Procedure # R-FM-051-07

Procedures Manual

Subject: DEVIATION REVIEW AND DECISION FORM

Date Issued: 12/31/07 Revision Issued: N/A Rescinded: N/A

Page 1 of 8

1.1. PURPOSE

The purpose of this resource is to provide a form for documenting the findings and decision by the ECM Administrator concerning a deviation request.

1.2. BACKGROUND

A deviation is a critical aspect of the review process and needs to be documented to ensure that the deviations granted are applied to a specific development application in conformance with the criteria for approval and that the action is documented as such requests can point to potential needed revisions to the ECM.

1.3. APPLICABLE STATUTES AND REGULATIONS

Section 5.8 of the ECM establishes a mechanism whereby an engineering design standard can be modified when if strictly adhered to, would cause unnecessary hardship or unsafe design because of topographical or other conditions particular to the site, and that a departure may be made without destroying the intent of such provision.

1.4. APPLICABILITY

All provisions of the ECM are subject to deviation by the ECM Administrator provided that one of the following conditions is met:

- The ECM standard is inapplicable to a particular situation.
- Topography, right-of-way, or other geographical conditions or impediments impose an undue hardship on the applicant, and an equivalent alternative that can accomplish the same design objective is available and does not compromise public safety or accessibility.
- A change to a standard is required to address a specific design or construction problem, and if not modified, the standard will impose an undue hardship on the applicant with little or no material benefit to the public.

1.5. TECHNICAL GUIDANCE

The review shall ensure all criteria for approval are adequately considered and that justification for the deviation is properly documented.

1.6. RELATED PROCEDURES

1.6.1. Governing Procedures

P-AR-063-07 Deviation

1.6.2. Other Related Procedures

P-AR-012-07 Administrative Relief

1.7. RESOURCE

Attached is the Deviation Review and Decision Form that is used by the applicant/engineer for requesting and justifying a deviation. The form is reviewed by the ECM Administrator and approved or denied. The form is used to document the review and decision concerning a requested deviation. The request and decision concerning each deviation from a specific section of the ECM shall be recorded on a separate form.

Development Services Department 2880 International Circle Colorado Springs, Colorado 80910

Phone: 719.520.6300 Fax: 719.520.6695 Website www.elpasoco.com

DEVIATION REVIEW AND DECISION FORM

Procedure # R-FM-051-07 Issue Date: 12/31/07 Revision Issued: 00/00/00 DSD FILE NO.:

General Property Information:

Address of Subject Property (Street Number/Name): 9210 Arroya Lane Tax Schedule ID(s) #: 5222000023 Legal Description of Property:

Basis of bearings: The east line of the Southwest One-Quarter (SW1/4) of Section 22, Township 12 South, Range 65 West and is assumed to bear N 00° 18' 04" E, a distance of 2640.26 feet.

Commencing at the southeast corner of the Southwest One-Quarter (SW1/4) of said Section 22;

Thence S 88° 38' 37"W along the south line of the Southeast One-Quarter of the Southwest One-Quarter (SE 1/4 SW1/4), a distance of 30.00 feet to the point of beginning of the parcel of land herein described;

Thence S 88° 38' 37"W along said south line, a distance of 1300.52 feet to the southwest corner of the Southeast One-Quarter of the Southwest One-Quarter (SE 1/4 SW1/4);

Thence S 88° 38' 56"W along the south line of the Southeast One-Quarter of the Southwest One-Quarter (SE 1/4 SW1/4), a distance of 898.51 feet;

Thence N 47° 35' 42" E, a distance of 105.23 feet;

Thence N 36° 59' 01" E, a distance of 517.38 feet;

Thence N 56° 32' 31" E, a distance of 489.24 feet;

Thence N 38° 17' 19" E, a distance of 182.67 feet;

Thence N 89° 41' 56" E, a distance of 1283.66 feet;

Subdivision or Project Name: Timberridge Estates

Section of ECM from Which Deviation is Sought: DCM Section 6.4.2

Specific Criteria from Which a Deviation is Sought: "For box culverts classified as bridges or culverts at major drainageways (100-year flows greater than 1500 cfs) adequate freeboard shall be provided for the passage of debris and should be no less than 2 feet."

El Paso County Procedures Manual Procedure # R-FM-051-07 Issue Date: 12/31/07 Revision Issued: 00/00/00 Proposed Nature and Extent of Deviation: Use box culverts classified as bridges that do not provide a minimum of 2 feet of freeboard.

Applicant Information:

Applicant: Timb	perrid	ge Estate	es, LLC.	Email A	ddress: rshome	es@comcast.net
				sultant	Contractor	
Mailing Address:	2760) Brogans	Bluff, Colorad	o Springs	State: CO	Postal Code: 80919
Telephone Nun	nber:	719.499	6752		Fax Number	: none

Engineer Information:

Engineer: L Ducett, P.E.	Email Address: L@tnesinc.com								
Company Name: Terra Nova Engineering, In	IC.								
Mailing Address: 721 S 23rd Street, Colorado Spr	rings	State: CO	Postal Code: 80904						
Registration Number: 32339		State of Regi	stration: CO						
Telephone Number: 719.635.6422		Fax Number:	none						

Explanation of Request (Attached diagrams, figures and other documentation to clarify request):

Section of ECM from Which Deviation is Sought: DCM Section 6.4.2

<u>Specific Criteria from Which a Deviation is Sought:</u> "For box culverts classified as bridges or culverts at major drainageways (100-year flows greater than 1500 cfs) adequate freeboard shall be provided for the passage of debris and should be no less than 2 feet."

<u>Proposed Nature and Extent of Deviation:</u> Use box culverts classified as bridges that do not provide a minimum of 2 feet of freeboard.

Reason for the Requested Deviation:

The currently proposed culverts are 3-barrel box culverts measuring 6' high by 12' wide. The calculations show this design has an inlet headwater of 10.51', which does not provide the minimum of 2' of freeboard.

An alternative culvert design is 3-barrel box culverts measuring 10' high by 15' wide. The calculations show this design has an inlet headwater of 7.9', which does provide the minimum of 2' of freeboard. Two issues with this alternative are that the culverts are wider than the upstream creek channel and the 10'x15' openings will be highly visible (due to their height) up and down stream of the culverts in areas planned for use as open space / regional trail areas.

El Paso County Procedures Manual Procedure # R-FM-051-07 Issue Date: 12/31/07 Revision Issued: 00/00/00 DSD File No. ____ ___ ___ ___ ___ ____ The invert at the proposed culvert outlet is at an elevation of 7232'. Per FEMA, the 100year flood elevation at the culvert outlet is 7242'. Based on this, both of the culvert designs will be submerged during a 100-year flood event, and 2' of freeboard will not be possible due to flood water conditions, regardless of what the culvert design calculations show for headwater. In other words, due to the relatively narrow creek bed, the capacity of the culvert designs is not the controlling factor for the 100-year water level.

Constructing even taller culverts, say 12' tall, would provide the 2' of freeboard above the floodwater level, but would worsen the visibility impact problem and would conflict with the proposed alignment for Arroya Lane. Additionally, the requirement to further raise the Arroya Lane surface would require that the culverts be lengthened, further increases the disturbance to Sand Creek and the cost.

A second alternative culvert design is 9-barrel box culverts measuring 6' high by 14' wide. The calculations show this design has an inlet headwater of 4.0', which does provide the minimum of 2' of freeboard. However, the combined width is 126', which is much wider than the 40'-60' creek channel immediately upstream of the culverts. Using culverts that are more than double the width of the creek channel is not appropriate or feasible.

A third alternative culvert design is 5-barrel box culverts measuring 8' high by 14' wide. The calculations show this design has an inlet headwater of 6.0', which does provide the minimum of 2' of freeboard. The combined width is 69' (~80' including concrete walls), which is considerably wider than the 40'-60' creek channel immediately upstream of the culverts. Constructing culverts that are wider than the immediately upstream creek channel is not advisable from a hydraulic perspective. Also, 8' tall culverts will have the same flood water elevation issue as the 10' tall culverts discussed above; they will be submerged during a 100-year flood event, and 2' of freeboard will not be possible due to flood water conditions, regardless of what the culvert design calculations show for headwater.

As neither the 3-10'x15' culvert design, 8-6'x14' culvert design, nor the 5-8'x14' culvert design will provide any freeboard at the 100-year event due to the floodwater level, it is requested that the 3-6'x12' design be allowed. This design provides the capacity to accommodate the 100-year event, while avoiding the construction of culverts that are wider than the creek channel and allowing for less expense for the culvert construction.

Comparison of Proposed Deviation to ECM Standard: As designing the box culverts to provide 2' of freeboard still results in the culverts being submerged during a 100-year event, there is no difference in actual freeboard between the proposed culvert design and the culvert design that follows the DCM standard.

Applicable Regional or National Standards Used as Basis: Not applicable.

<u>Comparison of Proposed Design to the Drainage Basin Planning Study:</u> The Sand Creek Drainage Basin Planning Study, Preliminary Design Report, prepared by Kiowa Engineering Corporation, dated March 1996 includes recommended improvements to the crossing of Sand Creek and Arroya Lane. The DBPS recommends replacing the existing culvert with a single 6' high by 12' wide concrete box culvert. This is the same size culvert as this deviation is requesting, and only a single barrel is recommended, rather than the triple barrel culvert that is proposed.

<u>Types of Debris That May Be Present In Sand Creek Flow at Arroya Lane Crossing:</u> Sand Creek flow upstream of the Arroya Lane crossing comes from three separate channels, all of which have ponds in the channels, and two of which have culverts in the channels. The land along these channels is almost entirely undeveloped land or rural residential parcels, which are comprised of a combination of grasslands and forestlands. The types of debris most likely to be found in the channel are loose vegetation debris (ex: leaves, grass, sticks) and small/light trash (ex: plastic bags, disposable cups. Medium size debris, such as branches, bushes, small logs, buckets, tires, etc., could be present in higher flows. It's possible that large debris, such as logs, trees, fencing posts, watercraft, etc., could be present in higher flows; however, this is less likely with ponds and culverts located approximately one quarter mile upstream of the Arroya Lane crossing (and few trees or residences in that distance).

<u>Comparable Applicable Standard:</u> The City of Colorado Springs Drainage Criteria Manual, Volume 1, dated May 2014, Chapter 11 has freeboard requirements that could be applied to the Arroya Lane crossing of Sand Creek. The Colorado Springs DCM (Table 11-1) requires zero freeboard (also allows overtopping) of collector roads (Arroya Lane is proposed as a rural minor collector) crossing culverts. If the Colorado Springs DCM was being used for the crossing in question, this deviation request would be unnecessary.

Application Consideration: CHECK IF APPLICATION MEETS CRITERIA FOR CONSIDERATION

JUSTIFICATION

□ The ECM standard is inapplicable to a particular

El Paso County Procedures Manual Procedure # R-FM-051-07 Issue Date: 12/31/07 Revision Issued: 00/00/00 DSD File No. ______ ___ ___ ___ ____ situation.

□ Topography, right-of-way, or other geographical conditions or impediments impose an undue hardship on the applicant, and an equivalent alternative that can accomplish the same design objective is available and does not compromise public safety or accessibility.

X A change to a standard is required to address a specific design or construction problem, and if not modified, the standard will impose an undue hardship on the applicant with little or no material benefit to the public.

Due to the floodwater elevation, designing the proposed culverts to provide 2' of freeboard does not actually result in any freeboard being provided, while it does cause a visibility impact problem and increases the cost of constructing the culverts. Since following this specific portion of the standards increases the cost without provided the specified results, it will impose an undue hardship on the applicant with little or no material benefit to the public.

If at least one of the criteria listed above is not met, this application for deviation cannot be considered.

Criteria for Approval:

PLEASE EXPLAIN HOW EACH The request for a deviation is not based exclusively on financial considerations.	OF THE FOLLOWING CRITERIA HAVE BEEN SATISFIED BY THIS REQUEST This deviation will eliminate a visual impact problem, while also allowing the use of a less expensive design that results in the same freeboard as the more expensive design.
The deviation will achieve the intended result with a comparable or superior design and quality of improvement.	As both the per standards design (3-10'x15' culverts) and the proposed design (3-6'x12' culverts) will not provide any freeboard at the 100-year event due to the floodwater level, and both designs provided the flow capacity required for the 100-year event, both the per standards design and the proposed design achieve the same result.
The deviation will not adversely affect safety or operations.	As both the per standards design (3-10'x15' culverts) and the proposed design (3- 6'x12' culverts) provide the flow capacity required for the 100-year event and have zero freeboard due to the floodwater elevation, the safety and operations of both designs are equivalent.
The deviation will not adversely affect maintenance and its associated cost.	As both the per standards design (3-10'x15' culverts) and the proposed design (3- 6'x12' culverts) provide the flow capacity required for the 100-year event and have zero freeboard due to the floodwater elevation, the effect on maintenance and its associated costs of both designs are equivalent.
The deviation will not adversely affect aesthetic appearance.	Granting this deviation will allow for the elimination of the visual impact problem that the per standards design creates.

El Paso County Procedures Manual Procedure # R-FM-051-07 Issue Date: 12/31/07 Revision Issued: 00/00/00 DSD File No. _____ ___ ___ ___ ___ ____ ____

Owner, Applicant and Engineer Declaration:

To the best of my knowledge, the information on this application and all additional or supplemental documentation is true, factual and complete. I am fully aware that any misrepresentation of any information on this application may be grounds for denial. I have familiarized myself with the rules, regulations and procedures with respect to preparing and filing this application. I also understand that an incorrect submittal will be cause to have the project removed from the agenda of the Planning Commission, Board of County Commissioners and/or Board of Adjustment or delay review, and that any approval of this application is based on the representations made in the application and may be revoked on any breach of representation or condition(s) of approval.

Limber Kida

Signature of owner (or authorized representative)

Signature of applicant (if different from owner)

Signature of Engineer

Engineer's Seal

Review and Recommendation:

APPROVED by the ECM Administrator

This request has been determined to have met the criteria for approval. A deviation from Section
of ECM is hereby granted based on the justification provided. Comments:

Additional comments or information are attached.

DENIED by the ECM Administrator

Date_

This request has been determined not to have met criteria for approval. A deviation from Section of ECM is hereby denied. Comments:

Additional comments or information are attached.

BOX CONDUIT FLOW (Normal & Critical Depth Computation)

Project: Timberridge Estates

Box ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-6'x12' Conc Box Culverts

Design Information (Input)			
Box conduit invert slope	So =	0.0100	ft/ft
Box Manning's n-value	n =	0.0130	
Box Width	VV =	12.00	ft
Box Height	H =	6.00	ft
Design discharge	Q =	869.00	cfs
Full-flow capacity (Calculated)			
Full-flow area	Af =	72.00	sq ft
Full-flow wetted perimeter	Pf =	36.00	ft
Full-flow capacity	Qf =	1309.97	cfs
Calculations of Normal Flow Condition			
Normal flow depth (<h)< td=""><td>Yn =</td><td>3.66</td><td>ft</td></h)<>	Yn =	3.66	ft
Flow area	An =	43.87	sq ft
Wetted perimeter	Pn =	19.31	ft
Flow velocity	Vn =	19.81	fps
Discharge	Qn =	869.00	cfs
Percent Full	Flow =	66.3%	of full flow
Normal Depth Froude Number	Fr _n =	1.83	supercritical
			-
Calculation of Critical Flow Condition			
Critical flow depth	Yc =	5.46	ft
Critical flow area	Ac =	65.53	sq ft
Critical flow velocity	Vc =	13.26	fps
Critical Depth Froude Number	Fr _c =	1.00]
			-

Calculations of Culvert Capacity (output):

0		Culvert	Controlling	Inlet	Flow
Surface	Inlet-Control	Outlet-Control	Culvert	Equation	Control
Elevation	Flowrate	Flowrate	Flowrate	Used:	Used
ft	cfs	cfs	cfs		
			(output)		
	0.00	0.00	0.00	No Flow (WS < inlet)	N/A
	32.70	697.06	32.70	Min. Energy. Eqn.	INLET
	92.40	823.07	92.40	Min. Energy. Eqn.	INLET
	169.50	943.20	169.50	Min. Energy. Eqn.	INLET
	260.70	1,057.64	260.70	Min. Energy. Eqn.	INLET
	364.50	1,166.99	364.50	Min. Energy. Eqn.	INLET
	479.10	1,271.64	479.10	Min. Energy. Eqn.	INLET
	607.50	1,371.97	607.50	Regression Eqn.	INLET
	745.50	1,468.39	745.50	Regression Eqn.	INLET
	892.80	1,561.28	892.80	Regression Eqn.	INLET
	1,047.30	1,651.03	1,047.30	Regression Eqn.	INLET
	1,206.60	1,738.04	1,206.60	Regression Eqn.	INLET
	1,367.70	1,822.11	1,367.70	Regression Eqn.	INLET
	1,527.30	1,983.40	1,527.30	Regression Eqn.	INLET
	1,683.30	2,136.05	1,683.30	Regression Eqn.	INLET
	1,833.90	2,281.46	1,833.90	Regression Eqn.	INLET
	1,978.20	2,420.60	1,978.20	Regression Eqn.	INLET
	2,115.60	2,553.86	2,115.60	Regression Eqn.	INLET
	2,246.70	2,682.22	2,246.70	Regression Eqn.	INLET
	2,371.50	2,805.87	2,371.50	Regression Eqn.	INLET
	2,490.60	2,925.42	2,490.60	Regression Eqn.	INLET
	2,604.30	3,048.29	2,604.30	Regression Eqn.	INLET
	2,713.20	3,179.59	2,713.20	Regression Eqn.	INLET
	2,817.90	3,305.79	2,817.90	Regression Eqn.	INLET
	2,918.40	3,427.29	2,918.40	Regression Eqn.	INLET
	3,015.30	3,544.68	3,015.30	Regression Eqn.	INLET
	3,109.20	3,658.14	3,109.20	Regression Eqn.	INLET
	3,199.80	3,768.28	3,199.80	Regression Eqn.	INLET
	3,287.70	3,875.27	3,287.70	Regression Eqn.	INLET
	3,373.20	3,979.53	3,373.20	Regression Eqn.	INLET
		ft cfs 0.00 32.70 92.40 169.50 260.70 364.50 479.10 607.50 745.50 892.80 1,047.30 1,206.60 1,367.70 1,527.30 1,683.30 1,978.20 2,115.60 2,246.70 2,371.50 2,490.60 2,604.30 2,713.20 2,817.90 2,918.40 3,019.20 3,199.80 3,199.80 3,287.70	ft cfs cfs 0.00 0.00 32.70 697.06 92.40 823.07 169.50 943.20 260.70 1,057.64 364.50 1,166.99 479.10 1,271.64 607.50 1,371.97 745.50 1,468.39 892.80 1,561.28 1,047.30 1,651.03 1,206.60 1,738.04 1,367.70 1,822.11 1,527.30 1,983.40 1,683.30 2,136.05 1,833.90 2,281.46 1,978.20 2,420.60 2,115.60 2,553.86 2,246.70 2,682.22 2,371.50 2,805.87 2,490.60 2,925.42 2,604.30 3,048.29 2,713.20 3,179.59 2,817.90 3,305.79 2,918.40 3,427.29 3,015.30 3,544.68 3,109.20 3,658.14 3,199.80 3,768.28	ft cfs cfs cfs (output) 0.00 0.00 0.00 0.00 0.00 32.70 697.06 32.70 92.40 92.40 823.07 92.40 169.50 943.20 169.50 260.70 1,057.64 260.70 364.50 1,166.99 364.50 479.10 1,271.64 479.10 607.50 1,371.97 607.50 745.50 1,468.39 745.50 1,047.30 1,651.03 1,047.30 1,206.60 1,738.04 1,226.60 1,367.70 1,822.11 1,367.70 1,527.30 1,983.40 1,527.30 1,683.30 2,136.05 1,683.30 2,135.05 1,683.30 2,135.05 1,978.20 2,420.60 1,978.20 2,244.70 2,682.22 2,246.70 2,371.50 2,805.87 2,371.50 2,400.60 2,925.42 2,490.60 2,604.30 3,048.29	ft cfs cfs (output) 0.00 0.00 0.00 No Flow (WS ≤ inlet) 32.70 697.06 32.70 Min. Energy. Eqn. 92.40 823.07 92.40 Min. Energy. Eqn. 169.50 943.20 169.50 Min. Energy. Eqn. 260.70 1,057.64 260.70 Min. Energy. Eqn. 364.50 1,166.99 384.50 Min. Energy. Eqn. 479.10 1,271.64 479.10 Min. Energy. Eqn. 607.50 1,371.97 607.50 Regression Eqn. 745.50 1,468.39 745.50 Regression Eqn. 1,047.30 1,651.03 1,047.30 Regression Eqn. 1,206.60 1,738.04 1,206.60 Regression Eqn. 1,367.70 1,822.11 1,367.70 Regression Eqn. 1,527.30 1,983.40 1,527.30 Regression Eqn. 1,683.30 2,136.05 1,683.30 Regression Eqn. 1,7978.20 2,420.60 1,978.20 Regression Eqn. 2,246.70

Project: Timberridge Estates Basin ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-6'x12' Conc Box Culverts

Vertical Profile for the Culvert

Hw/D =

EUI =

EUC =

EDI =

EDC =

Dnsoil =

Upsoil =

1.45

7233.00 ft

7239.00 ft

7237.82 ft

5.00 ft 7231.82 ft

6.18 ft

Project = Timberridge Estates

Design Hw/D ratio

Culvert Vertical Profile Upstream Invert Elevation

Upstream Crown Elevation Upstream Soil Cover Depth

Downstream Invert Elevation

Downstream Crown Elevation

Downstream Soil Cover Depth

BOX CONDUIT FLOW (Normal & Critical Depth Computation)

Project: Timberridge Estates

Box ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-10'x15' Conc Box Culverts

Design Information (Input)			
Box conduit invert slope	So =	0.0100	ft/ft
Box Manning's n-value	n =	0.0130	
Box Width	VV =	15.00	ft
Box Height	Н =	10.00	ft
Design discharge	Q =	869.00	cfs
Full-flow capacity (Calculated)	_		
Full-flow area	Af =	150.00	sq ft
Full-flow wetted perimeter	Pf =	50.00	ft
Full-flow capacity	Qf =	3576.14	cfs
			-
Calculations of Normal Flow Condition			_
Normal flow depth (<h)< td=""><td>Yn =</td><td>3.03</td><td>ft</td></h)<>	Yn =	3.03	ft
Flow area	An =	45.42	sq ft
Wetted perimeter	Pn =	21.06	ft
Flow velocity	Vn =	19.13	fps
Discharge	Qn =	869.02	cfs
Percent Full	Flow =	24.3%	of full flow
Normal Depth Froude Number	Fr _n =	1.94	supercritical
			_
Calculation of Critical Flow Condition			_
Critical flow depth	Yc =	4.71	ft
Critical flow area	Ac =	70.59	sq ft
Critical flow velocity	Vc =	12.31	fps
Critical Depth Froude Number	Fr _c =	1.00	
			-

Calculations of Culvert Capacity (output):

Water Surface	Tailwater	Culvert	Culvert	Controlling	Inlet	Flow
Elevation	Surface	Inlet-Control	Outlet-Control	Culvert	Equation	Control
	Elevation	Flowrate	Flowrate	Flowrate	Used:	Used
	ft	cfs	cfs	cfs		
(ft., linked)				(output)		
7233.00		0.00	0.00	0.00	No Flow (WS < inlet)	N/A
7233.50		40.80	1,055.04	40.80	Min. Energy. Eqn.	INLET
7234.00		115.20	1,285.24	115.20	Min. Energy. Eqn.	INLET
7234.50		211.80	1,512.66	211.80	Min. Energy. Eqn.	INLET
7235.00		325.80	1,735.69	325.80	Min. Energy. Eqn.	INLET
7235.50		455.40	1,953.49	455.40	Min. Energy. Eqn.	INLET
7236.00		598.50	2,165.55	598.50	Min. Energy. Eqn.	INLET
7236.50		754.20	2,371.89	754.20	Min. Energy. Eqn.	INLET
7237.00		921.60	2,572.57	921.60	Min. Energy. Eqn.	INLET
7237.50		1,099.50	2,767.73	1,099.50	Min. Energy. Eqn.	INLET
7238.00		1,287.90	2,957.59	1,287.90	Min. Energy. Eqn.	INLET
7238.50		1,491.90	3,142.48	1,491.90	Regression Eqn.	INLET
7239.00		1,705.80	3,322.56	1,705.80	Regression Eqn.	INLET
7239.50		1,928.70	3,498.14	1,928.70	Regression Eqn.	INLET
7240.00		2,160.60	3,669.44	2,160.60	Regression Eqn.	INLET
7240.50		2,400.90	3,836.73	2,400.90	Regression Eqn.	INLET
7241.00		2,648.10	4,000.22	2,648.10	Regression Eqn.	INLET
7241.50		2,901.30	4,160.12	2,901.30	Regression Eqn.	INLET
7242.00		3,158.40	4,316.61	3,158.40	Regression Eqn.	INLET
7242.50		3,417.90	4,469.88	3,417.90	Regression Eqn.	INLET
7243.00		3,678.00	4,620.10	3,678.00	Regression Eqn.	INLET
7243.50		3,936.90	4,911.93	3,936.90	Regression Eqn.	INLET
7244.00		4,192.80	5,193.33	4,192.80	Regression Eqn.	INLET
7244.50		4,444.50	5,465.16	4,444.50	Regression Eqn.	INLET
7245.00		4,691.40	5,728.26	4,691.40	Regression Eqn.	INLET
7245.50		4,932.30	5,983.45	4,932.30	Regression Eqn.	INLET
7246.00		5,167.20	6,231.25	5,167.20	Regression Eqn.	INLET
7246.50		5,395.50	6,472.31	5,395.50	Regression Eqn.	INLET
7247.00		5,617.50	6,707.06	5,617.50	Regression Eqn.	INLET
7247.50		5,833.20	6,935.98	5,833.20	Regression Eqn.	INLET

Processing Time: 00.61 Seconds

Project: Timberridge Estates Basin ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-10'x15' Conc Box Culverts

Vertical Profile for the Culvert

HW-a =

Hw/D =

EUI =

EUC =

EDI =

EDC =

Dnsoil =

Upsoil =

11.00 ft

0.79

7233.00 ft

7243.00 ft

7241.82 ft

1.00 ft 7231.82 ft

2.18 ft

Project = Timberridge Estates

Culvert Hydraulics (Calculated)

Available Headwater Depth

Culvert Vertical Profile Upstream Invert Elevation

Upstream Crown Elevation Upstream Soil Cover Depth

Downstream Invert Elevation

Downstream Crown Elevation

Downstream Soil Cover Depth

Design Hw/D ratio

<u>125 N Wahsatch Ave.</u> • Colorado Springs, CO 80903-3406 Phone: 719-635-6422 • Fax: 719-635-6426

TIMBERRIDGE ESTATES - 9210 ARROYA LANE EL PASO COUNTY **STREET IMPROVEMENT PLAN** JUNE 2019

BENCHMARKS A #4 REBAR 28.3 FEET SOUTH AND 77.2 FEET WEST OF THE SOUTHEAST PRÖPERTY CORNER. ELEV = 7,319.85' (NGVD-1929) <u>LEGEND</u> EXISTING 2' CONTOUR EXISTING 10' CONTOUR PROPOSED 2' CONTOUR PROPOSED 10' CONTOUR

EXISTING WATER LINE _____ _/ _____ DRAINAGE FLOW DIRECTION

SURFACE FLOW CHANNEL

PROPOSED DRAINAGE EASEMENT

SCALE: 1"=100'

<u>NOTES</u>

1. REINFORCE PROPOSED SWALES PR3, PR4, PR7, PR8, PR9, PR10, & PR11 WITH PERMANENT ROCK CHECK DAMS PER COUNTY CONSTRUCTION DETAIL CD-1 (IN DCM VOL 2). CHECK DAMS ARE NOT REQUIRED FOR SWALE AREAS WITH RIPRAP.

2. FUTURE SAND FILTERS TO BE INSTALLED PRIOR TO THE PAVING OF ARROYA LANE. SAND FILTERS WILL NOT BE PUT INTO OPERATION WHILE ARROYA LANE IS STILL A GRAVEL ROAD. FUTURE SAND FILTERS WILL BE ACCESSED FROM THE ADJACENT FUTURE ROADS. FINAL SAND FILTER DESIGN TO BE PREPARED WITH FINAL DESIGN OF PAVED ARROYA LANE.

CHECK DAM SPACING

CHECK DAM SPACING IS BASED ON SLOPE AND CHECK DAM HEIGHT. TOP OF THE DOWNHILL CHECK DAM SHOULD BE AT THE SAME ELEVATION AS THE BOTTOM OF THE NEXT CHECK DAM UPSTREAM. SPECIFIC CHECK DAM LOCATIONS TO BE SET BY CONTRACTOR BASED ON FIELD CONDITIONS A MINIMUM OF 9" TO BE MAINTAINED BETWEEN THE TOP OF CHECK DAMS AND THE TOP OF THE SWALE. MAX CHECK DAM HEIGHTS AND CHECK DAM SPACING RANGES ARE SHOWN BELOW. PRELIMINARY CHECK DAM LOCATIONS ARE SHOWN ON THE PLAN (CONTRACTOR TO FINALIZE).

<u>SWALE</u>	<u>CHECK DAM MAX HEIGHT</u>	CHECK DAM SPACING AT MAX HEIGHT
PR3	2.0'	31'-42'
PR4	2.0'	20'-60'
PR7	2.5'	58'–65'
PR8	3.0'	60'
PR9	2.5'	58'–65'
PR10	2.5'	40'—120'
PR11	2.5'	40'–120'

HEET NO. 2 OF

ARROYA LANE ALIGNMENT

ΙP	LE CO	NCRE	E BC	X (CUL	VER	T	DIME	INSIO	INS	i, QL	JAN	TIT	IE	<u>S 8</u>	<u>(R</u>	ATI	NG FA	CTOR	S (EXCL	UDING	HEAD	VALL &	TOEWAL	<u>L QU</u>	ANTI	<u>'IES)</u>
R	BOX SIZE	FILL HEIGHT H ALLOWE		& WALL	HES) t1*	t2 b	1 b2	BAR S	IZES v2 w3* & w4	4 c1*	c2 d1	▲	h;			S V2	٧3	CONCRETE	QUANTI REBAR S	TIES STL WATERPROOFIN	IG HL-93	RATIN HL-93	IG FACTORS	NRL			
FT	FT-IN FT-IN 7-10.5 27-4	FT-FT			TW; #		##	#	#	#). FT-]	N FT-	IN F		FT-IN 2-4		CY/LF 2 639	LBS/LF 531	SY/LF 3.370	INVENTORY	OPERATING		VEHICLE 1.69			
_	7-9.5 27-4 8-0 27-4	2 TO 8	10.5 11 2 11 13	10	4	5		4	4	5	5 16	8 <u>2</u> - 8 2-	6 <u>2</u> - 6 2-	-4	6-8 6-9		2-0 2-2	2.555 2.765	429	0.070	<u>1.47</u> <u>3.38</u>	1.90 4.39	2.07 4.80	1.83 5.22			
6	8-0 27-4 8-0 27-4 8-3 5 27-4		0 11 13	10	5	4 4	4 4 5 4 5 5	5	5	5	5 16 5 16	8 <u>2-</u> 8 <u>2-</u> 8 2-	4 2-		6-9 6-9 6-11	3-4 3-5	<u>2-2</u> <u>2-2</u>	2.639 2.555 2.765 2.765 2.765 2.765 3.061	432 462 482 523		6.80 1.69 6.80	8.81 2.19 8.82	9.35 2.20 8.50	8.63 2.27 5.95			
	8-4.5 27-10) <u>26 TD 3</u> < < 2	0 13.5 15	11.5	5 5	6	5 <u>6</u> 56		5	5	5 16 5 18	<u>8 3-</u> 4 3-	<u>3 2-</u> 5 2-	-6 -4	6-11 8-10	3-6 3-1	<u>2-4</u> 1-11	3.300 2.886	<u>587</u> 566	3.370	1.21	♦ 157	•	•	HF	ADWA	
8	10-0 27-4	. 8 10 1	10.5 11	10	4	5	4 <u>5</u> 4 <u>5</u>	4	4	5	5 17 5 18	5 2- 4 2-	6 2-	-4	8-8 8-9	3-2 3-4	2-0	3.300 2.886 2.801 3.012 3.012 3.350	461 464 460		1.46 3.45	1.89 4.47	1.82 2.00 4.89 3.47	1.65 1.82 5.12 3.73 2.72 1.56	<u> </u>		
8	10-0 27-4 10-4 27-4 10-4 27-6	16 TD 2	6 <u>11 13</u> 0 <u>13.5 14.</u> 5.9 <u>13.5 14</u> .	5 10 5 10.	5 5 5	4 4 6	4 <u>5</u> 5 <u>5</u> 5 5	4	4	5 5	5 18 5 18 5 18 5 18	4 <u>2-</u> 4 <u>3-</u> 4 <u>3-</u>		-4 -4 -4	8-9 8-11 8-11	2-4 3-5 3-6	<u>2-2</u> 2-2 2-3	<u>3.350</u> 3.414	460 490 675		2.53 3.07	3.27 3.98 2.32	<u>3.84</u> 2.23	2.72		ADWALL	
	10-4.5 27-10 8-0 33-4) <u>26 TD 3</u> < < 2	0 13.5 15	11.5	5 5	5	5 <u>5</u> 67	5	5	5	5 18	4 3-	<u>3</u> 2- 52-	-6 -4	8-11 6-11	3-1	2-4	3.414 3.584 3.210	578	4.037	1.20	1.55 2.02	◆ 1.44	1.37		IT ANGLE AR SPAN	<u> </u>
6	7-9 33-4 8-1 33-4 8-2.5 33-4	2 TO 8 8 TO 1	11 10 2 11.5 13. 6 12 14.	5 10		7	6 7 5 7	5	5	5	5 19	2 2- 2 2- 2 2-	6 2-	-4	6-9 6-9 6-10	2-4 3-4 3-7	<u>1-11</u> <u>2-2</u> 2-4	3.210 2.901 3.313 3.467 3.827 3.519 3.405 3.560 3.560 3.560 3.971	774 721 720		1.56 2.81 2.67	2.02 3.65 3.47	1.81 3.73	1.73 4.04 3.84		(S)	Z ST
	10-0 1 33-0	10 10 0	0 14 10	10	6 5 6	5	6 7	5	5	5	5 19 5 19 5 20	2 2-	6 2- 5 2-	-4 -4	7-0 8-11	3-7 3-1	2-5 1-11	3.827 3.519	658 840	4.056	2.44	3.17	3.58 3.04 1.40	3.14			#
8	9-11.5 33-4 10-1 33-4 10-1 33-4		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 5 10	5	7	6 7 5 7	5	5	5	5 20	08 2- 08 2-	6 2- 6 2-	-4	8-9 8-9 8-9	2-4 3-3	2-0	3.405 3.560	817 760		1.65 3.11 2.85	1.56 2.14 4.04	2.44 3.99	2.39 4.60 4.07		8	4
	<u>10-1</u> <u>33-4</u> <u>10-5</u> <u>33-4</u> 10-6 <u>33-4</u>		$\frac{11.5}{5}$ $\frac{13.5}{15.}$ $\frac{13.5}{2}$ $\frac{15.}{16}$	5 10 5 10 10	5	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\frac{5}{5}$ $\frac{7}{6}$	5	5	5	5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20)8 2-)8 2-)8 2-		-4 -4 -4	8-11 9-0	3-5 3-7 3-7	<u>2-2</u> 2-4 2-5	3.971 4.074	763 768 831		<u>2.85</u> <u>3.36</u> 2.37	3.69 4.36 3.08	3.99 3.76 4.60 2.93	4.07		10	6
	12-0 33-6 11-10.5 33-6	2 10 8	11.5 11	10.	56 56	7	6 7 6 7	5	5	5	5 22	4 3-	5 2- 6 2-	-4	10-11 10-9	<u>2-4</u> 3-2	1-11 2-0	3.778	831 879 864	4.056	1.17 1.65	1.52	1.36	1.30 2.06		14	6
10	12-0.5 33-8 12-3 33-4 12-5 33-6		4 12.5 14.	5 10	5 5 5 5	5	$\frac{5}{5}$ $\frac{7}{5}$	5	5	5	5 22	24 2-	6 2- 6 2- 6 2-	-5 -4	10-9 10-10 10-11	3-4 3-6 3-7	2-2 2-3 2-4	3.904 4.012 4.295 4.630	808 675 812		<u>3.09</u> <u>1.68</u> 1.59	4.00 2.17 2.06	<u>3.92</u> 2.10 1.99	3.08 1.50 1.41		16	6
	9.1 70.0	16 TO 2	2 14 16	12	5 6	7	<u>6 7</u> 6 7	5	5	6	6 22 5 21	2 <u>4 2-1</u> 6 3-	0 <u>2</u> - 92-	-8 -4	<u>11-0</u> 7-0	2-4 3-1	2-5 1-11	4.630	914	4.722	1.03	1.82	1.75	1.24		18	7
~	7-11.5 39-4 8-2 39-4	2 TO 4	12.5 11	10 5 10	6	7	6 7 5 7	5	5	5	5 20	3 2-	6 2- 6 2- 3 2-	-4	6-10 6-11	3-2 3-7	2-0	3.826 3.594 3.897	881 818 823		1.34 1.10 2.22	1.33 1.74 1.42 2.88	1.46	1.15 1.55 1.36		20	7
6	8-6.5 39-4 8-8 39-6 8-8 39-8	10 TO 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.3		5	$\frac{5}{6}$ $\frac{7}{5}$ $\frac{5}{5}$ $\frac{5}{5}$	5	5	5	5 21	6 <u>3-</u> 6 <u>3-</u> 6 <u>3</u> -	3 2-	-4 -4 -5	7-0 7-2 7-2	3-7 2-4 3-7	2-5 2-3 2-5	4.443 4.679 4.733 5.100	823 735 745		<u>2.22</u> <u>3.48</u> 2.48	2.88 4.51 3.22	2.82 4.97 3.40	3.06 5.27 3.59			
	8-11 39-8 10-1.5 39-6	2 16 10 1	<u> </u>	11 5 10.5	6 5 6	5	6 5 6 7	5	5	5	5 <u>21</u> 6 23	6 <u>3</u> - 23-	3 <u>2</u> - 9 2-	-4 -8	7-3 9-0	3-9 3-5	2-7 1-11	5.100 4.146	748 984	4.722	2.09	2.71	2.79 1.19	2.86 1.20			
8	10-2.5 39-4		12.5 11 13.5 13 16 17.	10	5	7 5 5			5	5	5 23	32 2-	6 2- 6 2- 3 2-	-4	8-10 8-11	3-2 2-4 3-9		4.146 3.841 4.205 5.188	923 695 716		1.31	1.70	1.44	<u>1.52</u> <u>1.43</u> 3.11		NOT	<u>ES</u>
	10-11 39-8 12-3 39-6	12 TO 1	B 17 18 16 11	11 10.5	6	5	6 5	5	5	5		32 3- 8 4-	3 <u>2</u> - 42-	-5 -8	9-3 11-1	3-9 2-8	2-7	<u>5.371</u> 4.588	790	4.722	2.51 1.98 1.11	3.26 2.57 1.44	2.93 2.63 1.23	2.71 1.24	■ 1.	SIX IN	ICH SP
10		2 TO 4	13.5 15	10	5	7			5		5 24	8 2-	6 2- 6 2-	-4	10-10 10-11	3-2		4.087 4.694	964 739		1.30 1.60	1.69 2.07	1.43	1.50 2.61		LENGT	H;12 IN
	12-11 39-8	8 TO 1 12 TO 1	2 16 17. 3 17 18 16 11	11	6	5	$\frac{5}{6}$ $\frac{5}{7}$	5	5		5 24	8 3- 8 3- 0 3-	3 2-	-5	11-2 11-3 7-1	3-9 3-9 3-2	2-6 2-7 2-0	5.459 5.643	757 832 1243	5.389	2.57 1.36 1.00	<u>3.34</u> <u>1.77</u> 1.30	3.00 1.70 1.10	3.06 1.21 1.12	2.	QUANT	ITIES
6	0 1 45 4	2 TO 4	13 12 13 13	10	7	8	7 <u>8</u> 78	5	5	5	5 24	0 2-		-4	6-11 6-11	3-3	2-0 2-1 2-2	4.569 4.239 4.379 4.902	1243 1196 1193	0.009	1.00	1.50 1.69 2.57 4.54	1.10	1.12 1.69 2.90			R LINE
	8-5 45-8	8 TO 1	2 14 15	11 5 10.5	7 5 7	8	78 78	5	5	6 5	6 24 5 25	0 2-1	0 <u>2</u> - 9 2-	-9 -4	7-0 9-1	3-10 3-2		4.902 4.899	1242	5.389	3.51 1.04	1.35	3.93 1.14	4.17 1.16			
8	10-1 45-4 10-2 45-4 10-5 46-0	4 TO 8	13 12 13 13 14 15	10	7	8			5	5	5 25	6 2-	6 2- 6 2- 0 2-	-4	8-11 8-11 9-0	3-3 3-4 2-4	2-1 2-2 2-4	4.899 4.486 4.626 5.302 5.299 4.733 4.872	1237 1238 1285		1.43 2.10 3.52	1.86 2.73 4.56	1.63 2.76 3.95	1.65 2.84 4.19	★ 3.		D HEAD
10	12-4.5 45-6 12-1 45-4	< 2 2 TO 4	16.5 12 13 12	10.5	5 7	8	7 <u>8</u> 78	5	5	5	5 27	2 3-	0 2-	-4	11-2 10-11	3-2 3-3	2-1 2-1	5.299 4.733	1328 1278	5.389	1.07	1.39	1.18	1.20			
10	12-2 45-4	8 TO 1	2 14 15.	5 12	. 7	8	7 8	7	5		5 27 5 27 5 27 6 27				10-11 11-0	3-4 3-11	2-2 2-4	5.670	1280 1561		1.95 3.77	2.53 4.89	2.62 4.56	2.81 3.99	4.	FUR H	EADWAL
6	8-5 51-6 8-1.5 51-4 8-2 51-4		16.5 12. 13 12.	5 10.3 5 10	7	8 8	7 8	5	5	6	6 26 6 26	4 4-	4 2- 0 2-		7-2 6-11	2-4 3-8	2-1 2-1 2-2	5.387 4.781	1410 1359 1361 1361 1377	6.056	1.07 1.25 1.64	1.39 1.62 2.13	1.13 1.31	1.18 1.37 1.77	5.		THE FI
	8-3.5 51-4 8-6 51-8	6 TO 8	13.5 14) 14.5 15.	10 5 11	7	8	7 <u>8</u> 78	5 5	5	6	6 26	4 3-	0 <u>2</u> - 8 2-	-9	6-11 7-0	3-9 3-11	2-3 2-4	5.098 5.599	1361 1377		1.75 2.06	2.13 2.27 2.68 1.33	1.87	1.92 2.28		BY AN	JRCING I ASTEF
8	10-5 51-6 10-3 51-4	2 TO 4 4 TO 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 10.5 10	7	8 8	7 8	5	5	6	6 28	0 2-1	4 <u>2-</u> 0 <u>2-</u> 0 2-	-8	9-2 9-0	<u>2-4</u> <u>3-8</u>	<u>2-1</u> <u>2-2</u> 2-2	5.387 4.781 4.860 5.098 5.599 5.647 5.265 5.265 5.265 5.503 5.950 6.065 5.512 5.512 5.512 5.512 5.829 6.301	1455 1406 1406	6.056	1.02 1.31 1.57	1.33 1.70 2.03	1.08 1.38 1.67	1.13 1.44 1.70		SHALL	BE EP
0	10-4.5 51-4 10-6.5 51-8	6 TO 8	14 14. 15 15.	5 10 5 11	7	8	7 <u>8</u> 78	5	5	6	6 28 6 28	0 2-1 0 3-	0 2- 8 2-	-8 -9	9-0 9-1	3-10 3-11	<u>2-4</u> 2-4	5.503 5.950	1/1/0		2.01	2.63 2.61 2.58 1.37	2.15	2.21	6.	REINFO	ORCING
10	12-6 51-6 12-3 51-4	<pre> < 2 2 TO 4 4 TO 6 </pre>	11/13	1 10.3	5 7	8	7878	5	5	6	6 29 6 29	6 4-	4 2- 0 2-	8	11-2 11-0	2-4 3-8	2-1	6.065 5.512	1410 1519 1500 1452 1452 1455 1469	6.056	1.06	1.37	1.12	1.16 1.43	7.	WHEN	A (RIS
10	12-5 51-4	6 TO 8 8 TO 1	14 15	10	7	8	/ 0 7 8 7 8	5	5	6	6 29 6 29	6 2-1 6 3-	0 <u>2</u> - 0 <u>2</u> - 8 2-	-8 -9		3-8 3-10 3-11	<u>2-2</u> 2-4 2-5	5.829 6.301	1452		1.54 2.24 2.35	1.68 2.00 2.91 3.05	1.36 1.64 2.50 2.52	1.43 1.68 2.57 2.61		SIZES	AND T
6	8-6.5 57-6 8-5 57-4 8-6.5 57-8	< 2 2 TD 4	17 13. 15 14	5 10.5	7	8	7 8 7 8	5 5	5	7	7 28	38 <u>5</u> - 8 <u>3</u> -			7-2 7-1	2-4 3-9		6.191 5.872 6.243	1589 1499	6.722	1.07 1.15	1.39 1.50	1.09	1.16		(IF AV	AILABL
0	8-6.5 57-8 8-9 57-8 10-6.5 57-6	6 TO 8	16 17	11	7	8	7 8 7 8	5	5	6	6 28 6 28	8 3-	8 2- 8 2-	-9 -9	7-1 7-2	3-10 4-0	2-4	6.243 6.688	1589 1499 1507 1512 1653 1552 1552 1557 1703 1589 1588 1602	6.722	1.50 1.91	1.94 2.48 1.33	1.52 1.98	1.25 1.57 2.04	▲ 8.		IZE AN -3, SHEI
8	10-6.5 57-6	<pre>< 2 2 TO 4 4 TO 6</pre>	17 13. 15 14 15.5 15 16 17	10.3	7	8	7 8 7 8 7 8	5	5	6	6 30 6 30	4 <u>3</u> - 4 <u>3</u> -	8 2- 8 2-	-1 -8 -9	9-2 9-1 9-1	2-4 3-10	<u>2-1</u> 2-3 2-4	6.688 6.450 6.119 6.515 6.960 6.798 6.366 6.787 7.231	1535	0.722	1.02	1.33 1.46 1.87 2.44	1.03	<u>1.11</u> <u>1.22</u> 1.52		OF BA	RS REC
	10-9 57-8	6 TO 8	1 1 / 1 14	11	7 5 7	8	7878	5	5	6	6 30	4 3-	8 2-	-9	9-2 11-2	4-0 4-1		6.960 6.798	1557 1703	6.722	1.88 1.06	2.44	1.93	1.52 1.99 1.15		THOSE	FROM
10	12-5 57-4 12-6.5 57-8 12-9 57-8	2 TO 4 4 TO 6 6 TO 8	15 14 15.5 15 16 17	10	7	8	7 8	5	5	6	6 32 6 32 6 32 6 32 6 32	$\frac{20}{20}$ $\frac{3}{3}$	8 2- 8 2- 8 2-	-8 -9 -9	<u>11-1</u> <u>11-1</u> 11-2	3-9 2-4 4-0	2-3 2-4 2-6	6.366 6.787 7.231	1589 1588 1602		1.11 1.41 1.85	1.38 1.44 1.83 2.40	1.11 1.43 1.90	1.15 1.20 1.49 1.97	♦ 9.		LOAD IS
6	0 0 0 7 0	20	10 14	11	8	9	B 9		6	7	7 31		0 <u>3</u> - 8 2-		7-3	4-2 3-11		7.103	2195	7.407	1.00	1.30	1.00	1.07		REFER	TO TH
-	8-8 63-8 10-8.5 63-8	4 TO 6	16 16 18 14	11 5 11	8	8	88	5	5	6		2 3-		-9 -2	7-2 9-3	3-11 2-4	2-5 2-6	7.103	2195 1639 1798 2259 1684 1843	7.407	1.61	1.47 2.09 1.33	2.00	1.25 2.27 1.09	10.	FOR A	LL NEW
8	10-8 63-8 10-8 63-8		16 16	11	8	8	7 8 8 8	5	5	6	6 32	8 3-	8 2- 8 2- 0 3-	-9	9-2 9-2	3-11 3-11	2-5 2-5	7.103 7.103 7.103 7.473 7.374 7.374 7.374 7.843 7.646	1684 1843	7.407	1.14	1.48 2.38	1.10	1.22 2.21		BRIDG	D BE P E RATIN
10	8-8 63-8 8-8 63-8 10-8.5 63-8 10-8 63-8 10-8 63-8 10-8 63-8 10-8 63-8 12-9 63-8 12-8 63-8 12-8 63-8	2 TO 4	16 16 16 16	11	7	9 8 8	5 9 7 8 8 8	5	5	6	0 0 7 34 6 34 6 34	4 3-	8 <u>2</u> - 8 2-	- <u>2</u> -9 -9	<u>11-3</u> <u>11-2</u> 11-2	3-11 2-4	2-0 2-5 2-5	7.646	2335 1729 1878	7.407	1.08	<u>1.37</u> <u>1.46</u> 2.43	1.03	1.13 1.20 2.18			IONAL I
	Comput						T	•			She									partmen	t of Tro	nenorta	tion				
	Date: 07,				nitials:	JBE			Date				Corr							201 East Ar			tion	IK	IPL	E (\mathcal{O}
	dification D				nitials:			<u>R-1</u>	08/27						He .!	+				JULI HO. 41	n Floor			т	BOX		TI
	:www.codo File Name:			esigns	suppor	t	-1°	<u>R-2</u>)	08/01,	/15	Analy	sis F	rogro	m	upda	tes	_	CO		enver, CD Phone: 303-7					<u> </u>	<u>n</u> U	
	MicroStation			Coglo	Unito	Englia			┣────									Division	n of F	roject S	upport	DDG	/Bridge	Issued I	Rv. Proj	ect Deve	lonme

RRIDGE ESTATES - 9210 ARROYA LANE EL PASO COUNTY **STREET IMPROVEMENT PLAN** JUNE 2019

