

January 10, 2022

Mr. Gilbert LaForce El Paso County 2880 International Cir., Suite 110 Colorado Springs, CO 80910

Please add PCD Project # CDR-22-002

Dear Gilbert:

DRAINAGE LETTER - JUDGE ORR ROAD RV PARK & STORAGE

Submit inlet calculations for the two proposed inlets. Revise to the standard Type R inlet.

THIS DRAINAGE LETTER is to Certify that the Approved Final Drainage Report for the dge Orr Road RV Park & Storage Development prepared by Associated Design ofessionals, Inc. included the area involved in the extension of Range Flower 'ay. The area included in the Range Flower Way drainage area was delineated as b-basin A2A and contained 2.58 acres. The flows from this basin produced 5.7 of the 5-year storm and 12.0 cfs for the 100-year storm. These flows will be

intercepted by two 5' D10R inlets which connect to the 24" RCP which flows east to the approved detention basin.

I hereby Certify that there are no changes to these flows from the date of the approved report to the development of the roadway improvement plans.

Please call me if you have questions.

Sincerely,

Michael A. Bartusek, PE Project Engineer

W3925.-Judge Orr Rd RV Park & S SUITE 1110 COLORADD SPRINGS CD ADDD3 71928 Standard Signature block in MS Word attached. Drainage Reports <u>Design Engineer's Statement:</u>

STANT.

. cat a

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Please add Standard

shown per DCM Vol

Section 4.6.1

Certification Statements as

[Name, P.E. #_____

ime, P.E. #_____

Owner/Developer's Statement:

I, the owner/developer have read and will comply with <u>all of</u> the requirements specified in this drainage report and plan.

[Name, Title] [Business Name] [Address] Date

Date

El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

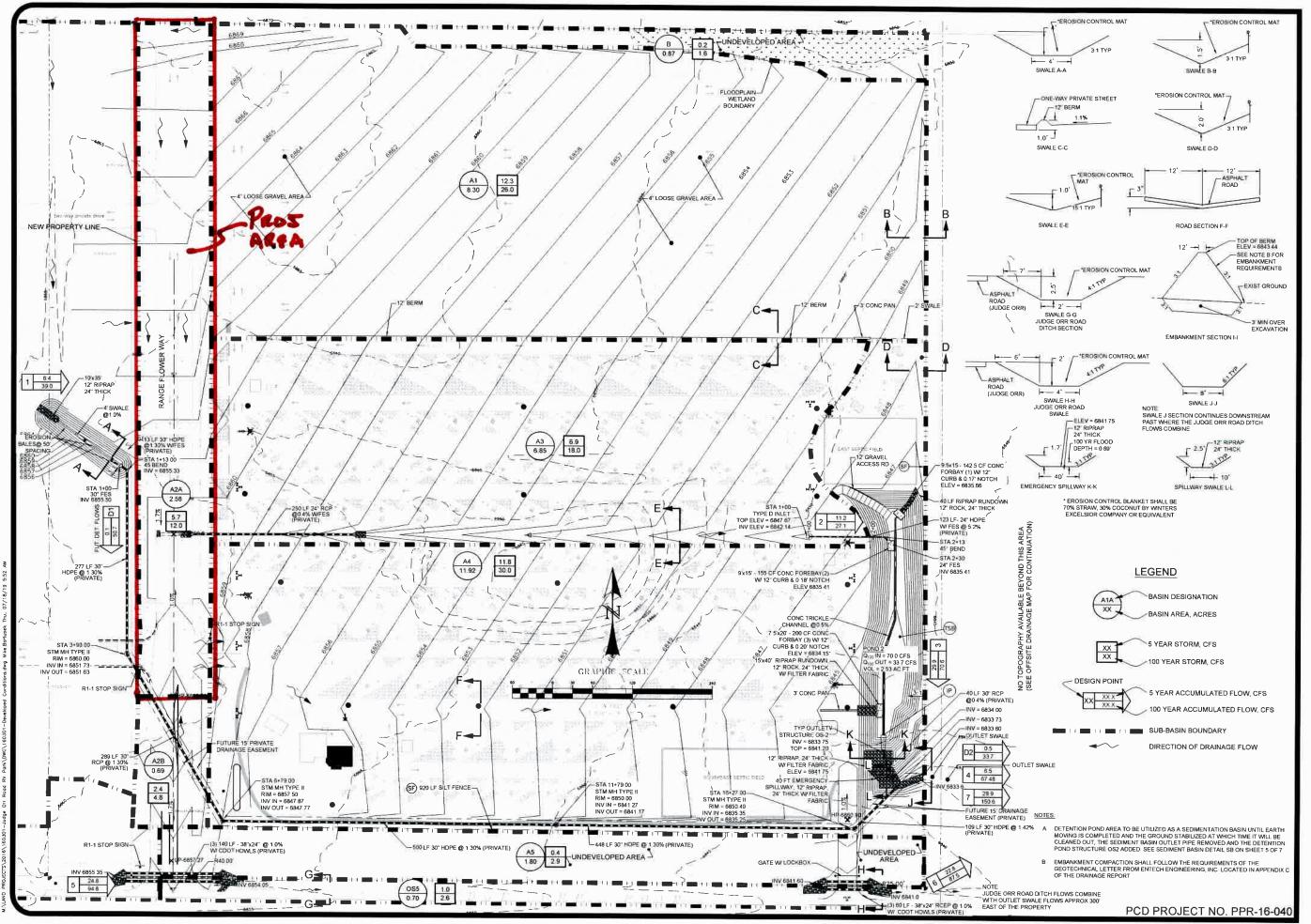
Jennifer Irvine, P.E. County Engineer / ECM Administrator

Conditions:

Date

respec.com

	RR ROAD R		STORAGE	DEVELOP	MENT		
C FACTOR	CALCULATI	ON SHEET				10	
	OEFICIEN						
TYPE A/B							
LAND USE	JOILD		5 YR	100 YR	IMPERV.		
				100 110	8		
UNDEV			0.08	0.35			
LOOSE GRA	AVEL		0.59	0.7	80		
GRAVEL R			0.59	0.7	80		
	V PARKING	PAD	0.59	0.7	80		
	ADS/BUILD		0.9	0.96	100		
							141
Historic Co	nditions				±		
	TOTAL		CONDITION	AREAS		CALCULATE	DC
AREA	AREA	GRASSED	LOOSE	GRAVEL	BUILDINGS	5	100
		SURFACE	GRAVEL	ROADS	OR PAVED		
DESIG.	(acre)				ROADS	YR	YR
A1	11.75	11.75	0.00	0.00	0.00	0.00	0.05
A1 A2			0.00	0.00	0.00	0.08	0.35
A2 A3	20.75		0.00	0.10	0.05	0.08	0.35
AS	4.36		0.00	0.35	0.10	0.14	0.39
	36.86	36.26	0.00	0.45	0.15	0.09	0.36
% Imperviou	s	0%	80%	80%	100%		
Imp x A		070	0070	0.36	0.15		
Total I x A	0.51			0.00	0.10		
Total Imp	0.51/36.86	= 1.4%					
В	0.87	0.87	0.00	0.00	0.00	0.08	0.35
OS1	7.81	7.19	0.00	0.00	0.62	0.15	0.40
OS2	36.41	35.96	0.00	0.00	0.45	0.09	0.36
OS3		From Heag		0.00	0.10	0.30	0.60
OS4	13.73	12.37	0.00	0.00	1.36	0.16	0.41
OS5	0.71	0.42	0.00	0.00	0.29	0.10	0.60
	0.71	0.72	0.00	0.00	0.29		0.00


Developed (SUDEACE	CONDITION				
	TOTAL		CONDITION			CALCULATE	
AREA	AREA	GRASSED	LOOSE	GRAVEL	PAVED	5	100
		SURFACE	GRAVEL	RV	ROADS		
DESIG.	(acre)			PARKING		YR	YR
A1	8.30	0.61	7.69	0.00	0.00	0.55	0.67
A2A	2.58	0.86	0.00	0.00	1.72	0.63	0.76
A3	6.85	3.88	0.00	1.15	1.82	0.38	0.57
A4	11.92	9.18	0.00	1.49	1.25	0.23	0.46
Total @Ponc	29.65	14.53	7.69	2.64	4.79	0.39	0.57
A2B	0.70	0.16	0.00	0.00	0.54	0.71	0.82
A5	1.80	1.72	0.00	0.00	0.08	0.08	0.38
% Impervious	S	0%	80%	80%	100%		
Imp x A		0	6.15	2.11	4.79		
Total I x A	13.05						
Total Imp	13.05/29.6	5 = 44.0%					
В	0.87	0.87	0.00	0.00	0.00	0.08	0.35
OS1	7.81	7.19	0.00	0.00	0.62	0.15	0.40
OS2	42.70	19.20	0.00	0.00	23.50	0.53	0.69
OS3	27.21	From Heag	er DBPS			0.30	0.60
OS4	4.18	2.82	0.00	0.00	1.36	0.35	0.55
OS5	0.70	0.42	0.00	0.00	0.28	0.41	0.59
Pond 1							
% Impervious	s TOTAL	CRASSED	NEIGHBOR				
	AREA		COMMERC				
OS1	7.81	7.81	COMMENC				
OS2	42.70		41.05				
002	50.51	9.46	41.05				
% Impervious	8	0%	70%				
Imp x A		070	28.74				
Total I x A	28.74	0	20.74				
Total Imp	28.74/50.5	1 = 56 9%					

g Se

PROJ. #160301	60301																				
<pre>DRAINAGE CALCUI file:judge orr n7/17/10</pre>	rvl	N SHEET dr																			
	r L L	u t	0010	;				Tci 		Travel	Time	É	C E			ų		length	vel.		
AREA DESIG.	AREA (acre)	(5 yr)	(100 Yr)	A A CU	CTOO Y H	A L (ft)	910De	עד) (mín)	L (ft)	(%)	(fps)	TL (min)	ر (min) ((in/hr (1100 (in/hr	(cfs)	(cfs)	ل (feet)	(fps)	(min)	AKEA DESIG
EXISTING	CONDITIONS																				
Al	11.75	0.08	0.35	0.94	4.11	200	2.00	21.46	1150	1.90	2.10	9.13	30,59	2.29	4,00	2.15	16.47			*	A1
0S1	7.81	0.15	0.40	1.17	3.12	150	2.00	17.31	600	1.18	2.35	4.26	21.56	2.80	4.89	3.28	15.27	450	4.50	1.67	OS1
os2	22.10	0.09	0.36	1.99	7.96		2.00	18	Ē	1.20	1.20	19.44	37.85	2.01	3.52	4.00	27.97			-	OS2
DP1	29.91			3.16	11.08								37.85	2.01	3.52	6,36	38.95	1250	2.10	9,92	DP1
A2 DP2	47.38	0.08	0.35	4.56	6.11 17.19	720	3.20	20.55	1400	1.90	2.10	11.11	31.66 47.77	2.25	3.92 3.03	3.14	23.98 52.10				A2 DP2
0S3	27.21	0.30	0.60	8.16	16.33	250	2.00	-	1570	2.90	1.80	14.54	33.35	2.18	3.80 7.0	17.76	62.04	1800	4.00	7.50	OS3
US4 DP3	52.35	0.0	0.41	4.02 12.19	26.63		7-00	77.11			z.UU	00.61	37.11	2.04 2.04	3.56 3.56	0.2U 24.83	94.79	1050	2.25	7.78	DP3
54	2 80	0 14	0.30	0.30	1 00	100	00.0		1050	1 23	2.25	7 78	22 06	2.76	4.83	1 08	5.27				ΕA
0.85	0.82	0.41	0.60	0.34	0.49	10	2.00	3.25		1.23	2.25	7.78	11.02	3.89	6.79	1.31	3.34				OS5
DP4 DP5	55.97 115.10			12.91 18.41	28.22 49.52								44.89 44.89	1.81	3.15 3.15	23.32 33.25	89.02 156.23				DP5
												i									
	0.87	0.08	0.35	0.07	0.30	8	2.00	13.57	650	1.30	2.30	4.71	18.28	3.05	5.34	0.21	1.62				m
DEVELOPED	D CONDITIONS	0																			
0S1	7.81	0.15	0.40	1,17	3.12	150	2.00	_	_	1.18	2.35	4.26	21.56	2.80	4.89	3.28	15.27	450	4.50	1.67	OS1
OS2 DP1	22.10 29.91	0.0	0.36	1.99 3.16	7.96 11.08	150	2.00	18.40	1400	1.20	1.20	19.44	37.85 37.85	2.01 2.01	3.52 3.52	4 .00 6.36	27.97 38.95	1594	10.00	2.66	OS2 DP1
A1	8.30	0.56	0.68	4.65	5.64	100	2.00	8.03	1150	1.50	1.20	15.97	24.01	2.64	4.61	12.26	26.00	650	1.20	9.03	A1
A2A	2.58	0.63	0.76	1.63	1.96	35	2.00	4.14	700	1.50	1.20	9.72	13.86	3.50	6.12	5.69	12.00	675	1.20	9.38	A2A
A3	6.85	0.38	0.57	2.60	3.90	Ĺ	2.00			1.50	1.20	13.19	23.91	2.64	4.62	6.88	18.03				A3
DP2	9.43			4,23	5.87								23.91	2,64	4.62	11.18	27.08	230	1.20	3.19	DP2
A4-	11.92	0.39	0.57	4.65	6.79	100	2.00	10.56	1100	1.50	1.20	15.28	25.84	2.53	4.42	11.76	30.02				A4
DP3	29.65			13.53	18.30								33.03	2.19	3.82	29.60	69.97	150	5.00	0.50	DP3
DPD2 DP4	29.65 59.56			0.23	8.93 20.01	*Adjusted	C Fac	tor for	Detenti	ion Basin	5		33.03 40.50	2.19 1.93	3.82 3.37	0.50 6.5 4	33.70 67.41				DP4
0.8.3	27.21	0.30	0.60	8.16	16.33	250	2.00	18.82	1570	2.90	1.80	14.54	33.35	2.18	3.80	17.76	62.04	1800	4.00	7.50	OS3
100	L	0.0																			

0.80 0.71 0.82 0.49 0.87 0.85 0.49 0.87 0.85 0.49 0.87 0.85 0.47 0.46 0.85 0.47 0.85 0.47 0.85 0.47 0.45 0.85 0.47 0.45 <th0.45< th=""> 0.45 0.45 <th0< th=""><th>DP5</th><th>52.35</th><th></th><th></th><th>12.19</th><th>26.63</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th>~</th><th>ő</th><th>1050</th><th>2.25</th><th>7.78</th><th>DP5</th></th0<></th0.45<>	DP5	52.35			12.19	26.63									_	~	ő	1050	2.25	7.78	DP5
190 109 0.03 0	A2B	0.69	0.71	0.82	0.49	0.57	35	2.00		200	_									1.53 ,	A2B
070 0.41 0.63 1.03 0.73 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04 2.04 1.04	۸5 ا	1.80	0.08	0.38	0.14	0.68	180	2.00	1	1050											A5
1554 1028 273 1035 273 574 1035 273 574 06F 06F 035 007 033 80 200 1355 554 074 066 06F 036 037 033 80 200 1357 650 1006 034 126 1006 06F 036 037 033 80 200 1357 650 136 <td>s5</td> <td>0.70</td> <td>0.41</td> <td>0.59</td> <td>0.29</td> <td>0.42</td> <td>10</td> <td>2.00</td> <td></td> <td>1300</td> <td></td> <td>0S5</td>	s5	0.70	0.41	0.59	0.29	0.42	10	2.00		1300											0S5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P6	55.54			12.62	27.73					1					[°]					DP6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P7	115.10			16.00	47.74							4				-				DP7
+ C Pactor Adjured Design		0.87	0.08	0.35	0.07	0.30	80	2.00	13.57	650	_		71	r)	2	0					m
APACITY CALCULATION SHET B Et D D Erroude Ruperey Ruperey Recorde Ruperey Ruperey ab 0 <		υ				from Det		int		al Meth	Desi		+								
$ \frac{1}{2} = \frac{1}{2} - 1$																					
Image: Section of the sectin of the section of the sectin	ITCH CAP.	ACITY CALCUL	ATION SH	EET																	
mode OS deta Ioo 4 bit mode V state fistee	Swale										roude R	iprap Ril	prap								
\mathbb{A} \mathbb{E}_{4} $\overline{39,0}$ 1.00 4.00 0.035 $\overline{311}$ $\overline{120}$ $\overline{0.05}$ $\overline{310}$ $\overline{0.011}$ $\overline{0.011}$ $\overline{0.011}$ $\overline{0.011}$ $\overline{0.011}$ $\overline{0.011}$ $\overline{0.011}$ $\overline{0.011}$ $\overline{0.005}$ $\overline{311}$ $\overline{1.00}$ $\overline{0.005}$ $\overline{0.010}$ $\overline{0.005}$ $\overline{0.011}$ $\overline{0.000}$ $\overline{0.0000}$ 0.0000	ocation	cfs	ų			C	N	цт Ц		V fp	# Si	ze ftSiz	te in								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6.4		1.00	4.00	0.035		3.00		m	0.71										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.0	10.0	1.00	0.00	0.035		1.50			0.65										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			26.0	1.40		0.035	3:1,	1.00		1	0.71										
			26.0	1.50		0.035		2.00			0.84										
r 11.8 30.0 1.50 0.003 31.141 2.25 0.13 5.51 0.23 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 0.33 1.11.1 2.50 0.34 0.33 0.11.1 2.50 0.34 0.33 0.33 1.11.1 2.50 0.34 0.33 0.33 1.11.1 2.50 0.34	- T		27.1	1.40		0.035		1.00					-								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 11	11.	30.0	1.50	00.00	0.015		0.25		m	22	sphalt roa	D								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Idde Orr								¢0*												
It 22.8 97.5 1.60 4.00 0.035 1.141 2.50 1.70 5.40 0.33 <t< td=""><td>Ditch G</td><td></td><td>94.8</td><td>1.60</td><td>4.00</td><td>0.035</td><td>3:1/4:1</td><td>2.00</td><td></td><td>ۍ.</td><td>0.94</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Ditch G		94.8	1.60	4.00	0.035	3:1/4:1	2.00		ۍ.	0.94										
	Ditch H		87.5	1.60	4.00	0.035	3:1/4:1	2.50		S	0.93										
·Undefained Flows from UD-Det ·Undefained Flows from UD-Det ·Indefained Flows from UD-Det ·	illwv K		73.0*	5.00	40.00	0.040		2.00	0	4		.20 Us	- -								
36.1* 109 0* 0.30 100 0.040 3:1 3.00 2.30 2.80 0.38 12^{-1} 12^{-1} 'Undetained Flows from UD-Det+ Storm Sever Flows 0.34 0.38		*Undetained F	-lows from	9																	
	illway																				
* Undetained Flows from UD-Det+ Storm Sewer Flows * Undetained Flows * Undetaine	/ale L	36.1*	109.0*	0.30	10.00	0.040	3:1	3.00	2.30	Ň	0.38	.38 Us	e 12								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		*Undetained F	-lows from	UD-Det+	Storm Sewe	r Flows															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1St SW2		** 10	7 10	000		100	00 0	40	c											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	*Detained Flo	07.4 Me + Storm	U/-I Sawar FI			1:0	0.00		ń	0.00										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					SWO								-								
From Spreadsheet i			150.6	1.70	8.00	0.040	8:1	6.00			0.85										
E Breach 199.5 1.70 8.00 0.040 8:1 6.00 1.80 5.10 0.86 9 9 9 ows from the development travel within a natural swale 6.00 1.80 5.10 0.86 9		*From Spread	Isheet																		
************************************		ch																			
We from the development travel within a natural swale covered with rangeland grasses. No downstream manmade facilities exitinon Pipe RM SEWER HYDRAULIC GRADELINE CALCULATION SHET Pipe Critical RM SEWER HYDRAULIC GRADELINE CALCULATION SHET Pipe Critical Ripe Slope Pipe Critical RM SEWER HYDRAULIC GRADELINE CALCULATION SHET Pipe Critical RM SEWER HYDRAULIC GRADELINE CALCULATION SHET Pipe Critical RM Size % Q5 Q100 Cap d 1 30" 1.3 6.4 39.0 54.5 2.3 6855.5 9.9 0.68 Type M 1 24" 0.4 1.2 15.4 1.24 6855.5 9.9 0.68 Type M 24.5 24" 5.7 11.2 27.1 58.1 18.2 0.68 Type M 24.5 23.3 24" 5.7 11.2 27.1 58.4 8.0 0.68 Type M 27.5 24" 5.7 10 28.8 24.6 1.36 0.68 Type M 27.8 27.4 0.68	MO	1	199.5	1.70	8.00	0.040	8:1		-	5.10	0.86										
RM SEWER HYDRAULIC GRADELINE CALCULATION SHEET Pipe Critical Riprap Ition Pipe 200 20000 2000 2000 2000 <td></td> <td>the</td> <td>elopment</td> <td>travel</td> <td>Ø</td> <td></td> <td></td> <td>w.i</td> <td></td> <td>and</td> <td>0.</td> <td></td> <td></td> <td></td> <td>facilit:</td> <td>s exi</td> <td>÷</td> <td></td> <td></td> <td></td> <td></td>		the	elopment	travel	Ø			w.i		and	0.				facilit:	s exi	÷				
tion Fipe Slope Slope 2 Critical Riprap Riprap 2 Critical Riprap 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ORM SEV	VER HYDRAUL	IC GRADEI	LINE CALC	ULATION SH	HEET															
Size % Q5 Q100 Cap d Invert Q/D^1.5 Yt Size 30" 1.3 6.4 39.0 54.5 2.3 6855.5 9.9 0.68 Type L* 24" 0.4 5.7 12.0 15.4 1.24 6856.0 4.2 0.8 Type L* 24" 5.7 11.2 27.1 58.1 1.82 6842.1 0.8 Type L* 24" 5.7 11.2 27.1 58.1 1.82 6842.1 0.68 Type L* (3)38"x24" 1.0 24.8 94.8 4.4 1.36 6855.4 8.0 0.68 Type L* (3)38"x24" 1.0 27.8 87.5 4.4 1.36 6855.4 8.0 0.68 Type L*	cation		Slope			Pipe	Critica.				Ŕ	iprap	Rip	rap							
1 30" 1.3 6.4 39.0 54.5 2.3 6855.5 9.9 0.68 Type L* 24" 0.4 5.7 12.0 15.4 1.24 6856.0 4.2 0.8 Type L* 24" 0.4 5.7 12.0 15.4 1.24 6856.0 4.2 0.8 Type L* 24" 5.7 11.2 27.1 58.1 1.82 6842.1 0.8 7ype L* (3)38"x24" 1.0 24.8 94.8 44 1.36 6855.4 8.0 0.68 Type L* (3)38"x24" 1.0 27.8 87.5 44 1.36 6845.6 7.4 0.68 Type L*						Cap	Р	6	Q/D^1.5			ize	Use	ਰ							
24" 0.4 5.7 12.0 15.4 1.24 6856.0 4.2 0.8 Type L* 24" 5.7 11.2 27.1 58.1 1.82 6842.1 0.8 Type L* (3)38"x24" 1.0 24.8 94.8 44 1.36 6855.4 8.0 0.68 Type L* (3)38"x24" 1.0 22.8 34.5 44 1.36 6855.4 8.0 0.68 Type L*	D1	30"		6.4	39.0			6855.5	6.6		0.68 T	vpe L*	Typ	eΜ							
24" 5.7 11.2 27.1 58.1 1.82 6842.1 (3)38"x24" 1.0 24.8 94.8 44 1.36 6855.4 8.0 0.68 Type L* (3)38"x24" 1.0 22.8 87.5 44 1.36 6841.6 7.4 0.68 Type L*	2A	24"	0.4	5.7				6856.0			0.8 T	vpe L*	Тур	eM							
(3)38"-24" 1.0 22.8 37.6 44 1.36 68416 7.4 0.68 Type L	22	24" 13138"VOA"	ł	11.2 24.8				6842.1 6855.4			0 68 T	* I eu/	Ĕ	Σ							
	0.9	"7/39" </td <td></td> <td>0.42</td> <td></td> <td></td> <td>1 26</td> <td>68416</td> <td>l</td> <td></td> <td>0.68 T</td> <td>mel*</td> <td></td> <td>E A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>		0.42			1 26	68416	l		0.68 T	mel*		E A						1	

	* Per Figure 5-7	
FOREBAY CALCULATIONS		
Total for Basin		
2% OF WQV		
0.02 X 0.470 = 0.0094 AF = 409 CF		
Total Flows at Forebays = 83.1 CFS (Without Time of Concentration Adjustment)	out Time of Concentration Adjustment)	
At Swale D-D	FOREBAY NOTCH CALCULATIONS	
Flow at Swale D-D = 26.0 CFS	0.02 OF 100YR FLOW	
Forebay Size = (26.0/83.1)x409 = 128 CF	0.02 X 26 = 0.52 CFS	
	W =Q/(D^1.5XC)	
	W=0.52/(1X3.0)=0.17 FT	
At DP2		
Flow at DP2 = 27.1 CFS	0.02 OF 100YR FLOW	
Forebay Size = (27.1/83.8)x409 = 133 CF	0.02 X 27.1 = 0.54 CFS	
	W =Q/(D^1.5XC)	
	W=0.54/(1X3.0)=0.18 FT	
At Sub-Basin A4		
Flow at Sub-Basin A4 = 30.0 CFS	0.02 OF 100YR FLOW	
Forebay Size = (30.0/83.1)x409 = 148 CF	0.02 X 30.0 = 0.60 CFS	
	W =Q/(D^1.5XC)	
	W=0.60/(1X3.0)=0.20 FT	

IIIDGE OPP POAN DV PAPK & STOPAGE	ON	DATE	REVISION	BY		OATE	DESIGNED BY
5					35; Cole	PF	MAB
					20 Austi S Srado S [715] fax (7		PROJECT ENGINEER MAB
					(m Bill Sate 1 Sprag () 295		DROJECT MANAGER
COLORADO SPRINGS, COLORADO					/ts P 102 s ⊂C(521)	160001-Dev Cond	
					31ke-3 0 8091 2 341	BY	SCALE
DRAINAGE - DEVELOPED CONDITIONS					4		