

Early Grading Permit - Final Drainage Report

Winsome Subdivision Filing No. 3 El Paso County, Colorado

Prepared for: Joe DesJardin Winsome, LLC 1864 Woodmoor Drive, Suite 100 Monument, CO 80132

Prepared by: Kimley-Horn and Associates, Inc. 2 North Nevada Avenue, Suite 300 Colorado Springs, Colorado 80903 (719) 453-0180 Contact: Brice Hammersland, P.E.

PCD File No. SF-21-XXX
Project #: 196106001
Prepared: December 10, 2021

Revise to EGP-21-005

Kimley »Horn

CERTIFICATION

DESIGN ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparation of this report.

SIGNATURE (Affix Seal):

Brice Hammersland, P.E. Colorado P.E. No. 56012

Date

OWNER/DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all of the requirements specified in this Drainage Report and Plan.

Name of Developer

Authorized Signature

Date

Printed Name

Title

Address:

EL PASO COUNTY

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer/ ECM Administrator

Date

Conditions:

TABLE OF CONTENTS

CERTIFICATION
DESIGN ENGINEER'S STATEMENT
TABLE OF CONTENTS
INTRODUCTION
PURPOSE AND SCOPE OF STUDY
DRAINAGE BASINS
MAJOR BASIN DESCRIPTIONS5EXISTING SUB-BASIN DESCRIPTIONS5Sub-Basin A5Sub-Basin G5Sub-basin H5Sub-basin I5Sub-basin J6Sub-basin K6PROPOSED HEC-HMS SUB-BASIN DESCRIPTIONS6
DRAINAGE DESIGN CRITERIA9
DEVELOPMENT CRITERIA REFERENCE
THE FOUR STEP PROCESS12
DRAINAGE FACILITY DESIGN
GENERAL CONCEPT
SUMMARY14
REFERENCES
APPENDIX APPENDIX A: FIGURES APPENDIX B: HYDROLOGY APPENDIX C: HYDRAULICS APPENDIX D: REFERENCES APPENDIX: DRAIANGE MAPS

INTRODUCTION

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and hydraulic calculations and to document and finalize the drainage design methodology in support of the proposed Early Grading permit for the Winsome Subdivision ("the Project") Filing No. 3 ("the Site") for Winsome LLC. The Project is located within the jurisdictional limits of El Paso County ("the County"). Thus, the guidelines for the hydrologic and hydraulic design components were based on the criteria for the County and City of Colorado Springs, described below.

LOCATION

The Project is located approximately 17 miles west of Monument, Colorado within Township 11 South, Range 65 West of the 6th Principal Meridian, County of El Paso, State of Colorado (the "Site"). More specifically, the Site is located northwest of Winsome Filing No. 2, which is located north of Hodgen Road, and west of Meridian Road. A vicinity map has been provided in the **Appendix A** of this report.

The Site is currently owned by Winsome, LLC and will be developed by Winsome, LLC.

DESCRIPTION OF PROPERTY

The Project is located on approximately 768 acres of land consisting of vacant land with native vegetation and is classified as "Pasture, grassland or range" per Table 6-6 of the City of Colorado Springs Drainage Criteria Manual. Filing No 3 consists of 38 5-acre residential lots. The Site does not currently provide water quality or detention for the Project area. The existing land use is undeveloped vacant land. This Filing consist of 349.5 acres and will have a disturbance of approximately 31.6 acres.

The existing topography consists of slopes ranging from 1% to 16%. The West Kiowa Creek ("the Creek") runs along the south side of Filing 3.

NRCS soil data is available for this Site and it has been noted that soils onsite USCS Type B and Type C. The NRCS soil data can be found in **Appendix D**. sediment pond. known irrigation facilities within the Site.

Improvements will consist of mowing, clearing and grubbing, weed control, paved access road construction, roadway grading, three detention ponds, roadside ditches, culverts, drainage swales, native seeding and a proposed channel to convey flows to the water quality pond.

The Site proposes to plat 38 lots for single family development, as well as provide the grading, roadway and drainage improvements.

An updated Topographic field survey was completed for the Project by Edward-James Surveying, Inc. dated November 3th, 2020 and is the basis for design for the drainage improvements.

 Revise. Site improvements/disturbance	
includes the bridge crossings w/in the	
floodplain.	

MAJOR BASIN DESCRIPTIONS

A preliminary drainage report was comp previously completed by The Vertex Co Preliminary Drainage Report prepared t design. Also as a reminder on the FDR for the Fil of the Vertex Co update the FEMA floodplain paragraph to describe the agreement PCD and the

developer has to restrict certain lots from

plain as ve date, /IR) was

confirm basin acreage for highlighted areas

The Site improvements are located determined by the Flood Insurance R December 7, 2018 (see Appendix A)

submitted and approved under Winsome Filing No. 1, FEMA Case No.19-08-0185R (see **Appendix D**). The floodplain is located along the southeast side of Filing No. 3 and the site improvements are located outside of the floodplain limits. Refer to **Appendix D** for the CLOMR application approval letter from FEMA for Case No. 19-08-0185R.

The Project is located within El Paso County's West Kiowa Creek Drainage Basin.

EXISTING SUB-BASIN DESCRIPTIONS

Per the approved Preliminary Drainage Report prepared by The Vertex Companies (PDR). The Site was divided into 6 subbasins A, G, H, I, J, and K. Drainage flows from northwest to southeast overland over vacant land to the West Kiowa Creek. Below is a description of the existing sub-basins.

Sub-Basin A

Per the approved PDR sub-basin, A consists of an area of 915.4 acres, located in the southwest corner of the property. Drainage flows overland from the northwest to southeast and into the West Kiowa Creek. Runoff during the 5-year and 100-year events are 87.10 cfs and 585.9 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-Basin G

Per the approved PDR sub-basin G consists of an on-site area of 107.6 acres, located in the center of the western portion of the property. Drainage flows overland from the northwest to southeast into the West Kiowa Creek. Runoff during the 5-year and 100-year events are 45.30 cfs and 199.0 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-basin H

Per the approved PDR sub-basin H consists of an on-site area of 121.8 acres, located in the center of the north portion of the property. Drainage flows overland from northwest to southeast to the West Kiowa Creek. Runoff during the 5-year and 100-year events are 34.80 cfs and 197.2 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-basin I

Per the approved PDR sub-basin I consists of an on-site area of 37.5 acres, located in the north portion of the property. Drainage flows overland from northwest to southeast to the West Kiowa Creek. Runoff during the 5-year and 100-year events are 26.40 cfs and 88.5 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-basin J

Per the approved PDR sub-basin J consists of an on-site area of 10.1 acres, located in the northwest corner of the property. Drainage flows overland from south to north and outfall offsite. Runoff during the 5-year and 100-year events are 3.40 cfs and 19.9 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-basin K

Per the approved PDR sub-basin K consists of an on-site area of 17.8 acres, located in the north portion of the property. Drainage flows overland from south to north and outfall offsite. Runoff during the 5-year and 100-year events are 12.90 cfs and 45.1 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Offsite flows entering the Site from sub-basin G will be conveyed through the Site following historical drainage paths and outfall to West Kiowa Creek. Offsite flows from sub-basin G will be routed to Water Quality Pond 1 and detained on site.

Excerpts from the approved PDR for the Existing Drainage Conditions are included in the **Appendix D** of this report for reference.

PROPOSED HEC-HMS SUB-BASIN DESCRIPTIONS

For the proposed condition, stormwater will generally maintain historic flow patterns from northwest to southeast. The proposed roadways will alter some of the existing flow paths. The roadway ditches will capture runoff from the roadways and direct flows back to the existing flow paths, which will ultimately outfall to Water Quality Pond 1, Pond 1, Pond 2 or Pond 4. To determine the design flows for the proposed culverts the existing basins were broken out and design points were created at each culvert crossing location.

For Filing No. 3 the proposed basins has been divided into 25 larger sub-basins for the HEC-HMS model.

Sub-Basin A2A is an offsite basin on the northwest side of Filing No. 3. Runoff from this basin will be directed to design point A2A where it will be directed to Basin A3B. This sub-basin has an area of 28.13 acres. The curve number for Sub-Basin A2A is 65.43. The basin will generate runoff of 5.3 cfs and 47.1 cfs in the minor and major storm event.

Sub-Basin A2B is an offsite basin on the northwest side of Filing No. 3. Runoff from this basin will be directed to design point A2B where it will be directed to Basin A3A. This sub-basin has an area of 8.87 acres. The curve number for Sub-Basin A2B is 69.78. The basin will generate runoff of 2.3 cfs and 20.3 cfs in the minor and major storm event.

Sub-Basin A3A consists of large residential lots and a portion of roadway. Runoff from this basin will be directed to design point A3A where it will be directed to Swale A3A and into the proposed culvert A3A to subbasin G2A. This sub-basin has an area of 8.25 acres. The curve number for Sub-Basin A3A is 73.04. The basin will generate runoff of 5.7 cfs and 25.8 cfs in the minor and major storm event.

Sub-Basin A3B consists of large residential lots and a portion of roadway. Runoff from this basin will be directed to design point A3B where it outfalls into West Kiowa Creek. This sub-basin has an area of 13.22 acres. The curve number for Sub-Basin A3B is 74.30. The basin will generate runoff of 9.1 cfs and 42.6 cfs in the minor and major storm event.

tunoff from this basin This sub-basin has basin will generate Kimley WQ is required before discharging into waters of the state (typ.). Sub-Basin A3C consists of large residential lots in the southwest corner of the site. Runoff from this basin will be directed to design point A3C where it will be directed to outfall in West Kiowa Creek. This sub-basin has an area of 11.66 acres. The curve number for Sub-Basin A3C is 77.23. The basin will generate runoff of 10.4 cfs and 40.5 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of EI Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin G1 consists of large residential lots along the west boundary of the site. Runoff from this basin will be directed to design point G1 where it will be directed to the southeast in culvert G1 to subbasin G2A. This sub-basin has an area of 24.79 acres. The curve number for Sub-Basin G1 is 67.58. The basin will generate runoff of 3.1 cfs and 40.1 cfs in the minor and major storm event.

	add to include	
Sub-Basin G2A consists of several portions of 4 large reside	"portion of roadway"	r Way.
Runoff from this basin will be directed to design point G2A w	Update other	Water
Quality Pond 1 which will outfall to West Kiowa Creek This	and the second	18.60
acres. The curve number for Sub-Basin G2A is 74.20. The basi	descriptions that	2.9 cfs
and 59.9 cis in th <u>e minor and major storm e</u> vent.	includes roadway	
label channel on figure		
Sub-Basin G2B consists of portions of 2 large residential lots e	such as: G2B, H1,	ff from
this basin will be directed to Channel X where it will drain into th	H2, H3A, H3B, H4,	ich will
outfall into West Kiowa Creek. This sub-basin has an area of 2	etc.	ber for
Sub-Basin G2B is 74.24. The basin will generate runoff of 2.6	cfs and 9.6 cfs in the min	ior and
major storm event.		

Sub-Basin H1 consists of portions of 2 large residential lots in the northwest corner of the site. Runoff from this basin will be directed to culvert H1 then to subbasin H4. This sub-basin has an area of 13.76 acres. The curve number for Sub-Basin H1 is 70.03. The basin will generate runoff of 4.6 cfs and 33.0 cfs in the minor and major storm event.

Sub-Basin H2 consists of 8 large residential lots north of Alamar Way in the center of the northern portion of the site. Runoff from this basin will flow southeast to culvert H2 and into sub-basin H6B. This sub-basin has an area of 39.09 acres. The curve number for Sub-Basin H2 is 64.93. The basin will generate runoff of 8.9 cfs and 65.2 cfs in the minor and major storm event.

Sub-Basin H3A consists of portions of large residential lots and of an undeveloped area north of the site. Runoff from this basin will be directed to culvert H3 and into sub-basin H7B. This sub-basin has an area of 3.08 acres. The curve number for Sub-Basin H3A is 71.60. The basin will generate runoff of 1.3 cfs and 8.0 cfs in the minor and major storm event.

Sub-Basin H3B cont the site. Runoff from has an area of 2.7 map (temporary generate runoff of 1. sediment basin 1). Typical for all.

sidential lots and of an undeveloped area north of d to culvert I1 by a roadside ditch. This sub-basin ber for Sub-Basin H3B is 72.02. The basin will or and major storm event.

Sub-Basin H4 consists or portions of large residential lots. Runoff from this basin will be directed to Reach H1 and into sub-basin Detention Pond 1 which outfalls to West Kiowa Creek. This sub-basin has an area of 27.00 acres. The curve number for Sub-Basin H4 is 74.44. The basin will generate runoff of 15.4 cfs and 73.6 cfs in the minor and major storm event.

Sub-Basin H5A consists of portions of large residential lots. Runoff from this basin will be directed to design point H5A and outfall to West Kiowa Creek. This sub-basin has an area of 9.03 acres. The curve number for Sub-Basin H5A is 75.95. The basin will generate runoff of 6.2 cfs and 27.0 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin H5B consists of portions of large residential lots, south of Alamar Way in the center of the site. Runoff from this basin will be directed to design point H5B and outfall to West Kiowa Creek. This sub-basin has an area of 10.48 acres. The curve number for Sub-Basin H5B is 73.76. The basin will generate runoff of 5.6 cfs and 29.0 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin H6A consists of portions of large residential lots, south of Alamar Way. Runoff from this basin will be directed to design point H6A and outfall to West Kiowa Creek. This sub-basin has an area of 16.64 acres. The curve number for Sub-Basin H6A is 75.56. The basin will generate runoff of 11.6 cfs and 51.1 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin H6B consists of portions of large residential lots, south of Alamar Way. Runoff from this basin will be directed through Reach H2 into Detention Pond 2 and outfall to West Kiowa Creek. This sub-basin has an area of 15.96 acres. The curve number for Sub-Basin H6B is 76.47. The basin will generate runoff of 15.5 cfs and 57.1 cfs in the minor and major storm Portions of roadway within H6B and H2 require WQ event.

Sub-Basin H7A consists of large residential lots, southwest of the intersection at Alamar Way and Twinkle Star Lane. Runoff from this basin will sheet flow into a roadside ditch to the Pond 4 Culvert. This sub-basin has an area of 8.50 acres. The curve number for Sub-Basin H7A is 72.92. The basin will generate runoff of 6.1 cfs and 27.1 cfs in the minor and major storm event.

label on figure and discuss flow path from culvert

Sub-Basin H7B consists of large residential lots, south of Alamar Way. Runoff from this basin will be directed through Reach H3 to design point H7B to culvert H7. This sub-basin has an area of 17.35 acres. The curve number for Sub-Basin H7B is 71.39. The basin will generate runoff of Update to Twinkling 7.8 cfs and 49.5 cfs in the minor and major storm event. Star

Sub-Basin H8 consists of a portion of a large residential lot, east of Alamar Way in the east portion of the site. Runoff from this basin will sheet flow to design point H8 and outfall to West Kiowa Creek. This sub-basin has an area of 8.46 acres. The curve number for Sub-Basin H8 is 75.69. The basin will generate runoff of 6.7 cfs and 26.5 cfs in the minor and/major storm event. The roadway portions within in this basin will be directed through a roadside ditch and drain to Detention Pond 4 to provide adequate water quality treatment.

Sub-Basin H9 consists of portions of 2 large residential lots, east of Alamar Way in the east portion of the site. Runoff from this basin will be directed to design point H9 and outfall to West Kiowa Creek. This sub-basin has an area of 6.85 acres. The curve number for Sub-Basin H9 is

72.27. The basin will generate runof The roadway portions within in this Detention Pond 4 to provide adequa	basin will be directed through a ro	
Sub-Basin I1 consists of portions of Star Lane intersection. Runoff from This sub-basin has an area of 6.82 basin will generate runoff of 5.9 cfs a	WQ.	
Sub-Basin I2 consists of portions of portion of the site. Runoff from this outfall to West Kiowa Creek. This su		
Sub-Basin I2 is 72.89. The basin w major storm event. Runoff reduction for the roadway runoff within this information.	is being accounted for to meet w	ater quality requirements
Sub Basin, Itseepsist	rative comparing historic vs ow and provide justification why storage is not required. the developed condition results	thwest corner of the site. e. This sub-basin has an basin will generate runoff m this sub-basin are not lix I Section 1.7.1.B of El in is identified as a large Section 1.7.1.B, number
Sub-Basin K1 consists of portions northeast portion of the site. Runoff offsite. This sub-basin has an area of	from this basin will be directed to	design point K1 and flow

offsite. This sub-basin has an area of 17.50 acres. The curve number for Sub-Basin K1 is 69.56. The basin will generate runoff of 4.5 cfs and 40.7 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Basin B3, B4, B2, C2, C3, C4, D5, and D6 are shown within the drainage map however were accounted for in Winsome Filing No.1 Final Drainage Report approved, May 15, 2019.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)" dated October 2018 ("the MANUAL"), El Paso County "Engineering Criteria Manual" ("the Engineering Manual"), Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014 ("the Colorado Springs MANUAL").

Site drainage is not significantly impacted by such constraints as utilities or existing development.

A preliminary drainage report was completed for the overall Winsome subdivision. This was previously completed by The Vertex Companies. This Final Drainage Report used the approved Preliminary Drainage Report prepared by The Vertex Companies (PDR) for the Site's final design.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the proposed drainage analysis per the MANUAL. Table 6-2 of the Colorado Springs MANUAL is the source for rainfall data for the 5-year and 100-year design storm events. Design runoff was calculated using the NRCS curve number method for developed conditions as established in the MANUAL. This aligns with what was completed in the PDR. The NRCS curve number method was used for existing conditions and proposed conditions due to the on-site and off-site basins containing more than 130 acres. Per the PDR the runoff curve numbers for the existing and proposed drainage basins used the curve numbers in DCM. The PDR developed the following values for the 2 ½ and 5 acre lots in **Table 1** below. These values were also used for the final design in this report.

		Soil Type			
Lot Size (Acres)	% Imp	A	В	С	D
5	7	N/A	60	72	77

Table 1: Values Extrapolated per the PDR

The rainfall depths that were determined in the PDR were also used for the final design. The rainfall depths utilized the Frontal Storm which produced higher design flows. See **Table 2** below for the Frontal Storm rainfall values.

Table 2: Frontal Storm Rainfall Depths

	Duration (HRS)		
Storm Event	1 HR	24 HR	
5 Year	1.5	2.7	
100 Year	2.52	4.6	

Calculations for the composite curve numbers are included in the Appendix B.

The proposed impervious values were determined in the PDR and were utilized in this report for the final design.

The Site is providing one water quality pond and three full spectrum detention ponds as the Site is not significantly increasing the imperviousness of the Site, the Project is maintaining the historic drainage patterns as much as possible and not significantly increasing developed flows.

There are no additional provisions selected or deviations from the criteria in both the MANUAL and Colorado Springs MANUAL.

Provide an explanation on how HEC-HMS and the temporary sediment HYDRAULIC CRITI basin sizing are tied

Early Grading - Final Drainage Report me Subdivision Filing No. 3, El Paso County, CO

Applicable design mel together.

the proposed temporary sediment basins,

culverts, and drainage channels, which includes the use of HEC-FMS, UD-Culvert and FlowMaster, V8i software. Temporary sediment basin sizing calculations can be found in Appendix C.

Proposed drainage features on-site have been analyzed and sized for the following design storm events:

Major Storm: 100-year Storm Event •

For the stormwater modeling for the Site was completed utilizing the NRCS Curve Number Method as required by the City of Colorado Springs. The HEC-HMS peak flows were determined to size the proposed culverts and channels. The same assumptions were kept from the PDR for the time of concentration calculations. **Table 3** below outlines these assumptions from the PDR:

	Shape	Side Slope	Depth (ft)	Wetted Perimeter (ft)	Cross Sectional Area (sq. ft.)
< 100 Acre Basin Channels	Triangular	4:1	4	32.98	64
>100 Acre Basin Channels	Triangular	4:1	3	24.74	36

Table 3: Time of Concentration Assumptions

For the conveyance flow paths the same assumptions and method was carried through from the PDR. These flow paths were for between the basin and the main channels and used 3 profiles. Per the PDR the 3 profiles utilized are as follows: "triangular profiles were used for the majority of the conveyance channels, larger branching tributaries with an 8 ft bottom, and the main channels were modeled as trapezoidal with a 20 ft bottom."

Four temporary sediment basins and one permanent sediment basin (H5B) are proposed in order to capture eroded or disturbed soil transported in storm runoff prior to discharge form the site.

Temporary Sediment Basin ID			Tributary Basin Area (Acres)	TSE	B Volume (Ac-ft)	
WQ1			21.4		2.01	
	1	Include a narrative stating TSB outlet perforation is			2.54	
	2	hrs.	sized with an emptying time of approximately 72 — hrs.			
	4					
			אר ס ollow the design criteria for Full Spectrum Detention out	lets in the	^.97	
 Orifice Plate or Riser Pipe: Follow the design criteria for Full Spectrum Detention outlets in the EDB Fact Sheet provided in Chapter 4 of this manual for sizing of outlet perforations with an emptying time of approximately 72 hours. In lieu of the trash rack, pack uniformly sized 1½ - to 2-inch gravel in front of the plate or surrounding the riser pipe. This gravel will need to be cleaned out frequently during the construction period as sediment accumulates within it. The gravel pack will need to be removed and disposed of following construction to reclaim the basin 						
for use as a permanent detention facility. If the basin will be used as a permanent extended detention basin for the site, a trash rack will need to be installed once contributing drainage areas have been stabilized and the gravel pack and accumulated sediment have been removed.						

C Revise. These are missing from appendix TI C. This may be more appropriate to be m included with the Filing 3 FDR when there's pa a street construction drawing to reference. ac

ch As such, Staff recommends revising the pr narrative to note roadside ditch hydraulic ^{ro} analysis will be included with the final

drainage report for Filing 3. fo

tre

NOTE: part of the hydraulic analysis will be ct to identify the velocities of sections of the tre roadside ditches and identify specific th erosion protection if velocities exceed The permissible velocities of native grass.

de

cu Contact the review engineer to discuss.

ry flows to the temporary sediment basins. es, with equal 4:1 side slopes. It should be ng in existing onsite drainage channels. As ented to stabilize the existing head cuts. In nal channel improvements are proposed for on potential to those channel sections. The portions of the channels, rock sills, riprap The approach with the proposed channel r channels H1-B, H4, H1-A, and H5B allows or channel H5B which has a high density of ning length of the channel will remain as is, he reach, A permeant sediment basin for st Kiowa & reek. The other area with a high nels (H1-B, H4, and H1-A). At this location -grading, rock sills and riprap rock chutes. provided in the Appendix C and channel e Maps. Refer to Appendix E for the head

Roadside ditches are provided along the proposed roadways to route flows to the proposed culverts. The roadside ditches are sized to convey the major event flow. The majority of the roadside ditches have been designed to have an average depth of approximately 3 feet, a vditch, a left-side slope of 4:1, and a right-side slope of 4:1. Roadside ditch sizing and capacity calculations are provided in the **Appendix C**.

Culverts were sized to convey flows from the ditches and channels, underneath the Site's paved roads. The proposed culverts range in diameter from 24" to 48" and have been designed to convey the 100-year storm event. Culvert calculations are provided in the Appendix C and culvert locations are provided in the Proposed Drainage Maps.

THE FOUR STEP PROCESS

The Project was designed in accordance with the four-step process to minimize adverse impacts of urbanization, as outlined in Chapter 1 Section 4.0 of the Colorado Springs MANUAL.

revise reference to Engineering Criteria Manual Appendix I Section I.7.2. and update the 4-step process

Step 1. Employ Runoff Reduction Practices- The project is proposing a low-density at will be designed to minimize the impact to the current proposed paved roadways will increase the Site's impervious thes and channels will be constructed to slow down the runoff peaks. The three full spectrum detention ponds will be used to aintain flows discharging off site at or below historic levels. For d Twinkling Star Lane runoff reduction has been employed by downhill side of the road and sending stormwater that contacts

the road across a receiving previous area

provide runoff reduction calculations

Step 2. Implement BMPs That Provide a Water Quality Capture Volume with Slow **Release** – Permanent water quality measures and detention facilities will be necessary for the Project. Temporary water quality and erosion control measures will be provided during construction to prevent sediment laden water from discharging from the Site. Water quality measures are being used for all stormwater that contacts roadways.

Step 3 Stabilize Drainageways– Stabilizing proposed roadside ditches, swales, and channels by designing them with slopes that control the flow rates. Placement of riprap upstream and downstream of culverts to help reduce erosion of the roadside ditches. Existing drainage ways have been graded to reduce the velocity of the water to minimize erosion. The existing natural channels have been analyzed for width and velocity for the 100-year storm event. Easements are proposed to accommodate the full width of the

ev su W	bsection describing the intent to convert these and state that permanent	osion on. Source ockpile
2.	Provide a description regarding the two RBC bridge structure such as	
no	ting this is being submitted concurrently and reviewed as a separate	
sta	andalone project.	
- F	Reference the report and the PCD File No (if available) for the hydraulic	
an		lows, three
or	the start of the early grading predicated in the approval of the bridge plans is there a contingency plan for crossing the creek in the interim? Provide	will capture Ilverts. MS method ons for the
Ki	\mathbf{O} in the state the subscription of the second state is a smaller state of the MA set	sections for n be found
SP	EGIFIG DE LAILS	

The existing conditions of the Site have flows conveying from the northwest to southeast and discharging in the West Kiowa Creek. Runoff conditions for the Site were developed utilizing the previously referenced Hydrologic Criteria per the approved PDR for the Winsome subdivision. The proposed development looks to preserve the natural drainage patterns as much as possible.

A Proposed Drainage Conditions Map and hydrologic calculations are included in the **Appendix B**, **Appendix C**, and **Appendix E** of this report for reference.

The Site will disturb more than 1 acre and will require a Colorado Discharge Permit System (CDPS) General Permit for Stormwater Discharge Associated with Construction Activities from the Colorado Department of Public Health and Environment (CDPHE).

There are no current drainage and bridge fees for the Project as the West Kiowa Creek Drainage Basin is not part of the El Paso County Drainage Basin Fee Program.

DRIVEWAY CULVERTS

Remove and identify that these will be

Culverts were analyzed and sized for dri provided with the roadways. Design assumptions were ma Final Drainage Report a max slope of 2%. Refer to Appendix C for the driveway culvert cal for Filing 3.

EXISTING MINOR DRAINAGE CHA Remember, this FDR

The existing drainage channels within Fi is for the early proposed easements and velocities for e grading request.

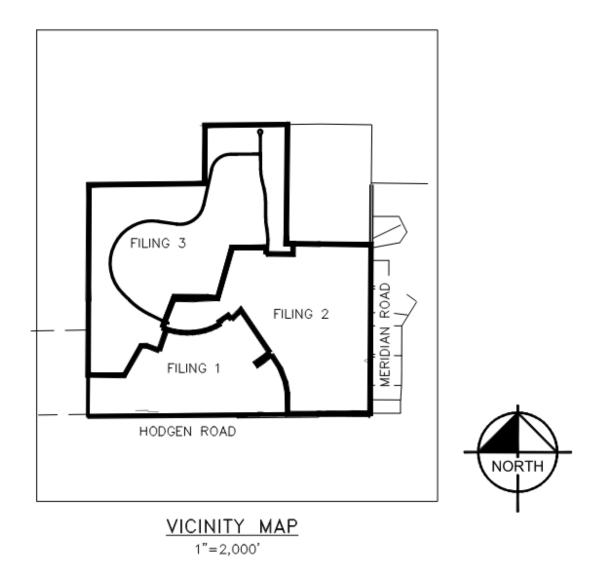
termine top widths for g of existing drainage

channels H1-A, H1-B, H3, and H4 will be proposed as part of this Filing 3. All existing channels are fully vegetated and channels H1-A, H1-B, H3, and H4 will be reseeded as part of this Filing. Four channels will require lining due to velocities exceeding 5 fps per MHFD criteria. Channel H1-A, H1-B, H5B, and H3 will require additional improvements due to the head cutting occurring within the channels. These channels are discussed in the hydraulic criteria section. Swale A3A, Swale I1 and the Water Quality Channel will be lined with Turf Reinforcement Mat or approved equal to reduce the potential of erosion within the channel. The Turf Reinforcement Mat material and performance specifications reflect an unvegetated maximum allowable velocity of 9 fps. Refer to **Appendix C** for the channel calculations, maximum allowable velocity criteria per MHFD and Turf Reinforcement Mat.

SUMMARY

The proposed drainage design is to maintain the historic drainage patterns, the overall imperviousness and release rates for the Site. Runoff from the Site will flow overland to existing El Paso County drainage basins: The West Kiowa Creek Basin. The basin ultimately discharges to the West Kiowa Creek. The drainage design presented within this report conforms to the criteria presented in both the MANUAL and the Colorado Springs MANUAL. Additionally, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments, including West Kiowa Creek.

REFERENCES


- 1. City of Colorado Springs "Drainage Criteria Manual (DCM) Volume 1", dated May, 2014
- 2. El Paso County "Drainage Criteria Manual", dated October 31, 2018
- 3. El Paso County "Engineering Criteria Manual" Revision 6, dated December 13, 2016
- 4. Chapter 6 and Section 3.2.1. of Chapter 13-City of Colorado Springs Drainage Criteria Manual, May 2014.
- 5. Urban Drainage and Flood Control District Drainage Criteria Manual (UDFCDCM), Vol. 1, prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.
- 6. Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 08041C0507F and 08041C0530F, Effective Date March 17, 1997, prepared by the Federal Emergency Management Agency (FEMA).
- 7. Winsome Subdivision Preliminary Drainage Report (PDR), prepared by The Vertex Companies, Inc, May 15, 2019. PCD File No. SP-18-006.
- 8. Request For Conditional Letter of Map Revision For West Kiowa Creek, prepared by The Vertex Companies, Inc., July 1,2019. FEMA Case No. 19-08-0185R.

APPENDIX

Kimley **»Horn**

APPENDIX A: FIGURES

Kimley **»Horn**

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the **North American Vertical Datum** of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12

National Geodetic Survey SSMC-3, #9202

1315 East-West Highway Silver Spring, MD 20910-3282

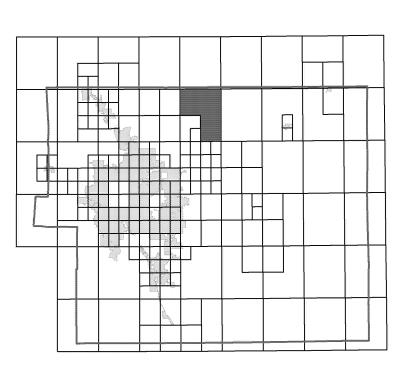
To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date **stream channel configurations and floodplain delineations** than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

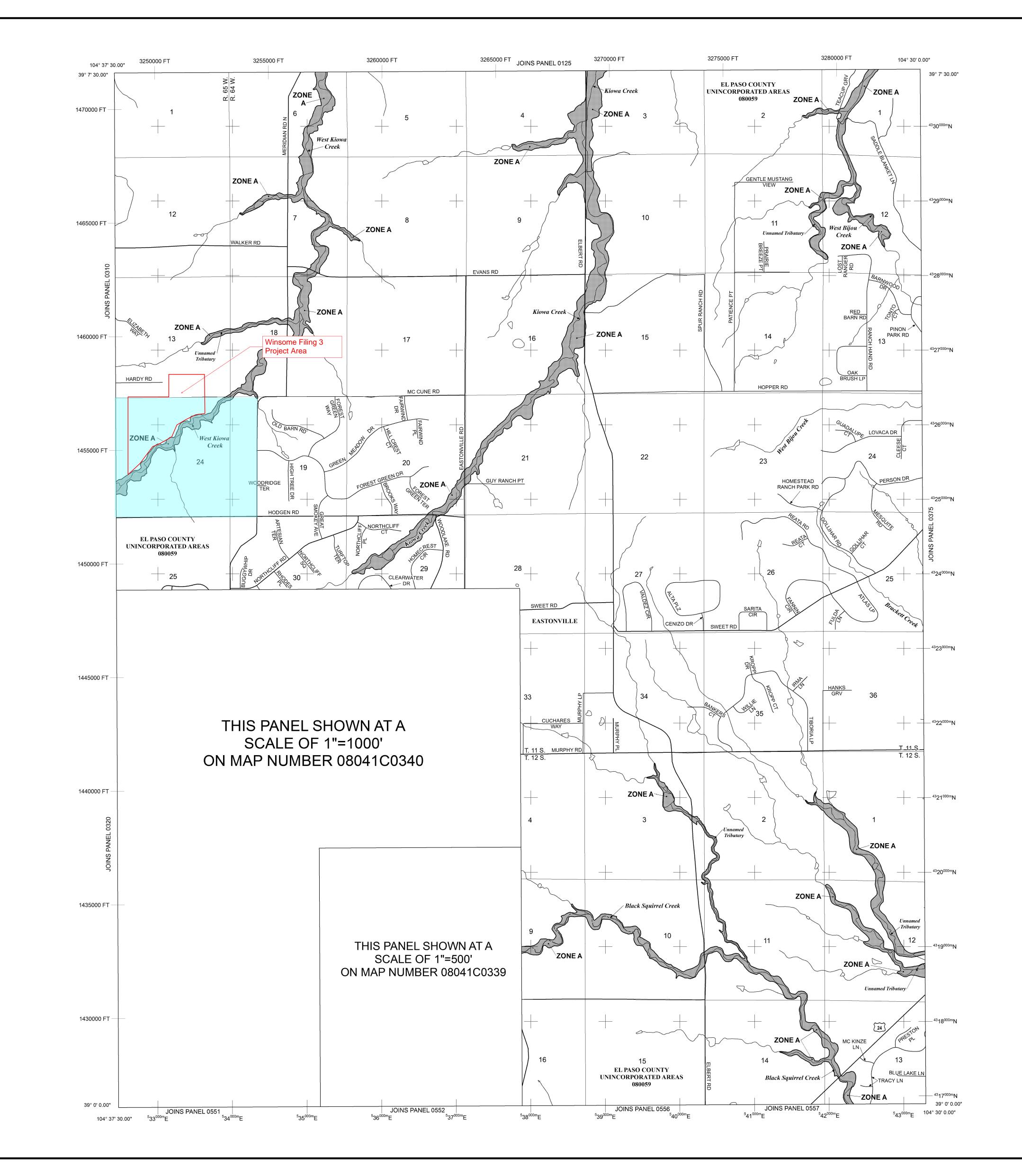
Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.


Contact **FEMA Map Service Center** (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County Vertical Datum Offset Table Vertical Datum Flooding Source Offset (ft)

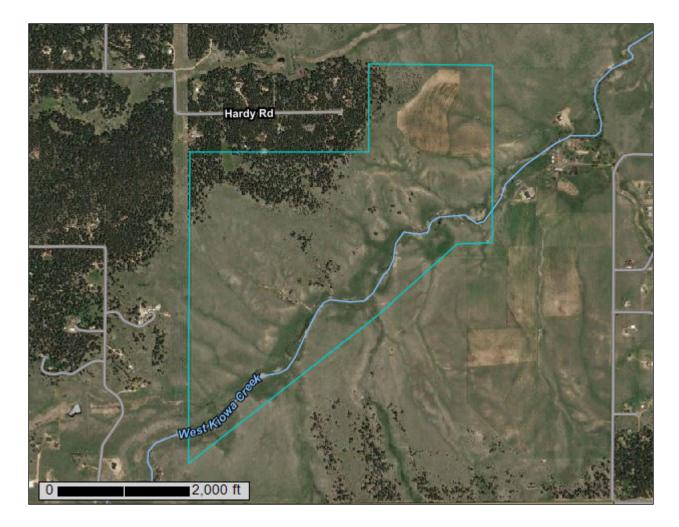
REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

		LEGEND					
		D HAZARD AREAS (SFHAS) SUBJECT TO (THE 1% ANNUAL CHANCE FLOOD					
that has a 1% c	hance of being equ	year flood), also known as the base flood, is the flood Jaled or exceeded in any given year. The Special Flood to flooding by the 1% annual chance flood. Areas of					
Special Flood Ha	zard include Zones	is A, AE, AH, AO, AR, A99, V, and VE. The Base Flood tion of the 1% annual chance flood.					
	o Base Flood Eleva ase Flood Elevation						
	ood depths of 1 levations determine	to 3 feet (usually areas of ponding); Base Flood ed.					
de	Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined						
ZONE AR S	ood by a flood cor R indicates that t	d Area Formerly protected from the 1% annual chance htrol system that was subsequently decertified. Zone he former flood control system is being restored to					
ZONE A99 A	rea to be protecte	rom the 1% annual chance or greater flood. ed from 1% annual chance flood by a Federal flood under construction; no Base Flood Elevations					
ZONE V G	etermined. oastal flood zone levations determine	with velocity hazard (wave action); no Base Flood ed.					
	oastal flood zone levations determine	e with velocity hazard (wave action); Base Flood ed.					
//// F	Loodway are	AS IN ZONE AE					
kept free of end		tream plus any adjacent floodplain areas that must be t the 1% annual chance flood can be carried without ts.					
	OTHER FLOOD AREAS						
a' so	average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.						
	THER AREAS	be outside the 0.2% annual chance floodplain.					
		hazards are undetermined, but possible.					
c	OASTAL BARRI	ER RESOURCES SYSTEM (CBRS) AREAS					
	THERWISE PRO	OTECTED AREAS (OPAs)					
CBRS areas and		located within or adjacent to Special Flood Hazard Areas.					
		ain boundary ay boundary					
		Boundary					
	Bounda	nd OPA boundary ary dividing Special Flood Hazard Areas of different Base					
← 513 ~ (EL 987)	Flood E Base Fl	levations, flood depths or flood velocities. ood Elevation line and value; elevation in feet* ood Elevation value where uniform within zone;					
	elevatio	n Vertical Datum of 1988 (NAVD 88)					
A		ection line					
(23)(23) Transec	ct line					
97° 07' 30.00'		phic coordinates referenced to the North American					
32° 22' 30.00'		of 1983 (NAD 83)					
⁴² 75 ^{000m} N 6000000 FT	zone 13 5000-fc	oot grid ticks: Colorado State Plane coordinate					
DX5510 _×	Lamber Bench r	, central zone (FIPSZONE 0502), t Conformal Conic Projection mark (see explanation in Notes to Users section of					
M1.5	this FIR	RM panel)					
● M1.5	River M	lile					
	Refer to 1	MAP REPOSITORIES Map Repositories list on Map Index					
		CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997					
	R 7, 2018 - to updat d Hazard Areas, to	TE(S) OF REVISION(S) TO THIS PANEL te corporate limits, to change Base Flood Elevations and update map format, to add roads and road names, and to eviously issued Letters of Map Revision.					
For community n		y prior to countywide mapping, refer to the Community					
Map History Tabl	e located in the Flo	ood Insurance Study report for this jurisdiction.					
		available in this community, contact your insurance urance Program at 1-800-638-6620.					
		AP SCALE 1" = 2000'					
1	1000 0 日日日	2000 4000 FEET					
600		600 1200					
		PANEL 0350G					
	MAAD	FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO					
		COLORADO AND INCORPORATED AREAS					
		PANEL 350 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT)					
		CONTAINS:					
		COMMUNITY NUMBER PANEL SUFFIX EL PASO COUNTY 080059 0350 G					
		Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the subject community					
	AN I	08041C0350G					
		MAP REVISED DECEMBER 7, 2018					
		Federal Emergency Management Agency					


United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

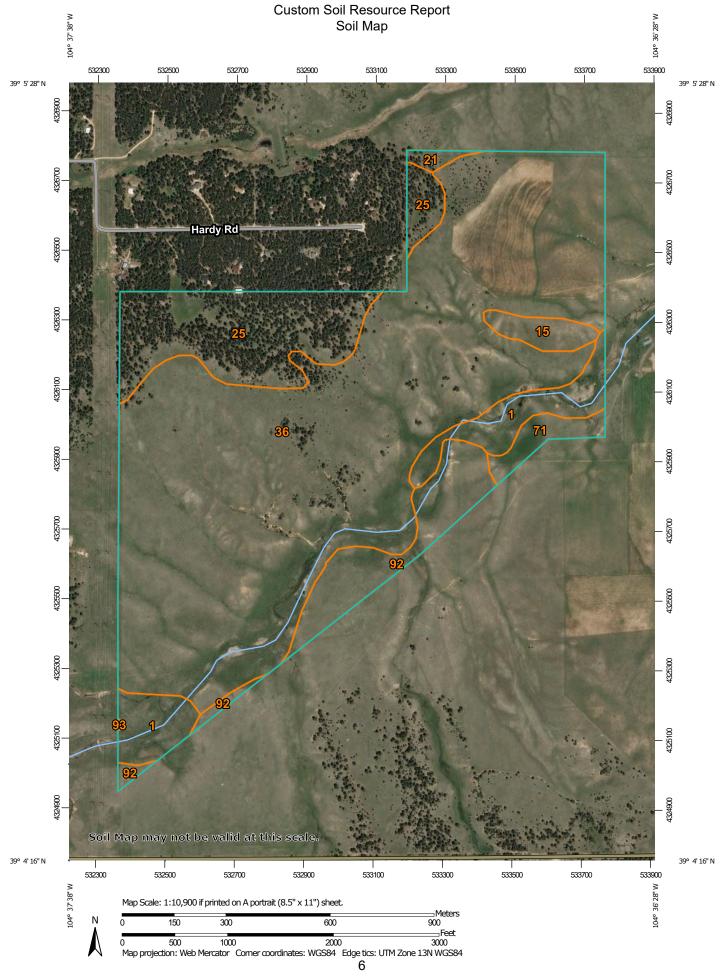
Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require


alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	5
Soil Map	6
Legend	7
Map Unit Legend	8
Map Unit Descriptions	8
El Paso County Area, Colorado	10
1—Alamosa loam, 1 to 3 percent slopes	10
15—Brussett loam, 3 to 5 percent slopes	11
21—Cruckton sandy loam, 1 to 9 percent slopes	12
25—Elbeth sandy loam, 3 to 8 percent slopes	13
36—Holderness loam, 8 to 15 percent slopes	14
71—Pring coarse sandy loam, 3 to 8 percent slopes	15
92—Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	16
93—Tomah-Crowfoot complex, 8 to 15 percent slopes	18
Soil Information for All Uses	20
Soil Properties and Qualities	
Soil Qualities and Features	20
Hydrologic Soil Group	20
References	25

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND)	MAP INFORMATION
Area of Int	terest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at 1:24,000.
	Area of Interest (AOI)	۵	Stony Spot	1.24,000.
Soils	Soil Map Unit Polygons	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
		Ŷ	Wet Spot	
~	Soil Map Unit Lines	Δ	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
	Soil Map Unit Points		Special Line Features	line placement. The maps do not show the small areas of
Special	Point Features Blowout	Water Fea	atures	contrasting soils that could have been shown at a more detailed scale.
-	Borrow Pit	\sim	Streams and Canals	
		Transport	ation	Please rely on the bar scale on each map sheet for map
*	Clay Spot	+++	Rails	measurements.
<u>ہ</u>	Closed Depression	~	Interstate Highways	Source of Map: Natural Resources Conservation Service
X	Gravel Pit	~	US Routes	Web Soil Survey URL:
00	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
Ø	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
A.	Lava Flow	Backgrou	ind	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
عليه	Marsh or swamp	No.	Aerial Photography	Albers equal-area conic projection, should be used if more
R	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
0	Perennial Water			of the version date(s) listed below.
\sim	Rock Outcrop			Soil Survey Area: El Paso County Area, Colorado
+	Saline Spot			Survey Area Data: Version 18, Jun 5, 2020
°*°	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
0	Sinkhole			Date(s) aerial images were photographed: Sep 8, 2018—May
3ò	Slide or Slip			26, 2019
ß	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1	Alamosa loam, 1 to 3 percent slopes	23.6	6.5%
15	Brussett loam, 3 to 5 percent slopes	6.0	1.6%
21	Cruckton sandy loam, 1 to 9 percent slopes	1.8	0.5%
25	Elbeth sandy loam, 3 to 8 percent slopes	46.0	12.6%
36	Holderness loam, 8 to 15 percent slopes	255.9	70.3%
71	Pring coarse sandy loam, 3 to 8 percent slopes	6.3	1.7%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	24.2	6.7%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	0.1	0.0%
Totals for Area of Interest		363.9	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas

are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

1—Alamosa loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 3670 Elevation: 7,200 to 7,700 feet Farmland classification: Prime farmland if irrigated and reclaimed of excess salts and sodium

Map Unit Composition

Alamosa and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alamosa

Setting

Landform: Flood plains, fans Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 6 inches: loam Bt - 6 to 14 inches: clay loam Btk - 14 to 33 inches: clay loam Cg1 - 33 to 53 inches: sandy clay loam Cg2 - 53 to 60 inches: sandy loam

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: About 12 to 18 inches
Frequency of flooding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Very slightly saline to strongly saline (2.0 to 16.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 10.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: D Ecological site: R048AY241CO Hydric soil rating: Yes

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

15—Brussett loam, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: 367k Elevation: 7,200 to 7,500 feet Frost-free period: 115 to 125 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Brussett and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Brussett

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian deposits

Typical profile

A - 0 to 8 inches: loam BA - 8 to 12 inches: loam Bt - 12 to 26 inches: clay loam Bk - 26 to 60 inches: silt loam

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R048AY222CO Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

21—Cruckton sandy loam, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 367s Elevation: 7,200 to 7,600 feet Mean annual precipitation: 16 to 18 inches Mean annual air temperature: 42 to 46 degrees F Frost-free period: 110 to 120 days Farmland classification: Not prime farmland

Map Unit Composition

Cruckton and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Cruckton

Setting

Landform: Flats, hills Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from arkose

Typical profile

A - 0 to 11 inches: sandy loam Bt - 11 to 28 inches: sandy loam C - 28 to 60 inches: loamy coarse sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 5.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B *Ecological site:* R049XB216CO - Sandy Divide *Hydric soil rating:* No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

25—Elbeth sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 367x Elevation: 7,300 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Elbeth and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Elbeth

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from arkose

Typical profile

A - 0 to 3 inches: sandy loam

E - 3 to 23 inches: loamy sand

Bt - 23 to 68 inches: sandy clay loam

C - 68 to 74 inches: sandy clay loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

36—Holderness loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 3689 Elevation: 7,200 to 7,400 feet Farmland classification: Not prime farmland

Map Unit Composition

Holderness and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Holderness

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium derived from arkose

Typical profile

A - 0 to 9 inches: loam Bt - 9 to 43 inches: clay loam C - 43 to 60 inches: gravelly sandy clay loam

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C *Ecological site:* R048AY222CO *Hydric soil rating:* No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam

C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: R048AY222CO Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No

92—Tomah-Crowfoot loamy sands, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 36b9 Elevation: 7,300 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent *Crowfoot and similar soils:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Tomah

Setting

Landform: Hills, alluvial fans Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from arkose and/or residuum weathered from arkose

Typical profile

A - 0 to 10 inches: loamy sand E - 10 to 22 inches: coarse sand C - 48 to 60 inches: coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R049XB216CO - Sandy Divide Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Alluvial fans, hills Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 12 inches: loamy sand *E* - 12 to 23 inches: sand *Bt* - 23 to 36 inches: sandy clay loam *C* - 36 to 60 inches: coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R049XB216CO - Sandy Divide Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

93—Tomah-Crowfoot complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 36bb Elevation: 7,300 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent *Crowfoot and similar soils:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Tomah

Setting

Landform: Alluvial fans, hills Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from arkose and/or residuum weathered from arkose

Typical profile

- A 0 to 10 inches: loamy sand
- E 10 to 22 inches: coarse sand
- C 48 to 60 inches: coarse sand

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R049XB216CO - Sandy Divide Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Hills, alluvial fans Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 12 inches: loamy sand

E - 12 to 23 inches: sand

Bt - 23 to 36 inches: sandy clay loam

C - 36 to 60 inches: coarse sand

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R049XB216CO - Sandy Divide Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

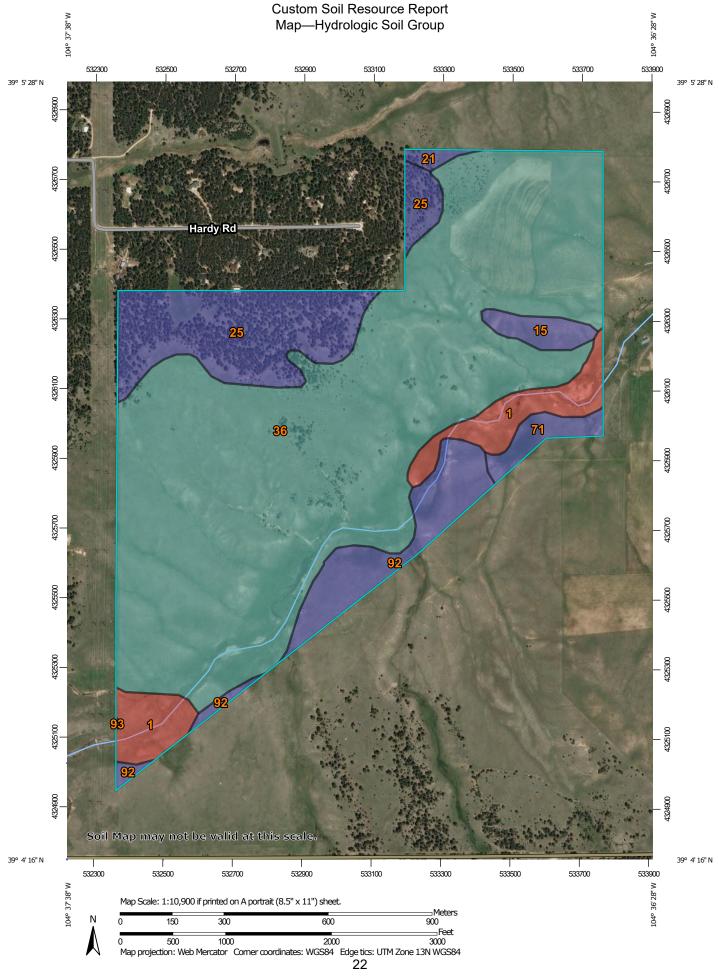
Soil Qualities and Features

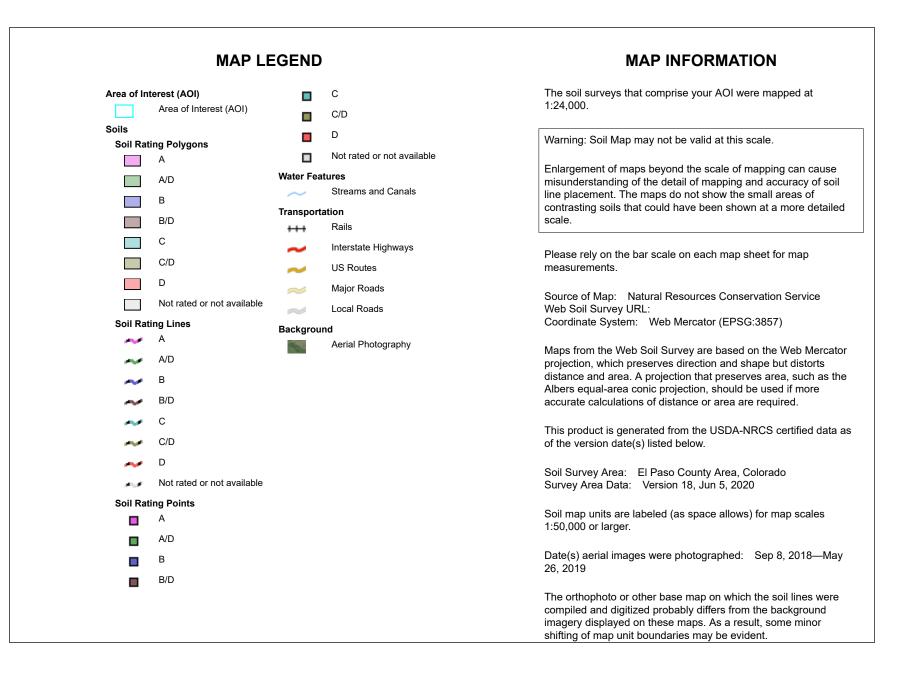
Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:


Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.


Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
	Map unit name	Rating	Acres III AOI	Percent of AOI
1	Alamosa loam, 1 to 3 percent slopes	D	23.6	6.5%
15	Brussett loam, 3 to 5 percent slopes	В	6.0	1.6%
21	Cruckton sandy loam, 1 to 9 percent slopes	В	1.8	0.5%
25	Elbeth sandy loam, 3 to 8 percent slopes	В	46.0	12.6%
36	Holderness loam, 8 to 15 percent slopes	С	255.9	70.3%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	6.3	1.7%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	В	24.2	6.7%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	В	0.1	0.0%
Totals for Area of Inter	est	1	363.9	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

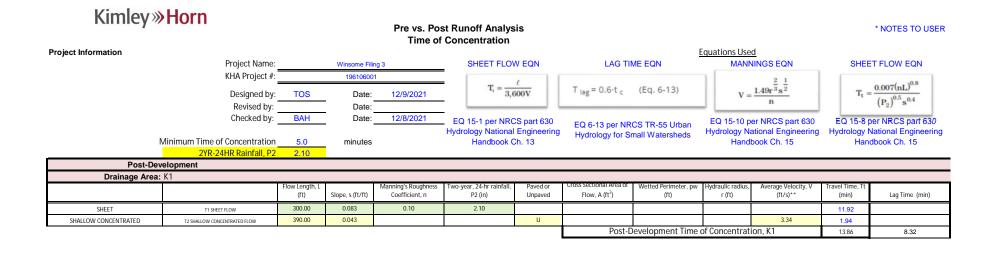
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX B: HYDROLOGY

	"С	evise la Concen		-low"	$\overline{}$						update re based on Drainage Manual (2	City Criteria
Kimley	/ »Horn			Pre vs. Po	st Runoff Analys	sis						* NOTES TO US
				Time of	Concentration							
ect Information	Project Name:				SHEET FLO				quations Use	<u>ed</u> NINGS EQN		T FLOW EQN
	KHA Project #:		Winsome Fil 19610600	-			LAG TI		IVIANI	NINGS EQIN		
					$T_t = \frac{1}{3,0}$	l	T _{lag} = 0.6·t _c	(Eq. 6-13)		$=\frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}$	T	0.007(nL) ^{0.8}
	Designed by:		_ Date: Date:			600 V		\sim	V =		1 _t =	(P)0.5 0.4
	Revised by: Checked by:		_ Date: Date:						50.45.40.4			er NRCS part 630
					EQ 15-1 per NRO Hydrology Nationa		EQ 6-13 per NR Hydrology for Si	CS TR-55 Urban		er NRCS part 63 ational Engineer		lational Engineerir
	Minimum Time of Concentration	n <u>5.0</u>	minutes	· · · >	Handbook (nair watersneds		book Ch. 15		book Ch. 15
	2YR-24HR Rainfall, P2	2 <mark>2.10</mark>		L L								
					~~~	$\overline{\boldsymbol{\lambda}}$		~~~	<u> </u>		<u> </u>	~~~
	-Development											
Drainage Ar	rea: AZA	Flow Length, L	1	Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity,	V Travel Time, Tt	
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ² )	(ft)	r (ft)	(ft/s)**	(min)	Lag Time (min)
SHEET	T1 SHEET FLOW	100.00	0.021	0.10	2.10						8.58	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	1284.00	0.029			U				2.75	7.79	
CHANNEL	T3 CHANNEL FLOW	200.00	0.03	0.04		U	64.00 Post D	32.98 evelopment Time o	1.94	9.87 on A2A	0.34	10.02
							FUSI-D	evelopment nine o		011, AZA	16.70	10.02
Post-	-Development											
Drainage Ar	•											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, (ft/s)**	V Travel Time, Tt (min)	Lag Time (min)
SHEET		100.00	0.021	0.10	2.10	Unpaveu	now, A (it )	(1)	1 (11)	(173)	8.58	Lag IIIIe (IIIII)
SHEET SHALLOW CONCENTRATED	T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW	940.00	0.021	0.10	2.10	U				2.75	5.70	
CHANNEL	T2 SHALLOW CONCENTRATED FLOW	404.00	0.027	0.04		U	64.00	32.98	1.94	9.87	0.68	
ONANALE	IS ON WREP LOW	_	1		ļ			evelopment Time o			14.96	8.98
Post-	-Development											
Drainage Ar	rea: A3A				LT 041							
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, (ft/s)**	V Travel Time, Tt (min)	Lag Time (min)
	T1 SHEET FLOW	100.00	0.057	0.10	2.10	•					5.74	- · /
SHEFT						U		1		3.61	4.11	
SHEET SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	890.00	0.050			U						
		890.00 520.00	0.050	0.04		U	64.00	32.98	1.94	11.59	0.75	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW			0.04			1	32.98 evelopment Time o			0.75 10.60	6.36
SHALLOW CONCENTRATED CHANNEL	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW			0.04			1					6.36
SHALLOW CONCENTRATED CHANNEL Post-	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW			0.04			1					6.36
SHALLOW CONCENTRATED CHANNEL	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW	520.00			Two your 24 br minfall	U	Post-D	evelopment Time o	f Concentrati	on, A3A	10.60	6.36
SHALLOW CONCENTRATED CHANNEL Post-	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW			0.04 Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)		1				10.60	6.36 Lag Time (min)
SHALLOW CONCENTRATED CHANNEL Post-	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW	520.00 Flow Length, L	0.04	Manning's Roughness	Two-year, 24-hr rainfall, P2 (in) 2.10	U Paved or	Post-D	evelopment Time o	f Concentration	on, A3A	10.60 V Travel Time, Tt	
SHALLOW CONCENTRATED CHANNEL Post- Drainage Ar	-Development rea: A3B	Flow Length, L (ft)	0.04 Slope, s (ft/ft)	Manning's Roughness Coefficient, n	P2 (in)	U Paved or	Post-D	evelopment Time o	f Concentration	on, A3A	10.60 V Travel Time, Tt (min)	
SHALLOW CONCENTRATED CHANNEL Post- Drainage Ar SHEET	-Development rea: A3B	520.00 Flow Length, L (ft) 100.00	0.04 Slope, s (ft/ft) 0.070	Manning's Roughness Coefficient, n	P2 (in)	U Paved or Unpaved	Post-D	evelopment Time o	f Concentration	Average Velocity, (ft/s)**	V Travel Time, Tt (min) 5.30	

Kimley»	»Horn				st Runoff Analys	sis						* NOTES TO USE
roject Information	Project Name:		Winsome Fili		SHEET FLO	W EQN	LAG TI	ME EQN	Equations Use MAN	<u>ed</u> NINGS EQN	SHEE	T FLOW EQN
	KHA Project #:		19610600	ท		( ) [				2 1		08
	Designed by:	TOS	Date:	12/9/2021	$T_t = \frac{1}{3,0}$	500V	$T_{lag} = 0.6 \cdot t_c$	(Eq. 6-13)	V =	$=\frac{1.49r^{\overline{3}}s^{\overline{2}}}{n}$	T _t =	$\frac{0.007(nL)^{0.8}}{(P_2)^{0.5}s^{0.4}}$
	Revised by: Checked by:	BAH	Date: Date:	12/8/2021	EQ 15-1 per NRC		EQ 6-13 per NR	CS TR-55 Urban		per NRCS part 630	EQ 15-8 p	er NRCS part 630
	Minimum Time of Concentration	5.0 2.10	minutes		Hydrology Nationa Handbook (		Hydrology for S	mall Watersheds		lational Engineering Ibook Ch. 15		lational Engineerir dbook Ch. 15
Post-De	velopment	2.1.0										
Drainage Area												
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	100.00	0.064	0.10	2.10						5.49	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	275.00	0.006			U				1.25	3.67	
CHANNEL	T3 CHANNEL FLOW	554.00	0.01	0.04		U	64.00	32.98	1.94	4.49	2.06	
							Post-D	evelopment Time	of Concentrati	ion, A3C	11.22	6.73
Dest De												
Drainage Area	evelopment											
Drainage Area		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.030	0.10	2.10						17.91	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	539.00	0.048			U				3.52	2.56	
CHANNEL	T3 CHANNEL FLOW	620.00	0.04	0.04		U	64.00	32.98	1.94	11.74	0.88	
							Post-D	Development Time	of Concentrat	ion, G1	21.34	12.80
Post-De	velopment											
Drainage Area	: G2A											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	100.00	0.080	0.10	2.10						5.02	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	20.00	0.080			U				4.56	0.07	
CHANNEL	T3 CHANNEL FLOW	1240.00	0.04	0.04		U	64.00	32.98	1.94	11.59	1.78	
							Post-D	evelopment Time	of Concentrati	on, G2A	10.00	6.00
De et De												
Drainage Area	evelopment : G2B											
Brainage Alea		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross sectional Area of Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	67.00	0.040	0.10	2.10						4.81	,
CHANNEL	T3 CHANNEL FLOW	750.00	0.06	0.04		U	64.00	32.98	1.94	14.20	0.88	
							Post-D	evelopment Time	of Concentrati	ion, G2B	10.00	6.00
	velopment											
Drainage Area	:: H1	Flow Length, L	1	Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	cross sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ² )	(ft)	r (ft)	(ft/s)**	(min)	Lag Time (min)
SHEET	T1 SHEET FLOW	250.00	0.049	0.10	2.10						12.77	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	450.00	0.058			U				3.88	1.93	
CHANNEL	T3 CHANNEL FLOW	225.00	0.06	0.04	1	U	64.00	32.98	1.94	14.20	0.26	


Post-Development Time of Concentration, H1 14.96

8.98

Kimley	»Horn				at Runoff Analys Concentration	is						* NOTES TO US
ect Information	Droject Norse								Equations Use	<u>d</u> IINGS EQN	0.155	
	Project Name: KHA Project #:		Winsome Fil 19610600	-	SHEET FLOW		LAG II	ME EQN	MANN	INGS EQN	_	T FLOW EQN
	Designed by:	TOS	Date:		$T_t = \frac{1}{3,6}$	( 00V	T _{lag} = 0.6·t _c	(Eq. 6-13)	V.	$\frac{2}{1.49r^3s^2}$	Т. =	$\frac{0.007(nL)^{0.8}}{\left(P_2\right)^{0.5}s^{0.4}}$
	Revised by:	100	Date:	12/3/2021						n	-1	$(P_2)^{0.5} s^{0.4}$
	Checked by:	BAH	Date:	12/8/2021	EQ 15-1 per NRC		EQ 6-13 per NR	CS TR-55 Urban		er NRCS part 630		er NRCS part 6
	Minimum Time of Concentration 2YR-24HR Rainfall, P2	5.0 2.10	minutes		Hydrology National Handbook C		Hydrology for S	mall Watersheds		ational Engineering book Ch. 15		lational Enginee Ibook Ch. 15
Post-Do	evelopment											
Drainage Are	a: H2	Elow Longth	<b>F</b>	Manning's Poughnoss	Two yoar 24 br rainfall	Payod or	LTOSS Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Avorago Volocity, V	Travel Time, Tt	
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ² )	(ft)	r (ft)	Average Velocity, V (ft/s)**	(min)	Lag Time (min
SHEET	T1 SHEET FLOW	300.00	0.140	0.10	2.10						9.67	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	1000.00 516.00	0.030	0.04		UU	64.00	32.98	1.94	2.79	5.97	
CHANNEL	T3 CHANNEL FLOW	318.00	0.04	0.04		U		Development Time			0.79 16.43	9.86
	evelopment											
Drainage Area	a: H3A	Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	cross Sectional Area or	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ² )	(ft)	r (ft)	(ft/s)**	(min)	Lag Time (mi
SHEET	T1 SHEET FLOW	300.00	0.055	0.10	2.10						14.05	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	50.00	0.076			U	Post D	evelopment Time o	of Concontratio	4.45	0.19 14.24	8.54
							103(-D		o concentration	л, н <del>э</del> д	14.24	0.04
	evelopment											
Drainage Area	a: H3B	Flow Length, L	1	Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	cross sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ² )	(ft)	r (ft)	(ft/s)**	(min)	Lag Time (mir
SHEET	T1 SHEET FLOW	266.00	0.046	0.10	2.10						13.71	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	334.00	0.014			U	Doct D	evelopment Time of	of Concontratio	1.91	2.92	0.07
						l	POSI-D			סנח, חס	16.62	9.97
Post-D	evelopment											
Drainage Are	<b>a:</b> H4											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (mir
SHEET	T1 SHEET FLOW	300.00	0.050	0.10	2.10						14.60	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	270.00	0.045			U				3.42	1.32	
CHANNEL	T3 CHANNEL FLOW	802.00	0.05	0.04		U	64.00	32.98	1.94	13.22	1.01	
							Post-E	Development Time	of Concentrati	on, H4	16.92	10.15
Post-D	evelopment											
Drainage Area												
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (mir
SHEET	T1 SHEET FLOW	300.00	0.078	0.10	2.10					· · · · · · · · · · · · · · · · · · ·	12.22	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	830.00	0.070			U				4.27	3.24	
CHANNEL	T3 CHANNEL FLOW		0.06	0.04		U	64.00	32.98	1.94	14.20	0.00	

,	<b>Horn</b>				st Runoff Analys Concentration	is						* NOTES TO US
ect Information	Project Name:		Winsome Fil		SHEET FLOW	V EQN	LAG TI	ME EQN	Equations Use MANN	<u>d</u> IINGS EQN	SHEE	T FLOW EQN
	KHA Project #: Designed by:	TOS	19610600 Date:	12/9/2021	$T_t = \frac{1}{3,6}$	(00V	T _{lag} = 0.6·t _c	(Eq. 6-13)	V =	$\frac{\frac{2}{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}}{n}$	T _t =	$=\frac{0.007(nL)^{0.8}}{(P_2)^{0.5}s^{0.4}}$
	Revised by: Checked by: Minimum Time of Concentration 2YR-24HR Rainfall, P2		Date: Date: minutes	12/8/2021	EQ 15-1 per NRC Hydrology National Handbook C	Engineering		CS TR-55 Urban mall Watersheds	Hydrology Na	er NRCS part 630 ational Engineering book Ch. 15	EQ 15-8 p Hydrology N	ber NRCS part 63 National Enginee dbook Ch. 15
Post-De	velopment		•									
Drainage Area	: H5B											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	TH CUEFF FLOW	300.00	0.070	0.10	2.10	onparca	now, A (it )		1.0.9	(10.5)	12.76	Lug Inne (Inni)
SHEET SHALLOW CONCENTRATED	T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW	450.00	0.070	0.10	2.10	U			1	4.56	12.76	
CHANNEL	T3 CHANNEL FLOW	500.00	0.05	0.04		U	64.00	32.98	1.94	12.96	0.64	
CITATIVEE	13 CIDAWALLI LOW					-		evelopment Time o			15.05	9.03
Post-De	velopment										-	
Drainage Area	: H6A											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (mir
SHEET	T1 SHEET FLOW	300.00	0.090	0.10	2.10						11.54	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	650.00	0.080			U				4.56	2.37	
							Post-De	evelopment Time o	of Concentratio	DN, H6A	13.91	8.35
	velopment						Post-D	evelopment Time c	of Concentratio	DN, H6A	13.91	8.35
Post-De Drainage Area	•	Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	CLO22 Sectional Area OF	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	
	•	(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Paved or Unpaved	Post-Di	·				
Drainage Area	T1 SHEET FLOW	(ft) 42.00	0.040			Unpaved	CLO22 Sectional Area OF	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V (ft/s)**	Travel Time, Tt (min) 3.31	
Drainage Area SHEET SHALLOW CONCENTRATED	TI SHEET FLOW T2 SHALLOW CONCENTRATED FLOW	(ft) 42.00 710.00	0.040	Coefficient, n 0.10	P2 (in)	Unpaved U	Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)** 3.95	Travel Time, Tt (min) 3.31 3.00	
Drainage Area	T1 SHEET FLOW	(ft) 42.00	0.040	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ² ) 64.00	Wetted Perimeter, pw (ft) 32.98	Hydraulic radius, r (ft) 1.94	Average Velocity, V (ft/s)** 3.95 11.59	Travel Time, Tt (min) 3.31 3.00 1.19	Lag Time (min
Drainage Area SHEET SHALLOW CONCENTRATED	TI SHEET FLOW T2 SHALLOW CONCENTRATED FLOW	(ft) 42.00 710.00	0.040	Coefficient, n 0.10	P2 (in)	Unpaved U	Flow, A (ft ² ) 64.00	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft) 1.94	Average Velocity, V (ft/s)** 3.95 11.59	Travel Time, Tt (min) 3.31 3.00	
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL	TI SHEET FLOW T2 SHALLOW CONCENTRATED FLOW	(ft) 42.00 710.00	0.040	Coefficient, n 0.10	P2 (in)	Unpaved U	Flow, A (ft ² ) 64.00	Wetted Perimeter, pw (ft) 32.98	Hydraulic radius, r (ft) 1.94	Average Velocity, V (ft/s)** 3.95 11.59	Travel Time, Tt (min) 3.31 3.00 1.19	Lag Time (mir
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL	H6B     TI SHEET FLOW     T2 SHALLOW CONCENTRATED FLOW     T3 CHANNEL FLOW     Velopment	(ft) 42.00 710.00	0.040	Coefficient, n 0.10	P2 (in)	Unpaved U	Flow, A (ft ² ) 64.00	Wetted Perimeter, pw (ft) 32.98	Hydraulic radius, r (ft) 1.94	Average Velocity, V (ft/s)** 3.95 11.59	Travel Time, Tt (min) 3.31 3.00 1.19	Lag Time (min
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De	H6B     TI SHEET FLOW     T2 SHALLOW CONCENTRATED FLOW     T3 CHANNEL FLOW     Velopment	(ft) 42.00 710.00 825.00	0.040 0.060 0.04	Coefficient, n 0.10 0.04 Manning's Roughness	P2 (in) 2.10	Unpaved U U V Paved or	Flow, A (ft ² ) Flow, A (ft ² ) 64.00 Post-Dr Cross sectional Area of	Wetted Perimeter, pw (ft) 32.98 evelopment Time o Wetted Perimeter, pw	Hydraulic radius, r (ft) 1.94 of Concentratio	Average Velocity, V (ft/s)** 3.95 11.59 20n, H6B Average Velocity, V	Travel Time, Tt (min) 3.31 3.00 1.19 10.00 Travel Time, Tt	Lag Time (mir
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area	: H6B	(ft) 42.00 710.00 825.00 Flow Length, L (ft)	0.040 0.060 0.04 Slope, s (ft/ft)	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	Unpaved U U	Flow, A (ft ² ) 64.00	Wetted Perimeter, pw (ft) 32.98 evelopment Time o	Hydraulic radius. r (ft) 1.94 of Concentratio	Average Velocity, V (ft/s)** 3.95 11.59 pn, H6B	Travel Time, Tt (min) 3.31 3.00 1.19 10.00 Travel Time, Tt (min)	Lag Time (mir
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area SHEET	H6B     T1 SHEET FLOW     T2 SHALLOW CONCENTRATED FLOW     T3 CHANNEL FLOW      Velopment     H7A     T1 SHEET FLOW	(ft) 42.00 710.00 825.00 Flow Length, L (ft) 37.00	0.040 0.060 0.04 Slope, s (ft/ft) 0.050	Coefficient, n 0.10 0.04 Manning's Roughness	P2 (in) 2.10	Unpaved U U Paved or Unpaved	Flow, A (ft ² ) Flow, A (ft ² ) 64.00 Post-Dr Cross sectional Area of	Wetted Perimeter, pw (ft) 32.98 evelopment Time o Wetted Perimeter, pw	Hydraulic radius, r (ft) 1.94 of Concentratio	Average Velocity, V (ft/s)** 3.95 11.59 20, H6B Average Velocity, V (ft/s)**	Travel Time, Tt (min) 3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74	Lag Time (mir
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area SHEET SHALLOW CONCENTRATED		(ft) 42.00 710.00 825.00 Flow Length, L (ft) 37.00 546.00	0.040 0.060 0.04 Slope, s (ft/ft) 0.050 0.040	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n 0.10	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	Unpaved U U V Paved or Unpaved	Cross sectional Area of Flow, A (ft ² ) 64.00 Post-Di Cross sectional Area of Flow, A (ft ² )	Wetted Perimeter, pw (ft) 32.98 evelopment Time of Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft) 1.94 of Concentratic	Average Velocity, V (ft/s)** 3.95 11.59 on, H6B Average Velocity, V (ft/s)**	Travel Time, Tt (min) 3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74 2.82	Lag Time (mir
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area SHEET	H6B     T1 SHEET FLOW     T2 SHALLOW CONCENTRATED FLOW     T3 CHANNEL FLOW      Velopment     H7A     T1 SHEET FLOW	(ft) 42.00 710.00 825.00 Flow Length, L (ft) 37.00	0.040 0.060 0.04 Slope, s (ft/ft) 0.050	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	Unpaved U U Paved or Unpaved	Cross sectional Area of Flow, A (ft ² ) 64.00 Post-Di Cross sectional Area of Flow, A (ft ² ) 64.00	Wetted Perimeter, pw (ft) 32.98 evelopment Time o Wetted Perimeter, pw	Hydraulic radius, r (ft) 1.94 of Concentratic Hydraulic radius, r (ft) 1.94	Average Velocity, V (ft/s)** 3.95 11.59 pn, H6B Average Velocity, V (ft/s)** 3.23 12.96	Travel Time, Tt (min) 3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74	Lag Time (mir
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL	H6B     TI SHEET FLOW     T2 SHALLOW CONCENTRATED FLOW     T3 CHANNEL FLOW      Velopment     H7A     T1 SHEET FLOW     T2 SHALLOW CONCENTRATED FLOW     T3 CHANNEL FLOW     T3 CHANNEL FLOW	(ft) 42.00 710.00 825.00 Flow Length, L (ft) 37.00 546.00	0.040 0.060 0.04 Slope, s (ft/ft) 0.050 0.040	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n 0.10	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	Unpaved U U V Paved or Unpaved	Cross sectional Area of Flow, A (ft ² ) 64.00 Post-Di Cross sectional Area of Flow, A (ft ² ) 64.00	Wetted Perimeter, pw (ft) 32.98 evelopment Time of Wetted Perimeter, pw (ft) 32.98	Hydraulic radius, r (ft) 1.94 of Concentratic Hydraulic radius, r (ft) 1.94	Average Velocity, V (ft/s)** 3.95 11.59 pn, H6B Average Velocity, V (ft/s)** 3.23 12.96	Travel Time, Tt (min) 3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74 2.82 1.51	Lag Time (min
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De	: H6B T1 SHEET R.OW T2 SHALLOW CONCENTRATED R.OW T3 CHANNEL R.OW Velopment : H7A T1 SHEET R.OW T2 SHALLOW CONCENTRATED R.OW T3 CHANNEL R.OW	(ft) 42.00 710.00 825.00 Flow Length, L (ft) 37.00 546.00	0.040 0.060 0.04 Slope, s (ft/ft) 0.050 0.040	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n 0.10	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	Unpaved U U V Paved or Unpaved	Cross sectional Area of Flow, A (ft ² ) 64.00 Post-Di Cross sectional Area of Flow, A (ft ² ) 64.00	Wetted Perimeter, pw (ft) 32.98 evelopment Time of Wetted Perimeter, pw (ft) 32.98	Hydraulic radius, r (ft) 1.94 of Concentratic Hydraulic radius, r (ft) 1.94	Average Velocity, V (ft/s)** 3.95 11.59 pn, H6B Average Velocity, V (ft/s)** 3.23 12.96	Travel Time, Tt (min) 3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74 2.82 1.51	Lag Time (mi
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL	: H6B T1 SHEET R.OW T2 SHALLOW CONCENTRATED R.OW T3 CHANNEL R.OW Velopment : H7A T1 SHEET R.OW T2 SHALLOW CONCENTRATED R.OW T3 CHANNEL R.OW	(ft) 42.00 710.00 825.00 Flow Length, L (ft) 37.00 546.00 1177.00	0.040 0.060 0.04 Slope, s (ft/ft) 0.050 0.040 0.05	Manning's Roughness 0.04 Manning's Roughness Coefficient, n 0.10 0.04 Manning's Roughness	P2 (in)           2.10	Unpaved U U U Paved or Unpaved U U U V	Cross sectional Area of Flow, A (ft ² ) 64.00 Post-Di Cross sectional Area of Flow, A (ft ² ) 64.00 Post-Di	Wetted Perimeter, pw (tt) 32.98 evelopment Time of Wetted Perimeter, pw (ft) 32.98 evelopment Time of 32.98 evelopment Time of	Hydraulic radius, r (ti) 1.94 of Concentratic Hydraulic radius, r (ti) 1.94 of Concentratic	Average Velocity, V ((t/s)** 3.95 11.59 on, H6B Average Velocity, V ((t/s)** 3.23 12.96 on, H7A Average Velocity, V	Travel Time, Tt (min) 3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74 2.82 1.51 10.00 Travel Time, Tt	Lag Time (mi
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area		(rt) 42.00 710.00 825.00 Flow Length, L (rt) 37.00 546.00 1177.00	0.040 0.060 0.04 Slope, s (ft/ft) 0.050 0.040 0.05	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n 0.04 Manning's Roughness Coefficient, n	P2 (in)           2.10	Unpaved U U U Paved or Unpaved U U U U	Cross sectional Area of Flow, A (ft ² ) 64.00 Post-Di Cross sectional Area of Flow, A (ft ² ) 64.00	Wetted Perimeter, pw (ft) 32.98 evelopment Time of Wetted Perimeter, pw (ft) 32.98 evelopment Time of	Hydraulic radius, r (ft) 1.94 of Concentration Hydraulic radius, r (ft) 1.94 f Concentration	Average Velocity, V (ft/s)** 3.95 11.59 on, H6B Average Velocity, V (ft/s)** 3.23 12.96 on, H7A	Travel Time, Tt (min) 3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74 2.82 1.51 10.00	Lag Time (min
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area SHEET SHEET SHALLOW CONCENTRATED CHANNEL SHEET SHEET		(ft) 42.00 710.00 825.00 Flow Length, L (ft) 37.00 546.00 1177.00 Flow Length, L (ft)	0.040 0.060 0.04 Slope, s (ft/ft) 0.050 0.040 0.05 Slope, s (ft/ft)	Manning's Roughness 0.04 Manning's Roughness Coefficient, n 0.10 0.04 Manning's Roughness	P2 (in)           2.10	Unpaved U U U Paved or Unpaved U U Paved or Unpaved	Cross sectional Area of Flow, A (ft ² ) 64.00 Post-Di Cross sectional Area of Flow, A (ft ² ) 64.00 Post-Di	Wetted Perimeter, pw (tt) 32.98 evelopment Time of Wetted Perimeter, pw (ft) 32.98 evelopment Time of 32.98 evelopment Time of	Hydraulic radius, r (ti) 1.94 of Concentratic Hydraulic radius, r (ti) 1.94 of Concentratic	Average Velocity, V (ft/s)** 3.95 11.59 on, H6B Average Velocity, V (ft/s)** 3.23 12.96 on, H7A Average Velocity, V (ft/s)**	Travel Time, Tt (min) 3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74 2.82 1.51 10.00 Travel Time, Tt (min) 5.13	Lag Time (min 6.00 Lag Time (min
Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-De Drainage Area		(rt) 42.00 710.00 825.00 Flow Length, L (rt) 37.00 546.00 1177.00	0.040 0.060 0.04 Slope, s (ft/ft) 0.050 0.040 0.05	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n 0.04 Manning's Roughness Coefficient, n	P2 (in)           2.10	Unpaved U U U Paved or Unpaved U U U V	Cross sectional Area of Flow, A (ft ² ) 64.00 Post-Di Cross sectional Area of Flow, A (ft ² ) 64.00 Post-Di	Wetted Perimeter, pw (tt) 32.98 evelopment Time of Wetted Perimeter, pw (ft) 32.98 evelopment Time of 32.98 evelopment Time of	Hydraulic radius, r (ti) 1.94 of Concentratic Hydraulic radius, r (ti) 1.94 of Concentratic	Average Velocity, V ((t/s)** 3.95 11.59 on, H6B Average Velocity, V ((t/s)** 3.23 12.96 on, H7A Average Velocity, V	Travel Time, Tt (min) 3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74 2.82 1.51 10.00	Lag Time (min

Kimley»	Horn				st Runoff Analys Concentration	sis						* NOTES TO USE
oject Information	Project Name:		Winsome Fil	-	SHEET FLO	W EQN	LAG TI	ME EQN	Equations Use MANN	<u>:d</u> NINGS EQN	SHEE	T FLOW EQN
	KHA Project #: Designed by: Revised by:	TOS	19610600 Date: Date:	12/9/2021	$T_t = \frac{1}{3}$	<u>ℓ</u> 600V	T _{lag} = 0.6·t _c	(Eq. 6-13)	V =	$=\frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	T _t =	$=\frac{0.007(nL)^{0.8}}{(P_2)^{0.5}s^{0.4}}$
1	Checked by: Minimum Time of Concentration 2YR-24HR Rainfall, P2	BAH 5.0 2.10	Date: minutes		EQ 15-1 per NR( Hydrology Nationa Handbook (	I Engineering		CS TR-55 Urban mall Watersheds	Hydrology N	er NRCS part 630 ational Engineering book Ch. 15	Hydrology	ber NRCS part 630 National Engineerir dbook Ch. 15
Post-Dev	relopment		-									
Drainage Area:												
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.080	0.10	2.10						12.09	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	600.00	0.080			U				4.56	2.19	
							Post-E	Development Time	of Concentrat	ion, H8	14.29	8.57
	relopment											
Drainage Area:	H9	Flow Length, L	1	Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ² )	(ft)	r (ft)	(ft/s)**	(min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.036	0.10	2.10						16.65	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	300.00	0.060			U				3.95	1.27	
CHANNEL	T3 CHANNEL FLOW	230.00	0.10	0.04		U	64.00	32.98	1.94	18.33	0.21	
							Post-D	evelopment Time	of Concentrat	ion, H9	18.12	10.87
	•											
Drainage Area:	elopment											
Dialilaye Alea.		Flow Length, L	1	Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	1
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ² )	(ft)	r (ft)	(ft/s)**	(min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.038	0.10	2.10						16.29	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	65.00	0.038			U				3.14	0.34	
CHANNEL	T3 CHANNEL FLOW	526.00	0.04	0.04		U	64.00	32.98	1.94	11.74	0.75	
							POSI-I	Development Time	or concentrat	.1011, 11	17.38	10.43
Bost Dov	elopment											
Drainage Area:	•											
Brainage Area.	12	Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.040	0.10	2.10	1	İ		1		15.96	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	140.00	0.030			U				2.79	0.84	
							Post-I	Development Time	of Concentrat	ion, I2	16.79	10.08
Post-Dev	relopment											
Drainage Area:	•											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ² )	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	244.00	0.065	0.10	2.10						11.14	· · ·
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	395.00	0.110			U				5.35	1.23	
	1			1			1		+			
CHANNEL	T3 CHANNEL FLOW		0.00	0.04		U	64.00	32.98	1.94	2.46	0.00	



### Pre vs. Post Runoff Analysis

Project Name:	Winsome Filing 3		
KHA Project #:	196106001		
Designed by:	TOS	Date:	12/9/2021
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	12/8/2021

	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	HYDROLOGIC CONDITION OR	
Initial Abstraction	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
_	15.39	60.00 72.00	B C	5 acre (7% imp.)	RESIDENTIAL
-	12.74	72.00	U U	5 acre (7% imp.) CUTSOM	RESIDENTIAL
0.528	28.13	.43	65	CURVE NUMBER - A2A	
		•			
				Development	
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	HYDROLOGIC CONDITION OR	Drainage Area:
Initial Abstraction	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	1.64	60.00	В	5 acre (7% imp.)	RESIDENTIAL
	7.23	72.00	С	5 acre (7% imp.)	RESIDENTIAL
				CUTSOM	
0.433	8.87	.78	69	CURVE NUMBER - A2B	COMPOSITE SCS
_				Development	Post-I
1					Drainage Area:
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	HYDROLOGIC CONDITION OR	
Initial Abstraction	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	0.43	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	7.82	72.00	С	5 acre (7% imp.)	RESIDENTIAL
0.369	8.25	.04	73	CURVE NUMBER - A3A	COMPOSITE SCS
_				Development	Post-I
				-	Drainage Area:
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	HYDROLOGIC CONDITION OR	ž
Initial Abstraction	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	0.12	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
_	9.09	72.00	С	5 acre (7% imp.)	RESIDENTIAL
_	4.01	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
0.346	13.22	.30	74	CURVE NUMBER - A3B	
				Development	
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	A3C HYDROLOGIC CONDITION OR	Drainage Area:
Initial Abstraction	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	0.00	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
_	2.95	72.00	C	5 acre (7% imp.)	RESIDENTIAL
_	8.71	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
				CUTSOM	
0.295	11.66	.23	77	CURVE NUMBER - A3C	COMPOSITE SCS
				Development	Post-L
				G1	Drainage Area:
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.24	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
_	10.03	72.00	С	5 acre (7% imp.)	RESIDENTIAL
_	0.83	60.00	В	5 acre (7% imp.)	RESIDENTIAL
	9.08	60.00	В	WOODS, Fair condition (grass cover 50 to 75%)	WOODS
	4.61	73.00	С	WOODS, Fair condition (grass cover 50 to 75%)	WOODS
	0.1 ==			CUTSOM	
0.480	24.79	.58	67	S CURVE NUMBER - G1	COMPOSITE SCS

### Pre vs. Post Runoff Analysis

Project Name:	Winsome Filing 3		
KHA Project #:	196106001		
Designed by:	TOS	Date:	12/9/2021
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	12/8/2021

Post-	Development				
Drainage Area:	•				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	Initial Abstraction (in)
IMPERVIOUS	Paved; open ditches (including right-of-way)	С	92.00	0.28	
RESIDENTIAL	5 acre (7% imp.)	С	72.00	13.28	
AGRICULTURAL	Pasture, grassland or range (Fair Condition)	С	79.00	5.04	
	CUTSOM				
COMPOSITE SCS	S CURVE NUMBER - G2A	74	.20	18.60	0.348
Post-	Development				
Drainage Area:					
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	GROUP	(CN) SCS CORVE NOMBER	AREA, A (ac.)	Initial Abstraction (in)
IMPERVIOUS	Paved; open ditches (including right-of-way)	С	92.00	0.31	
RESIDENTIAL	5 acre (7% imp.)	С	72.00	2.46	
AGRICULTURAL	Pasture, grassland or range (Fair Condition)	С	79.00	0.00	
	CUTSOM				
COMPOSITE SCS	S CURVE NUMBER - G2B	74	.24	2.77	0.347
Post-	Development				
Drainage Area:	Н1				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	Initial Abstraction (in)
IMPERVIOUS	Paved; open ditches (including right-of-way)	С	92.00	0.32	
RESIDENTIAL	5 acre (7% imp.)	С	72.00	10.65	
RESIDENTIAL	5 acre (7% imp.)	В	60.00	2.79	
	CUTSOM				
COMPOSITE SC	S CURVE NUMBER - H1	70	0.03	13.76	0.428
Post-	Development				
Drainage Area:	H2				
	HYDROLOGIC CONDITION OR	HYDROLOGIC SOIL	SCS CURVE NUMBER	AREA, A	
COVER DESCRIPTION	COVER TYPE	GROUP	(CN)	(ac.)	Initial Abstraction (in)
IMPERVIOUS	Paved; open ditches (including right-of-way)	С	92.00	0.65	
RESIDENTIAL	5 acre (7% imp.)	В	60.00	24.64	
RESIDENTIAL	5 acre (7% imp.)	C C	72.00 79.00	12.91 0.89	_
AGRICULTURAL	Pasture, grassland or range (Fair Condition) CUTSOM	U	79.00	0.09	
COMPOSITE SC	S CURVE NUMBER - H2	64	.93	39.09	0.540
Post- Drainage Area:	Development H3A				-
g=	HYDROLOGIC CONDITION OR	HYDROLOGIC SOIL	SCS CURVE NUMBER	AREA, A	
COVER DESCRIPTION	COVER TYPE	GROUP	(CN)	(ac.)	Initial Abstraction (in)
IMPERVIOUS	Paved; open ditches (including right-of-way)	С	92.00	0.16	
RESIDENTIAL	5 acre (7% imp.)	В	60.00	0.00	4
RESIDENTIAL	5 acre (7% imp.)	С	72.00	1.18	4
WOODS	WOODS, Fair condition (grass cover 50 to 75%)	В	60.00	0.87	_
AGRICULTURAL	Pasture, grassland or range (Fair Condition) CUTSOM	С	79.00	0.87	_
COMPOSITE SCS	S CURVE NUMBER - H3A	71	.60	3.08	0.397
	Development				
Drainage Area:	H3B Hydrologic condition or	HYDROLOGIC SOIL	SCS CURVE NUMBER	AREA, A	
COVER DESCRIPTION	COVER TYPE	GROUP	(CN)	(ac.)	Initial Abstraction (in)
IMPERVIOUS	Paved; open ditches (including right-of-way)	С	92.00	0.18	
RESIDENTIAL	5 acre (7% imp.)	B	60.00	0.00	1
RESIDENTIAL	5 acre (7% imp.)	C	72.00	1.16	1
WOODS	WOODS, Fair condition (grass cover 50 to 75%)	В	60.00	0.69	7
AGRICULTURAL	Pasture, grassland or range (Fair Condition)	C	79.00	0.69	-
	CUTSOM				
COMPOSITE SCS	CUTSOM S CURVE NUMBER - H3B	72	.02	2.71	0.388

### Pre vs. Post Runoff Analysis

Project Name:	Winsome Filing 3		
KHA Project #:	196106001		
Designed by:	TOS	Date:	12/9/2021
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	12/8/2021

				Development	Post-
				H4	Drainage Area.
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.25	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	18.06	72.00	С	5 acre (7% imp.)	RESIDENTIAL
-	8.69	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
0.343	27.00	.44	74	CUTSOM S CURVE NUMBER - H4	COMPOSITE SC
				Development H5A	Drainage Area.
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.00	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
1	3.93	72.00	С	5 acre (7% imp.)	RESIDENTIAL
1	5.10	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
1				CUTSOM	
0.317	9.03	.95	75	S CURVE NUMBER - H5A	COMPOSITE SC
				Development	Post-
			•		Drainage Area.
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.00	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	7.85	72.00	С	5 acre (7% imp.)	RESIDENTIAL
-	2.63	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
0.356	10.48	.76	72	CUTSOM S CURVE NUMBER - H5B	
0.350	10.40	.70	13	CORVENDIVIDER - HJB	CONFOSTE SC.
				Development	Post-
			-		Drainage Area.
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.00	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
_	8.17	72.00	С	5 acre (7% imp.)	RESIDENTIAL
4	8.47	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
0.323	16.64	.56	75	CUTSOM S CURVE NUMBER - H6A	COMPOSITE SC
0.020	10.01		10	CONVENIENCE HOME	00111 00112 00
				Development	
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	H6B HYDROLOGIC CONDITION OR	Drainage Area.
Initial Abstraction	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
4	0.64	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
4	8.48	72.00	C	5 acre (7% imp.)	RESIDENTIAL
4	4.73	79.00	C	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
-	2.11	84.00	D	Pasture, grassland or range (Fair Condition) CUTSOM	AGRICULTURAL
0.308	15.96	.47	76	S CURVE NUMBER - H6B	COMPOSITE SC
				Development H7A	Drainage Area.
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
1	0.63	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	6.17	72.00	C	5 acre (7% imp.)	RESIDENTIAL
-		60.00	B	5 acre (7% imp.)	RESIDENTIAL
-	0.88				
-	0.88	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
			С	Pasture, grassland or range (Fair Condition) CUTSOM	AGRICULTURAL

### Pre vs. Post Runoff Analysis

Project Name:	Winsome Filing 3		
KHA Project #:	196106001		
Designed by:	TOS	Date:	12/9/2021
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	12/8/2021

					Drainage Area:
Initial Abstracti	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.31	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	14.64	72.00	С	5 acre (7% imp.)	RESIDENTIAL
	1.77	60.00	В	5 acre (7% imp.)	RESIDENTIAL
	0.63	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
				CUTSOM	
0.401	17.35	.39	71	CURVE NUMBER - H7B	COMPOSITE SCS
				Development	Post-L Drainage Area:
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	HYDROLOGIC CONDITION OR	Di alliage Area.
Initial Abstracti	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	0.23	89.00	В	Paved; open ditches (including right-of-way)	IMPERVIOUS
	0.22	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
-	1.72	60.00	B	5 acre (7% imp.)	RESIDENTIAL
	0.49	72.00	С	5 acre (7% imp.)	RESIDENTIAL
1	0.77	69.00	B	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
1	2.13	84.00	D	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
1	2.90	79.00	C	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
0.001				CUTSOM	
0.321	8.46	.69	/5	CURVE NUMBER - H8	COMPOSITE SC
		n 🗖	omment o	Development See CO	
	AREA, A		) and adju	Hy <	Drainage Area:
Initial Abstracti	(ac.)				COVER DESCRIPTION
	0.23		lingiy	Paved; open ditches (includ	IMPERVIOUS
	6.39	72.00	С	5 acre (7% imp.)	RESIDENTIAL
	0.23	60.00	В	5 acre (7% imp.)	RESIDENTIAL
				CUTSOM	
0.384	6.85	.27	72	S CURVE NUMBER - H9	COMPOSITE SCS
				Development	Post-L
				11	Drainage Area:
				HYDROLOGIC CONDITION OR	
Initial Abstracti	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	COVER TYPE	COVER DESCRIPTION
Initial Abstracti	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
Initial Abstracti	(ac.) 0.93	(CN) 92.00	GROUP	COVER TYPE Paved; open ditches (including right-of-way)	IMPERVIOUS
Initial Abstracti	(ac.) 0.93 5.89	(CN) 92.00 72.00	GROUP C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.)	
Initial Abstracti	(ac.) 0.93	(CN) 92.00	GROUP	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition)	IMPERVIOUS RESIDENTIAL AGRICULTURAL
	(ac.) 0.93 5.89 0.00	(CN) 92.00 72.00 79.00	GROUP C C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM	IMPERVIOUS RESIDENTIAL AGRICULTURAL
Initial Abstract	(ac.) 0.93 5.89	(CN) 92.00 72.00	GROUP C C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition)	IMPERVIOUS RESIDENTIAL AGRICULTURAL
	(ac.) 0.93 5.89 0.00	(CN) 92.00 72.00 79.00	GROUP C C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture. grassland or range (Fair Condition) CUTSOM 5 CURVE NUMBER - 11 Development	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Post-L
	(ac.) 0.93 5.89 0.00	(CN) 92.00 72.00 79.00	GROUP C C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture. grassland or range (Fair Condition) CUTSOM 5 CURVE NUMBER - 11 Development	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC
0.338	(ac.) 0.93 5.89 0.00 6.82	(CN) 92.00 72.00 79.00 .72	GROUP C C C T 74	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM 5 CURVE NUMBER - 11 Development 12	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Post-L
0.338	(ac.) 0.93 5.89 0.00 6.82 AREA, A	(CN) 92.00 72.00 79.00 	GROUP C C C 74	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 11 Development 12 HYDROLOGIC CONDITION OR	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Post-L Drainage Area:
0.338	(ac.) 0.93 5.89 0.00 6.82 AREA, A (ac.)	(CN) 92.00 72.00 79.00 	GROUP C C C 74 HYDROLOGIC SOIL GROUP	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 11 Development 12 HYDROLOGIC CONDITION OR COVER TYPE	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Post-L Drainage Area: COVER DESCRIPTION
0.338	(ac.) 0.93 5.89 0.00 6.82 AREA, A (ac.) 0.65	(CN) 92.00 72.00 79.00 	GROUP C C C 74 HYDROLOGIC SOIL GROUP C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 11 Development 12 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way)	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Post-L Drainage Area: COVER DESCRIPTION IMPERVIOUS
Initial Abstracti Initial Abstracti O.338 Initial Abstracti	(ac.) 0.93 5.89 0.00 6.82 AREA, A (ac.) 0.65 14.12	(CN) 92.00 72.00 79.00 .72 .72 SCS CURVE NUMBER (CN) 92.00 72.00	GROUP C C C 74 HYDROLOGIC SOIL GROUP C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 11 Development 12 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way) 5 acre (7% imp.)	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL AGRICULTURAL
0.338	(ac.) 0.93 5.89 0.00 6.82 AREA, A (ac.) 0.65 14.12	(CN) 92.00 72.00 79.00 .72 .72 SCS CURVE NUMBER (CN) 92.00 72.00	GROUP C C C 74 HYDROLOGIC SOIL GROUP C C C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 11 Development 12 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition)	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Post-L Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL AGRICULTURAL
0.338	(ac.) 0.93 5.89 0.00 6.82 AREA, A (ac.) 0.65 14.12 0.03	(CN) 92.00 72.00 79.00 79.00 5CS CURVE NUMBER (CN) 92.00 72.00 79.00	GROUP C C C 74 HYDROLOGIC SOIL GROUP C C C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 11 Development 12 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC
0.338	(ac.) 0.93 5.89 0.00 6.82 AREA, A (ac.) 0.65 14.12 0.03	(CN) 92.00 72.00 79.00 79.00 5CS CURVE NUMBER (CN) 92.00 72.00 79.00	GROUP C C C 74 HYDROLOGIC SOIL GROUP C C C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 11 Development 12 Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 12 Development	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC
0.338	(ac.) 0.93 5.89 0.00 6.82 AREA, A (ac.) 0.65 14.12 0.03	(CN) 92.00 72.00 79.00 79.00 5CS CURVE NUMBER (CN) 92.00 72.00 79.00	GROUP C C C 74 HYDROLOGIC SOIL GROUP C C C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 11 Development 12 Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 12 Development	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC POST-L
0.338	(ac.) 0.93 5.89 0.00 6.82 AREA, A (ac.) 0.65 14.12 0.03 14.80 AREA, A (ac.)	(CN) 92.00 72.00 79.00 72.00 5CS CURVE NUMBER (CN) 92.00 72.00 72.00 72.00 72.00 89 SCS CURVE NUMBER (CN)	GROUP C C C C T 4 HYDROLOGIC SOIL GROUP C C C C C C C C C C C C C C C C C C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 11 Development 12 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 12 Development J1 HYDROLOGIC CONDITION OR COVER TYPE	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Post-L Drainage Area: COVER DESCRIPTION
0.338	(ac.) 0.93 5.89 0.00 6.82 AREA, A (ac.) 0.65 14.12 0.03 14.80 AREA, A	(CN) 92.00 72.00 79.00 79.00 SCS CURVE NUMBER (CN) 92.00 72.00 79.00 89 SCS CURVE NUMBER	GROUP C C C 74 HYDROLOGIC SOIL GROUP C C C C 72 HYDROLOGIC SOIL	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 11 Development 12 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 12 Development J1 HYDROLOGIC CONDITION OR	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Post-L Drainage Area:
0.338	(ac.) 0.93 5.89 0.00 6.82  AREA, A (ac.) 0.65 14.12 0.03  14.80  AREA, A (ac.) 0.00	(CN)         92.00           72.00         79.00           79.00         92.00           72.00         79.00           92.00         72.00           79.00         89           SCS CURVE NUMBER (CN)         92.00           89.00         89.00	GROUP C C C 74 HYDROLOGIC SOIL GROUP C C C C C 72 C C C C C C C C C C C C C	Paved: open ditches (including right-of-way) 5 acre (7% imp.) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 11 Development 12 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way) Pasture, grassland or range (Fair Condition) CUTSOM S CURVE NUMBER - 12 Development J1 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way)	IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL AGRICULTURAL COMPOSITE SC Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL COMPOSITE SC COVER DESCRIPTION IMPERVIOUS RESIDENTIAL

#### Pre vs. Post Runoff Analysis Composite CN and Crat

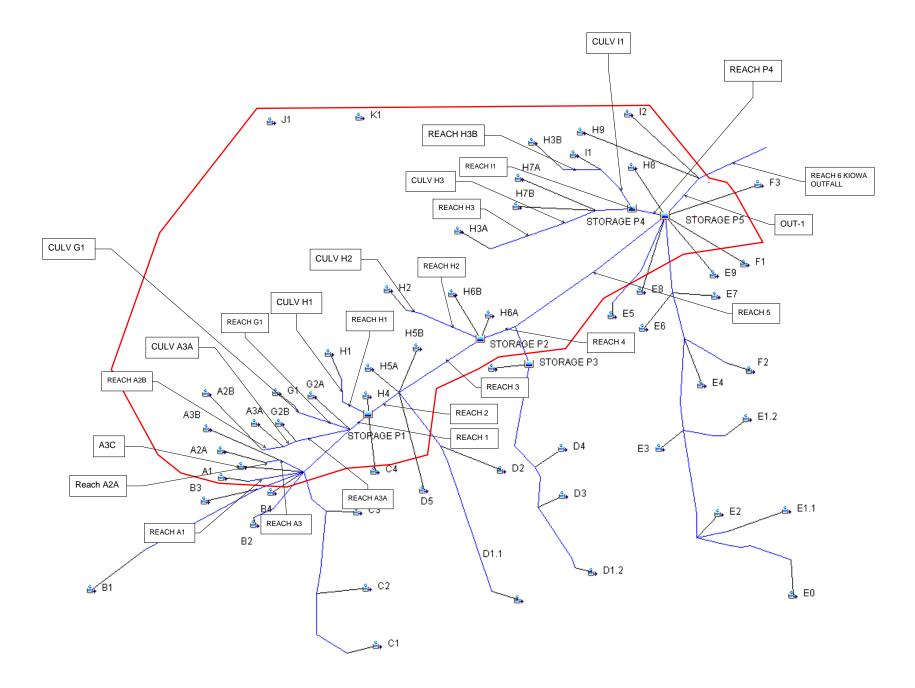
Project Name:	Winsome Filing 3		
KHA Project #:	196106001		
Designed by:	TOS	Date:	12/9/2021
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	12/8/2021

	Post-Development						
	Drainage Area:	K1					
	COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	Initial Abstraction (in)	
Γ	RESIDENTIAL	5 acre (7% imp.)	В	60.00	3.56		
Г	RESIDENTIAL	5 acre (7% imp.)	С	72.00	13.94		
	AGRICULTURAL	Pasture, grassland or range (Fair Condition)	С	79.00	0.00		
		CUTSOM					
Ľ	COMPOSITE SC	S CURVE NUMBER - K1	69	.56	17.50	0.438	

### C Value Table

Project Name:	Winsome Filing		
KHA Project #:	196106001		
Designed by:	TOS	Date:	12/9/2021
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	12/8/2021

		Hydrologic Soil Type				
Land Cover	Imp %	А	В	С	D	Source
5 acre Residential Lot	7%	51.0	60.0	72.0	77.0	Winsome PDR
Pasture, grassland or range (Fair Condition)	2%	49.0	69.0	79.0	84.0	El Paso County DCM Table 6-10
					=0.0	
Woods (Fair Condition)	2%	36.0	60.0	73.0	79.0	El Paso County DCM Table 6-10
Roadway, paved w/ ROW	100%	83.0	89.0	92.0	93.0	El Paso County DCM Table 6-10


### Imperviousness Table

Project Name:	Winsome Filing 3		
KHA Project #:	196106001		
Designed by:	TOS	Date:	12/9/2021
Checked by:	BAH	Date:	12/8/2021

		Impo	ervious Areas			
Basin	Area (ac)	Historic Flow Analysis (2%)	5-acre Residential (7%)	Roadway (100%)	Modified Area for UD-Detention	Imperviousness %
		V	/Q Pond 1			
A2B	8.87	0.00	8.87	0.00		7.0%
A3A	8.25	0.00	7.82	0.43		11.8%
G2A	18.60	5.04	13.28	0.28		7.0%
G2B	2.77	0.00	2.46	0.31		17.4%
G1	24.79	13.69	10.85	0.24		5.1%
Total	63.28			1.26		2%*
			Pond 1	•		
H1	13.76	0.0%	97.7%	2.3%		9.2%
H4	27.00	32.2%	66.9%	0.9%		6.3%
Total	40.76				45.5	7.2%
			Pond 2			
H6B	15.96	42.8%	53.1%	4.0%		8.6%
H2	39.09	2.3%	96.1%	1.7%		8.4%
Total	55.05				67.90	8.5%
			Pond 4			
H3A	3.08	56.6%	38.4%	5.1%		8.9%
H3B	2.71	50.9%	42.6%	6.5%		10.5%
H7A	8.50	9.6%	82.9%	7.4%		13.4%
H7B	17.35	3.6%	94.6%	1.8%		8.5%
11	6.82	0.0%	86.4%	13.6%		19.6%
Total	38.45				59.25	11.79

Basin ID	Area	Imperviousness %
A2A	28.13	7.0%
A2B	8.87	7.0%
A3A	8.25	11.8%
A3B	13.22	6.3%
A3C	11.66	3.3%
G1	24.79	5.1%
G2A	18.60	7.0%
G2B	2.77	17.4%
H1	13.76	9.2%
H2	39.09	8.4%
H3A	3.08	8.9%
НЗВ	2.71	10.5%
H4	27.00	6.3%
H5A	9.03	4.2%
H5B	10.48	5.7%
H6A	16.64	4.5%
H6B	15.96	8.6%
H7A	8.50	13.4%
H7B	17.35	8.5%
H8	8.46	8.5%
Н9	6.85	10.1%
11	6.82	19.6%
12	14.80	11.1%
J1	10.14	7.0%
К1	17.50	7.0%

### PROPOSED CONDITIONS HEC-HMS LAYOUT WINSOME FILING NO. 3



Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr

Start of Run:26Feb2019, 00:00End of Run:27Feb2019, 12:00Compute Time:09Dec2021, 07:54:44

Basin Model: Proposed Basins Meteorologic Model: Prop Basins 5yr Control Specifications:Control 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
A1	1.3529000	84.1	26Feb2019, 12:26	13.7
A2A	0.0439531	5.3	26Feb2019, 12:03	0.4
A2B	0.0138594	2.3	26Feb2019, 12:04	0.2
A3A	0.0128906	5.7	26Feb2019, 12:01	0.3
A3B	0.0206563	9.1	26Feb2019, 12:01	0.3
A3C	0.0182187	10.7	26Feb2019, 12:02	0.3
BOX CULVERT 1	7.8720139	370.1	26Feb2019, 12:43	80.0
BOX CULV 2	8.8550872	408.4	26Feb2019, 12:49	91.5
B1	5.9948000	286.7	26Feb2019, 12:42	60.5
B2	0.0204688	3.3	26Feb2019, 12:07	0.3
B3	0.0857813	6.8	26Feb2019, 12:15	0.9
B4	0.0648125	5.5	26Feb2019, 12:16	0.7
CLV E4	0.1670157	26.6	26Feb2019, 12:11	3.1
CULV A3A	0.0267500	7.0	26Feb2019, 12:03	0.4
CULV B2	0.0204688	3.3	26Feb2019, 12:07	0.3
CULV C2	0.2892200	23.8	26Feb2019, 12:16	2.9
CULV C3	0.3143763	26.5	26Feb2019, 12:18	3.3
CULV D2	0.3593700	31.5	26Feb2019, 12:18	3.9
CULV D3	0.1423438	13.2	26Feb2019, 12:19	1.8
CULV D4	0.1959376	18.8	26Feb2019, 12:19	2.7
CULV E1.1	0.0592188	4.9	26Feb2019, 12:16	0.6
CULV E1.2	0.0238750	5.0	26Feb2019, 12:08	0.5
CULV E1.5	0.0136094	2.7	26Feb2019, 12:08	0.2
CULV E2	0.0768907	7.3	26Feb2019, 12:13	1.0
CULV E5	0.0210938	3.9	26Feb2019, 12:08	0.4
CULV F2	0.0068750	2.2	26Feb2019, 12:03	0.2
CULV G1	0.0387188	3.1	26Feb2019, 12:05	0.3

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
CULV H1	0.0217031	4.6	26Feb2019, 12:04	0.3
CULV H2	0.0610938	8.9	26Feb2019, 12:03	0.7
CULV H3	0.0048125	1.4	26Feb2019, 12:04	0.1
CULV I1	0.0148907	6.6	26Feb2019, 12:06	0.4
CULV-E3	0.1317032	18.6	26Feb2019, 12:09	2.2
CULV-Pond4	0.0452031	14.7	26Feb2019, 12:02	0.8
C1	0.2542200	21.0	26Feb2019, 12:14	2.6
C2	0.0350000	3.1	26Feb2019, 12:11	0.4
C3	0.0251563	3.8	26Feb2019, 12:09	0.4
C4	0.0371875	1.9	26Feb2019, 12:16	0.2
D1.1	0.2520300	20.8	26Feb2019, 12:14	2.5
D1.2	0.0779688	5.8	26Feb2019, 12:18	0.8
D2	0.1073400	11.8	26Feb2019, 12:12	1.4
D3	0.0643750	8.1	26Feb2019, 12:15	1.0
D4	0.0535938	7.8	26Feb2019, 12:10	0.9
D5	0.0200000	0.8	26Feb2019, 12:10	0.1
D6	0.0653125	4.4	26Feb2019, 12:15	0.6
EX CULV C1	0.2542200	21.0	26Feb2019, 12:14	2.6
EX CULV D1.1	0.2520300	20.8	26Feb2019, 12:14	2.5
EX CULV D1.2	0.0779688	5.8	26Feb2019, 12:18	0.8
EX CULV E0	0.0592188	4.9	26Feb2019, 12:14	0.6
EO	0.0592188	4.9	26Feb2019, 12:14	0.6
E1.1	0.0136094	2.7	26Feb2019, 12:08	0.2
E1.2	0.0238750	5.0	26Feb2019, 12:08	0.5
E2	0.0040625	2.3	26Feb2019, 11:56	0.1
E3	0.0309375	7.6	26Feb2019, 12:06	0.7
E4	0.0284375	6.3	26Feb2019, 12:09	0.7
E5	0.0210938	3.9	26Feb2019, 12:08	0.4
E6	0.0144609	2.7	26Feb2019, 12:03	0.2
E7	0.0159688	3.3	26Feb2019, 12:05	0.3
E8	0.0246594	5.2	26Feb2019, 11:59	0.4

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
E9	0.0059688	0.3	26Feb2019, 11:55	0.0
F1	0.0501563	8.1	26Feb2019, 12:07	0.8
F2	0.0068750	2.2	26Feb2019, 12:03	0.2
F3	0.0150313	3.4	26Feb2019, 12:04	0.3
G1	0.0387188	3.1	26Feb2019, 12:05	0.3
G2A	0.0290625	12.9	26Feb2019, 12:01	0.5
G2B	0.0043281	2.6	26Feb2019, 12:00	0.1
H1	0.0217031	4.6	26Feb2019, 12:04	0.3
H2	0.0610938	8.9	26Feb2019, 12:03	0.7
НЗА	0.0048125	1.4	26Feb2019, 12:03	0.1
НЗВ	0.0042344	1.3	26Feb2019, 12:05	0.1
H4	0.0421875	15.4	26Feb2019, 12:05	0.6
H5A	0.0141094	6.2	26Feb2019, 12:04	0.2
H5B	0.0163750	5.6	26Feb2019, 12:04	0.2
H6A	0.0260000	11.6	26Feb2019, 12:03	0.4
H6B	0.0249375	15.5	26Feb2019, 12:01	0.5
H7A	0.0132812	6.2	26Feb2019, 12:01	0.3
H7B	0.0271094	8.0	26Feb2019, 12:01	0.4
H8	0.0132187	6.7	26Feb2019, 12:03	0.3
H9	0.0107813	3.3	26Feb2019, 12:05	0.2
11	0.0106563	6.0	26Feb2019, 12:05	0.4
12	0.0231250	8.3	26Feb2019, 12:05	0.5
J1	0.0158438	2.1	26Feb2019, 12:00	0.2
K1	0.0273438	4.5	26Feb2019, 12:03	0.3
OUT-1	9.2427547	420.3	26Feb2019, 12:52	97.1
REACH A1	1.3529000	83.8	26Feb2019, 12:31	13.7
Reach E3.1	0.0238750	5.0	26Feb2019, 12:11	0.5
Reach H3	0.0048125	1.3	26Feb2019, 12:10	0.1
Reach-A2A	0.0439531	5.2	26Feb2019, 12:07	0.4
Reach-A2B	0.0138594	2.2	26Feb2019, 12:10	0.2
Reach-A3	0.0439531	5.2	26Feb2019, 12:09	0.4

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
Reach-A3A	0.0310781	9.6	26Feb2019, 12:03	0.6
Reach-B1	5.9948000	286.6	26Feb2019, 12:46	60.5
Reach-B2	0.0204688	3.3	26Feb2019, 12:15	0.3
Reach-B3	6.0805813	288.7	26Feb2019, 12:50	61.4
Reach-B4-3	0.3143763	26.5	26Feb2019, 12:19	3.3
Reach-C1	0.2542200	20.9	26Feb2019, 12:17	2.6
Reach-C2	0.2892200	23.8	26Feb2019, 12:20	2.9
Reach-D1.1	0.2520300	20.7	26Feb2019, 12:20	2.5
Reach-D3	0.0779688	5.7	26Feb2019, 12:24	0.8
Reach-D4	0.1423438	13.2	26Feb2019, 12:24	1.8
Reach-D5	0.3593700	31.4	26Feb2019, 12:22	3.9
Reach-D6	0.1959376	18.7	26Feb2019, 12:23	2.7
Reach-E1.1	0.0592188	4.9	26Feb2019, 12:15	0.6
Reach-E2	0.0592188	4.9	26Feb2019, 12:18	0.6
Reach-E3	0.0768907	7.3	26Feb2019, 12:18	1.0
Reach-E4	0.1317032	18.6	26Feb2019, 12:13	2.2
Reach-E6	0.0210938	3.8	26Feb2019, 12:13	0.4
Reach-E6-2	0.1974454	30.3	26Feb2019, 12:15	3.6
Reach-E7	0.1670157	26.6	26Feb2019, 12:14	3.1
Reach-F2	0.0068750	2.2	26Feb2019, 12:08	0.2
Reach-G1	0.0387188	3.0	26Feb2019, 12:11	0.3
Reach-H1	0.0217031	4.6	26Feb2019, 12:09	0.3
Reach-H2	0.0610938	8.9	26Feb2019, 12:05	0.7
Reach-H3B	0.0042344	1.2	26Feb2019, 12:13	0.1
Reach-I1	0.0148907	6.5	26Feb2019, 12:10	0.4
Reach-P3	0.2612501	21.0	26Feb2019, 12:30	3.2
Reach-P4	0.0600938	6.3	26Feb2019, 12:20	1.0
Reach-1	7.9708733	371.6	26Feb2019, 12:45	81.3
Reach-2	8.0719514	376.2	26Feb2019, 12:48	82.3
Reach-3	8.4818058	390.9	26Feb2019, 12:48	86.8
Reach-4	8.5938371	393.9	26Feb2019, 12:50	88.3

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
Reach-5	8.8550872	408.4	26Feb2019, 12:50	91.5
Reach-6 Kiowa O	u <b>91.217</b> 66610	420.7	26Feb2019, 12:52	97.7
STORAGE P1	0.0638906	8.6	26Feb2019, 12:16	0.9
STORAGE P2	0.0860313	10.6	26Feb2019, 12:11	1.1
STORAGE P3	0.2612501	21.0	26Feb2019, 12:29	3.2
STORAGE P4	0.0600938	6.3	26Feb2019, 12:20	1.0
STORAGE P5	0.2431986	6.7	26Feb2019, 13:03	3.2

	Project: Winsome_Fil_3	Simulation Run: Prop Basin Subbasin: A1	5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44 Volume Units	Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Computed Results Peak Dischar Precipitation Loss Volume Excess Volum	Volume:195.2 (AC-FT) : 181.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	

Project: Winsome_Fil_3	Simulation Run: Prop Basin 5yr Subbasin: A2A
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44 Volume Unit	Basin Model: Proposed Basins Meteorologic Model: Prop Basins 5yr Control Specifications: Control 1
Computed Results Peak Discharge: 5.3 (CFS) Precipitation Volume6.3 (AC-FT) Loss Volume: 5.9 (AC-FT) Excess Volume: 0.4 (AC-FT)	Date/Time of Peak Discharge26Feb2019, 12: Direct Runoff Volume: 0.4 (AC-FT) Baseflow Volume: 0.0 (AC-FT) Discharge Volume: 0.4 (AC-FT)

	Project: Winsome_Fil_3	8 Simulation Run: Prop E Subbasin: A2B	Basin 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Mode Control Specificatio	
	Volume L	Jnits: AC-FT	
Computed Results			
Peak Discha	arge: 2.3 (CFS)	Date/Time of Peak I	Discharge26Feb2019, 12:
Precipitation	າ Volume2.0 (AC-FT	) Direct Runoff Volum	ie: 0.2 (AC-FT)
Loss Volume	e: 1.8 (AC-FT	) Baseflow Volume:	0.0 (AC-FT)
Excess Volu	ime: 0.2 (AC-FT	) Discharge Volume:	0.2 (AC-FT)

Project: W	'insome_Fil_3 Subl	Simulation Run: Prop Basir basin: A3A	n 5yr
Start of Run: 26Feb20 End of Run: 27Feb2 Compute Time: 09Dec20	2019, 12:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Units:	AC-FT	
Computed Results			
Peak Discharge:	5.7 (CFS)	Date/Time of Peak Disc	harge:26Feb2019, 12:
Precipitation Volume:	1.9 (AC-FT)	Direct Runoff Volume:	0.3 (AC-FT)
Loss Volume:	1.6 (AC-FT)	Baseflow Volume:	0.0 (AC-FT)
Excess Volume:	0.3 (AC-FT)	Discharge Volume:	0.3 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Bas Subbasin: A3B	sin 5yr
Start of Run: End of Run: Compute Tim	,	Basin Model: Meteorologic Model: Control Specifications	Proposed Basins Prop Basins 5yr s: Control 1
	Volume Ur	nits: AC-FT	
Computed Results			
Peak Disch	<b>J</b>	Date/Time of Peak Dis	scharge26Feb2019, 12:
•	n Volume3.0 (AC-FT)	Direct Runoff Volume:	
Loss Volum		Baseflow Volume:	0.0 (AC-FT)
Excess Volu	ume: 0.3 (AC-FT)	Discharge Volume:	0.3 (AC-FT)

Project: Wins	ome_Fil_3 Sim Subbasin:	nulation Run: Prop Basin 5 A3C	5yr
Start of Run: 26Feb2019, End of Run: 27Feb201 Compute Time: 09Dec2021,	9, 12:00	Basin Model:Meteorologic Model:FControl Specifications:C	Proposed Basins Prop Basins 5yr Control 1
	Volume Units:	AC-FT	
Computed Results			
Peak Discharge: 10	.7 (CFS) Date	e/Time of Peak Disch	arge26Feb2019, 12:
Precipitation Volume 2.6	5 (AC-FT) Dire	ct Runoff Volume:	0.3 (AC-FT)
Loss Volume: 2.4	ł (AC-FT) Base	eflow Volume:	0.0 (AC-FT)
Excess Volume: 0.3	3 (AC-FT) Disc	charge Volume:	0.3 (AC-FT)

	Project: Winsome_Fil_3 R	Simulation Run: Prop Basir each: CULV A3A	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 7.0 (CFS) harge:7.0 (CFS) lume: 0.4 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Reach: CULV G1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	ow: 3.1 (CFS) harge:3.1 (CFS) lume: 0.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Reach: CULV H1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	ow: 4.6 (CFS) harge:4.6 (CFS) lume: 0.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

	Project: Winsome_Fil_3	Simulation Run: Prop Basir each: CULV H2	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	ts: AC-FT	
Computed Results			
	ow: 8.9 (CFS) charge:8.9 (CFS) olume: 0.7 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basir each: CULV H3	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Unit	s: AC-FT	
Computed Results			
	ow: 1.4 (CFS) harge:1.4 (CFS) lume: 0.1 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

Project: Winsome_Fil_3	Simulation Run: Prop Basir Reach: CULV I1	n 5yr
27Feb2019, 12:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Volume Un	its: AC-FT	
charge:6.6 (CFS)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,
	26Feb2019, 00:00 27Feb2019, 12:00 ne: 09Dec2021, 07:54:44 Volume Un	Reach: CULV I1         26Feb2019, 00:00       Basin Model:         27Feb2019, 12:00       Meteorologic Model:         e: 09Dec2021, 07:54:44       Control Specifications:         Volume Units:       AC-FT         ow:       6.6 (CFS)       Date/Time of Peak Inflow         charge:6.6 (CFS)       Date/Time of Peak Dischard

	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basir ach: CULV-Pond4	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 14.8 (CFS) harge:14.7 (CFS) lume: 0.8 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

Project: Win		Simulation Run: Prop Basin basin: G1	5yr
Start of Run: 26Feb2019 End of Run: 27Feb20 Compute Time: 09Dec2021	19, 12:00	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 5yr Control 1
Precipitation Volume5. Loss Volume: 5.	6 (AC-FT) [ 3 (AC-FT) [	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT) 0.3 (AC-FT)

Project: Winsome_Fil_3 Sul	Simulation Run: Prop Basir bbasin: G2A	n 5yr
Start of Run:26Feb2019, 00:00End of Run:27Feb2019, 12:00Compute Time:09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Volume Units:	AC-FT	
Computed Results Peak Discharge: 12.9 (CFS) Precipitation Volume:4.2 (AC-FT) Loss Volume: 3.7 (AC-FT) Excess Volume: 0.5 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.5 (AC-FT) 0.0 (AC-FT) 0.5 (AC-FT)

		Project: W	/insome_Fil_3	Sin Subbasin	nulation Run: Prop Basir : G2B	n 5yr	
	Start of Run: End of Run: Compute Tim	27Feb	19, 00:00 2019, 12:00 21, 07:54:44		Basin Model: Meteorologic Model: Control Specifications:	Prop E	oposed Basins 3asins 5yr ol 1
			Volume Unit	IS:	AC-FT		
Computed R	esults						
	Peak Discha	5	2.6 (CFS)		e/Time of Peak Disc		,
	Precipitation		( )		ct Runoff Volume:		0.1 (AC-FT)
	Loss Volum		0.5 (AC-FT)		eflow Volume:		0.0 (AC-FT)
	Excess Volu	me:	0.1 (AC-FT)	Disc	charge Volume:		0.1 (AC-FT)

Project: Winsome_Fil_3 S	Simulation Run: Prop Basir ubbasin: H1	n 5yr
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44 Volume Units:	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Computed Results	AC-FT	
Peak Discharge: 4.6 (CFS) Precipitation Volume3.1 (AC-FT) Loss Volume: 2.8 (AC-FT) Excess Volume: 0.3 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT)

ł	Project: Winsome_Fil_3	Simulation Run: Prop Basi Subbasin: H2	n 5yr
End of Run:	26Feb2019, 00:00 27Feb2019, 12:00 09Dec2021, 07:54:44 Volume Uni	Basin Model: Meteorologic Model: Control Specifications: ts: AC-FT	Proposed Basins Prop Basins 5yr Control 1
Computed Results Peak Dischar Precipitation Loss Volume Excess Volun	Volume 8.8 (AC-FT) : 8.1 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.7 (AC-FT) 0.0 (AC-FT) 0.7 (AC-FT) 0.7 (AC-FT)

	Project: Winsome_Fil	_3 Simulation Run: Subbasin: H3A	Prop Basin 5yr	
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:4	5		oposed Basins Basins 5yr Il 1
	Volume	Units: AC-FT		
Computed Results Peak Discha Precipitation Loss Volum Excess Volu	n Volume 0.7 (AC-F e: 0.6 (AC-F	T)Direct RunoffT)Baseflow Volu	Volume: me:	26Feb2019, 12: 0.1 (AC-FT) 0.0 (AC-FT) 0.1 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Subbasin: H3B	n 5yr
Start of Run End of Run: Compute Tir	,	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
Peak Disch	<b>J</b>	Date/Time of Peak Disc	• · ·
•	on Volume 0.6 (AC-FT)	Direct Runoff Volume:	0.1 (AC-FT)
Loss Volun		Baseflow Volume:	0.0 (AC-FT)
Excess Vol	ume: 0.1 (AC-FT)	Discharge Volume:	0.1 (AC-FT)

Project: Winsome_Fil_3 S	Simulation Run: Prop Basir ubbasin: H4	n 5yr
Start of Run:         26Feb2019, 00:00           End of Run:         27Feb2019, 12:00           Compute Time:         09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Computed Results	AC-FT	
Peak Discharge: 15.4 (CFS) Precipitation Volume 6.1 (AC-FT) Loss Volume: 5.5 (AC-FT) Excess Volume: 0.6 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.6 (AC-FT) 0.0 (AC-FT) 0.6 (AC-FT)

	Project: Winsome_Fil_3 Su	Simulation Run: Prop Basir bbasin: H5A	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Units:	AC-FT	
Computed Results Peak Discha Precipitation Loss Volume Excess Volu	volume2.0 (AC-FT) e: 1.8 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.2 (AC-FT) 0.0 (AC-FT) 0.2 (AC-FT) 0.2 (AC-FT)

	Project: Winsome_Fil	_3 Simulation Run: I Subbasin: H5B	orop Basin 5yr
Start of Ru End of Ru Compute ⊺	,	Ŭ	
	Volume	Units: AC-FT	
Computed Results			
Peak Disc	• • • • •	•	eak Discharge26Feb2019, 12:
	ion Volume2.4 (AC-F	,	
Loss Volu	- ( -	,	
Excess Ve	olume: 0.2 (AC-F	T) Discharge Volu	me: 0.2 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop B Subbasin: H6A	asin 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model Control Specification	
	Volume U	nits: AC-FT	
Computed Results			
Peak Discha	5 ( )	,	Discharge 26 Feb 2019, 12:
Precipitation Loss Volume	ו Volume3.8 (AC-FT)		
Excess Volume	,		0.0 (AC-FT) 0.4 (AC-FT)

Project: Winsome_Fil_3 Su	Simulation Run: Prop Basin bbasin: H6B	5yr
Start of Run:26Feb2019, 00:00End of Run:27Feb2019, 12:00Compute Time:09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Volume Units:	AC-FT	
Computed Results		
Peak Discharge: 15.5 (CFS)	Date/Time of Peak Disc	5
Precipitation Volume3.6 (AC-FT) Loss Volume: 3.1 (AC-FT)	Direct Runoff Volume: Baseflow Volume:	0.5 (AC-FT) 0.0 (AC-FT)
Excess Volume: 0.5 (AC-FT)	Discharge Volume:	0.5 (AC-FT)

	Ρ	roject: Wins		Simulation Run: Prop Basir basin: H7A	n 5yr
E	itart of Run: ind of Run: compute Time:	26Feb2019, 27Feb201 09Dec2021,	9, 12:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
			Volume Units:	AC-FT	
Computed Resul	ts				
Pe	eak Discharg	je: 6.2	(CFS)	Date/Time of Peak Disc	charge:26Feb2019, 12:
Pi	recipitation \	/olume:1.9	(AC-FT)	Direct Runoff Volume:	0.3 (AC-FT)
Lo	oss Volume:	1.6	(AC-FT)	Baseflow Volume:	0.0 (AC-FT)
E	cess Volum	e: 0.3	(AC-FT)	Discharge Volume:	0.3 (AC-FT)

	Proje	ct: Winsome_Fil_3 Su	Simulation Run: Prop Basir Jbbasin: H7B	n 5yr
		eb2019, 00:00 7Feb2019, 12:00 0ec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
		Volume Units:	AC-FT	
Com	puted Results			
	Peak Discharge:	8.0 (CFS)	Date/Time of Peak Disc	• ,
	Precipitation Vol	. ,	Direct Runoff Volume:	0.4 (AC-FT)
	Loss Volume:	3.5 (AC-FT)	Baseflow Volume:	0.0 (AC-FT)
	Excess Volume:	0.4 (AC-FT)	Discharge Volume:	0.4 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Subbasin: H8	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 30Nov2021, 13:26:30 Volume Units	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 5yr Control 1
Computed Results Peak Discha Precipitation Loss Volume Excess Volu	volume:1.9 (AC-FT) e: 1.7 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.2 (AC-FT) 0.0 (AC-FT) 0.2 (AC-FT) 0.2 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Bas Subbasin: H9	sin 5yr
Start of Run: End of Run: Compute Tim	,	Basin Model: Meteorologic Model: Control Specifications nits: AC-FT	Proposed Basins Prop Basins 5yr s: Control 1
Computed Results Peak Discha Precipitation Loss Volum Excess Volu	n Volume1.6 (AC-FT) ne: 1.4 (AC-FT)	) Direct Runoff Volume ) Baseflow Volume:	scharge26Feb2019, 12: : 0.2 (AC-FT) 0.0 (AC-FT) 0.2 (AC-FT)

Project: Winsome_Fil_3	Simulation Run: Prop Basir Subbasin: I1	n 5yr
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44 Volume Units	Basin Model: Meteorologic Model: Control Specifications: S: AC-FT	Proposed Basins Prop Basins 5yr Control 1
Computed Results Peak Discharge: 6.0 (CFS) Precipitation Volume:1.5 (AC-FT) Loss Volume: 1.2 (AC-FT) Excess Volume: 0.4 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.4 (AC-FT) 0.0 (AC-FT) 0.4 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop E Subbasin: I2	Basin 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 ne: 09Dec2021, 07:54:44 Volume U	Basin Model: Meteorologic Mode Control Specificatio nits: AC-FT	
Computed Results Peak Discha Precipitation Loss Volum Excess Volu	n Volume3.3 (AC-FT) le: 2.9 (AC-FT)	) Direct Runoff Volum ) Baseflow Volume:	Discharge26Feb2019, 12: le: 0.5 (AC-FT) 0.0 (AC-FT) 0.5 (AC-FT)

Project: Winsome_Fil_3	_3 Simulation Run: Prop Basin 5yr Subbasin: J1	
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44 Volume I	Meteorologic Model: Prop Control Specifications: Control	Proposed Basins Basins 5yr rol 1
Computed Results Peak Discharge: 2.1 (CFS) Precipitation Volume2.3 (AC-FT Loss Volume: 2.1 (AC-FT Excess Volume: 0.2 (AC-FT	T) Baseflow Volume:	e26Feb2019, 12: 0.2 (AC-FT) 0.0 (AC-FT) 0.2 (AC-FT)

Project: Winsome_Fil_3	Simulation Run: Prop Basir Subbasin: K1	i 5yr
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44 Volume Units	Basin Model: Meteorologic Model: Control Specifications: :: AC-FT	Proposed Basins Prop Basins 5yr Control 1
Computed Results Peak Discharge: 4.5 (CFS) Precipitation Volume3.9 (AC-FT) Loss Volume: 3.6 (AC-FT) Excess Volume: 0.3 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT) 0.3 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Reach: OUT-1	ı 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	w: 420.3 (CFS) harge:420.3 (CFS) lume: 97.1 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3 Reservoir:	Simulation Run: Prop Basir STORAGE P1	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Units:	AC-FT	
Computed Results			
Peak Inflo	w: 19.5 (CFS) I	Date/Time of Peak Inflow	w: 26Feb2019, 12:0
Peak Disch	arge: 8.6 (CFS)	Date/Time of Peak Disch	arge26Feb2019, 12:1
Inflow Volu	ume: 0.9 (AC-FT) I	Peak Storage:	0.5 (AC-FT)
Discharge	Volume 0.9 (AC-FT)	Peak Elevation:	7325.1 (FT)

	Project: Winsome_Fil_3 Reserve	Simulation Run: Prop Basir ir: STORAGE P2	n 5yr
Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time	e: 09Dec2021, 07:54:44	Control Specifications:	Control 1
	Volume Units	AC-FT	
Computed Results			
Peak Inflow	w: 23.6 (CFS)	Date/Time of Peak Inflow	,
Peak Disch	harge: 10.6 (CFS)	Date/Time of Peak Disch	
Inflow Vol	ume: 1.3 (AC-FT)	Peak Storage:	0.6 (AC-FT)
Discharge	Volume1.1 (AC-FT)	Peak Elevation:	7303.6 (FT)

	Project: Winsome_Fil_3 Reser	Simulation Run: Prop Basir voir: STORAGE P4	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
Peak Inflo	( )	Date/Time of Peak Inflo	,
Peak Disch	• • • •	Date/Time of Peak Disch	arge26Feb2019, 12:2
Inflow Vol	ume: 1.2 (AC-FT)	Peak Storage:	0.6 (AC-FT)
Discharge	Volume1.0 (AC-FT)	Peak Elevation:	7293.6 (FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Reach: Reach-1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	w: 371.6 (CFS) harge:371.6 (CFS) lume: 81.3 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basi Reach: Reach-2	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
Peak Inflo	w: 376.4 (CFS)	Date/Time of Peak Inflow	v 26Feb2019, 12:44
	narge:376.2 (CFS)	Date/Time of Peak Disch	- /
Inflow Vol	ume: 82.4 (AC-FT)	Discharge Volume:	82.3 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basin Reach: Reach-3	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	w: 391.0 (CFS) harge:390.9 (CFS) lume: 86.8 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basi Reach: Reach-4	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	w: 393.9 (CFS) harge:393.9 (CFS) lume: 88.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Disch Discharge Volume:	1

	Project: Winsome_Fil_3	Simulation Run: Prop Basi Reach: Reach-5	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	w: 408.4 (CFS) harge:408.4 (CFS) lume: 91.5 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	1

	Project: Winsome_Fil_3 Reach: R	Simulation Run: Prop Basi each-6 Kiowa Outfall	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	ts: AC-FT	
Computed Results			
	w: 420.8 (CFS) harge:420.7 (CFS) lume: 97.7 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Disch Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basi each: REACH A1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 30Nov2021, 13:26:30	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	ts: AC-FT	
Computed Results			
Peak Inflo	( )	Date/Time of Peak Inflov	,
	harge:83.8 (CFS) lume: 13.7 (AC-FT)	Date/Time of Peak Disch Discharge Volume:	arge26Feb2019, 12:3 13.7 (AC-FT)

	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basir ach: Reach-A2A	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	ts: AC-FT	
Computed Results			
	ow: 5.3 (CFS) harge:5.2 (CFS) lume: 0.4 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basir each: Reach-A2B	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	ow: 2.3 (CFS) harge:2.2 (CFS) lume: 0.2 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

	Project: Winsome_Fil_3 R	Simulation Run: Prop Basir each: Reach-A3	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 5.2 (CFS) harge:5.2 (CFS) lume: 0.4 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basir each: Reach-A3A	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	ow: 9.6 (CFS) charge:9.6 (CFS) olume: 0.6 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basir each: Reach-G1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
Peak Inflo	( )	Date/Time of Peak Inflow	
	harge:3.0 (CFS) Jume: 0.3 (AC-FT)	Date/Time of Peak Discha Discharge Volume:	0.3 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basir each: Reach-H1	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	ow: 4.6 (CFS) harge:4.6 (CFS) lume: 0.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basir each: Reach-H2	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 8.9 (CFS) harge:8.9 (CFS) olume: 0.7 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

	Project: Winsome_Fil_3	Simulation Run: Prop Basir leach: Reach H3	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 1.4 (CFS) harge:1.3 (CFS) lume: 0.1 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basin ach: Reach-H3B	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	ts: AC-FT	
Computed Results			
	ow: 1.3 (CFS) harge:1.2 (CFS) Ilume: 0.1 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Reach: Reach-I1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 6.6 (CFS) harge:6.5 (CFS) lume: 0.4 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basin each: Reach-P4	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 6.3 (CFS) harge:6.3 (CFS) lume: 1.0 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr

Start of Run:26Feb2019, 00:00End of Run:27Feb2019, 12:00Compute Time:09Dec2021, 07:54:11

Basin Model: Proposed Basins Meteorologic Model: Prop Basins 100yr Control Specifications:Control 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
A1	1.35	402.8	26Feb2019, 12:28	40.2
A2A	0.04	47.1	26Feb2019, 12:04	1.7
A2B	0.01	20.3	26Feb2019, 12:03	0.7
АЗА	0.01	25.8	26Feb2019, 12:00	0.9
A3B	0.02	42.6	26Feb2019, 11:59	1.5
A3C	0.02	40.8	26Feb2019, 12:00	1.6
BOX CULVERT 1	7.87	1689.6	26Feb2019, 12:42	237.8
BOX CULV 2	8.86	1872.8	26Feb2019, 12:44	279.2
B1	5.99	1289.0	26Feb2019, 12:44	178.0
B2	0.02	17.2	26Feb2019, 12:09	0.9
B3	0.09	49.3	26Feb2019, 12:17	3.2
B4	0.06	46.3	26Feb2019, 12:17	2.9
CLV E4	0.17	117.6	26Feb2019, 12:12	8.1
CULV A3A	0.03	40.9	26Feb2019, 12:03	1.6
CULV B2	0.02	17.2	26Feb2019, 12:09	0.9
CULV C2	0.29	120.4	26Feb2019, 12:18	8.4
CULV C3	0.31	134.2	26Feb2019, 12:19	9.6
CULV D2	0.36	170.8	26Feb2019, 12:18	11.8
CULV D3	0.14	64.0	26Feb2019, 12:20	5.1
CULV D4	0.20	92.3	26Feb2019, 12:19	7.5
CULV E1.1	0.06	24.6	26Feb2019, 12:17	1.7
CULV E1.2	0.02	21.4	26Feb2019, 12:10	1.3
CULV E1.5	0.01	16.6	26Feb2019, 12:08	0.8
CULV E2	0.08	36.6	26Feb2019, 12:14	2.8
CULV E5	0.02	18.4	26Feb2019, 12:10	1.1
CULV F2	0.01	8.6	26Feb2019, 12:05	0.4
CULV G1	0.04	40.0	26Feb2019, 12:07	1.5

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
CULV H1	0.02	33.0	26Feb2019, 12:03	1.1
CULV H2	0.06	65.5	26Feb2019, 12:04	2.5
CULV H3	0.00	8.0	26Feb2019, 12:02	0.3
CULV I1	0.01	25.8	26Feb2019, 12:05	1.3
CULV-E3	0.13	84.6	26Feb2019, 12:11	6.0
CULV-Pond4	0.05	81.0	26Feb2019, 12:01	2.8
C1	0.25	105.6	26Feb2019, 12:16	7.4
C2	0.04	16.1	26Feb2019, 12:13	1.0
C3	0.03	19.1	26Feb2019, 12:11	1.1
C4	0.04	19.1	26Feb2019, 12:18	1.2
D1.1	0.25	105.2	26Feb2019, 12:16	7.4
D1.2	0.08	28.2	26Feb2019, 12:20	2.3
D2	0.11	69.8	26Feb2019, 12:14	4.4
D3	0.06	38.1	26Feb2019, 12:17	2.9
D4	0.05	38.6	26Feb2019, 12:12	2.4
D5	0.02	15.0	26Feb2019, 12:12	0.7
D6	0.07	28.1	26Feb2019, 12:17	1.9
EX CULV C1	0.25	105.6	26Feb2019, 12:16	7.4
EX CULV D1.1	0.25	105.2	26Feb2019, 12:16	7.4
EX CULV D1.2	0.08	28.2	26Feb2019, 12:20	2.3
EX CULV E0	0.06	24.6	26Feb2019, 12:16	1.7
E0	0.06	24.6	26Feb2019, 12:16	1.7
E1.1	0.01	16.6	26Feb2019, 12:08	0.8
E1.2	0.02	21.4	26Feb2019, 12:10	1.3
E2	0.00	8.9	26Feb2019, 11:56	0.3
E3	0.03	33.7	26Feb2019, 12:07	1.8
E4	0.03	27.0	26Feb2019, 12:10	1.7
E5	0.02	18.4	26Feb2019, 12:10	1.1
E6	0.01	14.1	26Feb2019, 12:05	0.6
E7	0.02	16.2	26Feb2019, 12:07	0.8
E8	0.02	25.6	26Feb2019, 12:01	1.0

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
E9	0.01	5.8	26Feb2019, 11:56	0.1
F1	0.05	36.6	26Feb2019, 12:09	2.1
F2	0.01	8.6	26Feb2019, 12:04	0.4
F3	0.02	14.5	26Feb2019, 12:06	0.7
G1	0.04	40.1	26Feb2019, 12:07	1.5
G2A	0.03	59.9	26Feb2019, 11:59	2.1
G2B	0.00	9.6	26Feb2019, 11:59	0.4
H1	0.02	33.0	26Feb2019, 12:03	1.1
H2	0.06	65.7	26Feb2019, 12:04	2.5
НЗА	0.00	8.0	26Feb2019, 12:02	0.3
НЗВ	0.00	6.9	26Feb2019, 12:04	0.3
H4	0.04	73.6	26Feb2019, 12:04	3.0
H5A	0.01	27.0	26Feb2019, 12:03	1.1
H5B	0.02	29.0	26Feb2019, 12:03	1.1
H6A	0.03	51.1	26Feb2019, 12:02	2.0
H6B	0.02	57.1	26Feb2019, 11:59	2.3
H7A	0.01	27.1	26Feb2019, 11:59	1.0
H7B	0.03	49.8	26Feb2019, 12:00	1.5
H8	0.01	26.5	26Feb2019, 12:02	1.1
H9	0.01	16.9	26Feb2019, 12:05	0.7
11	0.01	20.3	26Feb2019, 12:04	1.0
12	0.02	39.1	26Feb2019, 12:04	1.6
J1	0.02	13.0	26Feb2019, 12:02	0.5
K1	0.03	40.7	26Feb2019, 12:02	1.3
OUT-1	9.24	1958.3	26Feb2019, 12:45	297.3
REACH A1	1.35	402.3	26Feb2019, 12:31	40.2
Reach E3.1	0.02	21.4	26Feb2019, 12:12	1.3
Reach H3	0.00	8.0	26Feb2019, 12:07	0.3
Reach-A2A	0.04	47.1	26Feb2019, 12:07	1.7
Reach-A2B	0.01	20.1	26Feb2019, 12:07	0.7
Reach-A3	0.04	46.9	26Feb2019, 12:08	1.7

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
Reach-A3A	0.03	49.3	26Feb2019, 12:04	2.0
Reach-B1	5.99	1288.9	26Feb2019, 12:46	178.0
Reach-B2	0.02	17.2	26Feb2019, 12:14	0.9
Reach-B3	6.08	1301.2	26Feb2019, 12:48	181.2
Reach-B4-3	0.31	134.2	26Feb2019, 12:19	9.6
Reach-C1	0.25	105.5	26Feb2019, 12:18	7.4
Reach-C2	0.29	120.3	26Feb2019, 12:20	8.4
Reach-D1.1	0.25	105.1	26Feb2019, 12:20	7.4
Reach-D3	0.08	28.2	26Feb2019, 12:24	2.3
Reach-D4	0.14	64.0	26Feb2019, 12:23	5.1
Reach-D5	0.36	170.6	26Feb2019, 12:20	11.8
Reach-D6	0.20	92.2	26Feb2019, 12:22	7.5
Reach-E1.1	0.06	24.6	26Feb2019, 12:17	1.7
Reach-E2	0.06	24.5	26Feb2019, 12:19	1.7
Reach-E3	0.08	36.6	26Feb2019, 12:17	2.8
Reach-E4	0.13	84.5	26Feb2019, 12:14	6.0
Reach-E6	0.02	18.4	26Feb2019, 12:13	1.1
Reach-E6-2	0.20	137.3	26Feb2019, 12:14	9.5
Reach-E7	0.17	117.5	26Feb2019, 12:14	8.1
Reach-F2	0.01	8.6	26Feb2019, 12:08	0.4
Reach-G1	0.04	40.0	26Feb2019, 12:10	1.5
Reach-H1	0.02	32.8	26Feb2019, 12:06	1.1
Reach-H2	0.06	65.4	26Feb2019, 12:06	2.5
Reach-H3B	0.00	6.8	26Feb2019, 12:09	0.3
Reach-I1	0.01	25.7	26Feb2019, 12:09	1.3
Reach-P3	0.26	79.0	26Feb2019, 12:37	9.4
Reach-P4	0.06	52.9	26Feb2019, 12:11	3.8
Reach-1	7.97	1694.5	26Feb2019, 12:43	243.3
Reach-2	8.07	1713.7	26Feb2019, 12:44	248.5
Reach-3	8.48	1782.7	26Feb2019, 12:43	263.2
Reach-4	8.59	1796.4	26Feb2019, 12:44	269.7

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
Reach-5	8.86	1872.3	26Feb2019, 12:44	279.2
Reach-6 Kiowa O	µ€falB	1959.5	26Feb2019, 12:45	299.6
STORAGE P1	0.06	72.2	26Feb2019, 12:11	4.1
STORAGE P2	0.09	78.7	26Feb2019, 12:09	4.6
STORAGE P3	0.26	79.0	26Feb2019, 12:36	9.4
STORAGE P4	0.06	52.9	26Feb2019, 12:11	3.8
STORAGE P5	0.24	73.4	26Feb2019, 12:32	10.3

-	Simulation Run: Prop Basins 100 yr basin: A1
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11 Volume Units:	Basin Model: Proposed Basins Meteorologic Model: Prop Basins 100yr Control Specifications: Control 1
Computed Results Peak Discharge: 402.8 (CFS) Precipitation Volume331.6 (AC-FT) Loss Volume: 291.4 (AC-FT) Excess Volume: 40.2 (AC-FT)	Date/Time of Peak Discharge26Feb2019, 12Direct Runoff Volume:40.2 (AC-FT)Baseflow Volume:0.0 (AC-FT)Discharge Volume:40.2 (AC-FT)

	Proje	ect: Winsome_Fil_3 S	Simulation Run: Prop Basins ubbasin: A2A	100 yr
	End of Run:	6Feb2019, 00:00 27Feb2019, 12:00 9Dec2021, 07:54:11 Volume Units	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed R	Peak Discharge	olume:10.8 (AC-FT) 9.1 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	scharge26Feb2019, 12 1.7 (AC-FT) 0.0 (AC-FT) 1.7 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Subbasin: A2B	s 100 yr
Start of Run End of Run: Compute Ti	,	Basin Model: Meteorologic Model: Control Specifications: nits: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed Results Peak Disc Precipitat Loss Volu Excess Vo	tion Volume3.4 (ÀC-FT) ume: 2.7 (AC-FT)	Direct Runoff Volume: Baseflow Volume:	charge26Feb2019, 12: 0.7 (AC-FT) 0.0 (AC-FT) 0.7 (AC-FT) 0.7 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Subbasin: A3A	s 100 yr
Start of Run End of Run: Compute Ti	,	Basin Model: Meteorologic Model: Control Specifications: nits: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed Results Peak Disc Precipitat Loss Volu Excess Vo	tion Volume3.2 (ÀC-FŤ) Jme: 2.2 (AC-FŤ)	Direct Runoff Volume: Baseflow Volume:	charge26Feb2019, 12: 0.9 (AC-FT) 0.0 (AC-FT) 0.9 (AC-FT) 0.9 (AC-FT)

	Project:	Winsome_Fil_3 Su	Simulation Run: Prop Basins ubbasin: A3B	100 yr
		02019, 00:00 Feb2019, 12:00 c2021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
<ul> <li>Computed</li> </ul>	Results Peak Discharge: Precipitation Volu Loss Volume: Excess Volume:	42.6 (CFS) me5.1 (AC-FT) 3.6 (AC-FT) 1.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 11: 1.5 (AC-FT) 0.0 (AC-FT) 1.5 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Pro Subbasin: A3C	op Basins 100 yr
Start of Run End of Run: Compute Tir	,,	5	Proposed Basins Model: Prop Basins 100yr fications: Control 1
	Volumo	e Units: AC-FT	
Computed Results			
Peak Disc Precipitati Loss Volu Excess Vo	ion Volume:4.5 (AC-I me: 2.8 (AC-I	T) Direct Runoff V T) Baseflow Volun	ne: 0.0 (AC-FT)

F	Project: Winsome_Fil_3 F	Simulation Run: Prop Basins Reach: CULV A3A	100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
Computed Results			
	ow: 41.0 (CFS) charge:40.9 (CFS) olume: 1.6 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Reach: CULV G1	s 100 yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
	flow: 40.1 (CFS) scharge:40.0 (CFS) 'olume: 1.5 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Disch Discharge Volume:	,

Project: Winsome_Fil_3	Simulation Run: Prop Basins 100 yr Reach: CULV H1
Start of Run:         26Feb2019, 00:00           End of Run:         27Feb2019, 12:00           Compute Time:         09Dec2021, 07:54:11	Basin Model:Proposed BasinsMeteorologic Model:Prop Basins 100yrControl Specifications:Control 1
Volume U	Jnits: AC-FT
Computed Results	
Peak Inflow: 33.0 (CFS)	Date/Time of Peak Inflow 26Feb2019, 12:02
Peak Discharge:33.0 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:03
Inflow Volume: 1.1 (AC-FT)	Discharge Volume: 1.1 (AC-FT)

	Project: Winsome_Fil_	3 Simulation Run: Prop Ba Reach: CULV H2	asins 100 yr
Start of R End of Ru Compute	,,	Ŭ	1 ,
	Volur	ne Units: AC-FT	
Peak	Inflow: 65.7 (CFS) Discharge:65.5 (CFS) v Volume: 2.5 (AC-F	) Date/Time of Peak Di	nflow 26Feb2019, 12:03 ischarge26Feb2019, 12:04 2.5 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Reach: CULV H3	s 100 yr
Start of Run End of Run: Compute Tir	,,	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume U	nits: AC-FT	
	iflow: 8.0 (CFS) ischarge:8.0 (CFS) Volume: 0.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Disch Discharge Volume:	'

	Project: Winso		Simulation Run: Prop Basins each: CULV I1	s 100 yr
Start of Run End of Run: Compute Ti	,	9, 12:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
		Volume Units	S: AC-FT	
	nflow: 25.8 ischarge:25.8 Volume: 1.3 (	. ,	Date/Time of Peak Inflow Date/Time of Peak Disch Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basin Reach: CULV-Pond4	us 100 yr
Start of Run: End of Run: Compute Tin	,,,	Basin Model: Meteorologic Model: Control Specifications	Proposed Basins Prop Basins 100yr : Control 1
	Volume	Units: AC-FT	
Computed Results			
	flow: 81.1 (CFS) scharge:81.0 (CFS) /olume: 2.8 (AC-FT)	Date/Time of Peak Inflo Date/Time of Peak Discl Discharge Volume:	w 26Feb2019, 11:59 harge26Feb2019, 12:01 2.8 (AC-FT)

	Project: V	Vinsome_Fil_3 Sເ	Simulation Run: Prop Basins	s 100 yr
		2019, 00:00 202019, 12:00 2021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed F	Results Peak Discharge: Precipitation Volun Loss Volume: Excess Volume:	40.1 (CFS) ne9.5 (AC-FT) 8.0 (AC-FT) 1.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 1.5 (AC-FT) 0.0 (AC-FT) 1.5 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Subbasin: G2A	100 yr
	Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11 Volume Uni	Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
Cor	nputed Results Peak Discharge: 59.9 (CFS) Precipitation Volume7.1 (AC-FT) Loss Volume: 5.1 (AC-FT) Excess Volume: 2.1 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 11: 2.1 (AC-FT) 0.0 (AC-FT) 2.1 (AC-FT)

	F	Project: W	insome_Fil_3	Simu Subbasi	ulation Run: Prop Basins n: G2B	; 100 yr	
	Start of Run: End of Run: Compute Time	27Feb	019, 00:00 02019, 12:00 021, 07:54:11 Volume Un	its:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Prop Bas	osed Basins ins 100yr
- Computed R	Peak Discha	n Volum ne:	9.6 (CFS) e1.1 (AC-FT) 0.7 (AC-FT) 0.4 (AC-FT)	Dir Ba	te/Time of Peak Dis ect Runoff Volume: seflow Volume: scharge Volume:	0 0	6Feb2019, 11: .4 (AC-FT) .0 (AC-FT) .4 (AC-FT)

	Project: Wi	nsome_Fil_3 Su	Simulation Run: Prop Basins	100 yr
		19, 00:00 2019, 12:00 21, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
– Comput	ed Results Peak Discharge: Precipitation Volume Loss Volume: Excess Volume:	33.0 (CFS) e5.3 (AC-FT) 4.2 (AC-FT) 1.1 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 1.1 (AC-FT) 0.0 (AC-FT) 1.1 (AC-FT)

• – –	Simulation Run: Prop Basins obasin: H2	100 yr
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed Results Peak Discharge: 65.7 (CFS) Precipitation Volume:15.0 (AC-FT) Loss Volume: 12.5 (AC-FT) Excess Volume: 2.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	scharge26Feb2019, 12 2.5 (AC-FT) 0.0 (AC-FT) 2.5 (AC-FT)

	Project: Wir		Simulation Run: Prop Basins basin: H3A	100 yr
Start of F End of R Compute		2019, 12:00	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Precipit Loss Ve	vischarge: tation Volume olume: Volume:	8.0 (CFS) :1.2 (AC-FT) 0.9 (AC-FT) 0.3 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT) 0.3 (AC-FT)

	Project: Wi		Simulation Run: Prop Basins basin: H3B	100 yr
E		19, 00:00 2019, 12:00 21, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
P	Its Peak Discharge: Precipitation Volume oss Volume: Excess Volume:	6.9 (CFS) e1.0 (AC-FT) 0.8 (AC-FT) 0.3 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT)

Project: Winsome_Fil_3 Su	Simulation Run: Prop Basins 100 yr Ibbasin: H4	
Start of Run:         26Feb2019, 00:00           End of Run:         27Feb2019, 12:00           Compute Time:         09Dec2021, 07:54:11	Basin Model:Proposed BasinsMeteorologic Model:Prop Basins 100yrControl Specifications:Control 1	
Volume Units:	AC-FT	
Computed Results Peak Discharge: 73.6 (CFS) Precipitation Volume:10.3 (AC-FT) Loss Volume: 7.3 (AC-FT) Excess Volume: 3.0 (AC-FT)	Date/Time of Peak Discharge26Feb2019, 12Direct Runoff Volume:3.0 (AC-FT)Baseflow Volume:0.0 (AC-FT)Discharge Volume:3.0 (AC-FT)	

	Project: Wi	insome_Fil_3 Sub	Simulation Run: Prop Basins basin: H5A	100 yr
Start o End of Compu		019, 00:00 02019, 12:00 021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Preci Loss	Discharge: pitation Volume Volume: ss Volume:	27.0 (CFS)		charge26Feb2019, 12: 1.1 (AC-FT) 0.0 (AC-FT) 1.1 (AC-FT)

	Project: Win		Simulation Run: Prop Basins basin: H5B	100 yr
Enc	art of Run: 26Feb201 d of Run: 27Feb2 mpute Time: 09Dec202	2019, 12:00 21, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
		Volume Units:	AC-FT	
Computed Results	S			
	ak Discharge: ecipitation Volume	29.0 (CFS) 4.0 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume:	charge26Feb2019, 12: 1.1 (AC-FT)
Lo	ss Volume:	2.9 (AC-FT)	Baseflow Volume:	0.0 (AC-FT)
EX	cess Volume:	1.1 (AC-FT)	Discharge Volume:	1.1 (AC-FT)

	Project: W	insome_Fil_3 Sub	Simulation Run: Prop Basins	100 yr
End c		019, 00:00 02019, 12:00 021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Prec Loss	c Discharge: ipitation Volum Volume: ess Volume:	51.1 (CFS) e6.4 (AC-FT) 4.3 (AC-FT) 2.0 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 2.0 (AC-FT) 0.0 (AC-FT) 2.0 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins ubbasin: H6B	100 yr
	Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
- Cc	Peak Discharge: 57.1 (CFS) Precipitation Volume6.1 (AC-FT) Loss Volume: 3.8 (AC-FT) Excess Volume: 2.3 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 11: 2.3 (AC-FT) 0.0 (AC-FT) 2.3 (AC-FT)

	Pro	oject: Win	some_Fil_3 Sເ	Simulation Run: Prop Basins ubbasin: H7A	s 100 yr
l	Start of Run: End of Run: Compute Time:		2019, 12:00	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
	ults Peak Dischar Precipitation Loss Volume Excess Volun	Volume :	27.1 (CFS) 3.3 (AC-FT) 2.3 (AC-FT) 1.0 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 11: 1.0 (AC-FT) 0.0 (AC-FT) 1.0 (AC-FT)

	Ρ	Project: Wi	nsome_Fil_3 S	Simulation Run: Prop Basins ubbasin: H7B	s 100 yr
	Start of Run: End of Run: Compute Time	27Feb	19, 00:00 2019, 12:00 21, 07:54:11 Volume Units	Basin Model: Meteorologic Model: Control Specifications: : AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed Re	Peak Discha	n Volume e:	49.8 (CFS) e6.6 (AC-FT) 5.1 (AC-FT) 1.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	ccharge26Feb2019, 12: 1.5 (AC-FT) 0.0 (AC-FT) 1.5 (AC-FT)

	Project: Winsome_Fil_3 Su	Simulation Run: Prop Basins	100 yr
	Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Co	mputed Results Peak Discharge: 26.5 (CFS) Precipitation Volume3.2 (AC-FT) Loss Volume: 2.1 (AC-FT) Excess Volume: 1.1 (AC-FT)		charge26Feb2019, 12: 1.1 (AC-FT) 0.0 (AC-FT) 1.1 (AC-FT)

	Project: W	insome_Fil_3 Sι	Simulation Run: Prop Basins	s 100 yr
End of		019, 00:00 02019, 12:00 021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Preci Loss	Discharge: pitation Volum Volume: ss Volume:	16.9 (CFS) e2.6 (AC-FT) 2.0 (AC-FT) 0.7 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.7 (AC-FT) 0.0 (AC-FT) 0.7 (AC-FT)

	Project: W	/insome_Fil_3 S	Simulation Run: Prop Basins ubbasin: I1	s 100 yr
		019, 00:00 b2019, 12:00 021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed	Results Peak Discharge: Precipitation Volum Loss Volume: Excess Volume:	20.3 (CFS)		charge26Feb2019, 12: 1.0 (AC-FT) 0.0 (AC-FT) 1.0 (AC-FT)

	Project:	Winsome_Fil_3	Simulation Run: Prop Basins 100 yr Subbasin: I2		
			Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1	
	х II	Volume Units:	AC-FT		
Computed F	Peak Discharge: Precipitation Volu Loss Volume: Excess Volume:	39.1 (CFS) Ime5.7 (AC-FT) 4.1 (AC-FT) 1.6 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 1.6 (AC-FT) 0.0 (AC-FT) 1.6 (AC-FT)	

	Project: Winsome_Fil_3			Simulation Run: Prop Basins 100 yr Subbasin: J1		
	Start of Run: End of Run: Compute Time	27Feb	19, 00:00 2019, 12:00 21, 07:54:11 Volume Units	Basin Model: Meteorologic Model: Control Specifications: S: AC-FT	Proposed Basins Prop Basins 100yr Control 1	
Computed Re	Peak Discha	n Volume e:	13.0 (CFS) 23.9 (AC-FT) 3.4 (AC-FT) 0.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.5 (AC-FT) 0.0 (AC-FT) 0.5 (AC-FT)	

	Project: V	Vinsome_Fil_3 St	Simulation Run: Prop Basins 100 yr Subbasin: K1		
		2019, 00:00 eb2019, 12:00 2021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1	
⊂ Computed R	Peak Discharge: Precipitation Volun Loss Volume: Excess Volume:	40.7 (CFS) ne6.7 (AC-FT) 5.4 (AC-FT) 1.3 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 1.3 (AC-FT) 0.0 (AC-FT) 1.3 (AC-FT)	

	Project: Winso		Simulation Run: Prop Basins 100 yr Reach: OUT-1		
Start of Ru End of Ru Compute	,	9, 12:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1	
		Volume Units:	AC-FT		
Computed Results					
	nflow: 1958. Discharge:1958. Volume: 297.4	. ,	Date/Time of Peak Inflo Date/Time of Peak Disc Discharge Volume:	,	

	Project: Winsome_Fil_3 R	Simulation Run: Prop Bas Reservoir: STORAGE P1	ins 100 yr
Start of Run: End of Run: Compute Tir	,	0	
	Volume	e Units: AC-FT	
Computed Results			
Peak Inf	low: 105.0 (CFS	5) Date/Time of Peak In	flow: 26Feb2019, 12:0
Peak Dis	charge: 72.2 (CFS)	Date/Time of Peak Di	scharge26Feb2019, 12:1
Inflow V	olume: 4.2 (AC-FT	) Peak Storage:	1.4 (AC-FT)
Discharg	e Volume4.1 (AC-FT	) Peak Elevation:	7327.2 (FT)

	Project: Winsome_Fil_3 Res	Simulation Run: Prop Basin ervoir: STORAGE P2	s 100 yr
Start of Run: End of Run: Compute Tir	,	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume U	Inits: AC-FT	
Computed Results			
Peak Inf	low: 110.8 (CFS)	Date/Time of Peak Infl	ow: 26Feb2019, 12:0
Peak Dis	charge: 78.7 (CFS)	Date/Time of Peak Dise	charge26Feb2019, 12:0
Inflow V	olume: 4.8 (AC-FT)	Peak Storage:	1.5 (AC-FT)
Discharg	e Volume:4.6 (AC-FT)	Peak Elevation:	7305.6 (FT)

	Project: Winsome_Fil_3 Re	Simulation Run: Prop Bas eservoir: STORAGE P4	ins 100 yr
Start of Run End of Run: Compute Tir	,,	Basin Model: Meteorologic Model: Control Specification	
	Volume	Units: AC-FT	
Computed Results			
Peak Inf	low: 97.4 (CFS)	Date/Time of Peak In	flow: 26Feb2019, 12:0
Peak Dis	charge: 52.9 (CFS)	Date/Time of Peak Di	scharge26Feb2019, 12:1
Inflow V	olume: 4.1 (AC-FT	) Peak Storage:	1.8 (AC-FT)
Discharg	je Volume3.8 (AC-FT	) Peak Elevation:	7295.4 (FT)

	Project: Winsome_Fil_3 Reach: F	Simulation Run: Prop Basins Reach-6 Kiowa Outfall	s 100 yr
Start of Run End of Run: Compute Ti	,	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
Computed Results			
	flow: 1959.6 (CFS) scharge:1959.5 (CFS) /olume: 299.6 (AC-FT)	Date/Time of Peak Inflo Date/Time of Peak Disc Discharge Volume:	,

Project: Winsome_Fil_3 Rea	Simulation Run: Prop Basins 100 yr ich: Reach-1
Start of Run:26Feb2019, 00:00End of Run:27Feb2019, 12:00Compute Time:09Dec2021, 07:54:11	Basin Model:Proposed BasinsMeteorologic Model:Prop Basins 100yrControl Specifications:Control 1
Volume Units:	AC-FT
Computed Results Peak Inflow: 1694.6 (CFS)	Date/Time of Peak Inflow 26Feb2019, 12:4
Peak Discharge:1694.5 (CFS) Inflow Volume: 243.3 (AC-FT)	Date/Time of Peak Discharge26Feb2019, 12:4Discharge Volume:243.3 (AC-FT)

	Project: Winsome		Simulation Run: Prop Basins h: Reach-2	100 yr
Start of Run End of Run: Compute Ti	, ,	12:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	V	olume Units:	AC-FT	
	flow: 1714.1 ( scharge:1713.7 ( 'olume: 248.5 (A	CFS) [	Date/Time of Peak Inflc Date/Time of Peak Disc Discharge Volume:	,

	Pr	oject: Winsome_F		Simulation Run: Prop Basins h: Reach-3	s 100 yr
E	tart of Run: nd of Run: ompute Time:	26Feb2019, 00:00 27Feb2019, 12 09Dec2021, 07:54	:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
		Vol	ume Units:	AC-FT	
	Peak Inflov Peak Disch	v: 1782.7 (C arge:1782.7 (C ıme: 263.2 (AC	FS) C	Date/Time of Peak Infle Date/Time of Peak Disc Discharge Volume:	ow 26Feb2019, 12:4 harge26Feb2019, 12:4 263.2 (AC-FT)

	Project: Win		Simulation Run: Prop Basins ach: Reach-4	s 100 yr
Start of Rur End of Run Compute Ti		2019, 12:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
		Volume Units:	AC-FT	
	flow: 179 scharge:179 /olume: 269	. ,	Date/Time of Peak Inflo Date/Time of Peak Disc Discharge Volume:	·

	Project: Winsome_Fil_3 R	Simulation Run: Prop Basins each: Reach-5	s 100 yr
Start of Run End of Run Compute T		Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
		Date/Time of Peak Inflo Date/Time of Peak Disc Discharge Volume:	,

Project: Winsome_Fil_3	Simulation Run: Prop Basins 100 yr ach: REACH A1
Start of Run:         26Feb2019, 00:00           End of Run:         27Feb2019, 12:00           Compute Time:         09Dec2021, 07:54:11	Basin Model:Proposed BasinsMeteorologic Model:Prop Basins 100yrControl Specifications:Control 1
Volume Unit	s: AC-FT
Computed Results Peak Inflow: 402.8 (CFS) Peak Discharge:402.3 (CFS) Inflow Volume: 40.2 (AC-FT)	Date/Time of Peak Inflow26Feb2019, 12:27Date/Time of Peak Discharge26Feb2019, 12:37Discharge Volume:40.2 (AC-FT)

Project: Winsome_Fil_3 Re	Simulation Run: Prop Basins 100 yr each: Reach-A2A
Start of Run:         26Feb2019, 00:00           End of Run:         27Feb2019, 12:00           Compute Time:         09Dec2021, 07:54:11	Basin Model:Proposed BasinsMeteorologic Model:Prop Basins 100yrControl Specifications:Control 1
Volume Un	its: AC-FT
Computed Results	
Peak Inflow: 47.1 (CFS)	Date/Time of Peak Inflow 26Feb2019, 12:03
Peak Discharge:47.1 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:07
Inflow Volume: 1.7 (AC-FT)	Discharge Volume: 1.7 (AC-FT)

F	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basins each: Reach-A2B	100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	its: AC-FT	
Computed Results			
Peak Inf	ow: 20.3 (CFS)	Date/Time of Peak Inflow	v 26Feb2019, 12:02
Peak Dis	charge:20.1 (CFS)	Date/Time of Peak Discha	arge26Feb2019, 12:07
Inflow Ve	olume: 0.7 (AC-FT)	Discharge Volume:	0.7 (AC-FT)

F	Project: Winsome_Fil_3 F	Simulation Run: Prop Basins Reach: Reach-A3	100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
Computed Results			
	ow: 47.1 (CFS) charge:46.9 (CFS) olume: 1.7 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

F	Project: Winsome_Fil_3 R	Simulation Run: Prop Basins each: Reach-A3A	s 100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
Computed Results			
	ow: 49.5 (CFS) charge:49.3 (CFS) olume: 2.0 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	,

F	Project: Winsome_Fil_3 R	Simulation Run: Prop Basins Reach: Reach-G1	s 100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
	ow: 40.0 (CFS) charge:40.0 (CFS) olume: 1.5 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	,

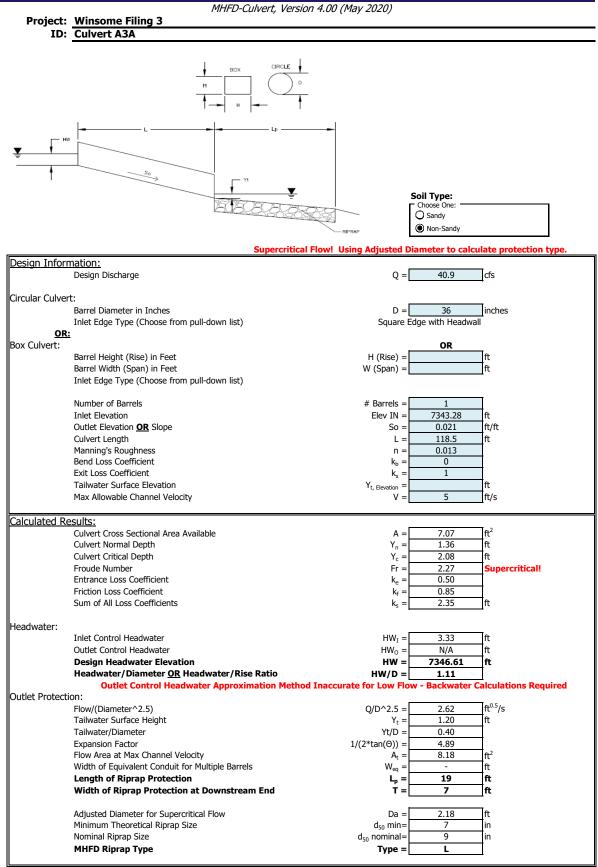
F	Project: Winsome_Fil_3 R	Simulation Run: Prop Basins Reach: Reach-H1	100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 a: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	its: AC-FT	
Computed Results			
	ow: 33.0 (CFS) charge:32.8 (CFS) olume: 1.1 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	'

, – –	Simulation Run: Prop Basins Reach: Reach-H2	100 yr
26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
Volume Ur	nits: AC-FT	
charge:65.4 (CFS)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	
	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11 Volume U	Reach: Reach-H2         26Feb2019, 00:00       Basin Model:         27Feb2019, 12:00       Meteorologic Model:         e: 09Dec2021, 07:54:11       Control Specifications:         Volume Units:       AC-FT         low:       65.5 (CFS)       Date/Time of Peak Inflow         charge:65.4 (CFS)       Date/Time of Peak Discharge

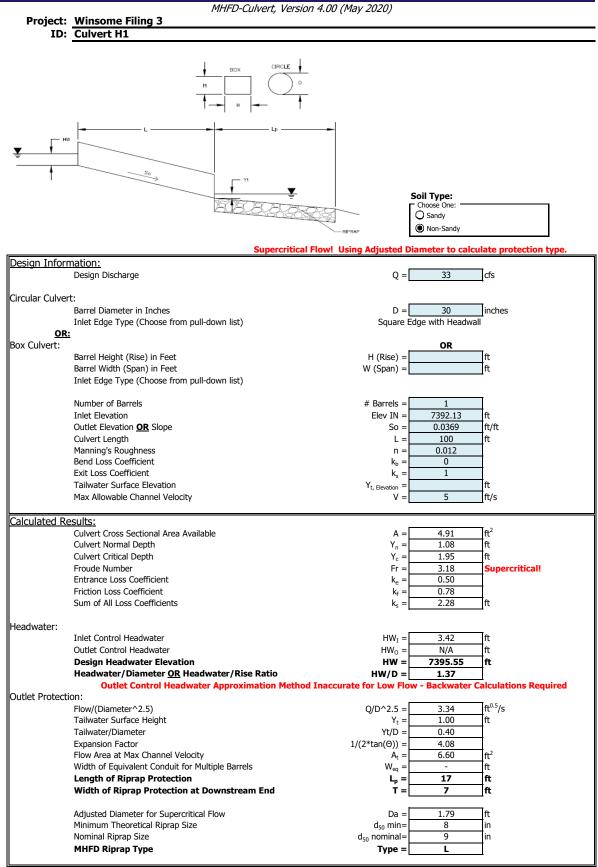
F	Project: Winsome_Fil_3 F	Simulation Run: Prop Basins Reach: Reach H3	s 100 yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	its: AC-FT	
	low: 8.0 (CFS) charge:8.0 (CFS) olume: 0.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Disch Discharge Volume:	,

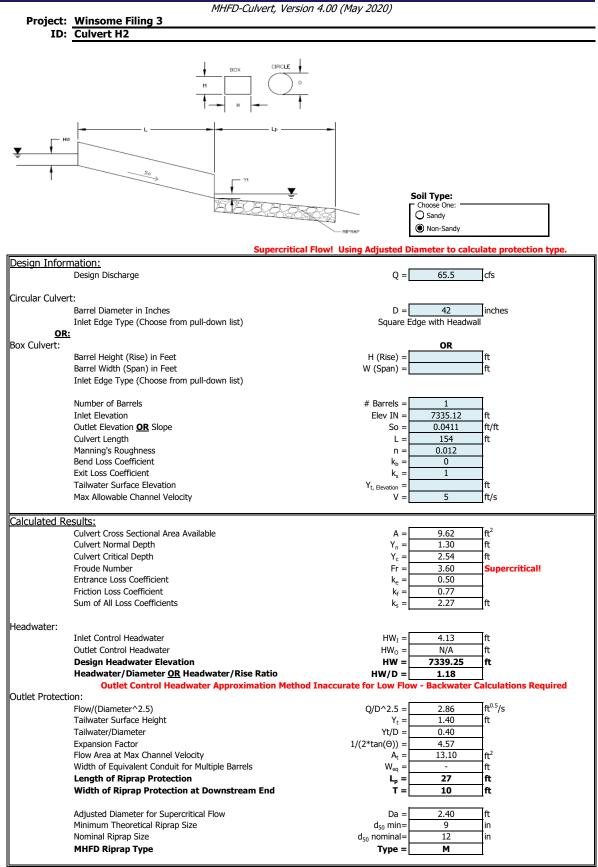
F	Project: Winsome_Fil_3 Ri	Simulation Run: Prop Basins each: Reach-H3B	s 100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 a: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	its: AC-FT	
Computed Results			
	ow: 6.9 (CFS) charge:6.8 (CFS) olume: 0.3 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	,

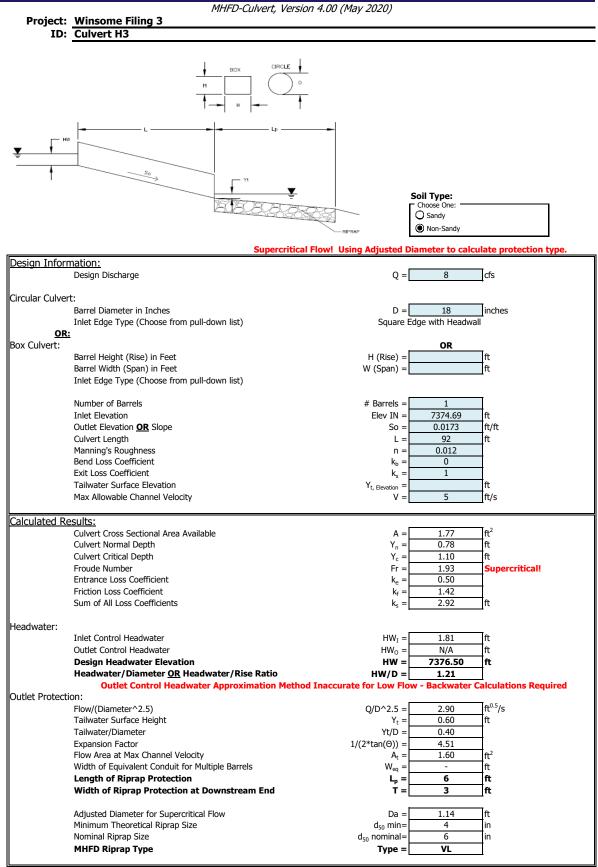
	Project: Winsome_Fil_3 F	Simulation Run: Prop Basins Reach: Reach-I1	100 yr
Start of Run: End of Run: Compute Tin	,	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
Peak In	· · · ·	Date/Time of Peak Inflow	
	scharge:25.7 (CFS)	Date/Time of Peak Disch	<b>J</b>
INFIOW	/olume: 1.3 (AC-FT)	Discharge Volume:	1.3 (AC-FT)


	Project: Winsome_Fil_	3 Simulation Run: Prop B Reach: Reach-P4	asins 100 yr
Start of Run End of Run Compute T	,,	Ŭ	
	Volur	ne Units: AC-FT	
Computed Results			
Peak D	nflow: 52.9 (CFS Discharge:52.9 (CFS Volume: 3.8 (AC-F	Date/Time of Peak D	nflow 26Feb2019, 12:10 vischarge26Feb2019, 12:11 3.8 (AC-FT)

APPENDIX C: HYDRAULICS

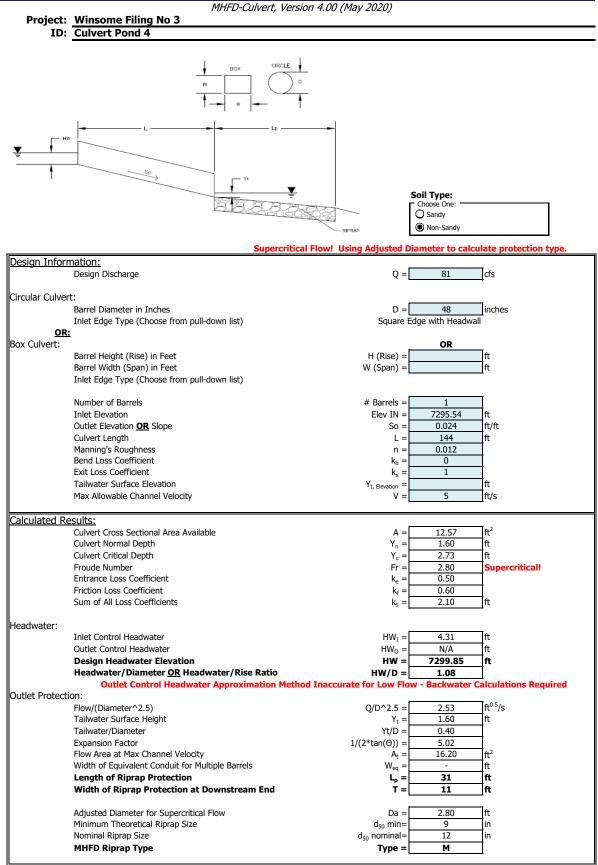

	Culvert Summary										
Culvert ID	Flows (cfs)	HW/D Ratio	Diameter (in)	Length (ft)	Min Width (ft)	Width (ft)	D50 Type		D50 Thickness (in)		Upstream Headwater Elevation (ft)
A3A	40.9	1.11	36	19	7	11	L	9	18	1.36	7346.61
G1	40.0	1.09	36	19	7	11	L	9	18	1.30	7378.88
H1	33.0	1.36	30	17	7	10	L	9	18	1.08	7395.55
H2	65.5	1.18	42	27	10	12	М	12	24	1.30	7339.25
Н3	8.0	1.21	18	6	3	8	VL	6	12	0.78	7376.50
H5B	29.0	1.24	30	15	6	10	L	9	18	1.47	7318.10
1	25.8	1.1	30	14	6	9	VL	6	12	1.08	7355.76
Pond 4	81.0	1.08	48		Foreb	ay Used	for Energy	Dissipation	-	1.60	7299.85


provide the specific culvert analysis for these roadway culverts. The only ones attached are for a general driveway culvert


N



	MHFD-Culvert, Versior	1.00 (May 2020)
Project:	Winsome Filing 3	
ID:	Culvert G1	
	BOX CIRCLE	
	<u>+</u>	
	<b>↑</b> w   <b> ↑</b>	
	L Lp	
<u>г</u> н/		
<u>¥</u> . !		
Ī		
		Soil Type:
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C Choose One:
	CACACACACAC	O Sandy
		RIPRAP     Non-Sandy
		Flow! Using Adjusted Diameter to calculate protection type.
Design Inforr		
	Design Discharge	Q = 40 cfs
Circular Cult	+.	
Circular Culver		
	Barrel Diameter in Inches	D = 36 inches
00	Inlet Edge Type (Choose from pull-down list)	Square Edge with Headwall
<u>OR:</u> Box Culvert:	<u>.</u>	<u>OD</u>
	Barrel Height (Rise) in Feet	H (Rise) = ft
	Barrel Width (Span) in Feet	W(Span) = ft
	Inlet Edge Type (Choose from pull-down list)	
	mict Euge Type (choose from pair-down list)	
	Number of Barrels	# Barrels = 1
	Inlet Elevation	Elev IN = 7375.61 ft
	Outlet Elevation OR Slope	So = $0.02$ ft/ft
	Culvert Length	L = 115 ft
	Manning's Roughness	n = 0.012
	Bend Loss Coefficient	k _b = 0
	Exit Loss Coefficient	k _x = 1
	Tailwater Surface Elevation	Y _{t, Elevation} = ft
	Max Allowable Channel Velocity	V = <u>5</u> ft/s
Calculated Re		
	Culvert Cross Sectional Area Available	$A = \frac{7.07}{1000} \text{ ft}^2$
	Culvert Normal Depth	$Y_n = 1.30$ ft
	Culvert Critical Depth	$Y_{c} = 2.06$ ft
	Froude Number	Fr = 2.41 Supercritical!
	Entrance Loss Coefficient	$k_{e} = 0.50$
	Friction Loss Coefficient	$k_{\rm f} = 0.70$
	Sum of All Loss Coefficients	$k_{s} = 2.20$ ft
leadwater:		
icauwatel.	Inlet Control Headwater	HW ₁ = 3.27 ft
	Outlet Control Headwater	$HW_0 = \frac{3.27}{MA}$ ft
	Design Headwater Elevation	HW = 7378.88 ft
	Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	HW/D = 1.09
	—	Inaccurate for Low Flow - Backwater Calculations Required
Outlet Protecti		
	Flow/(Diameter ^ 2.5)	$Q/D^{2.5} = 2.57$ ft ^{0.5} /s
	Tailwater Surface Height	$Y_{t} = 1.20$ ft
	Tailwater/Diameter	Yt/D = 0.40
	Expansion Factor	$1/(2^{tan}(\Theta)) = 4.97$
	Flow Area at Max Channel Velocity	$A_{t} = \frac{8.00}{ft^{2}}$
	Width of Equivalent Conduit for Multiple Barrels	W _{eq} =ft
	Length of Riprap Protection	$L_p = 19$ ft
	Width of Riprap Protection at Downstream End	T = 7 ft
	Adjusted Diameter for Supercritical Flow	Da = 2.15 ft
	Minimum Theoretical Riprap Size	d ₅₀ min= 7 in
	Nominal Riprap Size MHFD Riprap Type	$d_{50} \text{ minal} = 9 \text{ in}$ $Type = L$








Project	MHFD-Culvert, Version	4.00 (May 2020)
	Winsome Filing 3 Culvert H5B	
	BOX CIRCLE	
г н	u Lp	-
¥ †		
		Soil Type:
	6166666	Sandy     Non-Sandy
		low! Using Adjusted Diameter to calculate protection type.
Design Infor	<u>mation:</u> Design Discharge	Q = 29 cfs
	Sosign Bloonlange	
Circular Culve		
	Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list)	D = <u>30</u> inches Square Edge Projecting
OR		Square Euge Frojecting
Box Culvert:	_	OR
	Barrel Height (Rise) in Feet	H (Rise) =ft
	Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list)	W (Span) =ft
	Number of Barrels	# Barrels = 1
	Inlet Elevation Outlet Elevation <u>OR</u> Slope	$\begin{array}{c c} Elev IN = & 7315 & ft \\ So = & 0.01 & ft/ft \end{array}$
	Culvert Length	L = 74 ft
	Manning's Roughness	n = 0.012
	Bend Loss Coefficient	k _b = 0
	Exit Loss Coefficient	$k_x = 1$
	Tailwater Surface Elevation Max Allowable Channel Velocity	$Y_{t, Elevation} = ft$ V = 5 ft/s
	-	
Calculated R	esults: Culvert Cross Sectional Area Available	A = 4.91 ft ²
	Culvert Normal Depth	$Y_n = \frac{4.71}{1.47}$ ft
	Culvert Critical Depth	$Y_{c} = 1.84$ ft
	Froude Number	Fr = <u>1.54</u> Supercritical!
	Entrance Loss Coefficient	$k_e = 0.20$
	Friction Loss Coefficient Sum of All Loss Coefficients	$k_{f} = 0.58$ $k_{s} = 1.78$ ft
Headwater:	Inlet Control Headwater	HW _I = 3.10 ft
	Outlet Control Headwater	$HW_{0} = 2.39  ft$
	Design Headwater Elevation	HW = 7318.10 ft
	Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	HW/D = 1.24
Outlet Protect		
	Flow/(Diameter^2.5) Tailwater Surface Height	$Q/D^{2.5} = 2.93 \text{ ft}^{0.5}/\text{s}$ $Y_t = 1.00 \text{ ft}$
	Tailwater Surface Height Tailwater/Diameter	$Y_{t} = 1.00$ It Yt/D = 0.40
	Expansion Factor	$1/(2^{*}\tan(\Theta)) = 4.47$
	Flow Area at Max Channel Velocity	$A_t = 5.80$ ft ²
	Width of Equivalent Conduit for Multiple Barrels	$W_{eq} = -$ ft
	Length of Riprap Protection Width of Riprap Protection at Downstream End	$L_{p} = \frac{15}{15} ft$ $T = \frac{6}{15} ft$
	Adjusted Diameter for Supercritical Flow	$Da = \frac{1.98}{ft}$
	Minimum Theoretical Riprap Size Nominal Riprap Size	$\begin{array}{c c} d_{50} \text{ min} = & 7 & \text{in} \\ d_{50} \text{ nominal} = & 9 & \text{in} \end{array}$
	MHFD Riprap Type	Type = L
	· · · -·	

	MHFD-Culvert, Version	
Project:	Winsome Filing 3	
ID:	Culvert I1	
	BOX CIRCLE	
	<u> </u>	
	⁴_ <b>→</b> w <b>→</b>	
	μ L Lp	
Гч	w	
<u> </u>		
-		
f i	50	
	÷	Soil Type:
		O Sandy
		Non-Sandy
		- RIPRAP
	Supercritical F	low! Using Adjusted Diameter to calculate protection type.
Design Infor	mation:	
•	Design Discharge	Q = 25.8 cfs
Circular Culve	rt:	
	Barrel Diameter in Inches	D = 30 inches
	Inlet Edge Type (Choose from pull-down list)	Square Edge with Headwall
OR		
Box Culvert:		OR
	Barrel Height (Rise) in Feet	H (Rise) =ft
	Barrel Width (Span) in Feet	W (Span) =ft
	Inlet Edge Type (Choose from pull-down list)	
	Number of Barrels	# Barrels = 1
	Inlet Elevation	Elev IN = $7353$ ft
	Outlet Elevation OR Slope	So = $0.0222$ ft/ft
	Culvert Length	$L = \frac{99}{1000} ft$
	Manning's Roughness Bend Loss Coefficient	n = 0.012 $k_{\rm b} = 0$
	Exit Loss Coefficient	
	Tailwater Surface Elevation	^
	Max Allowable Channel Velocity	$Y_{t, Elevation} = ft$ V = 5 ft/s
	Wax Allowable Charmer velocity	V – <u> </u>
Calculated R	esults:	
	Culvert Cross Sectional Area Available	A = 4.91 ft ²
	Culvert Normal Depth	$Y_{n} = 1.08$ ft
	Culvert Critical Depth	$Y_c = 1.73$ ft
	Froude Number	Fr = 2.46 Supercritical!
	Entrance Loss Coefficient	k _e = 0.50
	Friction Loss Coefficient	k _f = 0.77
	Sum of All Loss Coefficients	$k_{s} = 2.27$ ft
Headwater:		
	Inlet Control Headwater	HW ₁ = 2.76 ft
	Outlet Control Headwater	$HW_{O} = N/A$ ft
	Design Headwater Elevation	HW = 7355.76 ft
	Headwater/Diameter OR Headwater/Rise Ratio	HW/D = 1.10
		Inaccurate for Low Flow - Backwater Calculations Required
Dutlet Protect		
	Flow/(Diameter ^ 2.5)	$Q/D^{2.5} = 2.61$ ft ^{0.5} /s
	Tailwater Surface Height	$Y_t = 1.00$ ft
	Tailwater/Diameter	Yt/D = 0.40
	Expansion Factor	$1/(2^{*}\tan(\Theta)) = 4.91$
	Flow Area at Max Channel Velocity	$A_t = 5.16$ ft ²
	Width of Equivalent Conduit for Multiple Barrels	W _{eq} =ft
	Length of Riprap Protection	$L_p = 14$ ft
	Width of Riprap Protection at Downstream End	T = 6 ft
	Adjusted Diameter for Supercritical Flow	Da = <u>1.79</u> ft
	Minimum Theoretical Riprap Size	$d_{50}$ min = 6 in
	Nominal Riprap Size	d ₅₀ nominal= 6 in
	MHFD Riprap Type	Type = $VL$



DRIVEWAY CULVERT SIZING TABLE							
Lot	100 yr. Flow (cfs)	Culvert size (in)	Anticipated Driveway Location	Notes			
1	N/A	N/A	N/A	N/A			
2	41	36	East side of lot	Cross Swale A3A			
3	41	36	East side of lot	Cross Swale A3A			
4	<10	18	East side of lot	Cross roadside ditch			
5	<10	18	South side of lot	Cross roadside ditch			
6	<10	18	South side of lot	Cross roadside ditch			
7	N/A	N/A	N/A	N/A			
8	N/A	N/A	N/A	N/A			
9	<10	18	South side of lot	Corss roadside ditch			
10	<10	18	South side of lot	Cross roadside ditch			
11	N/A	N/A	N/A	N/A			
12	N/A	N/A	N/A	N/A			
13	<10	18	South side of lot	Cross roadside ditch			
14	<10	18	East side of lot	Cross roadside ditch			
15	<10	18	East side of lot	Cross roadside ditch			
16	<10	18	South side of lot	Cross roadside ditch			
17	<10	18	South side of lot	Cross roadside ditch			
18	<10	18	East side of lot	Cross roadside ditch			
19	<10	18	East side of lot	N/A			
20	<10	18	West side of lot	N/A			
21	<10	18	West side of lot	N/A			
22	<10	18	West side of lot	N/A			
23	20	24	West side of lot	Cross roadside ditch			
24	20	24	West side of lot	Cross roadside ditch			
25	27	30	East side of lot	Cross roadside ditch			
26	<10	18	North side of lot	Cross roadside ditch			
27	<10	18	North side of lot	Cross roadside ditch			
28	<10	18	West side of lot	Cross roadside ditch			
29	<10	18	North side of lot	Cross roadside ditch			
30	<10	18	North side of lot	Cross roadside ditch			
31	<10	18	North side of lot	Cross roadside ditch			

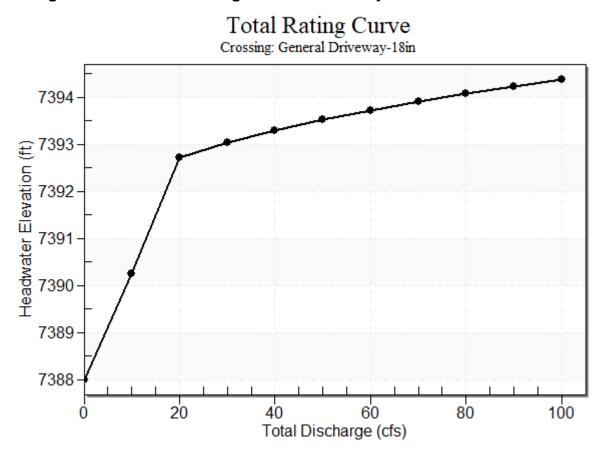
Remove the driveway summary table and supporting culvert analysis from the early grading application (EGP215). This will be reviewed approved with the Final Drainage Report associated with the future final plat application. See comment on page 13.

NOTE: The roadway culvert analysis needs to remain with this early grading FDR since these are proposed to be installed at this time.

Lot	100 yr. Flow (cfs)	Culvert size (in)	Anticipated Driveway Location	Notes
32	<10	18	North side of lot	Cross roadside ditch
33	<10	18	North side of lot	Cross roadside ditch
34	<10	18	North side of lot	Cross roadside ditch
35	<10	18	West side of lot	Cross roadside ditch
36	<10	18	West side of lot	Cross roadside ditch
37	<10	18	West side of lot	Cross roadside ditch
38	<10	18	West side of lot	Cross roadside ditch

Generic Driveway Culvert Sizing Table*

Culvert Diameter (in)	Allowable Flow (cfs)
18	10
24	20
30	30
36	50
42	70


*See Generic Driveway Culvert Sizing calculations for Hw/D and culvert slope assumptions for each culvert size.

### **Crossing Discharge Data**

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 10 cfs Maximum Flow: 100 cfs

	•	-		-
Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 18in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7390.26	10.00	10.00	0.00	1
7392.71	20.00	17.08	2.91	10
7393.05	30.00	17.78	12.20	5
7393.30	40.00	18.30	21.69	5
7393.52	50.00	18.73	31.22	4
7393.72	60.00	19.12	40.84	4
7393.90	70.00	19.48	50.50	4
7394.07	80.00	19.79	60.15	3
7394.23	90.00	20.09	69.87	3
7394.39	100.00	20.37	79.62	3
7392.50	16.61	16.61	0.00	Overtopping

# Table 28 - Summary of Culvert Flows at Crossing: General Driveway-18in



Rating Curve Plot for Crossing: General Driveway-18in

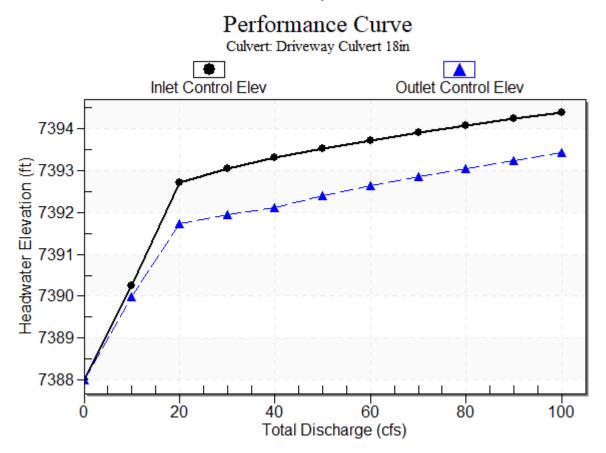
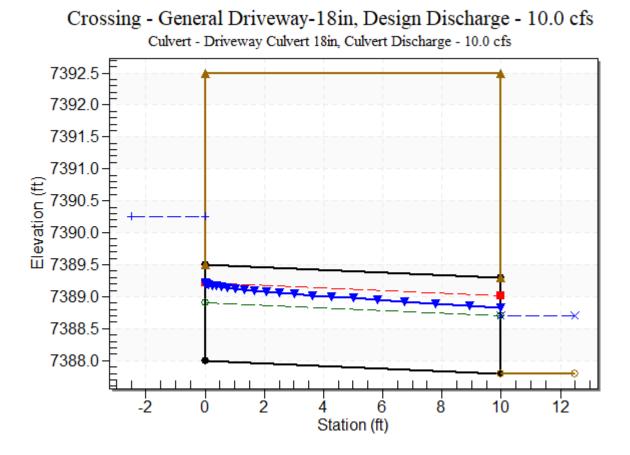

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7390.26	2.256	1.995	5-S2n	0.900	1.219	1.033	0.907	7.709	3.039
20.00	17.08	7392.71	4.713	3.730	7-M2c	1.500	1.382	1.382	1.176	10.031	3.614
30.00	17.78	7393.05	5.046	3.943	7-M2t	1.500	1.308	1.369	1.369	10.507	4.000
40.00	18.30	7393.30	5.300	4.124	4-FFf	1.500	1.492	1.500	1.525	10.354	4.298
50.00	18.73	7393.52	5.520	4.393	4-FFf	1.500	1.500	1.500	1.658	10.601	4.544
60.00	19.12	7393.72	5.720	4.633	4-FFf	1.500	1.500	1.500	1.776	10.821	4.756
70.00	19.48	7393.90	5.905	4.853	4-FFf	1.500	1.500	1.500	1.882	11.021	4.943
80.00	19.79	7394.07	6.071	5.051	4-FFf	1.500	1.500	1.500	1.978	11.197	5.111
90.00	20.09	7394.23	6.233	5.240	4-FFf	1.500	1.500	1.500	2.067	11.367	5.264
100.00	20.37	7394.39	6.388	5.419	4-FFf	1.500	1.500	1.500	2.151	11.526	5.404

 Table 29 - Culvert Summary Table: Driveway Culvert 18in


#### *****

Straight Culvert

Inlet Elevation (invert): 7388.00 ft, Outlet Elevation (invert): 7387.80 ft Culvert Length: 10.00 ft, Culvert Slope: 0.0200



Culvert Performance Curve Plot: Driveway Culvert 18in



#### Water Surface Profile Plot for Culvert: Driveway Culvert 18in

#### Site Data - Driveway Culvert 18in

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7388.00 ft Outlet Station: 10.00 ft Outlet Elevation: 7387.80 ft Number of Barrels: 1

#### Culvert Data Summary - Driveway Culvert 18in

Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

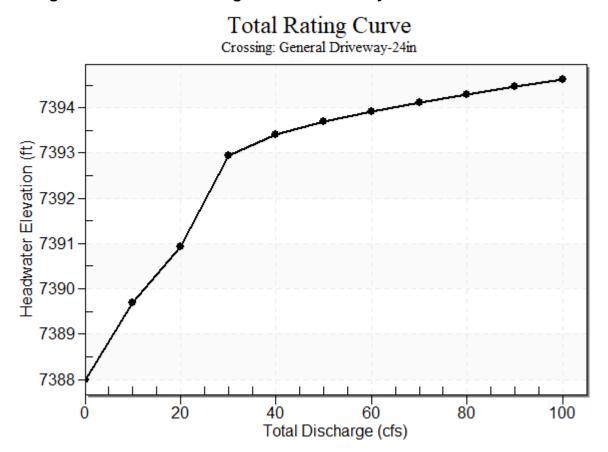
 Table 30 - Downstream Channel Rating Curve (Crossing: General Driveway-18in)

### Tailwater Channel Data - General Driveway-18in

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0400 Channel Invert Elevation: 7387.80 ft

### Roadway Data for Crossing: General Driveway-18in

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 10.00 ft Crest Elevation: 7392.50 ft Roadway Surface: Paved Roadway Top Width: 10.00 ft


### **Crossing Discharge Data**

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 20 cfs

Maximum Flow: 100 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 24in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7389.69	10.00	10.00	0.00	1
7390.92	20.00	20.00	0.00	1
7392.93	30.00	30.00	0.00	1
7393.41	40.00	31.91	8.05	5
7393.68	50.00	32.92	17.07	5
7393.91	60.00	33.75	26.20	4
7394.11	70.00	34.48	35.49	4
7394.30	80.00	35.10	44.87	4
7394.47	90.00	35.68	54.30	4
7394.63	100.00	36.19	63.77	3
7393.00	30.27	30.27	0.00	Overtopping

# Table 31 - Summary of Culvert Flows at Crossing: General Driveway-24in



Rating Curve Plot for Crossing: General Driveway-24in

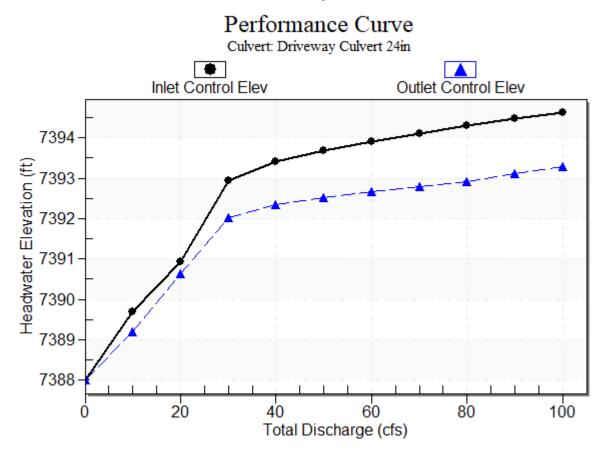

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.69	1.686	1.187	1-S2n	0.767	1.131	0.915	0.907	7.140	3.039
20.00	20.00	7390.92	2.924	2.625	5-S2n	1.144	1.606	1.370	1.176	8.719	3.614
30.00	30.00	7392.93	4.934	4.030	5-S2n	1.535	1.862	1.724	1.369	10.421	4.000
40.00	31.91	7393.41	5.415	4.345	5-S2n	1.631	1.889	1.786	1.525	10.776	4.298
50.00	32.92	7393.68	5.682	4.518	5-S2n	1.692	1.900	1.822	1.658	10.961	4.544
60.00	33.75	7393.91	5.907	4.665	5-S2n	1.758	1.909	1.858	1.776	11.095	4.756
70.00	34.48	7394.11	6.111	4.794	3-M2t	2.000	1.874	1.882	1.882	11.244	4.943
80.00	35.10	7394.30	6.298	4.926	7-M2t	2.000	1.840	1.978	1.978	11.195	5.111
90.00	35.68	7394.47	6.474	5.119	4-FFf	2.000	1.817	2.000	2.067	11.357	5.264
100.00	36.19	7394.63	6.632	5.297	4-FFf	2.000	1.778	2.000	2.151	11.520	5.404

 Table 32 - Culvert Summary Table: Driveway Culvert 24in

#### *****

Straight Culvert

Inlet Elevation (invert): 7388.00 ft, Outlet Elevation (invert): 7387.80 ft Culvert Length: 10.00 ft, Culvert Slope: 0.0200



### Culvert Performance Curve Plot: Driveway Culvert 24in



#### Water Surface Profile Plot for Culvert: Driveway Culvert 24in

#### Site Data - Driveway Culvert 24in

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7388.00 ft Outlet Station: 10.00 ft Outlet Elevation: 7387.80 ft Number of Barrels: 1

#### Culvert Data Summary - Driveway Culvert 24in

Barrel Shape: Circular Barrel Diameter: 2.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

 Table 33 - Downstream Channel Rating Curve (Crossing: General Driveway-24in)

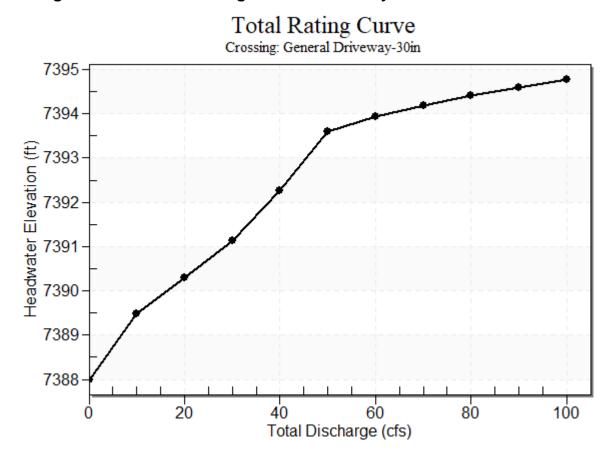
### Tailwater Channel Data - General Driveway-24in

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0400 Channel Invert Elevation: 7387.80 ft

#### Roadway Data for Crossing: General Driveway-24in

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 10.00 ft Crest Elevation: 7393.00 ft Roadway Surface: Paved Roadway Top Width: 10.00 ft

### **Crossing Discharge Data**


Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs

Design Flow: 30 cfs

Maximum Flow: 100 cfs

	-	-		-
Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 30in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7389.49	10.00	10.00	0.00	1
7390.30	20.00	20.00	0.00	1
7391.14	30.00	30.00	0.00	1
7392.27	40.00	40.00	0.00	1
7393.60	50.00	49.05	0.92	10
7393.94	60.00	51.10	8.87	5
7394.19	70.00	52.55	17.44	5
7394.41	80.00	53.76	26.20	4
7394.60	90.00	54.84	35.13	4
7394.78	100.00	55.83	44.15	4
7393.50	48.44	48.44	0.00	Overtopping

# Table 34 - Summary of Culvert Flows at Crossing: General Driveway-30in



Rating Curve Plot for Crossing: General Driveway-30in

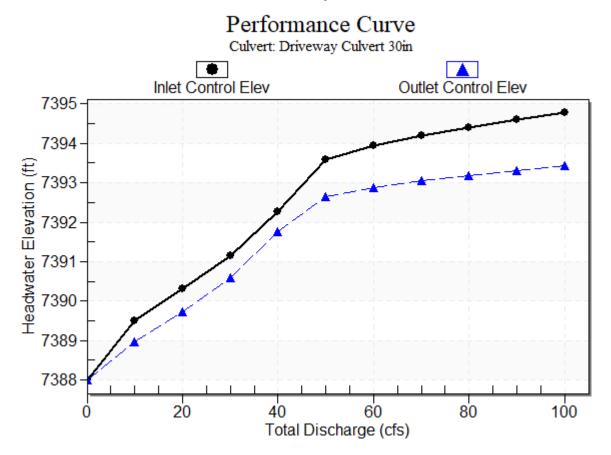

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.49	1.489	0.959	1-S2n	0.702	1.056	0.843	0.907	6.874	3.039
20.00	20.00	7390.30	2.301	1.728	1-S2n	1.011	1.518	1.253	1.176	8.121	3.614
30.00	30.00	7391.14	3.142	2.590	5-S2n	1.274	1.867	1.585	1.369	9.144	4.000
40.00	40.00	7392.27	4.268	3.756	5-S2n	1.524	2.129	1.866	1.525	10.180	4.298
50.00	49.05	7393.60	5.599	4.662	5-S2n	1.761	2.287	2.082	1.658	11.232	4.544
60.00	51.10	7393.94	5.942	4.885	5-S2n	1.819	2.313	2.126	1.776	11.488	4.756
70.00	52.55	7394.19	6.192	5.047	5-S2n	1.861	2.330	2.156	1.882	11.674	4.943
80.00	53.76	7394.41	6.407	5.186	5-S2n	1.899	2.342	2.182	1.978	11.829	5.111
90.00	54.84	7394.60	6.603	5.311	5-S2n	1.933	2.353	2.204	2.067	11.974	5.264
100.00	55.83	7394.78	6.785	5.428	5-S2n	1.966	2.361	2.224	2.151	12.103	5.404

 Table 35 - Culvert Summary Table: Driveway Culvert 30in

#### *****

Straight Culvert

Inlet Elevation (invert): 7388.00 ft, Outlet Elevation (invert): 7387.80 ft Culvert Length: 10.00 ft, Culvert Slope: 0.0200



## Culvert Performance Curve Plot: Driveway Culvert 30in



#### Water Surface Profile Plot for Culvert: Driveway Culvert 30in

#### Site Data - Driveway Culvert 30in

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7388.00 ft Outlet Station: 10.00 ft Outlet Elevation: 7387.80 ft Number of Barrels: 1

#### Culvert Data Summary - Driveway Culvert 30in

Barrel Shape: Circular Barrel Diameter: 2.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

# Table 36 - Downstream Channel Rating Curve (Crossing: General Driveway-30in)

### Tailwater Channel Data - General Driveway-30in

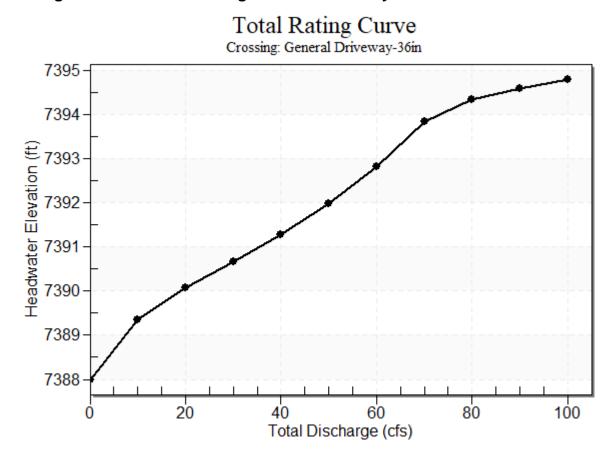
Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0400 Channel Invert Elevation: 7387.80 ft

#### Roadway Data for Crossing: General Driveway-30in

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 10.00 ft Crest Elevation: 7393.50 ft Roadway Surface: Paved Roadway Top Width: 10.00 ft

## **Crossing Discharge Data**

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow


Minimum Flow: 0 cfs

Design Flow: 50 cfs

Maximum Flow: 100 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 36in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7389.36	10.00	10.00	0.00	1
7390.07	20.00	20.00	0.00	1
7390.67	30.00	30.00	0.00	1
7391.27	40.00	40.00	0.00	1
7391.97	50.00	50.00	0.00	1
7392.82	60.00	60.00	0.00	1
7393.85	70.00	70.00	0.00	1
7394.33	80.00	74.20	5.79	6
7394.59	90.00	76.31	13.68	5
7394.81	100.00	78.06	21.90	4
7394.00	71.34	71.34	0.00	Overtopping

# Table 37 - Summary of Culvert Flows at Crossing: General Driveway-36in



Rating Curve Plot for Crossing: General Driveway-36in

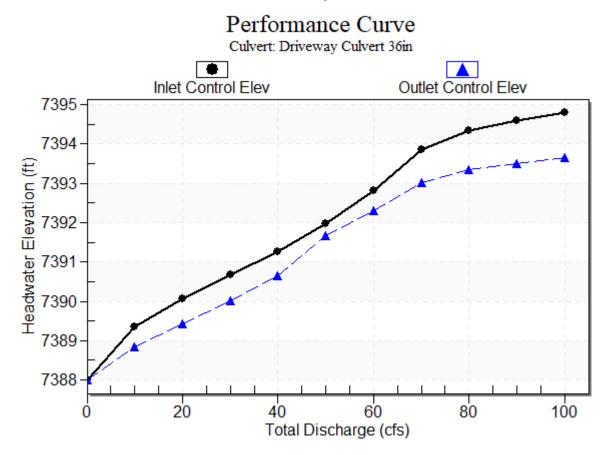
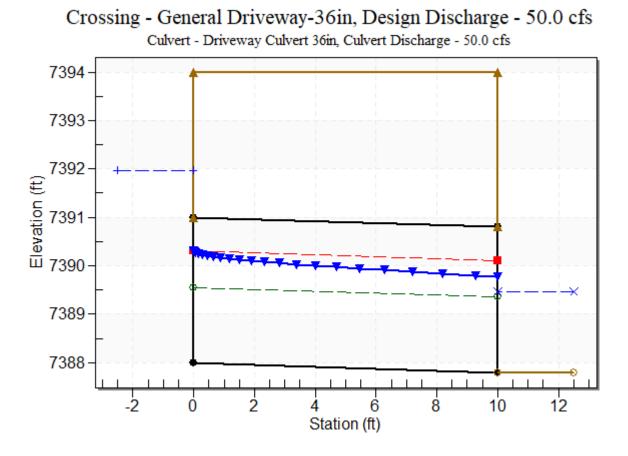

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.36	1.359	0.849	1-S2n	0.658	1.000	0.792	0.907	6.697	3.039
20.00	20.00	7390.07	2.073	1.430	1-S2n	0.937	1.435	1.172	1.176	7.820	3.614
30.00	30.00	7390.67	2.671	2.014	1-S2n	1.161	1.774	1.478	1.369	8.653	4.000
40.00	40.00	7391.27	3.272	2.641	5-S2n	1.362	2.059	1.743	1.525	9.388	4.298
50.00	50.00	7391.97	3.971	3.672	5-S2n	1.551	2.301	1.981	1.658	10.100	4.544
60.00	60.00	7392.82	4.823	4.309	5-S2n	1.735	2.501	2.193	1.776	10.837	4.756
70.00	70.00	7393.85	5.849	5.023	5-S2n	1.922	2.657	2.382	1.882	11.631	4.943
80.00	74.20	7394.33	6.333	5.345	5-S2n	2.002	2.710	2.454	1.978	11.989	5.111
90.00	76.31	7394.59	6.588	5.512	5-S2n	2.044	2.733	2.489	2.067	12.176	5.264
100.00	78.06	7394.81	6.805	5.653	5-S2n	2.078	2.751	2.517	2.151	12.332	5.404

 Table 38 - Culvert Summary Table: Driveway Culvert 36in


#### *****

Straight Culvert

Inlet Elevation (invert): 7388.00 ft, Outlet Elevation (invert): 7387.80 ft Culvert Length: 10.00 ft, Culvert Slope: 0.0200



## Culvert Performance Curve Plot: Driveway Culvert 36in



#### Water Surface Profile Plot for Culvert: Driveway Culvert 36in

#### Site Data - Driveway Culvert 36in

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7388.00 ft Outlet Station: 10.00 ft Outlet Elevation: 7387.80 ft Number of Barrels: 1

#### Culvert Data Summary - Driveway Culvert 36in

Barrel Shape: Circular Barrel Diameter: 3.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

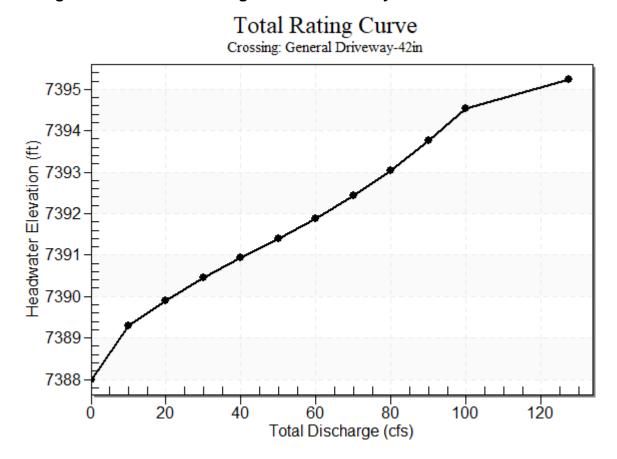
Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

# Table 39 - Downstream Channel Rating Curve (Crossing: General Driveway-36in)

### Tailwater Channel Data - General Driveway-36in

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0400 Channel Invert Elevation: 7387.80 ft

#### Roadway Data for Crossing: General Driveway-36in


Roadway Profile Shape: Constant Roadway Elevation Crest Length: 10.00 ft Crest Elevation: 7394.00 ft Roadway Surface: Paved Roadway Top Width: 10.00 ft

## **Crossing Discharge Data**

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 70 cfs Maximum Flow: 100 cfs

	-	-		•
Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 42in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7389.29	10.00	10.00	0.00	1
7389.90	20.00	20.00	0.00	1
7390.45	30.00	30.00	0.00	1
7390.93	40.00	40.00	0.00	1
7391.39	50.00	50.00	0.00	1
7391.88	60.00	60.00	0.00	1
7392.42	70.00	70.00	0.00	1
7393.05	80.00	80.00	0.00	1
7393.76	90.00	90.00	0.00	1
7394.55	100.00	99.71	0.28	7
7394.50	99.18	99.18	0.00	Overtopping

# Table 40 - Summary of Culvert Flows at Crossing: General Driveway-42in



Rating Curve Plot for Crossing: General Driveway-42in

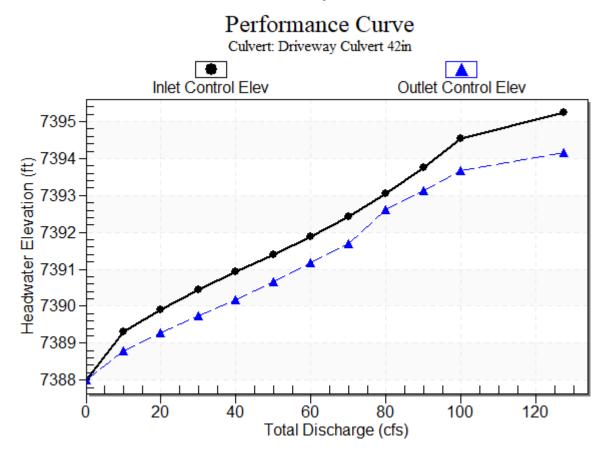
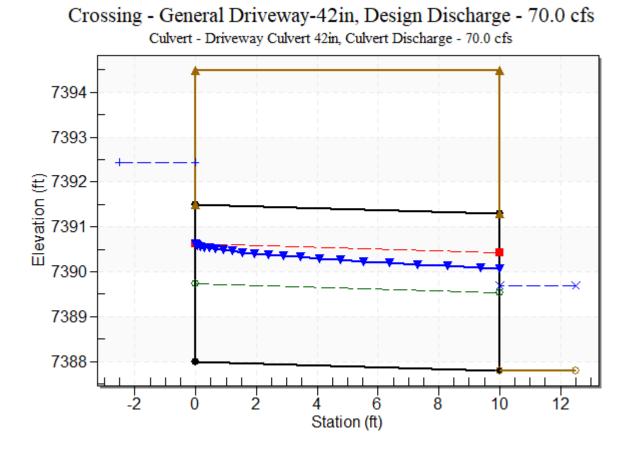

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.29	1.292	0.783	1-S2n	0.628	0.957	0.754	0.907	6.564	3.039
20.00	20.00	7389.90	1.896	1.274	1-S2n	0.885	1.369	1.111	1.176	7.620	3.614
30.00	30.00	7390.45	2.448	1.727	1-S2n	1.089	1.692	1.397	1.369	8.370	4.000
40.00	40.00	7390.93	2.927	2.185	1-S2n	1.268	1.967	1.646	1.525	8.996	4.298
50.00	50.00	7391.39	3.390	2.663	1-S2n	1.431	2.210	1.870	1.658	9.561	4.544
60.00	60.00	7391.88	3.878	3.168	5-S2n	1.584	2.427	2.075	1.776	10.097	4.756
70.00	70.00	7392.42	4.424	3.703	5-S2n	1.731	2.622	2.265	1.882	10.628	4.943
80.00	80.00	7393.05	5.047	4.620	5-S2n	1.875	2.794	2.441	1.978	11.167	5.111
90.00	90.00	7393.76	5.761	5.139	5-S2n	2.017	2.943	2.603	2.067	11.729	5.264
100.00	99.71	7394.55	6.545	5.682	5-S2n	2.156	3.065	2.747	2.151	12.309	5.404

 Table 41 - Culvert Summary Table: Driveway Culvert 42in


#### *****

Straight Culvert

Inlet Elevation (invert): 7388.00 ft, Outlet Elevation (invert): 7387.80 ft Culvert Length: 10.00 ft, Culvert Slope: 0.0200



## Culvert Performance Curve Plot: Driveway Culvert 42in



#### Water Surface Profile Plot for Culvert: Driveway Culvert 42in

#### Site Data - Driveway Culvert 42in

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7388.00 ft Outlet Station: 10.00 ft Outlet Elevation: 7387.80 ft Number of Barrels: 1

#### Culvert Data Summary - Driveway Culvert 42in

Barrel Shape: Circular Barrel Diameter: 3.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

	ī — — — — —				
Flow (cfs)	Water Surface	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
. ,	Elev (ft)	,		. ,	
	- ( )				
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

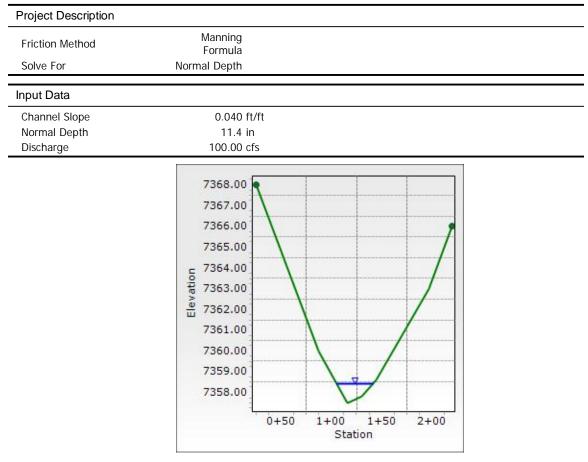
 Table 42 - Downstream Channel Rating Curve (Crossing: General Driveway-42in)

### Tailwater Channel Data - General Driveway-42in

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0400 Channel Invert Elevation: 7387.80 ft

#### Roadway Data for Crossing: General Driveway-42in

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 10.00 ft Crest Elevation: 7394.50 ft Roadway Surface: Paved Roadway Top Width: 10.00 ft


	CHANNEL FLC	WS SUMMARY		
Reach/Channel ID	Contributing Basins	Tributary Area (ac)	Flows (cfs)	Headcutting
EX_Reach G1	G1+G2A	43.39	100.0	
EX_Reach H1-A	H1+H4	40.76	106.6	Х
Prop_Reach H1-A	H1+H4	40.76	106.6	
EX_Reach H1-B	H1+29% of H4	21.59	54.3	Х
Prop_Reach H1-B	H1+29% of H4	21.59	54.3	
EX_Reach H2	H2	16.00	57.1	
EX_Reach H3	H3A+H7B	18.77	57.8	Х
Prop_Reach H3	H3A+H7B	18.77	57.8	Х
Prop_Reach H3B	H3B+25% of I1	4.40	12.0	
EX_Reach H4	23% of H4	6.21	16.9	Х
EX_Reach H5B	H5B	10.48	29.0	Х
Prop_Reach I1	H3B+I1	9.50	25.7	
Prop_Swale A3A	A2B+A3A	17.20	46.1	
Prop_WQ Channel	A2B+A3A+G2B	20.00	55.7	

## Worksheet for EX_Reach G1

Project Description				_
Friction Method	Manning			_
	Formula Normal Depth			
				_
Input Data				_
Channel Slope Discharge	0.040 ft/ft 100.00 cfs			
	Se	ction Definitions		
Statio (ft)	n		Elevation (ft)	
		0+25		7,367.99
		0+87		7,360.00
		1+16		7,357.46
		1+30		7,357.78
		1+45		7,358.60
		1+97		7,363.04
		2+20		7,365.99
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+25, 7,367.99)		(2+20, 7,365.99)		0.040
Options				-
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			_
Results				-
Normal Depth	11.4 in			_
Roughness Coefficient	0.040			
Elevation	7,358.41 ft			
Elevation Range	7,357.5 to 7,368.0 ft			
Flow Area	20.1 ft ²			
Wetted Perimeter	36.5 ft			
Hydraulic Radius	6.6 in			
Top Width	36.48 ft			
Normal Depth	11.4 in			
Critical Depth	12.3 in			
Critical Slope	0.028 ft/ft			
Velocity	4.98 ft/s			
Velocity Head	0.39 ft			
Specific Energy	1.34 ft			
hannels_Flowmaster.fm8		ems, Inc. Haestad Methods Solution Center		FlowMas [10.03.00.0
2/9/2021		on Company Drive Suite 200 W , CT 06795 USA +1-203-755-1666		Page 1 c

Results		
Froude Number	1.185	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	11.4 in	
Critical Depth	12.3 in	
Channel Slope	0.040 ft/ft	
Critical Slope	0.028 ft/ft	

### Worksheet for EX_Reach G1



#### Cross Section for EX_Reach G1

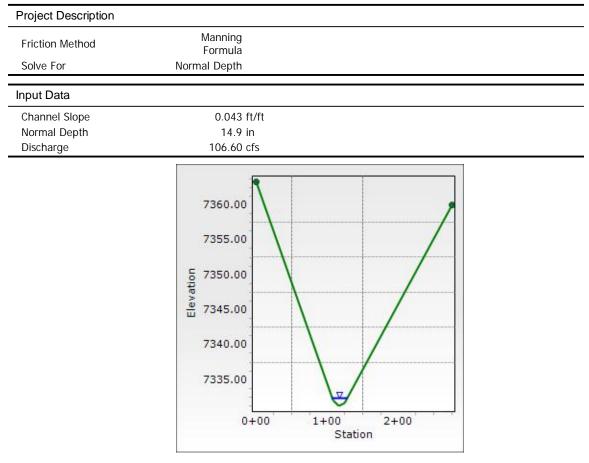
Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description				_
Friction Method	Manning			_
	Formula			
Solve For	Normal Depth			_
Input Data				_
Channel Slope	0.043 ft/ft			
Discharge	106.60 cfs			_
	Se	ection Definitions		
Statior (ft)	ı		Elevation (ft)	
		0+00		7,363.3
		1+08		7,331.9
		1+16		7,331.1
		1+24		7,331.6
		2+75		7,360.0
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,363.31)		(2+75, 7,360.00)		0.04
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			
Method Open Channel Weighting	Method Pavlovskii's			
Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's			=
Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 14.9 in			=
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ²			=
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in 0.025 ft/ft			=
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 7avlovskii's Method 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in 0.025 ft/ft 6.40 ft/s			=
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 7avlovskii's Method 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in 0.025 ft/ft 6.40 ft/s 0.64 ft			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy	Method Pavlovskii's Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in 0.025 ft/ft 6.40 ft/s 0.64 ft 1.88 ft			=
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 7avlovskii's Method 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in 0.025 ft/ft 6.40 ft/s 0.64 ft			-

#### Worksheet for EX_Reach H1-A

Channels_Flowmaster.fm8 12/9/2021


27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	14.9 in	
Critical Depth	16.8 in	
Channel Slope	0.043 ft/ft	
Critical Slope	0.025 ft/ft	

### Worksheet for EX_Reach H1-A

Channels_Flowmaster.fm8 12/9/2021

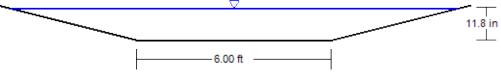
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666



#### Cross Section for EX_Reach H1-A

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Project Description		
Friction Method	Manning	
FIICTION METHOD	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.036	
Channel Slope	0.031 ft/ft	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	6.00 ft	
Discharge	55.70 cfs	
Results		
Normal Depth	11.8 in	
Flow Area	9.8 ft ²	
Wetted Perimeter	14.1 ft	
Hydraulic Radius	8.3 in	
Top Width	13.86 ft	
Critical Depth	13.0 in	
Critical Slope	0.021 ft/ft	
Velocity	5.71 ft/s	
Velocity Head	0.51 ft	
Specific Energy	1.49 ft	
Froude Number	1.199	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	11.8 in	
Critical Depth	13.0 in	
Channel Slope	0.031 ft/ft	
Critical Slope	0.021 ft/ft	

## Worksheet for Prop_WQ Channel

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Friction Method	Manning Formula	
Solve For	Normal Depth	_
Input Data		
Roughness Coefficient	0.036	
Channel Slope	0.031 ft/ft	
Normal Depth	11.8 in	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	6.00 ft	
Discharge	55.70 cfs	

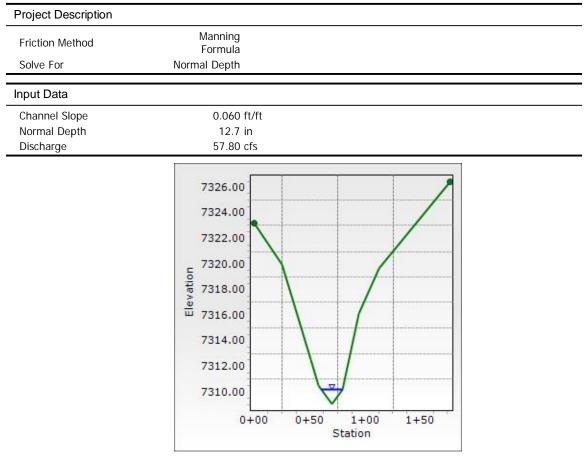
## Cross Section for Prop_WQ Channel



V:1 L H:1

Channels_Flowmaster.fm8 12/9/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

### Worksheet for EX_Reach H3


	WULKSHE			_
Project Description				
Friction Method	Manning			
	Formula			
Solve For	Normal Depth			_
Input Data				_
Channel Slope	0.060 ft/ft			
Discharge	57.80 cfs			_
	Se	ection Definitions		
Statio	n		Elevation	
(ft)			(ft)	
		0+00		7,323.1
		0+25		7,319.9
		0+51		7,312.5
		0+58		7,310.4
		0+70		7,309.1
		0+79		7,310.1
		0+94		7,316.1
		1+12 1+76		7,319.7 7,326.4
		1170		7,020.1
	Roughne	ess Segment Definit	ions	
Start Station		Ending Station	Roughness Coefficien	t
		·· -· · ·		
(0+00, 7,323.16)		(1+76, 7,326	.41)	0.04
(0+00, 7,323.16) Options		(1+76, 7,326	.41)	0.04
Options Current Roughness Weighted	Pavlovskii's Method	(1+76, 7,326	.41)	0.04 
Options Current Roughness Weighted Method Open Channel Weighting	Method Pavlovskii's	(1+76, 7,326	.41)	0.04 
Options Current Roughness Weighted Method Open Channel Weighting Method	Method Pavlovskii's Method	(1+76, 7,326	.41)	0.04 
Options Current Roughness Weighted Method Open Channel Weighting	Method Pavlovskii's	(1+76, 7,326	.41)	0.04 
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's	(1+76, 7,326	.41)	0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method	(1+76, 7,326	.41)	0.04 
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 12.7 in	(1+76, 7,326	.41)	0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 12.7 in 0.040	(1+76, 7,326		0.04 
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 12.7 in	(1+76, 7,326		0.04 
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 12.7 in 0.040 7,310.17 ft	(1+76, 7,326	.41)	0.04 
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 12.7 in 0.040 7,310.17 ft 7,309.1 to	(1+76, 7,326	.41)	0.04 
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Results Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 12.7 in 0.040 7,310.17 ft 7,309.1 to 7,326.4 ft	(1+76, 7,326	.41)	
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 12.7 in 0.040 7,310.17 ft 7,309.1 to 7,326.4 ft 9.8 ft ²	(1+76, 7,326	.41)	
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 12.7 in 0.040 7,310.17 ft 7,309.1 to 7,326.4 ft 9.8 ft ² 18.6 ft	(1+76, 7,326	.41)	
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 12.7 in 0.040 7,310.17 ft 7,309.1 to 7,326.4 ft 9.8 ft ² 18.6 ft 6.3 in	(1+76, 7,326	.41)	
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 12.7 in 0.040 7,310.17 ft 7,309.1 to 7,326.4 ft 9.8 ft ² 18.6 ft 6.3 in 18.50 ft	(1+76, 7,326		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 12.7 in 0.040 7,310.17 ft 7,309.1 to 7,326.4 ft 9.8 ft ² 18.6 ft 6.3 in 18.50 ft 12.7 in	(1+76, 7,326		

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Results		
Velocity Head	0.54 ft	
Specific Energy	1.60 ft	
Froude Number	1.436	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	12.7 in	
Critical Depth	14.6 in	
Channel Slope	0.060 ft/ft	
Critical Slope	0.027 ft/ft	

### Worksheet for EX_Reach H3



### Cross Section for EX_Reach H3

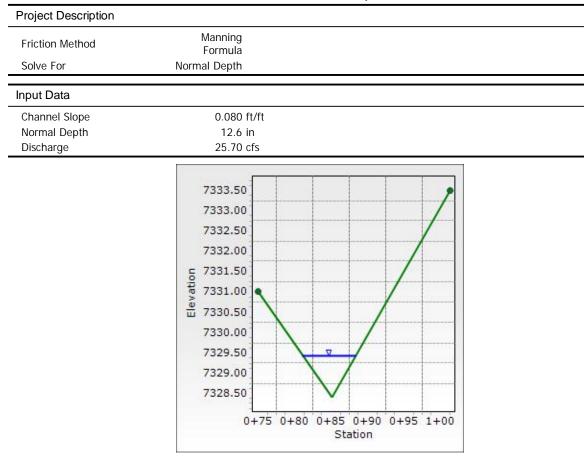
Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

## Worksheet for Prop_Reach I1

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Innut Data				_
Input Data				_
Channel Slope Discharge	0.080 ft/ft 25.70 cfs			
	Se	ction Definitions		_
Static	on		Elevation	
(ft)			(ft)	
		0+75		7,330.96
		0+85 1+01		7,328.37 7,333.54
		1101		7,555.54
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+75, 7,330.96)		(1+01, 7,333.54)	J. J	0.040
				_
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				_
Normal Depth	12.6 in			_
Roughness Coefficient	0.040			
Roughness Coefficient Elevation	7,329.42 ft			
-	7,329.42 ft 7,328.4 to			
Elevation	7,329.42 ft			
Elevation Elevation Range	7,329.42 ft 7,328.4 to 7,333.5 ft			
Elevation Elevation Range Flow Area	7,329.42 ft 7,328.4 to 7,333.5 ft 3.9 ft ²			
Elevation Elevation Range Flow Area Wetted Perimeter	7,329.42 ft 7,328.4 to 7,333.5 ft 3.9 ft ² 7.7 ft 6.0 in 7.37 ft			
Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	7,329.42 ft 7,328.4 to 7,333.5 ft 3.9 ft ² 7.7 ft 6.0 in 7.37 ft 12.6 in			
Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	7,329.42 ft 7,328.4 to 7,333.5 ft 3.9 ft ² 7.7 ft 6.0 in 7.37 ft 12.6 in 15.3 in			
Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	7,329.42 ft 7,328.4 to 7,333.5 ft 3.9 ft ² 7.7 ft 6.0 in 7.37 ft 12.6 in 15.3 in 0.029 ft/ft			
Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	7,329.42 ft 7,328.4 to 7,333.5 ft 3.9 ft ² 7.7 ft 6.0 in 7.37 ft 12.6 in 15.3 in 0.029 ft/ft 6.65 ft/s			
Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	7,329.42 ft 7,328.4 to 7,333.5 ft 3.9 ft ² 7.7 ft 6.0 in 7.37 ft 12.6 in 15.3 in 0.029 ft/ft 6.65 ft/s 0.69 ft			
Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy	7,329.42 ft 7,328.4 to 7,333.5 ft 3.9 ft ² 7.7 ft 6.0 in 7.37 ft 12.6 in 15.3 in 0.029 ft/ft 6.65 ft/s 0.69 ft 1.74 ft			
Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	7,329.42 ft 7,328.4 to 7,333.5 ft 3.9 ft ² 7.7 ft 6.0 in 7.37 ft 12.6 in 15.3 in 0.029 ft/ft 6.65 ft/s 0.69 ft			

GVF Input Data


Channels_Flowmaster.fm8 12/9/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	12.6 in	
Critical Depth	15.3 in	
Channel Slope	0.080 ft/ft	
Critical Slope	0.029 ft/ft	

## Worksheet for Prop_Reach I1

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666



#### Cross Section for Prop_Reach I1

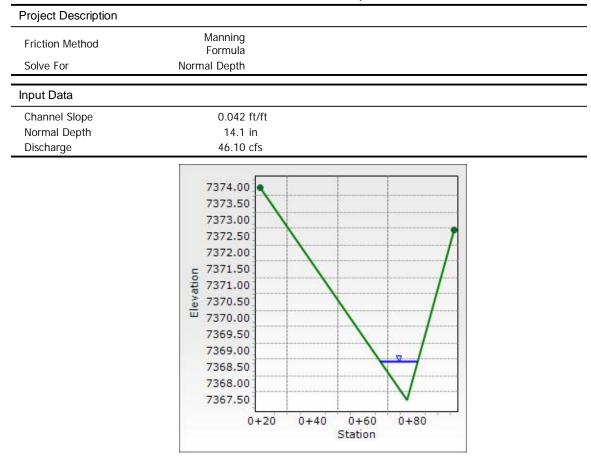
Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description				-
Friction Method	Manning Formula			_
Solve For	Normal Depth			_
Input Data				_
Channel Slope Discharge	0.042 ft/ft 46.10 cfs			
	Se	ection Definitions		-
Statio			Elevation	
(ft)		0+19	(ft)	7,373.9
		0+78 0+97		7,367.4 7,372.7
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+19, 7,373.99)		(0+97, 7,372.70)	J. J	0.04
Options				-
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				-
Normal Depth	14.1 in			_
Roughness Coefficient	0.040			
Elevation Elevation Range	7,368.66 ft 7,367.5 to 7,374.0 ft			
Flow Area	8.7 ft ²			
Wetted Perimeter	15.1 ft			
Hydraulic Radius	6.9 in			
Top Width	14.84 ft			
Normal Depth	14.1 in			
Critical Depth	15.2 in			
Critical Slope	0.028 ft/ft			
Velocity	5.29 ft/s			
Velocity Head	0.43 ft			
Specific Energy	1.61 ft			
Froude Number	1.216			

#### Worksheet for Prop_Swale A3A

Channels_Flowmaster.fm8 12/9/2021


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	14.1 in	
Critical Depth	15.2 in	
Channel Slope	0.042 ft/ft	
Critical Slope	0.028 ft/ft	

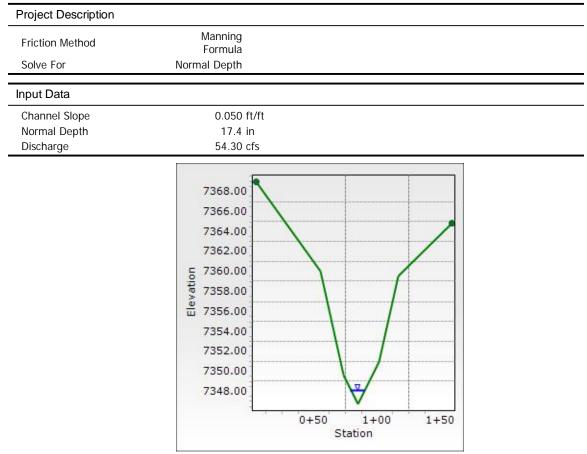
## Worksheet for Prop_Swale A3A

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666



#### Cross Section for Prop_Swale A3A


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

	Workshe	et for EX_Reach H1	-B	
Project Description				_
Friction Method	Manning			_
Solve For	Formula Normal Depth			
Solve Fol	Normal Depth			_
Input Data				
Channel Slope	0.050 ft/ft			
Discharge	54.30 cfs			_
	Se	ection Definitions		
Static	n		Elevation	
(ft)			(ft)	
		0+04 0+55		7,369.03 7,359.99
		0+55		
		0+73		7,349.57
				7,346.68
		1+01		7,351.01
		1+17		7,359.46
		1+59		7,364.84
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	t
(0+04, 7,369.03)		(1+59, 7,364.84)		0.040
				_
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth	17.4 in			
Roughness Coefficient	0.040			
Elevation	7,348.13 ft			
	7,346.7 to			
Elevation Range	7,369.0 ft			
Flow Area	8.3 ft ²			
Wetted Perimeter	11.7 ft			
Hydraulic Radius	8.4 in			
Top Width	11.38 ft			
Normal Depth	17.4 in			
Critical Depth	19.7 in			
Critical Slope	0.026 ft/ft			
Velocity	6.57 ft/s			
Velocity Head	0.67 ft			
Specific Energy	2.12 ft			
hannels_Flowmaster.fm8	Bentley Sys	tems, Inc. Haestad Methods Solution Center		FlowMast [10.03.00.0
2/9/2021		non Company Drive Suite 200 W n, CT 06795 USA +1-203-755-1666		Page 1 of

#### Worksheet for EX_Reach H1-B

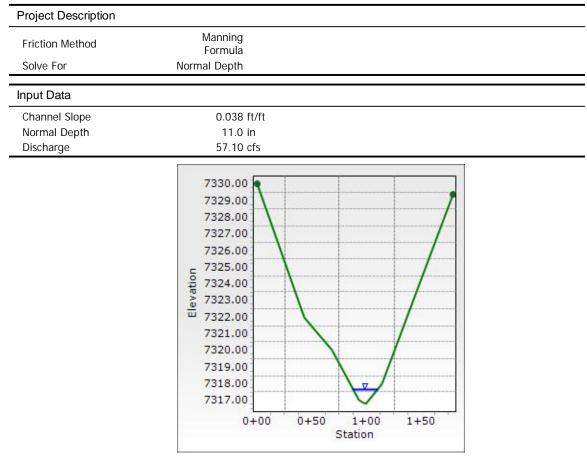
Results		
Froude Number	1.359	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	17.4 in	
Critical Depth	19.7 in	
Channel Slope	0.050 ft/ft	
Critical Slope	0.026 ft/ft	

### Worksheet for EX_Reach H1-B



#### Cross Section for EX_Reach H1-B

Channels_Flowmaster.fm8 12/9/2021


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

## Worksheet for EX_Reach H2

Project Description				
Friction Method	Manning			_
Solve For	Formula Normal Depth			
Input Data	·			-
Channel Slope	0.038 ft/ft			-
Discharge	57.10 cfs			_
	Se	ction Definitions		
Statio (ft)			Elevation (ft)	
(11)		0+00		7,329.99
		0+43		7,321.99
		0+68		7,319.99
		0+93		7,316.97
		0+99		7,316.75
		1+14		7,316.75 7,317.99
		1+14 1+79		7,317.99
		1+79		1,329.30
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,329.99)		(1+79, 7,329.38)		0.040
				-
Options				
Current Roughness Weighted	Pavlovskii's			-
Current Roughness Weighted Method	Method			-
Current Roughness Weighted Method Open Channel Weighting Method	Method Pavlovskii's Method			_
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's			-
Current Roughness Weighted Method Open Channel Weighting Method	Method Pavlovskii's Method			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 11.0 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ²			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in 0.028 ft/ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in 0.028 ft/ft 4.71 ft/s			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in 0.028 ft/ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in 0.028 ft/ft 4.71 ft/s 0.34 ft 1.26 ft	ame Inc. Haestad Mathodo Solution		- - -
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in 0.028 ft/ft 4.71 ft/s 0.34 ft 1.26 ft	ems, Inc. Haestad Methods Solution Center		- - FlowMas 10.03.00.0

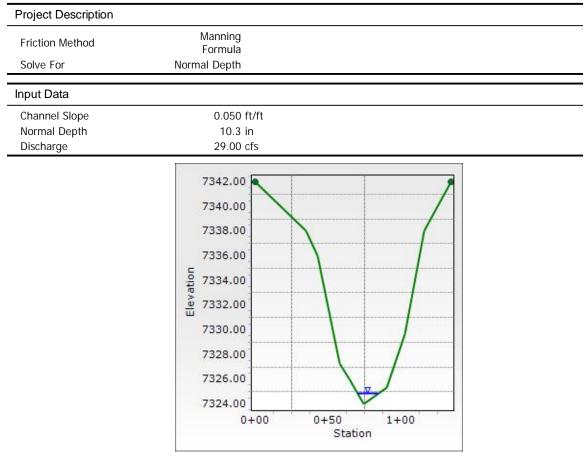
Results		
Froude Number	1.144	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	11.0 in	
Critical Depth	11.7 in	
Channel Slope	0.038 ft/ft	
Critical Slope	0.028 ft/ft	

### Worksheet for EX_Reach H2



#### Cross Section for EX_Reach H2

Channels_Flowmaster.fm8 12/9/2021


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

## Worksheet for EX_Reach H5B

Project Description				
Friction Method	Manning			_
	Formula			
Solve For	Normal Depth			_
Input Data				
Channel Slope	0.050 ft/ft			
Discharge	29.00 cfs			_
	Sec	ction Definitions		
Statio (ft)	n		Elevation (ft)	
(1)		0+00	(1)	7,342.0
		0+35		7,337.9
		0+42		7,335.9
		0+58		7,327.3
		0+64		7,325.9
		0+74		7,323.9
		0+90		7,325.3
		1+02		7,329.7
		1+16		7,337.9
		1+34		7,341.9
				7,011.7
	Roughnes	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,342.00)		(1+34, 7,341.97)		0.04
(0+00, 7,342.00) Options		(1+34, 7,341.97)		0.04
Options Current Roughness Weighted	Pavlovskii's	(1+34, 7,341.97)		0.04 
Options Current Roughness Weighted Method	Method	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted		(1+34, 7,341.97)		0.04 
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's	(1+34, 7,341.97)		0.04 
Options Current Roughness Weighted Method Open Channel Weighting Method	Method Pavlovskii's Method	(1+34, 7,341.97)		0.04 
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 10.3 in	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Results Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in 14.29 ft	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in 14.29 ft 10.3 in	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in 14.29 ft	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in 14.29 ft 10.3 in 11.4 in 0.030 ft/ft			
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in 14.29 ft 10.3 in 11.4 in 0.030 ft/ft	(1+34, 7,341.97)		0.04

Results		
Velocity	4.71 ft/s	
Velocity Head	0.34 ft	
Specific Energy	1.21 ft	
Froude Number	1.265	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	10.3 in	
Critical Depth	11.4 in	
Channel Slope	0.050 ft/ft	
Critical Slope	0.030 ft/ft	

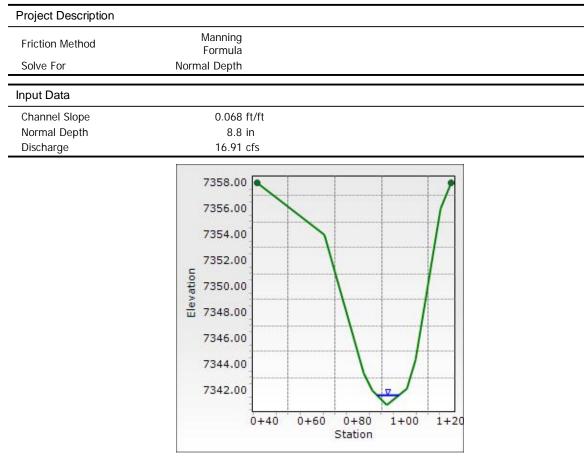
### Worksheet for EX_Reach H5B



#### Cross Section for EX_Reach H5B

### Worksheet for EX_Reach H4

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Channel Slope	0.068 ft/f	t		
Discharge	16.91 cfs			
	S	ection Definitions		
	Station (ft)		Elevation (ft)	
		0+36		7,357


(11)		(11)	
	0+36		7,357.99
	0+66		7,353.99
	0+82		7,343.34
	0+86		7,341.99
	0+92		7,340.90
	1+01		7,342.10
	1+05		7,344.37
	1+16		7,355.99
	1+20		7,357.99

#### Roughness Segment Definitions

Start Station	Start Station Ending Station		Roughness Coefficient	
(0+36, 7,357.99)	,357.99) (1+20, 7,357.99)			0.040
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth	8.8 in			
Roughness Coefficient	0.040			
Elevation	7,341.64 ft			
Elevation Range	7,340.9 to 7,358.0 ft			
Flow Area	3.4 ft ²			
Wetted Perimeter	9.4 ft			
Hydraulic Radius	4.4 in			
Top Width	9.29 ft			
Normal Depth	8.8 in			
Critical Depth	10.2 in			
Critical Slope	0.032 ft/ft			
Velocity	4.94 ft/s			
Channels_Flowmaster.fm8 12/9/2021	Bentley Systems, Inc. Haest Center 27 Siemon Company Dr Watertown, CT 06795 USA	ive Suite 200 W	[1	FlowMaste 0.03.00.03 Page 1 of 2

Results		
Velocity Head	0.38 ft	
Specific Energy	1.12 ft	
Froude Number	1.434	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	8.8 in	
Critical Depth	10.2 in	
Channel Slope	0.068 ft/ft	
Critical Slope	0.032 ft/ft	

### Worksheet for EX_Reach H4



#### Cross Section for EX_Reach H4

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

## Worksheet for PROP_Reach H3B

Project Description				
Friction Method	Manning			_
	Formula Normal Depth			
	Normal Doptil			-
Input Data				_
Channel Slope Discharge	0.042 ft/ft 12.00 cfs			
	Se	ction Definitions		-
Statio	n		Elevation	
(ft)		o. ( o	(ft)	
		0+60 0+66		7,374.12 7,372.11
		0+76		7,372.1
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+60, 7,374.12)		(0+76, 7,374.63)		0.040
				_
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				-
Normal Depth	10.7 in			_
Roughness Coefficient	0.040			
Elevation	7,373.00 ft			
Elevation Range	7,372.1 to 7,374.6 ft			
	7,574.011			
Flow Area	2.8 ft ²			
Flow Area Wetted Perimeter	2.8 ft ² 6.5 ft			
Wetted Perimeter	6.5 ft			
Wetted Perimeter Hydraulic Radius	6.5 ft 5.1 in			
Wetted Perimeter Hydraulic Radius Top Width	6.5 ft 5.1 in 6.24 ft			
Wetted Perimeter Hydraulic Radius Top Width Normal Depth	6.5 ft 5.1 in 6.24 ft 10.7 in			
Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	6.5 ft 5.1 in 6.24 ft 10.7 in 11.3 in 0.032 ft/ft			
Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	6.5 ft 5.1 in 6.24 ft 10.7 in 11.3 in			
Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	6.5 ft 5.1 in 6.24 ft 10.7 in 11.3 in 0.032 ft/ft 4.32 ft/s			
Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	6.5 ft 5.1 in 6.24 ft 10.7 in 11.3 in 0.032 ft/ft 4.32 ft/s 0.29 ft			

GVF Input Data

Channels_Flowmaster.fm8 12/9/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	10.7 in	
Critical Depth	11.3 in	
Channel Slope	0.042 ft/ft	
Critical Slope	0.032 ft/ft	

### Worksheet for PROP_Reach H3B

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

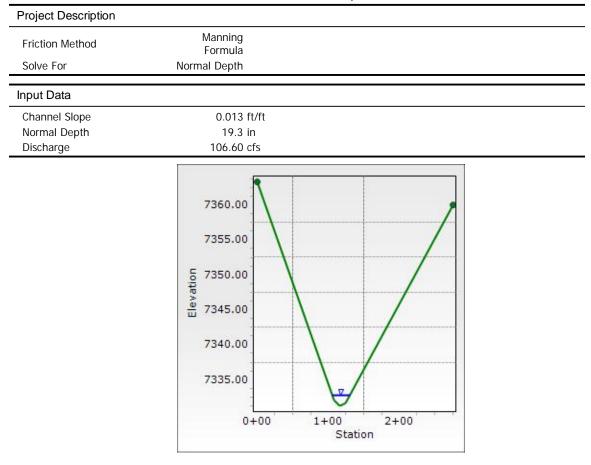


#### Cross Section for PROP_Reach H3B

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description				
Friction Method	Manning			_
Solve For	Formula Normal Depth			
Input Data	· · · · · · · · · · · · · · · · · · ·			-
Channel Slope	0.013 ft/ft			_
Discharge	106.60 cfs			_
	Se	ection Definitions		
Static (ft)	n		Elevation (ft)	
()		0+00		7,363.3
		1+08		7,331.9
		1+16		7,331.1
		1+24		7,331.6
		2+75		7,360.0
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,363.31)		(2+75, 7,360.00)		0.04
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				_
	10.0.1			_
Normal Depth	19.3 in			
Roughness Coefficient	0.040			
Elevation	7,332.76 ft			
	7,331.2 to			
Elevation Range	7,363.3 ft			
Elevation Range Flow Area				
	7,363.3 ft			
Flow Area	7,363.3 ft 25.2 ft ²			
Flow Area Wetted Perimeter	7,363.3 ft 25.2 ft ² 25.3 ft			
Flow Area Wetted Perimeter Hydraulic Radius	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in 16.8 in 0.025 ft/ft			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in 16.8 in 0.025 ft/ft 4.23 ft/s			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in 16.8 in 0.025 ft/ft 4.23 ft/s 0.28 ft			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in 16.8 in 0.025 ft/ft 4.23 ft/s 0.28 ft 1.89 ft			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in 16.8 in 0.025 ft/ft 4.23 ft/s 0.28 ft			

#### Worksheet for Prop_Reach H1-A


Channels_Flowmaster.fm8 12/9/2021 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	19.3 in	
Critical Depth	16.8 in	
Channel Slope	0.013 ft/ft	
Critical Slope	0.025 ft/ft	

### Worksheet for Prop_Reach H1-A

Channels_Flowmaster.fm8 12/9/2021

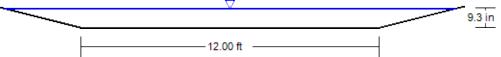
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666



#### Cross Section for Prop_Reach H1-A

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.040	
Channel Slope	0.032 ft/ft	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	12.00 ft	
Discharge	57.80 cfs	
Results		
Normal Depth	9.3 in	
Flow Area	11.7 ft ²	
Wetted Perimeter	18.4 ft	
Hydraulic Radius	7.7 in	
Top Width	18.22 ft	
Critical Depth	9.8 in	
Critical Slope	0.027 ft/ft	
Velocity	4.92 ft/s	
Velocity Head	0.38 ft	
Specific Energy	1.15 ft	
Froude Number	1.081	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	9.3 in	
Critical Depth	9.8 in	
Channel Slope	0.032 ft/ft	
Critical Slope	0.027 ft/ft	

## Worksheet for Prop_Reach H3

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

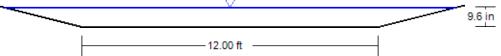
Friction Method	Manning Formula	
Solve For	Normal Depth	
nput Data		
Roughness Coefficient	0.040	
Channel Slope	0.032 ft/ft	
Normal Depth	9.3 in	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	12.00 ft	
Discharge	57.80 cfs	

#### Cross Section for Prop_Reach H3



V:1 L H:1

Channels_Flowmaster.fm8 12/9/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Project Description			
	Manning		
Friction Method	Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient	0.040		
Channel Slope	0.025 ft/ft		
Left Side Slope	4.000 H:V		
Right Side Slope	4.000 H:V		
Bottom Width	12.00 ft		
Discharge	54.30 cfs		
Results			
Normal Depth	9.6 in		
Flow Area	12.2 ft ²		
Wetted Perimeter	18.6 ft		
Hydraulic Radius	7.9 in		
Top Width	18.43 ft		
Critical Depth	9.4 in		
Critical Slope	0.027 ft/ft		
Velocity	4.44 ft/s		
Velocity Head	0.31 ft		
Specific Energy	1.11 ft		
Froude Number	0.960		
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth	0.0 in		
Length	0.0 ft		
Number Of Steps	0		
GVF Output Data			
Upstream Depth	0.0 in		
Profile Description	N/A		
Profile Headloss	0.00 ft		
Downstream Velocity	0.00 ft/s		
Upstream Velocity	0.00 ft/s		
Normal Depth	9.6 in		
Critical Depth	9.4 in		
Channel Slope	0.025 ft/ft		
Critical Slope	0.027 ft/ft		

## Worksheet for Prop_Reach H1-B

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.040	
Channel Slope	0.025 ft/ft	
Normal Depth	9.6 in	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	12.00 ft	
Discharge	54.30 cfs	

### Cross Section for Prop_Reach H1-B



V:1 L H:1

Channels_Flowmaster.fm8 12/10/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Temporary Sediment Basin Calculations

	MHFD SC	-7 Fact Sheet				
Temporary Sediment	Basin Storage	Additional Storage				Proposed Pond Volume @ TSB
Basin ID	Volume (cf/acre)	Voume (cf/acre)	Tributary Area (ac)	TSB Volume (cf)	TSB Volume (ac-ft)	Location (ac-ft)
WQ1	3600	500	21.4	87740	2.01	0.39
1	3600	500	27.0	110700	2.54	3.22
2	3600	500	16.0	65600	1.51 \	3.22
4	3600	500	25.9	106190	2.44	4.76
H5B	3600	500	10.3	42230	0.97	N/A
					Ì	

Revise. Required volume should not be less than the provided volume or N/A

You may want to create another table or footnote identifying H5B is a permanent sediment basin



# **Specifications**

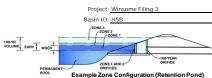
A variety of test methods are utilized to determine performance and conformance values for Rolled Erosion Control Products (RECPs). Information within this document is presented to provide conformance values and recommended design values. Test results obtained for the Excel PP5-12 Turf Reinforcement Mat (TRM) and general design values are presented in Tables 1-4. For specific information detailing testing protocols, results and application of design values, refer to document number WE_EXCEL_PERF_GEN.

Table 1 - Bench Scale Testing / NTPEP			
Test Method	Condition	Result	
	2 in per hour	14.53	
ASTM D7101 Bench Scale Rainfall and Rainsplash Test	4 in per hour	5.59	
	6 in per hour	4.82	
ASTM D7207 Bench Scale Shear Resistance Test	3.0 psf (145 PA)	0.5 in (12 mm)	
ASTM D7322 Bench Scale Vegetation Establishment Test	Top Soil, Fescue, 21 Day Incubation 661		
NTPEP Report Number	ECP-2016-03-	008	

Design Value	Unvegetated	Vegetated
Typical RUSLE Cover Factor (C Factor)**	0.03	N/A
Maximum Slope Gradient (RUSLE)	1H:1V	N/A
Max Allowable Velocity (0.5 in (12mm) soil loss)***	9.0 ft/s (2.7 m/s)	15.0 ft/s (4.6 m/s)
Max Allowable Shear Stress (0.5 in (12mm) soil loss)***	2.8 psf (134 PA)	12.0 psf (575 PA)
CFveg/CFTRM	N/A	0.26

#### Table 2 - Texas Transportation Institute (TTI) Results

Class	Test Condition	Result
А	< 3H:1 Clay Slope Test	N/A
В	< 3H:1 Sand Slope Test	N/A
С	> 3H:1 Clay Slope Test	N/A
D	> 3H:1 Sand Slope Test	N/A
E	2 psf Partially Vegetated Channel Test	Approved
F	4 psf Partially Vegetated Channel Test	Approved
G	6 psf Partially Vegetated Channel Test	Approved
Н	8 psf Partially Vegetated Channel Test	Approved


Table 4 - HEC-15 Resistance to Flow Values
--------------------------------------------

Design Value	Unvegetated
Manning's n @ Tau _{lower} (0.7 psf (34 PA))	0.027
Manning's n @ Tau _{mid} (1.4 psf (67 PA))	0.027
Manning's n @ Tau _{upper} (2.8 psf (134 PA))	0.027

Recommended Design Values are based on results of standardized industry full-scale testing and may not be applicable for all field conditions. For most accurate computation of field performance, consult Excel Erosion Design (EED) at www.westernexcelsior.com.

The information contained herein may represent product index data, performance ratings, bench scale testing or other material utility quantifications. Each representation may have unique utility and limitations. Every effort has been made to ensure accuracy, however, no warranty is claimed and no liability shall be assumed by Western Excelsior Corporation (WEC) or its affiliates regarding the completeness, accuracy or fitness of these values for any particular application or interpretation. While testing methods are provided for reference, values shown may be derived from interpolation or adjustment to be representative of intended use. For further information, please feel free to contact WEC.

#### DETENTION BASIN STAGE-STORAGE TABLE BUILDER



Watershed Information

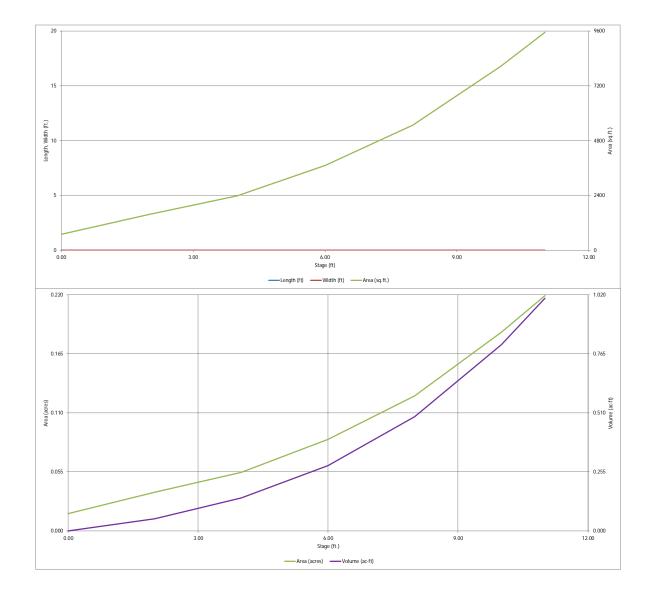
atersned information		
Selected BMP Type =	EDB	
Watershed Area =	10.48	acres
Watershed Length =	792	ft
Watershed Length to Centroid =	396	ft
Watershed Slope =	0.060	ft/ft
Watershed Imperviousness =	5.70%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

## After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblorddo orban nyard	gruphinocouu	
Water Quality Capture Volume (WQCV) =	0.036	acre-feet
Excess Urban Runoff Volume (EURV) =	0.048	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.178	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.381	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.573	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.840	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.050	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	1.344	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	1.882	acre-feet
Approximate 2-yr Detention Volume =	0.037	acre-feet
Approximate 5-yr Detention Volume =	0.116	acre-feet
Approximate 10-yr Detention Volume =	0.170	acre-feet
Approximate 25-yr Detention Volume =	0.202	acre-feet
Approximate 50-yr Detention Volume =	0.204	acre-feet
Approximate 100-yr Detention Volume =	0.300	acre-feet

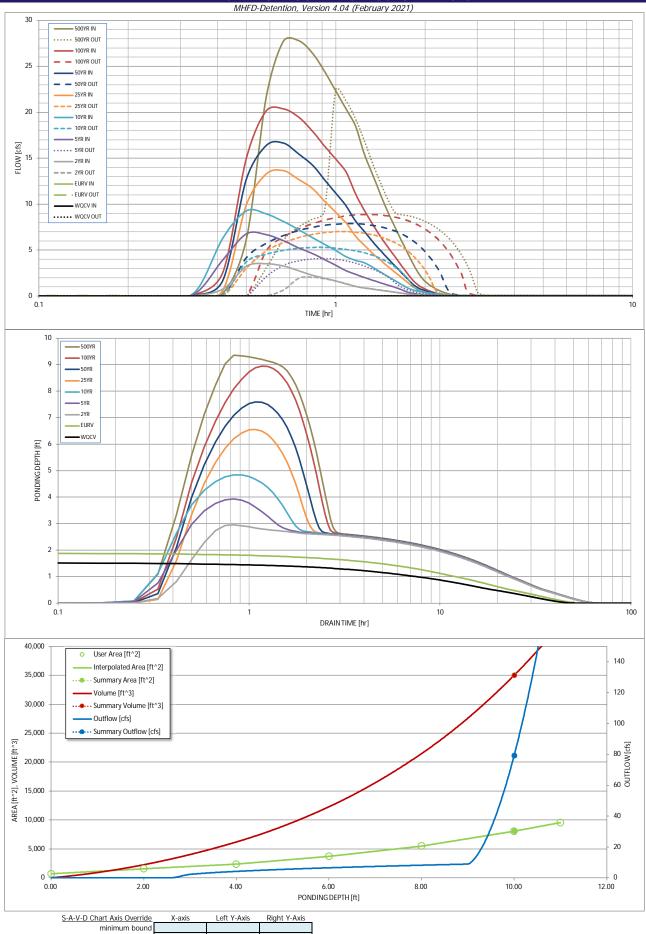
Define	Zones	and	Rasin	Geometry
Denne	ZUHES	anu	Dasin	Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.036	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.012	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.252	acre-feet
Total Detention Basin Volume =	0.300	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total} ) =	user	ft
Depth of Trickle Channel (H _{TC} ) =	user	ft
Slope of Trickle Channel (S _{TC} ) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	


Initial Surcharge Area (A _{ISV} ) =	user	ft ²
Surcharge Volume Length ( $L_{ISV}$ ) =	user	ft
Surcharge Volume Width (W _{ISV} ) =	user	ft
Depth of Basin Floor $(H_{FLOOR})$ =	user	ft
Length of Basin Floor $(L_{FLOOR})$ =	user	ft
Width of Basin Floor ( $W_{FLOOR}$ ) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor ( $V_{FLOOR}$ ) =	user	ft ³
Depth of Main Basin (H _{MAIN} ) =	user	ft
Length of Main Basin (L _{MAIN} ) =	user	ft
Width of Main Basin ( $W_{MAIN}$ ) =		ft
Area of Main Basin ( $A_{MAIN}$ ) =	user	ft ²
Volume of Main Basin (V _{MAIN} ) =	user	ft ³

Volume of Mai Basin (V_{MAIN} Calculated Total Basin Volume (V_{total}) = User acre-feet

n Pond)	Depth Increment = Stage - Storage Description	Stage (ft)	ft Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft 2)	Optional Override Area (ft ² )	Area (acre)	Volume (ft 3)	Volume (ac-ft)
	Top of Micropool		0.00				700	0.016		
	7318		2.00				1,563	0.036	2,263	0.052
	7320		4.00				2,371	0.054	6,197	0.142
	7322		6.00				3,710	0.085	12,278	0.282
	7324 7326		8.00 10.00				5,477 8,059	0.126	21,465 35,001	0.493
	7320		11.00				9,549	0.219	43,805	1.006
							.,			
ptional User Overrides										
acre-feet										
acre-feet										
1.19 inches										
1.50 inches										
1.75 inches										
2.00 inches 2.25 inches										
2.52 inches										
inches										
									<u> </u>	
								-		


#### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)



	Orifice Plate o <mark>r Ri</mark>							
	EDB Fact Sheet pro							
	emptying time of ap 2-inch gravel in from							
	cleaned out frequen							
	gravel pack will nee							
	for use as a perman							
	letention basin for t							
	nave been stabilized	and the gravel pa	ack and accumula	ated sediment hav	e been removed	l.		
PERMANENT	- 11		Zone 3 (100-year)	6.21	0.252	Weir&Pipe (Restrict)	I	
POOL Example Zo	one Configuration (Re	tention Pond)		Total (all zones)	0.300		1	
User Input: Orifice at Underdrain Outlet (typic	ally used to drain WQC	V in a Filtration BMP)	<u>L</u>			-	Calculated Parameter	ers for Underdrain
Underdrain Orifice Invert Dep		•	the filtration media s	surface)		rdrain Orifice Area =		ft ²
Underdrain Orifice Diamete	er = N/A	inches			Underdrai	in Orifice Centroid =	N/A	feet
User Input: Orifice Plate with one or more ori	fices or Elliptical Slot W	eir (typically used to	drain WOCV and/or	FURV in a sediment	ation BMP)		Calculated Parameter	ors for Plate
Invert of Lowest Orific			bottom at Stage = 0			fice Area per Row =		ft ²
Depth at top of Zone using Orifice Pla	te = 1.52	ft (relative to basin	bottom at Stage = 0	D ft)	EI	liptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing	-	inches				tical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Ro	w = N/A	inches				Elliptical Slot Area =	N/A	ft ²
User Input: Stage and Total Area of Each Orit	ice Row (numbered fro	om lowest to highest)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroic	l (ft) 0.00	0.51	1.01					
Orifice Area (sq. inc	hes) 0.28	0.31	0.31					
		<u> </u>	<u> </u>			<u> </u>		· · ·
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroic Orifice Area (sq. inc								
	103)							
User Input: Vertical Orifice (Circular or Rectan	ngular)						Calculated Parameter	ers for Vertical Orific
Explain this worksheet in	the narrativ	ve The					Not Selected	Not Selected
				bottom at Stage = 0	-	ertical Orifice Area =	N/A N/A	N/A N/A
outlet structure does not				bottom at Stage = 0	JTI) Vertica	al Orifice Centroid =	N/A	IN/A
does not match the GEC	hlone or To	h						
	plans of re	emp	~					
Sediment Basin Calculat			Trapezoidal W	/eir (and No Outlet F	ipe)			ers for Overflow We
						te Upper Edge, H	Zone 3 Weir	Not Selected
Sediment Basin Calculat report.	ion in pg 27	9 of this	lative to basin b	'eir (and No Outlet F ottom at Stage = 0 ft)	Height of Gra	te Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir 2.60	Not Selected N/A
Sediment Basin Calculat	ion in pg 27	9 of this	lative to basin b	ottom at Stage = 0 ft)	Height of Gra	te Upper Edge, H _t = Weir Slope Length = 00-yr Orifice Area =	Zone 3 Weir	Not Selected
Sediment Basin Calculat report. Also, the MHFD SC-7 fac	ion in pg 27 ct sheet not	'9 of this ed the rise	lative to basin b	ottom at Stage = 0 ft)	Height of Gra Overflow \ Grate Open Area / 1	Weir Slope Length =	Zone 3 Weir 2.60 0.59	Not Selected N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed	ion in pg 27 ct sheet not following th	'9 of this ed the rise ne FSD wit	lative to basin b	ottom at Stage = 0 ft)	Height of Gra Overflow \ Grate Open Area / 1 Overflow Grate Open	Weir Slope Length = 00-yr Orifice Area =	Zone 3 Weir 2.60 0.59 0.70	Not Selected N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 far pipe should be designed an emptying time of appr	tion in pg 27 ct sheet not following th roximately 7	79 of this ed the rise he FSD wit 72 hrs. The	lative to basin b	ottom at Stage = 0 ft)	Height of Gra Overflow \ Grate Open Area / 1 Overflow Grate Open	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris =	Zone 3 Weir 2.60 0.59 0.70 1.23	Not Selected N/A N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma	ion in pg 27 ct sheet not following th roximately 7 nent pond s	79 of this ed the rise he FSD wit 72 hrs. The	lative to basin b	ottom at Stage = 0 ft)	Height of Gra Overflow \ Grate Open Area / 1 Overflow Grate Open Overflow Grate Open	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62	Not Selected N/A N/A N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 far pipe should be designed an emptying time of appr	ion in pg 27 ct sheet not following th roximately 7 nent pond s	79 of this ed the rise he FSD wit 72 hrs. The	lative to basin b	ottom at Stage = 0 ft)	Height of Gra Overflow \ Grate Open Area / 1 Overflow Grate Open Overflow Grate Open	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62	Not Selected N/A N/A N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma	ion in pg 27 ct sheet not following th roximately 7 nent pond s	79 of this ed the rise he FSD wit 72 hrs. The	ar Orifice)	ottom at Stage = 0 ft)	Height of Gra Overflow \ Grate Open Area / 1 Overflow Grate Open Overflow Grate Open Overflow Grate Open	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle.	79 of this ed the rise ne FSD wit 72 hrs. The seem too	ar Orifice) stance below ba	ottom at Stage = 0 ft)	Height of Gra Overflow \ Grate Open Area / 1 Jverflow Grate Open Overflow Grate Open Overflow Grate Op Overflow Grate Op Overflow Grate Opth	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75	Not Selected N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle.	79 of this ed the rise ne FSD wit 72 hrs. The seem too	ar Orifice) stance below ba	ottom at Stage = 0 ft)	Height of Gra Overflow \ Grate Open Area / 1 Jverflow Grate Open Overflow Grate Open Overflow Grate Op Overflow Grate Op Overflow Grate Opth	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77	Not Selected N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle.	79 of this ed the rise ne FSD wit 72 hrs. The seem too	ar Orifice) stance below ba	ottom at Stage = 0 ft)	Height of Gra Overflow \ Grate Open Area / 1 Jverflow Grate Open Overflow Grate Open Overflow Grate Op Overflow Grate Op Overflow Grate Opth	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Could ripe Diamed Restrictor Plate Height Above Pipe Inver-	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle.	79 of this ed the rise ne FSD wit 72 hrs. The seem too	ar Orifice) stance below ba	ottom at Stage = 0 ft) ( usin bottom at Stage = Half-Cer	Height of Gra Overflow \ Srate Open Area / 1 Overflow Grate Open Overflow Grate Open O	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parameter</u>	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A ers for Spillway
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle.	79 of this ed the rise ne FSD wit 72 hrs. The seem too	ar Orifice) stance below ba	ottom at Stage = 0 ft) ( usin bottom at Stage = Half-Cer	Height of Gra Overflow \ Srate Open Area / 1 Overflow Grate Open Overflow Grate Open O	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Paramete</u> 0.46	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appl drain time for this perma fast to allow sediment to Restrictor Plate Height Above Pipe Inver- Restrictor Plate Height Above Pipe Inver- <u>User Input: Emergency Spillway (Rectangular</u> Spillway Invert Sta	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle. $r_{t} = \frac{10.00}{18.00}$ or Trapezoidal) $ge = \frac{9.00}{20.00}$	9 of this ed the rise he FSD wit 2 hrs. The seem too	ar Orifice) stance below ba	ottom at Stage = 0 ft) ( usin bottom at Stage = Half-Cer	Height of Gra Overflow \ Srate Open Area / 1 Overflow Grate Open Overflow Grate Open Overflow Grate Op Overflow Grate Op O ft) ( Outle Naal Angle of Restri Spillway I Stage at	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth=	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Paramete 0.46 10.46	Not Selected N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A ers for Spillway feet
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Course ripe planet Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Invert Sta Spillway Crest Leng	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle. $rt = \frac{10.00}{18.00}$ or Trapezoidal) $ge = \frac{9.00}{20.00}$ ss = 4.00	79 of this ed the rise he FSD wit 72 hrs. The seem too	ar Orifice) stance below ba	ottom at Stage = 0 ft) ( usin bottom at Stage = Half-Cer	Height of Gra Overflow \ Grate Open Area / 1 Overflow Grate Open Overflow Grate Open O	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parametr</u> 0.46 10.46 0.20	Not Selected N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A ers for Spillway feet feet
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Could ripe Danied Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Crest Leng Spillway End Slope	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle. $rt = \frac{10.00}{18.00}$ or Trapezoidal) $ge = \frac{9.00}{20.00}$ ss = 4.00	79 of this ed the rise ne FSD wit 72 hrs. The seem too	ar Orifice) stance below ba	ottom at Stage = 0 ft) ( usin bottom at Stage = Half-Cer	Height of Gra Overflow \ Grate Open Area / 1 Overflow Grate Open Overflow Grate Open O	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parametr</u> 0.46 10.46 0.20	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A ers for Spillway feet feet acres
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Could ripe Danied Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Crest Leng Spillway End Slope	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle. $r_{t} = \frac{10.00}{18.00}$ or Trapezoidal) $g_{e}^{e} = \frac{9.00}{20.00}$ $s_{e} = \frac{4.00}{1.00}$	79 of this ed the rise ne FSD wit 72 hrs. The seem too	ar Orifice) stance below ba inches	ottom at Stage = 0 ft) usin bottom at Stage = Half-Cet	Height of Gra Overflow V Srate Open Area / 1 Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Off) Off) Off) Off) Off) Spillway I Spillway I Spillway I Spillway I Spillway I Spillway I Spillway I Spillway I Spillway I Spillway I	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parametr</u> 0.46 10.46 0.20	Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A N/A ers for Spillway feet feet acres acres
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Curret ripe biamer Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Invert Sta Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway End Slope Freeboard above Max Water Surfac	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle. rt = 10.00 rt = 18.00 or Trapezoidal) ge = 9.00 th = 20.00 es = 4.00 re = 1.00 The user can over The user can over	79 of this ed the rise he FSD wit 72 hrs. The seem too ft (relative to basin feet H:V feet H:V feet	ar Orifice) stance below ba inches bottom at Stage = 0	ottom at Stage = 0 ft) usin bottom at Stage = Half-Cer D ft) <u>unoff volumes by en</u> 5 Year	Height of Gra Overflow V Srate Open Area / 1 Overflow Grate Open Overflow Grate Open Science Grate Overflow Ove	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth = Top of Freeboard =	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Paramete</u> 0.46 10.46 0.20 0.89 aphs table (Columns 50 Year	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A ers for Spillway feet feet acres acre-ft W through AF). 100 Year
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Outer rije Dance Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Extended Stope Freeboard above Max Water Surfact	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle. $r_{t} = \frac{10.00}{18.00}$ $r_{t} = \frac{10.00}{18.00}$ $r_{t} = \frac{10.00}{1.00}$ $r_{t} = \frac{10.00}{1.00}$ $r_{t} = \frac{10.00}{1.00}$ $r_{t} = \frac{10.00}{1.00}$	79 of this ed the rise he FSD wit 72 hrs. The seem too fiet H:V feet H:V feet	ar Orifice) stance below ba inches bottom at Stage = 0	ottom at Stage = 0 ft) usin bottom at Stage = Half-Cer 0 ft) <u>5 Year</u> 1.50	Height of Gra Overflow V Srate Open Area / 1 Overflow Grate Open Overflow Overflow Grate Open Overflow Gra	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = 0 the Inflow Hydrogr 25 Year 2.00	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Paramete 0.46 10.46 0.20 0.89 aphs table (Columns 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A N/A ers for Spillway feet feet acres acre-ft W through AF). 100 Year 2.52
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Outer ripe planed Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Invert Sta Spillway Crest Leng Spillway Crest Leng Spillway End Slope Freeboard above Max Water Surfac <u>Routed Hydrograph Results</u> Design Storm Return Peri One-Hour Rainfall Depth ( CUHP Runoff Volume (acre- Inflow Hydrograph Volume (acre-	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle. $r_{t} = \frac{10.00}{1100}$ $r_{t} = \frac{10.00}{100}$ $r_{t} = \frac{10.00}{100}$ $r_{t} = \frac{10.00}{100}$ $r_{t} = \frac{10.00}{100}$ $r_{t} = \frac{10.00}{100}$ $r_{t} = \frac{10.00}{100}$ $r_{t} = \frac{10.00}{100}$	79 of this ed the rise he FSD wit 72 hrs. The seem too	ar Orifice) stance below ba inches bottom at Stage = 0 Phydrographs and re 2 Year 1.19 0.178	ottom at Stage = 0 ft) ( ( ( ) ( ) ( ) ( ) ) ( ) ) ( ) ) ) )	Height of Gra Overflow V Srate Open Area / 1 Overflow Grate Open Overflow Overflow O	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>25 Year</u> <u>2.00</u> 0 <u>840</u> 0.840	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Paramete 0.46 10.46 0.20 0.89 aphs table (Columns 50 Year 2.25 1.050	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appl drain time for this perma fast to allow sediment to Curret ripe barrer Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway End Slope Freeboard above Max Water Surfact One-Hour Rainfall Depth (i CUHP Runoff Volume (acre- Inflow Hydrograph Volume (acre- Inflow Hydrograph Volume (acre- CUHP Predevelopment Peak 0 (cf	tion in pg 27 ct sheet not following th roximately 7 nent pond s settle. rt = 18.00 or Trapezoidal) ge = 9.00 th = 20.00 rs = 4.00 re = 1.00 rt = 1.00 rt = 0.00 rt = 0.00	79 of this ed the rise he FSD wit 72 hrs. The seem too ft (relative to basin feet H:V feet Tride the default CUH EURV N/A 0.048 N/A	ar Orifice) stance below ba mores inches bottom at Stage = 0	ottom at Stage = 0 ft) ( usin bottom at Stage = Half-Cer 0 ft) <u>5 Year</u> 1.50 0.381	Height of Gra Overflow V Srate Open Area / 1 Overflow Grate Open Overflow Grate Open Spillway I Spillway I Spillwa	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 100 of Freeboard = 25 Year 2,00 0,840	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parametr 0.46 10.46 0.20 0.89 aphs table (Columns 50 Year 2.25 1.050	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Outer ripe planed Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Invert Sta Spillway Crest Leng Spillway Crest Leng Spillway End Slope Freeboard above Max Water Surfac <u>Routed Hydrograph Results</u> Design Storm Return Peri One-Hour Rainfall Depth ( CUHP Runoff Volume (acre- Inflow Hydrograph Volume (acre-	ion in pg 27 ct sheet not following th roximately 7 nent pond s settle. $r_t = 18.00$ or Trapezoidal) ge = 9.00 th = 20.00 ge = 4.00 $r_t = 1.00$ The user can over $r_t = 0.336$ $r_t = 0.336$ $r_t = 0.336$ $r_t = 0.336$ $r_t = 0.036$ $r_t = 0.00$ $r_t = 0.00$	79 of this ed the rise he FSD wit 72 hrs. The seem too	ar Orifice) stance below ba inches bottom at Stage = 0 Phydrographs and re 2 Year 1.19 0.178	ottom at Stage = 0 ft) ( ( ( ) ( ) ( ) ( ) ) ( ) ) ( ) ) ) )	Height of Gra Overflow V Srate Open Area / 1 Overflow Grate Open Overflow Overflow O	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>25 Year</u> <u>2.00</u> 0 <u>840</u> 0.840	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Paramete 0.46 10.46 0.20 0.89 aphs table (Columns 50 Year 2.25 1.050	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Outer ripe planet Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Crest Leng Spillway End Slope Freeboard above Max Water Surfac Net-Hour Rainfall Depth ( CUHP Predevelopment Peak O (cf OPTIONAL Override Predevelopment Peak O (cf Predevelopment Unit Peak Flow, q (cfs/acr Peak Inflow Q (cf	ion in pg 27 ct sheet not following th roximately 7 nent pond s settle. $r_{t} = \frac{10.00}{1.00}$ $r_{t} = \frac{10.00}{1.00}$	79 of this ed the rise he FSD wit 72 hrs. The seem too	ar Orifice) ar Orifice) stance below ba inches bottom at Stage = 0 P hydrographs and ru 2 Year 1.19 0.178 0.178 3.1 0.30 3.5	ottom at Stage = 0 ft) usin bottom at Stage = Half-Cer 0 ft) 0.381 0.381 0.381 0.61 6.8	Height of Gra Overflow I Srate Open Area / 1 Overflow Grate Open Overflow Overflow Grate Open Overflow Gra	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>25 Year</u> <u>2.00</u> 0.840 0.840 13.3 1.27 13.6	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parametr</u> 0.46 10.46 0.20 0.89 <u>So Year</u> 2.25 1.050 1.050 1.6.5	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A ers for Spillway feet feet acres acre-ft <i>W through AF).</i> 100 Year 2.52 1.344 1.344 20.0
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of apper drain time for this perma fast to allow sediment to Curret ripe barrer Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway End Slope Freeboard above Max Water Surfact One-Hour Rainfall Depth (i CUHP Runoff Volume (acre- Inflow Hydrograph Volume (acre- CUHP Predevelopment Peak Q (cf Predevelopment Unit Peak Flow, q (cfs/acr	ion in pg 27 ct sheet not following th roximately 7 nent pond s settle. rt = 18.00 or Trapezoidal) ge = 9.00 th = 20.00 rs = 4.00 re = 1.00 rt = 1.00 rt = 0.036 rt = 0.00 rt = 0.00	79 of this ed the rise he FSD wit 72 hrs. The seem too ft (relative to basin feet H:V feet Tride the default CUH N/A 0.048 N/A N/A N/A N/A 0.0	ar Orifice) stance below ba inches bottom at Stage = 0 <i>P hydrographs and re</i> 1.19 0.178 0.178 3.1	ottom at Stage = 0 ft) sin bottom at Stage = Half-Cer 0 ft) 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.4.3 0.61 0.6.8 4.1	Height of Gra Overflow V Srate Open Area / 1 Overflow Grate Open Overflow Grate Open Grate Overflow Grate Open Overflow Overflow Over	Weir Slope Length =         00-yr Orifice Area =         n Area w/o Debris =         en Area w/o Debris =         en Area w/ Debris =         calculated Parameter         Dutlet Orifice Area =         et Orifice Centroid =         ctor Plate on Pipe =         Design Flow Depth=         Top of Freeboard =         Top of Freeboard =         25 Year         2.00         0.840         13.3         1.27         13.6         7.0	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parametr</u> 0.46 10.46 0.20 0.89 aphs table (Columns 50 Year 2.25 1.050 1.050 1.6.3 1.55 16.6 7.9	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Outer ripe planet Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Crest Leng Spillway End Slope Freeboard above Max Water Surfac Net-Hour Rainfall Depth ( CUHP Predevelopment Peak O (cf OPTIONAL Override Predevelopment Peak O (cf Predevelopment Unit Peak Flow, q (cfs/acr Peak Inflow Q (cf	ion in pg 27 ct sheet not following th roximately 7 nent pond s settle. $r_{t} = \frac{10.00}{1.00}$ $r_{t} = \frac{10.00}{1.00}$	79 of this ed the rise he FSD wit 72 hrs. The seem too ft (relative to basin feet H:V feet H:V feet N/A 0.048 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ar Orifice) stance below ba incres inches bottom at Stage = 0 P hydrographs and ru 2 Year 1.19 0.178 3.1 0.30 3.5 2.0 N/A Overflow Weir 1	ottom at Stage = 0 ft) usin bottom at Stage = Half-Cer 0 ft) 0.381 0.381 0.381 0.61 6.8	Height of Gra Overflow I Srate Open Area / 1 Overflow Grate Open Overflow Overflow Grate Open Overflow Gra	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>25 Year</u> <u>2.00</u> 0.840 0.840 13.3 1.27 13.6	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parametr</u> 0.46 10.46 0.20 0.89 <u>So Year</u> 2.25 1.050 1.050 1.6.5	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A ers for Spillway feet feet acres acre-ft <i>W through AF).</i> 100 Year 2.52 1.344 1.344 20.0
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Court ripe planet Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Crest Leng Spillway End Slope Freeboard above Max Water Surfac None-Hour Rainfall Depth ( CUHP Predevelopment Peak 0 (cf OPTIONAL Override Predevelopment Peak 0 (cf Predevelopment Unit Peak Flow, q (cfs/acr Peak Inflow 4 (cfs/acr Peak Outflow 0 (cf Ratio Peak Outflow	ion in pg 27 ct sheet not following th roximately 7 nent pond s settle. $r_{t} = \frac{10.00}{1.00}$ $r_{t} = \frac{10.00}$	79 of this ed the rise he FSD wit 72 hrs. The seem too ft (relative to basin feet H:V feet H:V feet V/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N	ar Orifice) ar Orifice) stance below ba incres inches bottom at Stage = 0 P hydrographs and ru 2 Year 1.19 0.178 0.178 0.178 3.1 0.30 3.5 2.0 N/A Overflow Weir 1 1.62	ottom at Stage = 0 ft) sin bottom at Stage = Half-Cer 0 ft) unoff volumes by en 5 Year 1.50 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	Height of Gra Overflow I of Gra Overflow Grate Open Area / 1 Overflow Grate Open Overflow Grate Open Spillway I Spillway I	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = 2alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 0 840 0.840 13.3 1.27 13.6 7.0 0.5 0 Overflow Weir 1 5.6	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parametr</u> 0.46 10.46 0.20 0.89 aphs table (Columns 50 Year 2.25 1.050 1.050 1.6.6 7.9 0.5 0verflow Weir 1 6.3	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A N/A ers for Spillway feet feet acres acre-ft <i>W through AF).</i> 100 Year 2.52 1.344 1.344 20.0 1.91 20.4 8.9 0.4 Overflow Weir 1 7.1
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of apper drain time for this perma fast to allow sediment to Currence Date Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway End Slope Freeboard above Max Water Surfact Design Storm Return Perk One-Hour Rainfall Depth (i CUHP Predevelopment Peak Q (cf Predevelopment Unit Peak Flow Q (cf Predevelopment Unit Peak Flow Q (cf Peak Unflow Q (cf Ratio Peak Outflow to Predevelopment Structure Controlling Fic Max Velocity through Grate 1 (fp Max Velocity through Grate 2 (fp	ion in pg 27 ct sheet not following th roximately 7 nent pond s settle. rt = 18.00 or Trapezoidal) ge = 9.00 th = 20.00 e = 1.00 rt = 1.00 rt = 1.00 rt = 0.00 rt = 1.00 rt = 0.00 rt = 0.00 rt = 1.00	79 of this ed the rise he FSD wit 72 hrs. The seem too ft (relative to basin feet H:V feet ride the default CUH N/A N/A N/A N/A N/A N/A N/A N/A	ar Orifice) stance below ba inches bottom at Stage = 0 <i>P hydrographs and ro</i> 0.178 0.178 0.178 0.178 0.30 3.5 2.0 N/A Overflow Weir 1 1.62 N/A	ottom at Stage = 0 ft) sin bottom at Stage = Half-Cer 0 ft) <i>unoff volumes by en</i> 1.50 0.381 0.381 0.381 0.381 0.61 6.8 4.1 0.6 Overflow Weir 1 3.3 N/A	Height of Gra Overflow V Srate Open Area / 1 Overflow Grate Open Overflow Grate Open Spillway I Spillway I Spil	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = 2alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.840 0.840 13.3 1.27 13.6 7.0 0.5 Overflow Weir 1 5.6 N/A	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parametr</u> 0.46 10.46 0.20 0.89 aphs table (Columns 50 Year 2.25 1.050 1.050 1.6.6 7.9 0.5 0verflow Weir 1 6.3	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appr drain time for this perma fast to allow sediment to Court ripe planet Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Crest Leng Spillway End Slope Freeboard above Max Water Surfac None-Hour Rainfall Depth ( CUHP Predevelopment Peak 0 (cf OPTIONAL Override Predevelopment Peak 0 (cf Predevelopment Unit Peak Flow, q (cfs/acr Peak Inflow 4 (cfs/acr Peak Outflow 0 (cf Ratio Peak Outflow	ion in pg 27 ct sheet not following th roximately 7 nent pond s settle. $r_{t} = \frac{10.00}{1.00}$ $r_{t} = \frac{10.00}$	79 of this ed the rise he FSD wit 72 hrs. The seem too ft (relative to basin feet H:V feet H:V feet V/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N	ar Orifice) ar Orifice) stance below ba incres inches bottom at Stage = 0 P hydrographs and ru 2 Year 1.19 0.178 0.178 0.178 3.1 0.30 3.5 2.0 N/A Overflow Weir 1 1.62	ottom at Stage = 0 ft) sin bottom at Stage = Half-Cer 0 ft) unoff volumes by en 5 Year 1.50 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	Height of Gra Overflow I of Gra Overflow Grate Open Area / 1 Overflow Grate Open Overflow Grate Open Spillway I Spillway I	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = 2alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 0 840 0.840 13.3 1.27 13.6 7.0 0.5 0 Overflow Weir 1 5.6	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parameter 0.46 10.46 0.20 0.89 aphs table (Columns 50 Year 2.25 1.050 1.050 1.6.3 1.55 16.6 7.9 0.5	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appl drain time for this perma fast to allow sediment to Court ripe barrier Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Invert Sta Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway Crest Leng Spillway End Slope Freeboard above Max Water Surfac None-Hour Rainfall Depth ( CUHP Predevelopment Peak O (cf OPTIONAL Override Predevelopment Peak O (cf OPTIONAL OVER OPTIONAL OVER (cf Sec Peak Untflow O (cf Peak Outflow O (cf Peak Outfl	tion in pg 27 ct sheet not following th coximately 7 nent pond s settle. rt = 10.00 rt = 18.00 or Trapezoidal) ge= 9.00 th = 20.00 es = 4.00 or Trapezoidal) ge= 9.00 th = 20.00 ss = 4.00 or Trapezoidal) ge= 9.00 th = 20.00 ss = 4.00 or Trapezoidal) ge= 9.00 th = 20.00 ss = 4.00 or Trapezoidal) ss = 4.00 N/A ss = N/A ss = 1.53 St	79 of this ed the rise he FSD wit 72 hrs. The seem too ft (relative to basin feet H:V feet H:V feet ride the default CUH EURV N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ar Orifice) stance below ba incres inches bottom at Stage = 0 <i>P hydrographs and ru</i> 2 Year 1.19 0.178 0.178 0.178 0.178 3.1 0.30 3.5 2.0 N/A Overflow Weir 1 1.62 N/A 43 53 2.95	ottom at Stage = 0 ft) sin bottom at Stage = Half-Cer 0 ft) 0 ft) 0.61 6.8 4.1 0.61 6.8 4.1 0.6 0verflow Weir 1 3.3 N/A 32 47 3.93	Height of Gra Overflow I Area / 1 Overflow Grate Open Overflow Grate Open Spillway I Spillway I Spillw	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = 2alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 70 of Freeboard = 2.00 0.840 0.840 0.840 13.3 1.27 13.6 7.0 0.5 Overflow Weir 1 5.6 N/A 21 37 6.56	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parametr</u> 0.46 10.46 0.20 0.89 <b>aphs table (Columns</b> <b>50 Year</b> 2.25 1.050 1.050 1.6.6 7.9 0.5 0vrf10w Weir 1 6.3 NA 18 33 7.60	Not Selected           N/A           100 Year           2.52           1.344           20.0           1.91           20.4           0.4           Overflow Weir 1           7.1           N/A           14           30           8.95
Sediment Basin Calculat report. Also, the MHFD SC-7 fac pipe should be designed an emptying time of appud drain time for this perma fast to allow sediment to Cuter rise barrier Restrictor Plate Height Above Pipe Inve Restrictor Plate Height Above Pipe Inve User Input: Emergency Spillway (Rectangular Spillway Crest Leng Spillway Crest Leng CUHP Runoff Volume (acre- UHP Predevelopment Peak Q (cf Predevelopment Unit Peak Flow, q (cfs/acr Peak Inflow Q (cf Peak Outflow to Predevelopment Structure Controlling Flo Max Velocity through Grate 2 (fp Max Velocity through Grate 2 (fp Time to Drain 97% of Inflow Volume (hour Time to Drain 97% of Inflow Volume (hour	ion in pg 27 ct sheet not following th roximately 7 nent pond s settle. rt = 18.00 or Trapezoidal) ge = 9.00 th = 20.00 rs = 4.00 re = 1.00 rt = 1.00 rt = 0.03 rt = 0.00 rt = 1.00 rt = 0.00 rt = 0.00	ride the default CUH ft (relative to basin feet H:V feet M/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N	A contract of the second secon	ottom at Stage = 0 ft) sin bottom at Stage = Half-Cer 0 ft) Unoff volumes by en 5 Year 1.50 0.381 0.381 0.381 0.61 6.8 4.1 0.6 Overflow Weir 1 3.3 N/A 32 47	Height of Gra Overflow V Srate Open Area / 1 Overflow Grate Open Overflow Grate Open Spillway I Spillway I Spil	Weir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.840 0.840 13.3 1.27 13.6 7.0 0.5 Overflow Weir 1 5.6 N/A 21 37	Zone 3 Weir 2.60 0.59 0.70 1.23 0.62 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Paramete 0.46 10.46 0.20 0.89 aphs table (Columns 50 Year 2.25 1.050 1.050 1.6.6 7.9 0.5 Overflow Weir 1 6.3 A 18 33	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

#### DETENTION BASIN OUTLET STRUCTURE DESIGN



maximum bound

#### DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

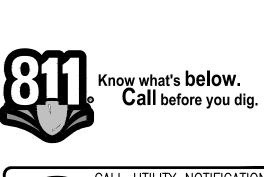
	Inflow Hydrog The user can ov		ated inflow hydro	ographs from this	s workbook with	inflow hydrograp	ohs developed in	a separate progra	im.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.01	0.02	0.02	0.01	0.02	0.02	0.02
	0:20:00	0.00	0.00	0.04	0.22	0.34	0.03	0.08	0.13	0.32
	0:25:00	0.00	0.00	0.76	3.95	6.31	0.62	1.70	2.57	6.14
	0:30:00 0:35:00	0.00	0.00	3.22 3.52	6.76 6.68	9.25 8.94	9.89 13.26	12.67 16.35	14.93 20.13	21.56 27.72
	0:40:00	0.00	0.00	3.26	6.03	8.11	13.64	16.64	20.36	27.80
	0:45:00	0.00	0.00	2.74	5.24	7.22	12.68	15.45	19.46	26.46
	0:50:00	0.00	0.00	2.27	4.64	6.37	11.72	14.29	17.97	24.48
	0:55:00	0.00	0.00	1.94	3.98	5.64	10.36	12.68	16.34	22.31
	1:00:00	0.00	0.00	1.63	3.35	4.95	9.10	11.19	14.90	20.36
	1:05:00 1:10:00	0.00	0.00	1.34 1.05	2.76 2.36	4.28 3.88	7.96 6.51	9.82 8.15	13.51 11.12	18.46 15.45
	1:15:00	0.00	0.00	0.88	2.02	3.62	5.54	7.04	9.35	13.45
	1:20:00	0.00	0.00	0.75	1.72	3.13	4.64	5.90	7.79	11.02
	1:25:00	0.00	0.00	0.64	1.45	2.60	3.89	4.93	6.46	9.12
	1:30:00	0.00	0.00	0.52	1.19	2.12	3.20	4.06	5.31	7.49
	1:35:00	0.00	0.00	0.41	0.95	1.68	2.59	3.28	4.27	6.01
	1:40:00 1:45:00	0.00	0.00	0.30	0.68	1.27	2.00	2.54	3.29	4.64
	1:45:00	0.00	0.00	0.20	0.43	0.88	1.45 0.93	1.84	2.39	3.36
	1:55:00	0.00	0.00	0.06	0.18	0.49	0.61	0.82	1.08	1.60
	2:00:00	0.00	0.00	0.04	0.13	0.39	0.43	0.58	0.77	1.17
	2:05:00	0.00	0.00	0.03	0.10	0.30	0.29	0.41	0.52	0.81
	2:10:00	0.00	0.00	0.02	0.07	0.22	0.19	0.28	0.34	0.55
	2:15:00 2:20:00	0.00	0.00	0.02	0.05	0.16	0.13	0.19	0.21	0.36
	2:25:00	0.00	0.00	0.01	0.04	0.12	0.08	0.12	0.12	0.21 0.12
	2:30:00	0.00	0.00	0.01	0.02	0.05	0.03	0.05	0.04	0.08
	2:35:00	0.00	0.00	0.01	0.01	0.03	0.02	0.03	0.03	0.05
	2:40:00	0.00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.04
	2:45:00	0.00	0.00	0.00	0.00	0.02	0.01	0.02	0.02	0.03
	2:50:00 2:55:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	3:00:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00 3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 E:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

#### DETENTION BASIN OUTLET STRUCTURE DESIGN

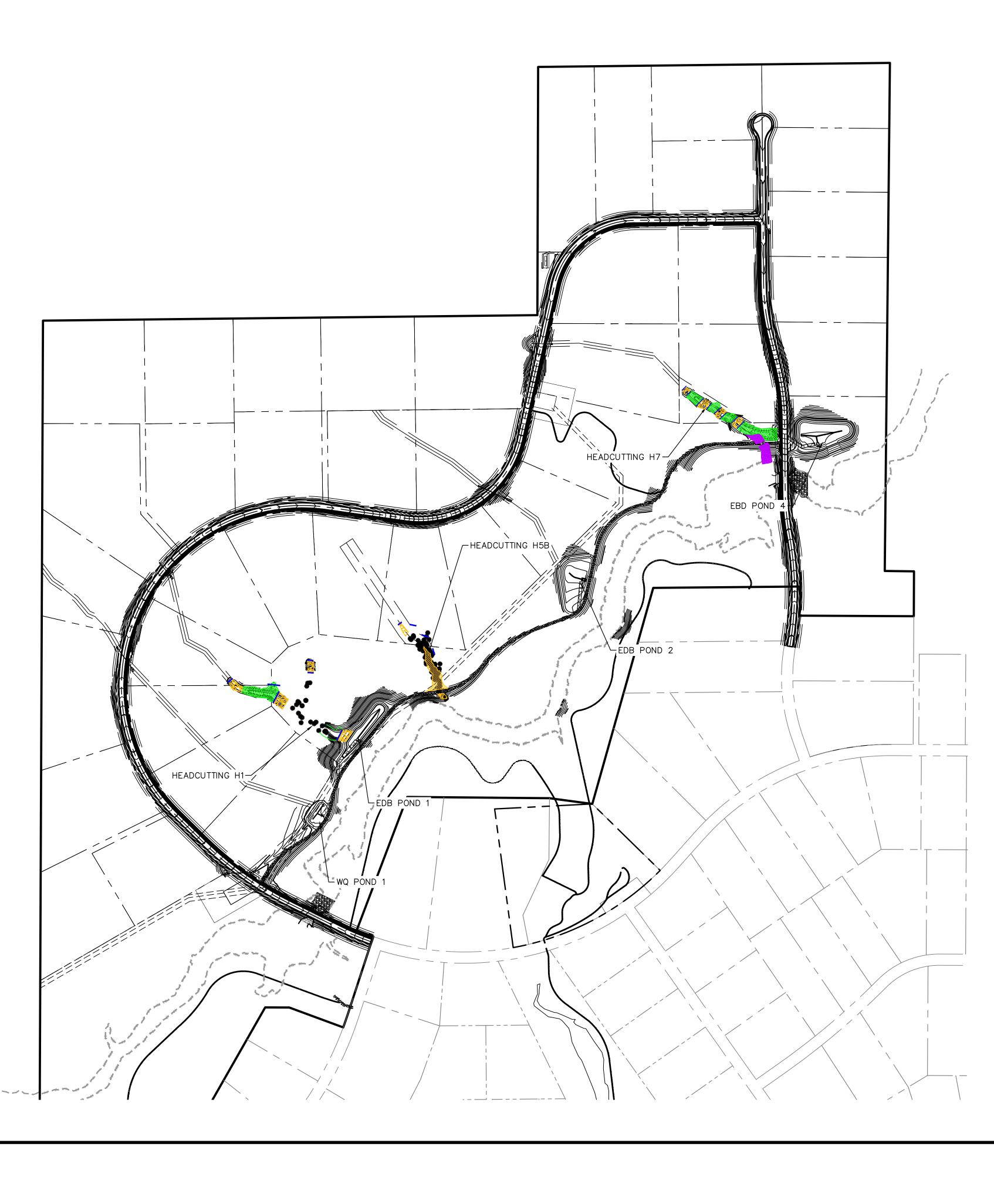
MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

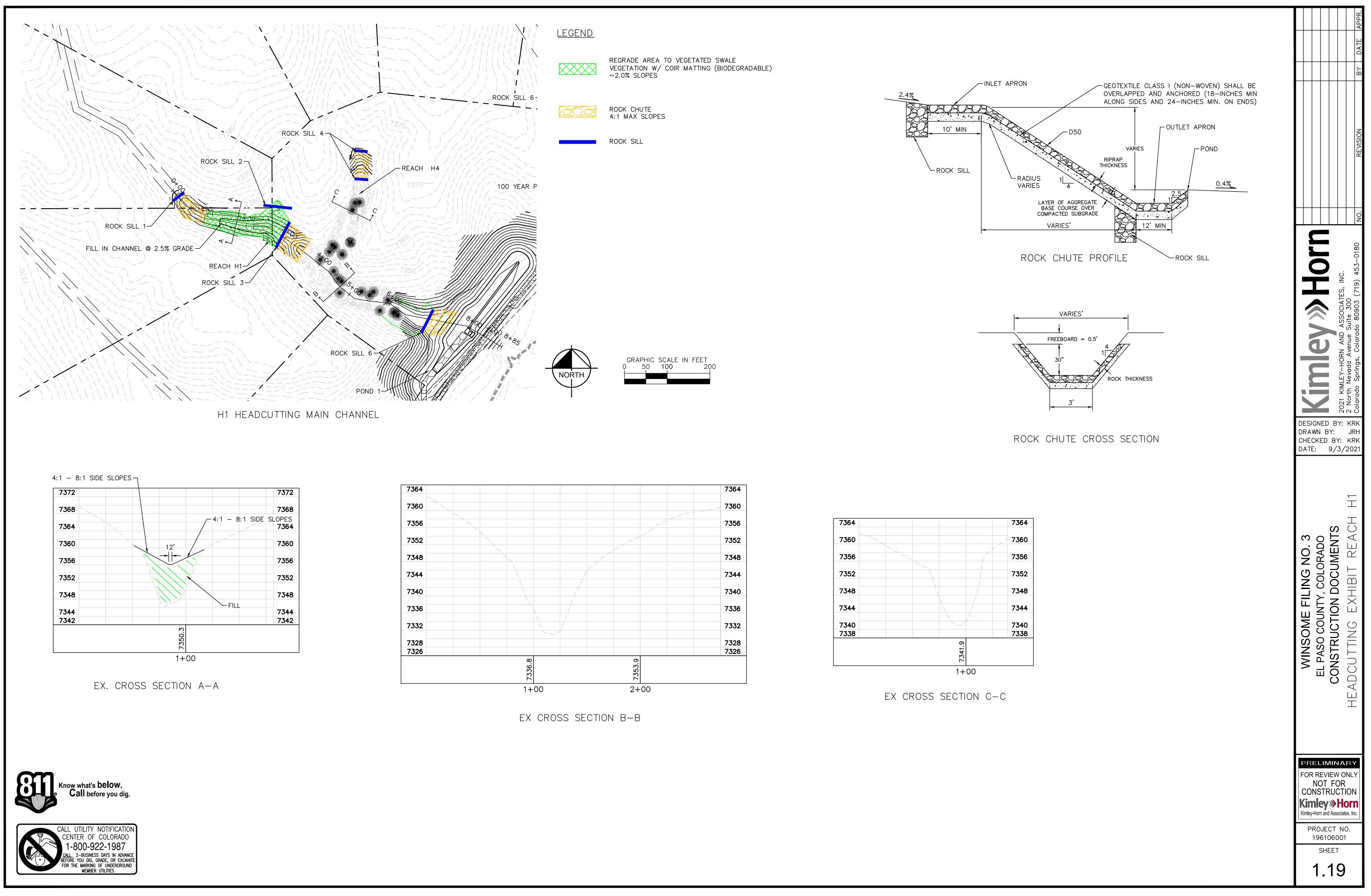
	8,059	0.185	35,001	0.804	79.19	For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'. Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).
						stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'. Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway,
						from the S-A-V table on Sheet 'Basin'. Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway,
						Sheet 'Basin'. Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway,
						Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway,
						outlets (e.g. vertical orifice, overflow grate, and spillway,
						overflow grate, and spillway,
						where applicable).
						_
						1
					1	-
					1	-
			1			1
						_
						_
						-
					+	-
						-
					1	-
			1		1	1
					1	-
						_
						_
						_
					4	-
						-
						-
					1	-
						-
						_
					4	_
					-	-
					+	-
						-
					1	-
						-
					1	-
					4	_
					+	-
					1	-
						-
						_
						-
						-
						4
					+	-
					+	1
						1
						4
					+	-
					+	1
						1
					<u> </u>	4
	<u> </u>	1	1	1	1	1

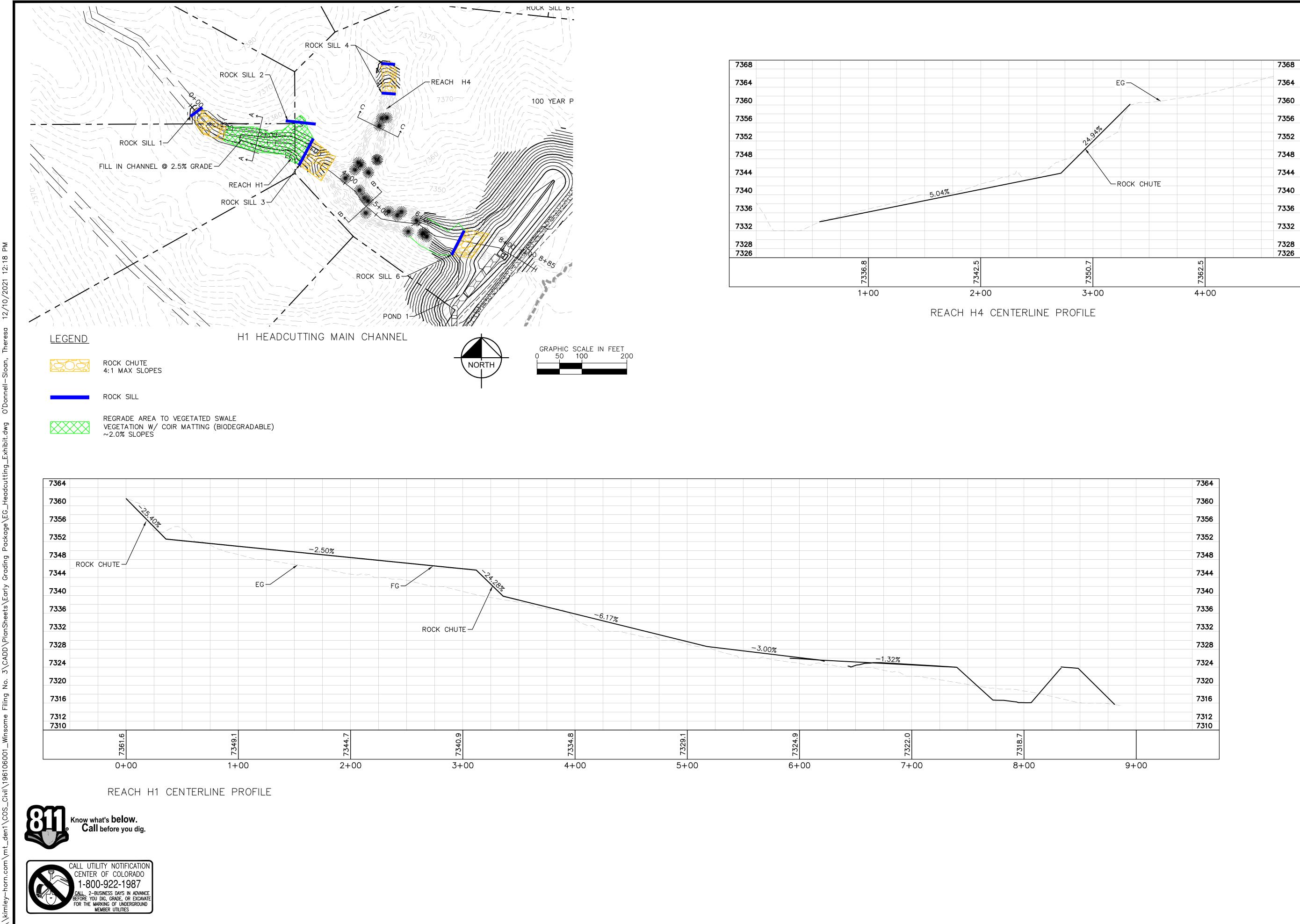

## Rock Sill Calculations

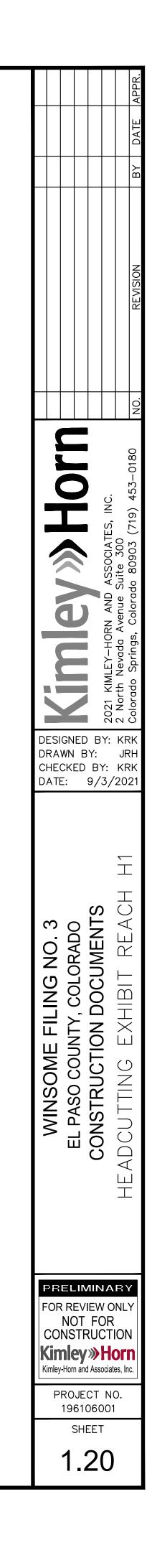
Equations Used:

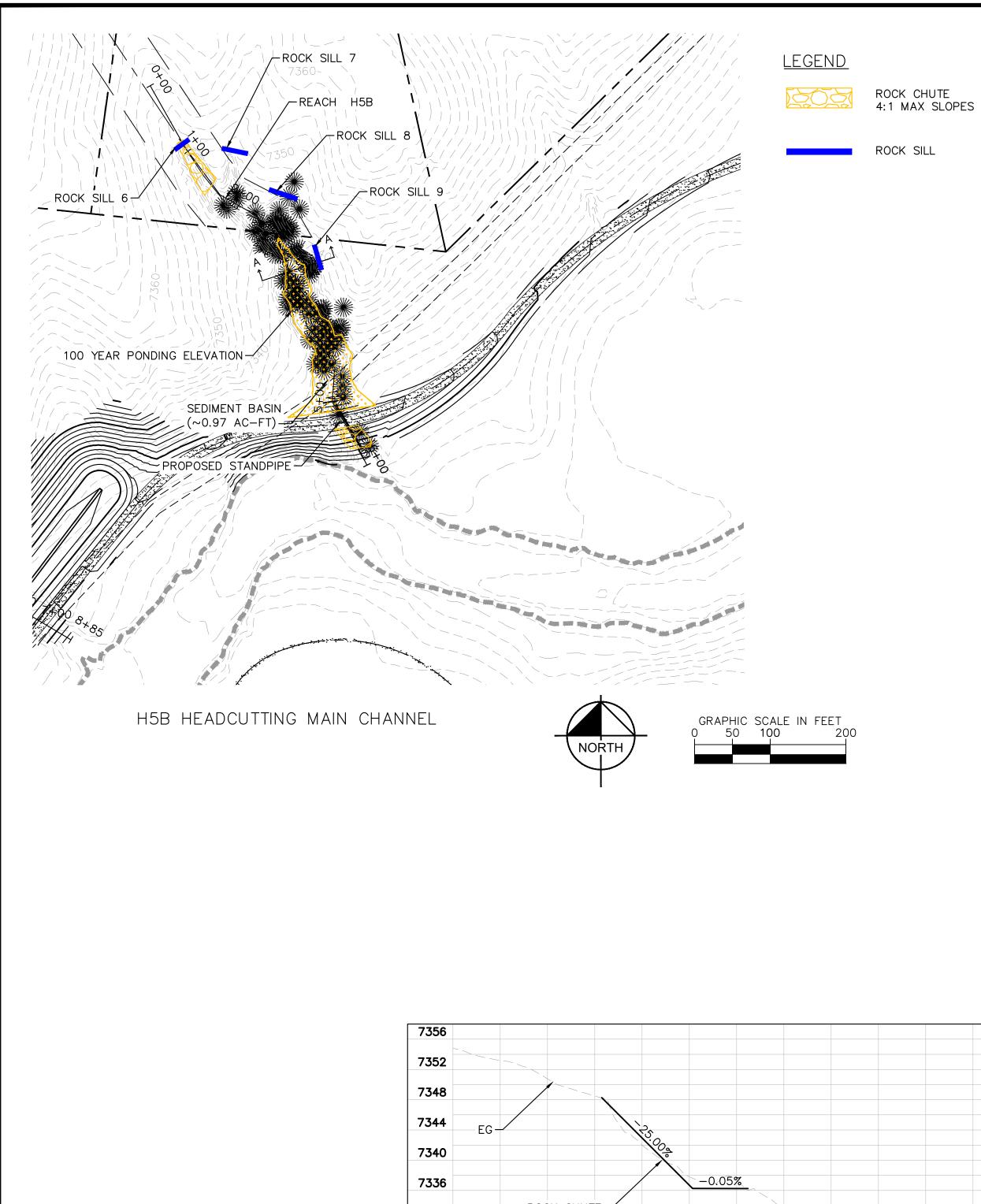

 $d_{50} \ge \left[\frac{VS^{0.17}}{4.5(G_s - 1)^{0.66}}\right]^2$ 

Eqn 8-11 USDCM Vol. 1 Section 8.1.1


Rock Sill ID	V (fps)	S (ft/ft)	Min d50 (ft)	Min d50 (in)	d50 Used (in)	Width (ft)	Length (ft)
1	Match Rock Chute Design						
2	3.22	0.07	0.12	2.91	9.00	2.00	70.00
3	Match Rock Chute Design						
4	Match Rock Chute Design						
5	Match Rock Chute Design						
6	Match Rock Chute Design						
7	5	0.1	0.33	5.95	9.00	2.00	36.00
8	5	0.1	0.33	5.95	9.00	2.00	40.00
9	5	0.1	0.33	5.95	9.00	2.00	35.00
10	Match Rock Chute Design						
11	Match Rock Chute Design						
12	Match Rock Chute Design						
13	Match Rock Chute Design						



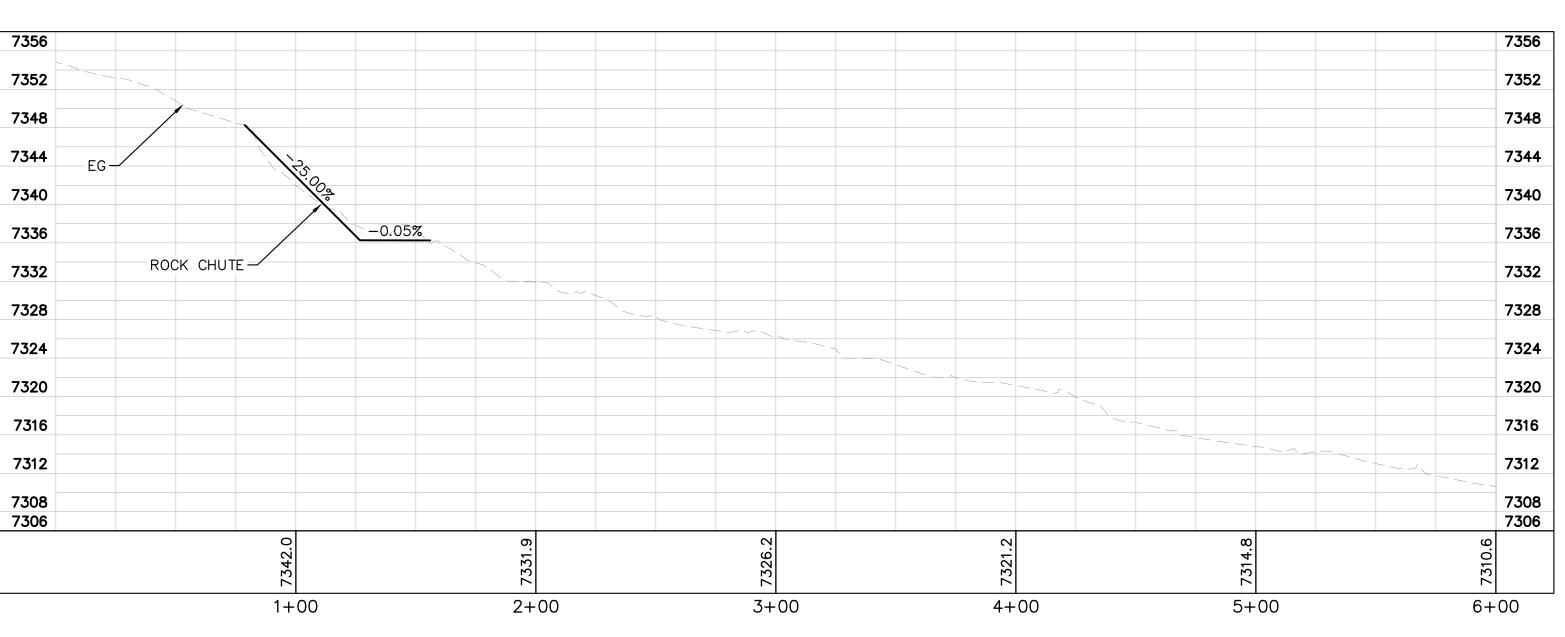




		APPR.
<u>LEGEND</u>		DATE
	TURF REENFORCEMENT MATTING (TRM) OR ROCK RIPRAP PROTECTED CHANNEL 10%–16% SLOPES	
<u> - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - </u>	RIPRAP GRADE CONTROL STRUCTURE 2'-4' DROP AT 4:1	REVISION
	REGRADE AREA TO VEGETATED SWALE VEGETATION W/ COIR MATTING (BIODEGRADABLE) ~2.0% SLOPES	
605	ROCK CHUTE 4:1 MAX SLOPES	
	ROCK SILL	3-0180
	CHANNEL PLUG / BACKFILL ABANDONED CHANNEL	DESIGUED BJ.: KLK DATE: 300 Colorado Springs, Colorado 80903 (719) 453-
		WINSOME FILING NO. 3 EL PASO COUNTY, COLORADO CONSTRUCTION DOCUMENTS HEADCUTTING EXHIBIT OVERALL
	GRAPHIC SCALE IN FEET 0 150 300 600	PRELIMINARY FOR REVIEW ONLY NOT FOR CONSTRUCTION Kimley >> Horn Kimley-Horn and Associates, Inc. PROJECT NO. 196106001 SHEET

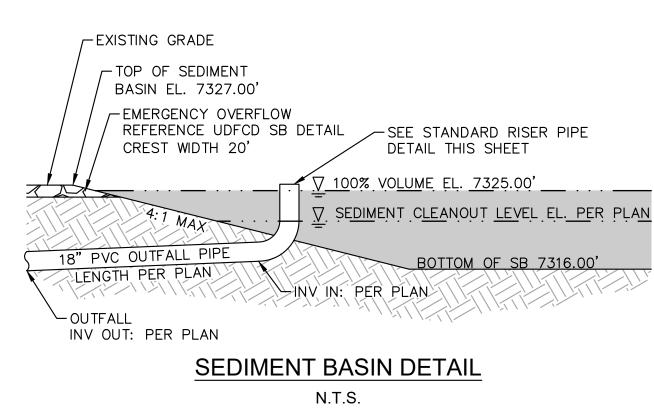


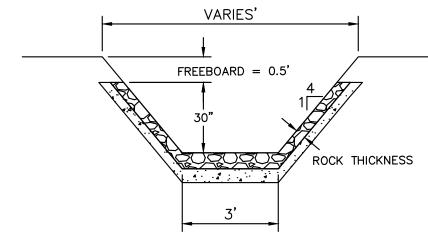




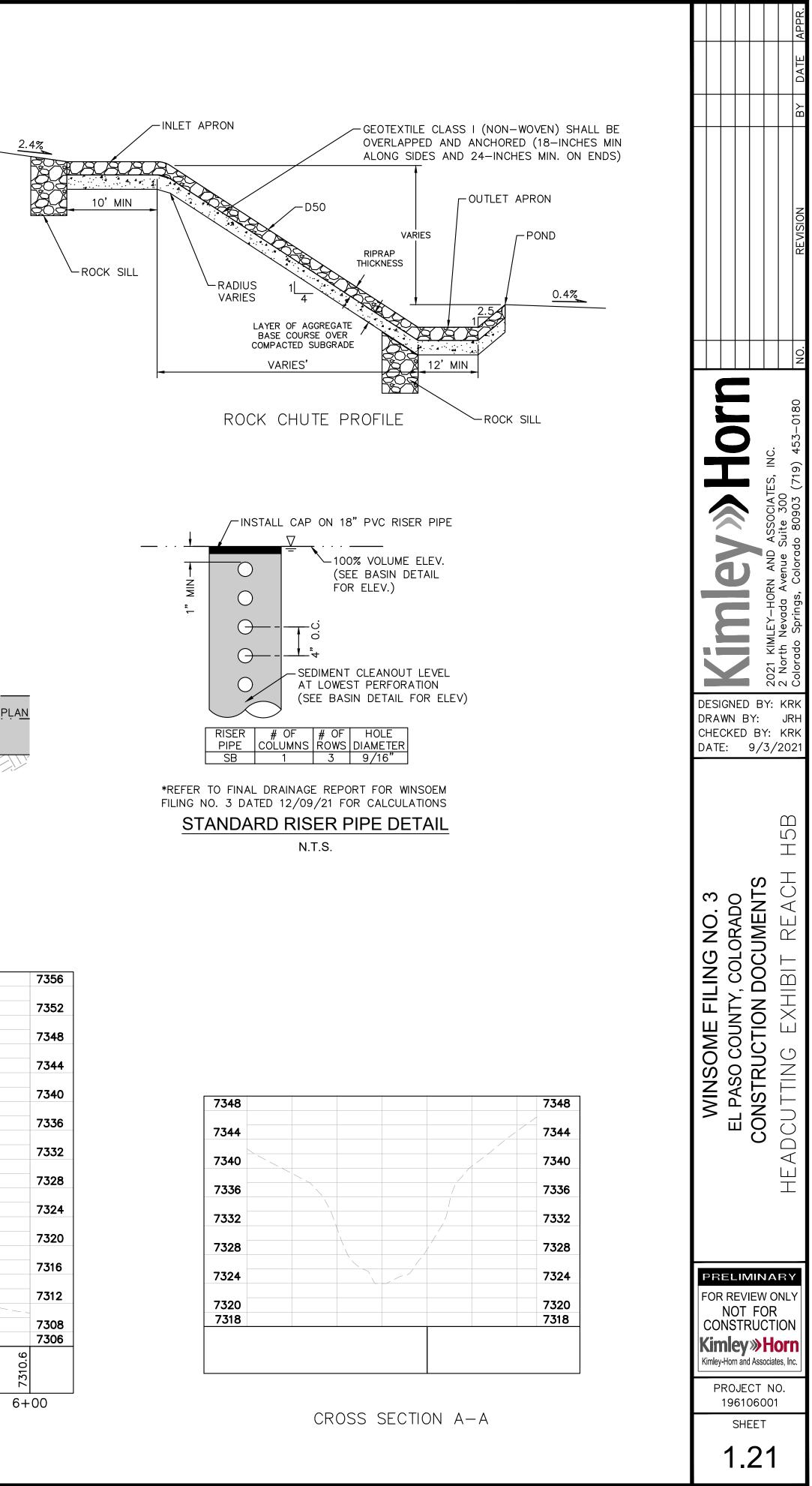


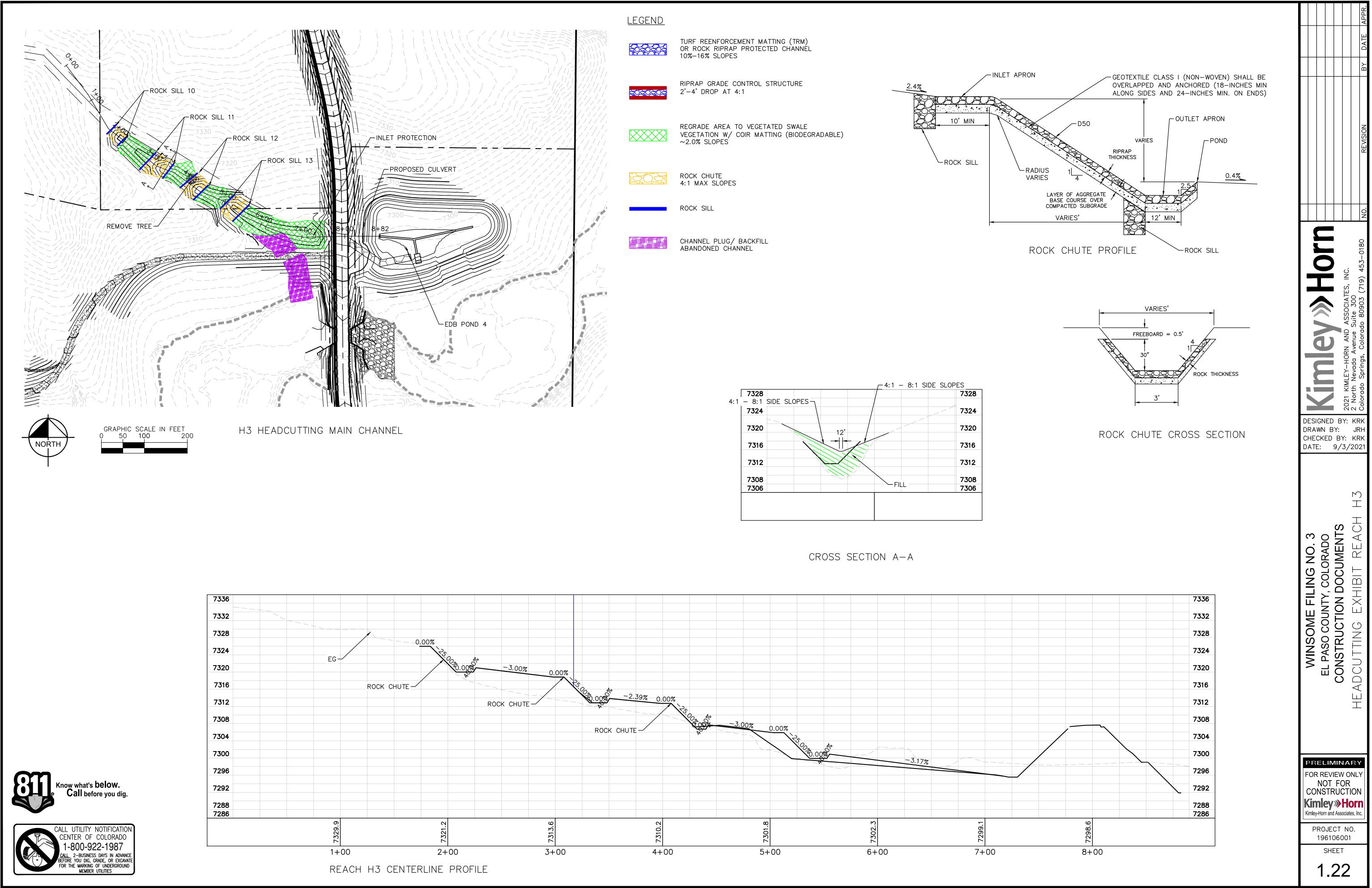


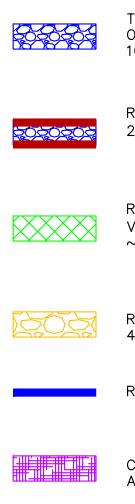


Know what's **below.** 

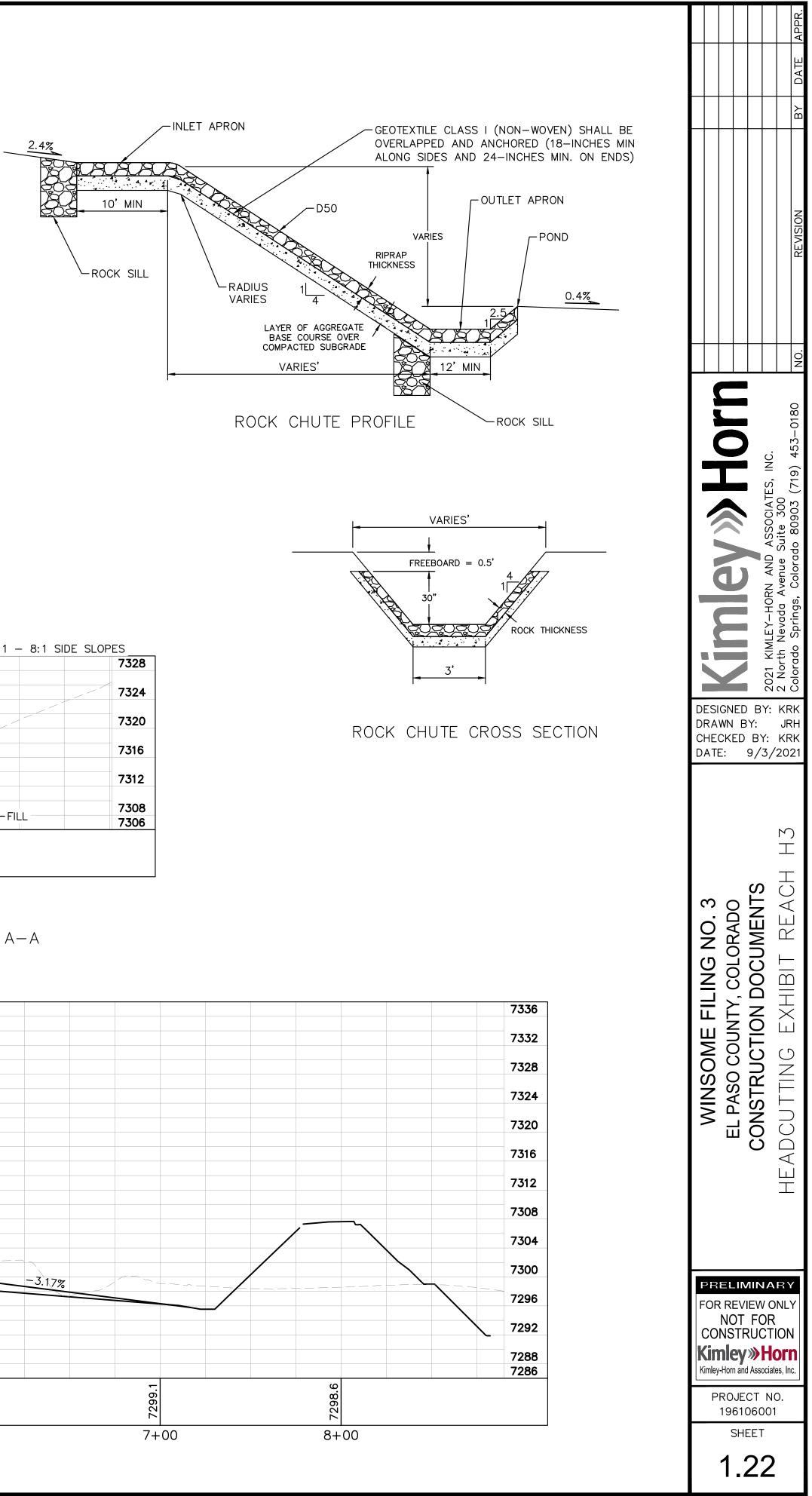


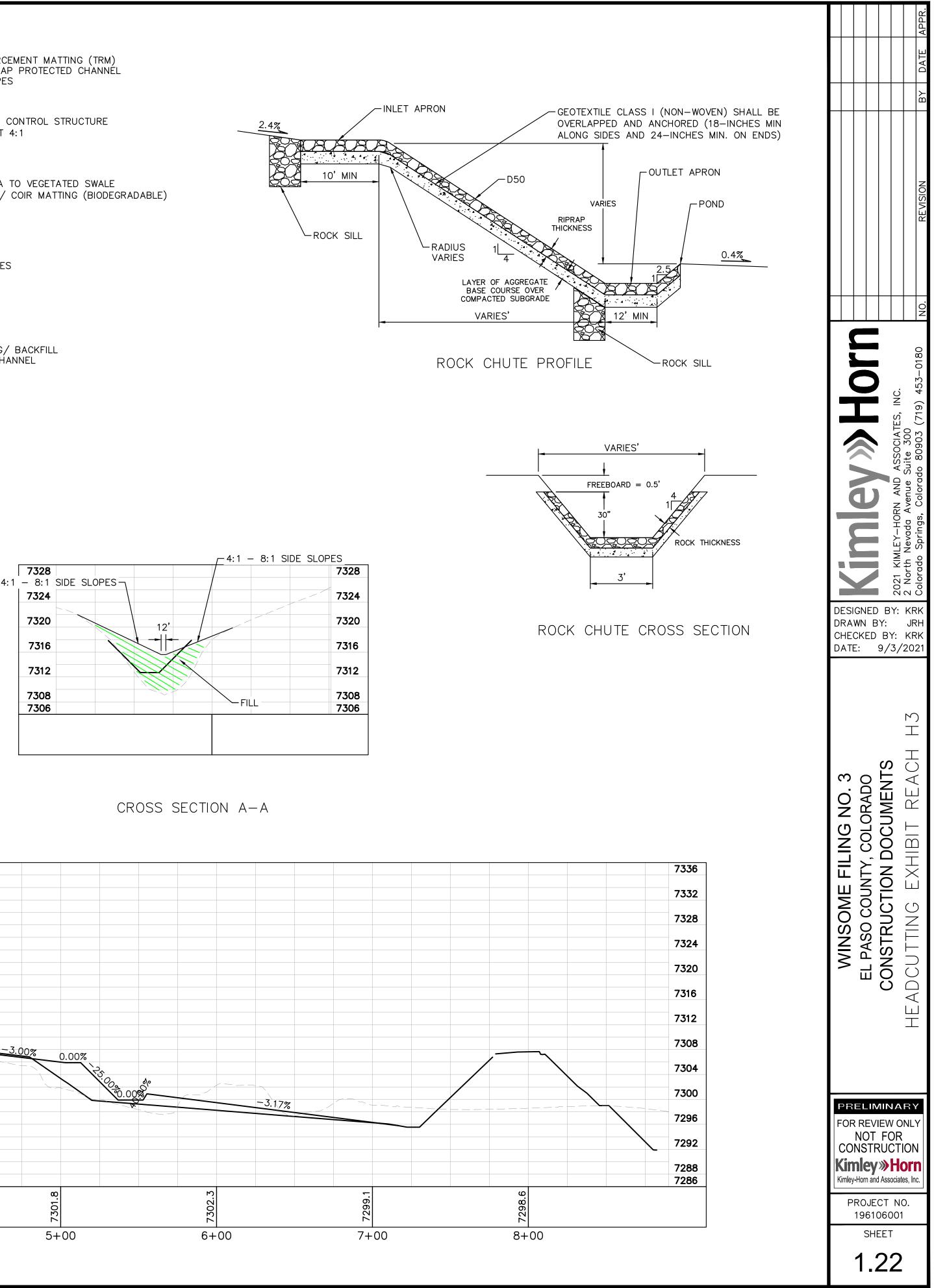

81



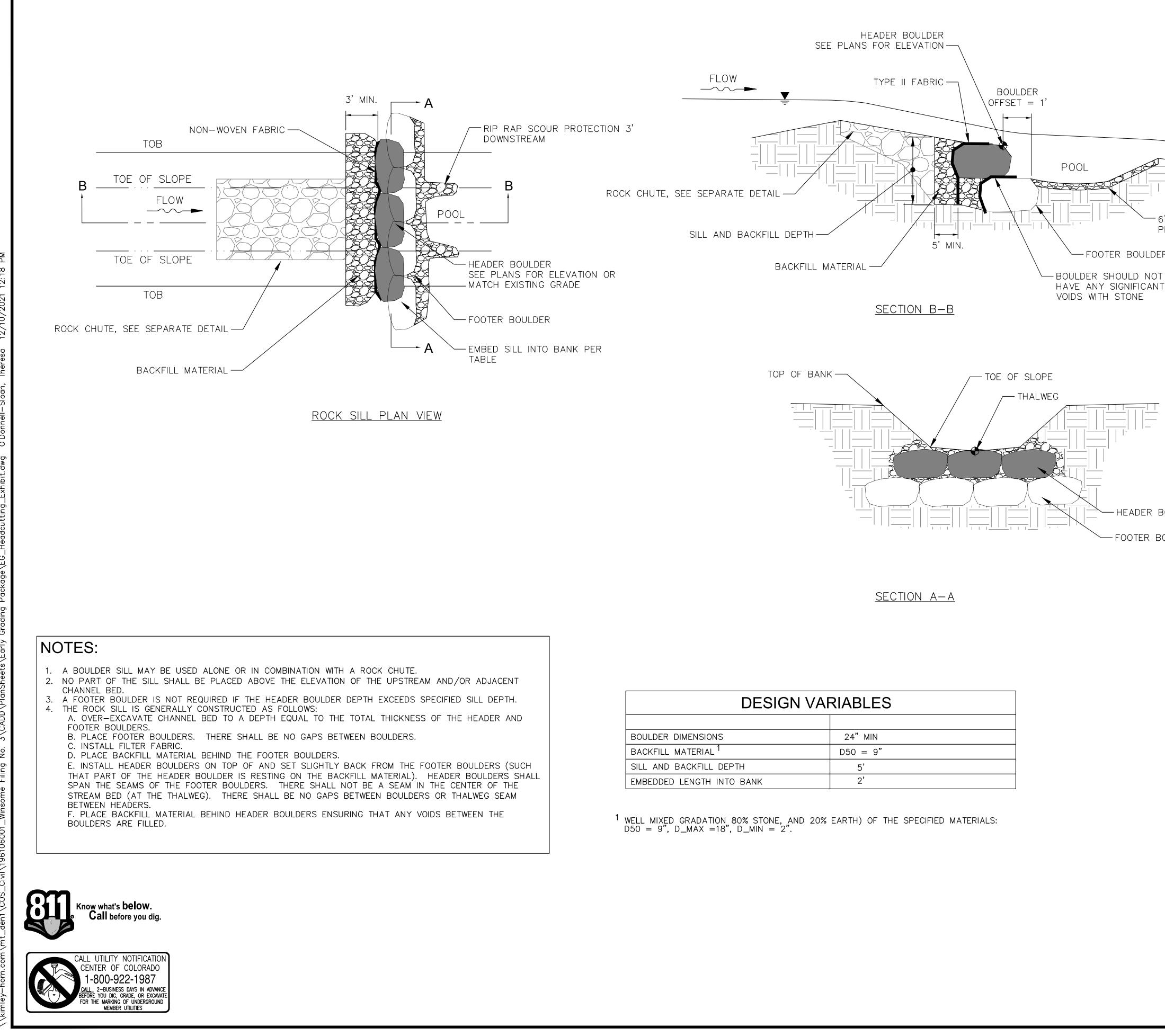


## REACH H5B CENTERLINE PROFILE





ROCK CHUTE CROSS SECTION
















DESIGN VARIABLES		
BOULDER DIMENSIONS	24" MIN	
BACKFILL MATERIAL	D50 = 9"	
SILL AND BACKFILL DEPTH	5'	
EMBEDDED LENGTH INTO BANK	2'	

		APPR.
		DATE
		B≺
		REVISION
6" SCOUR PROTECTION		NO.
ER	Ļ	-0180
OT BE GAPPED OR NT SPACES, FILL		м
	»H≪	D ASSOCIATES, INC. : Suite 300 ado 80903 (719) 45:
		ASSOCIA uite 30 b 80903
	ey	N AND A venue Su Colorado
-	m	2021 KIMLEY-HORN AND 2 North Nevada Avenue Colorado Springs, Colora
		1 KIMLE orth Ne rado Sp
	DESIGNED B	
	DRAWN BY: CHECKED B	JRH
BOULDER	DATE. 97	5/2021
BOULDER		
		AILS
	00 NTS	DETA
	WINSOME FILING NO. 3 EL PASO COUNTY, COLORADO CONSTRUCTION DOCUMENTS	EXHIBIT
	E FII UNTY	
	MIN: PAS	CUT
	с С С	HEADCUTTING
		Т
	PRELIMIN	JARY
	FOR REVIEW NOT FO CONSTRUC	
	Kimley More Ass	Horn Bociates, Inc.
	PROJECT 1961060	NO.
	SHEET	Т
	1.2	3

**APPENDIX D: REFERENCES** 

Kimley **»Horn** 



## Winsome Subdivision 17480 Meridian Road North Colorado Springs, Colorado 80924

## **Preliminary Drainage Report**

MAY 15, 2019

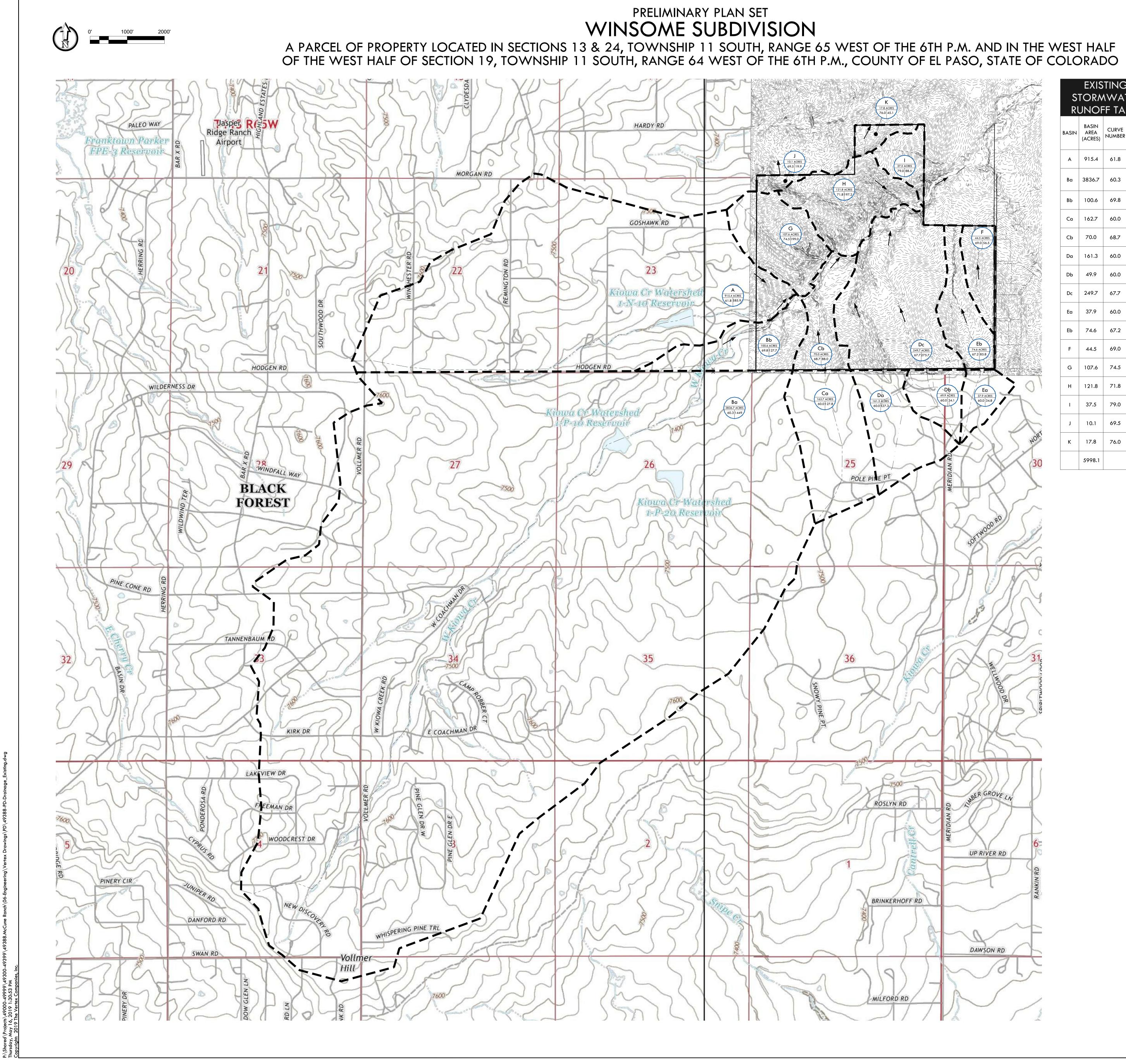
### **PREPARED FOR:**

PT McCune, LLC Joseph W DesJardin 1864 Woodmoor Drive Suite 100 Monument, Colorado 80132

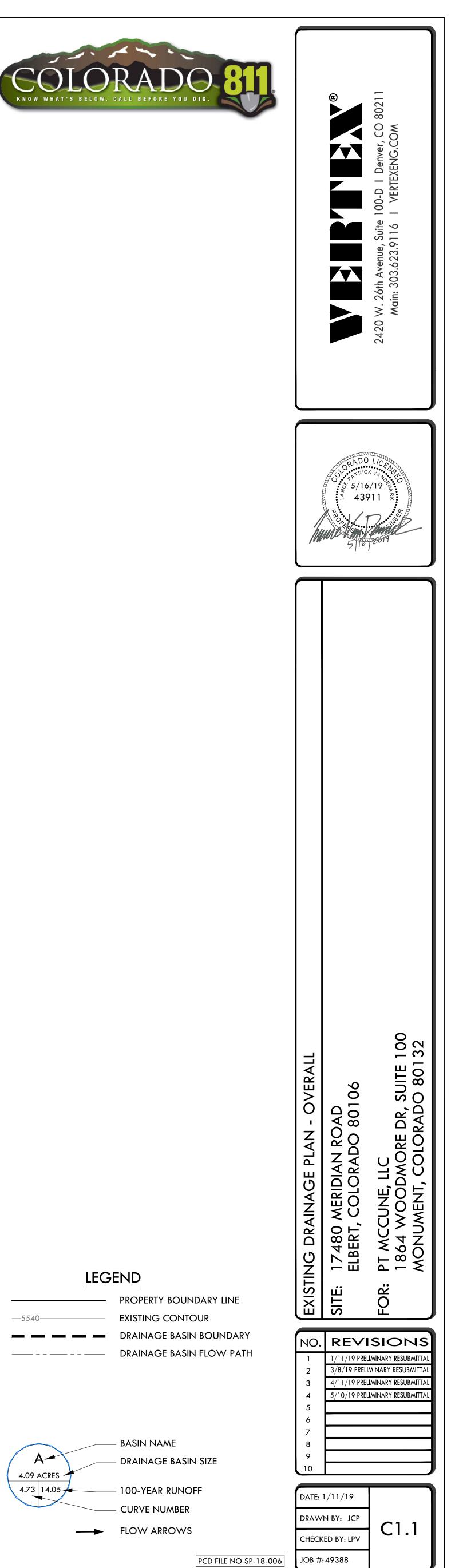
### **PREPARED BY:**

The Vertex Companies, Inc. 2420 W. 26th Avenue, Suite 100-D Denver, Colorado 80211 **PHONE:** 303-623-9116

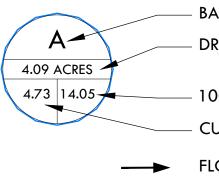
VERTEX Project: 49388 PCD File No. SP-18-006 FEMA Case No: 19-08-0185R

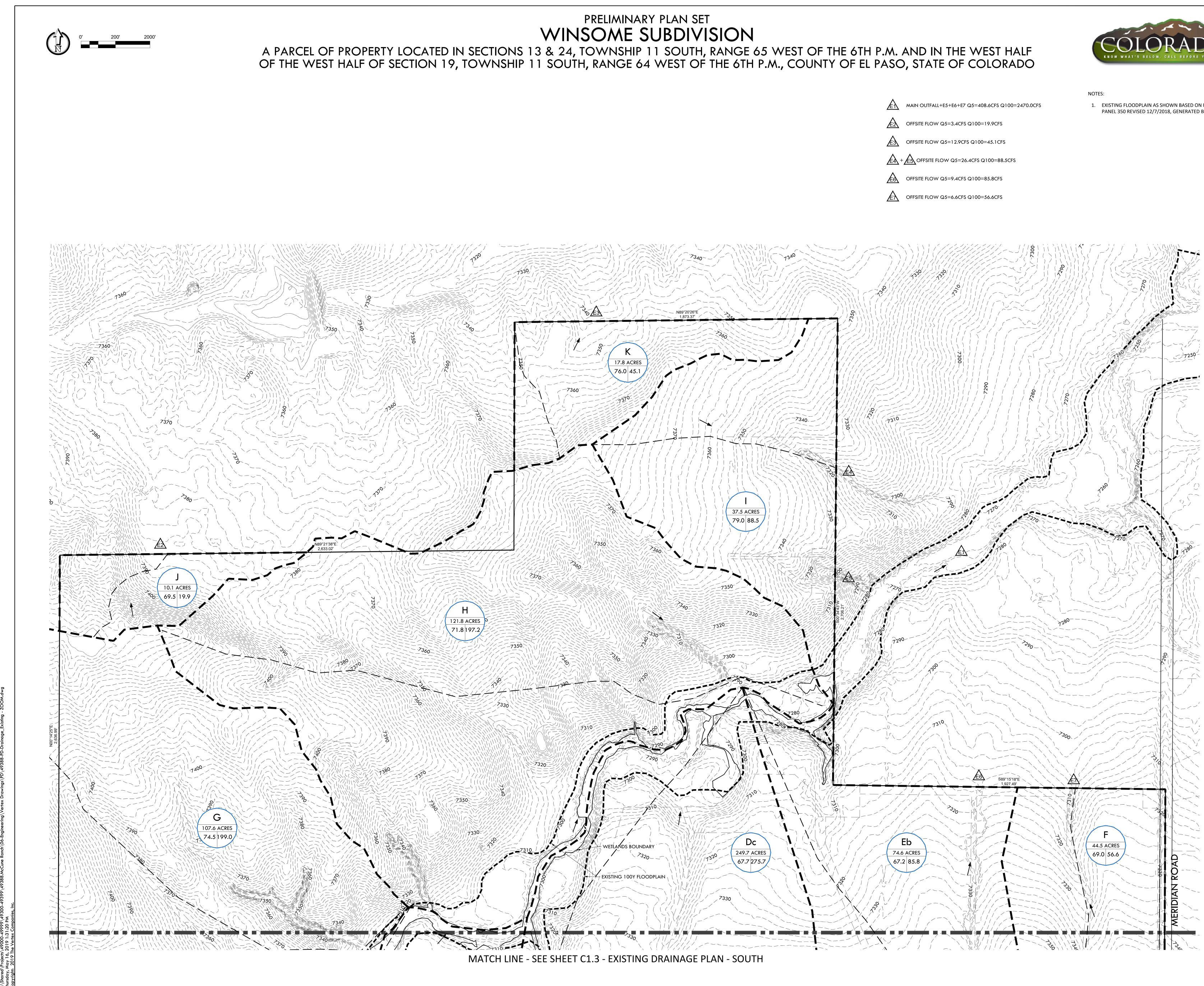

imu P Jason Priddy Lance VanDemark, P.E.

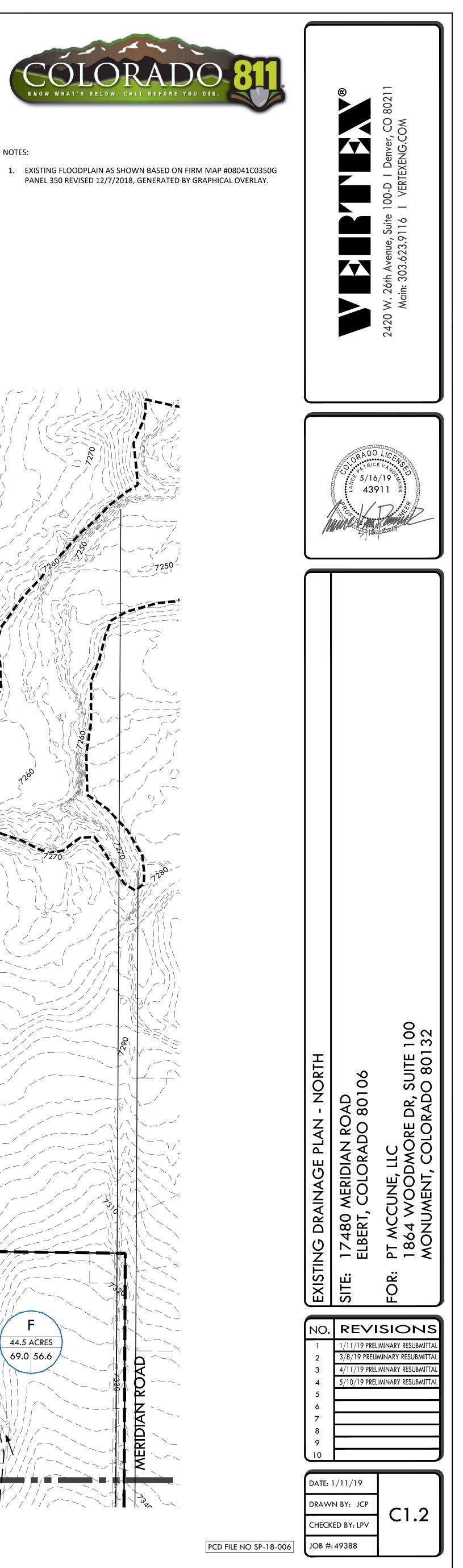
Project Engineer Proj


Lance VanDemark, P.E. Project Manager

Preliminary Drainage Report McCune Ranch Subdivision


## 10.0 DRAINAGE PLANS

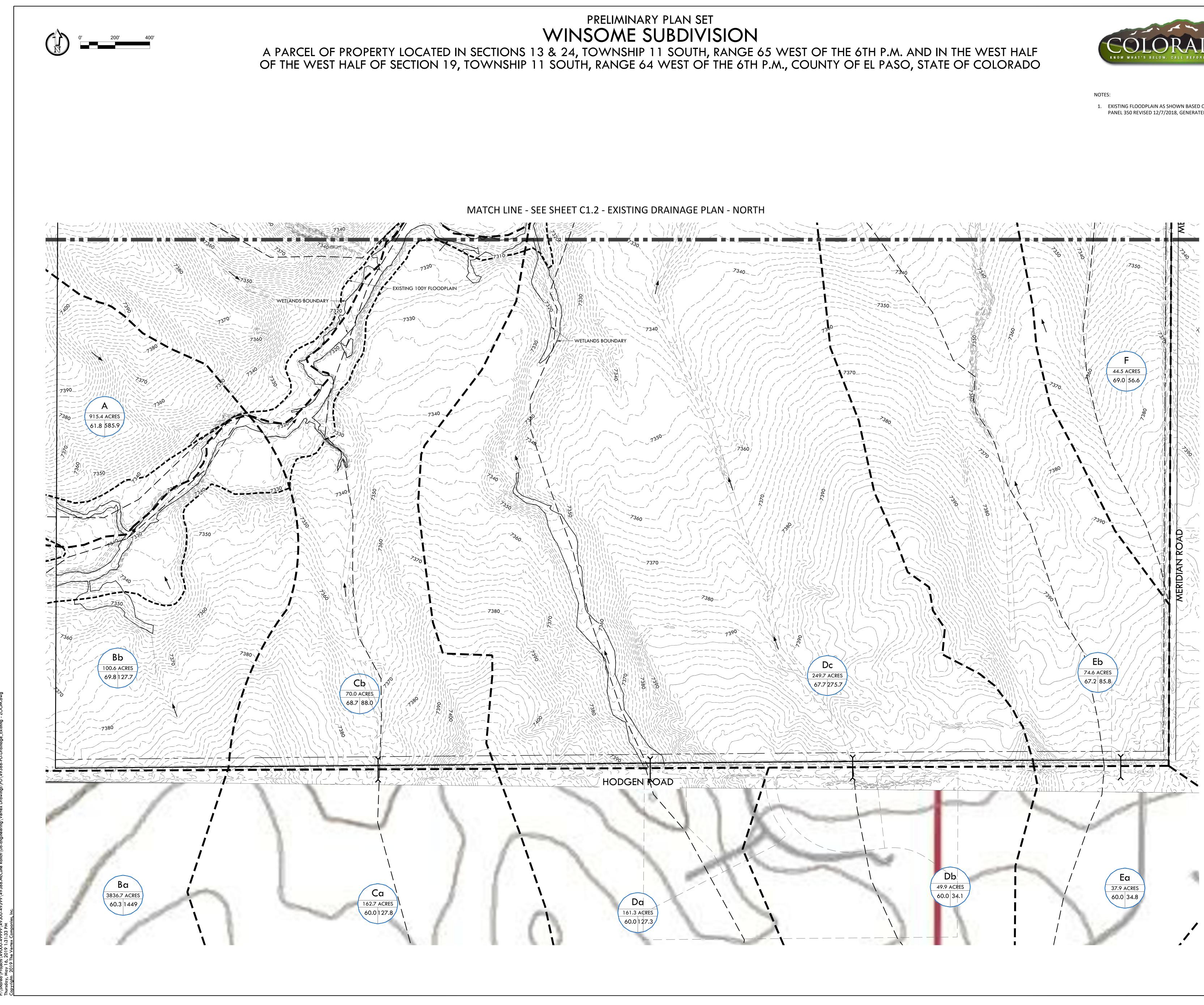


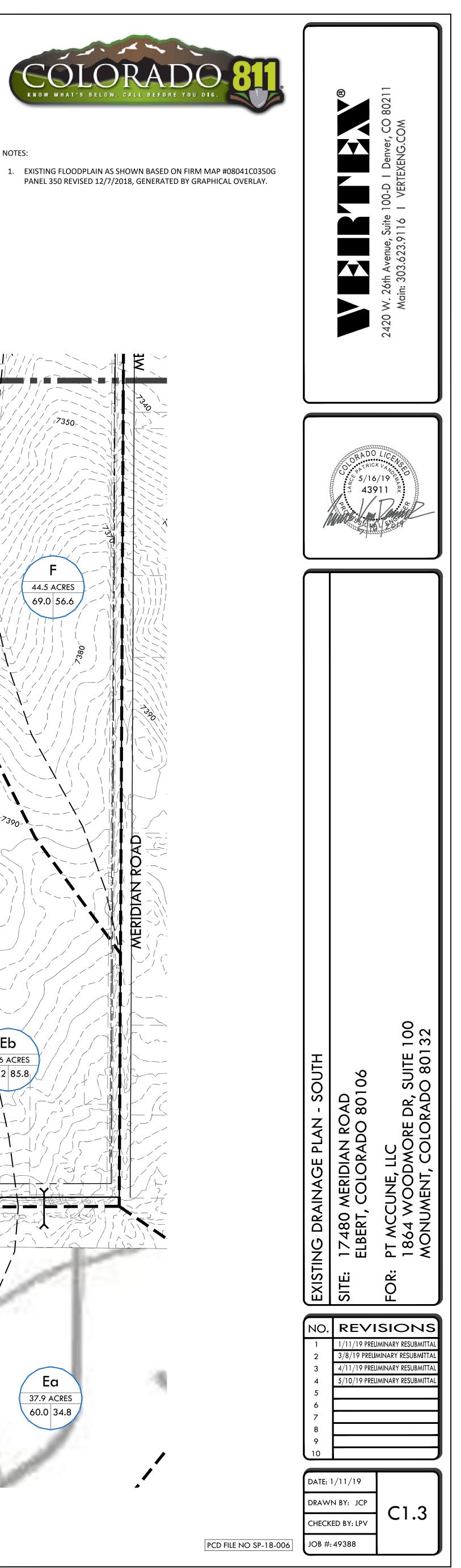


EXISTING STORMWATER			
_		F TAI	
BASIN	BASIN AREA (ACRES)	CURVE NUMBER	Q ₁₀₀
A	915.4	61.8	585.9
Ва	3836.7	60.3	1448.9
Bb	100.6	69.8	127.7
Са	162.7	60.0	127.8
Cb	70.0	68.7	88.0
Da	161.3	60.0	127.3
Db	49.9	60.0	34.1
Dc	249.7	67.7	275.7
Ea	37.9	60.0	34.8
Eb	74.6	67.2	85.8
F	44.5	69.0	56.6
G	107.6	74.5	199.0
н	121.8	71.8	197.2
I	37.5	79.0	88.5
J	10.1	69.5	19.9
к	17.8	76.0	45.1
	5998.1		

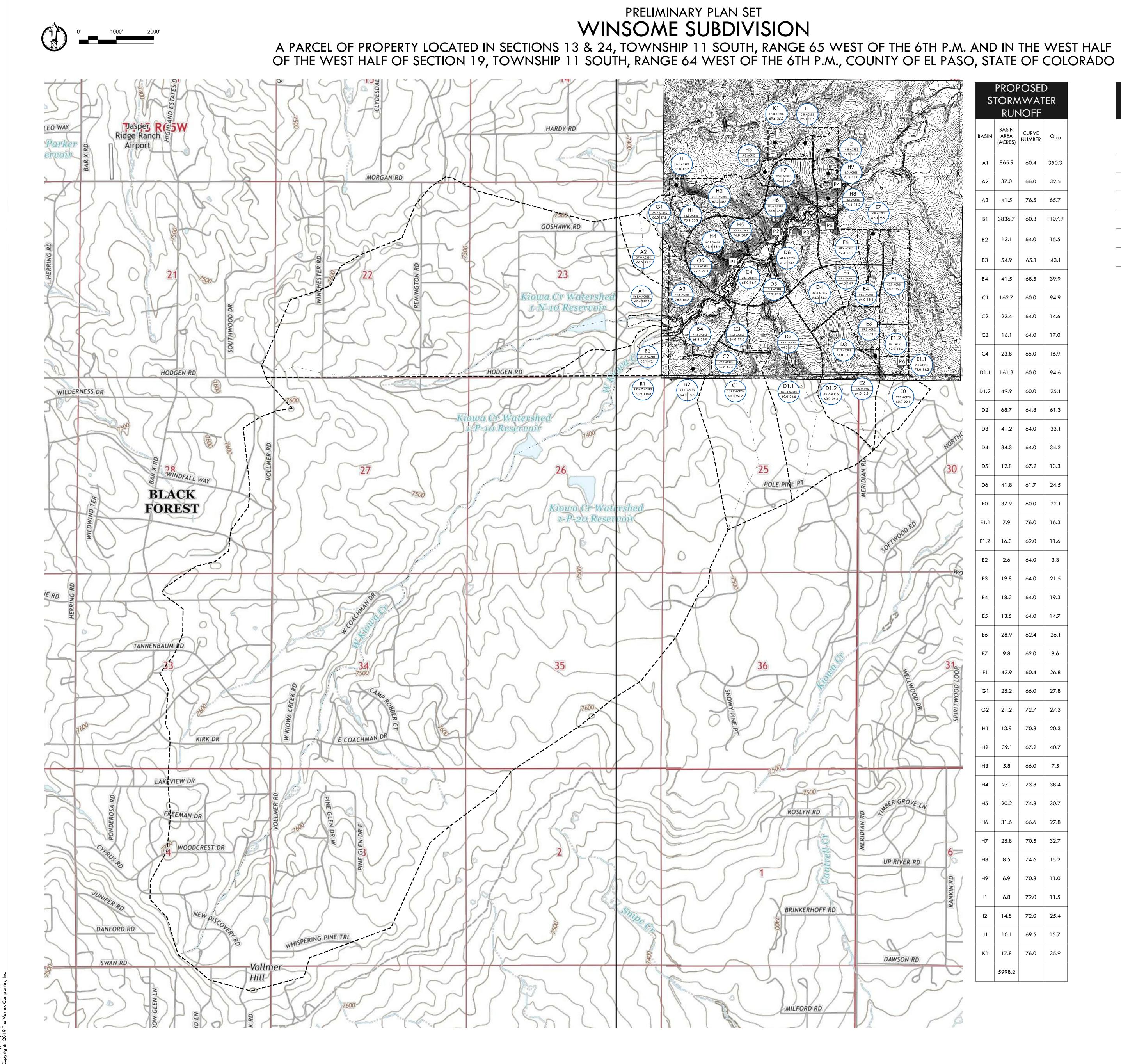


—5540—		









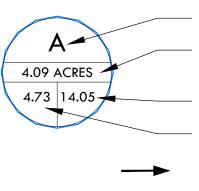






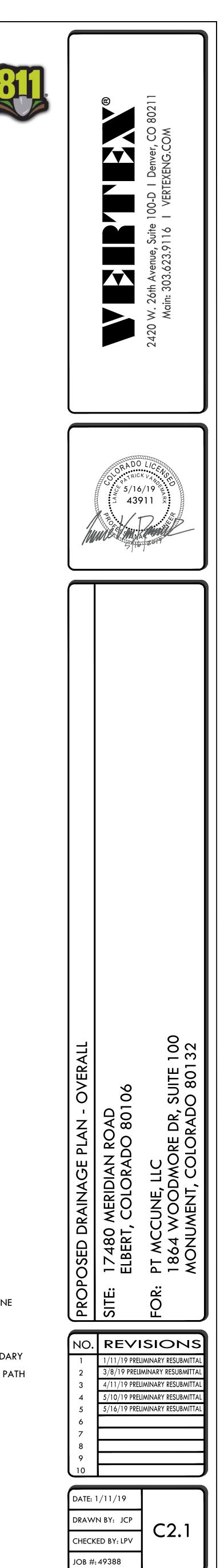

iects\49000-49999\ 16, 2019 1:56:29 PA 19 The Vertex Compa

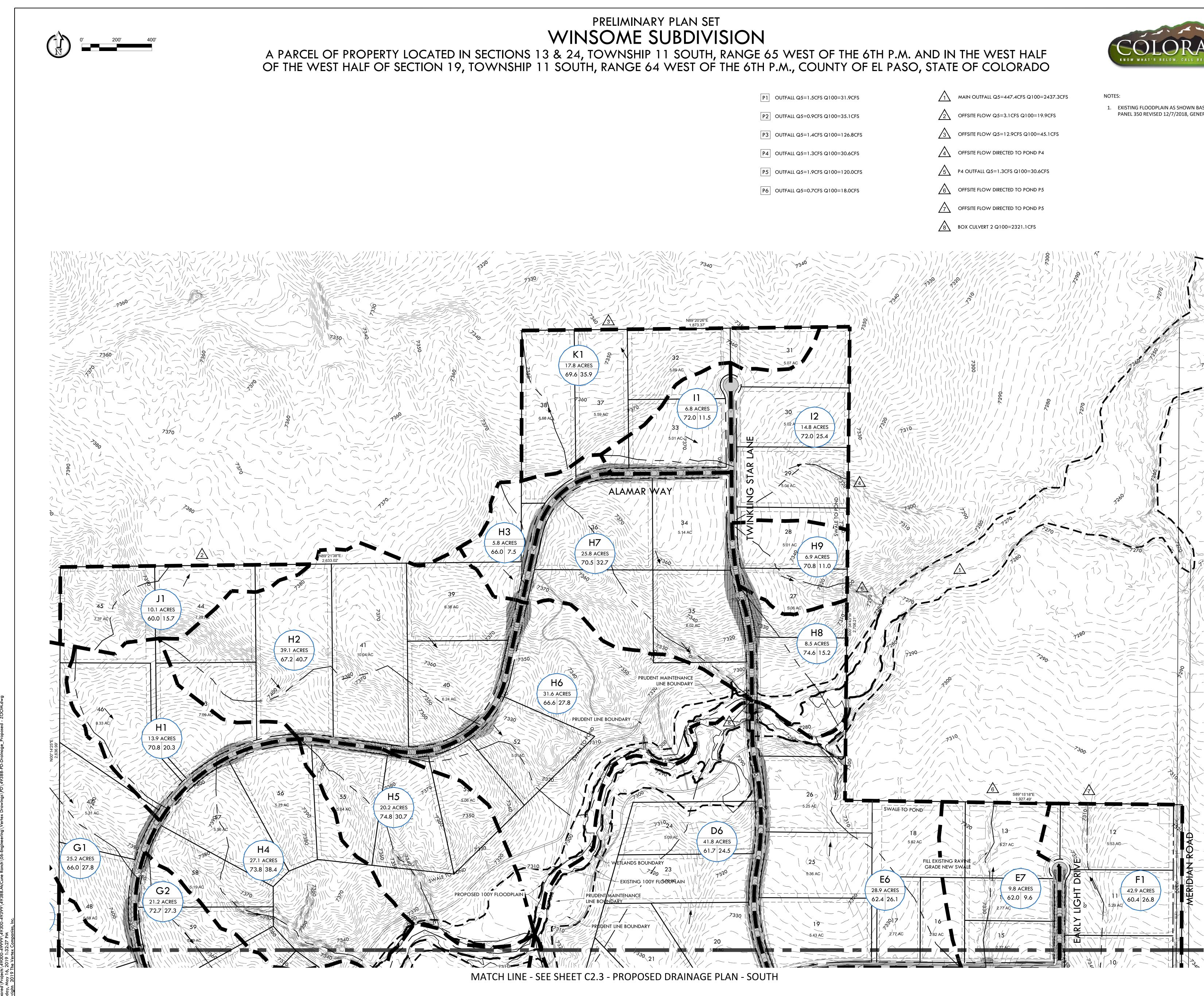
PROPOSED STORMWATER RUNOFF			
BASIN	BASIN AREA (ACRES)	CURVE NUMBER	Q ₁₀₀
A1	865.9	60.4	350.3
A2	37.0	66.0	32.5
A3	41.5	76.5	65.7
B1	3836.7	60.3	1107.9
B2	13.1	64.0	15.5
B3	54.9	65.1	43.1
B4	41.5	68.5	39.9
C1	162.7	60.0	94.9
C2	22.4	64.0	14.6
C3	16.1	64.0	17.0
C4	23.8	65.0	16.9
D1.1	161.3	60.0	94.6
D1.2	49.9	60.0	25.1
D2	68.7	64.8	61.3
D3	41.2	64.0	33.1
D4	34.3	64.0	34.2
D5	12.8	67.2	13.3
D6	41.8	61.7	24.5
EO	37.9	60.0	22.1
E1.1	7.9	76.0	16.3
E1.2	16.3	62.0	11.6
E2	2.6	64.0	3.3
E3	19.8	64.0	21.5
E4	18.2	64.0	19.3
E5	13.5	64.0	14.7
E6	28.9	62.4	26.1
E7	9.8	62.0	9.6
F1	42.9	60.4	26.8
G1	25.2	66.0	27.8
G2	21.2	72.7	27.3
H1	13.9	70.8	20.3
H2	39.1	67.2	40.7
H3	5.8	66.0	7.5
H4	27.1	73.8	38.4
H5 	31.6	66.6	30.7 27.8
H6 	25.8	70.5	32.7
H2 H8	8.5	74.6	15.2
Н9	6.9	70.8	11.0
]	6.8	72.0	11.5
12	14.8	72.0	25.4
J1	14.0	69.5	15.7
K1	17.8	76.0	35.9
	5998.2		

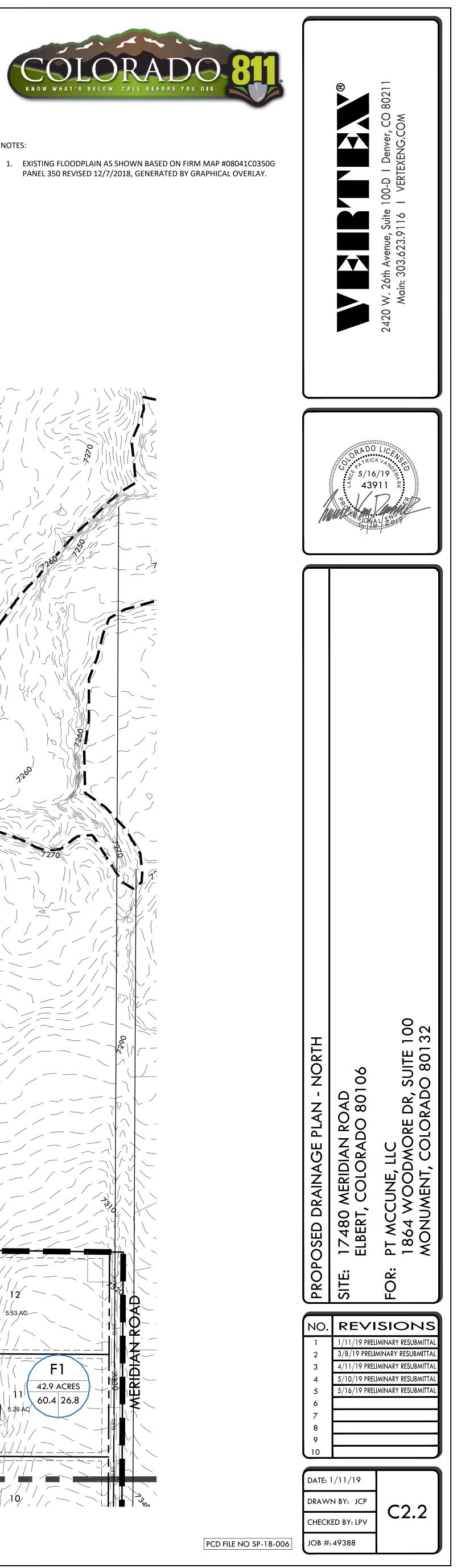

COLORADO	8
KNOW WHAT'S BELOW, CALL BEFORE YOU DIG.	

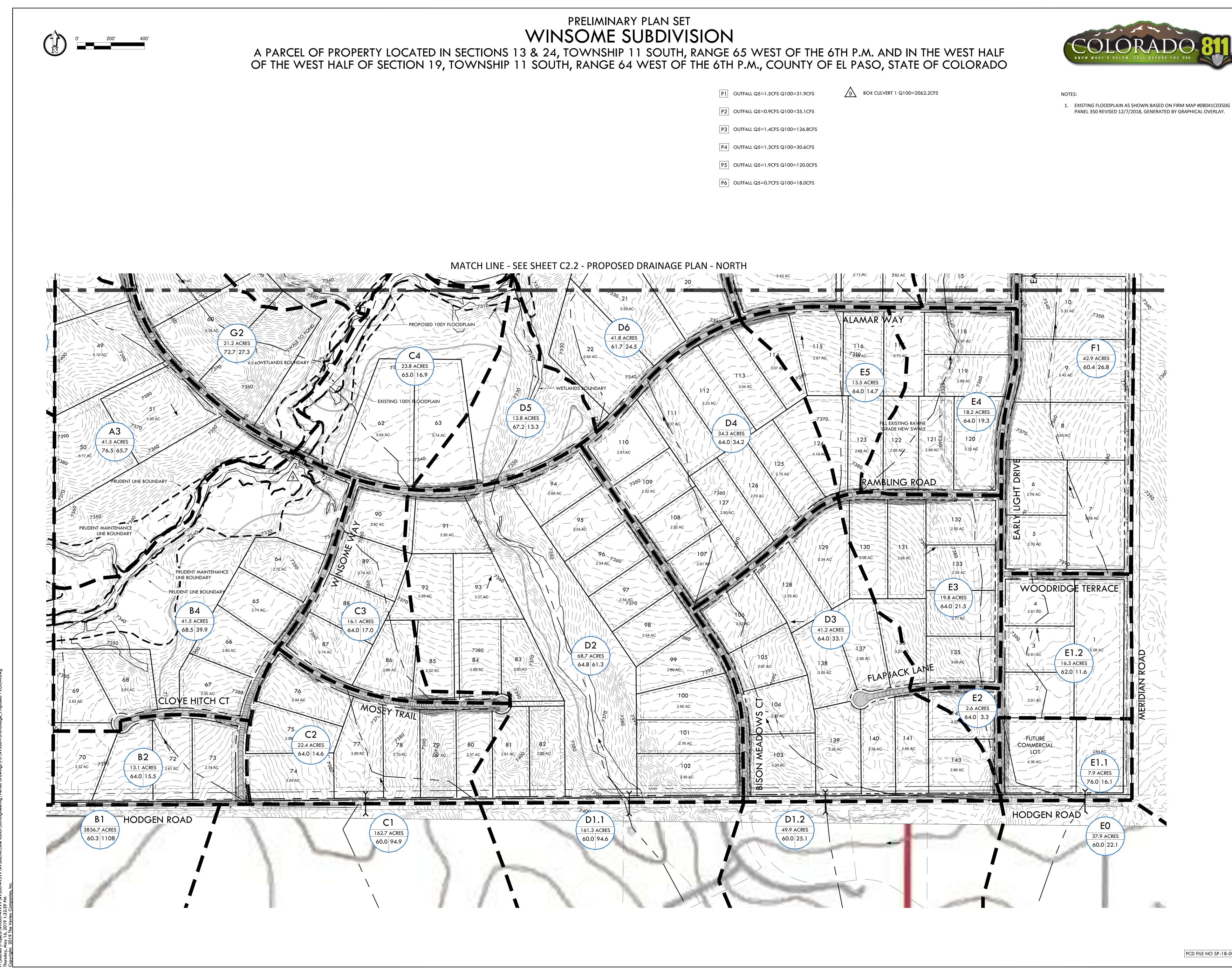
DETENTION POND SUMMARY			
POND NUMBER	PROPOSED VOLUME	FLOW EXITING POND	
1	8.0 AC-FT	31.9 CFS	
2	7.4 AC-FT	35.1 CFS	
3	7.1 AC-FT	126.8 CFS	
4	1.5 AC-FT	30.6 CFS	
5	9.7 AC-FT	120.0 CFS	
6	4.0 AC-FT	18.0 CFS	

# LEGEND

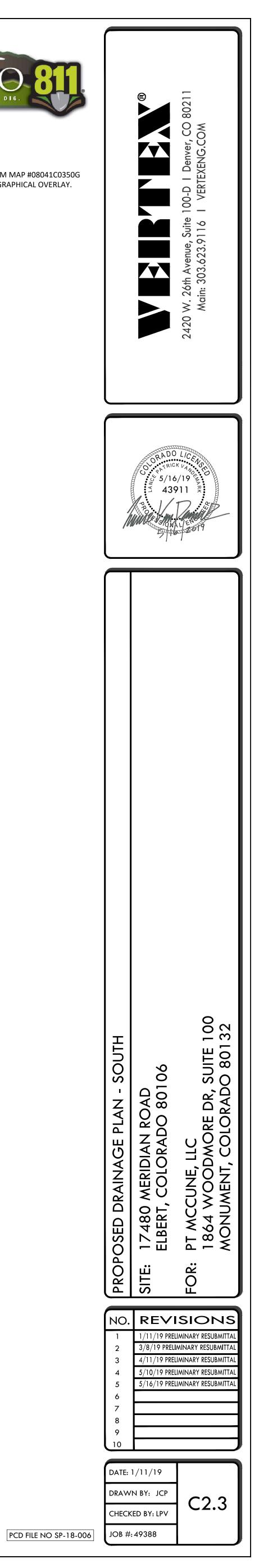

—5540———	
—5540———	
	_


PROPERTY BOUNDARY LINE PROPOSED CONTOUR EXISTING CONTOUR DRAINAGE BASIN BOUNDARY DRAINAGE BASIN FLOW PATH



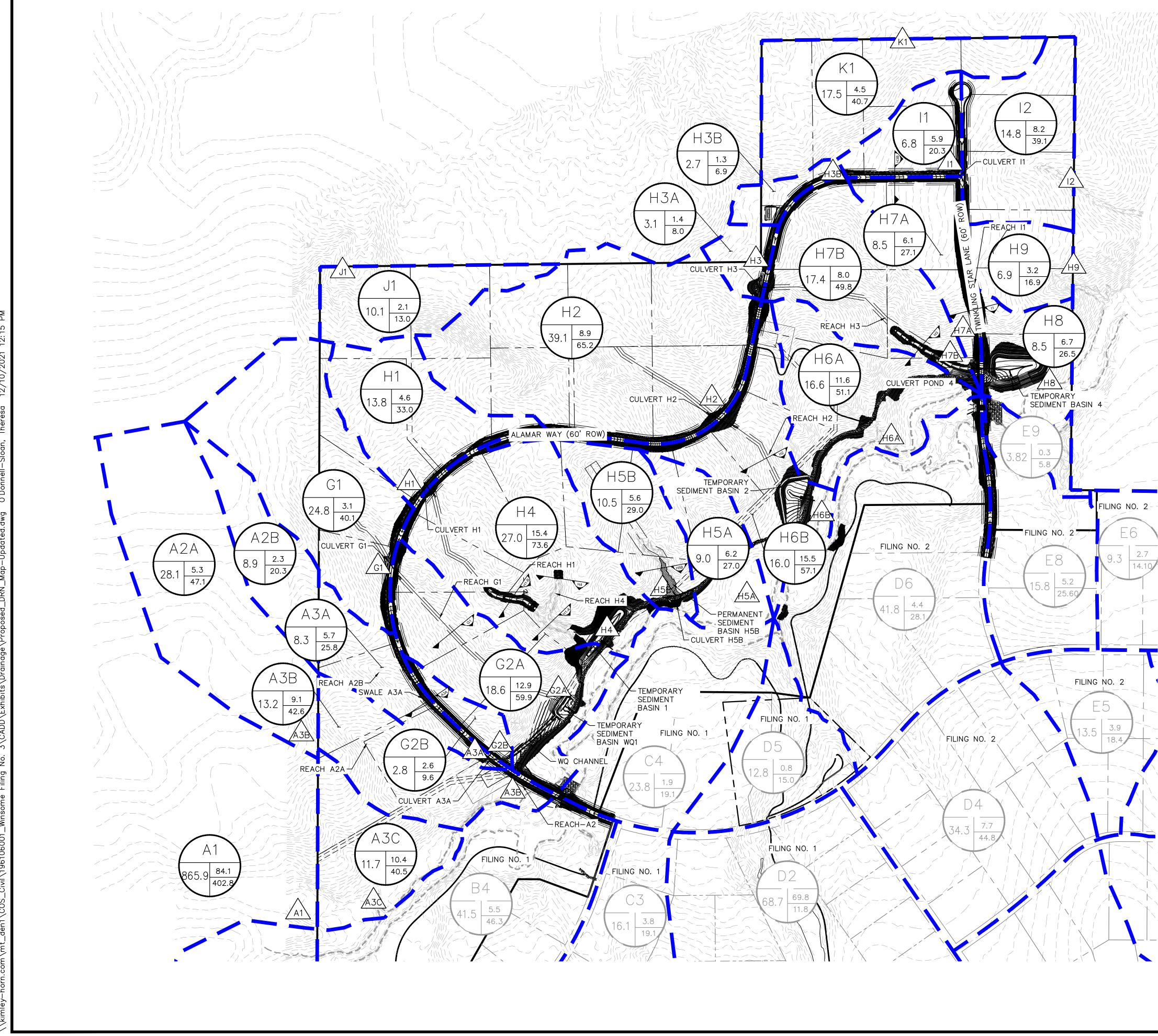


- BASIN NAME – DRAINAGE BASIN SIZE - 100-YEAR RUNOFF

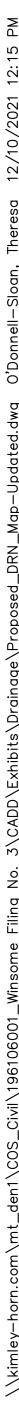
- CURVE NUMBER FLOW ARROWS

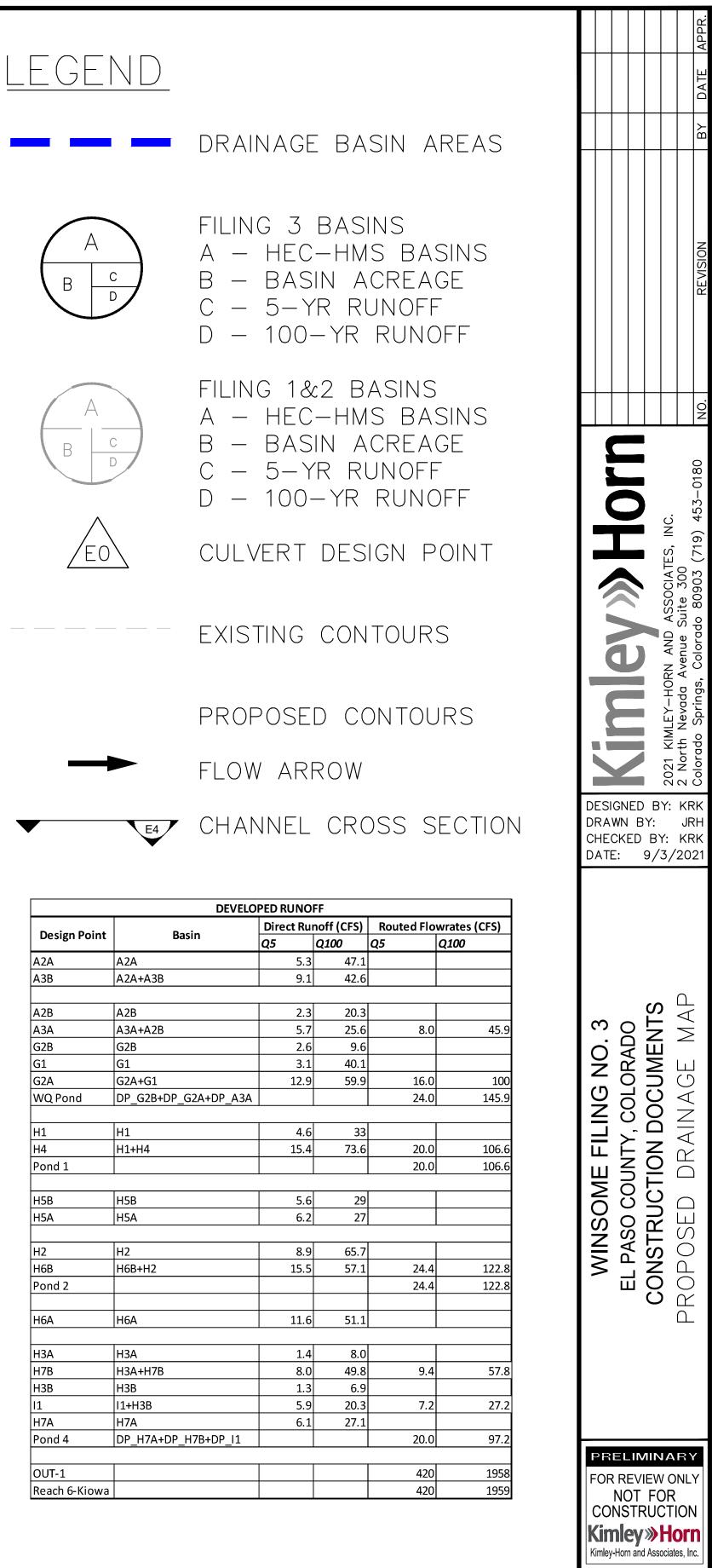




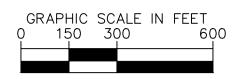


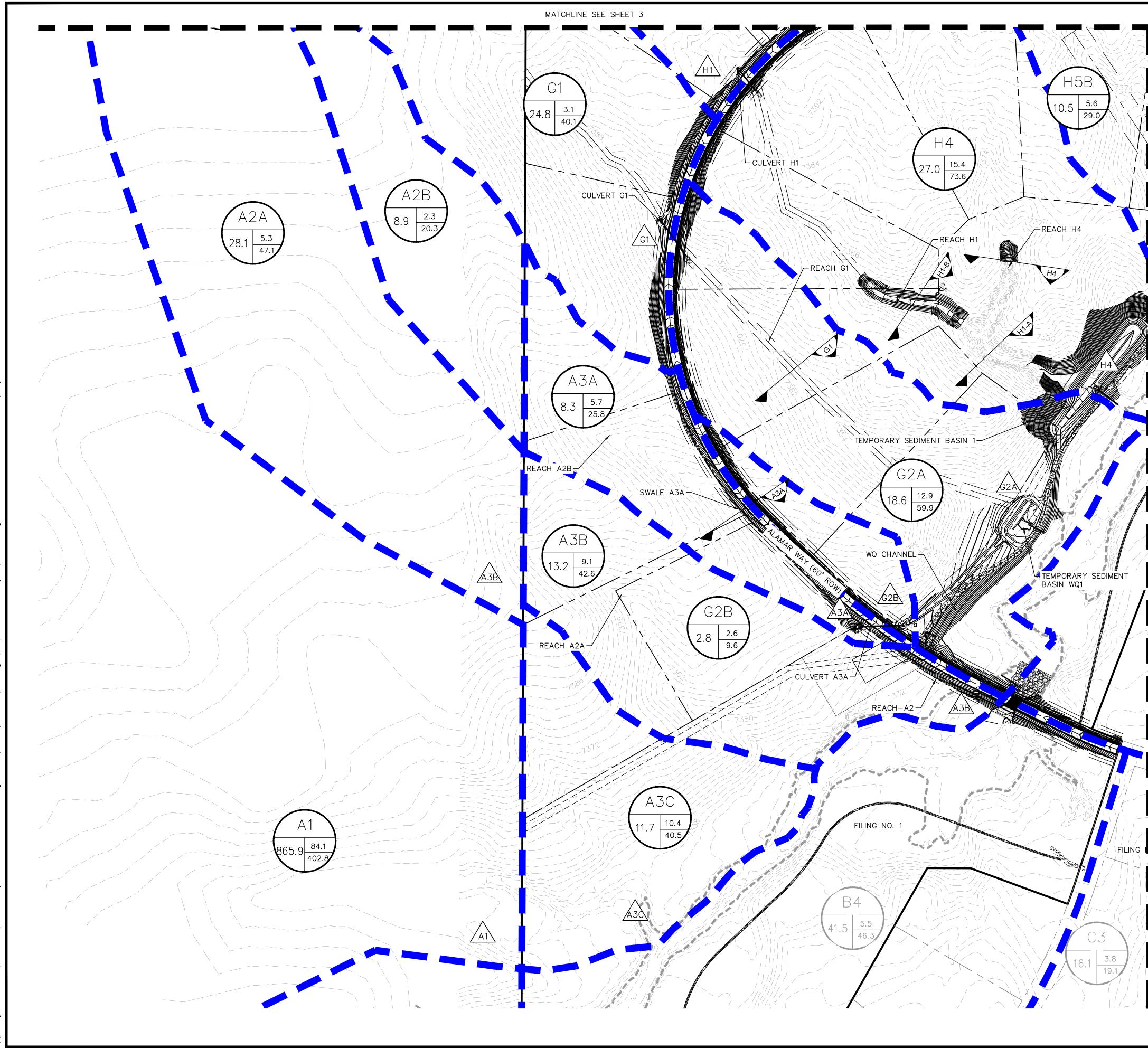



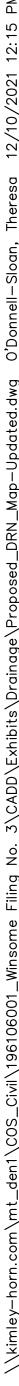

APPENDIX E: DRAINAGE MAPS

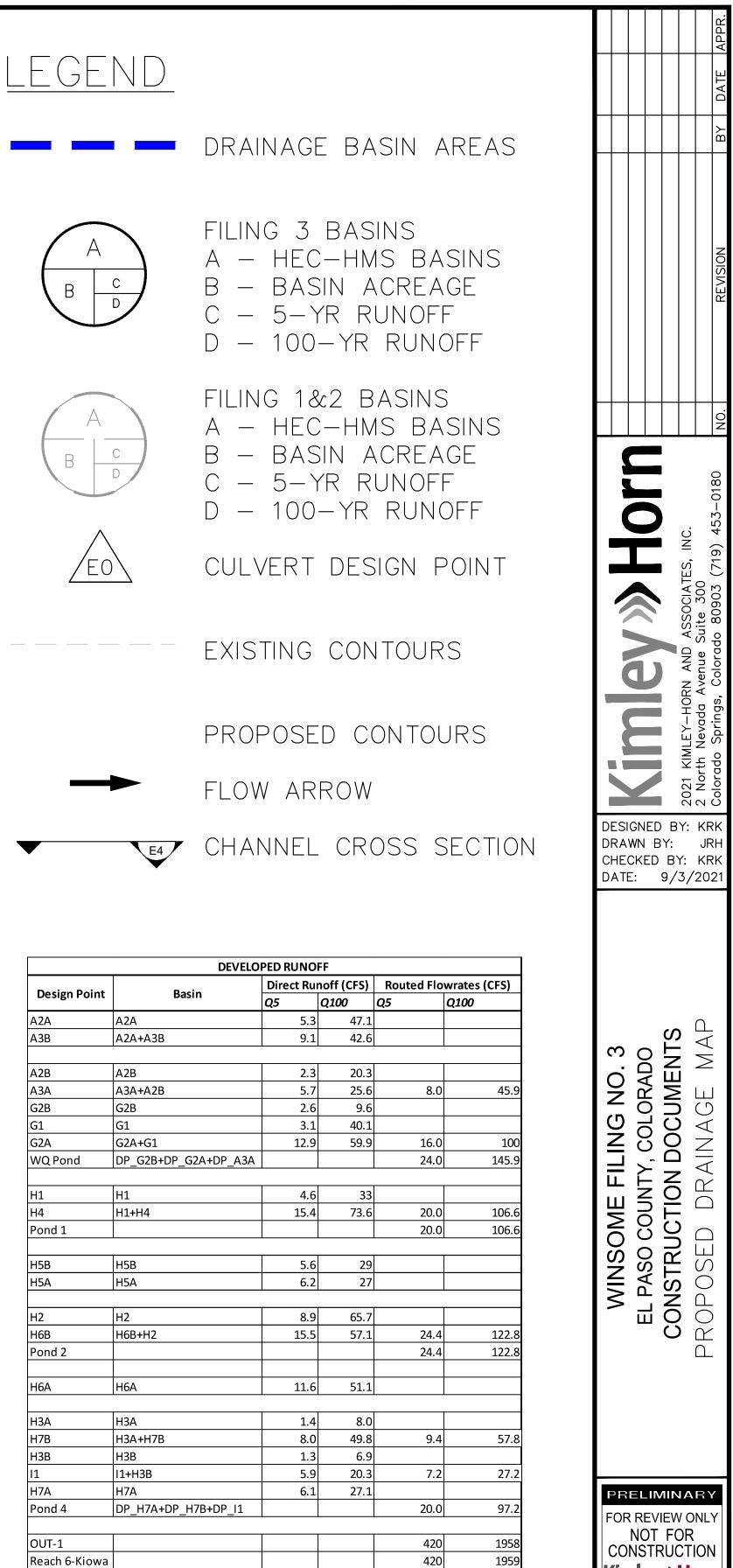

Kimley **»Horn** 





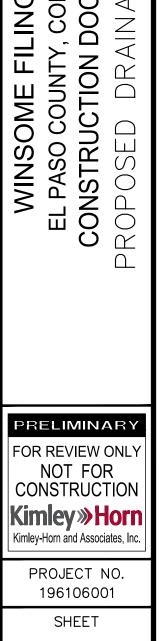




NORTH

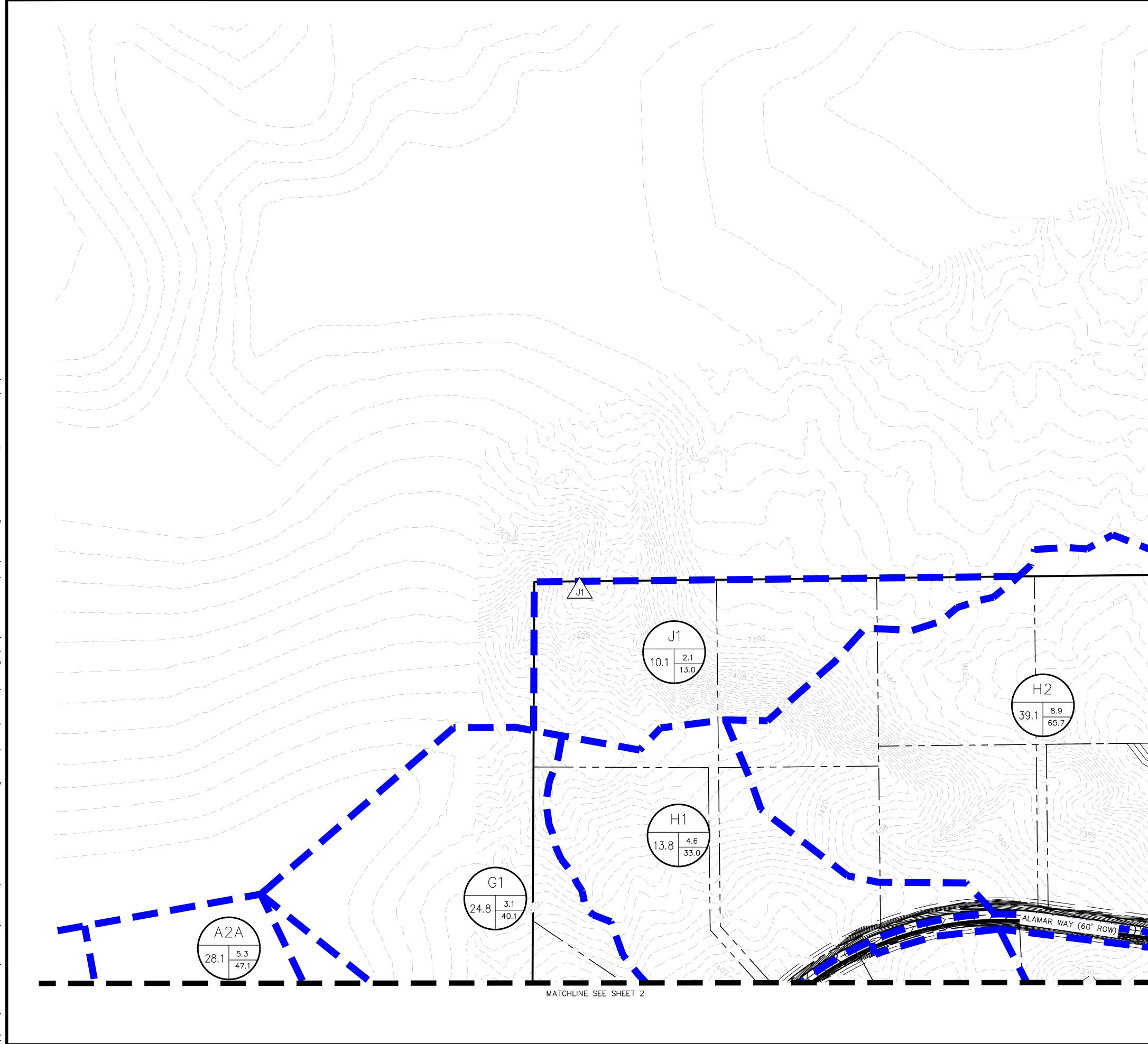



PROJECT NO. 196106001

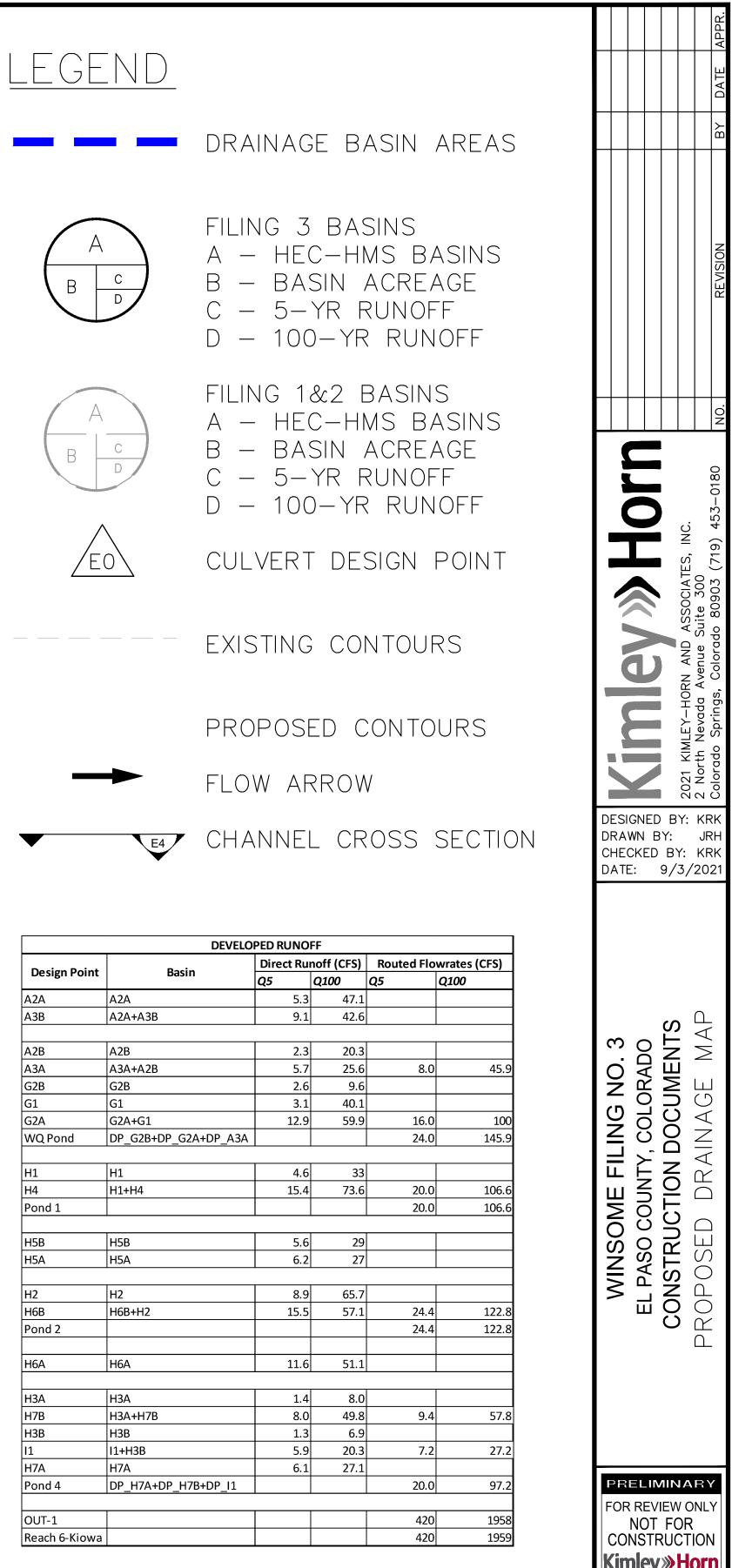
SHEET





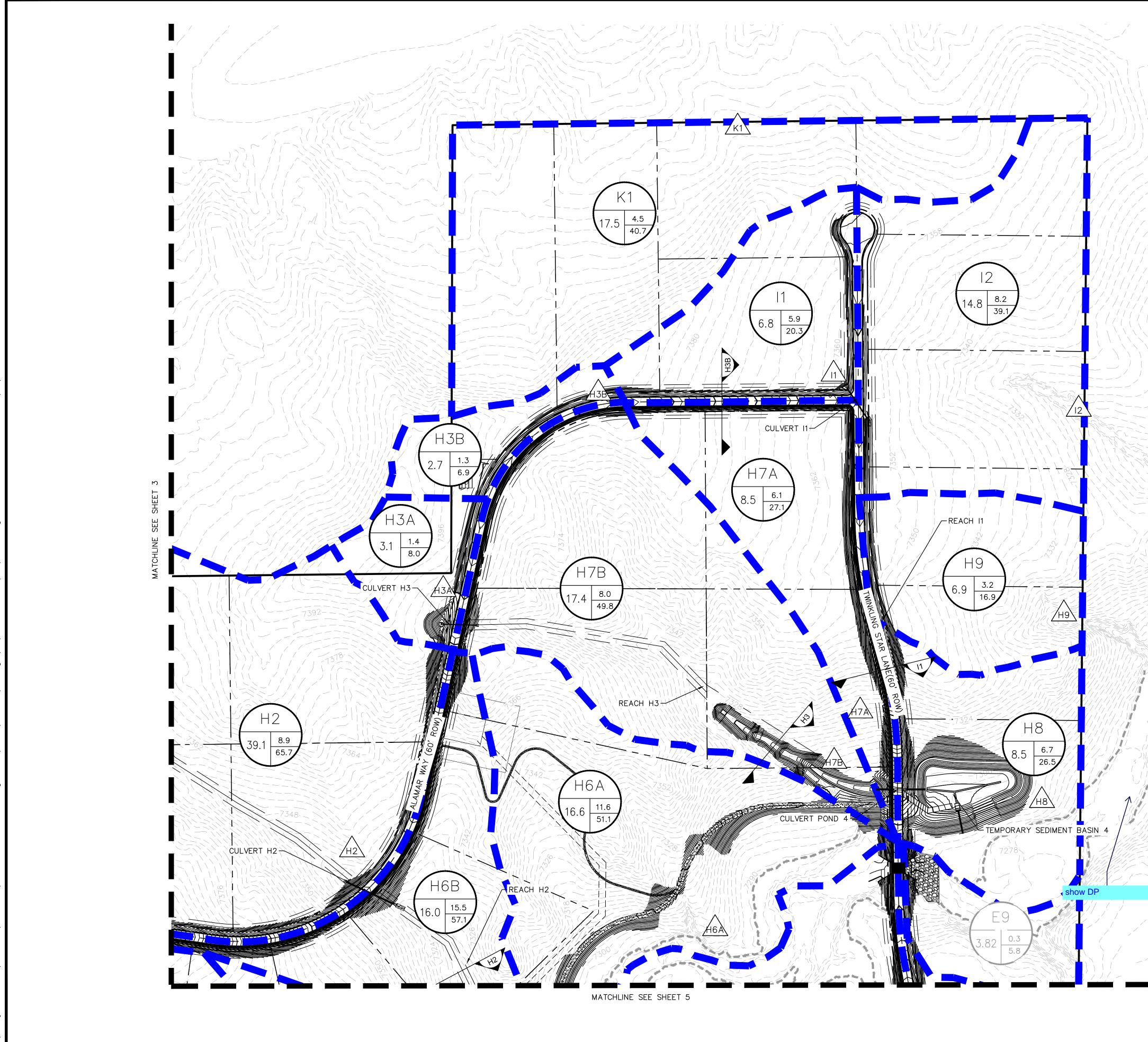

NORT


GRAPHIC SCALE IN FEET 300

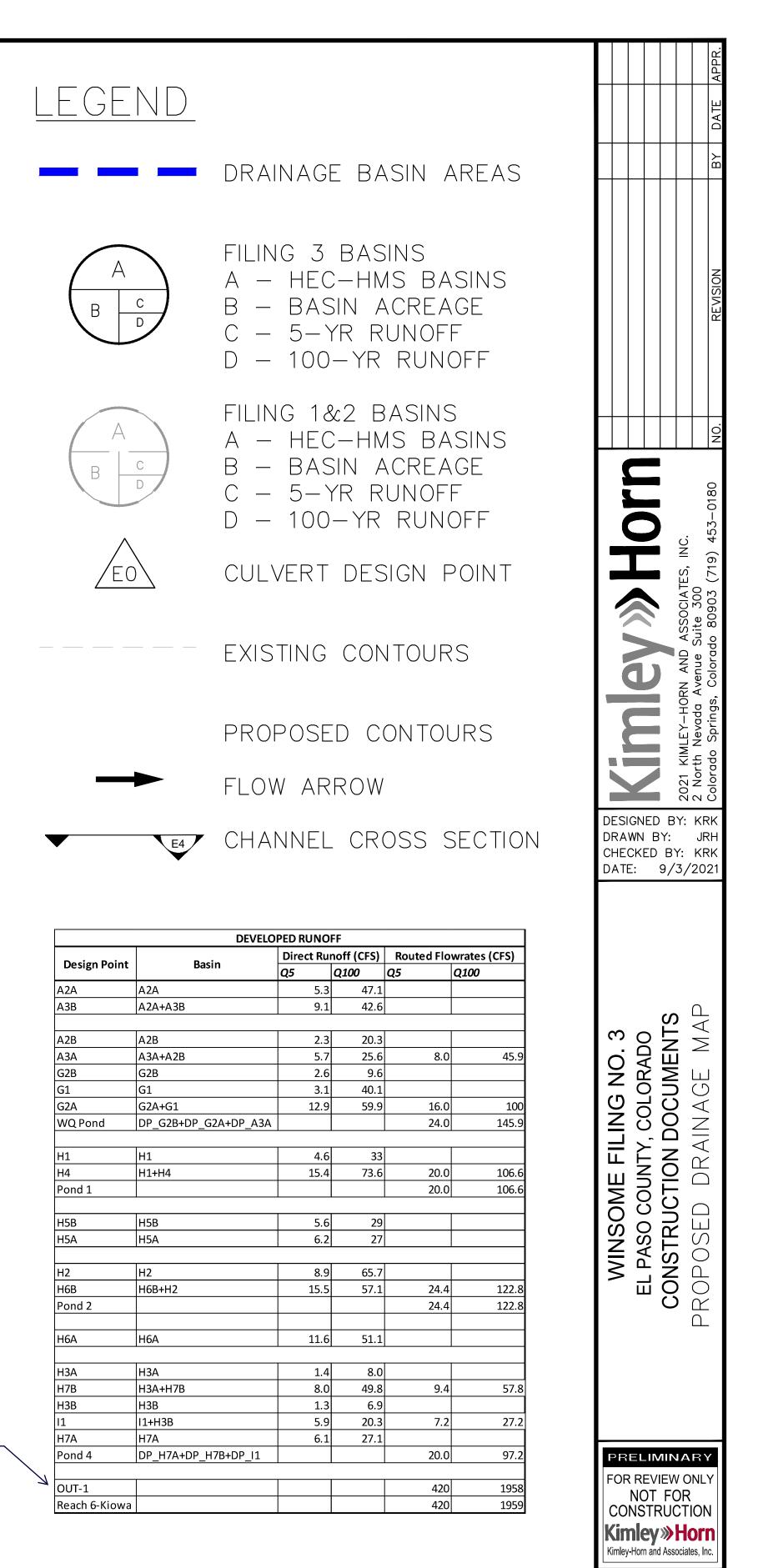


2









NO

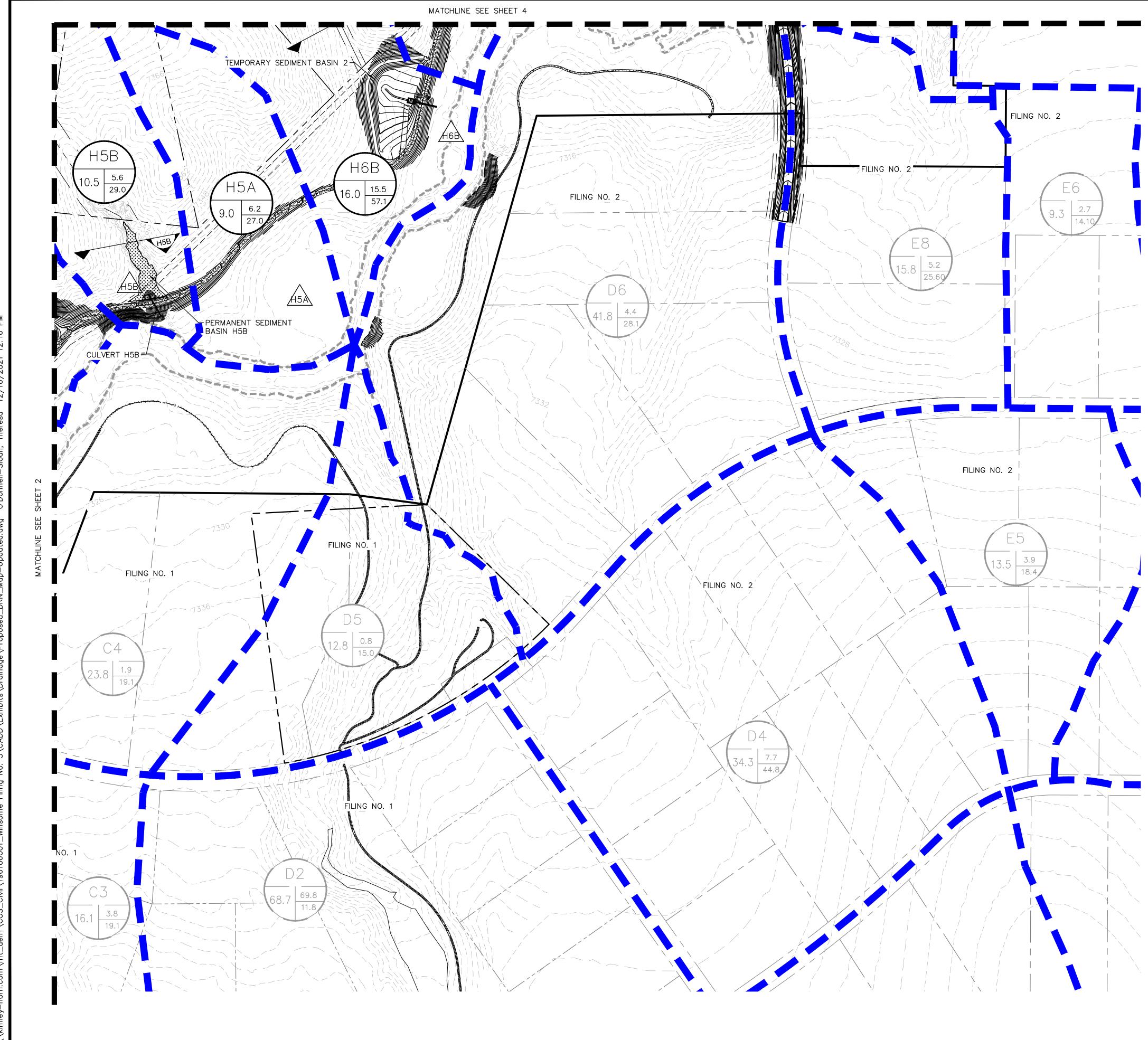
GRAPHIC SCALE IN FEET D 75 150 30 300



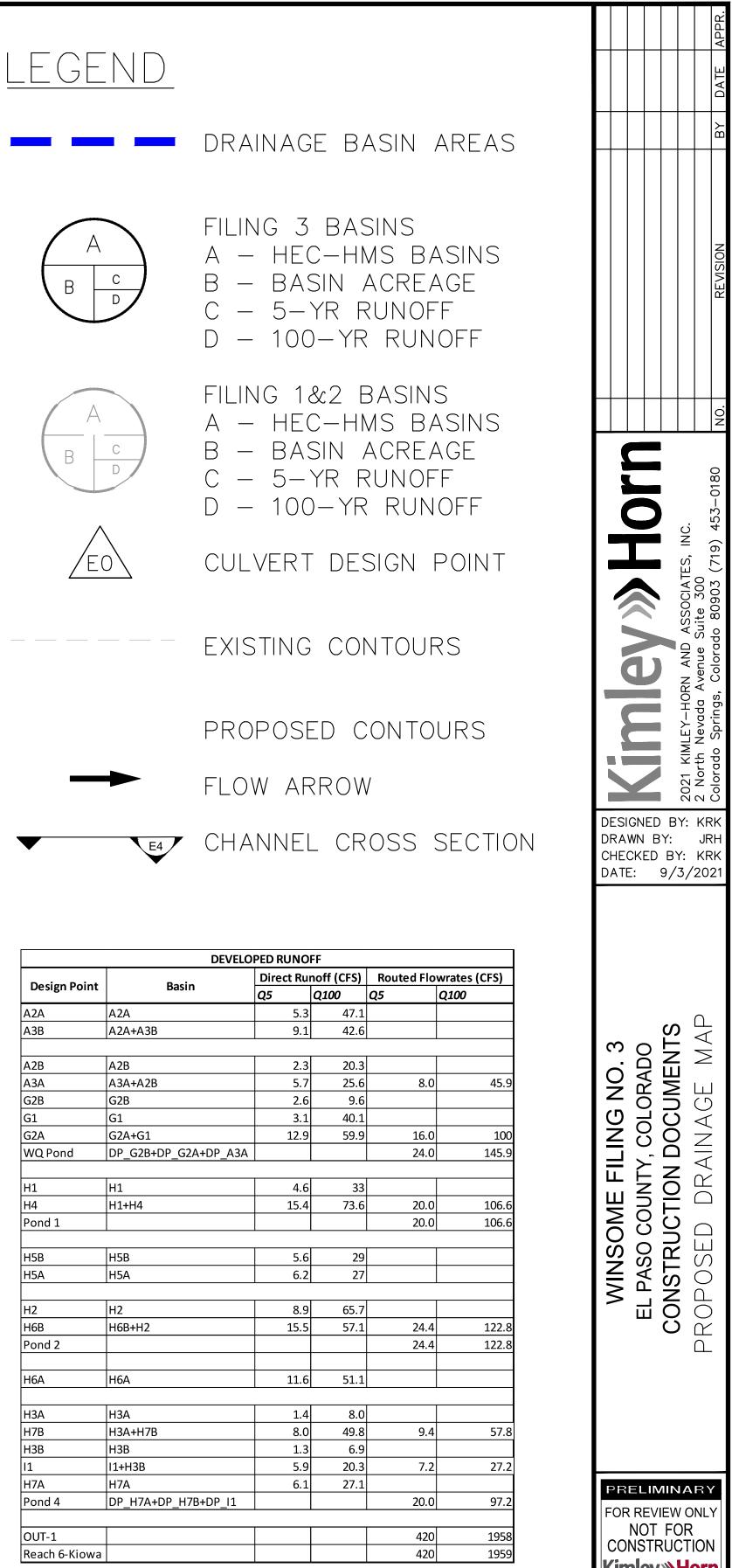






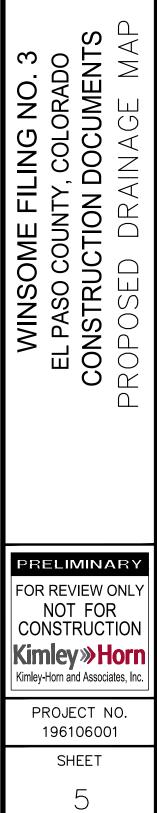

NORTH

GRAPHIC SCALE IN FEET 300


PROJECT NO. 196106001

SHEET

4










GRAPHIC SCALE IN FEET 300

