

CHRIS TEAM SUBDIVISION

FINAL DRAINAGE REPORT

EL PASO COUNTY PROJECT NO: SF246

ALL TERRAIN ENGINEERING PROJECT NO: 24019

AUGUST 2024

PREPARED FOR:

CHRIS TEAM LIVING TRUST

CONTACT: CHRISTINE TSCHAMLER

PREPARED BY: ALL TERRAIN ENGINEERING LLC CONTACT: NICHOLAS Q. JOKERST NJOKERST@ALLTERRAINENG.COM (530) 391-7635

ENGINEER'S STATEMENT

Please update typos

The attacked drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent accts, errors or omissions on my part in preparing this report.

Nicholas Q. Jokerst, PE State of Colorado No. 59273

For and on behalf of All Terrain Engineering LLC

DEVELOPER'S STATEMENT

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Christine Tschamler

Date

Date

Chris Team Living Trust

6275 Montarbor Drive, Colorado Springs, CO 80918

EL PASO COUNTY ONLY

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, PE County Engineer/ECM Administrator Conditions: Date

Table of Contents

١.	General Purpose, Location & Description	2
١١.	Drainage Basins	2
III.	Drainage Design Criteria	4
IV.	Drainage Facility Design	5
V.	Summary	6
VI.	References	6

Appendices

- A. Vicinity Map, FEMA Map, NRCS Soil Survey & NOAA Atlas 14
- B. Hydrologic Analysis
- C. Hydraulic Analysis
- D. Water Quality & Detention
- E. Reference Material
- F. Drainage Maps

I. General Purpose, Location & Description

a. Purpose & Project Description

The purpose of the Final Drainage Report (FDR) for the CHRIS TEAM SUBDIVISION is to describe the site's onsite and offsite drainage patterns, existing and proposed storm infrastructure, and to safely route developed stormwater to adequate outfalls.

b. Location

CHRIS TEAM SUBDIVISION, referred to as 'the site' herein, is in a portion of the northeast quarter of Section 14, Township 11 South, Range 65 West of the 6th P.M., El Paso County, Colorado. The site is bound by unplatted land to the north, west and east, Gerth Subdivision and Beierle Minor Subdivision (R1) to the south, and Hendriks Subdivision to the north. A vicinity map is presented in Appendix A.

c. Description of Property

The site is approximately 19.18 acres and is undeveloped. Existing vegetation consists of native grasses and dense forest. There will be no land disturbance or site improvements associated with this report. The site is currently unplatted and zoned RR-5. The intention of the project is to plat a minor subdivision of three (3) 5+ acre lots. At this time, no additional development will occur on the property.

In general, the site slopes northeasterly. Onsite elevations range from 7415' - 7450' with slopes ranging 1 – 20%. Per a NRCS soil survey, the site is made up of Type B Elbeth sandy loam. An existing drainageway bisects the site and conveys the site's stormwater towards Black Squirrel Road. Per the Land Survey Plat, an underground telecommunication line runs along the site's northern boundary. Two existing 12" PVC culverts discharge onsite along the western property line. An existing drainage map is presented in Appendix F.

d. Floodplain Statement

Based on FEMA Firm map 08041C0310G dated December 7, 2018, the site is Zone X, which are areas determined to be outside the 0.2% annual chance flood.

II. Drainage Basins

a. Major Basin Description

The site is located within the West Kiowa Creek Drainage Basin. West Kiowa Creek is an unstudied drainage basin. A Drainage Basin Planning Study has not been completed.

b. Existing Subbasin Description

The existing site's drainage patterns are relatively uniform. A drainageway bisects the site and conveys stormwater to a low point in the northeast corner of the site. See below for existing basin descriptions:

Basin A is 19.20 acres of dense forest and native grasses. The basin is bounded by Little Squirrel Lane to the north and west and by existing Black Squirrel Road to the east. Neither Little Squirrel Lane nor Black Squirrel Road have roadside ditches. Stormwater from these roads sheet flows onsite and collects at DP2.

Looks like this is DP7 now. Based on flow arrows, it looks like a portion of the roadways flow offsite and not onsite

2

CHRIS TEAM SUBDIVISION Final Drainage Report

Review 1 unresolved comment: Include a discussion of the existing 12" culvert at the NW corner of the site, as shown on drainage map. There is a comment on the map to identify the culvert of interest

Basin A stormwater (Q_5 = 4.2 cfs Q_{100} = 22.9 cfs) collects in a low point at DP2 that overtops Black Squirrel What is Road and continues northeast in an existing drainageway. The existing drainageway ultimately discharges to overtopping Kiowa Creek Watershed 1-G-30 Reservoir. The low point is densely vegetated and stable. An overtopping analysis of Black Squirrel Road is presented in Appendix C. Photos of the culvert outfall and low point are meet presented in Appendix E. Please include the overtop depth in narrative.

depth/width/vel ocity? Does it overtopping criteria per **DCM** table 6-4?

Basin B is 11.02 acres of Little Squirre Lane, offsite large lots and undeveloped area. Stormwater from this basin (Q₅ = 3.7 cfs Q_{100} = 22.4 cfs) flows east across the basin to a low point adjacent to Black Squirrel Road and north of Little Squirrel Lane (DP8). DP8 overtops Black Squirrel Road and continues northeast in an existing drainageway. The existing drainageway ultimately discharges to Kiowa Creek Watershed 1-G-30 Reservoir. This basin will remain undeveloped and follow historic drainage patterns. The existing <u>cu</u>lverts will not be affected. A picture of the downstream drainageway after stormwater overtops Black Squirrel Road is presented as Figure 2 in Appendix E. add "onsite". Flows do run

Basin C is 0.26 acres of dirt road. Stormwater from this basin ($Q_5 = 0.7$ cfs $Q_{100} = 1.4$ cfs north side of road, but they are where dual, existing, private 12" PVC culverts convey the flow to the onsite drainagewal not within the project area. enters this basin from offsite areas to the west, see Basin D. Basin C will remain unchanged and follow Previous report stated there was a roadside ditch along road, historic drainage patterns. directing flows to culvert. This was deleted, so how are flows being directed to low point? Also provide discussion of

Basin D is 140.80 acres of off existing culvert at NW corner of site in Basin C. n, StreamStats is used to define the basin limits. Based upon County GIS data, this basin has been analyzed as 5+ acre lot subdivisions with a maximum imperviousness of 10%. Basin D stormwater (Q_5 = 28.0 cfs Q_{100} = 118.7 cfs) discharges onsite at DP1. Existing, private dual 12" PVC culverts at DP1 are undersized and the majority of the flow overtops Little Squirrel Lane. A no build easement is proposed to encompass the limits of the flow

Expand discussion on culvert overtopping. What is depth/width/velocity? Does it meet EPC criteria in DCM section 6.4?

Lots 1-3 develop in the future, these culverts must be cleaned out from sediment that may nstruction. However, in the existing condition the culverts and outfall are stable. An sis of Little Squirrel Lane is presented in Appendix C. existing

Basin E is 0.51 acres of offsite area to the south of the site. Based upon County GIS data, this basin has been analyzed as 5+ acre lot subdivisions with a maximum imperviousness of 10%. Basin E stormwater (Q_5 = 0.4 cfs Q_{100} = 1.6 cfs) discharges onsite at DP2 and continues to DP7.

Basin F is 15.12 acres of offsite area to the south of the site. Based upon County GIS data, this basin has been analyzed as 5+ acre lot subdivisions with a maximum imperviousness of 10%. Basin F stormwater (Q_5 = 5.9 cfs Q_{100} = 25.2 cfs) discharges onsite at DP3 and continues to DP7.

Basin G is 1.22 acres of offsite area to the south of the site. Based upon County GIS data, this basin has been analyzed as 5+ acre lot subdivisions with a maximum imperviousness of 10%. Basin F stormwater (Q_5 = 2.2 cfs Q_{100} = 9.6 cfs) discharges onsite at DP4 and continues to DP7.

Basin H is 3.77 acres of offsite area to the south of the site. Based upon County GIS data, this basin has been analyzed as 5+ acre lot subdivisions with a maximum imperviousness of 10%. Basin F stormwater (Q_5 = 0.5 cfs Q_{100} = 2.3 cfs) discharges onsite at DP5 and continues to DP7.

Basin I is 9.08 acres of offsite area to the south of the site. Based upon County GIS data, this basin has been analyzed as 5+ acre lot subdivisions with a maximum imperviousness of 10%. Basin I stormwater (Q_5 = 3.7 cfs Q_{100} = 16.0 cfs) discharges onsite at DP6 and continues to DP7.

c. Proposed Subbasin Description
Please include the total flows at DP7
from the other basins.

The project will not be performing any site improvements nor disturbing land. Drainage basins will not be disturbed and will remain unchanged. However, to account for the potential of development in the future, Lots 1 – 3 are analyzed for stormwater impacts based upon 5+ acre lots. If future lot development exceed these assumptions, an additional lot specific drainage report will be required to analyze the impacts on stormwater.

Basin A1 is 6.03 acres and corresponds to Lot 1. Basin A1 stormwater ($Q_5 = 1.7 \text{ cfs } Q_{100} = 7.8 \text{ cfs}$) is captured in the onsite drainageway and conveyed to DP7. Basin A1 is assumed to have a future imperviousness of 9.5%. If Basin A1 develops, a lot specific drainage report will be required to show conformance. Additionally, the report must size a driveway culvert and any other infrastructure to maintain historic drainage patterns.

Basin A2 is 6.19 acres and corresponds to Lot 2. Basin A2 stormwater ($Q_5 = 2.1 \text{ cfs } Q_{100} = 9.7 \text{ cfs}$) is captured in the onsite drainageway and conveyed to DP7. Basin A2 is assumed to have a future imperviousness of 9.5%. If Basin A2 develops, a lot specific drainage report will be required to show conformance. Additionally, the report must size a driveway culvert and any other infrastructure to maintain historic drainage patterns.

Basin A3 is 6.98 acres and corresponds to Lot 3. Basin A3 stormwater ($Q_5 = 2.6 \text{ cfs } Q_{100} = 12.1 \text{ cfs}$) is captured in the onsite drainageway and conveyed to DP7. Basin A3 is assumed to have a future imperviousness of 9.5%. If Basin A3 develops, a lot specific drainage report will be required to show conformance. Additionally, the report must size a driveway culvert and any other infrastructure to maintain historic drainage patterns.

Please provide minimum driveway culvert sizing for driveways. You can do just one worse case scenario and then add caveat that sizes will be finalized with lot specific drainage reports.

iteria from the "Drainage Criteria Manual County of El Paso, Colorado"

Volumes 1 and 2," as amended.

b. Hydrologic Criteria

Hydrologic data was obtained from the NOAA Atlas 14 for the site area. Onsite drainage analysis included the 5-year storm (minor event) and 100-year storm (major event) using 1-hr duration rainfall depths from NOAA Atlas 14. Runoff was calculated per EPCDCM Chapter 5 – Storm Runoff Method of Analysis.

d. Hydraulic Criteria

Hydraulic criteria for channel analysis was obtained from EPCDCM Chapter 10 - Open Channels and Structures.

IV. Drainage Facility Design

a. General Concept

The site will remain in its existing condition. No stormwater improvements will be made in conjunction with this FDR. However, the Lots 1 – 3 have been analyzed with future assumptions for development.

b. Water Quality & Detention

Basin A1 – A3 are 5+ acre lots with a total impervious of 9.5% and is excluded from permanent water quality treatment per the Large Lot Single Family Sites exclusion in Appendix I of the EPC DCM. However, the exclusion does not relinquish detention requirements for the site. The development of the site has a marginal increase on peak flows in the 5-year and 100-year scenarios, 14.6% and 4.4%, respectively. The marginal increase in flows will not adversely affect downstream drainageways and associated facilities.

Please update this
comparison based
on drainage map
and other
comments.

EXISTING V. PROPOSED FLOW COMPARISON - BASIN A							
CONDITION	Q _{5-YR}	Q _{100-YR}					
EXISITNG	4.1	22.8					
PROPOSED	4.7	23.8					
% Difference	14.6%	4.4%					

Table should compare flows at DP7, not Basin A

c. Major Drainageways

An unnamed major drainageway bisects the site and drains to the east. This drainageway discharges to Kiowa Creek Watershed 1-G-30 Reservoir and ultimately to West Kiowa Creek. 16 channel cross sections were analyzed for the 100-year offsite channel flow and onsite developed flow to determine the stability of the channel and to determine the 100-year water surface elevation. A "No-Build" easement is proposed along the drainageway to encompass the 100-year water surface elevation and 1.0' of freeboard. The existing onsite drainageway is stable. An overtopping analysis at Black Squirrel Road and Little Squirrel Lane are presented

in Appendix C.

Please include 5-year as well.

Include discussion of channel analysis, what parameters meet criteria, what to do for items that do not, etc.

d. Operations & Maintenance

An Operations and Maintenance Manual will not be required as no stormwater facilities are proposed. Maintenance of the existing channel will be the responsibility of the future lot owners. The portion of the channel adjacent to or on each lot must be maintained by the corresponding lot owner and ensure historic drainage patterns are maintained.

e. Grading & Erosion Control Plan

A Grading and Erosion Control plan is not required as no land disturbance will occur with this project.

f. Four Step Method

Step 1 – Reducing Runoff Volumes: Roof drains should route across landscape areas whenever possible to promote infiltration. In addition, a vegetated, drainageway captures and conveys stormwater to the historic outfall at the northeast corner of the site.

Step 2 – Treat and slowly release the WQCV: The site is exempt from permanent water quality per the Large Lot Single Family Site exclusion in Appendix I of the EPC DCM.

Step 3 – Stabilize stream channels: All new and re-development projects are required to construct or participate in the funding of channel stabilization measures. Drainage basin fees paid, at the time of platting, go towards channel stabilization with the drainage basin. However, the site is within the West Kiowa Creek Drainage Basin which does not have established basin or bridge fees.

Step 4 – Consider the need Bor source controls: No industrial or commercial uses are proposed within this development and therefore no source controls are proposed.

g. Drainage Basin & Bridge Fees

The site is within the West Kiowa Creek Drainage Basin which does not have established basin or bridge fees. Therefore, no drainage fees will be paid at time of platting.

h. Engineer's Opinion of Probable Cost

An OPC will not be provided as there are no improvements associated with this FDR.

V. Summary

CHRIS TEAM SUBDIVISION remains consistent with pre-development drainage conditions. The proposed development will not adversely affect downstream stormwater infrastructure or surrounding developments. This report is in accordance with the latest El Paso County Drainage criteria.

VI. References

- 1. El Paso County Drainage Criteria Manual, 2018 as amended.
- 2. Urban Storm Drainage Criteria Manual, Mile High Flood District, March 2024.
- 3. USGS Colorado StreamStats, https://www.usgs.gov/streamstats/colorado-streamstats.
- 4. TopoZone Topo Map of Stream in El Paso County, Colorado, <u>https://www.topozone.com/colorado/el-paso-co/stream</u>.

CHRIS TEAM SUBDIVISION Final Drainage Report Project No: 24019

APPENDIX A – VICINITY MAP, FEMA MAP, NRCS WEB SOIL SURVEY & NOAA ATLAS 14

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
26	Elbeth sandy loam, 8 to 15 percent slopes	В	17.9	82.6%
36	Holderness loam, 8 to 15 percent slopes	С	3.8	17.4%
Totals for Area of Intere	st		21.7	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
26	Elbeth sandy loam, 8 to 15 percent slopes	В	46.1	100.0%
Totals for Area of Intere	st		46.1	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

USDA

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
25	Elbeth sandy loam, 3 to 8 percent slopes	В	0.4	3.4%
26	Elbeth sandy loam, 8 to 15 percent slopes	В	0.4	3.3%
36	Holderness loam, 8 to 15 percent slopes	С	11.2	93.3%
Totals for Area of Intere	st		12.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

National Flood Hazard Layer FIRMette

Legend

Basemap Imagery Source: USGS National Map 2023

Precipitation Frequency Data Server

Location name: Colorado Springs, Colorado, USA* Latitude: 39.0977°, Longitude: -104.6314° Elevation: 7471 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

NOAA Atlas 14, Volume 8, Version 2

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Average	recurrence	interval (ye	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.240	0.291	0.379	0.456	0.570	0.662	0.760 0.864		1.01	1.12
	(0.188-0.306)	(0.228-0.371)	(0.296-0.485)	(0.355-0.587)	(0.431-0.764)	(0.489-0.898)	(0.542-1.05) (0.592-1.23)		(0.665-1.47)	(0.720-1.65)
10-min	0.351 (0.276-0.448)	0.425 (0.334-0.544)	0.554 (0.433-0.710)	0.668 (0.519-0.860)	0.834 0.970 1.11 (0.631-1.12) (0.716-1.32) (0.794-1.54		1.11 (0.794-1.54)	1.26 (0.866-1.80)	1.48 (0.973-2.15)	1.64 (1.05-2.42)
15-min	0.428	0.519	0.676	0.815	1.02	1.18	1.36	1.54	1.80	2.00
	(0.336-0.547)	(0.407-0.663)	(0.529-0.866)	(0.633-1.05)	(0.770-1.36)	(0.873-1.60)	(0.969-1.88)	(1.06-2.19)	(1.19-2.63)	(1.28-2.95)
30-min	0.607	0.736	0.957	1.15	1.44	1.67	1.91	2.17	2.52	2.81
	(0.477-0.775)	(0.577-0.940)	(0.749-1.23)	(0.896-1.48)	(1.09-1.92)	(1.23-2.26)	(1.36-2.65)	(1.48-3.08)	(1.66-3.68)	(1.80-4.14)
60-min	0.768	0.922	1.20	1.44	1.81	2.12	2.45	2.80	3.30	3.70
	(0.603-0.981)	(0.724-1.18)	(0.935-1.53)	(1.12-1.86)	(1.38-2.44)	(1.57-2.88)	(1.75-3.40)	(1.92-3.99)	(2.18-4.82)	(2.37-5.45)
2-hr	0.928	1.11	1.43	1.73	2.19	2.57	2.98	3.43	4.07	4.59
	(0.735-1.18)	(0.877-1.40)	(1.13-1.82)	(1.36-2.21)	(1.68-2.93)	(1.92-3.48)	(2.15-4.13)	(2.38-4.87)	(2.72-5.92)	(2.97-6.72)
3-hr	1.01 (0.805-1.28)	1.20 (0.953-1.51)	1.55 (1.22-1.95)	1.87 (1.47-2.38)	2.38 (1.84-3.18)	2.81 (2.11-3.80)	3.29 (2.39-4.54)	3.81 (2.66-5.39)	4.56 (3.06-6.62)	5.17 (3.36-7.54)
6-hr	1.18	1.38	1.76	2.14	2.73	3.24	3.81	4.44	5.36	6.12
	(0.941-1.46)	(1.10-1.72)	(1.41-2.21)	(1.70-2.69)	(2.13-3.64)	(2.46-4.36)	(2.80-5.24)	(3.13-6.26)	(3.64-7.75)	(4.02-8.88)
12-hr	1.37	1.60	2.04	2.47	3.14	3.72	4.36	5.08	6.12	6.97
	(1.11-1.70)	(1.29-1.98)	(1.64-2.54)	(1.97-3.07)	(2.47-4.14)	(2.85-4.95)	(3.23-5.95)	(3.61-7.10)	(4.19-8.77)	(4.62-10.0)
24-hr	1.61	1.88	2.40	2.88	3.62	4.26	4.95	5.72	6.81	7.71
	(1.31-1.97)	(1.53-2.31)	(1.94-2.94)	(2.32-3.55)	(2.86-4.72)	(3.28-5.60)	(3.69-6.68)	(4.10-7.91)	(4.70-9.69)	(5.16-11.0)
2-day	1.88 (1.54-2.27)	2.22 (1.81-2.69)	2.82 (2.30-3.43)	3.37 (2.74-4.12)	4.20 (3.33-5.38)	4.88 (3.78-6.34)	5.62 (4.22-7.49)	6.42 (4.63-8.79)	7.55 (5.25-10.6)	8.46 (5.71-12.0)
3-day	2.05 (1.69-2.47)	2.43 (2.00-2.93)	3.10 (2.54-3.75)	3.70 (3.02-4.50)	4.59 (3.66-5.84)	5.32 (4.14-6.86)	6.10 (4.59-8.07)	6.94 (5.02-9.44)	8.11 (5.66-11.4)	9.04 (6.14-12.8)
4-day	2.20	2.60	3.31	3.94	4.87	5.63	6.44	7.30	8.51	9.48
	(1.82-2.64)	(2.15-3.13)	(2.72-3.99)	(3.22-4.77)	(3.89-6.17)	(4.39-7.23)	(4.86-8.48)	(5.31-9.90)	(5.97-11.9)	(6.46-13.4)
7-day	2.60	3.03	3.77	4.43	5.41	6.22	7.08	8.00	9.29	10.3
	(2.16-3.10)	(2.51-3.61)	(3.12-4.50)	(3.65-5.32)	(4.35-6.80)	(4.88-7.92)	(5.39-9.26)	(5.86-10.8)	(6.56-12.9)	(7.09-14.5)
10-day	2.97 (2.48-3.52)	3.42 (2.85-4.05)	4.20 (3.49-5.00)	4.90 (4.05-5.86)	5.93 (4.79-7.41)	6.78 (5.35-8.59)	7.68 (5.87-10.0)	8.63 (6.35-11.6)	9.98 (7.08-13.8)	11.0 (7.63-15.5)
20-day	3.99 (3.36-4.68)	4.60 (3.86-5.40)	5.61 (4.70-6.61)	6.48 (5.40-7.67)	7.71 (6.25-9.49)	8.69 (6.90-10.9)	9.70 (7.46-12.5)	10.7 (7.96-14.2)	12.2 (8.70-16.6)	13.3 (9.26-18.5)
30-day	4.81 (4.06-5.61)	5.55 (4.69-6.48)	6.76 (5.70-7.92)	7.77 (6.51-9.15)	9.17 (7.44-11.2)	10.2 (8.15-12.7)	11.3 (8.74-14.4)	12.4 (9.23-16.3)	13.9 (9.96-18.8)	15.0 (10.5-20.7)
45-day	5.80	6.70	8.13	9.29	10.9	12.0	13.2	14.3	15.8	16.8
	(4.93-6.73)	(5.68-7.77)	(6.88-9.46)	(7.82-10.9)	(8.83-13.1)	(9.60-14.8)	(10.2-16.6)	(10.7-18.7)	(11.4-21.2)	(11.9-23.2)
60-day	6.63 (5.65-7.65)	7.63 (6.49-8.82)	9.22 (7.82-10.7)	10.5 (8.85-12.2)	12.2 (9.91-14.6)	13.4 (10.7-16.3)	14.6 (11.3-18.3)	15.7 (11.8-20.4)	17.2 (12.4-23.0)	18.2 (12.9-25.0)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Large scale terrain

Large scale aerial

CHRIS TEAM SUBDIVISION Final Drainage Report Project No: 24019

APPENDIX B – HYDROLOGIC CALCULATIONS

Subdivision:ChiLocation:El FProject Name:BlaProject Number:240Calculated By:NQChecked By:REDate:11/

Chris Team Subdivsion El Paso County Black Squirrel Road 24019 NQJ REB 11/29/2024

EXISTING CONDITIONS - BASIN SUMMARY TABLE											
Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀				
Sub-basin	(acres)	Impervious	C₅	C ₁₀₀	(min)	(cfs)	(cfs)				
А	19.20	6%	0.11	0.38	44.5	4.2	22.9				
В	11.02	4%	0.10	0.37	33.9	3.7	22.4				
С	0.26	80%	0.63	0.74	15.2	0.7	1.4				
D	140.80	10%	0.19	0.48	-	28.0	118.7				
E	0.51	10%	0.16	0.41	25.1	0.4	1.6				
F	15.12	10%	0.16	0.41	31.9	5.9	25.2				
G	3.77	10%	0.16	0.41	26.3	2.2	9.6				
Н	1.22	10%	0.16	0.41	26.8	0.5	2.3				
I	9.08	10%	0.16	0.41	32.6	3.7	16.0				

EXISTING CONDITIONS - DESIGN POINT SUMMARY TABLE									
DP#	Q _{5-YR}	Q _{100-YR}							
1	28.2	118.7							
2	0.4	1.6							
3	5.9	25.2							
4	2.2	9.6							
5	0.5	2.3							
6	3.7	16.0							
7	35.5	126.9							
8	3.7	22.4							

COMPOSITE % IMPERVIOUS CALCULATIONS - EXISTING CONDITIONS

Subdivision: Chris Team Subdivision

Location: El Paso County

Project Name: Chris Team Subdivision

Project No.: 24019.00

Calculated By: NQJ

Checked By:

Date: 11/29/24

			Dirt R	loadway			Ro	ofs			Historic	Greenbelt		Weighter		Basins Total
Basin ID	Total Area	C₅	C100	Area (ac)	% Imp.	C₅	C100	Area (ac)	% Imp.	C₌	C100	Area (ac)	% Imp.	weighter	1 C ₅ & C ₁₀₀	Weighted %
	(ac)	- ,	- 100			-3	- 100			- 5	- 100			C ₅	C ₁₀₀	Imp.
А	19.20	0.59	0.70	0.95	80.0%	0.73	0.81	0.00	90.0%	0.09	0.36	18.25	2.0%	0.11	0.38	5.9%
В	11.02	0.59	0.70	0.27	80.0%	0.73	0.81	0.00	90.0%	0.09	0.36	10.75	2.0%	0.10	0.37	3.9%
С	0.26	0.63	0.74	0.26	80.0%	0.75	0.83	0.00	90.0%	0.16	0.51	0.00	2.0%	0.63	0.74	80.0%
D	140.80	0.61	0.72	-	80.0%	0.74	0.82	-	90.0%	0.12	0.44	-	2.0%	0.19	0.48	10.0%
Е	0.51	0.59	0.70	-	80.0%	0.73	0.81	-	90.0%	0.09	0.36	-	2.0%	0.16	0.41	10.0%
F	15.12	0.59	0.70	-	80.0%	0.73	0.81	-	90.0%	0.09	0.36	-	2.0%	0.16	0.41	10.0%
G	3.77	0.59	0.70	-	80.0%	0.73	0.81	-	90.0%	0.09	0.36	-	2.0%	0.16	0.41	10.0%
Н	1.22	0.59	0.70	-	80.0%	0.73	0.81	-	90.0%	0.09	0.36	-	2.0%	0.16	0.41	10.0%
I	9.08	0.59	0.70	-	80.0%	0.73	0.81	-	90.0%	0.09	0.36	-	2.0%	0.16	0.41	10.0%
Total	200.98															9.4%

STANDARD FORM SF-2 - EXISTING CONDITIONS TIME OF CONCENTRATION

Subdivision: Chris Team Subdivision

Location: El Paso County

Project Name: Chris Team Subdivision

Project No.: 24019.00

Calculated By: NQJ

Checked By:

Date: 11/29/24

		SUB-BASI	N		INIT	IAL/OVE	RLAND		TI	RAVEL TIM	E					
		DATA				(T _i)				(T _t)			(U	FINAL		
BASIN	D.A.	Hydrologic	Weighted	Impervious	L	S _o	ti	L _t	S _t	к	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t _c	t _c
ID	(ac)	Soils Group	C ₅	(%)	(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
А	19.20	В	0.11	5.9%	300	5.0%	18.1	1540	1.8%	7.0	0.9	27.3	45.4	1840.0	44.5	44.5
В	11.02	В	0.10	3.9%	17	2.0%	5.9	1058	4.7%	7.0	1.5	11.7	17.6	1075.0	33.9	17.6
С	0.26	В	0.63	80.0%	11	2.0%	2.2	635	3.5%	10.0	1.9	5.7	7.9	646.0	15.2	7.9
D	140.80	В	0.19	10.0%	-	-	-	-	-	-	-	-	-	-	-	78.0
E	0.51	В	0.16	10.0%	75	10.0%	6.9	135	8.0%	7.0	2.0	1.1	8.0	210.0	25.1	8.0
F	15.12	В	0.16	10.0%	300	3.3%	19.8	1050	4.9%	7.0	1.5	11.3	31.1	1350.0	31.9	31.1
G	3.77	В	0.16	10.0%	200	13.0%	10.3	250	4.0%	7.0	1.4	3.0	13.3	450.0	26.3	13.3
Н	1.22	В	0.16	10.0%	300	2.6%	21.4	450	8.4%	7.0	2.0	3.7	25.1	750.0	26.8	25.1
I	9.08	В	0.16	10.0%	300	6.0%	16.3	980	3.6%	7.0	1.3	12.3	28.6	1280.0	32.6	28.6

NOTES:

Where:

Where:

 L_t = waterway length (ft)

So = waterway slope (ft/ft)

 V_t = travel time velocity (ft/sec) = K $\sqrt{S_o}$

K = NRCS conveyance factor (see Table 6-2).

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_0^{0.33}}$ $t_c = t_i + t_t$ Eq Where: t_c = computed time of concentration (minutes) 1 10 20 0 0 1 t_i : *t_i* = overland (initial) flow time (minutes) C_5 L_i t_t = channelized flow time (minutes). So Equation 6-4 $(6-17i) + \frac{27}{60(14i+9)\sqrt{S_t}}$ $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$ 50 t_t = channelized flow time (travel time, min)

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1.

 L_t = length of channelized flow path (ft)

i = imperviousness (expressed as a decimal)

 S_t = slope of the channelized flow path (ft/ft).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

= overland (initial) now time (minutes)
5 = runoff coefficient for 5-year frequency (from Table 6-4)
= length of overland flow (ft)
= average slope along the overland flow path (ft/ft).
L

Equation 6-5

Equation 6-3

Table 6-2. NRCS Conveyance factors, K

Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

	STANDARD FORM SF-3 - EXISTING CONDITIONS STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE) Project Name: Chris Team Subdivision																							
Subdivision: Chris Team Subdivision Location: El Paso County Design Storm: 5-Year											Ca	Proj Ilcula Chec	ject N ated B ked B Dat	lo.: <u>2</u> By: <u>N</u> By: <u>1</u> te: <u>1</u>	24019 NQJ 11/29	/24								
	DIRECT RUNOFF TOTAL RUNOFF										FF	9	TREA	м			PIPE			TRAV	EL TIM	ΛE		
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_c (min)	C*A (Ac)	/ (in/hr)	Q (cfs)	tc (min)	C*A (ac)	/ (in/hr)	Q (cfs)	Q _{stream} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	C. A (dc)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
		D	140.80	0.19	78.00	26.75	1.05	28.0																BASIN D HISTORIC FLOW @ DP1
	1	С	0.26	2 1.05	28.2	28.2	26.92	1.60									COMBINED BASIN C & D FLOW @ DP1 (EX DUAL 12" PVC CULVERTS), FLOWS ONSITE TO DP7							
	2	E	C 0.26 0.63 7.90 0.16 4.48 0.7 78.0 26.92 E 0.51 0.16 8.01 0.08 4.46 0.4										0.4	0.08	1.60						1490	1.3	19.6	BASIN E FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	3	F	15.12	0.16	31.12	2.42	2.43	5.9					5.9	2.42	1.60						1275	1.3	16.8	BASIN F FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	4	G	3.77	0.16	13.27	0.60	3.70	2.2					2.2	0.60	1.60						1121	1.3	14.8	BASIN G FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	5	н	1.22	0.16	25.14	0.20	2.75	0.5					0.5	0.20	1.60						1083	1.3	14.3	BASIN H FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	6	I	9.08	0.16	28.57	1.45	2.55	3.7					3.7	1.45	1.60						621	1.3	8.2	BASIN I FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	7	7 A 19.20 0.11 44.48 2.20 1.89 4.2 78.0 33.87																						BASIN A & DP1-6 FLOW @ DP7
	7 A 19.20 0.11 44.48 2.20 1.89 4.2 78.0 33.83 8 B 11.02 0.10 17.57 1.13 3.28 3.7																							BASIN B FLOW @ DP8
Notes: Street and Pipe C*	tes: eet and Pipe C*A values are determined by Q/i using the catchment's intensity value.																							

Tc should increase based on time to travel through project site.

	STANDARD FORM SF-3 - EXISTING CONDITIONS STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)																							
Subdivision: <u>Chris Team Subdivision</u> Location: El Paso County Design Storm: <u>1</u> 00-Year							- - -				Pro Cal C	oject N Projec culate Checke	Name: ct No. ed By: ed By: Date:	: <u>Chri</u> : <u>240</u> : <u>NQ</u> : <u>11/</u> :	is Te 19.0 J 29/2	eam Su 00 24	ıbdiv	vision						
DIRECT RUNOFF TOTAL RUNOF									F	5	TREAM	N		Р	IPE		TR	RAVEL	TIM	E				
STREET	Design Point	Design Point Basin ID Basin ID Runoff Coeff. tc (min) tc (min) tc (min) tc (min)											Q _{stream} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)		Length (ft)	Velocity (tps)	t_t (min)	REMARKS
		D	140.80	0.48	78.00	67.58	1.76	118.7																BASIN D HISTORIC FLOW @ DP1
	1	с	0.26	7.90	0 67.78	1.76	119.0	119.0	67.78	1.60						750	1.3	9.9	COMBINED BASIN C & D FLOW @ DP1 (EX DUAL 12" PVC CULVERTS), FLOWS ONSITE TO DP7					
	2	E	0.51	0.41	8.01	0.21	7.49	1.6					1.6	0.21	1.60					14	490	1.3	19.6	BASIN E FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	3	F	15.12	0.41	31.12	6.20	4.07	25.2					25.2	6.20	1.60					12	275	1.3	16.8	BASIN F FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	4	G	3.77	0.41	13.27	1.55	6.22	9.6					9.6	1.55	1.60					11	121	1.3	14.8	BASIN G FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	5	н	1.22	0.41	25.14	0.50	4.61	2.3					2.3	0.50	1.60					10	083	1.3	14.3	BASIN H FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	6	I	9.08	0.41	28.57	3.72	4.29	16.0					16.0	3.72	1.60					e	621	1.3	8.2	BASIN I FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	7	А	19.20	0.38	44.48	3 7.24	3.17	22.9	87.9	9 87.19	1.46	126.9												BASIN A & DP1-6 FLOW @ DP7
	8	В	11.02	0.37	17.57	4.06	5.51	22.4																BASIN B FLOW @ DP8
Notes: Street and Pipe C	*A value	es are c	letermin	ed by (ב/i usir	ig the ca	atchme	nt's inte	ensity va	lue.														

Subdivision: Location: Project Name: Project Number: Calculated By: Checked By: Date: Chris Team Subdivsion El Paso County Black Squirrel Road 24019 NQJ REB 11/29/2024

PR	OPOSE	O CONDIT	IONS - E	BASIN SU	JMMAR	Y TABLE	
Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
A1	6.03	10%	0.14	0.40	42.9	1.7	7.8
A2	6.19	9%	0.14	0.40	36.1	2.1	9.7
A3	6.98	10%	0.14	0.40	33.6	2.6	12.1
В	11.02	4%	0.10	0.37	33.9	3.7	22.4
С	0.26	80%	0.63	0.74	15.2	0.7	1.4
D	140.80	10%	0.19	0.48	-	28.0	118.7
E	0.51	10%	0.16	0.41	25.1	0.4	1.6
F	15.12	10%	0.16	0.41	31.9	5.9	25.2
G	3.77	10%	0.16	0.41	26.3	2.2	9.6
н	1.22	10%	0.16	0.41	26.8	0.5	2.3
I	9.08	10%	0.16	0.41	32.6	3.7	16.0

PROPOSED CO POINT S	NDITIONS - UMMARY 1	DESIGN TABLE
DP#	Q _{5-YR}	Q _{100-YR}
1	28.2	118.7
2	0.4	1.6
3	5.9	25.2
4	2.2	9.6
5	0.5	2.3
6	3.7	16
7	40.4	133.3
8	3.7	22.4

COMPOSITE % IMPERVIOUS CALCULATIONS - PROPOSED CONDITIONS

Subdivision: Chris Team

Location: El Paso County

Project Name: Chris Team

Project No.: 24019.00

Calculated By: NQJ

Checked By:

Date: 11/29/24

			Dirt F	Roadway			Ro	ofs			Historic	Greenbelt		Waighta		Basins Total
Basin ID	Total Area	C-	Com	Area (ac)	% Imn	C-	Curr	Area (ac)	% Imn	C-	Curr	Area (ac)	% Imn	weighte	u C ₅ & C ₁₀₀	Weighted %
Dasini iD	(ac)	5	C100	Alea (ac)	70 mp.	C 5	C 100	Aica (ac)	70 mp.	C 5	C100	Alea (ac)	70 mp.	C ₅	C ₁₀₀	Imp.
A1	6.03	0.59	0.70	0.30	80.0%	0.73	0.81	0.25	90.0%	0.09	0.36	5.48	2.0%	0.14	0.40	9.5%
A2	6.19	0.59	0.70	0.31	80.0%	0.73	0.81	0.25	190.0%	0.09	0.36	5.63	102.0%	0.14	0.40	9.5%
A3	6.98	0.59	0.70	0.39	80.0%	0.73	0.81	0.25	290.0%	0.09	0.36	6.34	202.0%	0.14	0.40	9.5%
В	11.02	0.59	0.70	0.27	80.0%	0.73	0.81	0.00	90.0%	0.09	0.36	10.75	2.0%	0.10	0.37	3.9%
С	0.26	0.63	0.74	0.26	80.0%	0.75	0.83	0.00	90.0%	0.16	0.51	0.00	2.0%	0.63	0.74	80.0%
D	140.80	0.61	0.72	-	80.0%	0.74	0.82	-	90.0%	0.12	0.44	-	2.0%	0.19	0.48	10.0%
E	0.51	0.59	0.70	-	80.0%	0.73	0.81	-	90.0%	0.09	0.36	-	2.0%	0.16	0.41	10.0%
F	15.12	0.59	0.70	-	80.0%	0.73	0.81	-	90.0%	0.09	0.36	-	2.0%	0.16	0.41	10.0%
G	3.77	0.59	0.70	-	80.0%	0.73	0.81	-	90.0%	0.09	0.36	-	2.0%	0.16	0.41	10.0%
н	1.22	0.59	0.70	-	80.0%	0.73	0.81	-	90.0%	0.09	0.36	-	2.0%	0.16	0.41	10.0%
I	9.08	0.59	0.70	-	80.0%	0.73	0.81	-	90.0%	0.09	0.36	-	2.0%	0.16	0.41	10.0%
Total	200.98															15.7%
Lot 1 - 3 Basins	19.20															9.5%

STANDARD FORM SF-2 - PROPOSED CONDITIONS TIME OF CONCENTRATION

Subdivision: Chris Team

Location: El Paso County

Project Name: Chris Team

Project No.: 24019.00 Calculated By: NQJ

Checked By:

Date: 11/29/24

Equation 6-3

		SUB-BASI	N		INIT	IAL/OVEF	RLAND		Т	RAVEL TIM	E			tc CHECK		
		DATA				(T _i)				(T _t)			(U	RBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Weighted	Impervious	L	S _o	t,	L _t	S _t	К	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t _c	t _c
ID	(ac)	Soils Group	C₅	(%)	(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
A1	6.03	В	0.14	9.5%	300	5.0%	17.6	1540	1.8%	7.0	0.9	27.3	45.0	1840.0	42.9	42.9
A2	6.19	В	0.14	9.5%	300	8.0%	15.1	970	1.8%	7.0	0.9	17.2	32.3	1270.0	36.1	32.3
A3	6.98	В	0.14	9.5%	300	10.0%	14.0	765	1.8%	7.0	0.9	13.6	27.6	1065.0	33.6	27.6
В	11.02	В	0.10	3.9%	17	2.0%	5.9	1058	4.7%	7.0	1.5	11.7	17.6	1075.0	33.9	17.6
С	0.26	В	0.63	80.0%	11	2.0%	2.2	635	3.5%	10.0	1.9	5.7	7.9	646.0	15.2	7.9
D	140.80	В	0.19	10.0%	-	-	-	-	-	-	-	-	-	-	-	78.0
E	0.51	В	0.16	10.0%	75	10.0%	6.9	135	8.0%	7.0	2.0	1.1	8.0	210.0	25.1	8.0
F	15.12	В	0.16	10.0%	300	3.3%	19.8	1050	4.9%	7.0	1.5	11.3	31.1	1350.0	31.9	31.1
G	3.77	В	0.16	10.0%	200	13.0%	10.3	250	4.0%	7.0	1.4	3.0	13.3	450.0	26.3	13.3
Н	1.22	В	0.16	10.0%	300	2.6%	21.4	450	8.4%	7.0	2.0	3.7	25.1	750.0	26.8	25.1
I	9.08	В	0.16	10.0%	300	6.0%	16.3	980	3.6%	7.0	1.3	12.3	28.6	1280.0	32.6	28.6

NOTES:

 $t_c = t_i + t_t$

· c · 1

t,

Where:

t_c = computed time of concentration (minutes)

ti = overland (initial) flow time (minutes)

 t_t = channelized flow time (minutes).

$$=\frac{L_t}{60K\sqrt{S_o}}=\frac{L_t}{60V_t}$$

Where:

 t_t = channelized flow time (travel time, min) L_t = waterway length (ft)

 L_t = waterway length (ff) S_0 = waterway slope (ft/ft)

 V_t = travel time velocity (ft/sec) = K $\sqrt{S_o}$

K = NRCS conveyance factor (see Table 6-2).

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$

Where:

50

Eq

 $t_{i} = \text{overland (initial) flow time (minutes)}$ $C_{5} = \text{runoff coefficient for 5-year frequency (from Table 6-4)}$ $L_{i} = \text{length of overland flow (ft)}$ $S_{o} = \text{average slope along the overland flow path (ft/ft)}.$ Equation 6-4 !6 -17*i*) + $\frac{L_{t}}{60(14i + 9)\sqrt{S_{t}}}$ Equation 6-5

Table 6-2. NRCS Conveyance factors, K

Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. L_t = length of channelized flow path (ft) i = imperviousness (expressed as a decimal) S_t = slope of the channelized flow path (ft/ft).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

												S	TAN	DAR	D FO	RM S	SF-3	3 - PR	OPO	SED	со	NDIT	IONS
														S	TORN	/I DR/	AIN	AGE S	YSTEN	/ DE	SIG	N	
															(RA	TIONA	AL M	ETHOD	PROC	EDURI	E)		
																Pro	oject	Name:	Chris	Team	n Sut	bdivisio	n
Subdivision	Chris	Team										_					Proj	ect No.	: 2401	9.00			
Location:	El Pas	o Cour	nty									-				Cal	cula	ted By:	NQJ				
Design Storm.	. <u>J-iea</u>											-				Ľ	lieu	Date:	11/2	9/24			
	Т	T								ΟΤΑΙ		CC		TDEA	M	1		DIDE		ΤΡΛ		TIME	
						UFF					KUNU		2					FIFE	(s)	TNA		TINE	
	Ħ			Ĥ.															Jche		s)	5	
STREET	Poir	0	(c)	Coe	-	Û	Ĵ.		Ê	÷	Ţ.		cfs)	ŝ	(%	fs)		(%	ze (ii	(#	v (fp	1.1	REMARKS
	sign	sin II	ea (∕	noff	(min	A (A	lin/h	(cfs)	(mir	A (a	in/hi	(cfs)	ream(A (au) əde	ipe (c	A (ac) ede	ie Si	ngth	locit	min (
	De	Ba	Are	Ru	t_c	*Ú	~	ð	tc	*		ð	Q _{st}	ڻ*	SIC	ð	ڻ	Slo	Pip	Lei	S S	\mathbf{t}_{t}	
		D	140.80	0.19	78.00	26.75	1.05	28.0)														BASIN D HISTORIC FLOW @ DP1
	1	с	0.26	0.63	7.90	0.16	4.48	0.7	78.0	26.91	1.05	28.2	28.2	26.91	1 1.40								COMBINED BASIN C & D FLOW @ DP1 (EX DUAL 12" PVC CULVERTS), FLOWS ONSITE IN EXISTING DRAINAGEWAY TO DP7
	2	E	0.51	0.16	8.01	0.08	4.46	0.4	Ļ				0.4	0.08	8 1.60					1490	1	3 19.	6 BASIN E FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	3 F 15.12 0.16 31.12 2.42 2.43 5.9												5.9	2.42	2 1.60					1275	1	3 16.	8ASIN F FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	4 G 3.77 0.16 13.27 0.60 3.70 2.2												2.2	0.60	0 1.60					1121	. 1	3 14.	8 BASIN G FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	5	н	1.22	0.16	25.14					0.5	0.20	1.60					1083	1	.3 14.	BASIN H FLOW @ DP2, DRAINAGEWAY FLOW TO DP7			
	6	I	9.08	0.16	28.57	1.45	2.55	3.7	,				3.7	1.45	5 1.60					621	. 1	3 8.	2 BASIN I FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
		A1	6.03	0.14	42.89	0.85	1.94	1.7	,														BASIN A1 FLOW, DRAINAGEWAY FLOW TO DP7
		A2	6.19	0.14	32.32	0.87	2.37	2.1															BASIN A2 FLOW, DRAINAGEWAY FLOW TO DP7
		A3	6.98	0.14	27.61	0.98	2.61	2.6	42.9	9 2.70	1.94	5.3											BASIN A1 FLOW, DRAINAGEWAY FLOW TO DP7 (TOTAL A BASIN DEVELOPED FLOW)
	7								78.0	38.58	1.05	40.4											TOTAL FLOW @ DP7
	8	в	11.02	0.10	17.57	1.13	3.28	3.7	1														BASIN B FLOW @ DP8
Notes:	*A volue	a ara d	otormino	d by O/	i using th	o cotchr	mont's int	oncituu	(alua				$\overline{}$			1							
Street and Pipe C	A value	es are u	etermine	u by Q/	i using tri	e catern	nent s int	ensity	value.					$\overline{}$									
											V	erifv	val	ue (I See	ms	like	it د					
											m	iaht	be	a bit	t hia	h		<i>,</i>					
												.9											
						-	To cho	buld	inci		o ha	end											
							no silu	e to	tray	easi		ah											
							oroiec	t site	ק ק	or ti	nou	9.1											
	project site.																						

	STANDARD FORM SF-3 - PROPOSED CONDITIONS																							
															-			103	0			-)		
															(F	RATIO	NAL IV	1ETHC)D PF	ROCEI	JURI	E)		
																Pro	ject N	lame:	Chr	ris Tea	am S	ubdi	visior	1
Subdivision: Location:	Jubalivision: Chris Leam Project No.: 24019.00 Location: El Paso County Calculated By: IOD Control Control																							
Design Storm:	sign Storm: 100-Year Checked By: Date: 11/29/24																							
	Date: 11/29/24																							
	DIRECT RUNOFF TOTAL RUNOFF STREAM PIPE TRAVEL TIME																							
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t_c (min)	C*A (ac)	/ (in/hr)	Q (cfs)	tc (min)	C*A (ac)	/ (in/hr)	Q (cfs)	Q _{stream} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pine Size (inches)	Lipe Jize (IIICIIE3)	רכוופרוו (ור/	Velocity (fps)	t_t (min)	REMARKS
	D 140.80 0.48 78.00 67.58 1.76 118.7 Image: Constraint of the second																							
	1	С	D 140.00 0.400 0.400 0.400 0.400 140.7 14													COMBINED BASIN C & D FLOW @ DP1 (EX DUAL 12" PVC CULVERTS), FLOWS ONSITE IN EXISTING DRAINAGEWAY TO DP7								
	2	E	E 0.51 0.41 8.01 0.21 7.49 1.6 1.6 0.21 1.60 1.6 1.40 1.3 19												1.60	19.6	BASIN E FLOW @ DP2, DRAINAGEWAY FLOW TO DP7							
	3	F	F 15.12 0.41 31.12 6.20 4.07 25.2 25.2 6.20 1.60 1275 1.3 1												1.60	16.8	BASIN F FLOW @ DP2, DRAINAGEWAY FLOW TO DP7							
	4	G	r 15.12 0.41 13.12 0.20 4.07 25.2 25.2 0.20 1.00 1275 1.3 G 3.77 0.41 13.27 1.55 6.22 9.6 9.6 1.55 1.60 1121 1.3											1.55	1.60		14.8	BASIN G FLOW @ DP2, DRAINAGEWAY FLOW TO DP7						
	5	н	1.22	0.41	25.14	0.50	4.61	2.3					2.3	0.50	1.60					10	83	1.3	14.3	BASIN H FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
	6	I	9.08	0.41	28.57	3.72	4.29	16.0					16.0	3.72	1.60					6	21	1.3	8.2	BASIN I FLOW @ DP2, DRAINAGEWAY FLOW TO DP7
		A1	6.03	0.40	42.89	2.39	3.26	7.8																BASIN A1 FLOW, DRAINAGEWAY FLOW TO DP7
		A2	6.19	0.40	32.32	2.45	3.98	9.7																BASIN A2 FLOW, DRAINAGEWAY FLOW TO DP7
		A3	6.98	0.40	27.61	2.76	4.37	12.1	42.9	7.59	3.26	24.8												BASIN A1 FLOW, DRAINAGEWAY FLOW TO DP7 (TOTAL A BASIN DEVELOPED FLOW)
	7								87.9 9	91.57	1.46	133.3												TOTAL FLOW @ DP7
	8	В	11.02	0.37	17.57	4.06	5.51	22.4		R														BASIN B FLOW @ DP8
Notes: Street and Pipe C*	*A value	s are d	etermine	ed by C) ∕i using	g the ca	tchmen	t's inte	ensity va	lue.			$\overline{\ }$											

Verify value. Seems like it might be a bit high.

CHRIS TEAM SUBDIVISION Final Drainage Report Project No: 24019

APPENDIX C – HYDRAULIC CALCULATIONS

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Include 5 year analysis as well as 100 year analysis.

Tuesday, Nov 26 2024

Drainageway - Onsite Section 1 (Q100 = 133.3 cfs)

	Highlighted	
= 7438.00	Depth (ft)	= 1.22
= 1.50	Q (cfs)	= 133.30
= 0.030	Area (sqft)	= 31.12
	Velocity (ft/s)	= 4.28
	Wetted Perim (ft)	= 51.07
Known Q	Crit Depth, Yc (ft)	= 1.21
= 133.30	Top Width (ft)	= 51.00
	EGL (ft)	= 1.51
	= 7438.00 = 1.50 = 0.030 Known Q = 133.30	Highlighted= 7438.00Depth (ft)= 1.50Q (cfs)= 0.030Area (sqft)Velocity (ft/s)Wetted Perim (ft)Known QCrit Depth, Yc (ft)= 133.30Top Width (ft)EGL (ft)

(Sta, El, n)-(Sta, El, n)...

(100.00, 7442.00)-(125.00, 7440.00, 0.030)-(181.00, 7438.00, 0.030)-(250.00, 7443.00, 0.030)

Include Fr # and shear stress for each section also.

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Drainageway - Onsite Section 2 (Q100 = 133 cfs)

	Highlighted	
= 7437.20	Depth (ft)	= 0.70
= 1.50	Q (cfs)	= 133.00
= 0.030	Area (sqft)	= 44.44
	Velocity (ft/s)	= 2.99
	Wetted Perim (ft)	= 126.93
Known Q	Crit Depth, Yc (ft)	= 0.67
= 133.00	Top Width (ft)	= 126.92
	EGL (ft)	= 0.84
	= 7437.20 = 1.50 = 0.030 Known Q = 133.00	Highlighted= 7437.20Depth (ft)= 1.50Q (cfs)= 0.030Area (sqft) Velocity (ft/s) Wetted Perim (ft)Known QCrit Depth, Yc (ft)= 133.00Top Width (ft) EGL (ft)

(Sta, El, n)-(Sta, El, n)... (100.00, 7444.00)-(155.00, 7438.00, 0.030)-(244.00, 7437.20, 0.030)-(293.00, 7437.90, 0.030)-(339.00, 7441.00, 0.030)

Drainageway - Onsite Section 3 (Q100 = 133 cfs)

User-defined		Highlighted	
Invert Elev (ft)	= 7438.00	Depth (ft)	= 1.22
Slope (%)	= 1.50	Q (cfs)	= 133.00
N-Value	= 0.030	Area (sqft)	= 31.12
		Velocity (ft/s)	= 4.27
Calculations		Wetted Perim (ft)	= 51.07
Compute by:	Known Q	Crit Depth, Yc (ft)	= 1.21
Known Q (cfs)	= 133.00	Top Width (ft)	= 51.00
		EGL (ft)	= 1.50

(Sta, El, n)-(Sta, El, n)...

(100.00, 7442.00)-(125.00, 7440.00, 0.030)-(181.00, 7438.00, 0.030)-(250.00, 7443.00, 0.030)

ť
-
O
O
5
~
Ľ
Ð
=
G
Ē
()

Tuesday, Nov 26 2024

Drainageway - Onsite Section 4 (Q100 = 133 cfs)

User-defined		Highlighted	
Invert Elev (ft)	= 7430.00	Depth (ft)	= 0.69
Slope (%)	= 3.90	Q (cfs)	= 133.00
N-Value	= 0.030	Area (sqft)	= 20.21
		Velocity (ft/s)	= 6.58
Calculations		Wetted Perim (ft)	= 35.67
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.90
Known Q (cfs)	= 133.00	Top Width (ft)	= 35.59
		EGL (ft)	= 1.36

(Sta, El, n)-(Sta, El, n)... (100.00, 7440.00)-(165.00, 7430.00, 0.030)-(188.00, 7430.00, 0.030)-(282.00, 7438.00, 0.030)

Sta (ft)

Drainageway - Onsite Section 5 (Q100 = 133 cfs)

User-defined		Highlighted	
Invert Elev (ft)	= 7430.00	Depth (ft)	= 0.80
Slope (%)	= 0.50	Q (cfs)	= 133.00
N-Value	= 0.030	Area (sqft)	= 48.50
		Velocity (ft/s)	= 2.74
Calculations		Wetted Perim (ft)	= 69.37
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.57
Known Q (cfs)	= 133.00	Top Width (ft)	= 69.28
		EGL (ft)	= 0.92

(Sta, El, n)-(Sta, El, n)... (100.00, 7436.38)-(146.00, 7430.00, 0.030)-(198.00, 7430.00, 0.030)-(270.00, 7435.00, 0.030)

Drainageway - Onsite Section 6 (Q100 = 133 cfs)

User-defined		Highlighted	
Invert Elev (ft)	= 7426.00	Depth (ft)	= 1.57
Slope (%)	= 1.20	Q (cfs)	= 133.00
N-Value	= 0.030	Area (sqft)	= 28.85
		Velocity (ft/s)	= 4.61
Calculations		Wetted Perim (ft)	= 36.91
Compute by:	Known Q	Crit Depth, Yc (ft)	= 1.52
Known Q (cfs)	= 133.00	Top Width (ft)	= 36.76
		EGL (ft)	= 1.90

(Sta, El, n)-(Sta, El, n)... (100.00, 7433.00)-(150.00, 7428.80, 0.030)-(172.00, 7426.00, 0.030)-(200.00, 7427.80, 0.030)-(260.00, 7433.00, 0.030)

Drainageway - Onsite Section 7 (Q100 = 133 cfs)

User-defined		Highlighted	
Invert Elev (ft)	= 7424.00	Depth (ft)	= 1.22
Slope (%)	= 0.50	Q (cfs)	= 133.00
N-Value	= 0.030	Area (sqft)	= 40.84
		Velocity (ft/s)	= 3.26
Calculations		Wetted Perim (ft)	= 45.11
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.92
Known Q (cfs)	= 133.00	Top Width (ft)	= 44.94
		EGL (ft)	= 1.38

(Sta, El, n)-(Sta, El, n)...

(100.00, 7428.20)-(159.00, 7424.00, 0.030)-(181.00, 7424.00, 0.030)-(200.00, 7428.00, 0.030)-(232.00, 7430.00, 0.030)

Drainageway - Onsite Section 8 (Q100 = 133 cfs)

	Highlighted	
= 7423.80	Depth (ft)	= 0.58
= 2.40	Q (cfs)	= 133.00
= 0.030	Area (sqft)	= 29.57
	Velocity (ft/s)	= 4.50
	Wetted Perim (ft)	= 65.64
Known Q	Crit Depth, Yc (ft)	= 0.64
= 133.00	Top Width (ft)	= 65.59
	EGL (ft)	= 0.89
	= 7423.80 = 2.40 = 0.030 Known Q = 133.00	Highlighted= 7423.80Depth (ft)= 2.40Q (cfs)= 0.030Area (sqft)Velocity (ft/s)Velocity (ft/s)Wetted Perim (ft)Known QCrit Depth, Yc (ft)= 133.00Top Width (ft)EGL (ft)

(Sta, El, n)-(Sta, El, n)...

(100.00, 7428.20)-(133.00, 7424.00, 0.030)-(163.00, 7423.80, 0.030)-(192.00, 7424.00, 0.030)-(211.00, 7426.00, 0.030)

Drainageway - Onsite Section 9 (Q100 = 133 cfs)

User-defined		Highlighted	
Invert Elev (ft)	= 7422.00	Depth (ft)	= 0.71
Slope (%)	= 1.15	Q (cfs)	= 133.00
N-Value	= 0.030	Area (sqft)	= 36.76
		Velocity (ft/s)	= 3.62
Calculations		Wetted Perim (ft)	= 63.59
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.64
Known Q (cfs)	= 133.00	Top Width (ft)	= 63.55
		EGL (ft)	= 0.91
		EGL (ft)	= 0.91

(Sta, El, n)-(Sta, El, n)...

(100.00, 7424.90)-(121.00, 7424.00, 0.030)-(146.00, 7422.00, 0.030)-(186.00, 7422.00, 0.030)-(217.00, 7423.50, 0.030)

Drainageway - Onsite Section 10 (Q100 = 133 cfs)

User-defined		Highlighted	
Invert Elev (ft)	= 7419.84	Depth (ft)	= 0.40
Slope (%)	= 2.62	Q (cfs)	= 133.00
N-Value	= 0.030	Area (sqft)	= 37.82
		Velocity (ft/s)	= 3.52
Calculations		Wetted Perim (ft)	= 127.60
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.43
Known Q (cfs)	= 133.00	Top Width (ft)	= 127.59
		EGL (ft)	= 0.59

(Sta, El, n)-(Sta, El, n)... (100.00, 7421.00)-(126.00, 7420.00, 0.030)-(200.00, 7419.90, 0.030)-(223.00, 7419.84, 0.030)-(244.00, 7420.00, 0.030)-(286.00, 7423.00, 0.030)

Drainageway - Onsite Section 11 (Q100 = 133 cfs)

User-defined		Highlighted	
Invert Elev (ft)	= 7416.40	Depth (ft)	= 0.95
Slope (%)	= 1.00	Q (cfs)	= 133.00
N-Value	= 0.030	Area (sqft)	= 41.63
		Velocity (ft/s)	= 3.19
Calculations		Wetted Perim (ft)	= 79.34
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.86
Known Q (cfs)	= 133.00	Top Width (ft)	= 79.31
. ,		EGL (ft)	= 1.11

(Sta, El, n)-(Sta, El, n)...

(113.00, 7418.00)-(179.00, 7416.40, 0.030)-(200.00, 7416.70, 0.030)-(250.00, 7418.40, 0.030)

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

How was flow determined for this culvert? Provide Ex Culvert #1 (Q100 = 1.3 cfs) <discussion of this culvert in report Invert Elev Dn (ft) = 7459.87 Calculations Pipe Length (ft) = 19.17 Qmin (cfs) = 0.30 = 1.30 Slope (%) = 0.78Qmax (cfs) Invert Elev Up (ft) Tailwater Elev (ft) = 7460.02= (dc+D)/2Rise (in) = 12.0 = Circular Shape Highlighted Span (in) = 12.0 Qtotal (cfs) = 0.30= 1 No. Barrels Qpipe (cfs) = 0.30 n-Value = 0.012 Qovertop (cfs) = 0.00 Culvert Type = Circular Corrugate Metal Pipe Veloc Dn (ft/s) = 0.59Culvert Entrance = Headwall Veloc Up (ft/s) = 2.26 = 0.0078, 2, 0.0379, 0.69, 0.5Coeff. K,M,c,Y,k HGL Dn (ft) = 7460.48HGL Up (ft) = 7460.25 Embankment Hw Elev (ft) = 7460.32 Top Elevation (ft) = 7461.50 Hw/D (ft) = 0.30Top Width (ft) Flow Regime = 15.60 = Inlet Control Crest Width (ft) = 20.00

Thursday, Nov 14 2024

HY-8 Culvert Analysis Report : Ex Culvert #2

Crossing Input: <u>Ex Culvert 2</u>

Parameter	Value	Units
DISCHARGE DATA		
Discharge Method	Minimum, Design, and	
	Maximum	
Minimum Flow	28.200	cfs
Design Flow	118.700	cfs
Maximum Flow	118.700	cfs
TAILWATER DATA		
Channel Type	Irregular Channel	
Irregular Channel	Define	
Rating Curve	View	
ROADWAY DATA		
Roadway Profile Shape	Irregular	
Irregular Shape	Define	
Roadway Surface	Paved	
Top Width	22.000	ft

Culvert Input: Ex Culvert 2

Parameter	Value	Units
CULVERT DATA		
Name	Culvert 1	
Shape	Circular	
Material	PVC	
Diameter	1.000	ft
Embedment Depth	0.000	in
Manning's n	0.011	
Culvert Type	Straight	
Inlet Configuration	Square Edge with Headwall	
	(Ke=0.5)	
Inlet Depression?	No	
SITE DATA		
Site Data Input Option	Culvert Invert Data	
Inlet Station	0.000	ft
Inlet Elevation	7441.600	ft
Outlet Station	32.000	ft
Outlet Elevation	7439.430	ft
Number of Barrels	2	
Computed Culvert Slope	0.067813	ft/ft

Total Discharg e (cfs)	Culvert Discharg e (cfs)	Headwate r Elevation (ft)	Inlet Contro l Depth (ft)	Outlet Control Depth (ft)	HW / D (ft)	Flow Typ e	Norma l Depth (ft)	Critica l Depth (ft)	Outle t Depth (ft)	Tailwate r Depth (ft)	Outlet Velocit y (ft/s)	Tailwate r Velocity (ft/s)
28.20	7.85	7443.22	1.62	0.0*	1.62	5- S2n	0.41	0.84	0.45	0.88	11.31	3.73
37.25	8.06	7443.27	1.67	0.0*	1.67	5- S2n	0.42	0.85	0.46	1.02	11.36	4.03
46.30	8.23	7443.32	1.72	0.0*	1.72	5- S2n	0.42	0.86	0.47	1.15	11.41	4.29
55.35	8.39	7443.36	1.76	0.037	1.76	5- S2n	0.43	0.86	0.47	1.26	11.45	4.50
64.40	8.53	7443.40	1.80	0.174	1.80	5- S2n	0.43	0.87	0.48	1.36	11.49	4.69
73.45	8.66	7443.43	1.83	0.312	1.83	5- S2n	0.44	0.87	0.48	1.47	11.52	4.78
82.50	8.77	7443.47	1.87	0.433	1.87	5- S2n	0.44	0.88	0.49	1.57	11.55	4.84
91.55	8.88	7443.50	1.90	0.536	1.90	5- S2n	0.44	0.88	0.49	1.64	11.58	4.91
100.60	8.98	7443.52	1.92	0.626	1.92	5- JS1f	0.45	0.89	1.00	1.71	5.72	4.90
109.65	9.07	7443.55	1.95	0.708	1.95	5- JS1f	0.45	0.89	1.00	1.77	5.78	4.85
119.70	0.17	7692.02	240.42	105.09	240.4	4 FFf	1.00	1.00	1.00	1.02	75.57	4.80
				3	2							
118.70	9.17	7443.58	1.98	0.783	1.98	5- JS1f	0.45	0.89	1.00	1.82	5.83	4.80
		Remain	ing flow ~ 1 s Little Sauir	10 cfs rel Lane								
			<u> </u>						Erosi great and o	on protectio er than 5 fp: discuss in na	n is neede s. Please ir arrative.	d for flows nclude calcs

Table 2 - Culvert Summary Table: Culvert 1

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Nov 25 2024

Plea

orie

Ex Culvert #2 - Roadway Weir (Q = 110 cfs)

7	,
User-defined	Invert Elev (fl

= 7442.00	= 0.01	= 0.030	
Invert Elev (ft)	Slope (%)	N-Value	

C

	Known Q	= 110.00
Laiculations	Compute by:	Known Q (cfs)

			_					
as ent	e fi atic	x on.						
	2.23	110.00	234.53	0.47	249.74	0.50	249.58	2.23
	II	II	II	II	11	II	11	II
Highlighted	Depth (ft)	Q (cfs)	Area (sqft)	Velocity (ft/s)	Wetted Perim (ft)	Crit Depth, Yc (ft)	Top Width (ft)	EGL (ft)

(Sta, El, n)-(Sta, El, n)... (135.00, 7448.00)-(197.00, 7446.00, 0.030)-(238.00, 7445.20, 0.030)-(261.00, 7444.00, 0.030)-(325.00, 7444.00, 0.030)-(342.00, 7443.40, 0.030)-(375.00, 7443.00, -(384.00, 0.030)-(374.00, 0.030)-(374.00, 0.030)-(3744.58, 0.030)-(375.00, 7443.00) -(384.00, 7442.00, 0.030)-(437.00, 7442.00, 0.030)-(464.00, 7444.00, 0.030)-(503.00, 7444.00, 0.030)-(511.00, 7444.58, 0.030)-(375.00, 7444.58, 0.030))

Sta (ft)

Ex Culvert #2 - Tailwater Section (Q = 118.7 cfs)

User-defined		Highlighted	
Invert Elev (ft)	= 7440.00	Depth (ft)	= 3.17
Slope (%)	= 0.01	Q (cfs)	= 118.70
N-Value	= 0.030	Area (sqft)	= 234.65
		Velocity (ft/s)	= 0.51
Calculations		Wetted Perim (ft)	= 226.37
Compute by:	Known Q	Crit Depth, Yc (ft)	= 1.52
Known Q (cfs)	= 118.70	Top Width (ft)	= 226.06
		EGL (ft)	= 3.17

(Sta, El, n)-(Sta, El, n)... (115.00, 7443.40)-(150.00, 7442.66, 0.030)-(200.00, 7442.46, 0.030)-(250.00, 7442.14, 0.030)-(280.00, 7440.79, 0.030)-(282.00, 7440.00, 0.030)-(288.00, 7440.00) -(294.00, 7441.00, 0.030)-(350.00, 7443.10, 0.030)-(375.00, 7444.00, 0.030)

Tuesday, Nov 26 2024

Black Squirrel Road (DP7) Overtop Weir (Q100 = 133 cfs)

User-defined		Highlighted	
Invert Elev (ft)	= 7415.90	Depth (ft)	= 1.47
Slope (%)	= 0.01	Q (cfs)	= 133.00
N-Value	= 0.030	Area (sqft)	= 248.31
		Velocity (ft/s)	= 0.54
Calculations		Wetted Perim (ft)	= 221.10
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.39
Known Q (cfs)	= 133.00	Top Width (ft)	= 221.05
. ,		EGL (ft)	= 1.47

(Sta, El, n)-(Sta, El, n)... (100.00, 7419.00)-(124.00, 7418.00, 0.030)-(156.00, 7418.00, 0.030)-(220.00, 7416.00, 0.030)-(300.00, 7416.00, 0.030)-(318.00, 7415.90, 0.030)-(333.00, 7416.00, 0.030)-(300.00, 7416.00, 0.030)-(318.00, 7415.90, 0.030)-(333.00, 7416.00, 0.030)-(300.00, 7416.00, 0.030)-(318.00, 7415.90, 0.030)-(333.00, 7416.00, 0.030)-(300.00, 7416.00, 0.030)-(318.00, 7415.90, 0.030)-(333.00, 7416.00, 0.030)-(300.00, 7416.00, 0.030)-(318.00, 7415.90, 0.030)-(333.00, 7416.00, 0.030)-(300.00, 7416.00, 0.030)-(318.00, 7415.90, 0.030)-(333.00, 7416.00, 0.030)-(300.00, 7416.00, 0.030)-(318.00, 7415.90, 0.030)-(333.00, 7416.00, 0.030)-(300.00, 7416.00, 0.030)-(318.00, 7415.90, 0.030)-(333.00, 7416.00, 0.030)-(300.00, 7416.00, 0.030)-(318.00, 7415.90, 0.030)-(333.00, 7416.00, 0.030)-(300.00, 0.030)-(300.00, 0.00))-(300.00, 0.00)-(300.00, 0.00))-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00))-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00))-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00))-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00))-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00))-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00))-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00))-(300.00, 0.00)-(300.00, 0.00))-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00))-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.00)-(300.00, 0.0 -(359.00, 7416.00, 0.030)-(400.00, 7417.47, 0.030)-(422.00, 7418.06, 0.030)

CHRIS TEAM SUBDIVISION Final Drainage Report Project No: 24019

APPENDIX D – WATER QUALITY & DETENTION

Post Construction Stormwater Management Applicability Evaluation Form

This form is to be used by the Engineer of Record to evaluate applicable construction activities to determine if the activities are eligible for an exclusion to permanent stormwater quality management requirements. Additionally Part III of the form is used to identify and document which allowable control measure design standard is used for the structure.

Part I. Project Information	
1. Project Name:	
2. El Paso County Project #:	3. ESQCP #:
4. Project Location:	Project Location in MS4 Permit Area (Y or N):
5. Project Description:	
If project is located within the EI Paso County MS4 I	Permit Area, please provide copy of this completed form

to the Stormwater Quality Coordinator for reporting purposes; and save completed form with project file.

Part II. Exclusion Evaluation: Determine if Post-Construction Stormwater Management exclusion criteria are met. Note: Questions A thru K directly correlate to the MS4 permit Part I.E.4.a.i (A) thru (K). If Yes, to any of the following questions, then mark Not Applicable in Part III, Question 2. Yes No Not Notes: Ouestions Applicable A. Is this project a "Pavement This exclusion applies to "roadways" only. Areas used primarily for Management Site" as defined in Permit Part I E.4.a.i.(A)? parking or access to parking are not included. B. Is the project "Excluded Roadway Development"? • Does the site add less than 1 acre of paved area per mile? • Does the site add 8.25 feet or less of paved width at any location to the existing roadway? C. Does the project increase the width of For redevelopment of existing the existing roadway by less than 2 times roadways, only the area of the the existing width? existing roadway is excluded from post-construction requirements when the site does not increase the width by two times or more. This exclusion only excludes the original roadway area it does NOT apply to entire project. D. Is the project considered an Activity can NOT permanently alter aboveground and Underground Utilities the terrain, ground cover or drainage patterns from those activity? present prior to the activity Must be a single-residential lot or E. Is the project considered a "Large Lot Single-Family Site"? agricultural zoned land, > 2.5 acres per dwelling and total lot impervious area < 10 percent.

Questions (cont'd)	Yes	No	Not Applicable	Notes
F. Do Non-Residential or Non-Commercial Infiltration Conditions exist? Post-development surface conditions do not result in concentrated stormwater flow or surface water discharge during an 80 th percentile stormwater runoff event.				Exclusion does not apply to residential or commercial sites for buildings. A site specific study is required and must show: rainfall and soil conditions; allowable slopes; surface conditions; and ratios of imperviousness area to pervious area.
G. Is the project land disturbance to Undeveloped Land where undeveloped land remains undeveloped following the activity?				Project must be on land with no human made structures such as buildings or pavement.
H. Is the project a Stream Stabilization Site?				Standalone stream stabilization projects are excluded.
I. Is the project a bike or pedestrian trail?				Bike lanes for roadways are not included in this exclusion, but may qualify if part of larger roadway activity is excluded in A, B or C above.
J. Is the project Oil and Gas Exploration?				Activities and facilities associated with oil and gas exploration are excluded.
K. Is the project in a County Growth Area?				Note, El Paso County does not apply this exclusion. All Applicable Construction Activity in El Paso County must comply the Post-Construction Stormwater Management criteria.

Part III. Post Construction (Permanent) Stormwater Control Determination					
Questions	Yes	No			
1. Is project an Applicable Construction Activity?					
2. Do any of the Exclusions (A-K in Part II) apply?					
If the project is an Applicable Construction Activity and no Exclusions apply then Post-Construction					
(Permanent) Stormwater Management is required.					
Complete the applicable sections of Part IV below and then coordinate signatures for form and place in					
project file.					
If the project is not an Applicable Construction Activity, or Exclusion(s) apply then Post-Construction					

(Permanent) Stormwater Management is NOT required. Coordinate signatures for form and place in project file.

Pa	rt IV: Onsite PWQ Requirements, Documentation and Considerations	Yes	No
1.	Check which Design Standard(s) the project will utilize. Standards align with Control Measure Requirements identified in permit Part I.E.4.a.iv.		
Α.	Water Quality Capture Volume (WQCV) Standard		
Β.	Pollutant Removal/80% Total Suspended Solids Removal (TSS)		
С.	Runoff Reduction Standard	Х	
D.	Applicable Development Site Draining to a Regional WQCV Control Measure		
Ε.	Applicable Development Site Draining to a Regional WQCV Facility		
F.	Constrained Redevelopment Sites Standard		
G.	Previous Permit Term Standard		
2.	Will any of the project permanent stormwater control measure(s) be maintained by another MS4?		
	If Yes, you must obtain a structure specific maintenance agreement with the other MS4 prior to advertisement.		
3.	Will any of the project permanent stormwater control measures be maintained by a private entity or quasi-governmental agency (e.g. HOA or Special District, respectively)?		
	If Yes, a Private Detention Basin/Stormwater Quality Best Management Practice Maintenance Agreement and Easement must be recorded with the El Paso County Clerk and Recorder.		

Part V Notes (attach an additional sheet if you need more space)

Project design is complete to include the project design, construction plans, drainage report, specifications, and maintenance and access agreements as required. The engineering, drainage considerations and information used to complete these documents is complete, true, and accurate to the best of my belief and knowledge.

E005927

08/29/2024

Date

Post-Construction Stormwater Managements in the project design, construction plans, drainage report the project as required, have been reviewed for compliance with the Post Construction Stormwater Management process and MS4 Permit requirements.

Signature of El Paso County Project Engineer

Signature and Stamp of Engineer of Red

Date

CHRIS TEAM SUBDIVISION Final Drainage Report Project No: 24019

APPENDIX E – REFERENCE MATERIAL

Figure 1: Looking SW from Black Squirrel Road to the site low point

Figure 2: Same location at Figure 1, looking NE across Black Squirrel Road

Figure 3: From Black Squirrel Road, looking towards low point

Figure 4: From dirt road along north PL, looking upstream of low point

Figure 5: From dirt road along west PL, looking down drainageway

Figure 6: Same location as Figure 5, looking west to offsite/upstream portion of drainageway

Figure 7: Double 12" PVC culverts, tailwater

Figure 8: Double 12" PVC culverts, headwater

Figure 9: Double 12" PVC culverts, tailwater channel

Home / Colorado / El Paso / Streams

Topo Map of Streams in El Paso County, Colorado

Search for Topo Maps of Streams in Colorado

Place Name	(e.g. pikes peak)
State Colorado 🗸	
Feature Type Stream	
SEARCH	

StreamStats Report

 Region ID:
 CO

 Workspace ID:
 CO20241125153541092000

 Clicked Point (Latitude, Longitude):
 39.09839, -104.63486

 Time:
 2024-11-25 08:36:02 -0700

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLDEM10M	Mean basin slope computed from 10 m DEM	4	percent
CSL1085LFP	Change in elevation divided by length between points 10 and 85 percent of distance along the longest flow path to the basin divide, LFP from 2D grid	88.7	feet per mi
DRNAREA	Area that drains to a point on a stream	0.22	square miles
EL7500	Percent of area above 7500 ft	74	percent
ELEV	Mean Basin Elevation	7508	feet
ELEVMAX	Maximum basin elevation	7550	feet
I24H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	4.95	inches
I24H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precipitation intensity index	1.89	inches
I6H100Y	6-hour precipitation that is expected to occur on average once in 100 years	3	inches
16H2Y	Maximum 6-hour precipitation that occurs on average once in 2 years	1.38	inches
LAT_OUT	Latitude of Basin Outlet	39.098448	degrees
LC11BARE	Percentage of barren from NLCD 2011 class 31	0	percent
LC11CRPHAY	Percentage of cultivated crops and hay, classes 81 and 82, from NLCD 2011	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	0	percent

11/25/24, 8:39 AM

StreamStats

Parameter			
Code	Parameter Description	Value	Unit
LC11FOREST	Percentage of forest from NLCD 2011 classes 41-43	40	percent
LC11GRASS	Percent of area covered by grassland/herbaceous using 2011 NLCD	30.1	percent
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	0	percent
LC11SHRUB	Percent of area covered by shrubland using 2011 NLCD	27.5	percent
LC11SNOIC	Percent snow and ice from NLCD 2011 class 12	0	percent
LC11WATER	Percent of open water, class 11, from NLCD 2011	0	percent
LC11WETLND	Percentage of wetlands, classes 90 and 95, from NLCD 2011	2.5	percent
LFPLENGTH	Length of longest flow path	0.87	miles
LONG_OUT	Longitude of Basin Outlet	-104.634967	degrees
MINBELEV	Minimum basin elevation	7450	feet
OUTLETELEV	Elevation of the stream outlet in feet above NAVD88	7451	feet
PRECIP	Mean Annual Precipitation	20.73	inches
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx? content=17758.wba)	66.75	dimensionless
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.35	dimensionless
SSURGOA	Percentage of area of Hydrologic Soil Type A from SSURGO	0	percent
SSURGOB	Percentage of area of Hydrologic Soil Type B from SSURGO	44.4	percent
SSURGOC	Percentage of area of Hydrologic Soil Type C from SSURGO	55.6	percent
SSURGOD	Percentage of area of Hydrologic Soil Type D from SSURGO	0	percent
STATSCLAY	Percentage of clay soils from STATSGO	16.3	percent
STORNHD	Percent storage (wetlands and waterbodies) determined from 1:24K NHD	0.5	percent
тос	Time of concentration in hours	1.3	hours

> Peak-Flow Statistics

Peak-Flow Statistics Parameters [Foothills Region Peak Flow 2016 5099]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.22	square miles	0.6	2850
I6H100Y	6 Hour 100 Year Precipitation	3	inches	2.38	4.89
STATSCLAY	STATSGO Percentage of Clay Soils	16.3	percent	9.87	37.5
OUTLETELEV	Elevation of Gage	7451	feet	4290	8270

Peak-Flow Statistics Disclaimers [Foothills Region Peak Flow 2016 5099]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Peak-Flow Statistics Flow Report [Foothills Region Peak Flow 2016 5099]

Statistic	Value	Unit
50-percent AEP flood	3.02	ft^3/s
20-percent AEP flood	7.84	ft^3/s
10-percent AEP flood	12.5	ft^3/s
4-percent AEP flood	20.2	ft^3/s
2-percent AEP flood	27.3	ft^3/s
1-percent AEP flood	36.1	ft^3/s
0.5-percent AEP flood	45.9	ft^3/s
0.2-percent AEP flood	61	ft^3/s

Peak-Flow Statistics Citations

Kohn, M.S., Stevens, M.R., Harden, T.M., Godaire, J.E., Klinger, R.E., and Mommandi, A.,2016, Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015: U.S. Geological Survey Scientific Investigations Report 2016–5099, 58 p. (http://dx.doi.org/10.3133/sir20165099)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.24.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

Deposited this	day of	_, A.D.
20ato'clock	M. in Book	_ of Land
Survey Plats, at Page(s)	,	
Depesit Number	of the records of the Clark a	nd

CHRIS TEAM SUBDIVISION Final Drainage Report Project No: 24019

APPENDIX F – DRAINAGE MAPS

CHRIS TEAM SUBDIVISION

EXISTING CONDITIONS - BASIN SUMMARY TABLE							
Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
А	19.20	6%	0.11	0.38	44.5	4.2	22.9
В	11.02	4%	0.10	0.37	33.9	3.7	22.4
С	0.26	80%	0.63	0.74	15.2	0.7	1.4
D	140.80	10%	0.19	0.48	-	28.0	118.7
E	0.51	10%	0.16	0.41	25.1	0.4	1.6
F	15.12	10%	0.16	0.41	31.9	5.9	25.2
G	3.77	10%	0.16	0.41	26.3	2.2	9.6
Н	1.22	10%	0.16	0.41	26.8	0.5	2.3
I	9.08	10%	0.16	0.41	32.6	3.7	16.0

EXISTING CONDITIONS - DESIGN POINT SUMMARY TABLE						
DP#	Q _{5-YR}	Q _{100-YR}				
1	28.2	118.7				
2	0.4	1.6				
3	5.9	25.2				
4	2.2	9.6				
5	0.5	2.3				
6	3.7	16.0				
7	35.5	126.9				
8	3.7	22.4				

CHRIS TEAM SUBDIVISION EXISTING CONDITIONS DRAINAGE MAP

LEGEND

BOUNDARY LINE	
PROPERTY LINE	
EASEMENT LINE	
RIGHT OF WAY	
STORM SEWER	
SWALE/WATERWAY FLOWLINE	/ A
INDEX CONTOUR	
INTERMEDIATE CONTOUR	
FLOW DIRECTION	
BASIN ID	AC Q5 Q100

DRAINAGE BASIN

EXISTING CONDITIONS - BASIN SUMMARY TABLE							
Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
А	19.20	6%	0.11	0.38	44.5	4.2	22.9
В	11.02	4%	0.10	0.37	33.9	3.7	22.4
С	0.26	80%	0.63	0.74	15.2	0.7	1.4
D	140.80	10%	0.19	0.48	I.	28.0	118.7
E	0.51	10%	0.16	0.41	25.1	0.4	1.6
F	15.12	10%	0.16	0.41	31.9	5.9	25.2
G	3.77	10%	0.16	0.41	26.3	2.2	<mark>9.6</mark>
Н	1.22	10%	0.16	0.41	26.8	0.5	2.3
I	9.08	10%	0.16	0.41	32.6	3.7	16.0

EXISTING	PROPOSED
6100	6100
→	
DESIGN POINT DESIGNATION	

EXISTING CONDITIONS - DESIGN

POINT SUMMARY TABLE					
DP#	Q _{5-YR}	Q _{100-YR}			
1	28.2	118.7			
2	0.4	1.6			
3	5.9	25.2			
4	2.2	9.6			
5	0.5	2.3			
6	3.7	16.0			
7	35.5	126.9			
8	3.7	22.4			

EXISTING CONDITIONS DRAINAGE MA	ΥP
CHRIS TEAM SUBDIVISION	
JOB NO. 24019	SHEET
LOCATION: EPC	
11/29/2024	2
	N

MATCH LINE SEE SHEET 1

CHRIS TEAM SUBDIVISION EXISTING CONDITIONS DRAINAGE MAP

LEGEND

BOUNDARY LINE	
PROPERTY LINE	
EASEMENT LINE	
RIGHT OF WAY	
STORM SEWER	
SWALE/WATERWAY FLOWLINE	
INDEX CONTOUR	
INTERMEDIATE CONTOUR	
FLOW DIRECTION	
BASIN ID	ID AC Q5 Q100

DRAINAGE BASIN

EXISTING CONDITIONS - BASIN SUMMARY TABLE

Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
А	19.20	6%	0.11	0.38	44.5	4.2	22.9
В	11.02	4%	0.10	0.37	33.9	3.7	22.4
С	0.26	80%	0.63	0.74	15.2	0.7	1.4
D	140.80	10%	0.19	0.48	-	28.0	118.7
E	0.51	10%	0.16	0.41	25.1	0.4	1.6
F	15.12	10%	0.16	0.41	31.9	5.9	25.2
G	3.77	10%	0.16	0.41	26.3	2.2	9 <mark>.</mark> 6
Н	1.22	10%	0.16	0.41	26.8	0.5	2.3
ļ	9.08	10%	0.16	0.41	32.6	3.7	16.0

EXISTING	PROPOSED
* * * _	
6100	6100
→	
DESIGN POINT DESIGNATION	1

EXISTING CONDITIONS - DESIGN

POINT SUMMARY TABLE			
DP#	Q _{5-YR}	Q _{100-YR}	
1	28.2	118.7	
2	0.4	1.6	
3	5.9	25.2	
4	2.2	9.6	
5	0.5	2.3	
6	3.7	16.0	
7	35.5	126.9	
8	3.7	22.4	

CHRIS TEAM SUBDIVISION

 PROPOSED CONDITIONS				
Tributary	Area	Percent		
Sub-basin	(acres)	Impervious	C₅	
A1	6.03	10%	0.14	
A2	6.19	9%	0.14	
A3	6.98	10%	0.14	
В	11.02	4%	0.10	
С	0.26	80%	0.63	
D	140.80	10%	0.19	
E	0.51	10%	0.16	
F	15.12	10%	0.16	
G	3.77	10%	0.16	
Н	1.22	10%	0.16	

CHRIS TEAM SUBDIVISION
v2_Drainage Report - Final.pdf Markup Summary

The set of	Subject: Callout Page Label: 36 Author: Joseph Sandstrom Date: 12/18/2024 2:53:31 PM Status: Color: Layer: Space:	Erosion protection is needed for flows greater than 5 fps. Please include calcs and discuss in narrative.
	Subject: Callout Page Label: [1] Pr Drn Map Author: Joseph Sandstrom Date: 12/18/2024 3:00:19 PM Status: Color: Layer: Space:	Basin lines should follow contours and not lot lines.
	Subject: Callout Page Label: [1] Pr Drn Map Author: Joseph Sandstrom Date: 12/18/2024 3:06:27 PM Status: Color: Layer: Space:	Offsite and onsite flows should be included in the channel analysis.
	Subject: Callout Page Label: [1] Pr Drn Map Author: Joseph Sandstrom Date: 12/18/2024 3:05:30 PM Status: Color: Layer: Space:	This is to show an example of what this note is asking for. These basin lines may be shown in different places based on other comments.
 An and stranger of the stranger o	Subject: Callout Page Label: 6 Author: CDurham Date: 12/23/2024 9:41:52 AM Status: Color: Layer: Space:	Please provide minimum driveway culvert sizing for driveways. You can do just one worse case scenario and then add caveat that sizes will be finalized with lot specific drainage reports.
	Subject: Callout Page Label: 15 Author: CDurham Date: 12/23/2024 10:31:23 AM Status: Color: Layer: Space:	Tc should increase based on time to travel through project site.

	Subject: Callout Page Label: 20 Author: CDurham Date: 12/23/2024 11:22:32 AM Status: Color: Layer: Space:	Tc should increase based on time to travel through project site.
And and and an an and an an and an	Subject: Callout Page Label: 20 Author: CDurham Date: 12/23/2024 11:24:04 AM Status: Color: Layer: Space:	Verify value. Seems like it might be a bit high.
In the second se	Subject: Callout Page Label: 21 Author: CDurham Date: 12/23/2024 11:26:31 AM Status: Color: Layer: Space:	Verify value. Seems like it might be a bit high.
■ 2019 / readed. No. I of all of the last of a presented to a close of the last 1 of all of the last of a presented to a close of the last 1 of all	Subject: Callout Page Label: 34 Author: CDurham Date: 12/23/2024 11:35:19 AM Status: Color: Layer: Space:	How was flow determined for this culvert? Provide discussion of this culvert in report
Intinues northeast in an Dresk Waterrited 1-0-30 min. The assuming guests will have been assumed to a second second point that is guined Theore in a second	Subject: Callout Page Label: 5 Author: CDurham Date: 12/23/2024 11:43:03 AM Status: Color: Layer: Space:	add "onsite". Flows do run through existing culverts on north side of road, but they are not within the project area.
	Subject: Callout Page Label: [1] 24019_Ex Drainage Map-Ex Drn Map Author: CDurham Date: 12/23/2024 11:46:18 AM Status: Color: Layer: Space:	Provide discussion of this culvert in report

7450 The second	Subject: Callout Page Label: [1] 24019_Ex Drainage Map-Ex Drn Map Author: CDurham Date: 12/23/2024 11:48:11 AM Status: Color: Layer: Space:	Show and label 100-year ponding depth of flows here.
16 31 32 33 34 30.1 24	Page Label: [1] Pr Drn Map Author: CDurham Date: 12/23/2024 11:50:36 AM Status: Color: Layer: Space:	Flow shown does not match hydrology spreadsheet in appendix
Cloud (1)		
	Subject: Cloud Page Label: [1] Pr Drn Map Author: Joseph Sandstrom Date: 12/18/2024 3:03:51 PM Status: Color: Layer: Space:	
Highlight (6)		
:NGINEER'S SI The attacked dra o the best of my	Subject: Highlight Page Label: 2 Author: Joseph Sandstrom Date: 12/17/2024 4:08:27 PM Status: Color: Layer: Space:	attacked
annlicable	Subject: Hiablight	
ent <mark>accts</mark> , er	Page Label: 2 Author: Joseph Sandstrom Date: 12/17/2024 4:08:58 PM Status: Color: Layer: Space:	accts
A second seco	Subject: Highlight Page Label: 4 Author: Joseph Sandstrom Date: 12/17/2024 4:30:53 PM Status: Color: Layer: Space:	Stormwater from these roads sheet flows onsite and collects at DP2.

t a <mark>t DP2</mark> tha 2 drainage\	Subject: Highlight Page Label: 5 Author: Joseph Sandstrom Date: 12/17/2024 4:36:53 PM Status:	DP2
	Color: Color: Space:	
אט uala,	Subject: Highlight	
asin <mark>Fi</mark> stor	Author: CDurham Date: 12/23/2024 9:34:50 AM Status: Color: Layer: Space:	
sin <mark>F</mark> sto	Subject: Highlight Page Label: 5 Author: CDurham Date: 12/23/2024 9:34:51 AM Status: Color: Layer: Space:	F
Line (5)		
he flow ent that may le. An	Subject: Line Page Label: 5 Author: Joseph Sandstrom Date: 12/17/2024 4:59:56 PM Status: Color: Layer: Space:	
overtop at l b uild up du overtoppin _i	Subject: Line Page Label: 5 Author: Joseph Sandstrom Date: 12/17/2024 5:00:02 PM Status: Color: Layer: Space:	
	Subject: Line Page Label: [1] Pr Drn Map Author: Joseph Sandstrom Date: 12/18/2024 3:02:18 PM Status: Color: Layer: Snace:	

	Subject: Line Page Label: [1] Pr Drn Map Author: Joseph Sandstrom Date: 12/18/2024 3:02:22 PM Status: Color: Layer: Space:	
	Subject: Line Page Label: [1] Pr Drn Map Author: Joseph Sandstrom Date: 12/18/2024 3:02:41 PM Status: Color: Layer: Space:	
Polygon (2)		
04.	Subject: Polygon Page Label: [1] Pr Drn Map Author: Joseph Sandstrom Date: 12/18/2024 3:02:04 PM Status: Color: Layer: Space:	
=7449.7	Subject: Polygon Page Label: [1] Pr Drn Map Author: Joseph Sandstrom Date: 12/18/2024 3:02:46 PM Status: Color: Layer: Space:	
Text Box (17)		
and the table tab	Subject: Text Box Page Label: 4 Author: Joseph Sandstrom	Looks like this is DP7 now. Based on flow arrows, it looks like a portion of the roadways flow offsite and not onsite

	Author: Joseph Sandstrom Date: 12/17/2024 4:36:48 PM Status: Color: Layer: Space:	it looks like a portion of the roadways flow offsite and not onsite
mile rest (1996) (1996) mile rest (1996) 1998) 1998	Subject: Text Box Page Label: 26 Author: Joseph Sandstrom Date: 12/17/2024 4:40:37 PM Status: Color: Layer: Space:	Please correct page orientation.

Note that seem to the with the fixed grant Charry CH date, the internal that a section on reperivations or of 19. Basing Latence and the 29 and continues to 19. The control of the date of o	Subject: Text Box Page Label: 6 Author: Joseph Sandstrom Date: 12/17/2024 5:11:33 PM Status: Color: Layer: Space:	Please include the total flows at DP7 from the other basins.
The second secon	Subject: Text Box Page Label: 5 Author: Joseph Sandstrom Date: 12/18/2024 7:35:07 AM Status: Color: Layer: Space:	Review 1 unresolved comment: Include a discussion of the existing 12" culvert at the NW corner of the site, as shown on drainage map. There is a comment on the map to identify the culvert of interest.
Please fix orientation. ວ ຕ	Subject: Text Box Page Label: 37 Author: Joseph Sandstrom Date: 12/18/2024 7:50:11 AM Status: Color: Layer: Space:	Please fix orientation.
Reals in Volg and Alexan Sector Sector and editors and an example of the sector of the sector of the Real sector and address. Sector and a sector Processing of the sector	Subject: Text Box Page Label: 4 Author: Joseph Sandstrom Date: 12/18/2024 7:57:22 AM Status: Color: Layer: Space:	Please add "onsite" or "offsite" to each basin for clarity.
Include 5 year analysis as well as 100 year analysis. = 133.3 cfs)	Subject: Text Box Page Label: 23 Author: Joseph Sandstrom Date: 12/18/2024 9:46:01 AM Status: Color: Layer: Space:	Include 5 year analysis as well as 100 year analysis.
Please update typos eport were prepared under my belief. Said drainage report ha	Subject: Text Box Page Label: 2 Author: Joseph Sandstrom Date: 12/18/2024 1:51:25 PM Status: Color: Layer: Space:	Please update typos

Please update this comparison based on drainage map and other comments.	Subject: Text Box Page Label: 7 Author: Joseph Sandstrom Date: 12/18/2024 1:57:06 PM Status: Color: Layer: Space:	Please update this comparison based on drainage map and other comments.
Status 100 us near non an seminary of verse store the 100 year of that channels flow and orbital devel- tio determine the 100 year water undrace identifies to accompase the 100 year water undrace identifies to accompase the 100 year water undrace identifies the accompase the 100 year water undrace identifies the accompase the 100 year water undrace identifies and the 100 year water undrace identifies and the accompase the 100 year water undrace identifies the accompase the accompase of the 100 year water and the accompase of the 100 year water undrace identifies the accompase the accompase of the 100 year water and the accompase of the 100 year water and the the accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water and accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water accompase of the 100 year water and the 100 year water and the 100 year water and the 1	Subject: Text Box Page Label: 7 Author: Joseph Sandstrom Date: 12/18/2024 1:58:52 PM Status: Color: Layer: Space:	Please include 5-year as well.
	Subject: Text Box Page Label: [1] Pr Drn Map Author: Joseph Sandstrom Date: 12/18/2024 3:08:31 PM Status: Color: Layer: Space:	Similar comment regarding including offsite and onsite basin flows in the channel analysis.
An Elons Coalt. If i character cross and thon work the developed from to detamonic the adultion from the characteristic sector of the the elong of the characteristic sector of the characteristic sector of the and elong of the characteristic sector of the sector of the and elong of the characteristic sector of the and elong of the characteristic sector of the sector of the and elong of the sector of the the sector of the sector of the sector of the the sector of the sector of the sector of the the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the the sector of the	Subject: Text Box Page Label: 7 Author: CDurham Date: 12/23/2024 11:44:27 AM Status: Color: Layer: Space:	Include discussion of channel analysis, what parameters meet criteria, what to do for items that do not, etc.
A the support program that the support program the support program the support program that the	Subject: Text Box Page Label: 5 Author: CDurham Date: 12/23/2024 9:49:29 AM Status: Color: Layer: Space:	Previous report stated there was a roadside ditch along road, directing flows to culvert. This was deleted, so how are flows being directed to low point? Also provide discussion of existing culvert at NW corner of site in Basin C.
14.4%, respectively. The marginal dassociated facilities. Table should compare flows at DP7, not Basin A	Subject: Text Box Page Label: 7 Author: CDurham Date: 12/23/2024 11:29:48 AM Status: Color: Layer: Space:	Table should compare flows at DP7, not Basin A

(Sta, El, n)-(Sta, El, n) {1000.742.09/12500.7440.00.000){ include Fr # and shear stress for each section also.	Subject: Text Box Page Label: 23 Author: CDurham Date: 12/23/2024 11:31:21 AM Status: Color: Layer: Space:	Include Fr # and shear stress for each section also.
subdivisions with a max discharges onsite at DP flow concrete Lift Segu entry of the segue at the second second sector Second Second Second Second Second sector Second Se	Subject: Text Box Page Label: 5 Author: CDurham Date: 12/23/2024 11:44:59 AM Status: Color: Layer: Space:	Expand discussion on culvert overtopping. What is depth/width/velocity? Does it meet EPC criteria in DCM section 6.4?
ack Squirrel What is r discharges to exemption entroping copy? Does it where the copy? Does it where the copy? Does it where the copy? Does it copy? Does it copy? Does it copy? c	Subject: Text Box Page Label: 5 Author: CDurham Date: 12/23/2024 11:44:09 AM Status: Color: Layer: Space:	What is overtopping depth/width/velocity? Does it meet overtopping criteria per DCM table 6-4?