Info Only: EPC engineering comments are in blue text.

Final Drainage Report

Townhomes at Western

Lot 1, Cimarron Southeast Filing No. 2C

Project No. 61203

March 20, 2024

PCD File No.

PPR2415

Final Drainage Report

for

Townhomes at Western Lot 1, Cimarron Southeast Filing No. 2C Project No. 61203

March 20, 2024

prepared for

J Elliott Homes, Inc. 13761 Bandanero Drive Peyton, CO 80831 719.499.8214

prepared by

MVE, Inc. 1903 Lelaray Street, Suite 200 Colorado Springs, CO 80909 719.635.5736

Copyright © MVE, Inc., 2024 61203-Townhomes at Western Drainage Report.odt

Statements and Acknowledgments

Engineer's Statement

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

David R. Gorman, P.E. Colorado No. 31672 For and on Behalf of MVE, Inc.

Developer's Statement I, the owner/developer have read and will comply with all drainage report and plan.	of the requirements specified in this
dramage report and plan.	
J Elliott Homes, Inc. 13761 Bandanero Drive Peyton, CO 80831	Date
El Paso County	
Filed in accordance with the requirements of the Drainage Paso County Engineering Criteria Manual and Land Developn	
Joshua Palmer, P.E., County Engineer / ECM Administrator	Date

Contents

St	Statements and Acknowledgmentsi		
C	Contents	٧	
Fi	Final Drainage Report	1	
1	General Location and Description	1	
	1.1 Location	1	
	1.2 Description of Property	1	
	1.3 Soils	1	
	1.4 Floodplain	2	
2	Drainage Basins and Sub-Basins	2	
	2.1 Major Basin Descriptions	2	
	2.2 Other Drainage Reports	2	
	2.3 Sub-Basin Description	2	
3	Drainage Design Criteria	3	
	3.1 Development Criteria Reference	3	
	3.2 Hydrologic Criteria	3	
4	Drainage Facility Design	3	
	4.1 General Concept	3	
	4.2 Specific Details	3	
	4.3 Drainage Facilities	7	
	4.4 Erosion Control	7	
	4.5 Water Quality Enhancement Best Management Practices	8	
5	Opinion of Probable Cost for Drainage Facilities	8	

6	Drainage and Bridge Fees	9
7	Conclusion	9
R	eferences	11
\mathbf{A}	ppendices	13
1	General Maps and Supporting Data	13
2	Hydrologic Calculations	14
3	Hydraulic Calculations	31
4	Drainage Maps	41

Final Drainage Report

The purpose of this Final Drainage Report is to identify drainage patterns and quantities within and affecting the proposed Townhomes at Western site. The report will discuss the recommended drainage improvements to the site and identify drainage requirements relative to the existing conditions and proposed project. This report has been prepared and submitted in accordance with the requirements of the El Paso County development approval process. An Appendix is included with this report with pertinent calculations and graphs used in the drainage analyses and design.

1 General Location and Description

1.1 Location

The proposed Townhomes at Western site is located within the southeast quarter of Section 7, Township 14 South, Range 65 west of the 6th principal meridian in El Paso County, Colorado. The site is platted as Lot 1, Cimarron Southeast Filing No. 2C. The site is situated east of Hathaway Drive on the south side of Western Drive. The EPC Assessor's Schedule Number for the site is 5407401016 with the address of 721 Western Driive. Commercial properties and multifamily are locates to the west and north and golf course to the east. A **Vicinity Map** is included in the **Appendix**.

1.2 Description of Property

Include what is south of the site.

The Townhomes at Western site is 7.118± acres and zoned RM-30 (residential multi-dwelling). This site is currently vacant except for some concrete pavement in the south access drive.

Ground cover in most of the Lot is undisturbed pasture/meadow conditions with fair to good ground cover featuring native grasses with a few dirt / gravel vehicle drive areas.

The site slopes from northwest to southeast grades averaging 10%. The East Fork of Sand Creek flows adjacent to the site along the east edge and no significant drainage improvements or drainage facilities currently exist on the site.

1.3 Soils

According to the National Resource Conservation Service, there is one (1) soil type identified in the Townhomes at Western site. The primary soil is Blakeland loamy sand, 1 to 9 percent slopes <u>(map unit 8)</u>.

<u>Blakeland loamy sand (map unit 8)</u> is deep and somewhat excessively drained. Permeability is rapid, surface runoff is slow, the hazard of erosion is moderate. <u>Blakeland loamy sand</u> is classified as being part of Hydrologic Soil Group A.

A portion of the Soil Map and data tables from the National Cooperative Soil Survey and relevant Official Soil Series Descriptions (OSD) are included in the **Appendix**.¹ ²

1

¹ WSS

² OSD

Final Drainage Report

1.4 Floodplain

2

The current Flood Insurance Study of the region includes Flood Insurance Rate Maps (FIRM), effective on December 7, 2018.³ The proposed development is included in Community Panel Numbered 08041C0754 G of the Flood Insurance Rate Maps for the El Paso County. A portion of the site is shown to be included in Special Flood Hazard Area Zone AE as determined by FEMA. The Floodplain line as shown on the FIRM Panel lies above the base flood elevation listed when compared to the field survey. This discrepancy was discussed with the County Floodplain Administrator and it was determined that no actions were required. Structors constructed in the shown Floodplain would require an Elevation Certificate A portion of the current FEMA Flood Insurance Rate Maps with the site delineated is included in the **Appendix**.

2 Drainage Basins and Sub-Basins

2.1 Major Basin Descriptions

The Townhomes at Western site is located in the Sand Creek Drainage Basin (FOFO4000) of the Fountain Creek Major Drainage Basin (FO). This basin drains to the adjacent East Fork Sand Creek east of the site. The Sand Creek Drainage Basin encompasses a portion of El Paso County and Colorado Springs east of Colorado Springs extending from Shoup Road south to Hancock Expressway and generally drains southwesterly into Fountain Creek.

2.2 Other Drainage Reports

The Drainage Letter for "Cimarron Southeast Filing No. 2C" prepared by G. L. Williams & Partners, LTD was written for this one lot which contains the Townhomes at Western site. A copy of this letter is included in the **Appendix**.

Please include

2.3 Sub-Basin Description

approved date. and project #

The existing drainage patterns of the Townhomes at Western are described by three off-site and three on-site drainage basins. These basins are previously disturbed or developed to a degree as described below. All existing basin delineations and data are depicted on the attached **Existing Drainage Map.** Drainage map shows 4 onsite basins.

2.3.1 Existing Drainage Patterns (Off-Site)

There are three offsite sub-basins that drain into this site from the north and west consisting of a portion of Western Drive, the rear of the apartment complex to the west and the commercial building and paved area to the southwest.

2.3.2 Existing Drainage Patterns (On-Site)

Existing Sub-Basin EX-A2 represents the majority of the existing site. This sub-basin slopes approximately 10% from northwest to southeast. The flows sheet across the property and drain directly into the adjacent East Fork Sand Creek along the entire eastern edge.

Existing Sub-Basin EX-B4 represents the south paved drive/parking. This sub-basin features very mild slopes eventually draining to the east edge of the site and drain directly into the adjacent East Fork Sand Creek at a point of erosion identified in the existing Drainage Letter.

Existing sub-basin EX-C1 represents the side slope of the East Fork Sand Creek channel that lies on the property.

The previous drainage report identified the site as sub-basins 2 & 3 with about 15.9 cfs in the 100 year storm generally in sub-basin EX-A2 and 14.3 cfs in sub-basin EX-B4.

Please include name of report, prepared by whom, date of approval. Excerpts that are relevant need to be provided.

Include discussion of Basin EX-B3 and the 3 offsite basins

3 Drainage Design Criteria

3.1 Development Criteria Reference

This Final Drainage Report for Townhomes at Western has been prepared according to the report guidelines presented in the latest edition of El Paso County Drainage Criteria Manual (DCM)4. The County has also adopted portions of the City of Colorado Springs Drainage Criteria Manual Volumes 1 and 2, especially concerning the calculation of rainfall runoff flow rates. 5 6 The hydrologic analysis is based on a collection of data from the DCM, the NRCS Web Soil Survey⁷, and existing topographic data by Polaris Surveying.

3.2 Hydrologic Criteria

For this Final Drainage Report, the Rational Method as described in the Drainage Criteria Manual has been used for all Storm Runoff calculations, as the development and all sub-basins are less than 130 acres in area. "Colorado Springs Rainfall Intensity Duration Frequency" curves, Figure 6-5 in the DCM, was used to obtain the design rainfall values; a copy is included in the Appendix. The "Overland (Initial) Flow Equation" (Eq. 6-8) in the DCM, and Manning's equation with estimated depths were used in time of concentration calculations. "Runoff Coefficients for Rational Method", Table 6-6 in the DCM, was utilized as a guide in estimating runoff coefficient and Percent Impervious values; a copy is included in the **Appendix**. Peak runoff discharges were calculated for each drainage sub-basin for both the 5-year storm event and the 100-year storm event with the Rational Method formula, (Eq. 6-5) in the DCM.8

The Full Spectrum Extended Detention Basin (FS EDB) was sized and designed according to the procedures and tools presented by the Mile High Flood District's Urban Storm Drainage Criteria Manuals Volume 2 and Volume 3 as adopted by City of Colorado Springs. 9 10 Private storm drain inlets were also sized and analyzed using Mile High Flood District's design worksheets.

4 Drainage Facility Design

4.1 General Concept

The intent of the drainage concept presented in this Final Drainage Report is to maintain the existing drainage patterns on the site Major and minor storm flows will continue to be safely conveyed through the site and downstream.

The existing and proposed drainage hydrologic conditions are described in more detail below. Input data and results for all calculations are included in the Appendix. Drainage maps for the hydrology are also included in the Appendix.

4.2 Specific Details

4.2.1 Off-Site Hydrologic Conditions

Sub-Basin **OS-A1** (0.31± acres) represents the south half of a portion of Western Drive and a portion of the off-site slope west of the site. This sub-basin drains from north to south at with slopes ranging from 6% to 25%. Existing runoff discharges for this sub-basin are $Q_5 = 0.5$ cfs and $Q_{100} = 1.5$ cfs (existing flows). This flow enters the site along the northwest edge and into sub-basin EX-A2.

Sub-Basin OS-B1 (0.54± acres) represents the eastern portion of the adjacent apartment building site containing gravel and grass open space areas. This sub-basin drains from west to east at with slopes ranging from 1% to 25%. Existing runoff discharges for this sub-basin are Q_5 = 1.1 cfs and Q₁₀₀ = 2.7 cfs (existing flows). This flow enters the site along the northwest edge and primarely into sub-basin EX-B3.

DCM Section 4.3 and Section 4.4

CS DCM Vol 1

CS DCM Vol 2

WSS

DCM UDFCD V2

UDFCD V3

Sub-Basin **OS-B2** (1.63 \pm acres) represents the south commercial site lying west of the southern access drive of the site and consist or mostly paved parking area and building. This sub-basin drains from west to east at with slopes of approximately 1%. Existing runoff discharges for this sub-basin are $Q_5 = 5.8$ cfs and $Q_{100} = 11.3$ cfs (existing flows). This flow enters the site along the west edge and into sub-basin **EX-B4**.

4.2.2 Existing Hydrologic Conditions

Existing Sub-Basin **EX-A2** (5.58 \pm acres) represents the bulk of the site south of Western Drive. This sub-basin slopes approximately 10% from north to south with areas near 25%. The flows are generally uniformly distributed and sheet across the site into the adjacent East Fork Sand Creek. The sub-basin is undeveloped and consist of mostly pasture/meadow. Existing runoff discharges for this sub-basin are $Q_5 = 2.5$ cfs and $Q_{100} = 14.4$ cfs (existing flows). This runoff combines with additional flows from off-site sub-basin OS-A1 before existing the property along the southeast side at **Design Point 2 (EX-DP2)**. The combined existing runoff discharges for this design point are $Q_5 = 3.0$ cfs and $Q_{100} = 15.3$ cfs (existing flows).

Existing Sub-Basin **EX-B3** (0.27± acres) represents the a small portion of the site lying between off-site sub-basin OS-B1 and OS-B2. This sub-basin is undeveloped pasture/meadow and drains into off-site sub-basin OS-B2. Existing runoff discharges for this sub-basin are $Q_5 = 0.5$ cfs and $Q_{100} = 1.3$ cfs (existing flows).

Existing Sub-Basin **EX-B4** (0.66 \pm acres) represents the drive/parking area of the adjacent commercial property that lies on the site. This sub-basin is entirely paved and drains primarily via an existing curb & gutter to a concentrated point of discharge at the southeast of the sub-basin. This point was identified in the previous drainage letter as a point needing filled and protected. Existing runoff discharges for this sub-basin are $Q_5 = 3.1$ cfs and $Q_{100} = 5.5$ cfs (existing flows).

Existing Sub-Basin **EX-C1** ($0.60\pm$ acres) represents the side slope of the East Fork Sand Creek channel that lies on the site. The eastern portion of the sub-basin is heavily wooded and the southern is existing pasture/meadow. Existing runoff discharges for this sub-basin are $Q_5 = 0.2$ cfs and $Q_{100} = 1.8$ cfs (existing flows). This runoff combines with additional flows from off-site sub-basins OS-B1, OS-B2 and on-site sub-basins EX-B3 and EX-B4 before existing the property along the southeast side at **Design Point 1 (EX-DP1)**. The combined existing runoff discharges for this design point are $Q_5 = 10.7$ cfs and $Q_{100} = 22.5$ cfs (existing flows).

The **Existing Drainage Map** depicts the existing topographic mapping, drainage basin delineations, drainage patterns, existing drives, drainage facilities, and runoff quantities with a data table including drainage areas and flow rates.

4.2.3 Proposed Hydrologic Conditions

Proposed Sub-Basin **A2** (0.14± acres) represents a portion of the northern part of the site along Western Drive being landscape area between the northern buildings and the property line. This sub-basin slopes approximately 2% from south to north and into Western Drive. Proposed runoff discharges for this sub-basin are $Q_5 = 0.1$ cfs and $Q_{100} = 0.4$ cfs. Sub-Basin A2 is not routed to the proposed pond and contains no proposed improvements except landscape.

Developed Sub-Basin A3 (0.61± acres) is located in the eastern portion of the site. The sub-basin will contain paved drive, buildings, sidewalks and landscaped areas draining to the southeast. Sub-basin A3 does not accept off-site flows from Western Drive adjacent on the north. Sub-basin A3 produces peak discharges of Q_5 = 1.6 cfs and Q_{100} = 3.5 cfs. These storm water flows travel overland through the landscaped areas and to the paved drives. Then they flow across the paved area and via curb & gutter to the southeast corner of the site to Inlet A3. A proposed private single Denver Type 16 Combination sump inlet at the end of the drive will collect these flows and they will flow via a private 12" HDPE pipe to Inlet A10. The inlet will collect the flows with no bypass. Emergency overflow from this inlet will overtop the curb and flow southeast directly to the East Fork Sand Creek channel.

Developed Sub-Basin **A4** (0.36± acres) is located in the northern central portion of the site. The sub-basin will contain paved drive, buildings, sidewalks and landscaped areas draining to the southwest.

Sub-basin A4 produces peak discharges of Q_5 = 1.3 cfs and Q_{100} = 2.5 cfs. These storm water flows travel overland through the landscaped areas and to the paved drives. Then they flow across the paved area and via curb & gutter to the southwest to Inlet A4. A proposed private triple Denver Type 16 Combination inlet on grade will collect these flows and they will flow via a private 12" HDPE pipe to Inlet A5. The inlet will collect flows the flows with no bypass. Per the MHFD Inlet Worksheet, the storm sewer was sized with the unclogged interception capacity of Inlet A4 being Q_5 = 1.5 cfs and Q_{100} = 2.6 cfs. Emergency overflow from this inlet will continue along the proposed curb & gutter to Inlet A5.

Developed Sub-Basin A5 (0.30± acres) is located in the northern central portion of the site. The subbasin will contain paved drive, buildings, sidewalks and landscaped areas draining to the southwest. Sub-basin A5 produces peak discharges of Q_5 = 1.0 cfs and Q_{100} = 2.0 cfs. These storm water flows travel overland through the landscaped areas and to the paved drives. Then they flow across the paved area and via curb & gutter to the southwest to Inlet A5. A proposed private triple Denver Type 16 Combination inlet on grade will collect these flows and they will flow via a private 12" HDPE pipe to Inlet A6. The inlet will collect flows the flows with no bypass. Per the MHFD Inlet Worksheet, the storm sewer was sized with the unclogged interception capacity of Inlet A5 being Q_5 = 1.0 cfs and Q_{100} = 2.3 cfs. Emergency overflow from this inlet will continue along the proposed curb & gutter to Inlet A6.

Developed Sub-Basin A6 (0.29± acres) is located in the northern central portion of the site. The subbasin will contain paved drive, buildings, sidewalks and landscaped areas draining to the southwest. Sub-basin A5 produces peak discharges of Q_5 = 1.1 cfs and Q_{100} = 2.1 cfs. These storm water flows travel overland through the landscaped areas and to the paved drives. Then they flow across the paved area and via curb & gutter to the southwest to Inlet A6. A proposed private triple Denver Type 16 Combination inlet on grade will collect these flows and they will flow via a private 18" HDPE pipe south to Inlet A11. The inlet will collect flows the flows with no bypass. Per the MHFD Inlet Worksheet, the storm sewer was sized with the unclogged interception capacity of Inlet A6 being Q_5 = 1.1 cfs and Q_{100} = 2.3 cfs. Emergency overflow from this inlet will continue along the proposed curb & gutter to Inlet A7.

Developed Sub-Basin A7 (1.14± acres) is located in the northwestern and western portion of the site. The sub-basin will contain paved drive, buildings, sidewalks and landscaped areas draining to the south. Sub-basin A7 produces peak discharges of $Q_5 = 3.5$ cfs and $Q_{100} = 7.1$ cfs. These storm water flows travel overland through the landscaped areas and to the paved drives. Then they flow across the paved area and via curb & gutter to the southwest, south and east to Inlet A7. A proposed private triple Denver Type 16 Combination inlet on grade will collect these flows and they will flow via a private 18" HDPE pipe north to Inlet A8. The inlet will bypass flows of $Q_5 = 0.2$ cfs and $Q_{100} = 1.4$ cfs east to Inlet A9. Per the MHFD Inlet Worksheet, the storm sewer was sized with the unclogged interception capacity of Inlet A7 being $Q_5 = 3.5$ cfs and $Q_{100} = 6.8$ cfs. Emergency overflow from this inlet will continue along the proposed curb & gutter to Inlet A9.

Developed Sub-Basin **A8** (0.18 \pm acres) is located in the west central portion of the site. The subbasin will contain paved drive, buildings, sidewalks and landscaped areas draining to the east. Subbasin A8 produces peak discharges of $Q_5 = 0.6$ cfs and $Q_{100} = 1.2$ cfs. These storm water flows travel overland through the landscaped areas and to the paved drives. Then they flow across the paved area and via curb & gutter to the southeast to Inlet A8. A proposed private triple Denver Type 16 Combination inlet on grade will collect these flows and they will flow via a private 18" HDPE pipe east to the pond. The inlet will collect flows the flows with no bypass. Per the MHFD Inlet Worksheet, the storm sewer was sized with the unclogged interception capacity of Inlet A6 being $Q_5 = 0.7$ cfs and $Q_{100} = 1.4$ cfs. Emergency overflow from this inlet will continue along the proposed curb & gutter to Inlet A9.

Developed Sub-Basin **A9** (0.83 \pm acres) is located in the central portion of the site. The sub-basin will contain paved drive, buildings, sidewalks and landscaped areas draining to the east. Sub-basin A9 produces peak discharges of Q_5 = 2.7 cfs and Q_{100} = 5.5 cfs. These storm water flows travel overland through the landscaped areas and to the paved drives. Then they flow across the paved area and via curb & gutter to the central area of the site to Inlet A9. A proposed private triple Denver

Type 16 Combination sump inlet at the low point of the drive will collect these flows and they will flow via a private 12" HDPE pipe to the pond. The inlet will collect the flows with no bypass. Emergency overflow from this inlet will overtop the curb and flow east and down the slope to the East Fork Sand Creek channel.

Developed Sub-Basin A10 (0.34 \pm acres) is located in the east central portion of the site. The sub-basin will contain paved drive, buildings, sidewalks and landscaped areas draining to the southwest. Sub-basin A10 produces peak discharges of $Q_5 = 1.2$ cfs and $Q_{100} = 2.3$ cfs. These storm water flows travel overland through the landscaped areas and to the paved drives. Then they flow across the paved area and via curb & gutter to the southwest to Inlet A10. A proposed private triple Denver Type 16 Combination inlet on grade will collect these flows and they will flow via a private 18" HDPE pipe north to Inlet A11. The inlet will collect bypass flows of $Q_5 = 0.0$ cfs and $Q_{100} = 0.1$ cfs east to Inlet A10. Per the MHFD Inlet Worksheet, the storm sewer was sized with the unclogged interception capacity of Inlet A10 being $Q_5 = 1.4$ cfs and $Q_{100} = 2.5$ cfs. Emergency overflow from this inlet will continue along the proposed curb & gutter to Inlet A9.

Developed Sub-Basin A11 (0.22 \pm acres) is located in the central portion of the site. The sub-basin will contain paved drive, buildings, sidewalks and landscaped areas draining to the southwest. Sub-basin A11 produces peak discharges of $Q_5 = 0.8$ cfs and $Q_{100} = 1.6$ cfs. These storm water flows travel overland through the landscaped areas and to the paved drives. Then they flow across the paved area and via curb & gutter to the southwest to Inlet A11. A proposed private triple Denver Type 16 Combination inlet on grade will collect these flows and they will flow via a private 18" HDPE pipe south into the pond. The inlet will collect the flows with no bypass. Per the MHFD Inlet Worksheet, the storm sewer was sized with the unclogged interception capacity of Inlet A11 being $Q_5 = 0.8$ cfs and $Q_{100} = 1.8$ cfs. Emergency overflow from this inlet will continue along the proposed curb & gutter to Inlet A9.

Proposed Sub-Basin A12 (0.50 \pm acres) represents the Full Spectrum Extended Detention Basin (FS-EDB). Sub-Basin A12 will consist of native grasses, gravel access drive and paved inlet and outlet works of the FS-EDB. Proposed runoff discharges for this sub-basin are $Q_5 = 0.4$ cfs and $Q_{100} = 1.2$ cfs. The FS-EDB receives flows from sub-basin OS-A1, A2, A7, A8 & A9 into a forebay at the south side of the FS-EDB and from sub-basins A3, A4, A5, A6, A10 & A11 into a forebay at the north side of the FS-EDB. The combined flows from all sources entering the FS-EDB are $Q_5 = 14.8$ cfs and $Q_{100} = 31.3$ cfs. These flows are treated and detained by the facility and released directly into the East Fork Sand Creek channel. The FS-EDB is discussed in more detail in the next section.

Proposed Sub-Basin **B3** (0.16± acres) represents the a small portion of the site lying between off-site sub-basin OS-B1 and OS-B2. This sub-basin is will contain landscape and drain east sub-basin B4. Sub-Basin B3 produces peak discharges of $Q_5 = 0.1$ cfs and $Q_{100} = 0.4$ cfs.

Proposed Sub-Basin **B4** (0.67 \pm acres) converts the existing drive/parking area of the adjacent commercial property into an access drive and landscape buffer. The existing curb & gutter shall be removed from the edge of the drive and flows shall sheet off to the southeast. Sub-Basin B4 produces peak discharges of Q₅ = 2.2 cfs and Q₁₀₀ = 4.3 cfs.

Proposed Sub-Basin **C1** (0.66 \pm acres) represents the side slope of the East Fork Sand Creek channel that lies on the site. The eastern portion of the sub-basin is heavily wooded and the southern is existing pasture/meadow. Sub-basin C1 produces peak discharges of $Q_5 = 0.3$ cfs and $Q_{100} = 2.0$ cfs. This runoff combines with additional flows from off-site sub-basins OS-B1, OS-B2 and on-site sub-basins B3 and B4 before existing the property along the southeast side at **Design Point 1 (DP1)**. The combined developed runoff discharges for this design point are $Q_5 = 9.4$ cfs and $Q_{100} = 20.8$ cfs.

Proposed Sub-Basins B3 & B4 which comprise 11.6% of the property (6.5% of that is paved) can not physically be directed to the FS-EDB and no practical means of treatment can be provided. The existing percent imperviousness for the area is 82.6%. The developed conditions remove a large amount of pavement and replaces it with landscape for a resulting 56.8% imperviousness, a reduction of 25.8%. The resulting flows existing the site at DP1 are decreased $Q_5 = 1.3$ cfs and Q_{100}

Please discuss applicable WQ exclusions for all sub-basins that are not tributary to the pond.

Regardless, an applicable WQ exclusion needs to be applied and discussed.

Is this for Basins B3 and B4 or the entire site?

Please assign a design point at the boundary of Basin 2 and the downstream property. This design point will combine the runoff from the pond and Basin C2. Runoff from this designation and Basin C2. Runoff from this designation and Basin C2. point will be conveyed to the Creek.

Indicate what total flows are from site into Sand Creek and flows being release into Sand Creek.

calculations have been provided for

= 1.7 cfs. The reduction of existing imperviousness and flows adequately offsets requirement.

Proposed Sub-Basin C2 (0.35± acres) is located along the eastern edge of the site. Sub-Basin C2 will contain reseeded graded slopes with no proposed improvements. Flows from sub-basin C2 drain east directly in the East Fork Sand Creek channel. Sub-basin C2 produces peak discharges of Q5 = 0.2 cfs and $Q_{100} = 0.9 \text{ cfs}$.

Proposed Sub-Basin C3 (0.34± acres) is located along the eastern edge of the site. Sub-Basin C3 will contain reseeded graded slopes with no proposed improvements. Flows from sub-basin C3 drain east directly in the East Fork Sand Creek channel. Sub-basin C3 produces peak discharges of Q₅ = 0.1 cfs and Q₁₀₀ = 0.9 cfs Please discuss the difference between existing runoff and = 0.1 cfs and $Q_{100} = 0.9 \text{ cfs}$.

The **Proposed Drainage Map** depicts the existing topographic mapping, proposed grading, proposed building, proposed pavement, drainage basin delineations, drainage patterns, and runoff quantities with a data table including drainage areas and flow rates.

Please include criteria being used

4.3 Drainage Facilities

for hydrology calculations.

The proposed interior grading, landscaping, paved drives, storm drain inlets and storm drain pipes will direct the developed drainage runoff flows resulting from the proposed developed Lot 1 and to the proposed private FS-EDB. The private FS-EDB will be a private facility, owned and maintained by the property owner. Calculations for the drainage facilities are included in the Appendix of this report.

The storm drain inlets as described above will be Denver Type 16 Combination Inlets with steel grate and inlet throat on concrete boxes. The inlets were sized using the MHFCD Inlet worksheets containing the characteristics of the chosen inlet type. Inlet sizing calculations are included in the Appendix. The pipes leading from the inlets, through the site and to the FS-EDB forebay will be 12" to 24" diameter HDPE Pipe. Hydraulic Grade Line calculations for the storm drain pipes in the 5year and 100-year scenarios were performed using MHFCD UD-Sewer and used the 5-year and 100-year maximum ponding depths in the FS-EDB to determine the tailwater elevations. The pipes were sized to contain the 5-year site flows with no surcharged segments. The calculations for the storm drain piping is included in the Appendix of this report. Revise to EPC

The Full Spectrum Extended Detention Basin (FS-EDB) in sub-basin A12 will be constructed in accordance with City of Colorado Springs drainage criteria. The FS-EDB has been designed utilizing the MHFD - Detention, Version 4.06 (July 2022). The calculations for the FS-EDB are included in the Appendix. The contributed watershed area is 5.22 acres with the watershed imperviousness of 60.40% as determined in the runoff worksheet which is included in the **Appendix**. The total required detention volume was calculated to be 0.562 acre-feet as calculated with the Detention Basin Stage-Storage Table Builder. The total detention volume provided meets/exceeds said required volume. The outlet will be a concrete outlet box with close-mesh grate, concrete enclosed micro-pool with protective metal grate, also including the initial surcharge volume, 3' wide concrete trickle channel, concrete forebay and 18 inch HDPE outlet pipe. The Excess Urban Runoff Volume (EURV) will drain through the box by way of an orifice plate with three orifice holes. The 100-year outflows will drain through the grate top and will be limited by a restrictor plate at the 18 inch outlet pipe. Pipe outflows will drain to the adjacent West Fork Sub-Tributary as described above. Any flows greater than the 100-year event will overflow the pond embankment at a 20 foot wide rip rap overflow spillway with concrete crest wall to the adjacent East Fork Sand Creek channel. Detailed design of this drainage facility will be provided with Construction Documents for the site CD's have been provided with this submittal. Please ensure all design

4.4 Erosion Control

During future construction, control measures (CM's) for erosign control will b the facility. the previously referenced City of Colorado Springs Drainage Criteria Manual Volume 2 and the Erosion Control Plan for the site. During Construction, silt fencing, sediment control logs, vehicle tracking control, concrete washout area will be in place to minimize erosion from the site. Silt

Fencing will be placed along the south and east portions of the disturbed areas. This will inhibit suspended sediment from leaving the site during construction. Silt fencing is to remain in place until the proposed berms are stabilized and vegetation is reestablished in the other disturbed areas which are to be reseeded. Vehicle tracking control will be placed at the access point in Western Drive. CM's will be utilized as deemed necessary by the contractor, engineer, owner, or County inspector and are not limited to the measures described above.

4.5 Water Quality Enhancement Best Management Practices

The Extended Detention Basin described above will provide storage for the Water Quality Capture Volume (WQCV) for the site. A Grading and Erosion Control Plan for the construction of the site has been prepared in accordance with the provisions of the DCM. Placement of construction stormwater CM's will as required by the plan will limit soil erosion and deposition by stormwater flowing over the site.

The El Paso County Engineering Criteria Manual (Appendix I, Section I.7.2) requires the consideration of a "Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long term source controls". The Four Step Process is incorporated in this project and the elements are discussed below.

- 1) Runoff Reduction Practices are employed in this project. Impervious surfaces have been reduced as much as practically possible. The compacted road base for the storage area will not impact infiltration or increase the existing imperviousness of the compacted bare earth. Minimized Directly Connected Impervious Areas (MDCIA) is employed on the project because all runoff from the storage areas passes through drainage channels before entering the EDB which provides a small portion of WQCV.
- 2) All drainage paths on the site are stabilized with appropriate landscape treatment. The EDB is intended to intercept flows from the developed areas. Additionally, the pond outfall will have rip rap protection.
- 3) The project contains no potentially hazardous uses. All developed areas drain into a proposed a WQCV CM. except for some sub-basins that have applicable WQ exclusions. Discuss.
- 4) The site contains no storage of potentially harmful substances or use of potentially harmful substances. No Site Specific or Other Source Control CM's are required.

5 Opinion of Probable Cost for Drainage Facilities

The following cost opinion is for the construction of the required private storm water appurtenances which are non reimbursable. There are no public storm water facilities required.

Opinion of Costs - On-Site Private Permanent CM Facilities - Non Reimbursable

•	2,500 CY Earthwork @ \$6/CY	= \$15,000
•	Outlet Structure, Trickle Channel, & Forebays	= \$10,500
•	66 LF 18" HDPE Drain Pipe @ \$35/LF	= \$ 2,310
•	1 HDPE Flared End-section @ \$210/EA	= \$ 210
•	3.7 tons of VL Riprap @ \$97/Ton	= <u>\$ 358</u>
	Sub – Total =	\$28,378
	10% Engineering Contingency =	\$ 2,838
	GRAND TOTAL =	\$31,216

Opinion of Costs – On-Site Private Storm Water Facilities – Non Reimbursable

•	1 Inlet Denver Type 16 Combination (single) @ \$7210/EA	
•	8 Inlet Denver Type 16 Combination (triple) @ \$9925/EA	= \$79,400
•	1 Type II Manhole @ \$8,320/EA	= \$ 8,320
•	2 Nyloplast Drain Basin @ 4,600/EA	= \$ 9,200
•	722 LF 12" HDPE Drain Pipe @ \$35/LF	= \$25,270
•	418 LF 18" HDPE Drain Pipe @ \$45/LF	= \$18,810
•	56 LF 24" HDPE Drain Pipe @ \$55/LF	= \$ 3,080
	Sub – Total =	\$151,290
	10% Engineering Contingency =	\$ 15,129
	GRAND TOTAL =	\$166,419

6 Drainage and Bridge Fees

The site is located within the Sand Creek Drainage Basin of Fountain Creek, El Paso Basin Number FOMO4000, which was last studied in 1996. Fees associated with this basin are Drainage Fees of \$25,632 per impervious acre and Bridge Fees of \$10,484 per impervious acre. The Lot was previously platted and replatted and originally zones M (Industrial). The percent Imperiousness of the Industrial site is 85% in accordance with El Paso County Engineering Criteria Manual Appendix L Table 3-1. The actual predeveloped percent imperiousness of the site is 14.0% and a developed percent imperviousness of 50.2%. Lot 1, Cimarron Southest Filing No. 2C site contains 7.118 acres.

Since this Lot was previously platted in a zone with a higher assumed percent imperviousness, no Drainage or Bridge Fees are due.

7 Conclusion

This Final Drainage Report presents existing and proposed drainage conditions for the proposed Townhomes at Western project. The development will have negligible and inconsequential effects on the existing site drainage and drainage conditions downstream. The proposed project will not, with respect to stormwater runoff, negatively impact the adjacent properties and downstream properties.

References

NRCS Web Soil Survey. United States Department of Agriculture, Natural Resources Conservation Service ("http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx", accessed March, 2018).

NRCS Official Soil Series Descriptions. United States Department of Agriculture, Natural Resources Conservation Service

("http://soils.usda.gov/technical/classification/osd/index.html", accessed March, 2018).

Flood Insurance Rate Map. Federal Emergency Management Agency, National Flood Insurance Program (Washingon D.C.: FEMA, March 17, 1997).

NCSS Web Soil Survey. United States Department of Agriculture, Natural Resources Conservation Service ("http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx", accessed May, 2017).

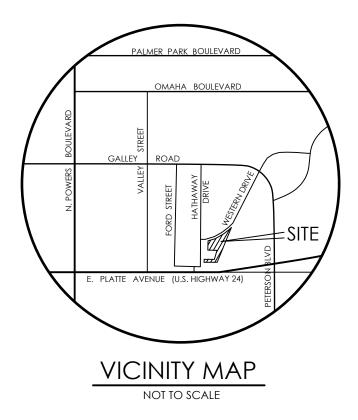
Drainage Criteria Manual Volume 2, Stormwater Quality Policies, Procedures and Best Management Practices (BMPs). City of Colorado Spring Engineering Division (Colorado Springs: , May 2014).

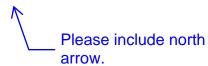
City of Colorado Springs Drainage Criterial Manual, Volume 1. City of Colorado Springs Engineering Division Staff, Matrix Desgin Group/Wright Water Engineers (Colorado Springs: , May 2014).

City of Colorado Springs/El Paso County Drainage Criteria Manual. City of Colorado Springs, Department of Public Works, Engineering Division; HDR Infrastructure, Inc.; El Paso County, Department of Public Works, Engineering Division (Colorado Springs: City of Colorado Springs, Revised November 1991).

City of Colorado Springs Drainage Criteria Manual Volume 1. City of Colorado Springs Engineering Division with Matrix Design Group and Wright Water Engineers (Colorado Springs, Colorado: , May 2014).

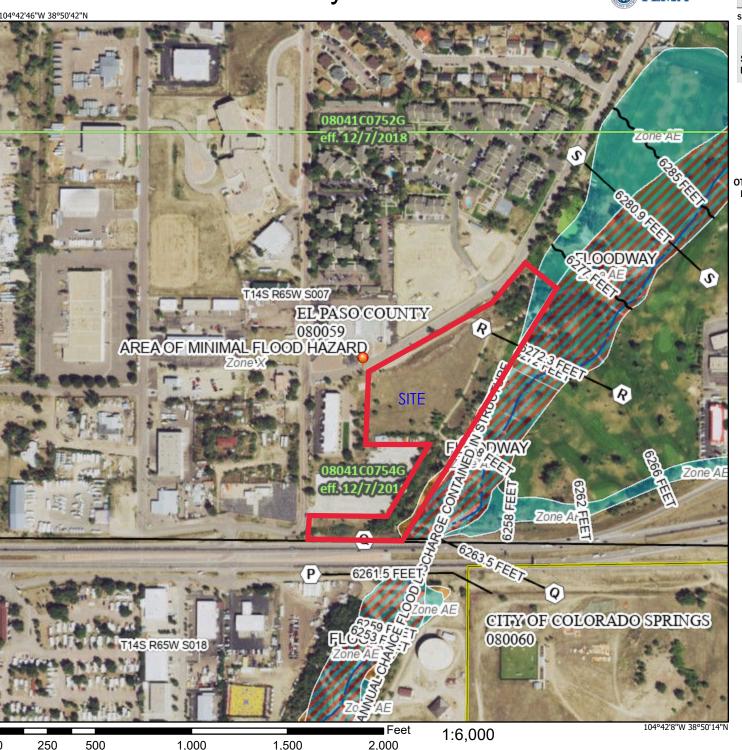
Urban Drainage Criteria Manual: Volume 3, Best Management Practices. Urban Drainage and Flood Control District (Denver, Colorado: , November 2010).

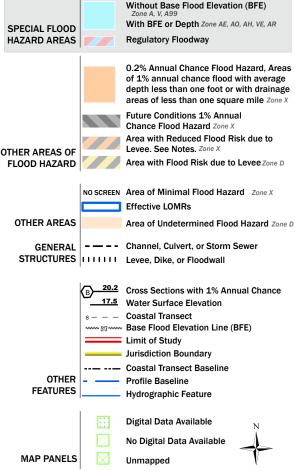

*Urban Storm Drainage Criteria Manual: Volume 2, Structures, Storage, and Recreation.*Urban Drainage and Flood Control District (Denver, Colorado:, January 2016).



Appendices

1 General Maps and Supporting Data


Vicinity Map
Portion of Flood Insurance Rate Map
Soil Type map and Tables
Official Soil Series Descriptions
Hydrologic Soil Group Map and Tables
Previous Drainage letter


National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap

accuracy standards

The pin displayed on the map is an approximate point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 8/18/2023 at 4:22 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map (SOIL MAP)	
Legend	10
Map Unit Legend (SOIL MAP)	11
Map Unit Descriptions (SOIL MAP)	11
El Paso County Area, Colorado	13
8—Blakeland loamy sand, 1 to 9 percent slopes	13
28—Ellicott loamy coarse sand, 0 to 5 percent slopes	14
References	16

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

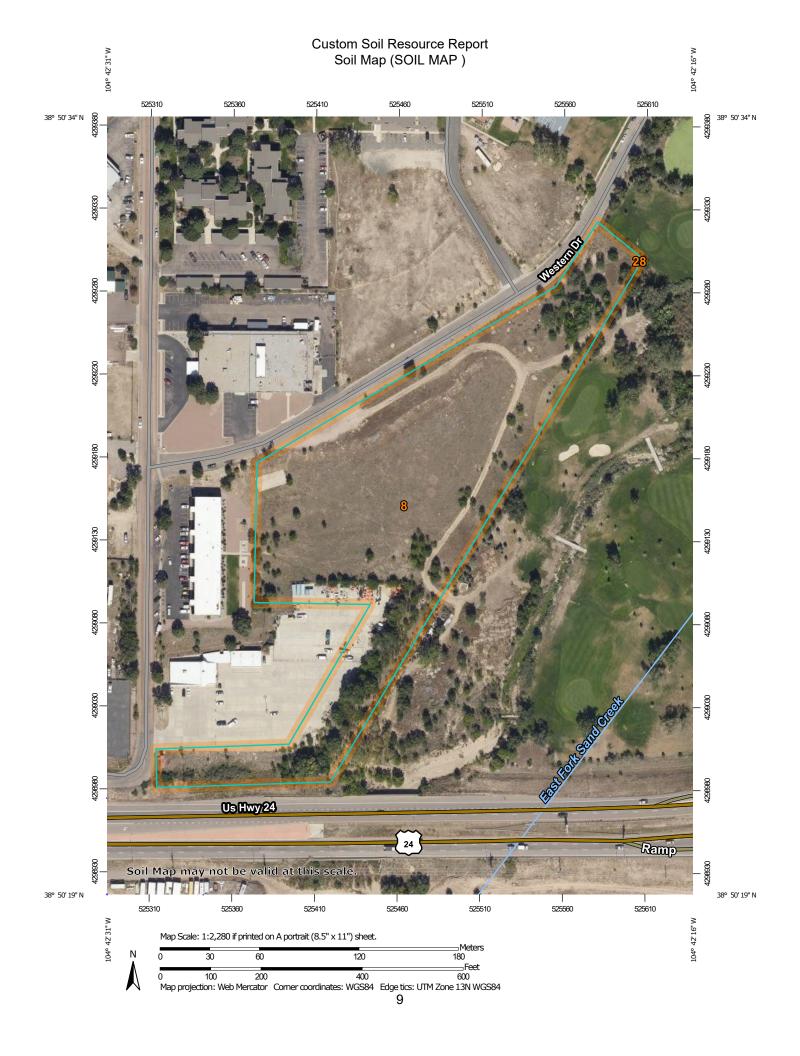
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

(0)

Blowout

 \boxtimes

Borrow Pit

Ж

Clay Spot

 \Diamond

Closed Depression

Š

.

.

Gravelly Spot

0

Landfill

٨.

Lava Flow

عله

Marsh or swamp

汆

Mine or Quarry

0

Miscellaneous Water

0

Perennial Water
Rock Outcrop

į.

Saline Spot

. .

Sandy Spot

_

Severely Eroded Spot

^

Sinkhole

Ø.

Sodic Spot

Slide or Slip

8

Spoil Area

۵

Stony Spot
Very Stony Spot

3

Wet Spot Other

Δ

Special Line Features

Water Features

_

Streams and Canals

Transportation

ransp

Rails

~

Interstate Highways

~

US Routes

 \sim

Major Roads

~

Local Roads

Background

Marie Control

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 21, Aug 24, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Aug 19, 2018—Sep 23, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend (SOIL MAP)

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	7.3	100.0%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	0.0	0.0%
Totals for Area of Interest		7.3	100.0%

Map Unit Descriptions (SOIL MAP)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

Custom Soil Resource Report

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

8—Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet

Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 46 to 48 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent

Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats

Landform position (three-dimensional): Side slope, talf

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock and/or eolian deposits

derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95

to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: R049XB210CO - Sandy Foothill

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 1 percent

Custom Soil Resource Report

Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

28—Ellicott loamy coarse sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 3680 Elevation: 5,500 to 6,500 feet

Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 47 to 50 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Ellicott and similar soils: 97 percent Minor components: 3 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ellicott

Setting

Landform: Flood plains, stream terraces
Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium

Typical profile

A - 0 to 4 inches: loamy coarse sand

C - 4 to 60 inches: stratified coarse sand to sandy loam

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95

to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Frequent Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7w

Hydrologic Soil Group: A

Custom Soil Resource Report

Ecological site: R069XY031CO - Sandy Bottomland

Other vegetative classification: SANDY BOTTOMLAND (069AY031CO)

Hydric soil rating: No

Minor Components

Fluvaquentic haplaquoll

Percent of map unit: 1 percent

Landform: Swales
Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

is severely eroded and blowouts have developed, the new seeding should be fertilized.

Windbreaks and environmental plantings are generally suited to this soil. Soil blowing is the main limitation for the establishment of trees and shrubs. This limitation can be overcome by cultivating only in the tree rows and leaving a strip of vegetation between the rows. Supplemental irrigation may be necessary when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. In cropland areas, habitat favorable for ring-necked pheasant, mourning dove, and many nongame species can be developed by establishing areas for nesting and escape cover. For pheasant, the provision of undisturbed nesting cover is vital and should be included in plans for habitat development. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for use as homesites. Shallow excavation is severely limited because cut banks cave in. This sandy soil requires special management practices to reduce water erosion and soil blowing. Capability subclasses IIIe, irrigated, and IVe, nonirrigated.

7—Bijou sandy loam, 3 to 8 percent slopes. This deep, well drained soil is on flood plains, terraces, and uplands. It formed in sandy alluvium and eolian material derived from arkose deposits. Elevation ranges from 5,400 to 6,200 feet. The average annual precipitation is about 13 inches, the average annual air temperature is about 49 degrees F, and the average frost-free period is about 145 days.

Typically, the surface layer is brown sandy loam about 4 inches thick. The subsoil is brown or grayish brown sandy loam about 24 inches thick. The substratum is pale brown loamy coarse sand.

Included with this soil in mapping are small areas of Olney sandy loam, 3 to 5 percent slopes; Valent sand, 1 to 9 percent slopes; Vona sandy loam, 3 to 9 percent slopes; and Wigton loamy sand, 1 to 8 percent slopes.

Permeability of this Bijou soil is rapid. Effective rooting depth is 60 inches or more. Available water capacity is moderate. Organic matter content of the surface layer is low. Surface runoff is slow, and the hazards of erosion and soil blowing are moderate.

Almost all areas of this soil are used for range.

This soil is suited to the production of native vegetation suitable for grazing. Because of the hazards of water erosion and soil blowing, the soil is not suited to nonirrigated crops.

Native vegetation is dominantly blue grama, sand dropseed, needleandthread, side-oats grama, and buckwheat. Seeding is a suitable practice if the range has deteriorated. Seeding the native grasses is a good practice. If the range is severely eroded and blowouts have developed, the new seeding should be fertilized. Brush control and grazing management may be needed to improve the depleted range. Grazing should be managed so that enough forage is left standing to protect the soil from blowing, to increase infiltration of water, and to catch and hold snow.

Windbreaks and environmental plantings are generally suited to this soil. Soil blowing is the main limitation for the establishment of trees and shrubs. This limitation can be overcome by cultivating only in the tree rows and leaving a strip of vegetation between the rows. Supplemental irrigation may be needed when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, by properly managing livestock grazing, and by reseeding range where needed.

This soil has good potential for use as homesites. Shallow excavation is severely limited because cut banks cave in. This soil requires special management practices to reduce water erosion and soil blowing. Capability subclass VIe.

8—Blakeland loamy sand, 1 to 9 percent slopes. This deep, somewhat excessively drained soil formed in alluvial and eolian material derived from arkosic sedimentary rock on uplands. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the average frost-free period is about 135 days.

Typically, the surface layer is dark grayish brown loamy sand about 11 inches thick. The substratum, to a depth of 27 inches, is brown loamy sand; it grades to pale brown sand that extends to a depth of 60 inches.

Included with this soil in mapping are small areas of Bresser sandy loam, 0 to 3 percent slopes; Bresser sandy loam, 3 to 5 percent slopes; Truckton sandy loam, 0 to 3 percent slopes; Truckton sandy loam, 3 to 9 percent slopes; and Stapleton sandy loam, 3 to 8 percent slopes. In some areas, mainly north of Colorado Springs in the Cottonwood Creek area, arkosic beds of sandstone and shale are at a depth of 0 to 40 inches.

Permeability of this Blakeland soil is rapid. Effective rooting depth is 60 inches or more. Available water capacity is low to moderate. Organic matter content of the surface layer is medium. Surface runoff is slow, the hazard of erosion is moderate, and the hazard of soil blowing is severe.

Most areas of this soil are used for range, homesites, and wildlife habitat.

12 SOIL SURVEY

Native vegetation is dominantly western wheatgrass, side-oats grama, and needleandthread. This soil is best suited to deep-rooted grasses.

Proper range management is necessary to prevent excessive removal of plant cover from the soil. Interseeding improves the existing vegetation. Deferment of grazing in spring increases plant vigor and soil stability. Proper location of livestock watering facilities helps to control grazing.

Windbreaks and environmental plantings are fairly well suited to this soil. Blowing sand and low available water capacity are the main limitations for the establishment of trees and shrubs. The soil is so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for urban development. Soil blowing is a hazard if protective vegetation is removed. Special erosion control practices must be provided to minimize soil losses. Capability subclass VIe.

9—Blakeland complex, 1 to 9 percent slopes. This complex is on uplands, mostly in the Falcon area. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the frost-free period is about 135 days.

This complex is about 60 percent Blakeland loamy sand, about 30 percent Fluvaquentic Haplaquolls, and 10 percent other soils.

Included with these soils in mapping are areas of Columbine gravelly sandy loam, 0 to 3 percent slopes, Ellicott loamy coarse sand, 0 to 5 percent slopes, and Ustic Torrifluvents, loamy.

The Blakeland soil is in the more sloping areas. It is deep and somewhat excessively drained. It formed in sandy alluvium and eolian material derived from arkosic sedimentary rock. Typically, the surface layer is dark grayish brown loamy sand about 11 inches thick. The substratum, to a depth of 27 inches, is brown loamy sand; it grades to pale brown sand that extends to a depth of 60 inches or more.

Permeability of the Blakeland soil is rapid. The effective rooting depth is more than 60 inches. The available water capacity is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate.

The Fluvaquentic Haplaquolls are in swale areas. They are deep, poorly drained soils. They formed in alluvium derived from arkosic sedimentary rock. Typically, the surface layer is brown. The texture is variable throughout. The water table is at a depth of 0 to 3 feet.

The Blakeland soil is well suited to deep-rooted grasses. Native vegetation is dominantly western wheatgrass, side-oats grama, and needleandthread. Rangeland vegetation on the Fluvaquentic Haplaquolls is dominantly tall grasses, including sand bluestem, switchgrass, prairie cordgrass, little bluestem, and sand reedgrass. Cattails and bulrushes are common in the swampy areas.

Proper range management is needed to prevent excess removal of plant cover from these soils. It is also needed to maintain the productive grasses. Interseeding improves the existing vegetation. Deferment of grazing during the growing season increases plant vigor and soil stability, and it helps to maintain and improve range condition. Proper location of livestock watering facilities helps to control grazing of animals.

Windbreaks and environmental plantings are fairly well suited to these soils. Blowing sand and low available water capacity are the main limitations to the establishment of trees and shrubs. The soils are so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

The Blakeland soil is well suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed. Wetland wildlife can be attracted to the Fluvaquentic Haplaquolls and the wetland habitat can be enhanced by several means. Shallow water developments can be created by digging or by blasting potholes to create open-water areas. Fencing to control livestock grazing is beneficial, and it allows wetland plants such as cattails, reed canarygrass, and rushes to grow. Control of unplanned burning and prevention of drainage that would remove water from the wetlands are good practices. Openland wildlife use the vegetation on these soils for nesting and escape cover. These shallow marsh areas are especially important for winter cover if natural vegetation is allowed to grow.

The Blakeland soil has good potential for homesites, roads, and streets. It needs to be protected from erosion when vegetation has been removed from building sites. The Fluvaquentic Haplaquolls have poor potential for homesites. Their main limitations for this use are the high water table and the hazard of flooding. Capability subclass VIe.

10—Blendon sandy loam, 0 to 3 percent slopes. This deep, well drained soil formed in sandy arkosic alluvium on alluvial fans and terraces. The average annual precipitation is about 15 inches, the mean annual air temperature is about 47 degrees F, and the average frost-free period is about 135 days.

G. L. WILLIAMS & PARTNERS, LTD. SURVEYING - PLANNING - ENGINEERING WATER RESOURCES

17 EAST LAS VEGAS ST. COLORADO SPRINGS, COLO. 80903 (303) 633-1773

August 17, 1978

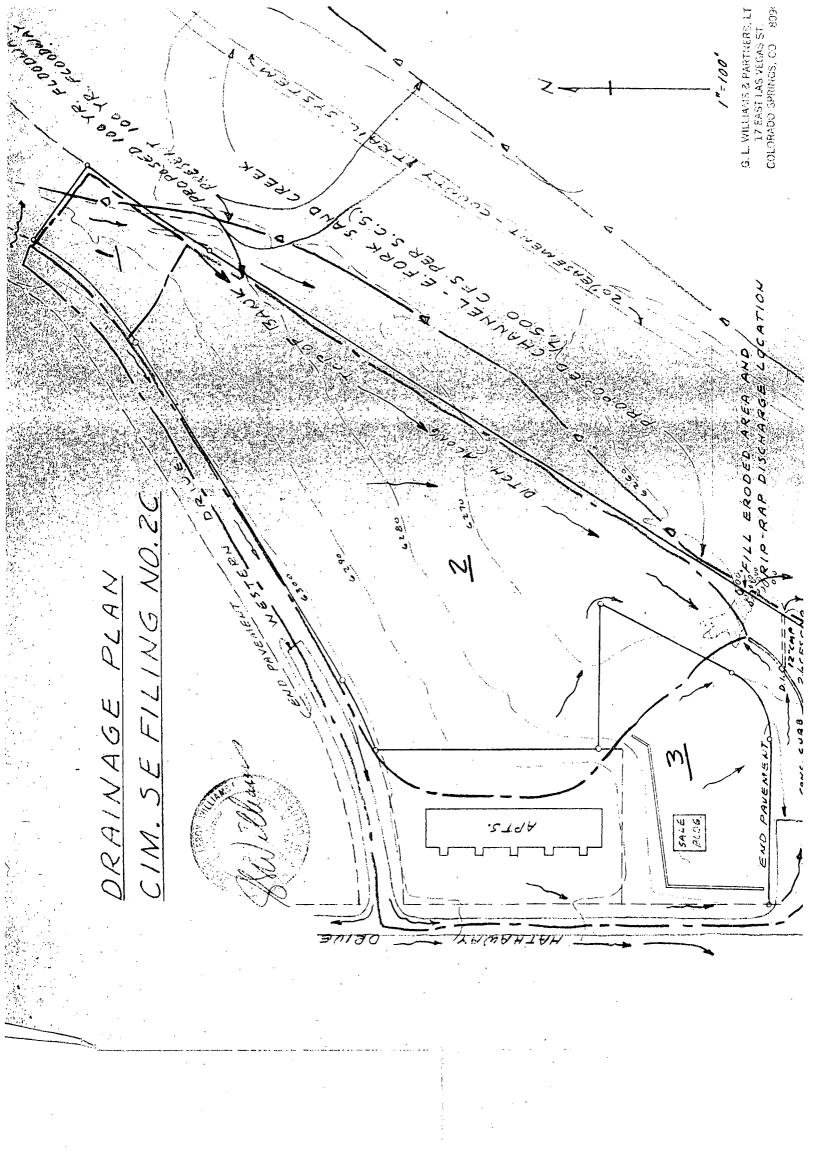
El Paso County Land Use Dept. 27 East Vermijo Colorado Springs, CO 80903

Gentlemen:

The intent of this letter is to serve as a report on drainage and erosion conditions for <u>Cimarron Southeast</u> Filing No. 2C, a one lot subdivision intended for use as a parking lot.

As shown on the attached sketch map the drainage basin for this 7.12 acre subdivision also includes the south half of Western Drive, the former Hathaway Apartment tract, and the former Red Barn tract which is presently in use for Mobile Home sales, and totals 11.16 acres.

Sub-basin 1 is about 0.55 acre and develops a runoff of about 1.38 cfs in a 100 year storm along the channel.


Sub-basin 2 is about 6.37 acres and develops a runoff of about 15.9 cfs in a 100 year storm, conveyed mostly by sheet flow to the indicated erosion leading to the channel. This erosion should be filled during the parking lot grading, and passage of the runoff to the channel formalized and protected by rip-rap. A swale should also be cut along the edge of the new channel bank to eliminate minor erosion there.

Sub-basin 3 is about 4.24 acres and develops a runoff of about 16.9 cfs in a 100 year storm. About 2.6 cfs is presently picked up by a drop inlet and conveyed to the channel by a 12" CMP. The remainder goes on along the existing curb to the eroded area and will be conveyed to the channel via the rip-rap swale recommended for Subbasin 2.

Runoff determinations, using the Rational Formula, postulated a 5" rainfall intensity, a runoff coefficient of 0.5 for sub-basins 1 and 2 and 0.8 for the occupied sub-basin 3. The results should be conservative.

Respectfully submitted,

Storge L. Williams

2 Hydrologic Calculations

City of Colorado Springs DCM Runoff Coefficients – Table 6-6 Colorado Springs DCM Rainfall Intensity Duration Frequency – Figure 6-5 Sub-Basin Time of Concentration – Form SF-1 5-yr Sub-Basin and Combined Flows – Form SF-2 100-yr Sub-Basin and Combined Flows – Form SF-2 Sub-Basin Calculations

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

Land Use or Surface	Percent						Runoff Co	efficients					
Characteristics	Impervious	2-у	ear	5-y	/ear	10-	year	25-	year	50-1	year	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0,89
Neighborhood Areas	70	0.45	0.49	0.49	0,53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0,20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	`0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0,19	0.20	0.29	0,30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0,36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas							21						
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0,66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0,02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

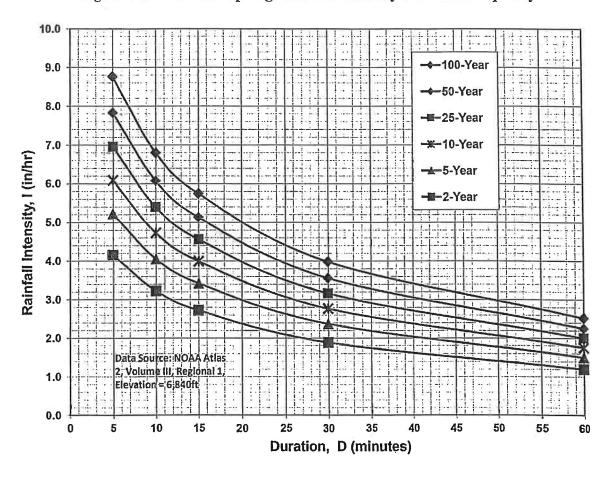


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations

$$I_{100} = -2.52 \ln(D) + 12.735$$

$$I_{50} = -2.25 \ln(D) + 11.375$$

$$I_{25} = -2.00 \ln(D) + 10.111$$

$$I_{10} = -1.75 \ln(D) + 8.847$$

$$I_5 = -1.50 \ln(D) + 7.583$$

$$I_2 = -1.19 \ln(D) + 6.035$$

Note: Values calculated by equations may not precisely duplicate values read from figure.

Job No.:	61203	Date:	3/20/2024 11:07
Project:	Townhomes at Western	Calcs By:	TJW
		Checked By:	

Time of Concentration (Modified from Standard Form SF-1)

		Sub-Basi	n Data		(Overland	ł	;	Shallow	Channe	l		Chanr	nelized		t _c Cł	neck	
Sub-	Area			%	L ₀	S ₀	t _i	L _{0t}	S _{0t}	V _{0sc}	t _t	L _{0c}	S _{0c}	V _{0c}	t _c	L	t _{c,alt}	t _c
Basin	(Acres)	C ₅	C ₁₀₀ /CN	lmp.	(ft)	(%)	(min)	(ft)	(ft/ft)	(ft/s)	(min)	(ft)	(ft/ft)	(ft/s)	(min)	(min)	(min)	(min)
				/														
OS-A1	0.31	0.35	0.55	32%		29%	2.5	114	0.061	1.7	1.1	0	0.000	0.0			10.8	
OS-B1	0.54	0.39	0.57	47%		17%	4.1	125		1.9	1.1		0.000	0.0			11.1	5.2
OS-B2	1.63	0.69	0.80	75%	_	35%	1.5	152	0.023	3.0	0.8	_	0.000	0.0	0.0		11.1	5.0
EX-A2	5.58	0.11	0.37	4%		12%	7.1	401	0.072	1.9	3.6		0.000	0.0	0.0		12.7	10.6
EX-B3	0.27	0.41	0.59	40%		11%	5.2	144	0.042	1.4	1.7		0.000	0.0			11.3	
EX-B4	0.66	0.90	0.96	100%		1%	2.6	0	0.000	0.0	0.0		0.000	0.0	0.0		10.3	5.0
EX-C1	0.60	0.08	0.35	0%	_	18%	4.9	0	0.000	0.0	0.0		0.000	0.0	0.0		10.3	
A2	0.14	0.09	0.36	2%	_	3%	5.5	0	0.000	0.0	0.0		0.000	0.0			10.1	5.5
A3	0.61	0.54	0.69	59%		7%	4.9	0	0.000	0.0	0.0		0.056	4.4	0.9		11.8	
A4	0.36	0.67	0.79	75%	86	13%	3.1	36	0.028	3.3	0.2	97	0.015	2.6			11.2	
A5	0.30	0.65	0.77	72%	90	13%	3.3	39	0.026	3.2	0.2	104	0.019	2.6	0.7		11.3	5.0
A6	0.29	0.72	0.82	82%	55	20%	1.9	54	0.019	2.7	0.3	96	0.016	2.7	0.6	205	11.1	5.0
A7	1.14	0.60	0.73	66%	74	14%	3.3	170	0.018	2.7	1.1	312	0.045	4.9	1.1	556	13.1	5.4
A8	0.18	0.68	0.79	78%	52	21%	2.0	33	0.030	3.5	0.2	75	0.013	2.0	0.6	160	10.9	5.0
A9	0.84	0.63	0.76	70%	72	17%	2.8	37	0.027	3.3	0.2	106	0.019	3.3	0.5	215	11.2	5.0
A10	0.34	0.69	0.79	78%	76	14%	2.7	36	0.028	3.3	0.2	142	0.014	2.6	0.9	254	11.4	5.0
A11	0.22	0.73	0.82	83%	73	16%	2.3	33	0.030	3.5	0.2	71	0.014	2.2	0.5	177	11.0	5.0
A12	0.50	0.14	0.39	8%	0	0%	0.0	0	0.000	0.0	0.0	0	0.000	0.0	0.0	0	10.0	5.0
B3	0.16	0.09	0.36	2%	61	11%	6.4	202	0.017	0.9	3.7	0	0.000	0.0	0.0	263	11.5	10.0
B4	0.67	0.65	0.78	70%	51	1%	5.8	0	0.000	0.0	0.0	0	0.000	0.0	0.0	51	10.3	5.8
C1	0.66	0.08	0.35	0%	49	18%	4.9	0	0.000	0.0	0.0	0	0.000	0.0	0.0	49	10.3	5.0
C2	0.35	0.12	0.38	7%	86	7%	8.6	0	0.000	0.0	0.0	234	0.056	4.4	0.9	320	11.8	9.5
C3	0.34	0.10	0.36	3%	86	7%	8.8	0	0.000	0.0	0.0	234	0.056	4.4	0.9	320	11.8	9.7

Is this page needed if times of concentration are already calculated on individual basin sheets?

Job	No.:	61203

Project: Townhomes at Western

Design Storm:
Jurisdiction:

5-Year Storm (20% Probability)

DCM

Sub-Basin and Combined Flows (Modified from Standard Form SF-2)

					Direct I	Runoff			Combined	Runoff		,	Streetflow	v		Pi	ipe Flow			Tr	avel Tim	ie .
	Sub-	Area		t _c	CA	15	Q5	t _c	CA	15	Q5		Length	Q	Q			Length	D_{Pipe}	Length		t _t
DP	Basin	(Acres)	C5	(min)	(Acres)	(in/hr)	(cfs)	(min)	(Acres)	(in/hr)	(cfs)	(%)	(ft)	(cfs)	(cfs)	(%)	n	(ft)	(in)	(ft)	(ft/s)	(min)
_																						
	OS-A1	0.31	0.35	5.0	0.11	5.17	0.55															
	OS-B1	0.54	0.39	5.2	0.21	5.12	1.09															
	OS-B2	1.63	0.69		1.12	5.17	5.79															
	EX-A2	5.58	0.11	10.6	0.63	4.04	2.55															
	EX-B3	0.27	0.41		0.11	4.69	0.51															
	EX-C1	0.60	0.08		0.05	5.17	0.25															
EX-DP1		3.71	0.56					5.2		5.12	10.7											
EX-DP2		5.89	0.13					10.6	0.74	4.04	3.0											
	A2	0.14	0.09		0.01	5.02	0.06															
	A3	0.61	0.54		0.33	4.94	1.62															
	A4	0.36	0.67		0.24	5.17	1.26															
	A5	0.30	0.65		0.19	5.17	0.99															
	A6	0.29	0.72		0.21	5.17	1.09															
	A7	1.14	0.60		0.69	5.05	3.46															
	A8	0.18	0.68		0.12	5.17	0.64															
	A9	0.84	0.63		0.53	5.17	2.73															
	A10	0.34	0.69		0.23	5.17	1.20															
	A11	0.22	0.73		0.16	5.17	0.83															
	A12	0.50	0.14	5.0	0.07	5.17	0.35															
	В3	0.16	0.09	10.0	0.01	4.13	0.06															
	B4	0.10	0.65		0.44	4.15	2.16															
DP1	D-1	3.67	0.50		0.44	4.55	2.10	5.2	1.84	5.12	9.4											
D1 1	C1	0.66	0.08		0.05	5.17	0.27		1.01	0.12	0.4											
	C2	0.35	0.12		0.04	4.21	0.18															
	C3	0.34	0.10		0.03	4.18	0.14															
							• • • • • • • • • • • • • • • • • • • •															

DCM: I = C1 * In (tc) + C2

C1: 1.5 C1: 7.583

Job N	o.: 6	1203
-------	-------	------

Project: Townhomes at Western

Design Storm: Jurisdiction: 100-Year Storm (1% Probability)

DCM

Sub-Basin and Combined Flows (Modified from Standard Form SF-2)

					Direct I	Runoff			Combined	Runoff			Streetflov	/		Р	ipe Flow			Tr	ravel Tim	ne
	Sub-	Area		t _c	CA	I100	Q100	t _c	CA	I100	Q100		Length	Q	Q			Length	D _{Pipe}	Length		t _t
DP	Basin	(Acres)	C100	(min)	(Acres)	(in/hr)	(cfs)	(min)	(Acres)	(in/hr)	(cfs)	(%)	(ft)	(cfs)	(cfs)	(%)	n	(ft)	(in)	(ft)	(ft/s)	(min)
	OS-A1	0.31	0.55	5.0	0.17	8.68	1.46															
	OS-B1	0.54	0.57	5.2	0.31	8.60	2.66															
	OS-B2	1.63	0.80		1.30	8.68	11.32															
	EX-A2	5.58	0.37		2.09	6.78	14.17															
	EX-B3	0.27	0.59		0.16	7.88	1.26															
	EX-C1	0.60	0.35		0.21	8.68	1.82															
EX-DP1		3.71	0.71					5.2		8.60	22.5											
EX-DP2		5.89	0.38					10.6	2.26	6.78	15.3											
	A2	0.14	0.36		0.05	8.43	0.44															
	A3	0.61	0.69		0.42	8.30	3.47															
	A4	0.36	0.79		0.28	8.68	2.46															
	A5	0.30	0.77		0.23	8.68	1.97															
	A6	0.29	0.82		0.24	8.68	2.08															
	A7	1.14	0.73		0.84	8.48	7.09															
	A8	0.18	0.79		0.14	8.68	1.24															
	A9	0.84	0.76		0.63	8.68	5.48															
	A10	0.34	0.79		0.27	8.68	2.33															
	A11	0.22	0.82		0.18	8.68	1.58															
	A12	0.50	0.39	5.0	0.19	8.68	1.69															
	В3	0.16	0.36	10.0	0.06	6.93	0.41															
	B4	0.10	0.78		0.52	8.31	4.31															
DP1	51	3.67	0.66		0.02	0.01	1.01	5.2	2.42	8.60	20.8											
J	C1	0.66	0.35		0.23	8.68	2.02		2.12	0.00	20.0											
	C2	0.35	0.38		0.13	7.07	0.94															
	C3	0.34	0.36		0.12	7.01	0.87															

DCM: I = C1 * In (tc) + C2

C1: 2.52 C1: 12.735

Sub-Basin OS-A1 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: DCM В Jurisdiction Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runo	ff Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	9,024	0.21	0.02	0.08	0.15	0.25	0.3	0.35	0%
Paved	4,324	0.10	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs			0.71	0.73	0.75	0.78	0.8	0.81	90%
Combined	13,348	0.31	0.30	0.35	0.40	0.47	0.51	0.55	32.4%
	13348								

Basin Travel Time

Sha	allow Channel Gro	ound Cover	Short Past	ure/Lawns			
	$L_{max,Overland}$	100	ft		C_v	7	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	145	16	-	-	-	-	
Initial Time	31	9	0.290	-	2.5	10.8	DCM Eq. 6-8
Shallow Channel	114	7	0.061	1.7	1.1	- 1	DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- '	V-Ditch
				t _c	5.0	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	0.4	0.5	0.7	1.0	1.2	1.5
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.4	0.5	0.7	1.0	1.2	1.5
DCM:	I = C1 * In	(tc) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10.111	11.375	12.735

Sub-Basin OS-B1 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: Jurisdiction DCM Soil Type В Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	10,166	0.23	0.02	0.08	0.15	0.25	0.3	0.35	0%
Paved	1,547	0.04	0.89	0.9	0.92	0.94	0.95	0.96	100%
Gravel	12,017	0.28	0.57	0.59	0.63	0.66	0.68	0.7	80%
Combined	23,730	0.54	0.36	0.39	0.44	0.50	0.53	0.57	47.0%
·	22720	·		•	·	•	•	•	•

23730

Basin Travel Time

-							
Sha	allow Channel Gro	und Cover	Short Past	ure/Lawns			
	$L_{max,Overland}$	100	ft		C_v	7	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	190	20	-	-	-	-	
Initial Time	65	11	0.169	-	4.1	11.1 DCM Eq	. 6-8
Shallow Channel	125	9	0.072	1.9	1.1	- DCM Eq	. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch	
				t _c	5.2	min.	

Rainfall Intensity & Runoff

••						
	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.08	5.12	5.97	6.83	7.68	8.60
Runoff (cfs)	0.8	1.1	1.4	1.9	2.2	2.7
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.8	1.1	1.4	1.9	2.2	2.7
DCM: I	= C1 * In	(tc) + C2				

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin OS-B2 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: DCM В Jurisdiction Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	17,020	0.39	0.02	0.08	0.15	0.25	0.3	0.35	0%
Paved	47,177	1.08	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	6,867	0.16	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	71,064	1.63	0.66	0.69	0.72	0.76	0.78	0.80	75.1%
	71064							·	

Basin Travel Time

Sha	allow Channel Gro	und Cover	Paved area	as/shallow p	paved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	192	18	-	-	-	-	
Initial Time	40	14	0.350	-	1.5	11.1 D	CM Eq. 6-8
Shallow Channel	152	4	0.023	3.0	8.0	- D0	CM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-	Ditch
				t _c	5.0	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	4.5	5.8	7.1	8.5	9.9	11.3
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	4.5	5.8	7.1	8.5	9.9	11.3
DCM:	I = C1 * In	(tc) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10.111	11.375	12.735

Sub-Basin Ex-A2 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: В Jurisdiction DCM Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	233,296	5.36	0.02	0.08	0.15	0.25	0.3	0.35	0%
Paved	9,795	0.22	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs			0.71	0.73	0.75	0.78	0.8	0.81	90%
Combined	243,091	5.58	0.06	0.11	0.18	0.28	0.33	0.37	4.0%

243091

Basin Travel Time

Sha	allow Channel Gro	ound Cover	Short Pastu	ıre/Lawns			
	$L_{max,Overland}$	100	ft		C_v	7	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	483	39	-	-	-	-	
Initial Time	82	10	0.122	-	7.1	12.7	DCM Eq. 6-8
Shallow Channel	401	29	0.072	1.9	3.6	- [DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- \	/-Ditch
				t _c	10.6 n	nin.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.22	4.04	4.71	5.39	6.06	6.78
Runoff (cfs)	1.0	2.5	4.8	8.3	11.0	14.2
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	1.0	2.5	4.8	8.3	11.0	14.2
DCM:	I = C1 * In	(tc) + C2				

C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin Ex-B3 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: В Jurisdiction DCM Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	7,067	0.16	0.02	0.08	0.15	0.25	0.3	0.35	0%
Paved	4,665	0.11	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs			0.71	0.73	0.75	0.78	0.8	0.81	90%
Combined	11,732	0.27	0.37	0.41	0.46	0.52	0.56	0.59	39.8%
	11732								

Basin Travel Time

Sha	allow Channel Gro	ound Cover	Short Pastu	ure/Lawns			
	$L_{max,Overland}$	100	ft		C_v	7	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	227	15	-	-	-	-	
Initial Time	83	9	0.108	-	5.2	11.3 DCM	Eq. 6-8
Shallow Channel	144	6	0.042	1.4	1.7	- DCM E	Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditcl	า
				t _c	6.9 r	nin.	

C2

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.74	4.69	5.47	6.25	7.04	7.88
Runoff (cfs)	0.4	0.5	0.7	0.9	1.1	1.3
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.4	0.5	0.7	0.9	1.1	1.3
DCM: I	= C1 * In ((tc) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52

7.583 8.847 10.111 11.375 12.735

6.035

Sub-Basin Ex-B4 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: Jurisdiction DCM Soil Type В Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%
Paved	28,941	0.66	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs			0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	28,941	0.66	0.89	0.90	0.92	0.94	0.95	0.96	100.0%
	20044								

28941

Basin Travel Time

-							
Sha	allow Channel Gro	und Cover	Short Pastu	ure/Lawns			
	$L_{max,Overland}$	100	ft		C_{v}	7	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	50	1	-	-	-	-	
Initial Time	50	1	0.010	-	2.6	10.3 [OCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	- [DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- \	/-Ditch
				t _c	5.0	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr		
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68		
Runoff (cfs)	2.4	3.1	3.7	4.3	4.9	5.5		
Release Rates (cfs/ac)	-	-	-	-	-	-		
Allowed Release (cfs)	2.4	3.1	3.7	4.3	4.9	5.5		
$DCM \cdot I = C1 * In (tc) + C2$								

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin Ex-C1 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: DCM В Jurisdiction Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area		Runoff Coefficient				%		
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	26,060	0.60	0.02	0.08	0.15	0.25	0.3	0.35	0%
Paved			0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs			0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	26,060	0.60	0.02	0.08	0.15	0.25	0.30	0.35	0.0%
	26060								

Basin Travel Time

• • • • • • • • • • • • • • • • • • • •							
Sha	allow Channel Gro	ound Cover	Short Past	ure/Lawns			
	$L_{max,Overland}$	100	ft		C_v	7	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	49	9	-	-	-	-	
Initial Time	49	9	0.184	-	4.9	10.3	DCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	-	DCM Eq. 6-9
Channelized			0.000	0.0	0.0	-	V-Ditch
				t _c	5.0	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	0.0	0.2	0.5	1.0	1.4	1.8
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.0	0.2	0.5	1.0	1.4	1.8
DCM:	I = C1 * In	(tc) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10.111	11.375	12.735

Combined Sub-Basin Runoff Calculations (EX-DP1)

Includes Basins OS-B1 OS-B2 EX-B3 EX-B4 EX-C1

 Job No.:
 61203
 Date:
 3/20/2024 11:07

Project: Townhomes at Western Calcs by: TJW

Checked by:

Jurisdiction DCM Soil Type B

Runoff Coefficient Surface Type Urbanization Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	60,313	1.38	0.02	0.08	0.15	0.25	0.3	0.35	0%
Gravel	12,017	0.28	0.57	0.59	0.63	0.66	0.68	0.7	80%
Paved	82,330	1.89	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	6,867	0.16	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	161,527	3.71	0.53	0.56	0.60	0.65	0.68	0.71	60.7%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach Channelized-1 Channelized-2 Channelized-3	OS-B1	-	190	20	-	-	-	-	5.2
Total			190	20					

t_c 5.2 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 $\begin{array}{ll} Q_{\text{Minor}} & \text{(cfs) - 5-year Storm} \\ Q_{\text{Major}} & \text{(cfs) - 100-year Storm} \end{array}$

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.08	5.12	5.97	6.83	7.68	8.60
Site Runoff (cfs)	8.08	10.70	13.37	16.58	19.39	22.53
OffSite Runoff (cfs)	-	0.00	-	-	-	0.00
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	-	10.7	-	-	-	22.5

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Notes

Runoff from Offsite basins have been assumed constant, despite additional times of concentration.

Combined Sub-Basin Runoff Calculations (EX-DP2)

Includes Basins OS-A1 EX-A2

 Job No.:
 61203
 Date:
 3/20/2024 11:07

Project: Townhomes at Western Calcs by: TJW

Jurisdiction DCM Checked by:

Soil Type

Runoff Coefficient Surface Type Urbanization Urbanization Urbanization

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	242,320	5.56	0.02	0.08	0.15	0.25	0.3	0.35	0%
Gravel	-	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%
Paved	14,119	0.32	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	-	0.00	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	256,439	5.89	0.07	0.13	0.19	0.29	0.34	0.38	5.5%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach Channelized-1 Channelized-2 Channelized-3	EX-A2	-	483	39	-	-	-	-	10.6
Total			483	39					

t_c 10.6 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 $\begin{array}{ll} Q_{\text{Minor}} & \text{(cfs) - 5-year Storm} \\ Q_{\text{Major}} & \text{(cfs) - 100-year Storm} \end{array}$

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.22	4.04	4.71	5.39	6.06	6.78
Site Runoff (cfs)	1.29	2.98	5.34	9.13	11.98	15.31
OffSite Runoff (cfs)	-	0.00	-	1	-	0.00
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	-	3.0	-	-	-	15.3

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Notes

Runoff from Offsite basins have been assumed constant, despite additional times of concentration.

Sub-Basin A2 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: DCM В Jurisdiction Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	6,257	0.14	0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved			0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs			0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	6,257	0.14	0.03	0.09	0.17	0.26	0.31	0.36	2.0%
	6257								·

Basin Travel Time

Sha	allow Channel Gro	und Cover	Paved area	as/shallow p	paved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	18	1	-	-	-	_	
Initial Time	18	1	0.028	-	5.5	10.1	OCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	- [OCM Eq. 6-9
Channelized			0.000	0.0	0.0	- (C&G
				t _c	5.5	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.00	5.02	5.86	6.69	7.53	8.43
Runoff (cfs)	0.0	0.1	0.1	0.2	0.3	0.4
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.0	0.1	0.1	0.2	0.3	0.4
DCM:	I = C1 * In ((tc) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10.111	11.375	12.735

Sub-Basin A3 Runoff Calculations

 Job No.:
 61203
 Date:
 3/20/2024 11:07

 Project:
 Townhomes at Western
 Calcs by:
 TJW

 Checked by:
 Checked by:
 Soil Type
 B

Runoff Coefficient Surface Type Urbanization Urban

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%	
Landscaping	10,570	0.24	0.03	0.09	0.17	0.26	0.31	0.36	2%	
Paved	10,146	0.23	0.89	0.9	0.92	0.94	0.95	0.96	100%	
Roofs	5,796	0.13	0.71	0.73	0.75	0.78	8.0	0.81	90%	
Combined	26,512	0.61	0.51	0.54	0.58	0.63	0.66	0.69	58.7%	

26512

Basin Travel Time

Sha	allow Channel Gro	und Cover	Paved area	as/shallow p	paved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	320	19	-	-	-	-	
Initial Time	86	6	0.070	-	4.9	11.8	DCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	-	DCM Eq. 6-9
Channelized	234	13	0.056	4.4	0.9	-	C&G
				t _c	5.8	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.94	4.94	5.77	6.59	7.41	8.30
Runoff (cfs)	1.2	1.6	2.0	2.5	3.0	3.5
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	1.2	1.6	2.0	2.5	3.0	3.5
DCM: I =	C1 * In (tc) + C2				

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin A4 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: Jurisdiction DCM Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient					
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	3,623	0.08	0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved	8,261	0.19	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	3,864	0.09	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	45.740	0.26	0.65	0.67	0.74	0.74	0.77	0.70	75.0%
Combined	15,748	0.36	0.65	0.67	0.71	0.74	0.77	0.79	,

15748

Basin Travel Time

Sha	allow Channel Gro	und Cover	Paved area	as/shallow p	oaved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	219	14	-	-	-	-	
Initial Time	86	11	0.128	-	3.1	11.2	DCM Eq. 6-8
Shallow Channel	36	1	0.028	3.3	0.2	-	DCM Eq. 6-9
Channelized	97	2	0.015	2.6	0.6	-	C&G
				t _c	5.0	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	1.0	1.3	1.5	1.9	2.1	2.5
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	1.0	1.3	1.5	1.9	2.1	2.5
DCM: I	- C1 * In	(tc) + C2				

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin A5 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: Jurisdiction DCM Soil Type В Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%	
Landscaping	3,235	0.07	0.03	0.09	0.17	0.26	0.31	0.36	2%	
Paved	5,831	0.13	0.89	0.9	0.92	0.94	0.95	0.96	100%	
Roofs	3,864	0.09	0.71	0.73	0.75	0.78	8.0	0.81	90%	
Combined	12,930	0.30	0.62	0.65	0.68	0.72	0.75	0.77	72.5%	

12930

Basin Travel Time

Sha	allow Channel Gro	ound Cover	Paved area	s/shallow p	oaved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	233	15	-	-	-	-	
Initial Time	90	12	0.133	-	3.3	11.3	DCM Eq. 6-8
Shallow Channel	39	1	0.026	3.2	0.2	-	DCM Eq. 6-9
Channelized	104	2	0.019	2.6	0.7	-	C&G
				t _c	5.0	min.	

C2

6.035

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	0.8	1.0	1.2	1.5	1.7	2.0
Release Rates (cfs/ac)	-	-	-	-	-	_
Allowed Release (cfs)	0.8	1.0	1.2	1.5	1.7	2.0
DCM: I	= C1 * In ((tc) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52

7.583

8.847

10.111 11.375

12.735

Sub-Basin A6 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: Jurisdiction DCM Soil Type В Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient					
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	1,957	0.04	0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved	6,904	0.16	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	3,864	0.09	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	12,725	0.29	0.70	0.72	0.75	0.79	0.81	0.82	81.9%

12725

Basin Travel Time

Sha	allow Channel Gro	und Cover	Paved area	as/shallow p	paved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	205	14	-	-	-	-	
Initial Time	55	11	0.200	-	1.9	11.1	DCM Eq. 6-8
Shallow Channel	54	1	0.019	2.7	0.3	- 1	DCM Eq. 6-9
Channelized	96	2	0.016	2.7	0.6	- 6	C&G
				t _c	5.0	min.	

Rainfall Intensity & Runoff

11						
	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	0.8	1.1	1.3	1.6	1.8	2.1
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.8	1.1	1.3	1.6	1.8	2.1
DCM: I:	= C1 * In ((tc) + C2				

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin A7 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: Jurisdiction DCM Soil Type В Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area				%				
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	15,849	0.36	0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved	22,197	0.51	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	11,592	0.27	0.71	0.73	0.75	0.78	0.8	0.81	90%
Combined	49,638	1.14	0.57	0.60	0.64	0.69	0.71	0.73	66.4%

49638

Basin Travel Time

Sha	allow Channel Gro	und Cover	Paved area	as/shallow p	aved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	556	27	-	-	-	-	
Initial Time	74	10	0.135	-	3.3	13.1	DCM Eq. 6-8
Shallow Channel	170	3	0.018	2.7	1.1	-	DCM Eq. 6-9
Channelized	312	14	0.045	4.9	1.1	-	C&G
				t _c	5.4	min.	

Rainfall Intensity & Runoff

	0 V-	F V-1	40 1/-	0F V-	F0 V-	400 1/-
	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.03	5.05	5.90	6.74	7.58	8.48
Runoff (cfs)	2.6	3.5	4.3	5.3	6.1	7.1
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	2.6	3.5	4.3	5.3	6.1	7.1
DCM: I:	= C1 * In ((tc) + C2				

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin A8 Runoff Calculations

 Job No.:
 61203
 Date:
 3/20/2024 11:07

 Project:
 Townhomes at Western
 Calcs by:
 TJW

 Checked by:
 Checked by:
 Soil Type
 B

Runoff Coefficient Surface Type Urbanization Urban

Basin Land Use Characteristics

	Area			Runo	ff Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	1,493	0.03	0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved	3,502	0.08	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	2,898	0.07	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	7,893	0.18	0.66	0.68	0.72	0.75	0.77	0.79	77.8%

7893

Basin Travel Time

Sha	allow Channel Gro	und Cover	Paved area	as/shallow p	oaved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	160	13	-	-	-	-	
Initial Time	52	11	0.212	-	2.0	10.9	DCM Eq. 6-8
Shallow Channel	33	1	0.030	3.5	0.2	-	DCM Eq. 6-9
Channelized	75	1	0.013	2.0	0.6	-	C&G
				t _c	5.0	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	0.5	0.6	0.8	0.9	1.1	1.2
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.5	0.6	8.0	0.9	1.1	1.2
DCM: I:	= C1 * In ((tc) + C2				

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin A9 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: DCM В Jurisdiction Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runo	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	10,259	0.24	0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved	17,482	0.40	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	8,694	0.20	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	36,435	0.84	0.60	0.63	0.67	0.71	0.73	0.76	70.0%
	36435								

Basin Travel Time

Sha	allow Channel Gro	ound Cover	Paved area	as/shallow p	oaved swale	es	
	$L_{\text{max,Overland}}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	215	15	-	-	-	-	
Initial Time	72	12	0.167	-	2.8	11.2	DCM Eq. 6-8
Shallow Channel	37	1	0.027	3.3	0.2	-	DCM Eq. 6-9
Channelized	106	2	0.019	3.3	0.5	-	C&G
				t _c	5.0 ו	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yı
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	2.1	2.7	3.4	4.1	4.8	5.5
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	2.1	2.7	3.4	4.1	4.8	5.5
DCM:	I = C1 * In	(tc) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10.111	11.375	12.735

Sub-Basin A10 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: В Jurisdiction DCM Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient					
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	2,697	0.06	0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved	6,286	0.14	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	5,796	0.13	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	14.779	0.34	0.66	0.69	0.72	0.75	0.77	0.79	78.2%

14779

Basin Travel Time

Sha	allow Channel Gro	und Cover	Paved area	as/shallow p	paved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	254	14	-	-	-	-	
Initial Time	76	11	0.145	-	2.7	11.4	DCM Eq. 6-8
Shallow Channel	36	1	0.028	3.3	0.2	- 1	DCM Eq. 6-9
Channelized	142	2	0.014	2.6	0.9	- 6	C&G
				t _c	5.0	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)		1.2	1.5	1.8	2.0	2.3
Release Rates (cfs/ac)		_	_	_	_	
Allowed Release (cfs)		1.2	1.5	1.8	2.0	2.3
` '"	I = C1 * In	(tc) + C2				

C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin A11 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: В Jurisdiction DCM Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	1,228	0.03	0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved	4,529	0.10	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	3,864	0.09	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	9,621	0.22	0.71	0.73	0.76	0.79	0.81	0.82	83.5%
	0624								

9621

Basin Travel Time

Sha	allow Channel Gro	und Cover	Paved area	s/shallow p	aved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	177	14	-	-	-	-	
Initial Time	73	12	0.164	-	2.3	11.0	DCM Eq. 6-8
Shallow Channel	33	1	0.030	3.5	0.2	-	DCM Eq. 6-9
Channelized	71	1	0.014	2.2	0.5	-	C&G
				t.	5.0 ו	min.	

Rainfall Intensity & Runoff

! <u> </u>						
	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	0.6	0.8	1.0	1.2	1.4	1.6
Release Rates (cfs/ac)	-	-	-	-	-	_
Allowed Release (cfs)	0.6	0.8	1.0	1.2	1.4	1.6
DCM: I:	= C1 * In ((tc) + C2				
0.1	1 10	4 =	4	0	0.0=	0 = 0

C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin A12 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: DCM В Jurisdiction Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runo	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	19,682	0.45	0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping			0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved	601	0.01	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs			0.71	0.73	0.75	0.78	0.8	0.81	90%
Gravel	1,429	0.03	0.57	0.59	0.63	0.66	0.68	0.7	80%
Combined	21,712	0.50	0.08	0.14	0.20	0.30	0.34	0.39	8.0%

21712

Basin Travel Time

Sha	allow Channel Gro	und Cover	Paved area	as/shallow p	paved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	0	0	-	-	-	-	
Initial Time			0.000	-	0.0	10.0	DCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	-	DCM Eq. 6-9
Channelized			0.000	0.0	0.0	-	C&G
				t _c	5.0	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	0.2	0.4	0.6	1.0	1.3	1.7
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.2	0.4	0.6	1.0	1.3	1.7
DCM: I	= C1 * In ((tc) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10.111	11.375	12.735

Sub-Basin B3 Runoff Calculations

 Job No.:
 61203
 Date:
 3/20/2024 11:07

 Project:
 Townhomes at Western
 Calcs by:
 TJW

 Checked by:
 Checked by:

JurisdictionDCMSoil TypeBRunoff CoefficientSurface TypeUrbanizationUrban

Basin Land Use Characteristics

	Area			Runo	ff Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	7,154	0.16	0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved			0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs			0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	7,154	0.16	0.03	0.09	0.17	0.26	0.31	0.36	2.0%

7154

Basin Travel Time

Sha	allow Channel Gro	ound Cover	Short Pastu	ure/Lawns			
	$L_{max,Overland}$	100	ft		C_v	7	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	263	11	-	-	-	-	
Initial Time	61	7	0.115	-	6.4	11.5	DCM Eq. 6-8
Shallow Channel	202	4	0.017	0.9	3.7	-	DCM Eq. 6-9
Channelized			0.000	0.0	0.0	-	C&G
				t _c	10.0 ו	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.29	4.13	4.81	5.50	6.19	6.93
Runoff (cfs)	0.0	0.1	0.1	0.2	0.3	0.4
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.0	0.1	0.1	0.2	0.3	0.4
DCM: I =	: C1 * In ((tc) + C2				

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin B4 Runoff Calculations

 Job No.:
 61203
 Date:
 3/20/2024 11:07

 Project:
 Townhomes at Western
 Calcs by:
 TJW

 Checked by:
 Checked by:
 Soil Type
 B

Runoff Coefficient Surface Type Urbanization Urban

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
Pasture/Meadow			0.02	0.08	0.15	0.25	0.3	0.35	0%	
Landscaping	8,800	0.20	0.03	0.09	0.17	0.26	0.31	0.36	2%	
Paved	20,209	0.46	0.89	0.9	0.92	0.94	0.95	0.96	100%	
Roofs			0.71	0.73	0.75	0.78	8.0	0.81	90%	
Combined	29,009	0.67	0.63	0.65	0.69	0.73	0.76	0.78	70.3%	
Combined	20,000	0.07	0.03	0.03	0.03	0.73	0.70	0.70		

29009

Basin Travel Time

Sha	Illow Channel Gro	und Cover	Paved area	as/shallow p	aved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S_0 (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	51	1	-	-	-	-	
Initial Time	51	1	0.010	-	5.8	10.3	DCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	-	DCM Eq. 6-9
Channelized			0.000	0.0	0.0	-	C&G
				t _c	5.8	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.95	4.95	5.78	6.60	7.43	8.31
Runoff (cfs)	1.7	2.2	2.7	3.2	3.7	4.3
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	1.7	2.2	2.7	3.2	3.7	4.3
DCM:	I = C1 * In	(tc) + C2				

Sub-Basin C1 Runoff Calculations

 Job No.:
 61203
 Date:
 3/20/2024 11:07

 Project:
 Townhomes at Western
 Calcs by:
 TJW

 Checked by:
 Checked by:
 Soil Type
 B

Runoff Coefficient Surface Type Urbanization Urban

Basin Land Use Characteristics

Area			Runo	ff Coeffici	ent			%
(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
28,901	0.66	0.02	0.08	0.15	0.25	0.3	0.35	0%
		0.03	0.09	0.17	0.26	0.31	0.36	2%
		0.89	0.9	0.92	0.94	0.95	0.96	100%
		0.71	0.73	0.75	0.78	8.0	0.81	90%
28,901	0.66	0.02	0.08	0.15	0.25	0.30	0.35	0.0%
	(SF) 28,901	(SF) (Acres) 28,901 0.66	(SF) (Acres) C2 28,901 0.66 0.02 0.03 0.89 0.71	(SF) (Acres) C2 C5 28,901 0.66 0.02 0.08 0.03 0.09 0.89 0.9 0.71 0.73	(SF) (Acres) C2 C5 C10 28,901 0.66 0.02 0.08 0.15 0.03 0.09 0.17 0.89 0.9 0.92 0.71 0.73 0.75	(SF) (Acres) C2 C5 C10 C25 28,901 0.66 0.02 0.08 0.15 0.25 0.03 0.09 0.17 0.26 0.89 0.9 0.92 0.94 0.71 0.73 0.75 0.78	(SF) (Acres) C2 C5 C10 C25 C50 28,901 0.66 0.02 0.08 0.15 0.25 0.3 0.03 0.09 0.17 0.26 0.31 0.89 0.9 0.92 0.94 0.95 0.71 0.73 0.75 0.78 0.8	(SF) (Acres) C2 C5 C10 C25 C50 C100 28,901 0.66 0.02 0.08 0.15 0.25 0.3 0.35 0.03 0.09 0.17 0.26 0.31 0.36 0.89 0.9 0.92 0.94 0.95 0.96 0.71 0.73 0.75 0.78 0.8 0.81

28901

Basin Travel Time

Sha	allow Channel Gro	und Cover	Paved area	s/shallow p	paved swale	es	
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	49	9	-	-	-	-	
Initial Time	49	9	0.184	-	4.9	10.3	DCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	-	DCM Eq. 6-9
Channelized			0.000	0.0	0.0	-	C&G
				t _c	5.0	min.	

C2

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	0.1	0.3	0.6	1.1	1.5	2.0
Release Rates (cfs/ac)	-	-	-	-	-	_
Allowed Release (cfs)	0.1	0.3	0.6	1.1	1.5	2.0
DCM: I	= C1 * In ((tc) + C2				
C.1	1 19	1.5	1 75	2	2 25	2 52

7.583

8.847

10.111 11.375

12.735

6.035

Sub-Basin C2 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: DCM В Jurisdiction Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runo	ff Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	13,945	0.32	0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping			0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved			0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs			0.71	0.73	0.75	0.78	8.0	0.81	90%
Gravel	1,318	0.03	0.57	0.59	0.63	0.66	0.68	0.7	80%
Combined	15,263	0.35	0.07	0.12	0.19	0.29	0.33	0.38	6.9%
	15263								

Basin Travel Time

Sha	Shallow Channel Ground Cover Paved areas/shallow paved swales									
	$L_{max,Overland}$	100	ft		C_v	20				
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)				
Total	320	19	-	-	-	-				
Initial Time	86	6	0.070	-	8.6	11.8	DCM Eq. 6-8			
Shallow Channel			0.000	0.0	0.0	- 1	DCM Eq. 6-9			
Channelized	234	13	0.056	4.4	0.9	- 6	C&G			
				t _c	9.5 ו	min.				

C2

Rainfall Intensity & Runoff

1						
	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.36	4.21	4.91	5.61	6.31	7.07
Runoff (cfs)	0.1	0.2	0.3	0.6	0.7	0.9
Release Rates (cfs/ac)	-	-	-	-	-	_
Allowed Release (cfs)	0.1	0.2	0.3	0.6	0.7	0.9
DCM:	= C1 * In	(tc) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52

7.583

8.847 10.111 11.375 12.735

6.035

Sub-Basin C3 Runoff Calculations

Job No.: 61203 Date: 3/20/2024 11:07 Project: **Townhomes at Western** Calcs by: TJW Checked by: DCM В Jurisdiction Soil Type Runoff Coefficient **Surface Type** Urbanization Urban

Basin Land Use Characteristics

	Area			Runo	ff Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	14,275	0.33	0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping			0.03	0.09	0.17	0.26	0.31	0.36	2%
Paved			0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs			0.71	0.73	0.75	0.78	8.0	0.81	90%
Gravel	613	0.01	0.57	0.59	0.63	0.66	0.68	0.7	80%
Combined	14,888	0.34	0.04	0.10	0.17	0.27	0.32	0.36	3.3%

14888

Basin Travel Time

Ch/	allow Channel Gro	aund Cover	Dayed area	o /ohollow r	and awal	20	
3116	allow Charliner Gro			is/sitaliow p	Javeu Swall		
	$L_{max,Overland}$	100	ft		C_v	20	
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	320	19	-	-	-	-	
Initial Time	86	6	0.070	-	8.8	11.8 DC	M Eq. 6
Shallow Channel			0.000	0.0	0.0	- DC	M Eq. 6
Channelized	234	13	0.056	4.4	0.9	- C&	.G
				t _c	9.7 ı	min.	

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yı
Intensity (in/hr)	3.33	4.18	4.87	5.57	6.27	7.01
Runoff (cfs)	0.0	0.1	0.3	0.5	0.7	0.9
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.0	0.1	0.3	0.5	0.7	0.9
DCM:	I = C1 * In	(tc) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8 847	10 111	11.375	12.735

Combined Sub-Basin Runoff Calculations (DP1)

Includes Basins OS-B1 OS-B2 B3 B4 C1

Job No.: 61203 Date: 3/20/2024 11:07

Project: Townhomes at Western Calcs by: TJW

Checked by:

JurisdictionDCMSoil TypeBRunoff CoefficientSurface TypeUrbanizationUrban

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
Pasture/Meadow	56,087	1.29	0.02	0.08	0.15	0.25	0.3	0.35	0%	
Landscaping	15,954	0.37	0.03	0.09	0.17	0.26	0.31	0.36	2%	
Gravel	12,017	0.28	0.57	0.59	0.63	0.66	0.68	0.7	80%	
Paved	68,933	1.58	0.89	0.9	0.92	0.94	0.95	0.96	100%	
Roofs	6,867	0.16	0.71	0.73	0.75	0.78	8.0	0.81	90%	
Combined	159,858	3.67	0.47	0.50	0.55	0.60	0.63	0.66	53.2%	

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach Channelized-1 Channelized-2 Channelized-3	OS-B1	-	190	20	-	-	-	-	5.2
Total			190	20					

t_c 5.2 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 $\begin{array}{ll} Q_{\text{Minor}} & \text{(cfs) - 5-year Storm} \\ Q_{\text{Major}} & \text{(cfs) - 100-year Storm} \end{array}$

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.08	5.12	5.97	6.83	7.68	8.60
Site Runoff (cfs)	7.00	9.41	11.97	15.09	17.80	20.83
OffSite Runoff (cfs)	-	0.00	-	-	-	0.00
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	-	9.4	-	-	-	20.8

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Notes

Runoff from Offsite basins have been assumed constant, despite additional times of concentration.

Combined Sub-Basin Runoff Calculations

Includes Basins OS-A1 A2 A7 A8 A9

 Job No.:
 61203
 Date:
 3/20/2024 8:41

Project: Townhomes at Western Calcs by: TJW

Unrisdiction DCM So

JurisdictionDCMSoil TypeBRunoff CoefficientSurface TypeUrbanizationUrban

Basin Land Use Characteristics

	Area		Runoff Coefficient						%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	9,024	0.21	0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	33,858	0.78	0.03	0.09	0.17	0.26	0.31	0.36	2%
Gravel	-	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%
Paved	47,505	1.09	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	23,184	0.53	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	113,571	2.61	0.53	0.56	0.60	0.65	0.68	0.70	60.8%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach Channelized-1 Channelized-2 Channelized-3	OS-B1	-	190	20	-	-	-	-	5.2
Total			190	20					

t_c 5.2 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 $\begin{array}{ll} Q_{\text{Minor}} & \text{(cfs) - 5-year Storm} \\ Q_{\text{Major}} & \text{(cfs) - 100-year Storm} \end{array}$

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.08	5.12	5.97	6.83	7.68	8.60
Site Runoff (cfs)	5.62	7.46	9.35	11.57	13.56	15.74
OffSite Runoff (cfs)	•	0.00	•	-	-	0.00
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	-	7.5	-	-	-	15.7

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Notes

Runoff from Offsite basins have been assumed constant, despite additional times of concentration.

Combined Sub-Basin Runoff Calculations

Includes Basins A3 A4 A5 A6 A10 A11

Job No.: 61203 Date: 3/20/2024 8:41

Project: Townhomes at Western Calcs by: TJW Checked by:

Jurisdiction DCM Soil Type B

Runoff Coefficient Surface Type Urbanization Urbanization Urbanization

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient					%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	-	0.00	0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	23,310	0.54	0.03	0.09	0.17	0.26	0.31	0.36	2%
Gravel	-	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%
Paved	41,957	0.96	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	27,048	0.62	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	92,315	2.12	0.62	0.65	0.68	0.72	0.74	0.76	72.3%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach Channelized-1 Channelized-2 Channelized-3	OS-B1	-	190	20	-	-	-	-	5.2
Total			190	20					

t_c 5.2 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 $\begin{array}{c} Q_{\text{Minor}} & \text{(cfs) - 5-year Storm} \\ Q_{\text{Major}} & \text{(cfs) - 100-year Storm} \end{array}$

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.08	5.12	5.97	6.83	7.68	8.60
Site Runoff (cfs)	5.36	7.01	8.62	10.44	12.12	13.93
OffSite Runoff (cfs)	1	0.00	1	1	-	0.00
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	-	7.0	-	-	-	13.9

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Notes

Runoff from Offsite basins have been assumed constant, despite additional times of concentration.

Combined Sub-Basin Runoff Calculations

Includes Basins Inlet A9 Inlet A11 A12

 Job No.:
 61203
 Date:
 3/20/2024 8:41

Project: Townhomes at Western Calcs by: TJW

Checked by:

Jurisdiction DCM Soil Type B

Runoff Coefficient Surface Type Urbanization Urbanization Urbanization

Basin Land Use Characteristics

_	Area		Runoff Coefficient					%	
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	28,706	0.66	0.02	0.08	0.15	0.25	0.3	0.35	0%
Landscaping	57,168	1.31	0.03	0.09	0.17	0.26	0.31	0.36	2%
Gravel	1,429	0.03	0.57	0.59	0.63	0.66	0.68	0.7	80%
Paved	90,063	2.07	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	50,232	1.15	0.71	0.73	0.75	0.78	0.8	0.81	90%
Combined	227,598	5.22	0.52	0.55	0.60	0.65	0.67	0.70	60.4%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach Channelized-1 Channelized-2 Channelized-3	OS-B1	-	190	20	-	-	-	-	5.2
Total			190	20					

t_c 5.2 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 $\begin{array}{ll} Q_{\text{Minor}} & \text{(cfs) - 5-year Storm} \\ Q_{\text{Major}} & \text{(cfs) - 100-year Storm} \end{array}$

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.08	5.12	5.97	6.83	7.68	8.60
Site Runoff (cfs)	11.14	14.81	18.58	23.01	26.99	31.34
OffSite Runoff (cfs)	1	0.00	-	1	1	0.00
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	-	14.8	-	-	-	31.3

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Notes

Runoff from Offsite basins have been assumed constant, despite additional times of concentration.

3 **Hydraulic Calculations**

FS- EDB Calculations

- FS EDB design calculations (UD-BMP)FS EDB design calculations (MHFD-Detention)
- Spillway Riprap Sizing

Riprap Sizing Calculations

Street Capacity Calculations

Storm Inlet Calculations

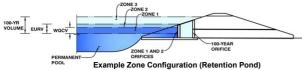
Storm Pipe Calculations

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	TJW	
Company:	M.V.E., Inc.	
Date:	March 20, 2024	
Project:	Townhomes at Western	
Location:	FS-EDB	
Basin Storage \	Volume	
A) Effective Imp	perviousness of Tributary Area, I _a	_{Ia} = 60.4 % 5.22 ac on MHFD-Detention
B) Tributary Are	ea's Imperviousness Ratio (i = I _a / 100)	spreadsheet below and in
		report tout above. Device to
C) Contributing	g Watershed Area	Area = 6.220 ac remove discrepancy.
	heds Outside of the Denver Region, Depth of Average	d ₆ = 0.42 in
Runoff Proc	ducing Storm	「Choose One
E) Design Con		○ Water Quality Capture Volume (WQCV)
(Select EUR	(N) When also designing for flood control)	Excess Urban Runoff Volume (EURV)
F) Design Volu	ıme (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = ac-ft
	1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
G) For Waters	heds Outside of the Denver Region,	V _{DESIGN OTHER} = 0.120 ac-ft
Water Qual	ity Capture Volume (WQCV) Design Volume	Scott Critical Control
(V _{WQCV OTHE}	$E_{\rm R} = (d_{\rm e}^*(V_{\rm DESIGN}/0.43))$	
H) User Input of	of Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} = ac-ft
(Only if a di	fferent WQCV Design Volume is desired)	
	ologic Soil Groups of Tributary Watershed	
	age of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$\begin{array}{c c} HSG_{A} = & 0 & \% \\ HSG_{B} = & 100 & \% \end{array}$
	tage of Watershed consisting of Type C/D Soils	HSG _{C/D} = 0 %
.l) Excess Urba	an Runoff Volume (EURV) Design Volume	
For HSG A	x: EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = 0.409 ac-f t
For HSG B	B: EURV _R = 1.36 * i ^{1.08} B/D: EURV _{C/D} = 1.20 * i ^{1.08}	
	of Excess Urban Runoff Volume (EURV) Design Volume fferent EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t
(2)		
2. Basin Shape: L	ength to Width Ratio	L:W= 3.0 :1
	to width ratio of at least 2:1 will improve TSS reduction.)	
Basin Side Slop	pes	
A) Basin Maxir	num Side Slopes	Z = 3.00 ft / ft
(Horizontal	distance per unit vertical, 4:1 or flatter preferred)	DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4. Inlet		Forebays with Baffles
	eans of providing energy dissipation at concentrated	
inflow locati		
5. Forebay		
A) Minimum Fo		V _{FMIN} = 0.002 ac-ft
(V _{FMIN}	= <u>2%</u> of the WQCV)	
B) Actual Fore	bay Volume	V _F = 0.003 ac-ft
C) Forebay Dep	•	I
C) Forebay Dep (D _F		D _F = 6.0 in
D) Forebay Dis		
D) Forebay DIS	onaryo	I
i) Undetain	ed 100-year Peak Discharge	Q ₁₀₀ = 15.90 cfs
	Discharge Design Flow	Q _F = 0.32 cfs
$(Q_F = 0.0)$		I
E) Forebay Disc	charge Design	Chance One
		Choose One Berm With Pipe Flow too small for berm w/ pipe
		Wall with Rect. Notch
		○ Wall with V-Notch Weir
F) Discharge P	ipe Size (minimum 8-inches)	Calculated D _P = in
,		
G) Rectangular	Noten width	Calculated W _N = 4.4 in

	Design Procedure Form: E	extended Detention Basin (EDB)
Designer:	TJW	Sheet 2 of 3
Company:	M.V.E., Inc.	
Date:	March 20, 2024	
Project:	Townhomes at Western	
Location:	FS-EDB	
6. Trickle Channel		Choose Ōne Concrete
A) Type of Tricl	kle Channel	Soft Bottom
F) Slope of Tric	ckle Channel	S = 0.0050 ft / ft
7. Micropool and C	Outlet Structure	
A) Depth of Mic	cropool (2.5-feet minimum)	$D_{M} = \frac{2.5}{}$ ft
B) Surface Area	a of Micropool (10 ft² minimum)	$A_{M} = 10$ sq ft
C) Outlet Type		Choose One ● Orifice Plate Other (Describe):
D) Smallest Dir (Use UD-Detent	mension of Orifice Opening Based on Hydrograph Routing tion)	D _{onffice} =inches
E) Total Outlet A	Area	A _{ot} = 3.24 square inches
Initial Surcharge	e Volume	
	ial Surcharge Volume commended depth is 4 inches)	D _{IS} = 4 in
	ial Surcharge Volume lume of 0.3% of the WQCV)	V _{IS} = cu ft
C) Initial Surcha	arge Provided Above Micropool	V _s = 3.3 cu ft
9. Trash Rack		
A) Water Quali	ty Screen Open Area: A, = A, * 38.5*(e ^{-0.095D})	A _t = 119 square inches
in the USDCM,	en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.)	S.S. Well Screen with 60% Open Area
	Other (Y/N): N	
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water (Quality Screen Area (based on screen type)	A _{total} = 198 sq. in.
	sign Volume (EURV or WQCV) design concept chosen under 1E)	H= 3.54 feet
F) Height of Wa	ater Quality Screen (H _{TR})	H _{TR} = 70.48 inches
	ter Quality Screen Opening (W _{opening}) inches is recommended)	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

UD-BMP_v3.07.xlsm, EDB 3/20/2024, 8:50 AM

	Design Procedure For	m: Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	TJW M.V.E., Inc. March 20, 2024 Townhomes at Western FS-EDB	Sheet 3 of 3
B) Slope of (ibankment embankment protection for 100-year and greater overtopping: Overflow Embankment tal distance per unit vertical, 4:1 or flatter preferred)	Riprap lined Spillway Ze = 4.00 ft / ft Choose One
12. Access A) Describe Notes:	Sediment Removal Procedures	Vehicle access from maintenance access road or street south of the pond.


UD-BMP_v3.07.xlsm, EDB 3/20/2024, 8:50 AM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Project: Townhomes at Western

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	5.22	acres
Watershed Length =	800	ft
Watershed Length to Centroid =	400	ft
Watershed Slope =	0.050	ft/ft
Watershed Imperviousness =	60.40%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

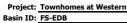
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

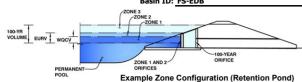
		_
Water Quality Capture Volume (WQCV) =	0.103	acre-feet
Excess Urban Runoff Volume (EURV) =	0.342	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.303	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.418	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.517	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.642	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.748	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.878	acre-feet
500-yr Runoff Volume (P1 = 3.25 in.) =	1.196	acre-feet
Approximate 2-yr Detention Volume =	0.263	acre-feet
Approximate 5-yr Detention Volume =	0.355	acre-feet
Approximate 10-yr Detention Volume =	0.457	acre-feet
Approximate 25-yr Detention Volume =	0.495	acre-feet
Approximate 50-yr Detention Volume =	0.515	acre-feet
Approximate 100-yr Detention Volume =	0.562	acre-feet

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.103	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.239	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.220	acre-feet
Total Detention Basin Volume =	0.562	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H_{TC}) =	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio ($R_{L/W}$) =	user	
		-

Optional User Overrides


	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
3.25	inches
	_


Depth Increment =	0.25	ft							
		Optional				Optional			
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
Top of Micropool		0.00				10	0.000	(IL)	(ac-it)
MP=6268.0		0.33				10	0.000	3	0.000
		1.00				6,318	0.145	2,123	0.049
		2.00				7,670	0.176	9,117	0.209
		3.00				9,161	0.210	17,532	0.402
		4.00				10,769	0.247	27,497	0.631
Spillway=6273.5		5.00				12,415	0.285	39,089	0.897
		6.00				14,146	0.325	52,370	1.202
Top Berm=6275.0		7.00				15,964	0.366	67,425	1.548
	-								

MHFD-Detention_v4-06.xlsm, Basin 3/20/2024, 8:47 AM

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.37	0.103	Orifice Plate
Zone 2 (EURV)	2.71	0.239	Orifice Plate
Zone 3 (100-year)	3.72	0.220	Weir&Pipe (Restrict)
	Total (all zones)	0.562	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) Underdrain Orifice Area = N/A

N/A ft² Underdrain Orifice Diameter = Underdrain Orifice Centroid = N/A inches N/A

User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used to drain WQCV and/or EURV in a sediment	tation BMP)	Calculated Parame	ters for Plate
Centroid of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)	WQ Orifice Area per Row =	N/A	ft²
Depth at top of Zone using Orifice Plate =	2.71	ft (relative to basin bottom at Stage = 0 ft)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	13.80	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	N/A	sq. inches	Elliptical Slot Area =	N/A	ft²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
X Stage of Orifice Centroid (ft)	0.00	0.90	1.81					
Y Orifice Area (sq. inches)	0.78	0.78	3.14					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

Debris Clogging % =

	Not Selected	Not Selected		
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Ve
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertica
Vertical Orifice Diameter =	N/A	N/A	inches	

	Not Selected	Not Selected	
Vertical Orifice Area =	N/A	N/A	ft ²
Vertical Orifice Centroid =	N/A	N/A	feet

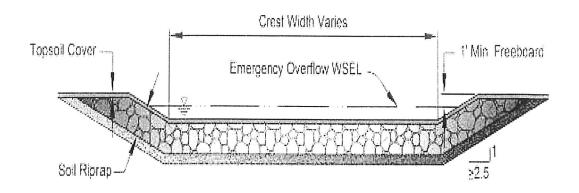
1.51

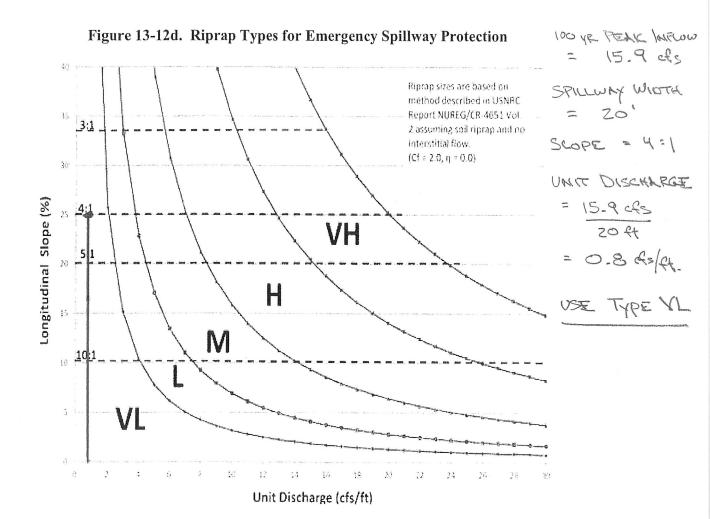
acre-ft

User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	ctangular/Trapezoidal Weir and No Outlet Pipe)	Calculated Paramet	ters for Overflow W	eir
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	l
Overflow Weir Front Edge Height, Ho =	3.00	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	3.00	N/A	feet
Overflow Weir Front Edge Length =	2.92	N/A	feet Overflow Weir Slope Length =	3.50	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	10.21	N/A	l
Horiz. Length of Weir Sides =	3.50	N/A	feet Overflow Grate Open Area w/o Debris =	7.11	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	3.56	N/A	ft ²

1.00

feet


ut: Outlet Pipe w/ Flow Restriction Plate	<u>(Circular Orifice, R</u>	estrictor Plate, or F	Rectangular Orifice)	Calculated Parameters	s for Outlet Pipe w/	Flow Restriction Pl	late
37	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	1
Depth to Invert of Outlet Pipe =	0.33	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.70	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.36	N/A	feet
trictor Plate Height Above Pine Invert =	7 50		inches Half-Central Δngle	of Restrictor Plate on Pine =	1 40	N/A	radians

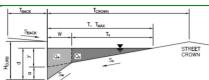

User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 5.50 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= feet 0.40 Spillway Crest Length = 20.00 feet Stage at Top of Freeboard = 6.90 feet Spillway End Slopes = 3.00 H:V Basin Area at Top of Freeboard = 0.36 acres Freeboard above Max Water Surface = Basin Volume at Top of Freeboard =

Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs an	d runoff volumes b	ny entering new valu	ies in the Inflow Hy	rdrographs table (Co	olumns W through	AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.25
CUHP Runoff Volume (acre-ft) =	0.103	0.342	0.303	0.418	0.517	0.642	0.748	0.878	1.196
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.303	0.418	0.517	0.642	0.748	0.878	1.196
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.6	1.7	2.6	4.6	5.7	7.1	10.5
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.12	0.33	0.49	0.87	1.09	1.37	2.01
Peak Inflow Q (cfs) =	N/A	N/A	5.5	7.6	9.1	11.5	13.4	15.9	21.5
Peak Outflow Q (cfs) =	0.0	0.2	0.2	0.2	1.2	3.5	5.3	6.3	7.0
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.1	0.5	0.8	0.9	0.9	0.7
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.1	0.5	0.7	0.9	0.9
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	66	65	70	70	68	66	64	60
Time to Drain 99% of Inflow Volume (hours) =	40	70	69	75	76	75	75	74	72
Maximum Ponding Depth (ft) =	1.37	2.71	2.40	2.94	3.13	3.29	3.39	3.60	4.34
Area at Maximum Ponding Depth (acres) =	0.16	0.20	0.19	0.21	0.22	0.22	0.22	0.23	0.26
Maximum Volume Stored (acre-ft) =	0.105	0.343	0.282	0.390	0.430	0.465	0.487	0.535	0.717

3/20/2024, 8:47 AM MHFD-Detention_v4-06.xlsm, Outlet Structure

Figure 13-12c. Emergency Spillway Protection

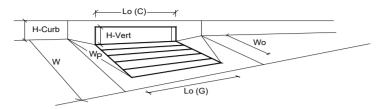
MHFD-Inlet, Version 5.02 (August 2022) INLET MANAGEMENT


NLET NAME	Inlet A3	Inlet A4	Inlet A5	Inlet A6	Inlet A7	Inlet A8	Inlet A10	Inlet A11	Inlet A9
ite Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
nlet Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET	STREET	STREET	STREET
lydraulic Condition	In Sump	On Grade	On Grade	On Grade	On Grade	On Grade	On Grade	On Grade	In Sump
nlet Type	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination
ER-DEFINED INPUT									
Jser-Defined Design Flows									
Ainor Q _{Kreen} (cfs)	1.6	1.3	1.0	1.1	3.5	0.6	1.2	0.8	2.7
Naior O _{krown} (cfs)	3.5	2.5	2.0	2.1	7.1	1.2	2.3	1.6	5.5
Sypass (Carry-Over) Flow from Upstread		ream (left) to downstream (right) in ord							
teceive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	Inlet A4	Inlet A5	Inlet A6	No Bypass Flow Received	No Bypass Flow Received	Inlet A10	Inlet A7
finor Bypass Flow Received, Q, (cfs)	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0	-0.1	0.2
Naior Bypass Flow Received, O _h (cfs)	0.0	0.0	0.1	0.0		0.0	0.0	0.1	1.4
Watershed Characteristics			' /	/'	1				
Subcatchment Area (acres)				~					
ercent Impervious									
IRCS Soil Type									
Vatershed Profile			The second second						
Overland Slope (ft/ft)			How do inlets	receive a					
Overland Length (ft)									
Channel Slope (ft/ft)			nogotivo () fl	ow? Dovious					
Channel Length (ft)			negative (-) fl	ow: Review					
linor Storm Rainfall Input			spreadsheets	tor any					
Pesign Storm Return Period, T, (years)			aprodusi ieets	o for ally					
One-Hour Precipitation, Pt (inches)			•						
Aaior Storm Rainfall Input			issues.						
Design Storm Return Period, T. (years)									
One-Hour Precipitation, P ₁ (inches)									

CALCULATED OUTPUT

Minor Total Design Peak Flow, O (cfs)	1.6	1.3	0.9	1.0	3.4	0.6	1.2	0.7	2.9
Major Total Design Peak Flow, Q (cfs)	3.5	2.5	2.1	2.1	7.1	1.2	2.3	1.7	6.9
Minor Flow Bypassed Downstream, Q _h (cfs)	N/A	-0.1	-0.1	-0.1	0.2	-0.1	-0.1	-0.1	N/A
Major Flow Bypassed Downstream, Q, (cfs)	N/A	0.1	0.0	0.0	1.4	-0.1	0.1	-0.1	N/A
,			,						

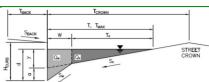
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

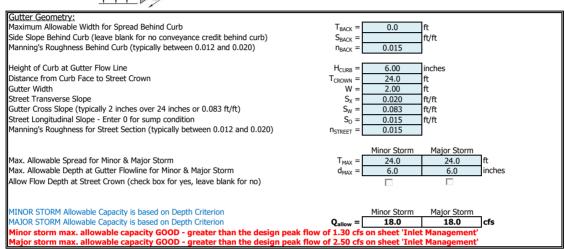

Project: Inlet A3

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 0.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020) ft/ft S_{BACK} = 0.015 n_{BACK} = Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 24.0 Gutter Width 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) S_0 0.000 ft/ft n_{STREET} = 0.015 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 12.0 24.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm inches 6.0 6.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition SUMP SUMP cfs

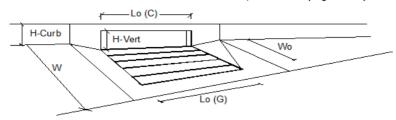
MHFD-Inlet v5.02.xlsm, Inlet A3 3/20/2024, 8:58 AM

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)




Design Information (Input) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from above) Number of Unit Inlets (Grate or Curb Opening)	Type =	MINOR Denver No. 16	MAJOR	
Local Depression (additional to continuous gutter depression 'a' from above)	· · ·	Denver No. 18		
1 ' '				4
INumber of Unit Inlets (Grate or Curb Opening)	a _{local} =	2.00	2.00	inches
	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	3.00	3.00	feet
Width of a Unit Grate	$W_o =$	1.73	1.73	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	3.60	3.60]
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	0.60	0.60]
Curb Opening Information	•	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.70	3.70	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.66	0.66	1
	-			2
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$d_{Grate} =$	0.39	0.52	ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	0.20	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.69	0.94	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	N/A	N/A	1
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.69	0.94	1
				_
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.4	5.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	1.6	3.5	cfs

MHFD-Inlet_v5.02.xlsm, Inlet A3 3/20/2024, 8:58 AM

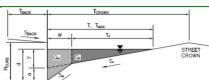

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

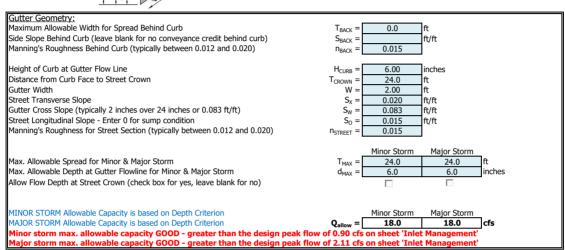
Project: Inlet ID: Inlet A4

MHFD-Inlet v5.02.xlsm, Inlet A4 3/20/2024, 8:58 AM

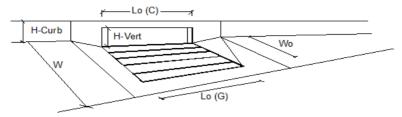
Design Information (Input) Denver No. 16 Combination		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	Major	
Total Inlet Interception Capacity	Q =	1.4	2.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	-0.1	0.1	cfs
Capture Percentage = Q _a /Q _o	C% =	107	95	%

Note: Storm sewer should be sized for the sum of the unclogged interception capacities (Qminor = 1.5 cfs and Qmajor = 2.6 cfs)


Why the capture percentage is above 100%. Please revise. This comment is applied to all applicable inlets.

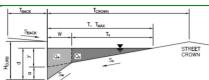

Where does bypass flow go? Please revise to match the text discussion and the inlet tab management. This comment is applied to Inlet No. A3, A10,

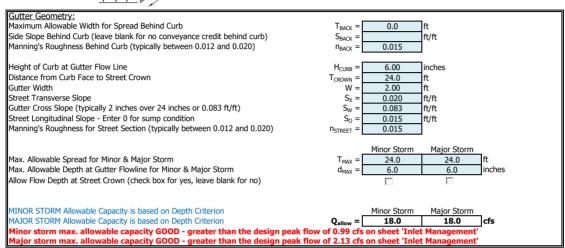
3/20/2024, 8:58 AM MHFD-Inlet_v5.02.xlsm, Inlet A4


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

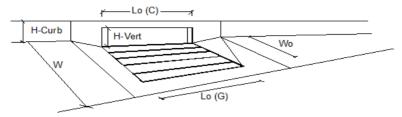
Project: Inlet ID: Inlet A5

MHFD-Inlet v5.02.xlsm, Inlet A5 3/20/2024, 8:58 AM


Design Information (Input) Denver No. 16 Combination	Time	MINOR Denver No. 1	MAJOR 6 Combination	
Type of Inlet	Type =			:
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.0	2.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	-0.1	0.0	cfs
Capture Percentage = Q _a /Q _o	C% =	113	99	%

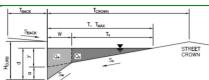

Note: Storm sewer should be sized for the sum of the unclogged interception capacities (Qminor = 1 cfs and Qmajor = 2.3 cfs)

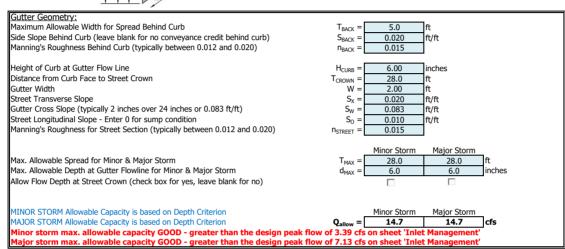
MHFD-Inlet_v5.02.xlsm, Inlet A5 3/20/2024, 8:58 AM


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

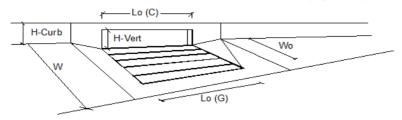
Project: Inlet ID: Inlet A6

MHFD-Inlet v5.02.xlsm, Inlet A6 3/20/2024, 8:58 AM


Design Information (Input) Type of Inlet Denver No. 16 Combination	Type =	MINOR Denver No. 1	MAJOR 6 Combination	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.1	2.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	-0.1	0.0	cfs
Capture Percentage = Q _a /Q _o	C% =	112	99	%

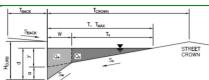

Note: Storm sewer should be sized for the sum of the unclogged interception capacities (Qminor = 1.1 cfs and Qmajor = 2.3 cfs)

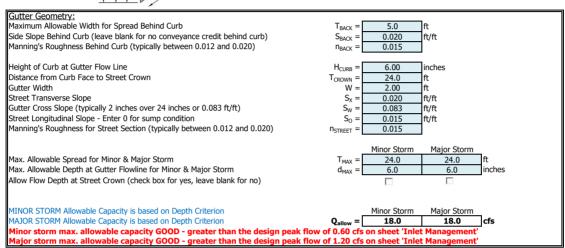
MHFD-Inlet_v5.02.xlsm, Inlet A6 3/20/2024, 8:58 AM


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

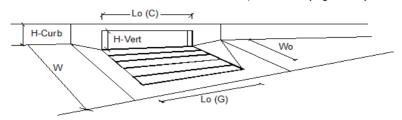
Project: Inlet ID: Inlet A7

MHFD-Inlet v5.02.xlsm, Inlet A7 3/20/2024, 8:58 AM


Design Information (Input) Type of Inlet Denver No. 16 Combination	Type =	MINOR Denver No. 1	MAJOR 6 Combination	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	3.2	5.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.2	1.4	cfs
Capture Percentage = Q _a /Q _o	C% =	94	80	%


Note: Storm sewer should be sized for the sum of the unclogged interception capacities (Qminor = 3.5 cfs and Qmajor = 6.8 cfs)

MHFD-Inlet_v5.02.xlsm, Inlet A7 3/20/2024, 8:58 AM

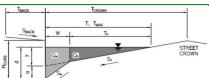

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

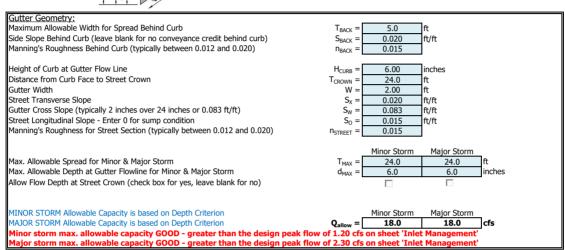
Project: Inlet ID: Inlet A8

MHFD-Inlet v5.02.xlsm, Inlet A8 3/20/2024, 8:58 AM

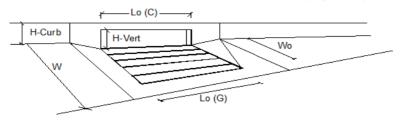
Design Information (Input) Type of Inlet Denver No. 16 Combination	Type =	MINOR Denver No. 1	MAJOR 6 Combination	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.7	1.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	-0.1	-0.1	cfs
Capture Percentage = Q_a/Q_o	C% =	112	109	%

Note: Storm sewer should be sized for the sum of the unclogged interception capacities (Qminor = 0.7 cfs and Qmajor = 1.4 cfs)


MHFD-Inlet_v5.02.xlsm, Inlet A8 3/20/2024, 8:58 AM


MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

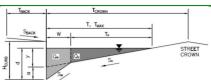

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

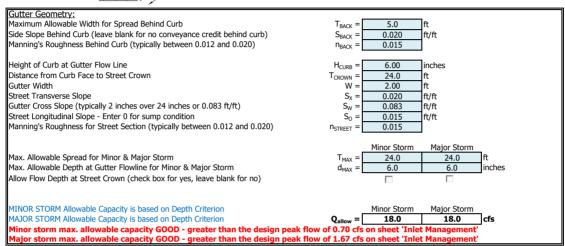
Project: Inlet ID: Inlet A10

MHFD-Inlet v5.02.xlsm, Inlet A10 3/20/2024, 8:58 AM

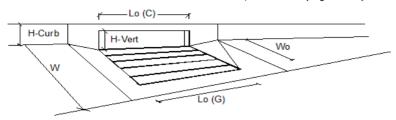
Design Information (Input) Type of Inlet □ Denver No. 16 Combination □ □	Type =	MINOR Denver No. 1	MAJOR 6 Combination	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =		2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	Major	_
Total Inlet Interception Capacity	Q =	1.3	2.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	-0.1	0.1	cfs
Capture Percentage = Q _a /Q _o	C% =	109	97	%

Note: Storm sewer should be sized for the sum of the unclogged interception capacities (Qminor = 1.4 cfs and Qmajor = 2.5 cfs)


MHFD-Inlet_v5.02.xlsm, Inlet A10 3/20/2024, 8:58 AM

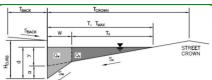

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

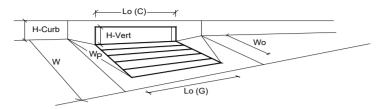
Project: Inlet ID: Inlet A11

MHFD-Inlet v5.02.xlsm, Inlet A11 3/20/2024, 8:58 AM


Design Information (Input) Denver No. 16 Combination	-	MINOR	MAJOR 6 Combination	
Type of Inlet	Type =		o Combination	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.8	1.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	-0.1	-0.1	cfs
Capture Percentage = Q _a /Q _o	C% =	115	103	%

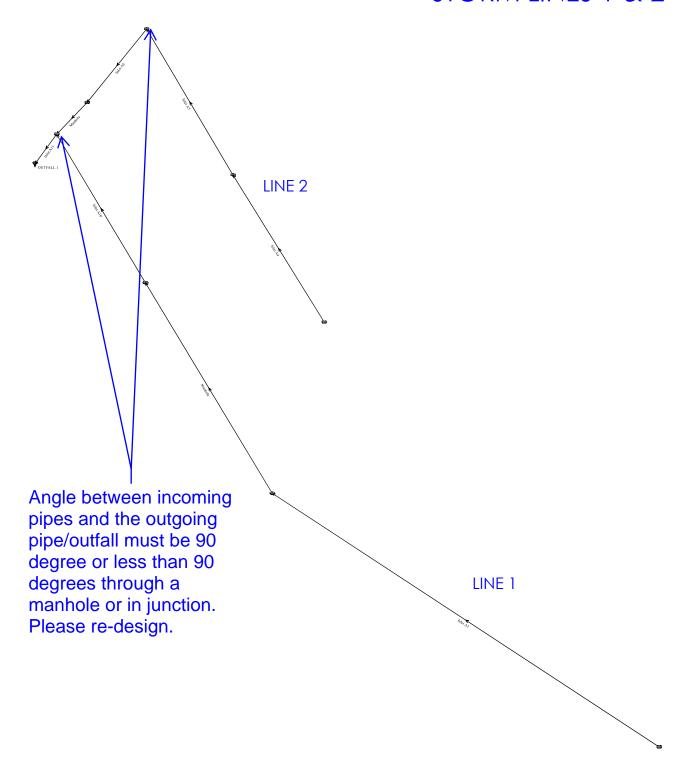
Note: Storm sewer should be sized for the sum of the unclogged interception capacities (Qminor = 0.8 cfs and Qmajor = 1.8 cfs)

MHFD-Inlet_v5.02.xlsm, Inlet A11 3/20/2024, 8:58 AM


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Inlet A9

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 0.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020) ft/ft S_{BACK} = 0.015 n_{BACK} = Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 28.0 Gutter Width 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) S_0 0.000 ft/ft n_{STREET} = 0.015 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 28.0 28.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm inches 6.0 6.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition SUMP SUMP cfs


INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)

D : T C :: /T ::				
Design Information (Input) Denver No. 16 Combination		MINOR	MAJOR	_
Type of Inlet	Type =		6 Combination	4
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
<u>Grate Information</u>		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	3.00	3.00	feet
Width of a Unit Grate	$W_o =$	1.73	1.73	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	0.60	0.60	
Curb Opening Information	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.66	0.66	
	_			
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	= -
Depth for Grate Midwidth	d _{Grate} =	0.52	0.52	ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	0.33	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	0.57	0.57	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	N/A	N/A	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.57	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.7	8.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	2.9	6.9	cfs

MHFD-Inlet_v5.02.xlsm, Inlet A9 3/20/2024, 8:58 AM

STORM LINES 1 & 2

Program:

UDSEWER Math Model Interface 2.1.1.4

Run Date:

3/21/2024 9:31:56 AM

UDSewer Results Summary

Project Title: Townhomes at Western

Project Description: Storm Line 1 & 2 - 5yr

System Input Summary

Rainfall Parameters

Rainfall Return Period: 5

Rainfall Calculation Method: Formula

One Hour Depth (in):

Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300

Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 6271.76 TAILWATERWATER ELEVATION TAKEN FROM 5YR MAX PONDING DEPTH IN MHFD-DETENTION

Manhole Input Summary:

		Give	en Flow			Sub Basin	n Informatio	n		
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)
OUTFALL 1	6268.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A11	6277.54	7.40	0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A10	6279.32	3.00	1.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Manhole	6280.50	1.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A3	6288.36	1.60	1.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Manhole	6278.50	3.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A6	6293.20	3.60	1.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A5	6294.93	2.50	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A4	6296.66	1.50	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Loca	al Contribu	ution		Total Design Flow				
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Surface Water Present (Upstream)
Inlet A11	0.00	0.00	0.00	0.00	0.80	0.00	0.00	0.00	7.40	Surface Water Present (Downstream)
Inlet A10	0.00	0.00	0.00	0.00	1.40	0.00	0.00	0.00	3.00	
Manhole	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.60	
Inlet A3	0.00	0.00	0.00	0.00	1.60	0.00	0.00	0.00	1.60	
Manhole	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.60	
Inlet A6	0.00	0.00	0.00	0.00	1.10	0.00	0.00	0.00	3.60	
Inlet A5	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	2.50	

Inlet	A4	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00	1.50	

Sewer Input Summary:

		El	evation		Loss (Coefficie	nts	Given Dimensions			
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)	
Inlet A11	22.97	6268.63	14.7	6272.01	0.012	0.00	0.00	CIRCULAR	18.00 in	18.00 in	
Inlet A10	107.49	6272.51	0.5	6273.05	0.012	0.05	0.25	CIRCULAR	18.00 in	18.00 in	
Manhole	168.90	6273.66	0.5	6274.50	0.012	0.05	0.00	CIRCULAR	12.00 in	12.00 in	
Inlet A3	327.43	6274.86	2.9	6284.36	0.012	0.12	0.00	CIRCULAR	12.00 in	12.00 in	
Manhole	29.02	6272.51	4.1	6273.70	0.012	0.05	0.00	CIRCULAR	18.00 in	18.00 in	
Inlet A6	67.96	6274.03	16.3	6285.11	0.012	0.05	0.00	CIRCULAR	18.00 in	18.00 in	
Inlet A5	106.46	6287.40	2.1	6289.64	0.012	1.99	0.00	CIRCULAR	12.00 in	12.00 in	
Inlet A4	106.46	6290.19	1.3	6291.57	0.012	0.05	0.00	CIRCULAR	12.00 in	12.00 in	

Sewer Flow Summary:

Velocity is above the maximum requirement. Please revise. If the condition cannot be met, please submit a deviation.

	Full Flow Capacity			cal Flow		No	rmal Flow				
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
Inlet A11	43.75	24.76	12.64	5.58	5.01	18.43	5.94	Supercritical Jump	7.40	11.39	Velocity is Too High
Inlet A10	8.07	4.57	7.90	4.02	7.60	4.23	1.08	Supercritical	3.00	0.00	
Manhole	2.74	3.48	6.44	3.72	6.59	3.62	0.96	Subcritical	1.60	0.00	
Inlet A3	6.59	8.39	6.44	3.72	4.03	6.92	2.46	Supercritical	1.60	0.00	
Manhole	23.10	13.07	8.69	4.26	4.80	9.51	3.14	Supercritical	3.60	0.00	
Inlet A6	46.07	26.07	8.69	4.26	3.40	15.51	6.15	Supercritical	3.60	0.00	
Inlet A5	5.61	7.14	8.13	4.42	5.61	6.94	2.03	Supercritical	2.50	0.00	

Inlet A4	4.41	5.62	6.23	3.64	4.82	5.08	1.63	Supercritical	1.50	0.00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
Inlet A11	7.40	CIRCULAR	18.00 in	1.77						
Inlet A10	3.00	CIRCULAR	18.00 in	1.77						
Manhole	1.60	CIRCULAR	12.00 in	12.00 in	18.00 in	18.00 in	12.00 in	12.00 in	0.79	Height is too small. Width is too small. Existing height is smaller than the suggested height. Existing width is smaller than the suggested width.
Inlet A3	1.60	CIRCULAR	12.00 in	12.00 in	18.00 in	18.00 in	12.00 in	12.00 in	0.79	Height is too small. Width is too small. Existing height is smaller than the suggested height. Existing width is smaller than the suggested width.
Manhole	3.60	CIRCULAR	18.00 in	1.77						
Inlet A6	3.60	CIRCULAR	18.00 in	1.77						
Inlet A5	2.50	CIRCULAR	12.00 in	12.00 in	18.00 in	18.00 in	12.00 in	12.00 in	0.79	Height is too small. Width is too small. Existing height is smaller than the suggested height. Existing width is smaller than the suggested width.

Inlet A4	1.50	CIRCULAR	12.00 in	12.00 in	18.00 in	18.00 in	12.00 in	12.00 in	0.79	Height is too small. Width is too small. Existing height is smaller than the suggested height. Existing width is smaller than the suggested width.
----------	------	----------	----------	----------	----------	----------	----------	----------	------	--

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

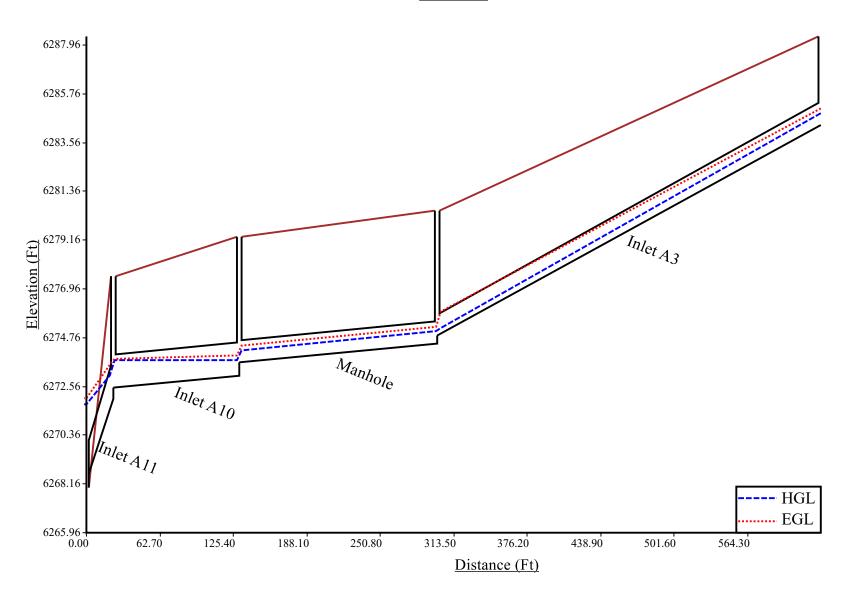
Grade Line Summary:

Tailwater Elevation (ft): 6271.76

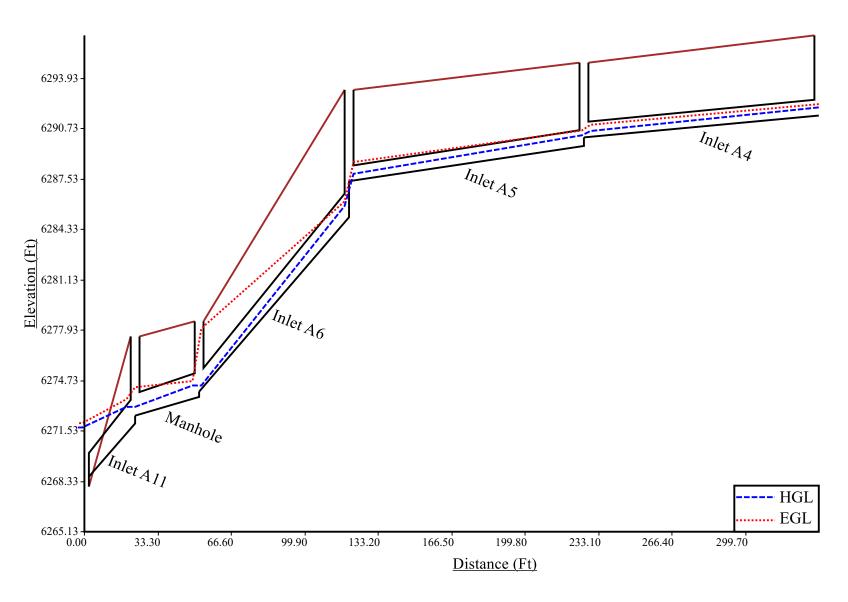
	Invert l	Elev.	_	eam Manhole Losses	HGI	L	EGL			
Element Name	Downstream (ft) Upstream (ft)		Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)	
Inlet A11	6268.63	6272.01	0.00	0.00	6271.76	6273.06	6272.03	1.51	6273.55	
Inlet A10	6272.51	6273.05	0.00	0.26	6273.75	6273.75	6273.81	0.15	6273.96	
Manhole	6273.66	6274.50	0.00	0.00	6274.19	6275.06	6274.41	0.85	6275.25	
Inlet A3	6274.86	6284.36	0.01	0.00	6275.20	6284.90	6275.94	9.17	6285.11	
Manhole	6272.51	6273.70	0.00	0.00	6273.07	6274.42	6274.31	0.39	6274.71	
Inlet A6	6274.03	6285.11	0.00	0.00	6274.43	6285.83	6278.05	8.07	6286.12	
Inlet A5	6287.40	6289.64	0.31	0.00	6287.87	6290.32	6288.62	2.00	6290.62	
Inlet A4	6290.19	6291.57	0.00	0.00	6290.59	6292.09	6290.99	1.31	6292.30	

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend $K * V_f ^2 / (2*g)$
- Lateral loss = $V_f \circ ^2/(2*g)$ Junction Loss K * $V_f \circ ^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:


The trench side slope is 1.0 ft/ft
The minimum trench width is 2.00 ft

					D	ownstrear	n		Upstream			
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
Inlet A11	22.97	2.50	4.00	4.92	0.00	0.00	0.00	10.56	6.07	3.82	16.09	Sewer Too Shallow
Inlet A10	107.49	2.50	4.00	4.92	9.55	5.57	3.32	12.04	6.81	4.56	157.13	
Manhole	168.90	2.00	4.00	4.33	11.33	6.16	4.50	12.00	6.50	4.83	255.88	
Inlet A3	327.43	2.00	4.00	4.33	11.27	6.14	4.47	8.00	4.50	2.83	372.79	
Manhole	29.02	2.50	4.00	4.92	9.56	5.57	3.32	9.10	5.34	3.09	34.08	
Inlet A6	67.96	2.50	4.00	4.92	8.43	5.01	2.76	15.68	8.63	6.38	124.75	
Inlet A5	106.46	2.00	4.00	4.33	11.59	6.30	4.63	10.58	5.79	4.12	148.44	
Inlet A4	106.46	2.00	4.00	4.33	9.49	5.24	3.58	10.18	5.59	3.92	122.50	


Total earth volume for sewer trenches = 1232 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

Line 1

Line 2

Program:

UDSEWER Math Model Interface 2.1.1.4

Run Date:

3/21/2024 9:38:21 AM

UDSewer Results Summary

Project Title: Townhomes at Western

Project Description: Storm Line 1 & 2 - 100yr

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100

Rainfall Calculation Method: Formula

One Hour Depth (in):

Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300

Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 6272.47 TAILWATERWATER ELEVATION TAKEN FROM 100YR MAX PONDING DEPTH IN MHFD-DETENTION

Manhole Input Summary:

		Give	en Flow			Sub Basi	n Informatio	n		
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)
OUTFALL 1	6268.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A11	6277.54	15.00	1.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A10	6279.32	6.00	2.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Manhole	6280.50	3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A3	6288.36	3.50	3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Manhole	6278.50	7.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A6	6293.20	7.20	2.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A5	6294.93	4.90	2.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A4	6296.66	2.60	2.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Loca	al Contribu	ution			Total Do	esign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Surface Water Present (Upstream)
Inlet A11	0.00	0.00	0.00	0.00	1.80	0.00	0.00	0.00	15.00	Surface Water Present (Downstream)
Inlet A10	0.00	0.00	0.00	0.00	2.50	0.00	0.00	0.00	6.00	
Manhole	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.50	
Inlet A3	0.00	0.00	0.00	0.00	3.50	0.00	0.00	0.00	3.50	
Manhole	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.20	
Inlet A6	0.00	0.00	0.00	0.00	2.30	0.00	0.00	0.00	7.20	
Inlet A5	0.00	0.00	0.00	0.00	2.30	0.00	0.00	0.00	4.90	

Inlet A4	0.00	0.00	0.00	0.00	2.60	0.00	0.00	0.00	2.60	

Sewer Input Summary:

		El	evation		Loss (Coefficie	nts	Give	n Dimensions	3
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
Inlet A11	22.97	6268.63	14.7	6272.01	0.012	0.00	0.00	CIRCULAR	18.00 in	18.00 in
Inlet A10	107.49	6272.51	0.5	6273.05	0.012	0.05	0.25	CIRCULAR	18.00 in	18.00 in
Manhole	168.90	6273.66	0.5	6274.50	0.012	0.05	0.00	CIRCULAR	12.00 in	12.00 in
Inlet A3	327.43	6274.86	2.9	6284.36	0.012	0.12	0.00	CIRCULAR	12.00 in	12.00 in
Manhole	29.02	6272.51	4.1	6273.70	0.012	0.05	0.00	CIRCULAR	18.00 in	18.00 in
Inlet A6	67.96	6274.03	16.3	6285.11	0.012	0.05	0.00	CIRCULAR	18.00 in	18.00 in
Inlet A5	106.46	6287.40	2.1	6289.64	0.012	1.99	0.00	CIRCULAR	12.00 in	12.00 in
Inlet A4	106.46	6290.19	1.3	6291.57	0.012	0.05	0.00	CIRCULAR	12.00 in	12.00 in

Sewer Flow Summary:

Velocity is above the maximum requirement.

Please revise. If the condition cannot be met, please submit a deviation.

	Full Flo	ow Capacity	Critic	cal Flow		No	rmal Flow				
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
Inlet A11	43.75	24.76	16.87	8.72	7.27	22.44	5.87	Supercritical Jump	15.00	18.01	Velocity is Too High
Inlet A10	8.07	4.57	11.35	5.11	11.56	5.00	0.97	Pressurized	6.00	107.49	
Manhole	2.74	3.48	12.00	4.46	12.00	4.46	0.00	Pressurized	3.50	168.90	
Inlet A3	6.59	8.39	9.59	5.20	6.22	8.52	2.34	Supercritical Jump	3.50	65.62	
Manhole	23.10	13.07	12.47	5.51	6.90	11.55	3.11	Supercritical	7.20	0.00	
Inlet A6	46.07	26.07	12.47	5.51	4.81	18.97	6.25	Supercritical	7.20	0.00	Velocity is Too High

Inlet A5	5.61	7.14	10.94	6.52	8.69	8.05	1.72	Supercritical	4.90	0.00	
Inlet A4	4.41	5.62	8.29	4.49	6.62	5.85	1.54	Supercritical	2.60	0.00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	sting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
Inlet A11	15.00	CIRCULAR	18.00 in	1.77						
Inlet A10	6.00	CIRCULAR	18.00 in	1.77						
Manhole	3.50	CIRCULAR	12.00 in	12.00 in	18.00 in	18.00 in	12.00 in	12.00 in	0.79	Height is too small. Width is too small. Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
Inlet A3	3.50	CIRCULAR	12.00 in	12.00 in	18.00 in	18.00 in	12.00 in	12.00 in	0.79	Height is too small. Width is too small. Existing height is smaller than the suggested height. Existing width is smaller than the suggested width.
Manhole	7.20	CIRCULAR	18.00 in	1.77						
Inlet A6	7.20	CIRCULAR	18.00 in	1.77						
Inlet A5	4.90	CIRCULAR	12.00 in	12.00 in	18.00 in	18.00 in	12.00 in	12.00 in	0.79	Height is too small. Width is too small. Existing height is smaller than the suggested height.

										Existing width is smaller than the suggested width.
Inlet A4	2.60	CIRCULAR	12.00 in	12.00 in	18.00 in	18.00 in	12.00 in	12.00 in	0.79	Height is too small. Width is too small. Existing height is smaller than the suggested height. Existing width is smaller than the suggested width.

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

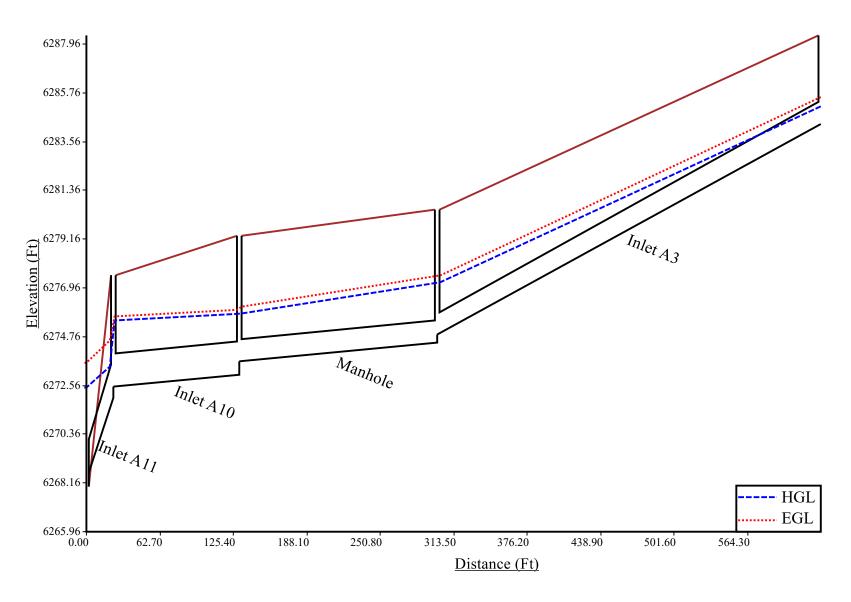
Grade Line Summary:

Tailwater Elevation (ft): 6272.47

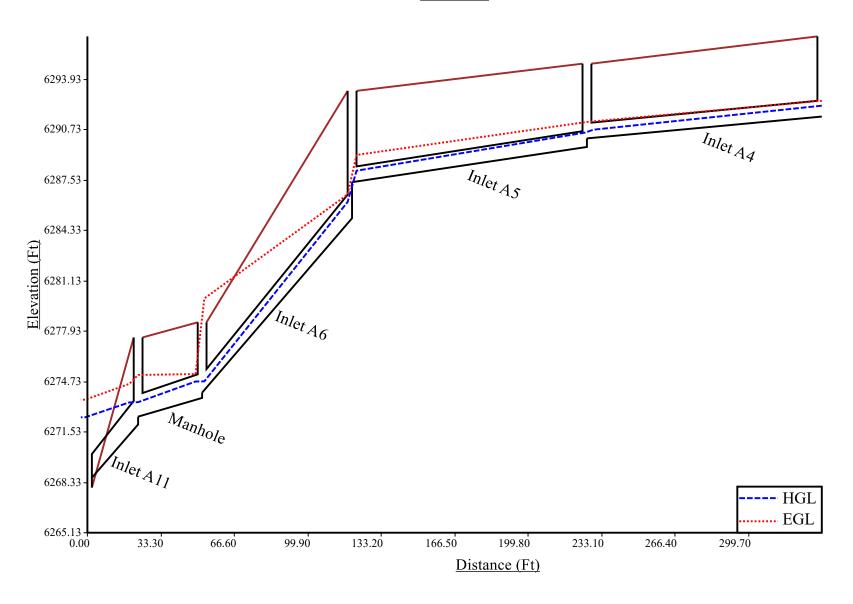
	Invert l	Elev.		eam Manhole Losses	HGI	L	EGL			
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)	
Inlet A11	6268.63	6272.01	0.00	0.00	6272.47	6273.42	6273.59	1.01	6274.60	
Inlet A10	6272.51	6273.05	0.01	1.07	6275.50	6275.80	6275.68	0.30	6275.98	
Manhole	6273.66	6274.50	0.02	0.00	6275.81	6277.19	6276.12	1.38	6277.50	
Inlet A3	6274.86	6284.36	0.04	0.00	6277.23	6285.16	6277.54	8.04	6285.58	
Manhole	6272.51	6273.70	0.01	0.00	6273.43	6274.74	6275.16	0.05	6275.21	
Inlet A6	6274.03	6285.11	0.01	0.00	6274.75	6286.15	6280.02	6.60	6286.62	
Inlet A5	6287.40	6289.64	1.20	0.00	6288.13	6290.55	6289.13	2.08	6291.21	
Inlet A4	6290.19	6291.57	0.01	0.00	6290.74	6292.26	6291.27	1.31	6292.57	

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * $V_fi ^ 2/(2*g)$
- Lateral loss = $V_fo ^2/(2*g)$ Junction Loss K * $V_fi ^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

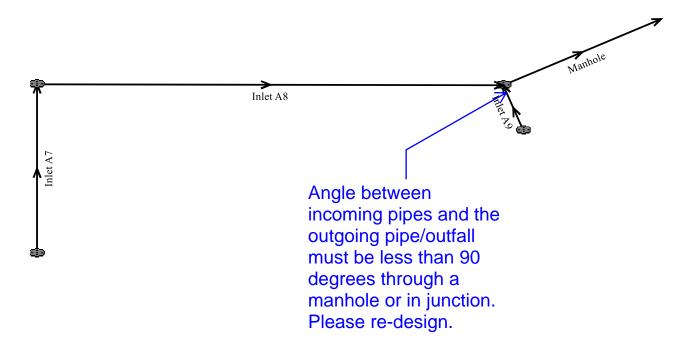
Excavation Estimate:


The trench side slope is 1.0 ft/ft
The minimum trench width is 2.00 ft

					D	ownstrear	n		Upstream			
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
Inlet A11	22.97	2.50	4.00	4.92	0.00	0.00	0.00	10.56	6.07	3.82	16.09	Sewer Too Shallow
Inlet A10	107.49	2.50	4.00	4.92	9.55	5.57	3.32	12.04	6.81	4.56	157.13	
Manhole	168.90	2.00	4.00	4.33	11.33	6.16	4.50	12.00	6.50	4.83	255.88	
Inlet A3	327.43	2.00	4.00	4.33	11.27	6.14	4.47	8.00	4.50	2.83	372.79	
Manhole	29.02	2.50	4.00	4.92	9.56	5.57	3.32	9.10	5.34	3.09	34.08	
Inlet A6	67.96	2.50	4.00	4.92	8.43	5.01	2.76	15.68	8.63	6.38	124.75	
Inlet A5	106.46	2.00	4.00	4.33	11.59	6.30	4.63	10.58	5.79	4.12	148.44	
Inlet A4	106.46	2.00	4.00	4.33	9.49	5.24	3.58	10.18	5.59	3.92	122.50	


Total earth volume for sewer trenches = 1232 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.


Line 1

Line 2

STORM LINE 3

Program:

UDSEWER Math Model Interface 2.1.1.4

Run Date:

3/21/2024 9:41:37 AM

UDSewer Results Summary

Project Title: Townhomes at Western **Project Description:** Storm Line 3 - 5yr

System Input Summary

Rainfall Parameters

Rainfall Return Period: 5

Rainfall Calculation Method: Formula

One Hour Depth (in):

Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300

Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 6271.76 TAILWATERWATER ELEVATION TAKEN FROM 5YR MAX PONDING DEPTH IN MHFD-DETENTION

Manhole Input Summary:

		Giv	en Flow			Sub Basi	n Informatio	n		
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)
OUTFALL 1	6268.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Manhole	6275.20	7.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A8	6278.29	4.30	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A7	6276.67	3.60	3.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Inlet A9	6274.84	3.00	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Loca	al Contrib	ution			Total De	esign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Surface Water Present (Upstream)
Manhole	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.30	Surface Water Present (Downstream)
Inlet A8	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.00	4.30	
Inlet A7	0.00	0.00	0.00	0.00	3.60	0.00	0.00	0.00	3.60	
Inlet A9	0.00	0.00	0.00	0.00	3.00	0.00	0.00	0.00	3.00	

Sewer Input Summary:

		El	evation		Loss (Coefficie	nts	Given Dimensions			
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)	

Manhole	56.41	6268.87	2.0	6270.00	0.012	0.00	0.00	CIRCULAR	24.00 in	24.00 in
Inlet A8	111.47	6270.51	1.5	6272.18	0.012	0.13	0.00	CIRCULAR	18.00 in	18.00 in
Inlet A7	64.00	6272.49	0.8	6273.00	0.012	1.32	0.00	CIRCULAR	18.00 in	18.00 in
Inlet A9	16.65	6271.01	2.0	6271.34	0.012	0.05	0.25	CIRCULAR	12.00 in	12.00 in

Sewer Flow Summary:

	Full Flo	ow Capacity	Critic	cal Flow		No	rmal Flow				
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
Manhole	34.75	11.06	11.51	4.90	7.47	8.76	2.30	Supercritical Jump	7.30	46.46	
Inlet A8	13.97	7.91	9.54	4.52	6.85	6.96	1.88	Supercritical	4.30	0.00	
Inlet A7	10.21	5.78	8.69	4.26	7.38	5.27	1.37	Supercritical	3.60	0.00	
Inlet A9	5.47	6.97	8.91	4.80	6.34	7.13	1.93	Supercritical	3.00	0.00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
Manhole	7.30	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
Inlet A8	4.30	CIRCULAR	18.00 in	1.77						
Inlet A7	3.60	CIRCULAR	18.00 in	1.77						
Inlet A9	3.00	CIRCULAR	12.00 in	12.00 in	18.00 in	18.00 in	12.00 in	12.00 in	0.79	Height is too small. Width is too small.

					Existing height is smaller
					than the suggested height.
					Existing width is smaller
					than the suggested width.

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

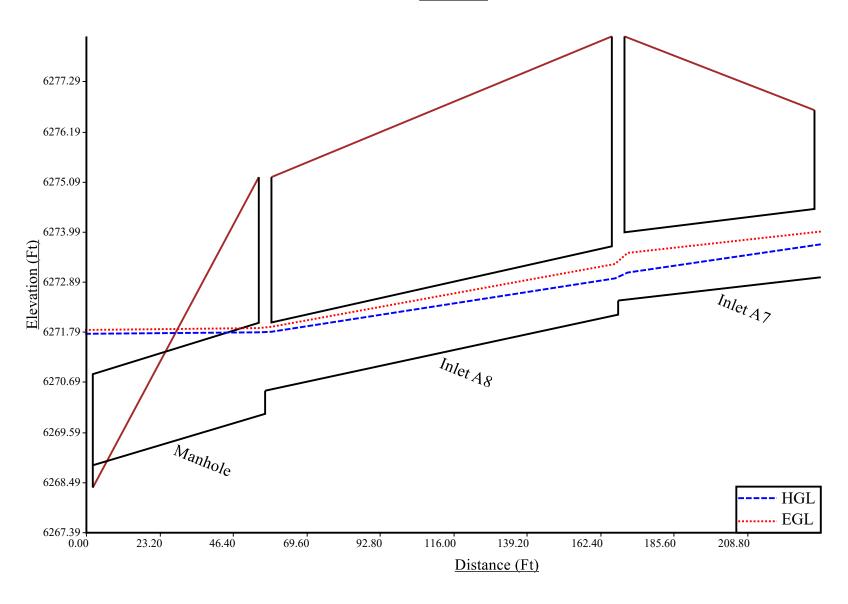
Tailwater Elevation (ft): 6271.76

	Invert 1	Elev.	l _	eam Manhole Losses	HG	L		EGL	
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
Manhole	6268.87	6270.00	0.00	0.00	6271.76	6271.79	6271.84	0.04	6271.88
Inlet A8	6270.51	6272.18	0.01	0.00	6271.80	6272.97	6271.91	1.38	6273.29
Inlet A7	6272.49	6273.00	0.09	0.00	6273.10	6273.72	6273.54	0.47	6274.01
Inlet A9	6271.01	6271.34	0.01	0.03	6271.83	6272.08	6272.32	0.12	6272.44

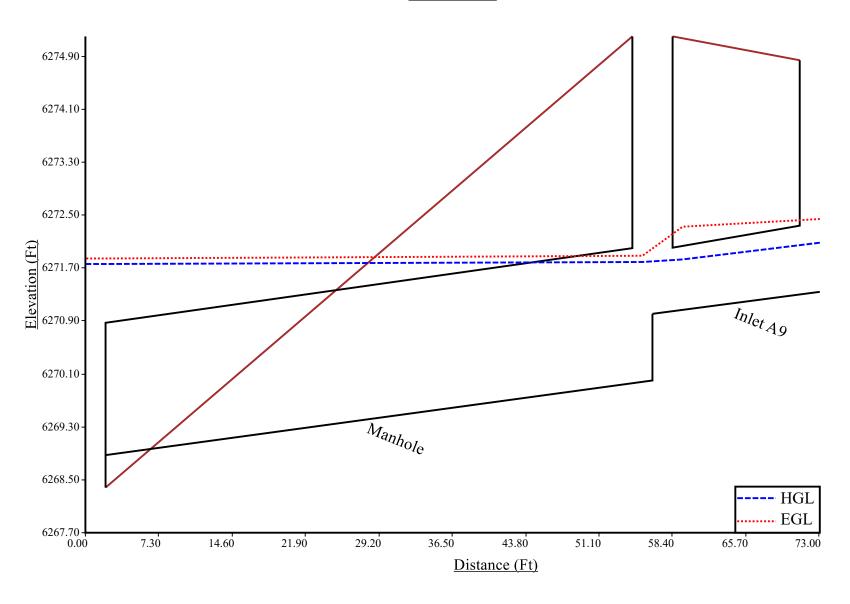
- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * V fi $^{\land}$ 2/(2*g)
- Lateral loss = $V_f \circ ^2/(2*g)$ Junction Loss K * $V_f \circ ^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft
The minimum trench width is 2.00 ft


Downstream	Upstream	

Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
Manhole	56.41	3.00	4.00	5.50	0.00	0.09	0.00	9.40	5.78	2.95	37.73	Sewer Too Shallow
Inlet A8	111.47	2.50	4.00	4.92	8.88	5.23	2.98	11.72	6.65	4.40	152.64	
Inlet A7	64.00	2.50	4.00	4.92	11.10	6.34	4.09	6.84	4.21	1.96	73.95	Sewer Too Shallow
Inlet A9	16.65	2.00	4.00	4.33	8.39	4.69	3.03	7.00	4.00	2.33	13.43	


Total earth volume for sewer trenches = 278 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

Line 3

Line 3A

Program:

UDSEWER Math Model Interface 2.1.1.4

Run Date:

3/21/2024 9:44:56 AM

UDSewer Results Summary

Project Title: Townhomes at Western **Project Description:** Storm Line 3 - 100yr

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100

Rainfall Calculation Method: Formula

One Hour Depth (in):

Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300

Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 6272.47 TAILWATERWATER ELEVATION TAKEN FROM 100YR MAX PONDING DEPTH IN MHFD-DETENTION

Manhole Input Summary:

		Giv	en Flow	Sub Basin Information									
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)			
OUTFALL 1	6268.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Manhole	6275.20	15.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Inlet A8	6278.29	8.10	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Inlet A7	6276.67	6.80	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Inlet A9	6274.84	7.10	7.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

Manhole Output Summary:

		Loca	al Contribu	ıtion			Total De	esign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Surface Water Present (Upstream)
Manhole	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.20	Surface Water Present (Downstream)
Inlet A8	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	8.10	
Inlet A7	0.00	0.00	0.00	0.00	6.80	0.00	0.00	0.00	6.80	
Inlet A9	0.00	0.00	0.00	0.00	7.10	0.00	0.00	0.00	7.10	

Sewer Input Summary:

Element Name Sewer Length (ft) Slope (%) Upstream Invert (ft) Mannings n Bend Loss Cross Section Rise (ft or in)			El	evation		Loss (Coefficie	nts	Given Dimensions			
	I	Length	Invert	•	Invert	Mannings n	_				Span (ft or in)	

Manhole	56.41	6268.87	2.0	6270.00	0.012	0.00	0.00	CIRCULAR	24.00 in	24.00 in
Inlet A8	111.47	6270.51	1.5	6272.18	0.012	0.13	0.00	CIRCULAR	18.00 in	18.00 in
Inlet A7	64.00	6272.49	0.8	6273.00	0.012	1.32	0.00	CIRCULAR	18.00 in	18.00 in
Inlet A9	16.65	6271.01	2.0	6271.34	0.012	0.05	0.25	CIRCULAR	12.00 in	12.00 in

Sewer Flow Summary:

	Full Flo	ow Capacity	Critic	cal Flow		No	rmal Flow				
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
Manhole	34.75	11.06	16.86	6.44	11.10	10.69	2.23	Pressurized	15.20	56.41	
Inlet A8	13.97	7.91	13.23	5.82	9.84	8.20	1.78	Supercritical Jump	8.10	76.06	
Inlet A7	10.21	5.78	12.11	5.38	10.74	6.18	1.26	Supercritical	6.80	0.00	
Inlet A9	5.47	6.97	12.00	9.04	12.00	9.04	0.00	Pressurized	7.10	16.65	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Existing		Calculated		Used			
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
Manhole	15.20	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
Inlet A8	8.10	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
Inlet A7	6.80	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
Inlet A9	7.10	CIRCULAR	12.00 in	12.00 in	18.00 in	18.00 in	12.00 in	12.00 in	0.79	Height is too small. Width is too small.

					Existing height is smaller
					than the suggested height.
					Existing width is smaller
					than the suggested width.
					Exceeds max. Depth/Rise

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

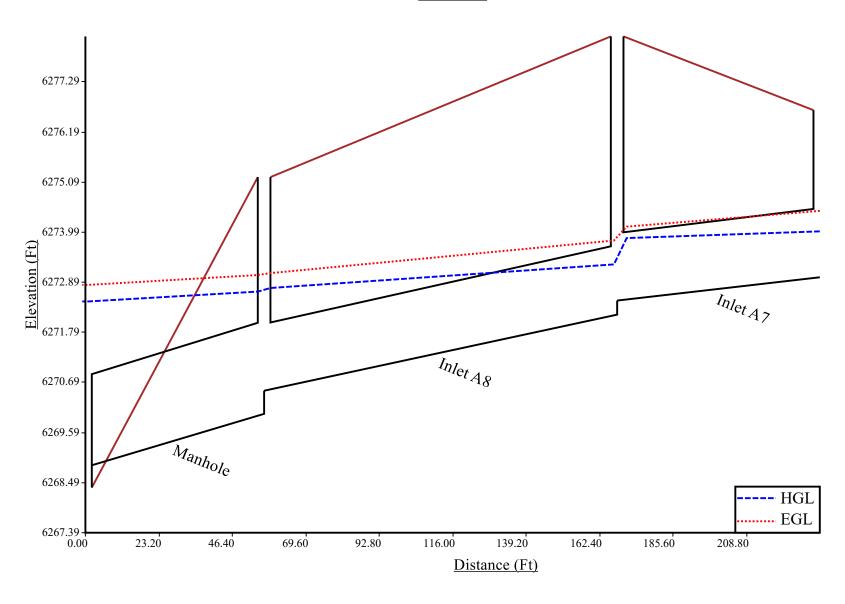
Tailwater Elevation (ft): 6272.47

	Invert I	Elev.		eam Manhole Losses	HG	L	EGL			
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)	
Manhole	6268.87	6270.00	0.00	0.00	6272.47	6272.69	6272.83	0.22	6273.05	
Inlet A8	6270.51	6272.18	0.04	0.00	6272.77	6273.28	6273.09	0.72	6273.81	
Inlet A7	6272.49	6273.00	0.30	0.00	6273.86	6274.01	6274.11	0.35	6274.46	
Inlet A9	6271.01	6271.34	0.06	0.05	6272.80	6272.80	6273.28	0.79	6274.06	

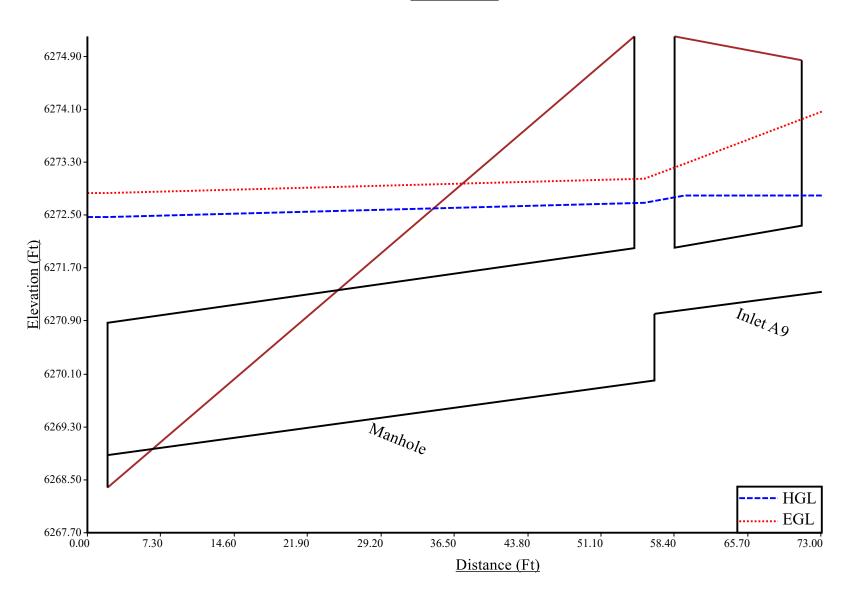
- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * V fi $^{\land}$ 2/(2*g)
- Lateral loss = V fo $^2/(2*g)$ Junction Loss K * V fi $^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

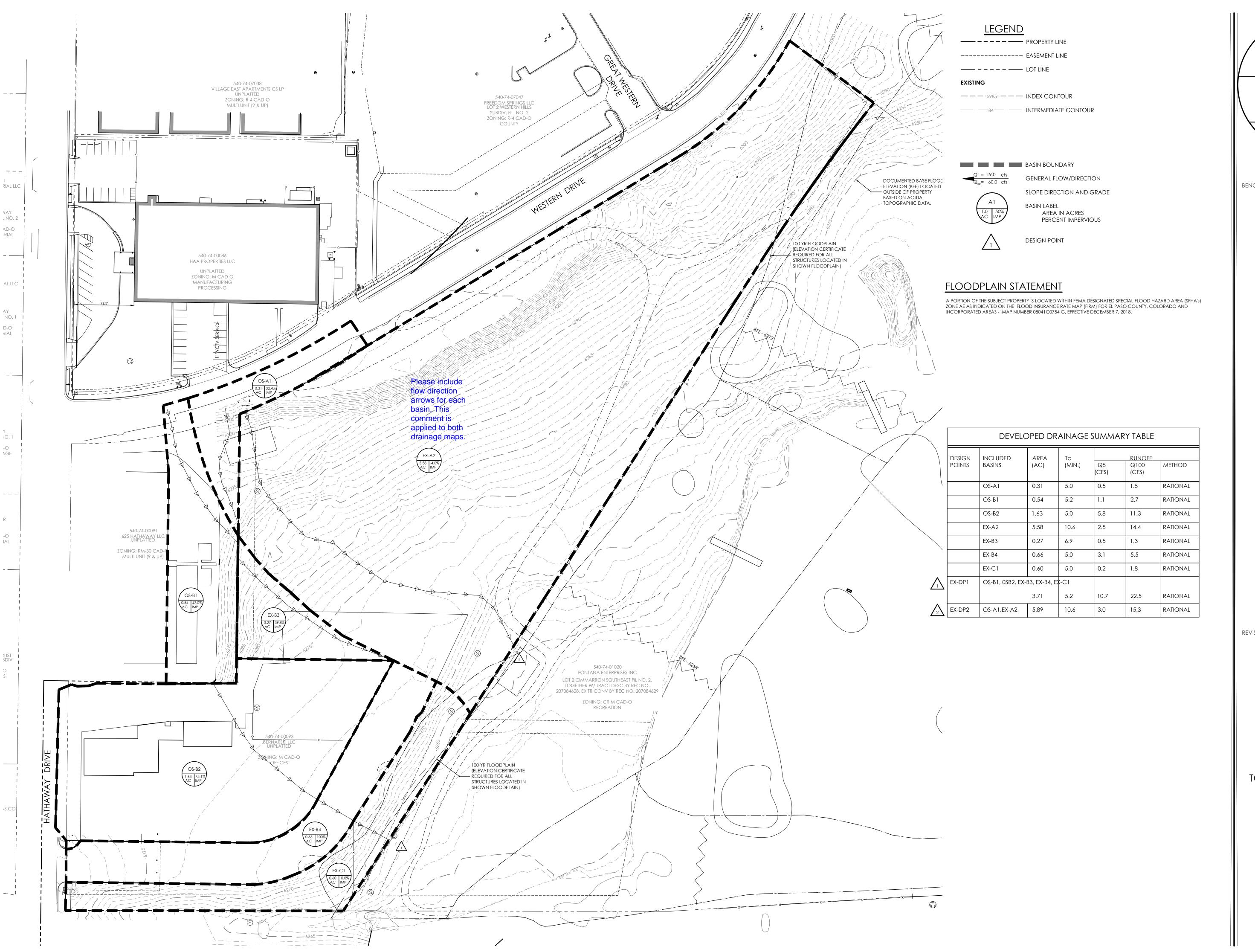

D	TT4	
Downstream	Upstream	
	1	

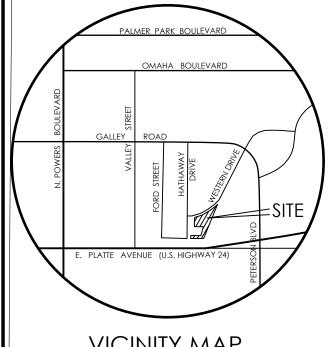
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
Manhole	56.41	3.00	4.00	5.50	0.00	0.09	0.00	9.40	5.78	2.95	37.73	Sewer Too Shallow
Inlet A8	111.47	2.50	4.00	4.92	8.88	5.23	2.98	11.72	6.65	4.40	152.64	
Inlet A7	64.00	2.50	4.00	4.92	11.10	6.34	4.09	6.84	4.21	1.96	73.95	Sewer Too Shallow
Inlet A9	16.65	2.00	4.00	4.33	8.39	4.69	3.03	7.00	4.00	2.33	13.43	


Total earth volume for sewer trenches = 278 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

Line 3


Line 3A



4 Drainage Maps

Existing Conditions Drainage Map Proposed Conditions Drainage Map


(Map Pocket) (Map Pocket)



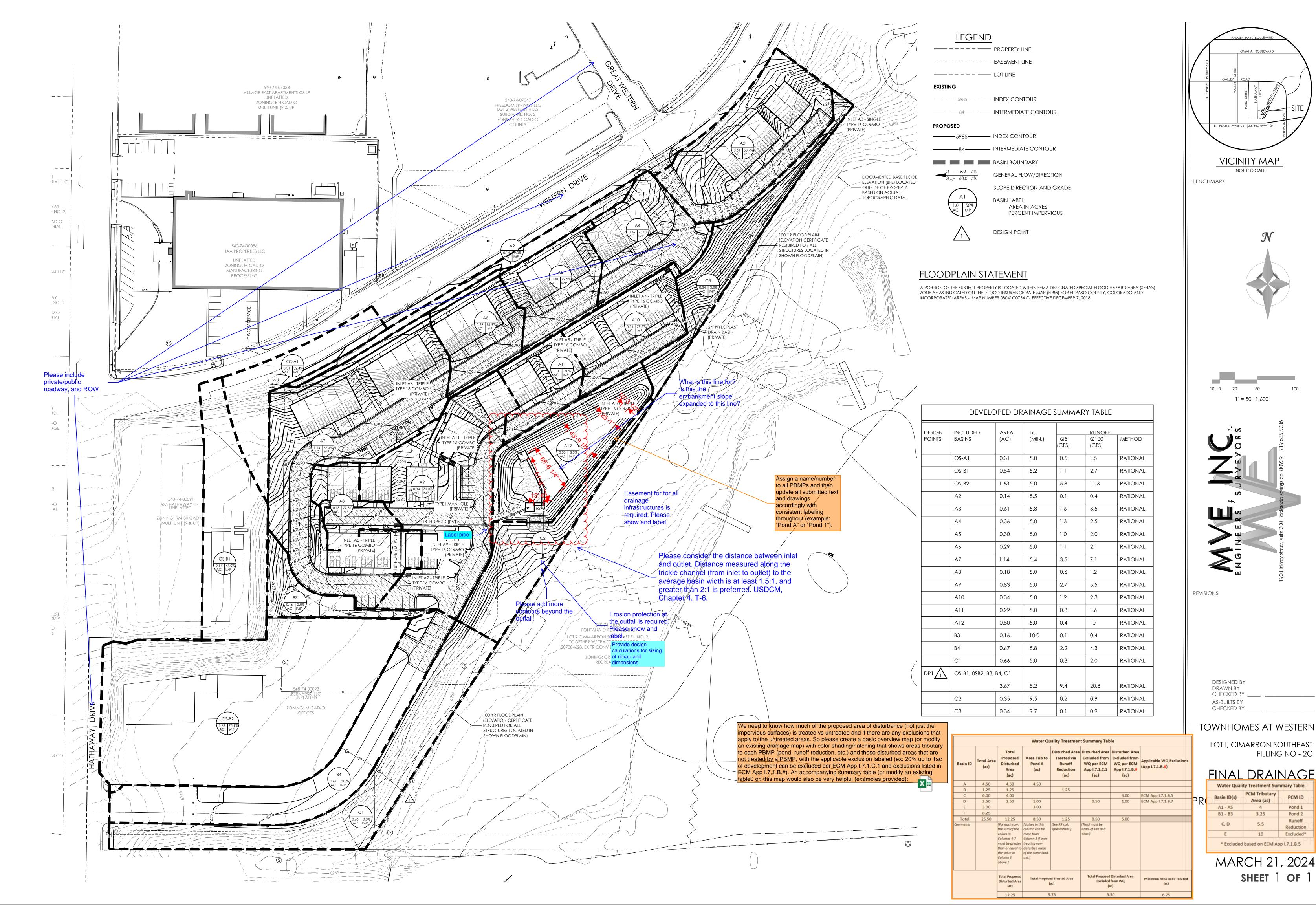
NOT TO SCALE

BENCHMARK

10 0 20 50 100 1" = 50' 1:600

REVISIONS

DESIGNED BY
DRAWN BY
CHECKED BY
AS-BUILTS BY
CHECKED BY _____


TOWNHOMES AT WESTERN

LOT I, CIMARRON SOUTHEAST FILLING NO - 2C

FINAL DRAINAGE REPORT EXISTING CONDITIONS

MVE PROJECT 61203
MVE DRAWING DRAIN-EX

MARCH 21, 2024 **SHEET** 1 **OF** 1

