.08           |  |
| HYDROGRAPH AT<br>+  | W42       | .05  | 1       | FLOW<br>TIME               | 60.<br>5.75                    | 81.<br>5.75          | 156.<br>5.75          |  |
| +<br>ROUTED TO      | W42B      | . 02 | 1       | FLOW<br>TIME               | 21.<br>5.83                    | 28.<br>5.83          | 5 <b>4.</b><br>5.75   |  |
| +<br>5 COMBINED AT  | 42B-WU    | . 02 | 1       | FLOW<br>TIME               | 20.<br>5.92                    | 27.<br>5.92          | 54.<br>5.83           |  |
| +<br>Routed to<br>+ | ₩0<br>U-V | 3.72 | 1       | TIME                       | 135.                           | 258.<br>9.92<br>253. | 1339.<br>8.75         |  |
| HYDROGRAPH AT<br>+  | W43       | .15  | 1       | TIME                       | 10.67                          | 24.                  | 8.75                  |  |
| 2 COMBINED AT<br>+  | WV        | 3.86 | 1       | TIME<br>FLOW               | 5.92<br>135.<br>10.67          | 5.83<br>254.         | 5.83<br>1338.<br>8 75 |  |
| ROUTED TO<br>+      | V-W       | 3.86 | 1       | FLOW<br>TIME               | 133.<br>10.75                  | 249.<br>10.00        | 1334.<br>8.75         |  |
| HYDROGRAPH AT<br>+  | W45       | .19  | 1       | FLOW                       | 3.                             | 17.                  | 134.                  |  |

ROUTED TO

•

## MERIDIAN CROSSING FILING NO. 1 - FDR - EXISTING CONDITIONS SURFACE ROUTING

| DESIGN | CONTRIBUTING    | CA(equi | valent) | Tc        | INTE        | NSITY             | TOTAL                                                                                                            | FLOWS                 |
|--------|-----------------|---------|---------|-----------|-------------|-------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|
| POINT  | BASINS          | CA(5)   | CA(100) |           | l(5)        | l(100)            | Q(5)                                                                                                             | Q(100)                |
|        |                 |         |         | (min.)    | (in/hr)     | (in/hr)           | (cfs)                                                                                                            | (cfs)                 |
| 1      | E-1             | 1.96    | 2.07    | 6.4       | 4.8         | 8.5               | 9.4                                                                                                              | 17.6                  |
|        |                 |         |         | 1         |             | TRAVEL T          | IME                                                                                                              |                       |
|        |                 | 1.96    | 2.07    | Type/flow | Length (ft) | Velocity (fps)    | d. Time (min)                                                                                                    | T. Time (min)         |
|        |                 |         |         |           | 265         | 4.2               | 1.1                                                                                                              | 7.4                   |
| 2      | DP-1            | 1.96    | 2.07    | 7.4       | 4.6         | 8.1               | 22.9                                                                                                             | 48.7                  |
|        | E-2             | 3.07    | 3.94    |           |             | TRAVEL T          | IME                                                                                                              |                       |
|        |                 | 5.03    | 6.01    | Type/flow | Length (ft) | Velocity (fps)    | d. Time (min)                                                                                                    | T. Time (min)         |
|        |                 |         |         |           | 1500        | 4.7               | 5.3                                                                                                              | 12.7                  |
| 3      | E-4             | 1.94    | 2.04    | 6.3       | 4.8         | 8.5               | 9.3                                                                                                              | 17.5                  |
|        |                 |         |         |           |             | TRAVEL T          | IME                                                                                                              |                       |
|        |                 | 1.94    | 2.04    | Type/flow | Length (ft) | Velocity (fps)    | d. Time (min)                                                                                                    | T. Time (min)         |
|        |                 |         |         |           | 900         | 4.1               | 3.7                                                                                                              | 9.9                   |
| 5      | E-7             | 2.09    | 2.20    | 5.4       | 5.0         | 8.9               | 10.5                                                                                                             | 19.7                  |
|        |                 |         |         |           |             | TRAVEL T          | IME                                                                                                              |                       |
|        |                 | 2.09    | 2.20    | Type/flow | Length (ft) | Velocity (fps)    | d. Time (min)                                                                                                    | T. Time (min)         |
|        |                 |         |         |           | 347         | 2.0               | 2.9                                                                                                              | 8.3                   |
| 4      | E-6             | 2.36    | 2.49    | 5.8       | 4.9         | 8.7               | 11.6                                                                                                             | 21.7                  |
|        |                 |         |         |           |             | TRAVEL T          | IME                                                                                                              |                       |
|        |                 | 2.36    | 2.49    | Type/flow | Length (ft) | Velocity (fps)    | d. Time (min)                                                                                                    | T. Time (min)         |
|        |                 |         |         |           | 62          | 9.0               | 0.1                                                                                                              | 5.9                   |
| 6      | DP-2            | 5.03    | 6.01    | 16.1      | 3.4         | 6.0               | 67.8                                                                                                             | 149.7                 |
|        | DP-3            | 1.94    | 2.04    |           | •           | · · · · · · · · · |                                                                                                                  |                       |
|        | E-8             | 8.36    | 10.75   |           |             |                   |                                                                                                                  |                       |
|        | E-3             | 4.89    | 6.28    |           |             | TRAVEL 1          | IME                                                                                                              |                       |
|        |                 | 20.21   | 25.09   | Type/flow | Length (ft) | Velocity (fps)    | d. Time (min)                                                                                                    | T. Time (min)         |
|        |                 |         |         |           | 36          | 1.5               | 0.4                                                                                                              | 16.5                  |
| 7      | DP-6            | 20.21   | 25.09   | 16.5      | 3.3         | 5.9               | 67.0                                                                                                             | 148.5                 |
|        | DP-5 (INLET)    | 0.00    | 0.08    |           |             |                   |                                                                                                                  |                       |
|        | DP-4 (INLET)    | 0.00    | 0.00    | <b>_</b>  | T           | TRAVEL            |                                                                                                                  | 1                     |
|        |                 | 20.21   | 25.17   | Type/flow | Length (ft) | Velocity (fps)    | d. Time (min)                                                                                                    | T. Time (min)         |
|        |                 |         |         | <u> </u>  | 139         | 8.4               | 0.3                                                                                                              | 16.8                  |
| 8      | DP-7            | 20.21   | 25.17   | 16.8      | 3.3         | 5.9               | 147.7                                                                                                            | 1286.1                |
|        | POND WU*        | 19.44   | 188.25  |           |             |                   |                                                                                                                  |                       |
| 1      | WEST TRIB CHAN. | 1.96    | 2.07    |           |             |                   |                                                                                                                  |                       |
|        | E-5             | 3.29    | 4.23    |           |             |                   |                                                                                                                  |                       |
|        |                 | 44.04   | 040.70  | T.mo/#    | 1 on att /4 |                   |                                                                                                                  | T Time (mir)          |
|        |                 | 44.91   | 219.72  | 1 ype/now |             | velocity (Ips)    |                                                                                                                  | 1. nune (min)<br>17 0 |
| L      | 1               | 1       |         | 1         | 10          | 1 3.0             | L <u><u></u> <u></u> <u></u></u> | 1 17.0                |

\* VALUES WERE OBTAINED FROM THE APPROVED MARKET PLACE FILING NO. 1 DRAINAGE REPORT

**EXISTING Rational Calcs** 

Î

2



ļ

Î

# MERIDIAN CROSSING FILING NO. 1 - FDR - EXISTING CONDITIONS INLET CALCULATIONS

|    |                 |            |                |                 |      |        |      |          | đ |          |                |        |      |          |         | <b>)</b> 100 |                |        |
|----|-----------------|------------|----------------|-----------------|------|--------|------|----------|---|----------|----------------|--------|------|----------|---------|--------------|----------------|--------|
| dO | Inlet size L(i) | INLET TYPE | CROSS<br>SLOPE | STREET<br>SLOPE | Q(5) | Q(100) | õ    | CA(eqv.) | B | CA(eqv.) | DEPTH<br>(max) | SPREAD | ō    | CA(eqv.) | 8F<br>B | CA(eqv.)     | DEPTH<br>(max) | SPREAD |
| -  | 15              | FLOW-BY    | 2.0%           | 1.0%            | თ    | 18     | 6.4  | 1.34     | 3 | 0.62     | 0.42           | 16.7   | 10.8 | 1.27     | 7       | 0.80         | 0.51           | 21.1   |
| 5  | 20              | SUMP       | 2.0%           | SAG             | 6    | 17     | 9.3  | 1.94     | 0 | 0.00     | 0.50           |        | 17.5 | 2.04     | 0       | 0.00         | 0.50           |        |
| 4  | 25              | SUMP       | 2.0%           | SAG             | 12   | 22     | 11.6 | 2.36     | 0 | 0.00     | 0.50           |        | 21.7 | 2.49     | 0       | 0.00         | 0.50           |        |
| 5  | 20              | SUMP       | 2.0%           | SAG             | 5    | 20     | 10.5 | 2.09     | 0 | 0.00     | 0.50           |        | 18.9 | 2.12     | -       | 0.08         | 0.50           |        |

e

7/23/2008 3:40 PM



.

.



## MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS (RATIONAL METHOD Q=CIA)

|               | COMMENTS |            |       |      |       |      |       |      |      |              |      |      |      |                                          |      |   |          |             |
|---------------|----------|------------|-------|------|-------|------|-------|------|------|--------------|------|------|------|------------------------------------------|------|---|----------|-------------|
| ITΥ           | 100      | ı/hr)      | 8.5   | 9.0  | 6.0   | 8.5  | 6.6   | 8.7  | 8.9  | 6.9          | 9.1  | 9.1  | 9.1  | 7.3                                      | 7.2  |   | •6       | .67         |
| VTENS         | Is       | in/hr) (ii | 4.8   | 5.1  | 3.4   | 4.8  | 3.7   | 4.9  | 5.0  | 3.8          | 5.1  | 5.1  | 5.1  | 4.1                                      | 4.0  |   | <b>4</b> | 1.5         |
| <u>۲</u><br>۲ | OTAL     | (imin) (i  | 6.4   | 5.2  | 16.1  | 6.3  | 13.0  | 5.8  | 5.4  | 11.7         | 5.0  | 5.0  | 5.0  | 10.1                                     | 10.4 |   | co+Tcc   |             |
|               | Tcc T    | (min)      | 5.7   | 4.3  | 10.4  | 5.6  | 7.3   | 5.1  | 4.7  | 7.7          | 4.0  | 1.7  | 1.7  | 9.4                                      | 9.4  |   | *3 To    | ,           |
| NEL           | /elocity | (fps)      | 2.5   | 2.6  | 2.2   | 2.5  | 2.3   | 2.8  | 2.8  | 2.8          | 2.2  | 4.0  | 4.0  | 1.4                                      | 1.4  |   | *2       | 20          |
| CHAN          | Slope V  | (%)        | 1.6%  | 1.8% | 1.2%  | 1.6% | 1.4%  | 2.0% | 2.0% | 2.0%         | 1.2% | 4.0% | 4.0% | 0.5%                                     | 0.5% |   |          | •           |
|               | Length   | (¥)        | 867   | 675  | 1,370 | 848  | 1.020 | 873  | 197  | 1.315        | 525  | 400  | 400  | 800                                      | 800  | Η |          |             |
|               | Tco      | (min)      | 0.7   | 0.9  | 5.7   | 0.7  | 5.8   | 0.7  | 0.7  | 40           | 0.7  | 0.7  | 0.7  | 0.7                                      | 0.9  |   | . 1*     | •           |
| AND           | Slope    | (¥)        | 2.0%  | 2.0% | 2.0%  | 2.0% | 10.0% | 2.0% | 2.0% | 2.0%         | 2.0% | 2.0% | 2.0% | 2.0%                                     | 2.0% |   |          | •           |
| VERI          | Length   | (¥)        | S     | 0    | 20    | 5    | 60    | 5    | 5    | 10           | S    | 5    | 5    | 5                                        | 10   |   |          |             |
| 0             | Ű        |            | 06.0  | 06.0 | 0.25  | 0.90 | 0.25  | 06.0 | 0.90 | 0.25         | 06.0 | 06.0 | 0.00 | 0.00                                     | 06.0 |   |          |             |
| HTED          | C100     |            | 0.95  | 0.95 | 0.95  | 0.95 | 0.45  | 0.95 | 0.95 | 0.95         | 0.95 | 0.95 | 0.95 | 0.95                                     | 0.95 |   |          | -           |
| WEIGH         | ت<br>ت   |            | 06.0  | 06.0 | 06.0  | 06.0 | 0.35  | 06.0 | 06.0 | 06 0         | 06.0 | 06.0 | 06.0 | 06.0                                     | 0.00 |   |          | -           |
| AREA          | TOTAL    | (Ac)       | 218   | 514  | 11 49 | 215  | 941   | 2.62 | 232  | 23.89        | 3.68 | 0.47 | 0.30 | 0.48                                     | 1 63 |   |          | 65.80       |
|               | ( vi     | 100 YR     | 2 0.7 | 4 88 | 10.92 | 2 04 | 4 23  | 2.49 | 0000 | 22.20        | 3 50 | 0 40 | 0 37 | 0.45                                     | 1.55 |   | ò        | ÿ           |
|               | CAfem    | 5 YR       | 1 06  | 4.63 | 10.34 | 194  | 1 20  | 3.6  | 00 0 | 21 50        | 2.12 | 0.38 | 0.35 | 043                                      | 1 47 |   | ē        |             |
| FLOWS         | Oten     | (cfs)      | 176   | 0.11 | 1 29  | 175  | 2.71  | 212  | 10.7 | 1555         | 31.8 | 3.6  | 46   | 13                                       | 11.2 |   | V*1*∪    |             |
| OTAL          | č        | (cfs)      | 10    | 724  | 247   | 100  | 121   | 116  | 201  | 0.01<br>a Ca | 160  | 01   | 8    | 8                                        | 59   |   | V#1#√    |             |
|               | NISAR    |            | -     | -    | 7-7   |      |       | 2.4  |      |              |      |      |      | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | D-20 |   | Formula: | L'Ultimite. |

 $T_{co} = 1.87*(1.1-C5)*(1.2.0.5)*((S^{1}100)^{0.0}.33) (DCM page 5-11) V_{cc} = 20*S^{0.5} (USDCM RO-4) V_{cc} = 10^{+}S^{-0.5} (USDCM RO-4) T_{cc} = 1/V^{+}1/60 V_{cc} = (26.65*1.50)/(10+Tc)^{0.76} (City Letter of 1/7/2003) U_{100} = (26.65*2.67)/(10+Tc)^{0.76} (City Letter of 1/7/2003)$ 

• + \* \* \* \* •

Developed Rational Cales

7/23/2008 3:41 PM

---

## MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS SURFACE ROUTING

| DESIGN   | CONTRIBUTING   | CA(equi | valent) | Tc        | INTE        | NSITY          | TOTAL         | FLOWS         |
|----------|----------------|---------|---------|-----------|-------------|----------------|---------------|---------------|
| POINT    | BASINS         | CA(5)   | CA(100) |           | I(5)        | l(100)         | Q(5)          | Q(100)        |
|          |                |         |         | (min.)    | (in/hr)     | (in/hr)        | (cfs)         | (cfs)         |
| 1        | D-1            | 1.96    | 2.07    | 6.4       | 4.8         | 8.5            | 9.4           | 17.6          |
|          |                |         |         |           |             | TRAVEL T       | IME           |               |
|          |                | 1.96    | 2.07    | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|          |                |         |         |           | 250         | 4.2            | 1.0           | 7.4           |
| J        | D-10           | 0.38    | 0.40    | 5.0       | 5.1         | 9.1            | 3.7           | 7.(           |
|          | D-11           | 0.35    | 0.37    |           |             | TRAVEL T       | IME           |               |
|          |                | 0.73    | 0.77    | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|          |                |         |         | Gutter    | 820         | 5.0            | 2.7           | 7.7           |
| В        | D-12           | 0.43    | 0.45    | 10.1      | 4.1         | 7.3            | 4.7           | 8.9           |
|          | DP-J           | 0.73    | 0.77    |           |             |                |               |               |
|          |                |         |         |           |             | TRAVEL T       | IME           |               |
|          |                | 1.16    | 1.22    | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|          |                |         |         | Channel   | 40          | 1.8            | 0.4           | 10.5          |
| х        | D-9            | 3.31    | 3.50    | 5.0       | 5.1         | 9.1            | 16.9          | 31.8          |
|          |                |         |         |           |             | TRAVEL T       | IME           |               |
|          |                | 3.31    | 3.50    | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|          |                |         |         | Pipe      | 420         | 7.9            | 0.9           | 5.9           |
| Z        | D-2            | 4.63    | 4.88    | 10.5      | 4.0         | 7.2            | 44.6          | 83.6          |
|          | DP-X           | 3.31    | 3.50    | )         |             |                |               |               |
|          | Inlet 1 Flowby | 0.62    | 0.80    |           |             |                |               |               |
|          | Inlet 1        | 1.34    | 1.27    |           |             |                |               | ·····         |
|          | DP-B           | 1.16    | 1.22    | >         |             | TRAVEL 1       | IME 👘         |               |
|          |                | 11.06   | 11.67   | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
| <u>.</u> |                |         |         | Channel   | 725         | 3.8            | 3.2           | 13.6          |
| Y        | D-3            | 10.34   | 10.92   | 16.1      | 3.4         | 6.0            | 34.7          | 65.           |
|          |                |         |         |           | •           | TRAVEL         | ГІМЕ          |               |
|          |                | 10.34   | 10.92   | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|          |                |         |         | Channel   | 895         | 2.4            | 6.2           | 22.3          |
| 3        | D-4            | 1.94    | 2.04    | 6.3       | 4.8         | 8.5            | 9.3           | 17.           |
|          |                |         |         |           |             | TRAVEL         | ГІМЕ          |               |
|          |                | 1.94    | 2.04    | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|          |                |         |         |           |             | 0.0            | 0.0           | 6.3           |

| DESIGN                                | CONTRIBUTING    | C A ( e q u i | valent) | Tc        | INTE        | NSITY          | TOTAL         | FLOWS         |
|---------------------------------------|-----------------|---------------|---------|-----------|-------------|----------------|---------------|---------------|
| POINT                                 | BASINS          | CA(5)         | CA(100) |           | l(5)        | I(100)         | Q(5)          | Q(100)        |
|                                       |                 |               |         | (min.)    | (in/hr)     | (in/hr)        | (cfs)         | (cfs)         |
| E                                     | DP-3            | 1.94          | 2.04    | 13.6      | 3.6         | 6.4            | 46.9          | 88.2          |
|                                       | DP-Z            | 11.06         | 11.67   |           |             | TRAVEL T       | IME           |               |
|                                       |                 | 12.99         | 13.71   | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|                                       |                 |               |         | Channel   | 750         | 5.8            | 2.1           | 15.8          |
| 5                                     | D-7             | 2.09          | 2.20    | 5.4       | 5.0         | 8.9            | 10.5          | 19.7          |
|                                       |                 |               |         |           |             | TRAVEL T       | IME           |               |
|                                       |                 | 2.09          | 2.20    | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
| · · · · · · · · · · · · · · · · · · · |                 |               |         |           | 150         | 2.0            | 1.3           | 6.6           |
| 4                                     | D-6             | 2.36          | 2.49    | 5.8       | 4.9         | 8.7            | 11.6          | 21.7          |
|                                       |                 |               |         |           |             | TRAVEL T       | IME           |               |
|                                       |                 | 2.36          | 2.49    | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|                                       |                 |               |         |           | 85          | 9.0            | 0.2           | 6.0           |
| 6                                     | D-8             | 21.50         | 22.70   | 22.3      | 2.8         | 5.1            | 127.7         | 239.9         |
|                                       | DP-E            | 12.99         | 13.71   |           |             |                |               |               |
|                                       | DP-Y            | 10.34         | 10.92   |           |             | TRAVEL 1       | IME           |               |
|                                       |                 | 44.83         | 47.33   | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|                                       |                 |               |         | Pipe      | 36          | 10.0           | 0.1           | 22.4          |
| 7                                     | DP-6            | 44.83         | 47.33   | 22.4      | 2.8         | 5.1            | 140.2         | 264.8         |
|                                       | DP-5 (INLET)    | 2.09          | 2.49    |           |             |                |               |               |
|                                       | DP-4 (INLET)    | 2.36          | 2.49    |           |             | TRAVEL         | ГІМЕ          |               |
|                                       |                 | 49.28         | 52.30   | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|                                       |                 |               |         | Channel   | 110         | 8.4            | 0.2           | 22.6          |
| 8                                     | DP-7            | 49.28         | 52.30   | 22.6      | 2.8         | 5.0            | 209.4         | 1243.5        |
|                                       | POND WU*        | 19.44         | 188.25  |           |             |                |               |               |
|                                       | WEST TRIB CHAN. | 1.96          | 2.07    |           |             |                |               |               |
|                                       | D-5             | 3.29          | 4.23    |           | <b>T</b>    | TRAVEL         | TIME          |               |
|                                       |                 | 73.98         | 246.86  | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
| 1                                     |                 |               |         | 1         | 83          | 5.8            | 0.2           | 22.8          |

\* VALUES WERE OBTAINED FROM THE APPROVED MARKET PLACE FILING NO. 1 DRAINAGE REPORT

\*\* VALUES WERE OBTAINED FROM LOWES DRAINAGE REPORT



## MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS INLET CALCULATIONS

|      | SPREAD          |         |         |               |          |            |
|------|-----------------|---------|---------|---------------|----------|------------|
|      | DEPTH           | (111dA) | 0.51    | 0.50          | 0.50     | 0.50       |
| Q100 | CA(eqv.)        |         | 0.80    | 00.0          | 0,00     | 0.08       |
|      | 85              |         | 7       | 0             | 0        | 0.7        |
|      | CA(eqv.)        |         | 1 27    | 2.04          | 2.49     | 2.12       |
|      | ð               |         | 10.8    | 17.5          | 21.7     | 18.9       |
|      | SPREAD          |         | 16.7    |               |          |            |
|      | DEPTH           | (max)   | 0.42    | 0.50          | 0.50     | 0.50       |
|      | CA(eqv.)        |         | 0.62    | 00.0          | 00.00    | 0.00       |
| Ť    | FB              |         | 3       | 0             | 0        | 0          |
|      | CA(eqv.)        |         | 134     | 101           | 3.96     | 2.09       |
|      | ō               |         | 64      | 0 3           | 11.6     | 10.5       |
|      | Q(100)          |         | 18      | 17            |          | 20         |
|      | Q(5)            |         | ð       | . 0           | 64       | <b>1</b> 0 |
|      | STREET          | SLOPE   | 1 0%    |               | CV0      | SAG        |
|      | CROSS           | SLOPE   | 20%     | 20 7<br>/00 C | 1 0%     | 2.0%       |
|      | INLET TYPE      |         | CLOW BV |               | LINDS    | SUMP       |
|      | Inlet size L(i) |         | 16      | 0             | 2U<br>9E | 20         |
|      | dD              |         |         | - 6           | 2        | 4 0        |

## 7/23/2008 3:41 PM

## MERIDIAN CROSSING - FDR - PROPOSED CONDITIONS PIPE ROUTING

| DESIGN |                     | CA(equi | valent) | Tc        | INTE        | NSITY          | TOTAL         | FLOWS         |
|--------|---------------------|---------|---------|-----------|-------------|----------------|---------------|---------------|
| POINT  | CONTRIBUTING BASINS | CA(5)   | CA(100) |           | l(5)        | I(100)         | Q(5)          | Q(100)        |
|        |                     |         |         | (min.)    | (in/hr)     | (in/hr)        | (cfs)         | (cfs)         |
| 1      | INLET DP-1          | 1.34    | 1.27    | 6.4       | 4.8         | 8.5            | 6             | 11            |
|        |                     |         |         |           |             | TRAVEL T       | IME           |               |
|        |                     | 1.34    | 1.27    | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|        |                     |         |         | 18" RCP   | 270         | 7.1            | 0.6           | 7.0           |
| Х      | DP-X                | 3.31    | 3.50    | 5.0       | 5.1         | 9.1            | . 17          | 32            |
|        |                     |         |         |           |             | TRAVEL T       | IME           |               |
|        |                     | 3.31    | 3.50    | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|        |                     |         |         | 30" RCP   | 400         | 7.1            | 0.9           | 5.9           |
| Z      | DP-B                | 1.16    | 1.22    | 10.5      | 4.0         | 7.2            | 37            | 69            |
|        | DP-2                | 4.63    | 4.88    |           |             |                |               |               |
|        | DP-X                | 3.31    | 3.50    |           |             | TRAVEL 1       | IME           |               |
|        |                     | 9.10    | 9.60    | Type/flow | Length (ft) | Velocity (fps) | d. Time (min) | T. Time (min) |
|        |                     |         |         | 36" RCP   | 400         | 7.1            | 0.9           | 11.4          |

## STREET CAPACITY

## FOR 1/2 STREET SECTION **VERTICAL CURB**

|                   | Т                       |      |      |      |      |      |      |      |                          |      |      |      |      |      |      |      |  |
|-------------------|-------------------------|------|------|------|------|------|------|------|--------------------------|------|------|------|------|------|------|------|--|
|                   |                         |      |      |      |      |      |      |      |                          |      |      |      |      |      |      |      |  |
| y                 | 12.0                    | 17.0 | 20.8 | 24.1 | 26.9 | 29.5 | 31.8 | 34.0 | 12.0                     | 17.0 | 20.8 | 24.1 | 26.9 | 29.5 | 31.8 | 34.0 |  |
| (L <sup>max</sup> | 34                      | 34   | 34   | 34   | 34   | 34   | 34   | 34   | 34                       | 34   | 34   | 34   | 34   | 34   | 34   | 34   |  |
| MOIT              | 0.5                     | -    |      |      |      |      |      |      | 0.5                      |      |      |      |      |      |      |      |  |
| i ype             | ^                       |      |      |      |      |      |      |      | >                        |      |      |      |      |      |      |      |  |
| <b>c</b>          | 0.016                   |      |      |      |      |      |      |      | 0.016                    |      |      |      |      |      |      |      |  |
| Slope             | 0.02                    |      |      |      |      |      |      |      | 0.02                     |      |      |      |      |      |      |      |  |
| Slope             | 0.5%                    | 1.0% | 1.5% | 2.0% | 2.5% | 3.0% | 3.5% | 4.0% | 0.5%                     | 1.0% | 1.5% | 2.0% | 2.5% | 3.0% | 3.5% | 4.0% |  |
| Formula           | Q=171.7 S <sup>m2</sup> |      |      |      |      |      |      |      | Q=171.7 S <sup>1/2</sup> |      |      |      |      |      |      |      |  |
|                   | Residential             |      |      |      |      |      |      |      | Collector/Arterial       |      |      |      |      |      |      |      |  |

## STREET CAPACITY **RAMP CURB**

FOR 1/2 STREET SECTION

## County ramp curb is 6" Comments 15.9 17.8 19.5 11.3 13.8 8.0 þ Q<sub>max</sub> 10W 0.5 Type ድ 0.016 c Slope 0.02 0.5% 1.0% 2.0% 3.0% Slope Q=112.6 S<sup>1/2</sup> Formula Residential

20.0 <u>22222222</u> 3.15%



-



07/23/08 03:52:00 R3/Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 1

## Analysis Results Scenario: 100-year

Note:

The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

| ïtle:<br>Proiect Engine  | Old Meridia<br>er: Charlene Sa         | n Road<br>ammons                    |           |                             |                        |                           |                      |                     |                     |            |
|--------------------------|----------------------------------------|-------------------------------------|-----------|-----------------------------|------------------------|---------------------------|----------------------|---------------------|---------------------|------------|
| roject Date:             | 11/14/07                               |                                     |           |                             |                        |                           |                      |                     |                     |            |
| comments:                | Storm in Ok                            | d Meridian R                        | oad for M | leridian C                  | rossing                | Storm S                   | ewer                 |                     |                     |            |
| Scenario Sur             | mmary                                  |                                     |           |                             |                        |                           |                      |                     |                     |            |
| Scenario                 |                                        | 100-year                            |           |                             |                        |                           |                      |                     |                     |            |
| Physical Pro             | perties Alternat                       | Base-Physi                          | cal Prope | erties                      |                        |                           |                      |                     |                     |            |
| Catchments               | Alternative                            | Catchments                          | s-100-yea | ır                          |                        |                           |                      |                     |                     |            |
| System Flow              | s Alternative                          | Base-Syste                          | m Flows   |                             |                        |                           |                      |                     |                     |            |
| Structure He             | adlosses Alterr                        | Base-Struct                         | ture Head | llosses                     |                        |                           |                      |                     |                     |            |
| Boundary Co              | onditions Altern                       | Base-Bound                          | dary Con  | ditions                     |                        |                           |                      |                     |                     |            |
| Design Cons              | straints Alternat                      | Base-Desig                          | n Constra | aints                       |                        |                           |                      |                     |                     |            |
| Capital Cost             | Alternative                            | Base-Cost                           |           |                             |                        |                           |                      |                     |                     |            |
| User Data A              | Iternative                             | Base-User                           | Data      |                             |                        |                           |                      |                     |                     |            |
| Network Inve             | entory                                 |                                     |           |                             |                        |                           |                      |                     |                     |            |
| Number of F              | Pipes                                  | 4                                   |           | Number of                   | of Inlets              | ;                         | 2                    |                     |                     |            |
| - Circular Pi            | pes:                                   | 4                                   |           | - Grate Ir                  | ilets:                 |                           | 0                    |                     |                     |            |
| - Box Pipes:             |                                        | 0                                   |           | - Curb In                   | ets:                   |                           | 0                    |                     |                     |            |
| - Arch Pipes             |                                        | 0                                   |           | - Combin                    | ation In               | lets:                     | 0                    |                     |                     |            |
| - Vertical Ell           | iptical Pipes:                         | 0                                   |           | - Slot Inle                 | ets:                   |                           | 0                    |                     |                     |            |
| - Horizontal             | Elliptical Pipes:                      | 0                                   |           | - Grate Ir                  | ilets in               | Ditch:                    | 0                    |                     |                     |            |
| Number of J              | lunctions                              | 2                                   |           | - Generic                   | : Inlets:              |                           | 2                    |                     |                     |            |
| Number of C              | Dutlets                                | 1                                   |           |                             |                        |                           |                      |                     |                     |            |
| Circular Pipe<br>30 inch | es Inventory                           | 426.11                              | ft        | 42 inch                     | ····                   |                           | 1                    | 67.58 ft            |                     |            |
| 36 inch                  |                                        | 5.58                                | ft        |                             |                        |                           |                      |                     |                     |            |
| Total Lengt              | h                                      | 599.27                              | ′ft       |                             |                        |                           |                      |                     |                     |            |
| Generic Inle             | tinventory                             |                                     |           |                             |                        |                           |                      |                     |                     |            |
| Default 100              | %                                      | 2                                   |           |                             |                        |                           |                      |                     |                     |            |
|                          | Jur                                    | nction elem                         | ents for  | network                     | with o                 | utlet: 0-                 | .1                   |                     |                     |            |
| Label                    | HydraulicHydra                         | ulic Gravity                        | Headloss  | System                      | System                 | System                    | System               | System S            | System              |            |
|                          | Grade Grad<br>Line In Line<br>(ft) (ft | de Element<br>OutHeadloss<br>) (ft) | Method /  | Additional<br>Flow<br>(cfs) | Known<br>Flow<br>(cfs) | Rational<br>Flow<br>(cfs) | Intensity<br>(in/hr) | low Time<br>(min) ( | CA<br>(acres)       |            |
| DP-7                     | 3 841 13 3 840                         | 07 1.06                             | Standau   | 0.00                        | 0.00                   | 72.94                     | 8.64                 | 6.22                | 8.38                |            |
| MH                       | 3,842.25 3,841                         | .42 0.83                            | Standar   | 0.00                        | 0.00                   | 73.34                     | 8.68                 | 6.09                | 8.38                |            |
|                          |                                        | iniet ele                           | ements f  | or netwo                    | rk with                | ı outlet:                 | 0-1                  |                     |                     |            |
| Label                    | Inlet                                  | Total                               | Total     | Total B                     | ypass (                | Capture                   | Hydraulic            | Hydraulic           | Gravity             | Headio     |
| 23.00.                   |                                        | Systemini<br>Flow                   | Flow      | BypassedT<br>Flow<br>(cfs)  | arget E                | fficiency<br>(%)          | Grade<br>Line In     | Grade<br>Line Out   | Element<br>Headloss | Metho<br>S |
|                          |                                        |                                     | (013)     |                             |                        | 465.5                     | 19                   |                     |                     | AL         |
| East WQP                 | Generic Defai                          | JIE 1 32.00                         | 32.00     | 0.00                        | N/A                    | 100.0                     | 5,844.85             | 5,844.85            | 0.00                | ADSOI      |
| West WQP                 | Generic Defau                          | ult 1 44.27                         | 44.27     | 0.00                        | N/A                    | 100.0                     | 3,842.28             | 5,842.28            | 0.00                | Absolu     |

## Analysis Results Scenario: 100-year

| Outlet: 0-1 |                                       |                                           |                                          |                                      |                                  |                                     |                                 |                            |                           |  |
|-------------|---------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------|----------------------------------|-------------------------------------|---------------------------------|----------------------------|---------------------------|--|
| Label       | Hydraulic<br>Grade<br>Line In<br>(ft) | Hydraulic<br>Grade f<br>Line Outh<br>(ft) | Gravity<br>Element A<br>leadloss<br>(ft) | System<br>dditional<br>Flow<br>(cfs) | System<br>Known<br>Flow<br>(cfs) | System<br>Rational<br>Flow<br>(cfs) | System<br>IntensityF<br>(in/hr) | System<br>low Tim<br>(min) | System<br>e CA<br>(acres) |  |
| 0-1         | 3,836.40                              | 3,836.40                                  | 0.00                                     | 0.00                                 | 0.00                             | 72.41                               | 8.57                            | 6.40                       | 8.38                      |  |

## Pipe elements for network with outlet: O-1

| Label | Section<br>Shape | Section<br>Size | Length<br>(ft) | NumberCo<br>of<br>Sections | onstructed<br>Slope<br>(ft/ft) | Energy<br>Slope<br>(ft/ft) | Total<br>System<br>Flow<br>(cfs) | Average<br>Velocity<br>(ft/s) | Upstream<br>Invert<br>Elevation<br>(ft) | Downstream<br>Invert<br>Elevation<br>(ft) | Hydraulic<br>Grade<br>Line In<br>(ft) | Hydraulic<br>Grade<br>Line Out<br>(ft) |
|-------|------------------|-----------------|----------------|----------------------------|--------------------------------|----------------------------|----------------------------------|-------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------|
| P-4   | Circular         | 30 inch         | 26.11          | 1                          | 0.008                          | 0.006                      | 32.00                            | 6.52                          | 3,842.25                                | 6,839.05                                  | 3,844.85                              | 3,842.25                               |
| P-5   | Circular         | 36 inch         | 5.58           | 1                          | 0.047                          | 0.004                      | 44.27                            | 6.26                          | 5,839.11                                | 6,838.85                                  | 3,842.28                              | 3,842.25                               |
| P-8   | Circular         | 42 inch         | 60.40          | 1                          | 0.011                          | 0.005                      | 73.34                            | 7.67                          | 3,838.05                                | 6,837.39                                  | 3,841.42                              | 5,841.13                               |
| P-9   | Circular         | 42 inch         | 07.18          | 1                          | 0.009                          | 0.008                      | 72.94                            | 10.03                         | 5,837.39                                | 6,836.40                                  | 3,840.07                              | 3,838.71                               |

Scenario: 100-year

## **Combined Pipe/Node Report**

| S<br>(ft/ft)                    | 0.008    | 0.047    | 0.011    | 0.009    |
|---------------------------------|----------|----------|----------|----------|
| Dn.<br>Invert<br>(ft)           | 6,839.05 | 6,838.85 | 6,837.39 | 6,836.40 |
| HGL<br>Out<br>(f)               | 6,842.25 | 6,842.25 | 6,841.13 | 6,838.71 |
| д б.<br>Э.Э.Э.<br>Э.Э.Э.        | 6,843.00 | 6,843.00 | 6,841.75 | 6,841.00 |
| Up.<br>(ft)                     | 6,842.25 | 6,839.11 | 6,838.05 | 6,837.39 |
| Ъ́च€)                           | 6,844.85 | 6,842.28 | 6,841.42 | 6,840.07 |
| ₽õ∰€                            | 6,845.00 | 6,843.00 | 6,843.00 | 6,841.75 |
| Avg.<br>v<br>(ft/s)             | 6.52     | 6.26     | 7.67     | 10.03    |
| C (cfs)                         | 35.54    | 43.97    | 05.16    | 96.69    |
| Size                            | 30 inch  | 36 inch  | 42 inch  | 42 inch  |
| Up.Inlet<br>Rat. Q<br>(cfs)     | 32.00    | 44.27    | N/A      | N/A      |
| Up. Calc.<br>Sys. CA<br>(acres) | 3.50     | 4.88     | 8.38     | 8.38     |
| Up.<br>Area<br>acres)           | 3.50     | 4.88     | N/A      | N/A      |
| Up. Inlet<br>Rat.<br>Coef.      | 1.00     | 1.00     | N/A      | N/A      |
| Up.<br>Inlet<br>Area<br>(acres) | 3.50     | 4.88     | N/A      | A/A      |
| ⊐€)                             | 426.11   | 5.58     | 60.40    | 107.18   |
| Dn.<br>Node                     | ΗM       | MH       | DP-Z     | <u>6</u> |
| Node<br>Node                    | East WQP | West WQf | MH       | DP-Z     |
| Label                           | Р<br>4   | P-5      | æ<br>d   | 6-d      |

•

Project Engineer: Chartene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Title: Old Meridian Road z:\...\drivcalcs\storm cad\meridian crossing.stm 07/23/08 03:54:23 PM

© Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Profile Scenario: 100-year

## **Profile: West Pond**

Scenario: 100-year



Station (ft)

Profile Scenario: 100-year



Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

> © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 z:\...\fdr\calcs\storm cad\meridian crossing.stm 07/23/08 03:55:07 PM

Title: Old Meridian Road



## Analysis Results Scenario: 100-year

| Scenario SummaryScenario100-yearPhysical Properties AlternativeBase-Physical PropertiesCatchments AlternativeCatchments-100-yearSystem Flows AlternativeBase-System FlowsStructure Headlosses AlternBase-Structure HeadlosseBoundary Conditions AlternBase-Design Constraints AlternativeDesign Constraints AlternativeBase-CostUser Data AlternativeBase-CostUser Data AlternativeBase-User DataNetwork Inventory1Number of Pipes:2- Circular Pipes:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:1- Mumber of Outlets1Circular Pipes Inventory1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s<br>ber of Inlets 3<br>te Inlets: 0<br>b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>te Inlets: 0<br>te Inlets: 0<br>te Inlets: 0                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scenario100-yearPhysical Properties AlternativeBase-Physical PropertiesCatchments AlternativeCatchments-100-yearSystem Flows AlternativeBase-System FlowsStructure Headlosses AlternBase-Structure HeadlosseBoundary Conditions AlternBase-Boundary ConditionsDesign Constraints AlternativeBase-Design ConstraintsCapital Cost AlternativeBase-CostUser Data AlternativeBase-User DataNetwork Inventory1Number of Pipes:2- Circular Pipes:0- Arch Pipes:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:1Circular Pipes Inventory124 inch185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s<br>ber of Inlets 3<br>te Inlets: 0<br>b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>Inlets: 0<br>te Inlets: 0<br>te Inlets: 0                              |
| Physical Properties Alternative<br>Catchments Alternative<br>System Flows Alternative<br>Structure Headlosses Altern<br>Base-System FlowsBase-System FlowsStructure Headlosses Altern<br>Boundary Conditions Altern<br>Design Constraints Alternative<br>User Data AlternativeBase-Design Constraints<br>Base-Cost<br>Base-User DataNumber of Pipes5Numt<br>- Circular Pipes:- Arch Pipes:<br>- Horizontal Elliptical Pipes:<br>Number of Junctions0- Com<br>- Slot<br>- Grad- Ketwork Inventory0- Com<br>- Slot- Circular Pipes:<br>- Number of Junctions0- Grad<br>- Grad- Circular Pipes:<br>- Horizontal Elliptical Pipes:<br>Number of Outlets0- Grad<br>- Grad- Kither of Dipes Inventory1- Grad<br>- Grad- Kither of Junctions<br>- Kither of Dipes:<br>- Horizontal Elliptical Pipes:<br>- Horizontal Elliptical Pipes:<br>- Horizontal Elliptical Pipes:<br>- Grad- Grad<br>- Grad<br>- Grad- Kither of Dipes Inventory1- Grad<br>- Grad- Kither Pipes Inventory- Katternative- Grad<br>- Grad- Kither Pipes Inventory <td>s<br/>ber of Inlets 3<br/>te Inlets: 0<br/>b Inlets: 2<br/>nbination Inlets: 0<br/>Inlets: 0<br/>te Inlets: 0<br/>te Inlets: 0</td> | s<br>ber of Inlets 3<br>te Inlets: 0<br>b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>te Inlets: 0<br>te Inlets: 0                                           |
| Catchments Alternative<br>System Flows Alternative<br>Structure Headlosses Alterr<br>Boundary Conditions Altern<br>Design Constraints Alternative<br>User Data Alternative<br>Number of PipesBase-Design Constraints<br>Base-Cost<br>Base-User DataNetwork InventoryNumber of Pipes5Numt<br>Corr- Circular Pipes:<br>- Vertical Elliptical Pipes:<br>- Horizontal Elliptical Pipes:0- Corr<br>Corr- Vertical Elliptical Pipes:<br>- Number of Outlets0- Graf<br>Corr- Circular Pipes:<br>- Vertical Elliptical Pipes:<br>- Horizontal Elliptical Pipes:<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s<br>ber of Inlets 3<br>te Inlets: 0<br>b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>te Inlets: 0<br>te Inlets: 0                                           |
| System Flows Alternative<br>Structure Headlosses Alterr<br>Boundary Conditions Alterr<br>Design Constraints Alternati<br>Vapital Cost AlternativeBase-Structure Headlosses<br>Base-Design Constraints<br>Base-Cost<br>Base-Cost<br>Base-User DataNetwork InventoryNumber of Pipes5Numt<br>Cora- Circular Pipes:2- Grat<br>- Cor<br>- Vertical Elliptical Pipes:0- Cor<br>- Slot<br>- Grat- Number of Outlets11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s<br>ber of Inlets 3<br>te Inlets: 0<br>b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>te Inlets: 0<br>te Inlets: 0<br>te Inlets: 0                           |
| Structure Headlosses AlterrBase-Structure HeadlossesBoundary Conditions AlternBase-Boundary ConditionsDesign Constraints AlternatiBase-Design ConstraintsCapital Cost AlternativeBase-CostUser Data AlternativeBase-User DataNumber of Pipes5- Circular Pipes:2- Grati- Corn- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Grati- GeratiNumber of Junctions2- Grati- GeratiNumber of Junctions1- Circular Pipes Inventory124 inch185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s<br>ber of Inlets 3<br>te Inlets: 0<br>b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>te Inlets: 0<br>te Inlets in Ditch: 0                                  |
| Boundary Conditions Altern       Base-Boundary Conditions         Design Constraints Alternative       Base-Design Constraints         Capital Cost Alternative       Base-Cost         User Data Alternative       Base-User Data         Network Inventory       Image: Constraints         Number of Pipes       5       Numt         - Circular Pipes:       2       - Grad         - Arch Pipes:       0       - Cond         - Vertical Elliptical Pipes:       0       - Slot         - Horizontal Elliptical Pipes:       0       - Grad         Number of Outlets       1       Image: Cond         2       - Grad       - Slot         - Horizontal Elliptical Pipes:       0       - Grad         Number of Junctions       2       - Gen         Number of Outlets       1       Image: Circular Pipes Inventory         24 inch       185.50 ft       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ber of Inlets 3<br>te Inlets: 0<br>b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>Inlets: 0<br>te Inlets in Ditch: 0                                          |
| Design Constraints Alternative       Base-Design Constraints         Capital Cost Alternative       Base-Cost         User Data Alternative       Base-User Data         Network Inventory       Number of Pipes         - Circular Pipes:       2         - Box Pipes:       3         - Arch Pipes:       0         - Vertical Elliptical Pipes:       0         - Horizontal Elliptical Pipes:       0         - Mumber of Junctions       2         - Circular Pipes Inventory       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ber of Inlets 3<br>te Inlets: 0<br>b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>te Inlets in Ditch: 0                                                       |
| Capital Cost Alternative<br>User Data AlternativeBase-Cost<br>Base-User DataNetwork InventoryNumber of Pipes5- Circular Pipes:2- Box Pipes:3- Arch Pipes:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Grad- GradNumber of Junctions2- Circular Pipes Inventory1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ber of Inlets 3<br>te Inlets: 0<br>b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>te Inlets in Ditch: 0                                                       |
| User Data Alternative     Base-User Data       Network Inventory     1       Number of Pipes     5     Number       - Circular Pipes:     2     - Grat       - Box Pipes:     3     - Curt       - Arch Pipes:     0     - Con       - Vertical Elliptical Pipes:     0     - Slot       - Horizontal Elliptical Pipes:     0     - Grat       Number of Junctions     2     - Gen       Number of Outlets     1     - Gen       Circular Pipes Inventory     24 inch     185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ber of Inlets 3<br>te Inlets: 0<br>b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>te Inlets in Ditch: 0                                                       |
| Network Inventory         Number of Pipes       5       Numt         - Circular Pipes:       2       - Grail         - Box Pipes:       3       - Curl         - Arch Pipes:       0       - Con         - Vertical Elliptical Pipes:       0       - Slot         - Horizontal Elliptical Pipes:       0       - Grail         Number of Junctions       2       - Gen         Number of Outlets       1       - Gen         Circular Pipes Inventory       24 inch       185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ber of Inlets 3<br>te Inlets: 0<br>b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>te Inlets in Ditch: 0                                                       |
| Number of Pipes5Number- Circular Pipes:2- Grai- Box Pipes:3- Curl- Arch Pipes:0- Con- Vertical Elliptical Pipes:0- Slot- Horizontal Elliptical Pipes:0- GraiNumber of Junctions2- GenNumber of Outlets1Circular Pipes Inventory24 inch185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ber of Inlets     3       be Inlets:     0       be Inlets:     2       obination Inlets:     0       Inlets:     0       te Inlets:     0       te Inlets:     0 |
| - Circular Pipes:       2       - Grat         - Box Pipes:       3       - Curl         - Arch Pipes:       0       - Con         - Vertical Elliptical Pipes:       0       - Slot         - Horizontal Elliptical Pipes:       0       - Grat         Number of Junctions       2       - Gen         Number of Outlets       1       - Gen         Circular Pipes Inventory       185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | te Inlets: 0                                                                                                                                                      |
| - Box Pipes:       3       - Curl         - Arch Pipes:       0       - Con         - Vertical Elliptical Pipes:       0       - Slot         - Horizontal Elliptical Pipes:       0       - Grad         Number of Junctions       2       - Gen         Number of Outlets       1       - Gen         Circular Pipes Inventory       - 185.50 ft       - 185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b Inlets: 2<br>nbination Inlets: 0<br>Inlets: 0<br>te Inlets in Ditch: 0                                                                                          |
| - Arch Pipes:       0       - Con         - Vertical Elliptical Pipes:       0       - Slot         - Horizontal Elliptical Pipes:       0       - Grain         Number of Junctions       2       - Gen         Number of Outlets       1       - Gen         Circular Pipes Inventory       24 inch       185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nbination Inlets: 0<br>Inlets: 0<br>te Inlets in Ditch: 0                                                                                                         |
| - Vertical Elliptical Pipes: 0 - Slot<br>- Horizontal Elliptical Pipes: 0 - Gra<br>Number of Junctions 2 - Gen<br>Number of Outlets 1 - Circular Pipes Inventory 24 inch 185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inlets: 0<br>te Inlets in Ditch: 0                                                                                                                                |
| - Horizontal Elliptical Pipes: 0 - Gra<br>Number of Junctions 2 - Ger<br>Number of Outlets 1<br>Circular Pipes Inventory<br>24 inch 185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | te Inlets in Ditch: 0                                                                                                                                             |
| Number of Junctions     2     - Ger       Number of Outlets     1       Circular Pipes Inventory       24 inch     185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |
| Number of Outlets 1<br>Circular Pipes Inventory<br>24 inch 185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eric Inlets: 1                                                                                                                                                    |
| Circular Pipes Inventory<br>24 inch 185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                   |
| 24 inch 185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |
| Total Length 185.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·····                                                                                                                                                             |
| Box Pipes Inventory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                   |
| 6 x 3 ft 366.02 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |
| Total Length 366.02 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                   |
| Curb Inlet Inventory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   |
| Type R 10' 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |
| Generic Inlet Inventory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |
| Default 100% 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                             |
| Inlet elements for net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | work with outlet: DP-7                                                                                                                                            |

|      | Systemin                | iterceptedB    | ypassedTarget | Efficiency | Grade    | Grade            | Element Method |  |
|------|-------------------------|----------------|---------------|------------|----------|------------------|----------------|--|
|      | Flow                    | Flow Flow Flow |               |            | Line In  | Line OutHeadloss |                |  |
|      | (cfs)                   | (cfs)          | (cfs)         |            | (ft)     | (ft)             | (ft)           |  |
| DP-4 | Curb Type R 10' 22.05   | 22.05          | 0.00 N/A      | 100.0      | 3,818.78 | 3,818.78         | 0.00 Absolut   |  |
| DP-5 | Curb Type R 10' 19.80   | 19.80          | 0.00 N/A      | 100.0      | 3,818.70 | 3,818.70         | 0.00 Absolut   |  |
| DP-6 | Generic Default 1:50.69 | 250.69         | 0.00 N/A      | 100.0      | 3,817.78 | 3,817.78         | 0.00 Absolut   |  |

 Title: Meridian Crossing
 Project Engineer: 0

 z:\...\fdr\calcs\storm cad\meridian rd-sta 200.stm
 StormCAD

 07/23/08
 03:56:30 R®/Bentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] +1-203-755-1666 Page 1 of 2

## Analysis Results Scenario: 100-year

|       |                                       |                                       | c                                          | Outlet:                               | DP-7                                   |                                        |                                          |                                       |                                         | -                                      |                                       |                                        |
|-------|---------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|---------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|
| Label | Hydraulic<br>Grade<br>Line In<br>(ft) | CHydrauli<br>Grade<br>Line Ou<br>(ft) | c Gravity<br>Element<br>tHeadlos:<br>(ft)  | Syster<br>Addition<br>s Flow<br>(cfs) | n Syster<br>nalKnowr<br>Flow<br>(cfs)  | n Systen<br>n Rationa<br>Flow<br>(cfs) | n Systen<br>al Intensi<br>(in/hr)        | n System<br>tyFlow Tim<br>) (min)     | i System<br>ie CA<br>(acres)            | -                                      |                                       |                                        |
| DP-7  | 3,814.44                              | 3,814.4                               | 4 0.00                                     | 0.0                                   | 0.00                                   | 273.30                                 | ) 5.2                                    | 1 22.65                               | 5 52.02                                 | -                                      |                                       |                                        |
|       |                                       | Juncti                                | on elem                                    | ents fo                               | r networ                               | k with o                               | outlet: D                                | P-7                                   |                                         |                                        | <u> </u>                              |                                        |
| Label | Hydrautio<br>Grade<br>Line In<br>(ft) | CHydraul<br>Grade<br>Line Ou<br>(ft)  | ic Gravity<br>Element<br>tHeadlos:<br>(ft) | Headlos<br>Methoo<br>s                | ss Syster<br>Additiou<br>Flow<br>(cfs) | n Systen<br>nalKnow<br>Flow<br>(cfs)   | m System<br>n Rationa<br>/ Flow<br>(cfs) | n System<br>al Intensity<br>(in/hr)   | System<br>Flow Tin<br>(min)             | System<br>ne CA<br>(acres)             |                                       |                                        |
| J-1   | 3,817.71                              | 3,817.7                               | 1 0.00                                     | Absolu                                | it 0.0                                 | 0.0                                    | 262.00                                   | 0 5.25                                | 22.36                                   | 6 49.53                                |                                       |                                        |
| J-2   | 3,817.08                              | 5,817.0                               | 3 0.00                                     | Absolu                                | it 0.0                                 | 0.0                                    | 0 273.54                                 | 4 5.22                                | 22.6                                    | 52.02                                  | _                                     |                                        |
|       | <u></u>                               |                                       | Pipe                                       | eleme                                 | nts for r                              | network                                | with ou                                  | itlet: DP-7                           | 7                                       |                                        |                                       |                                        |
| Label | Section<br>Shape                      | Section<br>Size                       | Length Nu<br>(ft)<br>Se                    | imberCo<br>of<br>ctions               | onstructe<br>Slope<br>(ft/ft)          | dEnergy<br>Slope<br>(ft/ft)            | Total A<br>System<br>Flow<br>(cfs)       | AverageUp<br>Velocity I<br>(ft/s) Ele | streanDo<br>invert<br>evation E<br>(ft) | wnstrear<br>Invert<br>levation<br>(ft) | Hydraulic<br>Grade<br>Line In<br>(ft) | Hydraulic<br>Grade<br>Line Out<br>(ft) |
| P-1   | Circular                              | 24 inch                               | 94.00                                      | 1 0                                   | .009043                                | 008925                                 | 19.80                                    | 7.56 3,8                              | 317.10 6                                | ,816.25                                | 3,818.70                              | 3,817.76                               |
| P-2   | Circular                              | 24 inch                               | 91.50                                      | 1 0                                   | .016940                                | 014085                                 | 22.05                                    | 8.96 3,8                              | 317.10 6                                | ,815.55                                | 3,818.78                              | <b>3,816.86</b>                        |
| P-3   | Box                                   | 6 x 3 ft                              | 28.85                                      | 2 0                                   | .005199                                | 005093                                 | :50.69                                   | 8.63 3,8                              | 815.40 6                                | ,815.25                                | 3,817.78                              | 3,817.71                               |
| P-4   | Box                                   | 6 x 3 ft                              | 33.50                                      | 2 0                                   | .005243                                | 005221                                 | :62.00                                   | 8.76 3,8                              | 815.25 6                                | ,814.55                                | 3,817.71                              | 3,817.08                               |
| P-5   | Box                                   | 6 x 3 ft                              | 20.66                                      | 2 0                                   | .005324                                | 004607                                 | :73.54                                   | 9.31 3,8                              | 314.55 6                                | ,814.44                                | 3,817.08                              | 3,816.82                               |

Scenario: 100-year

## **Combined Pipe/Node Report**

| S (fruit)                       | 0.016940 | 0.009043 | 1.005199 | 0.05243    | 1.005324   |
|---------------------------------|----------|----------|----------|------------|------------|
| Dn.<br>(ft)                     | 6,815.55 | 6,816.25 | 6,815.25 | 6,814.55   | 6,814.44   |
| €<br>€€<br>€                    | 6,816.86 | 6,817.76 | 6,817.71 | 6,817.08   | 6,816.82   |
| ₽°₽<br>₽°₽<br>€                 | 6,819.50 | 6,820.00 | 6,820.00 | 6,819.50   | 6,818.44   |
| Up.<br>Invert<br>(ft)           | 6,817.10 | 6,817.10 | 6,815.40 | 6,815.25   | 6,814.55   |
| HGL<br>(#) = HGL                | 6,818.78 | 6,818.70 | 6,817.78 | 6,817.71   | 6,817.08   |
| ₽₽<br>₽₽<br>₽                   | 6,821.16 | 6,821.16 | 6,820.00 | 6,820.00   | 6,819.50   |
| Avg.<br>(ft/s)                  | 8.96     | 7.56     | 8.63     | 8.76       | 9.31       |
| Cfs)                            | 29.44    | 21.51    | 296.71   | 297.96     | 300.25     |
| Size                            | 24 inch  | 24 inch  | 6×3 ft   | 6 x 3 ft 3 | 6 x 3 ft : |
| Up.Inlet<br>Rat. Q<br>(cfs)     | 22.05    | 19.80    | 250.69   | N/A        | N/A        |
| Up. Calc.<br>Sys. CA<br>(acres) | 2.49     | 2.20     | 47.33    | 49.53      | 52.02      |
| Up.<br>Inlet<br>Area<br>(acres) | 2.49     | 2.20     | 47.33    | N/A        | A/A        |
| Up. Inlet<br>Rat.<br>Coef.      | 1.00     | 1.00     | 1.00     | N/A        | N/A        |
| Up.<br>Inlet<br>Area            | 2.49     | 2.20     | 47.33    | A/A        | N/A        |
| <del>(</del> € –                | 91.50    | 94.00    | 28.85    | 133.50     | 20.66      |
| Dn.<br>Node                     | J-2      | -ر<br>1  | ۲-۲      | J-2        | DP-7       |
| Node<br>Node                    | DP-4     | DP-5     | DP-6     | ۲-۲        | J-2        |
| Label                           | P-2      | P-1      | P-3      | P-4        | P-5        |

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Title: Meridian Crossing z:\...\fdr\calcs\storm cad\meridian rd-sta 200.stm 07/23/08 03:55:52 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666





## Profile: Sump Inlet Left

Scenario: 100-year



z:\...\fdr\calcs\storm cad\meridian rd-sta 200.stm 07/23/08 03:57:06 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

Title: Meridian Crossing

Station (ft)

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1



Profile



## **Analysis Results** Scenario: 100-year

6.17 3,844.00 6,843.25 3,844.97 3,843.96

|       | _                                     |                                        | 1                                        | Outlet: C                              | )-1                                |                                       |                                   |                               |                                     |                                             |                                                 |                                        |
|-------|---------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|------------------------------------|---------------------------------------|-----------------------------------|-------------------------------|-------------------------------------|---------------------------------------------|-------------------------------------------------|----------------------------------------|
| Label | Hydraulio<br>Grade<br>Line In<br>(ft) | Hydraulic<br>Grade<br>Line Out<br>(ft) | : Gravity<br>Element<br>Headloss<br>(ft) | System<br>Additiona<br>s Flow<br>(cfs) | Systen<br>IlKnowr<br>Flow<br>(cfs) | n Syster<br>n Ration<br>Flow<br>(cfs) | n Sysi<br>al Inter<br>(in/        | tem Sj<br>nsityFlo<br>′hr) (  | ystem S<br>w Time<br>(min) (        | System<br>CA<br>acres)                      |                                                 |                                        |
| 0-1   | 3,843.25                              | 3,843.25                               | 0.00                                     | 0.00                                   | 0.00                               | 7.3                                   | 58                                | 3.28                          | 7.22                                | 0.88                                        |                                                 |                                        |
|       |                                       |                                        | Pipe                                     | element                                | s for n                            | etwork                                | with                              | outlet:                       | 0-1                                 |                                             |                                                 |                                        |
| Label | Section<br>Shape                      | Section Le<br>Size                     | ength Nur<br>(ft) (<br>Sec               | nberCons<br>of Si<br>tions (1          | tructed<br>ope<br>t/ft)            | Energy<br>Slope S<br>(ft/ft)          | Total A<br>ystem<br>Flow<br>(cfs) | Average<br>Velocity<br>(ft/s) | Upstrea<br>Inver<br>Elevati<br>(ft) | a fðownstr<br>t Inver<br>on Elevati<br>(ft) | eanhlydraulio<br>nt Grade<br>on Line In<br>(ft) | Hydraulic<br>Grade<br>Line Out<br>(ft) |
| P-1   | Circular                              | 18 inct :5                             | 7.00                                     | 1                                      | 0.011                              | 0.011                                 | 7.61                              | 6.16                          | 3,847.2                             | 28 6,844.                                   | 50 3,848.35                                     | 3,845.42                               |

0.017 0.012 7.39

1

-

P-2

Circular 24 inct 45.00

Project Engineer: Charlene Sammons Title: Old Meridian Road z:\...\reports\fdr\calcs\storm cad\ultimate.stm StormCAD v5.6 [05.06.012.00] 07/23/08 03:58:23 RWBentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

Scenario: 100-year Profile

1

Profile: Ultimate Design Scenario: 100-year



Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

Title: Old Meridian Road z:\...\reports\fdr\calcs\storm cad\ultimate.stm 07/23/08 03:58:59 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666

## Existing Channel along Highway 24 ROW

Channel Calculator

## Given Input Data:

4

| Shape        | Trapezoidal        |
|--------------|--------------------|
| Solving for  | Depth of Flow      |
| Flowrate     | 65.1000 cfs        |
| Slope        | 0.0090 ft/ft       |
| Manning's n  | 0.0350             |
| Height       | 36.0000 in         |
| Bottom width | 480.0000 in        |
| Left slope   | 0.2500 ft/ft (V/H) |
| Right slope  | 0.2500 ft/ft (V/H) |

## Computed Results:

| Depth            | 6.8903 in     |
|------------------|---------------|
| Velocity         | 2.6805 fps    |
| Full Flowrate    | 1129.3728 cfs |
| Flow area        | 24.2864 ft2   |
| Flow perimeter   | 536.8189 in   |
| Hydraulic radius | 6.5148 in     |
| Top width        | 535.1224 in   |
| Area             | 156.0000 ft2  |
| Perimeter        | 776.8636 in   |
| Percent full     | 19.1397 %     |

## Critical Information

| Critical depth            | 5.1448 in    |
|---------------------------|--------------|
| Critical slope            | 0.0241 ft/ft |
| Critical velocity         | 3.6400 fps   |
| Critical area             | 17.8847 ft2  |
| Critical perimeter        | 522.4254 in  |
| Critical hydraulic radius | 4.9297 in    |
| Critical top width        | 521.1587 in  |
| Specific energy           | 0.6859 ft    |
| Minimum energy            | 0.6431 ft    |
| Froude number             | 0.6404       |
| Flow condition            | Subcritical  |

## Existing Temporary Channel along Meridian Road (DP-E)

Channel Calculator

## Given Input Data:

| Shape        | Trapezoidal        |
|--------------|--------------------|
| Solving for  | Depth of Flow      |
| Flowrate     | 88.2000 cfs        |
| Slope        | 0.0200 ft/ft       |
| Manning's n  | 0.0350             |
| Height       | 36.0000 in         |
| Bottom width | 0.0000 in          |
| Left slope   | 0.2500 ft/ft (V/H) |
| Right slope  | 0.1667 ft/ft (V/H) |

## Computed Results:

| .4874 in               |
|------------------------|
| .5023 fps              |
| 19.2362 cfs            |
| 5.0296 ft2             |
| 19.2720 in             |
| ).5269 in <sup>-</sup> |
| L4.8480 in             |
| 1.9946 ft2             |
| 57.3687 in             |
| 9.6872 %               |
| Э                      |

## Critical Information

| Critical depth            | 21.7023 in    |
|---------------------------|---------------|
| Critical slope            | 0.0190 ft/ft  |
| Critical velocity         | 5.3939 fps    |
| Critical area             | 16.3519 ft2   |
| Critical perimeter        | 221.4655 in   |
| Critical hydraulic radius | 10.6322 in    |
| Critical top width        | 216.9973 in   |
| Specific energy           | 2.2611 ft     |
| Minimum energy            | 2.7128 ft     |
| Froude number             | 1.0252        |
| Flow condition            | Supercritical |

## Proposed Temporary Channel from Old Meridian Road (DP-Z)

Channel Calculator

## Given Input Data:

2

| Shape        | Trapezoidal        |
|--------------|--------------------|
| Solving for  | Depth of Flow      |
| Flowrate     | 73.3000 cfs        |
| Slope        | 0.0050 ft/ft       |
| Manning's n  | 0.0350             |
| Height       | 36.0000 in         |
| Bottom width | 60.0000 in         |
| Left slope   | 0.2500 ft/ft (V/H) |
| Right slope  | 0.2500 ft/ft (V/H) |

## Computed Results:

| Depth            | 21.9888 in   |
|------------------|--------------|
| Velocity         | 3.2444 fps   |
| Full Flowrate    | 219.3674 cfs |
| Flow area        | 22.5927 ft2  |
| Flow perimeter   | 241.3242 in  |
| Hydraulic radius | 13.4813 in   |
| Top width        | 235.9103 in  |
| Area             | 51.0000 ft2  |
| Perimeter        | 356.8636 in  |
| Percent full     | 61.0800 %    |
|                  |              |

## Critical Information

| Critical depth            |     | 16.0014 in   |
|---------------------------|-----|--------------|
| Critical slope            |     | 0.0192 ft/ft |
| Critical velocity         |     | 5.3195 fps   |
| Critical area             | ••  | 13.7795 ft2  |
| Critical perimeter        | • • | 191.9505 in  |
| Critical hydraulic radius |     | 10.3373 in   |
| Critical top width        | ••  | 188.0108 in  |
| Specific energy           |     | 1.9960 ft    |
| Minimum energy            |     | 2.0002 ft    |
| Froude number             | ••  | 0.5336       |
| Flow condition            |     | Subcritical  |
|                           |     |              |

## Culvert Designer/Analyzer Report Highway 24 - DP WU

N/A

| Analysis Co                                             | mponent                                      |                                                         |                                           |                            |                  |            |
|---------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|-------------------------------------------|----------------------------|------------------|------------|
| Storm Even                                              | t C                                          | Check                                                   | Discharge                                 |                            | 1,241.00         | cfs        |
|                                                         |                                              |                                                         |                                           |                            |                  |            |
| Peak Discha                                             | inge Method: User-Spe                        | cified                                                  |                                           |                            |                  |            |
| Design Disc                                             | harge 1,2                                    | 41.00 cfs                                               | Check Discharg                            | e                          | 1,241.00         | cfs        |
| Tailwater pr                                            | operties: Trapezoidal (                      | Channel                                                 | · · · · · · · · · · · · · · · · · · ·     |                            |                  |            |
|                                                         |                                              |                                                         |                                           |                            |                  |            |
|                                                         |                                              |                                                         |                                           |                            |                  |            |
| Tailwater co                                            | inditions for Check Sto                      | rm.                                                     |                                           |                            |                  |            |
| Tailwater co<br>Discharge                               | nditions for Check Sto<br>1,2                | rm.<br>41.00 cfs                                        | Bottom Elevatio                           | 'n                         | 6,813.00         | ft         |
| Tailwater co<br>Discharge<br>Depth                      | onditions for Check Sto<br>1,2               | orm.<br>241.00 cfs<br>3.82 ft                           | Bottom Elevatio<br>Velocity               | n                          | 6,813.00<br>7.78 | ft<br>ft/s |
| Tailwater co<br>Discharge<br>Depth                      | nditions for Check Sto<br>1,2<br>Description | orm.<br>241.00 cfs<br>3.82 ft<br>Discharg               | Bottom Elevatio<br>Velocity<br>e HW Elev. | n<br>Velocity              | 6,813.00<br>7.78 | ft<br>ft/s |
| Tailwater cc<br>Discharge<br>Depth<br>Name<br>Culvert-1 | Description<br>3-12 x 6 ft Box               | 0rm.<br>241.00 cfs<br>3.82 ft<br>Discharg<br>1.240.93 c | Bottom Elevatio<br>Velocity<br>e HW Elev. | n<br>Velocity<br>8.71 ft/s | 6,813.00<br>7.78 | ft<br>ft/s |

1,240.93 cfs 6,818.87 ft

Total

-----

\_\_\_\_

## Culvert Designer/Analyzer Report Highway 24 - DP WU

Component:Culvert-1

| Culvert Summary                       |               |      |                        |                       |       |
|---------------------------------------|---------------|------|------------------------|-----------------------|-------|
| Computed Headwater Eleva              | 6,818.87      | ft   | Discharge              | 1,240.93              | cfs   |
| Inlet Control HW Elev.                | 6,818.37      | ft   | Tailwater Elevation    | 6,816.82              | ft    |
| Outlet Control HW Elev.               | 6,818.87      | ft   | Control Type           | <b>Outlet Control</b> |       |
| Headwater Depth/Height                | 0.96          |      |                        |                       |       |
|                                       |               |      |                        |                       |       |
| Grades                                |               |      |                        |                       |       |
| Upstream Invert                       | 6,813.10      | ft   | Downstream Invert      | 6,812.87              | ft    |
| Length                                | 47.00         | ft   | Constructed Slope      | 0.005000              | ft/ft |
| Hydraulic Profile                     |               |      |                        |                       |       |
| Profile                               | S1            |      | Depth, Downstream      | 3.96                  | ft    |
| Slope Type                            | Steep         |      | Normal Depth           | 2.78                  | ft    |
| Flow Regime                           | Subcritical   |      | Critical Depth         | 3.33                  | ft    |
| Velocity Downstream                   | 8.71          | ft/s | Critical Slope         | 0.002971              | ft/ft |
| · · · · · · · · · · · · · · · · · · · |               |      | <u></u>                |                       |       |
| Section                               |               |      |                        |                       |       |
| Section Shape                         | Box           |      | Mannings Coefficient   | 0.013                 |       |
| Section Material                      | Concrete      |      | Span                   | 12.00                 | ft    |
| Section Size                          | 12 x 6 ft     |      | Rise                   | 6.00                  | ft    |
| Number Sections                       | 3             |      |                        |                       |       |
| Outlet Control Properties             |               |      |                        |                       |       |
| Outlet Control HW Elev.               | 6,818.87      | ft   | Upstream Velocity Head | 1.54                  | ft    |
| Ke                                    | 0.50          |      | Entrance Loss          | 0.77                  | ft    |
| Inlet Control Properties              |               |      |                        |                       |       |
| Inlet Control HW Elev                 | 6.818.37      | ft   | Flow Control           | N/A                   |       |
| Inlet Type 45° wingwall fl            | ares - offset | -    | Area Full              | 216.0                 | ft2   |
| K                                     | 0.49700       |      | HDS 5 Chart            | 13                    |       |
| Μ                                     | 0.66700       |      | HDS 5 Scale            | 1                     |       |
| С                                     | 0.03020       |      | Equation Form          | 2                     |       |
|                                       | 0.00500       |      |                        |                       |       |

.
## Culvert Designer/Analyzer Report McLaughlin Bridge

Component:Culvert-1

| Culvert Summary                              |                |      |                                       |               |       |
|----------------------------------------------|----------------|------|---------------------------------------|---------------|-------|
| Computed Headwater Eler                      | vi 104.17      | ft   | Discharge                             | 623.40        | cfs   |
| Inlet Control HW Elev.                       | 104.17         | ft   | Tailwater Elevation                   | N/A           | ft    |
| Outlet Control HW Elev.                      | 103.98         | ft   | Control Type                          | Inlet Control |       |
| Headwater Depth/Height                       | 1.39           |      |                                       |               |       |
|                                              |                |      |                                       |               |       |
| Grades                                       |                |      |                                       |               |       |
| Upstream Invert                              | 100.00         | ft   | Downstream Invert                     | 100.00        | ft    |
| Length                                       | 50.00          | ft   | Constructed Slope                     | 0.010000      | ft/ft |
|                                              |                |      |                                       |               |       |
| · · · · · · · · · · · · · · · · · · ·        |                |      |                                       |               |       |
| Hydraulic Profile                            | ·              |      |                                       |               |       |
| Profile                                      | S2             |      | Depth, Downstream                     | 1.99          | ft    |
| Slope Type                                   | Steep          |      | Normal Depth                          | 1.76          | ft    |
| Flow Regime                                  | Supercritical  |      | Critical Depth                        | 2.49          | ft    |
| Velocity Downstream                          | 11.21          | ft/s | Critical Slope                        | 0.003719      | ft/ft |
| <u>.                                    </u> |                |      |                                       |               |       |
|                                              |                |      |                                       |               |       |
| Section                                      |                |      |                                       | ·             |       |
| Section Shape                                | Box            |      | Mannings Coefficient                  | 0.013         |       |
| Section Material                             | Concrete       |      | Span                                  | 7.00          | ft    |
| Section Size                                 | 7 x 3 ft       |      | Rise                                  | 3.00          | ft    |
| Number Sections                              | 4              |      |                                       |               |       |
|                                              |                |      |                                       |               |       |
| Outlet Control Properties                    |                |      |                                       |               |       |
| Outlet Control HW Elev.                      | 103.98         | ft   | Upstream Velocity Head                | 1.24          | ft    |
| Ke                                           | 0.20           |      | Entrance Loss                         | 0.25          | ft    |
| · · · · ·                                    |                |      |                                       |               |       |
|                                              |                |      | · · · · · · · · · · · · · · · · · · · |               |       |
| Inlet Control Properties                     |                |      |                                       |               |       |
| Inlet Control HW Elev.                       | 104.17         | ft   | Flow Control                          | N/A           |       |
| Inlet Type 90° headwal                       | l w 45° bevels |      | Area Full                             | 84.0          | ft2   |
| к                                            | 0.49500        |      | HDS 5 Chart                           | 10            |       |
| Μ                                            | 0.66700        |      | HDS 5 Scale                           | 2             |       |
| C                                            | 0.03140        |      | Equation Form                         | 2             |       |
| Y                                            | 0.82000        |      |                                       |               |       |

## Culvert Designer/Analyzer Report **Old Meridian Road - DP Y**

N/A

.

| Analysis Co                                                             | omponent                              |                                        |                                                                   |                             |                                          |            |
|-------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------------------------------|-----------------------------|------------------------------------------|------------|
| Storm Ever                                                              | nt                                    | Check                                  | Discharge                                                         |                             | 65.10                                    | cfs        |
|                                                                         |                                       |                                        | -                                                                 |                             |                                          |            |
| Peak Disch                                                              | arge Method: User-Sp                  | ecified                                |                                                                   |                             |                                          |            |
| Design Dis                                                              | charge                                | 34.70 cfs                              | Check Dischar                                                     | ge                          | 65.10                                    | cfs        |
| <b>T</b> - 11                                                           |                                       | Channel                                |                                                                   |                             |                                          |            |
| l alwater pi                                                            |                                       | Channer                                | <u> </u>                                                          |                             | 14-2-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2 |            |
| Tailwater pi                                                            | onditions for Check St                | orm.                                   |                                                                   |                             |                                          |            |
| Tailwater pr<br>Tailwater co<br>Discharge                               | operiles: Trapezoidat                 | orm.<br>65.10 cfs                      | Bottom Elevation                                                  | on                          | 6,813.00                                 | ft         |
| Tailwater pi<br>Tailwater co<br>Discharge<br>Depth                      | onditions for Check St                | orm.<br>65.10 cfs<br>0.89 ft           | Bottom Elevatio<br>Velocity                                       | on                          | 6,813.00<br>3.45                         | ft<br>ft/s |
| Taiwater pi<br>Taiwater ci<br>Discharge<br>Depth<br>Name                | onditions for Check St<br>Description | orm.<br>65.10 cfs<br>0.89 ft<br>Discha | Bottom Elevatio<br>Velocity<br>rge HW Elev.                       | on<br>Velocity              | 6,813.00<br>3.45                         | ft<br>ft/s |
| Tailwater pi<br>Tailwater co<br>Discharge<br>Depth<br>Name<br>Culvert-1 | Description<br>1-54 inch Circular     | orm.<br>65.10 cfs<br>0.89 ft<br>Discha | Bottom Elevation<br>Velocity<br>rge HW Elev.<br>I cfs 6,824.75 ft | on<br>Velocity<br>9.95 ft/s | 6,813.00<br>3.45                         | ft<br>ft/s |

65.11 cfs 6,824.75 ft

Total

## Culvert Designer/Analyzer Report Old Meridian Road - DP Y

Component:Culvert-1

| Culvert Summary           |               |      |                       |                  |       |
|---------------------------|---------------|------|-----------------------|------------------|-------|
| Computed Headwater Eleva  | 6,824.75      | ft   | Discharge             | 65.11            | cfs   |
| Inlet Control HW Elev.    | 6,824.43      | ft   | Tailwater Elevation   | 6.813.89         | ft    |
| Outlet Control HW Elev.   | 6,824.75      | ft   | Control Type          | Entrance Control |       |
| Headwater Depth/Height    | 0.83          | _    |                       |                  |       |
| Grades                    |               |      |                       |                  |       |
|                           |               |      |                       |                  |       |
|                           | 6,821.00      | Ħ    | Downstream Invert     | 6,820.50         | ft    |
| Length                    | 50.00         | ft   | Constructed Slope     | 0.010000         | ft/ft |
|                           |               |      |                       |                  |       |
|                           |               |      |                       |                  |       |
| Profile                   | S2            |      | Depth, Downstream     | 1.94             | ft    |
| Slope Type                | Steep         |      | Normal Depth          | 1.78             | ft    |
| Flow Regime               | Supercritical |      | Critical Depth        | 2.35             | ft    |
| Velocity Downstream       | 9.95          | ft/s | Critical Slope        | 0.003794         | ft/ft |
|                           |               |      |                       |                  |       |
| Section                   | · ·····       |      |                       |                  |       |
| Section Shape             | Circular      |      | Mannings Coefficient  | 0.013            |       |
| Section Material          | Concrete      |      | Span                  | 4.50             | ft    |
| Section Size              | 54 inch       |      | Rise                  | 4.50             | ft    |
| Number Sections           | 1             |      |                       |                  |       |
| Outlet Control Properties |               |      |                       |                  |       |
| Outlet Control HW Elev.   | 6,824.75      | ft   | Upstream Velocity Hea | ad 0.93          | ft    |
| Ке                        | 0.50          |      | Entrance Loss         | 0.47             | ft    |
|                           |               |      |                       | ·                |       |
| Inlet Control Properties  |               |      |                       |                  |       |
| Inlet Control HW Elev.    | 6,824.43      | ft   | Flow Control          | N/A              |       |
| Inlet Type Square edge    | w/headwall    |      | Area Full             | 15.9             | ft2   |
| к                         | 0.00980       |      | HDS 5 Chart           | 1                |       |
| М                         | 2.00000       |      | HDS 5 Scale           | 1                |       |
| C                         | 0.03980       |      | Equation Form         | 1                |       |
| Y                         | 0.67000       |      |                       |                  |       |

### Culvert Designer/Analyzer Report Old Meridian Road - DP Y

Component:Weir

| Hydraulic Component(s): Roadway (Constant Elevation) |        |     |                            |          |    |  |
|------------------------------------------------------|--------|-----|----------------------------|----------|----|--|
| Discharge                                            | 0.00   | cfs | Allowable HW Elevation     | 6,824.75 | ft |  |
| Roadway Width                                        | 44.00  | ft  | Overtopping Coefficient    | 2.90     | US |  |
| Length                                               | 150.00 | ft  | Crest Elevation            | 6,825.35 | ft |  |
| Headwater Elevation                                  | N/A    | ft  | Discharge Coefficient (Cr) | 2.90     |    |  |
| Submergence Factor (Kt)                              | 1.00   |     |                            |          |    |  |

| Sta (ft) | Elev. (ft) |
|----------|------------|
| 0.00     | 6,825.35   |
| 150.00   | 6,825.35   |

 Title: Falcon Highlands Commercial Site
 Project Engineer: csammons

 z:\.../reports\fdr\calcs\culverts\highway 24.cvm
 Springs Engineering
 CulvertMaster v3.1 [03.01.010.00]

 07/23/08
 03:49:43 RMBentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666
 Page 3 of 3

| Culvert | Diameter | No of Barrels | Slope | Velocity | <b>Riprap Width</b> | <b>Riprap Length</b> | H      | <b>Riprap Siz</b> |
|---------|----------|---------------|-------|----------|---------------------|----------------------|--------|-------------------|
|         | (ii)     |               | (%)   | ft/s     | ft                  | ų                    |        |                   |
| DP. V   | 54       |               | 1.20% | 10.5     | 13.5                | 21.5                 | 3.78 L |                   |
| DP-Z    | 42       | 1             | 0.90% | 10.0     | 10.5                | 18.5                 | 3.44 L |                   |
|         |          |               |       |          |                     |                      |        |                   |

Į

Í

CULVERT PROTECTION

7/23/2008



.

.

## Design Procedure Form: Porous Landscape Detention (PLD)

| Designer:                                                                                                                                                                                                                                | Thomas Roberts                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Company:                                                                                                                                                                                                                                 | Springs Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Date:                                                                                                                                                                                                                                    | July 23, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Project:                                                                                                                                                                                                                                 | Merdian Crossing East Pond                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Location:                                                                                                                                                                                                                                | Falcon, CO                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 1. Basin Sto<br>A) Tributa<br>B) Contril<br>C) Water<br>(WQ(<br>D) Design<br>2. PLD Surfa<br>(from 360                                                                                                                                   | rage Volume<br>( $I_a = 100\%$ if all paved and roofed areas u/s of PLD)<br>ry Area's Imperviousness Ratio (i = $I_a / 100$ )<br>buting Watershed Area Including the PLD (Area)<br>Quality Capture Volume (WQCV)<br>CV = 0.8 * (0.91 * $I^3 - 1.19 * I^2 + 0.78 * I$ ))<br>h Volume: Vol <sub>PLD</sub> = (WQCV / 12) * Area<br>acc Area (A <sub>PLD</sub> ) and Average Depth ( $d_{av}$ )<br>10.24 square feet to 7200.48 square feet)                               | $I_{a} = \frac{79.00}{0.79} \%$ i = 0.79<br>Area = 167,616 square feet<br>WQCV = 0.26 watershed inches<br>Vol = 3,600 cubic feet<br>$A_{PLD} = 3,600$ square feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| (d <sub>av</sub> : = (Vo                                                                                                                                                                                                                 | ol / A <sub>PLD</sub> ), Min=0.5', Max=1.0')                                                                                                                                                                                                                                                                                                                                                                                                                           | d <sub>av</sub> =feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| <ol> <li>Braining c<br/>Based on</li> <li>Check box</li> <li>Check box</li> <li>Check box</li> <li>Check box</li> <li>Check box</li> <li>Check box</li> <li>Inderdra</li> <li>Does tribupetroleum<br/>present, s<br/>hardware</li> </ol> | of PLD (Check A, or B, or C, answer D)<br>answers to 3A through 3D, check the appropriate method<br>x if subgrade is heavy or expansive clay<br>x if subgrade is silty or clayey sand<br>x if subgrade is well-draining soil X<br>x if underdrains are not desirable or<br>ains are not feasible at this site.<br>thary catchment contain land uses that may have<br>products, greases, or other chemicals<br>uch as gas station, yes no<br>store, restaurant, etc.? X | Infiltration to Subgrade with Permeable<br>Membrane: 3(C) checked and 3(E) = no<br>Underdrain with Impermeable<br>Liner: 3(A) checked or 3(E) = yes<br>Underdrain with Non-Woven Geotextile Fabric:<br>3(B) checked and 3(E) = no<br>16-Mil. Impermeable Membrane with No Underdrain:<br>3(D) checked - Evapotranspiration only<br><u>x</u> Other: <u>Type D Inlet</u>                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| <ul> <li>4. Sand/Pea</li> <li>A) Heavy<br/>Perfor</li> <li>B) Silty or<br/>Perfor</li> <li>C) No Po<br/>(NRCS)</li> <li>D) Under</li> <li>E) Other:</li> </ul>                                                                           | t Mix and Gravel Subbase (See Figure PLD-1)<br>or Expansive Clay (NRCS Group D Soils) Present;<br>rated HDPE Underdrain Used.<br>r Clayey Sand (NRCS Group C Soils) Present;<br>rated HDPE Underdrain Used.<br>tential For Contamination And Well-Draining<br>S Group A or B Soils) Are Present; Underdrains Elliminated.<br>drains Are Not Desirable Or Are Not Feasible At This Site.                                                                                | 18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer. 16-Mil. Impermeable Liner and a 3" to 4" Perforated HDPE Underdrain.     18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer and a     3" to 4" Perforated HDPE Underdrain w/ Non-Woven Pemeable Membrane.     18" Minimum Depth Sand-Peat Mix with Non-Woven     Pemeable Membrane and No Underdrain (Direct Infiltration).     18" Minimum Depth Sand-Peat Mix with An Additional 18"     Minimum Depth Sand-Peat Mix with An Additional 18"     Minimum Layer Sand-Peat Mix or Sand-Class 'A' Compost Bottom     Layer (Total Sand-Peat Depth of 36"). 16-Mil. Impermeable Liner Used.     x Other: See Detail on Sheet 8 |  |  |  |  |  |
| INO[62]                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |

Í

1

Í



east pond-PLD SiziColorado Springs-El Paso County 2-Year Duration=15 min, Inten=2.49 in/hrPrepared by {enter your company name here}Page 2HydroCAD® 8.00s/n 004515© 2006HydroCAD Software Solutions LLC7/23/2008

## Pond Pond: East PLD

| Inflow Area<br>Inflow<br>Outflow<br>Primary                                                                                      | a =<br>=<br>=<br>=                                                                                                                               | 3.680 ac, Inf<br>8.32 cfs @<br>6.50 cfs @<br>6.50 cfs @ | low Depth = 0.56<br>0.09 hrs, Volume<br>0.27 hrs, Volume<br>0.27 hrs, Volume | 6" for 2-Year eve<br>= 0.172 af<br>= 0.134 af<br>= 0.134 af | nt<br>, Atten= 22%, Lag= | 10.7 min  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------|-----------|--|--|--|--|
| Routing by<br>Peak Elev                                                                                                          | Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3<br>Peak Elev= 6,844.47' @ 0.27 hrs Surf.Area= 3,394 sf Storage= 4,371 cf |                                                         |                                                                              |                                                             |                          |           |  |  |  |  |
| Plug-Flow detention time= 12.8 min calculated for 0.134 af (78% of inflow)<br>Center-of-Mass det. time= 10.8 min ( 20.9 - 10.0 ) |                                                                                                                                                  |                                                         |                                                                              |                                                             |                          |           |  |  |  |  |
| Volume                                                                                                                           | Inve                                                                                                                                             | rt Avail.Sto                                            | rage Storage D                                                               | escription                                                  |                          |           |  |  |  |  |
| #1                                                                                                                               | #1 6,843.00' 9,728 cf Custom Stage Data (Pyramidal) Listed below                                                                                 |                                                         |                                                                              |                                                             |                          |           |  |  |  |  |
| Elevation                                                                                                                        | ç                                                                                                                                                | Surf Area                                               | Inc Store                                                                    | Cum Store                                                   | Mot Area                 |           |  |  |  |  |
| (feet)                                                                                                                           |                                                                                                                                                  | (sq-ft)                                                 | (cubic-feet)                                                                 | (cubic-feet)                                                | (sa-ft)                  |           |  |  |  |  |
| 6,843.00                                                                                                                         |                                                                                                                                                  | 2,200                                                   | 0                                                                            | 0                                                           | 2 200                    |           |  |  |  |  |
| 6,844.00                                                                                                                         |                                                                                                                                                  | 3,300                                                   | 2.731                                                                        | 2.731                                                       | 3,320                    |           |  |  |  |  |
| 6,846.00                                                                                                                         |                                                                                                                                                  | 3,700                                                   | 6,996                                                                        | 9,728                                                       | 3,939                    |           |  |  |  |  |
| Device F                                                                                                                         | Routing                                                                                                                                          | Invert                                                  | Outlet Devices                                                               |                                                             |                          |           |  |  |  |  |
| #1 F                                                                                                                             | Primary                                                                                                                                          | 6,845.50'                                               | 3.00' x 3.00' Ho                                                             | riz. Orifice/Grate                                          | Limited to weir flow     | C = 1.000 |  |  |  |  |
| #2 F                                                                                                                             | Primary                                                                                                                                          | 6,843.60'                                               | 2.50' W x 1.25'                                                              | H Vert. Orifice/Gra                                         | te $C = 0.600$           | 0 1.000   |  |  |  |  |
| Primary OutFlow Max=6.49 cfs @ 0.27 hrs HW=6,844.47' (Free Discharge)                                                            |                                                                                                                                                  |                                                         |                                                                              |                                                             |                          |           |  |  |  |  |

-2=Orifice/Grate (Orifice Controls 6.49 cfs @ 2.99 fps)



east pond-PLD SiziColorado Springs-El Paso County 5-Year Duration=15 min, Inten=3.42 in/hrPrepared by {enter your company name here}Page 5HydroCAD® 8.00s/n 004515© 2006HydroCAD Software Solutions LLC7/23/2008

## Pond Pond: East PLD

| Inflow Ar<br>Inflow<br>Outflow<br>Primary                                  | Inflow Area =       3.680 ac, Inflow Depth =       0.77" for 5-Year event         Inflow =       11.42 cfs @       0.09 hrs, Volume=       0.236 af         Outflow =       9.65 cfs @       0.26 hrs, Volume=       0.198 af, Atten=       16%, Lag=       10.4 min         Primary =       9.65 cfs @       0.26 hrs, Volume=       0.198 af       10.4 min |                 |                   |                    |                      |           |  |  |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|--------------------|----------------------|-----------|--|--|--|
| Routing I                                                                  | by Stor-Ir                                                                                                                                                                                                                                                                                                                                                    | id method. Time | Span= 0.00-12.00  | ) hrs_dt= 0.01 hrs | 13                   |           |  |  |  |
| Peak Ele                                                                   | ev= 6,844                                                                                                                                                                                                                                                                                                                                                     | .73' @ 0.26 hrs | Surf.Area= 3,446  | sf Storage= 5,2    | 88 cf                |           |  |  |  |
| Plug-Flow detention time= 10.5 min calculated for 0.198 af (84% of inflow) |                                                                                                                                                                                                                                                                                                                                                               |                 |                   |                    |                      |           |  |  |  |
| Center-of-Mass det. time= 9.4 min (19.4 - 10.0)                            |                                                                                                                                                                                                                                                                                                                                                               |                 |                   |                    |                      |           |  |  |  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                               |                 |                   |                    |                      |           |  |  |  |
| volume                                                                     | inv                                                                                                                                                                                                                                                                                                                                                           | en Avail.Sto    | rage Storage De   | scription          |                      |           |  |  |  |
| #1                                                                         | 6,843.0                                                                                                                                                                                                                                                                                                                                                       | 00' 9,72        | 28 cf Custom St   | age Data (Pyram    | idal) Listed below   |           |  |  |  |
| Elevatio                                                                   | n•                                                                                                                                                                                                                                                                                                                                                            | Surf.Area       | Inc.Store         | Cum.Store          | Wet.Area             |           |  |  |  |
| (feet                                                                      | t)                                                                                                                                                                                                                                                                                                                                                            | (sq-ft)         | (cubic-feet)      | (cubic-feet)       | (sa-ft)              |           |  |  |  |
| 6,843.0                                                                    | 0                                                                                                                                                                                                                                                                                                                                                             | 2,200           | 0                 | 0                  | 2.200                |           |  |  |  |
| 6,844.0                                                                    | 0                                                                                                                                                                                                                                                                                                                                                             | 3,300           | 2,731             | 2,731              | 3.320                |           |  |  |  |
| 6,846.0                                                                    | 0                                                                                                                                                                                                                                                                                                                                                             | 3,700           | 6,996             | 9,728              | 3,939                |           |  |  |  |
| Device                                                                     | Routing                                                                                                                                                                                                                                                                                                                                                       | Invert          | Outlet Devices    |                    |                      |           |  |  |  |
| #1                                                                         | Primary                                                                                                                                                                                                                                                                                                                                                       | 6,845.50'       | 3.00' x 3.00' Hor | iz. Orifice/Grate  | Limited to weir flow | C = 1.000 |  |  |  |
| #2                                                                         | Primary                                                                                                                                                                                                                                                                                                                                                       | 6,843.60'       | 2.50' W x 1.25' H | Vert. Orifice/Gra  | ate C= 0.600         |           |  |  |  |
| Primary OutFlow Max=9.63 cfs @ 0.26 hrs HW=6,844.73' (Free Discharge)      |                                                                                                                                                                                                                                                                                                                                                               |                 |                   |                    |                      |           |  |  |  |

**2=Orifice/Grate** (Orifice Controls 9.63 cfs @ 3.41 fps)

east pond-PLD Sizi Colorado Springs-El Paso County 5-Year Duration=15 min, Inten=3.42 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 6 7/23/2008



Pond Pond: East PLD

| east pond-PLD Sizi Colorado Springs-El Paso County 5-Year Duration=15 min, | Inten=3.42 in/hr |
|----------------------------------------------------------------------------|------------------|
| Prepared by {enter your company name here}                                 | Page 7           |
| HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC           | 7/23/2008        |

.



## Pond Pond: East PLD

east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 8 7/23/2008

## Pond Pond: East PLD

| Inflow An<br>Inflow<br>Outflow<br>Primary                                                                                      | rea =<br>= 2<br>= 1<br>= 1                                       | 3.680 ac, Inf<br>20.30 cfs @<br>6.97 cfs @<br>6.97 cfs @ | low Depth = 1.37<br>0.09 hrs, Volume<br>0.26 hrs, Volume<br>0.26 hrs, Volume | " for 100-Year €<br>= 0.420 af<br>= 0.382 af<br>= 0.382 af | , Atten= 16%, Lag=   | 10.4 min |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------|----------------------|----------|--|--|--|
| Routing<br>Peak Ele                                                                                                            | by Stor-Ind<br>ev= 6,845.5                                       | method, Time<br>51' @ 0.26 hrs                           | e Span= 0.00-12.0<br>Surf.Area= 3,60                                         | 0 hrs, dt= 0.01 hrs<br>3 sf Storage= 8,0                   | / 3<br>24 cf         |          |  |  |  |
| Plug-Flow detention time= 8.7 min calculated for 0.382 af (91% of inflow)<br>Center-of-Mass det. time= 7.8 min ( 17.8 - 10.0 ) |                                                                  |                                                          |                                                                              |                                                            |                      |          |  |  |  |
| Volume                                                                                                                         | Inver                                                            | t Avail.Sto                                              | orage Storage D                                                              | escription                                                 |                      |          |  |  |  |
| #1                                                                                                                             | #1 6,843.00' 9,728 cf Custom Stage Data (Pyramidal) Listed below |                                                          |                                                                              |                                                            |                      |          |  |  |  |
| Elevatio                                                                                                                       | on S                                                             | Surf.Area                                                | Inc.Store                                                                    | Cum.Store                                                  | Wet Area             |          |  |  |  |
| (fee                                                                                                                           | et)                                                              | (sq-ft)                                                  | (cubic-feet)                                                                 | (cubic-feet)                                               | (sq-ft)              |          |  |  |  |
| 6,843.0                                                                                                                        | 00                                                               | 2,200                                                    | 0                                                                            | 0                                                          | 2,200                |          |  |  |  |
| 6,844.0                                                                                                                        | 0                                                                | 3,300                                                    | 2,731                                                                        | 2,731                                                      | 3,320                |          |  |  |  |
| 6,846.0                                                                                                                        | 00                                                               | 3,700                                                    | 6,996                                                                        | 9,728                                                      | 3,939                |          |  |  |  |
| Device                                                                                                                         | Routing                                                          | invert                                                   | Outlet Devices                                                               |                                                            |                      |          |  |  |  |
| #1                                                                                                                             | Primary                                                          | 6,845.50'                                                | 3.00' x 3.00' Ho                                                             | riz. Orifice/Grate                                         | Limited to weir flow | C= 1.000 |  |  |  |
| #2                                                                                                                             | Primary                                                          | 6,843.60'                                                | 2.50' W x 1.25'                                                              | H Vert. Orifice/Gra                                        | nte C= 0.600         |          |  |  |  |
| Primary OutFlow Max=16.92 cfs @ 0.26 hrs HW=6,845.51' (Free Discharge)                                                         |                                                                  |                                                          |                                                                              |                                                            |                      |          |  |  |  |

-1=Orifice/Grate (Weir Controls 0.04 cfs @ 0.33 fps) -2=Orifice/Grate (Orifice Controls 16.88 cfs @ 5.40 fps)

east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hrPrepared by {enter your company name here}Page 9HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008



# east pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=15 min, Inten=6.08 in/hrPrepared by {enter your company name here}Page 10HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008



## Pond Pond: East PLD

| Designer:                                                          | Thomas Roberts                                                                                                                                                   |                                                                                                                                                                                                 |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company:                                                           | Springs Engineering                                                                                                                                              |                                                                                                                                                                                                 |
| Date:                                                              |                                                                                                                                                                  |                                                                                                                                                                                                 |
| Project:                                                           | Meridian Crossing West Pond                                                                                                                                      |                                                                                                                                                                                                 |
| Location:                                                          | Falcon, CO                                                                                                                                                       |                                                                                                                                                                                                 |
|                                                                    |                                                                                                                                                                  |                                                                                                                                                                                                 |
| 1. Basin Stor<br>A) Tributa                                        | rage Volume<br>( $l_a = 100\%$ if all paved and roofed areas u/s of PLD)<br>ry Area's Imperviousness Ratio (i = $l_a$ / 100 )                                    | $i_a = 82.00 \%$<br>i = 0.82 %                                                                                                                                                                  |
| B) Contril                                                         | buting Watershed Area Including the PLD (Area)                                                                                                                   | Area = 200,821 square feet                                                                                                                                                                      |
| C) Water<br>(WQ(<br>D) Design                                      | Quality Capture Volume (WQCV)<br>CV = 0.8 * (0.91 * $l^3$ - 1.19 * $l^2$ + 0.78 * l))<br>n Volume: Vol <sub>PLD</sub> = (WQCV / 12) * Area                       | WQCV = <u>0.27</u> watershed inches<br>Vol = <u>4,568</u> cubic feet                                                                                                                            |
| 2. PLD Surfa<br>(from 456                                          | ace Area (A <sub>PLD</sub> ) and Average Depth (d <sub>av</sub> )<br>67.86 square feet to 9135.72 square feet)                                                   | A <sub>PLD</sub> =4,600square feet                                                                                                                                                              |
| (d <sub>av</sub> : = (Vo                                           | ol / A <sub>PLD</sub> ), Min=0.5', Max≏1.0')                                                                                                                     | d <sub>av</sub> = <u>0.99</u> feet                                                                                                                                                              |
| 3. Draining o<br>Based on                                          | of PLD (Check A, or B, or C, answer D)<br>answers to 3A through 3D, check the appropriate method                                                                 | Infiltration to Subgrade with Permeable<br>Membrane: 3(C) checked and 3(E) = no                                                                                                                 |
| A) Check bo<br>B) Check bo<br>C) Check bo                          | IX if subgrade is heavy or expansive clay<br>IX if subgrade is silty or clayey sand<br>IX if subgrade is well-draining soil<br>X                                 | Underdrain with Impermeable<br>Liner: 3(A) checked or 3(E) = yes                                                                                                                                |
| D) Check bo<br>if underdr                                          | ax if underdrains are not desirable or rains are not feasible at this site.                                                                                      | Underdrain with Non-Woven Geotextile Fabric:<br>3(B) checked and 3(E) = no<br>16 Mil Impermeable Membrane with No Underdrain:                                                                   |
| E) Does trib<br>petroleum<br>present, s<br>hardware                | utary catchment contain land uses that may have<br>n products, greases, or other chemicals<br>such as gas station, yes no<br>e store, restaurant, etc.? <b>x</b> | 3(D) checked - Evapotranspiration only           x         Other:         Type D Inlet                                                                                                          |
| 4. Sand/Pea                                                        | at Mix and Gravel Subbase (See Figure PLD-1)                                                                                                                     | 18" Minimum Deoth Sand-Peat Mix with 8" Gravel Laver, 16-Mil.                                                                                                                                   |
| Perfo                                                              | orated HDPE Underdrain Used.                                                                                                                                     | Impermeable Liner and a 3" to 4" Perforated HDPE Underdrain.                                                                                                                                    |
| B) Silty o<br>Perfo                                                | or Clayey Sand (NRCS Group C Soils) Present;<br>orated HDPE Underdrain Used.                                                                                     | 18" Minimum Depth Sand-Peat Mix with 8" Gravel Layer and a 3" to 4" Perforated HDPE Underdrain w/ Non-Woven Pemeable Membrane.                                                                  |
| C) No Po<br>(NRC                                                   | otential For Contamination And Well-Draining<br>S Group A or B Soils) Are Present; Underdrains Elliminated.                                                      | 18" Minimum Depth Sand-Peat Mix with Non-Woven<br>Pemeable Membrane and No Underdrain (Direct Infiltration).                                                                                    |
| D) Underdrains Are Not Desirable Or Are Not Feasible At This Site. |                                                                                                                                                                  | 18" Minimum Depth Sand-Peat Mix with An Additional 18"<br>Minimum Layer Sand-Peat Mix or Sand-Class 'A' Compost Bottom<br>Layer (Total Sand-Peat Depth of 36"). 16-Mil. Impermeable Liner Used. |
| E) Other                                                           | r.                                                                                                                                                               | x Other: See Detail on Sheet 8                                                                                                                                                                  |
| Notos                                                              | ······                                                                                                                                                           |                                                                                                                                                                                                 |
| notes.                                                             |                                                                                                                                                                  |                                                                                                                                                                                                 |

٠



| west pond-PLD Sizi      | Colorado Springs-El Paso County 2-Year     | Duration=6 min, | Inten=3.56 in/hr |
|-------------------------|--------------------------------------------|-----------------|------------------|
| Prepared by {enter you  | r company name here}                       |                 | Page 2           |
| HydroCAD® 8.00 s/n 0045 | 515 © 2006 HydroCAD Software Solutions LLC |                 | 7/23/2008        |
|                         |                                            |                 |                  |

## Pond Pond: West PLD

| Inflow Area<br>Inflow<br>Outflow<br>Primary                                                                                                  | a = 3<br>= 11<br>= 11<br>= 11                                                                                                 | 3.680 ac, Inf<br>.93 cfs @<br>.81 cfs @<br>.81 cfs @ | low Depth = 0.32<br>0.10 hrs, Volume<br>0.10 hrs, Volume<br>0.10 hrs, Volume | for 2-Year eve<br>= 0.098 af<br>= 0.098 af<br>= 0.098 af | nt<br>, Atten= 1%, Lag= 0.2 min |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------|--|--|
| Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.01 hrs / 3<br>Peak Elev= 6,841.48' @ 0.10 hrs Surf.Area= 148 sf Storage= 133 cf |                                                                                                                               |                                                      |                                                                              |                                                          |                                 |  |  |
| Plug-Flow<br>Center-of-                                                                                                                      | Plug-Flow detention time= 0.2 min calculated for 0.098 af (100% of inflow)<br>Center-of-Mass det. time= 0.2 min ( 5.7 - 5.5 ) |                                                      |                                                                              |                                                          |                                 |  |  |
| Volume                                                                                                                                       | Invert                                                                                                                        | Avail.Sto                                            | brage Storage De                                                             | escription                                               |                                 |  |  |
| #1                                                                                                                                           | 6,840.00'                                                                                                                     | 6,0                                                  | 185 cf Custom S                                                              | tage Data (Prisma                                        | itic) Listed below              |  |  |
| Elevation                                                                                                                                    | Su                                                                                                                            | Irf.Area                                             | inc.Store                                                                    | Cum.Store                                                | •                               |  |  |
| (feet)                                                                                                                                       |                                                                                                                               | (sq-ft)                                              | (cubic-feet)                                                                 | (cubic-feet)                                             |                                 |  |  |
| 6,840.00                                                                                                                                     |                                                                                                                               | 20                                                   | 0                                                                            | 0                                                        |                                 |  |  |
| 6,841.00                                                                                                                                     |                                                                                                                               | 100                                                  | 60                                                                           | 60                                                       |                                 |  |  |
| 6,842.00                                                                                                                                     |                                                                                                                               | 200                                                  | 150                                                                          | 210                                                      |                                 |  |  |
| 6,843.00                                                                                                                                     |                                                                                                                               | 1,500                                                | 850                                                                          | 1,060                                                    |                                 |  |  |
| 6,844.50                                                                                                                                     |                                                                                                                               | 5,200                                                | 5,025                                                                        | 6,085                                                    |                                 |  |  |
| Device F                                                                                                                                     | Routing                                                                                                                       | Invert                                               | Outlet Devices                                                               |                                                          |                                 |  |  |
| #1 F                                                                                                                                         | Primary                                                                                                                       | 6,842.85'                                            | 3.00' x 3.00' Ho                                                             | riz. Orifice/Grate                                       | Limited to weir flow C= 1.000   |  |  |
| #2 F                                                                                                                                         | Primary                                                                                                                       | 6,840.00'                                            | 2.50' W x 1.00'                                                              | H Vert. Orifice/Gra                                      | ate C= 0.600                    |  |  |
| Primary OutFlow Max=11.74 cfs @ 0.10 hrs HW=6,841.47' (Free Discharge)                                                                       |                                                                                                                               |                                                      |                                                                              |                                                          |                                 |  |  |

**1=Orifice/Grate** (Controls 0.00 cfs) **2=Orifice/Grate** (Orifice Controls 11.74 cfs @ 4.70 fps)

I

west pond-PLD SiziColorado Springs-El Paso County 2-Year Duration=6 min, Inten=3.56 in/hrPrepared by {enter your company name here}Page 3HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008



west pond-PLD SiziColorado Springs-El Paso County 2-Year Duration=6 min, Inten=3.56 in/hrPrepared by {enter your company name here}Page 4HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC7/23/2008



#### Pond Pond: West PLD

west pond-PLD SiziColorado Springs-El Paso County 5-Year Duration=6 min, Inten=4.88 in/hrPrepared by {enter your company name here}Page 5HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008

## Pond Pond: West PLD

| Inflow Area<br>Inflow<br>Outflow<br>Primary | a =<br>=<br>=<br>=    | 3.680 ac, Inf<br>16.39 cfs @<br>15.20 cfs @<br>15.20 cfs @ | low Depth = 0.44<br>0.09 hrs, Volume<br>0.11 hrs, Volume<br>0.11 hrs, Volume | " for 5-Year<br>= 0.13<br>= 0.13<br>= 0.13 | r event<br>35 af<br>35 af, Atten= 7%, Lag= 0.6 min<br>35 af |
|---------------------------------------------|-----------------------|------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|
| Routing by<br>Peak Elev                     | / Stor-In<br>= 6,842. | d method, Time<br>11' @ 0.11 hrs                           | e Span= 0.00-12.0<br>Surf.Area= 340 :                                        | 0 hrs, dt= 0.01<br>sf Storage= 3           | 1 hrs / 3<br>302 cf                                         |
| Plug-Flow                                   | detentio              | n time= 0.2 mi                                             | n calculated for 0.                                                          | 134 af (100% /                             | of inflow)                                                  |
| Center-of-                                  | Mass de               | t. time= 0.2 mi                                            | n ( 5.7 - 5.5 )                                                              | ·                                          |                                                             |
| Volume                                      | Inve                  | ert Avail.Sto                                              | orage Storage D                                                              | escription                                 |                                                             |
| #1                                          | 6,840.0               | 0' 6,0                                                     | 85 cf Custom S                                                               | tage Data (Pri                             | ismatic) Listed below                                       |
| Elevation                                   |                       | Surf.Area                                                  | Inc.Store                                                                    | Cum.Store                                  |                                                             |
| (feet)                                      |                       | (sq-ft)                                                    | (cubic-feet)                                                                 | (cubic-feet)                               |                                                             |
| 6,840.00                                    |                       | 20                                                         | 0                                                                            | 0                                          |                                                             |
| 6,841.00                                    |                       | 100                                                        | 60                                                                           | 60                                         |                                                             |
| 6,842.00                                    |                       | 200                                                        | 150                                                                          | 210                                        |                                                             |
| 6,843.00                                    |                       | 1,500                                                      | 850                                                                          | 1,060                                      |                                                             |
| 6,844.50                                    |                       | 5,200                                                      | 5,025                                                                        | 6,085                                      |                                                             |
| Device F                                    | Routing               | Invert                                                     | Outlet Devices                                                               |                                            |                                                             |
| #1 F                                        | rimary                | 6,842.85'                                                  | 3.00' x 3.00' Ho                                                             | riz. Orifice/Gr                            | rate Limited to weir flow C= 1,000                          |
| #2 F                                        | Primary               | 6,840.00'                                                  | 2.50' W x 1.00'                                                              | H Vert. Orifice                            | e/Grate C= 0.600                                            |
| Primary C                                   | outFlow               | Max=15.16 cfs                                              | s@0.11 hrs HW:                                                               | =6,842.10' (F                              | ree Discharge)                                              |

-1=Orifice/Grate (Controls 0.00 cfs) -2=Orifice/Grate (Orifice Controls 15.16 cfs @ 6.06 fps) west pond-PLD SiziColorado Springs-El Paso County 5-YearDuration=6 min, Inten=4.88 in/hrPrepared by {enter your company name here}Page 6HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008



west pond-PLD SiziColorado Springs-El Paso County 5-Year Duration=6 min, Inten=4.88 in/hrPrepared by {enter your company name here}Page 7HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008



#### Pond Pond: West PLD

west pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 8 7/23/2008

#### Pond Pond: West PLD

| Inflow Are<br>Inflow<br>Outflow<br>Primary | a =<br>= 2<br>= 2<br>= 2 | 3.680 ac, Inf<br>9.14 cfs @<br>5.15 cfs @<br>5.15 cfs @ | low Depth = 0.78<br>0.09 hrs, Volume<br>0.11 hrs, Volume<br>0.11 hrs, Volume | }" for 100-<br>≽= 0<br>≽= 0<br>≥= 0 | -Year ev<br>.240 af<br>.239 af,<br>.239 af | ent<br>Atten= 14%, Lag=         | 1.0 min  |
|--------------------------------------------|--------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------|---------------------------------|----------|
| Routing by<br>Peak Elev                    | / Stor-Ind<br>= 6,843.1  | method, Time<br>3' @ 0.11 hrs                           | e Span= 0.00-12.0<br>Surf.Area= 1,80                                         | 0 hrs, dt= 0<br>9 sf Storag         | .01 hrs /<br>je= 1,479                     | 3<br>9 cf                       |          |
| Plug-Flow<br>Center-of-                    | detentior<br>Mass det    | n time= 0.7 min<br>. time= 0.7 min<br>t                 | n calculated for 0.<br>n ( 6.2 - 5.5 )                                       | 239 af (1009                        | % of inflo                                 | DW)                             |          |
| volume                                     |                          |                                                         | orage Storage D                                                              | escription                          |                                            |                                 |          |
| #1                                         | 6,840.00                 | 6,0                                                     | 85 cf Custom S                                                               | tage Data (I                        | Prismati                                   | ic) Listed below                |          |
| Elevation<br>(feet)                        | S                        | Surf.Area<br>(sq-ft)                                    | Inc.Store<br>(cubic-feet)                                                    | Cum.Store                           | 9                                          |                                 |          |
| 6,840.00                                   |                          | 20                                                      | 0                                                                            |                                     | 2<br>0                                     |                                 |          |
| 6,841.00                                   |                          | 100                                                     | 60                                                                           | 6                                   | 0                                          |                                 |          |
| 6,842.00                                   |                          | 200                                                     | 150                                                                          | 21(                                 | Ď                                          |                                 |          |
| 6,843.00                                   |                          | 1,500                                                   | 850                                                                          | 1.060                               | 5                                          |                                 |          |
| 6,844.50                                   |                          | 5,200                                                   | 5,025                                                                        | 6,08                                | 5                                          |                                 |          |
| Device F                                   | Routing                  | Invert                                                  | Outlet Devices                                                               |                                     |                                            |                                 |          |
| #1 F<br>#2 F                               | Primary<br>Primary       | 6,842.85'<br>6,840.00'                                  | 3.00' x 3.00' Ho<br>2.50' W x 1.00'                                          | riz. Orifice/<br>H Vert. Orifi      | Grate<br>ice/Grate                         | Limited to weir flow e C= 0.600 | C= 1.000 |
| Primary O                                  | utFlow I                 | Max=25.05 cfs                                           | 。@ 0.11 hrs HW                                                               | =6,843.12'                          | (Free Di                                   | scharge)                        |          |

-1=Orifice/Grate (Weir Controls 5.58 cfs @ 1.71 fps) -2=Orifice/Grate (Orifice Controls 19.46 cfs @ 7.79 fps)

west pond-PLD Si Colorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hr Prepared by {enter your company name here} HydroCAD® 8.00 s/n 004515 © 2006 HydroCAD Software Solutions LLC Page 9 7/23/2008



## Pond Pond: West PLD

west pond-PLD SiColorado Springs-El Paso County 100-Year Duration=6 min, Inten=8.68 in/hrPrepared by {enter your company name here}Page 10HydroCAD® 8.00s/n 004515© 2006 HydroCAD Software Solutions LLC7/23/2008



#### Pond Pond: West PLD



.

## OPERATION AND MAINTENANCE MANUAL MERIDIAN CROSSING PARK PLACE ENTERPRISES EL PASO COUNTY, COLORADO

May 2008

**PREPARED FOR:** 

## **Park Place Enterprises**

15 Miranda Road Colorado Springs, CO 80906

PREPARED BY:

Springs Engineering

31 N. Tejon Street Suite 315 Colorado Springs, CO 80903

PROJECT NO. 07-057-0032

## **Table of Contents**

| TABLE OF CONTENTS                   | 1 |
|-------------------------------------|---|
| INTRODUCTION                        | 2 |
| GENERAL LOCATION AND DESCRIPTION    | 2 |
| DESCRIPTION OF CONSTRUCTION         | 2 |
| FACILITIES                          | 2 |
| INSPECTION AND MAINTENANCE          | 2 |
| POROUS LANDSCAPE DETENTION FACILITY | 2 |
| OPERATION & MAINTENANCE LOG         | 4 |

.

1

.

.

.

#### Introduction

This Operation and Maintenance Plan is being submitted on behalf of Park Place Enterprises for a development known as Meridian Crossing in Falcon, Colorado. The purpose of this Operation and Maintenance Manual (O&M) is to identify facilities which are to be maintained by the Meridian Crossing Properties Owners Association (POA) and the frequency with which these items are to be maintained.

#### **General Location and Description**

Meridian Crossing is currently zoned CR and the proposed development includes 6 commercial lots, proposed water quality facilities, streets, and utilities.

Meridian Crossing is approximately 9.5 acres and is located north of the intersection of Meridian Road and Old Meridian Road in Falcon, Colorado, Section 12, Township 13 South, Range 65 West of the 6<sup>th</sup> Principal Meridian.

#### **Description of Construction**

Construction will consist of site grading, utility installation, and road paving. Approximately 9.5 acres of the site will be graded for construction of the proposed commercial units. Erosion control will be provided prior to construction.

#### Facilities

Water quality facilities will be owned and maintained by the POA. Water and sanitary sewer will be maintained by the Falcon Highlands Metropolitan District. All other utilities are to be maintained by their respective owners.

#### **Inspection and Maintenance**

A thorough inspection of the permanent structures shall be performed every 30 days as well as after any significant rain or snowmelt event. Inspectors are to look for any significant deterioration of the facilities including:

- Erosion of channels and side slopes.
- Accumulated trash or debris.

Repairs and removal of debris shall occur as soon as practical.

#### **Porous Landscape Detention Facility**

Lawn mowing and vegetative care shall be performed routinely, as aesthetic requirements demand. This shall limit unwanted vegetation. Irrigated turf grass shall be between 2 and 4 inches in height and non irrigated native turf grasses shall be 4 to 6 inches in height. Debris and litter removal shall be performed routinely, as aesthetic requirements demand. Removal of debris and litter from any detention area minimizes clogging of the sand media. Landscaping removal and replacement shall be done every 5 to 10 years depending on infiltration rates needed to drain the area in 12 hours or less. Over time the sandy loam

sandy loam turf will clog. The layer will need to be replaced, along with all turf and other vegetation growing on the surface, to rehabilitate infiltration rates. Bin-annual inspections of the hydraulic performance of the area will need to be performed. This will determine if the sand media is allowing acceptable infiltration.

An Operation and Maintenance Log follows.

### **Operation & Maintenance Log**

#### THE SHOPPES AT FALCON OPERATION AND MAINTENANCE LOG

(Record inspections, items found maintenance and corrective actions taken. Also record any training received by Contractor personnel with regard to erosion control, materials handling and any inspections by outside agencies)

| DATE     | ITEM  | SIGNATURE OF PERSON MAKING<br>ENTRY |
|----------|-------|-------------------------------------|
|          |       |                                     |
|          |       |                                     |
|          |       |                                     |
|          |       |                                     |
|          |       |                                     |
|          |       |                                     |
|          |       |                                     |
|          |       |                                     |
|          |       |                                     |
|          |       |                                     |
|          |       |                                     |
|          | ····· |                                     |
|          |       |                                     |
|          |       |                                     |
|          |       |                                     |
|          |       |                                     |
| <b> </b> |       |                                     |
|          |       |                                     |
| ļ        |       | ,                                   |
|          |       |                                     |

## Appendix I: Ultimate Design StormCAD Calculations



 Title: Old Meridian Road
 Project Engineer: Charlene Sammons

 z:\...\reports\fdr\calcs\storm cad\ultimate.stm
 StormCAD v5.6 [05.06.012.00]

 07/24/08
 03:02:30 KWBentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666
 Page 1 of 1

### Analysis Results Scenario: 100-year

Note:

The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

| Title:            | Old Meridian Road                                            |
|-------------------|--------------------------------------------------------------|
| Project Engineer: | Charlene Sammons                                             |
| Project Date:     | 11/14/07                                                     |
| Comments:         | Storm in Old Meridian Road for Meridian Crossing Storm Sewer |

| Scenario100-yearPhysical Properties AlternatBase-Physical PropertiesCatchments AlternativeCatchments-100-yearSystem Flows AlternativeBase-System FlowsStructure Headlosses AlternBase-System FlowsBoundary Conditions AlternBase-Structure HeadlossesBoundary Conditions AlternBase-Design ConstraintsCapital Cost AlternativeBase-CostUser Data AlternativeBase-CostVetwork InventoryBase-User DataNumber of Pipes4Number of Inlets2- Circular Pipes:0- Curb Inlets:2- Arch Pipes:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Combination Inlets:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Horizont                                                                                                                    | Scenario Summary                                                                                                                                                                    |                            |                                                                                                                                                                     |                            |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
| Physical Properties Alternat       Base-Physical Properties         Catchments Alternative       Catchments-100-year         System Flows Alternative       Base-System Flows         Structure Headlosses Alterr       Base-Structure Headlosses         Boundary Conditions Altern       Base-Boundary Conditions         Design Constraints Alternat       Base-Design Constraints         Capital Cost Alternative       Base-Cost         User Data Alternative       Base-User Data         Network Inventory       Base-User Data         Number of Pipes       4       Number of Inlets       2         - Circular Pipes:       0       - Curb Inlets:       2         - Arch Pipes:       0       - Combination Inlets:       0         - Vertical Elliptical Pipes:       0       - Slot Inlets:       0         - Horizontal Elliptical Pipes:       0       - Grate Inlets in Ditch:       0         - Horizontal Elliptical Pipes:       0       - Grate Inlets in Ditch:       0         - Horizontal Elliptical Pipes:       0       - Grate Inlets in Ditch:       0         - Horizontal Elliptical Pipes:       0       - Grate Inlets:       0                                                                                | Scenario                                                                                                                                                                            | 100-year                   | 100-year                                                                                                                                                            |                            |  |  |  |
| Catchments AlternativeCatchments-100-yearSystem Flows AlternativeBase-System FlowsStructure Headlosses AlternBase-Structure HeadlossesBoundary Conditions AlternBase-Boundary ConditionsDesign Constraints AlternativeBase-Design ConstraintsCapital Cost AlternativeBase-CostUser Data AlternativeBase-User DataNetwork InventoryBase-User DataNumber of Pipes4- Circular Pipes:0- Curb Inlets:2- Arch Pipes:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes: <td>Physical Properties Alterna</td> <td>Base-Physical Prop</td> <td>erties</td> <td></td> | Physical Properties Alterna                                                                                                                                                         | Base-Physical Prop         | erties                                                                                                                                                              |                            |  |  |  |
| System Flows AlternativeBase-System FlowsStructure Headlosses AlternBase-Structure HeadlossesBoundary Conditions AlternBase-Boundary ConditionsDesign Constraints AlternativeBase-Design ConstraintsCapital Cost AlternativeBase-CostUser Data AlternativeBase-User DataNetwork InventoryBase-User DataNumber of Pipes4Number of Pipes:0- Circular Pipes:0- Roter Pipes:0- Arch Pipes:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Grate Inlets:0- Number of Junctions2- Circular Liptical Pipes:0- Slot Inlets:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:0                                                                                                                                  | Catchments Alternative                                                                                                                                                              | Catchments-100-ye          | ar                                                                                                                                                                  |                            |  |  |  |
| Structure Headlosses Alterr       Base-Structure Headlosses         Boundary Conditions Altern       Base-Boundary Conditions         Design Constraints Alternat       Base-Design Constraints         Capital Cost Alternative       Base-Cost         User Data Alternative       Base-User Data         Network Inventory       Base-User Data         Number of Pipes       4         - Circular Pipes:       0         - Box Pipes:       0         - Arch Pipes:       0         - Vertical Elliptical Pipes:       0         - Horizontal Elliptical Pipes:       0         - Grate Inlets:       0         - Horizontal Elliptical Pipes:       0         - Grate Inlets:       0         - Horizontal Elliptical Pipes:       0         - Grate Inlets:       0         - Horizontal Elliptical Pipes:       0         - Generic Inlets:       0                                                                                                                                            | System Flows Alternative                                                                                                                                                            | Base-System Flows          |                                                                                                                                                                     |                            |  |  |  |
| Boundary Conditions AlternDesign Constraints AlternatiBase-Design ConstraintsCapital Cost AlternativeBase-CostUser Data AlternativeBase-User DataNetwork InventoryNumber of Pipes4- Circular Pipes:0- Circular Pipes:0- Arch Pipes:0- Vertical Elliptical Pipes:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Grate Inlets:0- Vertical Elliptical Pipes:0- Grate Inlets:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Solot Inlets:0- Vertical Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Horizontal Elliptical Pipes:0- Solot Inlets:0- Solot Inlets:0- Horizontal Elliptical Pipes:0- Horizontal Ell                                                                                                                                                                                                           | Structure Headlosses Alter                                                                                                                                                          | Base-Structure Hea         | dlosses                                                                                                                                                             |                            |  |  |  |
| Design ConstraintsCapital Cost AlternativeBase-CostUser Data AlternativeBase-User DataNetwork InventoryNumber of Inlets2Number of Pipes4Number of Inlets2- Circular Pipes:4- Grate Inlets:0- Box Pipes:0- Curb Inlets:2- Arch Pipes:0- Curb Inlets:0- Vertical Elliptical Pipes:0- Slot Inlets:0- Horizontal Elliptical Pipes:0- Grate Inlets in Ditch:0Number of Junctions2- Generic Inlets:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Boundary Conditions Altern                                                                                                                                                          | Base-Boundary Cor          | nditions                                                                                                                                                            |                            |  |  |  |
| Capital Cost Alternative<br>User Data AlternativeBase-Cost<br>Base-User DataNetwork InventoryNumber of Inlets2Number of Pipes4Number of Inlets2- Circular Pipes:4- Grate Inlets:0- Box Pipes:0- Curb Inlets:2- Arch Pipes:0- Combination Inlets:0- Vertical Elliptical Pipes:0- Slot Inlets:0- Horizontal Elliptical Pipes:0- Grate Inlets in Ditch:0Number of Junctions2- Generic Inlets:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Design Constraints Alternat                                                                                                                                                         | Base-Design Const          | raints                                                                                                                                                              |                            |  |  |  |
| User Data Alternative       Base-User Data         Network Inventory       Number of Inlets       2         Number of Pipes       4       Number of Inlets       2         - Circular Pipes:       4       - Grate Inlets:       0         - Box Pipes:       0       - Curb Inlets:       2         - Arch Pipes:       0       - Combination Inlets:       0         - Vertical Elliptical Pipes:       0       - Slot Inlets:       0         - Horizontal Elliptical Pipes:       0       - Grate Inlets in Ditch:       0         Number of Junctions       2       - Generic Inlets:       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Capital Cost Alternative                                                                                                                                                            | Base-Cost                  |                                                                                                                                                                     |                            |  |  |  |
| Network Inventory         Number of Pipes       4       Number of Inlets       2         - Circular Pipes:       4       - Grate Inlets:       0         - Box Pipes:       0       - Curb Inlets:       2         - Arch Pipes:       0       - Combination Inlets:       0         - Vertical Elliptical Pipes:       0       - Slot Inlets:       0         - Horizontal Elliptical Pipes:       0       - Grate Inlets in Ditch:       0         Number of Junctions       2       - Generic Inlets:       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | User Data Alternative                                                                                                                                                               | Base-User Data             |                                                                                                                                                                     |                            |  |  |  |
| Network InventoryNumber of Pipes4Number of Inlets2- Circular Pipes:4- Grate Inlets:0- Box Pipes:0- Curb Inlets:2- Arch Pipes:0- Combination Inlets:0- Vertical Elliptical Pipes:0- Slot Inlets:0- Horizontal Elliptical Pipes:0- Grate Inlets in Ditch:0Number of Junctions2- Generic Inlets:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |                            |                                                                                                                                                                     |                            |  |  |  |
| Number of Pipes4Number of Inlets2- Circular Pipes:4- Grate Inlets:0- Box Pipes:0- Curb Inlets:2- Arch Pipes:0- Combination Inlets:0- Vertical Elliptical Pipes:0- Slot Inlets:0- Horizontal Elliptical Pipes:0- Grate Inlets in Ditch:0Number of Junctions2- Generic Inlets:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Network Inventory                                                                                                                                                                   |                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                               |                            |  |  |  |
| - Circular Pipes:4- Grate Inlets:0- Box Pipes:0- Curb Inlets:2- Arch Pipes:0- Combination Inlets:0- Vertical Elliptical Pipes:0- Slot Inlets:0- Horizontal Elliptical Pipes:0- Grate Inlets in Ditch:0Number of Junctions2- Generic Inlets:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Number of Pipes                                                                                                                                                                     | 4                          | Number of Inlets                                                                                                                                                    | 2                          |  |  |  |
| - Box Pipes:0- Curb Inlets:2- Arch Pipes:0- Combination Inlets:0- Vertical Elliptical Pipes:0- Slot Inlets:0- Horizontal Elliptical Pipes:0- Grate Inlets in Ditch:0Number of Junctions2- Generic Inlets:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                     |                            |                                                                                                                                                                     |                            |  |  |  |
| - Arch Pipes:       0       - Combination Inlets:       0         - Vertical Elliptical Pipes:       0       - Slot Inlets:       0         - Horizontal Elliptical Pipes:       0       - Grate Inlets in Ditch:       0         Number of Junctions       2       - Generic Inlets:       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Circular Pipes:                                                                                                                                                                   | 4                          | - Grate Inlets:                                                                                                                                                     | 0                          |  |  |  |
| - Vertical Elliptical Pipes:       0       - Slot Inlets:       0         - Horizontal Elliptical Pipes:       0       - Grate Inlets in Ditch:       0         Number of Junctions       2       - Generic Inlets:       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Circular Pipes:<br>- Box Pipes:                                                                                                                                                   | <b>4</b><br>0              | - Grate Inlets:<br>- Curb Inlets:                                                                                                                                   | 0<br>2                     |  |  |  |
| - Horizontal Elliptical Pipes:     0     - Grate Inlets in Ditch:     0       Number of Junctions     2     - Generic Inlets:     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Circular Pipes:<br>- Box Pipes:<br>- Arch Pipes:                                                                                                                                  | 4<br>0<br>0                | - Grate Inlets:<br>- Curb Inlets:<br>- Combination Inlets:                                                                                                          | 0<br>2<br>0                |  |  |  |
| Number of Junctions 2 - Generic Inlets: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Circular Pipes:<br>- Box Pipes:<br>- Arch Pipes:<br>- Vertical Elliptical Pipes:                                                                                                  | 4<br>0<br>0<br>0           | - Grate Inlets:<br>- Curb Inlets:<br>- Combination Inlets:<br>- Slot Inlets:                                                                                        | 0<br>2<br>0<br>0           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Circular Pipes:</li> <li>Box Pipes:</li> <li>Arch Pipes:</li> <li>Vertical Elliptical Pipes:</li> <li>Horizontal Elliptical Pipes:</li> </ul>                              | 4<br>0<br>0<br>0<br>0      | <ul> <li>Grate Inlets:</li> <li>Curb Inlets:</li> <li>Combination Inlets:</li> <li>Slot Inlets:</li> <li>Grate Inlets in Ditch:</li> </ul>                          | 0<br>2<br>0<br>0<br>0      |  |  |  |
| Number of Outlets 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Circular Pipes:</li> <li>Box Pipes:</li> <li>Arch Pipes:</li> <li>Vertical Elliptical Pipes:</li> <li>Horizontal Elliptical Pipes:</li> <li>Number of Junctions</li> </ul> | 4<br>0<br>0<br>0<br>0<br>2 | <ul> <li>Grate Inlets:</li> <li>Curb Inlets:</li> <li>Combination Inlets:</li> <li>Slot Inlets:</li> <li>Grate Inlets in Ditch:</li> <li>Generic Inlets:</li> </ul> | 0<br>2<br>0<br>0<br>0<br>0 |  |  |  |

#### **Circular Pipes Inventory**

| 18 inch      | 274.57 ft | 24 inch | 55.00 ft |
|--------------|-----------|---------|----------|
| Total Length | 329.57 ft |         |          |
|              |           |         |          |

2

Curb Inlet Inventory

Type R 10'

| Inlet elements for network with outlet: 0-1 |             |                                    |                                      |                                    |                                                                         |                                                                                                                                       |
|---------------------------------------------|-------------|------------------------------------|--------------------------------------|------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Label                                       | Inlet       | Total<br>Systemir<br>Flow<br>(cfs) | Total<br>ntercepted<br>Flow<br>(cfs) | Total<br>Bypassed<br>Flow<br>(cfs) | Bypass<br>Target                                                        | Capture HydraulicHydraulic GravityHeadloss<br>Efficiency Grade Grade Element Method<br>(%) Line In Line OutHeadloss<br>(ft) (ft) (ft) |
| DP-1                                        | Curb Type R | 7.61                               | 7.61                                 | 10.28                              | DP-A                                                                    | 42.5 3,848.83 3,848.83 0.00 Absolut                                                                                                   |
| DP-A                                        | Curb Type R | 9.39                               | 2.10                                 | 14.37                              | <automat< td=""><td>12.8 3,846.39 3,846.08 0.31 Standar</td></automat<> | 12.8 3,846.39 3,846.08 0.31 Standar                                                                                                   |

| Junction elements for network with outlet: 0-1 |                                       |                                           |                                          |                      |                                      |                                  |                                     |                                 |                            |                           |
|------------------------------------------------|---------------------------------------|-------------------------------------------|------------------------------------------|----------------------|--------------------------------------|----------------------------------|-------------------------------------|---------------------------------|----------------------------|---------------------------|
| Label                                          | Hydraulic<br>Grade<br>Line In<br>(ft) | Hydraulic<br>Grade E<br>Line OutH<br>(ft) | Gravity I<br>Element<br>leadloss<br>(ft) | Headloss<br>Method A | System<br>dditional<br>Flow<br>(cfs) | System<br>Known<br>Flow<br>(cfs) | System<br>Rational<br>Flow<br>(cfs) | System<br>Intensityf<br>(in/hr) | System<br>low Tim<br>(min) | System<br>e CA<br>(acres) |
| J-1                                            | 3,847.76                              | 3,847.46                                  | 0.30                                     | Standar              | 0.00                                 | 0.00                             | 7.55                                | 8.50                            | 6.59                       | 0.88                      |
| J-3                                            | 3,844.91                              | 3,844.91                                  | 0.00                                     | Absolut              | 0.00                                 | 0.00                             | 9.30                                | 8.13                            | 7.63                       | 1.13                      |

 Title: Old Meridian Road
 Project Engineer: 0

 z:\.../reports\fdr\calcs\storm cad\ultimate.stm
 StormCAD

 07/24/08
 03:03:15
 R3/Bentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] +1-203-755-1666 Page 1 of 2
## Analysis Results Scenario: 100-year

| Outlet: 0-1 |                                       |                                           |                                          |                                      |                                  |                                     |                                 |                            |                           |
|-------------|---------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------|----------------------------------|-------------------------------------|---------------------------------|----------------------------|---------------------------|
| Label       | Hydraulic<br>Grade<br>Line In<br>(ft) | Hydraulic<br>Grade I<br>Line OutH<br>(ft) | Gravity<br>Element A<br>leadloss<br>(ft) | System<br>dditional<br>Flow<br>(cfs) | System<br>Known<br>Flow<br>(cfs) | System<br>Rational<br>Flow<br>(cfs) | System<br>IntensityF<br>(in/hr) | System<br>low Tim<br>(min) | System<br>e CA<br>(acres) |
| 0-1         | 3,843.10                              | 3,843.10                                  | 0.00                                     | 0.00                                 | 0.00                             | 9.22                                | 8.06                            | 7.83                       | 1.13                      |

## Pipe elements for network with outlet: O-1

| Label | Section<br>Shape | Section<br>Size | Length<br>(ft) | NumberCo<br>of<br>Sections | onstructeo<br>Slope<br>(ft/ft) | Energy<br>Slope<br>(ft/ft) | Total<br>System<br>Flow<br>(cfs) | Average<br>Velocity<br>(ft/s) | Upstream<br>Invert<br>Elevation<br>(ft) | ownstreat<br>Invert<br>Elevation<br>(ft) | r <b>h</b> lydraulio<br>Grade<br>Line In<br>(ft) | Hydraulic<br>Grade<br>Line Out<br>(ft) |
|-------|------------------|-----------------|----------------|----------------------------|--------------------------------|----------------------------|----------------------------------|-------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------------------|----------------------------------------|
| P-1   | Circular         | 18 inch         | 71.21          | 1                          | 0.012                          | 0.011                      | 7.61                             | 6.31                          | 3,847.76                                | 6,846.90                                 | 3,848.83                                         | 3,847.79                               |
| P-2   | Circular         | 18 inch         | 17.16          | 1                          | 0.009                          | 0.009                      | 7.55                             | 5.53                          | 3,846.40                                | 6,845.29                                 | 3,847.46                                         | 3,846.39                               |
| P-3   | Circular         | 18 inch         | 86.20          | 1                          | 0.009                          | 0.009                      | 9.39                             | 6.33                          | 3,844.90                                | 6,844.13                                 | 3,846.08                                         | 3,845.29                               |
| P-17  | Circular         | 24 inct         | 55.00          | 1                          | 0.007                          | 0.010                      | 9.30                             | 4.62                          | 3,843.50                                | 6,843.10                                 | 3,844.91                                         | 3,844.19                               |

## Scenario: 100-year

## **Combined Pipe/Node Report**

| S<br>(ft/ft)                    | 0.012    | 0.009          | 0.009    | 0.007    |
|---------------------------------|----------|----------------|----------|----------|
| Dn.<br>Invert<br>(ft)           | 6,846.90 | 6,845.29       | 6,844.13 | 6,843.10 |
| HGL<br>Out                      | 6,847.79 | 6,846.39       | 6,845.29 | 6,844.19 |
| Dn.<br>Gr.<br>⊟lev.             | 6,849.48 | 6,847.69       | 6,846.00 | 6,846.10 |
| Up.<br>Invert<br>(ft)           | 6,847.76 | 6,846.40       | 6,844.90 | 6,843.50 |
| HGL<br>In<br>(ft)               | 6,848.83 | 6,847.46       | 6,846.08 | 6,844.91 |
| Up.<br>Gr<br>(ft)               | 6,851.76 | 6,849.48       | 6,847.69 | 6,846.00 |
| Avg.<br>v<br>(ft/s)             | 6.31     | 5.53           | 6.33     | 4.62     |
| Q<br>Full<br>(cfs)              | 11.54    | 10.22          | 9.93     | 10.45    |
| Size                            | 18 inch  | 18 inch        | 18 inch  | 24 inch  |
| Up.Inlet<br>Rat. Q<br>(cfs)     | 17.89    | N/A            | 6.63     | N/A      |
| Up. Calc.<br>Sys. CA<br>(acres) | 0.88     | 0.88           | 1.13     | 1.13     |
| Up.<br>Inlet<br>Area<br>(acres) | 2.07     | N/A            | 0.80     | N/A      |
| Up. Inlet<br>Rat.<br>Coef.      | 1.00     | N/A            | 1.00     | N/A      |
| Up.<br>Inlet<br>Area<br>(acres) | 2.07     | N/A            | 0.80     | A/A      |
| (¥) د                           | 71.21    | 117.16         | 86.20    | 55.00    |
| Dn.<br>Node                     | ۲-۲      | DP-A           | J-3      | ç<br>-   |
| Node.                           | DP-1     | <del>ا</del> ۔ | DP-A     | <u>ب</u> |
| Label                           | P-1      | P-2            | P-3      | P-17     |
|                                 |          |                |          |          |

Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

© Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Title: Old Meridian Road z:\...\reports\fdr\calcs\storm cad\utitimate.stm 07/24/08 03:03:33 PM

Scenario: 100-year Profile

Profile: Ultimate Scenario: 100-year



Project Engineer: Charlene Sammons StormCAD v5.6 [05.06.012.00] Page 1 of 1

© Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 z:\...\reports\fdr\calcs\storm cad\ultimate.stm 07/24/08 03:05:24 PM

Title: Old Meridian Road



