EI Paso County
Development Services Department
Procedures Manual
Subject: DEVIATION REVIEW AND DECISION FORM

Page 1 of 8

Date Issued: 12/31/07
Revision Issued: N/A
Rescinded: N/A

1.1. PURPOSE

The purpose of this resource is to provide a form for documenting the findings and decision by the ECM Administrator concerning a deviation request.

1.2. BACKGROUND

A deviation is a critical aspect of the review process and needs to be documented to ensure that the deviations granted are applied to a specific development application in conformance with the criteria for approval and that the action is documented as such requests can point to potential needed revisions to the ECM.

1.3. APPLICABLE STATUTES AND REGULATIONS

Section 5.8 of the ECM establishes a mechanism whereby an engineering design standard can be modified when if strictly adhered to, would cause unnecessary hardship or unsafe design because of topographical or other conditions particular to the site, and that a departure may be made without destroying the intent of such provision.

1.4. APPLICABILITY

All provisions of the ECM are subject to deviation by the ECM Administrator provided that one of the following conditions is met:

- The ECM standard is inapplicable to a particular situation.
- Topography, right-of-way, or other geographical conditions or impediments impose an undue hardship on the applicant, and an equivalent alternative that can accomplish the same design objective is available and does not compromise public safety or accessibility.
- A change to a standard is required to address a specific design or construction problem, and if not modified, the standard will impose an undue hardship on the applicant with little or no material benefit to the public.

1.5. TECHNICAL GUIDANCE

The review shall ensure all criteria for approval are adequately considered and that justification for the deviation is properly documented.

1.6. RELATED PROCEDURES

1.6.1. Governing Procedures

P-AR-063-07 Deviation
1.6.2. Other Related Procedures

P-AR-012-07 Administrative Relief

[^0]
1.7. RESOURCE

Attached is the Deviation Review and Decision Form that is used by the applicant/engineer for requesting and justifying a deviation. The form is reviewed by the ECM Administrator and approved or denied. The form is used to document the review and decision concerning a requested deviation. The request and decision concerning each deviation from a specific section of the ECM shall be recorded on a separate form.

Development Services Department

DEVIATION REVIEW AND DECISION FORM

Procedure \# R-FM-051-07
Issue Date: 12/31/07
Revision Issued: 00/00/00
DSD FILE NO.:

General Property Information:

Address of Subject Property (Street Number/Name): 9210 Arroya Lane
Tax Schedule ID(s) \#: 5222000023
Legal Description of Property:
Basis of bearings: The east line of the Southwest One-Quarter (SW1/4) of Section 22, Township 12 South, Range 65 West and is assumed to bear $\mathrm{N} 00^{\circ}$ $18^{\prime} 04$ " E , a distance of 2640.26 feet.

Commencing at the southeast corner of the Southwest One-Quarter (SW1/4) of said Section 22;

Thence S $88^{\circ} 38^{\prime} 37^{\prime \prime W}$ along the south line of the Southeast One-Quarter of the Southwest One-Quarter (SE $1 / 4$ SW1/4), a distance of 30.00 feet to the point of beginning of the parcel of land herein described;
Thence S $88^{\circ} 38^{\prime} 37^{\prime \prime} \mathrm{W}$ along said south line, a distance of 1300.52 feet to the southwest corner of the Southeast One-Quarter of the Southwest One-Quarter (SE 1/4 SW1/4);
Thence S $88^{\circ} 38^{\prime} 56^{\prime \prime} \mathrm{W}$ along the south line of the Southeast One-Quarter of the Southwest One-Quarter (SE 1/4 SW1/4), a distance of 898.51 feet;
Thence N $47^{\circ} 35^{\prime} 42$ " E, a distance of 105.23 feet;
Thence N $36^{\circ} 59^{\prime} 01^{\prime \prime} \mathrm{E}$, a distance of 517.38 feet;
Thence N $56^{\circ} 32^{\prime} 31$ " E, a distance of 489.24 feet;
Thence N $38^{\circ} 17^{\prime} 19 " \mathrm{E}$, a distance of 182.67 feet;
Thence N $89^{\circ} 41^{\prime} 56$ E, a distance of 1283.66 feet;

Subdivision or Project Name: Timberridge Estates
Section of ECM from Which Deviation is Sought: DCM Section 6.4.2
Specific Criteria from Which a Deviation is Sought: "For box culverts classified as bridges or culverts at major drainageways (100 -year flows greater than 1500 cfs) adequate freeboard shall be provided for the passage of debris and should be no less than 2 feet."

Proposed Nature and Extent of Deviation: Use box culverts classified as bridges that do not provide a minimum of 2 feet of freeboard.

Applicant Information:

Applicant: Timberridge Estates, LLC. Email Address: rshomes@comcast.net

Applicant is: __X_Consultant
Mailing Address: 2760 Brogans Bluff, Colorado Springs
Telephone Number: 719.499.6752

Contractor
State: CO Postal Code: 80919
Fax Number: none

Engineer Information:

Engineer: L Ducett, P.E. Email Address: L@tnesinc.com

Company Name: Terra Nova Engineering, Inc.
Mailing Address: 721 S $23^{\text {rd }}$ Street, Colorado Springs
Registration Number: 32339
Telephone Number: 719.635.6422

State: CO Postal Code: 80904
State of Registration: CO
Fax Number: none

Explanation of Request (Attached diagrams, figures and other documentation to clarify request):

Section of ECM from Which Deviation is Sought: DCM Section 6.4.2

Specific Criteria from Which a Deviation is Sought: "For box culverts classified as bridges or culverts at major drainageways (100-year flows greater than 1500 cfs) adequate freeboard shall be provided for the passage of debris and should be no less than 2 feet."

Proposed Nature and Extent of Deviation: Use box culverts classified as bridges that do not provide a minimum of 2 feet of freeboard.

Reason for the Requested Deviation:

The currently proposed culverts are 3 -barrel box culverts measuring 6 ' high by 12 ' wide. The calculations show this design has an inlet headwater of 10.51', which does not provide the minimum of 2' of freeboard.

An alternative culvert design is 3-barrel box culverts measuring 10 ' high by 15 ' wide. The calculations show this design has an inlet headwater of 7.9', which does provide the minimum of 2' of freeboard. Two issues with this alternative are that the culverts are wider than the upstream creek channel and the 10'x15' openings will be highly visible (due to their height) up and down stream of the culverts in areas planned for use as open space / regional trail areas.

[^1]\qquad

The invert at the proposed culvert outlet is at an elevation of 7232'. Per FEMA, the 100year flood elevation at the culvert outlet is 7242'. Based on this, both of the culvert designs will be submerged during a 100-year flood event, and 2' of freeboard will not be possible due to flood water conditions, regardless of what the culvert design calculations show for headwater. In other words, due to the relatively narrow creek bed, the capacity of the culvert designs is not the controlling factor for the 100-year water level.

Constructing even taller culverts, say 12' tall, would provide the 2' of freeboard above the floodwater level, but would worsen the visibility impact problem and would conflict with the proposed alignment for Arroya Lane. Additionally, the requirement to further raise the Arroya Lane surface would require that the culverts be lengthened, further increases the disturbance to Sand Creek and the cost.

A second alternative culvert design is 9 -barrel box culverts measuring 6 ' high by 14 ' wide. The calculations show this design has an inlet headwater of 4.0^{\prime}, which does provide the minimum of 2^{\prime} of freeboard. However, the combined width is 126^{\prime}, which is much wider than the 40'-60' creek channel immediately upstream of the culverts. Using culverts that are more than double the width of the creek channel is not appropriate or feasible.

A third alternative culvert design is 5 -barrel box culverts measuring 8 ' high by 14 ' wide. The calculations show this design has an inlet headwater of 6.0^{\prime}, which does provide the minimum of 2^{\prime} of freeboard. The combined width is $69^{\prime}\left(\sim 80^{\prime}\right.$ including concrete walls), which is considerably wider than the 40'-60' creek channel immediately upstream of the culverts. Constructing culverts that are wider than the immediately upstream creek channel is not advisable from a hydraulic perspective. Also, 8' tall culverts will have the same flood water elevation issue as the 10' tall culverts discussed above; they will be submerged during a 100-year flood event, and 2' of freeboard will not be possible due to flood water conditions, regardless of what the culvert design calculations show for headwater.

As neither the 3-10'x15' culvert design, 8-6'x14' culvert design, nor the 5-8'x14' culvert design will provide any freeboard at the 100-year event due to the floodwater level, it is requested that the 3-6'x12' design be allowed. This design provides the capacity to accommodate the 100-year event, while avoiding the construction of culverts that are wider than the creek channel and allowing for less expense for the culvert construction.

[^2]Comparison of Proposed Deviation to ECM Standard: As designing the box culverts to provide 2' of freeboard still results in the culverts being submerged during a 100-year event, there is no difference in actual freeboard between the proposed culvert design and the culvert design that follows the DCM standard.

Applicable Regional or National Standards Used as Basis: Not applicable.
Comparison of Proposed Design to the Drainage Basin Planning Study: The Sand Creek Drainage Basin Planning Study, Preliminary Design Report, prepared by Kiowa Engineering Corporation, dated March 1996 includes recommended improvements to the crossing of Sand Creek and Arroya Lane. The DBPS recommends replacing the existing culvert with a single 6' high by 12' wide concrete box culvert. This is the same size culvert as this deviation is requesting, and only a single barrel is recommended, rather than the triple barrel culvert that is proposed.

Types of Debris That May Be Present In Sand Creek Flow at Arroya Lane Crossing: Sand Creek flow upstream of the Arroya Lane crossing comes from three separate channels, all of which have ponds in the channels, and two of which have culverts in the channels. The land along these channels is almost entirely undeveloped land or rural residential parcels, which are comprised of a combination of grasslands and forestlands. The types of debris most likely to be found in the channel are loose vegetation debris (ex: leaves, grass, sticks) and small/light trash (ex: plastic bags, disposable cups. Medium size debris, such as branches, bushes, small logs, buckets, tires, etc., could be present in higher flows. It's possible that large debris, such as logs, trees, fencing posts, watercraft, etc., could be present in higher flows; however, this is less likely with ponds and culverts located approximately one quarter mile upstream of the Arroya Lane crossing (and few trees or residences in that distance).

Comparable Applicable Standard: The City of Colorado Springs Drainage Criteria Manual, Volume 1, dated May 2014, Chapter 11 has freeboard requirements that could be applied to the Arroya Lane crossing of Sand Creek. The Colorado Springs DCM (Table 11-1) requires zero freeboard (also allows overtopping) of collector roads (Arroya Lane is proposed as a rural minor collector) crossing culverts. If the Colorado Springs DCM was being used for the crossing in question, this deviation request would be unnecessary.

Application Consideration: CHECK IF APPLICATION MEETS CRITERIA FOR CONSIDERATION

\square The ECM standard is inapplicable to a particular
El Paso County Procedures Manual
Procedure \# R-FM-051-07
Issue Date: 12/31/07
Revision Issued: 00/00/00
DSD File No.

JUSTIFICATION

situation.

Topography, right-of-way, or other geographical conditions or impediments impose an undue hardship on the applicant, and an equivalent alternative that can accomplish the same design objective is available and does not compromise public safety or accessibility.

XA change to a standard is required to address a specific design or construction problem, and if not modified, the standard will impose an undue hardship on the applicant with little or no material benefit to the public.

Due to the floodwater elevation, designing the proposed culverts to provide 2' of freeboard does not actually result in any freeboard being provided, while it does cause a visibility impact problem and increases the cost of constructing the culverts. Since following this specific portion of the standards increases the cost without provided the specified results, it will impose an undue hardship on the applicant with little or no material benefit to the public.

If at least one of the criteria listed above is not met, this application for deviation cannot be considered.

Criteria for Approval:
 PLEASE EXPLAIN HOW EACH OF THE FOLLOWING CRITERIA HAVE BEEN SATISFIED BY THIS REQUEST

The request for a deviation is not based exclusively on financial considerations.

The deviation will achieve the intended result with a comparable or superior design and quality of improvement.

The deviation will not adversely affect safety or operations.

The deviation will not adversely affect maintenance and its associated cost.

This deviation will eliminate a visual impact problem, while also allowing the use of a less expensive design that results in the same freeboard as the more expensive design.

As both the per standards design (3-10'x15' culverts) and the proposed design (36 'x12' culverts) will not provide any freeboard at the 100-year event due to the floodwater level, and both designs provided the flow capacity required for the 100year event, both the per standards design and the proposed design achieve the same result.

As both the per standards design (3-10'x15' culverts) and the proposed design (36 'x12' culverts) provide the flow capacity required for the 100-year event and have zero freeboard due to the floodwater elevation, the safety and operations of both designs are equivalent.

As both the per standards design (3-10'x15' culverts) and the proposed design (3$6^{\prime} \times 12^{\prime}$ culverts) provide the flow capacity required for the 100 -year event and have zero freeboard due to the floodwater elevation, the effect on maintenance and its associated costs of both designs are equivalent.

Granting this deviation will allow for the elimination of the visual impact problem that the per standards design creates.
\qquad

Owner, Applicant and Engineer Declaration:
To the best of my knowledge, the information on this application and all additional or supplemental documentation is true, factual and complete. I am fully aware that any misrepresentation of any information on this application may be grounds for denial. I have familiarized myself with the rules, regulations and procedures with respect to preparing and filing this application. Jalso understand that an incorrect submittal will be cause to have the project removed from the agenda of the Planning Commission, Board of County Commissioners and/or Board of Adjustment or delay review, and that any approval of this applícation is based on the representations made in the application and may be revoked on any breach of representatiof or condition(s) of approval.

Date
This request has been determined to have met the criteria for approval. A deviation from Section of ECM is hereby granted based on the justification provided. Comments:
\qquad Additional comments or information are attached.

DENIED by the ECM Administrator

This request has been determined not to have met criteria for approval. A deviation from Section of ECM is hereby denied. Comments:
\qquad Additional comments or information are attached.

DSD File No. \qquad

BOX CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Timberridge Estates

Box ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-6'x12' Conc Box Culverts

Design Information (Input)			
Box conduit invert slope	So =	0.0100	$\mathrm{ft} / \mathrm{ft}$
Box Manning's n-value	$\mathrm{n}=$	0.0130	
Box Width	W =	12.00	ft
Box Height	H $=$	6.00	ft
Design discharge	Q =	869.00	cfs
Full-flow capacity (Calculated)			
Full-flow area	$\mathrm{Af}=$	72.00	sq ft
Full-flow wetted perimeter	$\mathrm{Pf}=$	36.00	ft
Full-flow capacity	Qf =	1309.97	cfs
Calculations of Normal Flow Condition			
Normal flow depth (<H)	$\mathrm{Yn}=$	3.66	ft
Flow area	An $=$	43.87	sq ft
Wetted perimeter	$\mathrm{Pn}=$	19.31	ft
Flow velocity	$\mathrm{Vn}=$	19.81	fps
Discharge	Qn =	869.00	cfs
Percent Full	Flow =	66.3\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.83	supercritical
Calculation of Critical Flow Condition			
Critical flow depth	$\mathrm{Yc}=$	5.46	ft
Critical flow area	$\mathrm{Ac}=$	65.53	sq ft
Critical flow velocity	$\mathrm{Vc}=$	13.26	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

Project: Timberridge Estates
Basin ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-6'x12' Conc Box Culverts
Status:

Calculations of Culvert Capacity (output):

Water Surface Elevation (ft., linked)	Tailwater Surface Elevation ft	Culvert Inlet-Control Flowrate cfs	Culvert Outlet-Control Flowrate cfs	Controlling Culvert Flowrate cfs (output)	Inlet Equation Used:	Flow Control Used
7233.00		0.00	0.00	0.00	No Flow (WS < inlet)	N/A
7233.50		32.70	697.06	32.70	Min. Energy. Eqn.	INLET
7234.00		92.40	823.07	92.40	Min. Energy. Eqn.	INLET
7234.50		169.50	943.20	169.50	Min. Energy. Eqn.	INLET
7235.00		260.70	1,057.64	260.70	Min. Energy. Eqn.	INLET
7235.50		364.50	1,166.99	364.50	Min. Energy. Eqn.	INLET
7236.00		479.10	1,271.64	479.10	Min. Energy. Eqn.	INLET
7236.50		607.50	1,371.97	607.50	Regression Eqn.	INLET
7237.00		745.50	1,468.39	745.50	Regression Eqn.	INLET
7237.50		892.80	1,561.28	892.80	Regression Eqn.	INLET
7238.00		1,047.30	1,651.03	1,047.30	Regression Eqn.	INLET
7238.50		1,206.60	1,738.04	1,206.60	Regression Eqn.	INLET
7239.00		1,367.70	1,822.11	1,367.70	Regression Eqn.	INLET
7239.50		1,527.30	1,983.40	1,527.30	Regression Eqn.	INLET
7240.00		1,683.30	2,136.05	1,683.30	Regression Eqn.	INLET
7240.50		1,833.90	2,281.46	1,833.90	Regression Eqn.	INLET
7241.00		1,978.20	2,420.60	1,978.20	Regression Eqn.	INLET
7241.50		2,115.60	2,553.86	2,115.60	Regression Eqn.	INLET
7242.00		2,246.70	2,682.22	2,246.70	Regression Eqn.	INLET
7242.50		2,371.50	2,805.87	2,371.50	Regression Eqn.	INLET
7243.00		2,490.60	2,925.42	2,490.60	Regression Eqn.	INLET
7243.50		2,604.30	3,048.29	2,604.30	Regression Eqn.	INLET
7244.00		2,713.20	3,179.59	2,713.20	Regression Eqn.	INLET
7244.50		2,817.90	3,305.79	2,817.90	Regression Eqn.	INLET
7245.00		2,918.40	3,427.29	2,918.40	Regression Eqn.	INLET
7245.50		3,015.30	3,544.68	3,015.30	Regression Eqn.	INLET
7246.00		3,109.20	3,658.14	3,109.20	Regression Eqn.	INLET
7246.50		3,199.80	3,768.28	3,199.80	Regression Eqn.	INLET
7247.00		3,287.70	3,875.27	3,287.70	Regression Eqn.	INLET
7247.50		3,373.20	3,979.53	3,373.20	Regression Eqn.	INLET

Project: Timberridge Estates
Basin ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-6'x12' Conc Box Culverts

Determination of Culvert Headwater and Outlet Protection

Project: Timberridge Estates
Basin ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-6'x12' Conc Box Culverts

Soil Type: \qquad
© Sandy
C Non-Sandy

Supercritical Flow! Using Ha to calculate protection type.

Project $=$ Timberridge Estates
Box ID = Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-6'x12' Conc Box Culverts

Culvert Information (Input)		
Barrel Diameter or Height	D or $\mathrm{H}=$	72.00
Barrel Length	L =	118.00
Barrel Invert Slope	So =	0.0100
Downstream Invert Elevation	EDI $=$	7231.82
Downstream Top Embankment Elevation	EDT =	7244.00
Upstream Top Embankment Elevation	EUT =	7244.00
Design Headwater Depth (not elev.)	Hw =	8.71
Tailwater Depth (not elev.)	Yt $=$	5.73
Culvert Hydraulics (Calculated)		
Available Headwater Depth	HW-a $=$	11.00
Design Hw/D ratio	Hw/D =	1.45
Culvert Vertical Profile		
Upstream Invert Elevation	EUI =	7233.00
Upstream Crown Elevation	EUC =	7239.00
Upstream Soil Cover Depth	Upsoil =	5.00
Downstream Invert Elevation	EDI =	7231.82
Downstream Crown Elevation	EDC =	7237.82
Downstream Soil Cover Depth	Dnsoil $=$	6.18

BOX CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Timberridge Estates

Box ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-10'x15' Conc Box Culverts

CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

Project: Timberridge Estates
Basin ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-10'x15' Conc Box Culverts
Status:

Calculations of Culvert Capacity (output):

Water Surface Elevation (ft., linked)	Tailwater Surface Elevation ft	Culvert Inlet-Control Flowrate cfs	Culvert Outlet-Control Flowrate cfs	Controlling Culvert Flowrate cfs (output)	Inlet Equation Used:	Flow Control Used
7233.00		0.00	0.00	0.00	No Flow (WS < inlet)	N/A
7233.50		40.80	1,055.04	40.80	Min. Energy. Eqn.	INLET
7234.00		115.20	1,285.24	115.20	Min. Energy. Eqn.	INLET
7234.50		211.80	1,512.66	211.80	Min. Energy. Eqn.	INLET
7235.00		325.80	1,735.69	325.80	Min. Energy. Eqn.	INLET
7235.50		455.40	1,953.49	455.40	Min. Energy. Eqn.	INLET
7236.00		598.50	2,165.55	598.50	Min. Energy. Eqn.	INLET
7236.50		754.20	2,371.89	754.20	Min. Energy. Eqn.	INLET
7237.00		921.60	2,572.57	921.60	Min. Energy. Eqn.	INLET
7237.50		1,099.50	2,767.73	1,099.50	Min. Energy. Eqn.	INLET
7238.00		1,287.90	2,957.59	1,287.90	Min. Energy. Eqn.	INLET
7238.50		1,491.90	3,142.48	1,491.90	Regression Eqn.	INLET
7239.00		1,705.80	3,322.56	1,705.80	Regression Eqn.	INLET
7239.50		1,928.70	3,498.14	1,928.70	Regression Eqn.	INLET
7240.00		2,160.60	3,669.44	2,160.60	Regression Eqn.	INLET
7240.50		2,400.90	3,836.73	2,400.90	Regression Eqn.	INLET
7241.00		2,648.10	4,000.22	2,648.10	Regression Eqn.	INLET
7241.50		2,901.30	4,160.12	2,901.30	Regression Eqn.	INLET
7242.00		3,158.40	4,316.61	3,158.40	Regression Eqn.	INLET
7242.50		3,417.90	4,469.88	3,417.90	Regression Eqn.	INLET
7243.00		3,678.00	4,620.10	3,678.00	Regression Eqn.	INLET
7243.50		3,936.90	4,911.93	3,936.90	Regression Eqn.	INLET
7244.00		4,192.80	5,193.33	4,192.80	Regression Eqn.	INLET
7244.50		4,444.50	5,465.16	4,444.50	Regression Eqn.	INLET
7245.00		4,691.40	5,728.26	4,691.40	Regression Eqn.	INLET
7245.50		4,932.30	5,983.45	4,932.30	Regression Eqn.	INLET
7246.00		5,167.20	6,231.25	5,167.20	Regression Eqn.	INLET
7246.50		5,395.50	6,472.31	5,395.50	Regression Eqn.	INLET
7247.00		5,617.50	6,707.06	5,617.50	Regression Eqn.	INLET
7247.50		5,833.20	6,935.98	5,833.20	Regression Eqn.	INLET

Project: Timberridge Estates
Basin ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-10'x15' Conc Box Culverts

Determination of Culvert Headwater and Outlet Protection

Project: Timberridge Estates
Basin ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-10'x15' Conc Box Culverts

Soil Type: \qquad
© Sandy
C Non-Sandy
Supercritical Flow! Using Ha to calculate protection type.

Project $=$ Timberridge Estates
Box ID = Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-10'x15' Conc Box Culverts

Culvert Information (Input)		
Barrel Diameter or Height	D or $\mathrm{H}=$	120.00
Barrel Length	L =	118.00
Barrel Invert Slope	So =	0.0100
Downstream Invert Elevation	EDI $=$	7231.82
Downstream Top Embankment Elevation	EDT =	7244.00
Upstream Top Embankment Elevation	EUT =	7244.00
Design Headwater Depth (not elev.)	Hw =	7.92
Tailwater Depth (not elev.)	Yt $=$	7.35
Culvert Hydraulics (Calculated)		
Available Headwater Depth	HW-a $=$	11.00
Design Hw/D ratio	Hw/D =	0.79
Culvert Vertical Profile		
Upstream Invert Elevation	EUI =	7233.00
Upstream Crown Elevation	EUC =	7243.00
Upstream Soil Cover Depth	Upsoil =	1.00
Downstream Invert Elevation	EDI =	7231.82
Downstream Crown Elevation	EDC =	7241.82
Downstream Soil Cover Depth	Dnsoil $=$	2.18

Job No. 1733.00 Timber ridge Estates Date $03 / 13 / 19$
\qquad

Per standards 3- $10^{\prime} \times 15^{\prime}$ Culverts Design

Culvert with 2' Freeboard Above Floodwater $\left(3-12^{\prime} \times 12^{\prime}\right.$?)

TIMBERRIDGE ESTATES - 9210 ARROYA LANE EL PASO COUNTY

STREET IMPROVEMENT PLAN

JUNE 2019

$3-6^{\prime} \times 12^{\prime}$ CONCRETE BOX CULVERTS - PROFILE VIEW

[^0]: El Paso County Development Services Department
 Procedures Manual

[^1]: El Paso County Procedures Manual
 Procedure \# R-FM-051-07
 Issue Date: 12/31/07
 Revision Issued: 00/00/00
 DSD File No.

[^2]: El Paso County Procedures Manual
 Procedure \# R-FM-051-07
 Issue Date: 12/31/07
 Revision Issued: 00/00/00
 DSD File No.

