
DETENTION BASIN OUTLET STRUCTURE DESIGN

Project: Winsome Filing 3

Basin ID: H5B (INSTALLED DURING EARLY GRADING PHASE)

	Latimateu	Latimateu	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.52	0.036	Orifice Plate
Zone 2 (5-year)	3.50	0.080	Not Utilized
Zone 3 (100-year)	6.21	0.184	Weir&Pipe (Restrict)
•	Total (all zones)	0.300	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = N/A Underdrain Orifice Diameter N/A inches

	Calculated Paramete	ers for under
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	1.52	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	N/A	inches
Orifice Plate: Orifice Area per Row =	N/A	inches

_	Calculated Paramete	ers for Plate
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²
		•

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.50						
Orifice Area (sq. inches)	1.00	1.00						

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	N/A	N/A	inches

	Calculated Paramete	ers for Vertical Orific
	Not Selected	Not Selected
Vertical Orifice Area =	N/A	N/A
Vertical Orifice Centroid =	N/A	N/A

Zone 3 Weir

3.50

Calculated Parameters for Overflow Wei

User Input: Overflow Weir (Dro

User Input: Outlet Pipe w/ Flow

Restrictor Plate Height A

Overflow Weir Front Overflow Weir Fr Overflow \ Horiz, Lenc Ove D€

Depth to Inve

Outlet Works: The outlet pipe shall extend through the embankment at a minimum slope of 0.5 percent. Outlet works can be designed using one of the following approaches:

Riser Pipe (Simplified Detail): Detail SB-1 provides a simplified design for basins treating no

.ength = 2 92 N/A e Area N/A Orifice Plate or Riser Pipe: Follow the design criteria for Full Spectrum Detention outlets in the EDB Fact Sheet provided in Chapter 4 of this manual for sizing of outlet perforations with an 5 93 Debris = N/A emptying time of approximately 72 hours. In lieu of the trash rack, pack uniformly sized 1½ - to 2.97 N/A 2-inch gravel in front of the plate or surrounding the riser pipe. This gravel will need to be

cleaned out frequently during the construction period as sediment accumulates within it. T gravel pack will need to be removed and disposed of following construction to reclaim the for use as a permanent detention facility. If the basin will be used as a permanent extended detention basin for the site, a trash rack will need to be installed once contributing drainage

have been stabilized and the gravel pack and accumulated sediment have been removed.

Floating Skimmer: If a floating skimmer is used, install it using manufacturer's recommendations. Illustration SB-1 provides an illustration of a Faircloth Skimmer Floati

KHA RESPONSE: **DESIGN HAS BEEN** UPDATED TO SHOW WQCV BEING MET AND A TRASH RACK HAS BEEN PROVIDED TO PREVENT THE ORIFICE HOLES FROM BEING BLOCKED/CLOGGED.

ge, Ht

estriction Plat
t Selected
N/A
N/A
N/A

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Outl

Spillway Invert Stage=	5.00	ft (relative to basin bottom at Stage = 0 ft	t)
Spillway Crest Length =	20.00	feet	
Spillway End Slopes =	4.00	H:V drain time shoul	ld
Freeboard above Max Water Surface =	1.00	feet near 72hrs for a	1 :

drain time should be at or near 72hrs for a sediment

basin

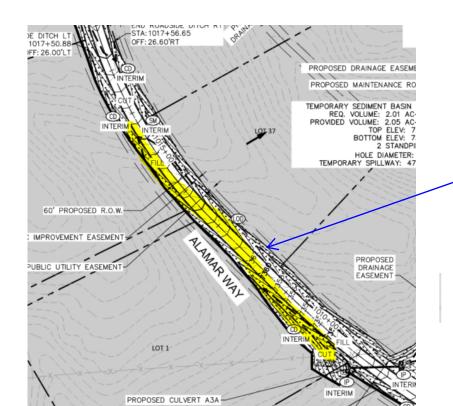
Spillway

100 Yea

Not Selected

N/A

		D
Routed Hydrograph Results	The user can overri	ide the default CUH
Design Storm Return Period =	WQCV	EURV
One-Hour Rainfall Depth (in) =	N/A	N/A
CUHP Runoff Volume (acre-ft) =	0.036	0.048
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A /
Peak Inflow Q (cfs) =	N/A	N/A
Peak Outflow Q (cfs) =	0.1	9.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A
Structure Controlling Flow =	Plate	/ Plate
Max Velocity through Grate 1 (fps) =	N/A /	N/A
Max Velocity through Grate 2 (fps) =		N/A
Time to Drain 97% of Inflow Volume (hours) =	12	13
Time to Drain 99% of Inflow Volume (hours) =	13	15
Maximum Ponding Depth (ft) =	1.53	1.89
Area at Maximum Ponding Depth (acres) =	0.03	0.03
Maximum Volume Stored (acre-ft) =	0.036	0.048


Unresolved. See snippet above for MHFD DCM vol 3 criteria regarding sediment basin drain time.

Additionally update the GEC plan to provide either a trash rack or packed gravel in front of the orifice. Unclear what on the current design will prevent the orifice holes from being blocked/clogged as sediment builds up.

	2.52
	1.344
	1.344
	20.0
	1.91
	20.4
	19.6
	1.0
eir 1	Overflow Weir 1
	0.0
	N/A
	12
	17
	4.83
	0.07
	0.193

ROADSIDE DITCH SUMMARY TABLE

ROADWAY	FROM STA	TO STA	PROPOSED SLOPE (%)	SIDE	SIDE SLOPE	CHANNEL DEPTH (FT)	FRICTION FACTOR	BASIN	Q100 FLOW (CFS)	DITCH FLOW % OF BASIN	DITCH FLOW (CFS)	Q100 DEPTH (FT)	Q100 VELOCITY (FT/S)	DITCH LINING	CHANNEL XSECTION
ALAMAR WAY	1008+50	1010+50	5.38%	LEFT	4:1/3:1	3	0.04	G2B	9.6	50%	4.8	0.6	3.8	GRASS	
ALAMAR WAY	1008+50	1010+50	5.32%	RIGHT	4:1/3:1	3	0.04	A3A & A2B	46.1	100%	46.1	1.4	6.6	GRASS/TRM	SWALE A3A
ALAMAR WAY	1013+50	1014+50	4.45%	RIGHT	4:1/3:1	3	0.04	G2B	9.6	20%	1.9	0.4	2.8	GRASS	
ALAMAR WAY	1014+50	1017+00	5.45%	RIGHT	4:1/3:1	3	0.04	G2B	9.6	10%	1.0	0.3	2.6	GRASS	
ALAMAR WAY	1014+50	1017+00	5.16%	LEFT	4:1/3:1	3	0.04	A3A	25.8	25%	6.5	0.7	4.0	GRASS	
ALAMAR WAY	1018+50	1022+00	4.17%	LEFT	4:1/3:1	3	0.04	G1	40.1	25%	10.0	0.8	4.1	GRASS	
ALAMAR WAY	1022+00	1027+00	3.92%	RIGHT	4:1/3:1	3	0.04	H4	73.6	10%	7.4	0.8	3.7	GRASS	
ALAMAR WAY	1022+00	1027+00	3.71%	LEFT	4:1/3:1	3	0.04	G1	40.1	25%	10.0	0.9	3.9	GRASS	
ALAMAR WAY	1032+00	1035+00	2.04%	LEFT	4:1/3:1	3	0.04	H1	33.0	10%	3.3	0.6	2.4	GRASS	
ALAMAR WAY	1035+00	1045+00	5.88%	RIGHT	4:1/3:1	3	0.04	H6B	57.1	10%	5.7	0.6	4.1	GRASS	
ALAMAR WAY	1035+00	1045+00	5.79%	LEFT	4:1/3:1	3	0.04	H1 & H2	98.2	15%	14.7	0.9	5.1	GRASS	
ALAMAR WAY	1048+00	1051+00	3.45%	LEFT	4:1/3:1	3	0.04	H2	65.2	25%	16.3	0.9	5.3	GRASS	
ALAMAR WAY	1051+00	1054+00	7.02%	RIGHT	4:1/3:1	3	0.04	H6B	57.1	10%	5.7	0.6	4.4	GRASS	
ALAMAR WAY	1051+00	1054+00	6.27%	LEFT	4:1/3:1	3	0.04	H2	65.2	10%	6.5	0.7	4.3	GRASS	
ALAMAR WAY	1064+00	END	3.66%	RIGHT	4:1/3:1	3	0.04	H7A	27.1	10%	2.7	0.5	2.8	GRASS	
ALAMAR WAY	1064+00	END	3.36%	LEFT	4:1/3:1	3	0.04	I1 &H3B	27.2	44%	12.0	0.9	4.0	GRASS	SWALE H3B
TWINKLING STAR LANE	2000+00	2004+00	3.61%	RIGHT	4:1/3:1	3	0.04	E8	25.6	35%	9.0	0.8	3.8	GRASS	
TWINKLING STAR LANE	2000+00	2004+00	3.40%	LEFT	4:1/3:1	3	0.04	D6	28.1	25%	7.0	0.8	3.5	GRASS	
TWINKLING STAR LANE	2004+00	2007+00	6.14%	RIGHT	4:1/3:1	3	0.04	E8	25.6	35%	9.0	0.7	4.6	GRASS	
TWINKLING STAR LANE	2013+50	2023+00	7.84%	RIGHT	4:1/3:1	3	0.04	H8A & I1 &H3B	38.4	82%	31.5	1.1	7.0	GRASS/TRM	SWALE I1
TWINKLING STAR LANE	2013+50	2023+00	8.17%	LEFT	4:1/3:1	3	0.04	H7A	27.1	100%	27.1	1.1	6.8	GRASS/TRM	
TWINKLING STAR LANE	2023+00	2028+00	1.14%	LEFT	4:1/3:1	3	0.04	11	20.3	50%	10.2	1.1	2.6	GRASS	

Update GEC plans to reflect the TRM installation. The road sections indicated in the table does not reflect installation of TRM.

Or per discussion with the design engineer the TRM is not being installed with early grading GEC. If so, update the drainage report to indicate the TRM will be installed with the final GEC.

KHA RESPONSE:
DISCUSSION WITHIN
THE NARRATIVE HAS
BEEN ADDED TO THE
HYDRAULIC CRITERIA
SECTION.