FINAL DRAINAGE REPORT FOR STERLING RANCH FILING NO. 4

Prepared For:

SR Land, LLC 20 Boulder Crescent, Suite 200 Colorado Springs, CO 80903 (719) 491-3024

> August 14, 2023 Project No. 25188.11

Prepared By: JR Engineering, LLC 5475 Tech Center Drive, Suite 235 Colorado Springs, CO 80919 719-593-2593

> PCD Filing No.: SF-22-030

AUG 2023

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mit Broken

Mike Bramlett, Colorado P.E. 32314 For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

By:

Title: Address:

SR Iland, LLC

Crescent, Suite 200 loulder Colorado Springs, CO 80903

El Paso County:

Joshua Palmer, P.E.

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Conditions: If any revisions are necessary due to changes or lack of construction in Filing No. 2, this report shall be revised.

Table of Contents

Purpose	1
General Site Description	1
General Location	1
Description of Property	1
Floodplain Statement	2
Existing Drainage Conditions	2
Major Basin Descriptions	2
Existing Sub-basin Drainage	3
Proposed Drainage Conditions	4
Proposed Sub-basin Drainage	4
Drainage Design Criteria	9
Development Criteria Reference	9
Hydrologic Criteria	9
Hydraulic Criteria	9
Drainage Facility Design	11
General Concept	11
Four Step Process to Minimize Adverse Impacts of Urbanization	11
Tour step Trocess to Winninge Adverse inpuets of Crounzation	
Water Quality	12
Water Quality	12
Water Quality Erosion Control Plan	12 12
Water Quality Erosion Control Plan Operation & Maintenance	12 12 13
Water Quality Erosion Control Plan Operation & Maintenance Drainage and Bridge Fees	12 12 13 15

APPENDIX

- Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map
- Appendix B Hydrologic and Hydraulic Calculations
- Appendix C Hydraulic Calculations
- Appendix D Reference Material
- Appendix E Drainage Maps

PURPOSE

This document is the Final Drainage Report for Sterling Ranch Filing Number 4. The purpose of this report is to identify on-site and off-site drainage patterns, storm sewer, culvert, inlet locations, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities. The proposed use is a permissible use within the residential service zoning criteria.

GENERAL SITE DESCRIPTION

GENERAL LOCATION

Sterling Filing Number 4 (hereby referred to as the "site") is a proposed development within the Sterling Ranch master planned community with a total area of approximately 57 acres and includes a replat of tracts B and J of Sterling Ranch Filing No. 2 and the regional detention pond W-5 built during Sterling Ranch Filing No. 2. The site is currently being designed to accommodate approximately 157 single-family residential lots. West of the site adjacent to the pond W-5 Marksheffel road will be extended to a planned residential subdivision.

The site is located in portion a Portion of the Southwest Quarter Of Section 33, Township 12 South, Range 65 West Of The 6th Principal Meridian & A Portion Of The Northwest Quarter Of The Northwest Quarter Of Section 4, Township 13S South, Range 65 West Of The 6th Principal Meridian County Of El Paso, State Of Colorado. The site is separated by Sterling Ranch Road into a north and south region. Barbarick Subdivision borders the northern portion of the site to the north, to the west by Sterling Ranch Filing No. 2, and to the east, the site is bounded by unplatted vacant land that is currently undeveloped. The southern portion of the site is bounded by Sterling Ranch road to the north, Sterling Ranch Filing No. 3, and Pawnee Rancheros border the site directly to the east. To the west, the southern portion of the site borders the proposed extension of Marksheffel Road, and to the south, the site borders unplatted and undeveloped land that is planned for residential use.

DESCRIPTION OF PROPERTY

The property will be primarily be single-family residential development (approximately 57 acres), Open space and drainage tracts. The site is comprised of variable sloping grasslands that generally slope(s) downward to the southeast at 3 to 8% towards the Sand Creek tributary basin.

Soil characteristics are comprised of Type A and B hydrologic Soil groups. Refer to the soil survey map in Appendix A for additional information.

There are no major drainage ways running through the site, although a tributary to the Sand Creek basin is immediately to the east of the site. Currently, JR Engineering, LLC is performing studies and

plans to address Sand Creek stabilization under PCD project number CDR-20-004 and is undergoing review.

There are no known irrigation facilities located on the project site.

FLOODPLAIN STATEMENT

Based on the FEMA FIRM Maps number 08041C0533G, dated December 7, 2018, the proposed development lies within Zone X. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. FIRM Map is presented in Appendix A.

EXISTING DRAINAGE CONDITIONS

MAJOR BASIN DESCRIPTIONS

The site lies within the Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" (DBPS) completed by Kiowa Engineering Corporation in January 1993, revised March 1996. The Sand Creek Drainage Basin covers approximately 54 square miles and is divided into major subbasins. The site is within the respective sub-basins SC3-6C, SC3-11A, and SC3-6B. Information from Sand Creek DBPS is provided in Appendix D.

The Sand Creek DBPS assumed the Sterling Ranch Filing No. 4 property to have a "large lot residential" use for the majority of the site. The Sterling Ranch MDDP assumed a mix of commercial and single family residential lots ranging in size from 0.2 to 0.3 acres for the Sterling Ranch Filing No. 4 site. The proposed Sterling Ranch master plan is a mix of; school, multi-family, single-family, and commercial land uses, resulting in higher runoff. Any additional runoff will be provided for with the extended detention basin located at the southern edge of the site. The site generally drains from north to south consisting of rolling hills. The site currently has an existing channel that was built in the Sterling Ranch Filing No. 3 that conveys the Sterling Ranch Filing No. 2; this infrastructure consists of pond W-5 and existing storm pipe. Currently, the site is used as pastureland for cattle. Sand Creek is located east of the site running north to south. This reach of drainage conveyance is not currently improved. There are a few stock ponds within the creek channel used for cattle watering. Currently, JR engineering is performing studies and plans to address Sand Creek stabilization adjacent to the site.

The proposed drainage on the site closely follows the approved "Master Development Drainage Plan for Sterling Ranch"; (MDDP) prepared by M&S Civil Consultants, Inc., dated October 24, 2018. The site is tributary to Pond W-5 and full-spectrum detention for the site was previously analyzed and can be found in the Final Drainage Report for Sterling Ranch Filing 2 as shown in Appendix D.

EXISTING SUB-BASIN DRAINAGE

The existing / predeveloped condition of the site was broken into four major basins: Basin A-1 A-2, A-3, and E-1, as well as several offsite basins. It is assumed Filing 2 storm structures are to be built before construction starts on Filing 4. If Filing 2 storm structures are not built, then flows will sheet flow down into the site and new calculations will be required. The basin and sub-basin delineation is shown in the existing drainage map in Appendix E and is described as follows:

Sub-basin A-1 (Q_5 = 1.1cfs, Q_{100} =8.0cfs) is 5.17 acres and 0 percent impervious consists of the eastern portion of the proposed Sterling Filing No. 4 site. Runoff from this basin drains to the south west into the assumed existing storm sewer built with Filing 2 just east of Marksheffel Road located at design point 1. Collected runoff is piped south to the existing detention pond W-5 built with Filing 2 and outfalls to Sand Creek.

Sub-basin A-2 (Q_5 = 3.9cfs, Q_{100} =28.6cfs) is 19.12 acres and 0 percent impervious and consists the central portion of Sterling Ranch Filing No. 4. Runoff from this basin drains south onsite into the assumed existing storm sewer built with Filing 2 located at design point 2. Collected runoff is piped south to the existing detention pond W-5 built with Filing 2 and outfalls to Sand Creek.

Sub-basin A-3 ($Q_5=5.1$ cfs, $Q_{100}=33.3$ cfs) is 17.62 acres and 2 percent impervious and is located onsite in the northern part of Sterling Ranch Filing No. 4. Runoff from this basin drains to the assumed existing storm sewer built with Filing 2 just north of Sterling Ranch Road located at design point 5. Design Point 5.1 is a confluence of flows from basins A3, OS6 and OS7. Collected runoff is piped south to the existing detention pond W-5 with Filing 2 and outfalls to Sand Creek.

Basin E-1 (Q_5 = 1.3 cfs, Q_{100} =9.5 cfs) is 5.15 acres and 0 percent impervious and is located on south west portion of the site. Runoff from this basin drains to design point O1. Improvements to this basin will be part of the proposed Marksheffel Road improvements. There are no current improvements to this basin.

Sub-basin OS1 (Q_5 = 9.5cfs, Q_{100} =24.6 cfs) is 9.27 acres is 37 percent impervious and is located to the east of the site. Runoff from this basin drains into the Sterling Ranch Filing 2 detention Pond W-5 in confluence with upstream flows from the eastern portion of Sub-basin A2. Runoff sheet flows south to design point 3 and joins into the existing detention pond built with Filing 2 before it outfalls to Sand Creek.

Sub-basin OS2 (Q_5 = 4.3cfs, Q_{100} =9.1cfs) is 2.48 acres and 56 percent impervious and is comprised of the southern half street of Sterling Ranch Road. Runoff from this basin drains into the assumed existing storm sewer built with Filing 2 located at design point 7. Collected runoff is piped south to the existing detention pond W-5 built with Filing 2 and outfalls to Sand Creek.

Sub-basin OS3 (Q_5 = 5.0cfs, Q_{100} =12.1cfs) is 3.50 acres and 42 percent impervious and is comprised of the northern half street of Sterling Ranch Road. Runoff from this basin drains into the assumed existing storm sewer built with Filing 2 located at design point 8. Collected runoff is piped south to the existing detention pond W-5 built with Filing 2 and outfalls to Sand Creek.

Sub-basin OS4 (Q_5 = 1.6cfs, Q_{100} =7.9cfs) is 5.10 acres and 8 percent impervious and is located immediately north of Sterling Ranch Road and the eastern portion of the site. Runoff from this basin drains south into assumed existing storm sewer built with Filing 2 located at design point 9. Collected runoff is piped south to the existing detention pond W-5 built with Filing 2 and outfalls to Sand Creek.

Sub-basin OS5 (Q_5 = 0.7cfs, Q_{100} =5.0cfs) is 3.46 acres and 0 percent impervious and is located to the west of the northern portion of the site. Runoff from this basin drains to a low point just north of Sterling Ranch Road located at Design Point 4 and will be collected in the assumed existing storm sewer built with Filing 2 and piped to the Filing 2 detention pond w-5 located south of the site and outfalls to Sand Creek.

Sub-basin OS6 (Q_5 = 25.4cfs, Q_{100} =76.8cfs) is 18.18 acres and 46 percent impervious as is located northwest of the site in the Barbarick subdivision. Historic runoff from this basins drains south onto the site at design point 10. Detained flow from this basin will be piped through the site to the detention pond W-5 and will outfall to Sand Creek.

Sub-basin OS7 (Q_5 = 16.2cfs, Q_{100} =63.5cfs) is 33.07 Acres and 19 percent impervious and is located directly north of the site in the Barbarick subdivision. Historic runoff from this site drains south onto the site at design point 11. Detained flow from this basin will be piped through the site to the detention pond W-5 and will outfall to Sand Creek.

If the assumed Filing 2 storm infrastructure is not in place when construction of Filing 4 begins, runoff will continue to sheet flow as in historic condition until the storm system is in place.

PROPOSED DRAINAGE CONDITIONS

PROPOSED SUB-BASIN DRAINAGE

The proposed site was broken into three major basins: Basin A (lower-portion), Basin B (mid and eastern –portion), Basin C (upper-portion) of the site and Basin, which consists of the proposed improvements to Marksheffel Road. The proposed basin (and sub-basin) delineation is shown on the drainage basin map within Appendix E and is described as follows.

Basin A2 (Q_5 = 1.7 cfs, Q_{100} =4.8 cfs) is 1.38 acres and 32 percent impervious is comprised of singlefamily residential lots, open space, several trails, and a local road Hazlett Drive. Runoff from this basin drains to design point 17, a 15' type R on grade inlet on the southwest corner of the basin, in confluence

with upstream by-pass flows from the Filing 3 development of 0.2 cfs in the 5 year event and 5.2 cfs in the 100 year event. Total flow at DP 17 is 1.6 cfs for a minor storm and 7.9 cfs in a major storm. DP 17 bypasses 0 cfs in the 5 year event and 0.2 cfs in the 100 year event downstream to DP 22.

Basin A3 (Q_5 = 7.0 cfs, Q_{100} =14.9 cfs) is 3.68 acres and 65 percent impervious is comprised of singlefamily residential lots and a local road Pennydale Drive. Runoff from this basin drains to a 15' on grade type R inlet located at design point 20 and is not capturing any upstream by-pass flows. Total flow at DP 20 is 7.0 cfs for a minor storm and 14.9 cfs in a major storm. DP 20 bypasses 0cfs in the 5 year event and 3.2 cfs in the 100 year event downstream to DP 22.

Basin A4 (Q_5 = 6.3 cfs, Q_{100} =15.1 cfs) is 4.53 acres and 48 percent impervious is comprised of singlefamily residential lots, open space a local road Moore Drive, Pennydale Drive, Hazlette Drive, and two urban knuckles. Runoff from this basin drains to a sump 15' type R inlet located at design point 22 in confluence with upstream by-pass flows from basins A1, A2, and A3. Total flow at DP 22 is 6.3 cfs for a minor storm and 18.3 cfs in a major storm. The runoff from this basin is piped to DP 23 where the runoff confluence with the entire southern portion of the Sterling Ranch Filing No. 4 site. From here on, the runoff is then piped into an existing 42" RCP and Structure associated with design point 23. The emergency overflow for this basins drains directly to pond W-5 south of the inlet. In the event the inlet at design point 22 clogs there is an overflow path to pond W-5 south west of the inlet.

Basin A5 (Q_5 = 1.4 cfs, Q_{100} =2.9 cfs) is 0.45 acres and 79 percent impervious is comprised of singlefamily residential lots and a local road Hazelett Drive. Runoff from this basin drains to a 10' type R on grade inlet at design point 16. Total flow at DP 16 is 1.4 cfs for a minor storm and 2.9 cfs in a major storm. DP 16 bypasses 0 cfs in the 5 year event and 0 cfs in the 100 year event downstream to DP 18.

Basin A6.1 (Q_5 = 10.0 cfs, Q_{100} =20.5 cfs) is 4.73 acres and 72 percent impervious is comprised of single-family residential lots, local roads Pennydale Drive, Trago Drive, and Hazelett.Drive. Runoff from this basin drains to an on grade 15' type R inlet at design point 12 and is not capturing any upstream by-pass flows. Total flow at DP 12 is 10.0 cfs for a minor storm and 20.5 cfs in a major storm. DP 12 bypasses 1cfs in the 5 year event and 6.9 cfs in the 100 year event downstream to DP 19.

Basin A6.2 ($Q_5 = 5.6$ cfs, $Q_{100} = 11.3$ cfs) is 2.56 acres and 74 percent impervious is comprised of singlefamily residential lots, local roads Pennydale Drive, Pendroy Street, and Hazelett.Drive. Runoff from this basin drains to an on grade 15' type R inlet at design point 19 in confluence with upstream by-pass flows from DP12. Total flow at DP 19 is 6.4 cfs for a minor storm and 17.8 cfs in a major storm. DP 19 bypasses 0 cfs in the 5 year event and 4.9 cfs in the 100 year event downstream to DP 21.

Basin A7 (Q_5 = 4.2 cfs, Q_{100} =8.5 cfs) is 1.76 acres and 73 percent impervious is comprised of single family residential lots and local roads Pennydale Drive, Moore Drive, and Hazelett Drive. The runoff from this basin drains to a 15' sump type R inlet located at design point 21, which receives up stream,

by pass flow from the on grade 15' type R inlet at design point 19. Total flow at DP 21 is 4.2 cfs for a minor storm and 13.4 cfs in a major storm.

Basin A8 (Q_5 = 2.2 cfs, Q_{100} =9.2 cfs) 4.23 acres and 13 percent impervious is comprised of a single family residential lots and open space. The runoff from this basin drains to a swale on western side of the site and into a type C inlet located at design point 24.

Basin A9 (Q_5 = 1.0 cfs, Q_{100} =5.0 cfs) 2.13 acres and 7 percent impervious is comprised of a single family residential lots and open space. The runoff from this basin drains to a swale on the western side of the site and into a proposed 18" flared end section and pipe located at design point 25. From there on, the flow are piped to the existing detention pond W-5.

Basin A10 (Q_5 = 2.9 cfs, Q_{100} =8.8 cfs) 2.67 acres and 26 percent impervious is comprised of a single family residential lots and open space. The runoff from this basin sheet flows to the south and into existing pond W-5 at design point 27.

Basin B3 (Q_5 = 3.8 cfs, Q_{100} =7.9 cfs) is 2.38 acres and 63 percent impervious is comprised of open space, Sterling Ranch road and sidewalk. Runoff from basin B3 drains to a 15' type R on grade inlet located at design point 9 in existing Sterling Ranch Road. All of the runoff is captured in the 100 year event. Runoff from this on grade inlet and is piped and outfalls into pond W-5.

Basin C1.1 (Q_5 = 3.9 cfs, Q_{100} =8.3 cfs) is 1.78 acres and 66 percent impervious is comprised of single family residential lots, local roads Clancy Drive and Cordgrass Drive. Runoff from basin C1.1 drains to 5' a sump type R inlet located at design point 6.1. In the 100 year storm, the inlet receives 11.0 cfs of overflow from design point 5. Flow not captured by the 10' type R inlet will over flow to the 10' type R inlet in sump at design point 6.2. The combined runoff at DP 6.3 drains to the existing drainage structure DP 7.2.

Basin C1.2 (Q_5 = 2.0 cfs, Q_{100} =4.2 cfs) is 0.81 acres and 72 percent impervious is comprised of single family residential lots, and local road School House Drive. Runoff from basin C1.2 drains to 10' a sump type R inlet located at design point 6.2. In the 100 year storm this inlet receives 10.0 cfs of bypass flow from design point 6.1. The combined runoff at DP 6.3 drains to the existing drainage structure DP 7.2.

Basin C2 (Q_5 = 12.0 cfs, Q_{100} =25.9 cfs) is 6.75 acres and 63 percent impervious is comprised of local roads, Clancy Drive, School House Drive, Cordgrass Drive, single-family residential lots, open space, and paved walks. Runoff from basin C2 drains to a 15' type R sump inlet located at design point 5 and piped south west to DP6.3. In the 100 year event, runoff will overtop the crown of the road and 11.0 cfs of flow will flow to design point 6.1, a 10' type R inlet in sump. The combined runoff at DP 6.3 drains to the existing drainage structure DP 7.2.

Basin C3 (Q_5 = 3.5 cfs, Q_{100} =12.8 cfs) is 4.18 acres and 19 percent impervious is comprised of single family residential lots, open space, and paved walks. Runoff from basin C3 drains to a swale on the western side of the site and into a type C area inlet located at design point 7 where it is piped to existing drainage structure DP 7.2.

Basin C4 (Q_5 = 6.1 cfs, Q_{100} =12.9 cfs) is 4.41 acres and 62 percent impervious is comprised of open space, roads and rear yards of single family residential lots. Runoff from basin C4 drains to an ongrade 15' type R inlet located at design point 8 in existing Sterling Ranch Road. In the 100 year event, 0.8 cfs is by-passed to a sump inlet adjacent to the intersection of Sterling Ranch Road and Marksheffel Road. Collected runoff is piped south into pond W-5.

Basin OS6 (Q_5 = 22.3 cfs, Q_{100} =55.6 cfs) is 18.38 acres, and 45 percent impervious is located near the northwest border of the site in the Barbarick subdivision. Runoff from the Barbarick, a portion of lots 3 and 4 for 3.13 acres site, is treated in this area with a sand filter. The other portion of the site is piped with two existing 24" HDPE. A proposed manhole will connect the two existing 24" HDPE pipes to a proposed 48" RCP storm sewer main that routes flows to design point 7.1, and will outfall in detention pond W-5. In the event, the sand filter clogs in the 100-year event, the emergency overflow from the sand filter will sheet flow across an open area of land i.e. tract B at 11.6 CFS, to sheet flow onto Cordgrass Drive. The total runoff from basin OS6 will be piped throughout the Sterling Ranch Filing No. 4 site at design point 4 and will outfall in detention pond W-5 and will ultimately outfall to Sand Creek.

Basin OS7 (Q_5 = 14.6 cfs, Q_{100} =52.8 cfs) is 33.07 Acres and 19 percent impervious and is located directly north of the site in the Barbarick subdivision. Runoff from the eastern portion of the basin travels overland towards design point 1. Historic runoff from this site drains south onto the site at design point 1. Detained flow from this basin will be piped via the proposed storm sewer system to design point 4.1, and then through the site to the detention pond W-5 and will outfall to Sand Creek. Emergency overflow from this basin (Q_{100} = 85.4 cfs) will be routed to the east around the lots and into the open space east of the site to vacant land via swale A-A, a concrete lined channel. Swale A-A outfalls onto a riprap pad and into basin I1.

Basin I1 (Q_5 = 7.8 cfs, Q_{100} =17.9 cfs) is 5.88 Acres and 54 percent imperious is located directly east of the upper half of Sterling Ranch Filing Number Four. Runoff from this basin drains into an existing draw. The runoff is then picked up by an interim swale and conveyed away from the Filing 4 lots adjacent to Greenough Drive. The undeveloped lot that makes up basin I1 will be developed into a residential development. The runoff is conveyed in the swale and then goes to the downstream design point 2.i, captured by a 24" flared end section, where it is ultimately conveyed into pond W-5 built-in Sterling Ranch Filing No. 2, as shown in Appendix D.

Basin I2 (Q_5 = 4.9 cfs, Q_{100} =9.9 cfs) is 2.18 Acres and 71 percent imperious is located directly east of the upper half of Sterling Ranch Filing Number Four. Runoff from this basin sheet drains across

existing native grass. The runoff is picked up by an interim swale, where it is collected by an interim 24" FES at design point 2.i. The runoff is ultimately conveyed into pond W-5 built-in Sterling Ranch Filing No. 2, as shown within Appendix D.

Basin I3 (Q_5 = 7.1 cfs, Q_{100} =19.4 cfs) is 2.94 Acres and 68 percent imperious is located north of Sterling Ranch Road in the unplatted parcel of land directly east of the northern portion of the site. Runoff from this basin drains into an interim swale were it is collected by an interim 18" FES at design point 3.i. Flows from design point 2.i and 3.i combine at design point 3.2 were flows are ultimately conveyed into pond W-5 built in Sterling Ranch Filing No. 2, as shown within Appendix D.

Basin E1 (Q_5 = 3.4 cfs, Q_{100} =6.3 cfs) is 0.90 Acres and 87 percent imperious is located directly west of Sterling Ranch Filing No. 4. Basin E1 is composed of the southwest portion of the proposed extension of Marksheffel Road. Runoff from basin E1 drains via curb and gutter in confluence with existing bypass flows, design point e10 (Q_5 = 0.6 cfs, Q_{100} =4.6 cfs), from the existing portion of Marksheffel Road. The runoff from this basin is capture into the 15' type R inlet on grade at design point 1e and is then piped to pond W-5 and the remaining 1.1 cfs of runoff is then by passed to design point 3e downstream of 1e in the 100 year storm.

Basin E2 (Q_5 = 3.3 cfs, Q_{100} =6.8 cfs) is 1.25 Acres and 63 percent imperious is located directly west of Sterling Ranch Filing No. 4. Basin E2 is composed of the northeast portion of the proposed extension of Marksheffel Road. Runoff from basin E2 drains via curb and gutter in confluence with existing bypass flow, design point e11 (Q_5 = 0.7 cfs, Q_{100} =6.2 cfs), from the existing portion of Marksheffel Road. The runoff from this basin is captured by a 15' on grade type R inlet at design point 2e. There is 2.1 cfs of runoff from the on grade inlet in the 100 year storm that is bypassed downstream to design point 4e. The captured runoff is piped to pond W-5 built in Filing No. 2 along with upstream runoff from the Western portion of Marksheffel Road.

Basin E3 (Q_5 = 1.4 cfs, Q_{100} =2.7 cfs) is 0.35 acres and 86 percent impervious is located directly west of Sterling Ranch Filing No. 4. Basin E3 is composed the southwest portion of the proposed extension of Marksheffel road. Runoff from basin E3 will drain via curb and gutter and drain into an interim sediment pond built by Aspen Meadows Subdivision. The runoff will ultimately be treated in a downstream water quality pond that is to be built the Aspen Meadows subdivision to the south and will by conveyed by corresponding improvements to Marksheffel road that will be built the Aspen Meadows subdivision developed. The Aspen Meadows subdivision will be developed prior to Sterling Rach Filing No. 4. Refer to Appendix D for excerpts from the Aspen Meadows drainage report.

Basin E4 (Q_5 = 1.4 cfs, Q_{100} =2.6 cfs) is 0.36 acres and 81 percent impervious is located directly west of Sterling Ranch Filing No. 4. Basin E4 is composed the northwest portion of the proposed extension of Marksheffel road. Runoff from basin E4 will drain to an interim sediment pond. The runoff will ultimately be treated in a downstream water quality pond built with the Aspen Meadows subdivision to the south and will by conveyed by corresponding improvements to Marksheffel road that will be

built the Aspen Meadows subdivision developed. The Aspen Meadows subdivision will be developed prior to Sterling Rach Filing No. 4. Refer to Appendix D for excerpts from the Aspen Meadows drainage report.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

Storm drainage analysis and design criteria for this project were taken from the "*City of Colorado Springs/El Paso County Drainage Criteria Manual*" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "*Urban Storm Drainage Criteria Manual*" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "*Colorado Springs Drainage Criteria Manual*" (CSDCM), dated May 2014, as adopted by El Paso County.

HYDROLOGIC CRITERIA

All hydrologic data was obtained from the "*El Paso Drainage Criteria Manual*" Volumes 1 and 2, and the "*Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual*" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

Storm	Rainfall (in.)
5-year	1.50
100-year	2.52

Table 1 - 1-hr Point Rainfall Data

HYDRAULIC CRITERIA

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site. Sump and on-grade inlets were sized using UDFCD UD-Inlet v4.05. StormCAD was used to model the proposed storm sewer system within the interim area and to analyze the proposed HGL calculations for the Construction Drawings. Autodesk Hydraflow express was used to size the overflow channel and drainage swales. Swales were sized based on the peak 100-year flows and average swale slopes. Swales were checked for shear stress and riprap lining was added for swale with a Froude number in excess of 0.80. Urban Drainage Figure 8-22 was used to size riprap for the swales. Per criteria velocities were checked to be less than 5 ft/s in grass and soil riprap lined swales. Manhole and pipe losses for the model were obtained from the <u>Modeling Hydraulic and</u> <u>Energy Gradients in Storm Sewers: A Comparison of Computation Methods</u>, by AMEC Earth &

Environmental, Inc. The manhole loss coefficients used in the model can be seen in Table 2 (below), this method is accurate for pipes 42" and smaller for larger pipes the Standard head-loss coefficients as recommended by Bentley were used as shown in Table 3. StormCAD, Autodesk Hydraflow results, along with street and inlet capacities, are presented in Appendix C.

	StormCA	D Conversion Ta	ble										
0	Bend Angle	K coefficient (Conversion										
osi	0	0.0	5										
井	22.5	0.1											
Bend Loss	45	0.4	22										
m	60	0.64	1										
	90	1.32											
i i	1 Lateral K coefficient Conversion												
	Bend Angle	Non Surcharged	Surcharged										
SS	45	0.27	0.47										
2	60	0.52	0.9										
la	90	1.02	1.77										
-ateral Loss	2 Lateral	s K coefficient Co	onversion										
-	45	0.96	6										
	60	1.10	3										
	90	1.52											

 Table 2 - Storm Head-loss Coefficients

Table 3 - Storm Head-loss Coefficients

Type of Manhole	Diagram	Headloss Coefficient
Trunkline only with no bend at the junction	J-C)-J	0.5
Trunkline only with 45° bend at the junction	5-6	0.6
Trunkline only with 90° bend at the junction	F	0.8
Trunkline with one lateral	F	Small 0.6 Large 0.7
Two roughly equivalent entrance lines with angle < 90° between lines	A A A A A A A A A A A A A A A A A A A	0.8
Two roughly equivalent entrance lines with angle > 90° between lines	E C	0.9
Three or more entrance lines	A A A A A A A A A A A A A A A A A A A	1.0

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed stormwater conveyance system was designed to convey the developed Sterling Ranch Filing No. 4 runoff to an existing (Filing 2) full spectrum water quality and detention pond W-5 via storm sewer. The proposed pond was designed to release at less than historic rates to minimize adverse impacts downstream. Flows will be routed via overland flow, curb and gutter, swales, and storm pipes into a detention pond where it will be treated for water quality. Proposed storm structures convey flows to the existing storm pipe west of the site which leads south to the detention pond. Treated water will outfall directly into the Sand Creek Drainage way, where it will eventually outfall into Fountain Creek. A proposed drainage map is presented in Appendix E showing locations of the pond.

FOUR STEP PROCESS TO MINIMIZE ADVERSE IMPACTS OF URBANIZATION

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

Step 1 – Reducing Runoff Volumes: The Sterling Ranch Filing No. 4 development project consists of single-family homes with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. Roof drains from the structures will discharge to lawn areas, where feasible, to allow for infiltration and runoff volume reduction.

Step 2 – Stabilize Drainageways: The site lies within the Sand Creek Drainage Basin. Basin and bridge fees will be due at time of platting. These funds will be used for the channel stabilization being designed by JR Engineering adjacent to the site and on future projects within the basin to stabilize drainageways. The site does not discharge directly into the open drainageway of Sand Creek, therefore no downstream stabilization will be accomplished with this project.

Step 3 – Treat the WQCV: Water Quality treatment for this site is provided in an existing full spectrum water quality detention pond (W-5). The runoff from this site will be collected within inlets and conveyed to the proposed ponds via storm sewer. Upon entrance to the ponds, flows will be captured in a forebay designed to promote settlement of suspended solids. A trickle channel is also incorporated into the ponds to minimize the amount of standing water. The outlet structure has been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for 72 hours. All flows released from the ponds will be reduced to less than historic rates.

Step 4 –BMPs will be utilized to minimize off-site contaminants and to protect the downstream receiving waters. The Filing No. 4 site is residential. There is no proposed commercial or industrial use for the site. The permanent erosion control BMPs include asphalt drives, storm inlets and storm pipe, the full spectrum detention pond W-5 and permanent vegetation. Maintenance responsibilities

and plans will be defined at the time of final platting.

WATER QUALITY

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention are provided for all developed basins. Where possible flows were routed through proposed swales to promote infiltration and reduce runoff. Flows for the site are routed through the proposed swales and the proposed and existing storm sewer system to an existing Full Spectrum Drainage Pond W-5, which was developed during the Sterling Ranch Filing No. 2 Project. There are no know existing issues with pond W-5. The outlet structure is complete, and the headwall at the pond outlet is in construction and will be completed prior to development of the site. Further details as well as all pond volume, water quality, and outfall calculations are included in the Sterling Ranch Filing 2 Final Drainage Report. Pond W-5 corresponds to pond FSD6 from the Master Development Drainage Plan for Sterling Ranch", (MMDP) prepared by M&S Civil Consultants, Inc., dated October 24, 2018 and is releasing less than the MDDP values in the proposed design. A summary of Pond W-5 has been included below for reference. From the Filing No.2 drainage report, Pond W-5 accounted for Sterling Ranch Filing 4 area to have 65% (north of Sterling Ranch Road) and 67% (south of Sterling Ranch Road) imperviousness. The total imperviousness for the Filing 4 development is 50.6% imperviousness, and the total runoff is less than what was anticipated; therefore the existing pond W-5 will function as intended.

	REQUIRED VOLUME	VOLUME PROVIDED	WQCV	EURV	5-YEAR RELEASE	100-YEAR RELEASE								
	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(CFS)	(CFS)								
POND W-5	18.217	18.441	3.29	11.71	2.7	137.1								

Table 4 - Pond Volumes & Release Rates

EROSION CONTROL PLAN

It is the policy of the El Paso County, that a grading and erosion control plan be submitted with the drainage report. Proposed silt fence, vehicles traffic control, temporary sediment basins, seeding and mulching are proposed as erosion control measure.

OPERATION & MAINTENANCE

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. The district shall be responsible for the inspection, maintenance, rehabilitation and repair of stormwater and erosion control facilities located on the property unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. This includes swales, inlets, and storm sewer that is to be maintained by the district. Access is provided from onsite facilities and easements for proposed infrastructure located offsite. A maintenance road and O&M Manual was provided for the existing pond W-5 and information on the road can be found in the Final Drainage Report for Sterling Ranch Filing No. 2. The maintenance road access is off

Marksheffel Road and wraps around the top of the pond providing access to the inflow pipe, wingwalls and outlet structure for the pond.

DRAINAGE AND BRIDGE FEES

The site lies within the Sand Creek Drainage Basin. Anticipated drainage and bridge fees are presented below:

	2023 Drainage and Bridge Fee – Sterling Ranch Filing 4														
Impervious	Drainage Fee	Bridge Fee	Sterling Ranch	Sterling Ranch											
Acres (Ac.)	(Per Imp. Acre)	(Per Imp. Acre)	Drainage Fee	Bridge Fee											
24.217	\$23,821	\$9,743	\$576,864.11	\$235,942.53											

Sterling Ranch Filing 4 Impervious Area Calculation													
		%	Impervious										
Breakdown	Acres	Impervious	Acres										
ROW	6.2452	100%	6.25										
Lots- minus Filing 2 replat	20.3401	60%	12.20										
Tracts A-G, and J - Open space	20.403	2%	0.41										
Tract H- Future Industrial / Lift Station	5.5086	50%	2.75										
Tract I- Marksheffel ROW	2.6050	100%	2.61										
Total	55.1019		24.22										

CONSTRUCTION COST OPINION

A construction cost opinion for the public storm drainage infrastructure has been provided below. The below cost opinion is only an estimate of facility and drainage infrastructure cost and may vary.

	Sterning Ranci Fining No. 4 (Fubile Non-Reinbursable)													
Item	Description	Quantity	Unit	Ur	nit Price		Cost							
1	18" RCP	435	L.F.	\$	76	\$	33,060.00							
2	24" RCP	541	L.F.	\$	91	\$	49,231.00							
3	36" RCP	1896	L.F.	\$	140	\$	265,440.00							
4	30" RCP	12	L.F.	\$	114	\$	1,368.00							
5	42" RCP	339	L.F.	\$	187	\$	63,393.00							
6	48" RCP	31	L.F.	\$	228	\$	7,068.00							
7	66" RCP	20	L.F.	\$	402	\$	8,040.00							
8	18" FES	2	Ea.	\$	400	\$	800.00							
9	24" FES	2	Ea.	\$	500	\$	1,000.00							
10	5' Curb Inlet Type R < 5 ft.	1	Ea.	\$	6,703	\$	6,703.00							
11	10' Curb Inlet Type R < 5 ft.	2	Ea.	\$	9,224	\$	18,448.00							
12	15' Curb Inlet Type R < 5 ft.	5	Ea.	\$	11,995	\$	59,975.00							
13	15' Curb Inlet Type R < 10 ft.	3	Ea.	\$	12,858	\$	38,574.00							
14	Grated Inlet CDOT TYPE C	3	Ea.	\$	5,611	\$	16,833.00							
15	Storm Sewer MH, box base	14	Ea.	\$	14,061	\$	196,854.00							
16	Storm Sewer MH, slab base	7	Ea.	\$	7,734	\$	54,138.00							
		Su	ıb-Total	\$	820,925.00									

Sterling Ranch Filing No. 4 (Public Non-Reimbursable)

Per LDC section 8.5.5.C.3.b(ii) Fee Reductions, Credits or Reimbursement for Facilities, this development requests that no cash drainage or bridge fees are due at platting as the value of reimbursable DBPS improvements for the Sand Creek Tributary segment 159, 164, 169, 186, the Sand Creek Mainstem segments 170, 187 and 163 and the Briargate Bridge shown in the below table exceed the drainage and bridge fee estimate shown above.

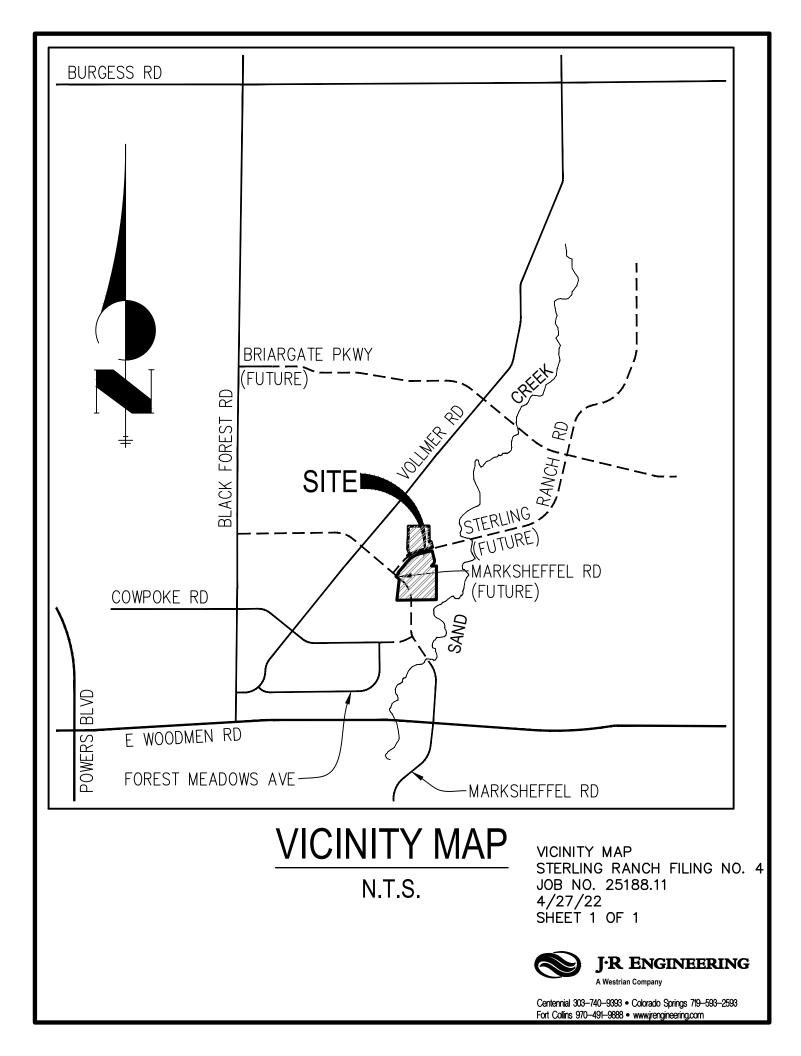
e di	rainage and bridge fee estimate shown above.	
	Sterling Ranch Deferred Drainage Fees Analysis	
	Reimbursable Costs associated with DBPS Segment 159 and 164, Segment 169 and	d 186
	and Main Channel Segment 159	
	Reimbursable Estimate Segment 159 and 164 from SR F2 FDR (SF-2015)	\$1,918,065.00
	Reimbursable Estimate Segment 169 and 186 from HN F1 FDR (SF-2213)	\$611,628.00
	Reimbursable Estimate Mainstem Segment 170, 187 and 163 from SC Plans (CDR/	\$7,910,175.90
	Subtotal Reimb. Costs associated with DBPS Segments 159-164, 169-186	\$10,439,868.90
	and Main Channel Segments 170, 187 and 163	
	Earlier Plats Deferred Drainage Fees (SR F1, Branding Iron F1 & Homestead F1)	\$451,616.32
	SR F2 (SF-2015) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$400,855.70
	SR F3 (SF-2132) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$214,430.47
*	HN F1 (SF-2213) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$541,225.00
*	HN F2 (SF-2218) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$310,413.22
*	HN F3 (SF-2229) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$399,632.48
	SR F4 (SF-2230) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$576,864.11
	Subtotal Deferred Drainage Fees	\$2,895,037.30
	\mathbf{X}	
	Unused Reimb. Costs associated with DBPS Segments 159-164, 169-186 and Main Channel Segments 170, 187 and 163	\$7,544,831.60
	Starling Danah Deferred Drider Face Analysia	
	Sterling Ranch Deferred Bridge Fees Analysis	a Donch Dd
	Reimbursable Costs associated with DBPS Bridge at Briargate Parkway and Sterlir	iy Kalicii Ku.
	Reimbursable Estimate Briargate Parkway Bridge from CDR 2113	\$1,546,676.98
	Reimbursable Estimate Braigate Farkway Brage Form CDR 2113	\$0.00
	Subtotal Reimb. Costs associated with BGP and SR Rd. Bridges	\$1,546,676.98
	Subtolar Keinib. Oosis associated with Dor and Sitta. Druges	\$1,510,070.70
	SR F3 (SF-2132) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$87,709.60
*	HN F1 (SF-2213) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$221,388.00
*	HN F2 (SF-2218) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$126,974.29
*	HN F3 (SF-2229) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$163,469.36
	SR F4 (SF-2230) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$235,942.53
	Subtotal Deferred Bridge Fees	\$835,483.78
		\backslash
	Upused Reimb. Costs associated with Briargate Parkway and SR Road Bridges	\$711,193.20
*	Filing is not yet platted, actual fee at time of approval may be different than sho	wn here
1	ining is not jot plattod, actual roo at time of approval may be amorent than sho	

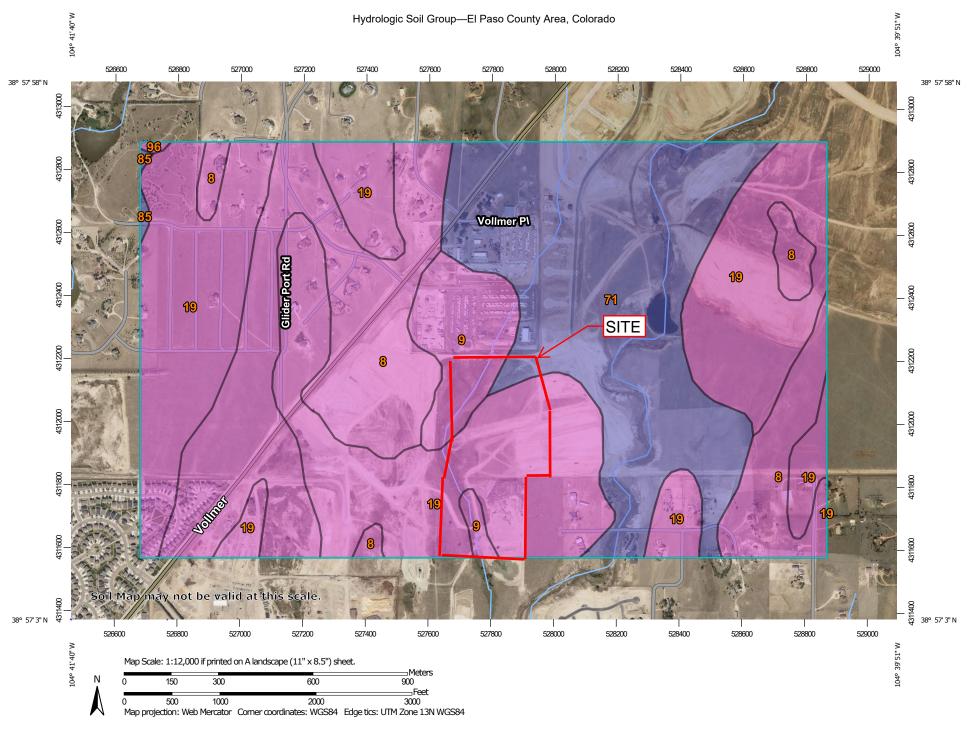
J-R ENGINEERING

SUMMARY

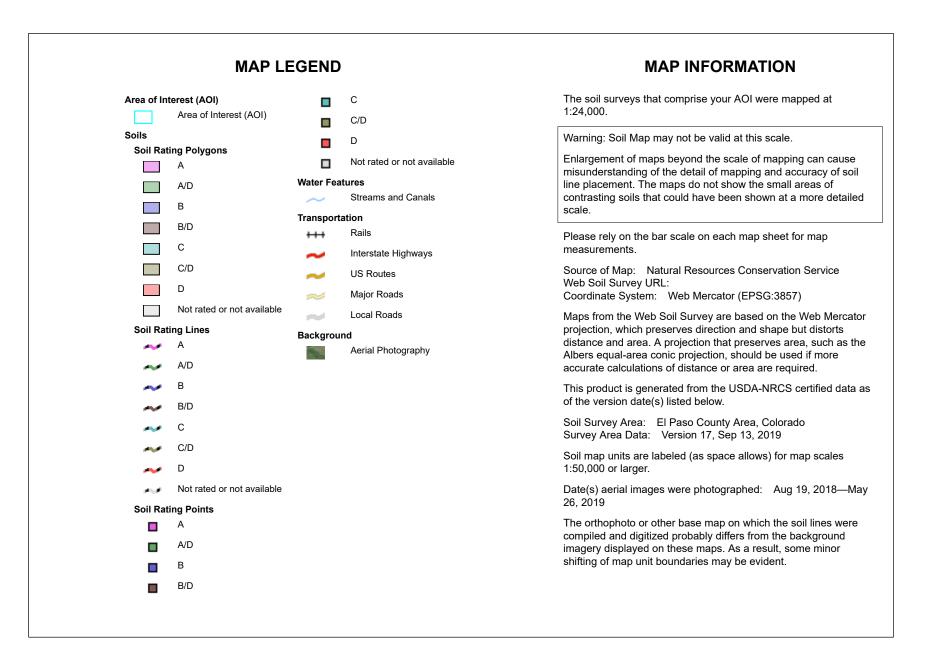
The proposed Sterling Ranch Filing No. 4 drainage improvements were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development will not adversely affect the offsite drainage-ways or surrounding development. The existing pond W-5 is to release less than 90% of the predeveloped runoff study associated with the subject site. The site is in continuity with the Sterling Ranch Filing No. 2 Drainage Report. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements for this site.

REFERENCES


- 1. "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I & II".
- 2. Sand Creek Channel Design Report, prepared by JR Engineering, May 19, 2021 (not yet approved)
- 3. "Master Development Drainage Plan for Sterling Ranch", (MMDP) prepared by M&S Civil Consultants, Inc., dated October 24, 2018.
- 4. <u>Sand Creek Drainage Basin Planning Study</u>, prepared Kiowa Engineering Corporation, January 1993, revised March 1996.
- 5. "Sterling Ranch Filing 2 Final Drainage Report", prepared by JR Engineering, dated May 2021
- 6. <u>Urban Storm Drainage Criteria Manual</u> (Volumes 1, 2, and 3), Urban Drainage and Flood Control District, June 2001.
- Sand Creek Stabilization at Aspen Meadows Subdivision Filing No. 1 100% Design Plans, April 2020
- 8. <u>Final Drainage Report For Barbarick Subdivision Portion Of Lots 1,2 And Lots 3 and 4</u>, Prepared by Matrix Design Group, June 2016
- 9. Preliminary Drainage Report And MDDP Addendum For Homestead North At Sterling Ranch Preliminary Plan", prepared by JR Engineering, dated January 2022
- 10. Sand Creek Drainage Basin Planning Study, Stantec, January 2021
- 12. Final Drainage Report for Aspen Meadows, Matrix Design, January 2019* pending approval



J·R ENGINEERING


Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI									
8	Blakeland loamy sand, 1 to 9 percent slopes	A	182.3	25.4%									
9	Blakeland-Fluvaquentic Haplaquolls	A	36.8	5.1%									
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	307.5	42.9%									
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	188.4	26.3%									
85	Stapleton-Bernal sandy loams, 3 to 20 percent slopes	В	1.2	0.2%									
96	Truckton sandy loam, 0 to 3 percent slopes	A	0.6	0.1%									
Totals for Area of Inter	rest		716.9	100.0%									

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administring the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

Location or detailed information in answer them taken the action flowed based information in answer the take Flood Elevations (RFEs) action flowed based to the flowed action of the flowed within the Flood traverse based (RFEs) within the Flood traverse based (RFE) provide the account the FIRM. Uncertainty action of the second traverse based (RFE) account to the traverse though the many that BFEs allows on the FIRM traverse traverse whole the second traverse based (RFE) accounts the traverse though the second traverse based (RFE) accounts the traverse though the traverse based (RFE) accounts the traverse though the traverse traverse the traverse accounts and the traverse traverse accounts and the traverse traverse the FIRM to purpose of construction and the first traverse of construction action (flowed) and traverse tra

Coastal Base Flood Elevations shown on this map apply only landward of 0.0° North Amarican Vertical Datum of 1989 (NAVD89), Users of this FIRM Hould be aware that coastal flood develosms are aired provided in the Summary of Sillwate Elevations table in the Flood Insurance Study report for this jurisdicion. Elevations shown in the Summary of Sillwate Elevations table should be used for construction and/or floodpian maragement purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway width and other partinent floodway data are provided in the Flood Insurance Study report for this jurisdicture.

Certain areas not in Special Flood Hazard Areas may be protected by **flood contrn** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insuranc Study report for information on flood control structures for this jurisdiction.

The projection used in the properties of this may was Universel Transverse Meanson (UTM) are 13. The hothcast attain was NARDS, GR585 spheroid. Differences in datum, spheroid, projection or UTM screes zones used in the production of FRMNs for adjacent juncticions may require uit, in slight positional differences in mag features across jurisdiction boundaries. These differences do not affect the accuracy of this FRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD68), Thesis flood elevations must be compared to structure are compared to structure and the structure of the structure and conversion between the National Geodelic Vertical Datum of 1528 and the North American Vertical Datum of 1988, visit the National Geodelic Survey at the Holm/ American Service and Service and Service and the Islaming Service and Service and

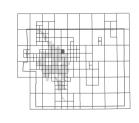
NGS Information Services NOAA, NNNGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the information Services Branch of the National Seodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.ncaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map infects more detailed and up-to-date stream channel configurations and modplain delineations than those shown on the previous FRM for this jurisdice, this way to be adjudged to confirm to these more stream channel configurations. As sets the besing divided to confirm to these more stream channel configurations. As a sets the besing divided confirm to these more stream channel configurations. As a sets the total confirm to these stream channels and the stream channel distances that offer from what is shown on the map. The profile baselines diplated distances that offer from what is shown on the map. The profile baselines diplated the map of the stream channels and the stream channel is a stream of product the stream channel in the FIS report. As a result, the profile baselines significantly from the new base map channel representation and may appear contained to the foodpain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, may users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed Map Index for an overview map of the county howing the layout of map panels; community map repository addresses; and a siting of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is coted.

Contact ERUA Mag Service Center (MSC) via the FEMA Mag information at/change FHMV 1 5477-032827 for information on savalable products associated with the FIRM. Available products may include previously issued Latters of Map Change, a FiRM. Available product organization of the MSC may also be reached by Fax at 1-800-358-8620 and its websile at http://www.msc.fema.gov/.

f you have **questions about this map** or questions concerning the National Flood nsurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Water Conservation Board

tional Flood Hazaro Information and resource lable from local communities and the Col-

3235000 FT JOINS PANEL 0535 1047 307 33 607 104" 41" 15.00" 381 581 7 501 38" 58' 7 50" Sand Creek ZONEAE 0 EL PASO COUNTY UNINCORPORATED AREAS 080059 474 2000 mail (DC) VOLLMER F 33 32 34 ZONE (C) (cx) 4312000mN 1410000 F T. 12 S T. 13 S MOJAVE DR T. 12 S. T. 13 S. EL PASO COUNTY UNINCORPORATED AREAS 080059 ZONEAE 070 C/p MUSTANO Ì 3 ZONE AE cs SITE KENOSHA DR EL PASO COUNTY CITY OF COLORADO SPRINGS PONCA RD 3 4 5 EL PASO COUNTY NINCORPORATED AREAS 080059 CITY OF COLORADO SPRINGS 1405000 F 6886 WOODMEN FRONTAGE RD E WOODMEN RD Bridge E WOODMEN D co AREAS (000159 10 ZONE AE 8 43-10.000mN Sand Creek 381 561 15 00 381 561 15.001 104° 41' 15.00" JOINS PANEL 0545 104" 39' 22.50' \$-000mp NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 12 SOUTH, RANGE 65 WEST, AND TOWNSHIP 13 SOUTH, RANGE 65 WEST.

Appendix B Hydrologic Calculations

COMPOSITE % IMPERVIOUS & COMPOSITE EXISTING RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location:

Sterling Ranch Subdivision- Existing El Paso County

Project Name: Sterling Ranch Filing 4

Project No.: 25188.11

Calculated By: CJD

Checked By: <u>APL</u> Date: <u>1/18/23</u>

	Total	Str	eets (10	0% Impe	rvious)	Re	sidential	(65% Im	pervious)	1 A		ersident ervious)	•	Light	t Indus	strial (80% I	mpervious)		Lawns (0% Impe	rvious)	Weigl	s Total hted C ues	Basins Total Weighted % Imp.
Basin ID	Area (ac)	C₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C₅	C ₁₀₀	
A-1	5.17	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	5.17	0.0%	0.08	0.35	0.0%
A-2	19.12	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	19.12	0.0%	0.08	0.35	0.0%
A-3	17.55	0.90	0.96	0.00	0.0%	0.45	0.59	0.62	2.3%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	16.93	0.0%	0.09	0.36	2.3%
OS1	9.27	0.90	0.96	2.85	30.7%	0.45	0.59	0.00	0.0%	0.20	0.44	2.85	6.1%	0.59	0.70	0.00	0.0%	0.08	0.35	3.57	0.0%	0.37	0.57	36.9%
OS2	2.48	0.90	0.96	1.40	56.5%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.08	0.0%	0.54	0.69	56.5%
OS3	3.50	0.90	0.96	1.46	41.7%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	2.04	0.0%	0.42	0.60	41.7%
OS4	5.10	0.90	0.96	0.00	0.0%	0.45	0.59	0.65	8.3%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	4.45	0.0%	0.13	0.38	8.3%
OS5	3.46	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	3.46	0.0%	0.08	0.35	0.0%
OS6	18.18	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	10.40	45.8%	0.08	0.35	7.78	0.0%	0.37	0.55	45.8%
OS7	33.07	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	7.91	19.1%	0.08	0.35	25.16	0.0%	0.20	0.43	19.1%
E-1	5.15	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	5.15	0.0%	0.08	0.35	0.0%
TOTAL (A1-A3)	41.84																							1.0%
TOTAL (OS1-OS7)	75.06																							28.4%
TOTAL	116.90																							18.6%

EXISTING STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Subdivision- Existing

Location: El Paso County

 Project Name:
 Sterling Ranch Filing 4

 Project No.:
 25188.11

 Calculated By:
 CJD

 Checked By:
 APL

 Date:
 1/18/23

Table 6-2. NRCS Conveyance factors, K

		SUB-	BASIN			INITI	AL/OVER	LAND				tc CHECK					
		DA	ATA				(T _i)		(T _t) (URBANIZED BASINS)								FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	ti	L _t	S _t	к	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
A-1	5.17	А	0%	0.08	0.35	212	2.0%	21.4	517	2.1%	10.0	1.4	6.0	27.4	729.0	32.6	27.4
A-2	19.12	А	0%	0.08	0.35	297	2.5%	23.4	500	2.4%	10.0	1.6	5.3	28.7	797.0	31.9	28.7
A-3	17.55	А	2%	0.09	0.36	121	5.4%	11.4	784	2.7%	10.0	1.7	7.9	19.4	905.0	34.1	19.4
OS1	9.27	А	37%	0.37	0.57	298	2.7%	16.4	737	2.4%	10.0	1.5	8.0	24.4	1035.0	25.4	24.4
OS2	2.48	А	56%	0.54	0.69	117	3.1%	7.5	1745	1.6%	20.0	2.5	11.5	19.0	1862.0	30.0	19.0
OS3	3.50	А	42%	0.42	0.60	41	2.5%	5.8	1681	1.8%	20.0	2.7	10.5	16.2	1722.0	33.0	16.2
OS4	5.10	А	8%	0.13	0.38	491	1.4%	35.0	940	5.6%	10.0	2.4	6.6	41.6	1431.0	31.1	31.1
OS5	3.46	А	0%	0.08	0.35	298	3.0%	22.1	784	2.4%	10.0	1.6	8.4	30.4	1082.0	35.3	30.4
OS6	18.18	А	46%	0.37	0.55	165	3.4%	11.2	612	2.7%	10.0	1.6	6.2	17.5	777.0	22.3	17.5
OS7	33.07	А	19%	0.20	0.43	298	3.0%	19.5	1664	2.7%	10.0	1.6	16.9	36.4	1962.0	37.2	36.4
E-1	5.15	А	0%	0.08	0.35	60	3.0%	9.9	865	2.3%	10.0	1.5	9.5	19.4	925.0	36.5	19.4

NOTES:

 $t_c = t_i + t_i$ Equation 6-2
 $t_i = \frac{0.395(1.1 - C_i)\sqrt{L}}{S_e^{-0.31}}$ Equation 6-3

 Where:
 $t_i = computed time of concentration (minutes)$ Where:
 $t_i = overland (minute)$ Equation 6-3

 $t_i = computed time of concentration (minutes)$ Where:
 $t_i = overland (minute)$ $t_i = overland (minute)$
 $t_i = channelized flow time (minutes).$ $t_i = channelized flow time (minutes).$ $t_i = channelized flow time (minutes).$ $t_i = length of overland flow (ff)$
 $s_i = averland (minutes).$ $s_i = averland flow (ff)$ $s_i = averland flow (ff)$

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

			Type of Land Surface	Conveyance Factor, K
$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$	Equation 6.4 $t = (26 - 17i) + \frac{L_t}{L_t}$	Equation 6-5	Heavy meadow	2.5
$60K\sqrt{S_o}$ $60V_t$	Equation 6-4 $t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$	Equation 0-5	Tillage/field	5
Where:			Short pasture and lawns	7
t_{i} = channelized flow time (travel time, min)	Where:		Nearly bare ground	10
L_t = waterway length (ft)	t_c = minimum time of concentration for first design p	oint when less than te from Equation 6-1.	Grassed waterway	15
S_0 = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = K $\sqrt{S_0}$	$L_t = $ length of channelized flow path (ft)		Paved areas and shallow paved swales	20
V_t = travel time velocity (it/sec) = KVS ₀ K = NRCS conveyance factor (see Table 6-2).	i = imperviousness (expressed as a decimal) $S_t = \text{slope of the channelized flow path (ft/ft)}.$			

STANDARD FORM SF-3 - EXISTING

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision: Sterling Ranch Subdivision-Existing Location: El Paso County Design Storm: 5-Year Project Name: Sterling Ranch Filing 4 Project No.: 25188.11 Calculated By: CID Checked By: APL

Design Storm:	5-Year	•														(Checke	ed By: Date:	APL 1/18/	23			
				DIRE		NOFF			тс	OTAL R	UNOF	F	STRE	ET/SW	ALE		PI	PE		TRAV	EL TIM	E	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	/ (in/hr)	Q (cfs)	tc (min)	C*A (ac)	/ (in/hr)	Q (cfs)	Q _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A-1	5.17	0.08	27.4	0.41	2.62	1.1															
	16.2								19.6	7.39	3 12	23.1											Runoff from Sterling Ranch Filing no. 3 see attached report in appendix D
	2	A-2	19.12	0.00	20.7	1.50	2.55	2.0		8.92													Basin A2 + runoff from Sterling Ranch Filing No. 3
									28.7	8.92	2.55	22.7											Basin OS1
	3	OS1	9.27	0.37	24.4	3.42	2.79	9.5															Basin A4
	4	OS5	3.46	0.08	30.4	0.28	2.46	0.7															
	7	OS2	2.48	0.54	19.0	1.35	3.16	4.3															Basin OS2
	8	OS3	3.50			1.48																	Basin OS3
	9	OS4				0.65																	Basin OS4
	10	034 056												6.8	3.4					998	1.8		Basin OS6 travel to design point 5.1
	11	OS7	33.07	0.20	36.4	6.68	2.19	14.6						6.68	3.2					936	1.8		Basin OS7 travel to design point 5.1
	5	A-3	17.55																				Basin A3
	5.1		1	0.05	10.4	1.00	5.2 1	5.1	36.4	13.44	2.19	29.5											Design point 5.1 fed by basins A3, OS6, and OS7 (Undetained flows)
	01	E-1	5.15	0.08	19.4	0.41	3.13	1.3															Basin E-1

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

STANDARD FORM SF-3 - EXISTING

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision: Location: Design Storm:	El Pas	o Coun	ch Subdi ty	ivision-	- Existir	<u>8</u>											Project N Projec Calculate Checke	ct No.: ed By: ed By:	2518 CJD	8.11	nch Fi	ling 4	
	1			DIF	RECT RU	JNOFF			1	TOTAL F	RUNOF	F	STRE	ET/SW	ALE	I	PIP	E		TRAV	EL TI	ME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t_c (min)	C*A (ac)	/ (in/hr)	Q (cfs)	tc (min)	C*A (ac)	/ (in/hr)	Q (cfs)	Q _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_{t} (min)	REMARKS
	1	A-1	5.17	0.35	27.4	1.81	4.39	8.0															
	16.2								19.3	9.33	5.28	49.2											Runoff from Sterling Ranch Filing no. 3 see attached report in appendix C
	2	A-2	19.12	0.35	28.7	6.69	4.27	28.6		16.02													Basin A2 + runoff from Sterling Ranch Filing No. 3
	3	OS1	9.27		24.4					10.02		00.5											Basin OS1
	4	OS5	3.46					5.0															Basin A4
	7	OS2	2.48	0.69	19.0	1.72	5.31	9.1															Basin OS2
	8	OS3			16.2			12.1															Basin OS3
	9	OS4	5.10		31.1		4.07	7.9															Basin OS4
	10	OS6	18.18		17.5		5.52	55.2						10.0	3.4					998	1.8	9.1	Basin OS6 travel to design point 5.1
	11	OS7	33.07			14.34								14.34	3.2					936	1.8	8.7	Basin OS7 travel to design point 5.1
	5	A-3			19.4																		Basin A3
	5.1								36.4	24.34	3.68	89.6											Design point 5.1 fed by basins A3, OS6, and OS7 (Undetained)
	01	E-1	5.15	0.35	19.4	1.80	5.26	9.5															Basin E-1

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

COMPOSITE % IMPERVIOUS & COMPOSITE PROPOSED RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location: Sterling Ranch Subdivision -Proposed El Paso County Project Name: Sterling Ranch Filing No. 4

Project No.: 25188.11 Calculated By: ARJ

Checked By: APL

Date: 4/4/23

	Total	Paved	/Streets	(100% lr	npervious)	Re	sidential	l (65% Im	pervious)	Light I	ndustria	ıl (80% In	npervious)		Lawns (C	% Imper	vious)	Weig	s Total hted C	Basins Total Weighted %
Basin ID	Area (ac)	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	Val C ₅	ues C ₁₀₀	Imp.
A2	1.38	0.90	0.96	0.22	15.9%	0.45	0.59	0.34	16.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.82	0.0%	0.30	0.51	32.0%
A3	3.68	0.90	0.96	0.71	19.3%	0.45	0.59	2.59	45.7%	0.59	0.70	0.00	0.0%	0.08	0.35	0.38	0.0%	0.50	0.64	65.0%
A4	4.53	0.90	0.96	0.67	14.8%	0.45	0.59	2.35	33.7%	0.59	0.70	0.00	0.0%	0.08	0.35	1.51	0.0%	0.39	0.56	48.5%
A5	0.45	0.90	0.96	0.17	38.1%	0.45	0.59	0.28	40.8%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.63	0.73	79.0%
A6.1	4.73	0.90	0.96	1.02	21.6%	0.45	0.59	3.70	50.9%	0.59	0.70	0.00	0.0%	0.08	0.35	0.01	0.0%	0.55	0.67	72.5%
A6.2	2.56	0.90	0.96	0.66	25.7%	0.45	0.59	1.90	48.2%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.56	0.68	73.9%
A7	1.76	0.90	0.96	0.43	24.5%	0.45	0.59	1.32	48.8%	0.59	0.70	0.00	0.0%	0.08	0.35	0.01	0.0%	0.56	0.68	73.3%
A8	4.23	0.90	0.96	0.12	2.8%	0.45	0.59	0.68	10.5%	0.59	0.70	0.00	0.0%	0.08	0.35	3.42	0.0%	0.16	0.41	13.4%
A9	2.13	0.90	0.96	0.06	2.8%	0.45	0.59	0.15	4.6%	0.59	0.70	0.00	0.0%	0.08	0.35	1.92	0.0%	0.13	0.38	7.4%
A10	2.67	0.90	0.96	0.44	16.4%	0.45	0.59	0.40	9.8%	0.59	0.70	0.00	0.0%	0.08	0.35	1.83	0.0%	0.27	0.49	26.2%
B3	2.38	0.90	0.96	1.41	59.3%	0.45	0.59	0.12	3.3%	0.59	0.70	0.00	0.0%	0.08	0.35	0.85	0.0%	0.58	0.72	62.6%
C1.1	1.78	0.90	0.96	0.44	24.6%	0.45	0.59	1.14	41.6%	0.59	0.70	0.00	0.0%	0.08	0.35	0.20	0.0%	0.52	0.65	66.2%
C1.2	0.81	0.90	0.96	0.25	30.4%	0.45	0.59	0.52	41.6%	0.59	0.70	0.00	0.0%	0.08	0.35	0.05	0.0%	0.57	0.69	72.0%
C2	6.75	0.90	0.96	1.49	22.0%	0.45	0.59	4.21	40.5%	0.59	0.70	0.00	0.0%	0.08	0.35	1.06	0.0%	0.49	0.63	62.5%
C3	4.18	0.90	0.96	0.14	3.4%	0.45	0.59	1.00	15.5%	0.59	0.70	0.00	0.0%	0.08	0.35	3.04	0.0%	0.20	0.43	18.9%
C4	4.41	0.90	0.96	1.85	42.0%	0.45	0.59	1.35	19.9%	0.59	0.70	0.00	0.0%	0.08	0.35	1.21	0.0%	0.54	0.68	61.8%
11	5.88	0.90	0.96	1.23	20.9%	0.45	0.59	2.98	32.9%	0.59	0.70	0.00	0.0%	0.08	0.35	1.67	0.0%	0.44	0.60	53.8%
12	2.18	0.90	0.96	0.81	37.2%	0.45	0.59	1.13	33.7%	0.59	0.70	0.00	0.0%	0.08	0.35	0.24	0.0%	0.58	0.70	70.8%
13	2.94	0.90	0.96	0.74	25.2%	0.45	0.59	1.94	42.9%	0.59	0.70	0.00	0.0%	0.08	0.35	2.94	0.0%	0.60	0.98	68.1%
OS6	18.38	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	10.40	45.3%	0.08	0.35	7.98	0.0%	0.37	0.55	45.3%
OS7	33.07	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	7.91	19.1%	0.08	0.35	25.16	0.0%	0.20	0.43	19.1%
E1	0.90	0.90	0.96	0.78	86.7%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.12	0.0%	0.79	0.88	86.7%
E2	1.25	0.90	0.96	0.79	63.2%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.46	0.0%	0.60	0.74	63.2%
E3	0.35	0.90	0.96	0.30	85.7%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.05	0.0%	0.78	0.87	85.7%
E4	0.36	0.90	0.96	0.29	80.6%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.07	0.0%	0.74	0.84	80.6%
TOTAL (A2-C4)	48.42																			50.4%
Total (C1-I3)	28.93																			56.0%
TOTAL (OS6 -OS7)	51.45																			28.5%
TOTAL (E1-E4)	2.86																			75.5%
TOTAL	113.73																			42.1%

PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Subdivision -Proposed Location: El Paso County

Project Name:	Sterling Ranch Filing No. 4
Project No.:	25188.11
Calculated By:	ARJ
Checked By:	APL
Date:	4/4/23

		SUB-I	BASIN			INITI	AL/OVER	LAND			TRAVEL TI	ME			tc CHECK		
		DA	ATA				(T _i)				(T _t)			(L	IRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	Lt	S 1	K	VEL.	t _t	COMP. t c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
A2	1.38	А	32%	0.30	0.51	100	3.7%	9.4	141	1.5%	20.0	2.4	1.0	10.3	241.0	22.0	10.3
A3	3.68	Α	65%	0.50	0.64	100	3.7%	7.0	1008	2.4%	20.0	3.1	5.5	12.5	1108.2	21.0	12.5
A4	4.53	А	48%	0.39	0.56	100	2.1%	10.1	814	1.9%	20.0	2.8	4.9	15.0	914.0	24.0	15.0
A5	0.45	Α	79%	0.63	0.73	54	3.7%	4.1	217	3.9%	20.0	4.0	0.9	5.0	271.0	13.5	5.0
A6.1	4.73	Α	72%	0.55	0.67	100	2.0%	8.0	841	2.9%	20.0	3.4	4.1	12.1	941.0	18.0	12.1
A6.2	2.56	Α	74%	0.56	0.68	100	2.0%	7.7	685	1.6%	20.0	2.6	4.5	12.1	785.0	18.1	12.1
A7	1.76	Α	73%	0.56	0.68	100	3.4%	6.5	367	1.2%	20.0	2.2	2.8	9.4	467.0	16.5	9.4
A8	4.23	А	13%	0.16	0.41	233	4.9%	15.3	307	0.9%	15.0	1.4	3.6	18.9	540.0	28.7	18.9
C1.1	1.78	Α	66%	0.52	0.65	100	4.3%	6.5	519	2.7%	20.0	3.3	2.7	9.2	619.0	17.6	9.2
C1.2	0.81	Α	72%	0.57	0.69	64	2.0%	6.1	415	2.7%	20.0	3.3	2.1	8.3	479.0	16.0	8.3
C2	6.75	Α	63%	0.49	0.63	99	1.8%	9.1	796	1.7%	20.0	2.6	5.1	14.2	895.0	21.1	14.2
C3	4.18	Α	19%	0.20	0.43	100	9.6%	7.7	255	3.5%	15.0	2.8	1.5	9.3	355.0	24.7	9.3
A9	2.13	Α	7%	0.13	0.38	100	2.4%	13.1	108	2.6%	20.0	3.2	0.6	13.7	208.0	25.9	13.7
A10	2.67	Α	26%	0.27	0.49	100	2.8%	10.7	0	1.0%	20.0	2.0	0.0	10.7	100.0	21.5	10.7
B3	2.38	Α	63%	0.58	0.72	37	3.4%	3.8	1595	1.5%	10.0	1.2	21.7	25.5	1632.0	27.6	25.5
C4	4.41	А	62%	0.54	0.68	100	3.0%	7.1	1664	1.5%	10.0	1.2	22.6	29.7	1764.0	28.3	28.3
OS6	18.38	Α	45%	0.37	0.55	165	3.4%	11.3	612	2.7%	10.0	1.6	6.2	17.5	777.0	22.4	17.5
OS7	33.07	Α	19%	0.20	0.43	298	3.0%	19.5	1664	2.7%	10.0	1.6	16.9	36.4	1962.0	37.2	36.4
11	5.88	Α	54%	0.44	0.60	180	1.4%	14.3	497	1.6%	10.0	1.3	6.5	20.9	677.0	20.8	20.8
12	2.18	Α	71%	0.58	0.70	125	1.6%	9.1	385	5.2%	10.0	2.3	2.8	11.9	510.0	15.4	11.9
13	2.94	Α	68%	0.60	0.98	80	1.7%	6.7	385	2.5%	10.0	1.6	4.1	10.8	465.0	16.6	10.8
E1	0.90	Α	87%	0.79	0.88	30	2.0%	2.4	725	2.1%	20.0	2.9	4.2	6.6	755.0	15.2	6.6
E2	1.25	А	63%	0.60	0.74	30	2.0%	3.9	765	2.1%	20.0	2.9	4.4	8.3	795.0	20.2	8.3
E3	0.35	A	86%	0.78	0.87	30	2.0%	2.5	285	2.3%	20.0	3.0	1.6	4.1	315.0	12.9	5.0
E4	0.36	Α	81%	0.74	0.84	30	2.0%	2.8	295	2.3%	20.0	3.0	1.6	4.4	325.0	13.9	5.0

NOTES:

$t_c = t_i + t_i$	Equation 6-2			Table 6-2. NRCS Convey	ance factors, K
Where:		$t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{e^{-0.33}}$	Equation 6-3	Type of Land Surface	Conveyance Factor, K
$t_c = \text{computed time of concentration (minutes)}$		S ₀ ⁰³³	Edunue e b	Heavy meadow	2.5
	When			Tillage/field	5
$t_i = \text{overland (initial) flow time (minutes)}$	when			Short pasture and lawns	7
$t_l = \text{channelized flow time (minutes)}.$		t_i = overland (initial) flow time (minutes) C_5 = runoff coefficient for 5-year frequency (from Table 6-4)		Nearly bare ground	10
L. L.		$L_i = \text{length of overland flow (ft)}$		Grassed waterway	15
$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$	Equation 6-4	S_{θ} = average slope along the overland flow path (ft/ft).		Paved areas and shallow paved swales	20
Where: $t_t = \text{channelized flow time (travel time, min)}$ $L_t = \text{waterwav length (ft)}$		$L = (26 - 17i) + \frac{L_i}{60(14i + 9)\sqrt{S_i}}$		Equation 6-5	
$K_t = \text{waterway slope (frff)}$ $S_0 = \text{waterway slope (frff)}$ $V_t = \text{travel time velocity (ft/sec)} = K \sqrt{S_0}$ K = NRCS conveyance factor (see Table 6-2).		Where: $t_c = minimum \text{ time of concentration for first design}$	a point when less than t _c fi	om Equation 6-1.	

Use a minimum t_i value of 5 minutes for urbanized areas and a minimum t_i value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

 $t_c = \text{mmmum time of concentration for first d}$ $L_t = \text{length of channelized flow path (ft)}$ t = imperviousness (expressed as a decimal) $S_t = \text{slope of the channelized flow path (ft/ft)}.$

STANDARD FORM SF-3 - PROPOSED STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision: Location: esign Storm:	El Pas	o Count		vision -	-Propos	sed						-				Cal	Projec culate Checke	t No.: d By:	25188 Arj Apl	.11		ng No.	•
				DIRE	CT RUN	NOFF			T	OTAL R	UNOF	F	STRE	ET/SW	/ALE		PIF				EL TIN	1E	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	(in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	tt (min)	REMARKS
	1	OS7	33.07	0.20	36.4	6.68	2.19	14.6								14.6	6.68	1.0	36	427	7.5	0	Offsite Barbarick Subdivision pond release .9 Piped to DP 4.1
	4	OS6	18.38	0.37				22.3								22.3		1.0		162			Offsite subdivision pond release .3 Confluenced at DP 4.1
	4.1	030	10.00	0.07	17.5	0.77	5.27	22.0	37.3	13.45	2 15	29.0				29.0				704	9.0		Offsite undetained flow confluenced from basins OS7 and OS6 w/ bypass flows .3 Piped to DP 7.1
	5	C2	6 75	0.49	14.2	2 22	3.61	12.0	57.5	13.43	2.13	27.0				12.0				63			Sump Inlet 1.1 Piped to DP 6.3
	-																						Sump Inlet Olpiped to DP 6.3
	6.1	C1.1	1.78	0.52	9.2			3.9								3.9	0.92	1.0	18	9	5.5	0	Sump Inlet
	6.2	C1.2	0.81	0.57	8.3	0.46	4.42	2.0															Piped to DP 6.3
	6.3								14.3	4.70	3.59	16.9				16.9	4.70	1.0	36	245	7.9	0	.5 Piped to DP 7.2 Area Inlet
	7	C3	4.18	0.20	9.3	0.82	4.24	3.5															Piped to DP 7.1
	7.1								38.6	14.27	2.10	30.0				30.0	14.27	1.0	36	40	9.2	0	.1 Structure piped to 7.2
	7.2								38.7	18.97	2.10	39.8											Piped to existing storm sewer in Sterling Ranch Road Offsite flow to existing inlet in Sterling Ranch Road
	8	C4	4.41	0.54	28.3	2.37	2.57	6.1															Piped to existing storm sewer in Sterling Ranch Road Offsite flow to existing inlet in Sterling Ranch Road
	9	B3	2.38	0.58	25.5	1.39	2.73	3.8															Piped to existing storm sewer in Sterling Ranch Road
	1.i	11	5.88	0.44	20.8	2.58	3.03	7.8															Runoff drains into into swale
	3.i	13	2.94	0.60	10.8	1.77	4.01	7.1															Runoff drains into swale
	2.i	12	2.18	0.58	11.9	1.26	3.87	4.9	20.8	3.84	3.03	11.6				11.6	3.84	2.0	24	113	9.3	0	
	3.2								21.0	5.61	3.02	16.9											DP2.i and DP3.i combine at DP3.2
	10								38.7	26.57	2.10	55.8											Sum of flows from DP7.2, 8, 9, and 2.1
	15							8.2					0.4	0.11	1.6	7.8							Existing runoff piped from Sterling Ranch Filing 3 subdivision by-passed to DP 17 curb and gutter flow to DP17
	15.1								19.5	6.71	3.13	21.0	0.0		2.0	21.0	6.71	1.0	24	45	8.2	0	Un-grade Inlet from overland flow on Filing 3 subdivision 1 (Captured Flows piped to DP 16.1 Evicting 0.0 grade July from Storling Danch Filing 2
	16	A5	0.45	0.63	5.0	0.28	5.17	1.4					0.0	0	2.9	1.4							Existing On-grade Inlet from Sterling Ranch Filing 3 Captured Flows piped to DP 16.1, by pass flow to DP12
	16.1								19.6	6.88	3.12	21.5				21.5	6.88	1.0	36	280	8.4	0	.6 Piped to DP 18.1
	17	A2	1.38	0.30	10.3	0.42	4.08	1.7	20.1	0.53	3.08	1.6	0.0	0		1.6	0.42	1.0	18	27	4.3	0	On-grade Inlet, includes by pass flow from DP15/ Sterling Ranch Filing 3 .1 Piped to DP 18.1
	17.1															1.6							Captured runoff from on Grade inlet at DP 17, FLOWS TO DP 18.1
	18.1								20.3	7.41	3.07	22.8				22.8	0.00	1.0	36	600	8.5	1	.2 Piped to DP18.2
	12	A6.1	4 73	0.55	12.1	2 59	3.85	10.0					0.9	0.23	1.0	9.1				100		Ο	On-grade Inlet, includes by pass flow from DP16 .2 Captured Flows piped to DP 18.2, Bypass flow to DP 19

STANDARD FORM SF-3 - PROPOSED STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision Location sign Storm	: El Pas	o Coun		ivision	-Propo	osed										í Calo	Project culated hecked	t No.: d By:	25188 Arj Apl	.11		ng No.	
				DIRE	CT RUI	NOFF			T	OTAL R	UNOF	F	STRE	et/sw/	ALE		PIP	РE		TRAV	EL TIN	1E	
STREET	15 Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Gpipe (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS Captured flow into on grade inlet at DP12.1
										0.77	0.00						0.77	1.0		50			
	18.2								21.4		2.99		0.0	0	1.0	29.2	9.77		42	50	9.1		1 Piped to DP20.2 On-grade Inlet, includes by pass flow from DP12
	19	A6.2	2.56	0.56	12.1	1.45	3.84	5.6	12.3	1.68	3.82	6.4				6.4	1.67	1.0	24	30	6.2	0.	1 Captured Flows piped to DP 20.1, Bypass flow to DP 21
	19.1												0.0	0	1.0	6.4							Captured flow from on grade inlet from DP 19 On-grade Inlet
	20	A3	3.68	0.50	12.5	1.84	3.79	7.0				-	0.0	Ű		7.0	1.84	1.0	18	4	6.3	0.	0 Captured Flows piped to DP 20.1
	20.1															7.0							Captured flow from on grade inlet from DP 20
	20.2								21.5	13.28	2.98	39.6				39.6	13.28	1.0	42	220	9.8	0.	4 Piped to DP23 Sump Inlet, includes by pass flow from DP19
	21	A7	1.76	0.56	9.4	0.99	4.23	4.2	12.2	0.99	3.83	3.8				3.8	0.99	1.0	24	60	5.3	0.	2 Piped to DP21.1
	21.1								21.5	14.27	2.98	42.5				42.5	14.27	1.0	42	90	10.0	0.	MH 2 Piped to DP23
	22	A4	4.53	0.39	15.0	1.78	3.52	6.3	15.0	1.78	3.52	6.3											Sump Inlet, includes by pass flow from DP17 and DP20 Piped to DP22.1
	22.1								15.0		3.52	6.3				63	1.78	1.0	18	10	6.2	0	0 Piped to DP23
	23								21.9								16.05				10.3		2 Piped to DP26
		4.0	4.22	0.1/	10.0	0.40	2.17	2.2	21.7	10.05	2.75	47.4				47.4	10.03	1.0	72	143	10.5	0.	Area Inlet
	24	A8	4.23																				Piped to EX 84" Storm Line Built w/ SR Filing 2 First Phase Prop. 18" FES
	25	A9	2.13	0.13	13.7	0.28	3.66	1.0							_	1.0	0.28	4.0	18	60	6.0	0.	2 Piped to EX 84" Storm Line Built w/ SR Filing 2 First Phase Captured and Piped runoff from 15 ' type R inlet
	25.1															5.0							
	27	A10	2.67	0.27	10.7	0.72	4.03	2.9					0.6										Pervious area sheet flows into EX Pond W5 By pass runoff from up stream existing 15' type R inlet built in Sterling Ranch Filing No. 2
	e10												0.0										
	1e	E1	0.90	0.79	6.6	0.71	4.75	3.4				4.0	0.0										Runoff from up stream + runoff from by pass flow
	1.1e															4.0							Captured and Piped runoff from 15 ' type R inlet
	e11												0.7										By pass runoff from upstream existing 15' type R inlet built in Sterling Ranch Filing No. 2
	2e	E2	1 25	0.60	8.3	0.75	4.40	3.3				4.0											Total Runoff from up stream + runoff from by pass flow
			1.23	0.00	0.3	5.75	07.10	5.5				4.0				4.0							Total runoff piped from basin E2 + runoff from upstream bypass
	2.1e 2.2e															4.0							Total runoff piped from basin E1 + upstream bypass and runoff from basin E2 + runoff from upstream bypass
	3e	E3	0.35	0.78	5.0	0.27	5.17	1.4	6.6	0.27	4.75	1.3	0.0										Total runoff from basin E3 and bypass runoff from basin E1
	4e	E4		0.74			5.17				4.40												Total runoff from basin E4 and bypass runoff from basin E2

Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

													S		M DF	FORN RAINAC IAL MET	GE SYS	STEM I	DESI)		
Subdivision:	Sterlir	na Ranc	h Subdi	vision	-Prop	nsed										Pro	oject N Projec	ame: t No.:	Sterli	ng Rar 8 11	nch Fili	ng No	. 4
Location: Design Storm:	El Pas	o Coun														Ca	lculate	d By: d By:	ARJ				
Bosignotorini	100 1																	Date:		23			
				DIR	RECT R	UNOFF			T(DTAL R	UNOFF		STRE	ET/SWA	ALE		PIP	E		TRAV	'EL TIM	1E	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (CfS)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	OS7	33.07	0.43	36.4	14.34	3.68	52.8								52.8	14.34	1.0	36	427	10.5	0.7	Offsite Barbarick Subdivision pond release Piped to DP 4.1
	4	OS6	18.38	0.55	17.5	10.07	5.52	55.6								55.6	10.07	1.0	36	162	10.6	0.3	Offsite subdivision pond release Confluenced at DP 4.1
	4.1								37.0	24.41	3.63	88.7				88.7	24.41	1.0	36	704	12.6		Offsite undetained flow confluenced from basins OS7 and OS6 w/ bypass flows Piped to DP 7.1
	5	C2	6.75	0.63	14.2	4.28	6.06	25.9					12.4	2.05	2.0	13.5	2.23	1.0	24	42 63	2.8 7.5		Sump Inlet, Over flows 12.4 cfs to DP 6.1 Piped to DP 6.3
	6.1	C1.1	1.78	0.65	9.2	1.16	7.16	8.3	14.4	3.21	6.01	19.3	3.1	0.52	0.1	16.2	0.97	1.0	18	16 9	0.6 9.2		Sump Inlet, Overflows 3.1 cfs to DP6.2 Piped to DP 6.3
	6.2	C1.2	0.81	0.69	8.3	0.56	7.41	4.2	14.8			6.4											Sump Inlet Piped to DP 6.3
	6.3								14.8			35.6				35.6	6.00	1.0	36	245	9.6	0.4	Piped to DP 7.2
	7	C3	4.18	0.43	9.3	1.79	7.12	12.8															Area Inlet Piped to DP 7.1
	7.1								38.0	26.20	3.57	93.5				93.5	26.20	1.0	36	40	13.2	0.1	Structure piped to 7.2
	7.2									32.20													Piped to existing storm sewer in Sterling Ranch Road
	8	C4	4.41	0.68	28.3	3.00	4.31	12.9	00.0	02.20	0.07	,											Offsite flow to existing inlet in Sterling Ranch Road Piped to existing storm sewer in Sterling Ranch Road
	0 9																						Piped to existing storm sever in sterling Ranch Road Offsite flow to existing inlet in Sterling Ranch Road Piped to existing storm sever in Sterling Ranch Road
	9 1.i	B3 11	2.38 5.88	0.72				7.9															Runoff drains into into swale
	3.i	13	2.94	0.00				17.9															Runoff drains into swale
	2.i	13	2.18	0.70				9.9	20.8	5.05	5.09	25.7				25.7	5.05	2.0	24	113	11.3	0.2	
	3.2	12	2.10	0.70	11.7	1.55	0.50	7.7	20.0							23.1	5.05	2.0	24	113	11.5	0.2	Flows from DP2.i and DP3.1 combine in proposed storm sewer
	10									41.97													Sum of flows from DP7.2, 8, 9, and 2.1
	15							17.7	30.0	41.77	5.57	147.7	4.7	0.817	1.5	12.5							Existing runoff piped from Sterling Ranch Filing 3 subdivision by-passed to DP 17 curb and gutter flow to DP17
	15.1								19.2	8.18	5.28	43.2				43.2	8.18	1.0	24	45	13.8	0.1	On-grade Inlet from overland flow on Filing 3 subdivision Captured Flows piped to DP 16.1
	16	A5	0.45	0.73	5.0	0.33	8.68	2.9		2.10			0.0	0	2.9	2.9	2.10				. 210		Existing On-grade Inlet from Sterling Ranch Filing 3 Captured Flows piped to DP 16.1, by pass flow to DP12
	16.1			2.75	0.0	5.00	5.00	2.7	19.3	8.51	5.28	44.9				44.9	8.51	1.0	36	280	10.1	0.5	Piped to DP 18.1
	17	A2	1.38	0.51	10.3	0.70	6.85	4.8	19.8			7.9	0.2	0.029	1.5	7.7	1.49		18	27	6.5		On-grade Inlet, includes by pass flow from DP15/ Sterling Ranch Filing 3 Piped to DP 18.1
	17.1															7.7					2.0		Captured runoff from on Grade inlet at DP 17, FLOWS TO DP 18.1
	18.1								19.8	10.03	5.21	52.2				52.2	10.03	1.0	36	600	10.4	1.0	Piped to DP18.2
	12	A6.1	4.73	0.67	12.1	3.17	6.46	20.5					6.6	1.022	1.0	13.9	2.15		24		7.6		On-grade Inlet, includes by pass flow from DP16 Captured Flows piped to DP 18.2, Bypass flow to DP 19
	12.1															13.9							Captured flow into on grade inlet at DP12.1

														M DR	AINA	M SF-3 GE SYS THOD PI	STEM	DESI)		
Subdivision: Location: Design Storm:	El Paso	o Count	h Subdi iy	ivision	-Propo	osed					_				C	roject N Projec alculate Checke	t No.: d By: d By:	2518 ARJ APL	8.11	nch Filii	ng No.	. 4
												-					Date:	4/4/2				
				DIR	RECT R	UNOFF			Ţ	OTAL RUN	IOFF	STR	EET/SWA	ALE		PIP	E		TRAV	/EL TIM	E	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr) Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	18.2								20.8	12.18 5	.09 62	0			62.0	12.18	1.0	42	50	11.0	0.1	Piped to DP20.2
	19	A6.2	2.56	0.68	12.1	1.75	6.44	11.3	12.3			4.9	0.761	1.0	12.9							On-grade Inlet, includes by pass flow from DP12 Captured Flows piped to DP 20.1, Bypass flow to DP 21
	19.1	110.2	2.00	0.00	12.1	1.13	5.44	11.3	12.3	2.11		-			12.9	2.00	1.0	24	30	7.4	0.1	Captured flows piped to br 20.1, Bypass now to br 21
					10.5		(07					3.2	0.502	1.0				40				On-grade Inlet
	20	A3	3.68	0.64	12.5	2.34	6.37	14.9							11.7	1.84	1.0	18	4	6.6	0.0	Captured Flows piped to DP 20.1
	20.1											-			11.7							Captured flow from on grade inlet from DP 20
	20.2								20.9	16.01 5	.08 81	4			81.4	16.01	1.0	42	220	11.6	0.3	Piped to DP23 Sump Inlet, includes by pass flow from DP19
	21	A7	1.76	0.68	9.4	1.20	7.10	8.5	12.2	1.96 6	.43 12	6			12.6	1.96	1.0	24	60	7.4	0.1	Piped to DP21.1 MH
	21.1								20.9	17.97 5	.08 91.	3			91.3	17.97	1.0	42	90	11.9	0.1	Piped to DP23 Sump Inlet, includes by pass flow from DP17 and DP20
	22	A4	4.53	0.56	15.0	2.56	5.91	15.1	15.0	3.09 5	.91 18.	3										Piped to DP22.1
	22.1								15.0	3.09 5	.91 18.	3			18.3	3.09	1.0	18	10	10.4	0.0	Piped to DP23
	23								21.2	21.07 5	.04 106	2			106.2	21.07	1.0	42	145	11.9	0.2	Piped to DP26
	24	A8	4.23	0.41	18.9	1.72	5.32	9.2														Area Inlet Piped to EX 84" Storm Line Built w/ SR Filing 2 First Phase
	25	A9	2.13	0.38	13.7	0.82	6.14	5.0							5.0	0.82	4.0	18	60	9.8	0.1	Prop. 18" FES Piped to EX 84" Storm Line Built w/ SR Filing 2 First Phase
	25.1														14.8							1.1e + dp25
	27	A10	2.67	0.49	10.7	1.30	6.77	8.8							11.0							Pervious area sheet flows into EX Pond W5
		AIU	2.07	0.47	10.7	1.30	0.77	0.0				4.6	ò									By pass runoff from up stream existing 15' type R inlet built in Sterling Ranch Filing No. 2
	e10	54				0.70	7.00						0.138	3.4								Runoff from up stream + runoff from by pass flow
	1e	E1	0.90	0.88	6.6	0.79	7.98	6.3			10.	9			9.8							Captured and Piped runoff from 15 ' type R inlet
	1.1e									$\left \right $	_	6.2	2		9.8							By pass runoff from upstream existing 15' type R inlet built in Sterling Ranch Filing No. 2
	e11											2.1	0.284	3.4								Total Runoff from up stream + runoff from by pass flow
	2e	E2	1.25	0.74	8.3	0.92	7.39	6.8			13.	0			10.9				<u> </u>			Total runoff piped from basin E2 + runoff from upstream bypass
	2.1e														10.9							Total runoff piped from basin E1 + upstream bypass and runoff from basin E2 + runoff
	2.2e														20.7							from upstream bypass
	3e	E3	0.35	0.87	5.0	0.31	8.68	2.7	6.6	0.45	.98 3.	6										Total runoff from basin E3 and bypass runoff from basin E1
	4e	E4	0.36	0.84	5.0	0.30	8.68	2.6	8.3	0.58 7	.39 4.	3										Total runoff from basin E4 and bypass runoff from basin E2

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

Appendix C Hydraulic Calculations

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP5	Inlet DP6.1	Inlet DP6.2
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	In Sump	In Sump	In Sump
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	12.0	3.9	2.0
Major Q _{Known} (cfs)	25.9	8.3	4.2

Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked.

Receive Bypass Flow from:	No Bypass Flow Received	User-Defined	User-Defined
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	11.0	3.1

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	12.0	3.9	2.0
Major Total Design Peak Flow, Q (cfs)	25.9	19.3	7.3
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP7	Ex Inlet DP8	Ex Inlet DP9
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	AREA	STREET	STREET
Hydraulic Condition	Swale	On Grade	On Grade
Inlet Type	CDOT Type C	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	3.5	6.1	3.8
Major Q _{Known} (cfs)	12.8	13.0	7.9

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	3.5	6.1	3.8
Major Total Design Peak Flow, Q (cfs)	12.8	13.0	7.9
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	2.2	0.2

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Ex Inlet DP15	Ex Inlet DP16	Inlet DP12
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	8.2	1.4	10.0
Major Q _{Known} (cfs)	17.7	2.9	20.5

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	8.2	1.4	10.0
Major Total Design Peak Flow, Q (cfs)	17.7	2.9	20.5
Minor Flow Bypassed Downstream, Q _b (cfs)	0.2	0.0	0.9
Major Flow Bypassed Downstream, Q _b (cfs)	4.7	0.0	6.6

MHFD-Inlet, Version 5.02 (August 2022) INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP17	Inlet DP19	Inlet DP20
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	1.6	6.4	7.0
Major Q _{Known} (cfs)	7.9	17.8	14.9
Major Q _{Known} (Cr3)	7.9	17.8	14.9

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	1.6	6.4	7.0
Major Total Design Peak Flow, Q (cfs)	7.9	17.8	14.9
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.2	4.9	3.2

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP21	Inlet DP22	Inlet DP24
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	AREA
Hydraulic Condition	In Sump	In Sump	Swale
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type C

USER-DEFINED INPUT

User-Defined Design Flows

Minor Q _{Known} (cfs)	3.8	6.3	2.2
Major Q _{Known} (cfs)	12.6	18.3	9.2

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	3.8	6.3	2.2
Major Total Design Peak Flow, Q (cfs)	12.6	18.3	9.2
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	0.0

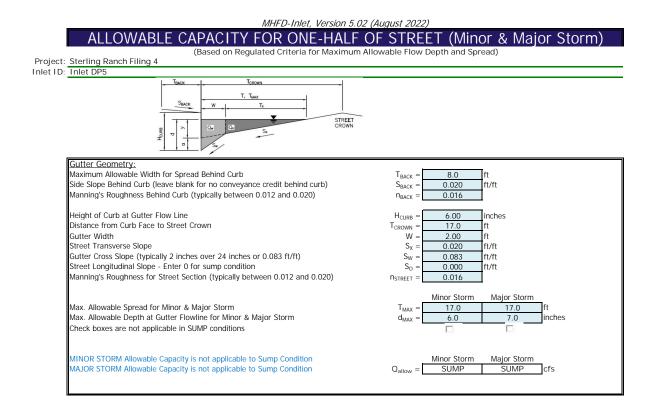
INLET MANAGEMENT

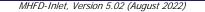
Worksheet Protected

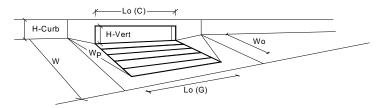
INLET NAME	Ex Inlet DPe10	Ex Inlet DPe11	Inlet DP1e
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening
ER-DEFINED INPUT			
User-Defined Design Flows			
Minor Q _{Known} (cfs)	9.2	9.5	4.0
Major Q _{Known} (cfs)	17.3	19.9	10.9
Bunass (Carry Quar) Flow from Unstroom			
Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)			0.0
Watershed Characteristics	0.0	0.0	0.0
	0.0	0.0	0.0
	0.0	0.0	0.0
Watershed Characteristics		0.0	0.0
Watershed Characteristics Subcatchment Area (acres)			0.0
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type			0.0
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile			
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft)			
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft)			
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft)			
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft)			
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft)			
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input			
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years)			
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input			
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)			
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years)			

Minor Total Design Peak Flow, Q (cfs)	9.2	9.5	4.0
Major Total Design Peak Flow, Q (cfs)	17.3	19.9	10.9
Minor Flow Bypassed Downstream, Q _b (cfs)	0.6	0.7	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	4.6	6.2	1.1

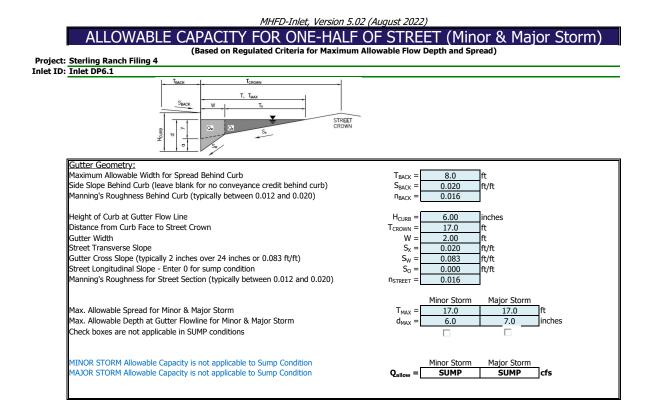
INLET MANAGEMENT

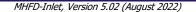

Worksheet Protected

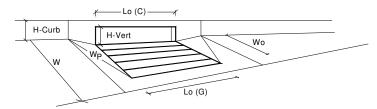

INLET NAME	Inlet DP2e	Inlet DP25
Site Type (Urban or Rural)	URBAN	URBAN
Inlet Application (Street or Area)	STREET	AREA
Hydraulic Condition	On Grade	Swale
Inlet Type	CDOT Type R Curb Opening	CDOT Type C

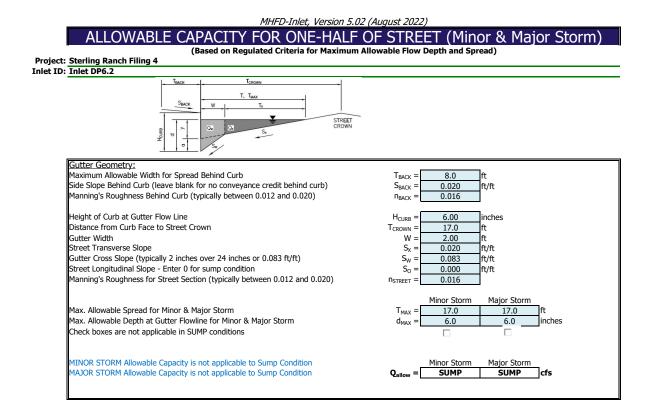

USER-DEFINED INPUT

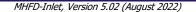
User-Defined Design Flows		-
Minor Q _{Known} (cfs)	4.0	1.0
Major Q _{Known} (cfs)	13.0	4.8
		+
Bypass (Carry-Over) Flow from Upstream		
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0
Watershed Characteristics		
Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		
Watershed Profile	-	
Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		
Minor Storm Rainfall Input		
Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		
Major Storm Rainfall Input	+	
Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

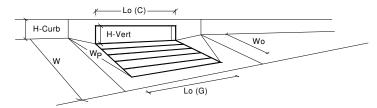

Minor Total Design Peak Flow, Q (cfs)	4.0	1.0
Major Total Design Peak Flow, Q (cfs)	13.0	4.8
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	2.1	0.0



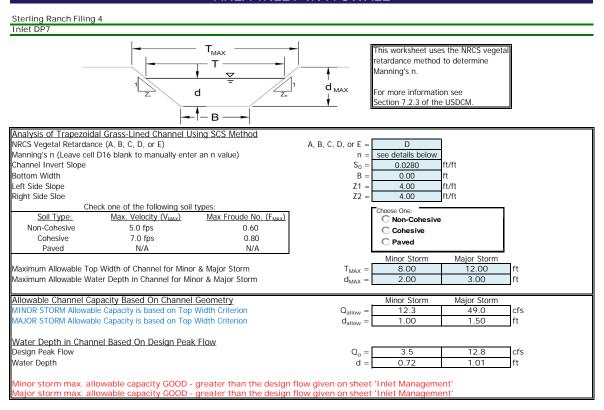


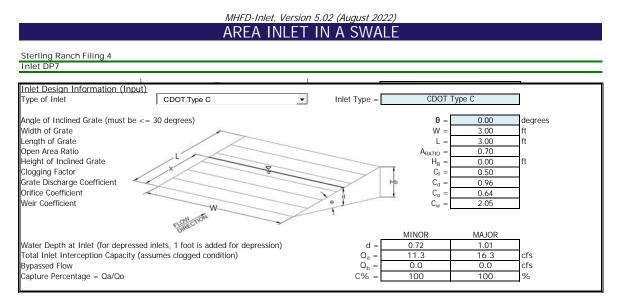

Design Information (Innut)		MINOD	MALOD	
CDOT Type R Curb Opening	- 1	MINOR	MAJOR Curb Opening	
Type of Inlet	Type =	21	1 5	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	7.1	7.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_o(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C_0 (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.43	0.45	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.85	0.86	1
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
		MINOR	MAJOR	
Tatal Inist Intercention Conscilus (consumer allogged condition)	0	12.2	13.5	cfs
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	12.2	25.9	cfs
WARNING: Inlet Capacity < Q Peak for Major Storm	Q PEAK REQUIRED =	12.0	20.9	ыз

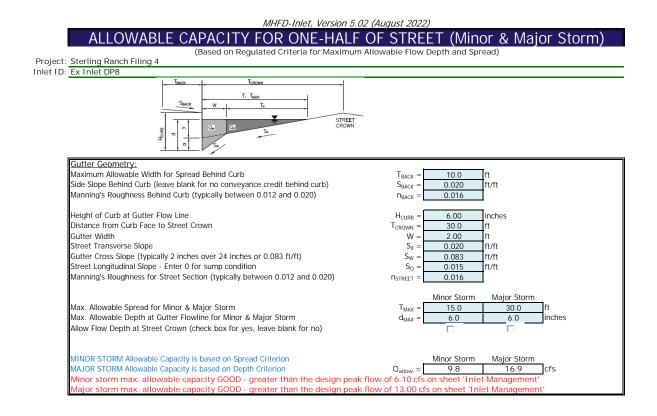


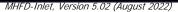


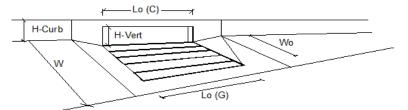
Design Information (Innut)		MINOD	MAJOD	
Design Information (Input) Type of Inlet	Type =	MINOR CDOT Type R	MAJOR Curb Opening	-
Local Depression (additional to continuous gutter depression 'a' from above)	<i>/</i> ·	3.00	3.00	inches
	a _{local} =		3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1		
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	_
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{o}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.50	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	-
Compiliation milet renormance reduction ractor for Long milets	Combination -	11/74	iny A	
	-	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.9	16.2	cfs
WARNING: Inlet Capacity < Q Peak for Major Storm	Q PEAK REQUIRED =	3.9	19.3	cfs

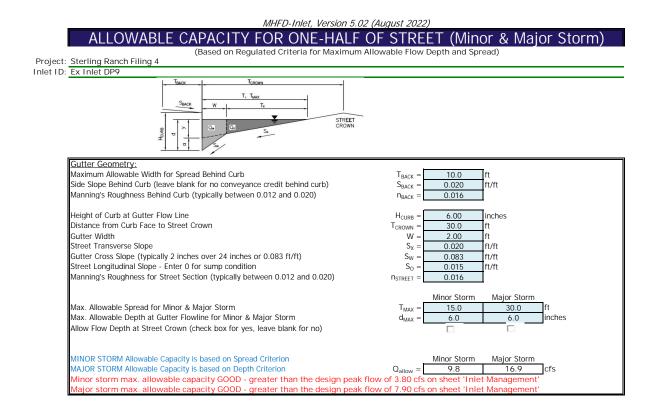


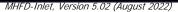


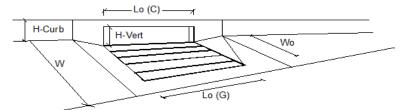

Design Information (Input) CDOT Type R Curb Opening	-	MINOR	MAJOR	-
l ype of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	8.0	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{0}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.50	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
· · · · · · · · · · · · · · · · · · ·	Combination			-
	_	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.9	16.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	2.0	7.3	cfs

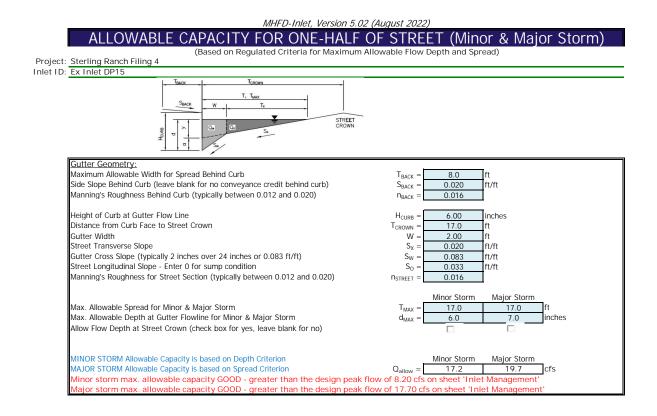

MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE

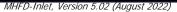


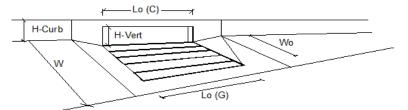

Warning 03: Velocity exceeds USDCM Volume L recommendation. Warning 04: Froude No. exceeds USDCM Volume L recommendation.

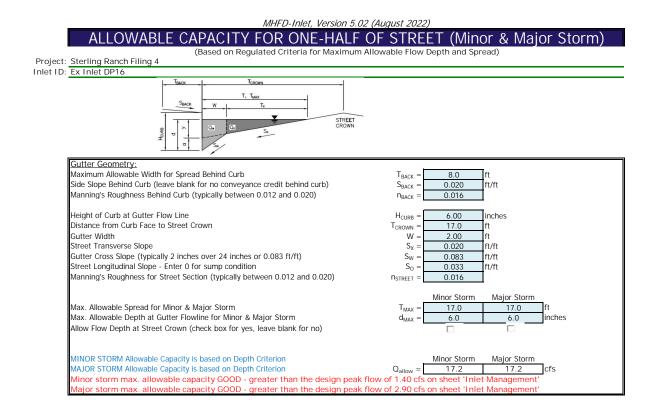


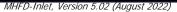


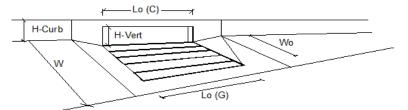

Design Information (Input) CDOT Type R Curb Opening	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.1	10.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.2	cfs
Capture Percentage = Q_a/Q_o	C% =	100	83	%

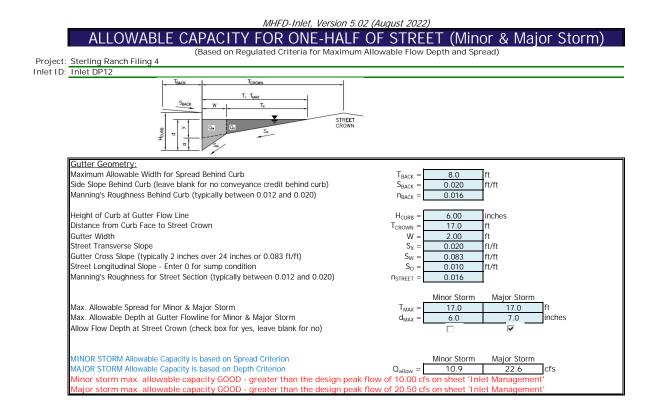


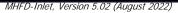


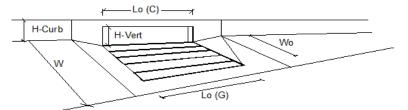

Design Information (Input) Type of Inlet	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.8	7.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.2	cfs
Capture Percentage = Q_a/Q_o	C% =	100	98	%

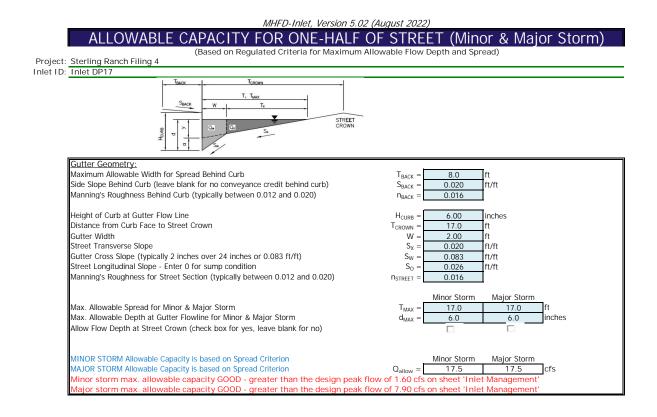


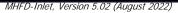


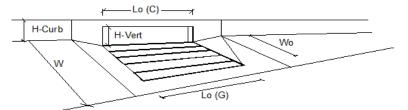

Design Information (Input) Type of Inlet	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.0	13.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.2	4.7	cfs
Capture Percentage = Q_a/Q_o	C% =	97	73	%

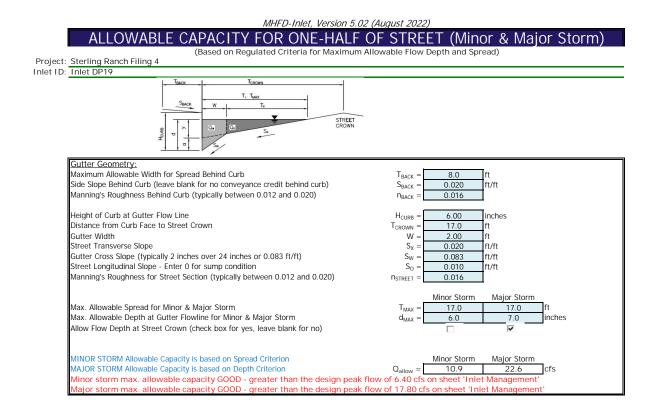


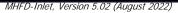


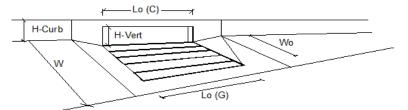

Design Information (Input) CDOT Type R Curb Opening	Type =	MINOR CDOT Type R	MAJOR Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.4	2.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o	C% =	100	100	%



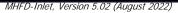


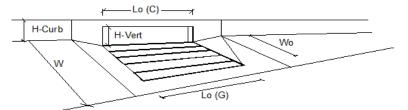

Design Information (Input) Type of Inlet	Type =	MINOR CDOT Type R	MAJOR Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	-	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.1	13.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.9	6.6	cfs
Capture Percentage = Q_a/Q_o	C% =	91	68	%



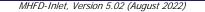


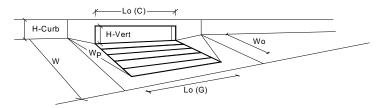

Design Information (Input) Type of Inlet CDOT Type R Curb Opening	Type =	MINOR CDOT Type R	MAJOR Curb Opening]
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	-	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.6	7.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.2	cfs
Capture Percentage = Q_a/Q_o	C% =	100	98	%

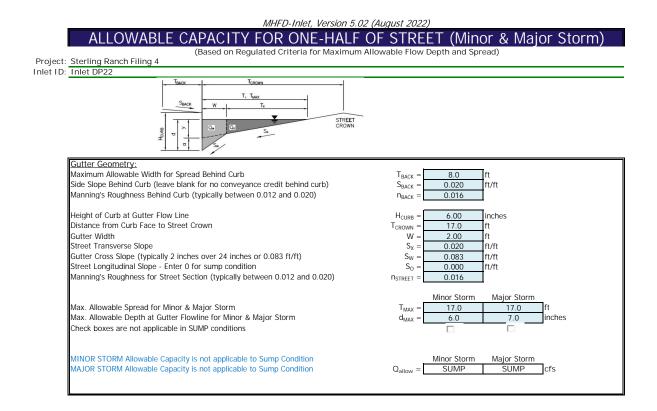


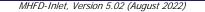


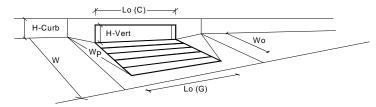

Design Information (Input) CDOT Type R Curb Opening	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.4	12.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	4.9	cfs
Capture Percentage = Q_a/Q_o	C% =	100	72	%



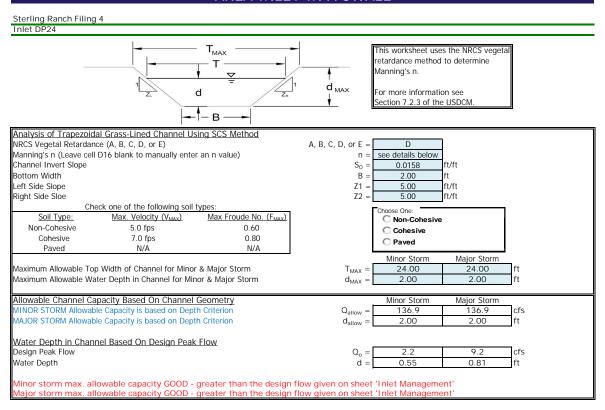


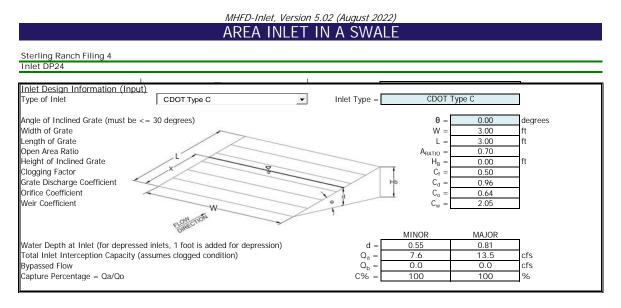

Design Information (Input) Type of Inlet CDOT Type R Curb Opening	Type =	MINOR CDOT Type R	MAJOR Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	-	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.0	11.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	3.2	cfs
Capture Percentage = Q _a /Q _o	C% =	99	78	%

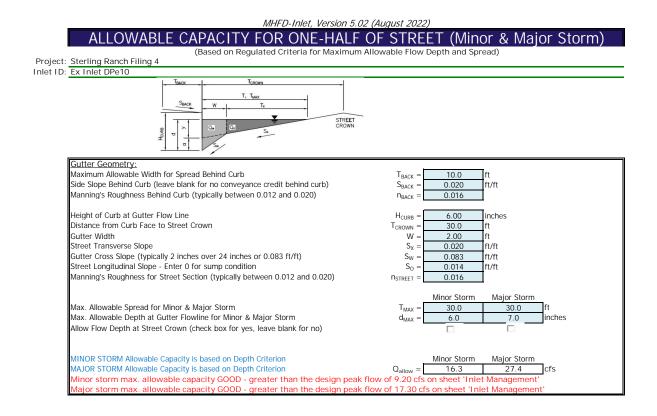




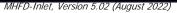
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.3	inches
Grate Information	-	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_0(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_0(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_0(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C_0 (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.44	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.86	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	6.5	13.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	3.8	12.6	cfs
The capacity is doob for white and wajor storms (>Q Feak)	- I LAK REQUIRED	5.0	12.0	355

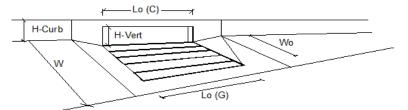

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)



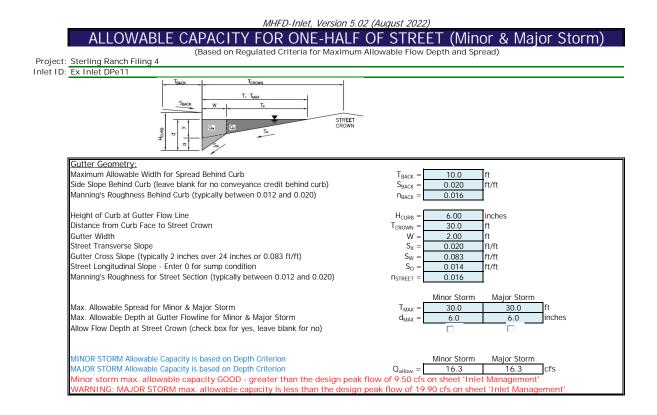

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	8.5	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_o(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.54	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.91	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.5	18.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	6.3	18.3	cfs

MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE

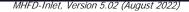


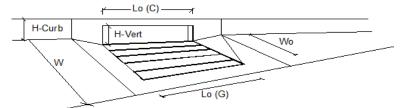


Warning 03: Velocity exceeds USDCM Volume L recommendation. Warning 04: Froude No. exceeds USDCM Volume L recommendation.

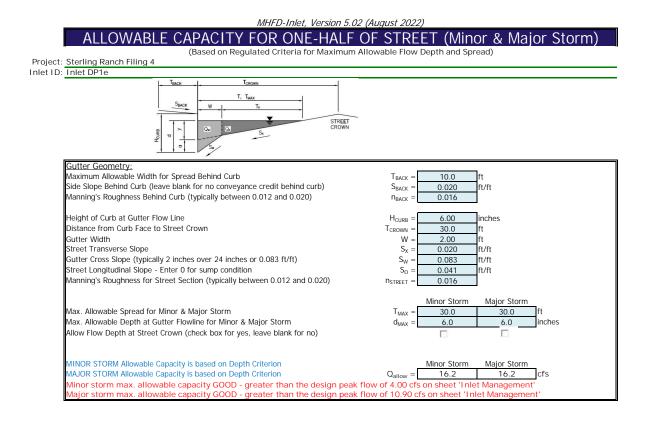


INLET ON A CONTINUOUS GRADE

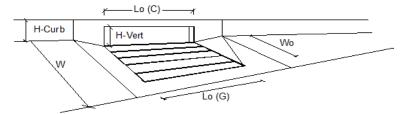


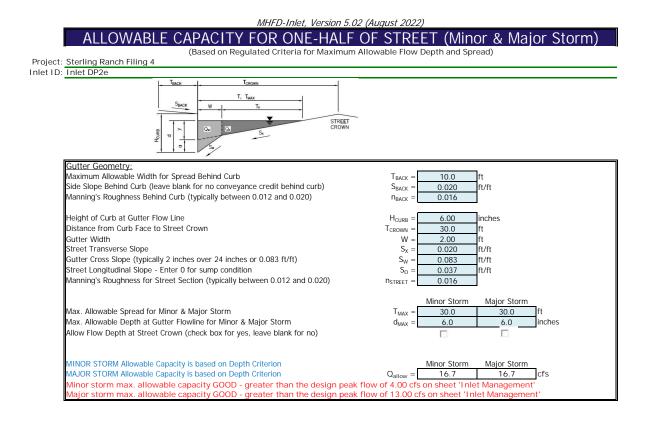


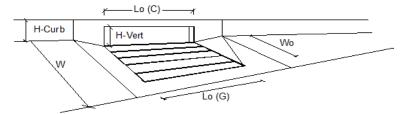
Design Information (Input) Type of Inlet	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.6	12.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.6	4.6	cfs
Capture Percentage = Q_a/Q_o	C% =	94	74	%



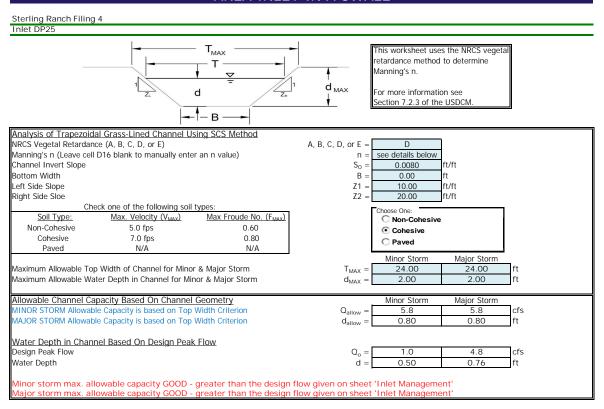
INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)

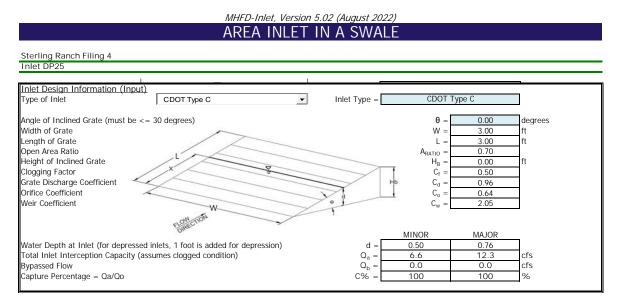



Design Information (Input) Type of Inlet	Type =	MINOR CDOT Type R	MAJOR Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM	-	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.8	13.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.7	6.2	cfs
Capture Percentage = Q_a/Q_o	C% =	93	69	%


INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)

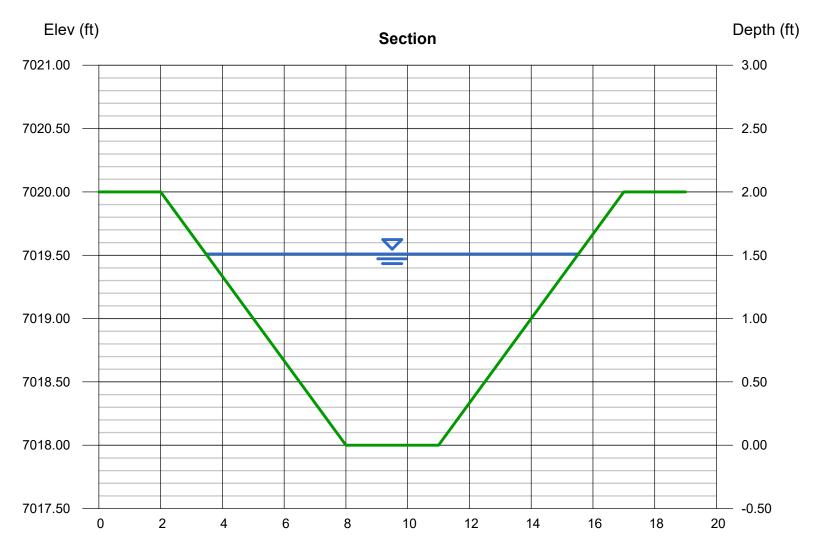
Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	=
Total Inlet Interception Capacity	Q =	4.0	9.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.1	cfs
Capture Percentage = Q_a/Q_o	C% =	100	90	%




INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	4.0	10.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.1	cfs
Capture Percentage = Q_a/Q_o	C% =	100	84	%

MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE



Warning 03: Velocity exceeds USDCM Volume L recommendation. Warning 04: Froude No. exceeds USDCM Volume L recommendation. Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jan 19 2023

Barbrarick FSD Overflow Channel Section A-A

Trapezoidal		Highlighted	
Bottom Width (ft)	= 3.00	Depth (ft)	= 1.51
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 85.40
Total Depth (ft)	= 2.00	Area (sqft)	= 11.37
Invert Elev (ft)	= 7018.00	Velocity (ft/s)	= 7.51
Slope (%)	= 0.50	Wetted Perim (ft)	= 12.55
N-Value	= 0.013	Crit Depth, Yc (ft)	= 1.76
		Top Width (ft)	= 12.06
Calculations		EGL (ft)	= 2.39
Compute by:	Known Q		
Known Q (cfs)	= 85.40		

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

Subdivision: Sterling Ranch Subdivision -Proposed Location: El Paso County Project Name: Sterling Ranch Filing No. 4 Project No.: 25188.11 Calculated By: ARJ Checked By: Date: 4/4/23

	S	STORM DRAIN SYSTEM		
	Barbarick Overflow		DESIGN POINT	Notes
Q ₁₀₀ (cfs):	85.4			Flows are the greater of proposed vs. future (Detained)
Conduit	Box Culvert			
D_c , Pipe Diameter (in):	N/A			
W, Box Width (ft):	3			
H, Box Height (ft):	3			
Y_t , Tailwater Depth (ft):	1.51			If unknown, use Y_t/D_c (or H)=0.4
Y_t/Dc or Y_t/H	0.50			
Q/D ^{2.5} or Q/(WH ^{3/2})	5.48			
Supercritical?	Yes			
Y _n , Normal Depth (ft) [Supercritical]:	1.00			
D_a , H_a (in) [Supercritical]:	2.00			$D_{a} = (D_{c} + Y_{n})/2$
Riprap d 50 (in) [Supercritical]:	4.48			
Riprap d_{50} (in) [Subcritical]:	N/A			
Required Riprap Size:	L			Fig. 9-38 or Fig. 9-36
<i>d</i> ₅₀ (in):	9			
Expansion Factor, $1/(2 \tan \theta)$:	6.00			Read from Fig. 9-35 or 9-36
θ:	0.08			
Erosive Soils?	No			
Area of Flow, A_t (ft ²):	12.20			$A_t = Q/V$
Length of Protection, L_p (ft):	30.5			L=(1/(2 tan θ))(At/Yt - D)
Min Length (ft)	9.0			Min L=3D or 3H
Max Length (ft)	30.0			Max L=10D or 10H
Min Bottom Width, T (ft):	8.1			$T=2^{*}(L_{p}^{*}tan\theta)+W$
Design Length (ft)	30.0			
Design Width (ft)	8.1			
Riprap Depth (in)	18			Depth=2(d ₅₀)
Type II Bedding Depth (in)*	6			*Not used if Soil Riprap
Cutoff Wall	Yes			
Cutoff Wall Depth (ft)	24.0			Depth of Riprap and Base
Cutoff Wall Width (ft)	#N/A			

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).

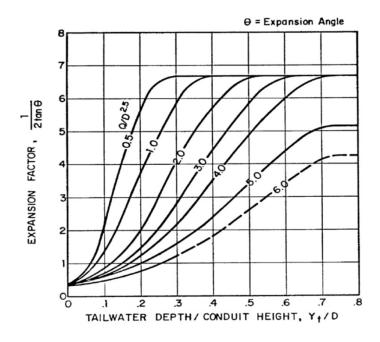


Figure 9-35. Expansion factor for circular conduits

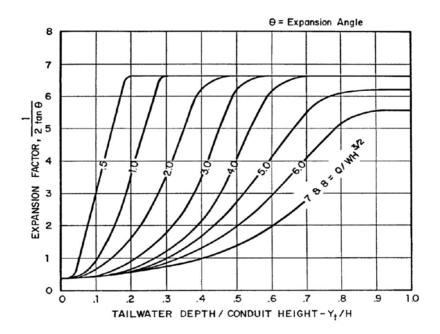
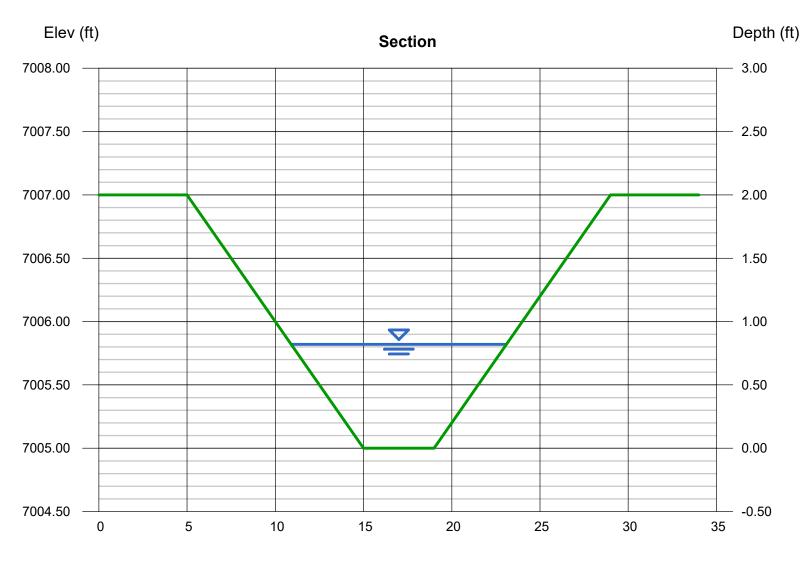


Figure 9-36. Expansion factor for rectangular conduits

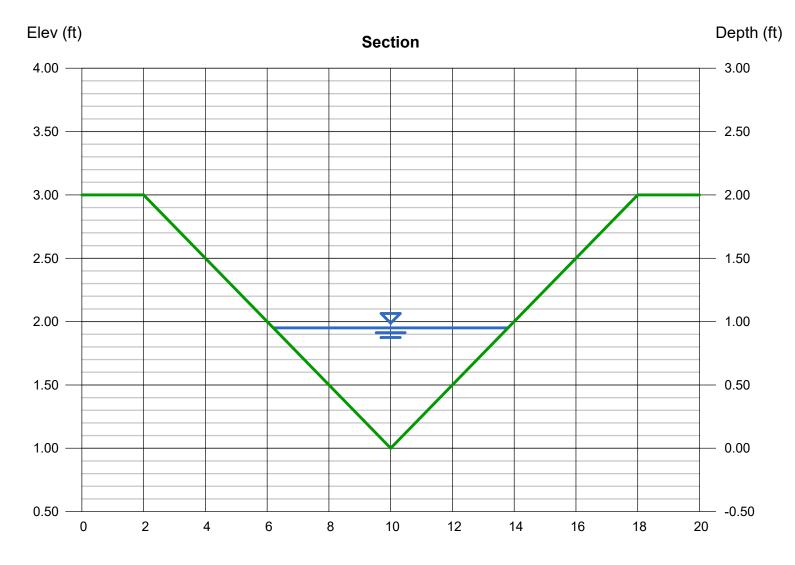

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Jan 20 2023

Swale Section Point 2.i -Section BB

Trapezoidal	

Trapezoidal		Highlighted	
Bottom Width (ft)	= 4.00	Depth (ft)	= 0.82
Side Slopes (z:1)	= 5.00, 5.00	Q (cfs)	= 25.70
Total Depth (ft)	= 2.00	Area (sqft)	= 6.64
Invert Elev (ft)	= 7005.00	Velocity (ft/s)	= 3.87
Slope (%)	= 2.00	Wetted Perim (ft)	= 12.36
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.79
		Top Width (ft)	= 12.20
Calculations		EGL (ft)	= 1.05
Compute by:	Known Q		
Known Q (cfs)	= 25.70		

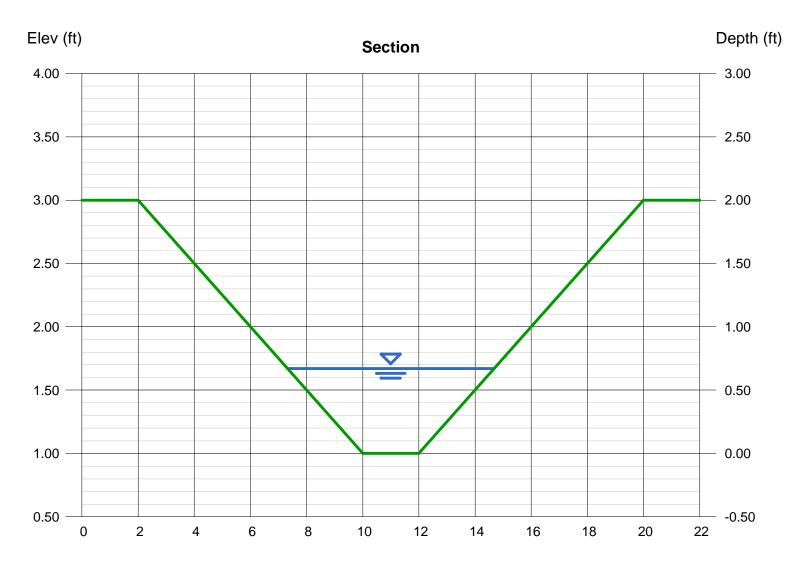

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Apr 27 2023

Swale Section Point 7- Section CC

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 0.95
Total Depth (ft)	= 2.00	Q (cfs)	= 12.80
		Area (sqft)	= 3.61
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.55
Slope (%)	= 2.00	Wetted Perim (ft)	= 7.83
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.92
		Top Width (ft)	= 7.60
Calculations		EGL (ft)	= 1.15
Compute by:	Known Q		
Known Q (cfs)	= 12.80		

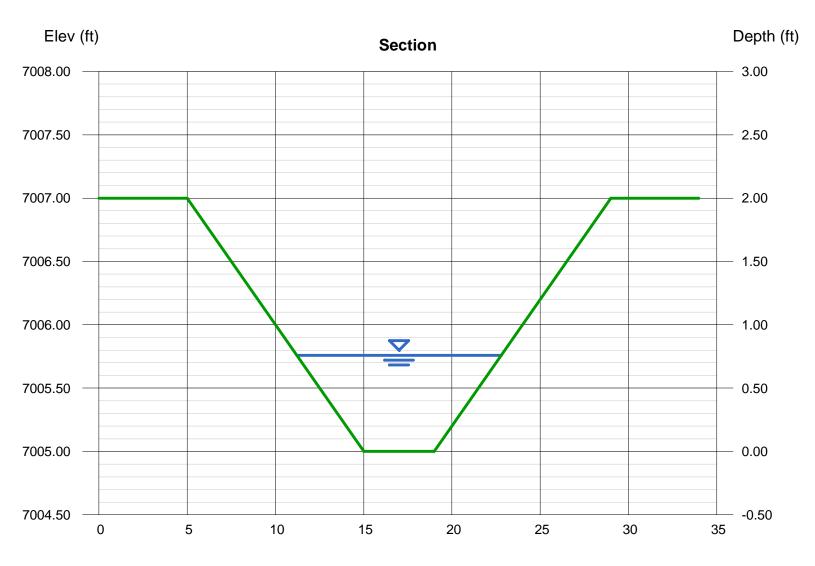


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Nov 16 2022

Swale Section Point 24 -Section DD

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.67
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 9.200
Total Depth (ft)	= 2.00	Area (sqft)	= 3.14
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.93
Slope (%)	= 1.59	Wetted Perim (ft)	= 7.52
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.60
		Top Width (ft)	= 7.36
Calculations		EGL (ft)	= 0.80
Compute by:	Known Q		
Known Q (cfs)	= 9.20		



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Nov 17 2022

Swale Section Point 3.i -Section EE

Trapezoidal		Highlighted	
Bottom Width (ft)	= 4.00	Depth (ft)	= 0.76
Side Slopes (z:1)	= 5.00, 5.00	Q (cfs)	= 19.40
Total Depth (ft)	= 2.00	Area (sqft)	= 5.93
Invert Elev (ft)	= 7005.00	Velocity (ft/s)	= 3.27
Slope (%)	= 1.50	Wetted Perim (ft)	= 11.75
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.68
		Top Width (ft)	= 11.60
Calculations		EGL (ft)	= 0.93
Compute by:	Known Q		
Known Q (cfs)	= 19.40		

Froude Number Calculation's

Sterling Ranch Filing No.4

Froude Number Equation:

$$Fr = \frac{v}{(gh_m)^{1/2}}$$

Where:

g= acceleration of gravity (32.2 ft/s^2)

h_m=hydraulic mean depth (ft)

v= velocity (ft/s)

Hydraulic Mean Depth Equation:

$$h_m = \frac{A}{T}$$

Where:

A= cross sectional area of filled flow in channel (ft^2)

T= width of channel open to surface (ft)

Inlet DP2.i Swale Section BB Calculations:

Parameters: $A = 6.64 \text{ ft}^2$, T = 12.20 ft, v = 3.87 ft/s

There for:

$$h_m = \frac{6.64}{12.2} = 0.54 ft$$
$$Fr = \frac{3.87}{(32.2*0.54)^{1/2}} = 0.92$$

For cohesive soils maximum Froude Number is 0.80.

Type L Soil Riprap used for this swale.

Inlet DP7 Swale Section CC Calculations:

Parameters: $A = 3.048 \text{ ft}^2$, T = 7.04 ft, v = 4.13 ft/s

$$h_m = \frac{3.08}{7.04} = 0.44 \, ft$$

$$Fr = \frac{4.13}{(32.2*0.44)^{1/2}} = 1.09$$

For cohesive soils maximum Froude Number is 0.80.

Type VL Soil Riprap used for this swale

There for:

Inlet DP 24 Swale Section DD Calculations:

Parameters: $A = 3.14 \text{ ft}^2$, T = 7.36 ft, v = 2.93 ft/s

There for:

$$h_m = \frac{3.14}{7.36} = 0.42 ft$$
$$Fr = \frac{2.93}{(32.2*0.42)^{1/2}} = 0.79$$

For cohesive soils maximum Froude Number is 0.80.

Inlet DP 3.i Swale Section EE Calculations:

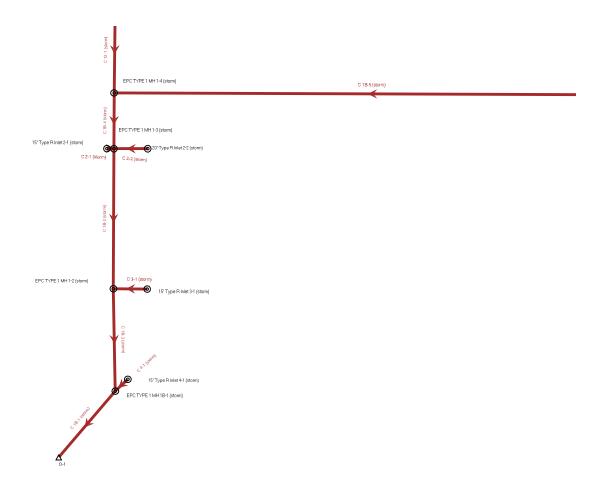
Parameters: $A = 5.92 \text{ ft}^2$, T = 11.60 ft, v = 3.27 ft/s

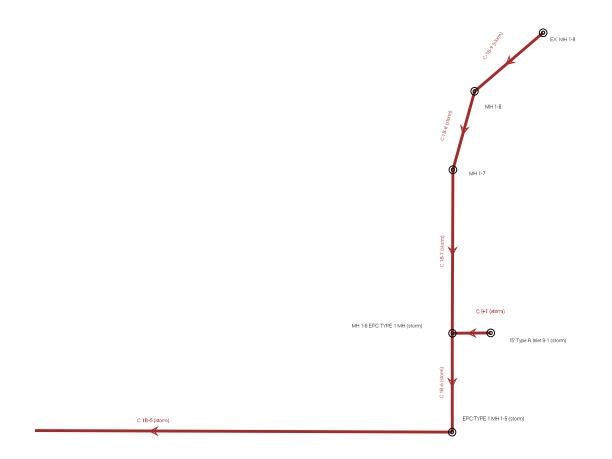
There for:

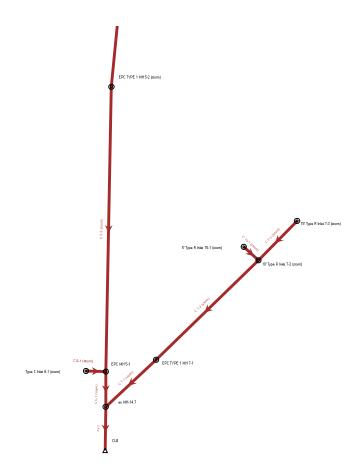
$$h_m = \frac{5.92}{11.60} = 0.51 \, ft$$

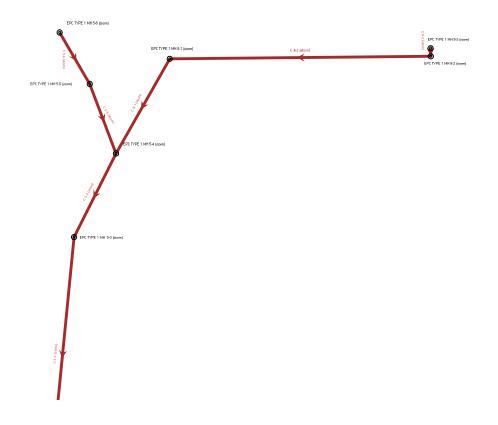
$$Fr = \frac{3.27}{(32.2*0.51)^{1/2}} = \frac{0.80}{0.80}$$

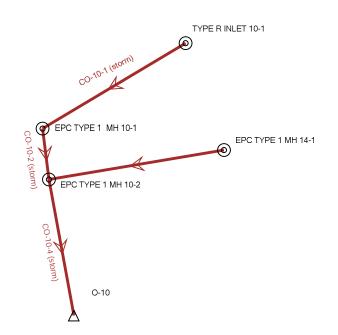
For cohesive soils maximum Froude Number is 0.80.


Figure 8-22. Swale stability chart; 2- to 4-foot bottom width and side slopes between 5:1 and 10:1 (Note: Riprap classifications refer to gradation for riprap used in soil riprap or void-filled riprap. See Figure 8-34 for gradations.) (Source: Muller Engineering Company)


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

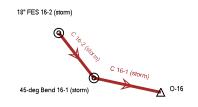

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Scenario: Sterling Ranch Fil. No. 4 -100 Year

0-13 C 13-1 (Storm) Type C-13-2

2518811 Filing No 4 StormCAD model.stsw 4/25/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Scenario: Sterling Ranch Fil. No. 4 -5 Year

2518811 Filing No 4 StormCAD model.stsw 4/28/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Scenario: Sterling Ranch Fil. No. 4 -5 Year Current Time Step: 0.000 h Conduit FlexTable: Combined Pipe/Node Report

Upstream Structure	Label	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	HGL (In) (ft)	HGL (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Velocity (ft/s)	Manning's n	Upstream Structure Headloss Coefficient
EPC TYPE 1 MH 1B-1 (storm)	C 1B-1 (storm)	47.40	64.87	42.0	74.8	0.004	6,970.28	6,969.97	6,979.57	6,973.84	6,972.50	6,972.12	6,973.34	6,973.03	7.36	0.013	0.400
EPC TYPE 1 MH 1-2 (storm)	C 1B-2 (storm)	42.50	71.03	42.0	92.3	0.005	6,971.04	6,970.58	6,979.46	6,979.57	6,973.07	6,972.84	6,973.91	6,973.49	7.71	0.013	0.400
EPC TYPE 1 MH 1-3 (storm)	C 1B-3 (storm)	39.60	71.06	42.0	124.3	0.005	6,971.96	6,971.34	6,980.54	6,979.46	6,973.92	6,973.41	6,974.71	6,974.10	7.59	0.013	0.400
EPC TYPE 1 MH 1-4 (storm)	C 1B-4 (storm)	29.20	70.49	42.0	46.8	0.005	6,972.49	6,972.26	6,981.10	6,980.54	6,974.16	6,974.24	6,974.81	6,974.66	6.98	0.013	0.500
EPC TYPE 1 MH 1-5 (storm)	C 1B-5 (storm)	22.80	84.88	36.0	470.1	0.016	6,981.88	6,974.27	6,988.70	6,981.10	6,983.42	6,975.33	6,984.03	6,976.94	10.18	0.013	1.320
MH 1-6 EPC TYPE 1 MH (storm)	C 1B-6 (storm)	22.80	78.19	36.0	76.1	0.014	6,983.13	6,982.08	6,989.81	6,988.70	6,984.67	6,984.22	6,985.27	6,984.50	9.59	0.013	1.020
MH 1-7	C 1B-7 (storm)	21.50	66.66	36.0	110.1	0.010	6,984.53	6,983.43	6,991.32	6,989.81	6,986.02	6,985.29	6,986.60	6,985.63	8.41	0.013	0.400
MH 1-8	C 1B-8 (storm)	21.50	66.65	36.0	72.1	0.010	6,985.55	6,984.83	6,992.17	6,991.32	6,987.04	6,986.03	6,987.63	6,987.06	8.41	0.013	0.400
15' Type R Inlet 2-1 (storm)	C 2-1 (storm)	7.00	24.57	18.0	4.8	0.055	6,976.04	6,975.78	6,980.90	6,980.54	6,977.06	6,976.55	6,977.52	6,977.47	11.98	0.013	0.050
15' Type R Inlet 2-2 (storm)	C 2-2 (storm)	6.40	41.10	24.0	27.0	0.033	6,976.17	6,975.28	6,980.82	6,980.54	6,977.07	6,975.86	6,977.41	6,976.97	9.51	0.013	0.050
15' Type R Inlet 3-1 (storm)	C 3-1 (storm)	3.80	14.48	18.0	28.4	0.019	6,975.13	6,974.59	6,979.81	6,979.46	6,975.88	6,975.14	6,976.17	6,975.80	6.90	0.013	0.050
15' Type R Inlet 4-1 (storm)	C 4-1 (storm)	6.30	14.68	18.0	9.2	0.020	6,972.76	6,972.58	6,979.58	6,979.57	6,973.73	6,973.37	6,974.15	6,974.06	7.99	0.013	0.050
EPC MH 5-1	C 5-1 (storm)	30.00	211.73	48.0	39.7	0.022	6,988.34	6,987.48	6,996.65	6,997.00	6,989.97	6,989.73	6,990.58	6,989.99	11.92	0.013	1.020
EPC TYPE 1 MH 5-2 (storm)	C 5-2 (storm)	29.00	108.21	36.0	321.4	0.026	6,997.80	6,989.34	7,008.13	6,996.65	6,999.54	6,990.40	7,000.26	6,993.02	12.97	0.013	0.500
EPC TYPE 1 MH 5-3 (storm)	C 5-3 (storm)	29.00	92.98	36.0	287.1	0.019	7,003.68	6,998.10	7,016.92	7,008.13	7,005.42	6,999.90	7,006.14	7,000.57	11.62	0.013	0.250
EPC TYPE 1 MH 5-4 (storm)	C 5-4 (storm)	29.00	83.06	36.0	92.2	0.016	7,005.41	7,003.98	7,017.77	7,016.92	7,007.15	7,005.25	7,007.87	7,006.87	10.70	0.013	0.520
EPC TYPE 1 MH 5-5 (storm)	C 5-5 (storm)	22.30	77.85	36.0	102.0	0.014	7,007.10	7,005.71	7,020.52	7,017.77	7,008.62	7,007.53	7,009.22	7,007.91	9.51	0.013	0.050
EPC TYPE 1 MH 5-6 (storm)	C 5-6 (storm)	22.30	185.04	36.0	61.5	0.077	7,012.13	7,007.40	7,022.78	7,020.52	7,013.65	7,008.16	7,014.25	7,012.09	17.68	0.013	0.500
Type C Inlet 6-1 (storm)	C 6-1 (storm)	3.50	10.26	18.0	18.9	0.010	6,990.97	6,990.79	6,995.95	6,996.65	6,991.68	6,991.41	6,991.96	6,991.81	5.26	0.013	0.050
EPC TYPE 1 MH 7-1	C 7-1 (storm)	16.90	81.12	36.0	73.0	0.015	6,989.56	6,988.48	6,999.05	6,997.00	6,990.87	6,989.44	6,991.37	6,990.62	9.07	0.013	0.050
10' Type R Inlet 7-2 (storm)	C 7-2 (storm)	16.90	44.37	36.0	171.7	0.004	6,990.62	6,989.86	7,000.82	6,999.05	6,991.93	6,991.14	6,992.43	6,991.68	5.85	0.013	1.020
15' Type R Inlet 7-3 (storm)	C 7-3 (storm)	12.00	16.19	24.0	60.5	0.005	6,991.93	6,991.62	7,001.62	7,000.82	6,993.21	6,992.86	6,993.71	6,993.39	5.64	0.013	0.050
EPC TYPE 1 MH 8-1 (storm)	C 8-1 (storm)	14.60	103.26	36.0	131.4	0.024	7,008.86	7,005.71	7,021.55	7,017.77	7,010.08	7,007.53	7,010.53	7,007.69	10.33	0.013	0.640
EPC TYPE 1 MH 8-2 (storm)	C 8-2 (storm)	14.60	104.55	36.0	285.7	0.025	7,016.18	7,009.16	7,022.25	7,021.55	7,017.40	7,009.92	7,017.85	7,011.60	10.42	0.013	1.320
EPC TYPE 1 MH 9-3 (storm)	C 8-3 (storm)	14.60	41.01	30.0	12.0	0.010	7,017.30	7,017.18	7,022.41	7,022.25	7,018.59	7,018.31	7,019.10	7,019.02	7.65	0.013	0.500
15' Type R Inlet 9-1 (storm)	C 9-1 (storm)	1.60	14.34	18.0	27.9	0.019	6,985.15	6,984.63	6,990.17	6,989.81	6,985.63	6,985.29	6,985.80	6,985.36	5.36	0.013	0.050
MH 12-1	C 12-1 (storm)	9.10	32.76	24.0	73.9	0.021	6,976.82	6,975.27	6,981.92	6,981.10	6,977.90	6,976.00	6,978.33	6,977.20	8.92	0.013	1.020
12-2 15' TYPE R INLET	C 12-2 (storm)	9.10	26.30	24.0	29.6	0.014	6,977.52	6,977.12	6,982.28	6,981.92	6,978.60	6,978.34	6,979.03	6,978.66	7.61	0.013	1.020
Type C-13-2	C 13-1)Storm)	2.20	9.87	24.0	63.0	0.002	6,972.05	6,971.93	6,980.26	6,976.65	6,972.68	6,972.45	6,972.78	6,972.63	2.53	0.013	0.050
5' Type R Inlet 15-1 (storm)	C 15-1 (storm)	3.90	10.86	18.0	12.2	0.011	6,992.25	6,992.12	7,000.89	7,000.82	6,993.01	6,992.77	6,993.30	6,993.21	5.64	0.013	0.050
45-deg Bend 16-1 (storm)	C 16-1 (storm)	1.00	21.54	18.0	25.7	0.042	6,972.62	6,971.54	6,978.69	6,979.03	6,972.99	6,971.76	6,973.13	6,972.36	6.21	0.013	0.400
18" FES 16-2 (storm)	C 16-2 (storm)	1.00	21.75	18.0	35.9	0.043	6,974.16	6,972.62	6,974.16	6,978.69	6,974.53	6,973.05	6,974.67	6,973.14	6.26	0.013	0.050
11.1 - 15' Type R Inlet	C- 11.1	8.00	34.75	24.0	91.1	0.024	6,967.49	6,965.34	6,973.29	6,969.71	6,968.50	6,968.27	6,968.89	6,968.37	8.99	0.013	0.250
11.2 - 15' Type R Inlet	C- 11.2	4.00	8.71	18.0	75.7	0.007	6,968.51	6,967.99	6,973.29	6,973.29	6,969.28	6,968.70	6,969.58	6,969.07	4.82	0.013	1.000
EX. MH 1-9	C-1B-9 (storm)	21.50	100.93	36.0	96.5	0.023	6,988.06	6,985.85	6,994.07	6,992.17	6,989.55	6,986.82	6,990.13	6,988.67	11.35	0.013	0.400
TYPE R INLET 10-1	CO-10-1 (storm)	11.60	31.77	24.0	64.9	0.020	7,005.73	7,004.45	7,005.77	7,011.29	7,006.95	7,005.87	7,007.47	7,006.24	9.32	0.013	0.050
EPC TYPE 1 MH 10-1	CO-10-2 (storm)	11.60	32.06	24.0	43.8	0.020	7,004.13	7,003.25	7,011.29	7,010.44	7,005.35	7,004.13	7,005.87	7,005.31	9.38	0.013	1.000
EPC TYPE 1 MH 14-1	CO-10-3 (storm)	7.10	23.94	18.0	82.0	0.052	7,008.01	7,003.75	7,008.00	7,010.44	7,009.04	7,004.31	7,009.51	7,006.48	11.81	0.013	0.050
EPC TYPE 1 MH 10-2	CO-10-4 (storm)	16.90	94.22	36.0	121.8	0.020	7,002.25	6,999.82	7,010.44	7,010.00	7,003.56	7,000.68	7,004.06	7,002.26	10.09	0.013	1.320
ex MH-14.7	ex-1	39.80	190.20	48.0	57.6	0.018	6,987.48	6,986.47	6,997.00	6,990.00	6,989.36	6,987.83	6,990.09	6,989.56	11.97	0.013	0.500

X:\2510000.all\2518811\StormCAD\2518811 Filing No 4 StormCAD model.stsw

Scenario: Sterling Ranch Fil. No. 4 -100 Year Current Time Step: 0.000 h Conduit FlexTable: Combined Pipe/Node Report

Upstream Structure	Label	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	HGL (In) (ft)	HGL (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Velocity (ft/s)	Manning's n	Upstream Structure Headloss Coefficient
EPC TYPE 1 MH 1B-1 (storm)	C 1B-1 (storm)	106.20	64.87	42.0	74.8	0.004	6,970.28	6,969.97	6,979.57	6,973.84	6,976.10	6,975.27	6,978.00	6,977.16	11.04	0.013	0.400
EPC TYPE 1 MH 1-2 (storm)	C 1B-2 (storm)	91.30	71.03	42.0	92.3	0.005	6,971.04	6,970.58	6,979.46	6,979.57	6,977.62	6,976.86	6,979.02	6,978.26	9.49	0.013	0.400
EPC TYPE 1 MH 1-3 (storm)	C 1B-3 (storm)	81.40	71.06	42.0	124.3	0.005	6,971.96	6,971.34	6,980.54	6,979.46	6,978.99	6,978.18	6,980.11	6,979.29	8.46	0.013	0.400
EPC TYPE 1 MH 1-4 (storm)	C 1B-4 (storm)	62.00	70.49	42.0	46.8	0.005	6,972.49	6,972.26	6,981.10	6,980.54	6,979.62	6,979.44	6,980.26	6,980.08	6.44	0.013	0.500
EPC TYPE 1 MH 1-5 (storm)	C 1B-5 (storm)	52.20	84.88	36.0	470.1	0.016	6,981.88	6,974.27	6,988.70	6,981.10	6,984.23	6,979.94	6,985.43	6,980.79	12.62	0.013	1.320
MH 1-6 EPC TYPE 1 MH (storm)	C 1B-6 (storm)	52.20	78.19	36.0	76.1	0.014	6,983.13	6,982.08	6,989.81	6,988.70	6,986.29	6,985.82	6,987.13	6,986.67	7.38	0.013	1.020
MH 1-7	C 1B-7 (storm)	44.90	66.66	36.0	110.1	0.010	6,984.53	6,983.43	6,991.32	6,989.81	6,987.65	6,987.15	6,988.28	6,987.78	6.35	0.013	0.400
MH 1-8	C 1B-8 (storm)	44.90	66.65	36.0	72.1	0.010	6,985.55	6,984.83	6,992.17	6,991.32	6,988.03	6,987.90	6,988.83	6,988.53	10.12	0.013	0.400
15' Type R Inlet 2-1 (storm)	C 2-1 (storm)	11.70	24.57	18.0	4.8	0.055	6,976.04	6,975.78	6,980.90	6,980.54	6,979.50	6,979.44	6,980.18	6,980.12	6.62	0.013	0.050
15' Type R Inlet 2-2 (storm)	C 2-2 (storm)	12.90	41.10	24.0	27.0	0.033	6,976.17	6,975.28	6,980.82	6,980.54	6,979.53	6,979.44	6,979.79	6,979.70	4.11	0.013	0.050
15' Type R Inlet 3-1 (storm)	C 3-1 (storm)	12.60	14.48	18.0	28.4	0.019	6,975.13	6,974.59	6,979.81	6,979.46	6,978.59	6,978.18	6,979.38	6,978.97	7.13	0.013	0.050
15' Type R Inlet 4-1 (storm)	C 4-1 (storm)	18.30	14.68	18.0	9.2	0.020	6,972.76	6,972.58	6,979.58	6,979.57	6,977.14	6,976.86	6,978.81	6,978.53	10.36	0.013	0.050
EPC MH 5-1	C 5-1 (storm)	93.50	211.73	48.0	39.7	0.022	6,988.34	6,987.48	6,996.65	6,997.00	6,991.27	6,991.58	6,992.67	6,992.44	16.32	0.013	0.600
EPC TYPE 1 MH 5-2 (storm)	C 5-2 (storm)	88.70	108.21	36.0	321.4	0.026	6,997.80	6,989.34	7,008.13	6,996.65	7,000.64	6,991.41	7,003.19	6,995.94	17.08	0.013	0.500
EPC TYPE 1 MH 5-3 (storm)	C 5-3 (storm)	88.70	92.98	36.0	287.1	0.019	7,003.68	6,998.10	7,016.92	7,008.13	7,006.99	7,001.91	7,009.44	7,004.36	12.55	0.013	0.250
EPC TYPE 1 MH 5-4 (storm)	C 5-4 (storm)	88.70	83.06	36.0	92.2	0.016	7,005.41	7,003.98	7,017.77	7,016.92	7,009.23	7,007.60	7,011.68	7,010.05	12.55	0.013	0.900
EPC TYPE 1 MH 5-5 (storm)	C 5-5 (storm)	55.60	77.85	36.0	102.0	0.014	7,007.10	7,005.71	7,020.52	7,017.77	7,012.15	7,011.44	7,013.11	7,012.40	7.87	0.013	0.050
EPC TYPE 1 MH 5-6 (storm)	C 5-6 (storm)	55.60	185.04	36.0	61.5	0.077	7,012.13	7,007.40	7,022.78	7,020.52	7,014.55	7,012.19	7,015.84	7,013.16	22.89	0.013	0.500
Type C Inlet 6-1 (storm)	C 6-1 (storm)	12.80	10.26	18.0	18.9	0.010	6,990.97	6,990.79	6,995.95	6,996.65	6,992.49	6,992.13	6,993.30	6,993.05	7.24	0.013	0.500
EPC TYPE 1 MH 7-1	C 7-1 (storm)	35.60	81.12	36.0	73.0	0.015	6,989.56	6,988.48	6,999.05	6,997.00	6,991.50	6,991.58	6,992.34	6,991.97	11.10	0.013	0.050
10' Type R Inlet 7-2 (storm)	C 7-2 (storm)	35.60	44.37	36.0	171.7	0.004	6,990.62	6,989.86	7,000.82	6,999.05	6,992.65	6,991.80	6,993.41	6,992.64	6.98	0.013	0.050
15' Type R Inlet 7-3 (storm)	C 7-3 (storm)	13.50	16.19	24.0	60.5	0.005	6,991.93	6,991.62	7,001.62	7,000.82	6,993.33	6,992.94	6,993.84	6,993.53	5.77	0.013	0.050
EPC TYPE 1 MH 8-1 (storm)	C 8-1 (storm)	52.80	103.26	36.0	131.4	0.024	7,008.86	7,005.71	7,021.55	7,017.77	7,012.26	7,011.44	7,013.13	7,012.30	7.47	0.013	0.640
EPC TYPE 1 MH 8-2 (storm)	C 8-2 (storm)	52.80	104.55	36.0	285.7	0.025	7,016.18	7,009.16	7,022.25	7,021.55	7,018.54	7,012.82	7,019.76	7,013.68	14.83	0.013	1.320
EPC TYPE 1 MH 9-3 (storm)	C 8-3 (storm)	52.80	41.01	30.0	12.0	0.010	7,017.30	7,017.18	7,022.41	7,022.25	7,020.35	7,020.15	7,022.14	7,021.94	10.76	0.013	0.500
15' Type R Inlet 9-1 (storm)	C 9-1 (storm)	7.70	14.34	18.0	27.9	0.019	6,985.15	6,984.63	6,990.17	6,989.81	6,987.30	6,987.15	6,987.59	6,987.44	4.36	0.013	0.050
MH 12-1	C 12-1 (storm)	13.90	32.76	24.0	73.9	0.021	6,976.82	6,975.27	6,981.92	6,981.10	6,980.22	6,979.94	6,980.52	6,980.24	4.42	0.013	1.020
12-2 15' TYPE R INLET	C 12-2 (storm)	13.90	26.30	24.0	29.6	0.014	6,977.52	6,977.12	6,982.28	6,981.92	6,980.64	6,980.53	6,980.95	6,980.83	4.42	0.013	1.020
Type C-13-2	C 13-1)Storm)	9.10	9.87	24.0	63.0	0.002	6,972.05	6,971.93	6,980.26	6,976.65	6,977.20	6,977.10	6,977.33	6,977.23	2.90	0.013	0.050
5' Type R Inlet 15-1 (storm)	C 15-1 (storm)	9.30	10.86	18.0	12.2	0.011	6,992.25	6,992.12	7,000.89	7,000.82	6,993.43	6,993.22	6,994.03	6,993.92	6.91	0.013	0.050
45-deg Bend 16-1 (storm)	C 16-1 (storm)	5.00	21.54	18.0	25.7	0.042	6,972.62	6,971.54	6,978.69	6,979.03	6,974.85	6,974.79	6,974.97	6,974.91	2.83	0.013	0.400
18" FES 16-2 (storm)	C 16-2 (storm)	5.00	21.75	18.0	35.9	0.043	6,974.16	6,972.62	6,974.16	6,978.69	6,975.02	6,974.90	6,975.37	6,975.02	10.00	0.013	0.050
11.1 - 15' Type R Inlet	C- 11.1	20.70	34.75	24.0	91.1	0.024	6,967.49	6,965.34	6,973.29	6,969.71	6,970.71	6,969.95	6,971.39	6,970.62	6.59	0.013	0.080
11.2 - 15' Type R Inlet	C- 11.2	9.80	8.71	18.0	75.7	0.007	6,968.51	6,967.99	6,973.29	6,973.29	6,971.43	6,970.77	6,971.90	6,971.24	5.55	0.013	0.050
EX. MH 1-9	C-1B-9 (storm)	44.90	100.93	36.0	96.5	0.023	6,988.06	6,985.85	6,994.07	6,992.17	6,990.24	6,988.35	6,991.27	6,989.14	13.86	0.013	0.400
TYPE R INLET 10-1	CO-10-1 (storm)	25.70	31.77	24.0	64.9	0.020	7,005.73	7,004.45	7,005.77	7,011.29	7,007.99	7,007.15	7,009.03	7,008.19	8.18	0.013	0.050
EPC TYPE 1 MH 10-1	CO-10-2 (storm)	25.70	32.06	24.0	43.8	0.020	7,004.13	7,003.25	7,011.29	7,010.44	7,006.11	7,005.55	7,007.15	7,006.59	11.34	0.013	1.000
EPC TYPE 1 MH 14-1	CO-10-3 (storm)	19.40	23.94	18.0	82.0	0.052	7,008.01	7,003.75	7,008.00	7,010.44	7,009.47	7,005.55	7,011.37	7,007.42	15.09	0.013	0.050
EPC TYPE 1 MH 10-2	CO-10-4 (storm)	40.20	94.22	36.0	121.8	0.020	7,002.25	6,999.82	7,010.44	7,010.00	7,004.31	7,002.98	7,005.25	7,003.48	12.80	0.013	1.320
ex MH-14.7	ex-1	114.90	190.20	48.0	57.6	0.018	6,987.48	6,986.47	6,997.00	6,990.00	6,990.71	6,989.03	6,992.45	6,991.88	15.85	0.013	0.500

X:\2510000.all\2518811\StormCAD\2518811 Filing No 4 StormCAD model.stsw

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	GAG JR ENGINEERING	
Company: Date:	April 5, 2023	
Project:	Sterling Ranch Filing No.4 - Forebay #2	
Location:	EL PASO COUNTY	
4. Dania Charana I	(-)	
1. Basin Storage		
	perviousness of Tributary Area, I _a	l _a = 73.0 %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i =
C) Contributing	y Watershed Area	Area = 2.150 ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = 0.43 in
		Choose One
E) Design Con (Select EUR)	cept V when also designing for flood control)	Water Quality Capture Volume (WQCV)
		O Excess Urban Runoff Volume (EURV)
F) Design Volu	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} =ac-ft
	1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
	heds Outside of the Denver Region,	V _{DESIGN OTHER} = 0.052 ac-ft
	ity Capture Volume (WQCV) Design Volume $_{R} = (d_{6}^{*}(V_{DESIGN}0.43))$	
H) User Input of	of Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} =ac-ft
(Only if a di	fferent WQCV Design Volume is desired)	
	logic Soil Groups of Tributary Watershed age of Watershed consisting of Type A Soils	HSG A = %
ii) Percent	age of Watershed consisting of Type B Soils	HSG _B = %
	age of Watershed consisting of Type C/D Soils	$HSG_{CD} =$ %
	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = ac-f t
	: EURV _B = 1.36 * i ^{1.08} /D: EURV _{C/D} = 1.20 * i ^{1.08}	
	of Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} ac-f t
	fferent EURV Design Volume is desired)	
	ength to Width Ratio	L : W = 2.0 : 1
(A basin length	to width ratio of at least 2:1 will improve TSS reduction.)	
3. Basin Side Slop	bes	
A) Basin Maxir	num Side Slopes	Z = 4.00 ft / ft
(Horizontal	distance per unit vertical, 4:1 or flatter preferred)	
4. Inlet		
	eans of providing energy dissipation at concentrated	
inflow locati		
E E et		
5. Forebay		
A) Minimum Fo (V _{FMIN}	rebay Volume = <u>1%</u> of the WQCV)	V _{FMIN} = 0.001 ac-ft
B) Actual Fore	bay Volume	V _F = 0.002 ac-ft
C) Forebay Dep		
(D _F		D _F = 12.0 in
D) Forebay Dis	charge	
i) Undetain	ed 100-year Peak Discharge	Q ₁₀₀ = cfs
ii) Forebay (Q _F = 0.0	Discharge Design Flow 2 * Q ₁₀₀)	Q _F = cfs
E) Forebay Dis	charge Design	Choose One
		Berm With Pipe Flow too small for berm w/ pipe Wall with Rect. Notch
		Wall with Kett. Notch Wall with V-Notch Weir
F) Discharge P	ipe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangular		Calculated $W_N = 3.9$ in

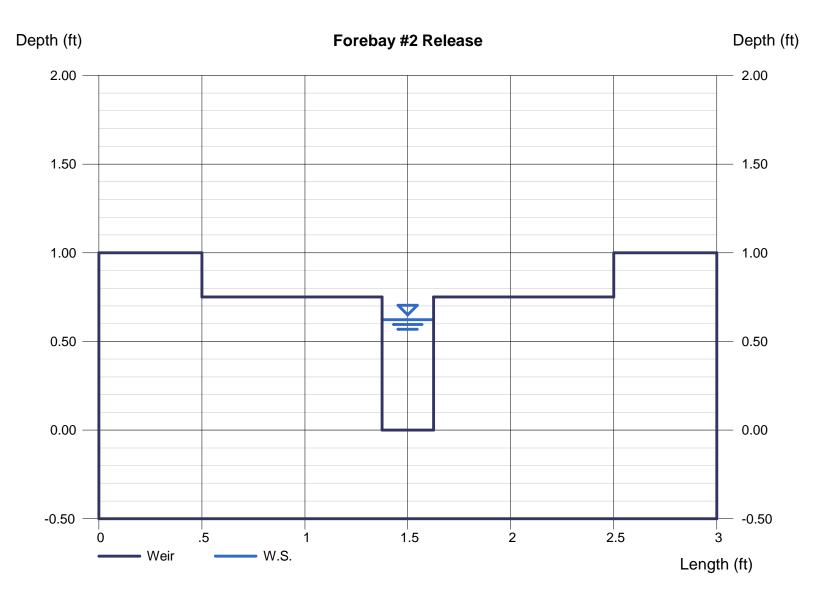
UD-BMP_v3.07 Pond Forebay #2.xlsm, EDB

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Forebay #2 Release

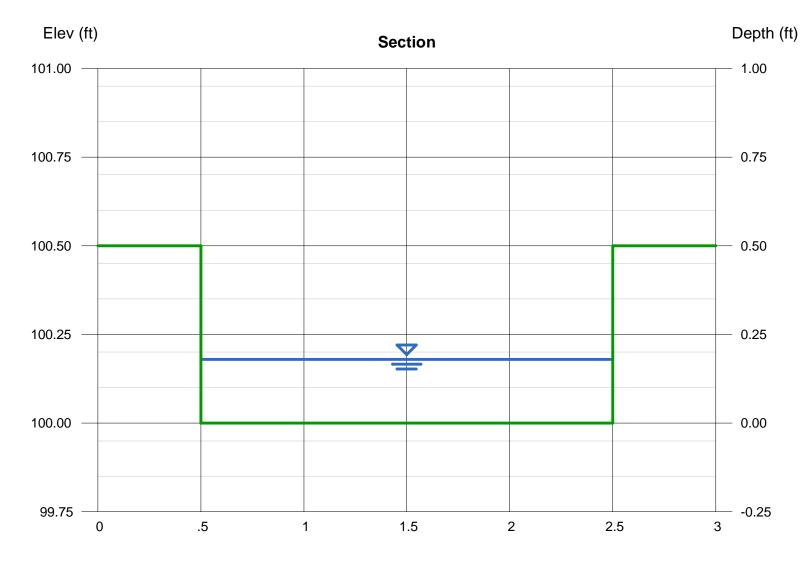
Com	pound	Weir
-----	-------	------


Crest	= Sharp
Bottom Length (ft)	= 2.00
Total Depth (ft)	= 1.00
Length, x (ft)	= 0.25
Depth, a (ft)	= 0.75

Calculations

Weir Coeff. Cw	= 3.33
Compute by:	Known Q
Known Q (cfs)	= 0.41

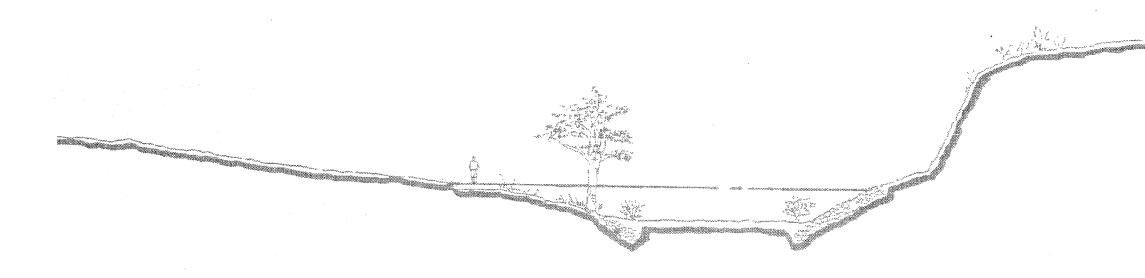
Lia	hl	ial	nted
IIIY		IYI	ILCU


Depth (ft)	= 0.62
Q (cfs)	= 0.410
Area (sqft)	= 0.16
Velocity (ft/s)	= 2.63
Top Width (ft)	= 0.25

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Forebay #2 Trickle Channel Capacity

Rectangular		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.18
Total Depth (ft)	= 0.50	Q (cfs)	= 0.820
		Area (sqft)	= 0.36
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.28
Slope (%)	= 0.50	Wetted Perim (ft)	= 2.36
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.18
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 0.26
Compute by:	Known Q		
Known Q (cfs)	= 0.82		
	$\langle \rangle$	Forebay Release Q ₁₀₀ =0.41 cfs	
	<u> </u>	Double Flow = 0.41 cfs * 2 = 0.82 cfs	


Appendix D Reference Material

SAND CREEK DRAINAGE BASIN PLANNING STUDY

PRELIMINARY DESIGN REPORT

CITY OF COLORADO SPRINGS, EL PASO COUNTY, COLORADO

PREPARED FOR:

City of Colorado Springs Department of Comprehensive Planning, Development and Finance Engineering Division 30 S. Nevada Colorado Springs, Colorado 80903

PREPARED BY:

Kiowa Engineering Corporation 1011 North Weber Colorado Springs, CO 80903

STUDY AREA DESCRIPTION II.

The Sand Creek drainage basin is a left-bank tributary to the Fountain Creek lying in the west-central portions of El Paso County. Sand Creek's drainage area at Fountain Creek is approximately 54 square miles of which approximately 18.8 square miles are inside the City of Colorado Springs corporate limits. The basin is divided into five major sub-basins, the Sand Creek mainstem, the East Fork Sand Creek, the Central Tributary to East Fork, the West Fork, and the East Fork Subtributary. Figure II-1 shows the location of the Sand Creek basin.

Basin Description

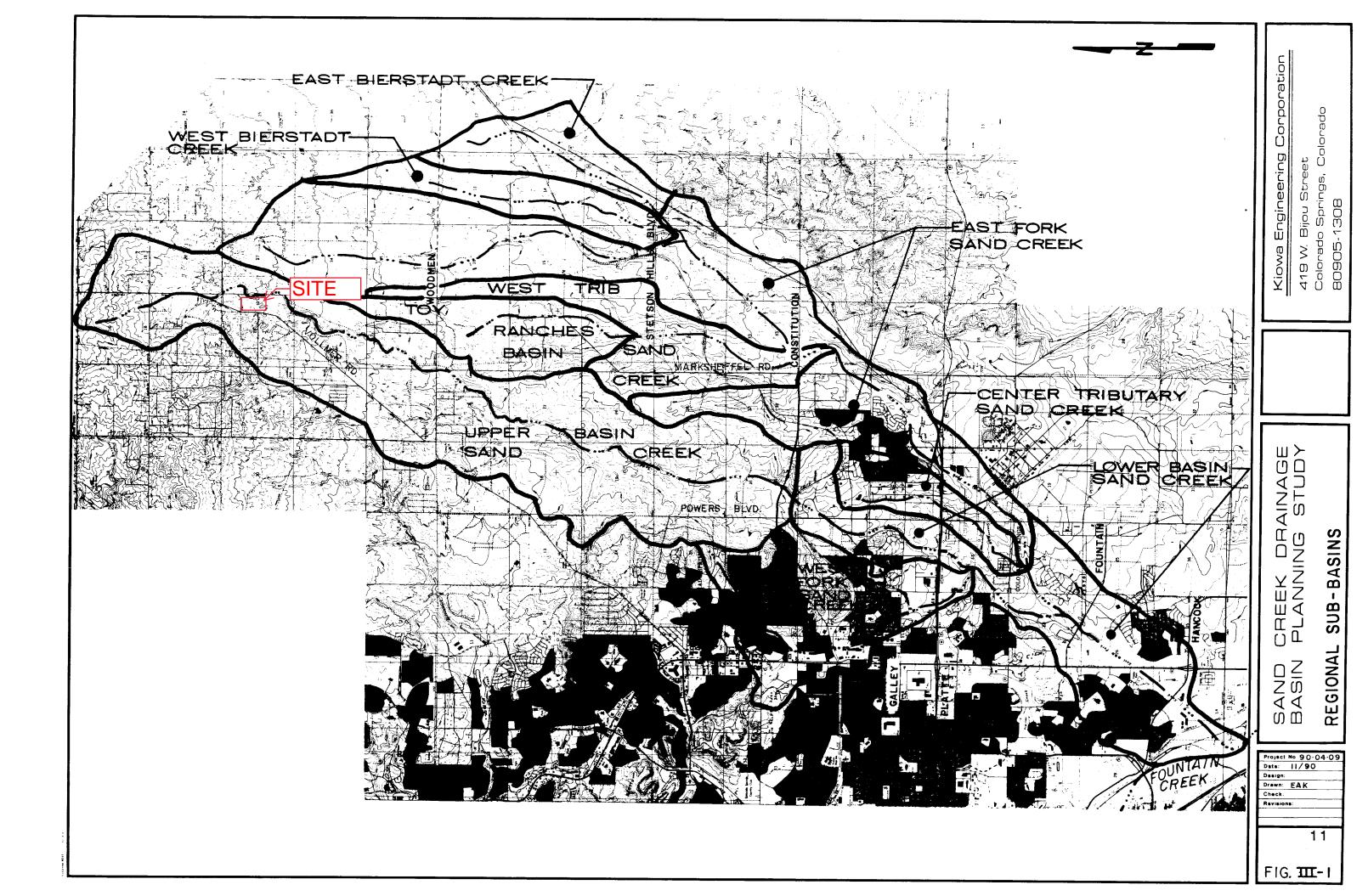
The Sand Creek basin covers a total of 54 square miles in unincorporated El Paso County and Colorado Springs, Colorado. Of this total, approximately 28 square miles is encompassed by the Sand Creek basin, and 26 square miles for the East Fork Sand Creek basin. The basin trends in generally a south to southwesterly direction, entering the Fountain Creek approximately two miles upstream of the Academy Boulevard bridge over Fountain Creek. Two main tributaries drain the basin, those being the mainstem of Sand Creek and East Fork Sand Creek. Development presence in most evident along the mainstream. At this time, approximately 25 percent of the basin is developed. This alternative evaluation focuses upon the Sand Creek basin only.

The maximum basin elevation is approximately 7,620 feet above mean sea level, and falls to approximately 5,790 feet at the confluence with Fountain Creek. The headwaters of the basin originate in the conifer covered areas of The Black Forest. The middle eastern portions of the basin are typified by rolling range land with fair to good vegetative cover associated with semi-arid climates.

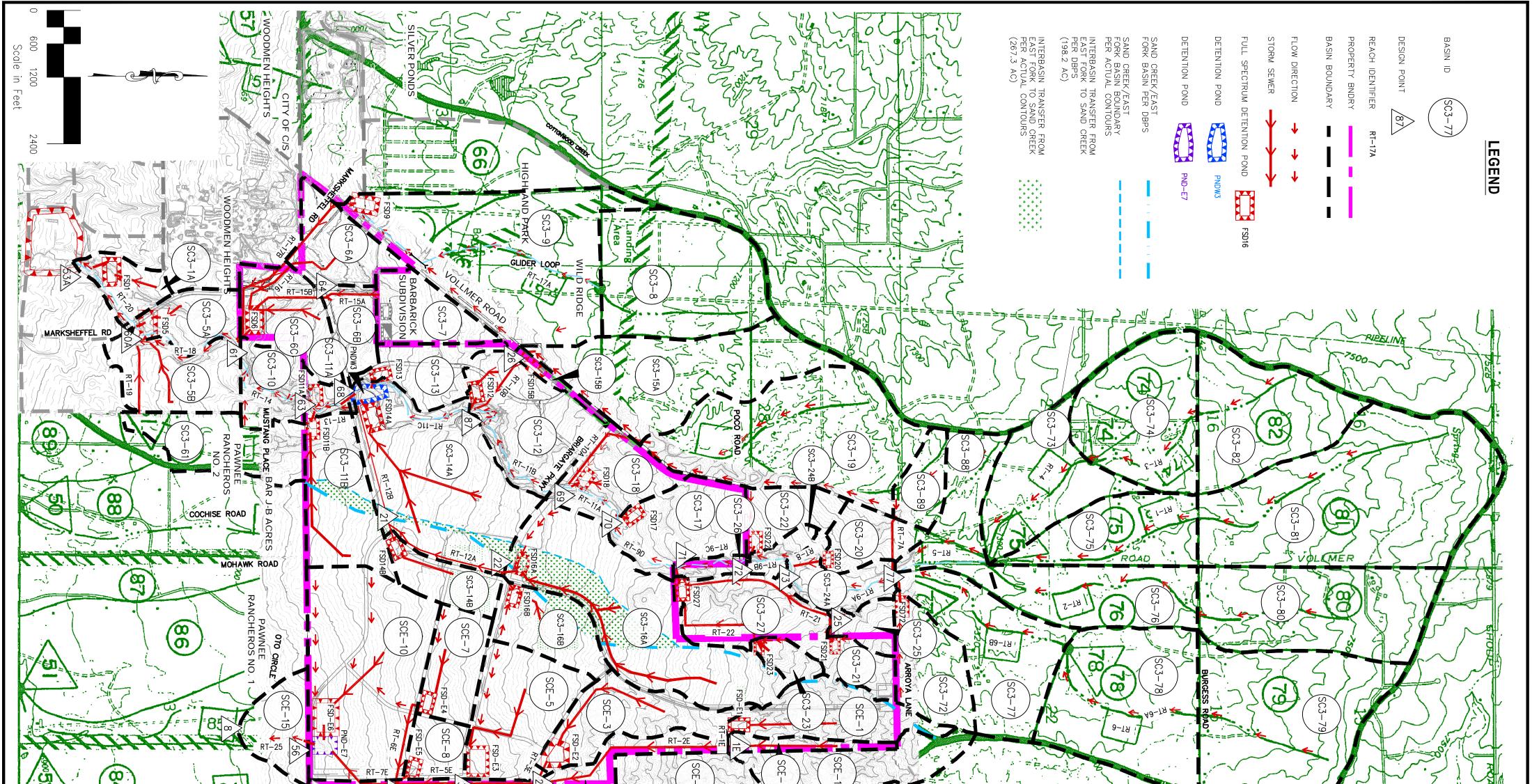
Climate

This area of El Paso County can be described, in general as high plains, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry. Precipitation ranges from 14 to 16 inches per year, with the majority of this precipitation occurring in spring and summer in the form of rainfall. Thunderstorms are common during the summer months, and are typified by quick-moving low pressure cells which draw moisture from the Gulf of Mexico into the region. Average temperatures range from about 30°F in the winter to 75° in the summer. The relative humidity ranges from about 25 percent in the summer to 45 percent in the winter.

Soils and Geology


Soils within the Sand Creek basin vary between soil types A through D, as identified by the U.S. Department of Agriculture, Soil Conservation Service. The predominant soil groupings are in the Truckton and Bresser soil associations. The soils consist of deep, well drained soils that formed in alluvium and residium, derived from sedimentary rock. The soils have high to moderate infiltration rates, and are extremely susceptible to wind and water erosion where poor vegetation cover exists. In undeveloped areas, the predominance of Type A and B soils give this basin a lower runoff per unit area as compared to basins with soils dominated by Types C and D. Presented on Figure II-2 is the Hydrologic Soil distribution map for the Sand Creek basin.

Property Ownership and Impervious Land Densities


Property ownership along the major drainageway within the Sand Creek basin vary from public to private. Along the developed reaches, drainage right-of-ways and greenbelts have been dedicated during the development of the adjacent residential and commercial land. Where development has not occurred, the drainageways remain under private ownership with no delineated drainage right-of-way or easements. There are several public parks which abut the mainstem of Sand Creek. Roadway and utility easements abutting or crossing the major drainageways occur most frequently in the developed portions of the basin.

Land use information for the existing and future conditions were reviewed as part of the planning effort. This information is used in the hydrologic analysis to predict runoff rates and volumes for the purposes of facility evaluation. The identification of land uses abutting the drainageways is also useful in the identification of feasible plans for stabilization and aesthetic treatment of the creek. Presented on Figure II-3 is the proposed land use map used in the evaluation of impervious land densities discussed in the hydrologic section of this report. Figure II-3 is not intended to reflect the future zoning or land use policies of the City or the County.

The land use information within the Banning-Lewis Ranch property was obtained from Aries Properties during the time the draft East Fork Sand Creek Drainage Basin Planning Study was being prepared. The land use information was again reviewed with the City of Colorado Springs Department of Planning and was found to be appropriate for use in the estimation of hydrology for the East Fork Basin. The location of future arterial streets and roadways within

File: 0: \09002A\Sterling Ranch District\dwg\Eng Exhibits\2018 MDDP\2018-MDDP-eInterimCondWSWrkMap.dwg Plotstamp: 10/24/2018 3:21 PM

	The sto.
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	BASIN CN AREA AREA AREA AREA (SS M) (GFS) Q5 (GFS) (GFS) Q5 (GFS)
	VATER QUALITY & DETENTION POND SUMMARY
Name Name <th< td=""><td>ALITY & DETENTION POND SUMMARY</td></th<>	ALITY & DETENTION POND SUMMARY

FINAL DRAINAGE REPORT

BARBARICK SUBDIVISION, PORTIONS OF LOTS 1, 2 and LOTS 3 & 4 El Paso County, Colorado

Sand Creek Drainage Basin

Prepared for: El Paso County Development Services Engineering Division

JUN 0 8 2016

On Behalf of: Wykota Construction 430 Beacon Light Road, Suite 130 Monument, CO 80132

2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 (719) 575-0100 Fax (719) 572-0208

June 6, 2016

15.789.001

Proposed 30" HDPE Storm Drain from Modified Off-site Detention Pond:

This storm drain will capture flows from the discharged offsite pond and route them along the perimeter of the property daylighting into the EDB in Lot 4. 4' precast concrete manholes will be used for maintenance access at all bends and grade breaks. A grouted riprap forebay will help dissipate energy at the outlet of the pipe, and allow for settling prior to entering the pond. See the Appendix for the hydraulic analysis of this storm drain (StormCAD).

In the event of an emergency and the offsite pond fails, developed flow (Q100=93.0 cfs) will overtop the pond and be collected between the proposed roadway and pond berm.. Flow not captured by the proposed inlet will bypass easterly to the proposed offsite swale between this property and the Sterling Ranch property and conveyed southerly.

Proposed 18" HDPE Storm Drain Culvert:

A 18" HDPE culvert will convey collected runoff from Lot 3 (Developed Q100 = 15.90cfs) through Lot 4 to the FSD Pond and join sheet flow from Lot 4 and the 30" piped bypass flow from basin O2. This culvert will be privately owned and maintained by the property owners. See the Appendix for open channel calculations.

On-site FSD - EDB Pond in Lot 4 (Basin D1):

This On-site Full Spectrum Extended Detention Basin Pond provides water quality, EURV and 100-year detention. Onsite flows will combine with the 30-inch bypass flows from the north and pass through the EDB. The pond has been sized for the release of historic flows from Basin D1, as well as provides capacity for pass through conveyance of historic flows from the north.

The following table outlines the onsite existing and developed flow, required detention, and modifications to required detention utilizing the upstream over detention.

On-site Basin Flow Summary (cfs) Existing On-site Flow at Pond	<u>5 year</u> 2.2	<u>100 year</u> 16.5
Developed On-site Flow (Basin D1) Increase in peak flow due to development	<u>19.7</u> 17.5	<u>56.0</u> 39.5
Proposed Pass Through Flow from Off-Site Pond	<u>16.1*</u>	<u>29.4</u>
Proposed total flow out of EDB pond	<u>0.3</u>	<u>45.9**</u>
*Includes 10 year from WS-FDR		Emergency Overflow:
**Includes Pass Through flow of 29.4 cfs		56.0+29.4= 85.40

Summary results include:

- WQCV Volume =0.039 ac-ft depth 0.37-ft (12 hour release)
- EURV Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 5 Year Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 100 Year Volume Stored = 0.394 ac-ft depth 2.83-ft (68 hour release)

Proposed (2) 24" HDPE Storm Drain Culvert:

Two 24" pipes will convey offsite flows through Lots 1 and 2 discharging to the south. The culverts will connect to a pair of existing 24" culverts entering the property and will discharge to a riprap settling basing prior to the released downstream. These culverts will be privately owned and maintained by the property owners. See the Appendix for the hydraulic analysis of this storm drain (CulvertMaster). Flow from these pipes will join the flow from the Sand Filter and discharge at Design Point 4 (combined 39.4 cfs in the 100-year event). Per the BS-FDR this flow combines with the westerly portions of Lots 1 & 2 offsite for a total release of 30.5/80.8 cfs in the 5/100 year events.

As stated above in the summary from the Sterling Ranch PDR, the anticipated runoff from this proposed discharge point (aka: SR-PDR Basin H4) is 30.5/80.8 cfs (5/100 year) due to the large pass through flow. A 42" RCP is planned to convey this flow through Sterling Ranch.

DRAINAGE, BRIDGE, AND POND FEES

This subdivision has already been platted. No additional Drainage, Bridge or Pond fees are required.

MAINTENANCE

All proposed storm drain infrastructure will be located within private property and will be owned and maintained by the property owner. The detention pond will be owned and maintained by the property owner and will require maintenance consisting of routine inspections, removal of debris from the detention area, and bi-annual inspections for hydraulic performance of the basin. Refer to the DCM for exact maintenance criteria and for other Best Management Practices (BMP).

EROSION CONTROL

Best Management Practices (BMPs) will be utilized to minimize erosion during construction and will be shown on the construction drawings. These will be in accordance with will be utilized as deemed necessary by the contractor and/or engineer. The contractor shall minimize the amount of area disturbed during all construction activities.

In general, the following shall be applied in developing the sequence of major activities;

٩

Worksheet for FSD Outlet Orifice Plate

Project Description					
Solve For	Diameter				
Input Data	<i>r</i> .				
Discharge			45.90	ft³/s	(16.5 His+29.4 Asc)
Headwater Elevation			4.70	ft	
Centroid Elevation			0.00	ft	
Tailwater Elevation			0.00	ft	
Discharge Coefficient			0.60		
Results					
Diameter			2.37	ft	
Headwater Height Above Centroid			4.70	ft	
Tailwater Height Above Centroid			0.00	ft	
Flow Area			4.40	ft²	
Velocity			10.43	ft/s	

Worksheet for FSD Overflow - Pass

Project Description				
Solve For	Discharge			
Input Data				
Headwater Elevation		0.90	ft	
Crest Elevation		0.00	ft	
Tailwater Elevation		0.00	ft	
Crest Surface Type	Gravel			
Crest Breadth		12.00	ft	
Crest Length		36.00	ft	
Results				
Discharge		86.22	ft³/s	(55D)+29.4 prec = 44.4 2)
Headwater Height Above Crest		0.90	ft	/
Tailwater Height Above Crest		0.00	ft	
Weir Coefficient		2.80	US	
Submergence Factor		1.00		
Adjusted Weir Coefficient		2.80	US	
Flow Area		32.40	ft²	
Flow Area Velocity		32.40 2.66	ft/s	
and the second sec				
Velocity		2.66	ft/s	

5/27/2016 1:31:13 PM

.

Worksheet for FSD Overflow - Pass

Project Description				
Solve For	Discharge			
Input Data				
Headwater Elevation		0.90	ft	
Crest Elevation		0.00	ft	
Tailwater Elevation		0.00	ft	
Crest Surface Type	Gravel			
Crest Breadth		12.00	ft	
Crest Length		36.00	ft	
Results	,			
Discharge		86.22	014	(55D1+29.4) succ = 44.4 2)
		UU.LL	117/S	
Headwater Height Above Crest		0.90	ft	
Headwater Height Above Crest Tailwater Height Above Crest		0.90 0.00		
		0.90	ft	
Tailwater Height Above Crest		0.90 0.00	ft ft	
Tailwater Height Above Crest Weir Coefficient		0.90 0.00 2.80	ft ft	
Tailwater Height Above Crest Weir Coefficient Submergence Factor		0.90 0.00 2.80 1.00	ft ft US US	
Tailwater Height Above Crest Weir Coefficient Submergence Factor Adjusted Weir Coefficient		0.90 0.00 2.80 1.00 2.80	ft ft US US	
Tailwater Height Above Crest Weir Coefficient Submergence Factor Adjusted Weir Coefficient Flow Area		0.90 0.00 2.80 1.00 2.80 32.40	ft ft US US ft²	
Tailwater Height Above Crest Weir Coefficient Submergence Factor Adjusted Weir Coefficient Flow Area Velocity	·	0.90 0.00 2.80 1.00 2.80 32.40 2.66	ft ft US US ft ² ft/s	

5/27/2016 1:31:13 PM

	Worksheet for SF	B Overflo	w Deve	loped
Project Description	NEF KERK KA	y see se		(6 .2 2) (142) (3)
Solve For	Discharge			
Input Data		n standel		
Headwater Elevation		0.45	ft	-
Crest Elevation		0.00	ft	
Tailwater Elevation		0.00	ft	×
Crest Surface Type	Gravel			
Crest Breadth		6.00	ft	
Crest Length		10.00	ft	
Results				
Discharge		8.08	ft³/s	
Headwater Height Above Cre	est	0.45	ft	
Tailwater Height Above Crest	i i i i i i i i i i i i i i i i i i i	0.00	ft	
Weir Coefficient		2.68	US	
Submergence Factor		1.00		
Adjusted Weir Coefficient		2.68	US	

4.50 ft²

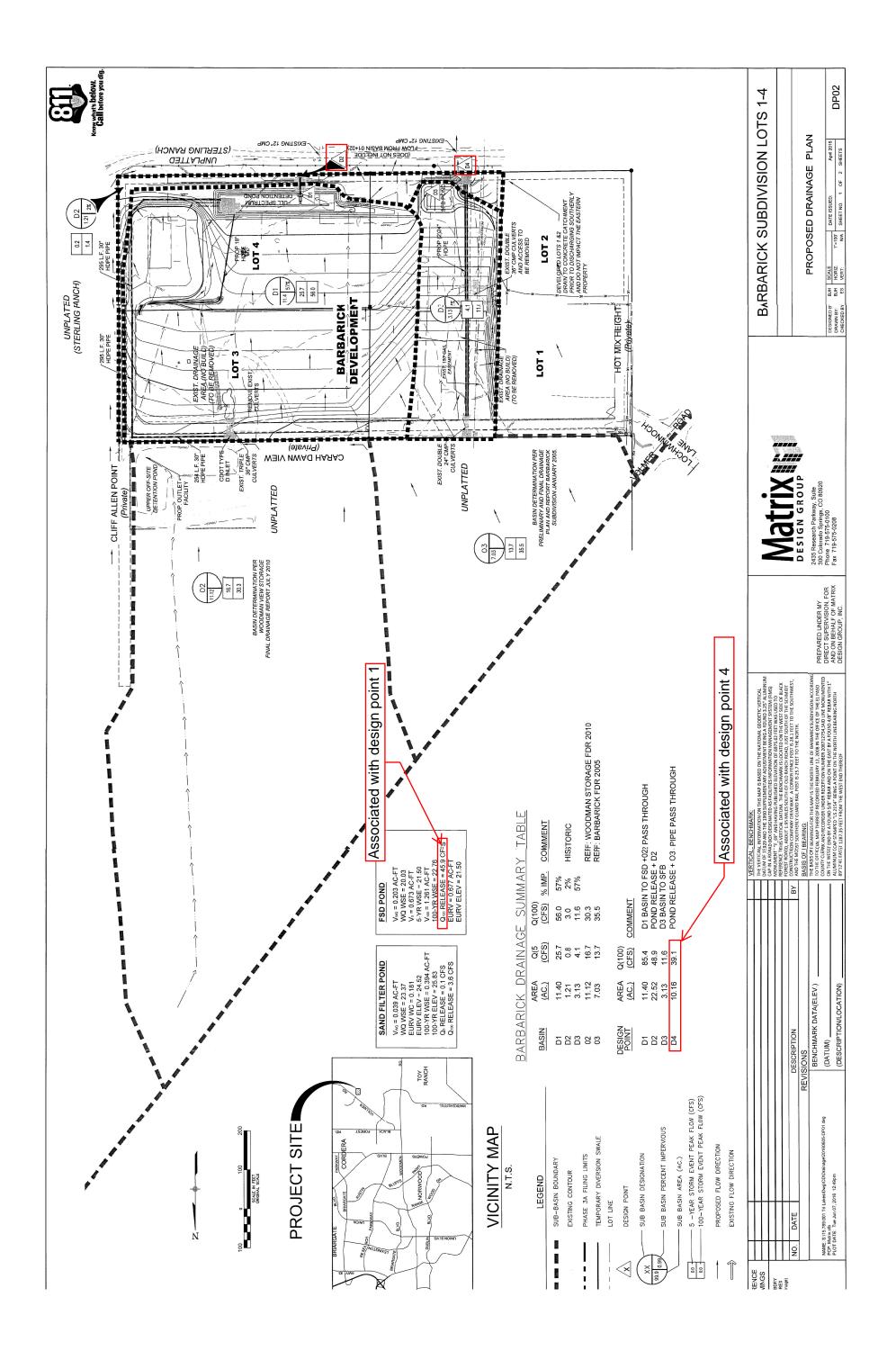
1.80 ft/s

10.90 ft

10.00 ft

141 OFD A.

.


Flow Area Velocity

Top Width

.

Wetted Perimeter

•

FINAL DRAINAGE REPORT FOR STERLING RANCH FILING NO. 2

Prepared For: SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

August 2021 Project No. 25188.01

Prepared By: JR Engineering, LLC 5475 Tech Center Drive Colorado Springs, CO 80919 719-593-2593

PCD File No. SF-20-015

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

ORIFICE ZONE 1 AND 2 ORIFICES PERM Example Zone Configuration (Retention Pond)

Watershed Information

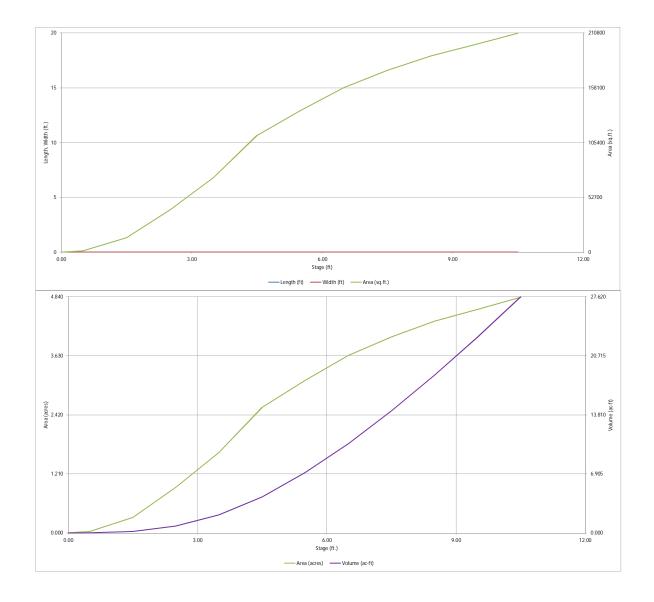
Selected BMP Type =	EDB	
Watershed Area =	173.97	acres
Watershed Length =	3,888	ft
Watershed Length to Centroid =	1,814	ft
Watershed Slope =	0.025	ft/ft
Watershed Imperviousness =	57.10%	percent
Percentage Hydrologic Soil Group A =	85.0%	percent
Percentage Hydrologic Soil Group B =	15.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblerado orban njare	gruphi i loccuu	
Water Quality Capture Volume (WQCV) =	3.288	acre-feet
Excess Urban Runoff Volume (EURV) =	11.714	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	9.031	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	11.873	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	14.194	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	18.106	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	21.364	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	25.580	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	34.562	acre-feet
Approximate 2-yr Detention Volume =	7.768	acre-feet
Approximate 5-yr Detention Volume =	10.244	acre-feet
Approximate 10-yr Detention Volume =	12.566	acre-feet
Approximate 25-yr Detention Volume =	14.965	acre-feet
Approximate 50-yr Detention Volume =	16.434	acre-feet
Approximate 100-yr Detention Volume =	18.217	acre-feet

Define	Zones	and	Basin	Geome	etry
		i	Zone 1	Volume	(W

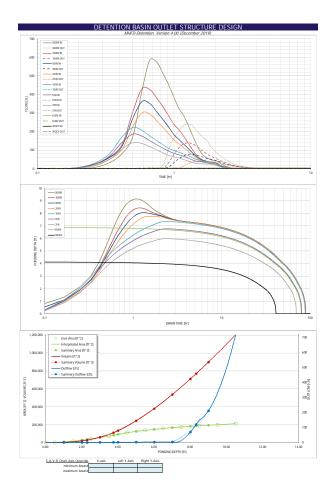
Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	3 288	acre-feet
Zone 2 Volume (EURV - Zone 1) =	8.426	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	6.502	acre-feet
Total Detention Basin Volume =	18.217	acre-feet
Initial Surcharge Volume (ISV) =		ft ³
Initial Surcharge Depth (ISD) =		ft
Total Available Detention Depth (H _{total}) =		ft
Depth of Trickle Channel (Hrr) =	user	ft
Slope of Trickle Channel (STC) =		ft/ft
Slopes of Main Basin Sides (Smain) =		H:V
Basin Length-to-Width Ratio (RIAW) =	user	
		I


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³

Calculated Total Basin Volume (Vtotal) = user acre-feet

			_							
1	Depth Increment =		ft							
			Optional				Optional			
tion Pond)	Stage - Storage	Stage	Override Store (ft)	Length	Width	Area (ft 2)	Override Area (ft ²)	Area	Volume (ft 3)	Volume (ac-ft)
	Description	(ft)	Stage (ft)	(ft)	(ft)	(π -)		(acre)	(π-)	(ac-π)
	Top of Micropool		0.00				20	0.000		
	ELEV:6962		0.50				1,328	0.030	337	0.008
	ELEV:6963		1.50				13,823	0.317	7,912	0.182
	ELEV:6964		2.50				40,724	0.935	35,186	0.808
	ELEV:6965		3.50				71,720	1.646	91,408	2.098
	ELEV:6966		4.50				112,095	2.573	183,315	4.208
	ELEV:6967		5.50				136,106	3.125	307,416	7.057
	ELEV:6968		6.50				158,377	3.636	454,657	10.437
	ELEV:6969		7.50				174,976	4.017	621,334	14.264
	ELEV:6970		8.50				188,903	4.337	803,273	18.441
	ELEV:6971		9.50				199,637	4.583	997,543	22.900
	ELEV:6972		10.50				210,510	4.833	1,202,617	27.608
Optional User Overrides										
acre-feet										
acre-feet										
1.19 inches										
1.75 inches										
2.00 inches										
2.25 inches										
2.52 inches										
inches										
									1	
									1	
									I	
								-		
				-				-		
									1	
									1	
									1	
									1	
				: :						
				: :						

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

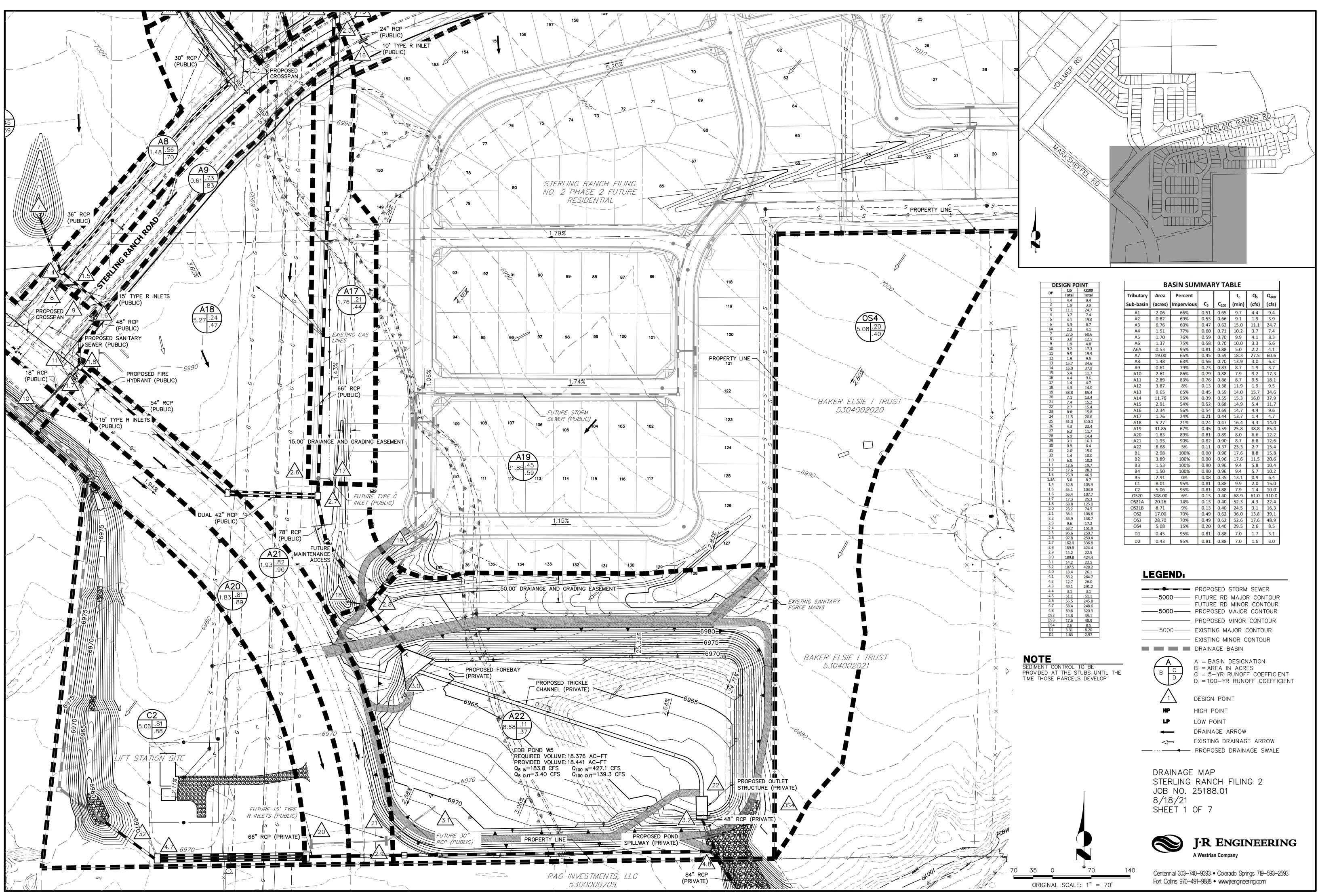

MHFD-Detention, Version 4.03 (May 2020)

DETENTION BASIN OUTLET STRUCTURE DESIGN Project: STERLING RANCH FILING NO. 2 Basin ID: POND W5 4E 3 -20NE 2 Estimated Stage (ft) Volume (ac-ft) Outlet Type VOLUME EURY WOCY Zone 1 (WOCV ifice Plate Zone 2 (EURV) ZOME 1 AND 2 lectanoular Orifice Zone 3 (100-year) leir&Pine (Restrict Example Zone Conf (Patention Pa User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP) Underdrain Outre Underdrain Outre Underdrain Orifice Invert Depth = alculated Parameters for Underdrain N/A Underdrain Orifice Area ft (distance below the filtration media surface) Underdrain Orifice Diameter -N/A rhes Underdrain Orifice Centroid User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WOCV and/or EURV in a sedimentation BMP) s for Plate lated Paran Invert of Lowest Orifice -(relative to basin bottom at Stage = 0 ft) WO Orifice Area per Row Depth at top of Zone using Orifice Plate ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width Orifice Plate: Orifice Vertical Spacing Elliptical Slot Centroid ches Orifice Plate: Orifice Area per Row -Elliptical Slot Area User Input: Stage and Total Area of Each Orifice Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (Orifice Area (sg. inches Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (cot Row 9 (optional Row 10 (optional) Row 15 (ontional) Row 16 (optional Stage of Orifice Centroid () Orifice Area (sg. inches User Input: Vertical Orifice (Circular or Rectangular Calculated Paramet rs for Vertical O Zone 2 Ro Zone 2 Rectangula Invert of Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area Depth at top of Zone using Vertical Orifice N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid Vertical Orifice Height Vertical Orifice Width er Input: Overflow Weir (Dropbox with Flat or Sk oidal Weir (and No Outlet Pine) oed Grate and C et Pipe OR Rectan sted Paran for Overflow W Not Sele Zone 3 W Zone 3 Wei Not Selected Overflow Weir Front Edge Height, Ho t (relative to basin bottom at Stage - 0 ft) Height of Grate Upper Edge, H, 7.30 Overflow Weir Front Edge Length Overflow Weir Slope Length Overflow Weir Grate Slope H:V Grate Open Area / 100-yr Orifice Area 0.00 Horiz. Length of Weir Sides Overflow Grate Open Area w/o Debris et Overflow Grate Open Area % %, grate open area/total area Overflow Grate Open Area w/ Debris -Debris Clogging % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor N/A Depth to Invert of Outlet Pipe (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area Outlet Pipe Diameter inches Outlet Orifice Centroid feet Restrictor Plate Height Above Pipe Invert Half-Central Angle of Restrictor Plate on Pipe inches User Input: Emergency Spillway (Rectangular or T for Spilway Spillway Invert Stageft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth-1.74 Spillway Crest Length Stage at Top of Freeboard ect Spillway End Slopes Basin Area at Top of Freeboard Freeboard above Max Water Surface Basin Volume at Top of Freeboard cre.ft 500 Year Design Storm Return Period One-Hour Rainfall Depth (in) CUHP Runoff Volume (acre-ft) 9.121 21.510 34.734 11.843 11.99 Inflow Hydrograph Volume (acre-ft) CLIHP Prodevolonment Peak () (cfs) N/A N/A N/A OPTIONAL Override Predevelopment Peak Q (cfs) Predevelopment Unit Peak Flow, q (cfs/acre) Peak Inflow Q (cfs) N/A 140.5 186.5 222.1 361.5 586.0 Peak Outflow O (cfs) 241.3 Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow Max Velocity through Grate 1 (fps) Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours)

Time to Drain 99% of Inflow Volume (hours) Maximum Ponding Depth (ft)

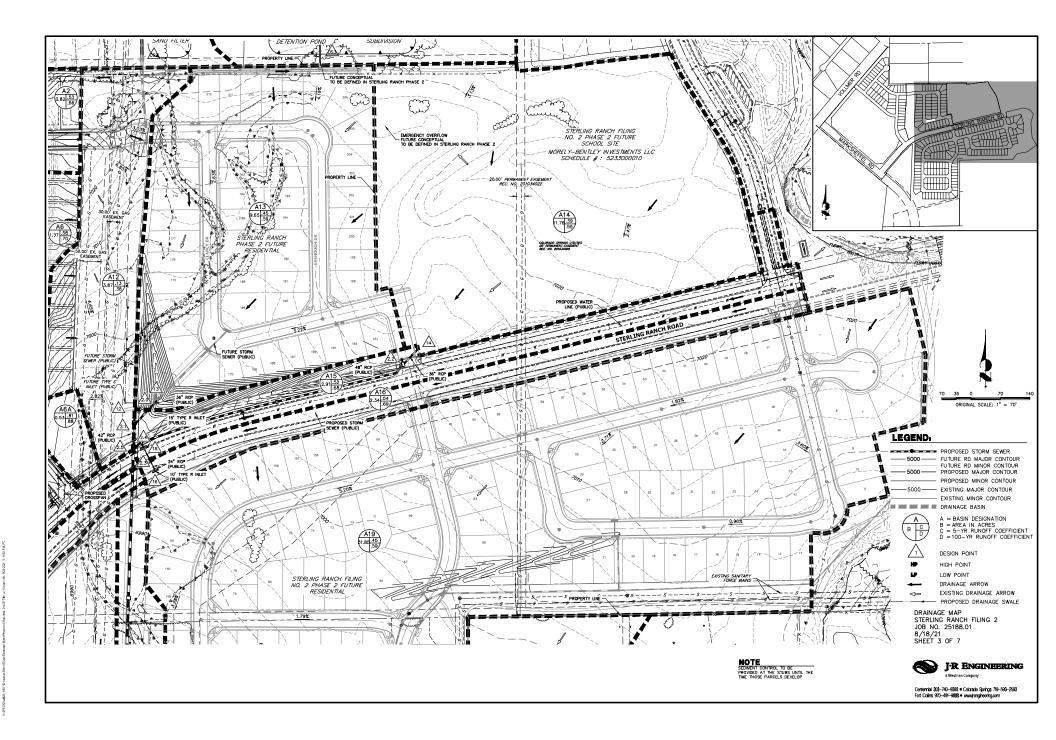
Area at Maximum Ponding Depth (acres) Maximum Volume Stored (acre-ft)

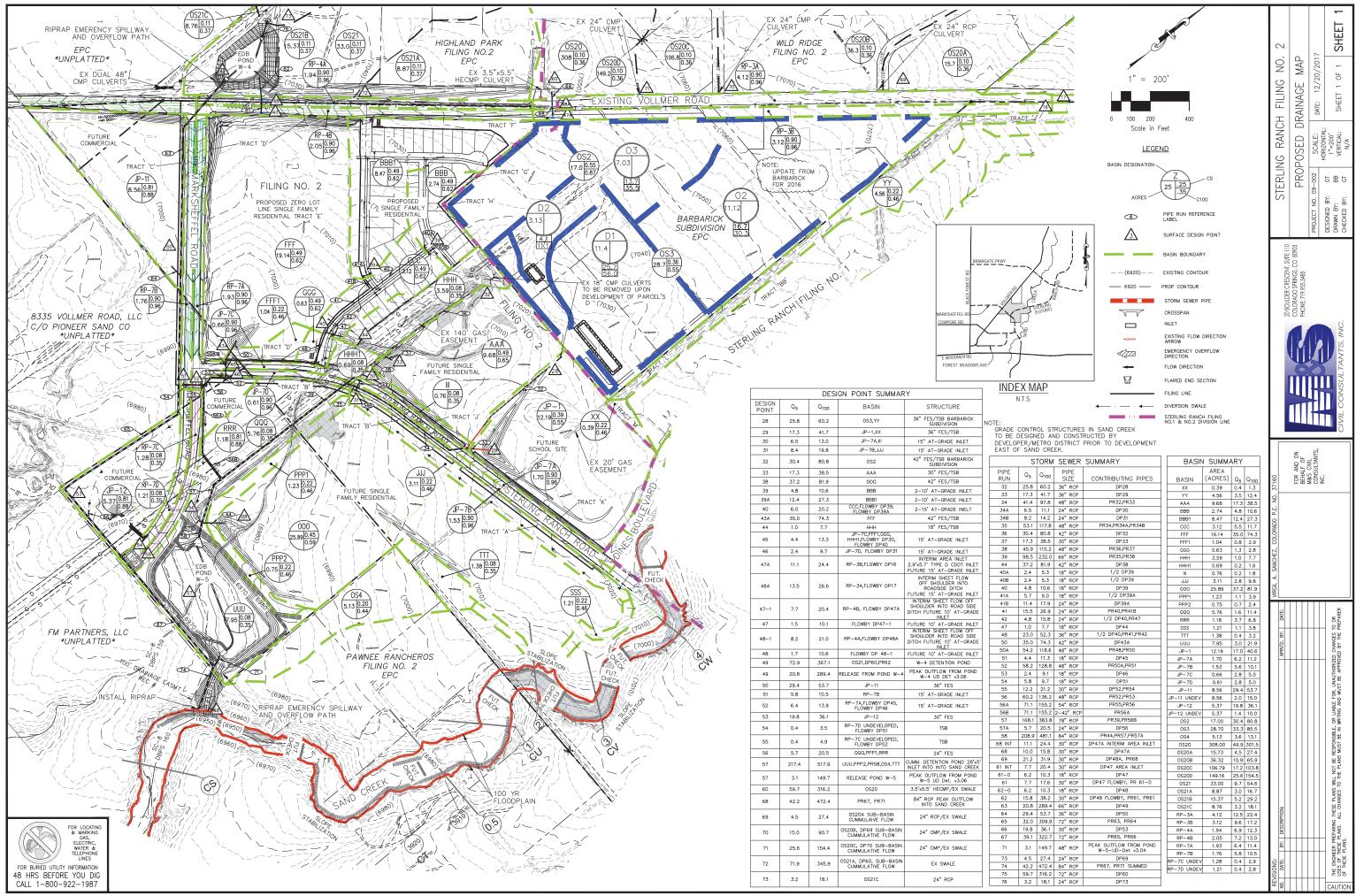
DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:


	Inflow Hydrographs The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program. SOURCE CLIHP CLIH													
										0.510				
Time Interval	TIME 0:00:00	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year (cfs)	10 Year [cfs]	25 Year [cfs]	50 Year (cfs)	100 Year [cfs]	500 Year (cfs)				
5.00 min		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	1.37	0.14 20.11	4.42				
	0:20:00	0.00	0.00	48.30	65.33	24.38	49.45	21.13 58.16	61.60	30.88				
	0:25:00	0.00	0.00	46.30	142.54	171.74	49.45	121.39	131.21	174.25				
	0:30:00	0.00	0.00	140.48	186.46	222.13	227.64	272.80	308.13	422.01				
	0:35:00	0.00	0.00	135.46	175.22	206.03	301.61	361.54	431.24	585.96				
	0:40:00	0.00	0.00	118.36	150.07	175.68	293.61	350.26	425.82	573.28				
	0:45:00	0.00	0.00	100.92	128.44	150.65	256.40	304.92	378.98	510.45				
	0:50:00	0.00	0.00	84.87	94.33	128.43	222.14	263.81	332.30	449.36				
	0:55:00	0.00	0.00	72.36	94.33 83.13	109.32 97.59	187.66 154.96	222.42	282.99 238.59	384.40 325.88				
	1:05:00	0.00	0.00	58.14	75.08	88.94	134.96	158.26	238.59	290.49				
	1:10:00	0.00	0.00	50.72	67.68	80.67	115.60	135.72	179.70	246.12				
	1:15:00	0.00	0.00	42.71	59.08	72.45	97.95	114.30	145.50	197.99				
	1:20:00	0.00	0.00	35.76	50.04	63.10	80.42	93.20	113.95	153.88				
	1:25:00	0.00	0.00	30.54	42.87	53.10	64.63	74.31	85.95	114.90				
	1:30:00	0.00	0.00	27.71	39.21	46.68	51.11	58.33	64.24	85.13				
	1:35:00	0.00	0.00	26.36	37.32	42.89	42.74	48.57	51.51	67.73				
	1:40:00	0.00	0.00	25.60 25.13	34.28 31.06	40.22 38.26	37.77 34.61	42.78 39.11	44.23 39.26	57.57 50.51				
	1:50:00	0.00	0.00	25.13	28.74	36.93	34.61 32.45	39.11 36.59	39.26	45.78				
	1:55:00	0.00	0.00	22.48	27.05	35.35	31.03	34.94	33.68	42.43				
	2:00:00	0.00	0.00	19.58	25.23	32.57	30.03	33.77	32.06	40.11				
	2:05:00	0.00	0.00	15.52	20.27	25.90	24.54	27.57	25.96	32.36				
	2:10:00	0.00	0.00	11.36	14.69	18.66	17.66	19.83	18.68	23.23				
	2:15:00	0.00	0.00	8.25	10.65	13.46	12.75	14.30	13.52	16.79				
	2:20:00	0.00	0.00	5.94	7.66	9.70	9.23	10.34	9.85	12.22				
	2:25:00	0.00	0.00	4.23	5.34	6.86	6.50	7.28	6.96	8.63				
	2:30:00	0.00	0.00	2.91	3.63	4.77	4.51	5.04	4.82	5.97				
	2:40:00	0.00	0.00	1.95	2.50	2.30	2.19	2.34	2.23	4.20				
	2:45:00	0.00	0.00	0.65	0.97	1.20	1.24	1.34	1.31	1.60				
	2:50:00	0.00	0.00	0.28	0.47	0.55	0.60	0.66	0.63	0.76				
	2:55:00	0.00	0.00	0.09	0.15	0.16	0.19	0.20	0.19	0.22				
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)

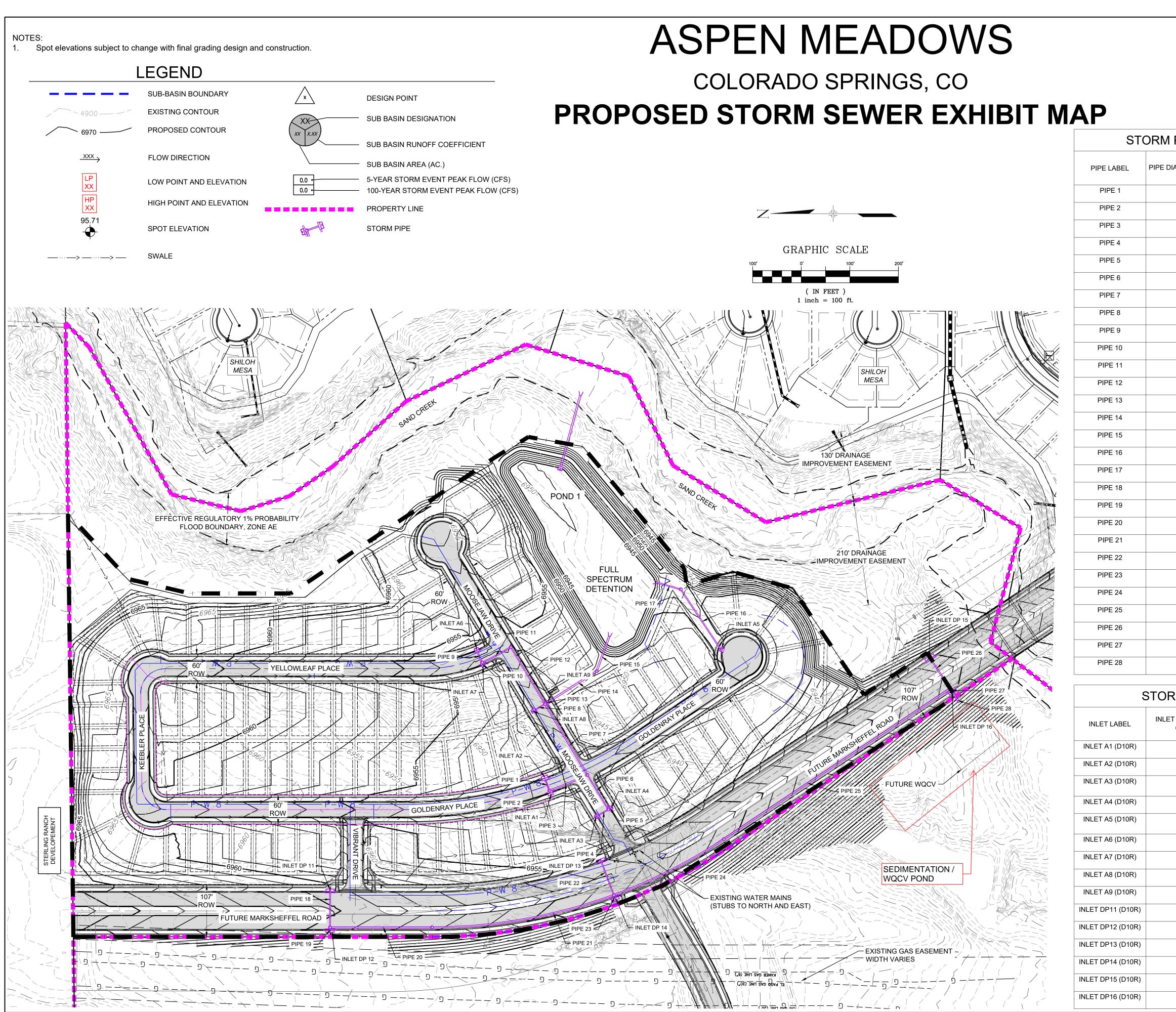

Summary Stage. Area: Volume-Discharge (MHD) Declember, Version 4.03 (Msy 2020) Summary Stage. Area: Volume-Discharge Mislionships: The user can create a summary 5.4-V-10 by ontering the desired stage increments and the remainder of the table will populate automatically. The user should application groups the nummary 5.4-V-10 lise is the for 1.4-V-10 bits in the chart to confirm it captures all key transition paints.

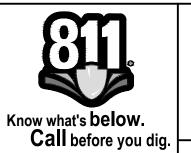

2 00 27 274 0 626 18,186 0 418 0.59 WOCV 2 29 35,075 0.805 27,227 0.625 0.79	For best results, include the stages of all grade slope
Int Int <td>stages of all grade slope</td>	stages of all grade slope
200 27.274 0.426 10,186 0.418 0.59 WDCV 2.29 35.075 0.865 27.227 0.625 0.79 3.000 55.222 1.291 59.422 1.344 1.11	stages of all grade slope
200 27274 0.626 18,186 0.418 0.99 WOCV 2.29 35.075 0.065 272.27 0.425 0.79 3.00 56.222 1.291 59.425 1.11	stages of all grade slope
3.00 56,222 1.291 59,422 1.364 1.11	
3.00 56,222 1.291 59,422 1.364 1.11	changes (e.g. ISV and Floor) from the S-A-V table on
	from the S-A-V table on Sheet 'Basin'.
	Also include the inverts of all
	outlets (e.g. vertical orifice, overflow grate, and spilway,
	where applicable).
7.00 166,676 3.826 535,920 12.303 3.48 8.00 181,939 4.177 710,562 16.312 69:54	
100-YR 8.32 186,396 4.279 769,496 17.665 119.49	i i i i i i i i i i i i i i i i i i i
9.00 194,270 4.460 899,066 20.640 210.78	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	1
	1
	1
	1
	1
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	1
	1
	1
	1
	i i i i i i i i i i i i i i i i i i i
	1
	1
	1
	i i i i i i i i i i i i i i i i i i i
	i i i i i i i i i i i i i i i i i i i
	1
	1
	1
	1
	1
	1
	l i

1	4.4	9.4
2	1.9	3.9
4	11.1	24.7
5	3.7 4.1	7.4 19.6
6	3.3	6.7
6A	2.2	4.1
7	27.5	60.6
8	3.0	12.5
9	1.9	4.8
10	9.2	17.3
11 12	9.5	19.9
12	1.9 15.7	9.5 34.6
15	16.0	37.9
15	5.4	11.7
16	4.4	9.6
17	1.4	4.7
18	4.3	14.0
19	38.8	85.4
20	7.1	13.4
21 22	7.4	15.2
22	2.7	15.4
23	8.8 11.5	15.8 20.6
25	61.0	310.0
26	4.3	22.4
27	6.3	11.7
28	6.9	14.4
29	3.1	16.3
30	0.9	6.4
31	2.0	15.0
32 1.0	1.4	10.0
1.1	6.0 12.6	10.3 19.7
1.2	17.6	28.2
1.3	25.9	46.9
1.3A	5.0	8.7
1.4	52.5	105.9
1.5	55.1	103.9
1.6	56.4	107.7
1.7 1.8	17.3	25.3
2.0	68.8 23.2	125.0 74.5
2.1	38.1	106.6
2.2	56.9	138.7
2.3	9.6	17.2
2.4	63.7	151.9
2.5	96.6	250.7
2.6	97.8	250.4
2.7	162.0	336.8
2.8	189.8 14.2	424.4 22.5
3.0	189.8	424.4
3.1	14.2	22.5
3.2	187.5	428.2
4.0	18.4	26.1
4.1	56.2	264.7
4.2	12.7	26.0
4.3 4.4	49.1	291.2
4.4	3.1 51.1	3.1 51.1
4.6	56.5	245.8
4.7	58.4	243.6
4.8	59.8	320.3
OS2	13.8	39.1
OS3	17.6	48.9
OS4	2.6	8.5
D1	3.31	8.20
D2	1.63	2.97

Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀			
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)			
A1	2.06	66%	0.51	0.65	9.7	4.4	9.4			
A2	0.82	69%	0.53	0.66	9.1	1.9	3.9			
A3	6.76	60%	0.47	0.62	15.0	11.1	24.7			
A4	1.51	77%	0.60	0.71	10.2	3.7	7.4			
A5	1.70	76%	0.59	0.70	9.9	4.1	8.3			
A6	1.37	75%	0.58	0.70	10.0	3.3	6.6			
A6A	0.53	95%	0.81	0.88	5.0	2.2	4.1			
A7	19.00	65%	0.45	0.59	18.3	27.5	60.6			
A8	1.48	63%	0.56	0.70	13.9	3.0	6.3			
A9	0.61	79%	0.73	0.83	8.7	1.9	3.7			
A10	2.61	86%	0.79	0.88	7.9	9.2	17.3			
A11	2.89	83%	0.76	0.86	8.7	9.5	18.1			
A12	3.87	8%	0.13	0.38	11.9	1.9	9.5			
A13	9.65	65%	0.45	0.59	14.0	15.7	34.6			
A14	11.76	55%	0.39	0.55	15.3	16.0	37.9			
A15	2.91	54%	0.52	0.68	14.9	5.4	11.7			
A16	2.34	56%	0.54	0.69	14.7	4.4	9.6			
A17	1.76	24%	0.21	0.44	13.7	1.4	4.7			
A18	5.27	21%	0.24	0.47	16.4	4.3	14.0			
A19	31.85	67%	0.45	0.59	25.8	38.8	85.4			
A20			1.83		89%	0.81	0.89	8.0	6.6	12.2
A21	1.93	90%	0.82	0.90	8.7	6.8	12.6			
A22	8.68	5%	0.11	0.37	23.3	2.7	15.4			
B1	2.98	100%	0.90	0.96	17.6	8.8	15.8			
B2	3.89	100%	0.90	0.96	17.6	11.5	20.6			
B3	1.53	100%	0.90	0.96	9.4	5.8	10.4			
B4	1.50	100%	0.90	0.96	9.4	5.7	10.2			
B5	2.91	0%	0.08	0.35	13.1	0.9	6.4			
C1	8.01	95%	0.81	0.88	9.9	2.0	15.0			
C2	5.06	95%	0.81	0.88	7.9	1.4	10.0			
OS20	308.00	6%	0.13	0.40	68.9	61.0	310.0			
OS21A	20.26	14%	0.13	0.40	52.3	4.3	22.4			
OS21R OS21B	8.71	9%	0.13	0.40	24.5	3.1	16.3			
OS210	17.00	70%	0.49	0.40	36.0	13.8	39.1			
OS2 OS3	28.70	70%	0.49	0.62	52.6	17.6	48.9			
OS4	5.08	15%	0.45	0.02	29.5	2.6	8.5			
D1	0.45	95%	0.81	en an Alina		1.7	3.1			
D2	0.43	95%	0.81	0.88	7.0	1.6	3.0			

OF	SAN	D URE	.EK.	
	S	TORM	SEWER	SUMMARY
-	Q ₅	Q ₁₀₀	PIPE SIZE	CONTRIBUTING PIPES
	25.8	60.2	36" RCP	DP28
	17.3	41.7	36" RCP	DP29
	41.4	97.8	48" RCP	PR32,PR33
	6.5	11.1	24" RCP	DP30
	8.2	14.2	24" RCP	DP31
	53.1	117.8	48" RCP	PR34.PR34A.PR34B
	30.4	80.8	42" RCP	DP32
	17.3	38.5	30" RCP	DP33
	45.9	115.2	48" RCP	PR36,PR37
	98.5	232.0	66" RCP	PR35,PR38
	37.2	81.9	42" RCP	DP38
	2.4	5.3	42 RCP 18" RCP	1/2 DP39
	2.4	5.3	18 RCP 18" RCP	1/2 DP39
	2.4	5.5	18 RCP 18" RCP	DP39
				1/2 DP39
	5.7	9.0	18" RCP	,
	11.4	17.9	24" RCP	DP39A
	15.5	26.9	24" RCP	PR40,PR41B
	4.8	15.8	24" RCP	1/2 DP40,PR47
	1.0	7.7	18" RCP	DP44
	23.0	52.3	36" RCP	1/2 DP40,PR41,PR42
	35.0	74.3	42" RCP	DP43A
	54.2	118.6	48" RCP	PR48,PR50
	4.4	11.3	18" RCP	DP45
	58.2	128.8	48" RCP	PR50A,PR51
	2.4	9.1	18" RCP	DP46
	5.8	9.7	18" RCP	DP51
	12.2	21.2	30" RCP	DP52,PR54
	60.2	136.2	48" RCP	PR52,PR53
	71.1	155.2	54" RCP	PR55,PR56
	71.1	155.2	2-42" RCP	PR56A
	168.1	383.8	78" RCP	PR39,PR56B
	5.7	20.5	24" RCP	DP56
	208.9	481.1	84" RCP	PR44,PR57,PR57A
IT	11.1	24.4	30" RCP	DP47A INTERIM AREA INLET
	10.0	15.8	30" RCP	DP47A
	21.2	31.9	30" RCP	DP48A, PR68
т	7.7	20.4	30" RCP	DP47 AREA INLET
5	6.2	10.3	18" RCP	DP47
-	7.7	17.6	30" RCP	DP47 FLOWBY, PR 61-0
2	6.2	10.3	18" RCP	DP48
-	15.8	38.2	30" RCP	DP48 FLOWBY, PR61, PR61
	20.8	289.4	66" RCP	DP49 DP49
	29.4	53.7	36" RCP	DP50
	32.0	309.9	72" RCP	PR63, PR64
	19.8	36.1	30" RCP	DP53
	39.1	322.7	72" RCP	PR65, PR66
	3.1	149.7	48" RCP	PEAK OUTFLOW FROM POND W-5-UD-Det v3.04
	4.5	27.4	24" RCP	DP69
	42.2	472.4	84" RCP	PR67, PR71 SUMMED
	59.7	316.2	72" RCP	DP60
	39.7			


BASIN	I SUMMA	٩RY	
	AREA		
BASIN	(ACRES)	Q ₅	Q ₁₀₀
XX	0.39	0.4	1.3
YY	4.56	3.5	12.4
AAA	9.68	17.3	38.5
BBB	2.74	4.8	10.6
BBB1	8.47	12.4	27.3
CCC	3.12	5.5	11.7
FFF	19.14	35.0	74.3
FFF1	1.04	0.8	2.9
GGG	0.63	1.3	2.8
ннн	3.59	1.0	7.7
HHH1	0.69	0.2	1.6
Ш	0.76	0.2	1.8
JJJ	3.11	2.8	9.8
000	25.89	37.2	81.9
PPP1	1.23	1.1	3.9
PPP2	0.75	0.7	2.4
QQQ	5.76	1.6	11.4
RRR	1.18	3.7	6.8
SSS	1.21	1.1	3.8
TIT	1.38	0.4	3.2
UUU	7.95	3.0	21.9
JP-1	12.19	17.0	40.6
JP-7A	1.70		
		6.2	11.2
JP-7B JP-7C	1.53	5.6	10.1
	0.66	2.8	5.0
JP-7D	0.61	2.8	5.0
JP-11	8.56	29.4	53.7
JP-11 UNDEV	8.56	2.0	15.0
JP-12	5.37	19.8	36.1
JP-12 UNDEV	5.37	1.4	10.0
OS2	17.00	30.4	80.8
053	28.70	33.3	85.5
0S4	5.13	3.6	13.1
0S20	308.00	49.9	301.5
0S20A	15.73	4.5	27.4
OS20B	36.32	10.9	65.9
0S20C	106.79	17.2	103.8
OS20D	149.16	25.6	154.5
0S21	33.00	9.7	54.6
0S21A	8.87	3.0	16.7
OS21B	15.37	5.2	29.2
0S21C	8.76	3.2	18.1
RP-3A	4.12	12.5	22.4
RP-3B	3.12	9.6	17.2
RP-4A	1.94	6.9	12.3
RP-4B	2.05	7.2	13.0
RP-7A	1.93	6.4	11.4
RP-7B	1.76	5.8	10.5
RP-7C UNDEV	1.28	0.4	2.9
RP-7C UNDEV	1.28	0.4	2.9
	1.21	10.4	2.0


Project Name:	Aspen Meadows
Project Location:	NE Colorado Springs
Designer	JTS
Notes:	Proposed Conditions

Average Channel Velocity Average Slope for Initial Flow

5 ft/s (If specific channel vel is used, this will be ignored) 0.04 ft/ft (If Elevations are used, this will be ignored)

	Are	a	Rational 'C' Values								Flow Lengths Initial Flow					Channel Flow					Tc Rainfall Intensity & Rational Flow Rate																		
		-									Tulute			urface Typ						Longthe							•.				10				tenenty e	10010			
Basin				e Type 1 ((Meadow))	Surface (Pave	ment)			oe 3 Acre Lots)	(1/4		Acre lots)	n 1/8 & 1/4	Com	posite	Initial	True Initia	al Channel	rue Chanr	High Point	t Low Poin	t Average	Initial	High Point	Low Point	Average	Velocity (Channel	Total	i2 Q2	i5 (Q5 i10) Q10	i25 Q	25 i50	Q50	i100 Q100
	sf	acres	C5	C100	Area (00 Area			C100	Area	C10	C100	Area	C5	C100	ft	Length f			Elevation	Elevation			Elevation	Elevation		(ft/s)										in/hr cfs
RP-7C RP-7D	55757	1.28		0.36	0	0.90	-	,		0.30	0.50		0.42	0.57		0.90	0.96	25	25	2111				0.040	1.2	0		0.000											5.2 6.4
	52707 183953	1.21 4.22		0.36	0		0.9 0.9	,		0.30	0.50	0	0.42	0.57	183953	0.90	0.96	25 129		1927 1165	1927	6968	6062	0.040	1.2 8.7	6962	6951	0.000		6.4 3.9	-					-			5.5 6.5 6.4 15.5
A1 A2	171980	3.95		0.36	0	0.90				0.30	0.50	0	0.42	0.57	171980	0.42	0.57	129	129	785		6962	6959	0.047	12.7	6959		0.010		2.6	12.0		2.8 4						5.8 13.2
A3	40333	0.93		0.36		0.90				0.30	0.50		0.42	0.57	40333	0.42	0.57	60	60	429	429		6955	0.013	5.8	6955	6951			1.4	10.0	2.9 1.1			5 1.8			3.6	
A4	16521	0.38	0.08	0.36		0.90				0.30	0.50		0.42	0.57	16521	0.42	0.57	84	84	168	168	6954	6952	0.020	9.2	6952	6951	0.006		0.6	9.8 2	2.6 0.4			0.7	••••	.1 6.0		7.0 1.5
A5	87091	2.00	0.08	0.36		0.90				0.30	0.50		0.42		87091	0.42	0.57	84	84	281	281	6954	6952	0.020	9.2		6949			0.9	10.2 2	2.5 2.1	3.3 2	2.8 4.0	3.4	5.1 5	.8 6.0	6.8	6.9 8.0
A6	170648	3.92	0.08	0.36	46,9	32 0.90) O.9	96		0.30	0.50		0.42	0.57	123716	0.33	0.52	331	300	672	703	6975	6962	0.039	15.8	6962	6953	0.014		2.3	18.2 2	2.0 2.6	2.6 3	3.3 3.1	4.0	3.9 8	.1 4.6	9.5	5.4 11.0
A7	50796	1.17	0.08	0.36		0.90) O.9	96		0.30	0.50		0.42	0.57	50796	0.42	0.57	60	60	624	624	6963	6961	0.027	7.0	6961	6953	0.013		2.1	9.1 2	2.6 1.3	3.4 1	1.7 4.2	2 2.1	5.3 3	3.5 6.2	4.2	7.2 4.8
A8	18695	0.43	0.08	0.36		0.90	0.9	96		0.30	0.50		0.42	0.57	18695	0.42	0.57	50	50	130	130	6953	6951	0.023	6.8	6951	6950	0.008		0.4	7.2 2	2.9 0.5	3.7 ().7 4.5	5 0.8	5.7 1	.4 6.7	1.7	7.8 1.9
A9	48530	1.11		0.36			0.9			0.30	0.50		0.42	0.57	48530	0.42	0.57	66	66	400	400		6958	0.023	7.8	6958	6950			1.3	9.1 2	2.6 1.2	3.4 1	1.6 4.2	2 2.0	5.3 3	.4 6.2	4.0	7.2 4.6
A10	145660	3.34	0.08	0.36	91,8					0.30	0.50		0.42	0.57	53809	0.21	0.44	133	133	409	409	6959	6945	0.105	8.8	6945		0.007		1.4	10.1 2	2.5 1.8		2.3 4.0			7.5 6.0		6.9 10.3
A11	38513	0.88	0.08	0.36	38,5					0.30	0.50		0.42	0.57		0.08	0.36	15	15	74	74	6950	6949	0.067	3.9	6949	6940			0.2		3.2 0.2			0.4			2.4	8.7 2.8
A12	29078	0.67	0.08	0.36		0.90		,		0.30	0.50		0.42	0.57		0.90	0.96	13	13	512	512	6965	6964	0.077	0.7	6964		0.009		1.7	5.0 3	3.2 1.9			3.0		1.1 7.5	4.8	8.7 5.6
A13 A14	28956 31058	0.66	0.08	0.36	_	0.90		,	,956 .058	0.30	0.50		0.42	0.57		0.90	0.96	13	13 96	512 547	512	6964 6956	6964 6954	0.020	1.1 2.9	6964 6954	6959 6953	0.009		1.7	5.0 3	3.2 1.9 3.2 2.0	4.1 2) 3.0		1.1 7.5		8.7 5.6 8.7 6.0
A 14 A 15	30826	0.71		0.36		0.90			,058		0.50		0.42	0.57		0.90	0.96	13	13	547		6956		0.021	2.9	6958	6953					3.2 2.0							8.7 5.9
A15 A16	82931	1.90	0.08	0.36		0.90	-	,		0.30	0.50		0.42	0.57	39143	0.90	0.90	100	100	553	553	6954	6958	0.020	5.6	6958	6940	0.009		1.0		2.8 3.7			5 5.8		3.4 6.6		
A10	40961	0.94		0.36	-		0.0	,	,961		0.50		0.42	0.57	39143	0.00	0.96	100	100	553		6954			0.7	6953	6940			1.8		3.2 2.7		-					8.7 7.9
Total Onsite Area =	1216531		0.00	0.00		0.00	0.0		,001	0.00	0.00		0.42	0.07		0.00	0.00	10	10	000	000	0004	0000	0.011	0.7	0000	0040	0.020		1.0	0.0		- T . 1		, 4.0	0.0 0		0.0	0.1 1.0
																																					_		
DP1 (A2)		3.95																															4	4.6					13.2
DP2 (A1+A2)		8.17																															1	0.0					28.7
DP3 (A3)		0.93																															1	1.5					4.2
DP4 (A3+A4)		1.31																															2	2.0					5.7
DP5 (D2+D4)		9.48																															1	2.0					34.4
DP6 (A6)		3.92																															3	3.3					11.0
DP7 (A6+A7)		5.08																															Ę	5.0					15.9
DP8 (A8)		0.43								-																							().7					1.9
DP9 (DP5+DP7+DP8+A9)		16.10			R I	unoff o	ranti	ired ii	n																								1	9.3					56.8
DP 10 (A5)		2.00																															2	2.8					8.0
DP Pond (A1-A10)		21.45			Off	site ru	unott	trom																									2	4.4					75.1
DP Pond (Discharge)		21.45			Tha	isins F	P-7	D and	h																								().4					3.7
DP11 (RP-7D+A12)		1.88	$\mathbf{\nu}$				\I <i>−1</i>		u																									5.4					12.1
DP12 (DP11+RP-7C+A13)		3.82			TRF	P-7C																												0.7					24.0
DP13 (A14)		0.71																															2	2.7					6.0
DP14 (DP12+DP13+A15)		5.24																							1								1	6.0				1	36.0
DP15 (A16)		1.90																															4	1.8					11.6
DP16 (DP14+DP15+A17)		8.09																							1								2	4.3					55.4
Total Area =	1324995				-																														4				

STORM PIPE SUMMARY TABLE

AMETER (IN)	PIPE LENGTH (FT)	PIPE FLOW (cfs)
24"	28	13.2
24"	6	15.5
30"	88	28.7
18"	28	4.2
18"	6	1.5
18"	83	5.7
30"	170	34.4
18"	28	1.9
24"	28	11.6
18"	6	4.8
24"	68	16.4
24"	137	16.4
36"	6	52.7
36"	117	57.3
36"	77	57.3
24"	148	7.9
24"	52	7.9
24"	75	10.5
24"	7	10.4
30"	210	20.9
30"	382	20.9
18"	75	7.5
18"	7	7.3
30"	255	35.7
30"	560	35.7
24"	75	11.4
36"	7	47.1
36"	24	54.9

STORM SUMMARY TABLE

T OPENING (FT)	FLOW TO INLET (CFS)	FLOW CAPTURED (CFS)
12'	15.5	15.5
10'	13.2	13.2
6'	4.2	4.2
6'	1.5	1.5
6'	8.0	8.0
8'	11.0	11.0
6'	4.8	4.8
6'	1.9	1.9
6'	4.6	4.6
16'	12.1	10.5
16'	12.0	10.4
16'	7.6	7.5
16'	7.4	7.3
20'	11.7	11.4
16'	8.0	7.8

ASPEN MEADOWS FILING NO. 1 COLORADO SPRINGS, CO DEVELOPMENT PLAN

CONSULTANT:

CIVIL ENGINEER.
Matrix DESIGN GROUP

2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 Phone 719-575-0100 Fax 719-575-0208

LANDSCAPE ARCHITECT: Thomas & Thomas Planning-Urban 614 N. Tejon Street Colorado Springs, CO 80903 Phone (719)578-8777

PROJECT:

ASPEN MEADOWS FILING NO.1 DEVELOPMENT PLAN CITY OF COLORADO SPRINGS JANUARY 2019

OWNER: COLA, LLC 555 MIDDLE PARKWAY COLORADO SPRINGS, CO 80921 (719)459-0807

DEVELOPER:

COLA, LLC 555 MIDDLE PARKWAY COLORADO SPRINGS, CO 80921 (719)459-0807

CITY PLANNING FILE NO: AR DP XXXXXXXX ISSUE: JANUARY, 2019

DRAWING INFORMATION: PROJECT NO: 17.886.004.000 DRAWN BY: CRAIG DOLD CHECKED BY: JEFF ODOR APPROVED BY: JEFF ODOR SHEET TITLE:

DRAINAGE REPORT EXHIBIT

SHEET 3 OF 3

<u>Pond Design Report</u> Aspen Meadows Addendum

Aspen Meadows - Sand Creek Drainage Basin

June 2020

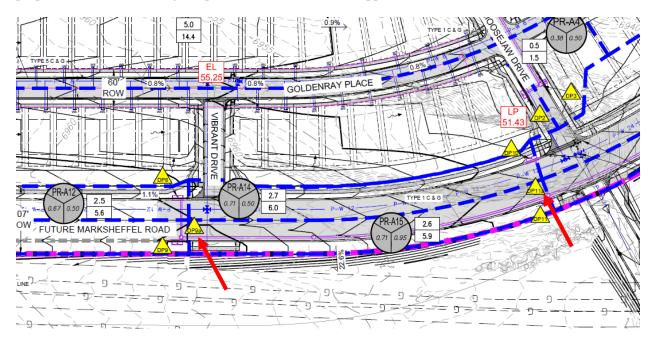
Prepared for: City of Colorado Springs, Colorado Engineering Development Review Division Team 30 South Nevada Avenue, Suite 401 Colorado Springs, CO 80903

> COLA, LLC. 555 Middle Parkway Colorado Springs, CO 80921

Prepared by: 2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 (719) 575-0100 fax (719) 572-0208

MDG Project No. 17.886.004

Detention Calculations

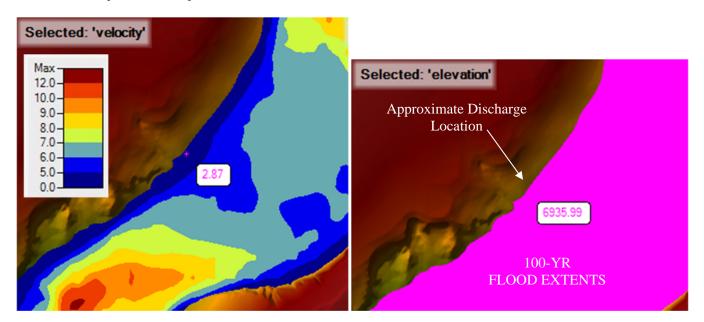

Along with design grading for the proposed single-family full spectrum detention pond (**FDR**: Pond 1), the UD-Detention model was updated to reflect the updated contours as part of the construction documents for Pond 1. Please see the attached UD-Detention sheets for reference.

Calculations

The StormCAD modeling has been completed for the proposed storm sewer as described above. Please see the attached pipe and inlet reports. Spillway and outfall protection calculations were completed in compliance with DCM criteria and are attached as well. Also included are the northern boundary area inlet and swale capacity calculations.

Marksheffel Storm Calculations

Because the layout of the proposed storm alignment has been modified since the previous submittal, the rational calculations for this site were updated and are included in the appendix. Two additional design points were added, DP9a and DP11a, and are placed along Marksheffel Road at the manhole junctions shown below. An updated proposed conditions drainage map can also be found in the Appendix.


Sterling Ranch Interim Conditions

It appears that the proposed Aspen Meadows Filing 1 development will be constructed prior to completion of the proposed detention in Sterling Ranch to the north. The0 result of this is that the runoff from approximately 2.3 acres of undeveloped area immediately north of the proposed Aspen Meadows development. This flow is estimated to be approximately 3 cfs.

Pond Outfalls to Sand Creek

Pond 1

The outfall for Pond 1 at Aspen Meadows Filing 1 discharges near the 100-year highwater for Sand Creek, therefore, additional analysis of the outfall spill pad has been performed. According to the 2D model of Sand Creek the velocity at the spill pad location is just under 3 ft/s. This corresponds with an elevation of 6935.99. Please see excerpted screen captures from the 2D model.

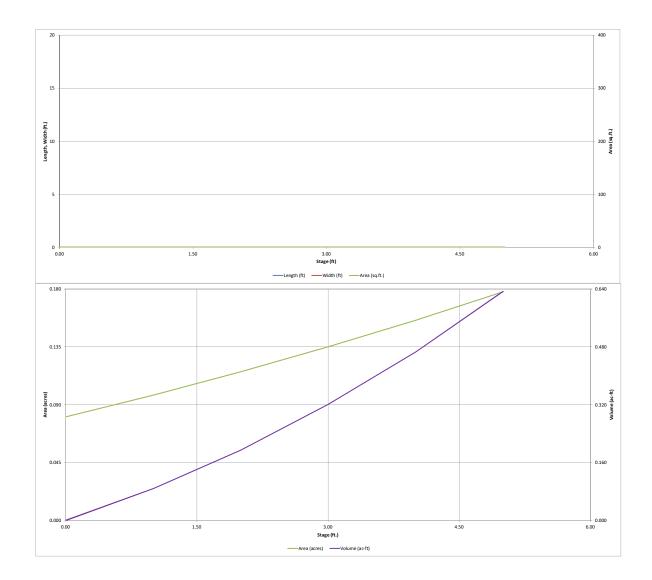
The above indicates that the Pond 1 Discharge pipe (Flout = 6936.22) will discharge just above the 100-year flood event. The spill pad will likely be just inside the 100-year floodplain; however, the modeled flow velocity is below the 3.5 ft/s velocity deemed acceptable in the DCM channel guidelines for the minor storm through erosive soils. This suggests that the Type L (9-inch D50) Rip Rap outfall protection will not be disturbed by the flows within Sand Creek and that the outfall design calculations included in the appendix determine the required outlet protection.

Marksheffel WQ Pond

The modeled Water Surface Elevation adjacent to discharge location is 6915.28. The design discharge flow line is 6920.2. This comparison indicates that the proposed discharge is above the 100-year Base Flood Elevation and that

Sand Creek flows do not affect the pipe outfall. Therefore, the outfall protection indicated in this addendum for the Marksheffel WQ Pond discharge flow determines the required outlet protection.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

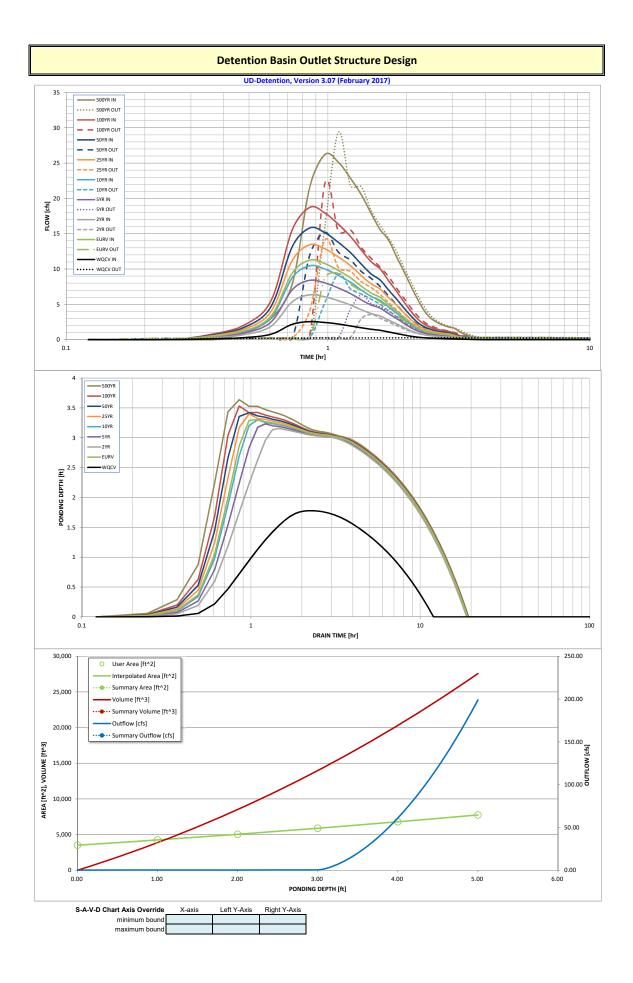

UD-Detention, Version 3.07 (February 2017)

Project: Aspen Meadows

	Aspen Mead													
Basin ID:	Marksheffel \	NOCN												
ZONE 3	2 IONE 1		_											
		1												
VOCOMET EURY WOCY		6					_							
1		100-YI ORIFI	LAR		Depth Increment =	1	ft							
POOL Example Zone	Ces	n (Botontio	n Bond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Example zone	Connguratio	II (Retentio	iii Foliu)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Required Volume Calculation					Media Surface	-	0.00	-	-	-	3,508	0.081		
Selected BMP Type =	SF	1				-	1.00	-		-	4,242	0.097	3,833	0.088
Watershed Area =	8.08	acres					2.00			-	5,035	0.116	8,463	0.194
Watershed Length =	1,612	ft					3.00				5,883	0.135	13,972	0.321
Watershed Slope =	0.023	ft/ft					4.00	-		-	6,788	0.156	20,307	0.466
Watershed Imperviousness =	91.20%	percent					5.00	-			7,750	0.178	27,576	0.633
Percentage Hydrologic Soil Group A =	95.3%	percent						-		-				
Percentage Hydrologic Soil Group B =	4.7%	percent						-		-				
Percentage Hydrologic Soil Groups C/D =	0.0%	percent				-		-	-					
Desired WQCV Drain Time =	12.0	hours						-	-	-				
Location for 1-hr Rainfall Depths =									-	-				
Water Quality Capture Volume (WQCV) =	0.222	acre-feet	Optional Use	r Override										
Excess Urban Runoff Volume (EURV) =	0.997	acre-feet	1-hr Precipita					-	-	-				
2-yr Runoff Volume (P1 = 0.95 in.) =	0.558	acre-feet	0.95	inches										
5-yr Runoff Volume (P1 = 1.23 in.) =	0.742	acre-feet	1.23	inches					-	-				
10-yr Runoff Volume (P1 = 1.49 in.) =	0.925	acre-feet	1.49	inches						-				
25-yr Runoff Volume (P1 = 1.88 in.) =	1.193	acre-feet	1.88	inches					-	-				
50-yr Runoff Volume (P1 = 2.21 in.) =	1.406	acre-feet	2.21	inches						-				
100-yr Runoff Volume (P1 = 2.57 in.) =	1.669	acre-feet	2.57	inches				-		-				
500-yr Runoff Volume (P1 = 3.52 in.) =	2.346	acre-feet	3.52	inches		-		-	-	-				
Approximate 2-yr Detention Volume =	0.530	acre-feet	5.02			-		-	-	-				
Approximate 2-yr Detention Volume = Approximate 5-yr Detention Volume =	0.530	acre-feet						-	-	-		1	+	
								-	-	-	-		<u> </u>	
Approximate 10-yr Detention Volume =	0.871	acre-feet										t	├ ────	⊢
Approximate 25-yr Detention Volume =	1.127	acre-feet			-			-	-	-		<u> </u>		<u>⊢</u>
Approximate 50-yr Detention Volume =	1.278	acre-feet						-	-	-		L		
Approximate 100-yr Detention Volume =	1.417	acre-feet						-	-			L		
								-	-	-				
Stage-Storage Calculation									-	-				
Zone 1 Volume (WQCV) =	0.222	acre-feet							-					
Select Zone 2 Storage Volume (Optional) =		acre-feet	Total detent	ion volume is				-	-	-				
Select Zone 3 Storage Volume (Optional) =		acre-feet	less than 10						-	-				
Total Detention Basin Volume =	0.222	acre-feet	volume.	- ,					-	-				
hitial Surcharge Volume (ISV) =	N/A								-	-				
	N/A	ft^3										<u> </u>		
Initial Surcharge Depth (ISD) =		ft				-			-	-		l		
Total Available Detention Depth (H _{total}) =	user	ft				-			-	-		<u> </u>		
Depth of Trickle Channel (H _{TC}) =		ft						-	-	-		L		
Slope of Trickle Channel (S _{TC}) =	N/A	ft/ft						-	-	-				
Slopes of Main Basin Sides (Smain) =	user	H:V						-	-	-				
Basin Length-to-Width Ratio (R _{L/W}) =	user							-	-	-				
								-	-					
Initial Surcharge Area (A _{ISV}) =	user	ft^2						-	-	-				
Surcharge Volume Length (LISV) =	user	ft				-				-				
Surcharge Volume Width (W _{ISV}) =	user	ft								-				
Depth of Basin Floor (H _{FLOOR}) =	user												-	
Length of Basin Floor (L _{FLOOR}) =	user	ft								-				
Width of Basin Floor (W _{FLOOR}) =		ft							-	-		<u> </u>		H
	user	ft										<u> </u>		
Area of Basin Floor (A _{FLOOR}) =	user	ft^2							-	-				
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3			-				-	-		L		
Depth of Main Basin (H _{MAIN}) =	user	ft				-			-	-		L		
Length of Main Basin (L _{MAIN}) =	user	ft						-	-	-				
Width of Main Basin (W _{MAIN}) =	user	ft				-		-	-	-				
Area of Main Basin (A _{MAIN}) =	user	ft^2						-	-	-				
Volume of Main Basin (V _{MAIN}) =	user	ft^3								-		1		
Calculated Total Basin Volume (V _{total}) =	user	acre-feet								-				
						-		-	-	-		L		
						-			-	-		<u> </u>	⊢]	
								-	-	-			<u> </u>	
							-			-			<u> </u>	⊢
								-	-	-			<u> </u>	
						-		-		-				
						-		-	-	-		<u> </u>	\square	<u>⊢</u>
									-	-			<u> </u>	
						-		-	-	-				
						-		-				L		
										-		1	<u> </u>	<u>⊢</u>
						-		-	-	-				
						-		-	-	-		L		
							-					I	├ ───┤	⊢
									-	-	-		t	
						-		-	-	-				
						-		-	-	-		<u> </u>		
													+	<u>⊢</u>
						-		L -	-					
						-		-	-	-				
						-		-	-	-		<u> </u>		<u> </u>
						-			-	-			<u>├</u> ──┤	
						-			-	-		L		
												t	├ ────	⊢
						-			-	-				
										-				
						-		-	-	-		<u> </u>	\vdash	
													<u> </u>	
								-	-	-		-		
									-	-		i		
						-	-				-			<u> </u>

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

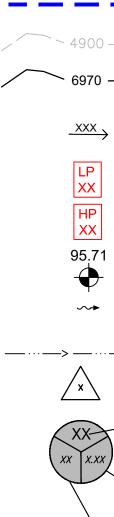

Project ASP3N MEADOWS

Subject MADORARAIN ORIFICE SIEING

Job. No.	17.92	6.0	04		
	JULY		_/_	3.	/ Zoi9
Sheet	1	_ of _	1		
By	3AS				

	V 1414 y a41 9670,32 1414 (1.825	9.41 = <u>2,31</u>		22 Ac-1 70.32 FT 5 FT	-FT :73		
		a = e					

Detention Basin Outlet Structure Design														
UD-Detention, Version 3.07 (February 2017) Project: Aspen Meadows														
ZONE 3	Marksheffel WQCV													
ZONE 2 ZONE 1	\sim			. (6)	/									
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type	1							
VOLUME EURV WOCV			Zone 1 (WQCV)	2.23	0.222									
ZONE 1 AND 2	-100-YEA ORIFICE	R	Zone 2											
PERMANENT ORIFICES			Zone 3											
Example Zone	Configuration (Re	etention Pond)			0.222	Total								
User Input: Orifice at Underdrain Outlet (typically u	sed to drain WQCV i	n a Filtration BMP)					ed Parameters for Ur	nderdrain						
Underdrain Orifice Invert Depth =	1.83	ft (distance below th	ne filtration media sur	rface)		erdrain Orifice Area =	0.0	ft²						
Underdrain Orifice Diameter =	2.31	inches			Underdra	ain Orifice Centroid =	0.10	feet						
User Input: Orifice Plate with one or more orifices of	or Elliptical Slot Weir	7					lated Parameters for	-						
Invert of Lowest Orifice =		· ·	pottom at Stage = 0 ft			rifice Area per Row =	N/A	ft ²						
Depth at top of Zone using Orifice Plate =			bottom at Stage = 0 ft	L)		Elliptical Half-Width =	N/A	feet						
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =		inches inches			EIII	ptical Slot Centroid = Elliptical Slot Area =	N/A N/A	feet ft ²						
Office Plate. Office Area per Now -		inches				Elliptical Slot Alea -	N/A	n						
Jser Input: Stage and Total Area of Each Orifice I	Row (numbered from	n lowest to highest)												
	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	7					
Stage of Orifice Centroid (ft)]					
Orifice Area (sq. inches)														
									-					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1					
Stage of Orifice Centroid (ft)									_					
Orifice Area (sq. inches)														
User Input: Vertical Orifice (Cire	· · · · · · · · · · · · · · · · · · ·	No. C. Land	1			Calculated	Parameters for Vert	1	٦					
lawart of Vention Configuration	Not Selected	Not Selected	fe (an lasting the location le			(antian) Orifina Area -	Not Selected	Not Selected	ft ²					
Invert of Vertical Orifice =				oottom at Stage = 0 ft		/ertical Orifice Area = cal Orifice Centroid =			ft feet					
Depth at top of Zone using Vertical Orifice = Vertical Orifice Diameter =			inches	oottom at Stage = 0 ft	.) veru				leet					
Vertical Office Diameter -			inches											
User Input: Overflow Weir (Dropbox) and G	Grate (Flat or Sloped)					Calculated	Parameters for Ove	rflow Weir						
	Not Selected	Not Selected	1											
Our flag strategies and the second second second														
Overflow Weir Front Edge Height, Ho = ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H _t = fee														
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =			ft (relative to basin bo feet	ttom at Stage = 0 ft)		rate Upper Edge, H _t = v Weir Slope Length =	Not Selected	Not Selected	feet feet					
Overflow Weir Front Edge Length = Overflow Weir Slope =			feet H:V (enter zero for f		Over Flow Grate Open Area /	Weir Slope Length = 100-yr Orifice Area =	Not Selected	Not Selected	feet should be ≥ 4					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =			feet H:V (enter zero for f feet	lat grate)	Over Flow Grate Open Area / Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Not Selected	Not Selected	feet should be <u>></u> 4 ft ²					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =			feet H:V (enter zero for f	lat grate)	Over Flow Grate Open Area / Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area =	Not Selected	Not Selected	feet should be ≥ 4					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =			feet H:V (enter zero for f feet	lat grate)	Over Flow Grate Open Area / Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Not Selected	Not Selected	feet should be <u>></u> 4 ft ²					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % =			feet H:V (enter zero for fi feet %, grate open area/t %	lat grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	vWeir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =			feet should be ≥ 4 ft ² ft ²					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % =		ctor Plate, or Rectan	feet H:V (enter zero for fi feet %, grate open area/t %	lat grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	vWeir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	rs for Outlet Pipe w/	Flow Restriction Pla	feet should be ≥ 4 ft ² ft ²					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restri		feet H:V (enter zero for fi feet %, grate open area/1 % gular Orifice)	lat grate) total area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter			feet should be ≥ 4 ft ² ft ²					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =		ctor Plate, or Rectan	feet H:V (enter zero for fi feet %, grate open area/1 % gular Orifice) ft (distance below basi	lat grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area =	rs for Outlet Pipe w/	Flow Restriction Pla	feet should be \geq 4 ft ² ft ² te ft ²					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C		ctor Plate, or Rectan	feet H:V (enter zero for fi feet %, grate open area/1 % gular Orifice)	lat grate) total area in bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	rs for Outlet Pipe w/	Flow Restriction Pla	feet should be ≥ 4 ft ² ft ²					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =		ctor Plate, or Rectan	feet H:V (enter zero for fi feet %, grate open area/1 % gular Orifice) ft (distance below basi	lat grate) total area in bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	rs for Outlet Pipe w/ Not Selected	Flow Restriction Pla Not Selected	feet should be \geq 4 ft ² ft ² te ft ² feet					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	Not Selected	ctor Plate, or Rectan	feet H:V (enter zero for fi feet %, grate open area/1 % gular Orifice) ft (distance below basi	lat grate) total area in bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	rs for Outlet Pipe w/ Not Selected	Flow Restriction Pla Not Selected	feet should be \geq 4 ft ² ft ² te ft ² feet					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	Not Selected	ctor Plate, or Rectan Not Selected	feet H:V (enter zero for fi feet %, grate open area/1 % gular Orifice) ft (distance below basi	lat grate) total area in bottom at Stage = 0 f Half-I	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	rs for Outlet Pipe w/ Not Selected	Flow Restriction Pla Not Selected	feet should be \geq 4 ft ² ft ² te ft ² feet					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan)	Not Selected	ctor Plate, or Rectan Not Selected	feet H:V (enter zero for f feet %, grate open area/t % gular Orifice) ft (distance below bas inches	lat grate) total area in bottom at Stage = 0 f Half-I	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Central Angle of Rest Spillway	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	rs for Outlet Pipe w/ Not Selected N/A	Flow Restriction Pla Not Selected N/A	feet should be \geq 4 ft ² ft ² te ft ² feet					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway End Slopes =	Not Selected gular or Trapezoidal) 3.00 17.00 4.00	ctor Plate, or Rectan Not Selected ft (relative to basin l feet H:V	feet H:V (enter zero for f feet %, grate open area/t % gular Orifice) ft (distance below bas inches	lat grate) total area in bottom at Stage = 0 f Half-I	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula y Design Flow Depth=	rs for Outlet Pipe w/ Not Selected N/A ted Parameters for S	Flow Restriction Pla Not Selected N/A Spillway feet	feet should be \geq 4 ft ² ft ² te ft ² feet					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan, Spillway Invert Stage= Spillway Crest Length =	Not Selected gular or Trapezoidal) 3.00 17.00	ctor Plate, or Rectan Not Selected ft (relative to basin I feet	feet H:V (enter zero for f feet %, grate open area/t % gular Orifice) ft (distance below bas inches	lat grate) total area in bottom at Stage = 0 f Half-I	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a	 Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula v Design Flow Depth= th Top of Freeboard = 	ns for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48	Flow Restriction Pla Not Selected N/A Spillway feet feet	feet should be \geq 4 ft ² ft ² te ft ² feet					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan, Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Not Selected gular or Trapezoidal) 3.00 17.00 4.00 1.00	ctor Plate, or Rectan Not Selected ft (relative to basin l feet H:V	feet H:V (enter zero for f feet %, grate open area/t % gular Orifice) ft (distance below bas inches	lat grate) total area in bottom at Stage = 0 f Half-I	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a	 Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula v Design Flow Depth= th Top of Freeboard = 	ns for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48	Flow Restriction Pla Not Selected N/A Spillway feet feet	feet should be \geq 4 ft ² ft ² te ft ² feet					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan, Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Not Selected gular or Trapezoidal) 3.00 17.00 4.00 1.00	ctor Plate, or Rectan Not Selected ft (relative to basin I feet H:V feet	feet H:V (enter zero for f feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft	lat grate) total area in bottom at Stage = 0 f Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a	 Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula v Design Flow Depth= ht Top of Freeboard = 	ns for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17	Flow Restriction Pla Not Selected N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² te ft ² feet radians					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan, Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Not Selected gular or Trapezoidal) 3.00 17.00 4.00 1.00	ctor Plate, or Rectan Not Selected ft (relative to basin l feet H:V	feet H:V (enter zero for f feet %, grate open area/t % gular Orifice) ft (distance below bas inches	lat grate) total area in bottom at Stage = 0 f Half-1 t) 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a	 Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula v Design Flow Depth= th Top of Freeboard = 	ns for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48	Flow Restriction Pla Not Selected N/A Spillway feet feet	feet should be \geq 4 ft ² ft ² te ft ² feet					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway End Slopes = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	Not Selected gular or Trapezoidal) 3.00 17.00 4.00 1.00 WQCV	ctor Plate, or Rectan Not Selected ft (relative to basin l feet H:V feet EURV	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft	lat grate) total area in bottom at Stage = 0 f Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a	Veir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat v Design Flow Depth= t Top of Freeboard = tt Top of Freeboard =	rs for Outlet Pipe w/ Not Selected N/A N/A ted Parameters for S 0.48 4.48 0.17 50 Year	Flow Restriction Pla Not Selected N/A Spillway feet feet acres	feet should be \geq 4 ft ² ft ² ft ² ft ² feet radians 500 Year					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan, Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	Wot Selected gular or Trapezoidal) 3.00 17.00 4.00 1.00 WQCV 0.53 0.222	ctor Plate, or Rectan Not Selected ft (relative to basin l feet H:V feet EURV 1.07 0.997	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 2 Year 0.95 0.558	lat grate) total area in bottom at Stage = 0 f Half-1 t) 5 Year 1.23 0.742	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.49 0.925	<pre>vWeir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula v Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.88 1.193</pre>	rs for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17 50 Year 2.21 1.406	Flow Restriction Pla Not Selected N/A pillway feet feet acres 100 Year 2.57 1.669	feet should be \geq 4 ft ² ft ² ft ² ft ² feet radians 500 Year 3.52 2.346					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Not Selected gular or Trapezoidal) 3.00 17.00 4.00 1.00 WQCV 0.53 0.222 0.222	tor Plate, or Rectan Not Selected ft (relative to basin l feet H:V feet EURV 1.07 0.997 0.997	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 2 Year 0.95 0.558	lat grate) total area in bottom at Stage = 0 f Half-1 t) 5 Year 1.23 0.742 0.742	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.49 0.925	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula v Design Flow Depth = t Top of Freeboard = 1.193 1.193	rs for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17 50 Year 2.21 1.406	Flow Restriction Pla Not Selected N/A Spillway feet feet feet acres 100 Year 2.57 1.669 1.669	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.52 2.346					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Cheeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Wot Selected gular or Trapezoidal) 3.00 17.00 4.00 1.00 WQCV 0.53 0.222 0.00	tor Plate, or Rectan Not Selected ft (relative to basin l feet H:V feet URV 1.07 0.997 0.00	feet H:V (enter zero for fi feet %, grate open area/1 % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 2 Year 0.95 0.558 0.558 0.00	lat grate) total area in bottom at Stage = 0 f Half-1 t) 5 Year 1.23 0.742 0.742 0.00	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillway Stage a Basin Area a Doverflow Grate O Overflow Grate	 Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to point Freeboard = the Top of Freeboard = Top of Freeboard = 1.193 0.04 	s for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17 SO Year 2.21 1.406 1.406 0.15	Flow Restriction Pla Not Selected N/A Spillway feet feet acres 100 Year 2.57 1.669 0.34	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.52 2.346 0.84					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan, Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	Wot Selected 3.00 17.00 4.00 1.00 0.53 0.222 0.00 0.00	tor Plate, or Rectan Not Selected ft (relative to basin I feet H:V feet EURV 1.07 0.997 0.997 0.00 0.0	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 0.95 0.558 0.558 0.00 0.0	lat grate) total area in bottom at Stage = 0 f Half-1 t) 5 Year 1.23 0.742 0.742 0.00 0.0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Spillway Stage a Basin Area a Overflow Grate O Overflow Grate	<pre>vWeir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ o Debris = Calculated Parameter Outlet Orifice Centroid = let Orifice Centroid = rictor Plate on Pipe = Calcula v Design Flow Depth= at Top of Freeboard = t Top of Freeboard = 1.88 1.193 0.04 0.3</pre>	Solution Solution Not Selected N/A N/A N/A ted Parameters for S 0.48 4.48 0.17 50 Year 2.21 1.406 1.406 0.15 1.2	Flow Restriction Pla Not Selected N/A Spillway feet feet acres 100 Year 2.57 1.669 0.34 2.7	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² feet radians					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Calculated Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Wot Selected gular or Trapezoidal) 3.00 17.00 4.00 1.00 WQCV 0.53 0.222 0.00	tor Plate, or Rectan Not Selected ft (relative to basin l feet H:V feet URV 1.07 0.997 0.00	feet H:V (enter zero for fi feet %, grate open area/1 % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 2 Year 0.95 0.558 0.558 0.00	lat grate) total area in bottom at Stage = 0 f Half-1 t) 5 Year 1.23 0.742 0.742 0.00	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillway Stage a Basin Area a Doverflow Grate O Overflow Grate	<pre>Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to point Freeboard = th Top of Freeboard = th Top of Freeboard = 1.88 1.193 0.04</pre>	s for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17 SO Year 2.21 1.406 1.406 0.15	Flow Restriction Pla Not Selected N/A Spillway feet feet acres 100 Year 2.57 1.669 0.34	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.52 2.346 0.84					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway End Slopes = Spillway End Slopes = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	Wot Selected 3.00 17.00 4.00 1.00 0.53 0.222 0.00 0.00 0.01 0.222 0.00 0.00 0.01 0.022	tor Plate, or Rectan Not Selected ft (relative to basin I feet H:V feet EURV 1.07 0.997 0.097 0.097 0.00 0.0 1.1.3 9.4 N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basis inches bottom at Stage = 0 ft 0.95 0.95 0.558 0.00 0.0 6.4 3.6 N/A	lat grate) total area in bottom at Stage = 0 f Half-1 t) 5 Year 1.23 0.742 0.00 0.0 8.4 6.4 256.7	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Gr	<pre>vWeir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula v Design Flow Depth= at Top of Freeboard = t Top of Freeboard = 1.88 1.193 0.04 0.3 13.5 14.1 49.8</pre>	s for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17 50 Year 2.21 1.406 1.406 0.15 1.2 15.8 15.2 12.9	Flow Restriction Pla Not Selected N/A Spillway feet feet acres 100 Year 2.57 1.669 0.34 2.7 1.8.7	feet should be ≥ 4 ft ² ft ² ft ² feet radians					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan, Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Length (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q a Structure Controlling Flow =	Wot Selected gular or Trapezoidal) 3.00 17.00 4.00 1.00 WQCV 0.53 0.222 0.00 2.6 0.3 N/A Filtration Media	tor Plate, or Rectan Not Selected ft (relative to basin l feet H:V feet EURV 1.07 0.997 0.097 0.097 0.00 0.0 11.3 9.4 N/A Spillway	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 0.558 0.558 0.558 0.00 0.0 6.4 3.6 N/A Spillway	lat grate) total area in bottom at Stage = 0 f Half-1 t;) 5 Year 1.23 0.742 0.742 0.742 0.742 0.00 0.0 8.4 6.4 6.4 6.4 256.7 5 Jilway	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Gr	<pre>vWeir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = calculat v Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.193 1.193 0.04 0.3 13.5 14.1 49.8 Spillway</pre>	rs for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17 50 Year 2.21 1.406 0.15 1.2 15.8 15.2 12.9 Spillway	Flow Restriction Pla Not Selected N/A Spillway feet feet acres 100 Year 2.57 1.669 0.34 2.7 1.8.7 2.2 8.1 Spillway	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway (rest Length = Spillway Crest Length = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Wot Selected gular or Trapezoidall 3.00 17.00 4.00 1.00 0.222 0.222 0.00 2.6 0.3 N/A Filtration Media N/A	tor Plate, or Rectan Not Selected ft (relative to basin l feet H:V feet EURV 1.07 0.997 0.097 0.097 0.00 0.0 11.3 9.4 N/A Spillway N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 0.558 0.558 0.000 0.0 6.4 3.6 N/A Spillway N/A	lat grate) total area in bottom at Stage = 0 f Half-1 t;) 5 Year 1.23 0.742 0.742 0.742 0.00 0.0 8.4 6.4 256.7 Spillway N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 0.925 0.925 0.01 0.1 0.5 9.3 102.9 Spillway N/A	<pre>Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to point of Freeboard = t Top of Freeboard = 1.193 1.19</pre>	rs for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17 50 Year 2.21 1.406 0.15 1.2 1.5.8 15.2 15.8 15.2 12.9 Spillway N/A	Flow Restriction Pla Not Selected N/A Spillway feet feet acres 100 Year 2.57 1.669 0.34 2.7 1.8.7 2.2.2 8.1 Spillway N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan, Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Wot Selected 3.00 17.00 4.00 1.00 0.53 0.222 0.00 0.00 0.00 0.722 0.00 0.00 0.00 0.01 0.022 0.022 0.00 0.01 0.02 0.02 0.03 N/A N/A	tor Plate, or Rectan Not Selected ft (relative to basin l feet H:V feet EURV 1.07 0.997 0.097 0.097 0.00 11.3 9.4 N/A Spillway N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 0.95 0.558 0.058 0.558 0.00 0.00 0.0 6.4 3.6 N/A Spillway N/A N/A	lat grate) total area in bottom at Stage = 0 f Half-1 t) 5 Year 1.23 0.742 0.742 0.00 0.00 0.0 8.4 6.4 256.7 \$pillway N/A N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillway Stage a Basin Area a Doverflow Grate O Spillway O.925 O.01 O.1 0.5 9.3 102.9 Spillway N/A N/A	<pre>Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculated Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.193 0.04 0.3 13.5 14.1 49.8 Spillway N/A N/A</pre>	s for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17 50 Year 2.21 1.406 0.15 1.2 15.8 15.2 12.9 Spillway N/A N/A	Flow Restriction Pla Not Selected N/A Spillway feet feet acres 100 Year 2.57 1.669 0.34 2.7 18.7 2.2 8.1 Spillway N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Ratio Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours)	Wot Selected 3.00 17.00 4.00 1.00 0.53 0.222 0.00 0.00 0.00 0.722 0.722 0.722 0.00 0.00 0.01 2.6 0.3 N/A Filtration Media N/A 12	tor Plate, or Rectan Not Selected ft (relative to basin I feet H:V feet EURV 1.07 0.997 0.997 0.00 0.0 11.3 9.4 N/A Spillway N/A 17	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 fi 0.558 0.00 0.558 0.00 0.0 6.4 3.6 N/A Spillway N/A N/A 18	lat grate) total area in bottom at Stage = 0 f Half-1 t) 5 Year 1.23 0.742 0.742 0.742 0.00 0.0 8.4 6.4 6.4 6.4 6.4 6.4 7 Spillway N/A N/A 18	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Gr	<pre>vWeir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = calculat Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.193 0.04 0.3 1.3.5 14.1 49.8 Spillway N/A N/A 17</pre>	s for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17 50 Year 2.21 1.406 0.15 1.2 15.8 15.2 12.9 Spillway N/A N/A 17	Flow Restriction Pla Not Selected N/A Spillway feet feet acres 100 Year 2.57 1.669 0.34 2.7 1.669 0.34 2.7 1.8.7 22.2 8.1 Spillway N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow To Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) =	Wot Selected gular or Trapezoidal) 3.00 17.00 4.00 1.00 WQCV 0.53 0.222 0.00 2.6 0.3 N/A Filtration Media N/A 12 12	tor Plate, or Rectan Not Selected ft (relative to basin l feet H:V feet 0.997 0.097 0.097 0.097 0.00 0.0 111.3 9.4 N/A Spillway N/A N/A 17 19	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 0.558 0.058 0.558 0.00 6.4 3.6 N/A \$pillway N/A N/A 18 19	lat grate) total area in bottom at Stage = 0 f Half-1 t) 5 Year 1.23 0.742 0.742 0.742 0.742 0.742 0.00 0.0 8.4 6.4 256.7 5 Spillway N/A N/A N/A 18 19	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillway Stage a Basin Area a Overflow Grate O Overflow Grate	<pre>Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula v Design Flow Depth= th Top of Freeboard = th Top of Freeboard = 1.193 0.04 0.3 13.5 14.1 49.8 Spillway N/A N/A N/A 17 18</pre>	rs for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17 50 Year 2.21 1.406 0.15 1.2 1.2 15.8 15.2 12.9 Spillway N/A N/A	Flow Restriction Pla Not Selected N/A Spillway feet feet acres 100 Year 2.57 1.669 0.34 2.7 1.669 0.34 2.7 1.8.7 22.2 8.1 5pillway N/A N/A 16 18	feet should be ≥ 4 ft ² ft ² ft ² feet radians					
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours)	Work Selected 3.00 17.00 4.00 1.00 0.53 0.222 0.00 0.0 2.6 0.3 N/A N/A N/A 12	tor Plate, or Rectan Not Selected ft (relative to basin I feet H:V feet EURV 1.07 0.997 0.997 0.00 0.0 11.3 9.4 N/A Spillway N/A 17	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches bottom at Stage = 0 fi 0.558 0.00 0.0 6.4 3.6 N/A Spillway N/A 18	lat grate) total area in bottom at Stage = 0 f Half-1 t) 5 Year 1.23 0.742 0.742 0.742 0.00 0.0 8.4 6.4 6.4 6.4 6.4 6.4 7 Spillway N/A N/A 18	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Gr	<pre>vWeir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = calculat Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.193 0.04 0.3 1.3.5 14.1 49.8 Spillway N/A N/A 17</pre>	s for Outlet Pipe w/ Not Selected N/A ted Parameters for S 0.48 4.48 0.17 50 Year 2.21 1.406 0.15 1.2 15.8 15.2 12.9 Spillway N/A N/A 17	Flow Restriction Pla Not Selected N/A Spillway feet feet acres 100 Year 2.57 1.669 0.34 2.7 1.669 0.34 2.7 1.8.7 22.2 8.1 Spillway N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians					


Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	Storm Inflow Hydrographs UD-Detention, Version 3.07 (February 2017) The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.												
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK			
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]			
7.31 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
7.51 11111	0:07:19												
Hydrograph	0:14:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Constant	0:21:56	0.00	0.49	0.28	0.37	0.46	0.59	0.69	0.81	1.12			
0.684	0:29:14	0.31	1.34	0.76	1.00	1.24	1.59	1.87	2.21	3.07			
	0:36:33	0.79	3.43	1.95	2.57	3.19	4.09	4.80	5.67	7.89			
	0:43:52	2.18	9.43	5.36	7.07	8.77	11.23	13.18	15.56	21.65			
	0:51:10	2.55	11.26	6.35	8.41	10.46	13.45	15.82	18.74	26.23			
	0:58:29	2.43	10.76	6.06	8.03	10.00	12.86	15.13	17.94	25.14			
	1:05:47	2.21	9.80	5.51	7.31	9.10	11.71	13.78	16.33	22.88			
	1:13:06 1:20:25	1.96	8.77	4.92	6.53	8.14	10.49 9.09	12.35	14.65 12.72	20.56			
	1:27:43	1.68	6.61	4.24	5.65	6.13	7.91	9.31	11.05	17.90			
	1:35:02	1.33	5.99	3.35	4.46	5.56	7.17	8.44	10.02	14.10			
	1:42:20	1.08	4.96	2.76	3.68	4.60	5.95	7.02	8.34	11.77			
	1:49:39	0.88	4.07	2.25	3.01	3.77	4.89	5.77	6.87	9.72			
	1:56:58	0.66	3.15	1.73	2.32	2.92	3.80	4.50	5.37	7.64			
	2:04:16	0.48	2.37	1.29	1.73	2.19	2.86	3.41	4.08	5.84			
	2:11:35	0.35	1.71	0.93	1.25	1.58	2.08	2.49	2.99	4.31			
	2:18:53 2:26:12	0.28	1.32	0.72	0.97	1.22	1.60	1.90	2.28	3.26			
	2:26:12	0.23	1.08	0.60	0.80	1.00	1.31	1.55	1.86	2.65			
	2:33:31	0.20	0.92	0.51	0.68	0.85	1.11 0.97	1.31	1.57	2.23			
	2:48:08	0.16	0.72	0.40	0.54	0.67	0.87	1.03	1.23	1.75			
	2:55:26	0.14	0.67	0.37	0.49	0.62	0.80	0.95	1.13	1.60			
	3:02:45	0.11	0.49	0.27	0.36	0.45	0.59	0.70	0.83	1.19			
	3:10:04	0.08	0.36	0.20	0.27	0.33	0.43	0.51	0.61	0.86			
	3:17:22	0.06	0.26	0.15	0.19	0.24	0.32	0.38	0.45	0.64			
	3:24:41	0.04	0.19	0.11	0.14	0.18	0.23	0.28	0.33	0.47			
	3:31:59 3:39:18	0.03	0.14	0.08	0.10	0.13	0.17	0.20	0.24	0.34			
	3:46:37	0.02	0.10	0.03	0.05	0.03	0.12	0.14	0.17	0.24			
	3:53:55	0.01	0.05	0.03	0.03	0.04	0.06	0.07	0.08	0.12			
	4:01:14	0.01	0.03	0.01	0.02	0.03	0.04	0.04	0.05	0.08			
	4:08:32	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.03	0.04			
	4:15:51	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.02			
	4:23:10 4:30:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	4:30:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	4:45:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	4:52:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	4:59:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	5:07:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	5:14:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	5:21:38 5:28:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	5:36:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	5:43:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	5:50:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	5:58:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	6:05:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	6:12:49 6:20:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	6:27:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	6:34:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	6:42:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	6:49:22 6:56:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	7:03:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	7:11:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	7:18:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	7:25:55 7:33:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	7:40:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	7:47:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	7:55:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	8:02:28 8:09:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	8:17:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	8:24:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	8:31:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	8:39:01 8:46:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	0.40.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

			Desi	gn Point Summary Table		
Design Point	Upstream ¹ Area Q5 Q100 (Acres) (cfs) (cfs)	Subbasins Included	Inl Name Ty	Size Outlet Pine Size/Type	DownstreamReceivingDesignEmergencyPointOverflow	
DP1 DP2	4.35 5.0 14.4 5.15 5.8 16.5		A2 D1 A1 D1		DP6DP6 / Street OvertopDP3DP3 / Street Overtop	ASPEN MEADOWS
DP3	5.53 6.2 17.7		A4 D1		DP6 DP6 / C & G, Street Overtop	COLORADO SPRINGS, CO
DP4 DP5	4.06 3.4 11.4 5.23 4.8 15.2	DP5, A7	D4 D1 D5 M	H 6 36" RCP/HP	DP5 DP5 / Street Overtop DP6 DP1 / C & G DP POND / Overtop	
DP6 DP7	16.22 16.7 49.3 2.00 2.8 8.0	DP1,DP3,DP5,A9 A5	D6 D 1 A5 D 1		DP POND DP POND DP POND Curb, Swale DP POND / Overtop Curb, Swale	PROPOSED CONDITIONS MAP
DP Pon	d 21.57 19.9 61.2	A1,A2,A4,A5, A6,A7,A9,		Orifice Plate: 1.02 Sq. In. (Stage 0', .9' & 1.06') ntion Overflow Weir/Grate: L=2', W=2' w/ slope: 0		
Detentio Discharg		A10	A9 Ou Struc	let Overflow Weir/Grate: (Stage: 4' to 6') sture Structure Outlet Pipe: 18" RCP/HP (10.5" Orifice Plate.	Sand Creek Sand Creek	
DP8 DP9	1.95 5.9 13.2 1.87 5.8 13.0	DP8,RP-7D,A13	A12 D 1 A13 D 1 A14 D 1	D R 16 24" RCP/HP D R 16 24" RCP/HP	DP9 DP10 / C & G DP11 DP11 / C & G	
DP10 DP11	0.712.76.00.712.65.9		A14 D 1 A15 D 1		DP11 DP12 / C & G DP13 DP13 / C & G	
DP12 DP13	1.904.811.63.558.620.3		A16 D 1 A17 D 1		DP13 Sand Creek Bridge WQ POND/ Sand Creek	
RP-7C 1.21 0.96 2.6 RP-7D 1.21 0.96 2.6 C C C C C C C C C C C C C			PEGULATORY 1% P DPLAIN REGULATORY 1% P DD BOUNDARY, ZON 965 15% TYPE 5 C & G	PROPERTY LINE PROPERTY LINE PROPER	ALCH ALCH	Image: Control of the control of th

	വ	
	Q II.	
	Know what's below. Call before you dig.	
	, , ,	CONSULTANT: CIVIL ENGINEER/ LANDSCAPE ARCHITECT:
		Matrix
		Excellence by Design
Basin Summary Table Aspen Meadows		2435 Research Parkway, Suite 300 Colorado Springs, CO 80920
Area Area Q5 Q100 Runoff ID (Acres) (cfs) _(cfs) Source	Runoff Type	Contact: Greg Shaner, Civil Engineer Contact: Jason Alwine, Landscape Architect
RP-7D 1.21 2.9 6.5 Road C	Concentrated Concentrated	Phone (719) 575-0100 Fax (719) 575-0208
A1 5.15 5.8 16.5Lots/Road A2 4.35 5.0 14.4Lots/Road	Sheet/Conc	
A40.380.51.5Lots/RoadA52.002.88.0Lots/Road	Sheet/Conc	
A64.063.411.4Lots/RoadA71.171.74.8Lots/Road	Sheet/Conc	
A9 1.11 1.6 4.6Lots/Road A10 3.34 2.3 10.3 Pond	Sheet	
	Concentrated	
A14 0.71 2.7 6.0 Road C	Concentrated Concentrated	
A16 1.90 4.8 11.6Lots/Road		
A17 0.94 3.5 7.9 Road C NOTE: BASIN A3 & A8 OMITTED.	Concentrated	ASPEN MEADOWS FILING NO.1
		PUD DEVELOPMENT PLAN
		CITY OF COLORADO SPRINGS JANUARY 2020
		JANUARY 2020 OWNER:
		COLA, LLC
		555 MIDDLE PARKWAY
NOTES:		COLORADO SPRINGS, CO 80921 (719)459-0807
	ange with final grading design and construction.	
I	EGEND	DEVELOPER: COLA, LLC
-		555 MIDDLE PARKWAY
	SUB-BASIN BOUNDARY	COLORADO SPRINGS, CO 80921 (719)459-0807
4900	EXISTING CONTOUR	
6970	PROPOSED CONTOUR	
	FLOW DIRECTION	
<i>,</i>		
LP XX	LOW POINT AND ELEVATION	
HP XX	HIGH POINT AND ELEVATION	
95 _. 71		
\bullet	SPOT ELEVATION	CITY PLANNING FILE NO: AR PUD 19-00053
~~	FLOW ARROW	ISSUE: MARCH, 2020
>>>	SWALE	
\bigwedge	DESIGN POINT	
	SUB BASIN DESIGNATION	
XX xx (x.xx)		
	SUB BASIN RUNOFF COEFFICIENT	
\	SUB BASIN AREA (AC.)	
0.0 •	5-YEAR STORM EVENT PEAK FLOW (CFS)	
0.0 •	100-YEAR STORM EVENT PEAK FLOW (CFS)	DRAWING INFORMATION: PROJECT NO: 17.886.004.000
	PROPERTY LINE	DRAWN BY: CRAIG DOLD
	STORM PIPE	CHECKED BY: JEFF ODOR
		APPROVED BY: JEFF ODOR SHEET TITLE:
		DRAINAGE
		REPORT
		MAP
	GRAPHIC SCALE	DR02
	(IN FEET)	SHEET 2 OF 3
	1 inch = 100 ft.	

Project Name: Project Location: Designer Notes:	Aspen Meadows Filing No. 1 Adder NE Colorado Springs JTS Proposed Conditions	endum					
Average Channel Velocity Average Slope for Initial Flow	0.04 ft/ft (If Elevation	c channel vel is used, this will be ignored) ons are used, this will be ignored)	ational 'C' Values	Flow Longth		Otherson I Floren	
	Area	N N N N N N N N N N N N N N N N N N N		Flow Lengths	Initial Flow	Channel Flow Tc	Rainfall Intensity & Rational Flow Rate
Basin	Surface	e Type 1 (Meadow) Surface Type 2 S (Pavement)	Surface Type 4 urface Type 3 (1/4 (0.147 Acre Lots) Acre Lots) (Interpolated between 1/8 & 1/4 Acre lots)	Initial True Initial Channel rue Chann	High Point Low Point Average Initial High Po	oint Low Point Average Velocity Channel	al i2 Q2 i5 Q5 i10 Q10 i25 Q25 i50 Q50 i100 Q100
	sf acres C5	C100 Area (SF) C5 C100 Area (SF)	C5 C100 Area C10 C100 Area C5 C100	ft Length ft ft Length ft	Elevation Elevation Slope Tc (min) Elevation	on Elevation Slope (ft/s) Tc (min) (min) in/hr cfs in/hr cfs in/hr cfs in/hr cfs in/hr cfs in/hr
1							

FINAL DRAINAGE REPORT FOR STERLING RANCH FILING 3

Prepared For:

SR Land, LLC 20 Boulder Crescent, Suite 200 Colorado Springs, CO 80903 (719) 491-3024

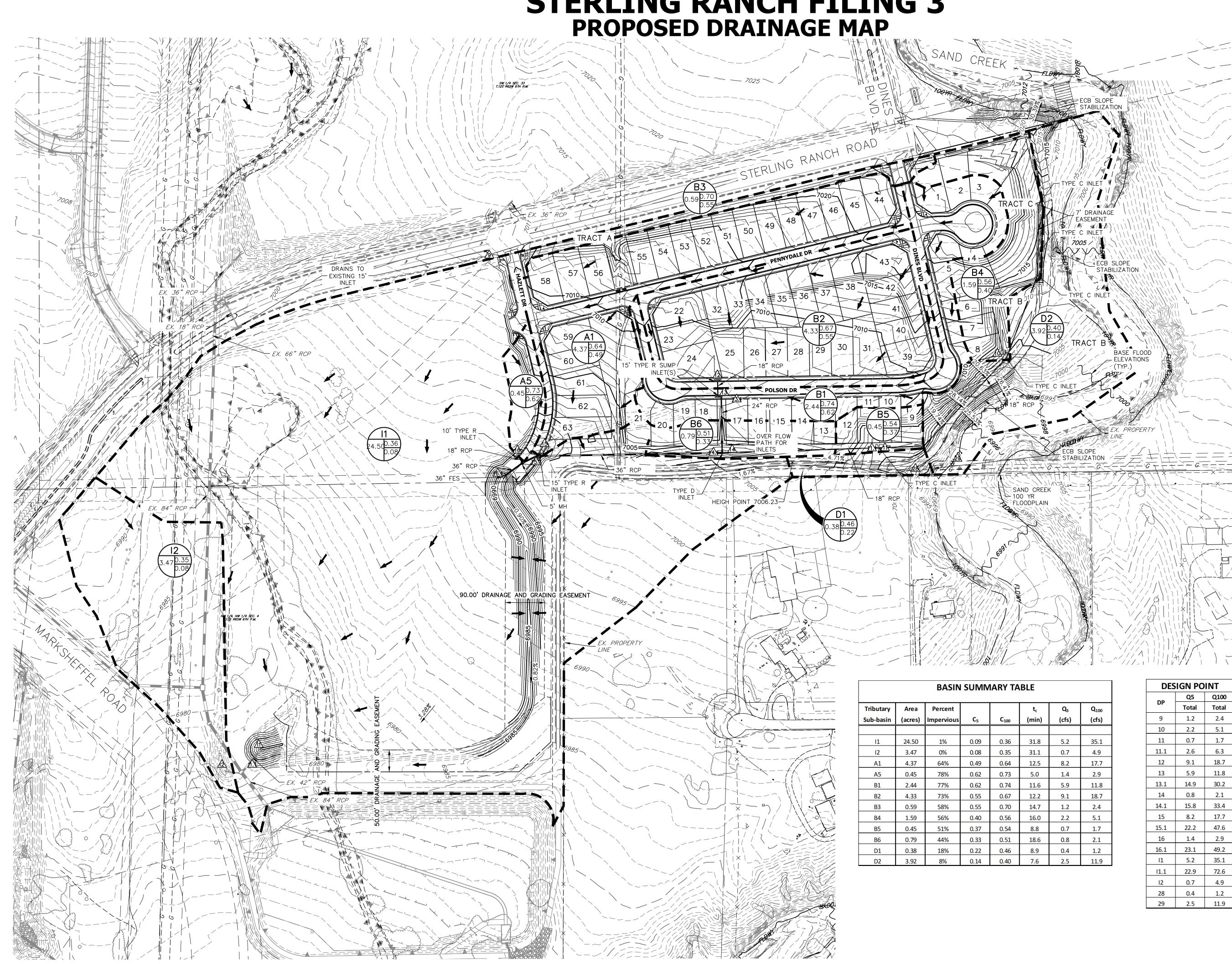
> April 2022 Project No. 25188.02 SF-2132

Prepared By: JR Engineering, LLC 5475 Tech Center Drive, Suite 235 Colorado Springs, CO 80919 719-593-2593

STANDARD FORM SF-3 - PROPOSED STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

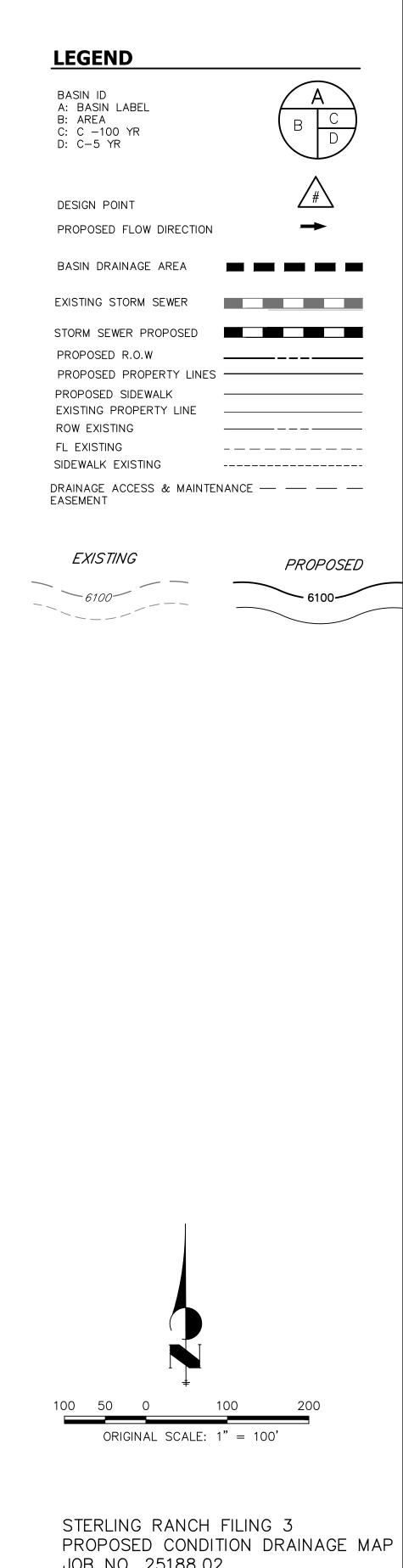
Subdivision: Location:	Subdivision: Sterling Ranch Subdivision Location: El Paso County															1	ject Na Project culatec	No.:	25188	ng Rar 3.02	nch Fil	ling 3	
Design Storm:			1													С	hecked	d By:	4/12/	22			
			1	DIRE	CT RU	NOFF			T	OTAL R	UNOF	F	STRE	et/SW	/ALE		PIP	ЪЕ		TRAV	EL TIN	ЛЕ	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	9	B3	0.59	0.55	14.7	0.33	3.55	1.2															Offsite flow to existing inlet in Sterling Ranch Road Piped to existing storm sewer in Sterling Ranch Road
	10	B4	1.59					2.2								2.2	0.63	1.0	12	380	4.7		Rear lot and area inlets Piped to DP 11.1
	11	B5	0.45					0.7															Area Inlet Piped to DP 14.1
	11.1								17.3	0.80	3.30	2.6				2.6	0.80	1.0	18	357	4.9	1.2	Piped to DP 14.1
	12	B2	4.33	0.55	12.2	2.37	3.83	9.1								9.1	2.37	1.0	18	38	6.7		Sump Inlet Piped to DP 13.1
	13	B1	2.44	0.62	11.6	1.52	3.91	5.9															Sump Inlet Piped to DP 13.1
	13.1								12.3	3.89	3.82	14.9				14.9	3.89	1.0	24	125	7.6	0.3	Piped to DP 14.1
	14	B6	0.79	0.33	18.6	0.26	3.20	0.8															Area Inlet Piped to DP 14.1
	14.1								18.6	4.95	3.20	15.8				15.8	4.95	1.0	24		7.7		Piped to DP 15.1
	15	A1	4.37	0.49	12.5	2.16	3.79	8.2					0.8	0.21	1.6	7.4				230	2.5		On-grade Inlet Captured Flows piped to DP 15.1, Bypass flow to DP 17
	15.1								19.5	7.11	3.13	22.2				22.2	7.11	1.0	24	45	8.2		On-grade Inlet Captured Flows piped to DP 16.1
	16	A5	0.45	0.62	5.0	0.28	5.16	1.4															On-grade Inlet Captured Flows piped to DP 16.1
	16.1								19.6	7.39	3.12	23.1				23.1	7.39	1.0	24	125	8.2	0.3	FES release to drainage channel
	11	11	24.50	0.09	31.8	2.17	2.40	5.2															FES
	11.1								31.8	9.56	2.40	22.9				22.9	9.56	0.4	42	62	6.1	0.2	Combined flow from DPI1 & DP16.1 Piped to Existing 84" RCP
	12	12	3.47	0.08	31.1	0.28	2.43	0.7															Piped to Existing 84" RCP
	28	D1	0.38	0.22	8.9	0.09	4.30	0.4															Sheet flow to Sand Creek
	29	D2	3.92	0.14	7.6	0.56	4.53	2.5															Sheet flow to Sand Creek


Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

STANDARD FORM SF-3 - PROPOSED STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision: Sterling Ranch Subdivision											Project Name: Sterling Ranch Filing 3 Project No.: 25188.02												
Location:	El Pas	o Count	y I	1131011												Ca	alculate	d By:	CJD	0.02			
Design Storm:	100-16	ear															Checke [d By: Date:	4/12/	22			
				DIR	RECT R	UNOFF			T	OTAL RU	JNOF	F	STRE	ET/SW	ALE		PIPE			TRAV	EL TIN	ЛE	
				5														_					
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	9	B3	0.59	0.70	14.7	0.41	5.96	2.4															Offsite flow to existing inlet in Sterling Ranch Road Piped to existing storm sewer in Sterling Ranch Road
	10	B4	1.59				5.75	5.1								5.1	0.88	1.0	12	380	6.5		Rear lot and area inlets Piped to DP 11.1
	11	B5	0.45				7.24	1.7															Area Inlet Piped to DP 14.1
	11.1								17.0	1.12	5.60	6.3				6.3	1.12	1.0	18	357	6.2	1.0	Piped to DP 14.1
	12	B2	4.33	0.67	12.2	2.90	6.43	18.7								18.7	2.90	1.0	18	38	10.6		Sump Inlet Piped to DP 13.1
	13	B1	2.44	0.74	11.6	1.80	6.56	11.8															Sump Inlet Piped to DP 13.1
	13.1								12.3	4.70	6.42	30.2				30.2	4.70	1.0	24	125	9.6	0.2	Piped to DP 14.1
	14	B6	0.79	0.51	18.6	0.40	5.37	2.1															Area Inlet Piped to DP 14.1
	14.1								18.6	6.22	5.37	33.4				33.4	6.22	1.0	24		10.6		Piped to DP 15.1
	15	A1	4.37	0.64	12.5	2.78	6.37	17.7					10.3	1.618	1.6	7.4				230	2.5		On-grade Inlet Captured Flows piped to DP 15.1, Bypass flow to DP 17
	15.1								19.2	9.00	5.28	47.6				47.6	9.00	1.0	24	45	15.2	0.0	On-grade Inlet Captured Flows piped to DP 16.1
	16	A5	0.45	0.73	5.0	0.33	8.66	2.9															On-grade Inlet Captured Flows piped to DP 16.1
	16.1								19.3	9.33	5.28	49.2				49.2	9.33	1.0	24	125	15.7	0.1	FES release to drainage channel
	11	11	24.50	0.36	31.8	8.73	4.02	35.1															FES
	11.1								31.8	18.06	4.02	72.6				72.6	18.06	0.4	42	62	7.6	0.1	Combined flow from DPI1 & DP16.1 Piped to Existing 84" RCP
	12	12	3.47	0.35	31.1	1.21	4.07	4.9															Piped to Existing 84" RCP
	28	D1	0.38	0.46	8.9	0.17	7.22	1.2															Sheet flow to Sand Creek
	29	D2	3.92	0.40	7.6	1.56	7.61	11.9															Sheet flow to Sand Creek

Notes:

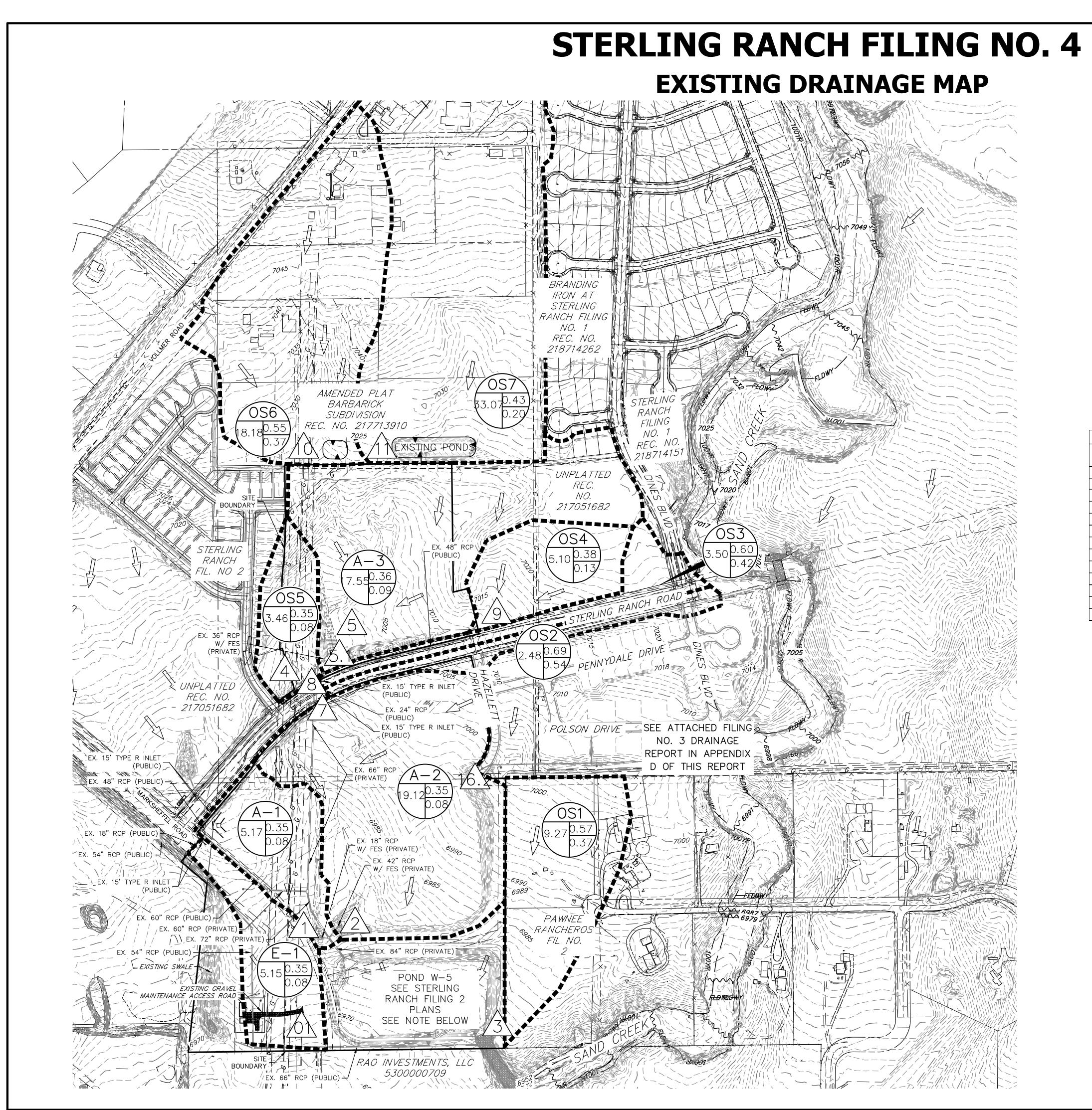

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

STERLING RANCH FILING 3

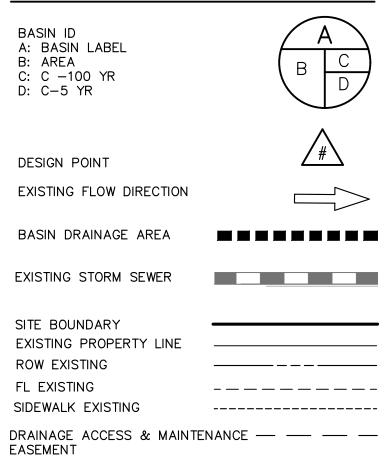
	t _c (min)	Q₅ (cfs)	Q ₁₀₀ (cfs)
t	()	(0)	(013)
T	31.8	5.2	35.1
Ι	31.1	0.7	4.9
	12.5	8.2	17.7
	5.0	1.4	2.9
	11.6	5.9	11.8
	12.2	9.1	18.7
	14.7	1.2	2.4
	16.0	2.2	5.1
	8.8	0.7	1.7
I	<mark>18.</mark> 6	0.8	2.1
	<mark>8.</mark> 9	0.4	1.2
	7.6	2.5	11.9

DESIGN POINT											
50	Q5	Q100									
DP	Total	Total									
9	1.2	2.4									
10	2.2	5.1									
11	0.7	1.7									
11.1	2.6	6.3									
12	9.1	18.7									
13	5.9	11.8									
13.1	14.9	30.2									
14	0.8	2.1									
14.1	15.8	33.4									
15	8.2	17.7									
15.1	22.2	47.6									
16	1.4	2.9									
16.1	23.1	49.2									
11	5.2	35.1									
11.1	22.9	72.6									
12	0.7	4.9									
28	0.4	1.2									
29	2.5	11.9									

JOB NO. 25188.02 04/12/22 SHEET 1 OF 1



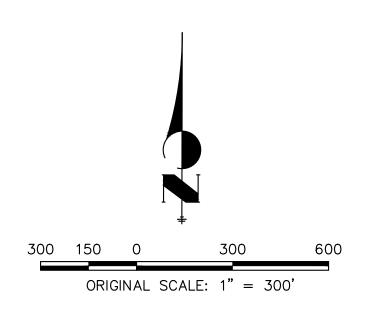
J·R ENGINEERING A Westrian Company


Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com

Appendix E Drainage Maps

LEGEND

EXISTING

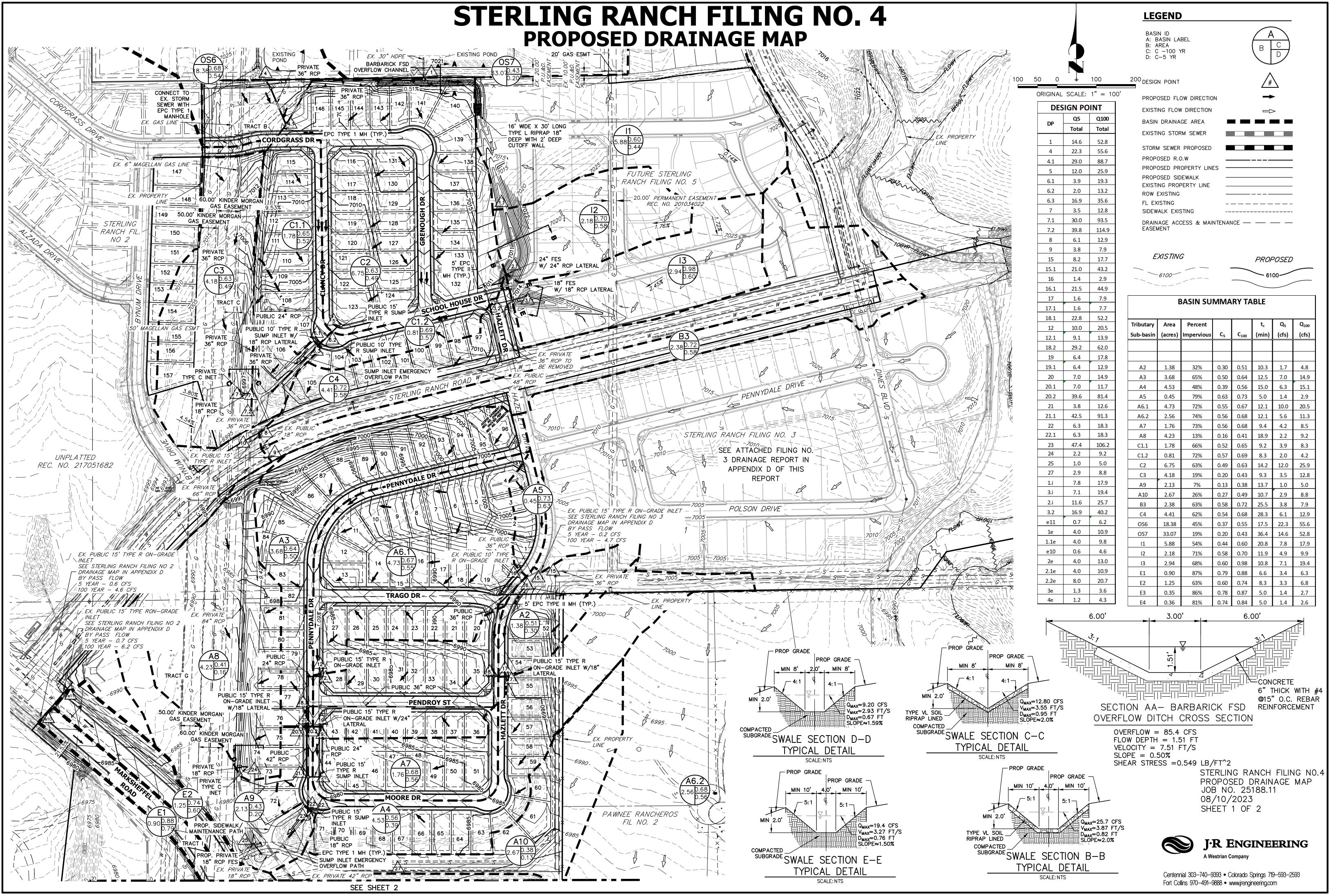

6100

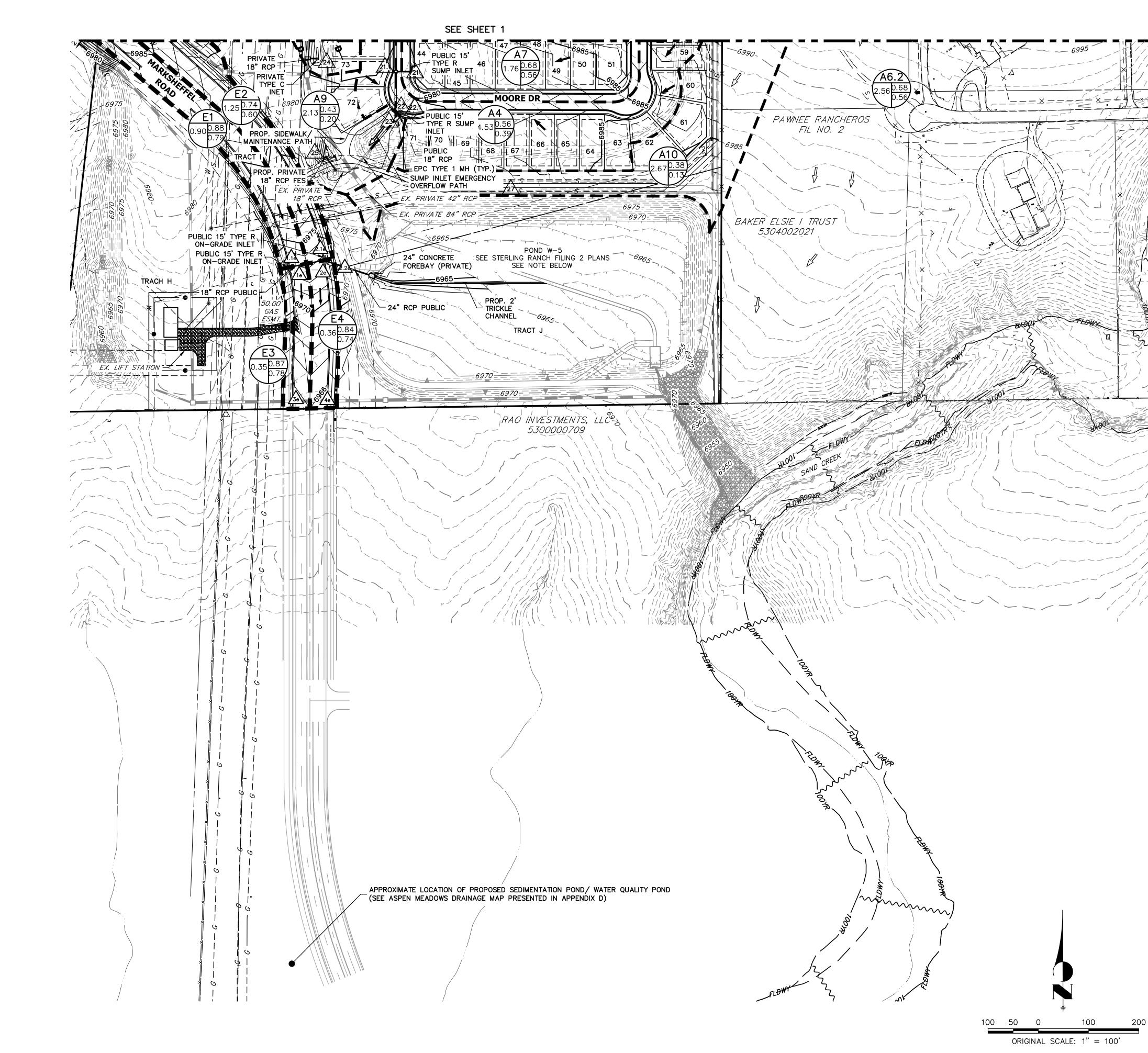
BASIN SUMMARY TABLE														
Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀							
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)							
A-1	5.17	0%	0.08	0.35	27.4	1.1	8.0							
A-2	19.12	0%	0.08	0.35	<mark>28.7</mark>	3.9	28.6							
A-3	17.55	2%	0.09	0.36	19.4	5.1	33.1							
OS1	9.27	37%	0.37	0.57	24.4	9.5	24.6							
OS2	2.48	56%	0.54	<mark>0.69</mark>	19.0	4.3	9.1							
OS3	3.50	42%	0.42	0.60	16.2	5.0	12.1							
OS4	5.10	8%	0.13	<mark>0.38</mark>	31.1	1.6	7.9							
OS5	3.46	0%	0.08	0.35	30.4	0.7	5.0							
OS6	18.18	46%	0.37	0.55	17.5	22.2	55.2							
OS7	33.07	19%	0.20	0.43	36.4	14.6	52.8							
E-1	5.15	0%	0.08	0.35	19.4	1.3	9.5							

N POINT				
Q 5	Q100			
otal	l Total			
L.1	8.0			
3.1	49.2			
2.7	68.5			
9.5	24.6			
).7	5.0			
1.3	9.1			
5.0	12.1			
L.6	7.9			
2.2	55.2			
4.6	52.8			
5.1	33.1			
9.5	89.6			
L.3	9.5			

NOTE:

EXISTING GRADING ASSUMES FILING 2, STERLING RANCH ROAD, & MARKSHEFFEL ROAD ARE BUILT.




STERLING RANCH FILING NO. 4 EXISTING DRAINAGE MAP JOB NO. 25188.11 01/18/23 SHEET 1 OF 1

J·R ENGINEERING A Westrian Company

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com

STERLING RANCH FILING NO. 4 PROPOSED DRAINAGE MAP

//.	
/ /	
11	
· / .	
x	
<<	
<u> </u>	
///	
1.11	
11/1	
1/1/	
/	
ľ	
1	
4	
Z	
()	
m	
_	
L	
FE	
1 mar	
J#K/	
₩Ľ	
No.	
No no	
Non	
<	
<	
<	
<	
<	
<	
<	
<	

DESIGN POINT						
	Q5	Q100				
DP	Total	Total				
1	14.6	52.8				
4	22.3	55.6				
4.1	29.0	88.7				
5	12.0	25.9				
6.1	3.9	19.3				
6.2	2.0	13.2				
6.3	16.9	35.6				
	3.5	12.8				
7	30.0	93.5				
7.1						
7.2	39.8	114.9				
8	6.1	12.9				
9	3.8	7.9				
15	8.2	17.7				
15.1	21.0	43.2				
16	1.4	2.9				
16.1	21.5	44.9				
17	1.6	7.9				
17.1	1.6	7.7				
18.1	22.8	52.2				
12	10.0	20.5				
12.1	9.1	13.9				
18.2	29.2	62.0				
19	6.4	17.8				
19.1	6.4	12.9				
20	7.0	14.9				
20.1	7.0	11.7				
20.2	<u>39.6</u>	81.4				
21	3.8	12.6				
21.1	42.5	91.3				
22	6.3	18.3				
22.1	6.3	18.3				
23	47.4	106.2				
24	2.2	9.2				
25	1.0	5.0				
27	2.9	8.8				
1.i	7.8	17.9				
3.i	7.1	19.4				
2.i	11.6	25.7				
3.2	16.9	40.2				
e11	0.7	6.2				
1e	4.0	10.9				
1.1e	4.0	9.8				
e10	0.6	4.6				
2e	4.0	13.0				
2.1e	4.0	10.9				
2.2e	8.0	20.7				
3e	1.3	3.6				
30						

LEGEND

BASIN ID A: BASIN LABEL B: AREA C: C –100 YR D: C–5 YR	A B C D
DESIGN POINT	<u>/</u> #
PROPOSED FLOW DIRECTION	-
EXISTING FLOW DIRECTION	\Rightarrow
BASIN DRAINAGE AREA	
EXISTING STORM SEWER	
STORM SEWER PROPOSED	
PROPOSED R.O.W	
PROPOSED PROPERTY LINES	
PROPOSED SIDEWALK	
EXISTING PROPERTY LINE	
ROW EXISTING	
FL EXISTING	
SIDEWALK EXISTING	
DRAINAGE ACCESS & MAINTEN	NANCE — — — —

EASEMENT

EXISTING

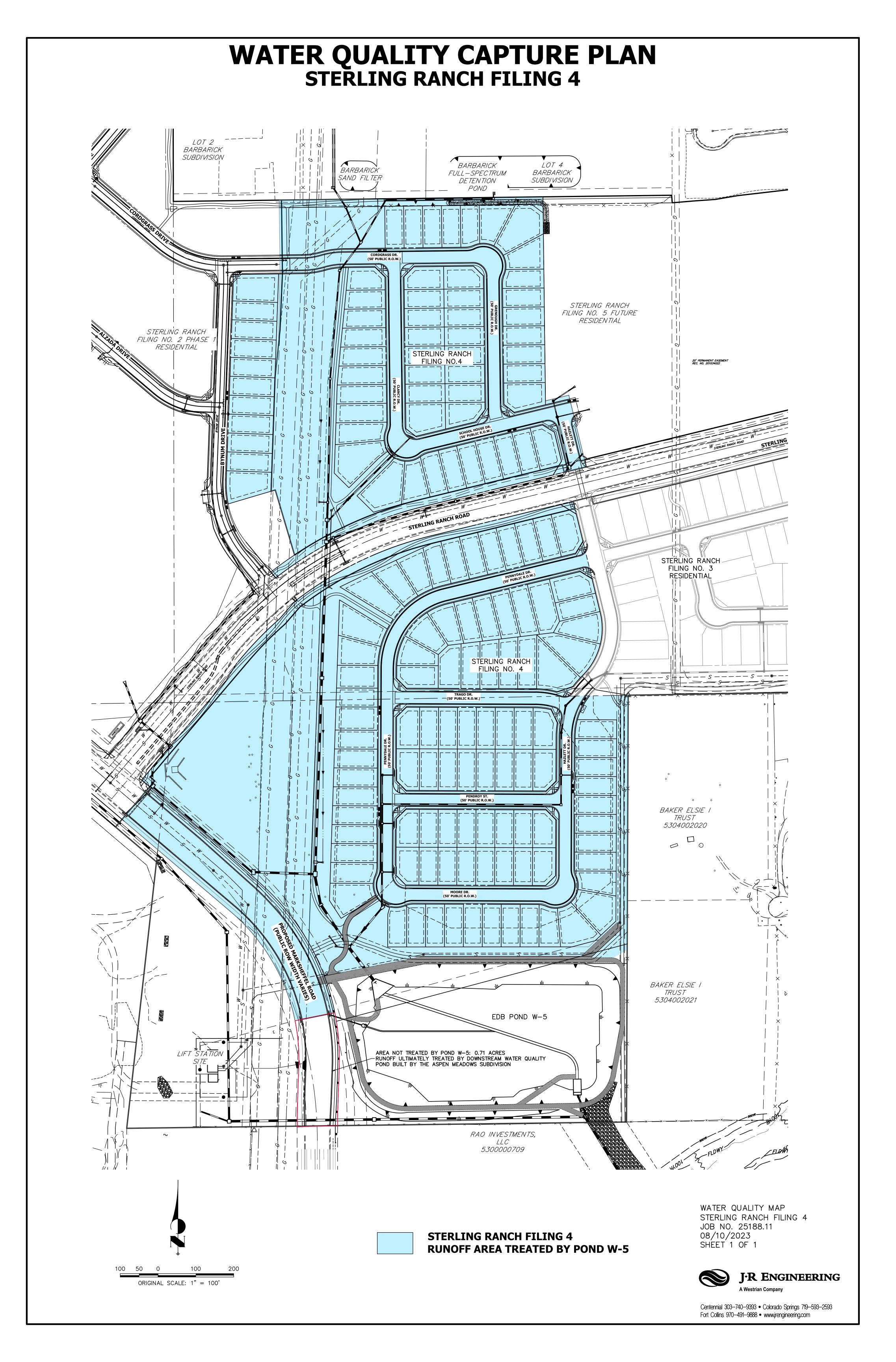
_____6100___

PROPOSED

- 6100-

BASIN SUMMARY TABLE									
Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀		
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)		
A2	1.38	32%	0.30	0.51	10.3	1.7	4.8		
A3	3.68	65%	0.50	0.64	12.5	7.0	14.9		
A4	4.53	48%	0.39	0.56	15.0	6.3	15.1		
A5	0.45	79%	0.63	0.73	5.0	1.4	2.9		
A6.1	4.73	72%	0.55	0.67	12.1	10.0	20.5		
A6.2	2.56	74%	0.56	0.68	12.1	5.6	11.3		
<mark>A</mark> 7	1.76	73%	0.56	0.68	9.4	4.2	8.5		
A8	4.23	13%	0.16	0.41	18.9	2.2	9.2		
C1.1	1.78	66%	0.52	0.65	9.2	3.9	8.3		
C1.2	0.81	72%	0.57	0.69	8.3	2.0	4.2		
C2	6.75	63%	0.49	0.63	14.2	12.0	2 5.9		
C3	4.18	19%	0.20	0.43	9.3	3.5	12.8		
A9	2.13	7%	0.13	0.38	13.7	1.0	5.0		
A10	2.67	26%	0.27	<mark>0.4</mark> 9	10.7	2.9	8.8		
B3	2.38	63%	0.58	0.72	25.5	3.8	7.9		
C4	4.41	62%	0.54	0.68	28.3	6.1	12.9		
OS6	18.38	45%	0.37	0.55	17.5	22.3	55.6		
OS7	33.07	19%	0.20	0.43	36.4	14.6	52.8		
11	5.88	54%	0.44	0.60	20.8	7.8	17.9		
12	2.18	71%	0.58	0.70	11.9	4.9	9.9		
13	2.94	68%	0.60	0.98	10.8	7.1	19.4		
E1	0.90	87%	0.79	0.88	6.6	3.4	6.3		
E2	1.25	63%	0.60	0.74	8.3	3.3	<mark>6.</mark> 8		
E3	0.35	86%	0.78	0.87	5.0	1.4	2.7		
E4	0.36	81%	0.74	0.84	5.0	1.4	2.6		

STERLING RANCH FILING NO. 4 PROPOSED DRAINAGE MAP JOB NO. 25188.11 08/10/2023 SHEET 2 OF 2



J·R ENGINEERING A Westrian Company

FOR ADDITIONAL INFORMATION REGARDING DESIGN POINTS, ROUTING, AND RUNOFF VALUES ASSOCIATED WITH POND W-5. REFER TO THE FILING 2 DRAINAGE MAP, AS SHOWN IN APPENDIX D OF THIS REPORT.

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com

NOTE:

