

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

> APPROVED Engineering Department 07/22/2021 5:28;22 PM

dsdnijkamp
EPC Planning & Community
Development Department

July 20, 2021

Tech Contractors 3575 Kenyon Street, Suite 200 San Diego, California 92110

Attn: Raul Guzman

Re: Pavement Recommendations

Rolling Hills at Meridian Ranch Filing No.1, Phase 2

El Paso County, Colorado

Dear Mr. Guzman:

As requested, Entech Engineering, Inc. has obtained samples of the subgrade soils from sections of the roadways in the Rolling Hills at Meridian Ranch, Filing No.1, Phase 2, in El Paso County, Colorado. Laboratory testing to determine the pavement support characteristics of the soils was performed. This letter presents the results of the laboratory testing and provides pavement recommendations for the roadways.

Project Description

The roadways in this project consist of sections of Rolling Peaks Drive, Parkland Drive, Rolling Mesa Drive, Evening Creek Drive, and Cuatro Caminos Drive. The site layout and the locations of the test borings, drilled at approximate 500-foot intervals, are shown on the Test Boring Location Map, Figure 1.

Subgrade Conditions

Twelve exploratory test borings were drilled in the roadways to depths of approximately 5 to 10 feet. The Boring Logs are presented in Appendix A. Sieve Analysis and Atterberg Limit testing were performed on the subgrade soil samples obtained from the test borings for the purpose of classification. Three soil types were encountered in the test borings. The soils encountered at subgrade depth consisted of one general soil type; Soil Type 1; silty to clayey sand fill and native clayey sand. Soil Types 2 and 3 were encountered at depths below the subgrade influence zone. This report evaluates and presents recommendations for the Type 1 Soils for all of the roadway sections.

Sieve analyses performed on Type 1 soils indicated the percent passing the No. 200 sieve ranged from approximately 11 to 32 percent. Atterberg Limit Tests performed on the samples resulted in Liquid Limits ranging from no-value to 31 and Plastic Indexes of non-plastic to 18. Soil Type 1 consisted of silty to clayey sand fill and native clayey sand, which classified as A-2-6, A-2-4, and A-1-b soils based on the AASHTO classification system. These soils have good pavement support characteristics. Sulfate testing of the subgrade indicated that the soils exhibit a negligible potential for sulfate attack. Groundwater was not encountered in the test borings.

Swell testing was performed on several samples of the site soils based on their Plastic Indexes. Volume changes of 0.1 to 1.6 percent were measured. Based on the low volume changes, mitigation is not required. Laboratory test results are presented in Appendix B and are summarized on Table 1.

Tech Contractors
Pavement Recommendations
Rolling Hills at Meridian Ranch Filing No.1, Phase 2
El Paso County, Colorado
Page 2

California Bearing Ratio (CBR) testing was performed on a sample of Soil Type 1 to determine the support characteristic of the subgrade soils for the roadway sections. The results of the CBR testing, are presented in Appendix B and summarized as follows:

Soil Type1 - Clayey Sand Fill

R @ 90% = 17.0 R @ 95% = 70.0 Use R = 50.0 for design

Classification Testing

Liquid Limit	31
Plasticity Index	18
Percent Passing 200	22.5
AASHTO Classification	A-2-6
Group Index	1
Unified Soils Classification	SC

Pavement Design

The CBR testing was used to determine pavement sections for this site. The pavement sections were determined utilizing the El Paso County "Pavement Design Criteria and Report". The following classifications and ESAL values were used for this portion of the filing. The cul-de-sac portion of Rolling Peaks Drive classifies as an urban local (low-volume) roadway, which used an 18k ESAL value of 36,500 for design. Rolling Peaks Drive, Parkland Drive, Rolling Mesa Drive, Cuatro Caminos Drive, and Evening Creek Drive classify as urban local roads, which used an 18k ESAL value of 292,000 for design. The roadway classifications are shown in Figure No. 1. Pavement alternatives for asphalt over aggregate basecourse and cement stabilized subgrade sections are provided. Full depth asphalt sections are not allowed, per El Paso County. Design parameters used in the pavement analysis are as follows:

Reliability, Local Low Volume + Local	80%
Serviceability Index, Local Low Volume + Local	2.0
Resilient Modulus	13,168 psi
"R" Value Subgrade	50.0
Structural Coefficients:	
Hot Bituminous Pavement	0.44
Aggregate Base Course	0.11
Cement Stabilized Subgrade	0.12

Pavement calculations are attached in Appendix C. Pavement sections recommended for this phase of the filing are summarized as follows:

Tech Contractors
Pavement Recommendations
Rolling Hills at Meridian Ranch Filing No.1, Phase 2
El Paso County, Colorado
Page 3

Pavement Sections - Soil Type 1

<u>Urban Local (low volume)</u> – ESAL = 36,500

<u>Alternative</u>	<u>Asphalt</u>	Base Course	Cement Stabilized
	<u>(in)</u>	<u>(in)</u>	Subgrade (in.)
1. Asphalt + Base Course	3.0*	4.0*	
2. Asphalt + Cement Subgrade	4.0		8.0

Urban Local - ESAL = 292,000

<u>Alternative</u>	<u>Asphalt</u>	Base Course	Cement Stabilized
	<u>(in)</u>	<u>(in)</u>	Subgrade (in.)
 Asphalt + Base Course 	3.0*	8.0*	46 das
2. Asphalt + Cement Subgrade	4.0		8.0

Full depth sections are not allowed.

Mitigation

El Paso County criteria requires mitigation of expansive soils for roadway subgrade that have a swell of 2 percent or greater with a 150 pound per square foot surcharge. The Type 2 soils exhibited low swell potentials which did not exceed the threshold. Mitigation is not required.

Roadway Construction - Asphalt on Aggregate Base Course Alternatives

Prior to placement of the asphalt, the subgrade should be proofrolled and compacted to a minimum of 95 percent of its maximum Modified Proctor Dry Density, ASTM D-1557 at ± 2 percent of optimum moisture content. Any loose or soft areas should be removed and replaced with suitable materials. Base course materials should be compacted to a minimum of 95 percent of its maximum Modified Proctor Dry Density, ASTM D-1557 at ± 2 percent of optimum moisture content. Special attention should be given to areas adjacent to manholes, inlet structures and valves.

Roadway Construction - Cement Stabilized Subgrade Alternative

Prior to placement of the asphalt, the subgrade shall be stabilized by addition of cement to a depth of 8 inches, as determined by Roadway Classification. The depth of the required cement stabilized subgrade is shown in the previous table. The amount of cement applied shall be 2.0 percent (by weight) of the subgrade's maximum dry density as determined by the Modified Proctor Test (ASTM D-1557) based on laboratory cement stabilization testing. The cement should be spread evenly on the subgrade surface and be thoroughly mixed into the subgrade over the appropriate 8-inch depth such that a uniform blend of soil and cement is achieved. Prior to application or mixing of the cement, the upper 8 inches of subgrade should be thoroughly moisture conditioned to the soil's optimum water content or as much as 2 percent more than the optimum water content as necessary to provide a compactable soil condition. Densification of the cement-stabilized subgrade should be completed to obtain a compaction of at least 95 percent of the subgrade maximum dry density as determined by the Modified Proctor Test (ASTM D-1557). Satisfactory

^{*} Minimum sections required by the El Paso County Pavement Design Criteria and Report.

Tech Contractors
Pavement Recommendations
Rolling Hills at Meridian Ranch Filing No.1, Phase 2
El Paso County, Colorado
Page 4

compaction of the subgrade shall occur within 90 minutes from the time of mixing the cement into the subgrade.

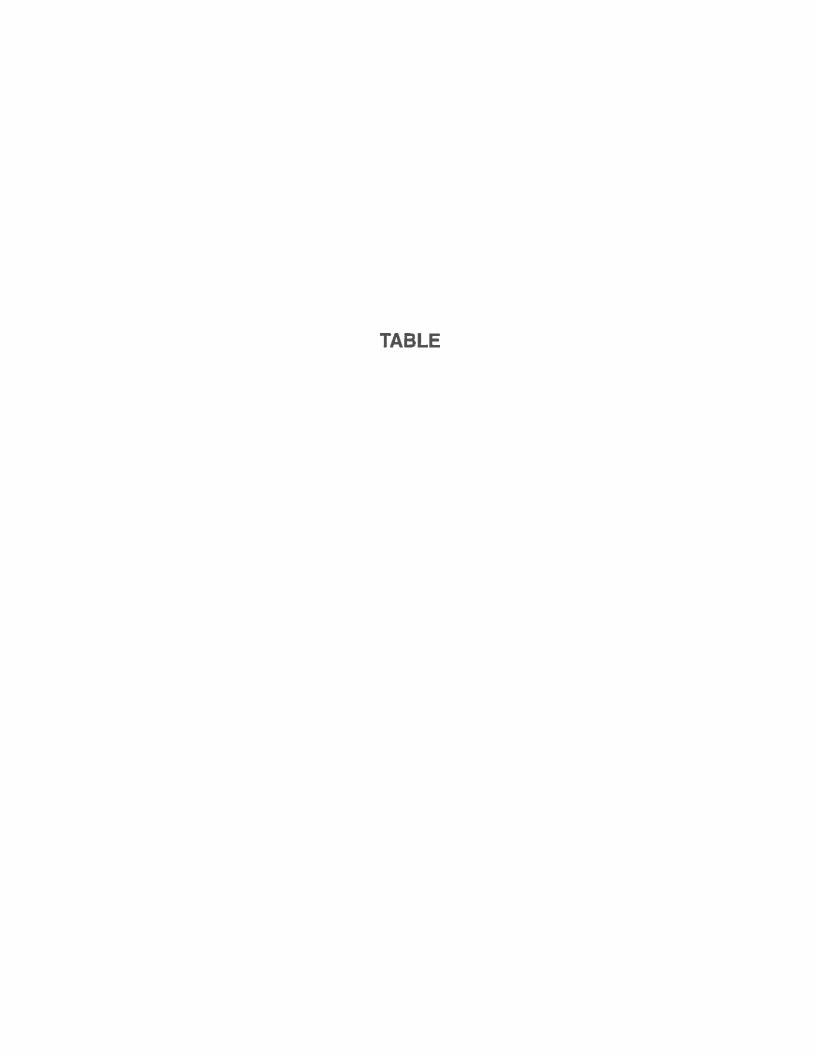
The following conditions shall be observed as part of the subgrade stabilization:

- Type I/II cement as supplied. A local supplier shall be used. All cement used for stabilization should come from the same source. If cement sources are changed a new laboratory mix design should be completed.
- Moisture conditioning of the subgrade and/or mixing of the cement into the subgrade shall
 not occur when soil temperatures are below 40°F. Cement treated subgrades should be
 maintained at a temperature of 40°F or greater until the subgrade has been compacted as
 required.
- Cement placement, cement mixing and compaction of the cement treated subgrade should be observed by a Soils Engineer. The Soils Engineer should complete in situ compaction tests and construct representative compacted specimens of the treated subgrade material for subsequent laboratory quality assurance testing.
- Pending the results of the field density testing, microfracturing of the stabilized subgrade will likely be required. Soil strengths in excess of 200 psi require microfracturing.

If significant grading is performed, the soils at subgrade may change. Modification to the pavement sections should be evaluated after site grading is completed.

In addition to the above guidance, the asphalt, cement, subgrade conditions, compaction of materials and roadway construction methods shall meet the El Paso County specifications.

We trust that this has provided you with the information you required. If you have any questions or need additional information, please do not hesitate to contact us.


Respectfully Submitted,

ENTECH ENGINEERING, INC.

Daniel P. Stegman

DPS/am Encl.

Entech Job No. 210527 AAprojects/2021/210527 pr phase 2 Reviewed by:

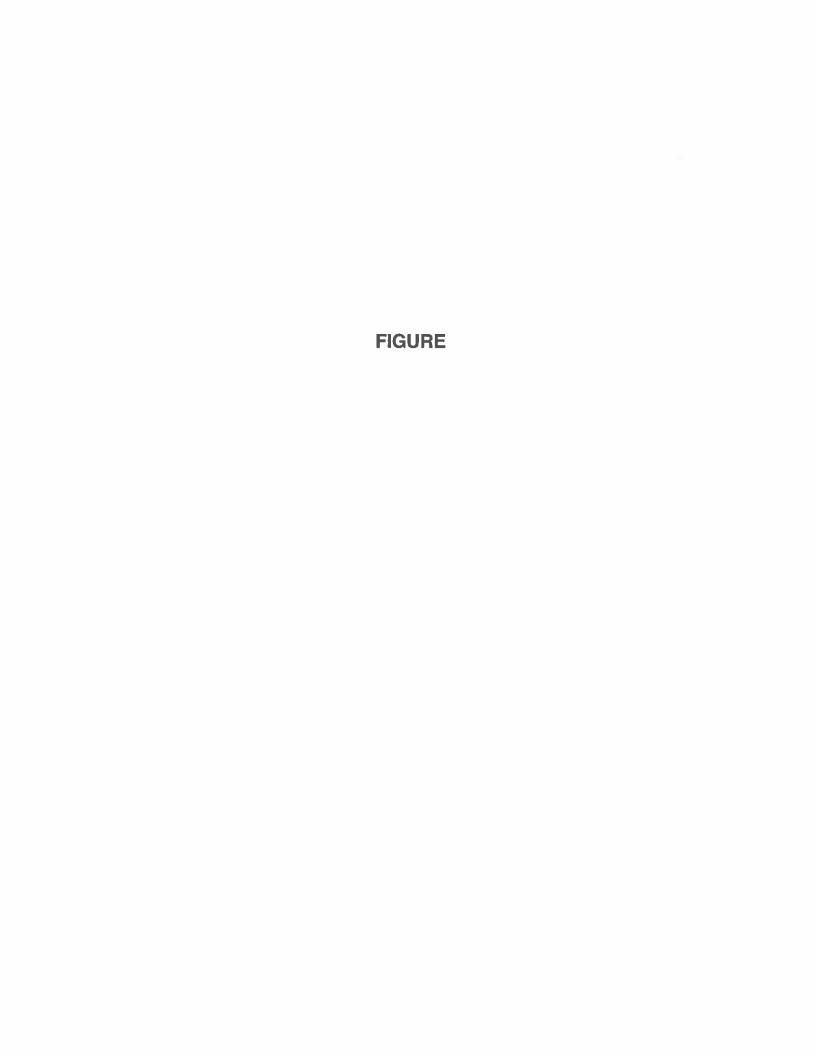
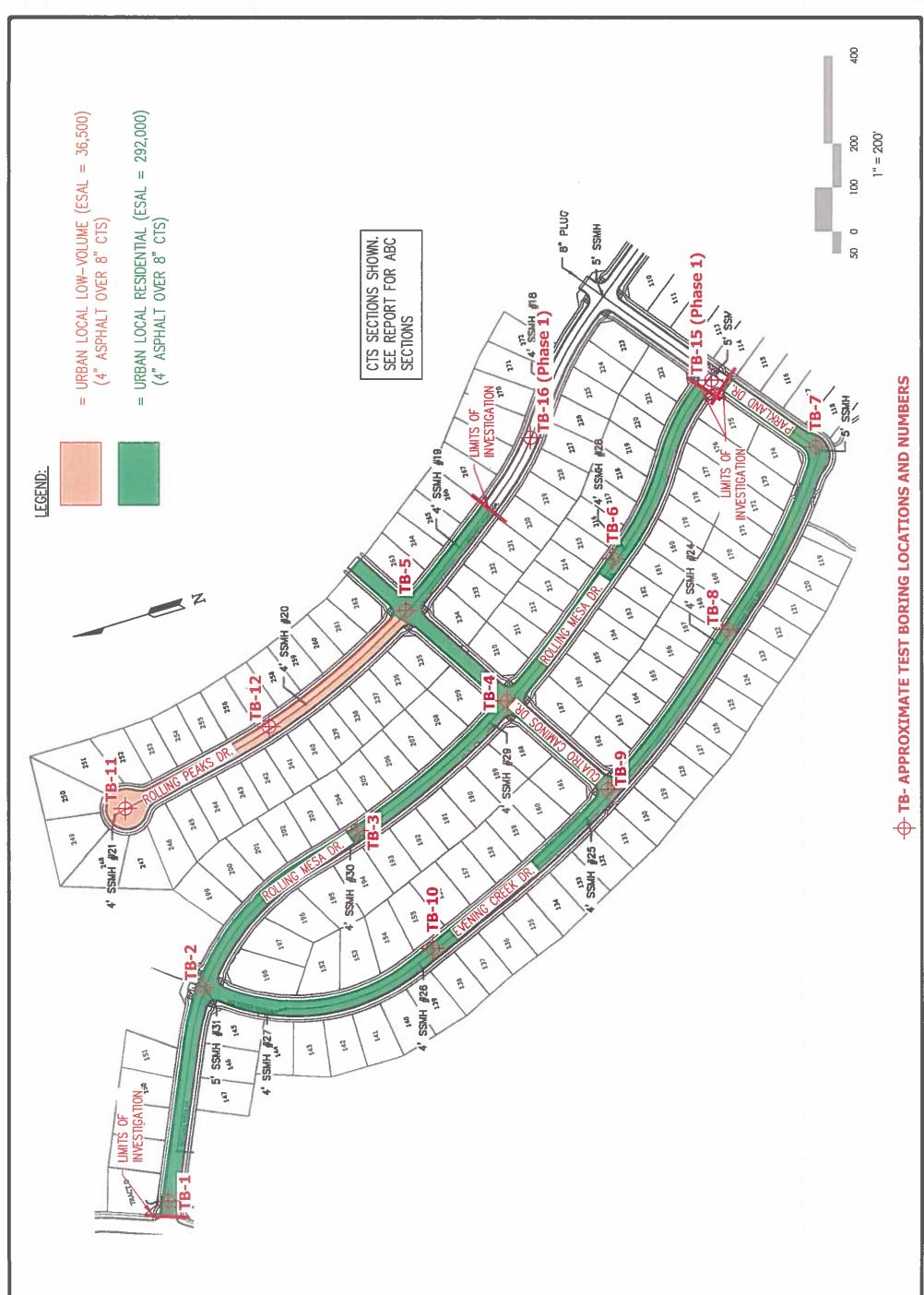


TABLE 1

SUMMARY OF LABORATORY TEST RESULTS

TECH CONTRACTORS ROLLING HILLS, F-1, P-2 210527 CLIENT PROJECT JOB NO.

MATER DENSING LIQUID PLASTIC SWELL LIMIT INDEX SULFATE SWELL LIMIT INDEX SULFATE CONSOL CLASSIFICATION (%) (PCF) (%)		_	_	_	_													
TEST WATER DRY PASSING LIQUID PLASTIC SULFATE AASHTO CONSOL NO. 200 SIEVE LIMIT INDEX SULFATE AASHTO CONSOL NO. 200 SIEVE LIMIT INDEX SULFATE AASHTO CONSOL NO. 200 SIEVE NO. 20	SOIL DESCRIPTION	FILL, SAND, CLAYEY	FILL, SAND, CLAYEY	FILL, SAND, SLIGHTLY SILTY	FILL, SAND, CLAYEY	FILL, SAND, SLIGHTLY SILTY	FILL, SAND, SILTY	FILL, SAND, SILTY	SAND, CLAYEY	SAND, CLAYEY	SAND, CLAYEY	SAND, CLAYEY	SAND, SLIGHTLY SILTY	SANDSTONE, SLIGHTLY SILTY				
TEST WATER DRY PASSING LIQUID PLASTIC SULFATE AASHTO C C C C C C C C C	UNIFIED	SC	SC	SM-SW	SM	SM	MS	SM	SC	SM-SW	SM	SM	SC	SC	SC	SC	SM-SW	SM-SW
TEST DEPTH WATER DENSITY NO. 200 SIEVE LIMIT INDEX SULFATE (%) (FCF) (%) (%) (%) (%) (WT %) (SWELL/ CONSOL (%)	1.6	9'0												0.1	0.1		
TEST DRY NO. 200 SIEVE LIMIT NO. 200 SIEVE SI	AASHTO CLASS.	A-2-6	A-2-6	A-1-b	A-1-b	A-1-b	A-1-b	A-1-b	A-2-4	A-1-b	A-1-b	A-1-b	A-2-4	A-2-4	A-2-7	A-2-7	A-1-b	A-1-b
TEST NATER DRY PASSING LIQUID LIQUID BORING DEPTH WATER DENSITY NO. 200 SIEVE LIMIT (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SULFATE (WT %)			<0.01			<0.01				<0.01				0.01		<0.01	<0.01
TEST BORING DEPTH WATER DENSITY NO. 200 SIEVE NO. (FT) (%) (PCF) (%) 6 0-3 9.2 121.3 22.5 1 1.2 8.7 118.0 32.4 2 1-2 8.7 118.0 32.4 2 1-2 8.7 118.0 32.4 2 1-2 8.7 118.0 32.4 1 1-2 1.2 116.9 1 10 1-2 116.9 1 1 1-2 116.9 1 1 1-2 116.9 1 1 1-2 116.9 1 1 1-2 117.8 1 1 1-2 117.8 1 1 1-2 117.8 1 1 1-2 117.8 1 1 1-2 117.8 1 1 1-2 117.8 1 1 1-2 117.8 1 1 1 1-2 117.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PLASTIC INDEX (%)	18	12	NP	NP	NP	NP	NP	8	NP	NP	ΝΡ	8	10	27	30	NP	₽ N
TEST DEPTH WATER DENSITY (%) (FT) (%) (PCF) (PCF	LIQUID LIMIT (%)	31	30	N	N/	N N	N<	N 2	26	N	N/	N 2	27	30	48	49		2
TEST BORING DEPTH WATER NO. (FT) (%) 6 0-3 9.2 1 1-2 8.7 2 1-2 8.7 4 1-2 5 1-2 6 1-2 6 1-2 7 1-2 9 1-2 10 1-2 11 1-2 11 1-2 11 1-2 11 1-2 11 1-2 11 1-2 11 1-2 11 1-1 11 1	PASSING NO. 200 SIEVE (%)	22.5	32.4	11.5	15.8	50.6	13.0	17.8	19.4	10.5	16.9	18.6	21.8	23.2	22.0	34.1	11.4	10.6
TEST BORING DEPTH NO. (FT) 6 0-3 1 1-2 3 1-2 5 1-2 6 1-2 6 1-2 10 1-2 11 1-2 10 1-2 11 1-2 10 1-2 11 1-2 10 1-2 11 1-2 10 1-2 10 1-2 11 1-2 11 1-2 10 1-2 11	DRY DENSITY (PCF)	121.3	118.0												119.3	122.1	_	-
TEST BORING NO. 0 6 6 6 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10		9.2	8.7												11.2	7.0		
	DЕРТН (FT)	0-3	1-2	1-2	1.2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	5	9	10	10
SOIL TYPE 1, CBR 1 1 1 1 1 1 1 2 2 2 2 2 2	TEST BORING NO.	9	-	2	က	4	2	9	7	8	6	10	Ξ	12	-	4	8	-
	SOIL	1, CBR	-	-	-	-	-	-	+=	-	-	-	-	-	0	2	2	၈



ROLLING HILLS RANCH, F1, PHS FCH CONTRACTORS TEST BORING LOCATION MAP

APPENDIX A: Test Boring Logs

TEST BORING NO. TEST BORING NO. DATE DRILLED 6/4/2021 DATE DRILLED 6/10/2021 Job# 210527 CLIENT **TECH CONTRACTORS** LOCATION ROLLING HILLS, F-1, P-2 REMARKS REMARKS Watercontent % Blows per foot foot Watercontent Blows per Samples Depth (ft) Soil Type Soil Type Samples Depth (ft) Symbol Symbol DRY TO 10', 6/4/21 DRY TO 5', 6/10/21 FILL 0-4', SAND, CLAYEY, FINE FILL 0-5', SAND, SLIGHTLY SILTY, TO MEDIUM GRAINED, BROWN, 29 6.1 1 FINE TO COARSE GRAINED, 15 1.8 1 MEDIUM DENSE, MOIST BROWN, MEDIUM DENSE, DRY TO MOIST 47 2 SAND, CLAYEY, FINE TO MEDIUM 9.0 27 5.9 1 GRAINED, TAN, DENSE, MOIST SANDSTONE, SLIGHTLY SILTY, FINE TO COARSE GRAINED, TAN, VERY DENSE, MOIST 10 <u>50</u> 5.2 3 10 8" 15 15 20 20

· . · ·		_
(>	ENTECH ENGINEERING, INC. 505 ELKTON DRIVE	
	COLORADO SPRINGS, COLORADO	- 84

	TES	T BORING LO	G
DRAWN:	DATE	CHECKED:	7/8/21

JOB NO. 210527
FIG NO. A- 1

TEST BORING NO. TEST BORING NO. DATE DRILLED 6/10/2021 DATE DRILLED 6/10/2021 Job# 210527 CLIENT **TECH CONTRACTORS** LOCATION ROLLING HILLS, F-1, P-2 REMARKS REMARKS Blows per foot Blows per foot Watercontent Watercontent Depth (ft) Soil Type Soil Type Samples Samples Symbol Symbol Depth (DRY TO 5', 6/10/21 DRY TO 10', 6/10/21 FILL O-5', SAND, SILTY, FINE TO FILL O-8, SAND, SILTY, FINE TO COARSE GRAINED, BROWN, 15 5.4 COARSE GRAINED, BROWN, 7 9.6 1 MEDIUM DENSE, MOIST LOOSE, MOIST 5 12 5.0 1 5 9.9 1 SAND, CLAYEY, FINE TO MEDIUM 10 GRAINED, TAN, MEDIUM DENSE. 10 29 11.7 2 MOIST 15 15 20 20

	TEST	r Boring Lo	G
DRAWN:	DATE	CHECKED:	7/8/21

JOB NO. 210527 FIG NO. A- 2

TEST BORING NO. ITEST BORING NO. 6 DATE DRILLED 6/10/2021 DATE DRILLED 6/10/2021 Job# 210527 CLIENT **TECH CONTRACTORS** LOCATION ROLLING HILLS, F-1, P-2 REMARKS REMARKS Blows per foot Blows per foot Watercontent Watercontent Type Depth (ft) Soil Type Samples Samples Symbol Symbol Depth (DRY TO 5', 6/10/21 DRY TO 5', 6/10/21 FILL 0-5', SAND, SILTY, FINE TO FILL 0-5', SAND, SILTY, FINE TO COARSE GRAINED, BROWN, 8 10.8 COARSE GRAINED, BROWN, 12 5.7 LOOSE TO MEDIUM DENSE, MEDIUM DENSE TO LOOSE, MOIST MOIST 5 12 6.5 7 5.2 10 10 15 15 20

	TES	T BORING LOG	
DRAWN:	DATE	CHECKED	7/0/2/

210527 FIG NO... A- 3

TEST BORING NO. 7 TEST BORING NO. 8 DATE DRILLED 6/10/2021 DATE DRILLED 6/10/2021 Job# 210527 CLIENT **TECH CONTRACTORS** LOCATION ROLLING HILLS, F-1, P-2 REMARKS REMARKS Blows per foot Watercontent Watercontent Blows per Depth (ft) Soil Type Samples Samples Symbol Symbol Depth (Soil DRY TO 5', 6/10/21 DRY TO 10', 6/10/21 FILL O-5', SAND, CLAYEY, FINE FILL 0-9, SAND, SILTY, FINE TO GRAINED, BROWN, MEDIUM 10 7.3 1 COARSE GRAINED, BROWN, 15 5.5 1 DENSE, MOIST MEDIUM DENSE, MOIST 5 11 6.0 1 11 6.2 10 SAND, SLIGHTLY SILTY, FINE 10 46 2 1:11 8.1 TO COARSE GRAINED, TAN, DENSE, MOIST 15 15 20 20

	165	BURING LUG	
DRAWN:	DATE	CHECKED	7/8/1/21

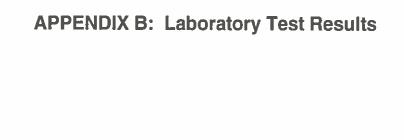
JOB NO... 210527 FIG NO... A- 4

TEST BORING NO. 9 TEST BORING NO. 10 DATE DRILLED 6/10/2021 DATE DRILLED 6/10/2021 Job# 210527 CLIENT **TECH CONTRACTORS** LOCATION ROLLING HILLS, F-1, P-2 REMARKS REMARKS Watercontent % % Blows per foot Blows per foot Watercontent Type Depth (ft) Soil Type Samples Samples Symbol Symbol Depth (Soil DRY TO 5', 6/10/21 DRY TO 10', 6/10/21 FILL O-5', SAND, SILTY, FINE TO FILL 0-10', SAND, SILTY, FINE TO 8.2 COARSE GRAINED, BROWN, COARSE GRAINED, BROWN, 14 7.1 1 LOOSE, MOIST MEDIUM DENSE, MOIST 5 6 12.8 5 1 27 7.6 1 10 10 11 6.3 1 15 15 20 20

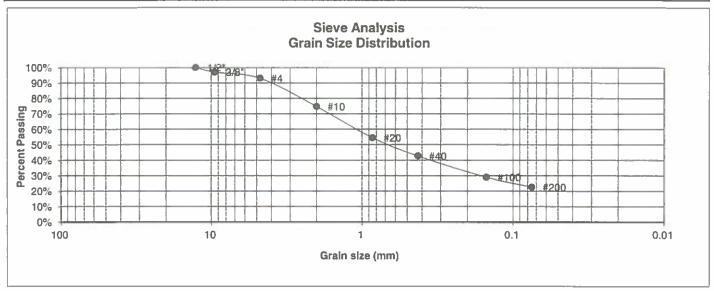
DRAWN

	TEST	BORING	LOC	à
DATE:		CHECKED:	7 1	_DATE: /_ ,
DAIL		CHECKED	/ . !	

1/8/21


210527 FIG NO. A- 5

TEST BORING NO. 11 ITEST BORING NO. 12 DATE DRILLED 7/15/2021 DATE DRILLED 7/15/2021 Job# 210527 CLIENT **TECH CONTRACTORS** LOCATION ROLLING HILLS, F-1, P-2 REMARKS REMARKS Watercontent % Blows per foot Blows per foot Watercontent BAY TO 5', 7/15/21 Depth (ft) Samples Samples Soil Type Symbol Symbol DRY TO 10', 7/15/21 FILL O-10', SAND, CLAYEY, FINE FILL O-5', SAND, CLAYEY, FINE 12 7.9 TO MEDIUM GRAINED, BROWN, TO MEDIUM GRAINED, BROWN, 14 6.3 MEDIUM DENSE TO DENSE, MEDIUM DENSE TO LOOSE, MOIST MOIST 5 1 42 6.8 8 5.2 1 10 12 8.0 10 15 15 20 20

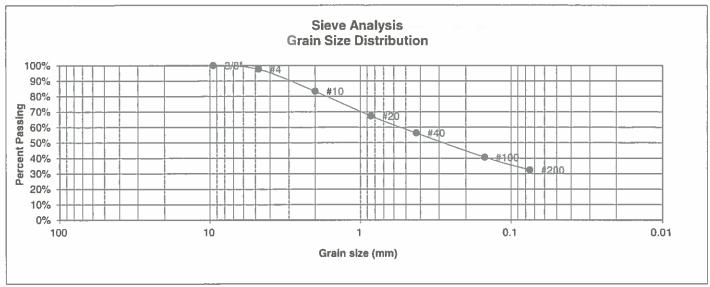


	TES1	BORING LO	OG
DRAWN	DATE	CHECKED	DATE:

JOB NO. 210527 FIG NO. A- 6

UNIFIED CLASSIFICATION SC CLIENT **TECH CONTRACTORS PROJECT** SOIL TYPE # 1, CBR ROLLING HILLS, F-1, P-2 **TEST BORING #** 6 JOB NO. 210527 DEPTH (FT) **TEST BY** 0 - 3BL AASHTO CLASSIFICATION A-2-6 **GROUP INDEX** 1

U.S. Sieve # 3" 1 1/2" 3/4"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit 13 Liquid Limit 31 Plastic Index 18
1/2"	100.0%	
3/8" 4	97.0% 93.0%	<u>Swell</u>
10	74.7%	Moisture at start
20	54.5%	Moisture at finish
40	42.7%	Moisture increase
100 200	29.0% 22.5%	Initial dry density (pcf) Swell (psf)

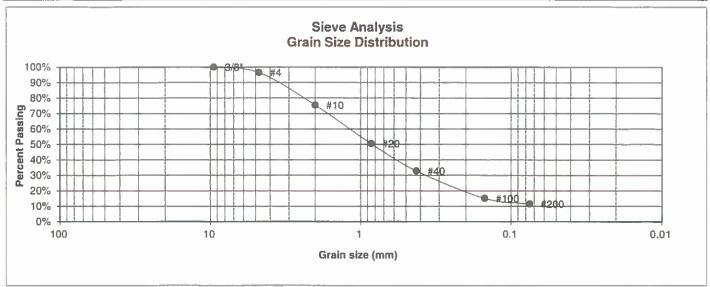

DRAWN:

LABOI RESU	RATORY TI LTS	EST	
DATE	CHECKED	h	7/8/21

JOB NO.:

210527 FIG NO.: UNIFIED CLASSIFICATION CLIENT TECH CONTRACTORS SC **SOIL TYPE # PROJECT** ROLLING HILLS, F-1, P-2 1 TEST BORING # 1 JOB NO. 210527 TEST BY DEPTH (FT) 1-2 BL**GROUP INDEX** 0 AASHTO CLASSIFICATION A-2-6

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg Limits Plastic Limit 18 Liquid Limit 30 Plastic Index 12
3/8"	100.0%	
4	97.6%	<u>Swell</u>
10	83.3%	Moisture at start
20	67.3%	Moisture at finish
40	56.3%	Moisture increase
100	40.6%	Initial dry density (pcf)
200	32.4%	Swell (psf)

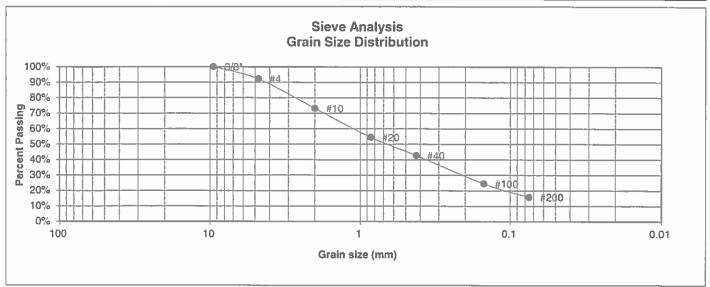


	LABOF RESUL	RATORY TE _TS	EST	
DRAWN:	DATE:	CHECKED:	4	9/8/21

JOB NO.: 210527 FIG NO.:

B-2

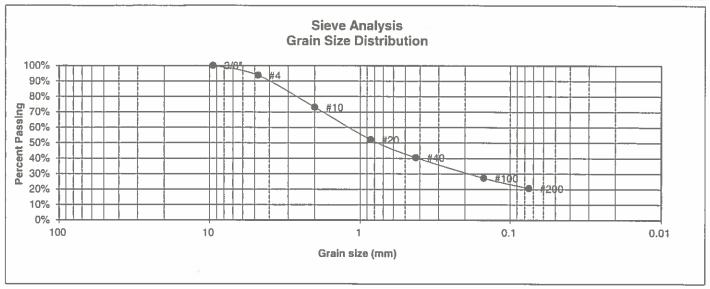
CLIENT UNIFIED CLASSIFICATION SM-SW TECH CONTRACTORS **SOIL TYPE #** 1 **PROJECT** ROLLING HILLS, F-1, P-2 JOB NO. **TEST BORING #** 2 210527 DEPTH (FT) **TEST BY** 1-2 BL**GROUP INDEX** 0 AASHTO CLASSIFICATION A-1-b


U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
4	96.6% 75.4%	<u>Swell</u> Moisture at start
20	50.5%	Moisture at finish
40	32.8%	Moisture increase
100	15.1%	Initial dry density (pcf)
200	11.5%	Swell (psf)

	LABOR RESUL	ATORY TE TS	EST	
DRAWN	DATE	CHECKED:	h	7/8/21

210527 FIG NO B - 3

UNIFIED CLASSIFICATION	SM	CLIENT	TECH CONTRACTORS
SOIL TYPE #	1	PROJECT	ROLLING HILLS, F-1, P-2
TEST BORING #	3	JOB NO.	210527
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0

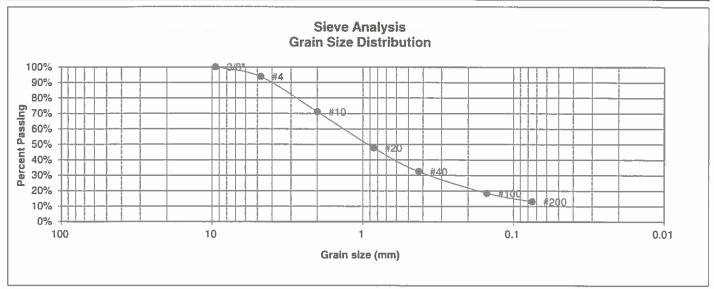


U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u> 100.0%	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
4 10 20 40 100 200	92.2% 73.2% 54.4% 42.8% 24.5% 15.8%	Swell Moisture at start Moisture at finish Moisture increase Initial dry density (pcf) Swell (psf)

LABORATORY TEST RESULTS				
DATE	CHECKED:	n	PATE /21	

UNIFIED CLASSIFICATION	SM	CLIENT	TECH CONTRACTORS
SOIL TYPE #	1	PROJECT	ROLLING HILLS, F-1, P-2
TEST BORING #	4	JOB NO.	210527
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
4	93.7% 73.1%	<u>Swell</u> Moisture at start
20 40	52.1% 40.5%	Moisture at finish Moisture increase
100 200	27.3% 20.6%	Initial dry density (pcf) Swell (psf)



LABOF RESUL	RATORY TI .TS	EST	
DATE:	CHECKED	h	9/2/21

JOB NO.

210527 FIG NO.

UNIFIED CLASSIFICATION	SM	CLIENT	TECH CONTRACTORS
SOIL TYPE #),	PROJECT	ROLLING HILLS, F-1, P-2
TEST BORING #	5	JOB NO.	210527
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
4	93.8% 71.0%	<u>Swell</u> Moisture at start
20	47.7%	Moisture at finish
40	32.4%	Moisture increase
100	18.5%	Initial dry density (pcf)
200	13.0%	Swell (psf)

LABORATORY TEST RESULTS			
DRAWN	DATE	CHECKED:	7/B/2/
		4	

JOB NO.

210527 FIG NO

UNIFIED CLASSIFICATION	SM	CLIENT	TECH CONTRACTORS
SOIL TYPE #	1	PROJECT	ROLLING HILLS, F-1, P-2
TEST BORING #	6	JOB NO.	210527
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent Finer	Atterberg Limits Plastic Limit NP Liquid Limit NV Plastic Index NP
4 10 20 40 100 200	95.0% 73.9% 52.0% 39.4% 24.1% 17.8%	Swell Moisture at start Moisture at finish Moisture increase Initial dry density (pcf) Swell (psf)

LABORATORY TEST RESULTS			
DATE	qHECKED.	, 1	DAT

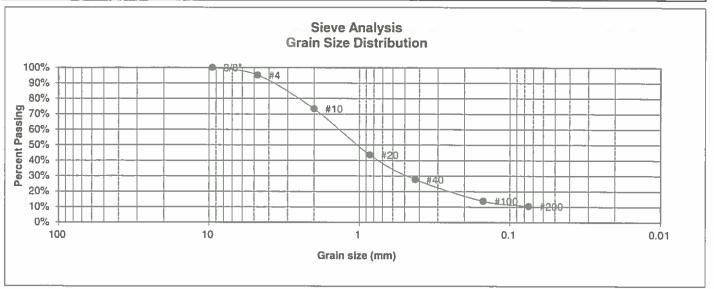
JOS NO.: 210527 FIG NO.: B--7

CHECKED: L 7/8/21

UNIFIED CLASSIFICATION CLIENT SC TECH CONTRACTORS SOIL TYPE # **PROJECT** I ROLLING HILLS, F-1, P-2 7 JOB NO. TEST BORING # 210527 DEPTH (FT) 1-2 **TEST BY** BLAASHTO CLASSIFICATION A-2-4 **GROUP INDEX** 0

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u> 100.0%	Atterberg Limits Plastic Limit 18 Liquid Limit 26 Plastic Index 8
4	96.5%	Swell
10	76.2%	Moisture at start
20 40	55.0% 42.0%	Moisture at finish Moisture increase
100 200	26.2% 19.4%	Initial dry density (pcf) Swell (psf)

DRAWN:


LABOR RESUL	ATORY TI	EST	
DATE:	CHECKED:	m	7/8/2/

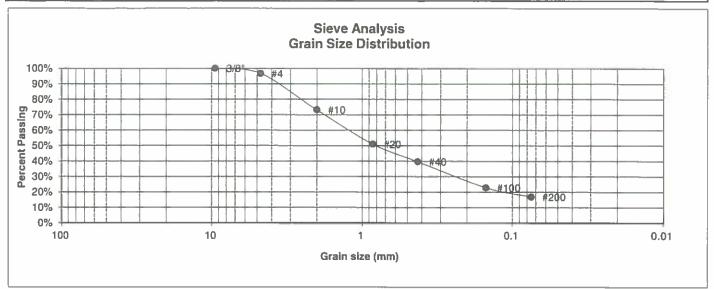
JOB NO:: 210527

FIG NO.

B-8

UNIFIED CLASSIFICATION	SM-SW	CLIENT	TECH CONTRACTORS
SOIL TYPE #	1	PROJECT	ROLLING HILLS, F-1, P-2
TEST BORING #	8	JOB NO.	210527
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u> 100.0%	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
4	95.1% 73.3%	<u>Swell</u> Moisture at start
20	43.6%	Moisture at finish
40	27.7%	Moisture increase
100	13.8%	Initial dry density (pcf)
200	10.5%	Swell (psf)



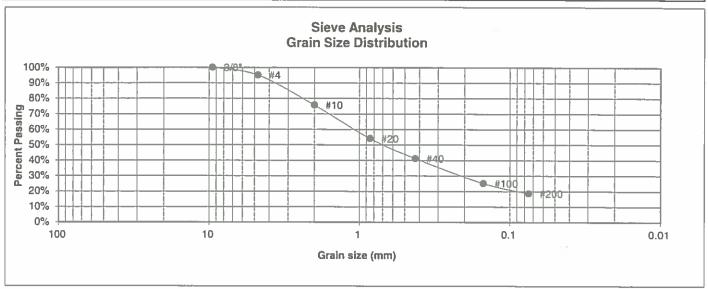
	RESULTS			
DATE	CHECKED:	h	がきなり	

JOB NO.: 210527

FIG NO

UNIFIED CLASSIFICATION	SM	CLIENT	TECH CONTRACTORS
SOIL TYPE #	1	PROJECT	ROLLING HILLS, F-1, P-2
TEST BORING #	9	JOB NO.	210527
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
4	96.7%	Swell
10	73.1%	Moisture at start
20 40	51.0% 39.6%	Moisture at finish Moisture increase
100 200	22.8% 16.9%	Initial dry density (pcf) Swell (psf)

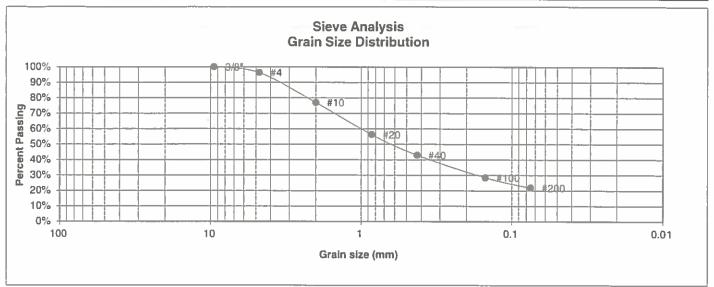


LABORATORY TEST RESULTS				
DATE	CHECKED	a	DATE /21	

JOB NO.:

210527 FIG NO.:

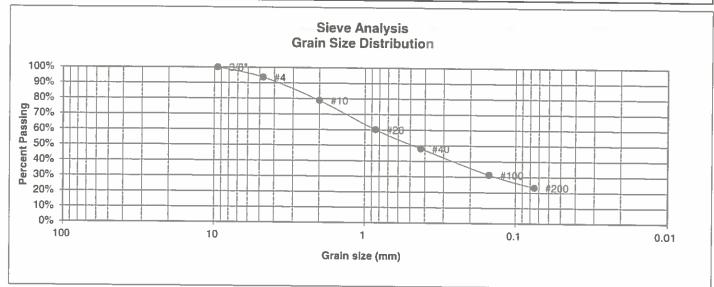
UNIFIED CLASSIFICATION	SM	CLIENT	TECH CONTRACTORS
SOIL TYPE #	1	PROJECT	ROLLING HILLS, F-1, P-2
TEST BORING #	10	JOB NO.	210527
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0



U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
4	95.1%	Swell
10	75.7%	Moisture at start
20 40	54.1% 41.2%	Moisture at finish Moisture increase
100 200	25.2% 18.6%	Initial dry density (pcf) Swell (psf)

LABORATORY TEST RESULTS				
DATE	CHECKED:	h	7/25/21	

UNIFIED CLASSIFICATION SC CLIENT TECH CONTRACTORS SOIL TYPE # **PROJECT** 1 ROLLING HILLS, F-1, P-2 TEST BORING # JOB NO. \square 210527 DEPTH (FT) 1-2 **TEST BY** BL AASHTO CLASSIFICATION A-2-4 **GROUP INDEX** 0

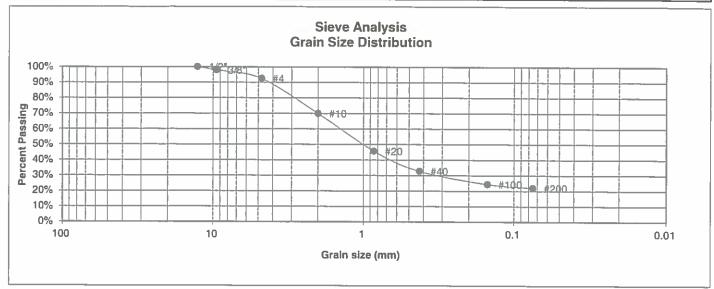

U.S. Sieve # 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg Limits Plastic Limit 19 Liquid Limit 27 Plastic Index 8
3/8"	100.0%	
4	96.3%	<u>Swell</u>
10	77.0%	Moisture at start
20	56.3%	Moisture at finish
40	43.0%	Moisture increase
100 200	28.4% 21.8%	Initial dry density (pcf) Swell (psf)
200	£1.070	Gwell (pai)

	LABORATORY TEST RESULTS		Τ
DRAWN:	DATE:	CHECKED:	Thate

JOB NO.: 210527 FIG NO.: 3

UNIFIED CLASSIFICATION	SC	CLIENT	TECH CONTRACTORS
SOIL TYPE #	1	PROJECT	ROLLING HILLS, F-1, P-2
TEST BORING #	12	JOB NO.	210527
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-2-4	GROUP INDEX	0

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg Limits Plastic Limit 20 Liquid Limit 30 Plastic Index 10
3/8"	100.0%	
4	93.6%	Swell
10	78.8%	Moisture at start
20	60.1%	Moisture at finish
40	48.0%	Moisture increase
100	31.3%	Initial dry density (pcf)
200	23.2%	Swell (psf)



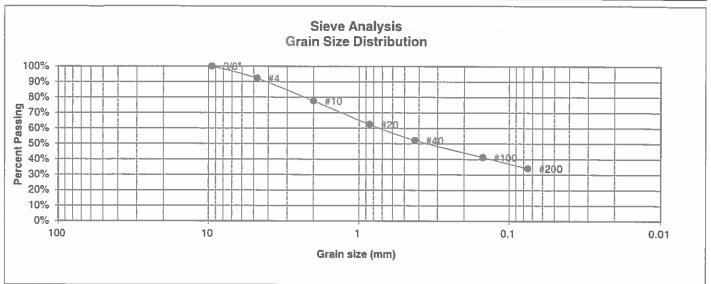
LABOR RESUL	RATORY TEST	Τ
DATE	CHECKED:	PATE

JOB NO.: 210527 FIG NO.:

B-13

UNIFIED CLASSIFICATION SC CLIENT TECH CONTRACTORS SOIL TYPE # 2 **PROJECT** ROLLING HILLS, F-1, P-2 TEST BORING # ŀ JOB NO. 210527 DEPTH (FT) 5 **TEST BY** BLAASHTO CLASSIFICATION A-2-7 **GROUP INDEX 1**

U.S. Sieve # 3" 1 1/2" 3/4"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit 21 Liquid Limit 48 Plastic Index 27
1/2" 3/8"	100.0%	
4	97.9% 92.5%	Swell
10	70.0%	Moisture at start
20	45.7%	Moisture at finish
40	32.8%	Moisture increase
100	24.3%	Initial dry density (pcf)
200	22.0%	Swell (psf)

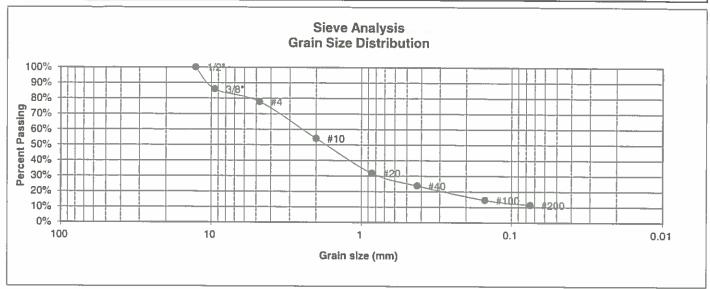


LABORATORY TEST RESULTS				
DRAWN	DATE	CHECKED	2	7/8/21

JOB NO.: 210527 FIG NO.:

B-14

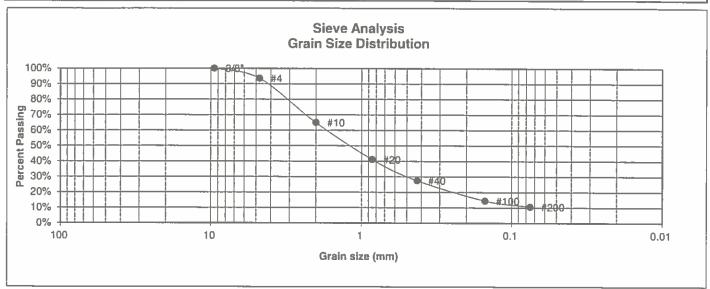
UNIFIED CLASSIFICATION	SC	CLIENT	TECH CONTRACTORS
SOIL TYPE #	2	PROJECT	ROLLING HILLS, F-1, P-2
TEST BORING #	4	JOB NO.	210527
DEPTH (FT)	10	TEST BY	BL
AASHTO CLASSIFICATION	A-2-7	GROUP INDEX	4


U.S. Sieve # 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit 19 Liquid Limit 49 Plastic Index 30
3/8"	100.0%	
4	92.2%	Swell
10	77.6%	Moisture at start
20	62.4%	Moisture at finish
40	52.2%	Moisture increase
100 200	41.2% 34.1%	Initial dry density (pcf) Swell (psf)

LABORATORY TEST RESULTS					
DATE	CHECKED:	h	7/8/21		

JOB NO.: 210527 FIG NO.:

UNIFIED CLASSIFICATION	SM-SW	CLIENT	TECH CONTRACTORS
SOIL TYPE #	2	PROJECT	ROLLING HILLS, F-1, P-2
TEST BORING #	8	JOB NO.	210527
DEPTH (FT)	10	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0


U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent Finer 100.0% 85.8%	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
4	77.8%	Swell
10 20	54.1% 31.8%	Moisture at start Moisture at finish
40	23.7%	Moisture increase
100 200	14.6% 11.4%	Initial dry density (pcf) Swell (psf)

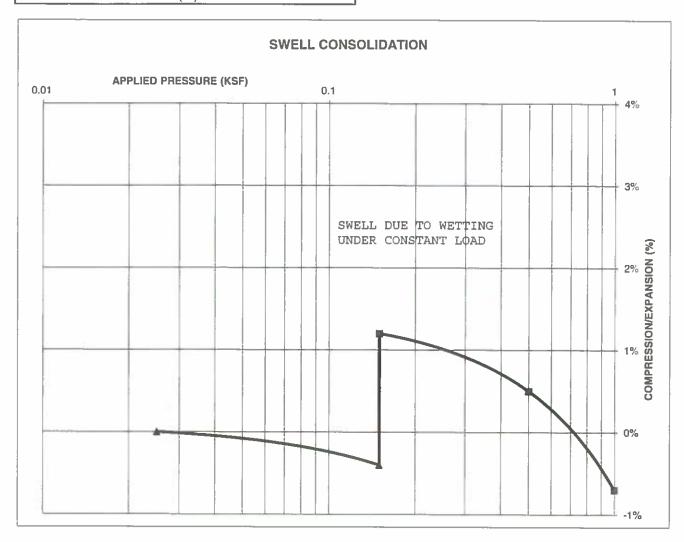
LABOF RESUL	RATORY T .TS	EST	
DATE	CHECKED	1/2	7/A/Z/

JOB NO.: 210527 FIG NO.:

UNIFIED CLASSIFICATION	SM-SW	CLIENT	TECH CONTRACTORS
SOIL TYPE #	3	PROJECT	ROLLING HILLS, F-1, P-2
TEST BORING #	1	JOB NO.	210527
DEPTH (FT)	10	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
4	93.6%	Swell
10	64.9%	Moisture at start
20	41.1%	Moisture at finish
40	27.5%	Moisture increase
100 200	14.4% 10.6%	Initial dry density (pcf) Swell (psf)

LABOF RESUL	RATORY TE .TS	EST	
DATE	CHECKED:	h	7/8/21


JOB NO 210527 FIG NO.

B-M

CONSOLIDATION TEST RESULTS

TEST BORING #	6	DEPTH(ft)	0-3	
DESCRIPTION	SC	SOIL TYPE	1, CBR	
NATURAL UNIT DRY	WEIG	HT (PCF)	121	
NATURAL MOISTURE	E CON	TENT	9.2%	
SWELL/CONSOLIDAT			1.6%	

JOB NO.
CLIENT TECH CONTRACTORS
PROJECT ROLLING HILLS, F-1, P-2

SWELL CONSOLIDATION TEST RESULTS

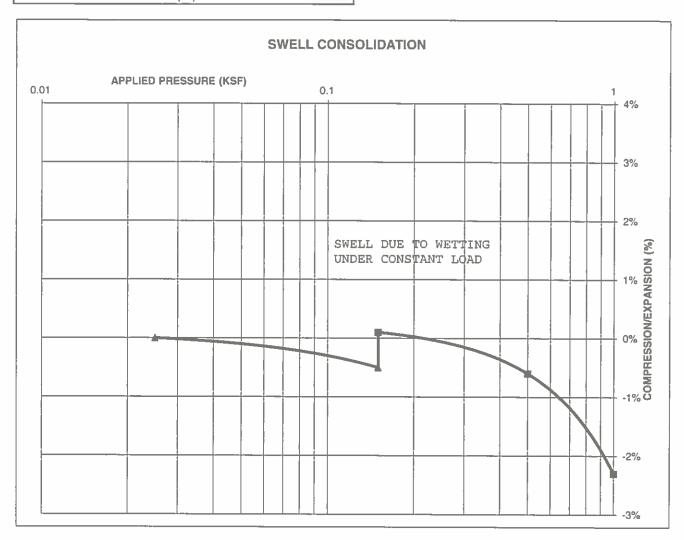
DRAWN

DATE

CHECKED:

210527

7985/21


FIG NO.

JOB NO.

CONSOLIDATION TEST RESULTS

TEST BORING #	1	DEPTH(ft)	1-2	
DESCRIPTION	SC	SOIL TYPE	1	
NATURAL UNIT DRY	WEIGI	HT (PCF)	118	
NATURAL MOISTURE	E CON	TENT	8.7%	
SWELL/CONSOLIDAT	TION (%)	0.6%	

JOB NO. 210527
CLIENT TECH CONTRACTORS
PROJECT ROLLING HILLS, F-1, P-2

SWELL CONSOLIDATION TEST RESULTS

DRAWN:

DATE

CHECKED:

7/8/15

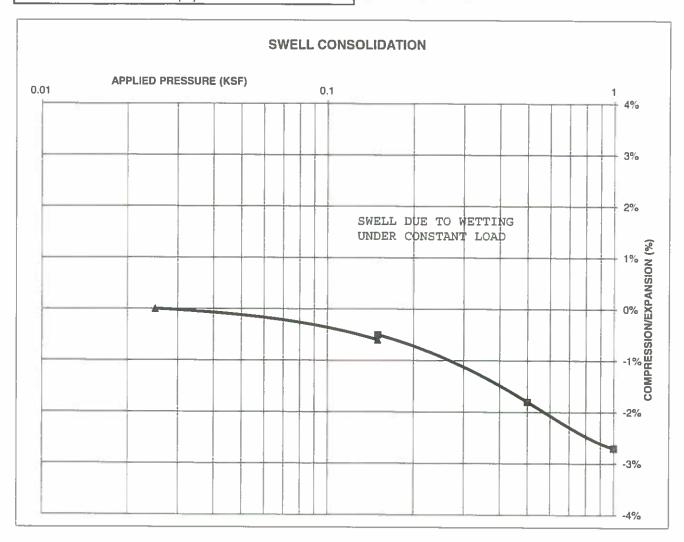

JOB NO. 210527

FIG NO

CONSOLIDATION TEST RESULTS

TEST BORING #	1	DEPTH(ft)	5	
DESCRIPTION	SC	SOIL TYPE	2	
NATURAL UNIT DRY	WEIG	HT (PCF)	119	
NATURAL MOISTURI	E CON	TENT	11.2%	
SWELL/CONSOLIDA	TION (%)	0.1%	

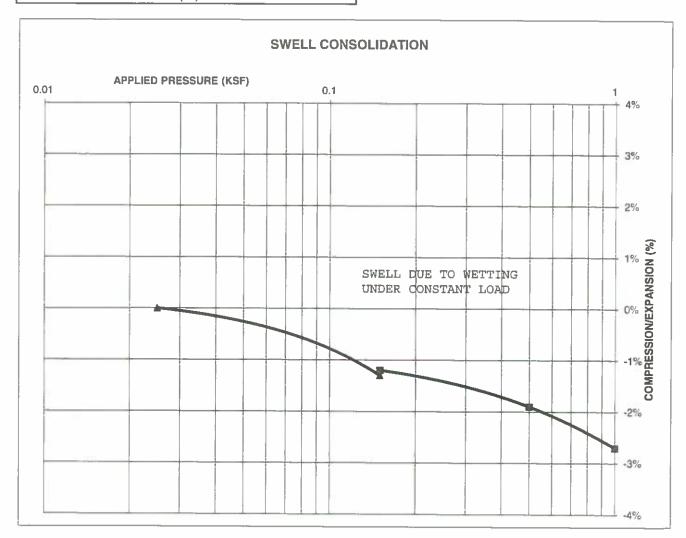
JOB NO. 210527
CLIENT TECH CONTRACTORS
PROJECT ROLLING HILLS, F-1, P-2

SWELL CONSOLIDATION TEST RESULTS

DRAWN DATE: CHECKED:

JOB NO. 210527

FIG NO


P-20

1/8/21

CONSOLIDATION TEST RESULTS

TEST BORING # 4 DEPTH(ft) 10
DESCRIPTION SC SOIL TYPE 2
NATURAL UNIT DRY WEIGHT (PCF) 122
NATURAL MOISTURE CONTENT 7.0%
SWELL/CONSOLIDATION (%) 0.1%

JOB NO. CLIENT TECH CONTRACTORS
PROJECT ROLLING HILLS, F-1, P-2

SWELL CONSOLIDATION	N
TEST RESULTS	

DRAWN:

DATE:

CHECKED:

7985/21

JOB NO.: 210527

FIG NO

CLIENT	TECH CONTRACTORS	JOB NO.	210527
PROJECT	ROLLING HILLS, F-1, P-2	DATE	6/17/2021
LOCATION	ROLLING HILLS, F-1, P-2	TEST BY	BL

BORING NUMBER	DEPTH, (ft)	SOIL TYPE NUMBER	UNIFIED CLASSIFICATION	WATER SOLUBLE SULFATE, (wt%)
TB-1	5	2	SC	0.01
TB-1	10	3	SM-SW	<0.01
TB-2	1-2	1	SM-SW	<0.01
TB-5	1-2	1	SM	<0.01
TB-8	10	2	SM-SW	<0.01
TB-9	1-2	1	SM	<0.01

QC BLANK PASS

LABO	RATO	DRY T	EST
SULF	ATE F	RESUL	.TS

DRAWN: DATE: CHECKED: 7/BATE:

JOB NO. 210527

PROJECT SAMPLE LOCATION ROLLING HILLS, F-1, P-2

TB-6 @ 0-3'

SOIL DESCRIPTION

FILL, SAND, CLAYEY, BROWN

CLIENT

TECH CONTRACTORS

JOB NO. DATE

210527 06/17/21

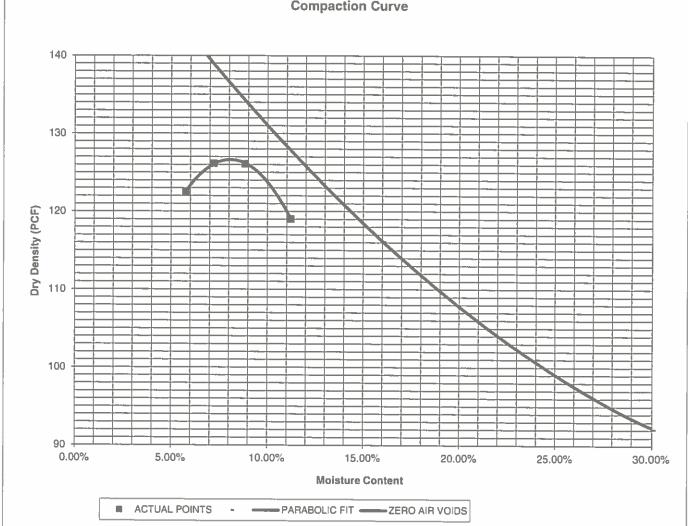
<u>IDENTIFICATION</u>

ASTM D-1557-A

COMPACTION TEST # TEST BY

BL

TEST DESIGNATION / METHOD MAXIMUM DRY DENSITY (PCF)


126.6

SC

OPTIMUM MOISTURE

8.2%

MOISTURE DENSITY RELATION

DRAWN:

DATE:

CHECKED:

7/8/21

JOB NO

210527

FIG NO: B-23

CBR TEST LOAD DATA

JOB NO:

210527

PISTON PISTON
DIAMETER (cm) AREA (in²)
4.958 2.993

CLIENT: TECH CONTRACTORS
PROJECT: ROLLING HILLS, F-1, P-2

SOIL TYPE: 1

2.000					
10 BLOWS		25 BLOWS		56 BLOWS	
MOLD #	1	MOLD #	2	MOLD #	3
LOAD(LBS)	STRESS	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS
(LBS)	(PSI)	(LBS)	(PSI)	(LBS)	(PSI)
0	0.00	0	0.00	0	0.00
53	17.71	115	38.43	288	96.24
80	26.73	194	64.83	575	192.15
95	31.75	286	95.57	780	260.65
105	35.09	348	116.29	1011	337.84
113	37.76	385	128.65	1207	403.34
120	40.10	425	142.02	1411	471.51
126	42.11	453	151.38	1613	539.01
135	45.11	484	161.74	1820	608.19
163	54.47	577	192.81	2496	834.08
184	61.49	655	218.88	3058	1021.88
206	68,84	743	248.29	3304	1104.09
	10 BLOWS MOLD # LOAD(LBS) (LBS) 0 53 80 95 105 113 120 126 135 163	MOLD # 1 LOAD(LBS) STRESS (LBS) (PSI) 0 0.00 53 17.71 80 26.73 95 31.75 105 35.09 113 37.76 120 40.10 126 42.11 135 45.11 163 54,47 184 61.49	MOLD # 1 MOLD # LOAD(LBS) (LBS) (PSI) (LBS) 0 0.00 0 53 17.71 115 80 26.73 194 95 31.75 286 105 35.09 348 113 37.76 385 120 40.10 425 126 42.11 453 135 45.11 484 163 54,47 577 184 61.49 655	10 BLOWS 25 BLOWS MOLD # 1 MOLD # 2 LOAD(LBS) STRESS LOAD(LBS) STRESS (LBS) (PSI) (LBS) (PSI) 0 0.00 0 0.00 53 17.71 115 38.43 80 26.73 194 64.83 95 31.75 286 95.57 105 35.09 348 116.29 113 37.76 385 128.65 120 40.10 425 142.02 126 42.11 453 151.38 135 45.11 484 161.74 163 54.47 577 192.81 184 61.49 655 218.88	10 BLOWS 25 BLOWS 56 BLOWS MOLD # 1 MOLD # 2 MOLD # LOAD(LBS) STRESS LOAD(LBS) LOAD(LBS) (LBS) (PSI) (LBS) (PSI) (LBS) 0 0.00 0 0.00 0 0 53 17.71 115 38.43 288 88 26.73 194 64.83 575 780 95 31.75 286 95.57 780 105 35.09 348 116.29 1011 113 37.76 385 128.65 1207 120 40.10 425 142.02 1411 126 42.11 453 151.38 1613 135 45.11 484 161.74 1820 163 54.47 577 192.81 2496 184 61.49 655 218.88 3058

FINAL MOISTURE CONTENT

	MOLD #	1	MOLD #	2	MOLD #	3
CAN#		102		110		101
WT. CAN		9.25		9.23		9.14
WT. CAN+WET		294.91		275.24		326.08
WT. CAN+DRY		259.23		245.22		299.64
WT. H20		35.68		30.02		26.44
WT. DRY SOIL		249.98		235.99		290.5
MOISTURE CONTENT		14.27%	<u></u>	12.72%		9.10%

WET DENSITY (PCF) DRY DENSITY (PCF)	119.7	126.4	136.7
	110.7	116.8	126.3
		· · · · · · · · · · · · · · · · · · ·	

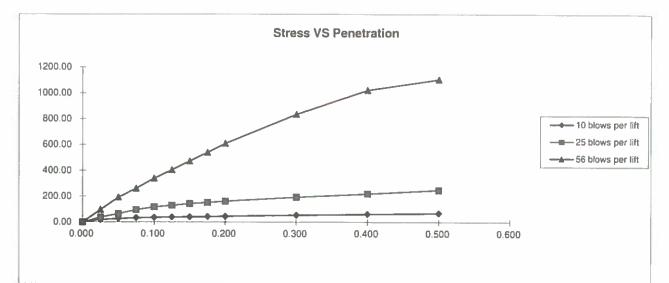
BEARING RATIO 3.51 11.63

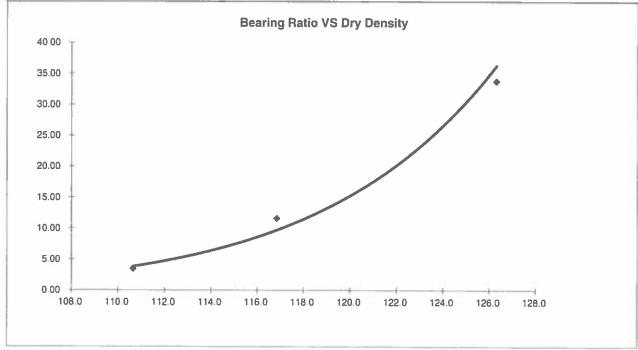
 90% OF DRY DENSITY
 113.9

 95% OF DRY DENSITY
 120.3

BEARING RATIO AT 90% OF MAX	7.82 ~ R VALUE	17
BEARING RATIO AT 95% OF MAX	19.66 ~ R VALUE	70

CBR	TEST	DATA	


DRAWN: DATE: CHECKED: TOTE: 7/8/2/


JOB NO.: 210527

33.78

FIG NO.

B-24

BEARING RATIO AT 90% OF MAX	7.82 ~ R VALUE	17.00
BEARING RATIO AT 95% OF MAX	19.66 ~ R VALUE	70.00

DRAWN

JOB NO: 210527 SOIL TYPE: 1

CALIFORNIA BEARING RATIO			
T	DATE:	CHECKED:	978/21

JOB NO: 210527

FLEXIBLE PAVEMENT DESIGN

DESIGN DATA

ROLLING HILLS AT MERIDIAN RANCH FILING 1, PHASE 2 URBAN LOCAL LOW-VOLUME

Equivalent (18 kip) Single Axle Load Applications (ESAL): ESAL Hveem Stabilometer (R Value) Results:

Standard Deviation
Loss in Serviceability

Reliability

Reliability (z-statistic)

Soil Resilient Modulus

Weighted Structural Number (WSN):

$ESAL(W_{18}) =$	36,500
R =	50
$S_o =$	0.45
Δpsi =	2.0
Reliability =	80
7, =	-0.84

 $Z_R = -0.84$

 $M_R = 13168$

WSN = 1.46

DESIGN TABLES AND EQUATIONS

$$S_1 = [(R - 5) / 11.29] + 3$$

 $M_R = 10^{[(S_1 + 18.72)/6.24]}$

 $k = M_R/19.4$

Where:

M_R = resilient modulus (psi)

 S_1 = the soil support value

R = R-value obtained from the Hveem stabilometer

CBR = California Bearing Ratio

Reliability (%)	Z _R (z-statistic)
80	0.94

80	-0.84
85	-1.04
90	-1.28
93	-1.48
94	-1.56
95	-1.65
96	-1.75
97	-1.88
98	-2.05
99	-2.33
99.9	-3.09
99.99	-3.75

$$\log_{10}W_{18} = Z_{R}^{*} S_{O}^{+} 9.36^{*} \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32^{*} \log_{10}M_{R}^{-} 8.07$$

Left	Right	Difference
4.56	4.56	0.0

Job No. 210527

DESIGN DATA

ROLLING HILLS AT MERIDIAN RANCH FILING 1, PHASE 2 URBAN LOCAL LOW-VOLUME

Equivalent (18 kip) Single Axle Load Applications (ESAL):

ESAL = 36,500

Hveem Stabilometer (R Value) Results:

R = 50

Weighted Structural Number (WSN):

WSN = 1.46

DESIGN EQUATION

$$WSN = C_1D_1 + C_2D_2$$

C₁ = 0.44 Strength Coefficient - Hot Bituminous Asphalt

C₂ = 0.11 Strength Coefficient - Aggregate Base Course

 D_1 = Depth of Asphalt (inches)

 D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 3.3$ inches of Full Depth Asphalt

Use 4.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 3 inches

 $D_2 = ((WSN) - (t)(C_1))/C_2 = 1.3$ inches of Aggregate

Base Course, use 4.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.0 inches of Asphalt + 4.0 inches of Aggregate Base Course, or
- 2. 4.0 inches of Full Depth Asphalt

Job No. 210527

CEMENT TREATED SECTIONS

DESIGN DATA:

ROLLING HILLS AT MERIDIAN RANCH FILING 1, PHASE 2 URBAN LOCAL LOW-VOLUME

Equivalent (18 kip) Single Axle Load Applications (ESAL):

ESAL = 36,500

Hveem Stabilometer (R Value) Results:

R = 50

Weighted Structural Number (WSN):

WSN = 1.46

DESIGN EQUATION

$$WSN = C_1D_1 + C_2D_2$$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt

 $C_2 = 0.12$ Strength Coefficient - Cement Treated Subgrade.

 D_1 = Depth of Asphalt (inches)

 D_2 = Depth of Cement Treated Subgrade (inches)

FOR FULL DEPTH ASPHALT SECTION - (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 3.3$ inches of Full Depth Asphalt

Use 4.0 inches Full Depth

FOR ASPHALT + CEMENT TREATED SUBGRADE SECTION

Asphalt Thickness (t) = 4 inches

 $D_2 = ((WSN) - (t)(C_1))/C_2 = -2.5$ inches

Use 8.0 inches of Cement Treated Subgrade.

RECOMMENDED ALTERNATIVES

- 1. 4.0 inches of Asphalt + 8 inches of Cement Treated Subgrade.
- 2. 4.0 inches of Full Depth Asphalt

Job No. 210527

FLEXIBLE PAVEMENT DESIGN

DESIGN DATA

ROLLING HILLS AT MERIDIAN RANCH FILING 1, PHASE 2 URBAN LOCAL

Equivalent (18 kip) Single Axle Load Applications (ESAL): $ESAL(W_{18}) =$ 292,000 Hveem Stabilometer (R Value) Results: R =50 Standard Deviation $S_0 =$ 0.45 Loss in Serviceability 2.0 $\Delta psi =$ Reliability Reliability = 80 Reliability (z-statistic) $Z_R =$ -0.84

Soil Resilient Modulus $M_R = 13168$

Weighted Structural Number (WSN):

2.09

WSN =

DESIGN TABLES AND EQUATIONS

$$S_1 = [(R - 5) / 11.29] + 3$$

 $M_R = 10^{[(S_1 + 18.72) / 6.24]}$

 $k = M_R/19.4$

Where:

M_R = resilient modulus (psi)

 S_1 = the soil support value

R = R-value obtained from the Hveem stabilometer

CBR = California Bearing Ratio

Reliability (%)	Z_R (z-statistic)	
80	-0.84	
85	-1.04	
90	-1.28	
93	-1.48	
94	-1.56	
95	-1.65	
96	-1.75	
97	-1.88	
98	-2.05	
99	-2.33	
99.9	-3.09	
99.99	-3.75	

$$\log_{10}W_{18} = Z_{R}^{r} S_{O}^{+} 9.36^{r} \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32^{r} \log_{10}M_{R}^{-} 8.07$$

Left	Right	Difference
5.47	5.46	0.0

Job No. 210527 Fig. No. C-4

DESIGN DATA

ROLLING HILLS AT MERIDIAN RANCH FILING 1, PHASE 2 URBAN LOCAL

Equivalent (18 kip) Single Axle Load Applications (ESAL): ESAL = 292,000

Hveem Stabilometer (R Value) Results: R = 50

Weighted Structural Number (WSN): WSN = 2.09

DESIGN EQUATION

$$WSN = C_1D_1 + C_2D_2$$

C₁ = 0.44 Strength Coefficient - Hot Bituminous Asphalt

 $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

 $D_1 = Depth of Asphalt (inches)$

 D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 4.8$ inches of Full Depth Asphalt

Use 5.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness $(t) = \boxed{3}$ inches

 $D_2 = ((WSN) - (t)(C_1))/C_2 = 7.0$ inches of Aggregate

Base Course, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.0 inches of Asphalt + 8.0 inches of Aggregate Base Course, or
- 2. 5.0 inches of Full Depth Asphalt

Job No. 210527

CEMENT TREATED SECTIONS

DESIGN DATA:

ROLLING HILLS AT MERIDIAN RANCH FILING 1, PHASE 2 URBAN LOCAL

Equivalent (18 kip) Single Axle Load Applications (ESAL): ESAL = 292,000 Hyeem Stabilometer (R Value) Results: R = 50 Weighted Structural Number (WSN): WSN = 2.09

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.12$ Strength Coefficient - Cement Treated Subgrade.

 $D_1 = Depth of Asphalt (inches)$

 D_2 = Depth of Cement Treated Subgrade (inches)

FOR FULL DEPTH ASPHALT SECTION - (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 4.8$ inches of Full Depth Asphalt Use 5.0 inches Full Depth

FOR ASPHALT + CEMENT TREATED SUBGRADE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 2.8 \text{ inches}$ Use 8.0 inches of Cement Treated Subgrade.

RECOMMENDED ALTERNATIVES

- 1. 4.0 inches of Asphalt + 8 inches of Cement Treated Subgrade.
- 2. 5.0 inches of Full Depth Asphalt

Job No. 210527 Fig. No. C-6 July 15, 2021

ENTECH ENGINEERING, INC.

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

Tech Contractors 3575 Kenyon Street, Suite 200 San Diego, California 92110

Attn: Raul Guzman

Re: Cement Stabilized Subgrade Results - Laboratory Testing

Rolling Hills at Meridian Ranch Filing No.1, Phase 2

El Paso County, Colorado

Ref: Pavement Recommendations Report by Entech Engineering, Inc., Entech Job No.

210527

Dear Mr. Guzman:

As requested, personnel of Entech Engineering, Inc. have performed strength testing on two sets of three soil/cement composite samples for the above reference project. Testing was performed on soil samples prepared with 2% and 4% Portland Cement Type 1/2, from Martin Marietta, near Pueblo, Colorado.

A minimum compression strength of 160 psi is recommended for cement stabilized subgrade. The 5-day average strength value of the 2% mix was 183 psi. The 5-day average strength value of the 4% mix was 193 psi. A 2% mix is recommended based on the laboratory test results. A summary of the testing results is attached.

Pending the results of the field density testing, microfracturing of the stabilized subgrade will likely be required. Soil strengths in excess 200 psi require microfracturing.

We trust this has provided you with the information you required. if you have any questions or need additional information, please do not hesitate to contact us.

Reviewed

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Daniel P. Stegman

DPS/am

Encl.

Entech Job No. 210527 AAprojects/2021/210527 - cssr — lab 2

SUMMARY OF CTS TEST RESULTS LAB TESTING

CLIENT TECH CONS	LIENT TECH CONSTACTORS		JOB NO	210527	
PROJECT ROLLING H	LLS		DATE	7/7/21	
FIELD SAMPLE ID	TB-6 @ 0-3'		BY	BL	
SOIL ADDITIVE	TYPE I/II CEMENT				

ADDITIVE %	WATER %	DENSITY (dry)	AGE (days)	STRENGTH (psi)
2	8.2	120.3	5	176
2	8.2	120.2	5	182
2	8.2	120.1	5	191
_			AVERAGE:	183
4	8.2	120.4	5	195
4	8.2	120.2	5	193
4	8.2	120.3	5	192
			AVERAGE:	193

CURING METHOD

100° HUMIDIFIED OVEN