Trail material is typically obtained from the Tezak pit in Canon City.

El Paso County
20HCT- Fountain Creek Stabilization at
Hanson Trailhead
Transmittal of Contractor's
Submittal
(Attached to each Submittal)

Date:	12/24/2020 MST	Submittal Number:	013
To:	Veronica Cid	Revision Number:	0

From: Tezak Heavy Equipment Co., Inc.

Responsible Contact: Holly Fransua

Submittal Description: Breeze Material for Trail Surfacing Specification Section: C.3.25

(Cover only one section with each transmittal)

Variation to Contract: Drawing Number:

N	1	es	10		m	-	٠٠٠
N	O	es		orr	ırrı	œr	บรา

	•	•		tion on-site by bot	

CONTRACTOR hereby certifies that CONTRACTOR has complied with the requirements of Contract Documents in preparation, review, and submission of designated Submittal, and the Submittal is complete and in accordance with Contract Documents and requirement of the laws and regulations and governing agencies.

From:	Holly Fransua	Date: _	12/24/2020 MST	
	Holly Fransua			

Tezak Heavy Equipment Co., Inc.

COMPACTION TEST REPORT

Curve No. 1794

Preparation Method		
Rammer: Wt. 5.5 lb	Drop	12 in.
Type		
Layers: No three	Blows per	25
Mold Size 0	.03333 cu. ft.	
Test Performed on Material		
Passing 3/8 in.	Sieve	
%>3/8 in0	% <no.200< td=""><td>15</td></no.200<>	15
Atterberg (D 4318): LL	17 PI	3
NM (D 2216)	Sp.G. (D 854)	2.9
USCS (D 2487)	SM	
AASHTO (M 145)	A-1-a	
Date: Sampled	12/15/2020	
Received	12/15/2020	
	12/16/2020	
Tested By	JEE	

	1	2	3	4	5	6
WM + WS	6330.0	6514.7	6668.3	6630.4		
WM	4346.5	4346.5	4346.5	4346.5		
WW + T #1	626.4	662.0	644.4	598.1		
WD + T #1	609.9	636.5	613.1	560.8		
TARE #1	220.3	222.0	221.4	195.0		
WW + T #2						
WD + T #2						
TARE #2						
MOIST.	4.2	6.2	8.0	10.2		
DRY DENS.	126.4	135.6	142.8	137.6		

	Opening Size	% Passing	Specs.
Γ	3/4"	100	
-	3/8"	100	
-	#4	75	
-	#8	47	
-	#16	30	
-	#30	22	
-	#50	18	
-	#100	16	
-	#200	15	
-			
-			
-			
-			

						Curve No. 1794	
160					ZAV SpG 2.90	Preparation Method	
150						Rammer: Wt. 5.5 lb. Drop Type	12 in.
						Layers: No. three Blows per Mold Size 0.03333 cu. f	25
140 — 140 — 130 —						Test Performed on Material Passing 3/8 in. Sieve	
පි 						%>3/8 in. 0 % <no.200 Atterberg (D 4318): LL 17 P</no.200 	и3
120						NM (D 2216) Sp.G. (D 85- USCS (D 2487) SM AASHTO (M 145) A-1-	
440						Date: Sampled 12/15/202 Received 12/15/202	20 20
110 L_ 3	4.5	6	7.5 Water con	_	10.5 12	Tested 12/16/202 Tested By JEE	20
	1		COMPACTION TM D 698-12 M			SIEVE TEST RESULTS ASTM D 422 ASTM D 11 Opening Size % Passing	
WM + WS	6330.0 4346.5	6514.7 4346.5	6668.3 4346.5	6630.4 4346.5		3/4" 100 3/8" 100	
WW + T #1	626.4	662.0	644.4	598.1		#4 75 #8 47	
WD + T #1	609.9	636.5	613.1	560.8		#16 #30 22	
TARE #1	220.3	222.0	221.4	195.0		#50 18	
WW + T #2 WD + T #2 TARE #2						#100 #200 15	
MOIST. DRY DENS.	4.2	6.2	8.0	10.2			
		-	TEST DESU	LTC		Metavial Decayint	.!
Maximum d	lry density =		TEST RESU	LIO		Material Descript Breeze, silty sand with	
Optimum m		2 %				Remarks:	Biavei
Project No. Project: La		Client:	THE Aggr	egate Source			
O Location:	Byzantine Qu		ile San	nple Numbe		Checked by: E	BKB
			rado Sprir			Figur	e P2

Tested By: JEE Checked By: BKB

COMPACTION TEST REPORT

Curve No. 1793

Preparation	Metho	od				
Rammer:	Wt.	5.5 lb	Dro	р	12 in.	
	Type					
Layers: No	. <u> </u>	three	Blows p	er	25	
Mold Size		0	.03333 c	u. ft.		
Test Perfor	med on	Material				
Passing	g	3/8 in.	Sieve			
%>3/8 in.		0	% <no.2< td=""><td>.00</td><td>12</td></no.2<>	.00	12	
Atterberg (D 4318): LL _	NV	PI	NP	
NM (D 221	6) _		Sp.G. (I	854)	2.8	
USC	CS (D 2	487)	SP-SM			
AASH	ГО (М	145)	A	-1-a		
Date: S	ampled	1	12/15/	/2020		
R	eceived	1	12/15/	/2020		
	Tested		12/16			
Tested By			JEE			

	1	2	3	4	5	6
WM + WS	6438.6	6516.6	6538.3	6533.6		
WM	4346.7	4346.7	4346.7	4346.7		
WW + T #1	543.6	610.2	600.0	615.4		
WD + T #1	523.9	578.9	566.2	574.1		
TARE #1	220.8	201.6	221.1	220.3		
WW + T #2						
WD + T #2						
TARE #2						
MOIST.	6.5	8.3	9.8	11.7		
DRY DENS.	130.4	133.1	132.5	130.0		

ASTIVI	D 422 ASTIVID	1170
Opening Size	% Passing	Specs.
3/4"	100	
3/8"	100	
#4	73	
#8	48	
#16	35	
#30	26	
#50	20	
#100	15	
#200	12	

							Cur	ve No. 1793	
134 133 133 133 133 133 133 133 133 133	4.5 6	7.5	9 Water con	10.5 tent, %	ZAV S 2.80		Preparation Method Rammer: Wt Type Layers: Nothi Mold Size Test Performed on Mat Passing3/8 %>3/8 in() Atterberg (D 4318): LL NM (D 2216) USCS (D 2487) AASHTO (M 145) Date: Sampled Received	5.5 lb. Drop ree Blows per 0.03333 cu. ft gerial 8 in. Sieve 0 % <no.200 (d="" 12="" 15="" 16="" 202="" 202<="" 854="" a-1-a="" nv="" pi="" sp-sm="" sp.g.="" th=""><th>25 </th></no.200>	25
<u> </u> -	1			TESTING DATA		6		VE TEST RESULTS 1 D 422 ASTM D 114 % Passing	
WM + W		6516.6	6538.3	6533.6		-	3/4"	100	2, 300.
WI	M 4346.7	4346.7	4346.7	4346.7			3/8" #4	100 73	
WW + T #	543.6	610.2	600.0	615.4			#8	48	
WD + T #	523.9	578.9	566.2	574.1			#16 #30	35 26	
TARE #		201.6	221.1	220.3			#50	20	
WW + T #							#100	15	
WD + T#							#200	12	
TARE #		0.7	0.0	11 7					
DRY DENS		8.3	9.8 132.5	11.7					
			TEST RESU	I TS			Ma	aterial Descripti	on
Movies	dans domoite-		0.1 11 12 10 10				IAIC	atoriai Descripti	VII
Optimum	dry density moisture = 8	-						graded sand with	silt and gra
Project No Project:		Client:	THE Aggr	egate Source			Remarks:		
O Location	n: Dolomite Qu			ple Number ciates, Inc.			Checked by: Title: Projec		КВ
Maximum Optimum Project No Project: C Location			rado Sprii		•		riue: Projec	t Supervisor Figure	e P1

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
3/8"	100		
#4	73		
#8	48		
#16	35		
#30	26		
#50	20		
#100	15		
#200	12		
*			

Material Description Breeze, poorly graded sand with silt and gravel				
PL= NP	Atterberg Limits LL= NV	PI= NP		
USCS= SP-SM	<u>Classification</u> AASHTO=	A-1-a		
<u>Remarks</u>				

(no specification provided)

Location: Dolomite Quarry - Stockpile **Sample Number:** 23

Date: 12/15/2020

Client:

Kumar and Associates, Inc.

Project: Lab Testing

Colorado Springs, CO

Project No: 20-2-253

THE Aggregate Source

P1 **Figure**