PRELIMINARY/FINAL DRAINAGE REPORT FOR HIGH PLAINS FILING NO. 1

July 2018

Prepared for:

Savage Development, Inc. 835 Diamond Rim Drive Colorado Springs, CO 80921

Prepared By:

PCD FILE NO's: SP-18-003

SF-18-024

PRELIMINARY/FINAL DRAINAGE REPORT HIGH PLAINS FILING NO. 1

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according the criteria established for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Certification Statement:

This report and plan for the preliminary and final drainage design for the <u>HIGH PLAINS FILING NO. 1</u> was prepared by me (or under my direct supervision) in accordance with the provisions of City of Colorado Springs/El Paso County Drainage Criteria Manual Volumes 1 and 2 Drainage Design and Technical Criteria for the owners thereof. I understand that El Paso County does not and will not assume liability for drainage facilities designed by others.

David L. Mijares, Colorado PE #40510	Date
For and on behalf of Catamount Engineering	
Developer's Statement:	
I, the developer have read and will comply with all of the requi	rements specified in this drainage report and plan.
Savage Development, Inc. hereby certifies that the drainage constructed according to the design presented in this report. I assume liability for the drainage facilities designed and or conversely drainage plans pursuant to Colorado Revised Statues PLAINS FILING NO. 1, guarantee that final drainage design their successors and/or assigns of future liability for improper plat does not imply approval of my engineer's drainage design	understand that El Paso County does not and will not ertified by my engineer and that the El Paso County, Title 30, Article 28; but cannot, on behalf of <u>HIGH</u> review will absolve <u>Savage Development, Inc.</u> and/or design. I further understand that approval of the final
Savage Development, Inc.	
Business Name	
By:Jordan Savage	
Title: President	
Address: 835 Diamond Rim Drive	
Colorado Springs, CO 80921	
El Paso County:	
Filed in accordance with the requirements of the El Paso Country Engineering manual Volumes 1 and 2, and the El Paso Country Engineering	
Jennifer Irvine, PE	Date
County Engineer/ECM Administrator	
Conditions:	

PRELIMINARY/FINAL DRAINAGE REPORT for HIGH PLAINS FILING NO. 1

PURPOSE

The purpose of this drainage report is to identify existing drainage patterns, quantify developed storm water runoff, and establish outfall scenarios from the proposed development.

GENERAL LOCATION AND DESCRIPTION

The subject 38.49 acres consists of unplatted land to be developed into 7 rural residential lots (RR-5 zoning) located within the SE ¼ of Section 19, Township 11 South, Range 65 West of the 6th principal meridian in unincorporated El Paso County. The parcel is bounded to the north by unplatted land zoned RR-5, to the east and west by platted RR-5 residential lots, and to the south by Hodgen Road.

The parcel contains an unnamed tributary of the east fork of East Cherry Creek that flows from a dual culvert crossing of Hodgen Road at the southern limits of the parcel to the northeast and exits the parcel along the easterly property line. The site drains directly to the reach of Cherry Creek at slopes between 4% and 25%.

Existing soils on the site consist of Peyton sandy loam, hydrologic soil group B (51%), and Peyton -Pring complex, hydrologic soil group B (49%) as determined by the Natural Resources Conservation Service Web Soil Survey. The site is located within the East Cherry Creek Basin.

The site is sparsely vegetated with native grasses. Some volunteer shrubs and trees are evident within the existing drainage. A swale along the south edge of the project running from west to east and outfalls to the unnamed tributary of East Cherry Creek. The site lies within the East Cherry Creek Basin.

Existing soils on the site consist of Peyton sandy loam, hydrologic soil group B (51%), and Peyton -Pring complex, hydrologic soil group B (49%) as determined by the Natural Resources Conservation Service Web Soil Survey. Hydrologic Group B soils were used in analysis.

A portion of the site lies within an F.E.M.A. designated zone 'A' (unstudied) floodplain per FIRM 08041C0325 F, effective March 17, 1997. A LOMR is in process to develop base flood elevations for the reach and has been included in the appendix. Analysis of the floodplain indicates significant reduction in effective zone 'A' (unstudied) floodplain. The area currently identified as Zone 'A' (unstudied) has been included in a no build easement to be dedicated to El Paso County with plat recordation.

EXISTING DRAINAGE CONDITIONS

No existing studies on the site or overall basin have been identified. The parcel contains two unnamed tributaries to the Cherry Creek Basin. The westerly reach identified as design point SS3 (Q₁₀₀=153 cfs) enters the westerly boundary of the property within an unimproved swale and conveys flows to a confluence with the southerly unnamed tributary within the property. The southerly reach identified as design point SS2 (Q₁₀₀=295 cfs) enters the property through a dual 48" crossing of Hodgen Road installed by El Paso County. No hydrologic or hydraulic analysis was available for the crossing information. Combined flows are conveyed through the property northeasterly to the easterly property boundary (design point SS1, Q₁₀₀=357 cfs). USGS Streamstats modeling developed for the LOMR submittal was utilized in obtaining approximate flows within the reaches.

Basin E1 (22.00 Acres, $Q_2=0.8$ cfs, $Q_5=2.8$ cfs, $Q_{10}=6.2$ cfs, $Q_{25}=10.9$ cfs, $Q_{50}=14.6$ cfs, and $Q_{100}=18.9$ cfs) consists of that portion tributary to the westerly lot line of the parcel and sheetflow directly to the unnamed reach of East Cherry Creek within the parcel.

Basin E2 (5.46 Acres, $Q_2=0.3$ cfs, $Q_5=1.3$ cfs, $Q_{10}=2.8$ cfs, $Q_{25}=4.8$ cfs, $Q_{50}=6.5$ cfs, and $Q_{100}=8.4$ cfs) consists of that portion tributary to the northerly lot line of the parcel and sheetflow directly to the unnamed reach of East Cherry Creek within the parcel.

Basin E3 (1.62 Acres, $Q_2=1.0$ cfs, $Q_5=1.5$ cfs, $Q_{10}=2.2$ cfs, $Q_{25}=3.1$ cfs, $Q_{50}=3.8$ cfs, and $Q_{100}=4.6$ cfs) consists of that portion tributary to the southerly lot line of the parcel west of the channel and sheetflow directly to the unnamed reach of East Cherry Creek within the parcel.

Basin E4 (3.53 Acres, $Q_2=0.9$ cfs, $Q_5=1.6$ cfs, $Q_{10}=2.8$ cfs, $Q_{25}=4.3$ cfs, $Q_{50}=5.5$ cfs, and $Q_{100}=6.9$ cfs) consists of that portion tributary to the southerly lot line of the parcel east of the channel and sheetflow directly to the unnamed reach of East Cherry Creek within the parcel.

Basin E5 (38.49 Acres, $Q_2=2.4$ cfs, $Q_5=9.1$ cfs, $Q_{10}=20.0$ cfs, $Q_{25}=34.9$ cfs, $Q_{50}=46.8$ cfs, and $Q_{100}=60.8$ cfs) consists of the majority of the development parcel which sheetflow directly to the reach of East Cherry Creek within the parcel.

DEVELOPED DRAINAGE BASINS

The majority of the area within basins was modeled as 1-acre residential. Areas identified as no-build were modeled as agricultural land. Roadways and shoulders were modeled as pavement and gravel roadways where proposed.

Basin A1 (5.91 Acres, $Q_2=2.9$ cfs, $Q_5=5.1$ cfs, $Q_{10}=7.3$ cfs, $Q_{25}=10.3$ cfs, $Q_{50}=12.9$ cfs, and $Q_{100}=15.6$ cfs) represents the northwesterly portion of proposed residential lots and the central cul-de-sac. Runoff generated within the basin will sheet flow to the roadside ditch adjacent to the proposed cul-de-sac and be conveyed to a lowpoint at a common lot line within the cul-de-sac bulb at Design Point 3. Flows from Design Point 3 will be conveyed in a swale directly to the reach of East Cherry Creek.

Basin A2 (0.88 Acres, $Q_2=2.5$ cfs, $Q_5=3.1$ cfs, $Q_{10}=3.7$ cfs, $Q_{25}=4.3$ cfs, $Q_{50}=4.9$ cfs, and $Q_{100}=5.6$ cfs) consists of the westerly half of the proposed north-south roadway. The roadway was modeled assuming ultimate construction to the northerly property line rather than the interim condition of termination at connection with the cul-de-sac connection to allow for appropriate southerly culvert analysis. Sheet flow from the roadway is conveyed south to the proposed culvert triple 30" culvert crossing at Design Point 1. Design point 1 ($Q_{100}=173.9$ cfs) represents the confluence of Basins A2, Basin E1, and Stream Stats Design Point SS3. Flows are conveyed in a 3.5' deep, 5' bottom width channel with a 1% longitudinal slope to the reach of East Cherry Creek.

Basin A3 (3.48 Acres, $Q_2=0.7$ cfs, $Q_5=1.5$ cfs, $Q_{10}=2.6$ cfs, $Q_{25}=4.0$ cfs, $Q_{50}=5.2$ cfs, and $Q_{100}=6.5$ cfs) consists of the southeasterly portion of the residential lots directly tributary to the existing Hodgen Roadside ditch. Combined flows from Basin A-3 and existing Basin E3 are conveyed within the existing roadside ditch directly to the Reach of the East Fork of Cherry Creek at Design Point 2 ($Q_2=2.5$ cfs, $Q_5=3.4$ cfs, $Q_{10}=4.3$ cfs, $Q_{25}=5.5$ cfs, $Q_{50}=6.4$ cfs, and $Q_{100}=7.5$ cfs).

Basin A4 (28.21 Acres, Q₂=6.8 cfs, Q₅=15.0 cfs, Q₁₀=24.9 cfs, Q₂₅=38.0 cfs, Q₅₀=49.3 cfs, and Q₁₀₀=61.4 cfs) consists of residential, no-build, and roadway areas in the center of the property directly tributary to the Reach of the East Fork of Cherry Creek.

The rational methodology was utilized in analyzing on-site basins for development of on-site improvements not tributary to large off-site basins utilized in channel analysis. The minor increase in impervious area due to roadway and homesite development within the 38.49 acre subdivision would not substantially impact overall channel flows within the 3 square miles contributing to design point SS1. The impact on flow rate at design point SS1 would also be mitigated by substantial increase in time of concentration for runoff calculations within the channel. The rational analysis estimated peak is 60 minutes while the unit hydrograph exhibits a 3.6 hour time of concentration.

Detention is not typically pursued in rural development scenarios unless undetained upstream development would negatively affect the development. A significant portion of runoff generated within typical rural development does not flow directly into County stormwater systems, but leaves improved areas as sheetflow into undeveloped and vegetated portions of lots and infiltrates into the ground. A large pond exists upstream of the development on the main branch of east Cherry Creek further negating the need for on-site detention.

See Appendix for Calculations.

PRUDENT LINE ESTABLISHMENT

As mentioned prior, the owner proposes to leave the channel in a natural state to preserve the channel and vegetation as site amenities. In addition, from an runoff and channel stability standpoint it is preferable to keep existing vegetation within the channel and the accompanying natural ecosystems preserved to the maximum extent possible. In order to accomplish this goal, the "Prudent Line" approach is proposed in lieu of constructed channel stabilization techniques being used (e.g. - riprap lining, reconstruction of the channel, drop structure placement). This approach is applicable because large lot development will not greatly impact the hydrology within the reach and the existing upstream detention pond upstream of Hodgen road. No DBPS improvements have been recommended for the East Cherry Creek drainage.

Per the Prudent Line Addendum (PLA), the channel must meet certain criteria for use of the concept (refer to Table 1 in the PLA.

Applicability

1. Does basin have a DBPS?

No, No DBPS has been developed for the East Cherry Creek Basin. Therefore, discussions with the County must be conducted to determine if the prudent line approach is acceptable.

- 2. Has a County discussion taken place with regards to PLA applicability? Yes, County staff has determined that prudent line application is applicable for the reach within teh development..
- 3. *Is the development density greater than 1 unit per acre?* (*If yes, a PLA is not applicable*) No, existing and proposed land use density in the watershed is less than 1 unit per acre.
- 4. Is the channel capacity greater than or equal to the 10 yr storm flow? (If no, a PLA is not applicable)

Yes, the channel has adequate capacity for the 100 yr storm.

5. Is the watershed imperviousness value in less than 15%? (If no, a PLA must be discussed with County engineering staff regarding transition issues)

The existing and future contributing basin imperviousness value is less than 15%. The ECM estimates impervious values for 5-acre lots at 7%.

Transition Issues

Case 1 - Transition between an improved channel reach and a prudent line reach, or vice versa. This case is not applicable for this site as there is no proposed improved channel reaches upstream or downstream of the limits of this study. If at such a time in the future upstream development requires improvements along their reach; consideration shall be given that this project is being developed with the prudent line concept.

Case 2 - Transition that is necessary at road crossings on a prudent line reach.

As stated in the PLA, considerations must be given to situations where road crossings occur. The existing County installed crossing of Hodgen Road was incorporated in the analysis. Upstream

deposition will be minimized due to presence of existing Franktown parker FPE-2 Reservoir directly upstream of the crossing.

Defining the Prudent Line

The prudent line for the High Plains development was defined considering the 100 yr floodplain boundary, the erosion during a 100 yr event, and the long-term anticipated erosion over a 30 year period.

Maintenance Line

A maintenance line is a way of monitoring the amount of lateral migration from erosion a streambed has incurred. If a channel begins to encroach on the maintenance line from significant hydrologic events or from long-term erosion, corrective measures should be evaluated to ensure the prudent line as proposed in this study is still valid. Such measures include riprap, regarding, revegetation, or other channel stability remedial approaches. The prudent line addendum does not provide a basis for establishing a maintenance line with regards to the prudent line setback. However, it is the recommendation of this study that the line be located at the top of bank where the main channel is basically defined.

Maintenance Access

The PLA requires that maintenance access be provided at each lot line. 20' width easements exist along each property line within the development providing adequate access.

Calculating the Prudent Line

The prudent line calculations performed as a part of this analysis was based on the "Sandy Soil" methodology. A prudent line was developed from the calculations found in the appendix of this report and is shown on the drainage map. In typical scenarios the prudent line is defined as either from the top of the bank of the low flow channel or the 10-YR water surface. Conservatively, the easterly prudent line setback was established from the toe of the channel bank from station 3+50 to station 10+00 where areas of significant slope defined the channel, providing additional buffer.

See Appendix for Prudent Line Calculations.

WATER QUALITY/4-STEP PROCESS

The development addresses Low Impact Development strategies primarily through the utilization of large impervious areas and utilization of landscape swales receiving runoff generated within impervious roadways.

Step 1-

Impervious areas generated within the development will flow across pervious disconnected areas prior to offsite discharge. Runoff generated within roadway improvements will be directed to grassed roadside ditches and conveyed to grassed channels no curb or storm sewer improvements are proposed with the development.

Step2-

Proposed channel improvements are designed at sizes and grades allowing development as grass lined swales rather than hard-sided improvements. The reach of East Cherry Creek that runs through the project is proposed as prudent line setback per the requirements of Appendix J of the El Paso County Engineering Criteria Manual.

Step3-

Permanent water quality facility is not proposed for development of 5 acre lots per the requirements of El Paso County Engineering Criteria Manual section I.7.1B.

Step4-

A Grading, Erosion Control, and Stormwater Quality Plan and narrative have been submitted concurrently for the development and will be subject to county approval prior to any soil disturbance. The erosion control plan included specific source control BMP's as well defined overall site management practices for the construction period.

COST ESTIMATE

Public Improvements Non-reimbursable

30" RCP	156 LF	@\$	75/LF	\$ 11,700
30" FES	6 EA	@\$	350/EA	\$ 2,100
30" RCP	85 LF	@\$	75/LF	\$ 6,375
30" FES	2 EA	@\$	350/EA	\$ 700
Rip Rap Outfall	3 EA	@\$	500/EA	\$ 1,500
	SUB	TOTAL		\$ 22,375
	15%	CONTIN	IGENCY	\$ 3,356
	TOT	ΓAL		\$ 25,731

DRAINAGE FEE CALCULATION

The development proposes to plat 38.49 acres within El Paso County, all contained within the East Cherry Creek Drainage Basin. The East Cherry Creek Drainage Basin has not been studied and no drainage or bridge fees have been adopted.

DRAINAGE METHODOLOGY

This drainage report was prepared in accordance to the criteria established in the City of Colorado Springs/El Paso County Drainage Criteria Manual Volumes 1 and 2, as revised May 2014.

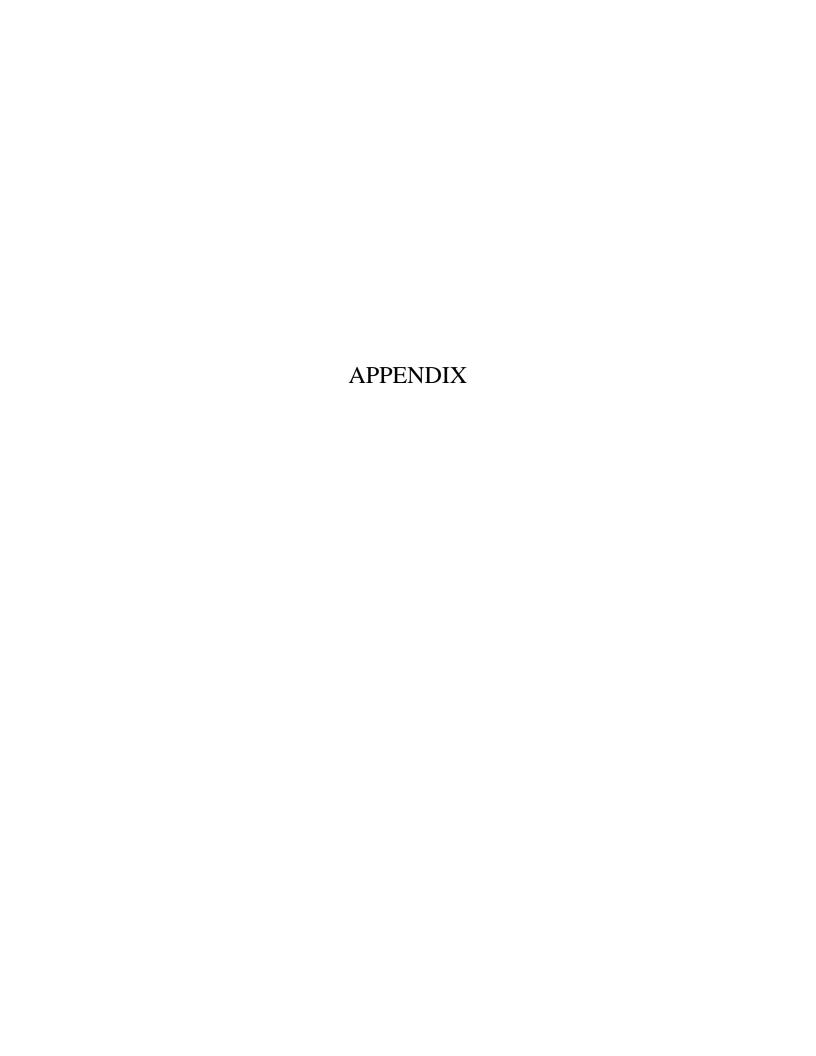
The rational method for drainage basin study areas of less than 100 acres was utilized in the onsite analysis. For the Rational Method, flows were calculated for the 2, 5, 10, 25, 50, and 100-year recurrence intervals. The average runoff coefficients, 'C' values, are taken from Table 6-6 and the Intensity-Duration-Frequency curves are taken from Figure 6-5 of the City Drainage Criteria Manual. Time of concentration for overland flow and storm drain or gutter flow are calculated per Section 3.2 of the City Drainage Criteria Manual. Calculations for the Rational Method are shown in the Appendix of this report.

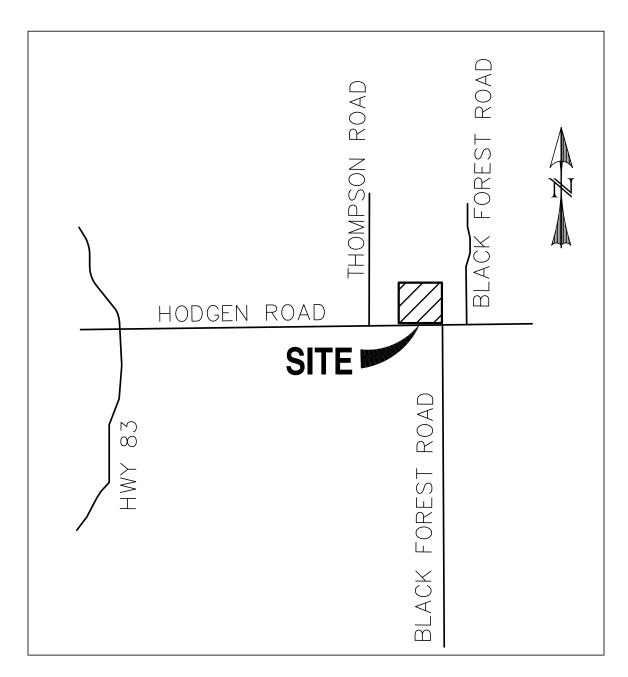
StreamStats version 4 (USGS) was utilized in development of hydrology for off-site basins in floodplain development for FEMA submittal. HEC-RAS version 5.0.1 was utilized in channel and existing culvert modeling developing base flood elevations refining the existing Zone 'A' unstudied floodplain within the development.

SUMMARY

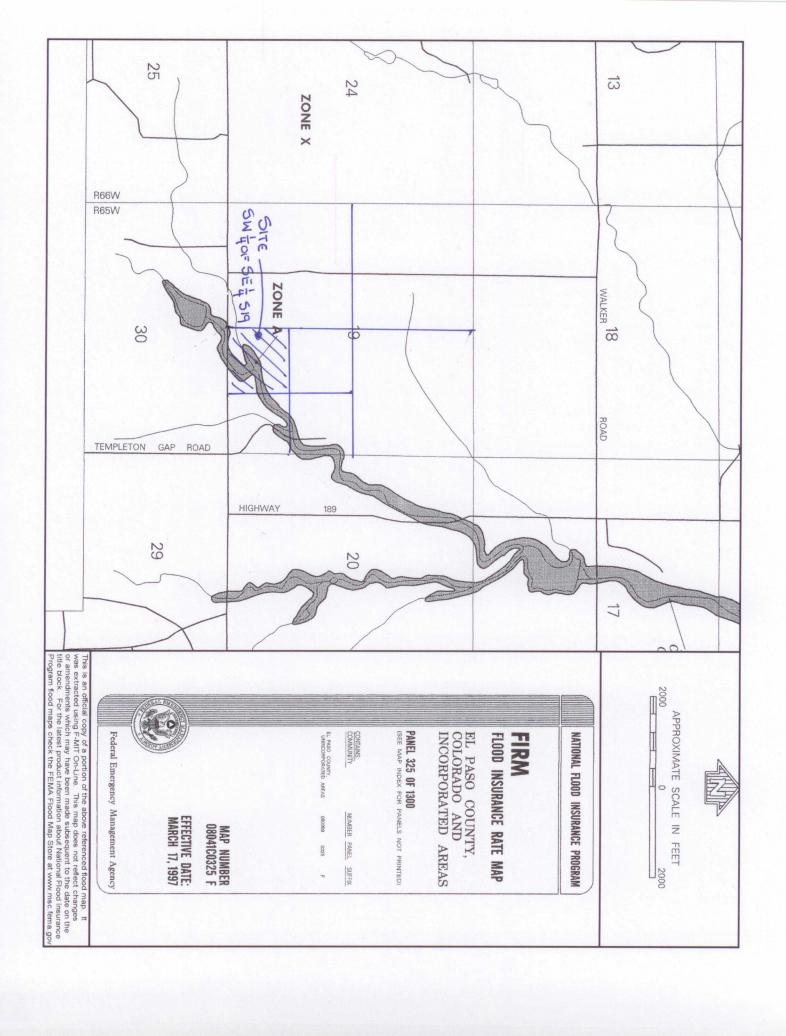
The High Plains Filing No. 1 project consists of large lot development with minor increases in impervious areas consistent with surrounding rural development. The development proposes no development and a setback approach in regards to the reach of the East Cherry Creek drainage within the parcel. A no-build easement has been established outside of the limits of the existing jurisdictional zone 'A' unstudied 100-YR floodplain. A LOMR is in process developing base flood elevations through the reach. Development of the parcel is in conformance of current El Paso County criteria and will not adversely affect downstream properties or facilities.

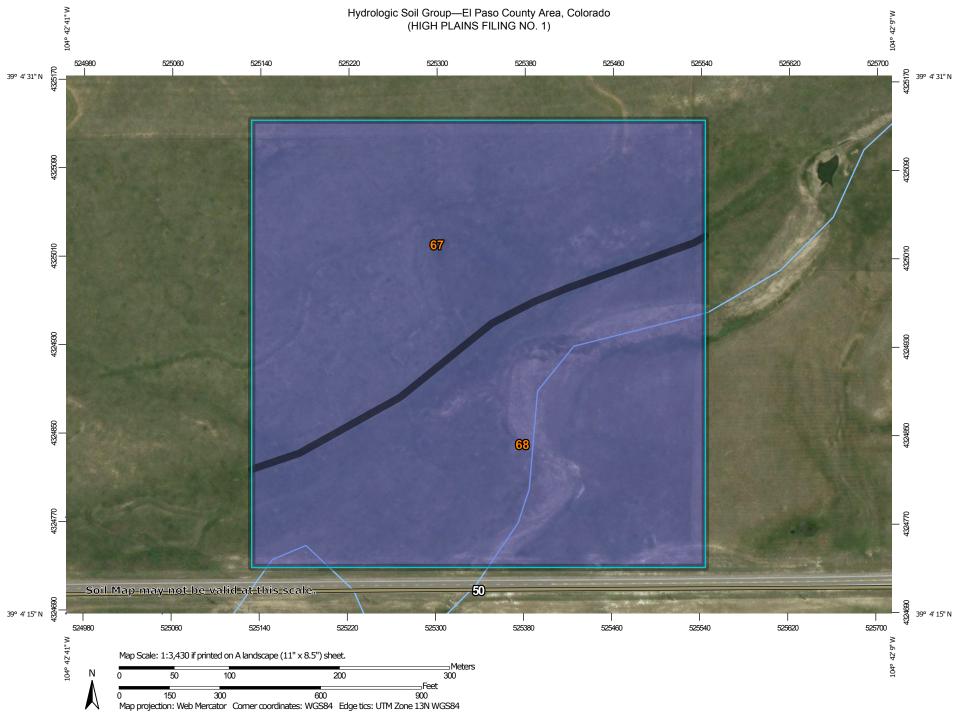
REFERENCES:


City of Colorado Springs Engineering Division Drainage Criteria Manual Volumes 1 and 2, revised May 2014


"Drainage Study Rockin' Four-ESE Subdivision El Paso County, Colorado", prepared by E.L.B. & Asso. Inc., dated April 24, 1980.

"LOMR Case # 18-08-072", prepared by Catamount Engineering, DRAFT


Flood Insurance rate map 08041C0325 F


Natural Resources Conservation Service Web Soil Survey

VICINITY MAP SCALE: N.T.S.

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D **Soil Rating Polygons** Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 15, Oct 10, 2017 C/D Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. D Not rated or not available Date(s) aerial images were photographed: May 22, 2016—Mar 9. 2017 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
67	Peyton sandy loam, 5 to 9 percent slopes	В	20.9	50.6%
68	Peyton-Pring complex, 3 to 8 percent slopes	В	20.4	49.4%
Totals for Area of Intere	est		41.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

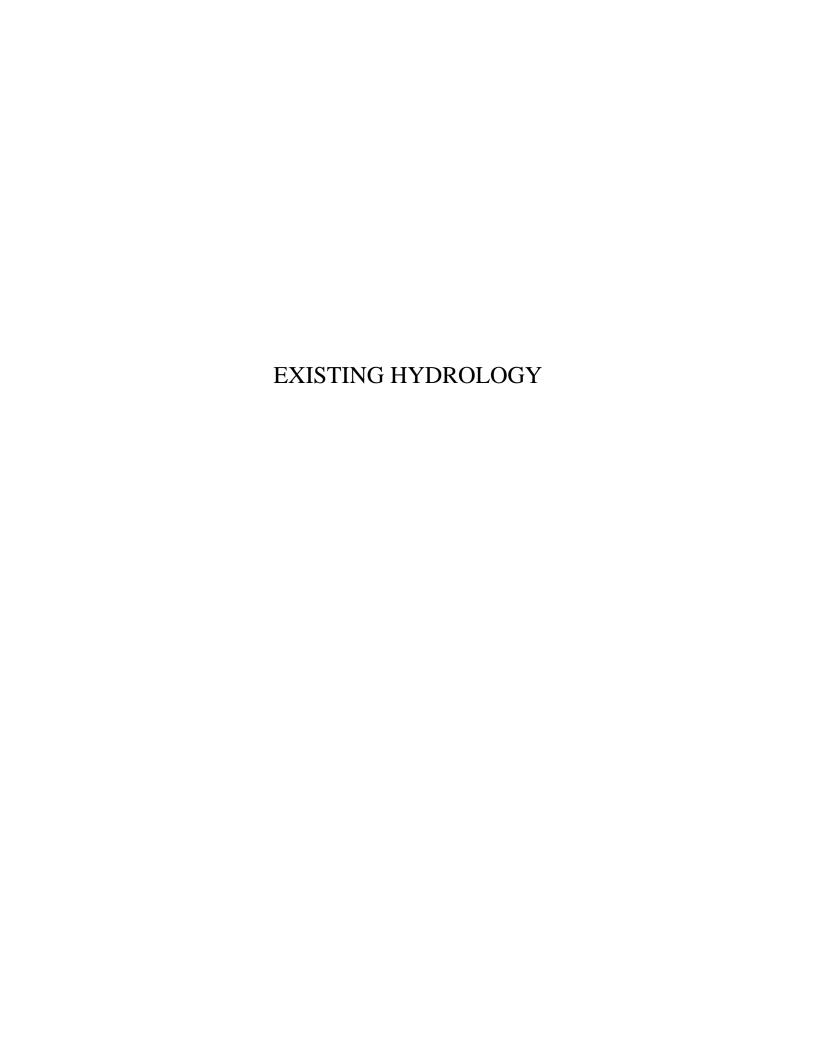
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

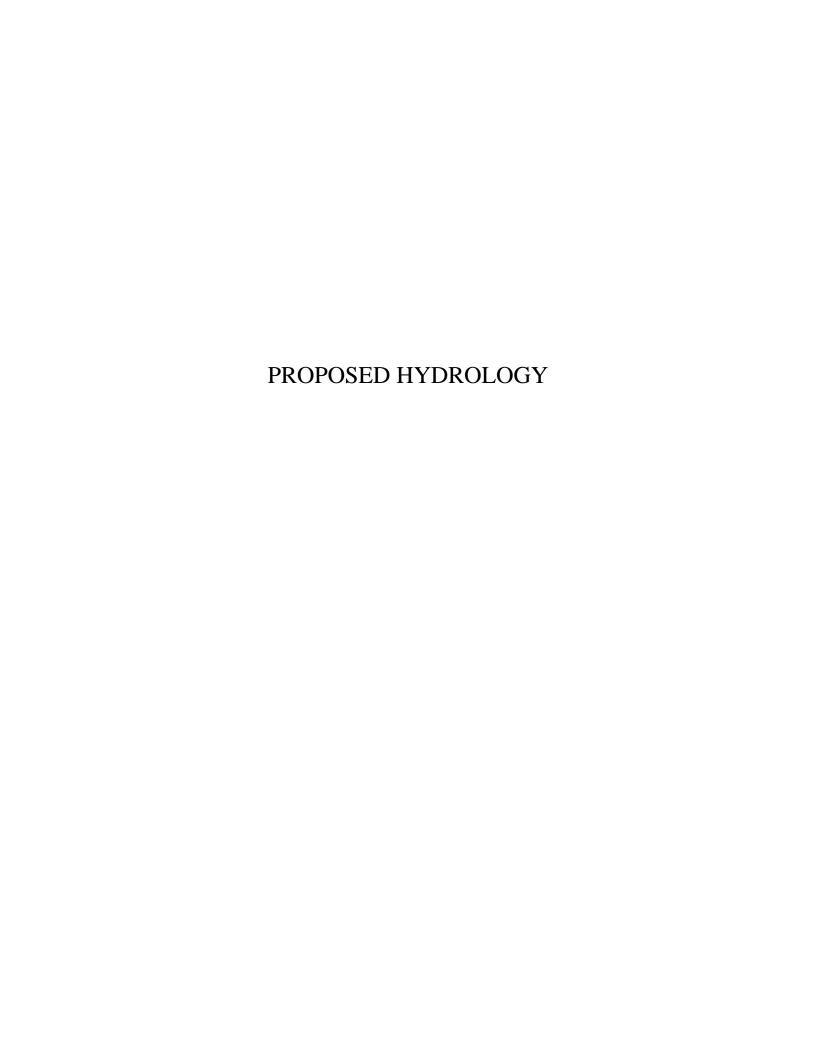
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition


Component Percent Cutoff: None Specified

Tie-break Rule: Higher

												CO	NVEY	ANCE	TC		TT			INTEN	SITY				T	OTAL	FLOW	S	
BASIN	AREA TOTAL	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	Length	Height	TI	Length	Height	$\mathbf{c}_{\mathbf{v}}$	Slope	Velocity	TC	TOTAL	I_2	I_5	I ₁₀	I ₂₅	I ₅₀	I ₁₀₀	Q_2	Q_5	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀
	(Acres)							(ft)	(ft)	(min)	(ft)	(ft)		(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)
E1 AGRICULTURE	22.00	0.03	0.09	0.17	0.26	0.31	0.36	200	8	17.3	1597	24	5	1.5%	0.6	43.4	60.7	1.1	1.4	1.7	1.9	2.1	2.4	0.8	2.8	6.2	10.9	14.6	18.9
E2 AGRICULTURE	5.46	0.03	0.09	0.17	0.26	0.31	0.36	200	12	15.1	834	35	5	4.2%	1.0	13.6	28.7	2.0	2.5	3.0	3.4	3.8	4.3	0.3	1.3	2.8	4.8	6.5	8.4
E3 ACRICULTURE ROADWAY	1.62 1.25 0.37	0.23 0.03 0.89	0.28 0.09 0.90	0.34 0.17 0.92	0.42 0.26 0.94	0.46 0.31 0.95	0.50 0.36 0.96	100	3	11.0	186	3	5	1.6%	0.6	4.9	15.9	2.7	3.4	4.0	4.6	5.2	5.8	1.0	1.5	2.2	3.1	3.8	4.6
E4 ACRICULTURE ROADWAY	3.53 3.20 0.33	0.11 0.03 0.89	0.17 0.09 0.90	0.24 0.17 0.92	0.32 0.26 0.94	0.37 0.31 0.95	0.42 0.36 0.96	200	7	16.7	610	43	5	7.0%	1.3	7.7	24.4	2.2	2.8	3.3	3.7	4.2	4.7	0.9	1.6	2.8	4.3	5.5	6.9
E5 ACRICULTURE	38.49	0.03	0.09	0.17	0.26	0.31	0.36	200	9	16.6	790	47	5	5.9%	1.2	10.8	27.4	2.1	2.6	3.1	3.5	3.9	4.4	2.4	9.1	20.0	34.9	46.8	60.8

Calculated by:	DLM	
Date:	7/16/2018	

												CO	NVEY	ANCE	TC		TT			INTE	SITY				T	OTAL	FLOW	S	
BASIN	AREA TOTAL	C_2	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	Length	Height	TI	Length	Height	$\mathbf{c}_{\mathbf{v}}$	Slope	Velocity	TC	TOTAL	\mathbf{I}_2	I ₅	I ₁₀	I_{25}	I ₅₀	I ₁₀₀	Q_2	Q_5	Q ₁₀	Q_{25}	Q_{50}	Q ₁₀₀
	(Acres)							(ft)	(ft)	(min)	(ft)	(ft)		(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)
E1 AGRICULTURE	22.00	0.03	0.09	0.17	0.26	0.31	0.36	200	8	17.3	1597	24	5	1.5%	0.6	43.4	60.7	1.1	1.4	1.7	1.9	2.1	2.4	0.8	2.8	6.2	10.9	14.6	18.9
E2 AGRICULTURE	5.46	0.03	0.09	0.17	0.26	0.31	0.36	200	12	15.1	834	35	5	4.2%	1.0	13.6	28.7	2.0	2.5	3.0	3.4	3.8	4.3	0.3	1.3	2.8	4.8	6.5	8.4
E3 ACRICULTURE ROADWAY	1.62 1.25 0.37	0.23 0.03 0.89	0.28 0.09 0.90	0.34 0.17 0.92	0.42 0.26 0.94	0.46 0.31 0.95	0.50 0.36 0.96	100	3	11.0	186	3	5	1.6%	0.6	4.9	15.9	2.7	3.4	4.0	4.6	5.2	5.8	1.0	1.5	2.2	3.1	3.8	4.6
E4 ACRICULTURE ROADWAY	3.53 3.20 0.33	0.11 0.03 0.89	0.17 0.09 0.90	0.24 0.17 0.92	0.32 0.26 0.94	0.37 0.31 0.95	0.42 0.36 0.96	200	7	16.7	610	43	5	7.0%	1.3	7.7	24.4	2.2	2.8	3.3	3.7	4.2	4.7	0.9	1.6	2.8	4.3	5.5	6.9
	5.01	0.10	0.25	0.22	0.41	0.45	0.40	100	4	10.4	740	25	7	4.70/	1.5	0.1	10.5	2.6	2.2	2.7	4.2	4.0	5.4	2.0		7.3	10.2	12.0	17.6
A1 RESIDENTIAL ROADWAY	5.91 5.35 0.56	0.19 0.12 0.89	0.27 0.20 0.90	0.33 0.27 0.92	0.41 0.35 0.94	0.45 0.40 0.95	0.49 0.44 0.96	100	4	10.4	740	35	7	4.7%	1.5	8.1	18.5	2.6	3.2	3.7	4.3	4.8	5.4	2.9	5.1	7.3	10.3	12.9	15.6
A2 ROADWAY	0.88	0.89	0.90	0.92	0.94	0.95	0.96	40	0.7	2.0	1053	36	10	3.4%	1.8	9.5	11.5	3.1	3.9	4.6	5.2	5.9	6.6	2.5	3.1	3.7	4.3	4.9	5.6
A3 RESIDENTIAL NO BUILD	3.48 2.16 1.32	0.09 0.12 0.03	0.16 0.20 0.09	0.23 0.27 0.17	0.32 0.35 0.26	0.37 0.40 0.31	0.41 0.44 0.36	100	3	12.7	509	9	5	1.8%	0.7	12.8	25.5	2.2	2.7	3.2	3.6	4.1	4.6	0.7	1.5	2.6	4.0	5.2	6.5
A4 RESIDENTIAL NO BUILD ROADWAY	28.21 20.92 7.02 0.27	0.10 0.12 0.03 0.89	0.17 0.20 0.09 0.90	0.24 0.27 0.17 0.92	0.32 0.35 0.26 0.94	0.37 0.40 0.31 0.95	0.42 0.44 0.36 0.96	100	6	10.0	693	40	5	5.8%	1.2	9.6	19.6	2.5	3.1	3.6	4.2	4.7	5.2	6.8	15.0	24.9	38.0	49.3	61.4

Calculated by: DLM
Date: 7/16/2018

				WEIG	HTED			TT	INTENSITY					TOTAL FLOWS						
DESIGN	AREA TOTAL	C_2	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	TOTAL	\mathbf{I}_2	I_5	I ₁₀	I ₂₅	I ₅₀	I ₁₀₀	Q_2	Q_5	Q_{10}	Q_{25}	Q ₅₀	Q ₁₀₀
POINT	(Acres)							(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)
DP-1	22.88	0.06	0.12	0.20	0.29	0.33	0.38	140.0	0.2	0.2	0.2	0.2	0.3	0.3						155.5
BASIN E1	22.00	0.03	0.09	0.17	0.26	0.31	0.36													
BASIN A2	0.88	0.89	0.90	0.92	0.94	0.95	0.96													
DP-SS3	448.00																			153
DP-2	2.50	0.46	0.50	0.55	0.60	0.63	0.66	25.5	2.2	2.7	3.2	3.6	4.1	4.6	2.5	3.4	4.3	5.5	6.4	7.5
BASIN E3	1.62	0.23	0.28	0.34	0.42	0.46	0.50													
BASIN A3	0.88	0.89	0.90	0.92	0.94	0.95	0.96													
DP-3	5.91	0.19	0.27	0.33	0.41	0.45	0.49	18.5	2.6	3.2	3.7	4.3	4.8	5.4	2.9	5.1	7.3	10.3	12.9	15.6
BASIN A1	5.91	0.19	0.27	0.33	0.41	0.45	0.49													
SS1	1894.00							216.0												357.0

Calculated by: DLM

Date: 7/16/2018

David Mijares

From: Martin, Casey

Sent: Monday, October 15, 2018 8:15 AM

To: Ben Sheets **Cc:** David Mijares

Subject: RE: Case 18-08-0702P Re-submittal 101318

Hello Mr. Sheets,

All comments have been addressed; thank you for resolving them so quickly! A second AD will not be necessary.

The next step is sending out notifications. The draft which you sent me indicates that the area will be upgraded to Zone AE and BFEs established. According to FEMA regulations, you could leave the reach as Zone A if you would like, so I wanted to check to confirm that you wanted to go from Zone A to Zone AE.

Thanks,

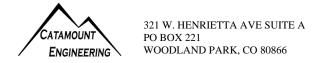
Casey Martin, E.I., CFM

Water Resources Engineer

CDM Smith, a member of Compass PTS JV

303-383-2333

cdmsmith.com



From: Ben Sheets <sheetseng@gmail.com>
Sent: Sunday, October 14, 2018 5:14 PM
To: Martin, Casey <martinc@cdmsmith.com>
Cc: David Mijares <david@catamounteng.com>
Subject: Case 18-08-0702P Re-submittal 101318

Ms. Martin,

I believe I have addressed all of your comments. Please see the attached response letter and files for your use.

Thank you, Ben Sheets

SAVAGE SUBDIVISION: L.O.M.R. REQUEST – PROJECT NARRATIVE

The Savage Subdivision development project is a one filing subdivision located in the northern portion of El Paso County, Colorado. This subdivision is located entirely within the NFIP FIRM Map for El Paso County, Colorado and Incorporated Areas, panel 325 of 1300, map number 08041C0325F, with an effective date of March 17, 1997.

The project is bisected by an unnamed tributary of the East Fork of Cherry Creek and it is in this section of the East Fork of Cherry Creek that this LOMR relates. The current zone designation for this reach is Zone A with no existing FIS model. It is our intent to establish Base Flood Elevations for this portion of the unnamed tributary of the East Fork of Cherry Creek.

Documents supporting this application include hydrologic analysis calculations using the Regional Regression methodology equations within the USGS StreamStats computer program. Hydraulic analysis calculations were performed using the USACE HEC-RAS computer program. A certified topographic work map has been included showing the subdivision with 1-foot contours generated from field work conducted by a land surveyor. This map shows the current Zone A boundary as well as the proposed floodplain boundary with Base Flood Elevations.

Hydrologic electronic data files from the USGS StreamStats program as well as hydraulic data files from the HEC-RAS model have been included with this submittal.

This application is exempt from a review fee as it is establishing Base Flood Elevations for an area where no current data exists. This reach of the unnamed tributary of the East Fork of Cherry Creek is well established and no changes are being made to the existing channel, as such, sediment transport was not considered in this analysis.

Please direct any questions concerning this application to Catamount Engineering.

Dave Mijares, P.E. Catamount Engineering 321 W. Henrietta Ave. Suite 'A' P.O. Box 221 Woodland Park, CO 80866 (719) 426-2124 david@catamounteng.com

U.S. DEPARTMENT OF HOMELAND SECURITY FEDERAL EMERGENCY MANAGEMENT AGENCY

O.M.B No. 1660-0016 Expires February 28, 2014

OVERVIEW & CONCURRENCE FORM

PAPERWORK BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 1 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless it displays a valid OMB control number. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington, VA 20958-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address.

PRIVACY ACT STATEMENT

AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234.

PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM).

ROUTINE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program (NFIP); Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990.

DISCLOSURE: The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent FEMA from processing a determination regarding a requested change to a (NFIP) Flood Insurance Rate Maps (FIRM).

A. REQUESTED RESPONSE FROM DHS-FEMA

This	s request is for a (check one):
	☐ CLOMR: A letter from DHS-FEMA commenting on whether a proposed project, if built as proposed, would justify a map revision, or proposed hydrology changes (See 44 CFR Ch. 1, Parts 60, 65 & 72).
	□ LOMR: A letter from DHS-FEMA officially revising the current NFIP map to show the changes to floodplains, regulatory floodway or flood elevations. (See 44 CFR Ch. 1, Parts 60, 65 & 72)

B. OVERVIEW

1.	The NFIP map panel(s) affected for all impacted communities is (are):												
Con	nmun	nity No.	Community Na	ame				State	Map No.	Panel No.	Effective Date		
Exa	mple	: 480301	City of Katy					TX	48473C	0005D	02/08/83		
000	050	480287	Harris County	11-2				TX	48201C	0220G	09/28/90		
080	059		El Paso Count	y - Uni	ncorporated Area	S		СО	08041C	0325F	03/17/97		
2.	a. F	looding Sour	ce: East Cherry	Creek									
	b. T	ypes of Floor	ding: 🛛 Riverir	ne	☐ Coastal	☐ Shallow	Flooding (e.g.,	Zones AO	and AH)				
	☐ Alluvial fan ☐ Lakes ☐ Other (Attach Description)												
3.	Proj	ject Name/Ide	entifier: Savage	Subdiv	rision								
4.	FEN	MA zone desi	gnations affecte	d: A (d	choices: A, AH, A	O, A1-A30, A	199, AE, AR, V,	V1-V30, V	E, B, C, D, X)				
5.	Bas	is for Reques	st and Type of R	evisior	n:								
	a.	The basis fo	or this revision re	equest	is (check all that a	apply)							
		☐ Physical	Change	⊠ In	nproved Methodol	logy/Data	☐ Regulatory	/ Floodway	Revision	☐ Base Map C	hanges		
		☐ Coastal	Analysis	⊠н	ydraulic Analysis			Analysis		☐ Corrections			
		☐ Weir-Da	m Changes		evee Certification		☐ Alluvial Fa	n Analysis		☐ Natural Char	nges		
		New Top	oographic Data		ther (Attach Desc	cription)							
	Note: A photograph and narrative description of the area of concern is not required, but is very helpful during review.												

b. The area of revision encompasses the following structures (check	all that apply)		
Structures:	ee/Floodwall	Bridge/Culvert Brid	
☐ Dam ☐ Fill		☐ Other (Attach Descr	iption)
6. Documentation of ESA compliance is submitted (required to initiate of	CLOMR review). Ple	ase refer to the instructi	ions for more information.
C. REVI	EW FEE		
Has the review fee for the appropriate request category been included?		Yes Fee a	amount: \$
	×	No, Attach Explanation	n
Please see the DHS-FEMA Web site at http://www.fema.gov/plan/prevent/f	hm/frm_fees.shtm fc	or Fee Amounts and Ex	xemptions.
D. SIGN	IATURE		
All documents submitted in support of this request are correct to the best of fine or imprisonment under Title 18 of the United States Code, Section 1001.		derstand that any false s	statement may be punishable by
Name: Jordan Savage	Company: Savag	e Development, Inc.	
Mailing Address: 1125 Diamond Rim Drive	Daytime Telephor	ne No.: (719) 649-5266	Fax No.:
Colorado Springs, Colorado 80921	E-Mail Address: j	savage@goodwinknight	t.com
Signature of Requester (required):		Date:	
As the community official responsible for floodplain management, I hereby as (LOMR) or conditional LOMR request. Based upon the community's review, of the community floodplain management requirements, including the require necessary Federal, State, and local permits have been, or in the case of a complicant has documented Endangered Species Act (ESA) compliance to FLOMR requests, I acknowledge that compliance with Sections 9 and 10 of authorized, funded, or being carried out by Federal or State agencies, documented to submitted. In addition, we have determined that the land or will be reasonably safe from flooding as defined in 44CFR 65.2(c), and the documentation used to make this determination.	we find the complet ements for when fill in onditional LOMR, will EMA prior to FEMA' the ESA has been ac umentation from the and any existing or	ed or proposed project r s placed in the regulator I be obtained. For Conc s review of the Condition chieved independently be agency showing its con proposed structures to be	meets or is designed to meet all ry floodway, and that all ditional LOMR requests, the conal LOMR application. For of FEMA's process. For actions compliance with Section 7(a)(2) be removed from the SFHA are
Community Official's Name and Title: Keith Curtis - Floodplain Administrator		Community Name: El I	Paso County
Mailing Address:	Daytime Telephor	ne No.: (719) 327-2898	Fax No.: N/A
2880 International Circle Colorado Springs, Colorado 80910	E-Mail Address: I	keith@pprbd.org	•
Community Official's Signature (required):		Date:	
CERTIFICATION BY REGISTERED PROFESSI	ONAL ENGINEER	R AND/OR LAND SU	IRVEYOR_
This certification is to be signed and sealed by a licensed land surveyor, regi elevation information data, hydrologic and hydraulic analysis, and any other described in the MT-2 Forms Instructions. All documents submitted in supportant and false statement may be punishable by fine or imprisonment under Title 1	supporting information of this request are	on as per NFIP regulation e correct to the best of m	ons paragraph 65.2(b) and as
Certifier's Name: David Mijares	License No.: 405	10 Ex	piration Date: October 31, 2019
Company Name: Catamount Engineering	Telephone No.: (719) 426-2124 Fa	x No.: N/A
Signature:	Date:	E-Mail Address: dav	vid@catamounteng.com

Ensure the forms that are appropriate to your revision request are included in your submittal.							
Form Name and (Number)	Required if						
☐ Riverine Hydrology and Hydraulics Form (Form 2)	New or revised discharges or water-surface elevations						
☐ Riverine Structures Form (Form 3)	Channel is modified, addition/revision of bridge/culverts, addition/revision of levee/floodwall, addition/revision of dam						
☐ Coastal Analysis Form (Form 4)	New or revised coastal elevations						
☐ Coastal Structures Form (Form 5)	Addition/revision of coastal structure	Seal (Optional)					
☐ Alluvial Fan Flooding Form (Form 6)	Flood control measures on alluvial fans						

U.S. DEPARTMENT OF HOMELAND SECURITY FEDERAL EMERGENCY MANAGEMENT AGENCY

RIVERINE HYDROLOGY & HYDRAULICS FORM

O.M.B No. 1660-0016 Expires February 28, 2014

PAPERWORK BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 3.5 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington VA 20958-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. **Please do not send your completed survey to the above address.**

PRIVACY ACT STATEMENT

AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234.

PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM).

ROUTINE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program (NFIP); Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990.

DISCLOSURE: The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent FEMA from processing a determination regarding a requested change to a NFIP Flood Insurance Rate Maps (FIRM).

Flooding Source: East Cherry Creek												
No	Note: Fill out one form for each flooding source studied											
	A. HYDROLOGY											
1.	Reason for New Hydrologic Analysis (check	all that apply)										
	☐ Not revised (skip to section B)	☑ No existing analysis		☐ Improved data								
	☐ Alternative methodology	☐ Proposed Conditions (CLON	MR)	☐ Changed physical	condition of watershed							
2.	Comparison of Representative 1%-Annual-C	hance Discharges										
	Location Drainage Area (Sq. Mi.) Effective/FIS (cfs) Revised (cfs)											
3.	Methodology for New Hydrologic Analysis (c	heck all that apply)										
	☐ Statistical Analysis of Gage Records	☐ Precipitation/Runoff Model	→ Specify M	lodel:								
	□ Regional Regression Equations	☐ Other (please attach descrip	otion)									
	Please enclose all relevant models in digital finew analysis.	ormat, maps, computations (include	ding comput	ation of parameters), and	d documentation to support the							
4.	Review/Approval of Analysis											
	If your community requires a regional, state,	or federal agency to review the hy	drologic ana	lysis, please attach evid	ence of approval/review.							
5.	Impacts of Sediment Transport on Hydrology											
	Is the hydrology for the revised flooding source	ce(s) affected by sediment transpo	ort? 🗌 Ye	s 🛚 No								
	If yes, then fill out Section F (Sediment Transport) of Form 3. If No, then attach your explanation											

		B. HYDRA	ULICS		
1. Reach to be Revised					
	Descri	ption	Cross Section	Water-Surface Elevi	ations (ft.) oposed/Revised
Downstream Limit*	1564' North of t	he Hodgen Rd.	0+00		13.90
Upstream Limit*		ne Hodgen Road	24+80	<u>743</u>	38.21
*Proposed/Revised elevations mus	st tie-into the Effective	elevations within 0.5 f	oot at the downstream an	nd upstream limits of revisio	n.
2. Hydraulic Method/Model Used	HEC-RAS v5.03				_
Pre-Submittal Review of Hydra	ulic Models*				
DHS-FEMA has developed two respectively. We recommend to					raulic models,
4. Models Submitted	<u>Natur</u>	ral Run	Flo	odway Run	<u>Datum</u>
Duplicate Effective Model*	File Name:	Plan Name:	File Name:	Plan Name:	
Corrected Effective Model*	File Name:	Plan Name:	File Name:	Plan Name:	
Existing or Pre-Project Conditions Model	File Name:	Plan Name:	File Name:	Plan Name:	
Revised or Post-Project Conditions Model	File Name: Savage	Plan Name: 100Yr Subcritica	File Name:	Plan Name:	NAVD88
Other - (attach description)	File Name:	Plan Name:	File Name:	Plan Name:	
* For details, refer to the correspon	nding section of the ins	tructions.			
	⊠ [Digital Models Submitt	ed? (Required)		
		C. MAPPING REQ	UIREMENTS		
A certified topographic work ma and proposed conditions 1%-annu floodplains and regulatory floodwa indicated; stream, road, and other property; certification of a registere referenced vertical datum (NGVD,	al-chance floodplain (f y (for detailed Zone Al alignments (e.g., dams ed professional engine NAVD, etc.).	or approximate Zone A E, AO, and AH revision s, levees, etc.); curren er registered in the sul	A revisions) or the bounda ns); location and alignmer t community easements a	aries of the 1%- and 0.2%-ant of all cross sections with and boundaries; boundaries description of reference man	nnual-chance stationing control of the requester's
Topographic Information: Field su	ırvey				
Source: Barron Land		Date:	January 22, 2018		
Accuracy: 1' Contour Interval					
Note that the boundaries of the ex must tie-in with the effective floodp scale as the original, annotated to the boundaries of the effective 1%	plain and regulatory floo show the boundaries of	odway boundaries. Ple of the revised 1%-and	ease attach a copy of the 0.2%-annual-chance floo	e effective FIRM and/or FE dplains and regulatory flood	BFM, at the same dway that tie-in with

revision.

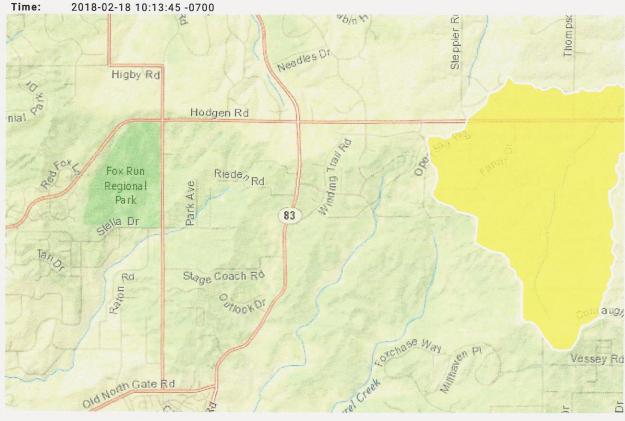
☑ Annotated FIRM and/or FBFM (Required)

D. COMMON REGULATORY REQUIREMENTS*

1.	For LOMR/CLOMR requests, do Base Flood Elevations (BFEs) increase?	☐ Yes ☐ No
	a. For CLOMR requests, if either of the following is true, please submit evidence of compliance with Section 65.12 of the N	IFIP regulations:
	 The proposed project encroaches upon a regulatory floodway and would result in increases above 0.00 foot compar conditions. 	red to pre-project
	 The proposed project encroaches upon a SFHA with or without BFEs established and would result in increases abo compared to pre-project conditions. 	ve 1.00 foot
	b. Does this LOMR request cause increase in the BFE and/or SFHA compared with the effective BFEs and/or SFHA? If Yes, please attach proof of property owner notification and acceptance (if available). Elements of and examples o notifications can be found in the MT-2 Form 2 Instructions.	☐ Yes ☐ No of property owner
2.	Does the request involve the placement or proposed placement of fill?	☐ Yes ☒ No
	If Yes, the community must be able to certify that the area to be removed from the special flood hazard area, to include any str proposed structures, meets all of the standards of the local floodplain ordinances, and is reasonably safe from flooding in acco NFIP regulations set forth at 44 CFR 60.3(A)(3), 65.5(a)(4), and 65.6(a)(14). Please see the MT-2 instructions for more inform	rdance with the
3.	For LOMR requests, is the regulatory floodway being revised?	⊠ Yes □ No
	If Yes, attach evidence of regulatory floodway revision notification . As per Paragraph 65.7(b)(1) of the NFIP Regulations, required for requests involving revisions to the regulatory floodway. (Not required for revisions to approximate 1%-annual-chan [studied Zone A designation] unless a regulatory floodway is being established. Elements and examples of regulatory floodway notification can be found in the MT-2 Form 2 Instructions.)	nce floodplains
4.	For CLOMR requests, please submit documentation to FEMA and the community to show that you have complied with Sections Endangered Species Act (ESA).	s 9 and 10 of the
	ractions authorized, funded, or being carried out by Federal or State agencies, please submit documentation from the agrippliance with Section 7(a)(2) of the ESA. Please see the MT-2 instructions for more detail.	ency showing its

^{*} Not inclusive of all applicable regulatory requirements. For details, see 44 CFR parts 60 and 65.

SAVAGE PROJECT - StreamStats Report 1


Region ID:

Workspace ID:

CO20180218171329262000

Clicked Point (Latitude, Longitude):

39.07488, -104.70275

Design Point Above Minor Trib TGap

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	2.96	square miles
I6H100Y	6-hour precipitation that is expected to occur on average once in 100 years	3.84	inches
STATSCLAY	Percentage of clay soils from STATSGO	16.3	percent
OUTLETELEV	Elevation of the stream outlet in thousands of feet above NAVD88.	7416	feet
124H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	4.99	inches

Parameter Code	Parameter Description	Value	Unit
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx?content=17758.wba)	60.68	
TOC	Time of concentration in hours	3.6	
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.25	
LFPLENGTH	Length of longest flow path	3.41	miles
BSLDEM10M	Mean basin slope computed from 10 m DEM	6.42	percent
CSL1085LFP	Change in elevation divided by length between points 10 and 85 percent of distance along the longest flow path to the basin divide, LFP from 2D grid	68	feet per mi
EL7500	Percent of area above 7500 ft	83	percent
ELEV	Mean Basin Elevation	7557	feet
ELEVMAX	Maximum basin elevation	7690	feet
124H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precitation intensity index	1.92	inches
16H2Y	Maximum 6-hour precipitation that occurs on average once in 2 years	1.38	
LAT_OUT	Latitude of Basin Outlet	4325125	degrees
LC11BARE	Percentage of barren from NLCD 2011 class 31	0	
LC11CRPHAY	Percentage of cultivated crops and hay, classes 81 and 82, from NLCD 2011	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	3.1	percent
LC11FOREST	Percentage of forest from NLCD 2011 classes 41-43	2.1	percent
LC11GRASS	Percent of area covered by grassland/herbaceous using 2011 NLCD	76.1	
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	3.1	percent
LC11SHRUB	Percent of area covered by shrubland using 2011 NLCD	18.7	
LC11SNOIC	Percent snow and ice from NLCD 2011 class 12	0	
LC11WATER	Percent of open water, class 11, from NLCD 2011	0	
LC11WETLND	Percentage of wetlands, classes 90 and 95, from NLCD 2011	0	
LONG_OUT	Longitude of Basin Outlet	525705	degrees
MINBELEV	Minimum basin elevation	7410	feet
PRECIP	Mean Annual Precipitation	20.83	inches
SSURGOA	Percentage of area of Hydrologic Soil Type A from SSURGO	0	percent
SSURGOB	Percentage of area of Hydrologic Soil Type B from SSURGO	91.2	percent
SSURGOC	Percentage of area of Hydrologic Soil Type C from SSURGO	7.1	percent
SSURGOD	Percentage of area of Hydrologic Soil Type D from SSURGO	1.65	percent
STORNHD	Percent storage (wetlands and waterbodies) determined from 1:24K NHD	0.9	percent

General Disclaimers

Upstream regulation was checked for this watershed.

Peak-Flow Statistics Parameters [Foothills Region Peak Flow 2016 5099]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	2.96	square miles	0.6	2850	
I6H100Y	6 Hour 100 Year Precipitation	3.84	inches	2.38	4.89	
STATSCLAY	STATSGO Percentage of Clay Soils	16.3	percent	9.87	37.5	
OUTLETELEV	Elevation of Gage	7416	feet	4290	8270	

Peak-Flow Statistics Flow Report [Foothills Region Peak Flow 2016 5099]

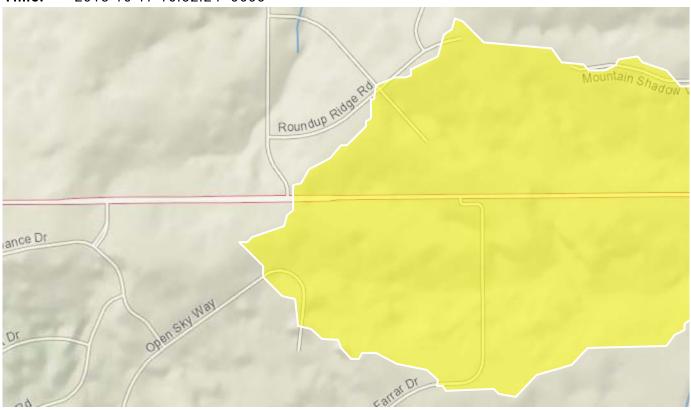
PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
2 Year Peak Flood	22	ft^3/s	117
5 Year Peak Flood	61.8	ft^3/s	87
10 Year Peak Flood	104	ft^3/s	80
25 Year Peak Flood	181	ft^3/s	80
50 Year Peak Flood	257	ft^3/s	83
100 Year Peak Flood	357	ft^3/s	88
200 Year Peak Flood	474	ft^3/s	94
500 Year Peak Flood	661	ft^3/s	104

Peak-Flow Statistics Citations

Kohn, M.S., Stevens, M.R., Harden, T.M., Godaire, J.E., Klinger, R.E., and Mommandi, A.,2016, Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015: U.S. Geological Survey Scientific Investigations Report 2016–5099, 58 p. (http://dx.doi.org/10.3133/sir20165099)

10/17/2018 StreamStats


High Plains Subdivision Filing No. 1

Region ID: CO

Workspace ID: C020181017225213162000

Clicked Point (Latitude, Longitude): 39.07165, -104.70965

Time: 2018-10-17 16:52:24 -0600

Design Point SS3

Basin Characteristics				
Parameter Code	Parameter Description	Value	Unit	
DRNAREA	Area that drains to a point on a stream	0.7	square miles	
I6H100Y	6-hour precipitation that is expected to occur on average once in 100 years	3.83	inches	
STATSCLAY	Percentage of clay soils from STATSGO	16.3	percent	
OUTLETELEV	Elevation of the stream outlet in thousands of feet above NAVD88.	7441	feet	

10/17/2018 StreamStats

Peak-Flow Statistics Parameters [Foothills Region Peak Flow 2016 5099]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.7	square miles	0.6	2850
I6H100Y	6 Hour 100 Year Precipitation	3.83	inches	2.38	4.89
STATSCLAY	STATSGO Percentage of Clay Soils	16.3	percent	9.87	37.5
OUTLETELEV	Elevation of Gage	7441	feet	4290	8270

Peak-Flow Statistics Flow Report [Foothills Region Peak Flow 2016 5099]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
2 Year Peak Flood	8.82	ft^3/s	117
5 Year Peak Flood	25.8	ft^3/s	87
10 Year Peak Flood	44.2	ft^3/s	80
25 Year Peak Flood	77.3	ft^3/s	80
50 Year Peak Flood	110	ft^3/s	83
100 Year Peak Flood	153	ft^3/s	88
200 Year Peak Flood	204	ft^3/s	94
500 Year Peak Flood	286	ft^3/s	104

Peak-Flow Statistics Citations

Kohn, M.S., Stevens, M.R., Harden, T.M., Godaire, J.E., Klinger, R.E., and Mommandi, A.,2016, Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015: U.S. Geological Survey Scientific Investigations Report 2016–5099, 58 p. (http://dx.doi.org/10.3133/sir20165099)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for

10/17/2018 StreamStats

release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.2.1

SAVAGE PROJECT - StreamStats Report3

Region ID:

CO

Workspace ID:

CO20180218175120980000

Clicked Point (Latitude, Longitude):

39.07058, -104.71005

Higby Rd
Hodgen Rd
Regional
Park
Regional
Park
Ro
Stage Coach Ro
Old Month Cate Rd
Old Month Cate Rd
Rd
Regional
Regiona

Design Point Above Hodgen

Basin Characteristics

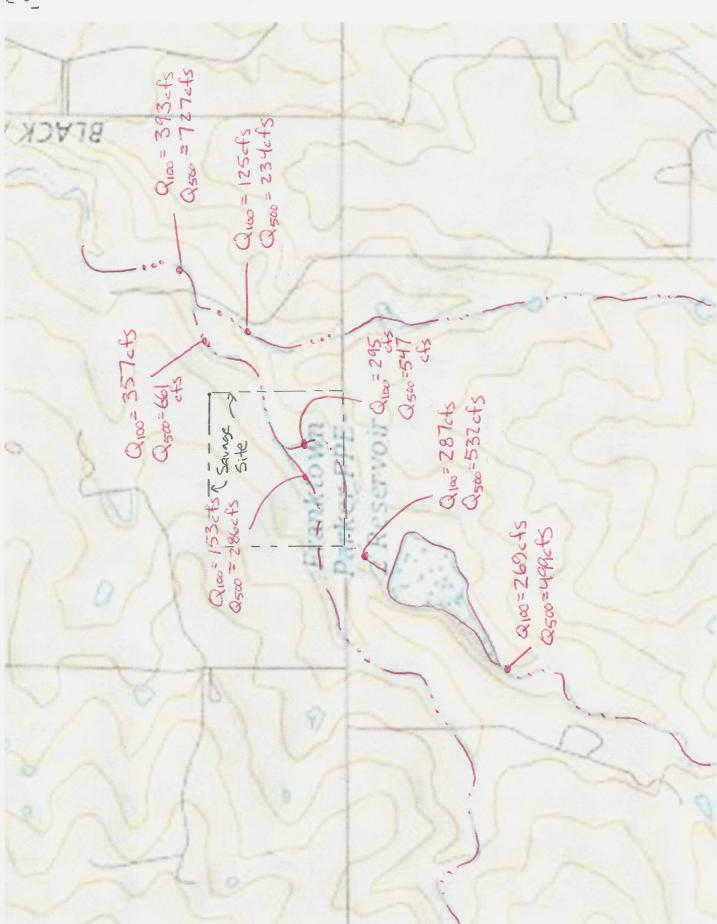
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	2.07	square miles
I6H100Y	6-hour precipitation that is expected to occur on average once in 100 years	3.84	inches
STATSCLAY	Percentage of clay soils from STATSGO	16.3	percent
OUTLETELEV	Elevation of the stream outlet in thousands of feet above NAVD88.	7445	feet
BSLDEM10M	Mean basin slope computed from 10 m DEM	6.52	percent

Parameter Code	Parameter Description	Value	Unit
CSL1085LFP	Change in elevation divided by length between points 10 and 85 percent of distance along the longest flow path to the basin divide, LFP from 2D grid	73.1	feet per mi
EL7500	Percent of area above 7500 ft	90	percent
ELEV	Mean Basin Elevation	7568	feet
ELEVMAX	Maximum basin elevation	7690	feet
124H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	5	inches
124H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precitation intensity index	1.92	inches
16H2Y	Maximum 6-hour precipitation that occurs on average once in 2 years	1.38	
LAT_OUT	Latitude of Basin Outlet	4324655	degrees
LC11BARE	Percentage of barren from NLCD 2011 class 31	0	
LC11CRPHAY	Percentage of cultivated crops and hay, classes 81 and 82, from NLCD 2011	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	1.1	percent
LC11FOREST	Percentage of forest from NLCD 2011 classes 41-43	3.1	percent
LC11GRASS	Percent of area covered by grassland/herbaceous using 2011 NLCD	74	
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	1.2	percent
LC11SHRUB	Percent of area covered by shrubland using 2011 NLCD	21.7	
LC11SNOIC	Percent snow and ice from NLCD 2011 class 12	0	
LC11WATER	Percent of open water, class 11, from NLCD 2011	0	
LC11WETLND	Percentage of wetlands, classes 90 and 95, from NLCD 2011	0	
LFPLENGTH	Length of longest flow path	2.79	miles
LONG_OUT	Longitude of Basin Outlet	525085	degrees
MINBELEV	Minimum basin elevation	7440	feet
PRECIP	Mean Annual Precipitation	20.73	inches
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx? content=17758.wba)	61.04	
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.25	
SSURGOA	Percentage of area of Hydrologic Soil Type A from SSURGO	0	percent
SSURGOB	Percentage of area of Hydrologic Soil Type B from SSURGO	92.2	percent
SSURGOC	Percentage of area of Hydrologic Soil Type C from SSURGO	6.25	percent
SSURGOD	Percentage of area of Hydrologic Soil Type D from SSURGO	1.5	percent
STORNHD	Percent storage (wetlands and waterbodies) determined from 1:24K NHD	1.2	percent

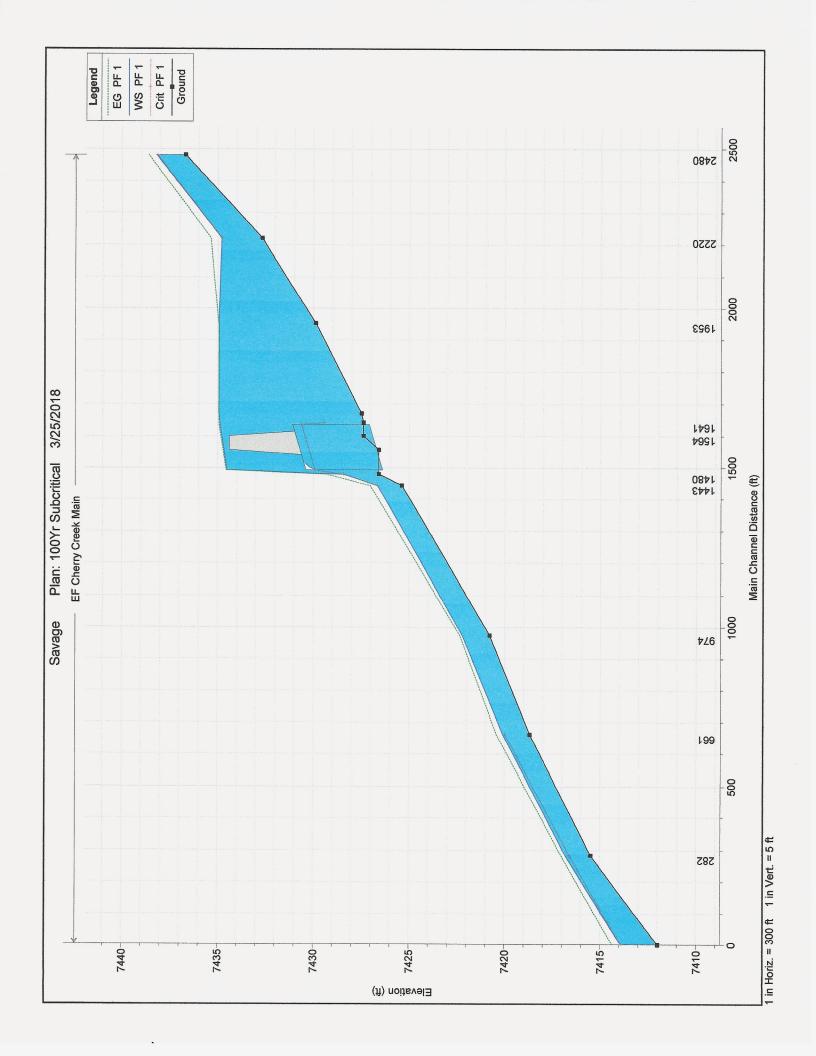
Parameter			
Code	Parameter Description	Value	Unit
TOC	Time of concentration in hours	3.01	

Peak-Flow Statistics Parameters [Foothills Region Peak Flow 2016 5099]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.07	square miles	0.6	2850
16H100Y	6 Hour 100 Year Precipitation	3.84	inches	2.38	4.89
STATSCLAY	STATSGO Percentage of Clay Soils	16.3	percent	9.87	37.5
OUTLETELEV	Elevation of Gage	7445	feet	4290	8270


Peak-Flow Statistics Flow Report [Foothills Region Peak Flow 2016 5099]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)


Statistic	Value	Unit	SEp	
2 Year Peak Flood	17.4	ft^3/s	117	
5 Year Peak Flood	49.4	ft^3/s	87	
10 Year Peak Flood	83.6	ft^3/s	80	
25 Year Peak Flood	145	ft^3/s	80	
50 Year Peak Flood	207	ft^3/s	83	
100 Year Peak Flood	287	ft^3/s	88	
200 Year Peak Flood	381	ft^3/s	94	
500 Year Peak Flood	532	ft^3/s	104	

Peak-Flow Statistics Citations

Kohn, M.S., Stevens, M.R., Harden, T.M., Godaire, J.E., Klinger, R.E., and Mommandi, A.,2016, Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015: U.S. Geological Survey Scientific Investigations Report 2016–5099, 58 p. (http://dx.doi.org/10.3133/sir20165099)

North 11 = 800 +1

HEC-RAS Plan: 100Yr sub River: EF Cherry Creek Reach: Main Profile: PF 1

	- Idil. 100 I 3dk	O INICI. E. C	TECTOR TIGHT TO THE TOTAL THE		LIGHE LI							
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(#)	(ft/ft)	(ft/s)	(sq ft)	(ff)	
Main	2480	PF 1	287.00	7436.70	7438.21	7438.15	7438.61	0.011766	5.11	56.19	60.48	0.93
Main	2220	PF 1	287.00	7432.70	7434.81	7434.81	7435.37	0.013130	6.03	47.62	43.24	1.01
Main	1953	PF 1	287.00	7429.90	7434.94		7434.95	0.000035	0.78	588.61	301.20	0.07
Main	1669	PF1	287.00	7427.50	7434.93		7434.94	0.000014	0.64	552.90	136.25	0.04
Main	1641	PF 1	287.00	7427.40	7434.87	7429.44	7434.93	0.000114	1.99	144.55	195.32	0.13
Main	1564		Culvert									
Main	1480	PF 1	287.00	7426.60	7428.44	7428.44	7429.35	0.010743	7.62	37.67	148.77	1.00
Main	1443	PF 1	295.00	7425.40	7426.65	7426.65	7427.05	0.014357	5.04	58.55	74.76	1.00
Main	974	PF 1	295.00	7420.80	7422.21		7422.34	0.003321	2.93	100.89	97.83	0.51
Main	661	PF 1	357.00	7418.70	7420.09	7419.98	7420.42	0.012088	4.57	78.03	101.03	0.92
Main	282	PF 1	357.00	7415.50	7416.81	7416.59	7417.03	0.006782	3.77	94.57	106.09	0.70
Main	0	PF 1	357.00	7412.00	7413.90	7413.90	7414.35	0.013968	5.39	66.28	74.89	1.01

Plan: 100Yr sub EF Cherry Creek Main RS: 2480 Profile: PF 1

E.G. Elev (ft)	7438.61	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.41	Wt. n-Val.		0.030	
W.S. Elev (ft)	7438.21	Reach Len. (ft)	305.00	260.00	132.00
Crit W.S. (ft)	7438.15	Flow Area (sq ft)		56.19	
E.G. Slope (ft/ft)	0.011766	Area (sq ft)		56.19	
Q Total (cfs)	287.00	Flow (cfs)		287.00	
Top Width (ft)	60.48	Top Width (ft)		60.48	
Vel Total (ft/s)	5.11	Avg. Vel. (ft/s)		5.11	
Max Chl Dpth (ft)	1.51	Hydr. Depth (ft)		0.93	
Conv. Total (cfs)	2645.9	Conv. (cfs)		2645.9	
Length Wtd. (ft)	260.00	Wetted Per. (ft)		60.61	
Min Ch El (ft)	7436.70	Shear (lb/sq ft)		0.68	
Alpha	1.00	Stream Power (lb/ft s)		3.48	
Frctn Loss (ft)	3.23	Cum Volume (acre-ft)	1.49	6.71	0.99
C & E Loss (ft)	0.02	Cum SA (acres)	1.21	4.51	0.97

Plan: 100Yr sub EF Cherry Creek Main RS: 2220 Profile: PF 1

E.G. Elev (ft)	7435.37	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.56	Wt. n-Val.		0.030	
W.S. Elev (ft)	7434.81	Reach Len. (ft)	249.00	267.00	235.00
Crit W.S. (ft)	7434.81	Flow Area (sq ft)		47.62	
E.G. Slope (ft/ft)	0.013130	Area (sq ft)		47.62	
Q Total (cfs)	287.00	Flow (cfs)		287.00	
Top Width (ft)	43.24	Top Width (ft)		43.24	
Vel Total (ft/s)	6.03	Avg. Vel. (ft/s)		6.03	
Max Chl Dpth (ft)	2.11	Hydr. Depth (ft)		1.10	
Conv. Total (cfs)	2504.7	Conv. (cfs)		2504.7	
Length Wtd. (ft)	264.11	Wetted Per. (ft)		43.51	
Min Ch El (ft)	7432.70	Shear (lb/sq ft)		0.90	
Alpha	1.00	Stream Power (lb/ft s)		5.41	
Frctn Loss (ft)	0.03	Cum Volume (acre-ft)	1.49	6.40	0.99
C & E Loss (ft)	0.17	Cum SA (acres)	1.21	4.20	0.97

Plan: 100Yr sub EF Cherry Creek Main RS: 1953 Profile: PF 1

E.G. Elev (ft)	7434.95	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.01	Wt. n-Val.	0.045	0.030	0.045
W.S. Elev (ft)	7434.94	Reach Len. (ft)	213.00	284.00	321.00
Crit W.S. (ft)		Flow Area (sq ft)	220.79	271.19	96.63
E.G. Slope (ft/ft)	0.000035	Area (sq ft)	220.79	271.19	96.63
Q Total (cfs)	287.00	Flow (cfs)	57.10	210.24	19.66
Top Width (ft)	301.20	Top Width (ft)	146.09	63.40	91.71
Vel Total (ft/s)	0.49	Avg. Vel. (ft/s)	0.26	0.78	0.20
Max Chl Dpth (ft)	5.04	Hydr. Depth (ft)	1.51	4.28	1.05
Conv. Total (cfs)	48194.0	Conv. (cfs)	9588.9	35303.4	3301.7
Length Wtd. (ft)	276.05	Wetted Per. (ft)	146.38	63.65	91.80
Min Ch El (ft)	7429.90	Shear (lb/sq ft)	0.00	0.01	0.00
Alpha	1.92	Stream Power (lb/ft s)	0.00	0.01	0.00
Frctn Loss (ft)	0.01	Cum Volume (acre-ft)	0.86	5.43	0.73
C & E Loss (ft)	0.00	Cum SA (acres)	0.79	3.87	0.72

Plan: 100Yr sub EF Cherry Creek Main RS: 1669 Profile: PF 1

E.G. Elev (ft)	7434.94	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.01	Wt. n-Val.	0.045	0.030	0.045
W.S. Elev (ft)	7434.93	Reach Len. (ft)	23.00	28.00	62.00
Crit W.S. (ft)		Flow Area (sq ft)	104.14	400.16	48.60
E.G. Slope (ft/ft)	0.000014	Area (sq ft)	104.14	400.16	48.60
Q Total (cfs)	287.00	Flow (cfs)	21.63	257.33	8.04
Top Width (ft)	136.25	Top Width (ft)	46.00	59.90	30.35
Vel Total (ft/s)	0.52	Avg. Vel. (ft/s)	0.21	0.64	0.17

Plan: 100Yr sub EF Cherry Creek Main RS: 1669 Profile: PF 1 (Continued)

Max Chl Dpth (ft)	7.43	Hydr. Depth (ft)	2.26	6.68	1.60
Conv. Total (cfs)	77909.3	Conv. (cfs)	5872.4	69853.9	2183.1
Length Wtd. (ft)	28.29	Wetted Per. (ft)	46.67	60.48	30.63
Min Ch El (ft)	7427.50	Shear (lb/sq ft)	0.00	0.01	0.00
Alpha	1.39	Stream Power (lb/ft s)	0.00	0.00	0.00
Frctn Loss (ft)	0.00	Cum Volume (acre-ft)	0.06	3.24	0.19
C & E Loss (ft)	0.01	Cum SA (acres)	0.32	3.47	0.27

Plan: 100Yr sub EF Cherry Creek Main RS: 1641 Profile: PF 1

E.G. Elev (ft)	7434.93	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.06	Wt. n-Val.		0.030	
W.S. Elev (ft)	7434.87	Reach Len. (ft)	202.00	161.00	164.00
Crit W.S. (ft)	7429.44	Flow Area (sq ft)		144.55	
E.G. Slope (ft/ft)	0.000114	Area (sq ft)	92.06	387.48	221.85
Q Total (cfs)	287.00	Flow (cfs)		287.00	***************************************
Top Width (ft)	195.32	Top Width (ft)	49.40	57.90	88.02
Vel Total (ft/s)	1.99	Avg. Vel. (ft/s)		1.99	
Max Chl Dpth (ft)	7.47	Hydr. Depth (ft)		7.30	
Conv. Total (cfs)	26922.6	Conv. (cfs)		26922.6	
Length Wtd. (ft)	161.00	Wetted Per. (ft)		19.82	
Min Ch El (ft)	7427.40	Shear (lb/sq ft)		0.05	***************************************
Alpha	1.00	Stream Power (lb/ft s)		0.10	
Frctn Loss (ft)		Cum Volume (acre-ft)	0.01	2.98	0.00
C & E Loss (ft)		Cum SA (acres)	0.29	3.43	0.19

Plan: 100Yr sub EF Cherry Creek Main RS: 1480 Profile: PF 1

E.G. Elev (ft)	7429.35	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.90	Wt. n-Val.		0.030	
W.S. Elev (ft)	7428.44	Reach Len. (ft)	23.00	37.00	62.00
Crit W.S. (ft)	7428.44	Flow Area (sq ft)		37.67	
E.G. Slope (ft/ft)	0.010743	Area (sq ft)	38.63	117.45	2.22
Q Total (cfs)	287.00	Flow (cfs)		287.00	
Top Width (ft)	148.77	Top Width (ft)	68.91	74.59	5.27
Vel Total (ft/s)	7.62	Avg. Vel. (ft/s)		7.62	
Max Chl Dpth (ft)	1.84	Hydr. Depth (ft)		1.81	
Conv. Total (cfs)	2769.0	Conv. (cfs)		2769.0	
Length Wtd. (ft)	37.00	Wetted Per. (ft)		20.84	
Min Ch El (ft)	7426.60	Shear (lb/sq ft)		1.21	
Alpha	1.00	Stream Power (lb/ft s)		9.24	
Frctn Loss (ft)	0.46	Cum Volume (acre-ft)	0.01	2.85	0.00
C & E Loss (ft)	0.15	Cum SA (acres)	0.02	3.19	0.01

Plan: 100Yr sub EF Cherry Creek Main RS: 1443 Profile: PF 1

E.G. Elev (ft)	7427.05	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.39	Wt. n-Val.		0.030	
W.S. Elev (ft)	7426.65	Reach Len. (ft)	268.00	469.00	453.00
Crit W.S. (ft)	7426.65	Flow Area (sq ft)		58.55	
E.G. Slope (ft/ft)	0.014357	Area (sq ft)		58.55	
Q Total (cfs)	295.00	Flow (cfs)		295.00	
Top Width (ft)	74.76	Top Width (ft)		74.76	
Vel Total (ft/s)	5.04	Avg. Vel. (ft/s)		5.04	*****
Max Chl Dpth (ft)	1.25	Hydr. Depth (ft)		0.78	
Conv. Total (cfs)	2462.0	Conv. (cfs)		2462.0	
Length Wtd. (ft)	469.00	Wetted Per. (ft)		74.86	
Min Ch El (ft)	7425.40	Shear (lb/sq ft)		0.70	
Alpha	1.00	Stream Power (lb/ft s)		3.53	
Frctn Loss (ft)	2.84	Cum Volume (acre-ft)	0.00	2.77	0.00
C & E Loss (ft)	0.08	Cum SA (acres)	0.00	3.12	0.01

Plan: 100Yr sub EF Cherry Creek Main RS: 974 Profile: PF 1

E.G. Elev (ft)	7422.34	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.13	Wt. n-Val.		0.030	0.045
W.S. Elev (ft)	7422.21	Reach Len. (ft)	278.00	313.00	173.00
Crit W.S. (ft)		Flow Area (sq ft)		100.81	0.08
E.G. Slope (ft/ft)	0.003321	Area (sq ft)		100.81	0.08
Q Total (cfs)	295.00	Flow (cfs)		294.97	0.03
Top Width (ft)	97.83	Top Width (ft)		97.04	0.79
Vel Total (ft/s)	2.92	Avg. Vel. (ft/s)		2.93	0.42
Max Chi Dpth (ft)	1.41	Hydr. Depth (ft)		1.04	0.11
Conv. Total (cfs)	5118.7	Conv. (cfs)		5118.1	0.6
Length Wtd. (ft)	312.99	Wetted Per. (ft)		97.14	0.82
Min Ch El (ft)	7420.80	Shear (lb/sq ft)		0.22	0.02
Alpha	1.00	Stream Power (lb/ft s)		0.63	0.01
Frctn Loss (ft)	1.90	Cum Volume (acre-ft)	0.00	1.91	0.00
C & E Loss (ft)	0.02	Cum SA (acres)	0.00	2.20	0.00

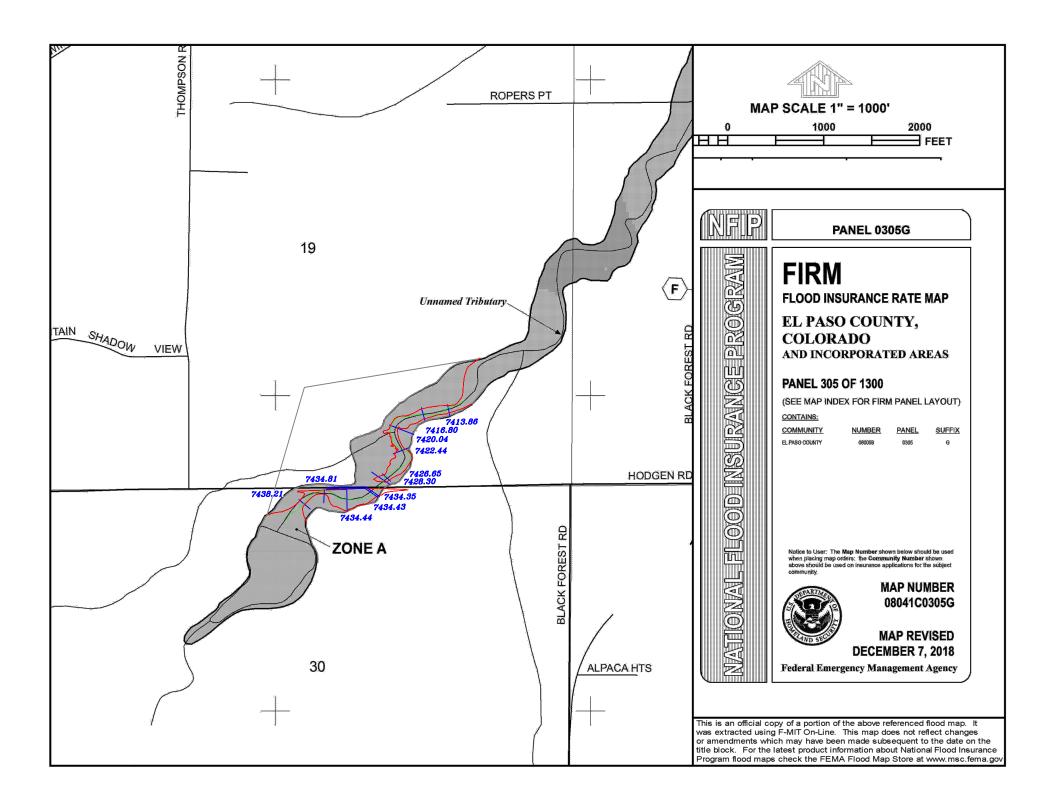
Plan: 100Yr sub EF Cherry Creek Main RS: 661 Profile: PF 1

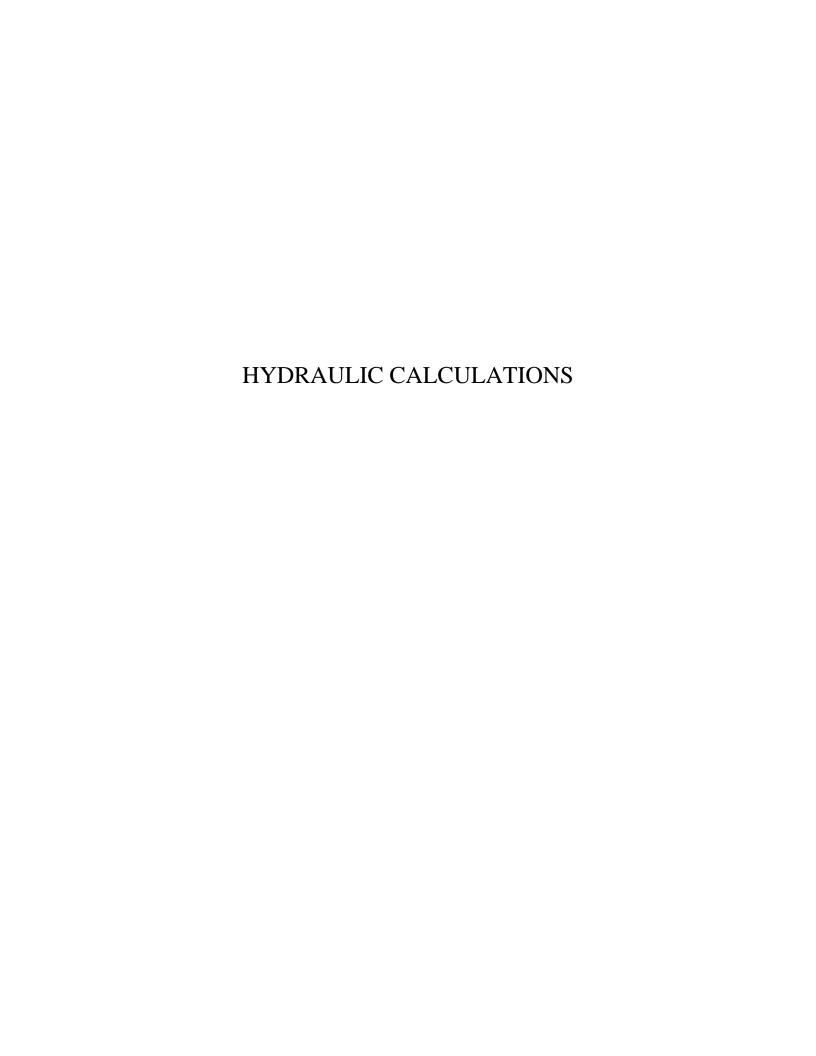
E.G. Elev (ft)	7420.42	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.33	Wt. n-Val.		0.030	
W.S. Elev (ft)	7420.09	Reach Len. (ft)	390.00	379.00	189.00
Crit W.S. (ft)	7419.98	Flow Area (sq ft)		78.03	
E.G. Slope (ft/ft)	0.012088	Area (sq ft)		78.03	
Q Total (cfs)	357.00	Flow (cfs)		357.00	
Top Width (ft)	101.03	Top Width (ft)		101.03	
Vel Total (ft/s)	4.57	Avg. Vel. (ft/s)		4.57	
Max Chl Dpth (ft)	1.39	Hydr. Depth (ft)		0.77	
Conv. Total (cfs)	3247.1	Conv. (cfs)		3247.1	
Length Wtd. (ft)	379.00	Wetted Per. (ft)		101.34	
Min Ch El (ft)	7418.70	Shear (lb/sq ft)		0.58	
Alpha	1.00	Stream Power (lb/ft s)		2.66	
Frctn Loss (ft)	3.36	Cum Volume (acre-ft)	0.00	1.27	
C & E Loss (ft)	0.03	Cum SA (acres)	0.00	1.49	

Plan: 100Yr sub EF Cherry Creek Main RS: 282 Profile: PF 1

E.G. Elev (ft)	7417.03	Element Left OB		Channel	Right OB
Vel Head (ft)	0.22	Wt. n-Val.		0.030	
W.S. Elev (ft)	7416.81	Reach Len. (ft)	294.00	282.00	256.00
Crit W.S. (ft)	7416.59	Flow Area (sq ft)		94.57	
E.G. Slope (ft/ft)	0.006782	Area (sq ft)	0.00	94.57	
Q Total (cfs)	357.00	Flow (cfs)		357.00	
Top Width (ft)	106.09	Top Width (ft)	0.03	106.06	
Vel Total (ft/s)	3.77	Avg. Vel. (ft/s)		3.77	
Max Chl Dpth (ft)	1.31	Hydr. Depth (ft)		0.89	
Conv. Total (cfs)	4334.9	Conv. (cfs)		4334.9	
Length Wtd. (ft)	282.00	Wetted Per. (ft)		106.24	
Min Ch El (ft)	7415.50	Shear (lb/sq ft)		0.38	All the second sections and a second section of the section of t
Alpha	1.00	Stream Power (lb/ft s)		1.42	
Frctn Loss (ft)	2.66	Cum Volume (acre-ft)	0.00	0.52	
C & E Loss (ft)	0.02	Cum SA (acres)	0.00	0.59	

Plan: 100Yr sub EF Cherry Creek Main RS: 0 Profile: PF 1

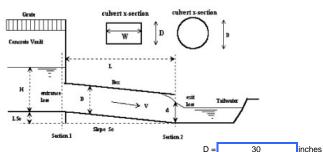

E.G. Elev (ft)	7414.35	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.45	Wt. n-Val.		0.030	
W.S. Elev (ft)	7413.90	Reach Len. (ft)			
Crit W.S. (ft)	7413.90	Flow Area (sq ft)		66.28	
E.G. Slope (ft/ft)	0.013968	Area (sq ft)		66.28	
Q Total (cfs)	357.00	Flow (cfs)		357.00	
Top Width (ft)	74.89	Top Width (ft)		74.89	
Vel Total (ft/s)	5.39	Avg. Vel. (ft/s) 5.39			


Plan: 100Yr sub EF Cherry Creek Main RS: 0 Profile: PF 1 (Continued)

Max Chl Dpth (ft)	1.90	Hydr. Depth (ft)	0.89
Conv. Total (cfs)	3020.6	Conv. (cfs)	3020.6
Length Wtd. (ft)		Wetted Per. (ft)	75.09
Min Ch El (ft)	7412.00	Shear (lb/sq ft)	0.77
Alpha	1.00	Stream Power (lb/ft s)	4.15
Frctn Loss (ft)		Cum Volume (acre-ft)	
C & E Loss (ft)		Cum SA (acres)	

Plan: 100Yr sub EF Cherry Creek Main RS: 1564 Culv Group: 48inch Dual Profile: PF 1

Q Culv Group (cfs)	281.57	Culv Full Len (ft)	114.75
# Barrels	2	Culv Vel US (ft/s)	11.20
Q Barrel (cfs)	140.78	Culv Vel DS (ft/s)	12.03
E.G. US. (ft)	7434.93	Culv Inv El Up (ft)	7427.10
W.S. US. (ft)	7434.87	Culv Inv El Dn (ft)	7426.40
E.G. DS (ft)	7429.35	Culv Frctn Ls (ft)	1.47
W.S. DS (ft)	7428.44	Culv Exit Loss (ft)	2.82
Delta EG (ft)	5.59	Culv Entr Loss (ft)	0.98
Delta WS (ft)	6.43	Q Weir (cfs)	5.43
E.G. IC (ft)	7433.86	Weir Sta Lft (ft)	170.13
E.G. OC (ft)	7434.93	Weir Sta Rgt (ft)	189.93
Culvert Control	Outlet	Weir Submerg	0.00
Culv WS Inlet (ft)	7431.10	Weir Max Depth (ft)	0.26
Culv WS Outlet (ft)	7429.92	Weir Avg Depth (ft)	0.22
Culv Nml Depth (ft)	4.00	Weir Flow Area (sq ft)	4.42
Culv Crt Depth (ft)	3.52	Min El Weir Flow (ft)	7434.68



CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

Project: High Plains Filing no. 1

Basin ID: Design Point 1

Status:

Height (Rise) =

Design Information (Input):

Circular Culvert: Barrel Diameter in Inches

Inlet Edge Type (choose from pull-down list)

OR:

Box Culvert: Barrel Height (Rise) in Feet

Barrel Width (Span) in Feet

Inlet Edge Type (choose from pull-down list)

Number of Barrels

Inlet Elevation at Culvert Invert

Outlet Elevation at Culvert Invert OR Slope of Culvert (ft v./ft h.)

Culvert Length in Feet Manning's Roughness Bend Loss Coefficient

Exit Loss Coefficient

11.	Width (Span) –					
Wingwall	Square Edge w/ 30-78 deg. Flared Wingwall					
3	3	No =				
tt. elev	7430	Inlet Elev =				
8.46 ft. elev	7428	Outlet Elev =				
.59 ft.	61.5	L=				
12	0.01	n =				
)	0	K _b =				

1.5 : 1 Beveled Edge

Design Information (calculated):

Entrance Loss Coefficient Friction Loss Coefficient Sum of All Loss Coefficients

Orifice Inlet Condition Coefficient Minimum Energy Condition Coefficient

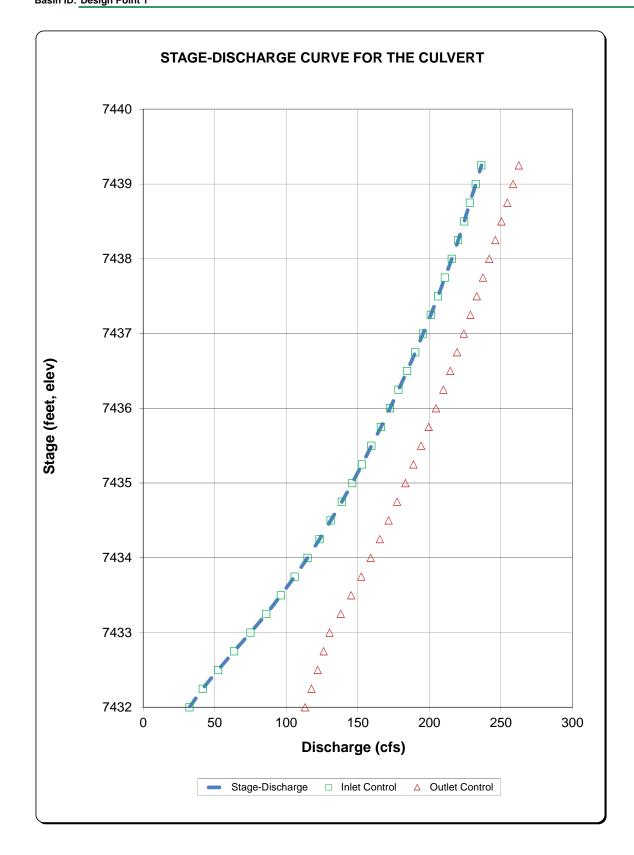
K _e =	0.20
K _f =	0.48
$K_s =$	1.68
$C_d =$	1.03
(E _{low} =	-0.1599

1. Resolved.

2. Submit the outlet protection calculation **Review 2:** Unresolved.

3. Provide the Hw/D. Per DCM Hw/D must be less than 1.5. Review 2: Unresolved.

4. Resolved.

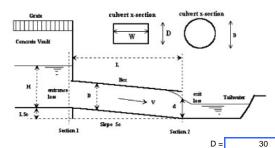

Calculations of Culvert Capacity (output):

Water Surface Elevation	Tailwater Surface Elevation	Culvert Inlet-Control Flowrate	Culvert Outlet-Control Flowrate	Controlling Culvert Flowrate	Inlet Equation Used:	Flow Control Used
	ft	cfs	cfs	cfs		
(ft., linked)				(output)		
7432.00		32.40	113.18	32.40	Regression Eqn.	INLET
7432.25		41.70	117.67	41.70	Regression Eqn.	INLET
7432.50		52.50	122.03	52.50	Regression Eqn.	INLET
7432.75		63.60	126.16	63.60	Regression Eqn.	INLET
7433.00		75.00	130.28	75.00	Regression Eqn.	INLET
7433.25		86.10	138.05	86.10	Regression Eqn.	INLET
7433.50		96.30	145.32	96.30	Regression Eqn.	INLET
7433.75		105.90	152.36	105.90	Regression Eqn.	INLET
7434.00		114.90	159.03	114.90	Regression Eqn.	INLET
7434.25		123.30	165.34	123.30	Regression Eqn.	INLET
7434.50		131.10	171.53	131.10	Regression Eqn.	INLET
7434.75		138.90	177.47	138.90	Regression Eqn.	INLET
7435.00		146.10	183.29	146.10	Regression Eqn.	INLET
7435.25		153.00	188.87	153.00	Regression Eqn.	INLET
7435.50		159.60	194.21	159.60	Regression Eqn.	INLET
7435.75		166.20	199.55	166.20	Regression Eqn.	INLET
7436.00		172.50	204.64	172.50	Regression Eqn.	INLET
7436.25		178.50	209.74	178.50	Regression Eqn.	INLET
7436.50		184.50	214.59	184.50	Regression Eqn.	INLET
7436.75		190.20	219.32	190.20	Regression Eqn.	INLET
7437.00		195.60	224.05	195.60	Regression Eqn.	INLET
7437.25		201.00	228.66	201.00	Regression Eqn.	INLET
7437.50		206.10	233.15	206.10	Regression Eqn.	INLET
7437.75		210.90	237.52	210.90	Regression Eqn.	INLET
7438.00		215.70	241.88	215.70	Regression Eqn.	INLET
7438.25		220.20	246.13	220.20	Orifice Eqn.	INLET
7438.50		224.40	250.37	224.40	Orifice Eqn.	INLET
7438.75		228.30	254.50	228.30	Orifice Eqn.	INLET
7439.00		232.50	258.50	232.50	Orifice Eqn.	INLET
7439,25		236.40	262.50	236,40	Orifice Eqn.	INLET

Processing Time:

00.93 Seconds

Project: High Plains Filing no. 1
Basin ID: Design Point 1



CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

Project: HIGH PLAINS SUBDIVISION FILING NO. 1

Basin ID: BASIN E-3

Status:

Design Information (Input):

Circular Culvert: Barrel Diameter in Inches Inlet Edge Type (choose from pull-down list)

OR:

Box Culvert: Barrel Height (Rise) in Feet

Barrel Width (Span) in Feet

Inlet Edge Type (choose from pull-down list)

t Width (Span) =
om pull-down list) Square Edge w/ 30-78 deg. Flared Wingwall

Height (Rise) =

Number of Barrels

Inlet Elevation at Culvert Invert

Outlet Elevation at Culvert Invert OR Slope of Culvert (ft v./ft h.)

Culvert Length in Feet Manning's Roughness Bend Loss Coefficient Exit Loss Coefficient

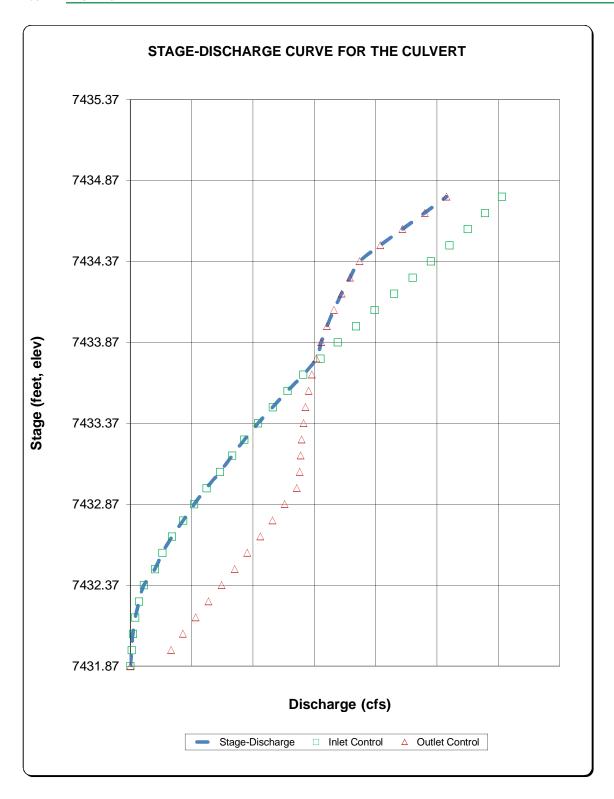
No =	1	
Inlet Elev =	7431.87	ft. elev.
Outlet Elev =	7431.61	ft. elev.
L =	51.86	ft.
n =	0.012	
Κ _b = Κ _v =	0	
K _x =	1	

1.5 : 1 Beveled Edge

inches

Design Information (calculated):

Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Loss Coefficients
Orifice Inlet Condition Coefficient
Minimum Energy Condition Coefficient

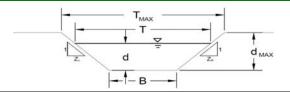

K _e =	0.20
$K_f =$	0.41
$K_s =$	1.61
$C_d =$	1.03
$E_{low} =$	-0.0628

Calculations of Culvert Capacity (output):

Water Surface	Tailwater	Culvert	Culvert	Controlling	Inlet	Flow
Elevation	Surface Elevation	Inlet-Control Flowrate	Outlet-Control Flowrate	Culvert Flowrate	Equation Used:	Control
	ft	cfs	cfs	cfs	Used:	Used
(ft., linked)	π	CIS	CIS	(output)		
7431.87		0.00	0.00	0.00	No Flow (WS < inlet)	N/A
7431.97		0.10	3.30	0.10	Min. Energy. Eqn.	INLET
7432.07		0.20	4.28	0.20	Min. Energy. Eqn.	INLET
7432.17		0.40	5.32	0.40	Min. Energy. Eqn.	INLET
7432.27		0.70	6.37	0.70	Min. Energy. Eqn.	INLET
7432.37		1.10	7.44	1.10	Min. Energy. Eqn.	INLET
7432.47		2.00	8.50	2.00	Min. Energy. Eqn.	INLET
7432.57		2.60	9.53	2.60	Min. Energy. Eqn.	INLET
7432.67		3.40	10.59	3.40	Min. Energy. Eqn.	INLET
7432.77		4.30	11.59	4.30	Min. Energy. Eqn.	INLET
7432.87		5.20	12.59	5.20	Min. Energy. Eqn.	INLET
7432.97		6.20	13.56	6.20	Min. Energy. Eqn.	INLET
7433.07		7.30	13.81	7.30	Min. Energy. Eqn.	INLET
7433.17		8.30	13.88	8.30	Regression Eqn.	INLET
7433.27		9.30	13.97	9.30	Regression Eqn.	INLET
7433.37		10.40	14.11	10.40	Regression Eqn.	INLET
7433.47		11.60	14.28	11.60	Regression Eqn.	INLET
7433.57		12.80	14.52	12.80	Regression Eqn.	INLET
7433.67		14.10	14.80	14.10	Regression Eqn.	INLET
7433.77		15.50	15.15	15.15	Regression Eqn.	OUTLET
7433.87		16.90	15.56	15.56	Regression Eqn.	OUTLET
7433.97		18.40	16.03	16.03	Regression Eqn.	OUTLET
7434.07		19.90	16.58	16.58	Regression Eqn.	OUTLET
7434.17		21.50	17.21	17.21	Regression Eqn.	OUTLET
7434.27		23.00	17.90	17.90	Regression Eqn.	OUTLET
7434.37		24.50	18.69	18.69	Regression Eqn.	OUTLET
7434.47		26.00	20.37	20.37	Regression Eqn.	OUTLET
7434.57		27.50	22.18	22.18	Regression Eqn.	OUTLET
7434.67		28.90	23.99	23.99	Regression Eqn.	OUTLET
7434.77		30.30	25.77	25.77	Regression Eqn.	OUTLET

Processing Time: 01.09 Seconds

Project: HIGH PLAINS SUBDIVISION FILING NO. 1
BASIN E-3



30-rcp, Culvert Rating 10/17/2018, 8:11 PM

AREA INLET IN A SWALE

Enter Your Project Name Here

Swale DP-1

This worksheet uses the NRCS vegetal retardance method to determine Manning's n.

For more information see Section 7.2.3 of the USDCM.

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method

NRCS Vegetal Retardance (A, B, C, D, or E)

Manning's n (Leave cell D16 blank to manually enter an n value)

Channel Invert Slope

Bottom Width

Left Side Slope Right Side Slope

	Check one of the following soil types.				
Soil Type: Ma		Max. Velocity (V _{MAX})	Max Froude No. (F _{MAX})		
	Non-Cohesive	5.0 fps	0.60		
	Cohesive	7.0 fps	0.80		
	Paved	N/A	N/A		

Max. Allowable Top Width of Channel for Minor & Major Storm Max. Allowable Water Depth in Channel for Minor & Major Storm

_		
A, B, C, D or E	С	
n =	see details below	
S _O =	0.0100	ft/ft
B =	5.00	ft
Z1 =	4.00	ft/ft
72 =	4.00	ft/ft

Choose One: Non-Cohesive Cohesive Paved

Minor Storm

Minor Storm

2.00

21.00

26.00

21.49

1.21

0.038

4.41

5.34

1.24

114.8

d_{MAX} =

T =

A =

P =

R=

n =

V =

VR =

D=

Q_d :

	Minor Storm	Major Storm	
T _{MAX} =	22.00	30.00	feet
d _{MAX} =	2.00	2.50	feet

Major Storm

Major Storm

2.50

37.50

25.62

1.46

0.035

5.50

1.50

0.79

206.1

feet

feet

feet

fps

ft^2/s

feet

cfs

square feet

Maximum Channel Capacity Based On Allowable Top Width

Max. Allowable Top Width

Water Depth

Flow Area

Wetted Perimeter

Hydraulic Radius

Manning's n based on NRCS Vegetal Retardance Flow Velocity

Velocity-Depth Product

Hydraulic Depth

Froude Number Max. Flow Based On Allowable Top Width

T _{MAX} =	22.00	30.00	ft
d =	2.13	3.13	ft
A =	28.69	54.69	sq ft
P =	22.52	30.77	ft
R=	1.27	1.78	ft
n =	0.037	0.033	
V =	4.74	6.70	fps
VR =	6.03	11.91	ft^2/s
D =	1.30	1.82	ft
Fr=	0.73	0.87	
Q- =	135.9	366.6	cfs

Maximum Channel Capacity Based On Allowable Water Depth

Max. Allowable Water Depth

Top Width Flow Area

Wetted Perimeter

Hydraulic Radius

Manning's n based on NRCS Vegetal Retardance

Flow Velocity Velocity-Depth Product

Hydraulic Depth Froude Number

Max. Flow Based On Allowable Water Depth

MA -	22.00	50.00	
d =	2.13	3.13	ft
A =	28.69	54.69	sq ft
P =	22.52	30.77	ft
R =	1.27	1.78	ft
n =	0.037	0.033	
V =	4.74	6.70	fps
R =	6.03	11.91	ft^2/s
D =	1.30	1.82	ft
r =	0.73	0.87	
⊋ ⊤ =	135.9	366.6	cfs

Allowable Channel Capacity Based On Channel Geometry

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

	Minor Storm	Major Storm	
Q _{allow} =	114.8	206.1	cfs
d _{allow} =	2.00	2.50	ft

Water Depth in Channel Based On Design Peak Flow

Design Peak Flow

Water Depth

			_
$Q_o =$	50.0	173.9	cfs
d =	1.50	2.34	feet

iinor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05, Swale DP-1 7/17/2018, 2:46 PM

PRUDENT LINE CALCULATIONS FOR SANDY SOILS

West Bank Calculations

 ${\bf 1.}\ {\bf Calculate}\ {\bf the}\ {\bf sediment}\ {\bf transport}\ {\bf capacity}\ {\bf for}\ {\bf different}\ {\bf return}\ {\bf period}\ {\bf events};$

VOLi = 6*Qp*d

Return Period	Qp(cfs)	d(hr)	Voli(cf)
100	356	24	51264
50	256	24	36864
25	181	24	26064
10	104	24	14976
5	62	24	8928
2	22	24	3168

2. Calculate the potential sediment deficit in any given reach of the study area:

Yi = 0.25*VOLi

Return Period	Voli(cf)	Yi(cf)
100	51264	12816
50	36864	9216
25	26064	6516
10	14976	3744
5	8928	2232
2	3168	792

3. Calculate the average annual sediment deficit:

Ym = 0.015*Y100+0.015*Y50+0.04*Y25+0.08*Y10+0.2*Y5+0.4*Y2

Ym = 1653.84 cf

Provide a footnote explaining/showing how the set back was calculated.

W. Bank 10yr Sta 113 137 112 165 120 192

- 4. Convert the calculated sediment deficit to a long-term lateral migration distance:
 - a. Average Annual Deficit (assume BF=1.67)

Ym*1 67 =

2762 cf

b. Estimate the potential lateral migration with variable length reaches

•	9	0		
Station	Side (looking US)	US Reach(ft)	Bank Ht(ft)	Setback Dist (ft)
0+00	RT	282	4	1.4
2+82	RT	379	4.5	1.2
6+61	RT	313	6	0.9
9+74	RT	469	8.5	0.6
14+43	RT	37	3.5	1.6
14+80	RT	53	3.5	1.6

c. Calculate setback distance over a 30yr period

Station	Setback Dist (ft)	HECRAS Sect. 10Yr WS Sta	Prudent Line Sta.
0+00	41	113	72
2+82	37	137	100
6+61	28	112	84
9+74	19	165	146
14+43	47	120	73
14+80	47	192	145

- 5. Calculate the short-term lateral migration distance:
 - a. 100 yr erosion deficit times the bulking factor (assume BF=1.67)

Yi(cf)

Erosion Deficit(cf)

12816

21403

b. Estimate the potential lateral migration assuming a right triangle w/variable length legs

		0 .	0 0
Station	Side	Bank Ht(ft)	Setback Dist (ft)
0+00	RT	4	71
2+82	RT	4.5	63
6+61	RT	6	48
9+74	RT	8.5	34
14+43	RT	3.5	82
14+80	RT	3.5	82

6. Prudent line establishment (larger of setback distances, 50' or 100 yr floodplain)

Station	100 Yr F.Plain(ft) ¹	Long-term S.Back(ft)	Shrt-term S.Back(ft)	50'(ft)	S. Back Selected	W. Bank 100yr Sta
0+00	-4	41	71	50	71	109
2+82	-21	37	63	50	63	116
6+61	0	28	48	50	50	112
9+74	-8	19	34	50	50	157
14+43	-4	47	82	50	82	116
14+80	-12	47	82	50	82	180

NOTE:

1. 100 yr floodplain setbacks that are negative because confined within TOB.

HECRAS Station	S. Back Selected	W. Bank 10yr Sta	Prudent Line H. RAS Sta
0+00	71	113	-58
2+82	63	137	-26
6+61	50	112	-38
9+74	50	165	15
14+43	82	120	-62
14+80	82	192	130

^{*} Denotes adjustment made on drawing, 50' further west to be conservative.

PRUDENT LINE CALCULATIONS FOR SANDY SOILS

East Bank Calculations

1. Calculate the sediment transport capacity for different return period events:

VOLi = 6*Qp*d

Return Period	Qp(cfs)	d(hr)	Voli(cf)
100	356	24	51264
50	256	24	36864
25	181	24	26064
10	104	24	14976
5	62	24	8928
2	22	24	3168

2. Calculate the potential sediment deficit in any given reach of the study area:

Yi = 0.25*VOLi

Return Period	Voli(cf)	Yi(cf)
100	51264	12816
50	36864	9216
25	26064	6516
10	14976	3744
5	8928	2232
2	3168	792

3. Calculate the average annual sediment deficit:

Ym = 0.015*Y100+0.015*Y50+0.04*Y25+0.08*Y10+0.2*Y5+0.4*Y2

Ym = 1653.84 cf

- 4. Convert the calculated sediment deficit to a long-term lateral migration distance:
 - a. Average Annual Deficit (assume BF=1.67)

2762 cf

b. Estimate the potential lateral migration with variable length reaches

 . =				
Station	Side (looking US)	US Reach(ft)	Bank Ht(ft)	Setback Dist (ft)
0+00	LT	282	9	0.6
2+82	LT	379	7	0.8
6+61	LT	313	6	0.9
9+74	LT	469	8.5	0.6
14+43	LT	37	9	0.6
14+80	LT	53	7	0.8

c. Calculate setback distance over a 30yr period

	, ,		
Station	Setback Dist (ft)	HECRAS Sect. 10Yr WS Sta	Prudent Line Sta.
0+00	18	181	199
2+82	24	216	240
6+61	28	188	216
9+74	19	236	255
14+43	18	191	209
14+80	24	270	294

- 5. Calculate the short-term lateral migration distance:
 - a. 100 yr erosion deficit times the bulking factor (assume BF=1.67)

Yi(cf)

Erosion Deficit(cf)

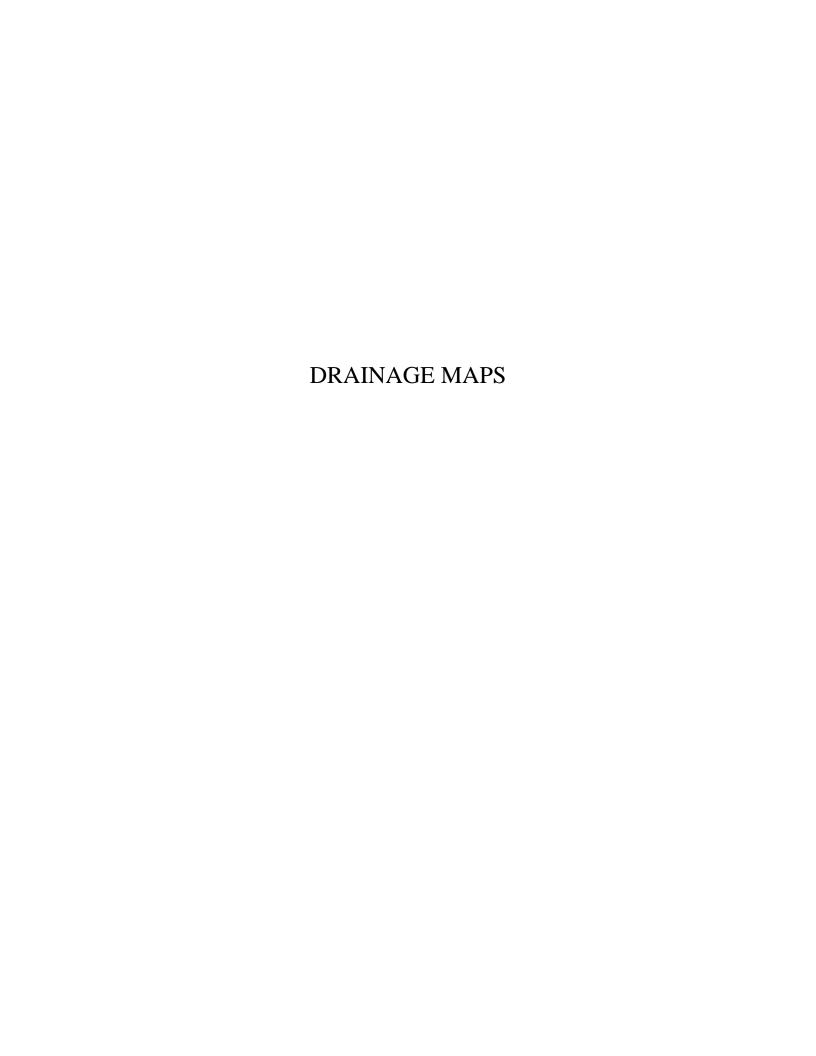
12816

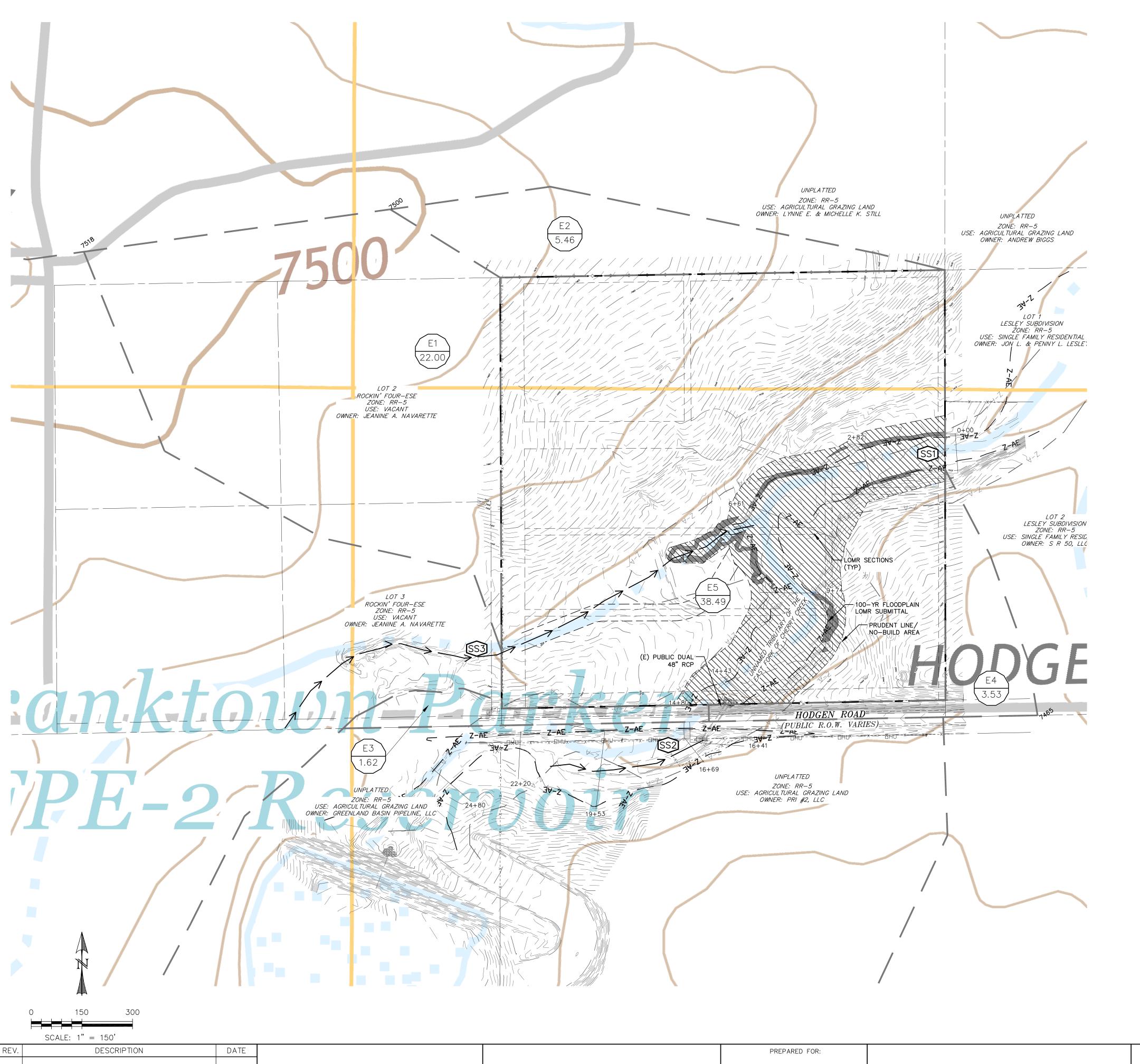
21403

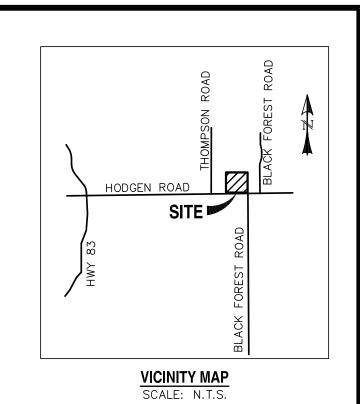
b. Estimate the potential lateral migration assuming a right triangle w/variable length legs

Station	Side	Bank Ht(ft)	Setback Dist (ft)
0+00	LT	9	32
2+82	LT	7	41
6+61	LT	6	48
9+74	LT	8.5	34
14+43	LT	9	32
14+80	LT	7	41

6. Prudent line establishment (larger of setback distances, 50' or 100 yr floodplain)


Station	100 Yr F.Plain(ft) ¹	Long-term S.Back(ft)	Shrt-term S.Back(ft)	50'(ft)	S. Back Selected	E. Bank 100yr Sta
0+00	7	18	32	50	50	188
2+82	4	24	41	50	50	220
6+61	2	28	48	50	50	190
9+74	-1	19	34	50	50	235
14+43	4	18	32	50	50	195
14+80	10	24	41	50	50	280


E. Bank 10yr Sta 181 216 188 236 191 270


NOTE:

1. 100 yr floodplain setbacks that are negative because confined within TOB.

HECRAS Station	S. Back Selected	E. Bank 10yr Sta	Prudent Line H. RAS Sta
0+00	50	181	231
2+82	50	216	266
6+61	50	188	238
9+74	50	236	286
14+43	50	191	241
14+80	50	270	320

EXISTING DRAINAGE BASINS	

BASIN	AREA (ACRES)	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q50 (CFS)	Q100 (CFS)
E1	22.00	0.8	2.8	6.2	10.9	14.6	18.9
E2	5.46	0.3	1.3	2.8	4.8	6.5	8.4
E3	1.62	1.0	1.5	2.2	3.1	3.8	4.6
E4	3.53	0.9	1.6	2.8	4.3	5.5	6.9
E5	38.49	2.4	9.1	20.0	34.9	46.8	60.8
		•	•	•	•	•	,

EXISTING DESIGN POINTS					
DESIGN POINT	Q100 (CFS)	Q500 (CFS)			
SS1	357	661.0			
SS2	295.0	547.0			
SS3	153.0	286.0			

<u>LEGEND</u>

EXISTING PROPOSED

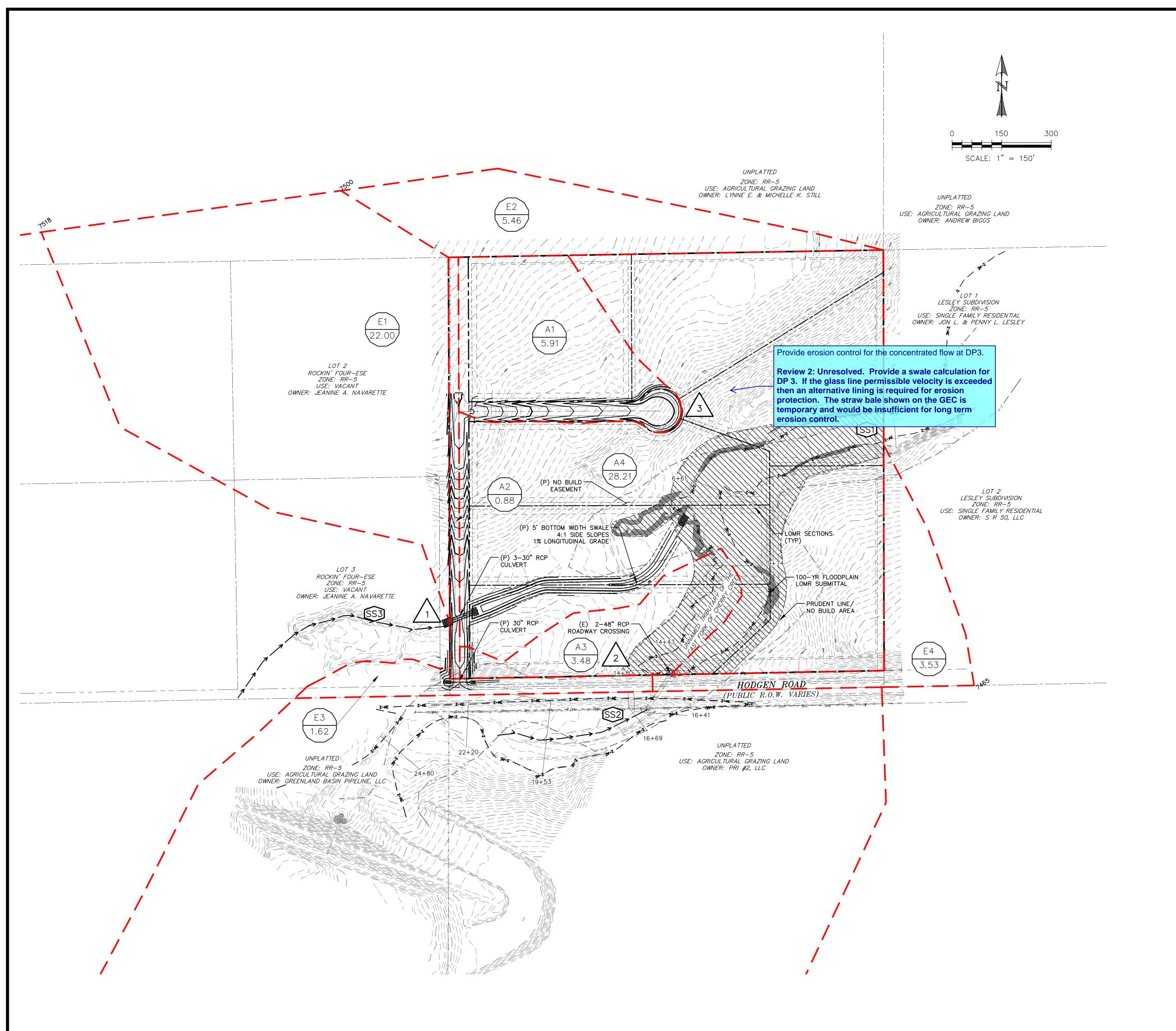
BOUNDARY

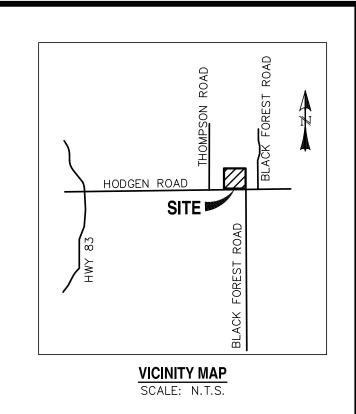
RIGHT-OF-WAY LOT LINE EASEMENT

(E) CONTOUR, INDEX (E) CONTOUR (P) CONTOUR, INDEX

(E)

(P) CONTOUR


	30ALL. 1 = 130	
REV.	DESCRIPTION	DATE



SAVAGE DEVELOPMENT INC 1125 DIAMOND RIM DR. COLORADO SPRINGS, CO 80921

HIGH PLAINS FILING NO. 1	DESIGNED BY:	DRAWN BY:	
	SCALE: 1"=150'	DATE: 07/09/18	
EVICTING CONDITIONS	JOB NUMBER	SHEET	
EXISTING CONDITIONS	17–135	1 OF 1	

	PROPOSED DRAINAGE BASINS							
BASIN	AREA (ACRES)	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q50 (CFS)	Q100 (CFS)	
E1	22.00	0.8	2.8	6.2	10.9	14.6	18.9	
E2	5.46	0.3	1.3	2.8	4.8	6.5	8.4	
E3	1.62	1.0	1.5	2.2	3.1	3.8	4.6	
E4	3.53	0.9	1.6	2.8	4.3	5.5	6.9	
A1	5.91	2.9	5.1	7.3	10.3	12.9	15.6	
A2	0.88	2.5	3.1	3.7	4.3	4.9	5.6	
А3	3.48	0.7	1.5	2.6	4.0	5.2	6.5	
A4	28.21	6.8	15.0	24.9	38.0	49.3	61.4	

PROPOSED DESIGN POINTS							
DESIGN POINT	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q50 (CFS)	Q100 (CFS)	Q500 (CFS)
SS1						357.0	661.0
SS2						295.0	547.0
SS3						153.0	286.0
1						155.6	
2	2.5	3.4	4.3	5.5	6.4	7.5	
3	2.9	5.1	7.3	10.3	12.9	15.6	

LEGEND

EXISTING
PROPOSED

BOUNDARY

BOUNDARY RIGHT—OF—WAY LOT LINE

EASEMENT
(E) CONTOUR, INDEX

(P) CONTOUR

(E) CONTOUR, INDEX
(E) CONTOUR
(P) CONTOUR, INDEX

(E)

REV.	DESCRIPTION	DATE

PREPARED FOR:

SAVAGE DEVELOPMENT INC

1125 DIAMOND RIM DR.
COLORADO SPRINGS, CO 80921

HIGH PLAINS FILING NO. 1	DESIGNED BY:	DRAWN BY:	
	SCALE: 1"=150'	DATE: 07/09/18	
DDODOCED CONDITIONS	JOB NUMBER	SHEET	
PROPOSED CONDITIONS	17–135	1 OF 1	