EL PASO COUNTY, COLORADO

This is not for the preliminary plan. Phase II

MARCH 2018

Prepared for:

SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

Prepared by:

CIVIL CONSULTANTS, INC. 20 Boulder Crescent, Suite 110 Colorado Springs, CO 80903 (719) 955-5485

> Project #09-002 DSD Project # **SP-19-001**

> > See comment letter.

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin.

Virgil A. Sanchez, P.E. #37160 For and on Behalf of M&S Civil Consultants, Inc

DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

BY:______ James F Morley

TITLE:_____ DATE:

ADDRESS: SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

EL PASO COUNTY'S STATEMENT

Filed in accordance with the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

BY:_____ DATE:_____

Jennifer Irvine, P.E. County Engineer / ECM Administrator

TABLE OF CONTENTS

PURPOSE	4
GENERAL LOCATION AND DESCRIPTION	4
SOILS	4
HYDROLOGIC CALCULATIONS	5
HYDRAULIC CALCULATIONS	5
FLOODPLAIN STATEMENT	5
DRAINAGE CRITERIA	5
WETLANDS	6
EXISTING DRAINAGE CONDITIONS	6
PROPOSED DRAINAGE CHARACTERISTICS	9
DETENTION PONDS	16
EROSION CONTROL	17
CHANNEL IMPROVEMENTS	17
CONSTRUCTION COST OPINION	18
DRAINAGE & BRIDGE FEES	19
SUMMARY	19
REFERENCES	20

APPENDIX

Sand Creek DBPS Cost Opinion & See Drainage Maps Section Vicinity Map Soils Map FIRM Panel W/ Revised LOMR Wetland Permit Street Sections Hydrologic Calculations Hydrologic Calculations Hydraulic Calculations / EDB WQCV Calculations/Pipe and Swale Calculations Drainage Maps:

Sterling Ranch-Historic Drainage Map Sterling Ranch Filing No.2 Proposed Drainage Map Sterling Ranch Filing No.1 & No.2-Overall Utility Map Sterling Ranch –Future Hydrologic Conditions Map

PURPOSE

This document is the Final Drainage Report for Sterling Ranch Filing No.2. This report was previously discussed, as a preliminary drainage report, in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual. The principal use for this Final Drainage Report and Final Plat, is only for the major roadways, 49 lot single family residential lots, zero lot single family residential and tracts. The defined tracts are for the development will be replatted into lots, except for those shown on this drainage report, and will have a separate final drainage report. The following report is an analysis of the drainage for the entire development, single family lots, onsite and offsite drainage.

GENERAL LOCATION AND DESCRIPTION

Sterling Ranch Filing No. 2 is located in Section 32, Township 12 South, Range 65 West of the 6th Principal Meridian, Section 33, Township 12 South, Range 65 West of the 6th Principal Meridian and Section 4, Township 13 South, Range 65 West of the 6th Principal Meridian within unincorporated El Paso County, Colorado. The site is bound on the west by existing Vollmer Road. The site is bound on the north by the Barbarick Subdivision and Sterling Ranch Filing No. 1. The property is bound to the east by Sand Creek. The site is bound on the south by properties owned by FM Partners LLC and 8335 Vollmer Road LLC c/o Pioneer Sand Co. Sterling Ranch lies within the Sand Creek Drainage Basin. Flows from this site are tributary to Sand Creek.

Sterling Ranch Filing No. 2 consists of 144.778 acres and is presently undeveloped. Vegetation is sparse, consisting of native grasses. Existing site terrain generally slopes from north to south at grade rates that vary between 2% and 8%.

Sterling Ranch Filing No. 2 is currently zoned "RS-5000" for residential single family development, and "CS" for Commercial development. Improvements proposed for the site include paved, streets, trails, utilities, and storm drainage improvements, as normally constructed for a residential and commercial development. Full spectrum detention facilities are proposed to be constructed along the length of the site, off line of Sand Creek, to provide water quality treatment and detain stormwater for the development.

SOILS

Soils for this project are delineated by the map in the appendix as Blakeland Loamy Sand (8), Flakeland-Fluvaquentic Haplaquolis (9) and Columbine Gravelly Sandy Loam (19) are characterized as Hydrologic Soil Types "A". Pring Coarse Sandy Loam (71) is characterized as Hydrologic Soil Types "B". Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area". Vegetation is sparse, consisting of native grasses and weeds.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Urban Storm Drainage Criteria Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

The historic and developed drainage conditions in this report were calculated using the Soil Conservation Service (SCS) Hydrograph procedure per the El Paso County Drainage Criteria Manual. Since the majority of the existing drainage basins in this report exceed 100 acres in size, this method was selected for an "MDDP" level of detail. However, in future phases of drainage analysis for Sterling Ranch, the Rational Method will be used to analyze smaller drainage basin areas. Normally, the Rational Method is a bit more conservative, but is better used to analyze smaller basins and smaller "local" drainage facilities. The SCS procedure will be used for regional and larger drainage facilities, such as, detention ponds, channel improvements and culverts.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual. The relevant data sheets are included in the appendix of this report.

FLOODPLAIN STATEMENT

A portion of this site is within a designated F.E.M.A. floodplain as determined by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0535 F, effective date March 17, 1997 and revised to reflect LOMR, 08-08-0541P, dated July 23, 2009. An annotated FIRM Panel is included in the Appendix. The only development within the floodplain will be outfall pipes and minor bank stabilization. A "No Rise Permit" will be performed with the proposed improvements to Sand Creek.

DRAINAGE CRITERIA

This drainage analysis has been prepared in accordance with the current City of Colorado Springs/El Paso County Drainage Criteria Manual, Volumes I & II, dated November 1991, including subsequent updates. El Paso County has also adopted Chapter 6 and Section 3.2.1 of Chapter 13 in the City of Colorado Springs & El Paso County Drainage Criteria Manual Volumes I and II, dated May 2014. (Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008). In addition to the ECM, the Urban Storm Drainage Criteria Manuals, Volumes 1-3, published by the Urban Drainage and Flood Control District (Volumes 1 & 2 dated January 2016, Volume 3 dated November 2010 and updates. Calculations were performed to determine runoff quantities for the 5-year and 100-year frequency storms for developed conditions using the Rational Method. The site is in excess of 100 acres, which according to the above referenced criteria triggers the use of the Soil Conservation Service (SCS) Method for peak runoff determination. To be conservative, the rational method is used to ensure downstream structures are of adequate size to accept anticipated peak flows, and to be consistent with future Final Drainage Reports within Sterling Ranch. However, the SCS method, Full Spectrum Detention was used to size the detention ponds for the development. The SCS method is less conservative and more accurately sizes the storm events to model the detention ponds, and Sand Creek channel conveyance.

Address Phase II specifically

WETLANDS

Sterling Ranch was authorized under Section 404 of the Clean Water Act to discharge dredged and fill materials into waters of the United States to conduct work associated with construction of Sterling Ranch Residential Development in accordance with Action Number SPA-2015-00428-SCO. A copy of the permit is within the Appendix of this report. For the construction of Sterling Ranch Filing No. 1, ~2950 square feet of wetlands will be displaced and mitigated. The disturbance areas are located within the general area of Pond BB, Pond 4 and Pond 8 which outfall into the Sand Creek Channel. A mitigation area is designated on the construction drawings. Coordination with the wetlands consultant and the Army Corp of Engineers will be in conformance with the wetland permit. No other construction associated with Sterling Ranch Filing No. 1 trill disturb the existing wetlands. Sterling Ranch Filing No. 2 will have significant wetland disturbance. The area(s) of mitigation will be shown on the construction drawings and Final Drainage report associated with Filing No. 2. Included in this report (in the appendix) are the memo and map from Core Consultants showing intent to have wetlands delineated in the Filing No. 2 areas of wetland disturbance and mitigation.

EXISTING DRAINAGE CONDITIONS

The Sterling Ranch Filing No. 2 site consists of 49.643 acres and is situated west of the Sand Creek Watershed. This area was previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996. More recently the area was studied in the "Preliminary Drainage Report for Sterling Ranch-Phase 1", dated May 2015, by M&S Civil Consultants, Inc. (henceforth referred to as "PDR"). A "Master Development Drainage Plan For Sterling Ranch", prepared by M&S Civil Consultants, Inc., dated July 2010 and "Technical Memorandum Sand Creek Channel Study (North of Woodmen Road) Hydrologic Analysis" (TM-SCCS) prepared by M&S Civil Consultants, Inc., dated July 2016, was submitted and under review but not approved. And finally this report was studied in the "Master Development Drainage Report for Sterling Nos. 1&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017.

The Sand Creek DBPS assumed the Sterling Ranch property to have a "large lot residential" use for the majority of the site. However, the proposed master plan is a mix of; school, multi-family, single-family, and commercial land uses, resulting in higher runoff. The site generally drains from north to south consisting of rolling hills. Currently, the site is used as pasture land for cattle. Sand Creek is located east of the site running north to south. This reach of drainage conveyance is not currently improved. There are a few stock ponds within the creek channel used for cattle watering. Barbed wire fences bound the entire \sim 1440 acres of Sterling Ranch.

Offsite flows enter Sterling Ranch from the east, west and north, described as follows;

To the west, the existing subdivision west of Vollmer Road historically drains south to the west side of Vollmer Road. A roadside ditch carries the flow southwesterly and is intercepted by the Pond 6 storm infrastructure. Flows will ultimately be released into Sand Creek. See the Historic Basin Descriptions section of this report.

To the east; Sand Creek conveys flows from north to south. Flows from Sand Creek will continue to be conveyed through Sterling Ranch. (DBPS SEG: 170, 187, 163)

To the north; Sterling Ranch Filing No. 1 flows are captured via detention ponds Pond 4 and Pond 8 and are released into Sand Creek. Flows from the Barbarick Subdivision are collected by detention ponds and

water quality ponds and are released at the northend of the proposed Sterling Ranch Filing No. 2 site. See "Final Drainage Report for Barbarick Subdivision, Portions of Lots 1, 2 and Lots 3 & 4, by Matrix Design Group, June 2016". (DBPS SEG: 164, 159)

To the south of Sterling Ranch Filing No.2 lie properties owned by FM Partners LLC (undeveloped) and 8335 Vollmer Road LLC c/o Pioneer Sand Co., (zoned I-3 heavy industrial). The undeveloped runoff from these areas is conveyed from north to south, via historic drainage patterns, and do not impact any Sterling Ranch property.

The following "Proposed Drainage Characteristics" will address how developed and historic flows will be routed through Sterling Ranch to Sand Creek. If future offsite development occurs upstream of Sterling Ranch from the west or north, the propertie(s) will be required to detain to historic/ existing conditions per the County / City drainage criteria.

Refer to the Sterling Ranch Historic Drainage Map and Sterling Ranch Filing No.1&2 MDDP-Proposed Drainage Map (in the appendix) for off-site basin information. Descriptions of off-site basins are discussed below.

The following drainage basin narratives are based on information derived from field visits, USGS topographic mapping, aerial topography, field surveys and information provided by others familiar with the site. A "sheet flow" verses "concentrated ditch flow" designation was determined as best as possible from the available source topography, actual conditions may vary. Ownership was determined by the use of the El Paso County Assessor's web site as of the date of this report. A summary of peak runoff for the basins and designated design points are depicted on the Sterling Ranch Historic Drainage Map and Existing Conditions Drainage Map in the appendix.

Historic Basin Descriptions

Basin EX-1 (Q5 = 3 cfs, Q100 = 40 cfs) is a 24 acre area of land located in the southwestern portion of the site, southeast of Vollmer Road. This area of land, as well as the balance of Sterling Ranch is undeveloped and is used for pasture. Runoff from the basin generally travels as sheet flow from north to south until it reaches the northern boundary of an existing gravel pit.

Basin EX-2 (Q5 = 3 cfs, Q100 = 45 cfs) is a 31 acre area of land located in the southwest portion of the site, southeast of Vollmer Road. Runoff from the basin generally travels as sheet flow and concentrated ditch flow from north to south until it reaches the northern boundary of an existing gravel pit.

Basin EX-3 (Q5 = 49 cfs, Q100 = 341 cfs) is a 311 acre area of land located in the western portion of the site. A portion of the basin extends off-site to the northwest side of Vollmer Road, and is undeveloped (See Proposed Drainage Map, Sub-basin EX3~W-2, OS1A, OS1B, OS1C, OS1D~ Q5=21.0 cfs and Q100=154.2 cfs). A southern portion of the basin (adjacent to Vollmer Road) is currently developed as commercial/industrial ground outside of the Sterling Ranch boundary, (Barbarick Subdivision). The remaining southern portion of the ground is within Sterling Ranch. Runoff from the basin generally travels from north to south until it reaches the southern boundary of Sterling Ranch and flows into a tributary of Sand Creek (See Sand Creek Drainage Basin Planning Study, Segment 159, page 47-48, anticipated flows=950 cfs). Per the approved Preliminary/Final Drainage Report for the Barbarick Subdivision, detention ponds are proposed to detain flows discharging to the south into Sterling Ranch. At the time of this report, the detention ponds have not been constructed. (See Proposed Map for location and flows).

Basin EX-4 (Q5 = 71 cfs, Q100 = 352 cfs) is a 330 acre area of land located on the western portion of the site, including the Sand Creek channel. A portion of this basin extends off-site to the northwest of Vollmer Road, and is currently undeveloped property. Runoff from the basin generally travels from north to south

until it reaches the northern boundary of the site, being conveyed in the Sand Creek channel (See Proposed Drainage Map, Sub-Basin EX4A,EX4B, EX4C~Q5=28.2 cfs and Q100=208.4 cfs). (See SCDBPS, Segment 163, pages 49-51)

Basin EX-5 (Q5 = 14 cfs, Q100 = 209 cfs) is a 152 acre area of land located on the northwestern portion of the site, including the Sand Creek channel. A portion of this basin extends off-site to the north of the site boundary. Runoff from the basin generally travels from northwest to southeast until it reaches the Sand Creek Channel, then being conveyed through Sterling Ranch. (See SCDBPS, Segments, 170,& 187, pages 51-54).

Basin EX-6 (Q5 = 118 cfs, Q100 = 2168 cfs) is a 1,692 acre area of land located north of Sterling Ranch, tributary to the Sand Creek channel. Some of the basin developed as low density residential, or is vacant and used for pasture. Runoff from the basin generally travels from north to south until it reaches the Sand Creek Channel, then being conveyed through Sterling Ranch. (See SCDBPS, Segments, 170,& 171, pages 54-55. The anticipated SCDBPS flow at the north boundary of Sterling Ranch is Q10 = 670cfs, Q100 = 2260cfs)

Basins EX 7 - 13 exist on the east side of Sand Creek and do not effect Sterling Ranch Filing No. 1 & 2. (Per Historic Drainage Map in the Appendix)

Basins OS 20-23 and Off-Site Conveyance

The existing drainage patterns on the west side of Vollmer Road are not intended to be significantly altered by the development of Sterling Ranch. The construction of Vollmer Road will address the ditch flows along the west side and will install drainage culverts were necessary per this report. The majority of the flows from the west side of Vollmer Road are to be routed in the historical direction to the southwest along the roadway to a proposed Pond W-2 and Pond W-4. At the north end of the Barbarick subdivision, west side of Vollmer Road, a new 48" RCP is proposed to convey the flows from the full spectrum detention pond W-2 and across Sterling Ranch development to Sand Creek. The proposed 48" RCP replaces an undersized existing 24" CMP that historically conveyed a portion of the runoff from the upstream watershed, but at a different location. The purpose of this relocation is to conveniently route the flows across Sterling Ranch in a logical path to Sand Creek as in the historical condition. Runoff produced from the remaining off-site watershed located along the west edge of the development will be routed along the west side of Vollmer Road to the southwest corner of the development and a proposed Pond W-4. At the northwest corner of Tahiti Drive and Vollmer Road a 66" RCP will be installed to collect and convey runoff under proposed Marksheffel Road before ultimately discharging into Sand Creek. Runoff reaching the development along the south boundary line of the Barbarick Subdivision will be conveyed through the proposed site by portions of the existing western tributary channel, proposed temporary swales and proposed storm sewer until it ultimately reaches Pond W-5. Additional internal collection and conveyance storm sewer systems will be constructed with future development parcels within Sterling Ranch. Runoff reaching the northern boundary of Phase I at proposed Briargate Parkway will be redirected around the site via a temporary swale to Sand Creek. BMP's will be installed to prevent erosion of the temporary swale.

The intention of the drainage design for Sterling Ranch is to not adversely affect any adjacent property within the developed flows from Sterling Ranch. As previously mentioned, on the south end of the site, the developed flows are to be re-directed and collected in local storm sewer facilities onsite to Sterling Ranch. Only very minor amount of storm water shall be conveyed from small landscaped areas, or tracts onto the adjacent lands. This amount of discharge is far less than the historic runoff onto these properties. (East side of Barbarick Subdivision). No downstream retention ponds exist that would be sacrificed by this redirection of flow.

To the east of the proposed Sterling Ranch – Phase I, the property is not planned for development at this time. Therefore, the adjacent properties to the east and south will not see any change in the upstream historical conveyance of flows. The majority of all major flows exiting the Sterling Ranch – Phase I development will be detained and treated in onsite full spectrum detention ponds, prior to discharging into the Sand Creek channel. The option to construct larger online regional facilities to aid in the treatment and detention of runoff produced from planned and future development will continue to be re-evaluated.

Existing Utilities – High Pressure Gas Pipelines

At the southwest corner of Sterling Ranch exists three high pressure gas/petroleum pipelines. There are two 20-inch diameter and one 6-inch diameter pipelines. Special care in design and coordination with the appropriate utility agency shall be made to ensure of safety. Also, at the southwest portion of the site exists a Colorado Springs Utilities gas distribution line that serves the Barbarick Subdivision. This gas line will likely be relocated in the proposed right-of-way of the southern proposed Filing No. 2 subdivision. However, it should be noted that the gas pipelines existed pre-development. Additional utilities (including MVEA, Century link, CIG,...,) are present adjacent to the Vollmer right-of-way, and will be relocated where necessary with the Vollmer Road improvements.

PROPOSED DRAINAGE CHARACTERISTICS

General Concept Drainage Discussion

The following is a description of the offsite and onsite basins, offsite bypass flows and the overall future drainage characteristics for the development of Sterling Ranch Filing No. 2. The initial development of Filing No. 2 consists <u>only</u> of the roadway and storm sewer infrastructure for; Marksheffel Road (4 lane urban principal arterial), Vollmer Road (modified Urban Minor Arterial) and Sterling Ranch Road (urban non-residential collector). <u>Calculations have been provided to show the proposed development will adequately convey flows for the adjacent tracts to be developed</u>.

Let it be noted that, the areas to be platted in Sterling Ranch Filing No. 2 are as follows:

-Vollmer Road additional ROW dedication and adjacent Tracts D and F

-Marksheffel Road and adjacent Tracts D and C

-Sterling Ranch Road and adjacent Tracts B, D, J, K and A

-Tract E zero lot line single family residential and

-49 single family residential lots and Tracts G, H and I.

These platted areas will be addressed in this report as the Final Drainage Report for Sterling Ranch Filing No. 2. The areas proposed for future single family development, future commercial parcels and future school site will be replatted and will have a separate final drainage reports.

The following DPs and Basins were determined using the Rational Method since this method offers a more conservative approach to sizing swales and storm drain. It should be noted that all calculations and drainage basins have been revised to reflect the new criteria updates by the El Paso County/City of Colorado Springs Drainage Criteria Manual. See appendix for minor and major street capacity rating table sheets for street sections, sump inlet capacity rating table and design peak flow sheets for at-grade inlets. Surface flow is designated as Design Points (DP) and storm sewer routing as Pipe Run (PR).

Detailed Drainage Discussion

Design Points Tributary to Detention Pond W-5 (Proposed Drainage Map)-Filing No. 2

DP28, 33.3 acres, consists of Basin OS3 off-site Barbarick Subdivision with runoff coefficients of 0.36 for the 5-year and 0.55 for the 100-year and Basin YY future Sterling Ranch residential lots with runoff coefficients of 0.22 for the 5-year and 0.46 for the 100-year. Developed runoff of Q5=25.8 cfs and Q100=60.2 cfs has been calculated for DP28. Per the "Final Drainage Report for Barbarick Subdivision Protions of Lots 1, 2 and Lots 3, 4", prepared by Matirx Design Group, dated June 6, 2016, a combined onsite flow of Q5=11.4 cfs and Q100=85.4 cfs was calculated up to the detention pond on the south boundary line of the Barbarick Subdivision. The reduction of flow, form previous reports is attributed to a reduction of Sterling Ranch Subdivision flow contributing to the OS3 basin. The release rate from the detention pond combined with Basin YY are Q5=25.8 cfs and Q100=60.2 cfs The surface runoff shall be collected by a temporary sediment basin and 36" FES and routed south via 36" RCP (PR32) to PR34. Historic flows produced by Basin OS3 will be accounted for in the calculations for detention/water quality for Pond W5. The drainage report was prepared by Matrix Design Group, 2016 for the Barbarick Subdivision and has been attached at the end of the reference section of this report. The Final Drainage Report for Filing No. 2 will address the revisions from the previous report to the new Matrix report.

In the interim, a temporary diversion swale will be constructed and will replace the construction of PR32. The diversion swale will route flows from DP28 to DP29 (Q5=41.4 cfs and Q100=97.8 cfs). Figure CU-9 Inlet Control Nomograph INT DP29 INT is provided and swale grading complies with required headwater depth. Upon development of Tract I the diversion swale will be removed and PR32 will be installed.

DP29, 12.58 acres, consists of Basin XX future residential lots and streets with runoff coefficients of 0.22 for the 5-year and 0.46 for the 100-year and Basin JP-1 future school site with runoff coefficients of 0.39 for the 5-year and 0.55 for the 100-year. Developed runoff of Q5=17.3 cfs and Q100=41.7 cfs has been calculated for DP29. The surface runoff will be routed via overlot grading and curb and gutter to a temporary sediment basin at DP29 which will be collected by a 36" FES. The flow will be routed west via a 36" RCP (PR33)and will combine with flow from PR32. The combined flows in PR34 (Q5=41.4 cfs and Q100=97.8 cfs) will be routed south and west via a 48" RCP to PR35.

DP30, 2.46 acres, consists of Basin III future open space area with runoff coefficients of 0.08 for the 5-year and 0.35 for the 100-year and Basin JP-7A (Sterling Ranch Road) with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year. Developed runoff of Q5=6.5 cfs and Q100=13.0 cfs has been calculated for DP30. The surface runoff is routed via overlot grading and curb and gutter to DP30 which will be collected by a 15' CDOT type R at-grade inlet. The intercepted flow (Q5=6.5 cfs and Q100=11.1 cfs) will routed south via a 24" RCP (PR34A) and will combine with flows from PR34 and PR34B. The combined flows (Q5=53.1 cfs and Q100=117.8 cfs) will be routed west via a 48" RCP (PR35) to PR39.

DP31, 4.64 acres, consists of Basin JJJ future residential lots with runoff coefficients of 0.22 for the 5-year and 0.46 for the 100-year and Basin JP-7B (Sterling Ranch Road) with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year. Developed runoff of Q5=8.4 cfs and Q100=19.8 cfs has been calculated for DP31. The surface runoff is routed via overlot grading and curb and gutter to DP31 which will be collected by a 15' CDOT type R at-grade inlet. The intercepted flow (Q5=8.2 cfs and Q100=14.2 cfs) will routed south via a 24" RCP (PR34B) and will combine with flows from PR34 and PR34A. The combined flows (PR35, Q5=53.1 cfs and Q100=117.8 cfs) will be routed west via a 48" RCP to PR39.

DP32, 17.0 acres, consists of Basin OS2 off-site Barbarick Subdivision with runoff coefficients of 0.55 for the 5-year and 0.87 for the 100-year. Developed runoff of Q5=30.4 cfs and Q100=80.8 cfs has been calculated for DP32 Per the "Final Drainage Report for Barbarick Subdivision Protions of Lots 1, 2 and Lots 3, 4", prepared by Matirx Design Group, dated June 6, 2016, a combined onsite flow of Q5=3.13 cfs and Q100=11.6 cfs was calculated up to the sand filter pond on the south boundary line of the Barbarick Subdivision. The release rate from the sand filter pond combined with Lots 1 and 2 west of the sand filter pond are Q5=30.4 cfs and Q100=80.8 cfs The surface runoff shall be collected by a temporary sediment

basin and 42" FES. The flow will be routed south via 42" RCP (PR36) to PR38. Upon future development of this basin, full spectrum detention shall be required and will release to historic release rates of Q5=30.4 cfs and Q100=80.8 cfs. Historic flows produced by Basin OS2 will be accounted for in the calculations for detention/water quality for Pond W-5. The Final Drainage Report for Filing No. 2, will address the revisions from the previous report to the new Matrix report.

In the interim, a temporary diversion swale will be constructed and will replace the construction of PR36. The diversion swale will route flows from DP32 to DP33 (Q5=45.9 cfs and Q100=115.2 cfs). Figure CU-9 Inlet Control Nomograph INT DP33 is provided and swale grading complies with required headwater depth. Upon development of Tract H the diversion swale will be removed and PR36 will be installed.

DP33, 9.68 acres, consists of Basin AAA future residential lots and streets with runoff coefficients of 0.49 for the 5-year and 0.65 for the 100-year. Developed runoff of Q5=17.3 cfs and Q100=38.5 cfs has been calculated for DP33. The surface runoff will be routed via overlot grading and curb and gutter to a temporary sediment basin at DP33 which will be collected by a 30" FES. The flow will be routed west via a 30" RCP (PR37) and will combine with flows from PR36. The combined flows (PR38, Q5=45.9 cfs and Q100=115.2 cfs) will be routed south via a 48" RCP to PR39. The combined flows in PR39 (Q5=98.5 cfs and Q100=232.0 cfs) will be routed south via a 66" RCP to PR57.

DP39, 2.74 acres, consists of Basin BBB proposed residential lots and streets with runoff coefficients of 0.45 for the 5-year and 0.59 for the 100-year. Developed runoff of Q5=4.8 cfs and Q100=10.6 cfs has been calculated for DP39. The surface runoff is routed via overlot grading and curb and gutter to dual 10' CDOT type R at-grade inlets. The intercepted flow (Q5=4.8 cfs and Q100=10.14 cfs) will be routed south via an 18" RCP (PR40A, PR40B) to PR40 (18" RCP). The flows from PR40 will be routed south to PR41 (24" RCP).

DP39A, 8.47 acres, consists of Basin BBB proposed residential lots and streets with runoff coefficients of 0.45 for the 5-year and 0.59 for the 100-year. Developed runoff of Q5=12.4 cfs and Q100=27.3 cfs has been calculated for DP39A. The surface runoff is routed via overlot grading and curb and gutter to dual 10' CDOT type R at-grade inlets. The intercepted flow (Q5=11.36 cfs and Q100=17.86 cfs) will be routed east via an 18" RCP (PR41A) and a 24" RCP (PR41B). The combined flows from PR41B and PR40 (Q5=15.5 cfs and Q100=26.9 cfs) will be routed south via a 24" RCP to PR41.

DP44, 3.59 acres, consists of Basin HHH undisturbed gas line easements and minimal rear residential lots with runoff coefficients of 0.08 for the 5-year and 0.35 for the 100-year. Developed runoff of Q5=1.0 cfs and Q100=7.7 cfs has been calculated for DP44. The surface runoff is routed via historic drainage patterns and overlot grading to a temporary sediment basin at DP44 which will be collected by an 18" FES. The flow will be routed west via an 18" RCP (PR47) and will combine with flows at DP40 and PR42 (24" RCP).

DP40, 3.12 acres, consists of Basin CCC proposed residential lots and streets with runoff coefficients of 0.49 for the 5-year and 0.62 for the 100-year and flowby from DP39 and DP39A. Developed runoff of Q5=6.0 cfs and Q100=20.2 cfs has been calculated for DP40. The surface runoff is routed via overlot grading and curb and gutter to dual 15' CDOT type R at-grade inlets at DP40. The flow will be routed west via a 24" RCP (PR42) and will combine with flow from PR47. The combined flows in PR42 (Q5=4.8 cfs and Q100=15.8 cfs) will be routed south to PR48 (36" RCP). The combined flows from PR42 and PR41 will be routed south and west via a 36" RCP (PR48, Q5=23.0 cfs and Q100=52.3 cfs). These flows are then routed to DP45.

DP43A, 19.14 acres, consists of Basin FFF proposed residential lots and streets with runoff coefficients of 0.49 for the 5-year and 0.62 for the 100-year. Developed runoff of Q5=35.0 cfs and Q100=74.3 cfs has been calculated for DP43A. The surface runoff is routed via overlot grading to a temporary sediment basin

at DP43A which will be collected by a 42" FES. The flow will be routed south via a 42" RCP (PR50) and will combine with flow from PR48. The combined flows PR50A (Q5=54.2 cfs and Q100=118.6 cfs) will be routed south via a 48" RCP to PR52. Figure CU-9 Inlet Control Nomograph DP43A is provided and swale grading complies with required headwater depth

DP45, 2.7 acres total, consists of Basin JP-7C (Sterling Ranch Road) with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year, Basin FFF1 proposed residential backyard lots with runoff coefficients of 0.22 for the 5-year and 0.46 for the 100-year, Basin GGG proposed residential lots and streets with runoff coefficients of 0.49 for the 5-year and 0.62 for the 100-year and flowby from DP30 and DP40. Developed runoff of Q5=4.4 cfs and Q100=13.3 cfs has been calculated for DP45. The surface runoff is routed via curb and gutter to DP45 which will be collected by a 15' CDOT type R at-grade inlet. The intercepted flow (Q5=4.4 cfs and Q100=11.25 cfs) will be routed south via an 18" RCP (PR51) to PR52. The combined flows PR52 (Q5=58.2 cfs and Q100=128.8 cfs) will be routed south via a 48" RCP to PR56.

DP46, 0.61 acres, consists of Basin JP-7D (Sterling Ranch Road) with runoff coefficients of 0.90 for the 5year and 0.96 for the 100-year and flowby from DP-31. Developed runoff of Q5=2.4 cfs and Q100=9.7 cfs has been calculated for DP46. The surface runoff is routed via curb and gutter to DP46 which will be collected by a 15' CDOT type R at-grade inlet. The intercepted flow (Q5=4.4 cfs and Q100=9.1 cfs) will be routed south via an 18" RCP (PR53) to PR56. The combined flows PR56 (Q5=60.2 cfs and Q100=136.2 cfs) will be routed south via a 48" RCP to PR56A.

DP51, 1.76 acres, consists of Basin RP-7B (Marksheffel Road) with runoff coefficients of 0.90 for the 5year and 0.96 for the 100-year. Developed runoff of Q5=5.8 cfs and Q100=10.5 cfs has been calculated for DP51. The surface runoff is routed via curb and gutter to DP51 which will be collected by a 15' CDOT type R at-grade inlet. The intercepted flow (Q5=5.8 cfs and Q100=9.7 cfs) will routed east via an 18" RCP (PR54) to PR55. Surface flow-by (Q5=0.0 cfs and Q100=0.9 cfs) from the inlet will be released at the end of the curb section and will be routed via overlot grading to a temporary sediment basin (TSB) as shown on the "Sterling Ranch-Phase 1 Offsite Grading, Early Grading & Erosion Control Plans", prepared by M&S Civil Consultants, Inc., dated November 2015. Flows released from the TSB will be routed via historic drainage patterns to Sand Creek. Erosion control has been provided per the offsite grading plan.

DP52, 1.93 acres, consists of Basin RP-7A (Marksheffel Road) with runoff coefficients of 0.90 for the 5year and 0.96 for the 100-year and flowby from DP45 and DP46. Developed runoff of Q5=6.4 cfs and Q100=13.9 cfs has been calculated for DP52. The surface runoff is routed via curb and gutter to DP52 which will be collected by a 15' CDOT type R at-grade inlet. The intercepted flow (Q5=6.4 cfs and Q100=11.56 cfs) will combine with flows from PR54 (PR55, Q5=12.2 cfs and Q100=21.2 cfs) and be routed east via a 30" RCP to PR56A. The combined flows from PR55 and PR56 (PR56A, Q5=71.1 cfs and Q100=155.2 cfs) will be routed south via a 54" RCP to PR56B. The flows in PR56B (Q5=71.1 cfs and Q100=155.2 cfs) will be routed east via a 2-42" RCP and combine with flows from PR39 to PR57. The combined flows in PR57 (Q5=168.1 cfs and Q100=383.8 cfs) will be routed south via a 78" RCP to PR58. Surface flow-by (Q5=0.0 cfs and Q100=2.3 cfs) from the inlet will be released at the end of the curb section and will be routed via overlot grading to a TSB as shown on the "Sterling Ranch-Phase 1 Offsite Grading, Early Grading & Erosion Control Plans", prepared by M&S Civil Consultants, Inc., dated November 2015. Flows released from the TSB will be routed via historic drainage patterns to Sand Creek. Erosion control has been provided per the offsite grading plan.

DP38, 25.89 acres, consists of Basin OOO future residential lots and streets with runoff coefficients of 0.45 for the 5-year and 0.59 for the 100-year. Developed runoff of Q5=37.2 cfs and Q100=81.9 cfs has been calculated for DP38. The surface runoff is routed via overlot grading and curb and gutter to a temporary sediment basin at DP38 which will be collected by a 42" FES. The flow will be routed south via a 42" RCP (PR44) and will combine with flows from PR57 and PR57A. The combined flows in PR58

(Q5=208.9 cfs and Q100=481.1 cfs) will be routed south via an 84" RCP to Detention Pond W-5 (DP57). Flows will outfall into a concrete lined forebay. Figure CU-9 Inlet Control Nomograph DP43A is provided and swale grading complies with required headwater depth

DP56, 8.17 acres total, consists of Basin RRR future commercial site with runoff coefficients of 0.81 for the 5-year and 0.88 for the 100-year, Basin PPP1 future residential lots with runoff coefficients of 0.22 for the 5-year and 0.46 for the 100-year and Basin QQQ undisturbed gas line easements with runoff coefficients of 0.08 for the 5-year and 0.35 for the 100-year. Developed runoff of Q5=5.7 cfs and Q100=20.5 cfs has been calculated for DP56. The surface runoff is routed via historic drainage patterns and overlot grading to DP56 which will be collected by a 24" FES. The flow will be routed south via a 24" RCP (PR57A) and will combine with flows from PR57 and PR44. The combined flows in PR58 (Q5=209.5 cfs and Q100=483.5 cfs) will be routed south via an 84" RCP to Detention Pond W-5 (DP57). Flows will outfall into a concrete lined forebay. Figure CU-9 Inlet Control Nomograph DP43A is provided and swale grading complies with required headwater depth

DP57, 7.95 acres, consists of Basin UUU (Detention Pond W-5) with runoff coefficients of 0.08 for the 5-year and 0.35 for the 100-year. Contributing surface runoff to detention pond W-5 include Basin PPP2 0.75 acres, future residential lots with runoff coefficients of 0.22 for the 5-year and 0.46 for the 100-year, Basin TTT 1.38 acres, future open space with runoff coefficients of 0.08 for the 5-year and 0.35 for the 100-year and Basin OS4 5.13 acres, existing residential lots with runoff coefficients of 0.20 for the 5-year and 0.44 for the 100-year The combined upstream developed runoff of Q5=217.4 cfs and Q100=517.9 cfs has been calculated for DP57. The proposed Detention Pond functions to provide full spectrum detention and water quality for runoff calculated onsite. The pond is designed to treat approx 175.6 acres, and provide 2.97 ac-ft of water quality storage and 17.37 ac-ft of 100-year storage. The forebay, trickle channel micropool, outlet structure and pipe have been designed per the UDFCD manual and per the Detention Design-UD-Detention v3.07 workbook. The detention pond will be private and shall be maintained by the Sterling Ranch Metropolitan District. Access shall be granted to the owner and El Paso County for access and maintenance of the private detention pond. A private maintenance agreement document shall accompany the submittal. In the event of clogging or total inlet failure, flows at DP57 will over top the emergency spillway and outfall into Sand Creek. A rip rap apron will be constructed to dissipate energy and prevent local scour at the outlet. The peak release rate from pond W-5 (PR71, O5=2.5 cfs and O100=149.7 cfs) will outfall, via a 48" RCP into Sand Creek. The summed flows (PR71 & PR67, Q5=42.2 cfs and Q100=472.4 cfs) will routed via a 84" RCP (PR74) to DP68 and outfall into Sand Creek. Impacts from the outfall into Sand Creek will be addressed in the revised TM-SCCS.

The water quality volume and 100-year volume required for the site has been determined using the guidelines set forth in the City of Colorado Springs/El Paso County Drainage Criteria Manual Chapter 6-Volume II. Refer to the Detention Basin Design sheets located within the appendix of this report.

Design Points Tributary to Sand Creek Filing No. 2

DP47A, 3.12 acres, consists of Basin RP-3B (Vollmer Road) with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year and flowby from DP16 (in the future developed condition). Developed runoff of Q5=11.1 cfs and Q100=24.4 cfs has been calculated for DP47A. In the interim the surface runoff is routed to a road side swale to DP47A which will be collected by a 2.91' x 5.67' CDOT Type D inlet. In the interim a riprap apron will be constructed to dissipate energy and prevent local scour at the outlet.

In the future, upon full build out of Vollmer Road, the surface runoff will be routed via curb and gutter to DP47A which will be collected by a 15' CDOT type R at-grade inlet. The intercepted flow (PR68, Q5=10.0 cfs and Q100=15.8 cfs) will be routed north via a 30" RCP to DP60.

DP48A, 4.12 acres, consists of Basin RP-3A (Vollmer Road) with runoff coefficients of 0.90 for the 5year and 0.96 for the 100-year and flowby from DP17 (in the future developed condition). Developed runoff of Q5=13.5 cfs and Q100=26.6 cfs has been calculated for DP48A. In the interim the surface runoff will sheet flow and be routed to a roadside swale and ultimately to DP60.

In the future, upon full build out of Vollmer Road, the surface runoff will be routed via curb and gutter to DP48A which will be collected by a 15' CDOT type R at-grade inlet. The intercepted flow (Q5=11.4 cfs and Q100=16.5 cfs) will combine with flows from PR68 and be routed west via a 30" RCP (PR69). The cumulative flows in PR69 (Q5=21.2 cfs and Q100=31.9 cfs) will outfall into a proposed road side swale and be routed to DP60. Upon full build out a riprap apron will be constructed to dissipate energy and prevent local scour at the outlet.

DP69, 15.73 acres, consists of Sub-Basin OS20A partially developed low density residential with runoff coefficients of 0.10 for the 5-year and 0.36 for the 100-year. Calculated runoff of Q5=4.5 cfs and Q100=27.4 cfs has been calculated for DP69. The flow will be routed south via a 24" RCP (PR73) under Glider Loop. The surface runoff is routed via historic drainage patterns and a 4' wide road side swale to DP60. A riprap apron will be constructed to dissipate energy and prevent local scour at the outlet. (See swale and riprap calculations and specification sheet for fabric in appendix). DP69 calculations are for sizing the culvert under Glider Loop. The acreage and flows for DP69 is included in the final DP60.

DP70, 36.32 acres, consists of Sub-Basin OS20B partially developed low density residential with runoff coefficients of 0.10 for the 5-year and 0.36 for the 100-year and flows from DP69. Calculated runoff of Q5=15.0 cfs and Q100=90.7 cfs has been calculated for DP70. The flow will be routed south via an existing 24" CMP under Glider Loop. The surface runoff is routed via historic drainage patterns swale to DP60. The existing roadside swale will provide adequate drainage, assuming the swale has been maintained. The acreage and flows for DP70 is included in the final DP60.

DP71, 106.79 acres, consists of Sub-Basin OS20C partially developed low density residential with runoff coefficients of 0.10 for the 5-year and 0.36 for the 100-year and flows from DP70. Calculated runoff of Q5=25.6 cfs and Q100=154.4 cfs has been calculated for DP70. The flow will be routed south via an existing 24" CMP under the entrance to an existing Gas substation. The surface runoff is routed via historic drainage patterns swale to DP60. The existing roadside swale will provide adequate drainage, assuming the swale has been maintained. The acreage and flows for DP71 is included in the final DP60.

DP60, 308 acres, consists of Basin OS20 (off-site basin) partially developed low density residential with runoff coefficients of 0.10 for the 5-year and 0.36 for the 100-year and flow from PR69. Calculated runoff of Q5=59.7 cfs and Q100=316.2 cfs has been calculated for DP60. The existing roadside swale will provide adequate drainage, assuming the swale has been maintained. Flows in the swale will be routed through an existing 3.5' X5.5' HECMP to DP 49 (Pond W-4). A rip rap apron will be constructed to dissipate energy and prevent local scour at the outlet.

DP47 & DP47-1, 2.05 acres, consists of Basin RP-4B (Vollmer Road) with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year and flowby from DP47A (in the future condition). Developed runoff of Q5=7.7 cfs and Q100=20.4 cfs has been calculated for DP47. In the interim the surface runoff is routed to a road side swale to DP47A which will be collected by a 2.91' x 5.67' CDOT Type D inlet. In the interim a riprap apron will be constructed to dissipate energy and prevent local scour at the outlet.

In the future, upon full build out of Vollmer Road, the surface runoff is routed via curb and gutter to DP47 & DP47-1 which will be collected by a 2-10' CDOT type R at-grade inlets. The captured flow (Q5=7.7 cfs and Q100=17.6 cfs) will be routed west via a 30" RCP (PR61) to PR62.

DP48 & DP48-1, 1.94 acres, consists of Basin RP-4A (Vollmer Road) with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year and flowby from DP48A(in the future condition). Developed runoff of Q5=8.2 cfs and Q100=21.0 cfs has been calculated for DP48. In the interim the surface runoff will sheet flow into and be routed to a roadside swale and ultimately to DP49.

In the future, upon full build out of Vollmer Road, the surface runoff is routed via curb and gutter to DP48 & DP48-1 which will be collected by a 2-10' CDOT type R at-grade inlets. The flow will combine with flows from PR61 and be routed west to via a 30" RCP (PR62) to a riprap forebay. The cumulative flows in PR62 (Q5=15.8 cfs and Q100=38.2 cfs) will outfall into a proposed roadside swale, see appendix for open channel calculator sheet. The vegetated grass swale will facilitate sedimentation and filtering while limiting erosion. A riprap apron will be constructed to dissipate energy and prevent local scour at the outlet. Flows in the swale will be routed to DP 49 (Pond W-4).

DP72, 8.87 acres, consists of Sub-Basin OS21A partially developed low density residential with runoff coefficients of 0.11 for the 5-year and 0.37 for the 100-year and flows from DP60. Calculated runoff of Q5=71.9 cfs and Q100=345.9 cfs has been calculated for DP72. The flow will be routed south via a proposed 15' swale to DP49. The acreage and flows for DP72 is included in the final DP49.

DP73, 8.76 acres, consists of Sub-Basin OS21C partially developed low density residential with runoff coefficients of 0.11 for the 5-year and 0.37 for the 100-year and flows from DP72. Calculated runoff of Q5=3.2 cfs and Q100=18.1 cfs has been calculated for DP73. In the interim the surface runoff is routed to via a road side swale to DP73 which will be collected by a 2.91' x 5.67' CDOT Type D inlet. In the interim a 24" RCP pipe (PR76) will route flows to a concrete forebay in Pond W-4. The acreage and flows for DP73 is included in the final DP49.

DP49, 33.0 acres, consists of Basin OS21 (**Interim Detention Pond W-4**) with runoff coefficients of 0.11 for the 5-year and 0.37 for the 100-year, flow from DP60 and PR62. The combined upstream developed runoff of Q5=72.9 cfs and Q100=367.1 cfs has been calculated for DP49. The proposed interim Detention Pond functions to provide full spectrum detention and water quality for runoff calculated onsite. The pond is designed to treat approx 352.2 acres, and provide 1.75 ac-ft of water quality storage and 7.67 ac-ft of 100-year storage. The forebay, trickle channel micropool, outlet structure and pipe have been designed per the UDFCD manual and per the Detention Design-UD-Detention v3.06 workbook. The detention pond will be private and shall be maintained by the Sterling Ranch Metropolitan District. Access shall be granted to the owner and El Paso County for access and maintenance of the private detention pond. A private maintenance agreement document shall accompany the submittal. In the event of clogging or total inlet failure, flows at DP49 will over top the emergency spillway and outfall into the existing roadside swale parallel to Vollmer Road. A rip rap apron will be constructed to dissipate energy and prevent local scour at the outlet. The peak release rate from pond W-4 (PR63, Q5=15.4 cfs and Q100=289.4 cfs) will be routed south, via a 66" RCP to PR65.

A preliminary design of detention pond W-4 has been used to calculate potential volume. Upon future upstream development, expansion of Pond W-4 will need to be finalized. Per the "Technical Memorandum Sand Creek Channel Study (North of Woodmen Road) Hydrologic Analysis" prepared by MS Civil Consultants, Inc., dated October 2016 (see appendix for Map), the fully developed runoff of Q5=112.8 cfs and Q100=429.4 cfs has been calculated for DP49. The potential ultimate Detention Pond functions to provide full spectrum detention and water quality for runoff calculated onsite. The pond is designed to treat approx 352.2 acres, and provide 2.06 ac-ft of water quality storage and 11.12 ac-ft of 100-year storage. Volumes were designed per the UDFCD manual and per the Detention Design-UD-Detention v3.06 workbook. The peak release rate from pond W-4 (PR63, Q5=20.8 cfs and Q100=289.4 cfs) will be routed south, via a 66" RCP to PR65. Minor modifications will be required to outlet structure and spillway to comply with Detention Design-UD-Detention v3.06 workbook. Again, the ultimate design and analysis will need to be finalized upon upstream development and location of Marksheffel Road.

The water quality volume and 100-year volume required for the site has been determined using the guidelines set forth in the City of Colorado Springs/El Paso County Drainage Criteria Manual Chapter 6-Volume II. Refer to the Detention Basin Design sheets located within the appendix of this report.

DP50, 8.56 acres, consists of Basin JP-11 a future commercial parcel with runoff coefficients of 0.81 for the 5-year and 0.88 for the 100-year. Developed runoff of Q5=29.4 cfs and Q100=53.7 cfs has been calculated for DP50. In the undeveloped condition, runoff of Q5=2.0 cfs and Q100=15.0 cfs are routed via historic drainage patterns and proposed swales to DP50. The surface runoff will be collected by a 36" FES. The flows will routed south via a 36" RCP (PR64) to PR65. The accumulated flow in PR65 (Q5=32.0 cfs and Q100=309.9 cfs) will be routed south to PR67. Upon future development of this basin, full spectrum detention shall be required and will release to historic release rates of Q5=2.0 cfs and Q100=15.0 cfs.

DP53, 5.37 acres, consists of Basin JP-12 a future commercial parcel with runoff coefficients of 0.81 for the 5-year and 0.88 for the 100-year. Developed runoff of Q5=19.8 cfs and Q100=36.1 cfs has been calculated for DP53. In the undeveloped condition, runoff of Q5=1.4 cfs and Q100=10.0 cfs are routed via historic drainage patterns and proposed swales to DP53. The surface runoff will be collected by a 30" FES. The flows will routed south via a 30" RCP (PR66) to PR67. The accumulated flow in PR67 (Q5=39.1 cfs and Q100=322.7 cfs) will be routed via a 72" RCP south to Sand Creek (DP68). Upon future development of this basin, full spectrum detention shall be required and will release to historic release rates of Q5=1.4 cfs and Q100=10.0 cfs. The summed flows at DP68 (PR74, Q5=42.2 cfs and Q100=472.4 cfs) will outfall into Sand Creek. Impacts from the outfall into Sand Creek will be addressed in the revised TM-SCCS. A riprap apron will be constructed to dissipate energy and prevent local scour at the outlet.

DP54, 1.21 acres, consists of Basin RP-7D (Marksheffel Road) with runoff coefficients of 0.08 for the 5year and 0.35 for the 100-year and DP51 flowby. Undeveloped runoff of Q5=0.4 cfs and Q100=3.5 cfs has been calculated for DP54. Undeveloped flows will be routed to a temporary sediment basin via overlot grading as shown on the "Sterling Ranch-Phase 1 Offsite Grading, Early Grading & Erosion Control Plans", prepared by M&S Civil Consultants, Inc., dated November 2015, which will route flows via historic drainage patterns to Sand Creek. Erosion control will be provided.

DP55, 1.28 acres, consists of Basin RP-7C (Marksheffel Road) with runoff coefficients of 0.08 for the 5year and 0.35 for the 100-year and DP51 flowby. Undeveloped runoff of Q5=0.4 cfs and Q100=4.9 cfs has been calculated for DP55. Undeveloped flows will be routed to a temporary sediment basin via overlot grading as shown on the "Sterling Ranch-Phase 1 Offsite Grading, Early Grading & Erosion Control Plans", prepared by M&S Civil Consultants, Inc., dated November 2015, which will route flows via historic drainage patterns to Sand Creek. Erosion control will be provided.

Basin SSS, 1.21 acres, consists of the backyards of future residential lots with runoff coefficients of 0.22 for the 5-year and 0.46 for the 100-year. Developed runoff of Q5=1.1 cfs and Q100=3.8 cfs has been calculated for this basin. Developed flows will be sheet flow into Sand Creek. Erosion control will be provided.

There will be bank stabilization improvements to the Sand Creek Drainage Channel with the development of the STERLING RANCH FILING NOS. 2 site to maintain the integrity of pond W-5. However, channel improvements for Sand Creek (checks, drops, etc...) will be installed in accordance with the Subdivision Improvement Agreement.

DETENTION PONDS

Detention Pond W-5, has combined upstream developed runoff of Q5=217.4 cfs and Q100=517.9 cfs. The proposed Detention Pond functions to provide full spectrum detention and water quality for runoff

calculated onsite. The pond is designed to treat approx 175.6 acres, and provide 2.97 ac-ft of water quality storage and 17.37 ac-ft of 100-year storage. The forebay, trickle channel micropool, outlet structure and pipe have been designed per the UDFCD manual and per the Detention Design-UD-Detention v3.05 workbook. See Sand Creek Channel Study-Future Hydrologic Conditions Map in the appendix. Impacts from the outfall into Sand Creek will be addressed in the revised TM-SCCS.

Detention Pond W-4, has combined upstream developed runoff of Q5=72.9 cfs and Q100=367.1 cfs. The proposed Detention Pond functions to provide full spectrum detention and water quality for runoff calculated onsite. The pond is designed to treat approx 352.2 acres, and provide 1.75 ac-ft of water quality storage and 7.67 ac-ft of 100-year storage. The forebay, trickle channel micropool, outlet structure and pipe have been designed per the UDFCD manual and per the Detention Design-UD-Detention v3.05 workbook. See Sand Creek Channel Study-Future Hydrologic Conditions Map in the appendix. Impacts from the outfall into Sand Creek will be addressed in the revised TM-SCCS.

The detention ponds will be private and shall be maintained by the Sterling Ranch Metropolitan District. Access shall be granted to the owner and El Paso County for access and maintenance of the private detention pond. A private maintenance agreement document shall accompany the submittal. In the event of clogging or total inlet failure, flows will over top the emergency spillway and outfall into Sand Creek. A rip rap apron will be constructed to dissipate energy and prevent local scour at the outlet.

The water quality volume and 100-year volume required for the site has been determined using the guidelines set forth in the City of Colorado Springs/El Paso County Drainage Criteria Manual Chapter 6 - Volume II. Refer to the Detention Basin Design sheets located within the appendix of this report.

EROSION CONTROL

It is the policy of the El Paso County that a grading and erosion control plan be submitted with the drainage report. EPC approved "Early Grading Plan for Sterling Ranch Phase I <u>Onsite</u> Grading & Erosion Control", November 18, 2015. And "Early Grading Plan for Sterling Ranch Phase I <u>Offsite</u> Grading & Erosion Control", December 3, 2015. Grading and Erosion control operations are currently underway (August 2016). Grading and Erosion Control will cease with the final development of the site in the next 12-36 months.

CHANNEL IMPROVEMENTS

Per the Sand Creek DBPS, Sand Creek and connected tributaries in the area of the site will require improvements. The east tributary reaches within the site boundary (DBPS SEG: 169, 186, 164, 159) will not require improvements because they will no longer be present, as development in the areas will eliminate them, and replace them with, a storm sewer system to discharge into Sand Creek. Sand Creek itself will continue to be routed through the development. Per the DBPS, selective rip rap linings, grade control check structures, and drop structure improvements are required to stabilize the channel to prevent further degradation, scour and meandering. Full Spectrum Detention will also be used on its benefits to the integrity of the Sand Creek Channel. A separate document with detailed alternative sections, HEC-RAS analyses, etc. will be submitted with for the applicable and adjoining areas of development, in accordance with SIA requirements.

Downstream channel improvements are proposed to be similar to what was anticipated in the SCDBPS. Check structures and rip-rap lining in some locations shall be installed to handle the volume of flows from the full spectrum detention ponds. In the final design stage of the applicable and adjoining development, the channels will be analyzed to verify the amount of improvements necessary.

The approved Subdivision Improvements Agreement for Sterling Ranch Filing No. 2 address the timing and funding for channel improvements.

Channel Improvements and Wetland Mitigation

Areas with the existing floodplain or the low flow zone of the drainageways where riparian or wetland vegetation exists shall be preserved in its existing cross section. Areas disturbed by the construction of drops, grade controls, culverts or channel bank linings shall be revegetated with native species. Coordination with a wetland consultant will take place for mitigation of the disturbed wetlands. Included in this report (in the appendix) are the memo and map from Core Consultants showing intent to have wetlands delineated in the Filing No. 2 areas of wetland disturbance.

CONSTRUCTION COST OPINION – FILING NO. 2 Drainage Facilities:

Item	Description	Quantity	Unit Cost			Cost
1	18"RCP	595	\$40	/LF	\$ \$	23,800.00
2	24" RCP	591	\$50	/LF		29,550.00
3	30" RCP	382	\$65	/LF	\$	24,830.00
4	36" RCP	1375	\$75	/LF	\$	103,125.00
5	42" RCP	1238	\$85	/LF	\$	105,230.00
6	48" RCP	1158	\$150	/LF	\$	173,700.00
7	54" RCP	344	\$200	/LF	\$	68,800.00
8	66" RCP	1863	\$300	/LF	\$	558,900.00
9	72" RCP	2562	\$350	/LF	\$	896,700.00
10	78" RCP	240	\$400	/LF	\$	96,000.00
11	84" RCP	299	\$450	/LF	\$	134,550.00
12	24" FES	2	\$335	/EA	\$	670.00
13	30" FES	3	\$475	/EA	\$	1,425.00
14	36" FES	2	\$775	/EA	\$	1,550.00
15	42" FES	3	\$895	/EA	\$	2,685.00
16	48" FES	1	\$1096	/EA	\$	1,096.00
17	84" Headwall	2	\$10000	/EA	\$	20,000.00
18	15' CDOT Type R At-Grade	8	\$6000	/EA	\$	48,000.00
19	10' CDOT Type R At-Grade	4	\$5000	/EA	\$	20,000.00
20	2.9'x5.5' CDOT TYPE D	3	\$3500	/EA	\$	10,500.00
21	Storm Sewer MH, box base < 15 feet	15	\$10000	/EA	\$	150,000.00
22	Storm Sewer MH, box base ~ 15 feet-20 feet	4	\$15000	/EA	\$	60,000.00
23	Storm Sewer MH, box base > 20 feet	1	\$20000	/EA	\$	20,000.00
24	*Detention Pond W-5	1	\$200000	/EA	\$	200,000.00
25	*Detention Pond W-4	1	\$200000	/EA	\$	200,000.00
26	Mod CDOT Outlet Structure	2	\$15000	/EA	<u>\$</u>	30,000.00
			Total		\$	2,981,111.00

M & S Civil Consultants, Inc. (M & S) cannot and does not guarantee the construction cost will not vary

from these opinions of probable costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular. The above is only an estimate of the facility cost and drainage basin fee amounts in 2017.

DRAINAGE & BRIDGE FEES – FILING NO. 2

This site is within the Sand Creek Drainage Basin. The 2017 Drainage and Bridge Fees per El Paso County for the STERLING RANCH FILING NO. 1 site are as follows: (see next sheet for itemized statement)

Per Sterling Ranch Filing No.2 Plat –		Total Area	49.643 Acres		
FILING NO. 2 FEES: Drainage Fees: Bridge Fees:	JING NO. 2 FEES: ainage Fees: (See attached Spreadsheet) dge Fees: (See attached Spreadsheet) ERLING RANCH TOTAL: ad Creek Channel Improvements (DBPS Estimate – 2017 dollars)		\$ \$	583,073.57 176,647.86	
STERLING RANCH T	OTAL:				
Sand Creek Channel In	nprovements (DBPS Estimate – 2	017 dollars)	\$8,2	237,679.00	
0	orovements (DBPS Estimate – 20) E FEES - FILING NO. 2 - CON	,	\$1,9	904,456.00	

An Intergovernmental Agreement for the Establishment of The Sterling Ranch Storm-Water Escrow Fund and the Subdivision Improvements Agreement Sterling Ranch Filing No. 2, address the timing of drainage improvement and fees. The above cost estimate is for informational purposes only. Final drainage improvement costs will be determined post construction.

SUMMARY

Development of this site will not adversely affect the surrounding development per this final drainage report with no negative impact of the neighboring developments. The proposed drainage facilities will adequately convey, detain and route runoff from the tributary and onsite flows to the Sand Creek Drainage channel. Full Spectrum Detention and Water Quality Ponds will be used to discharge developed flows into Sand Creek per the Urban Drainage criteria flow rates, which are at or less than the historic flow. Care will be taken during construction to accommodate overland flow routes onsite and temporary drainage conditions. The development of the STERLING RANCH FILING NO. 2 project(s) shall not adversely affect adjacent or downstream property.

		STERLING RANCH FILING NO. 2 - TRA	CTS AND RIG	HT-OF-WAY	′ - DRAINAG	E &	BRIDG	E FEE	S (2018)				
TRACT/ROW	SIZE/ACRE	USE	MAINTENANCE	OWNERSHIP	% Impervious	DRA	NAGE FEE	FEE		BRI	DGE FEE	FEE	
А	0.391	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	29.0%	\$	17,197	\$	1,949.97	\$	5,210	\$	590.76
В	0.658	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	29.0%	\$	17,197	\$	3,281.53	\$	5,210	\$	994.17
с	0.845	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	24.0%	\$	17,197	\$	3,487.55	\$	5,210	\$	1,056.59
D	2.159	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	13.0%	\$	17,197	\$	4,826.68	\$	5,210	\$	1,462.29
E	19.674	ZERO LOT LINE FUTURE SINGLE FAMILY RESIDENTIAL LOTS	SR LAND, LLC	SR LAND, LLC	70.0%	\$	17,197	\$	236,833.64	\$	5,210	\$	71,751.08
F	1.231	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	4.0%	\$	17,197	\$	846.78	\$	5,210	\$	256.54
G	0.249	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	2.0%	\$	17,197	\$	85.64	\$	5,210	\$	25.95
н	0.062	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	2.0%	\$	17,197	\$	21.32	\$	5,210	\$	6.46
I.	0.5	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY/MAIL KIOSK	SRMD #1	SRMD #1	15.0%	\$	17,197	\$	1,289.78	\$	5,210	\$	390.75
J	0.379	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	30.0%	\$	17,197	\$	1,955.30	\$	5,210	\$	592.38
к	0.387	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	30.0%	\$	17,197	\$	1,996.57	\$	5,210	\$	604.88
49 LOTS	11.871	SINGLE FAMILY RESIDENTIAL LOTS	SRMD #1	SRMD #1	70.0%	\$	17,197	\$	142,901.91	\$	5,210	\$	43,293.54
ROW	4.734	ROAD RIGHTS OF WAY (STERLING RANCH ROAD)	EPC	EPC	95.0%	\$	17,197	\$	77,340.07	\$	5,210	\$	23,430.93
ROW	3.525	ROAD RIGHTS OF WAY (MARKSHEFFEL ROAD)	EPC	EPC	95.0%	\$	17,197	\$	57,588.45	\$	5,210	\$	17,446.99
ROW	2.979	ROAD RIGHTS OF WAY (VOLLMER ROAD, ULTIMATE)	EPC	EPC	95.0%	\$	17,197	\$	48,668.37	\$	5,210	\$	14,744.56
								DI	RAINAGE FEE				BRIDGE FEE
	49.644	TOTAL AREA				TOT	AL FEES	\$	583,073.57			\$	176,647.86

*SRMD#1 = STERLING RANCH METROPOLITAN DISTRICT NO. 1

REFERENCES

- 1.) "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I & II".
- 2.) "Urban Storm Drainage Criteria Manuals, Volumes 1-3"
- 3.) NRSC Web Soil Survey Map for El Paso County. http://websoilsurvey.nrcs.usda.gov
- 4.) Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Effective date March 17, 1997.
- 5.) "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996
- 6.) "Preliminary Drainage Report for Sterling Ranch-Phase 1", dated May 2015, by M&S Civil Consultants, Inc.
- 7.) "Sterling Ranch-Phase 1 Offsite Grading, Early Grading & Erosion Control Plans", prepared by M&S Civil Consultants, Inc., dated November 2015
- 8.) "Sterling Ranch-Phase 1 Onsite Grading, Early Grading & Erosion Control Plans", prepared by M&S Civil Consultants, Inc., dated November 2015
- 9.) "Final Drainage Report for Barbarick Subdivision, Portions of Lots 1, 2 and Lots 3 & 4, by Matrix Design Group, dated June 2016.
- "Preliminary and Final Drainage Report, Barbarick Subdivision, A Replat of Lot "D", McClintock Subdivision", El Paso County, Revised August 15, 2007, prepared by Oliver E. Watts, Consulting Engineer, Inc.
- 11.) "Master Development Drainage Plan For Sterling Ranch", prepared by M&S Civil Consultants, Inc., dated July 2010 (Draft not approved)
- 12.) "Technical Memorandum Sand Creek Channel Study (North of Woodmen Road) Hydrologic Analysis" (TM-SCCS) prepared by M&S Civil Consultants, Inc., dated July 2016
- 13.) "Master Development Drainage Report for Sterling Ranch Filing Nos. 1&2 and Final Drainage Report for Sterling Ranch Filing No. 1", prepared by M&S Civil Consultants, Inc., dated April 2017

APPENDIX

FINAL DRAINAGE REPORT

BARBARICK SUBDIVISION, PORTIONS OF LOTS 1, 2 and LOTS 3 & 4 El Paso County, Colorado

Sand Creek Drainage Basin

Prepared for: El Paso County Development Services Engineering Division

On Behalf of: Wykota Construction 430 Beacon Light Road, Suite 130 Monument, CO 80132

435 Research Parkway, Suite 300 Colorado Springs, CO 80920 (719) 575-0100 Fax (719) 572-0208

June 6, 2016

15.789.001

June 2016

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said reports in conformity with the master plan of the drainage basin.

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

	Wykota Construction	_
-	Business Name	
ву:	Kallon	
	Justin Ballard	_
Title:	President	_
Address:	430 Beacon Light Road, Suite 130	

El Paso County:

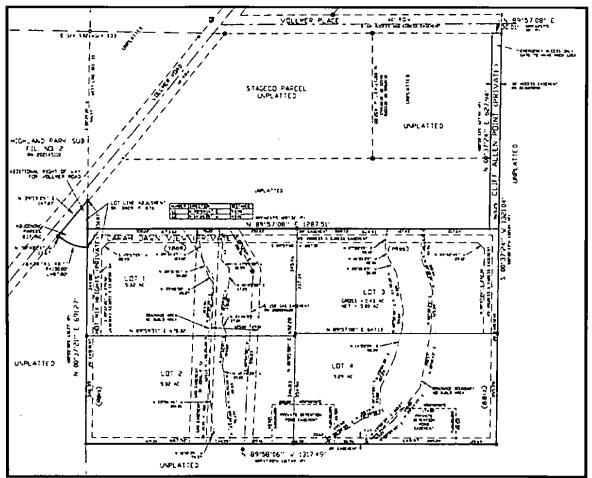
Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

JUNE 2014 Print Name - JURE JENNIELE IRVINEATE

County Engineer / ECM Administrator

Monument, CO 80132

June	2016
UMAC	2010

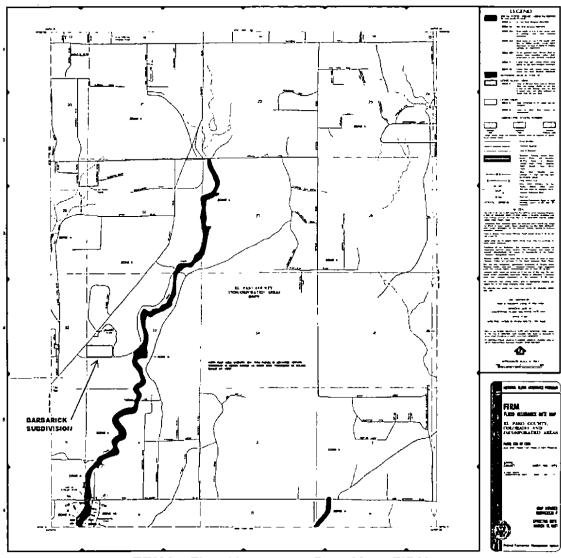

June 2016	Barbarick Subdivision – Lots 1, 2, 3 and 4 - Final Drainage Report
	TABLE of CONTENTS
	GENERAL LOCATION AND DESCRIPTION
	Background
	Location
	Property Description
	Soil Description
	HYDROLOGIC AND HYDRAULIC ANALYSIS
	Basin Description
	Design Criteria
	EXISTING DRAINAGE DISCUSSION
	EXISTING DRAINAGE DISCUSSION (continued)
	PROPOSED DRAINAGE DISCUSSION
	RECOMMENDED DESIGN

<u>Surrounding Developments.</u> The following are the existing or planned general land uses adjacent to the property.

<u>North:</u> Un-platted parcels that contain commercial/industrial uses. Carah Dawn View is on the north side of the property.

<u>East and South</u>: Although this adjacent area is currently undeveloped, the Sterling Ranch Master Planned area is in the process of developing this area (future single family development).

<u>West:</u> This is an undeveloped, un-platted lot. Across Vollmer Road is a low density single family development (Highland Park, Fil 2).



Barbarick Subdivision Plat

Property Description

- <u>Major Drainage Way</u>: The entire site is located within the Sand Creek Drainage Basin. The Main Fork of Sand Creek is located about 1500 feet to the east. The site currently drains to the south into natural drainage ways that direct runoff to Sand Creek. The Sand Creek Drainage Basin is located in the northeastern portion of the City of Colorado Springs and El Paso County. The general drainage pattern of this larger basin flows to the southwest and ultimately feeds into Fountain Creek.
- 2. Project Site Area: This site is approximately 21.37 acres in area.
- 3. Ground Cover: This site is covered with native grasses.
- 4. <u>General Topography:</u> The site drains from north to the south with average grades ranging from 1% to 5%. There are two natural drainage ways that drain through these lots.
- 5. <u>Irrigation Facilities</u>: No known functioning irrigation facilities are located on the site. A small detention pond does exist to the northeast of the property; however, the outfall of this pond will be re-routed in order to direct runoff around the perimeter of the proposed development.
- 6. <u>Utilities:</u> Utilities in the project area include; but are not limited to, telephone, high pressure gas/petroleum and electrical lines. Water & wastewater service is provided through wells & individual septic systems. These utilities will be examined on a case-by-case basis and avoided where feasible, or they will be relocated. Any relocation of these utilities will be coordinated with the respective utility contact. Utility services will be extended into the site as necessary. There are large gas easements that run north-south through these lots. These easements contain one 6 inch and two 20 inch high pressure gas/petroleum pipelines. These Utility Easements will be no-build zones and grading will be fill only.
- 7. <u>On-Site Drainage Ways:</u> The plat shows two "Drainage Boundary No Build Area(s)" draining through the subdivision. These are not regulated FEMA floodplains. The site development will include the installation of pass through culverts for offsite flows, and regraded. An amended plat has been completed for the removal of the no build areas, identification of new drainage easements, and relocation of water quality ponds.

 Floodplain Statement: Review of the Flood Insurance Rate Map (FIRM) 535 (08041C0535 F), effective date March 17, 1997, published by the Federal Emergency Management Agency (FEMA) reveals that no portion of Barbaric Subdivision lie within any designated 100-year floodplain.

FEMA - Flood Insurance Rate Map (FIRM)

HYDROLOGIC AND HYDRAULIC ANALYSIS

Basin Description

The Barbarick Subdivision is located within the Sand Creek Drainage Basin. The tributary area that drains through the Barbarick Subdivision is developed, which includes large lot single-family parcels and some commercial/industrial land uses. Subbasins were delineated using surveyed information, proposed contours and field observations. See the Drainage Basin Maps in the Appendix.

This study is in conformance with the following two approved Drainage Reports:

- 1. Preliminary Drainage Report for Sterling Ranch-Phase 1, Sand Creek Drainage Basin, M & S Civil Consultants, Inc., May 2015 AKA: "SR-PDR"
- Woodmen Storage Final Drainage Report, El Paso County, Calibre Engineering, Inc., July 2004; Revised February, 2010; Revised May, 2010; Revised July, 2010
 AKA: "WS-FDR"

This study is *not* in conformance with the following approved Drainage Report due to changes from the approved recent reports cited above that supercede the original report:

 Preliminary and Final Drainage Plan and Report, Barbarick Subdivision a Replat of Lot "D", McClintock Subdivision, El Paso County, Oliver E. Watts, Consulting Engineer, Inc., August 15, 2007
 AKA: "BS-FDR"

Design Criteria

This report has been prepared in accordance to the criteria set forth in the *City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II*, dated November 1991 including subsequent updates. El Paso County has also adopted Chapter 6 and Section 3.2.1 of Chapter 13 in the *City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II*, dated May 2014 (Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008). In addition to the ECM, the *Urban Storm Drainage Criteria Manuals, Volumes 1-3*, published by the Urban Drainage and Flood Control District, (Volumes 1 & 2 dated January 2016, Volume 3 dated November 2010 with some sections update November 2015), has also been used to supplement the ECM.

Hydrologic Criteria

Where:

Hydrologic analyses for the site have been completed using the Rational Method for onsite basins. The SCS Method was used in the referenced studies for the larger off-site basins (greater than 100 acres). The design storms for each method are:

Initial Storm = 5-Year Storm

Major Storm = 100-Year Storm

Rational Method: The Rational Method will be utilized to evaluate smaller basins (under 100 acres). This methodology is used for the design of localized facilities such as inlets, storm drain, drainage swales and detention:

Rational Method peak flow rate equation (cfs): Q=C*I*A

Q = Maximum runoff rate in cubic feet per second (cfs)

C = Runoff coefficient

I = Average rainfall intensity in inches per hour

A = Area of drainage sub-basin in acres

Runoff Coefficient

Rational Method coefficients are derived from UDFCD Vol 1 (Chapter 6 – Runoff, 2016-01 Rev) for the various land uses, including parking areas, drives, walks, roofs, lawns and open space areas. The Runoff Coefficients associated with these land uses also have a corresponding impervious value that is used in the detention calculations. The Rational Method Coefficients used in this study include:

<u>Land Use or Surface Type</u>	<u>% Impervious</u>	Runoff Coefficient (B Soils)
		<u>(5-Year) (100-Year)</u>
Greenbelts/Agricultural	2%	.03 .46
Gravel (packed)	40%	.37 .65
Drives & Walks	90%	.84 .90

.

.

Land Use or	Percentage Imperviousness
Surface Characteristics	(%)
Business:	
Downtown Areas	95
Suburban Areas	75
Residential:	· · · · · · · · · · · ·
Single-family	
2.5 acres or larger	12
0.75 – 2.5 acres	20
0.25 - 0.75 acres	30
0.25 acres or less	45
Apartments	75
Industrial:	
Light areas	80
Heavy areas	90
Parks, cemeteries	10
Playgrounds	25
Schools	55
Railroad yard areas	50
Undeveloped Areas:	·
Historic flow analysis	2
Greenbelts, agricultural	2
Off-site flow analysis (when land use not defined)	45
Streets:	
Paved	100
Gravel (packed)	40
Drive and walks	90
Roofs	90
Lawns, sandy soil	2
Lawns, claycy soil	2

Table 6-3. Recommended percentage imperviousness values

,

Total or Effective % Imperviousness	NRCS Hydrologic Soil Group A								
	2-vr 5-vr 10-yr 25-yr 50-yr 100-yr								
2%	0.02	0.02	0.02	0.02	0.02	0.17			
5%	0.04	0.05	0.05	0.05	0.05	0.19			
10%	0.09	0.09	0.09	0.09	0.1	0.23			
15%	0.13	0.14	0.14	0.14	0.14	0.28			
20%	0.18	0.19	0.19	0.19	0.19	0.32			
25%	0.22	0.23	0.24	0.24	0.24	0.36			
30%	0.27	0.28	0.28	0.28	0.29	0.4			
35%	0.31	0.33	0.33	0.33	0.33	0.44			
40%	0.36	0.37	0.38	0.38	0.38	0.48			
45%	0.4	0.42	0.42	0.42	0.43	0.52			
50%	0.45	0.47	0.47	0.47	0.48	0.56			
55%	0.49	0.51	0.52	0.52	0.52	0.6			
60%	0.53	0.56	0.56	0.57	0.57	0.64			
65%	0.58	0.6	0.61	0.61	0.62	0.68			
70%	0.62	0.65	0.66	0.66	0.67	0.72			
75%	0.67	0.7	0.71	0.71	0.71	0.76			
80%	0.71	0.74	0.75	0.76	0.76	0,8			
85%	0.76	0.79	0.8	0.8	0.81	0.84			
90%	0.8	0.84	0.85	0.85	0.86	0.88			
95%	0.85	0.88	0.89	0.9	0.9	0.92			
100%	0,89	0.93	0.94	0.94	0.95	0.96			
Total or Effective % Imperviousness		NRCS	Hydrolog	gic Soil G	roup B				
2%	0.02	0.02	0.14	0.24	0.38	0.46			
5%	0.04	0.05	0.17	0.27	0.39	0,48			
10%	0.09	0.09	0.21	0.3	0.42	0.5			
15%	0.13	0.14	0.25	0.34	0.45	0.53			
20%	0.18	0.19	0.29	0.37	0.48	0.55			
25%	0.22	0.23	0.33	0.41	0.51	0.58			
30%	0.27	0.28	0.37	0.44	0.54	0.6			
35%	0.31	0,33	0.41	0.48	0.57	0.63			
40%	0.36	0.37	0.45	0.51	0.6	0.65			
45%	0.4	0.42	0.49	0.55	0.63	0.67			
50%	0.45	0.47	0.53	<u>0.58</u>	0.66	0.7			
55%	0.49	0.51	0.57	0.62	0.69	0.72			
60%	0.53	0.56	0.61	<u>0.65</u>	0.72	0.75			
65%	0.58	0.6	0.65	0.69	0.75	0.77			
70%	0.62	0.65	0.69	<u>0.72</u>	0.78	0.8			
75%	0.67	0.7	0.73	0.76	0.81	0.82			
80%	0.71	0.74	0.77	0.79	0.84	0.85			
85%	0.76	0.79	0.81	0.83	0:87	0.87			
90%	0.8	0.84	0.85	0.86	0.89	0.9			
95%	0.85	0.88	0.89	0.9	0.92	0.92			
100%	0.89	0.93	0.94	0.94	0.95	0.94			

Table 6-5. Runoff coefficients, c

Time of Concentration

The time of concentration (T_c) for the Rational Method was calculated by methods derived from the UDFCD. The time of concentration consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an initial time or overland flow time (t_i)

plus the time of travel (t_t) in concentrated form, such as a swale or drainageway. A minimum T_c of 5 minutes and 10 minutes were used for the final calculations in developed and undeveloped conditions, respectively.

Storm Drain Systems

All proposed storm drain infrastructure will be located within private property and will be owned and maintained by the property owner.

The storm drain hydraulics is analyzed using *Bentley's* <u>FlowMaster</u>, CulvertMaster & <u>StormCAD</u> design software. Colorado Department of Transportation (CDOT) type inlets will be used where necessary.

The designated outfall locations for the proposed on-site storm drains are the natural drainage ways at the south end of the property. The proposed storm drain infrastructure will be discussed in more detail below.

EXISTING DRAINAGE REPORT DISCUSSION

The approved Barbarick Subdivision Final Drainage Report (BS-FDR) and the approved Woodmen Storage Final Drainage Report (WS-FDR) both apply to the existing general drainage conditions for this site. The off-site basins and general flow patterns in the BS-FDR and WS-FDR still apply. Excerpts from these reports are provided below for reference.

On-site and Off-Site Basin Descriptions from the BS-FDR and WS-FDR:

The following summary is taken from the Barbarick Subdivision Final Drainage Report (BS-FDR):

Off-site:

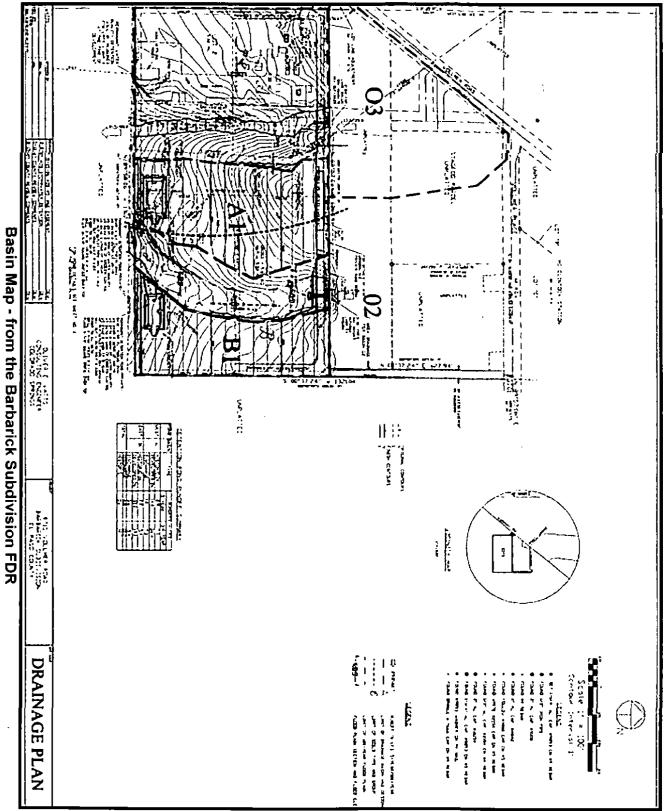
Off-site Basin O3 This basin encompasses approximately 7.03 acres and represents the area north and northwest of Lot 1. This basin drains into Lot 1 through a series of (2) 24" CMP pipes which control the flow of 14/36 cfs in the 5/100 year storm events.

Lots 1 & 2 – these lots are considered fully developed lots and drain north to south collecting at the existing concrete settling pond on Lot 2. This developed flow (20.8 cfs /57.2 cfs) combines with Off-site Basin O3 to total 30.5 cfs / 80.8 cfs in the greenbelt offsite south of Lot 2. At the time of development permit for these developed lots, a detention pond for water quality will be required, probably in the area of the existing concrete settling pond, that will accommodate Lots 1 and 2 west of the gas easement and flood plain area.

On-site:

On-site Basins A1 and B1 (for portions of Lots 1 and 2, and Lots 3 & 4) These basins encompass approximately 5.3 & 3.8 acres and represent the buildable portions of the property as described in the BS-FDR (see Basin Map from BS-FDR below). These basins were slated (in the BS-FDR) to drain into small detention ponds that would release to historic rates. These discharge rates were calculated to be 2.9/7.3 and 2.2/5.4 cfs (5/100 year). The BS-FDR does not include the drainage ways in any hydrology calculations due to the fact that this no-build drainage area was not planed on being developed. This drainage way allowed off-site flows from O1+O2 to pass-through Lots 3 & 4. The drainage way to the west of A1 passes through flows from offsite O3. Since the approval of this report, offsite tributary basins O1+O2 have been changed, and the development of the property encompasses the whole property, including the previously determined no-build area.

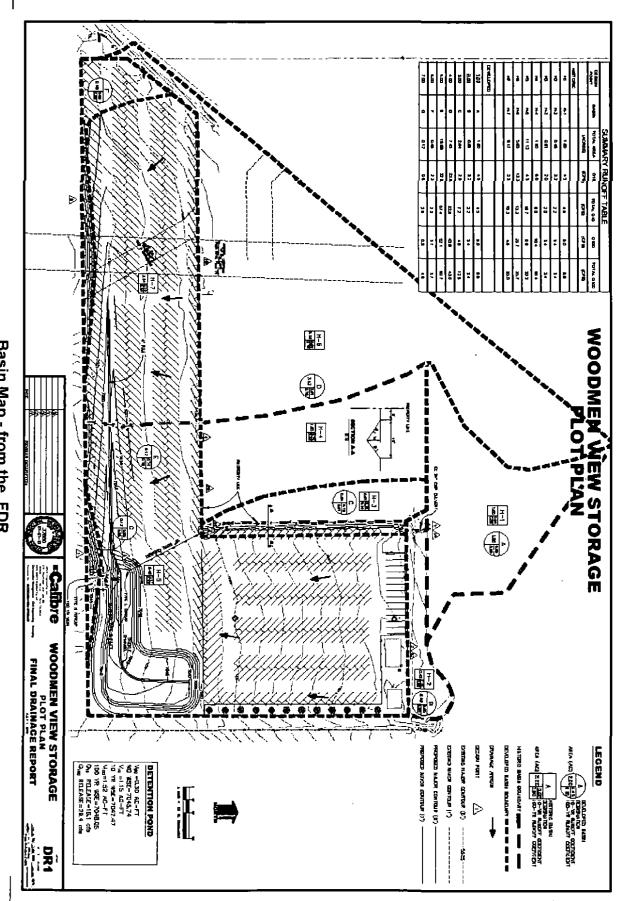
The following summary is taken from the Woodmen Storage Final Drainage Report (WS-FDR):


Off-site:

Design Point 5 - This design point encompasses approximately 19.69 acres and represents the tributary area north of the project site. This basin drains into a proposed detention pond near the northeast corner of the property and generates 57.4/92.7 cfs in the 10/100 year storm events, historic flows are 16.7/30.3 cfs. The releases rates from this pond are lower than historic 16.1 cfs/29.4 cfs in the 10/100-year storm events. These flows are conveyed along the east property line of the site and into the eastern natural drainage way that leaves the property to the south.

Review of the Sterling Ranch Preliminary Drainage Report (SR-PDR):

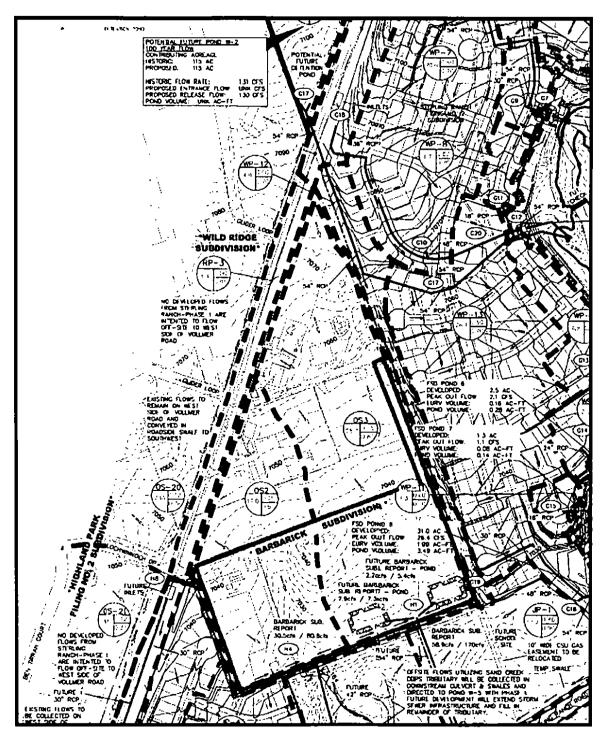
The Barbarick Subdivision is surrounded on three sides by the planned Sterling Ranch Development. The approved Sterling Ranch PDR was prepared by M&S Civil Consultants in May of 2015. This Sterling Ranch PDR re-analyzes runoff from Barbarick Subdivision and plans for storm drain improvements to convey this runoff to a full spectrum detention and water quality pond to be located down stream of Barbarick Subdivision as part of Sterling Ranch Phase One.


In summary; the Sterling Ranch PDR is planning on receiving 73.3/139.2 cfs (5/100 year) from Basin OS3. A 54" RCP is planned to convey this flow through Sterling Ranch. The Sterling Ranch PDR is planning on receiving 45/86 cfs (5/100 year) from OS2, encompasses Lots 1 & 2 and OS3 encompasses Lots 3 & 4 and the Basin north of Lot 3. A 48" RCP is planned to convey this flow through Sterling Ranch. The cumulative runoff from the northerly property and Lots 1 through 4 does not exceed the anticipated rates in the SR-PDR.

,

Page 12

Page 12


Basin Map - from the FDR

Page 13

Page 13

	STERLING RANCH PHASE 1
	PROPOSED - DRAINAGE MAP (IVERALL)
	PROJECT NO. 09-001 SCALE DATE: 5/0815
102 L. PRES PEAK AVE. STE 306 COLORADO SPRINGS, CO 80903 (719) 955-5485, FAX (719) 448-8427	DRAMM BY: DLM VERT: N/A SHEET 1 () D2

Basin Map from the Sterling Ranch PDR

Matrix Design Group, Inc., 2016@

STORM SEV	VER ROUTING	SUMMARY
DESIGN POINT	C.	0.00
G4A	640	1584
C5	78	146
30	32	66
G7	82	157
G8	20	42
Ca	14	29
G10	47	97
GH	4	9
G12	72	144
G13	12	25
G14	7	14
G15	3	7
Ç16	60	125
G17	8C	130
G18	29	54
G19	11	23
C70	69	138
G21	1044	1767
G22	5	10
G23	64	133
G25	1056	1795
H1	73	139
H2	46	92
H3	103	200
H4	45	80
H5	30	61
H6	68	134
118	16	29
HII	22	45
H12	31	62
H13	57	118
H14	196	382
1116	31	65
H17	26	54
H18	224	441

Flow Summary from the Sterling Ranch PDR

EXISTING SITE DRAINAGE DISCUSSION:

On-Site (Existing Conditions):

On-site Basin H1 This basin covers approximately 10.7 acres and represents the majority of Lots 3 & 4. This basin is modeled as good condition undeveloped rangeland. This drains to the south and generates 2.6/23.7 cfs in the 5/100 year storm events.

On-site Basin H2 This existing basin covers approximately 3.70 acres and represents the eastern half of Lots 1 & 2.This basin is modeled as good condition rangeland and generates 0.9/8.2 cfs in the 5/100 year storm events.

On-site Basin H3 This existing basin covers 1.1 acres and represents the a small portion of lots 3 & 4 that drains south easterly. This basin is modeled as good

condition rangeland and generates 0.3/2.7 cfs in the 5/100 year storm events. This basin sheet flows offsite where it is captured in a small swale between the site and existing roadway and conveyed westerly to the low point south of the outfall of Basin H1.

These existing basins encompass the previously unmodelled drainage area from the BS-FDR. The total historic flow from the site is 3.8/34.6 cfs in the 5/100 year storm events. The following design point table is for combined allowable discharge rates from the property at respective locations including historic flows from the tributary upstream basins:

Design Point	5/100 Release	Comments
DP H1	16.7*/30.3 cfs	DP H5 WS-FDR - * is 10year
DP H2	13.7/35.5 cfs	O3 BS-FDR
DP H3	56.7 cfs	DPH1+H1+H3 (100-year)
DP H4	14.6/43.7 cfs	DPH2 + H2

Design Point H3 will release a flow lower than previously anticipated within the BS-FDR (52.9/170 cfs). It is the introduction of development within the Sterling Ranch site that has eliminated offsite flows from BS-FDR Basin O1 that significantly changed the drainage pattern. The historic release is now contained solely to the historic flows from WS-FDR design point H5 and the proposed onsite historic flows.

Design Point H4 will combine with the western half of Lots 1&2. Per the BS-FDR the combined portions of Lots 1&2 and O3 to release a combined flow of 30.5/80.8 cfs downstream. The flow anticipated in the BS-FDR appears consistent with the smaller basin analysis of this report and should be used for downstream analysis.

PROPOSED DRAINAGE DISCUSSION

Introduction

The proposed site will be developed differently than anticipated in the previous BS-FDR. The previous plan for this site maintained the existing native drainage way down the middle of Lots 1 & 2 and 3 & 4, thereby splitting the buildable area into the outer thirds of these lots. The native drainage way and "Drainage Boundary – No Build Area" (as shown on the Plat & FDR) will be eliminated with the proposed development. The proposed site and proposed drainage improvements will allow this native drainage way to be eliminated while maintaining the pass through of major flows. These modifications to the site and to the drainage patterns will allow a larger buildable area.

The existing retention pond, located just north of Lot 3, will be modified by others to become a water quality/detention pond pursuant to the WS-FDR. A new outlet works and a storm drain pipe will convey runoff from this detention pond (16.1/29.4 cfs in the 10/100 year storm events) discharging at the property line. This development is proposing a CDOT Type D inlet to capture the discharged flow and pipe it downstream along the east side of Lots 3 & 4 to discharge into the proposed Full Spectrum Extended

Detention Basin (EDB) in Lot 4. The EDB is designed to pass through, and not treat or detain, these offsite flows.

A new EDB will be provided in Lot 4. This detention basin will provide water quality treatment for portions of Lots 1 & 2, and Lots 3 & 4. In the approved Barbarick FDR there were to be two separate ponds. The new site development has been planned for a single pond to treat the developed flows. Tributary water sheet flow across the site to shallow swales that will direct runoff to the proposed EDB. The EDB will have a forebay at the confluence of the two pipe outfalls, a concrete trickle channel that terminates at a micropool structure, and is designed to treat the WQCV, EURV and 100-year detention.

A second SFB water quality with detention catchment basin will be provided at the south east/downstream end of Lot 2. This SFB will not have an outlet structure to release flows due to requirements from the gas main utility ownership of no structure to be built within the existing easements. There will be a small spillway to allow the release of large storm events. Runoff will be directed to the proposed SFB where possible.

Flow from the area north of Lot 1 (Basin O3) will pass through the site via two 24" culverts and will be discharged at the southern boundary of Lot 2, as historically done. An earthen channel will run north-south along the east side of the existing Lot 1 and Lot 2 developments. The channel is approximately 1-ft deep with 4:1 side slopes and will capture and convey any westerly flowing nuisance runoff from the proposed improvements to the sand filter detention pond as discussed in the original Barbarick Subdivision FDR, instead of the existing Lot 1 and 2 improved areas.

Runoff from the property is at historic flows and will not exceed the anticipated runoff as determined in the Sterling Ranch PDR. This is described in more detail below. The Sterling Ranch PDR includes an analysis of future drainage conditions and includes recommended infrastructure to convey this runoff. Since the Sterling Ranch surrounds the Barbarick Subdivision, it is appropriate to include the recommendations from the SR-PDR in this Proposed Drainage Discussion.

Proposed On-Site Basin Descriptions: (See Basin Map in the pocket)

On-site Basin D1 (D for Developed condition) - This developed basin encompasses approximately 11.4 acres - the majority of Lots 3 & 4 and small portions of Lots 1 & 2. This basin generates 19.7/56.0 cfs in the 5/100 year storm events and sheet flows into shallow swales that direct the runoff into the proposed EDB to be located in Lot 4. Lot 3 is based on Owner provided information for a gravel parking/vehicle storage area, and Lot 4 has been based on proposed building site improvements as identified in the rezoning application. Any changes to the land use will require an update to the Final Drainage Report; much like the original Barbarick Subdivision Final Drainage Report is being updated with the grading and Lot 4 development application.

On-site Basin D2 This undeveloped basin encompasses 1.2 acres and represents the south portion of Lot 4, below and south of the two detention ponds. This basin is historic in nature and generates 0.8/3.0 cfs and drains directly into a road side ditch within the Sterling Ranch development.

On-site Basin D3 This developed basin encompasses approximately 3.13 acres - the remaining proposed infill portions of Lots 1 and 2 (east of the currently built out Lots 1&2). As discussed in the original Barbarick Subdivision FDR, development of these areas will require a detention water quality pond. This basin generates 4.1/11.6 cfs in the 5/100 year storm events and sheet flows southerly to the proposed SFB located at the southern-most portion of Lot 2.

The following design point table is for combined allowable discharge rates from the property at respective locations including historic flows from the tributary upstream basins:

Design Point	5/100 Year	Comments
DP D1	85.4 cfs (100)	D1+O2 Pass Through
DP D2	48.9 cfs (100)	Pond Release+D2
DP D3	4.1/11.6 cfs	D3
DP D4	13.8/39.1 cfs	Pond Release +03 Pass Through

All release flows downstream are at or below historic levels.

RECOMMENDED DESIGN

Off-site Detention Facility:

This shallow pond will be modified for the proposed development to the north as part of the WS-FDR. This will eliminate the retention properties in this pond, will provide detention for off-site flows, will provide a suitable outlet structure, and will remove accumulated sediment. The modified pond will store up to 1.52 acft (66,211 cuft) to the principal spillway (elevation = 7048.05). A summary of flows into and out of this pond:

Off-site Pond Flow Summary (cfs)	<u>5 year</u>	<u>100 year</u>
Proposed Flow into offsite pond (Basin G/DP 5)	<u>57.4</u>	<u>92.7</u>
Increase in peak flow due to development	46.2	51.3
Proposed flow out of modified pond	<u>16.1</u>	<u>29.4</u>
Reduction in peak flow	41.3	63.3

For complete pond design, refer to the WS-FDR.

Proposed 30" HDPE Storm Drain from Modified Off-site Detention Pond:

This storm drain will capture flows from the discharged offsite pond and route them along the perimeter of the property daylighting into the EDB in Lot 4. 4' precast concrete manholes will be used for maintenance access at all bends and grade breaks. A grouted riprap forebay will help dissipate energy at the outlet of the pipe, and allow for settling prior to entering the pond. See the Appendix for the hydraulic analysis of this storm drain (StormCAD).

In the event of an emergency and the offsite pond fails, developed flow (Q100=93.0 cfs) will overtop the pond and be collected between the proposed roadway and pond berm.. Flow not captured by the proposed inlet will bypass easterly to the proposed offsite swale between this property and the Sterling Ranch property and conveyed southerly.

Proposed 18" HDPE Storm Drain Culvert:

A 18" HDPE culvert will convey collected runoff from Lot 3 (Developed Q100 = 15.90cfs) through Lot 4 to the FSD Pond and join sheet flow from Lot 4 and the 30" piped bypass flow from basin O2. This culvert will be privately owned and maintained by the property owners. See the Appendix for open channel calculations.

On-site FSD - EDB Pond in Lot 4 (Basin D1):

This On-site Full Spectrum Extended Detention Basin Pond provides water quality, EURV and 100-year detention. Onsite flows will combine with the 30-inch bypass flows from the north and pass through the EDB. The pond has been sized for the release of historic flows from Basin D1, as well as provides capacity for pass through conveyance of historic flows from the north.

The following table outlines the onsite existing and developed flow, required detention, and modifications to required detention utilizing the upstream over detention.

On-site Basin Flow Summary (cfs) Existing On-site Flow at Pond	<u>5 year</u> 2.2	<u>100 year</u> 16.5
Developed On-site Flow (Basin D1) Increase in peak flow due to development	<u>19.7</u> 17.5	<u>56.0</u> 39.5
Proposed Pass Through Flow from Off-Site Pond	<u>16.1*</u>	<u>29.4</u>
Proposed total flow out of EDB pond	<u>0.3</u>	<u>45.9**</u>

*Includes 10 year from WS-FDR **Includes Pass Through flow of 29.4 cfs

Ρ

Water Quality Benefits:

Stormwater from Lots 3 & 4, and portions of 1 &2 will drain directly to the proposed Full Spectrum Extended Detention Pond. This pond will be privately maintained and provide water quality treatment to approximately 11.4 acres of developed land.

The proposed Water Quality facility is sized using the methods derived from the UDFCD Stormwater FSD Design Workbook (UD-FSD 1.11) (see Appendix). The Water Quality Capture Volume (WQCV) will be provided in this EDB, where the "initial flush" of storm water will be drained over a 40-hour time period.

The impervious area ratio is used in the UDFCD workbook to calculate the WQCV. An adjusted impervious ratio of 57% to correlate with the land use charts and Runoff Coefficients (provided above) is being utilized for the sizing of the facility.

The EDB Pond will have a a forebay, concrete trickle channel and micro-pool within the outlet structure (per UDFCD). This outlet structure will have a bar screen and an orifice plate containing 3 rows outlets (1.55 sq in orifices for the first two, and 3.8 sq in for the last row). The EURV has been designed to an elevation of 7021.50. The top of the inlet will have a grate to allow flows that exceed the WQCV and EURV to drain through the outlet works without overtopping the spillway, with an internal orifice plate of 2.37-ft diameter constricting flows to historic release rates (Q100 _{Onsite} = 16.5 cfs + Q100_{bypass} = 29.4 Total Release = 45.9 cfs).

The EDB pond can store up to 64,904 cuft (1.49 acft) to the principal spillway (7023.20). The pond bottom elevation will be at 7018.50 and the top of the embankment will be at elevation 7025.10. Should the outlet works become fully blocked; the 36' spillway will have the capacity to pass the combined 100 year peak developed runoff and northerly bypass with a flow depth = 0.90' (55.0 + 29.4 = 84.4 cfs) maintaining 1-ft of freeboard.

Summary results include:

- WQCV Volume = 0.203 ac-ft depth 1.53-ft (40 hour release)
- EURV Volume Stored = 0.677 ac-ft at depth 2.98 ft (72 hour release)
- 5 Year Volume Stored = 0.673 ac-ft at depth 2.98 ft (72 hour release)
- 100 Year Volume Stored = 1.261 ac-ft depth 4.26-ft (77 hour release)
- Emergency Spillway Volume at Crest = 1.49 ac-ft at depth 4.7ft.

A 30" HDPE pipe will drain this outlet structure. A Low-Tailwater basin will be provided at the outlet for energy dissipation. This storm drain will daylight into the open channel just south of Lot 4 near the entrance of an existing 12" CMP. This existing 12" CMP drains under a dirt road. This dirt road will be eliminated upon development of the Sterling Ranch. Due to the limited capacity of this existing 12" CMP, runoff in excess of 5.7 cfs will overtop this dirt road, creating tail water to 7018.0. See the Appendix for the calculation results (CulvertMaster).

On-site Sand Filter Basin w/ Detention in Lot 2 (Basin D3):

A sand filter basin detention pond is being proposed to treat runoff from the proposed gravel parking portions of Lots 1 and 2 prior to discharging from the site. Due to the high pressure gas mains within this basin, grading is limited to fill only and no structures are allowed within the gas easement, so this pond will have underdrain design with partial infiltration and a controlled overflow design for the 100-year event.

The following table outlines the onsite existing and developed flow, required detention, and modifications to required detention utilizing the upstream over detention.

On-site Basin Flow Summary (cfs)	<u>5 year</u>	<u>100 year</u>
Existing On-site Flow at Pond	0.5	4.2
Developed On-site Flow (Basin D3) Increase in peak flow due to development	<u>4.1</u> 3.6	<u>11.6</u> 7.4
Proposed total flow out of Sand Filter pond	<u>0.1</u>	<u>3.6</u>

Water Quality Benefits:

Stormwater from portions of 1 &2 will drain directly to the proposed Sand Filter Pond. This pond will be privately maintained and provide water quality treatment to approximately 3.13 acres of developed land.

The proposed Water Quality facility is sized using the methods derived from the UDFCD Stormwater Detention Design Workbook (UD-Detention 3.04) (see Appendix). The Water Quality Capture Volume (WQCV) will be provided in this SFB, where the "initial flush" of storm water will be drained over a 12-hour time period.

The impervious area ratio is used in the UDFCD workbook to calculate the WQCV. An adjusted impervious ratio of 57% to correlate with the land use charts and Runoff Coefficients (provided above) is being utilized for the sizing of the facility.

The sand filter will contain a 4" underdrain beneath 18" of CDOT Class C material. The underdrain will contain a 1.27" diameter orifice to control the outflow time in accordance with UDFCD.

The SFB pond can store up to 16,247 cu ft (0.373 acft) to the principal spillway (7025.50). The pond bottom elevation will be at 7023.00 and the top of the embankment will be at elevation 7027.37. Because the spillway acts as the 100-year control structure and notched weir design is proposed. The spillway is 5-ft wide for a depth of 10-inches for the release of the 100-year flow (3.6 cfs which is less than the 4.2 historic) then the spillway widens to 10ft for a depth of 18-inches which will have the capacity to pass the combined 100 year peak developed runoff (11.6cfs) with a flow depth = 0.5' maintaining 1-ft of freeboard.

Summary results include:

- WQCV Volume =0.039 ac-ft depth 0.37-ft (12 hour release)
- EURV Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 5 Year Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 100 Year Volume Stored = 0.394 ac-ft depth 2.83-ft (68 hour release)

Proposed (2) 24" HDPE Storm Drain Culvert:

Two 24" pipes will convey offsite flows through Lots 1 and 2 discharging to the south. The culverts will connect to a pair of existing 24" culverts entering the property and will discharge to a riprap settling basing prior to the released downstream. These culverts will be privately owned and maintained by the property owners. See the Appendix for the hydraulic analysis of this storm drain (CulvertMaster). Flow from these pipes will join the flow from the Sand Filter and discharge at Design Point 4 (combined 39.4 cfs in the 100-year event). Per the BS-FDR this flow combines with the westerly portions of Lots 1 & 2 offsite for a total release of 30.5/80.8 cfs in the 5/100 year events.

As stated above in the summary from the Sterling Ranch PDR, the anticipated runoff from this proposed discharge point (aka: SR-PDR Basin H4) is 30.5/80.8 cfs (5/100 year) due to the large pass through flow. A 42" RCP is planned to convey this flow through Sterling Ranch.

DRAINAGE, BRIDGE, AND POND FEES

This subdivision has already been platted. No additional Drainage, Bridge or Pond fees are required.

MAINTENANCE

All proposed storm drain infrastructure will be located within private property and will be owned and maintained by the property owner. The detention pond will be owned and maintained by the property owner and will require maintenance consisting of routine inspections, removal of debris from the detention area, and bi-annual inspections for hydraulic performance of the basin. Refer to the DCM for exact maintenance criteria and for other Best Management Practices (BMP).

EROSION CONTROL

Best Management Practices (BMPs) will be utilized to minimize erosion during construction and will be shown on the construction drawings. These will be in accordance with will be utilized as deemed necessary by the contractor and/or engineer. The contractor shall minimize the amount of area disturbed during all construction activities.

In general, the following shall be applied in developing the sequence of major activities;

- 1. Install down slope and side slope perimeter BMPs <u>before</u> the land disturbing activity occurs.
- 2. Do not disturb area until it is necessary for the construction activity to proceed.
- 3. Cover or stabilize exposed areas as soon as possible.
- 4. Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- 5. The construction of permanent filtration BMPs should wait until the end of the construction project when drainage areas have been stabilized.
- 6. Do not remove the temporary erosion controls until after all areas are stabilized.

Slopes

Erosion control soil retention blankets shall be installed where noted on slopes 3:1 or steeper. At a minimum, coconut/straw blend fiber material blankets should be used. The silt fence or erosion logs shall be installed at the toe of fill slopes where noted on a level contour. Erosion logs shall also be installed on slopes greater than ten feet in height where noted to reduce runoff length. The erosion logs shall be installed on a level contour. Disturbed surfaces shall be left in a roughened condition at all times when horizontal depressions approximately 2" to 4" deep, spaced 4" to 6" apart. Silt fence and erosion logs shall remain in place until all construction is complete and/or "finally stabilized", after which the silt fence and erosion logs shall be removed from the slopes. All material shall be installed per manufacturer's installation instructions.

Stockpiles/Mobilization/Winter Shutdown

Soils stockpiled for more than 30 days shall be mulched with mulch tackifier and native seeding within 14 days of stockpile construction. After mobilization and prior to winter shutdown, all disturbed slopes not completed shall be mulched with mulch tackifier and native seeding.

Inlet and Outlet Protection

Storm Drain Inlet Protection shall be provided at all storm inlets. Outlet protection shall be provided at all pipe outlet and runoff / rundown treatment locations. All materials shall be installed per manufacturer's installation instructions.

Concrete Washout

Concrete washout structures shall be installed for cleaning concrete trucks. The concrete washout structure shall be constructed such that water can only evaporate or infiltrate from the structure. Residue and concrete from the washout structure shall be periodically cleaned out and properly disposed.

Erosion Control Supervisor and Maintenance

The erosion control supervisor shall be a person other than the superintendent. The erosion control supervisor shall inspect at least every 14 days and after any precipitation or snowmelt event that causes surface erosion. At sites where construction has been completed but a vegetative cover has not been established, these inspections must occur at least once per month.

All erosion control measures shall remain in place until all construction is complete and final stabilization has been achieved. "Final stabilization" is where all disturbed areas

have been built on, paved, or germinated with a uniform vegetative cover with a density of at least 70% of pre-disturbance levels. Equivalent permanent, physical erosion reduction methods may also be employed. Any areas not meeting this standard shall be repaired according to the BMP guidelines. Accumulated sediment and debris shall be removed when the sediment level reaches one half the height of the BMP or when the sediment/debris adversely impacts the functionality of the BMP. The Contractor shall remove all sediment, mud, and construction debris that may accumulate in public right of ways not designated before-hand as a result of this construction project. All repairs, removals, and replacements stated above shall be conducted in a timely manner.

Cost Estimate

The proposed drainage system to be constructed will be privately owned and maintained. The developer will be responsible for constructing the proposed improvements.

An engineer's estimate of probable construction costs has been provided for the proposed improvements. The storm sewer systems will be located in the Sand Creek Drainage Basin. The construction cost for the improvements are not eligible for reimbursement.

Engineer's Estimate of Probable Construction Costs Tri-Lakes Construction - Sand Creek Drainage Basin Non-Reimbursable Private Improvements

ltem	Unit	Quantity	Unit Cost	Total Cost
Precast Manhole	EA	4	\$2,500	\$10,000
18" HDPE Pipe	LF	231	\$45	\$10,395
24" HDPE Pipe	LF	1212 [·]	\$60	\$72,720
30" HDPE Pipe	LF	1128	\$72	\$81,216
18" Flared End	EA	2	\$225	\$450
24" Flared End	EA	2	\$250	\$500
24" CMP-HDPE	EA	2	\$200	\$400
30" Flared End	EA	1	\$350	\$350
CDOT Type D Inlet	EA	1	\$4,000	\$4,000
EDB Pond Outlet	EA	1	\$35,000	\$35,000
			SubTotal	\$215,031.00
			15% Contingency	\$32,254.65
			Total Estimate	\$247,285.65

REFERENCES

- 1. City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II, dated May 2014 including subsequent updates
- 2. City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II, dated November 1991 including subsequent updates
- 3. Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008).
- 4. Urban Storm Drainage Criteria Manuals, Volumes 1-3, published by the Urban Drainage and Flood Control District, (Volumes 1 & 2 dated 2016, Volume 3 dated 2015)
- 5. Preliminary Drainage Report for Sterling Ranch-Phase 1, Sand Creek Drainage Basin, M & S Civil Consultants, Inc., May 2015
- Woodmen Storage Final Drainage Report, El Paso County, Calibre Engineering, Inc., July 2004; Revised February, 2010; Revised May, 2010; Revised July, 2010
- Preliminary and Final Drainage Plan and Report for Barbarick Subdivision, El Paso County, Oliver E. Watts Consulting Engineer Inc., January 2005; Revised October 2005; Revised December 2006; Revised May 2007; Revised August 15, 2007
- 8. **NOAA Atlas 14, Volume 8 Version 2** U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Hydrometeorological Design Studies Center.
- 9. FEMA Map Service Center: <u>http://msc.fema.gov</u>
- 10. NRCS Web Soil Survey. http://websoilsurvey.nrcs.usda.gov

.

×.

.

APPENDIX A

HYDROLOGIC AND HYDRAULIC CALCULATIONS

CALCULATION OF A PEAK RUNOFF	USING RATIONAL METHOD
------------------------------	-----------------------

Project Title: _____ Catchment ID: ____ Barbarick Subdivision H-1 5 Year

I. Catchment Hydrologic Data

Catchment ID = H1 Area = 10.70 Acres Percent Imperviousness = 2.00 % NRCS Soil Type = B A, B, C, or D

II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3

Design Storm Return Period, Tr = _	5 years	(input return period for design storm)
C1 =	28.50	(input the value of C1)
C2=	10.00	(input the value of C2)
C3=	0.786	(input the value of C3)
P1=	1.23 inches	(input one-hr precipitationsee Sheet "Design Info")

III. Analysis of Flow	Time (Time	of Concent	ration) for a	aCatchment			
Runoff Coefficient, C =	0.08						
Overide Runoff Coefficient, C =		(enter an ov	eride C valu	e if desired, c	r leave blant	to accent ca	alculated C.)
5-yr. Runoff Coefficient, C-5 =	0.08			e il debilea, e			
Overide 5-yr. Runoff Coefficient, C =		lantar on au	orido C. E. un	lup if desired	or looup bla		calculated C-5.)
Overde 5-yr. Rundin Coemclent, C -		(enter an ov			, or leave bla	ink to accept	calculated C-5.)
k	Reach 3	Reach 2	Illustration Re:			EGEND Beginning Flow Directio	
				<u></u>			
NRCS Land Type	Heavy Meadow	Tillage/ Field	Short Pasture/	Nearly Bare	Grassed Swales/	Paved / Shallow Par	
Туре	Weadow	Field	Lawns	Ground	Waterways	(Sheet	
Conveyance	2.5	5	7	10	15	2	
							-
Calculations:	Reach	Slope	Length	5-yr	NRCS	Flow	Flow
	D	S	L .	Runoff	Convey-	Velocity	Time
				Coeff	ance	V	Tf
		ft/ft	ft	C-5		fps	minutes
		input	input	output	input	output	output
	Overland	0.0300	300	80.0	N/A	0.23	22.16
	1	0.0300	338		10.00	1.73	3.25
	2			4 1	· · _ ·		
	3			4 1			
	4 5	· · · · · ·		4 4			
	<u>_</u>	Sum	638	4 4		nputed Tc =	25.42
	l		030	J		egional Tc =	13.54
						ntered Tc =	13.54
IV. Peak Runoff Pred	liction			_	0301-0	intered to -	10.04
Rainfall Intensity at Com		2,12	inch/hr	•	Peak Flo	wrate, Qp =	1.85 cfs
Rainfall Intensity at Re			inch/hr			wrate, Qp =	2.56 cfs
Rainfall Intensity at User-De			inch/hr			wrate, Qp =	2.56 cfs

	Project Title: Catchment ID:				rick Subdiv H-1 100 Yea			
L	Catchment Hydro	ologic Data						
	Catchment ID = Area = Imperviousness = NRCS Soil Type =	10.70	%	D				
11.	Rainfall Informat	ion l(inch/i	hr) = C1 ' P	1 /(C2 + Td)/	°C3			
	Return Period, Tr = C1 = C2=	100 28.50 10.00	years	(input return (input the va (input the va	period for d lue of C1) lue of C2)	esign storm)	I	
	C3= P1=		inches	(input the va (input one-h		nsee Shee	t "Design Info	ט")
Ш.	Analysis of Flow	Time (Time	of Concent	tration) for a	Catchment			
-	Coefficient, C-5 =		(enter an or Reach 2	veride C-5 val		verland lav	LEGEND Beginning Flow Direction Catchment Boundary	
	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	Jreas &
í		Meadow	Field	Pasture/	Bare	Swales/	Shallow Par	
	Туре	. 1		l awns l				Elow)
	Type Conveyance	2.5	5	Lawns 7	Ground 10	Waterways 15	2	Flow) 0
		2.5 Reach	5 Slope					
	Conveyance			7	5-yr Runoff	15 NRCS Convey-	Flow Velocity	0 Flow Time
	Conveyance	Reach	Slope	7 Length	10 5-yr	15NRCS	2 Flow	0 Flow
	Conveyance	Reach ID	Slope S ft/ft input	7 Length L ft input	10 5-yr Runoff Coeff C-5 output	15 NRCS Convey- ance input	Flow Velocity V fps output	0 Flow Time Tf minutes output
	Conveyance	Reach ID Overland	Slope S ft/ft input 0.0300	7 Length L ft input 300	10 5-yr Runoff Coeff C-5	15 NRCS Convey- ance input N/A	Flow Velocity V fps output 0.23	0 Flow Time Tf minutes output 22.16
	Conveyance	Reach ID Overland	Slope S ft/ft input	7 Length L ft input	10 5-yr Runoff Coeff C-5 output	15 NRCS Convey- ance input	Flow Velocity V fps output	0 Flow Time Tf minutes output
	Conveyance	Reach ID Overland	Slope S ft/ft input 0.0300	7 Length L ft input 300	10 5-yr Runoff Coeff C-5 output	15 NRCS Convey- ance input N/A	Flow Velocity V fps output 0.23	0 Flow Time Tf minutes output 22.16
	Conveyance	Reach ID Overland 1 2 3 4	Slope S ft/ft input 0.0300	7 Length L ft input 300	10 5-yr Runoff Coeff C-5 output	15 NRCS Convey- ance input N/A	Flow Velocity V fps output 0.23	0 Flow Time Tf minutes output 22.16
	Conveyance	Reach ID Overland 1 2 3	Slope S ft/ft input 0.0300 0.0300	7 Length L ft 300 338	10 5-yr Runoff Coeff C-5 output	15 NRCS Convey- ance input N/A 10,00	Flow Velocity V fps output 0.23 1.73	0 Flow Time Tf minutes output 22.16 3.25
	Conveyance	Reach ID Overland 1 2 3 4	Slope S ft/ft input 0.0300	7 Length L ft 300 338	10 5-yr Runoff Coeff C-5 output	15 NRCS Convey- ance input N/A 10.00	Flow Velocity V fps output 0.23 1.73 1.73 mputed Tc =	0 Flow Time Tf minutes output 22.16 3.25 25.42
	Conveyance	Reach ID Overland 1 2 3 4	Slope S ft/ft input 0.0300 0.0300	7 Length L ft 300 338	10 5-yr Runoff Coeff C-5 output	15 NRCS Convey- ance input N/A 10.00 Col R	Flow Velocity V fps output 0.23 1.73	0 Flow Time Tf minutes output 22.16 3.25

Project Title: Catchment ID: I. Catchment Hydrolog Catchment ID = H2 Area = Percent Imperviousness = NRCS Soil Type = II. Rainfall Information Design Storm Return Period, Tr = C1 = C2 = C3 = P1 = III. Analysis of Flow Tim Runoff Coefficient, C = Overide Runoff Coefficient, C = 5-yr. Runoff Coefficient, C-5 =	2 3.70 2.00 B 1 (inch/t 5 28.50 10.00 0.786 1.23 me (Time 0.08 0.08	A, B, C, or [nr) = C1 * P ⁻ years inches of Concent (enter an ov	C (input return (input the va (input the va (input the va (input the va (input one-h ration) for a	a period for d alue of C1) alue of C2) alue of C3) or precipitation a Catchment e if desired, o lue if desired	esign storm) nsee Sheel t br leave blank	"Design Info	
I. Catchment Hydrolog Catchment ID = H2 Area = Percent Imperviousness = NRCS Soil Type = II. Rainfall Information Design Storm Return Period, Tr = C1 = C2 = C3 = P1 = III. Analysis of Flow Tin Runoff Coefficient, C = Overide Runoff Coefficient, C =	2 3.70 2.00 B 1 (inch/t 5 28.50 10.00 0.786 1.23 me (Time 0.08 0.08	% A, B, C, or [nr) = C1 * P' years inches of Concent (enter an ov	1 /(C2 + Td) (input return (input the va (input the va (input the va (input one-h ration) for a veride C value	NC3 a period for d alue of C1) alue of C2) alue of C3) ir precipitatio catchment e if desired, c lue if desired	nsee Sheel	"Design Info	alculated C.)
Catchment ID = H2 Area = Percent Imperviousness = NRCS Soil Type = II. Rainfall Information Design Storm Return Period, Tr = C1 = C2 = C3 = P1 = III. Analysis of Flow Tin Runoff Coefficient, C = Overide Runoff Coefficient, C =	2 3.70 2.00 B 1 (inch/t 5 28.50 10.00 0.786 1.23 me (Time 0.08 0.08	% A, B, C, or [nr) = C1 * P' years inches of Concent (enter an ov	1 /(C2 + Td) (input return (input the va (input the va (input the va (input one-h ration) for a veride C value	a period for d alue of C1) alue of C2) alue of C3) or precipitation a Catchment e if desired, o lue if desired	nsee Sheel	"Design Info	alculated C.)
Design Storm Return Period, Tr = C1 = C2= C3= P1= III. Analysis of Flow Tir Runoff Coefficient, C = Overide Runoff Coefficient, C =	5 28.50 10.00 0.786 1.23 me (Time 0.08	years inches of Concent (enter an ov	(input return (input the va (input the va (input the va (input one-h ration) for a veride C value	a period for d alue of C1) alue of C2) alue of C3) or precipitation a Catchment e if desired, o lue if desired	nsee Sheel	"Design Info	alculated C.)
C1 = C2= C3= P1= III. Analysis of Flow Tir Runoff Coefficient, C = Overide Runoff Coefficient, C =	28.50 10.00 0.786 1.23 me (Time 0.08 0.08	inches of Concent (enter an ov	(input the va (input the va (input the va (input one-h ration) for a veride C value	alue of C1) alue of C2) alue of C3) ir precipitatio i Catchment e if desired, o	nsee Sheel	"Design Info	alculated C.)
Runoff Coefficient, C = Overide Runoff Coefficient, C =	0.08	(enter an ov	veride C valu veride C-5 va	e if desired, o lue if desired	or leave blank		
Overide 5-yr. Runoff Coefficient, C =			muştration				
	0	Reach 2	Ret			EGEND Beginning Flow Direction	
Ret	ach 3					Cairhment Boundary]
	Hea∨y Meadow	Tillage/ Field	Short Pasture/ Lawns	Nearly Bare Ground	Grassed Swales/ Waterways	Paved A Shallow Pa (Sheet	ved Swales
Сопуеуалсе	2.5	5		10	15	2	0
Calculations:	Reach ID	Slope S	Length L	5-yr Runoff Coeff	NRCS Convey- ance	Flow Velocity V	Flow Time Tf
		ft/ft	ft	C-5		fps	minutes
	Overland	input 0,0380	input 155	output 0.08	input N/A	output 0.18	output 14.74
<u> </u>	1	0.0350	515	0.00	10.00	1.87	4.59
	2						
	3		· · ·				
-	5						
E		Sum	670			nputed Tc =	19.32
						egional Tc =	13.72 13.72
IV. Peak Runoff Predict Rainfall Intensity at Comput Rainfall Intensity at Regior Rainfall Intensity at User-Defin	ted Tc, I = nal Tc, I =	2.91	inch/hr inch/hr inch/hr	t	Peak Flo Peak Flo	wrate, Qp = wrate, Qp = wrate, Qp =	0.74 c

.

۱

.

,

Project Title: Catchment ID:				arick Subdiv H-2 100 Yea			
I. Catchment Hydro	logic Data						
Catchment ID =	H2						
Area =	3.70	Acres					
Percent Imperviousness = NRCS Soil Type =		% A, B, C, or [0				
II. Rainfall Informati	ion I (inch/l	hr) = C1 * P1	l /(C2 + Td) [,]	°C 3			
Design Storm Return Period, Tr =		years		period for d	lesign storm))	
C1 = C2=			(input the va (input the va	,			
C3=			(input the va	•			
P1=	2.57	inches	(input one-h	r precipitatio	nsee Shee	t "Design Info)")
III. Analysis of Flow	Time (Time	of Concent	ration) for a	Catchment	t		
Runoff Coefficient, C =	0.36						
Overide Runoff Coefficient, C =		(enter an ov	eride C value	e if desired, o	or leave blan	k to accept ca	liculated C.)
5-yr. Runoff Coefficient, C-5 =	0.08					•	,
eride 5-yr. Runoff Coefficient, C =		(enter an ov	eride C ₂ 5 va	lue if desired			colouistad (
				ue il desired	i, or leave bia	ank to accept	calculated C
			Illustration		i, or leave bia	ank to accept	calculated
					., or leave bia	ank to accept	Calculated C
						ank to accept	
			<u>Illustration</u>		werland	LEGEND	
		Reach 2	<u>Illustration</u>		werland]
		Reach 2	<u>Illustration</u>		werland	LEGEND) Beginning]
	0	Reach 2	<u>Illustration</u>		werland]
Ĺ	Reach 3	Reach 2	<u>Illustration</u>		werland	LEGEND) Beginning Flow Direction Catchment]
k	Reach 3	Reach 2	<u>Illustration</u>		werland	LEGEND Beginning Flow Direction]
NRCS Land	Heavy	Tillage/	Illustration Re:	uch 1 f	werland low Grassed	LEGEND Beginning Flow Direction Catchment Boundary Paved A	n Vreas &
NRCS Land Type			Illustration Rea	uch 1 g	Grassed Swales/	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Pave	n vreas & ved Swales
i i	Heavy	Tillage/	Illustration Re:	uch 1 f	werland low Grassed	LEGEND Beginning Flow Direction Catchment Boundary Paved A	n veas & ved Swales Flow)
Type Conveyance	Heavy Meadow 2.5	Tillage/ Field	Short Pasture/ Lawns 7	Nearly Bare Ground	Grassed Swales/ Waterways	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 2	veas & ved Swales Flow)
Туре	Heavy Meadow 2.5 Reach	Tillage/ Field 5 Slope	Short Pasture/ Lawns 7 Length	Nearly Bare Ground 10 5-yr	Grassed Swales/ Waterways	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Pa (Sheet 2) Flow	n vreas & zed Swales Flow) D Flow
Type Conveyance	Heavy Meadow 2.5	Tillage/ Field	Short Pasture/ Lawns 7	Nearly Bare Ground	Grassed Swales/ Waterways	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 2	veas & ved Swales Flow)
Type Conveyance	Heavy Meadow 2.5 Reach	Tillage/ Field 5 Slope S fuft	Short Pasture/ Lawns 7 Length L ft	Nearly Bare Ground 10 5-yr Runoff C-5	Grassed Swales/ Waterways 15 NRCS Convey- ance	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Pave (Sheet Catchment Boundary Paved A Shallow Pave (Sheet Catchment Shallow Pave (Sheet Shallow Pave (Sheet Shallow Pave (Sheet Catchment Shallow Pave (Sheet Shallow Pave (Sheet Shallow Pave (Sheet Shallow Pave (Sheet Shallow Pave (Sheet Shallow Pave (Sheet Shallow Pave (Sheet) Shallow Shallow Shallow S	veas & ved Swales Flow) D Flow Time Tf minutes
Type Conveyance	Heavy Meadow 2.5 Reach ID	Tillage/ Field 5 Slope S ft/ft input	Short Pasture/ Lawns 7 Length L ft input	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Pave (Sheet Catchment Boundary Paved A Shallow Pave (Sheet Catchment Shallow Pave (Sheet Shallow Pave (Sheet) Shallow Pave (Sheet) Shallo	veas & ved Swales Flow) Flow Time Tf minutes output
Type Conveyance	Heavy Meadow 2.5 Reach	Tillage/ Field 5 Slope 5 ft/ft input 0.0380	Short Pasture/ Lawns 7 Length L ft input 155	Nearly Bare Ground 10 5-yr Runoff C-5	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Pave (Sheet Catchment Boundary Paved A Shallow Pave (Sheet Catchment Paved A Shallow Pave (Sheet Catchment Shallow Pave (Sheet Shallow Pave (Sheet (Shee	veas & ved Swales Flow) Flow Time Tf minutes output 14.74
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2	Tillage/ Field 5 Slope S ft/ft input	Short Pasture/ Lawns 7 Length L ft input	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Pave (Sheet Catchment Boundary Paved A Shallow Pave (Sheet Catchment Shallow Pave (Sheet Shallow Pave (Sheet) Shallow Pave (Sheet) Shallo	veas & ved Swales Flow) Flow Time Tf minutes output
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Tillage/ Field 5 Slope 5 ft/ft input 0.0380	Short Pasture/ Lawns 7 Length L ft input 155	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Pave (Sheet Catchment Boundary Paved A Shallow Pave (Sheet Catchment Paved A Shallow Pave (Sheet Catchment Shallow Pave (Sheet Shallow Pave (Sheet (Shee	veas & ved Swales Flow) Flow Time Tf minutes output 14.74
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Tillage/ Field 5 Slope 5 ft/ft input 0.0380	Short Pasture/ Lawns 7 Length L ft input 155	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Pave (Sheet Catchment Boundary Paved A Shallow Pave (Sheet Catchment Paved A Shallow Pave (Sheet Catchment Shallow Pave (Sheet Shallow Pave (Sheet (Shee	veas & ved Swales Flow) Flow Time Tf minutes output 14.74
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Tillage/ Field 5 Slope S ft/ft input 0.0380 0.0350	Short Pasture/ Lawns 7 Length L ft input 155 515	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 20 Flow Velocity V fps output 0.18 1.87	vreas & weas & weas & weather weather we
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Tillage/ Field 5 Slope 5 ft/ft input 0.0380	Short Pasture/ Lawns 7 Length L ft input 155	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	LEGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Pave (Sheet Catchment Boundary Paved A Shallow Pave (Sheet Catchment Paved A Shallow Pave (Sheet Catchment Shallow Pave (Sheet Shallow Pave (Sheet (Shee	veas & ved Swales Flow) Flow Time Tf minutes output 14.74

Rainfall Intensity at Regional Tc, I = 6.08 inch/hr Rainfall Intensity at User-Defined Tc, I = 6.08 inch/hr

.

r

	Project Title:	1		Barb	arick Subdiv	vision		
	Catchment ID:				H-3 5 year			
I. Ca	tchment Hydro	ologic Data						
(Catchment ID =							
Percent Im	= Area = perviousness		Acres %					
	CS Soil Type =		A, B, C, or [C				
II. Rai	infall Informat	ion I (inch/I	hr) = C1 * P'	l /(C2 + Td)/	`C 3			
Design Storm Retu			years		period for d	esign storm)		
	C1 = C2=			(input the va (input the va	•			
	C3=			(input the va	,			
	P1=	1.23	inches	(input one-h	r precipitatio	nsee Shee	t "Design Info	")
III. An	alysis of Flow	Time (Time	of Concent	ration) for a	Catchment	:		
Runoff (Coefficient, C =	0.08						
Overide Runoff (Coefficient, C =		(enter an ov	eride C value	e if desired, c	r leave blan	k to accept ca	lculated C.
5-yr. Runoff Co								
eride 5-yr. Runoff (Coefficient, C =		(enter an ov			, or leave bla	ink to accept	calculated
				Illustration				
			_		Q	` Ç		-
		_		Rea		werland	LEGEND	
			Reach 2	*		[[) Beginning	
							Flow Direction	¥
							Catchment	
	K	Reach 3				ļ	Boundary]
	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	
	Туре	Meadow	Field	Pasture/ Lawns	Bare Ground	Swales/ Waterways	Shallow Pav (Sheet	
	Conveyance	2.5	5	7	10	15	20	
ŀ						2-1		
Ca	culations:	Reach	Slope	Length	5-yr	NRCS	Flow	Flow
Ca	lculations:	Reach ID	Slop e S	Length L	Runoff	Convey-	Velocity	Time
Ca	Iculations:				-			
Ca	culations:	D	S fvft input	ft input	Runoff Coeff C-5 output	Convey- ance input	Velocity V fps output	Time Tf minutes output
Ca	lculations:	ID Overland	S fvft	L ft	Runoff Coeff C-5	Convey- ance	Velocity V fps	Time Tf minutes
Ca	lculations:	D	S fvft input	ft input	Runoff Coeff C-5 output	Convey- ance input	Velocity V fps output	Time Tf minutes output
Ca	Iculations:	ID Overland 1 2 3	S fvft input	ft input	Runoff Coeff C-5 output	Convey- ance input	Velocity V fps output	Time Tf minutes output
Ca	Iculations:	ID Overland 1 2 3 4	S fvft input	ft input	Runoff Coeff C-5 output	Convey- ance input	Velocity V fps output	Time Tf minutes output
Ca	Iculations:	ID Overland 1 2 3	S fvft input	ft input	Runoff Coeff C-5 output	Convey- ance input N/A	Velocity V fps output 0.23	Time Tf minutes output 24.98
Ca	Iculations:	ID Overland 1 2 3 4	S fvft input 0.0250	L ft input 338	Runoff Coeff C-5 output	Convey- ance N/A Co	Velocity V fps output 0.23 mputed Tc = egional Tc =	Time Tf minutes output
Ca	Iculations:	ID Overland 1 2 3 4	S fvft input 0.0250	L ft input 338	Runoff Coeff C-5 output	Convey- ance N/A Co	Velocity V fps output 0.23 	Time Tf minutes output 24.98 24.98
		ID Overland 1 2 3 4 5	S fvft input 0.0250	L ft input 338	Runoff Coeff C-5 output	Convey- ance N/A Co	Velocity V fps output 0.23 mputed Tc = egional Tc =	Time Tf minutes output 24.98 24.98 24.98 11.88
IV. Pea	Iculations: Iculations: ak Runoff Pred	ID Overland 1 2 3 4 5 5	S ft/ft 0.0250	L ft input 338	Runoff Coeff C-5 output	Convey- ance N/A N/A Co Co R User-E	Velocity V fps output 0.23 mputed Tc = egional Tc =	Time Tf minutes output 24.98 24.98 24.98 11.88

								,
	Project Title: Catchment ID:				rick Subdiv I-3 100 year			
I.	Catchment Hydro	ologic Data						
	Catchment iD =	НЗ						
Percen	Area = t Imperviousness = NRCS Soil Type =	2.00	Acres % A, B, C, or [þ				
Π.	Rainfall Informat	ion I (inch/f	hr) = C1 • P1	1 /(C2 + Td)/	C3			
esign Storm	Return Period, Tr =		years			esign storm)		
	C1 = C2=			(input the va (input the va	-			
	C2=			(input the va	,			
	P1=	2.67	inches	· ·	,	nsee Sheel	"Design Info	")
10.	Analysis of Flow	Time (Time	of Concent	ration) for a	Catchment	:		
Run	off Coefficient, C =	0.36						
Overide Run	off Coefficient, C =		(enter an ov	eride C value	if desired, o	or leave blank	to accept cal	Iculated C.)
5-yr. Runof	f Coefficient, C-5 =	0.08						
ride 5-yr. Run	off Coefficient, C =		(enter an ov	eride C-5 val	ue if desired	, or leave bla	ink to accept of	calculated C
				Illustration				
					$-\alpha$	`		
				Res			EGEND]
			Reach 2	¥) Beginning	
							Flow Direction	1
	(-				<u> </u>]
	\downarrow	Reach 3					Catrhment Boundary	
		<u> </u>				<u>ا</u>]
	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	
	Туре	Meadow	Field	Pasture/ Lawns	Bare Ground	Swales/ Waterways	Shallow Pav (Sheet	1
	Conveyance	2.5	5	7	10	15	20	
					-		····	
	Calculations:	Reach 1D	Slope S	Length L	5-yr Runoff	NRCS Convey-	Flow Velocity	Flow Time
			5		Coeff	ance	Velocity	Tf
			ft/ft	ft	C-5		fps	minutes
		Overland	input 0.0250	input 338	output 0.08	input N/A	output 0.23	output 24.98
		1	0,0230		0.00		0.23	24.30
		2						
		3						
		4 5					-	<u>_</u>
			Sum	338			mputed Tc =	24.98
							egional Tc =	11.88
						User-L	Intered Tc =	11.88
				/				
	Peak Runoff Pree							
Rainf	. Peak Runoff Pred all Intensity at Com nfall Intensity at Re	puted Tc, I =		inch/hr inch/hr			wrate, Qp = _ wrate, Qp =	1.87

UD-Rational v1.02a.xls, Tc and PeakQ

CAI		OF A PEA		F USING	RATIONA	L METHO	D
Project Ti Catchment			Barb	arick Subdi D-2 5 Year			
I. Catchment Hy							
Catchment II Are Percent Imperviousnes NRCS Soil Typ	a = 1.20 s = 2.00	Acres % A, B, C, or [D				
0. Rainfall Inform	nation I (inch/i	hr) = C1 ' P'	1 /(C2 + Td) [,]	^C3			
C C F	1 = 28.50 $22 = 10.00$ $33 = 0.786$ $21 = 1.23$	inches	(input the va (input the va (input the va (input one-h	alue of C1) alue of C2) alue of C3) ar precipitatio	lesign storm) nsee Shee		o")
III. Analysis of FI Runoff Coefficient, (of Concent	ration) for a	Catchment	ł		
Overide Runoff Coefficient, (5-yr. Runoff Coefficient, C- Dveride 5-yr. Runoff Coefficient, (5 = 0.08	•	reride C-5 va	lue if desired	everland low		calculated C-5.
NRCS Land Type	Heavy Meadow	Tillage/ Field	Short Pasture/	Nearly Bare	Grassed Swales/		Areas &
Conveyance	2.5	5	Lawns 7	Ground 10	Waterways 15	(Sheet	Flow)
Calculations:	Reach ID Overland	Slope S ft/ft input 0.0200	Length L ft input 155	5-yr Runoff Coeff C-5 output 0.08	NRCS Convey- ance input N/A	Flow Velocity V fps output 0.14	Flow Time Tf minutes output 18.21
	1						
	3 4 5	Sum	155		R	nputed Tc = egional Tc = intered Tc =	18.21 10.86 10.86
IV. Peak Runoff P Rainfall Intensity at C Rainfall Intensity at Rainfall Intensity at User	omputed Tc, I = Regional Tc, I =	3.22	inch/hr inch/hr inch/hr		Peak Flo	wrate, Qp = wrate, Qp = wrate, Qp =	0.25 cfs 0.32 cfs 0.32 cfs

x

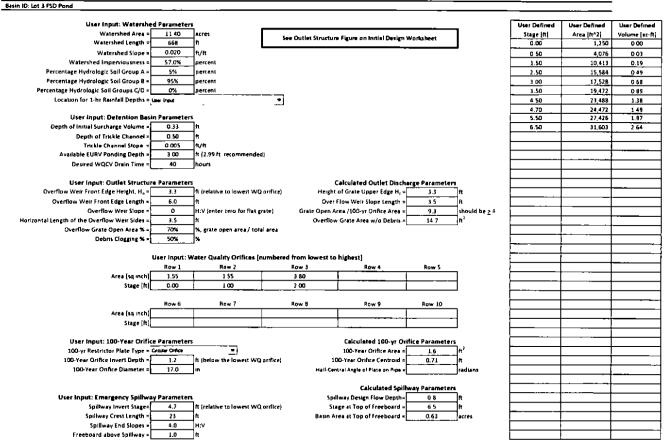
1

Project Title Catchment II			Barba	D2 - 100yr	vision		
1. Catchment Hydr	_						
Catchment ID	= D2						
Area	=1.20	Acres					
Percent Imperviousness NRCS Soil Type		[%] A, B, C, or I	D				
II. Rainfali Informa	tion I (inch/	hr) = C1 * P	1 /(C2 + Td)/	^C 3			
esign Storm Return Period, Tr		years	(input return	period for d	esign storm)	
C1 C2			(input the va (input the va				
C3			(input the va				
P1	= 2.57	inches			nsee Shee	t "Design Info	")
III. Analysis of Flow	v Time (Time	of Concent	tration) for a	Catchment			
Runoff Coefficient, C	= 0.36						
Overide Runoff Coefficient, C	=	(enter an ov	veride C value	e if desired, c	r leave blan	k to accept ca	lculated C
5-yr. Runoff Coefficient, C-5	=0.08						
ride 5-yr. Runoff Coefficient, C	=	(enter an ov			, or leave bla	ank to accept	calculated
			Illustration				
		_			` Ç		-
	_		Rez		verland f	LEGEND	
		Reach 2 ,	¥		<u> </u>) Beginning	
	/~		2			Flow Direction	•
· · /					-	(Catchment	
	Reach 3					Boundary	
k	Kearn 5						
	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	
NRCS Land Type		Tillage/ Field	Pasture/	Bare	Swales/	Shallow Pay	ed Swales
Туре	Heavy	-	11 1	,			red Swales Flow)
Type Conveyance	Heavy Meadow	Field	Pasture/ Lawns	Bare Ground	Swales/ Waterways 15	Shallow Pay (Sheet 20	red Swales Flow)
Туре	Heavy Meadow 2.5 Reach	Field 5 Slope	Pasture/ Lawns 7 Length	Bare Ground 10 5-yr	Swales/ Waterways 15 NRCS	Shallow Pay (Sheet 20 Flow	red Swales Flow) D Flow
Type Conveyance	Heavy Meadow	Field	Pasture/ Lawns 7	Bare Ground 10 5-yr Runoff	Swales/ Waterways 15 NRCS Convey-	Shallow Pay (Sheet 20	red Swales Flow) D Flow Time
Type Conveyance	Heavy Meadow 2.5 Reach	Field 5 Slope	Pasture/ Lawns 7 Length	Bare Ground 10 5-yr	Swales/ Waterways 15 NRCS	Shallow Pay (Sheet 24 Flow Velocity	red Swales Flow) D Flow
Type Conveyance	Heavy Meadow 2.5 Reach ID	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Shallow Pau (Sheet 20 Flow Velocity V fps output	red Swales Flow) Flow Flow Time Tf minutes output
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland	Field 5 Slope S	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff C-5	Swales/ Waterways 15 NRCS Convey- ance	Shallow Par (Sheet 2) Flow Velocity V fps	ved Swales Flow) D Flow Time Tf minutes
Type Conveyance	Heavy Meadow 2.5 Reach ID	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Shallow Pau (Sheet 20 Flow Velocity V fps output	red Swales Flow) Flow Flow Time Tf minutes output
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Shallow Pau (Sheet 20 Flow Velocity V fps output	red Swales Flow) Flow Flow Time Tf minutes output
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Shallow Pau (Sheet 20 Flow Velocity V fps output	red Swales Flow) Flow Flow Time Tf minutes output
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input 85	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A	Shallow Pau (Sheet 20 Flow Velocity V fps output	red Swales Flow) Flow Flow Time Tf minutes output
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope 5 ft/ft input 0.0200	Pasture/ Lawns 7 Length L ft input 85	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A V/A Co R	Shallow Pau (Sheet 21 Flow Velocity V fps output 0.11	red Swales Flow) Flow Time Tf minutes output 13.49

.

•

۰


B							
Project Title Catchment II				rick Subdiv 3-Culvert 10			
I. Catchment Hyd	rologic Data				•		
Catchment ID	= Lot 3						
Area	= 4.86	Acres					
Percent Imperviousness NRCS Soil Type		% A, B, C, or I	C				
II. Rainfall Informa	ation I (inch/h	nr) = C1 * P	1 /(C2 + Td)^	C3			
Design Storm Return Period, Tr		years	· ·	-	esign storm)		
C1 C2			(input the va (input the va				
Ca	3= 0.786		(input the va	lue of C3)			
P1	1=2.57	inches	(input one-h	r precipitatio	nsee Sheet	"Design Info	(")
III. Analysis of Flo	w Time (Time	of Concent	ration) for a	Catchment	t		
Runoff Coefficient, C	= 0.55						
Overide Runoff Coefficient, C	=	(enter an ov	veride C value	if desired, o	or leave blank	to accept ca	Iculated C.)
5-yr. Runoff Coefficient, C-5							
eride 5-yr. Runoff Coefficient, C	=	(enter an ov	veride C-5 val	ue if desired	l, or leave bla	nk to accept	calculated C
			<u>Illustration</u>				
		/		~~~~~ <u>~</u> ~~~~	verland I	FCEND	7
			Rea		low	<u>.EGEND</u>) Beginning	
		Reach 2	5				
	10					Flow Direction	a
l	Reach 3					Cairhment Boundary	
K					Ŀ	Boundary]
NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	
Туре	Meadow	Field	Pasture/ Lawns	Bare Ground	Swales/ Waterways	Shallow Par (Sheet	·
Conveyance	2.5	5	7	10	15	2	
							Flow
<u>,</u>	I Reach i	Sinne	Length	5-vr	NRCS	Flow	Time
Calculations:	Reach ID	Slop e S	Length L	5-yr Runoff	NRCS Convey-	Flow Velocity	T(
<i></i>		s		Runoff Coeff	1	Velocity V	
		S fvft	L ft	Runoff Coeff C-5	Convey- arice	Velocity V fps	minutes
		s	ft input 300	Runoff Coeff	Convey- ance input N/A	Velocity V	
	ID Overland 1	S ft/ft input	L ft input	Runoff Coeff C-5 output	Convey- ance input	Velocity V fps output	minutes _output
	ID Overland 1 2	S ft/ft input 0.0300	ft input 300	Runoff Coeff C-5 output	Convey- ance input N/A	Velocity V fps output 0.32	minutes output 15.41
	ID Overland 1 2 3 4	S ft/ft input 0.0300	ft input 300	Runoff Coeff C-5 output	Convey- ance input N/A	Velocity V fps output 0.32	minutes output 15.41
<u>,</u>	ID Overland 1 2 3	S ft/ft input 0.0300 0.0100	L ft input 300 500	Runoff Coeff C-5 output	Convey- ance input N/A 10.00	Velocity V fps output 0.32 1.00	minutes output 15.41 8.33
	ID Overland 1 2 3 4	S ft/ft input 0.0300	L ft input 300 500	Runoff Coeff C-5 output	Convey- ance input N/A 10.00	Velocity V fps output 0.32 1.00	minutes output 15.41 8.33 23.74
	ID Overland 1 2 3 4	S ft/ft input 0.0300 0.0100	L ft input 300 500	Runoff Coeff C-5 output	Convey- ance input N/A 10.00	Velocity V fps output 0.32 1.00	minutes output 15.41 8.33
Calculations:	ID Overland 1 2 3 4 5	S ft/ft input 0.0300 0.0100	L ft input 300 500	Runoff Coeff C-5 output	Convey- ance input N/A 10.00	Velocity V fps output 0.32 1.00 	minutes output 15.41 8.33 23.74 14.44
	ID Overland 1 2 3 4 5 5	S fv/ft input 0.0300 0.0100 	L ft input 300 500	Runoff Coeff C-5 output	Convey- ance input N/A 10.00 Con Con R User-E	Velocity V fps output 0.32 1.00 	minutes output 15.41 8.33 23.74 14,44

.

Final Design for Full Spectrum Detention Basins

Project: Barbarick Subdivision

,

.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

	Barbarick 1-4		
Qaain (D	נק		
·····			
	·	\sim	
	100	<u>.</u>	
	_	~ ~ ~ ~	·
Esseven Zone	Contigurate	an (Retenti	on Pond)
Required Volume Calculation			
Salaciad Old Type •	8F	3	
Watershed Arm +	313	ACT 84.	
Watershell Length =	648	2	
Watershed Size =	0 530	en.	
Watershed Impervicusions •	57 00%	percent	
Percentage Hydrologic Sol Group A •	5.0%	percent	
Percentage Hydrologic Sol Group B	95.0%	percent	
Percentage Hydrologic Soll Groups C/D +	0.0%	percent	
Desired WOCV Dren Time •	12 0	hours	
Location for 1-te Flamfal Deptite -			
Water Queilty Capture Volume (WQCV) #	0.047	acro-fant	Optional Lise Input
Excess Union Runoff Volume (EURV) =	0184	acre-legi	1 to Precipitation
2-yr Runoff Volume (P1 + 0 95 et.) +	0125	acro-feet	0.95 Inches
5-yr Ruhoff Volume (P1 + 123 at) +	0 194		2.)
10-yr Runoff Volume (P1+146 e.) >	0253		148 mohe
25-yr Runof Volume (P1 = 100 a.) =	0.363		165 mcha
S0-yr Runolf Volume (P1 + 7 21 et.) +	0452		2 21 mohe
100-yr Runoff Volume (P1 + 2 57 m.) +	0.554	10-107	2 57 mone
500-yr Runof Volume (P1 + 0 m) =	0.000	acre-last	
Approximate 2-pt Detention Volume #	0 122		
Approximate 5-yr Ostanism Volume =	0 179	ma la fad	
Approximate 10-yr Ostenilon Volume -	0 204	acre-lea	
Approximate 25-yi Deleniion Volume =	0 2 3 7	acre-leel	
Approximate 50-yr Detention Volume =	0 273	m:16-Had	
Approximate 100-yr Detention Volume •	0.336	acra-fea	
Stage-Storage Calculation			
Zone 1 Volume (WOCV) •	0 047	acre lasi	
Zone 2 Volume (100-year - Zone 1) *	0 259	acta-last	
Select Zone 3 Storage Volume (Optionel) =		CID-100	
Tolar Delaniton Basin Volume •	0.336	acro-last	
Indial Suit Narge Volume (ISV) *	NA.	10	
Initial Surcharge Calpin (ISC) =	N	•	
Total Available Deservices Capity (*4) *	2 50		
Depth of Traitie Charmel (H, .) =	NA		
Slope of Truite Chevrel (S.,) =	NA	un 🛛	
Stopes of Main Basin State (5., .) =	•	HV	
Basun Langst-to-Width Ratio (R _{ute}) =	15		
ivini Surcharge Area (A _{ve}) =		1-2	
Suichurge Volume Length (L _{iv}) *	0.0	1	
Surcharge Volume With (W. _{e.}) =	00	1	
Depth of Basis Floor (Herrar) +	0.00		
Length of Basan Floor (L _{1,100}) =	810	n	
Witte of Basin Floor (W _{rotern}) =	3		
Area of Bases Floor (Asses) +	4.370	*2	
Volume of Basin Floor (V _{sum}) =	0	F-3	
Depth of Mann Basin (*****) *	2 50		
Lungth of Mean Basin (L _{aur}) =	IÇI 0		
Width of Mann Basin (W) *	74 0	*	
Area of New Beam (Aug.) -	7 469	12	
Volume at Lines Basis (V) •	14 6276	M	
Calculated Total Basin Volume (V _{m-}) •	0 3 3 6	acre las	

Depth Increment +	1	Optunal				Opnonal		1	r—
Steps - Blorage	Stage	Orente	Lungth	Wide	****	Orente	Arca	Volume	W
Description	(T)	Stage (1)	<u>m</u>	(T)	(77)	Ares (17)	(2004)	Ø3)	
Madia Burtana	0.00		81.0	540	4 370	-	0 100	<u> </u>	<u> </u>
	0 10		4 1 B	54.8	4 471		0 103	40	0
_	0.20		825	50.5	4 577		0 105	850	0
	0.30		_	56.3	+ 684	<u> </u>	0 108	1 1 11	0
	6 ×0			57 1	4 601		D 110	1,758	i •
Zone 1 (WGCV)	0.45			57.6	4 569		0 11Z	2 078	
	0 50		64 9	57 8	4 914	<u> </u>	0 1 1 3	2 273	6
	0 60		657	58.7	5029		0 15	2,770	
	070		665	59 5	5145		0 1 18	3 279	
	0.60		673	60 J	5 263		0 121	3 800	C
	6 60		56 1	5 1	5.301		0 124	4 3322	
	100		66.9	61.0	5 501		0 126	4 876	
	1 10		597	627	5 67?		0 129	5 437	1
	1 20		805	63 5	8 745	1	0132	8 000	
	1.30	1	6 I G	64 J	3 66.0		0135	0 301	0
	140	Ì	EE 1	6 1	584		0 1328	7,174	0
	150	Ì	82.9	85.0	6 120	1	0 141	7,780	0
	150	i i	837	40 7	\$248		0140	996.0	0
	170		3	675	6.377		0.146	9030	0
	180		66.)	681)	6.50/		0149	9 874	0
	1 90		801	-	4 639		0 152	10.331	0
	2 00		98.9	69.1	6 771		0 155	11 001	0
	2 10	· · · · ·	97 8	70 8			0 159	11 754	
	7 20		90.6	71.0	7 054		0 162	12 453	0
	2 30		99.4	77.4	7,191		0 155	13 185	0
	2 40		100 2	73.2	7,329		0 165	13 891	0
Zone 2 (100-year)	2 50		101.0	74.0	7 489		0 171	14 601	
	2 50		101.6	74.8	7 609		0 175	15 385	
	2 70		102.5	75 6	1,751		0 178	16 153	
	2 80		100.4	78.4	7 694		0 181	16 805	
	2 80		104 2	77.2	8 0.79		0 185	17.72	
— ~ i	300		105.0	78.0	8 184		D 152	18 543	-
	3 10		105.6	78.0	8 331		D 191	19 369	
	3 20		106.4	79.6	0.400		0 195	70,700	
	3.30			80.4	0.053		0 198	21 085	
	3.40		105.2	412	0 780		0 202	21935	
	3 50		1090	62.0	6 832		0 205	22 621	
	3.60		109.8	82.6	9 084				
	370			0/0 616	9 240		0 209	23 722 24 638	-
	3.6		110.6	616 844	9396				0
	190		111.4		9.540		0.218	25 570	_
			112.2	65.2			0 219	28 517	0
	400		1130	68.0	9712		0 223	27 480	0
	4 10		113.8	80.8	0 872		0 227	28 460	9
	4 20		1146	676	10 00.3		0 220	29 455	0
	4.30	· · · ·	115.4	634	10 195		0 234	30 466	0
	1.00		116 2	89 7	10.354		0 238	31 494	
	4 50		1170	90 0	10 523		0 242	32 538	0
	160		1178	90 B	10 690		0 245	33 550	0
-	470		1588	91.6	10 857		0.240	34 678	•
	480		119-4	924	11.028		0.253	36770	0
	4 190 5 000		120.2	937	11,198		0 257	38 (8)1	0
	5 10		121 8	946	11.540		0 261	39 158	0
	5,70		122 6	858	11.714				
	5.0	<u>├</u>	123.4	964	11,884		0 269	40.317	-
	540		123.4	964 977	17,055		0 277	42 665	90
	550		125.0	6 0 0 0 9 6 0	17,241		0 251	41.011	-
	5 70		125 a 126 d	- 996	12,422		0 255	1 46 39 5 1	
	5 80		127 4	100 4	12,784		0 293	47,004	77
	6 00		_129.0	1012	13,151		0 302	50,754	
	6 10 6 20		29.8	102 8	13,339		0.306	50 256 51 542 52 93	1
			130.6	103.6	13,523		0310	52 0.1	1
	6.0		122 2	105.7	13,900	-	0 319	54,267 55 ml7	1
	650		1330	108.0	14 090		0 323	57.047	1
	6 70		1348	105.8	14,282		0 32%	54 455 56 923	1
	6 80		116.4	_ 101 4	14 670		0 337 0 341	81,380 62,657	
	8 HU 7 GD		1379	109 2	15,012		0346	64353	1
	7 70		137.8	110.4	15,400		0.350	61 870 67 401	-
	7 70		1386	1118	15 460		0.355	07.401 M BOJ	
	7 30 7 40		140 2		15.063		D 364	64 PSJ 70,534	-
	7 50		1410	1146	16,271		D 369 D 374	72.134	1
<u> </u>	7 70		142 8	1156	10 476		0.378	73 751 75 368 77 046 78 725	
	7,80		143 4	1184	10 684		D 363 0 366	77.048	1
	760		1412	1172	16 892	<u> </u>	0 388	80423	1
	ē 10		47.8	114.6	17,525		0.367	82 (4) 81 M7	1
	8 20 8 30		140.0	1196	17,625		0 402	81 M7	1
	8.40		148 2	120.4	17,953		0407	85.640 87.435	1
	6 50		149.0	121 2 122 0 122 6 123 6	17,953		D 417	89,241	- 7
	8 60 8 70	-	ž a	123 8	18,347 18,805 18,675	<u> </u>	0 422	91,060	2
	8 60		1514	144	18 6.5		0 432	92 919 94 700	2
	900		152.2	125.2	19.249		0 437 D 442	64.64	-1
	9 10		153.8	126.0	19		0 447	98,598	2
	9 20		154.6	120 0 127 6 128 4	19,718		D 453 D 458	102 498	2
			100 4	178.4	10 944				2
	9.40		156.2	1791	20,172			106447	
	9.40 9.40 9.50 9.60		154 2 157 0 157 8	1212	20.172 20.401 20.631		D 463 0 458 D 474	106 447 108 516 110 547	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

۰.

		Dete	ention Basin (Dutlet Struct	ure Design				
Project; Basin ID:	Barbarick Subdivisi	lon						·	
ZONE 3									
	-	-		Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	0 45	0.047	Filtration Media	1		
			Zone 2 (100-year)	2.50	0.289		4		
		•		2.50	0.289	Not Utilized	4		
PERMANENT ONFICES POOL Example Zone C	orriguration (Rete	ntion Pond)	Zone 3				J		
User Input: Orifice at Underdrain Outlet (typically use					0 336	Total	ed Parameters for U	-dordenia	
Underdrain Orifice Invert Depth =	1.00	ft (distance below th	e filiration media suri	lace)	Und	erdrain Orilice Area		Ta²	
Underdrain Orlice Diameter =	1.27	inches				ain Orfice Centroid	0.05	feet	
								1	
User Input: Orifice Plate with one or more orifices of	Elliptical Slot Weir (I	pically used to drain	WQCV and/or EURV	in a sedimentation B	IMP	Calc	lated Parameters fo	Plate	
invert of Lowest Onlice =	N/A	ft (relative to basin b	ottom at Stage = 0 (r)		WQ C	Orifice Area per Row •	N/A	11 ²	
Depth at top of Zone using Onlice Plate =	N/A	ft (relative to basin b	ottom at Stage = 0 (t)			Elliptical Half-Width =	N/A	feet	
Onfice Plate Onfice Vertical Spacing =	N/A	inches			Ell	rptical Slot Centroid •	N/A	teel	
Ornice Plate Ornice Area per Row =	N/A	inches				Elliptical Siot Area =	N/A]n'	
User Input: Stage and Total Area of Each Onfice R	ow (numbered from	lowest to highest)							
	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (it)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1
Onfrice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A]
									-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Onfice Centroid (R)	N/A	N/Å	, N/A	N/A	N/A	N/A	N/A	N/A	
Onfice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ļ
User Input: Vertical Orifice (Cir	cular or Bostangular)		•			Calculate	d Parameters for Ver	ical Orifica	
User Input: Vertical Orffice (Cir	Not Selected	Not Selected	1			Calculate	Not Selected	Not Selected	ו
Invert of Vertical Onlice =	Hot seatter		tt icelative to basin it	ottom at Stage = 0 ft)		Vertical Ordice Area =	NOCSENECTED	HOI SELECCEU	n ²
Depth at top of Zone using Vertical Onlice =				ottom at Stage = 0 ft)		ical Orifice Centroid -		├──	leet
Vertical Online Diameter =			inches						
	· · · ·		1						
User Input: Overflow Weir (Dropbox) and (Grate (Flat or Sloped)		-			Calculate	d Parameters for Ove	rflow Weir	
	Not Selected	Not Selected					Not Selected	Not Selected	
Overflow Weir Front Edge Height, Ho =			fl (relative to basin bot	ttom at Stage = 0 (t)		rate Upper Edge, H, 🛛			leei
Overflow Weir Front Edge Length =	·		feet			v Weir Slope Length =			leer
Overflow Weir Slope =	·		H V (enter zero for fl	al grate)		100-yr Orifice Area			should be > 4
Horiz. Length of Weir Sides =	·		feet %, grate open area/t	-		ien Area w/o Debris ∝		· · · · · · · · · · · · · · · · · · ·	ft ⁻
Overflow Grate Open Area % = Debris Clogging % =			w, grate open area/c	otararea	Overnow Grate D	ipen Area w/ Debris -	·	<u> </u>	lu:
Depity Cogg uig A =	·		1~						
User Input: Outlet Pipe w/ Flow Restriction Plate (Cir	cular Orifice, Restrict	or Plate, or Rectangu	lar Orifice)			Calculated Paramete	rs for Outlet Pipe w/	Flow Restriction Plat	
	Not Selected	Not Selected	1				Not Selected	Not Selected	ן
Depth to Invert of Outlet Pipe =			ft (distance below basi	n bottom at Stage + D ft	t]	Outlet Orifice Area =			n ⁷
Circular Onlice Diameter =			inches		Oui	tlet Orifice Centroid =			feet
				Half	Central Angle of Res	trictor Plate on Pipe =	N/A	N/A	ladians
User Input: Emergency Spillway (Rectan							ated Parameters for 5	i i	
Spillway Invert Stage=	2.50	4	ottom at Stage = 0 ft)			y Design Flow Depth=	0 66	leet	
Spillway Crest Length =	\$.00 4.00	leel H V				at Top of Freeboard =	4.16	feet	
Spillway End Slopes = Freeboard above Max Water Surface =	4.00	H V feet			basen Area a	at Top of Freeboard =	0 23	acres	
Freeboard above Max Water Surface =	·	1	_					_	
Routed Hydrograph Results									
Design Storm Return Period =		EURV	2 Year	S Year	10 ¥ear	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-R) =	0.53	0.194	0.95	0.194	0.253	1.88 0.363	2.21 0.452	2.57	0.00
Calculated Runoff Volume (acre-it) = OPTIONAL Override Runoff Volume (acre-it) =	0.047	w.194	0.120	<u></u>	0.213	0.303			0.000
inflow Hydrograph Volume (acre-ft) =	0.047	0.194	0.127	0.194	0.253	0.363	0.451	0.553	RN/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0 00	0.01	0.17	0.34	0 80	1.04	1.33	1.89
Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	0.0 10	4.1	2.7	0.5 4.1	1.1 5.3	2.5	3.2 94	42	- 5.9 #N/A
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	00	0.1	0.1	0.1	0.1	0 2	1.7	36	RN/A
Rato Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.1	0.1	01	0.5	0.9	#N/A
Structure Controlling Flow =	Filtration Media	Filtration Media	Filtration Media N/A	Filtration Media N/A	Filtration Media N/A	Spillway N/A	Spillway N/A	Sp(Nway N/A	8N/A 8N/A
Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	EN/A
Time to Dran 97% of Inflow Volume (hours) =	= 12	41	29	41	51	66	65	65	#N/A
Time to Drain 99% of Inflow Volume (hours) =	13	42	30	42	52	68	68	68	#N/A
Maxmum Ponding Depth (1) =	0.37	1.52	1.04	1.52 D.14	r 1.91 0.15	2.55	2.71	2.83	EN/A
Area at Maximum Ponding Depth (acres) = Maximum Volume Stored (acre-ft) =		0 14	0.13	0.14	0.15	0.343	0.18	0.394	#N/A

١

APPENDIX B

•

STORMCAD INFORMATION

Culvert Calculator Report Twin 24" Culvert

Solve For: Headwater Elevation

•

Culvert Summary					
Allowable HW Elevation	2.00	ft	Headwater Depth/Heig	ht 1.32	
Computed Headwater Elev	7,038.15	ft	Discharge	35.50	cfs
Inlet Control HW Elev.	7,038.10	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	7,038.15	ft	Control Type	Entrance Control	
Grades					
Upstream Invert	7,035.51	ft	Downstream Invert	7,020.00	ft
Length	606.00	ft	Constructed Slope	0.025594	ft/ft
Hydraulic Profile					_
Profile	S2		Depth, Downstream	0.94	ft
Slope Type	Steep		Normal Depth	0.94	ft
Flow Regime	Supercritical		Critical Depth	1.52	ft
Velocity Downstream	12.17	ft/s	Critical Slope	0.006140	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Section Material	Concrete		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev.	7,038.15	ft	Upstream Velocity Hea	d 0.75	ft
Ке	0.50		Entrance Loss	0.37	ft
Inlet Control Properties					
Inlet Control HW Elev.	7,038.10	ft	Flow Control	Transition	
Inlet Type Square edge	e w/headwall		Area Full	6.3	ft²
к	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

Culvert Calculator Report Outlet Pipe

:

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	7,023,10	ft	Headwater Depth/Height	2.07	
Computed Headwater Eleva	7,023.10	ft	Discharge	55.60	cfs
Inlet Control HW Elev.	7,023.10	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	7,022.97	ft	Control Type	Inlet Control	
Grades					
Upstream Invert	7,017.92	ft	Downstream invert	7,017.52	ft
Length	40.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile CompositeM2Pre	ssureProfile		Depth, Downstream	2.36	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	2.36	ft
Velocity Downstream	11.58	ft/s	Critical Slope	0.013538	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Section Material	Concrete		Span	2.50	ft
Section Size	30 inch		Rise	2.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	7,022.97	ft	Upstream Velocity Head	1.99	ft
Ке	0.20		Entrance Loss	0.40	ft
Inlet Control Properties			···		
Inlet Control HW Elev.	7,023.10	ft	Flow Control	Submerged	
Inlet Type Beveled ring, 3	33.7° bevels		Area Full	4.9	ft²
К	0.00180		HDS 5 Chart	3	
М	2.50000		HDS 5 Scale	в	
С	0.02430		Equation Form	1	
Y	0.83000				

02-Overflow Channel Project Description Friction Method Manning Formula Solve For Discharge Input Data **Roughness Coefficient** 0.050 Channel Slope 0.02000 ft/ft Normal Depth 2.00 ft Left Side Slope 3.00 ft/ft (H:V) **Right Side Slope** 3.00 ft/ft (H:V) **Bottom Width** 4.00 ft Results . بالمارية الأرتيزية أي أينا المرتج المناج الم 1949 Discharge 94.99 ft³/s Flow Area 20.00 ft² Wetted Perimeter 16.65 ft Hydraulic Radius 1.20 ft Top Width 16.00 ft **Critical Depth** 1.73 ft **Critical Slope** 0.03707 ft∕ft Velocity 4.75 ft/s Velocity Head 0.35 ft Specific Energy 2.35 ft Froude Number 0.75 Subcritical Flow Type \mathcal{N} **GVF** Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data 0.00 Upstream Depth ft **Profile Description Profile Headloss** 0.00 ft Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity fVs Normal Depth 2.00 ft **Critical Depth** 1.73 ft 0.02000 Channel Slope ft/ft

Bentley Systems, Inc. Haestad Methods Solutionti@efitowMaster V8I (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1656 Page 1 of 2

5/31/2016 10:27:58 AM

02-Overflow Channel

GVF. Output Data

Critical Slope

0.03707 ft/ft

Wo	ksheet for Open Channel Culvert Lot 3
Project Description	
Friction Method	Manning Formula
Solve For	Normai Depth
Input Data	
Roughness Coefficient	0.012
Channel Slope	0.03000 ft/ft
Diameter	1.50 ft
Discharge	15.90 ft³/s
Results	
Normal Depth	1.02 ft
Flow Area	1.28 ft²
Wetted Perimeter	2.91 ft
Hydraulic Radius	0.44 ft
Top Width	1. 40 ft
Critical Depth	1. 42 ft
Percent Full	68.1 %
Critical Slope	0.01 690 ft/ft
Velocity	12.41 ft/s
Velocity Head	2.39 ft
Specific Energy	3.41 ft
Froude Number	2.29
Maximum Discharge	21.20 ft ³ /s
Discharge Full	19.71 ft³/s
Slope Full	0.01952 ft/ft
Flow Type	SuperCritical
GVF Input Data	
Downstream Depth	0.00 ft
Length	0.00 ft
Number Of Steps	D
GVF Output Data	
Upstream Depth	0.00 ft
Profile Description	
Profile Headloss	0.00 ft
Average End Depth Over Rise	0.00 %
Normal Depth Over Rise	68.08 %
Downstream Velocity	Infinity ft/s

.

5/31/2016 11:49:32 AM

Bentley Systems, Inc. Haestad Methods Sol@contl@efilowMaster V8i (SELECTserics 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

••

Worksheet for Open Channel Culvert Lot 3

GVF Output Data			
Upstream Velocity	Infinity	ft/s	
Normal Depth	1.02	ft	
Critical Depth	1.42	ft	
Channel Slope	0.03000	ft/ft	
Critical Slope	0.01690	ft/ft	

Worksheet for Outlet with Passthrough-Weir

Project Description Solve For Discharge Input Data Headwater Elevation 1.40 ft **Crest Elevation** 0.00 ft Tailwater Elevation 0.00 ft Weir Coefficient 3.00 US Crest Length 32.00 ft Number Of Contractions 0 Results 159.02 ft³/s Discharge Headwater Height Above Crest 1.40 ft Tailwater Height Above Crest 0.00 ft 44 80 Flow Area ft² 3.55 Velocity ft∕s Wetted Perimeter 34.80 ft 32.00 Top Width ft Weit is more restrict we than Onifice 159.02 LSs TOP GREE-50% Cloging = 55.66 cLs > 45.9 tributary -> Instell online Restrictor on author ppe.

	Worksheet for O	utlet wPa	iss - O
Project Description	`		
Solve For	Discharge		
Input Data			
Headwater Elevation		1.40	ft
Centroid Elevation		0.00	ft
Tailwater Elevation		0.00	ft
Discharge Coefficient		0.60	
Opening Width		4.00	ft
Opening Height		12.00	ft
Results			
Discharge		273.35	ft³/s
Headwater Height Above Cent	troid	1.40	ft
Tailwater Height Above Centre	bid	0.00	ft
Flow Area		48.00	ft²
Velocity		5.69	fl/s
Top Box	Weir is more 1	Restriction	
/ USE	Weir is more l Weir Celaula	rans.	

rifice

Worksheet for FSD Outlet Orifice Plate

Project Description Solve For Diameter Input Data , 45.90 HV/s (16.5 Hrs + 29.4 ALac) Discharge 4.70 ft Headwater Elevation 0.00 **Centroid Elevation** ft **Tailwater Elevation** 0.00 ft **Discharge Coefficient** 0.60 Results 2.37 ft Diameter 4.70 ft Headwater Height Above Centroid Tailwater Height Above Centroid 0.00 ft Flow Area 4.40 ft² 10.43 ft/s Velocity

Worksheet for FSD Overflow - Pass							
Project Description							
Solve For	Discharge						
nput Data							
Headwater Elevation		0.90	ft				
Crest Elevation		0.00	ft				
ailwater Elevation		0.00	ft				
Crest Surface Type	Gravel						
crest Breadth		12.00	ft				
crest Length		36.00	ft				
Results							
ischarge		86.22	ft³/s	(55Dul+29.4) pues = 44.40			
leadwater Height Above Crest		0.90	ft	,			
ailwater Height Above Crest		0.00	ft				
Veir Coefficient		2.80	US				
ubmergence Factor		1.00					
djusted Weir Coefficient		2.80	US				
low Area		32.40	ft²				
/elocity		2.66	ft/s				
Vetted Perimeter		37.80	ft				
Fop Width		36.00	ft				

,

Worksheet for SFB Overflow Developed

Project Description

Solve For	Discharge
Input Data	
Headwater Elevation	0.45 ft
Crest Elevation	0.00 ft
Tailwater Elevation	0.00 ft
Crest Surface Type	Gravel
Crest Breadth	6.00 ft
Crest Length	10.00 ft

Results

Discharge	8.08	ft³/s
Headwater Height Above Crest	0.45	ft
Tailwater Height Above Crest	0.00	ft
Weir Coefficient	2.68	US
Submergence Factor	1.00	
Adjusted Weir Coefficient	2.68	US
Flow Area	4.50	ft²
Velocity	1.80	ft/s
Wetted Perimeter	10.90	ft
Top Width	10.00	ft

.

Worksheet for Type D Inlet - Weir

Project Description

Solve For	Discharge		
Input Data			
Headwater Elevation		1. 5 0	ft
Crest Elevation		0.00	ft
Weir Coefficient		3.00	US
Crest Length		17.17	ft
Results			
Discharge		9 4.61	ft³/s
Headwater Height Above Crest		1.50	ft
Flow Area		25.75	ft²
Velocity		3.67	ft/s
Wetted Perimeter		20.17	ft
Top Width		17.17	ft

Type D Weir is most restrictive 94.61 cGs 70% Grate Opening 50% Glogging = 33 11 cGs > 29.4 cGs tributery

Worksheet for Type D Inlet - Orifice

Project Description

Solve For	Discharge		
Input Data			
Headwater Elevation		1.50	ft
Centroid Elevation		0.00	ft
Tailwater Elevation		0.00	ft
Discharge Coefficient		0.60	
Opening Width		2.92	ft
Opening Height		5.67	ft
Results			
Discharge		97.50	ft³/s
Headwater Height Above Centroid		1.50	ft
Tailwater Height Above Centroid		0.00	ft
Flow Area		16.54	ft²
Velocity		5.89	ft/s

Type D Weir is more restrictive -> Use Weir Calculations

V	Vorksheet for Western Channel Capacity
Project Description	
Friction Method	Manning Formula
Solve For	Discharge
Input Data	
Roughness Coefficient	0.030
Channel Slope	0.02000 ft/ft
Normal Depth	1.00 ft
Left Side Slope	4.00 ft/ft (H:V)
Right Side Slope	4.00 ft/ft (H:V)
Results	
Discharge	17.30 ft³/s
Flow Area	4.00 ft²
Welted Perimeter	8.25 ft
Hydraulic Radius	0.49 ft
Top Width	8.00 ft
Critical Depth	1.03 ft
Critical Slope	0.01703 ft/ft
Velocity	4.32 ft/s
Velocity Head	0.29 ft
Specific Energy	1.29 ft
Froude Number	1.08
Flow Type	Supercritical
GVF Input Data	
Downstream Depth	0.00 ft
Length	0.00 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.00 ft
Profile Description	
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	1.00 ft
Critical Depth	1.03 ft
Channel Slope	0.02000 ft/ft
Critical Slope	0.01703 ft/ft

Benticy Systems, Inc. Haestad Methods SoluZionti@efitowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

.

5/27/2016 1:31:20 PM

				Rranch	l angth	linctream	Upstream	linetroom inlet	System
Label	Start Node	Stop Node Branch ID	Branch ID	Element ID	Unified) (ft)	Inlet C	intensity (in/h)	Area (acres) (in/h)	(in/h)
CO-1	CB-1	MH-1	1	1	255.4 (N/A)	(N/A)	8	8 (N/A)	~
CO-2	MH-1	MH-2	1	2	295.1 (N/A)	(N/A)	8	8 (N/A)	~
CO-3	MH-2	MH-3	1	3	295.1	295.1 (N/A)	8	8 (N/A)	
CO-4	MH-3	MH-4	1	4	44.9	44.9 (N/A)	8	8 (N/A)	
CO-5	MH-4	OF-1	1	ъ	198.3	198.3 (N/A)	8	8 (N/A)	
	System		Rise		Velocity	Invert	Invert		
	Rational Flow Total Flow (Unified)	/ Total Flow	(Unified)	Capacity (Full	(Average)	(Upstrea	(Upstrea (Downstream		
	(ft³/s)	(ft³/s)	(in)	Flow) (ft³/s)	(ft/s)	m) (ft)) (ft)	Slope (ft/ft)	
CO-1	0	29.4	0£	44.49	9.68	7032.21	7029.65	0.01	
CO-2	0) 29.4	30	44.43	9.67	7029.35	7026.4		
CO-3	0) 29.4	30	38.97	8.72	7026.2	7023.93	0.008	
CO-4	0) 29.4	30	57.43	11.77	7023.63	7022.88	0.017	
CO-5	0								

.

•

APPENDIX C

STANDARD DESIGN CHARTS AND TABLES

.

Precipitation Frequency Data Server

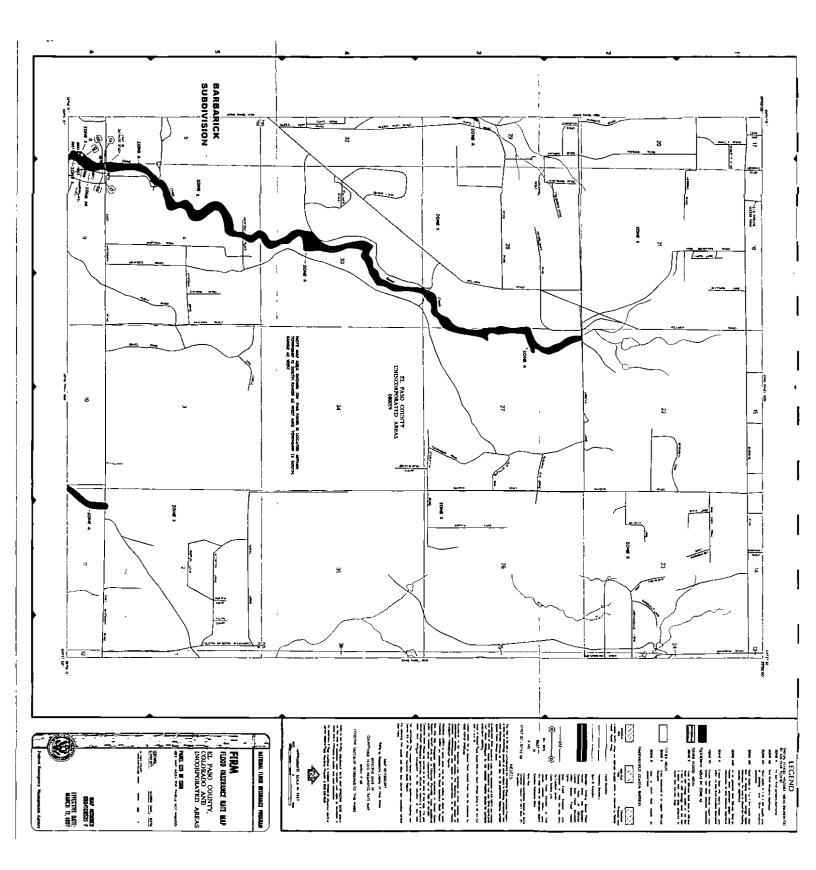
NOAA Atlas 14, Volume 8, Version 2 Location name: Colorado Springs, Colorado, US* Latitude: 38.9514°, Longitude: -104.6905° Elevation: 6984 ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Penca, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Date Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials


PF tabular

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Average	recurrence	interval (ye	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.237	0.289	0.380	0.460	0.577	0.674	0.775	0.883	1.03	1.15
	(0.195-0.290)	(0.238-0.355)	(0.311-0.467)	(0.374-0.568)	(0.456-0.746)	(0.517-0 880)	(0 573-1.04)	(0.625-1.21)	(0.701-1.46)	(0.759-1.65)
10-min	0.347	0.424	0.556	0.673	0.846	0.987	1.14	1.29	1.51	1.69
	(0.285-0.425)	(0.348-0.520)	(0.455-0.684)	(0.548-0.832)	(0.667-1.09)	(0.757-1.29)	(0.839-1.52)	(0.914-1.78)	(1.03-2.14)	(1.11-2.41)
15-min	0.423 (0.348-0.519)	0.516 (0.424-0.634)	0.678 (0.555-0.834)	0.821 (0.668-1.01)	1.03 (0.814-1.33)	1.20 (0.924-1.57)	1.38 (1.02-1.85)	1.58 (1.11-2.17)	1.84 (1.25-2.61)	2.06 (1.35-2.94)
30-min	0.613	0.747	0.980	1.19	1.49	1.74	2.00	2.27	2.66	2.97
	(0.504-0.751)	(0.614-0.917)	(0.802-1.21)	(0.965-1.47)	(1.17-1.92)	(1.33-2.27)	(1.48-2.67)	(1.61-3 13)	(1.80-3.76)	(1.95-4.24)
60-min	0.795	0.948	1.23	1.48	1.88	2.21	2.57	2.96	3.52	3.97
	(0.654-0.974)	(0.779-1.16)	(1.00-1.51)	(1.21-1.83)	(1.49-2.44)	(1.70-2.90)	(1.91-3.46)	(2.10-4.09)	(2.39-4.99)	(2.61-5.67)
2-hr	0.977	1.15	1.47	1.78	2.27	2.68	3.14	3.65	4.38	4.98
	(0.809-1.19)	(0.951-1.40)	(1.22-1.80)	(1.46-2.19)	(1.82-2.94)	(2.09-3.51)	(2.35-4.21)	(2.61-5.02)	(3.00-6.18)	(3.30-7.06)
3-hr	1.08	1.25	1.58	1.92	2.45	2.92	3.45	4.04	4.90	5.62
	(0.897-1.31)	(1.04-1.51)	(1.31-1.93)	(1.57-2.34)	(1.98-3.19)	(2.29-3.83)	(2.60-4.62)	(2.91-5.55)	(3.39-6.92)	(3.75-7.95)
6-hr	1.26	1.44	1.81	2.19	2.81	3.37	4.00	4.71	5.77	6.65
	(1.05·1.51)	(1.20-1.73)	(1.51-2.18)	(1.81-2.65)	(2.30·3.64)	(2.66-4.39)	(3.04-5.34)	(3.43-6.45)	(4.02-8.09)	(4.46-9.33)
12-hr	1.45 (1.23-1.74)	1.68 (1.41-2.00)	2.12 (1.78-2.54)	2.55 (2.13-3.07)	3.26 (2.68-4.19)	3.89 (3.10-5.03)	4.59 (3.52-6 08)	5.38 (3.94-7.31)	6.54 (4.59-9.11)	7.51 (5.08-10.5)
24-hr	1.68	1.97	2.50	3.01	3.80	4.48	5.23	6.04	7.23	8.20
	(1.43-1.99)	(1.67-2.33)	(2.12-2.98)	(2.53-3.60)	(3.13-4.80)	(3.58-5.72)	(4.02-6.83)	(4.45-8.11)	(5.09-9.96)	(5.58-11.4)
2-day	1.95	2.31	2.95	3.53	4.39	5.11	5.88	6.71	7.89	8.83
	(1.67-2.29)	(1.97-2.72)	(2.51-3.48)	(2.99-4.18)	(3.62-5.46)	(4.10-6.44)	(4.55-7.59)	(4.96-8.91)	(5.59-10.8)	(6 07-12.2)
3-day	2.15 (1.85-2.51)	2.54 (2.18-2.97)	3.22 (2.75-3.78)	3.83 (3 26-4.52)	4.74 (3.92-5.87)	5.50 (4.42-6.88)	6.30 (4.89-8.09)	7.16 (5.31-9.45)	8.37 (5.96-11.4)	9.34 (6 45-12.8)
4-day	2.31 (2.00-2.70)	2.72 (2.34-3.17)	3.42 (2.94-4.01)	4.06 (3 46-4.78)	5.00 (4.15-6.16)	5.78 (4.67-7.21)	6.61 (5.14-8.46)	7.50 (5.58-9.87)	8.75 (6.25-11.8)	9.76 (6.75-13.3)
7-day	2.74 (2.38-3.18)	3.17 (2.75-3.68)	3.92 (3.39-4.57)	4.60 (3.95-5.38)	5.60 (4.67-6.86)	6.43 (5.23-7.97)	7.32 (5.73-9.30)	8.27 (6.19-10.8)	9.60 (6.90-12.9)	10.7 (7.44-14.5)
10-day	3.11 (2.71-3.60)	3.58 (3.11-4.14)	4.39 (3.80-5.09)	5.11 (4 40-5.95)	6.17 (5.17-7.51)	7.05 (5.75-8.69)	7.98 (6.27-10.1)	8.97 (6.75-11.7)	10.4 (7.47-13.9)	11.5 (8.03-15.5)
20-day	4.18	4.79	5.83	6.72	7.99	9.01	10.0	11.1	12.6	13.8
	(3.67-4.79)	(4.20-5.50)	(5.09-6.71)	(5.84-7.77)	(6.71-9.59)	(7.38-11.0)	(7.94-12.6)	(8.42·14.3)	(9.17-16.7)	(9.73-18.6)
30-day	5.05	5.80	7.04	8.08	9.51	10.6	11.8	12.9	14.4	15.6
	(4.46-5.77)	(5.11-6.63)	(6.18-8.07)	(7.05-9.30)	(8.01-11.3)	(8.73-12.8)	(9.32-14.6)	(9.79-16.5)	(10.5-19.0)	(11.1-20.9)
45-day	6.14 (5.44-6.98)	7.06 (6.25-8.03)	8.54 (7.53-9.74)	9.75 (8.55-11.2)	11.4 (9.60-13.4)	12.6 (10.4-15.1)	13.8 (11.0-17.0)	15.0 (11.4-19.1)	16.6 (12.1-21.7)	17.7 (12.6-23.7)
60-day	7.05 (6.27-7.99)	8.12 (7.20-9.20)	9.80 (8.66-11.1)	11.1 (9.80-12.7)	12.9 (10.9-15.2)	14.2 (11.8-17.0)	15.5 (12.4-19.0)	16.7 (12.8-21.1)	18.3 (13.4-23.8)	19.4 (13.9-25.8)

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

Map Unit Legend

	El Paso County Area, Colorado (CO625)								
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI						
9	Blakeland-Fluvaquentic Haplaquolls	12.5	76.4%						
71	Pring coarse sandy loam, 3 to 8 percent slopes	3.9	23.6%						
Totals for Area of Interest		16.4	100.0%						

٠.

El Paso County Area, Colorado

9—Blakeland-Fluvaquentic Haplaquolls

Map Unit Setting

National map unit symbol: 36b6 Elevation: 3,500 to 5,800 feet Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 46 to 55 degrees F Frost-free period: 110 to 165 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 60 percent Fluvaquentic haplaquolls and similar soils: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Flats, hills Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose and/or eolian deposits derived from arkose

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: Sandy Foothill (R049BY210CO)

USD#

Description of Fluvaquentic Haplaquolls

Setting

Landform: Swales Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

H1 - 0 to 12 inches: variable

Properties and qualities

Slope: 1 to 2 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Poorly drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr) Depth to water table: About 0 to 24 inches Frequency of flooding: Occasional Frequency of ponding: None Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)

Interpretive groups

Land capability classification (irrigated): 6w Land capability classification (nonirrigated): 6w Hydrologic Soil Group: D

Minor Components

Other soils

Percent of map unit:

Pleasant

Percent of map unit: Landform: Depressions

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 13, Sep 22, 2015

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Loamy Park (R048AY222CO)

Minor Components

Other soils

Percent of map unit:

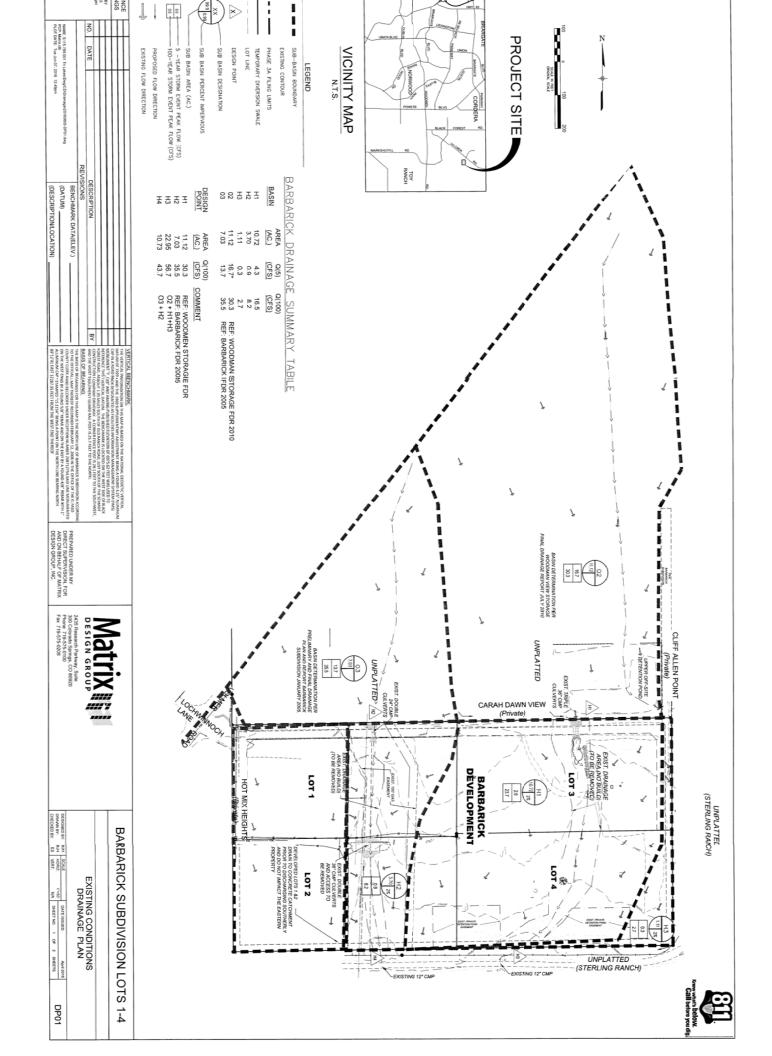
Pleasant

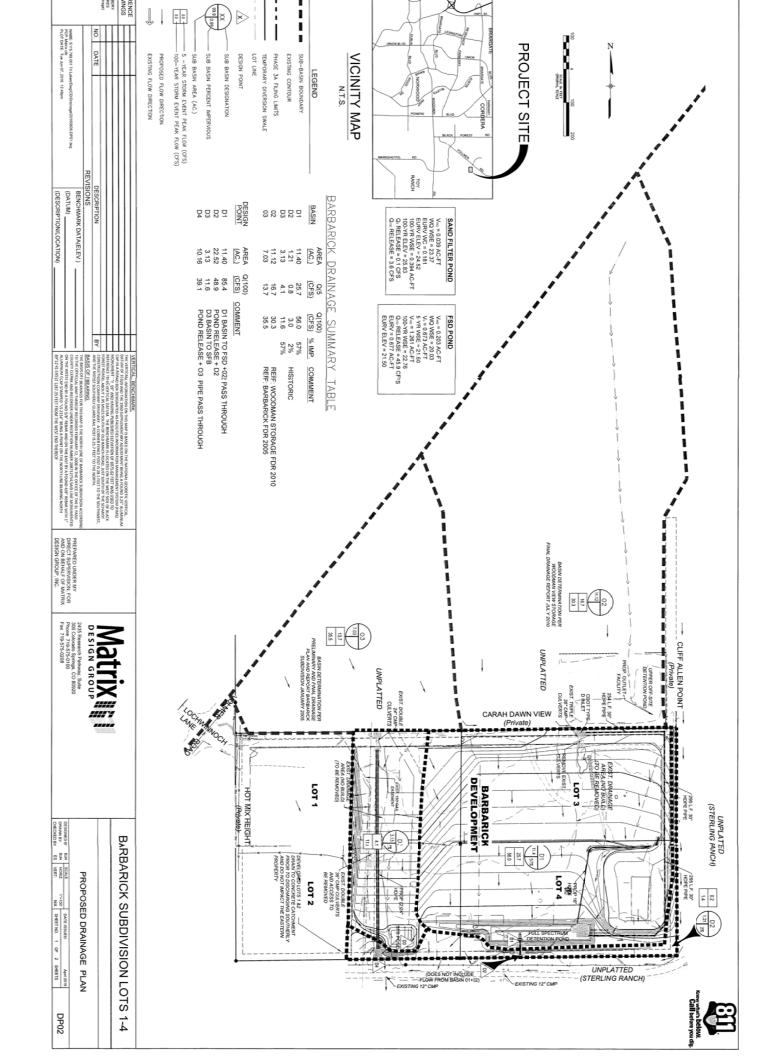
Percent of map unit:

Landform: Depressions

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 13, Sep 22, 2015




,

ī

APPENDIX D

MAPS

SAND CREEK DBPS COST OPINION & MAPS

SAND CREEK DRAINAGE BASIN PLANNING STUDY - COSTS FOR STERLING RANCH

CONSTRUCTION COST OPINION PER DBPS

	SAND CR	EEK Drainageway (onveyance Cost E	stimate (pg. 64 DBPS	1	
DBPS SEG/DESCRIPTION 1 163 Sel. Linings (1 side) 2 187 Sel. Linings (1 side) 3 170 Sel. Linings (1 side)	UNIT LF LF	QUANTITY 2600 0	UNIT COST \$127 \$0	GRADE CONTROLS 15 2	LENGTH 1200 160	DBPS REIMBURSABLE COST \$548,200 \$28,800
SUB-TOTAL (DBPS Dollars) * (2017 Dollars)	LF 	0 rs) - Drainage Fee M	\$0 Iultiplier - 3.32	3	240	\$43,200 \$618,200 \$2,054,773

Existing Pond Outlet Structures and Embankment Repairs (pg. 50, 52, 53)

					a	
	DBPS SEG/DESCRIPTION	UNIT	QUANTITY	UNIT COST		PROPOSED REIMBURSABLE COST
1	SEG 170 - Pond Outlet	1	1	\$20,000	*10	\$20,000
	Embankment	1	1	\$35,000	*18	\$35,000
						365
2	SEG 170 - Pond Outlet	1	1	\$20,000	*10	\$20,000
	Embankment	1	1	\$35,000	*10	\$35,000
3	SEG 163 - Pond Outlet	1	1	\$20,000	*10	\$20,000
	Embankment	1	1	\$35,000	*16	\$35,000
	SUB-TOTAL (DBPS Dollars)					
-						\$165,000
	* (2017 Dollars)	*(2017 Dolla	rs - Proposed Costs	 Not included in DBPS) 		\$165,000

SAND CREEK DRAINAGE BASIN PLANNING STUDY - COSTS FOR STERLING RANCH

CONSTRUCTION COST OPINION PER DBPS

	<u>*Sand</u>	Creek BRIDGE Cr	ossing Cost Estimate (pg. 83 DBP	<u>S)</u>	
DBPS SEG/DESCRIPTION 1 Resarch Pkwy 6'H x 8'W CBC	unit Lf	QUANTITY 80	UNIT COST \$1,560	*10	DBPS REIMBURSABLE COST \$124,800
SUB-TOTAL (DBPS Dollars) * (2017 Dollars)	 *(2017 Dollar	s) - Bridge Fee Mull	iplier - See previous sheet - 15.26		\$124,800 \$1,904,456
TOTAL REIMBURSABLE DRAINAGE COST					\$8,237,679
TOTAL REIMBURSABLE <u>BRIDGE</u> COST PER	R DBP\$ (2017 [DOLLARS) - Per Pr	oposed Amendment		\$1,904,456

*Cost Difference Summary

1. The Sand Creek DBPS assumed a lower density of development for the proposed Sterling Ranch area.

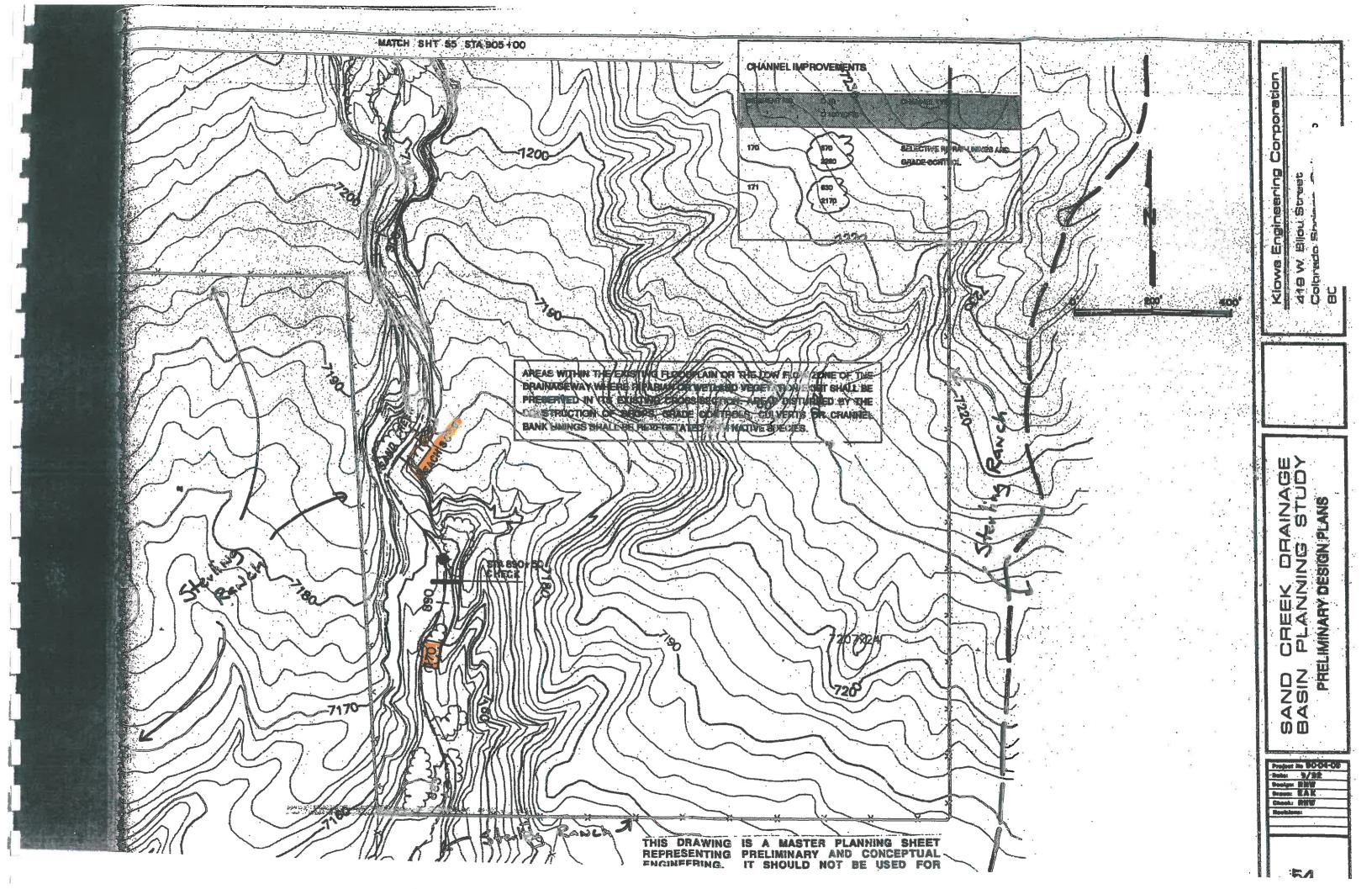
2. Vollmer Road culverts are propsed as CMP in the SCDBPS, However RCP is the standard and therefore should be reimbursable.

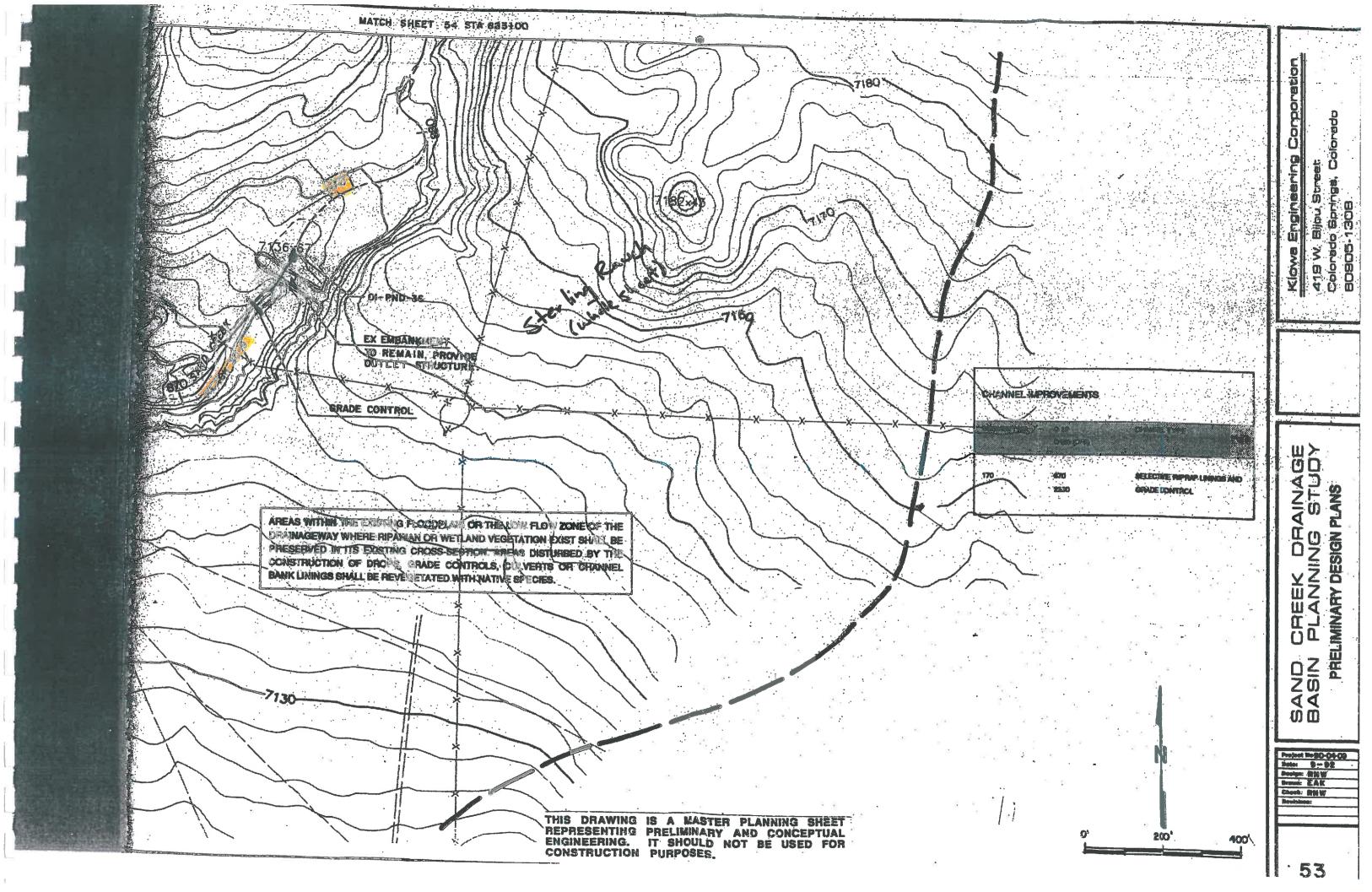
3. No Costs for existing pond outlet structures or embankment repairs were given in the SCDBPS

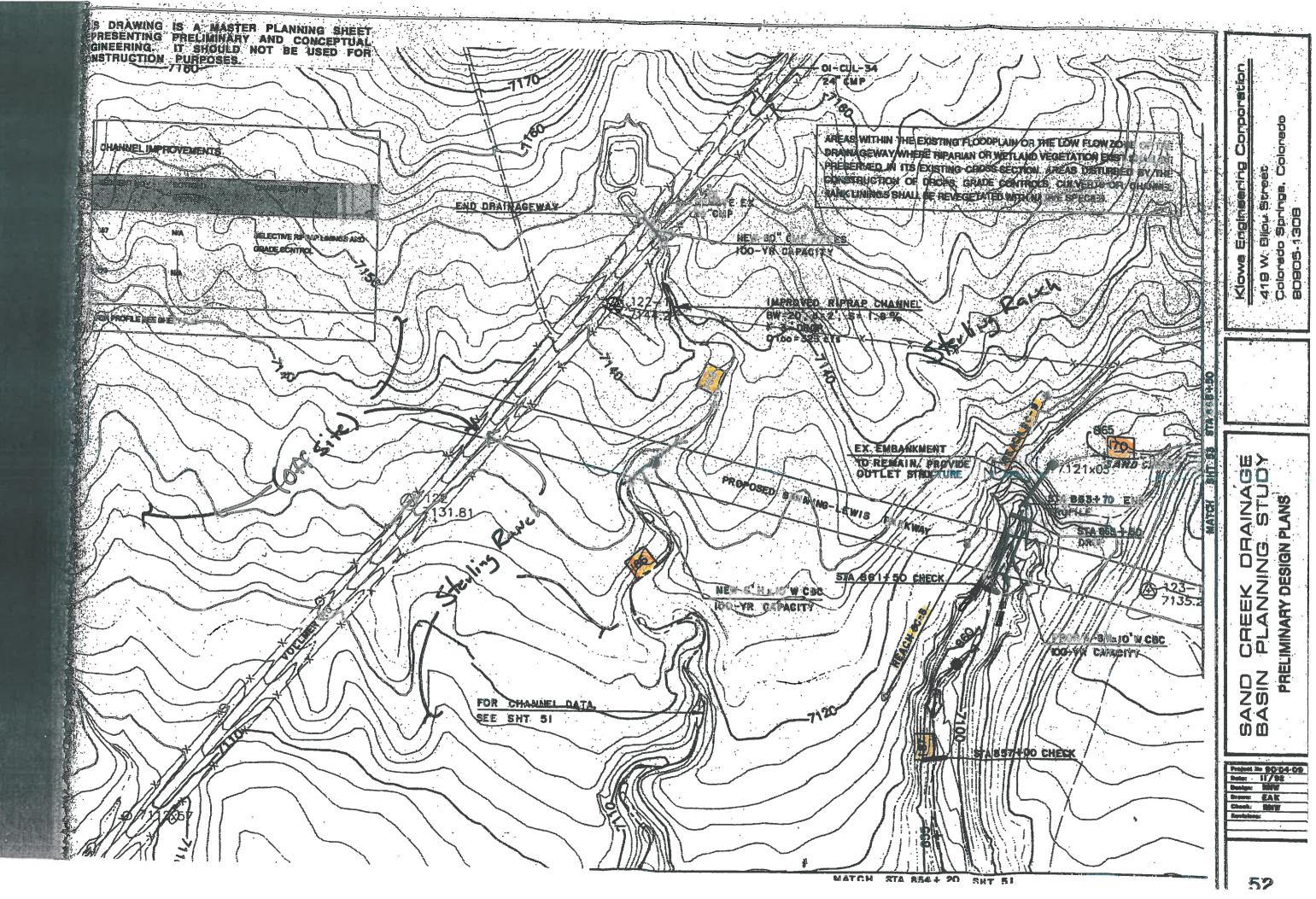
4. The Sand Creek bridge estimate is only 80 LF, however the ROW is 160' in width and with the embankment considered the actual lengths will exceed 200 LF.

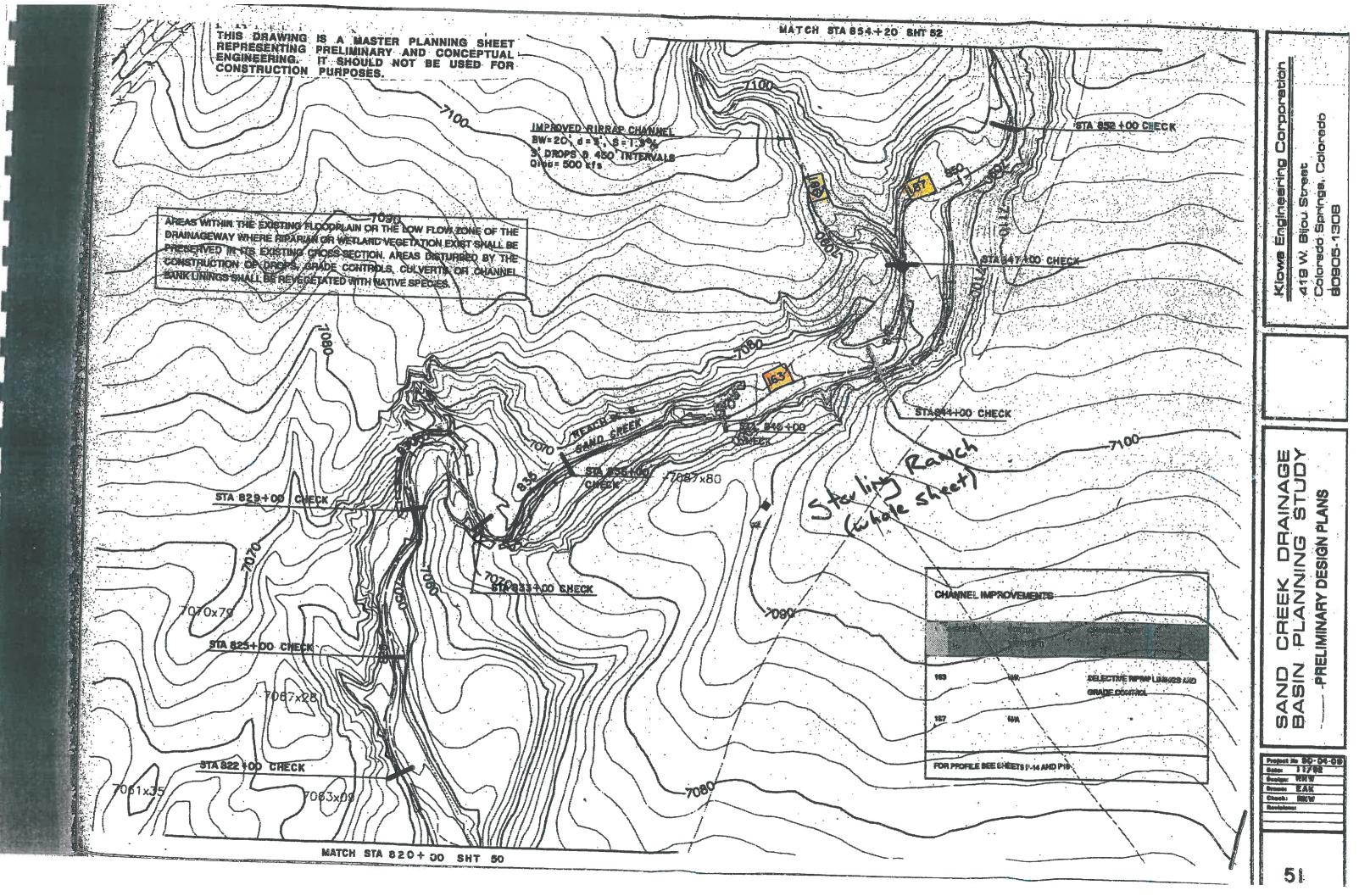
5. The Sand Creek roadway culvert estimate assumes CMP pipe, however RCP pipe is now the standard.

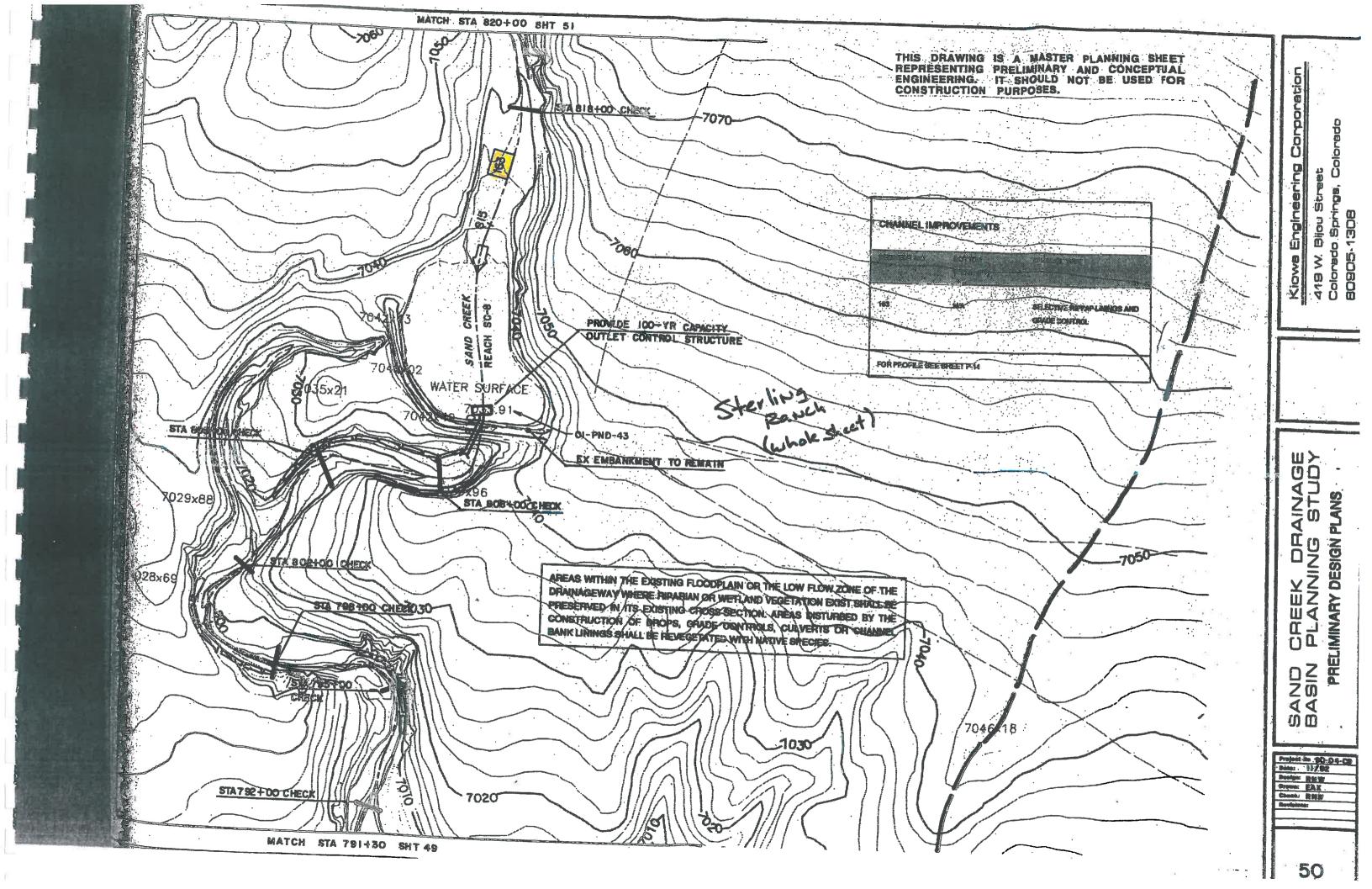
6. The Sand Creek drainageway estimate assumes grade control structures only, however drop structures will replace some of the check structures.

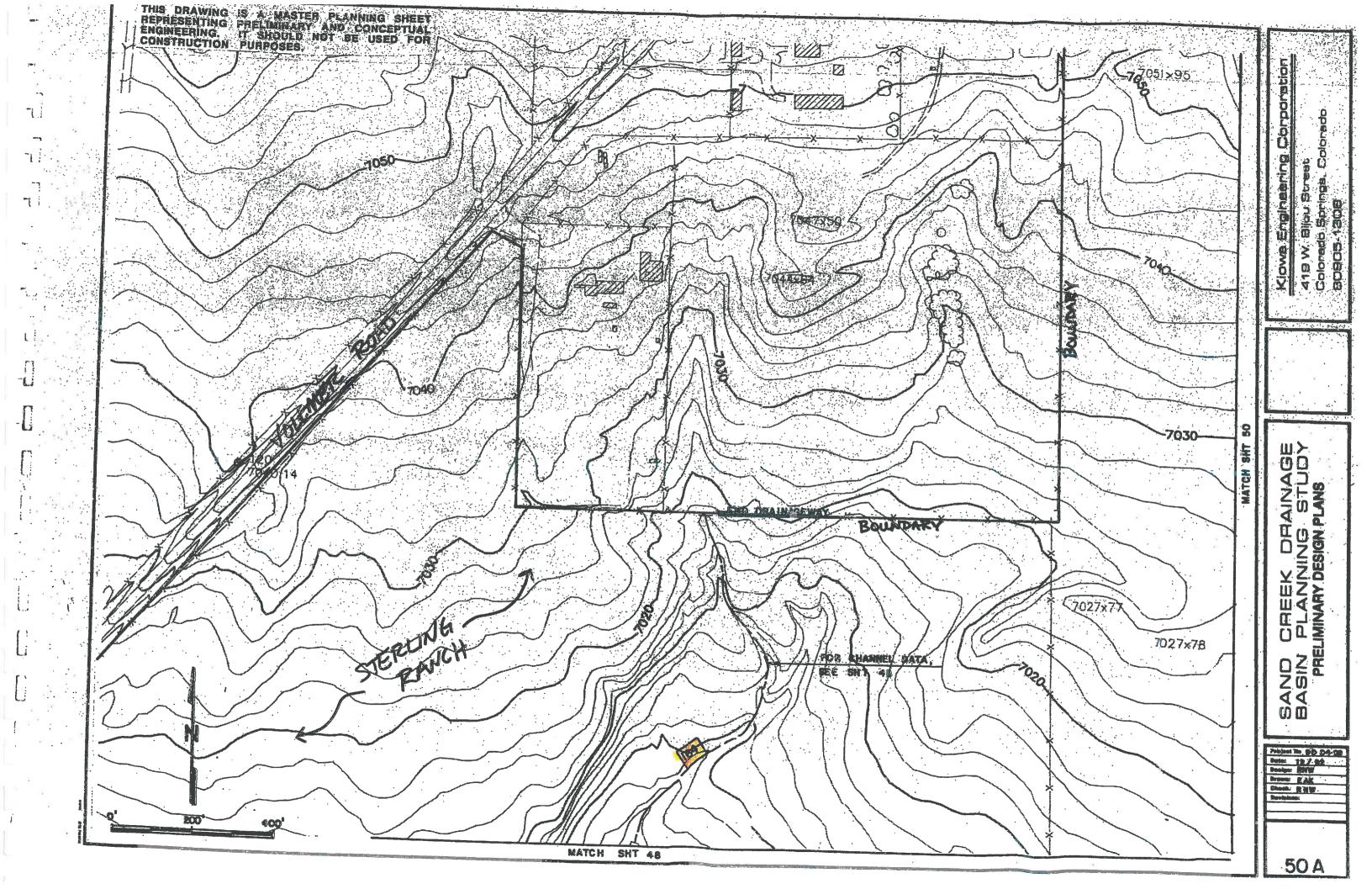

7. The Sand Creek drainageway assumes design for some 10-yr facilities, however 100-yr facilities will be constructed throughout the development.

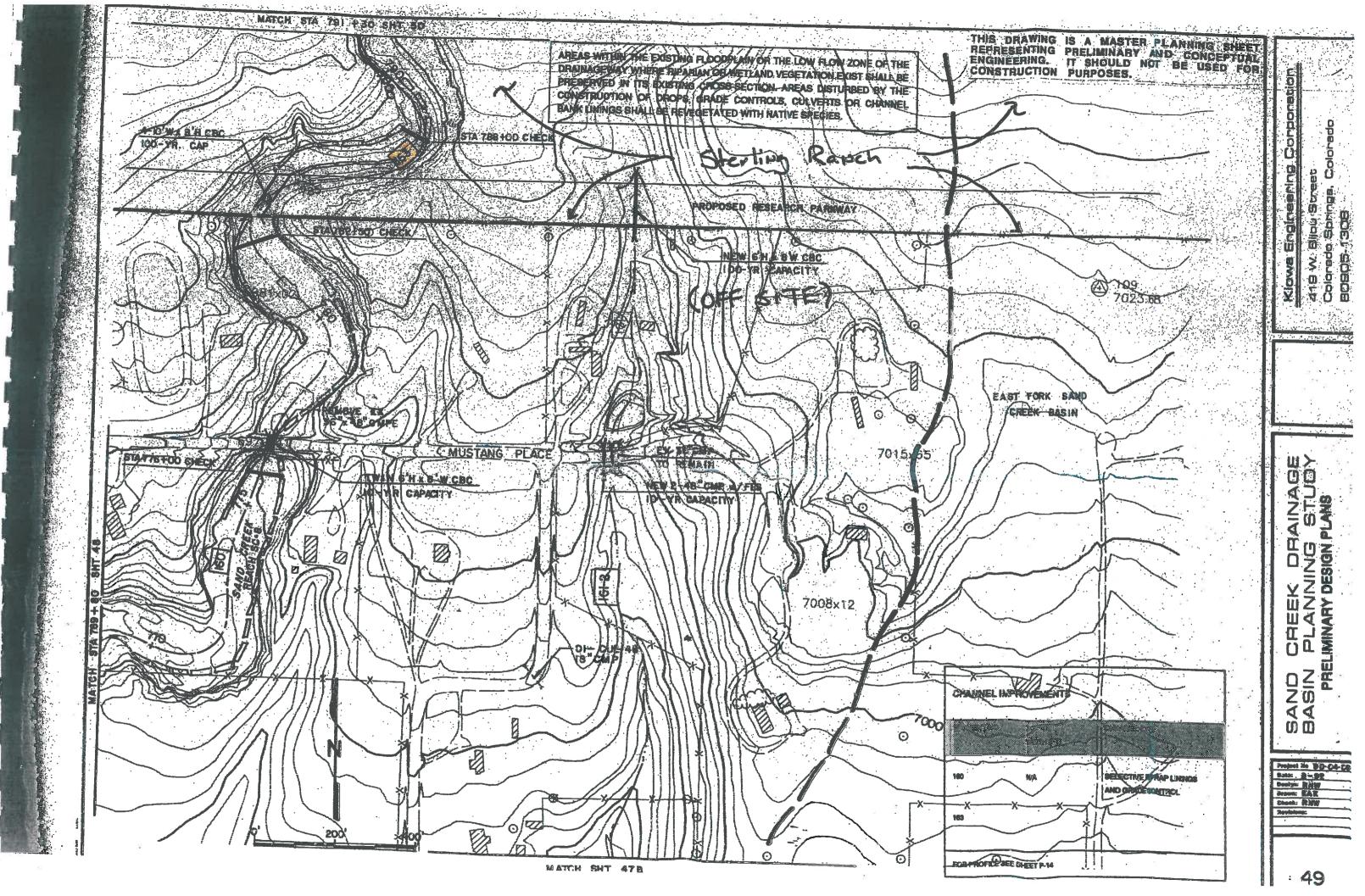

8. The Sand Creek DBPS does not consider Vollmer Road as an improved arterial road, however Vollmer Road drainage improvements will be necessary.

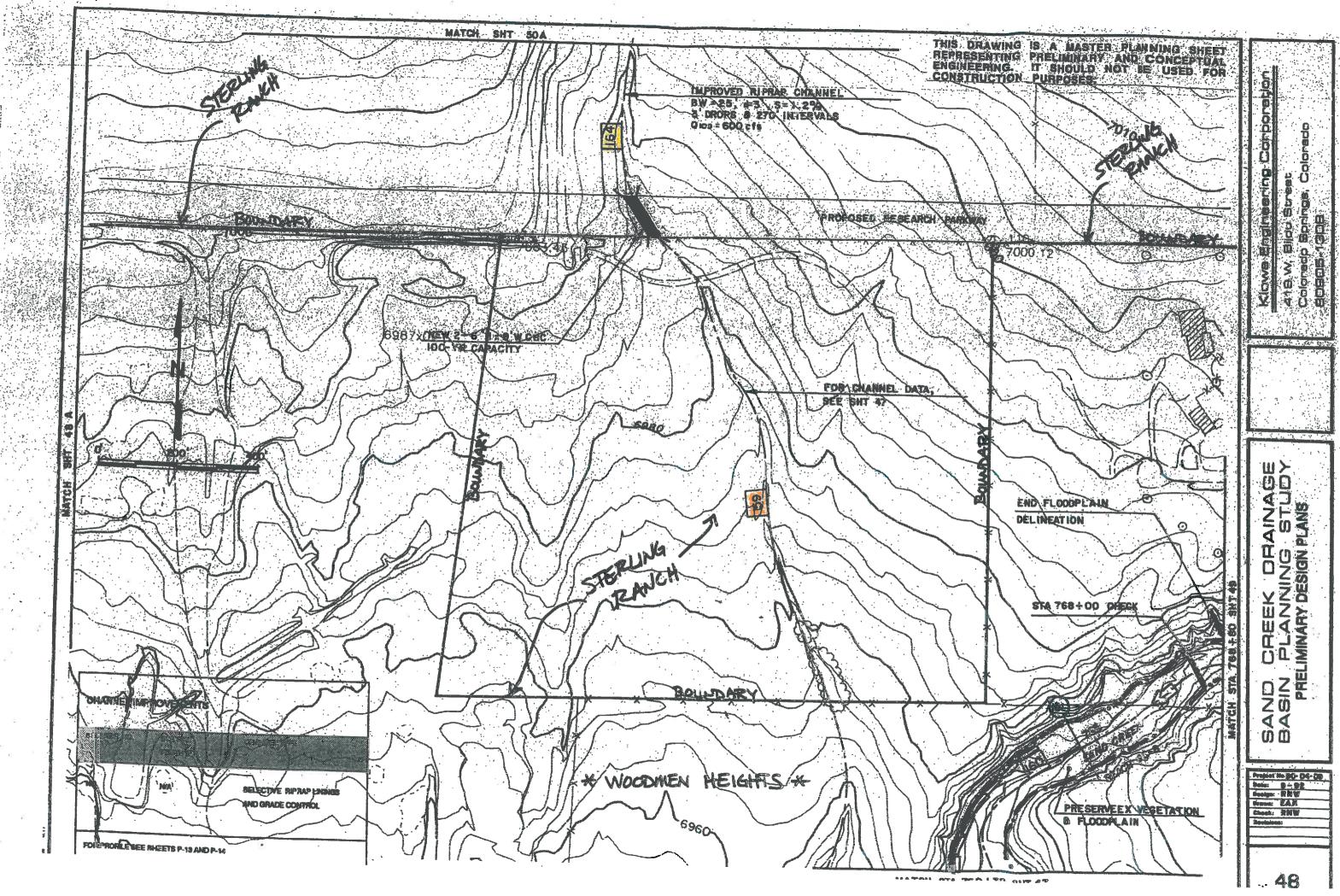

9. The Sand Creek DBPS (page 50) 100-yr outlet control structure for the existing pond was not included in the cost estimate for the Sand Creek Improvements, however for the existing embankment to remain, a structure will be necessary.

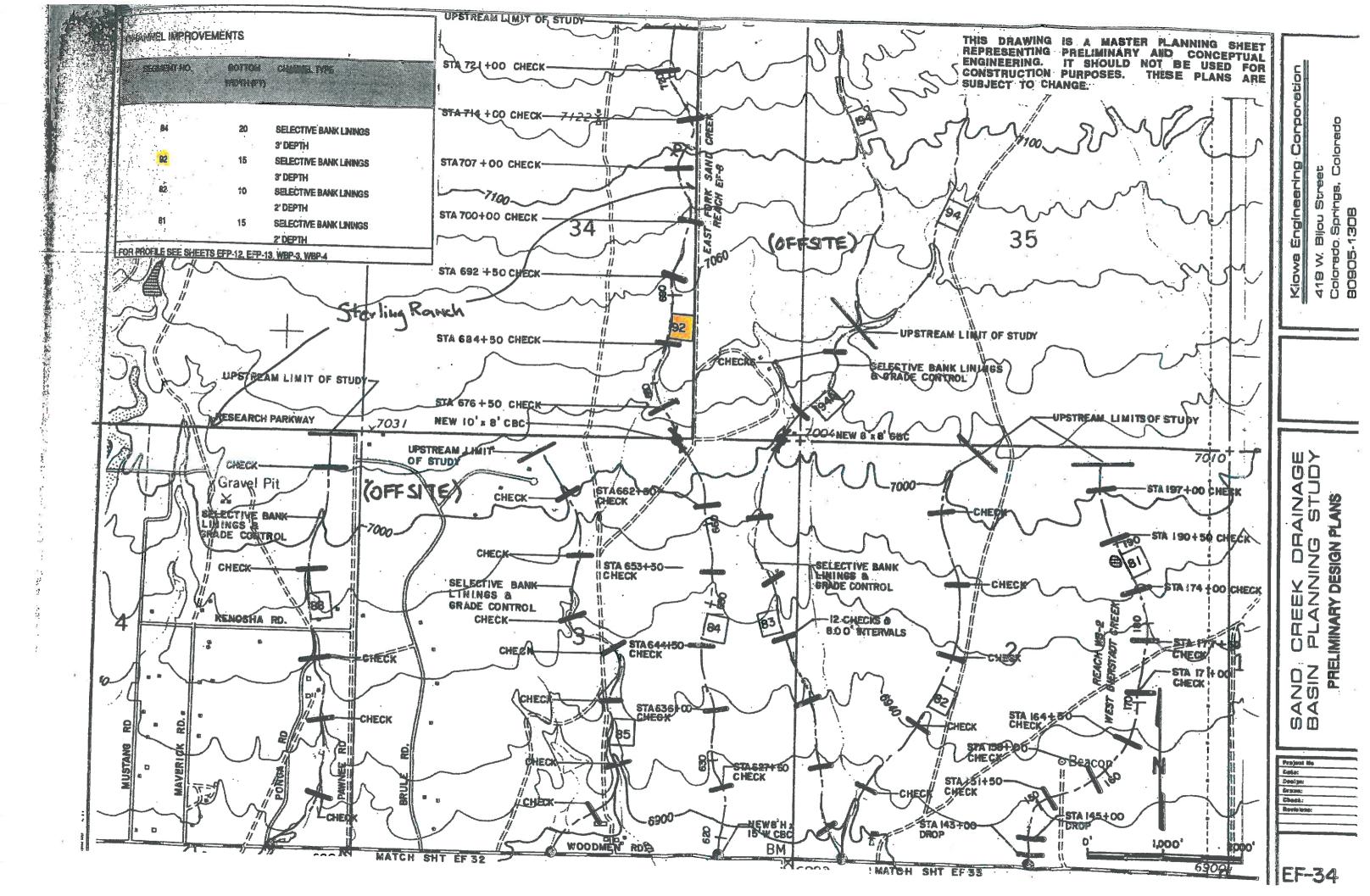

10. Not included in Sand Creek DBPS cost Estimate

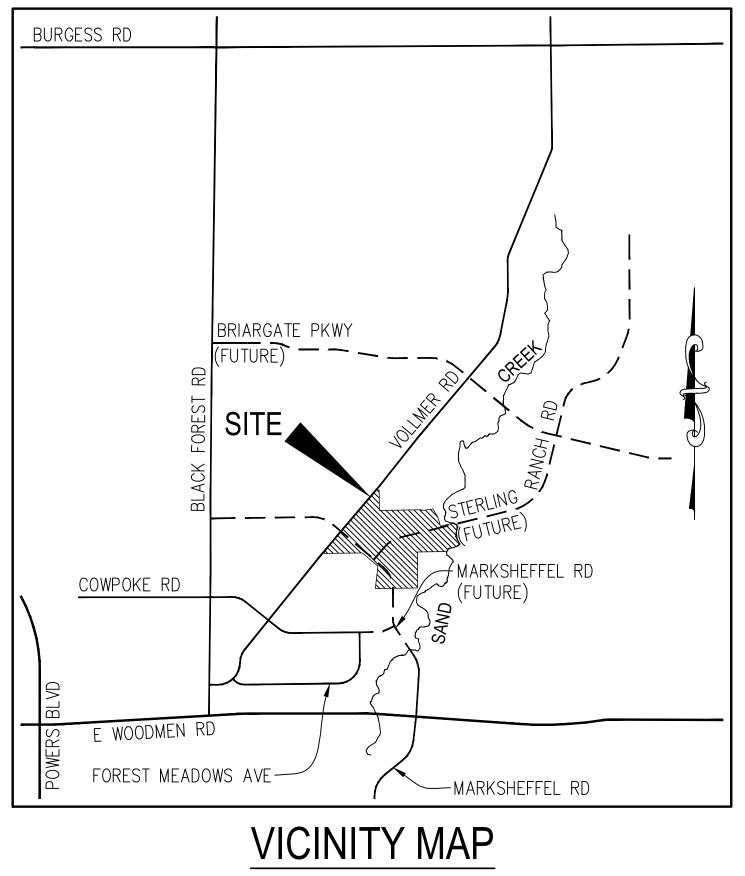

11. Actuall costs will far exceed Sand Creek DBPS budget











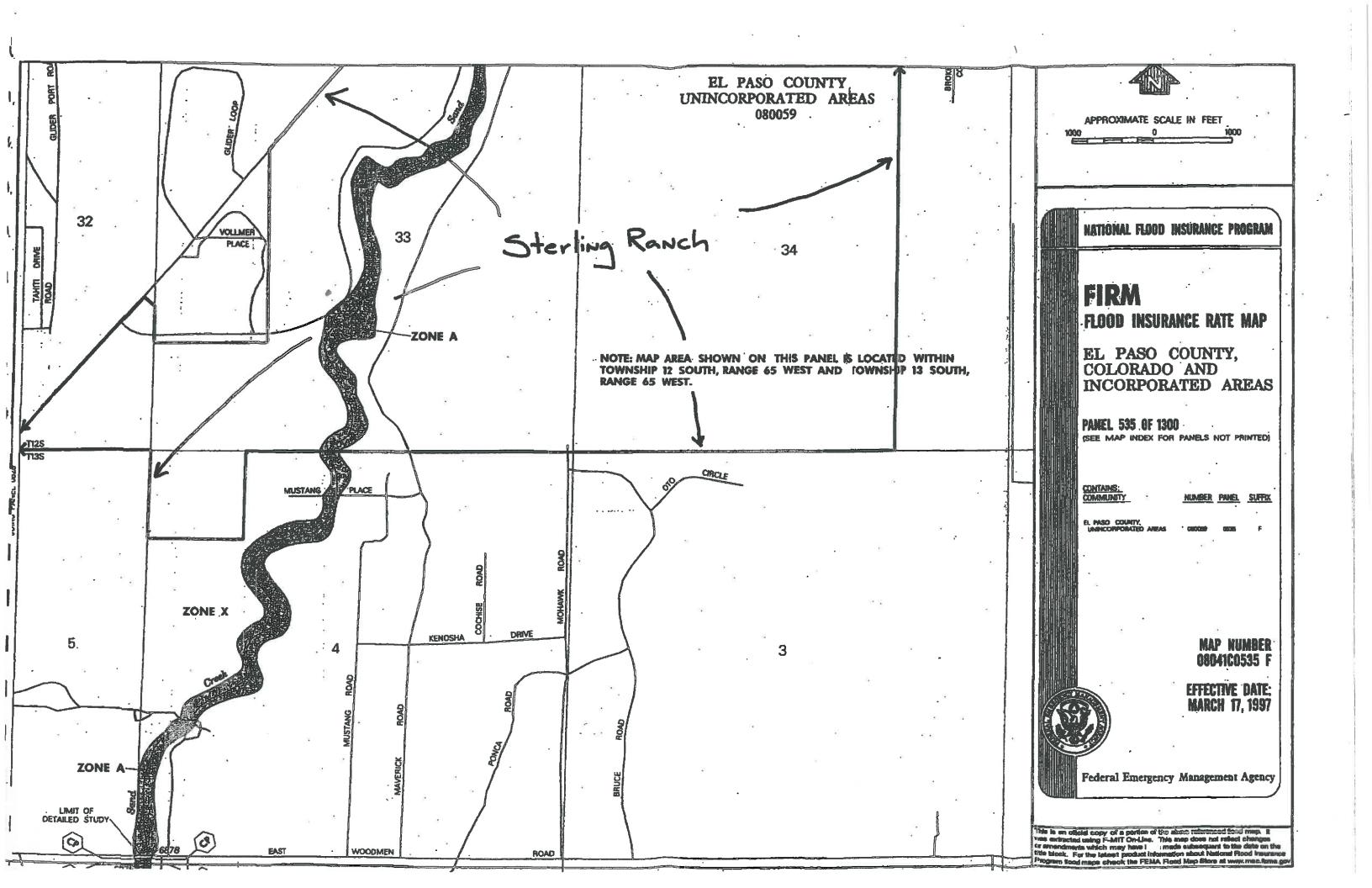


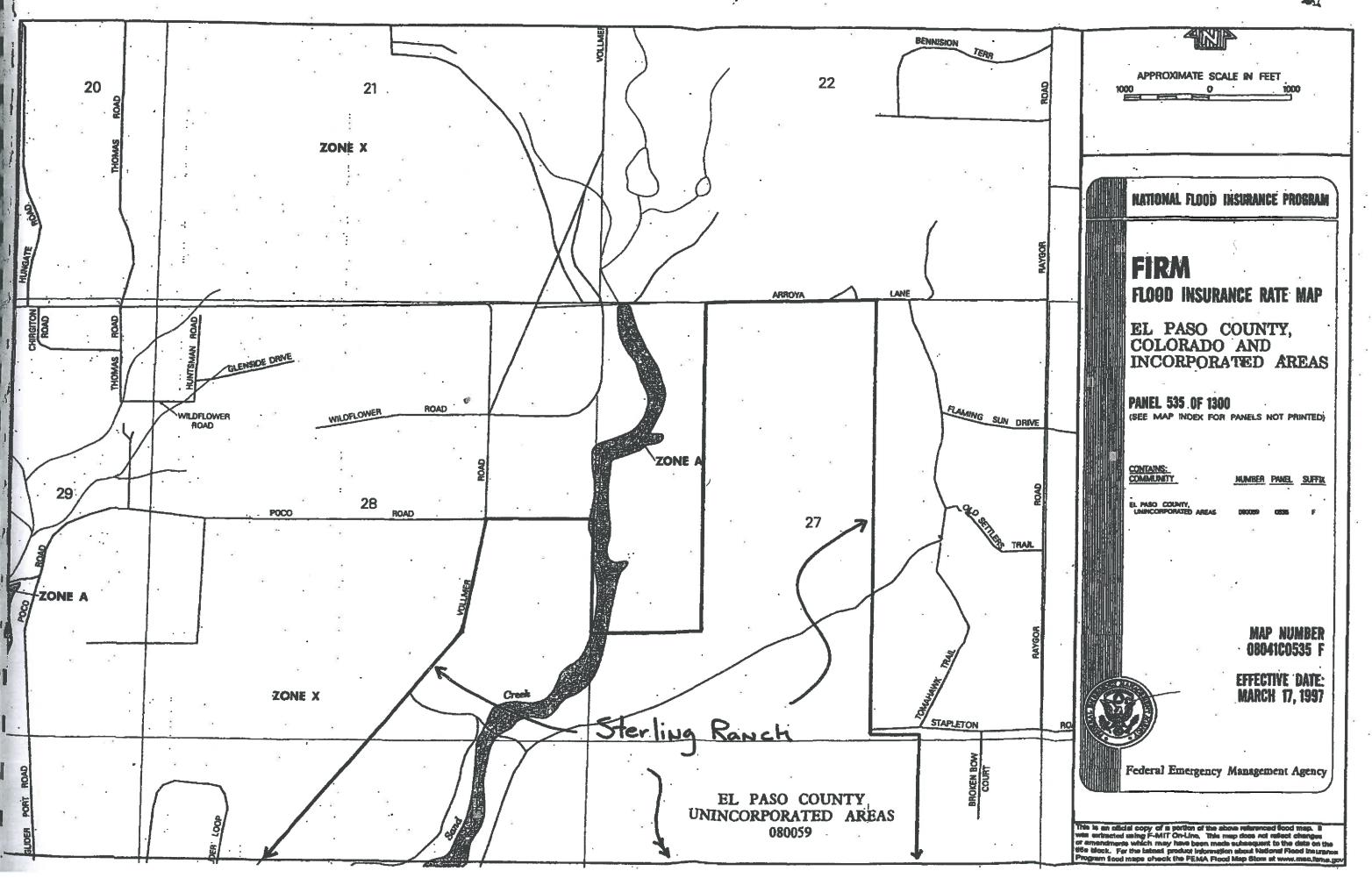
VICINITY MAP

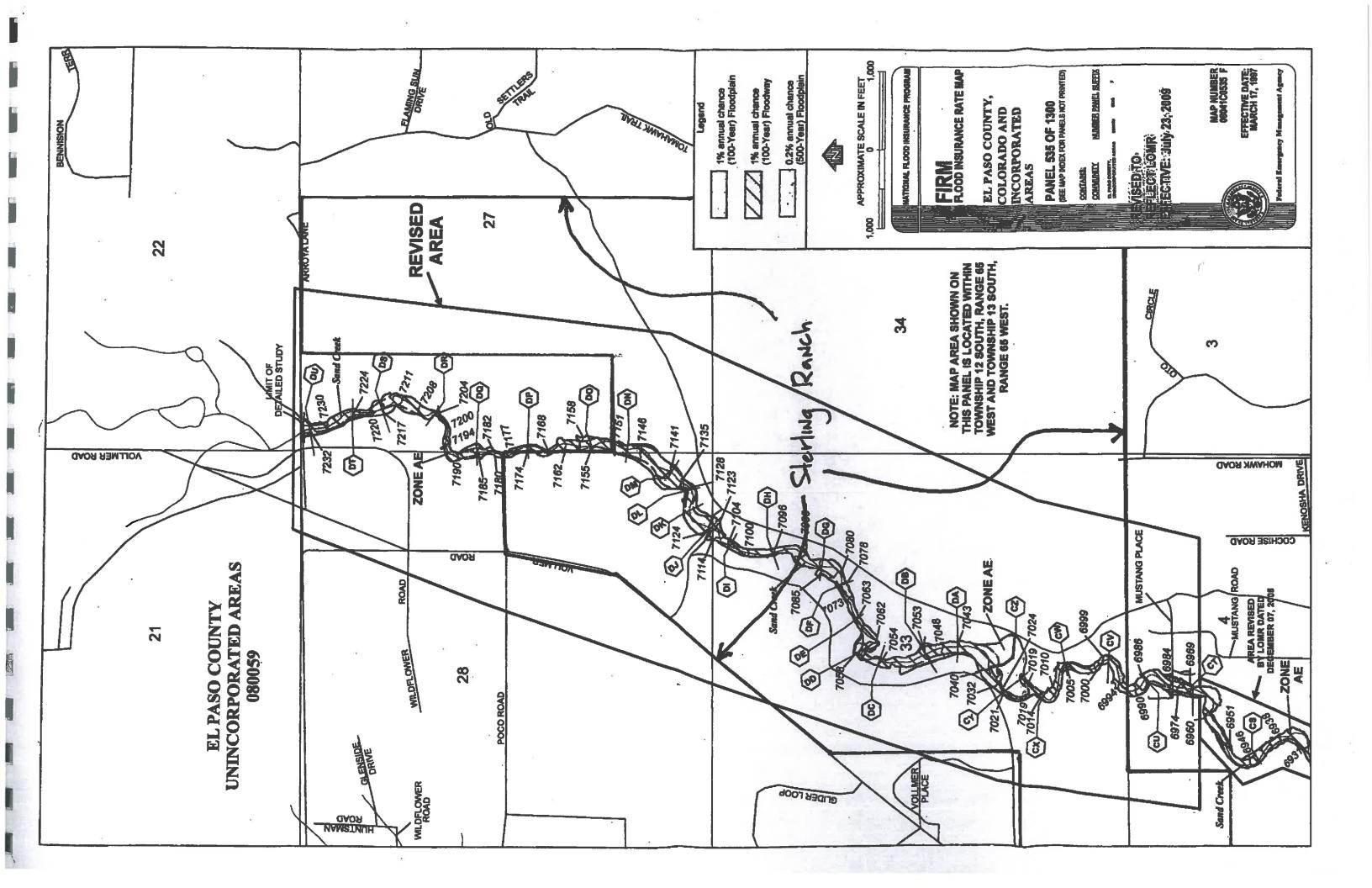
N.T.S.

SOILS MAP

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey


MAP L	EGEND	MAP INFORMATION		
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.		
Image: Constraint of the constr	6-4	 Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data of the version date(s) listed below. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Apr 15, 2011—Sep 		
 Same Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 		22, 2011 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		




Map Unit Legend

El Paso County Area, Colorado (CO625)				
	Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Туре А	Blakeland loamy sand, 1 to 9 percent slopes	30.5	25.1%
9	Туре А	Blakeland-Fluvaquentic Haplaquolls	17.2	14.1%
19	Туре А	Columbine gravelly sandy loam, 0 to 3 percent slopes	65.4	53.8%
71	Туре В	Pring coarse sandy loam, 3 to 8 percent slopes	8.4	7.0%
Totals for Area of Interest			121.5	100.0%

FIRM PANEL W/ REVISED LOMR

WETLAND PERMIT

DEPARTMENT OF THE ARMY ALBUQUERQUE DISTRICT, CORPS OF ENGINEERS 200 SOUTH SANTA FE AVENUE, SUITE 301 PUEBLO, COLORADO 81003-4270

SIGNED

February 29, 2016

Regulatory Division

SUBJECT: Action No. SPA-2015-00428-SCO, Sterling Ranch Residential Development Project, El Paso County, Colorado

Jim Morley SR Land, LLC 20 Boulder Crescent Suite 201 Colorado Springs, CO 80903

Mr. Morley:

You are hereby authorized under Section 404 of the Clean Water Act to discharge dredged and fill material into waters of the United States to conduct work in associated with construction of the Sterling Ranch Residential Development in accordance with Action Number SPA-2015-00428-SCO. A copy of the permit is enclosed.

To use this permit, you must ensure that the work is conducted in accordance with the terms and conditions of the permit. You must submit revised drawings to us for approval prior to construction should any changes be found necessary in either the location or plans for the work. Approval of revised plans may be granted if they are found not contrary to the public interest.

This permit is not an approval of the project design features, nor does it imply that the construction is adequate for its intended purpose. This permit does not authorize any injury to property or invasion of rights or any infringement of Federal, state or local laws or regulations. You must possess the authority, including property rights, to

Enclosed is a compliance certification form. Upon completion of the project, please sign and date the form and return it to this office.

If you have any questions concerning our regulatory program, please contact me at 719-543-6915 or by e-mail at van.a.truan@usace.army.mil. At your convenience,

please complete a Customer Service Survey at http://per2.nwp.usace.army.mil/survey.html.

Sincerely, the states were as a fig Cito a Maia

Van Truan Chief, Southern Colorado Regulatory Branch

Enclosure(s)

September 23, 2016

Mr. Virgil Sanchez MS Civil Consultants, Inc. 20 Boulder Crescent, Suite 110 Colorado Springs, CO 80903

RE: Sand Creek Wetland Memo Sterling Ranch Residential Development Project El Paso County, Colorado

Dear Mr. Sanchez:

CORE Consultants, Inc. (CORE) was retained by MS Civil Consultants, Inc. to complete a wetland delineation for portions of the proposed Sterling Ranch Residentiai Development Project ("Project"). The and encompasses a portion of the perennial stream Sand Creek, its western tributaries, and adjacent (USACE) as a component of a Section 404 permit application for the Project (Permit Number SPA-2015-00428-SCO), which was approved by the USACE in February, 2016.

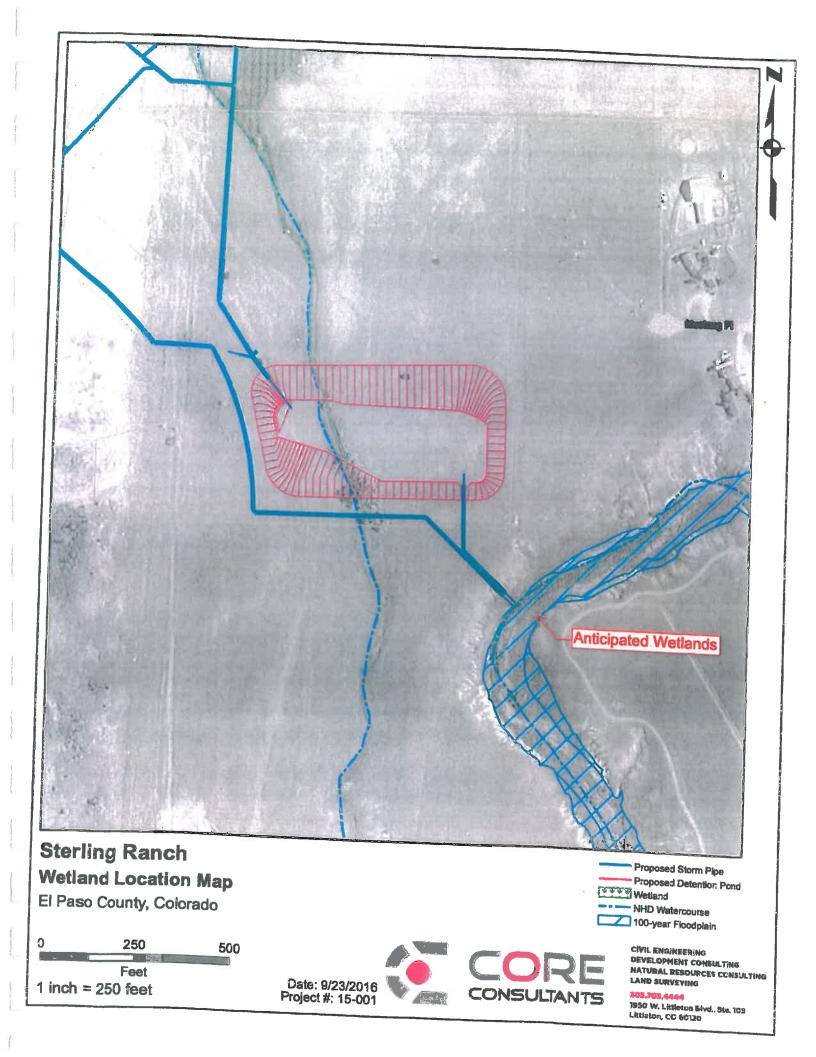
At the time of 404 permit issuance, CORE had performed wetland surveys in all areas of the Project covered by the permit. However, at the time of this writing, wetland surveys covering future phases of development have not been performed. Prior to development of future phases not covered under SPA-2015-00428-SCO, a formal wetland delineation will be performed in those areas, and any necessary 404 permitting will be obtained. Based on CORE's findings throughout Sand Creek in the current permit area, development areas further downstream (Attachment 1: Wetland Location Map).

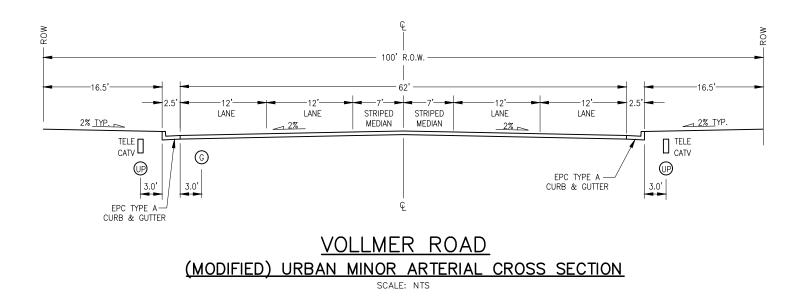
If you should have any questions, concerns, or require additional information, please feel free to contact our office directly at 303.703.4444.

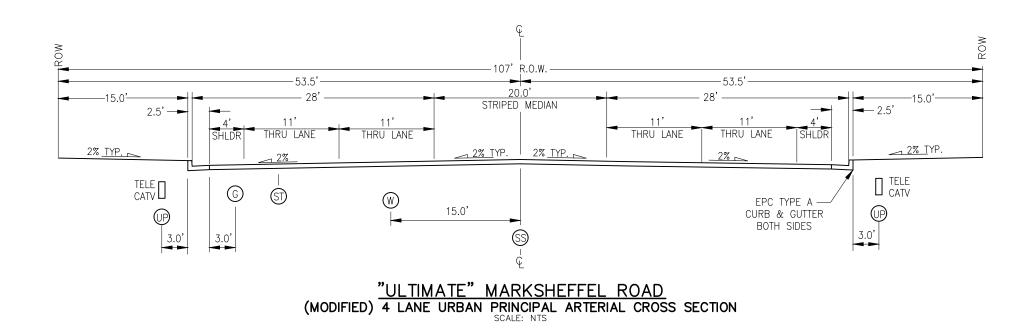
Sincerely, CORE Consultants, Inc.

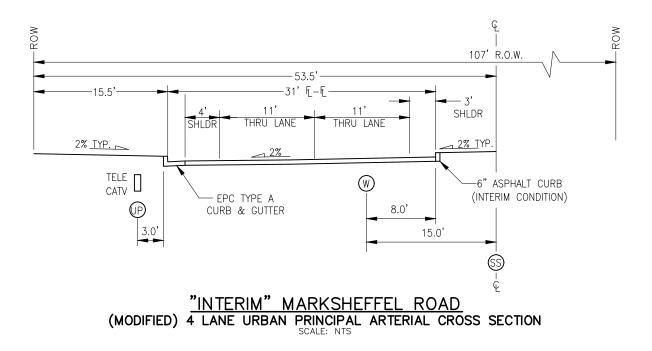
Jan Mugund

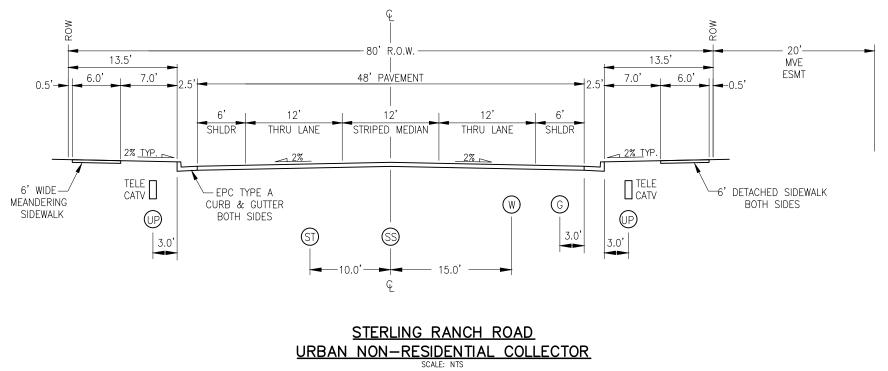
Daniel Maynard Senior Ecologist




ATTACHMENT |


WETLAND LOCATION MAP


CORE Consultants, Inc. | 1950 W. Littleton Boulevard, Suite 109 | Littleton, CO 80120 | 303.703.4444 | www.CoreCivil.com



STREET SECTIONS

HYDROLOGIC CALCULATIONS

STERLING RANCH FILING NO. 2	PRELIMINARY DRAINAGE REPORT	(Area Drainage Summary)
-----------------------------	-----------------------------	-------------------------

							ľ	1.000								10-10-10-10-10-10-10-10-10-10-10-10-10-1				
From Area Runoff Coofficient Summary	The start Startin	ary			OVERLAND	LAND		STREI	ST / CHA	STREET / CHANNEL FLOW		Time of Travel (T,)	rvel (T ₁)	INTENSITY *	* 111	TOTAL FLOWS	S-MOT ₂	#REF!		#R.E.F.I
BASIN	AREA TOTAL		C ₂₀₀	చి	Length	Height	Tc	Length	Slope	Velocity	T,	TOTAL	CHECK	I,	I ₁₀₀	ð	Qiio	CA ₅	Basin	CAIN
	(Acres)	From DCM Table	M Table S-I		ŝ	(4)	(min)	۲	(%)	(fbs)	(mim)	(mim)	(min)	(in/hr)	(infir)	(c.f.c.)	(cf.s)			
					Prop	IV posed An	ea Drai	Proposed Area Drainage Summary	mmary											
XX	0.30	022	0.46	0.22	85	4	90 90	•	2.0%	3.0	0.0	90 90	10.5	4.3	7.3	0.4	13	0.09	xx	0.18
M	4.56	0.22	0.46	0.22	75	1.5	10.9	818	2.9%	23	6.0	16.9	15.0	3.5	5.9	3.5	124	1.00	٨٨	2.10
282	9.68	0.49	0.65	0.49	100	N 6	20 ¢ 0	924	1.5%	0.5	1.5	13.8	15.7	3.6	6.1	17.3	38.5	4.74	AAA	6.29
RRRI	2.r4 8.47	0.45	80'N	0.45	100	12	2	1240	2.170	n:;	1.2	170	8.21	6.6	0.0	4 A	10.6	1.23	BBB	1.62
FFF	1.04	200	0.46	200	204	4.08	18.1	444	1.7%	0.0	a	11.	911	2 6	3 2	144	C/7	3.61	1999	00.6
999	0.63	0.49	0.62	0.49	80	1.6	7.8	264	2.9%	30	1.5	5.6	611	47	4	13	80	12.0	1949	0.48
PFF	19.14	0.49	0.62	0.49	100	~	00	781	1.8%	30	43	1.5	140	:	5	2 Q 27	272	16.0		76.0
200	3.12	0.49	0.62	0.49	100	6	8.8	641	3.6%	3.0	35	16.6	14.1	36	3	33	11.7	07.2 53 1	777	1 001
ННН	3.59	0.08	0.35	0.08	100	2	14.7	590	2.4%	3.0	3.2	17.9	13.8	3.6	6.1	1.0	7.7	0.29	AND A	1 26
IHHH	0.69	0.08	0.36	0.08	90	10	14.7	12	1.505	23	1.3	15.9	11.5	3.9	9.9	82	1.6	0.06	HETHI	0.74
III	0.76	0.06	0.35	0.08	ß	-	10.4	•	2.4%	3.0	0.0	10.4	10.3	4.1	6.9	0.2	1.8	0.06	Į.	
111	3.11	0.22	0.46	0.22	82	1.64	11.4	•	2.4%	3.0	0.0	11.4	10.5	4.1	6.8	2.8	9.8	0.68		1.43
000	25.89	0.45	0.50	0.45	62	1.24	7.4	2058	2.0%	3.0	11.3	18.7	21.8	3.2	5.4	37.2	87.9	11.65	000	15.28
Iddd	1.23	0.22	0.46	0.22	65	1.3	10.2	0	2.0%	2.3	0.0	10.2	10.4	4.1	6.9	1.1	3.9	0.27	Iddd	0.57
DPP2	0.75	0.22	0.46	0.22	65	1.3	10.2	0	2.0%	2.3	0.0	10.2	10.4	4.1	6.9	0.7	24	0.17	PPP2	0.35
000	5.76	0.08	0.35	0.08	100	2	14.7	1080	2.0%	2.3	7.9	22.6	16.6	3.4	5.7	1.6	11.4	0.46	000	2.02
RRR	1.18	0.81	0.88	0.81	100	2	4.2	220	2.0%	23	1.6	5.8	11.8	3.9	6.5	3.7	6.8	0.96	RIR	1.04
SSS	1.21	0.22	0.46	0.22	8	1.2	9.8	0	2.0%5	23	0.0	9.8	10.3	4.1	6.8	11	3.8	0.27	SSS	0.56
777	1.38	0.08	0.36	0.08	00	e.	12.8	167	2.4%	23	12	14.0	11.5	3.9	6.6	8.4	3.2	0.11	TTT	0.48
000	7.95	0.08	0.35	80.0	ŧ	9	4.0	386	0.5%	2.3		6.9	12.4	4.7	7.9	3.0	21.9	0.64	000	2.78
I'df	12.19	0.39	0.55	0.39	9	2	10.2	763	1.3%	3.0	-	14.4	14.8	3.6	6.0	17.0	40.6	4.75	JP-1	6.75
JP-7A	1.7	0:00	96.0	06.0	52	0.5	1.4	1624	1.7%	3.0	+	10.4	19.2	4.1	6.8	6.2	11.2	1.53	JP-7A	I.63
JP-7B	1.53	<u>8</u> .0	0.98	0:30	52	0.5	4	1624	1.7%	3.0	+	10.4	19.2	4.1	6.8	5.6	18.1	1.38	JP-'JB	1.47
JF-7C	0.66	0.90	86.0	0.90	8	~	2.9	<u>1</u>	0.8%	3.0	4.0	6.8	14.6	4.7	7.9	2.8	5.0	0.59	JP-7C	0.63
JP-JD	0.61	0:00	0.96	0.90	25	20	1.4	13	0.8%	3.0	+	5.4	14.2	5.1	8.5	2.8	5.0	0.55	JP-7D	0.59
II-df	8.66	0.81	0.88	0.81	100	7	4.2	928	1.3%	3.0	┥	9.3	15.7	4.2	7.1	29.4	53.7	6.93	JP-11	7.53
JP-II UNDEV	8.56	80.0	0.35	0.08	100	r4	14.7	928	1.3°°	23	┥	21.4	15.7	3.0	5.0	2.0	15.0	0.68	JP-11 UNDEV	3.00
ZI-JC	18.0	0.81	0.88	0.81	8	71 0	4.2	612	1.3%	9.E	┽	7.5	14.0	4.6	7.6	19.8	36.1	4.35	JP-12	4.73
JP-12 UNDEV	5.37	0.08	0.35	0.08	00	-1	14.7	+	1.3%	52	┽	19.1	14.0	3.2	5.3	1.4	10.0	0.43	JP-12 UNDEV	1.88
107		9:22	6.87	0.56	300	~ (12.0	1125	3.5%	23	┽	20.2	17.9	33	5.5	30.4	80.8	9.35	082	14.79
(0)3	28.7	0.36	52.5	92.92	200	~ "	19.1	+	3.0%	2.3	┽	24.8	18.3	3.2	5.4	33.3	85.5	10.33	083	15.79
004	0.13	0.20	44 O	0.20	200	۲ و	19.0	00	1.0%	57	1.1	24.7	15.6	3.5	201	3.6	13.1	1.03	084	2.26
05204	15.73	0.0	90.0	2 ¢	00	<u></u> 2 4	24.0	1071	765 6	╀	╇	10.8	7.02	0 I I	4.6	4%	57.6	30.80	OS20	110.88
OS20B	36.32	0.10	0.36	0,10	300		24.9	1712	2.5%	┼	╋	37.4	21.2) e	5.0	10.9	477 629	161	V07SD	00.0 13.08
OS20C	106.79	0.10	0.36	0.10	300	v	24.9	7551	2.5%	\vdash	┝	80.2	53.6	1.6	2.7	17.2	8.691	10.68	OS20C	38.44
0S20D	149.16	0.10	0.36	0.10	300	9	24.9	6901	2.5%	2.3	Н	75.4	50.0	1.7	2.9	25.6	154.5	14.92	OS20D	53.70
0521	8	0.11	0.37	0.11	300	7	35.4	2673	2.0%	-		55.0	26.5	2.7	4.5	9.7	54.6	3.63	0521	12.21
OSZIA	8.87	0.11	0.37	0.11	8	~	14.2	1837	2.0%	+	+	27.7	20.8	3.0	5.1	3.0	16.7	0.98	OS21A	3.28
03218	15.37	0.1	0.37	9.3	00	~	14.2	1784	2.0%	+	┽	27.3	20.5	3.1	5.1	2	29.2	1.69	OS21B	5.69
02210	8.76		0.37	0.1	8	~	14.2	+	2.0%	+	┽	20.6	17.0	33	5.6	2	18.1	0.96	OSZIC	3.24
20.38	4 6 2 5	06.0	8 8	0.80	6 4	6.0	20	5177 1111	1.8%	3.0	120	14.4	616	3.6	<u>8</u>	12.5	22.4	3.71	RP-3A	3.96
RP-4A	194	8 8	80.0		4	00	2	3621	1 5%	╀	┿		10.0	a 0 2				7.81	KP-3B	3.00
RP-4B	2.05	0.90	96 0	080	45	6.0	61	1735	1.5%	┼	╈	ìĚ	10.0	3.0	n y y	7.7	11.0	1.45	KI-4A	1.60
RP-7A	1.93	050	96 0	0.90	52	1.04	1.51	╀	2.2%	╀	┝	13.5	21.9	3.7	6.2		711	1 74	06-D0	1 96
RP-7B	1.76	06.0	96.0	0.90	46	0.92	1.9	2083	2.2%	┝	+	3.4	21.8	3.7	6.2		18.5	1 48		071
RP-7C UNDEV	1.28	0.08	0.755	0.08	52	1.04	10.6	┢	2.3%	┝	1.8	12.4	11.7	3.8	6.4	a.4	29	0.10	RP-7C UNDEV	0.45
RP-7D UNDEV	1.21	0.08	0.35	0.08	46	0.92	9.9	Н	2.3%	Η	Н	11.8	11.6	3.9	6.5	8.4	2.8	0.10	RP-7D UNDEV	0.42
* Intensity equations assume a minimum travel time of 5 minute	wel time of	5 minutes.												Calcula	Calculated by: ET	L				
															Date: 5/3/2017	3/2017				
														Check	ied by: <a>	AS				

12/19/2017

			COMMENTS		INTERIM CDOT TYPE D 2.91\x5.67	FUTURE 15" AT-GRADE INLET	36" FES/TSB BARBARICK SUBDIVISION	36" FES/TSB	IS AT GRADE INLIT	15 AT-GRADE INLET	42"FES/TSB BARBARICK SUBDIVISION	30" FES. ISB	42" FES/TSB	IV AT-GRADE INLET FLOW SPLIT	10' AT-GRADE INLET FLOW SPLIT	13' AT-GRADE INLET FLOW SPLIT	42"FES/TSB	18" FES/TSB	IS AT-GRADE INLET	15' AT GRADE INLET	NTERIM AREA INLET 2,9%5,7 TYPE D.CDOT INLET FITTIPE I Y AT-GRADE MILET	INTERIM SHEET FLOW OFF SHOUTJER INTO ROADSIDE DITCH DITTIET 19 ATT-258 AND AND ETT	MTERMAN AREA INLET 29%5/1*TYPED CDOT NLET 5111111111111111111111111111111111111	FUTURE 10' AT-GRADE INLET	INTERIM SHEET FLOW OFF SHOULDER INTO ROALSIDE DITCH FLITIBE (IV AT-GRADIE INI ET	RUTURE 10' AT-GRADE INLET
		FLOWS	Q300 (c.f.s.)		21.3	14.8	68.2	41.7	13.0	19.8	80.8	38.5	81.9	10.6	27.3	20.2	74.3	7.7	13.3	9.7	24.4	26.6	20.4	10.1	21.0	10.6
ł		TOTAL FLOWS	Q, (c,f,s)		I'II	£.3	25.8	17.3	6.5	8.4	30.4	17.3	37.2	4.8	12.4	6.0	35.0	1.0	4.4	2.4	111	13,5	7.7	1.5	8.2	1.7
		INTENSITY *	Inter)		6.2	5.9	\$ 5	6.0	6.8	6.8	25	6.1	5.4	9'9	ŝ	ŝŝ	E3	6.1	6.2	89	6.0	6.0	6.0	6.0	5.9	5.9
			Is (inditer)		3.7	3.5	32	3.6	4.1	4.1	33	3.6	3.2	<u>6.</u>	3.3	εE	3.7	3.6	3.7	1.4	3.6	3.6	3.6	3.6	3.5	3.5
		Time of Travel (T ,)	TOTAL (min)		[3,4	15.2	18.3	14.4	10.4	10.5	671	13.8	18.7	11.6	17.4	17.4	13.1	13.8	13.6	10.5	14.4	14,4	14.4	14,4	15.2	15.2
2	RT	OW	T ₁ (min)																							
VO.	EPO!	PIPE / CHANNEL FLOW	Slope Velocity (%) (fps)	AMARY															0							
NG	E RI nary)	PE / CHA	Slope	VG SUA																						
FILI	NAG	PI	Length (7)	ROUTH			-				1															
CH	RAI ing S		ht T _C (muln)	BASIN																						
RAN	RY D Rout	OVERLAND	Langth Beight (9) (9)	NAGE													 									
NG	MINARY DRAINAGE RH (Basin Routing Summary)	- L	ອີ ເ ບິ	D DRAI							<u> </u>															
STERLING RANCH FILING NO.	PRELIMINARY DRAINAGE REPORT (Basin Routing Summary)	-	CAtos	PROPOSED DRAINAGE BASIN ROUTING SUMMARY	3.43	2.52	11.12	6.93	061	2.90	14.79	6.29	15.28	291	5.00	3.69	11.87	1.26	2,15	1.42	4.05	4.43	0 4 .E	1.68	3.58	08.1
ST	PRE		CA ₅ CA ₁₀₈		3.00	236	661	4.34	65.1	2.06	935		11.65	1.23	3.81	1.84	9.38	0.29	61.1	0.59	9.10	3.76	2,16	0.41	235	0.48
j.		ĥ		ł															-é	<u> </u>						
		From A rea Runcf, Coefficient Summa	CONTRIBUTING BASINS		RP-2B, T FILING NO. 1 FDR	RP-2A FILING NO. 1 FDR	0S3, YY	JP-1, XX	JP-7A, III	JP-7B, JJJ	082	AAA	000	BBB	BBB1	CCC, FLOWBY DP39, FLOWBY DP39A	НУК	ННН	JP-7C, FFF1, GGG, HHH1, FLOWBY DP30, FLOWBY DP40	JP-7D FILOWBY DP31	RP-3B, FLOWBY DP16	RP-3A, FLOWBY DP17	RP-48, FLOWBY DP47A	FLOWBY DP47-1	RP-4A, FLOWBY DP48A	FLOWBY DP48-1
			DESIGN POINT	;	91	17	78	29	30	IE	32	33	38	39	39.4	40	VE‡	44	45	46	¥24	48.4	I-14	47	48-1	48

	From Area Runoff Coefficient Summary				OVER	OVERLAND		adid	CHA	PIPE / CHANNEL FLOW	40	Time of Travel (T.,)	_	INTENSITY +	TOTAL FLOWS	SHOT	
DESIGN POINT	CONTRIBUTING BASINS	cy	CA.	J	Length	Height	Ļ	Length	Slobe	Velocity	۴	TOTAL	_	-	d		COMMENTS
				r I	8	3	(mein)	8	_		~	(mela)	(In/Inr)	4100 (in/hr)	(c,f.s)	(c./.s)	
46	OS21, DP60, PR62	44.98	135.03					T f				33.2	1.6	2.7	72,9	367.1	W-4 DETENTION POND
46	RELEASE POND W-4	12.82	106.38									53.2	9'1	2.7	20.8	289.4	PEAK OUTFLOW FROM POND W-4-UD-Det v3.06
50	3P-11	693	7.53									56	4.2	7.1	29.4	53.7	36" FES
51	RP-7B	1.58	1.69									13.4	3.7	62	5.66	10.5	IS' AT-GP ^DE INLET
52	RP-7A, FLOWBY DP45 FLOWBY DP46	1.74	2.26									13.6	7.E	6.2	6.4	13.9	15' AT-GRADE INLET
33	JP-12	4.35	4.73									7.5	4.6	7.6	19.8	36,1	30" FES
24	RP-7D UNDEVELOPED, FLOWBY DP51	0.10	0.57									13.4	3.7	62	0.4	3.5	ISB
55	RPTC UNDEVELOPED, FLOWBY DP52	0.10	0.80									13.6	3.7	6.2	0.4	4.9	TSB
56	QQQ, PPP1, RRR	1.69	3.62	İ.								16.6	3.4	5.7	5.7	20.5	24° FES
57	UUU, PPP2, PR58, OS4, TTT	67.36	95.62									18.7	3.2	5.4	217.4	517.9	CUMM. DETENTION POND 28%5 inter DVD: SAND CREEK
57	RELEASE POND W-5	160	27.92									18.7	32	5.4	3.1	149.7	PEAK OUTFLOW FROM POND W-5-UD-Det v3.06
60	0\$20	36.85	116.31					1				282	1.6	2.7	59.7	316.2	3.5±55° HECMP: EX.SWALE
89	PR67, PR71					0			8						42.2	472.4	84" RCP PEAK OUTFLOW Inter Sand Creffe
69	OS20A Sub-basin Cummulative Flow	1.57	5.66									23.0	2.9	4 .8	4.5	27.4	24" RCP/ EX SWALE
20	OS20B, DP69 Sub-basin Cummulative Flow	5.21	18.74									23.0	2.9	4°2	15.0	90.7	EX 24" CMF/ EX SWALE
12	OS20C, DP70 Sub-basin Cummulative Flow	15.88	57.18									33.6	1.6	2.7	25.6	154.4	EX 24" CMP/ EX SWALE
u	OS21A, DP 60 Sub-basin Cummulative Flow	44.68	128.07	- 8								53.6	1.6	2.7	671.	345.9	EX SWALE
73	0521C Sub-basia Cummulative Flow	96.0	3.24									17.0	33	5.6	3.2	18.1	24" RCP
* Intensity equations assume	 fateretiy equations assume a minimum travel time of 5 minutes. 												Calcula Chec	Calculated by: ET Date: 5/7 Checked by: <u>V/</u>	Calculated by: ET Date: 5/3/2017 Checked by: VAS		

	Mino	r Storm Cap	acity Ratin	C Table	e for	Colle	4		
Pro	ject Description	n				COLLE	stor s	ection	1
Frict	tion Method		ing Formula) h				
Solv	e For	Disch							· •.
Inpu	Ji Data		-						
Chan	nnel Slope		1.14		100			a 1	\$3. K)
	nal Depth			0.02000	ft/ft			- M -	
	on Definitions			0.49	ft	2			
		· ·						0	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 g			8					
002	Station (it)	Elevetion (#)							
	0+00	0.70							
	0+10	0.50							
	0+10	0.50		2					
	0+10	0.00							
	0+12	0.13							
	0+30	0.49							
	0+48	0.13							
	0+50	0.00							
	0+50	0.50	( 6)						
	0+51	0.50							
	0+60	0.70							
oughne	ess Segment Defin	ltions							
Start	Station E	Ring Station	Destination Destination	а					
(	(0+00, 0.70)	(0+10, 0.50)							
(	(0+10, 0.50)	(0+51, 0.50)	0.020						
(	(0+51, 0.50)	(0+60, 0.70)	0.016						
Ø			0.020		arti a ta contra da				· *_ 3
annei S	Slope (1/11) Disc	sharge (it's) Ve	iocity (il/s)	low Area ();*	) WA	sited Perin	olér (itt	Top Wid	244 N
	0.00000			Î			···· •••	and setting	n (ny -
					8.12		41.00		40.00

,

# Minor Storm Capacity Rating Table for Collector Section

Input Date

Characel Sispe (iVII) 0.00250	Discharge (17%s) 11,32	Velocity (R/a)	Plow Area (R*)	Vialiad Paristaler (2)	Top Width (it)
0.00500	16.01	1.39	8.12	41.00	40.00
0.00750	19.80	1.97	8.12	4 FLUD	40.00
0.01000	22.64	2.41 2.79	8.12	41.00	40.00
0.01250	25.31	3.12	8.12	41.00	40.00
0.01500	27.72	3.12 3.41	8.12	41.00	40.00
0.01750	29.95	3.41	8.12	41.00	40.00
0.02000	32.01	3.94	8.12	41.00	40.00
0.02250	33.96	4.18	8.12	· 41.00	40.00
0.02500	35.79	4.41	8.12	41.00	40.00
0.02750	37.54	4.62	8.12	41.00	40.00
0.03000	39.21	4.63	8.12	41.00	40.00
0.03250	40.81	5.03	6.12	41.00	40.00
0.03500	42.35	5.22	8.12 8.12	41.00	40.00
0.03750	43.84	5.40	8.12	41.00	40.00
0.04000	45.27	5.58	8.12	41.00	40.00
0.04250	48.67	5.75	8.12	41.00	40.00
0.04500	48.02	5.91	8.12	41.00	40.00
0.04750	49.34	6.08	8.12	41.00	40.00
0.05000	50.62	6.23	8.12	41.00	40.00
			0.12	41.00	40.00

5/24/2016 12:06:25 PM

.....

.

Bentiay Systems, Inc. Heasted Methods Scientifier/ElateMester V8I (SELECTearles 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 96785 USA +1-203-755-1666 Page 2 of 2

Project Descriptio	or Storm Capa	OILY MALING	labi	e for	Colle	ctor Se	ction	
	ALC: SHEET LEADER -			© ≈		5 × p	i.	21.1
Friction Method	Mannin	g Formula		A	• • • •		- <u>-</u> 2	
Solve For	Dischar							
Input Data	Second in the			·				
Channel Slope		$\frac{1}{2} = \frac{1}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2}$	N 2098 13			19 - S	819 8 1 1 1	9
Normal Depth			0.02000	ft/ft				
Section Definitions			0.70	ft				
Station (it)	Elevation (#)	•						
0+00	0.70							
0+10	0.70							
0+10	0.50							
0+10	0.00							
0+12	0.13							
0+30	0.49							
0+48	0.13							
0+50	0.00							
0+50	0.50							
0+51	0.50							
0+60	0.50							
oughness Segment Defi					<b>3</b>			
Start Station	Ending Station	Maginase Scaliticient						
(0+00, 0.70)	(0+10, 0.50)	• 0.020						
(0+10, 0.50)	(0+51, 0.50)	0.020						
(0+51, 0.50)	(0+60, 0.70)	0.020	11					
annel Slope (Elt) Da	echarge (XYs) Vei	ooly (Na)	low Arca (	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	olioci Peri		Top Wide	
							9	

è.

_

## Major Storm Capacity Rating Table for Collector Section limet Date

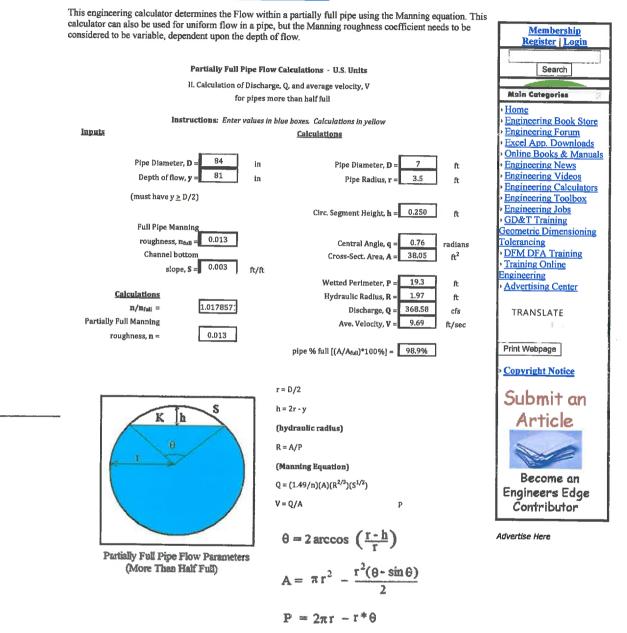
Input Data		(a) (a) (a)			
					N ^{61 - 2} 351 140 A ^{- 2}
Channel Slope (1711)	Discharge (17/a)	Minimum and a	1. e		
0.00250	36.15	waracity (#98)	Plow Area (II [®] ) We	thed Perimeter (it) Top	Width /m
0.00500	51.12	1.94	18.62	61.02	60.00
0.00750	62.61	2.75	18.62	61.02	_
0.01000		3.36	18.62	61.02	60.00
0.01250	72.30	3.88	18.62	61.02	60.00
0.01500	80.83	4.34	18.62	61.02	60.00
0.01750	88.55	4.76	18.62	61.02	60.00
	95.64	5.14	18.62		60.00
0.02000	102.25	5.49	18.62	61.02	60.00
0.02250	108.45	5.82	18.62	61.02	60.00
0.02500	114.32	6.14	18.62	61.02	60.00
0.02750	119.90	6.44	18.62	61.02	60.00
0.03000	125.23	6.73		61.02	60.00
0.03250	130.34	7.00	18.62	61.02	60.00
0.03500	135.26	7.26	18.62	61.02	60.00
0.03750	140.01		18.62	61.02	60.00
0.04000	144.60	7.52	18.62	61.02	60.00
0.04250	149.05	7.77	18.62	61.02	60.00
0.04500	153.37	8.00	18.62	61.02	60.00
0.04750		8.24	18.62	61.02	
0.05000	157.57	8.46	18.62	61.02	60.00
	161.67	8.68	18.62	61.02	60.00
				01.VZ	60.00

-

5/24/2016 12:12:50 PM

Bentley Systems, Inc. Haestad Methods Schritting/EinlanMaster V&I (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

HYDRAULIC CALCULATIONS / EDB WQCV CALCULATIONS


#### STERLING RANCH FILING NO. 2 CONCEPT DRAINAGE CALCULATIONS (Storm Sewer Routing Summary)

		Sewer Ru	mung Di	tininai y					
PIPE RUN	Contributing Pipes/Design Poluts	Equivalent CA 5	Equivalent CA 200	Maximum T _C	Inter	rsity* I 100	Q,	Q 100	PIPE SIZE
16	DP16 FILING NO. 1 FDR	2.70	2.37	13.4	3.7	6.2	10.0	14.7	24" RCP
17	DP17, PR16 FILING NO. 1 FDR	5.01	4.42	15.2	3.5	5.9	17.5	26.0	24" RCP
32	DP28	7.99	11.12	18.3	3.2	5.4	25.8	60.2	36" RCP
33	DP29	4.84	6.93	14.4	3.6	6.0	17.3	41.7	36" RCP
34	PR32, PR33	12.83	18.05	18.3	3.2	5,4	41.4	97.8	48" RCP
34.4	DP30	1.60	1.62	10.4	4.1	6.8	6.5	11.1	24" RCP
34B	DP31	2.02	2,08	10.5	4.1	6.8	8.2	14.2	24" RCP
35	PR34, PR34A, PR34B	16.45	21,76	18.3	3.2	5.4	53.1	117.8	48" RCP
36	DP32	9.35	14.79	17.9	3.3	5.5	30.4	80.8	
37	DP33	4.74	6.29	17.9	3.5	6.1			42" RCP
38	PR36, PR37	14.09					17.3	38.5	30" RCP
39			21.08	17.9	3.3	5.5	45.9	115.2	48" RCP
	PR35, PR38	30.54	42.84	18.3	3.2	5.4	98.5	232.0	66" RCP
44	DP38	11.65	15.28	18.7	3.2	5.4	37.2	81.9	42" RCP
40.4	1/2 DP39	0.62	0.81	11.6	3.9	6.6	2.4	5.3	18" RCP
40B	1/2 DP39	0.62	0.81	11.6	3.9	6.6	2.4	5.3	18" RCP
40	DP39	1.24	1.62	11.6	3.9	6.6	4.8	10.6	18" RCP
41A	1/2 DP39A	1.73	1.62	17.4	3.3	5.5	5.7	9.0	18" RCP
41B	DP39A	3.47	3.25	17.4	3.3	5.5	11.4	17.9	24" RCP
41	PR40, PR41B	4.70	4.86	17.4	3.3	5.5	15.5	26.9	24" RCP
42	1/2 DP40, PR47	1.45	2.85	17.4	3.3	5.5	4.8	15.8	24" RCP
47	DP44	0.29	1.26	13.8	3.6	6.1	1.0	7.7	18" RCP
48	1/2 DP40, PR41, PR42	7.07	9.56	17,4	3.3	5.5	23.0	52.3	36" RCP
50	DP43A	9.38	11.87	13.1	3.7	6.3	35.0	74.3	42" RCP
50A	PR48, PR50	16.45	21.43	17.4	3.3	5.5	54.2	118.6	48" RCP
51	DP45	1.20	1.84	13.6	3.7	6.2	4.4	11.3	18" RCP
52	PR50Å, PR51	17,64	23.27	17.4	3.3	5.5	58.2	128.8	48" RCP
53	DP46	0.59	1.33	10.5	4.1	6.8	2.4	9.1	18" RCP
54	DP5i	1.58	1.56	13.4	3.7	6.2	5.8	9.7	18" RCP
55	DP52, PR54	3.31	3.42	13.4	3.7	6.2	12.2	21,2	30" RCP
56	PR52, PR53	18.24	24.60	17.4	3.3	5.5	60.2	136.2	48" RCP
56A	PR55, PR56	21.55	28.02	17.4	3.3	5.5	71.1	155.2	54" RCP
56B	PR56A	21.55	28.02	17.4	3.3	5.5	71.1	155.2	2-42" RCP
57	PR39, PR56B	52.09	70.86	18.3	3,2	5.4	168.1	383.8	78" RCP
57A	DP56	1.69	3.62	16.6	3.4	5.7	5.7	20,5	24" RCP
58	PR44, PR57, PR57A	65.43	89.76	18.7	3.2	5.4	208.9	481.1	84" RCP
68	DP47A 15' AT-GRADE INLET	2.79	2.63	14.4	3.6	6.0	10.0	15.8	30" RCP
68 INT	DF47A AREA INLET	3.10	4.05	14.4	3.6	6.0	11.1	24.4	30" RCP
69	DP48A 15' AT-GRADE INLET, PR68	6.05	5.43	14.4	3.0	5.9	21.2		
61 INT	DP46A IS AI-GRADE INLEI, PR08	2.16	3.40	15.2			<u> </u>	31.9	30" RCP
61-0					3.6	6.0	7.7	20.4	30" RCP
61	DP47 10' AT-GRADE INLET DP47 FLOWYBY, PR61-0 10' AT-GRADE	1.73	1.71	14.4	3.6	6.0	6.2	10.3	18" RCP
		2,15	2.93	14.4	3.6	6,0	7.7	17.6	30" RCP
62-0	DP48 10' AT-GRADE INLET DP48 FLOWBY, PR62-0, PR61 10' AT-	1.73	1.71	14.4	3.6	6.0	6.2	10.3	18" RCP
62	GRADE INLET	4.50	6.51	15.2	3.5	5.9	15.8	38.2	30" RCP
63	DP49	12.82	106.38	53.2	1.6	2.7	20.8	289.4	66" RCP
64	DP50	6.93	7.53	9.3	4.2	7.1	29.4	53.7	36" RCP
65	PR63, PR64	19.75	113.91	53.2	1.6	2.7	32.0	309.9	72" RCP
66	DP53	4.35	4.73	7.5	4.6	7.6	19.8	36.1	30" RCP
67	PR65, PR66	24.10	118.63	53.2	1.6	2.7	39.1	322.7	72" RCP
71	Peak outflow from Pond W-5~UD-Det v3,04						3.1	149.7	48" RCP
73	DP69	1.57	5.66	23.0	2.9	4.8	4.5	27.4	24" RCP
74	PR67, PR71 Summed flows						42.2	472.4	84" RCP
75	DP60	36.85	116.31	53.2	1.6	2.7	<b>59.</b> 7	316.2	72" RCP
76	DP 73	0.96	3.24	17.0	3.3	5.6	3.2	18.I	24" RCP
<ul> <li>Intensity</li> <li>DP -</li> </ul>	equations assume a minimum travel time of 5 min Design Point	utes. FB- Flow By fro	m Design Point		Cal	culated by:	ET 5/3/2017		
		INT- Intercepted		Point	с	Dave: hecked by:			



#### Partially Full Pipe Flow Calculator and Equations

#### Fluid Flow Table of Contents | <u>Hydraulic and Pneumatic Knowledge</u> <u>Fluid Power Equipment</u>



Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

STORM 23 - 84" RCP

ca	Find his engineering calculator determines the Flow loulator can also be used for uniform flow in a nsidered to be variable, dependent upon the d Partially Full Pip II. Calculation of D	ts   <u>Hydraulic and Pneumatic Knowledge</u> <u>Power Equipment</u> within a partially full pipe using the Manning equation. This a pipe, but the Manning roughness coefficient needs to be	Castry Mordant Concerstor 20 to 300 microboth <u>Microbership</u> <u>Register   Login</u> Search
ca co We've detected that you're using adblocking software	Find his engineering calculator determines the Flow loulator can also be used for uniform flow in a nsidered to be variable, dependent upon the d Partially Full Pip II. Calculation of D	<u>Power Equipment</u> within a partially full pipe using the Manning equation. This a pipe, but the Manning roughness coefficient needs to be epth of flow.	<u>Mombership</u> <u>Rogister   Login</u>
ca co We've detected that you're using adblocking software	lculator can also be used for uniform flow in a nsidered to be variable, dependent upon the d Partially Full Pip II. Calculation of D	a pipe, but the Manning roughness coefficient needs to be epth of flow.	Register   Login
using adblocking software	II. Calculation of D	e Flow Calculations - U.S. Units	
using adblocking software			Molin Cotegorius
using adblocking software	form	lscharge, Q, and average velocity, V	• <u>Flome</u>
	lor p	ipes more than half full	<ul> <li>Engineering Book Store</li> <li>Engineering Forum</li> </ul>
	Instructions: Enter va.	lues in blue boxes. Calculations in yellow	· Excel App. Downloads
To learn more about how	Inputs	Calculations	<ul> <li>Online Books &amp; Manual</li> <li>Engineering News</li> </ul>
you can help Engineers			» Engineering Videos
Edge remain a free resource and not see	Pipe Diameter, $\mathbf{D} = \frac{72}{1}$	in Pipe Diameter, $D = 6$ ft	<ul> <li>Engineering Calculators</li> <li>Engineering Toolbox</li> </ul>
advertising or this	Depth of flow, $y = \frac{72}{72}$	in Pipe Radius, r = 3 ft	· Fingineering Jobs
message, please visit Membership.	(must have $y \ge D/2$ )		<ul> <li>GDA T Training</li> <li>Geometric Dimensioning</li> </ul>
TANGARA PARA PARA DA		Circ. Segment Height, h = 0.000 ft	Tolerancing
	Full Pipe Manning	[]	DEM DEA Training
	roughness, n _{full} = 0.013 Channel bottom	Central Angle, $q = 0.00$ radians Cross-Sect. Area, $A = 28.27$ $R^2$	• Training Online
	0.000	t/ft	· Advertising Center
	24	Wetted Perimeter, P = 18.8 ft	Print Webpage
	Calculations	Hydraulic Radius, <b>R</b> = <u>1.50</u> ft	Conversiont Notion
	n/n _{mli} = <u>1</u> Partially Full Manning	Discharge, Q = 232.59 cfs Ave. Velocity, V = 8.23 ft/sec	· Copyright Notice
	roughness, n = 0.013	Ave. Velocity, V = 8.23 ft/sec	Submit an
		pipe % full $[(A/A_{nul})*100\%] = 100.0\%$	Article
			Article
		r = D/2	
	E IS	h = 2r - y	Become on
	K b	(hydraulic radius)	Engineers Edge
	0	R = A/P	Contributor
	T	(Manning Equation)	
		$Q = (1.49/\pi)(A)(R^{2/3})(S^{1/2})$	Advertise Here
			ANSI Data Chart ANSI Screw Engineering
		V = Q/A P	Slide Chart All units in
		1	inches. threads, pipe thread
		$\theta = 2 \arccos\left(\frac{y - h}{T}\right)$	
	Partially Full Pipe Flow Parameters (More Than Half Full)	$A = \pi r^2 - \frac{r^2(\theta \cdot \sin \theta)}{2}$	
		$\mathbf{P} = 2\pi \mathbf{r} - \mathbf{r}^* \mathbf{\theta}$	
	Equation used for $n/n_{full}$ : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5)$	<b>5)*0.5</b> (for $0.5 \le y/D \le 1$ )	

STORM 23 - 72" RCP

ENGINEERS Bolutions By Design	Partially Full Pipe Flow Calculat <u>Fluid How Table of Contents</u> <u>Fluid I</u> This engineering calculator determines the Flow v calculator can also be used for uniform flow in a p considered to be variable, dependent upon the dep	In Comparators In Comparators	And Screw Side Chart Sciences Mena bership Register   Lopin Search
We've detected that you're using adblocking software	II. Calculation of Disc	Flow Calculations - U.S. Units charge, Q, and average velocity, V es more than half full	Main Congertes   Ingineering Book Store  Phylicering Formp
or services. To learn more about how you can help Engineers Edge remain a free resource and not see	Inputs Pipe Diameter, D = 30		<ul> <li><u>Excel App. Downloads</u></li> <li><u>Online Books &amp; Mapunk</u></li> <li>Bagingering Network</li> <li>Engineering Videos</li> <li><u>Finalmeering Culculators</u></li> </ul>
advertising or this message, please visit <u>Membership</u> .	Depth of flow, $y = 13$ in (must have $y \ge D/2$ )	n Pipe Radius, r = 1.25 ft Circ. Segment Height, h = 1.417 ft	Bingineering Touthox     Datineering Jobs     GD&T Training     Geometric Dimensioning     Tolerancing     Polyrancing
	Full Pipe Manning roughness, n _{rati} = 0.013 Channel bottom slope, <b>S</b> = 0.0847 rt/	Wetted Perimeter, P = 3.6 ft	DFM DFA Training     Training Online     Frainterring     Advertising Center     Print Webpage
	Calculations n/n _{full} = <u>1.2833333</u> Partially Full Manning roughness, n = <u>0.017</u>	Hydraulic Radius, R = 0.57 ft Discharge, Q = 36.33 cfs Ave. Velocity, V = 17.82 ft/sec pipe % full [(A/A _{full} )*100%] = 41.5%	· <u>Cropyright Notice</u> Submit an Article
	K b S	r = D/2 h = 2r - y (hydraulic radius) R = A/P (Manning Equation)	Become en Engineers Edge Contributor
	Partially Full Pipe Flow Parameters (More Than Half Full)	$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$ $V = Q/A \qquad P$ $\Theta = 2 \arccos \left(\frac{\tau \cdot h}{\tau}\right)$ $A = \pi r^2 - \frac{r^2(\Theta - \sin \Theta)}{2}$	ANSI Data Chart ANSI Screw Engineering Slide Chart All units in Inches. threads, pipe thread
		$A = \pi r - \frac{1}{2}$ $P = 2\pi r - r^* \theta$	
	Equation used for n/n _{hul} : n/n _{fext} = 1.25 - (y/D - 0.5)* 570 lm 25 - 30 ⁽¹⁾ PP53		

#### DRAINAGE CRITERIA MANUAL (V. 2)

CULVERTS

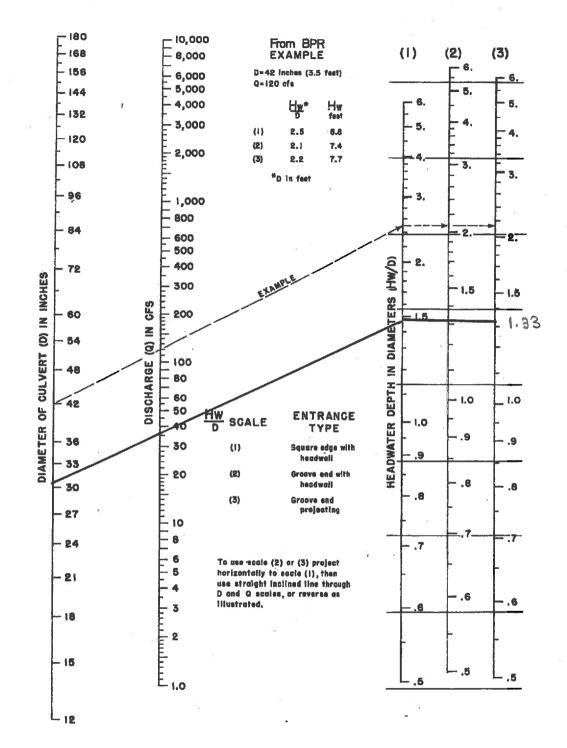
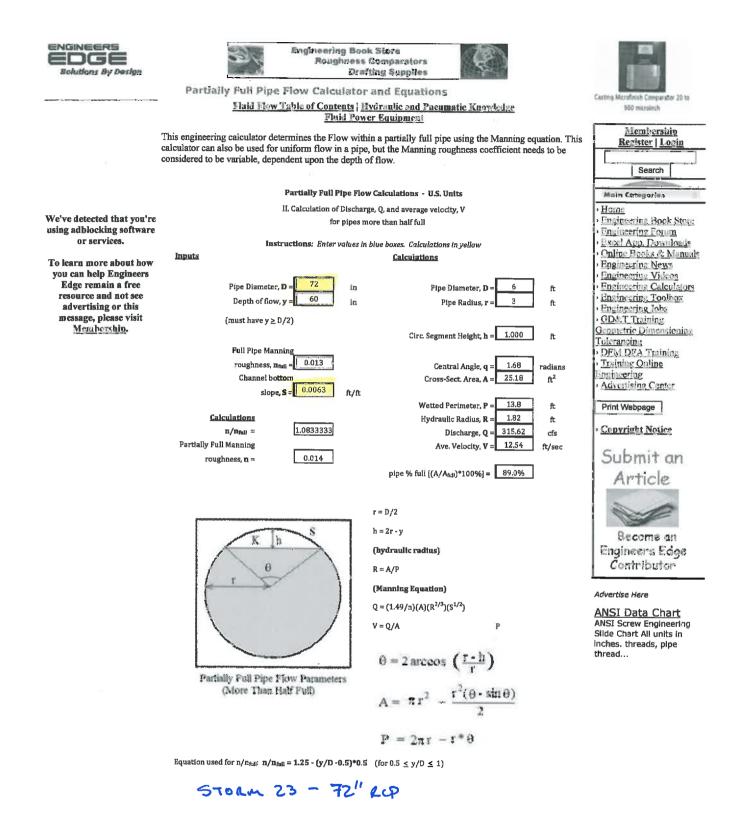
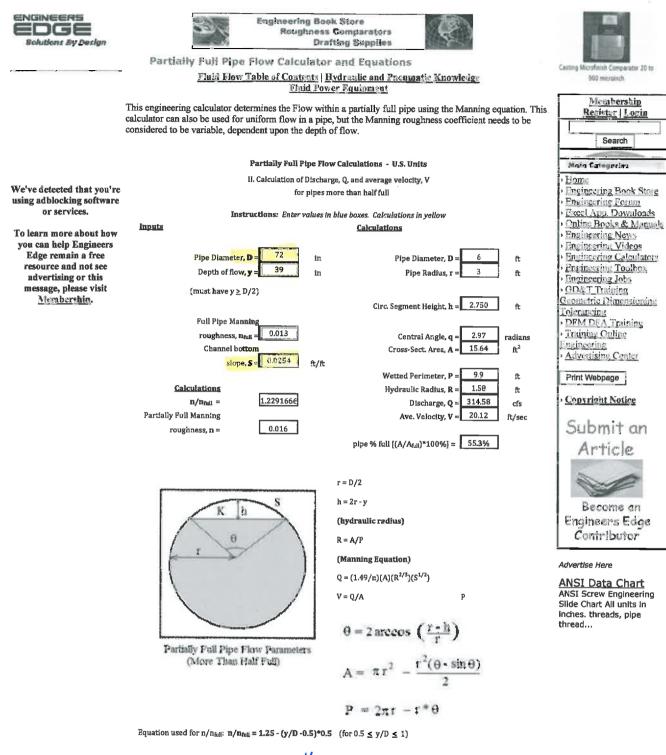



Figure CU-9---Inlet Control Nomograph---Example

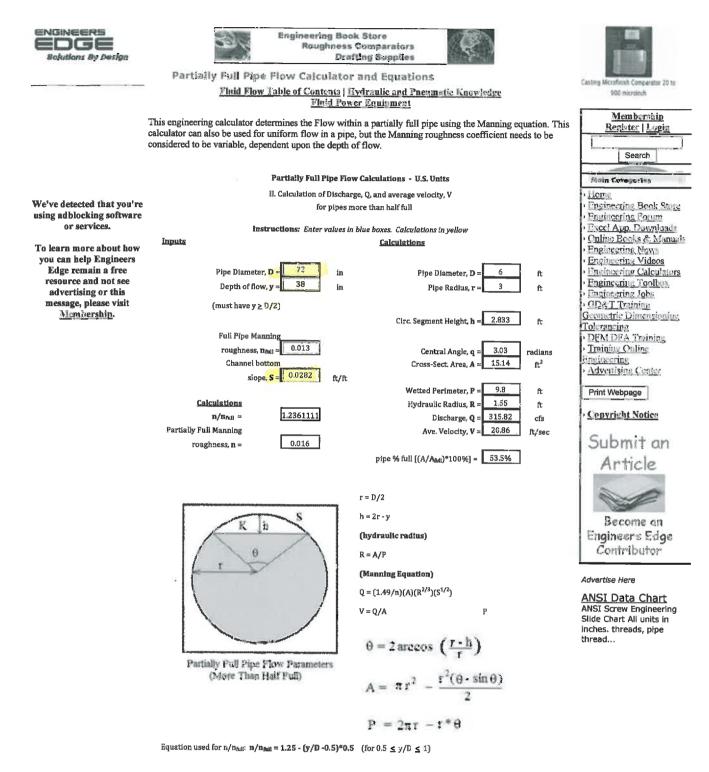
DP 53 - 9100 = 36 css


07/2001 Urban Drainage and Flood Control District

έ.,


-	The open channel flow calcu	lator
Select Channel Type: Trapezoid ✓	Rectangle	triangle
Velocity(V)&Discharge(Q) V	Select unit system: Feet(ft) 🗸	
Channel slope: 109 ft/ft	Water depth(y): 0.7 ft	Bottom width(b) 4
Flow velocit <mark>y 8.909</mark> ft/s	LeftSlope (Z1): 3 to 1 (H:'	RightSlope (Z2): 3 to 1 (H:V
Flow discharg <mark>e 38.0413</mark> ft^3/s	Input n value 0.035 or select r	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 8.43 ft	Flow area 4.27 ft^2	Top width(T)8.2 ft
Specific energy 1.93 ft	Froude number 2.18	Flow status Supercritical flow
Critical depth 1.08 ft	Critical slope 0.0204 ft/ft	Velocity head 1.23 ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

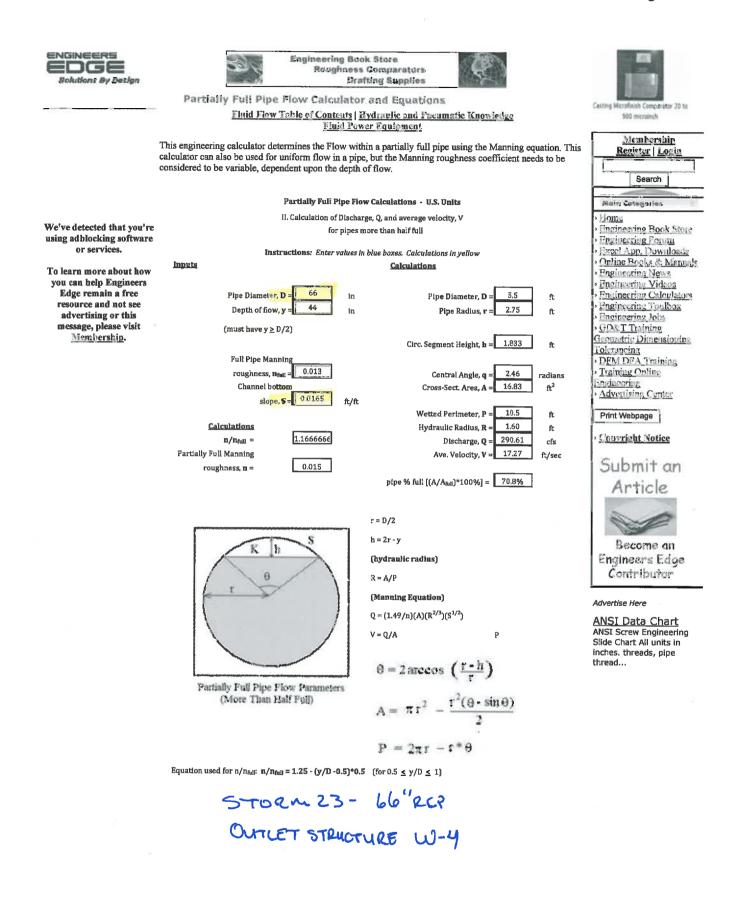

SR FILZ TRACT P DP53 Q1007 36 cfs

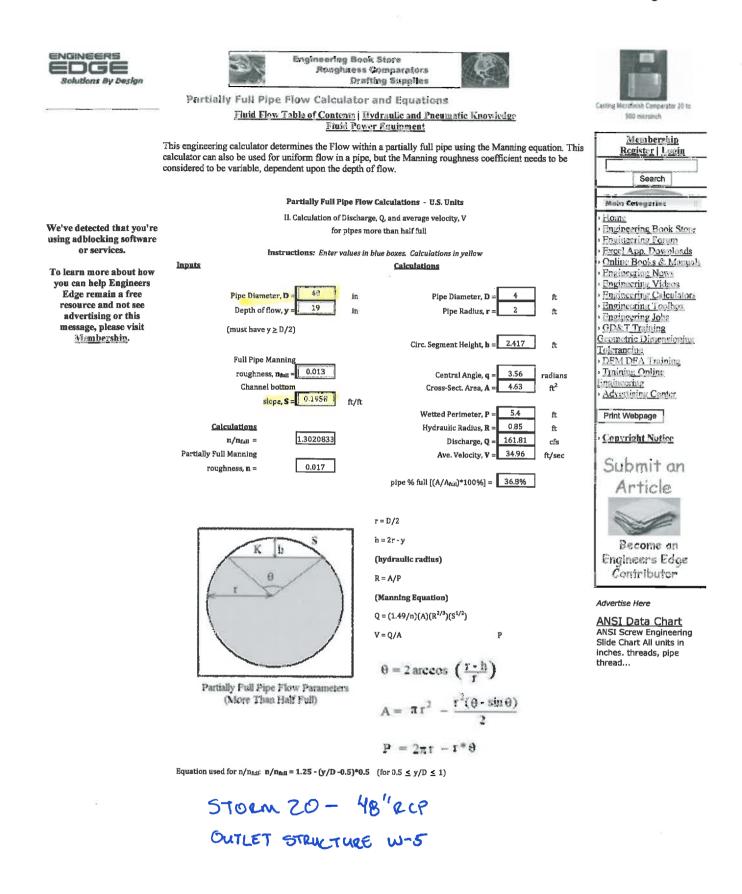


http://www.engineersedge.com/fluid_flow/partially_full_pipe_flow_calculation/partiallyfull... 5/5/2017



STORM 23- 72" REP





STORM 23 - 72" RCP

ENGINEERS EDGE Bolutions By Cestign	Partially Full Ply	Dr	s Comparators afting Supplies		Casting Microfinish Companies 20 to
annidan' 'nnnnarrednanne'	Fluid Flor		<u>Mydraulic and Pacumatic Knewleds</u> wer Squipment	lê.	900 micrainch
	This engineering calculator d calculator can also be used for considered to be variable, dep	<u>Membership</u> <u>Register   Login</u> Search			
		Malis Categories			
		• Home			
We've detected that you're using adblocking software		<ul> <li>Engineering Book Store</li> <li>Engineering Forum</li> </ul>			
or services.		structions: Enter values	in blue boxes. Calculations in yellow		<ul> <li><u>Recel App. Downloads</u></li> <li><u>Online Books &amp; Manuals</u></li> </ul>
To learn more about how	Inputs		Calculations		<ul> <li>Engineering News</li> </ul>
you can help Engineers Edge remain a free resource and not see	Pipe Diamete Depth of flo			5.5 ft	Engineering Videos <u>Engineering Calculators</u> <u>Engineering Toolbox</u>
advertising or this message, please visit	(must have y	D/2)			<ul> <li>Engineering Jobs</li> <li>GD&amp;T_Training</li> </ul>
<u>Membership</u> .	Fuil Pipe Ma		Circ. Segment Height, h = 1	.250 ft	Geometric Dimensioning Tolerancing > DFM DFA Training
	roughness,	particular and	Central Angle, q =	1.99 radians	, Training Online
	Channel b	0.000		9.70 ft ²	<ul> <li><u>Engineering</u></li> <li><u>Advertising Center</u></li> </ul>
	sloj	oe, S = 0.0104 ft/ft		11.8 ft	Print Webpage
	Calculations			1.67 ft	
	n/n _{full} =	1,1136363		60.77 cfs	· Convright Notice
	Partially Full Manning roughness, <b>n</b> =	0.014	Ave. Velocity, V =	4.76 ft/sec	Submit on
			pipe % full [(A/A _{full} )*100%] = 8	2.9%	Article
			r = D/2		
	K	n s	$\mathbf{h} = 2\mathbf{r} - \mathbf{y}$		Become an
			(hydraulic radius)		Engineers Edge
	0		$\mathbf{R} = \mathbf{A}/\mathbf{P}$		Contributor
			(Manning Equation)		Advertise Here
		//	$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$		ANSI Data Chart
			V = Q/A P		ANSI Screw Engineering Slide Chart All units in
			1.18		inches. threads, pipe
	-		$\theta = 2 \arccos\left(\frac{\mathbf{r} - \mathbf{h}}{\mathbf{r}}\right)$		thread
	Partially Full Pipe (More Than		$A = \pi r^2 - \frac{r^2(\theta \cdot \sin \theta)}{2}$	0)	
			$\mathbf{P}=2\pi\mathbf{r}-\mathbf{r}^{*}\boldsymbol{\theta}$		
	STOR	m 23-	66" RCP		

http://www.engineersedge.com/fluid_flow/partially_full_pipe_flow_calculation/partiallyfull... 5/5/2017

ENGINEERS EDGE Solutions By Design	Dr	is Gomparators afting Supplies	i				
	Partially Full Pipe Flow Calculate End Flow Table of Contents	ar and Equations <u>Hydraulic and Pacumatic Knowledge</u>	Casting Microfinish Comparator 20 to 900 microinch				
	Ind Pa	1					
	This engineering calculator determines the Flow wi calculator can also be used for uniform flow in a pi considered to be variable, dependent upon the depth	Membershin Resister   Legin Search					
	Partially Full Pipe F	Main Categories					
We've detected that you're	II. Calculation of Disch	• <u>Home</u>					
using adblocking software	for pipes	<ul> <li>Engineering Book Store</li> <li>Engineering Forum</li> </ul>					
or services.		in blue boxes. Calculations in yellow	<ul> <li>Excel App. Downloads</li> <li>Online Books &amp; Manuals</li> </ul>				
To learn more about how you can help Engineers Edge remain a free resource and not see advertising or this message, please visit Memberskip.	Inputs	<u>Calculations</u>	· Engineering News				
	Pipe Diameter, D = 66 in Depth of flow, y = 36 in	Pipe Diameter, <b>D</b> = 5.5 ft Pipe Radius, <b>r</b> = 2.75 ft	<ul> <li>Engineering Videos</li> <li>Engineering Calculators</li> <li>Engineering Toolbox</li> </ul>				
	(must have $y \ge D/2$ )		<ul> <li>Engineering Johs</li> <li>ODA T Training</li> <li>Geometric Dimensioning</li> </ul>				
a constructions and an interval of the	Full Pipe Manning	Circ, Segment Height, h = 2.500 ft	Tolerancing				
	roughness, n _{full} = 0.013	Central Angle, q = 2.96 radians	<ul> <li>DFM DFA Training</li> <li>Training Onling</li> </ul>				
	Channel bottom	Cross-Sect. Area, $A = 13.25$ $R^2$	Engineering > Advertising Confer				
	slop <mark>e, \$ = 0.0347</mark> ft/fi						
	Calculations	Wetted Perimeter, P = 9.1 ft Hydraulic Radius, R = 1.45 ft	Print Webpage				
	$n/n_{full} = 1.2272727$	Discharge, Q = 295.34 cfs	· Copyright Notice				
	Partially Full Manning	Ave. Velocity, V = 22.29 ft/sec	Submit an				
	roughness, n =0.016	pipe % ful: $[(A/A_{fulk})*100\%] = 55.8\%$	Article				
		r = D/2	-				
	S I	h = 2r - y	Denarra				
	K h	(bydraulic radius)	Bocome an Engineers Edge				
	0	R = A/P	Contributor				
	r r	(Manning Equation)	L				
		$Q = (1.49/n)[A](R^{2/3})(S^{1/2})$	Advertise Here				
		V=Q/A P	ANSI Data Chart ANSI Screw Engineering				
	Partially Full Pipe Flow Parameters (More Than Half Full)	v-va r	Slide Chart Ali units in inches. threads, pipe				
		$\theta = 2 \arccos\left(\frac{r-h}{r}\right)$	thread				
		$A = \pi r^2 - \frac{r^2(\theta \cdot \sin \theta)}{2}$					
		$\mathbf{P} = 2\pi \mathbf{r} - \mathbf{r}^* \mathbf{\Theta}$					
Equation used for $n/n_{full}$ : $n/n_{full} = 1.25 - (y/D - 0.5)^{\circ}0.5$ (for $0.5 \le y/D \le 1$ )							
	STORM 23 - 66	"RLP					





э

ENGINEERS	Engineering B	note Store	
EDGE Bolutions By Design	Reaghner	son comparators rafting Supplies	100
	Partially Full Pipe Flow Calculate	or and Equations	Casting Microfinish Comparator 20 to
es de anna de a	Fluid Flow Table of Contents	560 microinch	
	This engineering calculator determines the Flow w calculator can also be used for uniform flow in a pi considered to be variable, dependent upon the dept	Menabership Register   Login	
	Partially Full Pipe F	Main Categoring	
We've detected that you're	II. Calculation of Disch	· Home	
	fcr pipe	· Engineering Book Store	
using adblocking software or services.		<ul> <li>Engineering Ponun</li> <li>Excel App. Download;</li> </ul>	
or services. To learn more about how you can help Engineers Edge remain a free	Instructions: Enter values Inputs	· Online Books & Manuala	
		Calculations	· Hngingering News
	Pipe Diameter, D = 36 in	Pipe Diameter, D = 3 ft	<ul> <li>Engineering Videos</li> <li>Engineering Calculators</li> </ul>
resource and not see	Depth of flow, y = 22 in		· Engineering Toelbox
advertising or this message, please visit	(must have $y \ge D/2$ )		· Engineering Jobs · GD&T Training
Membership.	(mainarey = b) 2)	Circ. Segment Height, h = 1.167 ft	Geometrie Dimensioning
	Full Pipe Manning		Tolerancing DEM DEA Training
	roughness, n _{run} = 0.013	Central Angle, q = 2.69 radians	· Training Online
	Channel bottom	Cross-Sect. Area, A = 4.53 ft ²	Engineering Advertising Center
	slope, S = 0.0216 ft/f		· reasermaning counter
	Coloriations	Wetted Perimeter, $P = 5.4$ ft	Print Webpage
	$\frac{\text{Calculations}}{n/n_{\text{full}}} = \frac{1.1944444}{1.1944444}$	Hydraulic Radius, $\mathbf{R} = \frac{0.84}{\text{ft}}$ Discharge, $\mathbf{Q} = 57.11$ cfs	· Convright Notice
	Partially Full Manning	Ave. Velocity, $V = 12.62$ ft/sec	
	roughness, n = 0.016		Submit an
		pipe % fuil [(A/A _{full} )*100%] = 64.0%	Article
		r = D/2	
	KbS	$\mathbf{h} = 2\mathbf{r} - \mathbf{y}$	Become an
		(hydraulic radius)	Engineers Edge
	θ	R = A/P	Contributor
	L T	(Manning Equation)	
			Advertise Here
		$Q = (1.49/\pi)(A)(R^{2/3})(S^{1/2})$	ANSI Data Chart
		V = Q/A P	ANSI Screw Engineering Slide Chart All units in
			Inches. threads, pipe
		$\theta = 2 \arccos\left(\frac{r-h}{r}\right)$	thread
	Partially Full Pipe Flow Parameters		
	(More Than Half Full)	$A = \pi r^2 - \frac{r^2(\theta \cdot \sin \theta)}{2}$	
		$\mathbf{P} = 2\pi \mathbf{r} - \mathbf{r}^* \mathbf{\theta}$	
	STORM 24-36	"RLP	

http://www.engineersedge.com/fluid_flow/partially_full_pipe_flow_calculation/partiallyfull... 5/5/2017

## DRAINAGE CRITERIA MANUAL (V. 2)

CULVERTS

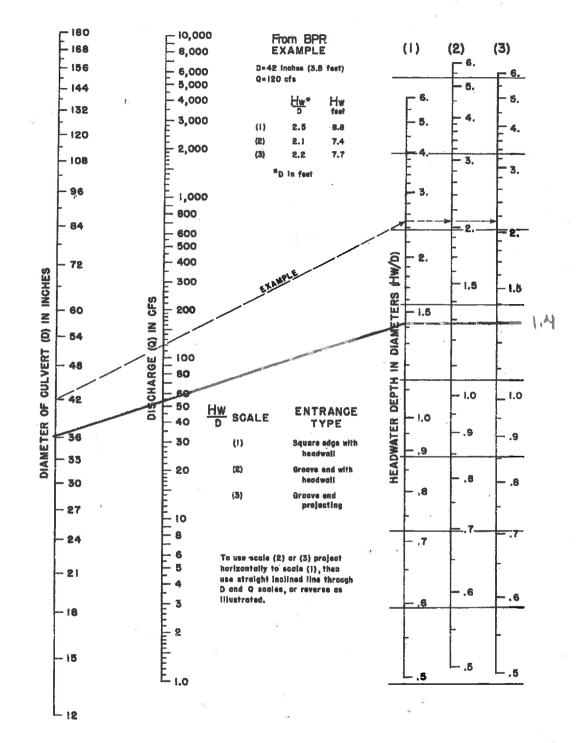



Figure CU-9—Inlet Control Nomograph—Example

DP-50 Q=53.7 cts

The open channel flow calculator									
Select Channel Type: Trapezoid ✓	Rectangle	z1 z2 ly Triangle Circle							
Velocity(V)&Discharge(Q) V	elect unit system: Feet(ft) V								
Channel slope: 005	Water depth(y): 1.7 ft	Bottom width(b) 4							
Flow velocity 3.04 ft/s	LeftSlope (Z1): 4 to 1 (H:'	RightSlope (Z2): 4 to 1 (H:V							
Flow discharge 55.814	Input n value 0.035 or select r								
Calculate!	Status: Calculation finished	Reset							
Wetted perimeter 18.02	Flow area 18.36 ft^2	Top width(T) 17.6							
Specific energy 1.84 ft	Froude number 0.52	Flow status Subcritical flow							
Critical depth 1.23 ft	Critical slope 0.0198 ft/ft	Velocity head 0.14 ft							

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

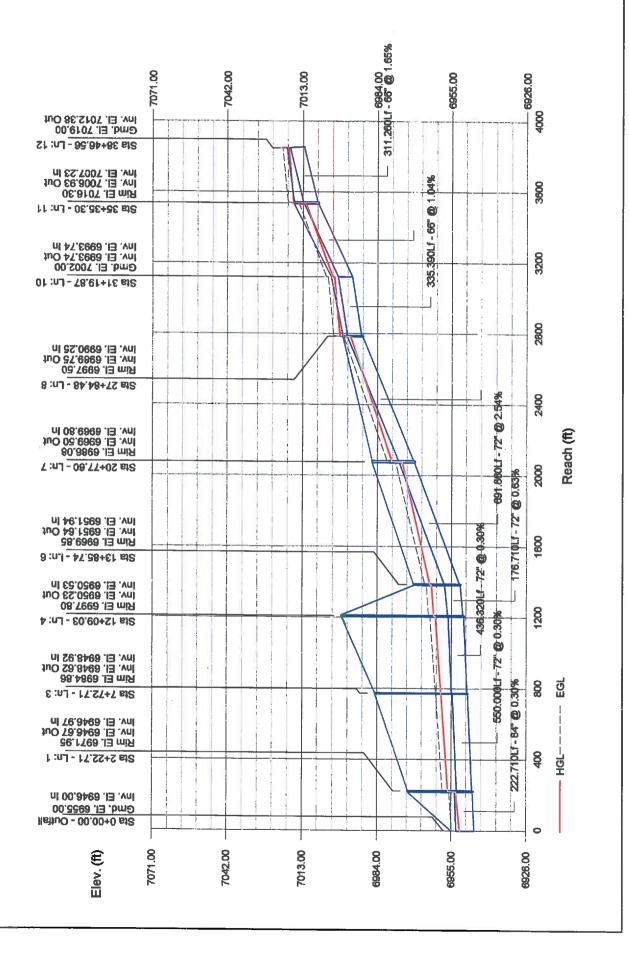
SR FIL Z TRACT A DP50 Quou= 54 cfs

Хου

	Date: 5/4/2017	Storm Sewers v10.50
5	Number of lines: 12	w.novapdf.com)
	Project File: Storm 20, 23, 24, 25.stm	u created this PDF from an application that is not licensed to print to novaPDF printer ( <u>http://www.novapdf.com</u> )

. .

			-			_								
;	Junction Type	Manhole	OpenHeadwall	Manhole	Manhole	OpenHeadwall	Manhole	Manhole	Manhole	OpenHeadwall	None	Manhole	OpenHeadwall	
	Dns No.	End	÷	-	ო	4	4	9	7	œ	ø	10	11	Run Date: 5/4/2017
	(II) Her	6956.32	6968.891	6959.14	6961.81	6963.45	6963.52	6978.50 i	6998.751	6999.31	7001.57	7016.54 i	7021.13 i	
	Minor loss (ft)	n/a	n/a	0.10	0.51	0.25	0.75	n/a	n/a	0.27	0.69	n/a	n/a	
ŝ	1 9 9 9	6953.32	6964.27	6959.04*	6961.30*	6963.19*	6962.77*	6974.30	6994.55	6999.04*	7000.88*	7011.63	7018.51*	nee: 12
	HGL Down	6951.69	6956.32	6956.32*	6959.14*	6962.99*	6961.97*	6963.52	6978.50	6998.75*	6998.75*	7001.57	7016.54*	Number of lines: 12
	Line Stope (%)	0.301	19.659	0.300	0.300	8.471	0.628	2.538	2.822	2.519	1.041	3.175	1.655	
	EL Up (ft)	6946.67	6960.68	6948.62	6950.23	6956.59	6951.64	6969.50	6989.75	6993.84	6993.74	7006.93	7012.38	
+	EL Dn (it)	6946.00	6949.17	6946.97	6948.92	6954.03	6950.53	6951.94	6969.80	6992.55	6090.25	6993.74	7007.23	
e i l	Line (ft)	222.710	58.550	550.000	436.320	30.220	176.710	691.860	706.880	51.220	335.390	415.430	311.260	
	shape	ci	ü	Cir	Ъ	c	cir	с,	cr	cr	Cir	Cir	Cir	
	Size (in)	8	48	72	72	30	2	72	72	90	99	66	99	
	rate (cis)	472.4	149.7	322.7	322.7	36.10	309.9	309.9	309.9	53.70	289.4	289.4	289.4	
		PR 74, Storm 23	PR 71, Storm 20	PR 67.1, Storm 23	PR 67.2, Storm 23	PR 66, Storm 25	PR 65.1, Storm 23	PR 65.2, Storm 23	PR 65.3, Storm 23	PR 64, Storm 24	PR 63.1, Storm 23	PR 63.2, Storm 23	PR 63.3, Storm23	09-002 Fil 2 Storm 23
	No.		2	<u>د</u>	4	ц.	9	7	8	6	10	1	12	09-002 FII 2

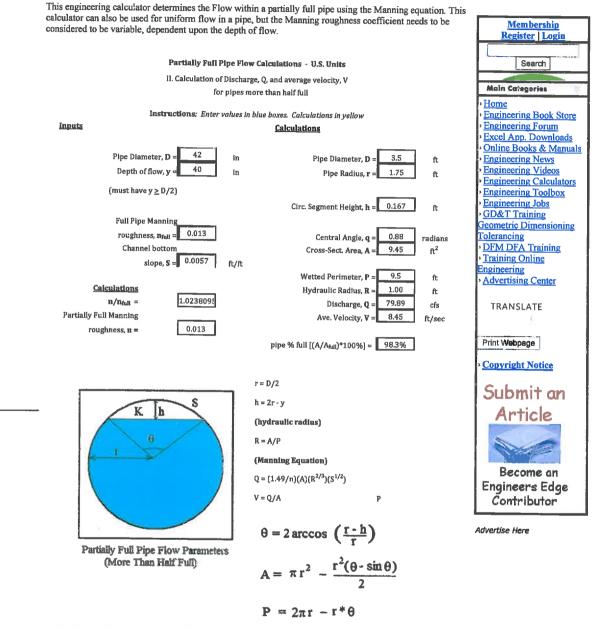

Storm Sewer Summary Report

10 20 4 Page 1

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Storm Sewars v10.50

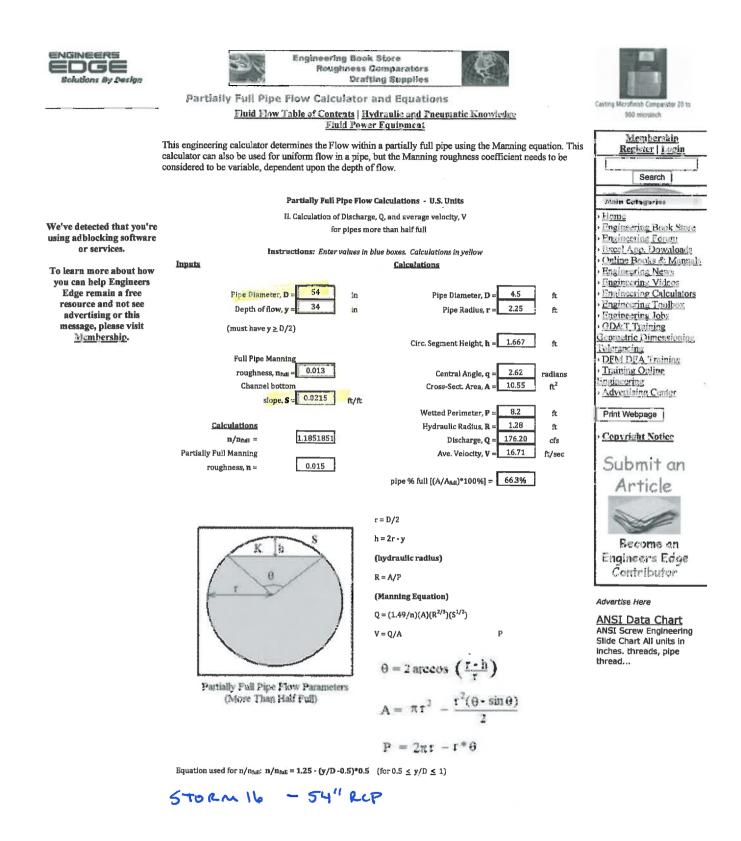
Storm Sewers




Proj. file: Storm 20, 23, 24, 25.stm

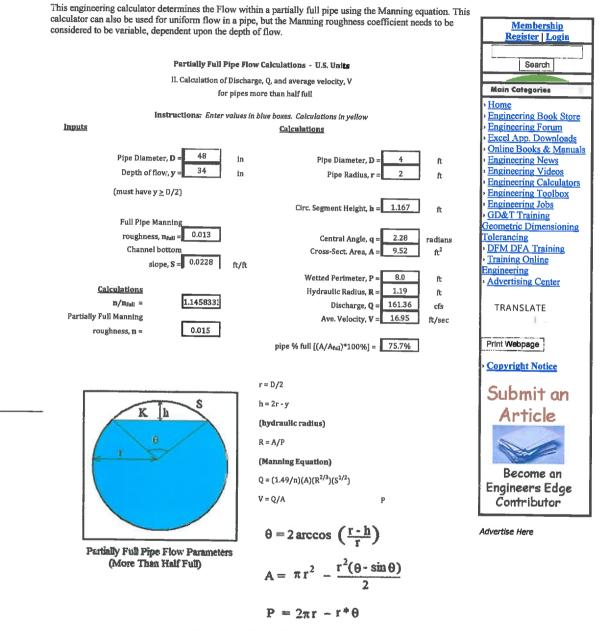
Storm Sewer Profile




#### Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment



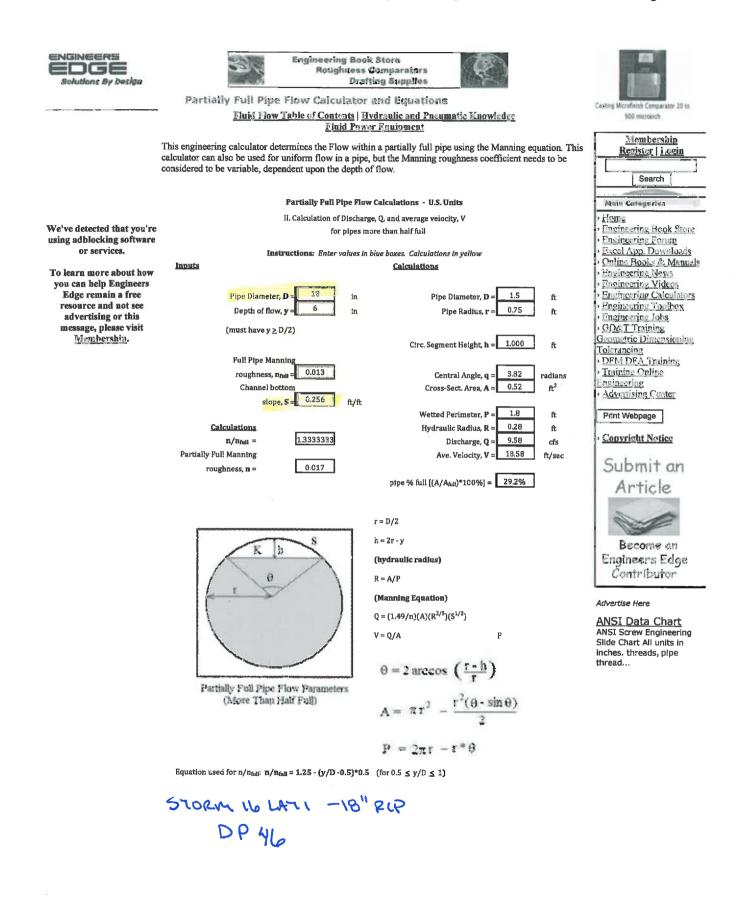
Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

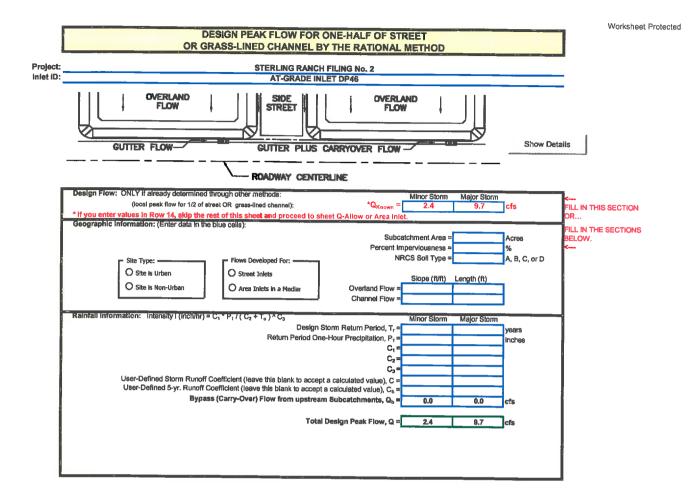

STORM 110

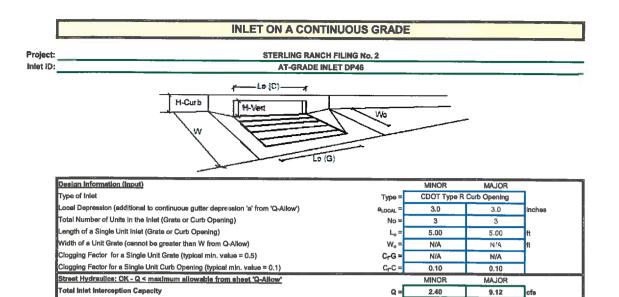
2~ 42"RCP






## Fluid Flow Table of Contents | <u>Hydraulic and Pneumatic Knowledge</u> <u>Fluid Power Equipment</u>





Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 \cdot (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

STORM 16

M8" RCP







Q_b

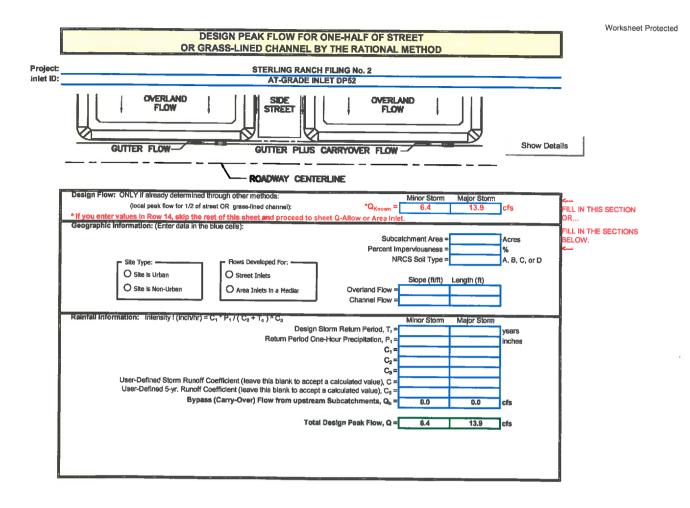
C% =

0.0

100

0.6

94

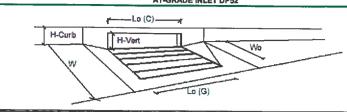

cfs

%

Total Inlet Carry-Over Flow (flow bypassing inlet)

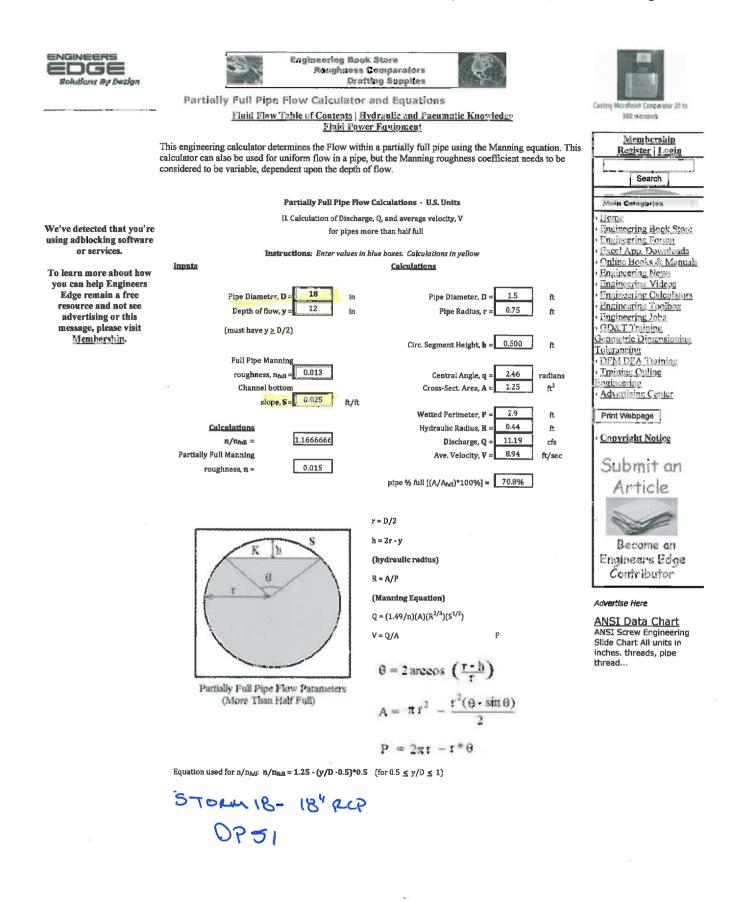
Capture Percentage = Q_s/Q_o =

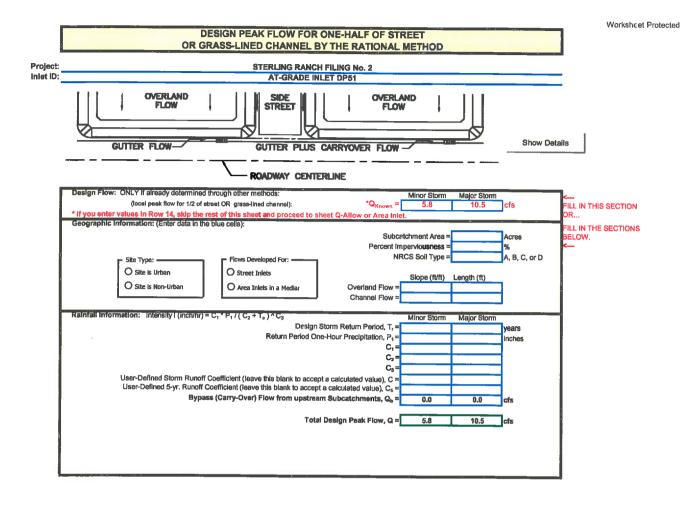
		LAR MALE MERSON PROPERTY	the second se
		nts   Hydraulic and Pneumatic Knowledge	Casting Microfinish Comparator 20 to 900 microinch
		d Power Equipment	
		w within a partially full pipe using the Manning equation. This a pipe, but the Manning roughness coefficient needs to be depth of flow.	Membership Recister   Login
	Partially Full P	ipe Flow Calculations - U.S. Units	Main Colegarius
	II. Calculation of	Discharge, Q, and average velocity, V	· Home
We've detected that you're using adblocking software	for	pipes more than half fuil	<ul> <li>Engineering Book Strate</li> <li>Paginerating Forum</li> </ul>
or services.		alues in blue boxes. Calculations in yellow	<ul> <li>Pecel App. Downloads</li> <li>Online Pools &amp; Manual</li> </ul>
To learn more about how	Inputs	Calculations	<ul> <li>Engineering News</li> </ul>
you can help Engineers Edge remain a free resource and not see advertising or this	Pipe Diameter, $\mathbf{D} = \begin{bmatrix} 30 \\ 0 \end{bmatrix}$ Depth of flow, $\mathbf{y} = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$	in Pipe Diameter, <b>D</b> = 2.5 ft In Pipe Radius, <b>r</b> = 1.25 ft	<ul> <li>Engineering Videos</li> <li>Engineering Calculator</li> <li>Engineering Toolbox</li> </ul>
message, please visit <u>Membershin</u> .	(must have $y \ge D/2$ )	Circ. Segment Height, h = 1.917 ft	<ul> <li>Engineering Jobs</li> <li>GD&amp;T Training Geometric Dimensioning Tolerancing</li> </ul>
	Full Pipe Manning roughness, m _{full} = 0.013 Channel bottom	Centrel Angle, $q = \frac{4.27}{radians}$ Cross-Sect. Area, $A = 0.87$ fr ²	DFM DPA Training     Training Online     Regincering
	slope, S = 0.2695	ft/ft	Advertising Center
	Calculations	Wetted Perimeter, P = 2.5 ft Hydraulic Radius, R = 0.35 ft	Print Webpage
	n/n _{toll} = 1.3833333	Hydraulic Radius, $R = 0.35$ ft Discharge, $Q = 18.40$ cfs	· Convright Notice
	Partially Full Manning	Ave. Velocity, V = 21.13 ft/sec	Culumit
	roughness, n = 0.018	pipe % full [(A/A _{full} )*100%] = 17.7%	Submit an
		pipe % init $[(A/A_{m}), 100\%] = [1, 1, 20, 1]$	Article
		r = D/2	
	KbS	h = 2r - y	Become an
		(hydraulic radius)	Engineers Edge
	e	R = A/P	Contributor
		(Manning Equation)	Advertise Here
		$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$	ANSI Data Chart
		V = Q/A P	ANSI Screw Engineering Slide Chart All units in inches. threads, pipe
	Partially Full Pipe Flow Parameter		thread
	(More Than Half Full)	$A = \pi r^2 - \frac{r^2(\theta \cdot \sin \theta)}{2}$	
		$P = 2\pi r - r^* \theta$	
	Equation used for $n/n_{full}$ : $n/n_{full} = 1.25 - (y/D - 1.25)$	<b>0.5)*0.5</b> (for $0.5 \le y/D \le 1$ )	
	STORM 18- 30'	'eq	
	DP5Z		




## **INLET ON A CONTINUOUS GRADE**



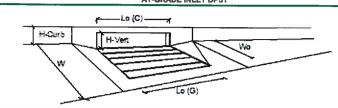




STERLING RANCH FILING No. 2 AT-GRADE INLET DP52



Design Information (Input)		MINOR	MAJOR		
Type of inlet	Туре =	CDOT Type R	Curb Opening	7	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0 3.0		
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3		
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft	
Width of a Unit Grate (cannot be greater than W from Q-Allow)	w.,=	N/A	N/A	ft	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r G =	N/A	N/A	1	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	Cr-C =	0.10	0.10		
Street Hydraulics: OK - Q < maximum allowable from sheet "Q-Allow"		MINOR	MAJOR		
Total Infat Interception Capacity	Q =	6.40	11.56	cfs	
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q ₆ =	0.0	2.3	cfs	
Capture Percentage = Q _e /Q _o =	C% =	100	83	%	

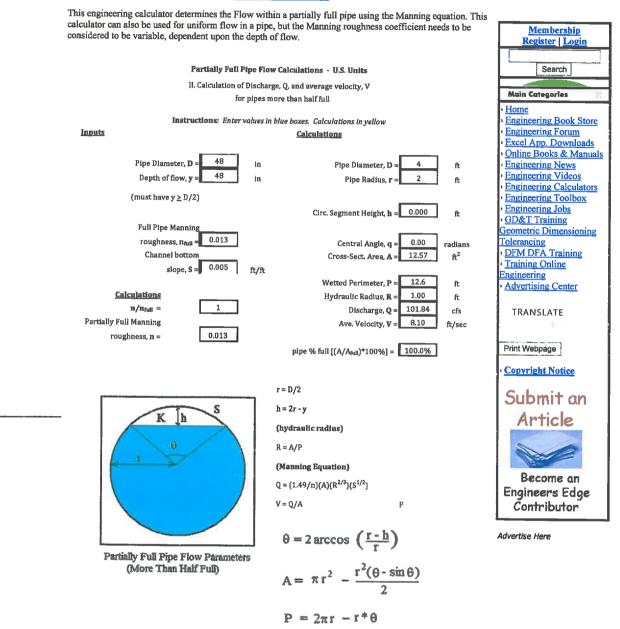
## Page 1 of 2





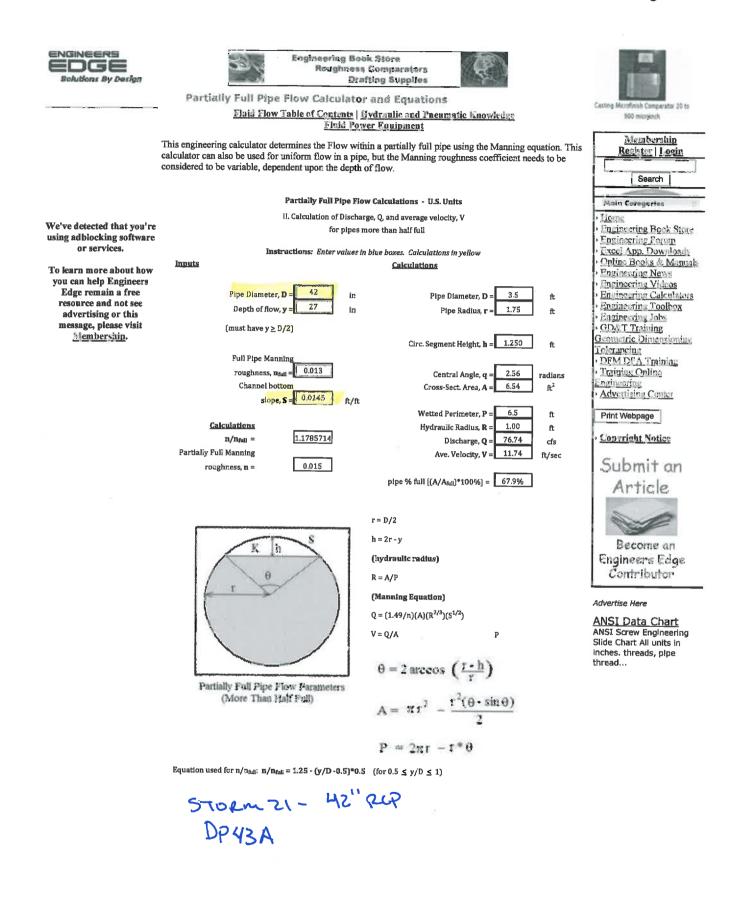

## INLET ON A CONTINUOUS GRADE

#### Project: Inlet ID:


STERLING RANCH FILING No. 2 AT-GRADE INLET DP51



Design Information (Input)	· · · ·	MINOR	MAJOR	
Type of Inlet	Туре =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	BLOCAL =	3.0	3.0	inchea
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W., =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _F C =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.80	9.65	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.9	cfs
Capture Percentage = Q _e /Q _e =	C% =	100	92	%




#### Fluid Flow Table of Contents | <u>Hydraulic and Pneumatic Knowledge</u> <u>Fluid Power Equipment</u>



Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 \cdot (y/D - 0.5) * 0.5$  (for  $0.5 \le y/D \le 1$ )

STORM 21 48"RCP



## DRAINAGE CRITERIA MANUAL (V. 2)

**CULVERTS** 

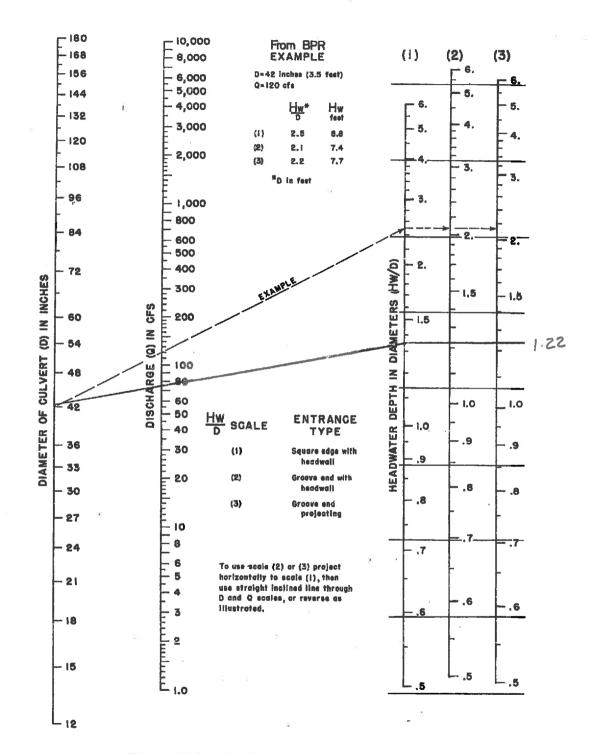
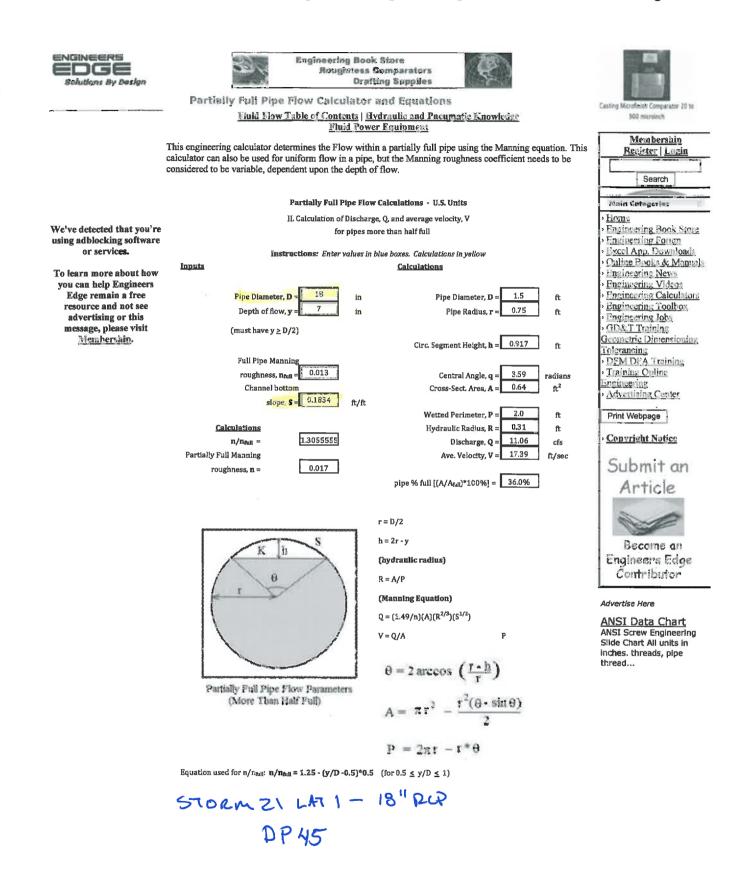


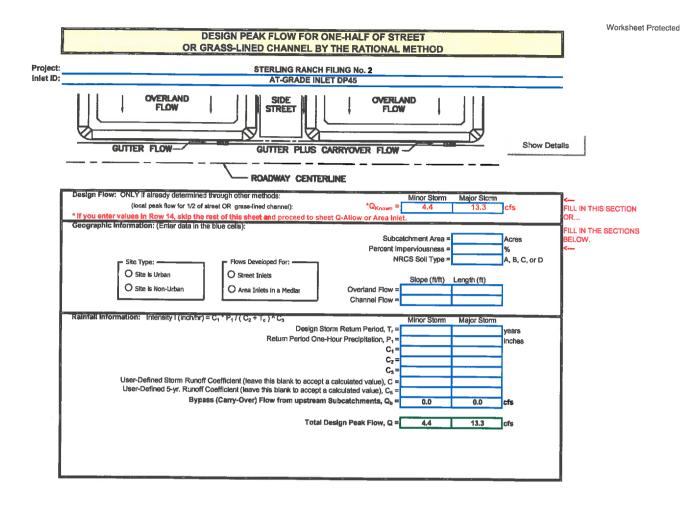

Figure CU-9---Inlet Control Nomograph-Example

Q100 = 74.3 cfs

07/2001 Urban Drainage and Flood Control District

DP43A

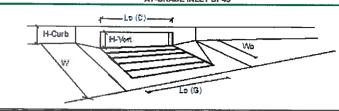

CU-19


The open channel flow calculator										
Select Channel Type: Trapezoid ✓	Bectangle	Triangle								
Velocity(V)&Discharge(Q) V	Select unit system: Feet(ft) 🗸									
Channel slope: .0641 ft/ft	Water depth(y): 1.1 ft	Bottom width(b) 4								
Flow velocity <mark>8.5302</mark> ft/s	LeftSlope (Z1): 4 to 1 (H:'	RightSlope (Z2): 4 to 1 (H:V								
Flow discharge 78.819 ft^3/s	Input n value 0.035 or select r									
Calculatel	Status: Calculation finished	Reset								
Wetted perimeter 13.07	Flow area 9.24 ft^2	Top width(T) 12.8 ft								
Specific energy 2.23	Froude number 1.77	Flow status Supercritical flow								
Critical depth 1.47 ft	Critical slope 0.0188 ft/ft	Velocity head 1.13 ft								

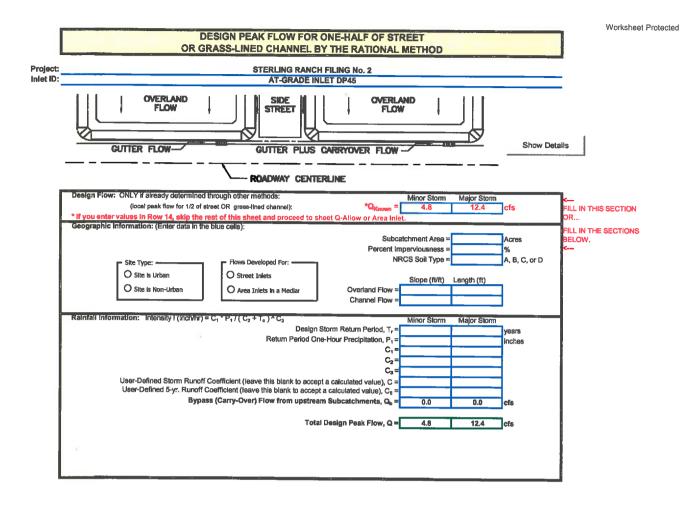
Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

SR FIL 2 TRACT D DP 43A Qioo= FACSS

Page 1 of 1







## **INLET ON A CONTINUOUS GRADE**



STERLING RANCH FILING No. 2 AT-GRADE INLET DP45



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Туре =	CDOT Type R	Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} ≖	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W., =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _F G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _F C =	0.10	0.10	1
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.40	11.25	cfs
Total inlet Carry-Over Flow (flow bypassing inlet)	<b>G</b> _b =	0.0	2.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	85	%



#### INLET ON A CONTINUOUS GRADE Project: STERLING RANCH FILING No. 2 Inlet iD: AT-GRADE INLET DP45 -Lo (C)-۴ ٦ľ H-Curb H-Vert Vito w Lo (G) Design Information (Input) MINOR MAJOR Type of Inlet CDOT Type R Curb Opening Туре Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow') aLOCAL : 3.0 3.0 Total Number of Units in the Inlet (Grate or Curb Opening) No 3 3 Length of a Single Unit Inlet (Grate or Curb Opening) 5.00 5.00 L Width of a Unit Grate (cannot be greater than W from Q-Allow)

Clogging Factor for a Single Unit Grate (typical min. value = 0.5)

Total Inlet Carry-Over Flow (flow bypassing inlet)

Total inlet Interception Capacity

Capture Percentage = Q_e/Q_o =

Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)

Street Hydrauilcs: OK - Q < maximum allowable from sheet 'Q-Allow'

W_o=

Cr-G :

CrC =

۹=

Q.,

C% =

N/A

N/A

0.10

MINOR

4.80

0.0

100

N/A

N/A

0.10

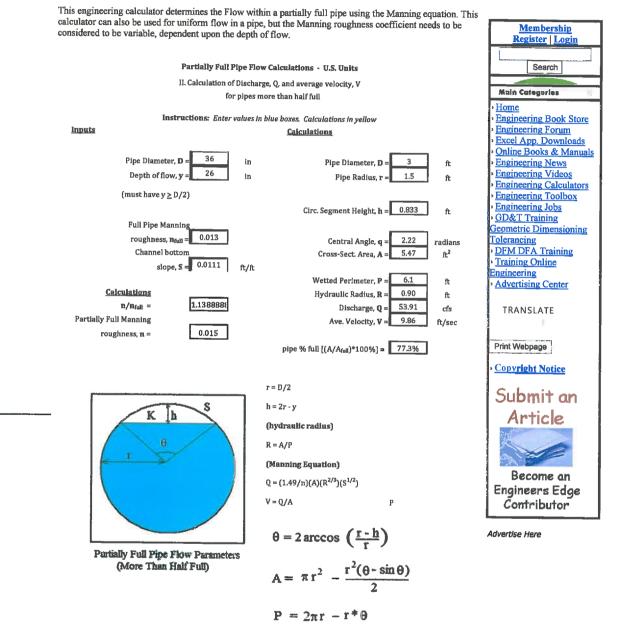
MAJOR

10.77

1.6

87

A

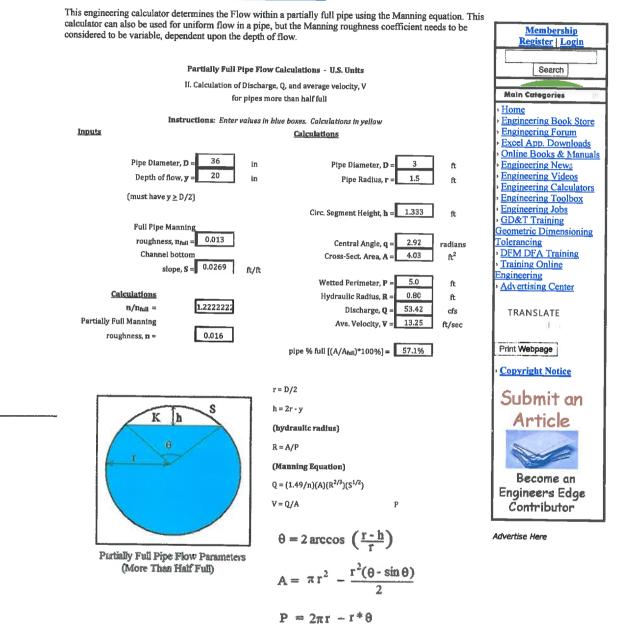

cfs

cfs

%



# Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

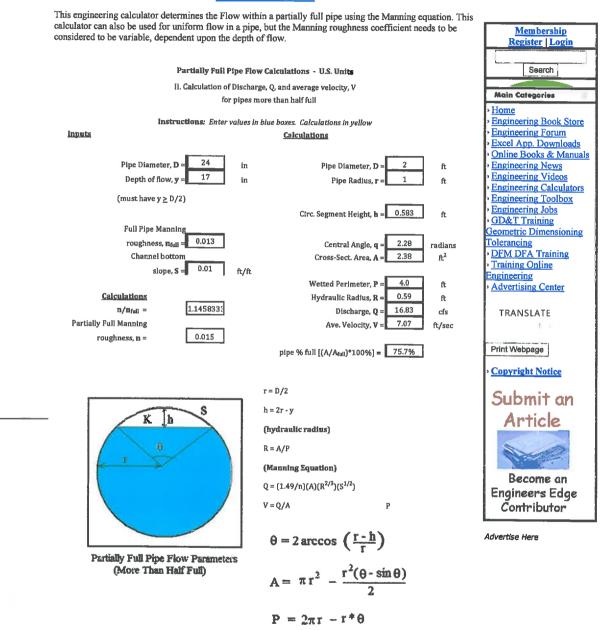



Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

STORM 19 36"RCP

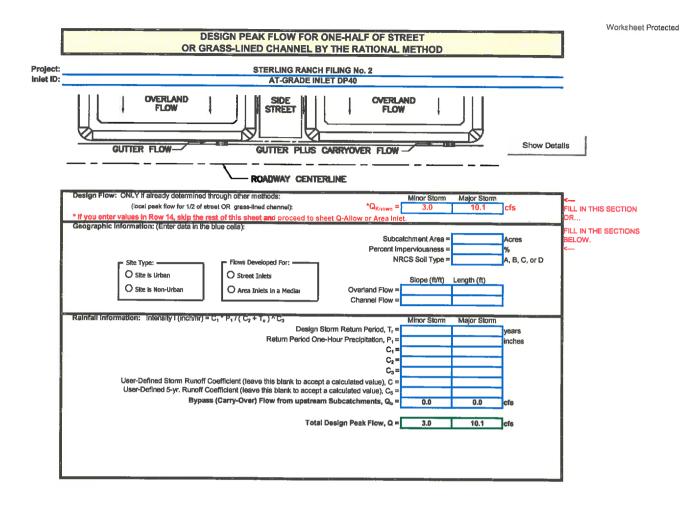


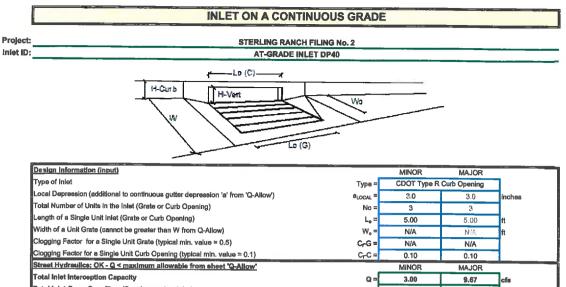
## Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment




Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

STORM 19 36"RCP

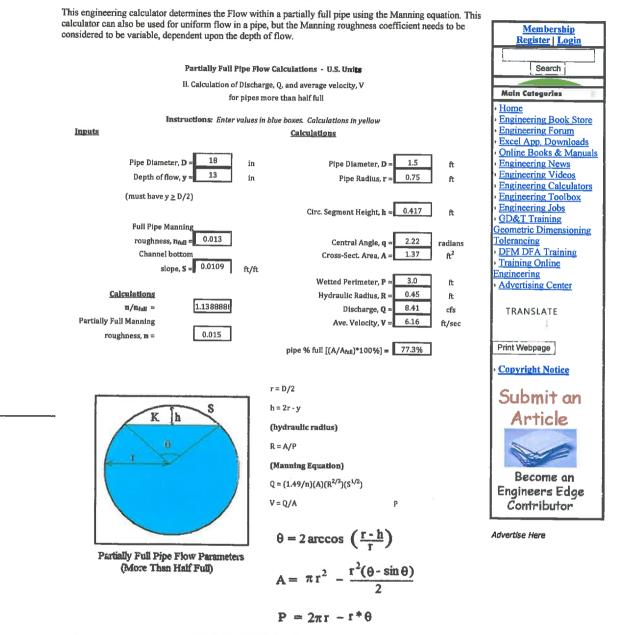




#### Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment



Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 - (y/D - 0.5) + 0.5$  (for  $0.5 \le y/D \le 1$ )

STORM 19 LAT-1 24"RCP

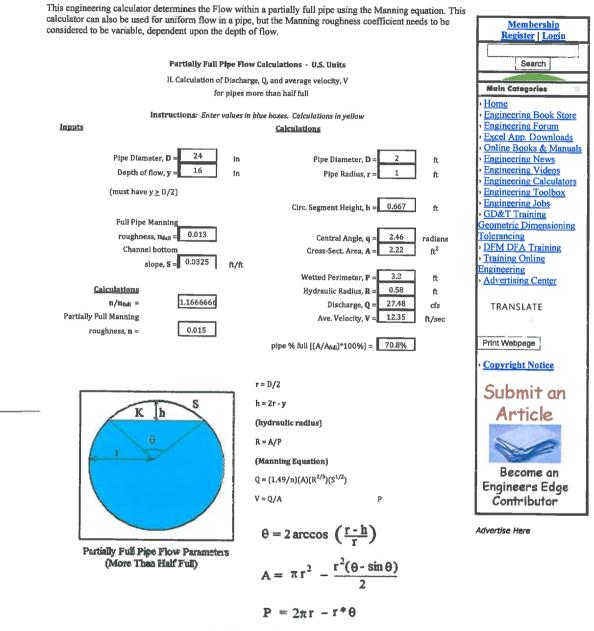









#### Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

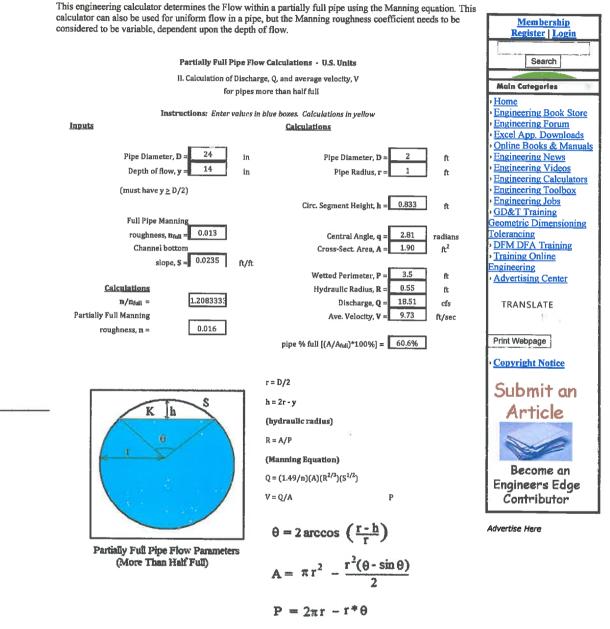



Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

570Rm 19 LAT-1 18"RUP

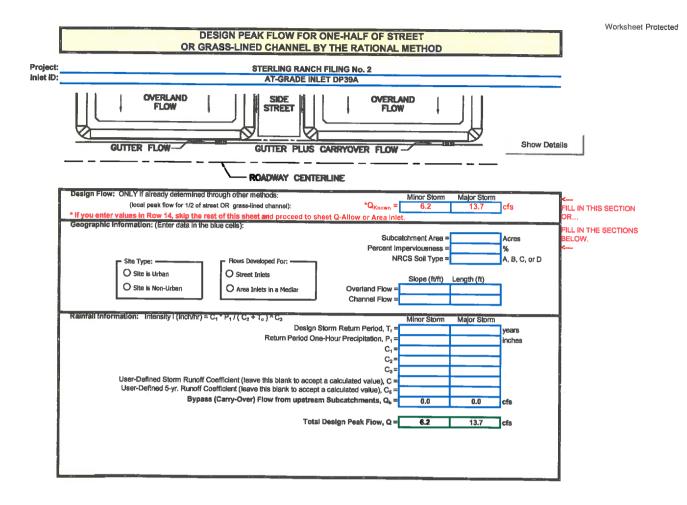


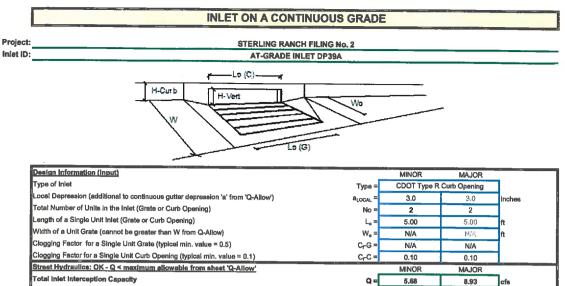
#### Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment




Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5) * 0.5$  (for  $0.5 \le y/D \le 1$ )

24" REP 570 RM 19



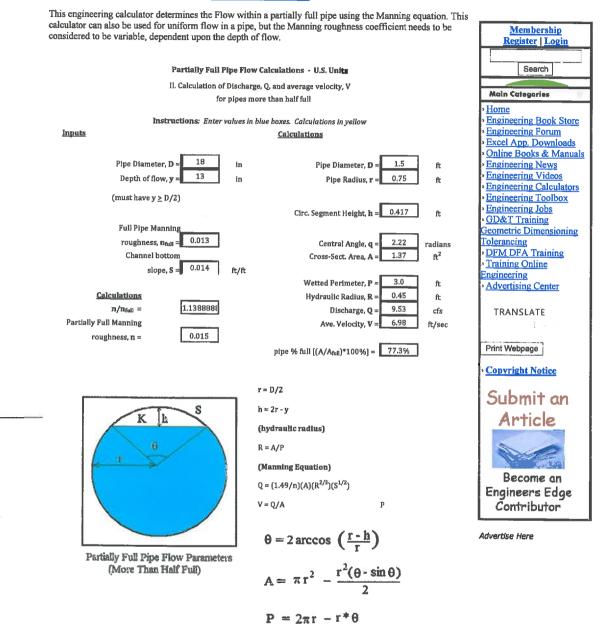


#### Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment



Equation used for n/n_{full}:  $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

STORMIG LATZ 24" PCP





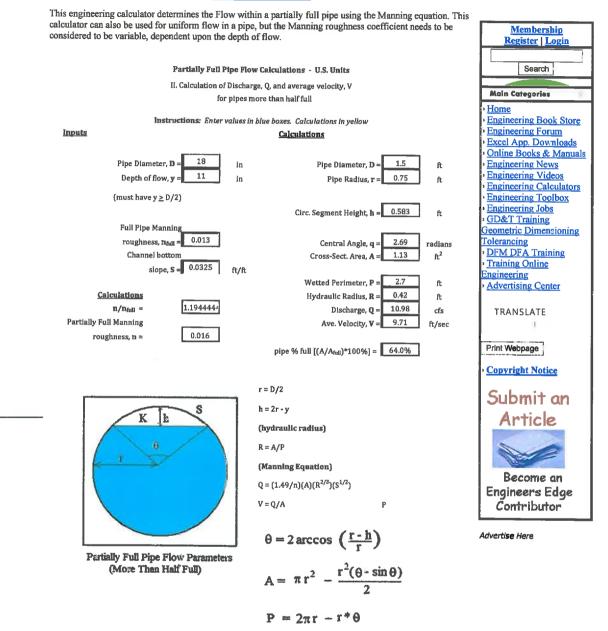





### Partially Full Pipe Flow Calculator and Equations

### Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment




Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

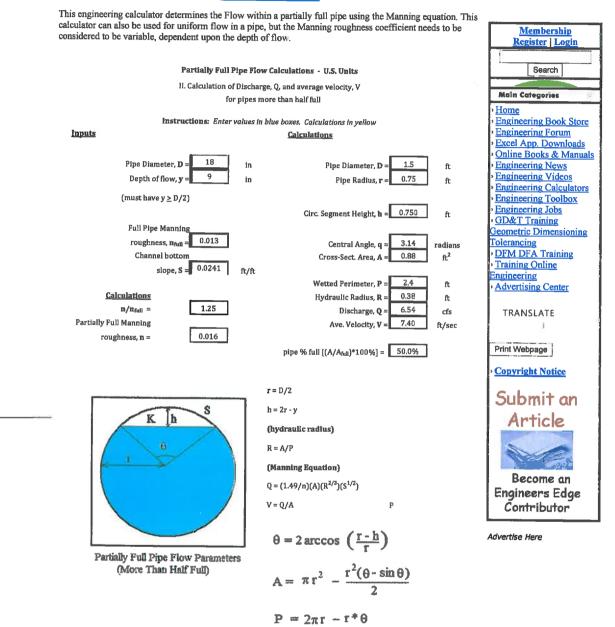
18" RLP 570 pm 19 1A7-2



### Partially Full Pipe Flow Calculator and Equations

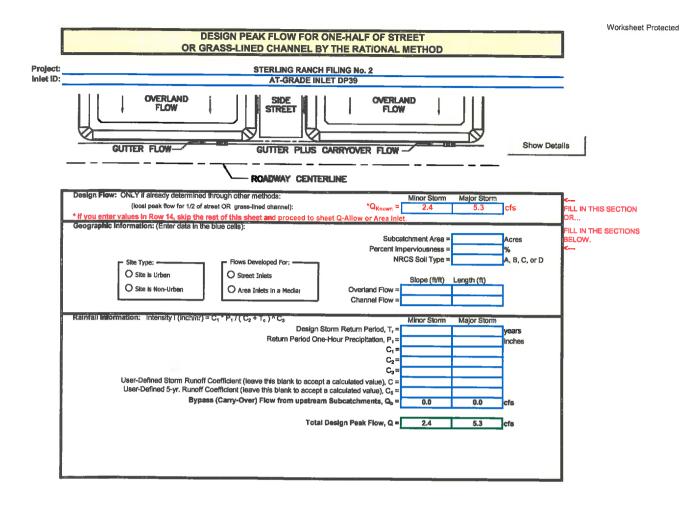
### Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

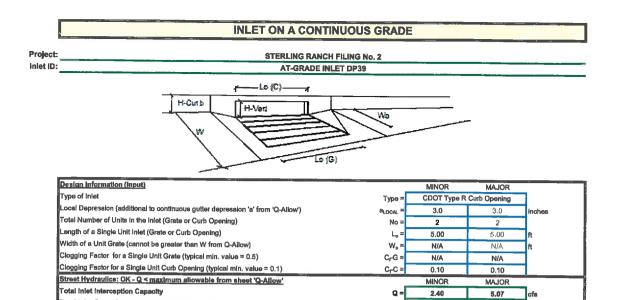



Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

STORM 19 18" ROP




### Partially Full Pipe Flow Calculator and Equations


### Fluid Flow Table of Contents | <u>Hydraulic and Pneumatic Knowledge</u> Fluid Power Equipment



Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

STORM 19 LATS 18"RCP





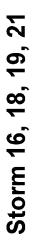
Q_b

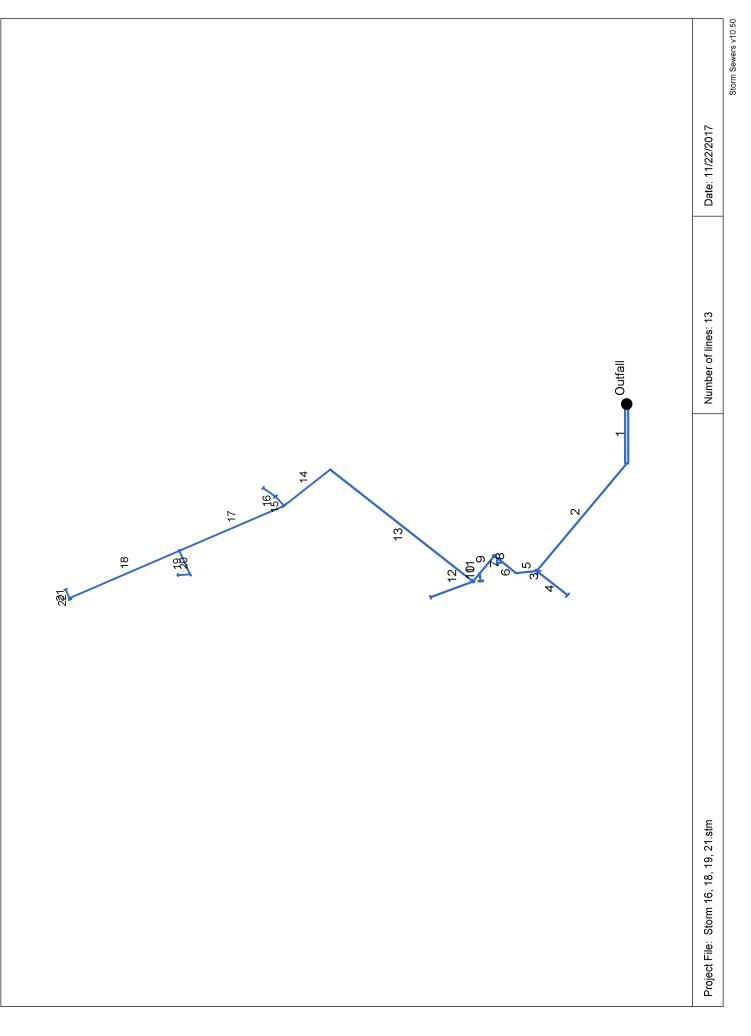
С%

0.0

100

0.2


96


cfs

%

Total Inlet Carry-Over Flow (flow bypassing inlet)

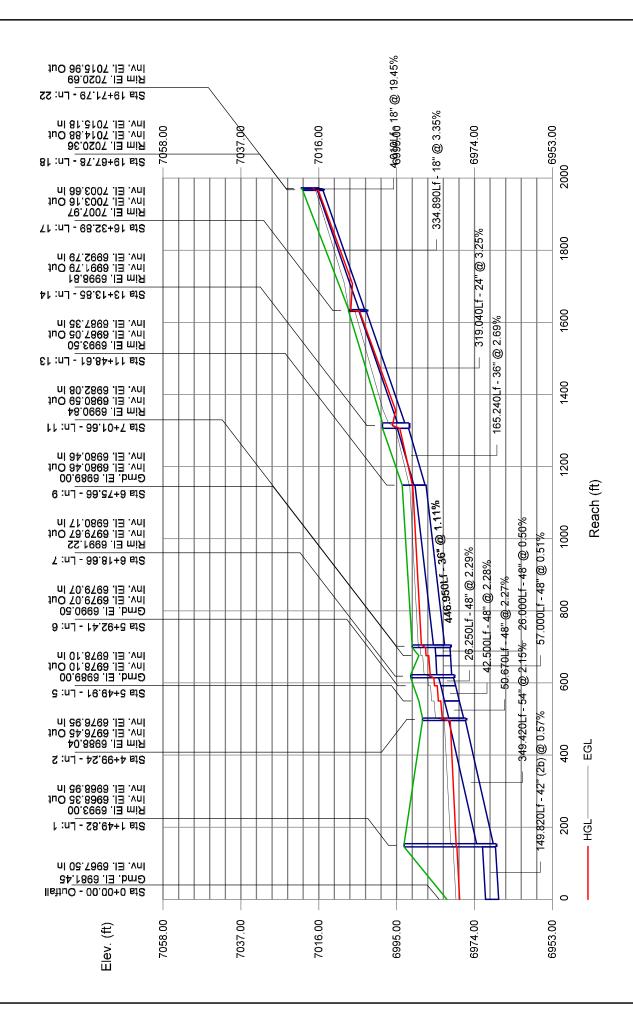
Capture Percentage = Q_e/Q_o =





16, 18, 19, 21
Storm 1
Report
Storm Sewer Summary R

	oronn oewer ounniary report		うろして			· · · · ·	()	-						
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line   length E (ft) (	Invert EL Dn (ft)	Invert EL Up (ff)	Line Slope (%)	HGL Down (ff)	HGL Up (ff)	Minor loss (ft)	HGL Junct (ff)	Dns Line No.	Junction Type
<del>, -</del>	Storm 16	155.0	42	Cir(2b)	149.820	6967.50	6968.35	0.567	*66`7769	6978.75*	0.20	6978.95	End	Manhole
2	Storm 16	155.0	54	Cir	349.420	6968.95	6976.45	2.146	6978.95	6980.54	n/a	6982.71 i	-	Manhole
n	Storm 18	21.00	30	Cir	6.610	6978.75	6980.52	26.778	6982.71	6982.67	0.02	6982.69	7	Curb-Horiz
4	Storm 18	10.00	18	Cir	90.330	6981.52	6983.78	2.502	6982.69	6985.00	n/a	6986.10 i	ю	Curb-Horiz
5	Storm 16	136.0	48	Cir	50.670	6976.95	6978.10	2.269	6982.71*	6983.10*	0.64	6983.74	N	None
Q	Storm 16	136.0	48	Cir	42.500	6978.10	6979.07	2.282	6983.74*	6984.06*	0.55	6984.61	ъ	None
7	Storm 16	129.0	48	Cir	26.250	6979.07	6979.67	2.286	6984.79*	6984.97*	n/a	6985.93 i	9	Manhole
ω	Storm 16_Lat 1	00.6	18	Cir	13.200	6980.32	6983.66	25.306	6986.03*	6986.11*	0.50	6986.61	9	Curb-Horiz
თ	Storm 21	129.0	48	Cir	57.000	6980.17	6980.46	0.509	6985.93*	6986.33*	0.49	6986.82	7	None
10	Storm 21_LAt 1	11.00	18	Cir	19.330	6981.71	6985.25	18.314	6987.85*	6988.03*	0.75	6988.79	6	Curb-Horiz
11	Storm 21	119.0	48	Cir	26.000	6980.46	6980.59	0.500	6987.06*	6987.21*	0.56	6987.77	6	Manhole
12	Storm 21	74.00	42	Cir	110.170	6981.09	6982.68	1.444	6988.24*	6988.75*	0.28	6989.03	1	OpenHeadwall
13	Storm 19	52.00	36	Cir	446.950	6982.08	6987.05	1.112	6988.32*	6990.64*	n/a	6990.74 i	5	Manhole
14	Storm 19	52.00	36	Cir	165.240	6987.35	6991.79	2.687	6990.74	6994.13	n/a	6996.08	13	Generic
15	Storm 19_Lat 1	15.80	24	Cir	35.380	6992.49	6992.85	1.017	6996.08*	6996.23*	0.02	6996.25	14	Generic
16	Storm 19_Lat 1	7.70	18	Cir	41.630	6993.35	6993.80	1.080	6996.34*	6996.54*	0.09	6996.62	15	OpenHeadwall
17	Storm 19	26.90	24	Cir	319.040	6992.79	7003.16	3.250	6996.08	7004.97	n/a	7007.351	14	Manhole
18	Storm 19	10.60	18	Cir	334.890	7003.66	7014.88	3.350	7007.35	7016.13	n/a	7017.34 i	17	Manhole
19	Storm 19_Lat 2	17.90	24	Cir	74.130	7003.46	7005.21	2.361	7007.35*	7007.75*	0.23	7007.97	17	Generic
20	Storm 19_Lat 2	9.00	18	Cir	35.340	7005.71	7006.20	1.387	7008.07*	7008.30*	0.50	7008.80	19	Generic
21	Storm 19_Lat 3	5.30	18	Cir	27.320	7015.18	7015.84	2.415	7017.34*	7017.40*	0.17	7017.58	18	Generic
22	Storm 19_Lat 3	5.30	18	Cir	4.010	7015.18	7015.96	19.446	7017.34	7017.34	0.19	7017.53	18	Generic
Storm 1	Storm 16, 18, 19, 21								Number of lines: 22	f lines: 22		Run C	Run Date: 11/21/2017	/2017

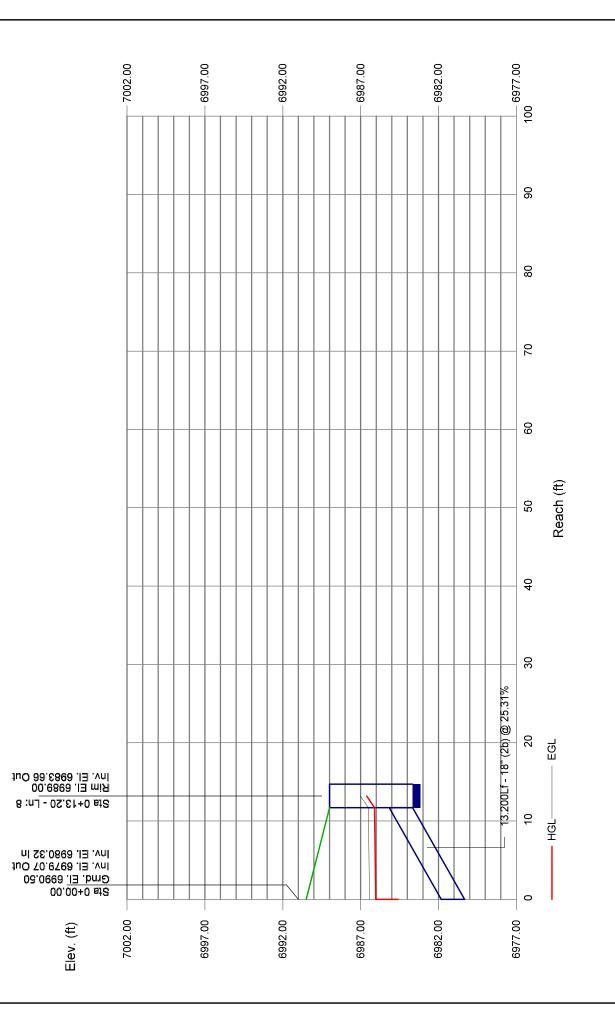

Page 1

Storm Sewers v10.50

NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; i - Inlet control.

Storm Sewer Profile

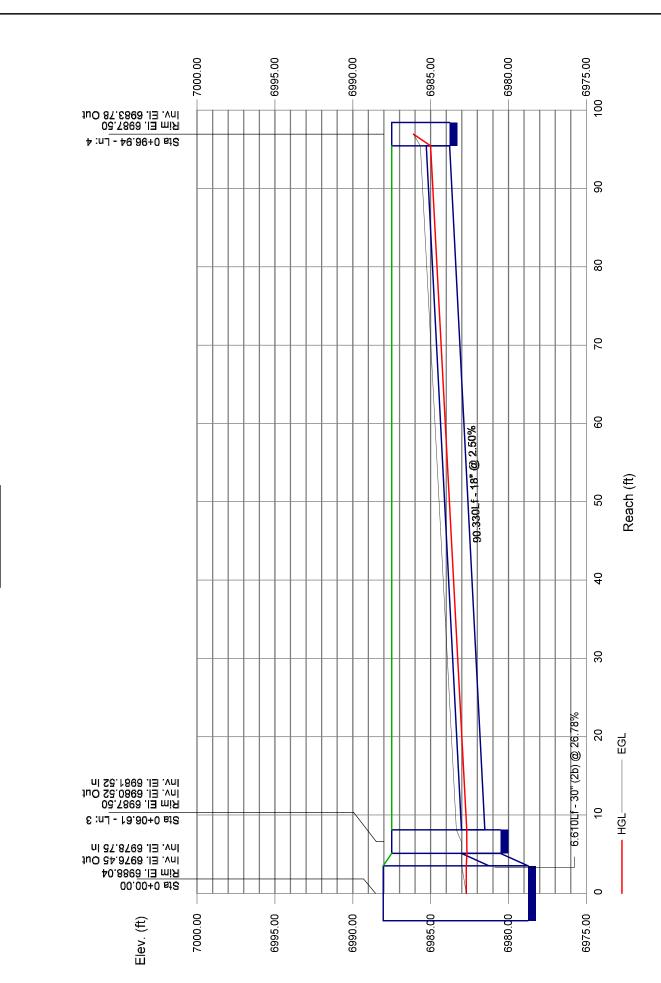
# Storm 16, 19, 21




Storm Sewers

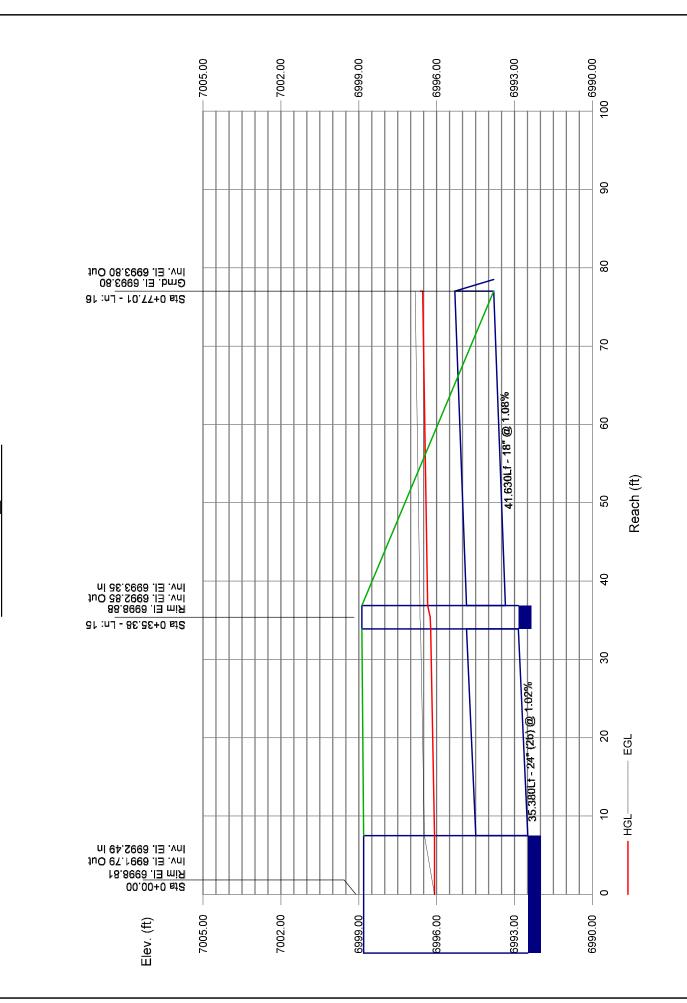
**Storm Sewer Profile** 

Storm 16 Lat 1



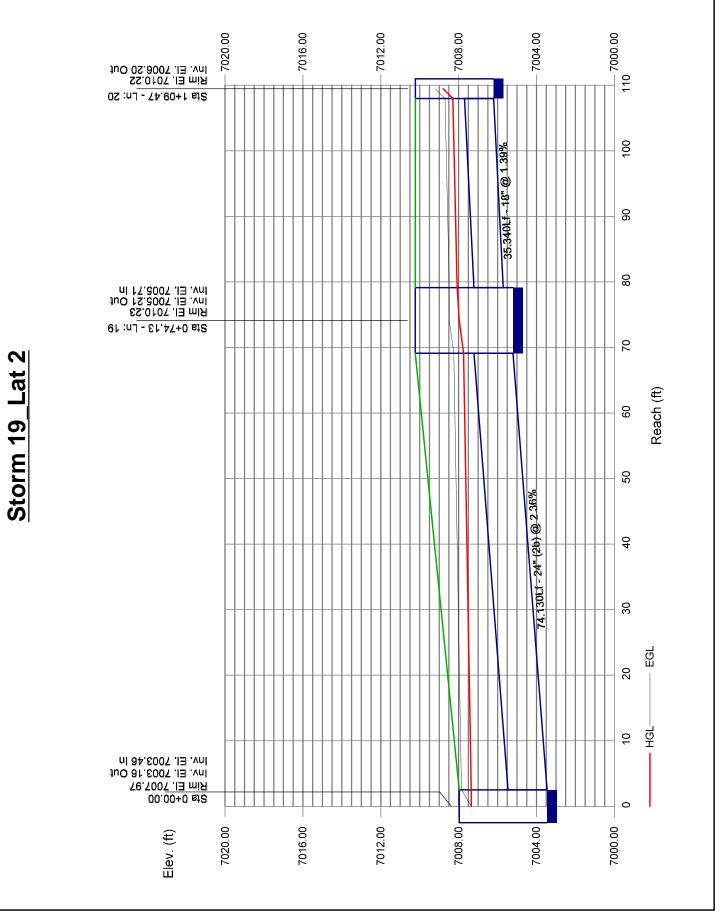



Storm Sewers

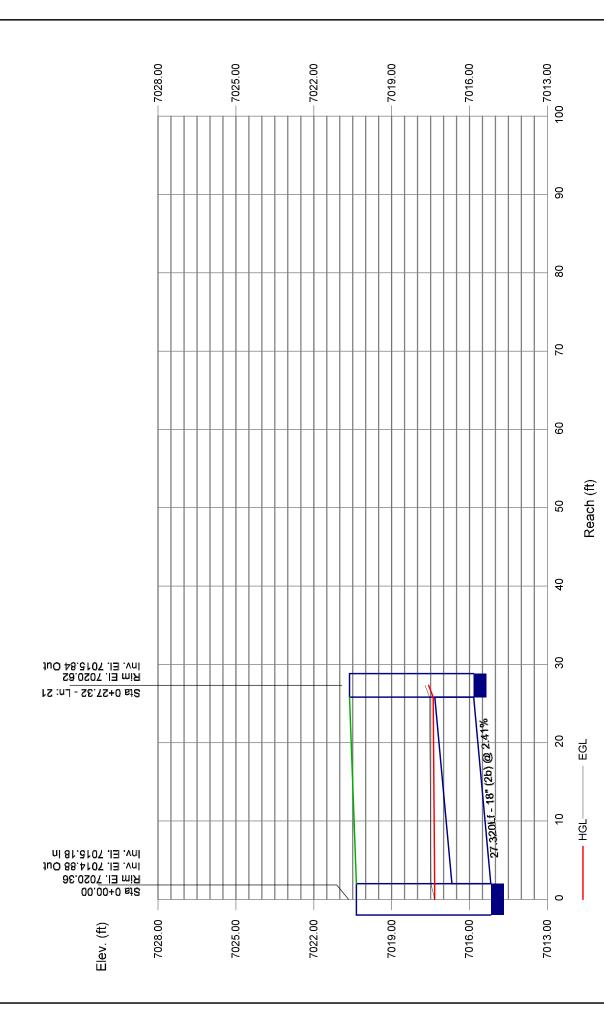

**Storm Sewer Profile** 






Proj. file: Storm 16, 18, 19, 21.stm

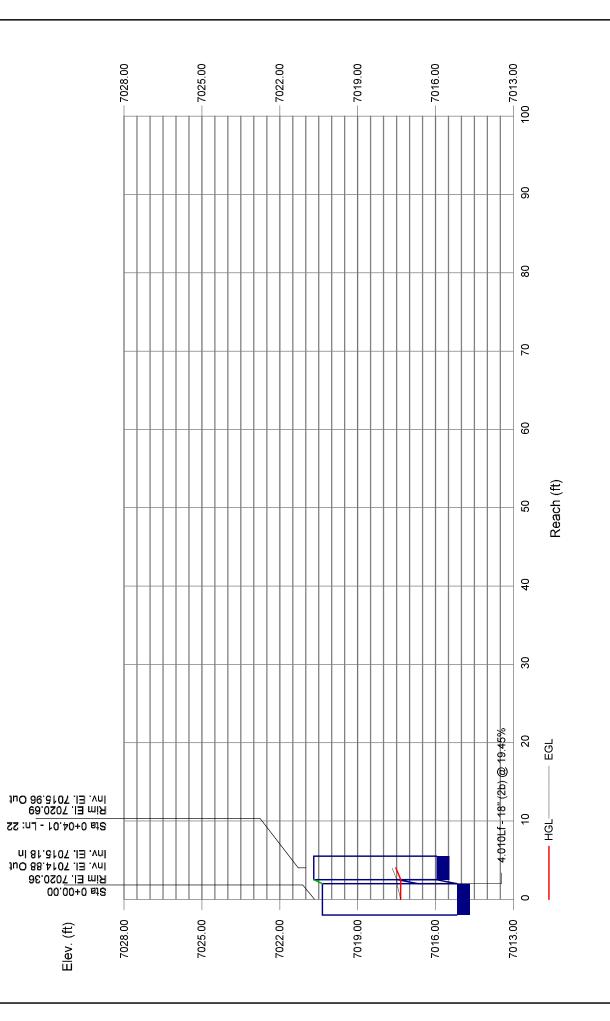




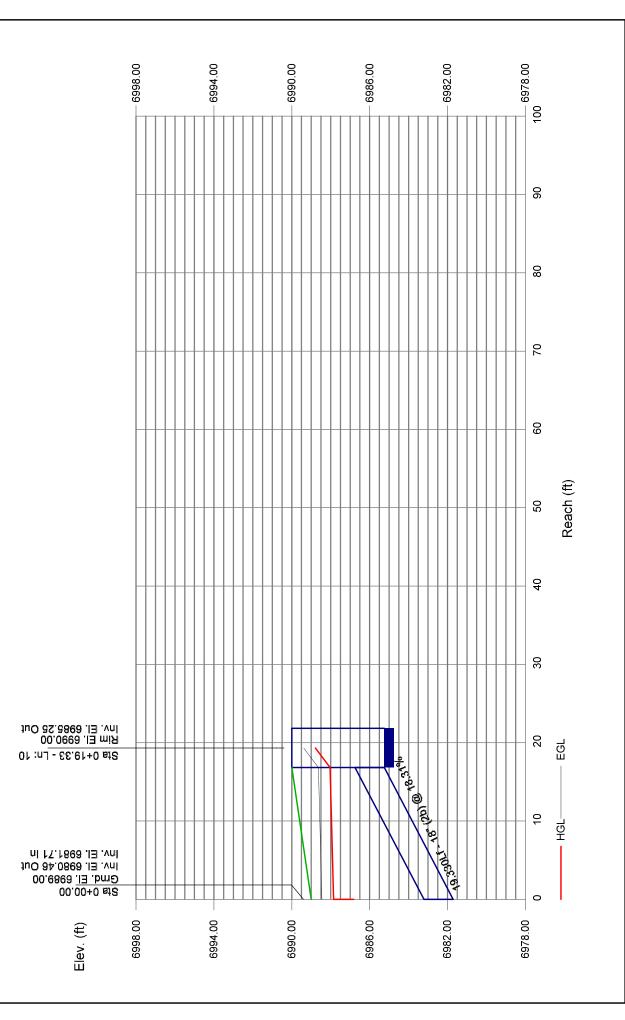

**Storm Sewer Profile** 

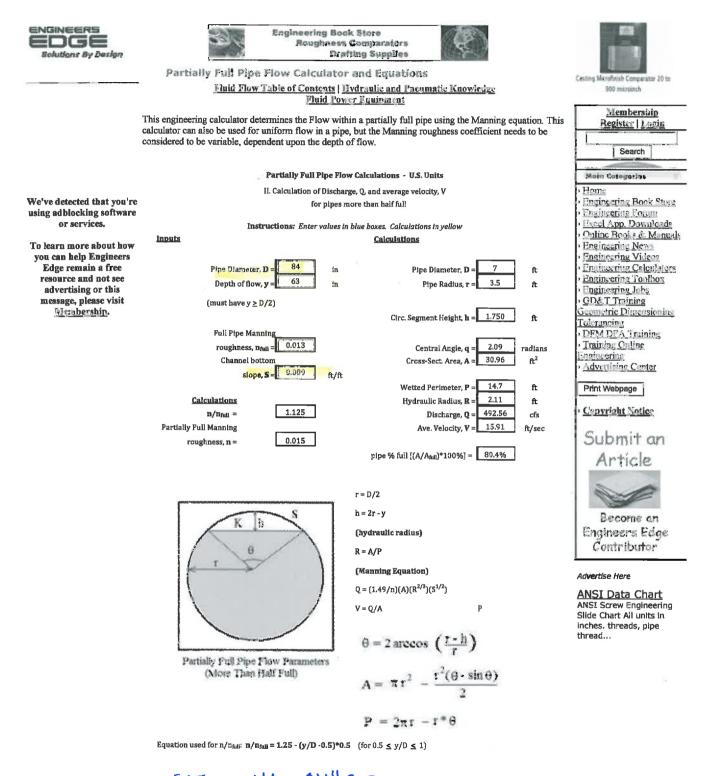
Proj. file: Storm 16, 18, 19, 21.stm




# Storm 19 Lat 3



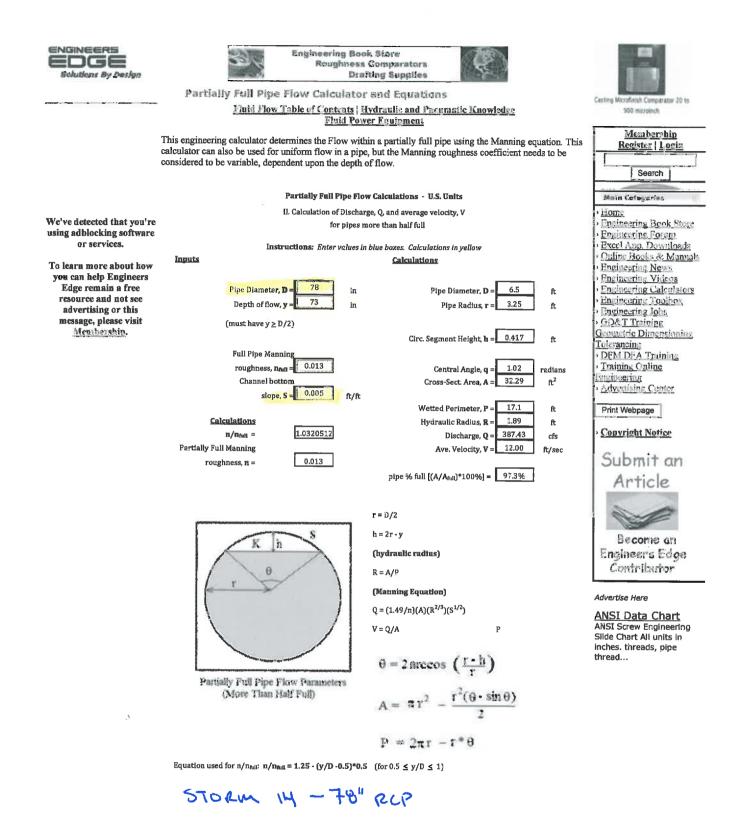

Proj. file: Storm 16, 18, 19, 21.stm

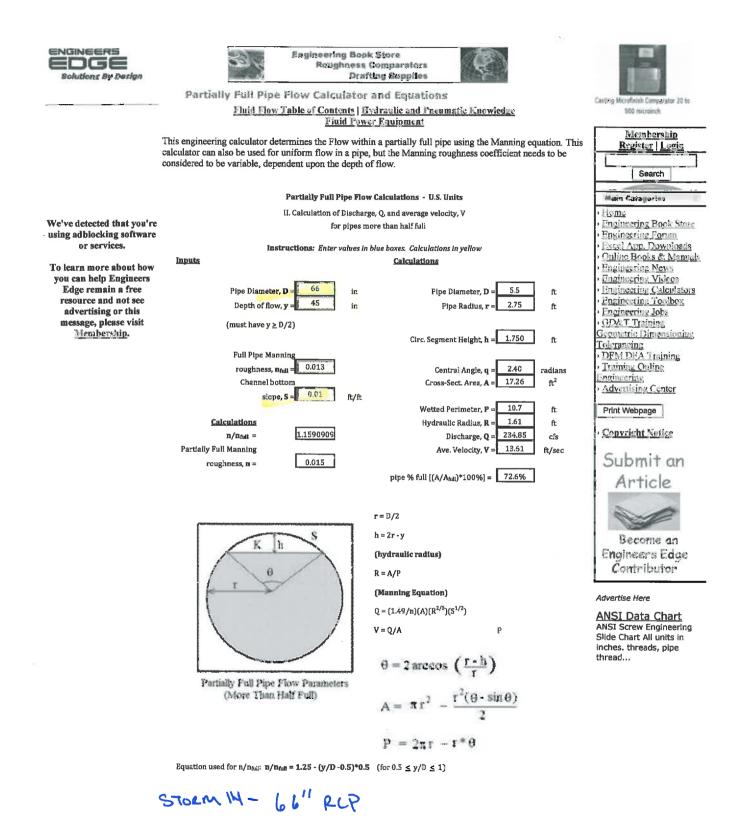

**Storm Sewer Profile** 

# Storm 19 Lat 3



# Storm 21 Lat 1




STORM 14- 84" RCP

5

http://www.engineersedge.com/fluid_flow/partially_full_pipe_flow_calculation/partiallyfull... 5/5/2017



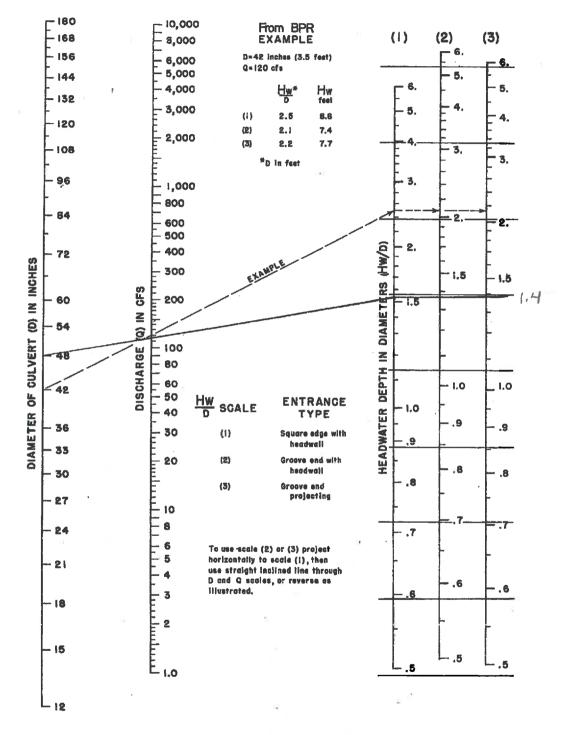


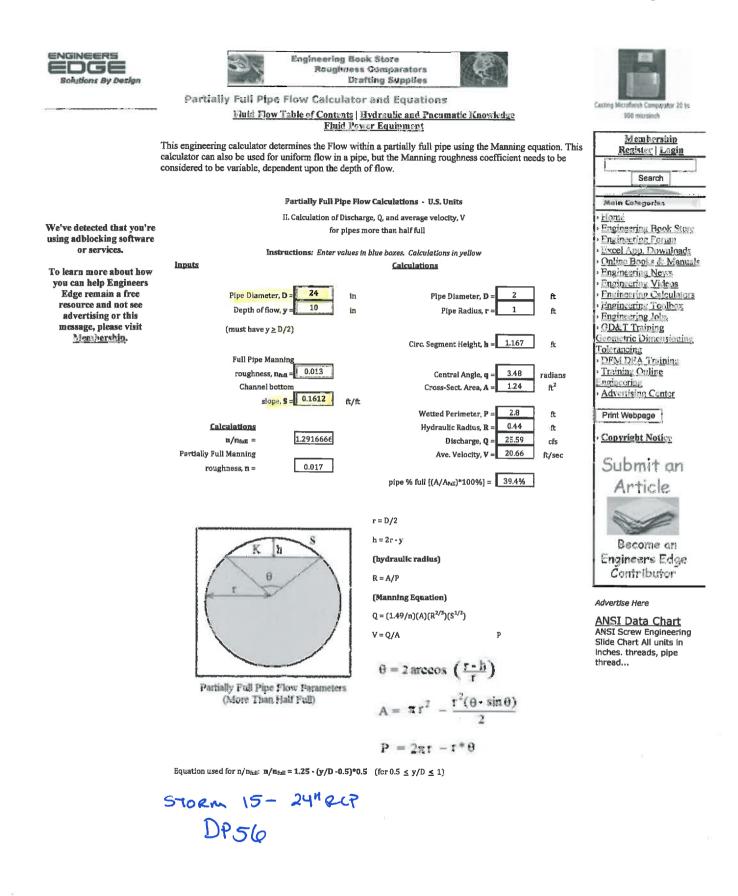
ENGINEERS EDGE Solutions By Design		ns Comparators Pratting Supplies	Ē
	Huid Flow Table of Contents	Hydraulic and Preumatic Knowledge	Casting Microfinish Comparator 20 to \$90 microinch
	This engineering calculator determines the Flow v	ower Fourinment within a partially full pipe using the Manning equation. This bipe, but the Manning roughness coefficient needs to be th of flow.	Membership Register   Login
	Partially Full Pipe	Flow Calculations - U.S. Units	Millin Copegories
We've detected that you're using adblocking software		charge, Q, and average velocity, V es more than half full	<ul> <li>Home</li> <li>Engineering Book Store</li> <li>Engineering Forum</li> </ul>
or services.	Instructions: Enter values in blue baxes. Calculations in yellow		<ul> <li>Excel App. Downloads</li> </ul>
To learn more about how	Inputs Calculations		<ul> <li>Online Books &amp; Manuals</li> <li>Engineering News</li> </ul>
you can help Engineers Edge remain a free resource and not see advertising or this message, please visit Membership.	Pipe Diameter, $D = \frac{56}{10}$ in Depth of flow, $y = \frac{31}{10}$ in (must have $y \ge D/2$ )	n Pipe Radius, r = 2.75 ft	Fingineering Videos     Engineering Calculators     Engineering Toolbox     Engineering Jobs     GoA: Training     Geogratic Dimensioning
	Full Pipe Manning roughness, n _{full} = 0.013 Channel bottom slope, <b>S</b> = 0.0381 ft/ <u>Calculations</u> n/n _{full} = 1.2651515 Partially Full Manning roughness, n = 0.016	Circ. Segment Height, h = $2.917$ ft Central Angle, q = $3.26$ radians Cross-Sect. Area, A = $10.96$ ft ² (ft Wetted Perimeter, P = $9.3$ ft Hydraulic Radius, R = $1.32$ ft Discharge, Q = $233.27$ cfs Ave. Velocity, V = $21.28$ ft/sec pipe % full [(A/A _{full} )*100%] = $46.1\%$	Tolerancing DFM DFA Training Truining Online Engineering Adventising Center Print Webpage Copyright Notice Submit con Article
	K h S	r = D/2 h = 2r - y (hydraulic radius) R = A/P (Manning Equation) Q = (1.49/n)(A)(R ^{2/3} )(S ^{1/2} )	Become an Engineers Edge Contributor
	Partially Pull Pipe Flow Parameters (More Than Half Full)	$V = Q/A \qquad p$ $\Theta = 2 \arccos \left(\frac{r+h}{r}\right)$ $A = \pi r^{2} - \frac{r^{2}(\Theta \cdot \sin \Theta)}{2}$	ANSI Screw Engineering Slide Chart All units in Inches. threads, pipe thread
	Equation used for n/n _{full} : <b>n/n_{full} = 1.25 - (y/D -0.5)</b>	$P = 2\pi t - t^* \theta$	
	STORM 14 - 66" 1	2 LP	

ENGINEERS Solutions By Besign	Dr	s Comparators afting Supplies	i
	Partially Full Pipe Flow Calculate	or and Equations Hydraulic and Pneumatic Knowledge	Casting Microfinish Comparator 30 to 900 microinch
		wer Equipment	
	This engineering calculator determines the Flow wi calculator can also be used for uniform flow in a pi considered to be variable, dependent upon the depth	ithin a partially full pipe using the Manning equation. This pe, but the Manning roughness coefficient needs to be a of flow.	Mcmbership Register   Lopin Search
	Partially Full Pipe Fi	iow Calculations - U.S. Units	Main Calegories
We've detected that you're		arge, Q, and average velocity, V	• Home
using adblocking software		s more than half full	<ul> <li>Engineering Book Store</li> <li>Engineering Forum</li> </ul>
or services.	Instructions: Enter values	in blue boxes. Calculations in yellow Calculations	<ul> <li>Excel App. Downloads</li> <li>Online Hooks &amp; Manuals</li> </ul>
To learn more about how you can help Engineers Edge remain a free resource and not see advertising or this message, please visit Matabership.	Pipe Diameter, $D = \frac{48}{33}$ in Depth of flow, $y = \frac{33}{33}$ in (must have $y \ge D/2$ )	Pipe Diameter, D = $\frac{4}{1000}$ ft Pipe Radius, $r = \frac{2}{10000}$ ft	Engineering Nayas     Epointeering Videos     Engineering Calculators     Engineering Colloca     Engineering Toolbox     Encineering Jobs     GOAT Training     Geometric Dimensioning
	Full Pipe Manning	Circ. Segment Height, h = 1.250 ft	Tolerancing • DFM DFA Training
	roughness, n _{fail} = 0.013 Channel bcttom slope, S = 0.014 ft/ft	Central Angle, $q = 2.37$ radians Cross-Sect. Area, $A = 9.21$ $ft^2$	Training Online     Surgingering     Advertising Center
		Wetted Perimeter, $\mathbf{P} = 7.8$ ft	Print Webpage
	$\frac{\text{Calculations}}{n/n_{\text{full}}} = \frac{1.15625}{1.15625}$	Hydraulic Radius, <b>R</b> = <u>1.18</u> ft Discharge, <b>Q</b> = <u>120.49</u> cfs	· Convright Notice
	Partially Full Manning	Ave. Velocity, V = 13.08 ft/sec	Submit an
	roughness, n = 0.015	pipe % full $[(A/A_{fult})*100\%] = 73.3\%$	
	Fartially Full Pipe Flow Parameters (More Than Half Full)	$r = D/2$ $h = 2r - y$ (hydraulic radius) $R = A/P$ (Manning Equation) $Q = (1.49/n)(A)(R^{2/8})(S^{1/2})$ $V = Q/A$ $P$ $\Theta = 2 \arccos \left(\frac{r - h}{7}\right)$ $A = \pi r^{2} - \frac{s^{2}(\Theta - \sin \theta)}{2}$	Article Weight Stress Edge Contributor Advertise Here Advertise Here ANSI Data Chart ANSI Screw Engineering Slide Chart All units in inches. threads, pipe thread
	Equation used for n/n _{full} : n/n _{full} = 1.25 - (y/D -0.5)*(	$P = 2\pi t - t + 0$ 0.5 (for 0.5 $\leq$ y/D $\leq$ 1)	
	STORM 14 - 48" F DP33	LCP	

## DRAINAGE CRITERIA MANUAL (V. 2)

CULVERTS





Figure CU-9—Inlet Control Nomograph—Example

INT DP33 Que = 115.2 css

	The open channel flow calcula	ator
Select Channel Type: Trapezoid ✓	Rectangle Trapezoid	Triangle
Velocity(V)&Discharge(Q) V	Select unit system: Feet(ft)	
Channel slope: 042	Water depth(y): 1.5 ft	Bottom width(b) 4
Flow velocity <mark>8.2089</mark> ft/s	LeftSlope (Z1): 4 to 1 (H:'	RightSlope (Z2): 4
Flow discharge 123.1328 ft^3/s	Input n value 0.035 or select r	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 16.37	Flow area 15 ft^2	Top width(T) 16 ft
Specific energy 2.55	Froude number 1.49	Flow status Supercritical flow
Critical depth 1.83 ft	Critical slope 0.0177 ft/ft	Velocity head 1.05 ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

SR FILZ TRACT H DP3B Quoo= 115 cds



### DRAINAGE CRITERIA MANUAL (V. 2)

**CULVERTS** 

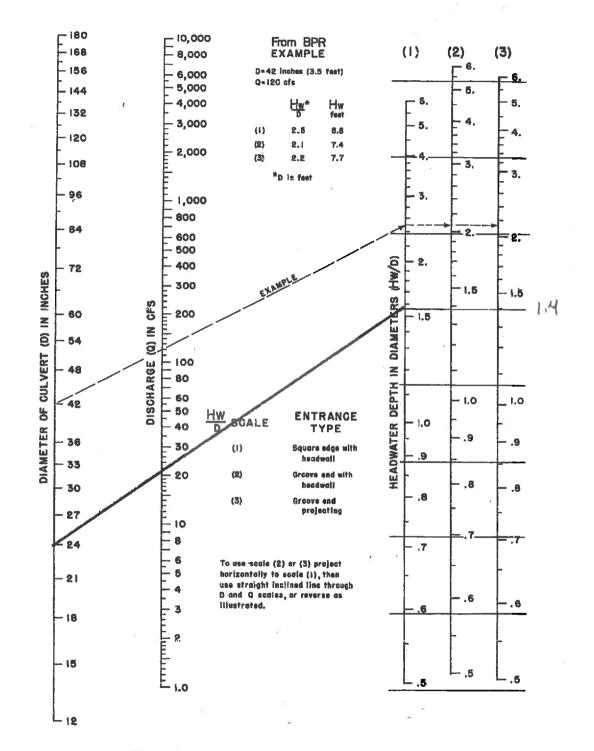



Figure CU-9—Inlet Control Nomograph—Example

Que Zas cts

07/2001 Urban Drainage and Flood Control District

DP56

r	The open channel flow calcula	ator
Select Channel Type: Trapezoid ✓	Rectangle	Triangle
Velocity(V)&Discharge(Q)	Select unit system: Feet(ft) 🗸	
Channel slope: 01 ft/ft	Water depth(y): 1 ft	Bottom width(b) 4
Flow velocity <mark>3.1965</mark> ft/s	LeftSlope (Z1): 4 to 1 (H:'	RightSlope (Z2): 4
Flow discharge <mark>25.5721</mark> ft^3/s	Input n value 0.035 or select r	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 12.25	Flow area 8 ft^2	Top width(T)12 ft
Specific energy 1.16	Froude number 0.69	Flow status Subcritical flow
Critical depth 0.82 ft	Critical slope 0.022 ft/ft	Velocity head 0.16 ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

SR FIL 2 TRACT M

DP 56 Q160= 21085

ENGINEERS EDGE Bolutions By Design	A	oss Comparators Drafting Supplies	
	Partially Full Pipe Flow Calcula		Casting Microfinish Comparator 20 to
		s   ITydraulic and Pneumatic Knowledge Power Equipment	100 microinch
	This engineering calculator determines the Flow calculator can also be used for uniform flow in a considered to be variable, dependent upon the dep	within a partially full pipe using the Manning equation. This pipe, but the Manning roughness coefficient needs to be pth of flow.	Bergister   Login
	Partially Full Pipe	Flow Calculations - U.S. Units	Main Compation
Ve've detected that you're Ising adblocking software		charge, Q, and average velocity, V bes more than half full	<ul> <li><u>Engineering Book Store</u></li> <li><u>Engineering Book Store</u></li> <li>Engineering Forum</li> </ul>
or services.	Instructions: Enter valu	es in blue boxes. Calculations in yellow	> Excel App. Downloads
To learn more about how	Inputs	Calculations	<ul> <li>Online Books &amp; Manua</li> <li>Bagingening News</li> </ul>
you can help Engineers Edge remain a free resource and not see	22	in Pipe Diameter, $D = 3.5$ ft in Pipe Radius, $r = 1.75$ ft	<ul> <li>Engineering Videos</li> <li>Engineering Calculators</li> <li>Engineering Toolbox</li> </ul>
advertising or this message, please visit	(must have $y \ge D/2$ )		<ul> <li>Engineering Jobs</li> <li>GD&amp;T Training</li> </ul>
<u>Member ship</u> .		Circ. Segment Height, <b>h</b> = 0.833 ft	Geometrie Dimensioning Telerancing
	Full Pipe Manning		DEM DEA Training
	roughness, n _{teil} = 0.013 Channel bottom	Central Angle, $q = 2.04$ radians Cross-Sect. Area, $A = 7.87$ ft ²	<ul> <li>Training Online Engineering</li> </ul>
		/ft	• Advertising Center
		Wetted Perimeter, P = 7.4 ft	Print Webpage
	$\frac{\text{Calcutations}}{n/n_{\text{full}}} = \frac{1.1190476}{1.1190476}$	Hydraulic Radius, $\mathbf{R} = 1.06$ ft	· Copyright Notice
	n/n _{full} = [1.1190476] Partially Full Manning	Discharge, Q = 83.70 cfs Ave. Velocity, V = 10.64 ft/sec	· Salaring at stones
	roughness, n = 0.015	10 sec	Submit an
		pipe % full [(A/A _{fail} )*100%] = <u>81.8%</u>	Article
			~ ~
2		r = D/2	
	K b S	h = 2r - y	Become an
	( 10 )	(hydraulic radius)	Engineers Edge
	9	R = A/P	Contributor
		(Manning Equation)	Advertise Here
		$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$	
		V = Q/A P	ANSI Data Chart ANSI Screw Engineering Slide Chart All units in
		$\theta = 2 \arccos\left(\frac{r \cdot h}{r}\right)$	inches. threads, pipe thread
	Partially Full Pipe Flow Parameters (More Than Half Full)		
		$A = \pi r^2 - \frac{r(\theta + \sin \theta)}{2}$	
		$\mathbf{P} = 2\pi \mathbf{r} - \mathbf{r}^* \mathbf{\Theta}$	
	Equation used for $n/n_{full}$ : $n/n_{full} = 1.25 \cdot (y/D - 0.5)$	*0.5 (for $0.5 \le y/D \le 1$ )	
	STORM 15 - 42"	RCP	
	DP38		
	114 2 2		

## DRAINAGE CRITERIA MANUAL (V. 2)

**CULVERTS** 

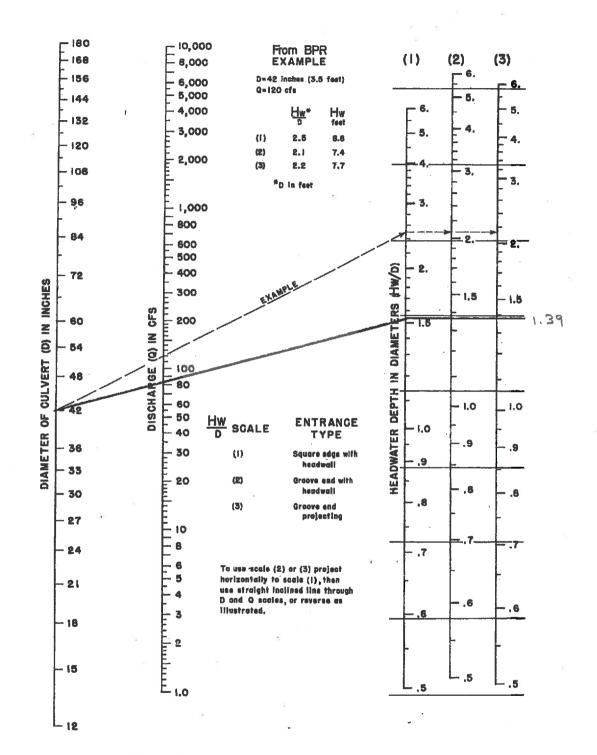
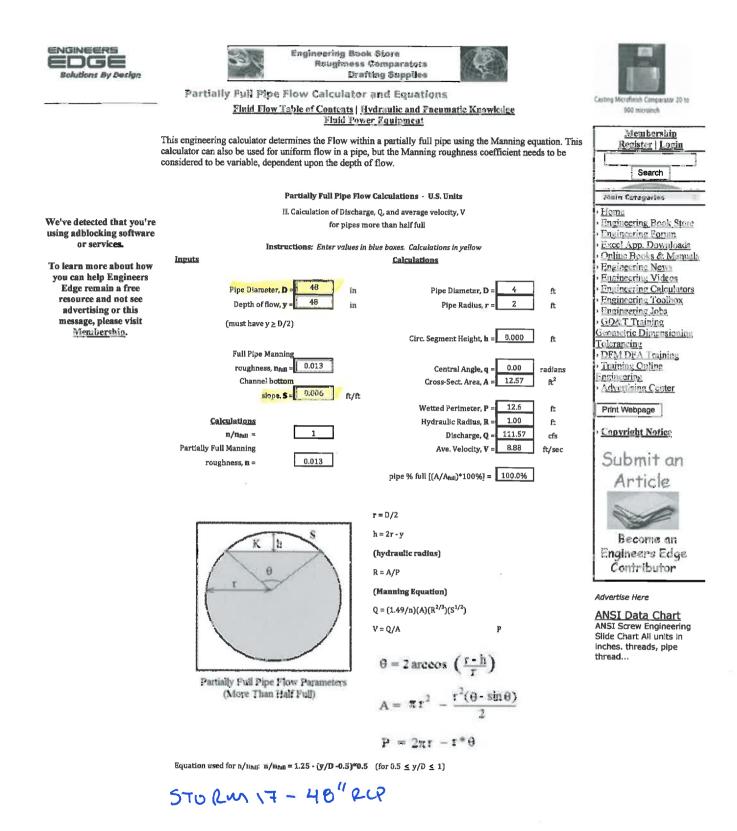
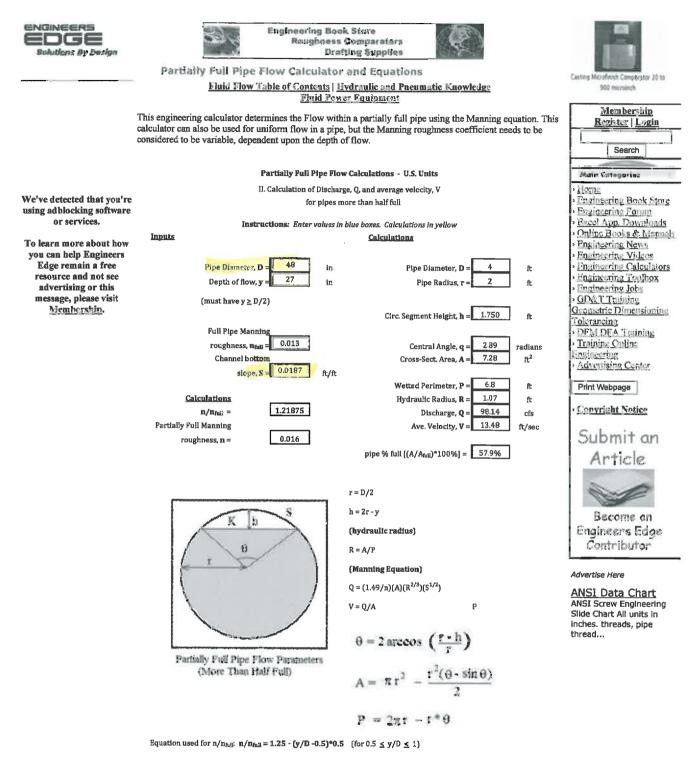



Figure CU-9—Inlet Control Nomograph—Example

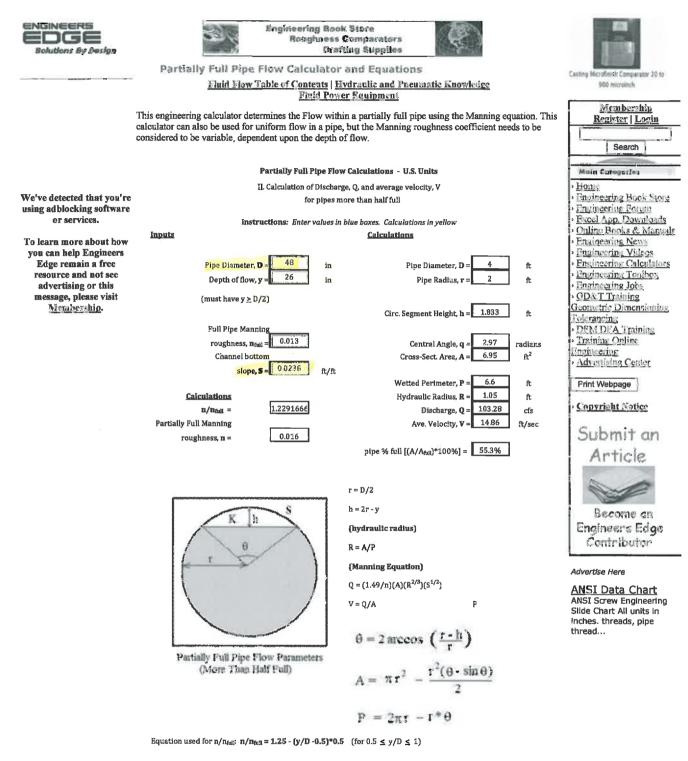
DP38 Que = 81.9 css


07/2001 Urban Drainage and Flood Control District

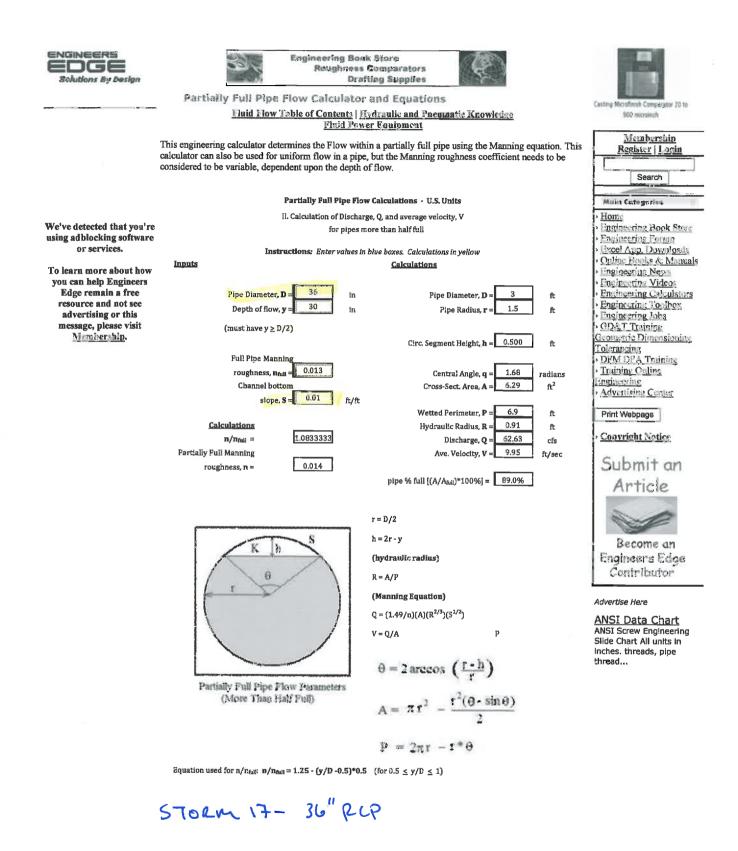

	The open channel flow calculation	ator
Select Channel Type: Trapezoid ✓	Rectangle	z1 z2 Jy Circle
Velocity(V)&Discharge(Q) V	Select unit system: Feet(ft)	
Channel slope: .04 ft/ft	Water depth(y): 1.3 ft	Bottom width(b) 4
Flow velocity 7.3937 ft/s	LeftSlope (Z1): 4 to 1 (H:'	RightSlope (Z2): 4 to 1 (H:V
Flow discharge <mark>88.4286</mark> ft^3/s	Input n value 0.035 or select r	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 14.72	Flow area 11.96 ft^2	Top width(T) 14.4 ft
Specific energy 2.15	Froude number 1.43	Flow status Supercritical flow
Critical depth 1.55 ft	Critical slope 0.0186 ft/ft	Velocity head 0.85 ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

SR FILZ TRACT L


DP38 Q100= 82 cts






STORM 17 - 48" RLP

http://www.engineersedge.com/fluid_flow/partially_full_pipe_flow_calculation/partiallyfull... 5/5/2017



570RM 17 - 48" RCP



ENGINEERS EDGE Solutions By Design	Dr	is Comparators afiling Supplies	
	Partially Full Pipe Flow Calculate		Casting Microfinish Comparator 20 to
		<u>Itydraulic and Fneumatic Knowledge</u> ower Fourpment	900 microinch
	This engineering calculator determines the Flow w calculator can also be used for uniform flow in a pi considered to be variable, dependent upon the dept	ithin a partially full pipe using the Manning equation. This ipe, but the Manning roughness coefficient needs to be h of flow.	Membershin Resister   Login
	<b>Fartially Full Pipe F</b>	low Calculations - U.S. Units	Main Caregories
	II. Calculation of Disch	arge, Q, and average velocity, V	• Home
We've detected that you're using adblocking software	for pipe.	s more than half full	<ul> <li>Engineering Book Store</li> <li>Engineering Forum</li> </ul>
or services.	Instructions: Enter values	s in blue boxes. Calculations in yellow	· Excel App. Downloads
To learn more about how	Inputs	Calculations	<ul> <li>Orling, Books &amp; Manuals</li> <li>Engineering, News</li> </ul>
you can help Engineers Edge remain a free resource and not see advertising or this message, please visit Membership.	Pipe Diameter, D = 36 in Depth of flow, y = 24 in (must have y ≥ D/2)	Pipe Radius, r = 1.5 ft	<ul> <li>Engineering Videos</li> <li>Engineering Calculators</li> <li>Engineering Calculators</li> <li>Engineering Loba</li> <li>GD&amp;T Training</li> <li>Geouctric Dimensioning</li> </ul>
		Circ. Segment Height, h = 1.000 ft	Telerancing
	Full Pipe Manning roughness, n _{Full} = 0.013 Channel bottom slope, S = 0.01		<ul> <li>DFM DPA Training</li> <li>Training Online</li> <li>Unprusering</li> <li>Advertiging Conter</li> </ul>
		Wetted Perimeter, P = 5.7 ft	Print Webpage
	<u>Calculations</u> n/n _{ftul} = <u>1.1666666</u>	Hydraulic Radius, R = 0.87 ft Discharge, Q = 44.94 cfs	, Copyright Notice
	Partially Full Manning	Ave. Velocity, $V = 8.98$ ft/sec	
	roughness, n = 0.015		Submit an
		pipe % full [(A/A _{full} )*100%] =70.8%	Article
		r = D/2	Article
	Kh	h = 2r - y	Become an
	K h	(hydraulic radius)	Engineers Edge
	θ	R = A/P	Contributor
	T	(Manning Equation)	
		$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$	Advertise Here
		V = Q/A β	ANSI Data Chart ANSI Screw Engineering Silde Chart All units in Inches. threads, pipe
		$\theta = 2 \arccos\left(\frac{\mathbf{r} \cdot \mathbf{h}}{r}\right)$	thread
	Contails Colling Theory Comments	$0 = 2 \arccos\left(\frac{1}{r}\right)$	
	Partially Full Pipe Flow Parameters (Move Than Half Full)	$A = \pi r^2 - \frac{r^2(\theta \cdot \sin \theta)}{2}$	
		$\mathbf{P} = 2\pi\mathbf{r} - \mathbf{r}^* \mathbf{\theta}$	
	Equation used for n/n _{full} : <b>n/n_{full} = 1.25 - (y/D -0.5)*</b> (		
	STORM 17 LATZ-	36" RUP	
	DP29		

### DRAINAGE CRITERIA MANUAL (V. 2)

**CULVERTS** 

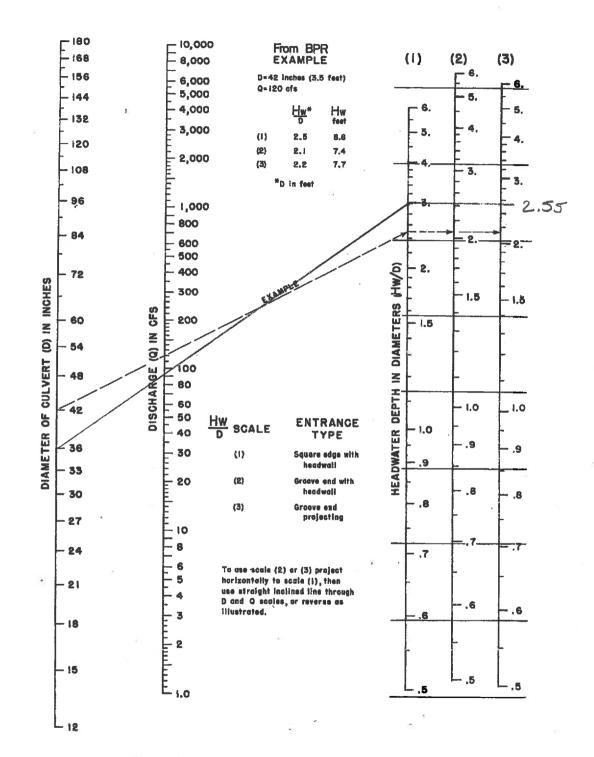



Figure CU-9-Inlet Control Nomograph-Example

INT DP 29 000= 97.8050

,	The open channel flow calcula	ator
Select Channel Type: Trapezoid ✓	Rectangle Trapezoid	Titangle
Velocity(V)&Discharge(Q)	Select unit system: Feet(ft) V	
Channel slope: 0632 ft/ft	Water depth(y): 1.25 ft	Bottom width(b) 4
Flow velocity <mark>9.0928</mark> ft/s	LeftSlope (Z1): 4 to 1 (H:'	RightSlope (Z2): 4 to 1 (H:V
Flow discharge 102.2937 ft^3/s	Input n value 0.035 or select r	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 14.31	Flow area 11.25 ft^2	Top width(T) 14 ft
Specific energy 2.53	Froude number 1.79	Flow status Supercritical flow
Critical depth 1.67 ft	Critical slope 0.0181 ft/ft	Velocity head 1.28 ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

SR FILZ TRACT I DP29 Quer 98 cfs



# Specification Sheet – EroNet[™] SC150° Erosion Control Blanket

### DESCRIPTION

The extended-term double net erosion control blanket shall be a machine-produced mat of 70% agricultural straw and 30% coconut fiber with a functional longevity of up to 24 months. (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographical location, and elevation). The blanket shall be of consistent thickness with the straw and coconut evenly distributed over the entire area of the mat. The blanket shall be covered on the top side with a heavyweight photodegradable polypropylene netting having ultraviolet additives to delay breakdown and an approximate 0.63 x 0.63 in (1.59 x 1.59 cm) mesh, and on the bottom side with a lightweight photodegradable polypropylene netting with an approximate 0.50 x 0.50 (1.27 x 1.27 cm) mesh. The blanket shall be sewn together on 1.50 inch (3.81 cm) centers with degradable thread. The blanket shall be manufactured with a colored thread stitched along both outer edges (approximately 2-5 inches [5-12.5 cm] from the edge) as an overlap guide for adjacent mats.

The SC150 shall meet Type 3.B specification requirements established by the Erosion Control Technology Council (ECTC) and Federal Highway Administration's (FHWA) FP-03 Section 713.17

### **Material Content**

Matrix	70% Straw Fiber 30% Coconut Fiber	0.35 lbs/sq yd (0.19 kg/sm) 0.15 lbs/sq yd (0.08 kg/sm)
Netting	Top: Heavyweight photodegradable with UV additives	∃ lbs/1000 sq ft (1.47 kg/100 sm)
	Bottom: lighweight photodegradable	1.5 lb/1000 sq ft (0.73 kg/100 sm)
Thread	Degradable	

Martin Contractor	Standa	ard Roll Sizes	
Width	6.67 ft (2.03 m)	8 ft (2.4 m)	16.0 ft (4.87 m)
Length	108 ft (32.92 m)	112 ft (34.14 m)	108 ft (32.92 m)
Weight ± 10%	44 lbs (19.95 kg)	55 lbs (24.95 kg)	105.6 lbs (47.9 kg)
Area	80 sq yd (66.9 sm)	100 sq yd (83.61 sm)	192 sq yd (165.6 sm)

lensar

**NORTH AMERICAN GREEN®** 

**Tensar International Corporation** 

2500 Northwinds Parkway

Alpharetta, GA 30009

Suite 500

800-TENSAR-1 tensarcorp.com

Index Property	Test Method	Typical
Thickness	A5TM D6525	0.35 in. (8.89 mm)
Resiliency	ECTC Guidelines	75%
Water Absorbency	ASTM D1117	342%
Mass/Unit Area	ASTM D6475	7.87 oz/sy (267.6 g/sm)
Swell	ECTC Guidelines	30%
Smolder Resistance	ECTC Guidelines	Yes
Stiffness	ASTM D1388	1.11 oz-in
Light Penetration	ASTM D6567	6.2%
Tensile Strength - MD	ASTM D6818	362.4 lbs/ft
		(5.37 kN/m)
Eiongation - MD	ASTM D6818	29.4%
Tensile Strength - TD	ASTM D6818	136.8 lbs/ft
Elongation - TD	A CTLA Dense	(2.03 kN/m)
	ASTM D6818	27.6%
Biomass Improvement	A5TM D7322	481%

# Design Permissible Shear Stress

Unvegetated Shear Stress

**Unvegetated Velocity** 

2.00 psf (96 Pa) 8.0 fps (2.44 m/s)

Slope Design	Data: C Factors
	Slope Gradients (S)

	evene evenence (2)		
Slope Length (L)	≤ 3:1	3:1 - 2:1	≥ 2:1
≤ 20 ft (6 m)	0.001	0.048	0.100
20-50 ft	0.051	0.079	0.145
≥ 50 ft (15.2 m)	0.10	0.110	0.190
NTPEP Large-Scale Slope			

ASTM D6459 - C-factor = 0.031

Roughness Coefficients - Unveg.		
Flow Depth Manning's n		
≤ 0.50 ft (0.15 m)	0.050	
0.50 - 2.0 ft	0.050-0.018	
≥ 2.0 ft (0.60 m)	0.018	

Tensar International Corporation warrants that at the time of delivery the product furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby executed. If the product does not meet specifications on this page and Tensar is notified prior to installation, Tensar will replace the product at no cost to the customer. This product specification supersedes all prior specifications for the product described above and is not applicable to any products shipped prior to january 1, 2012.

©2013, Tensar International Corporation



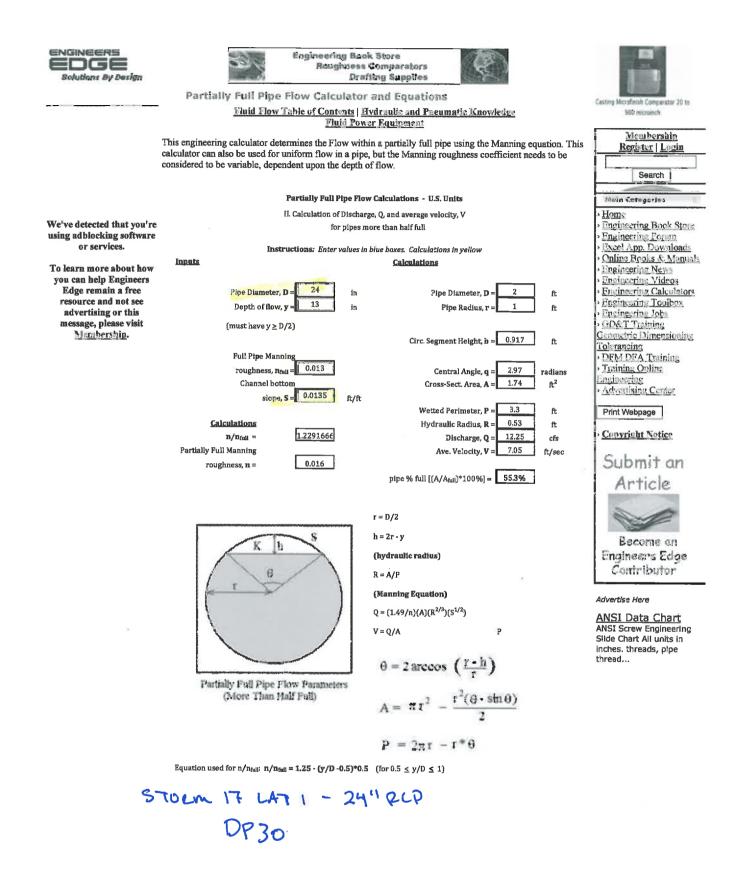
# Specification Sheet - VMax® SC250® Turf Reinforcement Mat

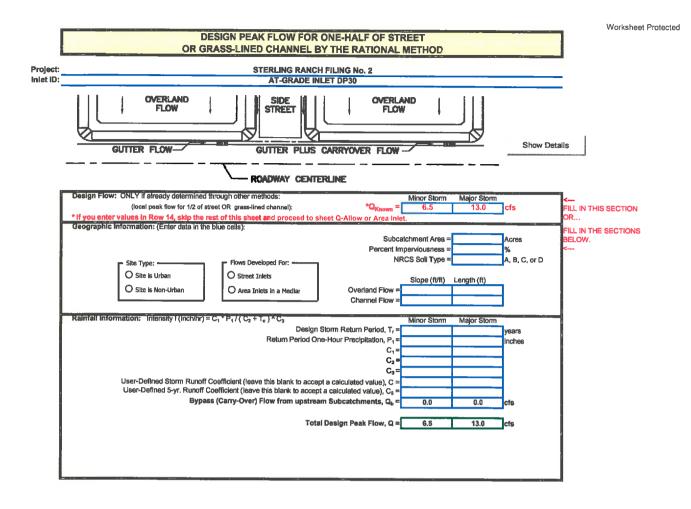
### DESCRIPTION

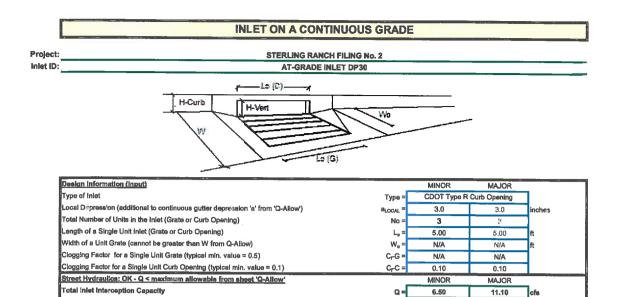
The composite turf reinforcement mat (C-TRM) shall be a machine-produced mat of 70% straw and 30% coconut fiber matrix incorporated into permanent three-dimensional turf reinforcement matting. The matrix shall be evenly distributed across the entire width of the matting and stitch bonded between a heavy duty UV stabilized nettings with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings, an ultra heavy UV stabilized, dramatically corrugated (crimped) intermediate netting with 0.5 x 0.5 inch (1.27 x 1.27 cm) openings, and covered by an heavy duty UV stabilized nettings with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings. The middle corrugated netting shall form prominent closely spaced ridges across the entire width of the mat. The three nettings shall be stitched together on 1.50 inch (3.81cm) centers with UV stabilized polypropylene thread to form permanent three-dimensional turf reinforcement matting. All mats shall be manufactured with a colored thread stitched along both outer edges as an overlap guide for adjacent mats.

The SC250 shall meet Type 5A, 5B, and 5C specification requirements established by the Erosion Control Technology Council (ECTC) and Federal Highway Administration's (FHWA) FP-03 Section 713.18

	Material Content	
Matrix	70% Straw Fiber 30% Coconut Fiber	0.35 lb/sq yd (0.19 kg/sm) 0.15 lbs/sq yd
	Top and Bottom, UV-Stabilized	(0.08 kg/sm) 5 lb/1000 sq ft (2.44 kg/100 sm)
Netting	Polypropylene Middle, Corrugated UV-Stabilized Polypropylene	(2.44 kg/100 sm) 24 !b/1000 sf (11.7 kg/100 sm)
Thread	Polypropylene, UV Stable	- and


S	itandard Roll Sizes
Width	6.5 ft (2.0 m)
Length	55.5 ft (16.9 m)
Weight ± 10%	34 lbs (15.42 kg)
Area	40 sq yd (33.4 sm)


Index Property	Test Method	Typical
Thickness	ASTM 06525	0.62 in. (15.75 mm)
Resiliency	ASTM 6524	95.2%
Density	ASTM D792	0.891 g/cm³
Mass/Unit Area	ASTM 6566	16.13 oz/sy (548 g/sm)
UV Stability	ASTM D4355/ 1000 HR	100%
Porosity	ECTC Guidelines	99%
Stiffness	ASTM D1388	222.65 oz-in.
Light Penetration	ASTM D6567	4.1%
Tensile Strength - MD	ASTM D6818	709 lbs/ft (10.51 kN/m)
Elongation – MD	ASTM D6818	23.9%
Tensile Strength - TD	ASTM D6818	712 lbs/ft (10.56 kN/m)
Elongation - TD	ASTM D6818	36.9%
Biomass Improvement	ASTM 07322	441%


### **Design Permissible Shear Stress**

	Short Duration	Long Duration
Phase 1: Unvegetated	3.0 psf (144 Pa)	2.5 psf (120 Pa)
Phase 2: Partially Veg.	8.0 psf (383 Pa)	8.0 psf (383 Pa)
Phase 3: Fully Veg.	10.0 psf (480 Pa)	8.0 psf (383 Pa)
Unvegetated Velocity	9.5 fp	s (2.9 m/s)
Vegetated Velocity	15 fps	; (4.6 m/s)

### Partially Full Pipe Flow Calculator and Equations - Engineers Edge







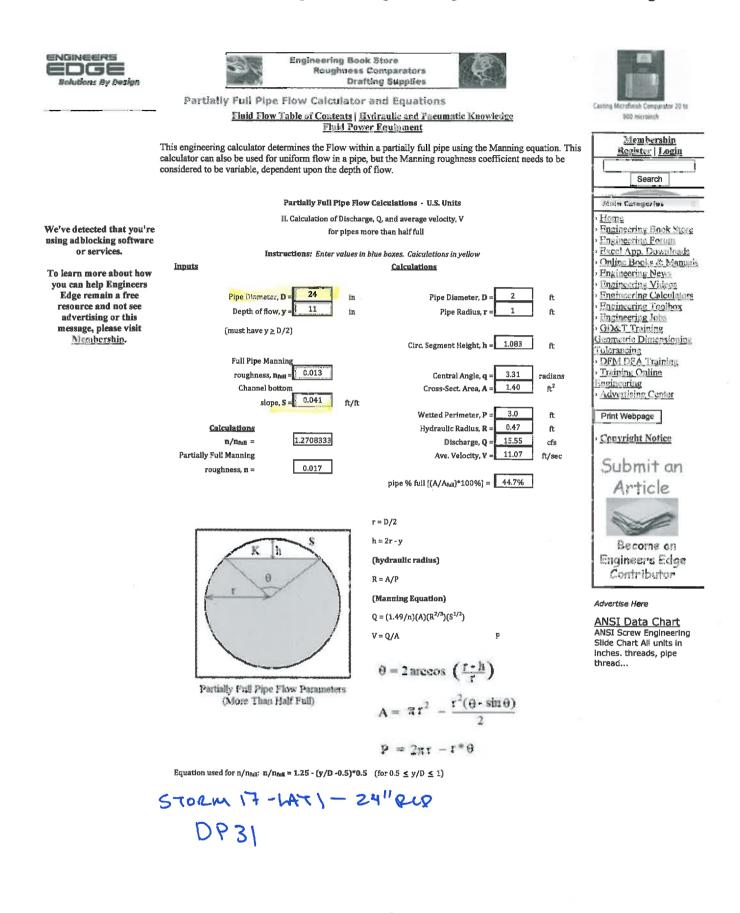
Q_b

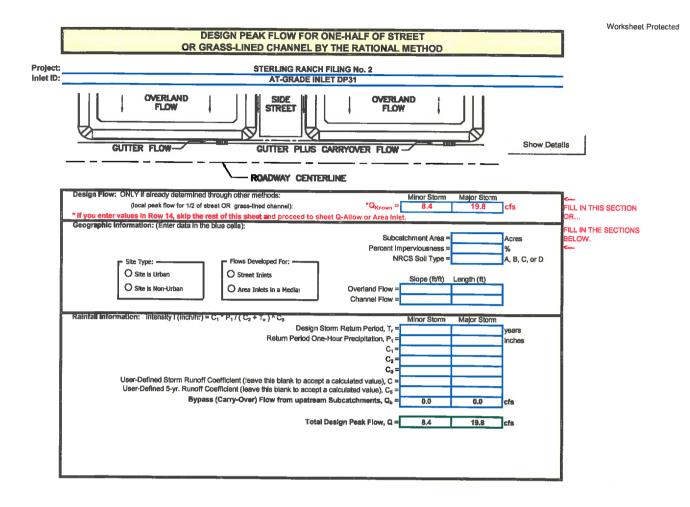
C%

0.0

100

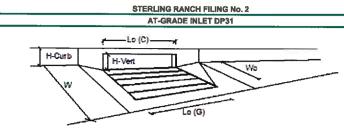
cfs


1.9


85

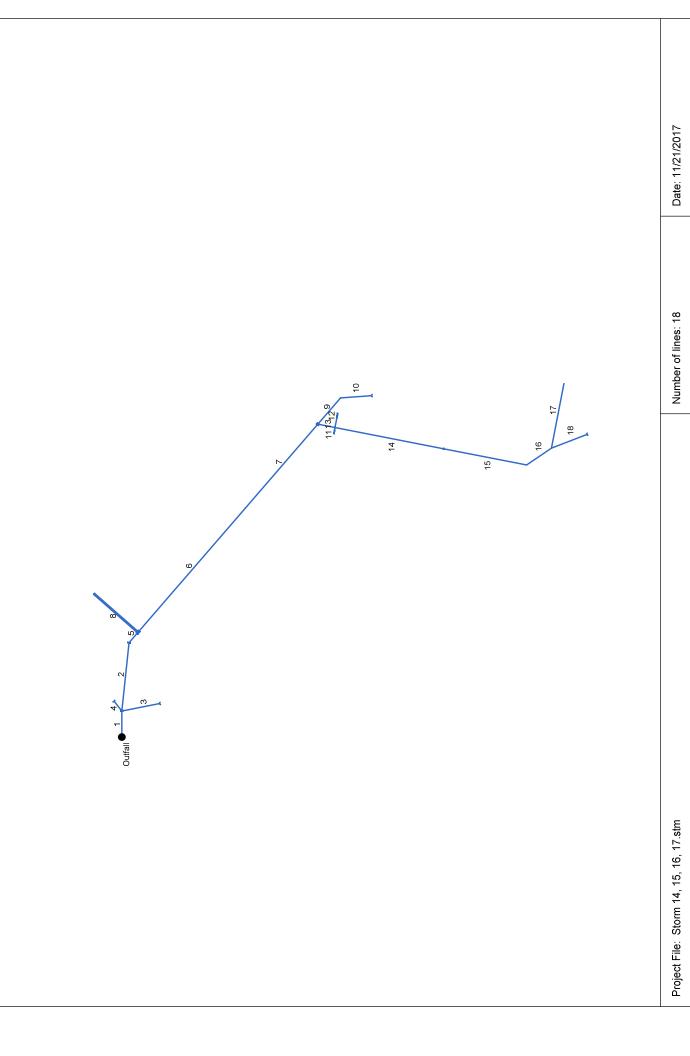
Total inlet Carry-Over Flow (flow bypassing inlet)

Capture Percentage = Q_e/Q_o =


### Partially Full Pipe Flow Calculator and Equations - Engineers Edge






### **INLET ON A CONTINUOUS GRADE**

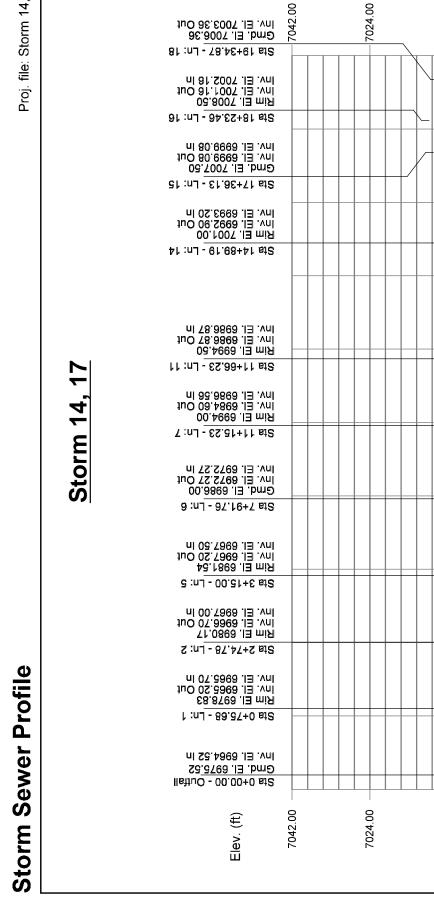




Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Туре =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	BLOCAL =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L, =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W., =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C ₇ -G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _r C =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'	_	MINOR	MAJOR	
Total Infet Interception Capacity	Q =	8.18	14.15	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.2	5.7	cfs
Capture Percentage = Q_/Q_ =	C% =	97	71	%






Storm Sewers v10.50

Report
Summary
Sewer
torm

Storn	Storm Sewer Summary Report	ary	Repor	÷										Page 1
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ff)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
Ţ	PR 58, Strom 14	481.0	84	Cir	75.680	6964.52	6965.20	0.899	6969.70	6970.94	n/a	6976.27 i	End	Manhole
7	PR 57.1, Storm 14	384.0	78	Cir	199.100	6965.70	6966.70	0.502	6976.27*	6977.18*	0.10	6977.29	~	Manhole
т	PR 44, Storm 15	81.90	42	Cir	112.780	6968.70	6969.87	1.037	6976.27*	6976.91*	0.00	6976.91	~	OpenHeadwall
4	PR 57A, Storm 15	20.50	24	Cir	36.000	6970.20	6975.01	13.360	6976.27	6976.63	n/a	6978.10 i	~	OpenHeadwall
S	PR 57.2, Storm 14	384.0	78	Cir	40.220	6967.00	6967.20	0.498	6977.29*	6977.47*	0.52	66.7769	N	Manhole
9	PR 39.1, Strom 14	232.0	99	Cir	476.760	6967.50	6972.27	1.001	6978.59*	6980.53*	0.44	6980.98	5	None
7	PR 39.2, Storm 14	232.0	99	Cir	323.470	6972.27	6984.60	3.812	6980.98	6988.86	n/a	6992.32 i	9	Manhole
Ø	PR 56B, Storm 16	175.3	42	Cir(2b)	169.770	6967.50	6968.35	0.501	6978.78*	6979.88*	0.26	6980.14	£	Manhole
თ	PR38.1, Storm 14	115.2	48	Cir	101.190	6986.10	6987.52	1.403	6992.32*	6992.88*	0.39	6993.27	7	None
10	PR38.2, Storm 14	115.2	48	Cir	91.270	6987.52	6988.80	1.402	6993.27*	6993.77*	n/a	6994.20 i	6	OpenHeadwall
11	PR 35, Storm 17	117.8	48	Cir	51.000	6986.56	6986.87	0.608	6992.32*	6992.62*	0.41	6993.03	7	Manhole
12	PR 34A, Storm 17 LAT_1	11.10	24	Cir	35.380	6989.37	6989.84	1.328	6994.20*	6994.27*	0.24	6994.51	1	Curb-Horiz
13	PR 34B, Storm 17 LAT_1	14.20	24	Cir	11.450	6989.37	6989.84	4.102	6994.08*	6994.11*	0.40	6994.51	1	Curb-Horiz
14	PR 34.1, Storm 17	97.80	48	Cir	322.960	6986.87	6992.90	1.867	6993.45	6995.90	n/a	6998.20 i	1	Manhole
15	PR 34.2, Storm 17	97.80	48	Cir	246.940	6993.20	6999.08	2.381	6998.20	7002.08	0.51	7002.08	14	None
16	PR 34.3, Storm 17	97.80	48	Cir	87.330	6999.08	7001.16	2.382	7002.59	7004.16	n/a	7006.46 i	15	Manhole
17	PR32, Storm 17	60.00	36	Cir	190.580	7002.16	7004.06	0.997	7006.46*	7007.77*	0.00	7007.77	16	None
18	PR 33, Storm 17 LAT_2	42.00	36	Cir	111.410	7002.16	7003.36	1.077	7006.46*	7006.83*	0.16	7007.00	16	OpenHeadwall
Storm 14, 15	4, 15								Number of lines: 18	lines: 18		Run	Run Date: 11/21/2017	/2017

Storm Sewers v10.50

NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; i - Inlet control.



6952.00

2000

800

1600

1400

1200

1000

800

600

400 ВG

200

0

6952.00

БH

Reach (ft)

@ 3.81%

323.470Lf - 66

6970.00

111.410L1-36⁰@ 1.08%

++

87.330Lf - 48" @ 2.38%

246.940Lf - 48" (2b) @ 2.38%

322.960Lf - 48" @ 1.87%

I.000Lf - 48" 👜 0.61%

100%

476.760Lf - 66"

6970.00

6988.00

7006.00

40.220Lf - 78" @ 0.50%

199.100Lf - 78" @ 0.50%

@ 0:90%

- 84

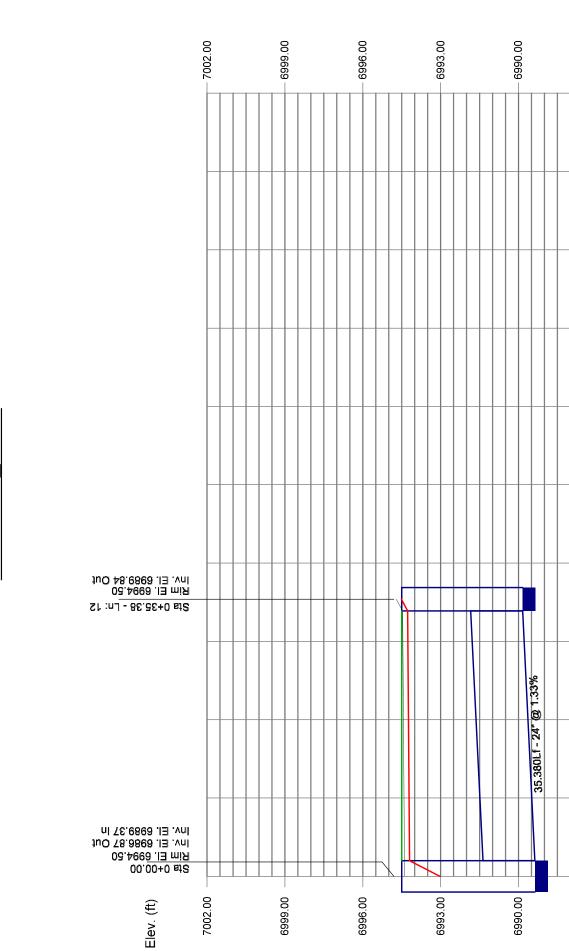
680Lf 2

7006.00

Storm Sewers

6987.00

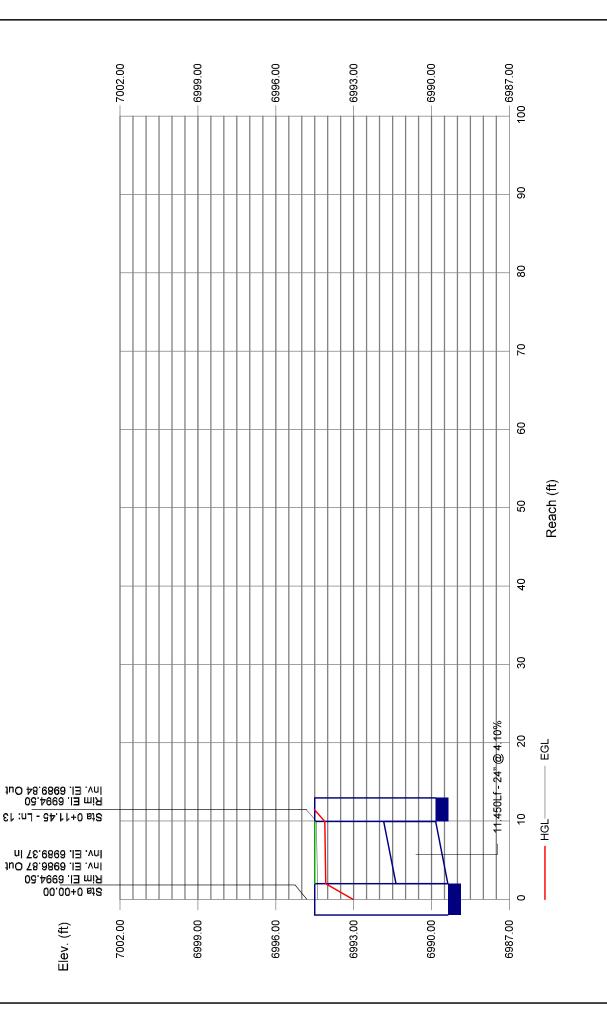
EGL


6987.00

ЧGГ

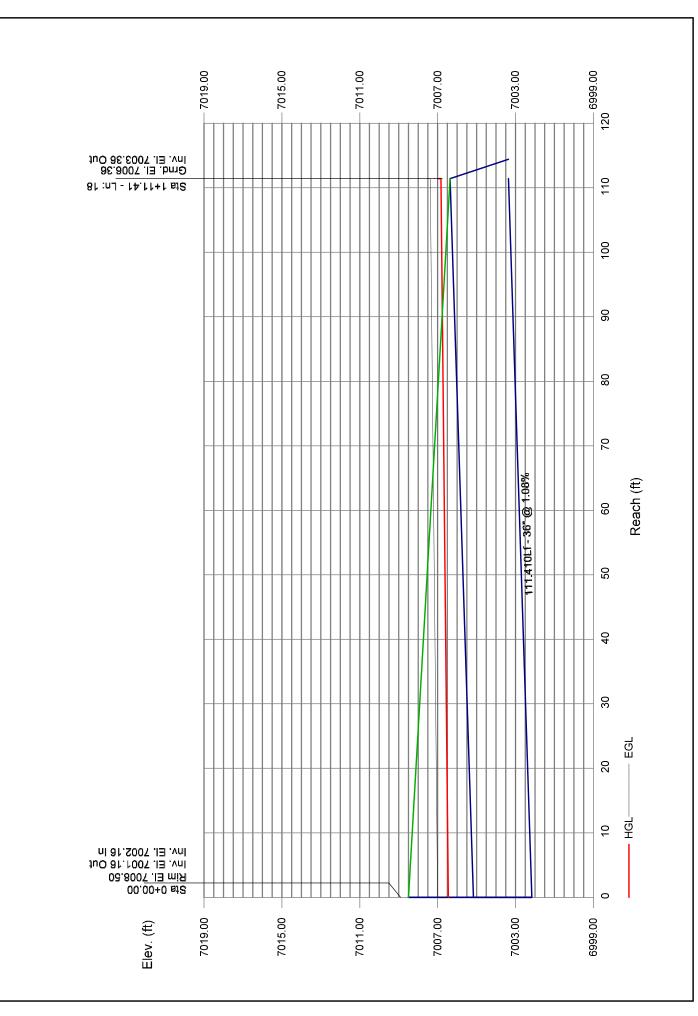
Reach (ft)





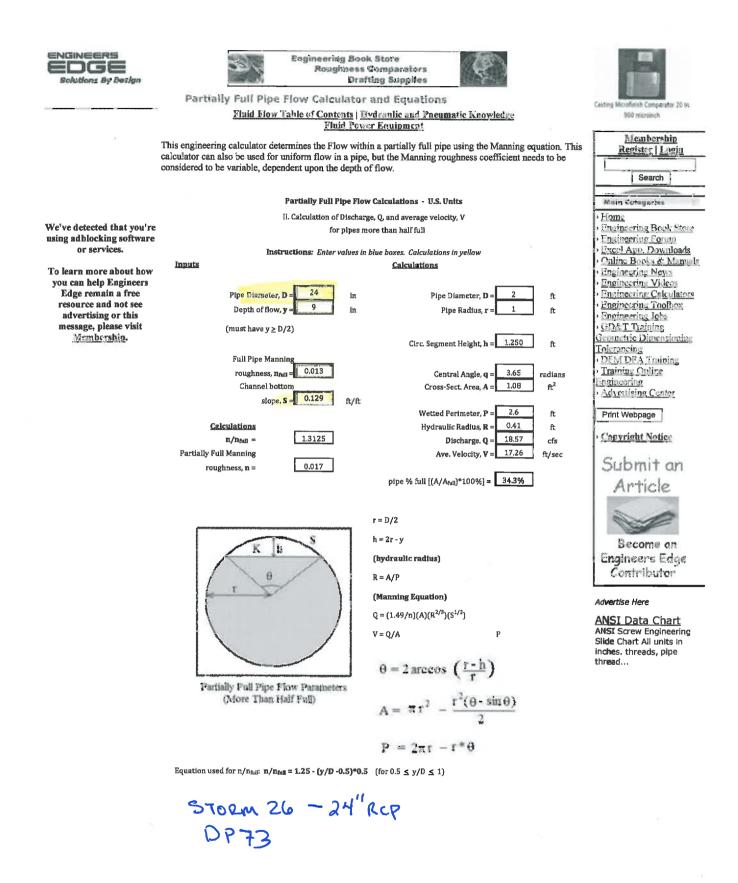



Proj. file: Storm 14, 15, 16, 17.stm




# Storm 17_Lat 1




**Storm Sewer Profile** 

# Storm 17_Lat 2



Storm Sewers

### Partially Full Pipe Flow Calculator and Equations - Engineers Edge

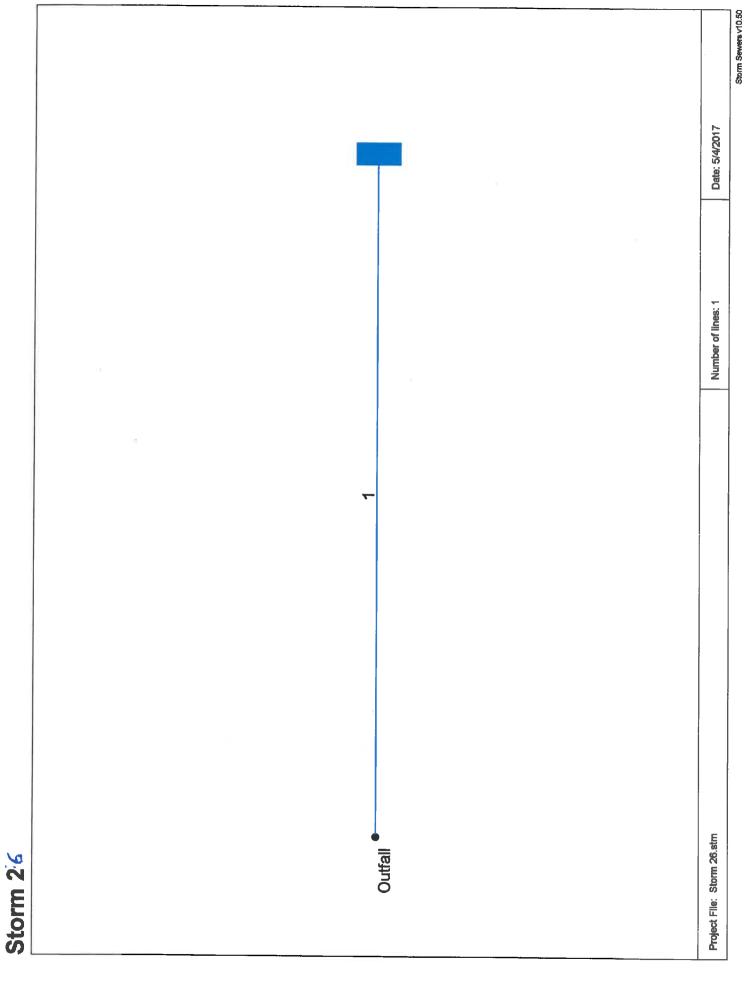


1.7

# DP 73 2.9' × 5.7' TYPE D CDOT AREA TALET

-

width	2.91	area	16.4997	open area	x 70%	
length	5.67	blockage	0.5			
perimeter	17.16	blockage	4	avail perm		
				Orifice	Weir	
29.5	0			C	0	
29.625	0.125			9.8309	1.802946	
29.75	0.25			13.90299	5.0995	
29.875	0.375			17.02762	9.36838	
30	0.5			19.6618	14.42356	(100 = 
30.125	0.625			21.98256	20.15754	1000
30.25	0.75			24.08069	26.49778	
30.375	0.875			<mark>26.01012</mark>	33.39102	
30.5	1			27.80598	40.796	
30.625	1.125			29.4927	48.67953	
30.75	1.25			31.08804	57.01414	
30.875	1.375			32.60541	65.77663	
31	1.5			34.05524	74.94704	
31.125	1.625			<mark>35.44581</mark>	84.50796	
31. <b>25</b>	1.75			36. <b>78386</b>	94.44406	
31.375	1.875			38.07491	104.7417	
31.5	2			39.3236	115.3885	
31.625	2.125			40.53384	126.3735	
31.75	2.25			41.70 <b>89</b> 8	137.6865	
31.875	2.375			42.8519	149.3183	
32	2.5			<mark>43.96512</mark>	161.2603	
32.125	2.625			<mark>45.05084</mark>	173.5048	
32.25	2.75			<mark>46.11101</mark>	186.0444	
32.375	2.875			47.14734	198.8723	
32.5	3			48.16138	211.9822	


]	The open channel flow calcula	itor
Select Channel Type: Triangle ✓	Rectangle	Triangle
Velocity(V)&Discharge(Q) V	elect unit system: Feet(ft) V	
Channel slope: 0.04 ft/ft	Water depth(y): 1.1 ft	Bottom W(b) 0 ft
Flow velocity <mark>5.5035</mark> ft/s	LeftSlope (Z1): 3 to 1 (H:'	RightSlope (Z2): 3 to 1 (H:V
Flow discharge <mark>19.9776</mark> ft^3/s	Input n value 0.035 or select r	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 6.96	Flow area 3.63 ft^2	Top width(T)6.6 ft
Specific energy 1.57 ft	Froude number 1.31	Flow status Supercritical flow
Critical depth 1.22 ft	Critical slope 0.0225 ft/ft	Velocity head 0.47 ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

SR FIL Z SWALE / AREA INUST WEST OF VOLUMER/MARKSHEFPEL INTERSECTION

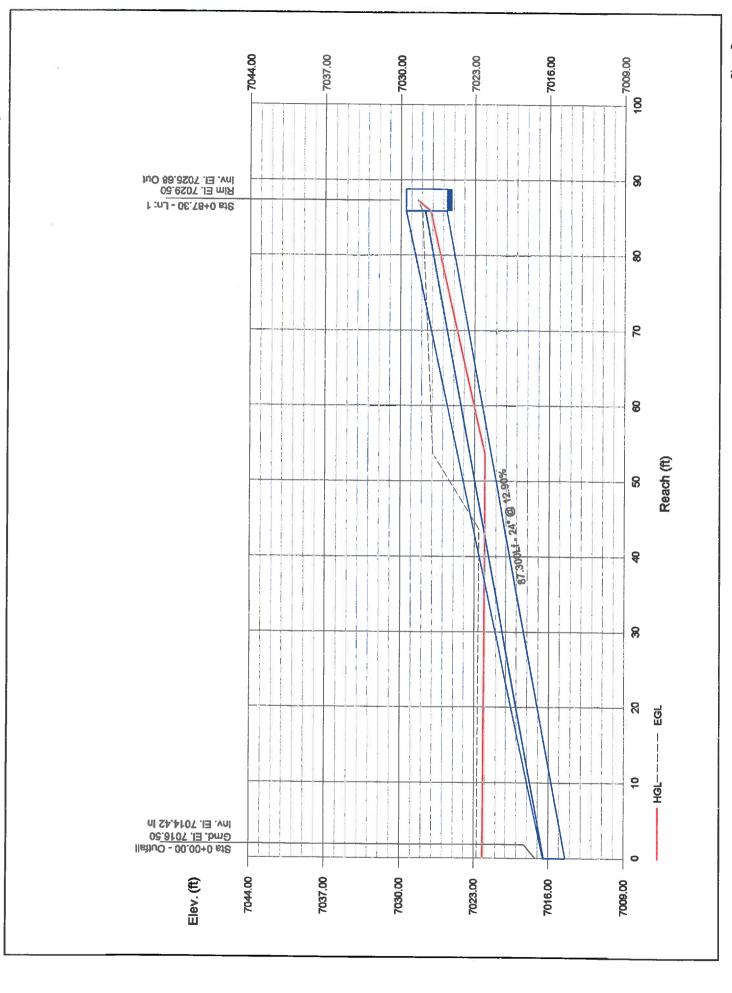
DP 73 Quoo=18ds





a ui 1															r=
		riow (ciis)	(in) (in)	shape	(it) (it)	EL Dn (11)	linvert EL Up (ft)	Line Slope (%)	HGL (rt)	E 40	Minor loss (ft)	HGL Junct	Dns Line No.	Junction Type	
	PR 76.1, Storm 26	18.00	24	ci	87.300	7014.42	7025.68	12.898	7022.21	7027.21	n/a	7028.42 i	End	DropGrate	
													2		
Storm 22				-					Number of lines: 1	nes: 1		Run Di	Run Date: 5/4/2017	-	
10	NOTES: Return period = 100 Yrs. ; i - Inlet control.	ontrol.										_			

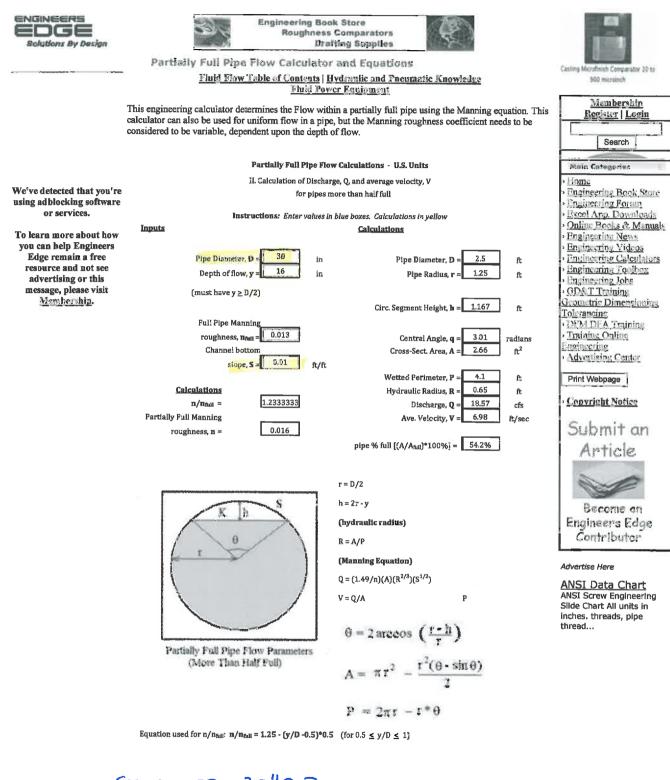
Storm Severs v10.50


You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

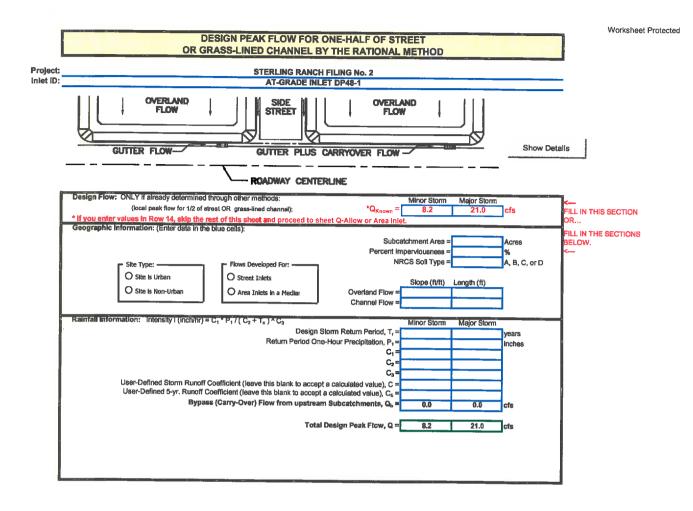
Storm Sewer Summary Report

ļ

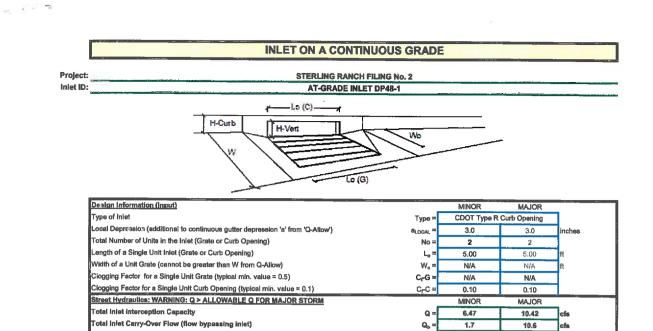
t S Page 1


Storm Severs




Proj. file: Storm 26.stm

Storm Sewer Profile


### Partially Full Pipe Flow Calculator and Equations - Engineers Edge

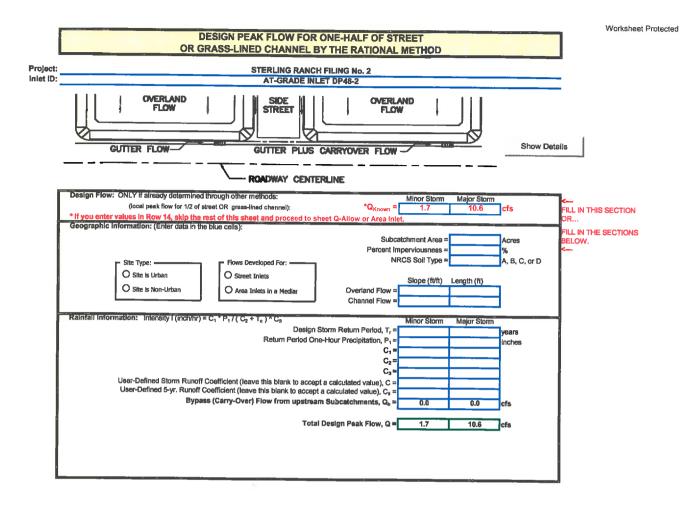


STORM 22- 30"RUP DP48

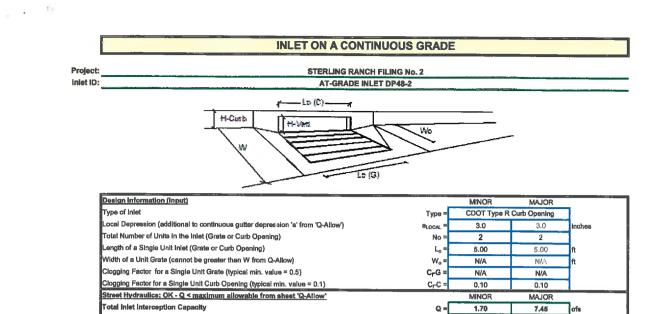


6 . 3




C% -

79


50

%

Capture Percentage = Q_/Q_ =



1



Q_b

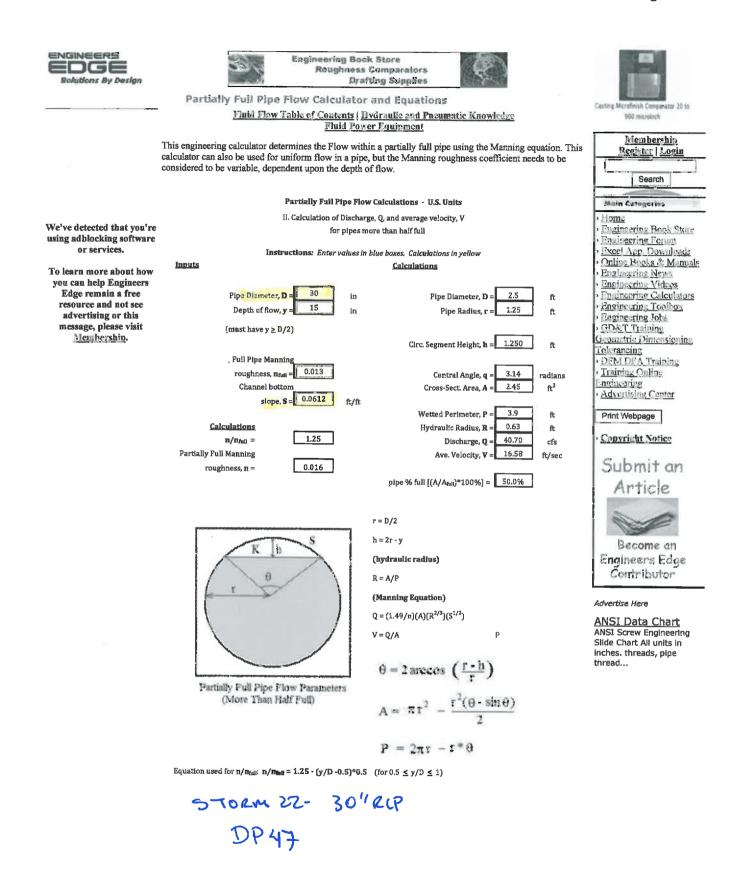
C%

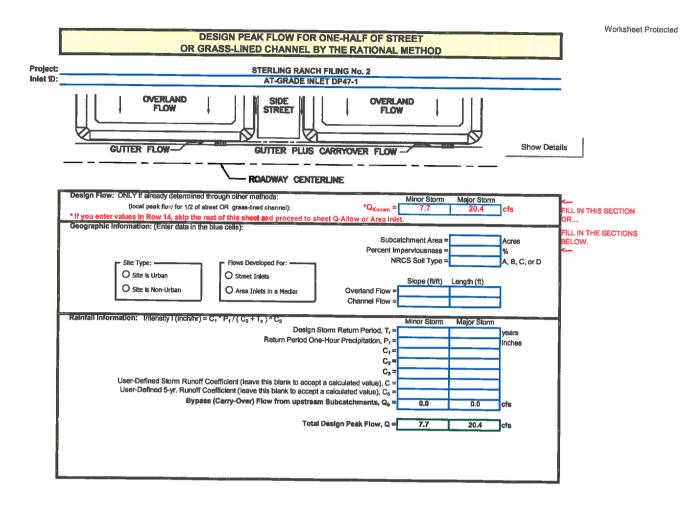
0.0

100

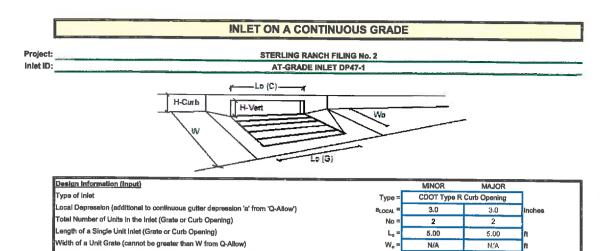
3.2

70


cfa


%

Total Inlet Carry-Over Flow (flow bypassing inlet)


Capture Percentage = Q_/Q_ =

### Partially Full Pipe Flow Calculator and Equations - Engineers Edge





. 14



C_rG =

C_FC =

Q=

Qb

С%

N/A

0.10

MINOR

6.24

1.5

81

N/A

0.10

MAJOR

10.28

10.1

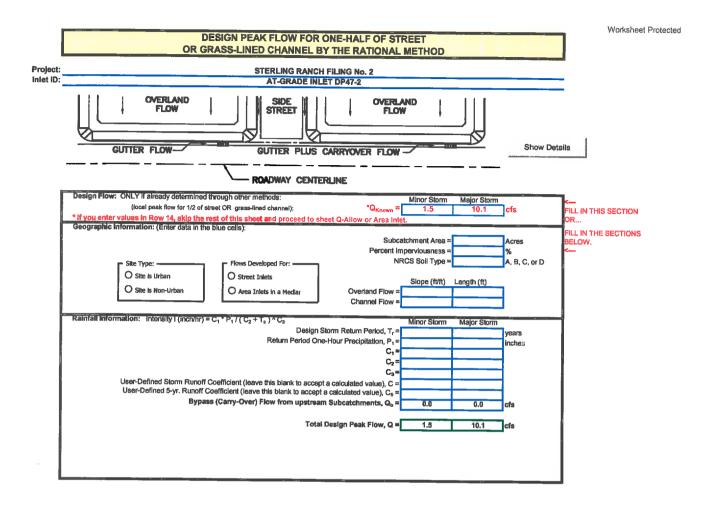
50

cfs

cfs

%

Clogging Factor for a Single Unit Grate (typical min. value = 0.5)


Total inlet Carry-Over Flow (flow bypassing inlet)

Total Inlet Interception Capacity


Capture Percentage = Q_/Q_ =

Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)

Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM



a na 1540



0.10

MAJOR

7.26

2.8

72

 $\bm{Q}_{b}$ 

C%

0.0

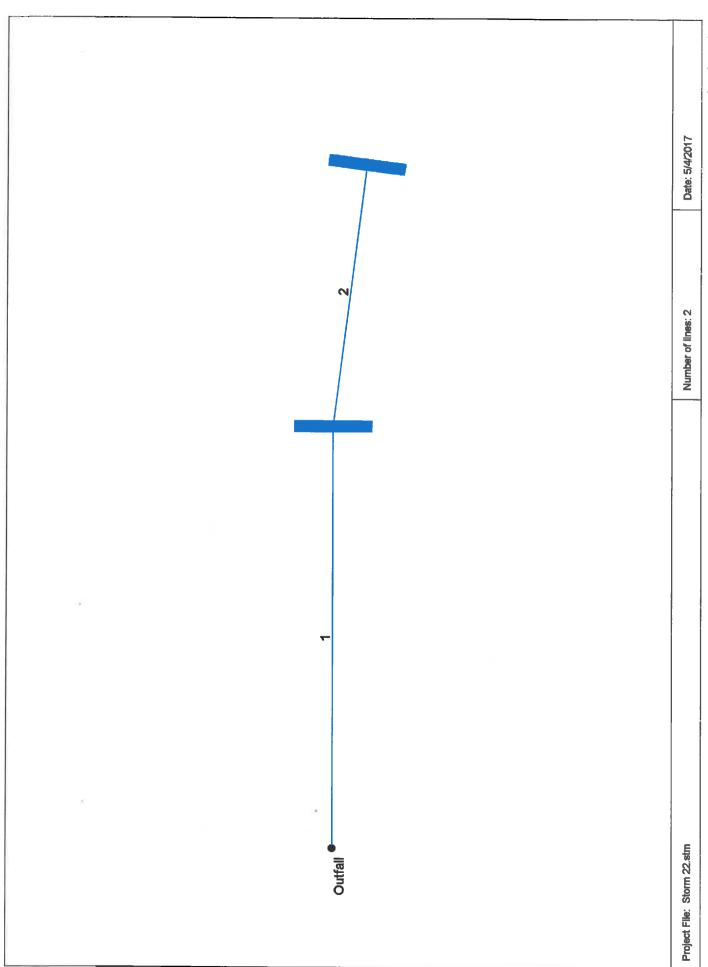
100

cfs

cfs

%

Clogging Factor for a Single Unit Grate (typical min. value = 0.5) N/A CrG = Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow' CrC = 0.10 MINOR Total Inlet Interception Capacity 1.50 Q= Total Inlet Carry-Over Flow (flow bypassing Inlet)


Capture Percentage = Q_e/Q_e =

# Dp 47

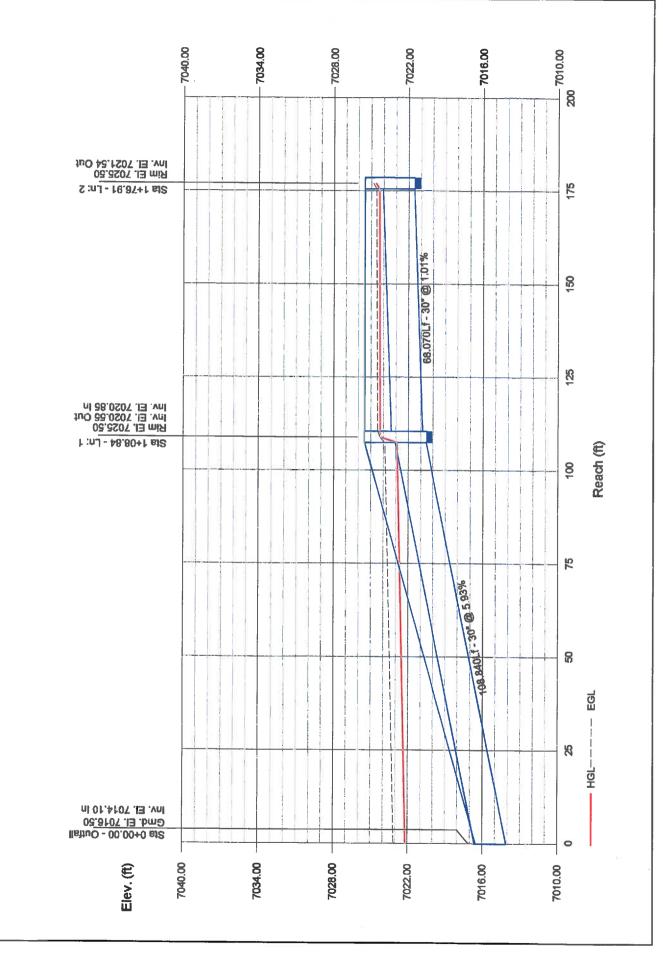
width	2.91	area	16.4997	open area	x 70%	5.774895
length	5.67	blockage	0.5			
perimeter	17.16	blockage	4	availperm		13.16
				Orifice	Weir	
23	0			0	0	
23.125	0.125			9.8309	1.802946	
23.25	0.25			13.90299	5.0995	
23.375	0.375			17.02762	9.36838	
23.5	0.5			19.6618	14.42356	Ques
23.625	0.625			21.98256	20.15754	- 20.4 065
23.75	0.75			<b>24.08069</b>	26.49778	
23.875	0.875			26.01012	33.39102	
24	1			<mark>27.80598</mark>	40.796	
24.125	1.125			29.4927	48.67953	
24.25	1.25			<mark>31.08804</mark>	57.01414	
24.375	1.375			32.60541	65.77663	
24.5	1.5			<mark>34.05524</mark>	74.94704	
24.625	1.625			<mark>35.44</mark> 581	84.50796	
24.75	1.75			<mark>36.78386</mark>	94.44406	
24.875	1.875			38.07491	104.7417	
25	2			39.3236	115.3885	
25.125	2.125			40.53384	126.3735	
25.25	2.25			41.70898	137.6865	
25.375	2.375			42.8519	149.3183	
25.5	2.5			43.96512	161.2603	
25.625	2.625			45.05084	173.5048	
25.75	2.75			46.11101	186.0444	
25.875	2.875			47.14734	198.8723	
26	3				211.9822	



ć



You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

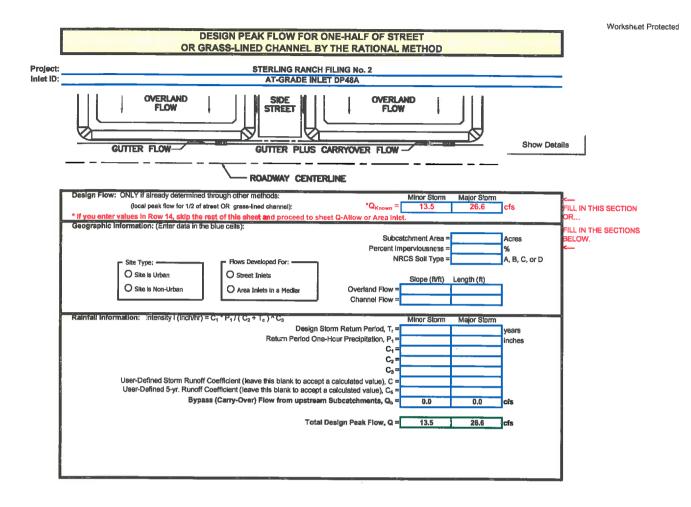

Storm Sewers v10.50

Storn	Storm Sewer Summary Report	ary	Report	مد										Page 1	
Line No.	Line (D	Fiow rate (cis)	Line Size (In)	Line shape	Line length (ft)	Invert EL. Dn (ft)	Invert EL Up (ft)	Llne Slope (%)	HGL Down (ft)	S C HGL	Minor loss (11)	HGL Junct (ff)	Dns No.	Junction Type	
+	PR 62.1, Storm 22	38.00	8	Cir	108.840	7014,10	7020.55	5.926	7022.21	7022.91	n/a	7024.26	End	Curb-Horlz	1
7	PR 62.2, Storm 22	18.00	30	ซ้	68.070	7020.85	7021.54	1.014	7024.26*	7024.38*	0.26	7024.64	-	<b>Curb-Horiz</b>	
Storm 22									Number of lines: 2	lines: 2		Run Di	Run Date: 5/4/2017	4	
NOTES:	NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; { - Inlet control.	ged (HGL	above crown).	; ł - Inlet ci	ontrol.										

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Storm Sewers v10.50

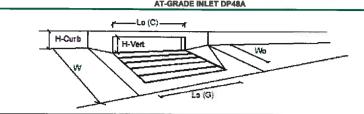
Storm Sewers




Proj. file: Storm 22.stm

Storm Sewer Profile

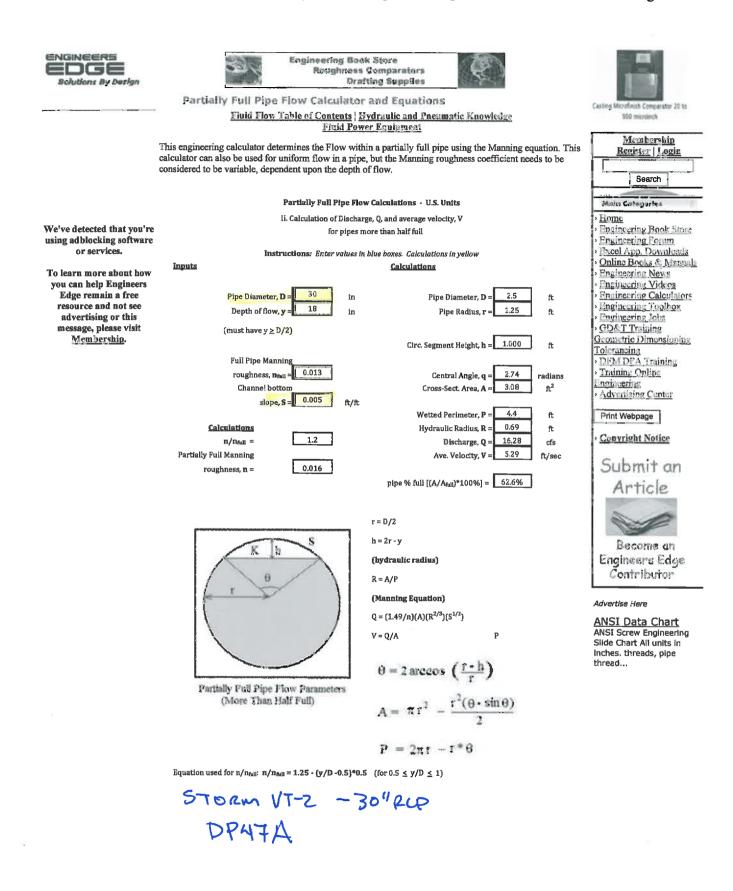
## Partially Full Pipe Flow Calculator and Equations - Engineers Edge

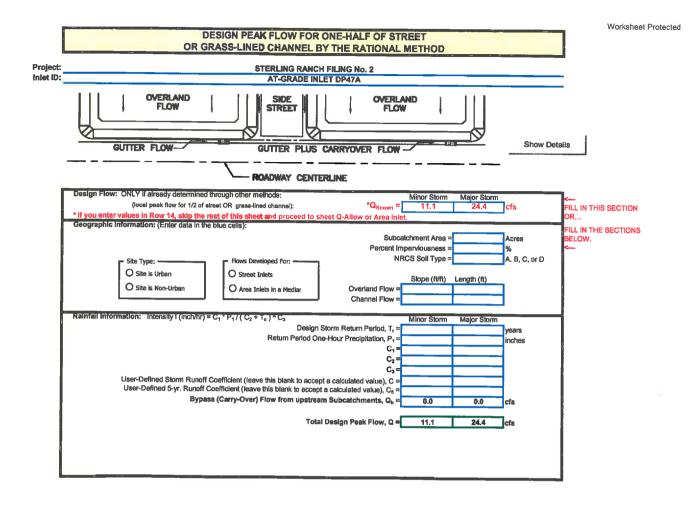

ENGINEERS EDGE Bolutions By Design	pr pr	s Comparators atting Supplies	
	Partially Full Pipe Flow Calculate Fluid Flow Table of Contexts	br and Equations Hydraulic and Pneumatic Knowledge	Casting Microfinish Comparator 20 to 900 microlinch
	Jüwid Po		
	This engineering calculator determines the Flow wi calculator can also be used for uniform flow in a pi considered to be variable, dependent upon the depti	s <u>Nembership</u> <u>Register   Login</u> Search	
	Partially Full Pipe F	Rain Caregories	
We've detected that you're	ll. Calculation of Disch	· ilome	
using adblocking software	for pipes	<ul> <li>Engineering Book Store</li> <li>Engineering Fortun</li> </ul>	
or services.	Instructions: Enter values	<ul> <li><u>Freel App. Downloads</u></li> <li>Online Books &amp; Manuals</li> </ul>	
To learn more about how	Inputs	<u>Calculations</u>	· Engineering News
you can help Engineers Edge remain a free resource and not see	Pipe Diameter, D = 30 in	Pipe Diameter, D = 2.5 ft	Progincering Videos     Fouriering Coloulators
advertising or this	Depth of flow, <b>y</b> = 1 30 in	Pipe Radius, $r = 1.25$ ft	<ul> <li>Engineering Toolbox</li> <li>Furineering Jobs</li> </ul>
message, please visit <u>Membershin</u> .	(must have $y \ge D/2$ )		GOAT Training Geometric Dimensionius
	Full Pipe Manning	Circ. Segment Height, h = 0.000 ft	Tolerancing
	roughness, n _{full} = 0.013	Central Angle, q = 0.00 radians	<ul> <li>DFM DFA Training</li> <li>Training Online</li> </ul>
	Channel bottom	Cross-Sect. Area, $A = 4.91$ $ft^2$	Engineering Advertising Center
	slope, S = 0.005 ft/ft	t Wetted Perimeter, P = 7.9 ft	Print Webpage
	Calculations	Hydraulic Radius, R = 0.63 ft	
	n/n _{foll} = <u>1</u>	Discharge, $\mathbf{Q} = \frac{29.08}{5.02}$ cfs	· Copyright Netice
	Partially Full Manning roughness, n = 0.013	Ave. Velocity, $V = 5.92$ ft/sec	Submit an
	K h S	pipe % full [(A/A _{fult} )*100%] = 100.0%	Article
			THE HOLD
		r = D/2	
		$\mathbf{h} = 2\mathbf{r} - \mathbf{y}$	Become an
		(hydraulic radius)	Engineers Edge
		R = A/P	Contributor
		(Manning Equation)	Advertise Here
		$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$	ANSI Data Chart
	Partially Full Pipe Flow Parameters (More Than Half Full)	V = Q/A P	ANSI Screw Engineering Slide Chart All units in
			inches. threads, pipe
		$\theta = 2 \arccos\left(\frac{r-h}{r}\right)$	thread
		200	
		$A = \pi r^2 - \frac{r^2(\theta \cdot \sin \theta)}{2}$	
		-	
	Paralla 10 / data data data data data data data da	$\mathbf{P} = 2\pi\mathbf{r} - \mathbf{r}^* \mathbf{\Theta}$	
	Equation used for $n/n_{full}$ : $n/n_{full} = 1.25 - (y/D - 0.5)*($		
	5TORM VT-Z - 30	"pcp	
	DP48A		
	ter in the A		



### INLET ON A CONTINUOUS GRADE



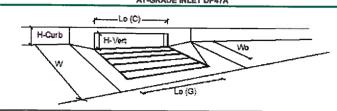

STERLING RANCH FILING No. 2 AT-GRADE INLET DP48A




Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Туре =	CDOT Type R	Curb Opening	ר ר
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} ≈	3.0	3.0	inches
Total Number of Units In the Inlet (Grate or Curb Opening)	No =	3	3	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L, =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W., =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _F C =	0.10	0.10	
Street Hydraulics: WARNING; Q > ALLOWABLE Q FOR MAJOR STORM		MINOR	MAJOR	
Total inlet interception Capacity	Q =	11.36	16.49	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q,, =	2.1	10.1	cfs
Capture Percentage = Q _e /Q _o =	C% =	84	62	%

3

### Partially Full Pipe Flow Calculator and Equations - Engineers Edge





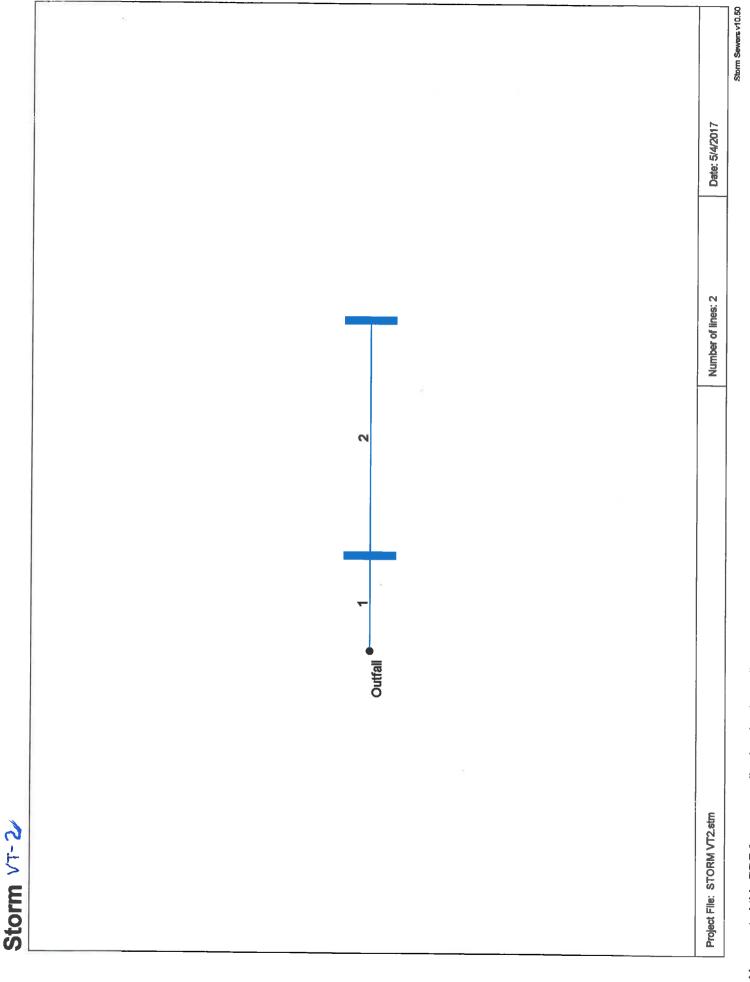

### INLET ON A CONTINUOUS GRADE



STERLING RANCH FILING No. 2 AT-GRADE INLET DP47A



Design Information (input)		MINOR	MAJOR	
Type of Inlet	Туре =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	elocal =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	vv _e =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typica! min. value = 0.5)	C _r G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	CC =	0.10	0.10	1
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	10.02	15.78	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q ₆ =	1.1	8.6	cfa
Capture Percentage = Q _s /Q _o =	C% =	90	65	%


ð,

## DP 47A

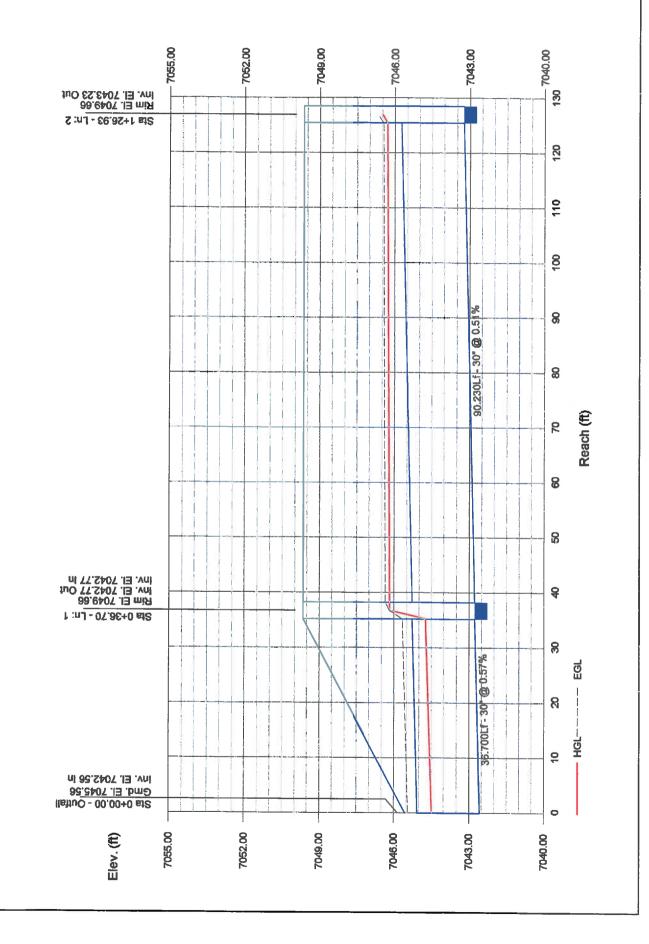
# 2.9' x 5.7' TYPE D COOT ACEA INLET

width	2.91	area	16.4997	open area	x 70%	5.774895
length	5.67	blockage	0.5			
perimeter	17.16	blockage	4	avail perm.	1	13.16
				Orifice	Weir	
92	0			0	0	
92.125	0.125			9.8309	1.802946	
92.25	0.25			13.90299	5.0995	
92.375	0.375			17.02762	9.36838	
92.5	0.5			19.6618	14.42356	
92.625	0.625			21.98256	20.15754	D
92.75	0.75			24.08069	26.49778	- 24.4 css
92.875	0.875			26.01012	33.39102	
93	1			27.80598	40.796	
93.125	1.125			29.4927	48.67953	
93.25	1.25			31.08804	57.01414	
93.375	1.375			32.60541	65.77663	
93.5	1.5			34.0 <mark>5524</mark>	74.94704	
93.625	1.625			<mark>35.44581</mark>	84.50796	
93.75	1.75			<mark>36.78386</mark>	94.44406	
93.875	1.875			38.07491	104.7417	
94	2			<mark>39.3236</mark>	115.3885	
94.125	2.125			40.53384	126.3735	
94.25	2.25			41.70898	137.6865	
94.375	2.375			42.8519	149.3183	
94.5	2.5			43.96512	161.2603	
94.625	2.625			45.05084	173.5048	
94.75	2.75			46.11101	186.0444	
94.875	2.875			47.1473 <mark>4</mark>	198.8723	
95	3			<mark>48.16138</mark>	211.9822	





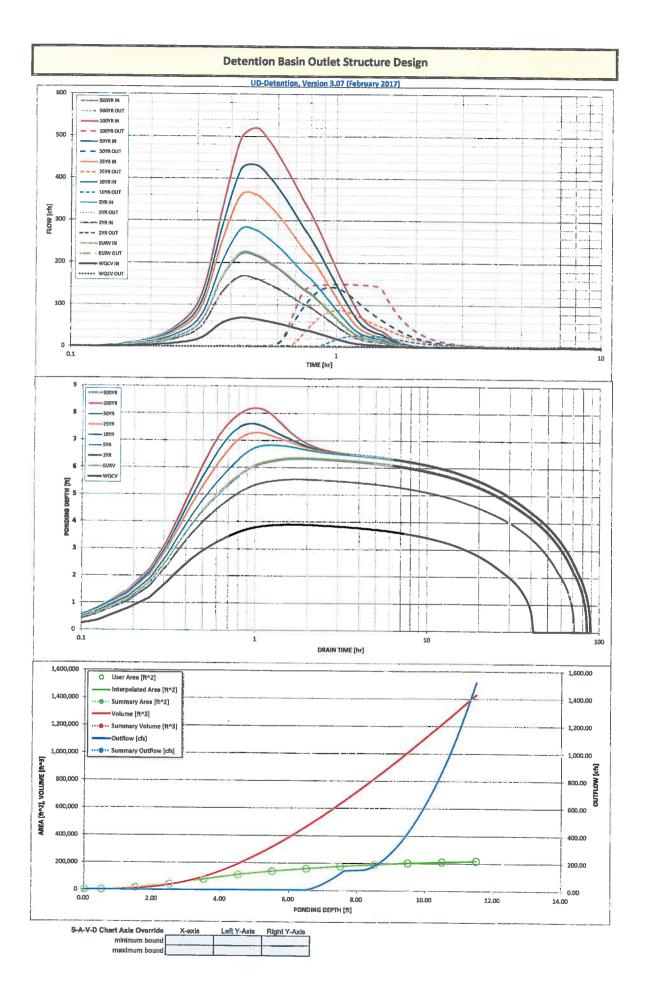
4


ï

Page 1						 · · · · · ·	 		 	<u> </u>
Pac	Junction Type	Curb-Hortz	Curb-Horiz	 	2				7	
	Dns No.	End	-			 			Run Date: 5/4/2017	
	HGL Junct (11)	7046.181	7046.50						Run D	
	Minor loss (11)	n/a	0.21				 			
	B HGL	7044.73	7046.30*			 · · ·	 		 nes: 2	
	HGL Down (ft)	7044.49	7046.18*						 Number of lines: 2	
	Line Slope (%)	0.572	0.510				 			
	Invert EL Up (ft)	7042.77	7043.23				 			
	Invert EL Dn (ft)	7042.56	7042.77			 	 			
	Line length (ft)	36.700	90.230				 	_		ontrol.
÷	Line shape	Ċ	ວັ			 _	 			; i - Inlet c
Repor	Llne Size (in)	30	8							above crown)
าลาง	Flow rate (cfs)	32.00	16.00	 			 			arged (HGL
Storm Sewer Summary Report	Line ID	PR 69, Storm VT2	PR 68, Storm VT2							NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; I - Inlet control.
Storn	Line No.	F	2	 			 		Storm 22	NOTES:

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Storm Sewers v10.50


Storm Sewers

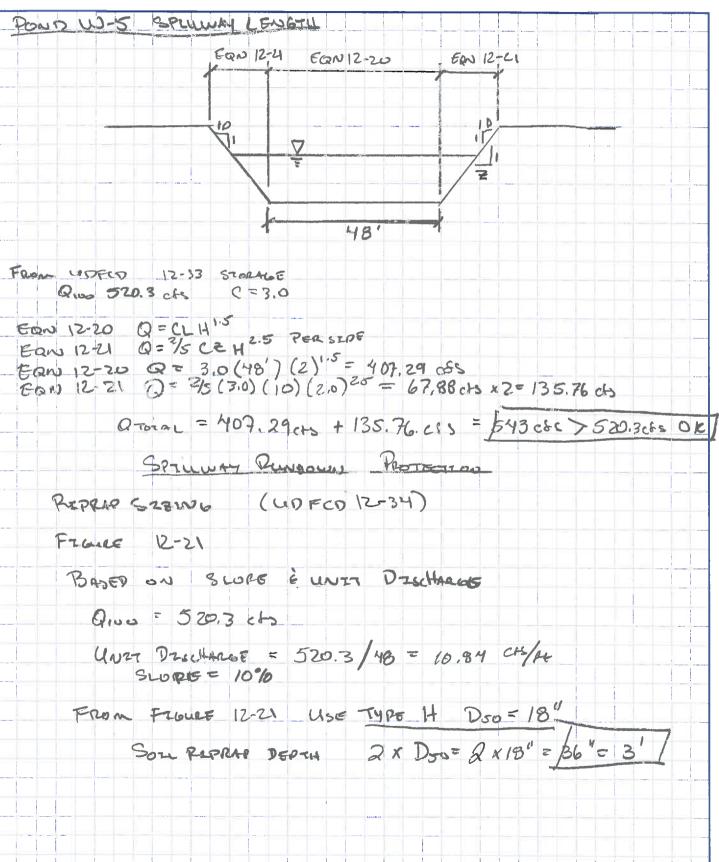


Proj. file: STORM VT2.stm

Storm Sewer Profile

		Det	ention Basin	Outlet Struc	ture Design				
	t: STERLING RANC	H FILING NO. 2	UD-Detention, V	ersion 3.07 (Febru	ary 2017)				28 19e er
(20HE 3)	. FORD 41-5								
100-VR				Stage (ft)	Zone Volume (ac-f	t) Outlet Type			
VOLUME EUNY WOOV			Zone 1 (WQCV)		3.141	Orifice Plate	1		
	JIND-VE ORDERIC	AA	Zone 2 (EURV)		7.356	Orifice Plate	-		
PERMANENT ORFICES			:one 3 (100-year)	8.13	6.610	Weir&Fipe (Restrict	-		
Example Zone	e Configuration (R	-		·	17.107	Total			
User Input: Orifice at Underdrain Outlet (typically						Calcula	ed Parameters for U	Inderdrain	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =		ft (distance below t inches	the filtration media su	urface)		erdrain Ortfice Area	N/A	] <del>n</del> ²	
		Juiches			Underdi	ain Orifice Centrold	N/A	feet	
User Input: Orifice Plate with one or more orifices	or Elliptical Slot We	ir (typically used to a	drain WQCV and/or E	URV in a sedimental	tion BMP)	Calc	ulated Parameters fo	Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin	bottom at Stage = 0 f	ft)		orifice Area per Row =	8.715E-02	la ²	
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	5.46 25.10		bottom at Stage = 0 f	ft)		Elliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Area per Row =		inches sq. inches (use recta	angular openings)		Ell	iptical Slot Centroid =	N/A	feet	
		Tedi wantes (and teen	angalar openingsy			Elliptical Slot Area =	N/A	ft²	
User Input: Stage and Total Area of Each Orifice									_
Stage of Orifice Centrold (ft)	Row 1 (required) 0.00	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	]
Ortifice Area (sq. inches)		2.15	4 31						-
							L		]
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	7
Stage of Ortfloe Centroid (ft) Orifice Area (sq. Inches)								(-providit)	1
Onlice Area (ad. increa)		L							]
User Input: Vertical Orifice (Circ	ular or Rectangular					Calculater	Parameters for Ver		
	Not Selected	Not Selected				Carcald (CC	Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b			/ertical Orifice Area =	N/A	N/A	ft2
Depth at top of Zone using Vertical Orifice = Vertical Orifice Diameter =	N/A N/A	N/A N/A	ft (relative to basin b	pottom at Stage = 0 f	t) Verti	cal Orifice Centrold =	N/A	N/A	feet
	IVA	N/A	inches						-
User Input: Overflow Weir (Dropbox) and G						Calculated	Parameters for Ove	rflow Weir	
Overflow Wei: Front Edge Height, Ho =	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	ן
Overflow Weir Front Edge Length =	20.00	N/A N/A	ft (relative to basin bol feet	ttom at Stage = 0 ft}		ate Upper Edge, H _t =	6.46	N/A	feet
Overflow Weir Slope ≈	0.00	N/A	H:V (enter zero for fla	at grate)	Grate Open Area /	Weir Slope Length = 100-yr Orifice Area =	6.00	N/A	feet
Horiz. Length of Welr Sides =	6.00	N/A	feet	<b>.</b> ,		en Area w/o Debris =	84.00	N/A N/A	should be ≥ 4 ft ²
Overflow Grate Open Area % =	70%	N/A	%, grate open area/t	otal area		oen Area w/ Debris =	42,00		(
Debris Clogging % =	50%	N/A	1%					N/A	ft²
			-					N/A	ļft²
Jser input: Outlet Pipe w/ Flow Restriction Plate (C	Ircular Orifice, Restr	ctor Plate, or Rectan	gular Orifice)			alculated B-			
Jser input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restr Zone 3 Restrictor	ictor Plate, or Rectan Not Selected	igular Crifice)		c	alculated Parameter	s for Outlet Pipe w/	Flow Restriction Plat	
Depth to Invert of Outlet Pipe =	Zone 3 Restrictor 0.83	Not Selected	<b>gular Crifice)</b> ft (distance below basi	in bottom at Stage = 0		<b>alculated Parameter</b> Outlet Orifice Area =		Flow Restriction Plat Not Selected	
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Restrictor 0.83 48.00	Not Selected N/A N/A	ft (distance below basi inches		ft) Out!	Outlet Orifice Area = et Orifice Centroid =	s for Outlet Pipe w/ Zone 3 Restrictor	Flow Restriction Plat Not Selected N/A	
Depth to Invert of Outlet Pipe =	Zone 3 Restrictor 0.83	Not Selected N/A N/A	ft (distance below basi		ft)	Outlet Orifice Area = et Orifice Centroid =	s for Outlet Pipe w/ Zone 3 Restrictor 11.62	Flow Restriction Plat Not Selected N/A N/A	te   
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Restrictor 0.83 48.00 41.80	Not Selected N/A N/A	ft (distance below basi inches		ft) Out!	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe ≈	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41	Flow Restriction Plat Not Selected N/A N/A N/A	te    t ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	Zone 3 Restrictor 0.83 48.00 41 80 ular or Trapezoidal)	Not Selected N/A N/Ä	ft (distance below basi inches	Haff-C	ft) Outl ientral Angle of Restr	Outlet Orifice Area = et Orifice Centrold = ictor Plate on Pipe = <b>Calcula</b>	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S	Flow Restriction Plat N/A N/A N/A N/A	te    t ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	Zone 3 Restrictor 0.83 48.00 41 80 ular or Trapezoidal) 8.20 48.00	Not Selected N/A N/A ft (relative to basin b feet	ft (distance below basi inches inches	Haff-C	ft) Outi Sentral Angle of Restr Spillway	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe ≈	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95	Flow Restriction Plat Not Selected N/A N/A N/A plilway feet	te    t ² feet
Depth to Invert of Outiet Pipe = Outlet Pipe Diameter = Restrictor Plate Helght Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Zone 3 Restrictor 0.83 48.00 41.80 utar or Trapezoidal) 8.20 48.00 10.00	Not Selected N/A N/A ft (relative to basin b feet H:V	ft (distance below basi inches inches	Haff-C	ft) Out! Sentral Angle of Restr Spillway Stage at	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = <b>Calcula</b> Design Flow Depth=	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15	Flow Restriction Plat N/A N/A N/A N/A	te    t ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	Zone 3 Restrictor 0.83 48.00 41.80 utar or Trapezoidal) 8.20 48.00 10.00	Not Selected N/A N/A ft (relative to basin b feet	ft (distance below basi inches inches	Haff-C	ft) Out! Sentral Angle of Restr Spillway Stage at	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe ≂ <b>Calcula</b> Design Flow Depth= t Top of Freeboard =	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15	Flow Restriction Plat Not Selected N/A N/A N/A Pillway feet feet	te    t ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	Zone 3 Restrictor 0.83 48.00 41.80 utar or Trapezoidal) 8.20 48.00 10.00	Not Selected N/A N/A ft (relative to basin b feet H:V	ft (distance below basi inches inches	Haff-C	ft) Out! Sentral Angle of Restr Spillway Stage at	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe ≂ <b>Calcula</b> Design Flow Depth= t Top of Freeboard =	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15	Flow Restriction Plat Not Selected N/A N/A N/A Pillway feet feet	te   π ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Refum Period =	Zone 3 Restrictor 0.83 48.00 41.80 utar or Trapezoidal) 8.20 48.00 10.00 2.00 WQCV	Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV	ft (distance below basi inches Inches pottom at Stage = 0 ft) 2 Year	Haff-C	ft) Out! Sentral Angle of Restr Spillway Stage at	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe ≂ <b>Calcula</b> Design Flow Depth= t Top of Freeboard =	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15	Flow Restriction Plat N/A N/A N/A N/A pillway feet feet acres	te ft ² feet radians
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Surface = Reeboard above Max Water Surface = Routed Hydrograph Results Design Storm Refum Period = One-Hour Rainfall Depth (in) =	Zone 3 Restrictor 0.83 48.00 41.80 utar or Trapezoidal) 8.20 48.00 10.00 2.00 WQCV 0.53	Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07	ft (distance below basi inches Inches bottom at Stage = 0 ft) 2 Year 1.19	Haff-C ) <u>5 Year</u> 1.50	ft) Cutt Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75	Outlet Orifice Area = et Orifice Centrold = ictor Plate on Pipe = <b>Calcula</b> Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 2.41 ted Parameters for S 1.95 1.2.15 5.00 50 Year 2.25	Flow Restriction Plat N/A N/A N/A N/A pillway feet feet feet acres 100 Year 2.52	te   π ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Dealgn Storm Refum Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	Zone 3 Restrictor 0.83 48.00 41.80 utar or Trapezoidal) 8.20 48.00 10.00 2.00 WQCV	Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV	ft (distance below basi inches Inches pottom at Stage = 0 ft) 2 Year	Haff-C	ft) Central Angle of Rest Spillway Stage at Basin Area at 10 Year	Outlet Orifice Area = et Orifice Centrold = ictor Plate on Pipe = <b>Calcula</b> Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for 5 1.95 12.15 5.00 50 Year	Flow Restriction Plat Not Selected N/A N/A N/A Pillway feet feet acres	te ft ² feet radians 500 Year
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Refum Period = One-Hour Reinfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Restrictor 0.83 48.00 41.80 volar or Trapezoidal) 8.20 48.00 10.00 2.00 WQCV 0.53 3.141 3.141	Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 1.0.7 10.497	ft (distance below basi inches Inches Dottom at Stage = 0 ft) 2 Year 1.19 7.750 7.750	Haff-C	ft) Cutt Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75	Outlet Orifice Area = et Orifice Centrold = ictor Plate on Pipe = <b>Calcula</b> Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 2.41 ted Parameters for S 1.95 1.2.15 5.00 50 Year 2.25	Flow Restriction Plat N/A N/A N/A N/A Pillway feet feet acres 100 Year 2.52 25.403	te ft ² feet radians 500 Year 0.00 0,000
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Emergency Spillway Emergency Freeboard above Max Water Surface = Routed Hydrograph Results Design: Storm Refum Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Restrictor 0.83 48.00 41.80 (ular or Trapezoidal) 8.20 48.00 10.00 2.00 2.00 WQCV 0.53 3.141 3.141 0.00	Not Selected N/A N/A R (relative to basin b feet H:V feet 1.07 10.497 0.00	ft (distance below basi inches Inches bottom at Stage = 0 ft) 2 Year 1.19 7.750 7.750 0.01	Haff-C ) 5 Year 1.50 10.345 	ft) Curt Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 13.246 13.238 0.14	Outlet Orifice Area = et Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17.265 0.43	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15 5.00 50 Year 2.25 20.902 20.898 0.71	Flow Restriction Plat N/A N/A N/A N/A pillway feet feet acres 100 Year 2.52 25.403 25.397 1.11	te ft ² feet radians 500 Year 0.00
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Pesk (Q (ofs) = Pesk kinfow Q (ofs) =	Zone 3 Restrictor 0.83 48.00 41 80 User or Trapezoidal) 8.20 48.00 10.00 2.00 WQCV 0.53 3.141 3.141	Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 1.0.7 10.497	ft (distance below basis inches Inches bottom at Stage = 0 ft) 2 Year 1.19 7.750 7.750 0.01 1.4	Haif-C	ft) Central Angle of Restricted Spillway Stage at Basin Area at 1.75 1.3.246 1.3.238 0.14 24.4	Outlet Orifice Area = let Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17.269 17.269 17.269	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15 5.00 5.00 5.00 2.25 20.902 2.25 20.902 0.71 124.9	Flow Restriction Plat N/A N/A N/A N/A Pillway feet feet acres 100 Year 2.52 25.403 25.397 1.11 195.0	te t ² feet radians <u>500 Year</u> <u>0.00</u> <u>0.000</u> <u>#N/A</u> <u>0.00</u> <u>0.00</u> <u>0.00</u>
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Rifw Q (ofs) = Peak Nnflow Q (ofs) = Peak Nnflow Q (ofs) =	Zone 3 Restrictor 0.83 48.00 41 80 User or Trapezoidal) 8.20 48.00 10.00 2.00 WQCV 0.53 3.141 0.00 0.0 68.7 1.4	Not Selected N/A N/A N/A ft (relative to basin b feet H:V feet LURV 1.07 10.497 10.497 0.00 0.0 223.2 2.5	ft (distance below basi inches Inches Dottom at Stage = 0 ft) 2 Year 1.19 7.750 0.01 1.4 1.66.3 2.2	Haff-C ) 5 Year 1.50 10.345 	ft) Curt ientral Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 13.246 13.238 0.14	Outlet Orifice Area = et Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17.265 0.43	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15 5.00 5.00 5.00 20.898 0.71 124.9 432.3	Flow Restriction Plat Not Selected N/A N/A N/A N/A Pillway feet feet acres 100 Year 2.52 25.403 25.397 1.11 195.0 520.3	te feet radians 500 Year 0.00 0.000 #N/A 0.0 0.0 #N/A
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Dealgn Stom Refum Period = One-Hour Rainfall Depth (In) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (ofsfecre) = Predevelopment Peak Q (ofs) = Peak Inflow Q (ofs) = Peak Outflow Q (ofs) = Ratio Peak Outflow to Predevelopment Q (ofs) =	Zone 3 Restrictor 0.83 48.00 41.80 ular or Trapezoidal) 8.20 48.00 10.00 2.00 2.00 2.00 3.141 0.00 0.53 3.141 0.00 0.0 68.7 1.4 N/A	Not Selected N/A N/A N/A R (relative to basin b feet H:V feet 1.07 10.497 0.00 0.0 223.2 2.5 N/A	ft (distance below basis inches Inches Dottom at Stage = 0 ft) 2 Year 1.19 7.750 0.01 1.4 1.66.3 2.2 N/A	Haff-C 5 Year 1.50 10.345 	ft) Curtral Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 13.246 13.238 0.14 24.4 279.1 27.5 1.2	Outlet Orifice Area = et Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17.265 6.43 74.7 362.1 87.4 1.2	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15 5.00 50 Year 2.25 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20.902 20	Flow Restriction Plat N/A N/A N/A N/A pillway feet feet acres 100 Year 2.52 25.403 25.397 1.11 195.0 520.3 149.7 0.8	te t ² feet radians <u>500 Year</u> 0.00 0.000 <u>#N/A</u> 0.00 0.00
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Rifw Q (ofs) = Peak Nnflow Q (ofs) = Peak Nnflow Q (ofs) =	Zone 3 Restrictor 0.83 48.00 41 80 User or Trapezoidal) 8.20 48.00 10.00 2.00 WQCV 0.53 3.141 0.00 0.0 68.7 1.4	Not Selected N/A N/A N/A ft (relative to basin b feet H:V feet LURV 1.07 10.497 10.497 0.00 0.0 223.2 2.5	ft (distance below basis inches Inches bottom at Stage = 0 ft) 2 Year 1.19 7.750 0.01 1.4 166.3 2.2 N/A Plate	Half-C 5 Year 1.50 10.345 	ft) Central Angle of Restricted Spillway Stage at Basin Area at 10 Year 1.75 13.246 13.238 0.14 24.4 27.5 1.3 Overflow Grate 1	Outlet Orifice Area = let Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17.269 17.269 17.269 17.269 17.265 0.43 74.7 362.1 87.4 12 Overflow Grate 1	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15 5.00 5.00 5.00 5.00 2.25 20.902 0.71 124.9 432.3 142.2 1.1 Cutlet Piate 1	Flow Restriction Plat N/A N/A N/A N/A pillway feet feet acres 100 Year 2.52 2.5.403 2.52 2.5.403 105.0 5.20.3 1.11 1.95.0 5.20.3 1.49.7 0.8 Outlet Plate 1	te ftet radians 500 Year 0.00 0.000 0.000 0.000 0.00 0.00 0.00
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Emergency Start Dealgr. Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (offsfeore) = Predevelopment Peak Q (offs) = Peak Uniflow Q (offs) = Peak Uniflow Q (offs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fpe) = Max Velocity through Grate 2 (fpe) =	Zone 3 Restrictor 0.83 48.00 41.80 (ular or Trapezoidal) 8.20 48.00 10.00 2.00 2.00 0.53 3.141 0.00 0.53 3.141 0.00 0.68.7 1.4 N/A Piate N/A N/A	Not Selected N/A N/A N/A R (relative to basin b feet H:V feet 1.07 10.497 0.00 0.0 223.2 2.5 N/A Plate N/A N/A	ft (distance below basi inches Inches Dottom at Stage = 0 ft) 2 Year 1.19 7.750 0.01 1.4 1.66.3 2.2 N/A Plate N/A N/A	Haff-C 5 Year 1.50 10.345 10.338 0.02 3.0 219.9 2.5 0.8 Plate N/A N/A	ft) Curtral Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 13.246 13.238 0.14 24.4 279.1 27.5 1.2	Outlet Orifice Area = et Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17.265 6.43 74.7 362.1 87.4 1.2	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15 5.00 5.00 5.00 20.898 0.71 124.9 432.3 142.2 1.1 Outlet Plate 1 1.7	Flow Restriction Plat Not Selected N/A N/A N/A Pillway feet feet acres 100 Year 2.52 25.403 25.397 1.11 195.0 520.3 149.7 0.8 Outlet Plate 1 1.7	te ft ² feet radians 500 Year 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.0000000 0.00000000
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Refum Period = One-Hour Rainfail Dopth (In) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (ofsfeore) = Predevelopment Peak Q (ofs) = Peak Inflow Q (ofs) = Ratio Peak Outflow D Prodevelopment Q (ofs) = Structure Controlling Flow = Max Velocity through Grate 1 (fte) =	Zone 3 Restrictor 0.83 48.00 41.80 ular or Trapezoidal) 8.20 48.00 10.00 2.00 2.00 2.00 0.00 2.00 0.00 0.00 68.7 1.4 N/A Plate N/A N/A 38	Not Selected N/A N/A N/A fet H:V feet H:V feet 10.7 10.497 10.497 0.00 0.0 223.2 2.5 N/A Plate N/A N/A N/A N/A	ft (distance below basis inches Inches bottom at Stage = 0 ft) 2 Year 1.19 7.750 7.750 0.01 1.4 166.3 2.2 N/A Plate N/A Plate N/A N/A 65	Haff-C 5 Year 1.50 10.345 	ft) Curtral Angle of Restri- Spillway Stage at Basin Area at 1.75 1.3.246 1.3.238 0.14 2.7.5 1.2 0.14 2.7.5 1.2 0.3 N/A 78	Outlet Orifice Area = let Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17.265 0.43 74.7 362.1 87.4 12 Overflow Grate 1 2.0 N/A 76	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15 5.00 50 Year 2.25 20.902 20.898 0.71 124.9 432.3 142.2 1.1 Outlet Plate 1 1.7 N/A 74	Flow Restriction Plat N/A N/A N/A N/A pillway feet feet acres 100 Year 2.52 2.5.403 2.52 2.5.403 105.0 5.20.3 1.11 1.95.0 5.20.3 1.49.7 0.8 Outlet Plate 1	te ftet radians 500 Year 0.00 0.000 0.000 0.000 0.00 0.00 0.00
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway End Stopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Refum Period = One-Hour Rainfall Depth (In) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (offsfeore) = Peak Uniflow Q (offs) = Peak Uniflow Q (offs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	Zone 3 Restrictor 0.83 48.00 41.80 (ular or Trapezoidal) 8.20 48.00 10.00 2.00 2.00 0.53 3.141 0.00 0.53 3.141 0.00 0.68.7 1.4 N/A Piate N/A N/A	Not Selected N/A N/A N/A R (relative to basin b feet H:V feet 1.07 10.497 0.00 0.0 223.2 2.5 N/A Plate N/A N/A	ft (distance below basis inches Inches Dottom at Stage = 0 ft) 2 Year 1.19 7.750 0.01 1.4 166.3 2.2 N/A Plate N/A N/A N/A N/A 65 65 69	Haff-O 5 Year 1.50 10.345 10.338 0.02 3.0 219.9 2.5 0.8 Plate N/A N/A N/A N/A 81	ft) Outt Central Angle of Restring Spillway Stage at Basin Area at 1.75 1.3.246 1.3.238 0.14 2.4.4 2.7.5 1.3 0.14 2.4.4 2.7.5 1.3 0.14 2.7.5 1.3 0.14 2.7.5 1.3 0.14 2.7.5 1.3 0.14 2.7.5 1.3 0.78 1.3 0.3 N/A 78 84	Outlet Orifice Area = let Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17.269 17.269 17.265 0.43 74.7 362.1 87.4 12 Overflow Grate 1 3.0 N/A 76 84	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15 5.00 50 Year 2.25 20.902 20.898 0.71 124.9 432.3 142.2 1.1 0.0ttlet Piate 1 1.7 N/A 83	Flow Restriction Plat Not Selected N/A N/A N/A N/A Pillway feet feet feet acres 100 Year 2.52 25.403 25.397 1.11 1.95.0 520.3 1.49.7 0.8 Outlet Plate 1 1.7 N/A	te ftet feet radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A #N/A #N/A
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <b>Routed Hydrograph Results</b> Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = inflow Hydrograph Volume (acre-ft) = Predevelopment Peak () offs) = Predevelopment Unit Peak Flow, q (ofs/scre) = Predevelopment Unit Peak Cutflow Q (offs) = Ratio Peak Outflow to Prodevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	Zone 3 Restrictor 0.83 48.00 41.80 ular or Trapezoidal) 8.20 48.00 10.00 2.00 WQCV 0.53 3.141 0.53 3.141 0.53 3.141 0.00 0.53 3.141 0.00 0.0 68.7 1.4 N/A Plate N/A N/A 38 40	Not Selected N/A N/A N/A ft (relative to basin b feet H:V feet 1.07 10.497 0.00 0.0 223.2 2.5 N/A Plate N/A N/A N/A N/A N/A	ft (distance below basis inches Inches bottom at Stage = 0 ft) 2 Year 1.19 7.750 7.750 0.01 1.4 166.3 2.2 N/A Plate N/A Plate N/A N/A 65	Haff-C 5 Year 1.50 10.345 	ft) Curtral Angle of Restring Spillway Stage at Basin Area at 1.75 1.3.246 1.3.238 0.14 2.7.5 1.2 0.14 2.7.5 1.2 0.3 N/A 78	Outlet Orifice Area = let Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17.265 0.43 74.7 362.1 87.4 12 Overflow Grate 1 2.0 N/A 76	s for Outlet Pipe w/ Zone 3 Restrictor 11.62 1.86 2.41 ted Parameters for S 1.95 12.15 5.00 50 Year 2.25 20.902 20.898 0.71 124.9 432.3 142.2 1.1 Outlet Plate 1 1.7 N/A 74	Flow Restriction Plat N/A N/A N/A N/A N/A pillway feet feet acres 100 Year 2.52 25.403 25.397 1.11 195.0 520.3 149.7 0.8 Outlet Plate 1 1.7 N/A 73	te ft ² feet radians 500 Year 0.00 0.000 #N/A 0.00 0.0 #N/A #N/A #N/A #N/A #N/A #N/A



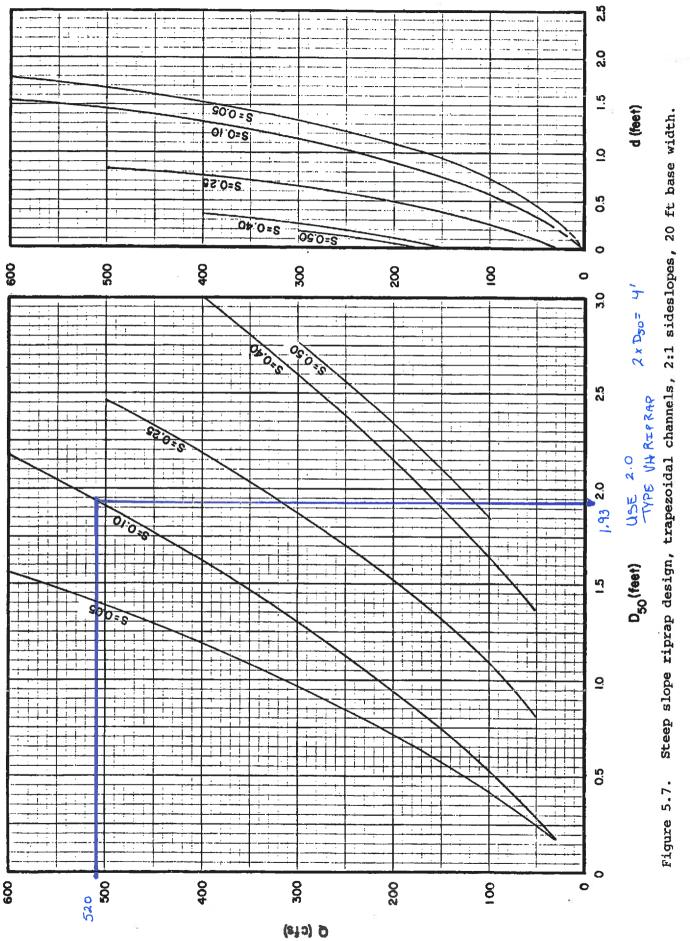

			DETENTION	DETENTION BASIN STAGE-STORAGE TABLE BUILDER	-STORAG	SE TABLE	BUILDE	~					
		1		Marrie Marrie	1-11-00				ľ			l	
Project: STERLING RANCH FILING NO. 2	ERLING RA	NCH FILI		uu-uetention, version 3.07 (February 2017)	n 3.U7 (Feb	ruary 2017)							
Basin ID: POND W-6	4D W-5												
	F		/					:					
		CITATION COLORING		Depth Increment =	t= 0.1	et i							
Provident of the contract of t	ifiguration	(Retenti	on Pond)	Stage - Storage Description		Optional Override Stene (#)	Length	Width	Area /#^^/	Optional Override	Area	Volume	Volume
L				Top of Micropool		0.00	1	1	1	632	0.015	APPORt A	
	EDB				1	0.60	1	I	1	1,289	0:030	487	0.011
		acres	Note: L / W Ratio < 1		;	1.50	1	;	1	15,375	0.353	8,659	0.199
_			L / W Ratio = 0.8		1	2.50	1	1	1	40,728	0.935	36,864	0.848
	T	fun			I	3.50	1	I	1	76,997	1.768	95,727	2.198
Vaterished Imperviousness = 53	T	percent			1	4.50	r	I	1	112,420	2.581	190,435	4.372
	45 20K				'	3.50	1	1	1	138,882	3.189	316,091	7.250
1		percent			-	350	1	1	,	158,382	3.636	464,728	10.669
1	T				•	1,60	1	1	1	176,379	4.049	632,109	14.511
	٦				-	2:00			,	188,901	4.337	814,749	18.704
	Г	100			,	9.50	1	'	'	202,723	4.654	1,010,561	23.199
Ľ	Т	BC79-1961	Optional User Override		1	10.50	I	,	,	210,154	4.824	1,216,099	27.938
	T	acteries			•	11 20	1	1	'	217,694	4.995	1,430,873	32.848
Ľ	Т	acte-test	1.19 inches		,		'	'	1				
Γ	Т		Т		1		-	1	'				
	T	acre-feet	7.1.7 Inches		•		r	1	,				
	Т	acro-feet			1		1						
	25.403 BD	acre-feet	Τ		·   ·		, ,	1			Ť		
	1	acre-feet	Γ		·							T	
		acre-feet						, ,	·   ·		T		
Approximate 5-yr Detention Volume = 0.1		acre-feet			1			 	'	T	T	T	
Approximate 10-yr Detendon Volume = 12.	2.307 ac	acre-feet							,				
		acro-feet			1			1			Ì		
	Т	acre-feet			1		I	,	1				
	17.107 80	ecre-feet			-		'	Ŧ	;				
Stage-Storage Calculation					1		'	,	;				
- /WUW amin	144				'		'	'	,				
	Т	acre-feet			1		,	'	'		1		
	Т	acra-feet			1		1	,	'				
	Т	acre-feet			1		,	1					
	Т	acre-feet			1		1	,	'				
		•			1		'	'					
	Τ				,		-	'	,			1	
	I Ista				'			'	'				
	Γ									T			
												t	
	user				'			,					T
ļ									-		-	-	]

5/3/2017, 1:09 PM



PROJECT: STERLING PARCH FIL No. 2

DATE: 2-17-17 W-5 SPLUMAY

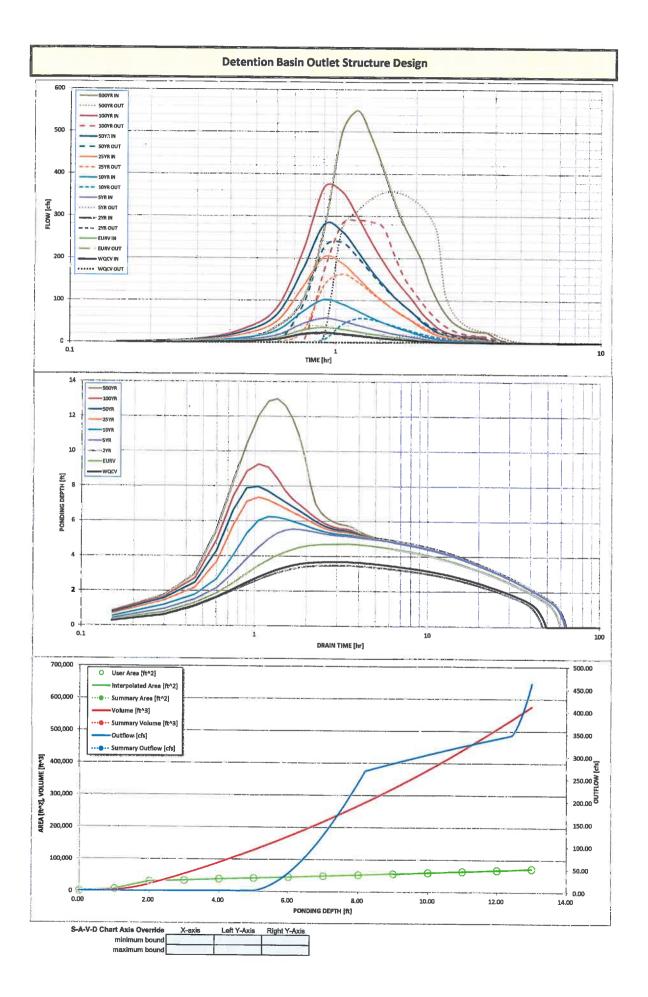





PROJECT: STERILING PANELY FILTENINNO Z DATE: 2-18-17 SIZE FREEBAY FORT DAY VORUME FOR POD 10-5 SIZE OF CONTRIBUTING AREA = 175.63 +C & 176AP. FOREGAY MIN VOL = 3% OF WACV (40 FCD T-S, TABLE EDB-4) W-5 WQCV = 2,970 ALFT FOREBAY MEN VOL REQ = 3º/0 X 2.970 ACFIX 43560 CF = 1588 [CF] C MAX DEPTH OF 30" PERTABLE EDB-4 FROM POUD & FUER BAY SPREAD SIFET MIN VOL PROVIDED = 3988657 3884 F DK SIZE NOTCH 2% OF 1004R INFLOW QIES= 520.3cts 2% × 520.3 ch = 10.406 cfs = 11 cfs WEIR EQN Q=CLH'S C=3.3 L=1.0' Q= 3.3 (1.0) (2.5) = /13.085 > 11085 OK POND SullHARLE DEPTH 2 4in VOLUME 2 03% WALV POR TABLE EDB-4 Wacv VocumE = 2,970 Ac-Ftx 13560 CF × 0.3% = 388. CF FROM POPOD & FOR # PAY VOLUME SOOFAD - HER MEN Succhase Kount PROVIDED ALEAN F MELLORON + 672 SQH × Fin (15th)= 392 cf = 39Rcf > 388cF OK.



PROJECT: STERLEN CALL FREZAKO NG. 2 DATE: <u>8-21-17</u> CIVIL CONSULTANTS, INC. RID RAD BASIN FOR POND W-S DUTIET. DESIGN PER UDFLD PER FIGURE 9-37 Qioo = 472.4 cfs 84" RCP Depth = 3' W = 9' L = 32'OVERAL DIMENSION'S PLAN VIEW 132'L × 24'W REPRAD SIZING FROMF UDECD VOL 2 VALO FOR 0/02526.0 Q102.5 = 4724/25= 3.6 < 6.0 OK Yt/0 = ARSUMED 6.4 Q/04.5 = 472.4/71.5 = 25.51 = 26 FROM FIGUES 9-38 TYPE VH "Do0= 24" EQN 9-15 DEATH = 2 (Dea) = 2(24) = 48" = 41 Low TATCLUATION RIPRAP BASEN = /32'L × DAY W × 48" ]




Q= 520.3 cfs

5.20

ERILLIURY RUNDOWN Peno W-5

		Det	ention Basin	Outlet Struc	ture <mark>Design</mark>				<u> </u>
Projec		H FILING NO. 2		<u> </u>					
Basin ID	POND W-4 INTER	RIM							
20HE 2 ZOHE 1		-							
VOLUME EURY WOCV				Stage (ft)	Zone Volume (ac-fi	t) Cutlet Type	-		
			Zone 1 (WQCV	·	1.967	Orifice Plate			
ZONE 1 MID	CONFIC	LAR DE	Zone 2 (EURV	1 4.99	0.953	Orifice Plate			
PERMANENT ORBITER	Configuration (R	Intention Dand	lone 3 (100-year	) 12.40	9.315	Weir&Pipe (Restrict	)		
		-			12.235	Total			
Iser Input: Orifice at Underdrain Outlet (typically Underdrain Orifice Invert Depth						Calcula	ted Parameters for L	Inderdrain	
Underdrain Orifice Diameter	N/A N/A		the filtration media s	urface)		erdrain Orifice Area	=N/A	_ft²	
onderdram onnice Diameter	11/4	inches			Underdr	ain Orifice Centroid	=N/A	feet	
Jser Input: Orifice Plate with one or more orifices	or Elliptical Slot We	ir (typically used to a	train WOCV and/or F	I IPV in a codimente	tion D14D)				
Invert of Lowest Orifice	0.00		bottom at Stage = 0			Calc Prifice Area per Row	ulated Parameters fo		
Depth at top of Zone using Orifice Plate =	4.99		bottom at Stage = 0			Elliptical Half-Width	= <u>4.722E-02</u> = N/A	n ²	
Orifice Plate: Orifice Vertical Spacing =	22.30	inches		,		iptical Slot Centroid		feet	
Orifice Plate: Orlfice Area per Row =	6.80	sq. inches (use rect	angular openings)		E31	Elliptical Slot Area		feet ft ²	
		_					L	_π.	
ser Input: Stage and Total Area of Each Orifice									
Stage of Orifice Centroid (ft	Row 1 (required)		Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Orifice Area (sq. inches)		1.66	3.33						
	0.00	0.00	0.00						J
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (antion - 1)	Ben 18 faut	<b>D</b> 481	7
Stage of Orifice Centroid (ft)		( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	(_pauriol)	(internet optional)	in to (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Orifice Area (sq. inches)									1
						· · · · · · · · · · · · · · · · · · ·			-
User Input: Vertical Orifice (Circ						Calculate	d Parameters for Ver	tical Orifice	
Invest of Vestine LO 10	Not Selected	Not Selected					Not Selected	Not Selected	1
Invert of Vertical Orifice = = Depth at top of Zone using Vertical Orifice	N/A.	N/A		bottom at Stage $\approx 0$		ertical Orlfice Area =	N/A	N/A	ft ²
Vertical Orifice Diameter =	N/A	N/A		bottom at Stage = 0	ft) Verti	cal Orifice Centrold =	N/A	N/A	feet
vertical Office Diameter =	N/A	N/A	inches						-
User Input: Overflow Weir (Dropbox) and G	rate (Flat or Sloped)					0-1-1-1			
	Zone 3 Weir	Not Selected	1			Calculater	d Parameters for Ove	erflow Weir	
Overflow Weir Front Edge Height, Ho =									7
	4.99	N/A.	ft (relative to basin bo	ottom at Stage = 0 ft)	Height of Gr	ate linner Edge H -	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Length =	4.99 20.00	N/A N/A	ft (relative to basin bo feet	ottom at Stage = 0 ft)		ate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir 6.49	Not Selected N/A	feet
Overflow Weir Front Edge Length = Overflow Weir Slope =						Weir Slope Length =	Zone 3 Weir 6.49 6.18	Not Selected N/A N/A	feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides ≈	20.00 4.00 5.00	N/A	feet		Over Flow Grate Open Area /	Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 6.49 6.18 3.87	Not Selected N/A N/A N/A	feet should be ≥ 4
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides ≈ Overflow Grate Open Area % =	20.00 4.00 5.00 70%	N/A N/A N/A N/A	feet H:V (enter zero for f	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope	Weir Slope Length =	Zone 3 Weir 6.49 6.18	Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides ≈	20.00 4.00 5.00	N/A N/A N/A	feet H:V (enter zero for fi feet	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 6.49 6.18 3.87 86.59	Not Selected N/A N/A N/A N/A	feet should be ≥ 4
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes ≈ Overflow Grate Open Area % = Debris Clogging % =	20.00 4.00 5.00 70% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for f feet %, grate open area/f %	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 6.49 6.18 3.87 86.59	Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes ≈ Overflow Grate Open Area % = Debris Clogging % =	20.00 4.00 5.00 70% 50%	N/A N/A N/A N/A N/A ictor Plate, or Rector	feet H:V (enter zero for f feet %, grate open area/f %	lat grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.49 6.18 3.87 86.59	Not Selected N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes ≈ Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C	20.00 4.00 5.00 70% 50% Ircular Orifice, Restr Zone 3 Restrictor	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice)	lat grate) total area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29	Not Selected N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes ≈ Overflow Grate Open Area % = Debris Clogging % = Wer Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58	N/A N/A N/A N/A N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orlfice) ft (distance below bas	lat grate) total area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ft)	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area =	Zone 3 Weir           6.49           6.18           3.87           86.59           43.29	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes ≈ Overflow Grate Open Area % = Debris Clogging % = wer Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55.00	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected	feet H:V (enter zero for fi feet %, grate open area/t % gular Orlfice) ft (distance below bas inches	lat grate) total area in bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ( t)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Paramete: Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected	feet should be $\ge 4$ $ft^2$ $ft^2$ te
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes ≈ Overflow Grate Open Area % = Debris Clogging % = Ber Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58	N/A N/A N/A N/A N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orlfice) ft (distance below bas	lat grate) total area in bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ft)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Paramete: Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet should be $\ge 4$ ft ² ft ² te ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes ≈ Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55 00 58.80	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orlfice) ft (distance below bas inches	lat grate) total area in bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ( t)	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe =	Zone 3 Weir           6.49           6.18           3.87           86.59           43.29   rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A	feet should be $\geq 4$ ft ² ft ² te ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes ≈ Overflow Grate Open Area % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55 00 58.80	N/A N/A N/A N/A N/A N/A Not Selected N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % mgular Orifice) ft (distance below bas inches inches	lat grate) total area in bottom at Stage = 0 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ( Central Angle of Restr	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula	Zone 3 Weir           6.49           6.18           3.87           86.59           43.29           rs for Outlet Pipe w/           Zone 3 Restrictor           22.35           2.60           2.47           ted Parameters for \$	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A	feet should be $\geq 4$ ft ² ft ² ft ² fte
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Ber Input: Outlet Pipe w/ Flow Restriction Piate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Piate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55 00 58.80 ular or Trapezoidal)	N/A N/A N/A N/A N/A N/A Not Selected N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orlfice) ft (distance below bas inches	lat grate) total area in bottom at Stage = 0 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ( C ft) ft) ft) Central Angle of Restr Spilliway	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir           6.49           6.18           3.87           86.59           43.29   rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 tted Parameters for 3 1.36	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Bpillway feet	feet should be $\geq 4$ ft ² ft ² te ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Piate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Piate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	20.00 4.00 5.00 70% 50% incular Orifice, Restrictor 0.58 55 00 58.80 ular or Trapezoidai) 12 40	N/A N/A N/A N/A N/A Not Selected N/A N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % mgular Orifice) ft (distance below bas inches inches	lat grate) total area in bottom at Stage = 0 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Overflow Grate Op ( Centra) Angle of Restr Spillway Stage at	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 rted Parameters for S 1.36 15.26	Not Selected N/A	feet should be $\geq 4$ ft ² ft ² te ft ² ft ² fteet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = Ber Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	20.00 4.00 5.00 70% 50% Incular Orifice, Restrictor 0.58 55.00 58.80 Ular or Trapezoidali) 12.40 74.00	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % mgular Orifice) ft (distance below bas inches inches	lat grate) total area in bottom at Stage = 0 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Overflow Grate Op ( Centra) Angle of Restr Spillway Stage at	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir           6.49           6.18           3.87           86.59           43.29   rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 tted Parameters for 3 1.36	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Bpillway feet	feet should be $\geq 4$ ft ² ft ² te ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Ber Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55.00 58.80 Ular or Trapezoidai) 12.40 74.00 4.00	N/A N/A N/A N/A N/A intor Plate, or Rectar Not Selected N/A N/A N/A ft (relative to basin the feet H:V	feet H:V (enter zero for fi feet %, grate open area/t % mgular Orifice) ft (distance below bas inches inches	lat grate) total area in bottom at Stage = 0 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Overflow Grate Op ( Centra) Angle of Restr Spillway Stage at	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 rted Parameters for S 1.36 15.26	Not Selected N/A	feet should be $\geq 4$ ft ² ft ² te ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Wer Input: Outlet Pipe w/ Flow Restriction Piate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Piate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	20.00 4.00 5.00 70% 50% incular Orifice, Restrictor 0.58 55 00 58.80 ular or Trapezoidal) 12.40 74.00 4.00 1.50	N/A N/A N/A N/A N/A intor Plate, or Rectar Not Selected N/A N/A N/A ft (relative to basin the feet H:V	feet H:V (enter zero for fi feet %, grate open area/t % mgular Orifice) ft (distance below bas inches inches	lat grate) total area in bottom at Stage = 0 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Overflow Grate Op ( Centra) Angle of Restr Spillway Stage at	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 rted Parameters for S 1.36 15.26	Not Selected N/A	feet should be $\geq 4$ ft ² ft ² te ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Piate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Piate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Kend Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Deeign Storm Return Period =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55.00 58.80 Ular or Trapezoidal) 12.40 74.00 4.00 2.50	N/A N/A N/A N/A N/A intor Plate, or Rectar Not Selected N/A N/A N/A ft (relative to basin the feet H:V feet EURV	feet H:V (enter zero for fi feet %, grate open area/1 % ngular Orlfice) ft (distance below bas inches inches bottom at Stage = 0 ft	lat grate) total area in bottom at Stage = 0 Half-1 t) 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Overflow Grate Op ( Centra) Angle of Restr Spillway Stage at	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 rted Parameters for S 1.36 15.26	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Splilway feet feet acres	feet should be $\geq 4$ $fr^2$ $fr^2$ te feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes ≈ Overflow Grate Open Area % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Deeign Storm Reburn Period = One-Hour Rainfall Depth (in) =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55.00 58.80 Ular or Trapezoidal) 12.40 74.00 4.00 1.50	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A fictor Plate, or Rectar N/A N/A N/A Elected N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orffice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19	lat grate) total area in bottom at Stage = 0 Half-1 t) 5 Year 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ( C ft) Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centrold = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 43.29 2one 3 Restrictor 22.35 2.60 2.47 tted Parameters for 3 1.36 1.5.26 1.66	Not Selected N/A	feet should be $\geq 4$ ft ² ft ² ft ² fte
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = Ber Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55.00 58.80 Ular or Trapezoidal) 12.40 74.00 4.00 2.50	N/A N/A N/A N/A N/A intor Plate, or Rectar Not Selected N/A N/A N/A ft (relative to basin the feet H:V feet EURV	feet H:V (enter zero for fi feet %, grate open area/1 % ngular Orlfice) ft (distance below bas inches inches bottom at Stage = 0 ft	lat grate) total area in bottom at Stage = 0 Half-1 t) 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Central Angle of Restr Spilliway Stage at Basin Area at	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 rted Parameters for 3 1.36 1.526 1.66	Not Selected N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = The Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stagee Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55.00 58.80 Ular or Trapezoidal) 12.40 74.00 4.00 1.50	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A fictor Plate, or Rectar N/A N/A N/A Elected N/A N/A	feet H:V (enter zero for fi feet %, grate open area/1 % ngular Orifice) ft (distance below bas inches inches soottom at Stage = 0 ft 2 Year 1.19 1.778	lat grate) total area in bottom at Stage = 0 Half-1 t) <u>5 Year 1.50 4.643</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ( C ft) Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 8.198	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= i Top of Freeboard = t Top of Freeboard = 25 Year 2.00 16,469	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 rted Parameters for 3 1.36 1.5.26 1.66 50 Year 2.25 22.829	Not Selected N/A	feet should be $\geq$ 4 $ft^2$ $ft^2$ feet feet radians 500 Year 3.29 49.821
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = The Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Kater Surface = Received Hydrograph Results Design Storm Return Period = Orne-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Xeuter Surface)	20.00 4.00 5.00 70% 50% Incular Orifice, Restrictor 0.58 55 00 58.80 Ular or Trapezoidai) 12 40 74.00 4.00 2.50 WQCV 0.53 1.967	N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 2.920	feet H:V (enter zero for fi feet %, grate open area/t % gular Orffice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19	lat grate) total area in bottom at Stage = 0 Half-1 t) 5 Year 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op C ft) Out Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 8.198 8.194	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/o Debris = calculated Parameter Coulet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 16.455	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 20ne 3 Restrictor 22.35 2.60 2.47 ted Parameters for 3 1.36 15.26 1.66 50 Year 2.25 2.829 22.814	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.29 49.821 49.804
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = ter Input: Outlet Pipe w/ Flow Restriction Piate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Deeign Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (ofa/acre) = Predevelopment Peak Q (ofa) =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55 00 58.80 ular or Trapezoidal) 12 40 74.00 4.00 1.50 0.53 1.967 1.966 0.00 0.0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orffice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.778	lat grate) total area in bottom at Stage = 0 Half- t) <u>5 Year 1.50 4.643</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ( C ft) Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 8.198	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= i Top of Freeboard = t Top of Freeboard = 25 Year 2.00 16,469	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 rted Parameters for 5 1.36 1.5.26 1.5.26 1.66 50 Year 2.25 22.829 22.814 0.60	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.53 30.940 30.925 0.84	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.29 49.821 49.804 1.31
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = Ber Input: Outlet Pipe w/ Flow Restriction Piate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Piate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Restrict Runoff Volume (acre-ft) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (ofa/acre) = Predevelopment Unit Peak Row, q (ofa/acre) = Predevelopment Qcfe) =	20.00 4.00 5.00 70% 50% Incular Orifice, Restrictor 0.58 55 00 58.80 Ular or Trapezoidai) 12 40 74.00 4.00 1.50 WQCV 0.53 1.967 1.966 0.00 0.0 24.1	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A N/A t (relative to basin t feet H:V feet EURV 1.07 2.920 2.919 0.00 0.0 36.0	feet H:V (enter zero for fi feet %, grate open area/1 % ngular Orifice) ft (distance below bas inches inches oottom at Stage = 0 ft 2 Year 1.19 1.777 0.01 1.8 21.8	lat grate) total area in bottom at Stage = 0 Half-1 t) 5 Year 1.50 4.643 4.643 4.642 0.07 2.6.0 57.5	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op C th Out Central Angle of Restr Spillway Stage at Basin Area at 0 Year 1.75 8.198 8.194 0.15 5.2.1 10.16	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= i Top of Freeboard = t Top of Freeboard = 25 Year 2.00 16.455 0.41 145.5 202.9	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 20ne 3 Restrictor 22.35 2.60 2.47 ted Parameters for 3 1.36 15.26 1.66 50 Year 2.25 2.829 22.814	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.29 4.8.821 4.9.824 1.31 462.9
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Runoff Volume (acre-ft) = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (dra/acre) = Predevelopment Peak (Q (cfs) = Peak Inflow Q (cfs) = Peak Nnflow Q (cfs) =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55.00 58.80 Ular or Trapezoidal) 12.40 74.00 4.00 1.50 0.53 1.967 1.966 0.00 0.0 24.1 0.9	N/A           N/A           N/A           N/A           N/A           N/A           ictor Plate, or Rectar           ictor Plate, or Rectar           ictor Plate, or Rectar           feet           H:V           feet           1.07           2.919           0.00           0.0           35.0           1.2	feet H:V (enter zero for fi feet %, grate open area/t % gular Orffice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.778 1.777 0.01 1.8 2.1.8 0.8	lat grate) total area in bottom at Stage = 0 Half-1 t;) 5 Year 1.50 4.643 4.642 0.07 26.0 57.5 15.4	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Stage of Basin Area of Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Stage Overflow Grate Overflow Stage Overflow Grate Overflow Stage Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overfl	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/o Debris = calculated Paramete: Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 16.455 0.41 145.55 202.9 162.6	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 20ne 3 Restrictor 22.35 2.60 2.47 ted Parameters for 3 1.36 1.5.26 1.66 50 Year 2.25 2.829 22.814 0.60 2179.6 237.7	Not Selected           N/A           Solution           30.925           0.84           295.1	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.29 49.821 49.804 1.31
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = Ber Input: Outlet Pipe w/ Flow Restriction Piate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Piate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Restrict Runoff Volume (acre-ft) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (ofa/acre) = Predevelopment Unit Peak Row, q (ofa/acre) = Predevelopment Qcfe) =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55 00 58.80 Ular or Trapezoidai) 12 40 74.00 1.50 WQCV 0.53 1.967 	N/A N/A N/A N/A N/A N/A N/A N/A t (relative to basin to feet H:V feet EURV 1.07 2.920 2.919 0.00 0.0 35.0 1.2 N/A	feet H:V (enter zero for fi feet %, grate open area/1 % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.778 2.1.8 1.777 0.01 1.8 2.1.8 2.1.8 0.8 N/A	lat grate) total area in bottom at Stage = 0 Half-1 t) 5 Year 1.50 4.643 4.642 0.07 26.0 57.5 15.4 0.6	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op C t) Central Angle of Restr Spillway Stage at Basin Area at Basin Area at 8.194 0.15 52.1 101.6 56.8 1.1	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/o Debris = pen Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth- t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 16.465 0.41 1.45.5 202.9 162.6 1.1	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 rted Parameters for 5 1.36 1.5.26 1.56 2.25 22.829 22.814 0.60 212.0 279.6 237.7 1.1	Not Selected           N/A           Splitway           feet           acres           30.925           0.84           299.4           1.0	feet should be ≥ 4 ft ² ft ² ft ² feet radians 49.804 1.31 462.9 549.8 357.4 0.8
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Experience = Restrict above Max Water Surface = Rected Hydrograph Results Deeign Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrogruph Volume (acre-ft) = Inflow Hydrogruph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (disfacre) = Predevelopment Peak Q (dis) = Peak Inflow Q (dis) = Peak Nuflow Q (dis) = Retio Peak Outflow to Predevelopment Q =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55.00 58.80 Ular or Trapezoidal) 12.40 74.00 4.00 1.50 0.53 1.967 1.966 0.00 0.0 24.1 0.9	N/A           N/A           N/A           N/A           N/A           N/A           ictor Plate, or Rectar           ictor Plate, or Rectar           ictor Plate, or Rectar           feet           H:V           feet           1.07           2.919           0.00           0.0           35.0           1.2	feet H:V (enter zero for fi feet %, grate open area/t % gular Orffice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.19</u> <u>1.776</u> <u>2.777</u> <u>0.01</u> <u>1.8</u> <u>21.8</u> <u>0.8</u> <u>N/A</u> Plate	lat grate) total area in bottom at Stage = 0 Half-1 t) 5 Year 1.50 4.643 4.643 4.643 4.643 4.642 4.642 4.642 4.642 4.642 4.642 4.642 4.642 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 6.655 6.655 6.6556 6.6566 6.6566 6.6566666666	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op C t) Outl Central Angle of Restr Spillway Stage at Basin Area at Basin Area at 0.15 5.2.1 101.6 5.6.8 1.1 Overflow Grate 1	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/o Debris = calculated Parameter Cutlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.00 16.469 1.1 Overflow Grate 1	Zone 3 Weir 6.49 6.49 6.18 3.87 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 ted Parameters for 3 1.36 1.5.26 1.66 50 Year 2.2829 22.814 0.60 212.0 279.6 237.7 1.1 Overflow Grate 1	Not Selected           N/A           Sologa           0.925           0.84           295.1 <td>feet should be ≥ 4 ft² ft² ft² feet feet radians</td>	feet should be ≥ 4 ft ² ft ² ft ² feet feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Design Storm Return Period = Orne-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Results OPTIONAL Override Runoff Volume (acre-ft) = Predevelopment Unit Peak Riow, q (drafacre) = Predevelopment Peak (offs) = Peak Unflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55 00 58.80 ular or Trapezoidal) 12 40 74.00 4.00 1.50 0.53 1.967 1.967 1.967 0.00 0.0 0.0 24.1 0.9 N/A Piate	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V (enter zero for fi feet %, grate open area/1 % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.778 2.1.8 1.777 0.01 1.8 2.1.8 2.1.8 0.8 N/A	lat grate) total area in bottom at Stage = 0 Half- t) 5 Year 1.50 4.643 4.643 4.643 4.643 0.07 26.0 57.5 15.4 0.6 Overflow Grate 1 0.2	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate 1 Overflow Grate 1 O.6	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/o Debris = calculated Paramete: Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design: Flow Depth= t Top of Freeboard = Calcula Design: Flow Depth= t Top of Freeboard = 25 Year 2.00 16.455 0.41 145.5 202.9 162.6 1.1 Overflow Grate 1 1.9	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 rted Parameters for 3 1.36 15.26 1.66 50 Year 2.2829 22.814 0.60 212.0 27.9.6 237.7 1.1 Overflow Grate 1 2.7	Not Selected           N/A           Splitway           feet           acres           30.925           0.8	feet should be ≥ 4 ft ² ft ² ft ² feet radians 49.804 1.31 462.9 49.804 1.31 462.9 549.8 357.4 0.8 N/A 4.1
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Ber Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = Ore-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrogruph Volume (acre-ft) = Inflow Hydrogruph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (offaleare) = Predevelopment Verfale Q (offs) = Peak Inflow Q (offs) = Ratio Peak Outflow to Predevelopment Q (offs) = Max Velocity through Grate 1 (ftp) =	20.00 4.00 5.00 70% 50% incular Orifice, Restr Zone 3 Restrictor 0.58 55 00 58.80 12 40 74.00 4.00 1.50 0.53 1.967 0.53 1.967 1.966 0.00 0.0 24.1 0.9 N/A Plate N/A N/A 45	N/A N/A N/A N/A N/A N/A N/A N/A N/A R (relative to basin to feet H:V feet EURV 1.07 2.920 2.919 0.00 0.0 36.0 1.2 N/A Plate N/A N/A S4	feet H:V (enter zero for fi feet %, grate open area/1 % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.777 0.01 1.8 2.1.8 0.8 N/A Plate N/A Plate N/A 43	lat grate) total area in bottom at Stage = 0 Half-1 t) 5 Year 1.50 4.643 4.643 4.643 4.643 4.642 4.642 4.642 4.642 4.642 4.642 4.642 4.642 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.643 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 4.645 6.655 6.655 6.6556 6.6556 6.65566 6.65566666666	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op C t) Outl Central Angle of Restr Spillway Stage at Basin Area at Basin Area at 0.15 5.2.1 101.6 5.6.8 1.1 Overflow Grate 1	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/o Debris = calculated Parameter Cutlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.00 16.469 1.1 Overflow Grate 1	Zone 3 Weir 6.49 6.49 6.18 3.87 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 ted Parameters for 3 1.36 1.5.26 1.66 50 Year 2.2829 22.814 0.60 212.0 279.6 237.7 1.1 Overflow Grate 1	Not Selected           N/A           Splitway           feet           feet           gcres           30.925           0.84           295.1           368.4           289.4           1.0           3.3           N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians 49.8211 49.824 1.31 462.9 549.8 357.4 0.8 N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Piate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Piate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway Invert Stage= Freeboard above Max Water Surface = Rested Hydrograph Results Deeign Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (dra/acre) = Predevelopment Unit Peak Runoff volume (acre-ft) = Restinflow Q (dr6) = Peak Inflow Q (dr6) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fpa) = Max Velocity through Grate 1 (fpa) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55 00 58.80 Ular or Trapezoidal) 12 40 74.00 4.00 1.50 0.53 1.967 0.53 1.967 0.00 0.0 24.1 0.9 N/A Plate N/A N/A N/A A 5 47	N/A           N/A           N/A           N/A           N/A           Into relate, or Rectar           Not Selected           N/A           N/A           Into relate, or Rectar           Not Selected           N/A           Into relate, or Rectar           R (relative to basin the relation of	feet H:V (enter zero for fi feet %, grate open area/t % gular Orffice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.776 2.777 0.001 1.8 21.8 0.8 N/A Plate N/A N/A 43 45	lat grate) total area in bottom at Stage = 0 Half-0 t) 5 Year 1.50 4.643 4.643 4.643 4.643 4.643 5.5 15.4 0.6 0.6 0.2 N/A 5.5 60	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () ft) Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 8.198 8.194 0.15 5.2.1 101.6 5.6.8 1.1 Overflow Grate 1 0.6 N/A	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/o Debris = calculated Parameter Calculated Parameter Coutlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Celcula Design Flow Depth= t Top of Freeboard = Coutlet Orifice Area = Celcula Design Flow Depth= Celcula Design Flow Depth= Celcula Design Flow Depth= 16,465 0.41 145,5 202,9 16,26 1.1 Overflow Grate 1 1,9 N/A	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 20ne 3 Restrictor 22.35 2.60 2.47 ted Parameters for 3 1.36 1.5.26 1.66 50 Year 2.25 22.829 22.814 0.60 212.0 27.9.6 237.7 1.1 Overflow Grate 1 2.7 N/A	Not Selected           N/A           Splitway           feet           acres           30.925           0.8	feet should be ≥ 4 ft² ft² ft² feet fadians 49.804 1.31 462.9 549.80 49.804 1.31 462.9 549.8 N/A 0.8 N/A 23
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe invert = User input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Deeign Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (dra/acre) = Predevelopment Peak Q (dr6) = Peak Nuffiow Q (dr6) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fpe) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55.00 58.80 Ular or Trapezoidal) 12.40 74.00 4.00 1.50 WQCV 0.53 1.967 1.966 0.00 0.0 24.1 0.9 N/A Pilate N/A N/A 47 3.68	N/A           N/A           N/A           N/A           N/A           N/A           ictor Plate, or Rectar           Not Selected           N/A           ictor Plate, or Rectar           N/A           N/A           fet           H:V           feet           1.07           2.920           2.919           0.00           0.0           36.0           1.2           N/A           Plate           N/A           54           57           4.69	feet H:V (enter zero for fi feet %, grate open area/ti % gular Orffice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.778 2.1.8 0.01 1.8 2.1.8 0.8 N/A Plate N/A 43 45 3.47	lat grate) total area in bottom at Stage = 0 Half- total area 4.643 4.643 4.643 4.643 0.07 26.0 57.5 15.4 0.6 0verflow Grate 1 0.2 N/A 55 60 5.53	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Spillway Stage af Basin Area af Basin Area af 10 Year 1.75 8.198 8.194 0.15 52.1 101.6 56.8 1.1 Overflow Grate 1 0.6 N/A 51 58 6.24	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/o Debris = pen Area w/ Debris = Calculated Paramete: Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = 100 CFreeboard = 25 Year 2.00 16.455 0.41 145.5 202.9 162.6 1.1 Overflow Grate 1 1.9 N/A 43 54 7.35	Zone 3 Weir 6.49 6.18 3.87 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 ted Parameters for § 1.36 1.5.26 1.66 50 Year 2.25 22.829 22.814 0.60 212.0 279.6 237.7 1.1 Overflow Grate 1 2.7 N/A 38	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians 49.821 49.821 49.821 49.821 0.8 N/A 0.8 N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway Invert Stage= Freeboard above Max Water Surface = Rested Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (dra/acre) = Predevelopment Unit Peak Rundf Volume (acre-ft) = Rested Ndflow Q (dr6) = Peak Inflow Q (dr6) = Reatio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fpa) = Max Velocity through Grate 1 (fpa) = Max Velocity through Grate 1 (fpa) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	20.00 4.00 5.00 70% 50% Incular Orifice, Restr Zone 3 Restrictor 0.58 55 00 58.80 Ular or Trapezoidal) 12 40 74.00 4.00 1.50 0.53 1.967 0.53 1.967 0.00 0.0 24.1 0.9 N/A Plate N/A N/A N/A A 5 47	N/A           N/A           N/A           N/A           N/A           Intro Plate, or Rectar           Not Selected           N/A           N/A           Intro Plate, or Rectar           Not Selected           N/A           Intro Plate, or Rectar           Intro Plate, or Rectar           Intro Plate, or Rectar           N/A           Intro Plate, or Rectar           Intro Plate           N/A           Intro Plate           N/A           Plate           N/A           N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orffice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.776 2.777 0.001 1.8 21.8 0.8 N/A Plate N/A N/A 43 45	lat grate) total area in bottom at Stage = 0 Half-0 t) 5 Year 1.50 4.643 4.643 4.643 4.643 4.643 5.5 15.4 0.6 0.6 0.2 N/A 5.5 60	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Open 8.194 0.15 52.1 101.6 56.8 1.1 Overflow Grate 1 0.6 N/A 51 58	Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = pen Area w/o Debris = calculated Parameter Calculated Parameter Cutlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 2.00 16.459 1.45.5 2.02.9 1.62.6 1.1 Overflow Grate 1 1.9 N/A 4.3 54	Zone 3 Weir 6.49 6.49 6.18 3.87 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 ted Parameters for S 1.36 1.5.26 1.66 50 Year 2.2829 22.814 0.60 212.0 279.6 237.7 1.1 Overflow Grate 1 2.7 N/A 38 52	Not Selected           N/A           Solution           30.925           0.84           295.1           368.4           289.4           1.0           Outlet Plate 1           33           49	feet should be ≥ 4 $ft^2$ $ft^2$ feet radians



DETENTION BASIN STAGE-STORAGE TABLE BUILDER		Baain (D: POND W-4 INTERIM	2014 1 400 5 Contract Depth Increment = 0.1 ft	iguration (Retention Pond) Stage Stage Optional Length Wridth Area Override Area Volume V	Uescarption (11) Stage (11) (11) (11-2) Area (11-2) (acre) (acre) Mileropool - 0.00 208 0.005 23	EDB 0,140 3,096	352.23 Bacres Note: L/W Ratio > 8 - 2.00 30,165 0.692	3.00 33.323 0.766 53,026	10.00% [percent	54.0% Percent - 6.00 1.014 1019 1272	46.0% percent	0.0% percent - 6.00 - 51,767 1.189 286,470	40.0 hours	UPECD Default UPECD Default - 10.00 56,878 1.376 378,307	- 11.00/ acre-let Optional User Override - 11.00 33,364 1.468 440,178	2.22.0 Bachiest introvenduation 2.22.0 Bachiest introvenduation 2.23.0 Bachiest introvenduation 2.24.0 Bachiest introvenduation	4.043 Bord-feet 1.16 Increase - 13.00	8.188 acce-feet 1.75 Inches	18.460 acre-feet 2.00 inches	22.820 acre-feet 2.25 Inches	30.940 acre-feet 2.53 Inches	49.821 acre-feet Inches	1.001 BICIT#HOBIC	4,947 Bacter feet	6.210 acre-feet	8.156 acre-feet	tie 100-yr Defantion Volume = 12.235 acre-feet		1.967	0.963	9.315 acre-feet	acre-feet	There are the second se					
	i.	č		1	Required Volume Calculation	Selected BMP	Watershed	Watershed Le	Watershed Impervious	Percentage Hydrologic Soil Group A =	Percentage Hydrologic Soil Group B =	Percentage Hydrologic Soll Groups C/D =	Desired WQCV Drain	Location for 1-hr Reinfall Depths = Weter Crucity, Contract Value - Astronty -	water ⊴uerity Capture volume (w.Q.C.V) = Evcene I inhen Brandf Vobano (Ei iEV) -	2-vr Rinoff Volume (P1 = 1 1)	5-yr Runoff Volume (P1 = 1.	10-yr Runoff Volume (P1 = 1.7	25-yr Runoff Volume (P1 = 2	50-yr Runoff Volume (P1 = 2.25 In.) =	100-yr Runoff Volume (P1 = 2.53 In.) =	Amminut 2 of Determine 2 of Determine Volume -	Approximate 5-yr Defention Volume =	Approximate 10-yr Detention Volume =	Approximate 25-yr Detention Volume =	Approximate 50-yr Detertion Volume =	Approximate 100-yr Detention Volume =	stage-storage Calculation	Zone 1 Volume (WC	Zane z Valume (EURV - Zon	zone 3 Valume (100-year - Zones 1 & 2) = Total Potentian Barin Value -	Lotal Letention Basin Yoli		Total Analiatic Determine Determine (1912) =	rotal Available Determinat Deput (F	Slope of Trickle Channel (	Slopes of Main Basin Sides (Smain) =	



PROJECT: STERLENG RANCH FIL. ADO. 2

DATE: 1-16-17 W-4 STLUWAY

POND W-N COPILLUAY / SW674 EON 12-21 EQN 12-20 EQN 12-21 宁  $\nabla$ FROM UPFLD 12-33 500.465 Q100 429.4 css C=3.0 74' EQN 12-20 Q=CLH^{1.5} EQN 12-21 Q= 3/5 C ZH2.5 PER 510E EQN 12-21 Q= 15 C EH EQN 12-20 Q= 3.0 (74) 1.5 = <u>497.84</u> EQN 12-21 Q= ²/₅ (3.0) (4) (1.5)^{2.5} = 13.23 × 2 (STOFS) = <u>26.45</u> -TOTAL = 407.84 +26.45 = 434.29 > 429.4 OK SPILLUAY BUNDOWN PROTECTION REPAR SIZZNG (UDFCO 12-34) FIGURE 12-21 BASED ON SLORE & UNIT DESCHARGE Q120 = 429.4 cts UNIT DISCHARES = 429.4/74' - 5.80 SLOPE = 1.8% FIGURE 12-21 USE TYPE L Drof 9" Sou REPRAP Depet dx Doo= 2 x 9"= 19"

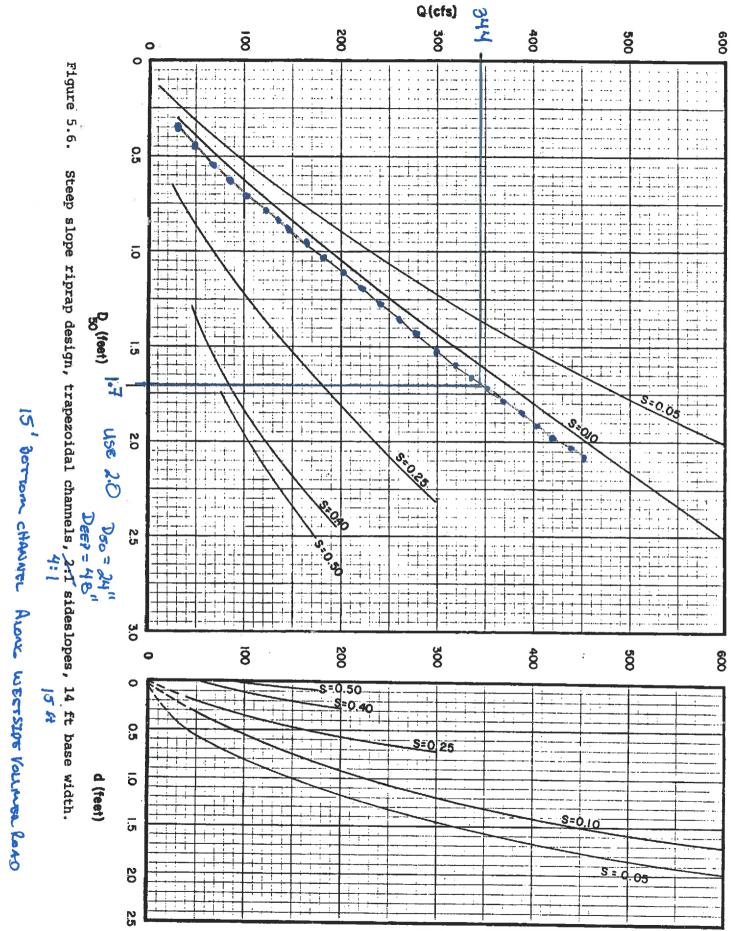


20 BOULDER CRESCENT, STE 110 **COLORADO SPRINGS, CO 80903** 

(719) 955-5485

PROJECT: STERLING PARTH FALTALE NO. 2.

DATE: 2-13-17 STREE FOREBAN


FOREBAY VOLUME FOR POUD W-4 SIZE OF CONTRIBUTING AREA. 352AC. NORTH FOREBAY VOLUME 95% OF TOTAL WQCV WEST FOREBAY VOLUME 5% OF TOTAL WQCV NORTH MIN FORE BAY VOL = 3% OF WACH (UDFCD T-5, TABLE EDG-4) W-4 WOCV = 1.72# AC-FT NORTH FOREBAY VOL REQ. = 3.0% × (1.725 ACFT × 95%) × 43560 Cutt = 2142 CUFT @ MAX2 MUM DEPTH OF 30" PER TABLE EDB - 4 FROM POND & FOREBAY VOLUME SPREADSHEET MEN NORTH VOL PROVEDED = 12,211 CF 7 2142CF OK STZE PIPEN 2 960F 100 YR THELOW Q100 = 368.4 x 95% = 349.98 C85 = 350cb 2% x 350 cr3 = 7.0 cts From FLOW (ALLINATION SAFAD SAFAT 7 12"PVC = 2.53 cbs x 3 = 7.59 cbs > 7.0 cbs OK WEST MIN FREBAY VOL = 3% OF WOLU (UDFLD T-S, TABLE EDB-4) W-4 WOLV = 1.725 AC-FT WESPOCIET W-4 WOCV = 1.725 AC-FT NORTH FOLEGRY VOL REQ = 3.0% × (1.725 AC-FT ×5%)× 1AC-FT = 113 CUSH @ MENTMUN DEPTH OF 8" & 0.67' FED POND & FEREBAY VOLUME SARADSHEET MIN WEST KLPANED = 129CF > 13 CF SJZF Notett 2% OF 100YR INFLOW QIDS= 368.4 × 5% = 18.42 cfs = 19 cfs  $2\% \times 19 cfs = 0.37 cfs = 0.4 cfs WELLEON. 0 = CLH^{3/2} Q = 3.3 (0.25') (0.67')^{3/2} = 0.452 cfs > 0.4cfs]$ (= 3.3 POND SURCHARLOS DEPTH Z Min VocumE Z 0.3% WQCV PER TABLE EDB-M WALV VOL = 1.725 AC-FT X M3560 CUFT X D.3% = 23 CF. FROM POND & FORE OM VOLUME SPREADONHEOT MEN SUR VAR PROVIDE // 1: 1 ALEAST MALLOPOOL = 342 SOLA × 4TO (150) = AIHCE > 23CF



PROJECT: STERLENG PANELY FEIZAG AS2

DATE: ____

SLOPING RIRAD PROP STRUCTURE INTO POUR W-4 Q100 = 368.4 cfs UP STREAME PARA METERS CHANNEL BOTTON WIDTH = 15' SIDE SLOPES= 41/ SLOPE = 0.0213 + Ft/Ft Yn= 2.01 1c= 2,18 Vn = 8.0 DEOP STRUCTURE PARAMETERS DEOP REQ. = 7022 - 7016 = 6' DROP STRUCTURE SLOPE = 11.5% DETERMINE / UNIT DESCHARGE 368.4 - 15 = 24.56 = 9, FOR FIGURE 5.6 14' TRADEZODIAL CHANNEL 9,= 24.56 × 14 = 343.84 = 344 = 9 Flom File. 5.6 Dso= 2.0' TYPE"VH" 4' THICK



6T'S

(

12

r

	The open channel flow calcul	ator
Select Channel Type: Trapezoid ✓	$ \begin{array}{c c} \hline & & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline	Triangle
Velocity(V)&Discharge(Q)	Select unit system: Feet(ft) 🗸	
Channel slope <mark>: .0167</mark>	Water depth(y): 2.1 ft	Bottom width(b) 15
Flow velocity <mark>7.2551</mark> ft/s	LeftSlope (Z1): 4 to 1 (H:'	RightSlope (Z2): 4 to 1 (H:V
Flow discharge <mark>356.5167</mark> ft^3/s	Input n value 0.035 or select r	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 32.32	Flow area 49.14 ft^2	Top width(T)31.8 ft
Specific energy 2.92	Froude number 1.03	Flow status Supercritical flow
Critical depth 2.14 ft	Critical slope 0.0156 ft/ft	Velocity head 0.82 ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

SR FIL. Z

UPPER ROADSIDE DITCH NORTH OF VOLLMER/MAAKSHEFFEL INTERSECTION DP 72 Q100= 346 cfs

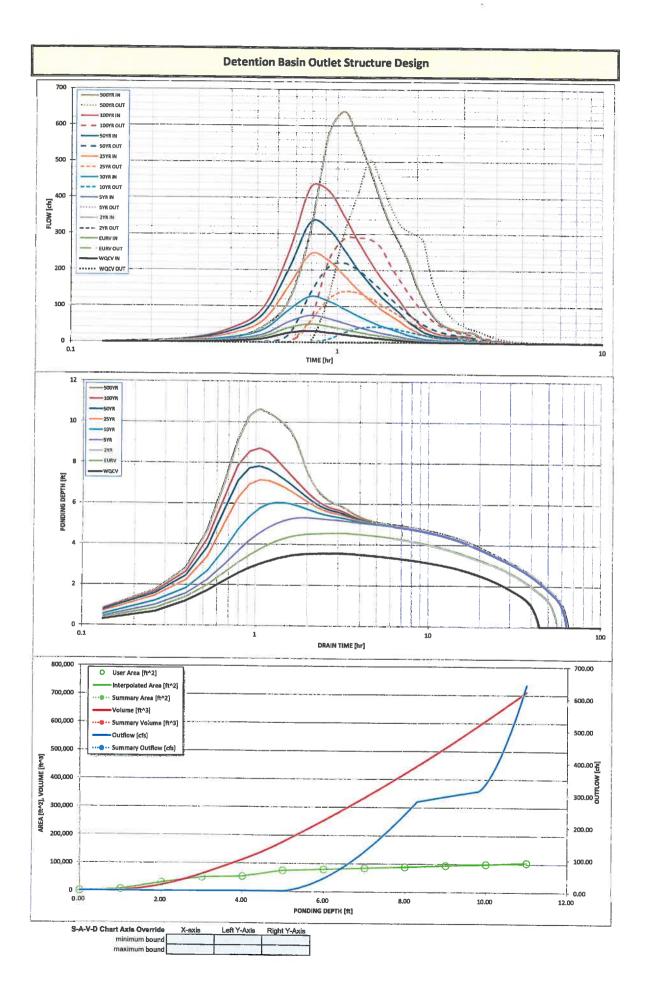
	The open channel flow calculate	ator
Select Channel Type: Trapezoid ✓	Rectangle Trapezoid	Triangle
Velocity(V)&Discharge(Q) V	Select unit system: Feet(ft) 🗸	
Channel slope: <mark>.0222</mark> ft/ft	Water depth(y): 1.99 ft	Bottom width(b) 15 ft
Flow velocity <mark>8.1214 ft/s</mark>	LeftSlope (Z1): 4 to 1 (H:'	RightSlope (Z2): 4 to 1 (H:V
Flow discharge 371.0712	Input n value 0.035 or select r	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 31.41	Flow area 45.69 ft^2	Top width(T) 30.92 ft
Specific energy 3.01 ft	Froude number 1.18	Flow status Supercritical flow
Critical depth 2.19 ft	Critical slope 0.0155 ft/ft	Velocity head 1.02 ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

SR FILZ

OF VOLMER /MARKSHEFFEL INTERSECTION

DP 49 Q100=368 css

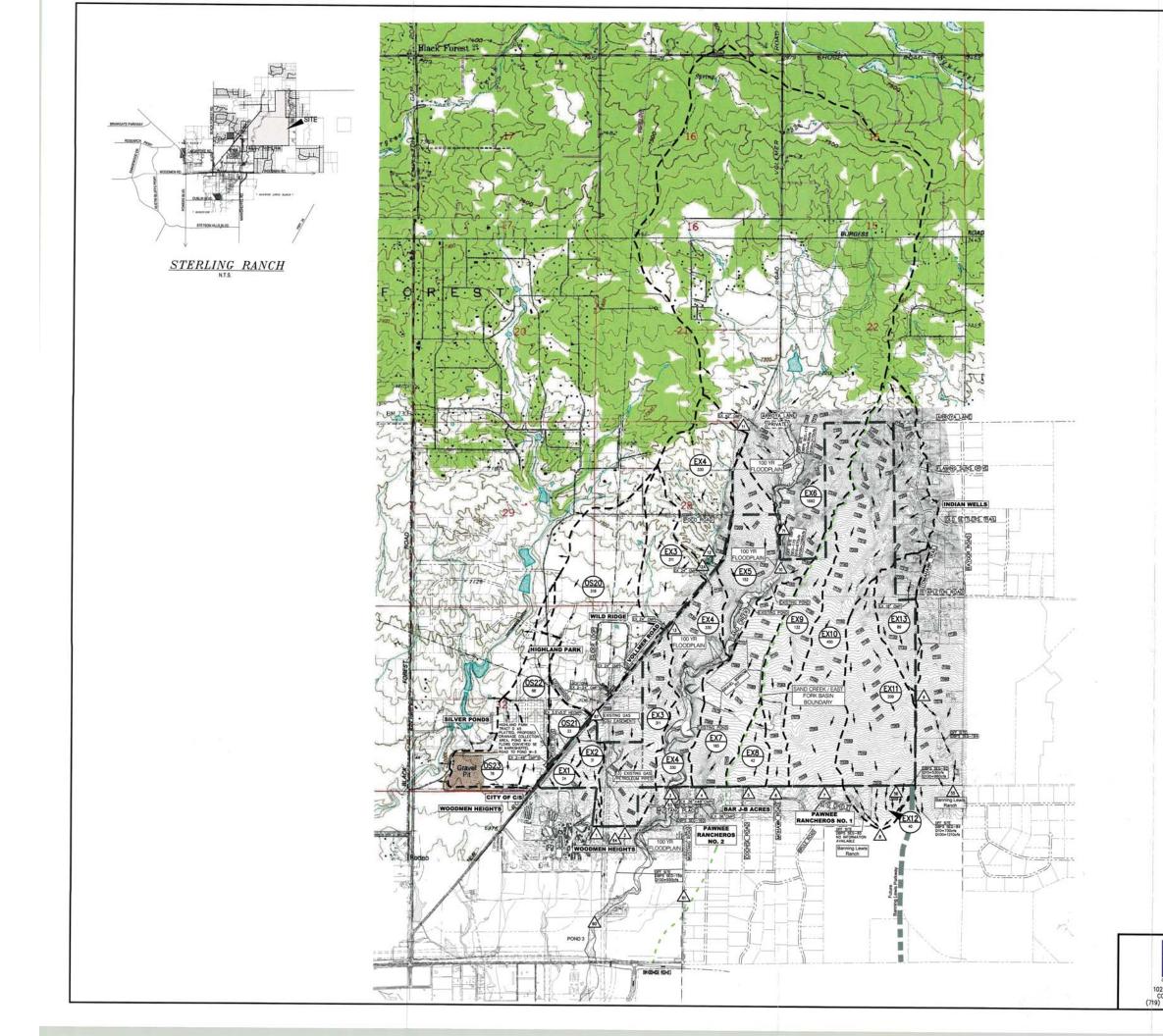



PROJECT: STERLENG PANCH FELENG 100.2

DATE: <u>2-21-17</u>

RIPLAR DESTEN FOR 3.5x5.5 HEEMP - E21 #2 DUTEAU ROMOSZOE SWALE Q100 = 199.14 CES EX. 3.5 × 5.5 HEEMD EQUT EN 35× 5.5 HEEMP EQUILALENT ROUND PIPE & 54" DIA LOW TATI WATER DESIGN DUTLET EN VOLUME PORP SWALE EQN. 9-11 (UDFCD VOLZ 9-68) LP= (Zten Q) (At - W) Eav 9-12 At = (V= traine 5 th) = 199.14c82/ = 39.82'+21-10ft2 "H= 04 (b) (0.4 ADSUMED) H= 0.4 (4.5) = 1.8 D= W= 4.5" Q/DZ.S = 199,14/4525 = 4.64 < 6.0 OK EQN 9-13 = tun' ( ZEFS) EF En PANS 2000 RACEA FROM FLG. 9-35 = 2.8 0 = tun' ( Z. (Z.B)) = 10.12 EQN 9-11  $L_p = \left(\frac{1}{26m10.12}\right)\left(\frac{40}{1.8} - 4.5\right) = 49.65 \stackrel{\circ}{=} 50'$ CHUCK 3(0) and = 3(4.5) = 135' × 50' MSE 50'] EQN 9-14 T= 2 (Lpton 0) + 45 T= 2 (50 600, 10, 12) + 45 = 22.34 = 23 CHERK 3(0) min= 3(4.5): 13.5 < 25' [USE 23'] REPRAY SIZZAG FIG 9-38 (40400 612) VALO FOR 0/02.5 26 Q/D15 = 199.14/4,51.5 = 20.26 96/D= 0.4 Assantos FROM Fris 9-38 - TYPE H DSO = 18" EQN 9-15 DEPTH 2DSO = 2(18") = 36" RIPRAD PAD = SO'L x 23'W x 36 DEEP

		Det	ention Basin	<b>Outlet Struc</b>	ture Design				
			<u></u> ,						
	: STERLING RANC	H FILING NO. 2							
2004E 3 2004E 2 2004E 1									
				Stage (ft)	Zone Volume (ac-f	t) Outlet Type			
tormal some 1 work			Zone 1 (WQCV	1) 3.77	2.291	Crifice Plate			
		AR	Zone 2 (EURV	1 4.75	1.329	Orlfice Plate	-		
PERMANENT OFFICES			ione 3 (100-year		9.719	Weir&Pipe (Restrict	-		
Example Zone	e Configuration (R	etention Pond)		'L	13,338		2		
ser Input: Orifice at Underdrain Outlet (typically	used to drain WOCV	in a Filtration BMP)			13.338	Total			
Underdrain Orifice Invert Depth =	N/A		the filtration media s	urface)			ted Parameters for L		
Underdrain Orifice Dlameter =	N/A	inches	the intraction means a	unace)		erdrain Orifice Area	= <u>N/A</u>	ft²	
					Underdi	ain Orlfice Centroid	= <u>N/A</u>	feet	
ser Input: Orifice Plate with one or more orifices	or Elliptical Slot We	ir (typically used to e	drain WOCV and/or F	FillRV in a sedimente	tion BMD)		1.4.15		
Invert of Lowest Orifice =	0.00	Ift (relative to basin	bottom at Stage = 0	A)			ulated Parameters fe		
Depth at top of Zone using Orifice Plate =	4.99		bottom at Stage = 0			Orifice Area per Row		f ^{#2}	
Orifice Plate: Orifice Vertical Spacing =	18.10	inches	Detterin at otage = 0			Elliptical Half-Width		feet	
Orifice Plate: Orifice Area per Row =	8.51	sq. inches (use rect	angular openingr)		EII	Iptical Slot Centroid		feet	
			angener opennigs/			Elliptical Slot Area :	=N/A	ft²	
ser input: Stage and Total Area of Each Orifice	Row (numbered fro	m lowest to highes	1)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Baug to the st				-
Stage of Orifice Centroid (ft)		1.66	3.33	(1000 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	4
Orifice Area (sq. inches)		8.51	8.51		1				-
,		0.01	0.01						
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Rout 4 /	Denter		-
Stage of Crifice Centroid (ft)			riou in (optional)	(optional)	Now 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	<u> </u>
Orifice Area (sq. inches)									-
		<b></b> ,			<u> </u>				_
User Input: Vertical Orifice (Circ	cular or Rectangular)					Colquiate	Denne de se		
	Not Selected	Not Selected	1			Cauculated	Parameters for Ver		-
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin.	bottom at Stage = 0	<del>4</del> 1 1		Not Selected	Not Selected	4
Depth at top of Zone using Vertical Orifice =	N/A	N/A.		bottom at Stage = 0		ertical Orifice Area =	N/A	N/A	ft²
Vertical Orlfice Diameter =	N/A	N/A	inches	porroun ar praße = 0	it) verti	cal Orifice Centrold =	N/A	N/A	feet
		inges .	Juicilies						
Handlers & A. & A. State of the second									
user input: Overhow Weir (Drophov) and G	rate (Fist on Signad)								
User Input: Overflow Weir (Dropbox) and G		Net	1			Calculater	Parameters for Ove	erflow Weir	
	Zone 3 Weir	Not Selected	]				Parameters for Ove	erflow Weir Not Selected	— 1
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 4.99	N/A	ft (relative to basin bo	ottom at Stage = 0 ft)		ate Upper Edge, H _t =			
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir 4.95 20.00	N/A N/A	feet		Over Flow	ate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir	Not Selected	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	Zone 3 Weir 4.95 20.00 4.00	N/A N/A N/A	feet H:V (enter zero for f		Over Flow	ate Upper Edge, H _t =	Zone 3 Weir 6.49	Not Selected	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 4.95 20.00 4.00 5.00	N/A N/A N/A N/A	feet H:V (enter zero for f feet	lat grate)	Over Flow Grate Open Area /	ate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir 6.49 6.18	Not Selected N/A N/A	feet should be ≥ 4
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Hortz. Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 4.99 20.00 4.00 6.00 70%	N/A N/A N/A N/A N/A	feet H:V (enter zero for f	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 6.49 6.18 3.69 86.59	Not Selected N/A N/A N/A	feet should be ≥ 4 ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 4.95 20.00 4.00 5.00	N/A N/A N/A N/A	feet H:V (enter zero for f feet	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir 5/ope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 6.49 6.18 3.69 86.59	Not Selected N/A N/A N/A N/A N/A	feet should be ≥ 4
Overflow Welr Front Edge Height, Ho = Overflow Welr Front Edge Length = Overflow Weir Slope = Hortz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50%	N/A N/A N/A N/A N/A N/A	feet H:V (enter zero for f feet %, grate open area/i %	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir 5/ope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 6.49 6.18 3.69 86.59	Not Selected N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ²
Overflow Welr Front Edge Height, Ho = Overflow Welr Front Edge Length = Overflow Weir Slope = Hortz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% Ircular Orifice, Restri	N/A N/A N/A N/A N/A N/A	feet H:V (enter zero for f feet %, grate open area/i %	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29	Not Selected N/A N/A N/A N/A N/A	feet should be≥4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (Cl	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor	N/A N/A N/A N/A N/A N/A	feet H:V (enter zero for f feet %, grate open area/i %	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 To for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Selow Restriction Pla	feet should be≥4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Hortz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% Ircular Orifice, Restri	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectar	feet H:V (enter zero for f feet %, grate open area/i %	lat grate) total area	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orffice Area = en Area w/o Debrfs = Den Area w/ Debris = alculated Parameter	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected	feet should be $\ge 4$ $ft^2$ $ft^2$
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (Cl	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor	N/A N/A N/A N/A N/A N/A Ctor Piste, or Rectar Not Selected	feet H:V (enter zero for f feet %, grate open area/l % gular Orifice)	lat grate) total area	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ft)	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet should be $\geq 4$ $\Re^2$ $\Re^2$
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe =	Zone 3 Weir 4.95 20.00 4.00 6.0C 70% 50% ircular Orlfice, Restri Zone 3 Restrictor 0.58	N/A N/A N/A N/A N/A Ctor Piste, or Rectar Not Selected N/A N/A	feet H:V (enter zero for f feet %, grate open area/1 % <b>gular Orifice)</b> ft (distance below bas	lat grate) total area in bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ( C ft) ( Outl	ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orffice Area = en Area w/o Debris = en Area w/ Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid =	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 To for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A	feet should be $\geq 4$ $ft^2$ $ft^2$ $ft^2$ fteet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Hortz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% S0% ircular Orlfice, Restrictor 0.58 66.00 83.40	N/A N/A N/A N/A N/A Ctor Piste, or Rectar Not Selected N/A N/A	feet H:V (enter zero for f feet %, grate open area/i % gular Orifice) ft (distance below bas inches	lat grate) total area in bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ft)	ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orffice Area = en Area w/o Debris = en Area w/ Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid =	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet should be $\geq 4$ $\Re^2$ $\Re^2$
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Hortz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Piate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Piate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang	Zone 3 Weir 4.95 20.00 4.00 6.00 70% S0% ircular Orlfice, Restrictor 0.58 66.00 83.40	N/A N/A N/A N/A N/A Ctor Piste, or Rectar Not Selected N/A N/A	feet H:V (enter zero for f feet %, grate open area/i % gular Orifice) ft (distance below bas inches	lat grate) total area in bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ( C ft) ( Outl	ate Upper Edge, H ₁ = Weir Siope Length = 100-yr Orffice Area = en Area w/o Debris = sen Area w/ Debris = alcuisted Parameter Outlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe =	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 Tor Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A	feet should be $\geq 4$ $ft^2$ $ft^2$ $ft^2$ fteet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe a Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	Zone 3 Weir 4.95 20.00 4.00 6.00 70% S0% ircular Orifice, Restrictor 0.58 66.00 53.40 ular or Trapezoidal)	N/A N/A N/A N/A N/A N/A Ctor Piste, or Rectar Not Selected N/A N/A	feet H:V (enter zero for f feet %, grate open area/i % gular Orifice) ft (distance below bas inches	lat grate) total area in bottom at Stage = 0 Half-0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ( Central Angle of Restr	ate Upper Edge, H ₁ = Welr Siope Length = 100-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calculate	Zone 3 Weir           6.49           6.18           3.69           86.59           43.29   rs for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 tad Parameters for \$	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pta Not Selected N/A N/A N/A N/A Spillway	feet should be $\geq 4$ $ft^2$ $ft^2$ fte fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Hortz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Piate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Piate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orlfice, Restrictor 0.58 66.00 53.40 wilar or Trapezoidal) 9.80	N/A N/A N/A N/A N/A N/A Ctor Piste, or Rectar Not Selected N/A N/A	feet H:V (enter zero for f feet %, grate open area/t % <b>gular Orifice)</b> ft (distance below bas linches Inches	lat grate) total area in bottom at Stage = 0 Half-0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op ( Overflow Grate Op ( Central Angle of Restr Spillway	ate Upper Edge, H, = Weir Slope Length = 100-yr Orffice Area = en Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 rs for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for S 1.48	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pta Not Selected N/A N/A N/A Spillway feet	feet should be $\geq 4$ $ft^2$ $ft^2$ $ft^2$ fteet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe a Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.58 66.00 53.40 ular or Trapezoidal) 9.80 74.00	N/A N/A N/A N/A N/A N/A Ctor Piste, or Rectar Not Selected N/A N/A	feet H:V (enter zero for f feet %, grate open area/t % <b>gular Orifice)</b> ft (distance below bas linches Inches	lat grate) total area in bottom at Stage = 0 Half-0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Overflow Grate Op ( Central Angle of Restr Spillway Stage at	ate Upper Edge, H ₄ = Weir Siope Length = 100-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for \$ 1.48 1.2.78	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A Spillway feet feet	feet should be $\geq 4$ $ft^2$ $ft^2$ $ft^2$ fteet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (CC Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.58 66.00 83.40 Ular or Trapezoidal) 9.80 74.00 4.00	N/A N/A N/A N/A N/A N/A Ctor Piste, or Rectar Not Selected N/A N/A N/A	feet H:V (enter zero for f feet %, grate open area/t % <b>gular Orifice)</b> ft (distance below bas linches Inches	lat grate) total area in bottom at Stage = 0 Half-0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Overflow Grate Op ( Central Angle of Restr Spillway Stage at	ate Upper Edge, H, = Weir Slope Length = 100-yr Orffice Area = en Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for \$ 1.48 1.2.78	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be $\geq 4$ $ft^2$ $ft^2$ fte fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length Overflow Weir Slope = Horiz. Length of Weir Slose = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectange Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.58 66.00 83.40 Ular or Trapezoidal) 9.80 74.00 4.00	N/A N/A N/A N/A N/A N/A Ctor Piste, or Rectar N/A N/A N/A t (relative to basin t feet H:V	feet H:V (enter zero for f feet %, grate open area/t % <b>gular Orifice)</b> ft (distance below bas linches Inches	lat grate) total area in bottom at Stage = 0 Half-0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Overflow Grate Op ( Central Angle of Restr Spillway Stage at	ate Upper Edge, H ₄ = Weir Siope Length = 100-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for \$ 1.48 1.2.78	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A Spillway feet feet	feet should be $\geq 4$ $ft^2$ $ft^2$ fte fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.58 66.00 83.40 Ular or Trapezoidal) 9.80 74.00 4.00	N/A N/A N/A N/A N/A N/A Ctor Piste, or Rectar N/A N/A N/A t (relative to basin t feet H:V	feet H:V (enter zero for f feet %, grate open area/t % <b>gular Orifice)</b> ft (distance below bas linches Inches	lat grate) total area in bottom at Stage = 0 Half-0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Overflow Grate Op ( Central Angle of Restr Spillway Stage at	ate Upper Edge, H ₄ = Weir Siope Length = 100-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for \$ 1.48 1.2.78	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A Spillway feet feet	feet should be $\geq 4$ $ft^2$ $ft^2$ fte fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Araa % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.58 66.00 83.40 Ular or Trapezoidal) 9.80 74.00 4.00 1.50	N/A N/A N/A N/A N/A N/A Ctor Piste, or Rectar N/A N/A N/A t (relative to basin t feet H:V	feet H:V (enter zero for f feet %, grate open area/t % <b>gular Orifice)</b> ft (distance below bas linches Inches	lat grate) total area in bottom at Stage = 0 Half-0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Overflow Grate Op ( Central Angle of Restr Spillway Stage at Basin Area at	ate Upper Edge, H, = Weir Slope Length = IOD-yr Orffice Area = en Area w/ Debris = calculated Parameter Cutlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for S 1.48 12.78 2.39	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet feet acres	feet should be $\geq 4$ $ft^2$ $ft^2$ feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloies = Overflow Grate Open Area % = Debris Clogging % = overflow Grate Open Area % = Debris Clogging % = Under to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Retum Period = One-Hour Reinfall Depth (in) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orlfice, Restri Zone 3 Restrictor 0.58 66.00 53.40 ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53	N/A N/A N/A N/A N/A N/A Ctor Piste, or Rectar N/A N/A ft (relative to basin t feet H:V feet EURV 1.07	feet H:V (enter zero for f feet %, grate open area/1 % gular Orifice) ft (distance below bas Inches Inches Inches	lat grate) total area in bottom at Stage = 0 Half-( t)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ( Overflow Grate Op ( Central Angle of Restr Spillway Stage at	ate Upper Edge, H _i = Weir Siope Length = 100-yr Orffice Area = en Area w/o Debris = calculated Parameter alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for S 1.48 12.78 2.39	Not Selected N/A	feet should be $\geq 4$ $\hbar^2$ $\hbar^2$ fre fre feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = overflow Grate Open Area % = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage- Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Cone-Hour Reium Period = One-Hour Reinfall Depth (in) = Calculated Runoff Volume (acre-ft) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.58 66.00 83.40 Ular or Trapezoidal) 9.80 74.00 4.00 1.50	N/A N/A N/A N/A N/A N/A Ctor Piste, or Rectar Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV	feet H:V (enter zero for f feet %, grate open area/1 % <b>gular Orifice)</b> ft (distance below bas inches inches bottom at Stage = 0 ft	lat grate) total area in bottom at Stage = 0 Half-( t) 5 Year	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ( Central Angle of Restr Spillway Stage at Basin Area at	ate Upper Edge, H, = Weir Slope Length = IOD-yr Orffice Area = en Area w/ Debris = calculated Parameter Cutlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 43.29 50 routiet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for 3 1.48 1.2.78 2.39 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pfa N/A N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Ernergency Spillway (Rectang Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = Ono-Hour Reinfall Dapth (in) = Caloulated Runoff Volume (acre-ft) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri- Zone 3 Restrictor 0.58 66.00 53.40 ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53 2.291	N/A N/A N/A N/A N/A N/A Cor Piste, or Rectar Not Selected N/A N/A Rt (relative to basin t feet H:V feet EURV 1.07 3.619	feet H:V (enter zero for f feet %, grate open area/1 % <b>gular Orifice)</b> ft (distance below bas linches linches linches autom at Stage = 0 ft <u>2 Year</u> <u>1.19</u> <u>2.244</u>	lat grate) total area in bottom at Stage = 0 Half-( t) <u>5 Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ( Control ft) Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75	ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orffice Area = en Area w/o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= : Top of Freeboard = : Top of Freeboard = 25 Year 2.00	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for S 1.48 12.78 2.39	Not Selected N/A	feet should be $\geq 4$ $\hbar^2$ $\hbar^2$ fre fre feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% S0% ircular Orifice, Restri- Zone 3 Restrictor 0.58 66.00 53.40 ular or Trapezoidal) 9.80 74.00 4.00 1.50 	N/A N/A N/A N/A N/A N/A Ctor Piste, or Rectar Not Selected N/A N/A ft (relative to basin the feet H:V feet EURV 1.07 3.619 3.620	feet H:V (enter zero for f feet %, grate open area/1 % gular Orifice) ft (distance below bas Inches Inches Dottom at Stage = 0 ft 2 Year 1.19 2.244 2.245	lat grate) total area in bottom at Stage = 0 Half-( t) <u>5 Year 1.50</u> 5.316 <u>5.312</u>	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ( Control ft) Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75	ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orffice Area = en Area w/o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= : Top of Freeboard = : Top of Freeboard = 25 Year 2.00	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 43.29 50 routiet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for 3 1.48 1.2.78 2.39 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.53 31,996	feat should be $\geq 4$ $ft^2$ $ft^2$ fat fat fat fat fat fat fat fat
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Hortz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Piate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Piate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfa/acre) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orlfice, Restrictor 0.58 66.00 \$3.40 ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53 2.291 0.00	N/A           It (relative to basin to feet           H:V           feet           H:V           1.07           3.619           3.620           0.00	feet H:V (enter zero for f feet %, grate open area/1 % ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 2.244 2.245 0.01	lat grate) total area in bottom at Stage = 0 Half-0 t) 5 Year 1.50 5.316 5.312 0.07	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op C ft) Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 9.014 9.015 0.15	ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orffice Area = en Area w/o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 17.449 17.453 0.41	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 5 of Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for 8 1.48 12.78 2.39 50 Year 2.25 23.854	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pfa N/A N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Cone-Hour Rainfall Depth (in) = One-Hour Rainfall Depth (in) = Calouiated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs/acre) = Predevelopment Peak Q (cfs/acre) =	Zone 3 Weir 4.95 20.00 4.00 6.0C 70% 50% ircular Orlfice, Restr Zone 3 Restrictor 0.58 66.00 53.40 value or Trapezoidal) 9.80 74.00 4.0C 1.50 value or 0.53 2.291 2.291 2.291 0.00 0.0	N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           Rot Selected           N/A           N/A           Release           N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           Selected           N/A           N/A           N/A           N/A           Selected           N/A           N/A           N/A           N/A           N/A           N/A           Selected           N/A           Selected           N/A           Selected           Selected </td <td>feet H:V (enter zero for f feet %, grate open area/1 % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 2.244 2.245 0.01 1.8</td> <td>lat grate) total area in bottom at Stage = 0 Half-0 t) 5 Year 1.50 5.316 5.316 5.316 0.07 2.6.0</td> <td>Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Out Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 9.014 9.015 0.15 5.2.1</td> <td>ate Upper Edge, H, = Weir Slope Length = Dio-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 17.449 17.453 0.41 145.5</td> <td>Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 50 routlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for S 1.48 12.78 2.39 50 Year 2.25 23.854 23.856</td> <td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>feet should be $\geq 4$ the the the the the the the the</td>	feet H:V (enter zero for f feet %, grate open area/1 % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 2.244 2.245 0.01 1.8	lat grate) total area in bottom at Stage = 0 Half-0 t) 5 Year 1.50 5.316 5.316 5.316 0.07 2.6.0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Out Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 9.014 9.015 0.15 5.2.1	ate Upper Edge, H, = Weir Slope Length = Dio-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 17.449 17.453 0.41 145.5	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 50 routlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for S 1.48 12.78 2.39 50 Year 2.25 23.854 23.856	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet should be $\geq 4$ the the the the the the the the
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Rundf Volume (acre-ft) = One-Hour Rainfall Depth (in) = Caloulated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Deak (offs) = Peak Inflow Q (cfs) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restrictor 0.58 66.00 83.40 Ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53 2.291 2.291 0.00 0.0 32.0	N/A           It (relative to basin the feet           H:V           feet           3.619           3.620           0.0           50.9	feet H:Y (enter zero for f feet %, grate open area/t % gular Orifice) ft (distance below bas Inches Inches Inches Nottom at Stage = 0 ft 2 Year 1.19 2.244 2.245 0.01 1.8 3.1.4	lat grate) total area in bottom at Stage = 0 Half-( t) 5 Year 1.50 5.316 5.312 0.07 26.0 74.9	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate Op Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Gra	ate Upper Edge, H, = Weir Siope Length = 100-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17.449 17.453 0.41 145.5 244.6	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for S 1.48 12.78 2.39 50 Year 2.25 23.854 23.856 0.60 21.20 332.3	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla N/A N/A N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.53 31.996 32.004 0.84	feat should be $\geq 4$ $t^2$ $t^2$ $t^2$ feet radians 51.024 1.31
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Caloulated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre) = Predevelopment Deak Flow, q (cfa/acre) = Predevelopment Deak (fiow Q (cfe) = Peek Untflow Q (cfe) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri- Zone 3 Restrictor 0.58 66.00 53.40 ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53 2.291 0.00 0.0 32.0 1.1	N/A           It (relative to basin the feet           H:V           feet           1.07           3.619           3.620           0.00           50.9           1.4	feet H:V (enter zero for f feet %, grate open area/1 % ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 2.244 2.245 0.01 1.8 31.4 1.1	Iat grate)         total area         in bottom at Stage = 0         Half-0         5 Year         1.50         5.316	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate O	ate Upper Edge, H ₄ = Weir Slope Length = 100-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calculat Design Flow Depth= t Top of Freeboard = 25 Year 2.00 17.449 17.453 0.41 145.5 244.6 141.1	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 43.29 50 routiet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for 3 1.48 12.78 2.39 50 Year 2.25 23.854 23.856 0.60 212.0 332.3 219.9	Not Selected           N/A           Spillway           feet           feet           3cres           31.996           32.004           0.84           295.1	feat should be $\geq 4$ $t^2$ $t^2$ $t^2$ feat radians 500 Year 3.29 51.006 -1.024 1.31 462.9
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Rundf Volume (acre-ft) = One-Hour Rainfall Depth (in) = Caloulated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Deak (offs) = Peak Inflow Q (cfs) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restrictor 0.58 66.00 53.40 ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53 2.291 - 2.291 0.00 0.0 32.0 1.1 N/A	N/A           Iterative to basin to feet           H:V           Feet           EURV           1.07           3.619           3.620           0.00           0.0           1.4           N/A	feet H:V (enter zero for f feet %, grate open area/1 % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 2.244 2.245 0.01 1.8 31.4 1.1 N/A	lat grate) total area in bottom at Stage = 0 Half-0 t; ) 5.316 5.312 0.07 26.0 74.9 7.7 0.3	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Ope The Overflow Grate Ope	ate Upper Edge, H, = Weir Slope Length = 100-yr Orffice Area = ben Area w/ Debris = ben Area w/ Debris = calculated Parameter calculated Parameter	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 2 one 3 Restrictor 23.45 2.72 2.74 1.48 12.78 2.39 50 Year 2.25 23.854 23.856 0.60 212.0 332.3 219.9 1.0	Not Selected           N/A           Spillway           feet           feet           acres           100 Year           2.53           31.996           32.004           0.84           295.1           429.4           289.4	feet should be $\geq 4$ $ft^2$ $ft^2$ feet radians 500 Year 3.29 51.024 1.31 462.9 639.1
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = The provided of the store o	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri- Zone 3 Restrictor 0.58 66.00 53.40 Ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53 WQCV 0.53 2.291 0.00 0.0 32.0 1.1 N/A Plate	N/A           Scionardian           Scionarin           Scionardia	feet H:V (enter zero for f feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 2.244 2.245 0.01 1.8 31.4 1.1 N/A Plate	Iat grate)         total area         in bottom at Stage = 0         Half-0         5         Year         1.50         5.312         0.07         26.0         74.9         7.7         0.3         Overflow Grate 1	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate 1	ate Upper Edge, H, = Weir Slope Length = 100-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calculat Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 17.449 17.453 0.41 145.5 244.6 141.1 1.0 Overfiow Grate 1	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for 8 1.48 12.78 2.39 50 Year 2.25 23.854 23.856 0.60 212.0 332.3 219.9 1.0 Overflow Grate 1	Not Selected           N/A           Spillway           feet           acres           31.996           32.004           0.84           295.1           429.4           289.4           1.0           Outlet Plate 1	feat should be $\geq 4$ ft ² ft ² feat ft ² feat radians 500 Year 3.29 51.006 51.024 1.31 462.9 639.1 504.4 1.31 Spillway
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Hortz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Piate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Piate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfa/acre) = Predevelopment Unit Peak Ruo, q (cfa/acre) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restrictor 0.58 66.00 53.40 ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53 2.291 - 2.291 0.00 0.0 32.0 1.1 N/A	N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           Iterative to basin to feet           H:V           feet           B:V           1.07           3.619           3.620           0.00           50.9           1.4           N/A	feet H:Y (enter zero for f feet %, grate open area/1 % gular Orifice) ft (distance below bas Inches Inches Notiom at Stage = 0 ft 2 Year 1.19 2.245 0.01 1.8 31.4 1.1 N/A Plate N/A	S Year         1.50         5.316         5.312         0.07         26.0         74.9         7.7         0.3         Overflow Grate 1         0.1	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Ope 10 Vear 1.75 9.014 9.015 5.2.1 1.27.1 43.3 0.8 Overflow Grate 1 0.5	ate Upper Edge, H ₄ = Weir Slope Length = 100-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17.449 17.453 0.41 145.5 244.6 141.1 1.0 Overfiow Grate 1 1.6	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 5 or Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for 3 1.48 12.78 2.39 50 Year 2.25 23.854 23.854 23.855 0.60 212.0 332.3 219.9 1.0 Overflow Grate 1 2.3	Not Selected           N/A           Spillway           feet           32.004           0.84           295.1           42	feet should be ≥ 4 $ft^2$ $ft^2$ $ft^2$ feet radians 500 Year 3.29 51.024 1.31 462.9 639.1 504.4 1.1 \$pillway 3.8
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ar Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Runoff Volume (acre-ft) Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Deak Clofs) = Predevelopment Peak (Gfs) = Peak Inflow Q (cfs) = Peak Cutflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flows Max Velocity through Grate 1 (fps) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.58 66.00 53.40 Ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53 2.291 0.00 0.0 32.0 1.1 N/A Plate N/A	N/A           Scionardian           Scionarin           Scionardia	feet H:V (enter zero for f feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 2.244 2.245 0.01 1.8 31.4 1.1 N/A Plate	lat grate) total area in bottom at Stage = 0 Half-0 t) 5.316 5.312 0.07 26.0 74.9 74.9 74.9 74.9 74.9 74.9 74.9 74.9	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate 1 Overflow Grate 1 9.015 0.15 5.2.1 1.27,1 4.3.3 0.8 Overflow Grate 1 0.5 N/A	ate Upper Edge, H ₄ = Weir Slope Length = 100-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calculat Design Flow Depth= Top of Freeboard = Cop of Freeboard = 25 Year 2.00 17.449 17.453 0.41 17.453 0.41 145.5 244.6 141.1 1.0 Overfiow Grate 1 0.6 N/A	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 20ne 3 Restrictor 23.45 2.72 2.74 ted Parameters for 3 1.48 12.78 2.39 50 Year 2.25 23.854 23.856 0.60 212.0 332.3 219.9 1.0 Overflow Grate 1 2.5 N/A	Not Selected           N/A           Splitway           feet           feet           31.996           32.004           0.84           295.1           429.4           289.4           1.0           0           V/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians 51.024 1.31 462.9 639.1 51.024 1.1 Spillway 3.8 N/A
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (CC Depth to Invert of Outlet Pipe E Outlet Pipe Dlameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stages Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Depth (in) = Calculated Runoff Volume (acre-ft) = On-Hour Reinfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs) = Predevelopment Unit Peak Row, q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Inflow Holums (hours) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% S0% ircular Orlfice, Restrictor 0.58 66.00 83.40 ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53 2.291 0.00 0.00 32.0 1.1 N/A Plate N/A N/A	N/A           It (relative to basin the feet           H:V           feet           1.07           3.619           3.620           0.00           50.9           1.4           N/A           N/A           N/A	feet H:V (enter zero for f feet %, grate open area/1 % guiar Orifice) ft (distance below bas inches inches inches bottom at Stage = 0 ft 2 Year 1.19 2.244 	lat grate) total area in bottom at Stage = 0 Half-0 t; ) 5.316 5.312 0.07 26.0 74.9 7.7 0.3 0.02 74.9 7.7 0.3 0.04 74.9 7.7 0.3 0.04 74.9 7.7 0.3 0.04 7.7 0.3 0.04 7.7 0.3 0.04 7.7 0.3 0.05 7.7 0.3 0.05 7.7 0.3 0.05 7.7 0.3 0.05 7.7 0.3 0.05 7.7 0.3 0.05 7.7 0.3 0.05 7.7 0.3 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.07 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.07 7.7 0.05 7.7 0.07 7.7 0.05 7.7 0.07 7.7 0.05 7.7 0.07 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 7.7 0.05 0.05	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Open Spillway Stage at Basin Area at Overflow Grate 1 0.5 N/A S3	ate Upper Edge, H, = Weir Slope Length = Jon-yr Orffice Area = en Area w/o Debris = calculated Parameter outlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 17.449 17.453 0.41 145.5 244.6 141.1 1.0 Overfiow Grate 1 1.6 N/A 47	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for S 1.48 12.78 2.39 50 Year 2.25 23.854 23.854 0.60 212.0 332.3 219.9 1.0 Overflow Grate 1 2.5 N/A 44	Not Selected           N/A           Spillway           feet           feet           acres           31.996           32.004           0.84           295.1           429.4           289.4           1.0           Outlet Plate 1           3.3           N/A           40	feet should be ≥ 4 $ft^2$ $ft^2$ feet radians 500 Year radians 500 Year 3.29 51.024 1.31 462.9 639.1 504.4 1.31 504.4 1.1 Spillway 3.8 N/A 31
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Hortz. Length of Weir Slope = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Dlameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectange Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Slorm Return Period = One-Hour Rainfall Depth (in) = Caloulated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Retio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fpe) = Max Velocity through Grate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) = Time to Train 99% of Inflow Volume (hours) = Time to Train 99% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri- Zone 3 Restrictor 0.58 66.00 53.40 Ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53 2.291 0.00 0.0 32.0 1.1 N/A N/A N/A 43 3.58	N/A           Rot Selected           N/A           N/A           N/A           Rt (relative to basin to feet           H:V           feet           B:V           1.07           3.619           3.620           0.00           0.0           S0.9           1.4           N/A           Plate           N/A           S1	feet H:V (enter zero for f feet %, grate open area/1 % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 2.245 0.01 1.8 31.4 1.1 N/A Plate N/A N/A 40	lat grate) total area in bottom at Stage = 0 Half-0 t) 5.316 5.312 0.07 26.0 74.9 74.9 74.9 74.9 74.9 74.9 74.9 74.9	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Open Spillway Stage at Basin Area at Overflow Grate Open Overflow Grate	ate Upper Edge, H, = Weir Slope Length = 100-yr Orffice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calculat Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 17,449 17,453 0.41 1.45,5 244,6 1.41,1 1.0 Overficw Grate 1 1.6 N/A 47 57	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 5 for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for S 1.48 12.78 2.39 50 Year 2.25 23.856 0.60 212.0 332.3 219.9 1.0 Overflow Grate 1 2.5 N/A 44 455	Not Selected           N/A           Spiliway           feet           feet           31.996           32.004           0.84           295.1           429.4           289.4           1.0           Outlet Plate 1           3.3           N/A           40           52	feat should be ≥ 4 $ft^2$ $ft^2$ feat radians 500 Year 3.29 51.006 51.024 1.31 462.9 639.1 504.4 1.31 Spillway 3.8 N/A 31 48
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Dlameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stages Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Overfide Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Inflow Hydrograph Volume (hours) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	Zone 3 Weir 4.95 20.00 4.00 6.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.58 66.00 53.40 Ular or Trapezoidal) 9.80 74.00 4.00 1.50 WQCV 0.53 2.291 2.291 0.00 0.0 32.0 1.1 N/A Plate N/A N/A N/A A1 43	N/A           Softs           3.619           3.619           3.619           3.620           0.0           50.9           1.4           N/A           N/A           N/A           N/A	feet H:V (enter zero for f feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 2.244 2.245 0.01 1.8 31.4 1.1 N/A Plate N/A N/A A 0 40 42	lat grate) total area in bottom at Stage = 0 Half-0 t) 5 Year 1.50 5.316 5.316 5.316 5.316 5.316 5.316 5.316 5.312 0.07 2.6.0 7.4.9 7.7 0.3 0.07 2.6.0 7.4.9 7.7 0.3 0.07 2.6.0 7.4.9 5.6 0.1 0.1 N/A 56 6 1	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Open Spillway Stage at Basin Area at Overflow Grate 1 0.5 N/A S3	ate Upper Edge, H, = Weir Slope Length = Jon-yr Orffice Area = en Area w/o Debris = calculated Parameter outlet Orifice Area = et Orffice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 17.449 17.453 0.41 145.5 244.6 141.1 1.0 Overfiow Grate 1 1.6 N/A 47	Zone 3 Weir 6.49 6.18 3.69 86.59 43.29 s for Outlet Pipe w/ Zone 3 Restrictor 23.45 2.72 2.74 ted Parameters for S 1.48 12.78 2.39 50 Year 2.25 23.854 23.854 0.60 212.0 332.3 219.9 1.0 Overflow Grate 1 2.5 N/A 44	Not Selected           N/A           Spillway           feet           acres           31.996           32.004           0.84           295.1           429.4           289.4           1.0           Outlet Plate 1           3.3           N/A           40	feat should be ≥ 4 ft ² ft ² feet radians 51.024 1.31 462.9 639.1 504.4 1.1 Spillway 3.8 N/A 31




					ALLENTION PAGIN STARES ONARE LABLE BUILDEN				×					
Projec	Project: STERLING RANCH FILING NO. 2	ANCH FILL	NG NO. 2											
Basin II	Basin ID: POND W-4													
		V	A											
-	L OUNT L MOX	A REAL	100	h	Depth: Increment =	0.1	æ							
Peool. Example Zor	Example Zone Configuration (Retention Pond)	on (Reterri	ion Pond)		Stage - Storage Description		Optional Override Stane (ft)	Length	Width	Area	Optional Override	Area (acre)	Volume	Volume
Required Volume Calculation		,			Miuropool	1	0.00	1	1		206	0.005		
Selected BMP Type =		_				1	1.00	F	1	1	6,10b	0.140	3,096	0.071
Wetershed Area =		acras	Note: L / W Ratio > 8	8 ^ 0		1	2.00	1	1	1	30,115	16910	20,987	0.481
Watershed Length =		#	L / W Ratio = 10.6	 		1	3.00	1	3	:	49,313	1.132	60,981	1.400
Watershed Slope =		11/H				;	4.00	1	1	1	52,785	1.211	112,020	2.672
Watershed Imperviousness =		percent				1	5.00	1		1	74,659	1.712	175,682	4.033
Percentage Hydrologic Soli Group A =		parcent		. 1		r	8.00	1	'	1	78,051	1.815	252,487	5.796
Percentage Hydrologic Soil Group B =		percent		1		I	7 00	r	1	1	84,185	1.933	334,105	7.870
Percentage Hydrologic Soil Groups C/D =		percent				1	8.00	1	'	1	38,917	2.041	420,656	9.857
Leared WCCV Drain Time =	40.0	houra		-1		'	8.00	1	1	1	94,245	2.164	512,237	11.759
Location for 1-hr Mainfail Depths = UDFCD Default	= UDFCD Defai	₹_		_		1	10.00	-	1	I	89, 22E	2.278	608,974	13,980
warer quality capture volume (WCCV) =	2.281	acre-feet	Optional User Override	eride		1	11.00	1	,	,	104,318	2.305	710,747	16.318
		acre-reet				-		1	,	'				
2-yr runoir Volume (P1 = 1.19 In.) =	1	acre-feet	1	Se		1		'	,	1				
5-yr Runoff Volume (P1 = 1.5 in.) =		acre-feat		302		I			'	,				
10-yr Kunon Volume (P1 = 1.75 III.) =		acre-leat		182		1		'	'	,				
20-yr Humott Volume (P1 = 2 m.) = 50 P	17,448	acre-feet		L		1		3	,	,				
30-yr runor volume (P1 = 2.20 In.) = 400 - Elimet V2:		acre-teet	2.25 inohes	100		1		'	,	'				
		BCrB-1001	Т	8		1		'	'	1				
		BOTe-Teet	Inches	1		1		1	,	'				
Ammutate 2-yr Letenuar Valume - Ammutate 5-yr Daloefor Maliane -		BCro-1961				1		,	'	'				
Aminorial of the Talantic Volume -								'		,				
Annovimeta 25-or Dataothon Volume =		ing to here		_		1		,	;	'				
Abbroximate 50-vr Detention Volume =	1	arranfaat						'	'					
Approximate 100-vr Detention Volume =		arre-feet		_		1		'	1	'		T		
								, ,	, , ,		T			
Stage-Storage Calculation						'			,	,			Ì	
Zone 1 Volume (WOCV) =	2.281	test fast		1							T		T	
Zone 2 Volume (FURV - Zone 1) ==						ľ		1	,	,		Í	Ţ	
Zone 3 Wolume / 100 merer - Zones 1 & 2) -		acre-reet		1		-								
T-in Distance from the first of		acro-feet		_		,		,	'	,				
		acre-feet		_		'		,	,	'				
		Ev4				'		,	,	'				
Initial Surcharge Depth (ISD) =		¥				1		'	'	'				
I otal Available Detention Depth (H _{itoti} ) =		4			and the second second	'		,	'	'				
Depth of Trickle Channel (Hrc) =	Liser	£		1		'		'	,	2				
Slope of Trickle Channel (Src) =	LINKS	fuff				'		1	ı	;				
Slopes of Main Basin Sides (Smain) =	uner	N:H		-		ı		1	1	r				
Basin Length-to-Width Ratio (R _{L/w} ) =	User					1								ľ

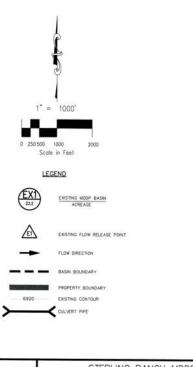
W-4 UD-Detention_v3.06.xism, Basin

5/3/2017, 3:33 PM

**DRAINAGE MAPS** 

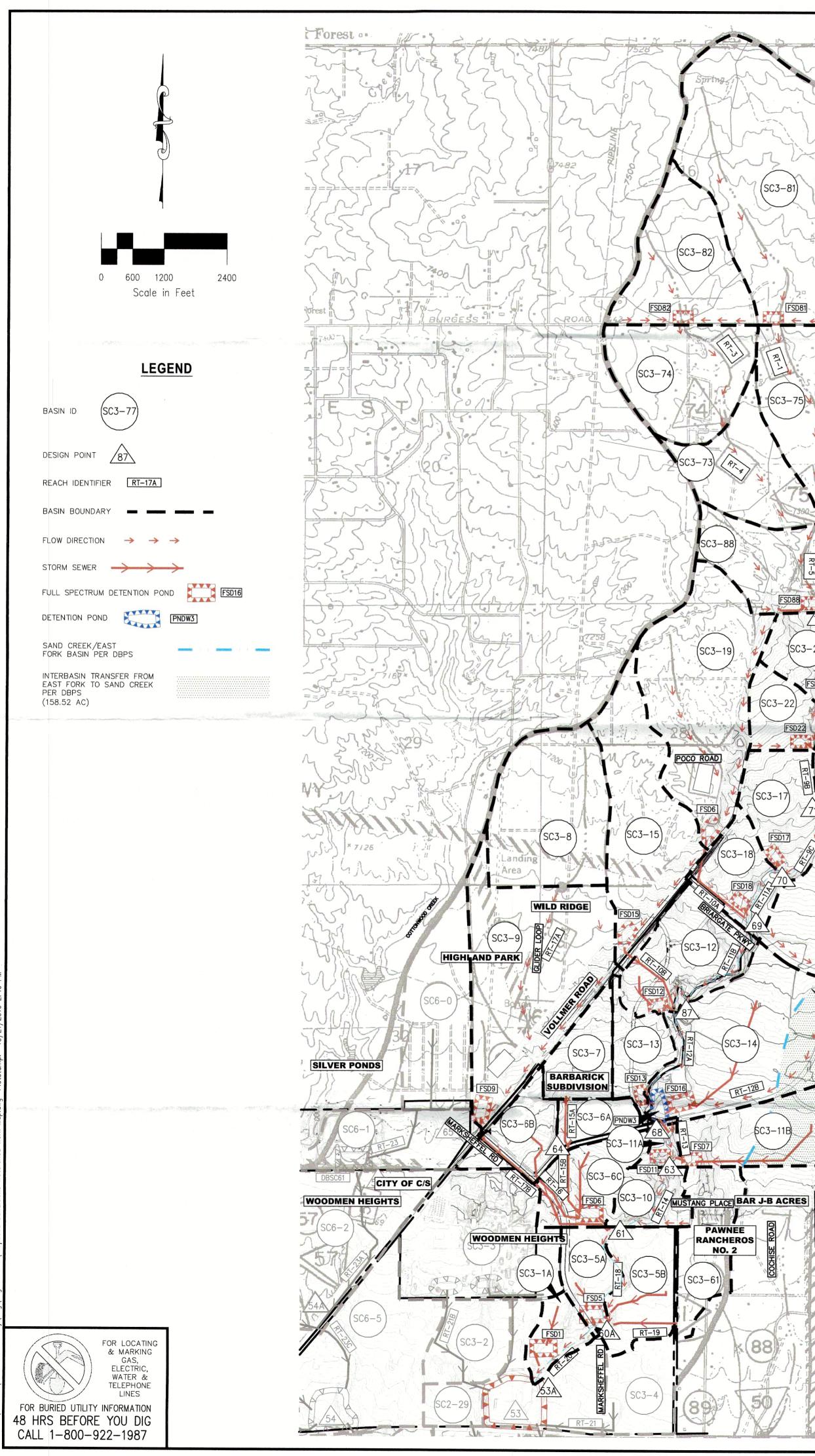


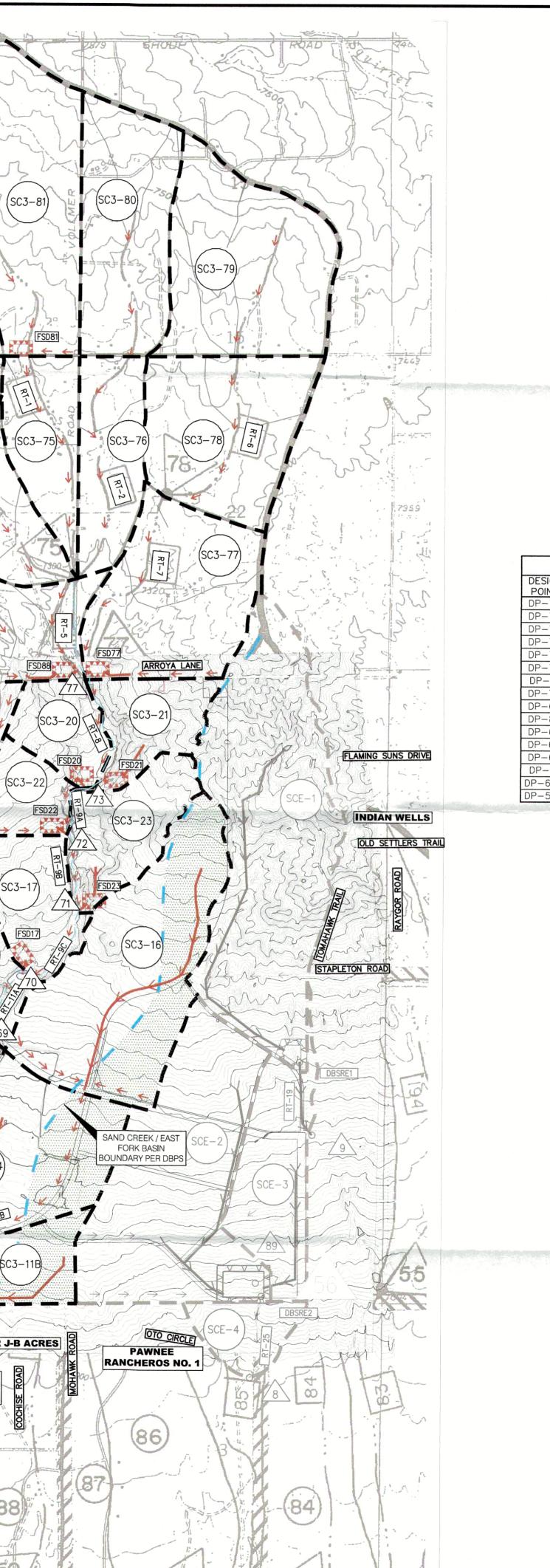
### HISTORIC CONDITION


B	ASIN SI	UMMAR	Y
BASIN	AREA (ADRES)	Qs (Drs)	Q 100 (0PS)
EX-1	24	3	40
EX-2	31	3	45
EX-3	311	49	341
EX-4	330	71	353
EX-5	152	14	209
EX-6	1692	118	2168
EX-7	165	12	197
EX-8	42	4	64
EX-9	132	11	149
EX-10	450	48	474
EX-11	209	17	261
EX-12	40	5	65
EX-13	89	6	114
0S-20	318	61	310
OS-21	33	8	38
0S-22	88	18	91
0S-23	78	34	84

NOTE: BASINS 0S-22 & OS-23 <u>NOT</u> PART OF THIS REPORT. FLOWS FOLLOW HISTORIC PATTERNS ON THE WESTSIDE OF VOLLMER ROAD.

### HISTORIC CONDITION


POINT	SQ. MI.	Qs (Oti)	Q100 (075)	SQ. MI.		DBPS
1	0.09	5	84			
2	0.49	55	465	0.74	465	64
3	0.52	139	2610	4.33	2552	63
4	0.26	12	197			
5	0.07	4	64			
6	0.21	11	149			
7	0.70	48	474			
8	0.39	18	305			-
9	0.14	6	114			
10	2.64	122	2245	3.27	2245	71
11	0.09	5	83			
12A	0.01	3	16			
12	0.27	10	200			
13	0.17	6	126			
NOTE:				0.48	#	55
ONSIST				0.53	1210	56
DESIGN	UNT	UP-D	Bhz	5.38	2629	60
NOTE:			S ARE	0.38	76	61
OR THE	EXIST	ING		0.49	115	67


# NO DATA GIVEN IN DBPS



MS	
CIVIL CONSULTANTS, INC.	
2 E. PIKES PEAK AVE. STE 306 COLORADO SPRINGS, CO 80903 955-5485, FAX (719) 444-8427	

SIE	RLING RAN	CH MDDP	
ISTO	RIC - DRA	ANAGE MAP	
9-001	FILE: *\dwg\D	ev Plan \09001-MDDP H	HISTORIC
VAS	SCALE	DATE: 03/16/15	
VAS VAS	HORIZ: 1"=500' VERT: N/A	SHEET 1 OF 1	D1
	HISTO 9-001 VAS VAS	HISTORIC – DRA 19-001 FILE: *\dwg\D VAS SCALE VAS HORIZ: 1*=500'	VAS         SCALE         DATE:         03/16/15           VAS         HORIZ:         1"=500"         SHEET 1 OF 1

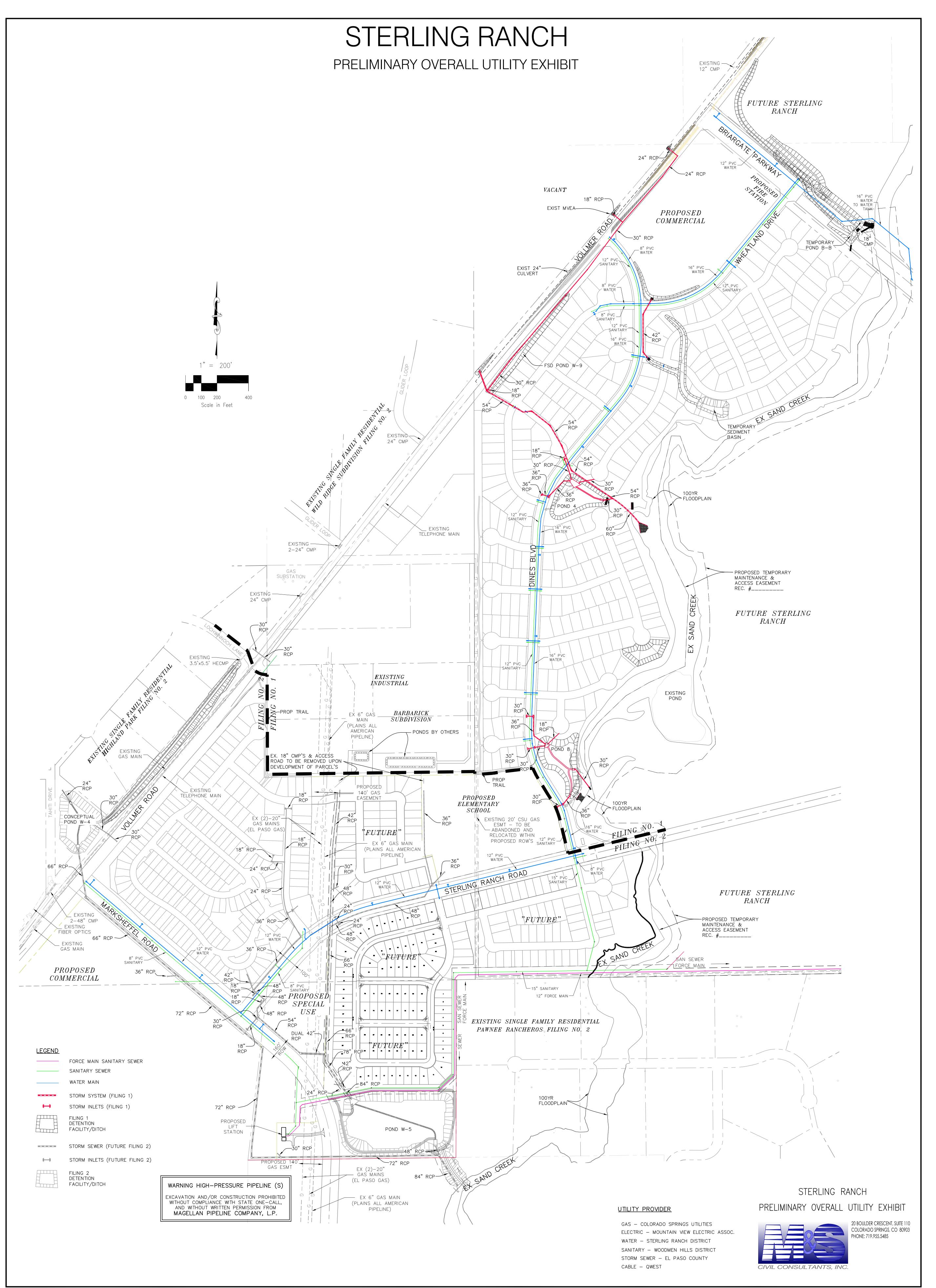




		B	ASIN S	SUMMA	RY			
BASIN CN	AREA (ACRES)	AREA (SQ MI)	Q ₂ (CFS)	Q ₅ (CFS)	Q10 (CFS)	Q 25 (OFS)	Q 50 (OPS)	Q 50 (CFS)
SC3-1A 73	27.8	0.085	31.4	45.0	63.8	88.5	110.3	133.1
C3-5A 84 C3-5B 81	39.1 63.0	0.061	40.6	53.7	71.0 98.5	92.4	110.6	129.1 187.0
3-6A 88	49.3	0.077	61.4	79.3	102.2	130.1	153.6	177.1
3-6B 85 3-6C 82	<u> </u>	0.048	32.9 53.9	43.4	57.0 97.1	73.9	88.2	102.7 181.5
-7 88	45.7	0.071	54.0	69.9	90.3	115.2	136.2	157.2
-8 63 -9 66	143.4	0.224	28.0 49.2	45.5 76.2	71.1	106.4	138.9	173.8 269.5
0 63	36.0	0.056	7.6	12.3	115.0	29.1	38.0	47.7
70	10.7	0.017	5.3	7.8	11.3	15.9	20.0	24.3
80 81	76.6	0.120	59.4 77.8	81.3 105.6	110.8 142.5	148.1 189.1	180.5 229.1	213.7 270.0
85	41.0	0.064	43.9	57.8	76.0	98.5	117.6	136.9
4 80 5 65	199.4	0.311	162.1 32.8	221.4 51.8	300.7 79.4	401.5	488.6	577.7 188.3
79	224.1	0.350	150.7	208.5	286.6	386.6	473.7	563.4
7 71 3 81	70.6	0.110	37.2	53.9	77.7	109.9	138.8	169.2
81 63	53.7 191.5	0.084	49.3 37.2	67.1 60.5	91.0 94.6	121.2 141.6	147.3 184.9	174.0 231.4
63 63	50.3 62.6	0.079	12.2	19.6	30.4	45.2	58.9	73.5
63	40.6	0.098	14.3 9.2	23.1	36.1	53.9 34.6	70.3	87.9 56.5
64	81.3	0.127	19.5	31.2	48.2	71.6	93.0	116.0
63 63	65.5 90.0	0.102	13.7 16.4	22.0 26.4	34.4	51.6 62.1	67.6 81.3	84.8 102.0
63	119.7	0.187	22.3	36.5	41.3	62.1 85.9	81.3	102.0
63	79.3	0.124	13.6	22.1	34.6	51.9	67.8	84.9
63 63	86.4	0.135	14.2 33.0	23.1	36.4	54.6	71.4	89.6 202.4
63	155.6	0.243	28.1	45.3	70.6	106.2	139.1	174.5
63 63	189.0 147.7	0.295	34.9 27.3	57.0	89.5	134.3	175.6	220.1
63	262.9	0.231	48.3	44.3 78.3	69.6 123.1	104.5 184.9	136.8 242.0	171.4 303.4
2 63	117.8	0.184	25.0	40.6	63.7	95.5	125.0	156.6
63	87.2	0.136	18.3	29.4	46.2	69.4	90.9	113.9
		DESIG	N POIN	IT SUN	MARY			
Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q ₂₅ (CFS)	Q 50 (CFS)	Q100 (CFS)		LOCA	TION
22.3	36.5	61.8	136.5	192.8	249.7			
82.4 139.3	139.5 231.4	230.2 430.3	521.6 793.5	724.3	928.7 1486.8		RROYA	NE X-ING
59.7	98.4	154.0	232.6	306.2	385.3	A	NICTA L	
137.4	236.9	446.0	806.4	1145.0	1521.9			
134.9 135.1	236.2	443.8 452.4	793.7 803.1	1156.5 1154.4	1501.6 1523.3	and the second se		D X-ING
) 134.4	246.1	462.4	808.9	1177.6	1543.2	OTENCENTE	RANGH	
3 134.3 2 133.9	256.6 255.6	499.1 541.2	864.2 922.7	1262.7 1371.3	1673.2 1836.4	BRIA	RGATE PA	RKWAY X-I
105.0	202.9	462.9	914.3	1302.7	1653.2	STERIL	NG RANC	H ROAD X-
14.5	148.0	191.1	243.7	288.0	332.4			and and the state of the state
105.1 106.6	203.2 206.3	471.7 531.1	932.6 1051.2	1327.0 1523.3	1693.4 1955.5			SOUTHERN
111.0	212.4	543.2	1073.9	1558.5	2001.4	N	ARKSHEF	EL X-ING
10.4	212.3	546.2	1078.2	1567.6	2017.3	SAN	CREEK	AND POND
and a straight				and the second				
W	ATER QL	JALITY	& DET	ENTIO	POND	SUMM	ARY	
1 EVF	NT (YR)		2	5	10	25	50 1	00
INFLO	W (CFS)			5.0 6	3.8 8	8.5 11	0.3 1.	3.1
	RELEASE (					0.9 1	7.5 2	5.5
	LEASE (CF LUME (AC-			And and a second s	the second se	the second se		5.5 .9
	·····		l		l	l.	I	
VE	NT (YR)		2	5	10	25	50 1	00
FLO	W (CFS)	40	0.6 5	3.7	1.0 9	2.4 11	0.6 12	9.1
VABLE	RELEASE (		).1 1	1.4	2.6 1	1.3 19	9.8 3	).2
	LEASE (CF							.2
	(AU-	./ 1 3				T. 1 4	./ [ 5	. 2
/			<u> </u>	6	10		0	
	NT (YR) W (CFS)							00 8.8
LE	RELEASE (	CFS) O	).6 E	3.3 1	5.9 6	0.5 10	1.7 15	1.7
R	LEASE (CF	S) 0	.6 8	3.3 1	5.9 6	0.4 10	1.4 15	1.6
/01	UME (AC-	-1)   15	5.4 1	6.1 1	8.3 2	0.6 2.	3.2 2	.2
1		T						
-	IT (YR) W (CFS)	6						)0 9.4
	RELEASE (							9.4 0.0
R	LEASE (CF	S) 1	.7 20	0.8 4	9.4 14	1.2 20	6.9 28	9.4
VOL	UME (AC-I	1) 9	.0 9	0.0 1	0.0 1	1.3 13	5.0 14	.5
	IT (YR) W (CFS)							00
ABLE	RELEASE (	CFS) 0						.3
ED RE	LEASE (CF	S) 0	.2 0	).9	3.0 7	.6 9	.6 12	.2
υ νοι	UME (AC-F	1) 0	.3 0	0.3 (	).4 C	.4 0	.5 0	6
1	T /							
	T (YR) V (CFS)				the second se			00 3.7
BLE	RELEASE (	CFS) 0	.3 4	.5 8	3.7 2	9.6 47	7.7 69	.6
	LEASE (CFS UME (AC-F							.0
VUL	CIVIL (AU-1	1/ 4	.0 4		6	.4 7	<u>5   8</u>	2
	T (10)		<u> </u>					
· T /	VL		· I	- 1			~ ·	0
EVEN	V (CFS)	77			the second se	9.1 22		0

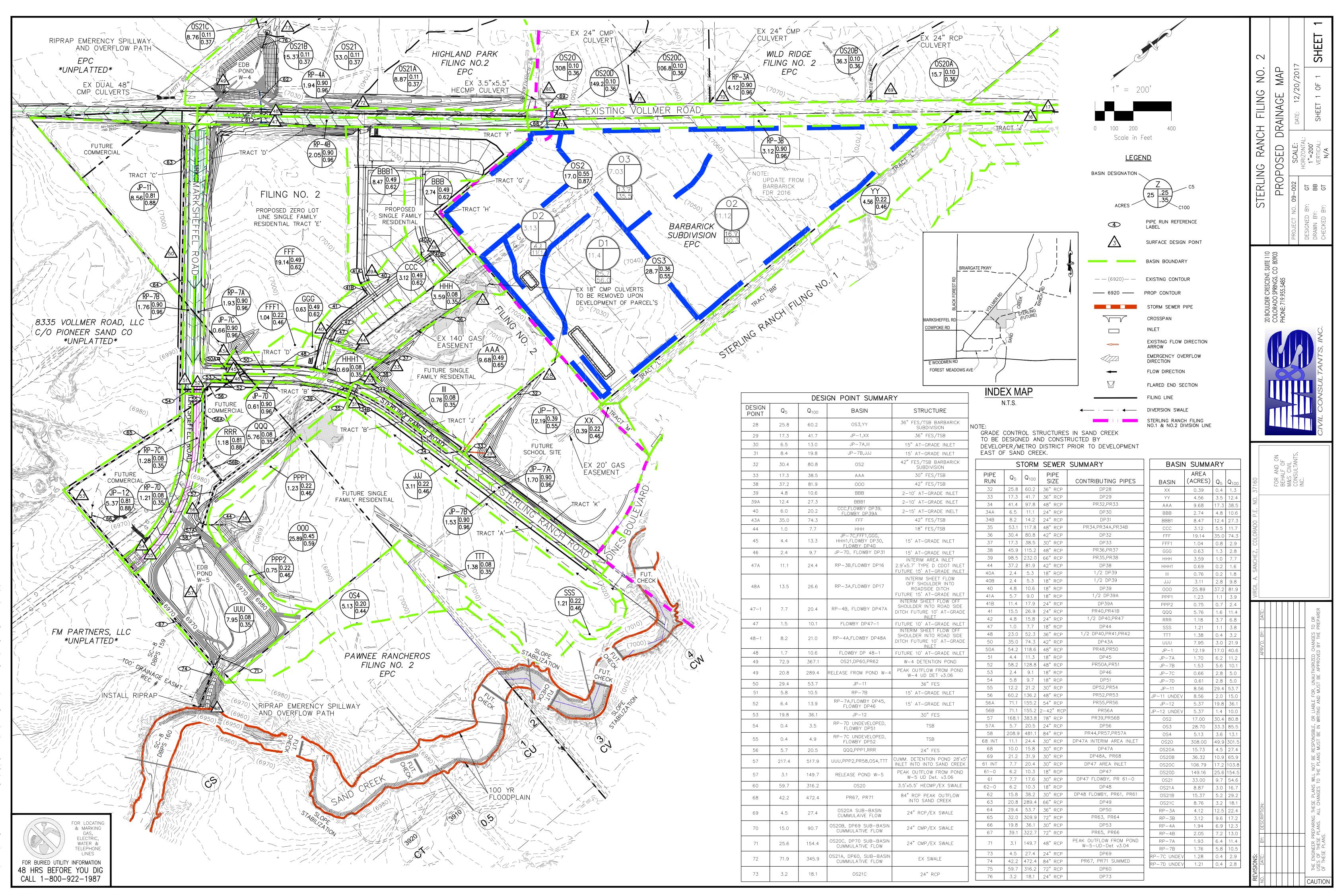
BASIN CN
SC3-1A 73
SC3-5A 84
SC3-5B 81 SC3-6A 88
SC3-6B 85 SC3-6C 82
SC3-7 88
SC3-8 63 SC3-9 66
SC3-10 63 SC3-11A 70
SC3-11B 80
SC3-12 81 SC3-13 85
SC3-14 80
SC3-16 79
SC3-17 71 SC3-18 81
SC3-19 63
SC3-20 63 SC3-21 63
SC3-22 63
SC3-23 64 SC3-61 63
SC3-73 63 SC3-74 63
SC3-75 63
SC3-76 63 SC3-77 63
SC3-78 63
SC3-79 63 SC3-80 63
SC3-81 63
SC3-82 63 SC3-88 63
SIGN AREA Q2 INT (sq mi) (ofs)
-74 0.371 22.3
-75 1.413 82.4 -77 2.343 139.3
-78 0.538 59.7
72 2.583 134.9
712.710135.1702.820134.4
69 3.203 134.3
873.572133.9684.297105.0
-64 0.148 114.5
634.434105.1615.341106.6
60A 5.602 111.0
53A 5.687 110.4
W
L ECD1
FSD1 STORM EVE
STORM EVE PEAK INFLO
STORM EVE PEAK INFLO ALLOWABLE MODELED R
STORM EVE PEAK INFLO ALLOWABLE
STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO
STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEN PEAK INFLO
STORM EVE PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVE PEAK INFLO ALLOWABLE
STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEN PEAK INFLO
STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO
STORM EVE PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVE PEAK INFLO ALLOWABLE MODELED R
STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD6 STORM EVEL PEAK INFLO
STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORM EVEL PEAK INFLO ALLOWABLE MODELED RI
STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE STORED VO FSD6 STORM EVEL PEAK INFLO ALLOWABLE
STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD6 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO
STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD6 STORM EVEL MODELED RI STORED VO FSD9 STORM EVEL
STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD6 STORM EVEL PEAK INFLO ALLOWABLE STORED VO STORM EVEL PEAK INFLO ALLOWABLE
STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD6 STORM EVEL PEAK INFLO STORED VO FSD9 STORM EVEL
STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD9 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VOI STORM EVEL PEAK INFLO ALLOWABLE MODELED RE STORED VOI
STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD6 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD9 STORM EVEN PEAK INFLO
STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD6 STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD9 STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD9 STORM EVEL PEAK INFLO
STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD6 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD9 STORM EVEL PEAK INFLO ALLOWABLE MODELED RE STORED VO FSD9 STORM EVEL
STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD6 STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD9 STORM EVEL PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11A STORM EVEL
STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD5 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD6 STORM EVEL PEAK INFLO ALLOWABLE MODELED RI STORED VOI FSD9 STORM EVEN PEAK INFLO ALLOWABLE MODELED RE STORED VOI FSD11A STORM EVEN PEAK INFLO ALLOWABLE MODELED RE
STORM EVEN PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD5 STORM EVEN PEAK INFLO ALLOWABLE MODELED RI STORED VO FSD6 STORM EVEN PEAK INFLO ALLOWABLE MODELED RI STORED VOI FSD9 STORM EVEN PEAK INFLO ALLOWABLE MODELED RE STORED VOI FSD11A STORM EVEN PEAK INFLO ALLOWABLE MODELED RE STORED VOI FSD11A STORM EVEN
STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD6 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD9 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11A STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11A
STORM EVER PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVER PEAK INFLO ALLOWABLE MODELED R STORED VO FSD6 STORM EVER PEAK INFLO ALLOWABLE MODELED R STORED VO FSD9 STORM EVER PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11A STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11B STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11B STORM EVEN PEAK INFLO
STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD6 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD9 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11A STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11B STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO STORED VO
STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD6 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD9 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11A STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11B STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11B STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD12
STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD5 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD6 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD9 STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11A STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11B STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO FSD11B STORM EVEN PEAK INFLO ALLOWABLE MODELED R STORED VO

				ASIN	SUMMA	RY			
SIN	CN	AREA (ACRES)	AREA (SQ MI)	Q ₂ (CFS)	Q5 (OFS)	Q10 (GFS)	Q 25 (CFS)	Q 50 (CFS)	Q 50 (CFS)
-1A -5A	73 84	27.8 39.1	0.085	31.4 40.6	45.0 53.7	63.8 71.0	88.5 92.4	110.3	133.1
-5B	81 88	63.0	0.098	53.8	73.0	98.5	130.8	158.6	187.0
-6A -6B	85	49.3 30.9	0.077	61.4 32.9	79.3	102.2 57.0	130.1 73.9	153.6 88.2	177.1 102.7
-6C -7	82 88	58.0 45.7	0.091	53.9 54.0	72.5	97.1 90.3	128.0 115.2	154.5 136.2	181.5 157.2
-8	63	143.4	0.224	28.0	45.5	71.1	106.4	138.9	173.8
-9 -10	66 63	217.4	0.340	49.2	76.2	115.0	168.1 29.1	217.1 38.0	269.5 47.7
11A	70	10.7	0.017	5.3	7.8	11.3	15.9	20.0	24.3
-11B -12	80 81	76.6	0.120	59.4 77.8	81.3	110.8 142.5	148.1	180.5 229.1	213.7 270.0
-13	85	41.0	0.064	43.9	57.8	76.0	98.5	117.6	136.9
-14 -15	80 65	199.4	0.311	162.1 32.8	221.4 51.8	300.7 79.4	401.5	488.6	577.7 188.3
-16	79	224.1	0.350	150.7	208.5	286.6	386.6	473.7	563.4
-17 -18	71 81	70.6	0.110	37.2	53.9 67.1	91.0	109.9	138.8	169.2 174.0
-19	63	191.5	0.299	37.2	60.5	94.6	141.6	184.9	231.4
-20 -21	63 63	50.3 62.6	0.079	12.2	19.6	30.4	45.2	58.9 70.3	73.5 87.9
-22	63	40.6	0.063	9.2	14.9	23.2	34.6	45.2	56.5
-23 -61	64 63	81.3 65.5	0.127	19.5 13.7	31.2 22.0	48.2	71.6 51.6	93.0 67.6	116.0 84.8
-73	63 63	90.0	0.141	16.4	26.4	41.3	62.1	81.3	102.0
-75	63	79.3	0.124	22.3 13.6	36.5 22.1	57.3 34.6	85.9 51.9	112.3 67.8	140.7 84.9
-76	63 63	86.4 163.8	0.135	14.2 33.0	23.1	36.4 83.2	54.6	71.4	89.6
-78	63	155.6	0.243	28.1	45.3	70.6	124.1 106.2	161.9 139.1	202.4 174.5
-79	63 63	189.0 147.7	0.295	34.9 27.3	57.0	89.5 69.6	134.3 104.5	175.6	220.1
81	63	262.9	0.411	48.3	78.3	123.1	184.9	136.8 242.0	171.4 303.4
82 88	63 63	117.8 87.2	0.184	25.0 18.3	40.6	63.7 46.2	95.5 69.4	125.0 90.9	156.6
00	00	/.2	0.100	10.0	29.4	40.2	09.4	90.9	113.9
			DEALE	NBC					
Т	0-	0- T					1		
1	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q 50 (CFS)	Q100 (CFS)		LOCA	TION
1	22.3 82.4	36.5 139.5	61.8 230.2	136.5 521.6	192.8 724.3	249.7 928.7			
3 8	139.3 59.7	231.4 98.4	430.3 154.0	793.5 232.6	1118.3 306.2	1486.8 385.3	A	RROYA LA	ane X-inc
	137.4	236.9	446.0	806.4	1145.0	1521.9			
_	134.9 135.1	236.2 242.0	443.8 452.4	793.7 803.1	1156.5 1154.4	1501.6 1523.3			AD X-ING NORTHERN
)	134.4	246.1	462.4	808.9	1177.6	1543.2	SIERLING	RANCH	NUKIHERN
3	134.3 133.9	256.6 255.6	499.1 541.2	864.2 922.7	1262.7 1371.3	1673.2 1836.4	BRIA	RGATE PA	RKWAY X-
2	105.0	202.9	462.9	914.3	1302.7	1653.2	STERIL	NG RANC	H ROAD X
3	114.5 105.1	148.0 203.2	191.1 471.7	243.7 932.6	288.0 1327.0	332.4 1693.4			
1	106.6	206.3	531.1	1051.2	1523.3	1955.5	COLORAD	O SPRING	SOUTHERN
2	111.0 110.4	212.4 212.3	543.2 546.2	1073.9 1078.2	1558.5 1567.6	2001.4 2017.3	N	IARKSHEF	FEL X-ING
<u>·                                     </u>	10.4	212.0	J-TU.Z	10/0.2	1.007.0	2017.3	L SAN	UCREEK	AND PONL
	۱۸/ ۸ '	TER QU		8 DET	ENTION		SIIMM		
SD1							SUNIN		
STOF	M EVENT			2					00
ALLC		RELEASE (C	CFS) (					the state of the s	33.1 5.5
IOD	ELED REL	EASE (CFS	S) (	).2	1.7	3.3 1	0.9 1	7.5 2	5.5
UI	KEU VOLU	JME (AC-F	1) 2	2.4	2.6	3.0	3.6 4	4.2 4	4.9
D				2 1	5	10	0.5	0	
	M EVENT			2		and the second se			00 29.1
LLC	WABLE R	ELEASE (C	CFS) C	).1	1.4 2	2.6 1	1.3 19	9.8 3	0.2
	and the second se	EASE (CFS JME (AC-F			The second se			the second se	0.1
SDE									
TOF	MEVENT			2					00
	NFLOW	(CFS) ELEASE (C			the second s			3.4 60	)8.8 )1.7
OD	ELED REL	EASE (CFS	5) 0	.6	8.3 1	5.9 6	0.4 10	1.4 15	51.6
OF	RED VOLU	IME (AC-F	T) 15	5.4 1	16.1 1	8.3 2	0.6 2	3.2 26	6.2
SDS									
	M EVENT			2 7.9 1					00
LLO	WABLE R	ELEASE (C	(FS) 1	.7 2	4.9 4	9.8 14	41.1 20	7.2 29	0.0
	the second s	EASE (CFS IME (AC-F	/						9.4 4.5
		_ (							
	1A M EVENT	(YR)		2	5	10	25 5	50 10	00
EAK	INFLOW	(CFS)	5	.3	7.8 1	1.3 1	5.9 20	0.0 24	4.3
		ELEASE (C EASE (CFS		and the second se		and the second se			2.4
		ME (AC-F	a second s					C THERE'S REPAIRS AND AN ADDRESS TO	.6
SD1	1B								
TOR	M ÉVENT	· · · ·							20
	INFLOW WABLE RE	(CFS) ELEASE (C	FS) 0.					0.5 21 7.7 69	3.7 9.6
	LED RELE	EASE (CFS	) 0.	.3 4	4.5 8	3.6 2	9.5 47	7.7 69	9.0
TOT	ED VOLU	ME (AC-F	T) 4.	.σ 4	4.9 5	5.5 6	.4 7	.3 8	.2
STOR		() (7)		<u> </u>	6	10			
SD1			the second se				25 5 39.1 22		0.0
SD1 TOR	2 M EVENT INFLOW		77	.0 1 10					
	M EVENT INFLOW WABLE RE	(CFS) ELEASE (C	FS) 0.	.9 1			2.0 80		3.2
D1 OR AK	M EVENT INFLOW WABLE RE LED RELE	(CFS)	FS) 0. ) 0.	.9 1 .9 9	9.0 26	6.7 6	2.0         80           1.9         80           .7         7	0.1 10	




20 BOULDER CRESCENT, SUITE 110 COLORADO SPRINGS, CO 80903 PHONE: 719.955.5485

FUTURE HYDROLOGIC CONDITIONS MAP PROJECT NO. 08-035 FILE: \dwg\Eng Exhibits\Proposed Conditions Watershed Work Map.dwg DESIGNED BY: DLM


DATE: 10-21-16 SCALE DRAWN BY: DLM HORIZ: NTS CHECKED BY: VAS VERT: NTS

DM2



### O:\09002A\Sterling Ranch District - Filing 2\dwg\Eng Exhibits\FDP\Utility Plan_OVERALL.dwg, 2/26/2018 4:35:12 PM

File: 0:\09002A\Sterling Ranch District — Filing 2\dwg\Eng Exhibits\FDP\Utility Plan_OVERALL.dwg Plotstamp: 2/26/2018 4:35 PM



## Markup Summary

### 2/5/2019 2:33:04 PM (1)

AINAGE REPORT FOR RANCH FILING NO. 2 COUNTY, COLORADO This is not for the puttinning plan. Phase II Subject: Callout Page Label: 1 Author: dsdparsons Date: 2/5/2019 2:33:04 PM Color:

### 3/6/2019 9:18:14 AM (1)

t #09-002 ^{tt #} **SP-19-001**  Subject: Text Box Page Label: 1 Author: dsdrice Date: 3/6/2019 9:18:14 AM Color: This is not for the preliminary plan. Phase II

SP-19-001

### 3/7/2019 3:45:14 PM (1)



Subject: Callout Page Label: 6 Author: dsdrice Date: 3/7/2019 3:45:14 PM Color:

Address Phase II specifically

### 3/7/2019 3:45:58 PM (1)

See comment letter.

Subject: Text Box Page Label: 1 Author: dsdrice Date: 3/7/2019 3:45:58 PM Color:

See comment letter.