PRELIMINARY/FINAL DRAINAGE REPORT FOR HIGH PLAINS FILING NO. 1

July 2018

Drainage report comments will be provided with the final plat application (PCD File No SF1824)

Prepared for:

Savage Development, Inc. 835 Diamond Rim Drive Colorado Springs, CO 80921

Prepared By:

ATAMOUNT ENGINEERING 321 W. Henrietta Ave, Suite A

Woodland Park, CO 80863 719-426-2124

SP-18-003 SF-18-024 PCD FILE NO's: SP-18-XXX SF-18-XXX

PRELIMINARY/FINAL DRAINAGE REPORT HIGH PLAINS FILING NO. 1

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according the criteria established for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Certification Statement:

This report and plan for the preliminary and final drainage design for the <u>HIGH PLAINS FILING NO. 1</u> was prepared by me (or under my direct supervision) in accordance with the provisions of City of Colorado Springs/El Paso County Drainage Criteria Manual Volumes 1 and 2 Drainage Design and Technical Criteria for the owners thereof. I understand that El Paso County does not and will not assume liability for drainage facilities designed by others.

David L. Mijares, Colorado PE #40510 For and on behalf of Catamount Engineering Date

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

Savage Development, Inc. hereby certifies that the drainage facilities for <u>HIGH PLAINS FILING NO. 1</u> shall be constructed according to the design presented in this report. I understand that El Paso County does not and will not assume liability for the drainage facilities designed and or certified by my engineer and that the El Paso County reviews drainage plans pursuant to Colorado Revised Statues, Title 30, Article 28; but cannot, on behalf of <u>HIGH PLAINS FILING NO. 1</u>, guarantee that final drainage design review will absolve <u>Savage Development, Inc.</u> and/or their successors and/or assigns of future liability for improper design. I further understand that approval of the final plat does not imply approval of my engineer's drainage design.

	Savage Development, Inc.
Busines	s Name
Ву:	Jordan Savage
Title:	President
Address	: 835 Diamond Rim Drive

Colorado Springs, CO 80921

El Paso County:

Filed in accordance with the requirements of the El Paso County land Development Code and the Drainage Criteria manual Volumes 1 and 2, and the El Paso County Engineering Criteria Manual, latest revision.

Jennifer Irvine, PE County Engineer/ECM Administrator Date

Conditions:

PRELIMINARY/FINAL DRAINAGE REPORT for HIGH PLAINS FILING NO. 1

PURPOSE

The purpose of this drainage report is to identify existing drainage patterns, quantify developed storm water runoff, and establish outfall scenarios from the proposed development.

GENERAL LOCATION AND DESCRIPTION

The subject 38.49 acres consists of unplatted land to be developed into 7 rural residential lots (RR-5 zoning) located within the SE ¼ of Section 19, Township 11 South, Range 65 West of the 6th principal meridian in unincorporated El Paso County. The parcel is bounded to the north by unplatted land zoned RR-5, to the east and west by platted RR-5 residential lots, and to the south by Hodgen Road.

The parcel contains an unnamed tributary of the east fork of East Cherry Creek that flows from a dual culvert crossing of Hodgen Road at the southern limits of the parcel to the northeast and exits the parcel along the easterly property line. The site drains directly to the reach of Cherry Creek at slopes between 4% and 25%.

Existing soils on the site consist of Peyton sandy loam, hydrologic soil group B (51%), and Peyton -Pring complex, hydrologic soil group B (49%) as determined by the Natural Resources Conservation Service Web Soil Survey. The site is located within the East Cherry Creek Basin.

The site is sparsely vegetated with native grasses. Some volunteer shrubs and trees are evident within the existing drainage. A swale along the south edge of the project running from west to east and outfalls to the unnamed tributary of East Cherry Creek. The site lies within the East Cherry Creek Basin.

Existing soils on the site consist of Peyton sandy loam, hydrologic soil group B (51%), and Peyton -Pring complex, hydrologic soil group B (49%) as determined by the Natural Resources Conservation Service Web Soil Survey. Hydrologic Group B soils were used in analysis.

A portion of the site lies within an F.E.M.A. designated zone 'A' (unstudied) floodplain per FIRM 08041C0325 F, effective March 17, 1997. A LOMR is in process to develop base flood elevations for the reach and has been included in the appendix. Analysis of the floodplain indicates significant reduction in effective zone 'A' (unstudied) floodplain. The area currently identified as Zone 'A' (unstudied) has been included in a no build easement to be dedicated to El Paso County with plat recordation.

EXISTING DRAINAGE CONDITIONS

No existing studies on the site or overall basin have been identified. The parcel contains two unnamed tributaries to the Cherry Creek Basin. The westerly reach identified as design point SS3 ($Q_{100}=153$ cfs) enters the westerly boundary of the property within an unimproved swale and conveys flows to a confluence with the southerly unnamed tributary within the property. The southerly reach identified as design point SS2 ($Q_{100}=295$ cfs) enters the property through a dual 48" crossing of Hodgen Road installed by El Paso County. No hydrologic or hydraulic analysis was available for the crossing information. Combined flows are conveyed through the property northeasterly to the easterly property boundary (design point SS1, $Q_{100}=357$ cfs). USGS Streamstats modeling developed for the LOMR submittal was utilized in obtaining approximate flows within the reaches.

Basin E1 (22.00 Acres, $Q_2=0.8$ cfs, $Q_5=2.8$ cfs, $Q_{10}=6.2$ cfs, $Q_{25}=10.9$ cfs, $Q_{50}=14.6$ cfs, and $Q_{100}=18.9$ cfs) consists of that portion tributary to the westerly lot line of the parcel and sheetflow directly to the unnamed reach of East Cherry Creek within the parcel.

Basin E2 (5.46 Acres, $Q_2=0.3$ cfs, $Q_5=1.3$ cfs, $Q_{10}=2.8$ cfs, $Q_{25}=4.8$ cfs, $Q_{50}=6.5$ cfs, and $Q_{100}=8.4$ cfs) consists of that portion tributary to the northerly lot line of the parcel and sheetflow directly to the unnamed reach of East Cherry Creek within the parcel.

Basin E3 (1.62 Acres, $Q_2=1.0$ cfs, $Q_5=1.5$ cfs, $Q_{10}=2.2$ cfs, $Q_{25}=3.1$ cfs, $Q_{50}=3.8$ cfs, and $Q_{100}=4.6$ cfs) consists of that portion tributary to the southerly lot line of the parcel west of the channel and sheetflow directly to the unnamed reach of East Cherry Creek within the parcel.

Basin E4 (3.53 Acres, $Q_2=0.9$ cfs, $Q_5=1.6$ cfs, $Q_{10}=2.8$ cfs, $Q_{25}=4.3$ cfs, $Q_{50}=5.5$ cfs, and $Q_{100}=6.9$ cfs) consists of that portion tributary to the southerly lot line of the parcel east of the channel and sheetflow directly to the unnamed reach of East Cherry Creek within the parcel.

Basin E5 (38.49 Acres, $Q_2=2.4$ cfs, $Q_5=9.1$ cfs, $Q_{10}=20.0$ cfs, $Q_{25}=34.9$ cfs, $Q_{50}=46.8$ cfs, and $Q_{100}=60.8$ cfs) consists of the majority of the development parcel which sheetflow directly to the reach of East Cherry Creek within the parcel.

DEVELOPED DRAINAGE BASINS

The majority of the area within basins was modeled as 1-acre residential. Areas identified as nobuild were modeled as agricultural land. Roadways and shoulders were modeled as pavement and gravel roadways where proposed.

Basin A1 (5.91 Acres, $Q_2=2.9$ cfs, $Q_5=5.1$ cfs, $Q_{10}=7.3$ cfs, $Q_{25}=10.3$ cfs, $Q_{50}=12.9$ cfs, and $Q_{100}=15.6$ cfs) represents the northwesterly portion of proposed residential lots and the central cul-de-sac. Runoff generated within the basin will sheet flow to the roadside ditch adjacent to the proposed cul-de-sac and be conveyed to a lowpoint at a common lot line within the cul-de-sac bulb at Design Point 3. Flows from Design Point 3 will be conveyed in a swale directly to the reach of East Cherry Creek.

Revise. Flowrates - listed do not match calculations

Basin A2 (0.88 Acres, Q₂=2.5 cfs, Q₅=3.1 cfs, Q₁₀=3.7 cfs, Q₂₅=10.3 cfs, Q₅₀=12.9 cfs, and Q₁₀₀=15.6 cfs) consists of the westerly half of the proposed north-south roadway. The roadway was modeled assuming ultimate construction to the northerly property line rather than the interim condition of termination at connection with the cul-de-sac connection to allow for appropriate southerly culvert analysis. Sheet flow from the roadway is conveyed south to the proposed culvert triple 36" culvert crossing at Design Point 1. Design point 1 (Q₁₀₀=173.9 cfs) represents the confluence of Basins A2, Basin E1, and Stream Stats Design Point SS3. Flows are conveyed in a 3.5' deep, 5' bottom width channel with a 1% longitudinal slope to the reach of East Cherry Creek.

Basin A3 (3.48 Acres, Q₂=0.7 cfs, Q₅=1.5 cfs, Q₁₀=2.6 cfs, Q₂₅=4.0 cfs, Q₅₀=5.2 cfs, and Q₁₀₀=6.5 cfs) consists of the southeasterly portion of the residential lots directly tributary to the existing Hodgen Roadside ditch. Combined flows from Basin A-3 and existing Basin E3 are conveyed within the existing roadside ditch directly to the Reach of the East Fork of Cherry Creek at Design Point 2 (Q₂=2.5 cfs, Q₅=3.4 cfs, Q₁₀=4.3 cfs, Q₂₅=5.5 cfs, Q₅₀=6.4 cfs, and Q₁₀₀=7.5 cfs).

Basin A4 (28.21 Acres, $Q_2=6.8$ cfs, $Q_5=15.0$ cfs, $Q_{10}=24.9$ cfs, $Q_{25}=38.0$ cfs, $Q_{50}=49.3$ cfs, and $Q_{100}=61.4$ cfs) consists of residential, no-build, and roadway areas in the center of the property directly tributary to the Reach of the EasThe flowfate shown on the proposed and existing drainage map

Does overtopping occur during the 100yr event? as the flowrate shown on the proposed and existing drainage map are equal for DP SS1. Include a narrative explaining/stating the insignificant increase in discharge rate between the existing and developed condition.

WATER QUALITY/4-STEP PROCE justifying why no detention is required.

The development addresses Low Impact Development strategies primarily through the utilization of large impervious areas and utilization of landscape swales receiving runoff generated within impervious roadways. Impervious areas generated within home sites will flow across pervious disconnected areas prior to offsite discharge.

A Grading, Erosion Control, and Stormwater Quality Plan and narrative have been submitted concurrently for the development and will be subject to county approval prior to any soil disturbance. The erosion control plan included specific source control BMP's as well defined overall site management practices for the construction period.

List each of the 4 step (ECM Appendix I.7.2, pg I-21). Below each step provide a narrative how that specific step was implemented/considered in the design process.

Categorically state permanent WQ facility is not required. See ECM I.7.1.B, pg I-18

COST ESTIMATE Private Improvements N	Jon-reimbursa	The propos culverts sho public non-reimbu improveme	ed ould be irsable nts.	
36" RCP	156 LF	F @\$	75/LF	\$ 11,700
36" FES	6 EA	@\$	350/EA	\$ 2,100
30" RCP	85 LF	@\$	75/LF	\$ 6,375
30" FES	2 EA	@\$	350/EA	\$ 700
Rip Rap Outfall	3 EA	@\$	500/EA	\$ 1,500
	Ś	SUBTOTAL	L	\$ 22,375
		15% CONTI	NGENCY	\$ 3,356
	r	ГОТАL		\$ 25,731

DRAINAGE FEE CALCULATION

The development proposes to plat 38.49 acres within El Paso County, all contained within the East Cherry Creek Drainage Basin. The East Cherry Creek Drainage Basin has not been studied and no drainage or bridge fees have been adopted.

DRAINAGE METHODOLOGY

This drainage report was prepared in accordance to the criteria established in the City of Colorado Springs/El Paso County Drainage Criteria Manual Volumes 1 and 2, as revised May 2014.

The rational method for drainage basin study areas of less than 100 acres was utilized in the onsite analysis. For the Rational Method, flows were calculated for the 2, 5, 10, 25, 50, and 100year recurrence intervals. The average runoff coefficients, 'C' values, are taken from Table 6-6 and the Intensity-Duration-Frequency curves are taken from Figure 6-5 of the City Drainage Criteria Manual. Time of concentration for overland flow and storm drain or gutter flow are calculated per Section 3.2 of the City Drainage Criteria Manual. Calculations for the Rational Method are shown in the Appendix of this report.

StreamStats version 4 (USGS) was utilized in development of hydrology for off-site basins in floodplain development for FEMA submittal. HEC-RAS version 5.0.1 was utilized in channel and existing culvert modeling developing base flood elevations refining the existing Zone 'A' unstudied floodplain within the development.

SUMMARY

The High Plains Filing No. 1 project consists of large lot development with minor increases in impervious areas consistent with surrounding rural development. The development proposes no development and a setback approach in regards to the reach of the East Cherry Creek drainage within the parcel. A no-build easement has been established outside of the limits of the existing jurisdictional zone 'A' unstudied 100-YR floodplain. A LOMR is in process developing base flood elevations through the reach. Development of the parcel is in conformance of current El Paso County criteria and will not adversely affect downstream properties or facilities.

REFERENCES:

City of Colorado Springs Engineering Division Drainage Criteria Manual Volumes 1 and 2, revised May 2014

"Drainage Study Rockin' Four-ESE Subdivision El Paso County, Colorado", prepared by E.L.B. & Asso. Inc., dated April 24, 1980.

"LOMR Case # 18-08-072", prepared by Catamount Engineering, DRAFT

Flood Insurance rate map 08041C0325 F

Natural Resources Conservation Service Web Soil Survey

APPENDIX

VICINITY MAP SCALE: N.T.S.

Hydrologic Soil Group—EI Paso County Area, Colorado (HIGH PLAINS FILING NO. 1)

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
67	Peyton sandy loam, 5 to 9 percent slopes	В	20.9	50.6%
68	Peyton-Pring complex, 3 to 8 percent slopes	В	20.4	49.4%
Totals for Area of Intere	st	41.4	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

Component Percent Cutoff: None Specified Tie-break Rule: Higher

EXISTING HYDROLOGY

-										
	\mathbf{Q}_{100}	(c.f.s.)	18.9	8.4	4.6	69	60.8			
5	Q_{50}	(c.f.s.)	14.6	6.5	3.8	5.5	46.8			
FLOW	\mathbf{Q}_{25}	(c.f.s.)	10.9	4.8	3.1	4.3	34.9			
TAL 1	\mathbf{Q}_{10}	(c.f.s.)	6.2	2.8	2.2	2.8	20.0			
DT	\mathbf{Q}_5	(c.f.s.)	2.8	1.3	1.5	1.6	9.1			
	\mathbf{Q}_2	(c.f.s.)	0.8	0.3	1.0	6.0	2.4			
	\mathbf{I}_{100}	(in/hr)	2.4	4.3	5.8	4.7	4.4			
	\mathbf{I}_{50}	(in/hr)	2.1	3.8	5.2	4.2	3.9			
YTIY	\mathbf{I}_{25}	(in/hr)	1.9	3.4	4.6	3.7	3.5			
INTEN	\mathbf{I}_{10}	(in/hr)	1.7	3.0	4.0	3.3	3.1			
	\mathbf{I}_5	(in/hr)	1.4	2.5	3.4	2.8	2.6			
	\mathbf{I}_2	(in/hr)	1.1	2.0	2.7	2.2	2.1			
\mathbf{TT}	TOTAL	(min)	60.7	28.7	15.9	24.4	27.4			
	TC	(min)	43.4	13.6	4.9	<i>T.T</i>	10.8			
C	Velocity	(fps)	0.6	1.0	0.6	1.3	1.2			
NNCE 7	Slope	(%)	1.5%	4.2%	1.6%	7.0%	5.9%			
NVEY/	$\mathbf{C}_{\mathbf{V}}$		Ś	Ś	Ś	5	5			
CO	Height	(ft)	24	35	ŝ	43	47			
	Length	(ft)	1597	834	186	610	062			
	II	(min)	17.3	15.1	11.0	16.7	16.6			
	Height	(ft)	×	12	ŝ	7	6			
	Length	(ft)	200	200	100	200	200			
	C_{100}		0.36	0.36	0.50 0.36 0.96	0.42 0.36 0.96	0.36			
	C_{50}		0.31	0.31	0.46 0.31 0.95	0.37 0.31 0.95	0.31			
	C_{25}		0.26	0.26	0.42 0.26 0.94	0.32 0.26 0.94	0.26			
	C_{10}		 0.17	0.17	0.34 0.17 0.92	0.24 0.17 0.92	0.17		 	
	C_5		0.09	0.09	0.28 0.09 0.90	0.17 0.09 0.90	0.09			
	C_2		0.03	0.03	0.23 0.03 0.89	0.11 0.03 0.89	0.03			
	AREA TOTAL	(Acres)	22.00	5.46	1.62 1.25 0.37	3.53 3.20 0.33	38.49			
	BASIN		E1 Agriculture	E2 agriculture	E3 acriculture roadway	E4 acriculture roadway	E5 Acriculture			

Calculated by: DLM Date: 7/16/2018

	\mathbf{Q}_{100}	(c.f.s.)	######	592.0	20.8						
S	Q_{50}	(c.f.s.)	#######		16.1						
FLOW	\mathbf{Q}_{25}	(c.f.s.)	######		12.1						
OTAL	\mathbf{Q}_{10}	(c.f.s.)	#####		7.1						
T	Q	(c.f.s.)	#######		3.5						
	\mathbf{Q}_2	(c.f.s.)	######		1.2						
	\mathbf{I}_{100}	(in/hr)	######		2.4						
	\mathbf{I}_{50}	(in/hr)	######		2.1						
ISITY	\mathbf{I}_{25}	(in/hr)	######		1.9	Ъ С	atch	ap.			
INTEN	\mathbf{I}_{10}	(in/hr)	######		1.7	and	not ma	ge ma			
	\mathbf{I}_5	(in/hr)	#####		1.4	basin	loes r	Iraina			
	\mathbf{I}_2	1) (in/hr) #####		1.1	. Sut	ation d	sting o				
\mathbf{TT}	TOTAL	(mim)	0.0		60.7	Jpdate	lesigna				
	C_{100}		0.00		0.37 0.36 0.50						
	C_{50}		00.0		0.32 0.31 0.46	/					
HTED	C_{25}		0.00		0.27 0.26 0.42	/					
WEIG	C_{10}		00.0		0.18 0.17 0.34	/					
	C ₅		0.00		0.10 0.09 0.28						
	\mathbf{C}_2		00.0		0.04 0.03 0.23						
	AREA TOTAL	(Acres)	0.00		23.62 22.00 1.62						
	DESIGN	POINT	BASIN OS-A	DP-2 LOMR	DP-3 BASIN OS-B ← BASIN EX-B						

Calculated by: DLM Date: 10/1/2017

PROPOSED HYDROLOGY

	\mathbf{Q}_{100}	(c.f.s.)	18.9	8.4	4.6	6.9	15.6	5.6	6.5	61.4	
	\mathbf{Q}_{50}	(c.f.s.)	14.6	6.5	3.8	5.5	12.9	4.9	5.2	49.3	
FLOWS	\mathbf{Q}_{25}	(c.f.s.)	10.9	4.8	3.1	4.3	 10.3	4.3	4.0	38.0	
TAL 1	\mathbf{Q}_{10}	(c.f.s.)	6.2	2.8	2.2	2.8	7.3	3.7	2.6	24.9	
JL	Q5	(c.f.s.)	2.8	1.3	1.5	1.6	5.1	3.1	1.5	15.0	
	\mathbf{Q}_2	(c.f.s.)	0.8	0.3	1.0	0.9	2.9	2.5	0.7	6.8	
	\mathbf{I}_{100}	(in/hr)	2.4	4.3	5.8	4.7	5.4	6.6	4.6	5.2	
	\mathbf{I}_{50}	(in/hr)	2.1	3.8	5.2	4.2	4.8	5.9	4.1	4.7	
ATIS	\mathbf{I}_{25}	(in/hr)	1.9	3.4	4.6	3.7	4.3	5.2	3.6	4.2	
INTEN	\mathbf{I}_{10}	(in/hr)	1.7	3.0	4.0	3.3	3.7	4.6	3.2	3.6	
	\mathbf{I}_5	(in/hr)	1.4	2.5	3.4	2.8	3.2	3.9	2.7	3.1	
	\mathbf{I}_2	(in/hr)	1.1	2.0	2.7	2.2	2.6	3.1	2.2	2.5	
\mathbf{TT}	TOTAL	(min)	60.7	28.7	15.9	24.4	18.5	11.5	25.5	19.6	
	TC	(min)	43.4	13.6	4.9	<i>L. T</i>	8.1	9.5	12.8	9.6	
ſĊ	Velocity	(fps)	0.6	1.0	0.6	1.3	1.5	1.8	0.7	1.2	
ANCE 7	Slope	(%)	1.5%	4.2%	1.6%	7.0%	4.7%	3.4%	1.8%	5.8%	
NVEY	cv		5	5	S	5	7	10	5	5	
CO	Height	(ft)	24	35	33	43	35	36	6	40	
	Length	(ft)	1597	834	186	610	740	1053	509	693	
	II	(min)	17.3	15.1	11.0	16.7	10.4	2.0	12.7	10.0	
	Height	(ft)	8	12	3	7	4	0.7	3	9	
	Length	(ft)	200	200	100	200	100	40	100	100	
-	C_{100}		0.36	0.36	0.50 0.36 0.96	0.42 0.36 0.96	0.49 0.44 0.96	0.96	0.41 0.44 0.36	0.42 0.44 0.36 0.96	
	C ₅₀		0.31	0.31	0.46 0.31 0.95	0.37 0.31 0.95	0.45 0.40 0.95	0.95	0.37 0.40 0.31	0.37 0.40 0.31 0.95	
	C_{25}		0.26	0.26	0.42 0.26 0.94	0.32 0.26 0.94	0.41 0.35 0.94	0.94	0.32 0.35 0.26	0.32 0.35 0.26 0.94	
	C_{10}		0.17	0.17	0.34 0.17 0.92	0.24 0.17 0.92	0.33 0.27 0.92	0.92	0.23 0.27 0.17	0.24 0.27 0.17 0.92	
	C5		0.09	0.09	0.28 0.09 0.90	0.17 0.09 0.90	0.27 0.20 0.90	0.90	0.16 0.20 0.09	0.17 0.20 0.09 0.90	
	۲ С		0.03	0.03	0.23 0.03 0.89	0.11 0.03 0.89	0.19 0.12 0.89	0.89	0.09 0.12 0.03	0.10 0.12 0.03 0.89	
	AREA TOTAL	(Acres)	22.00	5.46	1.62 1.25 0.37	3.53 3.20 0.33	 5.91 5.35 0.56	0.88	3.48 2.16 1.32	28.21 20.92 7.02 0.27	
	BASIN		E1 GRICULTURE	E2 Griculture	E3 criculture roadway	E4 criculture roadway	A1 Residential Roadway	A2 ROADWAY	A3 RESIDENTIAL NO BUILD	A4 RESIDENTIAL NO BUILD ROADWAY	

Calculated by: DLM Date: 7/16/2018

-																			
	Q_{100}	(c.f.s.)	173.9			153	7.5			15.6									
S	\mathbf{Q}_{50}	(c.f.s.)					6.4			12.9									
FLOW	\mathbf{Q}_{25}	(c.f.s.)					5.5			10.3									
JTAL	\mathbf{Q}_{10}	(c.f.s.)					4.3			7.3									
TC	Q_5	(c.f.s.)					3.4			5.1									
	\mathbf{Q}_2	(c.f.s.)					2.5			2.9									
	I_{100}	(in/hr)	2.4				4.6			5.4									
	\mathbf{I}_{50}	(in/hr)	2.1				4.1			4.8									
YTIX	\mathbf{I}_{25}	(in/hr)	1.9				3.6			4.3									
INTEN	\mathbf{I}_{10}	(in/hr)	1.7				3.2			3.7									
	\mathbf{I}_5	(in/hr)	1.4				2.7			3.2									
	\mathbf{I}_2	(in/hr)	1.1				2.2			2.6									
\mathbf{TT}	rotal	(min)	60.7				25.5			18.5									
	C ₁₀₀		0.38	0.36	0.96		0.66	0.50	0.96	0.49	0.49				S1.				
	C_{50}		0.33	0.31	0.95		0.63	0.46	0.95	0.45	0.45				DP 0				
HTED	C_{25}		0.29	0.26	0.94		0.60	0.42	0.94	0.41	0.41				slude				
WEIG	\mathbf{C}_{10}		0.20	0.17	0.92		0.55	0.34	0.92	0.33	0.33				Inc				
	\mathbf{C}_{5}		0.12	0.09	06.0		0.50	0.28	06.0	0.27	0.27				/	Į			
	\mathbf{C}_2		0.06	0.03	0.89		0.46	0.23	0.89	0.19	0.19								
	AREA TOTAL	(Acres)	22.88	22.00	0.88		2.50	1.62	0.88	5.91	5.91			/					
	DESIGN	POINT	DP-1	BASIN E1	BASIN A2	DP-SS3	DP-2	BASIN E3	BASIN A3	DP-3	BASIN A1	K	/						

SAVAGE SUBDIVISION: L.O.M.R. REQUEST – PROJECT NARRATIVE

The Savage Subdivision development project is a one filing subdivision located in the northern portion of El Paso County, Colorado. This subdivision is located entirely within the NFIP FIRM Map for El Paso County, Colorado and Incorporated Areas, panel 325 of 1300, map number 08041C0325F, with an effective date of March 17, 1997.

The project is bisected by an unnamed tributary of the East Fork of Cherry Creek and it is in this section of the East Fork of Cherry Creek that this LOMR relates. The current zone designation for this reach is Zone A with no existing FIS model. It is our intent to establish Base Flood Elevations for this portion of the unnamed tributary of the East Fork of Cherry Creek.

Documents supporting this application include hydrologic analysis calculations using the Regional Regression methodology equations within the USGS StreamStats computer program. Hydraulic analysis calculations were performed using the USACE HEC-RAS computer program. A certified topographic work map has been included showing the subdivision with 1-foot contours generated from field work conducted by a land surveyor. This map shows the current Zone A boundary as well as the proposed floodplain boundary with Base Flood Elevations.

Hydrologic electronic data files from the USGS StreamStats program as well as hydraulic data files from the HEC-RAS model have been included with this submittal.

This application is exempt from a review fee as it is establishing Base Flood Elevations for an area where no current data exists. This reach of the unnamed tributary of the East Fork of Cherry Creek is well established and no changes are being made to the existing channel, as such, sediment transport was not considered in this analysis.

Please direct any questions concerning this application to Catamount Engineering.

Dave Mijares, P.E. Catamount Engineering 321 W. Henrietta Ave. Suite 'A' P.O. Box 221 Woodland Park, CO 80866 (719) 426-2124 david@catamounteng.com

PAPERWORK BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 1 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless it displays a valid OMB control number. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington, VA 20958-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address.

PRIVACY ACT STATEMENT

AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234.

PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM).

ROUTINE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program (NFIP); Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990.

DISCLOSURE: The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent FEMA from processing a determination regarding a requested change to a (NFIP) Flood Insurance Rate Maps (FIRM).

A. REQUESTED RESPONSE FROM DHS-FEMA

This request is for a (check one):

CLOMR: A letter from DHS-FEMA commenting on whether a proposed project, if built as proposed, would justify a map revision, or proposed hydrology changes (See 44 CFR Ch. 1, Parts 60, 65 & 72).

LOMR: A letter from DHS-FEMA officially revising the current NFIP map to show the changes to floodplains, regulatory floodway or flood elevations. (See 44 CFR Ch. 1, Parts 60, 65 & 72)

B. OVERVIEW

1.	1. The NFIP map panel(s) affected for all impacted communities is (are):											
Cor	nmun	ity No.	Community Na	me		State	Map No.	Panel No.	Effective Date			
Exa	mple	: 480301 480287	City of Katy Harris County			TX TX	48473C 48201C	0005D 0220G	02/08/83 09/28/90			
080	059		El Paso County	 Unincorporated Areas 		со	08041C	0325F	03/17/97			
2.	a. Flooding Source: East Cherry Creek											
	b. Types of Flooding: 🛛 Riverine 🗌 Coastal 🔄 Shallow Flooding (e.g., Zones AO and AH)											
	Alluvial fan Lakes Other (Attach Description)											
3.	Proj	ect Name/Id	entifier: Savage	Subdivision								
4.	FEN	/IA zone desi	gnations affected	d: A (choices: A, AH, AO, A1-A30	, A99, AE, AR, V,	V1-V30, V	E, B, C, D, X)					
5.	Bas	is for Reques	st and Type of R	evision:								
	a.	The basis for	or this revision re	equest is (check all that apply)								
		Physical	Change	Improved Methodology/Data	Regulator	y Floodway	Revision	🗌 Base Map C	hanges			
		Coastal	Analysis	Hydraulic Analysis	🛛 Hydrologio	Analysis		Corrections				
	Weir-Dam Changes Levee Certification Alluvial Fan Analysis Natural Changes											
		🛛 New Top	oographic Data	Other (Attach Description)								
	Note: A photograph and narrative description of the area of concern is not required, but is very helpful during review.											

b. The area of revision encompasses the following structures (check a	all that apply)									
Structures:	e/Floodwall	⊠ Bridge/Culvert								
🗌 Dam 🔛 Fill	[Other (Attach De	scriptio	n)						
6. Documentation of ESA compliance is submitted (required to initiate C	CLOMR review). Plea	ase refer to the instr	uctions	for more information.						
C. REVI	C. REVIEW FEE									
Has the review fee for the appropriate request category been included?										
No, Attach Explanation										
Please see the DHS-FEMA Web site at http://www.fema.gov/plan/prevent/fr	Please see the DHS-FEMA Web site at http://www.fema.gov/plan/prevent/fhm/frm_fees.shtm for Fee Amounts and Exemptions.									
D. SIGNATURE										
All documents submitted in support of this request are correct to the best of n fine or imprisonment under Title 18 of the United States Code, Section 1001.	ny knowledge. I und	erstand that any fals	se state	ment may be punishable by						
Name: Jordan Savage	Company: Savage	Development, Inc.								
Mailing Address: 1125 Diamond Rim Drive	Daytime Telephone	e No.: (719) 649-52	266	Fax No.:						
Colorado Springs, Colorado 80921	E-Mail Address: js	avage@goodwinkn	ight.con	n						
Signature of Requester (required):	I	Date:								
As the community official responsible for floodplain management, I hereby ac (LOMR) or conditional LOMR request. Based upon the community's review, of the community floodplain management requirements, including the require necessary Federal, State, and local permits have been, or in the case of a co applicant has documented Endangered Species Act (ESA) compliance to FE LOMR requests, I acknowledge that compliance with Sections 9 and 10 of t authorized, funded, or being carried out by Federal or State agencies, docu of the ESA will be submitted. In addition, we have determined that the land or will be reasonably safe from flooding as defined in 44CFR 65.2(c), and that documentation used to make this determination.	cknowledge that we h we find the complete ments for when fill is inditional LOMR, will MA prior to FEMA's the ESA has been acl umentation from the and any existing or p t we have available t	have received and re of or proposed proje placed in the regula be obtained. For Co review of the Conc hieved independen agency showing it proposed structures upon request by FEI	eviewec ect meet atory flo onditional itly of Fl is comp to be re MA, all	d this Letter of Map Revision ts or is designed to meet all bodway, and that all nal LOMR requests, the LOMR application. For EMA's process. For actions liance with Section 7(a)(2) emoved from the SFHA are analyses and						
Community Official's Name and Title: Keith Curtis - Floodplain Administrator		Community Name:	El Paso	o County						
Mailing Address:	Daytime Telephone	e No.: (719) 327-28	398	Fax No.: N/A						
Colorado Springs, Colorado 80910	E-Mail Address: ke	eith@pprbd.org								
Community Official's Signature (required):	[Date:								
CERTIFICATION BY REGISTERED PROFESSIO	ONAL ENGINEER	AND/OR LAND	SURV	EYOR						
This certification is to be signed and sealed by a licensed land surveyor, regis elevation information data, hydrologic and hydraulic analysis, and any other s described in the MT-2 Forms Instructions. All documents submitted in suppo any false statement may be punishable by fine or imprisonment under Title 18	stered professional e supporting informatio rt of this request are 8 of the United State	ngineer, or architec n as per NFIP regul correct to the best o s Code, Section 100	et author lations p of my kr 01.	rized by law to certify baragraph 65.2(b) and as howledge. I understand that						
Certifier's Name: David Mijares	License No.: 40510 Expiration Date: Oct			tion Date: October 31, 2019						
Company Name: Catamount Engineering	Telephone No.: (7	19) 426-2124	Fax No	э.: N/А						

Ensure the forms that are appropriate to your revision request are included in your submittal.								
Form Name and (Number)	Required if							
Riverine Hydrology and Hydraulics Form (Form 2)	New or revised discharges or water-surface elevations							
Riverine Structures Form (Form 3)	Channel is modified, addition/revision of bridge/culverts, addition/revision of levee/floodwall, addition/revision of dam							
Coastal Analysis Form (Form 4)	New or revised coastal elevations							
Coastal Structures Form (Form 5)	Addition/revision of coastal structure	Seal (Optional)						
Alluvial Fan Flooding Form (Form 6)	Flood control measures on alluvial fans							

U.S. DEPARTMENT OF HOMELAND SECURITY FEDERAL EMERGENCY MANAGEMENT AGENCY RIVERINE HYDROLOGY & HYDRAULICS FORM

PAPERWORK BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 3.5 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington VA 20958-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. **Please do not send your completed survey to the above address.**

PRIVACY ACT STATEMENT

AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234.

PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM).

ROUTINE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program (NFIP); Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990.

DISCLOSURE: The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent FEMA from processing a determination regarding a requested change to a NFIP Flood Insurance Rate Maps (FIRM).

Flooding Source: East Cherry Creek

Note: Fill out one form for each flooding source studied

A. HYDROLOGY

1.	Reason for New Hydrologic Analysis (check	all that apply)			
	Not revised (skip to section B)	No existing analysis	I	Improved data	
	Alternative methodology	Proposed Conditions (CLOM	R)	Changed physical cond	ition of watershed
2.	Comparison of Representative 1%-Annual-C	hance Discharges			
	Location Drain	nage Area (Sq. Mi.)	Effective/FIS	S (cfs)	Revised (cfs)
3.	Methodology for New Hydrologic Analysis (c	heck all that apply)			
	Statistical Analysis of Gage Records	Precipitation/Runoff Model -	Specify Mod	del:	
	Regional Regression Equations	Other (please attach description	on)		
	Please enclose all relevant models in digital f new analysis.	ormat, maps, computations (includi	ng computation	on of parameters), and doc	umentation to support the
4.	Review/Approval of Analysis				
	If your community requires a regional, state, o	or federal agency to review the hyd	ologic analys	sis, please attach evidence	of approval/review.
5.	Impacts of Sediment Transport on Hydrology				
	Is the hydrology for the revised flooding source	ce(s) affected by sediment transpor	? 🗌 Yes	🖾 No	
	If yes, then fill out Section F (Sediment Trans	port) of Form 3. If No, then attach	our explanat	ion	

B. HYDRAULICS

1. Reach to be Revised										
	Descri	otion	Cross Section	Water-Surface I	Elevations (ft.)					
				Effective	Proposed/Revised					
Downstream Limit*	<u>1564' North of t</u> Centerline	he Hodgen Rd.	0+00		7413.90					
Upstream Limit*	916' South of th Centerline	<u>e Hodgen Road</u>	24+80		7438.21					
*Proposed/Revised elevations must t	ie-into the Effective	elevations within 0.5	foot at the downstream a	and upstream limits of rev	vision.					
2. Hydraulic Method/Model Used: H	IEC-RAS v5.03									
3 Pre-Submittal Review of Hydrauli	: Models*									
DHS-FEMA has developed two re respectively. We recommend that	view programs, CH you review your Hl	ECK-2 and CHECK- EC-2 and HEC-RAS	RAS, to aid in the review models with CHECK-2 ar	of HEC-2 and HEC-RAS nd CHECK-RAS.	hydraulic models,					
4. Models Submitted	Natu	al Run	<u>FI</u>	oodway Run	<u>Datum</u>					
Duplicate Effective Model*	File Name:	Plan Name:	File Name:	Plan Name:						
Corrected Effective Model*	File Name:	Plan Name:	File Name:	Plan Name:						
Existing or Pre-Project Conditions Model	File Name:	Plan Name:	File Name:	Plan Name:						
Revised or Post-Project Conditions Model	File Name: Savage	Plan Name: 100Yr Subcritio	File Name:	Plan Name:	NAVD88					
Other - (attach description)	File Name:	Plan Name:	File Name:	Plan Name:						
* For details, refer to the corresponding	ng section of the ins	tructions.								
Digital Models Submitted? (Required)										
		C. MAPPING RE	QUIREMENTS							
A cortified topographic work map		howing the following	information (whore appli	cable): the boundaries of	the offective existing					

A certified topographic work map must be submitted showing the following information (where applicable): the boundaries of the effective, existing,
and proposed conditions 1%-annual-chance floodplain (for approximate Zone A revisions) or the boundaries of the 1%- and 0.2%-annual-chance
floodplains and regulatory floodway (for detailed Zone AE, AO, and AH revisions); location and alignment of all cross sections with stationing control
indicated; stream, road, and other alignments (e.g., dams, levees, etc.); current community easements and boundaries; boundaries of the requester's
property; certification of a registered professional engineer registered in the subject State; location and description of reference marks; and the
referenced vertical datum (NGVD, NAVD, etc.).

Topographic Information: Field survey

Digital Mapping (GIS/CADD) Data Submitted (preferred)

Source: Barron Land

Date: January 22, 2018

Accuracy: <u>1' Contour Interval</u>

Note that the boundaries of the existing or proposed conditions floodplains and regulatory floodway to be shown on the revised FIRM and/or FBFM must tie-in with the effective floodplain and regulatory floodway boundaries. Please attach **a copy of the effective FIRM and/or FBFM**, at the same scale as the original, annotated to show the boundaries of the revised 1%-and 0.2%-annual-chance floodplains and regulatory floodway that tie-in with the boundaries of the effective 1%-and 0.2%-annual-chance floodplain and regulatory floodway that tie-in with the boundaries of the effective 1%-and 0.2%-annual-chance floodplain and regulatory floodway at the upstream and downstream limits of the area on revision.

Annotated FIRM and/or FBFM (Required)

D. COMMON REGULATORY REQUIREMENTS*

1.	For LOMR/CLOMR requests, do Base Flood Elevations (BFEs) increase?	🗌 Yes 🗌 No				
	a. For CLOMR requests, if either of the following is true, please submit evidence of compliance with Section 65.12 of the	NFIP regulations:				
	The proposed project encroaches upon a regulatory floodway and would result in increases above 0.00 foot compa conditions.	ared to pre-project				
	 The proposed project encroaches upon a SFHA with or without BFEs established and would result in increases ab compared to pre-project conditions. 	ove 1.00 foot				
	b. Does this LOMR request cause increase in the BFE and/or SFHA compared with the effective BFEs and/or SFHA? If Yes, please attach proof of property owner notification and acceptance (if available). Elements of and examples of notifications can be found in the MT-2 Form 2 Instructions.	Yes No No Property owner				
2.	Does the request involve the placement or proposed placement of fill?	🗌 Yes 🖾 No				
	If Yes, the community must be able to certify that the area to be removed from the special flood hazard area, to include any structures or proposed structures, meets all of the standards of the local floodplain ordinances, and is reasonably safe from flooding in accordance with the NFIP regulations set forth at 44 CFR 60.3(A)(3), 65.5(a)(4), and 65.6(a)(14). Please see the MT-2 instructions for more information.					
3.	For LOMR requests, is the regulatory floodway being revised?	🛛 Yes 🗌 No				
	If Yes, attach evidence of regulatory floodway revision notification . As per Paragraph 65.7(b)(1) of the NFIP Regulations, notification is required for requests involving revisions to the regulatory floodway. (Not required for revisions to approximate 1%-annual-chance floodplains [studied Zone A designation] unless a regulatory floodway is being established. Elements and examples of regulatory floodway revision notification.) notification can be found in the MT-2 Form 2 Instructions.)					
4.	For CLOMR requests, please submit documentation to FEMA and the community to show that you have complied with Section Endangered Species Act (ESA).	ns 9 and 10 of the				
For cor	For actions authorized, funded, or being carried out by Federal or State agencies, please submit documentation from the agency showing its compliance with Section 7(a)(2) of the ESA. Please see the MT-2 instructions for more detail.					

* Not inclusive of all applicable regulatory requirements. For details, see 44 CFR parts 60 and 65.

SAVAGE PROJECT - StreamStats Report 1

Design Point Above Minor Trib TGap

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	2.96	square miles
I6H100Y	6-hour precipitation that is expected to occur on average once in 100 years	3.84	inches
STATSCLAY	Percentage of clay soils from STATSGO	16.3	percent
OUTLETELEV	Elevation of the stream outlet in thousands of feet above NAVD88.	7416	feet
I24H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	4.99	inches

Parameter Code	Parameter Description	Value	Unit
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx? content=17758.wba)	60.68	
тос	Time of concentration in hours	3.6	
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.25	
LFPLENGTH	Length of longest flow path	3.41	miles
BSLDEM10M	Mean basin slope computed from 10 m DEM	6.42	percent
CSL1085LFP	Change in elevation divided by length between points 10 and 85 percent of distance along the longest flow path to the basin divide, LFP from 2D grid	68	feet per mi
EL7500	Percent of area above 7500 ft	83	percent
ELEV	Mean Basin Elevation	7557	feet
ELEVMAX	Maximum basin elevation	7690	feet
I24H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precitation intensity index	1.92	inches
16H2Y	Maximum 6-hour precipitation that occurs on average once in 2 years	1.38	
LAT_OUT	Latitude of Basin Outlet	4325125	degrees
LC11BARE	Percentage of barren from NLCD 2011 class 31	0	
LC11CRPHAY	Percentage of cultivated crops and hay, classes 81 and 82, from NLCD 2011	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	3.1	percent
LC11FOREST	Percentage of forest from NLCD 2011 classes 41-43	2.1	percent
LC11GRASS	Percent of area covered by grassland/herbaceous using 2011 NLCD	76.1	
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	3.1	percent
LC11SHRUB	Percent of area covered by shrubland using 2011 NLCD	18.7	
LC11SNOIC	Percent snow and ice from NLCD 2011 class 12	0	
LC11WATER	Percent of open water, class 11, from NLCD 2011	0	
LC11WETLND	Percentage of wetlands, classes 90 and 95, from NLCD 2011	0	
LONG_OUT	Longitude of Basin Outlet	525705	degrees
MINBELEV	Minimum basin elevation	7410	feet
PRECIP	Mean Annual Precipitation	20.83	inches
SSURGOA	Percentage of area of Hydrologic Soil Type A from SSURGO	0	percent
SSURGOB	Percentage of area of Hydrologic Soil Type B from SSURGO	91.2	percent
SSURGOC	Percentage of area of Hydrologic Soil Type C from SSURGO	7.1	percent
SSURGOD	Percentage of area of Hydrologic Soil Type D from SSURGO	1.65	percent
STORNHD	Percent storage (wetlands and waterbodies) determined from 1:24K	0.9	percent

General Disclaimers

Upstream regulation was checked for this watershed.

Peak-Flow Statistics Parameters [Foothills Region Peak Flow 2016 5099]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.96	square miles	0.6	2850
I6H100Y	6 Hour 100 Year Precipitation	3.84	inches	2.38	4.89
STATSCLAY	STATSGO Percentage of Clay Soils	16.3	percent	9.87	37.5
OUTLETELEV	Elevation of Gage	7416	feet	4290	8270

Peak-Flow Statistics Flow Report [Foothills Region Peak Flow 2016 5099]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
2 Year Peak Flood	22	ft^3/s	117
5 Year Peak Flood	61.8	ft^3/s	87
10 Year Peak Flood	104	ft^3/s	80
25 Year Peak Flood	181	ft^3/s	80
50 Year Peak Flood	257	ft^3/s	83
100 Year Peak Flood	357	ft^3/s	88
200 Year Peak Flood	474	ft^3/s	94
500 Year Peak Flood	661	ft^3/s	104

Peak-Flow Statistics Citations

Kohn, M.S., Stevens, M.R., Harden, T.M., Godaire, J.E., Klinger, R.E., and Mommandi, A.,2016, Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015: U.S. Geological Survey Scientific Investigations Report 2016-5099, 58 p. (http://dx.doi.org/10.3133/sir20165099)

SAVAGE PROJECT - StreamStats Report2

Design Point Above Minor West Trib

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	2.14	square miles
I6H100Y	6-hour precipitation that is expected to occur on average once in 100 years	3.84	inches
STATSCLAY	Percentage of clay soils from STATSGO	16.3	percent
OUTLETELEV	Elevation of the stream outlet in thousands of feet above NAVD88.	7428	feet
BSLDEM10M	Mean basin slope computed from 10 m DEM	6.5	percent

Parameter Code	Parameter Description	Value	Unit
CSL1085LFP	Change in elevation divided by length between points 10 and 85 percent of distance along the longest flow path to the basin divide, LFP from 2D grid	68.1	feet per mi
EL7500	Percent of area above 7500 ft	88	percent
ELEV	Mean Basin Elevation	7564	feet
ELEVMAX	Maximum basin elevation	7690	feet
124H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	5	inches
124H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precitation intensity index	1.92	inches
16H2Y	Maximum 6-hour precipitation that occurs on average once in 2 years	1.38	
LAT_OUT	Latitude of Basin Outlet	4324845	degrees
LC11BARE	Percentage of barren from NLCD 2011 class 31	0	
LC11CRPHAY	Percentage of cultivated crops and hay, classes 81 and 82, from NLCD 2011	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	1.7	percent
LC11FOREST	Percentage of forest from NLCD 2011 classes 41-43	3	percent
LC11GRASS	Percent of area covered by grassland/herbaceous using 2011 NLCD	73.4	
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	1.7	percent
LC11SHRUB	Percent of area covered by shrubland using 2011 NLCD	22	
LC11SNOIC	Percent snow and ice from NLCD 2011 class 12	0	
LC11WATER	Percent of open water, class 11, from NLCD 2011	0	
LC11WETLND	Percentage of wetlands, classes 90 and 95, from NLCD 2011	0	
LFPLENGTH	Length of longest flow path	3.09	miles
LONG_OUT	Longitude of Basin Outlet	525385	degrees
MINBELEV	Minimum basin elevation	7430	feet
PRECIP	Mean Annual Precipitation	20.73	inches
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx? content=17758.wba)	61.09	
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.25	
SSURGOA	Percentage of area of Hydrologic Soil Type A from SSURGO	0	percent
SSURGOB	Percentage of area of Hydrologic Soil Type B from SSURGO	92	percent
SSURGOC	Percentage of area of Hydrologic Soil Type C from SSURGO	6.04	percent
SSURGOD	Percentage of area of Hydrologic Soil Type D from SSURGO	1.93	percent
STORNHD	Percent storage (wetlands and waterbodies) determined from 1:24K NHD	1.1	percent

Parameter Code	Parameter Description	Value	Unit
тос	Time of concentration in hours	3.27	

Peak-Flow Statistics Parameters [Foothills Region Peak Flow 2016 5099]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.14	square miles	0.6	2850
I6H100Y	6 Hour 100 Year Precipitation	3.84	inches	2.38	4.89
STATSCLAY	STATSGO Percentage of Clay Soils	16.3	percent	9.87	37.5
OUTLETELEV	Elevation of Gage	7428	feet	4290	8270

Peak-Flow Statistics Flow Report [Foothills Region Peak Flow 2016 5099]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
2 Year Peak Flood	17.9	ft^3/s	117
5 Year Peak Flood	50.7	ft^3/s	87
10 Year Peak Flood	85.9	ft^3/s	80
25 Year Peak Flood	149	ft^3/s	80
50 Year Peak Flood	212	ft^3/s	83
100 Year Peak Flood	295	ft^3/s	88
200 Year Peak Flood	391	ft^3/s	94
500 Year Peak Flood	547	ft^3/s	104

Peak-Flow Statistics Citations

Kohn, M.S., Stevens, M.R., Harden, T.M., Godaire, J.E., Klinger, R.E., and Mommandi, A.,2016, Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015: U.S. Geological Survey Scientific Investigations Report 2016–5099, 58 p. (http://dx.doi.org/10.3133/sir20165099)

SAVAGE PROJECT - StreamStats Report3

Design Point Above Hodgen

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	2.07	square miles
I6H100Y	6-hour precipitation that is expected to occur on average once in 100 years	3.84	inches
STATSCLAY	Percentage of clay soils from STATSGO	16.3	percent
OUTLETELEV	Elevation of the stream outlet in thousands of feet above NAVD88.	7445	feet
BSLDEM10M	Mean basin slope computed from 10 m DEM	6.52	percent

Parameter Code	Parameter Description	Value	Unit
CSL1085LFP	Change in elevation divided by length between points 10 and 85 percent of distance along the longest flow path to the basin divide, LFP from 2D grid	73.1	feet per mi
EL7500	Percent of area above 7500 ft	90	percent
ELEV	Mean Basin Elevation	7568	feet
ELEVMAX	Maximum basin elevation	7690	feet
I24H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	5	inches
124H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precitation intensity index	1.92	inches
16H2Y	Maximum 6-hour precipitation that occurs on average once in 2 years	1.38	
LAT_OUT	Latitude of Basin Outlet	4324655	degrees
LC11BARE	Percentage of barren from NLCD 2011 class 31	0	
LC11CRPHAY	Percentage of cultivated crops and hay, classes 81 and 82, from NLCD 2011	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	1.1	percent
LC11FOREST	Percentage of forest from NLCD 2011 classes 41-43	3.1	percent
LC11GRASS	Percent of area covered by grassland/herbaceous using 2011 NLCD	74	
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	1.2	percent
LC11SHRUB	Percent of area covered by shrubland using 2011 NLCD	21.7	
LC11SNOIC	Percent snow and ice from NLCD 2011 class 12	0	
LC11WATER	Percent of open water, class 11, from NLCD 2011	0	
LC11WETLND	Percentage of wetlands, classes 90 and 95, from NLCD 2011	0	
LFPLENGTH	Length of longest flow path	2.79	miles
LONG_OUT	Longitude of Basin Outlet	525085	degrees
MINBELEV	Minimum basin elevation	7440	feet
PRECIP	Mean Annual Precipitation	20.73	inches
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx? content=17758.wba)	61.04	
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.25	
SSURGOA	Percentage of area of Hydrologic Soil Type A from SSURGO	0	percent
SSURGOB	Percentage of area of Hydrologic Soil Type B from SSURGO	92.2	percent
SSURGOC	Percentage of area of Hydrologic Soil Type C from SSURGO	6.25	percent
SSURGOD	Percentage of area of Hydrologic Soil Type D from SSURGO	1.5	percent
STORNHD	Percent storage (wetlands and waterbodies) determined from 1:24K NHD	1.2	percent

Parameter Code	Parameter Description	Value	Unit
тос	Time of concentration in hours	3.01	

Peak-Flow Statistics Parameters [Foothills Region Peak Flow 2016 5099]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.07	square miles	0.6	2850
I6H100Y	6 Hour 100 Year Precipitation	3.84	inches	2.38	4.89
STATSCLAY	STATSGO Percentage of Clay Soils	16.3	percent	9.87	37.5
OUTLETELEV	Elevation of Gage	7445	feet	4290	8270

Peak-Flow Statistics Flow Report [Foothills Region Peak Flow 2016 5099]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
2 Year Peak Flood	17.4	ft^3/s	117
5 Year Peak Flood	49.4	ft^3/s	87
10 Year Peak Flood	83.6	ft^3/s	80
25 Year Peak Flood	145	ft^3/s	80
50 Year Peak Flood	207	ft^3/s	83
100 Year Peak Flood	287	ft^3/s	88
200 Year Peak Flood	381	ft^3/s	94
500 Year Peak Flood	532	ft^3/s	104

Peak-Flow Statistics Citations

Kohn, M.S., Stevens, M.R., Harden, T.M., Godaire, J.E., Klinger, R.E., and Mommandi, A.,2016, Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015: U.S. Geological Survey Scientific Investigations Report 2016–5099, 58 p. (http://dx.doi.org/10.3133/sir20165099)

 \leftarrow

HEC-RAS I	Plan: 100Yr sul	b River: EF C	Cherry Creek F	Reach: Main	Profile: PF 1							
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(¥)	(Ħ)	(ft/ft)	(ft/s)	(sq ft)	(ff)	
Main	2480	PF 1	287.00	7436.70	7438.21	7438.15	7438.61	0.011766	5.11	56.19	60.48	0.93
Main	2220	PF 1	287.00	7432.70	7434.81	7434.81	7435.37	0.013130	6.03	47.62	43.24	1.01
Main	1953	PF 1	287.00	7429.90	7434.94		7434.95	0.000035	0.78	588.61	301.20	0.07
Main	1669	PF 1	287.00	7427.50	7434.93		7434.94	0.000014	0.64	552.90	136.25	0.04
Main	1641	PF 1	287.00	7427.40	7434.87	7429.44	7434.93	0.000114	1.99	144.55	195.32	0.13
Main	1564		Culvert									
Main	1480	PF 1	287.00	7426.60	7428.44	7428.44	7429.35	0.010743	7.62	37.67	148.77	1.00
Main	1443	PF 1	295.00	7425.40	7426.65	7426.65	7427.05	0.014357	5.04	58.55	74.76	1.00
Main	974	PF 1	295.00	7420.80	7422.21		7422.34	0.003321	2.93	100.89	97.83	0.51
Main	661	PF 1	357.00	7418.70	7420.09	7419.98	7420.42	0.012088	4.57	78.03	101.03	0.92
Main	282	PF 1	357.00	7415.50	7416.81	7416.59	7417.03	0.006782	3.77	94.57	106.09	0.70
Main	0	PF 1	357.00	7412.00	7413.90	7413.90	7414.35	0.013968	5.39	66.28	74.89	1.01

Plan: 100Yr sub EF Cherry Creek Main RS: 2480 Profile: PF 1

E.G. Elev (ft)	7438.61	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.41	Wt. n-Val.		0.030	
W.S. Elev (ft)	7438.21	Reach Len. (ft)	305.00	260.00	132.00
Crit W.S. (ft)	7438.15	Flow Area (sq ft)		56.19	
E.G. Slope (ft/ft)	0.011766	Area (sq ft)		56.19	
Q Total (cfs)	287.00	Flow (cfs)		287.00	
Top Width (ft)	60.48	Top Width (ft)		60.48	
Vel Total (ft/s)	5.11	Avg. Vel. (ft/s)		5.11	
Max Chl Dpth (ft)	1.51	Hydr. Depth (ft)		0.93	
Conv. Total (cfs)	2645.9	Conv. (cfs)		2645.9	
Length Wtd. (ft)	260.00	Wetted Per. (ft)		60.61	
Min Ch El (ft)	7436.70	Shear (lb/sq ft)		0.68	
Alpha	1.00	Stream Power (lb/ft s)		3.48	
Frctn Loss (ft)	3.23	Cum Volume (acre-ft)	1.49	6.71	0.99
C & E Loss (ft)	0.02	Cum SA (acres)	1.21	4.51	0.97

Plan: 100Yr sub EF Cherry Creek Main RS: 2220 Profile: PF 1

E.G. Elev (ft)	7435.37	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.56	Wt. n-Val.		0.030	
W.S. Elev (ft)	7434.81	Reach Len. (ft)	249.00	267.00	235.00
Crit W.S. (ft)	7434.81	Flow Area (sq ft)		47.62	
E.G. Slope (ft/ft)	0.013130	Area (sq ft)		47.62	
Q Total (cfs)	287.00	Flow (cfs)		287.00	
Top Width (ft)	43.24	Top Width (ft)		43.24	
Vel Total (ft/s)	6.03	Avg. Vel. (ft/s)		6.03	
Max Chl Dpth (ft)	2.11	Hydr. Depth (ft)		1.10	
Conv. Total (cfs)	2504.7	Conv. (cfs)		2504.7	-
Length Wtd. (ft)	264.11	Wetted Per. (ft)		43.51	
Min Ch El (ft)	7432.70	Shear (lb/sq ft)		0.90	
Alpha	1.00	Stream Power (lb/ft s)		5.41	
Frctn Loss (ft)	0.03	Cum Volume (acre-ft)	1.49	6.40	0.99
C & E Loss (ft)	0.17	Cum SA (acres)	1.21	4.20	0.97

Plan: 100Yr sub EF Cherry Creek Main RS: 1953 Profile: PF 1

E.G. Elev (ft)	7434.95	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.01	Wt. n-Val.	0.045	0.030	0.045
W.S. Elev (ft)	7434.94	Reach Len. (ft)	213.00	284.00	321.00
Crit W.S. (ft)		Flow Area (sq ft)	220.79	271.19	96.63
E.G. Slope (ft/ft)	0.000035	Area (sq ft)	220.79	271.19	96.63
Q Total (cfs)	287.00	Flow (cfs)	57.10	210.24	19.66
Top Width (ft)	301.20	Top Width (ft)	146.09	63.40	91.71
Vel Total (ft/s)	0.49	Avg. Vel. (ft/s)	0.26	0.78	0.20
Max Chl Dpth (ft)	5.04	Hydr. Depth (ft)	1.51	4.28	1.05
Conv. Total (cfs)	48194.0	Conv. (cfs)	9588.9	35303.4	3301.7
Length Wtd. (ft)	276.05	Wetted Per. (ft)	146.38	63.65	91.80
Min Ch El (ft)	7429.90	Shear (lb/sq ft)	0.00	0.01	0.00
Alpha	1.92	Stream Power (lb/ft s)	0.00	0.01	0.00
Frctn Loss (ft)	0.01	Cum Volume (acre-ft)	0.86	5.43	0.73
C & E Loss (ft)	0.00	Cum SA (acres)	0.79	3.87	0.72

Plan: 100Yr sub EF Cherry Creek Main RS: 1669 Profile: PF 1

E.G. Elev (ft)	7434.94	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.01	Wt. n-Val.	0.045	0.030	0.045
W.S. Elev (ft)	7434.93	Reach Len. (ft)	23.00	28.00	62.00
Crit W.S. (ft)		Flow Area (sq ft)	104.14	400.16	48.60
E.G. Slope (ft/ft)	0.000014	Area (sq ft)	104.14	400.16	48.60
Q Total (cfs)	287.00	Flow (cfs)	21.63	257.33	8.04
Top Width (ft)	136.25	Top Width (ft)	46.00	59.90	30.35
Vel Total (ft/s)	0.52	Avg. Vel. (ft/s)	0.21	0.64	0.17

Plan: 100Yr sub EF Cherry Creek Main RS: 1669 Profile: PF 1 (Continued)

Max Chl Dpth (ft)	7.43	Hydr. Depth (ft)	2.26	6.68	1.60
Conv. Total (cfs)	77909.3	Conv. (cfs)	5872.4	69853.9	2183.1
Length Wtd. (ft)	28.29	Wetted Per. (ft)	46.67	60.48	30.63
Min Ch El (ft)	7427.50	Shear (lb/sq ft)	0.00	0.01	0.00
Alpha	1.39	Stream Power (lb/ft s)	0.00	0.00	0.00
Frctn Loss (ft)	0.00	Cum Volume (acre-ft)	0.06	3.24	0.19
C & E Loss (ft)	0.01	Cum SA (acres)	0.32	3.47	0.27

Plan: 100Yr sub EF Cherry Creek Main RS: 1641 Profile: PF 1

E.G. Elev (ft)	7434.93	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.06	Wt. n-Val.		0.030	
W.S. Elev (ft)	7434.87	Reach Len. (ft)	202.00	161.00	164.00
Crit W.S. (ft)	7429.44	Flow Area (sq ft)		144.55	
E.G. Slope (ft/ft)	0.000114	Area (sq ft)	92.06	387.48	221.85
Q Total (cfs)	287.00	Flow (cfs)	-	287.00	
Top Width (ft)	195.32	Top Width (ft)	49.40	57.90	88.02
Vel Total (ft/s)	1.99	Avg. Vel. (ft/s)		1.99	
Max Chl Dpth (ft)	7.47	Hydr. Depth (ft)		7.30	
Conv. Total (cfs)	26922.6	Conv. (cfs)		26922.6	
Length Wtd. (ft)	161.00	Wetted Per. (ft)		19.82	
Min Ch El (ft)	7427.40	Shear (lb/sq ft)		0.05	
Alpha	1.00	Stream Power (lb/ft s)		0.10	
Frctn Loss (ft)		Cum Volume (acre-ft)	0.01	2.98	0.00
C & E Loss (ft)		Cum SA (acres)	0.29	3.43	0.19

Plan: 100Yr sub EF	Cherry Creek	Main RS: 1480 Profile:	PF 1		
E.G. Elev (ft)	7429.35	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.90	Wt. n-Val.		0.030	
W.S. Elev (ft)	7428.44	Reach Len. (ft)	23.00	37.00	62.00
Crit W.S. (ft)	7428.44	Flow Area (sq ft)		37.67	
E.G. Slope (ft/ft)	0.010743	Area (sq ft)	38.63	117.45	2.22
Q Total (cfs)	287.00	Flow (cfs)		287.00	
Top Width (ft)	148.77	Top Width (ft)	68.91	74.59	5.27
Vel Total (ft/s)	7.62	Avg. Vel. (ft/s)		7.62	
Max Chl Dpth (ft)	1.84	Hydr. Depth (ft)		1.81	
Conv. Total (cfs)	2769.0	Conv. (cfs)		2769.0	
Length Wtd. (ft)	37.00	Wetted Per. (ft)		20.84	
Min Ch El (ft)	7426.60	Shear (lb/sq ft)		1.21	
Alpha	1.00	Stream Power (lb/ft s)		9.24	
Frctn Loss (ft)	0.46	Cum Volume (acre-ft)	0.01	2.85	0.00
C & E Loss (ft)	0.15	Cum SA (acres)	0.02	3.19	0.01

Plan: 100Yr sub EF	Cherry Creek	Main RS: 1443 Profile:	PF 1		
E.G. Elev (ft)	7427.05	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.39	Wt. n-Val.		0.030	
W.S. Elev (ft)	7426.65	Reach Len. (ft)	268.00	469.00	453.00
Crit W.S. (ft)	7426.65	Flow Area (sq ft)		58.55	
E.G. Slope (ft/ft)	0.014357	Area (sq ft)		58.55	
Q Total (cfs)	295.00	Flow (cfs)		295.00	*****
Top Width (ft)	74.76	Top Width (ft)		74.76	**************************************
Vel Total (ft/s)	5.04	Avg. Vel. (ft/s)		5.04	
Max Chl Dpth (ft)	1.25	Hydr. Depth (ft)		0.78	
Conv. Total (cfs)	2462.0	Conv. (cfs)		2462.0	
Length Wtd. (ft)	469.00	Wetted Per. (ft)		74.86	
Min Ch El (ft)	7425.40	Shear (lb/sq ft)		0.70	
Alpha	1.00	Stream Power (lb/ft s)		3.53	
Frctn Loss (ft)	2.84	Cum Volume (acre-ft)	0.00	2.77	0.00
C & E Loss (ft)	0.08	Cum SA (acres)	0.00	3.12	0.01

Plan: 100Yr sub EF Cherry Creek Main RS: 974 Profile: PF 1

E.G. Elev (ft)	7422.34	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.13	Wt. n-Val.		0.030	0.045
W.S. Elev (ft)	7422.21	Reach Len. (ft)	278.00	313.00	173.00
Crit W.S. (ft)		Flow Area (sq ft)		100.81	0.08
E.G. Slope (ft/ft)	0.003321	Area (sq ft)		100.81	0.08
Q Total (cfs)	295.00	Flow (cfs)		294.97	0.03
Top Width (ft)	97.83	Top Width (ft)		97.04	0.79
Vel Total (ft/s)	2.92	Avg. Vel. (ft/s)		2.93	0.42
Max Chl Dpth (ft)	1.41	Hydr. Depth (ft)		1.04	0.11
Conv. Total (cfs)	5118.7	Conv. (cfs)		5118.1	0.6
Length Wtd. (ft)	312.99	Wetted Per. (ft)		97.14	0.82
Min Ch El (ft)	7420.80	Shear (lb/sq ft)		0.22	0.02
Alpha	1.00	Stream Power (lb/ft s)		0.63	0.01
Frctn Loss (ft)	1.90	Cum Volume (acre-ft)	0.00	1.91	0.00
C & E Loss (ft)	0.02	Cum SA (acres)	0.00	2.20	0.00

Plan: 100Yr sub EF Cherry Creek Main RS: 661 Profile: PF 1

E.G. Elev (ft)	7420.42	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.33	Wt. n-Val.		0.030	
W.S. Elev (ft)	7420.09	Reach Len. (ft)	390.00	379.00	189.00
Crit W.S. (ft)	7419.98	Flow Area (sq ft)		78.03	
E.G. Slope (ft/ft)	0.012088	Area (sq ft)		78.03	
Q Total (cfs)	357.00	Flow (cfs)		357.00	
Top Width (ft)	101.03	Top Width (ft)		101.03	
Vel Total (ft/s)	4.57	Avg. Vel. (ft/s)		4.57	
Max Chl Dpth (ft)	1.39	Hydr. Depth (ft)		0.77	-
Conv. Total (cfs)	3247.1	Conv. (cfs)		3247.1	
Length Wtd. (ft)	379.00	Wetted Per. (ft)		101.34	
Min Ch El (ft)	7418.70	Shear (lb/sq ft)		0.58	
Alpha	1.00	Stream Power (lb/ft s)		2.66	
Frctn Loss (ft)	3.36	Cum Volume (acre-ft)	0.00	1.27	
C & E Loss (ft)	0.03	Cum SA (acres)	0.00	1.49	

Plan: 100Yr sub EF Cherry Creek Main RS: 282 Profile: PF 1

E.G. Elev (ft)	7417.03	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.22	Wt. n-Val.		0.030	
W.S. Elev (ft)	7416.81	Reach Len. (ft)	294.00	282.00	256.00
Crit W.S. (ft)	7416.59	Flow Area (sq ft)		94.57	
E.G. Slope (ft/ft)	0.006782	Area (sq ft)	0.00	94.57	
Q Total (cfs)	357.00	Flow (cfs)		357.00	
Top Width (ft)	106.09	Top Width (ft)	0.03	106.06	
Vel Total (ft/s)	3.77	Avg. Vel. (ft/s)		3.77	
Max Chl Dpth (ft)	1.31	Hydr. Depth (ft)		0.89	
Conv. Total (cfs)	4334.9	Conv. (cfs)		4334.9	
Length Wtd. (ft)	282.00	Wetted Per. (ft)		106.24	
Min Ch El (ft)	7415.50	Shear (lb/sq ft)		0.38	
Alpha	1.00	Stream Power (lb/ft s)		1.42	
Frctn Loss (ft)	2.66	Cum Volume (acre-ft)	0.00	0.52	
C & E Loss (ft)	0.02	Cum SA (acres)	0.00	0.59	

Plan: 100Yr sub EF Cherry Creek Main RS: 0 Profile: PF 1

E.G. Elev (ft)	7414.35	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.45	Wt. n-Val.		0.030	
W.S. Elev (ft)	7413.90	Reach Len. (ft)			
Crit W.S. (ft)	7413.90	Flow Area (sq ft)		66.28	
E.G. Slope (ft/ft)	0.013968	Area (sq ft)		66.28	
Q Total (cfs)	357.00	Flow (cfs)		357.00	
Top Width (ft)	74.89	Top Width (ft)		74.89	
Vel Total (ft/s)	5.39	Ava. Vel. (ft/s)		5.39	

Plan: 100Yr sub EF Cherry Creek Main RS: 0 Profile: PF 1 (Continued)

Max Chl Dpth (ft)	1.90	Hydr. Depth (ft)	0.89
Conv. Total (cfs)	3020.6	Conv. (cfs)	3020.6
Length Wtd. (ft)		Wetted Per. (ft)	75.09
Min Ch El (ft)	7412.00	Shear (lb/sq ft)	0.77
Alpha	1.00	Stream Power (lb/ft s)	4.15
Frctn Loss (ft)		Cum Volume (acre-ft)	
C & E Loss (ft)		Cum SA (acres)	

Plan: 100Yr sub EF Cl	herry Creek	Main RS: 1564 Culv Gro	oup: 48inch Dual	Profile: PF 1
Q Culv Group (cfs)	281.57	Culv Full Len (ft)	114.75	
# Barrels	2	Culv Vel US (ft/s)	11.20	
Q Barrel (cfs)	140.78	Culv Vel DS (ft/s)	12.03	
E.G. US. (ft)	7434.93	Culv Inv El Up (ft)	7427.10	
W.S. US. (ft)	7434.87	Culv Inv El Dn (ft)	7426.40	
E.G. DS (ft)	7429.35	Culv Frctn Ls (ft)	1.47	
W.S. DS (ft)	7428.44	Culv Exit Loss (ft)	2.82	
Delta EG (ft)	5.59	Culv Entr Loss (ft)	0.98	
Delta WS (ft)	6.43	Q Weir (cfs)	5.43	
E.G. IC (ft)	7433.86	Weir Sta Lft (ft)	170.13	
E.G. OC (ft)	7434.93	Weir Sta Rgt (ft)	189.93	
Culvert Control	Outlet	Weir Submerg	0.00	
Culv WS Inlet (ft)	7431.10	Weir Max Depth (ft)	0.26	
Culv WS Outlet (ft)	7429.92	Weir Avg Depth (ft)	0.22	
Culv Nml Depth (ft)	4.00	Weir Flow Area (sq ft)	4.42	
Culv Crt Depth (ft)	3.52	Min El Weir Flow (ft)	7434.68	

HYDRAULIC CALCULATIONS

CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

Calculations of Culvert Capacity (output):

	Water Surface Elevation	Tailwater Surface Elevation	Culvert Inlet-Control Flowrate	Culvert Outlet-Control Flowrate	Controlling Culvert Flowrate	Inlet Equation Used:	Flow Control Used
		ft	cfs	cfs	cfs		
	(ft., linked)				(output)		
	7432.00		0.00	0.00	0.00	No Flow (WS < inlet)	N/A
	7432.25		0.90	65.95	0.90	Min. Energy. Eqn.	INLET
1	7432.50		3.60	67.32	3.60	Min. Energy. Eqn.	INLET
	7432.75		9.90	69.78	9.90	Min. Energy. Eqn.	INLET
1	7433.00		17.10	73.33	17.10	Min. Energy. Eqn.	INLET
	7433.25		26.10	78.38	26.10	Min. Energy. Eqn.	INLET
1	7433.50		36.60	84.94	36.60	Min. Energy. Eqn.	INLET
	7433.75		47.10	92.99	47.10	Regression Eqn.	INLET
	7434.00		59.10	101.73	59.10	Regression Eqn.	INLET
	7434.25		72.30	110.74	72.30	Regression Eqn.	INLET
1	7434.50		87.00	119.62	87.00	Regression Eqn.	INLET
- [7434.75		101.70	128.36	101.70	Regression Eqn.	INLET
- [7435.00		116.40	136.55	116.40	Regression Eqn.	INLET
	7435.25		130.50	151.16	130.50	Regression Eqn.	INLET
	7435.50		143.40	165.50	143.40	Regression Eqn.	INLET
	7435.75		155.70	178.88	155.70	Regression Eqn.	INLET
	7436.00		166.80	191.17	166.80	Regression Eqn.	INLET
	7436.25		177.30	202.78	177.30	Regression Eqn.	INLET
	7436.50		187.20	213.70	187.20	Regression Eqn.	INLET
	7436.75		196.50	224.22	196.50	Regression Eqn.	INLET
- [7437.00		205.20	234.05	205.20	Regression Eqn.	INLET
1	7437.25		213.60	243.61	213.60	Regression Eqn.	INLET
	7437.50		221.70	252.89	221.70	Regression Eqn.	INLET
	7437.75		229.50	261.77	229.50	Regression Eqn.	INLET
	7438.00		237.00	270.37	237.00	Regression Eqn.	INLET
	7438.25		244.20	278.70	244.20	Regression Eqn.	INLET
1	7438.50		251.10	286.76	251.10	Regression Eqn.	INLET
1	7438.75		258.00	294.54	258.00	Regression Eqn.	INLET
1	7439.00		264.60	302.19	264.60	Regression Eqn.	INLET
1	7439.25		271.20	309.70	271.20	Regression Eqn.	INLET

Processing Time: 00.93 Seconds

CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

Project: High Plains Filing no. 1 Basin ID: Design Point 1

Version 4.05 Released March 2017

AREA INLET IN A SWALE

Version 4.05 Released March 2017

AREA INLET IN A SWALE

DRAINAGE MAPS

PO BOX 221 WOODLAND

EXISTING DRAINAGE BASINS							
BASIN	AREA (ACRES)	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q50 (CFS)	Q100 (CFS
E1	22.00	0.8	2.8	6.2	10.9	14.6	18.9
E2	5.46	0.3	1.3	2.8	4.8	6.5	8.4
E3	1.62	1.0	1.5	2.2	3.1	3.8	4.6
E4	3.53	0.9	1.6	2.8	4.3	5.5	6.9
E5	38.49	2.4	9.1	20.0	34.9	46.8	60.8

EXISTING DESIGN POINTS					
DESIGN POINT	Q100 (CFS)	Q500 (CFS)			
SS1	357	661.0			
SS2	295.0	547.0			
SS3	153.0	286.0			

EXISTING	(E)
PROPOSED	(P)
BOUNDARY	
RIGHT-OF-WAY	
LOT LINE	
EASEMENT	
(E) CONTOUR, INDEX	— — <i>6820</i> —
(E) CONTOUR	
(P) CONTOUR, INDEX	6820
(P) CONTOUR	

	HIGH PLAINS FILING NO. 1	designed by: DLM	DRAWN BY:
\mathbf{M}		SCALE: 1"=150'	DATE: 07/09/18
MOUNT		JOB NUMBER	SHEET
GINEERING		17–135	1 OF 1

For more details visit: www.call811.com

1125 DIAMOND RIM DR. COLORADO SPRINGS, CO 80921

PROPOSED DRAINAGE BASINS							
BASIN	AREA (ACRES)	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q50 (CFS)	Q100 (CFS
E1	22.00	0.8	2.8	6.2	10.9	14.6	18.9
E2	5.46	0.3	1.3	2.8	4.8	6.5	8.4
E3	1.62	1.0	1.5	2.2	3.1	3.8	4.6
E4	3.53	0.9	1.6	2.8	4.3	5.5	6.9
A1	5.91	2.9	5.1	7.3	10.3	12.9	15.6
A2	0.88	2.5	3.1	3.7	4.3	4.9	5.6
A3	3.48	0.7	1.5	2.6	4.0	5.2	6.5
A4	28.21	6.8	15.0	24.9	38.0	49.3	61.4

PROPOSED DESIGN POINTS

DESIGN POINT	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q50 (CFS)	Q100 (CFS)	Q500 (CFS)
SS1						357.0	661.0
SS2						295.0	547.0
SS3						153.0	286.0
1						173.9	
2	2.5	3.4	4.3	5.5	6.4	7.5	
3	2.9	5.1	7.3	10.3	12.9	15.6	

LEGEND	
EXISTING PROPOSED	(E) (P)
BOUNDARY RIGHT-OF-WAY	
LOT LINE EASEMENT	
(E) CONTOUR, INDEX (E) CONTOUR	— — <i>—6820</i> — — –
(P) CONTOUR, INDEX (P) CONTOUR	6820

	HIGH PLAINS FILING NO. 1	designed by: DLM	DRAWN BY:
\sim		SCALE: 1"=150'	DATE: 07/09/18
MOUNT		JOB NUMBER	SHEET
GINEERING X		17–135	1 OF 1

Markup Summary

dsdlaforce (22)			
SP-16-003 SP-16-024 VG SGLRA 80053 PCD FILE NO': SP-18-XXX SF-18-XXX	Subject: Callout Page Label: 1 Author: dsdlaforce Date: 8/13/2018 4:18:44 PM Color:	SP-18-003 SF-18-024	
ING NO. 1 Drange report comments will be provide PCD Pile No 5F1501	Subject: Text Box Page Label: 1 Author: dsdlaforce Date: 8/14/2018 9:10:49 AM Color:	Drainage report comments will be provided with the final plat application (PCD File No SF1824)	
Land the second	Subject: Callout Page Label: 53 Author: dsdlaforce Date: 8/27/2018 5:19:55 PM Color:	Show/label the dual 48" culvert	
	Subject: Text Box Page Label: 48 Author: dsdlaforce Date: 8/28/2018 1:54:57 PM	1. Culvert P&P is missing in the construction drawings. Culvert calculation will be reviewed with the resubmittal.	
	Color:	2. Submit the outlet protection calculation	
		3. Provide the Hw/D. Per DCM Hw/D must be less than 1.5.	
		4. Provide the culvert calculation for the proposed 30" RCP.	
	Subject: Highlight Page Label: 54 Author: dsdlaforce Date: 8/28/2018 4:08:39 PM Color:		
	Subject: Callout Page Label: 54 Author: dsdlaforce Date: 8/28/2018 4:19:17 PM Color:	HEC-RAS analysis shows that these sections exceed the criteria for the Froude # (0.90 max). Additionally the soils report identified unstable soils along the banks. Channel stabilization must be provided.	
A can be supported as a support of the support of t	Subject: Callout Page Label: 5 Author: dsdlaforce Date: 8/28/2018 4:49:55 PM Color:	Does overtopping occur during the 100yr event?	
Agent the basis the so 2 is analy distinguishable.	Subject: Callout Page Label: 54 Author: dsdlaforce Date: 8/28/2018 8:31:26 AM Color:	Adjust the basin line so it is easily distinguishable.	

Subject: Callout Page Label: 54 Author: dsdlaforce Date: 8/28/2018 8:33:16 AM Color: 📕

Date: 8/28/2018 8:36:32 AM

Date: 8/28/2018 8:46:58 AM

Date: 8/28/2018 8:48:40 AM

Subject: Callout

Subject: Callout

Author: dsdlaforce

Page Label: 6

Author: dsdlaforce

Page Label: 54

Color:

Color:

. Subject: Text Box

Page Label: 11 Author: dsdlaforce Provide erosion control for the concentrated flow at DP3

Update the plat to include this open channel within a drainage easement

The proposed culverts should be public non-reimbursable improvements.

Delineate and label the site location.

Update. Subbasin and DP designation does not match the existing drainage map.

Include DP SS1.

The flowrate shown on the proposed and existing drainage map are equal for DP SS1. Include a narrative explaining/stating the insignificant increase in discharge rate between the existing and developed condition.

In conjunction with the above comment, provide a narrative justifying why no detention is required.

List each of the 4 step (ECM Appendix I.7.2, pg I-21). Below each step provide a narrative how that specific step was implemented/considered in the design process.

Categorically state permanent WQ facility is not required. See ECM I.7.1.B, pg I-18

Subject: Highlight Page Label: 54 Author: dsdlaforce Date: 8/28/2018 9:48:49 AM Color:

Date: 8/28/2018 9:44:28 AM

Page Label: 18 Author: dsdlaforce Date: 8/28/2018 9:06:34 AM Color:

Subject: Callout Page Label: 21 Author: dsdlaforce Date: 8/28/2018 9:12:02 AM Color:

Subject: Text Box

Author: dsdlaforce

Subject: Callout

Author: dsdlaforce

Page Label: 5

Color:

Date: 8/28/2018 9:42:03 AM

Page Label: 5

Color:

.....

Subject: Highlight Page Label: 54 Author: dsdlaforce Date: 8/28/2018 9:57:10 AM Color:

Subject: Highlight Page Label: 54 Author: dsdlaforce Date: 8/28/2018 9:57:18 AM Color:

_____ Subject: Highlight Page Label: 54 Author: dsdlaforce Date: 8/28/2018 9:58:05 AM Color:

Subject: Highlight Page Label: 54 Author: dsdlaforce Date: 8/28/2018 9:58:10 AM Color:

.

_____ Subject: Highlight Page Label: 54 Author: dsdlaforce Date: 8/28/2018 9:59:26 AM Color:

Daniel Torres (4)

Subject: Highlight Page Label: 5 25=10.3 cfs Author: Daniel Torres Date: 8/28/2018 2:25:12 PM

10.3

.....

AutoCAD SHX 1	Fext (11)	
7416.81	Subject: Page Label: 46 Author: AutoCAD SHX Text Date: Color:	7416.81
7434.81	Subject: Page Label: 46 Author: AutoCAD SHX Text Date: Color:	7434.81
00 1420 00 1420	Subject: Page Label: 46 Author: AutoCAD SHX Text Date: Color:	7426.65
7434.94	Subject: Page Label: 46 Author: AutoCAD SHX Text Date: Color:	7434.94
13 ^{3.1}	Subject: Page Label: 46 Author: AutoCAD SHX Text Date: Color:	7438.21
7422.21 7428.44 7438.44	Subject: Page Label: 46 Author: AutoCAD SHX Text Date: Color:	7428.44
7434.8 7434.8 70.	Subject: Page Label: 46 Author: AutoCAD SHX Text Date: Color:	7434.93
7422.21 7428.44 7428.44	Subject: Page Label: 46 Author: AutoCAD SHX Text Date: Color:	7422.21
2000 2000 2000 2000 2000 2000	Subject: Page Label: 46 Author: AutoCAD SHX Text Date: Color:	7420.09

.....

.....

..... Subject: Page Label: 46 Author: AutoCAD SHX Text Date: Color:

7413.90

..... 7422.21

Subject: Page Label: 46 Author: AutoCAD SHX Text Date: Color:

7434.87