FINAL DRAINAGE REPORT FOR STERLING RANCH FILING NO. 4

Prepared For:

SR Land, LLC 20 Boulder Crescent, Suite 200 Colorado Springs, CO 80903 (719) 491-3024

> August 14, 2023 Project No. 25188.11

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593

PCD Filing No.: SF-22-030

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mil Brokes

Mike Bramlett, Colorado P.E. 32314 For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: By: Title: Address:	SR land, LLC MANAGER 20 Boulder Crescent, Suite 2 Colorado Springs, CO 80903	
	e with the requirements of the El Paso C olumes 1 and 2 and Engineering Criteria	ounty Land Development Code, Drainage Manual, as amended.
Joshua Palmer, P.E		Date

Conditions: If any revisions are necessary due to changes or lack of construction in Filing No. 2, this report shall be revised.

County Engineer/ ECM Administrator

Table of Contents

Purpose	1
General Site Description	1
General Location	1
Description of Property	1
Floodplain Statement	2
Existing Drainage Conditions	2
Major Basin Descriptions	2
Existing Sub-basin Drainage	3
Proposed Drainage Conditions	4
Proposed Sub-basin Drainage	4
Drainage Design Criteria	9
Development Criteria Reference	9
Hydrologic Criteria	9
Hydraulic Criteria	9
Drainage Facility Design	11
General Concept	11
Four Step Process to Minimize Adverse Impacts of Urbanization	11
Water Quality	12
Erosion Control Plan	12
Operation & Maintenance	12
Drainage and Bridge Fees	13
Summary	15
References	16

APPENDIX

Appendix A – Vicinity Map, Soil Descriptions, FEMA Floodplain Map

Appendix B – Hydrologic and Hydraulic Calculations

Appendix C - Hydraulic Calculations

Appendix D - Reference Material

Appendix E - Drainage Maps

PURPOSE

This document is the Final Drainage Report for Sterling Ranch Filing Number 4. The purpose of this report is to identify on-site and off-site drainage patterns, storm sewer, culvert, inlet locations, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities. The proposed use is a permissible use within the residential service zoning criteria.

GENERAL SITE DESCRIPTION

GENERAL LOCATION

Sterling Filing Number 4 (hereby referred to as the "site") is a proposed development within the Sterling Ranch master planned community with a total area of approximately 57 acres and includes a replat of tracts B and J of Sterling Ranch Filing No. 2 and the regional detention pond W-5 built during Sterling Ranch Filing No. 2. The site is currently being designed to accommodate approximately 157 single-family residential lots. West of the site adjacent to the pond W-5 Marksheffel road will be extended to a planned residential subdivision.

The site is located in portion a Portion of the Southwest Quarter Of Section 33, Township 12 South, Range 65 West Of The 6th Principal Meridian & A Portion Of The Northwest Quarter Of The Northwest Quarter Of Section 4, Township 13S South, Range 65 West Of The 6th Principal Meridian County Of El Paso, State Of Colorado. The site is separated by Sterling Ranch Road into a north and south region. Barbarick Subdivision borders the northern portion of the site to the north, to the west by Sterling Ranch Filing No. 2, and to the east, the site is bounded by unplatted vacant land that is currently undeveloped. The southern portion of the site is bounded by Sterling Ranch road to the north, Sterling Ranch Filing No. 3, and Pawnee Rancheros border the site directly to the east. To the west, the southern portion of the site borders the proposed extension of Marksheffel Road, and to the south, the site borders unplatted and undeveloped land that is planned for residential use.

DESCRIPTION OF PROPERTY

The property will be primarily be single-family residential development (approximately 57 acres), Open space and drainage tracts. The site is comprised of variable sloping grasslands that generally slope(s) downward to the southeast at 3 to 8% towards the Sand Creek tributary basin.

Soil characteristics are comprised of Type A and B hydrologic Soil groups. Refer to the soil survey map in Appendix A for additional information.

There are no major drainage ways running through the site, although a tributary to the Sand Creek basin is immediately to the east of the site. Currently, JR Engineering, LLC is performing studies and

plans to address Sand Creek stabilization under PCD project number CDR-20-004 and is undergoing review.

There are no known irrigation facilities located on the project site.

FLOODPLAIN STATEMENT

Based on the FEMA FIRM Maps number 08041C0533G, dated December 7, 2018, the proposed development lies within Zone X. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. FIRM Map is presented in Appendix A.

EXISTING DRAINAGE CONDITIONS

MAJOR BASIN DESCRIPTIONS

The site lies within the Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" (DBPS) completed by Kiowa Engineering Corporation in January 1993, revised March 1996. The Sand Creek Drainage Basin covers approximately 54 square miles and is divided into major subbasins. The site is within the respective sub-basins SC3-6C, SC3-11A, and SC3-6B. Information from Sand Creek DBPS is provided in Appendix D.

The Sand Creek DBPS assumed the Sterling Ranch Filing No. 4 property to have a "large lot residential" use for the majority of the site. The Sterling Ranch MDDP assumed a mix of commercial and single family residential lots ranging in size from 0.2 to 0.3 acres for the Sterling Ranch Filing No. 4 site. The proposed Sterling Ranch master plan is a mix of; school, multi-family, single-family, and commercial land uses, resulting in higher runoff. Any additional runoff will be provided for with the extended detention basin located at the southern edge of the site. The site generally drains from north to south consisting of rolling hills. The site currently has an existing channel that was built in the Sterling Ranch Filing No. 3 that conveys the Sterling Ranch Filing 3 runoff to drainage infrastructure on the southern portion of the site that was built in Homestead Filing No. 2; this infrastructure consists of pond W-5 and existing storm pipe. Currently, the site is used as pastureland for cattle. Sand Creek is located east of the site running north to south. This reach of drainage conveyance is not currently improved. There are a few stock ponds within the creek channel used for cattle watering. Currently, JR engineering is performing studies and plans to address Sand Creek stabilization adjacent to the site.

The proposed drainage on the site closely follows the approved "Master Development Drainage Plan for Sterling Ranch"; (MDDP) prepared by M&S Civil Consultants, Inc., dated October 24, 2018. The site is tributary to Pond W-5 and full-spectrum detention for the site was previously analyzed and can be found in the Final Drainage Report for Sterling Ranch Filing 2 as shown in Appendix D.

EXISTING SUB-BASIN DRAINAGE

The existing / predeveloped condition of the site was broken into four major basins: Basin A-1 A-2, A-3, and E-1, as well as several offsite basins. It is assumed Filing 2 storm structures are to be built before construction starts on Filing 4. If Filing 2 storm structures are not built, then flows will sheet flow down into the site and new calculations will be required. The basin and sub-basin delineation is shown in the existing drainage map in Appendix E and is described as follows:

Sub-basin A-1 (Q_5 = 1.1cfs, Q_{100} =8.0cfs) is 5.17 acres and 0 percent impervious consists of the eastern portion of the proposed Sterling Filing No. 4 site. Runoff from this basin drains to the south west into the assumed existing storm sewer built with Filing 2 just east of Marksheffel Road located at design point 1. Collected runoff is piped south to the existing detention pond W-5 built with Filing 2 and outfalls to Sand Creek.

Sub-basin A-2 (Q_5 = 3.9cfs, Q_{100} =28.6cfs) is 19.12 acres and 0 percent impervious and consists the central portion of Sterling Ranch Filing No. 4. Runoff from this basin drains south onsite into the assumed existing storm sewer built with Filing 2 located at design point 2. Collected runoff is piped south to the existing detention pond W-5 built with Filing 2 and outfalls to Sand Creek.

Sub-basin A-3 (Q_5 = 5.1cfs, Q_{100} =33.3cfs) is 17.62 acres and 2 percent impervious and is located onsite in the northern part of Sterling Ranch Filing No. 4. Runoff from this basin drains to the assumed existing storm sewer built with Filing 2 just north of Sterling Ranch Road located at design point 5. Design Point 5.1 is a confluence of flows from basins A3, OS6 and OS7. Collected runoff is piped south to the existing detention pond W-5 with Filing 2 and outfalls to Sand Creek.

Basin E-1 (Q_5 = 1.3 cfs, Q_{100} =9.5 cfs) is 5.15 acres and 0 percent impervious and is located on south west portion of the site. Runoff from this basin drains to design point O1. Improvements to this basin will be part of the proposed Marksheffel Road improvements. There are no current improvements to this basin.

Sub-basin OS1 (Q_5 = 9.5cfs, Q_{100} =24.6 cfs) is 9.27 acres is 37 percent impervious and is located to the east of the site. Runoff from this basin drains into the Sterling Ranch Filing 2 detention Pond W-5 in confluence with upstream flows from the eastern portion of Sub-basin A2. Runoff sheet flows south to design point 3 and joins into the existing detention pond built with Filing 2 before it outfalls to Sand Creek.

Sub-basin OS2 (Q_5 = 4.3cfs, Q_{100} =9.1cfs) is 2.48 acres and 56 percent impervious and is comprised of the southern half street of Sterling Ranch Road. Runoff from this basin drains into the assumed existing storm sewer built with Filing 2 located at design point 7. Collected runoff is piped south to the existing detention pond W-5 built with Filing 2 and outfalls to Sand Creek.

Sub-basin OS3 (Q_5 = 5.0cfs, Q_{100} =12.1cfs) is 3.50 acres and 42 percent impervious and is comprised of the northern half street of Sterling Ranch Road. Runoff from this basin drains into the assumed existing storm sewer built with Filing 2 located at design point 8. Collected runoff is piped south to the existing detention pond W-5 built with Filing 2 and outfalls to Sand Creek.

Sub-basin OS4 (Q_5 = 1.6cfs, Q_{100} =7.9cfs) is 5.10 acres and 8 percent impervious and is located immediately north of Sterling Ranch Road and the eastern portion of the site. Runoff from this basin drains south into assumed existing storm sewer built with Filing 2 located at design point 9. Collected runoff is piped south to the existing detention pond W-5 built with Filing 2 and outfalls to Sand Creek.

Sub-basin OS5 (Q_5 = 0.7cfs, Q_{100} =5.0cfs) is 3.46 acres and 0 percent impervious and is located to the west of the northern portion of the site. Runoff from this basin drains to a low point just north of Sterling Ranch Road located at Design Point 4 and will be collected in the assumed existing storm sewer built with Filing 2 and piped to the Filing 2 detention pond w-5 located south of the site and outfalls to Sand Creek.

Sub-basin OS6 (Q_5 = 25.4cfs, Q_{100} =76.8cfs) is 18.18 acres and 46 percent impervious as is located northwest of the site in the Barbarick subdivision. Historic runoff from this basins drains south onto the site at design point 10. Detained flow from this basin will be piped through the site to the detention pond W-5 and will outfall to Sand Creek.

Sub-basin OS7 (Q_5 = 16.2cfs, Q_{100} =63.5cfs) is 33.07 Acres and 19 percent impervious and is located directly north of the site in the Barbarick subdivision. Historic runoff from this site drains south onto the site at design point 11. Detained flow from this basin will be piped through the site to the detention pond W-5 and will outfall to Sand Creek.

If the assumed Filing 2 storm infrastructure is not in place when construction of Filing 4 begins, runoff will continue to sheet flow as in historic condition until the storm system is in place.

PROPOSED DRAINAGE CONDITIONS

PROPOSED SUB-BASIN DRAINAGE

The proposed site was broken into three major basins: Basin A (lower-portion), Basin B (mid and eastern –portion), Basin C (upper-portion) of the site and Basin, which consists of the proposed improvements to Marksheffel Road. The proposed basin (and sub-basin) delineation is shown on the drainage basin map within Appendix E and is described as follows.

Basin A2 (Q_5 = 1.7 cfs, Q_{100} =4.8 cfs) is 1.38 acres and 32 percent impervious is comprised of single-family residential lots, open space, several trails, and a local road Hazlett Drive. Runoff from this basin drains to design point 17, a 15' type R on grade inlet on the southwest corner of the basin, in confluence

with upstream by-pass flows from the Filing 3 development of 0.2 cfs in the 5 year event and 5.2 cfs in the 100 year event. Total flow at DP 17 is 1.6 cfs for a minor storm and 7.9 cfs in a major storm. DP 17 bypasses 0 cfs in the 5 year event and 0.2 cfs in the 100 year event downstream to DP 22.

Basin A3 (Q_5 = 7.0 cfs, Q_{100} =14.9 cfs) is 3.68 acres and 65 percent impervious is comprised of single-family residential lots and a local road Pennydale Drive. Runoff from this basin drains to a 15' on grade type R inlet located at design point 20 and is not capturing any upstream by-pass flows. Total flow at DP 20 is 7.0 cfs for a minor storm and 14.9 cfs in a major storm. DP 20 bypasses 0cfs in the 5 year event and 3.2 cfs in the 100 year event downstream to DP 22.

Basin A4 (Q_5 = 6.3 cfs, Q_{100} =15.1 cfs) is 4.53 acres and 48 percent impervious is comprised of single-family residential lots, open space a local road Moore Drive, Pennydale Drive, Hazlette Drive, and two urban knuckles. Runoff from this basin drains to a sump 15' type R inlet located at design point 22 in confluence with upstream by-pass flows from basins A1, A2, and A3. Total flow at DP 22 is 6.3 cfs for a minor storm and 18.3 cfs in a major storm. The runoff from this basin is piped to DP 23 where the runoff confluence with the entire southern portion of the Sterling Ranch Filing No. 4 site. From here on, the runoff is then piped into an existing 42" RCP and Structure associated with design point 23. The emergency overflow for this basins drains directly to pond W-5 south of the inlet. In the event the inlet at design point 22 clogs there is an overflow path to pond W-5 south west of the inlet.

Basin A5 (Q_5 = 1.4 cfs, Q_{100} =2.9 cfs) is 0.45 acres and 79 percent impervious is comprised of single-family residential lots and a local road Hazelett Drive. Runoff from this basin drains to a 10' type R on grade inlet at design point 16. Total flow at DP 16 is 1.4 cfs for a minor storm and 2.9 cfs in a major storm. DP 16 bypasses 0 cfs in the 5 year event and 0 cfs in the 100 year event downstream to DP 18.

Basin A6.1 (Q_5 = 10.0 cfs, Q_{100} =20.5 cfs) is 4.73 acres and 72 percent impervious is comprised of single-family residential lots, local roads Pennydale Drive, Trago Drive, and Hazelett.Drive. Runoff from this basin drains to an on grade 15' type R inlet at design point 12 and is not capturing any upstream by-pass flows. Total flow at DP 12 is 10.0 cfs for a minor storm and 20.5 cfs in a major storm. DP 12 bypasses 1cfs in the 5 year event and 6.9 cfs in the 100 year event downstream to DP 19.

Basin A6.2 (Q_5 = 5.6 cfs, Q_{100} =11.3 cfs) is 2.56 acres and 74 percent impervious is comprised of single-family residential lots, local roads Pennydale Drive, Pendroy Street, and Hazelett.Drive. Runoff from this basin drains to an on grade 15' type R inlet at design point 19 in confluence with upstream by-pass flows from DP12. Total flow at DP 19 is 6.4 cfs for a minor storm and 17.8 cfs in a major storm. DP 19 bypasses 0 cfs in the 5 year event and 4.9 cfs in the 100 year event downstream to DP 21.

Basin A7 (Q_5 = 4.2 cfs, Q_{100} =8.5 cfs) is 1.76 acres and 73 percent impervious is comprised of single family residential lots and local roads Pennydale Drive, Moore Drive, and Hazelett Drive. The runoff from this basin drains to a 15' sump type R inlet located at design point 21, which receives up stream,

by pass flow from the on grade 15' type R inlet at design point 19. Total flow at DP 21 is 4.2 cfs for a minor storm and 13.4 cfs in a major storm.

Basin A8 (Q_5 = 2.2 cfs, Q_{100} =9.2 cfs) 4.23 acres and 13 percent impervious is comprised of a single family residential lots and open space. The runoff from this basin drains to a swale on western side of the site and into a type C inlet located at design point 24.

Basin A9 (Q_5 = 1.0 cfs, Q_{100} =5.0 cfs) 2.13 acres and 7 percent impervious is comprised of a single family residential lots and open space. The runoff from this basin drains to a swale on the western side of the site and into a proposed 18" flared end section and pipe located at design point 25. From there on, the flow are piped to the existing detention pond W-5.

Basin A10 (Q_5 = 2.9 cfs, Q_{100} =8.8 cfs) 2.67 acres and 26 percent impervious is comprised of a single family residential lots and open space. The runoff from this basin sheet flows to the south and into existing pond W-5 at design point 27.

Basin B3 (Q_5 = 3.8 cfs, Q_{100} =7.9 cfs) is 2.38 acres and 63 percent impervious is comprised of open space, Sterling Ranch road and sidewalk. Runoff from basin B3 drains to a 15' type R on grade inlet located at design point 9 in existing Sterling Ranch Road. All of the runoff is captured in the 100 year event. Runoff from this on grade inlet and is piped and outfalls into pond W-5.

Basin C1.1 (Q_5 = 3.9 cfs, Q_{100} =8.3 cfs) is 1.78 acres and 66 percent impervious is comprised of single family residential lots, local roads Clancy Drive and Cordgrass Drive. Runoff from basin C1.1 drains to 5' a sump type R inlet located at design point 6.1. In the 100 year storm, the inlet receives 11.0 cfs of overflow from design point 5. Flow not captured by the 10' type R inlet will over flow to the 10' type R inlet in sump at design point 6.2. The combined runoff at DP 6.3 drains to the existing drainage structure DP 7.2.

Basin C1.2 (Q_5 = 2.0 cfs, Q_{100} =4.2 cfs) is 0.81 acres and 72 percent impervious is comprised of single family residential lots, and local road School House Drive. Runoff from basin C1.2 drains to 10' a sump type R inlet located at design point 6.2. In the 100 year storm this inlet receives 10.0 cfs of bypass flow from design point 6.1. The combined runoff at DP 6.3 drains to the existing drainage structure DP 7.2.

Basin C2 (Q_5 = 12.0 cfs, Q_{100} =25.9 cfs) is 6.75 acres and 63 percent impervious is comprised of local roads, Clancy Drive, School House Drive, Cordgrass Drive, single-family residential lots, open space, and paved walks. Runoff from basin C2 drains to a 15' type R sump inlet located at design point 5 and piped south west to DP6.3. In the 100 year event, runoff will overtop the crown of the road and 11.0 cfs of flow will flow to design point 6.1, a 10' type R inlet in sump. The combined runoff at DP 6.3 drains to the existing drainage structure DP 7.2.

Basin C3 (Q_5 = 3.5 cfs, Q_{100} =12.8 cfs) is 4.18 acres and 19 percent impervious is comprised of single family residential lots, open space, and paved walks. Runoff from basin C3 drains to a swale on the western side of the site and into a type C area inlet located at design point 7 where it is piped to existing drainage structure DP 7.2.

Basin C4 (Q_5 = 6.1 cfs, Q_{100} =12.9 cfs) is 4.41 acres and 62 percent impervious is comprised of open space, roads and rear yards of single family residential lots. Runoff from basin C4 drains to an ongrade 15' type R inlet located at design point 8 in existing Sterling Ranch Road. In the 100 year event, 0.8 cfs is by-passed to a sump inlet adjacent to the intersection of Sterling Ranch Road and Marksheffel Road. Collected runoff is piped south into pond W-5.

Basin OS6 (Q_5 = 22.3 cfs, Q_{100} =55.6 cfs) is 18.38 acres, and 45 percent impervious is located near the northwest border of the site in the Barbarick subdivision. Runoff from the Barbarick, a portion of lots 3 and 4 for 3.13 acres site, is treated in this area with a sand filter. The other portion of the site is piped with two existing 24" HDPE. A proposed manhole will connect the two existing 24" HDPE pipes to a proposed 48" RCP storm sewer main that routes flows to design point 7.1, and will outfall in detention pond W-5. In the event, the sand filter clogs in the 100-year event, the emergency overflow from the sand filter will sheet flow across an open area of land i.e. tract B at 11.6 CFS, to sheet flow onto Cordgrass Drive. The total runoff from basin OS6 will be piped throughout the Sterling Ranch Filing No. 4 site at design point 4 and will outfall in detention pond W-5 and will ultimately outfall to Sand Creek.

Basin OS7 (Q_5 = 14.6 cfs, Q_{100} =52.8 cfs) is 33.07 Acres and 19 percent impervious and is located directly north of the site in the Barbarick subdivision. Runoff from the eastern portion of the basin travels overland towards design point 1. Historic runoff from this site drains south onto the site at design point 1. Detained flow from this basin will be piped via the proposed storm sewer system to design point 4.1, and then through the site to the detention pond W-5 and will outfall to Sand Creek. Emergency overflow from this basin (Q_{100} = 85.4 cfs) will be routed to the east around the lots and into the open space east of the site to vacant land via swale A-A, a concrete lined channel. Swale A-A outfalls onto a riprap pad and into basin I1.

Basin I1 (Q_5 = 7.8 cfs, Q_{100} =17.9 cfs) is 5.88 Acres and 54 percent imperious is located directly east of the upper half of Sterling Ranch Filing Number Four. Runoff from this basin drains into an existing draw. The runoff is then picked up by an interim swale and conveyed away from the Filing 4 lots adjacent to Greenough Drive. The undeveloped lot that makes up basin I1 will be developed into a residential development. The runoff is conveyed in the swale and then goes to the downstream design point 2.i, captured by a 24" flared end section, where it is ultimately conveyed into pond W-5 built-in Sterling Ranch Filing No. 2, as shown in Appendix D.

Basin I2 (Q_5 = 4.9 cfs, Q_{100} =9.9 cfs) is 2.18 Acres and 71 percent imperious is located directly east of the upper half of Sterling Ranch Filing Number Four. Runoff from this basin sheet drains across

existing native grass. The runoff is picked up by an interim swale, where it is collected by an interim 24" FES at design point 2.i. The runoff is ultimately conveyed into pond W-5 built-in Sterling Ranch Filing No. 2, as shown within Appendix D.

Basin I3 (Q_5 = 7.1 cfs, Q_{100} =19.4 cfs) is 2.94 Acres and 68 percent imperious is located north of Sterling Ranch Road in the unplatted parcel of land directly east of the northern portion of the site. Runoff from this basin drains into an interim swale were it is collected by an interim 18" FES at design point 3.i. Flows from design point 2.i and 3.i combine at design point 3.2 were flows are ultimately conveyed into pond W-5 built in Sterling Ranch Filing No. 2, as shown within Appendix D.

Basin E1 (Q_5 = 3.4 cfs, Q_{100} =6.3 cfs) is 0.90 Acres and 87 percent imperious is located directly west of Sterling Ranch Filing No. 4. Basin E1 is composed of the southwest portion of the proposed extension of Marksheffel Road. Runoff from basin E1 drains via curb and gutter in confluence with existing bypass flows, design point e10 (Q_5 = 0.6 cfs, Q_{100} =4.6 cfs), from the existing portion of Marksheffel Road. The runoff from this basin is capture into the 15' type R inlet on grade at design point 1e and is then piped to pond W-5 and the remaining 1.1 cfs of runoff is then by passed to design point 3e downstream of 1e in the 100 year storm.

Basin E2 (Q_5 = 3.3 cfs, Q_{100} =6.8 cfs) is 1.25 Acres and 63 percent imperious is located directly west of Sterling Ranch Filing No. 4. Basin E2 is composed of the northeast portion of the proposed extension of Marksheffel Road. Runoff from basin E2 drains via curb and gutter in confluence with existing bypass flow, design point e11 (Q_5 = 0.7 cfs, Q_{100} =6.2 cfs), from the existing portion of Marksheffel Road. The runoff from this basin is captured by a 15' on grade type R inlet at design point 2e. There is 2.1 cfs of runoff from the on grade inlet in the 100 year storm that is bypassed downstream to design point 4e. The captured runoff is piped to pond W-5 built in Filing No. 2 along with upstream runoff from the Western portion of Marksheffel Road.

Basin E3 (Q_5 = 1.4 cfs, Q_{100} =2.7 cfs) is 0.35 acres and 86 percent impervious is located directly west of Sterling Ranch Filing No. 4. Basin E3 is composed the southwest portion of the proposed extension of Marksheffel road. Runoff from basin E3 will drain via curb and gutter and drain into an interim sediment pond built by Aspen Meadows Subdivision. The runoff will ultimately be treated in a downstream water quality pond that is to be built the Aspen Meadows subdivision to the south and will by conveyed by corresponding improvements to Marksheffel road that will be built the Aspen Meadows subdivision developed. The Aspen Meadows subdivision will be developed prior to Sterling Rach Filing No. 4. Refer to Appendix D for excerpts from the Aspen Meadows drainage report.

Basin E4 (Q_5 = 1.4 cfs, Q_{100} =2.6 cfs) is 0.36 acres and 81 percent impervious is located directly west of Sterling Ranch Filing No. 4. Basin E4 is composed the northwest portion of the proposed extension of Marksheffel road. Runoff from basin E4 will drain to an interim sediment pond. The runoff will ultimately be treated in a downstream water quality pond built with the Aspen Meadows subdivision to the south and will by conveyed by corresponding improvements to Marksheffel road that will be

built the Aspen Meadows subdivision developed. The Aspen Meadows subdivision will be developed prior to Sterling Rach Filing No. 4. Refer to Appendix D for excerpts from the Aspen Meadows drainage report.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

Storm drainage analysis and design criteria for this project were taken from the "City of Colorado Springs/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual" (CSDCM), dated May 2014, as adopted by El Paso County.

HYDROLOGIC CRITERIA

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

Storm	Rainfall (in.)			
5-year	1.50			
100-year	2.52			

Table 1 - 1-hr Point Rainfall Data

HYDRAULIC CRITERIA

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site. Sump and on-grade inlets were sized using UDFCD UD-Inlet v4.05. StormCAD was used to model the proposed storm sewer system within the interim area and to analyze the proposed HGL calculations for the Construction Drawings. Autodesk Hydraflow express was used to size the overflow channel and drainage swales. Swales were sized based on the peak 100-year flows and average swale slopes. Swales were checked for shear stress and riprap lining was added for swale with a Froude number in excess of 0.80. Urban Drainage Figure 8-22 was used to size riprap for the swales. Per criteria velocities were checked to be less than 5 ft/s in grass and soil riprap lined swales. Manhole and pipe losses for the model were obtained from the <u>Modeling Hydraulic and Energy Gradients in Storm Sewers: A Comparison of Computation Methods</u>, by AMEC Earth &

Environmental, Inc. The manhole loss coefficients used in the model can be seen in Table 2 (below), this method is accurate for pipes 42" and smaller for larger pipes the Standard head-loss coefficients as recommended by Bentley were used as shown in Table 3. StormCAD, Autodesk Hydraflow results, along with street and inlet capacities, are presented in Appendix C.

Table 2 - Storm Head-loss Coefficients

StormCAD Conversion Table						
10	Bend Angle	K coefficient Conversion				
oso	0	0.05				
d L	22.5	0.1				
Bend Loss	45	0.4	28			
ш [60	0.64	1			
	90	1.32	2			
j	1 Latera	Lateral K coefficient Conversion				
	Bend Angle	Non Surcharged	Surcharged			
SS	45	0.27	0.47			
2	60	0.52	0.9			
<u>a</u>	90	1.02	1.77			
Lateral Loss	2 Latera	Ils K coefficient Conversion				
_	45	0.96	6			
	60	1.10	6			
	90	1.52	2			

Table 3 - Storm Head-loss Coefficients

Type of Manhole	Diagram	Headloss Coefficient
Trunkline only with no bend at the junction	1-O-1	0.5
Trunkline only with 45° bend at the junction	₹ - 7	0.6
Trunkline only with 90° bend at the junction		0.8
Trunkline with one lateral	F	Small 0.6 Large 0.7
Two roughly equivalent entrance lines with angle < 90° between lines		0.8
Two roughly equivalent entrance lines with angle > 90° between lines		0.9
Three or more entrance lines		1.0

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed stormwater conveyance system was designed to convey the developed Sterling Ranch Filing No. 4 runoff to an existing (Filing 2) full spectrum water quality and detention pond W-5 via storm sewer. The proposed pond was designed to release at less than historic rates to minimize adverse impacts downstream. Flows will be routed via overland flow, curb and gutter, swales, and storm pipes into a detention pond where it will be treated for water quality. Proposed storm structures convey flows to the existing storm pipe west of the site which leads south to the detention pond. Treated water will outfall directly into the Sand Creek Drainage way, where it will eventually outfall into Fountain Creek. A proposed drainage map is presented in Appendix E showing locations of the pond.

FOUR STEP PROCESS TO MINIMIZE ADVERSE IMPACTS OF URBANIZATION

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

Step 1 – Reducing Runoff Volumes: The Sterling Ranch Filing No. 4 development project consists of single-family homes with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. Roof drains from the structures will discharge to lawn areas, where feasible, to allow for infiltration and runoff volume reduction.

Step 2 – Stabilize Drainageways: The site lies within the Sand Creek Drainage Basin. Basin and bridge fees will be due at time of platting. These funds will be used for the channel stabilization being designed by JR Engineering adjacent to the site and on future projects within the basin to stabilize drainageways. The site does not discharge directly into the open drainageway of Sand Creek, therefore no downstream stabilization will be accomplished with this project.

Step 3 – Treat the WQCV: Water Quality treatment for this site is provided in an existing full spectrum water quality detention pond (W-5). The runoff from this site will be collected within inlets and conveyed to the proposed ponds via storm sewer. Upon entrance to the ponds, flows will be captured in a forebay designed to promote settlement of suspended solids. A trickle channel is also incorporated into the ponds to minimize the amount of standing water. The outlet structure has been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for 72 hours. All flows released from the ponds will be reduced to less than historic rates.

Step 4 –BMPs will be utilized to minimize off-site contaminants and to protect the downstream receiving waters. The Filing No. 4 site is residential. There is no proposed commercial or industrial use for the site. The permanent erosion control BMPs include asphalt drives, storm inlets and storm pipe, the full spectrum detention pond W-5 and permanent vegetation. Maintenance responsibilities

and plans will be defined at the time of final platting.

WATER QUALITY

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention are provided for all developed basins. Where possible flows were routed through proposed swales to promote infiltration and reduce runoff. Flows for the site are routed through the proposed swales and the proposed and existing storm sewer system to an existing Full Spectrum Drainage Pond W-5, which was developed during the Sterling Ranch Filing No. 2 Project. There are no know existing issues with pond W-5. The outlet structure is complete, and the headwall at the pond outlet is in construction and will be completed prior to development of the site. Further details as well as all pond volume, water quality, and outfall calculations are included in the Sterling Ranch Filing 2 Final Drainage Report. Pond W-5 corresponds to pond FSD6 from the Master Development Drainage Plan for Sterling Ranch", (MMDP) prepared by M&S Civil Consultants, Inc., dated October 24, 2018 and is releasing less than the MDDP values in the proposed design. A summary of Pond W-5 has been included below for reference. From the Filing No.2 drainage report, Pond W-5 accounted for Sterling Ranch Filing 4 area to have 65% (north of Sterling Ranch Road) and 67% (south of Sterling Ranch Road) imperviousness. The total imperviousness for the Filing 4 development is 50.6% imperviousness, and the total runoff is less than what was anticipated; therefore the existing pond W-5 will function as intended.

Table 4 - Pond Volumes & Release Rates

	REQUIRED VOLUME	VOLUME PROVIDED	WQCV	EURV	5-YEAR RELEASE	100-YEAR RELEASE
	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(CFS)	(CFS)
POND W-5	18.217	18.441	3.29	11.71	2.7	137.1

EROSION CONTROL PLAN

It is the policy of the El Paso County, that a grading and erosion control plan be submitted with the drainage report. Proposed silt fence, vehicles traffic control, temporary sediment basins, seeding and mulching are proposed as erosion control measure.

OPERATION & MAINTENANCE

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. The district shall be responsible for the inspection, maintenance, rehabilitation and repair of stormwater and erosion control facilities located on the property unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. This includes swales, inlets, and storm sewer that is to be maintained by the district. Access is provided from onsite facilities and easements for proposed infrastructure located offsite. A maintenance road and O&M Manual was provided for the existing pond W-5 and information on the road can be found in the Final Drainage Report for Sterling Ranch Filing No. 2. The maintenance road access is off

Marksheffel Road and wraps around the top of the pond providing access to the inflow pipe, wingwalls and outlet structure for the pond.

DRAINAGE AND BRIDGE FEES

The site lies within the Sand Creek Drainage Basin. Anticipated drainage and bridge fees are presented below:

2023 Drainage and Bridge Fee – Sterling Ranch Filing 4						
Impervious Drainage Fee Bridge Fee Sterling Ranch Sterling Ranch						
Acres (Ac.)	res (Ac.) (Per Imp. Acre) (Per I		Drainage Fee	Bridge Fee		
24.217	\$23,821	\$9,743	\$576,864.11	\$235,942.53		

Sterling Ranch Filing 4 Impervious Area Calculation					
		%	Impervious		
Breakdown	Acres	Impervious	Acres		
ROW	6.2452	100%	6.25		
Lots- minus Filing 2 replat	20.3401	60%	12.20		
Tracts A-G, and J - Open space	20.403	2%	0.41		
Tract H- Future Industrial / Lift Station	5.5086	50%	2.75		
Tract I- Marksheffel ROW	2.6050	100%	2.61		
Total	55.1019		24.22		

CONSTRUCTION COST OPINION

A construction cost opinion for the public storm drainage infrastructure has been provided below. The below cost opinion is only an estimate of facility and drainage infrastructure cost and may vary.

Sterling Ranch Filing No. 4 (Public Non-Reimbursable)

Item	Description	Quantity	Unit	Ur	nit Price	Cost
1	18" RCP	435	L.F.	\$	76	\$ 33,060.00
2	24" RCP	541	L.F.	\$	91	\$ 49,231.00
3	36" RCP	1896	L.F.	\$	140	\$ 265,440.00
4	30" RCP	12	L.F.	\$	114	\$ 1,368.00
5	42" RCP	339	L.F.	\$	187	\$ 63,393.00
6	48" RCP	31	L.F.	\$	228	\$ 7,068.00
7	66" RCP	20	L.F.	\$	402	\$ 8,040.00
8	18" FES	2	Ea.	\$	400	\$ 800.00
9	24" FES	2	Ea.	\$	500	\$ 1,000.00
10	5' Curb Inlet Type R < 5 ft.	1	Ea.	\$	6,703	\$ 6,703.00
11	10' Curb Inlet Type R < 5 ft.	2	Ea.	\$	9,224	\$ 18,448.00
12	15' Curb Inlet Type R < 5 ft.	5	Ea.	\$	11,995	\$ 59,975.00
13	15' Curb Inlet Type R < 10 ft.	3	Ea.	\$	12,858	\$ 38,574.00
14	Grated Inlet CDOT TYPE C	3	Ea.	\$	5,611	\$ 16,833.00
15	Storm Sewer MH, box base	14	Ea.	\$	14,061	\$ 196,854.00
16	Storm Sewer MH, slab base	7	Ea.	\$	7,734	\$ 54,138.00
	·			Sı	ıb-Total	\$ 820,925.00

Per LDC section 8.5.5.C.3.b(ii) Fee Reductions, Credits or Reimbursement for Facilities, this development requests that no cash drainage or bridge fees are due at platting as the value of reimbursable DBPS improvements for the Sand Creek Tributary segment 159, 164, 169, 186, the Sand Creek Mainstem segments 170, 187 and 163 and the Briargate Bridge shown in the below table exceed the drainage and bridge fee estimate shown above.

Sterling Ranch Deferred Drainage Fees Analysis Reimbursable Costs associated with DBPS Segment 159 and 164, Segment 169 and 186 and Main Channel Segment 159

Reimbursable Estimate Segment 159 and 164 from SR F2 FDR (SF-2015)	\$1,918,065.00
Reimbursable Estimate Segment 169 and 186 from HN F1 FDR (SF-2213)	\$611,628.00
Reimbursable Estimate Mainstem Segment 170, 187 and 163 from SC Plans (CDR 20-04)	<u>\$7,910,175.90</u>
Subtotal Reimb. Costs associated with DBPS Segments 159-164, 169-186	\$10,439,868.90
and Main Channel Segments 170, 187 and 163	

	Earlier Plats Deferred Drainage Fees (SR F1, Branding Iron F1 & Homestead F1)	\$451,616.32
	SR F2 (SF-2015) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$400,855.70
	SR F3 (SF-2132) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$214,430.47
	HN F1 (SF-2213) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$541,225.00
*	HN F2 (SF-2218) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$310,413.22
*	HN F3 (SF-2229) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$399,632.48
	SR F4 (SF-2230) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$576,864.11
	Subtotal Deferred Drainage Fees	\$2,895,037.30

Unused Reimb. Costs associated with DBPS Segments 159-164, 169-186 and Main Channel Segments 170, 187 and 163

\$7,544,831.60

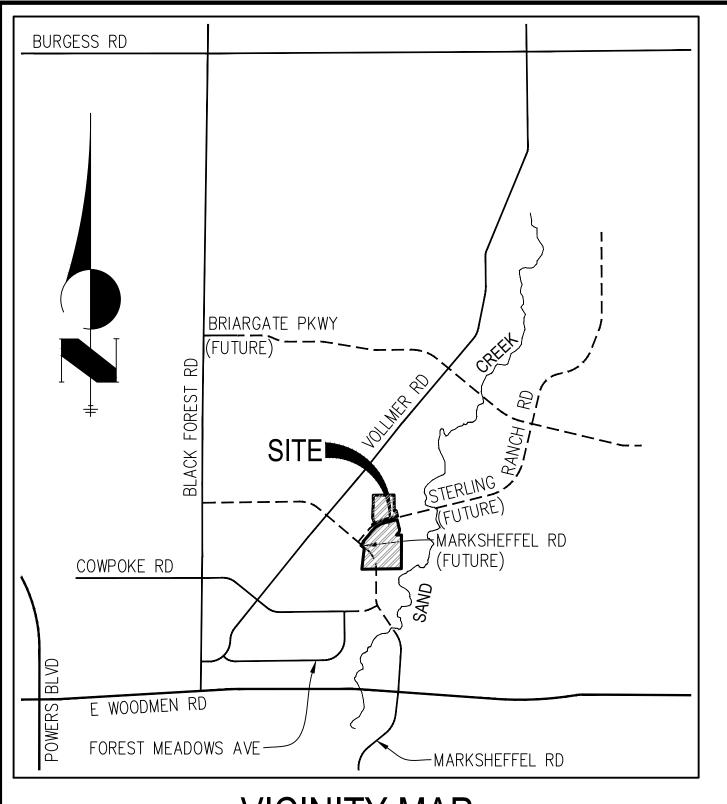
Sterling Ranch Deferred Bridge Fees Analysis Reimbursable Costs associated with DBPS Bridge at Briargate Parkway and Sterling Ranch Rd.

	Reimbursable Estimate Briargate Parkway Bridge from CDR 2113 Reimbursable Estimate Sterling Ranch Road Bridge from CDR 226	\$1,546,676.98 \$0.00
	Subtotal Reimb. Costs associated with BGP and SR Rd. Bridges	\$1,546,676.98
	SR F3 (SF-2132) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$87,709.60
	HN F1 (SF-2213) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$221,388.00
*	HN F2 (SF-2218) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$126,974.29
*	HN F3 (SF-2229) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$163,469.36
	SR F4 (SF-2230) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$235,942.53
	Subtotal Deferred Bridge Fees	\$835,483.78
	Unused Reimb. Costs associated with Briargate Parkway and SR Road Bridges	\$711,193.20

* Filing is not yet platted, actual fee at time of approval may be different than shown here

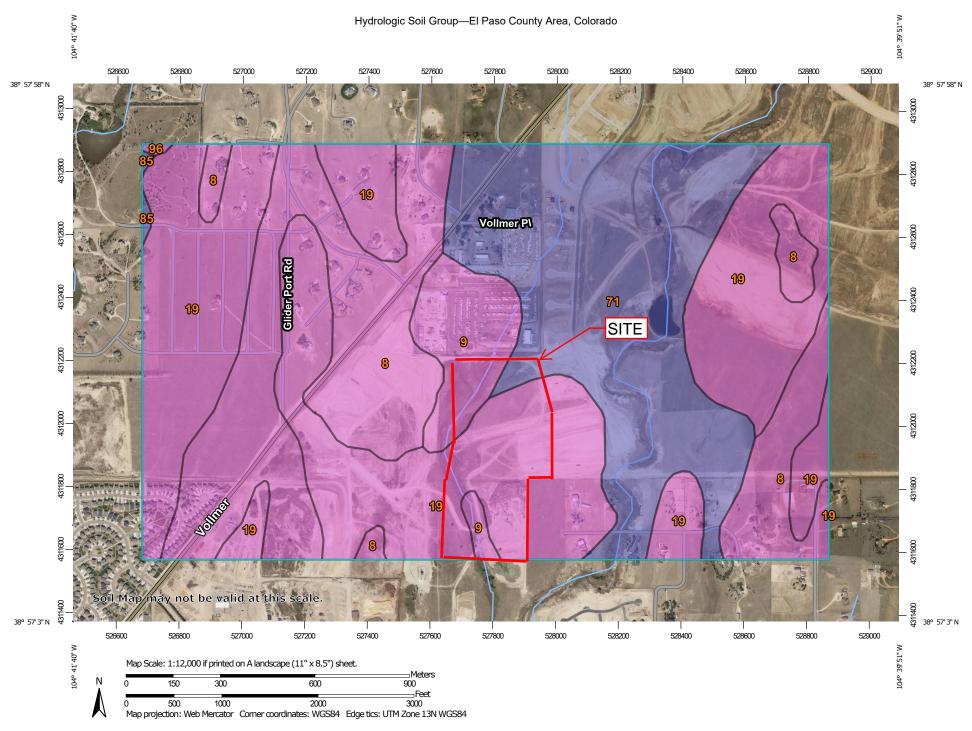
SUMMARY

The proposed Sterling Ranch Filing No. 4 drainage improvements were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development will not adversely affect the offsite drainage-ways or surrounding development. The existing pond W-5 is to release less than 90% of the predeveloped runoff study associated with the subject site. The site is in continuity with the Sterling Ranch Filing No. 2 Drainage Report. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements for this site.


REFERENCES

- 1. "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I & II".
- 2. Sand Creek Channel Design Report, prepared by JR Engineering, May 19, 2021 (not yet approved)
- 3. "Master Development Drainage Plan for Sterling Ranch", (MMDP) prepared by M&S Civil Consultants, Inc., dated October 24, 2018.
- 4. <u>Sand Creek Drainage Basin Planning Study</u>, prepared Kiowa Engineering Corporation, January 1993, revised March 1996.
- 5. "Sterling Ranch Filing 2 Final Drainage Report", prepared by JR Engineering, dated May 2021
- 6. <u>Urban Storm Drainage Criteria Manual</u> (Volumes 1, 2, and 3), Urban Drainage and Flood Control District, June 2001.
- 7. Sand Creek Stabilization at Aspen Meadows Subdivision Filing No. 1 100% Design Plans, April 2020
- 8. <u>Final Drainage Report For Barbarick Subdivision Portion Of Lots 1,2 And Lots 3 and 4, Prepared</u> by Matrix Design Group, June 2016
- 9. Preliminary Drainage Report And MDDP Addendum For Homestead North At Sterling Ranch Preliminary Plan", prepared by JR Engineering, dated January 2022
- 10. Sand Creek Drainage Basin Planning Study, Stantec, January 2021
- 12. Final Drainage Report for Aspen Meadows, Matrix Design, January 2019* pending approval

Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map


VICINITY MAP

N.T.S.

VICINITY MAP STERLING RANCH FILING NO. 4 JOB NO. 25188.11 4/27/22 SHEET 1 OF 1

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 17, Sep 13, 2019 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Aug 19, 2018—May 26. 2019 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

	_			
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	А	182.3	25.4%
9	Blakeland-Fluvaquentic Haplaquolls	А	36.8	5.1%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	307.5	42.9%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	188.4	26.3%
85	Stapleton-Bernal sandy loams, 3 to 20 percent slopes	В	1.2	0.2%
96	Truckton sandy loam, 0 to 3 percent slopes	A	0.6	0.1%
Totals for Area of Inter	rest		716.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

NOTES TO USERS

his map is for use in administering the National Flood Insurance Program. It does ot necessarily identify all areas subject to flooding, particularly from local drainage curces of small size. The community map repository should be consulted for sestile updated or additional flood heazer information.

To class more dealers of included in contract measurements and the contract measurement of the contract measuremen

coastal Base Flood Elevations shown on this map apply only landward of 0.0 horn American Vertical Datum of 1989 (NAVDBS). Users of this FRM should be level from the level level the level the level level level level the level leve

Boundaries of the floodways were computed at cross sections and interpolate between cross sections. The floodways were based on hydraulic considerations will regard to requirements of the National Flood Insurance Program. Floodways width and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

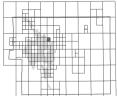
Certain areas not in Special Flood Hazard Areas may be protected by **flood contri** tructures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse decision UTIA1 year 13. The hosticontal datum was MADSIA GR899 sphesoid Differences in datum, spheroid, prejection or UTIA zones zones used in the conduction of FIRINA for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not refer the accuracy of this FIRIA.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and of 1988 (NAVD88). These flood elevations must be compared to structure and conversion between the National Geodesic Vertical Datum of 1929 and the North American Vertical Datum of 1988, with the National Geodesic Survey website at the National Geodesic Survey website at the National Geodesic Survey and the North American Vertical Datum of 1988, visit the National Geodesic Survey are the National Geodesic Survey at the National Geodesic Survey are the National Geodesic Survey at the National Geodesic Survey at

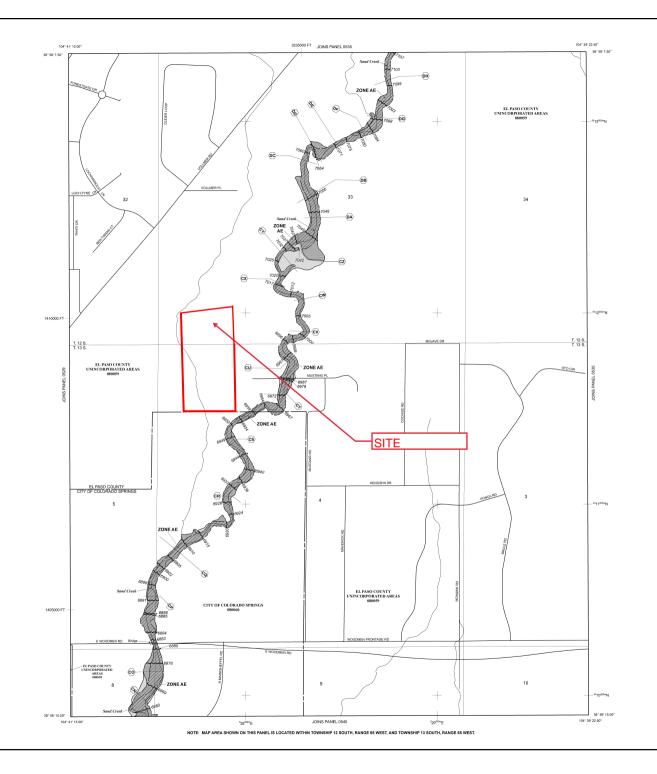
NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

This map reflects more detailed and up-to-date stream channel configurations and loopighin delineations than those shown on the previous FRM for this principlion was been adjusted to contrion these are stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Instrumed SNU, Separative of the Contribution of the SNU and the SNU and the SNU and stationary that the SNU and the SNU and the SNU and the SNU and stationary that the SNU and the SNU and the SNU and the SNU and stationary that the SNU and the SNU and the SNU and the SNU and stationary that the SNU and the SNU and the SNU and the SNU and stationary that the SNU and the SNU and the SNU and stationary that the SNU and the SNU and the SNU and stationary that the SNU and the SNU and stationary the SNU and the SNU and the SNU and stationary the SNU and the SNU and stationary that the SNU and sn


lease refer to the separately printed Map Index for an overview map of the count nowing the layout of map panels; community map repository addresses; and sting of Communities table containing National Flood Insurance Program dates for sch community as well as a listing of the panels on which each community is

ontact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange MIX) 1-877-336-2627 for information on available products associated with this M. Available products may include previously issued Letters of Map Change, a lood Insurance Study Report, and/or digital versions of this map. The MSC may so be reached by Fax at 1-800-336-8620 and its website at p://www.msc.fema.gov/

you have questions about this map or questions concerning the National Flossurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) sit the FEMA website at http://www.fema.gow/business/nflp.


El Paso County Vertical Datum Offset Table

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

Digital Flood Insurance Rate Map (DFIRM) was produced through a serating Technical Partner (CTP) agreement between the State of Colorado or Conservation Board (CWCB) and the Federal Emergency Management

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

ZONE A No Base Flood Elevations determined.

ZONE AE Base Flood Elevations determined.

ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood

ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined.

determined.

Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the Former flood control system is being restored to provide protection from the 1% annual chance or greater flood.

ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Bevations

ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encreachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

ZONE X

OTHER AREAS

ZONE X Areas determined to be outside the 0.2% annual chance floodolain.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

Roodolain boundary

Zone D Boundary -----

Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.

Base Flood Elevation line and value; elevation in feet* (EL 987) Base Flood Elevation value where uniform within zone;

* Referenced to the North American Vertical Datum of 1988 (NAVD 88)

 $\begin{picture}(100,0) \put(0,0){\line} \put(0,0){\li$ 23-----23

97° 07' 30.00° 32° 22' 30.00° Geographic coordinates referenced to the North American Datum of 1983 (NAD 83)

4274(000mg) 1000-meter Universal Transverse Mercator grid ticks, zone 13

• M1.5

EFFECTIVE DATE(8) OF REVISION(8) TO THIS PANEL
DECEMBER 7, 2016 - to update corporate limits, to change Base Flood
Special Flood Hazard Areas, to update may breast, to add roads and road
incompating reproducts issued Latters of Man Revision.

To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-930-638-6630.

250 0 500 1000 H H H FEET

FIRM

FLOOD INSURANCE RATE MAP

PANEL 0533G

EL PASO COUNTY, COLORADO AND INCORPORATED AREAS

PANEL 533 OF 1300

(SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS

COMMUNITY NUMBER PANEL SUFFIX

MAP NUMBER

MAP REVISED **DECEMBER 7. 2018**

Federal Emergency Management Agency

Appendix B Hydrologic Calculations

COMPOSITE % IMPERVIOUS & COMPOSITE EXISTING RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Sterling Ranch Subdivision- Existing Project Name: Sterling Ranch Filing 4

El Paso County Project No.: 25188.11 Location:

> Calculated By: CJD Checked By: APL
> Date: 1/18/23

	Total Area (ac)	Str	eets (10	0% Impe	rvious)	Res	sidential	(65% lm	pervious)	1 A		ersidenti ervious)	al (20%	Light	t Indu	strial (80% I	mpervious)		Lawns (0% Impe	rvious)	_	Total nted C ues	Basins Total Weighted %
Basin ID	Alea (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Imp.
A-1	5.17	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	5.17	0.0%	0.08	0.35	0.0%
A-2	19.12	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	19.12	0.0%	0.08	0.35	0.0%
A-3	17.55	0.90	0.96	0.00	0.0%	0.45	0.59	0.62	2.3%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	16.93	0.0%	0.09	0.36	2.3%
OS1	9.27	0.90	0.96	2.85	30.7%	0.45	0.59	0.00	0.0%	0.20	0.44	2.85	6.1%	0.59	0.70	0.00	0.0%	0.08	0.35	3.57	0.0%	0.37	0.57	36.9%
OS2	2.48	0.90	0.96	1.40	56.5%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.08	0.0%	0.54	0.69	56.5%
OS3	3.50	0.90	0.96	1.46	41.7%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	2.04	0.0%	0.42	0.60	41.7%
OS4	5.10	0.90	0.96	0.00	0.0%	0.45	0.59	0.65	8.3%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	4.45	0.0%	0.13	0.38	8.3%
OS5	3.46	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	3.46	0.0%	0.08	0.35	0.0%
OS6	18.18	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	10.40	45.8%	0.08	0.35	7.78	0.0%	0.37	0.55	45.8%
OS7	33.07	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	7.91	19.1%	0.08	0.35	25.16	0.0%	0.20	0.43	19.1%
E-1	5.15	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.20	0.44	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	5.15	0.0%	0.08	0.35	0.0%
TOTAL (A1-A3)	41.84										•													1.0%
TOTAL (OS1-OS7)	75.06										•													28.4%
TOTAL	116.90										•													18.6%

EXISTING STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Subdivision- Existing Location: El Paso County

Project Name: Sterling Ranch Filing 4 Project No.: 25188.11

Calculated By: CJD Checked By: APL Date: 1/18/23

		SUB-I	BASIN			INITIA	AL/OVER	LAND			TRAVEL TI	ME			tc CHECK		
		DA	TA				(T _i)				(T _t)			(L	JRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S,	t,	L _t	S _t	К	VEL.	t _t	COMP. t_c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
A-1	5.17	Α	0%	0.08	0.35	212	2.0%	21.4	517	2.1%	10.0	1.4	6.0	27.4	729.0	32.6	27.4
A-2	19.12	Α	0%	0.08	0.35	297	2.5%	23.4	500	2.4%	10.0	1.6	5.3	28.7	797.0	31.9	28.7
A-3	17.55	Α	2%	0.09	0.36	121	5.4%	11.4	784	2.7%	10.0	1.7	7.9	19.4	905.0	34.1	19.4
OS1	9.27	Α	37%	0.37	0.57	298	2.7%	16.4	737	2.4%	10.0	1.5	8.0	24.4	1035.0	25.4	24.4
OS2	2.48	Α	56%	0.54	0.69	117	3.1%	7.5	1745	1.6%	20.0	2.5	11.5	19.0	1862.0	30.0	19.0
OS3	3.50	Α	42%	0.42	0.60	41	2.5%	5.8	1681	1.8%	20.0	2.7	10.5	16.2	1722.0	33.0	16.2
OS4	5.10	Α	8%	0.13	0.38	491	1.4%	35.0	940	5.6%	10.0	2.4	6.6	41.6	1431.0	31.1	31.1
OS5	3.46	Α	0%	0.08	0.35	298	3.0%	22.1	784	2.4%	10.0	1.6	8.4	30.4	1082.0	35.3	30.4
OS6	18.18	Α	46%	0.37	0.55	165	3.4%	11.2	612	2.7%	10.0	1.6	6.2	17.5	777.0	22.3	17.5
OS7	33.07	Α	19%	0.20	0.43	298	3.0%	19.5	1664	2.7%	10.0	1.6	16.9	36.4	1962.0	37.2	36.4
E-1	5.15	А	0%	0.08	0.35	60	3.0%	9.9	865	2.3%	10.0	1.5	9.5	19.4	925.0	36.5	19.4

NOTES:

 $t_c = t_t + t_t$ $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$ Equation 6-3 $t_c =$ computed time of concentration (minutes) t_i = overland (initial) flow time (minutes) C_5 = runoff coefficient for 5-year frequency (from Table 6-4) L_i = length of overland flow (ft) S_9 = average slope along the overland flow path (ft/ft). t_i = overland (initial) flow time (minutes) t_f = channelized flow time (minutes).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of

$$t_r = \frac{L_r}{L_r} = \frac{L_r}{L_r}$$
 Equal

 $\begin{array}{l} t_r = \text{channelized flow time (travel time, min)} \\ L_l = \text{waterway length (ft)} \\ S_0 = \text{waterway slope (ft/ft)} \\ V_r = \text{tavel time velocity (ft/sec)} = \text{K} \sqrt{\text{S}_o} \\ K = \text{NRCS conveyance factor (see Table 6-2)}. \end{array}$

Equation 6-4 $t_t = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$ Equation 6-5

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. L_r = length of channelized flow path (ft) i = imperviousness (expressed as a decimal) S_r = slope of the channelized flow path (ft/ft).

Table 6-2. NRCS Conveyance factors, K

Table 0-2. INCCS CORV	eyance factors, K
Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

Page 1 of 1 1/18/2023 X:\2510000.all\2518811\Excel\Drainage\2518811_Existing Conditions.xlsm

STANDARD FORM SF-3 - EXISTING

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Project Name: Sterling Ranch Filing 4

Subdivision: Sterling Ranch Subdivision- Existing	Project No.: 25188.11
Location: El Paso County	Calculated By: CJD
Design Storm: 5-Year	Checked By: APL
	Date: $1/18/23$

				DIRE	CT RUI	NOFF			TC	TAL F	UNOF	F	STREE	T/SW/	ALE		PII	PE		TRAV	EL TII	ΜE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_c (min)	C* A (Ac)	/ (in/hr)	Q (cfs)	tc (min)	C*A (ac)	/ (in/hr)	Q (cfs)	Qstreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A-1	5.17	0.08	27.4	0.41	2.62	1.1															
	16.2								19.6	7 39	3 12	23.1											Runoff from Sterling Ranch Filing no. 3 see attached report in appendix D
	2	A-2	19.12	0.00	28.7	1 52	2 55	3.9				22.7											Basin A2 + runoff from Sterling Ranch Filing No. 3
									20.7	0.52	2.33	22.1											Basin OS1
	3	OS1	9.27	0.37	24.4	3.42	2.79	9.5															Basin A4
	4	OS5	3.46	0.08	30.4	0.28	2.46	0.7															BUSHI 744
	7	OS2	2.48	0.54	19.0	1.35	3.16	4.3															Basin OS2
	8	OS3					3.40																Basin OS3
	9	OS4	5.10		31.1			1.6															Basin OS4
	10	OS6					3.29							6.8	3.4					998	1.8	9.1	Basin OS6 travel to design point 5.1
														6.68	3.2					936	1.8	8.7	Basin OS7
	11	OS7	33.07	0.20	36.4	6.68	2.19	14.6															travel to design point 5.1 Basin A3
	5	A-3	17.55	0.09	19.4	1.63	3.14	5.1															Dasili AS
	5.1								36.4	13.44	2.19	29.5											Design point 5.1 fed by basins A3, OS6, and OS7 (Undetained flows)
	01	E-1	5.15	0.08	19.4	0.41	3.13	1.3															Basin E-1

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

STANDARD FORM SF-3 - EXISTING

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: Sterling Ranch Filing 4
Subdivision: Sterling Ranch Subdivision- Existing	Project No.: 25188.11
Location: El Paso County	Calculated By: CJD
Design Storm: 100-Year	Checked By: APL
	Date: 1/18/23

				DIR	ECT RU	JNOFF			Т	OTAL F	UNOF	F	STREI	ET/SW/	ALE		PIP	E		TRAV	EL TIN	ΛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t_c (min)	C*A (ac)	/ (in/hr)	Q (cfs)	tc (min)	C*A (ac)	/ (in/hr)	Q (cfs)	Qstreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _r (min)	REMARKS
	1	A-1	5.17	0.35	27.4	1.81	4.39	8.0															
	16.2								19.3	9 33	5 28	49.2											Runoff from Sterling Ranch Filing no. 3 see attached report in appendix C
	2	A-2	19.12	0.25	28.7	6.69	4.27	20.6		16.02													Basin A2 + runoff from Sterling Ranch Filing No. 3
										10.02	4.27	08.5											Basin OS1
	3	OS1	9.27	0.57	24.4	5.24	4.69	24.6															Basin A4
	4	OS5	3.46	0.35	30.4	1.21	4.13	5.0															
	7	OS2	2.48	0.69	19.0	1.72	5.31	9.1															Basin OS2
	8	OS3	3.50	0.60	16.2	2.12	5.71	12.1															Basin OS3
	9	OS4	5.10		31.1			7.9															Basin OS4
	10	OS6				10.00	5.52							10.0	3.4					998	1.8		Basin OS6 travel to design point 5.1
	11	OS7	33.07			14.34								14.34	3.2					936	1.8	8.7	Basin OS7 travel to design point 5.1
	5	A-3	17.55																				Basin A3
		W-2	17.33	0.30	15.4	0.25	3.27	33.1		24.34	2.00	89.6											Design point F 4 feed by basins A2 OCC and OC7 (Hadebained)
	5.1								30.4	24.34	3.68	89.6											Design point 5.1 fed by basins A3, OS6, and OS7 (Undetained)
	-				40.	4.0-																	Basin E-1
	01	E-1	5.15	0.35	19.4	1.80	5.26	9.5															

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

X:\\(\text{2510000}\),a\(\text{210000}\),a\(\text{10210}\) | 1/\(\text{18}\) | 1/\(\text{ExcelVprainage}\) | 25181\(\text{1_Existing Conditions.xlsm}\)

COMPOSITE % IMPERVIOUS & COMPOSITE PROPOSED RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Sterling Ranch Subdivision -Proposed Location: El Paso County

Project Name: Sterling Ranch Filing No. 4

Project No.: 25188.11

Calculated By: ARJ
Checked By: APL

Date: 4/4/23

	Total	Paved	/Streets	(100% In	npervious)	Res	sidentia	l (65% Im	pervious)	Light I	ndustria	l (80% In	npervious)	I	Lawns (C	% Imper	vious)	Weigl	s Total hted C	Basins Total Weighted %
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	Val C ₅	ues C ₁₀₀	Imp.
A2	1.38	0.90	0.96	0.22	15.9%	0.45	0.59	0.34	16.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.82	0.0%	0.30	0.51	32.0%
A3	3.68	0.90	0.96	0.71	19.3%	0.45	0.59	2.59	45.7%	0.59	0.70	0.00	0.0%	0.08	0.35	0.38	0.0%	0.50	0.64	65.0%
A4	4.53	0.90	0.96	0.67	14.8%	0.45	0.59	2.35	33.7%	0.59	0.70	0.00	0.0%	0.08	0.35	1.51	0.0%	0.39	0.56	48.5%
A 5	0.45	0.90	0.96	0.17	38.1%	0.45	0.59	0.28	40.8%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.63	0.73	79.0%
A6.1	4.73	0.90	0.96	1.02	21.6%	0.45	0.59	3.70	50.9%	0.59	0.70	0.00	0.0%	0.08	0.35	0.01	0.0%	0.55	0.67	72.5%
A6.2	2.56	0.90	0.96	0.66	25.7%	0.45	0.59	1.90	48.2%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.56	0.68	73.9%
A7	1.76	0.90	0.96	0.43	24.5%	0.45	0.59	1.32	48.8%	0.59	0.70	0.00	0.0%	0.08	0.35	0.01	0.0%	0.56	0.68	73.3%
A8	4.23	0.90	0.96	0.12	2.8%	0.45	0.59	0.68	10.5%	0.59	0.70	0.00	0.0%	0.08	0.35	3.42	0.0%	0.16	0.41	13.4%
A9	2.13	0.90	0.96	0.06	2.8%	0.45	0.59	0.15	4.6%	0.59	0.70	0.00	0.0%	0.08	0.35	1.92	0.0%	0.13	0.38	7.4%
A10	2.67	0.90	0.96	0.44	16.4%	0.45	0.59	0.40	9.8%	0.59	0.70	0.00	0.0%	0.08	0.35	1.83	0.0%	0.27	0.49	26.2%
B3	2.38	0.90	0.96	1.41	59.3%	0.45	0.59	0.12	3.3%	0.59	0.70	0.00	0.0%	0.08	0.35	0.85	0.0%	0.58	0.72	62.6%
C1.1	1.78	0.90	0.96	0.44	24.6%	0.45	0.59	1.14	41.6%	0.59	0.70	0.00	0.0%	0.08	0.35	0.20	0.0%	0.52	0.65	66.2%
C1.2	0.81	0.90	0.96	0.25	30.4%	0.45	0.59	0.52	41.6%	0.59	0.70	0.00	0.0%	0.08	0.35	0.05	0.0%	0.57	0.69	72.0%
C2	6.75	0.90	0.96	1.49	22.0%	0.45	0.59	4.21	40.5%	0.59	0.70	0.00	0.0%	0.08	0.35	1.06	0.0%	0.49	0.63	62.5%
C3	4.18	0.90	0.96	0.14	3.4%	0.45	0.59	1.00	15.5%	0.59	0.70	0.00	0.0%	0.08	0.35	3.04	0.0%	0.20	0.43	18.9%
C4	4.41	0.90	0.96	1.85	42.0%	0.45	0.59	1.35	19.9%	0.59	0.70	0.00	0.0%	0.08	0.35	1.21	0.0%	0.54	0.68	61.8%
I1	5.88	0.90	0.96	1.23	20.9%	0.45	0.59	2.98	32.9%	0.59	0.70	0.00	0.0%	0.08	0.35	1.67	0.0%	0.44	0.60	53.8%
12	2.18	0.90	0.96	0.81	37.2%	0.45	0.59	1.13	33.7%	0.59	0.70	0.00	0.0%	0.08	0.35	0.24	0.0%	0.58	0.70	70.8%
13	2.94	0.90	0.96	0.74	25.2%	0.45	0.59	1.94	42.9%	0.59	0.70	0.00	0.0%	0.08	0.35	2.94	0.0%	0.60	0.98	68.1%
OS6	18.38	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	10.40	45.3%	0.08	0.35	7.98	0.0%	0.37	0.55	45.3%
OS7	33.07	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	7.91	19.1%	0.08	0.35	25.16	0.0%	0.20	0.43	19.1%
E1	0.90	0.90	0.96	0.78	86.7%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.12	0.0%	0.79	0.88	86.7%
E2	1.25	0.90	0.96	0.79	63.2%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.46	0.0%	0.60	0.74	63.2%
E3	0.35	0.90	0.96	0.30	85.7%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.05	0.0%	0.78	0.87	85.7%
E4	0.36	0.90	0.96	0.29	80.6%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.07	0.0%	0.74	0.84	80.6%
TOTAL (A2-C4)	48.42																			50.4%
Total (C1-I3)	28.93																			56.0%
TOTAL (OS6 -OS7)	51.45																			28.5%
TOTAL (E1-E4)	2.86																			75.5%
TOTAL	113.73																			42.1%

PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision:	Sterling Ranch Subdivision -Proposed
Location:	FI Paso County

 Project Name:
 Sterling Ranch Filling No. 4

 Project No.:
 25188.11

 Calculated By:
 ARI

 Checked By:
 APL

 Date:
 4/4/23

Table 6-2. NRCS Conveyance factors, K

		SUB-I	BASIN			INITIA	AL/OVER	LAND			TRAVEL TII	ME			tc CHECK		
		DA	·ΤΑ				(T _i)				(T _t)			(L	JRBANIZED BA	ASINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t _i	L _t	St	K	VEL.	t_t	COMP. t_c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
A2	1.38	Α	32%	0.30	0.51	100	3.7%	9.4	141	1.5%	20.0	2.4	1.0	10.3	241.0	22.0	10.3
A3	3.68	Α	65%	0.50	0.64	100	3.7%	7.0	1008	2.4%	20.0	3.1	5.5	12.5	1108.2	21.0	12.5
A4	4.53	Α	48%	0.39	0.56	100	2.1%	10.1	814	1.9%	20.0	2.8	4.9	15.0	914.0	24.0	15.0
A5	0.45	Α	79%	0.63	0.73	54	3.7%	4.1	217	3.9%	20.0	4.0	0.9	5.0	271.0	13.5	5.0
A6.1	4.73	Α	72%	0.55	0.67	100	2.0%	8.0	841	2.9%	20.0	3.4	4.1	12.1	941.0	18.0	12.1
A6.2	2.56	Α	74%	0.56	0.68	100	2.0%	7.7	685	1.6%	20.0	2.6	4.5	12.1	785.0	18.1	12.1
A7	1.76	Α	73%	0.56	0.68	100	3.4%	6.5	367	1.2%	20.0	2.2	2.8	9.4	467.0	16.5	9.4
A8	4.23	Α	13%	0.16	0.41	233	4.9%	15.3	307	0.9%	15.0	1.4	3.6	18.9	540.0	28.7	18.9
C1.1	1.78	Α	66%	0.52	0.65	100	4.3%	6.5	519	2.7%	20.0	3.3	2.7	9.2	619.0	17.6	9.2
C1.2	0.81	Α	72%	0.57	0.69	64	2.0%	6.1	415	2.7%	20.0	3.3	2.1	8.3	479.0	16.0	8.3
C2	6.75	Α	63%	0.49	0.63	99	1.8%	9.1	796	1.7%	20.0	2.6	5.1	14.2	895.0	21.1	14.2
C3	4.18	Α	19%	0.20	0.43	100	9.6%	7.7	255	3.5%	15.0	2.8	1.5	9.3	355.0	24.7	9.3
A9	2.13	Α	7%	0.13	0.38	100	2.4%	13.1	108	2.6%	20.0	3.2	0.6	13.7	208.0	25.9	13.7
A10	2.67	Α	26%	0.27	0.49	100	2.8%	10.7	0	1.0%	20.0	2.0	0.0	10.7	100.0	21.5	10.7
B3	2.38	Α	63%	0.58	0.72	37	3.4%	3.8	1595	1.5%	10.0	1.2	21.7	25.5	1632.0	27.6	25.5
C4	4.41	Α	62%	0.54	0.68	100	3.0%	7.1	1664	1.5%	10.0	1.2	22.6	29.7	1764.0	28.3	28.3
OS6	18.38	Α	45%	0.37	0.55	165	3.4%	11.3	612	2.7%	10.0	1.6	6.2	17.5	777.0	22.4	17.5
OS7	33.07	Α	19%	0.20	0.43	298	3.0%	19.5	1664	2.7%	10.0	1.6	16.9	36.4	1962.0	37.2	36.4
l1	5.88	Α	54%	0.44	0.60	180	1.4%	14.3	497	1.6%	10.0	1.3	6.5	20.9	677.0	20.8	20.8
12	2.18	Α	71%	0.58	0.70	125	1.6%	9.1	385	5.2%	10.0	2.3	2.8	11.9	510.0	15.4	11.9
13	2.94	Α	68%	0.60	0.98	80	1.7%	6.7	385	2.5%	10.0	1.6	4.1	10.8	465.0	16.6	10.8
E1	0.90	Α	87%	0.79	0.88	30	2.0%	2.4	725	2.1%	20.0	2.9	4.2	6.6	755.0	15.2	6.6
E2	1.25	Α	63%	0.60	0.74	30	2.0%	3.9	765	2.1%	20.0	2.9	4.4	8.3	795.0	20.2	8.3
E3	0.35	Α	86%	0.78	0.87	30	2.0%	2.5	285	2.3%	20.0	3.0	1.6	4.1	315.0	12.9	5.0
E4	0.36	Α	81%	0.74	0.84	30	2.0%	2.8	295	2.3%	20.0	3.0	1.6	4.4	325.0	13.9	5.0

NOTES:

 $t_c = t_t + t_t$ Equation 6-2 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$ Type of Land Surface t_c = computed time of concentration (minutes) $t_i = \text{overland (initial) flow time (minutes)}$ Short pasture and lawn Nearly bare ground t_i = overland (initial) flow time (minutes) C_S = runoff coefficient for 5-year frequency (from Table 6-4) L_f = length of overland flow (ft) S_σ = average slope along the overland flow path (ft/ft). t_l = channelized flow time (minutes). Grassed waterway
Paved areas and shallow paved swales $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$ $L = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$ t_t = channelized flow time (travel time, min) t_t = waterway length (ft) S_0 = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = $K \lor S_0$ K = NRCS conveyance factor (see Table 6-2). Use a minimum t_t value of 5 minutes for urbanized areas and a minimum t_t value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. t_c = length of channelized flow path (ft) t_c = imperviousness (expressed as a decimal) S_i = slope of the channelized flow path (ft/ft).

X:\2510000.all\2518811\Excel\Drainage\2518811_ Proposed Conditions.xlsm Page 1 of 1 4/4/2023

STANDARD FORM SF-3 - PROPOSED

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision: Sterling Ranch Subdivision -Proposed Location: ET Paso County
Design Storm: 5-Year

Project Name: Sterling Ranch Filing No. 4
Project No.: 25188.11
Calculated By: ARI
Checked By: APL
Date: 4/4/23

				DIRE	CT RUI	NOFF			T	OTAL R	UNOFF		STRE	et/sw	/ALE		PIF	PΕ		TRAV	EL TIMI		
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	OS7	33.07	0.20	36.4	6.68	2.19	14.6								14.6	6.68	1.0	36	427	7.5		Offsite Barbarick Subdivision pond release Piped to DP 4.1
	4	OS6	18.38	0.37	17.5	6.77	3.29	22.3								22.3	6.77	1.0	36	162	8.4		Offsite subdivision pond release Confluenced at DP 4.1
	4.1								37.3	13.45	2.15	29.0				29.0	13.45	1.0	36	704	9.0	1.3	Offsite undetained flow confluenced from basins OS7 and OS6 w/ bypass flows Piped to DP 7.1
	5	C2	6.75	0.49	14.2	3 32	3.61	12.0								12.0							Sump Inlet Piped to DP 6.3
																							Sump Inlet
	6.1	C1.1	1.78		9.2	0.92	4.26									3.9	0.92	1.0	18	9	5.5	0.0	Piped to DP 6.3 Sump Inlet
	6.2	C1.2	0.81	0.57	8.3	0.46	4.42	2.0															Piped to DP 6.3
	6.3								14.3	4.70	3.59	16.9				16.9	4.70	1.0	36	245	7.9	0.5	Piped to DP 7.2 Area Inlet
	7	C3	4.18	0.20	9.3	0.82	4.24	3.5															Piped to DP 7.1
	7.1								38.6	14.27	2.10	30.0				30.0	14.27	1.0	36	40	9.2	0.1	Structure piped to 7.2
	7.2								38.7	18.97	2.10	39.8											Piped to existing storm sewer in Sterling Ranch Road
	8	C4	4.41	0.54	28.3	2.37	2.57	6.1															Offsite flow to existing inlet in Sterling Ranch Road Piped to existing storm sewer in Sterling Ranch Road
	9	В3	2.38	0.58	25.5	1.39	2.73	3.8															Offsite flow to existing inlet in Sterling Ranch Road Piped to existing storm sewer in Sterling Ranch Road
	1.i	11	5.88	0.44	20.8	2.58	3.03	7.8															Runoff drains into into swale
	3.i	13	2.94	0.60	10.8	1.77	4.01	7.1															Runoff drains into swale
	2.i	12	2.18				3.87		20.8	3.94	3.03	11.6				11.6	3.84	2.0	24	113	9.3	0.2	
	3.2	12	2.10	0.50	11.7	1.20	3.07	4.7	21.0							11.0	3.04	2.0	24	113	7.5	0.2	DP2.i and DP3.i combine at DP3.2
	10								38.7		2.10	55.8											Sum of flows from DP7.2, 8, 9, and 2.1
	15							8.2	30.7	20.37	2.10	33.6	0.4	0.11	1.6	7.8							Existing runoff piped from Sterling Ranch Filing 3 subdivision by-passed to DP 17 curb and gutter flow to DP17
	15.1							0.2	19.5	6.71	3.13	21.0				21.0	6.71	1.0	24	45	8.2	0.1	On-grade Inlet from overland flow on Filing 3 subdivision Captured Flows piped to DP 16.1
	16	A5	0.45	0.63	5.0	0.28	5.17	1.4	17.0	0.71	0.10	2110	0.0	0	2.9	1.4	0.71	1.0			0.2	0	Existing On-grade Inlet from Sterling Ranch Filing 3 Captured Flows piped to DP 16.1, by pass flow to DP12
	16.1	ΠJ	0.43	0.03	5.0	0.20	J.17	1.4	19.6	6 00	3.12	21 5				21.5	6.88	1.0	36	280	8.4	0.4	Piped to DP 18.1
		40	1.00	0.00	10.0	0.40	4.00	17					0.0	0									On-grade Inlet, includes by pass flow from DP15/ Sterling Ranch Filing 3
	17	A2	1.38	0.30	10.3	0.42	4.08	1.7	20.1	0.53	3.08	1.6				1.6	0.42	1.0	18	27	4.3	0.1	Piped to DP 18.1
	17.1												-			1.6							Captured runoff from on Grade inlet at DP 17, FLOWS TO DP 18.1
	18.1								20.3	7.41	3.07	22.8	0.9	0.23	1.0	22.8	0.00	1.0	36	600	8.5		Piped to DP18.2 On-grade Inlet, includes by pass flow from DP16
	12	A6.1	4.73	0.55	12.1	2.59	3.85	10.0								9.1	2.36	1.0	24	100	6.8	0.2	Captured Flows piped to DP 18.2, Bypass flow to DP 19

Page 1 of 2 4/28/2023 X:\2510000.all\2518811\Excel\Drainage\2518811_ Proposed Conditions.xlsm

STANDARD FORM SF-3 - PROPOSED

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision:	Sterling Ranch Subdivision -Proposed
Location:	El Paso County
Design Storm:	5-Year

Project Name: Sterling Ranch Filing No. 4
Project No.: 25188.11
Calculated By: ARI
Checked By: APL
Date: 4/4/23

		DIRECT RUNOFF							T	OTAL R	STRE		PIPE				EL TIN	ΛE					
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	O (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	12.1															9.1							Captured flow into on grade inlet at DP12.1
	18.2								21.4	9.77	2.99	29.2				29.2	9.77	1.0	42	50	9.1	0.	1 Piped to DP20.2
	19	A6.2	2 56	0.56	12.1	1.45	3.84	5.6	12.3	1.68	3.82	6.4	0.0	0	1.0	6.4	1.67	1.0	24	30	6.2	0	On-grade Inlet, includes by pass flow from DP12 Captured Flows piped to DP 20.1, Bypass flow to DP 21
		710.2	2.00	0.50	12.1	1.40	5.04	5.0	12.0	1.00	0.02	0.1					1.07	1.0	2-7	50	0.2	0.	
	19.1												0.0	0	1.0	6.4							Captured flow from on grade inlet from DP 19 On-grade Inlet Captured Flows piped to DP 20.1
	20	А3	3.68	0.50	12.5	1.84	3.79	7.0								7.0	1.84	1.0	18	4	6.3	0.	Captured Flows piped to DP 20.1
	20.1															7.0							Captured flow from on grade inlet from DP 20
	20.2								21.5	13.28	2.98	39.6				39.6	13.28	1.0	42	220	9.8	0.	4 Piped to DP23
	21	A7	1.76	0.56	9.4	0.99	4.23	4.2	12.2	0.99	3.83	3.8				3.8	0.99	1.0	24	60	5.3	0.	Sump Inlet, includes by pass flow from DP19 Piped to DP21.1
																					10.0		MH
	21.1								21.5							42.5	14.27	1.0	42	90	10.0	0.	Piped to DP23 Sump Inlet, includes by pass flow from DP17 and DP20
	22	A4	4.53	0.39	15.0	1.78	3.52	6.3	15.0	1.78	3.52	6.3											Piped to DP22.1
	22.1								15.0	1.78	3.52	6.3				6.3	1.78	1.0	18	10	6.2	0.	Piped to DP23
	23								21.9	16.05	2.95	47.4				47.4	16.05	1.0	42	145	10.3	0.	Piped to DP26
		4.0	4.00	0.17	10.0	0.40	2.17	2.2															Area Inlet
	24	A8	4.23					2.2															Piped to EX 84" Storm Line Built w/ SR Filing 2 First Phase Prop. 18" FES
	25	Α9	2.13	0.13	13.7	0.28	3.66	1.0								1.0	0.28	4.0	18	60	6.0	0.	Piped to EX 84" Storm Line Built w/ SR Filing 2 First Phase Captured and Piped runoff from 15 ' type R inlet
	25.1															5.0							captured and riped randin from 15 type it iniet
	27	A10	2.67	0.27	10.7	0.72	4.03	2.9															Pervious area sheet flows into EX Pond W5
	e10												0.6										By pass runoff from up stream existing 15' type R inlet built in Sterling Ranch Filing No. 2
													0.0										Runoff from up stream + runoff from by pass flow
	1e	E1	0.90	0.79	6.6	0.71	4.75	3.4				4.0											Captured and Piped runoff from 15 ' type R inlet
	1.1e															4.0							
	e11												0.7										By pass runoff from upstream existing 15' type R inlet built in Sterling Ranch Filing No. 2
	2e	E2	1 25	0.60	0 2	0.75	4.40	3.3				4.0											Total Runoff from up stream + runoff from by pass flow
		EZ	1.25	0.00	0.3	0.75	4.40	3.3				4.0											Total runoff piped from basin E2 + runoff from upstream bypass
	2.1e															4.0							Total runoff piped from basin E1 + upstream bypass and runoff from basin E2 + runoff
	2.2e						-						0.0			8.0							from upstream bypass
	3e	E3	0.35	0.78	5.0	0.27	5.17	1.4	6.6	0.27	4.75	1.3	5.0										Total runoff from basin E3 and bypass runoff from basin E1
Notes:	4e	E4	0.36	0.74	5.0	0.27	5.17	1.4	8.3	0.27	4.40	1.2											Total runoff from basin E4 and bypass runoff from basin E2

Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

Page 2 of 2 4/28/2023 X:\2510000.all\2518811\Excel\Drainage\2518811_ Proposed Conditions.xlsm

STANDARD FORM SF-3 - PROPOSED

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision:	Sterling	Ranch	Subdivision	-Proposed

Location: El Paso County
Design Storm: 100-Year

Project Name: Sterling Ranch Filing No. 4
Project No.: 25188.11
Calculated By: ARI
Checked By: APL
Date: 4/4/23

				DIR	ECT R	UNOFF			TC	OTAL RI	JNOFF		STRE	ET/SW	ALE		PIPE		TRAV	/EL TIIV	1E		
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	(in/hr)	O (cfs)	tc (min)	C*A (ac)	(in/hr)	O (cfs)	Ostreet/swale (cfs)	C* A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	OS7	33.07	0.43	36.4	14.34	3.68									52.8	14.34		36	427	10.5	0.7	Offsite Barbarick Subdivision pond release 7 Piped to DP 4.1
	4	OS6	18.38	0.55	17.5	10.07	5.52	55.6								55.6	10.07	1.0	36	162	10.6	0.3	Offsite subdivision pond release 3 Confluenced at DP 4.1
	4.1								37.0	24.41	3 63	88.7				88.7	24.41	1.0					Offsite undetained flow confluenced from basins OS7 and OS6 w/ bypass flows Piped to DP 7.1
	5	C2	6.75	0.42	14.2	4.28	6.06	25.9	37.0	24.41	3.03	00.7	12.4	2.05	2.0	13.5	2.23	1.0		42	2.8	0.2	2 Sump Inlet, Over flows 12.4 cfs to DP 6.1 Piped to DP 6.3
	Ů												3.1	0.52	0.1					16	0.6	0.4	Sump Inlet, Overflows 3.1 cfs to DP6.2
	6.1	C1.1	1.78	0.65				8.3	14.4		6.01	19.3				16.2	0.97	1.0	18	9	9.2	0.0	Piped to DP 6.3 Sump Inlet
	6.2	C1.2	0.81	0.69	8.3	0.56	7.41	4.2	14.8		5.94	6.4											Piped to DP 6.3
	6.3								14.8	6.00	5.94	35.6				35.6	6.00	1.0	36	245	9.6	0.4	Piped to DP 7.2 Area Inlet
	7	C3	4.18	0.43	9.3	1.79	7.12	12.8															Piped to DP 7.1
	7.1								38.0	26.20	3.57	93.5				93.5	26.20	1.0	36	40	13.2	0.1	1 Structure piped to 7.2
	7.2								38.0	32.20	3.57	114.9											Piped to existing storm sewer in Sterling Ranch Road
	8	C4	4.41	0.68	28.3	3.00	4.31	12.9															Offsite flow to existing inlet in Sterling Ranch Road Piped to existing storm sewer in Sterling Ranch Road
	q	В3	2.38		25.5			7.9															Offsite flow to existing inlet in Sterling Ranch Road Piped to existing storm sewer in Sterling Ranch Road
																							, , , , , , , , , , , , , , , , , , ,
	1.i	l1	5.88		20.8			17.9															Runoff drains into into swale
	3.i	13			10.8		6.74	19.4															Runoff drains into swale
	2.i	12	2.18	0.70	11.9	1.53	6.50	9.9	20.8	5.05	5.09	25.7				25.7	5.05	2.0	24	113	11.3	0.2	2 Flows from DP2.i and DP3.1 combine in proposed storm sewer
	3.2								21.0	7.93	5.07	40.2											Sum of flows from DP7.2, 8, 9, and 2.1
	10								38.0	41.97	3.57	149.7	4.7	0.017	1.5								
	15							17.7					4.7	0.817	1.5	12.5							Existing runoff piped from Sterling Ranch Filing 3 subdivision by-passed to DP 17 curb and gutter flow to DP17
	15.1								19.2	8.18	5.28	43.2				43.2	8.18	1.0	24	45	13.8	0.1	On-grade Inlet from overland flow on Filing 3 subdivision I Captured Flows piped to DP 16.1
	16	A 5	0.45	0.73	5.0	0.33	8.68	2.9					0.0	0	2.9	2.9							Existing On-grade Inlet from Sterling Ranch Filing 3 Captured Flows piped to DP 16.1, by pass flow to DP12
	16.1								19.3	8.51	5.28	44.9				44.9	8.51	1.0	36	280	10.1	0.5	Piped to DP 18.1
	17	A2	1.38	0.51	10.3	0.70	6.85	4.8	19.8		5.22	7.9	0.2	0.029	1.5	7.7	1.49	1.0					On-grade Inlet, includes by pass flow from DP15/ Sterling Ranch Filing 3
	17.1		1.00	0.01	10.0	0.70	0.00		17.0	1.02	UILL	7.7				7.7	,	1.0			0.0	0	Captured runoff from on Grade inlet at DP 17, FLOWS TO DP 18.1
	18.1								10.0	10.03	E 21	52.2				52.2	10.03	1.0	36	600	10.4	1.0	Piped to DP18.2
			. 75	0.7-	40:	0.4-	, ,		19.8	10.03	0.21	52.2	6.6	1.022	1.0								On-grade Inlet, includes by pass flow from DP16
	12	A6.1	4.73	0.67	12.1	3.17	6.46	20.5								13.9	2.15	1.0	24	100	7.6	0.2	2 Captured Flows piped to DP 18.2, Bypass flow to DP 19
	12.1															13.9							Captured flow into on grade inlet at DP12.1

X:\2510000.all\2518811\Excel\Drainage\2518811_ Proposed Conditions.xlsm Page 1 of 2 4/28/2023

STANDARD FORM SF-3 - PROPOSED

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision: Sterling Ranch Subdivision -Proposed
Location: El Paso County
Design Storm: 100-Year

Project Name: Sterling Ranch Filing No. 4
Project No.: 25188.11
Calculated By: ARJ
Checked By: APL
Date: 4/4/23

				DIR	ECT RI	JNOFF			T(OTAL RI	UNOFF		STRI	ET/SW	ALE		PIP	E		TRA	/EL TII/	1E	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)	O (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	18.2								20.8	12.18	5.09	62.0				62.0	12.18		42	50	11.0	0.1	Piped to DP20.2
	19	A6.2	2.56	0.60	12.1	1.75	6.44	11.3	12.3		6.41		4.9	0.761	1.0	12.9	2.00				7.4	0.1	On-grade Inlet, includes by pass flow from DP12 Captured Flows piped to DP 20.1, Bypass flow to DP 21
		A0.2	2.30	0.00	12.1	1.75	0.44	11.3	12.3	2.11	0.41	17.0					2.00	1.0	24	30	7.4	0.1	
	19.1												3.2	0.502	1.0	12.9							Captured flow from on grade inlet from DP 19 On-grade Inlet
	20	A3	3.68	0.64	12.5	2.34	6.37	14.9								11.7	1.84	1.0	18	4	6.6	0.0	Captured Flows piped to DP 20.1
	20.1															11.7							Captured flow from on grade inlet from DP 20
	20.2								20.9	16.01	5.08	81.4				81.4	16.01	1.0	42	220	11.6	0.3	Piped to DP23
	21	A7	1.76	0.68	9.4	1.20	7.10	8.5	12.2	1.96	6.43	12.6				12.6	1.96	1.0	24	60	7.4	0.1	Sump Inlet, includes by pass flow from DP19 Piped to DP21.1
	21.1								20.9	17.97	5.08	91.3				91.3	17.97	1.0	42	90	11.9	0.1	MH Piped to DP23
	22	A4	4 53	0.56	15.0	2.56	5.91	15.1	15.0	3.09	5.91	18.3											Sump Inlet, includes by pass flow from DP17 and DP20 Piped to DP22.1
	22.1	711	1.00	0.00	10.0	2.00	0.71	10.1	15.0			18.3				18.3	3.09	1.0	18	10	10.4	0.0	Piped to DP23
	23								21.2	21.07	5.04	106.2				106.2	21.07	1.0	42	145	11.9	0.2	Piped to DP26 Area Inlet
	24	A8	4.23	0.41	18.9	1.72	5.32	9.2															Piped to EX 84" Storm Line Built w/ SR Filing 2 First Phase Prop. 18" FES
	25	A9	2.13	0.38	13.7	0.82	6.14	5.0								5.0	0.82	4.0	18	60	9.8	0.1	Piped to EX 84" Storm Line Built w/ SR Filing 2 First Phase 1.1e + dp25
	25.1															14.8							1.16 ± up23
	27	A10	2.67	0.49	10.7	1.30	6.77	8.8															Pervious area sheet flows into EX Pond W5
	e10												4.6										By pass runoff from up stream existing 15' type R inlet built in Sterling Ranch Filing No. 2
	1e	E1	n 9n	0.88	6.6	0.79	7.98	6.3				10.9	1.1	0.138	3.4	9.8							Runoff from up stream + runoff from by pass flow
			0.70	0.00	0.0	0.77	7.70	0.5				10.7											Captured and Piped runoff from 15 ' type R inlet
	1.1e												6.2			9.8							By pass runoff from upstream existing 15' type R inlet built in Sterling Ranch Filing No. 2
	e11												2.1	0.284	3.4								Total Runoff from up stream + runoff from by pass flow
	2e	E2	1.25	0.74	8.3	0.92	7.39	6.8				13.0				10.9							Total runoff piped from basin E2 + runoff from upstream bypass
	2.1e															10.9							1 2
	2.2e															20.7							Total runoff piped from basin E1 + upstream bypass and runoff from basin E2 + runoff from upstream bypass
	3e	E3	0.35	0.87	5.0	0.31	8.68	2.7	6.6	0.45	7.98	3.6											Total runoff from basin E3 and bypass runoff from basin E1
	4e	E4	0.36	0.84	5.0	0.30	8.68	2.6	8.3	0.58	7.39	4.3											Total runoff from basin E4 and bypass runoff from basin E2
Notes:			0.00	5.51	0.0	0.00	0.00	2.0	0.0	0.00	,,			1					-		1		

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

X:\2510000.all\2518811\Excel\Drainage\2518811_ Proposed Conditions.xlsm Page 2 of 2 4/28/2023

Appendix C Hydraulic Calculations

Wor			

Inlet DP5	Inlet DP6.1	Inlet DP6.2
URBAN	URBAN	URBAN
STREET	STREET	STREET
In Sump	In Sump	In Sump
CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening
12.0	3.9	2.0
25.9	8.3	4.2
Inlets must be organized from upstrea	am (left) to downstream (right) in order fo	or bypass flows to be linked.
No Bypass Flow Received	User-Defined	User-Defined
0.0	0.0	0.0
0.0	11.0	3.1
	STREET In Sump CDOT Type R Curb Opening 12.0 25.9 Inlets must be organized from upstreat No Bypass Flow Received 0.0	URBAN STREET STREET In Sump In Sump CDOT Type R Curb Opening CDOT Type R Curb Opening 12.0 3.9 25.9 8.3 Inlets must be organized from upstream (left) to downstream (right) in order for No Bypass Flow Received User-Defined 0.0 0.0

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	12.0	3.9	2.0
Major Total Design Peak Flow, Q (cfs)	25.9	19.3	7.3
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A

Worksheet Protected

INLET NAME	Inlet DP7	Ex Inlet DP8	Ex Inlet DP9
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	AREA	STREET	STREET
Hydraulic Condition	Swale	On Grade	On Grade
Inlet Type	CDOT Type C	CDOT Type R Curb Opening	CDOT Type R Curb Opening
SER-DEFINED INPUT			
User-Defined Design Flows			
Minor Q _{Known} (cfs)	3.5	6.1	3.8
Major Q _{Known} (cfs)	12.8	13.0	7.9
Bypass (Carry-Over) Flow from Upstream			
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Subcatchment Area (acres) Percent Impervious			
NRCS Soil Type			
Watershed Profile			
Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope (ft/ft)			
Channel Length (ft)			
Minor Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
Major Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	3.5	6.1	3.8
Major Total Design Peak Flow, Q (cfs)	12.8	13.0	7.9
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	2.2	0.2

Worksheet Protected

INLET NAME	Ex Inlet DP15	Ex Inlet DP16	Inlet DP12
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening
SER-DEFINED INPUT			
User-Defined Design Flows	0.2		10.0
Minor Q _{Known} (cfs)	8.2	1.4	10.0
Major Q _{Known} (cfs)	17.7	2.9	20.5
Bypass (Carry-Over) Flow from Upstream	1		
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Subcatchment Area (acres) Percent Impervious NRCS Soil Type			
Watershed Profile			
Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope (ft/ft)			
Channel Length (ft)			
Minor Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
Major Storm Rainfall Input			
Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)			

Minor Total Design Peak Flow, Q (cfs)	8.2	1.4	10.0
Major Total Design Peak Flow, Q (cfs)	17.7	2.9	20.5
Minor Flow Bypassed Downstream, Q _b (cfs)	0.2	0.0	0.9
Major Flow Bypassed Downstream, Q _b (cfs)	4.7	0.0	6.6

Worksheet Protected

URBAN STREET On Grade CDOT Type R Curb Opening	URBAN STREET On Grade CDOT Type R Curb Opening	URBAN STREET On Grade CDOT Type R Curb Opening
On Grade	On Grade	On Grade
CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening
		CDOT Type IX carb opening
1.6	6.4	7.0
7.9	17.8	14.9
No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
0.0	0.0	0.0
0.0	0.0	0.0
	7.9 No Bypass Flow Received 0.0	7.9 17.8 No Bypass Flow Received No Bypass Flow Received 0.0 0.0

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	1.6	6.4	7.0
Major Total Design Peak Flow, Q (cfs)	7.9	17.8	14.9
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.2	4.9	3.2

Worksheet Protected

INLET NAME	Inlet DP21	Inlet DP22	Inlet DP24
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	AREA
Hydraulic Condition	In Sump	In Sump	Swale
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type C
SER-DEFINED INPUT			
User-Defined Design Flows			
Minor Q _{Known} (cfs)	3.8	6.3	2.2
Major Q _{Known} (cfs)	12.6	18.3	9.2
Punace (Carry Over) Flour from Unetween			
Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Percent Impervious			
NRCS Soil Type			
Watershed Profile Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope (ft/ft)			
Channel Length (ft)			
Minor Storm Rainfall Input Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
Major Storm Rainfall Input			
Design Storm Return Period, 1, (vears)			
Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)			

Minor Total Design Peak Flow, Q (cfs)	3.8	6.3	2.2
Major Total Design Peak Flow, Q (cfs)	12.6	18.3	9.2
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	0.0

MHFD-Inlet, Version 5.02 (August 2022)

INLET MANAGEMENT

Worksheet Protected

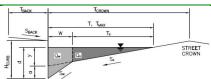
NLET NAME	Ex Inlet DPe10	Ex Inlet DPe11	<u>Inlet DP1e</u>
ite Type (Urban or Rural)	URBAN	URBAN	URBAN
nlet Application (Street or Area)	STREET	STREET	STREET
lydraulic Condition	On Grade	On Grade	On Grade
nlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening
ER-DEFINED INPUT			
User-Defined Design Flows			
Minor Q _{Known} (cfs)	9.2	9.5	4.0
Major Q _{Known} (cfs)	17.3	19.9	10.9
Dunasa (Carry, Ovar) Flavy from Hastroom			
Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Winor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _h (cfs)	0.0	0.0	0.0
3 31 · · · · · · · · · · · · · · · · · ·			
Watershed Characteristics			
Subcatchment Area (acres)			
Percent Impervious			
NRCS Soil Type			
Watershed Profile Overland Slope (ft/ft)			
Overland Slope (1717)			
Channel Slope (ft/ft)			
Channel Length (ft)			
Sharifier Eerigur (it)			
Minor Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
Major Storm Rainfall Input			
Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)			

MHFD-Inlet, Version 5.02 (August 2022)

INLET MANAGEMENT

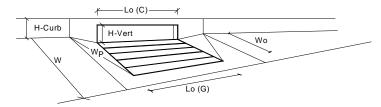
Worksheet Protected

INLET NAME	Inlet DP2e	Inlet DP25
Site Type (Urban or Rural)	URBAN	URBAN
Inlet Application (Street or Area)	STREET	AREA
Hydraulic Condition	On Grade	Swale
Inlet Type	CDOT Type R Curb Opening	CDOT Type C


JSER-DEFINED INPUT		
User-Defined Design Flows		
Minor Q _{Known} (cfs)	4.0	1.0
Major Q _{Known} (cfs)	13.0	4.8
Bypass (Carry-Over) Flow from Upstream		
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0
W - 1 - 101 - 1 - 1 - 1		
Watershed Characteristics		
Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		
Watershad Drofile		
Watershed Profile		
Overland Slope (ft/ft)		
Overland Slope (ft/ft) Overland Length (ft)		
Overland Slope (ft/ft)		
Overland Slope (ft/ft) Overland Length (ft)		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft)		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft)		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years)		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years)		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)		

CALCULATED OUTPUT

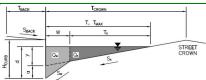
Minor Total Design Peak Flow, Q (cfs)	4.0	1.0
Major Total Design Peak Flow, Q (cfs)	13.0	4.8
Minor Flow Bypassed Downstream, Qb (cfs)	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	2.1	0.0

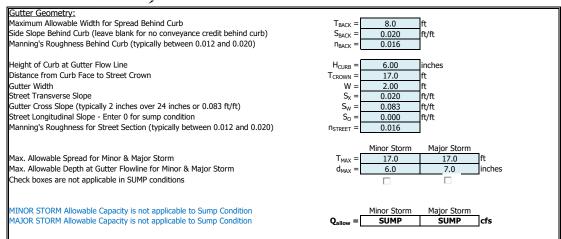

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Sterling Ranch Filing 4
Inlet ID: Inlet DP5

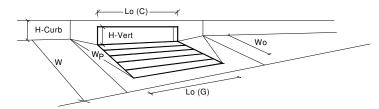
Gutter Geometry: Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) T_{BACK} 8.0 ft/ft $\mathsf{S}_{\mathsf{BACK}}$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.016 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 inches Distance from Curb Face to Street Crown $\mathsf{T}_{\mathsf{CROWN}}$ 17.0 Gutter Width W 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm $d_{\text{MAX}} \\$ inches 6.0 7.0 Check boxes are not applicable in SUMP conditions Major Storm SUMP MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition SUMP

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)



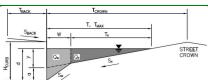

Declarate formation (laure)		LULION	144.100	
Design Information (Input) CDOT Type R Curb Opening	I	MINOR	MAJOR Curb Opening	-
Type of Inlet	Type =			inahaa
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1		<u>.</u> .
Water Depth at Flowline (outside of local depression)	Ponding Depth =	7.1	7.4	inches
Grate Information	. (0)	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
<u>Curb Opening Information</u>		MINOR	MAJOR	٦.
Length of a Unit Curb Opening	$L_o(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.43	0.45	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.85	0.86	Ī
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	1
				-
		MINOR	MAJOR	- .
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	12.2	13.5	cfs
WARNING: Inlet Capacity < Q Peak for Major Storm	Q _{PEAK REQUIRED} =	12.0	25.9	cfs

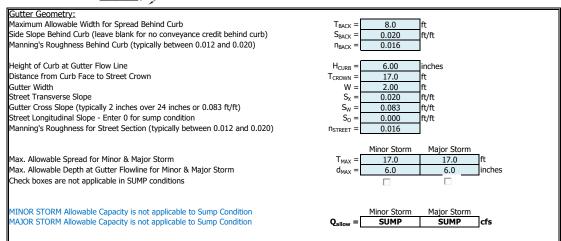
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: Sterling Ranch Filing 4

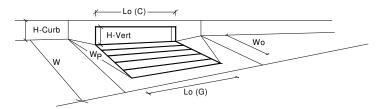
Inlet ID: Inlet DP6.1

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)



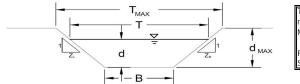

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	8.0	inches
Grate Information	, <u>.</u>	MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	<u>-</u>
Length of a Unit Curb Opening	$L_o(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.50	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.9	16.2	cfs
WARNING: Inlet Capacity < Q Peak for Major Storm	Q PEAK REQUIRED =	3.9	19.3	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: Sterling Ranch Filing 4

Inlet ID: Inlet DP6.2

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)


Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3,00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	c.i.es
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	8.0	inches
Grate Information	ronding bepar =	MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	$L_{\alpha}(G) =$	N/A	N/A	Ifeet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_0(G) =$	N/A	N/A	
Curb Opening Information	• • • •	MINOR	MAJOR	_
Length of a Unit Curb Opening	L₀ (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Tft .
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.50	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes cloqged condition)	O ₂ =	6.9	16.3	cfs
		2.0	7.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	2.0	7.3	cfs

AREA INLET IN A SWALE

Sterling Ranch Filing 4 Inlet DP7

Design Peak Flow

Water Depth

This worksheet uses the NRCS vegetal retardance method to determine Manning's n.

For more information see Section 7.2.3 of the USDCM.

D

see details below

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method NRCS Vegetal Retardance (A, B, C, D, or E) Manning's n (Leave cell D16 blank to manually enter an n value) Channel Invert Slope Bottom Width eft Side Slope Right Side Sloe Check one of the following soil types: Soil Type: Max. Velocity (V_{MAX}) Max Froude No. (F_{MAX}) Non-Cohesive 5.0 fps 0.60 7.0 fps Cohesive 0.80

ft/ft So = 0.0280 B = 0.00 Z1 = 4.00 ft/ft Z2 = 4.00 ft/ft Choose One: Non-Cohesive

n =

 d_{MAX}

A, B, C, D, or E =

Cohesive Paved Minor Storm Major Storm 8.00 12.00 T_{MAX} = 2.00 3.00

Maximum Allowable Top Width of Channel for Minor & Major Storm Maximum Allowable Water Depth in Channel for Minor & Major Storm Allowable Channel Capacity Based On Channel Geometry

N/A

Minor Storm Q_{allow} 12.3 49.0 cfs 1.00 1.50 $d_{\text{allow}} \\$

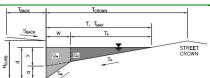
MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion Water Depth in Channel Based On Design Peak Flow

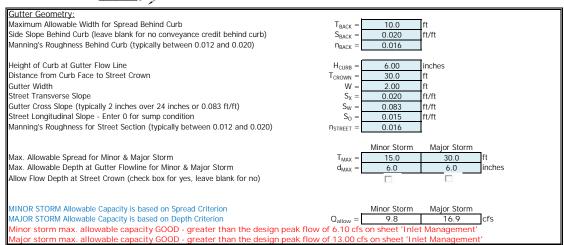
 ${\rm Q_o}$ 12.8 3.5 cfs d = 0.72 1.01

Minor storm max, allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max, allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

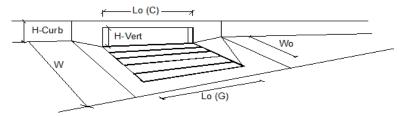
N/A

AREA INLET IN A SWALE

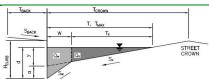

Sterling Ranch Filing 4 Inlet DP7

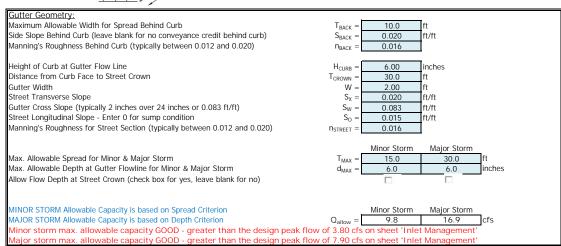

Inlet Design Information (Input) Type of Inlet CDOT Type C -Inlet Type = CDOT Type C Angle of Inclined Grate (must be <= 30 degrees)
Width of Grate θ 0.00 degrees W = 3.00 Length of Grate L : 3.00 Open Area Ratio A_{RATIO} = 0.70 H_B = Height of Inclined Grate 0.00 Clogging Factor 0.50 Grate Discharge Coefficient $C_{\text{d}} \\$ 0.96 Orifice Coefficient C_{o} 0.64 Weir Coefficient 2.05 MINOR MAJOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) d : 0.72 1.01 Q_a = Q_b = Total Inlet Interception Capacity (assumes clogged condition) cfs 11 3 16.3 Bypassed Flow cfs 0.0 0.0 Capture Percentage = Qa/Qo C% = % 100 100

Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

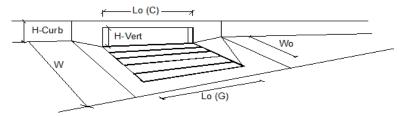

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Sterling Ranch Filing 4
Inlet ID: Ex Inlet DP8

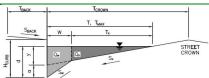

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)

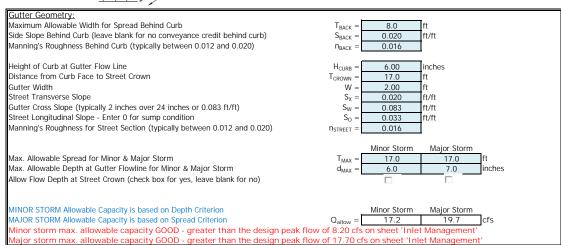


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.1	10.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	2.2	cfs
Capture Percentage = Q _a /Q _o	C% =	100	83	%

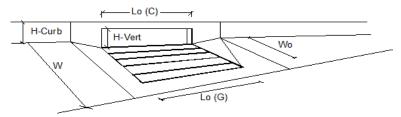

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Sterling Ranch Filing 4
Inlet ID: Ex Inlet DP9

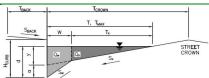

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)

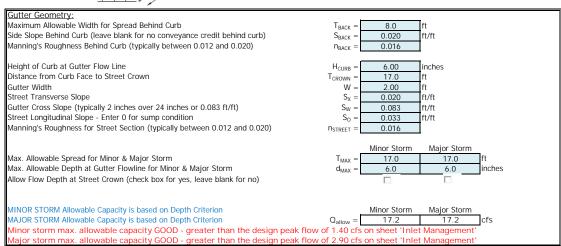


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.8	7.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.2	cfs
Capture Percentage = Q_a/Q_o	C% =	100	98	%

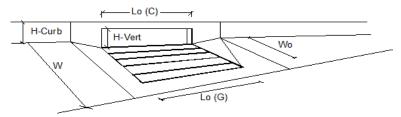

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Sterling Ranch Filing 4
Inlet ID: Ex Inlet DP15

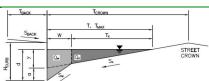

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)



Design Information (Input) CDOT Type R Curb Opening ▼		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.0	13.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.2	4.7	cfs
Capture Percentage = Q _a /Q _o	C% =	97	73	%

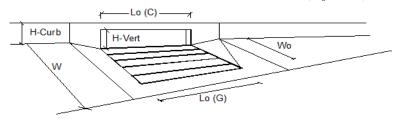

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Sterling Ranch Filing 4
Inlet ID: Ex Inlet DP16


INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)

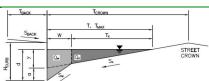
Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.4	2.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o	C% =	100	100	%

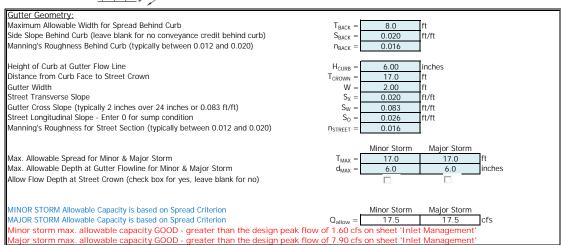
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: Sterling Ranch Filing 4
Inlet ID: Inlet DP12

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft $\mathsf{S}_{\mathsf{BACK}}$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.016 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.010 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm inches d_{MAX} 6.0 7.0 V Allow Flow Depth at Street Crown (check box for yes, leave blank for no) MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 10.9 22.6 Management Minor storm max. allowable capacity GOOD - greater than the design peak flow of 10.00 cfs on sheet Major storm max. allowable capacity GOOD - greater than the design peak flow of 20.50 cfs

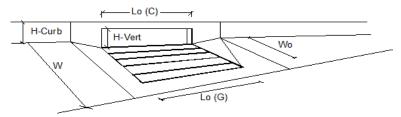
INLET ON A CONTINUOUS GRADE


MHFD-Inlet, Version 5.02 (August 2022)

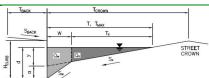


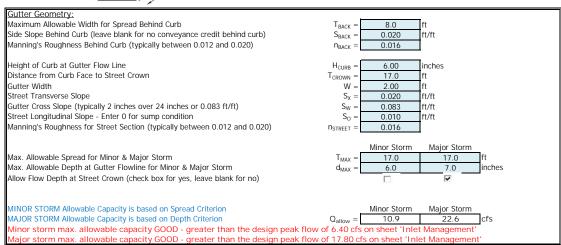
Design Information (Input) CDOT Type R Curb Opening	1	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.1	13.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.9	6.6	cfs
Capture Percentage = Q_a/Q_o	C% =	91	68	%

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: Sterling Ranch Filing 4
Inlet ID: Inlet DP17

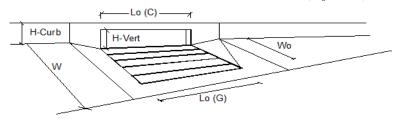
INLET ON A CONTINUOUS GRADE


MHFD-Inlet, Version 5.02 (August 2022)

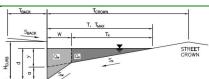


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.6	7.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.2	cfs
Capture Percentage = Q _a /Q _o	C% =	100	98	%

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

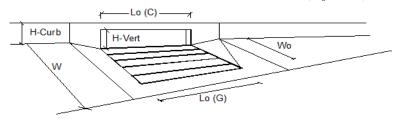

Project: Sterling Ranch Filing 4
Inlet ID: Inlet DP19

INLET ON A CONTINUOUS GRADE


MHFD-Inlet, Version 5.02 (August 2022)

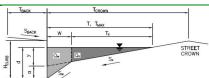
Design Information (Input) CDOT Type R Curb Opening	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.4	12.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	4.9	cfs
Capture Percentage = Q_a/Q_o	C% =	100	72	%

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

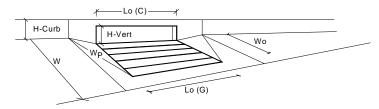

Project: Sterling Ranch Filing 4
Inlet ID: Inlet DP20

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft $\mathsf{S}_{\mathsf{BACK}}$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.016 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.010 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm inches d_{MAX} 6.0 7.0 V Allow Flow Depth at Street Crown (check box for yes, leave blank for no) MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 10.9 22.6 Minor storm max. allowable capacity GOOD - greater than the design peak flow of 7.00 cfs on sheet 'Inlet Management Major storm max. allowable capacity GOOD - greater than the design peak flow of 14.90 cfs

INLET ON A CONTINUOUS GRADE

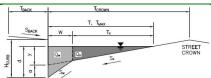

MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening	1	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.0	11.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	3.2	cfs
Capture Percentage = Q _a /Q _o	C% =	99	78	%

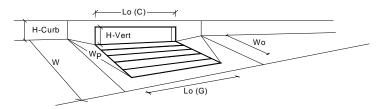

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Sterling Ranch Filing 4
Inlet ID: Inlet DP21

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) T_{BACK} 8.0 ft/ft $\mathsf{S}_{\mathsf{BACK}}$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.016 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 inches Distance from Curb Face to Street Crown $\mathsf{T}_{\mathsf{CROWN}}$ 17.0 Gutter Width W 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm $d_{\text{MAX}} \\$ inches 6.0 7.0 Check boxes are not applicable in SUMP conditions Major Storm SUMP MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition SUMP


INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.3	inches
Grate Information		MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L_o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
<u>Curb Opening Information</u>	_	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_o(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.44	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.86	1
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
	-			•
	_ F	MINOR	MAJOR	7
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.5	13.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q _{PEAK REQUIRED} =	3.8	12.6	cfs


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Sterling Ranch Filing 4
Inlet ID: Inlet DP22

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) T_{BACK} 8.0 ft/ft $\mathsf{S}_{\mathsf{BACK}}$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.016 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 inches Distance from Curb Face to Street Crown $\mathsf{T}_{\mathsf{CROWN}}$ 17.0 Gutter Width W 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm $d_{\text{MAX}} \\$ inches 6.0 7.0 Check boxes are not applicable in SUMP conditions Major Storm SUMP MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition SUMP

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening	_ =	MINOR	MAJOR	=
Type of Inlet	Type =	CDOT Type R		4
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	8.5	inches
<u>Grate Information</u>	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L_o (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
<u>Curb Opening Information</u>	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.54	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.91	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
asia is zong moto	· · · combination L			_
	-	MINOR	MAJOR	7
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	6.5	18.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q _{PEAK REQUIRED} =	6.3	18.3	cfs

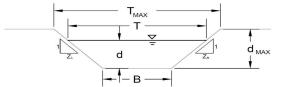
AREA INLET IN A SWALE

A, B, C, D, or E =

n =

So =

B =


Z1 =

Z2 =

 Q_{allow}

 $d_{\text{allow}} \\$

Sterling Ranch Filing 4 Inlet DP24

This worksheet uses the NRCS vegetal retardance method to determine Manning's n.

ft/ft

ft/ft

ft/ft

136.9

2.00

cfs

For more information see Section 7.2.3 of the USDCM.

D

see details below

0.0158

2.00

5.00

5.00

Cohesive

136.9

2.00

Paved

Non-Cohesive

Choose One:

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method NRCS Vegetal Retardance (A, B, C, D, or E) Manning's n (Leave cell D16 blank to manually enter an n value) Channel Invert Slope Bottom Width eft Side Slope Right Side Sloe Check one of the following soil types:

Soil Type: Max. Velocity (V_{MAX}) Max Froude No. (F_{MAX}) Non-Cohesive 5.0 fps 0.60 7.0 fps Cohesive 0.80 N/A N/A

Maximum Allowable Top Width of Channel for Minor & Major Storm

Minor Storm Major Storm 24.00 24.00 T_{MAX} = Maximum Allowable Water Depth in Channel for Minor & Major Storm d_{MAX} 2.00 2.00

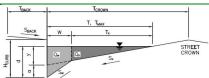
Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

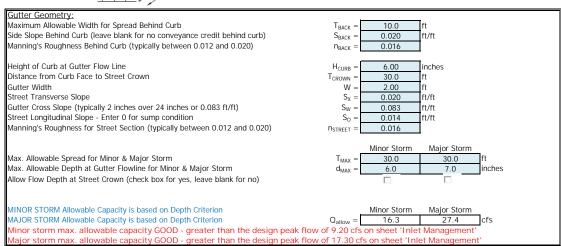
Water Depth in Channel Based On Design Peak Flow ${\rm Q_o}$ Design Peak Flow 9.2 2.2 cfs Water Depth d = 0.55 0.81

Minor storm max, allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max, allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

AREA INLET IN A SWALE

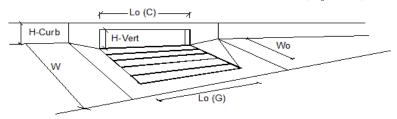
Sterling Ranch Filing 4 Inlet DP24


Inlet Design Information (Input) Type of Inlet CDOT Type C -Inlet Type = CDOT Type C Angle of Inclined Grate (must be <= 30 degrees)
Width of Grate θ 0.00 degrees W = 3.00 Length of Grate L : 3.00 Open Area Ratio A_{RATIO} = 0.70 H_B = Height of Inclined Grate 0.00 Clogging Factor 0.50 Grate Discharge Coefficient $C_{\text{d}} \\$ 0.96 Orifice Coefficient C_{o} 0.64 Weir Coefficient 2.05 MINOR MAJOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) d : 0.55 0.81 Q_a = Q_b = 7.6 Total Inlet Interception Capacity (assumes clogged condition) cfs 13.5 Bypassed Flow cfs 0.0 0.0 Capture Percentage = Qa/Qo C% = % 100 100


Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

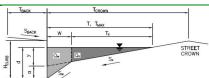
CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

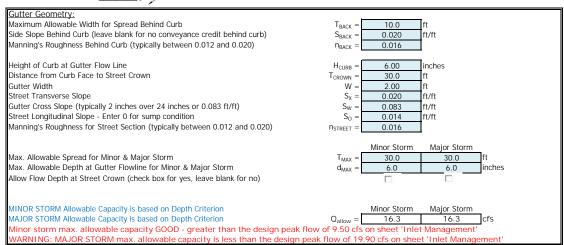
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: Sterling Ranch Filing 4
Inlet ID: Ex Inlet DPe10

INLET ON A CONTINUOUS GRADE

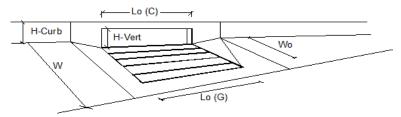
MHFD-Inlet, Version 5.02 (August 2022)




Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.6	12.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.6	4.6	cfs
Capture Percentage = Q _a /Q _o	C% =	94	74	%

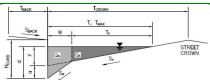
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: Sterling Ranch Filing 4
Inlet ID: Ex Inlet DPe11

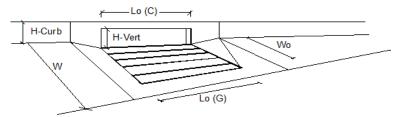
INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.02 (August 2022)



Design Information (Input) CDOT Type R Curb Opening	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.8	13.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.7	6.2	cfs
Capture Percentage = Q_a/Q_0	C% =	93	69	%

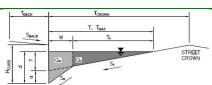
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

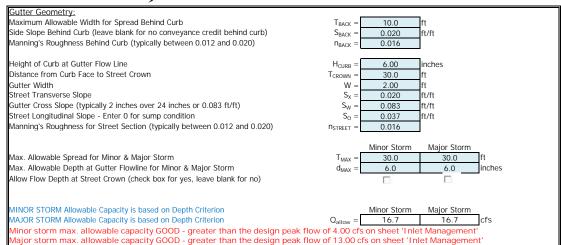

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Sterling Ranch Filing 4
Inlet ID: Inlet DP1e

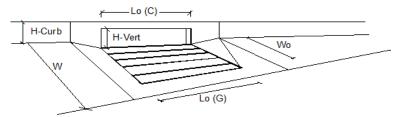
Gutter Geometry: Maximum Allowable Width for Spread Behind Curb	$T_{BACK} = 10.0$ ft
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} = 0.020$ ft/ft
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$n_{BACK} = \frac{0.016}{0.016}$
Height of Curb at Gutter Flow Line	$H_{CURB} = 6.00$ inches
Distance from Curb Face to Street Crown	$T_{CROWN} = 30.0$ ft
Gutter Width	W = 2.00 ft
Street Transverse Slope	$S_X = 0.020$ ft/ft
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_W = 0.083$ ft/ft
Street Longitudinal Slope - Enter 0 for sump condition	$S_O = 0.041$ ft/ft
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$n_{\text{STREET}} = 0.016$
	Minor Storm Major Storm
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = 30.0$ 30.0 ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	$d_{MAX} = 6.0$ inches
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)	
MINOR STORM Allowable Capacity is based on Depth Criterion	Minor Storm Major Storm
MAJOR STORM Allowable Capacity is based on Depth Criterion	$Q_{allow} = 16.2$ 16.2 cfs
Minor storm max, allowable capacity GOOD - greater than the design peak	anow
Major storm max, allowable capacity GOOD - greater than the design peak	

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)

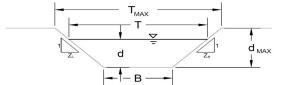



Design Information (Input) Type of Inlet CDOT Type R Curb Opening	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	-	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.0	9.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	1.1	cfs
Capture Percentage = Q _a /Q _o	C% =	100	90	%

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Sterling Ranch Filing 4
Inlet ID: Inlet DP2e


INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.0	10.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	2.1	cfs
Capture Percentage = Q _a /Q _o	C% =	100	84	%

AREA INLET IN A SWALE

Sterling Ranch Filing 4 Inlet DP25

This worksheet uses the NRCS vegetal retardance method to determine Manning's n.

ft/ft

ft/ft

ft/ft

For more information see Section 7.2.3 of the USDCM.

D

see details below

0.0080

Cohesive

Paved

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method NRCS Vegetal Retardance (A, B, C, D, or E) Manning's n (Leave cell D16 blank to manually enter an n value) Channel Invert Slope Bottom Width eft Side Slope Right Side Sloe Check one of the following soil types: Soil Type: Max. Velocity (V_{MAX}) Max Froude No. (F_{MAX}) Non-Cohesive 5.0 fps

So = B = 0.00 Z1 = 10.00 Z2 = 20.00 Choose One: Non-Cohesive

n =

A, B, C, D, or E =

0.60 7.0 fps Cohesive 0.80 N/A N/A Maximum Allowable Top Width of Channel for Minor & Major Storm

Minor Storm Major Storm 24.00 24.00 T_{MAX} = d_{MAX} : 2.00 2.00

Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Criterion

Maximum Allowable Water Depth in Channel for Minor & Major Storm

Minor Storm Q_{allow} 5.8 5.8 cfs $d_{\text{allow}} \\$ 0.80 0.80

Water Depth in Channel Based On Design Peak Flow Design Peak Flow Water Depth

Q_o = 4.8 1.0 cfs d = 0.50 0.76

Minor storm max, allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max, allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

AREA INLET IN A SWALE

Sterling Ranch Filing 4 Inlet DP25

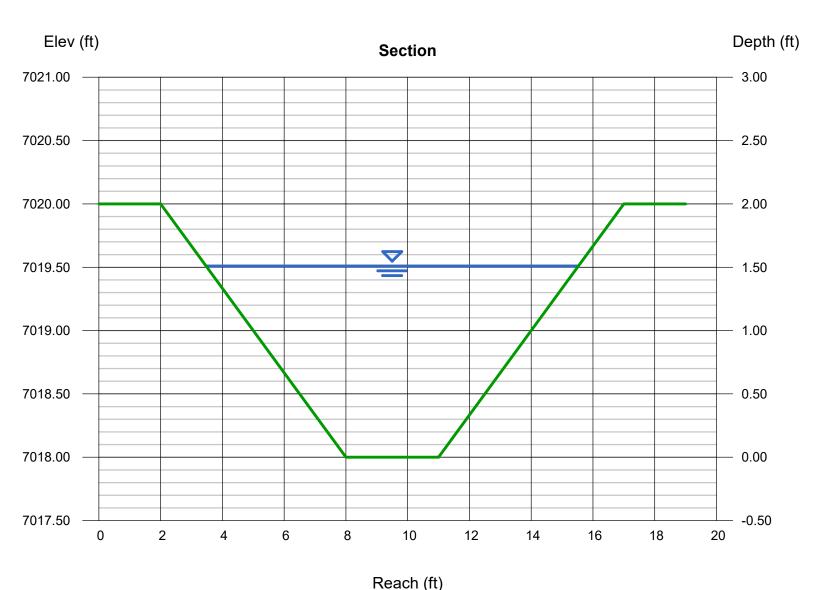
Inlet Design Information (Input) Type of Inlet CDOT Type C -Inlet Type = CDOT Type C Angle of Inclined Grate (must be <= 30 degrees)
Width of Grate θ 0.00 degrees W = 3.00 Length of Grate L : 3.00 Open Area Ratio A_{RATIO} = 0.70 H_B = Height of Inclined Grate 0.00 Clogging Factor 0.50 Grate Discharge Coefficient $C_{\text{d}} \\$ 0.96 Orifice Coefficient C_{o} 0.64 Weir Coefficient 2.05 MINOR MAJOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) d : 0.50 0.76 Q_a = Q_b = Total Inlet Interception Capacity (assumes clogged condition) cfs 6.6 12.3 Bypassed Flow cfs 0.0 0.0 Capture Percentage = Qa/Qo C% = % 100 100

Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jan 19 2023

Barbrarick FSD Overflow Channel Section A-A


Trapezoidal

Bottom Width (ft) = 3.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 7018.00 Slope (%) = 0.50 N-Value = 0.013

Calculations

Compute by: Known Q Known Q (cfs) = 85.40 Highlighted

Depth (ft) = 1.51 Q (cfs) = 85.40Area (sqft) = 11.37Velocity (ft/s) = 7.51Wetted Perim (ft) = 12.55Crit Depth, Yc (ft) = 1.76Top Width (ft) = 12.06EGL (ft) = 2.39

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

Subdivision: Sterling Ranch Subdivision -Proposed Location: El Paso County

Project Name: Sterling Ranch Filing No. 4
Project No.: 25188.11
Calculated By: ARJ
Checked By: APL
Date: 4/4/23

	S	TORM DRAIN SYSTEM		
	Barbarick Overflow		DESIGN POINT	Notes
Q ₁₀₀ (cfs):	85.4			Flows are the greater of proposed vs. future (Detained)
Conduit	Box Culvert			
D_c , Pipe Diameter (in):	N/A			
W, Box Width (ft):	3			
H, Box Height (ft):	3			
Y_t , Tailwater Depth (ft):	1.51			If unknown, use Y_t/D_c (or H)=0.4
Y_t/Dc or Y_t/H	0.50			
$Q/D^{2.5}$ or $Q/(WH^{3/2})$	5.48			
Supercritical?	Yes			
Y_n , Normal Depth (ft) [Supercritical]:	1.00			
D_a , H_a (in) [Supercritical]:	2.00			$D_a = (D_c + Y_n)/2$
Riprap d_{50} (in) [Supercritical]:	4.48			
Riprap d_{50} (in) [Subcritical]:	N/A			
Required Riprap Size:	L			Fig. 9-38 or Fig. 9-36
d ₅₀ (in):	9			
Expansion Factor, $1/(2 \tan \theta)$:	6.00			Read from Fig. 9-35 or 9-36
θ :	0.08			
Erosive Soils?	No			
Area of Flow, A_t (ft ²):	12.20			$A_t = Q/V$
Length of Protection, L_p (ft):	30.5			L=(1/(2 tan θ))(At/Yt - D)
Min Length (ft)	9.0			Min L=3D or 3H
Max Length (ft)	30.0			Max L=10D or 10H
Min Bottom Width, T (ft):	8.1			$T=2*(L_p*tan\theta)+W$
Design Length (ft)	30.0			
Design Width (ft)	8.1			
Riprap Depth (in)	18			Depth=2(d ₅₀)
Type II Bedding Depth (in)*	6			*Not used if Soil Riprap
Cutoff Wall	Yes			
Cutoff Wall Depth (ft)	24.0			Depth of Riprap and Base
Cutoff Wall Width (ft)	#N/A			

Note: No Type II Base to be used if Soil Riprap is specified within the plans

^{*} For use when the flow in the culvert is supercritical (and less than full).

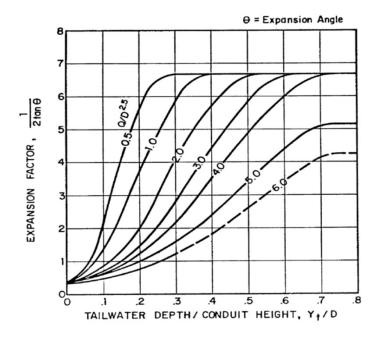


Figure 9-35. Expansion factor for circular conduits

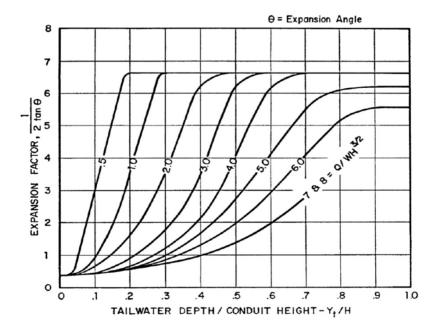
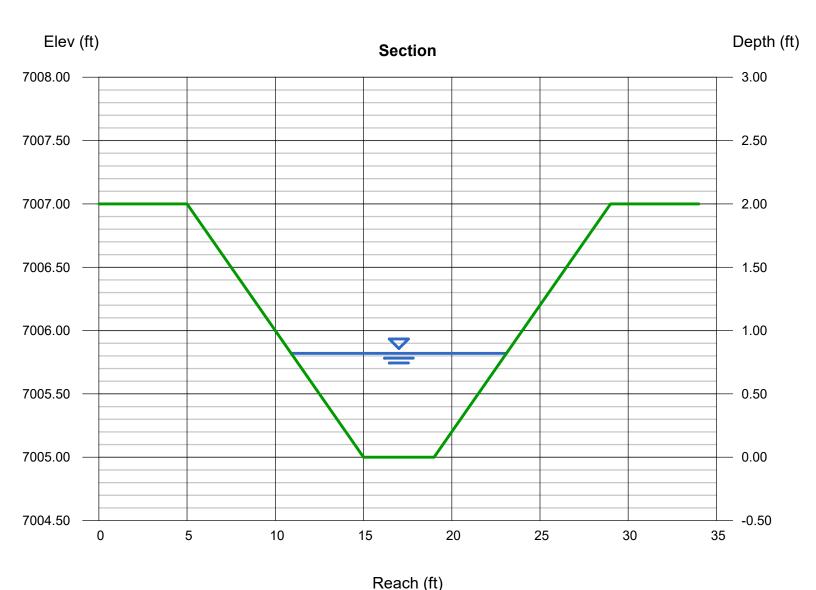


Figure 9-36. Expansion factor for rectangular conduits

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Jan 20 2023

Swale Section Point 2.i -Section BB


Trapezoidal

Bottom Width (ft) = 4.00 Side Slopes (z:1) = 5.00, 5.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 7005.00 Slope (%) = 2.00 N-Value = 0.035

Calculations

Compute by: Known Q Known Q (cfs) = 25.70 Highlighted

= 0.82Depth (ft) Q (cfs) = 25.70Area (sqft) = 6.64Velocity (ft/s) = 3.87Wetted Perim (ft) = 12.36Crit Depth, Yc (ft) = 0.79Top Width (ft) = 12.20EGL (ft) = 1.05

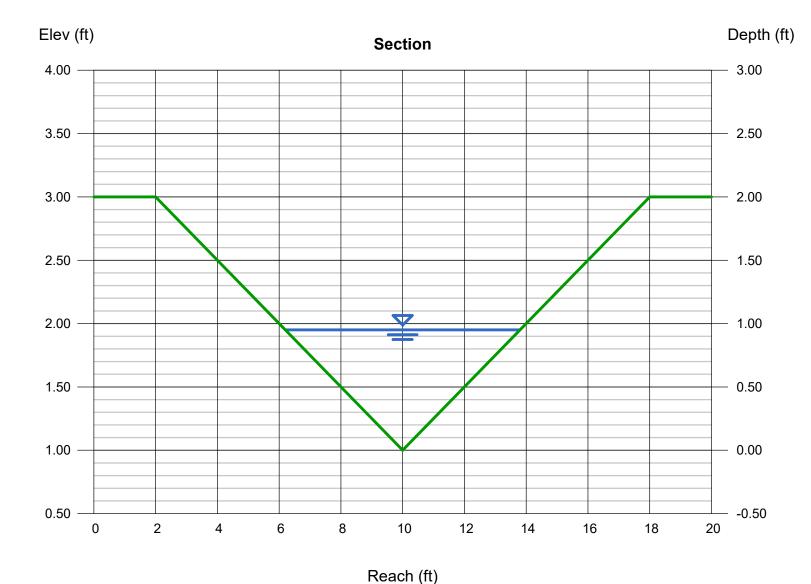
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Apr 27 2023

Swale Section Point 7- Section CC

T	r	ia	n	g	u	laı

Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 2.00


Invert Elev (ft) = 1.00 Slope (%) = 2.00 N-Value = 0.035

Calculations

Compute by: Known Q Known Q (cfs) = 12.80

Highlighted

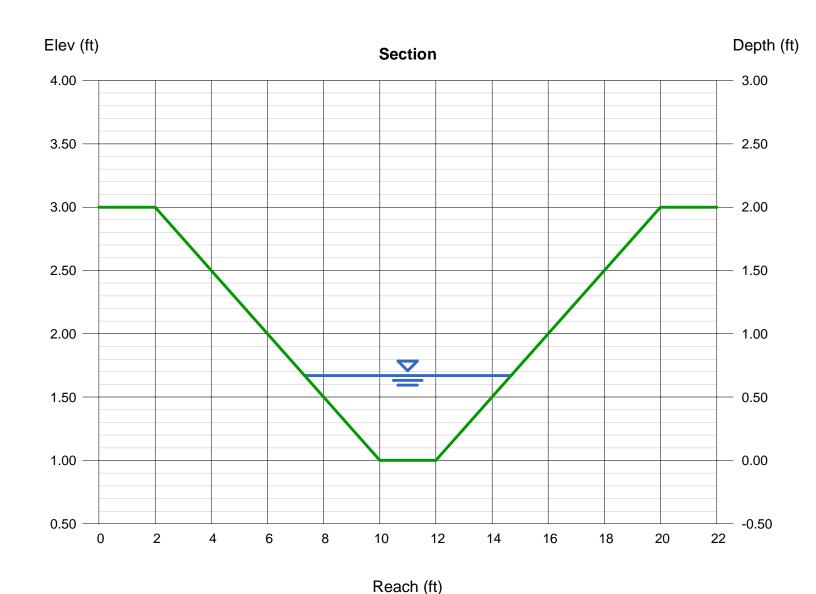
Depth (ft) = 0.95Q (cfs) = 12.80 Area (sqft) = 3.61 Velocity (ft/s) = 3.55Wetted Perim (ft) = 7.83Crit Depth, Yc (ft) = 0.92Top Width (ft) = 7.60EGL (ft) = 1.15

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Nov 16 2022

Swale Section Point 24 - Section DD

Trapezoidal


Bottom Width (ft) = 2.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 1.00 Slope (%) = 1.59 N-Value = 0.035

Calculations

Compute by: Known Q Known Q (cfs) = 9.20

Highlighted

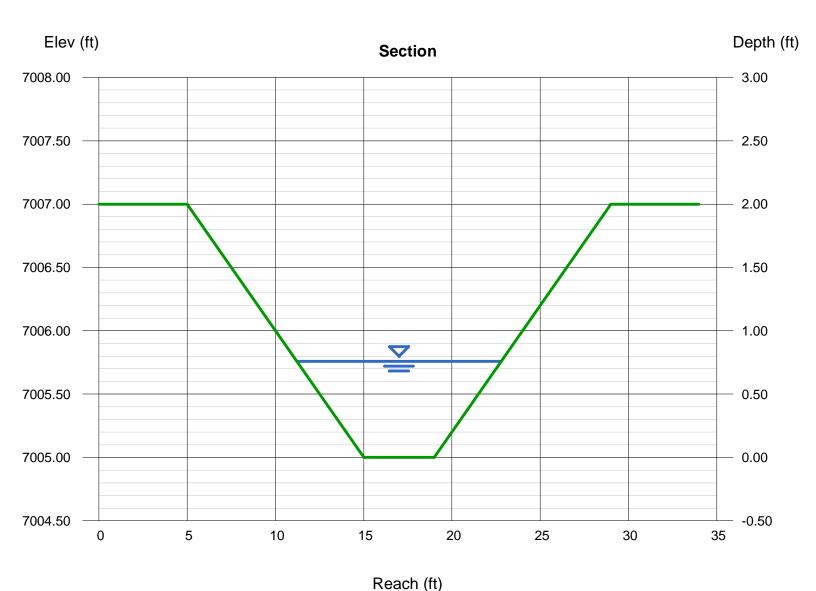
Depth (ft) = 0.67Q (cfs) = 9.200Area (sqft) = 3.14Velocity (ft/s) = 2.93Wetted Perim (ft) = 7.52Crit Depth, Yc (ft) = 0.60Top Width (ft) = 7.36EGL (ft) = 0.80

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Nov 17 2022

Swale Section Point 3.i -Section EE

Trapezoidal


Bottom Width (ft) = 4.00 Side Slopes (z:1) = 5.00, 5.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 7005.00 Slope (%) = 1.50 N-Value = 0.035

Calculations

Compute by: Known Q Known Q (cfs) = 19.40

Highlighted

Depth (ft) = 0.76Q (cfs) = 19.40Area (sqft) = 5.93Velocity (ft/s) = 3.27Wetted Perim (ft) = 11.75Crit Depth, Yc (ft) = 0.68Top Width (ft) = 11.60= 0.93EGL (ft)

Froude Number Calculation's

Sterling Ranch Filing No.4

Froude Number Equation:

$$Fr = \frac{v}{(gh_m)^{1/2}}$$

Where: v= velocity (ft/s)

g= acceleration of gravity (32.2ft/s²)

h_m=hydraulic mean depth (ft)

Hydraulic Mean Depth Equation:

$$h_m = \frac{A}{T}$$

Where: $A = cross sectional area of filled flow in channel (ft^2)$

T= width of channel open to surface (ft)

Inlet DP2.i Swale Section BB Calculations:

Parameters: $A = 6.64 \text{ ft}^2$, T = 12.20 ft, v = 3.87 ft/s

There for: $h_m = \frac{6.64}{12.2} = 0.54 \, ft$

$$Fr = \frac{3.87}{(32.2*0.54)^{1/2}} = \frac{0.92}{0.92}$$

For cohesive soils maximum Froude Number is 0.80.

Type L Soil Riprap used for this swale.

Inlet DP7 Swale Section CC Calculations:

Parameters: $A = 3.048 \text{ ft}^2$, T = 7.04 ft, v = 4.13 ft/s

There for: $h_m = \frac{3.08}{7.04} = 0.44 \, ft$

$$Fr = \frac{4.13}{(32.2*0.44)^{1/2}} = 1.09$$

For cohesive soils maximum Froude Number is 0.80.

Type VL Soil Riprap used for this swale

Inlet DP 24 Swale Section DD Calculations:

Parameters: $A = 3.14 \text{ ft}^2$, T = 7.36 ft, v = 2.93 ft/s

There for:
$$h_m = \frac{3.14}{7.36} = 0.42 \, ft$$

$$Fr = \frac{2.93}{(32.2*0.42)^{1/2}} = \frac{0.79}{0.79}$$

For cohesive soils maximum Froude Number is 0.80.

Inlet DP 3.i Swale Section EE Calculations:

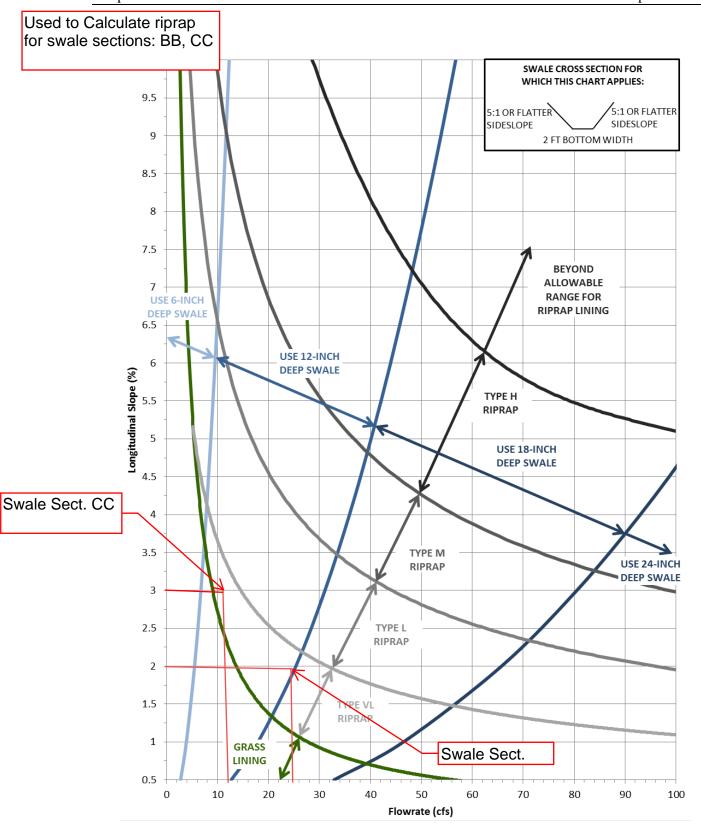
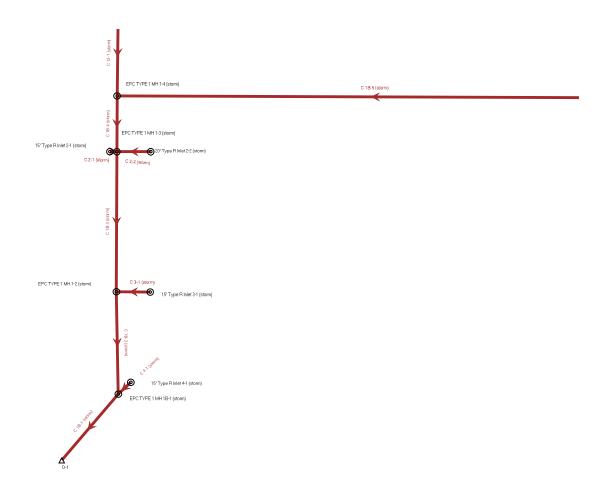
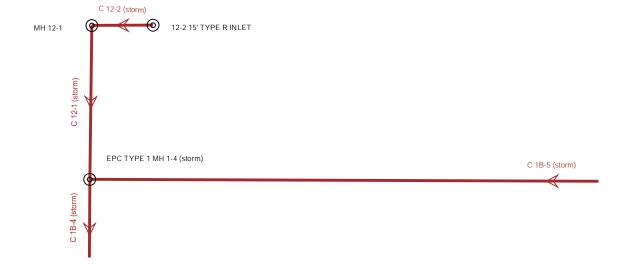
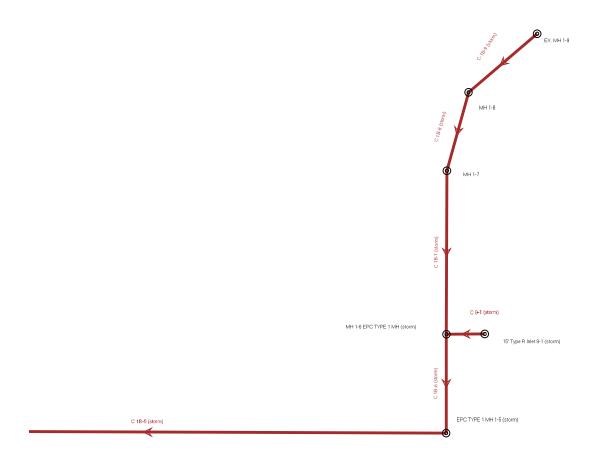
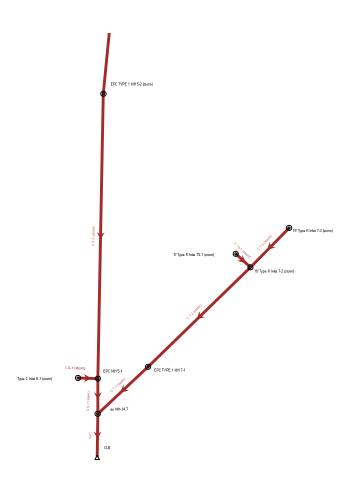
Parameters: $A = 5.92 \text{ ft}^2$, T = 11.60 ft, v = 3.27 ft/s

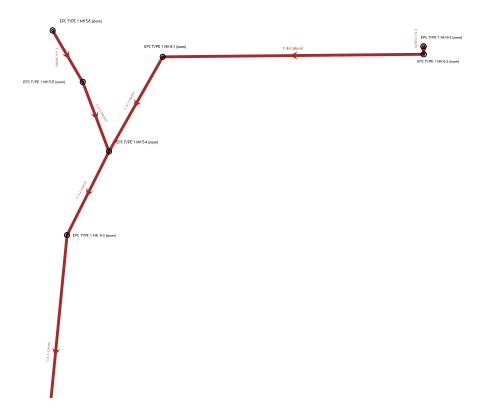
There for:
$$h_m = \frac{5.92}{11.60} = 0.51 \, ft$$

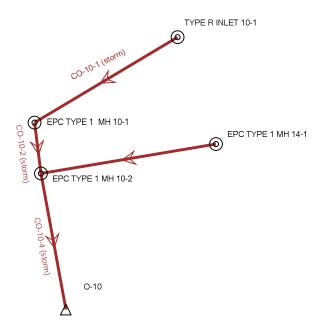
$$Fr = \frac{3.27}{(32.2*0.51)^{1/2}} = 0.80$$

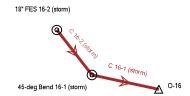
For cohesive soils maximum Froude Number is 0.80.

Chapter 8 Open Channels


Figure 8-22. Swale stability chart; 2- to 4-foot bottom width and side slopes between 5:1 and 10:1 (Note: Riprap classifications refer to gradation for riprap used in soil riprap or void-filled riprap. See Figure 8-34 for gradations.) (Source: Muller Engineering Company)





Current Time Step: 0.000 h
Conduit FlexTable: Combined Pipe/Node Report

Upstream Structure	Label	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	HGL (In)	HGL (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Velocity (ft/s)	Manning's n	Upstream Structure Headloss Coefficient
EPC TYPE 1 MH 1B-1 (storm)	C 1B-1 (storm)	47.40	64.87	42.0	74.8	0.004	6,970.28	6,969.97	6,979.57	6,973.84	6,972.50	6,972.12	6,973.34	6,973.03	7.36	0.013	0.400
EPC TYPE 1 MH 1-2 (storm)	C 1B-2 (storm)	42.50	71.03	42.0	92.3	0.005	6,971.04	6,970.58	6,979.46	6,979.57	6,973.07	6,972.84	6,973.91	6,973.49	7.71	0.013	0.400
EPC TYPE 1 MH 1-3 (storm)	C 1B-3 (storm)	39.60	71.06	42.0	124.3	0.005	6,971.96	6,971.34	6,980.54	6,979.46	6,973.92	6,973.41	6,974.71	6,974.10	7.59	0.013	0.400
EPC TYPE 1 MH 1-4 (storm)	C 1B-4 (storm)	29.20	70.49	42.0	46.8	0.005	6,972.49	6,972.26	6,981.10	6,980.54	6,974.16	6,974.24	6,974.81	6,974.66	6.98	0.013	0.500
EPC TYPE 1 MH 1-5 (storm)	C 1B-5 (storm)	22.80	84.88	36.0	470.1	0.016	6,981.88	6,974.27	6,988.70	6,981.10	6,983.42	6,975.33	6,984.03	6,976.94	10.18	0.013	1.320
MH 1-6 EPC TYPE 1 MH (storm)	C 1B-6 (storm)	22.80	78.19	36.0	76.1	0.014	6,983.13	6,982.08	6,989.81	6,988.70	6,984.67	6,984.22	6,985.27	6,984.50	9.59	0.013	1.020
MH 1-7	C 1B-7 (storm)	21.50	66.66	36.0	110.1	0.010	6,984.53	6,983.43	6,991.32	6,989.81	6,986.02	6,985.29	6,986.60	6,985.63	8.41	0.013	0.400
MH 1-8	C 1B-8 (storm)	21.50	66.65	36.0	72.1	0.010	6,985.55	6,984.83	6,992.17	6,991.32	6,987.04	6,986.03	6,987.63	6,987.06	8.41	0.013	0.400
15' Type R Inlet 2-1 (storm)	C 2-1 (storm)	7.00	24.57	18.0	4.8	0.055	6,976.04	6,975.78	6,980.90	6,980.54	6,977.06	6,976.55	6,977.52	6,977.47	11.98	0.013	0.050
15' Type R Inlet 2-2 (storm)	C 2-2 (storm)	6.40	41.10	24.0	27.0	0.033	6,976.17	6,975.28	6,980.82	6,980.54	6,977.07	6,975.86	6,977.41	6,976.97	9.51	0.013	0.050
15' Type R Inlet 3-1 (storm)	C 3-1 (storm)	3.80	14.48	18.0	28.4	0.019	6,975.13	6,974.59	6,979.81	6,979.46	6,975.88	6,975.14	6,976.17	6,975.80	6.90	0.013	0.050
15' Type R Inlet 4-1 (storm)	C 4-1 (storm)	6.30	14.68	18.0	9.2	0.020	6,972.76	6,972.58	6,979.58	6,979.57	6,973.73	6,973.37	6,974.15	6,974.06	7.99	0.013	0.050
EPC MH 5-1	C 5-1 (storm)	30.00	211.73	48.0	39.7	0.022	6,988.34	6,987.48	6,996.65	6,997.00	6,989.97	6,989.73	6,990.58	6,989.99	11.92	0.013	1.020
EPC TYPE 1 MH 5-2 (storm)	C 5-2 (storm)	29.00	108.21	36.0	321.4	0.026	6,997.80	6,989.34	7,008.13	6,996.65	6,999.54	6,990.40	7,000.26	6,993.02	12.97	0.013	0.500
EPC TYPE 1 MH 5-3 (storm)	C 5-3 (storm)	29.00	92.98	36.0	287.1	0.019	7,003.68	6,998.10	7,016.92	7,008.13	7,005.42	6,999.90	7,006.14	7,000.57	11.62	0.013	0.250
EPC TYPE 1 MH 5-4 (storm)	C 5-4 (storm)	29.00	83.06	36.0	92.2	0.016	7,005.41	7,003.98	7,017.77	7,016.92	7,007.15	7,005.25	7,007.87	7,006.87	10.70	0.013	0.520
EPC TYPE 1 MH 5-5 (storm)	C 5-5 (storm)	22.30	77.85	36.0	102.0	0.014	7,007.10	7,005.71	7,020.52	7,017.77	7,008.62	7,007.53	7,009.22	7,007.91	9.51	0.013	0.050
EPC TYPE 1 MH 5-6 (storm)	C 5-6 (storm)	22.30	185.04	36.0	61.5	0.077	7,012.13	7,007.40	7,022.78	7,020.52	7,013.65	7,008.16	7,014.25	7,012.09	17.68	0.013	0.500
Type C Inlet 6-1 (storm)	C 6-1 (storm)	3.50	10.26	18.0	18.9	0.010	6,990.97	6,990.79	6,995.95	6,996.65	6,991.68	6,991.41	6,991.96	6,991.81	5.26	0.013	0.050
EPC TYPE 1 MH 7-1	C 7-1 (storm)	16.90	81.12	36.0	73.0	0.015	6,989.56	6,988.48	6,999.05	6,997.00	6,990.87	6,989.44	6,991.37	6,990.62	9.07	0.013	0.050
10' Type R Inlet 7-2 (storm)	C 7-2 (storm)	16.90	44.37	36.0	171.7	0.004	6,990.62	6,989.86	7,000.82	6,999.05	6,991.93	6,991.14	6,992.43	6,991.68	5.85	0.013	1.020
15' Type R Inlet 7-3 (storm)	C 7-3 (storm)	12.00	16.19	24.0	60.5	0.005	6,991.93	6,991.62	7,001.62	7,000.82	6,993.21	6,992.86	6,993.71	6,993.39	5.64	0.013	0.050
EPC TYPE 1 MH 8-1 (storm)	C 8-1 (storm)	14.60	103.26	36.0	131.4	0.024	7,008.86	7,005.71	7,021.55	7,017.77	7,010.08	7,007.53	7,010.53	7,007.69	10.33	0.013	0.640
EPC TYPE 1 MH 8-2 (storm)	C 8-2 (storm)	14.60	104.55	36.0	285.7	0.025	7,016.18	7,009.16	7,022.25	7,021.55	7,017.40	7,009.92	7,017.85	7,011.60	10.42	0.013	1.320
EPC TYPE 1 MH 9-3 (storm)	C 8-3 (storm)	14.60	41.01	30.0	12.0	0.010	7,017.30	7,017.18	7,022.41	7,022.25	7,018.59	7,018.31	7,019.10	7,019.02	7.65	0.013	0.500
15' Type R Inlet 9-1 (storm)	C 9-1 (storm)	1.60	14.34	18.0	27.9	0.019	6,985.15	6,984.63	6,990.17	6,989.81	6,985.63	6,985.29	6,985.80	6,985.36	5.36	0.013	0.050
MH 12-1	C 12-1 (storm)	9.10	32.76	24.0	73.9	0.021	6,976.82	6,975.27	6,981.92	6,981.10	6,977.90	6,976.00	6,978.33	6,977.20	8.92	0.013	1.020
12-2 15' TYPE R INLET	C 12-2 (storm)	9.10	26.30	24.0	29.6	0.014	6,977.52	6,977.12	6,982.28	6,981.92	6,978.60	6,978.34	6,979.03	6,978.66	7.61	0.013	1.020
Type C-13-2	C 13-1)Storm)	2.20	9.87	24.0	63.0	0.002	6,972.05	6,971.93	6,980.26	6,976.65	6,972.68	6,972.45	6,972.78	6,972.63	2.53	0.013	0.050
5' Type R Inlet 15-1 (storm)	C 15-1 (storm)	3.90	10.86	18.0	12.2	0.011	6,992.25	6,992.12	7,000.89	7,000.82	6,993.01	6,992.77	6,993.30	6,993.21	5.64	0.013	0.050
45-deg Bend 16-1 (storm)	C 16-1 (storm)	1.00	21.54	18.0	25.7	0.042	6,972.62	6,971.54	6,978.69	6,979.03	6,972.99	6,971.76	6,973.13	6,972.36	6.21	0.013	0.400
18" FES 16-2 (storm)	C 16-2 (storm)	1.00	21.75	18.0	35.9	0.043	6,974.16	6,972.62	6,974.16	6,978.69	6,974.53	6,973.05	6,974.67	6,973.14	6.26	0.013	0.050
11.1 - 15' Type R Inlet	C- 11.1` ′	8.00	34.75	24.0	91.1	0.024	6,967.49	6,965.34	6,973.29	6,969.71	6,968.50	6,968.27	6,968.89	6,968.37	8.99	0.013	0.250
11.2 - 15' Type R Inlet	C- 11.2	4.00	8.71	18.0	75.7	0.007	6,968.51	6,967.99	6,973.29	6,973.29	6,969.28	6,968.70	6,969.58	6,969.07	4.82	0.013	1.000
EX. MH 1-9	C-1B-9 (storm)	21.50	100.93	36.0	96.5	0.023	6,988.06	6,985.85	6,994.07	6,992.17	6,989.55	6,986.82	6,990.13	6,988.67	11.35	0.013	0.400
TYPE R INLET 10-1	CO-10-1 (storm)	11.60	31.77	24.0	64.9	0.020	7,005.73	7,004.45	7,005.77	7,011.29	7,006.95	7,005.87	7,007.47	7,006.24	9.32	0.013	0.050
EPC TYPE 1 MH 10-1	CO-10-2 (storm)	11.60	32.06	24.0	43.8	0.020	7,004.13	7,003.25	7,011.29	7,010.44	7,005.35	7,004.13	7,005.87	7,005.31	9.38	0.013	1.000
EPC TYPE 1 MH 14-1	CO-10-3 (storm)	7.10	23.94	18.0	82.0	0.052	7,008.01	7,003.75	7,008.00	7,010.44	7,009.04	7,004.31	7,009.51	7,006.48	11.81	0.013	0.050
EPC TYPE 1 MH 10-2	CO-10-4 (storm)	16.90	94.22	36.0	121.8	0.020	7,002.25	6,999.82	7,010.44	7,010.00	7,003.56	7,000.68	7,004.06	7,002.26	10.09	0.013	1.320
ex MH-14.7	ex-1	39.80	190.20	48.0	57.6	0.018	6,987.48	6,986.47	6,997.00	6,990.00	6,989.36	6,987.83	6,990.09	6,989.56	11.97	0.013	0.500

X:\2510000.all\2518811\StormCAD\2518811 Filing No 4 StormCAD model.stsw

Scenario: Sterling Ranch Fil. No. 4 -100 Year Current Time Step: 0.000 h Conduit FlexTable: Combined Pipe/Node Report

Upstream Structure	Label	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	HGL (In)	HGL (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Velocity (ft/s)	Manning's	Upstream Structure Headloss Coefficient
EPC TYPE 1 MH 1B-1 (storm)	C 1B-1 (storm)	106.20	64.87	42.0	74.8	0.004	6,970.28	6,969.97	6,979.57	6,973.84	6,976.10	6,975.27	6,978.00	6,977.16	11.04	0.013	0.400
EPC TYPE 1 MH 1-2 (storm)	C 1B-2 (storm)	91.30	71.03	42.0	92.3	0.005	6,971.04	6,970.58	6,979.46	6,979.57	6,977.62	6,976.86	6,979.02	6,978.26	9.49	0.013	0.400
EPC TYPE 1 MH 1-3 (storm)	C 1B-3 (storm)	81.40	71.06	42.0	124.3	0.005	6,971.96	6,971.34	6,980.54	6,979.46	6,978.99	6,978.18	6,980.11	6,979.29	8.46	0.013	0.400
EPC TYPE 1 MH 1-4 (storm)	C 1B-4 (storm)	62.00	70.49	42.0	46.8	0.005	6,972.49	6,972.26	6,981.10	6,980.54	6,979.62	6,979.44	6,980.26	6,980.08	6.44	0.013	0.500
EPC TYPE 1 MH 1-5 (storm)	C 1B-5 (storm)	52.20	84.88	36.0	470.1	0.016	6,981.88	6,974.27	6,988.70	6,981.10	6,984.23	6,979.94	6,985.43	6,980.79	12.62	0.013	1.320
MH 1-6 EPC TYPE 1 MH (storm)	C 1B-6 (storm)	52.20	78.19	36.0	76.1	0.014	6,983.13	6,982.08	6,989.81	6,988.70	6,986.29	6,985.82	6,987.13	6,986.67	7.38	0.013	1.020
MH 1-7	C 1B-7 (storm)	44.90	66.66	36.0	110.1	0.010	6,984.53	6,983.43	6,991.32	6,989.81	6,987.65	6,987.15	6,988.28	6,987.78	6.35	0.013	0.400
MH 1-8	C 1B-8 (storm)	44.90	66.65	36.0	72.1	0.010	6,985.55	6,984.83	6,992.17	6,991.32	6,988.03	6,987.90	6,988.83	6,988.53	10.12	0.013	0.400
15' Type R Inlet 2-1 (storm)	C 2-1 (storm)	11.70	24.57	18.0	4.8	0.055	6,976.04	6,975.78	6,980.90	6,980.54	6,979.50	6,979.44	6,980.18	6,980.12	6.62	0.013	0.050
15' Type R Inlet 2-2 (storm)	C 2-2 (storm)	12.90	41.10	24.0	27.0	0.033	6,976.17	6,975.28	6,980.82	6,980.54	6,979.53	6,979.44	6,979.79	6,979.70	4.11	0.013	0.050
15' Type R Inlet 3-1 (storm)	C 3-1 (storm)	12.60	14.48	18.0	28.4	0.019	6,975.13	6,974.59	6,979.81	6,979.46	6,978.59	6,978.18	6,979.38	6,978.97	7.13	0.013	0.050
15' Type R Inlet 4-1 (storm)	C 4-1 (storm)	18.30	14.68	18.0	9.2	0.020	6,972.76	6,972.58	6,979.58	6,979.57	6,977.14	6,976.86	6,978.81	6,978.53	10.36	0.013	0.050
EPC MH 5-1	C 5-1 (storm)	93.50	211.73	48.0	39.7	0.022	6,988.34	6,987.48	6,996.65	6,997.00	6,991.27	6,991.58	6,992.67	6,992.44	16.32	0.013	0.600
EPC TYPE 1 MH 5-2 (storm)	C 5-2 (storm)	88.70	108.21	36.0	321.4	0.026	6,997.80	6,989.34	7,008.13	6,996.65	7,000.64	6,991.41	7,003.19	6,995.94	17.08	0.013	0.500
EPC TYPE 1 MH 5-3 (storm)	C 5-3 (storm)	88.70	92.98	36.0	287.1	0.019	7,003.68	6,998.10	7,016.92	7,008.13	7,006.99	7,001.91	7,009.44	7,004.36	12.55	0.013	0.250
EPC TYPE 1 MH 5-4 (storm)	C 5-4 (storm)	88.70	83.06	36.0	92.2	0.016	7,005.41	7,003.98	7,017.77	7,016.92	7,009.23	7,007.60	7,011.68	7,010.05	12.55	0.013	0.900
EPC TYPE 1 MH 5-5 (storm)	C 5-5 (storm)	55.60	77.85	36.0	102.0	0.014	7,007.10	7,005.71	7,020.52	7,017.77	7,012.15	7,011.44	7,013.11	7,012.40	7.87	0.013	0.050
EPC TYPE 1 MH 5-6 (storm)	C 5-6 (storm)	55.60	185.04	36.0	61.5	0.077	7,012.13	7,007.40	7,022.78	7,020.52	7,014.55	7,012.19	7,015.84	7,013.16	22.89	0.013	0.500
Type C Inlet 6-1 (storm)	C 6-1 (storm)	12.80	10.26	18.0	18.9	0.010	6,990.97	6,990.79	6,995.95	6,996.65	6,992.49	6,992.13	6,993.30	6,993.05	7.24	0.013	0.500
EPC TYPE 1 MH 7-1	C 7-1 (storm)	35.60	81.12	36.0	73.0	0.015	6,989.56	6,988.48	6,999.05	6,997.00	6,991.50	6,991.58	6,992.34	6,991.97	11.10	0.013	0.050
10' Type R Inlet 7-2 (storm)	C 7-2 (storm)	35.60	44.37	36.0	171.7	0.004	6,990.62	6,989.86	7,000.82	6,999.05	6,992.65	6,991.80	6,993.41	6,992.64	6.98	0.013	0.050
15' Type R Inlet 7-3 (storm)	C 7-3 (storm)	13.50	16.19	24.0	60.5	0.005	6,991.93	6,991.62	7,001.62	7,000.82	6,993.33	6,992.94	6,993.84	6,993.53	5.77	0.013	0.050
EPC TYPE 1 MH 8-1 (storm)	C 8-1 (storm)	52.80	103.26	36.0	131.4	0.024	7,008.86	7,005.71	7,021.55	7,017.77	7,012.26	7,011.44	7,013.13	7,012.30	7.47	0.013	0.640
EPC TYPE 1 MH 8-2 (storm)	C 8-2 (storm)	52.80	104.55	36.0	285.7	0.025	7,016.18	7,009.16	7,022.25	7,021.55	7,018.54	7,012.82	7,019.76	7,013.68	14.83	0.013	1.320
EPC TYPE 1 MH 9-3 (storm)	C 8-3 (storm)	52.80	41.01	30.0	12.0	0.010	7,017.30	7,017.18	7,022.41	7,022.25	7,020.35	7,020.15	7,022.14	7,021.94	10.76	0.013	0.500
15' Type R Inlet 9-1 (storm)	C 9-1 (storm)	7.70	14.34	18.0	27.9	0.019	6,985.15	6,984.63	6,990.17	6,989.81	6,987.30	6,987.15	6,987.59	6,987.44	4.36	0.013	0.050
MH 12-1	C 12-1 (storm)	13.90	32.76	24.0	73.9	0.021	6,976.82	6,975.27	6,981.92	6,981.10	6,980.22	6,979.94	6,980.52	6,980.24	4.42	0.013	1.020
12-2 15' TYPE R INLET	C 12-2 (storm)	13.90	26.30	24.0	29.6	0.014	6,977.52	6,977.12	6,982.28	6,981.92	6,980.64	6,980.53	6,980.95	6,980.83	4.42	0.013	1.020
Type C-13-2	C 13-1)Storm)	9.10	9.87	24.0	63.0	0.002	6,972.05	6,971.93	6,980.26	6,976.65	6,977.20	6,977.10	6,977.33	6,977.23	2.90	0.013	0.050
5' Type R Inlet 15-1 (storm)	C 15-1 (storm)	9.30	10.86	18.0	12.2	0.011	6,992.25	6,992.12	7,000.89	7,000.82	6,993.43	6,993.22	6,994.03	6,993.92	6.91	0.013	0.050
45-deg Bend 16-1 (storm)	C 16-1 (storm)	5.00	21.54	18.0	25.7	0.042	6,972.62	6,971.54	6,978.69	6,979.03	6,974.85	6,974.79	6,974.97	6,974.91	2.83	0.013	0.400
18" FES 16-2 (storm)	C 16-2 (storm)	5.00	21.75	18.0	35.9	0.043	6,974.16	6,972.62	6,974.16	6,978.69	6,975.02	6,974.90	6,975.37	6,975.02	10.00	0.013	0.050
11.1 - 15' Type R Inlet	C- 11.1	20.70	34.75	24.0	91.1	0.024	6,967.49	6,965.34	6,973.29	6,969.71	6,970.71	6,969.95	6,971.39	6,970.62	6.59	0.013	0.080
11.2 - 15' Type R Inlet	C- 11.2	9.80	8.71	18.0	75.7	0.007	6,968.51	6,967.99	6,973.29	6,973.29	6,971.43	6,970.77	6,971.90	6,971.24	5.55	0.013	0.050
EX. MH 1-9	C-1B-9 (storm)	44.90	100.93	36.0	96.5	0.023	6,988.06	6,985.85	6,994.07	6,992.17	6,990.24	6,988.35	6,991.27	6,989.14	13.86	0.013	0.400
TYPE R INLET 10-1	CO-10-1 (storm)	25.70	31.77	24.0	64.9	0.020	7,005.73	7,004.45	7,005.77	7,011.29	7,007.99	7,007.15	7,009.03	7,008.19	8.18	0.013	0.050
EPC TYPE 1 MH 10-1	CO-10-2 (storm)	25.70	32.06	24.0	43.8	0.020	7,004.13	7,003.25	7,011.29	7,010.44	7,006.11	7,005.55	7,007.15	7,006.59	11.34	0.013	1.000
EPC TYPE 1 MH 14-1	CO-10-3 (storm)	19.40	23.94	18.0	82.0	0.052	7,008.01	7,003.75	7,008.00	7,010.44	7,009.47	7,005.55	7,011.37	7,007.42	15.09	0.013	0.050
EPC TYPE 1 MH 10-2	CO-10-4 (storm)	40.20	94.22	36.0	121.8	0.020	7,002.25	6,999.82	7,010.44	7,010.00	7,004.31	7,002.98	7,005.25	7,003.48	12.80	0.013	1.320
ex MH-14.7	ex-1	114.90	190.20	48.0	57.6	0.018	6,987.48	6,986.47	6,997.00	6,990.00	6,990.71	6,989.03	6,992.45	6,991.88	15.85	0.013	0.500

X:\2510000.all\2518811\StormCAD\2518811 Filing No 4 StormCAD model.stsw

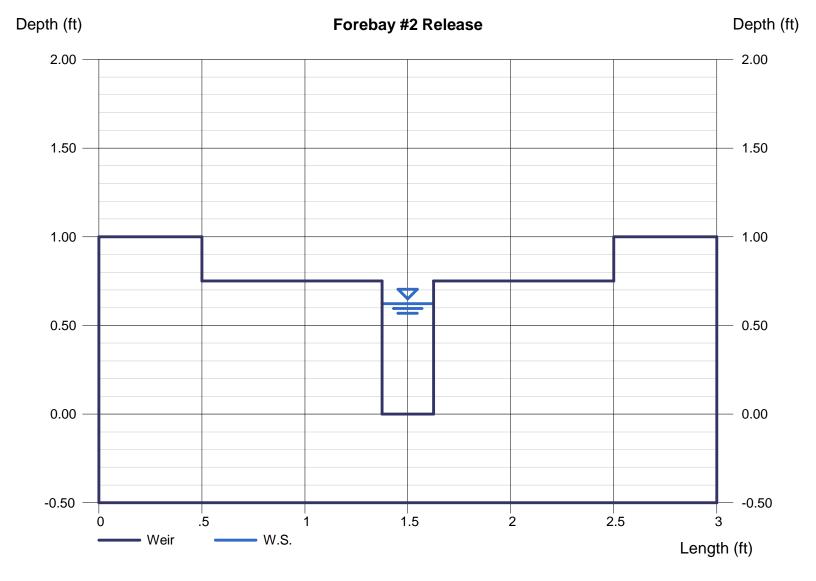
Design Procedure Form: Extended Detention Basin (EDB) UD-BMP (Version 3.07, March 2018) GAG Designer: JR ENGINEERING Company: April 5, 2023 Date: Sterling Ranch Filing No.4 - Forebay #2 Project: EL PASO COUNTY Location: 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, Ia 73.0 B) Tributary Area's Imperviousness Ratio (i = $I_a/100$) 0.730 C) Contributing Watershed Area 2.150 D) For Watersheds Outside of the Denver Region, Depth of Average 0.43 Runoff Producing Storm Choose One E) Design Concept Water Quality Capture Volume (WQCV) (Select EURV when also designing for flood control) O Excess Urban Runoff Volume (EURV) F) Design Volume (WQCV) Based on 40-hour Drain Time (V_{DESIGN} = (1.0 * (0.91 * i^3 - 1.19 * i^2 + 0.78 * i) / 12 * Area) ac-ft G) For Watersheds Outside of the Denver Region, 0.052 ac-ft V_{DESIGN OTHER}= Water Quality Capture Volume (WQCV) Design Volume $(\mathsf{V}_{\mathsf{WQCV\,OTHER}} = (\mathsf{d_6}^{\star}(\mathsf{V}_{\mathsf{DESIGN}}/0.43))$ H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) I) NRCS Hydrologic Soil Groups of Tributary Watershed i) Percentage of Watershed consisting of Type A Soils ii) Percentage of Watershed consisting of Type B Soils iii) Percentage of Watershed consisting of Type C/D Soils J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV_A = 1.68 * i¹ For HSG B: EURV_B = 1.36 * i^{1.08} For HSG C/D: EURV_{C/D} = $1.20 * i^{1.08}$ K) User Input of Excess Urban Runoff Volume (EURV) Design Volume (Only if a different EURV Design Volume is desired) 2. Basin Shape: Length to Width Ratio L:W = 2.0 : 1 (A basin length to width ratio of at least 2:1 will improve TSS reduction.) 3. Basin Side Slopes A) Basin Maximum Side Slopes Z = 4.00 ft / ft (Horizontal distance per unit vertical, 4:1 or flatter preferred) 4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations: 5. Forebay A) Minimum Forebay Volume 0.001 ac-ft (V_{FMIN} = 1% of the WQCV) B) Actual Forebay Volume 0.002 ac-ft C) Forebay Depth 12 12.0 inch maximum) $(D_F =$ D) Forebay Discharge i) Undetained 100-year Peak Discharge 20.70 cfs ii) Forebay Discharge Design Flow $Q_F =$ 0.41 $(Q_F = 0.02 * Q_{100})$ E) Forebay Discharge Design Choose One Berm With Pipe Flow too small for berm w/ pipe Wall with Rect. Notch Wall with V-Notch Weir F) Discharge Pipe Size (minimum 8-inches) Calculated D_P = G) Rectangular Notch Width Calculated W_N = 3.9

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Apr 5 2023

Forebay #2 Release


C		1 NA/	-:-
Com	pound	I VV	eir

Highlighted

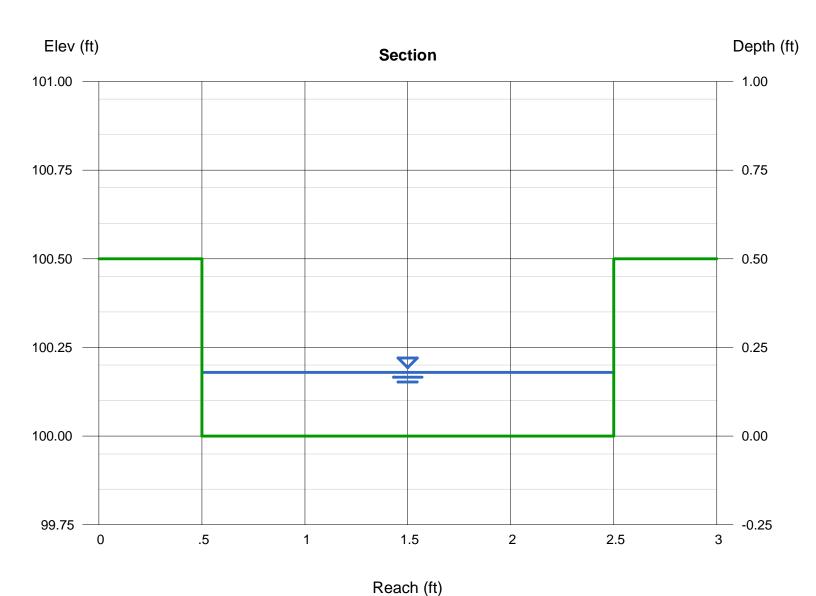
Depth (ft) = 0.62 Q (cfs) = 0.410 Area (sqft) = 0.16 Velocity (ft/s) = 2.63 Top Width (ft) = 0.25

Calculations

Weir Coeff. Cw = 3.33Compute by: Known Q Known Q (cfs) = 0.41

Known Q (cfs)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

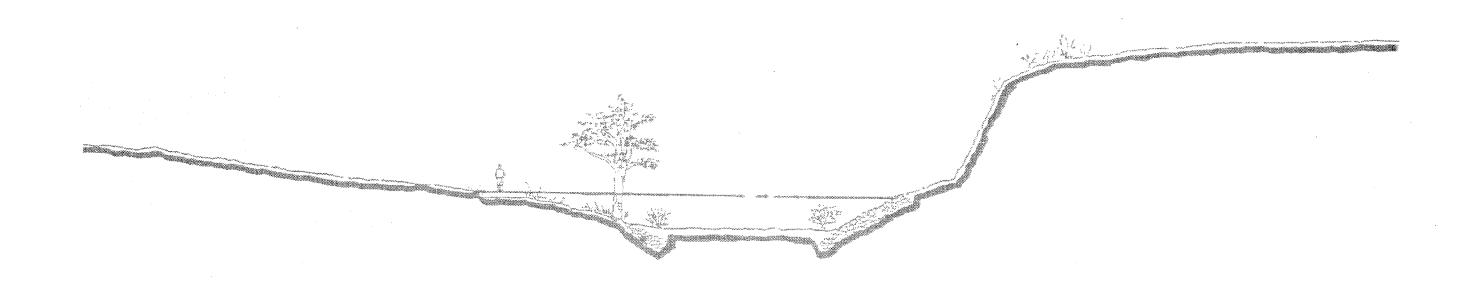

Wednesday, Apr 5 2023

Forebay #2 Trickle Channel Capacity

= 0.82

Rectangular		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.18
Total Depth (ft)	= 0.50	Q (cfs)	= 0.820
		Area (sqft)	= 0.36
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.28
Slope (%)	= 0.50	Wetted Perim (ft)	= 2.36
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.18
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 0.26
Compute by:	Known Q		

Forebay Release Q₁₀₀=0.41 cfs
Double Flow = 0.41 cfs * 2 = 0.82 cfs


Appendix D Reference Material

SAND CREEK DRAINAGE BASIN PLANNING STUDY

PRELIMINARY DESIGN REPORT

CITY OF COLORADO SPRINGS, EL PASO COUNTY, COLORADO

PREPARED FOR:

City of Colorado Springs
Department of Comprehensive Planning, Development and Finance
Engineering Division
30 S. Nevada
Colorado Springs, Colorado 80903

PREPARED BY:

Kiowa Engineering Corporation 1011 North Weber Colorado Springs, CO 80903

II. STUDY AREA DESCRIPTION

The Sand Creek drainage basin is a left-bank tributary to the Fountain Creek lying in the west-central portions of El Paso County. Sand Creek's drainage area at Fountain Creek is approximately 54 square miles of which approximately 18.8 square miles are inside the City of Colorado Springs corporate limits. The basin is divided into five major sub-basins, the Sand Creek mainstem, the East Fork Sand Creek, the Central Tributary to East Fork, the West Fork, and the East Fork Subtributary. Figure II-1 shows the location of the Sand Creek basin.

Basin Description

The Sand Creek basin covers a total of 54 square miles in unincorporated El Paso County and Colorado Springs, Colorado. Of this total, approximately 28 square miles is encompassed by the Sand Creek basin, and 26 square miles for the East Fork Sand Creek basin. The basin trends in generally a south to southwesterly direction, entering the Fountain Creek approximately two miles upstream of the Academy Boulevard bridge over Fountain Creek. Two main tributaries drain the basin, those being the mainstem of Sand Creek and East Fork Sand Creek. Development presence in most evident along the mainstream. At this time, approximately 25 percent of the basin is developed. This alternative evaluation focuses upon the Sand Creek basin only.

The maximum basin elevation is approximately 7,620 feet above mean sea level, and falls to approximately 5,790 feet at the confluence with Fountain Creek. The headwaters of the basin originate in the conifer covered areas of The Black Forest. The middle eastern portions of the basin are typified by rolling range land with fair to good vegetative cover associated with semi-arid climates.

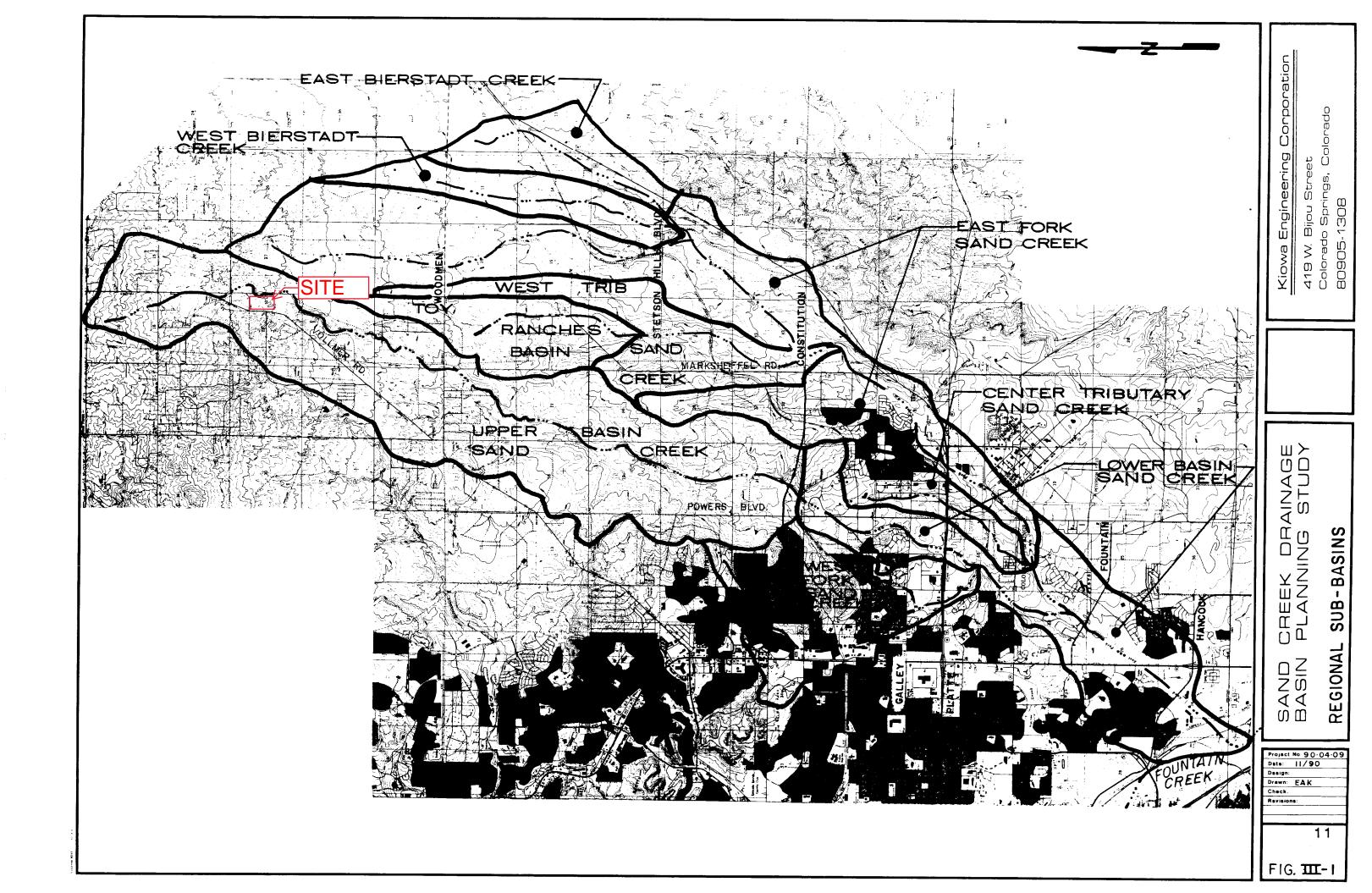
Climate

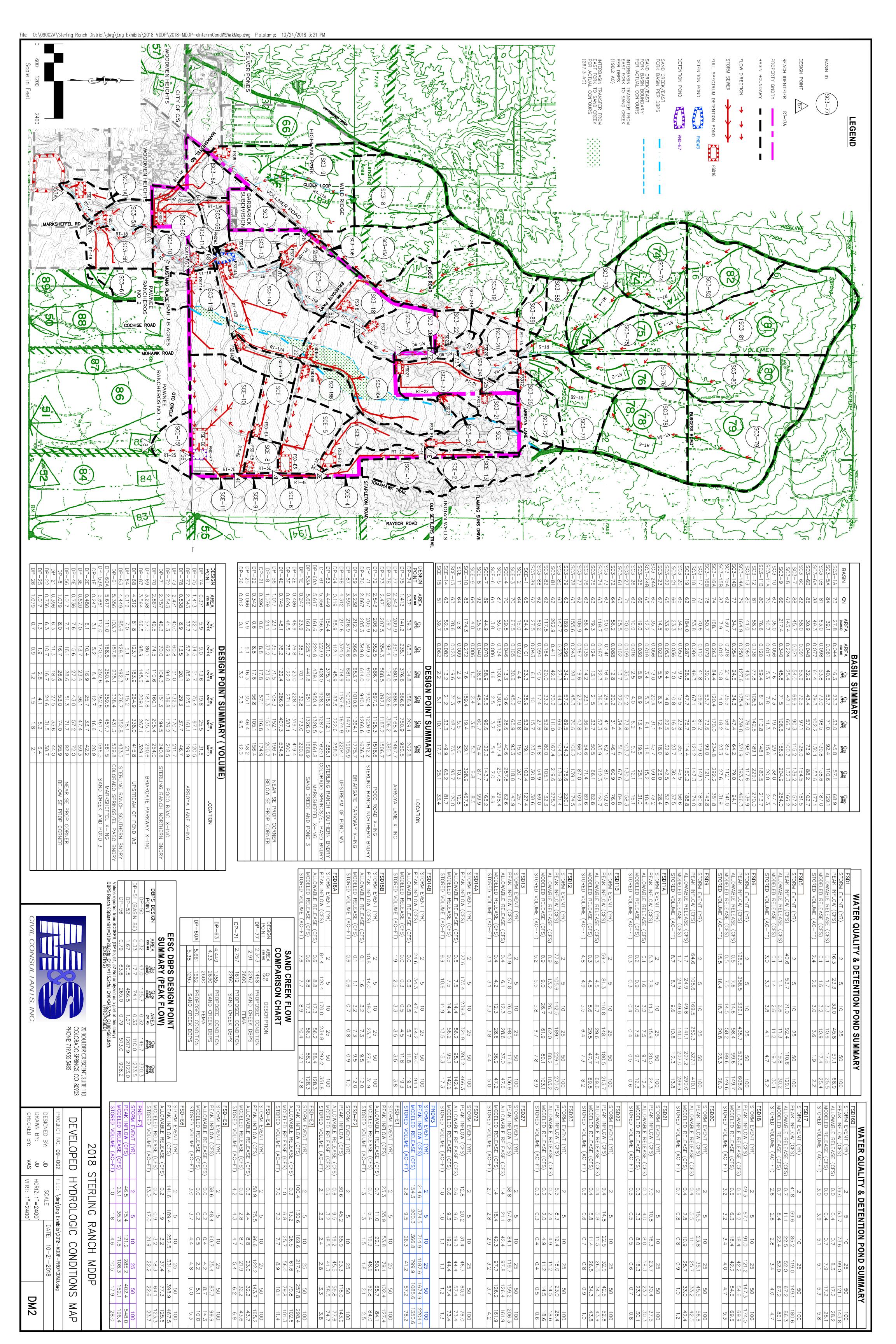
This area of El Paso County can be described, in general as high plains, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry. Precipitation ranges from 14 to 16 inches per year, with the majority of this precipitation occurring in spring and summer in the form of rainfall. Thunderstorms are common during the summer months, and are typified by quick-moving low pressure cells which draw moisture from the Gulf of Mexico into the region. Average temperatures range from about 30°F in the winter

to 75° in the summer. The relative humidity ranges from about 25 percent in the summer to 45 percent in the winter.

Soils and Geology

Soils within the Sand Creek basin vary between soil types A through D, as identified by the U. S. Department of Agriculture, Soil Conservation Service. The predominant soil groupings are in the Truckton and Bresser soil associations. The soils consist of deep, well drained soils that formed in alluvium and residium, derived from sedimentary rock. The soils have high to moderate infiltration rates, and are extremely susceptible to wind and water erosion where poor vegetation cover exists. In undeveloped areas, the predominance of Type A and B soils give this basin a lower runoff per unit area as compared to basins with soils dominated by Types C and D. Presented on Figure II-2 is the Hydrologic Soil distribution map for the Sand Creek basin.

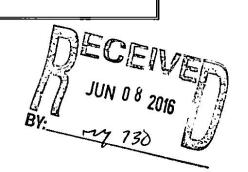

Property Ownership and Impervious Land Densities


Property ownership along the major drainageway within the Sand Creek basin vary from public to private. Along the developed reaches, drainage right-of-ways and greenbelts have been dedicated during the development of the adjacent residential and commercial land. Where development has not occurred, the drainageways remain under private ownership with no delineated drainage right-of-way or easements. There are several public parks which abut the mainstem of Sand Creek. Roadway and utility easements abutting or crossing the major drainageways occur most frequently in the developed portions of the basin.

Land use information for the existing and future conditions were reviewed as part of the planning effort. This information is used in the hydrologic analysis to predict runoff rates and volumes for the purposes of facility evaluation. The identification of land uses abutting the drainageways is also useful in the identification of feasible plans for stabilization and aesthetic treatment of the creek. Presented on Figure II-3 is the proposed land use map used in the evaluation of impervious land densities discussed in the hydrologic section of this report. Figure II-3 is not intended to reflect the future zoning or land use policies of the City or the County.

The land use information within the Banning-Lewis Ranch property was obtained from Aries Properties during the time the draft East Fork Sand Creek Drainage Basin Planning Study was being prepared. The land use information was again reviewed with the City of Colorado Springs Department of Planning and was found to be appropriate for use in the estimation of hydrology for the East Fork Basin. The location of future arterial streets and roadways within

4



FINAL DRAINAGE REPORT

BARBARICK SUBDIVISION, PORTIONS OF LOTS 1, 2 and LOTS 3 & 4 El Paso County, Colorado

Sand Creek Drainage Basin

Prepared for: El Paso County Development Services Engineering Division

On Behalf of:
Wykota Construction
430 Beacon Light Road, Suite 130
Monument, CO 80132

Prepared by:

Matrix

DESIGN GROUP

2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 (719) 575-0100 Fax (719) 572-0208

June 6, 2016

15.789.001

Proposed 30" HDPE Storm Drain from Modified Off-site Detention Pond:

This storm drain will capture flows from the discharged offsite pond and route them along the perimeter of the property daylighting into the EDB in Lot 4. 4' precast concrete manholes will be used for maintenance access at all bends and grade breaks. A grouted riprap forebay will help dissipate energy at the outlet of the pipe, and allow for settling prior to entering the pond. See the Appendix for the hydraulic analysis of this storm drain (StormCAD).

In the event of an emergency and the offsite pond fails, developed flow (Q100=93.0 cfs) will overtop the pond and be collected between the proposed roadway and pond berm.. Flow not captured by the proposed inlet will bypass easterly to the proposed offsite swale between this property and the Sterling Ranch property and conveyed southerly.

Proposed 18" HDPE Storm Drain Culvert:

A 18" HDPE culvert will convey collected runoff from Lot 3 (Developed Q100 = 15.90cfs) through Lot 4 to the FSD Pond and join sheet flow from Lot 4 and the 30" piped bypass flow from basin O2. This culvert will be privately owned and maintained by the property owners. See the Appendix for open channel calculations.

On-site FSD - EDB Pond in Lot 4 (Basin D1):

This On-site Full Spectrum Extended Detention Basin Pond provides water quality, EURV and 100-year detention. Onsite flows will combine with the 30-inch bypass flows from the north and pass through the EDB. The pond has been sized for the release of historic flows from Basin D1, as well as provides capacity for pass through conveyance of historic flows from the north.

The following table outlines the onsite existing and developed flow, required detention, and modifications to required detention utilizing the upstream over detention.

On-site Basin Flow Summary (cfs) Existing On-site Flow at Pond	<u>5 year</u> 2.2	100 year 16.5
Developed On-site Flow (Basin D1) Increase in peak flow due to development	19.7 17.5	56.0 39.5
Proposed Pass Through Flow from Off-Site Pond	<u>16.1*</u>	<u>29.4</u>
Proposed total flow out of EDB pond	<u>0.3</u>	<u>45.9**</u>
*Includes 10 year from WS-FDR		Emergency Overflow:
**Includes Pass Through flow of 29.4 cfs		56.0+29.4= 85.40

Summary results include:

- WQCV Volume =0.039 ac-ft depth 0.37-ft (12 hour release)
- EURV Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 5 Year Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 100 Year Volume Stored = 0.394 ac-ft depth 2.83-ft (68 hour release)

Proposed (2) 24" HDPE Storm Drain Culvert:

Two 24" pipes will convey offsite flows through Lots 1 and 2 discharging to the south. The culverts will connect to a pair of existing 24" culverts entering the property and will discharge to a riprap settling basing prior to the released downstream. These culverts will be privately owned and maintained by the property owners. See the Appendix for the hydraulic analysis of this storm drain (CulvertMaster). Flow from these pipes will join the flow from the Sand Filter and discharge at Design Point 4 (combined 39.4 cfs in the 100-year event). Per the BS-FDR this flow combines with the westerly portions of Lots 1 & 2 offsite for a total release of 30.5/80.8 cfs in the 5/100 year events.

As stated above in the summary from the Sterling Ranch PDR, the anticipated runoff from this proposed discharge point (aka: SR-PDR Basin H4) is 30.5/80.8 cfs (5/100 year) due to the large pass through flow. A 42" RCP is planned to convey this flow through Sterling Ranch.

DRAINAGE, BRIDGE, AND POND FEES

This subdivision has already been platted. No additional Drainage, Bridge or Pond fees are required.

MAINTENANCE

All proposed storm drain infrastructure will be located within private property and will be owned and maintained by the property owner. The detention pond will be owned and maintained by the property owner and will require maintenance consisting of routine inspections, removal of debris from the detention area, and bi-annual inspections for hydraulic performance of the basin. Refer to the DCM for exact maintenance criteria and for other Best Management Practices (BMP).

EROSION CONTROL

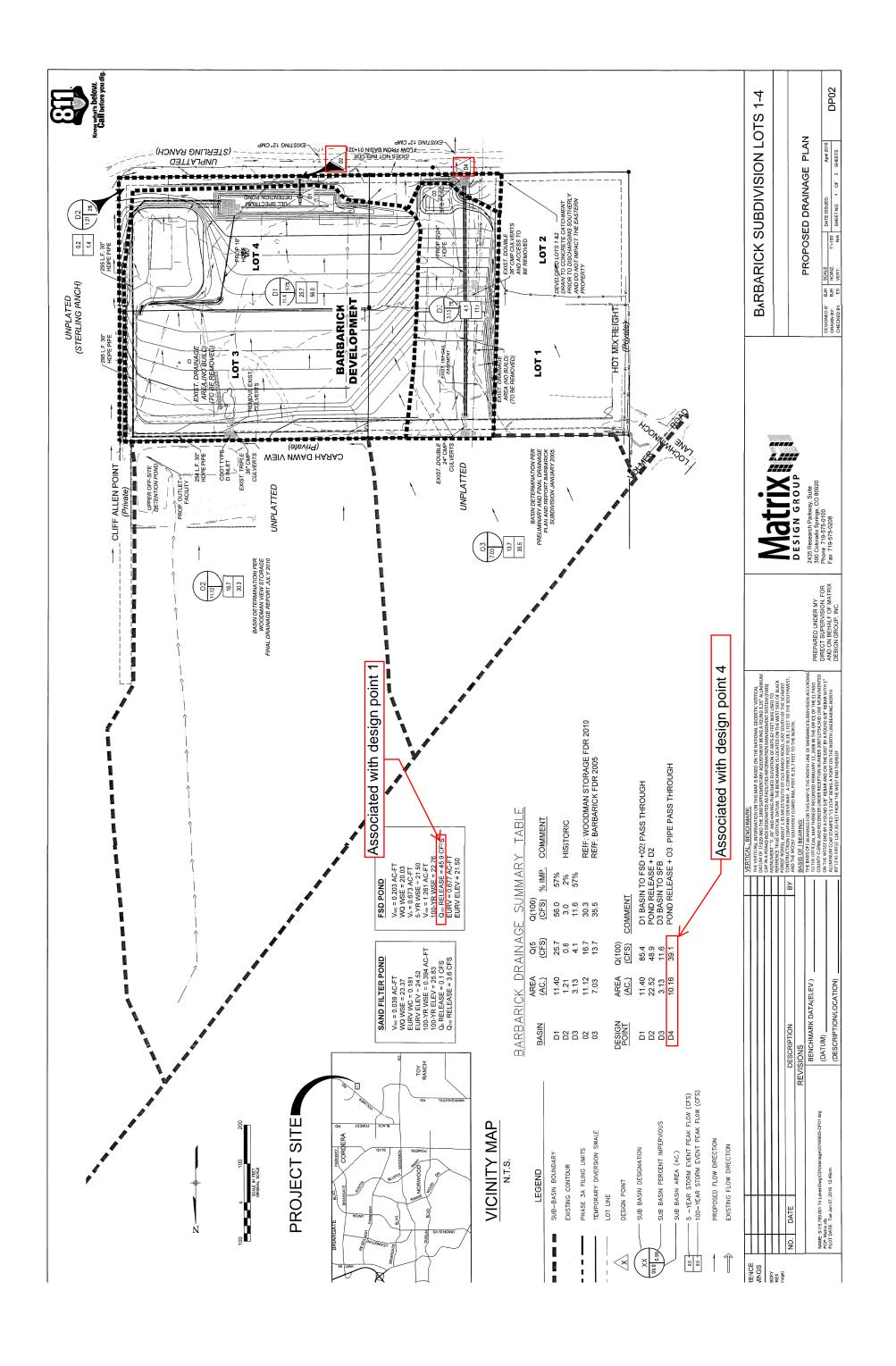
Best Management Practices (BMPs) will be utilized to minimize erosion during construction and will be shown on the construction drawings. These will be in accordance with will be utilized as deemed necessary by the contractor and/or engineer. The contractor shall minimize the amount of area disturbed during all construction activities.

In general, the following shall be applied in developing the sequence of major activities;

Worksheet for FSD Outlet Orifice Plate							
Project Description							
Solve For	Diameter						
Input Data	*						
Discharge			45.90	11/5 (16.5 His + 29.4 Pec)			
Headwater Elevation		·	4.70	ft			
Centroid Elevation			0.00	ft ·			
Tailwater Elevation			0.00	ft .			
Discharge Coefficient			0.60				
Results							
Diameter			2.37	ft			
Headwater Height Above Centroid			4.70	ft			
Tailwater Height Above Centroid			0.00	ft .			

4.40 ft²

10.43 ft/s


Flow Area

Velocity

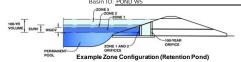
Worksheet for FSD Overflow - Pass							
Project Description							
olve For	Discharge						
nput Data							
leadwater Elevation		0.90	ft				
rest Elevation		0.00	ft				
ailwater Elevation		0.00	ft				
rest Surface Type	Gravel						
rest Breadth		12.00	ft				
rest Length		36.00	ft				
Results	*						
ischarge		86.22	ft³/s	(5510)+29.4 piec = 64.48			
eadwater Height Above Crest		0.90	ft	,			
ailwater Height Above Crest		0.00	ft				
Veir Coefficient		2.80	US				
ubmergence Factor		1.00					
djusted Weir Coefficient		2.80	US				
low Area		32.40	ft²				
elocity		2.66	ft/s				
Vetted Perimeter		37.80	ft				
op Width		36.00	ft				

Worksheet for FSD Overflow - Pass							
Project Description							
olve For	Discharge						
nput Data							
leadwater Elevation		0.90	ft				
rest Elevation		0.00	ft				
ailwater Elevation		0.00	ft				
rest Surface Type	Gravel						
rest Breadth		12.00	ft				
rest Length		36.00	ft				
Results	*						
ischarge		86.22	ft³/s	(5510)+29.4 piec = 64.48			
eadwater Height Above Crest		0.90	ft	,			
ailwater Height Above Crest		0.00	ft				
Veir Coefficient		2.80	US				
ubmergence Factor		1.00					
djusted Weir Coefficient		2.80	US				
low Area		32.40	ft²				
elocity		2.66	ft/s				
Vetted Perimeter		37.80	ft				
op Width		36.00	ft				

Wo	ksheet for SFB (Overflo	w Developed
Project Description			
Solve For	Discharge		
Input Data			
Headwater Elevation		0.45	ft
Crest Elevation		0.00	ft
Tailwater Elevation		0.00	ft .
Crest Surface Type	Gravel		
Crest Breadth		6.00	ft
Crest Length		10.00	ft
Results			Res William Ade Color
Discharge		8.08	ft³/s
Headwater Height Above Crest		0.45	ft
Tailwater Height Above Crest		0.00	ft
Weir Coefficient		2.68	US
Submergence Factor		1.00	
Adjusted Weir Coefficient		2.68	US
Flow Area		4.50	€3
Velocity		1.80	ft/s
Wetted Perimeter		10.90	ft
Top Width		10.00	ft

FINAL DRAINAGE REPORT FOR STERLING RANCH FILING NO. 2

Prepared For: SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903


> August 2021 Project No. 25188.01

Prepared By: JR Engineering, LLC 5475 Tech Center Drive Colorado Springs, CO 80919 719-593-2593

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

Project: STERLING RANCH FILING NO. 2
Basin ID: POND W5

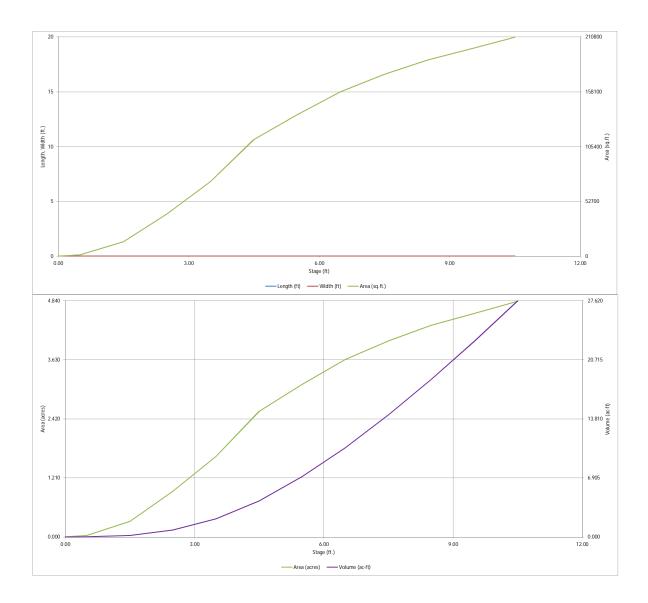
Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	173.97	acres
Watershed Length =	3,888	ft
Watershed Length to Centroid =	1,814	ft
Watershed Slope =	0.025	ft/ft
Watershed Imperviousness =	57.10%	percent
Percentage Hydrologic Soil Group A =	85.0%	percent
Percentage Hydrologic Soil Group B =	15.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1 br Painfall Donths -	Hear Innut	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro	graph Procedu	ire.
Water Quality Capture Volume (WQCV) =	3.288	acre-feet
Excess Urban Runoff Volume (EURV) =	11.714	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	9.031	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	11.873	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	14.194	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	18.106	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	21.364	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	25.580	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	34.562	acre-feet
Approximate 2-yr Detention Volume =	7.768	acre-feet
Approximate 5-yr Detention Volume =	10.244	acre-feet
Approximate 10-yr Detention Volume =	12.566	acre-feet
Approximate 25-yr Detention Volume =	14.965	acre-feet
Approximate 50-yr Detention Volume =	16.434	acre-feet
Approximate 100-yr Detention Volume =	18.217	acre-feet

C	Optional User Overrides						
Г		acre-feet					
Г		acre-feet					
Г	1.19	inches					
Г	1.50	inches					
Г	1.75	inches					
Г	2.00	inches					
Г	2.25	inches					
Г	2.52	inches					
		inches					


Define Zones and Basin Geometri

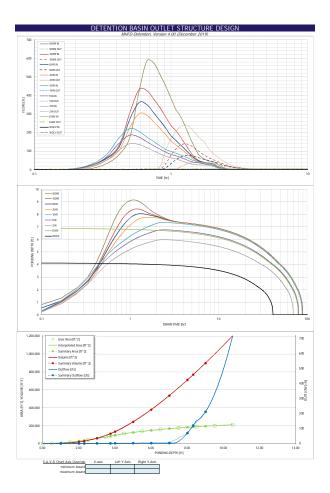
enne zones and basin Geometry		
Zone 1 Volume (WQCV) =	3.288	acre-f
Zone 2 Volume (EURV - Zone 1) =	8.426	acre-f
Zone 3 Volume (100-year - Zones 1 & 2) =	6.502	acre-f
Total Detention Basin Volume =	18.217	acre-f
Initial Surcharge Volume (ISV) =	user	ft 3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	1
		•

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (LISV) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet

Depth Increment =		ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00	-			20	0.000		
ELEV:6962		0.50	-			1,328	0.030	337	0.008
ELEV:6963		1.50				13,823	0.317	7,912	0.182
ELEV:6964		2.50				40,724	0.935	35,186	0.808
ELEV:6965		3.50	-			71,720	1.646	91,408	2.098
ELEV:6966		4.50	-			112,095	2.573	183,315	4.208
ELEV:6967		5.50				136,106	3.125	307,416	7.057
ELEV:6968		6.50	-			158,377	3.636	454,657	10.437
ELEV:6969		7.50				174,976	4.017	621,334	14.264
ELEV:6970		8.50				188,903	4.337	803,273	18.441
ELEV:6971		9.50				199,637	4.583	997,543	22.900
ELEV:6972		10.50				210,510	4.833	1,202,617	27.608

	-		-						
	-								
	-		-						
	1		1						
	1		1		-				
	1		1						
			-						
	-		-						
			1 1						
			-				_		_
	1 1		1 1						
			1 1						
			-						
							_		_
	-		-						
			-						
	-		-						
	1								
				•					

Pond W5-MHFD-Detention_v4 03.xlsm, Basin 9/4/2020, 2:35 PM



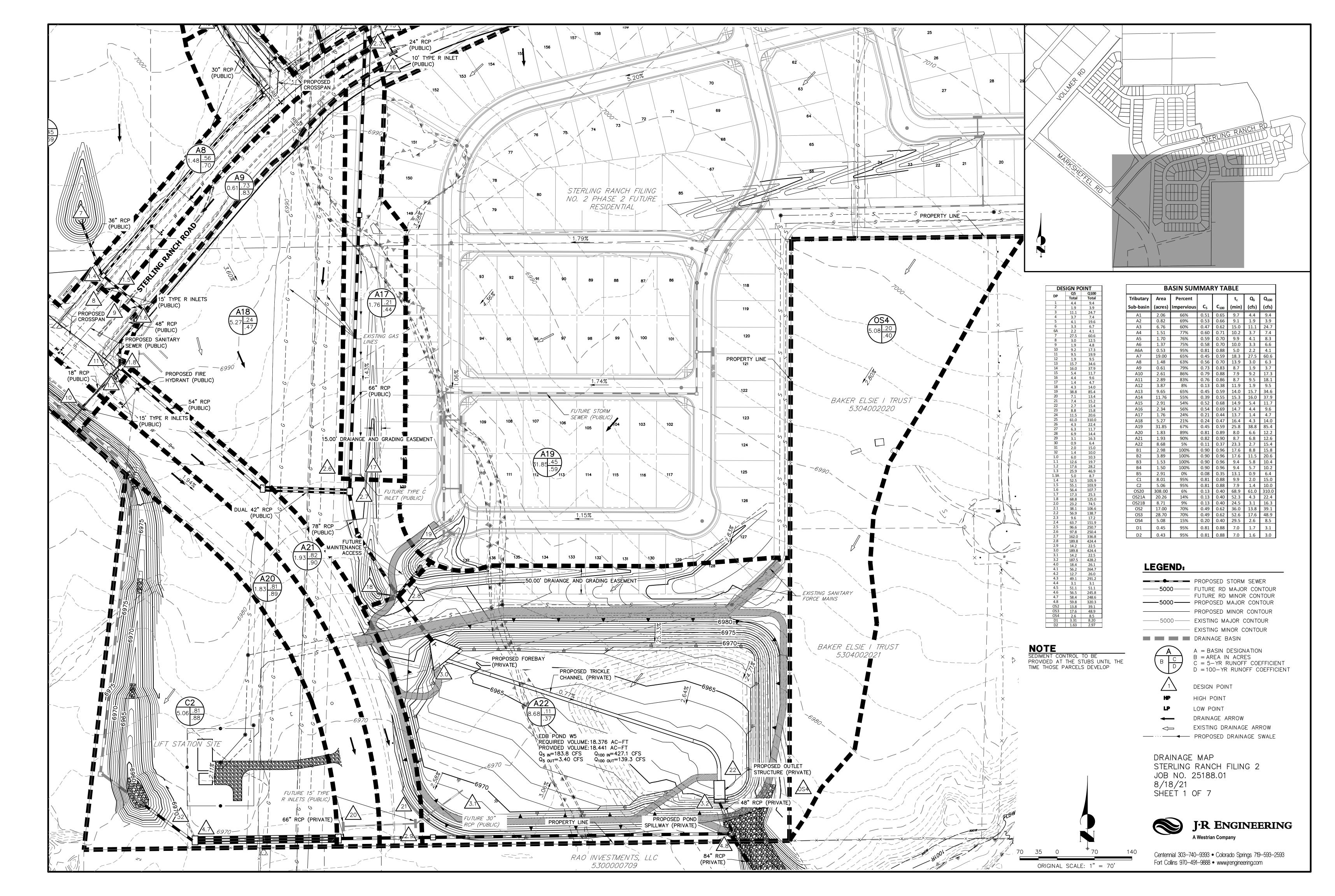
Pond W5-MHFD-Detention_v4 03.xtsm, Basin 9/4/2020, 2:35 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN Basin ID: POND W5 Estimated Stage (ft) Volume (ac-ft) Outlet Type WOLUME EURY WOOV Zone 1 (WQCV Zone 2 (EURV) ZOME 1 AND 2" lectanoular Orifice Zone 3 (100-year) loir&Pine (Restrict Example Zone Conf User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP) Underdrain Orifice Invert Depth = alculated Parameters for Underdrain N/A Underdrain Orifice Area ft (distance below the filtration media surface) Underdrain Orifice Diameter -Underdrain Orifice Centroid -User Input: Orifice Plate with one or more orifices or Elliptical Siot Weir (typically used to drain WOCV and/or EURV in a sedimentation BMP) s for Plate Invert of Lowest Orifice -(relative to basin bottom at Stage = 0 ft) WO Orifice Area per Row Depth at top of Zone using Orifice Plate ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width Orifice Plate: Orifice Vertical Spacing Elliptical Slot Centroid Orifice Plate: Orifice Area per Row -Ellintical Slot Area User Input: Stage and Total Area of Each Orifice Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid () Orifice Area (sq. inches Row 11 (optional) Row 12 (optional) Row 9 (optional Orifice Area (sq. inches User Input: Vertical Orifice (Circular or Rectangular Calculated Paramel Invert of Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area Depth at top of Zone using Vertical Orifice N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid -Vertical Orifice Height Vertical Orifice Width et Pipe OR Rectan Zone 3 W Zone 3 Wei Not Selected Overflow Weir Front Edge Height. Ho t (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H, 7.30 Overflow Weir Front Edge Length Overflow Weir Slone Length Overflow Weir Grate Slope H:V Grate Open Area / 100-yr Orifice Area 0.00 Horiz. Length of Weir Sides Overflow Grate Open Area w/o Debris Overflow Grate Open Area % %, grate open area/total area Overflow Grate Open Area w/ Debris -Debris Clogging % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor N/A Depth to Invert of Outlet Pine (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area Outlet Pipe Diameter Outlet Orifice Centroid Restrictor Plate Height Above Pipe Invert Half-Central Angle of Restrictor Plate on Pipe User Input: Emergency Spillway (Rectangular or T Spillway Invert Stageft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth-Spillway Crest Length Stage at Top of Freeboard -Spillway End Slopes Basin Area at Top of Freeboard Freeboard above Max Water Surface Basin Volume at Top of Freeboard scre-ft Design Storm Return Period One-Hour Rainfall Depth (in) CUHP Runoff Volume (acre-ft) 9.121 34.734 11.843 Inflow Hydrograph Volume (acre-ft) CLIHP Predevelopment Peak O (cfs) N/A N/A OPTIONAL Override Predevelopment Peak Q (cfs) Predevelopment Unit Peak Flow, q (cfs/acre) Peak Inflow Q (cfs) 140.5 186.5 222.1 361.5 586.0 Peak Outflow () (cfs) 241.3 Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow Max Velocity through Grate 1 (fps) Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) Time to Drain 99% of Inflow Volume (hours)

Pond W5-MHFD-Detention, v4 03.xism, Outlet Structure 8/12/2021, 3:30 PM

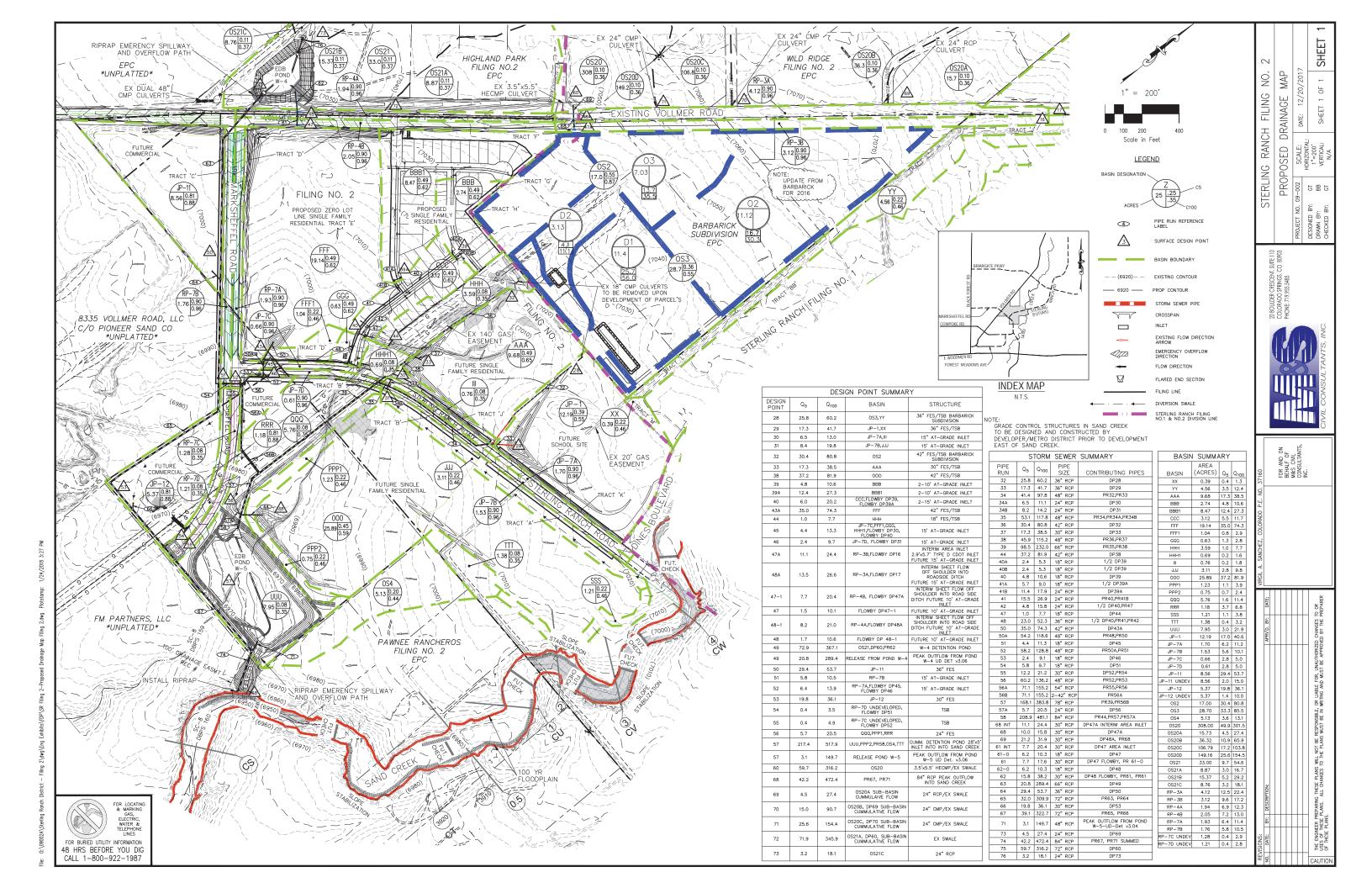
Maximum Ponding Depth (ft) Area at Maximum Ponding Depth (acres)

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filoname:


	Inflow Hydrographs The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.									
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year (cfs)	25 Year (cfs)	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	1.37	0.14	4.42
	0:20:00	0.00	0.00	48.30	65.33	77.56	49.45	58.16	61.60	81 16
	0:25:00	0.00	0.00	105.72	142.54	171.74	104.07	121.39	131.21	174.25
	0:30:00	0.00	0.00	140.48	186.46	222.13	227.64	272.80	308.13	422.01
	0:35:00	0.00	0.00	135.46	175.22	206.03	301.61	361.54	431.24	585.96
	0:40:00	0.00	0.00	118.36	150.07	175.68	293.61	350.26	425.82	573.28
	0:45:00	0.00	0.00	100.92 84.87	128.44	150.65 128.43	256.40 222.14	304.92 263.81	378.98 332.30	510.45 449.36
	0:55:00	0.00	0.00	72.36	94.33	109.32	187.66	222.42	282.99	384.40
	1:00:00	0.00	0.00	64.06	83.13	97.59	154.96	182.98	238.59	325.88
	1:05:00	0.00	0.00	58.14	75.08	88.94	134.19	158.26	211.50	290.49
	1:10:00	0.00	0.00	50.72	67.68	80.67	115.60	135.72	179.70	246.12
	1:15:00	0.00	0.00	42.71 35.76	59.08 50.04	72.45 63.10	97.95 80.42	114.30 93.20	145.50	197.99 153.88
	1:25:00	0.00	0.00	30.54	42.87	53.10	64.63	74.31	113.95 85.95	153.88
	1:30:00	0.00	0.00	27.71	39.21	46.68	51.11	58.33	64.24	85.13
	1:35:00	0.00	0.00	26.36	37.32	42.89	42.74	48.57	51.51	67.73
	1:40:00	0.00	0.00	25.60	34.28	40.22	37.77	42.78	44.23	57.57
	1:45:00	0.00	0.00	25.13	31.06	38.26	34.61	39.11	39.26	50.51
	1:50:00	0.00	0.00	24.76 22.48	28.74 27.05	36.93 35.35	32.45 31.03	36.59 34.94	35.99 33.68	45.78 42.43
	2:00:00	0.00	0.00	19.58	25.23	35.35	30.03	34.94	32.06	42.43
	2:05:00	0.00	0.00	15.52	20.27	25.90	24.54	27.57	25.96	32.36
	2:10:00	0.00	0.00	11.36	14.69	18.66	17.66	19.83	18.68	23.23
	2:15:00	0.00	0.00	8.25	10.65	13.46	12.75	14.30	13.52	16.79
	2:20:00	0.00	0.00	5.94	7.66	9.70	9.23	10.34	9.85	12.22
	2:25:00	0.00	0.00	4.23	5.34	6.86	6.50 4.51	7.28	6.96 4.82	8.63 5.97
	2:35:00	0.00	0.00	1.96	2.63	3.30	3.19	3.57	3.40	4.20
	2:40:00	0.00	0.00	1.21	1.65	2.12	2.10	2.34	2.23	2.75
	2:45:00	0.00	0.00	0.65	0.97	1.20	1.24	1.38	1.31	1.60
	2:50:00	0.00	0.00	0.28	0.47	0.55	0.60	0.66	0.63	0.76
	2:55:00	0.00	0.00	0.09	0.15	0.16	0.19	0.20	0.19	0.22
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

The user can create a summary S.A.V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S.A.V-D table to the full S.A.V-D table in the chart to confirm it captures all key transition points.

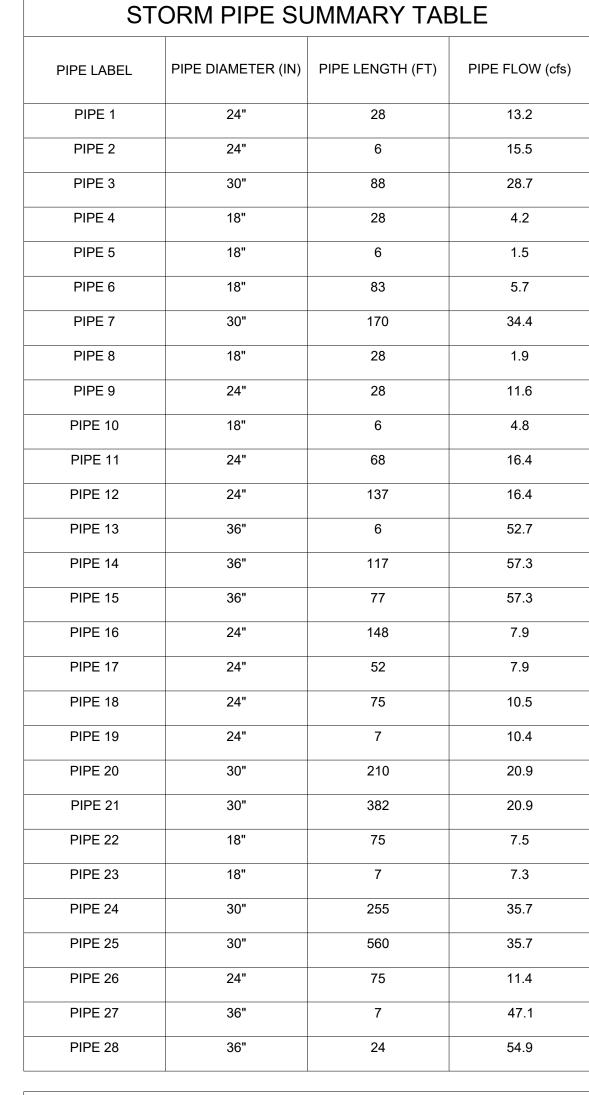

	Stage	Area	Area	Volume	Volume	Total Outflow	ĺ
Stage - Storage Description	[ft]	[ft ²]	[acres]	[ft ²]	[ac-ft]	Outflow [cfs]	
		7,576	0.174	2.563	0.059	0.42	
	1.00		0.174			0.42	For best results, include the
	2.00	27,274 35,075	0.626	18,186 27,227	0.418	0.59	stages of all grade slope changes (e.g. ISV and Floor)
WQCV	2.29 3.00	35,075 56,222	1.291	59,422	1.364	1.11	from the S-A-V table on
EURV	3.00	81,410	1.291	109,783	2.520	1.11	Sheet 'Basin'.
EURV	4.00	91,907	2.110	132,314	3.038	1.41	Also include the inverts of all
	5.00	124,100	2.849	242,364	5.564	2.48	outlets (e.g. vertical orifice,
	6.00	147,241	3.380	378,252	8.683	3.03	overflow grate, and spilway,
	7.00	166,676	3.826	535,920	12.303	3.48	where applicable).
	8.00	181,939	4.177	710,562	16.312	69.54	
100-YR	8.32	186,396	4.279	769,496	17.665	119.49	
	9.00	194,270	4.460	899,066	20.640	210.78	
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1

Pond W5-MHFD-Detention_v4 03.xlsm, Outlet Structure 8/12/2021, 3:30 PM

<:\2510000.all\2518801\Drawings\Sheet Dwgs\Drainage Maps\F</p>

XX251003031EX 68V Wandast Short Dispri Drainage Maye/Proposed May, that, 24x07 The Landscape (H. 202222). 3: 662 PM, FO.

Aspen Meadows
NE Colorado Springs
JTS
Proposed Conditions Project Name: Project Location: Designer Notes:


Average Channel Velocity Average Slope for Initial Flow

5 ft/s (If specific channel vel is used, this will be ignored)
0.04 ft/ft (If Elevations are used, this will be ignored)

	Are	а							Rationa	I 'C' Values	3							Flow	Lengths			Initia	l Flow			C	nannel Flo	w		Тс			Rainfa	II Intensit	y & Ratio	nal Flow	Rate	
Basin			Surface	e Type 1 (N	fleadow)	S	Surface Ty (Paveme		Surface	Type 3 Acre Lots	(1/4	(0.	urface Typ 147 Acre L ted betwee Acre lots)	ots) n 1/8 & 1/4	Com	posite	Initial	True Initia	al Channel	rue Chanr	High Poin	t Low Point	Average	Initial	High Point	Low Point	Average	Velocity	Channel	Total	i2 Q	2 i5	Q5	i10 Q	10 i25	Q25 if	50 Q50	i100 Q10
	sf	acres	C5		Area (SF		C100			C100	Area	C10	C100	Area	C5	C100	ft	Length f			Elevation	Elevation			Elevation	Elevation		(ft/s)									/hr cfs	in/hr cfs
RP-7C	55757	1.28	0.08	0.36	0	0.90	0.96	55,757	0.30	0.50		0.42	0.57		0.90	0.96	25	25	2111	2111			0.040	1.2	0		0.000					2 2.5				4.7 4.	.4 5.5	5.2 6.4
RP-7D	52707	1.21		0.36	0	0.90	0.96	52,707	0.30	0.50		0.42	0.57		0.90	0.96	25	25	1927	1927			0.040	1.2	0		0.000		0.7	7.6		2 2.6		3.2 3 .		4.7 4.	0.0	5.5 6.5
A1 A2	183953 171980	4.22 3.95	0.08	0.36	0	0.90		0	0.30	0.50	0	0.42	0.57	183953 171980	0.42	0.57	129 155	129 155	1165 785	1165 785	6968 6962	6962 6959	0.047 0.019	8.7 12.7	6962 6959	6951 6951	0.010 0.010		3.9 2.6	12.5	2.3 4. 2.1 3 .	2 3.0	5.4	3.7 6. 3.4 5.		11.3 5. 9.6 5.	5 13.3	6.4 15.5 5.8 13.2
A2 A3	40333	0.93	0.08	0.36			0.96		0.30	0.50		0.42	0.57	40333	0.42	0.57	60	60	429	429	6958	6955	0.019	5.8	6955	6951	0.010		1.4	7.2	2.1 3.	0 Z.0	4.6	4.5 1 .		9.6 5	7 26	7.8 4.2
A3 A4	16521	0.93					0.96		0.30			0.42		16521	0.42	0.57	84	84	168	168	6954	6952	0.030	9.2	6952	6951	0.010			9.8	2.6 0.	4 3.3	0.5	4.1 0 .		11 6	i.0 1.3	
A5	87091			0.36			0.96		0.30			0.42		87091	0.42	0.57	84	84	281	281	6954	6952	0.020	9.2	6952	6949	0.010		0.9	10.2		1 3.3		4.0 3.		5.8 6	0 6.8	6.9 8.0
A6	170648	3.92	0.08	0.36	46.932		0.96		0.30			0.42	0.57	123716	0.33	0.52	331	300	672	703	6975	6962	0.039	15.8	6962	6953	0.014		2.3	18.2	2.0 2.	6 2.6	3.3	3.1 4.		8.1 4	6 9.5	5.4 11.0
A7	50796	1.17	0.08	0.36	-,	0.90			0.30			0.42	0.57	50796	0.42	0.57	60	60	624	624	6963	6961	0.027	7.0	6961	6953	0.013		2.1	9.1	2.6 1.	3 3.4	1.7	4.2 2 .	.1 5.3	3.5 6.	.2 4.2	7.2 4.8
A8	18695	0.43	0.08	0.36		0.90	0.96		0.30	0.50		0.42	0.57	18695	0.42	0.57	50	50	130	130	6953	6951	0.023	6.8	6951	6950	0.008		0.4	7.2	2.9 0.	5 3.7	0.7	4.5 0 .	.8 5.7	1.4 6.	.7 1.7	7.8 1.9
A9	48530	1.11	0.08	0.36		0.90	0.96		0.30	0.50		0.42	0.57	48530	0.42	0.57	66	66	400	400	6959	6958	0.023	7.8	6958	6950	0.019		1.3	9.1	2.6 1.	2 3.4	1.6	4.2 2 .	.0 5.3	3.4 6	.2 4.0	7.2 4.6
A10	145660	3.34			91,851				0.30			0.42		53809	0.21	0.44	133	133	409	409	6959	6945	0.105	8.8	6945	6942	0.007		1.4	10.1	2.5 1.	8 3.3	2.3			7.5 6	8.8 O.8	
A11	38513	0.88			38,513				0.30			0.42			0.08		15	15	74	74	6950		0.067	3.9	6949	6940	0.122			5.0		2 4.1	0.3	5.0 0 .			'.5 2.4	
A12	29078	0.67	0.08	0.36		0.90	0.96		0.30	0.50		0.42	0.57		0.90	0.96	13	13	512	512	6965	6964	0.077	0.7	6964	6959	0.009		1.7	0.0	3.2 1.	9 4.1	2.5	5.0 3.		4.1 7.	.5 4.8	
A13	28956	0.66				0.90		,				0.42			0.90	0.96	13	13	512	512	6964	6964	0.020	1.1	6964	6959	0.009		1.7	0.0	3.2 1.	9 4.1	2.5	5.0 3.			.5 4.8	
A14 A15	31058 30826	0.71	0.08	0.36		0.90		31,058 30,826		0.50 0.50		0.42			0.90	0.96	96	96	547 547	547 547	6956 6958	6954 6958	0.021	2.9	6954 6958	6953 6953	0.002		1.8	5.0		0 4.1 0 4.1		5.0 3 .		4.4 7.	5 5.1	8.7 6.0 8.7 5.9
A16	82931	1.90	0.08	0.36		0.90		43,788		0.50		0.42		39143	0.90	0.90	100	100	553	553	6954	6951	0.020	5.6	6951	6940	0.009		1.8	7.5	2.8 3 .		4.8	4.5 5 .			5 0.1	7.7 11.6
A17	40961	0.94				0.90						0.42		39143	0.00	0.76	13	13	553	553	6954			0.7	6953	6940	0.019			5.0								8.7 7.9
Total Onsite Area =	1216531		0.00	0.50		0.30	0.30	40,301	0.50	0.50		0.42	0.51		0.30	0.30	10	10	333	333	0304	0333	0.077	0.7	0333	0340	0.025		1.0	5.0	J.Z Z.	7 7.1	3.3	3.0 4.	9 0.0	<u> </u>	5 0.0	0.7
7000 07000 71100 =	1210001	21.00																																	+	-	+	
DP1 (A2)		3.95																															4.6		\neg			13.2
DP2 (A1+A2)		8.17																															10.0		+-		-	28.7
DP3 (A3)		0.93																															1.5		+	-+	+-	4.2
DP4 (A3+A4)		1.31																													-	-	2.0		+	-	+-	5.7
DP5 (D2+D4)		9.48																													-	-	12.0		+	-	+-	34.4
DP6 (A6)		3.92																													-		3.3		+		+-	11.0
DP7 (A6+A7)		5.08							+																						-	_	5.0	-	+	-+	+-	15.9
,																																			+		-	
DP8 (A8)		0.43			 				Ь,																								0.7		$oldsymbol{\perp}$		$oldsymbol{oldsymbol{}}$	1.9
DP9 (DP5+DP7+DP8+A9)		16.10			∐ Run	off ca	aptur	ed in																									19.3		$oldsymbol{\perp}$			56.8
DP 10 (A5)		2.00			- 44-	!4	tt t																										2.8			ı		8.0
DP Pond (A1-A10)		21.45			OTTS	ite rui	nott t	rom																									24.4			ı		75.1
DP Pond (Discharge)		21.45			haei	ins R	P-7D	and																									0.4			·		3.7
DP11 (RP-7D+A12)		1.88	1/				ם ז- ו	anu																									5.4		\neg			12.1
DP12 (DP11+RP-7C+A13)		3.82			RP-	-7C																											10.7		+	i —	+	24.0
DP13 (A14)		0.71							_																				_		-		2.7	-	+	-	+-	6.0
		5.24																											_				16.0		+	-+	+-	36.0
DP14 (DP12+DP13+A15)																																			$+\!-\!\!\!-$	$\leftarrow \vdash$	$+\!-$	
DP15 (A16)		1.90																														_	4.8		\bot			11.6
DP16 (DP14+DP15+A17)		<u>8.09</u>																															<u>24.3</u>					<u>55.4</u>
Total Area =	1324995	30.42																																				

ASPEN MEADOWS NOTES: 1. Spot elevations subject to change with final grading design and construction. LEGEND COLORADO SPRINGS, CO **DESIGN POINT** SUB BASIN DESIGNATION PROPOSED CONTOUR SUB BASIN RUNOFF COEFFICIENT FLOW DIRECTION SUB BASIN AREA (AC.) 5-YEAR STORM EVENT PEAK FLOW (CFS) LOW POINT AND ELEVATION 100-YEAR STORM EVENT PEAK FLOW (CFS) HIGH POINT AND ELEVATION PROPERTY LINE SPOT ELEVATION 1 inch = 100 ft.EFFECTIVE REGULATORY 1% PROBABILITY IMPROVEMENT EASEMENT

PROPOSED STORM SEWER EXHIBIT MAP

S	STORM SUM	MARY TABLE	<u> </u>
INLET LABEL	INLET OPENING (FT)	FLOW TO INLET (CFS)	FLOW CAPTURED (CFS)
INLET A1 (D10R)	12'	15.5	15.5
INLET A2 (D10R)	10'	13.2	13.2
INLET A3 (D10R)	6'	4.2	4.2
INLET A4 (D10R)	6'	1.5	1.5
INLET A5 (D10R)	6'	8.0	8.0
INLET A6 (D10R)	8'	11.0	11.0
INLET A7 (D10R)	6'	4.8	4.8
INLET A8 (D10R)	6'	1.9	1.9
INLET A9 (D10R)	6'	4.6	4.6
INLET DP11 (D10R)	16'	12.1	10.5
INLET DP12 (D10R)	16'	12.0	10.4
INLET DP13 (D10R)	16'	7.6	7.5
INLET DP14 (D10R)	16'	7.4	7.3
INLET DP15 (D10R)	20'	11.7	11.4
INLET DP16 (D10R)	16'	8.0	7.8

ASPEN MEADOWS FILING NO. 1

COLORADO SPRINGS, CO **DEVELOPMENT PLAN**

Call before you dig.

Know what's below.

Colorado Springs, CO 80920 Phone 719-575-0100 Fax 719-575-0208

LANDSCAPE ARCHITECT:

Thomas & Thomas Planning-Urban 614 N. Tejon Street Colorado Springs, CO 80903 Phone (719)578-8777

ASPEN MEADOWS FILING NO.1 DEVELOPMENT PLAN CITY OF COLORADO SPRINGS JANUARY 2019

COLA, LLC 555 MIDDLE PARKWAY COLORADO SPRINGS, CO 80921 (719)459-0807

DEVELOPER:

COLA, LLC 555 MIDDLE PARKWAY COLORADO SPRINGS, CO 80921 (719)459-0807

CITY PLANNING FILE NO: AR DP XXXXXXXXX

ISSUE: JANUARY, 2019

DRAWING INFORMATION: 17.886.004.000 CRAIG DOLD JEFF ODOR JEFF ODOR APPROVED BY:

> DRAINAGE **REPORT EXHIBIT**

Pond Design Report Aspen Meadows Addendum

Aspen Meadows - Sand Creek Drainage Basin

June 2020

Prepared for: City of Colorado Springs, Colorado Engineering Development Review Division Team

> 30 South Nevada Avenue, Suite 401 Colorado Springs, CO 80903

> > COLA, LLC.

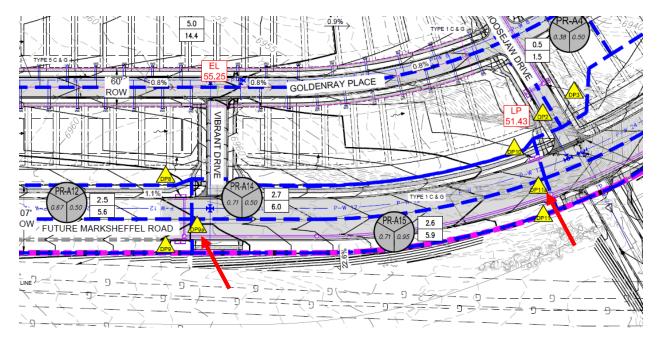
555 Middle Parkway Colorado Springs, CO 80921

Prepared by:

2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 (719) 575-0100 fax (719) 572-0208

MDG Project No. 17.886.004

Detention Calculations

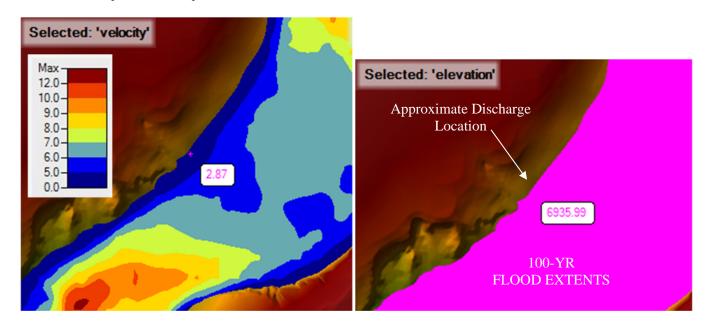

Along with design grading for the proposed single-family full spectrum detention pond (**FDR**: Pond 1), the UD-Detention model was updated to reflect the updated contours as part of the construction documents for Pond 1. Please see the attached UD-Detention sheets for reference.

Calculations

The StormCAD modeling has been completed for the proposed storm sewer as described above. Please see the attached pipe and inlet reports. Spillway and outfall protection calculations were completed in compliance with DCM criteria and are attached as well. Also included are the northern boundary area inlet and swale capacity calculations.

Marksheffel Storm Calculations

Because the layout of the proposed storm alignment has been modified since the previous submittal, the rational calculations for this site were updated and are included in the appendix. Two additional design points were added, DP9a and DP11a, and are placed along Marksheffel Road at the manhole junctions shown below. An updated proposed conditions drainage map can also be found in the Appendix.

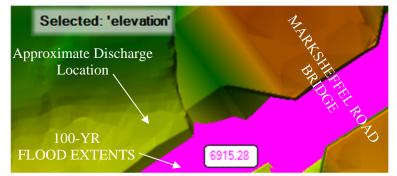

Sterling Ranch Interim Conditions

It appears that the proposed Aspen Meadows Filing 1 development will be constructed prior to completion of the proposed detention in Sterling Ranch to the north. The 0 result of this is that the runoff from approximately 2.3 acres of undeveloped area immediately north of the proposed Aspen Meadows development. This flow is estimated to be approximately 3 cfs.

Pond Outfalls to Sand Creek

Pond 1

The outfall for Pond 1 at Aspen Meadows Filing 1 discharges near the 100-year highwater for Sand Creek, therefore, additional analysis of the outfall spill pad has been performed. According to the 2D model of Sand Creek the velocity at the spill pad location is just under 3 ft/s. This corresponds with an elevation of 6935.99. Please see excerpted screen captures from the 2D model.



The above indicates that the Pond 1 Discharge pipe (Flout = 6936.22) will discharge just above the 100-year flood event. The spill pad will likely be just inside the 100-year floodplain; however, the modeled flow velocity is below the 3.5 ft/s velocity deemed acceptable in the DCM channel guidelines for the minor storm through erosive soils. This suggests that the Type L (9-inch D50) Rip Rap outfall protection will not be disturbed by the flows within Sand Creek and that the outfall design calculations included in the appendix determine the required outlet protection.

Marksheffel WQ Pond


The modeled Water Surface Elevation adjacent to discharge location is 6915.28. The design discharge flow line is 6920.2. This comparison indicates that the proposed discharge is above the 100-year Base Flood Elevation and that

Sand Creek flows do not affect the pipe outfall. Therefore, the outfall protection indicated in this addendum for the Marksheffel WQ Pond discharge flow determines the required outlet protection.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Example Zone	Configuration	(Retention
Required Volume Calculation		
Selected BMP Type =	SF	
Watershed Area =	8.08	acres
Watershed Length =	1,612	ft
Watershed Slope =	0.023	ft/ft
Watershed Imperviousness =	91.20%	percent
Percentage Hydrologic Soil Group A =	95.3%	percent
Percentage Hydrologic Soil Group B =	4.7%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	12.0	hours
Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (MQCV) =	0.222	acre-feet

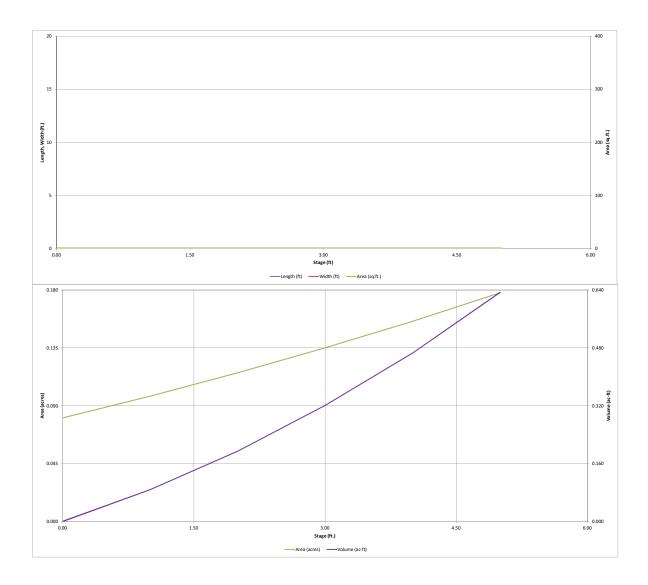
_	User Input	Location for 1-hr Rainfall Depths =
acre-fee	0.222	Water Quality Capture Volume (WQCV) =
acre-fee	0.997	Excess Urban Runoff Volume (EURV) =
acre-fee	0.558	2-yr Runoff Volume (P1 = 0.95 in.) =
acre-fee	0.742	5-yr Runoff Volume (P1 = 1.23 in.) =
acre-fee	0.925	10-yr Runoff Volume (P1 = 1.49 in.) =
acre-fee	1.193	25-yr Runoff Volume (P1 = 1.88 in.) =
acre-fee	1.406	50-yr Runoff Volume (P1 = 2.21 in.) =
acre-fee	1.669	100-yr Runoff Volume (P1 = 2.57 in.) =
acre-fee	2.346	500-yr Runoff Volume (P1 = 3.52 in.) =
acre-fee	0.530	Approximate 2-yr Detention Volume =
acre-fee	0.706	Approximate 5-yr Detention Volume =
acre-fee	0.871	Approximate 10-yr Detention Volume =
acre-fee	1.127	Approximate 25-yr Detention Volume =
acre-fee	1.278	Approximate 50-yr Detention Volume =
acre-fee	1.417	Approximate 100-yr Detention Volume =

feet feet	Optional User 1-hr Precipital	
-feet	0.95	inches
feet	1.23	inches
-feet	1.49	inches
-feet	1.88	inches
feet	2.21	inches
feet	2.57	inches
feet	3.52	inches
feet		

Stage-Storage Calculation

acre-fe	0.222	Zone 1 Volume (WQCV) =
acre-fe		Select Zone 2 Storage Volume (Optional) =
acre-fe		Select Zone 3 Storage Volume (Optional) =
acre-fe	0.222	Total Detention Basin Volume =
ft^3	N/A	Initial Surcharge Volume (ISV) =
ft	N/A	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth (H _{total}) =
ft	N/A	Depth of Trickle Channel (H _{TC}) =
ft/ft	N/A	Slope of Trickle Channel (S_{TC}) =
H:V	user	Slopes of Main Basin Sides (S _{main}) =
	user	Basin Length-to-Width Ratio (R _{L/W}) =

Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-fee


Total detention volume i	
less than 100-year	
leas than roo-year	

Don'th barament -	1	ıt.							
Depth Increment = Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Media Surface		0.00	-		-	3,508	0.081		
	-	1.00 2.00	-	-	-	4,242 5,035	0.097	3,833 8,463	0.088
	-	3.00	_	_	-	5,883	0.116	13,972	0.194
		4.00	-	-	-	6,788	0.156	20,307	0.466
	-	5.00	-	-	-	7,750	0.178	27,576	0.633
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
			_	_	_				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		1	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-					
	-		-	-					
	-		-	-	-				
e is	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	_				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	_	-				
	-		-	-	-				
	<u> </u>			-	-				
	-		-	-	-				
	-		-	-	-				
	ļ -			=	=				
	-		-	-	-				
	<u> </u>		-	-	-				
	-		-	-	-				
	-		_	-	-				
	-		-	-	-				
	-			-	-				
	-		-	-	-				
	-		_	-	-				
	-		-	-	-				
	=		-	-	-				
	-		_	_					
	=		-	-	-				
	-		-	-	-				
	<u> </u>			-	-				
	-		-	-	-				
	=		-	_	_				
	=		_	_	-				
	-		1 1	-	-				
	-		-	-	-				

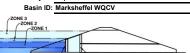
UD-Deterfion_v3.07_Marksheffel WQCV, Basin 730/2019, 138 PM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

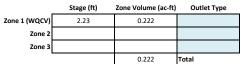
UD-Deterfion_v3.07_Marksheffel WQCV, Basin 730/2019, 138 PM

Project =	ASP3N	MEADOWS	٥


Subject NADBRARA ORIFICE SIEING

Job. No.	17.88	36. o	04	
	July			12019
Sheet	1	_ of _		
Ry L	345			

D12 44	1414 y 411		= 9,670.3Z FT y=1,825 FT	-3
	= 9670,3Z 1414 (1,825)	=2,31 ~		
- 11-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		


Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Example Zone Configuration (Retention Pond)

Project: Aspen Meadows

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

1.83 ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = Underdrain Orifice Diameter = 2.31 inches

Calculate	ed Parameters for Or	iderarair
Underdrain Orifice Area =	0.0	ft ²
Underdrain Orifice Centroid =	0.10	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

ft (relative to basin bottom at Stage = 0 ft)
ft (relative to basin bottom at Stage = 0 ft)
inches
inches

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circ	ular or Rectangular)		Calculated	Parameters for Vert	ical Orifice	_
	Not Selected	Not Selected		Not Selected	Not Selected	
Invert of Vertical Orifice =			ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area =			ft ²
p of Zone using Vertical Orifice =			ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid =			feet
Martinel Orifice Discourtes			ta aba a			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

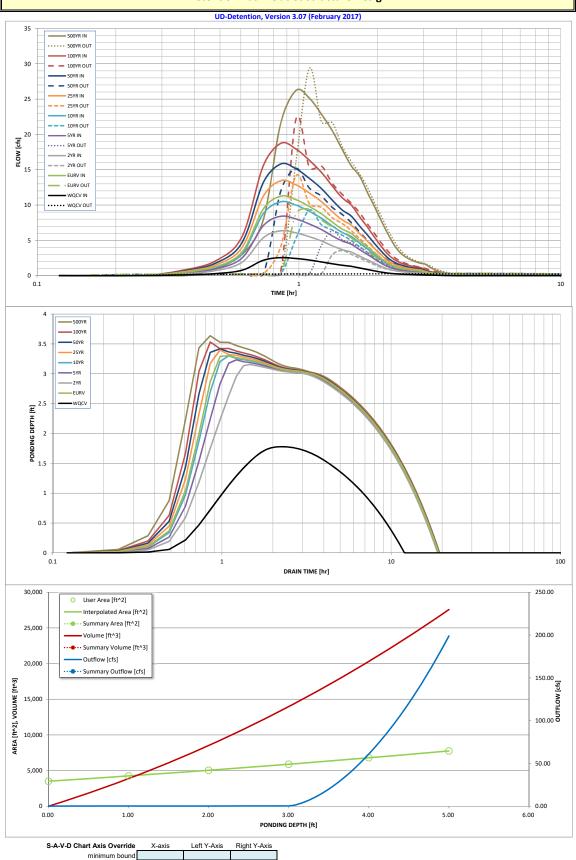
Depth at top

	Not Selected	Not Selected	
Overflow Weir Front Edge Height, Ho =			ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =			feet
Overflow Weir Slope =			H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =			feet
Overflow Grate Open Area % =			%, grate open area/total area
Debris Clogging % =			%

Calculated Parameters for Overflow Weir			
	Not Selected	Not Selected	
Height of Grate Upper Edge, H_t =			feet
Over Flow Weir Slope Length =			feet
Grate Open Area / 100-yr Orifice Area =			should be ≥ 4
Overflow Grate Open Area w/o Debris =			ft ²
Overflow Grate Open Area w/ Debris =			ft ²
•			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Not Selected Not Selected

Depth to Invert of Outlet Pipe =		ft (distance below basin bottom at Stage = 0 ft)
Circular Orifice Diameter =		inches
		Half-Cen


Calculated Parameters	s for Outlet Pipe w/	Flow Restriction Pla	te
	Not Selected	Not Selected	
Outlet Orifice Area =			ft ²
Outlet Orifice Centroid =			feet
D	NI/A	NI/A	

lser Input: Emergency Spillway (Rectang	gular or Trapezoidal)	<u></u>
Spillway Invert Stage=	3.00	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	17.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	0.48	feet
Stage at Top of Freeboard =	4.48	feet
Basin Area at Top of Freeboard =	0.17	acres

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	0.95	1.23	1.49	1.88	2.21	2.57	3.52
Calculated Runoff Volume (acre-ft) =	0.222	0.997	0.558	0.742	0.925	1.193	1.406	1.669	2.346
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.222	0.997	0.558	0.742	0.925	1.193	1.406	1.669	2.346
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.00	0.00	0.01	0.04	0.15	0.34	0.84
Predevelopment Peak Q (cfs) =	0.0	0.0	0.0	0.0	0.1	0.3	1.2	2.7	6.7
Peak Inflow Q (cfs) =	2.6	11.3	6.4	8.4	10.5	13.5	15.8	18.7	26.2
Peak Outflow Q (cfs) =	0.3	9.4	3.6	6.4	9.3	14.1	15.2	22.2	29.4
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	256.7	102.9	49.8	12.9	8.1	4.3
Structure Controlling Flow =	Filtration Media	Spillway							
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	12	17	18	18	17	17	17	16	15
Time to Drain 99% of Inflow Volume (hours) =	12	19	19	19	19	18	18	18	18
Maximum Ponding Depth (ft) =	1.78	3.31	3.16	3.23	3.30	3.40	3.42	3.53	3.64
Area at Maximum Ponding Depth (acres) =	0.11	0.14	0.14	0.14	0.14	0.14	0.14	0.15	0.15
Maximum Volume Stored (acre-ft) =	0.169	0.362	0.341	0.352	0.362	0.375	0.378	0.395	0.410

Detention Basin Outlet Structure Design

maximum bound

Detention Basin Outlet Structure Design

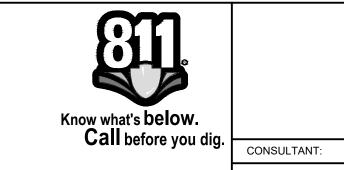
Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

SOURCE WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK


	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
	0.00.00									
7.31 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:07:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:14:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:21:56	0.12	0.49	0.28	0.37	0.46	0.59	0.69	0.81	1.12
0.684	0:29:14	0.31	1.34	0.76	1.00	1.24	1.59	1.87	2.21	3.07
	0:36:33	0.79	3.43	1.95	2.57	3.19	4.09	4.80	5.67	7.89
	0:43:52	2.18	9.43	5.36	7.07	8.77	11.23	13.18	15.56	21.65
	0:51:10	2.55	11.26	6.35	8.41	10.46	13.45	15.82	18.74	26.23
	0:51:10	2.43	10.76	6.06	8.03	10.40	12.86	15.13	17.94	25.14
	1:05:47									
		2.21	9.80	5.51	7.31	9.10	11.71	13.78	16.33	22.88
	1:13:06	1.96	8.77	4.92	6.53	8.14	10.49	12.35	14.65	20.56
	1:20:25	1.68	7.59	4.24	5.65	7.05	9.09	10.71	12.72	17.90
	1:27:43	1.47	6.61	3.70	4.92	6.13	7.91	9.31	11.05	15.57
	1:35:02	1.33	5.99	3.35	4.46	5.56	7.17	8.44	10.02	14.10
	1:42:20	1.08	4.96	2.76	3.68	4.60	5.95	7.02	8.34	11.77
	1:49:39	0.88	4.07	2.25	3.01	3.77	4.89	5.77	6.87	9.72
	1:56:58	0.66	3.15	1.73	2.32	2.92	3.80	4.50	5.37	7.64
	2:04:16	0.48	2.37	1.29	1.73	2.19	2.86	3.41	4.08	5.84
	2:11:35	0.35	1.71	0.93	1.25	1.58	2.08	2.49	2.99	4.31
	2:18:53	0.28	1.32	0.72	0.97	1.22	1.60	1.90	2.28	3.26
	2:26:12	0.23	1.08	0.60	0.80	1.00	1.31	1.55	1.86	2.65
	2:33:31	0.20	0.92	0.51	0.68	0.85	1.11	1.31	1.57	2.23
	2:40:49	0.17	0.80	0.44	0.59	0.75	0.97	1.15	1.37	1.95
	2:48:08	0.16	0.72	0.40	0.54	0.67	0.87	1.03	1.23	1.75
	2:55:26	0.14	0.67	0.37	0.49	0.62	0.80	0.95	1.13	1.60
	3:02:45	0.11	0.49	0.27	0.36	0.45	0.59	0.70	0.83	1.19
	3:10:04	0.08	0.36	0.20	0.27	0.33	0.43	0.51	0.61	0.86
	3:17:22	0.06	0.26	0.15	0.19	0.24	0.32	0.38	0.45	0.64
	3:24:41	0.04	0.19	0.11	0.14	0.18	0.23	0.28	0.33	0.47
	3:31:59	0.03	0.14	0.08	0.10	0.13	0.17	0.20	0.24	0.34
	3:39:18	0.02	0.10	0.05	0.07	0.09	0.12	0.14	0.17	0.24
	3:46:37	0.01	0.07	0.04	0.05	0.07	0.09	0.10	0.12	0.18
	3:53:55	0.01	0.05	0.03	0.03	0.04	0.06	0.07	0.08	0.12
	4:01:14									
	4:08:32	0.01	0.03	0.01	0.02	0.03	0.04	0.04	0.05	0.08
		0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.03	0.04
	4:15:51	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.02
	4:23:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:37:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:52:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:59:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:07:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:14:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:21:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:28:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:36:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:43:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:58:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:05:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:12:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:20:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:27:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:34:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:42:03 6:49:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:56:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:03:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:11:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:18:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:25:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:33:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:40:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:47:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:55:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:02:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:09:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:17:05 8:24:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:24:23 8:31:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:31:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:46:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.70.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

						Design Po	oint Summ	arv Table		
Design	Up	strea	n			Inlet		•	Downstream	Receiving
Design Point	Area (Acres)			Subbasins Included	Name	Туре	Size (ft)	Outlet Pipe Size/Type	Design Point	Emergency Overflow
DP1	4.35	5.0	14.4	A2	A2	D 10 R	12	24" RCP/HP	DP6	DP6 / Street Overtop
DP2	5.15	5.8	16.5	A1	A1	D 10 R	10	24" RCP/HP	DP3	DP3 / Street Overtop
DP3	5.53	6.2	17.7	DP2,A4	A4	D 10 R	6	18" RCP/HP	DP6	DP6 / C & G, Street Overtop
DP4	4.06	3.4	11.4	A6	D4	D 10 R	8	36" RCP/HP	DP5	DP5 / Street Overtop
DP5	5.23	4.8	15.2	DP5, A7	D5	MH	6	36" RCP/HP	DP6	DP1 / C & G
DP6	16.22	16.7	49.3	DP1,DP3,DP5,A9	D6	D 10 R	6	42" RCP/HP	DP POND	DP POND / Overtop Curb, Swale
DP7	2.00	2.8	8.0	A5	A5	D 10 R	6	24" RCP/HP	DP POND	DP POND / Overtop Curb, Swale
DP Pond	21.57	19.9	61.2	A1,A2,A4,A5, A6,A7,A9,	A9	Detention Outlet	Overflow	ate: 1.02 Sq. In. (Stage 0', .9' & 1.06') Weir/Grate: L=2', W=2' w/ slope: 0 Weir/Grate: (Stage: 4' to 6')	-	-
Detention Discharge	-	0.4	3.7	A10	79	Structure		Outlet Pipe: 18" RCP/HP (10.5" Orifice	Sand Creek	Sand Creek
DP8	1.95	5.9	13.2	RP-7C,A12	A12	D 10 R	16	24" RCP/HP	DP9	DP10 / C & G
DP9	1.87	5.8	13.0	DP8,RP-7D,A13	A13	D 10 R	16	24" RCP/HP	DP11	DP11 / C & G
DP10	0.71	2.7	6.0	A14	A14	D 10 R	16	18" RCP/HP	DP11	DP12 / C & G
DP11	0.71	2.6	5.9	DP9,DP10,A15	A15	D 10 R	16	30" RCP/HP	DP13	DP13 / C & G
DP12	1.90	4.8	11.6	A16	A16	D 10 R	20	24" RCP/HP	DP13	Sand Creek Bridge
DP13	3.55	8.6	20.3		A17	D 10 R	16	42" RCP/HP	WQ POND/ Sand Creek	Sand Creek Bridge

ASPEN MEADOWS

COLORADO SPRINGS, CO

PROPOSED CONDITIONS MAP

CIVIL ENGINEER/ LANDSCAPE ARCHITECT:

Excellence by Design

2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 Contact: Greg Shaner, Civil Engineer Contact: Jason Alwine, Landscape Architect Phone (719) 575-0100 Fax (719) 575-0208

PROJE

ASPEN MEADOWS FILING NO.1 PUD DEVELOPMENT PLAN CITY OF COLORADO SPRINGS

JANUARY 2020

COLA, LLC 555 MIDDLE PARKWAY COLORADO SPRINGS, CO 80921 (719)459-0807

DEVELOPER:

COLA, LLC

555 MIDDLE PARKWAY COLORADO SPRINGS, CO 80921 (719)459-0807

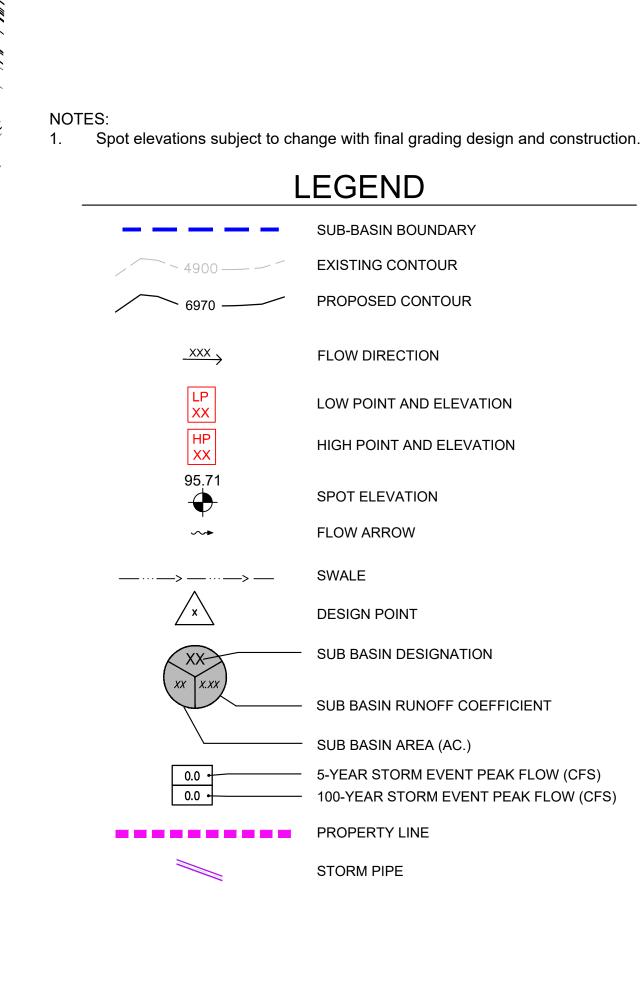
CITY PLANNING FILE NO: AR PUD 19-00053

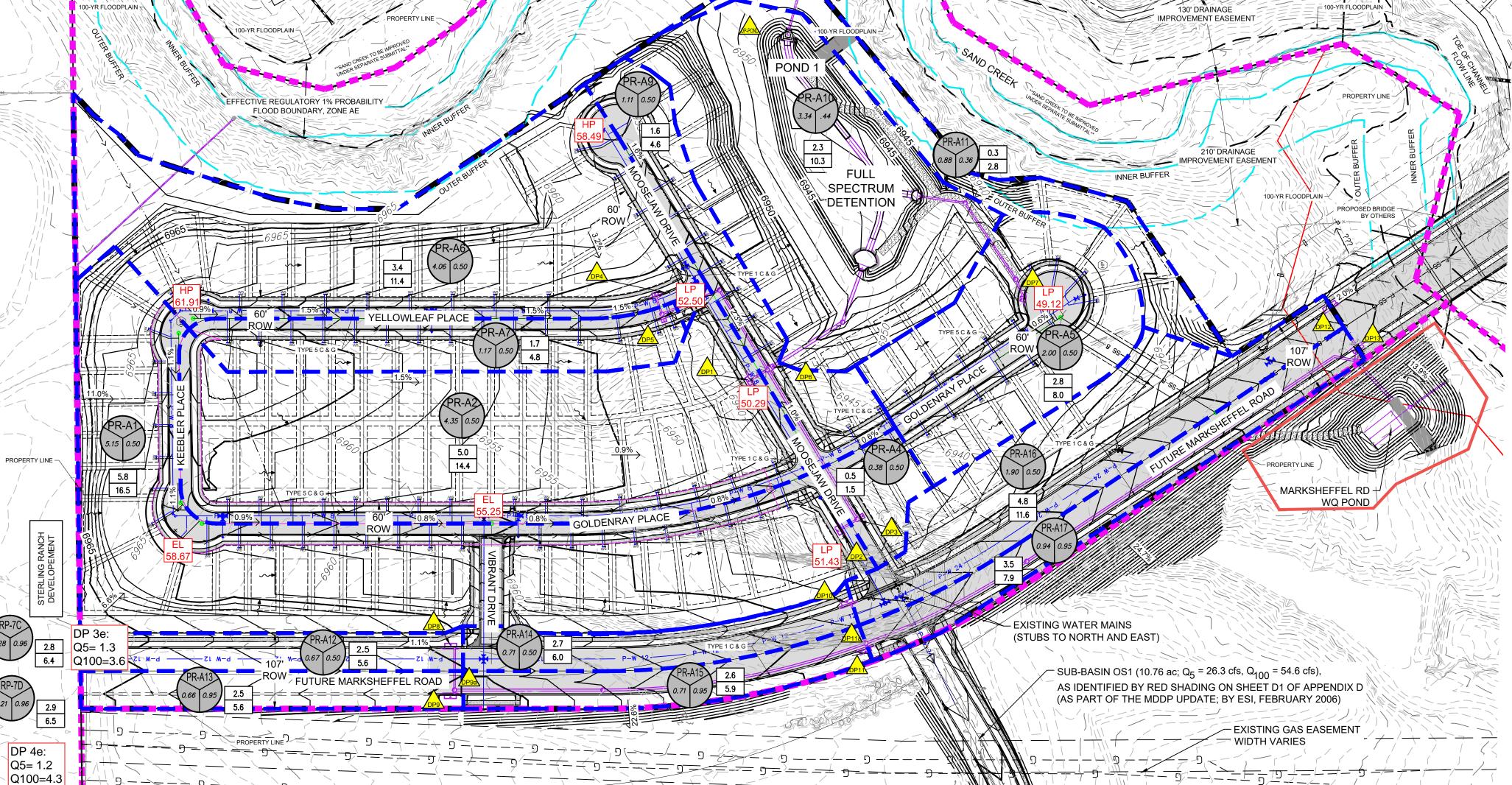
ISSUE: MARCH, 2020

DRAWING INFORMATION:

MAP

APPROVED BY:


PROJECT NO: 17.886.004.000 DRAWN BY: CRAIG DOLD CHECKED BY: JEFF ODOR


JEFF ODOR

DRAINAGE **REPORT**

(IN FEET) 1 inch = 100 ft.

Area	Area	Q5	Q100	Runoff	Runoff
ID	(Acres)	(CTS)	(cfs)	Source	Type
RP-7C	1.28	2.8	6.4	Road	Concentrated
RP-7D	1.21	2.9	6.5	Road	Concentrated
A1	5.15	5.8	16.5l	Lots/Road	Sheet/Conc
A2	4.35	5.0	14.41	Lots/Road	Sheet/Conc
A4	0.38	0.5	1.5	Lots/Road	Sheet/Conc
A5	2.00	2.8	8.01	Lots/Road	Sheet/Conc
A6	4.06	3.4	11.4	Lots/Road	Sheet/Conc
A7	1.17	1.7	4.8	Lots/Road	Sheet/Conc
A9	1.11	1.6	4.6	Lots/Road	Sheet/Conc
A10	3.34	2.3	10.3	Pond	Sheet
A11	0.88	0.3	2.8	Channel	Concentrated
A12	0.67	2.5	5.6	Road	Concentrated
A13	0.66	2.5	5.6	Road	Concentrated
A14	0.71	2.7	6.0	Road	Concentrated
A15	0.71	2.6	5.9	Road	Concentrated
A16	1.90	4.8	11.6	Lots/Road	Sheet/Conc
A17	0.94	3.5	7.9	Road	Concentrated
	NOTE:	BASIN	1 A3 & A8	3 OMITTED.	

Project Name: Aspen Meadows Filing No. 1 Addendum
Project Location: NE Colorado Springs
Designer JTS
Notes: Proposed Conditions

Average Channel Velocity Average Slope for Initial Flow 5 (If specific channel vel is used, this will be ignored)
0.04 (If Elevations are used, this will be ignored)

	Area							Rational '	C' Values							Flow Le	engths			Initial I	low			Channel	Flow		Tc		R	ainfall Inte	nsity & Ra	tional Flow	Rate	
Basin	sf a		Surface C5	,, ,	,		ırface Type (Pavement C100		Acre Lots)	0.14) Interpolate)	Acre lots)	ts) 1/8 & 1/4									Average Init													
Sterling Ranch Interim Flows	101795	2.34	0.08	0.36	101,795	0.90	0.96	0.30	0.50	0.42	0.57		0.08	0.36	273	273	315	315	6971	6968	0.011 30	0.5	6968 69	966 0.00	6	1.1	31.6	1.5 0.3	1.9	0.4 2.3	0.4 2.	9 2.5 3	3.4 2.9	4.0 3.4

FINAL DRAINAGE REPORT FOR STERLING RANCH FILING 3

Prepared For:

SR Land, LLC 20 Boulder Crescent, Suite 200 Colorado Springs, CO 80903 (719) 491-3024

> April 2022 Project No. 25188.02 SF-2132

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593

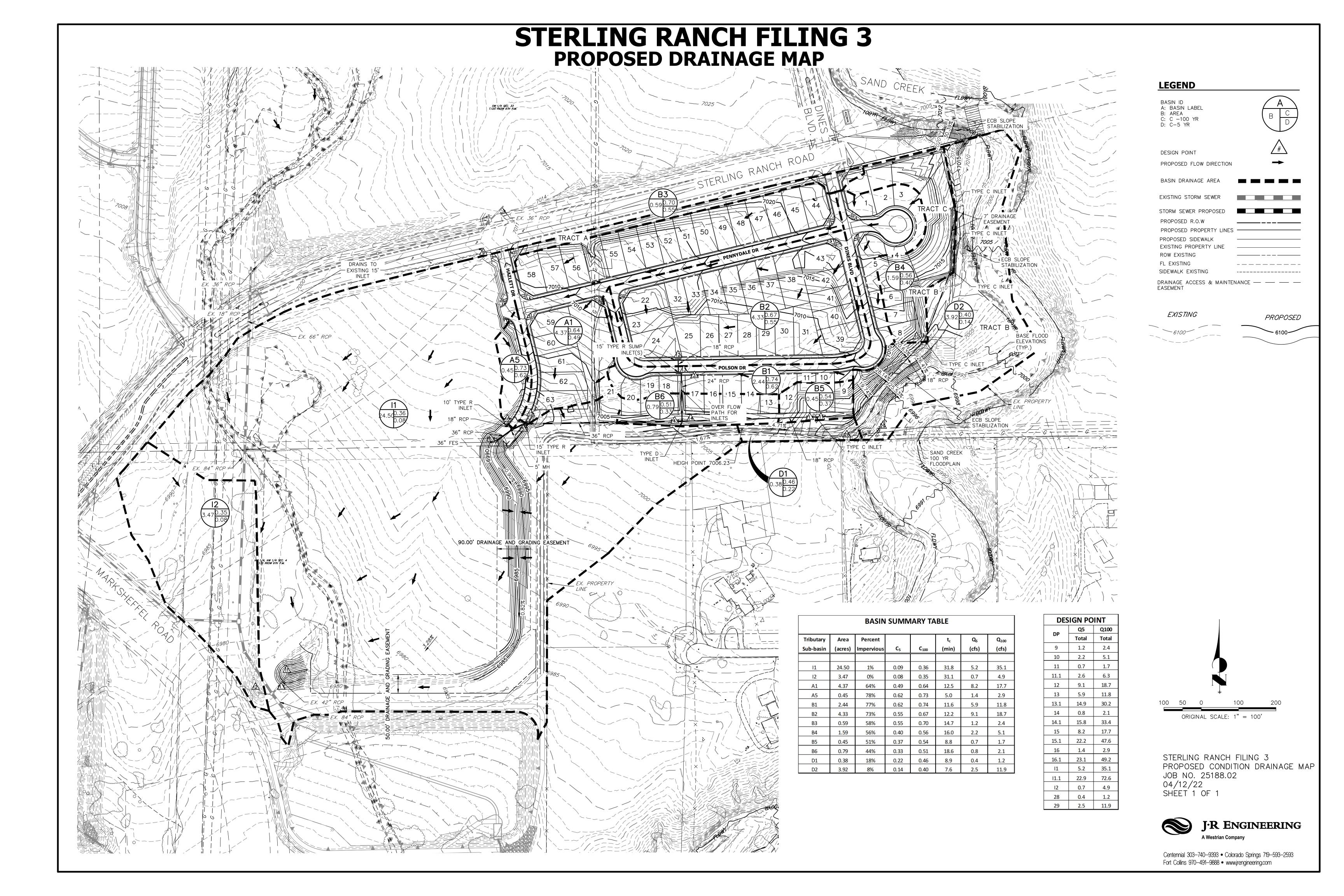
STANDARD FORM SF-3 - PROPOSED STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

	Project Name: Sterling Ranch Filing 3
Subdivision: Sterling Ranch Subdivision	Project No.: 25188.02
Location: El Paso County	Calculated By: CJD
Design Storm: 5-Year	Checked By:
·	Date: 4/12/22

	1			DIRE	CT RUI	NOFF			T	OTAL R	UNOF	F	STRE	ET/SW	/ALE		PII	PE		TRAV	EL TIN	ИE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	9	В3	0.59	0.55	14.7	0.33	3.55	1.2															Offsite flow to existing inlet in Sterling Ranch Road Piped to existing storm sewer in Sterling Ranch Road
	10	В4	1.59		16.0		3.43	2.2								2.2	0.63	1.0	12	380	4.7		Rear lot and area inlets Piped to DP 11.1
	11	B5	0.45				4.31	0.7															Area Inlet Piped to DP 14.1
	11.1								17.3	0.80	3.30	2.6				2.6	0.80	1.0	18	357	4.9		Piped to DP 14.1
	12	B2	4.33	0.55	12.2	2 37	3.83	9.1	17.0	0.00	0.00	2.0				9.1							Sump Inlet Piped to DP 13.1
	13	B1	2.44	0.62			3.91	5.9								7.1	2.07	1.0		- 00	0.7		Sump Inlet Piped to DP 13.1
	13.1		2	0.02	11.0	1.02	0.71	0.7	12.3	3.89	3.82	14.9				14.9	3.89	1.0	24	125	7.6		Piped to DP 14.1
	14	B6	0.79	0.33	18.6	0.26	3.20	0.8															Area Inlet Piped to DP 14.1
	14.1	50	0.77	0.00	10.0	0.20	0.20	0.0	18.6	4 95	3 20	15.8				15.8	4 95	1.0	24	415	7.7		Piped to DP 15.1
	15	A1	4.37	0.49	12.5	2 16	3.79	8.2		11.70	0.20	10.0	0.8	0.21	1.6			1.0		230	2.5	1.5	On-grade Inlet
	15.1	711	1.07	0.17	12.0	2.10	0.77	0.2	19.5	7.11	3 13	22.2					7.11	1.0	24	45	8.2	0.1	Captured Flows piped to DP 15.1, Bypass flow to DP 17 On-grade Inlet Captured Flows piped to DP 16.1
	16	A5	0.45	0.62	5.0	U 28	5.16	1.4	17.5	7.11	5.15	ZZ.Z				22.2	7.11	1.0	21	73	0.2		On-grade Inlet Captured Flows piped to DP 16.1
	16.1	713	0.43	0.02	3.0	0.20	3.10	1.4	19.6	7 30	3.12	23.1				23.1	7.39	1.0	24	125	8.2	0.3	FES release to drainage channel
	11	11	24.50	0.00	31 0	2 17	2.40	5.2	17.0	7.57	5.12	25.1				23.1	7.57	1.0	27	123	0.2	0.5	FES Total and The Test Total and Test Test Test Test Test Test Test Test
	11.1		24.50	0.07	31.0	2.17	2.40	5.2	31.8	9.56	2.40	22.9				22.9	9.56	0.4	42	62	6.1	0.2	Combined flow from DPI1 & DP16.1 Piped to Existing 84" RCP
	12	12	3.47	0.08	31.1	0.28	2.43	0.7	31.0	7.50	2.40	22.7				22.7	7.30	0.4	42	02	0.1		Piped to Existing 84" RCP
	28	D1	0.38	0.22				0.4															Sheet flow to Sand Creek
	29	D1	3.92	0.14	7.6			2.5															Sheet flow to Sand Creek
	27	DZ	3.72	0.14	1.0	0.50	4.03	2.3															SHEET HOW TO JUILU CLEEK
Notes:																							

Notes:
Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.
All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

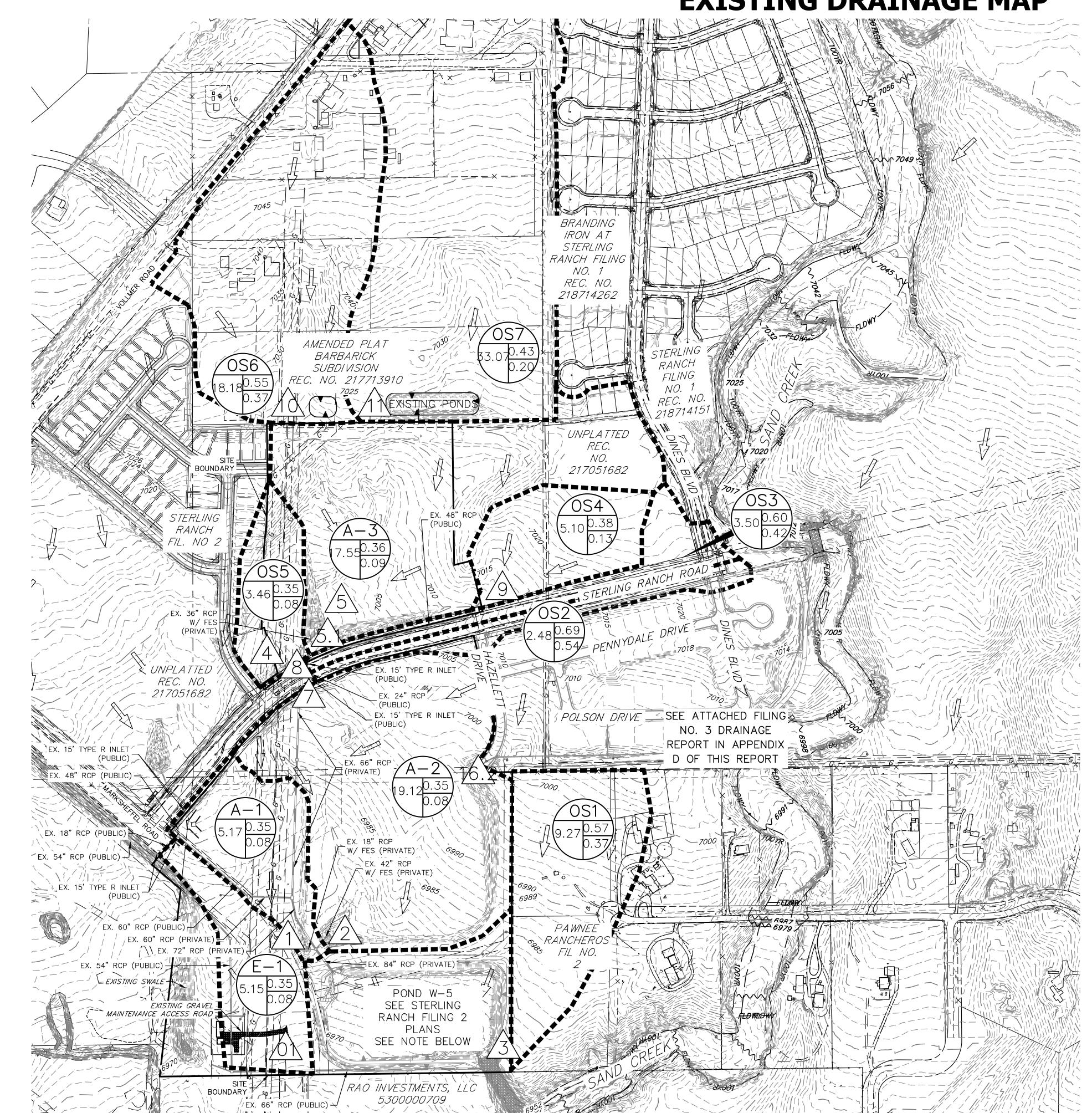
STANDARD FORM SF-3 - PROPOSED


STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name:	Sterling Ranch Filing 3
Subdivision: Sterling Ranch Subdivision	Project No.:	25188.02
Location: El Paso County	Calculated By:	CJD
Design Storm: 100-Year	Checked By:	
	Date:	4/12/22

				DIF	RECT RU	JNOFF			Ţ	OTAL F	RUNOFF		STRE	ET/SW/	ALE		PIP	E		TRAV	/EL TII	ЛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_{t} (min)	REMARKS
	9	В3	0.59	0.70	14.7	0.41	5.96	2.4															Offsite flow to existing inlet in Sterling Ranch Road Piped to existing storm sewer in Sterling Ranch Road
	10	B4	1.59	0.56	16.0	0.88	5.75	5.1								5.1	0.88	1.0	12	380	6.5	1.0	Rear lot and area inlets Piped to DP 11.1
	11	B5	0.45				7.24	1.7															Area Inlet Piped to DP 14.1
	11.1								17.0	1.12	5.60	6.3				6.3	1.12	1.0	18	357	6.2	1.0	Piped to DP 14.1
	12	B2	4.33	0.67	12.2	2.90	6.43	18.7								18.7	2.90	1.0			10.6		Sump Inlet Piped to DP 13.1
	13	B1	2.44	0.74	11.6	1.80	6.56	11.8															Sump Inlet Piped to DP 13.1
	13.1								12.3	4.70	6.42	30.2				30.2	4.70	1.0	24	125	9.6	0.2	Piped to DP 14.1
	14	В6	0.79	0.51	18.6	0.40	5.37	2.1															Area Inlet Piped to DP 14.1
	14.1								18.6	6.22	5.37	33.4				33.4	6.22	1.0	24				Piped to DP 15.1
	15	A1	4.37	0.64	12.5	2.78	6.37	17.7					10.3	1.618	1.6	7.4				230	2.5	1.5	On-grade Inlet Captured Flows piped to DP 15.1, Bypass flow to DP 17
	15.1								19.2	9.00	5.28	47.6				47.6	9.00	1.0	24	45	15.2	0.0	On-grade Inlet Captured Flows piped to DP 16.1
	16	A5	0.45	0.73	5.0	0.33	8.66	2.9															On-grade Inlet Captured Flows piped to DP 16.1
	16.1								19.3	9.33	5.28	49.2				49.2	9.33	1.0	24	125	15.7	0.1	FES release to drainage channel
	I1	I1	24.50	0.36	31.8	8.73	4.02	35.1															FES
	11.1								31.8	18.06	4.02	72.6				72.6	18.06	0.4	42	62	7.6	0.1	Combined flow from DPI1 & DP16.1 Piped to Existing 84" RCP
	12	12	3.47	0.35	31.1	1.21	4.07	4.9															Piped to Existing 84" RCP
	28	D1	0.38	0.46	8.9	0.17	7.22	1.2															Sheet flow to Sand Creek
	29	D2	3.92	0.40	7.6	1.56	7.61	11.9															Sheet flow to Sand Creek


Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

Appendix E Drainage Maps

STERLING RANCH FILING NO. 4 EXISTING DRAINAGE MAP

BASIN ID A: BASIN LABEL B: AREA C: C -100 YR D: C-5 YR DESIGN POINT

EXISTING FLOW DIRECTION

LEGEND

FL EXISTING

N DRAINAGE AREA

SITE BOUNDARY
EXISTING PROPERTY LINE
ROW EXISTING

EXISTING

EXISTING

EXISTING

EXISTING

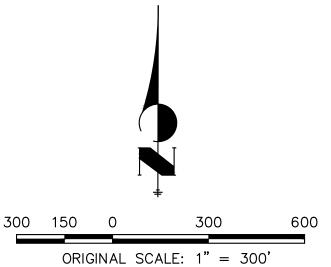
EXISTING

EXISTING

EXISTING

SIDEWALK EXISTING ------
DRAINAGE ACCESS & MAINTENANCE — — — — EASEMENT

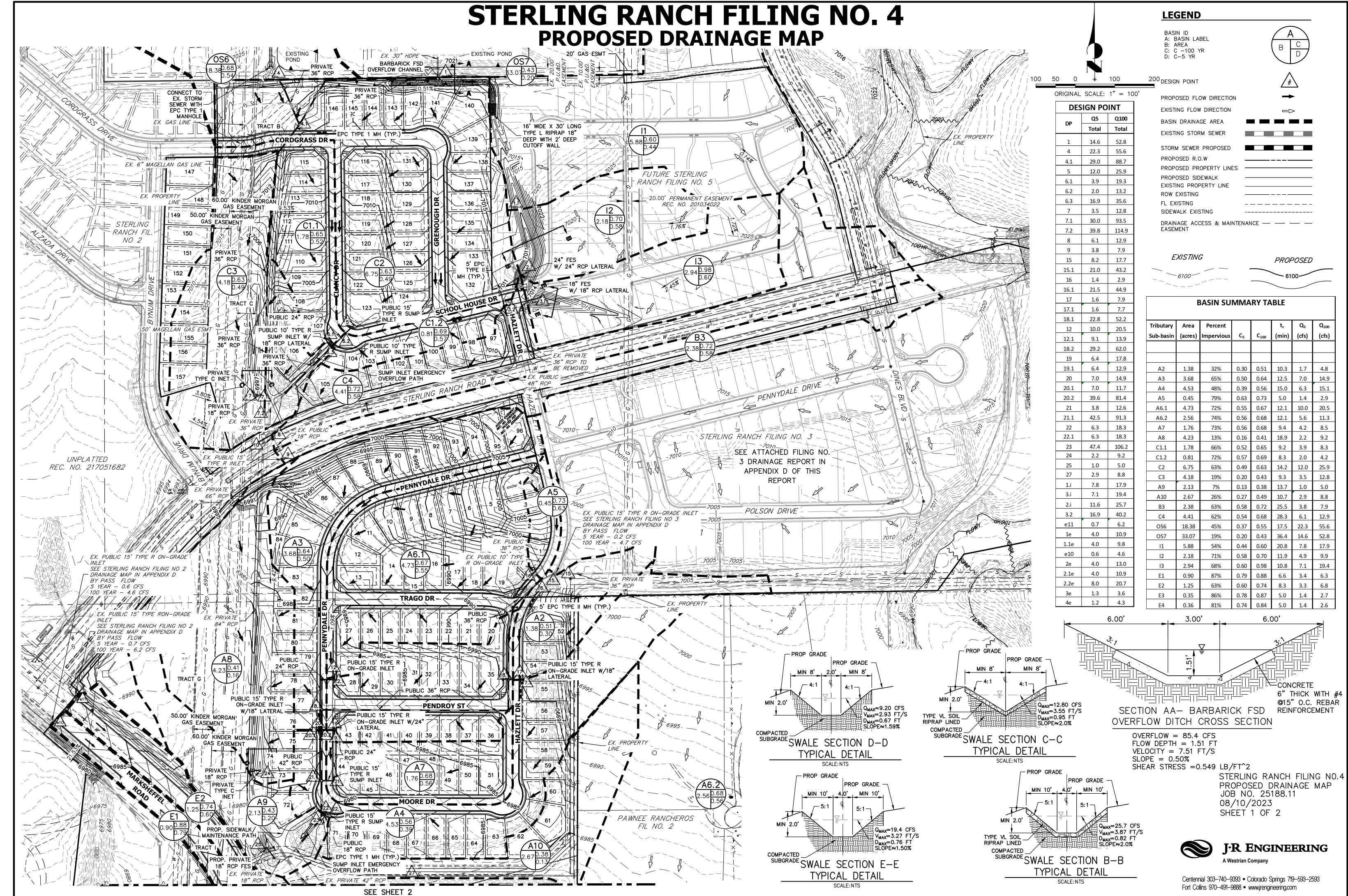
EXISTING

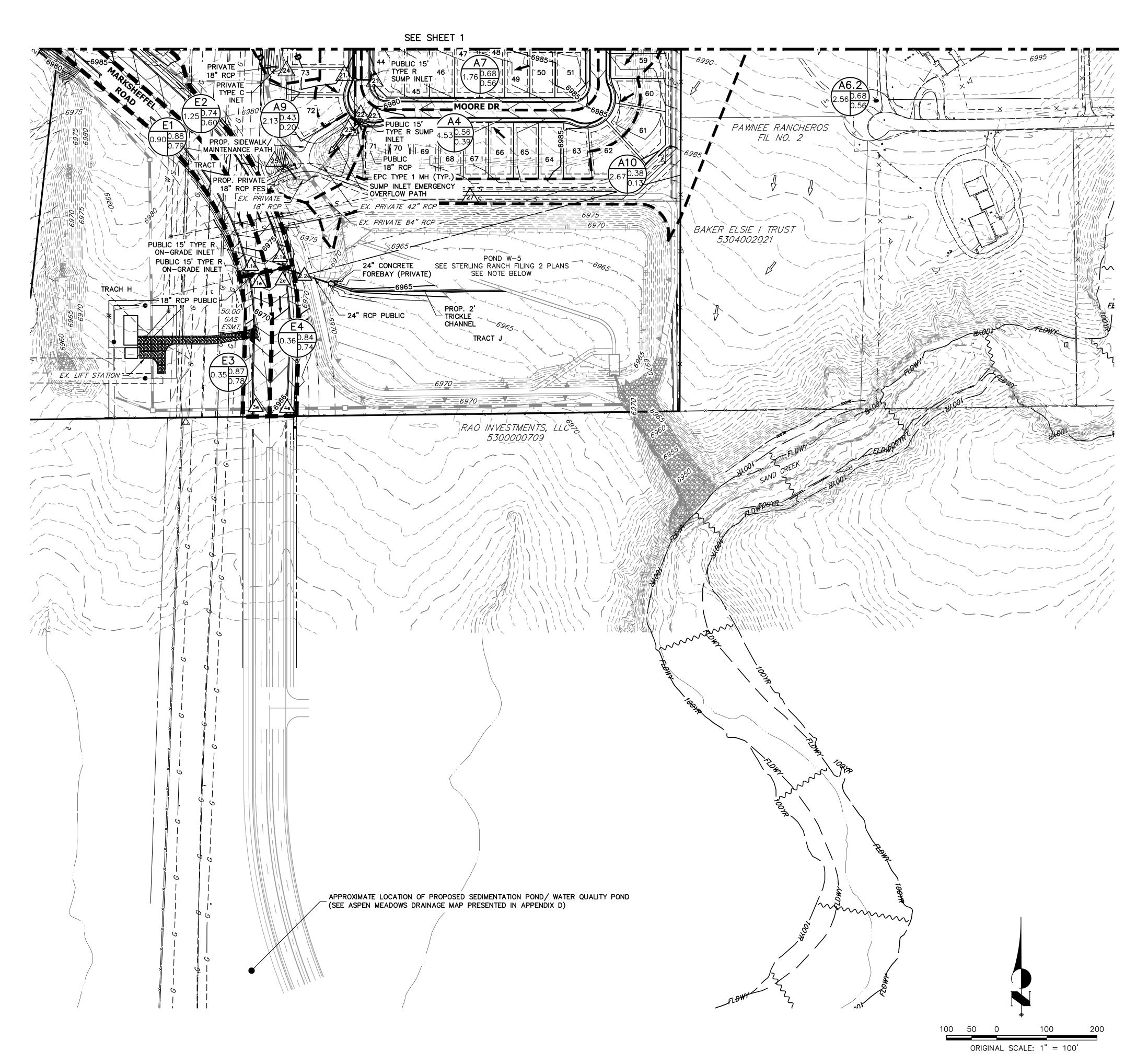

DES	DESIGN POINT DP Q5 Q100 Total Total 1 1.1 8.0 16.2 23.1 49.2														
DD	Q5	Q100													
DP	Total	Total													
1	1.1	8.0													
16.2	23.1	49.2													
2	22.7	68.5													
3	9.5	24.6													
4	0.7	5.0													
7	4.3	9.1													
8	5.0	12.1													
9	1.6	7.9													
10	22.2	55.2													
11	14.6	52.8													
5	5.1	33.1													

5.1 29.5 89.6 O1 1.3 9.5

BASIN SUMMARY TABLE									
	I								
Tributary	Area	Percent			t _c	\mathbf{Q}_{5}	Q_{100}		
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)		
A-1	5.17	0%	0.08	0.35	27.4	1.1	8.0		
A-2	19.12	0%	0.08	0.35	28.7	3.9	28.6		
A-3	17.55	2%	0.09	0.36	19.4	5.1	33.1		
OS1	9.27	37%	0.37	0.57	24.4	9.5	24.6		
OS2	2.48	56%	0.54	0.69	19.0	4.3	9.1		
OS3	3.50	42%	0.42	0.60	16.2	5.0	12.1		
OS4	5.10	8%	0.13	0.38	31.1	1.6	7.9		
OS5	3.46	0%	0.08	0.35	30.4	0.7	5.0		
OS6	18.18	46%	0.37	0.55	17.5	22.2	55.2		
OS7	33.07	19%	0.20	0.43	36.4	14.6	52.8		
E-1	5.15	0%	0.08	0.35	19.4	1.3	9.5		

NOTE:


EXISTING GRADING ASSUMES FILING 2, STERLING RANCH ROAD, & MARKSHEFFEL ROAD ARE BUILT.


STERLING RANCH FILING NO. 4
EXISTING DRAINAGE MAP
JOB NO. 25188.11
01/18/23
SHEET 1 OF 1

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

STERLING RANCH FILING NO. 4 PROPOSED DRAINAGE MAP

DES	IGN PO	INT	
DD	Q5	Q100	
DP	Total	Total	
1	14.6	52.8	
4	22.3	55.6	
4.1	29.0	88.7	
5	12.0	25.9	
6.1	3.9	19.3	
6.2	2.0	13.2	
6.3	16.9	35.6	
7	3.5	12.8	
7.1	30.0	93.5	
7.2	39.8	114.9	
8	6.1	12.9	
9	3.8	7.9	
15	8.2	17.7	
15.1	21.0	43.2	
16	1.4	2.9	
16.1	21.5	44.9	
17	1.6	7.9	
17.1	1.6	7.7	
18.1	22.8	52.2	
12	10.0	20.5	
12.1	9.1	13.9	
18.2	29.2	62.0	
	6.4		
19		17.8	
19.1	6.4	12.9	
20	7.0	14.9	
20.1	7.0	11.7	
20.2	39.6	81.4	
21	3.8	12.6	
21.1	42.5	91.3	
22	6.3	18.3	
22.1	6.3	18.3	
23 24	47.4	106.2	
	2.2	9.2	
25	1.0	5.0 8.8	
27	2.9		
1.i	7.8	17.9	
3.i	7.1	19.4	
2.i	11.6	25.7	
3.2	16.9	40.2	
e11	0.7	6.2	
1e	4.0	10.9	
1.1e	4.0	9.8	
e10	0.6	4.6	
2e	4.0	13.0	
2.1e	4.0	10.9	
2 20	0.0	1 20 7	

2.2e 8.0 20.7

3e 1.3 3.6 4e 1.2 4.3

	BASIN ID A: BASIN LABEL B: AREA C: C -100 YR D: C-5 YR	A B C D
С	DESIGN POINT	_#
F	PROPOSED FLOW DIRECTION	-
E	EXISTING FLOW DIRECTION	
E	BASIN DRAINAGE AREA	
E	EXISTING STORM SEWER	
S	STORM SEWER PROPOSED	
F	PROPOSED R.O.W	
F	PROPOSED PROPERTY LINES	
F	PROPOSED SIDEWALK	
E	EXISTING PROPERTY LINE	

LEGEND

ROW EXISTING

FL EXISTING

EASEMENT

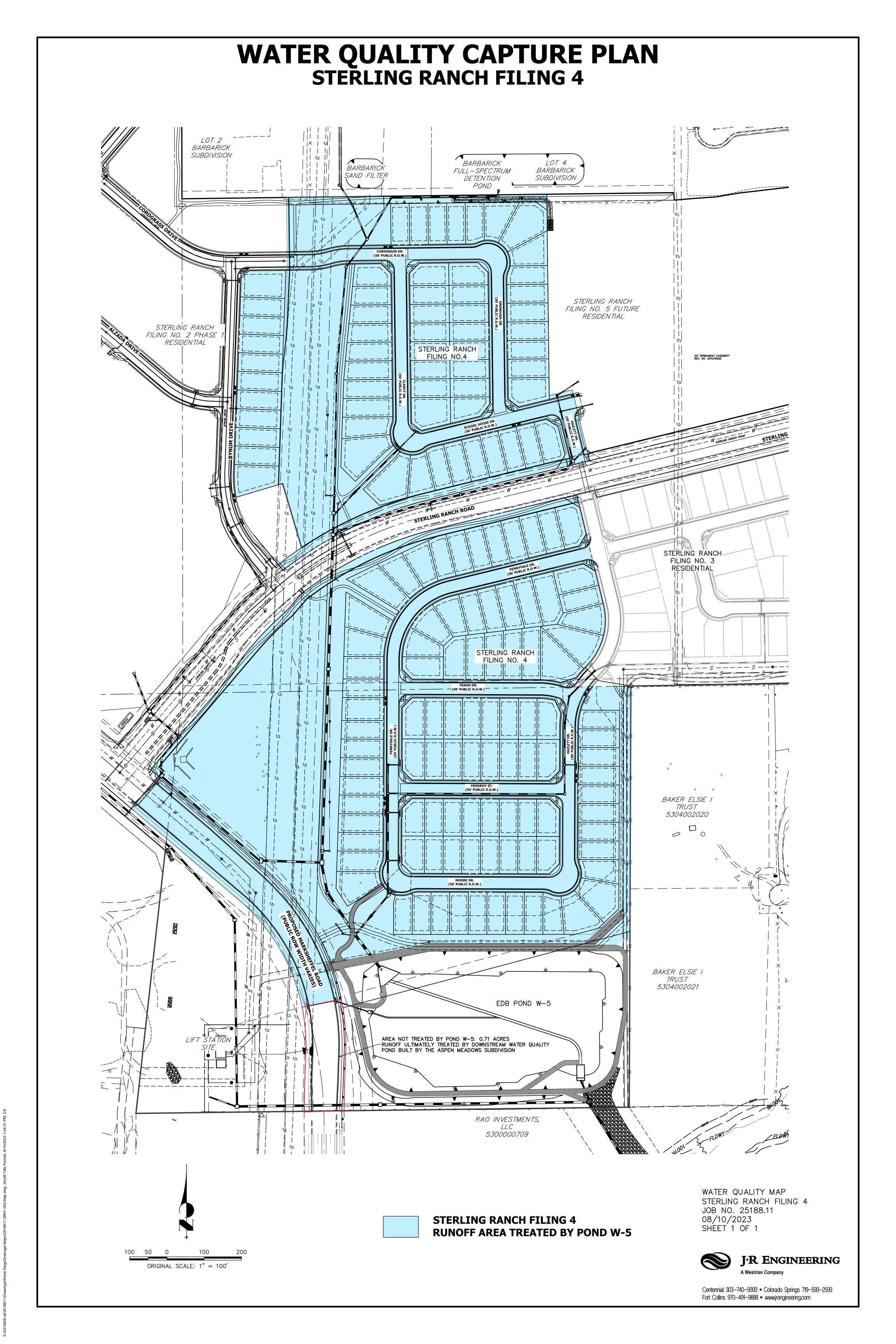
SIDEWALK EXISTING

6100

DRAINAGE ACCESS & MAINTENANCE — — —

PROPOSED

ributary ub-basin Area (acres) Percent Impervious C s C C C (min) t c (min) (cfs) Q s (cfs) A2 1.38 32% 0.30 0.51 10.3 1.7 4.8 A3 3.68 65% 0.50 0.64 12.5 7.0 14.9 A4 4.53 48% 0.39 0.56 15.0 6.3 15.1 A5 0.45 79% 0.63 0.73 5.0 1.4 2.9 A6.1 4.73 72% 0.55 0.67 12.1 10.0 20.5 A6.2 2.56 74% 0.56 0.68 12.1 5.6 11.3 A7 1.76 73% 0.56 0.68 9.4 4.2 8.5 A8 4.23 13% 0.16 0.41 18.9 2.2 9.2 C1.1 1.78 66% 0.52 0.65 9.2 3.9 8.3 C1.2 0.81 72% 0.57 0.69<


STERLING RANCH FILING NO. 4
PROPOSED DRAINAGE MAP
JOB NO. 25188.11
08/10/2023
SHEET 2 OF 2

NOTE:

FOR ADDITIONAL INFORMATION REGARDING DESIGN POINTS, ROUTING, AND RUNOFF VALUES ASSOCIATED WITH POND W-5. REFER TO THE FILING 2 DRAINAGE MAP, AS SHOWN IN APPENDIX D OF THIS REPORT.

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

